text
stringlengths
8
6.05M
from loc import nearby_search from flask import Flask import json import requests # 2. Create the app object app = Flask(__name__) @app.route('/') def home(): return 'Server is Online"' @app.route('/article',methods = ['get']) def art(): # Opening JSON file f = open('article.json') # returns JSON object as # a dictionary data = json.load(f) return data @app.route('/nearby',methods = ['get']) def nearby(): res = requests.get('https://ipinfo.io/') data = res.json() loc=data['loc'] r = nearby_search(loc) return r if __name__ == '__main__': app.run(host='127.0.0.1', port=8080, debug=True)
import util_tools from pathlib import Path files = Path('../outputs_santi/class_outputs/').glob('*')
print("pastrami has been sold out\n") sandwish_orders=['StrawBerry','pastrami','Banana','pastrami','pastrami','Apple','Pine','watermelon'] while 'pastrami' in sandwish_orders: sandwish_orders.remove('pastrami') print("Here are left sandwish") for sandwish in sandwish_orders: print(sandwish)
# -*- coding: utf-8 -*- from architect.repository.client import BaseClient from celery.utils.log import get_logger logger = get_logger(__name__) class EspClient(BaseClient): def __init__(self, **kwargs): super(EspClient, self).__init__(**kwargs) def check_status(self): return True def generate_image(self, params): return True
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Sep 4 10:27:24 2019 @author: se14 """ # simple ROC analysis of results (not the FROC analysis!) import pandas as pd import sklearn.metrics import matplotlib import matplotlib.pyplot as plt get_ipython().run_line_magic('matplotlib', 'qt5') matplotlib.rcParams['figure.figsize'] = (8.0, 6.0) matplotlib.rcParams['font.size'] = 14 #%% load the results file results_file = f'final_results/3D_CNN_FP_reduction.csv' results_df = pd.read_csv(results_file) labels = results_df['class'] predictions = results_df['probability'] fpr,tpr,_ = sklearn.metrics.roc_curve(labels, predictions) auc = sklearn.metrics.roc_auc_score(labels, predictions) plt.plot(fpr,tpr,label=f'AUC={auc}') plt.legend() plt.xlabel(f'FPR') plt.ylabel(f'TPR') plt.title(f'Multi-view 2D false positive reduction (3 views)')
import pygame, sys from pygame.locals import * pygame.init() DISPLAYSURF = pygame.display.set_mode ((400, 300)) MYSURF = pygame.display.set_mode((500,800)) pygame.display.set_caption ('Hello World') pygame.draw.line(DISPLAYSURF, (255,255,255), (0,0), (50,50)) pygame.draw.rect(DISPLAYSURF, (255,255,255), (0,0,25,25)) pygame.draw.rect(MYSURF, (255,255,255), (25,25,100,100)) pygame.draw.circle(MYSURF, (255,255,255), (150,150), 70) while True: for event in pygame.event.get(): if event.type == QUIT: pygame.quit() sys.exit() pygame.display.update()
""" # 计数排序 """ import os import logging import itertools logger = logging.getLogger(__name__) def counting_sort(arr: list): """计数排序""" counts = [0] * (max(arr) + 1) # 0~max包含max+1个元素 for element in arr: # 计数,统计每个元素出现的次数, counts的索引代表arr中的元素值 counts[element] += 1 counts = list(itertools.accumulate(counts)) # 统计arr中某个元素应该出现位置, 即统计arr有多少个比某个元素小 new_arr = [0] * len(arr) for element in reversed(arr): # 数组反转,是为了保证数组中相同的元素先出现依然排在前面 index = counts[element] - 1 # 获取当前元素在排序数组中位置,-1因为下标索引从0开始 new_arr[index] = element counts[element] -= 1 # 取出一个元素之后那么比此元素小的数量就要-1了 arr = new_arr return arr if __name__ == '__main__': logging.basicConfig(format="[%(asctime)s %(filename)s: %(lineno)s] %(message)s", level=logging.INFO, filemode="a", filename=None) logger.info("计数排序结果: {}".format(counting_sort([1, 3, 6, 2, 4, 7, 9, 5, 8])))
from typing import Callable, Tuple, Union, Optional, Dict import numpy as np from inspect import signature class Op: def __init__(self, name: str, description: str, op: Callable, partial_difs: Tuple[Callable]): assert len(signature(op).parameters) == len(partial_difs) self._name = name self._desc = description self._op = op self._partials = partial_difs def __call__(self, *args): return self._op.__call__(*args) def __str__(self): return f"{self._name}: {self._desc}" @property def name(self): return self._name @property def description(self): return self._desc def partial(self, i): return self._partials[i] class OpTable: def __init__(self, *ops: Op): self._ops = { op.name: op for op in ops } def __getitem__(self, op_name: str) -> Op: return self._ops[op_name] def __len__(self): return len(self._ops) def op_descriptions(self) -> Dict[str, str]: return {op.name: op.description for op in self._ops.values()} add = Op( "add", "Scalar or vecrtor addition. If one arg is a matrix then the other arg " "must be a matrix of the same shape", lambda x, y: x + y, ( lambda x, y, c: c, lambda x, y, c: c ) ) smul = Op( "smul", "Scalar multiplication. The first arg must be a scalar, the second arg " "may be a scalar or a matrix", lambda x, y: x * y, ( lambda x, y, c: (c * y).sum(), lambda x, y, c: c * x * np.ones_like(y), ) ) mmul = Op( "mmul", "Matrix multiplication. Both args must be matrices and have compatible " "shapes.", lambda x, y: x @ y, ( lambda x, y, c: c @ y.T, lambda x, y, c: x.T @ c, ) ) relu = Op( "relu", "For each elament x in a matrix set x = max(x, 0)", lambda x: np.maximum(x, 0.0), ( lambda x, c: np.where(x > 0, 1.0, 0.0), ), ) loss = Op( "loss", "Calculate the RMS loss between a target and observed values", lambda target, actual: np.sqrt(np.mean(np.square(target - actual))), ( lambda t, a, c: c * 0.5 * (t - a) * t.size, lambda t, a, c: c * 0.5 * (a - t) * a.size, ) ) default_op_table = OpTable(add, smul, mmul, relu, loss)
# coding=utf-8 from myspider.items import QiushiItem from scrapy.http import Request from scrapy.spiders import CrawlSpider class qiushi(CrawlSpider): name = 'qiushi' allowed_domains = ['www.qiushibaike.com'] start_urls = ['https://www.qiushibaike.com/8hr/'] # 糗事百科 def parse(self, response): content_left_div = response.xpath('//div[@id="content-left"]') content_div_list = content_left_div.xpath('./div[contains(@id, "qiushi_tag_")]') for duan in content_div_list: item = QiushiItem() user_page = duan.xpath('div[contains(@class, "author")]/a/@href').extract() if user_page: item['user_page'] = response.urljoin(user_page[0]) item['user_gravator'] = duan.xpath('div[contains(@class, "author")]/a/img/@src').extract_first() item['user_nickname'] = duan.xpath('div[contains(@class, "author")]/a/img/@alt').extract_first() item['user_age'] = duan.xpath('div[contains(@class, "author")]/div/text()').extract_first() gender = duan.xpath('div[contains(@class, "author")]/div/@class').extract_first() if gender: item['user_gender'] = gender.split(' ')[1] url = duan.xpath('a[@class="contentHerf"]/@href').extract_first() item['url'] = response.urljoin(url) item['duan_content'] = duan.xpath('a[@class="contentHerf"]/div[@class="content"]').extract_first() tu = duan.xpath('div[@class="thumb"]').extract_first() if tu: item['duan_content'] += tu item['duan_pos'] = duan.xpath('div[@class="stats"]/span[@class="stats-vote"]/i[@class="number"]/text()').extract_first() yield item next_page = content_left_div.xpath('./ul[@class="pagination"]/li[last()]/a/@href').extract() if next_page: next_url = response.urljoin(next_page[0]) yield Request(url=next_url, callback=self.parse)
from django.db import models from django.contrib.auth.models import User from stocks.models import Stock from cryptocurrencies.models import Cryptocurrency class StockInvestment(models.Model): investor = models.ForeignKey(User, on_delete=models.CASCADE) asset = models.ForeignKey(Stock, on_delete=models.CASCADE) class CryptoInvestment(models.Model): investor = models.ForeignKey(User, on_delete=models.CASCADE) asset = models.ForeignKey(Cryptocurrency, on_delete=models.CASCADE)
# coding=utf-8 ##################################### # Imports ##################################### # Python native imports from PyQt5 import QtCore, QtWidgets, QtGui import logging from time import time import paramiko ##################################### # Global Variables ##################################### THREAD_HERTZ = 5 IP = "192.168.1.10" USER = "nvidia" PASS = "nvidia" ##################################### # BashConsole Class Definition ##################################### class BashConsole(QtCore.QThread): text_update_ready__signal = QtCore.pyqtSignal(str) def __init__(self, shared_objects): super(BashConsole, self).__init__() # ########## Reference to class init variables ########## self.shared_objects = shared_objects self.left_screen = self.shared_objects["screens"]["left_screen"] self.console_text_edit = self.left_screen.console_line_edit # type: QtWidgets.QTextEdit self.ssh_console_command_line_edit = self.left_screen.ssh_console_command_line_edit # type:QtWidgets.QLineEdit self.ssh_scan_for_hosts_button = self.left_screen.ssh_scan_for_hosts_button # type: QtWidgets.QPushButton self.ssh_host_line_edit = self.left_screen.ssh_host_line_edit # type: QtWidgets.QLineEdit self.ssh_list_wifi_button = self.left_screen.ssh_list_wifi_button # type: QtWidgets.QPushButton self.ssh_equipment_login_button = self.left_screen.ssh_equipment_login_button # type: QtWidgets.QPushButton self.ssh_equipment_logout_button = self.left_screen.ssh_equipment_logout_button # type: QtWidgets.QPushButton self.ssh_equipment_status_button = self.left_screen.ssh_equipment_status_button # type: QtWidgets.QPushButton self.ssh_equipment_start_button = self.left_screen.ssh_equipment_start_button # type: QtWidgets.QPushButton self.ssh_equipment_stop_button = self.left_screen.ssh_equipment_stop_button # type: QtWidgets.QPushButton self.ssh_ssid_line_edit = self.left_screen.ssh_ssid_line_edit # type:QtWidgets.QLineEdit self.ssh_connect_ssid_push_button = self.left_screen.ssh_ssid_push_button # type: QtWidgets.QPushButton self.ssh_disconnect_wifi_button = self.left_screen.ssh_disconnect_wifi_button # type: QtWidgets.QPushButton # ########## Get the settings instance ########## self.settings = QtCore.QSettings() # ########## Get the Pick And Plate instance of the logger ########## self.logger = logging.getLogger("groundstation") # ########## Thread Flags ########## self.run_thread_flag = True # ########## Class Variables ########## self.bash_process = None self.new_widget = None self.window = None self.wait_time = 1.0 / THREAD_HERTZ self.ssh_client = None self.set_text_contents = "" self.new_command_text = "" self.new_command = False def run(self): while not self.ssh_client: try: self.ssh_client = paramiko.SSHClient() self.ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) self.ssh_client.connect(IP, username=USER, password=PASS, compress=True) except: print "No connection" if not self.run_thread_flag: return self.ssh_client = None self.msleep(1000) while self.run_thread_flag: start_time = time() if self.new_command: _, ssh_stdout, ssh_stderr = self.ssh_client.exec_command(self.new_command_text) stdout_read = ssh_stdout.read() stderr_read = ssh_stderr.read() output = "" output += "\n%s@%s:$" % (USER, IP) output += self.new_command_text + "\n" output += stdout_read.decode("utf-8") if stdout_read else "" output += stderr_read.decode("utf-8") if stderr_read else "" self.set_text_contents += output self.text_update_ready__signal.emit(self.set_text_contents) self.new_command = False time_diff = time() - start_time self.msleep(max(int(self.wait_time - time_diff), 0)) del self.bash_process def on_text_readout_updated__slot(self): self.console_text_edit.moveCursor(QtGui.QTextCursor.End) def on_text_editing_finished__slot(self): self.new_command_text = self.ssh_console_command_line_edit.text() self.new_command = True def on_list_wifi_button_pressed__slot(self): self.new_command_text = "nmcli dev wifi list" self.new_command = True def on_login_button_pressed__slot(self): current_ip = self.ssh_host_line_edit.text() self.new_command_text = "python equipment_servicing_interface.py '%s' 'LOGIN MTECH GITRDONE' HELP" % current_ip print self.new_command_text self.new_command = True def on_logout_button_pressed__slot(self): current_ip = self.ssh_host_line_edit.text() self.new_command_text = "python equipment_servicing_interface.py '%s' LOGOUT" % current_ip self.new_command = True def on_status_button_pressed__slot(self): current_ip = self.ssh_host_line_edit.text() self.new_command_text = "python equipment_servicing_interface.py '%s' STATUS" % current_ip self.new_command = True def on_start_button_pressed__slot(self): current_ip = self.ssh_host_line_edit.text() self.new_command_text = "python equipment_servicing_interface.py '%s' START" % current_ip self.new_command = True def on_stop_button_pressed__slot(self): current_ip = self.ssh_host_line_edit.text() self.new_command_text = "python equipment_servicing_interface.py '%s' STOP" % current_ip self.new_command = True def on_ssh_scan_for_hosts_pressed__slot(self): current_ip = self.ssh_host_line_edit.text() find_dot = current_ip.rfind(".") if find_dot > 0: current_ip = current_ip[:find_dot + 1] + "0" self.new_command_text = "nmap -sP %s/24 -oG - | awk '/Up$/{print $2}'" % current_ip self.new_command = True else: self.set_text_contents += "IP address for range search not valid. Try again." self.text_update_ready__signal.emit(self.set_text_contents) def on_connect_ssid_button_pressed__slot(self): ssid_text = self.ssh_ssid_line_edit.text() self.new_command_text = "sudo nmcli dev wifi connect %s" % ssid_text self.new_command = True def on_disconnect_ssid_button_pressed__slot(self): ssid_text = self.ssh_ssid_line_edit.text() self.new_command_text = "sudo nmcli con down id %s ; sudo nmcli connection delete %s" % (ssid_text, ssid_text) self.new_command = True def connect_signals_and_slots(self): self.text_update_ready__signal.connect(self.console_text_edit.setText) self.ssh_console_command_line_edit.editingFinished.connect(self.on_text_editing_finished__slot) self.console_text_edit.textChanged.connect(self.on_text_readout_updated__slot) self.ssh_scan_for_hosts_button.clicked.connect(self.on_ssh_scan_for_hosts_pressed__slot) self.ssh_equipment_login_button.clicked.connect(self.on_login_button_pressed__slot) self.ssh_equipment_logout_button.clicked.connect(self.on_logout_button_pressed__slot) self.ssh_equipment_status_button.clicked.connect(self.on_status_button_pressed__slot) self.ssh_equipment_start_button.clicked.connect(self.on_start_button_pressed__slot) self.ssh_equipment_stop_button.clicked.connect(self.on_stop_button_pressed__slot) self.ssh_list_wifi_button.clicked.connect(self.on_list_wifi_button_pressed__slot) self.ssh_connect_ssid_push_button.clicked.connect(self.on_connect_ssid_button_pressed__slot) self.ssh_disconnect_wifi_button.clicked.connect(self.on_disconnect_ssid_button_pressed__slot) def setup_signals(self, start_signal, signals_and_slots_signal, kill_signal): start_signal.connect(self.start) signals_and_slots_signal.connect(self.connect_signals_and_slots) kill_signal.connect(self.on_kill_threads_requested__slot) def on_kill_threads_requested__slot(self): self.run_thread_flag = False
import scapy.all as scapy def sniff(interface): scapy.sniff(iface = interface, store = False, prn = process_sniffed_packet, filter = 'port 22') def process_sniffed_packet(packet): print(packet.summary()) sniff("eth0")
import argparse import numpy as np import tensorflow as tf import tensorflow_compression as tfc import os from scipy import misc import CNN_recurrent import motion import functions import helper os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' config = tf.ConfigProto(allow_soft_placement=True) sess = tf.Session(config=config) parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--path", default='BasketballPass') parser.add_argument("--frame", type=int, default=100) parser.add_argument("--f_P", type=int, default=6) parser.add_argument("--b_P", type=int, default=6) parser.add_argument("--mode", default='PSNR', choices=['PSNR', 'MS-SSIM']) parser.add_argument("--python_path", default='path_to_python') parser.add_argument("--CA_model_path", default='path_to_CA_EntropyModel_Test') parser.add_argument("--l", type=int, default=1024, choices=[8, 16, 32, 64, 256, 512, 1024, 2048]) parser.add_argument("--N", type=int, default=128, choices=[128]) parser.add_argument("--M", type=int, default=128, choices=[128]) args = parser.parse_args() # settings _, GOP_size, GOP_num, \ path, path_com, path_bin, path_lat = helper.configure_decoder(args) # decode I frames for g in range(GOP_num + 1): I_index = g * GOP_size + 1 if I_index <= args.frame: helper.decode_I(args, I_index, path_com, path_bin) F1 = misc.imread(path_com + 'f001.png') Height = np.size(F1, 0) Width = np.size(F1, 1) # placeholder string_mv_tensor = tf.placeholder(tf.string, []) string_res_tensor = tf.placeholder(tf.string, []) # decode motion latent entropy_bottleneck = tfc.EntropyBottleneck(dtype=tf.float32, name='entropy_bottleneck') motion_latent_hat = entropy_bottleneck.decompress( tf.expand_dims(string_mv_tensor, 0), [Height//16, Width//16, args.M], channels=args.M) # decode residual latent entropy_bottleneck_2 = tfc.EntropyBottleneck(dtype=tf.float32, name='entropy_bottleneck_1_1') residual_latent_hat = entropy_bottleneck_2.decompress( tf.expand_dims(string_res_tensor, 0), [Height//16, Width//16, args.M], channels=args.M) # load model saver = tf.train.Saver(max_to_keep=None) model_path = './model/RAE_' + args.mode + '_' + str(args.l) saver.restore(sess, save_path=model_path + '/model.ckpt') for g in range(GOP_num + 1): I_index = g * GOP_size + 1 if I_index <= args.frame: # if there exists forward P frame(s), I_index + 1 is decoded by the bottleneck if args.f_P > 0 and I_index + 1 <= args.frame: with open(path_bin + 'f' + str(I_index + 1).zfill(3) + '.bin', "rb") as ff: mv_len = np.frombuffer(ff.read(2), dtype=np.uint16) string_mv = ff.read(np.int(mv_len)) string_res = ff.read() latent_mv, latent_res = sess.run([motion_latent_hat, residual_latent_hat], feed_dict={ string_mv_tensor: string_mv, string_res_tensor: string_res}) np.save(path_lat + '/f' + str(I_index + 1).zfill(3) + '_mv.npy', latent_mv) np.save(path_lat + '/f' + str(I_index + 1).zfill(3) + '_res.npy', latent_res) print('Decoded latents frame', I_index + 1) # if there exists backward P frame(s), I_index - 1 is decoded by the bottleneck if args.b_P > 0 and I_index - 1 >= 1: with open(path_bin + 'f' + str(I_index - 1).zfill(3) + '.bin', "rb") as ff: mv_len = np.frombuffer(ff.read(2), dtype=np.uint16) string_mv = ff.read(np.int(mv_len)) string_res = ff.read() latent_mv, latent_res = sess.run([motion_latent_hat, residual_latent_hat], feed_dict={ string_mv_tensor: string_mv, string_res_tensor: string_res}) np.save(path_lat + '/f' + str(I_index - 1).zfill(3) + '_mv.npy', latent_mv) np.save(path_lat + '/f' + str(I_index - 1).zfill(3) + '_res.npy', latent_res) print('Decoded latents frame', I_index - 1)
from celery import shared_task @shared_task def debug_task(msg: str) -> None: print(msg)
import random from PiratesTreasure.ServerPackage import Cell from PiratesTreasure.ServerPackage import Player class World: def __init__(self,players = []): self.M_rows = 10 self.N_columns = (10 + len(players)) #self.listOfPlayersOnBoard = self.makeListOfPlayersOnTheBoard(players) self.CreateWorld(self.M_rows, self.N_columns) def MovePlayer(self,Player_id,NewI,NewJ,players = []): for c in players: if (players[c].PlayerID == Player_id): players[c].i = NewI players[c].j = NewJ """"" def makeListOfPlayersOnTheBoard(self,players): listPlayers = [] for c in players: listPlayers[c].append(PlayersOnTheBoard(c)) # i add a list of players on the board to know their location return listPlayers """ def CreateWorld(self,rows,column): cell_board = [] for y in range(rows): cell_board.append([]) self.FillBoard(cell_board, rows, column) def FillBoard(self,cell_board,rows,columns): #islandORsea = random.randint(0,1) #Determines whether its sea or island for y in range(rows): for x in range(columns): cell_board[y][x] = Cell(0) #filled the board in sea #self.CellState(islandORsea) #Determines the numbers of Gold coins in each cell while ((rows * columns) / 3): cell_board[random.randint(rows,columns)][random.randint(rows,columns)] = Cell(1) #One-third of the Board is island
from django.contrib import admin from . models import Produto, Pedido, InformacaoPedido # Register your models here. admin.site.register(Produto) admin.site.register(Pedido) admin.site.register(InformacaoPedido)
def myFunc(): print("Inside mainFn.py and myFunc") print("Inside mainFn.py") if __name__=="__main__": print("Inside mainFn.py, main is called") else: print("Inside mainFn.py, main is not called")
from django.apps import AppConfig class MantenimientotablaConfig(AppConfig): name = 'mantenimientoTabla'
dicto = dict()
import os import time from ..utils import PublicKey import toml server_key_filename = "~/_mypaas/authorized_keys" config_filename = "~/_mypaas/config.toml" last_key_read = 0 _authorized_keys = {} def get_public_key(fingerprint): """Get the public key for the given fingerprint""" # Read the keys from the filesystem at most once each few seconds, # to prevent attacks on the auth service. global last_key_read if last_key_read < time.time() - 5: last_key_read = time.time() _authorized_keys.clear() _authorized_keys.update(get_authorized_keys(server_key_filename)) return _authorized_keys.get(fingerprint, None) def get_authorized_keys(filename): """Read the authorized public keys from the file system. Returns a dict of PublicKey objects. """ if filename.startswith("~"): filename = os.path.expanduser(filename) if not os.path.isfile(filename): return {} with open(filename, "rb") as f: text = f.read().decode(errors="ignore") keys = {} for line in text.split("\n"): line = line.strip() if not line or line.startswith("#"): continue try: key = PublicKey.from_str(line) except Exception: print(f"Does not look like a public key: {line}") else: keys[key.get_id()] = key return keys def load_config(): """Load config from disk.""" filename = os.path.expanduser(config_filename) try: with open(filename, "rb") as f: return toml.loads(f.read().decode()) except Exception: return {"init": {}, "env": {}} def save_config(config): """Save config to disk.""" filename = os.path.expanduser(config_filename) with open(filename, "wb") as f: f.write(toml.dumps(config).encode())
import timeit start = timeit.default_timer() A=[9,12,33,47,53,67,78,92] B=[48,81] C=[13,41,62] D=[1,3,45,79] E=[14,16,24,44,46,55,57,64,74,82,87,98] F=[10,31] G=[6,25] H=[23,39,50,56,65,68] I=[32,70,73,83,88,93] J=[15] K=[4] L=[26,37,51,84] M=[22,27] N=[18,58,59,66,71,91] O=[0,5,7,54,72,90,99] P=[38,95] Q=[94] R=[29,35,40,42,77,80] S=[11,19,36,76,86,96] T=[17,20,30,43,49,69,75,85,97] U=[8,61,63] V=[34] W=[60,89] X=[28] Y=[21,52] Z=[2] arrsp=['#'] count2=0 count1=0 count3=0 count4=0 count5=0 count6=0 count7=0 count8=0 count9=0 count10=0 count11=0 count12=0 count13=0 count14=0 count15=0 count16=0 count17=0 count18=0 count19=0 count20=0 count21=0 count22=0 count23=0 count24=0 count25=0 count26=0 count27=0 n=input("Enter a text:") n=n.upper() l=list(n) l1=[] #encryption for i in range(len(l)): if l[i]== 'A': temp1=A[count1] l1.append(temp1) count1=count1+1 if count1>=8: count1=0 elif l[i]== "B": temp1=B[count2] l1.append(temp1) count2=count2+1 if count2>=2: count2=0 elif l[i]== "C": temp1=C[count3] l1.append(temp1) count3=count3+1 if count3>=3: count3=0 elif l[i]== "D": temp1=D[count4] l1.append(temp1) count4=count4+1 if count4>=4: count4=0 elif l[i]== "E": temp1=E[count5] l1.append(temp1) count5=count5+1 if count5>=12: count5=0 elif l[i]== "F": temp1=F[count6] l1.append(temp1) count6=count6+1 if count6>=2: count6=0 elif l[i]== "G": temp1=G[count7] l1.append(temp1) count7=count7+1 if count7>=2: count7=0 elif l[i]== "H": temp1=H[count8] l1.append(temp1) count8=count8+1 if count8>=6: count8=0 elif l[i]== "I": temp1=I[count9] l1.append(temp1) count9=count9+1 if count9>=6: count9=0 elif l[i]== "J": temp1=J[count10] l1.append(temp1) count10=count10+1 if count10>=1: count10=0 elif l[i]== "K": temp1=K[count11] l1.append(temp1) count11=count11+1 if count11>=1: count11=0 elif l[i]== "L": temp1=L[count12] l1.append(temp1) count12=count12+1 if count12>=4: count12=0 elif l[i]== "M": temp1=M[count13] l1.append(temp1) count13=count13+1 if count13>=2: count13=0 elif l[i]== "N": temp1=N[count14] l1.append(temp1) count14=count14+1 if count14>=6: count14=0 elif l[i]== "O": temp1=O[count15] l1.append(temp1) count15=count15+1 if count15>=7: count15=0 elif l[i]== "P": temp1=P[count16] l1.append(temp1) count16=count16+1 if count16>=2: count16=0 elif l[i]== "Q": temp1=Q[count17] l1.append(temp1) count17=count17+1 if count17>=1: count17=0 elif l[i]== "R": temp1=R[count18] l1.append(temp1) count18=count18+1 if count18>=6: count18=0 elif l[i]== "S": temp1=S[count19] l1.append(temp1) count19=count19+1 if count19>=6: count19=0 elif l[i]== "T": temp1=T[count20] l1.append(temp1) count20=count20+1 if count20>=9: count20=0 elif l[i]== "U": temp1=U[count21] l1.append(temp1) count21=count21+1 if count21>=3: count21=0 elif l[i]== "V": temp1=V[count22] l1.append(temp1) count22=count22+1 if count22>=1: count22=0 elif l[i]== "W": temp1=W[count23] l1.append(temp1) count23=count23+1 if count23>=2: count23=0 elif l[i]== "X": temp1=X[count24] l1.append(temp1) count24=count24+1 if count24>=1: count24=0 elif l[i]== "Y": temp1=Y[count25] l1.append(temp1) count25=count25+1 if count25>=2: count25=0 elif l[i]== "Z": temp1=Z[count26] l1.append(temp1) count26=count26+1 if count26>=1: count26=0 elif l[i]== " ": temp1=arrsp[count27] l1.append(temp1) count27=count27+1 if count27>=1: count27=0 print("ENCRYPTION:") print(l1) j=[] for i in range(len(l1)): if (l1[i] in A): j.append('a') elif (l1[i] in B): j.append('b') elif (l1[i] in C): j.append('c') elif (l1[i] in D): j.append('d') elif (l1[i] in E): j.append('e') elif (l1[i] in F): j.append('f') elif (l1[i] in G): j.append('g') elif (l1[i] in H): j.append('h') elif (l1[i] in I): j.append('i') elif (l1[i] in J): j.append('j') elif (l1[i] in K): j.append('k') elif (l1[i] in L): j.append('l') elif (l1[i] in M): j.append('m') elif (l1[i] in N): j.append('n') elif (l1[i] in O): j.append('o') elif (l1[i] in P): j.append('p') elif (l1[i] in Q): j.append('q') elif (l1[i] in R): j.append('r') elif (l1[i] in S): j.append('s') elif (l1[i] in T): j.append('t') elif (l1[i] in U): j.append('u') elif (l1[i] in V): j.append('v') elif (l1[i] in W): j.append('w') elif (l1[i] in X): j.append('x') elif (l1[i] in Y): j.append('y') elif (l1[i] in Z): j.append('z') elif (l1[i] in arrsp): j.append(' ') print("DECRYPTION:") print(j) stop = timeit.default_timer() print (stop - start )
from django.shortcuts import render, get_object_or_404 from .serializers import SnsSerializer, TodoSerializer, SnsSerializer, SnsCreateSerializer, CommentSerializer from rest_framework.decorators import api_view, permission_classes, authentication_classes from django.http import JsonResponse, HttpResponse from rest_framework.permissions import IsAuthenticated from rest_framework_jwt.authentication import JSONWebTokenAuthentication from .models import SnsModel, CommentModel from django.contrib.auth import get_user_model from accounts.models import User from accounts.serializers import ImageSerializer # Create your views here. @api_view(['POST']) @permission_classes([IsAuthenticated]) @authentication_classes([JSONWebTokenAuthentication]) # JWT 방식으로 인증 및 허가 하겠다. def sns_create(request): serializer = SnsSerializer(data=request.data) if serializer.is_valid(): serializer.save() return JsonResponse(serializer.data) return HttpResponse(status=400) @api_view(['POST']) @permission_classes([IsAuthenticated,]) @authentication_classes([JSONWebTokenAuthentication]) # JWT 방식으로 인증 및 허가 하겠다. def todo_create(request): serializer = TodoSerializer(data=request.POST) if serializer.is_valid(): serializer.save() return JsonResponse(serializer.data) return HttpResponse(status=400) @api_view(['POST']) def snscreate(request): aaa = request.FILES['file'] title = request.POST['title'] user = request.POST['user'] username = request.POST['user'] user = get_object_or_404(get_user_model(), username=user) nickname= user.nickname img = SnsModel.objects.create(image=aaa, title=title, user=user, username=username, nickname=nickname) user.sns_count += 1 user.save() return JsonResponse({"asd":"asd"}) def snslist(request): sns = SnsModel.objects.all().order_by('-id') if request.method == 'GET': serializer = SnsSerializer(sns, many=True) return JsonResponse(serializer.data, safe=False) @api_view(['POST']) def commentcreate(request,id): sns = get_object_or_404(SnsModel, id=id) content = request.POST['content'] user = request.POST['user'] username = request.POST['user'] user = get_object_or_404(get_user_model(), username=user) img = CommentModel.objects.create(content=content, sns=sns, create_user=user, username=username) user.comment_count += 1 user.save() serializer = CommentSerializer(instance=img) return JsonResponse(serializer.data) @api_view(['GET','DELETE']) def comment(request,id): if request.method == 'GET': sns = get_object_or_404(SnsModel, id=id) comments = sns.commentmodel_set.all() serializer = CommentSerializer(comments, many=True) return JsonResponse(serializer.data, safe=False) elif request.method == 'DELETE': comment = get_object_or_404(CommentModel, id=id) user = get_object_or_404(get_user_model(), username=comment.username) user.comment_count -= 1 user.save() serializer = CommentSerializer(instance=comment) comment.delete() return JsonResponse(serializer.data) @api_view(['DELETE']) def snsdelete(request, id): sns = get_object_or_404(SnsModel, id=id) user = get_object_or_404(get_user_model(), nickname=sns.nickname) user.sns_count += -1 user.save() serializer = SnsSerializer(instance=sns) sns.delete() return JsonResponse(serializer.data) def getranker(request): snsrankers = User.objects.all().order_by('-sns_count')[:5] sns_rankers = ['',0,'','',0,'','',0,'','',0,'','',0,'',] idx = 0 for ranker in snsrankers: sns_rankers[idx] = ranker.nickname sns_rankers[idx+1] = ranker.sns_count origin = ranker.username origin = origin[0:2] + '****' sns_rankers[idx+2] = origin idx += 3 commentrankers = User.objects.all().order_by('-comment_count')[:5] comment_rankers = ['',0,'','',0,'','',0,'','',0,'','',0,'',] idx = 0 for ranker in commentrankers: comment_rankers[idx] = ranker.nickname comment_rankers[idx+1] = ranker.comment_count origin = ranker.username origin = origin[0:2] + '****' comment_rankers[idx+2] = origin idx += 3 rankerdata = { 'sns1_name':sns_rankers[0],'sns1_count':sns_rankers[1],'sns1_id':sns_rankers[2], 'sns2_name':sns_rankers[3],'sns2_count':sns_rankers[4],'sns2_id':sns_rankers[5], 'sns3_name':sns_rankers[6],'sns3_count':sns_rankers[7],'sns3_id':sns_rankers[8], 'sns4_name':sns_rankers[9],'sns4_count':sns_rankers[10],'sns4_id':sns_rankers[11], 'sns5_name':sns_rankers[12],'sns5_count':sns_rankers[13],'sns5_id':sns_rankers[14], 'comment1_name':comment_rankers[0],'comment1_count':comment_rankers[1],'comment1_id':comment_rankers[2], 'comment2_name':comment_rankers[3],'comment2_count':comment_rankers[4],'comment2_id':comment_rankers[5], 'comment3_name':comment_rankers[6],'comment3_count':comment_rankers[7],'comment3_id':comment_rankers[8], 'comment4_name':comment_rankers[9],'comment4_count':comment_rankers[10],'comment4_id':comment_rankers[11], 'comment5_name':comment_rankers[12],'comment5_count':comment_rankers[13],'comment5_id':comment_rankers[14], } return JsonResponse(rankerdata) def getuser(request,id): sns = get_object_or_404(SnsModel, id=id) user = get_object_or_404(get_user_model(), nickname=sns.nickname) serializer = ImageSerializer(user) return JsonResponse(serializer.data)
#coding:utf-8 from PyQt5.QtCore import * import FLUS_Utils import numpy as np import time, os import xml.etree.cElementTree as ET from sklearn.externals import joblib from gdalconst import * class NNTrainingThread(QThread): """ 采样 + NN 训练 + 预测的外部线程,与界面主线程不同,可以引入防止界面假死 """ # 结束信号 finished = pyqtSignal() # 发送信号,传给主界面,用于显示在状态栏 sendMsg = pyqtSignal(str) # 发送信号,传给主界面,用于弹出对话框 sendMsg2Box = pyqtSignal(str, str) def __init__(self, parent): QThread.__init__(self, parent) def setParam(self, wd, xmlfn): """ 为线程设置参数 :param wd: 工作路径,用于查找xml文件,写入发展概率文件 :param xmlfn: xml文件名 :return: """ self.sWorkDirectory = wd self.xmlfn = xmlfn def parseXML(self): """ 解析xml :return: None if fail, 1 if success """ xmlfn = self.sWorkDirectory + "/" + self.xmlfn if (not os.path.exists(xmlfn)): # print("ann_config.xml does not exist") self.sendMsg2Box.emit("Please set ANN-based Probability\nEstimation Parameters First!", "error") return None else: tree = ET.parse(xmlfn) root = tree.getroot() # = = = = 解析 xml 文件 = = = = = = = = = = = self.sLUFileName = root.find("FilePaths").find("LandUseFilePath").text # 土地利用数据文件名 self.sPgFileName = root.find("FilePaths").find("ProbabilityFilePath").text # 存储的发展概率文件名 self.vsFeatFileName = [] for feat in root.find("FilePaths").find("FeatureFilePaths").findall("FeatureFilePath"): self.vsFeatFileName.append(feat.text) # 空间变量文件名,由于存在多张图像,因此存入列表 # 从xml文件读取采样方法和采样比例 self.sSampleMethod = root.find("Sampling").find("Method").text self.dSampleRate = float(root.find("Sampling").find("Ratio").text) # 从xml文件读取神经网络训练参数 self.nHhiddenlayersize = int(root.find("NeuralNetwork").find("HiddenLayer").text) self.nMaxIter = int(root.find("NeuralNetwork").find("MaximumIteration").text) self.dAlpha = float(root.find("NeuralNetwork").find("Alpha").text) self.dLearningRate = float(root.find("NeuralNetwork").find("LearningRate").text) return 1 def sampling(self): """ 采样 :return: """ self.poLU, msg = FLUS_Utils.loadImage(self.sLUFileName) self.dLUNodata = self.poLU.mdInvalidValue # 读取空间变量数据集,并且提出 nodata 值 self.pppFeats = np.zeros((len(self.vsFeatFileName), self.poLU.mnRows, self.poLU.mnCols)) self.vdFeatNodata = [] for i in range(len(self.vsFeatFileName)): flusimg, msg = FLUS_Utils.loadImage(self.vsFeatFileName[i]) self.vdFeatNodata.append(flusimg.mdInvalidValue) self.pppFeats[i] = flusimg.mpArray[0] # 采集样本 self.sendMsg.emit("Sampling... [ %s / %.3f ]" % (self.sSampleMethod, self.dSampleRate)) if (self.sSampleMethod == "Uniform"): self.ppSamples = FLUS_Utils.uniformSample2table(self.pppFeats, self.poLU.mpArray, self.dSampleRate, self.dLUNodata , self.vdFeatNodata) else: self.ppSamples = FLUS_Utils.randomSample2table(self.pppFeats, self.poLU.mpArray, self.dSampleRate, self.dLUNodata, self.vdFeatNodata) self.sendMsg.emit("Sample Success! Valid Sample Number=%d" % (self.ppSamples.shape[0])) # 将样本存入文件,文件名形如training_sample_20171220121212.csv self.sendMsg.emit("Save Sample File...") timestr = time.strftime('%Y%m%d%H%M%S') if(not os.path.exists(self.sWorkDirectory+"/training_samples")): os.mkdir(self.sWorkDirectory+"/training_samples") np.savetxt(self.sWorkDirectory + "/training_samples/training_sample_" + timestr + ".csv", self.ppSamples, delimiter=',') self.sendMsg.emit("Save Sample File Success!") def trainNN(self): """ 训练神经网络模型 :return: """ from sklearn.neural_network import MLPClassifier from sklearn.ensemble import ExtraTreesClassifier, RandomForestClassifier # 提取X, Y,用于训练 X = self.ppSamples[:, :-1] Y = self.ppSamples[:, -1] del self.ppSamples # 构造神经网络,训练 self.clf = MLPClassifier(hidden_layer_sizes=(self.nHhiddenlayersize,), max_iter=self.nMaxIter, alpha=self.dAlpha, solver='sgd', tol=1e-9, learning_rate_init=self.dLearningRate) # self.clf = RandomForestClassifier(n_estimators= 10) self.sendMsg.emit("Training...") self.clf.fit(X, Y) score = self.clf.score(X, Y) del X, Y joblib.dump(self.clf, self.sWorkDirectory + "/ANNModel.pkl") #self.sendMsg.emit("Training Success! Score = %.2f%%"%(score*100)) self.sendMsg2Box.emit("Training Success! Score = %.2f%%"%(score*100), "info") def predictPg(self): """ 预测发展概率 :return: """ self.sendMsg.emit("Predicting...") # 首先获取类别数目 validVals = np.unique(self.poLU.mpArray) classNum = validVals.shape[0] if (self.dLUNodata in validVals): classNum = validVals.shape[0] - 1 probability = np.zeros((classNum, self.pppFeats.shape[1], self.pppFeats.shape[2])) # 这里可以开多线程 for i in range(self.pppFeats.shape[1]): for j in range(self.pppFeats.shape[2]): arr = np.zeros((1, self.pppFeats.shape[0])) # 如果数据为 nodata,则跳过,发展概率赋值为 nodata nodataflag = abs(self.poLU.mpArray[0, i, j] - self.dLUNodata) > 1e-6 for k in range(self.pppFeats.shape[0]): arr[0, k] = self.pppFeats[k, i, j] nodataflag = nodataflag and abs(arr[0, k] - self.vdFeatNodata[k]) > 1e-6 if (nodataflag == False): for k in range(classNum): probability[k, i, j] = self.vdFeatNodata[0] continue # 预测各类概率并且存入矩阵 prob = self.clf.predict_proba(arr) for k in range(classNum): probability[k, i, j] = prob[0, k] #self.progressBar.setValue(i / self.pppFeats.shape[1]) if((i+1)%10 == 0 or (i+1)==self.pppFeats.shape[0]): self.sendMsg.emit("Predicting...%d/%d"%(i+1, self.pppFeats.shape[1])) # 保存文件 self.sendMsg.emit("Saving Probability File...") if (FLUS_Utils.array2Tif(probability, self.sPgFileName, GDT_Float32, self.vdFeatNodata[0], self.poLU.mpoDataset.GetGeoTransform(), self.poLU.mpoDataset.GetProjection()) == None): self.sendMsg2Box.emit("File Exists!\nPlease Delete it first!", "error") self.finished.emit() # 清理内存 del self.poLU, self.pppFeats, probability # 重构run函数 def run(self): #self.finished.emit() if(self.parseXML()!= None): self.sampling() self.trainNN() self.predictPg() self.finished.emit() # 这里千万不要写成finished().emit()!!!! debug了很久 # 动态类型一时爽,代码重构火葬场。 def __del__(self): self.clf = None class CAThread(QThread): """ CA 线程 """ finished = pyqtSignal() sendMsg = pyqtSignal(str) sendMsg2Box = pyqtSignal(str, str) def __init__(self, parent): QThread.__init__(self, parent) self.sWorkDirectory = None self.xmlfn = None self.nRows = 1 # 行数 self.nCols = 1 # 列数 self.nMaxIter = 300 # 最大迭代次数 self.nWinSize = 7 # 邻域窗口大小 self.dAccelerate = 0.1 # 加速率 self.nLUClassNum = 2 # 土地利用类别数目 self.pCurrentAmount = np.zeros((self.nLUClassNum)) # 当前各类用地像元数目,1d array self.pTargetAmount = np.zeros((self.nLUClassNum)) # 目标各类用地像元数目, 1d array self.ppCostMatrix = np.ones((self.nLUClassNum, self.nLUClassNum)) # 类别之间的转换矩阵, 1d array self.pNeighborWeight = np.zeros((self.nLUClassNum)) # 各类用地的邻域权重, 1d array self.pppProbability = np.zeros((self.nLUClassNum, self.nRows, self.nCols)) # 神经网络训练的发展适宜性, 3d array self.ppRestrictive = np.zeros((self.nRows, self.nCols) ) # 限制性因素 self.ppCurrentLU = np.zeros((self.nRows, self.nCols)) # 当前用地分布, 2d array self.ppSimulateLU = np.zeros((self.nRows, self.nCols)) # 模拟用地分布, 2d array def setParam(self, wd, xmlfn): """ 为线程设置参数 :param wd: 工作路径,用于查找xml文件,写入发展概率文件 :param xmlfn: xml文件名 :return: """ self.sWorkDirectory = wd self.xmlfn = xmlfn def parseXML(self): """ 解析参数 :return: """ xmlfn = self.sWorkDirectory + "/" + self.xmlfn if (not os.path.exists(xmlfn)): # print("ann_config.xml does not exist") self.sendMsg2Box.emit("Please set ANN-based Probability\nEstimation Parameters First!", "error") return None else: tree = ET.parse(xmlfn) root = tree.getroot() # = = = = 解析 xml 文件 = = = = = = = = = = = self.sCurLUFileName = root.find("FilePaths").find("InitialLandUseFilePath").text self.sSimLUFileName = root.find("FilePaths").find("SimulationLandUseFilePath").text self.sDevelopProbFileName = root.find("FilePaths").find("ProbabilityFilePath").text self.sRestrictiveFileName = root.find("FilePaths").find("RestrictiveFilePath").text self.nWinSize = int(root.find("SimulationParameters").find("NeighborSize").text) if(self.nWinSize % 2 == 0): self.nWinSize += 1 self.nMaxIter = int(root.find("SimulationParameters").find("MaxIterationNum").text) self.dAccelerate = float(root.find("SimulationParameters").find("Accelerate").text) self.nLUClassNum = int(root.find("SimulationParameters").find("ClassNum").text) # 惯性系数 self.pInertia = np.ones((self.nLUClassNum)) # 读取邻域权重向量 self.pNeighborWeight = np.zeros((self.nLUClassNum)) weightNodes = root.find("SimulationParameters").find("NeighborWeights").findall("ClassWeight") for i in range(len(weightNodes)): self.pNeighborWeight[i] = float(weightNodes[i].text) # 获取当前各类像元数目 self.pCurrentAmount = np.zeros((self.nLUClassNum)) currentNodes = root.find("SimulationParameters").find("CurrentAmounts").findall("ClassAmount") for i in range(len(currentNodes)): self.pCurrentAmount[i] = int((currentNodes[i].text)) # 读取目标像元数目 self.pTargetAmount = np.zeros((self.nLUClassNum)) targetNodes = root.find("SimulationParameters").find("TargetAmounts").findall("ClassAmount") for i in range(len(targetNodes)): self.pTargetAmount[i] = int((targetNodes[i].text)) # 发展需求量 self.pDemandAmount = self.pTargetAmount - self.pCurrentAmount # 读取类型间转换矩阵 self.ppCostMatrix = np.zeros((self.nLUClassNum, self.nLUClassNum)) costNodes = root.find("SimulationParameters").find("CostMatrix").findall("CostRow") for i in range(len(targetNodes)): costlist = (costNodes[i].text).split(",") for j in range(len(costlist)): self.ppCostMatrix[i,j] = float(costlist[j]) self.sendMsg.emit("parse xml success!") def init(self): """ 读取文件并申请内存:包括初始土地利用数据和模拟土地利用数据,发展概率,限制性因素 :return: """ # 读取影像 luimg, msg = FLUS_Utils.loadImage(self.sCurLUFileName) self.nRows = luimg.mnRows self.nCols = luimg.mnCols self.pGeoTransform = luimg.mpoDataset.GetGeoTransform() self.sProjectionRef = luimg.mpoDataset.GetProjection() self.ppCurrentLU = luimg.mpArray[0] self.ppSimulateLU = luimg.mpArray[0] self.dLUNodata = luimg.mdInvalidValue self.gDataType = luimg.mgDataType del luimg probimg,msg = FLUS_Utils.loadImage(self.sDevelopProbFileName) self.pppProbability = probimg.mpArray self.dProbNodata = probimg.mdInvalidValue del probimg restrictiveimg, msg = FLUS_Utils.loadImage(self.sRestrictiveFileName) self.ppRestrictive = restrictiveimg.mpArray[0] self.dRestrictiveNodata = restrictiveimg.mdInvalidValue del restrictiveimg self.sendMsg2Box.emit("init success!", "info") def calNeighbor(self, r, c): """ 计算(r, c)位置处的邻域效应, :param r: 行 :param c: 列 :return:返回一个包含n个float数值的1d numpy array,其中n为用地类数 """ # get half size nHalfSize = (self.nWinSize - 1) / 2 nLeft = int(c - nHalfSize) nRight = int(c + nHalfSize) nBottom = int(r + nHalfSize) nTop = int(r - nHalfSize) if(not c > nHalfSize): nLeft = 0 if(not c < self.nCols-nHalfSize): nRight = self.nCols-1 if(not r > nHalfSize): nTop = 0 if(not r < self.nRows-nHalfSize): nBottom = self.nRows - 1 pNeighborEffect = np.zeros(self.nLUClassNum) dNeighborTotal = 0.0 for i in range(nTop, nBottom+1): for j in range(nLeft, nRight+1): val = int(self.ppCurrentLU[i,j]) if (val > self.nLUClassNum or val < 1 or i==j): continue pNeighborEffect[val-1] += self.pNeighborWeight[val-1]*1 dNeighborTotal += self.pNeighborWeight[val-1] if(dNeighborTotal > 1): pNeighborEffect /= (dNeighborTotal) else: pNeighborEffect = np.zeros(self.nLUClassNum) return pNeighborEffect def iteration(self): nIter = 0 bFlag = False while not bFlag and nIter < self.nMaxIter: # bFlag = True # for current, target in zip(self.pCurrentAmount, self.pTargetAmount): # bFlag = bFlag and (current < target) # # 各类像元数目均达标,则满足要求 # if(not bFlag): # break print ("iter %d current demand: "%(nIter+1), self.pDemandAmount, end = '') self.sendMsg.emit("iteration %d/%d..."%(nIter+1, self.nMaxIter)) samplenum = 0 # 每次随机选取1000个点 while samplenum < self.nRows*self.nCols*0.01: r = np.random.randint(0, self.nRows) c = np.random.randint(0, self.nCols) val = int(self.ppSimulateLU[r,c]) pc = self.ppRestrictive[r, c] # 限制因素 # 如果是nodata if(abs(val - self.dLUNodata) < 1e-6 or abs(self.pppProbability[0,r,c] - self.dProbNodata) < 1e-6 or abs(pc - self.dRestrictiveNodata) < 1e-6): continue # 如果限制发展 if (pc < 1e-6): continue pg = self.pppProbability[:, r, c] pn = self.calNeighbor(r, c) #pr = np.random.uniform() pd = pg*(0.5+0.5*pn)*(0.1+pc*0.9)*self.pInertia*self.ppCostMatrix[val-1] if(pd.sum() < 1e-6): continue ind, p = FLUS_Utils.rouletteWheelSelection(pd) if(p < 0.1): continue if((self.pDemandAmount[ind] > 0 and self.pCurrentAmount[ind] < self.pTargetAmount[ind]) ): # 更新目前各类像元的数目 self.ppSimulateLU[r,c] = ind + 1 self.pCurrentAmount[ind] += 1 self.pCurrentAmount[val-1] -= 1 # print (ind, val) samplenum += 1 # 计算目前的发展需求,修正惯性值 pDemand_t_1 = self.pTargetAmount - self.pCurrentAmount for i in range(self.pInertia.shape[0]): if(abs(pDemand_t_1[i]) < abs(self.pDemandAmount[i])): continue if(self.pDemandAmount[i] < 0 and pDemand_t_1[i] < 0): self.pInertia[i] *= (self.pDemandAmount[i]/pDemand_t_1[i]) elif(self.pDemandAmount[i] > 0 and pDemand_t_1[i] > 0): self.pInertia[i] *= (pDemand_t_1[i]/self.pDemandAmount[i]) # 更新发展需求 self.pDemandAmount = pDemand_t_1 print ("\t\tinertia: ", self.pInertia) nIter += 1 bFlag = True for current, target in zip(self.pCurrentAmount, self.pTargetAmount): bFlag = bFlag and abs(current - target) < 1 self.sendMsg.emit("save file...") if (FLUS_Utils.array2Tif(self.ppSimulateLU.reshape(1, self.nRows, self.nCols), self.sSimLUFileName, self.gDataType, self.dLUNodata, self.pGeoTransform, self.sProjectionRef) == None): self.sendMsg2Box.emit("File Exists!\nPlease Delete it first!", "error") self.finished.emit() def run(self): """ 启动线程 :return: """ self.parseXML() self.init() self.iteration() self.finished.emit() pass
#!/home/pi/.pyenv/shims/python # 电子书项目 # 提供电子书下载 # 提供kindle电子书推送服务 # 提供epub电子书在线阅读服务 import aiopg import os.path import psycopg2 import tornado.escape import tornado.httpserver import tornado.ioloop import tornado.locks import tornado.options import tornado.web import unicodedata # define from tornado.options import define, options # Request Handler import MubenMain import MubenAdmin import MubenAuth define("port", default=8888, help="default listen on port 8888", type=int) define("db_host", default=db_host, help="blog database host") define("db_port", default=db_port, help="postgresql database default port 5432") define("db_database", default=db_database, help="ebooks website database") define("db_user", default=db_user, help="ebooks website database user") define("db_passwd", default=db_password, help="ebooks website database password") async def maybe_create_tables(db): try: with (await db.cursor()) as cur: await cur.execute("SELECT COUNT(*) FROM ebooks LIMIT 1") await cur.fetchone() except psycopg2.ProgrammingError: with open("schema.sql") as f: schma = f.read() with (await db.cursor()) as cur: await cur.execute(schema) class Application(tornado.web.Application): def __init__(self, db): self.db = db handlers = [ (r"/", MubenMain.HomeHandler). (r"/index", MubenMain.HomeHandler), (r"/search", MubenMain.SearchHandler), # admin page (r"/admin/login", MubenAdmin.AuthLoginHandler), (r"/admin/logout", MubenAdmin.AuthLogoutHandler), (r"/admin/index", MubenAdmin.IndexHandler), (r"/admin/ebooks/manager", MubenAdmin.BooksMangerHandler), # auth page (r"/auth/login", MubenAuth.AuthLoginHandler), (r"/auth/logout", MubenAuth.AuthLogouthandler), (r"/auth/register", MubenAuth.AuthRegisterHandler), ] settings = dict( project_title=u"Muben Ebooks for Kindle Post and EPUB Reader", template_path=os.path.join(os.path.dirname(__file__), "templates"), static_path=os.path.join(os.path.dirname(__file__), "ebookstatic"), xsrf_cookies=True, cookie_secret="__TODO:_GENERATE_YOUROWN_RANDOM_VALUE_HERE_", login_url="/auth/login", debug=True, ) supper(Application, self).__init__(handlers, **settings) async def main(): tornado.options.parse_command_line() # Create the global connection pool async with aiopg.create_pool( host=options.db_host, port=options.db_port, user=options.db_user, password=options.db_passwd, dbname=options.db_database, ) as db: await maybe_create_tables(db) app = Application(db) app.listen(options.port) # Simply shutdown with Ctrl-C # More gracefully should call shutdown_event.set() shutdown_event = tornado.lock.Event() await shutdown_event.await() if __name__ == "__main__": tornado.ioloop.IOLoop.current().run_sync(main)
# Copyright Amazon.com, Inc. and its affiliates. All Rights Reserved. # SPDX-License-Identifier: MIT # # Licensed under the MIT License. See the LICENSE accompanying this file # for the specific language governing permissions and limitations under # the License. from datalake_library.commons import init_logger from datalake_library.configuration.resource_configs import DynamoConfiguration, SQSConfiguration, S3Configuration from datalake_library.interfaces.dynamo_interface import DynamoInterface from datalake_library.interfaces.sqs_interface import SQSInterface from datalake_library import octagon from datalake_library.octagon import Artifact, EventReasonEnum, peh logger = init_logger(__name__) octagon_client = ( octagon.OctagonClient() .with_run_lambda(True) .build() ) def lambda_handler(event, context): """Updates the S3 objects metadata catalog Arguments: event {dict} -- Dictionary with details on previous processing step context {dict} -- Dictionary with details on Lambda context Returns: {dict} -- Dictionary with outcome of the process """ try: component = context.function_name.split('-')[-2].title() peh.PipelineExecutionHistoryAPI(octagon_client).retrieve_pipeline_execution(event['body']['peh_id']) octagon_client.update_pipeline_execution(status="Pre-Stage {} Processing".format(component), component=component) logger.info('Fetching transformed objects') processed_keys = event['body']['processedKeys'] team = event['body']['team'] pipeline = event['body']['pipeline'] dataset = event['body']['dataset'] logger.info('Initializing DynamoDB config and Interface') dynamo_config = DynamoConfiguration() dynamo_interface = DynamoInterface(dynamo_config) logger.info('Storing metadata to DynamoDB') for key in processed_keys: object_metadata = { 'bucket': S3Configuration().stage_bucket, 'key': key, 'team': team, 'pipeline': pipeline, 'dataset': dataset, 'stage': 'pre-stage' } dynamo_interface.update_object_metadata_catalog(object_metadata) logger.info('Sending messages to next SQS queue if it exists') sqs_config = SQSConfiguration(team, pipeline, dataset) sqs_interface = SQSInterface(sqs_config.get_post_stage_queue_name) sqs_interface.send_batch_messages_to_fifo_queue(processed_keys, 10, '{}-{}'.format(team, dataset)) octagon_client.end_pipeline_execution_success() except Exception as e: logger.error("Fatal error", exc_info=True) octagon_client.end_pipeline_execution_failed(component=component, issue_comment="Pre-Stage {} Error: {}".format(component, repr(e))) raise e return 200
import math import unittest from game import Game from model.maps.generators.forest_generator import ForestGenerator from model.maps.area_map import AreaMap class TestForestGenerator(unittest.TestCase): def test_generate_generates_trees(self): Game() width, height = (10, 10) expected_num_trees = math.floor(ForestGenerator.TREE_PERCENTAGE * width * height) actual_num_trees = 0 num_trees_set = set() for _ in range(10): Game.instance.area_map = AreaMap(width, height) ForestGenerator(Game.instance.area_map).generate() for y in range(height): for x in range(width): if not Game.instance.area_map.tiles[x][y].is_walkable: actual_num_trees += 1 num_trees_set.add(actual_num_trees) self.assertTrue(x for x in num_trees_set if x >= expected_num_trees) def test_generate_fills_holes(self): Game() # Generate a bunch of trees with a known seed that generates holes. # This is fragile, but there's no other way to test this. # This is valuable, because there's a ton of code/complexity behind # this (breadth-first search, etc.). width, height = (60, 40) Game.instance.area_map = AreaMap(width, height) pre_fill_num_trees = math.floor(ForestGenerator.TREE_PERCENTAGE * width * height) Game.instance.random.seed(1) ForestGenerator(Game.instance.area_map).generate() actual_num_trees = 0 for y in range(height): for x in range(width): if not Game.instance.area_map.tiles[x][y].is_walkable: actual_num_trees += 1 # Strictly more trees because of filled holes # With 60x40 and seed=1, fills 6 gaps with trees self.assertGreater(actual_num_trees, pre_fill_num_trees) def test_generate_generates_monsters(self): Game() width, height = 15, 15 Game.instance.area_map = AreaMap(width, height) fg = ForestGenerator(Game.instance.area_map) fg.generate() self.assertTrue(fg._area_map is Game.instance.area_map) self.assertGreaterEqual(len(Game.instance.area_map.entities), 1)
from rlpy.Tools.run import run run("examples/mdp_chain/mdp_chain_post.py","./Results/Tests/mdp_chain/PSRL",ids=range(5), parallelization ="joblib") run("examples/mdp_chain/mdp_chain_lspi.py","./Results/Tests/mdp_chain/LSPI",ids=range(5), parallelization ="joblib") run("examples/mdp_chain/mdp_chain_sarsa.py","./Results/Tests/mdp_chain/SARSA",ids=range(5), parallelization ="joblib") run("examples/mdp_chain/mdp_chain_ucrl.py","./Results/Tests/mdp_chain/UCRL",ids=range(5), parallelization ="joblib")
# -*- coding: utf-8 -*- """ Created on Mon Oct 11 15:03:17 2021 An example shows how to write pd.DataFram into excel through openpyxl @author: renfo """ import pandas as pd import numpy as np import random import openpyxl from openpyxl.utils.dataframe import dataframe_to_rows import os mainfolder = os.getcwd() os.chdir(mainfolder) # generate a dataframe data = { "position":["Top", "Mid", "Btm"]*3, # random.gauss(mu, sig) "A":np.array([ random.gauss(3,1.2) for x in range(9) ]), "B":np.array([ random.gauss(8,0.5) for x in range(9) ]), "C":np.array([ random.gauss(48,1.5) for x in range(9) ]), } df = pd.DataFrame(data) # write pd.DataFrame into excel via openpyxl wb = openpyxl.Workbook() ws = wb.active for r in dataframe_to_rows(df, index=False, header=True): ws.append(r) wb.save("pandas_openpyxl.xlsx")
# Copyright 2021 DAI Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at: http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import lru_cache from typing import Optional, List, Dict, Tuple from ethtx.decoders.decoders.semantics import decode_events_and_functions from ethtx.models.semantics_model import ( AddressSemantics, ContractSemantics, ParameterSemantics, ERC20Semantics, TransformationSemantics, FunctionSemantics, EventSemantics, Signature, SignatureArg, ) from ethtx.providers import EtherscanProvider, Web3Provider, ENSProvider from ethtx.providers.semantic_providers.database import ISemanticsDatabase from ethtx.semantics.protocols_router import amend_contract_semantics from ethtx.semantics.solidity.precompiles import precompiles from ethtx.semantics.standards.erc20 import ERC20_FUNCTIONS, ERC20_EVENTS from ethtx.semantics.standards.erc721 import ERC721_FUNCTIONS, ERC721_EVENTS class SemanticsRepository: def __init__( self, database_connection: ISemanticsDatabase, etherscan_provider: EtherscanProvider, web3provider: Web3Provider, ens_provider: ENSProvider, ): self.database = database_connection self.etherscan = etherscan_provider self._web3provider = web3provider self._ens_provider = ens_provider self._records: Optional[List] = None def record(self) -> None: """Records is an array used to hold semantics used in tx decing process. This recording is used just for logging""" self._records = [] def end_record(self) -> List: tmp_records = self._records self._records = None return tmp_records def _read_stored_semantics( self, address: str, chain_id: str ) -> Optional[AddressSemantics]: def decode_parameter(_parameter): components_semantics = [] if "components" in _parameter: for component in _parameter["components"]: components_semantics.append(decode_parameter(component)) decoded_parameter = ParameterSemantics( parameter_name=_parameter["parameter_name"], parameter_type=_parameter["parameter_type"], components=components_semantics, indexed=_parameter["indexed"], dynamic=_parameter["dynamic"], ) return decoded_parameter if not address: return None ZERO_HASH = "0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470" raw_address_semantics = self.database.get_address_semantics(chain_id, address) if raw_address_semantics: if raw_address_semantics.get("erc20"): erc20_semantics = ERC20Semantics( name=raw_address_semantics["erc20"]["name"], symbol=raw_address_semantics["erc20"]["symbol"], decimals=raw_address_semantics["erc20"]["decimals"], ) else: erc20_semantics = None if raw_address_semantics["contract"] == ZERO_HASH: contract_semantics = ContractSemantics( code_hash=raw_address_semantics["contract"], name="EOA" ) else: raw_contract_semantics = self.database.get_contract_semantics( raw_address_semantics["contract"] ) events = {} for signature, event in raw_contract_semantics["events"].items(): parameters_semantics = [] for parameter in event["parameters"]: parameters_semantics.append(decode_parameter(parameter)) events[signature] = EventSemantics( signature=signature, anonymous=event["anonymous"], name=event["name"], parameters=parameters_semantics, ) functions = {} for signature, function in raw_contract_semantics["functions"].items(): inputs_semantics = [] for parameter in function["inputs"]: inputs_semantics.append(decode_parameter(parameter)) outputs_semantics = [] for parameter in function["outputs"]: outputs_semantics.append(decode_parameter(parameter)) functions[signature] = FunctionSemantics( signature=signature, name=function["name"], inputs=inputs_semantics, outputs=outputs_semantics, ) transformations = {} for signature, parameters_transformations in raw_contract_semantics[ "transformations" ].items(): transformations[signature] = {} for parameter, transformation in parameters_transformations.items(): transformations[signature][parameter] = TransformationSemantics( transformed_name=transformation["transformed_name"], transformed_type=transformation["transformed_type"], transformation=transformation["transformation"], ) contract_semantics = ContractSemantics( code_hash=raw_contract_semantics["code_hash"], name=raw_contract_semantics["name"], events=events, functions=functions, transformations=transformations, ) name = raw_address_semantics.get("name", address) if name == address and not raw_address_semantics["is_contract"]: name = self._ens_provider.name( provider=self._web3provider._get_node_connection(chain_id), address=address, ) address_semantics = AddressSemantics( chain_id=chain_id, address=address, name=name, is_contract=raw_address_semantics["is_contract"], contract=contract_semantics, standard=raw_address_semantics["standard"], erc20=erc20_semantics, ) return address_semantics return None @lru_cache(maxsize=128) def get_semantics(self, chain_id: str, address: str) -> Optional[AddressSemantics]: if not address: return None ZERO_HASH = "0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470" address_semantics = self._read_stored_semantics(address, chain_id) if not address_semantics: # try to read the semantics form the Etherscan provider provider = self._web3provider code_hash = provider.get_code_hash(address, chain_id) if code_hash != ZERO_HASH: # smart contract raw_semantics, decoded = self.etherscan.contract.get_contract_abi( chain_id, address ) if decoded and raw_semantics: # raw semantics received from Etherscan events, functions = decode_events_and_functions( raw_semantics["abi"] ) standard, standard_semantics = self._decode_standard_semantics( address, raw_semantics["name"], events, functions ) if standard == "ERC20": erc20_semantics = standard_semantics else: proxy_erc20 = provider.guess_erc20_proxy(address, chain_id) if proxy_erc20: erc20_semantics = ERC20Semantics(**proxy_erc20) else: erc20_semantics = None contract_semantics = ContractSemantics( code_hash=code_hash, name=raw_semantics["name"], events=events, functions=functions, transformations={}, ) address_semantics = AddressSemantics( chain_id=chain_id, address=address, name=raw_semantics["name"], is_contract=True, contract=contract_semantics, standard=standard, erc20=erc20_semantics, ) else: # try to guess if the address is a toke potential_erc20_semantics = provider.guess_erc20_token( address, chain_id ) if potential_erc20_semantics: standard = "ERC20" erc20_semantics = ERC20Semantics( name=potential_erc20_semantics["name"], symbol=potential_erc20_semantics["symbol"], decimals=potential_erc20_semantics["decimals"], ) else: standard = None erc20_semantics = None contract_semantics = ContractSemantics( code_hash=code_hash, name=address ) address_semantics = AddressSemantics( chain_id=chain_id, address=address, name=address, is_contract=True, contract=contract_semantics, standard=standard, erc20=erc20_semantics, ) else: # externally owned address contract_semantics = ContractSemantics(code_hash=ZERO_HASH, name="EOA") name = self._ens_provider.name( provider=self._web3provider._get_node_connection(chain_id), address=address, ) address_semantics = AddressSemantics( chain_id=chain_id, address=address, name=name, is_contract=False, contract=contract_semantics, ) self.update_semantics(address_semantics) # amend semantics with locally stored updates amend_contract_semantics(address_semantics.contract) if self._records is not None: self._records.append(address) return address_semantics def _decode_standard_semantics( self, address, name, events, functions ) -> Tuple[Optional[str], Optional[ERC20Semantics]]: standard = None standard_semantics = None if not address: return standard, standard_semantics if all(erc20_event in events for erc20_event in ERC20_EVENTS) and all( erc20_function in functions for erc20_function in ERC20_FUNCTIONS ): standard = "ERC20" try: provider = self._web3provider token_data = provider.get_erc20_token(address, name, functions) standard_semantics = ERC20Semantics( name=token_data["name"], symbol=token_data["symbol"], decimals=token_data["decimals"], ) except Exception: standard_semantics = ERC20Semantics(name=name, symbol=name, decimals=18) elif all(erc721_event in events for erc721_event in ERC721_EVENTS) and all( erc721_function in functions for erc721_function in ERC721_FUNCTIONS ): standard = "ERC721" standard_semantics = None return standard, standard_semantics @lru_cache(maxsize=128) def get_event_abi(self, chain_id, address, signature) -> Optional[EventSemantics]: if not address: return None semantics = self.get_semantics(chain_id, address) event_semantics = ( semantics.contract.events.get(signature) if semantics else None ) return event_semantics @lru_cache(maxsize=128) def get_transformations( self, chain_id, address, signature ) -> Optional[Dict[str, TransformationSemantics]]: if not address: return None semantics = self.get_semantics(chain_id, address) if semantics: transformations = semantics.contract.transformations.get(signature) else: transformations = None return transformations @lru_cache(maxsize=128) def get_anonymous_event_abi(self, chain_id, address) -> Optional[EventSemantics]: if not address: return None semantics = self.get_semantics(chain_id, address) event_semantics = None if semantics: anonymous_events = { signature for signature, event in semantics.contract.events.items() if event.anonymous } if len(anonymous_events) == 1: event_signature = anonymous_events.pop() event_semantics = semantics.contract.events[event_signature] return event_semantics @lru_cache(maxsize=128) def get_function_abi( self, chain_id, address, signature ) -> Optional[FunctionSemantics]: if not address: return None semantics = self.get_semantics(chain_id, address) function_semantics = ( semantics.contract.functions.get(signature) if semantics else None ) return function_semantics @lru_cache(maxsize=128) def get_constructor_abi(self, chain_id, address) -> Optional[FunctionSemantics]: if not address: return None semantics = self.get_semantics(chain_id, address) constructor_semantics = ( semantics.contract.functions.get("constructor") if semantics else None ) if constructor_semantics: constructor_semantics.outputs.append( ParameterSemantics( parameter_name="__create_output__", parameter_type="ignore", indexed=False, dynamic=True, ) ) return constructor_semantics def get_address_label(self, chain_id, address, proxies=None) -> str: if not address: return "" if int(address, 16) in precompiles: contract_label = "Precompiled" else: semantics = self.get_semantics(chain_id, address) if semantics.erc20: contract_label = semantics.erc20.symbol elif proxies and address in proxies: contract_label = proxies[address].name else: contract_label = ( semantics.name if semantics and semantics.name else address ) return contract_label @lru_cache(maxsize=128) def check_is_contract(self, chain_id, address) -> bool: if not address: return False semantics = self.get_semantics(chain_id, address) is_contract = semantics is not None and semantics.is_contract return is_contract @lru_cache(maxsize=128) def get_standard(self, chain_id, address) -> Optional[str]: if not address: return None semantics = self.get_semantics(chain_id, address) standard = semantics.standard if semantics is not None else None return standard def get_token_data( self, chain_id, address, proxies=None ) -> Tuple[Optional[str], Optional[str], Optional[int], Optional[str]]: if not address: return None, None, None, None semantics = self.get_semantics(chain_id, address) if semantics and semantics.erc20: token_name = ( semantics.erc20.name if semantics and semantics.erc20 else address ) token_symbol = ( semantics.erc20.symbol if semantics and semantics.erc20 else "Unknown" ) token_decimals = ( semantics.erc20.decimals if semantics and semantics.erc20 else 18 ) elif proxies and address in proxies and proxies[address].token: token_name = proxies[address].token.name token_symbol = proxies[address].token.symbol token_decimals = proxies[address].token.decimals else: token_name = address token_symbol = "Unknown" token_decimals = 18 return token_name, token_symbol, token_decimals, "ERC20" def update_address(self, chain_id, address, contract) -> Dict: updated_address = {"network": chain_id, "address": address, **contract} self.database.insert_address(address=updated_address, update_if_exist=True) return updated_address def update_semantics(self, semantics) -> None: if not semantics: return contract_id = self.database.insert_contract( contract=semantics.contract.dict(), update_if_exist=True ) updated_address_semantics = semantics.copy() updated_address_semantics.contract = ( updated_address_semantics.contract.code_hash ) self.database.insert_address( address=updated_address_semantics.dict(), update_if_exist=True ) if contract_id: self.insert_contract_signatures(semantics.contract) def insert_contract_signatures(self, contract_semantics: ContractSemantics) -> None: for _, v in contract_semantics.functions.items(): if not v.signature.startswith("0x"): continue if v.inputs and v.inputs[0].parameter_type == "tuple": args = [ SignatureArg(name=param.parameter_name, type=param.parameter_type) for param in v.inputs[0].components ] else: args = ( [ SignatureArg( name=param.parameter_name, type=param.parameter_type ) for param in v.inputs ] if v.inputs else [] ) new_signature = Signature( signature_hash=v.signature, name=v.name, args=args ) self.update_or_insert_signature(new_signature) def get_most_used_signature(self, signature_hash: str) -> Optional[Signature]: signatures = list( self.database.get_signature_semantics(signature_hash=signature_hash) ) if signatures: most_common_signature = max(signatures, key=lambda x: x["count"]) signature = Signature( signature_hash=most_common_signature["signature_hash"], name=most_common_signature["name"], args=most_common_signature["args"], count=most_common_signature["count"], tuple=most_common_signature["tuple"], guessed=most_common_signature["guessed"], ) return signature return None def update_or_insert_signature(self, signature: Signature) -> None: signatures = self.database.get_signature_semantics( signature_hash=signature.signature_hash ) for sig in signatures: if ( signature.name == sig["name"] and signature.signature_hash == sig["signature_hash"] and len(signature.args) == len(sig["args"]) ): if signature.args and any( arg for arg in list(sig["args"][0].values()) if "arg" in arg ): for index, argument in enumerate(sig["args"]): argument["name"] = signature.args[index].name argument["type"] = signature.args[index].type sig["count"] += 1 sig["guessed"] = False self.database.insert_signature(signature=sig, update_if_exist=True) break else: self.database.insert_signature(signature=signature.dict())
# Generated by Django 2.2.2 on 2019-08-10 17:08 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('app', '0003_chart'), ] operations = [ migrations.CreateModel( name='Option_Chain', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('call_symbol', models.CharField(max_length=40)), ('strike_price', models.FloatField(max_length=40)), ('put_symbol', models.CharField(max_length=40)), ], ), migrations.DeleteModel( name='Chart', ), ]
from flask import Blueprint from flask import jsonify from shutil import copyfile, move from google.cloud import storage from google.cloud import bigquery from google.oauth2 import service_account from flask import request from google.auth.transport.requests import AuthorizedSession import dataflow_pipeline.gestion_humana.gestiones_beam as gestiones_beam import dataflow_pipeline.gestion_humana.documentos_pendientes_beam as documentos_pendientes_beam import dataflow_pipeline.gestion_humana.parametros_dias_beam as parametros_dias_beam import dataflow_pipeline.gestion_humana.e_d_preguntas_beam as e_d_preguntas_beam import dataflow_pipeline.gestion_humana.e_d_tipo_respuestas_beam as e_d_tipo_respuestas_beam import dataflow_pipeline.gestion_humana.e_d_competencia_beam as e_d_competencia_beam import dataflow_pipeline.gestion_humana.e_d_detalle_evaluacion_beam as e_d_detalle_evaluacion_beam import dataflow_pipeline.gestion_humana.e_d_rel_competencia_beam as e_d_rel_competencia_beam import dataflow_pipeline.gestion_humana.e_d_historico_evaluacion_beam as e_d_historico_evaluacion_beam import dataflow_pipeline.gestion_humana.e_d_rel_usuarios_beam as e_d_rel_usuarios_beam import dataflow_pipeline.gestion_humana.e_d_tb_usuarios_beam as e_d_tb_usuarios_beam import dataflow_pipeline.gestion_humana.e_d_centro_costos_beam as e_d_centro_costos_beam import dataflow_pipeline.gestion_humana.e_d_uen_beam as e_d_uen_beam import dataflow_pipeline.gestion_humana.e_d_cargos_beam as e_d_cargos_beam import dataflow_pipeline.gestion_humana.e_d_perfiles_beam as e_d_perfiles_beam import dataflow_pipeline.gestion_humana.e_d_base_beam as e_d_base_beam import cloud_storage_controller.cloud_storage_controller as gcscontroller import dataflow_pipeline.massive as pipeline from google.oauth2 import service_account import os import time import socket import _mssql import datetime import sys #coding: utf-8 gto_api = Blueprint('gto_api', __name__) fileserver_baseroute = ("//192.168.20.87", "/media")[socket.gethostname()=="contentobi"] @gto_api.route("/gestiones") def gestiones(): client = bigquery.Client() QUERY1 = ('select Tabla,servidor,usuario,contrasena,data_base,tabla_bd from `contento-bi.Contento.Usuario_conexion_bases` where Tabla = "Gestiones_EPS"') query_job = client.query(QUERY1) rows = query_job.result() data = "" for row in rows: servidor = row.servidor usuario = row.usuario contrasena = row.contrasena data_base = row.data_base tabla_bd = row.tabla_bd reload(sys) sys.setdefaultencoding('utf8') HOY = datetime.datetime.today().strftime('%Y-%m-%d') #Nos conectamos a la BD y obtenemos los registros conn = _mssql.connect(server=servidor, user=usuario, password=contrasena, database=data_base) conn.execute_query('SELECT Id_Gestion,Persona_que_reporta,Sede,Cedula,Nombre_completo,Eps,Cod_Centro_Costos,Nombre_Centro_Costos,Tipo_incapacidad,Buscar_diagnostico,Codigo_diagnostico,Nombre_diagnostico,Numero_incapacidad,Dias_incapacidad,Fecha_inicial_liquidacion,Fecha_real_inicial,Fecha_final_incapacidad,Ajuste_incapacidad_salario_minimo,Prorroga,Documento_prorroga,Accidente_transito,IBC_mes_anterior,IBC_Cotizacion_especifico,Fecha_recibido_incapacidad,Mes_aplicaco_nomina,VoBo_Ejecucion_RPA,Tiene_Transcripcion,Documentacion_transcripcion,Documento_pendiente,Correo_responsable,Fecha_Notificacion_Docs_Incompletos,Fecha_Envio_Docs_Incompletos,Fecha_Envio_Docs_Correcto,Documentacion_Completa,Nro_Incapacidad,Insert_date,Transcrito_Por,Fecha_Sol_Transcripcion,Fecha_Transcripcion,Fecha_Max_Transcripcion,Fecha_Sol_Cobro,Fecha_Cobro,Fecha_Max_Cobro,Valor_pagado,Fecha_pago,Fecha_Max_Pago,Estado_Gossem,Marca_Gosem,Fecha_Proceso_Gossem,Duracion_Gossem FROM ' + tabla_bd ) cloud_storage_rows = "" # Debido a que los registros en esta tabla pueden tener saltos de linea y punto y comas inmersos for row in conn: text_row = "" text_row += str(row['Id_Gestion']).encode('utf-8') + "|" text_row += str(row['Persona_que_reporta']).encode('utf-8') + "|" text_row += str(row['Sede']).encode('utf-8') + "|" text_row += str(row['Cedula']).encode('utf-8') + "|" text_row += str(row['Nombre_completo']).encode('utf-8') + "|" text_row += str(row['Eps']).encode('utf-8') + "|" text_row += str(row['Cod_Centro_Costos']).encode('utf-8') + "|" text_row += str(row['Nombre_Centro_Costos']).encode('utf-8') + "|" text_row += str(row['Tipo_incapacidad']).encode('utf-8') + "|" text_row += str(row['Buscar_diagnostico']).encode('utf-8') + "|" text_row += str(row['Codigo_diagnostico']).encode('utf-8') + "|" text_row += str(row['Nombre_diagnostico']).encode('utf-8') + "|" text_row += str(row['Numero_incapacidad']).encode('utf-8') + "|" text_row += str(row['Dias_incapacidad']).encode('utf-8') + "|" text_row += str(row['Fecha_inicial_liquidacion']).encode('utf-8') + "|" text_row += str(row['Fecha_real_inicial']).encode('utf-8') + "|" text_row += str(row['Fecha_final_incapacidad']).encode('utf-8') + "|" text_row += str(row['Ajuste_incapacidad_salario_minimo']).encode('utf-8') + "|" text_row += str(row['Prorroga']).encode('utf-8') + "|" text_row += str(row['Documento_prorroga']).encode('utf-8') + "|" text_row += str(row['Accidente_transito']).encode('utf-8') + "|" text_row += str(row['IBC_mes_anterior']).encode('utf-8') + "|" text_row += str(row['IBC_Cotizacion_especifico']).encode('utf-8') + "|" text_row += str(row['Fecha_recibido_incapacidad']).encode('utf-8') + "|" text_row += str(row['Mes_aplicaco_nomina']).encode('utf-8') + "|" text_row += str(row['VoBo_Ejecucion_RPA']).encode('utf-8') + "|" text_row += str(row['VoBo_Ejecucion_RPA_Seguimiento']).encode('utf-8') + "|" text_row += str(row['Tiene_Transcripcion']).encode('utf-8') + "|" text_row += str(row['Documentacion_transcripcion']).encode('utf-8') + "|" text_row += str(row['Documento_pendiente']).encode('utf-8') + "|" text_row += str(row['Correo_responsable']).encode('utf-8') + "|" text_row += str(row['Fecha_Notificacion_Docs_Incompletos']).encode('utf-8') + "|" text_row += str(row['Fecha_Envio_Docs_Incompletos']).encode('utf-8') + "|" text_row += str(row['Fecha_Envio_Docs_Correcto']).encode('utf-8') + "|" text_row += str(row['Documentacion_Completa']).encode('utf-8') + "|" text_row += str(row['Nro_Incapacidad']).encode('utf-8') + "|" text_row += str(row['Insert_date']).encode('utf-8') + "|" text_row += str(row['Transcrito_Por']).encode('utf-8') + "|" text_row += str(row['Fecha_Sol_Transcripcion']).encode('utf-8') + "|" text_row += str(row['Fecha_Transcripcion']).encode('utf-8') + "|" text_row += str(row['Fecha_Max_Transcripcion']).encode('utf-8') + "|" text_row += str(row['Fecha_Sol_Cobro']).encode('utf-8') + "|" text_row += str(row['Fecha_Cobro']).encode('utf-8') + "|" text_row += str(row['Fecha_Max_Cobro']).encode('utf-8') + "|" text_row += str(row['Valor_pagado']).encode('utf-8') + "|" text_row += str(row['Fecha_pago']).encode('utf-8') + "|" text_row += str(row['Fecha_Max_Pago']).encode('utf-8') + "|" text_row += str(row['Estado_Gossem']).encode('utf-8') + "|" text_row += str(row['Marca_Gosem']).encode('utf-8') + "|" text_row += str(row['Fecha_Proceso_Gossem']).encode('utf-8') + "|" text_row += str(row['Duracion_Gossem']).encode('utf-8') text_row += "\n" cloud_storage_rows += text_row conn.close() filename = "gestiones" + ".csv" #Finalizada la carga en local creamos un Bucket con los datos gcscontroller.create_file(filename, cloud_storage_rows, "ct-gto") try: deleteQuery = "DELETE FROM `contento-bi.gestion_humana.Gestiones` WHERE 1=1" client = bigquery.Client() query_job = client.query(deleteQuery) query_job.result() except: print("no se pudo eliminar") #Primero eliminamos todos los registros que contengan esa fecha # time.sleep(60) flowAnswer = gestiones_beam.run() # time.sleep(60) # Poner la ruta en storage cloud en una variable importada para posteriormente eliminarla storage_client = storage.Client() bucket = storage_client.get_bucket('ct-gto') blob = bucket.blob("gestiones" + ".csv") # Eliminar el archivo en la variable blob.delete() # return jsonify(flowAnswer), 200 return "Cargue exitoso Tabla de gestiones " + flowAnswer ######################################## DOCUMENTOS PENDIENTES ###################################### @gto_api.route("/d_pendientes") def d_pendientes(): client = bigquery.Client() QUERY1 = ('select Tabla,servidor,usuario,contrasena,data_base,tabla_bd from `contento-bi.Contento.Usuario_conexion_bases` where Tabla = "D_pendientes"') query_job = client.query(QUERY1) rows = query_job.result() data = "" for row in rows: servidor = row.servidor usuario = row.usuario contrasena = row.contrasena data_base = row.data_base tabla_bd = row.tabla_bd reload(sys) sys.setdefaultencoding('utf8') HOY = datetime.datetime.today().strftime('%Y-%m-%d') #Nos conectamos a la BD y obtenemos los registros conn = _mssql.connect(server=servidor, user=usuario, password=contrasena, database=data_base) conn.execute_query('SELECT MAD_Mail_Documentos,MAD_Id_Gestion,MAD_Correo_Responsble,MAD_Nombre_Completo,MAD_Documento,MAD_Fecha_Real_Inicial,MAD_Documento_Pendiente,MAD_Insert_Date FROM ' + tabla_bd ) cloud_storage_rows = "" # Debido a que los registros en esta tabla pueden tener saltos de linea y punto y comas inmersos for row in conn: text_row = "" text_row += str(row['MAD_Mail_Documentos']).encode('utf-8') + "|" text_row += str(row['MAD_Id_Gestion']).encode('utf-8') + "|" text_row += str(row['MAD_Correo_Responsble']).encode('utf-8') + "|" text_row += str(row['MAD_Nombre_Completo']).encode('utf-8') + "|" text_row += str(row['MAD_Documento']).encode('utf-8') + "|" text_row += str(row['MAD_Fecha_Real_Inicial']).encode('utf-8') + "|" text_row += str(row['MAD_Documento_Pendiente']).encode('utf-8') + "|" text_row += str(row['MAD_Insert_Date']).encode('utf-8') text_row += "\n" cloud_storage_rows += text_row conn.close() filename = "d_pendientes" + ".csv" #Finalizada la carga en local creamos un Bucket con los datos gcscontroller.create_file(filename, cloud_storage_rows, "ct-gto") try: deleteQuery = "DELETE FROM `contento-bi.gestion_humana.D_pendientes` WHERE 1=1" client = bigquery.Client() query_job = client.query(deleteQuery) query_job.result() except: print("no se pudo eliminar") #Primero eliminamos todos los registros que contengan esa fecha # time.sleep(60) flowAnswer = documentos_pendientes_beam.run() # time.sleep(60) # Poner la ruta en storage cloud en una variable importada para posteriormente eliminarla storage_client = storage.Client() bucket = storage_client.get_bucket('ct-gto') blob = bucket.blob("d_pendientes" + ".csv") # Eliminar el archivo en la variable blob.delete() # return jsonify(flowAnswer), 200 return "Cargue exitoso Tabla de documentos pendientes " + flowAnswer ####################################### DIAS HABILES ##################################### @gto_api.route("/dias") def dias(): client = bigquery.Client() QUERY1 = ('select Tabla,servidor,usuario,contrasena,data_base,tabla_bd from `contento-bi.Contento.Usuario_conexion_bases` where Tabla = "Info_EPS"') query_job = client.query(QUERY1) rows = query_job.result() data = "" for row in rows: servidor = row.servidor usuario = row.usuario contrasena = row.contrasena data_base = row.data_base tabla_bd = row.tabla_bd reload(sys) sys.setdefaultencoding('utf8') HOY = datetime.datetime.today().strftime('%Y-%m-%d') #Nos conectamos a la BD y obtenemos los registros conn = _mssql.connect(server=servidor, user=usuario, password=contrasena, database=data_base) conn.execute_query('SELECT Eps,Url,User_Eps,Pass,Correo_Notificaciones,Estado,Tiempo_Transcripcion_Empresa,Tiempo_Cobro_Empresa,Tiempo_Transcripcion_EPS,Tiempo_Pago_EPS,Insert_Date FROM ' + tabla_bd ) cloud_storage_rows = "" # Debido a que los registros en esta tabla pueden tener saltos de linea y punto y comas inmersos for row in conn: text_row = "" text_row += str(row['Eps']).encode('utf-8') + "|" text_row += str(row['Url']).encode('utf-8') + "|" text_row += str(row['User_Eps']).encode('utf-8') + "|" text_row += str(row['Pass']).encode('utf-8') + "|" text_row += str(row['Correo_Notificaciones']).encode('utf-8') + "|" text_row += str(row['Estado']).encode('utf-8') + "|" text_row += str(row['Tiempo_Transcripcion_Empresa']).encode('utf-8') + "|" text_row += str(row['Tiempo_Cobro_Empresa']).encode('utf-8') + "|" text_row += str(row['Tiempo_Transcripcion_EPS']).encode('utf-8') + "|" text_row += str(row['Tiempo_Pago_EPS']).encode('utf-8') + "|" text_row += str(row['Insert_Date']).encode('utf-8') text_row += "\n" cloud_storage_rows += text_row conn.close() filename = "dias" + ".csv" #Finalizada la carga en local creamos un Bucket con los datos gcscontroller.create_file(filename, cloud_storage_rows, "ct-gto") try: deleteQuery = "DELETE FROM `contento-bi.gestion_humana.Parametros_dias` WHERE 1=1" client = bigquery.Client() query_job = client.query(deleteQuery) query_job.result() except: print("no se pudo eliminar") #Primero eliminamos todos los registros que contengan esa fecha # time.sleep(60) flowAnswer = parametros_dias_beam.run() # time.sleep(60) # Poner la ruta en storage cloud en una variable importada para posteriormente eliminarla storage_client = storage.Client() bucket = storage_client.get_bucket('ct-gto') blob = bucket.blob("dias" + ".csv") # Eliminar el archivo en la variable blob.delete() # return jsonify(flowAnswer), 200 return "Cargue exitoso Tabla de parametros dias " + flowAnswer ##################################### INFORME EVALUACION DE DESEMPENO ########################################### ############################################## TABLA PREGUNTAS ################################################## @gto_api.route("/preguntas") def preguntas(): client = bigquery.Client() QUERY1 = ('select Tabla,servidor,usuario,contrasena,data_base,tabla_bd from `contento-bi.Contento.Usuario_conexion_bases` where Tabla = "Preguntas"') query_job = client.query(QUERY1) rows = query_job.result() # data = "" for row in rows: servidor = row.servidor usuario = row.usuario contrasena = row.contrasena data_base = row.data_base tabla_bd = row.tabla_bd reload(sys) sys.setdefaultencoding('utf8') # HOY = datetime.datetime.today().strftime('%Y-%m-%d') #Nos conectamos a la BD y obtenemos los registros conn = _mssql.connect(server=servidor, user=usuario, password=contrasena, database=data_base) conn.execute_query('SELECT id_pregunta,nombre_pregunta,estado,fecha_modif,user_modif FROM ' + tabla_bd ) cloud_storage_rows = "" # Debido a que los registros en esta tabla pueden tener saltos de linea y punto y comas inmersos for row in conn: text_row = "" text_row += str(row['id_pregunta']).encode('utf-8') + "|" text_row += str(row['nombre_pregunta']).encode('utf-8') + "|" text_row += str(row['estado']).encode('utf-8') + "|" text_row += str(row['fecha_modif']).encode('utf-8') + "|" text_row += str(row['user_modif']).encode('utf-8') text_row += "\n" cloud_storage_rows += text_row conn.close() filename = "evaluacion_desempeno/preguntas" + ".csv" #Finalizada la carga en local creamos un Bucket con los datos gcscontroller.create_file(filename, cloud_storage_rows, "ct-gto") try: deleteQuery = "DELETE FROM `contento-bi.gestion_humana.E_D_Preguntas` WHERE id_pregunta > 1" client = bigquery.Client() query_job = client.query(deleteQuery) query_job.result() except: print("no se pudo eliminar") #Primero eliminamos todos los registros que contengan esa fecha # time.sleep(60) flowAnswer = e_d_preguntas_beam.run() # time.sleep(60) # Poner la ruta en storage cloud en una variable importada para posteriormente eliminarla storage_client = storage.Client() bucket = storage_client.get_bucket('ct-gto') blob = bucket.blob("evaluacion_desempeno/preguntas" + ".csv") # Eliminar el archivo en la variable # blob.delete() return "Cargue exitoso Tabla de preguntas " + flowAnswer ################################ TIPO REPUESTA ################################# @gto_api.route("/tipo_respuestas") def respuestas(): client = bigquery.Client() QUERY1 = ('select Tabla,servidor,usuario,contrasena,data_base,tabla_bd from `contento-bi.Contento.Usuario_conexion_bases` where Tabla = "Tipo_respuesta"') query_job = client.query(QUERY1) rows = query_job.result() # data = "" for row in rows: servidor = row.servidor usuario = row.usuario contrasena = row.contrasena data_base = row.data_base tabla_bd = row.tabla_bd reload(sys) sys.setdefaultencoding('utf8') # HOY = datetime.datetime.today().strftime('%Y-%m-%d') #Nos conectamos a la BD y obtenemos los registros conn = _mssql.connect(server=servidor, user=usuario, password=contrasena, database=data_base) conn.execute_query('SELECT id_tipo_respuesta,nombre_respuesta,estado,fecha_modif,usuario_modif FROM ' + tabla_bd ) cloud_storage_rows = "" # Debido a que los registros en esta tabla pueden tener saltos de linea y punto y comas inmersos for row in conn: text_row = "" text_row += str(row['id_tipo_respuesta']).encode('utf-8') + "|" text_row += str(row['nombre_respuesta']).encode('utf-8') + "|" text_row += str(row['estado']).encode('utf-8') + "|" text_row += str(row['fecha_modif']).encode('utf-8') + "|" text_row += str(row['usuario_modif']).encode('utf-8') text_row += "\n" cloud_storage_rows += text_row conn.close() filename = "evaluacion_desempeno/tipo_respuestas" + ".csv" #Finalizada la carga en local creamos un Bucket con los datos gcscontroller.create_file(filename, cloud_storage_rows, "ct-gto") try: deleteQuery = "DELETE FROM `contento-bi.gestion_humana.E_D_tipo_respuesta` WHERE id_tipo_respuesta <> "" " client = bigquery.Client() query_job = client.query(deleteQuery) query_job.result() except: print("no se pudo eliminar") #Primero eliminamos todos los registros que contengan esa fecha # time.sleep(60) flowAnswer = e_d_tipo_respuestas_beam.run() # time.sleep(60) # Poner la ruta en storage cloud en una variable importada para posteriormente eliminarla storage_client = storage.Client() bucket = storage_client.get_bucket('ct-gto') blob = bucket.blob("evaluacion_desempeno/tipo_respuestas" + ".csv") # Eliminar el archivo en la variable # blob.delete() return "Cargue exitoso Tabla de tipo_respuestas " + flowAnswer ############################ TB COMPETENCIA ################################# @gto_api.route("/competencia") def competencia(): client = bigquery.Client() QUERY1 = ('select Tabla,servidor,usuario,contrasena,data_base,tabla_bd from `contento-bi.Contento.Usuario_conexion_bases` where Tabla = "Competencia"') query_job = client.query(QUERY1) rows = query_job.result() # data = "" for row in rows: servidor = row.servidor usuario = row.usuario contrasena = row.contrasena data_base = row.data_base tabla_bd = row.tabla_bd reload(sys) sys.setdefaultencoding('utf8') # HOY = datetime.datetime.today().strftime('%Y-%m-%d') #Nos conectamos a la BD y obtenemos los registros conn = _mssql.connect(server=servidor, user=usuario, password=contrasena, database=data_base) conn.execute_query('SELECT id_competencia,nombre_competencia,id_cargo,estado,fecha_modif,usuario_modif,peso FROM ' + tabla_bd ) cloud_storage_rows = "" # Debido a que los registros en esta tabla pueden tener saltos de linea y punto y comas inmersos for row in conn: text_row = "" text_row += str(row['id_competencia']).encode('utf-8') + "|" text_row += str(row['nombre_competencia']).encode('utf-8') + "|" text_row += str(row['id_cargo']).encode('utf-8') + "|" text_row += str(row['estado']).encode('utf-8') + "|" text_row += str(row['fecha_modif']).encode('utf-8') + "|" text_row += str(row['usuario_modif']).encode('utf-8') + "|" text_row += str(row['peso']).encode('utf-8') text_row += "\n" cloud_storage_rows += text_row conn.close() filename = "evaluacion_desempeno/competencia" + ".csv" #Finalizada la carga en local creamos un Bucket con los datos gcscontroller.create_file(filename, cloud_storage_rows, "ct-gto") try: deleteQuery = "DELETE FROM `contento-bi.gestion_humana.E_D_competencia` WHERE id_competencia <> "" " client = bigquery.Client() query_job = client.query(deleteQuery) query_job.result() except: print("no se pudo eliminar") #Primero eliminamos todos los registros que contengan esa fecha # time.sleep(60) flowAnswer = e_d_competencia_beam.run() # time.sleep(60) # Poner la ruta en storage cloud en una variable importada para posteriormente eliminarla storage_client = storage.Client() bucket = storage_client.get_bucket('ct-gto') blob = bucket.blob("evaluacion_desempeno/competencia" + ".csv") # Eliminar el archivo en la variable # blob.delete() return "Cargue exitoso Tabla de competencia " + flowAnswer ############################ TB EVALUACION DETALLE ############################ @gto_api.route("/detalle_eva") def detalle_eva(): dateini = request.args.get('dateini') dateend = request.args.get('dateend') if dateini is None: dateini = "" else: dateini = dateini if dateend is None: dateend = "" else: dateend = dateend client = bigquery.Client() QUERY1 = ('select Tabla,servidor,usuario,contrasena,data_base,tabla_bd from `contento-bi.Contento.Usuario_conexion_bases` where Tabla = "Detalle_evaluacion"') query_job = client.query(QUERY1) rows = query_job.result() # data = "" for row in rows: servidor = row.servidor usuario = row.usuario contrasena = row.contrasena data_base = row.data_base tabla_bd = row.tabla_bd reload(sys) sys.setdefaultencoding('utf8') # HOY = datetime.datetime.today().strftime('%Y-%m-%d') #Nos conectamos a la BD y obtenemos los registros # if dateini == "": # conn = _mssql.connect(server=servidor, user=usuario, password=contrasena, database=data_base) # conn.execute_query('SELECT id_evaluacion_detalle,notaXPregunta,estado,fecha_modif,usuario_modif,id_relcompetencia,pesoXCompetencia,respuestaAbierta,id_evaluacion_historico FROM ' + tabla_bd + ' WHERE CONVERT(DATE, fecha_modif) = CONVERT(DATE,GETDATE())') if dateini == "": conn = _mssql.connect(server=servidor, user=usuario, password=contrasena, database=data_base) conn.execute_query('SELECT id_evaluacion_detalle,notaXPregunta,estado,fecha_modif,usuario_modif,id_relcompetencia,pesoXCompetencia,respuestaAbierta,id_evaluacion_historico FROM ' + tabla_bd ) else: conn = _mssql.connect(server=servidor, user=usuario, password=contrasena, database=data_base) conn.execute_query('SELECT id_evaluacion_detalle,notaXPregunta,estado,fecha_modif,usuario_modif,id_relcompetencia,pesoXCompetencia,respuestaAbierta,id_evaluacion_historico FROM ' + tabla_bd + ' WHERE CONVERT(DATE, fecha_modif)' ' between ' + "'" + dateini + "'" +" and " + "'" + dateend + "'" ) cloud_storage_rows = "" # Debido a que los registros en esta tabla pueden tener saltos de linea y punto y comas inmersos for row in conn: text_row = "" text_row += str(row['id_evaluacion_detalle']).encode('utf-8') + "|" text_row += str(row['notaXPregunta']).encode('utf-8') + "|" text_row += str(row['estado']).encode('utf-8') + "|" text_row += str(row['fecha_modif']).encode('utf-8') + "|" text_row += str(row['usuario_modif']).encode('utf-8') + "|" text_row += str(row['id_relcompetencia']).encode('utf-8') + "|" text_row += str(row['pesoXCompetencia']).encode('utf-8') + "|" text_row += str(row['respuestaAbierta']).encode('utf-8') + "|" text_row += str(row['id_evaluacion_historico']).encode('utf-8') text_row += "\n" cloud_storage_rows += text_row conn.close() filename = "evaluacion_desempeno/detalle_eva" + ".csv" #Finalizada la carga en local creamos un Bucket con los datos gcscontroller.create_file(filename, cloud_storage_rows, "ct-gto") try: if dateini == "": # deleteQuery = 'DELETE FROM `contento-bi.gestion_humana.E_D_detalle_eva` WHERE CAST(SUBSTR(fecha_modif,0,10) AS DATE) = CURRENT_DATE()' deleteQuery = 'DELETE FROM `contento-bi.gestion_humana.E_D_detalle_eva` WHERE 1 = 1' client = bigquery.Client() query_job = client.query(deleteQuery) query_job.result() else: deleteQuery2 = 'DELETE FROM `contento-bi.gestion_humana.E_D_detalle_eva` WHERE CAST(SUBSTR(fecha_modif,0,10) AS DATE) between ' + "'" + dateini + "'" +" and " + "'" + dateend + "'" client = bigquery.Client() query_job = client.query(deleteQuery2) query_job.result() except: print("no se pudo eliminar") #Primero eliminamos todos los registros que contengan esa fecha # time.sleep(60) flowAnswer = e_d_detalle_evaluacion_beam.run() # time.sleep(60) # Poner la ruta en storage cloud en una variable importada para posteriormente eliminarla storage_client = storage.Client() bucket = storage_client.get_bucket('ct-gto') blob = bucket.blob("evaluacion_desempeno/detalle_eva" + ".csv") # Eliminar el archivo en la variable # blob.delete() return "Cargue exitoso Tabla de competencia " + flowAnswer ################################### REL COMPETENCIA ############################## @gto_api.route("/rel_competencia") def rel_competencia(): client = bigquery.Client() QUERY1 = ('select Tabla,servidor,usuario,contrasena,data_base,tabla_bd from `contento-bi.Contento.Usuario_conexion_bases` where Tabla = "Rel_competencia"') query_job = client.query(QUERY1) rows = query_job.result() # data = "" for row in rows: servidor = row.servidor usuario = row.usuario contrasena = row.contrasena data_base = row.data_base tabla_bd = row.tabla_bd reload(sys) sys.setdefaultencoding('utf8') # HOY = datetime.datetime.today().strftime('%Y-%m-%d') #Nos conectamos a la BD y obtenemos los registros conn = _mssql.connect(server=servidor, user=usuario, password=contrasena, database=data_base) conn.execute_query('SELECT id_relcompetencia,id_competencia,id_pregunta,id_tipo_respuesta,estado,fecha_modif,usuario_modif FROM ' + tabla_bd ) cloud_storage_rows = "" # Debido a que los registros en esta tabla pueden tener saltos de linea y punto y comas inmersos for row in conn: text_row = "" text_row += str(row['id_relcompetencia']).encode('utf-8') + "|" text_row += str(row['id_competencia']).encode('utf-8') + "|" text_row += str(row['id_pregunta']).encode('utf-8') + "|" text_row += str(row['id_tipo_respuesta']).encode('utf-8') + "|" text_row += str(row['estado']).encode('utf-8') + "|" text_row += str(row['fecha_modif']).encode('utf-8') + "|" text_row += str(row['usuario_modif']).encode('utf-8') text_row += "\n" cloud_storage_rows += text_row conn.close() filename = "evaluacion_desempeno/rel_competencia" + ".csv" #Finalizada la carga en local creamos un Bucket con los datos gcscontroller.create_file(filename, cloud_storage_rows, "ct-gto") try: deleteQuery = "DELETE FROM `contento-bi.gestion_humana.E_D_rel_competencia` WHERE 1 = 1 " client = bigquery.Client() query_job = client.query(deleteQuery) query_job.result() except: print("no se pudo eliminar") #Primero eliminamos todos los registros que contengan esa fecha # time.sleep(60) flowAnswer = e_d_rel_competencia_beam.run() # time.sleep(60) # Poner la ruta en storage cloud en una variable importada para posteriormente eliminarla storage_client = storage.Client() bucket = storage_client.get_bucket('ct-gto') blob = bucket.blob("evaluacion_desempeno/rel_competencia" + ".csv") # Eliminar el archivo en la variable # blob.delete() return "Cargue exitoso Tabla de competencia " + flowAnswer ################################### HISTORICO EVALUACIONES ############################## @gto_api.route("/historico_eva") def historico_eva(): dateini = request.args.get('dateini') dateend = request.args.get('dateend') if dateini is None: dateini = "" else: dateini = dateini if dateend is None: dateend = "" else: dateend = dateend client = bigquery.Client() QUERY = ('select Tabla,servidor,usuario,contrasena,data_base,tabla_bd from `contento-bi.Contento.Usuario_conexion_bases` where Tabla = "Historico_evaluacion"') query_job = client.query(QUERY) rows = query_job.result() data = "" for row in rows: servidor = row.servidor usuario = row.usuario contrasena = row.contrasena data_base = row.data_base tabla_bd = row.tabla_bd reload(sys) sys.setdefaultencoding('utf8') HOY = datetime.datetime.today().strftime('%Y-%m-%d') # Nos conectamos a la BD y obtenemos los registros # if dateini == "": # conn = _mssql.connect(server=servidor, user=usuario, password=contrasena, database=data_base) # conn.execute_query('SELECT id_evaluacion_historico,observaciones,documento_evaluador,id_cargo_evaluador,documento_evaluado,id_cargo_evaluado,id_centrocosto,fecha_cierre,fecha_evaluacion FROM ' + tabla_bd + ' WHERE CONVERT(DATE, fecha_evaluacion) = CONVERT(DATE,GETDATE())') # cloud_storage_rows = "" if dateini == "": conn = _mssql.connect(server=servidor, user=usuario, password=contrasena, database=data_base) conn.execute_query('SELECT id_evaluacion_historico,observaciones,documento_evaluador,id_cargo_evaluador,documento_evaluado,id_cargo_evaluado,id_centrocosto,fecha_cierre,fecha_evaluacion FROM ' + tabla_bd ) cloud_storage_rows = "" else: conn = _mssql.connect(server=servidor, user=usuario, password=contrasena, database=data_base) conn.execute_query('SELECT id_evaluacion_historico,observaciones,documento_evaluador,id_cargo_evaluador,documento_evaluado,id_cargo_evaluado,id_centrocosto,fecha_cierre,fecha_evaluacion FROM ' + tabla_bd + ' WHERE CONVERT(DATE, fecha_evaluacion)' ' between ' + "'" + dateini + "'" +" and " + "'" + dateend + "'" ) cloud_storage_rows = "" # Debido a que los registros en esta tabla pueden tener saltos de linea y punto y comas inmersos for row in conn: text_row = "" text_row += str(row['id_evaluacion_historico']).encode('utf-8') + "|" text_row += str(row['observaciones']).encode('utf-8').replace('\n','') + "|" text_row += str(row['documento_evaluador']).encode('utf-8') + "|" text_row += str(row['id_cargo_evaluador']).encode('utf-8') + "|" text_row += str(row['documento_evaluado']).encode('utf-8') + "|" text_row += str(row['id_cargo_evaluado']).encode('utf-8') + "|" text_row += str(row['id_centrocosto']).encode('utf-8') + "|" text_row += str(row['fecha_cierre']).encode('utf-8') + "|" text_row += str(row['fecha_evaluacion']).encode('utf-8') text_row += "\n" cloud_storage_rows += text_row conn.close() filename = "evaluacion_desempeno/historico_eva" + ".csv" #Finalizada la carga en local creamos un Bucket con los datos gcscontroller.create_file(filename, cloud_storage_rows, "ct-gto") try: if dateini == "": # deleteQuery = 'DELETE FROM `contento-bi.gestion_humana.E_D_historico_eva` WHERE CAST(SUBSTR(fecha_evaluacion,0,10) AS DATE) = CURRENT_DATE()' deleteQuery = 'DELETE FROM `contento-bi.gestion_humana.E_D_historico_eva` WHERE 1=1' client = bigquery.Client() query_job = client.query(deleteQuery) query_job.result() else: deleteQuery2 = 'DELETE FROM `contento-bi.gestion_humana.E_D_historico_eva` WHERE CAST(SUBSTR(fecha_evaluacion,0,10) AS DATE) between ' + "'" + dateini + "'" +" and " + "'" + dateend + "'" client = bigquery.Client() query_job = client.query(deleteQuery2) query_job.result() except: print("no se pudo eliminar") #Primero eliminamos todos los registros que contengan esa fecha # time.sleep(60) flowAnswer = e_d_historico_evaluacion_beam.run() # time.sleep(60) # Poner la ruta en storage cloud en una variable importada para posteriormente eliminarla storage_client = storage.Client() bucket = storage_client.get_bucket('ct-gto') blob = bucket.blob("evaluacion_desempeno/historico_eva" + ".csv") # Eliminar el archivo en la variable # blob.delete() # return jsonify(flowAnswer), 200 return "tabla historico de evaluacion cargada" + flowAnswer ############################### REL USUARIOS ############################# @gto_api.route("/rel_usuarios") def rel_usuarios(): client = bigquery.Client() QUERY1 = ('select Tabla,servidor,usuario,contrasena,data_base,tabla_bd from `contento-bi.Contento.Usuario_conexion_bases` where Tabla = "Rel_usuarios"') query_job = client.query(QUERY1) rows = query_job.result() # data = "" for row in rows: servidor = row.servidor usuario = row.usuario contrasena = row.contrasena data_base = row.data_base tabla_bd = row.tabla_bd reload(sys) sys.setdefaultencoding('utf8') # HOY = datetime.datetime.today().strftime('%Y-%m-%d') #Nos conectamos a la BD y obtenemos los registros conn = _mssql.connect(server=servidor, user=usuario, password=contrasena, database=data_base) conn.execute_query('SELECT id_Relusuario,documento,id_Centrocosto,id_cargo,id_perfil,estado,fecha_modf,usuario_modif FROM ' + tabla_bd ) cloud_storage_rows = "" # Debido a que los registros en esta tabla pueden tener saltos de linea y punto y comas inmersos for row in conn: text_row = "" text_row += str(row['id_Relusuario']).encode('utf-8') + "|" text_row += str(row['documento']).encode('utf-8') + "|" text_row += str(row['id_Centrocosto']).encode('utf-8') + "|" text_row += str(row['id_cargo']).encode('utf-8') + "|" text_row += str(row['id_perfil']).encode('utf-8') + "|" text_row += str(row['estado']).encode('utf-8') + "|" text_row += str(row['fecha_modf']).encode('utf-8') + "|" text_row += str(row['usuario_modif']).encode('utf-8') text_row += "\n" cloud_storage_rows += text_row conn.close() filename = "evaluacion_desempeno/rel_usuarios" + ".csv" #Finalizada la carga en local creamos un Bucket con los datos gcscontroller.create_file(filename, cloud_storage_rows, "ct-gto") try: deleteQuery = "DELETE FROM `contento-bi.gestion_humana.E_D_rel_usuarios` WHERE 1 = 1 " client = bigquery.Client() query_job = client.query(deleteQuery) query_job.result() except: print("no se pudo eliminar") #Primero eliminamos todos los registros que contengan esa fecha # time.sleep(60) flowAnswer = e_d_rel_usuarios_beam.run() # time.sleep(60) # Poner la ruta en storage cloud en una variable importada para posteriormente eliminarla storage_client = storage.Client() bucket = storage_client.get_bucket('ct-gto') blob = bucket.blob("evaluacion_desempeno/rel_usuarios" + ".csv") # Eliminar el archivo en la variable # blob.delete() return "Cargue exitoso Tabla de rel ususarios " + flowAnswer ############################### TB USUSARIOS ############################### @gto_api.route("/tb_usuarios") def tb_usuarios(): client = bigquery.Client() QUERY1 = ('select Tabla,servidor,usuario,contrasena,data_base,tabla_bd from `contento-bi.Contento.Usuario_conexion_bases` where Tabla = "Usuarios"') query_job = client.query(QUERY1) rows = query_job.result() # data = "" for row in rows: servidor = row.servidor usuario = row.usuario contrasena = row.contrasena data_base = row.data_base tabla_bd = row.tabla_bd reload(sys) sys.setdefaultencoding('utf8') # HOY = datetime.datetime.today().strftime('%Y-%m-%d') #Nos conectamos a la BD y obtenemos los registros conn = _mssql.connect(server=servidor, user=usuario, password=contrasena, database=data_base) conn.execute_query('SELECT documento,nombre_usuario,da,estado,fecha_modf,usuario_modif,fecha_ingreso FROM ' + tabla_bd ) cloud_storage_rows = "" # Debido a que los registros en esta tabla pueden tener saltos de linea y punto y comas inmersos for row in conn: text_row = "" text_row += str(row['documento']).encode('utf-8') + "|" text_row += str(row['nombre_usuario']).encode('utf-8') + "|" text_row += str(row['da']).encode('utf-8') + "|" text_row += str(row['estado']).encode('utf-8') + "|" text_row += str(row['fecha_modf']).encode('utf-8') + "|" text_row += str(row['usuario_modif']).encode('utf-8') + "|" text_row += str(row['fecha_ingreso']).encode('utf-8') text_row += "\n" cloud_storage_rows += text_row conn.close() filename = "evaluacion_desempeno/tb_usuarios" + ".csv" #Finalizada la carga en local creamos un Bucket con los datos gcscontroller.create_file(filename, cloud_storage_rows, "ct-gto") try: deleteQuery = "DELETE FROM `contento-bi.gestion_humana.E_D_tb_usuarios` WHERE 1 = 1 " client = bigquery.Client() query_job = client.query(deleteQuery) query_job.result() except: print("no se pudo eliminar") #Primero eliminamos todos los registros que contengan esa fecha # time.sleep(60) flowAnswer = e_d_tb_usuarios_beam.run() # time.sleep(60) # Poner la ruta en storage cloud en una variable importada para posteriormente eliminarla storage_client = storage.Client() bucket = storage_client.get_bucket('ct-gto') blob = bucket.blob("evaluacion_desempeno/tb_usuarios" + ".csv") # Eliminar el archivo en la variable # blob.delete() return "Cargue exitoso Tabla de tb ususarios " + flowAnswer ################################# TB CENTRO DE COSTOS ################################ @gto_api.route("/centro_costos") def centro_costos(): client = bigquery.Client() QUERY1 = ('select Tabla,servidor,usuario,contrasena,data_base,tabla_bd from `contento-bi.Contento.Usuario_conexion_bases` where Tabla = "Centros_de_costos"') query_job = client.query(QUERY1) rows = query_job.result() # data = "" for row in rows: servidor = row.servidor usuario = row.usuario contrasena = row.contrasena data_base = row.data_base tabla_bd = row.tabla_bd reload(sys) sys.setdefaultencoding('utf8') # HOY = datetime.datetime.today().strftime('%Y-%m-%d') #Nos conectamos a la BD y obtenemos los registros conn = _mssql.connect(server=servidor, user=usuario, password=contrasena, database=data_base) conn.execute_query('SELECT id_Centrocosto,nombre_centro,id_uen,sede,estado,fecha_modif,usuario_modif FROM ' + tabla_bd ) cloud_storage_rows = "" # Debido a que los registros en esta tabla pueden tener saltos de linea y punto y comas inmersos for row in conn: text_row = "" text_row += str(row['id_Centrocosto']).encode('utf-8') + "|" text_row += str(row['nombre_centro']).encode('utf-8') + "|" text_row += str(row['id_uen']).encode('utf-8') + "|" text_row += str(row['sede']).encode('utf-8') + "|" text_row += str(row['estado']).encode('utf-8') + "|" text_row += str(row['fecha_modif']).encode('utf-8') + "|" text_row += str(row['usuario_modif']).encode('utf-8') text_row += "\n" cloud_storage_rows += text_row conn.close() filename = "evaluacion_desempeno/centro_costos" + ".csv" #Finalizada la carga en local creamos un Bucket con los datos gcscontroller.create_file(filename, cloud_storage_rows, "ct-gto") try: deleteQuery = "DELETE FROM `contento-bi.gestion_humana.E_D_tb_centro_costos` WHERE 1 = 1 " client = bigquery.Client() query_job = client.query(deleteQuery) query_job.result() except: print("no se pudo eliminar") #Primero eliminamos todos los registros que contengan esa fecha # time.sleep(60) flowAnswer = e_d_centro_costos_beam.run() # time.sleep(60) # Poner la ruta en storage cloud en una variable importada para posteriormente eliminarla storage_client = storage.Client() bucket = storage_client.get_bucket('ct-gto') blob = bucket.blob("evaluacion_desempeno/centro_costos" + ".csv") # Eliminar el archivo en la variable # blob.delete() return "Cargue exitoso Tabla de tb centro costos " + flowAnswer ############################## TB UEN ############################# @gto_api.route("/uen") def uen(): client = bigquery.Client() QUERY1 = ('select Tabla,servidor,usuario,contrasena,data_base,tabla_bd from `contento-bi.Contento.Usuario_conexion_bases` where Tabla = "uen"') query_job = client.query(QUERY1) rows = query_job.result() # data = "" for row in rows: servidor = row.servidor usuario = row.usuario contrasena = row.contrasena data_base = row.data_base tabla_bd = row.tabla_bd reload(sys) sys.setdefaultencoding('utf8') # HOY = datetime.datetime.today().strftime('%Y-%m-%d') #Nos conectamos a la BD y obtenemos los registros conn = _mssql.connect(server=servidor, user=usuario, password=contrasena, database=data_base) conn.execute_query('SELECT id_uen,nombre_uen,estado,fecha_modif,user_modif FROM ' + tabla_bd ) cloud_storage_rows = "" # Debido a que los registros en esta tabla pueden tener saltos de linea y punto y comas inmersos for row in conn: text_row = "" text_row += str(row['id_uen']).encode('utf-8') + "|" text_row += str(row['nombre_uen']).encode('utf-8') + "|" text_row += str(row['estado']).encode('utf-8') + "|" text_row += str(row['fecha_modif']).encode('utf-8') + "|" text_row += str(row['user_modif']).encode('utf-8') text_row += "\n" cloud_storage_rows += text_row conn.close() filename = "evaluacion_desempeno/uen" + ".csv" #Finalizada la carga en local creamos un Bucket con los datos gcscontroller.create_file(filename, cloud_storage_rows, "ct-gto") try: deleteQuery = "DELETE FROM `contento-bi.gestion_humana.E_D_uen` WHERE 1 = 1 " client = bigquery.Client() query_job = client.query(deleteQuery) query_job.result() except: print("no se pudo eliminar") #Primero eliminamos todos los registros que contengan esa fecha # time.sleep(60) flowAnswer = e_d_uen_beam.run() # time.sleep(60) # Poner la ruta en storage cloud en una variable importada para posteriormente eliminarla storage_client = storage.Client() bucket = storage_client.get_bucket('ct-gto') blob = bucket.blob("evaluacion_desempeno/uen" + ".csv") # Eliminar el archivo en la variable # blob.delete() return "Cargue exitoso Tabla de uen " + flowAnswer ################################# TB CARGO ############################## @gto_api.route("/cargos") def cargos(): client = bigquery.Client() QUERY1 = ('select Tabla,servidor,usuario,contrasena,data_base,tabla_bd from `contento-bi.Contento.Usuario_conexion_bases` where Tabla = "Cargos"') query_job = client.query(QUERY1) rows = query_job.result() # data = "" for row in rows: servidor = row.servidor usuario = row.usuario contrasena = row.contrasena data_base = row.data_base tabla_bd = row.tabla_bd reload(sys) sys.setdefaultencoding('utf8') # HOY = datetime.datetime.today().strftime('%Y-%m-%d') #Nos conectamos a la BD y obtenemos los registros conn = _mssql.connect(server=servidor, user=usuario, password=contrasena, database=data_base) conn.execute_query('SELECT id_cargo,nombre_cargo,estado,fecha_modif,usuario_modif FROM ' + tabla_bd ) cloud_storage_rows = "" # Debido a que los registros en esta tabla pueden tener saltos de linea y punto y comas inmersos for row in conn: text_row = "" text_row += str(row['id_cargo']).encode('utf-8') + "|" text_row += str(row['nombre_cargo']).encode('utf-8') + "|" text_row += str(row['estado']).encode('utf-8') + "|" text_row += str(row['fecha_modif']).encode('utf-8') + "|" text_row += str(row['usuario_modif']).encode('utf-8') text_row += "\n" cloud_storage_rows += text_row conn.close() filename = "evaluacion_desempeno/cargos" + ".csv" #Finalizada la carga en local creamos un Bucket con los datos gcscontroller.create_file(filename, cloud_storage_rows, "ct-gto") try: deleteQuery = "DELETE FROM `contento-bi.gestion_humana.E_D_cargos` WHERE cast(id_cargo as int64) > 0 " client = bigquery.Client() query_job = client.query(deleteQuery) query_job.result() except: print("no se pudo eliminar") #Primero eliminamos todos los registros que contengan esa fecha # time.sleep(60) flowAnswer = e_d_cargos_beam.run() # time.sleep(60) # Poner la ruta en storage cloud en una variable importada para posteriormente eliminarla storage_client = storage.Client() bucket = storage_client.get_bucket('ct-gto') blob = bucket.blob("evaluacion_desempeno/cargos" + ".csv") # Eliminar el archivo en la variable # blob.delete() return "Cargue exitoso Tabla de cargos " + flowAnswer ####################################### PERFIL #################################### @gto_api.route("/perfil") def perfil(): client = bigquery.Client() QUERY1 = ('select Tabla,servidor,usuario,contrasena,data_base,tabla_bd from `contento-bi.Contento.Usuario_conexion_bases` where Tabla = "Perfil"') query_job = client.query(QUERY1) rows = query_job.result() # data = "" for row in rows: servidor = row.servidor usuario = row.usuario contrasena = row.contrasena data_base = row.data_base tabla_bd = row.tabla_bd reload(sys) sys.setdefaultencoding('utf8') # HOY = datetime.datetime.today().strftime('%Y-%m-%d') #Nos conectamos a la BD y obtenemos los registros conn = _mssql.connect(server=servidor, user=usuario, password=contrasena, database=data_base) conn.execute_query('SELECT id_perfil,nombre_perfil,estado,fecha_modif,usuario_modif,id_perfil_padre FROM ' + tabla_bd ) cloud_storage_rows = "" # Debido a que los registros en esta tabla pueden tener saltos de linea y punto y comas inmersos for row in conn: text_row = "" text_row += str(row['id_perfil']).encode('utf-8') + "|" text_row += str(row['nombre_perfil']).encode('utf-8') + "|" text_row += str(row['estado']).encode('utf-8') + "|" text_row += str(row['fecha_modif']).encode('utf-8') + "|" text_row += str(row['usuario_modif']).encode('utf-8') + "|" text_row += str(row['id_perfil_padre']).encode('utf-8') text_row += "\n" cloud_storage_rows += text_row conn.close() filename = "evaluacion_desempeno/perfil" + ".csv" #Finalizada la carga en local creamos un Bucket con los datos gcscontroller.create_file(filename, cloud_storage_rows, "ct-gto") try: deleteQuery = "DELETE FROM `contento-bi.gestion_humana.E_D_perfil` WHERE id_perfil <> "" " client = bigquery.Client() query_job = client.query(deleteQuery) query_job.result() except: print("no se pudo eliminar") #Primero eliminamos todos los registros que contengan esa fecha # time.sleep(60) flowAnswer = e_d_perfiles_beam.run() # time.sleep(60) # Poner la ruta en storage cloud en una variable importada para posteriormente eliminarla storage_client = storage.Client() bucket = storage_client.get_bucket('ct-gto') blob = bucket.blob("evaluacion_desempeno/perfil" + ".csv") # Eliminar el archivo en la variable # blob.delete() return "Cargue exitoso Tabla de perfiles " + flowAnswer ############################## BASE ################################## @gto_api.route("/base") def base(): client = bigquery.Client() QUERY1 = ('select Tabla,servidor,usuario,contrasena,data_base,tabla_bd from `contento-bi.Contento.Usuario_conexion_bases` where Tabla = "Base"') query_job = client.query(QUERY1) rows = query_job.result() # data = "" for row in rows: servidor = row.servidor usuario = row.usuario contrasena = row.contrasena data_base = row.data_base tabla_bd = row.tabla_bd reload(sys) sys.setdefaultencoding('utf8') # HOY = datetime.datetime.today().strftime('%Y-%m-%d') #Nos conectamos a la BD y obtenemos los registros conn = _mssql.connect(server=servidor, user=usuario, password=contrasena, database=data_base) conn.execute_query('SELECT id_cargue,documento,nombre_usuario,id_uen,id_Centrocosto,id_cargo,ciudad,fecha_ingreso,id_perfil,Marca FROM ' + tabla_bd ) cloud_storage_rows = "" # Debido a que los registros en esta tabla pueden tener saltos de linea y punto y comas inmersos for row in conn: text_row = "" text_row += str(row['id_cargue']).encode('utf-8') + "|" text_row += str(row['documento']).encode('utf-8') + "|" text_row += str(row['nombre_usuario']).encode('utf-8') + "|" text_row += str(row['id_uen']).encode('utf-8') + "|" text_row += str(row['id_Centrocosto']).encode('utf-8') + "|" text_row += str(row['id_cargo']).encode('utf-8') + "|" text_row += str(row['ciudad']).encode('utf-8') + "|" text_row += str(row['fecha_ingreso']).encode('utf-8') + "|" text_row += str(row['id_perfil']).encode('utf-8') + "|" text_row += str(row['Marca']).encode('utf-8') text_row += "\n" cloud_storage_rows += text_row conn.close() filename = "evaluacion_desempeno/base" + ".csv" #Finalizada la carga en local creamos un Bucket con los datos gcscontroller.create_file(filename, cloud_storage_rows, "ct-gto") try: deleteQuery = "DELETE FROM `contento-bi.gestion_humana.E_D_base` WHERE id_cargue > 0 " client = bigquery.Client() query_job = client.query(deleteQuery) query_job.result() except: print("no se pudo eliminar") #Primero eliminamos todos los registros que contengan esa fecha # time.sleep(60) flowAnswer = e_d_base_beam.run() # time.sleep(60) # Poner la ruta en storage cloud en una variable importada para posteriormente eliminarla storage_client = storage.Client() bucket = storage_client.get_bucket('ct-gto') blob = bucket.blob("evaluacion_desempeno/base" + ".csv") # Eliminar el archivo en la variable # blob.delete() return "Cargue exitoso Tabla base " + flowAnswer
# import logging # # # create a file handler # handler = logging.FileHandler('hello.log') # # handler.setLevel(logging.INFO) # # # create a logging format # formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') # handler.setFormatter(formatter) # # logger = logging.getLogger(__name__) # logger.setLevel(logging.INFO) # logger.addHandler(handler) # # logger.info('aaa') # logger.debug('hehe') from osresmorning import mylog mylog.set_config({ 'level':'DEBUG' }) logger = mylog.get_log(__name__) logger.debug('debug') logger.info('info')
import Queue def update_queue(current_time, tasks, queue): # This ugly implementation is to solve the problem raised below new_queue = Queue.Queue() while tasks and tasks[0].arrive_time <= current_time: new_queue.put(tasks[0]) tasks = tasks[1:] while not queue.empty(): new_queue.put(queue.get()) return tasks, new_queue def RR_scheduling(tasks, time_quantum): result_schedule = [] process_list_len = len(tasks) queue = Queue.Queue() current_time = 0 waiting_time = 0 current_process = -1 previous_process = -1 for process in tasks: waiting_time -= process.burst_time + process.arrive_time while not queue.empty() or tasks: tasks, queue = update_queue(current_time, tasks, queue) if queue.empty(): current_time = tasks[0].arrive_time continue current_process = queue.get() if previous_process != current_process: result_schedule.append((current_time, current_process.id)) if current_process.burst_time > time_quantum: current_process.burst_time -= time_quantum current_time += time_quantum # There is a problem here: # If a new process arrives, # it should have a priority to all existing processes or not? # In this version, the answer is 'yes'. tasks, queue = update_queue(current_time, tasks, queue) queue.put(current_process) else: current_time += current_process.burst_time waiting_time += current_time previous_process = current_process average_waiting_time = waiting_time/float(process_list_len) return result_schedule, average_waiting_time
#!/usr/bin/python3 from dns import reversename, resolver import sys import argparse import csv import socket import xlrd from xlutils.copy import copy file_name_input = "" file_name_output = "" rnd_nw = "10.12." # default network pattern firstrow = 1 # default second row dnscolumn = 1 # default second column parser = argparse.ArgumentParser(description='This script read the first column of the given excel sheet and write back the reverse DNS to the second column') parser.add_argument('i', metavar='inputfile', action="store", help="input excel file name") parser.add_argument('-o', metavar='', action="store", help="output excel file name") parser.add_argument('--nw', metavar='', action="store", help="network pattern to filter IP") parser.add_argument('--first_row', metavar='', action="store", help="first row where we start to process the IPs", type=int) parser.add_argument('--dns_column', metavar='', action="store", help="dns column where we put the DNS names", type=int) if parser.parse_args().i: file_name_input = parser.parse_args().i if parser.parse_args().o: file_name_output = parser.parse_args().o else: file_name_output = file_name_input if parser.parse_args().nw: rnd_nw = parser.parse_args().nw if parser.parse_args().first_row: firstrow = parser.parse_args().first_row if parser.parse_args().dns_column: dnscolumn = parser.parse_args().dns_column def reversedns(cella): revdns = reversename.from_address(cella) try: return str(resolver.query(revdns,"PTR")[0]) except resolver.NXDOMAIN as e: return "NXDOMAIN" def validateip(ipaddr): try: socket.inet_aton(ipaddr) except socket.error: return False return True xbook1 = xlrd.open_workbook(file_name_input) xsheet1 = xbook1.sheet_by_index(0) nrows = xsheet1.nrows xbook2 = copy(xbook1) xsheet2 = xbook2.get_sheet(0) dname = "reversednsfailed" for row_idx in range(firstrow, nrows): celly = xsheet1.cell_value(row_idx, 0) if validateip(celly): if celly[:len(rnd_nw)] == rnd_nw: dname = reversedns(celly) xsheet2.write(row_idx, dnscolumn, dname) xbook2.save(file_name_output)
Python 3.7.4 (tags/v3.7.4:e09359112e, Jul 8 2019, 19:29:22) [MSC v.1916 32 bit (Intel)] on win32 Type "help", "copyright", "credits" or "license()" for more information. >>> #alistirma3 >>> >>> n=1000 >>> x=0 >>> f=1 >>> for i in range(2,n): f=f*i x=x+(1/f) e=2+x >>> e 2.718281828459045 >>> >>> #n nin 0 ve 1 için değerlerini direk 2 olarak hesaplanıp 2 ve sonrası degerleri için kodlama yapıldı.
import os import time import cv2 import albumentations as A from albumentations.pytorch import ToTensorV2 import matplotlib.pyplot as plt import numpy as np from PIL import Image from sklearn.model_selection import train_test_split import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import Dataset, DataLoader from torch.cuda import amp import torchvision.transforms as T from model import SegmentationModel, save_model from util import time_to_string, prepare_image, get_data, pil_loader, np_loader, add_weight_decay class FolderDataset(Dataset): def __init__(self, data, labels, transforms=None, load_in_ram=False): self.transforms = T.Compose([T.ToTensor()]) if transforms: self.transforms = transforms self.data = data self.labels = labels self.load_in_ram = load_in_ram self.length = len(self.data) def __len__(self): return self.length def __getitem__(self, idx): if self.load_in_ram: img = self.data[idx] else: img = np_loader(self.data[idx]) img = self.transforms(image=img)["image"] / 255.0 label = self.labels[idx] mask = torch.empty(img.shape[1], img.shape[2], dtype=torch.long).fill_(label) target = torch.tensor((label), dtype=torch.long) return img, mask, target if __name__ == "__main__": MANUAL_SEED = 42 np.random.seed(MANUAL_SEED) torch.manual_seed(MANUAL_SEED) torch.cuda.manual_seed(MANUAL_SEED) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False save_epochs = True # Write a single copy that gets updated every epoch, like a checkpoint that gets overwritten each epoch graph_metrics = True view_results = True checkpoint_epoch = 20 # epoch save interval use_amp = True # Model Config in_channels = 3 filters = 16 activation = "silu" # relu, leaky_relu, silu, mish # Training Hyperparameters input_size = 128 num_epochs = 100 # Dataloader parameters batch_size = 256 shuffle = True num_workers = 6 drop_last = False pin_memory = True # Optimization optim_type = 'adamw' # sgd 1e-5, adam 4e-4, adamw 4e-4 base_lr = 4e-4 momentum = 0.98 nesterov = True weight_decay = 1e-5 # 0, 1e-5, 3e-5, *1e-4, 3e-4, *5e-4, 3e-4, 1e-3, 1e-2 scheduler_type = 'plateau' # step, plateau, exp lr_milestones = [150, 180] # for step lr_gamma = 0.8 plateau_patience = 20 use_classifer_grad = True # Uses the classifer gradients to update the encoder class_multi = 100.0 cutmix_beta = 0.5 # Dataset parameters data_root = "data/memes256" validation_split = 0.06 # percent used for validation as a decimal load_in_ram = False # can speed up small datasets <2000 images, num_workers=0 set_mean = [0.527, 0.487, 0.459] set_std = [0.247, 0.236, 0.245] train_transforms = A.Compose([ # Resizing A.RandomResizedCrop(input_size, input_size, scale=(0.2, 1.0), ratio=(3./4., 4./3.), interpolation=cv2.INTER_LINEAR), # Spatial transforms A.HorizontalFlip(p=0.5), A.VerticalFlip(p=0.1), A.Rotate(limit=20, p=0.5), # A.RandomRotate90(p=0.25), # A.OneOf([ # # A.GridDistortion(num_steps=5, distort_limit=0.03, always_apply=True), # A.IAAPerspective(scale=(0.05, 0.1), keep_size=True, always_apply=True), # A.IAAAffine(shear=(-15, 15), always_apply=True), # ], p=1.0), # Color transforms A.OneOf([ A.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1, always_apply=True), # A.Posterize(num_bits=[4,6], always_apply=True), A.RGBShift(r_shift_limit=25, g_shift_limit=25, b_shift_limit=25, always_apply=True), A.RandomGamma(gamma_limit=(50, 150), always_apply=True), ], p=0.5), # Blurring and sharpening A.OneOf([ A.IAASharpen(alpha=(0.2, 0.5), lightness=(0.5, 1.0), always_apply=True), A.GaussianBlur(blur_limit=(1, 5), always_apply=True), # A.GlassBlur(sigma=0.7, max_delta=4, iterations=1, always_apply=True, mode='fast'), A.ISONoise(color_shift=(0.01, 0.05), intensity=(0.1, 0.5), always_apply=True), # A.MedianBlur(blur_limit=5, always_apply=True), # A.MotionBlur(blur_limit=3, always_apply=True), A.RandomShadow(shadow_roi=(0, 0, 1, 1), num_shadows_lower=1, num_shadows_upper=2, shadow_dimension=3, always_apply=True), A.GaussNoise(var_limit=5.0, mean=0, p=1.0), ], p=1.0), A.ToGray(p=0.25), ToTensorV2(), ]) val_transforms = A.Compose([ A.SmallestMaxSize(input_size), A.CenterCrop(input_size, input_size), ToTensorV2(), ]) """ Prepare the data """ # Load the images from the data_root folder print(" * Loading data from {}...".format(data_root)) t0 = time.time() path_list, label_list, num_to_cat = get_data(data_root) num_cat = len(num_to_cat) print("Number of categories :", num_cat) print("Categories :", num_to_cat) print(f"{len(path_list)} Images") print(" * Creating datasets...") print("Spliting with {:.0f}% for validation.".format(100*validation_split)) x_train, x_val, y_train, y_val = train_test_split(path_list, label_list, test_size=validation_split, random_state=MANUAL_SEED , stratify=label_list) if load_in_ram: x_train = [pil_loader(path) for path in x_train] x_val = [pil_loader(path) for path in x_val] train_dataset = FolderDataset(data=x_train, labels=y_train, transforms=train_transforms, load_in_ram=load_in_ram) print("Train length :", len(train_dataset)) val_dataset = FolderDataset(data=x_val, labels=y_val, transforms=val_transforms, load_in_ram=load_in_ram) print("Validation length :", len(val_dataset)) duration = time.time() - t0 rate = 'a lot of' if duration==0 else "{:.1f}".format(len(path_list)/duration) print("Found {} images in {}. {} images per second.".format(len(path_list), time_to_string(duration), rate)) print(" * Creating dataloaders...") train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size ,shuffle=shuffle, num_workers=num_workers, drop_last=drop_last, persistent_workers=(True if num_workers > 0 else False), pin_memory=pin_memory) val_loader = DataLoader(dataset=val_dataset, batch_size=batch_size ,shuffle=False, num_workers=num_workers, drop_last=drop_last, persistent_workers=(True if num_workers > 0 else False), pin_memory=pin_memory) """ Setup the model, optimizer, and scheduler """ device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') print('device :', device) print(" * Creating model...") model = SegmentationModel(in_channels, num_cat, filters, activation, set_mean, set_std, num_to_cat=num_to_cat, input_size=input_size).to(device) if weight_decay != 0: params = add_weight_decay(model, weight_decay) else: params = model.parameters() # Setup optimizer print(" * Creating optimizer...") if optim_type == 'sgd': optimizer = optim.SGD(params, lr=base_lr, momentum=momentum, nesterov=nesterov, weight_decay=weight_decay) elif optim_type == 'adam': optimizer = optim.Adam(params, lr=base_lr) elif optim_type == 'adamw': optimizer = optim.AdamW(params, lr=base_lr, weight_decay=weight_decay) # Setup scheduler print(" * Creating scheduler...") if scheduler_type == 'step': scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=lr_milestones, gamma=lr_gamma) elif scheduler_type == 'plateau': scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=lr_gamma, patience=plateau_patience, verbose=True) elif scheduler_type == 'exp': scheduler = optim.lr_scheduler.ExponentialLR(optimizer, gamma=lr_gamma) else: scheduler = None # Setup run data base_save = f"runs/save" save_path = lambda r, t : base_save + '/run{:05d}_{}.pth'.format(r, t) if not os.path.exists(base_save): os.makedirs(base_save) current_run = 0 with open('runs/LASTRUN.txt') as f: current_run = int(f.read()) + 1 with open('runs/LASTRUN.txt', 'w') as f: f.write("%s\n" % current_run) print("current run :", current_run) scalar = amp.GradScaler() """ Training """ print(" * Start training...") criterion = nn.CrossEntropyLoss() run_stats = [] t1 = time.time() iterations = 0 model.train() try: for epoch in range(num_epochs): t2 = time.time() train_seg_loss_total = 0.0 train_cla_loss_total = 0.0 train_seg_correct_total = 0.0 train_seg_seen_total = 0.0 train_cla_correct_total = 0.0 train_cla_seen_total = 0.0 for batch_idx, (data, true_masks, true_labels) in enumerate(train_loader): data = data.to(device) true_masks = true_masks.to(device) true_labels = true_labels.to(device) optimizer.zero_grad() if cutmix_beta > 0: cutmix_beta = 1.0 lam = np.random.beta(cutmix_beta, cutmix_beta) rand_index = torch.randperm(data.size()[0]).to(data.device) target_a = true_labels target_b = true_labels[rand_index] # Now the bboxes for the input and mask _, _, w, h = data.size() cut_rat = np.sqrt(1. - lam) # Box size cut_w, cut_h = int(w*cut_rat), int(h*cut_rat) # Box center cx, cy = np.random.randint(w), np.random.randint(h) bbx1 = np.clip(cx - cut_w // 2, 0, w) bbx2 = np.clip(cx + cut_w // 2, 0, w) bby1 = np.clip(cy - cut_h // 2, 0, h) bby2 = np.clip(cy + cut_h // 2, 0, h) data[:, :, bbx1:bbx2, bby1:bby2] = data[rand_index, :, bbx1:bbx2, bby1:bby2] true_masks[:, bbx1:bbx2, bby1:bby2] = true_masks[rand_index, bbx1:bbx2, bby1:bby2] # Adjust the classification loss based on pixel area ratio lam = 1 - ((bbx2 - bbx1) * (bby2 - bby1) / (w*h)) # The data and labels are now cutmixed # if use_amp: with amp.autocast(enabled=use_amp): logits, encoding = model(data) seg_loss = criterion(logits, true_masks) encoding = encoding if use_classifer_grad else encoding.detach() class_logits = model.classifier(encoding) if cutmix_beta > 0: class_loss = criterion(class_logits, target_a)*lam + criterion(class_logits, target_b)*(1.0-lam) else: class_loss = criterion(class_logits, true_labels) loss = seg_loss+class_multi*class_loss # else: # logits, encoding = model(data) # seg_loss = criterion(logits, true_masks) # encoding = encoding if use_classifer_grad else encoding.detach() # class_logits = model.classifier(encoding) # if cutmix_beta > 0: # class_loss = criterion(class_logits, target_a)*lam + criterion(class_logits, target_b)*(1.0-lam) # else: # class_loss = criterion(class_logits, true_labels) # loss = seg_loss+class_multi*class_loss if use_amp: with amp.autocast(): scalar.scale(loss).backward() scalar.step(optimizer) scalar.update() else: loss.backward() optimizer.step() iterations += 1 # Update running metrics train_seg_loss_total += seg_loss train_cla_loss_total += class_loss _, tags = torch.max(logits, dim=1) train_seg_correct_total += (tags == true_masks).sum() train_seg_seen_total += true_masks.numel() _, tags = torch.max(class_logits, dim=1) train_cla_correct_total += (tags == true_labels).sum() train_cla_seen_total += true_labels.numel() model.eval() val_seg_loss_total = 0.0 val_cla_loss_total = 0.0 val_seg_correct_total = 0.0 val_seg_seen_total = 0.0 val_cla_correct_total = 0.0 val_cla_seen_total = 0.0 with torch.set_grad_enabled(False): for batch_idx, (data, true_masks, true_labels) in enumerate(val_loader): data = data.to(device) true_masks = true_masks.to(device) true_labels = true_labels.to(device) logits, encoding = model(data) class_logits = model.classifier(encoding) loss = criterion(logits, true_masks) class_loss = criterion(class_logits, true_labels) # Update running metrics val_seg_loss_total += loss val_cla_loss_total += class_loss _, tags = torch.max(logits, dim=1) val_seg_correct_total += (tags == true_masks).sum() val_seg_seen_total += true_masks.numel() _, tags = torch.max(class_logits, dim=1) val_cla_correct_total += (tags == true_labels).sum() val_cla_seen_total += true_labels.numel() # EPOCH TRAIN AND VALIDATE train_loss = (train_seg_loss_total+train_cla_loss_total)/len(train_loader) train_seg_loss = train_seg_loss_total/len(train_loader) train_cla_loss = train_cla_loss_total/len(train_loader) train_seg_acc = 100*train_seg_correct_total/train_seg_seen_total train_cla_acc = 100*train_cla_correct_total/train_cla_seen_total val_loss = (val_seg_loss_total+val_cla_loss_total)/len(val_loader) val_seg_loss = val_seg_loss_total/len(val_loader) val_cla_loss = val_cla_loss_total/len(val_loader) val_seg_acc = 100*val_seg_correct_total/val_seg_seen_total val_cla_acc = 100*val_cla_correct_total/val_cla_seen_total epoch_metrics = { "epoch": epoch+1, "iterations": iterations, "elapsed_time": time.time()-t1, "lr": optimizer.param_groups[0]['lr'], "train_loss": train_loss.item(), "train_seg_loss": train_seg_loss.item(), "train_cla_loss": train_cla_loss.item(), "train_seg_acc": train_seg_acc.item(), "train_cla_acc": train_cla_acc.item(), "val_loss": val_loss.item(), "val_seg_loss": val_seg_loss.item(), "val_cla_loss": val_cla_loss.item(), "val_seg_acc": val_seg_acc.item(), "val_cla_acc": val_cla_acc.item(), } run_stats.append(epoch_metrics) duration = time.time()-t2 remaining = duration*(num_epochs-epoch-1) print("epoch {}. {}. loss={:.3f}/{:.3f}. s={:.1f}/{:.1f}. c={:.1f}/{:.1f}. lr={:2e}. elapsed={}. remaining={}.".format(epoch+1, time_to_string(duration), train_loss, val_loss, train_seg_acc, val_seg_acc, train_cla_acc, val_cla_acc, optimizer.param_groups[0]['lr'], time_to_string(time.time()-t1), time_to_string(remaining))) if scheduler: if type(scheduler) == optim.lr_scheduler.ReduceLROnPlateau: scheduler.step(train_loss) elif type(scheduler) in [optim.lr_scheduler.MultiStepLR, optim.lr_scheduler.ExponentialLR]: scheduler.step() if save_epochs: save_model(model, save_path(current_run, "latest")) if (epoch+1) % checkpoint_epoch == 0: save_model(model, save_path(current_run, f"check{epoch+1}")) except KeyboardInterrupt: print("KeyboardInterrupt Exit") pass print('Finished Training. Duration={}. {} iterations'.format(time_to_string(time.time()-t1), iterations)) """ Training Stage 1 - Classification """ save_model(model, save_path(current_run, "final")) print("saving to: {}".format(save_path(current_run, "final"))) # Graph Metrics line_colors = [ '#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf' ] fig, ax = plt.subplots(2, 2, figsize=(10,8)) # w, h font_size = 14 train_steps = len(run_stats) # loss, top 0 ax[0][0].set_xlabel('epochs', fontsize=font_size) ax[0][0].set_ylabel('loss', fontsize=font_size) ax[0][0].set_yscale('log') ax[0][0].tick_params(axis='y') train_loss_list = ["train_seg_loss", "train_cla_loss"] val_loss_list = ["val_seg_loss", "val_cla_loss"] for i in range(len(train_loss_list)): ax[0][0].plot(range(1, train_steps+1), [x[train_loss_list[i]] for x in run_stats], color=line_colors[i], label=train_loss_list[i]) ax[0][0].plot(range(1, train_steps+1), [x[val_loss_list[i]] for x in run_stats], color=line_colors[i], label=val_loss_list[i], linestyle='dashed') ax[0][0].legend() # acc, top 1 ax[0][1].set_xlabel('epochs', fontsize=font_size) ax[0][1].set_ylabel('accuracy', fontsize=font_size) # ax[0][1].set_yscale('log') ax[0][1].tick_params(axis='y') train_acc_list = ["train_seg_acc", "train_cla_acc"] val_acc_list = ["val_seg_acc", "val_cla_acc"] for i in range(len(train_acc_list)): ax[0][1].plot(range(1, train_steps+1), [x[train_acc_list[i]] for x in run_stats], color=line_colors[i], label=train_acc_list[i]) ax[0][1].plot(range(1, train_steps+1), [x[val_acc_list[i]] for x in run_stats], color=line_colors[i], label=val_acc_list[i], linestyle='dashed') ax[0][1].legend() # lr, bot 0 ax[1][0].set_xlabel('epochs', fontsize=font_size) ax[1][0].set_ylabel('lr', fontsize=font_size) ax[1][0].set_yscale('log') ax[1][0].tick_params(axis='y') ax[1][0].plot(range(1, train_steps+1), [x["lr"] for x in run_stats], color=line_colors[0], label="lr") # coef, bot 1 ax[1][1].set_xlabel('epochs', fontsize=font_size) ax[1][1].set_ylabel('loss', fontsize=font_size) ax[1][1].tick_params(axis='y') ax[1][1].plot(range(1, train_steps+1), [x["train_loss"] for x in run_stats], color=line_colors[0], label="train_loss") ax[1][1].plot(range(1, train_steps+1), [x["val_loss"] for x in run_stats], color=line_colors[0], label="val_loss", linestyle='dashed') ax[1][1].legend() fig.tight_layout() # otherwise the right y-label is slightly clipped fig.savefig("{}/run{:05d}_metrics.png".format(base_save, current_run), bbox_inches='tight') if graph_metrics: plt.show() # View validation predictions rows = 4 scale = 2.2 fig, ax = plt.subplots(rows, 1+model.out_channels, figsize=(scale*(1+model.out_channels), scale*rows)) idxs = np.random.choice(range(len(x_val)), rows, replace=False) for i in range(rows): img = pil_loader(x_val[idxs[i]]) width, height = img.size[:2] scale = input_size/width img = img.resize((int(width*scale), int(height*scale))) img = prepare_image(img, model.input_size, square=True) y = y_val[idxs[i]] ymask, yclass = model.predict(img.to(device)) yprob, yhat = torch.max(yclass, dim=1) ax[i][0].imshow(img.squeeze().numpy().transpose((1,2,0))) color = "g" if int(y)==int(yhat) else "r" title_str = "{} ({:.02f} % {})".format(num_to_cat[int(y)], float(100*yprob), num_to_cat[int(yhat)]) ax[i][0].set_title(title_str, color=color) for j in range(model.out_channels): ax[i][1+j].imshow(ymask.detach().cpu().numpy().squeeze().transpose((1,2,0))[:,:,j]) ax[i][1+j].set_title("{}".format(num_to_cat[int(j)])) fig.tight_layout() fig.savefig("{}/run{:05d}_samples.png".format(base_save, current_run), bbox_inches='tight') if view_results: plt.show()
import torch import torch.nn as nn import torchvision.models as models class MyModelA(nn.Module): def __init__(self): super(MyModelA, self).__init__() self.features = nn.Sequential( nn.Conv2d(1, 6, 5, 1), nn.ReLU(), nn.MaxPool2d(2), nn.Conv2d(6, 16, 5, 1), nn.ReLU(), nn.MaxPool2d(2)) self.fc = nn.Linear(16*4*4, 10) def forward(self, x): x = self.features(x) x = torch.flatten(x, 1) x = self.fc(x) return x class MyModelB(nn.Module): def __init__(self): super(MyModelB, self).__init__() self.features = nn.Sequential( nn.Conv2d(1, 8, 5, 1), nn.ReLU(), nn.MaxPool2d(2), nn.Conv2d(8, 12, 5, 1), nn.ReLU(), nn.MaxPool2d(2)) self.fc = nn.Sequential( nn.Linear(12*4*4, 50), nn.ReLU(), nn.Linear(50, 10)) def forward(self, x): x = self.features(x) x = torch.flatten(x, 1) x = self.fc(x) return x class MyDeepModel(nn.Module): def __init__(self): super(MyDeepModel, self).__init__() self.features = nn.Sequential( nn.Conv2d(1, 5, 3, 1), nn.ReLU(), nn.Conv2d(5, 8, 3, 1), nn.ReLU(), nn.MaxPool2d(2), nn.Conv2d(8, 12, 3, 1), nn.ReLU(), nn.Conv2d(12, 16, 3, 1), nn.ReLU(), nn.MaxPool2d(2)) self.fc = nn.Sequential( nn.Linear(16*4*4, 50), nn.ReLU(), nn.Linear(50, 10)) def forward(self, x): x = self.features(x) x = torch.flatten(x, 1) x = self.fc(x) return x class GrayResnet18(models.resnet.ResNet): def __init__(self): super(GrayResnet18, self).__init__(models.resnet.BasicBlock, [2, 2, 2, 2]) self.conv1 = nn.Conv2d(1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) self.fc = nn.Linear(in_features=512, out_features=10, bias=True) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x) return x
# Generated by Django 3.0.7 on 2020-08-20 22:11 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('qualification', '0003_staffdocument_docname'), ] operations = [ migrations.AddField( model_name='maindocument', name='documents', field=models.IntegerField(default=0), ), ]
import asyncio from azure.eventhub.aio import EventHubProducerClient from azure.eventhub import EventData async def run(): # Connection string for namespace and name for event hub VAR_CONN_STR = "Connection string for namespace" VAR_EVENTHUB_NAME = "Name for event hub" # Create a producer client to send messages to the event hub. # Specify a connection string to your event hubs namespace and # the event hub name. producer = EventHubProducerClient.from_connection_string(conn_str=VAR_CONN_STR, eventhub_name=VAR_EVENTHUB_NAME) async with producer: # Create a batch. event_data_batch = await producer.create_batch() # Add events to the batch. event_data_batch.add(EventData('First event ')) event_data_batch.add(EventData('Second event')) event_data_batch.add(EventData('Third event')) # Send the batch of events to the event hub.AioHttpTransport await producer.send_batch(event_data_batch) loop = asyncio.get_event_loop() loop.run_until_complete(run())
# -*- coding: utf-8 -*- """ We are going to use a simple form with an edit action to edit a comment. Monkeypatch i18n >>> import zope.i18n >>> import zope.i18n.config >>> old_1, old_2 = zope.i18n.negotiate, zope.i18n.config.ALLOWED_LANGUAGES >>> zope.i18n.negotiate = lambda context: 'en' >>> zope.i18n.config.ALLOWED_LANGUAGES = ['en'] Let's grok our example: >>> from zeam.form.ztk.testing import grok >>> grok('zeam.form.ztk.ftests.forms.editform_fixture') Let's add a comment and try to edit it with our form: >>> from zeam.form.ztk.ftests.forms.editform_fixture import Comment >>> root = getRootFolder() >>> root['comment'] = Comment('zeam.form', 'Is great') >>> root['comment'].title 'zeam.form' >>> root['comment'].comment 'Is great' >>> root['comment'].name '' >>> from zope.testbrowser.wsgi import Browser >>> browser = Browser() >>> browser.handleErrors = False Now acccess the edit form: >>> browser.open('http://localhost/comment/edit') >>> browser.addHeader('Authorization', 'Basic mgr:mgrpw') >>> 'Modify your comment' in browser.contents True >>> title_field = browser.getControl('Title') >>> title_field <Control name='form.field.title' type='text'> >>> title_field.value 'zeam.form' >>> comment_field = browser.getControl('Comment') >>> comment_field <Control name='form.field.comment' type='textarea'> >>> comment_field.value 'Is great' >>> name_field = browser.getControl('Name') >>> name_field <Control name='form.field.name' type='text'> >>> name_field.value '' We can now edit the content, and so it get modified: >>> title_field.value = 'zeam.form.ztk' >>> comment_field.value = 'Is far cooler than not ztk' >>> name_field.value = 'Arthur de la contee d`or' >>> change_button = browser.getControl('Change') >>> change_button <SubmitControl name='form.action.change' type='submit'> >>> change_button.click() >>> 'Modification saved' in browser.contents True Modifications are saved, we have the new value if we reload the page: >>> browser.open('http://localhost/comment/edit') >>> title_field = browser.getControl('Title') >>> title_field.value 'zeam.form.ztk' >>> comment_field = browser.getControl('Comment') >>> comment_field.value 'Is far cooler than not ztk' >>> name_field = browser.getControl('Name') >>> name_field.value 'Arthur de la contee d`or' We can remove name, it will work as it is not required: >>> name_field.value = '' >>> change_button = browser.getControl('Change') >>> change_button.click() >>> 'Modification saved' in browser.contents True And name is gone: >>> browser.open('http://localhost/comment/edit') >>> title_field = browser.getControl('Title') >>> title_field.value 'zeam.form.ztk' >>> comment_field = browser.getControl('Comment') >>> comment_field.value 'Is far cooler than not ztk' >>> name_field = browser.getControl('Name') >>> name_field.value '' However comment is required: >>> comment_field.value = '' >>> change_button = browser.getControl('Change') >>> change_button.click() >>> 'Modification saved' in browser.contents False >>> 'There were errors' in browser.contents True So no changes happened: >>> browser.open('http://localhost/comment/edit') >>> title_field = browser.getControl('Title') >>> title_field.value 'zeam.form.ztk' >>> comment_field = browser.getControl('Comment') >>> comment_field.value 'Is far cooler than not ztk' >>> name_field = browser.getControl('Name') >>> name_field.value '' """
import PIL.Image import math class MapHelper(object): @staticmethod def new_image(width, height, alpha=False): """ Generates a new image using PIL.Image module returns PIL.IMAGE OBJECT """ if alpha is True: return PIL.Image.new('RGBA', (width, height), (0, 0, 0, 0)) else: return PIL.Image.new('RGBA', (width, height)) @staticmethod def fast_round(value, precision): """ Function to round values instead of using python's return INT """ return int(value * 10 ** precision) / 10. ** precision @staticmethod def pixels_to_degrees(pixels, zoom): """ Generates pixels to be expected at zoom levels returns INT """ return pixels * 2 ** (21-zoom) @staticmethod def pixels_to_meters(latitude, zoom): """ Function generates how many pixels per meter it should be from the projecction returns FLOAT """ # https://groups.google.com/forum/#!topic/google-maps-js-api-v3/hDRO4oHVSeM return 2 ** zoom / (156543.03392 * math.cos(math.radians(latitude)))
class Employee: num_of_emps=0 raise_amt=1.04 def __init__(self,first,last,pay): self.first=first self.last=last self.email=first+'.'+last+'@gmail.com' self.pay=pay Employee.num_of_emps += 1 def apply_raise(self): self.pay=self.pay*self.raise_amt return self.pay @classmethod def set_raise_amt(cls,amount): cls.raise_amt=amount @classmethod def from_string(cls, emp_str): first,last,pay = emp_str.split('-') return cls(first,last,pay) @staticmethod def is_workday(day): if day.weekday()==5 or day.weekday()==6: print('Holiday') else: print('workday') emp_1=Employee('Corey','Schafer',50000) emp_2=Employee('Tim','Gordon',60000) print(emp_1.email) print(emp_2.email) print(emp_1.apply_raise()) print(Employee.num_of_emps) emp_str='John-Doe-70000' emp_3=Employee.from_string(emp_str) Employee.set_raise_amt(1.05) print(Employee.raise_amt) print(emp_3.email) print(Employee.num_of_emps) import datetime mydate=datetime.date(2021,2,22) Employee.is_workday(mydate)
paisA = 80000 paisB = 200000 count = 0 while paisA < paisB: A = paisA * 0.03 B = paisB * 0.015 paisA = paisA + A paisB = paisB + B count = count + 1 print(f'O país A ultrapassa o país B em {count} anos')
# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from webservice.redirect import RedirectHandler from webservice.redirect import RemoteCollectionMatcher import tornado class RedirectAppBuilder: def __init__(self, remote_collection_matcher: RemoteCollectionMatcher): redirected_collections = remote_collection_matcher.get_remote_collections() self.redirect_handler = (r'/(.*)', RedirectHandler, {'redirected_collections': redirected_collections}) def build(self, host=None, debug=False): return tornado.web.Application( [self.redirect_handler], default_host=host, debug=debug )
import requests IPINFO_URL = 'http://ipinfo.io/{ip}/json' def get_ip_country(ip_address): """Receives ip address string, use IPINFO_URL to get geo data, parse the json response returning the country code of the IP""" return requests.get(IPINFO_URL.format(ip = ip_address)).json()['country']
# Copyright 2021 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import annotations import os from pants.backend.docker.target_types import DockerImageInstructionsField, DockerImageSourceField from pants.engine.fs import CreateDigest, FileContent, Snapshot from pants.engine.rules import Get, collect_rules, rule from pants.engine.target import GeneratedSources, GenerateSourcesRequest, InvalidFieldException from pants.engine.unions import UnionRule class GenerateDockerfileRequest(GenerateSourcesRequest): # This will always run codegen when hydrating `docker_image`s, performing source validations but # does not generate anything if there are no `instructions` defined on the target. input = DockerImageSourceField output = DockerImageSourceField @rule async def hydrate_dockerfile(request: GenerateDockerfileRequest) -> GeneratedSources: target = request.protocol_target address = target.address instructions = target[DockerImageInstructionsField].value if instructions and request.protocol_sources.files: raise InvalidFieldException( f"The `{target.alias}` {address} provides both a Dockerfile with the `source` field, " "and Dockerfile contents with the `instructions` field, which is not supported.\n\n" "To fix, please either set `source=None` or `instructions=None`." ) if not (instructions or request.protocol_sources.files): raise InvalidFieldException( f"The `{target.alias}` {address} does not specify any Dockerfile.\n\n" "Provide either the filename to a Dockerfile in your workspace as the `source` field " "value, or the Dockerfile content to the `instructions` field." ) def dockerfile_path(): name_parts = ["Dockerfile", address.target_name, address.generated_name] return os.path.join(address.spec_path, ".".join(filter(bool, name_parts))) output = ( await Get( Snapshot, CreateDigest( (FileContent(dockerfile_path(), "\n".join([*instructions, ""]).encode()),) ), ) if instructions else request.protocol_sources ) return GeneratedSources(output) def rules(): return ( *collect_rules(), UnionRule(GenerateSourcesRequest, GenerateDockerfileRequest), )
import sys import os f = open("C:/Users/user/Documents/python/atcoder/ABC118/import.txt","r") sys.stdin = f # -*- coding: utf-8 -*- n = int(input()) s = list(input()) x = 0 max_x = 0 for i in range(len(s)): if s[i] == "I": x += 1 elif s[i] == "D": x -= 1 max_x = max(max_x,x) print(max_x)
from script.base_api.service_descartes.lessons import * from script.base_api.service_descartes.examine import *
from django.db import models class Var(models.Model): """Persistent app variables.""" name = models.CharField(max_length=255, primary_key=True) value = models.CharField(max_length=255)
from django.shortcuts import render from django.utils import timezone from .models import Post def base(request): return render(request, 'blog/front.html', {}) def blog_list(request): posts = Post.objects.get(title="self_Improvement") return render(request, 'blog/blog_list.html', {'posts': posts}) def blog_list1(request): posts = Post.objects.get(title="way_To_Computer_Science") return render(request, 'blog/blog_list1.html', {'posts': posts}) def about(request): return render(request, 'blog/about.html', {})
# -*- coding: utf-8 -*- # Generated by Django 1.10 on 2016-08-29 11:50 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('mastermind', '0001_initial'), ] operations = [ migrations.AddField( model_name='game', name='mode', field=models.CharField(choices=[('initial', 'Ny'), ('open', 'Åben'), ('closed', 'Lukket')], default='initial', max_length=20), ), ]
__author__ = "Narwhale" import string s = string.ascii_lowercase def alphabet_position(text): string_l = [] t = text.split() for j in t: t = "".join(t) for i in t: if i.lower() in s: result = s.index(i.lower()) + 1 string_l.append(str(result)) date_str = " ".join(string_l) return date_str print(alphabet_position("The sunset sets at twelve o' clock."))
def rotateArray(array, n, d): for i in range(0, d): x = array[0] for j in range(0, n-1): array[j] = array[j+1] array[n-1]= x def printarray(array): for i in range(0, n): print(array[i]) array= [12,10,5,6,52,36] n= len(array) rotateArray(array, n, 2) printarray(array)
''' fib series: 0 1 1 2 3 5 8 13 21 34 55 89 Ex: 30 21+8+1 Ex: 10 8+2 algo approach: Ex:30 21 30-21=9 8 9-8=1 1 ''' ''' def nearfib(n): #30,9 a,b=0,1 while n>=b: if n==b: return b a,b=b,a+b print(a) #21,8,1 return nearfib(n-a) #9,1 n=int(input()) #10 print(nearfib(n)) '''
# SPDX-License-Identifier: MIT # Copyright (c) 2021 scmanjarrez. All rights reserved. # This work is licensed under the terms of the MIT license. from contextlib import closing import sqlite3 as sql import util as ut DB = 'paimon.db' def setup_db(): with closing(sql.connect(DB)) as db: with closing(db.cursor()) as cur: cur.executescript( """ CREATE TABLE IF NOT EXISTS users ( uid INTEGER PRIMARY KEY, resin INTEGER DEFAULT 0, warn INTEGER DEFAULT 150, timezone TEXT DEFAULT 'null:null', strikes INTEGER DEFAULT 0 ); CREATE TABLE IF NOT EXISTS banned ( uid INTEGER PRIMARY KEY ); """ ) def get_strikes(uid): with closing(sql.connect(DB)) as db: with closing(db.cursor()) as cur: cur.execute('SELECT strikes FROM users ' 'WHERE uid = ?', [uid]) return cur.fetchone()[0] # (x,) def inc_strikes(uid): with closing(sql.connect(DB)) as db: with closing(db.cursor()) as cur: cur.execute('UPDATE users SET strikes = strikes + 1 ' 'WHERE uid = ?', [uid]) db.commit() def dec_strikes(uid): with closing(sql.connect(DB)) as db: with closing(db.cursor()) as cur: cur.execute('UPDATE users SET strikes = strikes - 1 ' 'WHERE strikes > 0 AND uid = ?', [uid]) db.commit() def banned(uid): with closing(sql.connect(DB)) as db: with closing(db.cursor()) as cur: cur.execute( 'SELECT EXISTS (' 'SELECT 1 FROM banned WHERE uid = ?' ')', [uid]) return cur.fetchone()[0] def ban_user(uid): with closing(sql.connect(DB)) as db: with closing(db.cursor()) as cur: cur.execute('INSERT INTO banned VALUES (?)', [uid]) db.commit() ut.blocked(uid) def cached(uid): with closing(sql.connect(DB)) as db: with closing(db.cursor()) as cur: cur.execute( 'SELECT EXISTS (' 'SELECT 1 FROM users WHERE uid = ?' ')', [uid]) return cur.fetchone()[0] def add_user(uid): with closing(sql.connect(DB)) as db: with closing(db.cursor()) as cur: cur.execute('INSERT INTO users (uid) VALUES (?)', [uid]) db.commit() def del_user(uid): with closing(sql.connect(DB)) as db: with closing(db.cursor()) as cur: cur.execute('DELETE FROM users ' 'WHERE uid = ?', [uid]) db.commit() def all_users(): with closing(sql.connect(DB)) as db: with closing(db.cursor()) as cur: cur.execute('SELECT uid FROM users') return cur.fetchall() def all_users_notify(): with closing(sql.connect(DB)) as db: with closing(db.cursor()) as cur: cur.execute('SELECT uid FROM users WHERE notifications = 1') return cur.fetchall() def get_resin(uid): with closing(sql.connect(DB)) as db: with closing(db.cursor()) as cur: cur.execute('SELECT resin FROM users ' 'WHERE uid = ?', [uid]) return cur.fetchone()[0] def set_resin(uid, resin): with closing(sql.connect(DB)) as db: with closing(db.cursor()) as cur: cur.execute('UPDATE users SET resin = ? ' 'WHERE uid = ?', [resin, uid]) db.commit() def inc_resin(uid, resin): with closing(sql.connect(DB)) as db: with closing(db.cursor()) as cur: cur.execute( f'UPDATE users SET resin = resin + ? ' f'WHERE resin < {ut.RESIN_MAX} ' f'AND uid = ?', [resin, uid]) db.commit() def dec_resin(uid, resin): with closing(sql.connect(DB)) as db: with closing(db.cursor()) as cur: cur.execute( 'UPDATE users SET resin = resin - ? ' 'WHERE resin > 0 ' 'AND uid = ?', [resin, uid]) db.commit() def max_resin(uid, resin): cur_resin = get_resin(uid) hard_cap = (ut.RESIN_MAX - cur_resin) * ut.RESIN_REGEN soft_cap = (resin - cur_resin) * ut.RESIN_REGEN soft_cap = 0 if soft_cap < 0 else soft_cap return (hard_cap // 60, hard_cap % 60), (soft_cap // 60, soft_cap % 60) def unset_warn(uid): with closing(sql.connect(DB)) as db: with closing(db.cursor()) as cur: cur.execute('UPDATE users SET warn = -1 ' 'WHERE uid = ?', [uid]) db.commit() def get_warn(uid): with closing(sql.connect(DB)) as db: with closing(db.cursor()) as cur: cur.execute('SELECT warn FROM users ' 'WHERE uid = ?', [uid]) return cur.fetchone()[0] # (x,) def set_warn(uid, threshold): with closing(sql.connect(DB)) as db: with closing(db.cursor()) as cur: cur.execute('UPDATE users SET warn = ? ' 'WHERE uid = ?', [threshold, uid]) db.commit() def unset_timezone(uid): with closing(sql.connect(DB)) as db: with closing(db.cursor()) as cur: cur.execute('UPDATE users SET timezone = "null:null" ' 'WHERE uid = ?', [uid]) db.commit() def get_timezone(uid): with closing(sql.connect(DB)) as db: with closing(db.cursor()) as cur: cur.execute('SELECT timezone FROM users ' 'WHERE uid = ?', [uid]) return cur.fetchone()[0] # (x,) def set_timezone(uid, hour, minutes): with closing(sql.connect(DB)) as db: with closing(db.cursor()) as cur: cur.execute('UPDATE users SET timezone = ? ' 'WHERE uid = ?', [f"{hour:02}:{minutes:02}", uid]) db.commit()
# -*- coding: utf-8 -*- """ Default model implementations. Custom database or OAuth backends need to implement these models with fields and and methods to be compatible with the views in :attr:`provider.views`. """ from __future__ import unicode_literals import os from django.conf import settings from django.core.validators import RegexValidator from django.db import models from django.utils import timezone from django.utils.encoding import python_2_unicode_compatible from django.utils.translation import ugettext_lazy as _ from .. import constants, scope from ..validators import validate_uris from ..utils import ( now, short_token, long_token, get_code_expiry, get_token_expiry, serialize_instance, deserialize_instance) from .managers import AccessTokenManager AUTH_USER_MODEL = getattr(settings, 'AUTH_USER_MODEL', 'auth.User') class ClientStatus: TEST = 1 LIVE = 2 DISABLED = 3 CHOICES = ( (TEST, 'TEST'), (LIVE, 'LIVE'), (DISABLED, 'DISABLED'), ) class ScopeField(models.IntegerField): initial = {} def __init__(self, *args, **kwargs): kwargs['choices'] = scope.SCOPE_CHOICES super(ScopeField, self).__init__(*args, **kwargs) def formfield(self, **kwargs): from .forms import ScopeChoiceField defaults = {'choices_form_class': ScopeChoiceField} defaults.update(kwargs) return super(ScopeField, self).formfield(**defaults) def validate(self, value, model_instance): # all the bits in value must be present in list of all scopes return value == (value & scope.to_int(*scope.SCOPE_NAME_DICT.values())) def __str__(self): return 'scope' def client_logo_image_path(instance, filename): filename_split = os.path.splitext(filename) ext = filename_split[1] if not ext: ext = '.png' return '/'.join([constants.LOGO_FOLDER, instance.client_id, 'icon' + ext]) @python_2_unicode_compatible class Client(models.Model): """ Default client implementation. Expected fields: * :attr:`user` * :attr:`name` * :attr:`url` * :attr:`redirect_url` * :attr:`client_id` * :attr:`client_secret` * :attr:`client_type` Clients are outlined in the :rfc:`2` and its subsections. """ user = models.ForeignKey( AUTH_USER_MODEL, related_name='oauth2_client', blank=True, null=True) name = models.CharField( max_length=255, blank=True) url = models.URLField( help_text=_("Your application's URL.")) redirect_uri = models.TextField( max_length=1028, help_text=_("Your application's callback URL"), validators=[validate_uris]) webhook_uri = models.CharField( max_length=1028, help_text=_("Your application's webhook URL"), null=True, blank=True, validators=[RegexValidator(regex=r'^\S*//\S*$')]) logo = models.ImageField( upload_to=client_logo_image_path, null=True, blank=True, storage=constants.IMAGE_STORAGE, help_text=_("40x40 pixel logo of your application")) status = models.PositiveSmallIntegerField( max_length=2, choices=ClientStatus.CHOICES, default=1) last_updated_date = models.DateTimeField( auto_now=True) created_date = models.DateTimeField( auto_now_add=True) client_id = models.CharField( max_length=255, default=short_token) client_secret = models.CharField( max_length=255, default=long_token) client_type = models.IntegerField( choices=constants.CLIENT_TYPES, default=constants.CONFIDENTIAL) scope = ScopeField(default=0) class Meta: app_label = 'oauth2' def __str__(self): return self.redirect_uri def get_default_token_expiry(self): public = (self.client_type == 1) return get_token_expiry(public) def serialize(self): return dict(user=serialize_instance(self.user) if self.user else None, name=self.name, url=self.url, redirect_uri=self.redirect_uri, client_id=self.client_id, client_secret=self.client_secret, client_type=self.client_type) @classmethod def deserialize(cls, data): if not data: return None kwargs = {} # extract values that we care about for field in cls._meta.fields: name = field.name val = data.get(field.name, None) # handle relations if val and field.rel: val = deserialize_instance(field.rel.to, val) kwargs[name] = val return cls(**kwargs) @python_2_unicode_compatible class Grant(models.Model): """ Default grant implementation. A grant is a code that can be swapped for an access token. Grants have a limited lifetime as defined by :attr:`provider.constants.EXPIRE_CODE_DELTA` and outlined in :rfc:`4.1.2` Expected fields: * :attr:`user` * :attr:`client` - :class:`Client` * :attr:`code` * :attr:`expires` - :attr:`datetime.datetime` * :attr:`redirect_uri` * :attr:`scope` """ user = models.ForeignKey( AUTH_USER_MODEL, blank=True, null=True) client = models.ForeignKey( Client) code = models.CharField( max_length=255, default=long_token) expires = models.DateTimeField( default=get_code_expiry) redirect_uri = models.CharField( max_length=255, blank=True) scope = ScopeField(default=0) created = models.DateTimeField( auto_now_add=True) modified = models.DateTimeField( auto_now=True) class Meta: app_label = 'oauth2' def __str__(self): return self.code @python_2_unicode_compatible class AccessToken(models.Model): """ Default access token implementation. An access token is a time limited token to access a user's resources. Access tokens are outlined :rfc:`5`. Expected fields: * :attr:`user` * :attr:`token` * :attr:`client` - :class:`Client` * :attr:`expires` - :attr:`datetime.datetime` * :attr:`scope` Expected methods: * :meth:`get_expire_delta` - returns an integer representing seconds to expiry """ user = models.ForeignKey( AUTH_USER_MODEL, null=True, blank=True) token = models.CharField( max_length=255, default=long_token, db_index=True) client = models.ForeignKey( Client) expires = models.DateTimeField() scope = ScopeField( default=0) type = models.IntegerField( default=0) is_deleted = models.BooleanField( default=False) created = models.DateTimeField( auto_now_add=True) modified = models.DateTimeField( auto_now=True) objects = AccessTokenManager() class Meta: app_label = 'oauth2' def __str__(self): return self.token def save(self, *args, **kwargs): if not self.expires: self.expires = self.client.get_default_token_expiry() return super(AccessToken, self).save(*args, **kwargs) def get_expire_delta(self, reference=None): """ Return the number of seconds until this token expires. """ if reference is None: reference = now() expiration = self.expires if timezone: if timezone.is_aware(reference) and timezone.is_naive(expiration): # MySQL doesn't support timezone for datetime fields # so we assume that the date was stored in the UTC timezone expiration = timezone.make_aware(expiration, timezone.utc) elif timezone.is_naive(reference) and timezone.is_aware(expiration): reference = timezone.make_aware(reference, timezone.utc) timedelta = expiration - reference return timedelta.days*86400 + timedelta.seconds @python_2_unicode_compatible class RefreshToken(models.Model): """ Default refresh token implementation. A refresh token can be swapped for a new access token when said token expires. Expected fields: * :attr:`user` * :attr:`token` * :attr:`access_token` - :class:`AccessToken` * :attr:`client` - :class:`Client` * :attr:`expired` - ``boolean`` """ user = models.ForeignKey( AUTH_USER_MODEL, blank=True, null=True) token = models.CharField( max_length=255, default=long_token) access_token = models.OneToOneField( AccessToken, related_name='refresh_token') client = models.ForeignKey( Client) expired = models.BooleanField( default=False) created = models.DateTimeField( auto_now_add=True) modified = models.DateTimeField( auto_now=True) class Meta: app_label = 'oauth2' def __str__(self): return self.token
#!/usr/bin/python3 def fizzbuzz(): for numbers in range(1, 101): if (numbers % 15 == 0): print("FizzBuzz ", end="") elif (numbers % 3 == 0): print("Fizz ", end="") elif (numbers % 5 == 0): print("Buzz ", end="") else: print("{:d} ".format(numbers), end="")
from bird_manager import BirdManager import numpy as np birdManager = BirdManager(); filenames, captions = birdManager.get_captions('/data1/BIRD/captions/train') traindata = np.append(filenames[:, None], captions, axis = 1) print filenames.shape print captions.shape
""" I'm sorry. """ def walk_stack_for(var_name): import inspect frame = None try: for f in inspect.stack()[1:]: frame = f[0] code = frame.f_code if code.co_varnames[:1] == (var_name, ): return frame.f_locals[var_name] elif code.co_varnames[:2] == ("self", var_name,): return frame.f_locals[var_name] elif code.co_varnames and code.co_varnames[0] == var_name: return frame.f_locals[var_name] finally: del frame def current_user(): """ Returns the current authenticated user, or None """ curr_request = current_request() if curr_request: return curr_request.user def current_request(): """ Returns the current request, or None """ return walk_stack_for('request')
''' Find duplicate glyphs in selected font ''' from collections import Counter def find(font_glyphs): '''Check if there are duplicate glyphs''' print '***Find Duplicate glyphs in selected font***' glyphs_count = Counter(font_glyphs) if len(set(glyphs_count.values())) >= 2: for glyph in glyphs_count: if glyphs_count[glyph] >= 2: print 'ERROR: %s duplicated\n' % glyph else: print 'PASS: No duplicate glyphs\n' if __name__ == '__main__': font = Glyphs.font find([g.name for g in font.glyphs])
__author__ = 'iceke' class Util(object): def a(self): pass ''' transform all kinds of time to minute ''' @staticmethod def format_time(time_str): final_time = 0.0 time_array = time_str.split(' ') unit = time_array[1] value = float(time_array[0]) if unit == 's': final_time = round(value/60.0, 2) elif unit == 'min': final_time = round(value+0.0, 2) elif unit == 'h': final_time = round(value*60.0, 2) else: raise ValueError('spark total time\'s unit is illegal') return final_time ''' transform all kinds of time to second ''' @staticmethod def format_second(time_str): final_time = 0.0 time_array = time_str.split(' ') unit = time_array[1] if time_array[0].find(".") is False: print time_array[0] value = int(time_array[0], 10) value = value * 1.0 else: value = float(time_array[0]) if unit == 's': final_time = value elif unit == 'ms': final_time = round(value/1000.0, 2) elif unit == 'min': final_time = round(value*60.0, 2) elif unit == 'h': final_time = round(value*3600.0, 2) else: raise ValueError('spark total time\'s unit is illegal') return final_time @staticmethod def format_tasks_percent(percent_str): final_percent = 0.0 percent_array = percent_str.strip().split('/') print percent_array[0],percent_array[1] final_percent = round((float(percent_array[0])/float(percent_array[1]))*100, 1) return final_percent
#!/usr/bin/python # Copyright 2008-2012 Gentoo Foundation # Distributed under the terms of the GNU General Public License v2 from __future__ import print_function import sys from os import path as osp pym_path = osp.join(osp.dirname(osp.dirname(osp.realpath(__file__))), "pym") sys.path.insert(0, pym_path) import portage from portage import os from portage.output import * from optparse import OptionGroup, OptionParser __program__ = "glsa-check" __author__ = "Marius Mauch <genone@gentoo.org>" __version__ = "1.0" def cb_version(*args, **kwargs): """Callback for --version""" sys.stderr.write("\n"+ __program__ + ", version " + __version__ + "\n") sys.stderr.write("Author: " + __author__ + "\n") sys.stderr.write("This program is licensed under the GPL, version 2\n\n") sys.exit(0) # option parsing parser = OptionParser(usage="%prog <option> [glsa-list]", version="%prog "+ __version__) parser.epilog = "glsa-list can contain an arbitrary number of GLSA ids," \ " filenames containing GLSAs or the special identifiers" \ " 'all', 'new' and 'affected'" modes = OptionGroup(parser, "Modes") modes.add_option("-l", "--list", action="store_const", const="list", dest="mode", help="List all unapplied GLSA") modes.add_option("-d", "--dump", action="store_const", const="dump", dest="mode", help="Show all information about the given GLSA") modes.add_option("", "--print", action="store_const", const="dump", dest="mode", help="Alias for --dump") modes.add_option("-t", "--test", action="store_const", const="test", dest="mode", help="Test if this system is affected by the given GLSA") modes.add_option("-p", "--pretend", action="store_const", const="pretend", dest="mode", help="Show the necessary commands to apply this GLSA") modes.add_option("-f", "--fix", action="store_const", const="fix", dest="mode", help="Try to auto-apply this GLSA (experimental)") modes.add_option("-i", "--inject", action="store_const", dest="mode", help="Inject the given GLSA into the checkfile") modes.add_option("-m", "--mail", action="store_const", const="mail", dest="mode", help="Send a mail with the given GLSAs to the administrator") parser.add_option_group(modes) parser.remove_option("--version") parser.add_option("-V", "--version", action="callback", callback=cb_version, help="Some information about this tool") parser.add_option("-v", "--verbose", action="store_true", dest="verbose", help="Print more information") parser.add_option("-n", "--nocolor", action="callback", callback=lambda *args, **kwargs: nocolor(), help="Disable colors") parser.add_option("-e", "--emergelike", action="store_false", dest="least_change", help="Do not use a least-change algorithm") parser.add_option("-c", "--cve", action="store_true", dest="list_cve", help="Show CAN ids in listing mode") options, params = parser.parse_args() mode = options.mode least_change = options.least_change list_cve = options.list_cve verbose = options.verbose # Sanity checking if mode is None: sys.stderr.write("No mode given: what should I do?\n") parser.print_help() sys.exit(1) elif mode != "list" and not params: sys.stderr.write("\nno GLSA given, so we'll do nothing for now. \n") sys.stderr.write("If you want to run on all GLSA please tell me so \n") sys.stderr.write("(specify \"all\" as parameter)\n\n") parser.print_help() sys.exit(1) elif mode in ["fix", "inject"] and os.geteuid() != 0: # we need root privileges for write access sys.stderr.write("\nThis tool needs root access to "+options.mode+" this GLSA\n\n") sys.exit(2) elif mode == "list" and not params: params.append("new") # delay this for speed increase from portage.glsa import * eroot = portage.settings['EROOT'] vardb = portage.db[eroot]["vartree"].dbapi portdb = portage.db[eroot]["porttree"].dbapi # build glsa lists completelist = get_glsa_list(portage.settings) checklist = get_applied_glsas(portage.settings) todolist = [e for e in completelist if e not in checklist] glsalist = [] if "new" in params: glsalist = todolist params.remove("new") if "all" in params: glsalist = completelist params.remove("all") if "affected" in params: # replaced completelist with todolist on request of wschlich for x in todolist: try: myglsa = Glsa(x, portage.settings, vardb, portdb) except (GlsaTypeException, GlsaFormatException) as e: if verbose: sys.stderr.write(("invalid GLSA: %s (error message was: %s)\n" % (x, e))) continue if myglsa.isVulnerable(): glsalist.append(x) params.remove("affected") # remove invalid parameters for p in params[:]: if not (p in completelist or os.path.exists(p)): sys.stderr.write(("(removing %s from parameter list as it isn't a valid GLSA specification)\n" % p)) params.remove(p) glsalist.extend([g for g in params if g not in glsalist]) def summarylist(myglsalist, fd1=sys.stdout, fd2=sys.stderr): fd2.write(white("[A]")+" means this GLSA was already applied,\n") fd2.write(green("[U]")+" means the system is not affected and\n") fd2.write(red("[N]")+" indicates that the system might be affected.\n\n") myglsalist.sort() for myid in myglsalist: try: myglsa = Glsa(myid, portage.settings, vardb, portdb) except (GlsaTypeException, GlsaFormatException) as e: if verbose: fd2.write(("invalid GLSA: %s (error message was: %s)\n" % (myid, e))) continue if myglsa.isApplied(): status = "[A]" color = white elif myglsa.isVulnerable(): status = "[N]" color = red else: status = "[U]" color = green if verbose: access = ("[%-8s] " % myglsa.access) else: access="" fd1.write(color(myglsa.nr) + " " + color(status) + " " + color(access) + myglsa.title + " (") if not verbose: for pkg in list(myglsa.packages)[:3]: fd1.write(" " + pkg + " ") if len(myglsa.packages) > 3: fd1.write("... ") else: for pkg in myglsa.packages: mylist = vardb.match(pkg) if len(mylist) > 0: pkg = color(" ".join(mylist)) fd1.write(" " + pkg + " ") fd1.write(")") if list_cve: fd1.write(" "+(",".join([r[:13] for r in myglsa.references if r[:4] in ["CAN-", "CVE-"]]))) fd1.write("\n") return 0 if mode == "list": sys.exit(summarylist(glsalist)) # dump, fix, inject and fix are nearly the same code, only the glsa method call differs if mode in ["dump", "fix", "inject", "pretend"]: for myid in glsalist: try: myglsa = Glsa(myid, portage.settings, vardb, portdb) except (GlsaTypeException, GlsaFormatException) as e: if verbose: sys.stderr.write(("invalid GLSA: %s (error message was: %s)\n" % (myid, e))) continue if mode == "dump": myglsa.dump() elif mode == "fix": sys.stdout.write("fixing "+myid+"\n") mergelist = myglsa.getMergeList(least_change=least_change) for pkg in mergelist: sys.stdout.write(">>> merging "+pkg+"\n") # using emerge for the actual merging as it contains the dependency # code and we want to be consistent in behaviour. Also this functionality # will be integrated in emerge later, so it shouldn't hurt much. emergecmd = "emerge --oneshot " + portage.settings["EMERGE_OPTS"] + " =" + pkg if verbose: sys.stderr.write(emergecmd+"\n") exitcode = os.system(emergecmd) # system() returns the exitcode in the high byte of a 16bit integer if exitcode >= 1<<8: exitcode >>= 8 if exitcode: sys.exit(exitcode) myglsa.inject() elif mode == "pretend": sys.stdout.write("Checking GLSA "+myid+"\n") mergelist = myglsa.getMergeList(least_change=least_change) if mergelist: sys.stdout.write("The following updates will be performed for this GLSA:\n") for pkg in mergelist: oldver = None for x in vardb.match(portage.cpv_getkey(pkg)): if vardb._pkg_str(x, None).slot == portdb._pkg_str(pkg, None).slot: oldver = x if oldver == None: raise ValueError("could not find old version for package %s" % pkg) oldver = oldver[len(portage.cpv_getkey(oldver))+1:] sys.stdout.write(" " + pkg + " (" + oldver + ")\n") else: sys.stdout.write("Nothing to do for this GLSA\n") elif mode == "inject": sys.stdout.write("injecting " + myid + "\n") myglsa.inject() sys.stdout.write("\n") sys.exit(0) # test is a bit different as Glsa.test() produces no output if mode == "test": outputlist = [] for myid in glsalist: try: myglsa = Glsa(myid, portage.settings, vardb, portdb) except (GlsaTypeException, GlsaFormatException) as e: if verbose: sys.stderr.write(("invalid GLSA: %s (error message was: %s)\n" % (myid, e))) continue if myglsa.isVulnerable(): outputlist.append(str(myglsa.nr)) if len(outputlist) > 0: sys.stderr.write("This system is affected by the following GLSAs:\n") if verbose: summarylist(outputlist) else: sys.stdout.write("\n".join(outputlist)+"\n") else: sys.stderr.write("This system is not affected by any of the listed GLSAs\n") sys.exit(0) # mail mode as requested by solar if mode == "mail": import portage.mail, socket from io import StringIO from email.mime.text import MIMEText # color doesn't make any sense for mail nocolor() if "PORTAGE_ELOG_MAILURI" in portage.settings: myrecipient = portage.settings["PORTAGE_ELOG_MAILURI"].split()[0] else: myrecipient = "root@localhost" if "PORTAGE_ELOG_MAILFROM" in portage.settings: myfrom = portage.settings["PORTAGE_ELOG_MAILFROM"] else: myfrom = "glsa-check" mysubject = "[glsa-check] Summary for %s" % socket.getfqdn() # need a file object for summarylist() myfd = StringIO() myfd.write("GLSA Summary report for host %s\n" % socket.getfqdn()) myfd.write("(Command was: %s)\n\n" % " ".join(sys.argv)) summarylist(glsalist, fd1=myfd, fd2=myfd) summary = str(myfd.getvalue()) myfd.close() myattachments = [] for myid in glsalist: try: myglsa = Glsa(myid, portage.settings, vardb, portdb) except (GlsaTypeException, GlsaFormatException) as e: if verbose: sys.stderr.write(("invalid GLSA: %s (error message was: %s)\n" % (myid, e))) continue myfd = StringIO() myglsa.dump(outstream=myfd) myattachments.append(MIMEText(str(myfd.getvalue()), _charset="utf8")) myfd.close() mymessage = portage.mail.create_message(myfrom, myrecipient, mysubject, summary, myattachments) portage.mail.send_mail(portage.settings, mymessage) sys.exit(0) # something wrong here, all valid paths are covered with sys.exit() sys.stderr.write("nothing more to do\n") sys.exit(2)
import DigitalMicrograph as DM print("Initializing DigitalMicrograph environmnet...") # the name of the tag is used, this is deleted so it shouldn't matter anyway file_tag_name = "__python__file__" # the dm-script to execute, double curly brackets are used because of the # python format function script = ("\n".join(( "DocumentWindow win = GetDocumentWindow(0);", "if(win.WindowIsvalid()){{", "if(win.WindowIsLinkedToFile()){{", "TagGroup tg = GetPersistentTagGroup();", "if(!tg.TagGroupDoesTagExist(\"{tag_name}\")){{", "number index = tg.TagGroupCreateNewLabeledTag(\"{tag_name}\");", "tg.TagGroupSetIndexedTagAsString(index, win.WindowGetCurrentFile());", "}}", "else{{", "tg.TagGroupSetTagAsString(\"{tag_name}\", win.WindowGetCurrentFile());", "}}", "}}", "}}" ))).format(tag_name=file_tag_name) # execute the dm script DM.ExecuteScriptString(script) # read from the global tags to get the value to the python script global_tags = DM.GetPersistentTagGroup() if global_tags.IsValid(): s, __file__ = global_tags.GetTagAsString(file_tag_name); if s: # delete the created tag again DM.ExecuteScriptString( "GetPersistentTagGroup()." + "TagGroupDeleteTagWithLabel(\"{}\");".format(file_tag_name) ) else: del __file__ try: __file__ except NameError: # set a default if the __file__ could not be received __file__ = "" if __file__ != "": import os import sys base_path = str(os.path.dirname(os.path.dirname(__file__))) if base_path not in sys.path: sys.path.insert(0, base_path) import pprint import traceback import matplotlib.pyplot as plt try: import pylo view = pylo.CLIView() configuration = pylo.AbstractConfiguration() controller = pylo.Controller(view, configuration) camera = pylo.loader.getDevice("Digital Micrograph Camera", controller) camera.show_images = True img = camera.recordImage() plt.imshow(img.image_data) pprint.pprint(img.tags) except Exception as e: # dm-script error messages are very bad, use this for getting the error text and the # correct traceback print("Exception: ", e) traceback.print_exc()
# Submitter: loganw1(Wang, Logan) import prompt import goody # Use these global variables to index the list associated with each name in the dictionary. # e.g., if men is a dictionary, men['m1'][match] is the woman who matches man 'm1', and # men['m1'][prefs] is the list of preference for man 'm1'. # It would seems that this list might be better represented as a named tuple, but the # preference list it contains is mutated, which is not allowed in a named tuple. match = 0 # Index 0 of list associate with name is match (str) prefs = 1 # Index 1 of list associate with name is preferences (list of str) def read_match_preferences(open_file : open) -> {str:[str,[str]]}: d = dict() for text in open_file: relationships = text.strip().split(sep=';') l=[] for i in range(1,len(relationships)): l.append(relationships[i]) d[relationships[0]] = [None,l] return d def dict_as_str(d : {str:[str,[str]]}, key : callable=None, reverse : bool=False) -> str: l = dict(d) s = '' l = sorted(l,key =key,reverse=reverse) for person in l: s += " " + person + ' -> ' + str(d[person]) + '\n' return s def who_prefer(order : [str], p1 : str, p2 : str) -> str: for person in order: if p1 == person or p2 == person: return person return None #TODO handle Null Reference def extract_matches(men : {str:[str,[str]]}) -> {(str,str)}: return {(man,woman[0])for man,woman in men.items()} def make_match(men : {str:[str,[str]]}, women : {str:[str,[str]]}, trace : bool = False) -> {(str,str)}: temp_men = {} for key,relationship in men.items(): temp_men[key] = [str(relationship[0]),[str(potential_match) for potential_match in relationship[1]]] temp_women = {} for key, relationship in women.items(): temp_women[key] = [str(relationship[0]), [str(potential_match) for potential_match in relationship[1]]] unmatched = {man for man in men.keys()} if(trace): print('Women Preferences (unchanging)') print(dict_as_str(temp_women)) print() print('Men Preferences (current)') print(dict_as_str(temp_men)) print() print('unmatched men = ' + str(unmatched)) while len(unmatched) > 0: prospect = unmatched.pop() woman_asked = temp_men[prospect][1].pop(0) if(trace): print(prospect + ' proposes to ' + woman_asked +', ', end='') if temp_women[woman_asked][0] == 'None': temp_men[prospect][0] = woman_asked temp_women[woman_asked][0] = prospect if(trace): print('who is currently unmatched and accepts the proposal') else: if prospect == who_prefer(temp_women[woman_asked][1],prospect,temp_women[woman_asked][0]): unmatched.add(temp_women[woman_asked][0]) temp_men[prospect][0] = woman_asked temp_women[woman_asked][0] = prospect if(trace): print('who is currently matched and accepts the proposal (likes new match better)') else: unmatched.add(prospect) if (trace): print('who is currently matched and rejects the proposal (likes current match better)') if(trace): print('Men Preferences (current)') print(dict_as_str(temp_men)) print() print('unmatched men = ' + str(unmatched)) return extract_matches(temp_men) if __name__ == '__main__': # Write script here men_file = goody.safe_open('Furnish any file name containing the preferences of the men:', 'r', 'Illegal file name', default='men0.txt') women_file = goody.safe_open('Furnish any file name containing the preferences of the women:', 'r', 'Illegal file name', default='women0.txt') men_dict = read_match_preferences(men_file) women_dict = read_match_preferences(women_file) print() print('Men Preferences') print(dict_as_str(men_dict)) print('Women Preferences') print(dict_as_str(women_dict)) user = prompt.for_bool("Furnish Trace of Execution", default=True) print() print('matches = ' + str(make_match(men_dict,women_dict,user))) # For running batch self-tests print() import driver driver.default_file_name = "bsc2.txt" # driver.default_show_traceback = True # driver.default_show_exception = True # driver.default_show_exception_message = True driver.driver()
import sys FIB = [0,1,1] def fib(n): if n < len(FIB): return FIB[n] else: l = len(FIB) for i in xrange(l,n+1): FIB.append(FIB[-1]+FIB[-2]) return FIB[-1] with open(sys.argv[1],'r') as f: for line in f: print fib(int(line.strip()))
import math from decimal import * def golden(): getcontext().prec = 100 gr = Decimal(1+Decimal(math.sqrt(Decimal(5))))/2 return gr print(golden())
import os import numpy as np import time import argparse # import logging from mpi4py import MPI from math import ceil from random import Random import networkx as nx import torch import torch.distributed as dist import torch.utils.data.distributed import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.multiprocessing import Process from torch.autograd import Variable import torchvision from torchvision import datasets, transforms import torch.backends.cudnn as cudnn import torchvision.models as IMG_models from models import * from models import LogisticRegression # logging.basicConfig(level=logging.INFO) class Partition(object): """ Dataset-like object, but only access a subset of it. """ def __init__(self, data, index): self.data = data self.index = index def __len__(self): return len(self.index) def __getitem__(self, index): data_idx = self.index[index] return self.data[data_idx] class DataPartitioner(object): """ Partitions a dataset into different chuncks. """ def __init__(self, data, sizes=[0.7, 0.2, 0.1], seed=1234, isNonIID=False, alpha=0, dataset=None): self.data = data self.dataset = dataset if isNonIID: self.partitions, self.ratio = self.__getDirichletData__(data, sizes, seed, alpha) else: self.partitions = [] self.ratio = sizes rng = Random() rng.seed(seed) data_len = len(data) indexes = [x for x in range(0, data_len)] rng.shuffle(indexes) for frac in sizes: part_len = int(frac * data_len) self.partitions.append(indexes[0:part_len]) indexes = indexes[part_len:] def use(self, partition): return Partition(self.data, self.partitions[partition]) def __getNonIIDdata__(self, data, sizes, seed, alpha): labelList = data.train_labels rng = Random() rng.seed(seed) a = [(label, idx) for idx, label in enumerate(labelList)] # Same Part labelIdxDict = dict() for label, idx in a: labelIdxDict.setdefault(label,[]) labelIdxDict[label].append(idx) labelNum = len(labelIdxDict) labelNameList = [key for key in labelIdxDict] labelIdxPointer = [0] * labelNum # sizes = number of nodes partitions = [list() for i in range(len(sizes))] eachPartitionLen= int(len(labelList)/len(sizes)) # majorLabelNumPerPartition = ceil(labelNum/len(partitions)) majorLabelNumPerPartition = 2 basicLabelRatio = alpha interval = 1 labelPointer = 0 #basic part for partPointer in range(len(partitions)): requiredLabelList = list() for _ in range(majorLabelNumPerPartition): requiredLabelList.append(labelPointer) labelPointer += interval if labelPointer > labelNum - 1: labelPointer = interval interval += 1 for labelIdx in requiredLabelList: start = labelIdxPointer[labelIdx] idxIncrement = int(basicLabelRatio*len(labelIdxDict[labelNameList[labelIdx]])) partitions[partPointer].extend(labelIdxDict[labelNameList[labelIdx]][start:start+ idxIncrement]) labelIdxPointer[labelIdx] += idxIncrement #random part remainLabels = list() for labelIdx in range(labelNum): remainLabels.extend(labelIdxDict[labelNameList[labelIdx]][labelIdxPointer[labelIdx]:]) rng.shuffle(remainLabels) for partPointer in range(len(partitions)): idxIncrement = eachPartitionLen - len(partitions[partPointer]) partitions[partPointer].extend(remainLabels[:idxIncrement]) rng.shuffle(partitions[partPointer]) remainLabels = remainLabels[idxIncrement:] return partitions def __getDirichletData__(self, data, psizes, seed, alpha): n_nets = len(psizes) K = 10 labelList = np.array(data.train_labels) min_size = 0 N = len(labelList) np.random.seed(2020) net_dataidx_map = {} while min_size < K: idx_batch = [[] for _ in range(n_nets)] # for each class in the dataset for k in range(K): idx_k = np.where(labelList == k)[0] np.random.shuffle(idx_k) proportions = np.random.dirichlet(np.repeat(alpha, n_nets)) ## Balance proportions = np.array([p*(len(idx_j)<N/n_nets) for p,idx_j in zip(proportions,idx_batch)]) proportions = proportions/proportions.sum() proportions = (np.cumsum(proportions)*len(idx_k)).astype(int)[:-1] idx_batch = [idx_j + idx.tolist() for idx_j,idx in zip(idx_batch,np.split(idx_k,proportions))] min_size = min([len(idx_j) for idx_j in idx_batch]) for j in range(n_nets): np.random.shuffle(idx_batch[j]) net_dataidx_map[j] = idx_batch[j] net_cls_counts = {} for net_i, dataidx in net_dataidx_map.items(): unq, unq_cnt = np.unique(labelList[dataidx], return_counts=True) tmp = {unq[i]: unq_cnt[i] for i in range(len(unq))} net_cls_counts[net_i] = tmp print('Data statistics: %s' % str(net_cls_counts)) local_sizes = [] for i in range(n_nets): local_sizes.append(len(net_dataidx_map[i])) local_sizes = np.array(local_sizes) weights = local_sizes/np.sum(local_sizes) print(weights) return idx_batch, weights def partition_dataset(rank, size, args): print('==> load train data') transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) trainset = torchvision.datasets.CIFAR10(root=args.datapath, train=True, download=True, transform=transform_train) partition_sizes = [1.0 / size for _ in range(size)] partition = DataPartitioner(trainset, partition_sizes, isNonIID=args.NIID, alpha=args.alpha) ratio = partition.ratio partition = partition.use(rank) train_loader = torch.utils.data.DataLoader(partition, batch_size=args.bs, shuffle=True, pin_memory=True) print('==> load test data') transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) testset = torchvision.datasets.CIFAR10(root=args.datapath, train=False, download=True, transform=transform_test) test_loader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False, num_workers=size) # You can add more datasets here return train_loader, test_loader, ratio def select_model(num_class, args): if args.model == 'VGG': model = vgg11() # You can add more models here return model def comp_accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res class Meter(object): """ Computes and stores the average, variance, and current value """ def __init__(self, init_dict=None, ptag='Time', stateful=False, csv_format=True): """ :param init_dict: Dictionary to initialize meter values :param ptag: Print tag used in __str__() to identify meter :param stateful: Whether to store value history and compute MAD """ self.reset() self.ptag = ptag self.value_history = None self.stateful = stateful if self.stateful: self.value_history = [] self.csv_format = csv_format if init_dict is not None: for key in init_dict: try: # TODO: add type checking to init_dict values self.__dict__[key] = init_dict[key] except Exception: print('(Warning) Invalid key {} in init_dict'.format(key)) def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 self.std = 0 self.sqsum = 0 self.mad = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count self.sqsum += (val ** 2) * n if self.count > 1: self.std = ((self.sqsum - (self.sum ** 2) / self.count) / (self.count - 1) ) ** 0.5 if self.stateful: self.value_history.append(val) mad = 0 for v in self.value_history: mad += abs(v - self.avg) self.mad = mad / len(self.value_history) def __str__(self): if self.csv_format: if self.stateful: return str('{dm.val:.3f},{dm.avg:.3f},{dm.mad:.3f}' .format(dm=self)) else: return str('{dm.val:.3f},{dm.avg:.3f},{dm.std:.3f}' .format(dm=self)) else: if self.stateful: return str(self.ptag) + \ str(': {dm.val:.3f} ({dm.avg:.3f} +- {dm.mad:.3f})' .format(dm=self)) else: return str(self.ptag) + \ str(': {dm.val:.3f} ({dm.avg:.3f} +- {dm.std:.3f})' .format(dm=self))
D = { 1: 5.6, 2: 7.8, 3: 6.6, 4: 8.7, 5: 7.7 } # i D[8] = 8.8 print(D) # ii D.pop(2) print(D) # iii if 6 in D: print("yes") else : print("no") # iv print(len(D)) # v sum = 0 for v in D.values(): sum += v print(sum) # vi D[3] = 7.1 print(D) # vii D.clear() print(D)
from girder.models.setting import Setting from girder.plugins.imagespace.settings import ImageSpaceSetting class GeorgetownSetting(ImageSpaceSetting): requiredSettings = ('IMAGE_SPACE_GEORGETOWN_DOMAIN_DYNAMICS_SEARCH',) def validateImageSpaceGeorgetownDomainDynamicsSearch(self, doc): return doc.rstrip('/')
import dataPuller # import helpers # this will get the acutal data once the url is figured out dataPuller.getData(2006, 11, 1, 54) # helpers.getUrl(2013, 10, 15)
def armstrong_num(num): num_1 = num res=0 while num != 0: rem = num % 10 res = res + rem ** 3 num = num // 10 return num_1 == res input_num = int(input("enter a number")) if(armstrong_num(input_num)): print(f"given num {input_num} is armstrong") else: print(f"given num {input_num} is not armstrong")
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __license__ = '' __version__ = '1.0.1' update_permission_element_query = """ UPDATE public.permission AS pmr SET (module, action, active, updated_on) = ( $2::VARCHAR, $3::VARCHAR, $4::BOOLEAN, now()) WHERE pmr.id::BIGINT = $1 RETURNING *; """
from clpy.types.string import String from clpy.space import Space def test_string(): space = Space() assert space.hash(String('a')) == space.hash(String('a')) assert space.eq(String('a'), String('a')) assert not space.eq(String('a'), String('b'))
from flask import Blueprint, render_template, abort, session, request, jsonify, url_for, redirect from jinja2 import TemplateNotFound from flaskConfiguration import monDB from datetime import datetime, date, timedelta import application.codechefAPI as helper from flaskConfiguration import monDB notifications_page = Blueprint('notifications_page', __name__, template_folder='templates') @notifications_page.before_request def tokenExpireCheck(): try: if session['expires_in'] <= datetime.now(): status = helper.refreshAccessToken() if status is not True: abort(redirect(url_for('authenticate.logout'))) except: abort(redirect(url_for('authenticate.logout'))) @notifications_page.route('/notifications') def userNotifications(): if session.get('username') == None: return redirect(url_for('login')) notifications = monDB.suggestions.find({'username': session['username'], 'status' : "1"}) try: return render_template('notifications.html', notifications=notifications) except TemplateNotFound: abort(404) @notifications_page.route('/notifications/markasread', methods=['POST']) def markAsRead(): if session.get('username') == None: return jsonify({'status': 'failure', 'message': 'Something went wrong. Please try again later'}) if request.method == "POST": problemCode = request.form.get('problemCode') contestCode = request.form.get('contestCode') if problemCode == None or contestCode == None: return jsonify({'status': 'failure', 'message': 'Something went wrong. Please try again later'}) # update criteria criteria = { 'username': session['username'], 'problemCode': problemCode, 'contestCode': contestCode, 'status': '1' } # change status to '0' monDB.suggestions.update_one(criteria, { '$set': { 'status': '0' } } ) notifications_count = monDB.suggestions.find({'status': '1', 'username': session['username']}).count() session['notifications_count'] = notifications_count return jsonify({'status': 'success', 'message': 'Marked as read successfully!'}) else: return jsonify({'status': 'failure', 'message': 'Something went wrong. Please try again later'})
from equadratures import * import numpy as np import matplotlib.pyplot as plt VALUE = 15 plt.rcParams.update({'font.size': VALUE}) order = 4 s1 = Parameter(lower=-1, upper=1, order=order, distribution='Uniform') myBasis = Basis('univariate') myPoly = Poly(s1, myBasis, method='numerical-integration') points, weights = myPoly.get_points_and_weights() def function(x): return x[0]**7 - 3.0*x[0]**6 + x[0]**5 - 10.0*x[0]**4 +4.0 integral = float( 2 * np.dot(weights , evaluate_model(points, function) ) ) print(integral) s2 = Parameter(lower=-1, upper=1, order=order, distribution='uniform', endpoints='lower') s3 = Parameter(lower=-1, upper=1, order=order, distribution='uniform', endpoints='upper') s4 = Parameter(lower=-1, upper=1, order=order, distribution='uniform', endpoints='both') myPoly2 = Poly(s2, myBasis, method='numerical-integration') myPoly3 = Poly(s3, myBasis, method='numerical-integration') myPoly4 = Poly(s4, myBasis, method='numerical-integration') zeros = np.zeros((order+1)) fig = plt.figure() ax = fig.add_subplot(1,1,1) plt.xlabel('$s$', fontsize=VALUE) plt.ylabel('Quadrature points', fontsize=VALUE) plt.plot(myPoly.get_points(), zeros, 'o', c='crimson', lw=4, ms=15) plt.plot(myPoly2.get_points(), zeros-0.1, '<', c='orange', lw=4, ms=15) plt.plot(myPoly3.get_points(), zeros+0.1, '>', c='navy', lw=4, ms=15) plt.plot(myPoly4.get_points(), zeros+0.2, 's', c='limegreen', lw=4, ms=15) plt.grid() frame1 = plt.gca() frame1.axes.yaxis.set_ticklabels([]) plt.savefig('../Figures/tutorial_2_fig_a.png', dpi=200, bbox_inches='tight')
from flask import request, Blueprint, json, Response from ..models.VehicleModel import VehicleModel, VehicleSchema vehicle_api = Blueprint('vehicle_api', __name__) vehicle_schema = VehicleSchema() @vehicle_api.route('/', methods=['POST']) def create(): req_data = request.get_json() data, error = vehicle_schema.load(req_data) if error: return custom_response(error, 400) post = VehicleModel(data) post.save() data = vehicle_schema.dump(post).data return custom_response(data, 201) @vehicle_api.route('/truck_today', methods=['GET']) def list_trucks_today(): vehicle = VehicleModel.get_trucks_today() response = vehicle_schema.dump(vehicle, many=True).data return custom_response(response, 200) @vehicle_api.route('/truck_week', methods=['GET']) def list_trucks_week(): vehicle = VehicleModel.get_trucks_week() response = vehicle_schema.dump(vehicle, many=True).data return custom_response(response, 200) @vehicle_api.route('/truck_month', methods=['GET']) def list_trucks_month(): vehicle = VehicleModel.get_trucks_month() response = vehicle_schema.dump(vehicle, many=True).data return custom_response(response, 200) def custom_response(res, status_code): return Response( mimetype="application/json", response=json.dumps(res), status=status_code )
x = "there are %d types of people." % 10 binary = "binary" do_not = "don't" y = "those who know %d and those who %d." % (binary, do_not) print(x) print(y) print("i said: %r." % x) print("i also said: '%s'." % y)# 如果删去‘’,则输出这句话中没有引号。但是上一句话仍旧有。%r 和 %s差异导致? hilarious = False joke_evaluatoin = "isn't that joke so funny? %r" print(joke_evaluatoin % hilarious)# 等同于print("isn't that joke so funny? %r" % hilarious) w = "this is the left side of ..." e = "a string with a right side." print (w+e)
# -*- coding: utf-8 -*- from __future__ import print_function import OpenGL.GL as gl import OpenGL.GLU as glu #local imports from common import COLORS from screen import Screen class CheckerBoard: def __init__(self, nrows, check_width = 1.0, check_height = None, color1 = COLORS['white'], color2 = COLORS['black'], fixation_dot_color = None, ): self.nrows = int(nrows) if check_width is None: check_width = 2.0/nrows #fill whole screen self.check_width = check_width if check_height is None: check_height = check_width self.check_height = check_height self.board_width = check_width*nrows #run colors through filter to catch names and convert to RGB color1 = COLORS.get(color1, color1) color2 = COLORS.get(color2, color2) self.color1 = color1 self.color2 = color2 self.fixation_dot_color = fixation_dot_color self.display_list_multi = None #for cached rendering of multiple display lists, leaving ability to change color def render(self): color1 = self.color1 color2 = self.color2 # create display lists if not yet done if self.display_list_multi is None: w = self.check_width h = self.check_height board_width = w * self.nrows board_height = h * self.nrows # get needed display list ints if self.fixation_dot_color: self.num_lists = 3 # include list for fixation dot else: self.num_lists = 2 self.display_list_multi = gl.glGenLists(self.num_lists) # Create a display list for color 1 try: gl.glNewList(self.display_list_multi, gl.GL_COMPILE) # render the checkerboard's color1 checks gl.glDisable(gl.GL_LIGHTING) for x in range(0, self.nrows): for y in range(0, self.nrows): if (x + y) % 2 == 0: gl.glRectf(w*x, h*y, w*(x + 1), h*(y + 1)) finally: gl.glEnable(gl.GL_LIGHTING) # End the display list gl.glEndList() # create a display list for color 2 try: gl.glNewList(self.display_list_multi + 1, gl.GL_COMPILE) # render the checkerboard's color2 checks gl.glDisable(gl.GL_LIGHTING) for x in range(0, self.nrows): for y in range(0, self.nrows): if (x + y) % 2 == 1: gl.glRectf(w*x, h*y, w*(x + 1), h*(y + 1)) finally: gl.glEnable(gl.GL_LIGHTING) # End the display list gl.glEndList() # create list for fixation dot if not self.fixation_dot_color is None: gl.glNewList(self.display_list_multi + 2, gl.GL_COMPILE) gl.glDisable(gl.GL_LIGHTING) r, g, b = self.fixation_dot_color gl.glColor3f(r, g, b) gl.glTranslatef(board_width / 2.0, board_height / 2.0, 0) glu.gluDisk(glu.gluNewQuadric(), 0, 0.005, 45, 1) gl.glEnable(gl.GL_LIGHTING) gl.glEndList() self.show_display_lists(color1, color2) else: # render display lists self.show_display_lists(color1, color2) def show_display_lists(self, color1, color2): # render the color1 list: gl.glColor3f(*color1) gl.glCallList(self.display_list_multi) # render the colro2 list: gl.glColor3f(*color2) gl.glCallList(self.display_list_multi + 1) # render fixation dot if not self.fixation_dot_color is None: gl.glCallList(self.display_list_multi + 2) def __del__(self): # __del__ gets called sometimes when render() hasn't yet been run and the OpenGL list doesn't yet exist try: gl.glDeleteLists(self.display_list_multi, self.num_lists) except AttributeError: pass class CheckerBoardScreen(Screen): def setup(self, nrows, check_width = None, check_color1 = 'white', check_color2 = 'black', screen_background_color = 'neutral-gray', fixation_dot_color = None, pos_x = None, pos_y = None, vsync_value = None, vsync_patch = "bottom-right", ): Screen.setup(self, background_color = screen_background_color, vsync_value = vsync_value, vsync_patch = vsync_patch, ) self.CB = CheckerBoard(nrows = nrows, check_width = check_width, color1 = check_color1, color2 = check_color2, fixation_dot_color = fixation_dot_color ) if pos_x is None: pos_x = -0.5*self.CB.board_width if pos_y is None: pos_y = -0.5*self.CB.board_width self.pos_x = pos_x self.pos_y = pos_y def render(self): Screen.render(self) #move so that board is centered and render gl.glLoadIdentity() gl.glTranslatef(self.pos_x,self.pos_y,0.0) self.CB.render() ################################################################################ # TEST CODE ################################################################################ if __name__ == "__main__": NROWS = 64 CBS = CheckerBoardScreen.with_pygame_display( #debug = True ) CBS.setup(nrows = NROWS, screen_background_color = "neutral-gray", vsync_value = 1 ) CBS.run(duration = 2)
# -*- coding: utf-8 -*- import smtplib mail_server = "smtp.rambler.ru" mail_server_port = 465 from_addr = 'EMAIL_FROM' to_addr = 'EMAIL_TO' from_header = 'From: %s\r\n' % from_addr to_header = 'To: %s\r\n\r\n' % to_addr subject_header = 'Subject: Testing SMTP Authentication' body = 'This mail tests SMTP Authentication' email_message = '%s\n%s\n%s\n\n%s' % (from_header, to_header, subject_header, body) s = smtplib.SMTP_SSL(mail_server, mail_server_port) s.set_debuglevel(1) s.login('EMAIL', 'PASSWORD') s.sendmail(from_addr, to_addr, email_message) s.quit()
def test_import(): from instapi import Client from instapi import ClientCompatPatch from instapi import ( ClientError, ClientLoginError, ClientLoginRequiredError, ClientCookieExpiredError, ClientThrottledError, ClientConnectionError, ClientCheckpointRequiredError, ClientChallengeRequiredError, ClientSentryBlockError, ClientReqHeadersTooLargeError, ) from instapi import MediaRatios from instapi import MediaTypes from instapi.utils import ( InstagramID, gen_user_breadcrumb, max_chunk_size_generator, max_chunk_count_generator, get_file_size, ig_chunk_generator, ) from instapi.constants import Constants from instapi.compat import compat_urllib_parse from instapi.compat import compat_urllib_error assert True == True
import os import yaml curdir = os.path.dirname(__file__) specs_dir = os.path.join(curdir, 'specs') def load_spec(spec): return yaml.load(open(os.path.join(specs_dir, spec+'.yaml'))) # Different specs SPECS = [ load_spec('empty'), load_spec('local'), ] # Different configs CONFIGS = [ dict(allowed_types=['derived/json']), dict(allowed_types=['derived/csv']) ]
# Generated by Django 2.2.5 on 2020-02-24 08:09 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('data_app', '0001_initial'), ] operations = [ migrations.AddField( model_name='students', name='mobile', field=models.IntegerField(default=0), preserve_default=False, ), ]
#coding: utf-8 from scrapy.cmdline import execute import os import urllib import requests if __name__ == '__main__': project_name = "zyh" spider_name = "test" s = "scrapy crawl dmoz" # s = "scrapy crawl %s -o %s -t json" % (spider_name, results_name) execute(s.split())
from django.contrib import admin # Register your models here. from .models import BlogMeta class BlogMetaAdmin(admin.ModelAdmin): list_display = ('key', "value") admin.site.register(BlogMeta, BlogMetaAdmin)
class Solution: def countCharacters(self, words: List[str], chars: str) -> int: """ https://leetcode.com/problems/find-words-that-can-be-formed-by-characters/ """ sum = 0 for w in words: n = len(w) i = 0 while i < n: if w.count(w[i]) > chars.count(w[i]): break i += 1 # print(i) if i == n: sum += n return sum
""" https://github.com/microsoft/DeepSpeed deepspeed/ops/sparse_attention/sparsity_config.py """ import json import random import torch MAX_SEQ_LENGTH = 512 def setup_layout(num_heads, max_position, block): if max_position % block != 0: raise ValueError( f"Sequence Length, {max_position}, needs to be dividable by Block size {block}!" ) num_blocks = max_position // block layout = torch.zeros((num_heads, num_blocks, num_blocks), dtype=torch.int64) return layout def build_dense_pattern(num_heads, max_position, **unused_kwargs): """Initialize the Dense Sparsity Pattern Config. In reality, this is not sparse and all blocks are used. We keep it for the sake of comparison and comprehension. Arguments: num_heads: required: an integer determining number of attention heads of the layer. seq_len: required: an integer determining number of attention heads of the layer. different_layout_per_head: optional: this is just for the sake of consistency with other sparsity formats; can ignore it for DenseSparsityConfig """ return torch.ones(num_heads, max_position, max_position) def build_fixed_pattern( num_heads, max_position, block=16, num_local_blocks=4, num_global_blocks=1, attention="bidirectional", horizontal_global_attention=False, num_different_global_patterns=1, **unused_kwargs, ): """Initialize `Fixed` Sparsity Pattern Config. For usage example please see, TODO DeepSpeed Sparse Transformer Tutorial Arguments: num_heads: required: an integer determining number of attention heads of the layer. block: optional: an integer determining the block size. Current implementation of sparse self-attention is based on blocked sparse matrices. In which this parameter defines size of such blocks, `Block X Block`. different_layout_per_head: optional: a boolean determining if each head should be assigned a different sparsity layout; default is false and this will be satisfied based on availability. num_local_blocks: optional: an integer determining the number of blocks in local attention window. num_global_blocks: optional: an integer determining how many consecutive blocks in a local window is used as the representative of the window for global attention. attention: optional: a string determining attention type. Attention can be `unidirectional`, such as autoregressive models, in which tokens attend only to tokens appear before them in the context. Considering that, the upper triangular of attention matrix is empty as above figure. Or it can be `bidirectional`, such as BERT, in which tokens can attend to any other tokens before or after them. Then, the upper triangular part of the attention matrix is mirror of the lower triangular in the above figure. horizontal_global_attention: optional: a boolean determining if blocks that are global representative of a local window, also attend to all other blocks. This is valid only if attention type is `bidirectional`. Looking at the attention matrix, that means global attention not only includes the vertical blocks, but also horizontal blocks. num_different_global_patterns: optional: an integer determining number of different global attentions layouts. While global attention can be fixed by which block/s are representative of any local window, since there are multi-heads, each head can use a different global representative. For example, with 4 blocks local window and global attention size of 1 block, we can have 4 different versions in which the first, Second, third, or forth block of each local window can be global representative of that window. This parameter determines how many of such patterns we want. Of course, there is a limitation based on num_local_blocks and num_global_blocks. """ if num_local_blocks % num_global_blocks != 0: raise ValueError( f"Number of blocks in a local window, {num_local_blocks}, must be dividable by number of global blocks, {num_global_blocks}!" ) if attention != "unidirectional" and attention != "bidirectional": raise NotImplementedError( 'only "uni/bi-directional" attentions are supported for now!' ) if attention != "bidirectional" and horizontal_global_attention: raise ValueError( 'only "bi-directional" attentions can support horizontal global attention!' ) if num_different_global_patterns > (num_local_blocks // num_global_blocks): raise ValueError( f"Number of layout versions (num_different_global_patterns), {num_different_global_patterns}, cannot be larger than number of local window blocks divided by number of global blocks, {num_local_blocks} / {num_global_blocks} = {num_local_blocks//num_global_blocks}!" ) def set_local_layout(h, layout): """Sets local attantion layout used by the given head in the sparse attention. Arguments: h: required: an integer determining head index layout: required: a tensor of dimension (num_heads, num_blocks, num_blocks) containing sparsity layout of all head; may not be completly set at this step Return: layout: a tensor of dimension (num_heads, num_blocks, num_blocks) containing sparsity layout of all head in which local layout is set """ num_blocks = layout.shape[1] for i in range(0, num_blocks, num_local_blocks): end = min(i + num_local_blocks, num_blocks) for row in range(i, end): for col in range( i, (row + 1 if attention == "unidirectional" else end) ): layout[h, row, col] = 1 return layout def set_global_layout(h, layout): """Sets global attantion layout used by the given head in the sparse attention. Currently we set global blocks starting from the last block of a local window to the first one. That means if a local window consists of 4 blocks and global attention size is one block, we use block #4 in each local window as global. If we have different layout per head, then other heads will get #3, #2, and #1. And if we have more heads (and different layout has set) than num of global attentions, multiple head may have same global attentions. Note) if horizontal_global_attention is set, global blocks will be set both horizontally and vertically. Arguments: h: required: an integer determining head index layout: required: a tensor of dimension (num_heads, num_blocks, num_blocks) containing sparsity layout of all head; may not be completly set at this step Return: layout: a tensor of dimension (num_heads, num_blocks, num_blocks) containing sparsity layout of all head in which global layout is set """ num_blocks = layout.shape[1] first_global_block_idx = ( num_local_blocks - (1 + h % num_different_global_patterns) * num_global_blocks ) # set all global blocks except the last one if (in last local window) end = num_blocks - (num_blocks % num_local_blocks) for i in range(first_global_block_idx, end, num_local_blocks): # vertical global attention first_row = 0 if attention == "bidirectional" else i # (((i // self.num_local_blocks) + 1) * self.num_local_blocks) # if (first_row < num_blocks): layout[h, first_row:, i : i + num_global_blocks] = 1 # horizontal global attention; only in bidirectional attention if horizontal_global_attention: layout[h, i : i + num_global_blocks, :] = 1 # set last global blocks; handle possible short last local window if end < num_blocks: start = min(end + first_global_block_idx, num_blocks - num_global_blocks) end = start + num_global_blocks # vertical global attention first_row = 0 if attention == "bidirectional" else start # (((start // self.num_local_blocks) + 1) * self.num_local_blocks) # if (first_row < num_blocks): layout[h, first_row:, start:end] = 1 # horizontal global attention if horizontal_global_attention: layout[h, start:end, :] = 1 return layout layout = setup_layout(num_heads, max_position, block) for h in range(0, num_heads): layout = set_local_layout(h, layout) layout = set_global_layout(h, layout) num_blocks = layout.shape[1] full_layout = layout.new_zeros(num_heads, num_blocks, block, num_blocks, block) full_layout[:, :, :, :, :] = layout[:, :, None, :, None] full_layout = full_layout.reshape(num_heads, max_position, max_position) return full_layout def build_longformer_pattern( num_heads, max_position, block=16, num_sliding_window_blocks=3, global_block_indices=[0], global_block_end_indices=None, **unused_kwargs, ): """Initialize the edited `Longformer` Sparsity Pattern Config. For usage example please see, TODO DeepSpeed Sparse Transformer Tutorial Arguments: num_heads: required: an integer determining number of attention heads of the layer. block: optional: an integer determining the block size. Current implementation of sparse self-attention is based on blocked sparse matrices. In which this parameter defines size of such blocks, `Block X Block`. different_layout_per_head: optional: a boolean determining if each head should be assigned a different sparsity layout; default is false and this will be satisfied based on availability. num_sliding_window_blocks: optional: an integer determining the number of blocks in sliding local attention window. global_block_indices: optional: a list of integers determining which blocks are considered as global attention. Given indices, determine the blocks that all other token blocks attend to and they attend to all other token blocks. Default value is only index 0. Notice that if global_block_end_indices parameter is set, this parameter is used as starting index of each global window. global_block_end_indices: optional: a list of integers determining end indices of global window blocks. By default this is not used. But if it is set, it must have the same size of global_block_indices parameter, and combining this two parameters, for each index i, blocks from global_block_indices[i] to global_block_end_indices[i] (exclusive) are considered as global attention. """ if global_block_end_indices is not None: if len(global_block_indices) != len(global_block_end_indices): raise ValueError( f"Global block start indices length, {len(global_block_indices)}, must be same as global block end indices length, {len(global_block_end_indices)}!" ) for _, (start_idx, end_idx) in enumerate( zip(global_block_indices, global_block_end_indices) ): if start_idx >= end_idx: raise ValueError( f"Global block start index, {start_idx}, must be smaller than global block end index, {end_idx}!" ) def set_sliding_window_layout(h, layout): num_blocks = layout.shape[1] if num_blocks < num_sliding_window_blocks: raise ValueError( f"Number of sliding window blocks, {num_sliding_window_blocks}, must be smaller than overal number of blocks in a row, {num_blocks}!" ) w = num_sliding_window_blocks // 2 for row in range(0, num_blocks): start = max(0, row - w) end = min(row + w + 1, num_blocks) layout[h, row, start:end] = 1 return layout def set_global_layout(h, layout): num_blocks = layout.shape[1] if global_block_end_indices is None: for idx in global_block_indices: if idx < num_blocks: layout[h, idx, :] = 1 layout[h, :, idx] = 1 else: for _, (start_idx, end_idx) in enumerate( zip(global_block_indices, global_block_end_indices) ): if start_idx < num_blocks: end_idx = min(end_idx, num_blocks) layout[h, start_idx:end_idx, :] = 1 layout[h, :, start_idx:end_idx] = 1 return layout layout = setup_layout(num_heads, max_position, block) for h in range(0, num_heads): layout = set_sliding_window_layout(h, layout) layout = set_global_layout(h, layout) num_blocks = layout.shape[1] full_layout = layout.new_zeros(num_heads, num_blocks, block, num_blocks, block) full_layout[:, :, :, :, :] = layout[:, :, None, :, None] full_layout = full_layout.reshape(num_heads, max_position, max_position) return full_layout def build_bigbird_pattern( num_heads, max_position, block=16, num_random_blocks=1, num_sliding_window_blocks=3, num_global_blocks=1, **unused_kwargs, ): """Initialize the BigBird Sparsity Pattern Config. For usage example please see, TODO DeepSpeed Sparse Transformer Tutorial Arguments: num_heads: required: an integer determining number of attention heads of the layer. block: optional: an integer determining the block size. Current implementation of sparse self-attention is based on blocked sparse matrices. In which this parameter defines size of such blocks, `Block X Block`. different_layout_per_head: optional: a boolean determining if each head should be assigned a different sparsity layout; default is false and this will be satisfied based on availability. num_random_blocks: optional: an integer determining the number of random blocks in each block row. num_sliding_window_blocks: optional: an integer determining the number of blocks in sliding local attention window. num_global_blocks: optional: an integer determining how many consecutive blocks, starting from index 0, are considered as global attention. Global block tokens will be attended by all other block tokens and will attend to all other block tokens as well. """ def set_random_layout(h, layout): """Sets random attantion layout used by the given head in the sparse attention. Note) By default, it assumes there will be a unique random block layout for all heads; unless `different_layout_per_head` parameter is set in which each head can have a different random layout. Arguments: h: required: an integer determining head index layout: required: a tensor of dimension (num_heads, num_blocks, num_blocks) containing sparsity layout of all head; may not be completly set at this step Return: layout: a tensor of dimension (num_heads, num_blocks, num_blocks) containing sparsity layout of all head in which random layout is set """ num_blocks = layout.shape[1] if num_blocks < num_random_blocks: raise ValueError( f"Number of random blocks, {num_random_blocks}, must be smaller than overal number of blocks in a row, {num_blocks}!" ) for row in range(0, num_blocks): rnd_cols = random.sample(range(0, num_blocks), num_random_blocks) layout[h, row, rnd_cols] = 1 return layout def set_sliding_window_layout(h, layout): """Sets sliding local attantion layout used by the given head in the sparse attention. Arguments: h: required: an integer determining head index layout: required: a tensor of dimension (num_heads, num_blocks, num_blocks) containing sparsity layout of all head; may not be completly set at this step Return: layout: a tensor of dimension (num_heads, num_blocks, num_blocks) containing sparsity layout of all head in which local sliding window layout is set """ num_blocks = layout.shape[1] if num_blocks < num_sliding_window_blocks: raise ValueError( f"Number of sliding window blocks, {num_sliding_window_blocks}, must be smaller than overal number of blocks in a row, {num_blocks}!" ) w = num_sliding_window_blocks // 2 for row in range(0, num_blocks): start = max(0, row - w) end = min(row + w + 1, num_blocks) layout[h, row, start:end] = 1 return layout def set_global_layout_itc(h, layout): """Sets global attantion layout used by the given head in the sparse attention. Arguments: h: required: an integer determining head index layout: required: a tensor of dimension (num_heads, num_blocks, num_blocks) containing sparsity layout of all head; may not be completly set at this step Return: layout: a tensor of dimension (num_heads, num_blocks, num_blocks) containing sparsity layout of all head in which global layout is set """ num_blocks = layout.shape[1] if num_blocks < num_global_blocks: raise ValueError( f"Number of global blocks, {num_global_blocks}, must be smaller than overal number of blocks in a row, {num_blocks}!" ) layout[h, 0:num_global_blocks, :] = 1 layout[h, :, 0:num_global_blocks] = 1 return layout layout = setup_layout(num_heads, max_position, block) for h in range(0, num_heads): layout = set_random_layout(h, layout) layout = set_sliding_window_layout(h, layout) layout = set_global_layout_itc(h, layout) num_blocks = layout.shape[1] full_layout = layout.new_zeros(num_heads, num_blocks, block, num_blocks, block) full_layout[:, :, :, :, :] = layout[:, :, None, :, None] full_layout = full_layout.reshape(num_heads, max_position, max_position) return full_layout def build_block_structure_random_pattern( num_heads, max_position, block_shape=(64, 128), pe_array_shape=(32, 32), different_layout_per_head=False, **unused_kwargs, ): if max_position % block_shape[0] != 0 or max_position % block_shape[1] != 0: raise ValueError( f"Sequence length, {max_position}, must be dividable by block size, {block_shape}!" ) if pe_array_shape[0] > block_shape[0] or pe_array_shape[1] * 2 > block_shape[1]: raise ValueError( f"PE Array shape, {pe_array_shape}, must be smaller than half block, {(block_shape[0], block_shape[1] // 2)}!" ) def set_block_layout(h, layout): # layout: int64 [num_heads, max_pos, max_pos] unstru_mask = torch.zeros(pe_array_shape[0], pe_array_shape[1] * 2, dtype=torch.int64) unstru_mask[:, :pe_array_shape[1]] = 1 unstru_mask = unstru_mask[ torch.arange(unstru_mask.shape[0]).unsqueeze(-1), torch.argsort(torch.rand(*unstru_mask.shape), dim=-1) ] layout[h, :pe_array_shape[0], :pe_array_shape[1] * 2] = unstru_mask layout[h, :, :] = layout[ h, torch.argsort(torch.rand(layout.shape[1])).unsqueeze(-1), torch.argsort(torch.rand(layout.shape[2])).unsqueeze(0) ] return layout layout = setup_layout(num_heads, max_position, block=1) block_rows, block_cols = max_position//block_shape[0], max_position//block_shape[1] layout = layout.reshape(num_heads, block_rows, block_cols, *block_shape) if different_layout_per_head: for h in range(0, num_heads): for r in range(block_rows): for c in range(block_cols): set_block_layout(h, layout[:, r, c]) else: for r in range(block_rows): for c in range(block_cols): set_block_layout(0, layout[:, r, c]) layout[1:, :, :] = layout[0, :, :] layout = layout.permute(0, 1, 3, 2, 4).reshape(num_heads, max_position, max_position) return layout ATTN_MASK_BUILDERS = { "DenseSparsityConfig": build_dense_pattern, "FixedSparsityConfig": build_fixed_pattern, "BSLongformerSparsityConfig": build_longformer_pattern, "BigBirdSparsityConfig": build_bigbird_pattern, "VariableSparsityConfig": None, "BlockStructuredRandomSparsityConfig": build_block_structure_random_pattern, } def build_static_sparsity_mask( json_file, num_heads, max_position=MAX_SEQ_LENGTH ) -> torch.Tensor: with open(json_file, "r", encoding="utf-8") as reader: text = reader.read() cfg_json: dict = json.loads(text) cfg_cls_name = cfg_json.pop("class") print(f"Loaded {cfg_cls_name} from {json_file}:\n{cfg_json}") sp_attn_builder = ATTN_MASK_BUILDERS.get(cfg_cls_name) assert ( sp_attn_builder is not None ), f"Cannot find AttnMaskBuilder named {cfg_cls_name}" sparsity_mask = sp_attn_builder(num_heads, max_position, **cfg_json) return sparsity_mask def apply_static_sparsity_mask(sparsity_mask, attention_scores): # sparsity_mask: [num_attention_heads, max_pos, max_pos] (max_pos >= tgt_len, src_len) # attention_scores: [batch_size, num_attention_heads, tgt_len, src_len] sparsity_mask = (1.0 - sparsity_mask) * -10000.0 sparsity_mask = sparsity_mask.type_as(attention_scores) tgt_len, src_len = attention_scores.shape[-2:] attention_scores += sparsity_mask[:, :tgt_len, :src_len] if __name__ == "__main__": # attn_mask = build_static_sparsity_mask('big_bird_sparsity_config.json', max_position=8) # print(attn_mask.shape) # print(attn_mask[0]) # attn_mask = build_static_sparsity_mask('longformer_sparsity_config.json', max_position=8) # print(attn_mask.shape) # print(attn_mask[0]) # attn_mask = build_static_sparsity_mask('fixed_sparsity_config.json', max_position=8) # print(attn_mask.shape) # print(attn_mask[0]) # # config: "block_shape": [4, 4], "pe_array_shape": [2, 2] # attn_mask = build_static_sparsity_mask('block_structured_random_sparsity_config.json', max_position=16) # print(attn_mask.shape) # print(attn_mask[0]) pass
import random from enum import Enum class Suit(Enum): """ Suit start from 0 to 3 """ Spades = 0 Hearts = 1 Clubs = 2 Diamonds = 3 class Value(Enum): """ Value start from 1 to 13 """ Ace, Two, Three, Four = 1, 2, 3, 4 Five, Six, Seven, Eight = 5, 6, 7, 8 Nine, Ten, Jack, Queen, King = 9, 10, 11, 12, 13 class Card: """ Card with 2 parameters `suit` and `value` """ def __init__(self, suit, value): self.suit = Suit(suit) self.value = Value(value) def __lt__(self, other): return self.value.value < other.value.value class deck: def __init__(self, randomDeck): self.facedown = [Card(i, j) for i in range(0, 4) for j in range(1, 14)] if randomDeck: random.shuffle(self.facedown) self.faceup = [] def shuffleCurrentDeck(self): random.shuffle(self.facedown) def drawCardFromTopOfDeck(self): if len(self.facedown) == 0: random.shuffle(self.faceup) self.facedown = self.faceup self.faceup = [] return self.facedown.pop() def placeTopCardOfDeckOnDiscardPile(self): if len(self.facedown) == 0: random.shuffle(self.faceup) self.facedown = self.faceup self.faceup = [] self.faceup.append(self.facedown.pop()) def getTopCardofDiscardPile(self): return self.faceup[len(self.faceup - 1)] def placeCardOnDiscardPile(self, card): self.faceup.append(card) def isEmpty(self): if len(self.facedown) == 0: return True return False
import sys import os f = open("C:/Users/user/Documents/python/atcoder/ABC118/import.txt","r") sys.stdin = f # -*- coding: utf-8 -*- import math n = int(input()) def factorize(n): fct = [] # prime factor b, e = 2, 0 # base, exponent while b * b <= n: while n % b == 0: n = n // b e = e + 1 if e > 0: fct.append((b, e)) b, e = b + 1, 0 if n > 1: fct.append((n, 1)) return fct def divisor(fac): temp = 1 for i in range(len(fac)): temp *= (fac[i][1] + 1) return temp print(divisor(factorize(math.factorial(n))) % 1000000007)
# -*- coding: utf-8 -*- import numpy as np # from DataProcessor.QASent import QASentdataPreprocess from DataProcessor.QASentForServer import QASentForServerdataPreprocess from DataProcessor.WikiQA import WikiQAdataPreprocess from DataProcessor.insuranceQA import insuranceQAPreprocess from NeuralModel.IAGRU_WORD import IAGRU_WORD from NeuralModel.OAGRU import OAGRU, OAGRU_small from TaskBase import TaskBases from public_functions import * __author__ = 'benywon' insuranceQA = 'insuranceQA' WikiQA = 'WikiQA' QASent = 'QASent' IAGru = 'IAGru' OAGru = 'OAGru' OAGru_SMALL = 'OAGru_small' class AnswerSelection(TaskBases): def __init__(self, MODEL=IAGru, DATASET=WikiQA, **kwargs): TaskBases.__init__(self) if DATASET == insuranceQA: self.Data = insuranceQAPreprocess(**kwargs) elif DATASET == WikiQA: self.Data = WikiQAdataPreprocess(**kwargs) else: self.Data = QASentForServerdataPreprocess(**kwargs) if MODEL == IAGru: self.Model = IAGRU_WORD(data=self.Data, **kwargs) elif MODEL == OAGru_SMALL: self.Model = OAGRU_small(data=self.Data, **kwargs) else: self.Model = OAGRU(data=self.Data, **kwargs) @TaskBases.Train def Train(self): MAP, MRR = self.Test() append_name = self.Data.dataset_name + '_MAP_' + str(MAP) + '_MRR_' + str(MRR) self.Model.save_model(append_name) def Test(self): print '\nstart testing...' final_result_MAP = [] final_result_MRR = [] for one_pack in self.Data.TEST: batch_result = [] for one in one_pack: out = self.Model.test_function(one[0], one[1]) batch_result.append([out, one[2]]) batch_result.sort(key=lambda x: x[0], reverse=True) result = 0. right_index = 0. first_one_position = -1.0 for i, value in enumerate(batch_result): if value[1] == 1: if first_one_position == -1.0: first_one_position = (i + 1) right_index += 1 result += right_index / (i + 1) final_result_MAP.append(result / right_index) final_result_MRR.append(1.0 / first_one_position) MAP = np.mean(np.asarray(final_result_MAP)) MRR = np.mean(np.asarray(final_result_MRR)) print 'final-result-MAP:' + str(MAP) print 'final-result-MRR:' + str(MRR) return MAP, MRR def testACC(self): pass def output_softmax(self,number=0,path=None): print 'start output softmax' self.Model.load_model(path) length = len(self.Data.TRAIN[0]) pool_list = list() tran = lambda x: '_'.join(map(str, x.tolist())) softmax_pool = [] for i in xrange(length): question = self.Data.TRAIN[0][i] pool_list.append(tran(question)) samples = [] answer_yes = self.Data.TRAIN[1][i] answer_no = self.Data.TRAIN[2][i] if tran(answer_yes) not in pool_list: samples.append(answer_yes) if tran(answer_no) not in pool_list: samples.append(answer_no) for sample in samples: pool_list.append(tran(sample)) softmax = self.Model.test_function(question, sample) softmax_pool.append(softmax) dump_file(obj=softmax_pool, filepath=str(number)+'softmax_result_i.pickle') def getO(self): fileList=get_dir_files('/home/benywon/PycharmProjects/bAbi/model/IAGRU/test') for i,filename in enumerate(fileList): self.output_softmax(number=i,path=filename) if __name__ == '__main__': c = AnswerSelection(optmizer='adadelta', MODEL=IAGru, DATASET=WikiQA, batch_training=False, sampling=2, reload=False, output_softmax=False, Margin=0.12, use_the_last_hidden_variable=False, use_clean=True, epochs=50, Max_length=50, N_hidden=150) c.Train()
def validate_ean(code): checksum = int(code[-1]) total = 0 for i, a in enumerate(code[:-1]): number = int(a) if i % 2 != 0: number *= 3 total += number total = 0 if total % 10 == 0 else 10 - (total % 10) return total == checksum
import random import numpy as np import tensorflow as tf import scipy.sparse as sp from .base_sequence import Sequence class MiniBatchSequence(Sequence): def __init__( self, x, y, out_weight=None, shuffle=False, batch_size=1, *args, **kwargs ): super().__init__(*args, **kwargs) assert batch_size == 1 self.n_batches = len(x) self.shuffle = shuffle self.indices = list(range(self.n_batches)) self.batch_size = batch_size self.x, self.y, self.out_weight = self.astensors(x, y, out_weight) def __len__(self): return self.n_batches def __getitem__(self, index): idx = self.indices[index] return self.x[idx], self.y[idx], self.out_weight[idx] def on_epoch_end(self): if self.shuffle: self._shuffle_batches() def _shuffle_batches(self): """ Shuffle all nodes at the end of each epoch """ random.shuffle(self.indices) class SAGEMiniBatchSequence(Sequence): def __init__( self, x, y=None, out_weight=None, sizes=[5, 5], shuffle=False, batch_size=512, *args, **kwargs ): super().__init__(*args, **kwargs) self.node_attr, self.adj_matrix, self.batch_nodes = x self.y = y self.n_batches = int(np.ceil(len(self.batch_nodes) / batch_size)) self.shuffle = shuffle self.batch_size = batch_size self.indices = np.arange(len(self.batch_nodes)) self.sizes = sizes self.node_attr = self.astensor(self.node_attr) def __len__(self): return self.n_batches def __getitem__(self, index): if self.shuffle: idx = self.indices[index * self.batch_size:(index + 1) * self.batch_size] else: idx = slice(index * self.batch_size, (index + 1) * self.batch_size) nodes_input = [self.batch_nodes[idx]] for num_sample in self.sizes: neighbors = sample_neighbors( self.adj_matrix, nodes_input[-1], num_sample).ravel() nodes_input.append(neighbors) y = self.y[idx] if self.y is not None else None return self.astensors([self.node_attr, *nodes_input], y) def on_epoch_end(self): pass def on_epoch_end(self): if self.shuffle: self._shuffle_batches() def _shuffle_batches(self): """ Shuffle all nodes at the end of each epoch """ random.shuffle(self.indices) def sample_neighbors(adj_matrix, nodes, num_neighbors): np.random.shuffle(adj_matrix.T) return adj_matrix[nodes, :num_neighbors] class FastGCNBatchSequence(Sequence): def __init__( self, x, y=None, shuffle=False, batch_size=None, rank=None, *args, **kwargs ): super().__init__(*args, **kwargs) node_attr, adj_matrix = x self.y = y self.n_batches = int( np.ceil(adj_matrix.shape[0] / batch_size)) if batch_size else 1 self.shuffle = shuffle self.batch_size = batch_size self.indices = np.arange(adj_matrix.shape[0]) self.rank = rank if rank: self.p = column_prop(adj_matrix) self.node_attr, self.adj_matrix = node_attr, adj_matrix def __len__(self): return self.n_batches def __getitem__(self, index): if not self.batch_size: (node_attr, adj_matrix), y = self.full_batch() else: (node_attr, adj_matrix), y = self.mini_batch(index) if self.rank: p = self.p rank = self.rank distr = adj_matrix.sum(0).A1.nonzero()[0] if rank > distr.size: q = distr else: q = np.random.choice( distr, rank, replace=False, p=p[distr] / p[distr].sum()) adj_matrix = adj_matrix[:, q].dot(sp.diags(1.0 / (p[q] * rank))) if tf.is_tensor(node_attr): node_attr = tf.gather(node_attr, q) else: node_attr = node_attr[q] return self.astensors((node_attr, adj_matrix), y) def full_batch(self): return (self.node_attr, self.adj_matrix), self.y def mini_batch(self, index): if self.shuffle: idx = self.indices[index * self.batch_size:(index + 1) * self.batch_size] else: idx = slice(index * self.batch_size, (index + 1) * self.batch_size) y = self.y[idx] adj_matrix = self.adj_matrix[idx] node_attr = self.node_attr return (node_attr, adj_matrix), y def on_epoch_end(self): pass def on_epoch_end(self): if self.shuffle: self._shuffle_batches() def _shuffle_batches(self): """ Shuffle all nodes at the end of each epoch """ random.shuffle(self.indices) def column_prop(adj): column_norm = sp.linalg.norm(adj, axis=0) norm_sum = column_norm.sum() return column_norm / norm_sum
#lib import import sys, os sys.path.append('..\\..\\') import derpapi import pygame RUN = False y = 30 c = 0 optpos = {} optkeys = [] set_stor = [{'name':'Airplane Mode', 'type':'switch', 'default':False}, {'name':'WiFi','type':'custom','default':None}] #screen init try: pygame.init() except: pygame.display.init() screen = pygame.display.set_mode([480, 320], pygame.NOFRAME) try: font = pygame.font.Font('..\\..\\font_main.otf', 32) except: font = pygame.font.Font('font_main.otf', 32) #load option sprites sprites = {} for i in os.listdir('optionsprites'): for n in os.listdir('optionsprites\\' + i): sprites[i + '.' + n.split('.')[0]] = pygame.image.load('optionsprites\\' + i + '\\' + n) print(sprites) def cusfunc(cname): if cname == 'WiFi': print('NO CONNECTION SRY SCRUB') def render(opt, custom=False): global screen, sprites, y, optpos, set_stor, c, font, optkeys screen.blit(sprites[opt], (10,y)) if custom: screen.blit(font.render(set_stor[c]['name'], True, (0,0,0)), (25, y + 5)) else: screen.blit(font.render(set_stor[c]['name'], True, (0,0,0)), (sprites[opt].get_width() + 15, y + 5)) optpos[sprites[opt]] = ((10, y), sprites[opt].get_size()) optkeys.append(sprites[opt]) def main(): global RUN, derpapi, cusfunc, screen, render, y, optpos, set_stor, c, font, optkeys #place main code here EXIT = pygame.image.load('exit.png') settings = derpapi.retrieve() for i in set_stor: if not i['name'] in settings.keys(): settings[i['name']] = i['default'] RUN = True while RUN: for event in pygame.event.get(): if event.type == pygame.MOUSEBUTTONDOWN: if derpapi.collision((430, 0), (50, 50), event.pos): RUN = False else: cc = 0 for i in optkeys: if derpapi.collision(optpos[i][0], optpos[i][1], event.pos): if set_stor[cc]['type'] == 'switch': if settings[set_stor[cc]['name']] == True: settings[set_stor[cc]['name']] = False else: settings[set_stor[cc]['name']] = True elif set_stor[cc]['type'] == 'custom': cusfunc(set_stor[cc]['name']) cc += 1 screen.fill((230,230,230)) screen.blit(font.render('SETTINGS', True, (0,0,0)), (10,10)) screen.blit(EXIT, (430, 0)) y = 45 optpos = {} optkeys = [] c = 0 for i in set_stor: if i['type'] == 'switch': if settings[i['name']] == True: render('switch.on') else: render('switch.off') elif i['type'] == 'custom': render('custom.custom', custom=True) y += 42 c += 1 pygame.display.flip() derpapi.store(data=settings) main() pygame.display.quit()
import json from . import utils from .post_request import post_request from .config_param import config_param def upload_sector(filename, sector_name): """ Upload sector to the simulator host. Parameters ---------- filename : str A string indicating path to sector geojson file on the local machine. sector_name : str A string indicating name to store sector under on the simulator host. Returns ------- TRUE if successful. Otherwise an exception is thrown. Examples -------- >>> pydodo.upload_sector(filename = "~/Documents/test_sector.geojson", sector_name = "test_sector") """ utils._validate_string(filename, "filename") utils._validate_string(sector_name, "sector_name") with open(filename, "r") as f: content = json.load(f) body = {"name": sector_name, "content": content} return post_request(config_param("endpoint_upload_sector"), body)
import numpy as np from signum import sign ################################################################################ # class Perceptron ################################################################################ class Perceptron(object): def __init__(self, dim = 0, avg_flag = False): self.dim = dim + 1 # #dimensions of perceptron + bias self.w = np.zeros(self.dim) # weights self.w_avg = np.zeros(self.dim) # averaged weights self.avg_flag = avg_flag # This flag counts the avg flag self.cnt = 0 # Counter for number of examples def get_weight(self): return self.w def init_random(self): self.w = 0.02*np.random.rand(self.dim) - 0.01 # small number between -0.01 and 0.01 self.w_avg = self.w.copy() def update(self, lr, x, y): self.w = self.w + lr * y * np.append(x,1) def update_avg(self): self.cnt += 1 if(self.avg_flag == True): alpha = float(1)/self.cnt self.w_avg = (1-alpha)*self.w_avg + alpha*self.w def predict(self, x): if(self.avg_flag == False): if(x.ndim == 1): return sign(np.array([self.w.dot(np.append(x,1))])) else: return sign(np.append(x,np.ones([len(x), 1]),1).dot(self.w.T)) else: if(x.ndim == 1): return sign(np.array([self.w_avg.dot(np.append(x,1))])) else: return sign(np.append(x,np.ones([len(x), 1]),1).dot(self.w_avg.T)) def predict_train(self,x): if(x.ndim == 1): return sign(np.array([self.w.dot(np.append(x,1))])) else: return sign(np.append(x,np.ones([len(x), 1]),1).dot(self.w.T))
def crc16(data: str, poly: hex = 0xA001) -> str: ''' CRC-16 MODBUS HASHING ALGORITHM ''' crc = 0xFFFF for byte in data: crc ^= ord(byte) for _ in range(8): crc = ((crc >> 1) ^ poly if (crc & 0x0001) else crc >> 1) hv = hex(crc).upper()[2:] blueprint = '0000' return (blueprint if len(hv) == 0 else blueprint[:-len(hv)] + hv)
""" This script implements a pH calibration protocol that involves mixing Phosphoric Acid and water, and then adaptively adding NaOH until the solution reaches as target pH. The protocols includes several cases for expected conditions, such as requiring pH meter re-calibration, failures in Provision steps, failures in the calibration process (i.e. unrecoverably exceeding the target pH), and failures in cleanup activities. The primitives require custom implementations to support calculation of volumes and quantities, as well as defining decision point predicates. """ import importlib import logging import os from os.path import basename from typing import Tuple # import labop_time as labopt import rdflib as rdfl import sbol3 import tyto from sbol3 import Document import examples.pH_calibration.ph_calibration_utils as util import labop import uml from labop.execution_engine import ExecutionEngine logger: logging.Logger = logging.Logger("pH_calibration") CONT_NS = rdfl.Namespace("https://sift.net/container-ontology/container-ontology#") OM_NS = rdfl.Namespace("http://www.ontology-of-units-of-measure.org/resource/om-2/") LIBRARY_NAME = "pH_calibration" DOCSTRING = "This protocol implements a pH calibration protocol with decision nodes." def prepare_document() -> Document: logger.info("Setting up document") doc = sbol3.Document() sbol3.set_namespace("https://bbn.com/scratch/") return doc def import_labop_libraries() -> None: logger.info("Importing libraries") labop.import_library("liquid_handling") logger.info("... Imported liquid handling") labop.import_library("plate_handling") logger.info("... Imported plate handling") labop.import_library("spectrophotometry") logger.info("... Imported spectrophotometry") labop.import_library("sample_arrays") logger.info("... Imported sample arrays") def create_protocol() -> labop.Protocol: logger.info("Creating protocol") protocol: labop.Protocol = labop.Protocol("pH_calibration_protocol") protocol.name = "pH calibration protocol" protocol.description = DOCSTRING return protocol def create_subprotocol(doc) -> labop.Protocol: logger.info("Creating subprotocol") protocol: labop.Protocol = labop.Protocol("pH_adjustment_protocol") protocol.name = "pH adjustment protocol" protocol.description = "pH adjustment protocol" doc.add(protocol) ############################################################################ # Protocol Input Parameters ############################################################################ ( reaction_vessel, naoh_container, measurement_delay, initial_transfer_amount, ) = util.get_ph_adjustment_protocol_inputs(protocol) ############################################################################ # Define Custom Primitives needed for protocol ############################################################################ ( measure_pH_primitive, measure_temperature_primitive, at_target_primitive, calculate_naoh_addition, error_message, ) = util.define_pH_adjustment_protocol_primitives(protocol.document, LIBRARY_NAME) ############################################################################ # Protocol Steps ############################################################################ # 7.1 Transfer NaOH into reaction vessel transfer = protocol.execute_primitive( "Transfer", source=naoh_container, destination=reaction_vessel, amount=initial_transfer_amount, ) protocol.order(protocol.initial(), transfer) # 7.2 Wait X seconds (FIXME, need to implement) # 7.3 Measure pH measure_pH = protocol.execute_primitive( measure_pH_primitive, samples=reaction_vessel ) # 7.4 Measure Temp measure_temp = protocol.execute_primitive( measure_temperature_primitive, samples=reaction_vessel ) # Delay measurement # FIXME measurement_delay is an input parameter, but temporal constraints are instantiated at author time, rather than runtime. # wait_pH = labopt.precedes(transfer, measurement_delay, measure_pH, units=measurement_delay.unit) protocol.order(transfer, measure_pH) # wait_temp = labopt.precedes(transfer, measurement_delay.value, measure_temp, units=measurement_delay.unit) protocol.order(transfer, measure_temp) join_node = uml.JoinNode() protocol.nodes.append(join_node) protocol.order(measure_pH, join_node) protocol.order(measure_temp, join_node) # 7.5 At Target? at_target_decision = protocol.make_decision_node( join_node, decision_input_behavior=at_target_primitive, decision_input_source=measure_pH.output_pin("measurement"), ) # At Target -> Yes: exit at_target_decision.add_decision_output(protocol, True, protocol.final()) # At Target -> No: 7.6 calc next, goto Transfer calculate_naoh_addition_invocation = protocol.execute_primitive( calculate_naoh_addition, resource=naoh_container, temperature=measure_temp.output_pin("measurement"), pH=measure_pH.output_pin("measurement"), reaction_vessel=reaction_vessel, ) # Edge into calculation at_target_decision.add_decision_output( protocol, False, calculate_naoh_addition_invocation ) # Edge out of calculation protocol.edges.append( uml.ObjectFlow( source=calculate_naoh_addition_invocation.output_pin("return"), target=transfer.input_pin("amount"), ) ) # At Target -> Exception: No change, overshoot, overflow at_target_error = protocol.execute_primitive(error_message, message="Exception") at_target_decision.add_decision_output(protocol, "Exception", at_target_error) protocol.edges.append( uml.ControlFlow(source=at_target_error, target=protocol.final()) ) # time_constraints = labopt.TimeConstraints("pH Adjustment Timing", # constraints=labopt.And([wait_pH, wait_temp]), # protocols=[protocol]) # doc.add(time_constraints) return protocol def create_setup_subprotocol(doc): logger.info("Creating setup_subprotocol") protocol: labop.Protocol = labop.Protocol("pH_adjustment_setup_protocol") protocol.name = "pH adjustment setup protocol" protocol.description = "pH adjustment setup protocol" doc.add(protocol) ############################################################################ # Protocol Input Parameters ############################################################################ (reaction_volume) = util.get_setup_protocol_inputs(protocol) ############################################################################ # Protocol Materials ############################################################################ (h3po4, ddh2o, naoh) = util.define_setup_protocol_materials(doc) ############################################################################ # Define Custom Primitives needed for protocol ############################################################################ calculate_volume_primitive = util.define_setup_protocol_primitives( protocol.document, LIBRARY_NAME ) ############################################################################ # Protocol Steps ############################################################################ # 3.0 reaction_vessel = protocol.execute_primitive( "EmptyContainer", specification="reaction_vessel" ) reaction_vessel.name = "reaction_vessel" protocol.order(protocol.initial(), reaction_vessel) naoh_container = protocol.execute_primitive("EmptyContainer", specification="vial") protocol.order(protocol.initial(), naoh_container) naoh_provision = protocol.execute_primitive( "Provision", resource=naoh, amount=sbol3.Measure(100, tyto.OM.milligram), destination=naoh_container.output_pin("samples"), ) # 20% weight volume_phosphoric_acid = protocol.execute_primitive( calculate_volume_primitive, resource=h3po4, total_volume=reaction_volume, percentage=20, ) ( provision_phosphoric_acid, provision_phosphoric_acid_error_handler, ) = util.wrap_with_error_message( protocol, LIBRARY_NAME, labop.loaded_libraries["liquid_handling"].find("Provision"), resource=h3po4, destination=reaction_vessel.output_pin("samples"), amount=volume_phosphoric_acid.output_pin("volume"), ) # 80% weight volume_h2o = protocol.execute_primitive( calculate_volume_primitive, resource=h3po4, total_volume=reaction_volume, percentage=80, ) (provision_h2o, provision_h2o_error_handler) = util.wrap_with_error_message( protocol, LIBRARY_NAME, labop.loaded_libraries["liquid_handling"].find("Provision"), resource=ddh2o, destination=reaction_vessel.output_pin("samples"), amount=volume_h2o.output_pin("volume"), ) # Join all tokens before the final node final_join = uml.JoinNode() protocol.nodes.append(final_join) protocol.order(final_join, protocol.final()) provision_phosphoric_acid_error_handler.add_decision_output( protocol, None, final_join ) provision_h2o_error_handler.add_decision_output(protocol, None, final_join) protocol.designate_output( "naoh_container", labop.SampleArray, naoh_container.output_pin("samples"), ) rv_output = protocol.designate_output( "reaction_vessel", labop.SampleArray, reaction_vessel.output_pin("samples"), ) protocol.order(rv_output, protocol.final()) protocol.designate_output( "volume_phosphoric_acid", sbol3.OM_MEASURE, volume_phosphoric_acid.output_pin("volume"), ) protocol.designate_output( "volume_h2o", sbol3.OM_MEASURE, volume_h2o.output_pin("volume") ) return protocol def pH_calibration_protocol() -> Tuple[labop.Protocol, Document]: ############################################# # set up the document doc: Document = prepare_document() ############################################# # Import the primitive libraries import_labop_libraries() ############################################# # Create the protocol protocol: labop.Protocol = create_protocol() doc.add(protocol) ############################################################################ # Protocol Input Parameters ############################################################################ (reaction_volume, rpm) = util.get_ph_calibration_protocol_inputs(protocol) ############################################################################ # Define Custom Primitives needed for protocol ############################################################################ ( pH_meter_calibrated_primitive, calibrate_pH_meter_primitive, mix_primitive, stop_mix_primitive, clean_electrode_primitive, ) = util.define_pH_calibration_protocol_primitives(protocol.document, LIBRARY_NAME) ############################################################################ # Protocol Steps ############################################################################ # 1. Decide whether to calibrate pH meter, and connect to initial node pH_meter_calibrated = protocol.make_decision_node( protocol.initial(), decision_input_behavior=pH_meter_calibrated_primitive, ) # 2. If not pH_meter_calibrated, then Calibrate the pH meter if needed calibrate_pH_meter = protocol.execute_primitive(calibrate_pH_meter_primitive) # Link 1 -> 2 (False) pH_meter_calibrated.add_decision_output(protocol, False, calibrate_pH_meter) # 3. If pH_meter_calibrated, then inventorize and confirm materials # ( # reaction_vessel, # provision_h2o_error_handler, # naoh_container, # ) = make_inventorise_and_confirm_materials(protocol, reaction_volume) # 3. Setup Reagents and Labware subprotocol setup_subprotocol: labop.Protocol = create_setup_subprotocol(doc) setup_subprotocol_invocation = protocol.execute_primitive( setup_subprotocol, reaction_volume=reaction_volume, ) protocol.order(protocol.initial(), setup_subprotocol_invocation) # 4. Decide whether calibration was successful is_calibration_successful = protocol.make_decision_node( calibrate_pH_meter.output_pin("return") ) # 6. Decide if ready to adjust (Before 3.) ready_to_adjust1 = uml.MergeNode() protocol.nodes.append(ready_to_adjust1) protocol.order(setup_subprotocol_invocation, ready_to_adjust1) # Link 4 -> ready_to_adjust (True) is_calibration_successful.add_decision_output(protocol, True, ready_to_adjust1) ready_to_adjust2 = uml.MergeNode() protocol.nodes.append(ready_to_adjust2) protocol.order(setup_subprotocol_invocation, ready_to_adjust2) # Link 1 -> 3 (True) pH_meter_calibrated.add_decision_output(protocol, True, ready_to_adjust2) # Error Message Activity error_message_primitive = util.define_error_message(protocol.document, LIBRARY_NAME) calibration_error = protocol.execute_primitive( error_message_primitive, message="Calibration Failed!" ) # Link 4 -> Error (False) is_calibration_successful.add_decision_output(protocol, False, calibration_error) # 5. Start Mix mix_vessel = protocol.execute_primitive( mix_primitive, samples=setup_subprotocol_invocation.output_pin("reaction_vessel"), rpm=rpm, ) protocol.order(ready_to_adjust1, mix_vessel) protocol.order(ready_to_adjust2, mix_vessel) # 7. Adjustment subprotocol adjust_subprotocol: labop.Protocol = create_subprotocol(doc) adjust_subprotocol_invocation = protocol.execute_primitive( adjust_subprotocol, reaction_vessel=setup_subprotocol_invocation.output_pin("reaction_vessel"), naoh_container=setup_subprotocol_invocation.output_pin("naoh_container"), measurement_delay=sbol3.Measure(20, tyto.OM.second), initial_transfer_amount=sbol3.Measure(100, tyto.OM.milligram), ) protocol.order(mix_vessel, adjust_subprotocol_invocation) # 8. Stop Mix stop_mix_vessel = protocol.execute_primitive( stop_mix_primitive, samples=setup_subprotocol_invocation.output_pin("reaction_vessel"), ) protocol.order(adjust_subprotocol_invocation, stop_mix_vessel) ( clean_electrode_invocation, clean_electrode_error_handler, ) = util.wrap_with_error_message( protocol, LIBRARY_NAME, clean_electrode_primitive, ) protocol.order(stop_mix_vessel, clean_electrode_invocation) clean_electrode_error_handler.add_decision_output(protocol, None, protocol.final()) protocol.designate_output( "rpm", sbol3.OM_MEASURE, rpm, ) # protocol.to_dot().view() return protocol, doc def reload(): mainmodname = basename(__file__)[:-3] module = importlib.import_module(mainmodname) # reload the module to check for changes importlib.reload(module) # update the globals of __main__ with the any new or changed # functions or classes in the reloaded module globals().update(vars(module)) main() def main(): new_protocol: labop.Protocol new_protocol, doc = pH_calibration_protocol() agent = sbol3.Agent("test_agent") ee = ExecutionEngine() parameter_values = [ labop.ParameterValue( parameter=new_protocol.get_input("reaction_volume"), value=sbol3.Measure(10, tyto.OM.milliliter), ), ] try: execution = ee.execute( new_protocol, agent, id="test_execution", parameter_values=parameter_values ) except Exception as e: logger.exception(e) print("Validating and writing protocol") v = doc.validate() assert len(v) == 0, "".join(f"\n {e}" for e in v) rdf_filename = os.path.join(os.path.dirname(__file__), "pH_calibration_protocol.nt") doc.write(rdf_filename, sbol3.SORTED_NTRIPLES) print(f"Wrote file as {rdf_filename}") # render and view the dot dot = new_protocol.to_dot() dot.render(f"{new_protocol.name}.gv") dot.view() if __name__ == "__main__": main()
from collections import Counter from matplotlib import pyplot as plt grades = [83, 95, 91, 87, 70, 0, 85, 82, 100, 67, 73, 77, 0] histogram = Counter(min(grade // 10 * 10, 90) for grade in grades) #Dict for students with marks plt.bar([x+5 for x in histogram.keys()],histogram.values(), 10, edgecolor=(0,0,0)) plt.axis([-5, 105, 0, 5]) plt.xticks([10*i for i in range(11)]) plt.xlabel("Decile") plt.ylabel("# of students") plt.title("Grades for exam 1") plt.show()
from django import forms from django.contrib.auth.forms import UserCreationForm from reddituser.models import RedditUser class SignUpForm(UserCreationForm): class Meta: model = RedditUser fields = UserCreationForm.Meta.fields + ('email', 'bio') class LoginForm(forms.Form): username = forms.CharField() password = forms.CharField(widget=forms.PasswordInput)
from panda3d.core import ModelNode, NodePath, Vec4, CKeyValues, Vec3 from panda3d.bsp import BSPMaterialAttrib from .MapHelper import MapHelper class ModelHelper(MapHelper): ChangeWith = [ "model" ] def __init__(self, mapObject): MapHelper.__init__(self, mapObject) self.modelRoot = NodePath(ModelNode("modelHelper")) self.modelRoot.setScale(16.0) self.modelRoot.reparentTo(self.mapObject.helperRoot) self.vpRoots = [] def setSelectedState(self): for vp, vpRoot in self.vpRoots: if vp.is2D(): # Show unlit, untextured, blue wireframe in 2D vpRoot.setRenderModeFilled() vpRoot.setLightOff(1) vpRoot.setFogOff(1) vpRoot.clearAttrib(BSPMaterialAttrib) vpRoot.setTransparency(1) vpRoot.setColor(Vec4(1, 1, 1, 0.75), 1) else: vpRoot.setColorScale(Vec4(1, 1, 1, 1)) def setUnselectedState(self): for vp, vpRoot in self.vpRoots: if vp.is2D(): # Show unlit, untextured, blue wireframe in 2D vpRoot.setRenderModeWireframe() vpRoot.setLightOff(1) vpRoot.setFogOff(1) vpRoot.setBSPMaterial("phase_14/materials/unlit.mat", 1) vpRoot.setColor(Vec4(0.016, 1, 1, 1), 1) vpRoot.clearTransparency() else: vpRoot.setColorScale(Vec4(1, 1, 1, 1)) def select(self): self.setSelectedState() def deselect(self): self.setUnselectedState() def generate(self, helperInfo): MapHelper.generate(self) args = helperInfo['args'] modelPath = args[0] if len(args) > 0 else None if not modelPath: # Model wasn't specified in the class definition, # check for a property called "model" modelPath = self.mapObject.getPropertyValue("model", default = "models/smiley.egg.pz") else: # For some reason the fgd parser doesn't remove the quotes around the # model path string in the game class definition modelPath = modelPath.replace("\"", "") if not modelPath: return modelNp = base.loader.loadModel(modelPath, okMissing = True) if not modelNp: return # Create a representation in each viewport for vp in base.viewportMgr.viewports: vpRoot = self.modelRoot.attachNewNode("vpRepr") vpRoot.hide(~vp.getViewportMask()) self.vpRoots.append((vp, vpRoot)) vpModel = modelNp.instanceTo(vpRoot) if self.mapObject.selected: self.setSelectedState() else: self.setUnselectedState() def cleanup(self): self.vpRoots = [] if self.modelRoot: self.modelRoot.removeNode() self.modelRoot = None MapHelper.cleanup(self)
#! -*- coding: utf-8 -*- from datetime import datetime from main import db, ma from marshmallow import fields author_abstracts = db.Table('author_abstracts', db.Column('author_id', db.Integer, db.ForeignKey('scopus_authors.id')), db.Column('abstract_id', db.Integer, db.ForeignKey('scopus_abstracts.id'))) funding_abstracts = db.Table('funding_abstracts', db.Column('abstract_id', db.Integer, db.ForeignKey('scopus_abstracts.id')), db.Column('funding_id', db.Integer, db.ForeignKey('fundings.id'))) # area_abstracts = db.Table('area_abstracts', # db.Column('area_id', db.Integer, # db.ForeignKey('scopus_areas.id')), # db.Column('abstract_id', db.Integer, # db.ForeignKey('scopus_abstracts.id'))) class ScopusAffiliation(db.Model): __tablename__ = 'scopus_affiliations' id = db.Column(db.Integer(), primary_key=True) name = db.Column(db.UnicodeText(), index=True) city = db.Column(db.UnicodeText()) country = db.Column(db.UnicodeText()) scopus_affil_id = db.Column(db.UnicodeText()) def __repr__(self): return "<ScopusAffiliation id=%s>" % self.affil_id class ScopusAuthor(db.Model): __tablename__ = 'scopus_authors' id = db.Column(db.Integer(), primary_key=True) affil_id = db.Column(db.Integer(), db.ForeignKey('scopus_affiliations.id')) initials = db.Column(db.String(8)) #indexed_name = db.Column(db.String(255)) surname = db.Column(db.UnicodeText()) given_name = db.Column(db.UnicodeText()) preferred_name = db.Column(db.UnicodeText()) url = db.Column(db.Text()) affiliation = db.relationship('ScopusAffiliation', backref=db.backref('authors', lazy='dynamic')) def __repr__(self): return "<ScopusAuthor name=%s>" % \ (self.indexed_name.encode('utf8')) class ScopusAbstract(db.Model): __tablename__ = 'scopus_abstracts' id = db.Column(db.Integer(), primary_key=True) url = db.Column(db.Text()) identifier = db.Column(db.UnicodeText()) pii = db.Column(db.UnicodeText()) doi = db.Column(db.UnicodeText()) eid = db.Column(db.UnicodeText()) title = db.Column(db.Text()) publication_name = db.Column(db.UnicodeText()) citedby_count = db.Column(db.Integer()) cover_date = db.Column(db.DateTime()) description = db.Column(db.UnicodeText()) authors = db.relationship('ScopusAuthor', secondary=author_abstracts, backref=db.backref('abstracts', lazy='dynamic')) fundings = db.relationship('Funding', secondary=funding_abstracts, backref=db.backref('abstracts', lazy='dynamic')) def __repr__(self): return "<ScopusAbstract title=%s, doi=%s>" % \ (self.title[:20], self.doi) class ScopusSubjArea(db.Model): __tablename__ = 'scopus_subj_areas' id = db.Column(db.Integer(), primary_key=True) affil_abbr = db.Column(db.String(32)) year = db.Column(db.String(8)) area = db.Column(db.String(8)) articles = db.Column(db.Integer) citations = db.Column(db.Integer) # class ScopusArea(db.Model): # __tablename__ = 'scopus_areas' # id = db.Column(db.Integer(), primary_key=True) # abstract_id = db.Column(db.Integer(), # db.ForeignKey('scopus_abstracts.id')) # area = db.Column(db.String(255)) # abstracts = db.relationship('ScopusAbstract', # secondary=area_abstracts, # backref=db.backref('areas', lazy='dynamic')) # # def __repr__(self): # return "<ScopusArea area=%s>" % (self.area) class Funding(db.Model): __tablename__ = 'fundings' id = db.Column(db.Integer(), primary_key=True) name = db.Column(db.UnicodeText()) year = db.Column(db.UnicodeText()) amount = db.Column(db.Float()) class AuthorSchema(ma.Schema): id = fields.Integer(dump_only=True) given_name = fields.String(required=True) surname = fields.String(required=True) abstracts = fields.Nested('AbstractSchema', many=True) url = ma.URLFor('api.researcherresource', id='<id>', _external=True) class AbstractSchema(ma.Schema): id = fields.Integer(dump_only=True) title = fields.String(required=True) description = fields.String(required=False) doi = fields.String() citedby_count = fields.Integer() cover_date = fields.DateTime() url = ma.URLFor('api.abstractresource', id='<id>', _external=True) class ScopusAbstractCount(db.Model): __tablename__ = 'abstract_count' id = db.Column(db.Integer(), primary_key=True) institute = db.Column(db.String(128)) year = db.Column(db.Integer()) articles = db.Column(db.Integer()) citations = db.Column(db.Integer())