text
stringlengths
8
6.05M
import session_log import introduction import image_processing import keyboard import flop import current_stack import error_log import pot_odds import db_query def check_is_turn(screen_area, deck, stack_collection, db): element_area = introduction.save_element(screen_area, 'turn_area', db) if image_processing.search_element(element_area, ['turn'], 'green_board/', db) is False: if len(session_log.get_actual_hand(screen_area, db)) == 10: turn = image_processing.search_cards(element_area, deck, 2, db) session_log.update_hand_after_turn(str(screen_area), turn, db) last_row = session_log.get_last_row_from_log_session(screen_area, db) hand = last_row[0][0] stack = current_stack.get_actual_game_data(screen_area, stack_collection, db) if make_turn_decision(screen_area, hand, stack, stack_collection, db): return True return False def make_turn_decision(screen_area, hand, stack, stack_collection, db): opponent_reaction = image_processing.search_last_opponent_action(screen_area, db) if not isinstance(opponent_reaction, str): opponent_reaction = opponent_reaction['alias'] hand_value = flop.get_hand_value(hand, screen_area, db) combination_value = db_query.get_combination_value('turn', hand_value, db) if turn_action(screen_area, hand_value, combination_value, stack, opponent_reaction, hand, stack_collection, db): return True def action_after_cbet(x_coordinate, y_coordinate, width, height, image_path, screen_area, deck, stack_collection, db): try: if introduction.check_is_fold(screen_area, x_coordinate, y_coordinate, width, height, image_path, db): return if check_is_turn(screen_area, deck, stack_collection, db): return current_stack.get_actual_game_data(screen_area, stack_collection, db) if check_is_raise_cbet(screen_area, stack_collection, db): return except Exception as e: error_log.error_log('action_after_cbet', str(e)) print(e) def action_after_turn_cbet(x_coordinate, y_coordinate, width, height, image_path, screen_area, deck, stack_collection, db): if introduction.check_is_fold(screen_area, x_coordinate, y_coordinate, width, height, image_path, db): return if check_is_river(screen_area, deck, stack_collection, db): return if check_is_raise_cbet(screen_area, stack_collection, db): return def check_is_river(screen_area, deck, stack_collection, db): element_area = introduction.save_element(screen_area, 'river_area', db) if image_processing.search_element(element_area, ['river'], 'green_board/', db) is False: if len(session_log.get_actual_hand(screen_area, db)) == 12: river = image_processing.search_cards(element_area, deck, 2, db) session_log.update_hand_after_turn(str(screen_area), river, db) last_row = session_log.get_last_row_from_log_session(screen_area, db) hand = last_row[0][0] action = last_row[0][3] stack = current_stack.get_actual_game_data(screen_area, stack_collection, db) if make_river_decision(screen_area, hand, stack, action, stack_collection, db): return True return False def make_river_decision(screen_area, hand, stack, action, stack_collection, db): opponent_reaction = image_processing.search_last_opponent_action(screen_area, db) hand_value = flop.get_hand_value(hand, screen_area, db) combination_value = db_query.get_combination_value('river', hand_value, db) if not isinstance(opponent_reaction, str): opponent_reaction = opponent_reaction['alias'] if river_action(screen_area, hand_value, combination_value, stack, action, opponent_reaction, hand, stack_collection, db): return True def check_is_raise_cbet(screen_area, stack_collection, db): hand_value = session_log.get_hand_value(screen_area, db) combination_value = db_query.get_combination_value('flop', hand_value, db) opponent_reaction = image_processing.search_last_opponent_action(screen_area, db) stack = session_log.get_last_row_from_log_session(screen_area, db)[0]['current_stack'] if not isinstance(opponent_reaction, str): opponent_reaction = opponent_reaction['alias'] if raise_cbet_action(screen_area, hand_value, combination_value, opponent_reaction, stack, stack_collection, db): return True def action_after_cc_postflop(screen_area, deck, x_coordinate, y_coordinate, width, height, image_path, stack_collection, db): try: if check_is_river(screen_area, deck, stack_collection, db): return if check_is_turn(screen_area, deck, stack_collection, db): return if introduction.check_is_fold(screen_area, x_coordinate, y_coordinate, width, height, image_path, db): return if get_opponent_flop_reaction(screen_area, stack_collection, db): return except Exception as e: error_log.error_log('action_after_cc_postflop', str(e)) print(e) def get_opponent_flop_reaction(screen_area, stack_collection, db): hand_value = session_log.get_hand_value(screen_area, db) combination_value = db_query.get_combination_value('flop', hand_value, db) stack = session_log.get_last_row_from_log_session(screen_area, db)[0][1] if hand_value is None: return False opponent_reaction = image_processing.search_last_opponent_action(screen_area, db) if not isinstance(opponent_reaction, str): opponent_reaction = opponent_reaction['alias'] if opponent_reaction in ('1', '2', '3') and combination_value in ('draw', 'other', 'composite') \ and int(stack) <= 13 and current_stack.search_current_stack(screen_area, stack_collection, db) <= 13: keyboard.press('q') session_log.update_action_log_session('push', str(screen_area), db) elif combination_value == 'draw' and pot_odds.check_is_call_valid(screen_area, hand_value, 'turn', stack_collection, db): keyboard.press('c') session_log.update_action_log_session('cc_postflop', str(screen_area), db) elif opponent_reaction in ('1', '2') and hand_value not in ( 'trash', 'gutshot', 'bottom_pair', 'over_cards') and combination_value != 'draw': keyboard.press('c') session_log.update_action_log_session('cc_postflop', str(screen_area), db) elif opponent_reaction == 'check': keyboard.press('h') session_log.update_action_log_session('cc_postflop', str(screen_area), db) else: keyboard.press('f') session_log.update_action_log_session('fold', str(screen_area), db) return True def check_is_raise_river_value_bet(screen_area, db): opponent_reaction = image_processing.search_last_opponent_action(screen_area, db) if opponent_reaction in ('1', '2'): keyboard.press('c') session_log.update_action_log_session('end', str(screen_area), db) else: keyboard.press('f') session_log.update_action_log_session('fold', str(screen_area), db) return True def action_after_value_bet(screen_area, x_coordinate, y_coordinate, width, height, image_path, db): if introduction.check_is_fold(screen_area, x_coordinate, y_coordinate, width, height, image_path, db): return if check_is_raise_river_value_bet(screen_area, db): return def check_is_board_danger(hand): if check_is_four_flush_board(hand): return True if check_is_four_straight_board(hand): return True return False def check_is_four_flush_board(hand): if len(hand) == 12: flush_hand = hand[5] + hand[7] + hand[9] + hand[11] if len(set(flush_hand)) == 1: return True elif len(hand) == 14: flush_hand = hand[5] + hand[7] + hand[9] + hand[11] + hand[13] counter = {} for item in flush_hand: counter[item] = counter.get(item, 0) + 1 doubles = {element: count for element, count in counter.items() if count > 3} if len(doubles) > 0: return True return False def check_is_four_straight_board(hand): if len(hand) == 12: straight_hand = hand[4] + hand[6] + hand[8] + hand[10] straight_hand = flop.straight_collection(straight_hand) if list(map(int, straight_hand)) == list(range(min(straight_hand), max(straight_hand) + 1)) \ and len(straight_hand) == 4: return True elif len(hand) == 14: straight_hand = hand[4] + hand[6] + hand[8] + hand[10] + hand[12] straight_hand = flop.straight_collection(straight_hand) first_straight_hand = straight_hand[:-1] second_straight_hand = straight_hand[1:] if first_straight_hand == list(range(min(first_straight_hand), max(first_straight_hand) + 1)) \ and len(first_straight_hand) == 4: return True elif second_straight_hand == list(range(min(second_straight_hand), max(second_straight_hand) + 1)) \ and len(second_straight_hand) == 4: return True return False def turn_action(screen_area, hand_value, combination_value, stack, opponent_reaction, hand, stack_collection, db): if hand_value in ('top_pair', 'two_pairs', 'set', 'weak_top_pair') and check_is_board_danger(hand): if image_processing.check_is_cbet_available(screen_area, db): keyboard.press('h') session_log.update_action_log_session('cc_postflop', str(screen_area), db) elif opponent_reaction in ('1', '2', '3'): keyboard.press('c') session_log.update_action_log_session('cc_postflop', str(screen_area), db) elif stack <= 10 and current_stack.search_bank_stack(screen_area, db) > 10: keyboard.press('q') session_log.update_action_log_session('push', str(screen_area), db) else: keyboard.press('f') session_log.update_action_log_session('fold', str(screen_area), db) elif hand_value == 'straight' and check_is_four_flush_board(hand): if image_processing.check_is_cbet_available(screen_area, db): keyboard.press('h') session_log.update_action_log_session('cc_postflop', str(screen_area), db) elif opponent_reaction in ('1', '2'): keyboard.press('c') session_log.update_action_log_session('cc_postflop', str(screen_area), db) else: keyboard.press('f') session_log.update_action_log_session('fold', str(screen_area), db) elif image_processing.check_is_cbet_available(screen_area, db): if combination_value == 'premium': keyboard.press('v') session_log.update_action_log_session('turn_cbet', str(screen_area), db) elif int(stack) <= 10 and combination_value in ('draw', 'other', 'composite') \ and current_stack.search_current_stack(screen_area, stack_collection, db) <= 10: keyboard.press('q') session_log.update_action_log_session('push', str(screen_area), db) elif hand_value == 'weak_top_pair': keyboard.press('q') session_log.update_action_log_session('push', str(screen_area), db) else: keyboard.press('h') session_log.update_action_log_session('cc_postflop', str(screen_area), db) else: if combination_value == 'premium': keyboard.press('v') session_log.update_action_log_session('turn_cbet', str(screen_area), db) elif int(stack) <= 10 and (combination_value in ('draw', 'other', 'composite') or hand_value == 'weak_flush')\ and current_stack.search_current_stack(screen_area, stack_collection, db) <= 10: keyboard.press('q') session_log.update_action_log_session('push', str(screen_area), db) elif combination_value == 'draw' and pot_odds.check_is_call_valid(screen_area, hand_value, 'turn', stack_collection, db): keyboard.press('c') session_log.update_action_log_session('cc_postflop', str(screen_area), db) elif hand_value == 'weak_top_pair': keyboard.press('q') session_log.update_action_log_session('push', str(screen_area), db) elif opponent_reaction in ('1', '2', '3') and ( combination_value in ('other', 'composite') or hand_value == 'weak_flush'): keyboard.press('c') session_log.update_action_log_session('cc_postflop', str(screen_area), db) else: keyboard.press('f') session_log.update_action_log_session('fold', str(screen_area), db) return True def river_action(screen_area, hand_value, combination_value, stack, action, opponent_reaction, hand, stack_collection, db): if action in ('turn_cbet', 'river_cbet'): is_call_river_agression = pot_odds.check_is_call_after_opponent_river_agression(screen_area, hand_value, stack_collection, action, db) if combination_value != 'premium' and int(stack) >= 13: keyboard.press('h') session_log.update_action_log_session('cc_postflop', str(screen_area), db) elif combination_value != 'premium' and int(stack) < 13: keyboard.press('v') session_log.update_action_log_session('river_cbet', str(screen_area), db) elif action == 'river_cbet' and is_call_river_agression is True: keyboard.press('c') session_log.update_action_log_session('cc_postflop', str(screen_area), db) elif action == 'river_cbet' and is_call_river_agression is False: keyboard.press('f') session_log.update_action_log_session('fold', str(screen_area), db) elif check_is_board_danger(hand) is False or hand_value == 'flush': keyboard.press('v') session_log.update_action_log_session('river_cbet', str(screen_area), db) elif hand_value == 'straight' and check_is_four_flush_board(hand) is False: keyboard.press('v') session_log.update_action_log_session('river_cbet', str(screen_area), db) elif image_processing.check_is_cbet_available(screen_area, db): keyboard.press('h') session_log.update_action_log_session('cc_postflop', str(screen_area), db) else: if opponent_reaction in ('1', '2', '3'): keyboard.press('c') session_log.update_action_log_session('cc_postflop', str(screen_area), db) else: keyboard.press('f') session_log.update_action_log_session('fold', str(screen_area), db) return True if check_is_board_danger(hand) and hand_value in \ ('top_pair', 'two_pairs', 'set', 'weak_top_pair', 'weak_flush'): if image_processing.check_is_cbet_available(screen_area, db): keyboard.press('h') session_log.update_action_log_session('cc_postflop', str(screen_area), db) elif opponent_reaction in ('1', '2', '3'): keyboard.press('c') session_log.update_action_log_session('cc_postflop', str(screen_area), db) else: keyboard.press('f') session_log.update_action_log_session('fold', str(screen_area), db) elif hand_value == 'straight' and check_is_four_flush_board(hand): if image_processing.check_is_cbet_available(screen_area, db): keyboard.press('h') session_log.update_action_log_session('cc_postflop', str(screen_area), db) elif opponent_reaction in ('1', '2'): keyboard.press('c') session_log.update_action_log_session('cc_postflop', str(screen_area), db) else: keyboard.press('f') session_log.update_action_log_session('fold', str(screen_area), db) elif image_processing.check_is_cbet_available(screen_area, db): if combination_value == 'premium' or hand_value == 'weak_top_pair': keyboard.press('v') session_log.update_action_log_session('river_cbet', str(screen_area), db) elif combination_value == 'value' and check_is_board_danger(hand) is False: if current_stack.search_bank_stack(screen_area, db) <= 3: keyboard.press('j') else: keyboard.press('k') session_log.update_action_log_session('value_bet', str(screen_area), db) else: keyboard.press('h') session_log.update_action_log_session('cc_postflop', str(screen_area), db) else: if combination_value == 'premium' or hand_value == 'weak_top_pair': keyboard.press('v') session_log.update_action_log_session('river_cbet', str(screen_area), db) elif (combination_value == 'value' or hand_value == 'weak_flush') and check_is_board_danger( hand) is False and opponent_reaction in ('1', '2', '3'): keyboard.press('c') session_log.update_action_log_session('cc_postflop', str(screen_area), db) elif opponent_reaction in ('1', '2',) and (hand_value == 'middle_pair' or hand_value == 'low_two_pairs' or hand_value.find('middle_pair') != -1): keyboard.press('c') session_log.update_action_log_session('cc_postflop', str(screen_area), db) else: keyboard.press('f') session_log.update_action_log_session('fold', str(screen_area), db) return True def raise_cbet_action(screen_area, hand_value, combination_value, opponent_reaction, stack, stack_collection, db): if combination_value == 'premium' or hand_value == 'weak_top_pair': keyboard.press('q') session_log.update_action_log_session('push', str(screen_area), db) elif int(stack) <= 10 and hand_value != 'trash' and current_stack.search_current_stack(screen_area, stack_collection, db) <= 10: keyboard.press('q') session_log.update_action_log_session('push', str(screen_area), db) elif combination_value == 'draw' and pot_odds.check_is_call_valid( screen_area, hand_value, 'turn', stack_collection, db): keyboard.press('c') session_log.update_action_log_session('cc_postflop', str(screen_area), db) elif combination_value in ('other', 'composite') and opponent_reaction in ('1', '2', '3'): keyboard.press('c') session_log.update_action_log_session('cc_postflop', str(screen_area), db) else: keyboard.press('f') session_log.update_action_log_session('fold', str(screen_area), db) return True
""" World Corporation DERs User Role """ import names import random import pprint random.seed(0) # Always generate the same dataset n_utilities = 5 n_providers = 6 n_sp = 5 admins = 4 sec_auditors = 2 n_der = n_utilities * n_providers * 50 total_accounts = n_utilities + n_providers + n_sp + admins + sec_auditors + n_der + n_der der_per_util = int(n_der/n_utilities) der_per_sp = int(n_der/n_providers) der_list = [] for d in range(1, n_der+1): der_list.append('DER %d' % d) # create utilities rbac = {} for corporation in range(n_utilities): utilities_people = random.randint(20,60) total_accounts = total_accounts + utilities_people rbac['Utility %d' % (corporation + 1)] = {} util_slice = [corporation * der_per_util, (corporation + 1) * der_per_util - 1] # DER under the utility's control rbac['Utility %d' % (corporation + 1)]['DER'] = der_list[util_slice[0]: util_slice[1]] for people in range(utilities_people): for role in ['Utility DERMS Team', 'Utility Software', 'Utility Billing', 'Utility Auditing']: rbac['Utility %d' % (corporation + 1)][names.get_full_name()] = role # create service providers for corporation in range(n_sp): sp_people = random.randint(10,30) total_accounts = total_accounts + sp_people rbac['Service Provider %d' % (corporation + 1)] = {} sp_slice = [corporation * der_per_sp, (corporation + 1) * der_per_sp - 1] # DER under the service provider's control random.shuffle(der_list) # randomize the list so different SPs and utilities want access to the DER rbac['Service Provider %d' % (corporation + 1)]['DER'] = der_list[sp_slice[0]: sp_slice[1]] for people in range(sp_people): for role in ['DER Installers', 'Aggregation/VPP Team', 'Firmware/Patching', 'Billing', 'Utility Auditing']: rbac['Service Provider %d' % (corporation + 1)][names.get_full_name()] = role # DER owners rbac['DER Owner'] = {} rbac['DER Device'] = {} for people in range(n_der): for role in ['DER Owner']: name = names.get_full_name() rbac['DER Owner'][name] = role # Fixed: Create a dictionary with all the DER Owners and their DER Devices that they own rbac['DER Device'][name] = 'DER %d' % (people + 1) # RBAC Admins rbac['Security Administrator'] = {} for people in range(admins): for role in ['Security Administrator']: rbac['Security Administrator'][names.get_full_name()] = role # RBAC Auditor rbac['Security Auditor'] = {} for people in range(sec_auditors): for role in ['Security Auditor']: rbac['Security Auditor'][names.get_full_name()] = role #pprint.pprint(rbac)
import requests import sys import fundamentus def download_all(stocks, session_id): s = requests.Session() for stock in stocks: referer_url = "{}balancos.php?papel={}&tipo=1".format( fundamentus.get_base_url(),stock) s.get(referer_url) s.headers.update({'Referer': referer_url}) s.headers.update({'HOST': fundamentus.get_base_url()}) s.headers.update({'User-Agent': "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36"}) s.headers.update({'Cookie': "__utmt=1; PHPSESSID={}; __utma=138951332.685737504.1494551880.1494996032.1495510253.5; __utmb=138951332.4.10.1495510253; __utmc=138951332; __utmz=138951332.1494551880.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none)".format(session_id)}) download_link = "{}planilhas.php?SID={}".format( fundamentus.get_base_url(), session_id) stock_file = s.get(download_link) with open("./balancos/{}.zip".format(stock), 'wb') as f: print("Downloading {} ...".format(stock)) for chunk in stock_file.iter_content(chunk_size=128): f.write(chunk) if __name__ == "__main__": if len(sys.argv) < 2: print("Usage example: python fundamentus_downloader.py e81tphr617q54") else: session_id = sys.argv[1] stocks = fundamentus.get_stocks() download_all(stocks, session_id)
# coding=utf-8 from rest_framework import serializers class PublicServantSerializer(serializers.Serializer): first_name = serializers.CharField(label='Prenume', max_length=255) last_name = serializers.CharField(label='Nume', max_length=255) position = serializers.CharField(label='Funcție', max_length=255) position_location = serializers.CharField(label='Locul funcției', max_length=255) # I. Bunuri imobile class LandSerializer(serializers.Serializer): CATEGORY_CHOICES = ( (1, 'agricol'), (2, 'forestier'), (3, 'intravilan'), (4, 'luciu apă'), (5, 'alte categorii de terenuri extravilane, dacă se află în ' 'circuitul civil'), ) location = serializers.CharField(label='Adresa sau zona', max_length=255) category = serializers.ChoiceField(label='Categoria', choices=CATEGORY_CHOICES) year_acquired = serializers.DateField(label='Anul dobândirii', input_formats=['%Y']) area = serializers.IntegerField(label='Suprafața (mp)') share = serializers.IntegerField(label='Cota-parte (%)', min_value=0, max_value=100) method_acquired = serializers.CharField(label='Modul de dobândire', max_length=255) owner = serializers.CharField(label='Titularul', max_length=255) class BuildingSerializer(serializers.Serializer): CATEGORY_CHOICES = ( (1, 'apartament'), (2, 'casă de locuit'), (3, 'casă de vacanță'), (4, 'spații comerciale/de producție'), ) location = serializers.CharField(label='Adresa sau zona', max_length=255) category = serializers.ChoiceField(label='Categoria', choices=CATEGORY_CHOICES) year_acquired = serializers.DateField(label='Anul dobândirii', input_formats=['%Y']) area = serializers.IntegerField(label='Suprafața (mp') share = serializers.IntegerField(label='Cota-parte (%)', min_value=0, max_value=100) method_acquired = serializers.CharField(label='Modul de dobândire', max_length=255) owner = serializers.CharField(label='Titularul', max_length=255) # II. Bunuri mobile class VehicleSerializer(serializers.Serializer): kind = serializers.CharField(label='Natura', max_length=255) brand = serializers.CharField(label='Marca', max_length=255) count = serializers.IntegerField(label='Nr. de bucăți', min_value=0) year_made = serializers.DateField(label='Anul fabricației', input_formats=['%Y']) method_acquired = serializers.CharField(label='Modul de dobândire', max_length=255) class PreciousItemSerializer(serializers.Serializer): description = serializers.CharField(label='Descriere sumară', max_length=255) year_acquired = serializers.DateField(label='Anul dobândirii', input_formats=['%Y']) estimated_value = serializers.IntegerField(label='Valoarea estimată', min_value=0) # III. Bunuri înstrăinate class EstrangedGoodSerializer(serializers.Serializer): kind = serializers.CharField(label='Natura bunului înstrăinat', max_length=255) date_estranged = serializers.DateField(label='Data înstrăinării') estranged_to = serializers.CharField(label='Persoana către care s-a ' 'înstrăinat', max_length=255) procedure = serializers.CharField(label='Forma înstrăinării', max_length=255) value = serializers.IntegerField(label='Valoarea', min_value=0) # IV. Active financiare class BankAccountSerializer(serializers.Serializer): KIND_CHOICES = ( (1, 'cont curent sau echivalente (inclusiv card)'), (2, 'depozit bancar sau echivalente'), (3, 'fonduri de investiții sau echivalente, inclusiv fonduri private ' 'de pensii sau alte sisteme de acumulare') ) institution = serializers.CharField(label='Instituția care administrează ' 'și adresa acesteia', max_length=255) kind = serializers.ChoiceField(label='Tipul', choices=KIND_CHOICES) currency = serializers.CharField(label='Valuta', max_length=3) year_opened = serializers.DateField(label='Deschis în anul', input_formats=['%Y']) value = serializers.IntegerField(label='Sold/valoare la zi', min_value=0) class PlacementSerializer(serializers.Serializer): KIND_CHOICES = ( (1, 'hârtii de valoare deținute (titluri de stat, certificate, ' 'obligațiuni'), (2, 'acțiuni sau părți sociale în societăți comerciale'), (3, 'împrumuturi acordate în nume personal') ) target = serializers.CharField(label='Emitent titlu/societatea în care ' 'persoana e acționar/beneficiar de ' 'împrumut', max_length=255) kind = serializers.ChoiceField(label='Tipul', choices=KIND_CHOICES) # V. Datorii class DebtSerializer(serializers.Serializer): creditor = serializers.CharField(label='Creditor', max_length=255) year_contracted = serializers.DateField(label='Contractat în anul', input_formats=['%Y']) due = serializers.DateField(label='Scadent la') value = serializers.IntegerField(label='Valoare', min_value=0) # VI. Cadouri & VII. Venituri class PresentIncomeSerializer(serializers.Serializer): EARNER_ROLE_CHOICES = ( (1, 'Titular'), (2, 'Soț/soție'), (3, 'Copil'), ) INCOME_CURRENCY_CHOICES = ( (1, 'RON'), (2, 'EUR'), (3, 'USD'), ) earner = serializers.CharField(label='Cine a realizat venitul') earner_role = serializers.ChoiceField(choices=EARNER_ROLE_CHOICES) giver = serializers.CharField(label='Sursa venitului: nume, adresa', max_length=255) service = serializers.CharField(label='Serviciul prestat/Obiectul ' 'generator de venit', max_length=255) anual_income = serializers.IntegerField(label='Venitul anual încasat', min_value=0) income_currency = serializers.ChoiceField(label='Valuta', choices=INCOME_CURRENCY_CHOICES) class WealthStatementSerializer(serializers.Serializer): date = serializers.DateField(label='Data declarației', input_formats=['%d-%m-%Y']) public_servant = PublicServantSerializer() lands = LandSerializer(required=False, many=True) buildings = BuildingSerializer(required=False, many=True) vehicles = VehicleSerializer(required=False, many=True) precious_items = PreciousItemSerializer(required=False, many=True) estranged_goods = EstrangedGoodSerializer(required=False, many=True) bank_accounts = BankAccountSerializer(required=False, many=True) placements = PlacementSerializer(required=False, many=True) debts = DebtSerializer(required=False, many=True) presents = PresentIncomeSerializer(required=False, many=True) sources_of_income = PresentIncomeSerializer(required=False, many=True)
#!/usr/bin/env python """ Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os from resource_management.core.logger import Logger from resource_management.core.resources.system import Execute from resource_management.libraries.functions import StackFeature from resource_management.libraries.functions.stack_features import check_stack_feature from resource_management.libraries.functions.constants import Direction from resource_management.libraries.functions.format import format from resource_management.libraries.functions import setup_ranger_plugin_xml from resource_management.libraries.functions import ranger_functions_v2 def setup_ranger_hdfs(upgrade_type=None): import params if params.enable_ranger_hdfs: stack_version = None if upgrade_type is not None: stack_version = params.version if params.retryAble: Logger.info("HDFS: Setup ranger: command retry enables thus retrying if ranger admin is down !") else: Logger.info("HDFS: Setup ranger: command retry not enabled thus skipping if ranger admin is down !") if params.is_hdfs_federation_enabled and params.is_namenode_host: if params.namenode_nameservice is not None and params.fs_default_name == format("hdfs://{namenode_nameservice}"): update_ranger_hdfs_service_name() api_version = 'v2' setup_ranger_plugin_xml.setup_ranger_plugin('hadoop-client', 'hdfs', params.previous_jdbc_jar, params.downloaded_custom_connector, params.driver_curl_source, params.driver_curl_target, params.java_home, params.repo_name, params.hdfs_ranger_plugin_repo, params.ranger_env, params.ranger_plugin_properties, params.policy_user, params.policymgr_mgr_url, params.enable_ranger_hdfs, conf_dict = params.hadoop_conf_dir, component_user = params.hdfs_user, component_group = params.user_group, cache_service_list = ['hdfs'], plugin_audit_properties = params.config['configurations']['ranger-hdfs-audit'], plugin_audit_attributes = params.config['configurationAttributes']['ranger-hdfs-audit'], plugin_security_properties = params.config['configurations']['ranger-hdfs-security'], plugin_security_attributes = params.config['configurationAttributes']['ranger-hdfs-security'], plugin_policymgr_ssl_properties = params.config['configurations']['ranger-hdfs-policymgr-ssl'], plugin_policymgr_ssl_attributes = params.config['configurationAttributes']['ranger-hdfs-policymgr-ssl'], component_list = ['hadoop-client'], audit_db_is_enabled = params.xa_audit_db_is_enabled, credential_file = params.credential_file, xa_audit_db_password = params.xa_audit_db_password, ssl_truststore_password = params.ssl_truststore_password, ssl_keystore_password = params.ssl_keystore_password, api_version = api_version ,stack_version_override = stack_version, skip_if_rangeradmin_down = not params.retryAble, is_security_enabled = params.security_enabled, is_stack_supports_ranger_kerberos = params.stack_supports_ranger_kerberos, component_user_principal = params.nn_principal_name if params.security_enabled else None, component_user_keytab = params.nn_keytab if params.security_enabled else None) else: Logger.info('Ranger Hdfs plugin is not enabled') def create_ranger_audit_hdfs_directories(): import params if params.enable_ranger_hdfs and params.xml_configurations_supported and params.xa_audit_hdfs_is_enabled: params.HdfsResource("/ranger/audit", type="directory", action="create_on_execute", owner=params.hdfs_user, group=params.hdfs_user, mode=0755, recursive_chmod=True, ) params.HdfsResource("/ranger/audit/hdfs", type="directory", action="create_on_execute", owner=params.hdfs_user, group=params.hdfs_user, mode=0700, recursive_chmod=True, ) params.HdfsResource(None, action="execute") else: Logger.info('Skipping creation of audit directory for Ranger Hdfs Plugin.') def update_ranger_hdfs_service_name(): """ This is used for renaming and updating the default service created on Ranger Admin for NN Federation enabled cluster """ import params service_name_exist = setup_ranger_plugin_xml.get_policycache_service_name(service_name = "hdfs", repo_name = params.repo_name, cache_service_list = ['hdfs']) if not service_name_exist: get_repo_name = None ranger_admin_v2_obj = ranger_functions_v2.RangeradminV2(url = params.policymgr_mgr_url, skip_if_rangeradmin_down = not params.retryAble) user_create_response = ranger_admin_v2_obj.create_ambari_admin_user(ambari_admin_username = params.ranger_env['ranger_admin_username'], ambari_admin_password = params.ranger_env['ranger_admin_password'], usernamepassword = params.ranger_env['admin_username'] + ":" + params.ranger_env['admin_password']) if user_create_response is not None and user_create_response == 200: get_repo_name = ranger_admin_v2_obj.get_repository_by_name_urllib2(name = params.repo_name_default, component = "hdfs", status = "true", usernamepassword = params.ranger_env['ranger_admin_username'] + ":" + params.ranger_env['ranger_admin_password']) if get_repo_name is not None and get_repo_name['name'] == params.repo_name_default: update_repo_name = ranger_admin_v2_obj.update_repository_urllib2(component = "hdfs", repo_name = params.repo_name_default, repo_properties = params.hdfs_ranger_plugin_repo, admin_user = params.ranger_env['ranger_admin_username'], admin_password = params.ranger_env['ranger_admin_password'], force_rename = True)
from django.db import models from django.contrib.auth.models import AbstractUser from django.utils.translation import ugettext_lazy as _ from .managers import CustomUserManager class CustomUser(AbstractUser): username = None email = models.EmailField(_('email address'), unique=True) klass = models.PositiveSmallIntegerField(default=0, verbose_name = 'Номер Класса') imya = models.TextField(max_length=50, default='-', verbose_name = 'Имя') familiya = models.TextField(max_length=50, default='-', verbose_name = 'Фамилия') otchestvo = models.TextField(max_length=50, default='-', verbose_name = 'Отчество') telefon = models.TextField(max_length=50, default='-', verbose_name = 'Телефон') grupa = models.TextField(max_length=50, default='-', verbose_name = 'Группа') USERNAME_FIELD = 'email' REQUIRED_FIELDS = [] objects = CustomUserManager() def __str__(self): return self.email
import json import random import re from datetime import date from operator import attrgetter from typing import List, Optional from MainSettings import MainSettings from medalcalc.models.Hero import Hero from medalcalc.models.HeroHistory import HeroHistory from common.utils.DateUtils import DateUtils from medalcalc.models.MedalType import MedalType from medalcalc.utils.DungeonUtils import DungeonUtils from medalcalc.utils.HeroUtils import HeroUtils, Element class MedalCalculator: TIMEOUT_DAYS: int = 5000 heroUtils: HeroUtils dungeonUtils = DungeonUtils heroes: dict elementX2: Element dailyTickets: int rebuys: int showHistory: bool heroFilter: List[str] = [] calcElements: List[str] = [] result: List[Hero] = [] def __init__(self): HeroUtils() self.dungeonUtils = DungeonUtils() self.heroUtils = HeroUtils() # settings self.showHistory = MainSettings.config.getboolean("calculator", "showHistory") self.showHistory = MainSettings.config.getboolean("calculator", "showHistory") for value in MainSettings.config.get("calculator", "heroFilter").split(","): if value != '': self.heroFilter.append(value.strip()) farmElements = re.split(' +', MainSettings.config.get("calculator", "elements")) for element in farmElements: self.calcElements.append(element) def calculateMedals(self): # dates DateUtils.init(date.today()) # dungeons self.dailyTickets = self.dungeonUtils.ticketsDaily # x2 extraTicketsConfig = self.dungeonUtils.ticketsExtraX2 extraTickets = extraTicketsConfig self.rebuys = self.dungeonUtils.rebuysX2 # initially skip the current day DateUtils.nextDay() while True: isX2 = self.dungeonUtils.isDoubleDungeon(DateUtils.currentDate) element = self.dungeonUtils.elementX2 if isX2 else self.dungeonUtils.getDungeon() if element: extraTickets = extraTickets if isX2 else 0 self.heroes = self.heroUtils.heroes[element] if len(self.heroes) > 0: self.simulateTickets( isX2=isX2, extraTickets=extraTickets ) if not isX2: extraTickets = extraTicketsConfig ################## # cc self.heroUtils.crusherChest() self.heroUtils.checkMax(self.result, self.heroes, self.dungeonUtils) # guild shop self.heroUtils.guildShop() self.heroUtils.checkMax(self.result, self.heroes, self.dungeonUtils) self.heroUtils.crusade() self.heroUtils.checkMax(self.result, self.heroes, self.dungeonUtils) # request self.heroUtils.requestHero(self.heroes, DateUtils.currentDate) self.heroUtils.checkMax(self.result, self.heroes, self.dungeonUtils) # mm self.heroUtils.incrementMagicMedal() self.heroUtils.useMagicMedals(self.heroes) self.heroUtils.checkMax(self.result, self.heroes, self.dungeonUtils) # check finished if self.isFinished(): return ########### # next day DateUtils.nextDay() # timeout if DateUtils.days > self.TIMEOUT_DAYS: raise Exception(f"Timeout after {self.TIMEOUT_DAYS} days: {DateUtils.days}") ############### ######################### def simulateTickets( self, isX2: bool = False, extraTickets: int = 0): totalTickets = self.dailyTickets + extraTickets medalType = MedalType.DUNGEON if isX2: totalTickets += (self.rebuys * 10) medalType = MedalType.DUNGEON_X2 medalIncrement = 2 if isX2 else 1 for ticket in range(totalTickets): if not self.heroes: return # draw hero hero = self.randomHero(self.heroes) if hero: hero.increment(medalIncrement, type=medalType) self.heroUtils.checkMax(self.result, self.heroes, self.dungeonUtils) # draw common commonHero = self.randomHero(self.heroes, common=True) if commonHero: commonHero.increment(medalIncrement, type=medalType) if commonHero is not hero: self.heroUtils.checkMax(self.result, self.heroes, self.dungeonUtils) def randomHero(self, heroMap, common: bool = False) -> Optional[Hero]: heroes = list(heroMap) if common: commonFilter = filter(lambda commonHero: commonHero.isCommon(), heroMap.values()) heroes = list(map(lambda commonHero: commonHero.name, commonFilter)) if not heroes: return None heroName = random.choice(heroes) return heroMap[heroName] def isFinished(self) -> bool: for calcElement in self.calcElements: element = Element(calcElement) if self.heroUtils.heroes[element]: return False return True def print(self, sort: bool): for element in self.calcElements: self.__printElement(element=Element(element), sort=sort, showHistory=self.showHistory) def __printElement(self, element: Element, sort=False, showHistory=False): HeroHistory.printHeader(element.value) if sort: histories: List[HeroHistory] = [] for hero in self.result: if hero.element == element and (not self.heroFilter or hero.name in self.heroFilter): for hist in hero.history: if showHistory or hist.isMax(): histories.append(hist) histories = sorted(histories, key=attrgetter('days')) for hist in histories: hist.print() if not sort: for hero in self.result: hero.print(history=showHistory) HeroHistory.printFooter() def printSettings(self): print(f"Settings") HeroHistory.printFooter() length = 25 print(f"Request (common):".ljust(length) + str(self.heroUtils.request)) print(f"Request (sunday):".ljust(length) + str(self.heroUtils.requestSunday)) print(f"MM Hero:".ljust(length) + str(self.heroUtils.magicMedalHero)) print(f"Element x2:".ljust(length) + self.dungeonUtils.elementX2.value) print(f"Dungeon daily tickets:".ljust(length) + str(self.dungeonUtils.ticketsDaily)) print(f"Dungeon x2 extra tickets:".ljust(length) + str(self.dungeonUtils.ticketsExtraX2)) print(f"Dungeon x2 rebuys:".ljust(length) + str(self.dungeonUtils.rebuysX2)) print(f"Weekly dungeons:".ljust(length) + json.dumps(self.dungeonUtils.dailyDungeons))
from izigraph.importers import NgvImporter import izigraph def test_importer_can_import_graph(tmpdir): importer = NgvImporter() content = "0\n0\n" p = tmpdir.mkdir("sub").join("graph.csv") p.write(content) g = importer.import_graph(str(p)) assert isinstance(g, izigraph.Graph) def test_importer_can_import_graph_with_nodes(tmpdir): importer = NgvImporter() content = "2\n0\n0,0;0,0\n0,0;0,0\n" p = tmpdir.mkdir("sub").join("graph.csv") p.write(content) g = importer.import_graph(str(p)) assert g.nodes_count() == 2 def test_importer_can_import_graph_nodes_positions(tmpdir): importer = NgvImporter() content = "2\n0\n1,2;2,3\n3,4;4,5\n" p = tmpdir.mkdir("sub").join("graph.csv") p.write(content) g = importer.import_graph(str(p)) n0 = g.find_node_by_label('0') n1 = g.find_node_by_label('1') assert n0.position() == (1.2, 2.3) assert n1.position() == (3.4, 4.5) def test_importer_can_import_graph_with_links(tmpdir): importer = NgvImporter() content = "2\n1\n1,2;2,3\n3,4;4,5\n0;1\n" p = tmpdir.mkdir("sub").join("graph.csv") p.write(content) g = importer.import_graph(str(p)) assert g.links_count() == 1 assert ('0', '1') in g.links_dict() assert ('1', '0') in g.links_dict()
# Generated by Django 2.1.7 on 2019-04-30 09:57 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('mainapp', '0001_initial'), ] operations = [ migrations.AlterField( model_name='catalog', name='image', field=models.ImageField(blank=True, upload_to='', verbose_name='Preview'), ), ]
import requests import math import geocoder def get_mid_of_2pts(coords1,coords2): x1,y1 = coords1 x2,y2 = coords2 x_mid = (x1 + x2)/2.0 y_mid = (y1 + y2)/2.0 return (x_mid,y_mid) def address_to_coordinates(user_address): the_location = geocoder.osm(user_address) lat = the_location.osm.get('y',None) lon = the_location.osm.get('x', None) return (lat,lon) def radius_1mile(coords): #1km = 0.015060 coordinates lat,lng = coords lat_down = lat - (0.015060)*2 lat_up = lat + (0.015060)*2 lng_left = lng - (0.015060)*2 lng_right = lng + (0.015060)*2 return (min(lat_down, lat_up), max(lat_down, lat_up), min(lng_left, lng_right), max(lng_left, lng_right)) #return (lat_up, lat_down, lng_left, lng_right) def distance_between_2pts(coords1,coords2): x1,y1 = coords1 x2,y2 = coords2 x = (x2-x1)**2 y = (y2-y1)**2 z = x+y return math.sqrt(z)
import common import re def help(): return {'authors': ['kqr', 'nycz'], 'years': ['2012', '2013'], 'version': '1.2', 'description': 'Interface till Google via något slags ajax json API.', 'argument': '<googlesökning>'} def run(nick, message, cmd_prefix): arg = common.get_plugin_argument(message, cmd_prefix, 'g') if arg is None: return return "{0}: {1}".format(nick, search(arg)) def search(args): hits = common.read_json(common.read_url("http://ajax.googleapis.com/ajax/services/search/web?v=1.0&safe=off&q=", args))['responseData']['results'] if hits: striphtml = lambda s: re.sub(r'<.+?>', '', re.sub(r' +', '', s)) url = striphtml(hits[0]['url']) title = striphtml(hits[0]['title']) content = striphtml(hits[0]['content']) result = "{1}: {2} -- {0}".format(url, title, content) else: result = "No hits." return result
from django.contrib.staticfiles.management.commands.collectstatic import Command as BaseCommand from js_routing.functions import build_js_file class Command(BaseCommand): """ Command that collects static and generates the routes js from the templates. """ help = "Collect static files from apps and other locations in a single location." def handle_noargs(self, **options): build_js_file() super(Command, self).handle_noargs(**options)
import keras from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Flatten, BatchNormalization from keras.layers import Conv2D, MaxPooling2D import os from keras.optimizers import Adam from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau num_classes = 3 img_rows, img_cols = 48,48 batch_size = 128 train_data_dir = 'NHS_DataSet/train' validation_data_dir = 'NHS_DataSet/validation' train_datagen = ImageDataGenerator( rescale=1./255, rotation_range=30, zoom_range=0.3, width_shift_range=0.4, height_shift_range=0.4, horizontal_flip=True, fill_mode='nearest') validation_datagen = ImageDataGenerator(rescale=1./255) train_generator = train_datagen.flow_from_directory( train_data_dir, color_mode='grayscale', target_size=(img_rows,img_cols), batch_size=batch_size, class_mode='categorical', shuffle=True) validation_generator = validation_datagen.flow_from_directory( validation_data_dir, color_mode='grayscale', target_size=(img_rows,img_cols), batch_size=batch_size, class_mode='categorical', shuffle=True) model = Sequential() model.add(Conv2D(32,(3,3),padding='same', kernel_initializer='he_normal', activation='elu', input_shape=(img_rows,img_cols,1))) model.add(BatchNormalization()) model.add(Conv2D(32,(3,3),padding='same', kernel_initializer='he_normal', activation='elu', input_shape=(img_rows,img_cols,1))) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.1)) model.add(Conv2D(64,(3,3),padding='same', activation='elu', kernel_initializer='he_normal')) model.add(BatchNormalization()) model.add(Conv2D(64,(3,3),padding='same', activation='elu', kernel_initializer='he_normal')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.1)) model.add(Conv2D(128,(3,3),padding='same', activation='elu', kernel_initializer='he_normal')) model.add(BatchNormalization()) model.add(Conv2D(128,(3,3),padding='same', activation='elu', kernel_initializer='he_normal')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.1)) model.add(Conv2D(256,(3,3),padding='same', activation='elu', kernel_initializer='he_normal')) model.add(BatchNormalization()) model.add(Conv2D(256,(3,3),padding='same', activation='elu', kernel_initializer='he_normal')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.1)) model.add(Flatten()) model.add(Dense(64,activation='elu',kernel_initializer='he_normal')) model.add(BatchNormalization()) model.add(Dropout(0.4)) model.add(Dense(64,activation='elu',kernel_initializer='he_normal')) model.add(BatchNormalization()) model.add(Dropout(0.4)) model.add(Dense(num_classes, kernel_initializer='he_normal', activation='softmax')) print(model.summary()) checkpoint = ModelCheckpoint( 'NHS_vgg.h5', monitor='val_accuracy', mode='max', save_best_only=True, verbose=1) reduce_lr = ReduceLROnPlateau( monitor='val_loss', factor=0.2, patience=3, verbose=1, min_delta=0.0001) callbacks = [checkpoint, reduce_lr] model.compile(loss='categorical_crossentropy', optimizer = Adam(lr=0.003), metrics=['accuracy']) nb_train_samples = 15421 nb_validation_samples = 1921 epochs = 10 history = model.fit_generator( train_generator, steps_per_epoch=nb_train_samples//batch_size, epochs = epochs, callbacks = callbacks, validation_data = validation_generator, validation_steps = nb_validation_samples//batch_size) import matplotlib.pyplot as plt %matplotlib inline plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.title('Model Accuracy') plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.legend(['train', 'test'], loc='upper left') plt.show()
print("Started with GitHub")
N = input() cruzamentos = 0 x = 1 #x é uma variável qualquer temporária pregos = [int(i) for i in input().split()] for i in range(len(pregos)-1,0,-1): for j in range(len(pregos)-1-x,-1,-1): if pregos[j] > pregos[i]: cruzamentos +=1 x += 1 print(cruzamentos)
#import the get_basic_image file as an easier to read name #no need to import serpapi since it is imported in the get_basic_image file import get_basic_images as gbi #An array of all queries that need to be run #This is a google search query so search syntax can be used link below for examples #https://support.google.com/websearch/answer/2466433?hl=en queries = ["Villages", "Roads", "Cities", "Rivers"] #Loop through the queries array and run the query, save response arrray to results #Use results to extract image links and download_image_from_url to download for query in queries: results = gbi.search_request(query) links = gbi.get_image_links_from_response(results) for link in links: #save the images to images directory and in seperated folders by query gbi.download_image_from_url(link, "images2/" + query + "/" + query + str(links.index(link)) + ".png")
from django.shortcuts import render, render_to_response from django.template.context import RequestContext # Create your views here. def home(request): template = "index.html" return render_to_response(template, context_instance=RequestContext(request,locals()))
from collections import deque from typing import List from leetcode import TreeNode, new_tree, test def level_order_bottom(root: TreeNode) -> List[List[int]]: if not root: return [] queue, result = deque([root]), [] while queue: queue_len = len(queue) level = [] for _ in range(queue_len): node = queue.popleft() level.append(node.val) if node.left: queue.append(node.left) if node.right: queue.append(node.right) result.append(level) result.reverse() return result test( level_order_bottom, [ (new_tree(3, 9, 20, None, None, 15, 7), [[15, 7], [9, 20], [3]]), ], )
import requests import Utils from bs4 import BeautifulSoup TRULIA_REQUEST_KEY = 'trulia' HOMEFINDER_REQUEST_KEY = 'homefinder' REMAX_REQUEST_KEY = 'remax' ZILLOW_REQUEST_KEY = 'zillow' def get_next_homefinder_url(raw_html): soup_file = BeautifulSoup(raw_html, 'lxml') for link in soup_file.findAll("link", attrs={'rel': True}): if link['rel'][0] == 'next': retrieved_link = link['href'] return retrieved_link # def get_next_trulia_url(base_link, pg): # return base_link + str(pg) + '_p/' def get_next_trulia_url(raw_html): soup_file = BeautifulSoup(raw_html, 'lxml') for link in soup_file.findAll("link", attrs={'rel': True}): if link['rel'][0] == 'next': retrieved_link = link['href'] if retrieved_link is not None: retrieved_link = str(retrieved_link).replace('//', 'http://') else: retrieved_link = "" return retrieved_link def get_next_remax_url(base_link, pg): return base_link def get_next_link(site_key, raw): next_link = "" if site_key == TRULIA_REQUEST_KEY: next_link = get_next_trulia_url(raw) elif site_key == HOMEFINDER_REQUEST_KEY: next_link = get_next_homefinder_url(raw) elif site_key == REMAX_REQUEST_KEY: print('Working on getting next Remax pages') return next_link def get_and_write_number_of_html_files(site_key, html_dir, num_to_get, base_link, today): link_to_get = base_link requested_files = [] if num_to_get > 0: pg_num = 1 for _ in range(num_to_get): if link_to_get != "": response = requests.get(link_to_get) raw_html = response.content new_file_name = today + '-' + str(pg_num) + '.' + site_key + '.html' Utils.write_html_to_file(html_dir, new_file_name, raw_html) requested_files.append(new_file_name) pg_num += 1 link_to_get = get_next_link(site_key, raw_html) else: print("Error getting next link") return requested_files def get_and_write_all_html_files(site_key, html_dir, base_link, today): link_to_get = base_link requested_files = [] pg_num = 1 while link_to_get != "" and link_to_get is not None: response = requests.get(link_to_get) raw_html = response.content new_file_name = today + '-' + str(pg_num) + '.' + site_key + '.html' Utils.write_html_to_file(html_dir, new_file_name, raw_html) requested_files.append(new_file_name) pg_num += 1 link_to_get = get_next_link(site_key, raw_html) return requested_files
import os import git import yaml import csv import re import time import gspread from pydrive.auth import ServiceAccountCredentials # import pdb; pdb.set_trace() class Env: def __init__(self, name): self.name = name self.projects = [] self.sum_metrics = None def get_project(self, name): for prj in self.projects: if prj.name == name: return prj prj = Project(name) self.projects.append(prj) return prj def calc(self): sum_min_CPU = 0 sum_max_CPU = 0 sum_min_MEM = 0 sum_max_MEM = 0 int_sum_min_CPU = 0 int_sum_max_CPU = 0 int_sum_min_MEM = 0 int_sum_max_MEM = 0 for prj in self.projects: sum_min_CPU += prj.sum_metrics.min_CPU sum_max_CPU += prj.sum_metrics.max_CPU sum_min_MEM += prj.sum_metrics.min_MEM sum_max_MEM += prj.sum_metrics.max_MEM self.sum_metrics = Calculator(sum_min_CPU, sum_max_CPU, sum_min_MEM, sum_max_MEM) for prj in self.projects: int_sum_min_CPU += prj.sum_metrics_int.min_CPU int_sum_max_CPU += prj.sum_metrics_int.max_CPU int_sum_min_MEM += prj.sum_metrics_int.min_MEM int_sum_max_MEM += prj.sum_metrics_int.max_MEM self.sum_metrics_int = Calculator(int_sum_min_CPU, int_sum_max_CPU, int_sum_min_MEM, int_sum_max_MEM) def __repr__(self): return "Env: {0}\n Projects: {1}".format(self.name, self.projects) class Project: def __init__(self, name): self.name = name self.services = [] self.sum_metrics = None def get_service(self, name): for srv in self.services: if srv.name == name: return srv srv = Service(name) self.services.append(srv) return srv def calc(self): sum_min_CPU = 0 sum_max_CPU = 0 sum_min_MEM = 0 sum_max_MEM = 0 int_sum_min_CPU = 0 int_sum_max_CPU = 0 int_sum_min_MEM = 0 int_sum_max_MEM = 0 for srv in self.services: sum_min_CPU += srv.sum_metrics.min_CPU sum_max_CPU += srv.sum_metrics.max_CPU sum_min_MEM += srv.sum_metrics.min_MEM sum_max_MEM += srv.sum_metrics.max_MEM self.sum_metrics = Calculator(sum_min_CPU, sum_max_CPU, sum_min_MEM, sum_max_MEM) for srv in self.services: int_sum_min_CPU += srv.sum_metrics_int.min_CPU int_sum_max_CPU += srv.sum_metrics_int.max_CPU int_sum_min_MEM += srv.sum_metrics_int.min_MEM int_sum_max_MEM += srv.sum_metrics_int.max_MEM self.sum_metrics_int = Calculator(int_sum_min_CPU, int_sum_max_CPU, int_sum_min_MEM, int_sum_max_MEM) def __repr__(self): return "\nProject: {0}\nServices: {1}".format(self.name, self.services) class Service: def __init__(self, name): self.name = name self.pods = [] self.sum_metrics = None self.sum_metrics_int = None def get_pod(self, name): for pod in self.pods: if pod.name == name: return pod pod = Pod(name) self.pods.append(pod) return pod def calc(self): sum_min_CPU = 0 sum_max_CPU = 0 sum_min_MEM = 0 sum_max_MEM = 0 int_sum_min_CPU = 0 int_sum_max_CPU = 0 int_sum_min_MEM = 0 int_sum_max_MEM = 0 for pod in self.pods: sum_min_CPU += pod.sum_metrics.min_CPU sum_max_CPU += pod.sum_metrics.max_CPU sum_min_MEM += pod.sum_metrics.min_MEM sum_max_MEM += pod.sum_metrics.max_MEM for pod in self.pods: int_sum_min_CPU += pod.sum_metrics.min_CPU / pod.replicas int_sum_max_CPU += pod.sum_metrics.max_CPU / pod.replicas int_sum_min_MEM += pod.sum_metrics.min_MEM / pod.replicas int_sum_max_MEM += pod.sum_metrics.max_MEM / pod.replicas self.sum_metrics = Calculator(sum_min_CPU, sum_max_CPU, sum_min_MEM, sum_max_MEM) self.sum_metrics_int = Calculator(int_sum_min_CPU, int_sum_max_CPU, int_sum_min_MEM, int_sum_max_MEM) def __repr__(self): return "\nService: {0}\nPods: {1}".format(self.name, self.pods) class Pod: def __init__(self, name): self.name = name self.containers = [] self.replicas = None self.sum_metrics = None def add_container(self, cnt): # for cnt in self.containers: # if cnt.name == name: # return cnt self.containers.append(cnt) return cnt def calc(self): sum_min_CPU = 0 sum_max_CPU = 0 sum_min_MEM = 0 sum_max_MEM = 0 for cnt in self.containers: sum_min_CPU += self.none_checker(cnt.metrics.min_CPU) * self.replicas sum_max_CPU += self.none_checker(cnt.metrics.max_CPU) * self.replicas sum_min_MEM += self.none_checker(cnt.metrics.min_MEM) * self.replicas sum_max_MEM += self.none_checker(cnt.metrics.max_MEM) * self.replicas self.sum_metrics = Calculator(sum_min_CPU, sum_max_CPU, sum_min_MEM, sum_max_MEM) @staticmethod def none_checker(mtr): if mtr is None: return 0 else: return mtr def __repr__(self): return "\nPod: {0} |Replicas: {2}\nContainers: {1}".format(self.name, self.containers, self.replicas) class Container: def __init__(self, name, metrics): self.name = name self.metrics = metrics def __repr__(self): return "\nContainer: {0}\n \tMetrics: {1}".format(self.name, self.metrics) class Metrics: def __init__(self): self.min_CPU = None self.max_CPU = None self.min_MEM = None self.max_MEM = None def __repr__(self): return "\n\t\tmin_CPU: {0} \n\t\tmax_CPU: {1} \n\t\tmin_MEM: {2} \n\t\tmax_MEM: {3}".format(self.min_CPU, self.max_CPU, self.min_MEM, self.max_MEM) class Calculator: def __init__(self, min_CPU, max_CPU, min_MEM, max_MEM): self.min_CPU = min_CPU self.max_CPU = max_CPU self.min_MEM = min_MEM self.max_MEM = max_MEM class Summarizer: def __init__(self, envs): self.envs = envs def sum(self): for env in self.envs: for prj in env.projects: for srv in prj.services: for pod in srv.pods: pod.calc() srv.calc() prj.calc() env.calc() class Repository: def __init__(self, git_url): self.local_path = os.getcwd() + '/repo' self.git_url = git_url print("Cloning repo in {0}".format(self.local_path)) try: git.Repo.clone_from(self.git_url, self.local_path) except git.exc.GitCommandError as err: print(err) self.repo = git.Repo(self.local_path) print("Active branch: {0}".format(self.repo.active_branch)) print("- : {0}".format(self.repo)) class Parser: """ :param repo, folders :returns nested dict with metrics """ def __init__(self, repo, to_check_folders, envs): self.repo_path = repo # Local system path to repository self.required_files_path = [] # Array with all files from folders to check self.to_check_folders = to_check_folders self.envs = envs # todo git webhooks after commit def searcher(self, path): """ function recursivelly searches all files from the given file path :param path: folder path :return: all files full path, from given folder """ for file in os.listdir(path): file_path = str(path + '/' + file) if os.path.isdir(file_path): self.searcher(file_path) else: self.required_files_path.append(file_path) return self.required_files_path def search_required_folders(self, folders): """ :param folders: folders required to check :return: all files full paths """ for folder in folders: folder = self.repo_path + "/" + folder try: for file in os.listdir(folder): file_path = str(folder + '/' + file) if os.path.isdir(file_path): self.searcher(file_path) else: self.required_files_path.append(file_path) except FileNotFoundError as err: print("Directory not found: {0}".format(err)) return self.required_files_path def parse(self): required_files = self.search_required_folders(self.to_check_folders) self.fill_the_structure(required_files) # Getting files from to_check_folders to parse def fill_the_structure(self, files): """ :param files to parse :return: list of dicts for each env """ files_parsed = 0 files_failed_to_parse = 0 for file in files: data = self.check_file_kind(file) if data: print("Checking file: {0}".format(file)) # print("Data: {0}".format(data)) self.parse_yaml(file, data) files_parsed+=1 print("Files parsed: {0}".format(files_parsed)) return self.envs def check_file_kind(self, file): if file.lower().endswith('.yaml'): with open(file, 'r') as stream: try: for data in yaml.load_all(stream): if data: if data.get('kind', None) == 'Deployment': return data else: return False except AttributeError as err: print("=> Error parsing yaml file: {0} \n Error: {1}".format(file, err)) return False except yaml.YAMLError as err: print("=> Error parsing yaml file: {0} \n Error: {1}".format(file, err)) return False else: return False def get_env(self, name): for env in self.envs: if env.name == name: return env env = Env(name) self.envs.append(env) return env def parse_yaml(self, file, data): env = self.get_env(file.split('/')[-2]) # prj = env.get_project(file[(file.index('/deployment/') + len('/deployment/')):file.index("/" + env.name)]) prj = env.get_project(file.split('/')[file.split('/').index('deployment') + 1]) if data.get('metadata', {}).get('name', None): srv = prj.get_service(data['metadata']['name']) pod_replicas = data.get('spec', {}).get('replicas', None) if data.get('spec', {}).get('template', {}).get('metadata', {}).get('labels', {}).get('app', None): pod = srv.get_pod(data['spec']['template']['metadata']['labels']['app']) pod.replicas = pod_replicas else: pod = srv.get_pod(srv.name) pod.replicas = pod_replicas if data.get('spec', {}).get('template', {}).get('spec', {}).get('containers', None): for container in data['spec']['template']['spec']['containers']: metrics = Metrics() if container.get('resources', None): if container['resources'].get('requests', None): metrics.min_CPU = container['resources']['requests'].get('cpu', 0) metrics.min_MEM = container['resources']['requests'].get('memory', 0) if container['resources'].get('limits', None): metrics.max_CPU = container['resources']['limits'].get('cpu', 0) metrics.max_MEM = container['resources']['limits'].get('memory', 0) metrics.min_CPU = self.metric_recalculation(metrics.min_CPU) metrics.max_CPU = self.metric_recalculation(metrics.max_CPU) metrics.max_MEM = self.metric_recalculation(metrics.max_MEM) metrics.min_MEM = self.metric_recalculation(metrics.min_MEM) cnt = Container(container.get('name', None), metrics) pod.add_container(cnt) def metric_recalculation(self, metric): if type(metric) is int: return metric if type(metric) is str: if 'm' in metric: return int(re.findall('\d+', str(metric))[0]) / 1000 elif 'Gi' in metric: return int(re.findall('\d+', str(metric))[0]) * 1000 elif 'Mi' in metric: return int(re.findall('\d+', str(metric))[0]) if type(metric) is None: return int(0) class Printer: def __init__(self, envs): self.envs = envs def print(self): for env in envs: print("Env: " + env.name) for prj in env.projects: print("- Project: " + prj.name) for srv in prj.services: print(" - Service: " + srv.name) for pod in srv.pods: print(" - Pod: " + pod.name) print(" Replicas: {0}".format(pod.replicas)) for cnt in pod.containers: print(" - Container: {0}".format(cnt.name)) print(" {0}".format(cnt.metrics)) class CSVPrinter(Printer): def __init__(self, envs): self.headers = ["Project", "Service", "Pod", "Summary", "Replicas", "Container", "min_CPU", "max_CPU", "min_MEM", "max_MEM"] super(CSVPrinter, self).__init__(envs) def write_row(self, *arg): self.csv_env.append([*arg]) def print_to_files(self): csv_files_dir = os.getcwd() + '/envs/' print("Printing to files to {0}".format(csv_files_dir)) if not os.path.exists(csv_files_dir): os.makedirs(csv_files_dir) files = [] env_names = [] for env in self.envs: with open(csv_files_dir + env.name, "w") as file: writer = csv.DictWriter(file, self.headers) writer.writeheader() for row in self.print_env(env): writer.writerow(dict(zip(self.headers, row))) files.append(csv_files_dir + env.name) env_names.append(env.name) return env_names, files def print_env(self, env): self.csv_env = [] for prj in env.projects: for srv in prj.services: for pod in srv.pods: for cnt in pod.containers: self.write_row(prj.name, srv.name, pod.name, None, None, cnt.name, cnt.metrics.min_CPU, cnt.metrics.max_CPU, cnt.metrics.min_MEM, cnt.metrics.max_MEM) self.write_row(prj.name, srv.name, pod.name, "by pod", pod.replicas, None, pod.sum_metrics.min_CPU, pod.sum_metrics.max_CPU, pod.sum_metrics.min_MEM, pod.sum_metrics.max_MEM) self.write_row(None, None, None, None, None, None, None, None, None, None) self.write_row(prj.name, srv.name, None, "by service", None, None, srv.sum_metrics.min_CPU, srv.sum_metrics.max_CPU, srv.sum_metrics.min_MEM, srv.sum_metrics.max_MEM) self.write_row(prj.name, srv.name, None, "by service(integration)", None, None, srv.sum_metrics_int.min_CPU, srv.sum_metrics_int.max_CPU, srv.sum_metrics_int.min_MEM, srv.sum_metrics_int.max_MEM) self.write_row(None, None, None, None, None, None, None, None, None, None) self.write_row(prj.name, None, None, "by project", None, None, prj.sum_metrics.min_CPU, prj.sum_metrics.max_CPU, prj.sum_metrics.min_MEM, prj.sum_metrics.max_MEM) self.write_row(prj.name, None, None, "by project(integration)", None, None, prj.sum_metrics_int.min_CPU, prj.sum_metrics_int.max_CPU, prj.sum_metrics_int.min_MEM, prj.sum_metrics_int.max_MEM) self.write_row(None, None, None, None, None, None, None, None, None, None) self.write_row(None, None, None, None, None, None, None, None, None, None) self.write_row(None, None, None, "Total", None, None, env.sum_metrics.min_CPU, env.sum_metrics.max_CPU, env.sum_metrics.min_MEM, env.sum_metrics.max_MEM) self.write_row(None, None, None, "Total(integration)", None, None, env.sum_metrics_int.min_CPU, env.sum_metrics_int.max_CPU, env.sum_metrics_int.min_MEM, env.sum_metrics_int.max_MEM) return self.csv_env def print(self): for env in envs: return env.name, self.print_env(env) def print_by_env(self, env): return env.name, self.print_env(env) class CSVImporter: def __init__(self, credentials): scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive'] self.credentials = ServiceAccountCredentials.from_json_keyfile_name(credentials, scope) self.gc = gspread.authorize(self.credentials) def create_sheet(self, sh_name, mail): self.sh = self.gc.create(sh_name) self.sh.share('mail', perm_type='user', role='writer') return self.sh def calculate_env_size(self, metrics): rows = len(metrics) cols = len(metrics[0]) print("rows: {0} \ncolumns: {1}".format(rows, cols)) return rows, cols def import_env(self, sheet_key, env_name, metrics, mail): print("Updating env: {0}".format(env_name)) try: sheet = self.gc.open_by_key(sheet_key) print("Opening sheet: {0}".format(sheet.title)) except Exception: print("Creating new sheet: {0}".format(sheet.title)) sheet = self.create_sheet(sheet_key, mail) rows, cols = self.calculate_env_size(metrics) try: sheet.del_worksheet(sheet.worksheet(env_name)) except gspread.exceptions.WorksheetNotFound: print("Creating new worksheet: {0}".format(env_name)) wsh = sheet.add_worksheet(title=env_name, rows=rows, cols=cols) self.update_by_cell(wsh, metrics) def update_by_cell(self, wsh, metrics): if self.credentials.access_token_expired: print("Refreshing token") self.gc.login() for row_i, row in enumerate(metrics): print(row_i, row) for col_i, cell in enumerate(row): print(row_i + 1, col_i + 1, cell) wsh.update_cell(row_i + 1, col_i + 1, cell) time.sleep(1) def update_wsh(self, wsh, metrics): cell_list = [] for row_i, row in enumerate(metrics): for col_i, value in enumerate(row): print(row_i + 1, col_i + 1, value) cellToUpdate = wsh.cell(row_i + 1, col_i + 1) cellToUpdate.value = value cell_list.append(cellToUpdate) # print("cell_list:") # print(cell_list) wsh.update_cells(cell_list) if __name__ == '__main__': # todo argparse # Execution parameters repo_url = 'git@github.com:amaslakou/saas-app-deployment.git' to_check_folders = ["folder1", "folder2", "folder3"] google_sheet_key = '1b34X*****************' credentials_importer = os.getcwd() + '/service_account.json' mail = 'YOUR_MAIL_ADDR@gmail.com' # Downloading repository repo = Repository(repo_url) repository = repo.local_path # Parse required folders, create envs structure envs = [] parser = Parser(repo.local_path, to_check_folders, envs) parser.parse() if not envs: print("No metrics found") exit() else: printer = Printer(envs) printer.print() # Add sum values in envs structure summarizer = Summarizer(envs) summarizer.sum() csv_printer = CSVPrinter(envs) # Prints CSV to local files csv_printer.print_to_files() # Authenticate in Google print(credentials_importer) # Writing envs to Google Sheets for env in envs: env_name, env_metrics = csv_printer.print_by_env(env) csv_importer = CSVImporter(credentials_importer) csv_importer.import_env(google_sheet_key, env_name, env_metrics, mail)
import math import sys if len(sys.argv) == 1: print('Input filename:') f=str(sys.stdin.readline()).strip() else: f = sys.argv[1] with open(f, 'r') as fp: l, mreset, string = fp.readline(), [], '' while l: string += str(l).strip() l = fp.readline() mreset = [int(x) for x in string.split(',')] def run(m, id: int): p, lenm = 0, len(m) while p < lenm: if lenm-p < 5: instr = m + ([0] * 5) else: instr = m[:p+5] n = m[p] op = n % 100 m1 = n // 100 % 10 m2 = n // 1000 % 10 m3 = n // 10000 % 10 p1, p2, p3 = instr[p+1], instr[p+2], instr[p+3] v1 = m[p1] if m1 == 0 and op != 99 else p1 v2 = m[p2] if m2 == 0 and op not in {99,3,4} else p2 v3 = m[p3] if m3 == 0 and op in {1,2,7,8} else p3 # 99: end if op == 99: print('END') break # 1: sum elif op == 1: r = v1 + v2 if m3 == 0: m[p3] = r else: m[p+3] = r p += 4 # 2: multiply elif op == 2: r = v1 * v2 if m3 == 0: m[p3] = r else: m[p+3] = r p += 4 # 3: save to address elif op == 3: m[p1] = id p += 2 # 4: output elif op == 4: print('OUTPUT: ', v1, p1) p += 2 # 5: jump-if-true elif op == 5: if v1 != 0: p = v2 else: p += 3 # 6: jump-if-false elif op == 6: if v1 == 0: p = v2 else: p += 3 # 7: less than elif op == 7: r = 1 if v1 < v2 else 0 if m3 == 0: m[p3] = r else: m[p+3] = r p += 4 # 8: equal elif op == 8: r = 1 if v1 == v2 else 0 if m3 == 0: m[p3] = r else: m[p+3] = r p += 4 else: print('ERRRRR.....', p, op, m[p:p+4]) break return m print(' ----------- RUN -------- ') print('Provide Sytem ID:') id=int(sys.stdin.readline()) result = run(mreset[:], id)
from django.contrib import admin # Register your models here. from django.contrib import admin from student.models import Student class StudentAdmin(admin.ModelAdmin): list_display = ('name', 'roll_no',) admin.site.register(Student, StudentAdmin)
from time import time from datetime import datetime from PIL import Image from simpleai.search import SearchProblem, astar from .modules.brute_force_mazeSolver import runSolver #pylint: disable=relative-beyond-top-level from .modules.a_star_mazeSolver import MazeSolver #pylint: disable=relative-beyond-top-level from .modules.mazeToGif import makeGIF #pylint: disable=relative-beyond-top-level def get_start_end(mazeMatrix:list): start = (1,1) end = (len(mazeMatrix)-2,len(mazeMatrix[0])-2) if mazeMatrix[start[0]][start[1]] == 1: s1 = (start[0],start[1]+1) s2 = (start[0]+1,start[1]) s3 = (start[0]+1,start[1]+1) start = s1 if mazeMatrix[s1[0]][s1[1]] != 1 else s2 \ if mazeMatrix[s2[0]][s2[1]] != 1 else s3 if mazeMatrix[end[0]][end[1]] == 1: e1 = (end[0],end[1]-1) e2 = (end[0]-1,end[1]) e3 = (end[0]-1,end[1]-1) end = e1 if mazeMatrix[e1[0]][e1[1]] != 1 else e2 \ if mazeMatrix[e2[0]][e2[1]] != 1 else e3 return start, end def get_file_name(nameSearch:str): now = "_".join(str(datetime.now()).split(" ")) now = ".".join(now.split(":")) file_name = None if nameSearch == "brute": file_name = "./static/mazeImg/"+"brute_"+now+".gif" else: file_name = "./static/mazeImg/"+"astar_"+now+".gif" return file_name def brute_force(mazeMatrix:list): start,end = get_start_end(mazeMatrix) fileName = get_file_name("brute") timeStart = time() runSolver(mazeMatrix,start,end,fileName) timeEnd = time() timeElap = round((timeEnd - timeStart),4) return fileName, timeElap def mazeMatrix_for_astar(mazeMatrix:list): start,end = get_start_end(mazeMatrix) mazeConverted = [] for y in range(len(mazeMatrix)): tempRow = [] for x in range(len(mazeMatrix[y])): if (y,x) == start: tempRow.append("o") elif (y,x) == end: tempRow.append("x") elif x == 0 or x == len(mazeMatrix[0])-1 or \ y == 0 or y == len(mazeMatrix)-1 or mazeMatrix[y][x] == 1: tempRow.append("#") elif mazeMatrix[y][x] == 0: tempRow.append(" ") mazeConverted.append(tempRow) return mazeConverted def a_star(mazeMatrix:list): images = [] fileName = get_file_name("astar") MAP = mazeMatrix_for_astar(mazeMatrix) cost_regular = 1.0 # Create the cost dictionary COSTS = { "up": cost_regular, "down": cost_regular, "left": cost_regular, "right": cost_regular } # Create maze solver object timeStart = time() problem = MazeSolver(MAP,COSTS) # Run the solver result = astar(problem, graph_search=True) timeEnd = time() timeElap = round((timeEnd - timeStart),4) # Extract the path path = [x[1] for x in result.path()] # Print the result print() start = (0,0) end = (0,0) maze = [] for y in range(len(MAP)): tempRow = [] for x in range(len(MAP[y])): if (x, y) == problem.initial: start = problem.initial[::-1] elif (x, y) == problem.goal: end = problem.goal[::-1] if MAP[y][x] == '#': tempRow.append(1) elif MAP[y][x] == ' ' or MAP[y][x] == 'o' or MAP[y][x] == 'x': tempRow.append(0) maze.append(tempRow) path = [item[::-1] for item in path] for i in range(len(path)): tempPath = path[:i+1] mazeWithSteps = [] for y in range(len(maze)): tempRow = [] for x in range(len(maze[y])): if (y,x) in tempPath: tempRow.append(tempPath.index((y,x))) else: tempRow.append(0) mazeWithSteps.append(tempRow) images = makeGIF(start,end,maze,mazeWithSteps,[], images) path = path[::-1] for i in range(10): if i % 2 == 0: images = makeGIF(start,end,maze,mazeWithSteps,path,images) else: images = makeGIF(start,end,maze,mazeWithSteps,[],images) images[0].save(fileName, save_all=True, append_images=images[1:], optimize=False, duration=0.5, loop=0) return fileName, timeElap # def main(): # maze = generator(30,10) # a_star(maze) # print("Done A*") # brute_force(maze) # print("DONE Brute_Force") # main()
import mxnet as mx import numpy as np from collections import namedtuple x = mx.nd.ones((100,100)) y = mx.nd.ones((100,100)) data = mx.sym.var('data') fc1 = mx.symbol.FullyConnected(data, name='fc1', num_hidden=128) act1 = mx.symbol.Activation(fc1, name='relu1', act_type='relu') fc2 = mx.symbol.FullyConnected(act1, name='fc2', num_hidden=128) act2 = mx.symbol.Activation(fc2, name='relu2', act_type='relu') fc3 = mx.symbol.FullyConnected(act2, name='fc3', num_hidden=100) # TODO: output shape sym = fc3 mod = mx.mod.Module(symbol=fc3, label_names=None) mod.bind(data_shapes=[('data', x[0].shape)]) # inputs_need_grad=True # TODO: data shape initializer = mx.init.Xavier(rnd_type='gaussian', factor_type='in', magnitude=2) lr = 0.5 mom = 0.5 wd = 0.0 optimizer_params = { 'learning_rate' : lr, 'momentum' : mom, 'wd' : wd, } mod.init_params(initializer) mod.init_optimizer(optimizer_params=optimizer_params, force_init=True) pre_err = [] while True: err = 0 for i in range(x.shape[0]): Batch = namedtuple('Batch', ['data']) mod.forward(Batch(mx.nd.array(x[i]))) output = mod.get_outputs()[0] grad = 2 * (output - y[i]) mod.backward([grad]) mod.update() err += mx.nd.norm(output - y[i]).asscalar() if len(pre_err) != 0: if err > pre_err[-1]: print 'changing learning rate' lr /= 2.0 mom /= 2.0 optimizer_params = { 'learning_rate' : lr, 'momentum' : mom, 'wd' : wd } mod.init_optimizer(optimizer_params=optimizer_params, force_init=True) if len(pre_err) == 10: if all(x == err for x in pre_err[-10:]): break pre_err = pre_err[1:] pre_err.append(err) print err
#!/usr/bin/python ## gfal 2.0 ls tool ## @author Adrien Devresse <adevress@cern.ch> CERN ## @license GPLv3 ## import gfal2_utils import sys if __name__ == "__main__": sys.exit(gfal2_utils.gfal_cat_main())
from __future__ import print_function def main(): infile = open('data/adult.data', 'r') data = [] for line in infile: data.append(line.split(', ')) #q = Question(9, "Female") data.pop() #true_rows, false_rows = partition(data, q) #gini_data = [data[0],data[1],data[2],data[3],data[4]] #print(gini(gini_data)) #print(gini(data)) #print(info_gain(true_rows, false_rows, gini(data))) #best_gain, best_question = find_best_split(gini_data) #print(best_question) #my_tree = build_tree(gini_data) #print_tree(my_tree) #print(classify(data[0], my_tree)) #print(print_leaf(classify(data[0], my_tree))) my_tree = build_tree(data) print_tree(my_tree) infiletest = open('data/adult.test', 'r') test_data = [] for line in infiletest: test_data.append(line.split(', ')) #q = Question(9, "Female") test_data.pop(0) for row in test_data: print("Actual: %s. Predicted: %s" % (row[-1], print_lead(classify(row, my_tree)))) header = ["age", "workclass", "fnlwgt", "education", "education-num", "marital-status", "occupation", "relationship", "race", "sex", "capital-gain", "capital-loss", "hours-per-week", "native-country", "income"] def unique_vals(rows, col): return set([row[col] for row in rows]) def class_counts(rows): counts = {} for row in rows: label = row[-1] if label not in counts: counts[label] = 0 counts[label] += 1 return counts def is_numeric(value): return isinstance(value, int) or isinstance(value, float) class Question: def __init__(self, column, value): self.column = column self.value = value def match(self, example): val = example[self.column] if is_numeric(val): return val >= self.value else: return val == self.value def __repr__(self): condition = "==" if is_numeric(self.value): condition = ">=" return "Is %s %s %s?" % (header[self.column], condition, str(self.value)) def partition(rows, question): true_rows, false_rows = [], [] for row in rows: if question.match(row): true_rows.append(row) else: false_rows.append(row) return true_rows, false_rows def gini(rows): counts = class_counts(rows) impurity = 1 for lbl in counts: prob_of_lbl = counts[lbl] / float(len(rows)) impurity -= prob_of_lbl**2 return impurity def info_gain(left, right, current_uncertainty): p = float(len(left)) / (len(left) + len(right)) return current_uncertainty - p * gini(left) - (1 - p) * gini(right) def find_best_split(rows): best_gain = 0 best_question = None current_uncertainty = gini(rows) n_features = len(rows[0]) - 1 for col in range(n_features): values = set([row[col] for row in rows]) for val in values: question = Question(col, val) true_rows, false_rows = partition(rows, question) if len(true_rows) == 0 or len(false_rows) == 0: continue gain = info_gain(true_rows, false_rows, current_uncertainty) if gain >= best_gain: best_gain, best_question = gain, question return best_gain, best_question class Leaf: def __init__(self, rows): self.predictions = class_counts(rows) class Decision_Node: def __init__ (self, question, true_branch, false_branch): self.question = question self.true_branch = true_branch self.false_branch = false_branch def build_tree(rows): gain, question = find_best_split(rows) if gain == 0: return Leaf(rows) true_rows, false_rows = partition(rows, question) true_branch = build_tree(true_rows) false_branch = build_tree(false_rows) return Decision_Node(question, true_branch, false_branch) def print_tree(node, spacing=" "): if isinstance(node, Leaf): print(spacing + "Predict", node.predictions) return print(spacing + str(node.question)) print(spacing + '---> True:') print_tree(node.true_branch, spacing + " ") print(spacing + '---> False:') print_tree(node.false_branch, spacing + " ") def classify(row, node): if isinstance(node, Leaf): return node.predictions if node.question.match(row): return (classify(row, node.true_branch)) else: return classify(row, node.false_branch) def print_leaf(counts): total = sum(counts.values()) * 1.0 probs = {} for lbl in counts.keys(): probs[lbl] = str(int(counts[lbl] / total * 100)) + "%" return probs if __name__ == "__main__": main()
import socket import select def parseData(data): print("Data: ", data) BUFFER = 2048 clientList=dict({}) host = '' port = 12345 server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) clientList[server]={'ip':'', 'port':12345} server.bind((host, port)) server.listen(5) print("Server is listening for connections!") while clientList: readable,_,_ = select.select(clientList,[],[],0) for sock in readable: if sock is server: conn, addr = server.accept() clientList[conn] = {'ip':addr[0], 'port':addr[1]} print("New Connection: ", clientList[conn]) else: data = sock.recv(BUFFER) if not data: print("Connection closed by: ", sock.getpeername()) del clientList[sock] else: parseData(data.decode('ascii'))
""" astroHOG Statistical tests """ import numpy as np # ------------------------------------------------------------------------------------------------------------------------ def HOG_PRS(phi): # Calculates the projected Rayleigh statistic of the distributions of angles phi. # # INPUTS # phi - angles between -pi/2 and pi/2 # # OUTPUTS # Zx - value of the projected Rayleigh statistic # s_Zx - # meanPhi - angles=phi #2.*phi Zx=np.sum(np.cos(angles))/np.sqrt(np.size(angles)/2.) temp=np.sum(np.cos(angles)*np.cos(angles)) s_Zx=np.sqrt((2.*temp-Zx*Zx)/np.size(angles)) Zy=np.sum(np.sin(angles))/np.sqrt(np.size(angles)/2.) temp=np.sum(np.sin(angles)*np.sin(angles)) s_Zx=np.sqrt((2.*temp-Zy*Zy)/np.size(angles)) meanPhi=0.5*np.arctan2(Zy, Zx) return Zx, s_Zx, meanPhi # ------------------------------------------------------------------------------------------------------------------------------ def HOG_AM(phi): # Calculate the alignment measure. # # INPUTS # phi - angles between -pi/2 and pi/2 # # OUTPUTS #AM - value of the alignment measure. angles=phi ami=2.*np.cos(phi)-1. am=np.mean(ami) return am
from dataloader import tilegenerator import os import glob from multiprocessing import Pool from functools import partial def tile_all_process(obj, use_tiss_mask): if use_tiss_mask: obj.load_ds_wsi() obj.stain_entropy_otsu() obj.morphology() obj.generate_tiles() obj.slide_thumbnail() obj.param() def single_file_run(file_name, output_dir, input_dir, tile_objective_value, tile_read_size_w, tile_read_size_h, nr_tiles, use_tiss_mask, tiss_level, tiss_cutoff): print('Extracting patches from ' + os.path.basename(file_name), flush=True) _, file_type = os.path.splitext(file_name) if file_type == '.svs' or file_type == '.ndpi' or file_type == '.mrxs' or file_type == 'tif' or file_type == 'tiff': tile_obj = tilegenerator.TileGenerator(input_dir=input_dir, file_name=file_name, output_dir=output_dir, tile_objective_value=tile_objective_value, tile_read_size_w=tile_read_size_w, tile_read_size_h=tile_read_size_h, nr_tiles=nr_tiles, use_tiss_mask=use_tiss_mask, tiss_level=tiss_level, tiss_cutoff=tiss_cutoff) tile_all_process(obj=tile_obj, use_tiss_mask=True) def run(opts_in, file_name_pattern, num_cpu, tile_objective_value, tile_read_size_w, tile_read_size_h, nr_tiles, use_tiss_mask, tiss_level, tiss_cutoff): output_dir = opts_in['output_dir'] wsi_input = opts_in['wsi_input'] if not os.path.isdir(output_dir): os.makedirs(output_dir, exist_ok=True) if os.path.isdir(wsi_input): files_all = sorted(glob.glob(os.path.join(wsi_input, file_name_pattern))) with Pool(num_cpu) as p: p.map(partial(single_file_run, output_dir=output_dir, input_dir=wsi_input, tile_objective_value=tile_objective_value, tile_read_size_w=tile_read_size_w, tile_read_size_h=tile_read_size_h, nr_tiles=nr_tiles, use_tiss_mask=use_tiss_mask, tiss_level=tiss_level, tiss_cutoff =tiss_cutoff), files_all) if os.path.isfile(wsi_input): input_dir, file_name = os.path.split(wsi_input) single_file_run(file_name=file_name, output_dir=output_dir, input_dir=input_dir, tile_objective_value=tile_objective_value, tile_read_size_w=tile_read_size_w, tile_read_size_h=tile_read_size_h, nr_tiles=nr_tiles, use_tiss_mask=use_tiss_mask, tiss_level=tiss_level, tiss_cutoff=tiss_cutoff)
from analysis import * fig = plt.figure(figsize =(figWidth,figHeight)) ax = fig.add_axes([0,0,1,1]) for axis in ['top','bottom','left','right']: ax.spines[axis].set_linewidth(linW1) ax.spines[axis].set_color(colK1) plt.style.use('seaborn-paper') rc('font',**{'family':'sans-serif','sans-serif':['DejaVu Sans']}) ax.grid(True,linewidth=linW0,alpha=al2) formatter=ticker.ScalarFormatter(useMathText=True) formatter.set_scientific(True) formatter.set_powerlimits((-1,1)) title_pad=-2 ax.plot(spectrum_sorted[h_star:,0],spectrum_sorted[h_star:,1], linewidth=linW1, color=colR2, marker='o',markersize=1.5*marS4 ) ax.plot(h_refined,f_h_spl(h_refined), linewidth=linW2, color=colR3) #ax.plot(0.333,3.0,'rx',markersize=3*marS4,alpha=0.8) ax.tick_params(axis='both',which='major',direction='in',colors=colK1,labelsize=fsTk2,length=tkL2,width=tkW2,pad=0.8) ax.set_xlabel(r' $\mathsf{ h }$',labelpad=0,color=colK1,fontsize=fsLb3) ax.set_ylabel(r' $\mathsf{ D(h)}$',labelpad=0,color=colK1,fontsize=fsLb3,rotation=0) #ax.xaxis.set_major_locator(MultipleLocator(0.2)) #ax.yaxis.set_major_locator(MultipleLocator(0.5)) plt.savefig(save_dir+'spectrum.pdf',dpi=dpi2,transparent=True,bbox_inches='tight')
import serial import time import datetime import threading import math import os import pytz import numpy as np import matplotlib.pyplot as plt class modemController(): def __init__(self, baud=57600, timeout=0.05): self.crc = None self.cmdinf = '01' self.ser=serial.Serial( port='/dev/pactor', baudrate=baud, bytesize=serial.EIGHTBITS, parity=serial.PARITY_NONE, stopbits=serial.STOPBITS_ONE, timeout=timeout, xonxoff=False ) self.hostmode_quit() self.write_and_get_response('') self.restart() self.response = None self.interruptFlag = False self.hostmode = False self.good_chunks = 0 self.init_commands = ['VER', 'RESTART', 'SERB', 'TRX RTS 0', 'AM', 'TR 0', 'PT', 'QRTC 4', 'ESC 27', 'PTCH 31', 'MAXE 35', 'LF 0', 'CM 0', 'REM 0', 'BOX 0', 'MAIL 0', 'CHOB 0', 'UML 0', 'TRX S 0', 'TRX DU 0', 'U *1', 'CHO 25', 'BK 24', 'FSKA 250', 'PSKA 330', 'PAC PRB 0', 'PAC CM 0', 'PAC CB 0', 'PAC M 0', 'PAC US 10', 'FR MO 0', 'SYS SERN', 'MY *SCSPTC*', 'LICENSE', 'TONES 2', 'MARK 1600', 'SPACE 1400', 'TXD 4', 'CSD 5', 'MYcall VJN4455', 'ARX 0', 'L 0', 'CWID 0', 'CONType 3', 'MYcall VJN4455'] # Excluded: 'TIME 18:00:00', 'DATE 09.11.14', 'ST 2', 'TERM 4', 'MYLEV 2', def runInitCommands(self): for c in self.init_commands: if c == 'RESTART': self.restart() else: self.write_and_get_response(c, printOut=True) time.sleep(0.2) return None def setTimeout(self, timeout): self.ser.timeout = timeout return self.ser.timeout def read(self, chunk_size=1024, retries=0, printOut=False): r = self.ser.read(chunk_size) counter = 0 while (counter < retries): nr = self.ser.read(chunk_size) if nr: r += nr else: counter += 1 if self.crc: r = self.crc.decode(r) if printOut: print(r.replace('\r','\n')) return r def write(self, cmd='', newline='\r', channel=None): if channel is None: self.ser.write('%s%s'%(cmd, newline)) else: self.write_channel(cmd, channel=channel) return None def write_and_get_response(self, command, newline='\r', channel=None, chunk_size=1024, retries=0, printOut=False): self.write(command, newline=newline, channel=channel) return self.read(chunk_size=chunk_size, retries=retries, printOut=printOut) def encode(self, message, channel): c = self.int2hex(channel) l = self.int2hex(len(message)-1) m = message.encode('hex') s = '%s %s %s %s'%(c, self.cmdinf, l, m) if self.crc: s = self.crc.encode(s) return s def write_channel(self, message, channel=255): self.writeHexString(self.encode(message, channel)) self.incrementCounter() return None def incrementCounter(self, ): if self.crc: self.cmdinf = '81' if self.cmdinf == '01' else '01' return None def restart(self): t = self.ser.timeout self.setTimeout(1.0) self.write_and_get_response('RESTART', printOut=True) self.setTimeout(t) return None def close(self): return self.ser.close() def interrupt(self): self.interruptFlag = True def hostmode_start(self, crc=False): if crc: self.write('JHOST5') self.crc = crcCheck() else: self.write('JHOST1') self.crc = None self.hostmode = True return self.read(printOut=True) def hostmode_quit(self): self.write_and_get_response('JHOST0', channel=0) self.hostmode = False return self.write_and_get_response('',printOut=True) def getChannelsWithOutput(self): # Poll Channel 255 to find what channels have output s = bytearray(self.write_and_get_response('G', channel=255)) channels = [] for c in s[2:]: if (c==255) or (c==0): continue else: channels.append( c-1 ) return channels def checkResponse(self, r, c): # Do some checks on the returned data if len(r) < 3: return (None, 0) h = bytearray(r[:3]) d = bytearray(r[3:]) l = h[2] + 1 dl = len(d) if not h[0] == c: print('WARNING: Returned data does not match polled channel') return (None, 0) if not l == dl: print('WARNING: Data length (%i) does not match stated amount (%i). After %i good chunks.'%(dl, l, self.good_chunks)) self.good_chunks = 0 if dl < l: d.extend('\x00'*(l-dl)) else: d = d[:l] else: self.good_chunks += 1 # print('Good chunk') return (d, l) def getChannelOutput(self, c, max_data_length=1024, max_retries=1, timeout=1, gpoll=False, chunk_size=1024, report_increment=50000): self.interruptFlag = False timeout = int(timeout) self.response = bytearray(max_data_length) start_byte = 0; stop_byte = 0; ab = 0 start_time = time.time() stop_time = start_time + timeout counter = 0 if max_retries else -1 while (counter < max_retries) and (stop_byte < max_data_length) and (time.time() < stop_time) and (not self.interruptFlag): # Check to see if there is any data on this channel if gpoll: channels = self.getChannelsWithOutput() if not c in channels: #print('No data on polled channel %i'%(c)) if max_retries: counter += 1 continue # Get the data r = self.write_and_get_response('G', channel=c, chunk_size=chunk_size) (d, l) = self.checkResponse(r, c) if not d: #print('No data on channel %i'%(c)) if max_retries: counter += 1 continue # Get the place to insert in data buffer stop_byte = start_byte + l if stop_byte > max_data_length: stop_byte = max_data_length # Add the data to the buffer self.response[start_byte:stop_byte] = d # Report on progress (print out) if report_increment: bb = int(stop_byte/report_increment) if not ab == bb: t = time.time() - start_time print('Read %i kB in %f seconds [%i b/s]'%(stop_byte/1000, t, int(stop_byte/t))) # Increment timeouts and counters stop_time = time.time() + timeout start_byte = stop_byte ab = bb # Report the final data amount/time t = time.time() - start_time print('Read %i kB in %f seconds [%i b/s]'%(stop_byte/1000, t, int(stop_byte/t))) self.response = self.response[:stop_byte] return self.response def int2hex(self, channel): c = '%2s'%(hex(channel)[2:]) return c.replace(' ', '0') def writeHexString(self, s): bs = s.replace(' ','').decode('hex') #print('%s [%s]'%(bs, bs.encode('hex'))) self.ser.write(bs) return None #modem = modemController() ###################### # Modem Socket class for compatability with Sailmail Telnet sockets ###################### class modem_socket(): def __init__(self, mycall): self._mycall = mycall self.recv_buffer = bytearray() print('Initialising modem') self.modem = modemController() print('Running init commands') commands = ['MYcall %s'%(self._mycall), 'PTCH 31', 'MAXE 35', 'LF 0', 'CM 0', 'REM 0', 'BOX 0', 'MAIL 0', 'CHOB 0', 'UML 0', 'TONES 4', 'MARK 1600', 'SPACE 1400', 'CWID 0', 'CONType 3'] for c in commands: self.modem.write_and_get_response(c, printOut=True) self.modem.hostmode_start() return None def readto(ser, end="cmd:", line=''): if not ser.inWaiting(): return None while not line[-5:] == end: line += ser.read(1) lines = line.split('\r') return lines def breakin(self): return self.send('%I') def hostmode_init(self): commands = ['#TONES 4', '#MYLEV 3', '#CWID 0', '#CONType 3', 'I %s'%(self._mycall)] for c in commands: self.modem.write_and_get_response(c, channel=31) def connect(self, targetcall): self.modem.write_channel('C %s'%(targetcall), channel=31) def disconnect(self): self.modem.write_channel('D', channel=31) return None def force_disconnect(self): self.modem.write_channel('DD', channel=31) def send(self, msg): return self.modem.write_channel(msg, channel=31) def recv(self, size): c = 31 chunk_size=10240 output = bytearray() # Check and get whatever is in the receive buffer channels = self.modem.getChannelsWithOutput() if c in channels: r = self.modem.write_and_get_response('G', channel=c, chunk_size=chunk_size) (d, l) = self.modem.checkResponse(r, c) if d: self.recv_buffer += d print(str(d)) # Get the number of bytes requested from the recv_buffer for i in range(size): if self.recv_buffer: output += bytearray([self.recv_buffer.pop(0)]) else: break # Return bytes as a string return str(output) def close(self): self.modem.hostmode_quit() self.modem.close() return None ##################### # Fax Controller ##################### class Fax(): def __init__(self, baud=57600, timeout=0.05, modem=None): self.modem = modemController(baud=baud, timeout=timeout) if not modem else modem self.baud = self.getBaudrate() self.ptch = 31 self.data = None self.xres = None self.data_rate = None self.max_data_length=(1024*4000) self.timeout = 10 self.chunk = '' self.chunk_lock = threading.Lock() self.apt_lock = threading.Lock() self.record_lock = threading.Lock() self.record_flag = False self.apt_flag = False self.receive_flag = False self.gui_callback = None self.runInitCommands() def runInitCommands(self): self.modem.init_commands = ['VER', 'RESTART', 'SERB', 'TRX RTS 1', 'AM', 'TR 0', 'PT', 'QRTC 4', 'ESC 27', 'PTCH %i'%(self.ptch), 'MAXE 35', 'LF 0', 'CM 0', 'REM 0', 'BOX 0', 'MAIL 0', 'CHOB 0', 'UML 0', 'TRX S 0', 'TRX DU 0', 'U *1', 'CHO 25', 'BK 24', 'ST 2', 'PAC PRB 0', 'PAC CM 0', 'PAC CB 0', 'PAC M 0', 'PAC US 10', 'FR MO 0', 'SYS SERN', 'MY *SCSPTC*', 'LICENSE'] #Excluded: 'TERM 4', 'TIME 17:35:46', 'DATE 04.04.16' return self.modem.runInitCommands() def start(self, rate=16, lines_per_minute=120, hostmode=True): if hostmode: self.modem.hostmode_start() time.sleep(0.5) # Now start up the fax stream if self.modem.hostmode: self.data_rate = self.getBaudrate()/rate self.xres = int(self.data_rate*(float(60)/lines_per_minute)) print('Starting modem hostmode fax streaming at baudrate/%i = %i bytes/s'%(rate, self.data_rate)) start_code='1' if rate==32 else '17' for p in ['%M1', '#FAX Dev 500', '#FAX FR 3', '#FAX MB %s'%(int(self.baud))]: print('Writing hostmode command: %s'%(p)) self.modem.write_and_get_response(p, channel=self.ptch) time.sleep(0.5) self.modem.write_and_get_response('@F%s'%(start_code), channel=self.ptch) else: self.data_rate = int(38400.0/10.0) self.xres = int(self.data_rate*(float(60)/lines_per_minute)) self.modem.write('FAX Mbaud 38400') self.modem.write('FAX Fmfax') # Start reading in data chunks and # monitoring for apt start/stop signals time.sleep(0.5) #self.receive_start() #self.apt_start() def quit(self): if self.modem.hostmode: print('Closing hostmode fax') self.apt_stop() time.sleep(0.6) self.receive_stop() time.sleep(0.1) self.modem.write_and_get_response('@F0', channel=self.ptch) self.modem.hostmode_quit() else: print('Sending term signal 255 to modem') self.modem.write('\xff', newline='') time.sleep(0.5) self.modem.ser.readall() def close(self): self.modem.close() def getBaudrate(self): return self.modem.ser.baudrate def clear_buffer(self): if self.modem.hostmode: print('Clearing Fax Data Buffer') self.modem.write_and_get_response('@F', channel=self.ptch, printOut=True) return None def record_start(self): print('Starting Recording of Fax Stream') self.record_thread = threading.Thread(target=self.do_record) self.record_thread.daemon = True self.record_thread.start() def do_record(self, report_increment=50000): print('Recording up to %i kB of fax data from channel 252'%(self.max_data_length/1000)) self.record_flag = True if self.gui_callback: self.gui_callback() stop_time = time.time() + self.timeout self.data = bytearray(self.max_data_length) start_byte = 0; stop_byte = 0; ab = 0 start_time = time.time() self.record_lock.acquire() while (stop_byte < self.max_data_length) and (time.time() < stop_time) and self.record_flag: # Get the latest data chunk self.record_lock.acquire() d = self.chunk # Get the place to insert in data buffer stop_byte = self.max_data_length if stop_byte > self.max_data_length else start_byte + 256 # Add the data to the buffer self.data[start_byte:stop_byte] = d # Report on progress (print out) if report_increment: bb = int(stop_byte/report_increment) if not ab == bb: t = time.time() - start_time print('Read %i kB in %f seconds [%i b/s]'%(stop_byte/1000, t, int(stop_byte/t))) # Increment timeouts and counters stop_time = time.time() + self.timeout start_byte = stop_byte ab = bb if self.record_lock.locked(): self.record_lock.release() self.record_flag = False t = time.time() - start_time print('Read %i kB in %f seconds [%i b/s]'%(stop_byte/1000, t, int(stop_byte/t))) self.data = self.data[:stop_byte] self.plot(align_data=True) print('Stopped recording fax') if self.gui_callback: self.gui_callback() def record_stop(self): self.record_flag = False def receive_start(self): if self.modem.hostmode: channels = self.modem.getChannelsWithOutput() if not 252 in channels: print('Channel 252 not streaming fax output') return None print('Starting receiving fax data on channel 252') self.monitor_thread = threading.Thread(target=self.get_chunk) self.monitor_thread.daemon = True self.monitor_thread.start() return None def receive_stop(self): self.receive_flag = False def get_chunk(self, max_retries=10, report_increment=0): #print("Timeout = %f"%(self.modem.ser.timeout)) #self.clear_buffer() self.receive_flag = True start_time = time.time() stop_time = start_time + self.timeout retries = 0 chunk_counter = 0 ab = 0 while (time.time() < stop_time) and (retries < max_retries) and self.receive_flag: # Get a chunk (depending on if we are in hostmode or not) if self.modem.hostmode: c = 252 r = self.modem.write_and_get_response('G', channel=c, chunk_size=259) (d, l) = self.modem.checkResponse(r, c) else: l = 256 d = self.modem.read(chunk_size=l) # If we have a valid chunk then process it otherwise increment the retry counter if (l == 256): retries = 0 stop_time = time.time() + self.timeout self.chunk = d chunk_counter += 1 # Tell the record and apt loops that it can proceed with new chunk if self.record_lock.locked(): self.record_lock.release() if self.apt_lock.locked(): self.apt_lock.release() else: if retries > 0: print('Retrying (Length = %i, Chunks = %i)'%(l, chunk_counter)) #self.clear_buffer() retries += 1 # Do some reporting if asked for it if report_increment: stop_byte = chunk_counter*256 bb = int(stop_byte/report_increment) if not ab == bb: t = time.time() - start_time print('Received %i kB in %f seconds [%i b/s]'%(stop_byte/1000, t, int(stop_byte/t))) ab = bb self.receive_flag = False print('Stopped receiving fax data') return None def apt_start(self): print('Starting APT monitoring') self.apt_flag = True self.apt_thread = threading.Thread(target=self.apt_monitor) self.apt_thread.daemon = True self.apt_thread.start() def apt_stop(self): self.apt_flag = False def apt_monitor(self, frequency=0.25, retries=10): # Analyse data packets every <frequency> seconds, # Once a signal is found then try to get <retries> continuous signals before stop_time = time.time() + self.timeout counter = 0 self.apt_lock.acquire() while (time.time() < stop_time) and self.apt_flag: self.apt_lock.acquire() d = self.chunk; if not self.record_flag: if self.is_apt_signal(d, frequency=12): print('Found APT Start Signal #%i'%(counter)) counter += 1 if counter > retries: print('Starting Fax Recording') self.record_start() continue else: if self.is_apt_signal(d, frequency=8): print('Found APT Stop Signal #%i'%(counter)) counter += 1 if counter > retries: print('Stopping Fax Recording') self.record_stop() continue time.sleep(frequency) counter = 0 stop_time = time.time() + self.timeout if self.apt_lock.locked(): self.apt_lock.release() self.apt_flag = False print('Stopping APT Monitor') return None def get_fax_stream(self): print('Getting up to %i kB of fax data on Channel 252'%(self.max_data_length/1000)) self.data = self.modem.getChannelOutput(252, max_data_length=self.max_data_length, max_retries=0, timeout=10, chunk_size=259, gpoll=False) self.plot() return None def plot(self, fname=None, xres=None, show_image=False, save_image=True, save_data=True, align_data=False): if xres is None: xres = self.xres if not self.data: print('No fax data aquired yet') return None if align_data: self.align_data() a = np.array(bytearray(self.data)) rows = len(a)/xres cropsize = xres*rows a = a[:cropsize] a = a.reshape((rows,xres)) path = 'fax_images' os.mkdir(path) if not os.path.exists(path) else None timezone = pytz.timezone('utc') utctime = datetime.datetime.now(tz=timezone) if not fname: fname = '%s/%s.png'%(path, utctime.strftime('%Y-%m-%d_%H%M%S')) if save_image: plt.imsave(fname, a, vmin=0, vmax=255, cmap='gray') print('Saved fax image to %s'%(fname)) if save_data: bin_fname = fname.replace('.png', '.bin') self.save_data(bin_fname) print('Saved binary fax data to %s'%(bin_fname)) if show_image: plt.imshow(a, vmin=0, vmax=255, cmap='gray') plt.show() return None def fax_data_compressy(self, axis=0): return self.data.compress([divmod(i,2)[1] for i in range(np.shape(d)[0])], axis=axis) def save_data(self, fname): f = open(fname, 'wb') f.write(self.data) f.close() return None def load_data(self, fname): f = open(fname, 'rb') self.data = f.read() f.close() self.xres = 1800 def is_apt_signal(self, data, frequency=12, width=1): # frequency=12 (start), frequency=8 (stop) signal_pixel_width = frequency*self.xres/1800 l = len(data)/2 # Crop the spectrum info and take only the real part s = np.abs(np.fft.fft(np.array(bytearray(data)))) s = s.real[1:l] band_centre = (2*l/signal_pixel_width) spectrum_average = np.average(np.abs(s)) band_average = np.average(np.abs(s[band_centre-width:band_centre+width])) if band_average > spectrum_average*5: return True return False def align_data(self, lines=[20,30,40]): n = len(lines) offset = 0.0 counter = 0 for line in lines: t = self.get_image_offset(line) if counter: if abs(t-offset) > 30: print("Alignment data could not be ascertained") return None # Keep a running average of the offset counter += 1 offset = (offset*(counter-1) + t)/counter offset = int(offset) print('Aligning data with offset of %i'%(offset)) self.data = self.data[offset:] return None def get_image_offset(self, line, signal_width=90): h = signal_width / 2 d = self.data[line*self.xres:(line+1)*self.xres] l = np.array(bytearray(d[-1*h:] + d + d[:h])) a = np.zeros(self.xres) for i in range(h, self.xres + h): a[i-h] = np.average(l[i-h:i+h]) return a.argmax() class crcCheck(): def __init__(self): self.c = int('8408', base=16) self.makeCrcTable() def encode(self, s): return 'AA AA %s %s'%(self.stuff(s), self.do_calc(s)) def decode(self, s, check_crc=True): if not len(s) > 4: print('WARNING: Response not long enough for CRC check') return s crc = s[-2:] body = self.destuff(s[2:-2]) if check_crc: if not self.do_calc(body.encode('hex')).decode('hex') == crc: print('WARNING: CRC check failed') return body def destuff(self, s): return ''.join([s[i] for i in range(len(s)) if (i==0) or (s[i-1] != '\xaa')]) def stuff(self, s): return s.upper().replace('AA', 'AA 00') def isOdd(self, num): return bool(divmod(num, 2)[1]) def innerLoop(self, Data, accu=0): for j in range(8): if self.isOdd( Data^accu ): accu = (accu >> 1)^self.c else: accu = (accu >> 1) Data = (Data >> 1) return accu def makeCrcTable(self): self.crc_table = [0 for i in range(256)] for index in range(256): self.crc_table[index] = self.innerLoop(index) return self.crc_table def calc_crc_ccitt(self, b): crc = self.crc self.crc = ((crc >> 8) & 255)^(self.crc_table[(crc^b) & 255]) def invert_crc(self): print('Before inverting: %i, %s'%(self.crc, hex(self.crc))) self.crc = self.crc^int('ffff', base=16) (i, r) = divmod(self.crc, 256) self.crc = 256*r + i print('After inverting: %i, %s'%(self.crc, hex(self.crc))) return self.crc def do_calc(self, src): # '\xFF\x01\x00\x47' (Standard G-poll on channel 255) Result should be 6b 55 = 27477 # '\xFF\x01\x00' (Response to G-poll on channel 255) Result should be E7 19 = 59161 # '\x1F\x00\x1E\x19' (Response on channel 31) Result is 1E 19 = 7705 self.crc = int('ffff', base=16) ba = bytearray(src.replace(' ','').decode('hex')) for b in ba: self.calc_crc_ccitt(b) # Return the inverted results s = '%04s'%(hex(self.invert_crc())[2:]) s = s.replace(' ','0') return s
from typing import List, Tuple def split_name(prediction: str) -> Tuple[str, int]: if len(prediction.split("_")) > 1: return prediction.split("_")[0], int(prediction.split("_")[1]) else: return prediction, 0 def is_correctly_retrieved(predictions: List[str], ground_truth: List[str]) -> bool: top_1_predicted, deg = split_name(predictions[0]) if top_1_predicted in ground_truth: #print(top_1_predicted,":",deg) return True return False def is_category_correctly_retrieved(predictions: str, ground_truth: str) -> bool: if predictions == ground_truth: return True return False def is_correctly_ranked(prediction: str, rank, ground_truth: List[str]) -> bool: if prediction == ground_truth[rank]: return True return False def count_correctly_ranked_predictions(predictions: List[str], ground_truth: List[str]) -> int: num_ranked_models = len(ground_truth) # 3 or less top_n_predicted = predictions[:num_ranked_models] correctly_ranked = 0 total = num_ranked_models for rank, prediction in enumerate(top_n_predicted): # TODO, fix: this metric is not reasonable, when you consider the rotation prediction, _ = split_name(prediction) if is_correctly_ranked(prediction, rank, ground_truth): correctly_ranked += 1 return correctly_ranked def get_category(name: str) -> str: return name.split("_")[-2] def get_category_from_list(category: str, selected_categories: List[str], others_name: str = "other") -> str: if category not in selected_categories: return others_name else: return category
#!/usr/bin/env python3.5 print("Hello Poland")
from data_structure.linkedlist.Node import Node # Class Linked List class LinkedList: # Initialize def __init__(self): self.first = None self.last = None self.__size = 0 # Add node on first def add_first(self, data): new_node = Node(data) if self.__is_empty(): self.first = self.last = new_node else: current_node = self.first self.first = new_node new_node.next = current_node self.__size += 1 # Add node on last def add_last(self, data): new_node = Node(data) if self.__is_empty(): self.first = new_node self.last = new_node else: self.last.next = new_node self.last = new_node self.__size += 1 def index_of(self, item): index = 0 current_node = self.first while current_node is not None: if current_node.data == item: return index current_node = current_node.next index = index + 1 return -1 def contains(self, item): return self.index_of(item) != -1 def remove_first(self): if self.__is_empty(): print("The list is empty, nothing to delete") exit() if self.first == self.last: return None self.first = self.first.next self.__size -= 1 def remove_last(self): prev = self.get_previous(self.last) prev.next = None self.last = prev self.__size -= 1 def to_array(self): current_node = self.first data = [] while current_node is not None: data.append(current_node.data) current_node = current_node.next return data def reverse(self): if self.__is_empty(): return previous = self.first current = previous.next while current is not None: next_node = current.next current.next = previous previous = current current = next_node self.last = self.first self.last.next = None self.first = previous def get_kth_node_from_end(self, k): if self.__is_empty(): return -1 index = 0 current = self.first while current is not None: if k == index: break current = current.next index += 1 return current.data def get_previous(self, node): if self.__is_empty(): print("The list is empty, nothing to delete") exit() current_node = self.first while current_node is not None: if current_node.next == node: return current_node current_node = current_node.next return None def sort(self): if self.first is None: return False current = self.first while current is not None: target = current.next while target is not None: if current.data > target.data: temp = current.data current.data = target.data target.data = temp target = target.next current = current.next def size(self): return self.__size def __is_empty(self): return self.first is None # Print the list def print(self): if self.first is None: print("The list is empty.") else: current_node = self.first while current_node is not None: print(current_node.data) current_node = current_node.next
import mimetypes from django.conf import settings from django.db import models as dbmodels from PyPDF2 import PdfFileReader from PyPDF2.utils import PdfReadError from ..utils.auth import get_group_model from ..utils.rest_api import ( FileField, IdPrimaryKeyRelatedField, ModelSerializer, SerializerMethodField, ValidationError, ) from .models import Mediafile class AngularCompatibleFileField(FileField): def to_internal_value(self, data): if data == "": return None return super(AngularCompatibleFileField, self).to_internal_value(data) def to_representation(self, value): if value is None or value.name is None: return None filetype = mimetypes.guess_type(value.name)[0] result = {"name": value.name, "type": filetype} if filetype == "application/pdf": try: if ( settings.DEFAULT_FILE_STORAGE == "storages.backends.sftpstorage.SFTPStorage" ): remote_path = value.storage._remote_path(value.name) file_handle = value.storage.sftp.open(remote_path, mode="rb") else: file_handle = open(value.path, "rb") result["pages"] = PdfFileReader(file_handle).getNumPages() except FileNotFoundError: # File was deleted from server. Set 'pages' to 0. result["pages"] = 0 except PdfReadError: # File could be encrypted but not be detected by PyPDF. result["pages"] = 0 result["encrypted"] = True return result class MediafileSerializer(ModelSerializer): """ Serializer for mediafile.models.Mediafile objects. """ media_url_prefix = SerializerMethodField() filesize = SerializerMethodField() access_groups = IdPrimaryKeyRelatedField( many=True, required=False, queryset=get_group_model().objects.all() ) def __init__(self, *args, **kwargs): """ This constructor overwrites the FileField field serializer to return the file meta data in a way that the angualarjs upload module likes """ super(MediafileSerializer, self).__init__(*args, **kwargs) self.serializer_field_mapping[dbmodels.FileField] = AngularCompatibleFileField # Make some fields read-oinly for updates (not creation) if self.instance is not None: self.fields["mediafile"].read_only = True class Meta: model = Mediafile fields = ( "id", "title", "mediafile", "media_url_prefix", "filesize", "access_groups", "create_timestamp", "is_directory", "path", "parent", "list_of_speakers_id", "inherited_access_groups_id", ) read_only_fields = ("path",) def validate(self, data): title = data.get("title") if title is not None and not title: raise ValidationError({"detail": "The title must not be empty"}) parent = data.get("parent") if parent and not parent.is_directory: raise ValidationError({"detail": "parent must be a directory."}) if data.get("is_directory") and "/" in data.get("title", ""): raise ValidationError( {"detail": 'The name contains invalid characters: "/"'} ) return super().validate(data) def create(self, validated_data): access_groups = validated_data.pop("access_groups", []) mediafile = super().create(validated_data) mediafile.access_groups.set(access_groups) mediafile.save() return mediafile def update(self, instance, validated_data): # remove is_directory, create_timestamp and parent from validated_data # to prevent updating them (mediafile is ensured in the constructor) validated_data.pop("is_directory", None) validated_data.pop("create_timestamp", None) validated_data.pop("parent", None) return super().update(instance, validated_data) def get_filesize(self, mediafile): return mediafile.get_filesize() def get_media_url_prefix(self, mediafile): return settings.MEDIA_URL
import os from hca.dss import DSSClient from hca.util.exceptions import SwaggerAPIException from tests.utils import Progress class DataStoreAgent: DSS_SWAGGER_URL_TEMPLATE = "https://dss.{deployment}.data.humancellatlas.org/v1/swagger.json" DSS_PROD_SWAGGER_URL = "https://dss.data.humancellatlas.org/v1/swagger.json" def __init__(self, deployment): self.deployment = deployment if self.deployment == "prod": swagger_url = self.DSS_PROD_SWAGGER_URL else: swagger_url = self.DSS_SWAGGER_URL_TEMPLATE.format(deployment=deployment) self.client = DSSClient(swagger_url=swagger_url) def search(self, query, replica='aws'): try: response = self.client.post_search(replica=replica, es_query=query) return response['results'] except SwaggerAPIException: return [] def search_iterate(self, query, replica='aws'): for hit in self.client.post_search.iterate(replica=replica, es_query=query): yield hit def download_bundle(self, bundle_uuid, target_folder): Progress.report(f"Downloading bundle {bundle_uuid}:\n") manifest = self.bundle_manifest(bundle_uuid) bundle_folder = os.path.join(target_folder, bundle_uuid) try: os.makedirs(bundle_folder) except FileExistsError: pass for f in manifest['bundle']['files']: self.download_file(f['uuid'], save_as=os.path.join(bundle_folder, f['name'])) return bundle_folder def bundle_manifest(self, bundle_uuid, replica='aws'): return self.client.get_bundle(replica=replica, uuid=bundle_uuid) def download_file(self, file_uuid, save_as, replica='aws'): Progress.report(f"Downloading file {file_uuid} to {save_as}\n") with self.client.get_file.stream(replica=replica, uuid=file_uuid) as fh: with open(save_as, "wb") as f: while True: chunk = fh.raw.read(1024) if chunk: f.write(chunk) else: break def tombstone_bundle(self, bundle_uuid, replica='aws'): self.client.delete_bundle(replica=replica, uuid=bundle_uuid, reason="DCP-wide integration test")
T = int(input()) for _ in range(T): n = int(input()) a = list(map(int,input().split())) m = a[-1] c = [a[-1]] for i in range(n-2,-1,-1): if m <= a[i]: m = a[i] c.append(a[i]) for i in range(len(c)-1,-1,-1): print(c[i],end=" ") print()
import datetime import streamlit as st from threading import Thread def run(alarmH,alarmM): while(True): if(alarmH==datetime.datetime.now().hour and alarmM==datetime.datetime.now().minute): st.write("Time to wake up") audio_file=open("song.mp3","rb") st.audio(audio_file,format='audio/mp3') break def activate_alarm(alarmH,alarmM): process = Thread(target=run,args=[alarmH,alarmM]) process.start() return True
#A file for testing the python apt module import apt import sys pkg_name = "firefx" cache = apt.cache.Cache() #cache.update() if pkg_name in cache: pkg = cache[pkg_name] print(pkg.versions[0].description) else: print("Package %s not found" % pkg_name)
for abc in ["a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q","r","s","u","v","w","x","y","z"]: salida = open('english-'+abc+'.txt','w') fichero = open('english.txt', 'r') for linea in fichero: #print (len(linea)) if(len(linea) == 9 and linea[0] == abc): salida.write(linea) salida.close() fichero.close()
# -*- coding: utf-8 -*- import connection import groups import users import logging if __name__ == '__main__': logging.getLogger().setLevel(logging.INFO) import sys name = sys.argv[1] usrs = sys.argv[2:] logging.info('creando oficina\nnombre: {}\nusuarios: {}'.format(name, users)) con = connection.getConnection() try: o = groups.Office() o.name = name o.users = [] for u in usrs: user = users.UserDAO.findByDni(con, u) if user is None: logging.warn('usuario inexistente : {}'.format(u)) continue (uid, version) = user o.users.append(uid) oid = groups.OfficeDAO.persist(con, o) office = groups.OfficeDAO.findById(con, oid) logging.info(office.__dict__) con.commit() finally: connection.closeConnection(con)
# -*- coding:utf-8 -*- # class fraction operations def incor_exit(message): print(message) return class Fraction(object): def __init__(self, numerator, denominator=1): # a / b try: numerator / denominator except (TypeError, ZeroDivisionError): incor_exit('Error!') if isinstance(numerator, int) and isinstance(denominator, int): self.numerator, self.denominator = numerator, denominator else: incor_exit('Error!') def reduce(self): a, b = self.numerator, self.denominator while b: a, b = b, a % b self.numerator //= a self.denominator //= a return self def __str__(self): self.reduce() c = self.numerator // self.denominator a = self.numerator % self.denominator if self.denominator == 1: return '%d' % c if c: return '%d %d/%d' % (c, a, self.denominator) else: return '%d/%d' % (a, self.denominator) def __add__(self, other): if isinstance(other, int): other = Fraction(other, 1) return Fraction( self.numerator * other.denominator + self.denominator * other.numerator, self.denominator * other.denominator ).reduce() def __radd__(self, other): return self + other def __eq__(self, other): if isinstance(other, int): other = Fraction(other, 1) self.reduce() other.reduce() return ( self.numerator == other.numerator and self.denominator == other.denominator ) def __lt__(self, other): self.reduce() other.reduce() return ( self.numerator * other.denominator - self.denominator * other.numerator < 0 ) def __neg__(self): return Fraction(-self.numerator, self.denominator) def __truediv__(self, other): return Fraction( self.numerator * other.denominator, self.denominator * other.numerator ) def __float__(self): return self.numerator / self. denominator if __name__ == '__main__': f = Fraction(2) print(f)
#!/usr/bin/python #coding: utf8 import numpy as np class anthill: def __init__(self): self.nb_ants = None self.start = None self.end = None self.room = [] self.link = [] self.move = [] self.nb_move = 0 class Ant: def __init__(self, number, node_path=None, journey=None, color='g.'): self.number = number self.node_on_path = node_path self.journey = journey self.color = color def parse_path(self, farm): self.node_on_path = [] started = False self.node_on_path.append(farm.start) for turn in farm.move: for move in turn: if move[0] == str(self.number): self.node_on_path.append(move[1]) started = True if not started: self.node_on_path.append(farm.start) def calc_journey(self, pos, num_steps, farm): location_list = [] for i in range(len(self.node_on_path)): if i != 0: # take 2 nodes and calculate x y between thoses nodes start_pos = pos[self.node_on_path[i - 1]] end_pos = pos[self.node_on_path[i]] x = np.linspace(start_pos[0], end_pos[0], num=num_steps) y = np.linspace(start_pos[1], end_pos[1], num=num_steps) location_list.extend(list(zip(x, y))) i += 1 self.journey = location_list
# Generated by Django 2.2.7 on 2019-11-24 20:36 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('accounts', '0002_auto_20191124_2036'), ] operations = [ migrations.CreateModel( name='Transaction', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(auto_now_add=True)), ('last_updated_at', models.DateTimeField(auto_now=True)), ('amount', models.DecimalField(decimal_places=2, max_digits=30)), ('currency', models.CharField(choices=[('USD', 'United States Dollars'), ('EUR', 'Euros')], default='EUR', max_length=3)), ('emitter', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='emitted_transactions', to='accounts.Account')), ('receiver', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='received_transactions', to='accounts.Account')), ], options={ 'abstract': False, }, ), ]
x = int(input("Enter x :")) y = int(input("Enter y :")) x = x*0+y y = y*0+x print(x) print(y)
from sympy.ntheory import primefactors limit = 1000000 for n in xrange(limit): ok = True for i in xrange(4): if len(primefactors(n+i)) != 4: ok = False break if ok: print n break
# coding=utf-8 import sympy as sp import numpy as np from fractions import gcd import bitwise_operators_strings as bw def shift_register(iniCond,poly): """Generates a maximum length sequence in a shift register from the next arguments: - iniCond: the initial condition of the shift register - poly: primitive polynomial in binary format both arguments are strings in binary format, i.e '1011'.""" if len(iniCond) != len(poly): raise Exception('Argument length mismatch') regSize = len(poly) Rg = int(iniCond,2) g = int(poly,2) N = 2**regSize - 1 for i in range(0,N+1): if Rg & 1 != 0 def gold_sequence(iniCond,poly): """Generates a Gold code sequence from the next parameters: - iniCond: the initial condition of the shift register - poly: primitive polynomial in binary format both arguments are strings in binary format, i.e '1011'.""" if len(iniCond) != len(poly): raise Exception('Argument length mismatch') regSize = len(poly) N = 2**regSize -1 if regSize%4 != 0: if regSize%4 == 2: e,k = 2,1 while gcd(regSize,k) != 2: k+=1 f = 2**k+1 else: e,k = 1,1 while gcd(regSize,k) != 1 k+=1 f= 2**k + 1 else: raise Exception('No available sequences for the given arguments') SR1 = shift_register(iniCond,poly) SR2 = [] for i in range(0,N): k = (i*f % N) + 1 SR2.append(SR1[k]) G = -2*xor(SR1,SR2) + 1 print(G) Gs = bw.toArray(G) np.corrcoef(Gs,Gs) return Gs gold_sequence('0001','1011')
import numpy as np import tensorflow as tf from tensorflow.keras.utils import Sequence as tf_Sequence from torch.nn import Module from functools import partial from graphgallery import functional as gf class Sequence(tf_Sequence): def __init__(self, *args, **kwargs): device = kwargs.pop('device', 'cpu') escape = kwargs.pop('escape', None) super().__init__(*args, **kwargs) self.astensor = partial(gf.astensor, device=device, escape=escape) self.astensors = partial(gf.astensors, device=device, escape=escape) self.device = device def __len__(self): raise NotImplementedError def __getitem__(self, index): raise NotImplementedError def on_epoch_begin(self): ... def on_epoch_end(self): ... def _shuffle_batches(self): ...
import dash_bootstrap_components as dbc from dash import Input, Output, html dropdown = html.Div( [ dbc.DropdownMenu( [ dbc.DropdownMenuItem( "A button", id="dropdown-button", n_clicks=0 ), dbc.DropdownMenuItem( "Internal link", href="/docs/components/dropdown_menu" ), dbc.DropdownMenuItem( "External Link", href="https://github.com" ), dbc.DropdownMenuItem( "External relative", href="/docs/components/dropdown_menu", external_link=True, ), ], label="Menu", ), html.P(id="item-clicks", className="mt-3"), ] ) @app.callback( Output("item-clicks", "children"), [Input("dropdown-button", "n_clicks")] ) def count_clicks(n): if n: return f"Button clicked {n} times." return "Button not clicked yet."
# based on https://inventwithpython.com/chapter10.html for practice # tic tac toe game import random import time def get_letter(): while True: letter = input("Choose your letter ('X' or 'O') >> ") if letter.upper() == 'X': return['X', 'O'] elif letter.upper() == 'O': return['O', 'X'] else: print("You must enter 'X' or 'O'") def flip_coin(): print("Flipping coin to choose first player...") time.sleep(3) outcome = random.randint(0, 1) if outcome == 0: return "player" else: return "computer" def generate_board(board): print("") print(" --- --- --- ") print("| " + board[1] + " | " + board[2] + " | " + board[3] + " |") print(" --- --- --- ") print("| " + board[4] + " | " + board[5] + " | " + board[6] + " |") print(" --- --- --- ") print("| " + board[7] + " | " + board[8] + " | " + board[9] + " |") print(" --- --- --- ") print("") def get_move(board): while True: move = int(input("Enter your move (1 - 9) >> ")) if space_free(board, move): return move else: print("You cannot play this square") def make_move(board, move, letter): board[move] = letter def winning_position(board, letter): if (board[1] == letter and board[2] == letter and board[3] == letter)\ or (board[4] == letter and board[5] == letter and board[6] == letter)\ or (board[7] == letter and board[8] == letter and board[9] == letter)\ or (board[1] == letter and board[4] == letter and board[7] == letter)\ or (board[2] == letter and board[5] == letter and board[8] == letter)\ or (board[3] == letter and board[6] == letter and board[9] == letter)\ or (board[1] == letter and board[5] == letter and board[9] == letter)\ or (board[3] == letter and board[5] == letter and board[7] == letter): return True else: return False def get_duplicate_board(board): duplicate_board = [] for i in board: duplicate_board.append(i) return duplicate_board def space_free(board, move): if board[move] is not " ": return False else: return True def random_move(board, spaces): moves = [] for i in spaces: if space_free(board, i): moves.append(i) if len(moves) is not 0: return random.choice(moves) else: return None def get_computer_move(board, computer_letter, player_letter): for i in range(1, 10): board_copy = get_duplicate_board(board) if space_free(board_copy, i): make_move(board_copy, i, computer_letter) if winning_position(board_copy, computer_letter): return i for i in range(1, 10): board_copy = get_duplicate_board(board) if space_free(board_copy, i): make_move(board_copy, i, player_letter) if winning_position(board_copy, player_letter): return i move = random_move(board, [1, 3, 7, 9]) if move is not None: return move if space_free(board, 5): return 5 return random_move(board, [2, 4, 6, 8]) def board_full(board): for i in range(1, 10): if space_free(board, i): return False return True def play_again(): answer = input("Would you like to play again? >> ") return answer.lower() == "yes" print("Welcome to tic tac toe!") while True: board = [' '] * 10 player_letter, computer_letter = get_letter() turn = flip_coin() print("The " + turn + " will start") game_in_progress = True while game_in_progress: if turn == "player": generate_board(board) player_move = get_move(board) make_move(board, player_move, player_letter) if winning_position(board, player_letter): print("You have won the game") generate_board(board) game_in_progress = False elif board_full(board): generate_board(board) print("Tie") break else: turn = "computer" elif turn == "computer": computer_move = get_computer_move(board, computer_letter, player_letter) make_move(board, computer_move, computer_letter) if winning_position(board, computer_letter): generate_board(board) print("You have lost") game_in_progress = False elif board_full(board): generate_board(board) print("The game is a tie") break else: turn = 'player' if not play_again(): break
import torch.utils.data as data import cv2 import sys import random from os import listdir from os.path import join import os import numpy as np from keras.preprocessing.text import Tokenizer from keras.utils import to_categorical from inference.Compiler import * # Model Imports import torch import torch.nn as nn import torchvision.models as models from torch.nn.utils.rnn import pack_padded_sequence from torch.autograd import Variable #torch.nn.Module.dump_patches = True def resize_img(png_file_path): img_rgb = cv2.imread(png_file_path) img_grey = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY) img_adapted = cv2.adaptiveThreshold(img_grey, 255, cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY, 101, 9) img_stacked = np.repeat(img_adapted[...,None],3,axis=2) resized = cv2.resize(img_stacked, (224,224), interpolation=cv2.INTER_AREA) bg_img = 255 * np.ones(shape=(224,224,3)) bg_img[0:224, 0:224,:] = resized bg_img /= 255 bg_img = np.rollaxis(bg_img, 2, 0) return bg_img def load_doc(filename): file = open(filename, 'r') text = file.read() file.close() return text #Models class EncoderCNN(nn.Module): def __init__(self, embed_size): """Load the pretrained ResNet-152 and replace top fc layer.""" super(EncoderCNN, self).__init__() resnet = models.resnet34(pretrained=True) modules = list(resnet.children())[:-1] # delete the last fc layer. self.resnet = nn.Sequential(*modules) self.linear = nn.Linear(resnet.fc.in_features, embed_size) self.bn = nn.BatchNorm1d(embed_size, momentum=0.01) self.init_weights() def init_weights(self): """Initialize the weights.""" self.linear.weight.data.normal_(0.0, 0.02) self.linear.bias.data.fill_(0) def forward(self, images): """Extract the image feature vectors.""" features = self.resnet(images) features = Variable(features.data) features = features.view(features.size(0), -1) if images.shape[0] < 2: features = self.linear(features) return features features = self.bn(self.linear(features)) return features class DecoderRNN(nn.Module): def __init__(self, embed_size, hidden_size, vocab_size, num_layers): """Set the hyper-parameters and build the layers.""" super(DecoderRNN, self).__init__() self.n_layers = num_layers self.hidden_size = hidden_size self.embed = nn.Embedding(vocab_size, embed_size) self.lstm = nn.GRU(embed_size*2, hidden_size, num_layers, batch_first=True) self.linear = nn.Linear(hidden_size, vocab_size) self.init_weights() def init_weights(self): """Initialize weights.""" self.embed.weight.data.uniform_(-0.1, 0.1) self.linear.weight.data.uniform_(-0.1, 0.1) self.linear.bias.data.fill_(0) def forward(self, features, captions, hidden): """Decode image feature vectors and generates captions.""" embeddings = self.embed(captions) embeddings = torch.cat((features.unsqueeze(1).repeat(1,embeddings.shape[1],1), embeddings), 2) #packed = pack_padded_sequence(embeddings, 48, batch_first=True) output, hidden = self.lstm(embeddings, hidden) outputs = self.linear(output) return outputs, hidden def init_hidden(self): return Variable(torch.zeros(self.n_layers, 1, self.hidden_size)) def load_best(model): base = 'trained/' if model == 1: base = 'trained2/' lst = listdir(base) le = 999 ld = 999 prev_e = '' prev_d = '' for i in lst: num = i.split('(')[1] num = num.split(')')[0] num = float(num) if i.startswith('encoder'): if le > num: le = num if prev_e != '': os.remove(base + prev_e) prev_e = i elif le < num: os.remove(base + i) elif i.startswith('decoder'): if ld > num: ld = num if prev_d != '': os.remove(base + prev_d) prev_d = i elif ld < num: os.remove(base + i) return base + prev_e, base + prev_d def word_for_id(integer, tokenizer): for word, index in tokenizer.word_index.items(): if index == integer: return word return None def load_val_images(data_dir): image_filenames =[] images = [] all_filenames = listdir(data_dir) all_filenames.sort() for filename in (all_filenames): if filename[-3:] == "png": image_filenames.append(filename) for name in image_filenames: image = resize_img(data_dir+name) images.append(image) return images def load_n_run(image_file=None, file=True, model=0): #encoder = torch.load(os.path.abspath("model_weights/encoder_resnet34_0.061650436371564865.pt")) #decoder = torch.load(os.path.abspath("model_weights/decoder_resnet34_0.061650436371564865.pt")) me, md = load_best(model) print(me, md) encoder = torch.load(me) decoder = torch.load(md) #encoder = torch.load(os.path.abspath("encoder_resnet34_tensor(0.0435).pt")) #decoder = torch.load(os.path.abspath("decoder_resnet34_tensor(0.0435).pt")) # Initialize the function to create the vocabulary tokenizer = Tokenizer(filters='', split=" ", lower=False) # Create the vocabulary tokenizer.fit_on_texts([load_doc('vocabulary.vocab')]) decoded_words = [] star_text = '<START> ' hidden = decoder.init_hidden() #image = load_val_images('val/')[0] if image_file: print('image_file:',image_file) image = resize_img(image_file) else: image = load_val_images('test/')[0] #image = Variable(torch.FloatTensor([image])) image = Variable(torch.FloatTensor([image])) predicted = '<START> ' for di in range(9999): sequence = tokenizer.texts_to_sequences([star_text])[0] decoder_input = Variable(torch.LongTensor(sequence)).view(1,-1) features = encoder(image) #print(decoder_input) outputs,hidden = decoder(features, decoder_input,hidden) topv, topi = outputs.data.topk(1) ni = topi[0][0][0] word = word_for_id(ni, tokenizer) if word is None: continue predicted += word + ' ' star_text = word #print(predicted) if word == '<END>': break print(predicted) #select html tag collection for replacement compiler = Compiler('default') #generate html content compiled_website = compiler.compile(predicted.split()) if file: with open('output.html', 'w') as f: f.write(compiled_website) else: print(compiled_website) if __name__ == "__main__": # train on 20 images #training(100) load_n_run(image_file='./test/test.png', file=True)
import numpy as np import matplotlib.pyplot as plt from matplotlib import gridspec #from bayes_opt import BayesianOptimization from bayesian_opt.bayesian_optimization import BayesianOptimization def target(x): y = np.exp(-(x-2)**2)+np.exp(-(x-6)**2/5)+1/(x**2+1)+0.1*np.sin(5*x)-0.5 return y def posterior(bo, x): bo.gp.fit(bo.X, bo.Y) mu, sigma = bo.gp.predict(x, return_std=True) return mu, sigma def plt_gp(bo, x, y): fif = plt.figure(figsize=(16,10)) gs = gridspec.GridSpec(2,1, height_ratios=[3,1]) axis = plt.subplot(gs[0]) acq = plt.subplot(gs[1]) bo.gp.fit(bo.X, bo.Y) mu, sigma = bo.gp.predict(x, return_std=True) axis.plot(x, y, linewidth=3, label='Target') axis.plot(bo.X.flatten(), bo.Y, 'D', markersize=8, color='r', label='Observation') axis.plot(x, mu, '--', color='k', label='Prediction') axis.plot(x, np.zeros(x.shape[0]), linewidth=3, color='r', label='Prediction') axis.fill(np.concatenate([x, x[::-1]]), np.concatenate([mu-1.96*sigma, (mu+1.96*sigma)[::-1]]), alpha=0.6, fc='c', ec='None') utility = bo.util.acqf(x, bo.gp, 0) acq.plot(x, utility, label='Utility Function') plt.show() def main(): bo = BayesianOptimization(target, {'x':(-5,10)}) bo.maximize(init_points=2, n_iter=10, acq='ucb', kappa=5) x = np.linspace(-5, 10, 200).reshape(-1,1) y = target(x) plt_gp(bo, x, y) if __name__=="__main__": main()
#!/usr/bin/python3 '''after party module''' def append_after(filename="", search_string="", new_string=""): '''function that inserts a line of text to a file, after each line containing a specific string''' input_file = open(filename, mode='r').readlines() with open(filename, mode="w") as f: for line in input_file: f.write(line) if search_string in line: f.write(new_string) f.close()
import unittest from katas.beta.count_vowels_in_a_string import count_vowels class CountVowelsTestCase(unittest.TestCase): def test_equals(self): self.assertEqual(count_vowels('abcdefg'), 2) def test_equals_2(self): self.assertEqual(count_vowels('asdfdsafdsafds'), 3)
class Player: #수퍼클래스 def __init__(self, name, age): self.name = name self.age = age class SoccerPlayer(Player): #서브클래스 def Goal(self, goal): self.goal = goal class Midfielder(SoccerPlayer): #서브클래스의 서브클래스 def assist(self, ass): self.ass = ass class GamePlayer(Player): #서브클래스 def KDA(self, K, D, A): self.K = K self.D = D self.A = A son = SoccerPlayer("손흥민", 29) son.Goal(3) print(son.name, son.age, son.goal)
#! /user/bin/env python3 import imaplib import email import os import sys import mimetypes import time # log in information # emailAddress = os.environ.get("python_email") # password = os.environ.get("python_password") # instagramAddress = os.environ.get('instagram_email') # instagramPW = os.environ.get('instagram_password') def downloadEmails(emailAddress, emailPw, emailSearchFrom): SMTP_SERVER = "imap.gmail.com" mail = imaplib.IMAP4_SSL(SMTP_SERVER) try: mail.login(emailAddress, emailPw) time.sleep(1) except: print('Error logging in') return else: # select inbox mail.select("INBOX") # finding emails sent from myself result, messageFromMe = mail.search( None, 'FROM', 'therealnicola@gmail.com') mailList = messageFromMe[0].split() if len(mailList) == 0: print('No emails found') return # reading each item try: for item in mailList: result, data = mail.fetch(item, '(RFC822)') rawEmail = data[0][1].decode("utf-8") emailMessage = email.message_from_string(rawEmail) subject_ = emailMessage['Subject'] counter = 0 for part in emailMessage.walk(): if part.get_content_maintype() == "multipart": continue filename = part.get_filename() contentType = part.get_content_type() if not filename: ext = mimetypes.guess_extension(contentType) if not ext: ext = '.bin' filename = 'msg-part-%08d%s' % (counter, ext) counter += 1 # saving the file savePath = os.path.join(os.getcwd(), "emails/uploads", ) if not os.path.exists(savePath): # make path if it doesnt exist os.makedirs(savePath) with open(os.path.join(savePath, filename), 'wb') as fp: fp.write(part.get_payload(decode=True)) # saving the subject as a text file with open(os.path.join(savePath, 'text.txt'), 'w') as fp: fp.write(subject_) # Change the flag to deleted and delete typ, response = mail.store(item, '+FLAGS', r'(\Deleted)') mail.expunge() except: print('Error downloading')
from django.contrib import admin from .models import User from django.contrib.auth.admin import UserAdmin class UserAdmin(admin.ModelAdmin): filter_horizontal = ['groups'] admin.site.register(User, UserAdmin)
from flask import Flask, render_template from youtube_api import YoutubeDataApi from youtube import getVideoData app = Flask(__name__) @app.route('/') def sayHello(): return render_template("index.html") # @app.route('/about') # def about(): # return render_template("about.html") @app.route('/suggestions') def about(): return render_template("suggestions.html") @app.route('/stocism') def suggestions(): searchData = getVideoData('stocism') return render_template("videoLayout.html", results=searchData, title="Stocism") @app.route('/philosophy') def philosuggestions(): searchData = getVideoData('philosophy') return render_template("videoLayout.html", results=searchData, title="Philosophy") @app.route('/motivation') def motivsuggestions(): searchData = getVideoData('motivation') return render_template("videoLayout.html", results=searchData, title="Motivation") @app.route('/inspiration') def insipsuggestions(): searchData = getVideoData('inspirational') return render_template("videoLayout.html", results=searchData, title="Inspirational") @app.route('/productivity') def producsuggestions(): searchData = getVideoData('productivity') return render_template("videoLayout.html", results=searchData, title="Productivity") @app.route('/business') def businesssuggestions(): searchData = getVideoData('business') return render_template("videoLayout.html", results=searchData, title="Business") if __name__ == "__main__": app.run(debug=True)
import socket import select HEADER_LENGTH = 3 #Header will be used to specify the length of the message received IP = socket.gethostname() PORT = 2000 email_list = ["trinity"] password_list = ["college"] coef_authorization = 0 #This function returns a message received in the format: header, message_body- will be called further down. def receive_message (client_socket): try: message_header = client_socket.recv(HEADER_LENGTH) message_length = int(message_header.decode("utf-8")) return {"header": message_header, "data": client_socket.recv(message_length).decode("utf-8")} except: return False def set_up(): # Welcome & Setup print("\nWelcome to Group 7 Quarantine Monitor!\n") set_up = input("Do you want to set up a new patient (Y/N): ") while set_up != 'Y' and set_up != 'N': print("Invalid command!") set_up = input("Do you want to set up a new patient (Y/N): ") while set_up == 'Y': new_email = input('Enter a new Email-adress: ') new_password = input('Enter the password: ') if new_email in email_list: print('Email already registered. ') del new_email, new_password else: email_list.append(new_email) password_list.append(new_password) print("New user", new_email, "setup successful! ") del new_email, new_password set_up = input("Do you want to set up a new patient (Y/N): ") while set_up != 'Y' and set_up != 'N': print("Invalid command!") set_up = input("Do you want to set up a new patient (Y/N): ") set_up() def authorize (): # Check log in / give access to user print("Checking Authorization... ") trur_message = 'TRUE'.encode("utf-8") false_message = 'FALSE'.encode("utf-8") while True: try: UP_header = client_socket.recv(HEADER_LENGTH).decode("utf-8") except: continue break email_pass_packet = client_socket.recv(int(UP_header)).decode("utf-8") email_pass = email_pass_packet.split(',') #[0] will be the username, [1] will be the password print(email_pass[0], email_pass[1]) # Authorization while True: if email_pass[0] in email_list: index = email_list.index(email_pass[0]) if email_pass[1] == password_list[index]: print('Passed Authorization. Currently connected with ->', email_pass[0]) client_socket.send(f"{len(trur_message):<{HEADER_LENGTH}}".encode("utf-8")+ 'TRUE'.encode("utf-8")) break else: client_socket.send(f"{len(false_message):<{HEADER_LENGTH}}".encode("utf-8")+ 'FALSE'.encode("utf-8")) while True: try: UP_header = client_socket.recv(HEADER_LENGTH) except: continue break email_pass_packet = client_socket.recv(int(UP_header.decode("utf-8"))).decode("utf-8") email_pass = email_pass_packet.split(',') #[0] will be the username, [1] will be the password print(email_pass[0], email_pass[1]) else: client_socket.send(f"{len(false_message):<{HEADER_LENGTH}}".encode("utf-8") + 'FALSE'.encode("utf-8")) while True: try: UP_header = client_socket.recv(HEADER_LENGTH) except: continue break email_pass_packet = client_socket.recv(int(UP_header.decode("utf-8"))).decode("utf-8") email_pass = email_pass_packet.split(',') #[0] will be the username, [1] will be the password print(email_pass[0], email_pass[1]) #Set up the server socket details: server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server_socket.setblocking(False) server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) #Not really sure if this line is necessary. server_socket.bind((IP, PORT)) server_socket.listen() #Might be able to limit the number of clients by specifying a number here # Sockets from which we expect to read sockets_list = [server_socket] # Sockets to which we expect to write outputs = [ ] #This is a clients dictionary (key/value pair) clients = {} timeout=20 #this is the time for which the server waits for new connection print("Waiting for incoming connections...") while True: read_sockets, write_sockets, exception_sockets = select.select(sockets_list, outputs, sockets_list,timeout) for notified_socket in read_sockets: if notified_socket == server_socket: client_socket, client_address = server_socket.accept() user = receive_message(client_socket) print(f"In coming connection with username: {user['data']}") if coef_authorization == 0: authorize() # This is a loop, can be infinity coef_authorization = coef_authorization + 1 user_id = user['data']#The patient id sockets_list.append(client_socket) clients[client_socket] = user print(f"Accepted new connection from {client_address[0]}:{client_address[1]} username:{user['data']}") welcome_message = ("You are connected - stand by for advice.").encode("utf-8") welcome_header = f"{len(welcome_message):<{HEADER_LENGTH}}".encode("utf-8") client_socket.send(welcome_header + welcome_message) else: try: message = receive_message(notified_socket) user = clients[notified_socket] print(f"Received from {user['data']}: {message['data']}") except: print(f"Closed connection from {clients[notified_socket]['data']}") sockets_list.remove(notified_socket) del clients[notified_socket] #continue #Now print out a list of connected patients: print("The clients currently connected are:") for eachClient in clients: print(clients[eachClient]['data']), #See what the doctor wants to do next: options = input(f"Enter a patient name to send advice or enter 's' to stand-by for more connections: > ") while (options != 's'): if options == 'p': print("The clients currently connected are:") for eachClient in clients: print(clients[eachClient]['data']), else: patientFound = False for eachClient in clients: if clients[eachClient]['data'] == options: patientFound = True adviceMessage = input(f"Enter advice for {clients[eachClient]['data']}: > ") adviceMessage = adviceMessage.encode("utf-8") adviceMessage_header = f"{len(adviceMessage):<{HEADER_LENGTH}}".encode("utf-8") try: eachClient.send(adviceMessage_header + adviceMessage) except: print("Error sending advice to the patient.") if not patientFound: print("Unable to find patient. Please try again.") options = input(f"Enter patient name, 's' to stand-by for more connections or 'p' to print the list again: > ")
from youtube_api import YoutubeDataApi from secret import youtube_api yt = YoutubeDataApi(youtube_api) def getVideoData(search): searches = yt.search(q=search, max_results=10) print(searches[0]) searches = [{'title': search['video_title'], 'date': search['video_publish_date'], 'desc': search['video_description'], 'channel': search['channel_title'], 'image': search['video_thumbnail'], 'video_link': "https://www.youtube.com/watch?v=" + search['video_id']} for search in searches] return searches def getChannelData(channel): pass
from flask import Blueprint from flask import request, jsonify from flask import render_template from flask_login import login_required from .controller import HostMonitor, Performance bp = Blueprint('performance', __name__) @bp.route('/performance/host') @login_required def host(): all_list = HostMonitor.host_all_list() return render_template('/performance/host.html', data=all_list) @bp.route('/performance/host/<hostname>', methods=['GET', 'POST']) @login_required def performance_host(hostname): title_list = HostMonitor.get_title_list() return render_template('/performance/host_monitor_display.html', hostname=hostname, title_data=title_list) @bp.route('/performance/host/json_data', methods=['GET', 'POST']) @login_required def json_data(): if request.method == 'POST': starttime = request.form['start'] endtime = request.form['end'] hostname = request.form['hostname'] data_list = HostMonitor.get_monitor_json_data(hostname, starttime, endtime) return jsonify({'data': data_list}) @bp.route('/performance/index/<opt>') @login_required def index(opt): wait_class_data = Performance.wait_class(opt) return render_template('/performance/index.html', wait_class_data=wait_class_data)
name = input() message = "Hello, " if name == "Johnny": message += "my love!" else: message += f"{name}!" print(message)
#!/usr/bin/python from statistics import median num=input("Enter number to find median:") con=[int(x) for x in str(num)] res=median(con) print(res)
import sys import numpy as np from Perceptron import Perceptron from io_handling import FileOutputter def main(): p = Perceptron(FileOutputter(sys.argv[2])) raw_data = np.loadtxt(sys.argv[1], delimiter=',') data = raw_data[:, [0, 1]] rows = raw_data.shape[0] bias_column = np.ones(rows) bias_column.shape = (rows, 1) data = np.hstack((bias_column, data)) labels = raw_data[:, [2]].flatten() while True: p.run(data, labels.T) r,w = p.predict_all(data, labels.T) if w == 0: break return 0 if __name__ == "__main__": main() # # RESOURCES # - https://www.tutorialspoint.com/python/python_files_io.htm (file handling) # - https://en.wikipedia.org/wiki/Perceptron (WP article on perceptron) # - http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html#sklearn.linear_model.Perceptron (basic perceptron learning algorithm) # - https://docs.scipy.org/doc/numpy/reference/generated/numpy.genfromtxt.html (loading text from csv into numpy array)
import numpy as np from flask import Flask, request, jsonify, render_template import pickle app = Flask(__name__) model = pickle.load(open('model.pkl', 'rb')) @app.route('/') def home(): return render_template('index.html') @app.route('/predict',methods=['POST']) def predict(): ''' For rendering results on HTML GUI ''' features = ['Mat_t20', 'Inns_t20', 'NO_t20', 'HS_t20', 'Ave_t20', 'SR_t20', '4s_t20', '6s_t20', 'Runs_t20', '100s_t20', '50s_t20', '0s_t20', 'Mat_odi', 'Inns_odi', 'NO_odi', 'HS_odi', 'Ave_odi', 'SR_odi', '4s_odi', '6s_odi', 'Runs_odi', '100s_odi', '50s_odi', '0s_odi', 'year'] req_features = ['Mat_t20','Ave_t20', 'SR_t20','Runs_t20', '100s_t20', '50s_t20','year'] int_features = [int(x) for x in request.form.values()] int_dic={} for feature,value in zip(req_features,int_features): int_dic[feature]=value input=[] for feature in features: if feature in int_dic: if feature !='year': input.append(int_dic[feature]) else: input.append(int_dic[feature]-2016) elif feature=='Inns_t20': input.append(int_dic['Mat_t20']) else: input.append(0) final_features = [np.array(input)] prediction = model.predict(final_features) output = round(prediction[0]/1000, 2) return render_template('index.html', prediction_text='Player cost should be $ {} crore'.format(output)) if __name__ == "__main__": app.run(debug=True)
import cv2 import numpy as np folders = ['Adirondack-perfect', 'Backpack-perfect', 'Couch-perfect', 'Sword2-perfect'] # for different sequences, find depth image for folder in folders: # path of images path = 'D:\\Vision\\HW07_dataset\\Question2\\{}\\{}\\'.format(folder, folder) # left image path_img0 = path + 'im0.png' # right image path_img1 = path + 'im1.png' img_l = cv2.imread(path_img0) img_r = cv2.imread(path_img1) # SGBM Parameters window_size = 3 left_matcher = cv2.StereoSGBM_create( minDisparity=0, numDisparities=160, blockSize=5, P1=8 * 3 * window_size ** 2, P2=32 * 3 * window_size ** 2, disp12MaxDiff=1, uniquenessRatio=15, speckleWindowSize=0, speckleRange=2, preFilterCap=63, mode=cv2.STEREO_SGBM_MODE_SGBM_3WAY ) # Convenience method to set up the matcher for computing the # right-view disparity map that is required in case of filtering with confidence. right_matcher = cv2.ximgproc.createRightMatcher(left_matcher) # filter parameters lambda_param = 80000 sigma_param = 1.2 visual_multiplier = 1.0 # Convenience factory method that creates an instance of DisparityWLSFilter and sets up all # the relevant filter parameters automatically based on the matcher instance. Currently supports # only StereoBM and StereoSGBM. wls_filter = cv2.ximgproc.createDisparityWLSFilter(matcher_left=left_matcher) wls_filter.setLambda(lambda_param) wls_filter.setSigmaColor(sigma_param) displ = left_matcher.compute(img_l, img_r) dispr = right_matcher.compute(img_r, img_l) displ = np.int16(displ) dispr = np.int16(dispr) filteredImg = wls_filter.filter(displ, img_l, None, dispr) filteredImg = cv2.normalize(src=filteredImg, dst=filteredImg, beta=0, alpha=255, norm_type=cv2.NORM_MINMAX); filteredImg = np.uint8(filteredImg) heat_img = cv2.applyColorMap(filteredImg, cv2.COLORMAP_JET) cv2.imshow('Disparity Map {}'.format(folder), cv2.resize(heat_img, (heat_img.shape[1]//4, heat_img.shape[0]//4))) # write to file cv2.imwrite(filename='.\\problem-1-2\\heatmap-{}.png'.format(folder), img=heat_img) cv2.waitKey(0) cv2.destroyAllWindows()
""" # 二叉树 """ import os import logging logger = logging.getLogger(__name__) class TreeNode(object): def __init__(self, value): self.val = value self.left = None self.right = None def pre_order(root): """前序遍历二叉树, 借助迭代器+递归实现""" if root: yield root.val # 访问根节点 yield from pre_order(root.left) # 访问左树 yield from pre_order(root.right) # 访问右树 def in_order(root): """中序遍历二叉树, 借助迭代器+递归实现""" if root: yield from pre_order(root.left) # 访问左树 yield root.val # 访问根节点 yield from pre_order(root.right) # 访问右树 def post_order(root): """后序遍历二叉树, 借助迭代器+递归实现""" if root: yield from pre_order(root.left) # 访问左树 yield from pre_order(root.right) # 访问右树 yield root.val # 访问根节点 if __name__ == '__main__': logging.basicConfig(format="[%(asctime)s %(filename)s: %(lineno)s] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO, filename=None, filemode="a") logger.info("申请N个节点") singer = TreeNode("Taylor Swift") genre_country = TreeNode("Country") genre_pop = TreeNode("Pop") album_fearless = TreeNode("Fearless") album_red = TreeNode("Red") album_1989 = TreeNode("1989") album_reputation = TreeNode("Reputation") song_ls = TreeNode("Love Story") song_wh = TreeNode("White Horse") song_wanegbt = TreeNode("We Are Never Ever Getting Back Together") song_ikywt = TreeNode("I Knew You Were Trouble") song_sio = TreeNode("Shake It Off") song_bb = TreeNode("Bad Blood") song_lwymmd = TreeNode("Look What You Made Me Do") song_g = TreeNode("Gorgeous") logger.info("设置树节点之间的关系") singer.left, singer.right = genre_country, genre_pop genre_country.left, genre_country.right = album_fearless, album_red genre_pop.left, genre_pop.right = album_1989, album_reputation album_fearless.left, album_fearless.right = song_ls, song_wh album_red.left, album_red.right = song_wanegbt, song_ikywt album_1989.left, album_1989.right = song_sio, song_bb album_reputation.left, album_reputation.right = song_lwymmd, song_g logger.info("前序遍历: {}".format(list(pre_order(singer)))) logger.info("中序遍历: {}".format(list(in_order(singer)))) logger.info("后序遍历: {}".format(list(post_order(singer))))
#! /usr/bin/env python ''' Submission script adapted for Comet and Bridges HPCs, including multiple options such as accounts, partitions, n of processors, memory, etc. Author: Juan V. Alegre Requena, please report any bugs or suggestions to juanvi89@hotmail.com ''' import os from argparse import ArgumentParser PARTITION_LIST_COMET = ['shared','compute','debug'] PARTITION_LIST_BRIDGES = ['RM-shared','RM','RM-small'] def prepare_sh(inp_file,nproc,mem,args): # this prepares a queue submiting file with slurm options that will be run later if args.cluster == "comet": scratch="/expanse/lustre/scratch/$USER/temp_project/job_$SLURM_JOB_ID" sh_s="#!/bin/bash\n\n#SBATCH -t "+str(args.t)+"\n#SBATCH --nodes=1\n#SBATCH --ntasks-per-node=1" sh_s=sh_s+"\n#SBATCH --cpus-per-task="+str(nproc) partition = args.pcomet if nproc == 128 and partition == 'shared': partition = 'compute' sh_s=sh_s+"\n#SBATCH -p "+partition sh_s=sh_s+"\n#SBATCH --job-name="+inp_file sh_s=sh_s+'\n#SBATCH --account='+ args.acomet # to avoid problems with calcs that require large amounts of memory if int(mem) > 48: mem = int(mem)+6 sh_s=sh_s+'\n#SBATCH --mem='+ str(mem) +'GB' sh_s=sh_s+"\nfile="+inp_file+"\ninpfile=${file}.com\noutfile=${file}.log\n\n" sh_s=sh_s+"export MODULEPATH=/share/apps/compute/modulefiles/applications:$MODULEPATH\n" sh_s=sh_s+"export GAUSS_SCRDIR="+scratch+"\nset OMP_NUM_THREADS $SLURM_CPUS_ON_NODE\n" sh_s=sh_s+"module load gaussian/16.C.01\n" sh_s=sh_s+"Homepath=$(pwd)\n" sh_s=sh_s+"mkdir $GAUSS_SCRDIR\n\n" sh_s=sh_s+"touch $Homepath/$outfile\n" sh_s=sh_s+"cp $inpfile $GAUSS_SCRDIR\n" sh_s=sh_s+"cd $GAUSS_SCRDIR\n" sh_s=sh_s+"\ng16 < $GAUSS_SCRDIR/$inpfile > $Homepath/$outfile\n\n" sh_s=sh_s+" echo 'Gaussian Job finished or failed (Good luck!!)'\n" if args.chk == True: sh_s=sh_s+"cp $GAUSS_SCRDIR/*.chk $Homepath\n" if args.wfn == True: sh_s=sh_s+"cp $GAUSS_SCRDIR/*.wfn $Homepath\n" sh_file=open(inp_file+".sh","w") sh_file.write(sh_s) sh_file.close() elif args.cluster == "bridges": sh_s="#!/bin/csh\n#SBATCH -t "+str(args.t)+"\n#SBATCH -N 1" partition = args.pbridges if nproc == 128 and partition == 'RM-shared': partition = 'RM' sh_s=sh_s+"\n#SBATCH -p "+partition # sh_s=sh_s+'\n#SBATCH --mem-per-cpu='+ str((int(mem)+6)/(nproc*1000)) +'MB' sh_s=sh_s+"\n#SBATCH --job-name="+inp_file+"\n#SBATCH --ntasks-per-node=1" sh_s=sh_s+"\n#SBATCH --cpus-per-task="+str(nproc)+'\n#SBATCH --account='+ args.abridges +'\n\n' sh_s=sh_s+"module load gaussian\n" sh_s=sh_s+"source $g16root/g16/bsd/g16.login\n" sh_s=sh_s+"set echo\n" # this sentence also sets the scratch directory as the predefined $LOCAL in Bridges2 sh_s=sh_s+"setenv GAUSS_SCRDIR $LOCAL\n" sh_s=sh_s+"setenv OMP_NUM_THREADS $SLURM_CPUS_ON_NODE\n" sh_s=sh_s+"cd $SLURM_SUBMIT_DIR\n" sh_s=sh_s+"set JOBNAME="+inp_file+"\n" sh_s=sh_s+"set INPUT=${JOBNAME}.com\n\n" sh_s=sh_s+"srun g16 < $INPUT > $JOBNAME.log\n\n" sh_s=sh_s+"echo 'Gaussian Job finished or failed (Good luck!!)'\n" if args.chk == True: sh_s=sh_s+"cp $GAUSS_SCRDIR/*.chk $Homepath\n" if args.wfn == True: sh_s=sh_s+"cp $GAUSS_SCRDIR/*.wfn $Homepath\n" sh_file=open(inp_file+".sh","w") sh_file.write(sh_s) sh_file.close() else: print('Specify your cluster with --cluster (i.e. --cluster comet or --cluster bridges)') if __name__ == "__main__": parser = ArgumentParser() parser.add_argument(nargs = '*', dest = 'input_file') parser.add_argument('-t', type=str, default="47:59:59", help='Walltime for job in format hh:mm:ss') parser.add_argument('--cluster', type=str, default='', help='Cluster used (comet or bridges)') parser.add_argument('--chk', action="store_true", default=False, help='Copy .chk files into your home directory after jobs are done') parser.add_argument('--wfn', action="store_true", default=False, help='Copy .wfn files into your home directory after jobs are done') parser.add_argument('--acomet', type=str, default='cst129', help='Account to use for job in Comet') parser.add_argument('--abridges', type=str, default='che180035p', help='Account to use for job in Bridges') parser.add_argument('--pcomet', choices=PARTITION_LIST_COMET, default=PARTITION_LIST_COMET[0], help='Partition used in Comet') parser.add_argument('--pbridges', choices=PARTITION_LIST_BRIDGES, default=PARTITION_LIST_BRIDGES[0], help='Partition used in Bridges') args = parser.parse_args() for file in args.input_file: # This part recognizes the amount of CPUs for the job specified in the input files nproc = 1 mem = 60 f=open(file,"r") for line in f.readlines()[:15]: if line.lower().find('%nproc') > -1: nproc = int(line.split('=')[1]) if line.lower().find('%mem') > -1: mem = line.lower().split('=')[1] mem = int(mem.split('gb')[0]) f.close() prepare_sh(file.split(".com")[0],nproc,mem,args) if nproc == 1: print("submitting job: "+file.split(".com")[0]+" with 1 processor.") elif nproc > 1: print("submitting job: "+file.split(".com")[0]+" with "+str(nproc)+" processors.") else: print("0 or negative number of processors specified in the input file.") os.system("sbatch "+file.split(".com")[0]+".sh")
from threading import Lock from flask import Flask from config import Config from flask_sqlalchemy import SQLAlchemy from flask_migrate import Migrate from flask_socketio import SocketIO import redis async_mode = None app = Flask(__name__) app.config.from_object(Config) db = SQLAlchemy(app) redis_store=redis.from_url(app.config.get('REDIS_URL')) migrate = Migrate(app, db) socketio = SocketIO(app, async_mode=async_mode) thread = None thread_lock = Lock() from app import routes, models, socket
t = int(input()) while t > 0: s = str(input()) if (min(s.count('0'),s.count('1'))) % 2 == 1: print("DA") else: print("NET") t = t-1
import pytest """ 配合 -m 标记名 进行筛选执行用例 例如:pytest cases\test_标记.py -m finished """ @pytest.mark.smoke @pytest.mark.finished def test_func1(): assert 1 == 1 @pytest.mark.unfinished def test_func2(): assert 1 != 1 @pytest.mark.wait def test_func3(): assert 1 != 1
import unittest from katas.kyu_6.reversed_words import reverseWords class ReverseWordsTestCase(unittest.TestCase): def test_equals(self): self.assertEqual(reverseWords( 'The greatest victory is that which requires no battle'), 'battle no requires which that is victory greatest The') def test_equals_2(self): self.assertEqual(reverseWords('hello world!'), 'world! hello')
#I pledge my honor that I have abided by the Stevens Honor System def squareValues(values): squared_values= int(values)**2 return squared_values def main(): values= input("Enter a list of values separated by a comma:") new_values=values.split(',') for num in new_values: print(squareValues(num)) main()
# coding: utf-8 from __future__ import absolute_import from datetime import date, datetime # noqa: F401 from typing import List, Dict # noqa: F401 from swagger_server.models.base_model_ import Model from swagger_server import util class ExposuresBundleRoadway(Model): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self, name: str=None, roadtype: str=None, distance: float=None, aadt: float=None, speed: float=None, through_lanes: float=None): # noqa: E501 """ExposuresBundleRoadway - a model defined in Swagger :param name: The name of this ExposuresBundleRoadway. # noqa: E501 :type name: str :param roadtype: The roadtype of this ExposuresBundleRoadway. # noqa: E501 :type roadtype: str :param distance: The distance of this ExposuresBundleRoadway. # noqa: E501 :type distance: float :param aadt: The aadt of this ExposuresBundleRoadway. # noqa: E501 :type aadt: float :param speed: The speed of this ExposuresBundleRoadway. # noqa: E501 :type speed: float :param through_lanes: The through_lanes of this ExposuresBundleRoadway. # noqa: E501 :type through_lanes: float """ self.swagger_types = { 'name': str, 'roadtype': str, 'distance': float, 'aadt': float, 'speed': float, 'through_lanes': float } self.attribute_map = { 'name': 'name', 'roadtype': 'roadtype', 'distance': 'distance', 'aadt': 'aadt', 'speed': 'speed', 'through_lanes': 'through_lanes' } self._name = name self._roadtype = roadtype self._distance = distance self._aadt = aadt self._speed = speed self._through_lanes = through_lanes @classmethod def from_dict(cls, dikt) -> 'ExposuresBundleRoadway': """Returns the dict as a model :param dikt: A dict. :type: dict :return: The ExposuresBundle_roadway of this ExposuresBundleRoadway. # noqa: E501 :rtype: ExposuresBundleRoadway """ return util.deserialize_model(dikt, cls) @property def name(self) -> str: """Gets the name of this ExposuresBundleRoadway. :return: The name of this ExposuresBundleRoadway. :rtype: str """ return self._name @name.setter def name(self, name: str): """Sets the name of this ExposuresBundleRoadway. :param name: The name of this ExposuresBundleRoadway. :type name: str """ self._name = name @property def roadtype(self) -> str: """Gets the roadtype of this ExposuresBundleRoadway. :return: The roadtype of this ExposuresBundleRoadway. :rtype: str """ return self._roadtype @roadtype.setter def roadtype(self, roadtype: str): """Sets the roadtype of this ExposuresBundleRoadway. :param roadtype: The roadtype of this ExposuresBundleRoadway. :type roadtype: str """ self._roadtype = roadtype @property def distance(self) -> float: """Gets the distance of this ExposuresBundleRoadway. :return: The distance of this ExposuresBundleRoadway. :rtype: float """ return self._distance @distance.setter def distance(self, distance: float): """Sets the distance of this ExposuresBundleRoadway. :param distance: The distance of this ExposuresBundleRoadway. :type distance: float """ self._distance = distance @property def aadt(self) -> float: """Gets the aadt of this ExposuresBundleRoadway. :return: The aadt of this ExposuresBundleRoadway. :rtype: float """ return self._aadt @aadt.setter def aadt(self, aadt: float): """Sets the aadt of this ExposuresBundleRoadway. :param aadt: The aadt of this ExposuresBundleRoadway. :type aadt: float """ self._aadt = aadt @property def speed(self) -> float: """Gets the speed of this ExposuresBundleRoadway. :return: The speed of this ExposuresBundleRoadway. :rtype: float """ return self._speed @speed.setter def speed(self, speed: float): """Sets the speed of this ExposuresBundleRoadway. :param speed: The speed of this ExposuresBundleRoadway. :type speed: float """ self._speed = speed @property def through_lanes(self) -> float: """Gets the through_lanes of this ExposuresBundleRoadway. :return: The through_lanes of this ExposuresBundleRoadway. :rtype: float """ return self._through_lanes @through_lanes.setter def through_lanes(self, through_lanes: float): """Sets the through_lanes of this ExposuresBundleRoadway. :param through_lanes: The through_lanes of this ExposuresBundleRoadway. :type through_lanes: float """ self._through_lanes = through_lanes
from flask import current_app class Holder: def __str__(self): return '{}' def __call__(self, name): return self class CacheKey: HOLDER = Holder() def __init__(self, *args): self.holder_count = len(list(filter( lambda a: isinstance(a, Holder), args))) self.args = [str(a) for a in args] def format(self, *args): if self.holder_count != len(args): raise ValueError('holder amount and arguments amount is not equal') name = current_app.config.get('APP_NAME', None) return ':'.join([name, *self.args] if name else self.args).format(*args) def __str__(self): return self.format() def __repr__(self): return ':'.join(self.args)
from pandas.core.frame import DataFrame import pandas as pd import numpy as np import re import calendar import datetime import time SKIP_LINE_SET = {"*** USER INFORMATION MESSAGE", "A ZERO FREQUENCY"} p_header = re.compile(r"(?P<label>.+(?=SUBCASE))(?P<subcase>SUBCASE\s\d+)") re_date = re.compile(r'(?P<month>\w+)\s+(?P<day>\d{1,2}),\s+(?P<year>\d{4})') re_version = re.compile(r'(?P<vname>[^\d]*)(?P<vdate>\d{1,2}\/\d{1,2}\/\d{1,2})') re_page = re.compile(r'PAGE\s+(?P<page>\d+)$') class F06Page: def __init__(self, raw_lines=None, meta=None): self.raw_lines = raw_lines self.meta = {} if meta == None else meta self.parse_page_metadata_header() def parse_page_metadata_header(self): first_line = self.raw_lines[0] date = re_date.search(first_line) self.meta['run-date'] = datetime.date( int(date.group('year').strip()), list(calendar.month_name).index(date.group('month').strip().title()), int(date.group('day').strip()) ) version = re_version.search(first_line) self.meta['run-version-name'] = version.group('vname').strip() self.meta['run-version-date'] = datetime.date( *time.strptime( version.group('vdate').strip(), '%m/%d/%y')[:3] ) self.meta['page'] = int(re_page.search(first_line).group('page')) def find_tabular_line_range(lines, shift): k = len(lines) j = shift # linha após as labels de dados while j < k: # primeiro char na linha final da pagina é 1 l = lines[j] if _check_skip_lines(l) or l.strip() == '': break j += 1 return (shift, j) def extract_tabulated_data(lines): data = [] for line in lines: entries = line.split() inner_data = [] for entry in entries: try: e = float(entry) except ValueError: e = np.nan finally: inner_data.append(e) data.append(inner_data) return data def parse_label_subcase(line): res = p_header.search(line[1:]) label = res.group('label').strip() subcase = res.group('subcase').replace('SUBCASE', '').strip() return (label, int(subcase)) def parse_text_value(value): try: return int(value) except ValueError: try: return float(value) except ValueError: return value def _check_skip_lines(line): return any(map(lambda k: k in line, SKIP_LINE_SET)) # def read_and_concat_f06s(case_files, labels, label_name="THETA"): # # if len(labels) != len(case_files): # raise Exception("Collections should be of same size.") # # df_results = [] # # for i, fn in enumerate(case_files): # print("Reading... {}".format(fn)) # df_data = read_f06(fn) # df_results.append( # pd.concat( # { labels[i]: df_data }, # names=[label_name] # ) # ) # # return pd.concat(df_results)
import SimpleXML import base64 import socket host = "192.168.10.93" # host="184.183.150.164" port = 5901 bold_xml = SimpleXML.SimpleXML() bold_xml.device_id = 909090 bold_xml.event = "*BA" clip = open("test.mpg", "rb").read() bold_xml.clip = base64.b64encode(clip).decode("ascii") bold_xml.bin_size = len(clip) # print(bold_xml.to_bold()) sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((host, port)) sock.send(bold_xml.to_bold()) print(sock.recv(1024)) sock.close()
from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np def to_range(images, min_value=0.0, max_value=1.0, dtype=None): """Transform images from [-1.0, 1.0] to [min_value, max_value] of dtype.""" assert np.min(images) >= -1.0 - 1e-5 and np.max(images) <= 1.0 + 1e-5 \ and (images.dtype == np.float32 or images.dtype == np.float64), \ ('The input images should be float64(32) ' 'and in the range of [-1.0, 1.0]!') if dtype is None: dtype = images.dtype return ((images + 1.) / 2. * (max_value - min_value) + min_value).astype(dtype) def uint2im(images): """Transform images from uint8 to [-1.0, 1.0] of float64.""" assert images.dtype == np.uint8, 'The input images type should be uint8!' return images / 127.5 - 1.0 def float2im(images): """Transform images from [0, 1.0] to [-1.0, 1.0].""" assert np.min(images) >= 0.0 - 1e-5 and np.max(images) <= 1.0 + 1e-5 \ and (images.dtype == np.float32 or images.dtype == np.float64), \ 'The input images should be float64(32) and in the range of [0.0, 1.0]!' return images * 2 - 1.0 def im2uint(images): """Transform images from [-1.0, 1.0] to uint8.""" return to_range(images, 0, 255, np.uint8) def im2float(images): """Transform images from [-1.0, 1.0] to [0.0, 1.0].""" return to_range(images, 0.0, 1.0) def float2uint(images): """Transform images from [0, 1.0] to uint8.""" assert np.min(images) >= 0.0 - 1e-5 and np.max(images) <= 1.0 + 1e-5 \ and (images.dtype == np.float32 or images.dtype == np.float64), \ 'The input images should be float64(32) and in the range of [0.0, 1.0]!' return (images * 255).astype(np.uint8) def uint2float(images): """Transform images from uint8 to [0.0, 1.0] of float64.""" assert images.dtype == np.uint8, 'The input images type should be uint8!' return images / 255.0
class MaxHeap: def __init__(self): self.arr = [None] def push(self, val): def need_swap(ind): parent = ind // 2 if self.arr[ind] > self.arr[parent]: return True else: return False self.arr.append(val) curr = len(self.arr) - 1 while curr > 1: if need_swap(curr): parent = curr // 2 self.arr[curr], self.arr[parent] = self.arr[parent], self.arr[curr] curr = parent else: break def pop(self): def need_swap(ind, child): if self.arr[child] > self.arr[ind]: return True else: return False def swap(ind0, ind1): self.arr[ind0], self.arr[ind1] = self.arr[ind1], self.arr[ind0] if self.is_empty(): return None val = self.arr[1] self.arr[1] = self.arr[-1] del self.arr[-1] curr = 1 while curr < len(self.arr): left = curr * 2 right = curr * 2 + 1 if left < len(self.arr) and right < len(self.arr): # left<len(self.arr)은 생략해도 된다. 완전 이진 트리이기 때문에 오른쪽 자식이 있으면 왼쪽 자식이 무조건 있기 때문. if self.arr[left] > self.arr[right]: if need_swap(curr, left): swap(curr, left) curr = left else: break else: if need_swap(curr, right): swap(curr, right) curr = right else: break elif left < len(self.arr): # break 해도됨. 가독성을 위해 추가. if need_swap(curr, left): swap(curr, left) curr = left else: break else: break return val def peek(self): return self.arr[1] if not self.is_empty() else None def is_empty(self): return len(self.arr) == 1 heap = MaxHeap() data = [1,6,32,14,60,2,5,66] for elem in data: heap.push(elem) while heap.is_empty() is False: print(heap.pop())
import numpy as np ''' Inputs ------ * mu: The mean of the gaussian fit * sigma: The covariance of the gaussian fit Outputs ------- * mu: The center of the ellipse * a: The semi-major axis length * b: The semi-minor axis length * theta: The ellipse orientation ''' def cov2ell(mu, sigma): xy = mu vals, vecs = np.linalg.eigh(sigma) x, y = vecs[:, 0] angle = np.degrees(np.arctan2(y, x)) width, height = 2 * np.sqrt(vals) return xy, width, height, angle
""" This is an example of a block comment. Python supports both block comments and line comments. Line comments begin with # """ # Set a name variable myName = 'Andy Fischoff' print(myName) # will print Andy Fischoff
#!/usr/bin/python # -*- coding: cp936 -*- import sqlite3 """ UpdateLeftAccount.py 对于 leftaccount 表格增删查改的操作 """ class updateLeftAccount: def update(leftAccounts): # 插入leftaccount, 存在的就replace with sqlite3.connect('C:\sqlite\db\hxdata.db') as db: insert_template = "INSERT OR REPLACE INTO leftaccount " \ "(khcode, khdate, usrnameshort, usrname, khusrmobile, lddepid,\ lddepname, marketperid, marketpername, marketpertype, marketpermobile, marketdepname, marketdepid ) " \ "VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?);" select_template = "SELECT khcode, khdate, usrnameshort, usrname, khusrmobile, lddepid,\ lddepname, marketperid, marketpername, marketpertype, marketpermobile, marketdepname, marketdepid FROM account WHERE khcode = ?;" print('update', leftAccounts) for leftaccount in leftAccounts: # print(len(leftper)) rows = db.execute(select_template, [str(leftaccount).strip(), ]) # consume sql result to avoid ERROR: Cursor needed to be reset because of commit/rollback and can no longer be fetched from rows = list(rows) for khcode, khdate, usrnameshort, usrname, khusrmobile, lddepid,\ lddepname, marketperid, marketpername, marketpertype, marketpermobile, marketdepname, marketdepid in rows: try: print('Here is inserting leftacoount') db.execute(insert_template, [khcode, khdate, usrnameshort, usrname, khusrmobile, lddepid,\ lddepname, marketperid, marketpername, marketpertype, marketpermobile, marketdepname, marketdepid]) except sqlite3.Error as e: print('2') print(e) db.rollback() else: db.commit() #updateLeftAccount.update([316000032159, 326000020573, 326000020589, 323000031986, 378000011703])
''' This file contains my implementation of a solution to the second problem: Files and Directories. The functions os.listdir() and os.walk() were not used in this solution due to the requirement that programs such as ls and similar may not be used. @author: Naveen Neelakandan ''' #!/usr/bin/python import datetime import glob import os import sys class File: """ Simple class that represents a file on the system. Used to gather needed information about a file. Attributes: file_path: The name of the file (without the full path) file_size: An integer count of the size of the file in bytes file_last_modified: A datetime object representing the time the file was last modified """ def __init__(self, name, size, time_modified): self.file_name = name self.file_size = size self.file_last_modified = time_modified def __eq__(self, other): return (self.file_size == other.file_size) def __lt__(self, other): return (self.file_size < other.file_size) def __str__(self): return "\t%d\t%s\t%s" % (self.file_size, str(self.file_last_modified), self.file_name) def printFilesRecursively(directory_path): """ Prints the files in the given top-level directory and all sub-directories Arguments: directory_Path: The relative path to the top-level directory. Returns: None Raises: None """ print "\nDirectory <%s>\n" % directory_path # Glob for all sub-directories and files subdirectories = [] files = [] globPattern = directory_path + '/*' for path in glob.glob(globPattern): if os.path.isdir(path): subdirectories.append(path) else: file_name = os.path.basename(path) file_size = os.path.getsize(path) file_last_modified = datetime.datetime.fromtimestamp(os.path.getmtime(path)) file = File(file_name, file_size, file_last_modified) files.append(file) # Print all files in current directory in descending order of size for file in sorted(files, reverse=True): print file # Recursive call on all sub-directories for subdirectory in subdirectories: printFilesRecursively(subdirectory) if __name__ == "__main__": # Validate correct number of arguments if len(sys.argv) != 2: print "Incorrect number of arguments" sys.exit(1) # Try with higher.lower level dicts directory_path = sys.argv[1] # Due to security issues, validate that the directory path is not at a higher level if directory_path.startswith('../'): print "Accessing a file at a higher directory is not allowed" sys.exit(1) # Check if given directory path input is valid if not os.path.isdir(directory_path): print "The given directory path is invalid" sys.exit(1) printFilesRecursively(directory_path)
import hashlib from tkinter import * from array import * znaki = array("u") formated = array("u") indx = 0 cindx = 0 strs = ["" for x in range(11)] def fastH(string, hash): if(hash == "sha256"): h = hashlib.sha256(string.encode()).hexdigest() return h if(hash == "md5"): h = hashlib.md5(string.encode()).hexdigest() return h h = fastH("Pain", "sha256") for i in range(len(h)): znaki.append(h[i]) for y in range(11): for x in range(6): if(indx >= 0 and indx <= 63): strs[y] += znaki[indx] indx+=1 else: strs[y] += "0" size = 100 window = Tk() content = Canvas(window, width=size*11, height= size*6) content.pack() for i in range(11): c = "#" + strs[cindx] content.create_rectangle(i*size, 0, i*size + size, size*11, fill=c) cindx+=1 mainloop()
#!/usr/bin/python3 import configparser import os import datetime from git import Repo class bcolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' print(bcolors.OKBLUE + ''' %#///*# %,,,,,,,,& &%,,,,,,,,% &#,,,,,.( %,,,,,,, %,,,,,,,,,(% *(/*,,,,,,,,,,,*/ %,,,,,,,,,,# #(/,,,,,,,,,,,,,,,,,,,,,.*# &*,,,,,,,,,% %(,,,,,,,,,,,,,,,,,,,,,,,,,,,,, /&%(/////(,,,,,,,,, (.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,(& %*.,,,,,,,,,,,,,,,,,,,,,( (,,,,,,,,,,,,,,**%% %,*,,,,,,,,,,,,,., &(,,,,,,,,,,,,,,,,,,,,,,,./ (,,,,,,,,,,,%( ,,,,,,,,,,,,.* #.,,,,,,,,,,,,,,,,,,,,,,,,,,,,&(,,,,,,,/( %,,,,,,,,,,*# %(,,,,,,,,,,,,,,&(*,,,,,,,,,,,,,,.* ,,, (*,,,,,,,,,*( %,,,,,,,,,,,%% &(,,,,,,,,,,,,,,,,,,/ # ,,,,,,,,,*( %,,,,,,,,,,(& #,,,,,,,,,,,,,,,,,,,,% %*,,,,,,,,,& #*,,,,,,,,*& ,.,,,,,,,,,,,,,,,,,,,,,.. ,.,,,,,,,,,./ (,,,,,,,,,#& , ,,,,,,,,,(&,.,,,,,,,,,,,,# #/,,,,,,,,,,. (,,,,,,,,,,& (.,,,,,,,,,*( %,,,,,,,,,,,,, ,( &* .,,,,,,,,,,,,(% (*,,,,,,,,,,,,,,,,,,,,,,,, , &,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,% %.,,,,,,,,,,,,,,,,,,,,,,% &(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,.( *,,,,,,,,,,,,,,,,,,,*% , ,,,,,,,,,,,,,,,,,,,,,,,,,,&* &/ ,,,,,,,,,,,./# &.#,,,,,,,,,,,,,,,,,.%#& &/**/ *%#%######( ''') config = configparser.ConfigParser() root_dir = os.getcwd() + '/..' now = datetime.datetime.now() timeformat = "%m/%d/%Y, %H:%M:%S" if not os.path.exists(f"{root_dir}/.user.conf"): with open(f"{root_dir}/.user.conf", 'w') as user_conf: user_conf.write('[USER]\n') user_conf.write('auto_update = True\n') user_conf.write('update_every_x_days = 1') if not os.path.exists(f"{root_dir}/.gitignore"): with open(f"{root_dir}/.gitignore", 'w') as gitignore: gitignore.write('.user.conf') config.read([f"{root_dir}/.global.conf", f"{root_dir}/.user.conf"]) last_update = config.get('USER', 'last_update', fallback=False) update_every_x_days = config.get('USER', 'update_every_x_days', fallback = 1) if not config.get('USER', 'auto_update', fallback=False) or \ datetime.datetime.strptime(last_update,timeformat) > now - datetime.timedelta(days=int(update_every_x_days)): exit() print(bcolors.WARNING + "Scripts Updating") repo = Repo(root_dir) master_branch = config.get('GLOBAL', 'master_branch', fallback='master') current_branch = repo.active_branch on_master = current_branch.name == master_branch head = repo.head.commit.tree save_stash = not not repo.git.diff(head) if save_stash: repo.git.stash('save') if not on_master: repo.git.checkout(master_branch) repo.remotes.origin.pull() if not on_master: repo.git.checkout(current_branch.name) repo.git.merge(master_branch) if save_stash: repo.git.stash('pop') config.set('USER', 'last_update', now.strftime(timeformat)) with open(f"{root_dir}/.user.conf", 'w') as config_file: config.write(config_file) print(bcolors.OKGREEN + "Scripts Updated")
from google.appengine.api import users from google.appengine.api import mail from google.appengine.ext import webapp from google.appengine.ext.webapp import template from app.model.accounts import Accounts from app.model.invite import Invite from app.model.invites import Invites from app.forms.invite import InviteForm from app.system.email import Mailer from app.webapp.context import Context # Called when someone requests an invite class InviteRequestHandler(webapp.RequestHandler): def post(self, key=""): context = Context(self.request) form = InviteForm(data=self.request.POST) if form.is_valid(): invite = form.save() Mailer.sendInvitationRequestConfirmation(invite.email, invite.name) msg = """ Hi %s,<br /> <br /> Thank you for the My-Trips invite request. We've send you and email with details .<br /> <br /> Thanks,<br /> <br /> The My-Trips team """ % (invite.name) self.response.out.write(msg) else: self.response.set_status(500) s = form.errors #.as_text() y = '' for x in s: if y != '': y = y + ' - ' y = y + s[x][0] self.response.out.write(y) # Called when you invite a friend class InviteInviteHandler(webapp.RequestHandler): def post(self, key=""): context = Context(self.request) # 1. Get name and email # 2. Create Invite record # 3. Store who initiated the invite # 4. Send out email telling the 'friend' he/she is invited by ... # 5. Email has normal invite code to verify form = InviteForm(data=self.request.POST) if form.is_valid(): invite = form.save(commit=False) invite.status = 2 invite.by = context.account invite.put() url = self.request.application_url + "/invite/accept/" + str(invite.key()) Mailer.sendInvitationByFriend(invite.email, invite.name, url, context.account.name) self.response.out.write('Invite someone else') else: self.response.set_status(500) s = form.errors #.as_text() y = '' for x in s: if y != '': y = y + ' - ' y = y + s[x][0] self.response.out.write(y) # Called when the admin decides to send out an invite class InviteSendHandler(webapp.RequestHandler): def get(self, key=""): context = Context(self.request) if not context.isAuthenticated: return context.authenticate(self.response) # get the invitation invite = Invites.loadOne(key) if invite: # Prepare and email with url to accept the invitation url = self.request.application_url + "/invite/accept/" + str(invite.key()) Mailer.sendInvitation(invite.email, invite.name, url) invite.status = 2 invite.put() # redirect to Thank you.. self.redirect('/management/invites') # Called when someone accepts the invite and becomes a member class InviteAcceptHandler(webapp.RequestHandler): def get(self, key=""): context = Context(self.request) # get use and the invitation user = users.get_current_user() invite = Invites.loadOne(key) # Must handle errors if the invite is not found or is not valid if invite and user: # check for valid invite if invite.status == 2: # Invited account = Accounts.loadByID(user.user_id(), True) if account: invite.status = 9 invite.put() self.redirect('/settings') template_values = { 'context': context, } self.response.out.write(template.render(context.template('core-invite-error.html'), template_values)) # Called when the admin decides to delete an invite class InviteDeleteHandler(webapp.RequestHandler): def get(self, key=""): context = Context(self.request) if not context.isAuthenticated: return context.authenticate(self.response) # get the invitation invite = Invites.loadOne(key) if invite: invite.delete() # redirect to Thank you.. self.redirect('/management/invites')
#!/usr/bin/env python3 import sys, os import hmac, hashlib sys.path += [ os.path.join(os.path.split(__file__)[0], 'libs') ] from intelhex import IntelHex16bit # Plain Unsafe ops (op = bytes = word {little endian}) # ---------------------------------------------------- # ret = 0x08 0x95 = 0x9508 # reti = 0x18 0x95 = 0x9518 # ijmp = 0x09 0x94 = 0x9409 # icall = 0x09 0x95 = 0x9509 # elpm = 0xD8 0x95 = 0x95D8 # Unsafe ops with arguments # ------------------------- # elpm Rd,Z = op & (0xFE0F) == 0x9006 # elpm Rd,Z+ = op & (0xFE0F) == 0x9007 # Conditionally unsafe ops (depending on relative target address) # --------------------------------------------------------------- # brbs s,k = op & (0xFC00) == 0xF000 # brbc s,k = op & (0xFC00) == 0xF400 # rjmp k = op & (0xF000) == 0xC000 # rcall k = op & (0xF000) == 0xD000 # Two word ops # --------------------------- # jmp = 0x0C 0x94 = 0x940C # call = 0x0E 0x94 = 0x940E # Opcodes are represented little-endian everywhere (toolchain/datasheet/etc) # Unsafe ops (should never appear anywhere except as 2nd word in long calls) unsafe_ops = [int("0x9508", 16), int("0x9518", 16), int("0x9409", 16), int("0x9509", 16), int("0x95D8",16)] elpm_mask = int("0xFE0F", 16) elpm_ops = [int("0x9006", 16), int("0x9007", 16)] # Conditionally unsafe ops (just log when they appear as 2nd word in long call) branch_ops_mask = int("0xFC00", 16) branch_ops = [int("0xF000", 16), int("0xF400", 16)] rel_ops_mask = int("0xF000", 16) rel_ops = [int("0xC000", 16), int("0xD000", 16)] # Two word ops two_word_ops = [int("0x940C", 16), int("0x940E", 16)] # Last page of app is reserved for metadata. One page is 256 bytes. # !! Caution !! This is a word address (16bit) and is used with IntelHex16bit # class #metadata_offset = int("0xFD00", 16)//2 # 1Kb bootloader #metadata_offset = int("0xFB00", 16)//2 # 2Kb bootloader metadata_offset = int("0xF700", 16)//2 # 4Kb bootloader #metadata_offset = int("0xEF00", 16)//2 # 8Kb bootloader # 160 bit key key = b'\x6e\x26\x88\x6e\x4e\x07\x07\xe1\xb3\x0f\x24\x16\x0e\x99\xb9\x12\xe4\x61\xc4\x24' def main(argv): if len(argv) != 3: print('hex_patch_metadata.py <ihexfile> <datastart> <dataend>') sys.exit(2) # Check if hexfile exists hexfile = argv[0] if not os.path.isfile(hexfile): print("ERROR: File not found:", hexfile) sys.exit(2) # Parse data offset try: datastart = int(argv[1], 16) # in hex, first byte of .data. == size .text dataend = int(argv[2], 16) # in hex, end of .data last byte not included. == total size .text + .data except: print("ERROR: Offsets not valid:", argv[1], argv[2]) sys.exit(2) # Start parsing ihex ih = IntelHex16bit(hexfile) # Look for opcodes that __can__ be unsafe as 2nd word and log them unsafe_2ndword = list() prev_op_long = 0 for addr in range(datastart//2): if ih[addr] in two_word_ops and not prev_op_long: prev_op_long = 1 elif prev_op_long: prev_op_long = 0 if ( (ih[addr] & branch_ops_mask) in branch_ops or (ih[addr] & rel_ops_mask) in rel_ops or (ih[addr] & elpm_mask) in elpm_ops or ih[addr] in unsafe_ops or ih[addr] in two_word_ops ): print("Unsafe 2nd word, adding to list!") print(ih[addr]) print(addr) unsafe_2ndword.append(addr) # Start patching hex ih[metadata_offset] = dataend # total .text + .data size ih[metadata_offset + 1] = datastart # .data start address == .text size ih[metadata_offset + 2] = len(unsafe_2ndword) for idx, addr in enumerate(unsafe_2ndword): ih[metadata_offset+3+idx] = addr # Calculate word size of metadata section meta_size = 3 # base size meta_size += len(unsafe_2ndword) # Calculate hmac hmac_gen = hmac.new(key, None, hashlib.sha1) hmac_gen.update(ih.tobinstr(0,dataend-1)) # tobinstr uses byteaddr, even on an IntelHex16 object hmac_gen.update(ih.tobinstr(metadata_offset*2, (metadata_offset + meta_size)*2 - 1)) print(hmac_gen.hexdigest()); # Add hmac after regular metadata (frombytes uses byteaddr, even on IntelHex16 objects) ih.frombytes(hmac_gen.digest(), (metadata_offset + meta_size)*2) # Write out file ih.write_hex_file(hexfile) if __name__ == "__main__": main(sys.argv[1:])
from .rng import app
from colors import * # app config FPS = 60 WIDTH = 600 HEIGHT = 600 SIZE = (WIDTH, HEIGHT) BG_COLOR = BLACK # consts INFINITY = 10e10 COEFF = 50 # 3d # player config START_POS = (0, 0) START_ANGLE = 0 ANGLE_SPEED = 1 MOVEMENT_SPEED = 2 # object settings NLINES = 10 NPOINTS = 0 NCIRCLES = 5 RPOINT = 3 RCIRCLE = 50 # other MAX_LENGTH = (SIZE[0] ** 2 + SIZE[1] ** 2) ** 0.5 FOV = 60 NRAYS = 120 DANGLE = FOV / NRAYS HALF_HEIGHT = HEIGHT // 2 # 3d K = WIDTH // NRAYS # 3d WALLS_COLOR = RED # 3d
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from fpgen import HTML class NonHTML(HTML): #{ def __init__(self, ifile, ofile, d, letter): HTML.__init__(self, ifile, ofile, d, letter) # No page numbers on any non-html def getPageNumberCSS(self): return [ "[105] .pageno { display:none; }" ] # No page numbers shown, but still need to have the link target def showPageNumber(self, pn, displayPN): return f"<a name='Page_{pn}' id='Page_{pn}'></a>" # No margins on any non-html def getMargins(self): return "0", "0" class Kindle(NonHTML): #{ def __init__(self, ifile, ofile, d): NonHTML.__init__(self, ifile, ofile, d, 'k') # On Kindle, leaders, at least the way we do them, don't work, so # never do them. def getLeaderName(self, col): return None # kindle&epub ragged right def getTextAlignment(self): return "left" # Kindle doesn't appear to pay attention to the text-align on the <td> # So we stick in an extra <div>, with the text-align on that. def tripleAlign(self, style, id, left, center, right): # This works on the old kindle previewer, but not the new. #return """ # <div class='center' {} {}> # <table border="0" cellpadding="4" cellspacing="0" summary="triple" width="100%"> # <tr> # <td><div style='text-align:left;'>{}</div></td> # <td><div style='text-align:center;'>{}</div></td> # <td><div style='text-align:right;'>{}</div></td> # </tr> # </table> # </div> #""".format(style, id, left, center, right) # This seems to work everywhere. Wish we could replace the 1.3em with # the exact value, which is font dependent. Note if you were using for # example superscripts and font size changes, this will not adjust # line heights! return f""" <div {id} {style}> <div style='height:1.3em; margin-top:0; margin-bottom:0; visibility:hidden;'> <p style='text-align:left; text-indent:0; margin-top:0; margin-bottom:0'> x </p> </div> <div style='height:1.3em; margin-top:-1.3em;margin-bottom:0'> <p style='text-align:left; margin-top:0;margin-bottom:0'> {left} </p> </div> <div style='height:1.3em; margin-top:-1.3em;margin-bottom:0'> <p style='text-align:right; margin-top:0;margin-bottom:0'> {right} </p> </div> <div style='height:1.3em; margin-top:-1.3em;margin-bottom:0;'> <p style='text-align:center; margin-top:0;margin-bottom:0'> {center} </p> </div> </div> """; # Floating dropcaps aren't particularly well aligned on kindles, so don't # do anything special with them. def getDropcapCSS(self): return "[3333] .dropcap { }" #} class EPub(NonHTML): #{ def __init__(self, ifile, ofile, d): NonHTML.__init__(self, ifile, ofile, d, 'e') # epub ragged right def getTextAlignment(self): return "left" #} class PDF(NonHTML): #{ def __init__(self, ifile, ofile, d): NonHTML.__init__(self, ifile, ofile, d, 'p') #}
#!/usr/bin/python3 import numpy as np import pandas as pd import pathlib from vulkan import * import PyQt5 from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtWidgets import QApplication, QWidget, QPushButton, QVBoxLayout, QHBoxLayout, QLabel from PyQt5.QtCore import QAbstractTableModel, Qt # %% _code_git_version="e5d26e3ab14d31f021d2d9bc385c481d05bd5acf" _code_repository="https://github.com/plops/cl-py-generator/tree/master/example/21_vulkan_qt/source/run_00_show.py" _code_generation_time="23:53:07 of Monday, 2020-06-15 (GMT+1)" validation_layers=["VK_LAYER_KHRONOS_validation"] enable_validation_layers=True class InstanceProcAddr(object): def __init__(self, func): self.__func=func def __call__(self, *args, **kwargs): func_name=self.__func.__name__ func=vkGetInstanceProcAddr(args[0], func_name) if ( func ): return func(*args, **kwargs) else: return VK_ERROR_EXTENSION_NOT_PRESENT @InstanceProcAddr def vkCreateDebugReportCallbackEXT(instance, pCreateInfo, pAllocator): pass @InstanceProcAddr def vkDestroyDebugReportCallbackEXT(instance, pCreateInfo, pAllocator): pass def debug_callback(*args): print("debug: {} {}".format(args[5], args[6])) return 0 app=QApplication([""]) win=QWidget() appinfo=VkApplicationInfo(pApplicationName="python vk", applicationVersion=VK_MAKE_VERSION(1, 0, 0), pEngineName="pyvulkan", engineVersion=VK_MAKE_VERSION(1, 0, 0), apiVersion=VK_API_VERSION) extensions=[e.extensionName for e in vkEnumerateInstanceExtensionProperties(None)] extensions=["VK_KHR_get_physical_device_properties2", "VK_KHR_get_surface_capabilities2", "VK_KHR_surface"] instanceinfo=VkInstanceCreateInfo(pApplicationInfo=appinfo, enabledLayerCount=len(validation_layers) if enable_validation_layers else 0, ppEnabledLayerNames=validation_layers if enable_validation_layers else None, enabledExtensionCount=len(extensions), ppEnabledExtensionNames=extensions) instance=vkCreateInstance(instanceinfo, None) # setup debug callback callback=None win.show() def cleanup(): global win, instance, callback if ( callback ): vkDestroyDebugReportCallbackEXT(instance, callback, None) vkDestroyInstance(instance, None) del(win) app.aboutToQuit.connect(cleanup) def run(): sys.exit(app.exec_()) run()
''' Original use of functions by Adam Bolton, 2009. http://www.physics.utah.edu/~bolton/python_lens_demo/ ''' # Given a background source, this lenses it and plots both as output. # The parameters for the lens can be changed but for it's a point source def lensed(gamp,gsig,gx,gy,gax,gpa,name,lamp=1.5,lsig=0.05,lx=0.,ly=0.,lax=1.,lpa=0.): import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from matplotlib import cm import lensdemo_funcs as ldf import fitting_ellipse as fe import matplotlib.patheffects as PathEffects # Package some image display preferences in a dictionary object, for use below: myargs = {'interpolation': 'nearest', 'origin': 'lower', 'cmap': cm.viridis} lensargs = {'interpolation': 'nearest', 'origin': 'lower', 'cmap': cm.viridis} # Make some x and y coordinate images: nx.ny = 501,501 xhilo,yhilo = [-2.5, 2.5],[-2.5, 2.5] x = (xhilo[1] - xhilo[0]) * np.outer(np.ones(ny), np.arange(nx)) / float(nx-1) + xhilo[0] y = (yhilo[1] - yhilo[0]) * np.outer(np.arange(ny), np.ones(nx)) / float(ny-1) + yhilo[0] # Set some Gaussian blob image parameters and pack them into an array: g_amp = gamp # peak brightness value g_sig = gsig # Gaussian "sigma" (i.e., size) g_xcen = gx # x position of center g_ycen = gy # y position of center g_axrat = gax # minor-to-major axis ratio g_pa = gpa # major-axis position angle (degrees) c.c.w. from x axis gpar = np.asarray([g_amp, g_sig, g_xcen, g_ycen, g_axrat, g_pa]) def lens_object(lax,lamp=1.5,lsig=0.05,lx=0.,ly=0.,lpa=0.): # Set some SIE lens-model parameters and pack them into an array: l_amp = lamp # Einstein radius l_xcen = lx # x position of center l_ycen = ly # y position of center l_axrat = lax # minor-to-major axis ratio l_pa = lpa # major-axis position angle (degrees) c.c.w. from x axis lpar = np.asarray([l_amp, l_xcen, l_ycen, l_axrat, l_pa]) lpar2 = np.asarray([l_amp, l_xcen, l_ycen, 2., l_pa]) # rax of 2. lenspar = np.asarray([l_amp, lsig, l_xcen, l_ycen, l_axrat, l_pa]) # The following lines will plot the un-lensed and lensed images side by side: (xg, yg) = ldf.sie_grad(x, y, lpar) g_lensimage = ldf.gauss_2d(x-xg, y-yg, gpar) lens_source = ldf.gauss_2d(x, y, lenspar) lens_source[lens_source < 0.6] = np.nan return g_lensimage,lens_source # defining bkgd source and lensed source (for both rax) g_image = ldf.gauss_2d(x, y, gpar) glens1,lens1 = lens_object(1.) glens2,lens2 = lens_object(2.) plt.figure(figsize=(15,6)) gs1 = gridspec.GridSpec(1,3) gs1.update(wspace=0.03) cmap = plt.cm.viridis # background source (no lens) ax1 = plt.subplot(gs1[0]) im = ax1.imshow(g_image,**myargs,clim=(0.5,2.2)) # set to make the lens the same always vmin, vmax = im.get_clim() # set to make the lens the same always ax1.set_yticklabels([]); ax1.set_xticklabels([]) ax1.set_yticks([]); ax1.set_xticks([]) txt = ax1.text(20,457,'Background Source', size=15, color='w') txt.set_path_effects([PathEffects.withStroke(linewidth=5, foreground='k')]) # background source lensed by point-like lens ax2 = plt.subplot(gs1[1]) ax2.imshow(glens1,**myargs,clim=(vmin,vmax)) ax2.imshow(lens1,**lensargs,clim=(vmin,vmax)) cir = plt.Circle((250,250),150,fill=False,ls='--',color='C0') ax2.add_artist(cir) ax2.set_yticklabels([]); ax2.set_xticklabels([]) ax2.set_yticks([]); ax2.set_xticks([]) txt = ax2.text(20,457,'Point-like Lens', size=15, color='w') txt.set_path_effects([PathEffects.withStroke(linewidth=5, foreground='k')]) # Listing parameters on ax1 txt = ax1.text(20,20,'amp:%s, sig:%s,\ncenter:(%s,%s),\naxrat:%s, pa:%s'\ %(gpar[0],gpar[1],gpar[2],gpar[3],gpar[4],gpar[5]), size=13, color='w') txt.set_path_effects([PathEffects.withStroke(linewidth=5, foreground='k')]) # background source lensed by extended lens ax3 = plt.subplot(gs1[2]) ax3.imshow(glens2,**myargs,clim=(vmin,vmax)) ax3.imshow(lens2,**lensargs,clim=(vmin,vmax)) cir = plt.Circle((250,250),150,fill=False,ls='--',color='C0') ax3.add_artist(cir) ax3.set_yticklabels([]); ax3.set_xticklabels([]) ax3.set_yticks([]); ax3.set_xticks([]) txt = ax3.text(20,457,'Extended Lens', size=15, color='w') txt.set_path_effects([PathEffects.withStroke(linewidth=5, foreground='k')]) #plt.savefig('test.png',dpi=200) # useful for troubleshooting plt.savefig('lens2-still%s.pdf'%(name),dpi=200) plt.close('all') if __name__ == "__main__": import sys lensed(float(sys.argv[1]),float(sys.argv[2]),float(sys.argv[3]),float(sys.argv[4]),\ float(sys.argv[5]),float(sys.argv[6]),str(sys.argv[7]))
from flask import Flask, redirect, url_for, render_template, request app = Flask(__name__) # Homepage @app.route("/") def home(): return render_template('index.html') # Homepage re-route @app.route("/index.html/") def home_reroute(): return redirect(url_for("home")) #Wheelbase page @app.route("/steeringwheels.html") def steer(): return render_template('steeringwheels.html') #monitors @app.route("/monitors.html") def monitosr(): return render_template('comingsoon.html') #pc specs @app.route("/PC.html") def pc(): return render_template('PC.html') #rigs @app.route("/rig.html") def rigs(): return render_template('comingsoon.html') #vr @app.route("/vr.html") def vr(): return render_template('comingsoon.html') #contact me @app.route('/contact.html', methods=['post', 'get']) def contact(): message = '' if request.method == 'POST': name = request.form.get('Name') # access the data inside email = request.form.get('Email') phone = request.form.get('Phone No.') msg = request.form.get('Message') print(msg) message='Sent' # # Sign In and Sign Up # @app.route('/signup.html', methods=['GET', 'POST']) # def signup(): # if request.method == 'POST': # userdata = [request.form.get('email'), request.form.get('password'), request.form.get('fname'), request.form.get('lname'),request.form.get('passwordconfirm')] # if userdata[1]==userdata[4]: # with open('users.csv', 'a') as file: # writer=csv.writer(file) # writer.writerow(userdata[:4]) # print(userdata) # return redirect(url_for("login")) # return render_template('signup.html') # # # # @app.route('/signin.html', methods=['GET', 'POST']) # def login(): # if request.method == 'POST': # userdata = [request.form.get('username'), request.form.get('password')] # print(userdata) # return 'Submitted Form' # return render_template('signin.html') #about page # @app.route("/about.html") # def about(): # return render_template('about.html') # # #lineup generator # @app.route("/lineup-generator.html") # def lineup(): # return render_template('lineup-generator.html') # #lineup re-route # @app.route("/lineup/") # def lineup_reroute(): # return redirect(url_for("lineup")) # # # # # # # #use this to route to specific drivers # @app.route("/<name>/") # def user(name): # return f"Hello {name}!" # # #admin page # @app.route("/admin/") # def admin(): # return redirect(url_for("name")) if __name__=="__main__": app.run()
from indicator import Indicator import states class RSI(Indicator): def __init__(self, utils, config, logger, timeframe): Indicator.__init__(self, utils, config, logger) self.timeframe = timeframe self.distance = self.cfg.DATA_POINTS self.period = self.cfg.PERIOD self.sell = self.cfg.SELL self.buy = self.cfg.BUY def calc_rsi(self, prices: list) -> float: period = self.period max_len = period if period < len(prices) else len(prices) losses = gains = 0 for i in range(1, max_len): try: change = prices[i] - prices[i-1] if change < 0: losses += abs(change) elif change > 0: gains += abs(gains) except TypeError as e: print(e, prices) avg_loss = losses / period avg_gain = gains / period for i in range(period, len(prices)): change = prices[i] - prices[i - 1] loss = gain = 0 if change < 0: loss = abs(change) else: gain = change avg_gain = (avg_gain * (period - 1) + gain) / period avg_loss = (avg_loss * (period - 1) + loss) / period if avg_loss == 0: return 100 elif avg_gain == 0: return 0 rsi = 100 rs = avg_gain / avg_loss rsi -= 100 / (1+ rs) return round(rsi, 2) async def acalc_rsi(self, symbol: str): data = await self.utils.get_historical_data(symbol, length=self.distance * self.timeframe) rsi = self.calc_rsi(data) self.logger.debug(rsi) return rsi async def analyze(self, symbol: str) -> str: rsi = await self.acalc_rsi(symbol) if rsi >= self.sell: return symbol, rsi, states.SELL elif rsi <= self.buy: return symbol, rsi, states.BUY return symbol, rsi, states.HOLD def __str__(self): return "RSI" __repr__ = __str__
K=int(input("K= ")) N=int(input("N= ")) if(N>0): for i in range(0,N): print(K)
from mod_base import* class UserInfo(Command): """View info about you or another nick.""" def run(self,win,user,data,caller=None): args = Args(data) u = user if len(args)>0: result = self.bot.FindUser(args[0]) if result!=False: u = result else: win.Send("user not found") return False ui = u.GetNick()+" "+u.hostname if u.IsOnline(): ui += ", [online]" else: ui += ", [offline]" ui += ", active: "+time_stamp_numeric(u.last_active) if u.IsAuthed(): ui += ", authed as "+u.account["name"] ui += "\n" chans = [] for chan in u.Channels(): pre = "" if chan.UserHasMode(u,IRC_MODE_VOICE): pre = "+" if chan.UserHasMode(u,IRC_MODE_OP): pre = "@" chans.append(pre+chan.GetName()) user.Send(ui) if chans: user.Send( "at: "+(" ".join(chans)) ) module = { "class": UserInfo, "type": MOD_COMMAND, "level": 1, "zone":IRC_ZONE_BOTH, }
#!/usr/bin/env python3 import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from vr.models.baselines import LstmEncoder from vr.models.baselines import build_mlp class HyperVQA(nn.Module): """A model that uses a HyperNetwork to produce the weights for a CNN""" def __init__(self, vocab, conv_layers=(8, 16, 32), conv_kernels=(3, 3, 3), rnn_wordvec_dim=128, rnn_dim=256, rnn_num_layers=2, rnn_dropout=0, fc_dims=(1024,), fc_use_batchnorm=False, fc_dropout=0): super().__init__() assert len(conv_layers) == len(conv_kernels) total_output_weights = 0 prev_I = 3 self.conv_shapes = [] for i in range(len(conv_layers)): I = conv_layers[i] K = conv_kernels[i] self.conv_shapes.append((I, K)) total_output_weights += I * prev_I * (K ** 2) + I prev_I = I rnn_kwargs = { 'token_to_idx': vocab['question_token_to_idx'], 'wordvec_dim': rnn_wordvec_dim, 'rnn_dim': rnn_dim, 'rnn_num_layers': rnn_num_layers, 'rnn_dropout': rnn_dropout } self.rnn = LstmEncoder(**rnn_kwargs) self.hypernet = nn.Sequential( nn.Linear(rnn_dim, rnn_dim * 4), nn.LeakyReLU(negative_slope=1/5.5), nn.Linear(rnn_dim * 4, rnn_dim * 16), nn.LeakyReLU(negative_slope=1/5.5), nn.Linear(rnn_dim * 16, total_output_weights) ) classifier_kwargs = { 'input_dim': 2048, # self.conv_shapes[-1][0] * (64 // (2 ** (len(conv_layers)+1))) + rnn_dim, 'hidden_dims': fc_dims, 'output_dim': len(vocab['answer_token_to_idx']), 'use_batchnorm': fc_use_batchnorm, 'dropout': fc_dropout, } self.linear = build_mlp(**classifier_kwargs) def conv_batch(self, x, weights, biases): """Apply the given weights and biases to the elements, one per batch""" # Main idea: combining batch dimension and channel dimension n_items = x.shape[0] original_out_channels = weights.shape[1] out_channels = n_items*original_out_channels all_output = F.conv2d(x.view(1, n_items*x.shape[1], x.shape[2], x.shape[3]), weights.reshape(out_channels, weights.shape[2], weights.shape[3], weights.shape[4]), biases.reshape(-1), padding=1, groups=n_items) return all_output.reshape(n_items, original_out_channels, all_output.shape[2], all_output.shape[3]) def forward(self, questions, feats): """Make a pass with the HyperVQA model""" # encode the questions and get corresponding weights q_feats = self.rnn(questions) all_conv_weights = self.hypernet(q_feats) batch_size = all_conv_weights.shape[0] x = feats prev_I = 3 # apply convolutional layers for conv_layer in self.conv_shapes: I, K = conv_layer layer_num_weights = prev_I * I * (K ** 2) conv_weights, conv_biases = all_conv_weights[..., :layer_num_weights],\ all_conv_weights[..., layer_num_weights:layer_num_weights + I] conv_weights = conv_weights.view(batch_size, I, prev_I, K, K) x = self.conv_batch(x, conv_weights, conv_biases) x = F.max_pool2d(x, kernel_size=2, stride=2) prev_I = I all_conv_weights = all_conv_weights[..., layer_num_weights + I:] x = x.flatten(1) x = self.linear(x) # return logits return x
class jumpingTable(): jumpingTable = {} def set(self, n, i): self.jumpingTable[n] = i def going(self, index): if index in self.jumpingTable: self.jumpingTable[index]() elif 'default' in self.jumpingTable: self.jumpingTable['default']() else: raise RuntimeError('undefined jumping: {}'.format(index)) def main(): j = jumpingTable(); j.set('one', one) j.set('two', two) j.set('three', three) j.set('default', default) try: j.going('seven') except RuntimeError as e: print(e) def one(): print('This is the "one" function.') def two(): print('This is the "two" function.') def three(): print('This is the "three" function.') def default(): print('this is the default function.') if __name__ == "__main__": main()
import pandas from sklearn import linear_model, datasets from sklearn.metrics import accuracy_score from sklearn import model_selection from sklearn.linear_model import LogisticRegression from sklearn.metrics import precision_score print('reading in data...') """Read in dataset""" set_sizes = [100,500,1000,5000,10000,50000,100000,500000,1000000,5000000,10000000,50000000,100000000] nrows2 = set_sizes[11] column_names = ["Instance","Feature 1","Feature 2", "Feature 3","Feature 4","Feature 5","Feature 6","Feature 7", "Feature 8","Feature 9","Feature 10","Target","TargetClass"] dataframe = pandas.read_csv("C:\\Users\\bboyd\\Documents\\college - 4th year\\Machine Learning\\machine_learning_group_project\\team_13\\datasets\\sum_with_noise.csv", sep=';',header=0,names=column_names,index_col=0,usecols=[0,1,2,3,4,6,7,8,9,10,12], nrows = nrows2) dataframe2 = pandas.read_csv("C:\\Users\\bboyd\\Documents\\college - 4th year\\Machine Learning\\machine_learning_group_project\\team_13\\datasets\\sum_with_noise.csv", sep=';',header=0,names=column_names,index_col=0,usecols=[0,1,2,3,4,6,7,8,9,10,11], nrows = nrows2) array = dataframe2.values X = array[:,0:9] Y = array[:,9] print(nrows2) print(int(nrows2 * .7)) print("fitting model...") X_train = dataframe.head(int(nrows2 * .7)) Y_train = X_train.TargetClass X_train = X_train[["Feature 1","Feature 2", "Feature 3","Feature 4","Feature 6","Feature 7", "Feature 8","Feature 9","Feature 10"]] X_test = dataframe.tail(int(nrows2 * .3)) Y_test = X_test.TargetClass X_test = X_test[["Feature 1","Feature 2", "Feature 3","Feature 4","Feature 6","Feature 7", "Feature 8","Feature 9","Feature 10"]] print(type(X_train)) h = .02 # step size in the mesh logreg = linear_model.LogisticRegression(C=1e5) logreg.fit(X_train, Y_train) x_min, x_max = X_train.min() - .5, X_train.max() + .5 y_min, y_max = Y_train.min() , Y_train.max() print("MAX TEST Y VAL: ", Y_test.max()) fl = x_min.astype('float64', errors = 'ignore') xs_as_array = fl.as_matrix() x_min = xs_as_array.min() print("x_min", x_min) xs2_as_array = x_max.as_matrix() x_max = xs2_as_array.max() print("xmax",x_max) print("type of min ",type(x_min)) print("ymin",y_min) print("ymax",y_max) ## metrics ## print(type(logreg)) y_values_predicted = logreg.predict(X_test) print("metrics", y_values_predicted) print("accuaracy",accuracy_score(Y_test, y_values_predicted)) precision_scores = precision_score(Y_test, y_values_predicted, average='weighted') print("precision scores" , precision_scores)
import maya.cmds as cmds import maya.mel #for selecting all objects cmds.select(all=True,visible=True) #for deselecting circle cmds.select('nurbsCircle1', d=True) #for deselecting plane and deselecting other objects cmds.select('nurbsPlane1', d=True) #for center pivot cmds.xform(cp=True) cmds.xform(a=True) cmds.xform() #for getting dimensions of objects bbox = cmds.exactWorldBoundingBox( 'sphere1') print 'Bounding box ranges from: %f' % bbox[0], ', %f' % bbox[1], ', %f' % bbox[2], print ' to %f' % bbox[3], ', %f' % bbox[4], ', %f' % bbox[5]