text
stringlengths
8
6.05M
#!/usr/bin/python # -*- coding: utf-8 -*- import httplib2 as http import httplib import re from urlparse import urlparse import pprint import urllib2 class streamscrobbler: def parse_headers(self, response): headers = {} int = 0 while True: line = response.readline() if line == '\r\n': break # end of headers if ':' in line: key, value = line.split(':', 1) headers[key] = value if int == 12: break; int = int + 1 return headers # this is the fucntion you should call with the url to get all data sorted as a object in the return def getServerInfo(self, url): status = 0 if url.endswith('.pls') or url.endswith('listen.pls?sid=1'): address = self.checkPLS(url) else: address = url if isinstance(address, str): meta_interval = self.checkWhatServer(address) else: meta_interval = bool(0) if isinstance(meta_interval, bool): if meta_interval is True: status = 1 else: status = 0 metadata = False; elif "SHOUTcast" in meta_interval: status = 1 if "1.9" in meta_interval: metadata = self.shoutcastOldGet(address, False); else: metadata = self.shoutcastCheck(address, False); elif "Icecast" or "137" in meta_interval: status = 1 metadata = self.shoutcastCheck(address, True); elif "StreamMachine" in meta_interval: status = 1 metadata = self.shoutcastCheck(address, True); else: metadata = False; return {"status":status, "metadata":metadata} def checkWhatServer(self, address): try: status = urllib2.urlopen(address, timeout=2).getcode() except Exception: return bool(0) if status == 200: request = urllib2.Request(address) user_agent = 'iTunes/9.1.1' request.add_header('User-Agent', user_agent) request.add_header('icy-metadata', 1) try: response = urllib2.urlopen(request, timeout=6) if "server" in response.headers: shoutcast = response.headers['server'] elif "X-Powered-By" in response.headers: shoutcast = response.headers['X-Powered-By'] else: headers = self.parse_headers(response) if "icy-notice1" in headers: shoutcast = headers['icy-notice1'] if "This stream requires" in shoutcast: shoutcast = headers['icy-notice2'] else: shoutcast = bool(1); response.close() except Exception: return bool(1) else: shoutcast = bool(0); return shoutcast; def checkPLS(self, address): try: response = urllib2.urlopen(address, timeout=2) for line in response: if line.startswith("File1="): stream = line; response.close() if 'stream' in locals(): return stream[6:] else: return bool(0) except Exception: return bool(0) def shoutcastOldGet(self, address, itsOld): station = self.shoutcast7htmlCheck(address) if station is False: station = self.shoutcastCheck(address, itsOld) else: station = self.justgetcontenttype(address, station) return station; def shoutcast7htmlCheck(self, address): o = urlparse(address) stringurl = o.scheme + "://" + o.netloc + "/7.html" user_agent = 'Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)' request = urllib2.Request(stringurl) request.add_header('User-Agent', user_agent) request.add_header('Accept-Charset', 'utf-8') try: response = urllib2.urlopen(request, timeout=2) for line in response: line = self.stripTags(line) lines = line.split(',', 7) if len(lines) > 1: response.close() return {'song':lines[6], 'bitrate':lines[5]} else: response.close() return False else: response.close() except urllib2.HTTPError, e: print ' Error 7.html, HTTPError = ' + str(e.code) return False except urllib2.URLError, e: print " Error 7.html, URLError: " + str(e.reason) return False except Exception, err: print " Error 7.html" return False def justgetcontenttype(self, address, station): request = urllib2.Request(address) try: user_agent = 'iTunes/9.1.1' request.add_header('User-Agent', user_agent) request.add_header('icy-metadata', 1) request.add_header('Accept-Charset', 'utf-8') response = urllib2.urlopen(request, timeout=5) contenttype = "?" headers = self.parse_headers(response) if "Content-Type" in headers: contenttype = headers['Content-Type'] elif 'content-type' in headers: contenttype = headers['content-type'] response.close() return {'song':station.get("song"), 'bitrate':station.get("bitrate"), 'contenttype':contenttype} except urllib2.HTTPError, e: print ' Error, HTTPError = ' + str(e.code) return False except urllib2.URLError, e: print " Error, URLError: " + str(e.reason) return False except Exception, err: print " Error: " +str(err) return False def shoutcastCheck(self, address, itsOld): request = urllib2.Request(address) try: user_agent = 'iTunes/9.1.1' request.add_header('User-Agent', user_agent) request.add_header('icy-metadata', 1) request.add_header('Accept-Charset', 'utf-8') response = urllib2.urlopen(request, timeout=5) if itsOld is not True: headers = self.parse_headers(response) bitrate = headers['icy-br'] icy_metaint_header = headers['icy-metaint'] if "Content-Type" in headers: contenttype = headers['Content-Type'] elif 'content-type' in headers: contenttype = headers['content-type'] else: bitrate = response.headers.get('icy-br').split(",")[0] icy_metaint_header = response.headers.get('icy-metaint') if response.headers.get('Content-Type') is not None: contenttype = response.headers.get('Content-Type') elif response.headers.get('content-type') is not None: contenttype = response.headers.get('content-type') #print response.headers #isto imprime todas as informacoes if icy_metaint_header is not None: metaint = int(icy_metaint_header) read_buffer = metaint + 255 content = response.read(read_buffer) start = "StreamTitle='" end = "';" title = re.search('%s(.*)%s' % (start, end), content[metaint:]).group(1) title = re.sub("StreamUrl='.*?';", "", title).replace("';", "").replace("StreamUrl='", "") title = re.sub("&artist=.*", "", title) title = re.sub("http://.*", "", title) response.close() return {'song':title, 'bitrate':bitrate, 'contenttype':contenttype} else: response.close() print "No metaint" except urllib2.HTTPError, e: print ' Error, HTTPError = ' + str(e.code) return False except urllib2.URLError, e: print " Error, URLError: " + str(e.reason) return False except Exception, err: print " Error: " +str(err) return False def stripTags(self, text): finished = 0 while not finished: finished = 1 start = text.find("<") if start >= 0: stop = text[start:].find(">") if stop >= 0: text = text[:start] + text[start + stop + 1:] finished = 0 return text
import click from flask.cli import with_appcontext from .models import User, db, SocialMedia from grant.task.models import Task from grant.settings import STAGING_PASSWORD # @click.command() # @click.argument('identity') # @with_appcontext # def delete_user(identity): # print(identity) # if str.isdigit(identity): # user = User.get_by_id(identity) # else: # user = User.get_by_email(identity) # # if user: # db.session.delete(user) # db.session.commit() # click.echo(f'Succesfully deleted {user.display_name} (uid {user.id})') # else: # raise click.BadParameter('Invalid user identity. Must be a userid, ' \ # 'account address, or email address of an ' \ # 'existing user.') @click.command() @click.argument('identity') @with_appcontext def set_admin(identity): print("Setting admin to user with identity: " + identity) if str.isdigit(identity): user = User.get_by_id(identity) else: user = User.get_by_email(identity) if user: user.set_admin(True) user.email_verification.has_verified = True db.session.add(user) db.session.commit() click.echo(f'Successfully set {user.display_name} (uid {user.id}) to admin') else: raise click.BadParameter('''Invalid user identity. Must be a userid, 'account address, or email address of an 'existing user.''') @click.command() @with_appcontext def mangle_users(): if STAGING_PASSWORD: print("Mangling all users") for i, user in enumerate(User.query.all()): user.email_address = "random" + str(i) + "@grant.io" user.password = STAGING_PASSWORD # DELETE TOTP SECRET user.totp_secret = None # DELETE BACKUP CODES user.backup_codes = None db.session.add(user) # DELETE ALL TASKS for task in Task.query.all(): db.session.delete(task) # REMOVE ALL SOCIAL MEDIA for social in SocialMedia.query.all(): db.session.delete(social) db.session.commit()
from PyQt5.QtWidgets import * from PyQt5.QtGui import * import sqlite3 from Functions import GuiSignal from Gui import GuiTab #Gui основного окна class MainWindow(QMainWindow): def __init__(self, *args, **kwargs): super(MainWindow, self).__init__(*args, **kwargs) self.conn = sqlite3.connect("database.db") self.c = self.conn.cursor() self.c.execute("CREATE TABLE IF NOT EXISTS Workers(roll INTEGER PRIMARY KEY AUTOINCREMENT ,name TEXT,branch TEXT,sem INTEGER,mobile INTEGER,address TEXT)") self.c.execute("CREATE TABLE IF NOT EXISTS Late(roll INTEGER PRIMARY KEY AUTOINCREMENT ,name TEXT,count INTEGER)") self.c.close() self.setWindowIcon(QIcon("icon/document.png")) self.setWindowTitle("Контроль посещений") self.setMinimumSize(900, 700) self.table_widget= GuiTab.Tabs(self) self.setCentralWidget(self.table_widget) self.table_widget.show() toolbar = QToolBar() toolbar.setMovable(False) self.addToolBar(toolbar) statusbar = QStatusBar() self.setStatusBar(statusbar) #Панель кнопок btn_ac_adduser = QAction(QIcon("icon/add.png"), "Добавить", self) btn_ac_adduser.triggered.connect(lambda: GuiSignal.insert(self.table_widget.tabs.currentIndex())) btn_ac_adduser.setStatusTip("Добавить") toolbar.addAction(btn_ac_adduser) btn_ac_refresh = QAction(QIcon("icon/refresh.png"),"Обновить",self) btn_ac_refresh.triggered.connect(lambda: self.loaddata(self.table_widget.tabs.currentIndex())) btn_ac_refresh.setStatusTip("Обновить") toolbar.addAction(btn_ac_refresh) btn_ac_search = QAction(QIcon("icon/search.png"), "Поиск", self) btn_ac_search.triggered.connect(lambda: GuiSignal.search(self.table_widget.tabs.currentIndex())) btn_ac_search.setStatusTip("Поиск") toolbar.addAction(btn_ac_search) btn_ac_delete = QAction(QIcon("icon/trash.png"), "Удалить", self) btn_ac_delete.triggered.connect(lambda: GuiSignal.delete(self.table_widget.tabs.currentIndex())) btn_ac_delete.setStatusTip("Удалить") toolbar.addAction(btn_ac_delete) btn_ac_update = QAction(QIcon("icon/update.png"), "Редактировать", self) btn_ac_update.triggered.connect(lambda: GuiSignal.updateTable(self.table_widget.tabs.currentIndex())) btn_ac_update.setStatusTip("Редактировать") toolbar.addAction(btn_ac_update) #Подгрузка данных с таблицы def loaddata(self, index): if index == 0: self.connection = sqlite3.connect("database.db") query = "SELECT * FROM Workers" result = self.connection.execute(query) self.table_widget.tableWidget.setRowCount(0) for row_number, row_data in enumerate(result): self.table_widget.tableWidget.insertRow(row_number) for column_number, data in enumerate(row_data): self.table_widget.tableWidget.setItem(row_number, column_number, QTableWidgetItem(str(data))) self.connection.close() else: self.connection = sqlite3.connect("database.db") query = "SELECT * FROM Late" result = self.connection.execute(query) self.table_widget.tableWidget1.setRowCount(0) for row_number, row_data in enumerate(result): self.table_widget.tableWidget1.insertRow(row_number) for column_number, data in enumerate(row_data): self.table_widget.tableWidget1.setItem(row_number, column_number, QTableWidgetItem(str(data))) self.connection.close() #Отрисовка таблица def handlePaintRequest(self, printer): document = QTextDocument() cursor = QTextCursor(document) model = self.table.model() table = cursor.insertTable( model.rowCount(), model.columnCount()) for row in range(table.rows()): for column in range(table.columns()): cursor.insertText(model.item(row, column).text()) cursor.movePosition(QTextCursor.NextCell) document.print_(printer)
import numpy as np import matplotlib.pyplot as plt import seaborn as sns import csv import matplotlib font = {'family' : 'normal', 'weight' : 'normal', 'size' : 18} matplotlib.rc('font', **font) cmap="RdBu_r" ######### Functions Defined Below ######### ######################################################################## ######################################################################## ######### For each trajectory, assign each point to a particular grid ############ def assign_paths(transitions, data, z_ind, inc_ind, az_ind, top_z,bott_z,bins_z,bins_inc_ang,bins_az_ang,paths_file,paths_density_file,z_step,inc_step, az_step,Grid_z,Grid_density): pathway_grids = {} pathway_density = {} pathway_z = {} for i in range(len(transitions)): pathway_grids[i] = [] pathway_density[i] = [] for j in range(len(transitions[i])): f = int(transitions[i][j]) it = 0 #### Assign point along pathway to a particular grid for z in range(len(bins_z)): if data[f][z_ind]<=bins_z[z] and data[f][z_ind]>=bins_z[z]-z_step: for inc in range(len(bins_inc_ang)): if data[f][inc_ind]>=bins_inc_ang[inc] and data[f][inc_ind]<=bins_inc_ang[inc]+inc_step: for az in range(len(bins_az_ang)): it = (z*len(bins_inc_ang)*len(bins_az_ang)) + inc*len(bins_az_ang) + az+1 if data[f][az_ind]>=bins_az_ang[az] and data[f][az_ind]<=bins_az_ang[az]+az_step: pathway_grids[i] = np.append( pathway_grids[i], it) print(it) print(Grid_density[it-1]) pathway_density[i] = np.append( pathway_density[i], Grid_density[it-1] ) break for i in range(len(pathway_grids)): f=open(paths_file,'a+',newline='') writer=csv.writer(f,delimiter=' ',quotechar='|', quoting=csv.QUOTE_MINIMAL) writer.writerow(pathway_grids[i]) f.close() f=open(paths_density_file,'a+',newline='') writer=csv.writer(f,delimiter=' ',quotechar='|', quoting=csv.QUOTE_MINIMAL) writer.writerow(pathway_density[i]) f.close() return (pathway_grids,pathway_density) ####### Use if you have already assigned paths to grids def open_paths (paths_file,paths_density_file): p_file=open(paths_file) pathway_grids=[] with p_file as my_file: for line in my_file: myarray=np.fromstring(line, dtype=float, sep=' ') pathway_grids.append(myarray) p_file=open(paths_density_file) pathway_density=[] with p_file as my_file: for line in my_file: myarray=np.fromstring(line, dtype=float, sep=' ') pathway_density.append(myarray) return (pathway_grids,pathway_density) ################################################################################################################# def cluster_trajectories(transitions, bins_z, pathway_grids, pathway_density, count_cutoff, density_cutoff, cluster_cutoff,paths_file,paths_file_c1,paths_file_c2 ,Grid_z,Grid_az,Grid_density): allowed_trajectories = {} allowed_path_indices = [] it = -1 it_c1 = -1 it_c2 = -1 clust1_traj = {} clust2_traj = {} clust1_grid_traj = {} clust2_grid_traj = {} for i in range(len(transitions)): count = 0 clust1_cnt = 0 #### number of points along the trajectory that belong to cluster 1. set to 0 initially clust2_cnt = 0 #### number of points along the trajectory that belong to cluster 2. set to 0 initially #### In order to group trajectories, check that at every z, at least one point of the pathway lies within that group and not in any other defined groups for z in bins_z: countz = 0 clust1_cnt_z = 0 #### Initialize this to 0 but if a point along the trajectory lies within clust1, then increase this value clust2_cnt_z = 0 #### Do the same as the above comment but for clust2 ##### Run through the points of each trajectory (which have been assigned to grids already) and determine whether that point belongs to clust1 or clust2 for j in range(len(pathway_grids[i])): f = int(pathway_grids[i][j]) if Grid_z[f-1]==z and pathway_density[i][j]>=density_cutoff: #### Only use this point if the density is > density_cutoff and the z lies within the correct location countz += 1 ###### Depending on if the point belongs to a particular cutoff, increase the counter if Grid_az[f]<cluster_cutoff: clust1_cnt_z+=1 else: clust2_cnt_z+=1 if countz !=0: count+=1 if clust1_cnt_z !=0 and clust2_cnt_z == 0: # If at this z, all classified points are cluster1 and not clust2, increase this count clust1_cnt+=1 elif clust2_cnt_z !=0 and clust1_cnt_z == 0: clust2_cnt+=1 ##### If at every z, at least one trajectory point is within a particular cluster then cluster the trajectory if count>=count_cutoff: it+=1 allowed_trajectories[it] = transitions[i] if clust1_cnt>=count_cutoff: it_c1 +=1 clust1_traj[it_c1] = transitions[i] clust1_grid_traj[it_c1] = pathway_grids[i] elif clust2_cnt>=count_cutoff: it_c2 +=1 clust2_traj[it_c2] = transitions[i] clust2_grid_traj[it_c2] = pathway_grids[i] ############################################################### ##### Saving allowed trajectories ############################################## f = open(paths_file, 'w') f.write('') f.close() for i in range(len(allowed_trajectories)): f=open(paths_file,'a+',newline='') writer=csv.writer(f,delimiter=' ',quotechar='|', quoting=csv.QUOTE_MINIMAL) writer.writerow(allowed_trajectories[i]) f.close() f = open(paths_file_c1,'w') f.write('') f.close() for i in range(len(clust1_traj)): f=open(paths_file_c1,'a+',newline='') writer=csv.writer(f,delimiter=' ',quotechar='|', quoting=csv.QUOTE_MINIMAL) writer.writerow(clust1_traj[i]) f.close() f = open(paths_file_c2,'w') f.write('') f.close() for i in range(len(clust2_traj)): f=open(paths_file_c2,'a+',newline='') writer=csv.writer(f,delimiter=' ',quotechar='|', quoting=csv.QUOTE_MINIMAL) writer.writerow(clust2_traj[i]) f.close()
from rest_framework import viewsets from rest_framework.permissions import AllowAny from resume.apps.resumes.models import Resume from .serializers import ResumeSerializer class ResumeViewSet(viewsets.ReadOnlyModelViewSet): queryset = Resume.objects.all() serializer_class = ResumeSerializer permission_classes = (AllowAny,)
#!/usr/bin/env python #coding:utf8 import sys,os,re import subprocess import optparse import pexpect reload(sys) sys.setdefaultencoding('utf-8') class check_mysql_mongo_process: def __init__(self,node_name): self.node_name = node_name self.server_dir = "/data/%s/server"% self.node_name self.server_process_count = os.popen("ps aux|grep %s/server|grep -v grep|wc -l"%(self.server_dir)).read().strip() self.mongo_process_count = os.popen("ps aux|grep %s|grep mongo|grep -v grep|wc -l"%(self.node_name)).read().strip() self.mysql_process_count = os.popen("ps aux|grep mysql|grep -v grep|wc -l").read().strip() self.mongo_dir = "/data/master_mongodb/%s"% self.node_name self.mysql_dir = "/data/mysql/3306/" self.pwd = os.popen("cat /root/.pw").read().strip() if not os.path.exists("%s"% self.server_dir): print '\033[1;31;40m[%s]不存在此游戏服\033[0m'% self.node_name sys.exit(1) if int(self.server_process_count) > 3: print '\033[1;31;40m[%s]游戏进程已经开启\033[0m'% self.node_name sys.exit(2) else: if os.path.exists("%s/daemon.pid"% self.server_dir): os.remove("%s/daemon.pid")% self.server_dir def start_mongo_process(self): if int(self.mongo_process_count) - 1 == 0: if os.path.exists("%s/daemon.pid"% self.mongo_dir): os.remove("%s/pid_mongod.pid")% self.mongo_dir res_mongo = subprocess.call("sh %s/mongodb_start_master.sh"% self.mongo_dir,shell=True) if int(res_mongo) == 0: print '\033[1;32;40m[%s]mongo开启成功\033[0m'% self.node_name else: print '\033[1;31;40m[%s]mongo开启失败\033[0m'% self.node_name sys.exit(2) else: print '\033[1;32;40m[%s]mongo进程已经开启\033[0m'% self.node_name def start_mysql_process(self): if int(self.mysql_process_count) - 1 == 0: if os.path.exists("%s/daemon.pid"% self.mysql_dir): os.remove("%s/mysql-3306.pid")% self.mysql_dir res_mysql = subprocess.call("sh %s/start_mysql.sh"% self.mysql_dir,shell=True) if int(res_mysql) == 0: print '\033[1;32;40m[%s]mysql开启成功\033[0m'% self.node_name else: print '\033[1;31;40m[%s]mysql开启失败\033[0m'% self.node_name sys.exit(2) else: print '\033[1;32;40m[%s]mysql进程已经开启\033[0m'% self.node_name def stop_mongo_process(self): if int(self.mongo_process_count) - 1 == 0: print '\033[1;32;40m[%s]mongo进程已经关闭\033[0m'% self.node_name else: if os.path.exists("%s/daemon.pid"% self.mongo_dir): os.remove("%s/pid_mongod.pid")% self.mongo_dir res_mongo = subprocess.call("sh %s/close_mongodb_master_by_pidfile.sh"% self.mongo_dir,shell=True) if int(res_mongo) == 0: print '\033[1;32;40m[%s]mongo关闭成功\033[0m'% self.node_name else: print '\033[1;31;40m[%s]mongo关闭失败\033[0m'% self.node_name sys.exit(3) def stop_mysql_process(self,mypassword): if int(self.mysql_process_count) - 1 == 0: print '\033[1;32;40m[%s]mysql进程已经关闭\033[0m'% self.node_name else: if os.path.exists("%s/daemon.pid"% self.mysql_dir): os.remove("%s/mysql-3306.pid")% self.mysql_dir try: res_mysql = pexpect.spawn("sh %s/close_mysql.sh"% self.mysql_dir) res_mysql.expect('Enter password:') res_mysql.sendline(mypassword) #time.sleep(10) res_mysql.interact() print '\033[1;32;40m[%s]mysql关闭成功\033[0m'% self.node_name except pexpect.EOF: res_mysql.close() print '\033[1;31;40m[%s]mysql关闭失败\033[0m'% self.node_name if __name__ == "__main__": active_list = ['start','stop'] db_name_list = ['mysql','mongo'] usage = '''./%prog -n node_name -a start|stop -d mysql|mongo ''' parser = optparse.OptionParser( usage = usage, ) parser.add_option( "-n", "--node_name", dest="node_name", help="服名NODE_NAME") parser.add_option( "-a", "--action", dest="active", choices=active_list, type="choice", help="停止or启动对应服mongo或mysql进程") parser.add_option( "-d", "--db_name", dest="db_name", choices=db_name_list, type="choice", help="mongo or mysql") (options, args) = parser.parse_args() err_msg = '参数不对,请输--help查看详细说明!' if options.node_name and options.active and options.db_name: check = check_mysql_mongo_process(options.node_name) if options.active == "start": if options.db_name == "mysql": check.start_mysql_process() elif options.db_name == "mongo": check.start_mongo_process() elif options.active == "stop": if options.db_name == "mysql": password = check.pwd check.stop_mysql_process(password) elif options.db_name == "mongo": check.stop_mongo_process() else: parser.error(err_msg) else: parser.error(err_msg)
#!/usr/bin/env python import cv2 import serial #导入模块 import threading STRGLO="" #读取的数据 BOOL=True #读取标志位 #读数代码本体实现 def ReadData(ser): global STRGLO,BOOL # 循环接收数据,此为死循环,可用线程实现 if ser.in_waiting: STRGLO = ser.read(ser.in_waiting).decode("ascii") print(STRGLO) #打开串口 # 端口,GNU / Linux上的/ dev / ttyUSB0 等 或 Windows上的 COM3 等 # 波特率,标准值之一:50,75,110,134,150,200,300,600,1200,1800,2400,4800,9600,19200,38400,57600,115200 # 超时设置,None:永远等待操作,0为立即返回请求结果,其他值为等待超时时间(单位为秒) def DOpenPort(portx,bps,timeout): ret=False try: # 打开串口,并得到串口对象 ser = serial.Serial(portx, bps, timeout=timeout) #判断是否打开成功 if(ser.is_open): ret=True threading.Thread(target=ReadData, args=(ser,)).start() except Exception as e: print("---异常---:", e) return ser,ret #关闭串口 def DColsePort(ser): global BOOL BOOL=False ser.close() #写数据 def DWritePort(ser,text): result = ser.write(text.encode("utf8")) # 写数据 return result #读数据 def DReadPort(): global STRGLO str=STRGLO STRGLO=""#清空当次读取 return str if __name__=="__main__": ser,ret=DOpenPort("/dev/ttyACM0",115200,None) if(ret==True):#判断串口是否成功打开 count=DWritePort(ser,"i'm ll") print("写入字节数:",count) DReadPort() #读串口数据 #DColsePort(ser) #关闭串口 # create a new cam object cap = cv2.VideoCapture(0) # initialize the face recognizer (default face haar cascade) face_cascade = cv2.CascadeClassifier("/usr/share/OpenCV/haarcascades/haarcascade_frontalface_alt2.xml") while True: # read the image from the cam _, image = cap.read() # converting to grayscale image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # detect all the faces in the image faces = face_cascade.detectMultiScale(image_gray, 1.3, 5) # for every face, draw a blue rectangle img_width=size(image_gray) for x, y, width, height in faces: cv2.rectangle(image, (x, y), (x + width, y + height), color=(255, 0, 0), thickness=2) cv2.imshow("image", image) if cv2.waitKey(1) == ord("q"): break cap.release() cv2.destroyAllWindows()
# Posts Module from django.db import models from django.contrib.auth.models import User from django.conf import settings # Create your models here. class Post(models.Model): title = models.CharField(max_length=255) slug = models.SlugField(max_length=50) excerpt = models.TextField() content = models.TextField() published = models.DateTimeField('Date published') updated = models.DateTimeField('Date upated', auto_now=True, auto_now_add=True) author = models.ForeignKey(User) def __unicode__(self): return self.title class Meta: db_table = 'juice_posts_post'
POWER_SLOT_MED = 13 POWER_SLOT_HIGH = 12 POWER_SLOT_LOW = 11 POWER_SLOT_RIG = 2663 POWER_SLOT_SUBSYSTEM = 3772
#-*-coding:utf-8-*- class Solution: # @return a tuple, (index1, index2) def twoSum(self, num, target): d = {} index = 1 for i in num: d.update({i:index}) index+= 1 index = 0 for i in num: index += 1 if (target - i) in d and d[target-i] != index: return (index,d[target-i]) if __name__=='__main__': s = Solution() print s.twoSum([3,2,4],6)
# -*- coding: utf-8 -*- from numpy import * from matplotlib import pyplot from ospa import ospa_distance import tkFileDialog import tables from RangeBearingMeasurementModel import * import cProfile import pstats import os import cPickle import fnmatch from plot_results import plot_errors def compute_error_k(logfilename,true_pose,true_map): f = open(logfilename,'r') est_pose = fromstring(f.readline(),sep=' ')[0:3] est_map = fromstring(f.readline(),sep=' ') log_particle_weights = fromstring( f.readline(), sep=' ' ) map_weights = est_map[0::7] map_x = est_map[1::7] map_y = est_map[2::7] map_means = hstack((map_x[:,newaxis],map_y[:,newaxis])) if map_means.size > 0: w_sum = round(sum(map_weights)) sort_idx = argsort(map_weights)[::-1] map_means = map_means[sort_idx[:w_sum],:] pose_err = sqrt(sum( (true_pose[:2] - est_pose[:2])**2)) ospa_tuple = ospa_distance( true_map, map_means, p=1, c=5 ) ospa_err = ospa_tuple[0] ospa_loc = ospa_tuple[1] ospa_cn = ospa_tuple[2] n_eff = 1/sum(exp(log_particle_weights)**2) f.close() return (pose_err,ospa_err,ospa_loc,ospa_cn,n_eff) def compute_pose_error(true_pose,est_pose): return sqrt(sum( (true_pose[:2] - est_pose[:2])**2)) def compute_error(basedir,ground_truth): n_steps = ground_truth['n_steps'] true_maps = ground_truth['true_maps'] true_traj = ground_truth['true_traj'] data_dirs = [] for (dirpath,dirnames,filenames) in os.walk(basedir): n_files = len(filenames) pattern = ['state_estimate*.log']*n_files if any(map(fnmatch.fnmatch,filenames,pattern)): data_dirs.append(dirpath) n_runs = len(data_dirs) pose_err = zeros([n_steps,n_runs]) map_err = zeros([n_steps,n_runs]) loc_err = zeros([n_steps,n_runs]) cn_err = zeros([n_steps,n_runs]) n_eff = zeros([n_steps,n_runs]) print 'n_steps = %d\tn_runs = %d' % (n_steps,n_runs) for k in xrange(n_steps): file_list = [] filename_k = 'state_estimate{:05d}.log'.format(k) file_list = map(os.path.join,data_dirs,[filename_k]*n_runs) print(k) # poses_k = empty((n_runs,3)) # maps_k = [] true_pose_list = [true_traj[:,k]]*n_runs true_map_list = [true_maps[k].transpose()]*n_runs results = map(compute_error_k,file_list,true_pose_list,true_map_list) (pose_err_tmp,map_err_tmp,loc_err_tmp,cn_err_tmp,n_eff_tmp) = zip(*results) pose_err[k,:] = asarray(pose_err_tmp) map_err[k,:] = asarray(map_err_tmp) loc_err[k,:] = asarray(loc_err_tmp) cn_err[k,:] = asarray(cn_err_tmp) n_eff[k,:] = asarray(n_eff_tmp) # p_list = [1]*n_runs # c_list = [20]*n_runs # for i in xrange(n_runs): # f = open(file_list[i],'r') # pose_estimate = fromstring( f.readline(), sep=' ' )[0:3] # map_estimate = fromstring( f.readline(), sep=' ' ) # map_weights = map_estimate[0::7] # map_x = map_estimate[1::7] # map_y = map_estimate[2::7] # map_means = hstack((map_x[:,newaxis],map_y[:,newaxis])) # if map_means.size > 0: # w_sum = round(sum(map_weights)) # sort_idx = argsort(map_weights)[::-1] # map_means = map_means[sort_idx[:w_sum],:] # poses_k[i,:] = pose_estimate # maps_k.append(map_means) ## pose_err[k] += sqrt(sum( (true_traj[:2,i] - pose_estimate[:2])**2))/n_runs # map_err[k] += ospa_distance( true_maps[k].transpose(), map_means, p=1, c=20 )/n_runs # pose_err[k,:] = asarray(map( compute_pose_error, true_pose_list, poses_k ) ) # map_err[k,:] = asarray(map( ospa_distance, true_map_list, maps_k, p_list, c_list ) ) return (pose_err,map_err,loc_err,cn_err,n_eff) if __name__ == "__main__": print('loading mat-file...') file = tables.openFile('groundtruth.mat') landmarks = file.root.staticMap[:].transpose() trajectory = file.root.traj[:].transpose() file.close() print('computing ground truth for each time step') sensor_params = { 'max_range':10, 'max_bearing':pi, 'std_range':1.0, 'std_bearing':0.0349, 'pd':0.95, 'clutter_rate':20} # n_steps = trajectory.shape[1] ; n_steps = 1135 n_landmarks = landmarks.shape[1] true_maps = [] observed = zeros(n_landmarks,dtype=bool) measurement_model = RangeBearingMeasurementModel(sensor_params) for k in xrange(n_steps): # check if we have already seen everything if all( observed ): features = landmarks else: pose = trajectory[:,k] in_range = measurement_model.check_in_range(pose,landmarks) observed = logical_or(observed,in_range) features = landmarks[:,observed] true_maps.append(features) ground_truth = {'n_steps':n_steps,'true_maps':true_maps,'true_traj':trajectory} basedir = tkFileDialog.askdirectory() if len(basedir) == 0: print 'user cancelled selection' exit() print basedir # basedir = '/home/cheesinglee/workspace/cuda-PHDSLAM/batch_results/ackerman3_1cluster/' cProfile.run('results=compute_error(basedir,ground_truth)','compute_error_prof') stats = pstats.Stats('compute_error_prof') stats.sort_stats('cumulative').print_stats() results_file = open('results.pk2','wb') cPickle.dump(results,results_file,cPickle.HIGHEST_PROTOCOL) results_file.close() plot_errors(['results.pk2'])
import os import nltk import math import pandas as pd import numpy as np import string import re from nltk.corpus import stopwords from nltk.stem import PorterStemmer from collections import Counter from sklearn.metrics import accuracy_score data = 'D:/vsm+knn/data/20news-18828' data_train = 'D:/vsm+knn/data/data_train' data_test = 'D:/vsm+knn/data/data_test' _dictionary = 'D:/vsm+knn/data/dictionary.csv' def pre(input): # 读取数据 raw_data = [] sort = [] num = 0 for file1 in os.listdir(input): path1 = os.path.join(input, file1) num += 1 for file2 in os.listdir(path1): path2 = os.path.join(path1, file2) sort.append(num) with open(path2, encoding='latin-1') as file: document = file.read() raw_data.append(document) # 处理数据 new_data = [] for doc in raw_data: delpunctuation = re.compile('[%s]' % re.escape(string.punctuation)) doc = delpunctuation.sub("", doc) lowers = str(doc).lower() tokens = nltk.word_tokenize(lowers) stemmer = PorterStemmer() stoplist = stopwords.words('english') words = [] for word in tokens: if word not in stoplist: words.append(stemmer.stem(word)) new_data.append(words) return new_data, sort def NBC(train_data, train_label, test_data, test_label): dictionary = np.array(pd.read_csv(_dictionary, sep=" ", header=None)).reshape(1, -1)[0] kindcount = [] allcount = [] kindnum = [] kindcounte = [] Accuracy = [] for i in range(len(train_data)): doc = list(filter(lambda word: word in dictionary, train_data[i])) if train_label[i] < len(kindcount): kindcount[int(train_label[i])] += doc kindnum[int(train_label[i])] += 1 else: kindcount.append(doc) kindnum.append(1) allcount += doc allcounter = Counter(allcount) for kind in range(20): kindcounte.append(Counter(kindcount[kind])) for i in range(len(test_data)): Acc = [] for kind in range(20): Pxy = 0 Px = 0 kindcounter = kindcounte[kind] for word in test_data[i]: if word in dictionary: P0 = math.log((kindcounter[word] + 1) / (len(kindcount[kind]) + len(dictionary))) Pxy += P0 P1 = math.log((allcounter[word] + 1) / (len(allcount[kind]) + len(dictionary))) Px += P1 Py = math.log(kindnum[kind] / 18828.0) Pyx = Pxy + Py - Px Acc.append([kind, Pyx]) Acc = sorted(Acc, key=lambda item: -item[1]) Accuracy.append(Acc[0][0]) print(" Accuracy:\t", accuracy_score(test_label, Accuracy)) if __name__ == '__main__': train_data, train_label = pre(data_train) test_data, test_label = pre(data_test) NBC(train_data, train_label, test_data, test_label)
import os from TimeLogger import time_logger SCORES_FILE_NAME = "Scores.txt" BAD_RETURN_CODE = -1 DEFAULT_WEB_PAGE = "http://127.0.0.1:5000/" DEFAULT_CHROME_PATH = "c:/Selenium/chromedriver.exe" @time_logger def screen_cleaner(): """ trying to clear the screen. Relevant function changes based on OS. If this does not work- no big deal """ try: if os.name == 'nt': _ = os.system("cls") else: _ = os.system("clear") finally: pass
import sqlite3 connection = sqlite3.connect("Estoque.db") cursor = connection.cursor() create_table = "CREATE TABLE IF NOT EXISTS Estoque (codigo INTEGER PRIMARY KEY AUTOINCREMENT, produto varchar(30), valor decimal (5,2) not null, qtd int not null)" cursor.execute(create_table) tables = cursor.fetchall()
# Generated by Django 1.9.5 on 2016-11-04 18:00 from django.db import migrations, models import django.utils.timezone def move_dates(apps, schema_editor): """Move dates to models.""" Domain = apps.get_model("admin", "Domain") DomainAlias = apps.get_model("admin", "DomainAlias") Mailbox = apps.get_model("admin", "Mailbox") Alias = apps.get_model("admin", "Alias") for model in [Domain, DomainAlias, Mailbox, Alias]: for instance in model.objects.all(): instance.creation = instance.dates.creation instance.last_modification = instance.dates.last_modification instance.save() class Migration(migrations.Migration): dependencies = [ ('admin', '0005_auto_20161026_1003'), ] operations = [ migrations.AddField( model_name='alias', name='creation', field=models.DateTimeField(default=django.utils.timezone.now), ), migrations.AddField( model_name='alias', name='last_modification', field=models.DateTimeField(null=True), ), migrations.AddField( model_name='domain', name='creation', field=models.DateTimeField(default=django.utils.timezone.now), ), migrations.AddField( model_name='domain', name='last_modification', field=models.DateTimeField(null=True), ), migrations.AddField( model_name='domainalias', name='creation', field=models.DateTimeField(default=django.utils.timezone.now), ), migrations.AddField( model_name='domainalias', name='last_modification', field=models.DateTimeField(null=True), ), migrations.AddField( model_name='mailbox', name='creation', field=models.DateTimeField(default=django.utils.timezone.now), ), migrations.AddField( model_name='mailbox', name='last_modification', field=models.DateTimeField(null=True), ), migrations.RunPython(move_dates) ]
SIMULATE_ON_BOAT = False #use serial port from the controller SERIAL_PORT = "COM6" SERIAL_BAUD = 115200 SERIAL_TIMEOUT = 5 SIM_MOVE_INTERVAL = 1 SIM_PRINT_INTERVAL = 10 SIM_MAX_SPEED = 2000000.0 #SIM_RUDDER_RESPONSE = 0.00005 SIM_RUDDER_RESPONSE = 0.0001 TACKMODE_DIRECTLY = 0 TACKMODE_ADJ_POS = 1 TACKMODE_ADJ_NEG = 2 TACKMODE_MAXDEV_POS = 3 TACKMODE_MAXDEV_NEG = 4 MENU = 40 W = 1500.0 H = 750.0 MAXW = 10*W MAXH = 10*H BOAT_LENGTH = 50 BOAT_BOW = 20 BOAT_WIDTH = 10 RUDDER_LENGTH = 20 SAIL_LENGTH = 40 FLAP_LENGTH = 20 DOT_RADIUS = 2 WIND_COMPASS = 100 HEADING_ARROW = 100 HEADING_OK_LIMIT = 10.0 RUDDER_RESPONSE = 0.00005 RUDDER_COEFF = 40.0 RUDDER_MIN_ANGLE = -30 RUDDER_MAX_ANGLE = 35 tackmode_str = ['TACKMODE_DIRECTLY', 'TACKMODE_ADJ_POS', 'TACKMODE_ADJ_NEG', 'TACKMODE_MAXDEV_POS', 'TACKMODE_MAXDEV_NEG'] FLAP_NORMAL = 10.0 FLAP_MAX = 15.0 TACK_SAIL_CRITICAL_ANGLE = FLAP_MAX/2 FLAP_ITERATION = 0.1 R_MEAN = 6371000.0 MAXDEV = 500000 MAXDEV_OK_FACTOR = 0.75 MAXDEV_OK = MAXDEV * MAXDEV_OK_FACTOR WAYPOINT0 = 46.913520, -52.998886 WAYPOINT1 = 48.0, -13.0 tackmode = TACKMODE_DIRECTLY gps_lat, gps_lng = WAYPOINT0 gps_lat_prev, gps_lng_prev = gps_lat, gps_lng trueHeading = 45.0 MAX_SPEED = 2000000.0 GHOST_DISTANCE = 500000.0 trueWind = 0.0 dt = 0.001 dt_refresh = 4*dt ghostPoint = 0.0, 0.0 closestPoint = 0.0, 0.0 ghostHeading = 0.0 ghostHeading_instant = 0.0 goHeading = 0.0 error = 0.0 sail_angle = 0.0 crossTrack = 0.0 pathAngle = 0.0 rudder = 0.0 flap = FLAP_NORMAL flap_final = flap x_prev = 0.0 y_prev = 0.0 speed = 0.0 paused = False ghostHeading_initialized = False sim_active = False; adjAngle1 = 0.0 #global only for debugging adjAngle2 = 0.0 #global only for debugging c_boat, c_sail, c_rudder, c_flap = None, None, None, None c_compass1, c_compass2, c_compass3, c_compass4, \ c_closestPoint, c_ghostPoint, c_ghostHeading, c_windDir, c_goHeading, c_adjHeading1, c_adjHeading2 \ = None, None, None, None, None, None, None, None, None, None, None ser = None startchar = '' sim_nextWaypoint = -1 mux = -1 isBehindPath = 0 magDec = 0.0
# Generated by Django 3.2.4 on 2021-07-02 07:30 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('database', '0007_company_exchange'), ] operations = [ migrations.AlterField( model_name='company', name='exchange', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='companies', to='database.stockexchange'), ), migrations.AddConstraint( model_name='company', constraint=models.UniqueConstraint(fields=('code_vs', 'name'), name='unique_company'), ), ]
from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.naive_bayes import MultinomialNB from nltk.corpus import stopwords from nltk.stem import RSLPStemmer import speech_recognition as sr from gtts import gTTS import random import string import numpy import nltk import sys import os class File: def __init__(self): self.keywords = ['meteorologia', 'filha', 'casa', 'lojas de roupa', 'centro comercial', 'filho', 'compras', 'comida', 'jantar', 'andar', 'irmão', 'netos', 'supermercado'] self.examples = [] file = open('newtextfile.txt', 'r') groups = [] group = False try: line = file.readline() while line != '': # The EOF char is an empty string if line[0].isdigit(): group = Group() groups.append(group) else: if group: if line[0] == 'H': group.human.append(line[2:-1]) if line[0] == 'R': group.robot.append(line[2:-1]) line = file.readline() for g in groups: self.randomize(g) self.randomize(g) finally: file.close() def randomize(self, group): for i in range(0, len(group.human)): self.examples.append(group.human[i]) self.examples.append(random.choice(group.robot)) class Group: def __init__(self): self.human = [] self.robot = [] class Examples: def __init__(self, phrases): self.phrases = phrases self.examples = self.populate() def populate(self): examples = [] for i in range(0, len(self.phrases)): id_phrase = self.check_phrase(self.phrases[i], i) examples.append(Example(self.phrases[i], id_phrase + 1)) return examples def check_phrase(self, phrase, id_phrase): for j in range(0, len(self.phrases)): if id_phrase != j: if self.phrases[j] == phrase: if id_phrase > j: return j else: return id_phrase return id_phrase def get_ids(self): aux = [] for e in self.examples: aux.append(e.id) return aux def search_for_phrase(self, lsa, classifier, phrase, keywords): lsa_result = lsa.process_phrase(phrase, lsa.manage_keywords(keywords)) phrase_id = classifier.predict(LSA.normalizer(lsa_result)) for e in self.examples: if e.id == phrase_id: return e.phrase class Example: def __init__(self, phrase, number): self.id = number self.phrase = phrase class LSA: def __init__(self, ngram_max, min_freq, p_eig, phrases): self.ngram_max = ngram_max self.min_freq = min_freq self.p_eig = p_eig self.ngram_min = 1 self.stopwords = stopwords.words("portuguese") self.stopwords.append('é') self.phrases = phrases self.u = [] self.features_utterance = self.get_features_utterance() self.tfidf = [] @staticmethod def normalizer(x_abnormal): minimum = x_abnormal.min() maximum = x_abnormal.max() if minimum == maximum: return x_abnormal if minimum == maximum: return x_abnormal else: x_new = (x_abnormal - minimum) / (maximum - minimum) return x_new def tokenize(self, t): if t in self.stopwords: return [] sentence = t.lower() sentence = nltk.tokenize.word_tokenize(sentence) aux = [] for word in sentence: if word not in self.stopwords and word not in string.punctuation: aux.append(RSLPStemmer().stem(word.lower())) phrase = [] for word in aux: phrase.append(word) return phrase def manage_keywords(self, keywords): tokens, vocabulary = [], [] for i in keywords: t = self.tokenize(i) if len(t) > 1: key_str = '' for j in t: key_str = key_str + ' ' + j tokens.append(key_str[1:]) else: tokens.extend(t) for i in tokens: repeat = False for v in vocabulary: if i == v: repeat = True break if not repeat: vocabulary.append(i) return vocabulary def get_features_utterance(self): vec = TfidfVectorizer(min_df=self.min_freq, stop_words=self.stopwords, tokenizer=self.tokenize, ngram_range=(self.ngram_min, self.ngram_max)) vec.fit_transform(self.phrases) return vec.get_feature_names() def tf_idf(self, phrase, keywords): examples = [] examples.extend(self.phrases) if phrase: examples.append(phrase) vec = TfidfVectorizer(stop_words=self.stopwords, vocabulary=keywords, tokenizer=self.tokenize, ngram_range=(self.ngram_min, self.ngram_max)) x = vec.fit_transform(examples) return x.todense() def eliminate_dimensions(self): res = 0 u, eigen, v = numpy.linalg.svd(self.tfidf, compute_uv=True) normalized_eigenvalues = eigen / numpy.sum(eigen) eigenvalues = numpy.diag(eigen) for i in range(0, len(eigen)): res += normalized_eigenvalues[i] if res >= self.p_eig: k = i+1 x = numpy.matrix.dot(numpy.matrix.dot(u[-1, 0:k], eigenvalues[0:k, 0:k]), v[0:k, :]) return x def process_phrase(self, phrase, keywords): tfidf_utterance = numpy.array(self.tf_idf(phrase, self.features_utterance)) tfidf_keywords = numpy.array(self.tf_idf(phrase, keywords)) self.tfidf = numpy.empty([len(tfidf_utterance), len(tfidf_utterance[0]) + len(tfidf_keywords[0])]) self.tfidf = numpy.concatenate([tfidf_utterance, tfidf_keywords], axis=1) x = numpy.round(self.eliminate_dimensions(), 10) return x def process_examples(self, keywords): lsa = [] for phrase in self.phrases: lsa.append(self.process_phrase(phrase, keywords).tolist()) return lsa class NaivesClassifier: def __init__(self, alpha): self.classifier = MultinomialNB(alpha=alpha) def train(self, x_train, y_train): x_naive = numpy.empty(x_train.shape) for i in range(0, len(x_train)): x_naive[i] = LSA.normalizer(x_train[i]) self.classifier.fit(x_naive, y_train) def predict(self, value): aux = self.classifier.predict(numpy.reshape(value, (1, len(value)))) return aux def test_score(self, x_test, y_test, type_): aux = self.classifier.score(x_test, y_test)*100 print("Performance score of the " + type_ + " set is", numpy.round(aux, 2)) return aux class SpeakWithTheRobot: def __init__(self, human_lsa, naives, human_keywords, robot_vectors): self.slow = False self.device_id = 0 self.lang = 'pt-pt' self.naives = naives self.chunk_size = 2048 self.r = sr.Recognizer() self.sample_rate = 48000 self.human_lsa = human_lsa self.robot_vectors = robot_vectors self.human_keywords = human_keywords def hear(self): with sr.Microphone(device_index=self.device_id, sample_rate=self.sample_rate, chunk_size=self.chunk_size) as source: self.r.adjust_for_ambient_noise(source) print("Say Something") audio = self.r.listen(source) try: text = self.r.recognize_google(audio, language="pt-PT") print("you said: " + text) return text except sr.UnknownValueError: print("Google Speech Recognition could not understand audio") except sr.RequestError as e: print("Could not request results from Google Speech Recognition service;{0}".format(e)) def speak(self, phrase): tts = gTTS(text=phrase, lang=self.lang, slow=self.slow) tts.save("soundfile.mp3") os.system("mpg123 soundfile.mp3") return def speaking_to_the_robot(self): while True: print("Press a character") c = sys.stdin.read(2) if c[0] == 's': self.speak(self.robot_vectors.search_for_phrase(self.human_lsa, self.naives, self.hear(), self.human_keywords)) elif c[0] == 't': print(self.robot_vectors.search_for_phrase(self.human_lsa, self.naives, "Olá", self.human_keywords)) print(self.robot_vectors.search_for_phrase(self.human_lsa, self.naives, "Como está tudo a andar?", self.human_keywords)) print(self.robot_vectors.search_for_phrase(self.human_lsa, self.naives, "Comigo está tudo fantástico.", self.human_keywords)) print(self.robot_vectors.search_for_phrase(self.human_lsa, self.naives, "Adoro o café", self.human_keywords)) print(self.robot_vectors.search_for_phrase(self.human_lsa, self.naives, "Qual é o tempo para hoje?", self.human_keywords)) print(self.robot_vectors.search_for_phrase(self.human_lsa, self.naives, "Vou à casa da minha filha.", self.human_keywords)) print(self.robot_vectors.search_for_phrase(self.human_lsa, self.naives, "Vou ao supermercado à tarde.", self.human_keywords)) print(self.robot_vectors.search_for_phrase(self.human_lsa, self.naives, "Quero dar uma volta depois do almoço.", self.human_keywords)) print(self.robot_vectors.search_for_phrase(self.human_lsa, self.naives, "Gosto de chá", self.human_keywords)) elif c[0] == 'q': break
"""Construct word map graphs for each sheet in page_data_dictionary.""" from operator import itemgetter import xmlColumnOperator import xmlWordOperators import numpy as np class xmlPageOperator(object): def __init__(self, i, year, page_data, file_path, xml_column_chart_center, xml_column_chart_thirds): self.page_data = page_data self.page_index = i self.year = year self.page = page_data.page self.file_path = file_path self.word_data = page_data.word_data self.section_list_center = xml_column_chart_center.section_list self.section_list_thirds = xml_column_chart_thirds.section_list self.page_top = page_data.page_top self.page_right = page_data.page_right self.page_bottom = page_data.page_bottom self.page_left = page_data.page_left self.center = page_data.center self.third_first = page_data.third_first self.third_second = page_data.third_second self.search_key_data = self.left_search_bound() self.search_key_center = self.search_key_data[0] self.search_key_thirds = self.search_key_data[1] self.lines_data = self.define_lines() self.lines_dict = self.lines_data[0] self.words_excluded = self.lines_data[1] self.line_data_dict = self.lines_data[2] self.page_break_dictionary_insgesamt = self.instantiate_columns() def left_search_bound(self): """Based on manual sections bounds, define key variable for company name search bounds.""" difference_list_center = sorted([[item, self.page_index - item[0]] for item in self.section_list_center if self.page_index - item[0] > 0], key=itemgetter(1)) difference_list_thirds = sorted([[item, self.page_index - item[0]] for item in self.section_list_thirds if self.page_index - item[0] > 0], key=itemgetter(1)) key_center = difference_list_center[0][0][2] key_thirds = difference_list_thirds[0][0][2] return (key_center, key_thirds) def define_lines(self): """Define text lines (rows) using bottom bounds of words.""" word_list = sorted([[i, word[0], word[1], word[2], word[3], word[4]] for i, word in enumerate(self.word_data) if (word[2] > self.page_left and word[4] < self.page_right and word[1] > self.page_bottom and word[3] < self.page_top)], key=itemgetter(4)) word_dict = {word[0]: [word[1], word[2], word[3], word[4], word[5]] for word in word_list} if self.search_key_center == True: operate_list = [{word[0]: [word[1], word[4]] for word in word_list if word[3] < self.center}, {word[0]: [word[1], word[4]] for word in word_list if word[3] > self.center}] elif self.search_key_thirds == True: operate_list = [{word[0]: [word[1], word[4]] for word in word_list if word[3] < self.third_first}, {word[0]: [word[1], word[4]] for word in word_list if (word[3] > self.third_first and word[3] < self.third_second)}, {word[0]: [word[1], word[4]] for word in word_list if word[3] > self.third_second}] else: operate_list = [{word[0]: [word[1], word[4]] for word in word_list}] lines_dict = {} line_data_dict = {self.page: []} registered_indeces = [] index = 0 for column in operate_list: lines_dict_component = {} sub_list = [] column_list = list(column.items()) for i, word in enumerate(column_list[:-1]): word_index = column_list[i][0] bottom_coordinate = column_list[i][1][1] next_bottom = column_list[i+1][1][1] prev_bottom = column_list[i-1][1][1] bottom_offset = .00478 if next_bottom - bottom_offset < bottom_coordinate < next_bottom + bottom_offset: sub_list.append([word_index, bottom_coordinate]) registered_indeces.append(word_index) else: if prev_bottom - bottom_offset < bottom_coordinate < prev_bottom + bottom_offset: sub_list.append([word_index, bottom_coordinate]) registered_indeces.append(word_index) if len(sub_list) >= 2: lines_dict_component.update({np.mean([item[1] for item in sub_list]): sorted([word_dict[item[0]] for item in sub_list], key=itemgetter(4))}) sub_list = [] for item in sub_list: registered_indeces.remove(item[0]) lines_dict.update({index:lines_dict_component}) index += 1 words_excluded = [word for index, word in word_dict.items() if index not in registered_indeces] line_data_dict[self.page].extend((lines_dict, words_excluded)) return (lines_dict, words_excluded, line_data_dict) def instantiate_columns(self): """Loop over divided columns and operate.""" page_break_dictionary_insgesamt = {} for index, dictionary in self.lines_dict.items(): column_data = xmlColumnOperator.xmlColumnOperator(index, dictionary, self.page, self.year, self.file_path, self.page_data, self.search_key_data) if self.page in page_break_dictionary_insgesamt.keys(): page_break_dictionary_insgesamt[self.page].update(column_data.page_break_dictionary_teilweise) if len(column_data.page_break_dictionary_teilweise) > 0 and self.page not in page_break_dictionary_insgesamt.keys(): page_break_dictionary_insgesamt.update({self.page: column_data.page_break_dictionary_teilweise}) return page_break_dictionary_insgesamt
from flask import Flask from flask_sslify import SSLify from flask_sqlalchemy import SQLAlchemy from flask_login import LoginManager # Initiate Flask app = Flask(__name__) sslify = SSLify(app) app.config.from_object('config.HerokuConfig') # initialize the database connection db = SQLAlchemy(app) login = LoginManager(app) login.login_view = 'login' import field_description.views
import numpy import scipy import matplotlib.pyplot as plt import numpy as np Fs = 1e4 sample = 1e4 f1 = 1000 f2 = 2000 f3 = 3000 x = np.arange(sample) a = np.cos(2 * np.pi * f1 * x / Fs) + 10 b = np.cos(2 * np.pi * f1 * x / Fs) + np.cos(2 * np.pi * f2 * x / Fs) + np.sin(2 * np.pi * f3 * x / Fs) c = x**2 + np.sin(2 * np.pi * f1 * x / Fs) # d = np.cos(np.pi * ((x*x+1)/139)) + j*np.sin(np.pi * ((x*x+1)/139)) # plt.plot(x,Cw) # plt.show() # plt.plot(x,Mw) # plt.show() # AMw = (1+Mw)*np.sin(2 * np.pi * fc * x / Fs) plt.plot(x,a) plt.show() plt.plot(x,b) plt.show() plt.plot(x,c) plt.show() # plt.plot(x,d) # plt.show()
# magazine/models.py # -*- coding: UTF-8 -*- from __future__ import unicode_literals from django.db import models from django.utils.translation import ugettext_lazy as _ from .app_settings import STATUS_CHOICES class NewsArticle(models.Model): status = models.CharField(_("Status"), max_length=20, choices=STATUS_CHOICES )
import re def get_game_date(game): _table = game.parent game_date_raw = _table.find('td', class_='gameTime').text p = re.compile(r'\d{4}-\d{02}-\d{2}') date = p.findall(game_date_raw) if not len(date): return None date = date[0] return date.replace('-', '') def get_endorsement(game): endorse = game.find('span', class_='zhuanSpan') if not endorse: return None endorse = endorse.text p = re.compile(r'\d+') endorse = p.findall(endorse) return 0 if not len(endorse) else endorse[0] def get_concede(game): panels = game.find_all('div', class_='betPanel') if len(panels) != 2: return None panel = panels[1] concede = panel.find('div', class_='rqMod') if not concede: return None return int(concede.text) def get_odds(game, with_concede=False): panels = game.find_all('div', class_='betPanel') if len(panels) != 2: return None panel = panels[1 if with_concede else 0] odds = panel.find_all('div', class_='betChan') if len(odds) != 3: return None return [float(i.text) for i in odds] def parse_game(game): date = get_game_date(game) if not date: return None game_id = game.find('a', class_='jq_gdhhspf_selectmatch') if not game_id: return None game_id = game_id.text serial_number = date + game_id cup = game.find('td', class_='saiTd') if not cup: cup = None else: cup = cup.text deadline = game.find('td', class_='stopTd jq_gdhhspf_match_changetime') if not deadline: return None deadline = deadline.text host = game.find('td', class_='zhuTeamTd').text guest = game.find('td', class_='keTeamTd').text num_endorse = get_endorsement(game) concede = get_concede(game) odds = get_odds(game, with_concede=False) codds = get_odds(game, with_concede=True) return { 'serial': serial_number, 'league': cup, 'deadline': deadline, 'host': host, 'guest': guest, 'endorse': num_endorse, 'concede': concede, 'odds': odds, 'codds': codds } def parse_results(result_dict): game_date = result_dict['weekDate'].replace('-', '') games = result_dict['raceList'] results = [] for game_id in games: serial_number = game_date + game_id score_raw = games[game_id]['wholeScore'] if len(score_raw) > 0: if ':' not in score_raw: continue host, guest = score_raw.split(':') results.append({ 'serial': serial_number, 'host_score': host, 'guest_score': guest }) return results
def print_soduko(puzzle, print_lists = False): l = ['-------------------\n'] for row in range(len(puzzle)): l.append('|') for col in range(len(puzzle)): entry = puzzle[row][col] if isinstance(entry, list): if print_lists: l.append(str(entry)) else: l.append(' ') else: l.append(str(entry)) if (col+1)%3 == 0: l.append('|') else: l.append(' ') l.append('\n') if (row+1)%3 == 0: l.append('-------------------\n') print ''.join(l) def possible_values(puzzle, row, col): """Finds the values that an entry may take""" # Find values that are certain (not in a list) r_vals = [val for val in puzzle[row] if not isinstance(val, list)] c_vals = [r[col] for r in puzzle if not isinstance(r[col], list)] s_vals = [] for r in range(3): for c in range(3): entry = puzzle[(row//3)*3 + r][(col//3)*3 + c] if not isinstance(entry, list): s_vals.append(entry) # Make sets of those values r_set = set(r_vals) c_set = set(c_vals) s_set = set(s_vals) # Get inverse of those (i.e. posible values) taken_values_set = (r_set.union(c_set)).union(s_set) posible_set = set(range(1,10)).difference(taken_values_set) if len(posible_set) == 0: return None elif len(posible_set) == 1: return posible_set.pop() else: return list(posible_set) def copy_puzzle(puzzle): new_puzzle = [] for r in puzzle: new_puzzle.append(list(r)) return new_puzzle def finished(puzzle): return all([all([isinstance(e, int) for e in r]) for r in puzzle]) def solve(puzzle): # Check puzzle size assert len(puzzle) == 9 assert all(len(column) == 9 for column in puzzle) # Check if the puzzle is finished if finished(puzzle): return puzzle # Do a deterministic step stuck = False while not stuck: stuck = True for row in range(len(puzzle)): for col in range(len(puzzle)): if isinstance(puzzle[row][col], list): p_vals = possible_values(puzzle, row, col) # If there is no possible values the given soduko is infeasible if p_vals is None: return None puzzle[row][col] = p_vals if not isinstance(p_vals, list): stuck = False if finished(puzzle): return puzzle # If that didn't solve it, do a guess ## Find a branch point branch = None for row in range(len(puzzle)): for col in range(len(puzzle)): if isinstance(puzzle[row][col], list): branch = {'row':row, 'col':col} branch['values'] = possible_values(puzzle, row, col) break if branch is not None: break ## Call solve recursively at the branch point for v in branch['values']: puzzle_copy = copy_puzzle(puzzle) puzzle_copy[branch['row']][branch['col']] = v solved_puzzle = solve(puzzle_copy) if solved_puzzle is not None: return solved_puzzle
#----------------URL and imports----------------------------- import requests import json URL = 'http://localhost:8088/services/' #---------------REQUESTS-------------------------------------- def post_user(email,phone,password): user = {} user['email'] = email user['phone'] = phone user['address'] = password #json_objct = json.dumps(user) response = requests.post(URL + 'users/addUser' , json=(user)) print('POST USER request----',response) return response def post_for_forgot_password(email): response = requests.post(URL + 'forgot/reset?email=' + str(email)) print('FORGOT password response -----',response) #print(response.links) return response '''def test_post(): response = requests.post('http://localhost:8088/services/forgot/ newPassword?token= ***ENTER YOUR TOKEN HERE*** &newPassword= ***ENTER YOUR NEW PASSWORD HERE ***') print(response) print(response.content) return response if __name__ == '__main__': test_post() #-----------------------------------------------------------------'''
""" Errors like the error cases from Rackspace Monitoring. """ from __future__ import division, unicode_literals import attr from six import text_type @attr.s class ParentDoesNotExist(Exception): """ Error that occurs when a parent object does not exist. For instance, trying to access or modify a Check under a non-existing Entity will cause this error. """ object_type = attr.ib(validator=attr.validators.instance_of(text_type)) key = attr.ib(validator=attr.validators.instance_of(text_type)) code = attr.ib(validator=attr.validators.instance_of(int), default=404) def to_json(self): """ Serializes this error to a JSON-encodable dict. """ return {'type': 'notFoundError', 'code': self.code, 'txnId': '.fake.mimic.transaction.id.c-1111111.ts-123444444.v-12344frf', 'message': 'Parent does not exist', 'details': 'Object "{0}" with key "{1}" does not exist'.format( self.object_type, self.key)} @attr.s class ObjectDoesNotExist(Exception): """ Error that occurs when a required object does not exist. """ object_type = attr.ib(validator=attr.validators.instance_of(text_type)) key = attr.ib(validator=attr.validators.instance_of(text_type)) code = attr.ib(validator=attr.validators.instance_of(int), default=404) def to_json(self): """ Serializes this error to a JSON-encodable dict. """ return {'type': 'notFoundError', 'code': self.code, 'txnId': '.fake.mimic.transaction.id.c-1111111.ts-123444444.v-12344frf', 'message': 'Object does not exist', 'details': 'Object "{0}" with key "{1}" does not exist'.format( self.object_type, self.key)}
# Tuple(元组) # 元组(tuple)与列表类似,不同之处在于元组的元素不能修改。元组写在小括号(())里,元素之间用逗号隔开。 # 元组中的元素类型也可以不相同 tuple = ('abcd', 786, 2.23, 'runoob', 70.2) tinytuple = (123, 'runoob') print(tuple) # 输出完整元组 print(tuple[0]) # 输出元组的第一个元素 print(tuple[1:3]) # 输出从第二个元素开始到第三个元素 print(tuple[2:]) # 输出从第三个元素开始的所有元素 print(tinytuple * 2) # 输出两次元组 print(tuple + tinytuple) # 连接元组. tup = (1, 2, 3, 4, 5, 6) print(tup[0]) print(tup[1:5]) #tup[0] = 11 # 修改元组元素的操作是非法的 #报错为:tuple' object does not support item assignment tup1 = () # 空元组 tup2 = (20,) # ****一元素,需要在元素后添加逗号****
#========================================================================= # This is a simple function to define land and ocean masks for LMR output. # author: Michael P. Erb # date : October 19, 2016 #========================================================================= import numpy as np import xarray as xr from mpl_toolkits.basemap import Basemap from mpl_toolkits.basemap import maskoceans # Define land and ocean masks for LMR output: def masks(file_name): # print("This masking function doesn't work correctly near the poles and international date line. Double-check the mask.") # handle = np.load(file_name) lon = handle['lon'] lat = handle['lat'] handle.close() # # Make a version of lon where western hemisphere longitudes are negative lon_we = lon lon_we[lon_we>180] = lon_we[lon_we>180]-360 # # Make an ocean mask allpoints = np.ones((lat.shape[0],lon_we.shape[1])) oceanmask = maskoceans(lon_we,lat,allpoints,inlands=False).filled(np.nan) oceanmask[0,:] = 1 # # Make a land mask landmask = np.zeros((lat.shape[0],lon_we.shape[1])) landmask[:] = np.nan landmask[np.isnan(oceanmask)] = 1 # return landmask, oceanmask # Define land and ocean masks for netcdf files: def masks_netcdf(file_name): handle = xr.open_dataset(file_name,decode_times=False) lon_1d = handle['lon'].values lat_1d = handle['lat'].values # # Make 2d versions of lat and lon lon,lat = np.meshgrid(lon_1d,lat_1d) # # Make a version of lat where western hemisphere latitudes are negative lon_we = lon lon_we[lon_we>180] = lon_we[lon_we>180]-360 # # Make an ocean mask allpoints = np.ones((lat.shape[0],lon_we.shape[1])) oceanmask = maskoceans(lon_we,lat,allpoints,inlands=False).filled(np.nan) oceanmask[0,:] = 1 # # Make a land mask landmask = np.zeros((lat.shape[0],lon_we.shape[1])) landmask[:] = np.nan landmask[np.isnan(oceanmask)] = 1 # return landmask, oceanmask
x, y = map(int, input().split()) # def F (x, y, cache): # print (f"Call for ({x}, {y})") # if ( (x, y) not in cache): # if (x == 0): # cache[(x, y)] = y+1; # elif (x > 0 and y == 0): # cache[(x, y)] = F(x-1, 1, cache); # else: # cache [(x, y)] = F(x-1, F(x, y-1, cache), cache) # # print (cache) # return cache[(x, y)] def F (x, y): print (f"Call for ({x}, {y})") if (x == 0): return y+1; elif (x > 0 and y == 0): return F(x-1, 1); else: return F(x-1, F(x, y-1)) cache = dict() print (F(x, y))
""" Testing utilities. Do not modify this file! """ num_pass = 0 num_fail = 0 def assert_equals(msg, expected, actual): """ Check whether code being tested produces the correct result for a specific test case. Prints a message indicating whether it does. :param: msg is a message to print at the beginning. :param: expected is the correct result :param: actual is the result of the code under test. """ print(msg) global num_pass, num_fail if expected == actual: print("PASS") num_pass += 1 else: print("**** FAIL") print("expected: " + str(expected)) print("actual: " + str(actual)) num_fail += 1 print("") def start_tests(header): """ Initializes summary statistics so we are ready to run tests using assert_equals. :param header: A header to print at the beginning of the tests. """ global num_pass, num_fail print(header) for i in range(0,len(header)): print("=",end="") print("") num_pass = 0 num_fail = 0 def finish_tests(): """ Prints summary statistics after the tests are complete. """ print("Passed %d/%d" % (num_pass, num_pass+num_fail)) print("Failed %d/%d" % (num_fail, num_pass+num_fail))
from typing import Any, Dict import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output from dash.exceptions import PreventUpdate from phi.field import SampledField from phiml.math._shape import parse_dim_order from phi.vis._dash.dash_app import DashApp from phi.vis._dash.player_controls import STEP_BUTTON, PAUSE_BUTTON from phi.vis._dash.player_controls import REFRESH_INTERVAL from phi.vis._vis_base import display_name FRONT = 'front' RIGHT = 'right' TOP = 'top' REFRESH_RATE = Input(f'refresh-rate', 'value') def all_view_settings(app: DashApp, viewer_group: str): dims = [Input(f'{viewer_group}_select_{dim}', 'value') for dim in parse_dim_order(app.config.get('select', []))] return (Input(f'{viewer_group}_projection-select', 'value'), Input(f'{viewer_group}_component-slider', 'value'), Input(f'{viewer_group}_refresh-button', 'n_clicks'), *dims) def parse_view_settings(app: DashApp, *args) -> Dict[str, Any]: projection, component, _, *selections = args return { 'select': {dim: sel for dim, sel in zip(parse_dim_order(app.config.get('select', [])), selections)}, 'projection': projection, 'component': [None, 'x', 'y', 'z', 'abs'][component], } def refresh_rate_ms(refresh_value): if refresh_value is None: return 1000 * 60 * 60 * 24 else: return (2000, 900, 400, 200)[refresh_value] def build_view_selection(app: DashApp, field_selections: tuple, viewer_group: str): dim_sliders = [] for sel_dim in parse_dim_order(app.config.get('select', [])): sel_pane = html.Div(style={'height': '50px', 'width': '100%', 'display': 'flex', 'align-items': 'center', 'justify-content': 'center'}, children=[ html.Label(display_name(sel_dim), style={'display': 'inline-block'}), html.Div(style={'width': '80%', 'display': 'inline-block'}, children=[ dcc.Slider(min=0, max=0, step=1, value=0, # marks={} if resolution3d is None else _marks(resolution3d[1]), id=f'{viewer_group}_select_{sel_dim}', updatemode='drag', disabled=False), ]), ]) dim_sliders.append(sel_pane) @app.dash.callback(Output(f'{viewer_group}_select_{sel_dim}', 'max'), [STEP_BUTTON, REFRESH_INTERVAL, PAUSE_BUTTON, *field_selections]) def update_dim_max(_s, _r, _p, *field_names, dim=sel_dim): shapes = [app.model.get_field_shape(name) for name in field_names if name != 'None'] sizes = [s.get_size(dim) for s in shapes if dim in s] if sizes: return max(sizes) - 1 else: raise PreventUpdate() @app.dash.callback(Output(f'{viewer_group}_select_{sel_dim}', 'disabled'), [STEP_BUTTON, REFRESH_INTERVAL, PAUSE_BUTTON, *field_selections]) def update_dim_disabled(_s, _r, _p, *field_names, dim=sel_dim): shapes = [app.model.get_field_shape(name) for name in field_names if name != 'None'] sizes = [s.get_size(dim) for s in shapes if dim in s] return max(sizes) <= 1 if sizes else True @app.dash.callback(Output(f'{viewer_group}_select_{sel_dim}', 'marks'), [STEP_BUTTON, REFRESH_INTERVAL, PAUSE_BUTTON, *field_selections]) def update_dim_disabled(_s, _r, _p, *field_names, dim=sel_dim): shapes = [app.model.get_field_shape(name) for name in field_names if name != 'None'] sizes = [s.get_size(dim) for s in shapes if dim in s] if sizes: return _marks(max(sizes)) else: return {} layout = html.Div(style={'width': '100%', 'display': 'inline-block', 'backgroundColor': '#E0E0FF', 'vertical-align': 'middle'}, children=[ # --- Settings --- html.Div(style={'width': '30%', 'display': 'inline-block', 'vertical-align': 'top'}, children=[ html.Div(style={'width': '50%', 'display': 'inline-block'}, children=[ dcc.Dropdown(options=[{'value': FRONT, 'label': 'Front'}, {'value': RIGHT, 'label': 'Side'}, {'value': TOP, 'label': 'Top'}], value='front', id=f'{viewer_group}_projection-select', disabled=False), html.Div(style={'margin-top': 6}, children=[ html.Div(style={'width': '90%', 'margin-left': 'auto', 'margin-right': 'auto'}, children=[ dcc.Slider(min=0, max=4, step=1, value=0, marks={0: '🡡', 4: '⬤', 1: 'x', 2: 'y', 3: 'z'}, id=f'{viewer_group}_component-slider', updatemode='drag'), ]) ]), ]), html.Div(style={'width': '50%', 'display': 'inline-block', 'vertical-align': 'top'}, children=[ # , 'margin-left': 40 html.Div('Refresh Rate', style={'text-align': 'center'}), html.Div(style={'width': '60%', 'margin-left': 'auto', 'margin-right': 'auto', 'height': 50}, children=[ dcc.Slider(min=0, max=3, step=1, value=1, marks={0: 'low', 3: 'high'}, id=REFRESH_RATE.component_id, updatemode='drag'), ]), html.Div(style={'text-align': 'center'}, children=[ html.Button('Refresh now', id=f'{viewer_group}_refresh-button'), ]) ]) ]), # --- Batch & Depth --- html.Div(style={'width': '70%', 'display': 'inline-block'}, children=dim_sliders), ]) return layout def _marks(stop, limit=35, step=1) -> dict: if stop <= limit * step: return {i: str(i) for i in range(0, stop, step)} if stop <= 2 * limit * step: return _marks(stop, limit, step * 2) if stop <= 5 * limit * step: return _marks(stop, limit, step * 5) else: return _marks(stop, limit, step * 10)
# This file is part of beets. # Copyright 2016, Adrian Sampson. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. """Tests for the virtual filesystem builder..""" import unittest from test import _common from beets import library from beets import vfs class VFSTest(_common.TestCase): def setUp(self): super().setUp() self.lib = library.Library(':memory:', path_formats=[ ('default', 'albums/$album/$title'), ('singleton:true', 'tracks/$artist/$title'), ]) self.lib.add(_common.item()) self.lib.add_album([_common.item()]) self.tree = vfs.libtree(self.lib) def test_singleton_item(self): self.assertEqual(self.tree.dirs['tracks'].dirs['the artist']. files['the title'], 1) def test_album_item(self): self.assertEqual(self.tree.dirs['albums'].dirs['the album']. files['the title'], 2) def suite(): return unittest.TestLoader().loadTestsFromName(__name__) if __name__ == '__main__': unittest.main(defaultTest='suite')
from script.conftest import get_host, ji_yun_ying_login
from quick_sort import partition def quick_select.py(givenList, left, right, k): split = partition(givenList, left, right) if split == k: return givenList[split] elif split < k: return quick_select(givenList, split + 1, right, k) else: return quick_select(givenList, left, split - 1, k)
''' Creating a Linked List in Python. Linked Lists are almost useless in Python, since lists are so valuable. This is mostly just an exercise in coding. However, it is good to know that Python Lists suffer from 2 small setbacks: 1) Lists in Python are equivalent to arrays. They are contiguous, so as to have O(1) access. Linked Lists provide a non-contiguous data structure at the cost of performance. Hence, sometimes Linked Lists could come in handy. 2) Insertion in the beginning requires Python to shift over all the elements in a list and add it to the front. Python also has a collections.deque which is essentially a better version of this Linked List implementation. ''' # private Node class for internal usage. class _Node: def __init__(self, data = None, prev = None, next = None): self.data = data; self.prev = prev; self.next = next; def __str__(self): return str(self.data) # Create a Linked List class using a sentinel Node. Sacrifice a little bit of memory space for clarity # in code. No edge cases to worry about anymore. class Linked_List: def __init__(self): self.__head = _Node() self.__head.prev = self.__head self.__head.next = self.__head self.__len = 0 # add to the tail of a linked list def push_back(self, value): new_node = _Node(value, self.__head.prev, self.__head) self.__head.prev.next = new_node self.__head.prev = new_node self.__len += 1 # add to the head of a linked list def push_front(self, value): new_node = _Node(value, self.__head, self.__head.next) self.__head.next.prev = new_node self.__head.next = new_node self.__len += 1 # insert element at given position. If the index is 0, then it is equivalent to a push_front. If the # index is len(Linked_List), then it is euqivalent to push_back. Does not overwrite the given index. Use the overloaded [] operators to overwrite # something at a given index. def insert(self, value, index): if(index > self.__len): raise IndexError() if index == self.__len: self.push_back(value) elif index == 0: self.push_front(value) # depending on if the index is in the second half or the first half of the list, we iterate in a given direction. It reduces the time # complexity from O(n) to O(n/2) elif index <= self.__len / 2: current = self.__head.next for i in range(index): current = current.next new_node = _Node(value, current.prev, current) current.prev.next = new_node current.prev = new_node self.__len += 1 else: current = self.__head.prev for i in range(index, self.__len - 1): current = current.prev new_node = _Node(value, current.prev, current) print(str(current)) current.prev.next = new_node current.prev = new_node self.__len += 1 def __len__(self): return self.__len def __str__(self): current = self.__head.next ret_val = "[" while(current is not self.__head): ret_val += str(current) + ", " current = current.next ret_val = ret_val[:-2] + "]" return ret_val # Essentially a tester function, making sure that the linked list works as described. if __name__ == "__main__": x = Linked_List() x.push_back(1) x.push_back(2) x.push_back(3) x.push_back(4) x.push_back(5) x.push_front(6) x.push_front(7) x.push_front(8) x.push_front(9) x.insert(10, 9) x.insert(11, 3) x.insert(12, 10) x.insert(13, 10) print(x)
from django.apps import AppConfig class ProgressAnalyzerConfig(AppConfig): name = 'progress_analyzer'
import _time def sleep(s: float): for i in range(int(s)): _time.sleep_s(1) _time.sleep_ms(int((s - int(s)) * 1000)) def sleep_s(s: int): return _time.sleep_s(s) def sleep_ms(ms: int): return _time.sleep_ms(ms) def time() -> float: return _time.time() def time_ns() -> int: return _time.time_ns() def gmtime(unix_time: float): return _time.gmtime(unix_time) def localtime(unix_time: float): return _time.localtime(unix_time) def mktime() -> int: return _time.mktime() def asctime() -> str: return _time.asctime() def ctime(unix_time: float) -> str: return _time.ctime(unix_time)
from . import product_product from . import product_pricelist from . import sale
import csv import os ifile = open('input.csv', "rb") ofile = open('output.csv', "wb") complete = 0 incomplete = 0 first = 1 username = '' prior_user = '' writer = csv.writer(ofile) reader = csv.reader(ifile) writer.writerow(["Username", "First Name", "Last Name", "Completed Mapped Items", "Incomplete Mapped Items", "Email", "Manager", "VP Name", "Sub-department"]) for row in reader: if(first == 1): prior_user = row[3] first = 0 else: prior_user = username username = row[3] if(username != prior_user): writer.writerow([prior_user, fname, lname, complete, incomplete, email, manager, vp, sub]) complete = 0 incomplete = 0 fname = row[4] lname = row[5] email = row[6] manager = row[7] vp = row[8] sub = row[9] status = row[2] if(status == "Completed"): complete += 1 elif(status == "Incomplete"): incomplete += 1 writer.writerow([username, fname, lname, complete, incomplete, email, manager, vp, sub])
# 之前做过了, 分状态写的 # 双指针 # dl的解法是记录该点到左边R的距离和到右边L的距离,哪个近就往同侧倒,一样就不倒 class Solution: def pushDominoes(self, dominoes: str) -> str: n = len(dominoes) # [L_dist, R_dist] records = [[inf, inf] for _ in range(n)] cur = -inf for i, c in enumerate(dominoes): if c == 'R': cur = i elif c == 'L': cur = -inf records[i][1] = i - cur cur = inf for i in range(n - 1, -1, -1): if dominoes[i] == 'L': cur = i elif dominoes[i] == 'R': cur = inf records[i][0] = cur - i return "".join('.' if l == r else ('R' if l > r else 'L') for l, r in records)
# -*- coding: utf-8 -*- """helpers.py: Various Helper Functions Handles all neccessary parts of the irc protocol for client connections. """ import os import sys import time import re import urllib import traceback try: import urllib2 except: urllib2 = None # Legacy support # Try to convert to string with a crude 'brute force' fall back def safe_escape(text): try: return str(text) except: pass new = "" for c in text: try: new += unicode(str(c)) except: new += "?" return new # Convert value to string if necesary def arg_to_str(arg): if type(arg) in [type(""), type(u"")]: return arg else: return str(arg) # Get a substring of a string with two delimeters def get_string_between(start, stop, s): i1 = s.find(start) if i1 == -1: return False s = s[i1 + len(start):] i2 = s.find(stop) if i2 == -1: return False s = s[:i2] return s # Get path to folder containing the current script def get_current_script_path(): return os.path.dirname(os.path.realpath(__file__)) # Convert times (add days, hours, min, sec) def str_to_seconds(txt): units = { "d": 24*60*60, "h": 60*60, "m": 60, "s": 1, } txt = txt.strip().lower() if len(txt) < 2: return False if txt[-1] in units.keys(): unit = units[txt[-1]] else: return False try: part = txt[:-1].replace(",", ".") n = float(part) except: return False return n*unit # return human readable timestamps def time_stamp(t=None, formatting=None): t = t or time.time() if not formatting: return time.asctime(time.localtime(float(t))) return time.strftime(formatting, time.localtime(float(t))) def time_stamp_short(t=None): t = t or time.time() return time.strftime("%H:%M:%S", time.localtime(t)) def time_stamp_numeric(t=None): t = t or time.time() return time.strftime("%d.%m.%y %H:%M", time.localtime(t)) # run a shell command def run_shell_cmd(cmd): try: import commands except: return False output = commands.getoutput(cmd) return output # check if string contains a word def has_word(s, w): words = re.split('\W+',s) if w in words: return True return False # split string into words def split_words(s): return re.split('\W+',s) # return info about last error def get_error_info(): msg = str(traceback.format_exc()) + "\n" + str(sys.exc_info()) return msg # find any urls in a string def find_urls(s): try: re except: return [] urls = re.findall('http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', s) return urls
# Hash Tables: Ransom Note # Cracking the Coding Interview Challenge # https://www.hackerrank.com/challenges/ctci-ransom-note class Word: def __init__(self, word, used): self.word = word self.used = used def ransom_note(magazine, ransom): # Initialize hashMap hashMap = [] for i in range(len(magazine)): hashMap.append([]) # Add magazine words to hashMap for word in magazine: hashIdx = hash_func(word, len(hashMap)) hashMap[hashIdx].append(Word(word, False)) # Compare note words to magazine hashMap for word in ransom: hashIdx = hash_func(word, len(hashMap)) foundMatch = False for entries in hashMap[hashIdx]: if entries.word == word and not entries.used: foundMatch = True entries.used = True break if not foundMatch: return False return True def hash_func(word, length): hashVal, count = 0, 0 for letter in list(word): count += 1 hashVal += (ord(letter) * 31 + count * 7) return hashVal % length #------------------------------- Provided ------------------------------- m, n = map(int, input().strip().split(' ')) magazine = input().strip().split(' ') ransom = input().strip().split(' ') answer = ransom_note(magazine, ransom) if(answer): print("Yes") else: print("No")
#!/usr/bin/python # python stuff import time import sys import numpy as np import os.path # index coding stuff from Symbol import Symbol from alignment import alignment, nullvec from bs_index_coding import compute_interferers, transmit_messages, bs_decode_messages from multirandperm import pairingperm # tos stuff, all needed? from TxSerialMsg import * from SymMsg import * from T2HMsg import * from AckMsg import * from tinyos.message import MoteIF class Transmitter: def __init__(self, N, logfile, itMax=1, B=1, verbose=True, dest=False): #CHANGE SO THAT ONLY THINGS THAT ARE CALLED ONCE!! self.verbose = verbose self.prevtime = time.time() self.N = N self.logfile = logfile self.B = B self.itMax = itMax self.timeformat = '%Y/%d/%m %H:%M:%S' #self.A = make_A_matrix(self.N) #self.counter = 0; #self.num_transmissions = 0; self.current_row = 0; #needed now?? Transmitter.setup_logfile(self) ## Set up link to tos mote self.mif = MoteIF.MoteIF() self.source = self.mif.addSource("sf@localhost:9002") #TxSerialMsg.py is be generated by MIG class self.mif.addListener(self, TxSerialMsg) # RESET THESE ## generate random messages #self.W = np.random.randint(0,2**16, (N,B)) # each message is an array of B uint16s ##print 'W is :' ##print self.W ## store final received messages. goal is to "de-NaN" by the end ##self.final_messages = np.nan*np.zeros((N, B)) ##not actually messages but indicator if all the pieces for the node have been received #self.final_messages = np.nan*np.zeros((N, 1)) ## keep track of all transmitted and received messages/symbols #self.tx_symbols = np.array([]) # [1 -by- # of transmissions] # ## keep track of number of transmissions #self.TOTAL_TRANSMISSIONS = 0 ## for TDMA round also? #self.TDMA_TRANSMISSIONS = 0 #antidote matrix A #self.A = np.diag(self.W.reshape(-1)) # receiver (row) i has access to the message it plans to send #rewrite so not dependent on W #self.A = np.eye(N) # Receiver i wants message dest[i] # e.g. dest = [1, 0] means R0 wants W[1] and R1 wants W[0] if dest == False: self.dest = pairingperm(N) if self.verbose: print 'Message destinations chosen by pairing' print 'dest:', self.dest else: self.dest = dest #rewrite A so not dependent on W self.it = 0 Transmitter.reset(self) ##RESET THESE #mat_dest = (np.arange(self.N), np.array(self.dest)) #self.signal_space = np.zeros((self.N,self.N))>0 #self.signal_space[mat_dest] = True; #self.A = np.eye(N) #self.I = compute_interferers(self.A, signal_space) #self.J = self.I.astype(float) #self.J[mat_dest] = -1 #self.map = np.arange(self.N) #print 'size of I is ', np.size(self.I) # #if self.verbose: #print 'Interferer matrix is:' #print self.J # ##RESET THESE #self.TDMA_MODE = 1; ##self.tm = 0; #needed? #self.TDleft = np.arange(self.N, dtype=np.uint8) #self.ackList = np.nan*self.TDleft #self.ileft = 0; ##transmit the first message #Transmitter.tdma_stage(self) #self.ileft = 1 def cleanup(self): #save to text file #epsString = [str(a) for a in self.epsVec] #epsString = '\t'.join([str(a) for a in list(self.epsVec[0])]) epsString = '\t'.join(['%.3f' % a for a in list(self.epsVec[0])]) #logstring = '%d\t%d\t%d\t%d\t%.5f\t%s' % (self.N, self.B, self.TDMA_TRANSMISSIONS, self.TOTAL_TRANSMISSIONS, self.epsIndex,self.epsVec) #print an array?? #logstring = '%%d\t%d\t' % (self.TDMA_TRANSMISSIONS, self.TOTAL_TRANSMISSIONS) logstring = '%d\t%d\t%d\t%d\t%.5f\t%s' % (self.N, self.B, self.TDMA_TRANSMISSIONS, self.TOTAL_TRANSMISSIONS, self.epsIndex,epsString) #print an array?? lf = open(self.logfile, 'a') lf.write(logstring) lf.write('\n') lf.close() def reset(self): self.it += 1 #reinitialize for next experiment # generate random messages self.W = np.random.randint(0,2**16, (self.N,self.B)) # each message is an array of B uint16s #print 'W is :' #print self.W # store final received messages. goal is to "de-NaN" by the end #self.final_messages = np.nan*np.zeros((N, B)) #not actually messages but indicator if all the pieces for the node have been received self.final_messages = np.nan*np.zeros((self.N, 1)) # keep track of all transmitted and received messages/symbols self.tx_symbols = np.array([]) # [1 -by- # of transmissions] # keep track of number of transmissions self.TOTAL_TRANSMISSIONS = 0 self.TDMA_TRANSMISSIONS = 0 #make float so dont have to cast later self.TDMA_ERASURES = float(0) self.INDEX_ERASURES = float(0) self.TDMA_ERASURES_VEC = np.zeros((1,self.N),float) self.INDEX_ERASURES_VEC = np.zeros((1,self.N),float) self.epsIndex = float(0) self.epsVec = np.zeros((1,self.N),float) mat_dest = (np.arange(self.N), np.array(self.dest)) signal_space = np.zeros((self.N,self.N))>0 signal_space[mat_dest] = True; self.A = np.eye(self.N) self.I = compute_interferers(self.A, signal_space) self.J = self.I.astype(float) self.J[mat_dest] = -1 self.map = np.arange(self.N) #print 'size of I is ', np.size(self.I) #only print once?? if self.verbose: print 'Interferer matrix is:' print self.J #return to tdma mode self.TDMA_MODE = 1; #self.tm = 0; #needed? self.TDleft = np.arange(self.N, dtype=np.uint8) self.ackList = np.nan*self.TDleft self.ileft = 0; #transmit the first message Transmitter.tdma_stage(self) self.ileft = 1 def tdma_stage(self): smsg = TxSerialMsg() #self.TDMA_MODE = 1; #self.TDleft = np.arange(self.N, dtype=np.uint8) #self.ackList = np.nan*self.TDleft #test to send something #smsg.set_messageid(1) #self.mif.sendMsg(self.source, 0xFFFF, smsg.get_amType(), 0, smsg) #tm = 0; #move up #set packet number #while np.any(np.isnan(self.ackList)): #change while to if and call at the end of receive loop? #tm = tm + 1 #for i in self.TDleft: #mote doesnt see any of these?? self.TDMA_TRANSMISSIONS += 1 #smsg.set_crow(255) #something to signal tdma mode, still necessary? #smsg.set_messageid(int(self.ileft)) smsg.set_messageid(int(self.TDleft[self.ileft])) #for(j=len(self.dest[i])) eventually loop through J matrix columns that are -1 #smsg.set_data(self.W[self.dest[self.ileft],:]) smsg.set_data(self.W[self.dest[self.TDleft[self.ileft]],:]) #also send own message w[i] for comparison????, set to V_row? #print 'TDMA V Row ', self.W #smsg.set_V_row(self.W[self.ileft]) smsg.set_current_transmission(self.TDMA_TRANSMISSIONS) self.mif.sendMsg(self.source, 0xFFFF, smsg.get_amType(), 0, smsg) if self.verbose: print'TDMA TRANSMISSION ', self.TDMA_TRANSMISSIONS, ': Motes remaining: ', self.TDleft #print'Sending message to Mote ', int(self.TDleft[self.ileft]) ##call tinyos receive thread instead? #rmsg = AckMsg(msg.dataGet()) ##check for acks, remove nodes with ack type 1 from TDMAleft, record transmissions? #newAck = rmsg.get_ACKs() #acklist[newAck==1] = 1 def index_stage(self): smsgx = TxSerialMsg() smsgx.set_messageid(255) #now something to represent index coding, 255? #print 'V is ', self.V #print 'm_i is ', self.m_i #PIECES HERE? matrix multiply handles it #print 'mi: ', self.m_i #print 'map: ', self.map[self.m_i] smsgx.set_data(np.dot(self.V[self.m_i,:],self.W,)) #smsgx.set_data(np.dot(self.V[self.map[self.m_i],:],self.W,)) ##also send own message w[i] for comparison???? #smsgx.set_V_row(np.asarray(self.V[self.m_i], dtype=np.float32)) #smsgx.set_V_row(np.array([1, 2, 3.5, 4.2, 5, 6, 7, 8], dtype=np.float64)) #print 'sending row m of V: ', self.V[self.m_i] #smsgx.set_crow() smsgx.set_V_row(self.V[self.m_i,:]) ###random coding instead? #randomVrow = np.random.randn(1,self.N) ###blah[0,abs(np.array(self.V[self.m_i]))<.0001] = 0 ###blah2 = np.asarray(blah,dtype="float64") ###blah2 = np.asarray(blah) ###print self.V[self.m_i,:], type(self.V[self.m_i,2]) ###print blah[0,:], type(blah[0,:]) #smsgx.set_V_row(randomVrow[0,:]) ##does not decode for random combinations, larger matrix needed to find a null vector???? ##smsgx.set_V_row(np.random.randn(1,self.N)) smsgx.set_current_transmission(self.TOTAL_TRANSMISSIONS) self.mif.sendMsg(self.source, 0xFFFF, smsgx.get_amType(), 0, smsgx) if self.verbose: print 'Transmission ', self.m_i+1, '/', self.m #m_i+1 or now just m_i ??? #print self.rx_symbols.astype(int) self.m_i += 1 self.i += 1 def receive(self,src,msg): #make this main_loop and have it call tdma_stage and index_stage?, or set different modes in the other functions #tdma tx, index tx, or completed depending on mode if self.TDMA_MODE==1: #print 'ileft is ', self.ileft, ', size if tdleft is ', np.size(self.TDleft) ##try moving this down?? #if self.ileft == np.size(self.TDleft): ##if self.ileft > np.size(self.TDleft): #self.ileft = 0; #only update acklist here? ##not completely correct?? what if size changes inbetween? ##only update tdleft here? #self.TDleft = np.nonzero(np.isnan(self.ackList.reshape(-1)))[0] print 'RECEIVE FUNCTION (TDMA)' rmsg = T2HMsg(msg.dataGet()) #check for acks, remove nodes with ack type 1 from TDMAleft, record transmissions? newAck = rmsg.get_ACKs() print 'Acks for transmission number ', rmsg.get_transmission(), ': ', newAck #first one is 8? 2? garbage value #print 'Element equal to 1: ', np.array(newAck)==1 #want this to be an array of logicals self.ackList[np.array(newAck)==1] = 1 self.TDMA_ERASURES += np.sum(np.array(newAck)==2) self.TDMA_ERASURES_VEC += np.array(newAck)==2 #print 'number of erasures ', self.TDMA_ERASURES #print 'Erasure vector:', self.TDMA_ERASURES_VEC #self.TDleft = np.nonzero(np.isnan(self.ackList.reshape(-1)))[0] #call tdma_stage(self) at end if np.any(np.isnan(self.ackList)) #try moving this here?? if self.ileft == np.size(self.TDleft): #if self.ileft > np.size(self.TDleft): self.ileft = 0; #only update acklist here? #not completely correct?? what if size changes inbetween? #only update tdleft here? self.TDleft = np.nonzero(np.isnan(self.ackList.reshape(-1)))[0] #if not done, transmit next if np.any(np.isnan(self.ackList)): #self.tm = self.tm + 1 #for i in self.TDleft: Transmitter.tdma_stage(self) self.ileft += 1 else: print 'Finished TDMA after', self.TDMA_TRANSMISSIONS, 'transmissions and', self.TDMA_ERASURES, 'erasures. Current erasure probability is', self.TDMA_ERASURES/(self.N*self.TDMA_TRANSMISSIONS) #use get_transmission from receive function? will it make a difference? print 'EpsVec (TDMA only):', self.TDMA_ERASURES_VEC/self.TDMA_TRANSMISSIONS #COMPUTE ATTEMPTS PER NODE?? dont need if broadcasting every transmission self.TDMA_MODE = 0; #initialize and proceed to index coding mode self.m_i = 0; self.i = 1; self.m = 0; self.unsolved = self.map > -50; #array of true the size of self.map self.rx_symbols = 0; self.eps_vec = 0*np.ones(self.N) R = transmit_messages(1, self.eps_vec[self.map]) self.rx_symbols = R #self.INDEX_ERASURES = 0; #send the first index message here? call compute_matrices for the first time here? #handle first case here? elif self.TDMA_MODE == 0: print 'RECEIVE FUNCTION (INDEX CODING)' #get next set of messages #if self.m_i == m or self.i == 0: #update data structures and map (next unsolved vector) once the round has been completed #if self.m_i == self.m or np.any(~self.unsolved): #self.m_i = 0; if self.TOTAL_TRANSMISSIONS == 0: self.map = np.nonzero(np.isnan(self.final_messages.reshape(-1)))[0] self.rx_symbols = self.rx_symbols[self.unsolved, :] self.J = self.J[self.unsolved, :] self.I = self.I[self.unsolved, :] self.A = self.A[self.unsolved, :] Transmitter.compute_matrices(self) #time.sleep(3) #case for first transmission, must compute matrices first? self.TOTAL_TRANSMISSIONS = 1 Transmitter.index_stage(self) #self.m_i += 1 #self.i += 1 return #if self.m_i == self.m or np.any(~self.unsolved): ##Transmitter.compute_matrices(self) #self.map = np.nonzero(np.isnan(self.final_messages.reshape(-1)))[0] #self.rx_symbols = self.rx_symbols[self.unsolved, :] #self.J = self.J[self.unsolved, :] #self.I = self.I[self.unsolved, :] #self.A = self.A[self.unsolved, :] #Transmitter.compute_matrices(self) ##case for first transmission, must compute matrices first? #if self.TOTAL_TRANSMISSIONS == 0: #self.TOTAL_TRANSMISSIONS = 1 #Transmitter.index_stage(self) #self.m_i += 1 #self.i += 1 #return # rmsgx = T2HMsg(msg.dataGet()) #check for acks, remove nodes with ack type 1 from TDMAleft, record transmissions? newAck = np.array(rmsgx.get_ACKs()) #print 'Acks for transmission number ', rmsgx.get_transmission(), ': ', newAck print 'RX ACKS: ' , newAck print 'Remaining nodes: ', self.map self.unsolved = newAck[self.map] != 1 #self.final_messages2 = self.final_messages self.final_messages[newAck==1] = 1 #CALCULATE ERASURES FROM THE NUMBER OF 2S, all 2s are useful, even if exited system becaus ergotic etc #calculate for each node? #print 'index erasures (old):', self.INDEX_ERASURES_VEC self.INDEX_ERASURES += np.sum(newAck==2) self.INDEX_ERASURES_VEC += newAck==2 print 'Erasure Vector (index):', self.INDEX_ERASURES_VEC #self.unsolved = self.final_messages != 1 #print 'Rx DEST ', self.dest #print 'Rx NEW UNSOLVED: ', self.unsolved #print 'Rx NEW finalmessages: ' #print self.final_messages if self.m_i == self.m or np.any(~self.unsolved): #Transmitter.compute_matrices(self) self.m_i = 0; self.map = np.nonzero(np.isnan(self.final_messages.reshape(-1)))[0] self.rx_symbols = self.rx_symbols[self.unsolved, :] self.J = self.J[self.unsolved, :] self.I = self.I[self.unsolved, :] self.A = self.A[self.unsolved, :] Transmitter.compute_matrices(self) #time.sleep(3) #send to all motes at end if np.any(np.isnan(self.final_messages)) ?? if np.any(np.isnan(self.final_messages)): #print 'm_i' ,self.m_i self.tx_symbols = np.append(self.tx_symbols, Symbol(self.V[self.m_i,:], self.W, self.map)) R = transmit_messages(1, self.eps_vec[self.map]) if self.i == 1: self.rx_symbols = R else: self.rx_symbols = np.bmat([self.rx_symbols, R]) #if self.verbose: #print 'Transmission ', self.m_i+1, '/', self.m #m_i+1 or now just m_i ??? #print self.rx_symbols.astype(int) self.TOTAL_TRANSMISSIONS += 1 Transmitter.index_stage(self) #self.m_i += 1 #self.i += 1 #Transmitter.compute_matrices(self) #print 'late unsolved is ', self.unsolved else: #compute overall erasure probabilities for the iteration #self.epsIndex = float(self.INDEX_ERASURES)/float(self.N*self.TOTAL_TRANSMISSIONS) #now both tdma and index self.epsIndex = (self.INDEX_ERASURES+self.TDMA_ERASURES)/(self.N*(self.TOTAL_TRANSMISSIONS+self.TDMA_TRANSMISSIONS)) self.epsVec = (self.TDMA_ERASURES_VEC+self.INDEX_ERASURES_VEC)/(self.TDMA_TRANSMISSIONS+self.TOTAL_TRANSMISSIONS) if self.verbose: print 'ITERATION', self.it, ', INDEX CODING TRANSMISSIONS:', self.TOTAL_TRANSMISSIONS print 'ERASURES:', self.INDEX_ERASURES, ', EPS:', self.epsIndex, 'EPS (index only):', self.INDEX_ERASURES/(self.N*self.TOTAL_TRANSMISSIONS) print 'EpsVec:', self.epsVec #write epsvec instead #COMPUTE ATTEMPTS PER NODE? #self.TDMA_MODE = -1 #call cleanup and reset functions!!!!! Transmitter.cleanup(self) if (self.it < self.itMax): Transmitter.reset(self) else: self.TDMA_MODE = -1 return self.TOTAL_TRANSMISSIONS #also exit program? else: #completed, print this indefinitely #print 'INDEX CODING COMPLETE: Total number of transmissions: ', self.TOTAL_TRANSMISSIONS print self.it, 'ITERATIONS COMPLETE' return self.TOTAL_TRANSMISSIONS #iterate?? def compute_matrices(self): #change to compute_matrixes #self.TDMA_MODE = 0; #eps_vec = .5*np.ones(self.N) self.eps_vec = 0*np.ones(self.N) #self.i = 1 #while np.any(np.isnan(self.final_messages)): Kprime = len(self.map); if self.verbose: print 'Remaining ', Kprime, ' nodes are: ' print self.map ## special case for one remaining node #doesnt make sense anymore, must change if Kprime == 1: #smsgx.set_V_row(self.V[self.m_i,:]) #self.TOTAL_TRANSMISSIONS += 1 #while not transmit_messages(1, self.eps_vec[self.map]): #self.TOTAL_TRANSMISSIONS += 1 #print 'map is ', self.map #print 'W is ', self.W #print 'final messages are', self.final_messages #self.final_messages[self.map] = self.W[self.map] #make a new V to transmit instead, just what W needs self.V = np.zeros((1,self.N)) self.V[0,self.map] = 1 self.m = 1 else: ## Generate next m transmissions #(self.V, U) = alignment('mixed', self.J, 1e-4, 100, True) (self.V, U) = alignment('greedy', self.J, 1e-4, 100, False) #try changing it here?? self.V = np.asarray(self.V) #RANDOM INSTEAD??? even easier, change right before transmission! #self.V = np.random. print 'new V is ' print self.V #print 'type of new V is ', type(self.V) #print 'type of an element of new V is ', type(self.V[0,0]) self.m = np.shape(self.V)[0] if self.verbose: print 'Minimum rank is ', self.m # generate next symbol based on current V L = len(self.tx_symbols); if self.i == 1: L = 0 self.unsolved = np.ones(Kprime) > 0 ##print S #Vnull = V[ :, [1,3,5,7] ] ##U,S,V = np.linalg.svd(Vnull.T) def setup_logfile(self): if not os.path.isfile(self.logfile): lf = open(self.logfile,'w') lf.write('Index Coding (Basic Antidotes) Log File\n') #ADD TIME #lf.write('%s\nN = %d\nPIECES = %d\n\n' % (time.strftime(self.timeformat), self.N, self.B)) lf.write('%s\n\n' % time.strftime(self.timeformat)) lf.write('N\tPIECES\tnumTDMA\tnumIndex\tepsAvg\tepsVec\n') #what else, time that started, erasures, slot time somehow? #add individual erasures? #lf.write('TDMA Transmissions\t Index Transmissions\n') #what else, time that started, erasures, slot time somehow? lf.close() if __name__ == "__main__": print "Running" np.set_printoptions(precision=3) np.set_printoptions(suppress=True) if len(sys.argv) > 1: N = int(sys.argv[1]) else: N = 8 #if len(sys.argv) > 1 #expMax = int(sys.argv #iterate here?? for loop? m = Transmitter(N, logfile='log01_28_2012.txt', itMax=100, B=4, verbose=True) #iterate here??? #while (m.TDMA_MODE != -1): #time.sleep(.5) #tot = m.TOTAL_TRANSMISSIONS #print 'TDMA MODE is ', m.TDMA_MODE, '. Total for this experiment is ', tot ##better way to iterate? will a loop work if each m is destroyed after it is done, something like constructor/destructor??? #del m #would this work? STILL PRINTS BOTH!!! #m = Transmitter(N, B=2, verbose=True) ##iterate here??? #while (m.TDMA_MODE != -1): #time.sleep(.5) #tot = m.TOTAL_TRANSMISSIONS #print 'TDMA MODE is ', m.TDMA_MODE, '. Total for this experiment is ', tot #m.compute_matrices() #m.tdma_stage() #m.main_loop() #time.sleep(1) #m.send()
#! /usr/bin/python # Find data file in switchboard files using basename. import sys import subprocess sys.path.append('/home/nxs113020/cch_plda/tools/') import make_cochannel if __name__=='__main__': """ Reads list of switchboard sphfiles formatted as: filename, spkrid, channel Generates co-channel wav data for a given SIR for the input data list. Returns corresponding wav.scp and utt2spk files. input: 1. input audio list in the format described above. 2. signal-to-interference ratio (dB), sir outputs: 1. data wav.scp 2. data utt2spk """ swb_dir = '/home/nxs113020/Downloads/SwitchBoard2/Phase2' input_audio_list = sys.argv[1] sir = float(sys.argv[2]) out_wavscp = sys.argv[3] out_utt2spk = sys.argv[4] file_dict = {} wavscp_list = [] utt2spk_list = [] for i in open(input_audio_list): basename_spkr_channel = i.split(',') basename = basename_spkr_channel[0].strip() spkr_id = basename_spkr_channel[1].strip() channel = basename_spkr_channel[2].strip() # search for basename in Switchboard directory if not(basename in file_dict): output = subprocess.check_output('find %s -name %s.sph'%(swb_dir,basename),shell=True) filepath = output.strip() else: filepath = file_dict[basename] print basename wavscp_format = "%s sox --ignore-length %s -t wav -b 16 - | " uttid = spkr_id+'_'+basename+':'+channel wavpath = make_cochannel.switchboard(filepath,channel,sir) wavscp_list.append(wavscp_format%(uttid,wavpath)+'\n') utt2spk_list.append(uttid+' '+spkr_id+'\n') wavscp_list = sorted(set(wavscp_list)) utt2spk_list = sorted(set(utt2spk_list)) wavscp = open(out_wavscp,'w') utt2spk = open(out_utt2spk,'w') for i in range(len(wavscp_list)): wavscp.write(wavscp_list[i]) utt2spk.write(utt2spk_list[i]) wavscp.close() utt2spk.close()
import requests from bs4 import BeautifulSoup from election_snooper.helpers import post_to_slack class BaseSnooper: def get_page(self, url): return requests.get(url) def get_soup(self, url): req = self.get_page(url) return BeautifulSoup(req.content, "html.parser") def post_to_slack(self, item): message = """ Possible new election found: {}\n <https://elections.democracyclub.org.uk{}>\n Please go and investigate! """.format( item.title, item.get_absolute_url() ) post_to_slack(message)
import math import random from copy import deepcopy from itertools import chain from typing import List, Tuple import numpy as np import torch from torch.utils.data import Dataset from parseridge.corpus.sentence import Sentence from parseridge.corpus.vocabulary import Vocabulary from parseridge.utils.logger import LoggerMixin class Corpus(Dataset, LoggerMixin): def __init__( self, sentences: List[Sentence], vocabulary: Vocabulary, device: str = "cpu" ) -> None: """ A Corpus stores all the sentences and their numeric representations. Use `get_iterator()` to generate an iterator over the data. Note: This class implements PyTorch's Dataset class, however it is advised to use the custom iterator instead, because PyTorch's Dataloader only supports tensors, we need, however, to return Sentence objects as well. Parameters ---------- sentences : list of Sentence objects The sentences for this corpus. vocabulary : Signature object Converts sentence tokens into integers. If this is not a training corpus, it is advised to set the Signature object into a read-only mode to avoid dimension mismatches in the embeddings. device : str The PyTorch device to copy the sentence representations to. """ self.vocabulary = vocabulary self.sentences = sentences self.device = device self.sentence_tensors = [] self.sentence_token_freq_tensors = [] self.sentence_lengths = [len(sentence) for sentence in sentences] self.sorted_indices = np.argsort(self.sentence_lengths) self.num_oov_tokens = 0 assert self.vocabulary.get_id("<<<PADDING>>>") == 1 # Count words, we need them later to blank out seldom word to train the OOV # word embedding. [self.vocabulary.add(token.form) for sentence in sentences for token in sentence] # Add ID to sentences so that we can reconstruct the order later self.logger.info(f"Loading {len(self.sentences)} sentences...") for i, sentence in enumerate(self.sentences): sentence.id = i tokens, frequencies = self._prepare_sentence(sentence) self.sentence_tensors.append([tokens]) self.sentence_token_freq_tensors.append([frequencies]) # Copy sentence representations to device memory self.logger.info(f"The corpus contains {self.num_oov_tokens} OOV tokens.") self.logger.info("Copying sentence representation to device memory...") self.sentence_tensors = torch.tensor( self.sentence_tensors, dtype=torch.long, device=self.device ) self.sentence_token_freq_tensors = torch.tensor( self.sentence_token_freq_tensors, dtype=torch.float, device=self.device ) @staticmethod def _pad_list(list_: List[int], max_sentence_length: int) -> np.ndarray: """ Pad the rest of the list with zeros. """ pad_size = max_sentence_length - len(list_) padding = np.ones(pad_size) return np.concatenate((list_, padding)) def _prepare_sentence(self, sentence: Sentence) -> Tuple[np.ndarray, np.ndarray]: """ Replaces the tokens in the sentence by integers and pads the output. This is the place to add more features in the future like characters or part-of-speech tags. """ tokens = [self.vocabulary.get_id(token.form) for token in sentence] self.num_oov_tokens += tokens.count(self.vocabulary.get_id("<<<OOV>>>")) sentence_padded = self._pad_list(tokens, max(self.sentence_lengths)) token_frequencies = [self.vocabulary.get_count(token.form) for token in sentence] frequencies_padded = self._pad_list(token_frequencies, max(self.sentence_lengths)) return sentence_padded, frequencies_padded def __len__(self) -> int: return len(self.sentence_lengths) def __getitem__(self, index: int) -> torch.Tensor: return self.sentence_tensors[index] class CorpusIterator(LoggerMixin): def __init__( self, corpus: Corpus, batch_size: int = 8, shuffle: bool = False, drop_last: bool = False, train: bool = False, oov_probability: float = 0.25, group_by_length: bool = True, token_dropout: float = 0.1, ): """ Helper class to iterate over the batches produced by the Corpus class. Most importantly, it has the ability to shuffle the order of the batches. This helper is needed because the corpus returns not only a Tensor with the numeric representation of a sentence, but also the sentence object itself, which is not supported by PyTorch's DataLoader class. """ self.corpus = corpus self.batch_size = batch_size self.shuffle = shuffle self.drop_last = drop_last self.oov_probability = oov_probability self._iter = 0 assert self.corpus.vocabulary.get_id("<<<OOV>>>") == 0 assert self.corpus.vocabulary.get_id("<<<PADDING>>>") == 1 self.sentence_tensors = self.corpus.sentence_tensors self._num_batches = len(self.corpus) / self.batch_size # Replace the ids of some infrequent words randomly with the OOV id to train # the OOV embedding vector. if train and oov_probability > 0: self.sentence_tensors = self.replace_infrequent_words_with_oov( self.sentence_tensors, self.corpus.sentence_token_freq_tensors, self.oov_probability, ) # As a regularization technique, we randomly replace tokens with the OOV id. # In contrast to the OOV handling, this can affect all words. # Note: The percentage of dropped out tokens is smaller than the dropout # probability, as it is applied to the whole data, including the padding. if train and token_dropout > 0: self.sentence_tensors = self.apply_token_dropout( self.sentence_tensors, p=token_dropout ) # If len(self.corpus) % self.batch_size != 0, one batch will be slightly # larger / smaller than the other ones. Use drop_last to ignore this one batch. if self.drop_last: self._num_batches = math.floor(self._num_batches) else: self._num_batches = math.ceil(self._num_batches) # When using a batch_size > 1, performance and possibly accuracy can be improved # by grouping sentences with similar length together to make better use of the # batch processing. To do so, the content of all batches will be static, # but their order will be randomized if shuffle is activated. if group_by_length and batch_size > 1: self._order = self.group_batches_by_length( self.corpus.sentences, self.batch_size, self.shuffle ) else: # The naive way: Take the ids of all sentences and randomize them if wanted. self._order = list(range(len(self.corpus))) if self.shuffle: random.shuffle(self._order) @staticmethod def replace_infrequent_words_with_oov( sentence_tensors, frequency_tensors, oov_probability ): # Compute the relative frequency oov_probability_tensor = torch.zeros_like(frequency_tensors).fill_(oov_probability) frequency_tensors = frequency_tensors / (frequency_tensors + oov_probability_tensor) rand = torch.rand_like(sentence_tensors, dtype=torch.float) mask = torch.lt(rand, frequency_tensors).type(torch.long) return torch.mul(sentence_tensors, mask) @staticmethod def apply_token_dropout(sentence_tensors, p): dropout = torch.rand_like(sentence_tensors, dtype=torch.float).fill_(p) rand = torch.rand_like(sentence_tensors, dtype=torch.float) mask = torch.lt(dropout, rand).type(torch.long) return torch.mul(sentence_tensors, mask) @staticmethod def group_batches_by_length(sentences, batch_size, shuffle): sentences_sorted = [ sentence.id for sentence in sorted(sentences, key=lambda s: len(s)) ] # Make the list dividable by batch_size rest_size = len(sentences_sorted) % batch_size rest = sentences_sorted[-rest_size:] order = sentences_sorted[:-rest_size] chunks = np.array_split(order, len(order) / batch_size) if shuffle: random.shuffle(chunks) return list(chain(*chunks)) + rest def __len__(self): return self._num_batches def __iter__(self): return self def __next__(self): if self._iter >= len(self): raise StopIteration else: start = self._iter * self.batch_size indices = self._order[start : start + self.batch_size] # Ignore an incomplete batch at the end if wished if len(indices) < self.batch_size and self.drop_last: raise StopIteration batch_sentences = [self.corpus.sentences[i] for i in indices] # Sort the indices in descending order - this is required for # batch processing in PyTorch. batch_sentences = sorted(batch_sentences, key=lambda s: len(s), reverse=True) indices_sorted = [sentence.id for sentence in batch_sentences] batch_tensors = self.sentence_tensors[indices_sorted] # Cut of unnecessary padding longest_sentence = max([len(s) for s in batch_sentences]) batch_tensors = batch_tensors[:, :, :longest_sentence] self._iter += 1 return batch_tensors, deepcopy(batch_sentences)
#!/usr/bin/env python3 import argparse import biotools parser = argparse.ArgumentParser( description='Prokaryotic gene finder.') parser.add_argument('--file', required=True, type=str, metavar='<str>', help='FASTA file') parser.add_argument('--minorf', required=False, type=int, default=300, metavar='<int>', help='minimum open reading frame length [%(default)i]') arg = parser.parse_args() gcode = { 'AAA' : 'K', 'AAC' : 'N', 'AAG' : 'K', 'AAT' : 'N', 'ACA' : 'T', 'ACC' : 'T', 'ACG' : 'T', 'ACT' : 'T', 'AGA' : 'R', 'AGC' : 'S', 'AGG' : 'R', 'AGT' : 'S', 'ATA' : 'I', 'ATC' : 'I', 'ATG' : 'M', 'ATT' : 'I', 'CAA' : 'Q', 'CAC' : 'H', 'CAG' : 'Q', 'CAT' : 'H', 'CCA' : 'P', 'CCC' : 'P', 'CCG' : 'P', 'CCT' : 'P', 'CGA' : 'R', 'CGC' : 'R', 'CGG' : 'R', 'CGT' : 'R', 'CTA' : 'L', 'CTC' : 'L', 'CTG' : 'L', 'CTT' : 'L', 'GAA' : 'E', 'GAC' : 'D', 'GAG' : 'E', 'GAT' : 'D', 'GCA' : 'A', 'GCC' : 'A', 'GCG' : 'A', 'GCT' : 'A', 'GGA' : 'G', 'GGC' : 'G', 'GGG' : 'G', 'GGT' : 'G', 'GTA' : 'V', 'GTC' : 'V', 'GTG' : 'V', 'GTT' : 'V', 'TAA' : '*', 'TAC' : 'Y', 'TAG' : '*', 'TAT' : 'Y', 'TCA' : 'S', 'TCC' : 'S', 'TCG' : 'S', 'TCT' : 'S', 'TGA' : '*', 'TGC' : 'C', 'TGG' : 'W', 'TGT' : 'C', 'TTA' : 'L', 'TTC' : 'F', 'TTG' : 'L', 'TTT' : 'F', } def anti(seq): forward = 'ACGTRYMKWSBDHV' reverse = 'TGCAYRKMWSVHBD' table = seq.maketrans(forward, reverse) return seq.translate(table)[::-1] seq = 'AAAACCCGGT' print(seq, anti(seq))
from django.urls import path from . import views from django.conf.urls import handler404 urlpatterns = [ path('', views.home, name='home'), path('register', views.register, name='register_pizza_app'), path('login', views.login, name='login_pizza_app'), path('logout', views.logout, name='logout_pizza_app'), path('create_pizza', views.create_pizza, name='create_pizza'), path('get_price', views.get_price, name='get_price'), path('add_pizza/<int:id_pizza>', views.add_pizza, name='add_pizza'), path('add_extra/<int:id_extra>', views.add_extra, name='add_extra'), path('ver_carrito', views.ver_carrito, name='ver_carrito'), path('del_item_carrito/<str:carrito_id>', views.del_item_carrito, name='del_item_carrito'), path('delete_pizza/<int:pizza_id>', views.del_pizza, name='delete_pizza'), path('create_address', views.create_address, name='create_address'), path('make_purchases', views.make_purchases, name='make_purchases'), path('make_pizzas_data', views.make_pizzas_data, name='make_pizzas_data'), path('make_extras_data', views.make_extras_data, name='make_extras_data'), path('del_data', views.del_data, name='del_data'), ] handler404 = 'pizza_app.views.error_404_view'
# -*- coding: utf-8 -*- from extensions import db # Alias common SQLAlchemy names Column = db.Column Model = db.Model relationship = db.relationship backref = db.backref metadata = db.metadata
# print("Pengaplikasian List") # print("Contoh 1 (Menambahkan anggota pada list kosong)") # List1 = [] # Membuat list kosong # List1.append('Ahmad') # List1.append(2212) # print("Output : ", List1) # print("=================") # print("Contoh 2 (Menghapus anggota pada list)") # List2 = [1, 4, 'U'] # List2.remove('U') # Cara pertama menghapus list # print("Output 1 : ", List2) # List2_1 = [1, 4, 'U'] # del (List2_1[2]) # Cara kedua menghapus list # print("Output 2 : ", List2) # print("=================") # print("Contoh 3 (Mencari anggota dalam list)") # List3 = [1, 2, 3, 5, 5] # x = 5 in List3 # print("Output : ", x) print("Pengaplikasian Dictionary") print("Contoh 1 (Menambahkan Anggota dictionary)") Dict1 = {"A":1, "B":2, "C":3} Dict1["D"] = 4 print("Output : ", Dict1) print("=================") print("Contoh 2 (Memanggil anggota dictionary)") Dict2 = {"A":1, "B":2, "C":3} print("Output : ", Dict2["A"]) print("=================") print("Contoh 3 (Mencari anggota dictionary)") Dict3 = {"A":1, "B":2, "C":3} print("Output : ", "B" in Dict3)
#!/bin/python from flask import Flask import threading import time from datetime import datetime, timedelta import sys import RPi.GPIO as GPIO PIN = 25 app = Flask(__name__) GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) GPIO.setup(PIN, GPIO.OUT) led_status = False time_thread = None @app.route('/time/off') def time_trigger_off(): print "off timer" global time_thread if time_thread != None: time_thread.working = False return "ok" @app.route('/time/<h>/<m>') def time_trigger(h,m): print "start timer", h,m global time_thread time_thread = timeThread("%s:%s" % (h,m)) time_thread.start() return "ok" @app.route('/location/<x>/<y>') def location_trigger(x,y): print "location", x, y return "ok" @app.route('/status/<status>') def led(status=None): global led_status global PIN if not status in ["on", "off"]: if led_status: return "on" else: return "off" if led_status: led_status = False GPIO.output(PIN, GPIO.LOW) return "off" else: led_status = True GPIO.output(PIN, GPIO.HIGH) return "on" @app.route('/info') def info(): return """<div style="font-size:20px"> System: HOME<br/> Status: ON<br/> Uptime: %(uptime)s<br/> </div> """ % { 'uptime': get_uptime() } def get_uptime(): with open('/proc/uptime', 'r') as f: uptime_seconds = float(f.readline().split()[0]) uptime_string = str(timedelta(seconds = uptime_seconds)) return uptime_string def date_diff(time1, time2): diff = datetime.strptime(time1, '%H:%M') - datetime.strptime(time2, '%H:%M') return diff.seconds class timeThread(threading.Thread): def __init__(self, time1): threading.Thread.__init__(self) self.time1 = time1 self.working = True def run(self): print "Starting " + self.name self.print_time(self.time1) print "Exiting " + self.name def print_time(self, time1): now = datetime.now() while self.working and date_diff(time1, now.strftime("%H:%M")) > 0: now = datetime.now() time.sleep(1) print "date diff: %d" % ( date_diff(time1, now.strftime("%H:%M")) ) # event doEvent() def doEvent(): print "event" if __name__ == '__main__': app.run(host='0.0.0.0', debug = True) GPIO.cleanup()
""" Heber Cooke 10/3/2019 Chapter 2 Exercise 8 This program calculates and displays the value of a light year the program takes the light speed of 3 * 10^8 meters per second the program takes that value and multiply by seconds in a year program displays the meters traveled per year """ SPEED = 3 * (10 **8)# meters per second secondsPerYr = 60*60*24*365 print(SPEED * secondsPerYr ,"Meters traveled in a year ")
def check(moves): # 1,2 - win, 404 - draw draw = [] for i in range(0, 3): draw.append(moves[0][i]) draw.append(moves[i][0]) if moves[i][0] != 0 and moves[i][0] == moves[i][1] and moves[i][1] == moves[i][2]: # horizontal return True, moves[i][0] elif moves[i][0] != 0 and moves[0][i] == moves[1][i] and moves[1][i] == moves[2][i]: # vertical return True, moves[0][i] if moves[0][0] != 0 and moves[0][0] == moves[1][1] and moves[1][1] == moves[2][2]: # 1st diagonal return True, moves[0][0] if moves[0][2] != 0 and moves[0][2] == moves[1][1] and moves[1][1] == moves[2][0]: # 2nd diagonal return True, moves[0][0] if 0 not in draw: return True, 404 game = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] game = [[1, 1, 2], [2, 2, 1], [1, 1, 2]] print(check(game))
import pandas as pd import numpy as np import ipaddress from sklearn.preprocessing import LabelEncoder,OneHotEncoder import sklearn.metrics as sm import sys import matplotlib as mp import seaborn as sb from sklearn.preprocessing import Normalizer from sklearn.naive_bayes import GaussianNB from sklearn import linear_model from sklearn.linear_model import SGDClassifier from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn import svm from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier import sklearn.ensemble as ske from sklearn.experimental import enable_hist_gradient_boosting from sklearn.ensemble import HistGradientBoostingClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score from sklearn.metrics import (precision_score, recall_score,f1_score, accuracy_score,mean_squared_error,mean_absolute_error) from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report import scikitplot as skplt import matplotlib.pyplot as plt from sklearn.metrics import plot_confusion_matrix import warnings warnings.filterwarnings('ignore') np.random.seed(3268) data=pd.read_csv("C:\\Users\Ankita Gupta\Desktop\Major_Project\KDDDataset.csv") data.info() print(data.head()) #print(data.isnull().sum()) print(data.shape) print(data.describe()) print("Variety in Label:") print(data["Label"].value_counts()) for columns in data.columns: if(data[columns].dtypes=='object'): count=data[columns].nunique() print("column Name:",columns) print(count) data_column = ['Protocol_type'] data_values = data[data_column] data_enc=data_values.apply(LabelEncoder().fit_transform) print(data_enc.head()) data['Protocol_type'] = np.array(data_enc) data_column = ['Service'] data_values = data[data_column] data_enc=data_values.apply(LabelEncoder().fit_transform) print(data_enc.head()) data['Service'] = np.array(data_enc) data_column = ['Flag'] data_values = data[data_column] data_enc=data_values.apply(LabelEncoder().fit_transform) print(data_enc.head()) data['Flag'] = np.array(data_enc) newLabel=data['Label'] BnewLabel=data['Label'] # change the label column newLabel=newLabel.replace({ 'normal' : 0, 'neptune' : 1 ,'back': 1, 'land': 1, 'pod': 1, 'smurf': 1, 'teardrop': 1,'mailbomb': 1, 'apache2': 1, 'processtable': 1, 'udpstorm': 1, 'worm': 1, 'ipsweep' : 2,'nmap' : 2,'portsweep' : 2,'satan' : 2,'mscan' : 2,'saint' : 2 ,'ftp_write': 3,'guess_passwd': 3,'imap': 3,'multihop': 3,'phf': 3,'spy': 3,'warezclient': 3,'warezmaster': 3,'sendmail': 3,'named': 3,'snmpgetattack': 3,'snmpguess': 3,'xlock': 3,'xsnoop': 3,'httptunnel': 3, 'buffer_overflow': 4,'loadmodule': 4,'perl': 4,'rootkit': 4,'ps': 4,'sqlattack': 4,'xterm': 4}) BnewLabel=BnewLabel.replace({ 'normal' : 0, 'neptune' : 1 ,'back': 1, 'land': 1, 'pod': 1, 'smurf': 1, 'teardrop': 1,'mailbomb': 1, 'apache2': 1, 'processtable': 1, 'udpstorm': 1, 'worm': 1, 'ipsweep' : 1,'nmap' : 1,'portsweep' : 1,'satan' : 1,'mscan' : 1,'saint' : 1 ,'ftp_write': 1,'guess_passwd': 1,'imap': 1,'multihop': 1,'phf': 1,'spy': 1,'warezclient': 1,'warezmaster': 1,'sendmail': 1,'named': 1,'snmpgetattack': 1,'snmpguess': 1,'xlock': 1,'xsnoop': 1,'httptunnel': 1, 'buffer_overflow': 1,'loadmodule': 1,'perl': 1,'rootkit': 1,'ps': 1,'sqlattack': 1,'xterm': 1}) # put the new label column back #Normal : 0 #DoS Attack : 1 #System scanners scan your local host for security vulnerabilities/ Probing : 2 #R2L Remote to Local :3 #U2R User to Remote : 4 data1=data; data['Label'] = newLabel x = data.drop('Label',1) y = data.Label data1['Label']=BnewLabel; x1 = data1.drop('Label',1) y1= data1.Label X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=.3,random_state=105) X1_train, X1_test, y1_train, y1_test = train_test_split(x1, y1, test_size=.3,random_state=105) scaler = Normalizer().fit(X_train) x_train = scaler.transform(X_train) scaler = Normalizer().fit(X_test) x_test = scaler.transform(X_test) scaler = Normalizer().fit(X1_train) x1_train = scaler.transform(X1_train) scaler = Normalizer().fit(X1_test) x1_test = scaler.transform(X1_test) #GAUSSIAN_NB print("GAUSSIAN_NB:") from sklearn.naive_bayes import GaussianNB Gb=GaussianNB() Gb.fit(x_train,y_train) y_predict = Gb.predict(x_test) acc = r2_score(y_predict, y_test) accuracy = accuracy_score(y_test, y_predict) recall = recall_score(y_test, y_predict , average="macro") precision = precision_score(y_test,y_predict , pos_label=1, average='macro', sample_weight=None, zero_division=0 ) f1 = f1_score(y_test,y_predict,average="macro") #print("NaiveBayes (r2 score):-") #print(acc) print("Accuracy") print(accuracy) print("Precision") print(precision) print("Recall") print(recall) print("F1score") print(f1) #print("Confusion Matrix:") #print(confusion_matrix(y_test, y_predict)) print("Classification Report:") print(classification_report(y_test, y_predict)) print("Confusion Matrix(Multilabel):") print(sm.multilabel_confusion_matrix(y_test, y_predict)) titles_options = [("Confusion matrix, without normalization", None), ("Normalized confusion matrix", 'true')] for title, normalize in titles_options: disp = plot_confusion_matrix(Gb, x_test, y_test, cmap=plt.cm.Blues, normalize=normalize) disp.ax_.set_title(title) print(title) print(disp.confusion_matrix) plt.show() #for binary classification Gb=GaussianNB() Gb.fit(x1_train,y1_train) y1_predict = Gb.predict(x1_test) TN, FP, FN, TP = confusion_matrix(y1_test,y1_predict).ravel() TPR = TP/(TP+FN) TNR = TN/(TN+FP) FPR = FP/(FP+TN) FNR = FN/(TP+FN) print("True Positive Rate:") print(TPR) print("True Negative Rate:") print(TNR) print("False Positive Rate:") print(FPR) print("False Negative Rate:") print(FNR) #LINEARMODEL print("LINEAR_MODEL:") lm = linear_model.BayesianRidge() lm.fit(x_train,y_train) lm_predict=lm.predict(x_test) lm_predict=lm_predict.round() acc=r2_score(y_test,lm_predict) lmaccuracy = accuracy_score(y_test, lm_predict) lmrecall = recall_score(y_test, lm_predict , average="macro") lmprecision = precision_score(y_test,lm_predict, pos_label=1, average='macro', sample_weight=None, zero_division=0 ) lmf1 = f1_score(y_test,lm_predict,average="macro") print("Linear Model (r2 score):-") print(acc) print("Accuracy") print(lmaccuracy) print("Precision") print(lmprecision) print("Recall") print(lmrecall) print("F1score") print(lmf1) #print("Confusion Matrix:") #print(confusion_matrix(y_test, y_predict)) print("Classification Report:") print(classification_report(y_test, lm_predict)) print("Confusion Matrix(Multilabel):") print(sm.multilabel_confusion_matrix(y_test, lm_predict)) """" TN, FP, FN, TP = confusion_matrix(y_test,lm_predict).ravel() TPR = TP/(TP+FN) TNR = TN/(TN+FP) FPR = FP/(FP+TN) FNR = FN/(TP+FN) print("True Positive Rate:") print(TPR) print("True Negative Rate:") print(TNR) print("False Positive Rate:") print(FPR) print("False Negative Rate:") print(FNR) """ #LOGISTICREGRESSION print("LOGISTIC_REGRESSION:") lg = LogisticRegression() lg.fit(x_train,y_train) lg_predict=lg.predict(x_test) lg_predict=lg_predict.round() acc=r2_score(y_test,lg_predict) accuracy = accuracy_score(y_test, lg_predict) recall = recall_score(y_test, lg_predict , average="macro") precision = precision_score(y_test,lg_predict , pos_label=1, average='macro', sample_weight=None, zero_division=0) f1 = f1_score(y_test,lg_predict,average="macro") print("Logistic Regression (r2 score):-") print(acc) print("Accuracy") print(accuracy) print("Precision") print(precision) print("Recall") print(recall) print("F1score") print(f1) #print("Confusion Matrix:") #print(confusion_matrix(y_test, lg_predict)) print("Classification Report:") print(classification_report(y_test, lg_predict)) print("Confusion Matrix(Multilabel):") print(sm.multilabel_confusion_matrix(y_test, lg_predict)) titles_options = [("Confusion matrix, without normalization", None), ("Normalized confusion matrix", 'true')] for title, normalize in titles_options: disp = plot_confusion_matrix(lg, x_test, y_test, cmap=plt.cm.Blues, normalize=normalize) disp.ax_.set_title(title) print(title) print(disp.confusion_matrix) plt.show() #for binary classification lg.fit(x1_train,y1_train) y1_predict = lg.predict(x1_test) TN, FP, FN, TP = confusion_matrix(y1_test,y1_predict).ravel() TNR = TN/(TN+FP) FPR = FP/(FP+TN) FNR = FN/(TP+FN) print("True Positive Rate:") print(TPR) print("True Negative Rate:") print(TNR) print("False Positive Rate:") print(FPR) print("False Negative Rate:") print(FNR) #KNEIGHBOURCLASSIFIER print("KNEIGHBOUR_CLASSIFIER:") knc = KNeighborsClassifier() knc.fit(x_train,y_train) knc_predict=knc.predict(x_test) knc_predict=knc_predict.round() acc=r2_score(y_test,knc_predict) accuracy = accuracy_score(y_test, knc_predict) recall = recall_score(y_test, knc_predict , average="macro") precision = precision_score(y_test,knc_predict, pos_label=1, average='macro', sample_weight=None, zero_division=0) f1 = f1_score(y_test,knc_predict,average="macro") print("KNeighbour Classifier (r2 score):-") print(acc) print("Accuracy:") print(accuracy) print("Precision:") print(precision) print("Recall:") print(recall) print("F1score:") print(f1) #print("Confusion Matrix:") #print(confusion_matrix(y_test, knc_predict)) print("Classification Report:") print(classification_report(y_test, knc_predict)) print("Confusion Matrix(Multilabel):") print(sm.multilabel_confusion_matrix(y_test, knc_predict)) titles_options = [("Confusion matrix, without normalization", None), ("Normalized confusion matrix", 'true')] for title, normalize in titles_options: disp = plot_confusion_matrix(knc, x_test, y_test, cmap=plt.cm.Blues, normalize=normalize) disp.ax_.set_title(title) print(title) print(disp.confusion_matrix) plt.show() #for binary classification knc.fit(x1_train,y1_train) y1_predict = knc.predict(x1_test) TN, FP, FN, TP = confusion_matrix(y1_test,y1_predict).ravel() TPR = TP/(TP+FN) TNR = TN/(TN+FP) FPR = FP/(FP+TN) FNR = FN/(TP+FN) print("True Positive Rate:") print(TPR) print("True Negative Rate:") print(TNR) print("False Positive Rate:") print(FPR) print("False Negative Rate:") print(FNR) #DECISIONTREECLASSIFIER print("DECISION_TREE_CLASSIFIER:") DTree = DecisionTreeClassifier() DTree.fit(x_train, y_train) D_predict = DTree.predict(x_test) #print(y_test.head()) #print(D_predict) from sklearn.metrics import r2_score acc=r2_score(y_test, D_predict) accuracy = accuracy_score(y_test, D_predict) recall = recall_score(y_test, D_predict , average='macro') precision = precision_score(y_test,D_predict ,pos_label=1, average='macro', sample_weight=None, zero_division=0) f1 = f1_score(y_test,D_predict,average="macro") print("Decision Tree Classifier (r2 score):-") print(acc) print("Accuracy:") print(accuracy) print("Precision:") print(precision) print("Recall:") print(recall) print("F1score:") print(f1) #print("Confusion Matrix:") #print(confusion_matrix(y_test, D_predict)) print("Classification Report:") print(classification_report(y_test, D_predict)) print("Confusion Matrix(Multilabel):") print(sm.multilabel_confusion_matrix(y_test, D_predict)) titles_options = [("Confusion matrix, without normalization", None), ("Normalized confusion matrix", 'true')] for title, normalize in titles_options: disp = plot_confusion_matrix(DTree, x_test, y_test, cmap=plt.cm.Blues, normalize=normalize) disp.ax_.set_title(title) print(title) print(disp.confusion_matrix) plt.show() #for binary classification DTree.fit(x1_train,y1_train) y1_predict = DTree.predict(x1_test) TN, FP, FN, TP = confusion_matrix(y1_test,y1_predict).ravel() TPR = TP/(TP+FN) TNR = TN/(TN+FP) FPR = FP/(FP+TN) FNR = FN/(TP+FN) print("True Positive Rate:") print(TPR) print("True Negative Rate:") print(TNR) print("False Positive Rate:") print(FPR) print("False Negative Rate:") print(FNR) #RANDOMFORESTCLASSIFIER print("RANDOMFOREST_CLASSIFIER:") rf=RandomForestClassifier() rf.fit(x_train,y_train) #RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='mse', # max_depth=None, max_features='auto', max_leaf_nodes=None, #max_samples=None, min_impurity_decrease=0.0, #min_impurity_split=None, min_samples_leaf=1, #min_samples_split=2, min_weight_fraction_leaf=0.0, #n_estimators=100, n_jobs=None, oob_score=False, #random_state=None, verbose=0, warm_start=False) rfy_predict=rf.predict(x_test) acc=r2_score(y_test,rfy_predict) #print(y_test.head()) #print(rfy_predict) accuracy = accuracy_score(y_test, rfy_predict) recall = recall_score(y_test, rfy_predict,average='macro') precision = precision_score(y_test,rfy_predict,pos_label=1, average='macro', sample_weight=None, zero_division=0) f1 = f1_score(y_test,rfy_predict,average='macro') print("Random Forest Classifier (r2 score):-") print(acc) print("Accuracy:") print(accuracy) print("Precision:") print(precision) print("Recall:") print(recall) print("F1score:") print(f1) #print("Confusion Matrix:") #print(confusion_matrix(y_test, rfy_predict)) print("Classification Report:") print(classification_report(y_test, rfy_predict)) print("Confusion Matrix(Multilabel):") print(sm.multilabel_confusion_matrix(y_test, rfy_predict)) titles_options = [("Confusion matrix, without normalization", None), ("Normalized confusion matrix", 'true')] for title, normalize in titles_options: disp = plot_confusion_matrix(rf, x_test, y_test, cmap=plt.cm.Blues, normalize=normalize) disp.ax_.set_title(title) print(title) print(disp.confusion_matrix) plt.show() #for binary classification rf.fit(x1_train,y1_train) y1_predict = rf.predict(x1_test) TN, FP, FN, TP = confusion_matrix(y1_test,y1_predict).ravel() TPR = TP/(TP+FN) TNR = TN/(TN+FP) FPR = FP/(FP+TN) FNR = FN/(TP+FN) print("True Positive Rate:") print(TPR) print("True Negative Rate:") print(TNR) print("False Positive Rate:") print(FPR) print("False Negative Rate:") print(FNR) #ADABOOSTCLASSIFIER print("ADABOOST_CLASSIFIER:") ab=ske.AdaBoostClassifier(n_estimators=100) ab.fit(x_train, y_train)#fit may be called as 'trained' ab_predict = ab.predict(x_test) #print(y_test.head()) #print(ab_predict) acc = r2_score(y_test,ab_predict) accuracy = accuracy_score(y_test, ab_predict) recall = recall_score(y_test, ab_predict , average="macro") precision = precision_score(y_test,ab_predict , pos_label=1, average='macro', sample_weight=None, zero_division=0) f1 = f1_score(y_test,ab_predict,average="macro") #print("Adaptive boost Classifier (r2 score):-") #print(acc) print("Accuracy:") print(accuracy) print("Precision:") print(precision) print("Recall:") print(recall) print("F1score:") print(f1) #print("Confusion Matrix:") #print(confusion_matrix(y_test, ab_predict)) print("Classification Report:") print(classification_report(y_test, ab_predict)) print("Confusion Matrix(Multilabel):") print(sm.multilabel_confusion_matrix(y_test, ab_predict)) titles_options = [("Confusion matrix, without normalization", None), ("Normalized confusion matrix", 'true')] for title, normalize in titles_options: disp = plot_confusion_matrix(ab, x_test, y_test, cmap=plt.cm.Blues, normalize=normalize) disp.ax_.set_title(title) print(title) print(disp.confusion_matrix) plt.show() #for binary classification ab.fit(x1_train,y1_train) y1_predict = ab.predict(x1_test) TN, FP, FN, TP = confusion_matrix(y1_test,y1_predict).ravel() TPR = TP/(TP+FN) TNR = TN/(TN+FP) FPR = FP/(FP+TN) FNR = FN/(TP+FN) print("True Positive Rate:") print(TPR) print("True Negative Rate:") print(TNR) print("False Positive Rate:") print(FPR) print("False Negative Rate:") print(FNR) """ #GRADIENTBOOSTINGCLASSIFIER print("GRADIENTBOOSTING_CLASSIFIER:") GB=ske.GradientBoostingClassifier(n_estimators=50) GB.fit(x_train, y_train)#fit may be called as 'trained' GB_predict=GB.predict(x_test) print(y_test.head()) print(GB_predict) acc=r2_score(y_test,GB_predict) accuracy = accuracy_score(y_test, GB_predict) recall = recall_score(y_test, GB_predict , average='macro') precision = precision_score(y_test,GB_predict , pos_label=1, average='macro', sample_weight=None, zero_division=0) f1 = f1_score(y_test,GB_predict,average='macro') print("Gradient Boosting Classifier (r2 score):-") print(acc) print("accuracy") print(accuracy) print("precision") print(precision) print("recall") print(recall) print("f1score") print(f1) print("Confusion Matrix(Multilabel):") print(sm.multilabel_confusion_matrix(y_test, y_predict)) print("Confusion Matrix:") print(confusion_matrix(y_test, y_predict)) print("Classification Report:") print(classification_report(y_test, y_predict)) """ #HISTOGRAMBOOSTINGCLASSIFIER print("HISTOGRAMBOOSTING_CLASSIFIER:") Hgb= HistGradientBoostingClassifier() Hgb.fit(x_train,y_train) hgb_predict=Hgb.predict(x_test) #print(y_test.head()) #print(hgb_predict) acc = r2_score(y_test,hgb_predict) accuracy = accuracy_score(y_test, hgb_predict) recall = recall_score(y_test, hgb_predict , average='macro') precision = precision_score(y_test,hgb_predict , pos_label=1, average='macro', sample_weight=None, zero_division=0) f1 = f1_score(y_test,hgb_predict,average='macro') print("Histogram Gradient Boosting Classifier(r2_score):-") print(acc) print("Accuracy:") print(accuracy) print("Precision:") print(precision) print("Recall:") print(recall) print("F1score:") print(f1) #print("Confusion Matrix:") #print(confusion_matrix(y_test, hgb_predict)) print("Classification Report:") print(classification_report(y_test, hgb_predict)) print("Confusion Matrix(Multilabel):") print(sm.multilabel_confusion_matrix(y_test, hgb_predict)) titles_options = [("Confusion matrix, without normalization", None), ("Normalized confusion matrix", 'true')] for title, normalize in titles_options: disp = plot_confusion_matrix(Hgb, x_test, y_test, cmap=plt.cm.Blues, normalize=normalize) disp.ax_.set_title(title) print(title) print(disp.confusion_matrix) plt.show() #for binary classification Hgb.fit(x1_train,y1_train) y1_predict = Hgb.predict(x1_test) TN, FP, FN, TP = confusion_matrix(y1_test,y1_predict).ravel() TPR = TP/(TP+FN) TNR = TN/(TN+FP) FPR = FP/(FP+TN) FNR = FN/(TP+FN) print("True Positive Rate:") print(TPR) print("True Negative Rate:") print(TNR) print("False Positive Rate:") print(FPR) print("False Negative Rate:") print(FNR) """" #XGBoost is an implementation of gradient boosted decision trees designed for speed and performance. from xgboost import XGBClassifier xgb = XGBClassifier(objective='reg:squarederror') xgb.fit(x_train,y_train) xgb_predict=xgb.predict(x_test) acc=r2_score(y_test,xgb_predict) print("Extreme Gradient Boosting Classifier(r2_score):-") print(acc) """ #GRADIENTBOOSTINGCLASSIFIER print("GRADIENTBOOSTING_CLASSIFIER:") GB=ske.GradientBoostingClassifier(n_estimators=50) GB.fit(x_train, y_train)#fit may be called as 'trained' GB_predict=GB.predict(x_test) #print(y_test.head()) #print(GB_predict) acc=r2_score(y_test,GB_predict) accuracy = accuracy_score(y_test, GB_predict) recall = recall_score(y_test, GB_predict , average='macro') precision = precision_score(y_test,GB_predict , pos_label=1, average='macro', sample_weight=None, zero_division=0) f1 = f1_score(y_test,GB_predict,average='macro') print("Gradient Boosting Classifier (r2 score):-") print(acc) print("Accuracy:") print(accuracy) print("Precision:") print(precision) print("Recall:") print(recall) print("F1score:") print(f1) #print("Confusion Matrix:") #print(confusion_matrix(y_test, GB_predict)) print("Confusion Matrix(Multilabel):") print(sm.multilabel_confusion_matrix(y_test, GB_predict)) print("Classification Report:") print(classification_report(y_test, GB_predict)) titles_options = [("Confusion matrix, without normalization", None), ("Normalized confusion matrix", 'true')] for title, normalize in titles_options: disp = plot_confusion_matrix(GB, x_test, y_test, cmap=plt.cm.Blues, normalize=normalize) disp.ax_.set_title(title) print(title) print(disp.confusion_matrix) plt.show() #for binary classification GB.fit(x1_train,y1_train) y1_predict = GB.predict(x1_test) TN, FP, FN, TP = confusion_matrix(y1_test,y1_predict).ravel() TPR = TP/(TP+FN) TNR = TN/(TN+FP) FPR = FP/(FP+TN) FNR = FN/(TP+FN) print("True Positive Rate:") print(TPR) print("True Negative Rate:") print(TNR) print("False Positive Rate:") print(FPR) print("False Negative Rate:") print(FNR)
import utils import configuration , callbacks import combos import db import gtk try : import hildon except : hildon = None def cell_data_func (column, renderer, model, iter, user_data) : value = model.get( iter, user_data[0] )[0] if user_data[0] == configuration.column_dict["CONSUM"] or user_data[0] == configuration.column_dict["CO2EMISSION"] : if (value*value) < 1e-10 : renderer.set_property( "text", "-") return renderer.set_property( "text" , user_data[1] % value ) # Reworked, but completelly ported (except for gettext) def get_column_header ( info , config ) : format = info[3] or "%s" label = config.unit_label( info[2] ) return format % label class FuelpadModel ( gtk.TreeModelSort ) : def __init__( self , config ) : if not config.db.is_open() : raise Exception( "There is no database available" ) store = gtk.ListStore(str, float, float, float, float, float , float , float , float , float , float , float , str, int, bool) query = "SELECT day,km,trip,fill,consum,price,priceperlitre,service,oil,tires,notes,id FROM record WHERE carid=%d ORDER BY km" % config.db.currentcar for row in config.db.get_rows( query ) : date = utils.convdate( config.dateformat , None , row[0] ) convnotes = row[10] trip , fill = utils.doubleornothing( row[2] ) , utils.doubleornothing( row[3] ) price , consum = utils.doubleornothing( row[5] ) , utils.doubleornothing( row[4] ) length , priceperlitre = utils.doubleornothing( row[1] ) , utils.doubleornothing( row[6] ) co2 = utils.calc_co2_emission( consum , config.db.fueltype() ) if price and trip : pricepertrip = price / config.SIlength2user(trip) else : pricepertrip = 0 iter = store.append() store.set( iter , configuration.column_dict['DAY'], date, configuration.column_dict['KM'], config.SIlength2user(length), configuration.column_dict['TRIP'], config.SIlength2user(trip), configuration.column_dict['FILL'], config.SIvolume2user(fill), configuration.column_dict['CONSUM'], config.SIconsumption2user(consum), configuration.column_dict['PRICE'], price, configuration.column_dict['PRICEPERTRIP'], pricepertrip, configuration.column_dict['PRICEPERLITRE'], config.SIppl2user(priceperlitre), configuration.column_dict['SERVICE'], utils.doubleornothing( row[7] ), configuration.column_dict['OIL'], utils.doubleornothing( row[8] ), configuration.column_dict['TIRES'], utils.doubleornothing( row[9] ), configuration.column_dict['CO2EMISSION'], config.SIemission2user( co2 ), configuration.column_dict['NOTES'], convnotes, configuration.column_dict['ID'], row[11], configuration.column_dict['VISIBLE'], True ) gtk.TreeModelSort.__init__( self , store ) self.connect_object( "sort-column-changed", self.sort_change , config ) def sort_change( self , config ) : colid , order = self.get_sort_column_id() if colid is None : config.maintablesorted = False else : config.maintablesorted = True config.maintablesortcol = colid config.maintablesortorder = int(order) class FuelpadAbstractView : def __init__ ( self , config ) : attrs = configuration.font_attrs ( config.fontsize ) for info in configuration.column_info : col = gtk.TreeViewColumn() if info[6] : # column is showable label = gtk.Label() col.set_widget( label ) label.set_attributes( attrs ) label.show() # pack cell renderer into tree view column renderer = gtk.CellRendererText() col.pack_start(renderer, True) col.add_attribute(renderer, "text", info[0]) if info[4] : col.set_cell_data_func( renderer , cell_data_func, ( info[0] , info[4] ) ) col.set_resizable( True ) renderer.set_property( "scale" , configuration.fontscalefactors[config.fontsize] ) col.set_sort_column_id( info[0] ) else : col.set_visible( False ) # pack tree view column into tree view self.append_column(col) self.update_column_headers( config ) self.set_headers_visible( True ) select = self.get_selection() select.set_mode( gtk.SELECTION_SINGLE ) def update_column_headers ( self , config ) : for col in self.get_columns() : colid = col.get_sort_column_id() if colid != -1 : colinfo = configuration.column_info[colid] header = get_column_header( colinfo , config ) col.get_widget().set_text( header ) self.get_column(colinfo[0]).set_visible( config.dispcol & (1<<colinfo[0]) ) def update ( self , pui ) : # Update the UI while gtk.events_pending() : gtk.main_iteration() if pui.config.changed : pui.stb_car.select_combo_item( pui.view.get_model() , pui.config.db ) pui.config.changed = False self.set_model( FuelpadModel( pui.config ) ) self.update_column_headers( pui.config ) pui.update_totalkm() class FuelpadAbstractWindow : def __init__ ( self , config ) : self.connect( "delete_event" , callbacks.delete_event , self ) self.mainfullscreen = False self.config = config self.warn = False self.create_mainwin_widgets() # Begin the main application self.show_all() self.toolbar_show_hide() # Show or hide toolbars (with reversed logic) def toolbar_show_hide ( self ) : if self.config.main_toolbar_visible : self.main_toolbar.show() else : self.main_toolbar.hide() if self.config.secondary_toolbar_visible : self.secondary_toolbar.show() else : self.secondary_toolbar.hide() def create_mainwin_widgets ( self ) : vbox = gtk.VBox(False, 0) self.add( vbox ) self.create_mainwin_menu( vbox ) vbox.pack_start( self.datascrollwin, True , True , 0 ) self.view = FuelpadView( self.config ) self.datascrollwin.add( self.view ) self.create_mainwin_toolbar( ) self.create_secondary_toolbar( ) # Add toolbars self.pack_toolbars( vbox ) self.enable_mainmenu_items() vbox.show_all() def create_mainwin_menu ( self , vbox ) : self.main_menu.show_all() def create_mainwin_toolbar ( self ) : # Create toolbar self.main_toolbar = gtk.Toolbar(); # Create toolbar button items self.mtb_add = gtk.ToolButton( gtk.STOCK_ADD ) self.mtb_edit = gtk.ToolButton( gtk.STOCK_EDIT ) self.mtb_delete = gtk.ToolButton( gtk.STOCK_DELETE ) self.mtb_close = gtk.ToolButton( gtk.STOCK_QUIT ) self.mtb_add.set_expand( True ) self.mtb_edit.set_expand( True ) self.mtb_delete.set_expand( True ) self.mtb_close.set_expand( True ) # Add all items to toolbar self.main_toolbar.insert( self.mtb_add, -1) self.main_toolbar.insert( gtk.SeparatorToolItem(), -1) self.main_toolbar.insert( self.mtb_edit, -1) self.main_toolbar.insert( self.mtb_delete, -1) self.main_toolbar.insert( gtk.SeparatorToolItem(), -1) self.main_toolbar.insert( self.mtb_close, -1) self.mtb_add.connect( "clicked" , callbacks.newrecord , self ) self.mtb_edit.connect( "clicked", callbacks.editrecord, self) self.mtb_delete.connect( "clicked", callbacks.deleterecord, self) self.mtb_close.connect( "clicked" , callbacks.delete_event , self ) def create_secondary_toolbar( self ) : # Create toolbar self.secondary_toolbar = gtk.Toolbar() # Create toolbar items attrs = configuration.font_attrs ( 1 ) # Car combo self.stb_car = combos.FuelpadCarItem( self.config ) # Total distance self.stb_totalkm = gtk.ToolItem() self.stb_totalkmlabel = gtk.Label() self.stb_totalkmlabel.set_selectable( True ) self.stb_totalkmlabel.set_attributes( attrs ) self.stb_totalkm.add( self.stb_totalkmlabel ) # Average consumption self.stb_avgconsum = gtk.ToolItem() self.stb_avgconsumlabel = gtk.Label() self.stb_avgconsumlabel.set_selectable( True ) self.stb_avgconsumlabel.set_attributes( attrs ) self.stb_avgconsum.add( self.stb_avgconsumlabel ) # Total cost self.stb_totcost = gtk.ToolItem() self.stb_totcostlabel = gtk.Label() self.stb_totcostlabel.set_selectable( True ) self.stb_totcostlabel.set_attributes( attrs ) self.stb_totcost.add( self.stb_totcostlabel ) self.update_totalkm() self.stb_car.set_expand( False ) self.stb_totalkm.set_expand( True ) self.stb_avgconsum.set_expand( True ) self.stb_totcost.set_expand( True ) self.stb_add.set_expand( True ) # Add all items to toolbar self.stb_car.add_to( self.secondary_toolbar , -1 ) self.secondary_toolbar.insert(self.stb_totalkm, -1); self.secondary_toolbar.insert(self.stb_avgconsum, -1); self.secondary_toolbar.insert(self.stb_totcost, -1); self.secondary_toolbar.insert(self.stb_add, -1); self.stb_car.set_action_callback( callbacks.car_apply_cb , self ) def enable_mainmenu_items( self ) : dbopen = self.config.db.is_open() self.mtb_add.set_sensitive( dbopen ) self.mtb_edit.set_sensitive( dbopen ) def update_totalkm ( self ) : totalkm = self.config.db.totalkm(self.config.stbstattime) str = "%.0f %s" % ( self.config.SIlength2user(totalkm) , self.config.unit_label( "length" ) ) self.stb_totalkmlabel.set_text( str ) totalfill = self.config.db.totalfill(self.config.stbstattime) totalfillkm = self.config.db.totalfillkm(self.config.stbstattime) if totalfillkm != 0.0 : str = "%.1f %s" % ( self.config.SIconsumption2user(totalfill/totalfillkm*100) , self.config.unit_label( "consume" ) ) else : str = "%.1f %s" % ( 0.0 , self.config.unit_label( "consume" ) ) self.stb_avgconsumlabel.set_text( str ) str = "%.0f %s" % ( self.config.db.totalcost() , self.config.currency ) self.stb_totcostlabel.set_text( str ) if hildon : class FuelpadView ( hildon.GtkTreeView , FuelpadAbstractView ) : def __init__ ( self , config ) : config.main_toolbar_visible = False config.secondary_toolbar_visible = True model = FuelpadModel( config ) hildon.GtkTreeView.__init__( self , gtk.HILDON_UI_MODE_EDIT , model ) FuelpadAbstractView.__init__( self , config ) self.connect( "hildon-row-tapped" , callbacks.recordactivated ) self.taptime , self.taprow = -1 , -1 if config.maintablesorted : self.get_model().set_sort_column_id( config.maintablesortcol , config.maintablesortorder ) class FuelpadWindow( hildon.StackableWindow , FuelpadAbstractWindow ) : def __init__ ( self , config ) : # Create the hildon program and setup the title program = hildon.Program.get_instance() gtk.set_application_name( "Fuelpad" ) # Create HildonWindow and set it to HildonProgram hildon.StackableWindow.__init__( self ) program.add_window( self ) FuelpadAbstractWindow.__init__( self , config ) def create_mainwin_widgets ( self ) : self.datascrollwin = hildon.PannableArea() self.datascrollwin.set_property( "mov-mode" , hildon.MOVEMENT_MODE_BOTH ) FuelpadAbstractWindow.create_mainwin_widgets( self ) def pack_toolbars( self , widget=None ) : self.add_toolbar( self.main_toolbar ) self.add_toolbar( self.secondary_toolbar ) def create_secondary_toolbar( self ) : self.stb_add = gtk.ToolItem() self.stb_addbutton = hildon.Button(gtk.HILDON_SIZE_AUTO, hildon.BUTTON_ARRANGEMENT_HORIZONTAL, None, "Add record") image = gtk.image_new_from_stock(gtk.STOCK_ADD, gtk.ICON_SIZE_BUTTON) self.stb_addbutton.set_image(image) self.stb_add.add( self.stb_addbutton ) self.stb_addbutton.connect( "clicked" , callbacks.newrecord , self , True ) FuelpadAbstractWindow.create_secondary_toolbar( self ) def create_mainwin_menu ( self , vbox ) : self.main_menu = hildon.AppMenu() self.mm_item_new = hildon.Button(gtk.HILDON_SIZE_AUTO, hildon.BUTTON_ARRANGEMENT_VERTICAL, "Add record", None) self.main_menu.append( self.mm_item_new ) self.mm_item_edit = hildon.Button(gtk.HILDON_SIZE_AUTO, hildon.BUTTON_ARRANGEMENT_VERTICAL, "Edit record" , None) self.main_menu.append( self.mm_item_edit ) self.mm_item_delete = hildon.Button(gtk.HILDON_SIZE_AUTO, hildon.BUTTON_ARRANGEMENT_VERTICAL, "Delete record" , None) self.main_menu.append( self.mm_item_delete ) self.mm_item_settings = hildon.Button(gtk.HILDON_SIZE_AUTO, hildon.BUTTON_ARRANGEMENT_VERTICAL, "Settings", None) self.main_menu.append( self.mm_item_settings ) self.mm_item_about = hildon.Button(gtk.HILDON_SIZE_AUTO, hildon.BUTTON_ARRANGEMENT_VERTICAL, "About ..." , None) self.main_menu.append( self.mm_item_about ) self.mm_item_new.connect( "clicked", callbacks.newrecord , self ) self.mm_item_edit.connect( "clicked", callbacks.editrecord , self ) self.mm_item_settings.connect( "clicked", callbacks.settings , self ) self.mm_item_delete.connect( "clicked", callbacks.deleterecord , self ) self.mm_item_about.connect( "clicked", callbacks.about , self ) self.set_app_menu( self.main_menu ) FuelpadAbstractWindow.create_mainwin_menu( self , vbox ) else : class FuelpadView ( gtk.TreeView , FuelpadAbstractView ) : def __init__ ( self , config ) : model = FuelpadModel( config ) gtk.TreeView.__init__( self , model ) FuelpadAbstractView.__init__( self , config ) self.connect( "row-activated" , callbacks.recordactivated ) self.taptime , self.taprow = -1 , -1 class FuelpadWindow( gtk.Window , FuelpadAbstractWindow ) : def __init__ ( self , config ) : # Create the main window gtk.Window.__init__( self , gtk.WINDOW_TOPLEVEL ) self.set_title( "fuelpad" ) # NOTE : temporary to get a decent window self.set_size_request(640,480) FuelpadAbstractWindow.__init__( self , config ) def create_mainwin_widgets ( self ) : self.datascrollwin = gtk.ScrolledWindow( None , None ) FuelpadAbstractWindow.create_mainwin_widgets( self ) def pack_toolbars( self , widget ) : widget.pack_start( self.main_toolbar , False , False , 5 ) widget.pack_start( self.secondary_toolbar , False , False , 5 ) def create_secondary_toolbar( self ) : self.stb_add = gtk.ToolButton( gtk.STOCK_ADD ) self.stb_add.connect( "clicked" , callbacks.newrecord , self , True ) FuelpadAbstractWindow.create_secondary_toolbar( self ) def create_mainwin_menu ( self , vbox ) : self.main_menu = gtk.Menu() self.mm_menu_db = gtk.Menu() self.mm_menu_record = gtk.Menu() self.mm_menu_stat = gtk.Menu() self.mm_menu_view = gtk.Menu() self.mm_menu_toolbar = gtk.Menu() self.mm_menu_fontsize = gtk.Menu() # Create main menu items self.mm_item_db = gtk.MenuItem( label="Database" ) self.mm_item_record = gtk.MenuItem( label="Record" ) self.mm_item_stat = gtk.MenuItem( label="Statistics" ) self.mm_item_alarm = gtk.MenuItem( label="Reminders..." ) self.mm_item_view = gtk.MenuItem( label="View" ) self.mm_item_settings = gtk.MenuItem( label="Settings..." ) self.mm_item_about = gtk.MenuItem( label="About" ) self.mm_item_exit = gtk.MenuItem( label="Exit" ) # Create database menu items self.mm_item_open = gtk.MenuItem( label="Open..." ) self.mm_item_close = gtk.MenuItem( label="Close" ) self.mm_item_import = gtk.MenuItem( label="Import..." ) self.mm_item_export = gtk.MenuItem( label="Export..." ) # Create record menu items self.mm_item_new = gtk.MenuItem( label="New" ) self.mm_item_edit = gtk.MenuItem( label="Edit" ) self.mm_item_delete = gtk.MenuItem( label="Delete" ) # Create statistics menu items self.mm_item_quick = gtk.MenuItem( label="Quick" ) self.mm_item_monthly = gtk.MenuItem( label="Graphical" ) self.mm_item_report = gtk.MenuItem( label="Yearly report" ) # Create view menu items self.main_menu_item_fullscreen = gtk.CheckMenuItem("Full screen" ) self.main_menu_item_fullscreen.set_active( self.mainfullscreen ) self.mm_item_toolbar = gtk.MenuItem( label="Toolbars" ) self.mm_item_fontsize = gtk.MenuItem( label="Table font size" ) self.mm_item_columnselect = gtk.MenuItem( label="Select columns..." ) self.mm_item_filter = gtk.MenuItem( label="Filter records..." ) # Create toolbar menu items self.mm_item_toolbar_main = gtk.CheckMenuItem( "Buttons" ) self.mm_item_toolbar_main.set_active( self.config.main_toolbar_visible ) self.mm_item_toolbar_secondary = gtk.CheckMenuItem( "Information" ) self.mm_item_toolbar_secondary.set_active( self.config.secondary_toolbar_visible ) # Create fontsize menu items radio_menu_group = self.mm_item_fontsize_x_small = gtk.RadioMenuItem( None , "Extra small" ) if self.config.fontsize == configuration.XSMALL : self.mm_item_fontsize_x_small.set_active(True) radio_menu_group = self.mm_item_fontsize_small = gtk.RadioMenuItem( radio_menu_group , "Small" ) if self.config.fontsize == configuration.SMALL : self.mm_item_fontsize_small.set_active( True ) radio_menu_group = self.mm_item_fontsize_medium = gtk.RadioMenuItem( radio_menu_group , "Medium" ) if self.config.fontsize == configuration.MEDIUM : self.mm_item_fontsize_medium.set_active( True ) radio_menu_group = self.mm_item_fontsize_large = gtk.RadioMenuItem( radio_menu_group , "Large" ) if self.config.fontsize == configuration.LARGE : self.mm_item_fontsize_large.set_active( True ) # Add menu items to right menus # Main menu self.main_menu.append( self.mm_item_record ) self.main_menu.append( self.mm_item_stat ) self.main_menu.append( gtk.SeparatorMenuItem() ) self.main_menu.append( self.mm_item_alarm ) self.main_menu.append( gtk.SeparatorMenuItem() ) self.main_menu.append( self.mm_item_view ) self.main_menu.append( gtk.SeparatorMenuItem() ) self.main_menu.append( self.mm_item_settings ) self.main_menu.append( gtk.SeparatorMenuItem() ) self.main_menu.append( self.mm_item_about ) self.main_menu.append( self.mm_item_exit ) # Database menu self.mm_menu_db.append( self.mm_item_open ) self.mm_menu_db.append( self.mm_item_close ) self.mm_menu_db.append( self.mm_item_import ) self.mm_menu_db.append( self.mm_item_export ) # Record menu self.mm_menu_record.append( self.mm_item_new ) self.mm_menu_record.append( self.mm_item_edit ) self.mm_menu_record.append( self.mm_item_delete ) # Statistics menu self.mm_menu_stat.append( self.mm_item_quick ) self.mm_menu_stat.append( self.mm_item_monthly ) self.mm_menu_stat.append( self.mm_item_report ) # View menu self.mm_menu_view.append( self.main_menu_item_fullscreen ) self.mm_menu_view.append( self.mm_item_toolbar ) self.mm_menu_view.append( self.mm_item_fontsize ) self.mm_menu_view.append( self.mm_item_columnselect ) self.mm_menu_view.append( self.mm_item_filter ) # Toolbars menu self.mm_menu_toolbar.append( self.mm_item_toolbar_main ) self.mm_menu_toolbar.append( self.mm_item_toolbar_secondary ) # Font size menu self.mm_menu_fontsize.append( self.mm_item_fontsize_x_small ) self.mm_menu_fontsize.append( self.mm_item_fontsize_small ) self.mm_menu_fontsize.append( self.mm_item_fontsize_medium ) self.mm_menu_fontsize.append( self.mm_item_fontsize_large ) self.mm_menubar = gtk.MenuBar() vbox.pack_start( self.mm_menubar, False, False, 2) self.mm_menubar.show() self.mm_item_db.set_submenu( self.mm_menu_db ) self.mm_menubar.append( self.mm_item_db ) self.mm_item_fuelpad = gtk.MenuItem( label="fuelpad" ) self.mm_item_fuelpad.show() self.mm_item_fuelpad.set_submenu( self.main_menu ) self.mm_menubar.append( self.mm_item_fuelpad ) self.mm_item_record.set_submenu( self.mm_menu_record ) self.mm_item_stat.set_submenu( self.mm_menu_stat ) self.mm_item_view.set_submenu( self.mm_menu_view ) self.mm_item_toolbar.set_submenu( self.mm_menu_toolbar ) self.mm_item_fontsize.set_submenu( self.mm_menu_fontsize ) # Attach the callback functions to the activate signal self.mm_item_settings.connect( "activate", callbacks.settings, self) self.mm_item_about.connect( "activate", callbacks.about, self ) self.mm_item_exit.connect( "activate", callbacks.delete_event, self ) self.mm_item_new.connect( "activate" , callbacks.newrecord, self ) self.mm_item_edit.connect( "activate" , callbacks.editrecord, self ) self.mm_item_delete.connect( "activate" , callbacks.deleterecord, self ) self.main_menu_item_fullscreen.connect( "toggled" , callbacks.main_fullscreen , self ) self.mm_item_toolbar_main.connect( "toggled" , callbacks.main_toolbar , self ) self.mm_item_toolbar_secondary.connect( "toggled" , callbacks.secondary_toolbar , self ) self.mm_item_fontsize_x_small.connect( "toggled", callbacks.fontsize_x_small , self ) self.mm_item_fontsize_small.connect( "toggled" , callbacks.fontsize_small , self ) self.mm_item_fontsize_medium.connect( "toggled", callbacks.fontsize_medium , self ) self.mm_item_fontsize_large.connect( "toggled" , callbacks.fontsize_large , self ) FuelpadAbstractWindow.create_mainwin_menu( self , vbox ) def enable_mainmenu_items( self ) : dbopen = self.config.db.is_open() self.mm_item_new.set_sensitive( dbopen ) self.mm_item_edit.set_sensitive( dbopen ) self.mm_item_delete.set_sensitive( dbopen ) self.mm_item_monthly.set_sensitive( dbopen ) self.mm_item_report.set_sensitive( dbopen ) self.mm_item_close.set_sensitive( dbopen ) self.mm_item_import.set_sensitive( dbopen ) self.mm_item_export.set_sensitive( dbopen ) FuelpadAbstractWindow.enable_mainmenu_items( self ) def main_loop ( ) : gtk.main()
from .basic import (IdDict, intervals, LazyProperty, logger, keydefaultdict, natsorted, set_log_level) from . import kit from .system import caffeine
from django.urls import reverse from rest_framework import status from rest_framework.test import APITestCase from shoutout.models import organization, user, shoutout from rest_framework.test import APIRequestFactory class OrganizationTests(APITestCase): def test_create_account(self): """ Ensure we can create a new account object. """ # url = reverse('OrganizationList') response = self.client.post('/v1/org/', { "name": "org3", "slack_org_id": "wwddwdd", "channel_name": "wddwwddw", "channel_id": "dwwddww", "access_token": "wdwdwdw", "installation_date": "2019-09-23T11:49:49.858572Z", "bot_access_token": "wdwdwwddw" }, format='json') self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertEqual(organization.objects.count(), 1) self.assertEqual(organization.objects.get().name, 'org3') class UserTests(APITestCase): def test_create_account(self): """ Ensure we can create a new account object. """ self.client.post('/v1/org/', { "name": "org3", "slack_org_id": "wwddwdd", "channel_name": "wddwwddw", "channel_id": "dwwddww", "access_token": "wdwdwdw", "installation_date": "2019-09-23T11:49:49.858572Z", "bot_access_token": "wdwdwwddw" }, format='json') url = '/v1/user/' data = { "org_id": 1, "slack_mem_id": "123432", "email": "samar@samar.com", "name": "samar", "avatar": "google.com" } response = self.client.post('/v1/user/', data, format='json') self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertEqual(user.objects.count(), 1) self.assertEqual(user.objects.get().name, 'samar') class ShoutoutTests(APITestCase): def test_create_account(self): """ Ensure we can create a new account object. """ self.client.post('/v1/org/', { "name": "org3", "slack_org_id": "wwddwdd", "channel_name": "wddwwddw", "channel_id": "dwwddww", "access_token": "wdwdwdw", "installation_date": "2019-09-23T11:49:49.858572Z", "bot_access_token": "wdwdwwddw" }, format='json') url = '/v1/user/' data = { "org_id": 1, "slack_mem_id": "123432", "email": "samar@samar.com", "name": "samar", "avatar": "google.com" } response = self.client.post('/v1/user/', data, format='json') self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertEqual(user.objects.count(), 1) self.assertEqual(user.objects.get().name, 'samar') data = { "org_id": 1, "slack_mem_id": "123322432", "email": "bobr@samar.com", "name": "bob", "avatar": "google.com" } response = self.client.post('/v1/user/', data, format='json') self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertEqual(user.objects.count(), 2) data = { "giver_id": 1, "receiver_id": 2, "message": "good boi", "timestamps": "2019-09-23T10:10:51.768501Z", "message_ts": "134554323413" } response = self.client.post('/v1/shoutout/', data, format='json') self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertEqual(shoutout.objects.count(), 1) self.assertEqual(shoutout.objects.get().message, 'good boi')
# streamlit_app.py import streamlit as st import s3fs import os # Create connection object. # `anon=False` means not anonymous, i.e. it uses access keys to pull data. fs = s3fs.S3FileSystem(anon=False) # Retrieve file contents. # Uses st.cache to only rerun when the query changes or after 10 min. @st.cache(ttl=600) def read_file(filename): with fs.open(filename) as f: return f.read().decode("utf-8") content = read_file("streamlitbucket-khhangau/myfile.csv") # Print results. for line in content.strip().split("\n"): name, pet = line.split(",") st.write(f"{name} has a :{pet}:")
# Copyright 2022 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). """The `BuildFileDefaultsParserState.set_defaults` is used by the pants.engine.internals.Parser, exposed as the `__defaults__` BUILD file symbol. When parsing a BUILD (from the rule `pants.engine.internals.build_files.parse_address_family`) the defaults from the closest parent BUILD file is passed as input to the parser, and the new defaults resulting after the BUILD file have been parsed is returned in the `AddressFamily`. These defaults are then applied when creating the `TargetAdaptor` targets by the `Registrar` in the parser. """ from __future__ import annotations from dataclasses import dataclass from typing import Any, Callable, Iterable, Mapping, Tuple, Union from pants.engine.addresses import Address from pants.engine.internals.parametrize import Parametrize from pants.engine.target import ( Field, ImmutableValue, InvalidFieldException, RegisteredTargetTypes, Target, TargetGenerator, ) from pants.engine.unions import UnionMembership from pants.util.frozendict import FrozenDict SetDefaultsValueT = Mapping[str, Any] SetDefaultsKeyT = Union[str, Tuple[str, ...]] SetDefaultsT = Mapping[SetDefaultsKeyT, SetDefaultsValueT] class BuildFileDefaults(FrozenDict[str, FrozenDict[str, ImmutableValue]]): """Map target types to default field values.""" class ParametrizeDefault(Parametrize): """Parametrize for default field values. This is to have eager validation on the field values rather than erroring first when applied on an actual target. """ @classmethod def create( cls, freeze: Callable[[Any], ImmutableValue], parametrize: Parametrize ) -> ParametrizeDefault: return cls( *map(freeze, parametrize.args), **{kw: freeze(arg) for kw, arg in parametrize.kwargs.items()}, ) @dataclass class BuildFileDefaultsParserState: address: Address defaults: dict[str, Mapping[str, Any]] registered_target_types: RegisteredTargetTypes union_membership: UnionMembership @classmethod def create( cls, path: str, defaults: BuildFileDefaults, registered_target_types: RegisteredTargetTypes, union_membership: UnionMembership, ) -> BuildFileDefaultsParserState: return cls( address=Address(path, generated_name="__defaults__"), defaults=dict(defaults), registered_target_types=registered_target_types, union_membership=union_membership, ) def _freeze_field_value(self, field_type: type[Field], value: Any) -> ImmutableValue: if isinstance(value, ParametrizeDefault): return value elif isinstance(value, Parametrize): def freeze(v: Any) -> ImmutableValue: return self._freeze_field_value(field_type, v) return ParametrizeDefault.create(freeze, value) else: return field_type.compute_value(raw_value=value, address=self.address) def get_frozen_defaults(self) -> BuildFileDefaults: types = self.registered_target_types.aliases_to_types return BuildFileDefaults( { target_alias: FrozenDict( { field_type.alias: self._freeze_field_value(field_type, default) for field_alias, default in fields.items() for field_type in self._target_type_field_types(types[target_alias]) if field_alias in (field_type.alias, field_type.deprecated_alias) } ) for target_alias, fields in self.defaults.items() } ) def get(self, target_alias: str) -> Mapping[str, Any]: # Used by `pants.engine.internals.parser.Parser._generate_symbols.Registrar.__call__` return self.defaults.get(target_alias, {}) def set_defaults( self, *args: SetDefaultsT, all: SetDefaultsValueT | None = None, extend: bool = False, ignore_unknown_fields: bool = False, ignore_unknown_targets: bool = False, ) -> None: defaults: dict[str, dict[str, Any]] = ( {} if not extend else {k: dict(v) for k, v in self.defaults.items()} ) if all is not None: self._process_defaults( defaults, {tuple(self.registered_target_types.aliases): all}, ignore_unknown_fields=True, ignore_unknown_targets=ignore_unknown_targets, ) for arg in args: self._process_defaults( defaults, arg, ignore_unknown_fields=ignore_unknown_fields, ignore_unknown_targets=ignore_unknown_targets, ) # Update with new defaults, dropping targets without any default values. for tgt, default in defaults.items(): if not default: self.defaults.pop(tgt, None) else: self.defaults[tgt] = default def _target_type_field_types(self, target_type: type[Target]) -> tuple[type[Field], ...]: return ( *target_type.class_field_types(self.union_membership), *(target_type.moved_fields if issubclass(target_type, TargetGenerator) else ()), ) def _process_defaults( self, defaults: dict[str, dict[str, Any]], targets_defaults: SetDefaultsT, ignore_unknown_fields: bool = False, ignore_unknown_targets: bool = False, ): if not isinstance(targets_defaults, dict): raise ValueError( f"Expected dictionary mapping targets to default field values for {self.address} " f"but got: {type(targets_defaults).__name__}." ) types = self.registered_target_types.aliases_to_types for target, default in targets_defaults.items(): if not isinstance(default, dict): raise ValueError( f"Invalid default field values in {self.address} for target type {target}, " f"must be an `dict` but was {default!r} with type `{type(default).__name__}`." ) targets: Iterable[str] targets = target if isinstance(target, tuple) else (target,) for target_alias in map(str, targets): if target_alias in types: target_type = types[target_alias] elif ignore_unknown_targets: continue else: raise ValueError(f"Unrecognized target type {target_alias} in {self.address}.") # Copy default dict if we may mutate it. raw_values = dict(default) if ignore_unknown_fields else default # Validate that field exists on target valid_field_aliases = set( target_type._get_field_aliases_to_field_types( self._target_type_field_types(target_type) ).keys() ) for field_alias in default.keys(): if field_alias not in valid_field_aliases: if ignore_unknown_fields: del raw_values[field_alias] else: raise InvalidFieldException( f"Unrecognized field `{field_alias}` for target {target_type.alias}. " f"Valid fields are: {', '.join(sorted(valid_field_aliases))}.", ) # Merge all provided defaults for this call. defaults.setdefault(target_type.alias, {}).update(raw_values)
class bioconductor: def __init__(self): # initialize logger import logging self.logger = logging.getLogger('metapath') # check if python module 'rpy2' is available try: import rpy2.robjects as robjects except: self.logger.critical("could not import python module 'rpy2'") quit() self.robjects = robjects self.r = robjects.r def install(self, package_list = []): # check if python module 'rpy2' is available try: import rpy2.robjects as robjects from rpy2.robjects.packages import importr except: self.logger.critical("could not import python module 'rpy2'") quit() # evaluate bioconductor R script base = importr('base') base.source("http://www.bioconductor.org/biocLite.R") bioclite = self.robjects.globalenv['biocLite'] # install bioconductor packages if package_list == []: bioclite() else: for package in package_list: bioclite(package) def csv_to_dict(self, file = None, header = False): # check if python module 'csv' is available try: import csv except: self.logger.critical("could not import python module 'csv'") quit() # check if file is readable try: csvfile = open(file, "rb") except: self.logger.critical("could not open file '%s'" % (file)) quit() # try to detect csv dialect try: dialect = csv.Sniffer().sniff(csvfile.read(1024)) csvfile.seek(0) reader = csv.DictReader(csvfile, dialect) except: csvfile.seek(0) reader = csv.DictReader(csvfile, delimiter='\t', quotechar='\'') return reader def convert_geneids(self, input_list = [], input_format = 'alias', output_format = 'entrezid', input_file = None, output_file = None, filter_results = False): import sys # make local copy of input list list = input_list[:] # prapare format strings input_format = input_format.lower().strip() output_format = output_format.lower().strip() if not list: if not input_file: self.logger.critical("you have to specify at least one of the parameters: 'list', 'input_file'") quit() self.csv_to_dict(input_file) # # convert using annotation packages in bioconductor # annotation_packages = [ "hgu95a", "hgu95av2", "hgu95b", "hgu95c", "hgu95d", "hgu95e", "hgu133a", "hgu133a2", "hgu133b", "hgu133plus2", "hgug4100a", "hgug4101a", "hgug4110b", "hgug4111a", "hgug4112a", "hguqiagenv3" ] original_stdout = sys.stdout if input_format in annotation_packages: # load bioconductor annotation package self.logger.info("sending command to R: library('%s.db')" % (input_format)) try: sys.stdout = NullDevice() self.r.library("%s.db" % (input_format)) sys.stdout = original_stdout except: sys.stdout = original_stdout self.logger.critical("you have to install the R/bioconductor package: '%s.db'" % (input_format)) quit() # get listvector self.logger.info("sending command to R: x <- %s%s" % (input_format, output_format.upper())) try: sys.stdout = NullDevice() self.r('x <- %s%s' % (input_format, output_format.upper())) sys.stdout = original_stdout except: sys.stdout = original_stdout self.logger.critical("output format '%s' is not supported by '%s.db'" % (output_format, input_format)) quit() self.logger.info("sending command to R: mapped_genes <- mappedkeys(x)") self.r('mapped_genes <- mappedkeys(x)') self.logger.info("sending command to R: listmap <- as.list(x[mapped_genes])") self.r('listmap <- as.list(x[mapped_genes])') # prepare search list search_list = [] for a in list: if a[0] == 'X': a = a[1:] search_list.append(a) elif input_format in ['entrezgeneid', 'entrezgene', 'entrezid', 'entrez']: # load bioconductor annotation package self.logger.info("sending command to R: library('org.Hs.eg.db')") try: sys.stdout = NullDevice() self.r.library("org.Hs.eg.db") sys.stdout = original_stdout except: sys.stdout = original_stdout self.logger.critical("you have to install the R/bioconductor package: 'org.Hs.eg.db'") quit() # get listvector self.logger.info("sending command to R: x <- org.Hs.eg%s" % (output_format.upper())) try: self.r('x <- org.Hs.eg%s' % (output_format.upper())) except: self.logger.critical("output format '%s' is not supported by 'org.Hs.eg.db'" % (output_format)) quit() self.logger.info("sending command to R: mapped_genes <- mappedkeys(x)") self.r('mapped_genes <- mappedkeys(x)') self.logger.info("sending command to R: listmap <- as.list(x[mapped_genes])") self.r('listmap <- as.list(x[mapped_genes])') # prepare search list search_list = list elif output_format in ['entrezgeneid', 'entrezgene', 'entrezid', 'entrez']: # load bioconductor annotation package self.logger.info("sending command to R: library('org.Hs.eg.db')") try: sys.stdout = NullDevice() self.r.library("org.Hs.eg.db") sys.stdout = original_stdout except: sys.stdout = original_stdout self.logger.critical("you have to install the R/bioconductor package: 'org.Hs.eg.db'") quit() # get listvector self.logger.info("sending command to R: x <- org.Hs.eg%s2EG" % (input_format.upper())) try: self.r('x <- org.Hs.eg%s2EG' % (input_format.upper())) except: self.logger.critical("input format '%s' is not supported by 'org.Hs.eg.db'" % (input_format)) quit() self.logger.info("sending command to R: mapped_genes <- mappedkeys(x)") self.r('mapped_genes <- mappedkeys(x)') self.logger.info("sending command to R: listmap <- as.list(x[mapped_genes])") self.r('listmap <- as.list(x[mapped_genes])') # prepare search list search_list = list else: self.logger.critical("conversion from '%s' to '%s' is not supported" % \ (input_format, output_format)) quit() # search listvector black_list = [] for i, a in enumerate(search_list): try: self.r("sym <- listmap['%s']" % (a)) self.r("sym <- unlist(sym)") list[i] = self.robjects.globalenv["sym"][0] found = True except: black_list.append(list[i]) # filter results if filter_results: list = [item for item in list if item not in black_list] return list, black_list class NullDevice(): def write(self, s): pass def flush(self, s): pass
import torch from torch import nn from .metric import Metric class Accuracy(Metric): def __init__(self, name="accuracy", dtype=None, reduction="sum", **kwargs): super().__init__(name, dtype, **kwargs) assert reduction in {"sum", "mean", "max", "min"} # TODO: more reduction self.reduction = reduction def forward(self, y_true, y_pred, out_weight=None): return self.update_state(y_true, y_pred, out_weight=out_weight) @torch.no_grad() def update_state(self, y_true, y_pred, out_weight=None): if out_weight is not None: # TODO raise NotImplementedError("out_weight") if y_pred.ndim == 2: y_pred = y_pred.argmax(1) if y_true.ndim ==2: y_true = y_true.argmax(1) self.correct += torch.sum(y_pred == y_true) self.total += y_true.numel() def reset_states(self): # K.batch_set_value([(v, 0) for v in self.variables]) self.total = torch.tensor(0) self.correct = torch.tensor(0) def result(self): return (self.correct.float() / self.total).detach()
# coding=utf-8 import sys from ualfred import Workflow3, notify log = None def main(wf): import pickle from data import Data from ualfred import web city = wf.stored_data('cy-city') api_key = wf.get_password('apiKey') if city is None: wf.add_item('请通过cy-opt 设置所在城市') wf.send_feedback() return if api_key is None: api_key = 'TAkhjf8d1nlSlspN' city_name = city[1] url = 'https://api.caiyunapp.com/v2/' + api_key + '/' + city[2] + ',' + city[3] + '/forecast.json' log.debug(url) r = web.get(url) data = r.json() log.debug(data) if 'ok' == data['status']: result = data['result'] wf.add_item(subtitle=city_name + '未来24小时天气预报', title=result['hourly']['description']) wf.add_item(title=result['minutely']['description']) daily = result['daily'] for i in range(1, 5): skycon = daily['skycon'][i] temp = daily['temperature'][i] wind = daily['wind'][i] ultraviolet = daily['ultraviolet'][i] aqi = daily['aqi'][i] subtitle = city_name + skycon['date'] + '天气预报' item = Data.weather_dict.get(skycon['value']) # add first title = item.get('name') # add temperature title += '\t温度:' + str(temp['max']) + '°~' + str(temp['min']) + '° \t' # add wind title += Data.get_wind_direction(wind['avg']['direction']) + Data.get_wind_speed(wind['avg']['speed']) # add ultraviolet title += '\t紫外线:' + ultraviolet['desc'] # add aqi title += '\tAQI:' + str(aqi['min']) + '~' + str(aqi['max']) wf.add_item(subtitle=subtitle, title=title, icon=item.get('icon'), copytext=subtitle + ':' + title) wf.send_feedback() if __name__ == '__main__': # Create a global `Workflow` object wf = Workflow3() # Call your entry function via `Workflow.run()` to enable its helper # functions, like exception catching, ARGV normalization, magic # arguments etc. log = wf.logger sys.exit(wf.run(main))
# -*- coding: utf-8 -*- # @File : paint_tree.py # @Author : jianhuChen # @Date : 2018-12-29 14:19:07 # @License : Copyright(C), USTC # @Last Modified by : jianhuChen # @Last Modified time: 2018-12-29 14:44:07 import numpy as np from sklearn import neighbors from sklearn import datasets from sklearn.model_selection import train_test_split # 用于从数据中划分测试集 # 得到数据集 iris = datasets.load_iris() X, y = iris.data, iris.target # 划分数据集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, shuffle=True) # 定义分类器并传入训练集 knn = neighbors.KNeighborsClassifier() knn.fit(X_train, y_train) # 预测 y_pred = knn.predict(X_test) # 计算正确率 accuracy = np.sum(y_test == y_pred)/len(y_test) print("accuracy = ", accuracy)
names = ['Lucy', 'Frank', 'Ann', 'Garry', 'Frank', 'Alex', 'Penny', 'Garry', 'Tom', 'Frank'] Emails = ['josh', 'alex', 'lord', 'marry', 'penny', 'dog'] Magazine = ['alex', 'frank', 'harry', 'yourCrash', 'lord'] setNames = set(names) print(setNames) witoutDuplicates = [] for name in names: if (not name in witoutDuplicates): witoutDuplicates.append(name) print(witoutDuplicates) emails = set(Emails) magazine = set(Magazine) print(emails.difference(magazine)) print(magazine.difference(emails)) print(emails.intersection(magazine))
# -*- coding: utf-8 -*- import wx from wx.html2 import WebView class MyTestFrame(wx.Frame): def __init__(self, parent, title): super().__init__(parent, wx.ID_ANY, title, size=(1200, 700)) bSizer9 = wx.BoxSizer(wx.VERTICAL) self._browser = WebView.New(self) bSizer9.Add(self._browser, 1, wx.ALL | wx.EXPAND, 5) # widget, proportion, flags, border bSizer8 = wx.BoxSizer(wx.HORIZONTAL) for i in range(5): btn = wx.Button(self, wx.ID_OK, f"Btn{i}", wx.DefaultPosition, wx.DefaultSize, 0) bSizer8.Add(btn, 0, wx.ALL | wx.EXPAND, 5) self.Bind(wx.EVT_BUTTON, self.OnButtonClick, btn) bSizer9.Add(bSizer8, 0) self.SetSizer(bSizer9) self.Layout() # self._browser.LoadURL('http://pynsource.com') self._browser.LoadURL('http://google.com') self.Show() def OnButtonClick(self, event): button = event.GetEventObject() # get the button that was clicked wx.MessageBox(f"Hi from a button click {button.GetLabel()}") if __name__ == '__main__': app = wx.App() frame = MyTestFrame(None, 'Test') app.MainLoop()
from flask import Blueprint, request, redirect, url_for from flask.templating import render_template from sqlalchemy.sql.operators import nullsfirst_op from database.models import Alimenti, Log from database.db import db from datetime import datetime main = Blueprint('main', __name__) @main.route("/") def home(): return render_template("layout.html") @main.route('/create_log', methods=['POST']) def create_log(): date = request.form.get('date') log = Log(date=datetime.strptime(date, '%Y-%m-%d')) db.session.add(log) db.session.commit() return redirect(url_for('main.view', log_id=log.id)) @main.route('/add', methods=['GET']) def add(): foods = Alimenti.query.all() return render_template('add.html', foods=foods, food=None) @main.route('/add', methods=['POST']) def add_post(): food_name = request.form.get('food-name') proteins = request.form.get('protein') carbs = request.form.get('carbohydrates') fats = request.form.get('fat') food_id = request.form.get('food-id') if food_id: food = Alimenti.query.get_or_404(food_id) food.name= food_name food.proteins= proteins food.carbs= carbs food.fats= fats else: new_Food = Alimenti( name=food_name, proteins=proteins, carbs=carbs, fats=fats ) db.session.add(new_Food) db.session.commit() return redirect(url_for('main.add')) @main.route('/delete_food/<int:food_id>') def delete_food(food_id): food = Alimenti.query.get_or_404(food_id) db.session.delete(food) db.session.commit() return redirect(url_for('main.add')) @main.route('/edit_food/<int:food_id>') def edit_food(food_id): food = Alimenti.query.get_or_404(food_id) foods = Alimenti.query.all() return render_template('add.html', food=food, foods=foods) @main.route("/view/<int:log_id>") def view(log_id): log = Log.query.get_or_404(log_id) foods = Alimenti.query.all() totali = { 'proteins' : 0, 'carbs' : 0, 'fats' : 0, 'calories' : 0 } for food in log.foods: totali['proteins'] += food.proteins totali['carbs'] += food.carbs totali['fats'] += food.fats totali['calories'] += food.calories return render_template("view.html", foods=foods, log=log, totali=totali) @main.route("/add_food_to_log/<int:log_id>", methods=['POST']) def add_food_to_log(log_id): log = Log.query.get_or_404(log_id) selected_food = request.form.get('food-select') food = Alimenti.query.get(int(selected_food)) log.foods.append(food) db.session.commit() return redirect(url_for('main.view', log_id=log_id)) @main.route("/remove_food_from_log/<int:log_id>/<int:food_id>", methods=['GET']) def remove_food_from_log(log_id, food_id): log = Log.query.get(log_id) food = Alimenti.query.get(food_id) log.foods.remove(food) db.session.commit() return redirect(url_for('main.view', log_id=log_id))
"""Entry point for treadmill manage ecosystem. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import logging import os import click import pkg_resources from treadmill import cli, plugin_manager, utils _LOGGER = logging.getLogger(__name__) def make_manage_multi_command(module_name, **click_args): """Make a Click multicommand from all submodules of the module.""" commands = cli.make_commands(module_name, **click_args) class MCommand(click.MultiCommand): """Treadmill CLI driver.""" def __init__(self, *args, **kwargs): self.commands = commands(*args, **kwargs) if kwargs and click_args: kwargs.update(click_args) click.MultiCommand.__init__(self, *args, **kwargs) def list_commands(self, ctx): return sorted(set(self.commands.list_commands(ctx))) def invoke(self, ctx): """ invoke the command in a subprocess if it is executable otherwise use it in process """ name = ctx.protected_args[0] try: module = plugin_manager.load(module_name, name) except KeyError: return super(MCommand, self).invoke(ctx) module_path = module.__file__ if module_path.endswith('pyc'): module_path = module_path[:-1] # shebang doesn't work on windows # we use .cmd or a hardcoded default interpreter if os.name == 'nt': nt_path = module_path[:-2] + 'cmd' if os.path.exists(nt_path): os.execvp(nt_path, [nt_path] + ctx.args) else: _LOGGER.critical( "%s cli is not supported on windows", name) else: is_exec = os.access(module_path, os.X_OK) if not is_exec: return super(MCommand, self).invoke(ctx) utils.sane_execvp(module_path, [os.path.basename(module_path)] + ctx.args) def get_command(self, ctx, cmd_name): return self.commands.get_command(ctx, cmd_name) def format_commands(self, ctx, formatter): rows = [] for subcommand in self.list_commands(ctx): entry_points = list(pkg_resources.iter_entry_points( module_name, subcommand)) # Try get the help with importlib if entry_point not found dist = entry_points[0].dist if dist.has_metadata('cli_help'): help_text = dist.get_metadata('cli_help') else: help_text = '' rows.append((subcommand, help_text)) if rows: with formatter.section('Commands'): formatter.write_dl(rows) return MCommand def init(): """Return top level command handler.""" @click.group(cls=make_manage_multi_command('treadmill.cli.manage')) def manage(): """Manage applications.""" pass return manage
n = int(input("enter a n value :")) #n means number of blood banks blood_bank_name = {} for i in range(n): keys1 = int(input()) #keys1 means index of blood bank name values1 = input() #values1 means name of blood bank blood_bank_name[keys1] = values1 print(blood_bank_name) areas1 = {} for i in range(n): keys2 = int(input()) #keys2 means index of blood bank name values2 = input() # values2 means area of blood bank areas1[keys2] = values2 print(areas1) m = int(input("enter a m value :")) #m means number of blood donation camps blood_donation_camps = {} areas2 = {} for i in range(m): keys3= int(input()) #keys3 means index of blood donation camps values3 = input() #values3 means name of blood donation camps blood_donation_camps[keys3] = values3 values4 = input() #values4 means area of blood donation camps areas2[keys3] = values4 print(blood_donation_camps) print(areas2) blood_donor_details = {} areas3 = {} y = int(input("enter a y value :")) #y means number of donors for i in range(y): keys4 = input() #keys4 means name of donor values5 = input() #values5 means blood group of donor blood_donor_details[keys4] = values5 values6 = input() #values6 means area of donor areas3[keys4] = values6 print(blood_donor_details) print(areas3) b = int(input("enter a b value :")) #b means number of users user = {} user_blood_group = {} for i in range(b): keys5 = int(input()) #keys5 means index of username values7 = input() #values7 means name of user values8 = input() #values8 means blood group of user user[keys5] = values7 user_blood_group[values7] = values8 print(user) print(user_blood_group) c = int(input("enter a c value :")) #c means number of blood camps check_blood_camps = {} check_blood_camps_area = {} for i in range(c): keys6 = keys3 #keys6 means index of blood donation camps values9 = values3 #values9 means name of blood donation camps values10 = values4 #values10 means area of blood donation camps check_blood_camps[keys6] = values9 check_blood_camps_area[keys6] = values10 print(check_blood_camps) print(check_blood_camps_area) check_blood_bank = {} check_blood_bank_area = {} for i in range(c): keys7 = keys1 #keys7 means index of blood bank name values11 = values1 #values11 means name of blood bank values12 = values2 #values12 means area of blood bank check_blood_bank[keys7] = values11 check_blood_bank_area[values12] = values12 print(check_blood_bank) print(check_blood_bank_area)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Sep 9 08:43:41 2019 @author: meiying """ import pandas as pd import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score import seaborn as sns from sklearn.externals.joblib import load import numpy as np data = pd.read_excel('FoodDatabase v1.8.xlsx', sheet_name='AllFood-FoodType') data = data[(data['Cuisine'].isin(['chinese', 'malay', 'indian', 'western']) & (data['Opta Type'] == 'Main') & (data['Analysis'] == 1))] data = data.drop(['Analysis', 'MealPlanner', 'HasBeef', 'IsCaffeinated', 'Multiplier', 'Carbohydrates %', 'Protein %', 'Fats %'], axis=1) data['weight'] = data['Per Serving Household Measure'].str.extract('.*?(\(([0-9]*?) g\))')[1].astype('float') data.describe() data['pct_protein'] = data['Protein (g)'] * 4 / data['Energy'] * 100 data['pct_fat'] = data['Fats (g)'] * 9 / data['Energy'] * 100 data['pct_carb'] = data['Carbohydrates (g)'] * 4 / data['Energy'] * 100 sum_corr = data.corr().sum().sort_values(ascending=True).index.values corr = data[sum_corr].corr() plt.figure(figsize=(13, 8)) sns.heatmap(corr, annot=True, cmap='Greens'); data_new = data[['pct_protein', 'pct_fat', 'pct_carb', 'Sugar (g)', 'Dietary Fibre (g)', 'Sodium (mg)', 'Energy']] data_new.dropna(axis=0, inplace=True) data_new_std = StandardScaler().fit_transform(data_new) sse = {} silhouette_avg = {} for k in range(2,9): kmeans = KMeans(n_clusters = k, random_state = 0) kmeans.fit(data_new_std) sse[k] = kmeans.inertia_ cluster_labels = kmeans.labels_ silhouette_avg[k] = silhouette_score(data_new_std, cluster_labels) print("For n_clusters =", k, "The average silhouette_score is :", silhouette_avg[k]) plt.figure() #plt.title('The Elbow Method') plt.xlabel('No. of clusters') plt.ylabel('Sum of square error') sns.pointplot(list(sse.keys()), list(sse.values())) plt.show() best_k = [i for i,j in silhouette_avg.items() if j == max(list(silhouette_avg.values()))].pop() print("The average silhouette score is highest when there are " + str(best_k) + " clusters.") kmeans = KMeans(n_clusters = 5, random_state = 0) kmeans.fit(data_new_std) cluster_labels = kmeans.labels_ data_new_k = data_new.assign(cluster=cluster_labels, cuisine=data['Cuisine']) grouped = data_new_k.groupby(['cluster']).agg({ 'pct_protein': 'mean', 'pct_fat': 'mean', 'pct_carb': 'mean', 'Sugar (g)': 'mean', 'Dietary Fibre (g)': 'mean', 'Sodium (mg)': 'mean', 'Energy': 'mean'}).round(2) count = data_new_k.groupby(['cluster']).count() from scipy.stats import sem, t confidence = 0.95 grouped_sem = data_new_k.groupby(['cluster']).sem() * t.ppf((1 + confidence) / 2, count - 1) #------------------------------------------------------------------------------ pct_protein = list(grouped['pct_protein']) pct_fat = list(grouped['pct_fat']) pct_carb = list(grouped['pct_carb']) protein_sem = list(grouped_sem['pct_protein']) fat_sem = list(grouped_sem['pct_fat']) carb_sem = list(grouped_sem['pct_carb']) components_dict = { 'energy':[grouped['Energy'], grouped_sem['Energy'], 'Energy (kcal)'], 'sugar':[grouped['Sugar (g)'], grouped_sem['Sugar (g)'], 'Amount of sugar (g)'], 'dietary_fibre':[grouped['Dietary Fibre (g)'], grouped_sem['Sugar (g)'], 'Amount of dietary fibre (g)'], 'sodium':[grouped['Sodium (mg)'], grouped_sem['Sodium (mg)'], 'Sodium (mg)'] } barwidth = 0.25 # set height of bar barwidth = 0.25 cap = 5 # Set position of bar on X axis r1 = np.arange(len(pct_protein)) r2 = [x + barwidth for x in r1] r3 = [x + barwidth for x in r2] # Make the plot plt.bar(r1, pct_protein, yerr=protein_sem, color='yellow', capsize=cap, width=barwidth, label='protein') plt.bar([x + barwidth for x in r1], pct_fat, yerr=fat_sem, capsize=cap, color='orange', width=barwidth, label='fat') plt.bar([x + barwidth for x in r2], pct_carb, yerr=carb_sem, capsize=cap, color='red', width=barwidth, label='carbohydrates') # Add xticks on the middle of the group bars plt.xlabel('Cluster') plt.ylabel('Percentage') plt.xticks([r + barwidth for r in range(len(pct_protein))], r1 + 1) # Create legend & Show graphic plt.legend(loc='upper right', bbox_to_anchor=(1.38, 1)) plt.show() #------------------------------------------------------------------------------ components = list(components_dict.keys()) new_r1 = r1 * 0.5 for i in range(len(components_dict)): plt.subplot(2, 2, i+1) plt.bar(new_r1, list(components_dict[components[i]][0]), yerr=list(components_dict[components[i]][1]), capsize=cap, color='orange', width=barwidth) plt.xlabel('Cluster') plt.ylabel(components_dict[components[i]][2]) plt.xticks(new_r1, r1+1) plt.tight_layout() import matplotlib.patches as mpatches # data cuisine_clusters_no = pd.pivot_table(data_new_k, index='cuisine', columns='cluster', aggfunc=len).iloc[:,0:5] cuisine_clusters_no.fillna(0, inplace=True) cuisine_clusters = cuisine_clusters_no.div(cuisine_clusters_no.sum(axis=1), axis=0) * 100 new_index = ['chinese', 'malay', 'indian', 'western'] cuisine_clusters = cuisine_clusters.reindex(index=new_index) cluster1 = list(cuisine_clusters.iloc[:,0].astype(int)) cluster2 = list(cuisine_clusters.iloc[:,1].astype(int)) cluster3 = list(cuisine_clusters.iloc[:,2].astype(int)) cluster4 = list(cuisine_clusters.iloc[:,3].astype(int)) cluster5 = list(cuisine_clusters.iloc[:,4].astype(int)) cluster_high_fat_sodium_sugar = list(cuisine_clusters.iloc[:,2].astype(int)) x = np.arange(len(cluster1)) # plot new_x = x * 0.5 plt.figure(figsize=(5, 3)) plt.bar(new_x, cluster1, width=barwidth, color='yellow') plt.bar(new_x, cluster2, width=barwidth, color='red', bottom=cluster1) plt.bar(new_x, cluster3, width=barwidth, color='orange', bottom=list(map(lambda w,x: w+x, cluster1, cluster2))) plt.bar(new_x, cluster4, width=barwidth, color='green', bottom=list(map(lambda w,x,y: w+x+y, cluster1, cluster2, cluster3))) plt.bar(new_x, cluster5, width=barwidth, color='blue', bottom=list(map(lambda w,x,y,z: w+x+y+z, cluster1, cluster2, cluster3, cluster4))) # labels plt.xticks(new_x, [i.capitalize() for i in new_index]) # plt.yticks(numpy.arange(10)) # plt.grid(axis='y') plt.xlabel('Cuisine') plt.ylabel('Percentage (%)') # legend green_patch = mpatches.Patch(color='green', label='high protein (cluster 4)') blue_patch = mpatches.Patch(color='blue', label='high carbohydrates (cluster 5)') yellow_patch = mpatches.Patch(color='yellow', label='high fat (cluster 1)') orange_patch = mpatches.Patch(color='orange', label='high sugar and sodium (cluster 3)') red_patch = mpatches.Patch(color='red', label='high fat, sugar, sodium and calories (cluster 2)') plt.legend(handles=[yellow_patch, red_patch, orange_patch, green_patch, blue_patch], loc='best', bbox_to_anchor=(2, 1)) plt.show()
from elk.libs.db.mysql import db class Users(object): _table = 'users' def __init__( self, id_, name, passwd, email, role, alert, deleted, created, updated): self.id_ = str(id_) self.name = name self.passwd = passwd self.email = email self.role = role self.alert = alert self.deleted = deleted self.created = created self.updated = updated def dump(self): req = dict( id = self.id_, name = self.name, passwd = self.passwd, email = self.email, role = self.role, alert = self.alert, deleted = self.deleted, created = self.created, updated = self.updated) return req @classmethod def list(cls): sql = ("select id as id_, name, passwd, email, role, " "alert, deleted, created, updated " "from {table}").format(table=cls._table) rs = db.execute(sql).fetchall() db.commit() return [cls(*line) for line in rs] if rs else [] @classmethod def get_passwd_by_name(cls, name): sql = ("select id, name, passwd, role from " "{table} where name=:name and deleted=0").format(table=cls._table) params = dict(name = name) rs = db.execute(sql, params=params).fetchone() db.commit() return rs if rs else '' @classmethod def get_id_by_name(cls, name): sql = ("select id from " "{table} where name=:name").format(table=cls._table) params = dict(name = name) rs = db.execute(sql, params=params).fetchone() db.commit() return rs if rs else '' @classmethod def get_name_by_id(cls, id): sql = ("select id, name, passwd, role from " "{table} where id=:id and deleted=0").format(table=cls._table) params = dict(id = id) rs = db.execute(sql, params=params).fetchone() db.commit() return rs if rs else '' @classmethod def add(cls, insert_dict): mysql_table = cls._table sql = ('insert into {table} ' '(name, passwd, email, role, alert, deleted) ' 'values (:name, :passwd, :email, :role, :alert, :deleted) ' ).format(table=mysql_table) params = insert_dict id_ = db.execute(sql, params=params).lastrowid if not id_: db.rollback() return db.commit() return str(id_) @classmethod def update(cls, update_dict): mysql_table = cls._table sql = ('update {table} set name=:name, passwd=:passwd, ' 'email=:email, alert=:alert, deleted=:deleted ' 'where id=:id').format(table=mysql_table) params = update_dict db.execute(sql, params=params).lastrowid db.commit() return @classmethod def delete(cls, delete_id): sql = 'delete from {table} where id=:id_'.format( table=cls._table) params = dict(id_=delete_id) db.execute(sql, params) db.commit() return delete_id
import translator from .. import utils class ASCIITranslator(translator.Translator): """Simple ASCII translation using unichr""" def parseInput(self, cipher): return map(int, utils.split(str(cipher))) def translate(self, cipher): return "".join([unichr(i) for i in self.parseInput(cipher)]) def encode(self, cipher): return " ".join([str(ord(i)) for i in cipher])
from django.shortcuts import render, get_object_or_404 from django.contrib.auth.mixins import LoginRequiredMixin, PermissionRequiredMixin from django.urls import reverse from django.views import generic from communities.models import Community, CommunityMember from django.contrib import messages from . import models # Create your views here. class CreateCommunity(LoginRequiredMixin,generic.CreateView): fields = ('name','description') model = Community class SingleCommunity(generic.DetailView): model = Community class ListCommunities(generic.ListView): model = Community class JoinCommunity(LoginRequiredMixin,generic.RedirectView): def get_redirect_url(self,*args,**kwargs): return reverse('communities:single', kwargs={'slug':self.kwargs.get('slug')}) def get(self,request,*args,**kwargs): community = get_object_or_404(Community, slug=self.kwargs.get('slug')) try: CommunityMember.object.create(user=self.request.user, community=community) except: messages.warning(self.request,'You are already a member of this Community!') else: messages.success(self.request,'You are now a member of this Community') return super().get(request,*args,**kwargs) class LeaveCommunity(LoginRequiredMixin,generic.RedirectView): def get_redirect_url(self,*args,**kwargs): return reverse('communities:single', kwargs={'slug':self.kwargs.get('slug')}) def get(self,request,*args,**kwargs): try: membership = models.CommunityMember.objects.filter( user = self.request.user, community__slug = self.kwargs.get('slug') ).get() except models.CommunityMember.DoesNotExist: messages.warning(self.request,'You are not a member of this Community!') else: membership.delete() messages.success(self.request,'You have left the Community!') return super().get(request,*args,**kwargs)
import os import json import sys from troposphere import Ref, Template, Parameter, GetAtt, serverless, awslambda, stepfunctions, Sub, events, Output MONGODB_CONNECTION_STRING_PARAMETER = 'MongoDbConnectionString' REDIS_HOST = 'RedisHost' REDIS_PORT = 'RedisPort' REDIS_PASSWORD = 'RedisPassword' def add_parameters(template): template.add_parameter(Parameter(MONGODB_CONNECTION_STRING_PARAMETER, Type='String')) template.add_parameter(Parameter(REDIS_HOST, Type='String')) template.add_parameter(Parameter(REDIS_PORT, Type='String')) template.add_parameter(Parameter(REDIS_PASSWORD, Type='String')) return template def add_outputs(template): template.add_output(Output('StateMachineArn', Description='StateMachineArn', Value=Ref('StateMachine'))) return template def create_lambda_function_resource(function_name, handler_path, lambda_execution_role_arn): return serverless.Function( function_name, Role=lambda_execution_role_arn, CodeUri='./', Handler=handler_path, Runtime='python3.6', Timeout=900, Environment=awslambda.Environment(Variables={ 'MONGODB_CONNECTION_STRING': Ref(MONGODB_CONNECTION_STRING_PARAMETER), 'REDIS_HOST': Ref(REDIS_HOST), 'REDIS_PORT': Ref(REDIS_PORT), 'REDIS_PASSWORD': Ref(REDIS_PASSWORD) }) ) def get_lambda_functions_from_file(): with open(os.path.join(os.path.dirname(__file__), 'lambda_functions.json'), 'r') as lambda_functions_file: return json.load(lambda_functions_file) def add_lambda_function_resources(template, lambda_execution_role_arn): lambda_functions = get_lambda_functions_from_file() for lambda_function in lambda_functions: template.add_resource(create_lambda_function_resource( lambda_function.get('function_name'), lambda_function.get('handler_path'), lambda_execution_role_arn )) return template def add_state_machine_resource(template, step_functions_role_arn): lambda_functions = get_lambda_functions_from_file() with open(os.path.join(os.path.dirname(__file__), 'state_machine.json'), 'r') as state_machine_file: state_machine = stepfunctions.StateMachine( 'StateMachine', RoleArn=step_functions_role_arn, DefinitionString=Sub([ json.dumps(json.load(state_machine_file)), { lambda_function['function_name']: GetAtt(lambda_function['function_name'], 'Arn') for lambda_function in lambda_functions } ]) ) template.add_resource(state_machine) template.add_resource( events.Rule( 'StateMachineSchedule', ScheduleExpression='rate(1 hour)', State='ENABLED', Targets=[ events.Target( 'StateMachine', Arn=Ref(state_machine), RoleArn=step_functions_role_arn, Id='state_machine' ) ] ) ) return template def add_resources(template, lambda_execution_role_arn, step_functions_role_arn): template = add_lambda_function_resources(template, lambda_execution_role_arn) template = add_state_machine_resource(template, step_functions_role_arn) return template def main(): lambda_execution_role_arn = sys.argv[1] step_functions_role_arn = sys.argv[2] template = Template() template = add_parameters(template) template = add_resources(template, lambda_execution_role_arn, step_functions_role_arn) template = add_outputs(template) template_yaml = template.to_yaml() template_yaml = template_yaml.replace('|-\n', '') print(template_yaml) if __name__ == '__main__': main()
import unittest import homport homport.start() class NodeWrapTestCase(unittest.TestCase): def setUp(self): self.assertTrue('hou' in globals()) def testWrapped(self): self.assertTrue(isinstance(hou.node('/obj'), homport.NodeWrap)) def testInvalidNode(self): self.assertRaises(homport.NodeWrapError, hou.node, 'test') def testGetNode(self): hou.node('/obj').createNode('geo') self.assertEquals(hou.node('/obj/geo1').node, hou.node('/obj').geo1.node) def testGetParm(self): null = hou.node('/obj').createNode('null') self.assertEquals(null.tx.parm, null.parm('tx')) def testRshift(self): geo = hou.node('/obj').createNode('geo') null = hou.node('/obj').createNode('null') geo >> null def testLshift(self): geo = hou.node('/obj').createNode('geo') null = hou.node('/obj').createNode('null') geo << null def testFloorDiv(self): geo = hou.node('/obj').createNode('geo') null = hou.node('/obj').createNode('null') geo >> null self.assertTrue(len(null.inputConnections()) == 1) geo // null self.assertTrue(len(null.inputConnections()) == 0) def testDefinedInputConn(self): geo = hou.node('/obj').createNode('geo') subnet = hou.node('/obj').createNode('subnet') geo >> subnet.input_two self.assert_(subnet.inputConnectors()[1]) def testInputConnectReset(self): geo = hou.node('/obj').createNode('geo') subnet = hou.node('/obj').createNode('subnet') geo >> subnet.input_two self.assert_(subnet.inputConnectors()[1]) # this should properly connect geo to input 0 of the subnet geo >> subnet self.assert_(subnet.inputConnectors()[0]) class ParmWrapTestCase(unittest.TestCase): def setUp(self): self.geo1 = hou.node('/obj').createNode('geo') self.geo2 = hou.node('/obj').createNode('geo') def testParmsWrapped(self): self.assertEquals(self.geo1.tx.parm, self.geo1.node.parm('tx')) def testSetParm(self): self.geo1.tx = 500 self.assertEquals(self.geo1.tx.eval(), 500) def testEvalParm(self): self.geo1.tx.set(500.0) self.assertEquals(self.geo1.tx.eval(), 500.0) def testStrParm(self): self.geo1.tx.set(500.0) self.assertEquals(str(self.geo1.tx), str(500.0)) def testLinkParms(self): self.geo1.tx >> self.geo2.tx self.geo1.tx = 450.0 self.assertEquals(str(self.geo1.tx), str(self.geo2.tx)) if __name__ == "__main__": unittest.main()
# Author: Christian Brodbeck <christianbrodbeck@nyu.edu> """ Data Representation =================== Data is stored in three main vessels: :class:`Factor`: stores categorical data :class:`Var`: stores numeric data :class:`NDVar`: stores numerical data where each cell contains an array if data (e.g., EEG or MEG data) managed by * Dataset """ from __future__ import division from collections import OrderedDict, defaultdict from copy import deepcopy from fnmatch import fnmatchcase import itertools from itertools import chain, izip from keyword import iskeyword from math import ceil, log10 import cPickle as pickle import operator import os import re import string from warnings import warn import mne from mne import Evoked as _mne_Evoked from nibabel.freesurfer import read_annot import numpy as np from numpy import dot import scipy.stats from scipy.linalg import inv from scipy.optimize import leastsq from scipy.spatial import ConvexHull from scipy.spatial.distance import cdist, pdist, squareform from . import fmtxt from . import _colorspaces as cs from ._utils import ui, LazyProperty, natsorted #, logger from ._utils.numpy_utils import slice_to_arange, full_slice preferences = dict(fullrepr=False, # whether to display full arrays/dicts in __repr__ methods repr_len=5, # length of repr dataset_str_n_cases=500, var_repr_n_cases=100, factor_repr_n_cases=100, bool_fmt='%s', float_fmt='%.6g', int_fmt='%s', factor_repr_use_labels=True, short_repr=True, # "A % B" vs "Interaction(A, B)" ) UNNAMED = '<?>' SEQUENCE_TYPES = (tuple, list) _pickled_ds_wildcard = ("Pickled Dataset (*.pickled)", '*.pickled') _tex_wildcard = ("TeX (*.tex)", '*.tex') _tsv_wildcard = ("Plain Text Tab Separated Values (*.txt)", '*.txt') _txt_wildcard = ("Plain Text (*.txt)", '*.txt') class DimensionMismatchError(Exception): pass def _effect_eye(n): """Effect coding for n categories. E.g.:: Examples -------- >>> _effect_eye(4) array([[ 1, 0, 0], [ 0, 1, 0], [ 0, 0, 1], [-1, -1, -1]]) """ x = np.empty((n, n - 1), dtype=np.int8) x[:n - 1] = np.eye(n - 1, dtype=np.int8) x[n - 1] = -1 return x def _effect_interaction(a, b): k = a.shape[1] out = [a[:, i, None] * b for i in range(k)] return np.hstack(out) def cellname(cell, delim=' '): """ Returns a consistent ``str`` representation for cells. * for Factor cells: the cell (str) * for Interaction cell: delim.join(cell). """ if isinstance(cell, str): return cell elif isinstance(cell, (list, tuple)): return delim.join(cell) elif cell is None: return '' else: return unicode(cell) def longname(x): if isnumeric(x) and 'longname' in x.info: return x.info['longname'] elif getattr(x, 'name', None) is not None: return x.name elif np.isscalar(x): return repr(x) return '<unnamed>' def rank(x, tol=1e-8): """ Rank of a matrix, from http://mail.scipy.org/pipermail/numpy-discussion/2008-February/031218.html """ s = np.linalg.svd(x, compute_uv=0) return np.sum(np.where(s > tol, 1, 0)) def check_length(objs, n=None): for obj in objs: if obj is None: pass elif n is None: n = len(obj) elif n != len(obj): err = ("%r has wrong length: %i (%i needed)." % (obj.name, len(obj), n)) raise ValueError(err) def isbalanced(x): """Determine whether x is balanced Parameters ---------- x : categorial Categorial Model, Factor or Interaction. """ if ismodel(x): return all(isbalanced(e) for e in x.effects) else: return len({np.sum(x == c) for c in x.cells}) <= 1 def iscategorial(x): "factors as well as interactions are categorial" if isfactor(x) or isnested(x): return True elif isinteraction(x): return x.is_categorial elif ismodel(x): return all(iscategorial(e) for e in x.effects) else: return False def isdataobject(x): return getattr(x, '_stype', None) in ("model", "var", "ndvar", "factor", "interaction", "nonbasic", "nested", "list") def isdataset(x): return getattr(x, '_stype', None) == 'dataset' def iseffect(x): return getattr(x, '_stype', None) in ("factor", "var", "interaction", "nonbasic", "nested") def isdatalist(x, contains=None, test_all=True): """Test whether x is a Datalist instance Parameters ---------- x : object Object to test. contains : None | class Test whether the content is instances of a specific class. test_all : bool If contains is provided, test all items' class (otherwise just test the first item). """ is_dl = isinstance(x, Datalist) if is_dl and contains: if test_all: is_dl = all(isinstance(item, contains) for item in x) else: is_dl = isinstance(x[0], contains) return is_dl def isfactor(x): return getattr(x, '_stype', None) == "factor" def isinteraction(x): return getattr(x, '_stype', None) == "interaction" def ismodel(x): return getattr(x, '_stype', None) == "model" def isnested(x): "Determine whether x is nested" return getattr(x, '_stype', None) == "nested" def isnestedin(item, item2): "Returns True if item is nested in item2, False otherwise" if hasattr(item, 'nestedin'): return item.nestedin and (item2 in find_factors(item.nestedin)) else: return False def isndvar(x): "Determine whether x is an NDVar" return getattr(x, '_stype', None) == "ndvar" def isnumeric(x): "Determine wether x is numeric (a Var or an NDVar)" return getattr(x, '_stype', None) in ("ndvar", "var") def isuv(x): "Determine whether x is univariate (a Var or a Factor)" return getattr(x, '_stype', None) in ("factor", "var") def isvar(x): "Determine whether x is a Var" return getattr(x, '_stype', None) == "var" def isboolvar(x): "Determine whether x is a Var whose data type is boolean" return isvar(x) and x.x.dtype.kind == 'b' def isintvar(x): "Determine whether x is a Var whose data type is integer" return isvar(x) and x.x.dtype.kind in 'iu' def is_higher_order_effect(e1, e0): """Determine whether e1 is a higher order term of e0 Returns True if e1 is a higher order term of e0 (i.e., if all factors in e0 are contained in e1). Parameters ---------- e1, e0 : effects The effects to compare. """ f1s = find_factors(e1) return all(f in f1s for f in find_factors(e0)) def hasemptycells(x): "True iff a categorial has one or more empty cells" if isfactor(x): return False elif isinteraction(x): if x.is_categorial: for cell in x.cells: if not np.any(x == cell): return True return False elif ismodel(x): for e in x.effects: if isinteraction(e) and e.is_categorial: for cell in e.cells: if not np.any(e == cell): return True return False raise TypeError("Need categorial (got %s)" % type(x)) def hasrandom(x): """True if x is or contains a random effect, False otherwise""" if isfactor(x) or isnested(x): return x.random elif isinteraction(x): for e in x.base: if isfactor(e) and e.random: return True elif ismodel(x): return any(hasrandom(e) for e in x.effects) return False def as_case_identifier(x, sub=None, ds=None): "Coerce input to a variable that can identify each of its cases" if isinstance(x, basestring): if ds is None: err = ("Parameter was specified as string, but no Dataset was " "specified") raise TypeError(err) x = ds.eval(x) if sub is not None: x = x[sub] if isvar(x): n = len(x.values) elif isfactor(x): n = len(x.n_cells) elif isinteraction(x): n = set(map(tuple, x.as_effects)) else: raise TypeError("Need a Var, Factor or Interaction to identify cases, " "got %s" % repr(x)) if n < len(x): raise ValueError("%s can not serve as a case identifier because it has " "at least one non-unique value" % x.name.capitalize()) return x def asarray(x, kind=None): "Coerce input to array" if isvar(x): x = x.x else: x = np.asarray(x) if kind is not None and x.dtype.kind not in kind: # boolean->int conversion if 'i' in kind and x.dtype.kind == 'b': x = x.astype(int) else: raise TypeError("Expected array of kind %r, got %r (%s)" % (kind, x.dtype.kind, x.dtype)) return x def ascategorial(x, sub=None, ds=None, n=None): if isinstance(x, basestring): if ds is None: err = ("Parameter was specified as string, but no Dataset was " "specified") raise TypeError(err) x = ds.eval(x) if iscategorial(x): pass elif isinteraction(x): x = Interaction([e if isfactor(e) else e.as_factor() for e in x.base]) else: x = asfactor(x) if sub is not None: x = x[sub] if n is not None and len(x) != n: raise ValueError("Arguments have different length") return x def asdataobject(x, sub=None, ds=None, n=None): "Convert to any data object or numpy array." if isinstance(x, basestring): if ds is None: err = ("Data object was specified as string, but no Dataset was " "specified") raise TypeError(err) x = ds.eval(x) if isdataobject(x): pass elif isinstance(x, np.ndarray): pass else: x = Datalist(x) if sub is not None: x = x[sub] if n is not None and len(x) != n: raise ValueError("Arguments have different length") return x def asepochs(x, sub=None, ds=None, n=None): "Convert to mne Epochs object" if isinstance(x, basestring): if ds is None: err = ("Epochs object was specified as string, but no Dataset was " "specified") raise TypeError(err) x = ds.eval(x) if isinstance(x, mne.Epochs): pass else: raise TypeError("Need mne Epochs object, got %s" % repr(x)) if sub is not None: x = x[sub] if n is not None and len(x) != n: raise ValueError("Arguments have different length") return x def asfactor(x, sub=None, ds=None, n=None): if isinstance(x, basestring): if ds is None: err = ("Factor was specified as string, but no Dataset was " "specified") raise TypeError(err) x = ds.eval(x) if isfactor(x): pass elif hasattr(x, 'as_factor'): x = x.as_factor(name=x.name) else: x = Factor(x) if sub is not None: x = x[sub] if n is not None and len(x) != n: raise ValueError("Arguments have different length") return x def asmodel(x, sub=None, ds=None, n=None): if isinstance(x, basestring): if ds is None: err = ("Model was specified as string, but no Dataset was " "specified") raise TypeError(err) x = ds.eval(x) if ismodel(x): pass else: x = Model(x) if sub is not None: x = x[sub] if n is not None and len(x) != n: raise ValueError("Arguments have different length") return x def asndvar(x, sub=None, ds=None, n=None): if isinstance(x, basestring): if ds is None: err = ("Ndvar was specified as string, but no Dataset was " "specified") raise TypeError(err) x = ds.eval(x) # convert MNE objects if isinstance(x, mne.Epochs): from .load.fiff import epochs_ndvar x = epochs_ndvar(x) elif isinstance(x, _mne_Evoked): from .load.fiff import evoked_ndvar x = evoked_ndvar(x) elif isinstance(x, list): item_0 = x[0] if isinstance(item_0, _mne_Evoked): from .load.fiff import evoked_ndvar x = evoked_ndvar(x) if not isndvar(x): raise TypeError("NDVar required, got %s" % repr(x)) if sub is not None: x = x[sub] if n is not None and len(x) != n: raise ValueError("Arguments have different length") return x def asnumeric(x, sub=None, ds=None, n=None): "Var, NDVar" if isinstance(x, basestring): if ds is None: err = ("Numeric argument was specified as string, but no Dataset " "was specified") raise TypeError(err) x = ds.eval(x) if not isnumeric(x): raise TypeError("Numeric argument required (Var or NDVar), got %s" % repr(x)) if sub is not None: x = x[sub] if n is not None and len(x) != n: raise ValueError("Arguments have different length") return x def assub(sub, ds=None): "Interpret the sub argument." if isinstance(sub, basestring): if ds is None: err = ("the sub parameter was specified as string, but no Dataset " "was specified") raise TypeError(err) sub = ds.eval(sub) return sub def asuv(x, sub=None, ds=None, n=None): "As Var or Factor" if isinstance(x, basestring): if ds is None: err = ("Parameter was specified as string, but no Dataset was " "specified") raise TypeError(err) x = ds.eval(x) if isuv(x): pass elif all(isinstance(v, basestring) for v in x): x = Factor(x) else: x = Var(x) if sub is not None: x = x[sub] if n is not None and len(x) != n: raise ValueError("Arguments have different length") return x def asvar(x, sub=None, ds=None, n=None): if isinstance(x, basestring): if ds is None: err = "Var was specified as string, but no Dataset was specified" raise TypeError(err) x = ds.eval(x) if isvar(x): pass else: x = Var(x) if sub is not None: x = x[sub] if n is not None and len(x) != n: raise ValueError("Arguments have different length") return x def index_ndim(index): """Determine the dimensionality of an index Parameters ---------- index : numpy_index Any valid numpy index. Returns ------- ndim : int Number of index dimensions: 0 for an index to a single element, 1 for an index to a sequence. """ if np.iterable(index): return 1 elif isinstance(index, slice): return 1 elif isinstance(index, int): return 0 else: raise TypeError("unknown index type: %s" % repr(index)) def _empty_like(obj, n=None, name=None): "Create an empty object of the same type as obj" n = n or len(obj) name = name or obj.name if isfactor(obj): return Factor([''], repeat=n, name=name) elif isvar(obj): return Var(np.empty(n) * np.NaN, name=name) elif isndvar(obj): shape = (n,) + obj.shape[1:] return NDVar(np.empty(shape) * np.NaN, dims=obj.dims, name=name) elif isdatalist(obj): return Datalist([None] * n, name, obj._fmt) else: err = "Type not supported: %s" % type(obj) raise TypeError(err) # --- sorting --- def align(d1, d2, i1='index', i2=None, out='data'): """ Aligns two data-objects d1 and d2 based on two index variables, i1 and i2. Before aligning, d1 and d2 describe the same cases, but their order does not correspond. Align uses the indexes (i1 and i2) to match each case in d2 to a case in d1 (i.e., d1 is used as the basis for the case order). Cases that are not present in both d1 and d2 are dropped. Parameters ---------- d1, d2 : data-object Two data objects which are to be aligned i1, i2 : str | Var | Factor | Interaction Indexes for cases in d1 and d2. If d1 and d2 are Datasets, i1 and i2 can be keys for variables in d1 and d2 (if i2 is identical to i1 it can be omitted). Indexes have to supply a unique value for each case. out : 'data' | 'index' **'data'**: returns the two aligned data objects. **'index'**: returns two indices index1 and index2 which can be used to align the datasets with ``d1[index1]; d2[index2]``. Examples -------- See `examples/datasets/align.py <https://github.com/christianbrodbeck/ Eelbrain/blob/master/examples/datasets/align.py>`_. """ if i2 is None and isinstance(i1, basestring): i2 = i1 i1 = as_case_identifier(i1, ds=d1) i2 = as_case_identifier(i2, ds=d2) if not ((isvar(i1) and isvar(i2)) or (isfactor(i1) and isfactor(i2)) or (isinteraction(i1) and isinteraction(i2))): raise TypeError("i1 and i2 need to be of the same type, got: \n" "i1=%s\ni2=%s." % (repr(i1), repr(i2))) idx1 = [] idx2 = [] for i, case_id in enumerate(i1): if case_id in i2: idx1.append(i) idx2.append(i2.index(case_id)[0]) if out == 'data': if all(i == v for i, v in enumerate(idx1)): return d1, d2[idx2] else: return d1[idx1], d2[idx2] elif out == 'index': return idx1, idx2 else: raise ValueError("Invalid value for out parameter: %r" % out) def align1(d, idx, d_idx='index', out='data'): """ Align a data object to an index Parameters ---------- d : data object, n_cases = n1 Data object with cases that should be aligned to idx. idx : Var | array_like, len = n2 Index array to which d should be aligned. d_idx : str | index array, len = n1 Indices of cases in d. If d is a Dataset, d_idx can be a name in d. out : 'data' | 'index' Return a restructured copy of d or an array of numerical indices into d. """ idx = asuv(idx) if not isinstance(d_idx, basestring): # check d_idx length if isdataset(d): if len(d_idx) != d.n_cases: msg = ("d_idx does not have the same number of cases as d " "(d_idx: %i, d: %i)" % (len(d_idx), d.n_cases)) raise ValueError(msg) else: if len(d_idx) != len(d): msg = ("d_idx does not have the same number of cases as d " "(d_idx: %i, d: %i)" % (len(d_idx), len(d))) raise ValueError(msg) d_idx = asuv(d_idx, ds=d) align_idx = np.empty(len(idx), int) for i, v in enumerate(idx): where = d_idx.index(v) if len(where) == 1: align_idx[i] = where[0] elif len(where) == 0: raise ValueError("%s does not occur in d_idx" % v) else: raise ValueError("%s occurs more than once in d_idx" % v) if out == 'data': return d[align_idx] elif out == 'index': return align_idx else: ValueError("Invalid value for out parameter: %r" % out) def choose(choice, sources, name=None): """Combine data-objects picking from a different object for each case Parameters ---------- choice : array of int Array specifying for each case from which of the sources the data should be taken. sources : list of data-objects Data that should be combined. name : str Name for the new data-object (optional). Notes ----- Analogous to :func:`numpy.choose`. Only implemented for NDVars at this time. """ choice = asarray(choice, 'i') if choice.min() < 0: raise ValueError("Choice can not be < 0") elif choice.max() > len(sources) - 1: raise ValueError("choice contains values exceeding the number of sources") s0 = sources[0] s1 = sources[1:] if isndvar(s0): if not all(isndvar(s) for s in s1): raise TypeError("Sources have different types") elif any(s.dims != s0.dims for s in s1): raise DimensionMismatchError("Sources have different dimensions") x = np.empty_like(s0.x) index_flat = np.empty(len(choice), bool) index = index_flat.reshape(index_flat.shape + (1,) * (x.ndim - 1)) for i, s in enumerate(sources): np.equal(choice, i, index_flat) np.copyto(x, s.x, where=index) return NDVar(x, s0.dims, {}, name) else: raise NotImplementedError class Celltable(object): """Divide Y into cells defined by X. Parameters ---------- Y : data-object dependent measurement X : categorial Model (Factor or Interaction) for dividing Y. match : categorial Factor on which cases are matched (i.e. subject for a repeated measures comparisons). If several data points with the same case fall into one cell of X, they are combined using match_func. If match is not None, Celltable.groups contains the {Xcell -> [match values of data points], ...} mapping corres- ponding to self.data sub : bool array Bool array of length N specifying which cases to include match_func : callable see match cat : None | sequence of cells of X Only retain data for these cells. Data will be sorted in the order of cells occuring in cat. ds : Dataset If a Dataset is specified, input items (Y / X / match / sub) can be str instead of data-objects, in which case they will be retrieved from the Dataset. coercion : callable Function to convert the Y parameter to to the dependent varaible (default: asdataobject). Examples -------- Split a repeated-measure variable Y into cells defined by the interaction of A and B:: >>> c = Celltable(Y, A % B, match=subject) Attributes ---------- .Y, .X, Y and X after sub was applied. .sub, .match: Input arguments. .cells : list of (str | tuple) List of all cells in X. .data : dict(cell -> data) Data (``Y[index]``) in each cell. .data_indexes : dict(cell -> index-array) For each cell, a boolean-array specifying the index for that cell in ``X``. **If ``match`` is specified**: .within : dict(cell1, cell2 -> bool) Dictionary that specifies for each cell pair whether the corresponding comparison is a repeated-measures or an independent measures comparison (only available when the input argument ``match`` is specified. .all_within : bool Whether all comparison are repeated-measures comparisons or not. .groups : dict(cell -> group) A slice of the match argument describing the group members for each cell. """ def __init__(self, Y, X=None, match=None, sub=None, match_func=np.mean, cat=None, ds=None, coercion=asdataobject): self.sub = sub sub = assub(sub, ds) if X is None: Y = coercion(Y, sub, ds) else: X = ascategorial(X, sub, ds) if cat is not None: # determine cat is_none = list(c is None for c in cat) if any(is_none): if len(cat) == len(X.cells): if all(is_none): cat = X.cells else: cells = [c for c in X.cells if c not in cat] cat = tuple(cells.pop(0) if c is None else c for c in cat) else: err = ("Categories can only be specified as None if X " "contains exactly as many cells as categories are " "required (%i)." % len(cat)) raise ValueError(err) if not isinteraction(X): cat = tuple(str(c) for c in cat) # make sure all categories are in data missing = [c for c in cat if c not in X.cells] if missing: raise ValueError("Categories not in data: %s" % ', '.join(missing)) # apply cat sort_idx = X.sort_idx(order=cat) X = X[sort_idx] if sub is None: sub = sort_idx else: imax = max(len(sub), np.max(sub)) sub = np.arange(imax)[sub][sort_idx] Y = coercion(Y, sub, ds, len(X)) if match is not None: match = ascategorial(match, sub, ds, len(Y)) cell_model = match if X is None else X % match sort_idx = None if len(cell_model) > len(cell_model.cells): # need to aggregate Y = Y.aggregate(cell_model) match = match.aggregate(cell_model) if X is not None: X = X.aggregate(cell_model) if cat is not None: sort_idx = X.sort_idx(order=cat) else: sort_idx = cell_model.sort_idx() if X is not None and cat is not None: X_ = X[sort_idx] sort_X_idx = X_.sort_idx(order=cat) sort_idx = sort_idx[sort_X_idx] if (sort_idx is not None) and (not np.all(np.diff(sort_idx) == 1)): Y = Y[sort_idx] match = match[sort_idx] if X is not None: X = X[sort_idx] # save args self.Y = Y self.X = X self.cat = cat self.match = match self.coercion = coercion.__name__ self.n_cases = len(Y) # extract cell data self.data = {} self.data_indexes = {} if X is None: self.data[None] = Y self.data_indexes[None] = full_slice self.cells = [None] self.n_cells = 1 self.all_within = match is not None return self.cells = X.cells self.n_cells = len(self.cells) self.groups = {} for cell in X.cells: idx = X.index_opt(cell) self.data_indexes[cell] = idx self.data[cell] = Y[idx] if match: self.groups[cell] = match[idx] # determine which comparisons are within subject comparisons if match: self.within = {} for cell1, cell2 in itertools.combinations(X.cells, 2): group1 = self.groups[cell1] if len(group1) == 0: continue group2 = self.groups[cell2] if len(group2) == 0: continue within = np.all(group1 == group2) self.within[cell1, cell2] = within self.within[cell2, cell1] = within self.any_within = any(self.within.values()) self.all_within = all(self.within.values()) else: self.any_within = False self.all_within = False def __repr__(self): args = [self.Y.name, self.X.name] rpr = "Celltable(%s)" if self.match is not None: args.append("match=%s" % self.match.name) if self.sub is not None: if isvar(self.sub): args.append('sub=%s' % self.sub.name) else: indexes = ' '.join(str(i) for i in self.sub[:4]) args.append("sub=[%s...]" % indexes) if self.coercion != 'asdataobject': args.append("coercion=%s" % self.coercion) return rpr % (', '.join(args)) def __len__(self): return self.n_cells def cellname(self, cell, delim=' '): """Produce a str label for a cell. Parameters ---------- cell : tuple | str Cell. delim : str Interaction cells (represented as tuple of strings) are joined by ``delim``. """ return cellname(cell, delim=delim) def cellnames(self, delim=' '): """Returns a list of all cell names as strings. See Also -------- .cellname : Produce a str label for a single cell. """ return [cellname(cell, delim) for cell in self.cells] def data_for_cell(self, cell): """Retrieve data for a cell, allowing advanced cell combinations Parameters ---------- cell : str | tuple of str Name fo the cell. See notes for special cell names. After a special cell is retrieved for the first time it is also add to ``self.data``. Notes ----- Special cell names can be used to retrieve averages between different primary cells. The names should be composed so that a case sensitive version of fnmatch will find the source cells. For examples, if all cells are ``[('a', '1'), ('a', '2'), ('b', '1'), ('b', '2')]``, ``('a', '*')`` will retrieve the average of ``('a', '1')`` and ``('a', '2')``. """ if cell in self.data: return self.data[cell] # find cells matched by `cell` if isinstance(cell, basestring): cells = [c for c in self.cells if fnmatchcase(c, cell)] name = cell else: cells = [c for c in self.cells if all(fnmatchcase(c_, cp) for c_, cp in izip(c, cell))] name = '|'.join(cell) # check that all are repeated measures for cell1, cell2 in itertools.combinations(cells, 2): if not self.within[(cell1, cell2)]: err = ("Combinatory cells can only be formed from repeated " "measures cells, %r and %r are not." % (cell1, cell2)) raise ValueError(err) # combine data cell0 = cells[0] x = np.empty_like(self.data[cell0].x) for cell_ in cells: x += self.data[cell_].x x /= len(cells) out = NDVar(x, cell0.dims, {}, name) self.data[cell] = out return out def get_data(self, out=list): if out is dict: return self.data elif out is list: return [self.data[cell] for cell in self.cells] def get_statistic(self, func=np.mean, a=1, **kwargs): """ Returns a list with a * func(data) for each data cell. Parameters ---------- func : callable | str statistics function that is applied to the data. Can be string, such as '[X]sem', '[X]std', or '[X]ci', e.g. '2sem'. a : scalar Multiplier (if not provided in ``function`` string). kwargs : Are submitted to the statistic function. Notes ---- :py:meth:`get_statistic_dict` See also -------- Celltable.get_statistic_dict : return statistics in a dict """ if isinstance(func, basestring): if func.endswith('ci'): if len(func) > 2: a = float(func[:-2]) elif a == 1: a = .95 from ._stats.stats import confidence_interval func = confidence_interval elif func.endswith('sem'): if len(func) > 3: a = float(func[:-3]) func = scipy.stats.sem elif func.endswith('std'): if len(func) > 3: a = float(func[:-3]) func = np.std if 'ddof' not in kwargs: kwargs['ddof'] = 1 else: raise ValueError('unrecognized statistic: %r' % func) Y = [a * func(self.data[cell].x, **kwargs) for cell in self.cells] return Y def get_statistic_dict(self, func=np.mean, a=1, **kwargs): """ Same as :py:meth:`~Celltable.get_statistic`, except that he result is returned in a {cell: value} dictionary. """ return zip(self.cells, self.get_statistic(func=func, a=a, **kwargs)) def combine(items, name=None, check_dims=True, incomplete='raise', fill_in_missing=None): """Combine a list of items of the same type into one item. Parameters ---------- items : collection Collection (:py:class:`list`, :py:class:`tuple`, ...) of data objects of a single type (Dataset, Var, Factor, NDVar or Datalist). name : None | str Name for the resulting data-object. If None, the name of the combined item is the common prefix of all items. check_dims : bool For NDVars, check dimensions for consistency between items (e.g., channel locations in a Sensor dimension). Default is ``True``. Set to ``False`` to ignore non-fatal mismatches. incomplete : "raise" | "drop" | "fill in" Only applies when combining Datasets: how to handle variables that are missing from some of the input Datasets. With ``"raise"`` (default), a KeyError to be raised. With ``"drop"``, partially missing variables are dropped. With ``"fill in"``, they are retained and missing values are filled in with empty values (``""`` for factors, ``NaN`` for variables). Notes ----- The info dict inherits only entries that are equal (``x is y or np.array_equal(x, y)``) for all items. """ if fill_in_missing is not None: warn("The fill_in_missing argument to combine() is deprecated and will " "be removed after version 0.19. Use the new incomplete argument " "instead.", DeprecationWarning) incomplete = 'fill in' if fill_in_missing else 'raise' elif not isinstance(incomplete, basestring): warn("The fill_in_missing argument to combine() has ben renamed to " "`incomplete` and should be a string (got %s). After version 0.19 " "this will raise an error" % repr(incomplete), DeprecationWarning) incomplete = 'fill in' if incomplete else 'raise' elif incomplete not in ('raise', 'drop', 'fill in'): raise ValueError("incomplete=%s" % repr(incomplete)) # check input if len(items) == 0: raise ValueError("combine() called with empty sequence %s" % repr(items)) # find type stypes = set(getattr(item, '_stype', None) for item in items) if None in stypes: raise TypeError("Can only combine data-objects, got at least one other " "item.") elif len(stypes) > 1: raise TypeError("All items to be combined need to have the same type, " "got %s." % ', '.join(tuple(stypes))) stype = stypes.pop() # find name if name is None: names = filter(None, (item.name for item in items)) name = os.path.commonprefix(names) or None # combine objects if stype == 'dataset': out = Dataset(name=name, info=_merge_info(items)) item0 = items[0] if incomplete == 'fill in': # find all keys and data types keys = item0.keys() sample = dict(item0) for item in items: for key in item.keys(): if key not in keys: keys.append(key) sample[key] = item[key] # create output for key in keys: pieces = [ds[key] if key in ds else _empty_like(sample[key], ds.n_cases) for ds in items] out[key] = combine(pieces, check_dims=check_dims) else: keys = set(item0) if incomplete == 'raise': if any(set(item) != keys for item in items[1:]): raise KeyError("Datasets have unequal keys. Combine with " "fill_in_missing=True to combine anyways.") out_keys = item0 else: keys.intersection_update(*items[1:]) out_keys = (k for k in item0 if k in keys) for key in out_keys: out[key] = combine([ds[key] for ds in items]) return out elif stype == 'var': x = np.hstack(i.x for i in items) return Var(x, name, info=_merge_info(items)) elif stype == 'factor': random = set(f.random for f in items) if len(random) > 1: raise ValueError("Factors have different values for random parameter") random = random.pop() item0 = items[0] labels = item0._labels if all(f._labels == labels for f in items[1:]): x = np.hstack(f.x for f in items) return Factor(x, name, random, labels=labels) else: x = sum((i.as_labels() for i in items), []) return Factor(x, name, random) elif stype == 'ndvar': v_have_case = [v.has_case for v in items] if all(v_have_case): has_case = True all_dims = (item.dims[1:] for item in items) elif any(v_have_case): raise DimensionMismatchError("Some items have a 'case' dimension, " "others do not") else: has_case = False all_dims = (item.dims for item in items) dims = reduce(lambda x, y: intersect_dims(x, y, check_dims), all_dims) idx = {d.name: d for d in dims} items = [item.sub(**idx) for item in items] if has_case: x = np.concatenate([v.x for v in items], axis=0) else: x = np.array([v.x for v in items]) dims = ('case',) + dims return NDVar(x, dims, _merge_info(items), name) elif stype == 'list': return Datalist(sum(items, []), name, items[0]._fmt) else: raise RuntimeError("combine with stype = %r" % stype) def _is_equal(a, b): "Test equality, taking into account array values" if a is b: return True elif type(a) is not type(b): return False a_iterable = np.iterable(a) b_iterable = np.iterable(b) if a_iterable != b_iterable: return False elif not a_iterable: return a == b elif len(a) != len(b): return False elif isinstance(a, np.ndarray): if a.shape == b.shape: return (a == b).all() else: return False elif isinstance(a, SEQUENCE_TYPES): return all(_is_equal(a_, b_) for a_, b_ in izip(a, b)) elif isinstance(a, dict): if a.viewkeys() == b.viewkeys(): return all(_is_equal(a[k], b[k]) for k in a) else: return False else: return a == b def _merge_info(items): "Merge info dicts from several objects" info0 = items[0].info other_infos = [i.info for i in items[1:]] # find shared keys info_keys = set(info0.keys()) for info in other_infos: info_keys.intersection_update(info.keys()) # find shared values out = {} for key in info_keys: v0 = info0[key] if all(_is_equal(info[key], v0) for info in other_infos): out[key] = v0 return out def find_factors(obj): "returns a list of all factors contained in obj" if isinstance(obj, EffectList): f = set() for e in obj: f.update(find_factors(e)) return EffectList(f) elif isuv(obj): return EffectList([obj]) elif ismodel(obj): f = set() for e in obj.effects: f.update(find_factors(e)) return EffectList(f) elif isnested(obj): return find_factors(obj.effect) elif isinteraction(obj): return obj.base else: # NonbasicEffect try: return EffectList(obj.factors) except: raise TypeError("%r has no factors" % obj) class EffectList(list): def __repr__(self): return 'EffectList((%s))' % ', '.join(self.names()) def __contains__(self, item): for f in self: if ((f.name == item.name) and (f._stype == item._stype) and (len(f) == len(item)) and np.all(item == f)): return True return False def index(self, item): for i, f in enumerate(self): if (len(f) == len(item)) and np.all(item == f): return i raise ValueError("Factor %r not in EffectList" % item.name) def names(self): names = [e.name if isuv(e) else repr(e) for e in self] return [UNNAMED if n is None else n for n in names] class Var(object): """Container for scalar data. Parameters ---------- x : array_like Data; is converted with ``np.asarray(x)``. Multidimensional arrays are flattened as long as only 1 dimension is longer than 1. name : str | None Name of the variable repeat : int | array of int repeat each element in ``x``, either a constant or a different number for each element. tile : int Repeat ``x`` as a whole ``tile`` many times. Attributes ---------- x : numpy.ndarray The data stored in the Var. name : None | str The Var's name. Notes ----- While :py:class:`Var` objects support a few basic operations in a :py:mod:`numpy`-like fashion (``+``, ``-``, ``*``, ``/``, ``//``), their :py:attr:`Var.x` attribute provides access to the corresponding :py:class:`numpy.array` which can be used for anything more complicated. :py:attr:`Var.x` can be read and modified, but should not be replaced. """ _stype = "var" ndim = 1 def __init__(self, x, name=None, repeat=1, tile=1, info=None): if isinstance(x, basestring): raise TypeError("Var can't be initialized with a string") x = np.asarray(x) if x.ndim > 1: if np.count_nonzero(i > 1 for i in x.shape) <= 1: x = np.ravel(x) else: err = ("X needs to be one-dimensional. Use NDVar class for " "data with more than one dimension.") raise ValueError(err) if not (isinstance(repeat, int) and repeat == 1): x = np.repeat(x, repeat) if tile > 1: x = np.tile(x, tile) if info is None: info = {} self.__setstate__((x, name, info)) def __setstate__(self, state): if len(state) == 3: x, name, info = state else: x, name = state info = {} # raw self.name = name self.x = x self.info = info # constants self._n_cases = len(x) self.df = 1 self.random = False def __getstate__(self): return (self.x, self.name, self.info) def __repr__(self, full=False): n_cases = preferences['var_repr_n_cases'] if isintvar(self): fmt = preferences['int_fmt'] elif isboolvar(self): fmt = preferences['bool_fmt'] else: fmt = preferences['float_fmt'] if full or len(self.x) <= n_cases: x = [fmt % v for v in self.x] else: x = [fmt % v for v in self.x[:n_cases]] x.append('... (N=%s)' % len(self.x)) args = ['[%s]' % ', '.join(x)] if self.name is not None: args.append('name=%r' % self.name) if self.info: args.append('info=%r' % self.info) return "Var(%s)" % ', '.join(args) def __str__(self): return self.__repr__(True) @property def __array_interface__(self): return self.x.__array_interface__ # container --- def __len__(self): return self._n_cases def __getitem__(self, index): "if Factor: return new variable with mean values per Factor category" if isfactor(index): f = index x = [] for v in np.unique(f.x): x.append(np.mean(self.x[f == v])) return Var(x, self.name, info=self.info.copy()) elif isvar(index): index = index.x x = self.x[index] if np.iterable(x): return Var(x, self.name, info=self.info.copy()) else: return x def __setitem__(self, index, value): self.x[index] = value def __contains__(self, value): return value in self.x # numeric --- def __neg__(self): x = -self.x info = self.info.copy() info['longname'] = '-' + longname(self) return Var(x, info=info) def __pos__(self): return self def __abs__(self): return self.abs() def __add__(self, other): if isdataobject(other): # ??? should Var + Var return sum or Model? return Model((self, other)) x = self.x + other info = self.info.copy() info['longname'] = longname(self) + ' + ' + longname(other) return Var(x, info=info) def __sub__(self, other): "subtract: values are assumed to be ordered. Otherwise use .sub method." if np.isscalar(other): x = self.x - other elif len(other) != len(self): err = ("Objects have different length (%i vs " "%i)" % (len(self), len(other))) raise ValueError(err) else: x = self.x - other.x info = self.info.copy() info['longname'] = longname(self) + ' - ' + longname(other) return Var(x, info=info) def __mul__(self, other): if iscategorial(other): return Model((self, other, self % other)) elif isvar(other): x = self.x * other.x else: x = self.x * other info = self.info.copy() info['longname'] = longname(self) + ' * ' + longname(other) return Var(x, info=info) def __floordiv__(self, other): if isvar(other): x = self.x // other.x else: x = self.x // other info = self.info.copy() info['longname'] = longname(self) + ' // ' + longname(other) return Var(x, info=info) def __mod__(self, other): if ismodel(other): return Model(self) % other elif isvar(other): x = self.x % other.x elif isdataobject(other): return Interaction((self, other)) else: x = self.x % other info = self.info.copy() info['longname'] = longname(self) + ' % ' + longname(other) return Var(x, info=info) def __lt__(self, y): return self.x < y def __le__(self, y): return self.x <= y def __eq__(self, y): return self.x == y def __ne__(self, y): return self.x != y def __gt__(self, y): return self.x > y def __ge__(self, y): return self.x >= y def __truediv__(self, other): return self.__div__(other) def __div__(self, other): """ type of other: scalar: returns var divided by other Factor: returns a separate slope for each level of the Factor; needed for ANCOVA """ if isvar(other): x = self.x / other.x elif iscategorial(other): dummy_factor = other.as_dummy_complete codes = dummy_factor * self.as_effects # center means = codes.sum(0) / dummy_factor.sum(0) codes -= dummy_factor * means # create effect name = '%s per %s' % (self.name, other.name) return NonbasicEffect(codes, [self, other], name, beta_labels=other.dummy_complete_labels) else: x = self.x / other info = self.info.copy() info['longname'] = longname(self) + ' / ' + longname(other) return Var(x, info=info) def _coefficient_names(self, method): return longname(self), def abs(self, name=None): "Return a Var with the absolute value." info = self.info.copy() info['longname'] = 'abs(' + longname(self) + ')' return Var(np.abs(self.x), name, info=info) def argmax(self): """:func:`numpy.argmax`""" return np.argmax(self.x) def argmin(self): """:func:`numpy.argmin`""" return np.argmin(self.x) def argsort(self, kind='quicksort'): """:func:`numpy.argsort` Parameters ---------- kind : 'quicksort' | 'mergesort' | 'heapsort' Sorting algorithm (default 'quicksort'). Returns ------- index_array : array of int Array of indices that sort `a` along the specified axis. In other words, ``a[index_array]`` yields a sorted `a`. """ return np.argsort(self.x, kind=kind) @property def as_dummy(self): "for effect initialization" return self.x[:, None] @property def as_effects(self): "for effect initialization" return self.centered()[:, None] def as_factor(self, labels='%r', name=True, random=False): """Convert the Var into a Factor Parameters ---------- labels : str | dict Either a format string for converting values into labels (default: ``'%r'``) or a dictionary mapping values to labels (see examples). In a dictionary, multiple values can be assigned the same label by providing multiple keys in a tuple. A special key 'default' can be used to assign values that are not otherwise specified in the dictionary (by default this is the empty string ``''``). name : None | True | str Name of the output Factor, ``True`` to keep the current name (default ``True``). random : bool Whether the Factor is a random Factor (default ``False``). Examples -------- >>> v = Var([0, 1, 2, 3]) >>> v.as_factor() Factor(['0', '1', '2', '3']) >>> v.as_factor({0: 'a', 1: 'b'}) Factor(['a', 'b', '', '']) >>> v.as_factor({(0, 1): 'a', (2, 3): 'b'}) Factor(['a', 'a', 'b', 'b']) >>> v.as_factor({0: 'a', 1: 'b', 'default': 'c'}) Factor(['a', 'b', 'c', 'c']) """ labels_ = {} if isinstance(labels, dict): # flatten for key, v in labels.iteritems(): if isinstance(key, SEQUENCE_TYPES): for k in key: labels_[k] = v else: labels_[key] = v default = labels_.pop('default', '') if default is not None: for key in np.unique(self.x): if key not in labels_: labels_[key] = default else: for value in np.unique(self.x): labels_[value] = labels % value if name is True: name = self.name return Factor(self.x, name, random, labels=labels_) def centered(self): return self.x - self.x.mean() def copy(self, name=True): "returns a deep copy of itself" x = self.x.copy() if name is True: name = self.name return Var(x, name, info=deepcopy(self.info)) def compress(self, X, func=np.mean, name=True): "Deprecated. Use .aggregate()." warn("Var.compress s deprecated; use Var.aggregate instead" "(with identical functionality).", DeprecationWarning) self.aggregate(X, func, name) def count(self): """Count the number of occurrence of each value Notes ----- Counting starts with zero (see examples). This is to facilitate integration with indexing. Examples -------- >>> v = Var([1, 2, 3, 1, 1, 1, 3]) >>> v.count() Var([0, 0, 0, 1, 2, 3, 1]) """ x = np.empty(len(self.x), int) index = np.empty(len(self.x), bool) for v in np.unique(self.x): np.equal(self.x, v, index) x[index] = np.arange(index.sum()) return Var(x) def aggregate(self, X, func=np.mean, name=True): """Summarize cases within cells of X Parameters ---------- X : categorial Model defining cells in which to aggregate. func : callable Function that converts arrays into scalars, used to summarize data within each cell of X. name : None | True | str Name of the output Var, ``True`` to keep the current name (default ``True``). Returns ------- aggregated_var : Var A Var instance with a single value for each cell in X. """ if len(X) != len(self): err = "Length mismatch: %i (Var) != %i (X)" % (len(self), len(X)) raise ValueError(err) x = [] for cell in X.cells: x_cell = self.x[X == cell] if len(x_cell) > 0: x.append(func(x_cell)) if name is True: name = self.name x = np.array(x) return Var(x, name, info=self.info.copy()) @property def beta_labels(self): return [self.name] def diff(self, X, v1, v2, match): """ Subtract X==v2 from X==v1; sorts values according to match (ascending) Parameters ---------- X : categorial Model to define cells. v1, v2 : str | tuple Cells on X for subtraction. match : categorial Model that defines how to mach cells in v1 to cells in v2. """ raise NotImplementedError # FIXME: use celltable assert isfactor(X) I1 = (X == v1); I2 = (X == v2) Y1 = self[I1]; Y2 = self[I2] m1 = match[I1]; m2 = match[I2] s1 = np.argsort(m1); s2 = np.argsort(m2) y = Y1[s1] - Y2[s2] name = "{n}({x1}-{x2})".format(n=self.name, x1=X.cells[v1], x2=X.cells[v2]) return Var(y, name, info=self.info.copy()) @classmethod def from_dict(cls, base, values, name=None, default=0, info=None): """ Construct a Var object by mapping ``base`` to ``values``. Parameters ---------- base : sequence Sequence to be mapped to the new Var. values : dict Mapping from values in base to values in the new Var. name : None | str Name for the new Var. default : scalar Default value to supply for entries in ``base`` that are not in ``values``. Examples -------- >>> base = Factor('aabbcde') >>> Var.from_dict(base, {'a': 5, 'e': 8}, default=0) Var([5, 5, 0, 0, 0, 0, 8]) """ return cls([values.get(b, default) for b in base], name, info=info) @classmethod def from_apply(cls, base, func, name=None, info=None): """ Construct a Var instance by applying a function to each value in a base Parameters ---------- base : sequence, len = n Base for the new Var. Can be an NDVar, if ``func`` is a dimensionality reducing function such as :func:`numpy.mean`. func : callable A function that when applied to each element in ``base`` returns the desired value for the resulting Var. """ if isvar(base) or isndvar(base): base = base.x if isinstance(func, np.ufunc): x = func(base) elif getattr(base, 'ndim', 1) > 1: x = func(base.reshape((len(base), -1)), axis=1) else: x = np.array([func(val) for val in base]) return cls(x, name, info=info) def index(self, value): "``v.index(value)`` returns an array of indices where v equals value" return np.flatnonzero(self == value) def isany(self, *values): "Boolean index, True where the Var is equal to one of the values" return np.in1d(self.x, values) def isin(self, values): "Boolean index, True where the Var value is in values" return np.in1d(self.x, values) def isnot(self, *values): "Boolean index, True where the Var is not equal to one of the values" return np.in1d(self.x, values, invert=True) def isnotin(self, values): "Boolean index, True where the Var value is not in values" return np.in1d(self.x, values, invert=True) def max(self): "Returns the highest value" return self.x.max() def mean(self): "Returns the mean" return self.x.mean() def min(self): "Returns the smallest value" return self.x.min() def repeat(self, repeats, name=True): """ Repeat each element ``repeats`` times Parameters ---------- repeats : int | array of int Number of repeats, either a constant or a different number for each element. name : None | True | str Name of the output Var, ``True`` to keep the current name (default ``True``). """ if name is True: name = self.name return Var(self.x.repeat(repeats), name, info=self.info.copy()) def split(self, n=2, name=None): """ A Factor splitting Y in ``n`` categories with equal number of cases Parameters ---------- n : int number of categories name : str Name of the output Factor. Examples -------- Use n = 2 for a median split:: >>> y = Var([1,2,3,4]) >>> y.split(2) Factor(['0', '0', '1', '1']) >>> z = Var([7, 6, 5, 4, 3, 2]) >>> z.split(3) Factor(['2', '2', '1', '1', '0', '0']) """ y = self.x d = 100. / n percentile = np.arange(d, 100., d) values = [scipy.stats.scoreatpercentile(y, p) for p in percentile] x = np.zeros(len(y), dtype=int) for v in values: x += y > v return Factor(x, name) def std(self): "Returns the standard deviation" return self.x.std() def sort_idx(self, descending=False): """Create an index that could be used to sort the Var. Parameters ---------- descending : bool Sort in descending instead of an ascending order. """ idx = np.argsort(self.x, kind='mergesort') if descending: idx = idx[::-1] return idx @property def values(self): return np.unique(self.x) class _Effect(object): # numeric --- def __add__(self, other): return Model(self) + other def __mul__(self, other): if isinstance(other, Model): return Model((self, other, self % other)) return Model((self, other, self % other)) def __mod__(self, other): if isinstance(other, Model): return Model((self % e for e in other.effects)) return Interaction((self, other)) def count(self, value, start=-1): """Cumulative count of the occurrences of ``value`` Parameters ---------- value : str | tuple (value in .cells) Cell value which is to be counted. start : int Value at which to start counting (with the default of -1, the first occurrence will be 0). Returns ------- count : array of int, len = len(self) Cumulative count of value in self. Examples -------- >>> a = Factor('abc', tile=3) >>> a Factor(['a', 'b', 'c', 'a', 'b', 'c', 'a', 'b', 'c']) >>> a.count('a') array([0, 0, 0, 1, 1, 1, 2, 2, 2]) """ count = np.cumsum(self == value) + start return count def enumerate_cells(self, name=None): """Enumerate the occurrence of each cell value throughout the data Parameters ---------- name : None | str Name for the returned Var. Returns ------- enum : Var Result. Examples -------- >>> f = Factor('aabbccabc') >>> f.enumerate_cells() Var([0, 1, 0, 1, 0, 1, 2, 2, 2]) """ counts = {cell: 0 for cell in self.cells} enum = np.empty(len(self), int) for i, value in enumerate(self): enum[i] = counts[value] counts[value] += 1 return Var(enum, name) def index(self, cell): """``e.index(cell)`` returns an array of indices where e equals cell Examples -------- >>> f = Factor('abcabcabc') >>> f Factor(['a', 'b', 'c', 'a', 'b', 'c', 'a', 'b', 'c']) >>> f.index('b') array([1, 4, 7]) >>> f[f.index('b')] = 'new_b' >>> f Factor(['a', 'new_b', 'c', 'a', 'new_b', 'c', 'a', 'new_b', 'c']) """ return np.flatnonzero(self == cell) def index_opt(self, cell): """Find an optimized index for a given cell. Returns ------- index : slice | array If possible, a ``slice`` object is returned. Otherwise, an array of indices (as with ``e.index(cell)``). """ index = np.flatnonzero(self == cell) d_values = np.unique(np.diff(index)) if len(d_values) == 1: start = index.min() or None step = d_values[0] stop = index.max() + 1 if stop > len(self) - step: stop = None if step == 1: step = None index = slice(start, stop, step) return index def sort_idx(self, descending=False, order=None): """Create an index that could be used to sort this data_object. Parameters ---------- descending : bool Sort in descending instead of the default ascending order. order : None | sequence Sequence of cells to define a custom order. Any cells that are not present in ``order`` will be omitted in the sort_index, i.e. the sort_index will be shorter than its source. Returns ------- sort_index : array of int Array which can be used to sort a data_object in the desired order. """ idx = np.empty(len(self), dtype=np.uint32) if order is None: cells = self.cells else: cells = order idx[:] = -1 for i, cell in enumerate(cells): idx[self == cell] = i sort_idx = np.argsort(idx, kind='mergesort') if order is not None: i_cut = -np.count_nonzero(idx == np.uint32(-1)) if i_cut: sort_idx = sort_idx[:i_cut] if descending: sort_idx = sort_idx[::-1] return sort_idx class Factor(_Effect): """Container for categorial data. Parameters ---------- x : iterator Sequence of Factor values (see also the ``labels`` kwarg). name : str Name of the Factor. random : bool Treat Factor as random factor (for ANOVA; default is False). repeat : int | array of int repeat each element in ``x``, either a constant or a different number for each element. tile : int Repeat ``x`` as a whole ``tile`` many times. labels : dict | OrderedDict | tuple An optional dictionary mapping values as they occur in ``x`` to the Factor's cell labels. Since :class`dict`s are unordered, labels are sorted alphabetically by default. In order to define cells in a different order, use a :class:`collections.OrderedDict` object or define labels as ``((key, value), ...)`` tuple. Attributes ---------- .name : None | str The Factor's name. .cells : tuple of str Sorted names of all cells. .random : bool Whether the Factor is defined as random factor (for ANOVA). Examples -------- The most obvious way to initialize a Factor is a list of strings:: >>> Factor(['in', 'in', 'in', 'out', 'out', 'out']) Factor(['in', 'in', 'in', 'out', 'out', 'out']) The same can be achieved with a list of integers plus a labels dict:: >>> Factor([1, 1, 1, 0, 0, 0], labels={1: 'in', 0: 'out'}) Factor(['in', 'in', 'in', 'out', 'out', 'out']) Or more parsimoniously: >>> Factor([1, 0], labels={1: 'in', 0: 'out'}, repeat=3) Factor(['in', 'in', 'in', 'out', 'out', 'out']) Since the Factor initialization simply iterates over the ``x`` argument, a Factor with one-character codes can also be initialized with a single string:: >>> Factor('iiiooo') Factor(['i', 'i', 'i', 'o', 'o', 'o']) """ _stype = "factor" def __init__(self, x, name=None, random=False, repeat=1, tile=1, labels={}): if not (np.any(repeat) or np.any(tile)): self.__setstate__({'x': np.empty((0,), np.uint32), 'labels': {}, 'name': name, 'random': random}) return try: n_cases = len(x) except TypeError: # for generators: x = tuple(x) n_cases = len(x) # find mapping and ordered values if isinstance(labels, dict): labels_dict = labels values = labels.values() if not isinstance(labels, OrderedDict): values = natsorted(values) else: labels_dict = dict(labels) values = [pair[1] for pair in labels] # convert x to codes highest_code = -1 codes = {} # {label -> code} x_ = np.empty(n_cases, dtype=np.uint32) for i, value in enumerate(x): if value in labels_dict: label = labels_dict[value] elif isinstance(value, unicode): label = value else: label = str(value) if label in codes: x_[i] = codes[label] else: # new code x_[i] = codes[label] = highest_code = highest_code + 1 if highest_code >= 2**32: raise RuntimeError("Too many categories in this Factor") # collect ordered_labels ordered_labels = OrderedDict() for label in values: if label in codes: ordered_labels[codes[label]] = label for label in natsorted(codes): if label not in values: ordered_labels[codes[label]] = label if not (isinstance(repeat, int) and repeat == 1): x_ = x_.repeat(repeat) if tile > 1: x_ = np.tile(x_, tile) self.__setstate__({'x': x_, 'ordered_labels': ordered_labels, 'name': name, 'random': random}) def __setstate__(self, state): self.x = x = state['x'] self.name = state['name'] self.random = state['random'] if 'ordered_labels' in state: # 0.13: ordered_labels replaced labels self._labels = state['ordered_labels'] self._codes = {lbl: code for code, lbl in self._labels.iteritems()} else: labels = state['labels'] cells = natsorted(labels.values()) self._codes = codes = {lbl: code for code, lbl in labels.iteritems()} self._labels = OrderedDict([(codes[label], label) for label in cells]) self._n_cases = len(x) def __getstate__(self): state = {'x': self.x, 'name': self.name, 'random': self.random, 'ordered_labels': self._labels} return state def __repr__(self, full=False): use_labels = preferences['factor_repr_use_labels'] n_cases = preferences['factor_repr_n_cases'] if use_labels: values = self.as_labels() else: values = self.x.tolist() if full or len(self.x) <= n_cases: x = repr(values) else: x = [repr(v) for v in values[:n_cases]] x.append('<... N=%s>' % len(self.x)) x = '[' + ', '.join(x) + ']' args = [x] if self.name is not None: args.append('name=%r' % self.name) if self.random: args.append('random=True') if not use_labels: args.append('labels=%s' % self._labels) return 'Factor(%s)' % ', '.join(args) def __str__(self): return self.__repr__(True) # container --- def __len__(self): return self._n_cases def __getitem__(self, index): """ sub needs to be int or an array of bools of shape(self.x) this method is valid for factors and nonbasic effects """ if isvar(index): index = index.x x = self.x[index] if np.iterable(x): return Factor(x, self.name, self.random, labels=self._labels) else: return self._labels[x] def __setitem__(self, index, x): # convert x to code if isinstance(x, basestring): code = self._get_code(x) elif np.iterable(x): code = np.empty(len(x), dtype=np.uint16) for i, v in enumerate(x): code[i] = self._get_code(v) # assign self.x[index] = code # obliterate redundant labels codes_in_use = set(np.unique(self.x)) rm = set(self._labels) - codes_in_use for code in rm: label = self._labels.pop(code) del self._codes[label] def _get_code(self, label): "add the label if it does not exists and return its code" try: return self._codes[label] except KeyError: code = 0 while code in self._labels: code += 1 if code >= 2**32: raise ValueError("Too many categories in this Factor.") self._labels[code] = label self._codes[label] = code return code def __iter__(self): return (self._labels[i] for i in self.x) def __contains__(self, value): try: code = self._codes[value] except KeyError: return False return code in self.x # numeric --- def __eq__(self, other): return self.x == self._encode(other) def __ne__(self, other): return self.x != self._encode(other) def _encode(self, x): if isinstance(x, basestring): return self._encode_1(x) else: return self._encode_seq(x) def _encode_1(self, value): return self._codes.get(value, -1) def _encode_seq(self, values): return np.array([self._codes.get(value, -1) for value in values]) def __call__(self, other): """ Create a nested effect. A factor A is nested in another factor B if each level of A only occurs together with one level of B. """ return NestedEffect(self, other) def _interpret_y(self, Y, create=False): """ Parameters ---------- Y : str | list of str String(s) to be converted to code values. Returns ------- codes : int | list of int List of values (codes) corresponding to the categories. """ if isinstance(Y, basestring): if Y in self._codes: return self._codes[Y] elif create: code = 0 while code in self._labels: code += 1 if code >= 65535: raise ValueError("Too many categories in this Factor.") self._labels[code] = Y self._codes[Y] = code return code else: return 65535 # code for values not present in the Factor elif np.iterable(Y): out = np.empty(len(Y), dtype=np.uint16) for i, y in enumerate(Y): out[i] = self._interpret_y(y, create=create) return out elif Y in self._labels: return Y else: raise ValueError("unknown cell: %r" % Y) @property def as_dummy(self): # x_dummy_coded shape = (self._n_cases, self.df) codes = np.empty(shape, dtype=np.int8) for i, cell in enumerate(self.cells[:-1]): codes[:, i] = (self == cell) return codes @property def as_dummy_complete(self): x = self.x[:, None] categories = np.unique(x) codes = np.hstack([x == cat for cat in categories]) return codes.astype(np.int8) @property def as_effects(self): # x_deviation_coded shape = (self._n_cases, self.df) codes = np.empty(shape, dtype=np.int8) for i, cell in enumerate(self.cells[:-1]): codes[:, i] = (self == cell) contrast = (self == self.cells[-1]) codes -= contrast[:, None] return codes def _coefficient_names(self, method): if method == 'dummy': return ["%s:%s" % (self.name, cell) for cell in self.cells[:-1]] contrast_cell = self.cells[-1] return ["%s:%s-%s" % (self.name, cell, contrast_cell) for cell in self.cells[:-1]] def as_labels(self): "Convert the Factor to a list of str" return [self._labels[v] for v in self.x] def as_var(self, labels, default=None, name=None): """Convert the Factor into a Var Parameters ---------- labels : dict A ``{factor_value: var_value}`` mapping. default : None | scalar Default value for factor values not mentioned in ``labels``. If not specified, factor values missing from ``labels`` will raise a ``KeyError``. name : None | True | str Name of the output Var, ``True`` to keep the current name (default ``None``). """ if default is None: x = [labels[v] for v in self] else: x = [labels.get(v, default) for v in self] if name is True: name = self.name return Var(x, name) @property def beta_labels(self): cells = self.cells txt = '{0}=={1}' return [txt.format(cells[i], cells[-1]) for i in range(len(cells) - 1)] @property def cells(self): return tuple(self._labels.values()) def _cellsize(self): "-1 if cell size is not equal" codes = self._labels.keys() buf = self.x == codes[0] n = buf.sum() for code in codes[1:]: n_ = np.equal(self.x, code, buf).sum() if n_ != n: return -1 return n def compress(self, X, name=None): "Deprecated. Use .aggregate()." warn("Factor.compress s deprecated; use Factor.aggregate instead" "(with identical functionality).", DeprecationWarning) self.aggregate(X, name) def aggregate(self, X, name=True): """ Summarize the Factor by collapsing within cells in `X`. Raises an error if there are cells that contain more than one value. Parameters ---------- X : categorial A categorial model defining cells to collapse. name : None | True | str Name of the output Factor, ``True`` to keep the current name (default ``True``). Returns ------- f : Factor A copy of self with only one value for each cell in X """ if len(X) != len(self): err = "Length mismatch: %i (Var) != %i (X)" % (len(self), len(X)) raise ValueError(err) x = [] for cell in X.cells: idx = (X == cell) if np.sum(idx): x_i = np.unique(self.x[idx]) if len(x_i) > 1: labels = tuple(self._labels[code] for code in x_i) err = ("Can not determine aggregated value for Factor %r " "in cell %r because the cell contains multiple " "values %r. Set drop_bad=True in order to ignore " "this inconsistency and drop the Factor." % (self.name, cell, labels)) raise ValueError(err) else: x.append(x_i[0]) if name is True: name = self.name out = Factor(x, name, self.random, labels=self._labels) return out def copy(self, name=True, repeat=1, tile=1, rep=None): "returns a deep copy of itself" if rep is not None: if repeat != 1: raise TypeError("Specified rep and repeat") repeat = rep warn("The rep argument has been renamed to repeat", DeprecationWarning) if name is True: name = self.name return Factor(self.x.copy(), name, self.random, repeat, tile, self._labels) @property def df(self): return max(0, len(self._labels) - 1) def endswith(self, substr): """Create an index that is true for all cases whose name ends with ``substr`` Parameters ---------- substr : str String for selecting cells that end with substr. Returns ------- idx : boolean array, len = len(self) Index that is true wherever the value ends with ``substr``. Examples -------- >>> a = Factor(['a1', 'a2', 'b1', 'b2']) >>> a.endswith('1') array([True, False, True, False], dtype=bool) """ values = [v for v in self.cells if v.endswith(substr)] return self.isin(values) def get_index_to_match(self, other): """ Assuming that ``other`` is a shuffled version of self, this method returns ``index`` to transform from the order of self to the order of ``other``. To guarantee exact matching, each value can only occur once in self. Example:: >>> index = factor1.get_index_to_match(factor2) >>> all(factor1[index] == factor2) True """ assert self._labels == other._labels index = [] for v in other.x: where = np.where(self.x == v)[0] if len(where) == 1: index.append(where[0]) else: msg = "%r contains several cases of %r" % (self, v) raise ValueError(msg) return np.array(index) def isany(self, *values): """Find the index of entries matching one of the ``*values`` Returns ------- index : array of bool For each case True if the value is in values, else False. Examples -------- >>> a = Factor('aabbcc') >>> b.isany('b', 'c') array([False, False, True, True, True, True], dtype=bool) """ return self.isin(values) def isin(self, values): """Find the index of entries matching one of the ``values`` Returns ------- index : array of bool For each case True if the value is in values, else False. Examples -------- >>> f = Factor('aabbcc') >>> f.isin(('b', 'c')) array([False, False, True, True, True, True], dtype=bool) """ return np.in1d(self.x, self._encode_seq(values)) def isnot(self, *values): """Find the index of entries not in ``values`` Returns ------- index : array of bool For each case False if the value is in values, else True. """ return self.isnotin(values) def isnotin(self, values): """Find the index of entries not in ``values`` Returns ------- index : array of bool For each case False if the value is in values, else True. """ return np.in1d(self.x, self._encode_seq(values), invert=True) def label_length(self, name=None): """Create Var with the length of each label string Parameters ---------- name : str Name of the output Var (default ``None``). Examples -------- >>> f = Factor(['a', 'ab', 'long_label']) >>> f.label_length() Var([1, 2, 10]) """ label_lengths = {code: len(label) for code, label in self._labels.iteritems()} x = np.empty(len(self), np.uint16) for i, code in enumerate(self.x): x[i] = label_lengths[code] return Var(x, name) @property def n_cells(self): return len(self._labels) def relabel(self, labels): """Deprecated, use Factor.update_labels""" warn("Factor.relabel() is deprecated, use Factor.update_labels()", DeprecationWarning) self.update_labels(labels) def update_labels(self, labels): """Change one or more labels in place Parameters ---------- labels : dict Mapping from old labels to new labels. Existing labels that are not in ``labels`` are kept. Examples -------- >>> f = Factor('aaabbbccc') >>> f Factor(['a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'c']) >>> f.update_labels({'a': 'v1', 'b': 'v2'}) >>> f Factor(['v1', 'v1', 'v1', 'v2', 'v2', 'v2', 'c', 'c', 'c']) In order to create a copy of the Factor with different labels just use the labels argument when initializing a new Factor: >>> Factor(f, labels={'c': 'v3'}) Factor(['v1', 'v1', 'v1', 'v2', 'v2', 'v2', 'v3', 'v3', 'v3']) Notes ----- If ``labels`` contains a key that is not a label of the Factor, a ``KeyError`` is raised. """ missing = tuple(old for old in labels if old not in self._codes) if missing: if len(missing) == 1: msg = ("Factor does not contain label %r" % missing[0]) else: msg = ("Factor does not contain labels %s" % ', '.join(repr(m) for m in missing)) raise KeyError(msg) # check for merged labels new_labels = {c: labels.get(l, l) for c, l in self._labels.iteritems()} codes_ = sorted(new_labels) labels_ = tuple(new_labels[c] for c in codes_) for i, label in enumerate(labels_): if label in labels_[:i]: old_code = codes_[i] new_code = codes_[labels_.index(label)] self.x[self.x == old_code] = new_code del new_labels[old_code] self._labels = new_labels self._codes = {l: c for c, l in new_labels.iteritems()} def startswith(self, substr): """Create an index that is true for all cases whose name starts with ``substr`` Parameters ---------- substr : str String for selecting cells that start with substr. Returns ------- idx : boolean array, len = len(self) Index that is true wherever the value starts with ``substr``. Examples -------- >>> a = Factor(['a1', 'a2', 'b1', 'b2']) >>> a.startswith('b') array([False, False, True, True], dtype=bool) """ values = [v for v in self.cells if v.startswith(substr)] return self.isin(values) def table_categories(self): "returns a table containing information about categories" table = fmtxt.Table('rll') table.title(self.name) for title in ['i', 'Label', 'n']: table.cell(title) table.midrule() for code, label in self._labels.iteritems(): table.cell(code) table.cell(label) table.cell(np.sum(self.x == code)) return table def repeat(self, repeats, name=True): """ Repeat each element ``repeats`` times Parameters ---------- repeats : int | array of int Number of repeats, either a constant or a different number for each element. name : None | True | str Name of the output Var, ``True`` to keep the current name (default ``True``). """ if name is True: name = self.name return Factor(self.x, name, self.random, repeats, labels=self._labels) class NDVar(object): """Container for n-dimensional data. Parameters ---------- x : array_like The data. dims : tuple The dimensions characterizing the axes of the data. If present, ``'case'`` should be provided as a :py:class:`str`, and should always occupy the first position. info : dict A dictionary with data properties (can contain arbitrary information that will be accessible in the info attribute). name : None | str Name for the NDVar. Notes ----- ``x`` and ``dims`` are stored without copying. A shallow copy of ``info`` is stored. Make sure the relevant objects are not modified externally later. Examples -------- Importing 600 epochs of data for 80 time points: >>> data.shape (600, 80) >>> time = UTS(-.2, .01, 80) >>> dims = ('case', time) >>> Y = NDVar(data, dims=dims) """ _stype = "ndvar" def __init__(self, x, dims=('case',), info={}, name=None): # check data shape dims = tuple(dims) ndim = len(dims) x = np.asarray(x) if ndim != x.ndim: err = ("Unequal number of dimensions (data: %i, dims: %i)" % (x.ndim, ndim)) raise DimensionMismatchError(err) # check dimensions d0 = dims[0] if isinstance(d0, basestring): if d0 == 'case': has_case = True else: err = ("The only dimension that can be specified as a string" "is 'case' (got %r)" % d0) raise ValueError(err) else: has_case = False for dim, n in zip(dims, x.shape)[has_case:]: if isinstance(dim, basestring): err = ("Invalid dimension: %r in %r. First dimension can be " "'case', other dimensions need to be Dimension " "subclasses." % (dim, dims)) raise TypeError(err) n_dim = len(dim) if n_dim != n: err = ("Dimension %r length mismatch: %i in data, " "%i in dimension %r" % (dim.name, n, n_dim, dim.name)) raise DimensionMismatchError(err) state = {'x': x, 'dims': dims, 'info': dict(info), 'name': name} self.__setstate__(state) def __setstate__(self, state): self.dims = dims = state['dims'] self.has_case = (dims[0] == 'case') self._truedims = truedims = dims[self.has_case:] # dimnames self.dimnames = tuple(dim.name for dim in truedims) if self.has_case: self.dimnames = ('case',) + self.dimnames self.x = x = state['x'] self.name = state['name'] if 'info' in state: self.info = state['info'] else: self.info = state['properties'] # derived self.ndim = len(dims) self.shape = x.shape self._len = len(x) self._dim_2_ax = dict(zip(self.dimnames, xrange(self.ndim))) # attr for dim in truedims: if hasattr(self, dim.name): err = ("invalid dimension name: %r (already present as NDVar" " attr)" % dim.name) raise ValueError(err) else: setattr(self, dim.name, dim) def __getstate__(self): state = {'dims': self.dims, 'x': self.x, 'name': self.name, 'info': self.info} return state @property def __array_interface__(self): return self.x.__array_interface__ # numeric --- def __neg__(self): x = -self.x info = self.info.copy() return NDVar(x, self.dims, info) def __pos__(self): return self def __abs__(self): return self.abs() def __lt__(self, other): y = self._ialign(other) x = self.x < y return NDVar(x, self.dims, self.info.copy()) def __le__(self, other): y = self._ialign(other) x = self.x <= y return NDVar(x, self.dims, self.info.copy()) def __eq__(self, other): y = self._ialign(other) x = self.x == y return NDVar(x, self.dims, self.info.copy()) def __ne__(self, other): y = self._ialign(other) x = self.x != y return NDVar(x, self.dims, self.info.copy()) def __gt__(self, other): y = self._ialign(other) x = self.x > y return NDVar(x, self.dims, self.info.copy()) def __ge__(self, other): y = self._ialign(other) x = self.x >= y return NDVar(x, self.dims, self.info.copy()) def _align(self, other): """Align data from 2 NDVars. Notes ----- For unequal but overlapping dimensions, the intersection is used. """ if isvar(other): return self.dims, self.x, self._ialign(other) elif isndvar(other): dimnames = list(self.dimnames) i_add = 0 for dimname in other.dimnames: if dimname not in dimnames: dimnames.append(dimname) i_add += 1 # find data axes self_axes = self.dimnames if i_add: self_axes += (None,) * i_add other_axes = tuple(name if name in other.dimnames else None for name in dimnames) # find dims dims = [] crop = False crop_self = [] crop_other = [] for name, other_name in izip(self_axes, other_axes): if name is None: dim = other.get_dim(other_name) cs = co = full_slice elif other_name is None: dim = self.get_dim(name) cs = co = full_slice else: self_dim = self.get_dim(name) other_dim = other.get_dim(other_name) if self_dim == other_dim: dim = self_dim cs = co = full_slice else: dim = self_dim.intersect(other_dim) crop = True cs = self_dim.dimindex(dim) os = other_dim.dimindex(dim) dims.append(dim) crop_self.append(cs) crop_other.append(co) x_self = self.get_data(self_axes) x_other = other.get_data(other_axes) if crop: x_self = x_self[tuple(crop_self)] x_other = x_other[tuple(crop_other)] return dims, x_self, x_other else: raise TypeError("Need Var or NDVar") def _ialign(self, other): "align for self-modifying operations (+=, ...)" if np.isscalar(other): return other elif isvar(other): assert self.has_case n = len(other) shape = (n,) + (1,) * (self.x.ndim - 1) return other.x.reshape(shape) elif isndvar(other): assert all(dim in self.dimnames for dim in other.dimnames) i_other = [] for dim in self.dimnames: if dim in other.dimnames: i_other.append(dim) else: i_other.append(None) return other.get_data(i_other) else: raise TypeError def __add__(self, other): if isnumeric(other): dims, x_self, x_other = self._align(other) x = x_self + x_other elif np.isscalar(other): x = self.x + other dims = self.dims else: raise ValueError("can't add %r" % other) info = self.info.copy() return NDVar(x, dims, info) def __iadd__(self, other): self.x += self._ialign(other) return self def __div__(self, other): if isnumeric(other): dims, x_self, x_other = self._align(other) x = x_self / x_other elif np.isscalar(other): x = self.x / other dims = self.dims else: raise ValueError("can't subtract %r" % other) info = self.info.copy() return NDVar(x, dims, info) def __mul__(self, other): if isnumeric(other): dims, x_self, x_other = self._align(other) x = x_self * x_other elif np.isscalar(other): x = self.x * other dims = self.dims else: raise ValueError("can't subtract %r" % other) info = self.info.copy() return NDVar(x, dims, info) def __sub__(self, other): if isnumeric(other): dims, x_self, x_other = self._align(other) x = x_self - x_other elif np.isscalar(other): x = self.x - other dims = self.dims else: raise ValueError("can't subtract %r" % other) info = self.info.copy() return NDVar(x, dims, info) def __isub__(self, other): self.x -= self._ialign(other) return self def __rsub__(self, other): x = other - self.x info = self.info.copy() return NDVar(x, self.dims, info, self.name) # container --- def __getitem__(self, index): '''Options for NDVar indexing: - First element only: numpy-like case index (int, array). - All elements: 1d boolean NDVar. ''' if isinstance(index, tuple): return self.sub(*index) else: return self.sub(index) def __len__(self): return self._len def __repr__(self): rep = '<NDVar %(name)r: %(dims)s>' if self.has_case: dims = [(self._len, 'case')] else: dims = [] dims.extend([(len(dim), dim.name) for dim in self._truedims]) dims = ' X '.join('%i (%s)' % fmt for fmt in dims) args = dict(dims=dims, name=self.name or '') return rep % args def abs(self, name=None): """Compute the absolute values""" x = np.abs(self.x) dims = self.dims info = self.info.copy() return NDVar(x, dims, info, name) def any(self, dims=None): """Compute presence of any value other than zero over given dimensions Parameters ---------- dims : None | str | tuple of str | boolean NDVar Dimensions over which to operate. A str is used to specify a single dimension, a tuple of str to specify several dimensions, None to compute whether there are any nonzero values at all. An boolean NDVar with the same dimensions as the data can be used to find nonzero values in specific elements (if the NDVar has cases on a per case basis). Returns ------- any : NDVar | Var | float Boolean data indicating presence of nonzero value over specified dimensions. Returns a Var if only the case dimension remains, and a float if the function collapses over all data. """ return self._aggregate_over_dims(dims, np.any) def assert_dims(self, dims): if self.dimnames != dims: err = "Dimensions of %r do not match %r" % (self, dims) raise DimensionMismatchError(err) def compress(self, X, func=np.mean, name=None): "Deprecated. Use .aggregate()." warn("NDVar.compress s deprecated; use NDVar.aggregate instead" "(with identical functionality).", DeprecationWarning) self.aggregate(X, func, name) def aggregate(self, X, func=np.mean, name=True): """ Summarize data in each cell of ``X``. Parameters ---------- X : categorial Categorial whose cells define which cases to aggregate. func : function with axis argument Function that is used to create a summary of the cases falling into each cell of X. The function needs to accept the data as first argument and ``axis`` as keyword-argument. Default is ``numpy.mean``. name : None | True | str Name of the output NDVar, ``True`` to keep the current name (default ``True``). Returns ------- aggregated_ndvar : NDVar Returns an """ if not self.has_case: raise DimensionMismatchError("%r has no case dimension" % self) if len(X) != len(self): err = "Length mismatch: %i (Var) != %i (X)" % (len(self), len(X)) raise ValueError(err) x = [] for cell in X.cells: idx = (X == cell) if np.sum(idx): x_cell = self.x[idx] x.append(func(x_cell, axis=0)) # update info for summary info = self.info.copy() if 'summary_info' in info: info.update(info.pop('summary_info')) if name is True: name = self.name x = np.array(x) out = NDVar(x, self.dims, info, name) return out def _aggregate_over_dims(self, axis, func): if axis is None: return func(self.x) elif isndvar(axis): if axis.ndim == 1: dim = axis.dims[0] dim_axis = self.get_axis(dim.name) if self.get_dim(dim.name) != dim: msg = "Index dimension does not match data dimension" raise DimensionMismatchError(msg) index = (full_slice,) * dim_axis + (axis.x,) x = func(self.x[index], dim_axis) dims = (dim_ for dim_ in self.dims if not dim_ == dim) else: # if the index does not contain all dimensions, numpy indexing # is weird if self.ndim - self.has_case != axis.ndim - axis.has_case: msg = ("If the index is not one dimensional, it needs to " "have the same dimensions as the data.") raise NotImplementedError(msg) dims, self_x, index = self._align(axis) if self.has_case: if axis.has_case: x = np.array([func(x_[i]) for x_, i in izip(self_x, index)]) else: index = index[0] x = np.array([func(x_[index]) for x_ in self_x]) return Var(x, self.name, info=self.info.copy()) elif axis.has_case: msg = ("Index with case dimension can not be applied to " "data without case dimension") raise IndexError(msg) else: return func(self_x[index]) elif isinstance(axis, basestring): axis = self._dim_2_ax[axis] x = func(self.x, axis=axis) dims = (self.dims[i] for i in xrange(self.ndim) if i != axis) else: axes = tuple(self._dim_2_ax[dim_name] for dim_name in axis) x = func(self.x, axes) dims = (self.dims[i] for i in xrange(self.ndim) if i not in axes) dims = tuple(dims) name = self.name if len(dims) == 0: return x elif dims == ('case',): return Var(x, name, info=self.info.copy()) else: return NDVar(x, dims, self.info.copy(), name) def bin(self, tstep, tstart=None, tstop=None, func=None): """Bin the data along the time axis Parameters ---------- tstep : scalar Time step between bins. tstart : None | scalar Earliest time point (default is from the beginning). tstop : None | scalar End of the data to use (default is to the end). func : callable Function to summarize data, needs axis argument (default is the mean) Returns ------- binned_ndvar : NDVar NDVar with data binned along the time axis (i.e., each time point reflects one time bin). """ time = self.get_dim('time') time_axis = self.get_axis('time') # summary-func if func is None: meas = self.info.get('meas', '').lower() if meas == 'p': func = np.min elif meas == 'f': func = np.max elif meas in ('t', 'r'): func = extrema else: func = np.mean # find time bin boundaries if tstart is None: tstart = time.tmin if tstop is None: tstop = time.tmax # -> avoid adding 1 sample bins times = [tstart] t = tstart + tstep while t < tstop: times.append(t) t += tstep times.append(min(t, time.tstop)) n_bins = len(times) - 1 out_shape = list(self.shape) out_shape[time_axis] = n_bins x = np.empty(out_shape) bins = [] idx_prefix = (full_slice,) * time_axis for i in xrange(n_bins): t0 = times[i] t1 = times[i + 1] src_idx = idx_prefix + (time.dimindex((t0, t1)),) dst_idx = idx_prefix + (i,) x[dst_idx] = func(self.x[src_idx], axis=time_axis) if t1 is None: t1 = time.tmax + time.tstep bins.append((t0, t1)) out_time = UTS(tstart + tstep / 2, tstep, n_bins) dims = list(self.dims) dims[time_axis] = out_time info = self.info.copy() info['bins'] = bins return NDVar(x, dims, info) def copy(self, name=True): """returns an NDVar with a deep copy of its data Parameters ---------- name : None | True | str Name of the output NDVar, ``True`` to keep the current name (default ``True``). Returns ------- ndvar_copy : NDVar An copy of the ndvar with a deep copy of the data. Notes ----- The info dictionary is still a shallow copy. """ x = self.x.copy() info = self.info.copy() if name is True: name = self.name return NDVar(x, self.dims, info, name) def diminfo(self, str_out=False): """Information about the dimensions Parameters ---------- str_out : bool Return a string with the information (as opposed to the default which is to print the information). Returns ------- info : None | str If str_out is True, the dimension description as str. """ ns = [] dim_info = ["<NDVar %r" % self.name] if self.has_case: ns.append(len(self)) dim_info.append("cases") for dim in self._truedims: ns.append(len(dim)) dim_info.append(dim._diminfo()) dim_info[-1] += '>' n_digits = int(max(ceil(log10(n)) for n in ns)) info = '\n '.join('{:{}d} {:s}'.format(n, n_digits, desc) for n, desc in izip(ns, dim_info)) if str_out: return info else: print info def get_axis(self, name): if self.has_dim(name): i = self._dim_2_ax[name] else: msg = "%r has no dimension named %r" % (self, name) raise DimensionMismatchError(msg) return i def get_data(self, dims): """Retrieve the NDVar's data with a specific axes order. Parameters ---------- dims : str | sequence of str Sequence of dimension names (or single dimension name). The array that is returned will have axes in this order. To insert a new axis with size 1 use ``numpy.newaxis``/``None``. Notes ----- A shallow copy of the data is returned. To retrieve the data with the stored axes order use the .x attribute. """ if isinstance(dims, str): dims = (dims,) dims_ = tuple(d for d in dims if d is not np.newaxis) if set(dims_) != set(self.dimnames) or len(dims_) != len(self.dimnames): err = "Requested dimensions %r from %r" % (dims, self) raise DimensionMismatchError(err) # transpose axes = tuple(self.dimnames.index(d) for d in dims_) x = self.x.transpose(axes) # insert axes if len(dims) > len(dims_): for ax, dim in enumerate(dims): if dim is np.newaxis: x = np.expand_dims(x, ax) return x def get_dim(self, name): "Returns the Dimension object named ``name``" i = self.get_axis(name) dim = self.dims[i] return dim def get_dims(self, names): "Returns a tuple with the requested Dimension objects" return tuple(self.get_dim(name) for name in names) def has_dim(self, name): return name in self._dim_2_ax def max(self, dims=None): """Compute the maximum over given dimensions Parameters ---------- dims : None | str | tuple of str | boolean NDVar Dimensions over which to operate. A str is used to specify a single dimension, a tuple of str to specify several dimensions, None to compute the maximum over all dimensions. An boolean NDVar with the same dimensions as the data can be used to compute the maximum in specific elements (if the data has a case dimension, the maximum is computed for each case). Returns ------- max : NDVar | Var | float The maximum over specified dimensions. Returns a Var if only the case dimension remains, and a float if the function collapses over all data. """ return self._aggregate_over_dims(dims, np.max) def mean(self, dims=None): """Compute the mean over given dimensions Parameters ---------- dims : None | str | tuple of str | boolean NDVar Dimensions over which to operate. A str is used to specify a single dimension, a tuple of str to specify several dimensions, None to compute the mean over all dimensions. A boolean NDVar with the same dimensions as the data can be used to compute the mean in specific elements (if the data has a case dimension, the mean is computed for each case). Returns ------- mean : NDVar | Var | float The mean over specified dimensions. Returns a Var if only the case dimension remains, and a float if the function collapses over all data. """ return self._aggregate_over_dims(dims, np.mean) def min(self, dims=None): """Compute the minimum over given dimensions Parameters ---------- dims : None | str | tuple of str | boolean NDVar Dimensions over which to operate. A str is used to specify a single dimension, a tuple of str to specify several dimensions, None to compute the minimum over all dimensions. An boolean NDVar with the same dimensions as the data can be used to compute the minimum in specific elements (if the data has a case dimension, the minimum is computed for each case). Returns ------- min : NDVar | Var | float The minimum over specified dimensions. Returns a Var if only the case dimension remains, and a float if the function collapses over all data. """ return self._aggregate_over_dims(dims, np.min) def ols(self, x, name=None): """Sample-wise ordinary least squares regressions Parameters ---------- x : Model Predictor or predictors. Can also be supplied as argument that can be converted to a Model, for example ``Var`` or list of ``Var``. name : str Name for the output NDVar. Returns ------- beta : NDVar Per sample beta weights. The case dimension reflects the predictor variables in the same order as the Model's effects. Notes ----- The intercept is generated internally, and betas for the intercept are not returned. See Also -------- .ols_t : T-values for regression coefficients """ from ._stats import stats if not self.has_case: msg = ("Can only apply regression to NDVar with case dimension") raise DimensionMismatchError(msg) x = asmodel(x) if len(x) != len(self): msg = ("Predictors do not have same number of cases (%i) as the " "dependent variable (%i)" % (len(x), len(self))) raise DimensionMismatchError(msg) betas = stats.betas(self.x, x)[1:] # drop intercept info = self.info.copy() info.update(meas='beta', unit=None) if 'summary_info' in info: del info['summary_info'] return NDVar(betas, self.dims, info, name) def ols_t(self, x, name=None): """T-values for sample-wise ordinary least squares regressions Parameters ---------- x : Model Predictor or predictors. Can also be supplied as argument that can be converted to a Model, for example ``Var`` or list of ``Var``. name : str Name for the output NDVar. Returns ------- t : NDVar Per sample t-values. The case dimension reflects the predictor variables in the same order as the Model's effects. Notes ----- Betas for the intercept are not returned. See Also -------- .ols : Regression coefficients """ from ._stats import stats if not self.has_case: msg = ("Can only apply regression to NDVar with case dimension") raise DimensionMismatchError(msg) x = asmodel(x) if len(x) != len(self): msg = ("Predictors do not have same number of cases (%i) as the " "dependent variable (%i)" % (len(x), len(self))) raise DimensionMismatchError(msg) t = stats.lm_t(self.x, x)[1:] # drop intercept info = self.info.copy() return NDVar(t, self.dims, info, name) def repeat(self, repeats, dim='case', name=True): """ Analogous to :py:func:`numpy.repeat` Parameters ---------- repeats : int | array of ints The number of repetitions for each element. `repeats` is broadcasted to fit the shape of the given dimension. dim : str The dimension along which to repeat values (default 'case'). name : None | True | str Name of the output NDVar, ``True`` to keep the current name (default ``True``). """ ax = self.get_axis(dim) x = self.x.repeat(repeats, axis=ax) repdim = self.dims[ax] if not isinstance(repdim, str): repdim = repdim.repeat(repeats) dims = self.dims[:ax] + (repdim,) + self.dims[ax + 1:] info = self.info.copy() if name is True: name = self.name return NDVar(x, dims, info, name) def residuals(self, x, name=None): """ Residuals of sample-wise ordinary least squares regressions Parameters ---------- x : Model Predictor or predictors. Can also be supplied as argument that can be converted to a Model, for example ``Var`` or list of ``Var``. name : str Name for the output NDVar. Returns ------- residuals : NDVar Residual for each case and sample (same dimensions as data). """ if not self.has_case: msg = ("Can only apply regression to NDVar with case dimension") raise DimensionMismatchError(msg) x = asmodel(x) if len(x) != len(self): msg = ("Predictors do not have same number of cases (%i) as the " "dependent variable (%i)" % (len(x), len(self))) raise DimensionMismatchError(msg) from ._stats import stats res = stats.residuals(self.x, x) info = self.info.copy() return NDVar(res, self.dims, info, name) def rms(self, axis=None): """Compute the root mean square over given dimensions Parameters ---------- axis : None | str | tuple of str | boolean NDVar Dimensions over which to operate. A str is used to specify a single dimension, a tuple of str to specify several dimensions, None to compute the standard deviation over all values. An boolean NDVar with the same dimensions as the data can be used to compute the RMS in specific elements (if the data has a case dimension, the RMS is computed for each case). Returns ------- rms : NDVar | Var | float The root mean square over specified dimensions. Returns a Var if only the case dimension remains, and a float if the function collapses over all data. """ from ._stats.stats import rms return self._aggregate_over_dims(axis, rms) def std(self, dims=None): """Compute the standard deviation over given dimensions Parameters ---------- dims : None | str | tuple of str | boolean NDVar Dimensions over which to operate. A str is used to specify a single dimension, a tuple of str to specify several dimensions, None to compute the standard deviation over all values. An boolean NDVar with the same dimensions as the data can be used to compute the standard deviation in specific elements (if the data has a case dimension, the standard deviation is computed for each case). Returns ------- std : NDVar | Var | float The standard deviation over specified dimensions. Returns a Var if only the case dimension remains, and a float if the function collapses over all data. """ return self._aggregate_over_dims(dims, np.std) def summary(self, *dims, **regions): r""" Returns a new NDVar with specified dimensions collapsed. .. warning:: Data is collapsed over the different dimensions in turn using the provided function with an axis argument. For certain functions this is not equivalent to collapsing over several axes concurrently (e.g., np.var). dimension: A whole dimension is specified as string argument. This dimension is collapsed over the whole range. range: A range within a dimension is specified through a keyword-argument. Only the data in the specified range is included. Use like the :py:meth:`.sub` method. **additional kwargs:** func : callable Function used to collapse the data. Needs to accept an "axis" kwarg (default: np.mean) name : str Name for the new NDVar. Examples -------- Assuming ``data`` is a normal time series. Get the average in a time window:: >>> Y = data.summary(time=(.1, .2)) Get the peak in a time window:: >>> Y = data.summary(time=(.1, .2), func=np.max) Assuming ``meg`` is an NDVar with dimensions time and sensor. Get the average across sensors 5, 6, and 8 in a time window:: >>> roi = [5, 6, 8] >>> Y = meg.summary(sensor=roi, time=(.1, .2)) Get the peak in the same data: >>> roi = [5, 6, 8] >>> peak = meg.summary(sensor=roi, time=(.1, .2), func=np.max) Get the RMS over all sensors >>> meg_rms = meg.summary('sensor', func=rms) """ if 'func' in regions: func = regions.pop('func') elif 'summary_func' in self.info: func = self.info['summary_func'] else: func = np.mean name = regions.pop('name', None) if len(dims) + len(regions) == 0: dims = ('case',) if regions: dims = list(dims) data = self.sub(**regions) dims.extend(dim for dim in regions if data.has_dim(dim)) return data.summary(*dims, func=func, name=name) else: x = self.x axes = [self._dim_2_ax[dim] for dim in dims] dims = list(self.dims) for axis in sorted(axes, reverse=True): x = func(x, axis=axis) dims.pop(axis) # update info for summary info = self.info.copy() if 'summary_info' in info: info.update(info.pop('summary_info')) if len(dims) == 0: return x elif dims == ['case']: return Var(x, name, info=info) else: return NDVar(x, dims, info, name) def sub(self, *args, **kwargs): """Retrieve a slice through the NDVar. Returns an NDVar object with a slice of the current NDVar's data. The slice is specified using arguments and keyword arguments. Indexes for dimensions can ether be specified in order, or with dimension names as keywords, e.g.:: >>> Y.sub(time = 1) returns a slice for time point 1 (second). If time is the first dimension, this is equivalent:: >>> Y.sub(1) For dimensions whose values change monotonically, a tuple can be used to specify a window:: >>> Y.sub(time = (.2, .6)) returns a slice containing all values for times .2 seconds to .6 seconds. The name of the new NDVar can be set with a ``name`` parameter. The default is the name of the current NDVar. """ var_name = kwargs.pop('name', self.name) info = self.info.copy() dims = list(self.dims) n_axes = len(dims) index = [full_slice] * n_axes index_args = [None] * n_axes # sequence args for i, arg in enumerate(args): if isndvar(arg): if arg.has_case: raise ValueError("NDVar with case dimension can not serve" "as NDVar index") dimax = self.get_axis(arg.dims[0].name) if index_args[dimax] is None: index_args[dimax] = arg else: raise IndexError("Index for %s dimension specified twice." % arg.dims[0].name) else: index_args[i] = arg # sequence kwargs for dimname, arg in kwargs.iteritems(): dimax = self.get_axis(dimname) if index_args[dimax] is None: index_args[dimax] = arg else: raise RuntimeError("Index for %s dimension specified twice." % dimname) # process indexes for dimax, idx in enumerate(index_args): if idx is None: continue dim = self.dims[dimax] # find index if dimax >= self.has_case: idx = dim.dimindex(idx) else: idx = dimindex_case(idx) index[dimax] = idx # find corresponding dim if np.isscalar(idx): dims[dimax] = None elif dimax >= self.has_case: dims[dimax] = dim[idx] else: dims[dimax] = dim # adjust index dimension if sum(isinstance(idx, np.ndarray) for idx in index) > 1: ndim_increment = 0 for i in xrange(n_axes - 1, -1, -1): idx = index[i] if ndim_increment and isinstance(idx, (slice, np.ndarray)): if isinstance(idx, slice): idx = slice_to_arange(idx, len(dims[i])) elif idx.dtype.kind == 'b': idx = np.flatnonzero(idx) index[i] = idx[(full_slice,) + (None,) * ndim_increment] if isinstance(idx, np.ndarray): ndim_increment += 1 # create NDVar dims = tuple(dim for dim in dims if dim is not None) if dims == ('case',): return Var(self.x[tuple(index)], var_name, info=info) elif dims: return NDVar(self.x[tuple(index)], dims, info, var_name) else: return self.x[tuple(index)] def subdata(self, **kwargs): "Deprecated. Use .sub() method (with identical functionality)." warn("NDVar.subdata is deprecated; use NDVar.sub instead " "(with identical functionality).", DeprecationWarning) return self.sub(**kwargs) def sum(self, dims=None): """Compute the sum over given dimensions Parameters ---------- dims : None | str | tuple of str | boolean NDVar Dimensions over which to operate. A str is used to specify a single dimension, a tuple of str to specify several dimensions, None to compute the sum over all dimensions. An boolean NDVar with the same dimensions as the data can be used to compute the sum in specific elements (if the data has a case dimension, the sum is computed for each case). Returns ------- sum : NDVar | Var | float The sum over specified dimensions. Returns a Var if only the case dimension remains, and a float if the function collapses over all data. """ return self._aggregate_over_dims(dims, np.sum) def extrema(x, axis=0): "Extract the extreme values in x" max = np.max(x, axis) min = np.min(x, axis) return np.where(np.abs(max) > np.abs(min), max, min) class Datalist(list): """:py:class:`list` subclass for including lists in in a Dataset. Parameters ---------- items : sequence Content for the Datalist. name : str Name of the Datalist. fmt : 'repr' | 'str' | 'strlist' How to format items when converting Datasets to tables (default 'repr' uses the normal object representation). Notes ----- Modifications: - adds certain methods that makes indexing behavior more similar to numpy and other data objects - blocks methods for in place modifications that would change the lists's length Examples -------- Concise string representation: >>> l = [['a', 'b'], [], ['a']] >>> print Datalist(l) [['a', 'b'], [], ['a']] >>> print Datalist(l, fmt='strlist') [[a, b], [], [a]] """ _stype = 'list' _fmt = 'repr' # for backwards compatibility with old pickles def __init__(self, items=None, name=None, fmt='repr'): if fmt not in ('repr', 'str', 'strlist'): raise ValueError("fmt=%s" % repr(fmt)) self.name = name self._fmt = fmt if items: super(Datalist, self).__init__(items) else: super(Datalist, self).__init__() def __repr__(self): args = super(Datalist, self).__repr__() if self.name is not None: args += ', %s' % repr(self.name) if self._fmt != 'repr': args += ', fmt=%s' % repr(self._fmt) return "Datalist(%s)" % args def __str__(self): return "[%s]" % ', '.join(self._item_repr(i) for i in self) def _item_repr(self, item): if self._fmt == 'str': return str(item) elif self._fmt == 'repr': return repr(item) elif self._fmt == 'strlist': return "[%s]" % ', '.join(item) else: raise RuntimeError("Datalist._fmt=%s" % repr(self._fmt)) def __getitem__(self, index): if isinstance(index, int): return list.__getitem__(self, index) elif isinstance(index, slice): return Datalist(list.__getitem__(self, index), fmt=self._fmt) index = np.asarray(index) if index.dtype.kind == 'b': if len(index) != len(self): raise ValueError("Boolean index needs to have same length as " "Datalist") return Datalist((self[i] for i in np.flatnonzero(index)), fmt=self._fmt) elif index.dtype.kind == 'i': return Datalist((self[i] for i in index), fmt=self._fmt) else: err = ("Unsupported type of index for Datalist: %r" % index) raise TypeError(err) def __getslice__(self, i, j): return Datalist(list.__getslice__(self, i, j), fmt=self._fmt) def __add__(self, other): return Datalist(super(Datalist, self).__add__(other), fmt=self._fmt) def compress(self, X, merge='mean'): "Deprecated. Use .aggregate()." warn("Var.compress s deprecated; use Var.aggregate instead" "(with identical functionality).", DeprecationWarning) self.aggregate(X, merge) def aggregate(self, X, merge='mean'): """ Summarize cases for each cell in X Parameters ---------- X : categorial Cells which to aggregate. merge : str How to merge entries. ``'mean'``: sum elements and dividie by cell length """ if len(X) != len(self): err = "Length mismatch: %i (Var) != %i (X)" % (len(self), len(X)) raise ValueError(err) x = [] for cell in X.cells: x_cell = self[X == cell] n = len(x_cell) if n == 1: x.append(x_cell) elif n > 1: if merge == 'mean': xc = reduce(lambda x, y: x + y, x_cell) xc /= n else: raise ValueError("Invalid value for merge: %r" % merge) x.append(xc) return Datalist(x, fmt=self._fmt) def __iadd__(self, other): return self + other def append(self, p_object): raise TypeError("Datalist has fixed length to conform to Dataset") def extend(self, iterable): raise TypeError("Datalist has fixed length to conform to Dataset") def insert(self, index, p_object): raise TypeError("Datalist has fixed length to conform to Dataset") def pop(self, index=None): raise TypeError("Datalist has fixed length to conform to Dataset") def remove(self, value): raise TypeError("Datalist has fixed length to conform to Dataset") legal_dataset_key_re = re.compile("[_A-Za-z][_a-zA-Z0-9]*$") def assert_is_legal_dataset_key(key): if iskeyword(key): msg = ("%r is a reserved keyword and can not be used as variable name " "in a Dataset" % key) raise ValueError(msg) elif not legal_dataset_key_re.match(key): msg = ("%r is not a valid keyword and can not be used as variable name " "in a Dataset" % key) raise ValueError(msg) def as_legal_dataset_key(key): "Convert str to a legal dataset key" if iskeyword(key): return "%s_" % key elif legal_dataset_key_re.match(key): return key else: if ' ' in key: key = key.replace(' ', '_') for c in string.punctuation: if c in key: key = key.replace(c, '_') if key == '': key = '_' elif key[0].isdigit(): key = "_%s" % key if legal_dataset_key_re.match(key): return key else: raise RuntimeError("Could not convert %r to legal dataset key") class Dataset(OrderedDict): """ Stores multiple variables pertaining to a common set of measurement cases Superclass: :class:`collections.OrderedDict` Parameters ---------- items : iterator Items contained in the Dataset. Items can be either named data-objects or ``(name, data_object)`` tuples. The Dataset stores the input items themselves, without making a copy(). name : str Name for the Dataset. caption : str Caption for the table. info : dict Info dictionary, can contain arbitrary entries and can be accessed as ``.info`` attribute after initialization. The Dataset makes a shallow copy. n_cases : int Specify the number of cases in the Dataset if no items are added upon initialization (by default the number is inferred when the fist item is added). Attributes ---------- n_cases : None | int The number of cases in the Dataset (corresponding to the number of rows in the table representation). None if no variables have been added. n_items : int The number of items (variables) in the Dataset (corresponding to the number of columns in the table representation). Notes ----- A Dataset represents a data table as a ``{variable_name: value_list}`` dictionary. Each variable corresponds to a column, and each index in the value list corresponds to a row, or case. The Dataset class inherits most of its behavior from its superclass :py:class:`collections.OrderedDict`. Dictionary keys are enforced to be :py:class:`str` objects and should correspond to the variable names. As for a dictionary, The Dataset's length (``len(ds)``) reflects the number of variables in the Dataset (i.e., the number of rows). **Accessing Data** Standard indexing with :class:`str` is used to access the contained Var and Factor objects: - ``ds['var1']`` --> ``var1``. - ``ds['var1',]`` --> ``Dataset([var1])``. - ``ds['var1', 'var2']`` --> ``Dataset([var1, var2])`` When indexing numerically, the first index defines cases (rows): - ``ds[1]`` --> row 1 - ``ds[1:5]`` or ``ds[1,2,3,4]`` --> rows 1 through 4 - ``ds[1, 5, 6, 9]`` or ``ds[[1, 5, 6, 9]]`` --> rows 1, 5, 6 and 9 The second index accesses columns, so case indexing can be combined with column indexing: - ``ds[:4, :2]`` --> first 4 rows of first 2 columns Index a single case retrieves an individual case as ``{name: value}`` dictionaries: - ``ds[1]`` --> ``{'var': 1, 'factor': 'value', ...}`` The :meth:`.itercases` method can be used to iterate over cases as :class:`dict`. **Naming** While Var and Factor objects themselves need not be named, they need to be named when added to a Dataset. This can be done by a) adding a name when initializing the Dataset:: >>> ds = Dataset((('v1', var1), ('v2', var2))) or b) by adding the Var or Factor with a key:: >>> ds['v3'] = var3 If a Var/Factor that is added to a Dataset does not have a name, the new key is automatically assigned to the Var/Factor's ``.name`` attribute. Examples -------- Datasets can be initialize with data-objects, or with ('name', data-object) tuples:: >>> ds = Dataset((var1, var2)) >>> ds = Dataset((('v1', var1), ('v2', var2))) Alternatively, variables can be added after initialization:: >>> ds = Dataset(n_cases=3) >>> ds['var', :] = 0 >>> ds['factor', :] = 'a' >>> print ds var factor ------------- 0 a 0 a 0 a """ _stype = "dataset" @staticmethod def _args(items=(), name=None, caption=None, info={}, n_cases=None): return items, name, caption, info, n_cases def __init__(self, *args, **kwargs): # backwards compatibility if args: fmt_1 = isdataobject(args[0]) fmt_2 = isinstance(args[0], tuple) and isinstance(args[0][0], str) if fmt_1: warn("Initializing Datasets with multiple data-objects is " "deprecated. Provide a list of data-objects instead.", DeprecationWarning) if fmt_1 or fmt_2: items, name, caption, info, n_cases = self._args(args, **kwargs) else: items, name, caption, info, n_cases = self._args(*args, **kwargs) else: items, name, caption, info, n_cases = self._args(**kwargs) # collect initial items args = [] for item in items: if isdataobject(item): if item.name: args.append((item.name, item)) else: err = ("items need to be named in a Dataset; use " "Dataset(('name', item), ...), or ds = Dataset(); " "ds['name'] = item") raise ValueError(err) else: name, v = item if not v.name: v.name = name args.append(item) if n_cases is not None: assert isinstance(n_cases, int) self.n_cases = n_cases super(Dataset, self).__init__(args) # set state self.name = name self.info = info.copy() self._caption = caption def __setstate__(self, state): # for backwards compatibility self.name = state['name'] self.info = state['info'] self._caption = state.get('caption', None) def __reduce__(self): return self.__class__, (self.items(), self.name, self._caption, self.info, self.n_cases) def __getitem__(self, index): """ possible:: >>> ds[9] (int) -> dictionary for one case >>> ds[9:12] (slice) -> subset with those cases >>> ds[[9, 10, 11]] (list) -> subset with those cases >>> ds['MEG1'] (strings) -> Var >>> ds['MEG1', 'MEG2'] (list of strings) -> list of vars; can be nested! """ if isinstance(index, int): return self.get_case(index) elif isinstance(index, slice): return self.sub(index) if isinstance(index, basestring): return super(Dataset, self).__getitem__(index) if not np.iterable(index): raise KeyError("Invalid index for Dataset: %r" % index) if all(isinstance(item, basestring) for item in index): return Dataset(((item, self[item]) for item in index)) if isinstance(index, tuple): if len(index) != 2: raise KeyError("Invalid index for Dataset: %s" % repr(index)) i0, i1 = index if isinstance(i0, basestring): return self[i1, i0] elif isinstance(i1, basestring): return self[i1][i0] elif np.iterable(i0) and isinstance(i0[0], basestring): return self[i1, i0] elif np.iterable(i1) and all(isinstance(item, basestring) for item in i1): keys = i1 else: keys = Datalist(self.keys())[i1] if isinstance(keys, basestring): return self[i1][i0] subds = Dataset(((k, self[k][i0]) for k in keys)) return subds return self.sub(index) def __repr__(self): class_name = self.__class__.__name__ if self.n_cases is None: items = [] if self.name: items.append('name=%r' % self.name) if self.info: info = repr(self.info) if len(info) > 60: info = '<...>' items.append('info=%s' % info) return '%s(%s)' % (class_name, ', '.join(items)) rep_tmp = "<%(class_name)s %(name)s%(N)s{%(items)s}>" fmt = {'class_name': class_name} fmt['name'] = '%r ' % self.name if self.name else '' fmt['N'] = 'n_cases=%i ' % self.n_cases items = [] for key in self: v = self[key] if isinstance(v, Var): lbl = 'V' elif isinstance(v, Factor): lbl = 'F' elif isinstance(v, NDVar): lbl = 'Vnd' else: lbl = type(v).__name__ if getattr(v, 'name', key) == key: item = '%r:%s' % (key, lbl) else: item = '%r:<%s %r>' % (key, lbl, v.name) items.append(item) fmt['items'] = ', '.join(items) return rep_tmp % fmt def __setitem__(self, index, item, overwrite=True): if isinstance(index, basestring): # test if name already exists if (not overwrite) and (index in self): raise KeyError("Dataset already contains variable of name %r" % index) assert_is_legal_dataset_key(index) # coerce item to data-object if isdataobject(item) or isinstance(object, Datalist): if not item.name: item.name = index elif isinstance(item, (list, tuple)): item = Datalist(item, name=index) else: pass # make sure the item has the right length if isndvar(item) and not item.has_case: N = 0 else: N = len(item) if self.n_cases is None: self.n_cases = N elif self.n_cases != N: msg = ("Can not assign item to Dataset. The item`s length " "(%i) is different from the number of cases in the " "Dataset (%i)." % (N, self.n_cases)) raise ValueError(msg) super(Dataset, self).__setitem__(index, item) elif isinstance(index, tuple): if len(index) != 2: err = ("Dataset indexes can have only two components; direct " "access to NDVars is not implemented") raise NotImplementedError(err) key, idx = index if isinstance(idx, basestring): key, idx = idx, key elif not isinstance(key, basestring): TypeError("Dataset indexes need variable specified as string") if key in self: self[key][idx] = item elif isinstance(idx, slice): if idx.start is None and idx.stop is None: if isinstance(item, basestring): self[key] = Factor([item], repeat=self.n_cases) else: self[key] = Var([item] * self.n_cases) else: err = ("Can only add Factor with general value for all " "cases (ds['name',:] = ...") raise NotImplementedError(err) else: raise NotImplementedError("Advanced Dataset indexing") else: raise NotImplementedError("Advanced Dataset indexing") def __str__(self): return unicode(self).encode('utf-8') def __unicode__(self): if sum(isuv(i) or isdatalist(i) for i in self.values()) == 0: return self.__repr__() maxn = preferences['dataset_str_n_cases'] txt = unicode(self.as_table(maxn, '%.5g', midrule=True, lfmt=True)) if self.n_cases > maxn: note = "... (use .as_table() method to see the whole Dataset)" txt = os.linesep.join((txt, note)) return txt def _check_n_cases(self, X, empty_ok=True): """Check that an input argument has the appropriate length. Also raise an error if empty_ok is False and the Dataset is empty. """ if self.n_cases is None: if empty_ok == True: return else: err = ("Dataset is empty.") raise RuntimeError(err) n = len(X) if self.n_cases != n: name = getattr(X, 'name', "the argument") err = ("The Dataset has a different length (%i) than %s " "(%i)" % (self.n_cases, name, n)) raise ValueError(err) def add(self, item, replace=False): """``ds.add(item)`` -> ``ds[item.name] = item`` unless the Dataset already contains a variable named item.name, in which case a KeyError is raised. In order to replace existing variables, set ``replace`` to True:: >>> ds.add(item, True) """ if not isdataobject(item): raise ValueError("Not a valid data-object: %r" % item) elif (item.name in self) and not replace: raise KeyError("Dataset already contains variable named %r" % item.name) else: self[item.name] = item def add_empty_var(self, name, dtype=np.float64): """Create an empty variable in the dataset Parameters ---------- name : str Name for the new variable. dtype : numpy dtype Data type of the new variable (default is float64). Returns ------- var : Var The new variable. """ if self.n_cases is None: err = "Can't add variable to a Dataset without length" raise RuntimeError(err) x = np.empty(self.n_cases, dtype=dtype) v = Var(x) self[name] = v return v def as_table(self, cases=0, fmt='%.6g', sfmt='%s', sort=False, header=True, midrule=False, count=False, title=None, caption=None, ifmt='%s', bfmt='%s', lfmt=False): r""" Create an fmtxt.Table containing all Vars and Factors in the Dataset. Can be used for exporting in different formats such as csv. Parameters ---------- cases : int | iterator of int Cases to include (int includes that many cases from the beginning, 0 includes all; negative number works like negative indexing). fmt : str Format string for float variables (default ``'%.6g'``). sfmt : str | None Formatting for strings (None -> code; default ``'%s'``). sort : bool Sort the columns alphabetically. header : bool Include the varibale names as a header row. midrule : bool print a midrule after table header. count : bool Add an initial column containing the case number. title : None | str Title for the table. caption : None | str Caption for the table (default is the Dataset's caption). ifmt : str Formatting for integers (default ``'%s'``). bfmt : str Formatting for booleans (default ``'%s'``). lfmt : bool Include Datalists. """ if isinstance(cases, int): if cases < 1: cases = self.n_cases + cases if cases < 0: raise ValueError("Can't get table for fewer than 0 cases") else: cases = min(cases, self.n_cases) cases = xrange(cases) keys = [k for k, v in self.iteritems() if isuv(v) or (lfmt and isdatalist(v))] if sort: keys = sorted(keys) if caption is None: caption = self._caption values = [self[key] for key in keys] fmts = [] for v in values: if isfactor(v): fmts.append(sfmt) elif isintvar(v): fmts.append(ifmt) elif isboolvar(v): fmts.append(bfmt) elif isdatalist(v): fmts.append('dl') else: fmts.append(fmt) columns = 'l' * (len(keys) + count) table = fmtxt.Table(columns, True, title, caption) if header: if count: table.cell('#') for name in keys: table.cell(name) if midrule: table.midrule() for i in cases: if count: table.cell(i) for v, fmt_ in izip(values, fmts): if fmt_ is None: table.cell(v.x[i]) elif fmt_ == 'dl': table.cell(v._item_repr(v[i])) elif fmt_.endswith(('r', 's')): table.cell(fmt_ % v[i]) else: table.cell(fmtxt.Number(v[i], fmt=fmt_)) return table def _asfmtext(self): return self.as_table() def export(self, fn=None, fmt='%.10g', header=True, sort=False): """This method is deprecated. Use .save(), .save_pickled(), .save_txt() or .save_tex() instead. """ msg = ("The Dataset.export() method is deprecated. Use .save(), " ".save_pickled(), .save_txt() or .save_tex() instead.") warn(msg, DeprecationWarning) if not isinstance(fn, basestring): fn = ui.ask_saveas(filetypes=[("Tab-separated values", '*.txt'), ("Tex table", '*.tex'), ("Pickle", '*.pickled')]) if fn: print 'saving %r' % fn else: return ext = os.path.splitext(fn)[1][1:] if ext == 'pickled': with open(fn, 'wb') as fid: pickle.dump(self, fid) else: table = self.as_table(fmt=fmt, header=header, sort=sort) if ext in ['txt', 'tsv']: table.save_tsv(fn, fmt=fmt) elif ext == 'tex': table.save_tex(fn) else: table.save_tsv(fn, fmt=fmt) def eval(self, expression): """ Evaluate an expression involving items stored in the Dataset. Parameters ---------- expression : str Python expression to evaluate, with scipy constituting the global namespace and the current Dataset constituting the local namespace. Notes ----- ``ds.eval(expression)`` is equivalent to ``eval(expression, scipy, ds)``. Examples -------- In a Dataset containing factors 'A' and 'B':: >>> ds.eval('A % B') A % B """ if not isinstance(expression, basestring): err = ("Eval needs expression of type unicode or str. Got " "%s" % type(expression)) raise TypeError(err) return eval(expression, vars(scipy), self) @classmethod def from_caselist(cls, names, cases): """Create a Dataset from a list of cases Parameters ---------- names : sequence of str Names for the variables. cases : sequence A sequence of cases, whereby each case is itself represented as a sequence of values (str or scalar). Variable type (Factor or Var) is inferred from whether values are str or not. """ ds = cls() for i, name in enumerate(names): values = [case[i] for case in cases] if any(isinstance(v, basestring) for v in values): ds[name] = Factor(values) else: ds[name] = Var(values) return ds @classmethod def from_r(cls, name): """Create a Dataset from an R data frame through ``rpy2`` Parameters ---------- name : str Name of the dataframe in R. Examples -------- Getting an example dataset from R: >>> from rpy2.robjects import r >>> r('data(sleep)') >>> ds = Dataset.from_r('sleep') >>> print ds extra group ID ------------------ 0.7 1 1 -1.6 1 2 -0.2 1 3 -1.2 1 4 -0.1 1 5 3.4 1 6 3.7 1 7 0.8 1 8 0 1 9 2 1 10 1.9 2 1 0.8 2 2 1.1 2 3 0.1 2 4 -0.1 2 5 4.4 2 6 5.5 2 7 1.6 2 8 4.6 2 9 3.4 2 10 """ from rpy2 import robjects as ro df = ro.r[name] if not isinstance(df, ro.DataFrame): raise ValueError("R object %r is not a DataFrame") ds = cls(name=name) for item_name, item in df.items(): if isinstance(item, ro.FactorVector): x = np.array(item) labels = {i:l for i, l in enumerate(item.levels, 1)} ds[item_name] = Factor(x, labels=labels) elif isinstance(item, (ro.FloatVector, ro.IntVector)): x = np.array(item) ds[item_name] = Var(x) else: raise NotImplementedError(str(type(item))) return ds def get_case(self, i): "returns the i'th case as a dictionary" return dict((k, v[i]) for k, v in self.iteritems()) def get_subsets_by(self, X, exclude=[], name='{name}[{cell}]'): """ splits the Dataset by the cells of a Factor and returns as dictionary of subsets. """ if isinstance(X, basestring): X = self[X] out = {} for cell in X.cells: if cell not in exclude: setname = name.format(name=self.name, cell=cell) index = (X == cell) out[cell] = self.sub(index, setname) return out def compress(self, X, drop_empty=True, name='{name}', count='n', drop_bad=False, drop=()): "Deprecated. Use .aggregate()." warn("Dataset.compress s deprecated; use Dataset.aggregate instead" "(with identical functionality).", DeprecationWarning) return self.aggregate(X, drop_empty, name, count, drop_bad, drop) def aggregate(self, x=None, drop_empty=True, name='{name}', count='n', drop_bad=False, drop=(), equal_count=False, never_drop=()): """ Return a Dataset with one case for each cell in X. Parameters ---------- x : None | str | categorial Model defining cells to which to reduce cases. By default (``None``) the Dataset is reduced to a single case. drop_empty : bool Drops empty cells in X from the Dataset. This is currently the only option. name : str Name of the new Dataset. count : None | str Add a variable with this name to the new Dataset, containing the number of cases in each cell in X. drop_bad : bool Drop bad items: silently drop any items for which compression raises an error. This concerns primarily factors with non-unique values for cells in X (if drop_bad is False, an error is raised when such a Factor is encountered) drop : sequence of str Additional data-objects to drop. equal_count : bool Make sure the same number of rows go into each average. First, the cell with the smallest number of rows is determined. Then, for each cell, rows beyond that number are dropped. never_drop : sequence of str If the drop_bad=True setting would lead to dropping a variable whose name is in never_drop, raise an error instead. Notes ----- Handle mne Epoch objects by creating a list with an mne Evoked object for each cell. """ if not drop_empty: raise NotImplementedError('drop_empty = False') if x: if equal_count: self = self.equalize_counts(x) x = ascategorial(x, ds=self) else: x = Factor('a' * self.n_cases) ds = Dataset(name=name.format(name=self.name), info=self.info) if count: n_cases = filter(None, (np.sum(x == cell) for cell in x.cells)) ds[count] = Var(n_cases) for k, v in self.iteritems(): if k in drop: continue try: if hasattr(v, 'aggregate'): ds[k] = v.aggregate(x) else: from mne import Epochs if isinstance(v, Epochs): evokeds = [] for cell in x.cells: idx = (x == cell) if idx.sum(): evokeds.append(v[idx].average()) ds[k] = evokeds else: err = ("Unsupported value type: %s" % type(v)) raise TypeError(err) except: if drop_bad and k not in never_drop: pass else: raise return ds def copy(self, name=True): "ds.copy() returns an shallow copy of ds" if name is True: name = self.name return Dataset(self.items(), name, self._caption, self.info, self.n_cases) def equalize_counts(self, X): """Create a copy of the Dataset with equal counts in each cell of X Parameters ---------- X : categorial Model which defines the cells in which to equalize the counts. Returns ------- equalized_ds : Dataset Dataset with equal number of cases in each cell of X. Notes ----- First, the cell with the smallest number of rows is determined (empty cells are ignored). Then, for each cell, rows beyond that number are dropped. """ X = ascategorial(X, ds=self) self._check_n_cases(X, empty_ok=False) indexes = np.array([X == cell for cell in X.cells]) n_by_cell = indexes.sum(1) n = np.setdiff1d(n_by_cell, [0]).min() for index in indexes: np.logical_and(index, index.cumsum() <= n, index) index = indexes.any(0) return self[index] def head(self, n=10): "Table with the first n cases in the Dataset" return self.as_table(n, '%.5g', midrule=True, lfmt=True) def index(self, name='index', start=0): """ Add an index to the Dataset (i.e., `range(n_cases)`), e.g. for later alignment. Parameters ---------- name : str Name of the new index variable. start : int Number at which to start the index. """ self[name] = Var(np.arange(start, self.n_cases + start)) def itercases(self, start=None, stop=None): "iterate through cases (each case represented as a dict)" if start is None: start = 0 if stop is None: stop = self.n_cases elif stop < 0: stop = self.n_cases - stop for i in xrange(start, stop): yield self.get_case(i) @property def n_items(self): return super(Dataset, self).__len__() def rename(self, old, new): """Shortcut to rename a data-object in the Dataset. Parameters ---------- old : str Current name of the data-object. new : str New name for the data-object. """ if old not in self: raise KeyError("No item named %r" % old) if new in self: raise ValueError("Dataset already has variable named %r" % new) assert_is_legal_dataset_key(new) # update map node = self._OrderedDict__map.pop(old) node[2] = new self._OrderedDict__map[new] = node # update dict entry obj = self[old] dict.__delitem__(self, old) dict.__setitem__(self, new, obj) # update object name if hasattr(obj, 'name'): obj.name = new self[new] = obj def repeat(self, repeats, name='{name}'): """ Returns a new Dataset with each row repeated ``n`` times. Parameters ---------- repeats : int | array of int Number of repeats, either a constant or a different number for each element. name : str Name for the new Dataset. """ if self.n_cases is None: raise RuntimeError("Can't repeat Dataset with unspecified n_cases") if isinstance(repeats, int): n_cases = self.n_cases * repeats else: n_cases = sum(repeats) return Dataset(((k, v.repeat(repeats)) for k, v in self.iteritems()), name.format(name=self.name), self._caption, self.info, n_cases) @property def shape(self): return (self.n_cases, self.n_items) def sort(self, order, descending=False): """Sort the Dataset in place. Parameters ---------- order : str | data-object Data object (Var, Factor or interactions) according to whose values to sort the Dataset, or its name in the Dataset. descending : bool Sort in descending instead of an ascending order. See Also -------- .sort_idx : Create an index that could be used to sort the Dataset .sorted : Create a sorted copy of the Dataset """ idx = self.sort_idx(order, descending) for k in self: self[k] = self[k][idx] def sort_idx(self, order, descending=False): """Create an index that could be used to sort the Dataset. Parameters ---------- order : str | data-object Data object (Var, Factor or interactions) according to whose values to sort the Dataset, or its name in the Dataset. descending : bool Sort in descending instead of an ascending order. See Also -------- .sort : sort the Dataset in place .sorted : Create a sorted copy of the Dataset """ if isinstance(order, basestring): order = self.eval(order) if not len(order) == self.n_cases: err = ("Order must be of same length as Dataset; got length " "%i." % len(order)) raise ValueError(err) idx = order.sort_idx(descending=descending) return idx def save(self): """Shortcut to save the Dataset, will display a system file dialog Notes ----- Use specific save methods for more options. See Also -------- .save_pickled : Pickle the Dataset .save_txt : Save as text file .save_tex : Save as teX table .as_table : Create a table with more control over formatting """ title = "Save Dataset" if self.name: title += ' %s' % self.name msg = "" filetypes = [_pickled_ds_wildcard, _tsv_wildcard, _tex_wildcard] path = ui.ask_saveas(title, msg, filetypes, defaultFile=self.name) _, ext = os.path.splitext(path) if ext == '.pickled': self.save_pickled(path) elif ext == '.txt': self.save_txt(path) elif ext == '.tex': self.save_tex(path) else: err = ("Unrecognized extension: %r. Needs to be .pickled, .txt or " ".tex." % ext) raise ValueError(err) def save_rtf(self, path=None, fmt='%.3g'): """Save the Dataset as TeX table. Parameters ---------- path : None | str Target file name (if ``None`` is supplied, a save file dialog is displayed). If no extension is specified, '.tex' is appended. fmt : format string Formatting for scalar values. """ table = self.as_table(fmt=fmt) table.save_rtf(path) def save_tex(self, path=None, fmt='%.3g', header=True, midrule=True): """Save the Dataset as TeX table. Parameters ---------- path : None | str Target file name (if ``None`` is supplied, a save file dialog is displayed). If no extension is specified, '.tex' is appended. fmt : format string Formatting for scalar values. header : bool Include the varibale names as a header row. midrule : bool print a midrule after table header. """ if not isinstance(path, basestring): title = "Save Dataset" if self.name: title += ' %s' % self.name title += " as TeX Table" msg = "" path = ui.ask_saveas(title, msg, [_tex_wildcard], defaultFile=self.name) _, ext = os.path.splitext(path) if not ext: path += '.tex' table = self.as_table(fmt=fmt, header=header, midrule=midrule) table.save_tex(path) def save_txt(self, path=None, fmt='%s', delim='\t', header=True): """Save the Dataset as text file. Parameters ---------- path : None | str Target file name (if ``None`` is supplied, a save file dialog is displayed). If no extension is specified, '.txt' is appended. fmt : format string Formatting for scalar values. delim : str Column delimiter (default is tab). header : bool write the variables' names in the first line """ if not isinstance(path, basestring): title = "Save Dataset" if self.name: title += ' %s' % self.name title += " as Text" msg = "" path = ui.ask_saveas(title, msg, [_tsv_wildcard], defaultFile=self.name) _, ext = os.path.splitext(path) if not ext: path += '.txt' table = self.as_table(fmt=fmt, header=header) table.save_tsv(path, fmt=fmt, delimiter=delim) def save_pickled(self, path=None): """Pickle the Dataset. Parameters ---------- path : None | str Target file name (if ``None`` is supplied, a save file dialog is displayed). If no extension is specified, '.pickled' is appended. """ if not isinstance(path, basestring): title = "Pickle Dataset" if self.name: title += ' %s' % self.name msg = "" path = ui.ask_saveas(title, msg, [_pickled_ds_wildcard], defaultFile=self.name) _, ext = os.path.splitext(path) if not ext: path += '.pickled' with open(path, 'wb') as fid: pickle.dump(self, fid, pickle.HIGHEST_PROTOCOL) def sorted(self, order, descending=False): """Create an sorted copy of the Dataset. Parameters ---------- order : str | data-object Data object (Var, Factor or interactions) according to whose values to sort the Dataset, or its name in the Dataset. descending : bool Sort in descending instead of an ascending order. See Also -------- .sort : sort the Dataset in place .sort_idx : Create an index that could be used to sort the Dataset """ idx = self.sort_idx(order, descending) ds = self[idx] return ds def sub(self, index, name='{name}'): """ Returns a Dataset containing only the cases selected by `index`. Parameters ---------- index : int | array | str Index for selecting a subset of cases. Can be an valid numpy index or a string (the name of a variable in Dataset, or an expression to be evaluated in the Dataset's namespace). name : str name for the new Dataset. Notes ----- Keep in mind that index is passed on to numpy objects, which means that advanced indexing always returns a copy of the data, whereas basic slicing (using slices) returns a view. """ if isinstance(index, int): if index == -1: index = slice(-1, None) else: index = slice(index, index + 1) elif isinstance(index, str): index = self.eval(index) if isvar(index): index = index.x return Dataset(((k, v[index]) for k, v in self.iteritems()), name.format(name=self.name), self._caption, self.info) def subset(self, index, name='{name}'): "Deprecated: use .sub() method with identical functionality." warn("Dataset.subset is deprecated; use Dataset.sub instead" "(with identical functionality).", DeprecationWarning) return self.sub(index, name) def tail(self, n=10): "Table with the last n cases in the Dataset" return self.as_table(xrange(-n, 0), '%.5g', midrule=True, lfmt=True) def to_r(self, name=None): """Place the Dataset into R as dataframe using rpy2 Parameters ---------- name : str Name for the R dataframe (default is self.name). Examples -------- >>> from rpy2.robjects import r >>> ds = datasets.get_uv() >>> print ds[:6] A B rm intvar fltvar fltvar2 index ----------------------------------------------------- a1 b1 s000 13 0.25614 0.7428 True a1 b1 s001 8 -1.5174 -0.75498 True a1 b1 s002 11 -0.5071 -0.13828 True a1 b1 s003 11 2.1491 -2.1249 True a1 b1 s004 15 -0.19358 -1.03 True a1 b1 s005 17 2.141 -0.51745 True >>> ds.to_r('df') >>> print r("head(df)") A B rm intvar fltvar fltvar2 index 1 a1 b1 s000 13 0.2561439 0.7427957 TRUE 2 a1 b1 s001 8 -1.5174371 -0.7549815 TRUE 3 a1 b1 s002 11 -0.5070960 -0.1382827 TRUE 4 a1 b1 s003 11 2.1490761 -2.1249203 TRUE 5 a1 b1 s004 15 -0.1935783 -1.0300188 TRUE 6 a1 b1 s005 17 2.1410424 -0.5174519 TRUE """ import rpy2.robjects as ro if name is None: name = self.name if name is None: raise TypeError('Need a valid name for the R data frame') items = OrderedDict() for k, v in self.iteritems(): if isvar(v): if v.x.dtype.kind == 'b': item = ro.BoolVector(v.x) elif v.x.dtype.kind == 'i': item = ro.IntVector(v.x) else: item = ro.FloatVector(v.x) elif isfactor(v): x = ro.IntVector(v.x) codes = sorted(v._labels) levels = ro.IntVector(codes) labels = ro.StrVector(tuple(v._labels[c] for c in codes)) item = ro.FactorVector(x, levels, labels) else: continue items[k] = item df = ro.DataFrame(items) ro.globalenv[name] = df def update(self, ds, replace=False, info=True): """Update the Dataset with all variables in ``ds``. Parameters ---------- ds : dict-like A dictionary like object whose keys are strings and whose values are data-objects. replace : bool If a variable in ds is already present, replace it. If False, duplicates raise a ValueError (unless they are equivalent). info : bool Also update the info dictionary. Notes ----- By default, if a key is present in both Datasets, and the corresponding variables are not equal on all cases, a ValueError is raised. If all values are equal, the variable in ds is copied into the Dataset that is being updated (the expected behavior of .update()). """ if not replace: unequal = [] for key in set(self).intersection(ds): if not np.all(self[key] == ds[key]): unequal.append(key) if unequal: err = ("The following variables are present twice but are not " "equal: %s" % unequal) raise ValueError(err) super(Dataset, self).update(ds) if info: self.info.update(ds.info) class Interaction(_Effect): """Represents an Interaction effect. Usually not initialized directly but through operations on Factors/Vars. Parameters ---------- base : list List of data-objects that form the basis of the interaction. Attributes ---------- factors : List of all factors (i.e. nonbasic effects are broken up into factors). base : All effects. """ _stype = "interaction" def __init__(self, base): # FIXME: Interaction does not update when component factors update self.base = EffectList() self.is_categorial = True self.nestedin = EffectList() for b in base: if isuv(b): self.base.append(b.copy()), if isvar(b): if self.is_categorial: self.is_categorial = False else: raise TypeError("No Interaction between two Var objects") elif isinteraction(b): if (not b.is_categorial) and (not self.is_categorial): raise TypeError("No Interaction between two Var objects") else: self.base.extend(b.base) self.is_categorial = (self.is_categorial and b.is_categorial) elif b._stype == "nested": # TODO: nested effects self.base.append(b) if b.nestedin not in self.nestedin: self.nestedin.append(b.nestedin) else: raise TypeError("Invalid type for Interaction: %r" % type(b)) if len(self.base) < 2: raise ValueError("Interaction needs a base of at least two Factors " "(got %s)" % repr(base)) self._n_cases = N = len(self.base[0]) if not all([len(f) == N for f in self.base[1:]]): err = ("Interactions only between effects with the same number of " "cases") raise ValueError(err) self.base_names = [str(f.name) for f in self.base] self.name = ' x '.join(self.base_names) self.random = False self.df = reduce(operator.mul, [f.df for f in self.base]) # determine cells: factors = EffectList(filter(isfactor, self.base)) self.cells = tuple(itertools.product(*(f.cells for f in factors))) self.cell_header = tuple(f.name for f in factors) self.beta_labels = ['?'] * self.df # TODO: def __repr__(self): names = [UNNAMED if f.name is None else f.name for f in self.base] if preferences['short_repr']: return ' % '.join(names) else: return "Interaction({n})".format(n=', '.join(names)) # container --- def __len__(self): return self._n_cases def __getitem__(self, index): if isvar(index): index = index.x out = tuple(f[index] for f in self.base) if index_ndim(index) == 1: return Interaction(out) else: return out def __contains__(self, item): if isinstance(item, tuple): return item in self._value_set return self.base.__contains__(item) def __iter__(self): for i in xrange(len(self)): yield tuple(b[i] for b in self.base) # numeric --- def __eq__(self, other): if isinteraction(other) and len(other.base) == len(self.base): x = np.vstack((b == bo for b, bo in izip(self.base, other.base))) return np.all(x, 0) elif isinstance(other, tuple) and len(other) == len(self.base): x = np.vstack(factor == level for factor, level in izip(self.base, other)) return np.all(x, 0) else: return np.zeros(len(self), bool) def __ne__(self, other): if isinteraction(other) and len(other.base) == len(self.base): x = np.vstack((b != bo for b, bo in izip(self.base, other.base))) return np.any(x, 0) elif isinstance(other, tuple) and len(other) == len(self.base): x = np.vstack(factor != level for factor, level in izip(self.base, other)) return np.any(x, 0) return np.ones(len(self), bool) def as_factor(self, delim=' ', name=None): """Convert the Interaction to a factor Parameters ---------- delim : str Delimiter to join factor cell values (default ``" "``). name : str Name for the Factor (default is None). Examples -------- >>> print ds[::20, 'A'] Factor(['a1', 'a1', 'a2', 'a2'], name='A') >>> print ds[::20, 'B'] Factor(['b1', 'b2', 'b1', 'b2'], name='B') >>> i = ds.eval("A % B") >>> print i.as_factor()[::20] Factor(['a1 b1', 'a1 b2', 'a2 b1', 'a2 b2'], name='AxB') >>> print i.as_factor("_")[::20] Factor(['a1_b1', 'a1_b2', 'a2_b1', 'a2_b2'], name='AxB') """ return Factor(self.as_labels(delim), name) def as_cells(self): """All values as a list of tuples.""" return [case for case in self] @LazyProperty def as_dummy(self): codelist = [f.as_dummy for f in self.base] return reduce(_effect_interaction, codelist) @LazyProperty def as_effects(self): "effect coding" codelist = [f.as_effects for f in self.base] return reduce(_effect_interaction, codelist) def _coefficient_names(self, method): return ["%s %i" % (self.name, i) for i in xrange(self.df)] def as_labels(self, delim=' '): """All values as a list of strings. Parameters ---------- delim : str Delimiter with which to join the elements of cells. """ return [delim.join(filter(None, map(str, case))) for case in self] def compress(self, X): "Deprecated. Use .aggregate()." warn("Interaction.compress s deprecated; use Interaction.aggregate " "instead (with identical functionality).", DeprecationWarning) self.aggregate(X) def aggregate(self, X): return Interaction(f.aggregate(X) for f in self.base) def isin(self, cells): """An index that is true where the Interaction equals any of the cells. Parameters ---------- cells : sequence of tuples Cells for which the index will be true. Cells described as tuples of strings. """ is_v = [self == cell for cell in cells] return np.any(is_v, 0) @LazyProperty def _value_set(self): return set(self) class diff(object): """ helper to create difference values for correlation. """ def __init__(self, X, c1, c2, match, sub=None): """ X: Factor providing categories c1: category 1 c2: category 2 match: Factor matching values between categories """ raise NotImplementedError # FIXME: use celltable sub = X.isany(c1, c2) # ct = celltable # ... i1 = X.code_for_label(c1) i2 = X.code_for_label(c2) self.I1 = X == i1 self.I2 = X == i2 if sub is not None: self.I1 = self.I1 * sub self.I2 = self.I2 * sub m1 = match.x[self.I1] m2 = match.x[self.I2] self.s1 = np.argsort(m1) self.s2 = np.argsort(m2) assert np.all(np.unique(m1) == np.unique(m2)) self.name = "{n}({x1}-{x2})".format(n='{0}', x1=X.cells[i1], x2=X.cells[i2]) def subtract(self, Y): "" assert type(Y) is Var # if self.sub is not None: # Y = Y[self.sub] Y1 = Y[self.I1] Y2 = Y[self.I2] y = Y1[self.s1] - Y2[self.s2] name = self.name.format(Y.name) # name = Y.name + '_DIFF' return Var(y, name) def extract(self, Y): "" y1 = Y[self.I1].x[self.s1] y2 = Y[self.I2].x[self.s2] assert np.all(y1 == y2), Y.name if type(Y) is Factor: return Factor(y1, Y.name, random=Y.random, labels=Y.cells) else: return Var(y1, Y.name) @property def N(self): return np.sum(self.I1) def box_cox_transform(X, p, name=None): """ :returns: a variable with the Box-Cox transform applied to X. With p==0, this is the log of X; otherwise (X**p - 1) / p :arg Var X: Source variable :arg float p: Parameter for Box-Cox transform """ if isvar(X): X = X.x if p == 0: y = np.log(X) else: y = (X ** p - 1) / p return Var(y, name) class NestedEffect(object): _stype = "nested" def __init__(self, effect, nestedin): if not iscategorial(nestedin): raise TypeError("Effects can only be nested in categorial base") self.effect = effect self.nestedin = nestedin self.random = effect.random self.cells = effect.cells self._n_cases = len(effect) if isfactor(self.effect): e_name = self.effect.name else: e_name = '(%s)' % self.effect self.name = "%s(%s)" % (e_name, nestedin.name) if len(nestedin) != self._n_cases: err = ("Unequal lengths: effect %r len=%i, nestedin %r len=%i" % (e_name, len(effect), nestedin.name, len(nestedin))) raise ValueError(err) def __repr__(self): return self.name def __iter__(self): return self.effect.__iter__() def __len__(self): return self._n_cases @property def df(self): return len(self.effect.cells) - len(self.nestedin.cells) @property def as_effects(self): "create effect codes" codes = np.zeros((self._n_cases, self.df)) ix = 0 for outer_cell in self.nestedin.cells: outer_idx = (self.nestedin == outer_cell) inner_model = self.effect[outer_idx] n = len(inner_model.cells) inner_codes = _effect_eye(n) for i, cell in enumerate(inner_model.cells): codes[self.effect == cell, ix:ix + n - 1] = inner_codes[i] ix += n - 1 return codes def _coefficient_names(self, method): return ["%s %i" % (self.name, i) for i in xrange(self.df)] class NonbasicEffect(object): _stype = "nonbasic" def __init__(self, effect_codes, factors, name, nestedin=[], beta_labels=None): if beta_labels is not None and len(beta_labels) != effect_codes.shape[1]: raise ValueError("beta_labels need one entry per model column " "(%s); got %s" % (effect_codes.shape[1], repr(beta_labels))) self.nestedin = nestedin self.name = name self.random = False self.as_effects = effect_codes self._n_cases, self.df = effect_codes.shape self.factors = factors self.beta_labels = beta_labels def __repr__(self): txt = "<NonbasicEffect: {n}>" return txt.format(n=self.name) # container --- def __len__(self): return self._n_cases def _coefficient_names(self, method): if self.beta_labels is None: return ["%s %i" % (self.name, i) for i in xrange(self.df)] else: return self.beta_labels class Model(object): """A list of effects. Parameters ---------- x : effect | iterator of effects Effects to be included in the model (Var, Factor, Interaction , ...). Can also contain models, in which case all the model's effects will be added. Notes ----- a Model's data is exhausted by its :attr:`.effects` list; all the rest are @properties. Accessing effects: - as list in Model.effects - with name as Model[name] """ _stype = "model" def __init__(self, x): effects = EffectList() # find effects in input if iseffect(x): effects.append(x) n_cases = len(x) elif ismodel(x): effects += x.effects n_cases = len(x) else: n_cases = None for e in x: # check n_cases if n_cases is None: n_cases = len(e) elif len(e) != n_cases: e0 = effects[0] err = ("All effects contained in a Model need to describe" " the same number of cases. %r has %i cases, %r has" " %i cases." % (e0.name, len(e0), e.name, len(e))) raise ValueError(err) # find effects if iseffect(e): effects.append(e) elif ismodel(e): effects += e.effects else: err = ("Model needs to be initialized with effect (Var, " "Factor, Interaction, ...) and/or Model objects " "(got %s)" % type(e)) raise TypeError(err) self.effects = effects self._n_cases = n_cases # beta indices self.beta_index = beta_index = {} i = 1 for e in effects: if isfactor(e) and len(e.cells) == 1: raise ValueError("The Factor %s has only one level (%s). The " "intercept is implicit in each model and " "should not be specified explicitly." % (e.name, e.cells[0])) k = i + e.df beta_index[e] = slice(i, k) i = k # dfs self.df_total = df_total = n_cases self.df = df = sum(e.df for e in effects) + 1 # intercept self.df_error = df_error = df_total - df if df_error < 0: raise ValueError("Model overspecified") # names self.name = ' + '.join([str(e.name) for e in self.effects]) def __repr__(self): names = self.effects.names() if preferences['short_repr']: return ' + '.join(names) else: x = ', '.join(names) return "Model((%s))" % x def __str__(self): return str(self.get_table(cases=50)) # container --- def __len__(self): return self._n_cases def __getitem__(self, sub): if isinstance(sub, str): for e in self.effects: if e.name == sub: return e raise ValueError("No effect named %r" % sub) else: return Model((x[sub] for x in self.effects)) def __contains__(self, effect): return id(effect) in map(id, self.effects) def sorted(self): """ returns sorted Model, interactions last """ out = [] i = 1 while len(out) < len(self.effects): for e in self.effects: if len(e.factors) == i: out.append(e) i += 1 return Model(out) # numeric --- def __add__(self, other): return Model((self, other)) def __mul__(self, other): return Model((self, other, self % other)) def __mod__(self, other): out = [] for e_self in self.effects: for e_other in Model(other).effects: out.append(e_self % e_other) return Model(out) def __eq__(self, other): if not isinstance(other, Model): return False elif not len(self) == len(other): return False elif not len(self.effects) == len(other.effects): return False for e, eo in izip(self.effects, other.effects): if not np.all(e == eo): return False return True def __ne__(self, other): return not self.__eq__(other) # repr --- @property def model_eq(self): return self.name def get_table(self, cases=None): """Return a table with the model codes Parameters ---------- cases : int Number of cases (lines) after which to truncate the table (default is all cases). Returns -------- table : FMText Table The full model as a table. """ full_model = self.full if cases is None: cases = len(full_model) else: cases = min(cases, len(full_model)) n_cols = full_model.shape[1] table = fmtxt.Table('l' * n_cols) table.cell("Intercept") for e in self.effects: table.cell(e.name, width=e.df) # rules i = 2 for e in self.effects: j = i + e.df - 1 if e.df > 1: table.midrule((i, j)) i = j + 1 # data for line in full_model[:cases]: for i in line: table.cell(i) if cases < len(full_model): table.cell('...') return table # coding --- @LazyProperty def _effect_to_beta(self): """An array indicating for each effect which beta weights it occupies Returns ------- effects_to_beta : np.ndarray (n_effects, 2) For each effect, indicating the first index in betas and df """ out = np.empty((len(self.effects), 2), np.int16) beta_start = 1 for i, e in enumerate(self.effects): out[i, 0] = beta_start out[i, 1] = e.df beta_start += e.df return out @LazyProperty def as_effects(self): return np.hstack((e.as_effects for e in self.effects)) def fit(self, Y): """ Find the beta weights by fitting the model to data Parameters ---------- Y : Var | array, shape = (n_cases,) Data to fit the model to. Returns ------- beta : array, shape = (n_regressors, ) The beta weights. """ Y = asvar(Y) beta = dot(self.xsinv, Y.x) return beta @LazyProperty def full(self): "returns the full model including an intercept" out = np.empty((self._n_cases, self.df)) # intercept out[:, 0] = 1 self.full_index = {'I': slice(0, 1)} # effects i = 1 for e in self.effects: j = i + e.df out[:, i:j] = e.as_effects self.full_index[e] = slice(i, j) i = j return out # checking model properties def check(self, v=True): "shortcut to check linear independence and orthogonality" return self.lin_indep(v) + self.orthogonal(v) def lin_indep(self, v=True): "Checks the Model for linear independence of its factors" msg = [] ne = len(self.effects) codes = [e.as_effects for e in self.effects] for i in range(ne): for j in range(i + 1, ne): e1 = self.effects[i] e2 = self.effects[j] X = np.hstack((codes[i], codes[j])) if rank(X) < X.shape[1]: if v: errtxt = "Linear Dependence Warning: {0} and {1}" msg.append(errtxt.format(e1.name, e2.name)) return msg def orthogonal(self, v=True): "Checks the Model for orthogonality of its factors" msg = [] ne = len(self.effects) codes = [e.as_effects for e in self.effects] # allok = True for i in range(ne): for j in range(i + 1, ne): ok = True e1 = self.effects[i] e2 = self.effects[j] e1e = codes[i] e2e = codes[j] for i1 in range(e1.df): for i2 in range(e2.df): dotp = np.dot(e1e[:, i1], e2e[:, i2]) if dotp != 0: ok = False # allok = False if v and (not ok): errtxt = "Not orthogonal: {0} and {1}" msg.append(errtxt.format(e1.name, e2.name)) return msg def _parametrize(self, method='effect'): "Create a design matrix" return Parametrization(self, method) def repeat(self, n): "Analogous to numpy repeat method" effects = [e.repeat(n) for e in self.effects] return Model(effects) @LazyProperty def xsinv(self): x = self.full x_t = x.T return dot(inv(dot(x_t, x)), x_t) class Parametrization(object): """Parametrization of a statistical model Parameters ---------- model : Model Model to be parametrized. Attributes ---------- x : array (n_cases, n_coeffs) Design matrix. Notes ----- A :class:`Model` is a list of effects. A :class:`Parametrization` contains a realization of those effects in a model matrix with named columns. """ def __init__(self, model, method): model = asmodel(model) x = np.empty((model._n_cases, model.df)) x[:, 0] = 1 column_names = ['intercept'] higher_level_effects = {} terms = {'intercept': slice(0, 1)} i = 1 for e in model.effects: j = i + e.df if method == 'effect': x[:, i:j] = e.as_effects elif method == 'dummy': x[:, i:j] = e.as_dummy else: raise ValueError("method=%s" % repr(method)) name = longname(e) if name in terms: raise KeyError("Duplicate term name: %s" % repr(name)) terms[name] = slice(i, j) col_names = e._coefficient_names(method) column_names.extend(col_names) for col, col_name in enumerate(col_names, i): terms[col_name] = slice(col, col + 1) i = j # find comparison models higher_level_effects[name] = [e_ for e_ in model.effects if e_ is not e and is_higher_order_effect(e_, e)] # model basics self.model = model self.x = x self.terms = terms self.column_names = column_names self._higher_level_effects = higher_level_effects # projector x_t = x.T self.projector = inv(x_t.dot(x)).dot(x_t) def reduced_model_index(self, term): "Boolean index into model columns for model comparison" out = np.ones(self.x.shape[1], bool) out[self.terms[term]] = False for e in self._higher_level_effects[term]: out[self.terms[e.name]] = False return out # ---NDVar dimensions--- DIMINDEX_RAW_TYPES = (int, slice, list) def dimindex_case(arg): if isinstance(arg, DIMINDEX_RAW_TYPES): return arg elif isvar(arg): return arg.x elif isinstance(arg, np.ndarray) and arg.dtype.kind in 'bi': return arg else: raise TypeError("Unknown index type for case dimension: %s" % repr(arg)) def find_time_point(times, time, rnd='closest'): """ Returns (index, time) for the closest point to ``time`` in ``times`` Parameters ---------- times : array, 1d Monotonically increasing time values. time : scalar Time point for which to find a match. rnd : 'down' | 'closest' | 'up' Rounding: how to handle time values that do not have an exact match in times. Round 'up', 'down', or to the 'closest' value. """ if time in times: i = np.where(times == time)[0][0] else: gr = (times > time) if np.all(gr): if times[1] - times[0] > times[0] - time: return 0, times[0] else: name = repr(times.name) if hasattr(times, 'name') else '' raise ValueError("time=%s lies outside array %r" % (time, name)) elif np.any(gr): pass elif times[-1] - times[-2] >= time - times[-1]: return len(times) - 1, times[-1] else: name = repr(times.name) if hasattr(times, 'name') else '' raise ValueError("time=%s lies outside array %r" % (time, name)) i_next = np.where(gr)[0][0] t_next = times[i_next] if rnd == 'up': return i_next, t_next sm = times < time i_prev = np.where(sm)[0][-1] t_prev = times[i_prev] if rnd == 'down': return i_prev, t_prev elif rnd != 'closest': raise ValueError("Invalid argument rnd=%r" % rnd) if (t_next - time) < (time - t_prev): i = i_next time = t_next else: i = i_prev time = t_prev return i, time def _subgraph_edges(connectivity, int_index): "Extract connectivity for a subset of a graph" if connectivity is None: return None idx = np.logical_and(np.in1d(connectivity[:, 0], int_index), np.in1d(connectivity[:, 1], int_index)) if np.any(idx): new_c = connectivity[idx] # remap to new vertex indices if np.any(np.diff(int_index) < 1): # non-monotonic index argsort = np.argsort(int_index) flat_conn_ = np.digitize(new_c.ravel(), int_index[argsort], True) flat_conn = argsort[flat_conn_] else: flat_conn = np.digitize(new_c.ravel(), int_index, True) return flat_conn.reshape(new_c.shape).astype(np.uint32) else: return np.empty((0, 2), dtype=np.uint32) class Dimension(object): """Base class for dimensions. Attributes ---------- x : array_like Numerical values (e.g. for locating categories on an axis). values : sequence Meaningful point descriptions (e.g. time points, sensor names, ...). """ name = 'Dimension' adjacent = True def __getstate__(self): raise NotImplementedError def __setstate__(self, state): raise NotImplementedError def __len__(self): raise NotImplementedError def __eq__(self, other): if isinstance(other, basestring): return False return self.name == other.name def __ne__(self, other): return not self == other def __getitem__(self, index): """ - int -> label or value for that location - [int] -> Dimension object with 1 location - [int, ...] -> Dimension object """ raise NotImplementedError def _diminfo(self): "Return a str describing the dimension in on line (79 chars)" return str(self.name) def dimindex(self, arg): """Process index parameter Notes ----- Boolean and int arrays are always considered indexing self.values. """ if isndvar(arg): return self._dimindex_for_ndvar(arg) elif isvar(arg): return arg.x elif isinstance(arg, np.ndarray) and arg.dtype.kind in 'bi': return arg elif isinstance(arg, (slice, int)): return arg elif isinstance(arg, SEQUENCE_TYPES): if len(arg) == 0: return np.empty(0, np.int8) return np.array([self.dimindex(a) for a in arg]) else: raise TypeError("Unknown index type for %s dimension: %s" % (self.name, repr(arg))) def _dimindex_for_ndvar(self, arg): "Dimindex for NDVar index" if arg.x.dtype.kind != 'b': raise IndexError("Only NDVars with boolean data can serve " "as indexes. Got %s." % repr(arg)) elif arg.ndim != 1: raise IndexError("Only NDVars with ndim 1 can serve as " "indexes. Got %s." % repr(arg)) elif arg.dims[0] != self: raise IndexError("Index dimension %s is different from data " "dimension" % arg.dims[0].name) else: return arg.x def intersect(self, dim, check_dims=True): """Create a Dimension that is the intersection with dim Parameters ---------- dim : Dimension Dimension to intersect with. check_dims : bool Check dimensions for consistency (not applicaple). Returns ------- intersection : Dimension The intersection with dim (returns itself if dim and self are equal) """ raise NotImplementedError def _cluster_properties(self, x): """Find cluster properties for this dimension Parameters ---------- x : array of bool, (n_clusters, len(self)) The cluster extents, with different clusters stacked along the first axis. Returns ------- cluster_properties : None | Dataset A dataset with variables describing cluster properties. """ return None class Categorial(Dimension): """Simple categorial dimension Parameters ---------- name : str Dimension name. values : list of str Names of the entries. """ def __init__(self, name, values): if len(set(values)) < len(values): raise ValueError("Dimension can not have duplicate values") values = np.asarray(values) if values.dtype.kind not in 'SU': raise ValueError("All Categorial values must be strings") self.name = name self.values = values def __getstate__(self): state = {'name': self.name, 'values': self.values} return state def __setstate__(self, state): name = state['name'] values = state['values'] self.__init__(name, values) def __repr__(self): args = (repr(self.name), str(self.values)) return "%s(%s)" % (self.__class__.__name__, ', '.join(args)) def __len__(self): return len(self.values) def __eq__(self, other): is_equal = (Dimension.__eq__(self, other) and np.all(self.values == other.values)) return is_equal def __getitem__(self, index): if isinstance(index, int): return self.values[index] values = self.values[index] return Categorial(self.name, values) def dimindex(self, arg): if isinstance(arg, self.__class__): s_idx, a_idx = np.nonzero(self.values[:, None] == arg.values) return s_idx[np.argsort(a_idx)] elif isinstance(arg, basestring): return np.flatnonzero(self.values == arg)[0] else: return super(Categorial, self).dimindex(arg) def _diminfo(self): return "%s" % self.name.capitalize() def intersect(self, dim, check_dims=False): """Create a dimension object that is the intersection with dim Parameters ---------- dim : type(self) Dimension to intersect with. check_dims : bool Check dimensions for consistency (not applicaple to this subclass). Returns ------- intersection : type(self) The intersection with dim (returns itself if dim and self are equal) """ if self.name != dim.name: raise DimensionMismatchError("Dimensions don't match") if np.array_equal(self.values, dim.values): return self values = np.intersect1d(self.values, dim.values) if np.array_equal(self.values, values): return self elif np.array_equal(dim.values, values): return dim return self.__class__(self.name, values) class Scalar(Dimension): "Simple scalar dimension" def __init__(self, name, values, unit=None): self.x = self.values = values = np.asarray(values) if len(np.unique(values)) < len(values): raise ValueError("Dimension can not have duplicate values") self.name = name self.unit = unit def __getstate__(self): state = {'name': self.name, 'values': self.values, 'unit': self.unit} return state def __setstate__(self, state): name = state['name'] values = state['values'] unit = state.get('unit', None) self.__init__(name, values, unit) def __repr__(self): args = [repr(self.name), str(self.values)] if self.unit is not None: args.append(repr(self.unit)) return "%s(%s)" % (self.__class__.__name__, ', '.join(args)) def __len__(self): return len(self.values) def __eq__(self, other): is_equal = (Dimension.__eq__(self, other) and np.array_equal(self.values, other.values)) return is_equal def __getitem__(self, index): if isinstance(index, int): return self.values[index] values = self.values[index] return Scalar(self.name, values, self.unit) def dimindex(self, arg): if isinstance(arg, self.__class__): s_idx, a_idx = np.nonzero(self.values[:, None] == arg.values) return s_idx[np.argsort(a_idx)] elif np.isscalar(arg): return np.argmin(np.abs(self.values - arg)) else: return super(Scalar, self).dimindex(arg) def _diminfo(self): return "%s" % self.name.capitalize() def intersect(self, dim, check_dims=False): """Create a dimension object that is the intersection with dim Parameters ---------- dim : type(self) Dimension to intersect with. check_dims : bool Check dimensions for consistency (not applicaple to this subclass). Returns ------- intersection : type(self) The intersection with dim (returns itself if dim and self are equal) """ if self.name != dim.name: raise DimensionMismatchError("Dimensions don't match") if np.all(self.values == dim.values): return self values = np.intersect1d(self.values, dim.values) if np.all(self.values == values): return self elif np.all(dim.values == values): return dim return self.__class__(self.name, values) class Ordered(Scalar): """Scalar with guarantee that values are ordered""" def __init__(self, name, values, unit=None): values = np.sort(values) Scalar.__init__(self, name, values, unit=unit) def dimindex(self, arg): if isinstance(arg, tuple): if len(arg) != 2: raise ValueError("Tuple indexes for the %s dimension signify " "intervals and need to be exactly of length " "2 (got %s)" % (self.name, repr(arg))) start, stop = arg return np.logical_and(self.values >= start, self.values < stop) else: return super(Ordered, self).dimindex(arg) def _diminfo(self): name = self.name.capitalize(), vmin = self.x.min() vmax = self.x.max() return "%s [%s, %s]" % (name, vmin, vmax) def _cluster_properties(self, x): """Find cluster properties for this dimension Parameters ---------- x : array of bool, (n_clusters, len(self)) The cluster extents, with different clusters stacked along the first axis. Returns ------- cluster_properties : None | Dataset A dataset with variables describing cluster properties. """ ds = Dataset() where = [np.flatnonzero(cluster) for cluster in x] ds['%s_min' % self.name] = Var([self.values[w[0]] for w in where]) ds['%s_max' % self.name] = Var([self.values[w[-1]] for w in where]) return ds class Sensor(Dimension): """Dimension class for representing sensor information Parameters ---------- locs : array-like list of (x, y, z) coordinates; ``x``: anterior - posterior, ``y``: left - right, ``z``: top - bottom names : list of str | None sensor names, same order as locs (optional) groups : None | dict Named sensor groups. sysname : None | str Name of the sensor system (only used for information purposes). proj2d: default 2d projection. For options, see the class documentation. connectivity : array (n_edges, 2) Sensor connectivity (optional). Attributes ---------- channel_idx : dict Dictionary mapping channel names to indexes. locs : array, shape = (n_sensors, 3) Spatial position of all sensors. names : list of str Ordered list of sensor names. x, y, z : array, len = n_sensors X, y and z positions of the sensors. Notes ----- The following are possible 2d-projections: ``None``: Just use horizontal coordinates ``'z root'``: the radius of each sensor is set to equal the root of the vertical distance from the top of the net. ``'cone'``: derive x/y coordinate from height based on a cone transformation ``'lower cone'``: only use cone for sensors with z < 0 Examples -------- >>> sensors = [(0, 0, 0), (0, -.25, -.45)] >>> sensor_dim = Sensor(sensors, names=["Cz", "Pz"]) """ name = 'sensor' adjacent = False _proj_aliases = {'left': 'x-', 'right': 'x+', 'back': 'y-', 'front': 'y+', 'top': 'z+', 'bottom': 'z-'} def __init__(self, locs, names=None, groups=None, sysname=None, proj2d='z root', connectivity=None): self.sysname = sysname self.default_proj2d = self._interpret_proj(proj2d) self._connectivity = connectivity # 'z root' transformation fails with 32-bit floats self.locs = locs = np.asarray(locs, dtype=np.float64) self.x = locs[:, 0] self.y = locs[:, 1] self.z = locs[:, 2] self.n = len(locs) if names is None: self.names_dist = names = [str(i) for i in xrange(self.n)] self.names = Datalist(names) self.channel_idx = {name: i for i, name in enumerate(self.names)} pf = os.path.commonprefix(self.names) if pf: n_pf = len(pf) short_names = {name[n_pf:]: i for i, name in enumerate(self.names)} self.channel_idx.update(short_names) # cache for transformed locations self._transformed = {} # groups self.groups = groups def __getstate__(self): state = {'proj2d': self.default_proj2d, 'groups': self.groups, 'locs': self.locs, 'names': self.names, 'sysname': self.sysname, 'connectivity': self._connectivity} return state def __setstate__(self, state): locs = state['locs'] names = state['names'] groups = state['groups'] sysname = state['sysname'] proj2d = state['proj2d'] connectivity = state.get('connectivity', None) self.__init__(locs, names, groups, sysname, proj2d, connectivity) def __repr__(self): return "<Sensor n=%i, name=%r>" % (self.n, self.sysname) def __len__(self): return self.n def __eq__(self, other): "Based on having same sensor names" is_equal = (Dimension.__eq__(self, other) and len(self) == len(other) and all(n == no for n, no in zip(self.names, other.names))) return is_equal def __getitem__(self, index): index = self.dimindex(index) if np.isscalar(index): return self.names[index] else: int_index = np.arange(len(self))[index] if len(int_index) == 0: return None locs = self.locs[index] names = self.names[index] # TODO: groups return Sensor(locs, names, None, self.sysname, self.default_proj2d, _subgraph_edges(self._connectivity, int_index)) def _cluster_properties(self, x): """Find cluster properties for this dimension Parameters ---------- x : array of bool, (n_clusters, len(self)) The cluster extents, with different clusters stacked along the first axis. Returns ------- cluster_properties : None | Dataset A dataset with variables describing cluster properties. """ return Dataset(('n_sensors', Var(x.sum(1)))) def dimindex(self, arg): "Convert dimension indexes into numpy indexes" if isinstance(arg, basestring): return self.channel_idx[arg] elif isinstance(arg, Sensor): return np.array([self.names.index(name) for name in arg.names]) else: return super(Sensor, self).dimindex(arg) def connectivity(self): """Retrieve the sensor connectivity Returns ------- connetivity : array of int, (n_pairs, 2) array of sorted [src, dst] pairs, with all src < dts. See Also -------- .set_connectivity() : define the connectivity .neighbors() : Neighboring sensors for each sensor in a dictionary. """ if self._connectivity is None: raise RuntimeError("Sensor connectivity is not defined. Use " "Sensor.set_connectivity().") else: return self._connectivity @classmethod def from_xyz(cls, path=None, **kwargs): """Create a Sensor instance from a text file with xyz coordinates """ locs = [] names = [] with open(path) as f: l1 = f.readline() n = int(l1.split()[0]) for line in f: elements = line.split() if len(elements) == 4: x, y, z, name = elements x = float(x) y = float(y) z = float(z) locs.append((x, y, z)) names.append(name) assert len(names) == n return cls(locs, names, **kwargs) @classmethod def from_sfp(cls, path=None, **kwargs): """Create a Sensor instance from an sfp file """ locs = [] names = [] for line in open(path): elements = line.split() if len(elements) == 4: name, x, y, z = elements x = float(x) y = float(y) z = float(z) locs.append((x, y, z)) names.append(name) return cls(locs, names, **kwargs) @classmethod def from_lout(cls, path=None, transform_2d=None, **kwargs): """Create a Sensor instance from a *.lout file """ kwargs['transform_2d'] = transform_2d locs = [] names = [] with open(path) as fileobj: fileobj.readline() for line in fileobj: w, x, y, t, f, name = line.split('\t') x = float(x) y = float(y) locs.append((x, y, 0)) names.append(name) return cls(locs, names, **kwargs) def _interpret_proj(self, proj): if proj == 'default': return self.default_proj2d elif proj in self._proj_aliases: return self._proj_aliases[proj] elif proj is None: return 'z+' else: return proj def get_locs_2d(self, proj='default', extent=1, frame=0, invisible=True): """ returns a sensor X location array, the first column reflecting the x, and the second column containing the y coordinate of each sensor. Parameters ---------- proj : str How to transform 3d coordinates into a 2d map; see class documentation for options. extent : int coordinates will be scaled with minimum value 0 and maximum value defined by the value of ``extent``. frame : scalar Distance of the outermost points from 0 and ``extent`` (default 0). invisible : bool Return invisible sensors (sensors that would be hidden behind the head; default True). """ proj = self._interpret_proj(proj) index = (proj, extent, frame) if index in self._transformed: locs2d = self._transformed[index] else: locs2d = self._make_locs_2d(proj, extent, frame) self._transformed[index] = locs2d if not invisible: visible = self._visible_sensors(proj) if visible is not None: return locs2d[visible] return locs2d @LazyProperty def _sphere_fit(self): """Fit the 3d sensor locations to a sphere Returns ------- params : tuple Radius and center (r, cx, cy, cz). """ locs = self.locs # error function def err(params): # params: [r, cx, cy, cz] out = np.sum((locs - params[1:]) ** 2, 1) out -= params[0] ** 2 return out # initial guess of sphere parameters (radius and center) center_0 = np.mean(locs, 0) r_0 = np.mean(np.sqrt(np.sum((locs - center_0) ** 2, axis=1))) start_params = np.hstack((r_0, center_0)) # do fit estimate, _ = leastsq(err, start_params) return tuple(estimate) def _make_locs_2d(self, proj, extent, frame): if proj in ('cone', 'lower cone', 'z root'): r, cx, cy, cz = self._sphere_fit # center the sensor locations based on the sphere and scale to # radius 1 sphere_center = np.array((cx, cy, cz)) locs3d = self.locs - sphere_center locs3d /= r # implement projection locs2d = np.copy(locs3d[:, :2]) if proj == 'cone': locs2d[:, [0, 1]] *= (1 - locs3d[:, [2]]) elif proj == 'lower cone': lower_half = locs3d[:, 2] < 0 if any(lower_half): locs2d[lower_half] *= (1 - locs3d[lower_half][:, [2]]) elif proj == 'z root': z = locs3d[:, 2] z_dist = (z.max() + 0.01) - z # distance form top, buffer so that top points don't stick together r = np.sqrt(z_dist) # desired 2d radius r_xy = np.sqrt(np.sum(locs3d[:, :2] ** 2, 1)) # current radius in xy idx = (r_xy != 0) # avoid zero division F = r[idx] / r_xy[idx] # stretching Factor accounting for current r locs2d[idx, :] *= F[:, None] else: match = re.match('([xyz])([+-])', proj) if match: ax, sign = match.groups() if ax == 'x': locs2d = np.copy(self.locs[:, 1:]) if sign == '-': locs2d[:, 0] *= -1 elif ax == 'y': locs2d = np.copy(self.locs[:, [0, 2]]) if sign == '+': locs2d[:, 0] *= -1 elif ax == 'z': locs2d = np.copy(self.locs[:, :2]) if sign == '-': locs2d[:, 1] *= -1 else: raise ValueError("invalid proj kwarg: %r" % proj) # correct extent if extent: locs2d -= np.min(locs2d, axis=0) # move to bottom left locs2d /= (np.max(locs2d) / extent) # scale to extent locs2d += (extent - np.max(locs2d, axis=0)) / 2 # center if frame: locs2d *= (1 - 2 * frame) locs2d += frame return locs2d def _topomap_outlines(self, proj): "outline argument for mne-python topomaps" proj = self._interpret_proj(proj) if proj in ('cone', 'lower cone', 'z root', 'z+'): return 'top' else: return None def _visible_sensors(self, proj): "Create an index for sensors that are visible under a given proj" proj = self._interpret_proj(proj) match = re.match('([xyz])([+-])', proj) if match: # logger.debug("Computing sensors visibility for %s" % proj) ax, sign = match.groups() # depth: + = closer depth = self.locs[:, 'xyz'.index(ax)] if sign == '-': depth = -depth locs2d = self.get_locs_2d(proj) n_vertices = len(locs2d) all_vertices = np.arange(n_vertices) out = np.ones(n_vertices, bool) # find duplicate points # TODO OPT: use pairwise distance x, y = np.where(cdist(locs2d, locs2d) == 0) duplicate_vertices = ((v1, v2) for v1, v2 in izip(x, y) if v1 < v2) for v1, v2 in duplicate_vertices: if depth[v1] > depth[v2]: out[v2] = False # logger.debug("%s is hidden behind %s" % (self.names[v2], self.names[v1])) else: out[v1] = False # logger.debug("%s is hidden behind %s" % (self.names[v1], self.names[v2])) use_vertices = all_vertices[out] # use for hull check hull = ConvexHull(locs2d[use_vertices]) hull_vertices = use_vertices[hull.vertices] # for each point: # find the closest point on the hull # determine whether it's in front or behind non_hull_vertices = np.setdiff1d(use_vertices, hull_vertices, True) hull_locs = locs2d[hull_vertices] non_hull_locs = locs2d[non_hull_vertices] dists = cdist(non_hull_locs, hull_locs) closest = np.argmin(dists, 1) hide_non_hull_vertices = depth[non_hull_vertices] < depth[hull_vertices][closest] hide_vertices = non_hull_vertices[hide_non_hull_vertices] # logger.debug("%s are hidden behind convex hull" % ' '.join(self.names[hide_vertices])) out[hide_vertices] = False return out else: return None def get_ROIs(self, base): """ returns list if list of sensors, grouped according to closest spatial proximity to elements of base (=list of sensor ids)" """ locs3d = self.locs # print loc3d base_locs = locs3d[base] ROI_dic = dict((i, [Id]) for i, Id in enumerate(base)) for i, loc in enumerate(locs3d): if i not in base: dist = np.sqrt(np.sum((base_locs - loc) ** 2, 1)) min_i = np.argmin(dist) ROI_dic[min_i].append(i) out = ROI_dic.values() return out def get_subnet_ROIs(self, ROIs, loc='first'): """ returns new Sensor instance, combining groups of sensors in the old instance into single sensors in the new instance. All sensors for each element in ROIs are the basis for one new sensor. ! Only implemented for numeric indexes, not for boolean indexes ! **parameters:** ROIs : list of lists of sensor ids each ROI defines one sensor in the new net loc : str 'first': use the location of the first sensor of each ROI (default); 'mean': use the mean location """ names = [] locs = np.empty((len(ROIs, 3))) for i, ROI in enumerate(ROIs): i = ROI[0] names.append(self.names[i]) if loc == 'first': ROI_loc = self.locs[i] elif loc == 'mean': ROI_loc = self.locs[ROI].mean(0) else: raise ValueError("invalid value for loc (%s)" % loc) locs[i] = ROI_loc return Sensor(locs, names, sysname=self.sysname) def index(self, exclude=None, names=False): """Construct an index for specified sensors Parameters ---------- exclude : None | list of str, int Sensors to exclude (by name or index). Returns ------- index : numpy index Numpy index indexing good channels. """ if exclude is None: return full_slice index = np.ones(len(self), dtype=bool) for idx in exclude: if isinstance(idx, str): idx = self.channel_idx[idx] else: idx = int(idx) index[idx] = False if names: index = self.names[index] return index def _normalize_sensor_names(self, names): "Process a user-input list of sensor names" valid_chs = set() missing_chs = set() for name in names: if isinstance(name, int): name = '%03i' % name if name.isdigit(): if name in self.names: valid_chs.add(name) continue else: name = 'MEG %s' % name if name in self.names: valid_chs.add(name) else: missing_chs.add(name) if missing_chs: msg = ("The following channels are not in the raw data: " "%s" % ', '.join(sorted(missing_chs))) raise ValueError(msg) return sorted(valid_chs) def intersect(self, dim, check_dims=True): """Create a Sensor dimension that is the intersection with dim Parameters ---------- dim : Sensor Sensor dimension to intersect with. check_dims : bool Check dimensions for consistency (e.g., channel locations). Default is ``True``. Set to ``False`` to intersect channels based on names only and ignore mismatch between locations for channels with the same name. Returns ------- sensor : Sensor The intersection with dim (returns itself if dim and self are equal) """ if self.name != dim.name: raise DimensionMismatchError("Dimensions don't match") n_self = len(self) names = set(self.names) names.intersection_update(dim.names) n_intersection = len(names) if n_intersection == n_self: return self elif n_intersection == len(dim.names): return dim names = sorted(names) idx = map(self.names.index, names) locs = self.locs[idx] if check_dims: idxd = map(dim.names.index, names) if not np.all(locs == dim.locs[idxd]): err = "Sensor locations don't match between dimension objects" raise ValueError(err) new = Sensor(locs, names, sysname=self.sysname, proj2d=self.default_proj2d) return new def neighbors(self, connect_dist): """Find neighboring sensors. Parameters ---------- connect_dist : scalar For each sensor, neighbors are defined as those sensors within ``connect_dist`` times the distance of the closest neighbor. Returns ------- neighbors : dict Dictionaries whose keys are sensor indices, and whose values are lists of neighbors represented as sensor indices. """ nb = {} pd = pdist(self.locs) pd = squareform(pd) n = len(self) for i in xrange(n): d = pd[i, np.arange(n)] d[i] = d.max() idx = np.nonzero(d < d.min() * connect_dist)[0] nb[i] = idx return nb def set_connectivity(self, neighbors=None, connect_dist=None): """Define the sensor connectivity through neighbors or distance Parameters ---------- neighbors : sequence of (str, str) A list of connections, all assumed to be bidirectional. connect_dist : None | scalar For each sensor, neighbors are defined as those sensors within ``connect_dist`` times the distance of the closest neighbor. e.g., 1.75 or 1.6 """ pairs = set() if neighbors is not None and connect_dist is not None: raise TypeError("Can only specify either neighbors or connect_dist") elif connect_dist is None: for src, dst in neighbors: a = self.names.index(src) b = self.names.index(dst) if a < b: pairs.add((a, b)) else: pairs.add((b, a)) else: nb = self.neighbors(connect_dist) for k, vals in nb.iteritems(): for v in vals: if k < v: pairs.add((k, v)) else: pairs.add((v, k)) self._connectivity = np.array(sorted(pairs), np.uint32) def set_sensor_positions(self, pos, names=None): """Set the sensor positions Parameters ---------- pos : array (n_locations, 3) | MNE Montage Array with 3 columns describing sensor locations (x, y, and z), or an MNE Montage object describing the sensor layout. names : None | list of str If locations is an array, names should specify a name corresponding to each entry. """ # MNE Montage if hasattr(pos, 'pos') and hasattr(pos, 'ch_names'): if names is not None: raise TypeError("Can't specify names parameter with Montage") names = pos.ch_names pos = pos.pos elif names is not None and len(names) != len(pos): raise ValueError("Mismatch between number of locations (%i) and " "number of names (%i)" % (len(pos), len(names))) if names is not None: missing = [name for name in self.names if name not in names] if missing: raise ValueError("The following sensors are missing: %r" % missing) index = np.array([names.index(name) for name in self.names]) pos = pos[index] elif len(pos) != len(self.locs): raise ValueError("If names are not specified pos must specify " "exactly one position per channel") self.locs[:] = pos @property def values(self): return self.names def as_sensor(obj): "Coerce to Sensor instance" if isinstance(obj, Sensor): return obj elif isinstance(obj, NDVar) and obj.has_dim('sensor'): return obj.sensor elif hasattr(obj, 'pos') and hasattr(obj, 'ch_names') and hasattr(obj, 'kind'): return Sensor(obj.pos, obj.ch_names, sysname=obj.kind) else: raise TypeError("Can't get sensors from %r" % (obj,)) def _point_graph(coords, dist_threshold): "Connectivity graph for points based on distance" n = len(coords) dist = pdist(coords) # construct vertex pairs corresponding to dist graph = np.empty((len(dist), 2), np.uint32) i0 = 0 for vert, di in enumerate(xrange(n - 1, 0, -1)): i1 = i0 + di graph[i0:i1, 0] = vert graph[i0:i1, 1] = np.arange(vert + 1, n) i0 = i1 return graph[dist < dist_threshold] def _matrix_graph(matrix): "Create connectivity from matrix" coo = matrix.tocoo() assert np.all(coo.data) edges = {(min(a, b), max(a, b)) for a, b in izip(coo.col, coo.row) if a != b} return np.array(sorted(edges), np.uint32) def _tri_graph(tris): """Create connectivity graph from triangles Parameters ---------- tris : array_like, (n_tris, 3) Triangles. Returns ------- edges : array (n_edges, 2) All edges between vertices of tris. """ pairs = set() for tri in tris: a, b, c = sorted(tri) pairs.add((a, b)) pairs.add((a, c)) pairs.add((b, c)) return np.array(sorted(pairs), np.uint32) def _mne_tri_soure_space_graph(source_space, vertices_list): "Connectivity graph for a triangulated mne source space" i = 0 graphs = [] for ss, verts in izip(source_space, vertices_list): if len(verts) == 0: continue # graph for the whole source space src_vertices = ss['vertno'] tris = ss['use_tris'] graph = _tri_graph(tris) # select relevant edges if not np.array_equal(verts, src_vertices): if not np.all(np.in1d(verts, src_vertices)): raise RuntimeError("Not all vertices are in the source space") edge_in_use = np.logical_and(np.in1d(graph[:, 0], verts), np.in1d(graph[:, 1], verts)) graph = graph[edge_in_use] # reassign vertex ids based on present vertices if len(verts) != verts.max() + 1: graph = (np.digitize(graph.ravel(), verts, True) .reshape(graph.shape).astype(np.uint32)) # account for index of previous source spaces if i > 0: graph += i i += len(verts) graphs.append(graph) return np.vstack(graphs) class SourceSpace(Dimension): """MNE source space dimension. Parameters ---------- vertno : list of array The vertex identities of the dipoles in the source space (left and right hemisphere separately). subject : str The mri-subject name. src : str The kind of source space used (e.g., 'ico-4'). subjects_dir : str The path to the subjects_dir (needed to locate the source space file). parc : None | str Add a parcellation to the source space to identify vertex location. Only applies to ico source spaces, default is 'aparc'. connectivity : None | sparse matrix Cached source space connectivity. Notes ----- besides numpy indexing, the following indexes are possible: - mne Label objects - 'lh' or 'rh' to select an entire hemisphere """ name = 'source' adjacent = False _src_pattern = os.path.join('{subjects_dir}', '{subject}', 'bem', '{subject}-{src}-src.fif') def __init__(self, vertno, subject=None, src=None, subjects_dir=None, parc='aparc', connectivity=None): match = re.match("(ico|vol)-(\d)", src) if match: kind, grade = match.groups() grade = int(grade) else: raise ValueError("Unrecognized src value %r" % src) self.vertno = vertno self.subject = subject self.src = src self.kind = kind self.grade = grade self.subjects_dir = subjects_dir self._connectivity = connectivity self._n_vert = sum(len(v) for v in vertno) if kind == 'ico': self.lh_vertno = vertno[0] self.rh_vertno = vertno[1] self.lh_n = len(self.lh_vertno) self.rh_n = len(self.rh_vertno) self.set_parc(parc) def __getstate__(self): state = {'vertno': self.vertno, 'subject': self.subject, 'src': self.src, 'subjects_dir': self.subjects_dir, 'parc': self.parc} return state def __setstate__(self, state): vertno = state['vertno'] subject = state['subject'] src = state.get('src', None) parc = state.get('parc', None) subjects_dir = state.get('subjects_dir', None) self.__init__(vertno, subject, src, subjects_dir, parc) def __repr__(self): ns = ', '.join(str(len(v)) for v in self.vertno) return "<SourceSpace [%s], %r, %r>" % (ns, self.subject, self.src) def __len__(self): return self._n_vert def __eq__(self, other): is_equal = (Dimension.__eq__(self, other) and self.subject == other.subject and len(self) == len(other) and all(np.array_equal(s, o) for s, o in izip(self.vertno, other.vertno))) return is_equal def __getitem__(self, index): arange = np.arange(len(self)) int_index = arange[index] bool_index = np.in1d(arange, int_index, True) # vertno boundaries = np.cumsum(tuple(chain((0,), (len(v) for v in self.vertno)))) vertno = [v[bool_index[boundaries[i]:boundaries[i + 1]]] for i, v in enumerate(self.vertno)] # parc if self.parc is None: parc = None else: parc = self.parc[index] dim = SourceSpace(vertno, self.subject, self.src, self.subjects_dir, parc, _subgraph_edges(self._connectivity, int_index)) return dim def _cluster_properties(self, x): """Find cluster properties for this dimension Parameters ---------- x : array of bool, (n_clusters, len(self)) The cluster extents, with different clusters stacked along the first axis. Returns ------- cluster_properties : Dataset A dataset with variables describing cluster properties along this dimension: "n_sources". """ if np.any(np.sum(x, 1) == 0): raise ValueError("Empty cluster") ds = Dataset() # no clusters if len(x) == 0: ds['n_sources'] = Var([]) ds['hemi'] = Factor([]) if self.parc is not None: ds['location'] = Factor([]) return ds # n sources ds['n_sources'] = Var(x.sum(1)) if self.kind == 'vol': return ds # hemi hemis = [] for x_ in x: where = np.nonzero(x_)[0] src_in_lh = (where < self.lh_n) if np.all(src_in_lh): hemis.append('lh') elif np.any(src_in_lh): hemis.append('bh') else: hemis.append('rh') ds['hemi'] = Factor(hemis) # location if self.parc is not None: locations = [] for x_ in x: parc_entries = self.parc[x_] argmax = np.argmax(np.bincount(parc_entries.x)) location = parc_entries[argmax] locations.append(location) ds['location'] = Factor(locations) return ds def _diminfo(self): ns = ', '.join(str(len(v)) for v in self.vertno) return "SourceSpace (MNE) [%s], %r, %r>" % (ns, self.subject, self.src) def connectivity(self, disconnect_parc=False): """Create source space connectivity Parameters ---------- disconnect_parc : bool Reduce connectivity to label-internal connections. Returns ------- connetivity : array of int, (n_pairs, 2) array of sorted [src, dst] pairs, with all src < dts. """ if self._connectivity is None: if self.src is None or self.subject is None or self.subjects_dir is None: err = ("In order for a SourceSpace dimension to provide " "connectivity information it needs to be initialized with " "src, subject and subjects_dir parameters") raise ValueError(err) src = self.get_source_space() if self.kind == 'vol': coords = src[0]['rr'][self.vertno[0]] dist_threshold = self.grade * 0.0011 connectivity = _point_graph(coords, dist_threshold) elif self.kind == 'ico': connectivity = _mne_tri_soure_space_graph(src, self.vertno) else: msg = "Connectivity for %r source space" % self.kind raise NotImplementedError(msg) if connectivity.max() >= len(self): raise RuntimeError("SourceSpace connectivity failed") self._connectivity = connectivity else: connectivity = self._connectivity if disconnect_parc: parc = self.parc if parc is None: raise RuntimeError("SourceSpace has no parcellation (use " ".set_parc())") idx = np.array([parc[s] == parc[d] for s, d in connectivity]) connectivity = connectivity[idx] return connectivity def circular_index(self, seeds, extent=0.05, name="globe"): """Returns an index into all vertices within extent of seed Parameters ---------- seeds : array_like, (3,) | (n, 3) Seed location(s) around which to build index. extent : Returns ------- roi : NDVar, ('source',) Index into the spherical area around seeds. """ seeds = np.atleast_2d(seeds) dist = cdist(self.coordinates, seeds) mindist = np.min(dist, 1) x = mindist < extent dims = (self,) info = {'seeds': seeds, 'extent': extent} return NDVar(x, dims, info, name) @LazyProperty def coordinates(self): sss = self.get_source_space() coords = (ss['rr'][v] for ss, v in izip(sss, self.vertno)) coords = np.vstack(coords) return coords def dimindex(self, arg): if isinstance(arg, (mne.Label, mne.label.BiHemiLabel)): return self._dimindex_label(arg) elif isinstance(arg, basestring): if arg == 'lh': if self.lh_n: return slice(None, self.lh_n) else: raise IndexError("lh is empty") elif arg == 'rh': if self.rh_n: return slice(self.lh_n, None) else: raise IndexError("rh is empty") else: return self._dimindex_label(arg) elif isinstance(arg, SourceSpace): sv = self.vertno ov = arg.vertno if all(np.array_equal(s, o) for s, o in izip(sv, ov)): return full_slice else: idxs = tuple(np.in1d(s, o, True) for s, o in izip(sv, ov)) index = np.hstack(idxs) return index elif isinstance(arg, SEQUENCE_TYPES): return self.parc.isin(arg) else: return super(SourceSpace, self).dimindex(arg) def _dimindex_label(self, label): if isinstance(label, basestring): if self.parc is None: raise RuntimeError("SourceSpace has no parcellation") elif label not in self.parc: err = ("SourceSpace parcellation has no label called %r" % label) raise KeyError(err) idx = self.parc == label elif label.hemi == 'both': lh_idx = self._dimindex_hemilabel(label.lh) rh_idx = self._dimindex_hemilabel(label.rh) idx = np.hstack((lh_idx, rh_idx)) else: idx = np.zeros(len(self), dtype=np.bool8) idx_part = self._dimindex_hemilabel(label) if label.hemi == 'lh': idx[:self.lh_n] = idx_part elif label.hemi == 'rh': idx[self.lh_n:] = idx_part else: err = "Unknown value for label.hemi: %s" % repr(label.hemi) raise ValueError(err) return idx def _dimindex_hemilabel(self, label): if label.hemi == 'lh': stc_vertices = self.vertno[0] else: stc_vertices = self.vertno[1] idx = np.in1d(stc_vertices, label.vertices, True) return idx def get_source_space(self): "Read the corresponding MNE source space" path = self._src_pattern.format(subjects_dir=self.subjects_dir, subject=self.subject, src=self.src) src = mne.read_source_spaces(path) return src def index_for_label(self, label): """Returns the index for a label Parameters ---------- label : str | Label | BiHemiLabel The name of a region in the current parcellation, or a Label object (as created for example by mne.read_label). If the label does not match any sources in the SourceEstimate, a ValueError is raised. Returns ------- index : NDVar of bool Index into the source space dim that corresponds to the label. """ idx = self._dimindex_label(label) if isinstance(label, basestring): name = label else: name = label.name return NDVar(idx, (self,), {}, name) def intersect(self, other, check_dims=True): """Create a Source dimension that is the intersection with dim Parameters ---------- dim : Source Dimension to intersect with. check_dims : bool Check dimensions for consistency (not applicaple to this subclass). Returns ------- intersection : Source The intersection with dim (returns itself if dim and self are equal) """ if self.subject != other.subject: raise ValueError("Source spaces can not be compared because they " "are defined on different MRI subjects (%s, %s). " "Consider using eelbrain.morph_source_space()." % (self.subject, other.subject)) elif self.src != other.src: raise ValueError("Source spaces can not be compared because they " "are defined with different spatial decimation " "parameters (%s, %s)." % (self.src, other.src)) elif self.subjects_dir != other.subjects_dir: raise ValueError("Source spaces can not be compared because they " "have differing subjects_dir parameters:\n%s\n%s" % (self.subjects_dir, other.subjects_dir)) index = np.hstack(np.in1d(s, o) for s, o in izip(self.vertno, other.vertno)) return self[index] def _mask_label(self): "Create a Label that masks the areas not covered in this SourceSpace" lh = rh = None sss = self.get_source_space() if self.lh_n: lh_verts = np.setdiff1d(sss[0]['vertno'], self.lh_vertno) if len(lh_verts): lh = mne.Label(lh_verts, hemi='lh', color=(0, 0, 0)).fill(sss, 'unknown') if self.rh_n: rh_verts = np.setdiff1d(sss[1]['vertno'], self.rh_vertno) if len(rh_verts): rh = mne.Label(rh_verts, hemi='rh', color=(0, 0, 0)).fill(sss, 'unknown') return lh, rh def set_parc(self, parc): """Set the source space parcellation Parameters ---------- parc : None | str | Factor Add a parcellation to the source space to identify vertex location. Can be specified as Factor assigning a label to each source, or a string specifying a freesurfer parcellation (stored as *.annot files with the MRI). Only applies to ico source spaces, default is 'aparc'. """ if parc is None: parc_ = None elif isfactor(parc): if len(parc) != len(self): raise ValueError("Wrong length (%i)" % len(parc)) parc_ = parc elif isinstance(parc, basestring): if self.kind == 'ico': fname = os.path.join(self.subjects_dir, self.subject, 'label', '%%s.%s.annot' % parc) vert_codes_lh, ctab_lh, names_lh = read_annot(fname % 'lh') vert_codes_rh, ctab_rh, names_rh = read_annot(fname % 'rh') x_lh = vert_codes_lh[self.lh_vertno] x_rh = vert_codes_rh[self.rh_vertno] x_rh += x_lh.max() + 1 names = chain(('%s-lh' % name for name in names_lh), ('%s-rh' % name for name in names_rh)) parc_ = Factor(np.hstack((x_lh, x_rh)), parc, labels={i: name for i, name in enumerate(names)}) else: raise NotImplementedError else: raise ValueError("Parc needs to be string, got %s" % repr(parc)) self.parc = parc_ @property def values(self): raise NotImplementedError _uts_tol = 0.000001 # tolerance for deciding if time values are equal class UTS(Dimension): """Dimension object for representing uniform time series Parameters ---------- tmin : scalar First time point (inclusive). tstep : scalar Time step between samples. nsamples : int Number of samples. Notes ----- Special indexing: (tstart, tstop) : tuple Restrict the time to the indicated window (either end-point can be None). """ name = 'time' unit = 's' def __init__(self, tmin, tstep, nsamples): self.tmin = tmin self.tstep = tstep self.nsamples = nsamples = int(nsamples) self.x = self.times = tmin + np.arange(nsamples) * tstep self.tmax = self.times[-1] self.tstop = self.tmin + tstep * nsamples @classmethod def from_int(cls, first, last, sfreq): """Create a UTS dimension from sample index and sampling frequency Parameters ---------- first : int Index of the first sample, relative to 0. last : int Index of the last sample, relative to 0. sfreq : scalar Sampling frequency, in Hz. """ tmin = first / sfreq nsamples = last - first + 1 tstep = 1. / sfreq return cls(tmin, tstep, nsamples) def __getstate__(self): state = {'tmin': self.tmin, 'tstep': self.tstep, 'nsamples': self.nsamples} return state def __setstate__(self, state): tmin = state['tmin'] tstep = state['tstep'] nsamples = state['nsamples'] self.__init__(tmin, tstep, nsamples) def __repr__(self): return "UTS(%s, %s, %s)" % (self.tmin, self.tstep, self.nsamples) def _diminfo(self): name = self.name.capitalize() tmax = self.times[-1] + self.tstep sfreq = 1. / self.tstep info = '%s %.3f - %.3f s, %s Hz' % (name, self.tmin, tmax, sfreq) return info def __len__(self): return len(self.times) def __eq__(self, other): is_equal = (Dimension.__eq__(self, other) and self.tmin == other.tmin and self.tstep == other.tstep and self.nsamples == other.nsamples) return is_equal def __getitem__(self, index): if isinstance(index, int): return self.times[index] elif not isinstance(index, slice): # convert index to slice index = np.arange(len(self))[index] start = index[0] steps = np.unique(np.diff(index)) if len(steps) > 1: raise NotImplementedError("non-uniform time series") step = steps[0] stop = index[-1] + step index = slice(start, stop, step) if isinstance(index, slice): if index.start is None: start = 0 else: start = index.start if index.stop is None: stop = len(self) else: stop = index.stop tmin = self.times[start] nsamples = stop - start if index.step is None: tstep = self.tstep else: tstep = self.tstep * index.step else: err = ("Unupported index: %r" % index) raise TypeError(err) return UTS(tmin, tstep, nsamples) def _cluster_bounds(self, x): """Cluster start and stop in samples Parameters ---------- x : array of bool, (n_clusters, len(self)) The cluster extents, with different clusters stacked along the first axis. """ # find indices of cluster extent row, col = np.nonzero(x) try: ts = [col[row == i][[0, -1]] for i in xrange(len(x))] except IndexError: raise ValueError("Empty cluster") ts = np.array(ts) return ts def _cluster_properties(self, x): """Find cluster properties for this dimension Parameters ---------- x : array of bool, (n_clusters, len(self)) The cluster extents, with different clusters stacked along the first axis. Returns ------- cluster_properties : Dataset A dataset with variables describing cluster properties along this dimension: "tstart", "tstop", "duration". """ ds = Dataset() # no clusters if len(x) == 0: ds['tstart'] = Var([]) ds['tstop'] = Var([]) ds['duration'] = Var([]) return ds # create time values bounds = self._cluster_bounds(x) tmin = self.times[bounds[:, 0]] tmax = self.times[bounds[:, 1]] ds['tstart'] = Var(tmin) ds['tstop'] = Var(tmax + self.tstep) ds['duration'] = ds.eval("tstop - tstart") return ds def dimindex(self, arg): if np.isscalar(arg): i = int(round((arg - self.tmin) / self.tstep)) if i < 0 or i >= self.nsamples: raise ValueError("Time index %s out of range (%s, %s)" % (arg, self.tmin, self.tmax)) return i elif isinstance(arg, UTS): if self.tmin == arg.tmin: start = None stop = arg.nsamples elif arg.tmin < self.tmin: err = ("The index time dimension starts before the reference " "time dimension") raise DimensionMismatchError(err) else: start_float = (arg.tmin - self.tmin) / self.tstep start = int(round(start_float)) if abs(start_float - start) > _uts_tol: err = ("The index time dimension contains values not " "contained in the reference time dimension") raise DimensionMismatchError(err) stop = start + arg.nsamples if self.tstep == arg.tstep: step = None elif self.tstep > arg.tstep: err = ("The index time dimension has a higher sampling rate " "than the reference time dimension") raise DimensionMismatchError(err) else: step_float = arg.tstep / self.tstep step = int(round(step_float)) if abs(step_float - step) > _uts_tol: err = ("The index time dimension contains values not " "contained in the reference time dimension") raise DimensionMismatchError(err) if stop == self.nsamples: stop = None return slice(start, stop, step) elif isinstance(arg, tuple): if len(arg) != 2: raise ValueError("Tuple indexes signify intervals for uniform " "time-series (UTS) dimension and need to be " "exactly of length 2 (got %s)" % repr(arg)) tstart, tstop = arg return self._slice(tstart, tstop) else: return super(UTS, self).dimindex(arg) def index(self, time, rnd='closest'): """Find the index for a time point Parameters ---------- time : scalar Time point for which to find an index. rnd : 'down' | 'closest' | 'up' Rounding: how to handle time values that do not have an exact match. Round 'up', 'down', or to the 'closest' neighbor. Returns ------- i : int Index of ``time``, rounded according to ``rnd``. """ if rnd == 'closest': return int(round((time - self.tmin) / self.tstep)) else: i, _ = find_time_point(self.times, time, rnd) return i def intersect(self, dim, check_dims=True): """Create a UTS dimension that is the intersection with dim Parameters ---------- dim : UTS Dimension to intersect with. check_dims : bool Check dimensions for consistency (not applicaple to this subclass). Returns ------- intersection : UTS The intersection with dim (returns itself if dim and self are equal) """ if self.tstep == dim.tstep: tstep = self.tstep else: raise NotImplementedError("Intersection of UTS with unequal tstep :(") tmin_diff = abs(self.tmin - dim.tmin) / tstep if abs(tmin_diff - round(tmin_diff)) > _uts_tol: raise DimensionMismatchError("UTS dimensions have different times") tmin = max(self.tmin, dim.tmin) tmax = min(self.tmax, dim.tmax) nsamples = int(round((tmax - tmin) / tstep)) + 1 if nsamples <= 0: raise DimensionMismatchError("UTS dimensions don't overlap") return UTS(tmin, tstep, nsamples) def _slice(self, tstart, tstop): "Create a slice into the time axis" if (tstart is not None) and (tstop is not None) and (tstart >= tstop): raise ValueError("tstart must be smaller than tstop") if tstart is None: start = None elif tstart <= self.tmin - self.tstep: raise ValueError("Value out of range: tstart=%s" % tstart) else: start_float = (tstart - self.tmin) / self.tstep start = int(start_float) if start_float - start > 0.000001: start += 1 if tstop is None: stop = None elif tstop > self.tstop: raise ValueError("Value out of range: tstop=%s" % tstop) else: stop_float = (tstop - self.tmin) / self.tstep stop = int(stop_float) if stop_float - stop > 0.000001: stop += 1 s = slice(start, stop) return s @property def values(self): return self.times def intersect_dims(dims1, dims2, check_dims=True): """Find the intersection between two multidimensional spaces Parameters ---------- dims1, dims2 : tuple of dimension objects Two spaces involving the same dimensions with overlapping values. check_dims : bool Check dimensions for consistency (e.g., channel locations in a Sensor dimension). Default is ``True``. Set to ``False`` to ignore non-fatal mismatches. Returns ------- dims : tuple of Dimension objects Intersection of dims1 and dims2. """ return tuple(d1.intersect(d2, check_dims=check_dims) for d1, d2 in zip(dims1, dims2)) # ---NDVar functions--- def corr(x, dim='sensor', obs='time', name=None): """Calculate Neighbor correlation Parameter --------- x : NDVar The data. dim : str Dimension over which to correlate neighbors. """ dim_obj = x.get_dim(dim) # find neighbors neighbors = defaultdict(list) for a, b in dim_obj.connectivity(): neighbors[a].append(b) neighbors[b].append(a) # for each point, find the average correlation with its neighbors data = x.get_data((dim, obs)) cc = np.corrcoef(data) y = np.empty(len(dim_obj)) for i in xrange(len(dim_obj)): y[i] = np.mean(cc[i, neighbors[i]]) info = cs.set_info_cs(x.info, cs.stat_info('r')) return NDVar(y, (dim_obj,), info, name) def cwt_morlet(Y, freqs, use_fft=True, n_cycles=3.0, zero_mean=False, out='magnitude'): """Time frequency decomposition with Morlet wavelets (mne-python) Parameters ---------- Y : NDVar with time dimension Signal. freqs : scalar | array Frequency/ies of interest. For a scalar, the output will not contain a frequency dimension. use_fft : bool Compute convolution with FFT or temporal convolution. n_cycles: float | array of float Number of cycles. Fixed number or one per frequency. zero_mean : bool Make sure the wavelets are zero mean. out : 'complex' | 'magnitude' | 'phase' Format of the data in the returned NDVar. Returns ------- tfr : NDVar Time frequency decompositions. """ from mne.time_frequency.tfr import cwt_morlet if not Y.get_axis('time') == Y.ndim - 1: raise NotImplementedError x = Y.x x = x.reshape((np.prod(x.shape[:-1]), x.shape[-1])) Fs = 1. / Y.time.tstep if np.isscalar(freqs): freqs = [freqs] fdim = None else: fdim = Ordered("frequency", freqs, 'Hz') freqs = fdim.values x = cwt_morlet(x, Fs, freqs, use_fft, n_cycles, zero_mean) if out == 'magnitude': x = np.abs(x) elif out == 'complex': pass else: raise ValueError("out = %r" % out) new_shape = Y.x.shape[:-1] dims = Y.dims[:-1] if fdim is not None: new_shape += (len(freqs),) dims += (fdim,) new_shape += Y.x.shape[-1:] dims += Y.dims[-1:] x = x.reshape(new_shape) info = cs.set_info_cs(Y.info, cs.default_info('A')) out = NDVar(x, dims, info, Y.name) return out def resample(data, sfreq, npad=100, window='boxcar'): """Resample an NDVar with 'time' dimension after properly filtering it Parameters ---------- data : NDVar Ndvar which should be resampled. sfreq : scalar New sampling frequency. npad : int Number of samples to use at the beginning and end for padding. window : string | tuple See scipy.signal.resample for description. Notes ----- requires mne-python """ axis = data.get_axis('time') old_sfreq = 1.0 / data.time.tstep x = mne.filter.resample(data.x, sfreq, old_sfreq, npad, axis, window) tstep = 1. / sfreq time = UTS(data.time.tmin, tstep, x.shape[axis]) dims = data.dims[:axis] + (time,) + data.dims[axis + 1:] return NDVar(x, dims=dims, info=data.info, name=data.name)
import sys import os import numpy as np path_dir = '../data/' # CHANGE HERE! file_list = os.listdir(path_dir) file_list.sort() for files in file_list: tmp = np.fromfile(files, dtype=np.float32) prev = tmp[0:3] for i in range(1, int(len(tmp))/4): prev = np.vstack([prev,tmp[4*i:4*i+3]]) ''' ###############concatenate method###################### array_1 = np.array([1,2,3,4,5,6,7,8,9,10,11,12]) prev = array_1[0:3] for i in range(1,int(len(array_1)/4)): prev = np.vstack([prev,array_1[4*i:4*i+3]]) print(prev) ######################################################## '''
# -*- python -*- import re def get_matching_words( regex ): words = [ "aimlessness", "assassin", "baby", "beekeeper", "belladonna", "cannonball", "crybaby", "denver", "embraceable", "facetious", "flashbulb", "gaslight", "hobgoblin", "iconoclast", "issue", "kebab", "kilo", "laundered", "mattress", "millennia", "natural", "obsessive", "paranoia", "queen", "rabble", "reabsorb", "sacrilegious", "schoolroom", "tabby", "tabloid", "unbearable", "union", "videotape", ] matches = [] for word in words: if re.search( regex, word ): matches.append( word ) return matches print 'Test: All words that contain a "v"' print get_matching_words( r'v' ) #=> ['denver', 'obsessive', 'videotape'] print 'Test: All words that contain a double-"s"' print get_matching_words( r's{2}' ) #=> ['aimlessness', 'assassin', 'issue', 'mattress', 'obsessive'] print 'Test: All words that end with an "e"' print get_matching_words( r'e$' ) #=> ['embraceable', 'issue', 'obsessive', 'rabble', 'unbearable', 'videotape'] print 'Test: All words that contain an "b", any character, then another "b"' print get_matching_words( r'b.b' ) #=> ['baby', 'crybaby', 'kebab'] print 'Test: All words that contain an "b", at least one character, then another "b"' print get_matching_words( r'b.+b' ) #=> ['baby', 'crybaby', 'embraceable', 'flashbulb', 'hobgoblin', 'kebab', 'reabsorb', 'unbearable'] print 'Test: All words that contain an "b", any number of characters (including zero), then another "b"' print get_matching_words( r'b.*b' ) #=> ['baby', 'crybaby', 'embraceable', 'flashbulb', 'hobgoblin', 'kebab', 'rabble', 'reabsorb', 'tabby', 'unbearable'] print 'Test: All words that include all five vowels in order' print get_matching_words( r'a.*e.*i.*o.*u' ) #=> ['facetious', 'sacrilegious'] print 'Test: All words that only use the letters in "regular expression" (each letter can appear any number of times)' print get_matching_words( r'^[regular expression]+$' ) #=> ['assassin', 'issue', 'paranoia', 'union'] print 'Test: All words that contain a double letter' print get_matching_words( r'([a-z])\1' ) #=> ['aimlessness', 'assassin', 'beekeeper', 'belladonna', 'cannonball', 'issue', 'mattress', 'millennia', 'obsessive', 'queen', 'rabble', 'schoolroom', 'tabby']
def debug(s): return s.replace('bugs','=').replace('bug','').replace('=','bugs') ''' Take debugging to a whole new level: Given a string, remove every single bug. This means you must remove all instances of the word 'bug' from within a given string, unless the word is plural ('bugs'). For example, given 'obugobugobuoobugsoo', you should return 'ooobuoobugsoo'. Another example: given 'obbugugo', you should return 'obugo'. Note that all characters will be lowercase and letters. Happy squishing! '''
# -*- coding: utf-8 -*- """ This is an implementation of Amazon Product Advertising API in Python. Thanks to following. - PyAWS http://pyaws.sourceforge.net/ - python-amazon-product-api http://pypi.python.org/pypi/python-amazon-product-api - ryo_abe http://d.hatena.ne.jp/ryo_abe/20100416/1271384372 """ from base64 import b64encode import hmac from time import strftime, gmtime from urllib2 import quote, urlopen from xml2obj import Xml2Obj try: from hashlib import sha256 except ImportError: from Crypto.Hash import SHA256 as sha256 __author__ = "Yuya Takeyama <sign.of.the.wolf.pentagram@gmail.com>" __version__ = "0.0.1" DEFAULT_API_VERSION = '2009-11-01' LOCALE_DOMAINS = { None : "ecs.amazonaws.com", "ca" : "ecs.amazonaws.ca", "de" : "ecs.amazonaws.de", "fr" : "ecs.amazonaws.fr", "jp" : "ecs.amazonaws.jp", "uk" : "ecs.amazonaws.co.uk", "us" : "ecs.amazonaws.us" } class ProductAdvertising(object): def __init__(self, licenseKey, secretLicenseKey, locale=None): self.setLicenseKey(licenseKey) self.setSecretLicenseKey(secretLicenseKey) self.setLocale(locale) self.parser = Xml2Obj() def call(self, operation, **kwds): kwds['Operation'] = operation url = self.makeUrl(**kwds) return self.parser.parse(urlopen(url).read()) def makeUrl(self, **kwds): param = self.makeParam(kwds) signature = self.makeSignature(kwds) return "http://" + LOCALE_DOMAINS[self.getLocale()] + "/onca/xml?" + param + "&Signature=" + signature def setLicenseKey(self, licenseKey=None): self.__licenseKey = licenseKey return self def getLicenseKey(self): return self.__licenseKey def setSecretLicenseKey(self, secretLicenseKey=None): self.__secretLicenseKey = secretLicenseKey def getSecretLicenseKey(self): return self.__secretLicenseKey def setLocale(self, locale=None): self.__locale = locale return self def getLocale(self): return self.__locale def getTimestamp(self): return strftime("%Y-%m-%dT%H:%M:%SZ", gmtime()) def makeParam(self, args): for key, val in args.items(): if val is None: del args[key] if 'Version' not in args: args['Version'] = DEFAULT_API_VERSION if 'Service' not in args: args['Service'] = 'AWSECommerceService' if 'Timestamp' not in args: args['Timestamp'] = self.getTimestamp() args['AWSAccessKeyId'] = self.getLicenseKey() keys = sorted(args.keys()) return '&'.join('%s=%s' % (key, quote(str(args[key]))) for key in keys) def makeSignature(self, args): param = self.makeParam(args) msg = 'GET' msg += '\n' + LOCALE_DOMAINS[self.getLocale()] msg += '\n' + "/onca/xml" msg += '\n' + param.encode('utf-8') return quote(b64encode(hmac.new(self.getSecretLicenseKey(), msg, sha256).digest()))
from distutils.core import setup from Cython.Build import cythonize setup( name='fast_bcf_parser', ext_modules=cythonize("lib/parsers/unbcf_fast.pyx", #gdb_debug=True ), )
import numpy as np from scipy.integrate import odeint from matplotlib import pyplot as plt import matplotlib as mpl class ModeloAsintomaticos(): def __init__(self, N_0, S_0, I_0, A_0, R_0, lambd, mu, mu_star, gamma, gamma_star, beta_1, beta_2, beta_3, beta_4): assert(N_0 == S_0 + I_0 + A_0 + R_0) linspace = range(61) y_0 = (N_0, S_0, I_0, A_0, R_0) sol = odeint(self.f, y_0, linspace, args=(lambd, mu, mu_star, gamma, gamma_star, beta_1, beta_2, beta_3, beta_4)) N, S, I, A, R = np.split(sol, range(1, 5), axis=1) N = N[:, 0] S = S[:, 0] I = I[:, 0] A = A[:, 0] R = R[:, 0] plt.figure(1) plt.title('Predicciones evolución epidemia') plt.subplot(2, 2, 1, title='Totales') plt.plot(linspace, sol[:, 0], color='k') ax = plt.gca() ax.ticklabel_format(useOffset=False) plt.subplot(2, 2, 2, title='Susceptibles') plt.plot(linspace, sol[:, 0], color='b') ax = plt.gca() ax.ticklabel_format(useOffset=False) mpl.rcParams['axes.prop_cycle'] = mpl.cycler(color=['r', 'y']) plt.subplot(2, 2, 3, title='Infectados y asintomáticos') plt.plot(linspace, sol[:, 2:4]) plt.legend(['Infectados', 'Asintomáticos'], loc='upper right') plt.subplot(2, 2, 4, title='Recuperados') plt.plot(linspace, sol[:, 4], color='g') fallecidos = mu_star*I contagiados_por_infectado = beta_1*np.multiply(S, I) contagiados_por_asintomatico = beta_3*np.multiply(S, A) plt.figure(2) plt.title('Curvas diarias') plt.subplot(1, 2, 1, title='Fallecimientos diarios') plt.plot(fallecidos, color='k') plt.subplot(1, 2, 2, title='Contagios diarios') plt.plot(contagiados_por_infectado, color='r') plt.plot(contagiados_por_asintomatico, color='y') plt.plot(contagiados_por_infectado + contagiados_por_asintomatico, color='b') plt.legend(['Contagios por infectado', 'Contagios por asintomático', 'Contagios totales']) fallecidos_totales = np.sum(fallecidos) contagios_totales = np.sum(contagiados_por_infectado + contagiados_por_asintomatico) ratio_contagios_asintomaticos = np.sum(contagiados_por_asintomatico)/contagios_totales print('Fallecidos en los siguiente 60 días:', fallecidos_totales) print('Contagios en los siguiente 60 días:', contagios_totales) print('Porcentaje de contagios por asintomático:', ratio_contagios_asintomaticos*100) print('Fallecidos por asintomático:', ratio_contagios_asintomaticos*fallecidos_totales) def f(self, y, t, lambd, mu, mu_star, gamma, gamma_star, beta_1, beta_2, beta_3, beta_4): N, S, I, A, R = y assert (abs(N - (S + I + A + R)) < 1e-3) dN = N*lambd - mu_star*I - N*mu dS = - (beta_1 + beta_2)*S*I - (beta_3 + beta_4)*S*A - S*mu + N*lambd dI = beta_1*S*I + beta_3*S*A - I*mu_star - gamma*I - mu*I dA = beta_2*S*I + beta_4*S*A - gamma_star*A - mu*A dR = I*gamma + A*gamma_star - R*mu assert (abs(dN - (dS + dI + dA + dR)) < 1e-3) return dN, dS, dI, dA, dR
""" Construa a função separaPal(string) que recebe como entrada um texto contendo um documento qualquer. A função deve retornar uma lista contendo palavras presentes no texto. Uma palavra é uma sequência de caracteres entre caracteres chamados de separadores. São considerados separadores os seguintes caracteres: Ponto, exclamação, interrogação, dois pontos, ponto e vírgula, vírgula e espaço """ def retorna_separadores(separadores): for i in range(len(separadores)): return separadores[i] # # def separaPal(pTexto): strSeparadores = ' ,.:;!?' strBuffer = "" lstPalavras = [] for i in range(len(pTexto)): if pTexto[i] not in strSeparadores: strBuffer += pTexto[i] elif strBuffer != "": lstPalavras.append(strBuffer) strBuffer = "" # # if strBuffer != "": lstPalavras.append(strBuffer) # return lstPalavras # def main(): texto = input("Digite um texto: ") print(separaPal(texto)) return 0 if __name__ == '__main__': main()
""" MIT License Copyright (c) 2018 Rafael Felix Alves Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ def merge_array(x, y, axis=0): from numpy import size,atleast_1d, concatenate if not size(x): return atleast_1d(y) elif size(x) and size(y): return concatenate([x, atleast_1d(y)], axis) elif size(y): return atleast_1d(y) else: return atleast_1d([]) def merge_dict(x, y): ans = {} for _key in (x.keys() & y.keys()): if isinstance(x[_key], dict): ans[_key] = merge_dict(x[_key], y[_key]) else: ans[_key] = merge_array(x[_key], y[_key]) return ans def normalize(x, ord=1,axis=-1): ''' Normalize is a function that performs unit normalization Please, see http://mathworld.wolfram.com/UnitVector.html :param x: Vector :return: normalized x ''' from numpy import atleast_2d, linalg, float return (atleast_2d(x) / atleast_2d(linalg.norm(atleast_2d(x), ord=ord, axis=axis)).T).astype(float) import numpy as np import json class NpJSONEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, np.integer): return int(obj) elif isinstance(obj, np.floating): return float(obj) elif isinstance(obj, np.ndarray): return obj.tolist() else: return super(NpEncoder, self).default(obj)
from django.urls import path, re_path, include from . import views urlpatterns = [ path('', views.NewsView.as_view({'get': 'list'})), re_path('detail/(?P<pk>\d+)',views.NewsDetailView.as_view({'get': 'retrieve'})), # path('comment', views.CommentView.as_view({'get':'list','post':'create'})) path('comment', views.CommentView.as_view({'post':'create'})) ]
import json from django.contrib.auth.mixins import LoginRequiredMixin from django.http import JsonResponse from django.shortcuts import get_object_or_404 from django.views import View from recipes.models import ( Favorite, Follow, Ingredient, Recipe, ShoppingList, User) class Favorites(LoginRequiredMixin, View): """ Функция добавления/ удаления рецепта из "Избранного" """ def post(self, request): req_ = json.loads(request.body) recipe_id = req_.get('id') if recipe_id is not None: recipe = get_object_or_404(Recipe, id=recipe_id) _, created = Favorite.objects.get_or_create( user=request.user, recipe=recipe ) return JsonResponse({'success': created}) return JsonResponse({'success': False}, status=400) def delete(self, request, recipe_id): recipe = get_object_or_404( Favorite, recipe=recipe_id, user=request.user ) recipe.delete() return JsonResponse({'success': True}) class Follows(LoginRequiredMixin, View): """ Функция добавления/ удаления подписок """ def post(self, request): req_ = json.loads(request.body) author_id = req_.get('id') if author_id is not None: author = get_object_or_404(User, id=author_id) if request.user == author: return JsonResponse({'success': False}) _, created = Follow.objects.get_or_create( user=request.user, author=author ) return JsonResponse({'success': created}) return JsonResponse({'success': False}, status=400) def delete(self, request, author_id): author = get_object_or_404(User, id=author_id) removed = Follow.objects.filter( user=request.user, author=author ).delete() if removed: return JsonResponse({'success': True}) return JsonResponse({'success': False}) class Purchases(LoginRequiredMixin, View): """ Функция добавления/ удаления рецептов в список покупок """ def post(self, request): req_ = json.loads(request.body) recipe_id = req_.get('id') if recipe_id is not None: recipe = get_object_or_404(Recipe, id=recipe_id) _, created = ShoppingList.objects.get_or_create( user=request.user, recipe=recipe ) return JsonResponse({'success': created}) return JsonResponse({'success': False}, status=400) def delete(self, request, recipe_id): recipe = get_object_or_404(Recipe, id=recipe_id) removed = ShoppingList.objects.filter( user=request.user, recipe=recipe ).delete() if removed: return JsonResponse({'success': True}) return JsonResponse({'success': False}) class Ingredients(LoginRequiredMixin, View): """ Функция получения списка ингредиентов """ def get(self, request): text = request.GET['query'] ingredients = list( Ingredient.objects.filter(title__icontains=text).values( 'title', 'unit' ) ) return JsonResponse(ingredients, safe=False)
import matplotlib.pyplot as plt import math s = math.e seg_length = 1. Nmax = 15000 eps = [0.] phi = [0.] X = [0.] Y = [0.] for step in range(Nmax): epsn = eps[-1] phin = phi[-1] epsnp1 = (epsn+2.*math.pi*s) % (2.*math.pi) phinp1 = epsn + (phin%(2.*math.pi)) eps.append(epsnp1) phi.append(phinp1) X.append(X[-1]+seg_length*math.cos(phinp1)) Y.append(Y[-1]+seg_length*math.sin(phinp1)) plt.plot(X,Y,'g') plt.gca().set_aspect('equal', adjustable='box') plt.title("s="+str(s)) plt.show()
import calendar import time import hdbfs.db TYPE_NILL = 0 TYPE_FILE = 1000 TYPE_FILE_DUP = 1001 TYPE_FILE_VAR = 1002 TYPE_GROUP = 2000 TYPE_ALBUM = 2001 TYPE_CLASSIFIER = 2002 ORDER_VARIENT = -1 ORDER_DUPLICATE = -2 LEGACY_REL_CHILD = 0 LEGACY_REL_DUPLICATE = 1000 LEGACY_REL_VARIANT = 1001 LEGACY_REL_CLASS = 2000 def upgrade_from_0_to_1( log, session ): print 'Database upgrade from VER 0 -> VER 1' session.execute( 'ALTER TABLE mfl ADD COLUMN parent INTEGER' ) session.execute( 'ALTER TABLE mfl ADD COLUMN gorder INTEGER' ) return 1, 0 def upgrade_from_1_to_2( log, session ): log.info( 'Database upgrade from VER 1 -> VER 2' ) session.execute( 'CREATE TABLE objl ( ' ' id INTEGER PRIMARY KEY, ' ' type INTEGER NOT NULL )' ) session.execute( 'CREATE TABLE rell ( ' ' id INTEGER NOT NULL, ' ' parent INTEGER NOT NULL, ' ' rel INTEGER NOT NULL, ' ' sort INTEGER )' ) session.execute( 'CREATE TABLE fchk ( ' ' id INTEGER PRIMARY KEY, ' ' len INTEGER, ' ' crc32 TEXT, ' ' md5 TEXT, ' ' sha1 TEXT )' ) coltbl = {} collst = {} session.execute( 'INSERT INTO objl ( id, type ) ' 'SELECT id, :file_type AS type FROM mfl ORDER BY id ASC', { 'file_type' : TYPE_FILE } ) session.execute( 'INSERT INTO fchk ( id, len, crc32, md5, sha1 ) ' 'SELECT id, len, crc32, md5, sha1 FROM mfl ORDER BY id ASC' ) session.execute( 'INSERT INTO rell ( id, parent, rel ) ' 'SELECT id, parent, CASE gorder ' ' WHEN :order_dup THEN :rel_dup ' ' ELSE :rel_var ' ' END rel ' ' FROM mfl ' ' WHERE gorder IN ( :order_dup, :order_var ) ORDER BY id ASC', { 'order_dup' : ORDER_DUPLICATE, 'order_var' : ORDER_VARIENT, 'rel_dup' : LEGACY_REL_DUPLICATE, 'rel_var' : LEGACY_REL_VARIANT } ) # In schema ver 1.0, the album object is the first image in the album. # Create a mapping table that will add album objects into the objl table # and map them back to the first image in the album session.execute( 'CREATE TEMPORARY TABLE album_map (' ' old_parent INTEGER PRIMARY KEY, ' ' album_id INTEGER )' ) session.execute( 'CREATE TEMPORARY TRIGGER update_album_map AFTER INSERT ON album_map ' ' BEGIN ' ' INSERT INTO objl ( type ) VALUES ( %d ); ' ' UPDATE album_map SET album_id = (SELECT id FROM objl WHERE rowid = last_insert_rowid()) ' ' WHERE old_parent = NEW.old_parent; ' ' END' % ( TYPE_ALBUM, ) ) # Add all the albums into the album map session.execute( 'INSERT INTO album_map ( old_parent ) ' 'SELECT DISTINCT parent FROM mfl WHERE parent NOT NULL and gorder >= 0' ) # Add all the first images to the albums session.execute( 'INSERT INTO rell ( id, parent, rel, sort ) ' 'SELECT old_parent, album_id, :child_rel, 0 FROM album_map', { 'child_rel' : LEGACY_REL_CHILD } ) # Add all the subsequent images to the albums session.execute( 'INSERT INTO rell ( id, parent, rel, sort ) ' 'SELECT o.id, m.album_id, :child_rel AS rel, o.gorder + 1' ' FROM mfl o ' ' INNER JOIN album_map m ON o.parent == m.old_parent', { 'child_rel' : LEGACY_REL_CHILD } ) session.execute( 'DROP TRIGGER update_album_map' ) session.execute( 'DROP TABLE album_map' ) return 2, 0 def upgrade_from_2_to_3( log, session ): log.info( 'Database upgrade from VER 2 -> VER 3' ) session.execute( 'ALTER TABLE objl ADD COLUMN name TEXT' ) session.execute( 'CREATE TABLE meta ( ' ' id INTEGER NOT NULL, ' ' tag TEXT NOT NULL, ' ' value TEXT )' ) session.execute( 'INSERT INTO meta ( id, tag, value ) ' 'SELECT id, "altname" AS tag, name FROM naml' ) session.execute( 'CREATE TEMPORARY TABLE single_names (' ' rid INTEGER PRIMARY KEY, ' ' id INTEGER NOT NULL, ' ' name TEXT NOT NULL )' ) session.execute( 'INSERT INTO single_names ' 'SELECT min( rowid ), id, name FROM naml GROUP BY id' ) session.execute( 'UPDATE objl SET name = (' ' SELECT s.name from single_names s WHERE s.id = objl.id)' ' WHERE EXISTS (SELECT * FROM single_names s WHERE s.id = objl.id)' ) session.execute( 'DROP TABLE single_names' ) session.execute( 'DELETE FROM meta ' ' WHERE meta.tag = "altname" ' ' AND EXISTS (' ' SELECT * FROM objl o WHERE o.id = meta.id ' ' AND o.name = meta.value)' ) session.execute( 'DROP TABLE naml' ) session.execute( 'UPDATE dbi SET ver = 3, rev = 0' ) return 3, 0 def upgrade_from_3_to_4( log, session ): log.info( 'Database upgrade from VER 3 -> VER 4' ) session.execute( 'INSERT INTO objl ( type, name ) ' 'SELECT DISTINCT :tag_type AS type, tag from tagl', { 'tag_type' : TYPE_CLASSIFIER } ) session.execute( 'INSERT INTO rell ( id, parent, rel ) ' 'SELECT t.id, o.id, :tag_rel AS rel ' ' FROM tagl t INNER JOIN objl o ON o.type = :tag_type ' ' AND o.name = t.tag', { 'tag_rel' : LEGACY_REL_CLASS, 'tag_type' : TYPE_CLASSIFIER } ) session.execute( 'DROP TABLE tagl' ) session.execute( 'UPDATE dbi SET ver = 4, rev = 0' ) return 4, 0 def upgrade_from_4_to_5( log, session ): log.info( 'Database upgrade from VER 4 -> VER 5' ) # Step 1, create new tables session.execute( 'ALTER TABLE objl ADD COLUMN dup INTEGER' ) session.execute( 'CREATE TABLE rel2 ( ' ' child INTEGER NOT NULL, ' ' parent INTEGER NOT NULL, ' ' sort INTEGER )' ) session.execute( 'CREATE TABLE mtda ( ' ' id INTEGER NOT NULL, ' ' key TEXT NOT NULL, ' ' value TEXT )' ) # Step 2, convert relations session.execute( 'INSERT INTO rel2 ( child, parent, sort ) ' 'SELECT id, parent, sort FROM rell ' ' WHERE rel = :child_type OR rel = :class_type', { 'child_type' : LEGACY_REL_CHILD, 'class_type' : LEGACY_REL_CLASS } ) for result in session.execute( 'SELECT id, parent, rel, sort FROM rell' ' WHERE rel = :dup_type OR rel = :var_type', { 'dup_type' : LEGACY_REL_DUPLICATE, 'var_type' : LEGACY_REL_VARIANT } ): if( result['rel'] == LEGACY_REL_DUPLICATE ): target_type = TYPE_FILE_DUP elif( result['rel'] == LEGACY_REL_VARIANT ): target_type = TYPE_FILE_VAR else: assert False session.execute( 'UPDATE objl SET type = :type, dup = :parent WHERE id = :child', { 'child' : result['id'], 'parent' : result['parent'], 'type' : target_type } ) # Step 3, collapse meta into mtda for result in session.execute( 'SELECT DISTINCT id, tag FROM meta' ): values = [ r['value'] for r in session.execute( 'SELECT value FROM meta where id = :id AND tag = :tag', result ) ] if( len( values ) == 1 ): value = values[0] else: assert( result['tag'] == 'altname' ) value = ':'.join( values ) session.execute( 'INSERT INTO mtda ( id, key, value ) VALUES ( :id, :key, :value )', { 'id' : result['id'], 'key' : result['tag'], 'value' : value } ) # Step 4, drop old tables session.execute( 'DROP TABLE rell' ) session.execute( 'DROP TABLE meta' ) # Step 5, update the database file session.execute( 'UPDATE dbi SET ver = 5, rev = 0' ) return 5, 0 def upgrade_from_5_to_6( log, session ): log.info( 'Database upgrade from VER 5 -> VER 6' ) session.execute( 'ALTER TABLE dbi ADD COLUMN imgdb_ver INTEGER' ) session.execute( 'UPDATE dbi SET ver = 6, rev = 0, imgdb_ver = 0' ) return 6, 0 def upgrade_from_6_to_7( log, session ): log.info( 'Database upgrade from VER 6 -> VER 7' ) # Note, I normally wouldn't want to add a default, because having # an exception thrown if we ever try to insert an empty time is # a good way to catch errors. However, SqlLite doesn't provide # any good mechinisms to add a not-null column, then revoke the # default. session.execute( 'ALTER TABLE objl ADD COLUMN create_ts INTEGER NOT NULL DEFAULT 0' ) session.execute( 'UPDATE objl SET create_ts = :now', { 'now' : calendar.timegm( time.gmtime() ) } ) session.execute( 'UPDATE dbi SET ver = 7, rev = 0' ) return 7, 0 def upgrade_from_7_to_8( log, session ): log.info( 'Database upgrade from VER 7 -> VER 8' ) session.execute( 'ALTER TABLE mtda ADD COLUMN num INTEGER' ) session.execute( 'UPDATE dbi SET ver = 8, rev = 0' ) return 8, 0
sportsList = open('sports.txt') for index in range(1,11): sp = sportsList.readline() if len(sp) >= 8 : print (sp .rstrip())
# # -*- Mode: Python; indent-tabs-mode: nil; tab-width: 4 -*- # ################################################################################ # HEADING ################################################################################ # # Author # The author of the script. # Feature (Optional) # The 'Feature' contains the reference to the related Jira Nr. and # description to which this test case belongs. If the test case belongs to # more than one feature, the features have to be separated by a comma. # Description # Description of the test case and the test procedure with the test goal. # Modified by # N.A. # Version # Current version of the file. Should follow the project versioning standards # for documents. # History (Optional) # History of the changes of each version. Should follow the project versioning # standards for documents. # Requirements # List of requirements covered by the test case. # Database # Database used for INSTANCE. # Comments (Optional) # Any comments for the test case. # Instance Table # The INSTANCE table should be choose and/or created in a way that simplifies # the script and allows an easy verification of the number of permutations for # the tests. For example, instead of using the "Itineraire" table and # iterating for each point or condition, an "Itineraire_ADV" or # "Itineraire_condition" should be used. # ################################################################################ Author = "Author" Feature = "" Description = """Sample Description with some "extra" features.""" Modifiedby = "" Version = "1.0" History = """""" Requirements = "" Database = "" Comments = """""" Table = "" ################################################################################ # IMPORT ################################################################################ # Import des fonctions de lecture du modèle from Interface_Tesia import * # Import des fonctions d'instanciation from Interface_Simenv import * # Import des autres fonctions from Interface_Database import GetInstanceTest from Dico_Var import __mode__,__Debug__,__NoDebug__ from Librairie import * import sys import inspect ################################################################################ # Scénario de test ################################################################################ def Scenario(instance): ############################################################################ # INITIALIZATION ############################################################################ # Definition du nom du scénario instancié FileName = inspect.getsourcefile(Scenario) FileName = FileName[(FileName.rfind("\\")+1):] FileName = FileName.replace(".py",".scn") SetPath(FileName) # Récupération des instances associées au test MaBaseDeDonneesEst(instance) INSTANCE = GetInstanceTest(FileName) # Début de génération du scénario instancié Debug("==== Début de génération du %s ===========" % FileName.replace(".scn","")) # Création du scénario instancié CreationFichier() EcrireEntete(Author, Modifiedby, Description, Version) # Vérification de la présence d'au moins une instance à tester if INSTANCE != [] : # On teste chaque ligne de la table des instances for PARAMETRE in INSTANCE : #################################################################### # PRECONDITIONS #################################################################### # Récupération des noms des éléments constituant l'instance testée (càd le contenu des colonnes de la table des instances) # Par rapport au DVSS, chaque élément mentionné en gras dans les "Objets utilisés" doit être récupéré de cette manière # Exemple, récupération du nom de l'itinéraire testé dans la colonne nommée "Itineraire" : # # Itineraire1 = PARAMETRE['Itineraire'] # ITI = PARAMETRE['Itineraire'] # Récupération des éléments constituant l'instance testée à partir de leur nom # A faire pour chaque nom d'élément récupéré ci-dessus # Exemple, récupération de l'itinéraire testé à partir de son nom : # # Itineraire1 = ItineraireNomme(Itineraire1) # # (cf fichier Librairie.py pour la liste des fonctions de type "xxxNomme(e)") ITI = ItineraireNomme(ITI) # Récupération dans le modèle des éléments ne faisant pas partie de l'instance mais nécessaires au déroulement du test # Par rapport au DVSS, chaque élément mentionné non en gras dans les "Objets utilisés" doit être récupéré de cette manière # Exemple, récupération d'une aiguille commandée à droite par l'itinéraire testé : # # Aiguille1 = ListeAigCommandeesParIti(Itineraire1)[0] # # (cf fichiers Interface_Tesia.py et Librairie.py pour les fonctions (resp. directes et macro) de lecture du modèle) SIG = ITI_SIG_origine_Concernant(ITI)[0] #Affichage de l'instance dans le scénario Instance(PARAMETRE) #################################################################### # EXECUTION #################################################################### # TODO # S'il n'y a aucune instance à tester else : print "Pas d'instances pour ce scénario" Commentaire("Pas d'instances pour ce scénario") # Fin de génération du scénario instancié FermetureFichier() Debug ("==== %s généré ===========" % FileName.replace(".scn","")) ################################################################################ # Auto-instanciation ################################################################################ def main(): import CModelCore import Dico_Var instance = Dico_Var.BasePathInstanceTesia modele = Dico_Var.BasePathModelTesia core = CModelCore.CModelCore() core.OpenModel(modele) core.OpenInstance(instance) MonGestionnaireEst(core) Scenario(instance) core.Close() ################################################################################ # Run ################################################################################ if __name__ == '__main__': main()
""" Tests for captions resources. """ import io import pytest import responses import pyyoutube.models as mds from .base import BaseTestCase from pyyoutube.error import PyYouTubeException from pyyoutube.media import Media class TestCaptionsResource(BaseTestCase): RESOURCE = "captions" def test_list(self, helpers, key_cli): with responses.RequestsMock() as m: m.add( method="GET", url=self.url, json=self.load_json("captions/captions_by_video.json", helpers), ) res = key_cli.captions.list(parts=["snippet"], video_id="oHR3wURdJ94") assert res.items[0].id == "SwPOvp0r7kd9ttt_XhcHdZthMwXG7Z0I" def test_insert(self, helpers, authed_cli): video_id = "zxTVeyG1600" body = mds.Caption( snippet=mds.CaptionSnippet( name="日文字幕", language="ja", videoId=video_id, isDraft=True ) ) media = Media( io.StringIO( """ 1 00:00:00,036 --> 00:00:00,703 ジメジメした天気 """ ) ) upload = authed_cli.captions.insert( body=body, media=media, ) assert upload.resumable_progress == 0 def test_update(self, helpers, authed_cli): caption_id = "AUieDabWmL88_xoRtxyxjTMtmvdoF9dLTW3WxfJvaThUXkNptljUijDFS-kDjyA" new_body = mds.Caption( id=caption_id, snippet=mds.CaptionSnippet(videoId="zxTVeyG1600", isDraft=False), ) media = Media( io.StringIO( """ 1 00:00:00,036 --> 00:00:00,703 ジメジメした天気 """ ), ) upload = authed_cli.captions.update( body=new_body, media=media, ) assert upload.resumable_progress == 0 with responses.RequestsMock() as m: m.add( method="PUT", url=self.url, json=self.load_json("captions/update_response.json", helpers), ) caption = authed_cli.captions.update(body=new_body) assert not caption.snippet.isDraft def test_download(self, authed_cli): caption_id = "AUieDabWmL88_xoRtxyxjTMtmvdoF9dLTW3WxfJvaThUXkNptljUijDFS-kDjyA" with responses.RequestsMock() as m: m.add( method="GET", url=f"{self.url}/{caption_id}", ) res = authed_cli.captions.download(caption_id=caption_id) assert res.status_code == 200 def test_delete(self, helpers, authed_cli): caption_id = "AUieDabWmL88_xoRtxyxjTMtmvdoF9dLTW3WxfJvaThUXkNptljUijDFS-kDjyA" with responses.RequestsMock() as m: m.add(method="DELETE", url=self.url) assert authed_cli.captions.delete(caption_id=caption_id) with pytest.raises(PyYouTubeException): with responses.RequestsMock() as m: m.add( method="DELETE", url=self.url, status=403, json=self.load_json("error_permission_resp.json", helpers), ) authed_cli.captions.delete(caption_id=caption_id)
# Different occurences of a substring # can overlap one another ex. ATA in CGATATATC # This algorithm is a full proof way to find all substrings # INPUT - full genome string and substring we are looking for # ALGO - reads from input, splices every possible continuous # four letter string, if any of them equal our substring # the first position of the string is printed f = open('algoIII.txt', 'r') x = f.readline() y = f.readline() # Converts the string into a list then back to a string # For some reason len() keeps adding 1 xtra character # might be a bug in the text editor x = list(x) del(x[z-1]) x = "".join(x) a = len(x) b = len(y) for i in range (b - a+1): answer = y [i:i+a] if answer == x: print i
from setuptools import setup, find_packages with open("README.md", "r") as readme_file: long_description = readme_file.read() setup( name='SpoofDogg', version='1.0', description='A tool that does ARP poisoning and DNS spoofing.', long_description=long_description, long_description_content_type="text/markdown", packages=find_packages(), python_requires="~=3.5", url='', license='Apache', classifiers=[ 'Environment :: Console', 'License :: OSI Approved :: Apache Software License', 'Natural Language :: English', 'Operating System :: OS Independent', 'Programming Language :: Python', ], author='Ada Donder', author_email='adadonderr@gmail.com', keywords="ARP, DNS, spoof, poison, gateway", install_requires=['scapy', 'netfilterqueue'] )
from django.conf.urls import url,include from django.contrib import admin from django.urls import path from . import views urlpatterns = [ path('', views.job_list), path('<int:id>',views.job_details), ]
import logging import fmcapi def test__application(fmc): logging.info("Testing Application class.") obj1 = fmcapi.Applications(fmc=fmc) logging.info("All Application -- >") result = obj1.get(limit=1000) logging.info(result) logging.info(f"Total items: {len(result['items'])}") del obj1 obj1 = fmcapi.Applications(fmc=fmc, name="WD softwares Download/Update") logging.info("One Application -- >") logging.info(obj1.get(limit=1000)) logging.info("Testing Application class done.\n")
# 양수로 이루어진 m x n 그리드를 인자로 드립니다. 상단 왼쪽에서 시작하여, 하단 오른쪽까지 가는 길의 요소를 다 더했을 때,가장 작은 합을 찾아서 return 해주세요. # 한 지점에서 우측이나 아래로만 이동할 수 있습니다. # Input: [ [1,3,1], [1,5,1], [4,2,1] ] # Output: 7 # 설명: 1→3→1→1→1 의 합이 제일 작음 def min_path_sum(grid): x = len(grid) y = len(grid[0]) for i in range(1,x): grid[0][i] += grid[0][i-1] grid[i][0] += grid[i-1][0] for i in range(1,x): for j in range(1,y): grid[i][j] += min(grid[i][j-1], grid[i-1][j]) return grid[-1][-1] min_path_sum([[1,1,3,1],[1,1,5,1],[1,4,2,1],[1,2,3,4]])
# create your solar system animation here! import turtle import math class SolarSystem: def __init__(self, height, width): self.sun = None self.planets = [] self.window = turtle.Screen() self.window.tracer(0) self.window.setup(900, 900) self.window.bgcolor("black") self.sst = turtle.Turtle() self.sst.hideturtle() self.window.setworldcoordinates( -width / 2.0, -height / 2.0, width / 2.0, height / 2.0 ) def add_planet(self, planet): self.planets.append(planet) def add_sun(self, sun): self.sun = sun def show_planets(self): for planet in self.planets: print(planet.name) def freeze(self): self.sst.exitOnClick() def move_planets(self): G = 0.1 dt = 0.0005 for p in self.planets: p.move_to(p.x + dt * p.x_vel, p.y + dt * p.y_vel) rx = self.sun.x - p.x ry = self.sun.y - p.y r = math.sqrt(rx ** 2 + ry ** 2) x_accel = G * self.sun.mass * rx / r ** 3 y_accel = G * self.sun.mass * ry / r ** 3 p.x_vel += dt * x_accel p.y_vel += dt * y_accel class Sun: def __init__(self, name, radius, mass, temp): self.name = name self.radius = radius self.mass = mass self.temp = temp self.x = 0 self.y = 0 self.st = turtle.Turtle() self.st.up() self.st.goto(self.x, self.y) self.st.down() self.st.color("yellow") self.st.begin_fill() self.st.shape("circle") self.st.shapesize(radius, radius, 1) # self.st.circle(radius) self.st.end_fill() class Planet: def __init__(self, name, radius, mass, distance, x_vel, y_vel, color): self.name = name self.radius = radius self.mass = mass self.distance = distance self.x = distance self.y = 0 self.color = color self.x_vel = x_vel self.y_vel = y_vel self.t = turtle.Turtle() self.t.up() self.t.goto(self.x, self.y) self.t.down() self.t.color(color) self.t.begin_fill() self.t.shape("circle") self.t.shapesize(radius, radius, 1) # self.t.circle(radius) self.t.end_fill() def move_to(self, new_x, new_y): self.x = new_x self.y = new_y self.t.up() self.t.goto(self.x, self.y) self.t.down() def create_animate(): ss = SolarSystem(2, 2) sun = Sun("SUN", 1, 25, 5800) ss.add_sun(sun) planet = Planet("MERCURY", 2, 1000, 0.7, -0.5, 0.5, "blue") ss.add_planet(planet) planet_2 = Planet("EARTH", 4, 5000, 0.8, -0.5, 0.6, "green") ss.add_planet(planet_2) planet_3 = Planet("JUPITER", 8, 8000, 1, -0.5, 0.8, "brown") ss.add_planet(planet_3) while True: ss.move_planets() ss.window.update() # i couldn't get ontimer to work for the life of me :( # ss.move_planets() # ss.window.ontimer(create_animate, 500) # ss.window.update() # ss.window.exitonclick() # ss.window.mainloop() create_animate()
# -*- coding: utf-8 -*- """ Created on Wed Jan 24 13:41:52 2018 @author: Rafael Rocha """ import sys import time import os import numpy as np import keras import matplotlib.pyplot as plt #import my_utils as ut from sklearn.metrics import classification_report, confusion_matrix from keras.optimizers import SGD, Adam, Adagrad, RMSprop from keras.losses import categorical_crossentropy from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D from keras.layers import Input from keras.models import Model from keras import backend as K data_set_name = 'train_test_splits_2.npz' #data_set_name = 'dataset_pad_128x256_aug.npz' data = np.load(data_set_name) x = data['x'] y = data['y'] x_test = data['x_test'] y_test = data['y_test'] samples = data['samples'] x_train = x[samples[9]] y_train = y[samples[9]] lr = 0.01 momentum = 0.3 batch_size = 5 epochs = 50 #x_train = data['x_train_1'] #y_train = data['y_train_1'] #x_test = data['x_test_1'] #y_test = data['y_test_1'] x_train = x_train.reshape(x_train.shape[0], 128, 256, 1) x_test = x_test.reshape(x_test.shape[0], 128, 256, 1) y_train = keras.utils.to_categorical(y_train, 3) y_test = keras.utils.to_categorical(y_test, 3) input_shape = (np.size(x_train, 1), np.size(x_train, 2), 1) # ============================================================================== # Create deep network # ============================================================================== K.clear_session() inputs = Input(input_shape) conv0 = Conv2D(32, kernel_size=(11, 11), strides=5, activation='relu', input_shape=input_shape)(inputs) conv1 = Conv2D(64, (3,3), activation='relu')(conv0) pool0 = MaxPooling2D(pool_size=(2, 2))(conv1) pool0 = Dropout(0.25)(pool0) flatt0 = Flatten()(pool0) dense0 = Dense(128, activation='relu')(flatt0) #dense0 = Dropout(0.25)(dense0) outputs = Dense(3, activation='softmax')(dense0) model = Model(inputs=inputs, outputs=outputs) model.compile(loss=categorical_crossentropy, optimizer=SGD(lr=lr, momentum=momentum), metrics=['accuracy']) # ============================================================================== # ============================================================================== # Training deep network # ============================================================================== start_time = time.time() history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, # validation_split=validation_split) # validation_data=(x_validation, y_validation)) validation_data=(x_test, y_test)) training_time = time.time() - start_time score = model.evaluate(x_train, y_train, verbose=0) # print("\n--- Training time: %s seconds ---" % training_time) print('Traning loss:', score[0]) print('Training accuracy:', score[1]) # ============================================================================== start_time = time.time() score = model.evaluate(x_test, y_test, verbose=0) test_time = time.time() - start_time print("\n--- Test time: %s seconds ---" % test_time) print('Test loss:', score[0]) print('Test accuracy:', score[1]) y_pred = model.predict(x_test) #y_pred = model.predict_classes(x_test) target_names = ['Absent', 'Undamaged', 'Damaged'] print('\n') cr = classification_report(np.argmax(y_test, axis=1), np.argmax(y_pred, axis=1), target_names=target_names, digits=4) print(cr) print('\nConfusion matrix:\n') cm = confusion_matrix(np.argmax(y_test, axis=1), np.argmax(y_pred, axis=1)) print(cm) str_acc = "%.2f" % (100*score[1]) model_name = data_set_name + '_' + 'epochs_' + str(epochs) + '_' + 'acc_' + str_acc + '.h5' model_path = os.path.join('model', model_name) #model.save(model_path) acc = history.history['acc'] loss = history.history['loss'] val_acc = history.history['val_acc'] val_loss = history.history['val_loss'] #np.savez(dataset_name+'_'+str(epochs)+ '_' + str_acc, x_train=x_train, y_train=y_train, x_test=x_test, y_test=y_test,acc=acc, loss=loss, val_acc=val_acc, val_loss=val_loss) #ut.plot_acc_loss(acc, val_acc, loss, val_loss)
import os from os.path import join # Messy counting files in directory # def messy_file_count(directory): # for dirpath, dirs, files in os.walk(directory): # filelist = [] # for f in files: # filelist.append(f) # if len(filelist) == 0: # continue # else: # print("{0}: {1} Files".format(dirpath,len(filelist))) # return directory # def clean_file_count(directory): # iterate through all files and dir names in path def topDir(topFolder): count = 0 #exts = ['.BAK', '.SAM', '.DOC', '.GAR', '.NTS','.LEA'] ext = "." for files in os.listdir(topFolder): filePath = join(barcodes, files) if os.path.isdir(filePath): # if dir, recursively count files in dir continue elif os.path.isfile(filePath): # if file, increment count += 1 else: if ext in filePath: print(filePath) count +=1 if count > 1: print("{0}: {1} Files".format(topFolder,count)) return count path = 0 for paths in os.listdir(directory): path +=1 topFolder = join(directory, paths) topDir(topFolder) return path path = r'C:\Path\On\Windows' coll_input = input("Enter the Directory Name: ") coll = str(coll_input) #rcoll = "<PREFIX>"+coll #Add a directory prefix if necessary #directory = join(path,rcoll) #If you added a directory prefix directory = join(path,coll) #messy_file_count(directory) clean_file_count(directory)
#!/usr/bin/python import sys import httplib # loope over sites and if anython but 200 or 301 shows sound alarm for site_name in ["prolinuxhub.com", "prolinuxhub.com", "site2.com", # REPLACE WITH YOUR WEBSITES ]: try: conn = httplib.HTTPConnection(site_name) conn.request("HEAD", "/") r1 = conn.getresponse() conn.close() website_return = r1.status if website_return != 200 and website_return != 301: print "Problem with " + site_name sys.exit(2) except Exception as e: print "Possibly server down " + site_name sys.exit(2)
s=input() a=[int(i) for i in s] sum=0 for i in a: sum+=(i**3) if(sum==int(s)): print("yes") else: print("no")