code
stringlengths
2
1.05M
repo_name
stringlengths
5
104
path
stringlengths
4
251
language
stringclasses
1 value
license
stringclasses
15 values
size
int32
2
1.05M
# Skip test if cuda_ndarray is not available. from __future__ import absolute_import, print_function, division import itertools from nose.plugins.skip import SkipTest import numpy as np from six.moves import xrange from theano import tensor as T import theano from theano.tensor.extra_ops import cumsum, CumOp from theano.tests import unittest_tools as utt import theano.sandbox.cuda as cuda_ndarray if cuda_ndarray.cuda_available: import theano.tensor.tests.test_extra_ops from theano.sandbox.cuda.extra_ops import GpuCumsum else: raise SkipTest('Optional package cuda disabled') if theano.config.mode == 'FAST_COMPILE': mode_with_gpu = theano.compile.mode.get_mode('FAST_RUN').including('gpu') else: mode_with_gpu = theano.compile.mode.get_default_mode().including('gpu') class TestGpuCumsum(theano.tensor.tests.test_extra_ops.TestCumOp): mode = mode_with_gpu def setUp(self): super(TestGpuCumsum, self).setUp() # Fetch some useful properties on the device cuda = theano.sandbox.cuda device_id = cuda.use.device_number if device_id is None: cuda.use("gpu", force=False, default_to_move_computation_to_gpu=False, move_shared_float32_to_gpu=False, enable_cuda=False, test_driver=True) device_id = cuda.use.device_number cuda_ndarray = theano.sandbox.cuda.cuda_ndarray.cuda_ndarray prop = cuda_ndarray.device_properties(device_id) self.max_threads_dim0 = prop['maxThreadsDim0'] self.max_grid_size1 = prop['maxGridSize1'] def test_Strides1D(self): x = T.fvector('x') for axis in [0, None, -1]: a = np.random.random((42,)).astype("float32") cumsum_function = theano.function([x], cumsum(x, axis=axis), mode=self.mode) slicings = [slice(None, None, None), # Normal strides slice(None, None, 2), # Stepped strides slice(None, None, -1), # Negative strides ] # Cartesian product of all slicings to test. for slicing in itertools.product(slicings, repeat=x.ndim): f = theano.function([x], cumsum(x[slicing], axis=axis), mode=self.mode) assert [n for n in f.maker.fgraph.toposort() if isinstance(n.op, GpuCumsum)] utt.assert_allclose(np.cumsum(a[slicing], axis=axis), f(a)) utt.assert_allclose(np.cumsum(a[slicing], axis=axis), cumsum_function(a[slicing])) def test_Strides2D(self): x = T.fmatrix('x') for axis in [0, 1, None, -1, -2]: a = np.random.random((42, 30)).astype("float32") cumsum_function = theano.function([x], cumsum(x, axis=axis), mode=self.mode) slicings = [slice(None, None, None), # Normal strides slice(None, None, 2), # Stepped strides slice(None, None, -1), # Negative strides ] # Cartesian product of all slicings to test. for slicing in itertools.product(slicings, repeat=x.ndim): f = theano.function([x], cumsum(x[slicing], axis=axis), mode=self.mode) assert [n for n in f.maker.fgraph.toposort() if isinstance(n.op, GpuCumsum)] utt.assert_allclose(np.cumsum(a[slicing], axis=axis), f(a)) utt.assert_allclose(np.cumsum(a[slicing], axis=axis), cumsum_function(a[slicing])) def test_Strides3D(self): x = T.ftensor3('x') for axis in [0, 1, 2, None, -1, -2, -3]: a = np.random.random((42, 30, 25)).astype("float32") cumsum_function = theano.function([x], cumsum(x, axis=axis), mode=self.mode) slicings = [slice(None, None, None), # Normal strides slice(None, None, 2), # Stepped strides slice(None, None, -1), # Negative strides ] # Cartesian product of all slicings to test. for slicing in itertools.product(slicings, repeat=x.ndim): f = theano.function([x], cumsum(x[slicing], axis=axis), mode=self.mode) assert [n for n in f.maker.fgraph.toposort() if isinstance(n.op, GpuCumsum)] utt.assert_allclose(np.cumsum(a[slicing], axis=axis), f(a)) utt.assert_allclose(np.cumsum(a[slicing], axis=axis), cumsum_function(a[slicing])) def test_GpuCumsum1D(self): block_max_size = self.max_threads_dim0 * 2 x = T.fvector('x') f = theano.function([x], cumsum(x), mode=self.mode) assert [n for n in f.maker.fgraph.toposort() if isinstance(n.op, GpuCumsum)] # Extensive testing for the first 1025 sizes a = np.random.random(1025).astype("float32") for i in xrange(a.shape[0]): utt.assert_allclose(np.cumsum(a[:i]), f(a[:i])) # Use multiple GPU threadblocks a = np.random.random((block_max_size + 2,)).astype("float32") utt.assert_allclose(np.cumsum(a), f(a)) # Use recursive cumsum a = np.ones((block_max_size * (block_max_size + 1) + 2,), dtype="float32") utt.assert_allclose(np.cumsum(a), f(a)) def test_GpuCumsum2D(self): block_max_size = self.max_threads_dim0 * 2 x = T.fmatrix('x') for shape_axis, axis in zip([0, 1, 0, 1, 0], [0, 1, None, -1, -2]): f = theano.function([x], cumsum(x, axis=axis), mode=self.mode) assert [n for n in f.maker.fgraph.toposort() if isinstance(n.op, GpuCumsum)] # Extensive testing for the first 1025 sizes a_shape = [5, 5] a_shape[shape_axis] = 1025 a = np.random.random(a_shape).astype("float32") slices = [slice(None), slice(None)] for i in xrange(a.shape[shape_axis]): slices[shape_axis] = slice(i) fa = f(a[slices]) npa = np.cumsum(a[slices], axis=axis) utt.assert_allclose(npa, fa) # Use multiple GPU threadblocks a_shape = [5, 5] a_shape[shape_axis] = block_max_size + 2 a = np.random.random(a_shape).astype("float32") utt.assert_allclose(np.cumsum(a, axis=axis), f(a)) # Use multiple GPU gridblocks a_shape = [4, 4] a_shape[1 - shape_axis] = self.max_grid_size1 + 1 a = np.random.random(a_shape).astype("float32") utt.assert_allclose(np.cumsum(a, axis=axis), f(a), rtol=5e-5) # Use recursive cumsum a_shape = [3, 3] a_shape[shape_axis] = block_max_size * ( block_max_size + 1) + 2 a = np.random.random(a_shape).astype("float32") a = np.sign(a - 0.5).astype("float32") # Avoid floating point error utt.assert_allclose(np.cumsum(a, axis=axis), f(a)) def test_GpuCumsum3D(self): block_max_size = self.max_threads_dim0 * 2 x = T.ftensor3('x') for shape_axis, axis in zip([0, 1, 2, 0, 2, 1, 0], [0, 1, 2, None, -1, -2, -3]): f = theano.function([x], cumsum(x, axis=axis), mode=self.mode) assert [n for n in f.maker.fgraph.toposort() if isinstance(n.op, GpuCumsum)] # Extensive testing for the first 1025 sizes a_shape = [5, 5, 5] a_shape[shape_axis] = 1025 a = np.random.rand(*a_shape).astype("float32") slices = [slice(None), slice(None), slice(None)] for i in xrange(a.shape[shape_axis]): slices[shape_axis] = slice(i) fa = f(a[slices]) npa = np.cumsum(a[slices], axis=axis) utt.assert_allclose(npa, fa) # Use multiple GPU threadblocks (along accumulation axis) a_shape = [2, 2, 2] a_shape[shape_axis] = block_max_size + 2 a = np.random.random(a_shape).astype("float32") utt.assert_allclose(np.cumsum(a, axis=axis), f(a)) # Use multiple GPU gridblocks (not along accumulation axis) a_shape = [5, 5, 5] a_shape[(shape_axis + 1) % 3] = self.max_grid_size1 + 1 a = np.random.random(a_shape).astype("float32") if axis is None: # Avoid floating point error a = np.sign(a - 0.5).astype("float32") utt.assert_allclose(np.cumsum(a, axis=axis), f(a)) a_shape = [5, 5, 5] a_shape[(shape_axis + 2) % 3] = self.max_grid_size1 + 1 a = np.random.random(a_shape).astype("float32") if axis is None: # Avoid floating point error a = np.sign(a - 0.5).astype("float32") utt.assert_allclose(np.cumsum(a, axis=axis), f(a)) # Use recursive cumsum (along accumulation axis) a_shape = [3, 3, 3] a_shape[shape_axis] = block_max_size * ( block_max_size + 1) + 2 a = np.random.random(a_shape).astype("float32") a = np.sign(a - 0.5).astype( "float32") # Avoid floating point error utt.assert_allclose(np.cumsum(a, axis=axis), f(a)) def test_GpuCumsum4D(self): # Should not use the GPU version. x = T.ftensor4('x') f = theano.function([x], cumsum(x, axis=1), mode=self.mode) assert [n for n in f.maker.fgraph.toposort() if isinstance(n.op, CumOp)]
Weihonghao/ECM
Vpy34/lib/python3.5/site-packages/theano/sandbox/cuda/tests/test_extra_ops.py
Python
agpl-3.0
10,133
# Copyright 2011-2012 Canonical Ltd. This software is licensed under the # GNU Affero General Public License version 3 (see the file LICENSE). """Code for handling bug notification recipients in bug mail.""" __metaclass__ = type __all__ = [ 'BugNotificationRecipients', ] from zope.interface import implements from lp.services.mail.interfaces import INotificationRecipientSet from lp.services.mail.notificationrecipientset import NotificationRecipientSet class BugNotificationRecipients(NotificationRecipientSet): """A set of emails and rationales notified for a bug change. Each email address registered in a BugNotificationRecipients is associated to a string and a header that explain why the address is being emailed. For instance, if the email address is that of a distribution bug supervisor for a bug, the string and header will make that fact clear. The string is meant to be rendered in the email footer. The header is meant to be used in an X-Launchpad-Message-Rationale header. The first rationale registered for an email address is the one which will be used, regardless of other rationales being added for it later. This gives us a predictable policy of preserving the first reason added to the registry; the callsite should ensure that the manipulation of the BugNotificationRecipients instance is done in preferential order. Instances of this class are meant to be returned by IBug.getBugNotificationRecipients(). """ implements(INotificationRecipientSet) def __init__(self, duplicateof=None): """Constructs a new BugNotificationRecipients instance. If this bug is a duplicate, duplicateof should be used to specify which bug ID it is a duplicate of. Note that there are two duplicate situations that are important: - One is when this bug is a duplicate of another bug: the subscribers to the main bug get notified of our changes. - Another is when the bug we are changing has duplicates; in that case, direct subscribers of duplicate bugs get notified of our changes. These two situations are catered respectively by the duplicateof parameter above and the addDupeSubscriber method. Don't confuse them! """ super(BugNotificationRecipients, self).__init__() self.duplicateof = duplicateof self.subscription_filters = set() def _addReason(self, person, reason, header): """Adds a reason (text and header) for a person. It takes care of modifying the message when the person is notified via a duplicate. """ if self.duplicateof is not None: reason = reason + " (via bug %s)" % self.duplicateof.id header = header + " via Bug %s" % self.duplicateof.id reason = "You received this bug notification because you %s." % reason self.add(person, reason, header) def addDupeSubscriber(self, person, duplicate_bug=None): """Registers a subscriber of a duplicate of this bug.""" reason = "Subscriber of Duplicate" if person.is_team: text = ("are a member of %s, which is subscribed " "to a duplicate bug report" % person.displayname) reason += " @%s" % person.name else: text = "are subscribed to a\nduplicate bug report" if duplicate_bug is not None: text += " (%s)" % duplicate_bug.id self._addReason(person, text, reason) def addDirectSubscriber(self, person): """Registers a direct subscriber of this bug.""" reason = "Subscriber" if person.is_team: text = ("are a member of %s, which is subscribed " "to the bug report" % person.displayname) reason += " @%s" % person.name else: text = "are subscribed to the bug report" self._addReason(person, text, reason) def addAssignee(self, person): """Registers an assignee of a bugtask of this bug.""" reason = "Assignee" if person.is_team: text = ("are a member of %s, which is a bug assignee" % person.displayname) reason += " @%s" % person.name else: text = "are a bug assignee" self._addReason(person, text, reason) def addStructuralSubscriber(self, person, target): """Registers a structural subscriber to this bug's target.""" reason = "Subscriber (%s)" % target.displayname if person.is_team: text = ("are a member of %s, which is subscribed to %s" % (person.displayname, target.displayname)) reason += " @%s" % person.name else: text = "are subscribed to %s" % target.displayname self._addReason(person, text, reason) def update(self, recipient_set): """See `INotificationRecipientSet`.""" super(BugNotificationRecipients, self).update(recipient_set) self.subscription_filters.update( recipient_set.subscription_filters) def addFilter(self, subscription_filter): if subscription_filter is not None: self.subscription_filters.add(subscription_filter)
abramhindle/UnnaturalCodeFork
python/testdata/launchpad/lib/lp/bugs/mail/bugnotificationrecipients.py
Python
agpl-3.0
5,342
# -*- coding:utf-8 -*- # # # Copyright (C) 2013 Michael Telahun Makonnen <mmakonnen@gmail.com>. # All Rights Reserved. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # # from . import tapplicant
nishad-jobsglobal/odoo-marriot
openerp/addons/tapplicant_webcam/__init__.py
Python
agpl-3.0
842
# -*- coding: utf-8 -*- # pylint: disable-msg=E1102 from datetime import datetime from django.db import models from django.template.defaultfilters import slugify from django.utils.translation import ugettext_lazy as _ from django.conf import settings from django.db.models.signals import post_save, post_delete from django.contrib.auth.models import User from djangoratings.fields import RatingField from voting.models import Vote #XXX: poster deberia ser on_delete null en vez de cascade # Thumbnails de la API from sorl.thumbnail import get_thumbnail from api_v2.utils import get_urlprefix from django.core.urlresolvers import reverse from django.db.models import Sum from generic_aggregation import generic_annotate from core.lib.strip_accents import strip_accents class Serie(models.Model): name = models.CharField(max_length=255) slug_name = models.SlugField(unique=True, help_text=_('nombre en la URL')) network = models.ForeignKey("Network", related_name="series") genres = models.ManyToManyField("Genre", related_name="series") runtime = models.IntegerField( name=_('duracion de los episodios'), blank=True, null=True, help_text=_( 'duracion del episodio en minutos' ) ) actors = models.ManyToManyField( "Actor", through='Role', blank=True, null=True, editable=False, help_text=_('actores que trabajaron en la serie')) description = models.TextField() finished = models.BooleanField( default=False, help_text=_('la serie ha finalizado?') ) rating = RatingField( range=5, can_change_vote=True, allow_delete=True, help_text=_('puntuacion de estrellas') ) poster = models.OneToOneField( 'ImageSerie', related_name='poster_of', null=True, blank=True ) def ascii_name(self): return strip_accents(self.name_es) def __unicode__(self): return self.name def save(self, force_insert=False, force_update=False, using=None): ''' When is saved, the title is converted to slug - aka URL''' self.slug_name = slugify(self.name) super(Serie, self).save(force_insert, force_update, using) def url(self): ''' Devuelve la URL para la API (version 2) ''' return get_urlprefix() + reverse('API_v2_serie_detail', kwargs={'serie_id': self.pk}) def get_absolute_full_url(self): return get_urlprefix() + reverse('serie.views.get_serie', kwargs={'serie_slug': self.slug_name, }) @models.permalink def get_absolute_url(self): return ('serie.views.get_serie', (), {'serie_slug': self.slug_name, }) class Role(models.Model): serie = models.ForeignKey("Serie") actor = models.ForeignKey("Actor") sortorder = models.IntegerField(blank=True, null=True) role = models.CharField( max_length=255, help_text=_('personaje que el actor ha hecho en la serie') ) class Meta: unique_together = ("serie", "actor", "role") def __unicode__(self): return self.role class SerieAlias(models.Model): name = models.CharField( max_length=255, unique=True, help_text=_('otros nombres para la misma serie') ) serie = models.ForeignKey("Serie", related_name="aliases") class Season(models.Model): serie = models.ForeignKey('Serie', related_name="season", editable=False) season = models.IntegerField(name=_("Temporada")) def get_next_season(self): next_season = self.season + 1 try: return Season.objects.get(season=next_season, serie=self.serie) except: return None def get_previous_season(self): prev_season = self.season - 1 try: return Season.objects.get(season=prev_season, serie=self.serie) except: return None def __unicode__(self): ''' Serie Name - Season ''' return self.serie.name + ' - ' + str(self.season) @models.permalink def get_absolute_url(self): return ('serie.ajax.season_lookup', (), { 'serie_id': self.serie.id, 'season': self.season, }) @models.permalink def get_season(self): return ('serie.ajax.season_full_links_lookup', (), { 'serie_slug': self.serie.slug_name, 'season': self.season, }) def get_default_user_for_links(): default_user = settings.DEFAULT_USER_FOR_LINKS try: user = User.objects.get(username=default_user) return user except User.DoesNotExist: raise NameError( "Debes crear un usuario valido para DEFAULT_USER_FOR_LINKS llamado %s" % (default_user) ) class LinkSeason(models.Model): season = models.ForeignKey("Season", related_name="links", editable=False) url = models.CharField( max_length=255, unique=True, db_index=True, verbose_name="URL" ) audio_lang = models.ForeignKey("Languages", related_name="audio_langs_season", verbose_name="Idioma") subtitle = models.ForeignKey( "Languages", related_name="sub_langs_season", null=True, blank=True, verbose_name="Subtitulos", ) user = models.ForeignKey( User, related_name="user", editable=False, default=get_default_user_for_links ) pub_date = models.DateTimeField(default=datetime.now, editable=False) # For link checker, so it can deactivate and/or change the check_date is_active = models.BooleanField(default=True, editable=False) check_date = models.DateTimeField(null=True, blank=True, editable=False) def __unicode__(self): return self.url class Episode(models.Model): season = models.ForeignKey( 'Season', related_name="episodes", editable=False ) air_date = models.DateField( _('Fecha de emision'), blank=True, null=True, ) title = models.CharField( _('Titulo'), max_length=255 ) episode = models.IntegerField( _('Episodio'), help_text=_( 'Numero de episodio en temporada' ) ) description = models.TextField(null=True, blank=True) created_time = models.DateField(auto_now_add=True) modified_time = models.DateField(auto_now=True) poster = models.OneToOneField( 'ImageEpisode', related_name='poster_of', null=True, blank=True, editable=False ) def get_next_episode(self): next_epi = self.episode + 1 try: return Episode.objects.get(episode=next_epi, season=self.season) except: return None def get_next_5_episodes(self): ''' Muestra los proximos 5 episodios ''' try: episodes = Episode.objects.filter(episode__gt=self.episode, season=self.season) if episodes.count() < 5: # Si no hay episodios suficientes los busca en la siguiente temporada next_season = self.season.get_next_season() next_episodes = Episode.objects.filter(episode__gte=1, season=next_season) episodes = episodes | next_episodes return episodes[:5] except: return None def get_previous_episode(self): prev_epi = self.episode - 1 try: return Episode.objects.get(episode=prev_epi, season=self.season) except: return None def season_episode(self): return "S%02dE%02d" % (self.season.season, self.episode) def get_absolute_url(self): return '/serie/%s/episode/S%02dE%02d/' % ( self.season.serie.slug_name, self.season.season, self.episode ) def get_add_link_url(self): return '/serie/%s/episode/S%02dE%02d/add/' % ( self.season.serie.slug_name, self.season.season, self.episode ) def from_future(self): now = datetime.now().date() air_date = self.air_date if now < air_date: return 'future' else: return '' def __unicode__(self): return self.title class SorterManager(models.Manager): def sorted_by_votes(self): return generic_annotate(self, Vote.object, Sum('vote')) class Link(models.Model): episode = models.ForeignKey( "Episode", related_name="links", editable=False ) url = models.CharField( max_length=255, unique=True, db_index=True, verbose_name="URL" ) audio_lang = models.ForeignKey( "Languages", related_name="audio_langs", verbose_name="Idioma" ) subtitle = models.ForeignKey( "Languages", related_name="sub_langs", null=True, blank=True, verbose_name="Subtitulos", ) user = models.ForeignKey( User, related_name="link_user", editable=False, default=get_default_user_for_links ) pub_date = models.DateTimeField( default=datetime.now, help_text=_('cuando se ha subido el link? por defecto cuando se guarda'), editable=False ) # For link checker, so it can deactivate and/or change the check_date is_active = models.BooleanField(default=True, editable=False) check_date = models.DateTimeField(null=True, blank=True, editable=False) objects = SorterManager() def __unicode__(self): return self.url def get_score(self): return Vote.objects.get_score(self)['score'] class SubtitleLink(models.Model): ''' For external subtitles ''' url = models.CharField(max_length=255) lang = models.ForeignKey("Languages") link = models.ForeignKey("Link", related_name="subtitles") def __unicode__(self): return self.url class Languages(models.Model): ''' Languages for links ''' iso_code = models.CharField(max_length=2) country = models.CharField(max_length=2, null=True, blank=True) class Meta: unique_together = ("iso_code", "country") def __unicode__(self): if self.country: return "%s-%s" % (self.iso_code, self.country) return self.iso_code class Network(models.Model): name = models.CharField(max_length=25) url = models.URLField(null=True, blank=True) slug_name = models.SlugField(unique=True, help_text=_('nombre en URL')) def save(self, force_insert=False, force_update=False, using=None): ''' When is saved, the name is converted to slug - aka URL''' if not self.slug_name: self.slug_name = slugify(self.name) super(Network, self).save(force_insert, force_update, using) def __unicode__(self): return self.name class Genre(models.Model): name = models.CharField(max_length=25) slug_name = models.SlugField(unique=True, help_text=_('nombre en URL')) def save(self, force_insert=False, force_update=False, using=None): ''' When is saved, the name is converted to slug - aka URL''' if not self.slug_name: self.slug_name = slugify(self.name) super(Genre, self).save(force_insert, force_update, using) def __unicode__(self): return self.name class Actor(models.Model): name = models.CharField(max_length=100) slug_name = models.SlugField(unique=True, help_text=_('nombre en URL')) poster = models.OneToOneField( 'ImageActor', related_name='poster_of', null=True, blank=True ) def save(self, force_insert=False, force_update=False, using=None): ''' When is saved, the name is converted to slug - aka URL''' if not self.slug_name: self.slug_name = slugify(self.name) super(Actor, self).save(force_insert, force_update, using) def __unicode__(self): return self.name @models.permalink def get_absolute_url(self): return ('get_actor', [str(self.slug_name)]) class ImageSerie(models.Model): title = models.CharField(max_length=100) src = models.ImageField(upload_to="img/serie") creator = models.CharField(max_length=100, null=True, blank=True) is_poster = models.BooleanField( help_text=_('entre varias imagenes, cual es el poster?') ) serie = models.ForeignKey("Serie", related_name="images") objects = models.Manager() def thumbnail(self): ''' Para la API, conseguir thumbnail ''' urlprefix = get_urlprefix() return urlprefix + get_thumbnail(self.src, '400x300').url def __unicode__(self): return self.title class ImageActor(models.Model): title = models.CharField(max_length=100) src = models.ImageField(upload_to="img/actor") creator = models.CharField(max_length=100, null=True, blank=True) is_poster = models.BooleanField( help_text=_('entre varias imagenes, cual es el poster?') ) actor = models.ForeignKey("Actor", related_name="images") objects = models.Manager() def __unicode__(self): return self.title class ImageEpisode(models.Model): title = models.CharField(max_length=100) src = models.ImageField(upload_to="img/episodes") creator = models.CharField(max_length=100, null=True, blank=True) is_poster = models.BooleanField( help_text=_('entre varias imagenes, cual es el poster?') ) episode = models.ForeignKey("Episode", related_name="images") objects = models.Manager() def thumbnail(self): ''' Para la API, conseguir thumbnail ''' urlprefix = get_urlprefix() return urlprefix + get_thumbnail(self.src, '200x150').url def __unicode__(self): return self.title poster_dispatch = { ImageSerie: "serie", ImageEpisode: "episode", ImageActor: "actor", } def update_poster(sender, instance, **kwargs): obj = getattr(instance, poster_dispatch[sender]) if instance.is_poster: obj.poster = instance else: other_poster = sender.objects.filter(**{poster_dispatch[sender]:obj, "is_poster":True}).all() if other_poster: obj.poster = other_poster[0] else: obj.poster = None obj.save() def delete_poster(sender, instance, **kwargs): obj = getattr(instance, poster_dispatch[sender]) other_poster = sender.objects.filter(**{poster_dispatch[sender]:obj, "is_poster":True}).all() if other_poster: obj.poster = other_poster[0] else: obj.poster = None obj.save() for sender in poster_dispatch.keys(): post_save.connect(update_poster, sender=sender) post_delete.connect(update_poster, sender=sender)
alabs/petateca
petateca/apps/serie/models.py
Python
agpl-3.0
14,856
from time import sleep from machine import Pin defaultDelay = 1 pinMap = (16, 5, 4, 0, 2, 14, 12, 13, 15, 3) outputs = [Pin(gpio, Pin.OUT) for gpio in pinMap[:8]] def show_code(name='main.py'): with open(name) as f: for line in f.readlines(): print(line, end='') def allOff(): for output in outputs: output.low() def allOn(): for output in outputs: output.high() def flashOne(index, delay=defaultDelay): outputs[index].high() sleep(delay) outputs[index].low() sleep(delay) def flashAll(delay=defaultDelay): allOn() sleep(delay) allOff() sleep(delay) def sequenceAll(positions=range(len(outputs)), delay=defaultDelay): for position in positions: flashOne(position, delay=delay) bowl = outputs[3] fishMap = [1,2,4] fishes = [outputs[pos] for pos in fishMap] def run(): allOff() bowl.high() while True: fishes[0].high() sleep(5) fishes[0].low() fishes[1].high() sleep(1) fishes[1].low() fishes[2].high() sleep(1) fishes[2].low() sleep(5) run()
ShrimpingIt/tableaux
regimes/16_fishbowl/main.py
Python
agpl-3.0
1,009
%pythoncode{ class Wilcoxon: def __init__(self, data, numGenes, class_1_size, class_2_size): scores_vector = DoubleVector() for x in range(0,numGenes): scores_vector.push_back(0.0) runWilcoxonTest(data, numGenes, class_1_size, class_2_size, scores_vector) self.scores = [x for x in scores_vector] self.sorted =None self.cheat =len(self.scores) -1 def getScores(self): return self.scores def filterAdjust(self, filter): """ This function takes an integer and determines how many wilcoxon scores are the same as the filterth element In TSP and TST this acts as an adjustment to the number of genes that are considered """ if self.sorted is None: self.sorted = sorted(self.scores, reverse=True) val = self.sorted[filter] counter = filter if self.sorted[self.cheat] == val and counter < self.cheat: counter = self.cheat n = len(self.sorted) while counter < n and val == self.sorted[counter]: counter += 1 self.cheat = counter -1 return counter-1 }
JohnCEarls/AUREA
src/AUREA/learner/src/wilcoxon_supp.py
Python
agpl-3.0
1,198
# -*- coding: utf-8 -*- # Copyright (c) 2011-2016 CoNWeT Lab., Universidad Politécnica de Madrid # This file is part of Wirecloud. # Wirecloud is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # Wirecloud is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # You should have received a copy of the GNU Affero General Public License # along with Wirecloud. If not, see <http://www.gnu.org/licenses/>. from __future__ import unicode_literals import operator import random from six.moves.urllib.parse import urlparse, urljoin from django.contrib.auth.models import User, Group from django.core.cache import cache from django.db import models from django.utils.encoding import python_2_unicode_compatible from django.utils.translation import ugettext_lazy as _ from whoosh.qparser import MultifieldParser, QueryParser from whoosh.query import And, Every, Or, Term from whoosh.sorting import FieldFacet, FunctionFacet from wirecloud.commons.searchers import get_search_engine from wirecloud.commons.utils.http import get_absolute_reverse_url from wirecloud.commons.utils.template.parsers import TemplateParser from wirecloud.commons.utils.version import Version @python_2_unicode_compatible class CatalogueResource(models.Model): RESOURCE_TYPES = ('widget', 'mashup', 'operator') RESOURCE_MIMETYPES = ('application/x-widget+mashable-application-component', 'application/x-mashup+mashable-application-component', 'application/x-operator+mashable-application-component') TYPE_CHOICES = ( (0, 'Widget'), (1, 'Mashup'), (2, 'Operator'), ) vendor = models.CharField(_('Vendor'), max_length=250) short_name = models.CharField(_('Name'), max_length=250) version = models.CharField(_('Version'), max_length=150) type = models.SmallIntegerField(_('Type'), choices=TYPE_CHOICES, null=False, blank=False) # Person who added the resource to catalogue! creator = models.ForeignKey(User, on_delete=models.CASCADE, null=True, blank=True, related_name='uploaded_resources') public = models.BooleanField(_('Available to all users'), default=False) users = models.ManyToManyField(User, verbose_name=_('Users'), related_name='local_resources', blank=True) groups = models.ManyToManyField(Group, verbose_name=_('Groups'), related_name='local_resources', blank=True) creation_date = models.DateTimeField('creation_date') template_uri = models.CharField(_('templateURI'), max_length=200, blank=True) popularity = models.DecimalField(_('popularity'), default=0, max_digits=2, decimal_places=1) json_description = models.TextField(_('JSON description')) @property def local_uri_part(self): return self.vendor + '/' + self.short_name + '/' + self.version @property def cache_version_key(self): return '_catalogue_resource_version/%s' % self.id @property def cache_version(self): version = cache.get(self.cache_version_key) if version is None: version = random.randrange(1, 100000) cache.set(self.cache_version_key, version) return version def invalidate_cache(self): try: cache.incr(self.cache_version_key) except ValueError: pass def is_available_for(self, user): return self.public or self.users.filter(id=user.id).exists() or len(set(self.groups.all()) & set(user.groups.all())) > 0 def is_removable_by(self, user): return user.is_superuser or self.creator == user def get_template_url(self, request=None, for_base=False, url_pattern_name='wirecloud_catalogue.media'): return get_template_url(self.vendor, self.short_name, self.version, '' if for_base else self.template_uri, request=request, url_pattern_name=url_pattern_name) def get_template(self, request=None, url_pattern_name='wirecloud_catalogue.media'): template_uri = self.get_template_url(request=request, url_pattern_name=url_pattern_name) parser = TemplateParser(self.json_description, base=template_uri) return parser def get_processed_info(self, request=None, lang=None, process_urls=True, translate=True, process_variables=False, url_pattern_name='wirecloud_catalogue.media'): if translate and lang is None: from django.utils import translation lang = translation.get_language() else: lang = None parser = self.get_template(request, url_pattern_name=url_pattern_name) return parser.get_resource_processed_info(lang=lang, process_urls=process_urls, translate=True, process_variables=process_variables) def delete(self, *args, **kwargs): from wirecloud.catalogue.utils import wgt_deployer old_id = self.id super(CatalogueResource, self).delete(*args, **kwargs) # Preserve the id attribute a bit more so CatalogueResource methods can use it self.id = old_id # Undeploy the resource from the filesystem try: wgt_deployer.undeploy(self.vendor, self.short_name, self.version) except: # TODO log this error pass # ignore errors # Remove cache for this resource self.invalidate_cache() # Remove document from search indexes try: with get_search_engine('resource').get_batch_writer() as writer: writer.delete_by_term('pk', '%s' % old_id) except: pass # ignore errors # Remove id attribute definetly self.id = None def resource_type(self): return self.RESOURCE_TYPES[self.type] @property def mimetype(self): return self.RESOURCE_MIMETYPES[self.type] class Meta: unique_together = ("short_name", "vendor", "version") def __str__(self): return self.local_uri_part def get_template_url(vendor, name, version, url, request=None, url_pattern_name='wirecloud_catalogue.media'): if urlparse(url).scheme == '': template_url = get_absolute_reverse_url(url_pattern_name, kwargs={ 'vendor': vendor, 'name': name, 'version': version, 'file_path': url }, request=request) else: template_url = url return template_url def add_absolute_urls(results, request=None): for hit in results: base_url = get_template_url(hit['vendor'], hit['name'], hit['version'], hit['template_uri'], request=request) hit['uri'] = "/".join((hit['vendor'], hit['name'], hit['version'])) hit['image'] = "" if hit['image'] == '' else urljoin(base_url, hit['image']) hit['smartphoneimage'] = "" if hit['image'] == '' else urljoin(base_url, hit['smartphoneimage']) def add_other_versions(searcher, results, user, staff): allow_q = [] if not staff: allow_q = [Or([Term('public', 't'), Term('users', user.username.lower())] + [Term('groups', group.name.lower()) for group in user.groups.all()])] for result in results: user_q = And([Term('vendor_name', '%s/%s' % (result['vendor'], result['name']))] + allow_q) version_results = [h.fields()['version'] for h in searcher.search(user_q)] result['others'] = [v for v in version_results if v != result['version']] return results def build_search_kwargs(user_q, request, types, staff, orderby): if not staff: user_q = And([user_q, Or([Term('public', 't'), Term('users', request.user.username)] + [Term('groups', group.name) for group in request.user.groups.all()])]) if types and len(types) > 0: user_q = And([user_q, Or([Term('type', resource_type) for resource_type in types])]) orderby_f = FieldFacet(orderby.replace('-', ''), reverse=orderby.find('-') > -1) search_kwargs = { 'sortedby': [orderby_f], 'collapse': FieldFacet('vendor_name'), 'collapse_limit': 1, 'collapse_order': FunctionFacet(order_by_version) } return (user_q, search_kwargs) def search(querytext, request, pagenum=1, maxresults=30, staff=False, scope=None, orderby='-creation_date'): search_engine = get_search_engine('resource') search_result = {} if pagenum < 1: pagenum = 1 with search_engine.searcher() as searcher: parser = MultifieldParser(search_engine.default_search_fields, searcher.schema) user_q = querytext and parser.parse(querytext) or Every() user_q, search_kwargs = build_search_kwargs(user_q, request, scope, staff, orderby) hits = searcher.search(user_q, limit=(pagenum * maxresults) + 1, **search_kwargs) if querytext and hits.is_empty(): correction_q = parser.parse(querytext) corrected = searcher.correct_query(correction_q, querytext) if corrected.query != correction_q: querytext = corrected.string search_result['corrected_q'] = querytext user_q, search_kwargs = build_search_kwargs(corrected.query, request, scope, staff, orderby) hits = searcher.search(user_q, limit=(pagenum * maxresults), **search_kwargs) search_engine.prepare_search_response(search_result, hits, pagenum, maxresults) search_result['results'] = add_other_versions(searcher, search_result['results'], request.user, staff) add_absolute_urls(search_result['results'], request) return search_result def suggest(request, prefix='', limit=30): reader = get_search_engine('resource').open_index().reader() frequent_terms = {} for fieldname in ['title', 'vendor', 'description']: for frequency, term in reader.most_frequent_terms(fieldname, limit, prefix): if term in frequent_terms: frequent_terms[term] += frequency else: frequent_terms[term] = frequency # flatten terms return [term.decode('utf-8') for term, frequency in sorted(frequent_terms.items(), key=operator.itemgetter(1), reverse=True)[:limit]] def order_by_version(searcher, docnum): return Version(searcher.stored_fields(docnum)['version'], reverse=True)
jpajuelo/wirecloud
src/wirecloud/catalogue/models.py
Python
agpl-3.0
10,536
def quicksort(arr): return sorted(arr) #
ice1000/OI-codes
codewars/301-400/bug-fix-quick-sort.py
Python
agpl-3.0
46
#!/usr/bin/env python # Copyright (C) 2004 Anthony Baxter from distutils.core import setup try: import py2exe except: py2exe = None from shtoom import __version__ class DependencyFailed(Exception): pass class VersionCheckFailed(DependencyFailed): pass import sys, os if sys.version < '2.3': raise VersionCheckFailed("Python 2.3 or later is required") try: import twisted except ImportError: raise DependencyFailed("You need Twisted - http://www.twistedmatrix.com/") from twisted.copyright import version as tcversion if not tcversion.startswith('SVN') and tcversion < '2': raise VersionCheckFailed("Twisted 2.0 or later is required") #try: # import zope.interface #except ImportError: # raise DependencyFailed("You need to install zope.interface - http://zope.org/Products/ZopeInterface") if py2exe is not None: addnl = { 'console':['scripts/shtoomphone.py'], 'windows': [ { 'script':'script/shtoomphone.py', 'icon_resources' : [( 1, 'shtoom.ico')] } ] } else: addnl = {} DataGlobs = ['*.glade','*.gladep','*.gif', '*.png'] def getDataFiles(): import fnmatch files = [] out = [] for path, dirnames, filenames in os.walk('shtoom'): if '.svn' in dirnames: dirnames.remove('.svn') wanted = [] for glob in DataGlobs: wanted.extend(fnmatch.filter(filenames, glob)) if wanted: files.extend([os.path.join(path, x) for x in wanted]) pkgdir = 'lib/python%d.%d/site-packages'%(sys.version_info[:2]) for f in files: out.append([os.path.join(pkgdir,os.path.dirname(f)),(f,)]) return out if sys.version_info < (2,4): addnl['data_files'] = getDataFiles() else: addnl['data_files'] = [] addnl['package_data'] = {'': DataGlobs} addnl['data_files'].extend([('share/shtoom/audio', ['share/shtoom/audio/ring.wav', 'share/shtoom/audio/ringback.wav',],),]) setup( name = "shtoom", version = __version__, description = "Shtoom - SIP stack (including a softphone)", author = "Anthony Baxter", author_email = "anthony@interlink.com.au", url = 'http://shtoom.divmod.org/', packages = ['shtoom', 'shtoom.address', 'shtoom.multicast', 'shtoom.avail', 'shtoom.ui', 'shtoom.rtp', 'shtoom.ui.qtui', 'shtoom.ui.gnomeui', 'shtoom.ui.qtui', 'shtoom.ui.webui', 'shtoom.ui.webui.images', 'shtoom.test', 'shtoom.ui.textui', 'shtoom.ui.tkui', 'shtoom.ui.wxui', 'shtoom.audio', 'shtoom.app', 'shtoom.doug', 'shtoom.compat' ], scripts = ['scripts/shtoomphone.py', 'scripts/shtam.py', 'scripts/shmessage.py', 'scripts/shecho.py', 'scripts/shtoominfo.py', ], classifiers = [ 'Development Status :: 3 - Alpha', 'License :: OSI Approved :: GNU Library or Lesser General Public License (LGPL)', 'Operating System :: POSIX', 'Operating System :: Microsoft :: Windows', 'Operating System :: MacOS :: MacOS X', 'Programming Language :: Python', 'Topic :: Internet', 'Topic :: Communications :: Internet Phone', ], **addnl )
braams/shtoom
setup.py
Python
lgpl-2.1
3,212
#!/usr/bin/env python # -*- coding: utf-8 -*- # libavg - Media Playback Engine. # Copyright (C) 2003-2013 Ulrich von Zadow # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # Current versions can be found at www.libavg.de # # Original authors of this file are # OXullo Interecans <x at brainrapers dot org> # Richard Klemm <richy at coding-reality.de> from collections import defaultdict from collections import deque import math import libavg from libavg import avg from touchvisualization import DebugTouchVisualization from touchvisualization import TouchVisualizationOverlay as TouchVisOverlay import keyboardmanager as kbmgr g_fontsize = 10 PANGO_ENTITIES_MAP = { "&": "&amp;", '"': "&quot;", "'": "&apos;", ">": "&gt;", "<": "&lt;", } def subscribe(publisher, msgID, callable_): publisher.subscribe(msgID, callable_) return lambda: publisher.unsubscribe(msgID, callable_) class DebugWidgetFrame(avg.DivNode): BORDER = 7 FRAME_HEIGHT_CHANGED = avg.Publisher.genMessageID() def __init__(self, size, widgetCls, *args, **kwargs): super(DebugWidgetFrame, self).__init__(size=size, *args, **kwargs) self.registerInstance(self, None) self.setup(widgetCls) self.subscribe(self.SIZE_CHANGED, self._onSizeChanged) self.size = size self._onSizeChanged(size) def setup(self, widgetCls): self.__background = avg.RectNode(parent=self, opacity=0.8, fillcolor='000000', fillopacity=0.8) self.__widget = widgetCls(parent=self, size=(max(0, self.width - self.BORDER * 2), 0), pos=(self.BORDER, self.BORDER)) self.__selectHighlight = avg.RectNode(parent=self, color="35C0CD", strokewidth=self.BORDER, opacity=0.8, pos=(self.BORDER / 2, self.BORDER / 2), active=False, sensitive=False) self.__boundary = avg.RectNode(parent=self, sensitive=False) self.publish(DebugWidgetFrame.FRAME_HEIGHT_CHANGED) self.__widget.subscribe(self.__widget.WIDGET_HEIGHT_CHANGED, self.adjustWidgetHeight) self.__widget.update() def _onSizeChanged(self, size): self.__boundary.size = size self.__background.size = size childSize = (max(0, size[0] - self.BORDER * 2), max(0, size[1] - self.BORDER * 2)) self.__selectHighlight.size = (max(0, size[0] - self.BORDER), max(0, size[1] - self.BORDER)) self.__widget.size = childSize self.__widget.syncSize(childSize) def adjustWidgetHeight(self, height): self.size = (max(0, self.width), height + 2 * self.BORDER) self.notifySubscribers(DebugWidgetFrame.FRAME_HEIGHT_CHANGED, []) def toggleSelect(self, event=None): self.__selectHighlight.active = not(self.__selectHighlight.active) def isSelected(self): return self.__selectHighlight.active def select(self): self.__selectHighlight.active = True def unselect(self): self.__selectHighlight.active = False def show(self): self.active = True self.__widget.onShow() self.__widget.update() def hide(self): self.active = False self.__widget.onHide() @property def widget(self): return self.__widget class DebugWidget(avg.DivNode): SLOT_HEIGHT = 200 CAPTION = '' WIDGET_HEIGHT_CHANGED = avg.Publisher.genMessageID() def __init__(self, parent=None, **kwargs): super(DebugWidget, self).__init__(**kwargs) self.registerInstance(self, parent) self.publish(DebugWidget.WIDGET_HEIGHT_CHANGED) if self.CAPTION: self._caption = avg.WordsNode(text=self.CAPTION, pivot=(0, 0), opacity=0.5, fontsize=14, parent=self) self._caption.angle = math.pi / 2 self._caption.pos = (self.width, 0) def syncSize(self, size): self._caption.width = size[1] def update(self): pass def onShow(self): pass def onHide(self): pass def kill(self): pass NUM_COLS = 10 COL_WIDTH = 60 ROW_HEIGHT = g_fontsize + 2 class TableRow(avg.DivNode): COL_POS_X = 0 ROW_ID = 0 def __init__(self, parent=None, **kwargs): super(TableRow, self).__init__(**kwargs) self.registerInstance(self, parent) global NUM_COLS NUM_COLS = int((self.parent.width - COL_WIDTH * 4) / COL_WIDTH) self._initRow() TableRow.ROW_ID += 1 def _initRow(self): self.columnBackground = avg.RectNode(parent=self, fillcolor="222222", fillopacity=0.6, opacity=0) self.columnContainer = avg.DivNode(parent=self) if TableRow.ROW_ID % 2 != 0: self.columnBackground.fillopacity = 0 self.cols = [0] * NUM_COLS self.liveColumn = avg.WordsNode(parent=self.columnContainer, fontsize=g_fontsize, text="N/A - SPECIAL", size=(COL_WIDTH, ROW_HEIGHT), variant="bold") for i in xrange(0, NUM_COLS): self.cols[i] = (avg.WordsNode(parent=self.columnContainer, fontsize=g_fontsize, text="0", size=(COL_WIDTH / 2.0, ROW_HEIGHT), pos=((i+1) * COL_WIDTH, 0)), avg.WordsNode(parent=self.columnContainer, fontsize=g_fontsize, text="(0)", size=(COL_WIDTH / 2.0, ROW_HEIGHT), pos=((i+1) * COL_WIDTH + COL_WIDTH / 2, 0), color="000000")) self.rowData = deque([(0, 0)] * (NUM_COLS + 1), maxlen=NUM_COLS + 1) self.label = avg.WordsNode(parent=self, fontsize=g_fontsize, variant="bold") self.setLabel("NONE") @property def height(self): return self.label.height def setLabel(self, label): if self.label.text == label + ":": return self.label.text = label + ":" TableRow.COL_POS_X = max(TableRow.COL_POS_X, self.label.width) if self.label.width < TableRow.COL_POS_X: self.parent.labelColumnSizeChanged() def resizeLabelColumn(self): self.columnContainer.pos = (TableRow.COL_POS_X + 10, 0) self.columnBackground.size = (self.columnContainer.x + self.liveColumn.x + self.liveColumn.width, g_fontsize) def insertValue(self, data): prevValue = self.rowData[0][0] self.rowData.appendleft([data, data-prevValue]) for i in xrange(0, len(self.rowData)-1): val, diff = self.rowData[i] column = self.cols[i] column[0].text = str(val) column[1].text = "({diff})".format(diff=diff) column[1].pos = (column[0].x + column[0].getLineExtents(0)[0] + 2, column[0].y) if diff == 0: column[1].color = "000000" elif diff < 0: column[1].color = "00FF00" else: column[1].color = "FF0000" def updateLiveColumn(self, value): self.liveColumn.text = str(value) class Table(avg.DivNode): def __init__(self, parent=None, **kwargs): super(Table, self).__init__(**kwargs) self.registerInstance(self, parent) def labelColumnSizeChanged(self): for childID in xrange(0, self.getNumChildren()): child = self.getChild(childID) child.resizeLabelColumn() class ObjectDumpWidget(DebugWidget): CAPTION = 'Objects count' def __init__(self, parent=None, **kwargs): super(ObjectDumpWidget, self).__init__(**kwargs) self.registerInstance(self, parent) self.tableContainer = Table(parent=self, size=(self.width, self.SLOT_HEIGHT)) self.tableDivs = defaultdict(lambda: TableRow(parent=self.tableContainer)) def update(self): objDump = libavg.player.getTestHelper().getObjectCount() pos = (0, 0) for key in sorted(objDump.iterkeys()): val = objDump[key] self.tableDivs[key].updateLiveColumn(val) self.tableDivs[key].setLabel(key) self.tableDivs[key].pos = pos pos = (0, pos[1] + self.tableDivs[key].height) height = len(objDump) * self.tableDivs[key].height if self.height != height: self.notifySubscribers(DebugWidget.WIDGET_HEIGHT_CHANGED, [height]) def persistColumn(self): objDump = libavg.player.getTestHelper().getObjectCount() for key, val in objDump.iteritems(): self.tableDivs[key].insertValue(val) def syncSize(self, size): self.tableContainer.size = (size[0], size[1] - (g_fontsize + 2)) def onShow(self): self.intervalID = libavg.player.setInterval(1000, self.update) kbmgr.bindKeyDown(keystring='i', handler=self.persistColumn, help="Object count snapshot", modifiers=libavg.KEYMOD_CTRL) def onHide(self): if self.intervalID: libavg.player.clearInterval(self.intervalID) self.intervalID = None kbmgr.unbindKeyDown(keystring='i', modifiers=libavg.KEYMOD_CTRL) def kill(self): self.onHide() self.tableDivs = None class GraphWidget(DebugWidget): def __init__(self, **kwargs): super(GraphWidget, self).__init__(**kwargs) self.registerInstance(self, None) self.__graph = None def onShow(self): if self.__graph: self.__graph.active = True else: self.__graph = self._createGraph() def onHide(self): if self.__graph: self.__graph.active = False def kill(self): self.__graph.unlink(True) def _createGraph(self): pass class MemoryGraphWidget(GraphWidget): CAPTION = 'Memory usage' def _createGraph(self): return libavg.graph.AveragingGraph(parent=self, size=self.size, getValue=avg.getMemoryUsage) class FrametimeGraphWidget(GraphWidget): CAPTION = 'Time per frame' def _createGraph(self): return libavg.graph.SlidingBinnedGraph(parent=self, getValue=libavg.player.getFrameTime, binsThresholds=[0.0, 20.0, 40.0, 80.0, 160.0], size=self.size) class GPUMemoryGraphWidget(GraphWidget): CAPTION = 'GPU Memory usage' def _createGraph(self): try: libavg.player.getVideoMemUsed() except RuntimeError: return avg.WordsNode(parent=self, text='GPU memory graph is not supported on this hardware', color='ff5555') else: return libavg.graph.AveragingGraph(parent=self, size=self.size, getValue=libavg.player.getVideoMemUsed) class KeyboardManagerBindingsShower(DebugWidget): CAPTION = 'Keyboard bindings' def __init__(self, *args, **kwargs): super(KeyboardManagerBindingsShower, self).__init__(**kwargs) self.registerInstance(self, None) self.keybindingWordNodes = [] kbmgr.publisher.subscribe(kbmgr.publisher.BINDINGS_UPDATED, self.update) def clear(self): for node in self.keybindingWordNodes: node.unlink(True) self.keybindingWordNodes = [] def update(self): self.clear() for binding in kbmgr.getCurrentBindings(): keystring = binding.keystring.decode('utf8') modifiersStr = self.__modifiersToString(binding.modifiers) if modifiersStr is not None: key = '%s-%s' % (modifiersStr, keystring) else: key = keystring if binding.type == libavg.avg.KEYDOWN: key = '%s %s' % (unichr(8595), key) else: key = '%s %s' % (unichr(8593), key) node = avg.WordsNode( text='<span size="large"><b>%s</b></span>: %s' % (key, binding.help), fontsize=g_fontsize, parent=self) self.keybindingWordNodes.append(node) self._placeNodes() def _placeNodes(self): if not self.keybindingWordNodes: return maxWidth = max([node.width for node in self.keybindingWordNodes]) columns = int(self.parent.width / maxWidth) rows = len(self.keybindingWordNodes) / columns remainder = len(self.keybindingWordNodes) % columns if remainder != 0: rows += 1 colSize = self.parent.width / columns currentColumn = 0 currentRow = 0 heights = [0] * columns for node in self.keybindingWordNodes: if currentRow == rows and currentColumn < columns - 1: currentRow = 0 currentColumn += 1 node.pos = (currentColumn * colSize, heights[currentColumn]) heights[currentColumn] += node.height currentRow += 1 finalHeight = max(heights) if self.height != finalHeight: self.notifySubscribers(self.WIDGET_HEIGHT_CHANGED, [finalHeight]) def __modifiersToString(self, modifiers): def isSingleBit(number): bitsSet = 0 for i in xrange(8): if (1 << i) & number: bitsSet += 1 return bitsSet == 1 if modifiers in (0, kbmgr.KEYMOD_ANY): return None allModifiers = [] for mod in dir(avg): if 'KEYMOD_' in mod: maskVal = int(getattr(avg, mod)) if isSingleBit(maskVal): allModifiers.append((maskVal, mod)) modifiersStringsList = [] for modval, modstr in allModifiers: if modifiers & modval: modifiersStringsList.append(modstr.replace('KEYMOD_', '')) for doubleMod in ['CTRL', 'META', 'SHIFT']: left = 'L' + doubleMod right = 'R' + doubleMod if left in modifiersStringsList and right in modifiersStringsList: modifiersStringsList.remove(left) modifiersStringsList.remove(right) modifiersStringsList.append(doubleMod) return '/'.join(modifiersStringsList).lower() class DebugPanel(avg.DivNode): def __init__(self, parent=None, fontsize=10, **kwargs): super(DebugPanel, self).__init__(**kwargs) self.registerInstance(self, parent) avg.RectNode(size=self.size, opacity=0, fillopacity=0.3, fillcolor='ff0000', parent=self) avg.WordsNode(text='Debug panel', fontsize=fontsize, pos=(0, self.height - fontsize - fontsize / 3), parent=self) self.sensitive = False self.active = False self.__panel = None self.__callables = [] self.__fontsize = fontsize self.__touchVisOverlay = None def setupKeys(self): kbmgr.bindKeyDown(keystring='g', handler=lambda: self.toggleWidget(GPUMemoryGraphWidget), help="GPU memory graph", modifiers=libavg.avg.KEYMOD_CTRL) kbmgr.bindKeyDown(keystring='m', handler=lambda: self.toggleWidget(MemoryGraphWidget), help="Memory graph", modifiers=libavg.avg.KEYMOD_CTRL) kbmgr.bindKeyDown(keystring='f', handler=lambda: self.toggleWidget(FrametimeGraphWidget), help="Frametime graph", modifiers=libavg.avg.KEYMOD_CTRL) kbmgr.bindKeyDown(keystring='?', handler=lambda: self.toggleWidget(KeyboardManagerBindingsShower), help="Show keyboard bindings", modifiers=kbmgr.KEYMOD_ANY) kbmgr.bindKeyDown(keystring='o', handler=lambda: self.toggleWidget(ObjectDumpWidget), help="Object count table", modifiers=libavg.avg.KEYMOD_CTRL) kbmgr.bindKeyDown(keystring='v', handler=self.toggleTouchVisualization, help="Cursor visualization", modifiers=libavg.avg.KEYMOD_CTRL) def addWidget(self, widgetCls, *args, **kwargs): callable_ = lambda: self.__panel.addWidget(widgetCls, *args, **kwargs) if self.__panel: callable_() else: self.__callables.append(callable_) def toggleWidget(self, *args, **kwargs): if not self.active: self.show() self.__panel.ensureWidgetWisible(*args, **kwargs) else: self.__panel.toggleWidget(*args, **kwargs) if not self.__panel.activeWidgetClasses: self.hide() def hide(self): if self.__panel and self.active: self.__panel.hide() self.active = False def show(self): if self.__panel: if not self.active: self.__panel.show() else: self.forceLoadPanel() self.active = True def toggleVisibility(self): if self.active: self.hide() else: self.show() def toggleTouchVisualization(self): if self.__touchVisOverlay is None: self.__touchVisOverlay = TouchVisOverlay( isDebug=True, visClass=DebugTouchVisualization, size=self.parent.size, parent=self.parent) else: self.__touchVisOverlay.unlink(True) self.__touchVisOverlay = None def forceLoadPanel(self): if self.__panel is None: self.__panel = _DebugPanel(parent=self, size=self.size, fontsize=self.__fontsize) for callable_ in self.__callables: callable_() class _DebugPanel(avg.DivNode): def __init__(self, parent=None, fontsize=10, **kwargs): super(_DebugPanel, self).__init__(**kwargs) self.registerInstance(self, parent) self.__slots = [] self.maxSize = self.size self.size = (self.size[0], 0) self.activeWidgetClasses = [] self.__selectedWidget = None global g_fontsize g_fontsize = fontsize self.show() def show(self): for widgetFrame in self.__slots: if widgetFrame: widgetFrame.show() self.updateWidgets() def hide(self): for widget in self.__slots: if widget: widget.hide() def ensureWidgetWisible(self, widgetClass, *args, **kwargs): if not widgetClass in self.activeWidgetClasses: self.toggleWidget(widgetClass, *args, **kwargs) def toggleWidget(self, widgetClass, *args, **kwargs): if widgetClass in self.activeWidgetClasses: self._removeWidgetByClass(widgetClass) else: self.addWidget(widgetClass, *args, **kwargs) def addWidget(self, widgetClass, *args, **kwargs): if widgetClass in self.activeWidgetClasses: libavg.logger.warning("You can't add the same widget twice") return widgetFrame = DebugWidgetFrame((max(0, self.width), DebugWidget.SLOT_HEIGHT), widgetClass) height = 0 for frame in self.__slots: if frame: height += frame.height height += widgetFrame.height if height > self.maxSize[1]: libavg.logger.warning("No vertical space left. " "Delete a widget and try again") return False self.appendChild(widgetFrame) widgetPlaced = False for idx, slot in enumerate(self.__slots): if slot is None: self.__slots[idx] = widgetFrame widgetPlaced = True break if not widgetPlaced: self.__slots.append(widgetFrame) widgetFrame.subscribe(widgetFrame.FRAME_HEIGHT_CHANGED, self._heightChanged) self.reorderWidgets() widgetFrame.show() self.updateWidgets() self.activeWidgetClasses.append(widgetClass) def _removeWidgetByClass(self, widgetClass): for frame in self.__slots: if frame and frame.widget.__class__ == widgetClass: self.removeWidgetFrame(frame) return def _heightChanged(self): height = 0 for childID in xrange(0, self.getNumChildren()): child = self.getChild(childID) height += child.height self.height = height self.reorderWidgets() def updateWidgets(self): for childID in xrange(0, self.getNumChildren()): self.getChild(childID).widget.update() def selectWidget(self, id): id = id % self.getNumChildren() for childID in xrange(0, self.getNumChildren()): self.getChild(childID).unselect() self.getChild(id).select() self.__selectedWidget = id def selectPreviousWidget(self): if self.__selectedWidget is None: self.selectWidget(-1) else: self.selectWidget(self.__selectedWidget - 1) def selectNextWidget(self): if self.__selectedWidget is None: self.selectWidget(0) else: self.selectWidget(self.__selectedWidget + 1) def removeWidgetFrame(self, widgetFrame): self.activeWidgetClasses.remove(widgetFrame.widget.__class__) for idx, slot in enumerate(self.__slots): if slot == widgetFrame: self.__slots[idx] = None break widgetFrame.widget.kill() widgetFrame.unlink(True) self.reorderWidgets() self.updateWidgets() def removeSelectedWidgetFrames(self): candidates = [] for childID in xrange(0, self.getNumChildren()): child = self.getChild(childID) if child.isSelected(): candidates.append(child) for widgetFrame in candidates: self.removeWidgetFrame(widgetFrame) self.__selectedWidget = None def reorderWidgets(self): #TODO: This is no layout management, yet count = 0 height = 0 for idx, widgetFrame in enumerate(self.__slots): if widgetFrame: widgetFrame.pos = (0, height) count += 1 height += widgetFrame.height self.size = (self.maxSize[0], height)
lynxis/libavg
src/python/app/debugpanel.py
Python
lgpl-2.1
23,377
############################################################################## # Copyright (c) 2013-2017, Lawrence Livermore National Security, LLC. # Produced at the Lawrence Livermore National Laboratory. # # This file is part of Spack. # Created by Todd Gamblin, tgamblin@llnl.gov, All rights reserved. # LLNL-CODE-647188 # # For details, see https://github.com/llnl/spack # Please also see the NOTICE and LICENSE files for our notice and the LGPL. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License (as # published by the Free Software Foundation) version 2.1, February 1999. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and # conditions of the GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ############################################################################## import argparse import spack import spack.cmd description = "fetch archives for packages" section = "build" level = "long" def setup_parser(subparser): subparser.add_argument( '-n', '--no-checksum', action='store_true', dest='no_checksum', help="do not check packages against checksum") subparser.add_argument( '-m', '--missing', action='store_true', help="also fetch all missing dependencies") subparser.add_argument( '-D', '--dependencies', action='store_true', help="also fetch all dependencies") subparser.add_argument( 'packages', nargs=argparse.REMAINDER, help="specs of packages to fetch") def fetch(parser, args): if not args.packages: tty.die("fetch requires at least one package argument") if args.no_checksum: spack.do_checksum = False specs = spack.cmd.parse_specs(args.packages, concretize=True) for spec in specs: if args.missing or args.dependencies: for s in spec.traverse(deptype_query=all): package = spack.repo.get(s) if args.missing and package.installed: continue package.do_fetch() package = spack.repo.get(spec) package.do_fetch()
wscullin/spack
lib/spack/spack/cmd/fetch.py
Python
lgpl-2.1
2,513
#!/usr/bin/env python3 # Copyright (C) 2016 Kaspar Schleiser <kaspar@schleiser.de> # # This file is subject to the terms and conditions of the GNU Lesser # General Public License v2.1. See the file LICENSE in the top level # directory for more details. import os import sys sys.path.append(os.path.join(os.environ['RIOTBASE'], 'dist/tools/testrunner')) import testrunner def testfunc(child): child.expect('Available timers: (\d+)') timers_num = int(child.match.group(1)) for timer in range(timers_num): child.expect_exact('Testing TIMER_{}'.format(timer)) child.expect_exact('TIMER_{}: initialization successful'.format(timer)) child.expect_exact('TIMER_{}: stopped'.format(timer)) child.expect_exact('TIMER_{}: starting'.format(timer)) child.expect('TEST SUCCEEDED') if __name__ == "__main__": sys.exit(testrunner.run(testfunc))
ks156/RIOT
tests/periph_timer/tests/01-run.py
Python
lgpl-2.1
888
from gi.repository import Gtk def view_focus_tool(view): """This little tool ensures the view grabs focus when a mouse press or touch event happens.""" gesture = ( Gtk.GestureSingle(widget=view) if Gtk.get_major_version() == 3 else Gtk.GestureSingle() ) gesture.connect("begin", on_begin) return gesture def on_begin(gesture, sequence): view = gesture.get_widget() if not view.is_focus(): view.grab_focus()
amolenaar/gaphas
gaphas/tool/viewfocus.py
Python
lgpl-2.1
475
#!/usr/bin/env python import unittest, sys, multifile, mimetools, base64 from ZSI import * from ZSI import resolvers try: import cStringIO as StringIO except ImportError: import StringIO class t6TestCase(unittest.TestCase): "Test case wrapper for old ZSI t6 test case" def checkt6(self): try: istr = StringIO.StringIO(intext) m = mimetools.Message(istr) cid = resolvers.MIMEResolver(m['content-type'], istr) xml = cid.GetSOAPPart() ps = ParsedSoap(xml, resolver=cid.Resolve) except ParseException, e: print >>OUT, FaultFromZSIException(e).AsSOAP() self.fail() except Exception, e: # Faulted while processing; assume it's in the header. print >>OUT, FaultFromException(e, 1, sys.exc_info()[2]).AsSOAP() self.fail() try: dict = ps.Parse(typecode) except Exception, e: # Faulted while processing; now it's the body print >>OUT, FaultFromException(e, 0, sys.exc_info()[2]).AsSOAP() self.fail() self.failUnlessEqual(dict['stringtest'], strExtTest, "Failed to extract stringtest correctly") print base64.encodestring(cid['partii@zolera.com'].read()) v = dict['b64'] print type(v), 'is type(v)' self.failUnlessEqual(cid['partii@zolera.com'].getvalue(), v, "mismatch") print base64.encodestring(v) from ZSI.wstools.c14n import Canonicalize z = dict['xmltest'] print type(z), z print Canonicalize(z) def makeTestSuite(): suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(t6TestCase, "check")) return suite def main(): unittest.main(defaultTest="makeTestSuite") OUT = sys.stdout typecode = TC.Struct(None, [ TC.String('b64'), TC.String('stringtest'), TC.XML('xmltest'), ]) intext='''Return-Path: <rsalz@zolera.com> Received: from zolera.com (os390.zolera.com [10.0.1.9]) by zolera.com (8.11.0/8.11.0) with ESMTP id f57I2sf00832 for <rsalz@zolera.com>; Thu, 7 Jun 2001 14:02:54 -0400 Sender: rsalz@zolera.com Message-ID: <3B1FC1D1.FF6B21B4@zolera.com> Date: Thu, 07 Jun 2001 14:02:57 -0400 From: Rich Salz <rsalz@zolera.com> X-Mailer: Mozilla 4.72 [en] (X11; U; Linux 2.2.14-5.0 i686) X-Accept-Language: en MIME-Version: 1.0 To: rsalz@zolera.com Subject: mime with attachments Content-Type: multipart/mixed; boundary="------------68E4BAC5B266315E42428C64" Status: R This is a multi-part message in MIME format. --------------68E4BAC5B266315E42428C64 Content-Type: text/plain; charset=us-ascii Content-Transfer-Encoding: 7bit <SOAP-ENV:Envelope xmlns="http://www.example.com/schemas/TEST" xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:ZSI="http://www.zolera.com/schemas/ZSI/"> <SOAP-ENV:Body> <hreftest> <stringtest href="cid:part1@zolera.com"/> <b64 href="cid:partii@zolera.com"/> <xmltest href="cid:12@zolera.com"/> </hreftest> </SOAP-ENV:Body> </SOAP-ENV:Envelope> --------------68E4BAC5B266315E42428C64 Content-Type: text/plain; charset=us-ascii; name="abs.txt" Content-Transfer-Encoding: 7bit Content-ID: <part1@zolera.com> Content-Disposition: inline; filename="abs.txt" Digitial Signatures in a Web Services World An influential Forrestor report created the term inverted security: it's not about who you keep out, it's about who you let in. Customer portals, without a costly PKI deployment or application integration issues. --------------68E4BAC5B266315E42428C64 Content-Type: application/pdf; name="gmpharma.pdf" Content-Transfer-Encoding: base64 Content-ID: <partii@zolera.com> Content-Disposition: inline; filename="gmpharma.pdf" JVBERi0xLjINJeLjz9MNCjQzIDAgb2JqDTw8IA0vTGluZWFyaXplZCAxIA0vTyA0NSANL0gg WyAxMTQ0IDM5NiBdIA0vTCA2NjkwMiANL0UgMTAyODIgDS9OIDkgDS9UIDY1OTI0IA0+PiAN RB3nwVOQH9JpmFv6Ri2Zq7mlddSS2B5WcZwvAP+gy9QtuYlfqj1rsi9WqJOszzHXmXZ8fXxK XBBztIpgbkRrd+SGtY4QXo0fX0VN86uKXwtrkd7h1qiq2FUtXl6uNfnCoyX1Dve1O3RPRyhG sKn6fLMb+uSSIHPQkClRBwu5gechz/1PBUBSB34jXbPdMTIb+/wRP+pauSAhLBzFELDOgk5b PaIPAnIudFovQTc7Df2Ws9Atz4Bua+oINphIOojogG5LP3Tb3oNu8bsmuK+wFXEdbfgFIx+G gKULYx5A2WnaDXB5JeoRQg90S0HcX2dCPmRCqDXB/aX34KujsPwJ/UpRdxXPeAftDkQS6hag bh/yTOiUyqBz9CzxnyMYQGDO0jrUZ47kkWfmYvVg --------------68E4BAC5B266315E42428C64 Content-ID: <12@zolera.com> <foo xmlns="example.com" xmlns:Z="zolera"> this is a foo <b xmlns:Z="zolera">redundnant ns decl</b> <b Z:x="this was first" Z:a="2nd-orig">b test</b> </foo> --------------68E4BAC5B266315E42428C64-- ''' strExtTest = ''' Digitial Signatures in a Web Services World An influential Forrestor report created the term inverted security: it's not about who you keep out, it's about who you let in. Customer portals, without a costly PKI deployment or application integration issues. ''' if __name__ == "__main__" : main()
ned14/BEurtle
Installer/test/ZSI-2.1-a1/test/test_t6.py
Python
lgpl-2.1
5,153
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config import os import sys import recommonmark from recommonmark.transform import AutoStructify # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('..')) # -- Project information ----------------------------------------------------- project = 'Moe Serifu Agent' copyright = '2018, Moe Serifu Circle' author = 'Moe Serifu Circle' # The short X.Y version version = '0.1' # The full version, including alpha/beta/rc tags release = '0.1' # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.intersphinx', 'sphinx.ext.coverage', 'sphinx.ext.viewcode', 'sphinx.ext.githubpages', 'sphinx.ext.napoleon', ] source_parsers = { '.md': 'recommonmark.parser.CommonMarkParser', } napoleon_google_docstring = False napoleon_use_param = False napoleon_use_ivar = True # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = None # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'MoeSerifuAgentdoc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'MoeSerifuAgent.tex', 'Moe Serifu Agent Documentation', 'Moe Serifu Circle \\& Contributors', 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'moeserifuagent', 'Moe Serifu Agent Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'MoeSerifuAgent', 'Moe Serifu Agent Documentation', author, 'MoeSerifuAgent', 'One line description of project.', 'Miscellaneous'), ] # -- Options for Epub output ------------------------------------------------- # Bibliographic Dublin Core info. epub_title = project # The unique identifier of the text. This can be a ISBN number # or the project homepage. # # epub_identifier = '' # A unique identification for the text. # # epub_uid = '' # A list of files that should not be packed into the epub file. epub_exclude_files = ['search.html'] # -- Extension configuration ------------------------------------------------- # -- Options for intersphinx extension --------------------------------------- # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'https://docs.python.org/': None} def setup(app): app.add_config_value('recommonmark_config', { 'url_resolver': lambda url: "docs.moeserifu.moe/" + url, 'enable_auto_toc_tree': True, 'auto_toc_tree_section': 'Contents', 'enable_auto_doc_ref': False, }, True) app.add_transform(AutoStructify)
dekarrin/moe-serifu-agent
python/sphinx/conf.py
Python
lgpl-3.0
6,239
# -*- coding: utf-8 -*- import os import re import sys import subprocess import nixops.util import nixops.resources import nixops.ssh_util class MachineDefinition(nixops.resources.ResourceDefinition): """Base class for NixOps machine definitions.""" def __init__(self, xml): nixops.resources.ResourceDefinition.__init__(self, xml) self.encrypted_links_to = set([e.get("value") for e in xml.findall("attrs/attr[@name='encryptedLinksTo']/list/string")]) self.store_keys_on_machine = xml.find("attrs/attr[@name='storeKeysOnMachine']/bool").get("value") == "true" self.always_activate = xml.find("attrs/attr[@name='alwaysActivate']/bool").get("value") == "true" self.keys = {k.get("name"): k.find("string").get("value") for k in xml.findall("attrs/attr[@name='keys']/attrs/attr")} self.owners = [e.get("value") for e in xml.findall("attrs/attr[@name='owners']/list/string")] class MachineState(nixops.resources.ResourceState): """Base class for NixOps machine state objects.""" vm_id = nixops.util.attr_property("vmId", None) ssh_pinged = nixops.util.attr_property("sshPinged", False, bool) public_vpn_key = nixops.util.attr_property("publicVpnKey", None) store_keys_on_machine = nixops.util.attr_property("storeKeysOnMachine", True, bool) keys = nixops.util.attr_property("keys", [], 'json') owners = nixops.util.attr_property("owners", [], 'json') # Nix store path of the last global configuration deployed to this # machine. Used to check whether this machine is up to date with # respect to the global configuration. cur_configs_path = nixops.util.attr_property("configsPath", None) # Nix store path of the last machine configuration deployed to # this machine. cur_toplevel = nixops.util.attr_property("toplevel", None) def __init__(self, depl, name, id): nixops.resources.ResourceState.__init__(self, depl, name, id) self._ssh_pinged_this_time = False self.ssh = nixops.ssh_util.SSH(self.logger) self.ssh.register_flag_fun(self.get_ssh_flags) self.ssh.register_host_fun(self.get_ssh_name) self.ssh.register_passwd_fun(self.get_ssh_password) self._ssh_private_key_file = None def prefix_definition(self, attr): return attr @property def started(self): state = self.state return state == self.STARTING or state == self.UP def set_common_state(self, defn): self.store_keys_on_machine = defn.store_keys_on_machine self.keys = defn.keys def stop(self): """Stop this machine, if possible.""" self.warn("don't know how to stop machine ‘{0}’".format(self.name)) def start(self): """Start this machine, if possible.""" pass def get_load_avg(self): """Get the load averages on the machine.""" try: res = self.run_command("cat /proc/loadavg", capture_stdout=True, timeout=15).rstrip().split(' ') assert len(res) >= 3 return res except nixops.ssh_util.SSHConnectionFailed: return None except nixops.ssh_util.SSHCommandFailed: return None # FIXME: Move this to ResourceState so that other kinds of # resources can be checked. def check(self): """Check machine state.""" res = CheckResult() self._check(res) return res def _check(self, res): avg = self.get_load_avg() if avg == None: if self.state == self.UP: self.state = self.UNREACHABLE res.is_reachable = False else: self.state = self.UP self.ssh_pinged = True self._ssh_pinged_this_time = True res.is_reachable = True res.load = avg # Get the systemd units that are in a failed state or in progress. out = self.run_command("systemctl --all --full --no-legend", capture_stdout=True).split('\n') res.failed_units = [] res.in_progress_units = [] for l in out: match = re.match("^([^ ]+) .* failed .*$", l) if match: res.failed_units.append(match.group(1)) # services that are in progress match = re.match("^([^ ]+) .* activating .*$", l) if match: res.in_progress_units.append(match.group(1)) # Currently in systemd, failed mounts enter the # "inactive" rather than "failed" state. So check for # that. Hack: ignore special filesystems like # /sys/kernel/config. Systemd tries to mount these # even when they don't exist. match = re.match("^([^\.]+\.mount) .* inactive .*$", l) if match and not match.group(1).startswith("sys-") and not match.group(1).startswith("dev-"): res.failed_units.append(match.group(1)) def restore(self, defn, backup_id, devices=[]): """Restore persistent disks to a given backup, if possible.""" self.warn("don't know how to restore disks from backup for machine ‘{0}’".format(self.name)) def remove_backup(self, backup_id): """Remove a given backup of persistent disks, if possible.""" self.warn("don't know how to remove a backup for machine ‘{0}’".format(self.name)) def backup(self, defn, backup_id): """Make backup of persistent disks, if possible.""" self.warn("don't know how to make backup of disks for machine ‘{0}’".format(self.name)) def reboot(self, hard=False): """Reboot this machine.""" self.log("rebooting...") if self.state == self.RESCUE: # We're on non-NixOS here, so systemd might not be available. # The sleep is to prevent the reboot from causing the SSH # session to hang. reboot_command = "(sleep 2; reboot) &" else: reboot_command = "systemctl reboot" self.run_command(reboot_command, check=False) self.state = self.STARTING self.ssh.reset() def reboot_sync(self, hard=False): """Reboot this machine and wait until it's up again.""" self.reboot(hard=hard) self.log_start("waiting for the machine to finish rebooting...") nixops.util.wait_for_tcp_port(self.get_ssh_name(), 22, open=False, callback=lambda: self.log_continue(".")) self.log_continue("[down]") nixops.util.wait_for_tcp_port(self.get_ssh_name(), 22, callback=lambda: self.log_continue(".")) self.log_end("[up]") self.state = self.UP self.ssh_pinged = True self._ssh_pinged_this_time = True self.send_keys() def reboot_rescue(self, hard=False): """ Reboot machine into rescue system and wait until it is active. """ self.warn("machine ‘{0}’ doesn't have a rescue" " system.".format(self.name)) def send_keys(self): if self.store_keys_on_machine: return self.run_command("mkdir -m 0700 -p /run/keys") for k, v in self.get_keys().items(): self.log("uploading key ‘{0}’...".format(k)) tmp = self.depl.tempdir + "/key-" + self.name f = open(tmp, "w+"); f.write(v); f.close() self.run_command("rm -f /run/keys/" + k) self.upload_file(tmp, "/run/keys/" + k) self.run_command("chmod 600 /run/keys/" + k) os.remove(tmp) self.run_command("touch /run/keys/done") def get_keys(self): return self.keys def get_ssh_name(self): assert False def get_ssh_flags(self): return [] def get_ssh_password(self): return None @property def public_ipv4(self): return None @property def private_ipv4(self): return None def address_to(self, m): """Return the IP address to be used to access machone "m" from this machine.""" ip = m.public_ipv4 if ip: return ip return None def wait_for_ssh(self, check=False): """Wait until the SSH port is open on this machine.""" if self.ssh_pinged and (not check or self._ssh_pinged_this_time): return self.log_start("waiting for SSH...") nixops.util.wait_for_tcp_port(self.get_ssh_name(), 22, callback=lambda: self.log_continue(".")) self.log_end("") if self.state != self.RESCUE: self.state = self.UP self.ssh_pinged = True self._ssh_pinged_this_time = True def write_ssh_private_key(self, private_key): key_file = "{0}/id_nixops-{1}".format(self.depl.tempdir, self.name) with os.fdopen(os.open(key_file, os.O_CREAT | os.O_WRONLY, 0600), "w") as f: f.write(private_key) self._ssh_private_key_file = key_file return key_file def get_ssh_private_key_file(self): return None def _logged_exec(self, command, **kwargs): return nixops.util.logged_exec(command, self.logger, **kwargs) def run_command(self, command, **kwargs): """ Execute a command on the machine via SSH. For possible keyword arguments, please have a look at nixops.ssh_util.SSH.run_command(). """ # If we are in rescue state, unset locale specific stuff, because we're # mainly operating in a chroot environment. if self.state == self.RESCUE: command = "export LANG= LC_ALL= LC_TIME=; " + command return self.ssh.run_command(command, self.get_ssh_flags(), **kwargs) def switch_to_configuration(self, method, sync, command=None): """ Execute the script to switch to new configuration. This function has to return an integer, which is the return value of the actual script. """ cmd = ("NIXOS_NO_SYNC=1 " if not sync else "") if command is None: cmd += "/nix/var/nix/profiles/system/bin/switch-to-configuration" else: cmd += command cmd += " " + method return self.run_command(cmd, check=False) def copy_closure_to(self, path): """Copy a closure to this machine.""" # !!! Implement copying between cloud machines, as in the Perl # version. # It's usually faster to let the target machine download # substitutes from nixos.org, so try that first. if not self.has_really_fast_connection(): closure = subprocess.check_output(["nix-store", "-qR", path]).splitlines() self.run_command("nix-store -j 4 -r --ignore-unknown " + ' '.join(closure), check=False) # Any remaining paths are copied from the local machine. env = dict(os.environ) master = self.ssh.get_master() env['NIX_SSHOPTS'] = ' '.join(self.get_ssh_flags() + master.opts) self._logged_exec( ["nix-copy-closure", "--to", "root@" + self.get_ssh_name(), path] + ([] if self.has_really_fast_connection() else ["--gzip"]), env=env) def has_really_fast_connection(self): return False def generate_vpn_key(self): try: self.run_command("test -f /root/.ssh/id_charon_vpn") _vpn_key_exists = True except nixops.ssh_util.SSHCommandFailed: _vpn_key_exists = False if self.public_vpn_key and _vpn_key_exists: return (private, public) = nixops.util.create_key_pair(key_name="NixOps VPN key of {0}".format(self.name)) f = open(self.depl.tempdir + "/id_vpn-" + self.name, "w+") f.write(private) f.seek(0) res = self.run_command("umask 077 && mkdir -p /root/.ssh &&" " cat > /root/.ssh/id_charon_vpn", check=False, stdin=f) if res != 0: raise Exception("unable to upload VPN key to ‘{0}’".format(self.name)) self.public_vpn_key = public def upload_file(self, source, target, recursive=False): master = self.ssh.get_master() cmdline = ["scp"] + self.get_ssh_flags() + master.opts if recursive: cmdline += ['-r'] cmdline += [source, "root@" + self.get_ssh_name() + ":" + target] return self._logged_exec(cmdline) def download_file(self, source, target, recursive=False): master = self.ssh.get_master() cmdline = ["scp"] + self.get_ssh_flags() + master.opts if recursive: cmdline += ['-r'] cmdline += ["root@" + self.get_ssh_name() + ":" + source, target] return self._logged_exec(cmdline) def get_console_output(self): return "(not available for this machine type)\n" class CheckResult(object): def __init__(self): # Whether the resource exists. self.exists = None # Whether the resource is "up". Generally only meaningful for # machines. self.is_up = None # Whether the resource is reachable via SSH. self.is_reachable = None # Whether the disks that should be attached to a machine are # in fact properly attached. self.disks_ok = None # List of systemd units that are in a failed state. self.failed_units = None # List of systemd units that are in progress. self.in_progress_units = None # Load average on the machine. self.load = None # Error messages. self.messages = [] # FIXME: add a check whether the active NixOS config on the # machine is correct. import nixops.backends.none import nixops.backends.virtualbox import nixops.backends.ec2 import nixops.backends.hetzner import nixops.resources.ec2_keypair import nixops.resources.ssh_keypair import nixops.resources.sqs_queue import nixops.resources.s3_bucket import nixops.resources.iam_role import nixops.resources.ec2_security_group import nixops.resources.ebs_volume import nixops.resources.elastic_ip def create_definition(xml): """Create a machine definition object from the given XML representation of the machine's attributes.""" target_env = xml.find("attrs/attr[@name='targetEnv']/string").get("value") for i in [nixops.backends.none.NoneDefinition, nixops.backends.virtualbox.VirtualBoxDefinition, nixops.backends.ec2.EC2Definition, nixops.backends.hetzner.HetznerDefinition]: if target_env == i.get_type(): return i(xml) raise nixops.deployment.UnknownBackend("unknown backend type ‘{0}’".format(target_env)) def create_state(depl, type, name, id): """Create a machine state object of the desired backend type.""" for i in [nixops.backends.none.NoneState, nixops.backends.virtualbox.VirtualBoxState, nixops.backends.ec2.EC2State, nixops.backends.hetzner.HetznerState, nixops.resources.ec2_keypair.EC2KeyPairState, nixops.resources.ssh_keypair.SSHKeyPairState, nixops.resources.sqs_queue.SQSQueueState, nixops.resources.iam_role.IAMRoleState, nixops.resources.s3_bucket.S3BucketState, nixops.resources.ec2_security_group.EC2SecurityGroupState, nixops.resources.ebs_volume.EBSVolumeState, nixops.resources.elastic_ip.ElasticIPState ]: if type == i.get_type(): return i(depl, name, id) raise nixops.deployment.UnknownBackend("unknown backend type ‘{0}’".format(type))
shlevy/nixops
nixops/backends/__init__.py
Python
lgpl-3.0
15,654
""" fx-ring-mod.py - Stereo ring modulator. This example shows how to build a ring modulation effect with modulator's frequency and brightness controlled by analog inputs (use audio inputs after the stereo audio channels, ie. Input(2) is analog-in 0, Input(3) is analog-in 1, etc.). It also show how to send signal to analog outputs. Again, use the outputs after the stereo audio channels, ie. .out(2) writes to analog-out 0, .out(3) to analog-out 1, etc.). """ # Set to True if you want to control the modulator # frequency and brightness with analog inputs. WITH_ANALOG_INPUT = True # If False, set frequency and brightness values. FREQUENCY = 500 # Hz BRIGHTNESS = 0.05 # 0 -> 0.2 # If True, a positive value is sent on analog-out 0 and 1 # whenever there is an output signal (can be used to build # a cheap vumeter with leds). WITH_ANALOG_OUTPUT = True # stereo input src = Input([0,1]) # Don't know if the noise comes from my mic, # but it sounds better with a gate on the input! gate = Gate(src.mix(), thresh=-60, risetime=.005, falltime=.02, lookahead=1, outputAmp=True) srcg = src * gate if WITH_ANALOG_INPUT: # analog-in 0 (modulator's frequency) i0 = Tone(Input(2), 8) freq = Scale(i0, 0, 1, 1, 1000, 3) # analog-in 1 (modulator's brightness) i1 = Tone(Input(3), 8) feed = i1 * 0.2 else: freq = FREQUENCY feed = BRIGHTNESS # Modulation oscillator mod = SineLoop(freq, feed) # Ring modulation and stereo output out = (srcg * mod).out() if WITH_ANALOG_OUTPUT: # analog out 0-1 (stereo vumeter) fol = Sqrt(Clip(Follower(out, mul=4))).out(2)
belangeo/pyo-bela
examples/fx-ring-mod.py
Python
lgpl-3.0
1,626
# (C) British Crown Copyright 2015, Met Office # # This file is part of Iris. # # Iris is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Iris is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Iris. If not, see <http://www.gnu.org/licenses/>. """Unit tests for the `iris.fileformats.pp.as_fields` function.""" from __future__ import (absolute_import, division, print_function) # Import iris.tests first so that some things can be initialised before # importing anything else. import iris.tests as tests import mock from iris.coords import DimCoord from iris.fileformats._ff_cross_references import STASH_TRANS import iris.fileformats.pp as pp import iris.tests.stock as stock class TestAsFields(tests.IrisTest): def setUp(self): self.cube = stock.realistic_3d() def test_cube_only(self): fields = pp.as_fields(self.cube) for field in fields: self.assertEqual(field.lbcode, 101) def test_field_coords(self): fields = pp.as_fields(self.cube, field_coords=['grid_longitude', 'grid_latitude']) for field in fields: self.assertEqual(field.lbcode, 101) if __name__ == "__main__": tests.main()
Jozhogg/iris
lib/iris/tests/unit/fileformats/pp/test_as_fields.py
Python
lgpl-3.0
1,719
from rope.base.oi import objectdb class MemoryDB(objectdb.FileDict): def __init__(self, project, persist=None): self.project = project self._persist = persist self.files = self self._load_files() self.project.data_files.add_write_hook(self.write) def _load_files(self): self._files = {} if self.persist: result = self.project.data_files.read_data( "objectdb", compress=self.compress, import_=True ) if result is not None: self._files = result def keys(self): return self._files.keys() def __iter__(self): for f in self._files: yield f def __len__(self): return len(self._files) def __setitem__(self): raise NotImplementedError() def __contains__(self, key): return key in self._files def __getitem__(self, key): return FileInfo(self._files[key]) def create(self, path): self._files[path] = {} def rename(self, file, newfile): if file not in self._files: return self._files[newfile] = self._files[file] del self[file] def __delitem__(self, file): del self._files[file] def write(self): if self.persist: self.project.data_files.write_data("objectdb", self._files, self.compress) @property def compress(self): return self.project.prefs.get("compress_objectdb", False) @property def persist(self): if self._persist is not None: return self._persist else: return self.project.prefs.get("save_objectdb", False) class FileInfo(objectdb.FileInfo): def __init__(self, scopes): self.scopes = scopes def create_scope(self, key): self.scopes[key] = ScopeInfo() def keys(self): return self.scopes.keys() def __contains__(self, key): return key in self.scopes def __getitem__(self, key): return self.scopes[key] def __delitem__(self, key): del self.scopes[key] def __iter__(self): for s in self.scopes: yield s def __len__(self): return len(self.scopes) def __setitem__(self): raise NotImplementedError() class ScopeInfo(objectdb.ScopeInfo): def __init__(self): self.call_info = {} self.per_name = {} def get_per_name(self, name): return self.per_name.get(name, None) def save_per_name(self, name, value): self.per_name[name] = value def get_returned(self, parameters): return self.call_info.get(parameters, None) def get_call_infos(self): for args, returned in self.call_info.items(): yield objectdb.CallInfo(args, returned) def add_call(self, parameters, returned): self.call_info[parameters] = returned def __getstate__(self): return (self.call_info, self.per_name) def __setstate__(self, data): self.call_info, self.per_name = data
python-rope/rope
rope/base/oi/memorydb.py
Python
lgpl-3.0
3,060
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import uuid class Migration(migrations.Migration): dependencies = [ ('comercial', '0024_empresacomercial_logo'), ] operations = [ migrations.AddField( model_name='empresacomercial', name='uuid', field=models.UUIDField(default=uuid.uuid4), ), ]
dudanogueira/microerp
microerp/comercial/migrations/0025_empresacomercial_uuid.py
Python
lgpl-3.0
430
# # This file is protected by Copyright. Please refer to the COPYRIGHT file # distributed with this source distribution. # # This file is part of REDHAWK burstioInterfaces. # # REDHAWK burstioInterfaces is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the Free # Software Foundation, either version 3 of the License, or (at your option) any # later version. # # REDHAWK burstioInterfaces is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more # details. # # You should have received a copy of the GNU Lesser General Public License # along with this program. If not, see http://www.gnu.org/licenses/. # import threading from ossie.cf import CF, ExtendedCF class Connection(object): def __init__(self, port): self.port = port class UsesPort(object): def __init__(self, name, portType): self._connectionMutex = threading.Lock() self._name = name self._connections = {} self.PortType = portType self._connectListeners = [] self._disconnectListeners = [] def getName(self): return self._name def addConnectListener(self, listener): self._connectListeners.append(listener) def removeConnectListener(self, listener): try: self._connectListeners.remove(listener) except: pass def addDisconnectListener(self, listener): self._disconnectListeners.append(listener) def removeDisconnectListener(self, listener): try: self._disconnectListeners.remove(listener) except: pass def connectPort(self, connection, connectionId): # Give a specific exception message for nil if connection is None: raise CF.Port.InvalidPort(1, 'Nil object reference') # Attempt to narrow the remote object to the correct type; note this # does not require the lock try: port = connection._narrow(self.PortType) except: raise CF.Port.InvalidPort(1, 'Object unreachable') # If the narrow returned nil without throwing an exception, it's safe # to assume the object is the wrong type if port is None: raise CF.Port.InvalidPort(1, 'Object is not a ' + self.PortType._NP_RepositoryId) self._connectionMutex.acquire() try: entry = self._connections.get(connectionId, None) if entry is None: # Store the new connection and pass the new entry along to # _connectionAdded entry = Connection(port) self._connections[connectionId] = entry # Allow subclasses to do additional bookkeeping self._connectionAdded(connectionId, entry) else: # Replace the object reference entry.port = port # Allow subclasses to do additional bookkeeping self._connectionModified(connectionId, entry) finally: self._connectionMutex.release() # Notify connection listeners for listener in self._connectListeners: listener(connectionId) def disconnectPort(self, connectionId): self._connectionMutex.acquire() try: if not connectionId in self._connections: raise CF.Port.InvalidPort(2, 'No connection ' + connectionId) # Allow subclasses to do additional cleanup self._connectionRemoved(connectionId, self._connections[connectionId]) del self._connections[connectionId] finally: self._connectionMutex.release() # Notify disconnection listeners for listener in self._disconnectListeners: listener(connectionId) def _get_connections(self): self._connectionMutex.acquire() try: return [ExtendedCF.UsesConnection(k,v.port) for k, v in self._connections.iteritems()] finally: self._connectionMutex.release() def _connectionAdded(self, connectionId, connection): pass def _connectionModified(self, connectionId, connection): pass def _connectionRemoved(self, connectionId, connection): pass
RedhawkSDR/burstioInterfaces
src/python/redhawk/burstio/usesport.py
Python
lgpl-3.0
4,491
# # @BEGIN LICENSE # # Psi4: an open-source quantum chemistry software package # # Copyright (c) 2007-2022 The Psi4 Developers. # # The copyrights for code used from other parties are included in # the corresponding files. # # This file is part of Psi4. # # Psi4 is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, version 3. # # Psi4 is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License along # with Psi4; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # # @END LICENSE # from typing import Dict, List import numpy as np from psi4 import core from psi4.driver import constants from psi4.driver.p4util.exceptions import * def least_squares_fit_polynomial(xvals, fvals, localization_point, no_factorials=True, weighted=True, polynomial_order=4): """Performs and unweighted least squares fit of a polynomial, with specified order to an array of input function values (fvals) evaluated at given locations (xvals). See https://doi.org/10.1063/1.4862157, particularly eqn (7) for details. """ xpts = np.array(xvals) - localization_point if weighted: R = 1.0 p_nu = 1 epsilon = 1e-3 zvals = np.square(xpts/R) weights = np.exp(-zvals) / (zvals**p_nu + epsilon**p_nu) else: weights = None fit = np.polynomial.polynomial.polyfit(xpts, fvals, polynomial_order, w=weights) # Remove the 1/n! coefficients if no_factorials: scalefac = 1.0 for n in range(2,polynomial_order+1): scalefac *= n fit[n] *= scalefac return fit def anharmonicity(rvals: List, energies: List, plot_fit: str = '', mol = None) -> Dict: """Generates spectroscopic constants for a diatomic molecules. Fits a diatomic potential energy curve using a weighted least squares approach (c.f. https://doi.org/10.1063/1.4862157, particularly eqn. 7), locates the minimum energy point, and then applies second order vibrational perturbation theory to obtain spectroscopic constants. Any number of points greater than 4 may be provided, and they should bracket the minimum. The data need not be evenly spaced, and can be provided in any order. The data are weighted such that those closest to the minimum have highest impact. A dictionary with the following keys, which correspond to spectroscopic constants, is returned: :param rvals: The bond lengths (in Angstrom) for which energies are provided, of length at least 5 and equal to the length of the energies array :param energies: The energies (Eh) computed at the bond lengths in the rvals list :param plot_fit: A string describing where to save a plot of the harmonic and anharmonic fits, the inputted data points, re, r0 and the first few energy levels, if matplotlib is available. Set to 'screen' to generate an interactive plot on the screen instead. If a filename is provided, the image type is determined by the extension; see matplotlib for supported file types. :returns: (*dict*) Keys: "re", "r0", "we", "wexe", "nu", "ZPVE(harmonic)", "ZPVE(anharmonic)", "Be", "B0", "ae", "De" corresponding to the spectroscopic constants in cm-1 """ angstrom_to_bohr = 1.0 / constants.bohr2angstroms angstrom_to_meter = 10e-10 # Make sure the input is valid if len(rvals) != len(energies): raise ValidationError("The number of energies must match the number of distances") npoints = len(rvals) if npoints < 5: raise ValidationError("At least 5 data points must be provided to compute anharmonicity") core.print_out("\n\nPerforming a fit to %d data points\n" % npoints) # Sort radii and values first from lowest to highest radius indices = np.argsort(rvals) rvals = np.array(rvals)[indices] energies = np.array(energies)[indices] # Make sure the molecule the user provided is the active one molecule = mol or core.get_active_molecule() molecule.update_geometry() natoms = molecule.natom() if natoms != 2: raise Exception("The current molecule must be a diatomic for this code to work!") m1 = molecule.mass(0) m2 = molecule.mass(1) # Find rval of the minimum of energies, check number of points left and right min_index = np.argmin(energies) if min_index < 3 : core.print_out("\nWarning: fewer than 3 points provided with a r < r(min(E))!\n") if min_index >= len(energies) - 3: core.print_out("\nWarning: fewer than 3 points provided with a r > r(min(E))!\n") # Optimize the geometry, refitting the surface around each new geometry core.print_out("\nOptimizing geometry based on current surface:\n\n") re = rvals[min_index] maxit = 30 thres = 1.0e-9 for i in range(maxit): derivs = least_squares_fit_polynomial(rvals,energies,localization_point=re) e,g,H = derivs[0:3] core.print_out(" E = %20.14f, x = %14.7f, grad = %20.14f\n" % (e, re, g)) if abs(g) < thres: break re -= g/H if i == maxit-1: raise ConvergenceError("diatomic geometry optimization", maxit) core.print_out(" Final E = %20.14f, x = %14.7f, grad = %20.14f\n" % (e, re, g)) if re < min(rvals): raise Exception("Minimum energy point is outside range of points provided. Use a lower range of r values.") if re > max(rvals): raise Exception("Minimum energy point is outside range of points provided. Use a higher range of r values.") # Convert to convenient units, and compute spectroscopic constants d0,d1,d2,d3,d4 = derivs*constants.hartree2aJ core.print_out("\nEquilibrium Energy %20.14f Hartrees\n" % e) core.print_out("Gradient %20.14f\n" % g) core.print_out("Quadratic Force Constant %14.7f MDYNE/A\n" % d2) core.print_out("Cubic Force Constant %14.7f MDYNE/A**2\n" % d3) core.print_out("Quartic Force Constant %14.7f MDYNE/A**3\n" % d4) hbar = constants.h / (2.0 * np.pi) mu = ((m1*m2)/(m1+m2))*constants.amu2kg we = 5.3088375e-11 * np.sqrt(d2/mu) wexe = (1.2415491e-6)*(we/d2)**2 * ((5.0*d3*d3)/(3.0*d2)-d4) # Rotational constant: Be I = ((m1*m2)/(m1+m2)) * constants.amu2kg * (re * angstrom_to_meter)**2 B = constants.h / (8.0 * np.pi**2 * constants.c * I) # alpha_e and quartic centrifugal distortion constant ae = -(6.0 * B**2 / we) * ((1.05052209e-3*we*d3)/(np.sqrt(B * d2**3))+1.0) de = 4.0*B**3 / we**2 # B0 and r0 (plus re check using Be) B0 = B - ae / 2.0 r0 = np.sqrt(constants.h / (8.0 * np.pi**2 * mu * constants.c * B0)) recheck = np.sqrt(constants.h / (8.0 * np.pi**2 * mu * constants.c * B)) r0 /= angstrom_to_meter recheck /= angstrom_to_meter # Fundamental frequency nu nu = we - 2.0 * wexe zpve_nu = 0.5 * we - 0.25 * wexe zpve_we = 0.5 * we # Generate pretty pictures, if requested if(plot_fit): try: import matplotlib.pyplot as plt except ImportError: msg = "\n\tPlot not generated; matplotlib is not installed on this machine.\n\n" print(msg) core.print_out(msg) # Correct the derivatives for the missing factorial prefactors dvals = np.zeros(5) dvals[0:5] = derivs[0:5] dvals[2] /= 2 dvals[3] /= 6 dvals[4] /= 24 # Default plot range, before considering energy levels minE = np.min(energies) maxE = np.max(energies) minR = np.min(rvals) maxR = np.max(rvals) # Plot vibrational energy levels we_au = we / constants.hartree2wavenumbers wexe_au = wexe / constants.hartree2wavenumbers coefs2 = [ dvals[2], dvals[1], dvals[0] ] coefs4 = [ dvals[4], dvals[3], dvals[2], dvals[1], dvals[0] ] for n in range(3): Eharm = we_au*(n+0.5) Evpt2 = Eharm - wexe_au*(n+0.5)**2 coefs2[-1] = -Eharm coefs4[-1] = -Evpt2 roots2 = np.roots(coefs2) roots4 = np.roots(coefs4) xvals2 = roots2 + re xvals4 = np.choose(np.where(np.isreal(roots4)), roots4)[0].real + re Eharm += dvals[0] Evpt2 += dvals[0] plt.plot(xvals2, [Eharm, Eharm], 'b', linewidth=1) plt.plot(xvals4, [Evpt2, Evpt2], 'g', linewidth=1) maxE = Eharm maxR = np.max([xvals2,xvals4]) minR = np.min([xvals2,xvals4]) # Find ranges for the plot dE = maxE - minE minE -= 0.2*dE maxE += 0.4*dE dR = maxR - minR minR -= 0.2*dR maxR += 0.2*dR # Generate the fitted PES xpts = np.linspace(minR, maxR, 1000) xrel = xpts - re xpows = xrel[:, None] ** range(5) fit2 = np.einsum('xd,d', xpows[:,0:3], dvals[0:3]) fit4 = np.einsum('xd,d', xpows, dvals) # Make / display the plot plt.plot(xpts, fit2, 'b', linewidth=2.5, label='Harmonic (quadratic) fit') plt.plot(xpts, fit4, 'g', linewidth=2.5, label='Anharmonic (quartic) fit') plt.plot([re, re], [minE, maxE], 'b--', linewidth=0.5) plt.plot([r0, r0], [minE, maxE], 'g--', linewidth=0.5) plt.scatter(rvals, energies, c='Black', linewidth=3, label='Input Data') plt.legend() plt.xlabel('Bond length (Angstroms)') plt.ylabel('Energy (Eh)') plt.xlim(minR, maxR) plt.ylim(minE, maxE) if plot_fit == 'screen': plt.show() else: plt.savefig(plot_fit) core.print_out("\n\tPES fit saved to %s.\n\n" % plot_fit) core.print_out("\nre = %10.6f A check: %10.6f\n" % (re, recheck)) core.print_out("r0 = %10.6f A\n" % r0) core.print_out("E at re = %17.10f Eh\n" % e) core.print_out("we = %10.4f cm-1\n" % we) core.print_out("wexe = %10.4f cm-1\n" % wexe) core.print_out("nu = %10.4f cm-1\n" % nu) core.print_out("ZPVE(we) = %10.4f cm-1\n" % zpve_we) core.print_out("ZPVE(nu) = %10.4f cm-1\n" % zpve_nu) core.print_out("Be = %10.4f cm-1\n" % B) core.print_out("B0 = %10.4f cm-1\n" % B0) core.print_out("ae = %10.4f cm-1\n" % ae) core.print_out("De = %10.7f cm-1\n" % de) results = { "re" : re, "r0" : r0, "we" : we, "wexe" : wexe, "nu" : nu, "E(re)" : e, "ZPVE(harmonic)" : zpve_we, "ZPVE(anharmonic)" : zpve_nu, "Be" : B, "B0" : B0, "ae" : ae, "De" : de } return results
psi4/psi4
psi4/driver/diatomic.py
Python
lgpl-3.0
11,346
APPLICATION_ID = "MessageProcessingGraph"
Akson/MoveMe
Samples/MessageProcessingGraph/__init__.py
Python
lgpl-3.0
41
# -*- coding: utf-8 -*- """ pygtkhelpers.proxy ~~~~~~~~~~~~~~~~~~ Controllers for managing data display widgets. :copyright: 2005-2008 by pygtkhelpers Authors :license: LGPL 2 or later (see README/COPYING/LICENSE) An example session of using a proxy:: >>> import gtk >>> from pygtkhelpers.proxy import proxy_for >>> widget = gtk.Entry() >>> proxy = proxy_for(widget) >>> proxy <GtkEntryProxy object at 0x9aea25c (PyGTKHelperGObjectProxy at 0x9e6ec50)> >>> proxy.update('hello') >>> proxy.read() 'hello' >>> def changed(proxy, value): ... print proxy, 'changed to', value ... ... >>> proxy.connect('changed', changed) 32L >>> proxy.update('bye bye') <GtkEntryProxy object at 0x9aea25c (PyGTKHelperGObjectProxy at 0x9e6ec50)> changed to bye bye >>> widget.get_text() 'bye bye' >>> widget.set_text('banana') <GtkEntryProxy object at 0x9aea25c (PyGTKHelperGObjectProxy at 0x9e6ec50)> changed to banana >>> proxy.read() 'banana' """ import gobject import gtk from pygtkhelpers.utils import gsignal from pygtkhelpers.ui.widgets import StringList, SimpleComboBox class GObjectProxy(gobject.GObject): """A proxy for a gtk.Widget This proxy provides a common api to gtk widgets, so that they can be used without knowing which specific widget they are. All proxy types should extend this class. """ __gtype_name__ = 'PyGTKHelperGObjectProxy' gsignal('changed', object) signal_name = None def __init__(self, widget): gobject.GObject.__init__(self) self.widget = widget self.connections = [] self.connect_widget() # public API def update(self, value): """Update the widget's value """ self.update_internal(value) self.emit('changed', self.get_widget_value()) def read(self): """Get the widget's value """ return self.get_widget_value() # implementor API def block(self): for signal_id in self.connections: self.widget.handler_block(signal_id) def unblock(self): for signal_id in self.connections: self.widget.handler_unblock(signal_id) def update_internal(self, value): """Update the widget's value without firing a changed signal """ self.block() self.set_widget_value(value) self.unblock() def widget_changed(self, *args): """Called to indicate that a widget's value has been changed. This will usually be called from a proxy implementation on response to whichever signal was connected in `connect_widget` The `*args` are there so you can use this as a signal handler. """ self.emit('changed', self.get_widget_value()) def set_widget_value(self, value): """Set the value of the widget. This will update the view to match the value given. This is called internally, and is called while the proxy is blocked, so no signals are emitted from this action. This method should be overriden in subclasses depending on how a widget's value is set. """ def get_widget_value(self): """Get the widget value. This method should be overridden in subclasses to return a value from the widget. """ def connect_widget(self): """Perform the initial connection of the widget the default implementation will connect to the widgets signal based on self.signal_name """ if self.signal_name is not None: # None for read only widgets sid = self.widget.connect(self.signal_name, self.widget_changed) self.connections.append(sid) class SinglePropertyGObjectProxy(GObjectProxy): """Proxy which uses a single property to set and get the value. """ prop_name = None def set_widget_value(self, value): return self.widget.set_property(self.prop_name, value) def get_widget_value(self): return self.widget.get_property(self.prop_name) class SingleDelegatedPropertyGObjectProxy(SinglePropertyGObjectProxy): """Proxy which uses a delegated property on its widget. """ prop_name = None dprop_name = None def __init__(self, widget): self.owidget = widget widget = widget.get_property(self.dprop_name) GObjectProxy.__init__(self, widget) class GtkEntryProxy(SinglePropertyGObjectProxy): """Proxy for a gtk.Entry. """ prop_name = 'text' signal_name = 'changed' class GtkToggleButtonProxy(SinglePropertyGObjectProxy): """Proxy for a gtk.ToggleButton. """ prop_name = 'active' signal_name = 'toggled' class GtkColorButtonProxy(SinglePropertyGObjectProxy): """Proxy for a gtk.ColorButton """ prop_name = 'color' signal_name = 'color-set' class StringListProxy(GObjectProxy): """Proxy for a pygtkhelpers.ui.widgets.StringList. """ signal_name = 'content-changed' def get_widget_value(self): return self.widget.value def set_widget_value(self, value): self.widget.value = value class GtkRangeProxy(GObjectProxy): """Base class for widgets employing a gtk.Range. """ signal_name = 'value-changed' def get_widget_value(self): return self.widget.get_value() def set_widget_value(self, value): self.widget.set_value(value) class GtkFileChooserProxy(GObjectProxy): """Proxy for a gtk.FileChooser. """ signal_name = 'selection-changed' def get_widget_value(self): if self.widget.get_select_multiple(): return self.widget.get_filenames() else: return self.widget.get_filename() def set_widget_value(self, value): if self.widget.get_select_multiple(): self.widget.unselect_all() for filename in value: self.widget.select_file(filename) else: self.widget.set_filename(value) class GtkFontButtonProxy(SinglePropertyGObjectProxy): """Proxy for a gtk.FontButton. """ signal_name = 'font-set' prop_name = 'font-name' class GtkComboBoxProxy(GObjectProxy): """Proxy for a gtk.ComboBox. """ signal_name = 'changed' def get_widget_value(self): if not self.active_row: return return self.get_row_value(self.active_row) def set_widget_value(self, value): # what a pain in the arse for i, row in enumerate(self.model): if self.get_row_value(row) == value: self.widget.set_active(i) @property def active_row(self): if self.widget.get_active() == -1: return return self.model[self.widget.get_active()] @property def model(self): return self.widget.get_model() def get_row_value(self, row): row = list(row) # XXX: that sucks ''' value = row[1:] if not value: value = row[0] elif len(value) == 1: value = value[0] ''' value = row[0] return value class GtkTextViewProxy(SingleDelegatedPropertyGObjectProxy): """Proxy for a gtk.TextView. """ signal_name = 'changed' prop_name = 'text' dprop_name = 'buffer' class GtkLabelProxy(SinglePropertyGObjectProxy): """Proxy for a gtk.Label. """ prop_name = 'label' class GtkImageProxy(SinglePropertyGObjectProxy): """Proxy for a gtk.Image. """ prop_name = 'file' class GtkLinkButtonProxy(SinglePropertyGObjectProxy): """Proxy for a gtk.LinkButton. """ prop_name = 'uri' class GtkProgressBarProxy(SinglePropertyGObjectProxy): """Proxy for a gtk.ProgressBar. """ prop_name = 'fraction' widget_proxies = { gtk.Entry: GtkEntryProxy, gtk.ToggleButton: GtkToggleButtonProxy, gtk.CheckButton: GtkToggleButtonProxy, gtk.RadioButton: GtkToggleButtonProxy, gtk.CheckMenuItem: GtkToggleButtonProxy, gtk.ColorButton: GtkColorButtonProxy, gtk.ComboBox: GtkComboBoxProxy, gtk.SpinButton: GtkRangeProxy, gtk.HScale: GtkRangeProxy, gtk.VScale: GtkRangeProxy, gtk.VScrollbar: GtkRangeProxy, gtk.HScrollbar: GtkRangeProxy, gtk.FileChooserButton: GtkFileChooserProxy, gtk.FileChooserWidget: GtkFileChooserProxy, gtk.FontButton: GtkFontButtonProxy, gtk.Label: GtkLabelProxy, gtk.Image: GtkImageProxy, gtk.LinkButton: GtkLinkButtonProxy, gtk.ProgressBar: GtkProgressBarProxy, gtk.TextView: GtkTextViewProxy, StringList: StringListProxy, SimpleComboBox: GtkComboBoxProxy, } def proxy_for(widget): """Create a proxy for a Widget :param widget: A gtk.Widget to proxy This will raise a KeyError if there is no proxy type registered for the widget type. """ proxy_type = widget_proxies.get(widget.__class__) if proxy_type is None: raise KeyError('There is no proxy type registered for %r' % widget) return proxy_type(widget) class ProxyGroup(gobject.GObject): """A controller to handle multiple proxies, and sub-groups A ProxyGroup is a bridge to reduce multiple proxies and sub-groups to a single signal based on the key of the individual proxies. """ gsignal('changed', object, str, object) def __init__(self): gobject.GObject.__init__(self) def add_proxy(self, name, proxy): """Add a proxy to this group :param name: The name or key of the proxy, which will be emitted with the changed signal :param proxy: The proxy instance to add """ proxy.connect('changed', self._on_proxy_changed, name) def add_proxy_for(self, name, widget): """Create a proxy for a widget and add it to this group :param name: The name or key of the proxy, which will be emitted with the changed signal :param widget: The widget to create a proxy for """ proxy = proxy_for(widget) self.add_proxy(name, proxy) def add_group(self, group): """Add an existing group to this group and proxy its signals :param group: The ProxyGroup instance to add """ group.connect('changed', self._on_group_changed) def _on_proxy_changed(self, proxy, value, name): self.emit('changed', proxy, name, value) # XXX namespacing def _on_group_changed(self, group, proxy, value, name): self.emit('changed', proxy, name, value)
wheeler-microfluidics/pygtkhelpers
pygtkhelpers/proxy.py
Python
lgpl-3.0
10,691
# (C) British Crown Copyright 2010 - 2015, Met Office # # This file is part of Iris. # # Iris is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Iris is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Iris. If not, see <http://www.gnu.org/licenses/>. """ Provides the capability to load netCDF files and interprete them according to the 'NetCDF Climate and Forecast (CF) Metadata Conventions'. References: [CF] NetCDF Climate and Forecast (CF) Metadata conventions, Version 1.5, October, 2010. [NUG] NetCDF User's Guide, http://www.unidata.ucar.edu/software/netcdf/docs/netcdf.html """ from __future__ import (absolute_import, division, print_function) from abc import ABCMeta, abstractmethod from collections import Iterable, MutableMapping import os import re import warnings import netCDF4 import numpy as np import numpy.ma as ma import iris.util # # CF parse pattern common to both formula terms and measure CF variables. # _CF_PARSE = re.compile(r''' \s* (?P<lhs>[\w_]+) \s*:\s* (?P<rhs>[\w_]+) \s* ''', re.VERBOSE) # NetCDF variable attributes handled by the netCDF4 module and # therefore automatically classed as "used" attributes. _CF_ATTRS_IGNORE = set(['_FillValue', 'add_offset', 'missing_value', 'scale_factor', ]) #: Supported dimensionless vertical coordinate reference surface/phemomenon #: formula terms. Ref: [CF] Appendix D. reference_terms = dict(atmosphere_sigma_coordinate=['ps'], atmosphere_hybrid_sigma_pressure_coordinate=['ps'], atmosphere_hybrid_height_coordinate=['orog'], atmosphere_sleve_coordinate=['zsurf1', 'zsurf2'], ocean_sigma_coordinate=['eta'], ocean_s_coordinate=['eta'], ocean_sigma_z_coordinate=['eta'], ocean_s_coordinate_g1=['eta'], ocean_s_coordinate_g2=['eta']) ################################################################################ class CFVariable(object): """Abstract base class wrapper for a CF-netCDF variable.""" __metaclass__ = ABCMeta #: Name of the netCDF variable attribute that identifies this #: CF-netCDF variable. cf_identity = None def __init__(self, name, data): # Accessing the list of netCDF attributes is surprisingly slow. # Since it's used repeatedly, caching the list makes things # quite a bit faster. self._nc_attrs = data.ncattrs() #: NetCDF variable name. self.cf_name = name #: NetCDF4 Variable data instance. self.cf_data = data #: Collection of CF-netCDF variables associated with this variable. self.cf_group = None #: CF-netCDF formula terms that his variable participates in. self.cf_terms_by_root = {} self.cf_attrs_reset() @staticmethod def _identify_common(variables, ignore, target): if ignore is None: ignore = [] if target is None: target = variables elif isinstance(target, basestring): if target not in variables: raise ValueError('Cannot identify unknown target CF-netCDF variable %r' % target) target = {target: variables[target]} else: raise TypeError('Expect a target CF-netCDF variable name') return (ignore, target) @abstractmethod def identify(self, variables, ignore=None, target=None, warn=True): """ Identify all variables that match the criterion for this CF-netCDF variable class. Args: * variables: Dictionary of netCDF4.Variable instance by variable name. Kwargs: * ignore: List of variable names to ignore. * target: Name of a single variable to check. * warn: Issue a warning if a missing variable is referenced. Returns: Dictionary of CFVariable instance by variable name. """ pass def spans(self, cf_variable): """ Determine whether the dimensionality of this variable is a subset of the specified target variable. Note that, by default scalar variables always span the dimensionality of the target variable. Args: * cf_variable: Compare dimensionality with the :class:`CFVariable`. Returns: Boolean. """ result = set(self.dimensions).issubset(cf_variable.dimensions) return result def __eq__(self, other): # CF variable names are unique. return self.cf_name == other.cf_name def __ne__(self, other): # CF variable names are unique. return self.cf_name != other.cf_name def __getattr__(self, name): # Accessing netCDF attributes is surprisingly slow. Since # they're often read repeatedly, caching the values makes things # quite a bit faster. if name in self._nc_attrs: self._cf_attrs.add(name) value = getattr(self.cf_data, name) setattr(self, name, value) return value def __getitem__(self, key): return self.cf_data.__getitem__(key) def __len__(self): return self.cf_data.__len__() def __repr__(self): return '%s(%r, %r)' % (self.__class__.__name__, self.cf_name, self.cf_data) def cf_attrs(self): """Return a list of all attribute name and value pairs of the CF-netCDF variable.""" return tuple((attr, self.getncattr(attr)) for attr in sorted(self._nc_attrs)) def cf_attrs_ignored(self): """Return a list of all ignored attribute name and value pairs of the CF-netCDF variable.""" return tuple((attr, self.getncattr(attr)) for attr in sorted(set(self._nc_attrs) & _CF_ATTRS_IGNORE)) def cf_attrs_used(self): """Return a list of all accessed attribute name and value pairs of the CF-netCDF variable.""" return tuple((attr, self.getncattr(attr)) for attr in sorted(self._cf_attrs)) def cf_attrs_unused(self): """Return a list of all non-accessed attribute name and value pairs of the CF-netCDF variable.""" return tuple((attr, self.getncattr(attr)) for attr in sorted(set(self._nc_attrs) - self._cf_attrs)) def cf_attrs_reset(self): """Reset the history of accessed attribute names of the CF-netCDF variable.""" self._cf_attrs = set([item[0] for item in self.cf_attrs_ignored()]) def add_formula_term(self, root, term): """ Register the participation of this CF-netCDF variable in a CF-netCDF formula term. Args: * root (string): The name of CF-netCDF variable that defines the CF-netCDF formula_terms attribute. * term (string): The associated term name of this variable in the formula_terms definition. Returns: None. """ self.cf_terms_by_root[root] = term def has_formula_terms(self): """ Determine whether this CF-netCDF variable participates in a CF-netcdf formula term. Returns: Boolean. """ return bool(self.cf_terms_by_root) class CFAncillaryDataVariable(CFVariable): """ A CF-netCDF ancillary data variable is a variable that provides metadata about the individual values of another data variable. Identified by the CF-netCDF variable attribute 'ancillary_variables'. Ref: [CF] Section 3.4. Ancillary Data. """ cf_identity = 'ancillary_variables' @classmethod def identify(cls, variables, ignore=None, target=None, warn=True): result = {} ignore, target = cls._identify_common(variables, ignore, target) # Identify all CF ancillary data variables. for nc_var_name, nc_var in target.iteritems(): # Check for ancillary data variable references. nc_var_att = getattr(nc_var, cls.cf_identity, None) if nc_var_att is not None: for name in nc_var_att.split(): if name not in ignore: if name not in variables: if warn: message = 'Missing CF-netCDF ancillary data variable %r, referenced by netCDF variable %r' warnings.warn(message % (name, nc_var_name)) else: result[name] = CFAncillaryDataVariable(name, variables[name]) return result class CFAuxiliaryCoordinateVariable(CFVariable): """ A CF-netCDF auxiliary coordinate variable is any netCDF variable that contains coordinate data, but is not a CF-netCDF coordinate variable by definition. There is no relationship between the name of a CF-netCDF auxiliary coordinate variable and the name(s) of its dimension(s). Identified by the CF-netCDF variable attribute 'coordinates'. Also see :class:`iris.fileformats.cf.CFLabelVariable`. Ref: [CF] Chapter 5. Coordinate Systems. [CF] Section 6.2. Alternative Coordinates. """ cf_identity = 'coordinates' @classmethod def identify(cls, variables, ignore=None, target=None, warn=True): result = {} ignore, target = cls._identify_common(variables, ignore, target) # Identify all CF auxiliary coordinate variables. for nc_var_name, nc_var in target.iteritems(): # Check for auxiliary coordinate variable references. nc_var_att = getattr(nc_var, cls.cf_identity, None) if nc_var_att is not None: for name in nc_var_att.split(): if name not in ignore: if name not in variables: if warn: message = 'Missing CF-netCDF auxiliary coordinate variable %r, referenced by netCDF variable %r' warnings.warn(message % (name, nc_var_name)) else: # Restrict to non-string type i.e. not a CFLabelVariable. if not np.issubdtype(variables[name].dtype, np.str): result[name] = CFAuxiliaryCoordinateVariable(name, variables[name]) return result class CFBoundaryVariable(CFVariable): """ A CF-netCDF boundary variable is associated with a CF-netCDF variable that contains coordinate data. When a data value provides information about conditions in a cell occupying a region of space/time or some other dimension, the boundary variable provides a description of cell extent. A CF-netCDF boundary variable will have one more dimension than its associated CF-netCDF coordinate variable or CF-netCDF auxiliary coordinate variable. Identified by the CF-netCDF variable attribute 'bounds'. Ref: [CF] Section 7.1. Cell Boundaries. """ cf_identity = 'bounds' @classmethod def identify(cls, variables, ignore=None, target=None, warn=True): result = {} ignore, target = cls._identify_common(variables, ignore, target) # Identify all CF boundary variables. for nc_var_name, nc_var in target.iteritems(): # Check for a boundary variable reference. nc_var_att = getattr(nc_var, cls.cf_identity, None) if nc_var_att is not None: name = nc_var_att.strip() if name not in ignore: if name not in variables: if warn: message = 'Missing CF-netCDF boundary variable %r, referenced by netCDF variable %r' warnings.warn(message % (name, nc_var_name)) else: result[name] = CFBoundaryVariable(name, variables[name]) return result def spans(self, cf_variable): """ Determine whether the dimensionality of this variable is a subset of the specified target variable. Note that, by default scalar variables always span the dimensionality of the target variable. Args: * cf_variable: Compare dimensionality with the :class:`CFVariable`. Returns: Boolean. """ # Scalar variables always span the target variable. result = True if self.dimensions: source = self.dimensions target = cf_variable.dimensions # Ignore the bounds extent dimension. result = set(source[:-1]).issubset(target) or \ set(source[1:]).issubset(target) return result class CFClimatologyVariable(CFVariable): """ A CF-netCDF climatology variable is associated with a CF-netCDF variable that contains coordinate data. When a data value provides information about conditions in a cell occupying a region of space/time or some other dimension, the climatology variable provides a climatological description of cell extent. A CF-netCDF climatology variable will have one more dimension than its associated CF-netCDF coordinate variable. Identified by the CF-netCDF variable attribute 'climatology'. Ref: [CF] Section 7.4. Climatological Statistics """ cf_identity = 'climatology' @classmethod def identify(cls, variables, ignore=None, target=None, warn=True): result = {} ignore, target = cls._identify_common(variables, ignore, target) # Identify all CF climatology variables. for nc_var_name, nc_var in target.iteritems(): # Check for a climatology variable reference. nc_var_att = getattr(nc_var, cls.cf_identity, None) if nc_var_att is not None: name = nc_var_att.strip() if name not in ignore: if name not in variables: if warn: message = 'Missing CF-netCDF climatology variable %r, referenced by netCDF variable %r' warnings.warn(message % (name, nc_var_name)) else: result[name] = CFClimatologyVariable(name, variables[name]) return result def spans(self, cf_variable): """ Determine whether the dimensionality of this variable is a subset of the specified target variable. Note that, by default scalar variables always span the dimensionality of the target variable. Args: * cf_variable: Compare dimensionality with the :class:`CFVariable`. Returns: Boolean. """ # Scalar variables always span the target variable. result = True if self.dimensions: source = self.dimensions target = cf_variable.dimensions # Ignore the climatology extent dimension. result = set(source[:-1]).issubset(target) or \ set(source[1:]).issubset(target) return result class CFCoordinateVariable(CFVariable): """ A CF-netCDF coordinate variable is a one-dimensional variable with the same name as its dimension, and it is defined as a numeric data type with values that are ordered monotonically. Missing values are not allowed in CF-netCDF coordinate variables. Also see [NUG] Section 2.3.1. Identified by the above criterion, there is no associated CF-netCDF variable attribute. Ref: [CF] 1.2. Terminology. """ @classmethod def identify(cls, variables, ignore=None, target=None, warn=True, monotonic=False): result = {} ignore, target = cls._identify_common(variables, ignore, target) # Identify all CF coordinate variables. for nc_var_name, nc_var in target.iteritems(): if nc_var_name in ignore: continue # String variables can't be coordinates if np.issubdtype(nc_var.dtype, np.str): continue # Restrict to one-dimensional with name as dimension OR zero-dimensional scalar if not ((nc_var.ndim == 1 and nc_var_name in nc_var.dimensions) or (nc_var.ndim == 0)): continue # Restrict to monotonic? if monotonic: data = nc_var[:] # Gracefully fill a masked coordinate. if ma.isMaskedArray(data): data = ma.filled(data) if nc_var.shape == () or nc_var.shape == (1,) or iris.util.monotonic(data): result[nc_var_name] = CFCoordinateVariable(nc_var_name, nc_var) else: result[nc_var_name] = CFCoordinateVariable(nc_var_name, nc_var) return result class CFDataVariable(CFVariable): """ A CF-netCDF variable containing data pay-load that maps to an Iris :class:`iris.cube.Cube`. """ @classmethod def identify(cls, variables, ignore=None, target=None, warn=True): raise NotImplementedError class _CFFormulaTermsVariable(CFVariable): """ A CF-netCDF formula terms variable corresponds to a term in a formula that allows dimensional vertical coordinate values to be computed from dimensionless vertical coordinate values and associated variables at specific grid points. Identified by the CF-netCDF variable attribute 'formula_terms'. Ref: [CF] Section 4.3.2. Dimensional Vertical Coordinate. [CF] Appendix D. Dimensionless Vertical Coordinates. """ cf_identity = 'formula_terms' def __init__(self, name, data, formula_root, formula_term): CFVariable.__init__(self, name, data) # Register the formula root and term relationship. self.add_formula_term(formula_root, formula_term) @classmethod def identify(cls, variables, ignore=None, target=None, warn=True): result = {} ignore, target = cls._identify_common(variables, ignore, target) # Identify all CF formula terms variables. for nc_var_name, nc_var in target.iteritems(): # Check for formula terms variable references. nc_var_att = getattr(nc_var, cls.cf_identity, None) if nc_var_att is not None: for match_item in _CF_PARSE.finditer(nc_var_att): match_group = match_item.groupdict() # Ensure that term name is lower case, as expected. term_name = match_group['lhs'].lower() variable_name = match_group['rhs'] if variable_name not in ignore: if variable_name not in variables: if warn: message = 'Missing CF-netCDF formula term variable %r, referenced by netCDF variable %r' warnings.warn(message % (variable_name, nc_var_name)) else: if variable_name not in result: result[variable_name] = _CFFormulaTermsVariable(variable_name, variables[variable_name], nc_var_name, term_name) else: result[variable_name].add_formula_term(nc_var_name, term_name) return result def __repr__(self): return '%s(%r, %r, %r)' % (self.__class__.__name__, self.cf_name, self.cf_data, self.cf_terms_by_root) class CFGridMappingVariable(CFVariable): """ A CF-netCDF grid mapping variable contains a list of specific attributes that define a particular grid mapping. A CF-netCDF grid mapping variable must contain the attribute 'grid_mapping_name'. Based on the value of the 'grid_mapping_name' attribute, there are associated standard names of CF-netCDF coordinate variables that contain the mapping's independent variables. Identified by the CF-netCDF variable attribute 'grid_mapping'. Ref: [CF] Section 5.6. Horizontal Coordinate Reference Systems, Grid Mappings, and Projections. [CF] Appendix F. Grid Mappings. """ cf_identity = 'grid_mapping' @classmethod def identify(cls, variables, ignore=None, target=None, warn=True): result = {} ignore, target = cls._identify_common(variables, ignore, target) # Identify all grid mapping variables. for nc_var_name, nc_var in target.iteritems(): # Check for a grid mapping variable reference. nc_var_att = getattr(nc_var, cls.cf_identity, None) if nc_var_att is not None: name = nc_var_att.strip() if name not in ignore: if name not in variables: if warn: message = 'Missing CF-netCDF grid mapping variable %r, referenced by netCDF variable %r' warnings.warn(message % (name, nc_var_name)) else: result[name] = CFGridMappingVariable(name, variables[name]) return result class CFLabelVariable(CFVariable): """ A CF-netCDF CF label variable is any netCDF variable that contain string textual information, or labels. Identified by the CF-netCDF variable attribute 'coordinates'. Also see :class:`iris.fileformats.cf.CFAuxiliaryCoordinateVariable`. Ref: [CF] Section 6.1. Labels. """ cf_identity = 'coordinates' @classmethod def identify(cls, variables, ignore=None, target=None, warn=True): result = {} ignore, target = cls._identify_common(variables, ignore, target) # Identify all CF label variables. for nc_var_name, nc_var in target.iteritems(): # Check for label variable references. nc_var_att = getattr(nc_var, cls.cf_identity, None) if nc_var_att is not None: for name in nc_var_att.split(): if name not in ignore: if name not in variables: if warn: message = 'Missing CF-netCDF label variable %r, referenced by netCDF variable %r' warnings.warn(message % (name, nc_var_name)) else: # Restrict to only string type. if np.issubdtype(variables[name].dtype, np.str): result[name] = CFLabelVariable(name, variables[name]) return result def cf_label_data(self, cf_data_var): """ Return the associated CF-netCDF label variable strings. Args: * cf_data_var (:class:`iris.fileformats.cf.CFDataVariable`): The CF-netCDF data variable which the CF-netCDF label variable describes. Returns: String labels. """ if not isinstance(cf_data_var, CFDataVariable): raise TypeError('cf_data_var argument should be of type CFDataVariable. Got %r.' % type(cf_data_var)) # Determine the name of the label string (or length) dimension by # finding the dimension name that doesn't exist within the data dimensions. str_dim_name = list(set(self.dimensions) - set(cf_data_var.dimensions)) if len(str_dim_name) != 1: raise ValueError('Invalid string dimensions for CF-netCDF label variable %r' % self.cf_name) str_dim_name = str_dim_name[0] label_data = self[:] if isinstance(label_data, ma.MaskedArray): label_data = label_data.filled() # Determine whether we have a string-valued scalar label # i.e. a character variable that only has one dimension (the length of the string). if self.ndim == 1: data = np.array([''.join(label_data).strip()]) else: # Determine the index of the string dimension. str_dim = self.dimensions.index(str_dim_name) # Calculate new label data shape (without string dimension) and create payload array. new_shape = tuple(dim_len for i, dim_len in enumerate(self.shape) if i != str_dim) data = np.empty(new_shape, dtype='|S%d' % self.shape[str_dim]) for index in np.ndindex(new_shape): # Create the slice for the label data. if str_dim == 0: label_index = (slice(None, None),) + index else: label_index = index + (slice(None, None),) data[index] = ''.join(label_data[label_index]).strip() return data def cf_label_dimensions(self, cf_data_var): """ Return the name of the associated CF-netCDF label variable data dimensions. Args: * cf_data_var (:class:`iris.fileformats.cf.CFDataVariable`): The CF-netCDF data variable which the CF-netCDF label variable describes. Returns: Tuple of label data dimension names. """ if not isinstance(cf_data_var, CFDataVariable): raise TypeError('cf_data_var argument should be of type CFDataVariable. Got %r.' % type(cf_data_var)) return tuple([dim_name for dim_name in self.dimensions if dim_name in cf_data_var.dimensions]) def spans(self, cf_variable): """ Determine whether the dimensionality of this variable is a subset of the specified target variable. Note that, by default scalar variables always span the dimensionality of the target variable. Args: * cf_variable: Compare dimensionality with the :class:`CFVariable`. Returns: Boolean. """ # Scalar variables always span the target variable. result = True if self.dimensions: source = self.dimensions target = cf_variable.dimensions # Ignore label string length dimension. result = set(source[:-1]).issubset(target) or \ set(source[1:]).issubset(target) return result class CFMeasureVariable(CFVariable): """ A CF-netCDF measure variable is a variable that contains cell areas or volumes. Identified by the CF-netCDF variable attribute 'cell_measures'. Ref: [CF] Section 7.2. Cell Measures. """ cf_identity = 'cell_measures' def __init__(self, name, data, measure): CFVariable.__init__(self, name, data) #: Associated cell measure of the cell variable self.cf_measure = measure @classmethod def identify(cls, variables, ignore=None, target=None, warn=True): result = {} ignore, target = cls._identify_common(variables, ignore, target) # Identify all CF measure variables. for nc_var_name, nc_var in target.iteritems(): # Check for measure variable references. nc_var_att = getattr(nc_var, cls.cf_identity, None) if nc_var_att is not None: for match_item in _CF_PARSE.finditer(nc_var_att): match_group = match_item.groupdict() measure = match_group['lhs'] variable_name = match_group['rhs'] if variable_name not in ignore: if variable_name not in variables: if warn: message = 'Missing CF-netCDF measure variable %r, referenced by netCDF variable %r' warnings.warn(message % (variable_name, nc_var_name)) else: result[variable_name] = CFMeasureVariable(variable_name, variables[variable_name], measure) return result ################################################################################ class CFGroup(MutableMapping, object): """ Represents a collection of 'NetCDF Climate and Forecast (CF) Metadata Conventions' variables and netCDF global attributes. """ def __init__(self): #: Collection of CF-netCDF variables self._cf_variables = {} #: Collection of netCDF global attributes self.global_attributes = {} #: Collection of CF-netCDF variables promoted to a CFDataVariable. self.promoted = {} def _cf_getter(self, cls): # Generate dictionary with dictionary comprehension. return {cf_name:cf_var for cf_name, cf_var in self._cf_variables.iteritems() if isinstance(cf_var, cls)} @property def ancillary_variables(self): """Collection of CF-netCDF ancillary variables.""" return self._cf_getter(CFAncillaryDataVariable) @property def auxiliary_coordinates(self): """Collection of CF-netCDF auxiliary coordinate variables.""" return self._cf_getter(CFAuxiliaryCoordinateVariable) @property def bounds(self): """Collection of CF-netCDF boundary variables.""" return self._cf_getter(CFBoundaryVariable) @property def climatology(self): """Collection of CF-netCDF climatology variables.""" return self._cf_getter(CFClimatologyVariable) @property def coordinates(self): """Collection of CF-netCDF coordinate variables.""" return self._cf_getter(CFCoordinateVariable) @property def data_variables(self): """Collection of CF-netCDF data pay-load variables.""" return self._cf_getter(CFDataVariable) @property def formula_terms(self): """Collection of CF-netCDF variables that participate in a CF-netCDF formula term.""" return {cf_name:cf_var for cf_name, cf_var in self._cf_variables.iteritems() if cf_var.has_formula_terms()} @property def grid_mappings(self): """Collection of CF-netCDF grid mapping variables.""" return self._cf_getter(CFGridMappingVariable) @property def labels(self): """Collection of CF-netCDF label variables.""" return self._cf_getter(CFLabelVariable) @property def cell_measures(self): """Collection of CF-netCDF measure variables.""" return self._cf_getter(CFMeasureVariable) def keys(self): """Return the names of all the CF-netCDF variables in the group.""" return self._cf_variables.keys() def __len__(self): return len(self._cf_variables) def __iter__(self): for item in self._cf_variables: yield item def __setitem__(self, name, variable): if not isinstance(variable, CFVariable): raise TypeError('Attempted to add an invalid CF-netCDF variable to the %s' % self.__class__.__name__) if name != variable.cf_name: raise ValueError('Mismatch between key name %r and CF-netCDF variable name %r' % (str(name), variable.cf_name)) self._cf_variables[name] = variable def __getitem__(self, name): if name not in self._cf_variables: raise KeyError('Cannot get unknown CF-netCDF variable name %r' % str(name)) return self._cf_variables[name] def __delitem__(self, name): if name not in self._cf_variables: raise KeyError('Cannot delete unknown CF-netcdf variable name %r' % str(name)) del self._cf_variables[name] def __repr__(self): result = [] result.append('variables:%d' % len(self._cf_variables)) result.append('global_attributes:%d' % len(self.global_attributes)) result.append('promoted:%d' % len(self.promoted)) return '<%s of %s>' % (self.__class__.__name__, ', '.join(result)) ################################################################################ class CFReader(object): """ This class allows the contents of a netCDF file to be interpreted according to the 'NetCDF Climate and Forecast (CF) Metadata Conventions'. """ def __init__(self, filename, warn=False, monotonic=False): self._filename = os.path.expanduser(filename) # All CF variable types EXCEPT for the "special cases" of # CFDataVariable, CFCoordinateVariable and _CFFormulaTermsVariable. self._variable_types = (CFAncillaryDataVariable, CFAuxiliaryCoordinateVariable, CFBoundaryVariable, CFClimatologyVariable, CFGridMappingVariable, CFLabelVariable, CFMeasureVariable) #: Collection of CF-netCDF variables associated with this netCDF file self.cf_group = CFGroup() self._dataset = netCDF4.Dataset(self._filename, mode='r') # Issue load optimisation warning. if warn and self._dataset.file_format in ['NETCDF3_CLASSIC', 'NETCDF3_64BIT']: warnings.warn('Optimise CF-netCDF loading by converting data from NetCDF3 ' \ 'to NetCDF4 file format using the "nccopy" command.') self._check_monotonic = monotonic self._translate() self._build_cf_groups() self._reset() def __repr__(self): return '%s(%r)' % (self.__class__.__name__, self._filename) def _translate(self): """Classify the netCDF variables into CF-netCDF variables.""" netcdf_variable_names = list(self._dataset.variables.keys()) # Identify all CF coordinate variables first. This must be done # first as, by CF convention, the definition of a CF auxiliary # coordinate variable may include a scalar CF coordinate variable, # whereas we want these two types of variables to be mutually exclusive. coords = CFCoordinateVariable.identify(self._dataset.variables, monotonic=self._check_monotonic) self.cf_group.update(coords) coordinate_names = list(self.cf_group.coordinates.keys()) # Identify all CF variables EXCEPT for the "special cases". for variable_type in self._variable_types: # Prevent grid mapping variables being mis-identified as CF coordinate variables. ignore = None if issubclass(variable_type, CFGridMappingVariable) else coordinate_names self.cf_group.update(variable_type.identify(self._dataset.variables, ignore=ignore)) # Identify global netCDF attributes. attr_dict = {attr_name: _getncattr(self._dataset, attr_name, '') for attr_name in self._dataset.ncattrs()} self.cf_group.global_attributes.update(attr_dict) # Identify and register all CF formula terms. formula_terms = _CFFormulaTermsVariable.identify(self._dataset.variables) for cf_var in formula_terms.itervalues(): for cf_root, cf_term in cf_var.cf_terms_by_root.iteritems(): # Ignore formula terms owned by a bounds variable. if cf_root not in self.cf_group.bounds: cf_name = cf_var.cf_name if cf_var.cf_name not in self.cf_group: self.cf_group[cf_name] = CFAuxiliaryCoordinateVariable(cf_name, cf_var.cf_data) self.cf_group[cf_name].add_formula_term(cf_root, cf_term) # Determine the CF data variables. data_variable_names = set(netcdf_variable_names) - set(self.cf_group.ancillary_variables) - \ set(self.cf_group.auxiliary_coordinates) - set(self.cf_group.bounds) - \ set(self.cf_group.climatology) - set(self.cf_group.coordinates) - \ set(self.cf_group.grid_mappings) - set(self.cf_group.labels) - \ set(self.cf_group.cell_measures) for name in data_variable_names: self.cf_group[name] = CFDataVariable(name, self._dataset.variables[name]) def _build_cf_groups(self): """Build the first order relationships between CF-netCDF variables.""" def _build(cf_variable): coordinate_names = list(self.cf_group.coordinates.keys()) cf_group = CFGroup() # Build CF variable relationships. for variable_type in self._variable_types: # Prevent grid mapping variables being mis-identified as # CF coordinate variables. ignore = None if issubclass(variable_type, CFGridMappingVariable) else coordinate_names match = variable_type.identify(self._dataset.variables, ignore=ignore, target=cf_variable.cf_name, warn=False) # Sanity check dimensionality coverage. for cf_name, cf_var in match.iteritems(): if cf_var.spans(cf_variable): cf_group[cf_name] = self.cf_group[cf_name] else: # Register the ignored variable. # N.B. 'ignored' variable from enclosing scope. ignored.add(cf_name) msg = 'Ignoring variable {!r} referenced ' \ 'by variable {!r}: Dimensions {!r} do not ' \ 'span {!r}'.format(cf_name, cf_variable.cf_name, cf_var.dimensions, cf_variable.dimensions) warnings.warn(msg) # Build CF data variable relationships. if isinstance(cf_variable, CFDataVariable): # Add global netCDF attributes. cf_group.global_attributes.update(self.cf_group.global_attributes) # Add appropriate "dimensioned" CF coordinate variables. cf_group.update({cf_name: self.cf_group[cf_name] for cf_name in cf_variable.dimensions if cf_name in self.cf_group.coordinates}) # Add appropriate "dimensionless" CF coordinate variables. coordinates_attr = getattr(cf_variable, 'coordinates', '') cf_group.update({cf_name: self.cf_group[cf_name] for cf_name in coordinates_attr.split() if cf_name in self.cf_group.coordinates}) # Add appropriate formula terms. for cf_var in self.cf_group.formula_terms.itervalues(): for cf_root in cf_var.cf_terms_by_root: if cf_root in cf_group and cf_var.cf_name not in cf_group: # Sanity check dimensionality. if cf_var.spans(cf_variable): cf_group[cf_var.cf_name] = cf_var else: # Register the ignored variable. # N.B. 'ignored' variable from enclosing scope. ignored.add(cf_var.cf_name) msg = 'Ignoring formula terms variable {!r} ' \ 'referenced by data variable {!r} via ' \ 'variable {!r}: Dimensions {!r} do not ' \ 'span {!r}'.format(cf_var.cf_name, cf_variable.cf_name, cf_root, cf_var.dimensions, cf_variable.dimensions) warnings.warn(msg) # Add the CF group to the variable. cf_variable.cf_group = cf_group # Ignored variables are those that cannot be attached to a # data variable as the dimensionality of that variable is not # a subset of the dimensionality of the data variable. ignored = set() for cf_variable in self.cf_group.itervalues(): _build(cf_variable) # Determine whether there are any formula terms that # may be promoted to a CFDataVariable. if iris.FUTURE.netcdf_promote: # Restrict promotion to only those formula terms # that are reference surface/phenomenon. for cf_var in self.cf_group.formula_terms.itervalues(): for cf_root, cf_term in cf_var.cf_terms_by_root.iteritems(): cf_root_var = self.cf_group[cf_root] name = cf_root_var.standard_name or cf_root_var.long_name terms = reference_terms.get(name, []) if isinstance(terms, basestring) or \ not isinstance(terms, Iterable): terms = [terms] cf_var_name = cf_var.cf_name if cf_term in terms and \ cf_var_name not in self.cf_group.promoted: data_var = CFDataVariable(cf_var_name, cf_var.cf_data) self.cf_group.promoted[cf_var_name] = data_var _build(data_var) break # Promote any ignored variables. promoted = set() not_promoted = ignored.difference(promoted) while not_promoted: cf_name = not_promoted.pop() if cf_name not in self.cf_group.data_variables and \ cf_name not in self.cf_group.promoted: data_var = CFDataVariable(cf_name, self.cf_group[cf_name].cf_data) self.cf_group.promoted[cf_name] = data_var _build(data_var) # Determine whether there are still any ignored variables # yet to be promoted. promoted.add(cf_name) not_promoted = ignored.difference(promoted) def _reset(self): """Reset the attribute touch history of each variable.""" for nc_var_name in self._dataset.variables.iterkeys(): self.cf_group[nc_var_name].cf_attrs_reset() def __del__(self): # Explicitly close dataset to prevent file remaining open. self._dataset.close() def _getncattr(dataset, attr, default=None): """ Simple wrapper round `netCDF4.Dataset.getncattr` to make it behave more like `getattr`. """ try: value = dataset.getncattr(attr) except AttributeError: value = default return value
Jozhogg/iris
lib/iris/fileformats/cf.py
Python
lgpl-3.0
43,610
# -*- coding: utf-8 -*- """User models.""" from sunshine.database import ( Column, CRUDMixin, Model, SurrogatePK, db, relationship) class Station(SurrogatePK, Model, CRUDMixin): """A weather station. name: name of the station lat: latitude of the station, float, degrees lon: longitude of the station, float, degrees """ __tablename__ = 'stations' name = Column(db.String(80), unique=True, nullable=False) lat = Column(db.Float) lon = Column(db.Float) altitude = Column(db.Float) def __init__(self, name, **kwargs): """Create instance.""" db.Model.__init__(self, name=name, **kwargs) def __repr__(self): """Represent instance as a unique string.""" return '<Station({name})>'.format(name=self.name) class Observation(SurrogatePK, Model, CRUDMixin): """ A weather observation. station: id time: date and time of observation temperature: temperature in degrees C pressure: pressure reading at location, float, hectopascals or millibars humidity: 0.0 - 1.0, with 1.0 meaning 100% humidity, float windspeed: speed of wind in knots winddirection: wind direction, 0-360, float, degrees """ __tablename__ = 'observations' station_id = db.Column(db.Integer, db.ForeignKey('stations.id')) station = db.relationship('Station', backref=db.backref('observations', lazy='dynamic')) time = Column(db.DateTime, nullable=False) temperature = Column(db.Float, nullable=True) pressure = Column(db.Float, nullable=True) humidity = Column(db.Float, nullable=True) windspeed = Column(db.Float, nullable=True) winddirection = Column(db.Float, nullable=True)
peakrisk/sunshine
sunshine/rays/models.py
Python
lgpl-3.0
1,725
#!/usr/bin/python # -*- coding: utf-8 -*- import requests,json,urllib,re,oauth2 as oauth from datetime import datetime from time import mktime,strptime from django.contrib.auth.models import User from django.http import HttpResponse as response from django.http import HttpResponseRedirect as redirect from django.shortcuts import render from django.db import IntegrityError from .models import * from .main import Efforia from .stream import Dropbox class Search(Efforia): def __init__(self): pass def explore(self,request): try: query = request.GET['explore'] except KeyError as e: query = '' u = self.current_user(request) others = [x['id'] for x in Profile.objects.values('id')] objects = self.feed(u,others) filter(lambda obj: query.lower() in obj.name.lower(),objects) return self.view_mosaic(request,objects) class Follows(Efforia): def __init__(self): pass def view_following(self,request): u = self.current_user(request); rels = [] for f in Followed.objects.filter(follower=u.id): rels.append(Profile.objects.filter(user_id=f.followed)[0]) request.COOKIES['permissions'] = 'view_only' return self.view_mosaic(request,rels) def become_follower(self,request): u = self.current_user(request).id followed = Profile.objects.filter(id=request.GET['profile_id'])[0].user_id follow = Followed(followed=followed,follower=u) follow.save() return response('Profile followed successfully') def leave_follower(self,request): u = self.current_user(request).id followed = request.GET['profile_id'] query = Followed.objects.filter(followed=followed,follower=u) if len(query): query[0].delete() return response('Profile unfollowed successfully') class ID(Efforia): def __init__(self): pass def view_id(self,request): u = self.current_user(request) if 'first_turn' in request.GET: if u.profile.first_turn: return response('yes') else: return response('no') elif 'object' in request.GET: o,t = request.GET['object'][0].split(';') now,objs,rels = self.get_object_bydate(o,t) obj = globals()[objs].objects.all().filter(date=now)[0] if hasattr(obj,'user'): return response(str(obj.user.id)) else: return response(str(self.current_user().id)) else: return response(str(self.current_user().id)) def finish_tutorial(self,request): u = self.current_user(request) p = Profile.objects.all().filter(user=u)[0] p.first_time = False p.save() return response('Tutorial finalizado.') class Deletes(Efforia): def delete_element(self,request): oid = request.GET['id'] modobj = settings.EFFORIA_TOKENS[request.GET['token']] module,obj = modobj.split('.') o = self.class_module('%s.models'%module,obj) query = o.objects.filter(id=oid) if len(query): query[0].delete() return response('Object deleted successfully') class Tutorial(Efforia): def view_tutorial(self,request): social = False if 'social' not in request.GET else True return render(request,'tutorial.jade',{'static_url':settings.STATIC_URL,'social':social}) def update_profile(self,request,url,user): birthday = career = bio = '' p = user.profile for k,v in request.POST.iteritems(): if 'birth' in k: p.birthday = self.convert_datetime(v) elif 'career' in k: p.career = v elif 'bio' in k: p.bio = v p.save() return response('Added informations to profile successfully') #return redirect(url) def finish_tutorial(self,request): whitespace = ' ' data = request.POST name = request.COOKIES['username'] u = User.objects.filter(username=name)[0] if 'name' in data: lname = data['name'].split() u.first_name,u.last_name = lname[0],whitespace.join(lname[1:]) u.save() request.session['user'] = name if len(request.POST) is 0: return response('Added informations to profile successfully')#return redirect('/') else: return self.update_profile(request,'/',u) class Authentication(Efforia): def social_update(self,request,typesoc,profile): data = request.REQUEST u = self.current_user(request) p = Profile.objects.filter(user=u)[0] if 'google' in typesoc: p.google_token = profile['google_token'] elif 'twitter' in typesoc: p.twitter_token = '%s;%s' % (profile['key'],profile['secret']) elif 'facebook' in typesoc: p.facebook_token = profile['facebook_token'] p.save() return redirect('/') def social_register(self,request,typesoc,profile): data = request.REQUEST whitespace = ' '; r = None; facebook = twitter = google = '' if 'google' in typesoc: username = profile['name'].lower() google = profile['google_token'] elif 'twitter' in typesoc: username = profile['screen_name'] twitter = '%s;%s' % (profile['key'],profile['secret']) elif 'facebook' in typesoc: username = profile['link'].split('/')[-1:][0] facebook = profile['facebook_token'] # Ja registrado, fazer login social if len(list(User.objects.filter(username=username))) > 0: request.session['user'] = username r = redirect('/') # Nao registrado, gravando chaves sociais e perfil e redirecionando para tutorial else: u = User.objects.create_user(username,password=User.objects.make_random_password()) p = Profile(user=u,facebook_token=facebook,twitter_token=twitter,google_token=google) p.save() r = redirect('tutorial?social=%s'%data['social']) r.set_cookie('username',username) r.set_cookie('permissions','super') return r def authenticate(self,request): data = request.REQUEST if 'profile' in data: profile = self.json_decode(data['profile']); t = data['social'] # Atualizacao do perfil com tokens sociais if 'user' in request.session: return self.social_update(request,t,profile) # Registro do perfil com token social else: return self.social_register(request,t,profile) elif 'username' not in data or 'password' not in data: return response(json.dumps({'error':'User or password missing'}),mimetype='application/json') else: username = data['username'] password = data['password'] exists = User.objects.filter(username=username) if exists: if exists[0].check_password(password): obj = json.dumps({'username':username,'userid':exists[0].id}) request.session['user'] = username r = response(json.dumps({'success':'Login successful'}), mimetype = 'application/json') r.set_cookie('permissions','super') return r else: obj = json.dumps({'error':'User or password wrong'}) return response(obj,mimetype='application/json') def leave(self,request): del request.session['user'] return response(json.dumps({'success':'Logout successful'}),mimetype='application/json') def view_register(self,request): return render(request,'register.html',{'static_url':settings.STATIC_URL,'hostname':request.get_host()},content_type='text/html') def participate(self,request): whitespace = ' ' username = password = first_name = last_name = '' for k,v in request.POST.iteritems(): if 'username' in k: u = User.objects.filter(username=v) if len(u) > 0: return response('Username already exists') else: username = v elif 'password' in k: if v not in request.POST['repeatpassword']: return response('Password mismatch') else: password = v elif 'name' in k: first_name,last_name = whitespace.join(v.split()[:1]),whitespace.join(v.split()[1:]) user = User(username=username,first_name=first_name,last_name=last_name) user.set_password(password) user.save() r = redirect('tutorial') r.set_cookie('username',username) r.set_cookie('permissions','super') return r class Twitter(Efforia): def update_status(self,request): u = self.current_user(request) if len(request.GET['content']) > 137: short = unicode('%s...' % (request.GET['content'][:137])) else: short = unicode('%s' % (request.GET['content'])) tokens = u.profile.twitter_token if not tokens: tokens = self.own_access()['twitter_token'] data = {'status':short.encode('utf-8')} self.oauth_post_request('/statuses/update.json',tokens,data,'twitter') return response('Published posting successfully on Twitter') class Facebook(Efforia): def update_status(self,request): u = self.current_user(request) token = u.profile.facebook_token text = unicode('%s' % request.GET['content']) data = {'message':text.encode('utf-8')} if 'id' in request.REQUEST: url = '/%s/feed' % request.REQUEST['id'] else: url = '/me/feed' self.oauth_post_request(url,token,data,'facebook') return response('Published posting successfully on Facebook') def send_event(self,request): u = self.current_user(request) token = u.profile.facebook_token name = dates = descr = local = value = '' for k,v in request.REQUEST.iteritems(): if 'name' in k: name = v.encode('utf-8') elif 'deadline' in k: dates = v elif 'description' in k: descr = v.encode('utf-8') elif 'location' in k: local = v.encode('utf-8') elif 'value' in k: value = v date = self.convert_datetime(dates) url = 'http://%s/efforia/basket?alt=redir&id=%s&value=%s&token=@@'%(settings.EFFORIA_URL,value,name) data = {'name':name,'start_time':date,'description':descr,'location':local,'ticket_uri':url} id = json.loads(self.oauth_post_request("/me/events",token,data,'facebook'))['id'] return response(id) def send_event_cover(self,request): u = self.current_user(request) token = u.profile.facebook_token ident = request.REQUEST['id'] photo = request.REQUEST['url'] self.oauth_post_request('/%s'%ident,token,{'cover_url':photo},'facebook') return response('Published image cover on event successfully on Facebook') class Coins(Efforia): def discharge(self,request): userid = request.REQUEST['userid'] values = request.REQUEST['value'] u = Profile.objects.filter(user=(userid))[0] u.credit -= int(values) u.save() j = json.dumps({'objects':{ 'userid':userid, 'value':u.credit }}) return response(j,mimetype='application/json') def recharge(self,request): userid = request.REQUEST['userid'] values = request.REQUEST['value'] u = Profile.objects.filter(user=(userid))[0] u.credit += int(values) u.save() json.dumps({'objects':{ 'userid': userid, 'value': u.credit }}) return response(j,mimetype='application/json') def balance(self,request): userid = request.GET['userid'] json.dumps({'objects':{ 'userid': userid, 'value': Profile.objects.filter(user=int(userid))[0].credit }}) return response(j,mimetype='application/json')
efforia/eos-dashboard
pandora-ckz/pandora/social.py
Python
lgpl-3.0
12,049
import sys import pytest from utils import * from addons import * subject1 = """ 3 au Co 0 0 0 H 2 0 0 h_OTher -2 0 0 """ ans1_au = """3 au CoH2 Co 0.000000000000 0.000000000000 0.000000000000 H 2.000000000000 0.000000000000 0.000000000000 H -2.000000000000 -0.000000000000 0.000000000000""" ans1_ang = """3 CoH2 Co 0.000000000000 0.000000000000 0.000000000000 H 1.058354417180 0.000000000000 0.000000000000 H -1.058354417180 -0.000000000000 0.000000000000""" ans1c_ang = """3 CoH2 59Co 0.00000000 0.00000000 0.00000000 1H 1.05835442 0.00000000 0.00000000 1H_other -1.05835442 -0.00000000 0.00000000""" #subject2 = """ #Co 0 0 0 #units au #no_reorient #-- #@H 2 0 0 #h_OTher -2 0 0 #""" # #ans2_au = """3 au # #Co 0.000000000000 0.000000000000 0.000000000000 #@H 2.000000000000 0.000000000000 0.000000000000 #H -2.000000000000 0.000000000000 0.000000000000""" # #ans2_ang = """3 # #Co 0.000000000000 0.000000000000 0.000000000000 #Gh(1) 1.058354417180 0.000000000000 0.000000000000 #H -1.058354417180 0.000000000000 0.000000000000""" # #ans2c_ang = """2 # #Co 0.000000000000 0.000000000000 0.000000000000 #H -1.058354417180 0.000000000000 0.000000000000""" subject2 = """ Co 0 0 0 no_reorient -- @H 1.05835441718 0 0 h_OTher -1.05835441718 0 0 """ ans2_au = """3 au CoH2 Co 0.000000000000 0.000000000000 0.000000000000 @H 2.000000000000 0.000000000000 0.000000000000 H -2.000000000000 0.000000000000 0.000000000000""" ans2_ang = """3 CoH2 Co 0.000000000000 0.000000000000 0.000000000000 Gh(1) 1.058354417180 0.000000000000 0.000000000000 H -1.058354417180 0.000000000000 0.000000000000""" ans2c_ang = """2 CoH2 Co 0.000000000000 0.000000000000 0.000000000000 H -1.058354417180 0.000000000000 0.000000000000""" def test_toxyz_1a(): subject = subject1 mol = qcdb.Molecule(subject) xyz = mol.to_string(dtype='xyz', units='Bohr') assert compare_strings(ans1_au, xyz, sys._getframe().f_code.co_name) def test_toxyz_1b(): subject = subject1 mol = qcdb.Molecule(subject) xyz = mol.to_string(dtype='xyz', units='Angstrom') assert compare_strings(ans1_ang, xyz, sys._getframe().f_code.co_name) def test_toxyz_1c(): subject = subject1 mol = qcdb.Molecule(subject) xyz = mol.to_string(dtype='xyz', prec=8, atom_format='{elea}{elem}{elbl}') print(xyz) assert compare_strings(ans1c_ang, xyz, sys._getframe().f_code.co_name) #def test_toxyz_2a(): # subject = subject2 # mol = qcdb.Molecule(subject) # # xyz = mol.to_string(dtype='xyz', units='Bohr') # # assert compare_strings(ans2_au, xyz, sys._getframe().f_code.co_name) # #def test_toxyz_2b(): # subject = subject2 # mol = qcdb.Molecule(subject) # # xyz = mol.to_string(dtype='xyz', units='Angstrom', ghost_format='Gh({elez})') # # assert compare_strings(ans2_ang, xyz, sys._getframe().f_code.co_name) # #def test_toxyz_2c(): # subject = subject2 # mol = qcdb.Molecule(subject) # # xyz = mol.to_string(dtype='xyz', units='Angstrom', ghost_format='') # # assert compare_strings(ans2c_ang, xyz, sys._getframe().f_code.co_name) def test_toxyz_2a(): subject = subject2 mol = qcdb.Molecule(subject) xyz = mol.to_string(dtype='xyz', units='Bohr') assert compare_strings(ans2_au, xyz, sys._getframe().f_code.co_name) def test_toxyz_2b(): subject = subject2 mol = qcdb.Molecule(subject) xyz = mol.to_string(dtype='xyz', units='Angstrom', ghost_format='Gh({elez})') assert compare_strings(ans2_ang, xyz, sys._getframe().f_code.co_name) def test_toxyz_2c(): subject = subject2 mol = qcdb.Molecule(subject) xyz = mol.to_string(dtype='xyz', units='Angstrom', ghost_format='') assert compare_strings(ans2c_ang, xyz, sys._getframe().f_code.co_name) @using_psi4_molrec def test_toxyz_3a(): import psi4 subject = subject2 mol = psi4.core.Molecule.from_string(subject) xyz = mol.to_string(dtype='xyz', units='Bohr') assert compare_strings(ans2_au, xyz, sys._getframe().f_code.co_name)
amjames/psi4
psi4/driver/qcdb/pytest/test_to_string.py
Python
lgpl-3.0
4,698
#!/usr/bin/env python #-*- coding: utf-8 -*- ############################################### # Author: Lemuel # E-mail: <wlemuel@hotmail.com> # Licence: GPL # Filename: seperater.py # Created Time: 2013-09-21 12:31 # Last modified: 2013-09-21 12:31 ############################################### import pygtk pygtk.require('2.0') import gtk from utils import color_hex_to_cairo from constant import THEME class Seperater(gtk.Label): def __init__(self, width=1, direction="h"): super(Seperater, self).__init__() self.width = width self.direction = direction self.size_request() self.connect("expose_event", self.expose_event) def size_request(self): if self.direction == "v": self.set_size_request(self.width, self.allocation.height) else: self.set_size_request(self.allocation.width, self.width) def expose_event(self, widget, event): cr = widget.window.cairo_create() rect = widget.allocation if self.direction == "v": real_rect = (rect.x, rect.y, self.width, rect.height) else: real_rect = (rect.x, rect.y, rect.width, self.width) cr.set_source_rgb(*color_hex_to_cairo(THEME['hover'])) cr.rectangle(*real_rect) cr.fill() return True
Lemueler/Petro-UI
seperater.py
Python
lgpl-3.0
1,399
# # cif.py # # Python CIF parser: https://github.com/gjbekker/cif-parsers # # By Gert-Jan Bekker # License: MIT # See https://github.com/gjbekker/cif-parsers/blob/master/LICENSE # import gzip, os, re try: import json except: import simplejson as json try: str.partition def partitionString(string, sep): return string.partition(sep) except: def partitionString(string, sep): tmp = string.split(sep) return [tmp.pop(0), sep, sep.join(tmp)] class _loop: def __init__(self, parserObj): self.parserObj = parserObj self.length = 0 self.refID = -1 self.refList = [] self.namesDefined = False def addName(self, name): catName = type(name) == str and partitionString(name, ".") or ["", "", ""] if catName[1]: if not self.parserObj.currentTarget[-2].has_key(catName[0]): self.parserObj.currentTarget[-2][catName[0]] = {} if not self.parserObj.currentTarget[-2][catName[0]].has_key(catName[2]): self.parserObj.currentTarget[-2][catName[0]][catName[2]] = [] self.refList.append(self.parserObj.currentTarget[-2][catName[0]][catName[2]]) else: if not self.parserObj.currentTarget[-2].has_key(catName[0]): self.parserObj.currentTarget[-2][catName[0]] = [] self.refList.append(self.parserObj.currentTarget[-2][catName[0]]) self.length = len(self.refList) def pushValue(self, value): if not self.namesDefined: self.namesDefined = True target = self.nextTarget() if value == "stop_": return self.stopPush() target.append(value) def nextTarget(self): self.refID = (self.refID+1)%self.length return self.refList[self.refID] def stopPush(self): self.refID = -1 def specialSplit(content): output = [["", False]] quote = False length = len(content) log = "" for c in xrange(length): isWS = content[c] == " " or content[c] == "\t" if (content[c] == "'" or content[c] == '"') and (c == 0 or content[c-1] == " " or content[c-1] == "\t" or c == length-1 or content[c+1] == " " or content[c+1] == "\t"): quote = not quote elif not quote and isWS and output[-1][0] != "": output.append(["", False]) elif not quote and content[c] == "#": break elif not isWS or quote: output[-1][0] += content[c] output[-1][1] = quote if output[-1][0] == "": output.pop() return output class targetSetter: def __init__(self, obj, key): self.obj = obj self.key = key def setValue(self, value): self.obj[self.key] = value class CIFparser: def __init__(self): self.data = {} self.currentTarget = None self.loopPointer = None def parseString(self, contents): multi_line_mode = False buffer = [] for line in contents.splitlines(): Z = line[:1] line = line.strip() if Z == ";": if multi_line_mode: self.setDataValue("\n".join(buffer)) else: buffer = [] multi_line_mode = not multi_line_mode line = line[1:].strip() if multi_line_mode: buffer.append(line) else: self.processContent(specialSplit(line)) def parse(self, fileobj): multi_line_mode = False buffer = [] for line in fileobj.readlines(): Z = line[:1] line = line.strip() if Z == ";": if multi_line_mode: self.setDataValue("\n".join(buffer)) else: buffer = [] multi_line_mode = not multi_line_mode line = line[1:].strip() if multi_line_mode: buffer.append(line) else: self.processContent(specialSplit(line)) def processContent(self, content): for c, quoted in content: if c == "global_" and not quoted: self.loopPointer = None self.selectGlobal() elif c[:5] == "data_" and not quoted: self.loopPointer = None self.selectData(c) elif c[:5] == "save_" and not quoted: self.loopPointer = None if c[5:]: self.selectFrame(c) else: self.endFrame() elif c == "loop_" and not quoted: self.loopPointer = _loop(self) elif c[:1] == "_" and not quoted: self.setDataName(c[1:]) else: self.setDataValue(c) def setDataName(self, name): if self.loopPointer != None: if self.loopPointer.namesDefined: self.loopPointer = None else: return self.loopPointer.addName(name) name = partitionString(name, ".") self.currentTarget.pop() if name[1]: if not self.currentTarget[-1].has_key(name[0]): self.currentTarget[-1][name[0]] = {} self.currentTarget[-1][name[0]][name[2]] = "" self.currentTarget = self.currentTarget + [targetSetter(self.currentTarget[-1][name[0]], name[2])] else: self.currentTarget[-1][name[0]] = "" self.currentTarget = self.currentTarget + [targetSetter(self.currentTarget[-1], name[0])] def setDataValue(self, value): if self.loopPointer != None: self.loopPointer.pushValue(value) else: self.currentTarget[-1].setValue([value]) def selectGlobal(self): self.currentTarget = [self.data, self.data, None] def selectData(self, name): if not self.data.has_key(name): self.data[name] = {} self.currentTarget = [self.data, self.data[name], None] def selectFrame(self, name=""): if not self.currentTarget[1].has_key(name): self.currentTarget[1][name] = {} self.currentTarget = self.currentTarget[:2] + [self.currentTarget[1][name], None] def endData(self): self.currentTarget = self.currentTarget[:2] def endFrame(self): self.currentTarget = self.currentTarget[:3] #################################################################################################################################################### class __CIFfloat__(float): def __repr__(self): return '%.15g' % self class __CIFint__(int): def __repr__(self): return str(self) def __CIFfloatRange__(inp): try: pos = inp.index("-", 1) return (__CIFfloat__(inp[:pos]), __CIFfloat__(inp[pos+1:])) except: return (__CIFfloat__(inp),) def __CIFintRange__(inp): try: pos = inp.index("-", 1) return (__CIFint__(inp[:pos]), __CIFint__(inp[pos+1:])) except: return (__CIFint__(inp),) def __loadCIFdic__(dicFile, force=False): jsfDic = dicFile[:-4]+".json" jsf = dicFile[:-4]+"_summary.json" dic = {} try: if force: throw dic = json.loads(open(jsf).read()) except: parser = CIFparser() parser.parse(open(dicFile)) json.dump(parser.data, open(jsfDic, "w")) for k,v in parser.data["data_mmcif_pdbx.dic"].iteritems(): if type(v) != dict or not v.has_key("item_type"): continue name = partitionString(k[6:], ".") if not dic.has_key(name[0]): dic[name[0]] = {} dic[name[0]][name[2]] = v["item_type"]["code"][0].strip() json.dump(dic, open(jsf, "w")) typing = {} for k,v in dic.iteritems(): for k2, v2 in v.iteritems(): if v2 == "int": if not typing.has_key(k): typing[k] = {} typing[k][k2] = __CIFint__ elif v2 == "float": if not typing.has_key(k): typing[k] = {} typing[k][k2] = __CIFfloat__ elif v2 == "int-range": if not typing.has_key(k): typing[k] = {} typing[k][k2] = __CIFintRange__ elif v2 == "float-range": if not typing.has_key(k): typing[k] = {} typing[k][k2] = __CIFfloatRange__ return typing def __dumpCIF__(jso): return __dumpPart__(jso) __cifStrCheck__ = re.compile(r"[\\s\(\)]") __cifStrNLCheck__ = re.compile(r"[\n]") def __dumpStr__(inp): if inp == None: return "?" else: if type(inp) != str and type(inp) != unicode: return str(inp) if re.search(__cifStrNLCheck__, inp) != None: return "\n;%s\n;"%inp if re.search(__cifStrCheck__, inp) != None: return "'%s'"%inp else: return inp def __padString__(inp, flength): return inp+(" "*(flength-len(inp))) def __dumpCat__(k, v): output = "#\n" noi = len(v[v.keys()[0]]) if noi == 1: pad = 0 for k2 in v.keys(): if len(k2) > pad: pad = len(k2) pad += 3 for k2 in v.keys(): output += "_%s.%s%s\n"%(k, __padString__(k2, pad), __dumpStr__(v[k2][0])) else: output += "loop_\n" pad = [] for k2 in v.keys(): output += "_%s.%s\n"%(k, k2) pad.append(0) tmp1 = [] for i in xrange(noi): tmp2 = [] tmp1.append(tmp2) for k2 in v.keys(): tmp2.append(__dumpStr__(v[k2][i])) for j in xrange(len(tmp1[0])): pad = 0 for i in xrange(len(tmp1)): if tmp1[i][j][:2] != "\n;" and len(tmp1[i][j]) > pad: pad = len(tmp1[i][j]) pad += 1 for i in xrange(len(tmp1)): if tmp1[i][0][:2] != "\n;": tmp1[i][j] = __padString__(tmp1[i][j], pad) for i in xrange(noi): output += "".join(tmp1[i])+"\n"; return output.strip()+"\n" def __dumpPart__(jso): inner = True output = "" for k,v in jso.items(): if isinstance(v, dict): if k[:5] != "data_" and k[:5] != "save_" and k[:7] != "global_": output += __dumpCat__(k, v) else: output += k+"\n" output += __dumpPart__(v) inner = False if inner: return output+"#\n" else: return output def __loadCIFData__(data, doClean=True, doType=True): parser = CIFparser() if type(data) == str: parser.parseString(data) else: parser.parse(data) # fileobj if not doClean: return parser.data for k,v in parser.data.iteritems(): for k2, v2 in v.iteritems(): for k3, v3 in v2.iteritems(): for i in xrange(len(v3)): v2[k3][i] = not (v3[i] == "?" or v3[i] == ".") and v3[i] or None if not doType or not __mmcifTyping__: return parser.data for struct, data in parser.data.iteritems(): for k,v in __mmcifTyping__.iteritems(): if not data.has_key(k): continue else: for k2, v2 in v.iteritems(): if data[k].has_key(k2): for r in xrange(len(data[k][k2])): try: data[k][k2][r] = v2(data[k][k2][r]) except: pass return parser.data def __loadCIF__(cifFile, doClean=True, doType=True): parser = CIFparser() if cifFile[-3:].lower() == ".gz": parser.parse(gzip.open(cifFile)) else: parser.parse(open(cifFile)) if not doClean: return parser.data for k,v in parser.data.iteritems(): for k2, v2 in v.iteritems(): for k3, v3 in v2.iteritems(): for i in xrange(len(v3)): v2[k3][i] = not (v3[i] == "?" or v3[i] == ".") and v3[i] or None if not doType or not __mmcifTyping__: return parser.data for struct, data in parser.data.iteritems(): for k,v in __mmcifTyping__.iteritems(): if not data.has_key(k): continue else: for k2, v2 in v.iteritems(): if data[k].has_key(k2): for r in xrange(len(data[k][k2])): try: data[k][k2][r] = v2(data[k][k2][r]) except: pass return parser.data __mmcifTyping__ = None
gjbekker/molmil
apps/agora/vr/structures/cif.py
Python
lgpl-3.0
11,165
from django.http import JsonResponse from data_2015_fall.models import * import simplejson from collections import defaultdict from operator import itemgetter # =================================================== # Classes # =================================================== class Expert(object): def __init__(self, name): self.name = name def toDict(self): return { "name": self.name } # =================================================== # Functions # =================================================== def getTopKExpertsByKeywords(request, keywords, k): keywordsList = keywords.split("+") expertHash = defaultdict(int) # map expert name to its count list1 = [] # count appearance of author who publish the paper matches keyword for keyword in keywordsList: for article in Article.nodes.filter(title__icontains=keyword): list1.append(article.title) for author in article.authors: expertHash[author.name]+=1 experts = [] for key, value in sorted(expertHash.iteritems(), key=itemgetter(1), reverse=True)[0:int(k)]: experts.append(Expert(key)) #print key + ", " + str(value) # debug msg return JsonResponse({ "experts": [e.toDict() for e in experts] })
cmusv-sc/DIWD-Team4-Wei-Lin-Tsai
src/python/data_2015_fall/api/queryExperts.py
Python
unlicense
1,307
# coding: utf-8 """ @Author: Well @Date: 2014 - 05 - 10 """ # common Capability(8) # automationName : Appium (default) or Selendroid # * platformName : iOS, Android, or FirefoxOS # * platformVersion : e.g. 7.1, 4.4 # * deviceName : eg., iPhone Simulator, Android Emulator # app : /abs/path/to/my.apk or http://myapp.com/app.ipa, or .zip also ok. Incompatible with browserName # browserName : ‘Safari’ for iOS and ‘Chrome’, ‘Chromium’, or ‘Browser’ for Android # newCommandTimeout : e.g. 60 # autoLaunch : true(default) or false # Android Only(10) # appActivity : e.g.MainActivity, .Settings # appPackage : e.g.com.example.android.myApp, com.android.settings # appWaitActivity : e.g.SplashActivity (过渡的,如介绍页面) # appWaitPackage : e.g.com.example.android.myApp, com.android.settings # deviceReadyTimeout : e.g. 5 # compressXml : true # setCompressedLayoutHeirarchy(true) # androidCoverage : e.g. com.my.Pkg/com.my.Pkg.instrumentation.MyInstrumentation # enablePerformanceLogging : true(default), false # Chrome and webview only # avdLaunchTimeout : 120000(default) import os # Returns abs path relative to this file and not cwd PATH = lambda p: os.path.abspath( os.path.join(os.path.dirname(__file__), p) ) def get_desired_capabilities(app): if app == 'Chrome': desired_caps = { 'platformName': 'Android', 'platformVersion': '4.4', 'deviceName': '0481575a0b4b78ce', 'browserName': app, } if app == 'Safari': desired_caps = { 'platformName': 'iOS', 'platformVersion': '6.1', 'deviceName': 'iPhone Simulator', 'browserName': app, } # 自定义要启动的应用 # 'appActivity': '.Calculator', # 'appPackage': 'com.android.calculator2', if app == '': desired_caps = { 'platformName': 'Android', 'platformVersion': '4.4', 'deviceName': '0481575a0b4b78ce', } else: desired_caps = { 'platformName': 'Android', 'platformVersion': '4.4', 'deviceName': '0481575a0b4b78ce', 'app': PATH('../../apps/' + app), } return desired_caps
Vincent-HaoZ/neil_test_appium
appium/test/android/desired_capabilities.py
Python
unlicense
2,242
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "wildlife.settings") from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
smagic39/PostGis-Cookbook-Code
Chapter 9/wildlife/manage.py
Python
unlicense
251
""" STM32 Bootloader tool See the following STMicro application notes: * AN2606 for the general description * AN3155 for the protocol Dependencies: * pySerial """ import binascii import struct import serial def log(text): print(text) # AN2606: 3.2 Bootloader identification __bl_interfaces = [ (), ( 'usart' ), ( 'usart', 'usart2' ), ( 'usart', 'can', 'dfu' ), ( 'usart', 'dfu' ), ( 'usart', 'i2c' ), ( 'i2c' ), ( 'usart', 'can', 'dfu', 'i2c' ), ( 'i2c', 'spi' ), ( 'usart', 'can', 'dfu', 'i2c', 'spi' ), ( 'usart', 'dfu', 'i2c' ), ( 'usart', 'i2c', 'spi' ), ( 'usart', 'spi' ), ( 'usart', 'dfu', 'i2c', 'spi' ), ] # AN2606: 48 Device-dependent bootloader parameters __products = { "\x04\x10": { 'name': "STM32F10xxxx (medium density)", 'flash_base': 0x08000000, 'flash_size': 0x20000, 'ram_base': 0x20000000, 'ram_size': 0x5000, 'ram_valid': 0x20000200 } # TODO: add more devices! } class BootloaderError(Exception): "Generic bootloader error" pass class TimeoutError(BootloaderError): "Communications timeout" pass class ProtocolError(BootloaderError): "Data exchange protocol error" pass class CommandError(BootloaderError): "Command execution error" pass ACK = "\x79" NAK = "\x1F" def _append_checksum(data): "Compute and append the checksum" cs = 0 if len(data) == 1: cs = (~ord(data)) & 0xFF else: for x in data: cs ^= ord(x) return data + chr(cs) class Stm32Bootloader(object): "Encapsulates the bootloader functionality" def __init__(self, port, autobaud=True): self._p = port if autobaud: self._run_autobaud() def _run_autobaud(self): "Automatic baud rate detection procedure" self._p.write("\x7F") if _receive_ack(self._p): log("Autobaud procedure successful (got ACK)") else: log("Autobaud procedure successful (got NAK; assuming baud rate is correct)") def _receive_bytes(self, count): "Receive N bytes from the port" buffer = '' while count > 0: chunk = self._p.read(count) if not chunk: raise TimeoutError("receiving data") buffer += chunk count -= len(chunk) return buffer def _receive_ack(self): "Receive and verify the ACK byte" ack = self._p.read() if not ack: raise TimeoutError("receiving ACK") if ack == ACK: return True if ack == NAK: return False raise ProtocolError("unexpected response: %02x" % ord(ack)) def _send_data_check_ack(self, data): self._p.write(_append_checksum(data)) return self._receive_ack() def _receive_data_check_ack(self, count): data = self._receive_bytes(count) if not self._receive_ack(): raise ProtocolError("expected ACK; got NAK instead") return data def get_blinfo(self): "Retrieve the bootloader version and the list of supported commands" if not self._send_data_check_ack("\x00"): raise CommandError("command failed") count = struct.unpack('B', self._receive_bytes(1))[0] + 1 rsp = self._receive_data_check_ack(count) version = ord(rsp[0]) & 0xFF supported_cmds = rsp[1:] return { 'version': version, 'supported_cmds': supported_cmds } def get_pid(self): "Retrieve the product ID (2 bytes currently)" if not self._send_data_check_ack("\x02"): raise CommandError("command failed") count = struct.unpack('B', self._receive_bytes(1))[0] + 1 rsp = self._receive_data_check_ack(count) return rsp def read_memory(self, addr, count): "Read memory region" if not self._send_data_check_ack("\x11"): raise CommandError("read protection is enabled") if not self._send_data_check_ack(struct.pack('>I', addr)): raise CommandError("address is rejected by the device") if not self._send_data_check_ack(struct.pack('B', count - 1)): raise CommandError("count is rejected by the device") rsp = self._receive_bytes(count) return rsp def write_memory(self, addr, data): "Write memory region" if not self._send_data_check_ack("\x31"): raise CommandError("read protection is enabled") if not self._send_data_check_ack(struct.pack('>I', addr)): raise CommandError("address is rejected by the device") if not self._send_data_check_ack(struct.pack('B', len(data) - 1) + data): raise CommandError("checksum error") # NOTE: according to the diagram in AN3155, # NAK is not sent if memory address is invalid def erase_memory(self, pages): "Erase memory pages" if not self._send_data_check_ack("\x43"): raise CommandError("read protection is enabled") if pages is None: # Whole device if not self._send_data_check_ack(struct.pack('>I', addr)): raise CommandError("address is rejected by the device") else: # Specific pages data = struct.pack('B%dB' % len(pages), len(pages) - 1, *pages) if not self._send_data_check_ack(data): raise CommandError("checksum error") def write_protect(self, sectors): "Apply write protection to flash sectors" if not self._send_data_check_ack("\x63"): raise CommandError("read protection is enabled") data = struct.pack('B%dB' % len(sectors), len(sectors) - 1, *sectors) if not self._send_data_check_ack(data): raise CommandError("checksum error") def write_unprotect(self): "Remove write protection from all flash" if not self._send_data_check_ack("\x73"): raise CommandError("read protection is enabled") self._receive_ack() def readout_protect(self): "Enable readout protection on the device" if not self._send_data_check_ack("\x82"): raise CommandError("read protection is enabled") self._receive_ack() def readout_unprotect(self): "Disable readout protection on the device" if not self._send_data_check_ack("\x92"): raise CommandError("something went wrong") self._receive_ack() def go(self, addr): "Start executing code from the specified address" if not self._send_data_check_ack("\x21"): raise CommandError("read protection is enabled") if not self._send_data_check_ack(struct.pack('>I', addr)): raise CommandError("address is rejected by the device") # End if __name__ == '__main__': import sys if len(sys.argv) < 2: sys.exit(1) port = sys.argv[1] baudrate = 57600 p = serial.Serial(port, baudrate, parity=serial.PARITY_EVEN, timeout=2) bl = Stm32Bootloader(p) blid = bl.get_blinfo()['version'] log("Bootloader version: %02x" % blid) bl_ifs = __bl_interfaces[blid >> 4] log("Bootloader interfaces: %s" % str(bl_ifs)) pid = bl.get_pid() log("Product ID: %s" % binascii.hexlify(pid)) product = __products[pid] log("Product: %s" % product['name']) flash_base = product['flash_base'] flash_size = product['flash_size'] block_size = 0x100 log("Dumping memory: %08x:%08x" % (flash_base, flash_base + flash_size)) with open('flash_dump.bin', 'wb') as fp: for offset in xrange(0, flash_size, block_size): data = bl.read_memory(flash_base + offset, block_size) fp.write(data) log("Dumping completed") # EOF
dev-zzo/pwn-tools
embedded/stm32bldr.py
Python
unlicense
7,844
import numpy as np from numpy import linalg from numpy.testing import assert_array_almost_equal, assert_almost_equal from numpy.testing import assert_equal, assert_array_equal from nose.tools import assert_raises from nose.tools import assert_true from scipy.sparse import csr_matrix from scipy.spatial.distance import cosine, cityblock, minkowski from sklearn.utils.testing import assert_greater from ..pairwise import euclidean_distances from ..pairwise import linear_kernel from ..pairwise import chi2_kernel, additive_chi2_kernel from ..pairwise import polynomial_kernel from ..pairwise import rbf_kernel from ..pairwise import sigmoid_kernel from .. import pairwise_distances, pairwise_kernels from ..pairwise import pairwise_kernel_functions from ..pairwise import check_pairwise_arrays from ..pairwise import _parallel_pairwise def test_pairwise_distances(): """ Test the pairwise_distance helper function. """ rng = np.random.RandomState(0) # Euclidean distance should be equivalent to calling the function. X = rng.random_sample((5, 4)) S = pairwise_distances(X, metric="euclidean") S2 = euclidean_distances(X) assert_array_almost_equal(S, S2) # Euclidean distance, with Y != X. Y = rng.random_sample((2, 4)) S = pairwise_distances(X, Y, metric="euclidean") S2 = euclidean_distances(X, Y) assert_array_almost_equal(S, S2) # Test with tuples as X and Y X_tuples = tuple([tuple([v for v in row]) for row in X]) Y_tuples = tuple([tuple([v for v in row]) for row in Y]) S2 = pairwise_distances(X_tuples, Y_tuples, metric="euclidean") assert_array_almost_equal(S, S2) # "cityblock" uses sklearn metric, cityblock (function) is scipy.spatial. S = pairwise_distances(X, metric="cityblock") S2 = pairwise_distances(X, metric=cityblock) assert_equal(S.shape[0], S.shape[1]) assert_equal(S.shape[0], X.shape[0]) assert_array_almost_equal(S, S2) # The manhattan metric should be equivalent to cityblock. S = pairwise_distances(X, Y, metric="manhattan") S2 = pairwise_distances(X, Y, metric=cityblock) assert_equal(S.shape[0], X.shape[0]) assert_equal(S.shape[1], Y.shape[0]) assert_array_almost_equal(S, S2) # Test cosine as a string metric versus cosine callable S = pairwise_distances(X, Y, metric="cosine") S2 = pairwise_distances(X, Y, metric=cosine) assert_equal(S.shape[0], X.shape[0]) assert_equal(S.shape[1], Y.shape[0]) assert_array_almost_equal(S, S2) # Tests that precomputed metric returns pointer to, and not copy of, X. S = np.dot(X, X.T) S2 = pairwise_distances(S, metric="precomputed") assert_true(S is S2) # Test with sparse X and Y X_sparse = csr_matrix(X) Y_sparse = csr_matrix(Y) S = pairwise_distances(X_sparse, Y_sparse, metric="euclidean") S2 = euclidean_distances(X_sparse, Y_sparse) assert_array_almost_equal(S, S2) # Test with scipy.spatial.distance metric, with a kwd kwds = {"p": 2.0} S = pairwise_distances(X, Y, metric="minkowski", **kwds) S2 = pairwise_distances(X, Y, metric=minkowski, **kwds) assert_array_almost_equal(S, S2) # Test that scipy distance metrics throw an error if sparse matrix given assert_raises(TypeError, pairwise_distances, X_sparse, metric="minkowski") assert_raises(TypeError, pairwise_distances, X, Y_sparse, metric="minkowski") def test_pairwise_parallel(): rng = np.random.RandomState(0) for func in (np.array, csr_matrix): X = func(rng.random_sample((5, 4))) Y = func(rng.random_sample((3, 4))) S = euclidean_distances(X) S2 = _parallel_pairwise(X, None, euclidean_distances, n_jobs=-1) assert_array_almost_equal(S, S2) S = euclidean_distances(X, Y) S2 = _parallel_pairwise(X, Y, euclidean_distances, n_jobs=-1) assert_array_almost_equal(S, S2) def test_pairwise_kernels(): """ Test the pairwise_kernels helper function. """ rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((2, 4)) # Test with all metrics that should be in pairwise_kernel_functions. test_metrics = ["rbf", "sigmoid", "polynomial", "linear", "chi2", "additive_chi2"] for metric in test_metrics: function = pairwise_kernel_functions[metric] # Test with Y=None K1 = pairwise_kernels(X, metric=metric) K2 = function(X) assert_array_almost_equal(K1, K2) # Test with Y=Y K1 = pairwise_kernels(X, Y=Y, metric=metric) K2 = function(X, Y=Y) assert_array_almost_equal(K1, K2) # Test with tuples as X and Y X_tuples = tuple([tuple([v for v in row]) for row in X]) Y_tuples = tuple([tuple([v for v in row]) for row in Y]) K2 = pairwise_kernels(X_tuples, Y_tuples, metric=metric) assert_array_almost_equal(K1, K2) if metric in ["chi2", "additive_chi2"]: # these don't support sparse matrices yet continue # Test with sparse X and Y X_sparse = csr_matrix(X) Y_sparse = csr_matrix(Y) K1 = pairwise_kernels(X_sparse, Y=Y_sparse, metric=metric) assert_array_almost_equal(K1, K2) # Test with a callable function, with given keywords. metric = callable_rbf_kernel kwds = {} kwds['gamma'] = 0. K1 = pairwise_kernels(X, Y=Y, metric=metric, **kwds) K2 = rbf_kernel(X, Y=Y, **kwds) assert_array_almost_equal(K1, K2) def test_pairwise_kernels_filter_param(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((2, 4)) K = rbf_kernel(X, Y, gamma=0.1) params = {"gamma": 0.1, "blabla": ":)"} K2 = pairwise_kernels(X, Y, metric="rbf", filter_params=True, **params) assert_array_almost_equal(K, K2) assert_raises(TypeError, pairwise_kernels, X, Y, "rbf", **params) def callable_rbf_kernel(x, y, **kwds): """ Callable version of pairwise.rbf_kernel. """ K = rbf_kernel(np.atleast_2d(x), np.atleast_2d(y), **kwds) return K def test_euclidean_distances(): """ Check the pairwise Euclidean distances computation""" X = [[0]] Y = [[1], [2]] D = euclidean_distances(X, Y) assert_array_almost_equal(D, [[1., 2.]]) X = csr_matrix(X) Y = csr_matrix(Y) D = euclidean_distances(X, Y) assert_array_almost_equal(D, [[1., 2.]]) def test_chi_square_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) Y = rng.random_sample((10, 4)) K_add = additive_chi2_kernel(X, Y) gamma = 0.1 K = chi2_kernel(X, Y, gamma=gamma) assert_equal(K.dtype, np.float) for i, x in enumerate(X): for j, y in enumerate(Y): chi2 = -np.sum((x - y) ** 2 / (x + y)) chi2_exp = np.exp(gamma * chi2) assert_almost_equal(K_add[i, j], chi2) assert_almost_equal(K[i, j], chi2_exp) # check diagonal is ones for data with itself K = chi2_kernel(Y) assert_array_equal(np.diag(K), 1) # check off-diagonal is < 1 but > 0: assert_true(np.all(K > 0)) assert_true(np.all(K - np.diag(np.diag(K)) < 1)) # check that float32 is preserved X = rng.random_sample((5, 4)).astype(np.float32) Y = rng.random_sample((10, 4)).astype(np.float32) K = chi2_kernel(X, Y) assert_equal(K.dtype, np.float32) # check integer type gets converted, # check that zeros are handled X = rng.random_sample((10, 4)).astype(np.int32) K = chi2_kernel(X, X) assert_true(np.isfinite(K).all()) assert_equal(K.dtype, np.float) # check that kernel of similar things is greater than dissimilar ones X = [[.3, .7], [1., 0]] Y = [[0, 1], [.9, .1]] K = chi2_kernel(X, Y) assert_greater(K[0, 0], K[0, 1]) assert_greater(K[1, 1], K[1, 0]) # test negative input assert_raises(ValueError, chi2_kernel, [[0, -1]]) assert_raises(ValueError, chi2_kernel, [[0, -1]], [[-1, -1]]) assert_raises(ValueError, chi2_kernel, [[0, 1]], [[-1, -1]]) # different n_features in X and Y assert_raises(ValueError, chi2_kernel, [[0, 1]], [[.2, .2, .6]]) def test_kernel_symmetry(): """ Valid kernels should be symmetric""" rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) for kernel in (linear_kernel, polynomial_kernel, rbf_kernel, sigmoid_kernel): K = kernel(X, X) assert_array_almost_equal(K, K.T, 15) def test_kernel_sparse(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) X_sparse = csr_matrix(X) for kernel in (linear_kernel, polynomial_kernel, rbf_kernel, sigmoid_kernel): K = kernel(X, X) K2 = kernel(X_sparse, X_sparse) assert_array_almost_equal(K, K2) def test_linear_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) K = linear_kernel(X, X) # the diagonal elements of a linear kernel are their squared norm assert_array_almost_equal(K.flat[::6], [linalg.norm(x) ** 2 for x in X]) def test_rbf_kernel(): rng = np.random.RandomState(0) X = rng.random_sample((5, 4)) K = rbf_kernel(X, X) # the diagonal elements of a rbf kernel are 1 assert_array_almost_equal(K.flat[::6], np.ones(5)) def test_check_dense_matrices(): """ Ensure that pairwise array check works for dense matrices.""" # Check that if XB is None, XB is returned as reference to XA XA = np.resize(np.arange(40), (5, 8)) XA_checked, XB_checked = check_pairwise_arrays(XA, None) assert_true(XA_checked is XB_checked) assert_equal(XA, XA_checked) def test_check_XB_returned(): """ Ensure that if XA and XB are given correctly, they return as equal.""" # Check that if XB is not None, it is returned equal. # Note that the second dimension of XB is the same as XA. XA = np.resize(np.arange(40), (5, 8)) XB = np.resize(np.arange(32), (4, 8)) XA_checked, XB_checked = check_pairwise_arrays(XA, XB) assert_equal(XA, XA_checked) assert_equal(XB, XB_checked) def test_check_different_dimensions(): """ Ensure an error is raised if the dimensions are different. """ XA = np.resize(np.arange(45), (5, 9)) XB = np.resize(np.arange(32), (4, 8)) assert_raises(ValueError, check_pairwise_arrays, XA, XB) def test_check_invalid_dimensions(): """ Ensure an error is raised on 1D input arrays. """ XA = np.arange(45) XB = np.resize(np.arange(32), (4, 8)) assert_raises(ValueError, check_pairwise_arrays, XA, XB) XA = np.resize(np.arange(45), (5, 9)) XB = np.arange(32) assert_raises(ValueError, check_pairwise_arrays, XA, XB) def test_check_sparse_arrays(): """ Ensures that checks return valid sparse matrices. """ rng = np.random.RandomState(0) XA = rng.random_sample((5, 4)) XA_sparse = csr_matrix(XA) XB = rng.random_sample((5, 4)) XB_sparse = csr_matrix(XB) XA_checked, XB_checked = check_pairwise_arrays(XA_sparse, XB_sparse) assert_equal(XA_sparse, XA_checked) assert_equal(XB_sparse, XB_checked) def tuplify(X): """ Turns a numpy matrix (any n-dimensional array) into tuples.""" s = X.shape if len(s) > 1: # Tuplify each sub-array in the input. return tuple(tuplify(row) for row in X) else: # Single dimension input, just return tuple of contents. return tuple(r for r in X) def test_check_tuple_input(): """ Ensures that checks return valid tuples. """ rng = np.random.RandomState(0) XA = rng.random_sample((5, 4)) XA_tuples = tuplify(XA) XB = rng.random_sample((5, 4)) XB_tuples = tuplify(XB) XA_checked, XB_checked = check_pairwise_arrays(XA_tuples, XB_tuples) assert_equal(XA_tuples, XA_checked) assert_equal(XB_tuples, XB_checked)
seckcoder/lang-learn
python/sklearn/sklearn/metrics/tests/test_pairwise.py
Python
unlicense
11,874
#!python3.3 # -*- coding: utf-8 -*- #from distutils.core import setup try: from setuptools import setup, find_packages except ImportError: from ez_setup import use_setuptools use_setuptools() from setuptools import setup, find_packages import sys import os DISTUTILS_DEBUG = True py_version = sys.version_info[:2] PY3 = py_version[0] == 3 if not PY3: raise RuntimeError('Python 3.x is required') thisdir = os.path.dirname(__file__) with open(os.path.join(thisdir, 'README.md')) as file: long_description = file.read() setup(name = 'pyHexa', version = '0.0.3', # major.minor.revision platforms = ['Linux', 'Windows'], url = 'https://github.com/Rod-Persky/pyHexa', classifiers = [ 'Development Status :: 3 - Alpha', 'Topic :: Scientific/Engineering', 'License :: OSI Approved :: Academic Free License (AFL)', "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.2", "Programming Language :: Python :: 3.3", 'Intended Audience :: End Users/Desktop', 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', 'Environment :: No Input/Output (Daemon)', # No IO required 'Natural Language :: English', 'Operating System :: MacOS', 'Operating System :: Microsoft', 'Operating System :: POSIX', 'Operating System :: OS Independent', ], description = 'Python Hexapod WEB UI', long_description = long_description, license = 'Academic Free License ("AFL") v. 3.0', author = 'Rodney Persky', author_email = 'rodney.persky@gmail.com', packages = find_packages('pyHexa'), package_dir = {'pyHexa': 'pyHexa'}, zip_safe = True, include_package_data = True, py_modules = ['ez_setup'], install_requires=['bottle>=0.11.5', 'cherrypy>=3.2.4'], )
Rod-Persky/pyLynxHexapod
setup.py
Python
unlicense
2,125
class Solution(object): def lengthOfLongestSubstring(self, s): """ :type s: str :rtype: int """ d = {} left = -1 right = 0 max = 0 if len(s) < 2: return len(s) while right < len(s)-1: d[s[right]] = right right += 1 if d.has_key(s[right]) and d[s[right]] > left: left = d[s[right]] if right - left > max: max = right - left return max
taulk/oj
LeetCode/[3]longest-substring-without-repeating-characters/Solution.py
Python
unlicense
518
# -*- coding: utf-8 -*- # Resource object code # # Created by: The Resource Compiler for PyQt4 (Qt v4.8.7) # # WARNING! All changes made in this file will be lost! from PyQt4 import QtCore qt_resource_data = "\ \x00\x00\x04\x28\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x30\x00\x00\x00\x30\x08\x06\x00\x00\x00\x57\x02\xf9\x87\ \x00\x00\x03\xef\x49\x44\x41\x54\x78\x5e\xd5\x99\x7d\x4a\xe3\x40\ \x14\xc0\xad\x16\x44\x51\x12\x54\x44\x51\x4c\x44\xff\x50\x44\x9b\ \x7a\x81\xd5\x13\x34\x7b\x83\x78\x82\xcd\x9e\x60\x7b\x84\xf5\x06\ \xf1\x06\xe9\x09\x36\x5e\x40\x1b\x41\x54\xfc\x20\x11\x45\xf1\xab\ \x1d\x11\x45\xa8\xba\x2f\x4b\x35\x62\xe6\xb3\xd3\x90\xee\x83\xa1\ \xc2\xbc\x79\x33\xbf\xd7\xd7\x37\xef\x8d\xb9\xb7\xb7\xb7\xae\x5c\ \x2e\xd7\xd5\x8a\x2c\x2f\x2f\xff\x80\x8f\xdf\x0c\x35\x6f\x6b\x6b\ \x6b\xb5\x2b\x25\xc9\xcb\x2c\x06\xf8\x32\x87\xda\x4a\xb1\x58\xd4\ \xb6\xb7\xb7\xc3\x8e\x02\x30\x0c\xa3\x04\x00\x2a\xa7\xba\x0d\xe3\ \x67\x47\x01\xc0\xe1\x4d\x01\x75\xf3\x7f\x07\xd0\x97\x96\x96\x0a\ \x3b\x3b\x3b\x7e\x47\x00\x2c\x2e\x2e\xc6\xe1\xc3\x2f\x56\x1a\x61\ \x94\x6f\xd1\xfb\x56\x3c\x91\x2d\x80\x70\x1a\x5d\x58\x58\x50\xe0\ \xa3\x4e\x51\x09\x60\xe8\x84\x39\x73\x77\x77\xb7\x92\x5d\x08\xb1\ \x63\xbf\xda\x1c\x16\xe5\xc7\xdc\xd1\x00\x5e\x34\x68\x00\xf3\xf3\ \xf3\xf6\xde\xde\x1e\xca\x04\x60\x6e\x6e\x4e\x61\x00\x38\xfb\xfb\ \xfb\x3e\xe8\x91\xe6\xd5\x66\x4a\xdd\xc8\x00\x80\xe9\xfd\xfa\xc1\ \xc1\x81\xdf\xd4\x73\xe1\x03\xab\x9b\x29\xc0\xeb\xeb\xab\x4d\x99\ \x76\x3f\xe9\x51\x01\x32\x49\xa3\xb3\xb3\xb3\x1a\x78\xd6\xa0\x03\ \xc4\x30\xa0\x8b\xfd\x96\x20\xe3\x65\x01\xc0\xbe\x79\xe1\x60\xde\ \xfb\xc4\xe1\xe1\x21\x9a\x99\x99\x89\xb2\x91\xf1\xe5\xf0\x06\xcc\ \x85\x59\x01\x58\x34\xef\x1f\x1f\x1f\xa3\x2f\xfa\xce\xe7\x52\x3b\ \xf2\xfc\xd1\xd1\x51\x98\xc9\x4d\x3c\x3d\x3d\xcd\x0a\x1f\x0f\x07\ \x05\x10\xef\x00\xce\xc9\xc9\xc9\x66\x06\xc5\x1c\xc3\xfb\xb1\x77\ \xdd\xaf\x13\x70\xe0\x50\xd7\xf5\xf7\x5b\x39\x9e\xef\x40\x80\x6a\ \x10\x04\x21\x01\x3c\x02\xb3\xc2\x30\x4c\xdc\xbe\x9a\xa6\x29\xcd\ \xb2\x43\xc5\xd9\x84\x35\xc5\xb6\x00\x4c\x4d\x4d\x15\x00\x40\xa7\ \xa8\x38\x14\x70\x87\x91\x14\x48\x15\xad\x01\xfb\x7e\x3b\x3d\x3d\ \xdd\x64\x03\xc8\x57\x9e\x1e\x69\x02\x0e\xe0\xc3\x41\xca\x2d\xda\ \x8d\xe6\xd9\x00\x92\xe9\x33\x38\x3b\x3b\xa3\x36\x29\x00\x91\xa8\ \x7b\x26\x27\x27\x35\x00\x58\xe1\xe8\xe2\xd6\xa4\x00\x26\x26\x26\ \x58\xe1\xe3\xa6\xd8\xcd\xa9\xb0\x7f\xe9\xfc\xfc\xbc\x42\x05\x60\ \x6c\x64\x33\x36\x71\xda\xd8\x10\xd5\x61\xa8\x98\x30\xa2\x03\xc8\ \x14\x6f\x17\x17\x17\xc2\x3d\xee\xf8\xf8\x38\xe9\x4e\x29\x63\xde\ \x98\x4c\xd0\x57\x60\x1f\x24\x0c\x30\x36\x36\xc6\xea\x7b\xeb\xa0\ \xf3\x8b\x16\x5e\x97\x97\x97\x3e\xa7\xf7\xab\xa0\xbb\x0e\xf6\x22\ \x08\x55\xa4\x7a\xcd\x4b\xc4\xa9\x0e\xa3\xcc\x0a\x2f\x4e\x00\xaf\ \x39\xe7\x61\xaa\x55\x4b\x1e\x40\x5c\xaa\x57\x57\x57\x89\xcb\x6d\ \x74\x74\x94\x94\x14\x1c\x4a\x1f\xb1\x02\xeb\xb4\xc8\x1e\x37\xc0\ \xc8\xc8\x48\x09\x6a\x7a\x55\x02\xc0\x21\xf4\x13\xd8\x1f\xef\xcd\ \xcd\xcd\x47\x23\x04\x83\x94\x52\xd7\x29\x00\xe2\xcf\x26\x8c\xda\ \x88\x14\x3e\x26\x2d\x15\x5f\x5f\x5f\xa3\xe1\xe1\x61\x2f\xf2\x7a\ \x22\x8c\x78\x01\x86\x86\x86\x14\xc9\xf0\x71\x6f\x6f\x6f\x11\xc6\ \x6e\x89\x10\x3e\x6e\xa2\x7e\x4a\x02\x18\xb0\xbe\x70\x77\x77\xe7\ \x33\x01\x38\x0e\x1f\x80\x87\x03\xca\xbc\x88\xf7\xeb\xb5\x5a\xad\ \x82\x2b\xc3\xc9\x0f\x63\xf2\x00\x65\xd8\x74\x43\xe2\xf6\xa5\xd6\ \x51\xe0\xe5\x50\x55\xd5\xb8\x9b\x8b\xc5\x64\x02\x28\x20\x1c\xad\ \xa3\x70\xf9\x00\x66\x49\x77\x4a\x6c\x8b\xd4\xcd\xc5\xa2\x83\x9d\ \x02\x42\xc8\x4f\x00\x08\x54\x88\x2e\x02\x91\xf0\x3e\xdd\x19\xec\ \x30\xb2\x61\xac\xc9\x00\x08\x7b\x7f\x70\x70\x50\x21\xd8\x75\xef\ \xef\xef\xb1\xce\x40\x08\x85\xb0\x0e\xf7\xc6\x6a\x12\x01\x06\x06\ \x06\x30\x35\x8a\x7c\xf8\x50\x42\xd2\x80\x3d\xff\x90\xc0\x09\x21\ \xa7\xc2\x9a\xd2\xc3\xc3\x43\x25\x06\xe0\xcf\x3e\x2e\x2c\x44\x6d\ \x04\xd0\x9b\x83\x22\xec\x07\xe2\x7c\x9a\xe1\xd3\xdf\xdf\x9f\x4c\ \x0a\xf2\x62\x81\x5d\xfb\xf1\xf1\x11\x7d\x00\xf4\xf5\xf5\xa5\x1c\ \x3e\xf2\x42\xaa\x50\xf3\x9c\x8d\x8b\xfb\xf4\xf4\xd4\x4a\xf8\xd8\ \x9c\x7d\x34\xed\x35\xdb\xe0\x01\xa0\xc5\x62\x3d\xce\xc9\xfc\xd2\ \xdb\xdb\x4b\x4a\x0a\xd5\xe7\xe7\xe7\x55\x01\x3b\x35\x5c\x8f\x10\ \xd9\x07\x3b\xe1\x3f\x00\x30\xf8\x9d\x65\x48\x3e\x7c\xd8\x6d\x28\ \xed\x6d\x89\x54\xa1\x02\x80\xbc\x08\x56\xb4\xae\x20\x80\x47\x00\ \xb0\x52\x03\xe8\xe9\xe9\xd1\xa0\xf6\xc7\x86\xcf\xcb\xcb\x4b\xc8\ \x0b\xc0\xe8\x11\x8c\x68\x9f\x7c\x4a\xde\xb7\xdb\xf5\x8a\xd1\x68\ \x34\x50\x77\x77\x37\xe9\x1f\x26\xb6\x04\x80\x44\xed\x23\x6e\x8f\ \x04\x60\xa6\x00\x40\xcc\x6a\x1e\x80\x31\xc3\x87\x52\xdc\xe1\xde\ \x8d\xf4\xbf\x17\x73\x56\xa3\x99\xa0\x5b\xa0\x00\x00\x00\x00\x49\ \x45\x4e\x44\xae\x42\x60\x82\ " qt_resource_name = "\ \x00\x04\ \x00\x06\xfa\x24\ \x00\x69\ \x00\x63\x00\x6f\x00\x34\ \x00\x08\ \x06\x57\x5a\xe7\ \x00\x66\ \x00\x6f\x00\x6e\x00\x74\x00\x2e\x00\x70\x00\x6e\x00\x67\ " qt_resource_struct = "\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x01\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x02\ \x00\x00\x00\x0e\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\ " def qInitResources(): QtCore.qRegisterResourceData(0x01, qt_resource_struct, qt_resource_name, qt_resource_data) def qCleanupResources(): QtCore.qUnregisterResourceData(0x01, qt_resource_struct, qt_resource_name, qt_resource_data) qInitResources()
techbliss/Python_editor
6.8/plugins/Code editor/icons/iconf.py
Python
unlicense
5,271
def maxsubsumOn3(vector): maxsum = 0 vectorlen = len(vector) for i in range(vectorlen): for j in range(i,vectorlen): thissum=0 for k in range (i,j): thissum=thissum+vector[k] if(thissum>maxsum): maxsum=thissum return maxsum array=[4,-3,15,-2,-1,2,-6,2] print(maxsubsumOn3(array))
cagriulas/algorithm-analysis-17
w1/maxsubsumOn3.py
Python
unlicense
381
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TFDS input pipelines for GLUE and C4 datasets.""" from typing import Callable, Dict, Iterable, Optional import jax import numpy as np import tensorflow_datasets as tfds import sentencepiece as spm def _tfds_stream(dataset_name, split, batch_size, data_dir, shuffle_files, shuffle_buffer_size, batch_shuffle_size, preprocess_fun, repeat = True): """Streams batches of examples from TFDS, with pure-python pre-processing.""" ds = tfds.load( name=dataset_name, split=split, data_dir=data_dir, shuffle_files=shuffle_files) if repeat: ds = ds.cache() ds = ds.repeat() if shuffle_buffer_size is not None: ds = ds.shuffle(shuffle_buffer_size) ds = ds.batch(batch_size) if batch_shuffle_size is not None: ds = ds.shuffle(batch_shuffle_size) for batch in tfds.as_numpy(ds): yield preprocess_fun(batch) def glue_inputs(dataset_name, split, batch_size, tokenizer, data_dir = None, max_seq_length = 128, training = True): """Input pipeline for fine-tuning on GLUE tasks. Args: dataset_name: TFDS dataset name. split: Which dataset split to use (TRAINING, TEST or VALIDATION) batch_size: Number of examples in each batch. tokenizer: Tokenizer for converting text to integers representations. data_dir: Optional directory from which to load dataset. max_seq_length: Sequences longer than this are truncated; shorter sequences are padded. training: In training mode, we shuffle, repeat and buffer the dataset. Returns: Batched examples for specified dataset with keys and array types/shapes: * "input_ids": <np.int32>[batch_size, max_seq_length] * "type_ids": <np.int32>[batch_size, max_seq_length] * "idx": <np.int32>[batch_size] * "label": <np.int32>[batch_size] """ keys_lookup = { "glue/cola": ("sentence",), "glue/sst2": ("sentence",), "glue/mrpc": ("sentence1", "sentence2"), "glue/qqp": ("question1", "question2"), "glue/stsb": ("sentence1", "sentence2"), "glue/mnli": ("hypothesis", "premise"), "glue/qnli": ("question", "sentence"), "glue/rte": ("sentence1", "sentence2"), # WNLI requires a special training recipe, so we don't eval on it. "glue/wnli": ("sentence1", "sentence2") } keys = keys_lookup[dataset_name] cls_id = tokenizer.PieceToId("[CLS]") sep_id = tokenizer.PieceToId("[SEP]") pad_id = tokenizer.pad_id() def preprocess(batch): """Tokenize and convert text to model inputs.""" idx = batch["idx"] input_batch_size = idx.shape[0] input_ids = np.full((input_batch_size, max_seq_length), pad_id, dtype=np.int32) type_ids = np.zeros((input_batch_size, max_seq_length), dtype=np.int32) for i in range(input_batch_size): ex_input_ids = [cls_id] ex_type_ids = [0] for type_id, key in enumerate(keys): tokens = tokenizer.EncodeAsIds(batch[key][i]) + [sep_id] ex_input_ids.extend(tokens) ex_type_ids.extend([type_id] * len(tokens)) ex_input_ids = ex_input_ids[:max_seq_length] ex_type_ids = ex_type_ids[:max_seq_length] input_ids[i, :len(ex_input_ids)] = ex_input_ids type_ids[i, :len(ex_type_ids)] = ex_type_ids return { "input_ids": input_ids, "type_ids": type_ids, "idx": idx.astype(np.int32), "label": batch["label"] } return _tfds_stream( dataset_name=dataset_name, split=split, batch_size=batch_size, data_dir=data_dir, shuffle_files=training, shuffle_buffer_size=1024 if training else None, batch_shuffle_size=128 if training else None, preprocess_fun=preprocess, repeat=training) def _c4_data_unbatched(tokenizer, max_seq_length): """Yields examples from C4 corpus that have len(text) <= max_seq_length.""" cls_id = tokenizer.PieceToId("[CLS]") sep_id = tokenizer.PieceToId("[SEP]") pad_id = tokenizer.pad_id() ds = tfds.load(name="c4/en", split="train", shuffle_files=True) ds = ds.repeat() ds = ds.shuffle(1024) ds = ds.batch(16) # Batch documents to potentially speed up input pipeline input_ids_buf = np.full((1024, max_seq_length), pad_id, dtype=np.int32) type_ids_buf = np.zeros((1024, max_seq_length), dtype=np.int32) next_sentence_labels_buf = np.full(1024, -1, dtype=np.int32) for batch in tfds.as_numpy(ds): for text in batch["text"]: text = str(text, "utf-8") lines = [tokenizer.EncodeAsIds(line) for line in text.splitlines()] j = 0 while j < len(lines) - 1: if len(lines[j]) + len(lines[j + 1]) > max_seq_length - 3: j += 1 else: idx = np.random.randint(input_ids_buf.shape[0]) if next_sentence_labels_buf[idx] != -1: yield { "input_ids": input_ids_buf[idx].copy(), "type_ids": type_ids_buf[idx].copy(), "next_sentence_labels": next_sentence_labels_buf[idx].copy(), } input_ids_buf[idx] = pad_id type_ids_buf[idx] = 1 cum_len = 0 for k in range(j, len(lines)): cum_len += len(lines[k]) if cum_len > max_seq_length - 3: k -= 1 break selected_lines = lines[j:k + 1] j = k + 1 pivot = np.random.randint(1, len(selected_lines)) if np.random.random() < 0.5: datum = [cls_id] for tokens in selected_lines[:pivot]: datum.extend(tokens) datum.append(sep_id) type_ids_buf[idx, :len(datum)] = 0 for tokens in selected_lines[pivot:]: datum.extend(tokens) datum.append(sep_id) next_sentence_label = 0 type_ids_buf[idx, len(datum):] = 0 else: datum = [cls_id] for tokens in selected_lines[pivot:]: datum.extend(tokens) datum.append(sep_id) type_ids_buf[idx, :len(datum)] = 0 for tokens in selected_lines[:pivot]: datum.extend(tokens) datum.append(sep_id) next_sentence_label = 1 type_ids_buf[idx, len(datum):] = 0 input_ids_buf[idx] = pad_id input_ids_buf[idx, :len(datum)] = datum next_sentence_labels_buf[idx] = next_sentence_label def c4_masked_lm_inputs( batch_size, tokenizer, max_seq_length, max_predictions_per_seq, masking_rate, mask_token_proportion, random_token_proportion): """"Generates a batch of masked examples from the C4 corpus. Args: batch_size: Number of examples in each batch. tokenizer: Tokenizer for converting text to integers representations. max_seq_length: Sequences longer than this are truncated; shorter sequences are padded. max_predictions_per_seq: Maximum number of masked LM predictions per sequence. masking_rate: Proportion of tokens for masked LM predictions. Total number of selected tokens will be at most max_predictions_per_seq. mask_token_proportion: Proportion of masked tokens to replace with ['MASK']. random_token_proportion: Proportion of masked tokens to replace with a random token. Remaining 1-mask_token_proportion-random_token_proportion fraction of selected tokens are left as is. Yields: Batches of examples with keys and array types/shapes: * "input_ids": <np.int32>[batch_size, max_seq_length] * "type_ids": <np.int32>[batch_size, max_seq_length] * "masked_lm_positions": <np.int32>[batch_size, max_predictions_per_seq] * "masked_lm_ids": <np.int32>[batch_size ,max_predictions_per_seq] * "masked_lm_weights": <np.int32>[batch_size, max_predictions_per_seq] * "next_sentence_labels": <np.int32>[batch_size] """ total = mask_token_proportion + random_token_proportion if total < 0 or total > 1: raise ValueError( "Sum of random proportion and mask proportion must be in [0, 1] range. " "Got random_token_proportion=%d and mask_token_proportion=%d" % (random_token_proportion, mask_token_proportion)) pad_id = tokenizer.pad_id() eos_id = tokenizer.eos_id() bos_id = tokenizer.bos_id() cls_id = tokenizer.PieceToId("[CLS]") sep_id = tokenizer.PieceToId("[SEP]") mask_id = tokenizer.PieceToId("[MASK]") ignore_ids = [cls_id, sep_id, pad_id] ignore_ids = np.array(ignore_ids, dtype=np.int32)[:, None] special_tokens = {mask_id, cls_id, sep_id, bos_id, eos_id, pad_id} normal_tokens = [ t for t in range(tokenizer.GetPieceSize()) if t not in special_tokens ] it = _c4_data_unbatched(tokenizer, max_seq_length) examples = [] while True: example = next(it) num_tokens = np.sum(example["input_ids"] != pad_id).item() prediction_mask = np.all(example["input_ids"] != ignore_ids, axis=0) cand_indexes = np.arange( prediction_mask.shape[0], dtype=np.int32)[prediction_mask] num_to_predict = min(max_predictions_per_seq, max(1, int(num_tokens * masking_rate))) masked_lm_positions = np.random.choice( cand_indexes, num_to_predict, replace=False) masked_lm_positions = np.sort(masked_lm_positions) masked_lm_ids = example["input_ids"][masked_lm_positions] masked_lm_weights = np.ones_like(masked_lm_positions, dtype=np.float32) # Mask out tokens. for position in masked_lm_positions: rand = np.random.random() if rand < mask_token_proportion: replace_token_id = mask_id elif rand < mask_token_proportion + random_token_proportion: replace_token_id = np.random.choice(normal_tokens, 1).item() else: replace_token_id = example["input_ids"][position] example["input_ids"][position] = replace_token_id amount_to_pad = max_predictions_per_seq - num_to_predict masked_lm_positions = np.pad( masked_lm_positions, (0, amount_to_pad), mode="constant") masked_lm_ids = np.pad(masked_lm_ids, (0, amount_to_pad), mode="constant") masked_lm_weights = np.pad( masked_lm_weights, (0, amount_to_pad), mode="constant") example["masked_lm_positions"] = masked_lm_positions example["masked_lm_ids"] = masked_lm_ids example["masked_lm_weights"] = masked_lm_weights examples.append(example) if len(examples) == batch_size: yield jax.tree_multimap(lambda *x: np.stack(x), *examples) examples = []
google-research/google-research
f_net/input_pipeline.py
Python
apache-2.0
11,332
""" adafruit.py Adafruit.io views """ import logging import json import urllib.request, urllib.parse, urllib.error import urllib.request, urllib.error, urllib.parse from datetime import datetime, timedelta from flask import Blueprint, abort, request, jsonify from werkzeug.exceptions import BadRequest from app.decorators import crossdomain from app.views.auth import OAUTH from app.models.adventure import Adventure from app.models.adafruit import Adafruit from app.models.point import Point AIO_URL = 'https://io.adafruit.com' MOD_ADAFRUIT = Blueprint('adafruit', __name__, url_prefix='/api/v1/adventure/<slug>/adafruit') def get_last_point(adventure): """Returns the last adafruit point for the adventure.""" points = adventure.points.filter( \ source='adafruit' \ ) point = None for doc in points: if point is None or doc.timestamp > point.timestamp: point = doc return point def load_data(base_url, username, feed, aio_key, adventure, start_time=None): """Load Adafruit.io data.""" request_headers = { "X-AIO-Key": aio_key } if start_time is None: last_point = get_last_point(adventure) if last_point is not None: start_time = last_point.timestamp else: start_time = datetime(2017, 1, 1) request_params = {} if start_time is not None: delta = timedelta(seconds=60) request_params['start_time'] = datetime.strftime( \ start_time + delta, \ '%Y-%m-%dT%H:%M:%SZ' \ ) req = urllib.request.Request( \ AIO_URL + base_url + '/' + username + '/feeds/' + feed + '/data' + \ '?' + urllib.parse.urlencode(request_params), \ headers=request_headers \ ) res = urllib.request.urlopen(req) data = json.load(res) if len(data) > 0: for point in data: try: aio_id = point['id'] timestamp = datetime.strptime(point['created_at'], '%Y-%m-%dT%H:%M:%SZ') longitude = float(point['lat']) latitude = float(point['lon']) altitude = str(point['ele']) value = str(point['value']) value_arr = value.split(':') speed = value_arr[0] battery = value_arr[1] if aio_id is not None: point = adventure.points.filter( \ point_type='tracker', aio_id=aio_id \ ).first() if point is None: point = Point( title='Adafruit.io tracker information received.', desc=None, altitude=altitude, speed=speed, direction=None, latitude=latitude, longitude=longitude, resource=None, point_type='tracker', timestamp=timestamp, delorme_id=None, aio_id=aio_id, hide=False, thumb=None, photo=None, video=None, source="adafruit", battery=battery, user=None ) adventure.points.append(point) except (ValueError, TypeError) as err: logging.warning(err) logging.warning(point) adventure.save() return jsonify({'status': 'ok'}) @MOD_ADAFRUIT.route('/', methods=['POST']) @crossdomain(origin='*') @OAUTH.require_oauth('email') def add_adafruit(slug): """Add Adafruit.io configuration to Adventure object defined by slug.""" try: adventure = Adventure.objects.get(slug=slug) base_url = request.values.get('base_url', None) username = request.values.get('username', None) feed = request.values.get('feed', None) aio_key = request.values.get('aio_key', None) adventure.adafruit = Adafruit( base_url=base_url, username=username, feed=feed, aio_key=aio_key ) adventure.save() return jsonify({'status': 'ok'}) except TypeError as err: logging.error(err) abort(400) except BadRequest: abort(400) return @MOD_ADAFRUIT.route('/', methods=['GET']) @crossdomain(origin='*') @OAUTH.require_oauth('email') def get_adafruit(slug): """Get Adafruit.io information.""" try: adventure = Adventure.objects.get(slug=slug) if adventure.adafruit: return jsonify({'adafruit': adventure.adafruit.to_dict()}) return jsonify({'error': 'Adafruit.io is not configured for this adventure.'}), 400 except TypeError as err: logging.error(err) abort(400) except BadRequest: abort(400) return @MOD_ADAFRUIT.route('/load', methods=['GET']) @OAUTH.require_oauth('email') def load_tracker(slug): """Load Adafruit.io tracker points from configured feed URL.""" adventure = Adventure.objects().get(slug=slug) adafruit = adventure.adafruit if adafruit is not None: return load_data( \ adafruit.base_url, adafruit.username, adafruit.feed, adafruit.aio_key, adventure \ ) return jsonify({'error': 'Adafruit.io is not configured for this adventure.'}), 500
myadventure/myadventure-api
app/views/adafruit.py
Python
apache-2.0
5,535
import asyncio import json import socket import unittest from aiohttp import web, request from aiohttp_session import (Session, session_middleware, get_session, SimpleCookieStorage) class TestSimleCookieStorage(unittest.TestCase): def setUp(self): self.loop = asyncio.new_event_loop() asyncio.set_event_loop(None) self.srv = None self.handler = None def tearDown(self): self.loop.run_until_complete(self.handler.finish_connections()) self.srv.close() self.loop.close() def find_unused_port(self): s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind(('127.0.0.1', 0)) port = s.getsockname()[1] s.close() return port @asyncio.coroutine def create_server(self, method, path, handler=None): middleware = session_middleware(SimpleCookieStorage()) app = web.Application(middlewares=[middleware], loop=self.loop) if handler: app.router.add_route(method, path, handler) port = self.find_unused_port() handler = app.make_handler() srv = yield from self.loop.create_server( handler, '127.0.0.1', port) url = "http://127.0.0.1:{}".format(port) + path self.handler = handler self.srv = srv return app, srv, url def make_cookie(self, data): value = json.dumps(data) return {'AIOHTTP_SESSION': value} def test_create_new_sesssion(self): @asyncio.coroutine def handler(request): session = yield from get_session(request) self.assertIsInstance(session, Session) self.assertTrue(session.new) self.assertFalse(session._changed) self.assertEqual({}, session) return web.Response(body=b'OK') @asyncio.coroutine def go(): _, _, url = yield from self.create_server('GET', '/', handler) resp = yield from request('GET', url, loop=self.loop) self.assertEqual(200, resp.status) self.loop.run_until_complete(go()) def test_load_existing_sesssion(self): @asyncio.coroutine def handler(request): session = yield from get_session(request) self.assertIsInstance(session, Session) self.assertFalse(session.new) self.assertFalse(session._changed) self.assertEqual({'a': 1, 'b': 2}, session) return web.Response(body=b'OK') @asyncio.coroutine def go(): _, _, url = yield from self.create_server('GET', '/', handler) resp = yield from request( 'GET', url, cookies=self.make_cookie({'a': 1, 'b': 2}), loop=self.loop) self.assertEqual(200, resp.status) self.loop.run_until_complete(go()) def test_change_sesssion(self): @asyncio.coroutine def handler(request): session = yield from get_session(request) session['c'] = 3 return web.Response(body=b'OK') @asyncio.coroutine def go(): _, _, url = yield from self.create_server('GET', '/', handler) resp = yield from request( 'GET', url, cookies=self.make_cookie({'a': 1, 'b': 2}), loop=self.loop) self.assertEqual(200, resp.status) morsel = resp.cookies['AIOHTTP_SESSION'] self.assertEqual({'a': 1, 'b': 2, 'c': 3}, eval(morsel.value)) self.assertTrue(morsel['httponly']) self.assertEqual('/', morsel['path']) self.loop.run_until_complete(go()) def test_clear_cookie_on_sesssion_invalidation(self): @asyncio.coroutine def handler(request): session = yield from get_session(request) session.invalidate() return web.Response(body=b'OK') @asyncio.coroutine def go(): _, _, url = yield from self.create_server('GET', '/', handler) resp = yield from request( 'GET', url, cookies=self.make_cookie({'a': 1, 'b': 2}), loop=self.loop) self.assertEqual(200, resp.status) self.assertEqual( 'Set-Cookie: AIOHTTP_SESSION="{}"; httponly; Path=/'.upper(), resp.cookies['AIOHTTP_SESSION'].output().upper()) self.loop.run_until_complete(go()) def test_dont_save_not_requested_session(self): @asyncio.coroutine def handler(request): return web.Response(body=b'OK') @asyncio.coroutine def go(): _, _, url = yield from self.create_server('GET', '/', handler) resp = yield from request( 'GET', url, cookies=self.make_cookie({'a': 1, 'b': 2}), loop=self.loop) self.assertEqual(200, resp.status) self.assertNotIn('AIOHTTP_SESSION', resp.cookies) self.loop.run_until_complete(go())
kolko/aiohttp_session
tests/test_cookie_storage.py
Python
apache-2.0
5,099
import socket import datetime from pymongo import MongoClient import sys import getpass __author__ = "SREEJITH KOVILAKATHUVEETTIL CHANDRAN" __copyright__ = " Copyright 2015,SREEJITH KOVILAKATHUVEETTIL CHANDRAN" __email__ = "sreeju_kc@hotmail.com" __license__ = "Apache License 2.0" def fipandhost(): ip = socket.gethostbyname(socket.gethostname())#To fetch the IP address host = socket.getfqdn()#To fetch the hostname user = getpass.getuser()#To fetch the username conn = MongoClient() conn = MongoClient('mongodb://X.X.X.X:27017/')#You need to setup a mongoDB server first and provide mongoDB server IP address. db = conn.socail_eng collection = db.sc_feed post = {"IP": ip, "Hostname": host, "Username": user} pf = collection.find({"IP":ip,"Hostname":host}).count() if pf > 0: #This will make sure no duplicate entry is created,even if user clicks multiple times it wont matter sys.exit() collection.insert(post) if __name__ == '__main__': fipandhost()
sreejithkchandran/findwhoclicks
click.py
Python
apache-2.0
1,032
# Copyright 2020 The Cirq Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Callable, Dict, Union import numpy as np from pyquil.parser import parse from pyquil.quilbase import ( Declare, DefGate, Gate as PyQuilGate, Measurement as PyQuilMeasurement, Pragma, Reset, ResetQubit, ) from cirq import Circuit, LineQubit from cirq.ops import ( CCNOT, CNOT, CSWAP, CZ, CZPowGate, Gate, H, I, ISWAP, ISwapPowGate, MatrixGate, MeasurementGate, S, SWAP, T, TwoQubitDiagonalGate, X, Y, Z, ZPowGate, rx, ry, rz, ) class UndefinedQuilGate(Exception): pass class UnsupportedQuilInstruction(Exception): pass # # Functions for converting supported parameterized Quil gates. # def cphase(param: float) -> CZPowGate: """Returns a controlled-phase gate as a Cirq CZPowGate with exponent determined by the input param. The angle parameter of pyQuil's CPHASE gate and the exponent of Cirq's CZPowGate differ by a factor of pi. Args: param: Gate parameter (in radians). Returns: A CZPowGate equivalent to a CPHASE gate of given angle. """ return CZPowGate(exponent=param / np.pi) def cphase00(phi: float) -> TwoQubitDiagonalGate: """Returns a Cirq TwoQubitDiagonalGate for pyQuil's CPHASE00 gate. In pyQuil, CPHASE00(phi) = diag([exp(1j * phi), 1, 1, 1]), and in Cirq, a TwoQubitDiagonalGate is specified by its diagonal in radians, which would be [phi, 0, 0, 0]. Args: phi: Gate parameter (in radians). Returns: A TwoQubitDiagonalGate equivalent to a CPHASE00 gate of given angle. """ return TwoQubitDiagonalGate([phi, 0, 0, 0]) def cphase01(phi: float) -> TwoQubitDiagonalGate: """Returns a Cirq TwoQubitDiagonalGate for pyQuil's CPHASE01 gate. In pyQuil, CPHASE01(phi) = diag(1, [exp(1j * phi), 1, 1]), and in Cirq, a TwoQubitDiagonalGate is specified by its diagonal in radians, which would be [0, phi, 0, 0]. Args: phi: Gate parameter (in radians). Returns: A TwoQubitDiagonalGate equivalent to a CPHASE01 gate of given angle. """ return TwoQubitDiagonalGate([0, phi, 0, 0]) def cphase10(phi: float) -> TwoQubitDiagonalGate: """Returns a Cirq TwoQubitDiagonalGate for pyQuil's CPHASE10 gate. In pyQuil, CPHASE10(phi) = diag(1, 1, [exp(1j * phi), 1]), and in Cirq, a TwoQubitDiagonalGate is specified by its diagonal in radians, which would be [0, 0, phi, 0]. Args: phi: Gate parameter (in radians). Returns: A TwoQubitDiagonalGate equivalent to a CPHASE10 gate of given angle. """ return TwoQubitDiagonalGate([0, 0, phi, 0]) def phase(param: float) -> ZPowGate: """Returns a single-qubit phase gate as a Cirq ZPowGate with exponent determined by the input param. The angle parameter of pyQuil's PHASE gate and the exponent of Cirq's ZPowGate differ by a factor of pi. Args: param: Gate parameter (in radians). Returns: A ZPowGate equivalent to a PHASE gate of given angle. """ return ZPowGate(exponent=param / np.pi) def pswap(phi: float) -> MatrixGate: """Returns a Cirq MatrixGate for pyQuil's PSWAP gate. Args: phi: Gate parameter (in radians). Returns: A MatrixGate equivalent to a PSWAP gate of given angle. """ pswap_matrix = np.array( [ [1, 0, 0, 0], [0, 0, np.exp(1j * phi), 0], [0, np.exp(1j * phi), 0, 0], [0, 0, 0, 1], ], dtype=complex, ) return MatrixGate(pswap_matrix) def xy(param: float) -> ISwapPowGate: """Returns an ISWAP-family gate as a Cirq ISwapPowGate with exponent determined by the input param. The angle parameter of pyQuil's XY gate and the exponent of Cirq's ISwapPowGate differ by a factor of pi. Args: param: Gate parameter (in radians). Returns: An ISwapPowGate equivalent to an XY gate of given angle. """ return ISwapPowGate(exponent=param / np.pi) PRAGMA_ERROR = """ Please remove PRAGMAs from your Quil program. If you would like to add noise, do so after conversion. """ RESET_ERROR = """ Please remove RESETs from your Quil program. RESET directives have special meaning on QCS, to enable active reset. """ # Parameterized gates map to functions that produce Gate constructors. SUPPORTED_GATES: Dict[str, Union[Gate, Callable[..., Gate]]] = { "CCNOT": CCNOT, "CNOT": CNOT, "CSWAP": CSWAP, "CPHASE": cphase, "CPHASE00": cphase00, "CPHASE01": cphase01, "CPHASE10": cphase10, "CZ": CZ, "PHASE": phase, "H": H, "I": I, "ISWAP": ISWAP, "PSWAP": pswap, "RX": rx, "RY": ry, "RZ": rz, "S": S, "SWAP": SWAP, "T": T, "X": X, "Y": Y, "Z": Z, "XY": xy, } def circuit_from_quil(quil: str) -> Circuit: """Convert a Quil program to a Cirq Circuit. Args: quil: The Quil program to convert. Returns: A Cirq Circuit generated from the Quil program. Raises: UnsupportedQuilInstruction: Cirq does not support the specified Quil instruction. UndefinedQuilGate: Cirq does not support the specified Quil gate. References: https://github.com/rigetti/pyquil """ circuit = Circuit() defined_gates = SUPPORTED_GATES.copy() instructions = parse(quil) for inst in instructions: # Add DEFGATE-defined gates to defgates dict using MatrixGate. if isinstance(inst, DefGate): if inst.parameters: raise UnsupportedQuilInstruction( "Parameterized DEFGATEs are currently unsupported." ) defined_gates[inst.name] = MatrixGate(inst.matrix) # Pass when encountering a DECLARE. elif isinstance(inst, Declare): pass # Convert pyQuil gates to Cirq operations. elif isinstance(inst, PyQuilGate): quil_gate_name = inst.name quil_gate_params = inst.params line_qubits = list(LineQubit(q.index) for q in inst.qubits) if quil_gate_name not in defined_gates: raise UndefinedQuilGate(f"Quil gate {quil_gate_name} not supported in Cirq.") cirq_gate_fn = defined_gates[quil_gate_name] if quil_gate_params: circuit += cirq_gate_fn(*quil_gate_params)(*line_qubits) else: circuit += cirq_gate_fn(*line_qubits) # Convert pyQuil MEASURE operations to Cirq MeasurementGate objects. elif isinstance(inst, PyQuilMeasurement): line_qubit = LineQubit(inst.qubit.index) if inst.classical_reg is None: raise UnsupportedQuilInstruction( f"Quil measurement {inst} without classical register " f"not currently supported in Cirq." ) quil_memory_reference = inst.classical_reg.out() circuit += MeasurementGate(1, key=quil_memory_reference)(line_qubit) # Raise a targeted error when encountering a PRAGMA. elif isinstance(inst, Pragma): raise UnsupportedQuilInstruction(PRAGMA_ERROR) # Raise a targeted error when encountering a RESET. elif isinstance(inst, (Reset, ResetQubit)): raise UnsupportedQuilInstruction(RESET_ERROR) # Raise a general error when encountering an unconsidered type. else: raise UnsupportedQuilInstruction( f"Quil instruction {inst} of type {type(inst)} not currently supported in Cirq." ) return circuit
quantumlib/Cirq
cirq-core/cirq/contrib/quil_import/quil.py
Python
apache-2.0
8,276
"""Helper classes for Google Assistant integration.""" from __future__ import annotations from abc import ABC, abstractmethod from asyncio import gather from collections.abc import Mapping from http import HTTPStatus import logging import pprint from aiohttp.web import json_response from homeassistant.components import webhook from homeassistant.const import ( ATTR_DEVICE_CLASS, ATTR_SUPPORTED_FEATURES, CLOUD_NEVER_EXPOSED_ENTITIES, CONF_NAME, STATE_UNAVAILABLE, ) from homeassistant.core import Context, HomeAssistant, State, callback from homeassistant.helpers import start from homeassistant.helpers.area_registry import AreaEntry from homeassistant.helpers.device_registry import DeviceEntry from homeassistant.helpers.entity_registry import RegistryEntry from homeassistant.helpers.event import async_call_later from homeassistant.helpers.network import get_url from homeassistant.helpers.storage import Store from . import trait from .const import ( CONF_ALIASES, CONF_ROOM_HINT, DEVICE_CLASS_TO_GOOGLE_TYPES, DOMAIN, DOMAIN_TO_GOOGLE_TYPES, ERR_FUNCTION_NOT_SUPPORTED, NOT_EXPOSE_LOCAL, SOURCE_LOCAL, STORE_AGENT_USER_IDS, ) from .error import SmartHomeError SYNC_DELAY = 15 _LOGGER = logging.getLogger(__name__) async def _get_entity_and_device( hass: HomeAssistant, entity_id: str ) -> tuple[RegistryEntry, DeviceEntry] | None: """Fetch the entity and device entries for a entity_id.""" dev_reg, ent_reg = await gather( hass.helpers.device_registry.async_get_registry(), hass.helpers.entity_registry.async_get_registry(), ) if not (entity_entry := ent_reg.async_get(entity_id)): return None, None device_entry = dev_reg.devices.get(entity_entry.device_id) return entity_entry, device_entry async def _get_area( hass: HomeAssistant, entity_entry: RegistryEntry | None, device_entry: DeviceEntry | None, ) -> AreaEntry | None: """Calculate the area for an entity.""" if entity_entry and entity_entry.area_id: area_id = entity_entry.area_id elif device_entry and device_entry.area_id: area_id = device_entry.area_id else: return None area_reg = await hass.helpers.area_registry.async_get_registry() return area_reg.areas.get(area_id) async def _get_device_info(device_entry: DeviceEntry | None) -> dict[str, str] | None: """Retrieve the device info for a device.""" if not device_entry: return None device_info = {} if device_entry.manufacturer: device_info["manufacturer"] = device_entry.manufacturer if device_entry.model: device_info["model"] = device_entry.model if device_entry.sw_version: device_info["swVersion"] = device_entry.sw_version return device_info class AbstractConfig(ABC): """Hold the configuration for Google Assistant.""" _unsub_report_state = None def __init__(self, hass): """Initialize abstract config.""" self.hass = hass self._store = None self._google_sync_unsub = {} self._local_sdk_active = False async def async_initialize(self): """Perform async initialization of config.""" self._store = GoogleConfigStore(self.hass) await self._store.async_load() if not self.enabled: return async def sync_google(_): """Sync entities to Google.""" await self.async_sync_entities_all() start.async_at_start(self.hass, sync_google) @property def enabled(self): """Return if Google is enabled.""" return False @property def entity_config(self): """Return entity config.""" return {} @property def secure_devices_pin(self): """Return entity config.""" return None @property def is_reporting_state(self): """Return if we're actively reporting states.""" return self._unsub_report_state is not None @property def is_local_sdk_active(self): """Return if we're actively accepting local messages.""" return self._local_sdk_active @property def should_report_state(self): """Return if states should be proactively reported.""" return False @property def local_sdk_webhook_id(self): """Return the local SDK webhook ID. Return None to disable the local SDK. """ return None @property def local_sdk_user_id(self): """Return the user ID to be used for actions received via the local SDK.""" raise NotImplementedError @abstractmethod def get_agent_user_id(self, context): """Get agent user ID from context.""" @abstractmethod def should_expose(self, state) -> bool: """Return if entity should be exposed.""" def should_2fa(self, state): """If an entity should have 2FA checked.""" # pylint: disable=no-self-use return True async def async_report_state(self, message, agent_user_id: str): """Send a state report to Google.""" raise NotImplementedError async def async_report_state_all(self, message): """Send a state report to Google for all previously synced users.""" jobs = [ self.async_report_state(message, agent_user_id) for agent_user_id in self._store.agent_user_ids ] await gather(*jobs) @callback def async_enable_report_state(self): """Enable proactive mode.""" # Circular dep # pylint: disable=import-outside-toplevel from .report_state import async_enable_report_state if self._unsub_report_state is None: self._unsub_report_state = async_enable_report_state(self.hass, self) @callback def async_disable_report_state(self): """Disable report state.""" if self._unsub_report_state is not None: self._unsub_report_state() self._unsub_report_state = None async def async_sync_entities(self, agent_user_id: str): """Sync all entities to Google.""" # Remove any pending sync self._google_sync_unsub.pop(agent_user_id, lambda: None)() status = await self._async_request_sync_devices(agent_user_id) if status == HTTPStatus.NOT_FOUND: await self.async_disconnect_agent_user(agent_user_id) return status async def async_sync_entities_all(self): """Sync all entities to Google for all registered agents.""" res = await gather( *( self.async_sync_entities(agent_user_id) for agent_user_id in self._store.agent_user_ids ) ) return max(res, default=204) @callback def async_schedule_google_sync(self, agent_user_id: str): """Schedule a sync.""" async def _schedule_callback(_now): """Handle a scheduled sync callback.""" self._google_sync_unsub.pop(agent_user_id, None) await self.async_sync_entities(agent_user_id) self._google_sync_unsub.pop(agent_user_id, lambda: None)() self._google_sync_unsub[agent_user_id] = async_call_later( self.hass, SYNC_DELAY, _schedule_callback ) @callback def async_schedule_google_sync_all(self): """Schedule a sync for all registered agents.""" for agent_user_id in self._store.agent_user_ids: self.async_schedule_google_sync(agent_user_id) async def _async_request_sync_devices(self, agent_user_id: str) -> int: """Trigger a sync with Google. Return value is the HTTP status code of the sync request. """ raise NotImplementedError async def async_connect_agent_user(self, agent_user_id: str): """Add an synced and known agent_user_id. Called when a completed sync response have been sent to Google. """ self._store.add_agent_user_id(agent_user_id) async def async_disconnect_agent_user(self, agent_user_id: str): """Turn off report state and disable further state reporting. Called when the user disconnects their account from Google. """ self._store.pop_agent_user_id(agent_user_id) @callback def async_enable_local_sdk(self): """Enable the local SDK.""" if (webhook_id := self.local_sdk_webhook_id) is None: return try: webhook.async_register( self.hass, DOMAIN, "Local Support", webhook_id, self._handle_local_webhook, ) except ValueError: _LOGGER.info("Webhook handler is already defined!") return self._local_sdk_active = True @callback def async_disable_local_sdk(self): """Disable the local SDK.""" if not self._local_sdk_active: return webhook.async_unregister(self.hass, self.local_sdk_webhook_id) self._local_sdk_active = False async def _handle_local_webhook(self, hass, webhook_id, request): """Handle an incoming local SDK message.""" # Circular dep # pylint: disable=import-outside-toplevel from . import smart_home payload = await request.json() if _LOGGER.isEnabledFor(logging.DEBUG): _LOGGER.debug("Received local message:\n%s\n", pprint.pformat(payload)) if not self.enabled: return json_response(smart_home.turned_off_response(payload)) result = await smart_home.async_handle_message( self.hass, self, self.local_sdk_user_id, payload, SOURCE_LOCAL ) if _LOGGER.isEnabledFor(logging.DEBUG): _LOGGER.debug("Responding to local message:\n%s\n", pprint.pformat(result)) return json_response(result) class GoogleConfigStore: """A configuration store for google assistant.""" _STORAGE_VERSION = 1 _STORAGE_KEY = DOMAIN def __init__(self, hass): """Initialize a configuration store.""" self._hass = hass self._store = Store(hass, self._STORAGE_VERSION, self._STORAGE_KEY) self._data = {STORE_AGENT_USER_IDS: {}} @property def agent_user_ids(self): """Return a list of connected agent user_ids.""" return self._data[STORE_AGENT_USER_IDS] @callback def add_agent_user_id(self, agent_user_id): """Add an agent user id to store.""" if agent_user_id not in self._data[STORE_AGENT_USER_IDS]: self._data[STORE_AGENT_USER_IDS][agent_user_id] = {} self._store.async_delay_save(lambda: self._data, 1.0) @callback def pop_agent_user_id(self, agent_user_id): """Remove agent user id from store.""" if agent_user_id in self._data[STORE_AGENT_USER_IDS]: self._data[STORE_AGENT_USER_IDS].pop(agent_user_id, None) self._store.async_delay_save(lambda: self._data, 1.0) async def async_load(self): """Store current configuration to disk.""" if data := await self._store.async_load(): self._data = data class RequestData: """Hold data associated with a particular request.""" def __init__( self, config: AbstractConfig, user_id: str, source: str, request_id: str, devices: list[dict] | None, ) -> None: """Initialize the request data.""" self.config = config self.source = source self.request_id = request_id self.context = Context(user_id=user_id) self.devices = devices @property def is_local_request(self): """Return if this is a local request.""" return self.source == SOURCE_LOCAL def get_google_type(domain, device_class): """Google type based on domain and device class.""" typ = DEVICE_CLASS_TO_GOOGLE_TYPES.get((domain, device_class)) return typ if typ is not None else DOMAIN_TO_GOOGLE_TYPES[domain] class GoogleEntity: """Adaptation of Entity expressed in Google's terms.""" def __init__( self, hass: HomeAssistant, config: AbstractConfig, state: State ) -> None: """Initialize a Google entity.""" self.hass = hass self.config = config self.state = state self._traits = None @property def entity_id(self): """Return entity ID.""" return self.state.entity_id @callback def traits(self): """Return traits for entity.""" if self._traits is not None: return self._traits state = self.state domain = state.domain attributes = state.attributes features = attributes.get(ATTR_SUPPORTED_FEATURES, 0) if not isinstance(features, int): _LOGGER.warning( "Entity %s contains invalid supported_features value %s", self.entity_id, features, ) return [] device_class = state.attributes.get(ATTR_DEVICE_CLASS) self._traits = [ Trait(self.hass, state, self.config) for Trait in trait.TRAITS if Trait.supported(domain, features, device_class, attributes) ] return self._traits @callback def should_expose(self): """If entity should be exposed.""" return self.config.should_expose(self.state) @callback def should_expose_local(self) -> bool: """Return if the entity should be exposed locally.""" return ( self.should_expose() and get_google_type( self.state.domain, self.state.attributes.get(ATTR_DEVICE_CLASS) ) not in NOT_EXPOSE_LOCAL and not self.might_2fa() ) @callback def is_supported(self) -> bool: """Return if the entity is supported by Google.""" return bool(self.traits()) @callback def might_2fa(self) -> bool: """Return if the entity might encounter 2FA.""" if not self.config.should_2fa(self.state): return False return self.might_2fa_traits() @callback def might_2fa_traits(self) -> bool: """Return if the entity might encounter 2FA based on just traits.""" state = self.state domain = state.domain features = state.attributes.get(ATTR_SUPPORTED_FEATURES, 0) device_class = state.attributes.get(ATTR_DEVICE_CLASS) return any( trait.might_2fa(domain, features, device_class) for trait in self.traits() ) async def sync_serialize(self, agent_user_id): """Serialize entity for a SYNC response. https://developers.google.com/actions/smarthome/create-app#actiondevicessync """ state = self.state entity_config = self.config.entity_config.get(state.entity_id, {}) name = (entity_config.get(CONF_NAME) or state.name).strip() domain = state.domain device_class = state.attributes.get(ATTR_DEVICE_CLASS) entity_entry, device_entry = await _get_entity_and_device( self.hass, state.entity_id ) traits = self.traits() device_type = get_google_type(domain, device_class) device = { "id": state.entity_id, "name": {"name": name}, "attributes": {}, "traits": [trait.name for trait in traits], "willReportState": self.config.should_report_state, "type": device_type, } # use aliases if aliases := entity_config.get(CONF_ALIASES): device["name"]["nicknames"] = [name] + aliases if self.config.is_local_sdk_active and self.should_expose_local(): device["otherDeviceIds"] = [{"deviceId": self.entity_id}] device["customData"] = { "webhookId": self.config.local_sdk_webhook_id, "httpPort": self.hass.http.server_port, "httpSSL": self.hass.config.api.use_ssl, "uuid": await self.hass.helpers.instance_id.async_get(), "baseUrl": get_url(self.hass, prefer_external=True), "proxyDeviceId": agent_user_id, } for trt in traits: device["attributes"].update(trt.sync_attributes()) if room := entity_config.get(CONF_ROOM_HINT): device["roomHint"] = room else: area = await _get_area(self.hass, entity_entry, device_entry) if area and area.name: device["roomHint"] = area.name if device_info := await _get_device_info(device_entry): device["deviceInfo"] = device_info return device @callback def query_serialize(self): """Serialize entity for a QUERY response. https://developers.google.com/actions/smarthome/create-app#actiondevicesquery """ state = self.state if state.state == STATE_UNAVAILABLE: return {"online": False} attrs = {"online": True} for trt in self.traits(): deep_update(attrs, trt.query_attributes()) return attrs @callback def reachable_device_serialize(self): """Serialize entity for a REACHABLE_DEVICE response.""" return {"verificationId": self.entity_id} async def execute(self, data, command_payload): """Execute a command. https://developers.google.com/actions/smarthome/create-app#actiondevicesexecute """ command = command_payload["command"] params = command_payload.get("params", {}) challenge = command_payload.get("challenge", {}) executed = False for trt in self.traits(): if trt.can_execute(command, params): await trt.execute(command, data, params, challenge) executed = True break if not executed: raise SmartHomeError( ERR_FUNCTION_NOT_SUPPORTED, f"Unable to execute {command} for {self.state.entity_id}", ) @callback def async_update(self): """Update the entity with latest info from Home Assistant.""" self.state = self.hass.states.get(self.entity_id) if self._traits is None: return for trt in self._traits: trt.state = self.state def deep_update(target, source): """Update a nested dictionary with another nested dictionary.""" for key, value in source.items(): if isinstance(value, Mapping): target[key] = deep_update(target.get(key, {}), value) else: target[key] = value return target @callback def async_get_entities( hass: HomeAssistant, config: AbstractConfig ) -> list[GoogleEntity]: """Return all entities that are supported by Google.""" entities = [] for state in hass.states.async_all(): if state.entity_id in CLOUD_NEVER_EXPOSED_ENTITIES: continue entity = GoogleEntity(hass, config, state) if entity.is_supported(): entities.append(entity) return entities
mezz64/home-assistant
homeassistant/components/google_assistant/helpers.py
Python
apache-2.0
19,261
# -*- coding: utf-8 -*- import sys import sqlite3 from Foundation import * from QCMsgDestoryInfo import * from QCPicLinkInfo import * from QCPictureInfo import * from QCSystemMsgExtraInfoModel import * sys.dont_write_bytecode = True reload(sys) sys.setdefaultencoding('utf-8') conn = sqlite3.connect("./QCall.db") cur = conn.cursor() tables = cur.execute("select name from sqlite_master where type = 'table' order by name").fetchall() file = open("./QCall.db.txt", "w+") print >> file, tables for table in tables: column = cur.execute("PRAGMA table_info(%s)" % table).fetchall() msgs = cur.execute("select * from %s" % table).fetchall() print >> file, "**[%s][count = %d]**********************************************************" % (table, len(msgs)) for i in range(len(msgs)): print >> file, "**[%s][%d]**********************************************************" % (table, i) blob = 0 for j in range(len(column)): if column[j][2] == "blob": if msgs[i][j] is not None: msgDestrory = NSKeyedUnarchiver.unarchiveObjectWithData_(msgs[i][j]) if msgDestrory is not None: print >> file, column[j][1],":",msgDestrory.description() else: print >> file, column[j][1],":None" else: print >> file, column[j][1],":None" else: print >> file, column[j][1],"=",msgs[i][j] file.close() conn.close()
foreverwind/Script
QCall/QCall.db.py
Python
apache-2.0
1,530
"""Auto-generated file, do not edit by hand. SY metadata""" from ..phonemetadata import NumberFormat, PhoneNumberDesc, PhoneMetadata PHONE_METADATA_SY = PhoneMetadata(id='SY', country_code=963, international_prefix='00', general_desc=PhoneNumberDesc(national_number_pattern='[1-39]\\d{8}|[1-5]\\d{7}', possible_length=(8, 9), possible_length_local_only=(6, 7)), fixed_line=PhoneNumberDesc(national_number_pattern='21\\d{6,7}|(?:1(?:[14]\\d|[2356])|2[235]|3(?:[13]\\d|4)|4[134]|5[1-3])\\d{6}', example_number='112345678', possible_length=(8, 9), possible_length_local_only=(6, 7)), mobile=PhoneNumberDesc(national_number_pattern='9(?:22|[3-689]\\d)\\d{6}', example_number='944567890', possible_length=(9,)), national_prefix='0', national_prefix_for_parsing='0', number_format=[NumberFormat(pattern='(\\d{2})(\\d{3})(\\d{3,4})', format='\\1 \\2 \\3', leading_digits_pattern=['[1-5]'], national_prefix_formatting_rule='0\\1', national_prefix_optional_when_formatting=True), NumberFormat(pattern='(\\d{3})(\\d{3})(\\d{3})', format='\\1 \\2 \\3', leading_digits_pattern=['9'], national_prefix_formatting_rule='0\\1', national_prefix_optional_when_formatting=True)])
daviddrysdale/python-phonenumbers
python/phonenumbers/data/region_SY.py
Python
apache-2.0
1,194
# Generated by the windmill services transformer from windmill.dep import functest from windmill.authoring import WindmillTestClient def test_recordingSuite0(): client = WindmillTestClient(__name__, assertions=False) assert client.open(url=u'http://tutorial.getwindmill.com/windmill-unittests/unit_tester.html')['result'] assert client.waits.forPageLoad(timeout=u'8000')['result'] assert client.click(value=u'lookupByValue')['result'] assert client.click(classname=u'lookupByClassname')['result'] assert client.click(name=u'lookupByName')['result'] assert client.click(id=u'lookupById')['result'] assert client.click(jsid=u'jsNode()')['result'] assert client.click(tagname=u'hr')['result']
windmill/windmill
test/local_tests/test_lookups.py
Python
apache-2.0
727
# -*- coding: latin-1 -*- # Copyright 2015 SICS Swedish ICT AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time from threading import Thread, Event from sh import netstat,ErrorReturnCode import re #import pdb from monitor import OS_type, OS # # Partly based on code from the UNIFY FP7 Demo for the Y1 review 2015, # by Pontus Sköldström, Acreo Swedish ICT AB / Per Kreuger, SICS Swedish ICT AB. # class Sampler(Thread): def __init__(self, inq, outq, sample_rate, monitor, interface='eth0', name='Sampler', debug=False): Thread.__init__(self, name=name) self.inq = inq self.outq = outq self.request_event = Event() self.set_sample_rate(sample_rate) self.monitor = monitor self.interface = interface self.debug = debug self.keep_running = True self.tx_agg = self.rx_agg = 0.0 self.txb2 = self.rxb2 = 0.0 self.tx_file = None self.rx_file = None self.samples = 0 self.last_data = self.get_interface_data(self.interface) # FIXME: These two should be inferred by checking the word # length of the computer we're running on. # Perhaps with platform.architecture() or sys.maxsize # For now assume 32-bit architecture. self.tx_byte_counter_wrap_adjustment = (2 ** 32) - 1 self.rx_byte_counter_wrap_adjustment = (2 ** 32) - 1 def run(self): if (self.debug): self.monitor.debugPrint("sampler.py: starting run()") self.last_data = self.get_interface_data(self.interface) while self.keep_running: timestamp = self.sample() while not self.inq.empty(): request = self.inq.get() if request == 'rate_data': self.inq.task_done() self.outq.put({'ts': timestamp, 'samples': self.samples, 'txb2': self.txb2, 'rxb2': self.rxb2, 'tx_agg': self.tx_agg, 'rx_agg': self.rx_agg}) # self.samples = 0 # Don't do this! elif request == 'stop': self.inq.task_done() self.keep_running = False else: self.inq.task_done() pass # unknown request, FIXME: perhaps report an error? # # time.sleep(self.sleep_time) self.request_event.wait(self.sleep_time) self.request_event.clear() if (self.debug): # Race conditions can cause things to be pulled from under # our feet, so catch all exceptions here. try: self.monitor.debugPrint("sampler.py: exit from run()") except BaseException: pass # Read the traffic flow data from the network interface and accumulate the rate def sample(self): self.samples += 1 curr = self.get_interface_data(self.interface) if curr[1] < self.last_data[1]: # tx counter has wrapped self.monitor.debugPrint("sampler.py: self.last_data[1] before wrap adjustment: " + str(self.last_data[1])) self.last_data[1] -= self.tx_byte_counter_wrap_adjustment tx_bytes = curr[1] - self.last_data[1] if curr[2] < self.last_data[2]: # rx counter has wrapped self.monitor.debugPrint("sampler.py: self.last_data[2] before wrap adjustment: " + str(self.last_data[2])) self.last_data[2] -= self.rx_byte_counter_wrap_adjustment rx_bytes = curr[2] - self.last_data[2] timestamp = curr[0] #- self.last_data[0] obs_time = timestamp - self.last_data[0] if self.debug: self.monitor.debugPrint("sampler.py: curr: " + str(curr) + ", self.last_data: " + str(self.last_data)) self.monitor.debugPrint("sampler.py: tx_bytes: " + str(tx_bytes) + ", rx_bytes: " + str(rx_bytes)) self.monitor.debugPrint("sampler.py: obs_time: " + str(obs_time)) # self.last_data = curr self.last_data = list(curr) # copy curr tx_byte_rate = tx_bytes / obs_time rx_byte_rate = rx_bytes / obs_time self.tx_agg = self.tx_agg + tx_byte_rate self.rx_agg = self.rx_agg + rx_byte_rate self.txb2 = self.txb2 + (tx_byte_rate*tx_byte_rate) self.rxb2 = self.rxb2 + (rx_byte_rate*rx_byte_rate) if self.debug: self.monitor.debugPrint("sampler.py: tx_byte_rate: " + str(tx_byte_rate) + ", rx_byte_rate: " + str(rx_byte_rate) + ", self.tx_agg: " + str(self.tx_agg) + ". self.rx_agg: " + str(self.rx_agg) + ", self.txb2: " + str(self.txb2) + ", self.rxb2: " + str(self.rxb2)) return timestamp # Read the number of bytes received and sent to/from the network interface def get_interface_data(self,interface): if OS == OS_type.darwin: # OS X does not have /sys/class/net/... # This is only for testing on OS X. Running netstat takes # way to much time to be a practical method for reading # the byte counters of an interface. netstat_output = netstat("-i", "-b", "-I", interface) for line in netstat_output: if line.startswith(interface): words = line.split() rx_bytes = int(words[6]) tx_bytes = int(words[9]) return time.time(),rx_bytes,tx_bytes return time.time(),0,0 else: # FIXME: Perhaps open the tx_file and the rx_file in the # __init__ method instead. Is there really a good # reason for doing it this way? tx_fn = "/sys/class/net/%s/statistics/tx_bytes" % interface rx_fn = "/sys/class/net/%s/statistics/rx_bytes" % interface if self.tx_file is None: self.tx_file = open(tx_fn) tx_bytes = int(self.tx_file.read()) else: self.tx_file.seek(0) tx_bytes = int(self.tx_file.read()) if self.rx_file is None: self.rx_file = open(rx_fn) rx_bytes = int(self.rx_file.read()) else: self.rx_file.seek(0) rx_bytes = int(self.rx_file.read()) # return time.time(), tx_bytes, rx_bytes return [time.time(), tx_bytes, rx_bytes] # def set_sample_rate(self,sample_rate): self.sample_rate = sample_rate self.sleep_time = 1.0 / sample_rate def get_sample_rate(self): return self.sample_rate def set_interface(self,interface): self.interface = interface def get_interface(self): return self.interface def running(self): return self.keep_running def stopped(self): return not self.keep_running
nigsics/ramon
sampler.py
Python
apache-2.0
7,385
# Copyright (c) 2012 Citrix Systems, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """The Aggregate admin API extension.""" from webob import exc from nova.api.openstack import extensions from nova import compute from nova import exception from nova import log as logging LOG = logging.getLogger(__name__) authorize = extensions.extension_authorizer('compute', 'aggregates') def _get_context(req): return req.environ['nova.context'] def get_host_from_body(fn): """Makes sure that the host exists.""" def wrapped(self, req, id, body, *args, **kwargs): if len(body) == 1 and "host" in body: host = body['host'] else: raise exc.HTTPBadRequest return fn(self, req, id, host, *args, **kwargs) return wrapped class AggregateController(object): """The Host Aggregates API controller for the OpenStack API.""" def __init__(self): self.api = compute.AggregateAPI() def index(self, req): """Returns a list a host aggregate's id, name, availability_zone.""" context = _get_context(req) authorize(context) aggregates = self.api.get_aggregate_list(context) return {'aggregates': aggregates} def create(self, req, body): """Creates an aggregate, given its name and availablity_zone.""" context = _get_context(req) authorize(context) if len(body) != 1: raise exc.HTTPBadRequest try: host_aggregate = body["aggregate"] aggregate_name = host_aggregate["name"] availability_zone = host_aggregate["availability_zone"] except KeyError: raise exc.HTTPBadRequest if len(host_aggregate) != 2: raise exc.HTTPBadRequest try: aggregate = self.api.create_aggregate(context, aggregate_name, availability_zone) except exception.AggregateNameExists: raise exc.HTTPConflict return self._marshall_aggregate(aggregate) def show(self, req, id): """Shows the details of an aggregate, hosts and metadata included.""" context = _get_context(req) authorize(context) try: aggregate = self.api.get_aggregate(context, id) except exception.AggregateNotFound: raise exc.HTTPNotFound return self._marshall_aggregate(aggregate) def update(self, req, id, body): """Updates the name and/or availbility_zone of given aggregate.""" context = _get_context(req) authorize(context) aggregate = id if len(body) != 1: raise exc.HTTPBadRequest try: updates = body["aggregate"] except KeyError: raise exc.HTTPBadRequest if len(updates) < 1: raise exc.HTTPBadRequest for key in updates.keys(): if not key in ["name", "availability_zone"]: raise exc.HTTPBadRequest try: aggregate = self.api.update_aggregate(context, aggregate, updates) except exception.AggregateNotFound: raise exc.HTTPNotFound return self._marshall_aggregate(aggregate) def delete(self, req, id): """Removes an aggregate by id.""" context = _get_context(req) authorize(context) aggregate_id = id try: self.api.delete_aggregate(context, aggregate_id) except exception.AggregateNotFound: raise exc.HTTPNotFound def action(self, req, id, body): _actions = { 'add_host': self._add_host, 'remove_host': self._remove_host, 'set_metadata': self._set_metadata, } for action, data in body.iteritems(): try: return _actions[action](req, id, data) except KeyError: msg = _("Aggregates does not have %s action") % action raise exc.HTTPBadRequest(explanation=msg) raise exc.HTTPBadRequest(explanation=_("Invalid request body")) @get_host_from_body def _add_host(self, req, id, host): """Adds a host to the specified aggregate.""" context = _get_context(req) authorize(context) aggregate = id try: aggregate = self.api.add_host_to_aggregate(context, aggregate, host) except exception.AggregateNotFound: raise exc.HTTPNotFound except exception.ComputeHostNotFound: raise exc.HTTPNotFound except exception.AggregateHostConflict: raise exc.HTTPConflict except exception.AggregateHostExists: raise exc.HTTPConflict except exception.InvalidAggregateAction: raise exc.HTTPConflict return self._marshall_aggregate(aggregate) @get_host_from_body def _remove_host(self, req, id, host): """Removes a host from the specified aggregate.""" context = _get_context(req) authorize(context) aggregate = id try: aggregate = self.api.remove_host_from_aggregate(context, aggregate, host) except exception.AggregateNotFound: raise exc.HTTPNotFound except exception.AggregateHostNotFound: raise exc.HTTPNotFound except exception.InvalidAggregateAction: raise exc.HTTPConflict return self._marshall_aggregate(aggregate) def _set_metadata(self, req, id, body): """Replaces the aggregate's existing metadata with new metadata.""" context = _get_context(req) authorize(context) aggregate = id if len(body) != 1: raise exc.HTTPBadRequest try: metadata = body["metadata"] except KeyError: raise exc.HTTPBadRequest try: aggregate = self.api.update_aggregate_metadata(context, aggregate, metadata) except exception.AggregateNotFound: raise exc.HTTPNotFound return self._marshall_aggregate(aggregate) def _marshall_aggregate(self, aggregate): return {"aggregate": aggregate} class Aggregates(extensions.ExtensionDescriptor): """Admin-only aggregate administration""" name = "Aggregates" alias = "os-aggregates" namespace = "http://docs.openstack.org/compute/ext/aggregates/api/v1.1" updated = "2012-01-12T00:00:00+00:00" def __init__(self, ext_mgr): ext_mgr.register(self) def get_resources(self): resources = [] res = extensions.ResourceExtension('os-aggregates', AggregateController(), member_actions={"action": "POST", }) resources.append(res) return resources
russellb/nova
nova/api/openstack/compute/contrib/aggregates.py
Python
apache-2.0
7,501
# Copyright 2017 <thenakliman@gmail.com> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock import psutil from nirikshak.tests.unit import base from nirikshak.workers.process import running class RunningProcessWorkerTest(base.BaseTestCase): @staticmethod def _get_fake_process_jaanch(): jaanch = { 'type': 'process_running', 'input': { 'args': { 'name': 'ssh' } } } return jaanch @staticmethod def _get_fake_process_details(): mk1 = mock.Mock() mk1.name = mock.Mock(return_value='ssh') mk2 = mock.Mock() mk2.name = mock.Mock(return_value='abssh') return [mk1, mk2] @mock.patch.object(psutil, 'process_iter') def test_process_running(self, mock_psutil): jaanch = self._get_fake_process_jaanch() mock_psutil.return_value = self._get_fake_process_details() result = running.RunningProcessWorker().work(**jaanch) self.assertTrue(result['input']['result']) @mock.patch.object(psutil, 'process_iter') def test_process_running_invalid(self, mock_psutil): jaanch = self._get_fake_process_jaanch() names = self._get_fake_process_details() names[0].name.return_value = 'test_service' mock_psutil.return_value = names jaanch['input']['args']['name'] = 'invalid_process' result = running.RunningProcessWorker().work(**jaanch) self.assertFalse(result['input']['result']) @mock.patch.object(psutil, 'process_iter') def test_process_raise_invalid(self, mock_psutil): jaanch = self._get_fake_process_jaanch() names = self._get_fake_process_details() names[0].name.side_effect = psutil.NoSuchProcess('test') mock_psutil.return_value = names jaanch['input']['args']['name'] = 'ssh' result = running.RunningProcessWorker().work(**jaanch) self.assertFalse(result['input']['result'])
thenakliman/nirikshak
nirikshak/tests/unit/workers/process/test_process.py
Python
apache-2.0
2,516
# Copyright 2012 IBM Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Handles all requests to the conductor service.""" from oslo_config import cfg from oslo_log import log as logging import oslo_messaging as messaging from nova import baserpc from nova.conductor import manager from nova.conductor import rpcapi from nova.i18n import _LI, _LW from nova import utils conductor_opts = [ cfg.BoolOpt('use_local', default=False, help='Perform nova-conductor operations locally'), cfg.StrOpt('topic', default='conductor', help='The topic on which conductor nodes listen'), cfg.StrOpt('manager', default='nova.conductor.manager.ConductorManager', help='Full class name for the Manager for conductor'), cfg.IntOpt('workers', help='Number of workers for OpenStack Conductor service. ' 'The default will be the number of CPUs available.') ] conductor_group = cfg.OptGroup(name='conductor', title='Conductor Options') CONF = cfg.CONF CONF.register_group(conductor_group) CONF.register_opts(conductor_opts, conductor_group) LOG = logging.getLogger(__name__) class LocalAPI(object): """A local version of the conductor API that does database updates locally instead of via RPC. """ def __init__(self): # TODO(danms): This needs to be something more generic for # other/future users of this sort of functionality. self._manager = utils.ExceptionHelper(manager.ConductorManager()) def wait_until_ready(self, context, *args, **kwargs): # nothing to wait for in the local case. pass def instance_update(self, context, instance_uuid, **updates): """Perform an instance update in the database.""" return self._manager.instance_update(context, instance_uuid, updates, 'compute') def instance_get_all_by_host(self, context, host, columns_to_join=None): return self._manager.instance_get_all_by_host( context, host, None, columns_to_join=columns_to_join) def instance_get_all_by_host_and_node(self, context, host, node): return self._manager.instance_get_all_by_host(context, host, node, None) def migration_get_in_progress_by_host_and_node(self, context, host, node): return self._manager.migration_get_in_progress_by_host_and_node( context, host, node) def aggregate_metadata_get_by_host(self, context, host, key='availability_zone'): return self._manager.aggregate_metadata_get_by_host(context, host, key) def provider_fw_rule_get_all(self, context): return self._manager.provider_fw_rule_get_all(context) def block_device_mapping_create(self, context, values): return self._manager.block_device_mapping_update_or_create(context, values, create=True) def block_device_mapping_update(self, context, bdm_id, values): values = dict(values) values['id'] = bdm_id return self._manager.block_device_mapping_update_or_create( context, values, create=False) def block_device_mapping_update_or_create(self, context, values): return self._manager.block_device_mapping_update_or_create(context, values, create=None) def block_device_mapping_get_all_by_instance(self, context, instance, legacy=True): return self._manager.block_device_mapping_get_all_by_instance( context, instance, legacy) def vol_usage_update(self, context, vol_id, rd_req, rd_bytes, wr_req, wr_bytes, instance, last_refreshed=None, update_totals=False): return self._manager.vol_usage_update(context, vol_id, rd_req, rd_bytes, wr_req, wr_bytes, instance, last_refreshed, update_totals) def service_get_all(self, context): return self._manager.service_get_all_by(context, host=None, topic=None, binary=None) def service_get_all_by_topic(self, context, topic): return self._manager.service_get_all_by(context, topic=topic, host=None, binary=None) def service_get_all_by_host(self, context, host): return self._manager.service_get_all_by(context, host=host, topic=None, binary=None) def service_get_by_host_and_topic(self, context, host, topic): return self._manager.service_get_all_by(context, topic, host, binary=None) def service_get_by_compute_host(self, context, host): result = self._manager.service_get_all_by(context, 'compute', host, binary=None) # FIXME(comstud): A major revision bump to 2.0 should return a # single entry, so we should just return 'result' at that point. return result[0] def service_get_by_host_and_binary(self, context, host, binary): return self._manager.service_get_all_by(context, host=host, binary=binary, topic=None) def service_create(self, context, values): return self._manager.service_create(context, values) def service_destroy(self, context, service_id): return self._manager.service_destroy(context, service_id) def compute_node_create(self, context, values): return self._manager.compute_node_create(context, values) def compute_node_update(self, context, node, values, prune_stats=False): # NOTE(belliott) ignore prune_stats param, it's no longer relevant return self._manager.compute_node_update(context, node, values) def compute_node_delete(self, context, node): return self._manager.compute_node_delete(context, node) def service_update(self, context, service, values): return self._manager.service_update(context, service, values) def task_log_get(self, context, task_name, begin, end, host, state=None): return self._manager.task_log_get(context, task_name, begin, end, host, state) def task_log_begin_task(self, context, task_name, begin, end, host, task_items=None, message=None): return self._manager.task_log_begin_task(context, task_name, begin, end, host, task_items, message) def task_log_end_task(self, context, task_name, begin, end, host, errors, message=None): return self._manager.task_log_end_task(context, task_name, begin, end, host, errors, message) def security_groups_trigger_handler(self, context, event, *args): return self._manager.security_groups_trigger_handler(context, event, args) def security_groups_trigger_members_refresh(self, context, group_ids): return self._manager.security_groups_trigger_members_refresh(context, group_ids) def object_backport(self, context, objinst, target_version): return self._manager.object_backport(context, objinst, target_version) class LocalComputeTaskAPI(object): def __init__(self): # TODO(danms): This needs to be something more generic for # other/future users of this sort of functionality. self._manager = utils.ExceptionHelper( manager.ComputeTaskManager()) def resize_instance(self, context, instance, extra_instance_updates, scheduler_hint, flavor, reservations, clean_shutdown=True): # NOTE(comstud): 'extra_instance_updates' is not used here but is # needed for compatibility with the cells_rpcapi version of this # method. self._manager.migrate_server( context, instance, scheduler_hint, live=False, rebuild=False, flavor=flavor, block_migration=None, disk_over_commit=None, reservations=reservations, clean_shutdown=clean_shutdown) def live_migrate_instance(self, context, instance, host_name, block_migration, disk_over_commit): scheduler_hint = {'host': host_name} self._manager.migrate_server( context, instance, scheduler_hint, True, False, None, block_migration, disk_over_commit, None) def build_instances(self, context, instances, image, filter_properties, admin_password, injected_files, requested_networks, security_groups, block_device_mapping, legacy_bdm=True): utils.spawn_n(self._manager.build_instances, context, instances=instances, image=image, filter_properties=filter_properties, admin_password=admin_password, injected_files=injected_files, requested_networks=requested_networks, security_groups=security_groups, block_device_mapping=block_device_mapping, legacy_bdm=legacy_bdm) def unshelve_instance(self, context, instance): utils.spawn_n(self._manager.unshelve_instance, context, instance=instance) def rebuild_instance(self, context, instance, orig_image_ref, image_ref, injected_files, new_pass, orig_sys_metadata, bdms, recreate=False, on_shared_storage=False, preserve_ephemeral=False, host=None, kwargs=None): # kwargs unused but required for cell compatibility. utils.spawn_n(self._manager.rebuild_instance, context, instance=instance, new_pass=new_pass, injected_files=injected_files, image_ref=image_ref, orig_image_ref=orig_image_ref, orig_sys_metadata=orig_sys_metadata, bdms=bdms, recreate=recreate, on_shared_storage=on_shared_storage, host=host, preserve_ephemeral=preserve_ephemeral) class API(LocalAPI): """Conductor API that does updates via RPC to the ConductorManager.""" def __init__(self): self._manager = rpcapi.ConductorAPI() self.base_rpcapi = baserpc.BaseAPI(topic=CONF.conductor.topic) def wait_until_ready(self, context, early_timeout=10, early_attempts=10): '''Wait until a conductor service is up and running. This method calls the remote ping() method on the conductor topic until it gets a response. It starts with a shorter timeout in the loop (early_timeout) up to early_attempts number of tries. It then drops back to the globally configured timeout for rpc calls for each retry. ''' attempt = 0 timeout = early_timeout # if we show the timeout message, make sure we show a similar # message saying that everything is now working to avoid # confusion has_timedout = False while True: # NOTE(danms): Try ten times with a short timeout, and then punt # to the configured RPC timeout after that if attempt == early_attempts: timeout = None attempt += 1 # NOTE(russellb): This is running during service startup. If we # allow an exception to be raised, the service will shut down. # This may fail the first time around if nova-conductor wasn't # running when this service started. try: self.base_rpcapi.ping(context, '1.21 GigaWatts', timeout=timeout) if has_timedout: LOG.info(_LI('nova-conductor connection ' 'established successfully')) break except messaging.MessagingTimeout: has_timedout = True LOG.warning(_LW('Timed out waiting for nova-conductor. ' 'Is it running? Or did this service start ' 'before nova-conductor? ' 'Reattempting establishment of ' 'nova-conductor connection...')) def instance_update(self, context, instance_uuid, **updates): """Perform an instance update in the database.""" return self._manager.instance_update(context, instance_uuid, updates, 'conductor') class ComputeTaskAPI(object): """ComputeTask API that queues up compute tasks for nova-conductor.""" def __init__(self): self.conductor_compute_rpcapi = rpcapi.ComputeTaskAPI() def resize_instance(self, context, instance, extra_instance_updates, scheduler_hint, flavor, reservations, clean_shutdown=True): # NOTE(comstud): 'extra_instance_updates' is not used here but is # needed for compatibility with the cells_rpcapi version of this # method. self.conductor_compute_rpcapi.migrate_server( context, instance, scheduler_hint, live=False, rebuild=False, flavor=flavor, block_migration=None, disk_over_commit=None, reservations=reservations, clean_shutdown=clean_shutdown) def live_migrate_instance(self, context, instance, host_name, block_migration, disk_over_commit): scheduler_hint = {'host': host_name} self.conductor_compute_rpcapi.migrate_server( context, instance, scheduler_hint, True, False, None, block_migration, disk_over_commit, None) def build_instances(self, context, instances, image, filter_properties, admin_password, injected_files, requested_networks, security_groups, block_device_mapping, legacy_bdm=True): self.conductor_compute_rpcapi.build_instances(context, instances=instances, image=image, filter_properties=filter_properties, admin_password=admin_password, injected_files=injected_files, requested_networks=requested_networks, security_groups=security_groups, block_device_mapping=block_device_mapping, legacy_bdm=legacy_bdm) def unshelve_instance(self, context, instance): self.conductor_compute_rpcapi.unshelve_instance(context, instance=instance) def rebuild_instance(self, context, instance, orig_image_ref, image_ref, injected_files, new_pass, orig_sys_metadata, bdms, recreate=False, on_shared_storage=False, preserve_ephemeral=False, host=None, kwargs=None): # kwargs unused but required for cell compatibility self.conductor_compute_rpcapi.rebuild_instance(context, instance=instance, new_pass=new_pass, injected_files=injected_files, image_ref=image_ref, orig_image_ref=orig_image_ref, orig_sys_metadata=orig_sys_metadata, bdms=bdms, recreate=recreate, on_shared_storage=on_shared_storage, preserve_ephemeral=preserve_ephemeral, host=host)
yanheven/nova
nova/conductor/api.py
Python
apache-2.0
16,772
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implementation of a TD3 agent. Implementation of TD3 - Twin Delayed Deep Deterministic Policy Gradient Algorithm and hyperparameter details can be found here: https://arxiv.org/pdf/1802.09477.pdf """ import agent from common import replay_buffer from common.actor_critic import ActorNetwork from common.actor_critic import CriticNetwork import numpy as np class TD3(agent.Agent): """TD3 agent.""" def __init__(self, env, sess, config): """Initialize members.""" state_dim = env.observation_space.shape[0] self.env = env self.action_dim = env.action_space.shape[0] self.action_high = env.action_space.high self.action_low = env.action_space.low self.batch_size = config.batch_size self.warmup_size = config.warmup_size self.gamma = config.gamma self.sigma = config.sigma self.sigma_tilda = config.sigma_tilda self.noise_cap = config.c self.train_interval = config.d self.actor = ActorNetwork(sess=sess, state_dim=state_dim, action_dim=self.action_dim, action_high=self.action_high, action_low=self.action_low, learning_rate=config.actor_lr, grad_norm_clip=config.grad_norm_clip, tau=config.tau, batch_size=config.batch_size) self.critic1 = CriticNetwork(sess=sess, state_dim=state_dim, action_dim=self.action_dim, learning_rate=config.critic_lr, tau=config.tau, gamma=config.gamma, name='critic1') self.critic2 = CriticNetwork(sess=sess, state_dim=state_dim, action_dim=self.action_dim, learning_rate=config.critic_lr, tau=config.tau, gamma=config.gamma, name='critic2') self.replay_buffer = replay_buffer.ReplayBuffer( buffer_size=config.buffer_size) def initialize(self): """Initialization before playing.""" self.update_targets() def random_action(self, observation): """Return a random action.""" return self.env.action_space.sample() def action(self, observation): """Return an action according to the agent's policy.""" return self.actor.get_action(observation) def action_with_noise(self, observation): """Return a noisy action.""" if self.replay_buffer.size > self.warmup_size: action = self.action(observation) else: action = self.random_action(observation) noise = np.clip(np.random.randn(self.action_dim) * self.sigma, -self.noise_cap, self.noise_cap) action_with_noise = action + noise return (np.clip(action_with_noise, self.action_low, self.action_high), action, noise) def store_experience(self, s, a, r, t, s2): """Save experience to replay buffer.""" self.replay_buffer.add(s, a, r, t, s2) def train(self, global_step): """Train the agent's policy for 1 iteration.""" if self.replay_buffer.size > self.warmup_size: s0, a, r, t, s1 = self.replay_buffer.sample_batch(self.batch_size) epsilon = np.clip(np.random.randn(self.batch_size, self.action_dim), -self.noise_cap, self.noise_cap) target_actions = self.actor.get_target_action(s1) + epsilon target_actions = np.clip(target_actions, self.action_low, self.action_high) target_qval = self.get_target_qval(s1, target_actions) t = t.astype(dtype=int) y = r + self.gamma * target_qval * (1 - t) self.critic1.train(s0, a, y) self.critic2.train(s0, a, y) if global_step % self.train_interval == 0: actions = self.actor.get_action(s0) grads = self.critic1.get_action_gradients(s0, actions) self.actor.train(s0, grads[0]) self.update_targets() def update_targets(self): """Update all target networks.""" self.actor.update_target_network() self.critic1.update_target_network() self.critic2.update_target_network() def get_target_qval(self, observation, action): """Get target Q-val.""" target_qval1 = self.critic1.get_target_qval(observation, action) target_qval2 = self.critic2.get_target_qval(observation, action) return np.minimum(target_qval1, target_qval2) def get_qval(self, observation, action): """Get Q-val.""" qval1 = self.critic1.get_qval(observation, action) qval2 = self.critic2.get_qval(observation, action) return np.minimum(qval1, qval2)
GoogleCloudPlatform/cloudml-samples
tensorflow/standard/reinforcement_learning/rl_on_gcp_demo/trainer/td3_agent.py
Python
apache-2.0
5,889
#!/usr/bin/env python2 # -*- coding: UTF-8 -*- # File: add_to_frame.py\2 # Date: Wed Jun 04 20:28:19 2014 +0800 # Author: Yuxin Wu <ppwwyyxxc@gmail.com> import cPickle as pickle #import pickle import gzip, numpy import random import argparse from dataio import save_data, save_data def get_args(): desc = 'add img into a larger frame' parser = argparse.ArgumentParser(description = desc) parser.add_argument('-i', '--input', help='input file of name "*.pkl.gz" ', required=True) parser.add_argument('-s', '--size', help='frame size', required=True) parser.add_argument('-p', '--place', help='place of the image. either "random" or "(x, y)"') ret = parser.parse_args() return ret def add_img_to_frame(img, frame, offset): """put a smaller matrix into a larger frame, starting at a specific offset""" img = img.reshape((orig_size, orig_size)) for x in xrange(orig_size): frame[x + offset[0]][offset[1]: offset[1] + orig_size] = img[x] def add_frame(dataset): """ process a dataset consisting of a list of imgs""" if args.place != 'random': offset = eval(args.place) assert type(offset) == tuple and len(offset) == 2 Xs = dataset[0] newX = [] for (idx, k) in enumerate(Xs): if args.place == 'random': # generate a random offset offset = (random.randint(0, frame_size - orig_size), random.randint(0, frame_size - orig_size)) frame = numpy.zeros((frame_size, frame_size), dtype=numpy.float32) add_img_to_frame(k, frame, offset) newX.append(numpy.ndarray.flatten(frame)) return (numpy.asarray(newX), dataset[1]) # prepare params args = get_args() input = args.input frame_size = int(args.size) output_basename = input[:-6] + "frame{0}".format(frame_size) # read data train_set, valid_set, test_set = save_data(input) print len(train_set[0]), len(valid_set[0]), len(test_set[0]) orig_size = int(numpy.sqrt(len(train_set[0][0]))) assert frame_size > orig_size, "frame size must be larger than original image" # add to frame train_set = add_frame(train_set) valid_set = add_frame(valid_set) test_set = add_frame(test_set) print "Writing..." data = (train_set, valid_set, test_set) save_data(data, output_basename) #usage: add_to_frame.py [-h] -i INPUT -s SIZE [-p PLACE] #optional arguments: #-h, --help show this help message and exit #-i INPUT, --input INPUT #input file of name "*.pkl.gz" #-s SIZE, --size SIZE frame size #-p PLACE, --place PLACE #place of the image. either "random" or "(x, y)" # output filename is 'input.frameXX.pkl.gz'
mfs6174/Deep6174
old-code/add_to_frame.py
Python
apache-2.0
2,760
from django.conf.urls import url, include from .views import login, logout, register urlpatterns = [ url(r'^login/', login, name='login'), url(r'^logout/', logout, name='logout'), url(r'^register/', register, name='register'), ]
AndreyRem/polls
polls/polls/apps/auth_service/urls.py
Python
apache-2.0
241
print "I am testing, TEST TEST TEST!"
antont/tundra
src/Application/PythonScriptModule/pymodules_old/runtests.py
Python
apache-2.0
38
import logging from eclcli.common import utils LOG = logging.getLogger(__name__) DEFAULT_API_VERSION = '2' API_VERSION_OPTION = 'os_storage_api_version' API_NAME = "storage" API_VERSIONS = { "2": "storageclient.v2.client.Client" } def make_client(instance): from .storageclient.v2 import client as storage_client http_log_debug = utils.get_effective_log_level() <= logging.DEBUG kwargs = utils.build_kwargs_dict('endpoint_type', instance._interface) client = storage_client.Client( session=instance.session, http_log_debug=http_log_debug, **kwargs ) return client def build_option_parser(parser): # parser.add_argument( # '--os-storage-api-version', # metavar='<storage-api-version>', # default=utils.env('OS_STORAGE_API_VERSION'), # help='Storage API version, default=' + # DEFAULT_API_VERSION + # ' (Env: OS_STORAGE_API_VERSION)') return parser
nttcom/eclcli
eclcli/storage/client.py
Python
apache-2.0
975
##################################################################################### # # Copyright (c) Microsoft Corporation. All rights reserved. # # This source code is subject to terms and conditions of the Apache License, Version 2.0. A # copy of the license can be found in the License.html file at the root of this distribution. If # you cannot locate the Apache License, Version 2.0, please send an email to # ironpy@microsoft.com. By using this source code in any fashion, you are agreeing to be bound # by the terms of the Apache License, Version 2.0. # # You must not remove this notice, or any other, from this software. # # ##################################################################################### from iptest.assert_util import * class It: x = 0 a = () def __init__(self, a): self.x = 0 self.a = a def __next__(self): if self.x <= 9: self.x = self.x+1 return self.a[self.x-1] else: raise StopIteration def __iter__(self): return self class Iterator: x = 0 a = (1,2,3,4,5,6,7,8,9,0) def __iter__(self): return It(self.a) class Indexer: a = (1,2,3,4,5,6,7,8,9,0) def __getitem__(self, i): if i < len(self.a): return self.a[i] else: raise IndexError i = Iterator() for j in i: Assert(j in i) Assert(1 in i) Assert(2 in i) Assert(not (10 in i)) i = Indexer() for j in i: Assert(j in i) Assert(1 in i) Assert(2 in i) Assert(not (10 in i)) # Testing the iter(o,s) function class Iter: x = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20] index = -1 it = Iter() def f(): it.index += 1 return it.x[it.index] y = [] for i in iter(f, 14): y.append(i) Assert(y == [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]) y = ['1'] y += Iterator() Assert(y == ['1', 1, 2, 3, 4, 5, 6, 7, 8, 9, 0]) y = ['1'] y += Indexer() Assert(y == ['1', 1, 2, 3, 4, 5, 6, 7, 8, 9, 0]) AssertErrorWithMessages(TypeError, "iter() takes at least 1 argument (0 given)", "iter expected at least 1 arguments, got 0", iter) def test_itertools_same_value(): x = iter(list(range(4))) AreEqual([(i,j) for i,j in zip(x,x)], [(0, 1), (2, 3)]) def test_itertools_islice_end(): """islice shouldn't consume values after the limit specified by step""" from itertools import islice # create a zipped iterator w/ odd number of values... it = zip([2,3,4], [4,5,6]) # slice in 2, turn that into a list... list(islice(it, 2)) # we should still have the last value still present for x in it: AreEqual(x, (4,6)) @skip("silverlight") def test_iterator_for(): """test various iterable objects with multiple incomplete iterations""" def generator(): yield 0 yield 1 from io import StringIO strO = StringIO() strO.write('abc\n') strO.write('def') strI = StringIO('abc\ndef') import sys fi = sys.float_info d = {2:3, 3:4} l = [2, 3] s = set([2, 3, 4]) if not is_silverlight: f = file('test_file.txt', 'w+') f.write('abc\n') f.write('def') f.close() f = file('test_file.txt') import nt stat = nt.stat(__file__) class x(object): abc = 2 bcd = 3 dictproxy = x.__dict__ dictlist = list(x.__dict__) ba = bytearray(b'abc') try: # iterator, first Value, second Value iterators = [ # objects which when enumerated multiple times continue (generator(), 0, 1), (strI, 'abc\n', 'def'), (strO, 'abc\n', 'def'), # objects which when enumerated multiple times reset (range(10), 0, 0), ([0, 1], 0, 0), ((0, 1), 0, 0), (fi, fi[0], fi[0]), (b'abc', b'a', b'a'), (ba, ord(b'a'), ord(b'a')), ('abc', 'a', 'a'), (d, list(d)[0], list(d)[0]), (l, l[0], l[0]), (s, list(s)[0], list(s)[0]), (dictproxy, dictlist[0], dictlist[0]), ] if not is_silverlight: iterators.append((f, 'abc\n', 'def')) iterators.append((stat, stat[0], stat[0])) for iterator, res0, res1 in iterators: for x in iterator: AreEqual(x, res0) break for x in iterator: AreEqual(x, res1) break finally: f.close() nt.unlink('test_file.txt') def test_iterator_closed_file(): cf = file(__file__) cf.close() def f(): for x in cf: pass AssertError(ValueError, f) def test_no_return_self_in_iter(): class A(object): def __iter__(cls): return 1 def __next__(cls): return 2 a = A() AreEqual(next(a), 2) def test_no_iter(): class A(object): def __next__(cls): return 2 a = A() AreEqual(next(a), 2) def test_with_iter(): class A(object): def __iter__(cls): return cls def __next__(self): return 2 a = A() AreEqual(next(a), 2) def test_with_iter_next_in_init(): class A(object): def __init__(cls): AreEqual(next(cls), 2) AreEqual(next(cls), 2) def __iter__(cls): return cls def __next__(cls): return 2 a = A() AreEqual(next(a), 2) def test_interacting_iterators(): """This test is similar to how Jinga2 fails.""" class A(object): def __iter__(cls): return cls def __next__(self): return 3 class B(object): def __iter__(cls): return A() def __next__(self): return 2 b = B() AreEqual(next(b), 2) def test_call_to_iter_or_next(): class A(object): def __iter__(cls): Assert(False, "__iter__ should not be called.") return cls def __next__(self): return 2 a = A() AreEqual(next(a), 2) run_test(__name__)
moto-timo/ironpython3
Tests/test_iterator.py
Python
apache-2.0
6,817
# -*- test-case-name: twistedcaldav.directory.test.test_util -*- ## # Copyright (c) 2006-2014 Apple Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ## """ Utilities. """ __all__ = [ "normalizeUUID", "uuidFromName", "NotFoundResource", ] from twext.enterprise.ienterprise import AlreadyFinishedError from twext.python.log import Logger from txweb2 import responsecode from txweb2.auth.wrapper import UnauthorizedResponse from txweb2.dav.resource import DAVResource from txweb2.http import StatusResponse from twisted.internet.defer import inlineCallbacks, returnValue from uuid import UUID, uuid5 from twisted.python.failure import Failure from twisted.web.template import tags log = Logger() def uuidFromName(namespace, name): """ Generate a version 5 (SHA-1) UUID from a namespace UUID and a name. See http://www.ietf.org/rfc/rfc4122.txt, section 4.3. @param namespace: a UUID denoting the namespace of the generated UUID. @param name: a byte string to generate the UUID from. """ # We don't want Unicode here; convert to UTF-8 if type(name) is unicode: name = name.encode("utf-8") return normalizeUUID(str(uuid5(UUID(namespace), name))) def normalizeUUID(value): """ Convert strings which the uuid.UUID( ) method can parse into normalized (uppercase with hyphens) form. Any value which is not parsed by UUID( ) is returned as is. @param value: string value to normalize """ try: return str(UUID(value)).upper() except (ValueError, TypeError): return value TRANSACTION_KEY = '_newStoreTransaction' def transactionFromRequest(request, newStore): """ Return the associated transaction from the given HTTP request, creating a new one from the given data store if none has yet been associated. Also, if the request was not previously associated with a transaction, add a failsafe transaction-abort response filter to abort any transaction which has not been committed or aborted by the resource which responds to the request. @param request: The request to inspect. @type request: L{IRequest} @param newStore: The store to create a transaction from. @type newStore: L{IDataStore} @return: a transaction that should be used to read and write data associated with the request. @rtype: L{ITransaction} (and possibly L{ICalendarTransaction} and L{IAddressBookTransaction} as well. """ transaction = getattr(request, TRANSACTION_KEY, None) if transaction is None: if hasattr(request, "authzUser") and request.authzUser is not None: authz_uid = request.authzUser.record.uid else: authz_uid = None transaction = newStore.newTransaction(repr(request), authz_uid=authz_uid) def abortIfUncommitted(request, response): try: # TODO: missing 'yield' here. For formal correctness as per # the interface, this should be allowed to be a Deferred. (The # actual implementation still raises synchronously, so there's # no bug currently.) transaction.abort() except AlreadyFinishedError: pass return response abortIfUncommitted.handleErrors = True request.addResponseFilter(abortIfUncommitted) setattr(request, TRANSACTION_KEY, transaction) return transaction def splitIntoBatches(data, size): """ Return a generator of sets consisting of the contents of the data set split into parts no larger than size. """ if not data: yield set([]) data = list(data) while data: yield set(data[:size]) del data[:size] class NotFoundResource(DAVResource): """ In order to prevent unauthenticated discovery of existing users via 401/404 response codes, this resource can be returned from locateChild, and it will perform an authentication; if the user is unauthenticated, 404 responses are turned into 401s. """ @inlineCallbacks def renderHTTP(self, request): try: _ignore_authnUser, authzUser = yield self.authenticate(request) except Exception: authzUser = None # Turn 404 into 401 if authzUser is None: response = (yield UnauthorizedResponse.makeResponse( request.credentialFactories, request.remoteAddr )) returnValue(response) else: response = StatusResponse(responsecode.NOT_FOUND, "Resource not found") returnValue(response) def formatLink(url): """ Convert a URL string into some twisted.web.template DOM objects for rendering as a link to itself. """ return tags.a(href=url)(url) def formatLinks(urls): """ Format a list of URL strings as a list of twisted.web.template DOM links. """ return formatList(formatLink(link) for link in urls) def formatPrincipals(principals): """ Format a list of principals into some twisted.web.template DOM objects. """ def recordKey(principal): try: record = principal.record except AttributeError: try: record = principal.parent.record except: return None try: shortName = record.shortNames[0] except AttributeError: shortName = u"" return (record.recordType, shortName) def describe(principal): if hasattr(principal, "record"): return " - %s" % (principal.record.displayName,) else: return "" return formatList( tags.a(href=principal.principalURL())( str(principal), describe(principal) ) for principal in sorted(principals, key=recordKey) ) def formatList(iterable): """ Format a list of stuff as an interable. """ thereAreAny = False try: item = None for item in iterable: thereAreAny = True yield " -> " if item is None: yield "None" else: yield item yield "\n" except Exception, e: log.error("Exception while rendering: %s" % (e,)) Failure().printTraceback() yield " ** %s **: %s\n" % (e.__class__.__name__, e) if not thereAreAny: yield " '()\n"
trevor/calendarserver
twistedcaldav/directory/util.py
Python
apache-2.0
7,006
"""The testing suite for seqtools Testing modules are amongst the module in test.py files. Each of these modules points to the base data directory as needed This script is just for executing the test run """ import unittest, sys import seqtools.format.sam.test import seqtools.format.fasta.test import seqtools.statistics.test import seqtools.simulation.test import seqtools.structure.transcriptome.test import seqtools.structure.test if __name__ == '__main__': loader = unittest.TestLoader() s = [] #s.append(loader.loadTestsFromModule(seqtools.format.fasta.test)) #s.append(loader.loadTestsFromModule(seqtools.statistics.test)) #s.append(loader.loadTestsFromModule(seqtools.format.sam.test)) #s.append(loader.loadTestsFromModule(seqtools.structure.transcriptome.test)) #s.append(loader.loadTestsFromModule(seqtools.structure.test)) s.append(loader.loadTestsFromModule(seqtools.simulation.test)) unittest.TextTestRunner(verbosity=2).run(unittest.TestSuite(s))
jason-weirather/py-seq-tools
tests/runtests.py
Python
apache-2.0
998
if __name__ == '__main__' : arr1=[1,2,3,4,7,8,9] arr2=[1,2,5,6,7,8] uncommon_ele = len(set(arr1)-set(arr2))+len(set(arr2)-set(arr1)) print(uncommon_ele)
saisankargochhayat/algo_quest
Misc/uncommon_array.py
Python
apache-2.0
169
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Whole population model""" import sys import os.path import tensorflow as tf from absl import app from absl import flags from absl import gfile import cPickle as pickle import matplotlib matplotlib.use('TkAgg') import numpy as np, h5py import scipy.io as sio from scipy import ndimage import random FLAGS = flags.FLAGS flags.DEFINE_float('lam_w', 0.0001, 'sparsitiy regularization of w') flags.DEFINE_float('lam_a', 0.0001, 'sparsitiy regularization of a') flags.DEFINE_integer('ratio_SU', 7, 'ratio of subunits/cells') flags.DEFINE_float('su_grid_spacing', 3, 'grid spacing') flags.DEFINE_integer('np_randseed', 23, 'numpy RNG seed') flags.DEFINE_integer('randseed', 65, 'python RNG seed') flags.DEFINE_float('eta_w', 1e-3, 'learning rate for optimization functions') flags.DEFINE_float('eta_a', 1e-2, 'learning rate for optimization functions') flags.DEFINE_float('bias_init_scale', -1, 'bias initialized at scale*std') flags.DEFINE_string('model_id', 'relu', 'which model to learn?'); flags.DEFINE_float('step_sz', 10, 'step size for learning algorithm') flags.DEFINE_integer('window', 3, 'size of window for each subunit in relu_window model') flags.DEFINE_integer('stride', 3, 'stride for relu_window') flags.DEFINE_string('folder_name', 'experiment4', 'folder where to store all the data') flags.DEFINE_string('save_location', '/home/bhaishahster/', 'where to store logs and outputs?'); flags.DEFINE_string('data_location', '/home/bhaishahster/data_breakdown/', 'where to take data from?') flags.DEFINE_integer('batchsz', 1000, 'batch size for training') flags.DEFINE_integer('n_chunks', 216, 'number of data chunks') # should be 216 flags.DEFINE_integer('n_b_in_c', 1, 'number of batches in one chunk of data') def hex_grid(gridx, d, n): x_log = np.array([]) y_log = np.array([]) for i in range(n): x_log = (np.append(x_log, (((i*d)%gridx) + (np.floor(i*d/gridx)%2)*d/2)) + np.random.randn(1)*0.01) y_log = np.append(y_log, np.floor((i*d/gridx))*d/2) + np.random.randn(1)*0.01 return x_log, y_log def gauss_su(x_log, y_log, gridx=80, gridy=40): ns = x_log.shape[0] wts = np.zeros((3200, ns)) for isu in range(ns): xx = np.zeros((gridy, gridx)) if((np.round(y_log[isu]) >= gridy) | (np.round(y_log[isu]) < 0) | (np.round(x_log[isu]) >= gridx) | (np.round(x_log[isu]) < 0)): continue xx[np.round(y_log[isu]), np.round(x_log[isu])] = 1 blurred_xx = ndimage.gaussian_filter(xx, sigma=2) wts[:,isu] = np.ndarray.flatten(blurred_xx) return wts def initialize_su(n_su=107*10, gridx=80, gridy=40, spacing=5.7): spacing = FLAGS.su_grid_spacing x_log, y_log = hex_grid(gridx, spacing, n_su) wts = gauss_su(x_log, y_log) return wts def get_test_data(): # stimulus.astype('float32')[216000-1000: 216000-1, :] # response.astype('float32')[216000-1000: 216000-1, :] # length test_data_chunks = [FLAGS.n_chunks]; for ichunk in test_data_chunks: filename = FLAGS.data_location + 'Off_par_data_' + str(ichunk) + '.mat' file_r = gfile.Open(filename, 'r') data = sio.loadmat(file_r) stim_part = data['maskedMovdd_part'].T resp_part = data['Y_part'].T test_len = stim_part.shape[0] #logfile.write('\nReturning test data') return stim_part, resp_part, test_len # global stimulus variables stim_train_part = np.array([]) resp_train_part = np.array([]) chunk_order = np.array([]) cells_choose = np.array([]) chosen_mask = np.array([]) def get_next_training_batch(iteration): # stimulus.astype('float32')[tms[icnt: icnt+FLAGS.batchsz], :], # response.astype('float32')[tms[icnt: icnt+FLAGS.batchsz], :] # FLAGS.batchsz # we will use global stimulus and response variables global stim_train_part global resp_train_part global chunk_order togo = True while togo: if(iteration % FLAGS.n_b_in_c == 0): # load new chunk of data ichunk = (iteration / FLAGS.n_b_in_c) % (FLAGS.n_chunks - 1 ) # last one chunks used for testing if (ichunk == 0): # shuffle training chunks at start of training data chunk_order = np.random.permutation(np.arange(FLAGS.n_chunks-1)) # remove first chunk - weired? # if logfile != None : # logfile.write('\nTraining chunks shuffled') if chunk_order[ichunk] + 1 != 1: filename = FLAGS.data_location + 'Off_par_data_' + str(chunk_order[ichunk] + 1) + '.mat' file_r = gfile.Open(filename, 'r') data = sio.loadmat(file_r) stim_train_part = data['maskedMovdd_part'] resp_train_part = data['Y_part'] ichunk = chunk_order[ichunk] + 1 while stim_train_part.shape[1] < FLAGS.batchsz: #print('Need to add extra chunk') if (ichunk> FLAGS.n_chunks): ichunk = 2 filename = FLAGS.data_location + 'Off_par_data_' + str(ichunk) + '.mat' file_r = gfile.Open(filename, 'r') data = sio.loadmat(file_r) stim_train_part = np.append(stim_train_part, data['maskedMovdd_part'], axis=1) resp_train_part = np.append(resp_train_part, data['Y_part'], axis=1) #print(np.shape(stim_train_part), np.shape(resp_train_part)) ichunk = ichunk + 1 # if logfile != None: # logfile.write('\nNew training data chunk loaded at: '+ str(iteration) + ' chunk #: ' + str(chunk_order[ichunk])) ibatch = iteration % FLAGS.n_b_in_c try: stim_train = np.array(stim_train_part[:,ibatch: ibatch + FLAGS.batchsz], dtype='float32').T resp_train = np.array(resp_train_part[:,ibatch: ibatch + FLAGS.batchsz], dtype='float32').T togo=False except: iteration = np.random.randint(1,100000) print('Load exception iteration: ' + str(iteration) + 'chunk: ' + str(chunk_order[ichunk]) + 'batch: ' + str(ibatch) ) togo=True return stim_train, resp_train, FLAGS.batchsz def main(argv): print('\nCode started') print('Model is ' + FLAGS.model_id) np.random.seed(FLAGS.np_randseed) random.seed(FLAGS.randseed) global chunk_order chunk_order = np.random.permutation(np.arange(FLAGS.n_chunks-1)) ## Load data summary filename = FLAGS.data_location + 'data_details.mat' summary_file = gfile.Open(filename, 'r') data_summary = sio.loadmat(summary_file) cells = np.squeeze(data_summary['cells']) nCells = cells.shape[0] stim_dim = np.squeeze(data_summary['stim_dim']) tot_spks = np.squeeze(data_summary['tot_spks']) total_mask = np.squeeze(data_summary['totalMaskAccept_log']).T print(np.shape(total_mask)) print('\ndataset summary loaded') # decide the number of subunits to fit Nsub = FLAGS.ratio_SU*nCells with tf.Session() as sess: stim = tf.placeholder(tf.float32, shape=[None, stim_dim], name='stim') resp = tf.placeholder(tf.float32, name='resp') data_len = tf.placeholder(tf.float32, name='data_len') if FLAGS.model_id == 'relu': # lam_c(X) = sum_s(a_cs relu(k_s.x)) , a_cs>0 short_filename = ('data_model=' + str(FLAGS.model_id) + '_lam_w=' + str(FLAGS.lam_w) + '_lam_a='+str(FLAGS.lam_a) + '_ratioSU=' + str(FLAGS.ratio_SU) + '_grid_spacing=' + str(FLAGS.su_grid_spacing) + '_normalized_bg') if FLAGS.model_id == 'exp': short_filename = ('data_model=' + str(FLAGS.model_id) + '_bias_init=' + str(FLAGS.bias_init_scale) + '_ratioSU=' + str(FLAGS.ratio_SU) + '_grid_spacing=' + str(FLAGS.su_grid_spacing) + '_normalized_bg') if FLAGS.model_id == 'mel_re_pow2': short_filename = ('data_model=' + str(FLAGS.model_id) + '_lam_w=' + str(FLAGS.lam_w) + '_lam_a='+str(FLAGS.lam_a) + '_ratioSU=' + str(FLAGS.ratio_SU) + '_grid_spacing=' + str(FLAGS.su_grid_spacing) + '_normalized_bg') if FLAGS.model_id == 'relu_logistic': short_filename = ('data_model=' + str(FLAGS.model_id) + '_lam_w=' + str(FLAGS.lam_w) + '_lam_a='+str(FLAGS.lam_a) + '_ratioSU=' + str(FLAGS.ratio_SU) + '_grid_spacing=' + str(FLAGS.su_grid_spacing) + '_normalized_bg') if FLAGS.model_id == 'relu_proximal': short_filename = ('data_model=' + str(FLAGS.model_id) + '_lam_w=' + str(FLAGS.lam_w) + '_lam_a='+str(FLAGS.lam_a) + '_eta_w=' + str(FLAGS.eta_w) + '_eta_a=' + str(FLAGS.eta_a) + '_ratioSU=' + str(FLAGS.ratio_SU) + '_grid_spacing=' + str(FLAGS.su_grid_spacing) + '_proximal_bg') if FLAGS.model_id == 'relu_eg': short_filename = ('data_model=' + str(FLAGS.model_id) + '_lam_w=' + str(FLAGS.lam_w) + '_eta_w=' + str(FLAGS.eta_w) + '_eta_a=' + str(FLAGS.eta_a) + '_ratioSU=' + str(FLAGS.ratio_SU) + '_grid_spacing=' + str(FLAGS.su_grid_spacing) + '_eg_bg') if FLAGS.model_id == 'relu_window': short_filename = ('data_model=' + str(FLAGS.model_id) + '_window=' + str(FLAGS.window) + '_stride=' + str(FLAGS.stride) + '_lam_w=' + str(FLAGS.lam_w) + '_bg') if FLAGS.model_id == 'relu_window_mother': short_filename = ('data_model=' + str(FLAGS.model_id) + '_window=' + str(FLAGS.window) + '_stride=' + str(FLAGS.stride) + '_lam_w=' + str(FLAGS.lam_w) + '_bg') if FLAGS.model_id == 'relu_window_mother_sfm': short_filename = ('data_model=' + str(FLAGS.model_id) + '_window=' + str(FLAGS.window) + '_stride=' + str(FLAGS.stride) + '_lam_w=' + str(FLAGS.lam_w) + '_bg') if FLAGS.model_id == 'relu_window_mother_sfm_exp': short_filename = ('data_model=' + str(FLAGS.model_id) + '_window=' + str(FLAGS.window) + '_stride=' + str(FLAGS.stride) + '_lam_w=' + str(FLAGS.lam_w) + '_bg') if FLAGS.model_id == 'relu_window_exp': short_filename = ('data_model=' + str(FLAGS.model_id) + '_window=' + str(FLAGS.window) + '_stride=' + str(FLAGS.stride) + '_lam_w=' + str(FLAGS.lam_w) + '_bg') if FLAGS.model_id == 'relu_window_mother_exp': short_filename = ('data_model=' + str(FLAGS.model_id) + '_window=' + str(FLAGS.window) + '_stride=' + str(FLAGS.stride) + '_lam_w=' + str(FLAGS.lam_w) + '_bg') if FLAGS.model_id == 'relu_window_a_support': short_filename = ('data_model=' + str(FLAGS.model_id) + '_window=' + str(FLAGS.window) + '_stride=' + str(FLAGS.stride) + '_lam_w=' + str(FLAGS.lam_w) + '_bg') if FLAGS.model_id == 'exp_window_a_support': short_filename = ('data_model=' + str(FLAGS.model_id) + '_window=' + str(FLAGS.window) + '_stride=' + str(FLAGS.stride) + '_lam_w=' + str(FLAGS.lam_w) + '_bg') parent_folder = FLAGS.save_location + FLAGS.folder_name + '/' if not gfile.IsDirectory(parent_folder): gfile.MkDir(parent_folder) FLAGS.save_location = parent_folder +short_filename + '/' print(gfile.IsDirectory(FLAGS.save_location)) if not gfile.IsDirectory(FLAGS.save_location): gfile.MkDir(FLAGS.save_location) print(FLAGS.save_location) save_filename = FLAGS.save_location + short_filename ''' # load previous iteration data, if available try: saved_filename = save_filename + '.pkl' saved_file = gfile.Open(saved_filename,'r') saved_data = pickle.load(saved_file) w_load = saved_data['w'] a_load = saved_data['a'] w_init = saved_data['w_init'] a_init = saved_data['a_init'] ls_train_log = np.squeeze(saved_data['ls_train_log']) ls_test_log = np.squeeze(saved_data['ls_test_log']) start_iter = np.squeeze(saved_data['last_iter']) chunk_order = np.squeeze(saved_data['chunk_order']) print(np.shape(w_init),np.shape(a_init)) load_prev = True except: # w and a initialized same for all models! (maybe should be different for exp NL?) w_init = initialize_su(n_su=Nsub) * 0.01 if FLAGS.model_id != 'exp': a_init = np.random.rand(Nsub, nCells) * 0.01 else: a_init = np.random.rand(nCells,1,Nsub) * 0.01 w_load = w_init a_load = a_init ls_train_log = np.array([]) ls_test_log = np.array([]) start_iter=0 print(np.shape(w_init),np.shape(a_init)) load_prev = False ''' w_init = initialize_su(n_su=Nsub) * 0.01 if FLAGS.model_id != 'exp': a_init = np.random.rand(Nsub, nCells) * 0.01 else: a_init = np.random.rand(nCells,1,Nsub) * 0.01 w_load = w_init a_load = a_init ls_train_log = np.array([]) ls_test_log = np.array([]) print(np.shape(w_init),np.shape(a_init)) load_prev = False if FLAGS.model_id == 'relu': # LNL model with RELU nl w = tf.Variable(np.array(w_load, dtype='float32')) a = tf.Variable(np.array(a_load, dtype='float32')) lam = tf.matmul(tf.nn.relu(tf.matmul(stim, w)), tf.nn.relu(a)) + 0.0001 loss_inter = (tf.reduce_sum(lam)/120. - tf.reduce_sum(resp*tf.log(lam))) / data_len loss = loss_inter + FLAGS.lam_w*tf.reduce_sum(tf.abs(w)) + FLAGS.lam_a*tf.reduce_sum(tf.abs(a)) train_step = tf.train.AdagradOptimizer(FLAGS.step_sz).minimize(loss, var_list=[w, a]) a_pos = tf.assign(a, (a + tf.abs(a))/2) def training(inp_dict): sess.run(train_step, feed_dict=inp_dict) sess.run(a_pos) def get_loss(inp_dict): ls = sess.run(loss,feed_dict = inp_dict) return ls w_summary = tf.histogram_summary('w', w) a_summary = tf.histogram_summary('a', a) if FLAGS.model_id == 'exp': # lam_c(X) = sum_s(exp(k_s.x + b_cs)) ; used in earlier models. w = tf.Variable(np.array(w_load, dtype='float32')) a = tf.Variable(np.array(a_load, dtype='float32')) lam = tf.transpose(tf.reduce_sum(tf.exp(tf.matmul(stim,w) + a), 2)) loss_inter = (tf.reduce_sum(lam/tot_spks)/120. - tf.reduce_sum(resp*tf.log(lam)/tot_spks)) / data_len loss = loss_inter train_step = tf.train.AdamOptimizer(FLAGS.step_sz).minimize(loss, var_list=[w, a]) def training(inp_dict): sess.run(train_step, feed_dict=inp_dict) def get_loss(inp_dict): ls = sess.run(loss,feed_dict = inp_dict) return ls w_summary = tf.histogram_summary('w', w) a_summary = tf.histogram_summary('a', a) if FLAGS.model_id == 'mel_re_pow2': # lam_c(X) = sum_s(relu(k_s.x + a_cs)^2); MEL approximation of log-likelihood stimulus,_,_ = get_next_training_batch(10) sigma = np.diag(np.diag(stimulus[1000:2000,:].T.dot(stimulus[1000:2000,: ]))) sig_tf = tf.Variable(sigma,dtype='float32') w = tf.Variable(np.array(w_load, dtype='float32')) a = tf.Variable(np.array(a_load, dtype='float32')) a_pos = tf.assign(a, (a + tf.abs(a))/2) lam = tf.matmul(tf.pow(tf.nn.relu(tf.matmul(stim, w)), 2), a) + 0.0001 loss_p1 = tf.reduce_sum(tf.matmul(tf.transpose(a / tot_spks),tf.expand_dims(tf.diag_part(tf.matmul(tf.transpose(w),tf.matmul(sig_tf,w))) / 2,1))) loss_inter = (loss_p1 / 120.) - (tf.reduce_sum(resp * tf.log(lam) / tot_spks)) / data_len loss = loss_inter + FLAGS.lam_w*tf.reduce_sum(tf.abs(w)) + FLAGS.lam_a*tf.reduce_sum(tf.abs(a)) train_step = tf.train.AdagradOptimizer(FLAGS.step_sz).minimize(loss, var_list=[w, a]) def training(inp_dict): sess.run(train_step, feed_dict=inp_dict) sess.run(a_pos) def get_loss(inp_dict): ls = sess.run(loss,feed_dict = inp_dict) return ls w_summary = tf.histogram_summary('w', w) a_summary = tf.histogram_summary('a', a) if FLAGS.model_id == 'relu_logistic': # f(X) = sum_s(a_cs relu(k_s.x)), acs - any sign, logistic loss. w = tf.Variable(np.array(w_load, dtype='float32')) a = tf.Variable(np.array(a_load, dtype='float32')) b_init = np.random.randn(nCells)#np.log((np.sum(response,0))/(response.shape[0]-np.sum(response,0))) b = tf.Variable(b_init,dtype='float32') f = tf.matmul(tf.nn.relu(tf.matmul(stim, w)), a) + b loss_inter = tf.reduce_sum(tf.nn.softplus(-2 * (resp - 0.5)*f))/ data_len loss = loss_inter + FLAGS.lam_w*tf.reduce_sum(tf.abs(w)) + FLAGS.lam_a*tf.reduce_sum(tf.abs(a)) sigmoid_input = -resp*f train_step = tf.train.AdagradOptimizer(FLAGS.step_sz).minimize(loss, var_list=[w, a, b]) a_pos = tf.assign(a, (a + tf.abs(a))/2) def training(inp_dict): sess.run(train_step, feed_dict=inp_dict) sess.run(a_pos) def get_loss(inp_dict): ls = sess.run(loss,feed_dict = inp_dict) return ls w_summary = tf.histogram_summary('w', w) a_summary = tf.histogram_summary('a', a) b_summary = tf.histogram_summary('b', b) if FLAGS.model_id == 'relu_proximal': # lnl model with regularization, with proximal updates w = tf.Variable(np.array(w_load, dtype='float32')) a = tf.Variable(np.array(a_load, dtype='float32')) lam = tf.matmul(tf.nn.relu(tf.matmul(stim, w)), a) + 0.0001 loss_inter = (tf.reduce_sum(lam/tot_spks)/120. - tf.reduce_sum(resp*tf.log(lam)/tot_spks)) / data_len loss = loss_inter + FLAGS.lam_w*tf.reduce_sum(tf.abs(w)) + FLAGS.lam_a*tf.reduce_sum(tf.abs(a)) # training steps for a. train_step_a = tf.train.AdagradOptimizer(FLAGS.eta_a).minimize(loss_inter, var_list=[a]) # as 'a' is positive, this is op soft-thresholding for L1 and projecting to feasible set soft_th_a = tf.assign(a, tf.nn.relu(a - FLAGS.eta_a * FLAGS.lam_a)) # training steps for w train_step_w = tf.train.AdagradOptimizer(FLAGS.eta_w).minimize(loss_inter, var_list=[w]) # do soft thresholding for 'w' soft_th_w = tf.assign(w, tf.nn.relu(w - FLAGS.eta_w * FLAGS.lam_w) - tf.nn.relu(- w - FLAGS.eta_w * FLAGS.lam_w)) def training(inp_dict): # gradient step for 'w' sess.run(train_step_w, feed_dict=inp_dict) # soft thresholding for w sess.run(soft_th_w, feed_dict=inp_dict) # gradient step for 'a' sess.run(train_step_a, feed_dict=inp_dict) # soft thresholding for a, and project in constraint set sess.run(soft_th_a, feed_dict=inp_dict) def get_loss(inp_dict): ls = sess.run(loss,feed_dict = inp_dict) return ls if FLAGS.model_id == 'relu_eg': a_load = a_load / np.sum(a_load, axis=0)# normalize initial a w = tf.Variable(np.array(w_load, dtype='float32')) a = tf.Variable(np.array(a_load, dtype='float32')) lam = tf.matmul(tf.nn.relu(tf.matmul(stim, w)), a) + 0.0001 loss_inter = (tf.reduce_sum(lam/tot_spks)/120. - tf.reduce_sum(resp*tf.log(lam)/tot_spks)) / data_len loss = loss_inter + FLAGS.lam_w*tf.reduce_sum(tf.abs(w)) # steps to update a # as 'a' is positive, this is op soft-thresholding for L1 and projecting to feasible set eta_a_tf = tf.constant(np.squeeze(FLAGS.eta_a),dtype='float32') grads_a = tf.gradients(loss_inter, a) exp_grad_a = tf.squeeze(tf.mul(a,tf.exp(-eta_a_tf * grads_a))) a_update = tf.assign(a,exp_grad_a/tf.reduce_sum(exp_grad_a,0)) # steps to update w # gradient update of 'w'.. train_step_w = tf.train.AdagradOptimizer(FLAGS.eta_w).minimize(loss_inter, var_list=[w]) # do soft thresholding for 'w' soft_th_w = tf.assign(w, tf.nn.relu(w - FLAGS.eta_w * FLAGS.lam_w) - tf.nn.relu(- w - FLAGS.eta_w * FLAGS.lam_w)) def training(inp_dict): # gradient step for 'a' and 'w' sess.run(train_step_w, feed_dict=inp_dict) # soft thresholding for w sess.run(soft_th_w) # update a sess.run(a_update, feed_dict=inp_dict) print('eg training made') def get_loss(inp_dict): ls = sess.run(loss,feed_dict = inp_dict) return ls if FLAGS.model_id == 'relu_window': # convolution weights, each layer is delta(x,y) - basically take window of stimulus. window = FLAGS.window n_pix = (2* window + 1) ** 2 w_mask = np.zeros((2 * window + 1, 2 * window + 1, 1, n_pix)) icnt = 0 for ix in range(2 * window + 1): for iy in range(2 * window + 1): w_mask[ix, iy, 0, icnt] =1 icnt = icnt + 1 mask_tf = tf.constant(np.array(w_mask, dtype='float32')) # set weight and other variables dimx = np.floor(1 + ((40 - (2 * window + 1))/FLAGS.stride)).astype('int') dimy = np.floor(1 + ((80 - (2 * window + 1))/FLAGS.stride)).astype('int') w = tf.Variable(np.array(0.1+ 0.05*np.random.rand(dimx, dimy, n_pix),dtype='float32')) # exp 5 #w = tf.Variable(np.array(np.random.randn(dimx, dimy, n_pix),dtype='float32')) # exp 4 a = tf.Variable(np.array(np.random.rand(dimx*dimy, nCells),dtype='float32')) a_pos = tf.assign(a, (a + tf.abs(a))/2) # get firing rate stim4D = tf.expand_dims(tf.reshape(stim, (-1,40,80)), 3) stim_masked = tf.nn.conv2d(stim4D, mask_tf, strides=[1, FLAGS.stride, FLAGS.stride, 1], padding="VALID" ) stim_wts = tf.nn.relu(tf.reduce_sum(tf.mul(stim_masked, w), 3)) lam = tf.matmul(tf.reshape(stim_wts, [-1,dimx*dimy]),a) + 0.00001 loss_inter = (tf.reduce_sum(lam)/120. - tf.reduce_sum(resp*tf.log(lam)))/data_len loss = loss_inter + FLAGS.lam_w * tf.reduce_sum(tf.nn.l2_loss(w)) train_step = tf.train.AdagradOptimizer(FLAGS.step_sz).minimize(loss,var_list=[w,a]) def training(inp_dict): sess.run(train_step, feed_dict=inp_dict) sess.run(a_pos) def get_loss(inp_dict): ls = sess.run(loss, feed_dict=inp_dict) return ls w_summary = tf.histogram_summary('w', w) a_summary = tf.histogram_summary('a', a) if FLAGS.model_id == 'relu_window_mother': # convolution weights, each layer is delta(x,y) - basically take window of stimulus. window = FLAGS.window n_pix = (2* window + 1) ** 2 w_mask = np.zeros((2 * window + 1, 2 * window + 1, 1, n_pix)) icnt = 0 for ix in range(2 * window + 1): for iy in range(2 * window + 1): w_mask[ix, iy, 0, icnt] =1 icnt = icnt + 1 mask_tf = tf.constant(np.array(w_mask, dtype='float32')) # set weight and other variables dimx = np.floor(1 + ((40 - (2 * window + 1))/FLAGS.stride)).astype('int') dimy = np.floor(1 + ((80 - (2 * window + 1))/FLAGS.stride)).astype('int') w_del = tf.Variable(np.array(0.1+ 0.05*np.random.rand(dimx, dimy, n_pix),dtype='float32')) w_mother = tf.Variable(np.array(np.ones((2 * window + 1, 2 * window + 1, 1, 1)),dtype='float32')) a = tf.Variable(np.array(np.random.rand(dimx*dimy, nCells),dtype='float32')) a_pos = tf.assign(a, (a + tf.abs(a))/2) # get firing rate stim4D = tf.expand_dims(tf.reshape(stim, (-1,40,80)), 3) # mother weight convolution stim_convolved = tf.reduce_sum( tf.nn.conv2d(stim4D, w_mother, strides=[1, FLAGS.stride, FLAGS.stride, 1], padding="VALID"),3) # stim_masked = tf.nn.conv2d(stim4D, mask_tf, strides=[1, FLAGS.stride, FLAGS.stride, 1], padding="VALID" ) stim_del = tf.reduce_sum(tf.mul(stim_masked, w_del), 3) su_act = tf.nn.relu(stim_del + stim_convolved) lam = tf.matmul(tf.reshape(su_act, [-1, dimx*dimy]),a) + 0.00001 loss_inter = (tf.reduce_sum(lam)/120. - tf.reduce_sum(resp*tf.log(lam)))/data_len loss = loss_inter + FLAGS.lam_w * tf.reduce_sum(tf.nn.l2_loss(w_del)) train_step = tf.train.AdagradOptimizer(FLAGS.step_sz).minimize(loss,var_list=[w_mother, w_del, a]) def training(inp_dict): sess.run(train_step, feed_dict=inp_dict) sess.run(a_pos) def get_loss(inp_dict): ls = sess.run(loss, feed_dict=inp_dict) return ls w_del_summary = tf.histogram_summary('w_del', w_del) w_mother_summary = tf.histogram_summary('w_mother', w_mother) a_summary = tf.histogram_summary('a', a) if FLAGS.model_id == 'relu_window_mother_sfm': # softmax weights used! # convolution weights, each layer is delta(x,y) - basically take window of stimulus. window = FLAGS.window n_pix = (2* window + 1) ** 2 w_mask = np.zeros((2 * window + 1, 2 * window + 1, 1, n_pix)) icnt = 0 for ix in range(2 * window + 1): for iy in range(2 * window + 1): w_mask[ix, iy, 0, icnt] =1 icnt = icnt + 1 mask_tf = tf.constant(np.array(w_mask, dtype='float32')) # set weight and other variables dimx = np.floor(1 + ((40 - (2 * window + 1))/FLAGS.stride)).astype('int') dimy = np.floor(1 + ((80 - (2 * window + 1))/FLAGS.stride)).astype('int') w_del = tf.Variable(np.array(0.1 + 0.05*np.random.randn(dimx, dimy, n_pix),dtype='float32')) w_mother = tf.Variable(np.array(np.ones((2 * window + 1, 2 * window + 1, 1, 1)),dtype='float32')) a = tf.Variable(np.array(np.random.randn(dimx*dimy, nCells),dtype='float32')) b = tf.transpose(tf.nn.softmax(tf.transpose(a))) # get firing rate stim4D = tf.expand_dims(tf.reshape(stim, (-1,40,80)), 3) # mother weight convolution stim_convolved = tf.reduce_sum( tf.nn.conv2d(stim4D, w_mother, strides=[1, FLAGS.stride, FLAGS.stride, 1], padding="VALID"),3) # stim_masked = tf.nn.conv2d(stim4D, mask_tf, strides=[1, FLAGS.stride, FLAGS.stride, 1], padding="VALID" ) stim_del = tf.reduce_sum(tf.mul(stim_masked, w_del), 3) su_act = tf.nn.relu(stim_del + stim_convolved) lam = tf.matmul(tf.reshape(su_act, [-1, dimx*dimy]), b) + 0.00001 loss_inter = (tf.reduce_sum(lam)/120. - tf.reduce_sum(resp*tf.log(lam)))/data_len loss = loss_inter + FLAGS.lam_w * tf.reduce_sum(tf.nn.l2_loss(w_del)) train_step = tf.train.AdagradOptimizer(FLAGS.step_sz).minimize(loss,var_list=[w_mother, w_del, a]) def training(inp_dict): sess.run(train_step, feed_dict=inp_dict) def get_loss(inp_dict): ls = sess.run(loss, feed_dict=inp_dict) return ls w_del_summary = tf.histogram_summary('w_del', w_del) w_mother_summary = tf.histogram_summary('w_mother', w_mother) a_summary = tf.histogram_summary('a', a) if FLAGS.model_id == 'relu_window_mother_sfm_exp': # softmax weights used! # convolution weights, each layer is delta(x,y) - basically take window of stimulus. window = FLAGS.window n_pix = (2* window + 1) ** 2 w_mask = np.zeros((2 * window + 1, 2 * window + 1, 1, n_pix)) icnt = 0 for ix in range(2 * window + 1): for iy in range(2 * window + 1): w_mask[ix, iy, 0, icnt] =1 icnt = icnt + 1 mask_tf = tf.constant(np.array(w_mask, dtype='float32')) # set weight and other variables dimx = np.floor(1 + ((40 - (2 * window + 1))/FLAGS.stride)).astype('int') dimy = np.floor(1 + ((80 - (2 * window + 1))/FLAGS.stride)).astype('int') w_del = tf.Variable(np.array( 0.05*np.random.randn(dimx, dimy, n_pix),dtype='float32')) w_mother = tf.Variable(np.array(np.ones((2 * window + 1, 2 * window + 1, 1, 1)),dtype='float32')) a = tf.Variable(np.array(np.random.randn(dimx*dimy, nCells),dtype='float32')) b = tf.transpose(tf.nn.softmax(tf.transpose(a))) # get firing rate stim4D = tf.expand_dims(tf.reshape(stim, (-1,40,80)), 3) # mother weight convolution stim_convolved = tf.reduce_sum( tf.nn.conv2d(stim4D, w_mother, strides=[1, FLAGS.stride, FLAGS.stride, 1], padding="VALID"),3) # stim_masked = tf.nn.conv2d(stim4D, mask_tf, strides=[1, FLAGS.stride, FLAGS.stride, 1], padding="VALID" ) stim_del = tf.reduce_sum(tf.mul(stim_masked, w_del), 3) su_act = tf.nn.relu(stim_del + stim_convolved) lam = tf.exp(tf.matmul(tf.reshape(su_act, [-1, dimx*dimy]), b)) + 0.00001 loss_inter = (tf.reduce_sum(lam)/120. - tf.reduce_sum(resp*tf.log(lam)))/data_len loss = loss_inter + FLAGS.lam_w * tf.reduce_sum(tf.nn.l2_loss(w_del)) # version 0 train_step = tf.train.AdagradOptimizer(FLAGS.step_sz).minimize(loss,var_list=[w_mother, w_del, a]) # version 1 ''' optimizer = tf.train.AdagradOptimizer(..) grad_and_vars = optimizer.compute_gradientS(...) manipulated_grads_and_vars = [] clip = 1.0 for g, v in grad_and_vars: if g is not None: tf.histogram_summary(g.name + "/histogram", g) with tf.get_default_graph().colocate_with(g): clipped_g, _ = tf.clip_by_global_norm([g], clip) else: clipped_g = g maniuplated_grads_and_vars.append([clipped_g, v]) train_step = optimizer.apply_gradients(maniuplated_grads_and_vars, global_step) ''' # optimizer = tf.train.AdagradOptimizer(..) # train_step = optimizer.mminimize(..) # -- or -- # def minimize(self, ..): # grad_and_vars = self.compute_gradients(loss, variables) # returning a list of tuple, not an Op # train_step = self.apply_gradients(grads_and_vars, global_step) # returns an Op # return train_step # # grad_and_vars = optimizer.compute_gradientS(loss, variables) # grad_and_vars <-- list([gradient0, variable0], [gradient1, variable1], ....] # for g, v in grad_and_vars: # # manipulate g # train_step = optimizer.apply_gradients(maniuplated_grads_and_vars, global_step) def training(inp_dict): sess.run(train_step, feed_dict=inp_dict) def get_loss(inp_dict): ls = sess.run(loss, feed_dict=inp_dict) return ls w_del_summary = tf.histogram_summary('w_del', w_del) w_mother_summary = tf.histogram_summary('w_mother', w_mother) a_summary = tf.histogram_summary('a', a) if FLAGS.model_id == 'relu_window_exp': # convolution weights, each layer is delta(x,y) - basically take window of stimulus. window = FLAGS.window n_pix = (2* window + 1) ** 2 w_mask = np.zeros((2 * window + 1, 2 * window + 1, 1, n_pix)) icnt = 0 for ix in range(2 * window + 1): for iy in range(2 * window + 1): w_mask[ix, iy, 0, icnt] =1 icnt = icnt + 1 mask_tf = tf.constant(np.array(w_mask, dtype='float32')) # set weight and other variables dimx = np.floor(1 + ((40 - (2 * window + 1))/FLAGS.stride)).astype('int') dimy = np.floor(1 + ((80 - (2 * window + 1))/FLAGS.stride)).astype('int') w = tf.Variable(np.array(0.01+ 0.005*np.random.rand(dimx, dimy, n_pix),dtype='float32')) a = tf.Variable(np.array(0.02+np.random.rand(dimx*dimy, nCells),dtype='float32')) # get firing rate stim4D = tf.expand_dims(tf.reshape(stim, (-1,40,80)), 3) stim_masked = tf.nn.conv2d(stim4D, mask_tf, strides=[1, FLAGS.stride, FLAGS.stride, 1], padding="VALID" ) stim_wts = tf.nn.relu(tf.reduce_sum(tf.mul(stim_masked, w), 3)) a_pos = tf.assign(a, (a + tf.abs(a))/2) lam = tf.exp(tf.matmul(tf.reshape(stim_wts, [-1,dimx*dimy]),a)) loss_inter = (tf.reduce_sum(lam)/120. - tf.reduce_sum(resp*tf.log(lam)))/data_len loss = loss_inter + FLAGS.lam_w * tf.reduce_sum(tf.nn.l2_loss(w)) train_step = tf.train.AdagradOptimizer(FLAGS.step_sz).minimize(loss,var_list=[w,a]) def training(inp_dict): sess.run(train_step, feed_dict=inp_dict) sess.run(a_pos) def get_loss(inp_dict): ls = sess.run(loss, feed_dict=inp_dict) return ls w_summary = tf.histogram_summary('w', w) a_summary = tf.histogram_summary('a', a) if FLAGS.model_id == 'relu_window_mother_exp': # convolution weights, each layer is delta(x,y) - basically take window of stimulus. window = FLAGS.window n_pix = (2* window + 1) ** 2 w_mask = np.zeros((2 * window + 1, 2 * window + 1, 1, n_pix)) icnt = 0 for ix in range(2 * window + 1): for iy in range(2 * window + 1): w_mask[ix, iy, 0, icnt] =1 icnt = icnt + 1 mask_tf = tf.constant(np.array(w_mask, dtype='float32')) # set weight and other variables dimx = np.floor(1 + ((40 - (2 * window + 1))/FLAGS.stride)).astype('int') dimy = np.floor(1 + ((80 - (2 * window + 1))/FLAGS.stride)).astype('int') w_del = tf.Variable(np.array(0.005*np.random.randn(dimx, dimy, n_pix),dtype='float32')) w_mother = tf.Variable(np.array(0.01*np.ones((2 * window + 1, 2 * window + 1, 1, 1)),dtype='float32')) a = tf.Variable(0.02+np.array(np.random.rand(dimx*dimy, nCells),dtype='float32')) # get firing rate stim4D = tf.expand_dims(tf.reshape(stim, (-1,40,80)), 3) # mother weight convolution stim_convolved = tf.reduce_sum( tf.nn.conv2d(stim4D, w_mother, strides=[1, FLAGS.stride, FLAGS.stride, 1], padding="VALID"),3) # a_pos = tf.assign(a, (a + tf.abs(a))/2) stim_masked = tf.nn.conv2d(stim4D, mask_tf, strides=[1, FLAGS.stride, FLAGS.stride, 1], padding="VALID" ) stim_del = tf.reduce_sum(tf.mul(stim_masked, w_del), 3) su_act = tf.nn.relu(stim_del + stim_convolved) lam = tf.exp(tf.matmul(tf.reshape(su_act, [-1, dimx*dimy]),a)) loss_inter = (tf.reduce_sum(lam)/120. - tf.reduce_sum(resp*tf.log(lam)))/data_len loss = loss_inter + FLAGS.lam_w * tf.reduce_sum(tf.nn.l2_loss(w_del)) train_step = tf.train.AdagradOptimizer(FLAGS.step_sz).minimize(loss,var_list=[w_mother, w_del, a]) def training(inp_dict): sess.run(train_step, feed_dict=inp_dict) sess.run(a_pos) def get_loss(inp_dict): ls = sess.run(loss, feed_dict=inp_dict) return ls w_del_summary = tf.histogram_summary('w_del', w_del) w_mother_summary = tf.histogram_summary('w_mother', w_mother) a_summary = tf.histogram_summary('a', a) if FLAGS.model_id == 'relu_window_a_support': # convolution weights, each layer is delta(x,y) - basically take window of stimulus. window = FLAGS.window n_pix = (2* window + 1) ** 2 w_mask = np.zeros((2 * window + 1, 2 * window + 1, 1, n_pix)) icnt = 0 for ix in range(2 * window + 1): for iy in range(2 * window + 1): w_mask[ix, iy, 0, icnt] =1 icnt = icnt + 1 mask_tf = tf.constant(np.array(w_mask, dtype='float32')) # set weight and other variables dimx = np.floor(1 + ((40 - (2 * window + 1))/FLAGS.stride)).astype('int') dimy = np.floor(1 + ((80 - (2 * window + 1))/FLAGS.stride)).astype('int') w = tf.Variable(np.array(0.001+ 0.0005*np.random.rand(dimx, dimy, n_pix),dtype='float32')) a = tf.Variable(np.array(0.002*np.random.rand(dimx*dimy, nCells),dtype='float32')) stim4D = tf.expand_dims(tf.reshape(stim, (-1,40,80)), 3) stim_masked = tf.nn.conv2d(stim4D, mask_tf, strides=[1, FLAGS.stride, FLAGS.stride, 1], padding="VALID" ) stim_wts = tf.nn.relu(tf.reduce_sum(tf.mul(stim_masked, w), 3)) lam = tf.matmul(tf.reshape(stim_wts, [-1,dimx*dimy]),a)+0.0001 loss_inter = (tf.reduce_sum(lam)/120. - tf.reduce_sum(resp*tf.log(lam)))/data_len loss = loss_inter + FLAGS.lam_w * tf.reduce_sum(tf.nn.l2_loss(w)) a_pos = tf.assign(a, (a + tf.abs(a))/2) # mask a to only relevant pixels w_mother = tf.Variable(np.array(0.01*np.ones((2 * window + 1, 2 * window + 1, 1, 1)),dtype='float32')) # mother weight convolution stim_convolved = tf.reduce_sum( tf.nn.conv2d(stim4D, w_mother, strides=[1, FLAGS.stride, FLAGS.stride, 1], padding="VALID"),3) sess.run(tf.initialize_all_variables()) mask_conv = sess.run(stim_convolved,feed_dict = {stim: total_mask}) mask_a_flat = np.array(np.reshape(mask_conv, [-1,dimx * dimy]).T >0, dtype='float32') a_proj = tf.assign(a, a * mask_a_flat) train_step = tf.train.AdagradOptimizer(FLAGS.step_sz).minimize(loss,var_list=[w,a]) def training(inp_dict): sess.run([train_step, a_proj], feed_dict=inp_dict) sess.run(a_pos) def get_loss(inp_dict): ls = sess.run(loss, feed_dict=inp_dict) return ls w_summary = tf.histogram_summary('w', w) a_summary = tf.histogram_summary('a', a) if FLAGS.model_id == 'exp_window_a_support': # convolution weights, each layer is delta(x,y) - basically take window of stimulus. window = FLAGS.window n_pix = (2* window + 1) ** 2 w_mask = np.zeros((2 * window + 1, 2 * window + 1, 1, n_pix)) icnt = 0 for ix in range(2 * window + 1): for iy in range(2 * window + 1): w_mask[ix, iy, 0, icnt] =1 icnt = icnt + 1 mask_tf = tf.constant(np.array(w_mask, dtype='float32')) # set weight and other variables dimx = np.floor(1 + ((40 - (2 * window + 1))/FLAGS.stride)).astype('int') dimy = np.floor(1 + ((80 - (2 * window + 1))/FLAGS.stride)).astype('int') w = tf.Variable(np.array(0.001+ 0.0005*np.random.rand(dimx, dimy, n_pix),dtype='float32')) a = tf.Variable(np.array(0.002*np.random.rand(dimx*dimy, nCells),dtype='float32')) stim4D = tf.expand_dims(tf.reshape(stim, (-1,40,80)), 3) stim_masked = tf.nn.conv2d(stim4D, mask_tf, strides=[1, FLAGS.stride, FLAGS.stride, 1], padding="VALID" ) stim_wts = tf.exp(tf.reduce_sum(tf.mul(stim_masked, w), 3)) lam = tf.matmul(tf.reshape(stim_wts, [-1,dimx*dimy]),a) loss_inter = (tf.reduce_sum(lam)/120. - tf.reduce_sum(resp*tf.log(lam)))/data_len loss = loss_inter + FLAGS.lam_w * tf.reduce_sum(tf.nn.l2_loss(w)) a_pos = tf.assign(a, (a + tf.abs(a))/2) # mask a to only relevant pixels w_mother = tf.Variable(np.array(0.01*np.ones((2 * window + 1, 2 * window + 1, 1, 1)),dtype='float32')) # mother weight convolution stim_convolved = tf.reduce_sum( tf.nn.conv2d(stim4D, w_mother, strides=[1, FLAGS.stride, FLAGS.stride, 1], padding="VALID"),3) sess.run(tf.initialize_all_variables()) mask_conv = sess.run(stim_convolved,feed_dict = {stim: total_mask}) mask_a_flat = np.array(np.reshape(mask_conv, [-1,dimx * dimy]).T >0, dtype='float32') a_proj = tf.assign(a, a * mask_a_flat) train_step = tf.train.AdagradOptimizer(FLAGS.step_sz).minimize(loss,var_list=[w,a]) def training(inp_dict): sess.run([train_step, a_proj], feed_dict=inp_dict) sess.run(a_pos) def get_loss(inp_dict): ls = sess.run(loss, feed_dict=inp_dict) return ls w_summary = tf.histogram_summary('w', w) a_summary = tf.histogram_summary('a', a) # initialize the model # make summary writers #logfile = gfile.Open(save_filename + '.txt', "a") # make summary writers l_summary = tf.scalar_summary('loss',loss) l_inter_summary = tf.scalar_summary('loss_inter',loss_inter) #tf.image_summary('a_image',tf.expand_dims(tf.expand_dims(tf.squeeze(tf.nn.relu(a)),0),-1)) #tf.image_summary('w_image',tf.expand_dims(tf.transpose(tf.reshape(w, [40, 80, Nsub]), [2, 0, 1]), -1), max_images=50) # Merge all the summaries and write them out to /tmp/mnist_logs (by default) merged = tf.merge_all_summaries() train_writer = tf.train.SummaryWriter(FLAGS.save_location + 'train', sess.graph) test_writer = tf.train.SummaryWriter(FLAGS.save_location + 'test') print('\nStarting new code') print('\nModel:' + FLAGS.model_id) sess.run(tf.initialize_all_variables()) saver_var = tf.train.Saver(tf.all_variables(), keep_checkpoint_every_n_hours=0.05) load_prev = False start_iter=0 try: latest_filename = short_filename + '_latest_fn' restore_file = tf.train.latest_checkpoint(FLAGS.save_location, latest_filename) start_iter = int(restore_file.split('/')[-1].split('-')[-1]) saver_var.restore(sess, restore_file) load_prev = True except: print('No previous dataset') if load_prev: #logfile.write('\nPrevious results loaded') print('\nPrevious results loaded') else: #logfile.write('\nVariables initialized') print('\nVariables initialized') #logfile.flush() # Do the fitting icnt = 0 stim_test,resp_test,test_length = get_test_data() fd_test = {stim: stim_test, resp: resp_test, data_len: test_length} #logfile.close() for istep in np.arange(start_iter,400000): # get training data stim_train, resp_train, train_len = get_next_training_batch(istep) fd_train = {stim: stim_train, resp: resp_train, data_len: train_len} # take training step training(fd_train) if istep%10 == 0: # compute training and testing losses ls_train = get_loss(fd_train) ls_test = get_loss(fd_test) ls_train_log = np.append(ls_train_log, ls_train) ls_test_log = np.append(ls_test_log, ls_test) latest_filename = short_filename + '_latest_fn' saver_var.save(sess, save_filename, global_step=istep, latest_filename = latest_filename) # add training summary summary = sess.run(merged, feed_dict=fd_train) train_writer.add_summary(summary,istep) # add testing summary summary = sess.run(merged, feed_dict=fd_test) test_writer.add_summary(summary,istep) # log results #logfile = gfile.Open(save_filename + '.txt', "a") #logfile.write('\nIterations: ' + str(istep) + ' Training error: ' # + str(ls_train) + ' Testing error: ' + str(ls_test) + # ' w_l1_norm: ' + str(np.sum(np.abs(w.eval()))) + # ' a_l1_norm: ' + str(np.sum(np.abs(a.eval())))) #logfile.close() #logfile.flush() icnt += FLAGS.batchsz if icnt > 216000-1000: icnt = 0 tms = np.random.permutation(np.arange(216000-1000)) # write_filename = save_filename + '.pkl' # write_file = gfile.Open(write_filename, 'wb') # save_data = {'w': w.eval(), 'a': a.eval(), 'w_init': w_init, # 'a_init': a_init, 'w_load': w_load, 'a_load': a_load, # 'ls_train_log': ls_train_log, # 'ls_test_log': ls_test_log, 'last_iter': istep, 'chunk_order': chunk_order} # pickle.dump(save_data,write_file) # write_file.close() #logfile.close() if __name__ == '__main__': app.run()
googlearchive/rgc-models
response_model/python/population_subunits/coarse/fitting/whole_population_fixed_tf_2.py
Python
apache-2.0
43,300
''' Created on July 26, 2013 Example service created for a weather sensor. An Arduino POSTs simple JSON value-only updates to the REST endpoints defined by the Observable Property created for each sensor output. An example graph is created to demonstrate how endpoints can be discovered by reading the graph meta data @author: mjkoster ''' from core.SmartObject import SmartObject from core.Description import Description from core.ObservableProperty import ObservableProperty from core.Observers import Observers from core.PropertyOfInterest import PropertyOfInterest from rdflib.term import Literal, URIRef from rdflib.namespace import RDF, RDFS, XSD, OWL from interfaces.HttpObjectService import HttpObjectService from interfaces.CoapObjectService import CoapObjectService from time import sleep import sys #workaround to register rdf JSON plugins import rdflib from rdflib.plugin import Serializer, Parser rdflib.plugin.register('json-ld', Serializer, 'rdflib_jsonld.serializer', 'JsonLDSerializer') rdflib.plugin.register('json-ld', Parser, 'rdflib_jsonld.parser', 'JsonLDParser') rdflib.plugin.register('rdf-json', Serializer, 'rdflib_rdfjson.rdfjson_serializer', 'RdfJsonSerializer') rdflib.plugin.register('rdf-json', Parser, 'rdflib_rdfjson.rdfjson_parser', 'RdfJsonParser') if __name__ == '__main__' : baseObject = HttpObjectService().baseObject # make an instance of the service, default object root and default port 8000 coapService = CoapObjectService(baseObject) # create the weather station resource template # emulate the .well-known/core interface baseObject.create({'resourceName': '.well-known','resourceClass': 'SmartObject'},\ ).create({'resourceName': 'core','resourceClass': 'LinkFormatProxy'}) # sensors resource under the baseObject for all sensors # top level object container for sensors, default class is SmartObject sensors = baseObject.create({'resourceName': 'sensors', 'resourceClass': 'SmartObject'}) #weather resource under sensors for the weather sensor # create a default class SmartObject for the weather sensor cluster weather = sensors.create({'resourceName': 'rhvWeather-01', 'resourceClass': 'SmartObject'}) # example description in simple link-format like concepts baseObject.Description.set((URIRef('sensors/rhvWeather-01'), RDFS.Class, Literal('SmartObject'))) baseObject.Description.set((URIRef('sensors/rhvWeather-01'), RDF.type, Literal('SensorSystem'))) baseObject.Description.set((URIRef('sensors/rhvWeather-01'), RDFS.Resource, Literal('Weather'))) # baseObject.Description.set((URIRef('sensors/rhvWeather-01/outdoor_temperature'), RDF.type, Literal('sensor'))) baseObject.Description.set((URIRef('sensors/rhvWeather-01/outdoor_temperature'), RDFS.Resource, Literal('temperature'))) baseObject.Description.set((URIRef('sensors/rhvWeather-01/outdoor_humidity'), RDF.type, Literal('sensor'))) baseObject.Description.set((URIRef('sensors/rhvWeather-01/outdoor_humidity'), RDFS.Resource, Literal('humidity'))) baseObject.Description.set((URIRef('sensors/rhvWeather-01/sealevel_pressure'), RDF.type, Literal('sensor'))) baseObject.Description.set((URIRef('sensors/rhvWeather-01/sealevel_pressure'), RDFS.Resource, Literal('pressure'))) baseObject.Description.set((URIRef('sensors/rhvWeather-01/indoor_temperature'), RDF.type, Literal('sensor'))) baseObject.Description.set((URIRef('sensors/rhvWeather-01/indoor_temperature'), RDFS.Resource, Literal('temperature'))) baseObject.Description.set((URIRef('sensors/rhvWeather-01/indoor_humidity'), RDF.type, Literal('sensor'))) baseObject.Description.set((URIRef('sensors/rhvWeather-01/indoor_humidity'), RDFS.Resource, Literal('humidity'))) baseObject.Description.set((URIRef('sensors/rhvWeather-01/wind_gust'), RDF.type, Literal('sensor'))) baseObject.Description.set((URIRef('sensors/rhvWeather-01/wind_gust'), RDFS.Resource, Literal('speed'))) baseObject.Description.set((URIRef('sensors/rhvWeather-01/wind_speed'), RDF.type, Literal('sensor'))) baseObject.Description.set((URIRef('sensors/rhvWeather-01/wind_speed'), RDFS.Resource, Literal('speed'))) baseObject.Description.set((URIRef('sensors/rhvWeather-01/wind_direction'), RDF.type, Literal('sensor'))) baseObject.Description.set((URIRef('sensors/rhvWeather-01/wind_direction'), RDFS.Resource, Literal('direction'))) baseObject.Description.set((URIRef('sensors/rhvWeather-01/current_rain'), RDF.type, Literal('sensor'))) baseObject.Description.set((URIRef('sensors/rhvWeather-01/current_rain'), RDFS.Resource, Literal('depth'))) baseObject.Description.set((URIRef('sensors/rhvWeather-01/hourly_rain'), RDF.type, Literal('sensor'))) baseObject.Description.set((URIRef('sensors/rhvWeather-01/hourly_rain'), RDFS.Resource, Literal('depth'))) baseObject.Description.set((URIRef('sensors/rhvWeather-01/daily_rain'), RDF.type, Literal('sensor'))) baseObject.Description.set((URIRef('sensors/rhvWeather-01/daily_rain'), RDFS.Resource, Literal('depth'))) # now create an Observable Property for each sensor output pushInterval = 10 # number of samples to delay each push to Xively outdoor_temperature = weather.create({'resourceName': 'outdoor_temperature',\ 'resourceClass': 'ObservableProperty'}) outdoor_temperature.Observers.create({'resourceName': 'mqttTestObserver',\ 'resourceClass': 'mqttObserver',\ 'connection': 'smartobjectservice.com',\ 'pubTopic': ''}) outdoor_humidity = weather.create({'resourceName': 'outdoor_humidity',\ 'resourceClass': 'ObservableProperty'}) outdoor_humidity.Observers.create({'resourceName': 'mqttTestObserver',\ 'resourceClass': 'mqttObserver',\ 'connection': 'smartobjectservice.com',\ 'pubTopic': ''}) sealevel_pressure = weather.create({'resourceName': 'sealevel_pressure',\ 'resourceClass': 'ObservableProperty'}) sealevel_pressure.Observers.create({'resourceName': 'mqttTestObserver',\ 'resourceClass': 'mqttObserver',\ 'connection': 'smartobjectservice.com',\ 'pubTopic': ''}) indoor_temperature = weather.create({'resourceName': 'indoor_temperature',\ 'resourceClass': 'ObservableProperty'}) indoor_temperature.Observers.create({'resourceName': 'mqttTestObserver',\ 'resourceClass': 'mqttObserver',\ 'connection': 'smartobjectservice.com',\ 'pubTopic': ''}) indoor_humidity = weather.create({'resourceName': 'indoor_humidity',\ 'resourceClass': 'ObservableProperty'}) indoor_humidity.Observers.create({'resourceName': 'mqttTestObserver',\ 'resourceClass': 'mqttObserver',\ 'connection': 'smartobjectservice.com',\ 'pubTopic': ''}) wind_gust = weather.create({'resourceName': 'wind_gust',\ 'resourceClass': 'ObservableProperty'}) wind_gust.Observers.create({'resourceName': 'mqttTestObserver',\ 'resourceClass': 'mqttObserver',\ 'connection': 'smartobjectservice.com',\ 'pubTopic': ''}) wind_speed = weather.create({'resourceName': 'wind_speed',\ 'resourceClass': 'ObservableProperty'}) wind_speed.Observers.create({'resourceName': 'mqttTestObserver',\ 'resourceClass': 'mqttObserver',\ 'connection': 'smartobjectservice.com',\ 'pubTopic': ''}) wind_direction = weather.create({'resourceName': 'wind_direction',\ 'resourceClass': 'ObservableProperty'}) wind_direction.Observers.create({'resourceName': 'mqttTestObserver',\ 'resourceClass': 'mqttObserver',\ 'connection': 'smartobjectservice.com',\ 'pubTopic': ''}) current_rain = weather.create({'resourceName': 'current_rain',\ 'resourceClass': 'ObservableProperty'}) current_rain.Observers.create({'resourceName': 'mqttTestObserver',\ 'resourceClass': 'mqttObserver',\ 'connection': 'smartobjectservice.com',\ 'pubTopic': ''}) hourly_rain = weather.create({'resourceName': 'hourly_rain',\ 'resourceClass': 'ObservableProperty'}) hourly_rain.Observers.create({'resourceName': 'mqttTestObserver',\ 'resourceClass': 'mqttObserver',\ 'connection': 'smartobjectservice.com',\ 'pubTopic': ''}) daily_rain = weather.create({'resourceName': 'daily_rain',\ 'resourceClass': 'ObservableProperty'}) daily_rain.Observers.create({'resourceName': 'mqttTestObserver',\ 'resourceClass': 'mqttObserver',\ 'connection': 'smartobjectservice.com',\ 'pubTopic': ''}) try: # register handlers etc. while 1: sleep(1) except KeyboardInterrupt: pass print 'got KeyboardInterrupt'
connectIOT/iottoolkit
old/WeatherSensorMQTTSubscriber.py
Python
apache-2.0
10,322
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MAC wrapper. """ from typing import Type from absl import logging from tink.proto import tink_pb2 from tink import core from tink.mac import _mac class _WrappedMac(_mac.Mac): """Implements Mac for a set of Mac primitives.""" def __init__(self, pset: core.PrimitiveSet): self._primitive_set = pset def compute_mac(self, data: bytes) -> bytes: primary = self._primitive_set.primary() if primary.output_prefix_type == tink_pb2.LEGACY: return primary.identifier + primary.primitive.compute_mac( data + core.crypto_format.LEGACY_START_BYTE) else: return primary.identifier + primary.primitive.compute_mac(data) def verify_mac(self, mac_value: bytes, data: bytes) -> None: if len(mac_value) <= core.crypto_format.NON_RAW_PREFIX_SIZE: # This also rejects raw MAC with size of 4 bytes or fewer. Those MACs are # clearly insecure, thus should be discouraged. raise core.TinkError('tag too short') prefix = mac_value[:core.crypto_format.NON_RAW_PREFIX_SIZE] mac_no_prefix = mac_value[core.crypto_format.NON_RAW_PREFIX_SIZE:] for entry in self._primitive_set.primitive_from_identifier(prefix): try: if entry.output_prefix_type == tink_pb2.LEGACY: entry.primitive.verify_mac(mac_no_prefix, data + b'\x00') else: entry.primitive.verify_mac(mac_no_prefix, data) # If there is no exception, the MAC is valid and we can return. return except core.TinkError as e: logging.info('tag prefix matches a key, but cannot verify: %s', e) # No 'non-raw' key matched, so let's try the raw keys (if any exist). for entry in self._primitive_set.raw_primitives(): try: entry.primitive.verify_mac(mac_value, data) # If there is no exception, the MAC is valid and we can return. return except core.TinkError as e: pass raise core.TinkError('invalid MAC') class MacWrapper(core.PrimitiveWrapper[_mac.Mac, _mac.Mac]): """MacWrapper is the implementation of PrimitiveWrapper for the Mac primitive. The returned primitive works with a keyset (rather than a single key). To compute a MAC tag, it uses the primary key in the keyset, and prepends to the tag a certain prefix associated with the primary key. To verify a tag, the primitive uses the prefix of the tag to efficiently select the right key in the set. If the keys associated with the prefix do not validate the tag, the primitive tries all keys with tink_pb2.OutputPrefixType = tink_pb2.RAW. """ def wrap(self, pset: core.PrimitiveSet) -> _mac.Mac: return _WrappedMac(pset) def primitive_class(self) -> Type[_mac.Mac]: return _mac.Mac def input_primitive_class(self) -> Type[_mac.Mac]: return _mac.Mac
google/tink
python/tink/mac/_mac_wrapper.py
Python
apache-2.0
3,361
from evdev import InputDevice, ecodes, InputEvent from select import select mouse = InputDevice('/dev/input/event4') # mouse keyboard = InputDevice('/dev/input/event5') # keyboard while True: r, w, x = select([mouse], [], []) for dev in r: for event in dev.read(): print(event.__class__, event)
Morgaroth/events_manager
py/handle.py
Python
apache-2.0
327
from app import db import sys if sys.version_info >= (3, 0): enable_search = False else: enable_search = True import flask.ext.whooshalchemy as whooshalchemy class Doctor(db.Model): """To indicate who is whose family doctor""" __tablename__ = 'family_doctor' # Fields doctor_id = db.Column(db.Integer, db.ForeignKey('persons.person_id'), primary_key=True) patient_id = db.Column(db.Integer, db.ForeignKey('persons.person_id'), primary_key=True) # Relationships doctor = db.relationship("Person", foreign_keys=[doctor_id], backref=db.backref("doctor_doctors", lazy='dynamic')) patient = db.relationship("Person", foreign_keys=[patient_id], backref="doctor_patients") def __repr__(self): return '<FamilyDoctor %r %r>' % (self.doctor_id, self.patient_id) class Person(db.Model): """To Store Personal Information""" __tablename__ = 'persons' # Fields person_id = db.Column(db.Integer, primary_key=True) first_name = db.Column(db.VARCHAR(24)) last_name = db.Column(db.VARCHAR(24)) address = db.Column(db.VARCHAR(128)) email = db.Column(db.VARCHAR(128), unique=True) phone = db.Column(db.CHAR(10)) # Relationships users = db.relationship('User', backref='person') doctors = db.relationship('Person', secondary='family_doctor', primaryjoin=person_id == Doctor.patient_id, secondaryjoin=person_id == Doctor.doctor_id, backref=db.backref('patients', lazy='dynamic')) def __repr__(self): return '<Person %r>' % (self.person_id) class User(db.Model): """To store the log-in information Note that a person may have been assigned different user_name(s), depending on his/her role in the log-in""" __tablename__ = 'users' # Fields user_name = db.Column(db.VARCHAR(24), primary_key=True) password = db.Column(db.VARCHAR(24)) user_class = db.Column('class', db.Enum('a', 'p', 'd', 'r')) date_registered = db.Column(db.Date) person_id = db.Column(db.Integer, db.ForeignKey('persons.person_id')) # Required for Flask-Login to use this as a User class def is_authenticated(self): return True # Required for Flask-Login to use this as a User class def is_active(self): return True # Required for Flask-Login to use this as a User class def is_anonymous(self): return False # Required for Flask-Login to use this as a User class def get_id(self): return str(self.user_name) def __repr__(self): return '<User %r>' % (self.user_name) class Record(db.Model): """To store the radiology records""" __tablename__ = 'radiology_record' __searchable__ = ['test_type', 'prescriding_date', 'test_date', 'diagnosis', 'description'] # Fields record_id = db.Column(db.Integer, primary_key=True) patient_id = db.Column(db.Integer, db.ForeignKey('persons.person_id')) doctor_id = db.Column(db.Integer, db.ForeignKey('persons.person_id')) radiologist_id = db.Column(db.Integer, db.ForeignKey('persons.person_id')) test_type = db.Column(db.VARCHAR(24)) prescribing_date = db.Column(db.Date) test_date = db.Column(db.Date) diagnosis = db.Column(db.VARCHAR(128)) description = db.Column(db.VARCHAR(1024)) # Relationships images = db.relationship('Image', backref="record", lazy='dynamic') doctor = db.relationship("Person", foreign_keys=[doctor_id], backref="record_doctor") patient = db.relationship("Person", foreign_keys=[patient_id], backref="record_patient") radiologist = db.relationship("Person", foreign_keys=[radiologist_id], backref="record_radiologist") def __repr__(self): return '<Record %r>' % (self.record_id) class Image(db.Model): """To store the pacs images""" __tablename__ = 'pacs_images' image_id = db.Column(db.Integer, primary_key=True) record_id = db.Column(db.Integer, db.ForeignKey('radiology_record.record_id')) thumbnail = db.Column(db.BLOB) regular_size = db.Column(db.BLOB) full_size = db.Column(db.BLOB) def __repr__(self): return '<Pacs Image %r %r>' % (self.image_id, self.record_id) if enable_search: whooshalchemy.whoosh_index(app, Record)
MarkGalloway/RIS
app/models.py
Python
apache-2.0
4,370
from rest_framework.test import APITestCase, APITransactionTestCase, APIClient from django.contrib.auth.models import User # AnonymousUser, from os import environ as env # https://stackoverflow.com/questions/44450533/difference-between-testcase-and-transactiontestcase-classes-in-django-test # ^APITestCase vs APITransactionTestCase # https://www.django-rest-framework.org/api-guide/testing/ # ^DRF testing guide # https://django-testing-docs.readthedocs.io/en/latest/fixtures.html # ^testing with fixtures # https://stackoverflow.com/questions/5875111/running-a-specific-test-case-in-django-when-your-app-has-a-tests-directory # ^running the tests client = APIClient() user = User.objects.get(username=env["WOPEN_SUPERUSER"] + env["WOPEN_EMAIL_DOMAIN"]) client.force_authenticate(user=user) class AlertsTests(APITestCase): def test_read(self): response = client.get('/api/alerts/') assert response.status_code == 200 def test_ordering(self): response = client.get('/api/alerts/?ordering=urgency_tag') assert response.status_code == 200 def test_search(self): response = client.get('/api/alerts/?search=srct&format=json') assert response.status_code == 200 def test_filtering(self): response = client.get('/api/alerts/?urgency_tag=major&format=json') assert response.status_code == 200 class CategoriesTests(APITestCase): def test_read(self): response = client.get('/api/categories/') assert response.status_code == 200 def test_ordering(self): response = client.get('/api/categories/?ordering=name') assert response.status_code == 200 def test_search(self): response = client.get('/api/categories/?search=din&format=json') assert response.status_code == 200 def test_filtering(self): response = client.get('/api/categories/?name=dining&format=json') assert response.status_code == 200 class facilitiesTests(APITestCase): def test_read(self): response = client.get('/api/facilities/') assert response.status_code == 200 def test_ordering(self): response = client.get('/api/facilities/?ordering=-facility_classifier') assert response.status_code == 200 def test_search(self): response = client.get('/api/facilities/?search=south&format=json') assert response.status_code == 200 def test_filtering(self): response = client.get('/api/facilities/?facility_name=Southside') assert response.status_code == 200 class LocationsTests(APITestCase): def test_read(self): response = client.get('/api/locations/') assert response.status_code == 200 def test_ordering(self): response = client.get('/api/locations/?ordering=-address') assert response.status_code == 200 def test_search(self): response = client.get('/api/locations/?search=johnson&format=json') assert response.status_code == 200 def test_filtering(self): response = client.get('/api/locations/?building=Johnson+Center&format=json') assert response.status_code == 200 class ScheduleTests(APITestCase): def test_read(self): response = client.get('/api/schedules/') assert response.status_code == 200 def test_ordering(self): response = client.get('/api/schedules/?ordering=name') assert response.status_code == 200 """Invalid value south?""" def test_search(self): response = client.get('/api/schedules/?search=Southside+[Fall+%2FSpring+Hours]') #print(dir(response)) assert response.status_code == 200 def test_filtering(self): response = client.get('/api/schedules/?name=&valid_start=&valid_end=&twenty_four_hours=true') self.assertTrue(response.status_code == 200) def test_post(self): response = client.post('/api/schedules/', { "name": "hi", "valid_start": None, "valid_end": None, "twenty_four_hours": False }, format='json') assert response.status_code == 201 # class OpenTimeTests(APITestCase): # def test_read(self): # response = client.get('/api/categories/') # assert response.status_code == 200 # def test_ordering(self): # self.assertTrue(True) # def test_search(self): # self.assertTrue(True) # def test_filtering(self): # self.assertTrue(True) # def test_post(self): # client.post('/notes/', {'title': 'new idea'}, format='json') # self.assertTrue(True)
srct/whats-open
whats-open/api/tests/APIClientTests.py
Python
apache-2.0
4,803
# -*- coding: utf-8 -*- """ Package containing a data validation schema for the machine class register. --- type: python_package validation_level: v00_minimum protection: k00_public copyright: "Copyright 2016 High Integrity Artificial Intelligence Systems" license: "Licensed under the Apache License, Version 2.0 (the License); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an AS IS BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License." ... """ from good import (Extra, Reject, Schema) import da.check.schema.common # ----------------------------------------------------------------------------- def get(idclass_tab): """ Return the data validation schema for the machine register. """ common = da.check.schema.common machine_id = idclass_tab['machine'] return Schema({ 'title': common.TITLE_TEXT, 'introduction': common.PARAGRAPH_TEXT, 'register': { machine_id: { 'hostname': common.LOWERCASE_NAME, 'desc': common.TITLE_TEXT } }, Extra: Reject })
wtpayne/hiai
a3_src/h70_internal/da/check/schema/machine_register.py
Python
apache-2.0
1,618
# Copyright 2015 NEC Corporation. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from unittest import mock from magnumclient.common.apiclient import exceptions from magnumclient.tests.v1 import shell_test_base from magnumclient.v1.baymodels import BayModel class FakeBayModel(BayModel): def __init__(self, manager=None, info={}, **kwargs): BayModel.__init__(self, manager=manager, info=info) self.apiserver_port = kwargs.get('apiserver_port', None) self.uuid = kwargs.get('uuid', 'x') self.links = kwargs.get('links', []) self.server_type = kwargs.get('server_type', 'vm') self.image_id = kwargs.get('image_id', 'x') self.tls_disabled = kwargs.get('tls_disabled', False) self.registry_enabled = kwargs.get('registry_enabled', False) self.coe = kwargs.get('coe', 'x') self.public = kwargs.get('public', False) self.name = kwargs.get('name', 'x') class ShellTest(shell_test_base.TestCommandLineArgument): def _get_expected_args_list(self, limit=None, sort_dir=None, sort_key=None, detail=False): expected_args = {} expected_args['limit'] = limit expected_args['sort_dir'] = sort_dir expected_args['sort_key'] = sort_key expected_args['detail'] = detail return expected_args def _get_expected_args(self, image_id, external_network_id, coe, master_flavor_id=None, name=None, keypair_id=None, fixed_network=None, fixed_subnet=None, network_driver=None, volume_driver=None, dns_nameserver='8.8.8.8', flavor_id='m1.medium', docker_storage_driver='devicemapper', docker_volume_size=None, http_proxy=None, https_proxy=None, no_proxy=None, labels={}, tls_disabled=False, public=False, master_lb_enabled=False, server_type='vm', registry_enabled=False, floating_ip_enabled=None): expected_args = {} expected_args['image_id'] = image_id expected_args['external_network_id'] = external_network_id expected_args['coe'] = coe expected_args['master_flavor_id'] = master_flavor_id expected_args['name'] = name expected_args['keypair_id'] = keypair_id expected_args['fixed_network'] = fixed_network expected_args['fixed_subnet'] = fixed_subnet expected_args['network_driver'] = network_driver expected_args['volume_driver'] = volume_driver expected_args['dns_nameserver'] = dns_nameserver expected_args['flavor_id'] = flavor_id expected_args['docker_volume_size'] = docker_volume_size expected_args['docker_storage_driver'] = docker_storage_driver expected_args['http_proxy'] = http_proxy expected_args['https_proxy'] = https_proxy expected_args['no_proxy'] = no_proxy expected_args['labels'] = labels expected_args['tls_disabled'] = tls_disabled expected_args['public'] = public expected_args['master_lb_enabled'] = master_lb_enabled expected_args['server_type'] = server_type expected_args['registry_enabled'] = registry_enabled return expected_args @mock.patch('magnumclient.v1.baymodels.BayModelManager.create') def test_baymodel_create_success(self, mock_create): self._test_arg_success('baymodel-create ' '--name test ' '--image-id test_image ' '--keypair-id test_keypair ' '--external-network-id test_net ' '--coe swarm ' '--dns-nameserver test_dns ' '--flavor-id test_flavor ' '--fixed-network private ' '--fixed-subnet private-subnet ' '--volume-driver test_volume ' '--network-driver test_driver ' '--labels key=val ' '--master-flavor-id test_flavor ' '--docker-volume-size 10 ' '--docker-storage-driver devicemapper ' '--public ' '--server-type vm ' '--master-lb-enabled ' '--floating-ip-enabled ') expected_args = \ self._get_expected_args(name='test', image_id='test_image', keypair_id='test_keypair', coe='swarm', external_network_id='test_net', dns_nameserver='test_dns', public=True, flavor_id='test_flavor', master_flavor_id='test_flavor', fixed_network='private', fixed_subnet='private-subnet', server_type='vm', network_driver='test_driver', volume_driver='test_volume', docker_storage_driver='devicemapper', docker_volume_size=10, master_lb_enabled=True, labels={'key': 'val'}) expected_args['floating_ip_enabled'] = True mock_create.assert_called_with(**expected_args) self._test_arg_success('baymodel-create ' '--keypair-id test_keypair ' '--external-network-id test_net ' '--image-id test_image ' '--coe kubernetes ' '--name test ' '--server-type vm') expected_args = \ self._get_expected_args(name='test', image_id='test_image', keypair_id='test_keypair', coe='kubernetes', external_network_id='test_net', server_type='vm') mock_create.assert_called_with(**expected_args) self._test_arg_success('baymodel-create ' '--keypair-id test_keypair ' '--external-network-id test_net ' '--image-id test_image ' '--coe kubernetes ' '--name test ' '--server-type vm ' '--floating-ip-disabled ') expected_args = \ self._get_expected_args(name='test', image_id='test_image', keypair_id='test_keypair', coe='kubernetes', external_network_id='test_net', server_type='vm', floating_ip_enabled=False) mock_create.assert_called_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.create') def test_baymodel_create_success_no_servertype(self, mock_create): self._test_arg_success('baymodel-create ' '--name test ' '--image-id test_image ' '--keypair-id test_keypair ' '--external-network-id test_net ' '--coe swarm ' '--dns-nameserver test_dns ' '--flavor-id test_flavor ' '--fixed-network public ' '--network-driver test_driver ' '--labels key=val ' '--master-flavor-id test_flavor ' '--docker-volume-size 10 ' '--docker-storage-driver devicemapper ' '--public ') expected_args = \ self._get_expected_args(name='test', image_id='test_image', keypair_id='test_keypair', coe='swarm', external_network_id='test_net', dns_nameserver='test_dns', public=True, flavor_id='test_flavor', master_flavor_id='test_flavor', fixed_network='public', network_driver='test_driver', docker_storage_driver='devicemapper', docker_volume_size=10, labels={'key': 'val'}) mock_create.assert_called_with(**expected_args) self._test_arg_success('baymodel-create ' '--keypair-id test_keypair ' '--external-network-id test_net ' '--image-id test_image ' '--coe kubernetes ' '--name test ') expected_args = \ self._get_expected_args(name='test', image_id='test_image', keypair_id='test_keypair', coe='kubernetes', external_network_id='test_net') mock_create.assert_called_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.create') def test_baymodel_create_success_with_registry_enabled( self, mock_create): self._test_arg_success('baymodel-create ' '--name test ' '--network-driver test_driver ' '--keypair-id test_keypair ' '--external-network-id test_net ' '--image-id test_image ' '--coe swarm ' '--registry-enabled') expected_args = \ self._get_expected_args(name='test', image_id='test_image', keypair_id='test_keypair', coe='swarm', external_network_id='test_net', network_driver='test_driver', registry_enabled=True) mock_create.assert_called_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.create') def test_baymodel_create_public_success(self, mock_create): self._test_arg_success('baymodel-create ' '--name test --network-driver test_driver ' '--keypair-id test_keypair ' '--external-network-id test_net ' '--image-id test_image ' '--coe swarm ' '--public ' '--server-type vm') expected_args = \ self._get_expected_args(name='test', image_id='test_image', keypair_id='test_keypair', coe='swarm', external_network_id='test_net', public=True, server_type='vm', network_driver='test_driver') mock_create.assert_called_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.create') def test_baymodel_create_success_with_master_flavor(self, mock_create): self._test_arg_success('baymodel-create ' '--name test ' '--image-id test_image ' '--keypair-id test_keypair ' '--external-network-id test_net ' '--coe swarm ' '--dns-nameserver test_dns ' '--master-flavor-id test_flavor') expected_args = \ self._get_expected_args(name='test', image_id='test_image', keypair_id='test_keypair', coe='swarm', external_network_id='test_net', dns_nameserver='test_dns', master_flavor_id='test_flavor') mock_create.assert_called_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.create') def test_baymodel_create_docker_vol_size_success(self, mock_create): self._test_arg_success('baymodel-create ' '--name test --docker-volume-size 4514 ' '--keypair-id test_keypair ' '--external-network-id test_net ' '--image-id test_image ' '--coe swarm ' '--server-type vm') expected_args = \ self._get_expected_args(name='test', image_id='test_image', keypair_id='test_keypair', coe='swarm', external_network_id='test_net', server_type='vm', docker_volume_size=4514) mock_create.assert_called_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.create') def test_baymodel_create_docker_storage_driver_success(self, mock_create): self._test_arg_success('baymodel-create ' '--name test ' '--keypair-id test_keypair ' '--external-network-id test_net ' '--image-id test_image ' '--docker-storage-driver devicemapper ' '--coe swarm' ) expected_args = \ self._get_expected_args(name='test', image_id='test_image', keypair_id='test_keypair', coe='swarm', external_network_id='test_net', docker_storage_driver='devicemapper') mock_create.assert_called_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.create') def test_baymodel_create_fixed_network_success(self, mock_create): self._test_arg_success('baymodel-create ' '--name test --fixed-network private ' '--keypair-id test_keypair ' '--external-network-id test_net ' '--image-id test_image ' '--coe swarm ' '--server-type vm') expected_args = \ self._get_expected_args(name='test', image_id='test_image', keypair_id='test_keypair', coe='swarm', fixed_network='private', external_network_id='test_net', server_type='vm') mock_create.assert_called_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.create') def test_baymodel_create_network_driver_success(self, mock_create): self._test_arg_success('baymodel-create ' '--name test --network-driver test_driver ' '--keypair-id test_keypair ' '--external-network-id test_net ' '--image-id test_image ' '--coe swarm ' '--server-type vm') expected_args = \ self._get_expected_args(name='test', image_id='test_image', keypair_id='test_keypair', coe='swarm', external_network_id='test_net', server_type='vm', network_driver='test_driver') mock_create.assert_called_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.create') def test_baymodel_create_volume_driver_success(self, mock_create): self._test_arg_success('baymodel-create ' '--name test --volume-driver test_volume ' '--keypair-id test_keypair ' '--external-network-id test_net ' '--image-id test_image ' '--coe swarm ' '--server-type vm') expected_args = \ self._get_expected_args(name='test', image_id='test_image', keypair_id='test_keypair', coe='swarm', external_network_id='test_net', server_type='vm', volume_driver='test_volume') mock_create.assert_called_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.create') def test_baymodel_create_http_proxy_success(self, mock_create): self._test_arg_success('baymodel-create ' '--name test --fixed-network private ' '--keypair-id test_keypair ' '--external-network-id test_net ' '--image-id test_image ' '--coe swarm ' '--http-proxy http_proxy ' '--server-type vm') expected_args = \ self._get_expected_args(name='test', image_id='test_image', keypair_id='test_keypair', coe='swarm', external_network_id='test_net', fixed_network='private', server_type='vm', http_proxy='http_proxy') mock_create.assert_called_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.create') def test_baymodel_create_https_proxy_success(self, mock_create): self._test_arg_success('baymodel-create ' '--name test --fixed-network private ' '--keypair-id test_keypair ' '--external-network-id test_net ' '--image-id test_image ' '--coe swarm ' '--https-proxy https_proxy ' '--server-type vm') expected_args = \ self._get_expected_args(name='test', image_id='test_image', keypair_id='test_keypair', coe='swarm', external_network_id='test_net', fixed_network='private', server_type='vm', https_proxy='https_proxy') mock_create.assert_called_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.create') def test_baymodel_create_no_proxy_success(self, mock_create): self._test_arg_success('baymodel-create ' '--name test --fixed-network private ' '--keypair-id test_keypair ' '--external-network-id test_net ' '--image-id test_image ' '--coe swarm ' '--no-proxy no_proxy ' '--server-type vm') expected_args = \ self._get_expected_args(name='test', image_id='test_image', keypair_id='test_keypair', coe='swarm', external_network_id='test_net', fixed_network='private', server_type='vm', no_proxy='no_proxy') mock_create.assert_called_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.create') def test_baymodel_create_labels_success(self, mock_create): self._test_arg_success('baymodel-create ' '--name test ' '--labels key=val ' '--keypair-id test_keypair ' '--external-network-id test_net ' '--image-id test_image ' '--coe swarm ' '--server-type vm') expected_args = \ self._get_expected_args(name='test', image_id='test_image', keypair_id='test_keypair', coe='swarm', external_network_id='test_net', server_type='vm', labels={'key': 'val'}) mock_create.assert_called_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.create') def test_baymodel_create_separate_labels_success(self, mock_create): self._test_arg_success('baymodel-create ' '--name test ' '--labels key1=val1 ' '--labels key2=val2 ' '--keypair-id test_keypair ' '--external-network-id test_net ' '--image-id test_image ' '--coe swarm ' '--server-type vm') expected_args = \ self._get_expected_args(name='test', image_id='test_image', keypair_id='test_keypair', coe='swarm', external_network_id='test_net', server_type='vm', labels={'key1': 'val1', 'key2': 'val2'}) mock_create.assert_called_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.create') def test_baymodel_create_combined_labels_success(self, mock_create): self._test_arg_success('baymodel-create ' '--name test ' '--labels key1=val1,key2=val2 ' '--keypair-id test_keypair ' '--external-network-id test_net ' '--image-id test_image ' '--coe swarm ' '--server-type vm') expected_args = \ self._get_expected_args(name='test', image_id='test_image', keypair_id='test_keypair', coe='swarm', external_network_id='test_net', server_type='vm', labels={'key1': 'val1', 'key2': 'val2'}) mock_create.assert_called_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.create') def test_baymodel_create_failure_few_arg(self, mock_create): self._test_arg_failure('baymodel-create ' '--name test', self._mandatory_arg_error) mock_create.assert_not_called() self._test_arg_failure('baymodel-create ' '--image-id test', self._mandatory_arg_error) mock_create.assert_not_called() self._test_arg_failure('baymodel-create ' '--keypair-id test', self._mandatory_arg_error) mock_create.assert_not_called() self._test_arg_failure('baymodel-create ' '--external-network-id test', self._mandatory_arg_error) mock_create.assert_not_called() self._test_arg_failure('baymodel-create ' '--coe test', self._mandatory_arg_error) mock_create.assert_not_called() self._test_arg_failure('baymodel-create ' '--server-type test', self._mandatory_arg_error) mock_create.assert_not_called() self._test_arg_failure('baymodel-create', self._mandatory_arg_error) mock_create.assert_not_called() @mock.patch('magnumclient.v1.baymodels.BayModelManager.get') def test_baymodel_show_success(self, mock_show): self._test_arg_success('baymodel-show xxx') mock_show.assert_called_once_with('xxx') @mock.patch('magnumclient.v1.baymodels.BayModelManager.get') def test_baymodel_show_failure_no_arg(self, mock_show): self._test_arg_failure('baymodel-show', self._few_argument_error) mock_show.assert_not_called() @mock.patch('magnumclient.v1.baymodels.BayModelManager.delete') def test_baymodel_delete_success(self, mock_delete): self._test_arg_success('baymodel-delete xxx') mock_delete.assert_called_once_with('xxx') @mock.patch('magnumclient.v1.baymodels.BayModelManager.delete') def test_baymodel_delete_multiple_id_success(self, mock_delete): self._test_arg_success('baymodel-delete xxx xyz') calls = [mock.call('xxx'), mock.call('xyz')] mock_delete.assert_has_calls(calls) @mock.patch('magnumclient.v1.baymodels.BayModelManager.delete') def test_baymodel_delete_failure_no_arg(self, mock_delete): self._test_arg_failure('baymodel-delete', self._few_argument_error) mock_delete.assert_not_called() @mock.patch('magnumclient.v1.baymodels.BayModelManager.update') def test_baymodel_update_success(self, mock_update): self._test_arg_success('baymodel-update test add test=test') patch = [{'op': 'add', 'path': '/test', 'value': 'test'}] mock_update.assert_called_once_with('test', patch) @mock.patch('magnumclient.v1.baymodels.BayModelManager.update') def test_baymodel_update_success_many_attribute(self, mock_update): self._test_arg_success('baymodel-update test ' 'add test=test test1=test1') patch = [{'op': 'add', 'path': '/test', 'value': 'test'}, {'op': 'add', 'path': '/test1', 'value': 'test1'}] mock_update.assert_called_once_with('test', patch) @mock.patch('magnumclient.v1.baymodels.BayModelManager.update') def test_baymodel_update_failure_wrong_op(self, mock_update): _error_msg = [ '.*?^usage: magnum baymodel-update ', '.*?^error: argument <op>: invalid choice: ', ".*?^Try 'magnum help baymodel-update' for more information." ] self._test_arg_failure('baymodel-update test wrong test=test', _error_msg) mock_update.assert_not_called() @mock.patch('magnumclient.v1.baymodels.BayModelManager.update') def test_baymodel_update_failure_few_args(self, mock_update): _error_msg = [ '.*?^usage: magnum baymodel-update ', '.*?^error: (the following arguments|too few arguments)', ".*?^Try 'magnum help baymodel-update' for more information." ] self._test_arg_failure('baymodel-update', _error_msg) mock_update.assert_not_called() self._test_arg_failure('baymodel-update test', _error_msg) mock_update.assert_not_called() @mock.patch('magnumclient.v1.baymodels.BayModelManager.list') def test_baymodel_list_success(self, mock_list): self._test_arg_success('baymodel-list') expected_args = self._get_expected_args_list() mock_list.assert_called_once_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.list') def test_baymodel_list_success_with_arg(self, mock_list): self._test_arg_success('baymodel-list ' '--limit 1 ' '--sort-dir asc ' '--sort-key uuid') expected_args = self._get_expected_args_list(1, 'asc', 'uuid') mock_list.assert_called_once_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.list') def test_baymodel_list_success_detailed(self, mock_list): self._test_arg_success('baymodel-list ' '--detail') expected_args = self._get_expected_args_list(detail=True) mock_list.assert_called_once_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.list') def test_baymodel_list_ignored_duplicated_field(self, mock_list): mock_list.return_value = [FakeBayModel()] self._test_arg_success('baymodel-list --fields coe,coe,coe,name,name', keyword='\n| uuid | name | Coe |\n') # Output should be # +------+------+-----+ # | uuid | name | Coe | # +------+------+-----+ # | x | x | x | # +------+------+-----+ expected_args = self._get_expected_args_list() mock_list.assert_called_once_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.list') def test_baymodel_list_failure_with_invalid_field(self, mock_list): mock_list.return_value = [FakeBayModel()] _error_msg = [".*?^Non-existent fields are specified: ['xxx','zzz']"] self.assertRaises(exceptions.CommandError, self._test_arg_failure, 'baymodel-list --fields xxx,coe,zzz', _error_msg) expected_args = self._get_expected_args_list() mock_list.assert_called_once_with(**expected_args) @mock.patch('magnumclient.v1.baymodels.BayModelManager.list') def test_baymodel_list_failure_invalid_arg(self, mock_list): _error_msg = [ '.*?^usage: magnum baymodel-list ', '.*?^error: argument --sort-dir: invalid choice: ', ".*?^Try 'magnum help baymodel-list' for more information." ] self._test_arg_failure('baymodel-list --sort-dir aaa', _error_msg) mock_list.assert_not_called() @mock.patch('magnumclient.v1.baymodels.BayModelManager.list') def test_baymodel_list_failure(self, mock_list): self._test_arg_failure('baymodel-list --wrong', self._unrecognized_arg_error) mock_list.assert_not_called()
openstack/python-magnumclient
magnumclient/tests/v1/test_baymodels_shell.py
Python
apache-2.0
31,969
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The nPMI visualization plugin.""" import math from werkzeug import wrappers from tensorboard import plugin_util from tensorboard.plugins import base_plugin from tensorboard.backend import http_util from tensorboard.data import provider from tensorboard.plugins.npmi import metadata _DEFAULT_DOWNSAMPLING = 1 # nPMI tensors per time series def _error_response(request, error_message): return http_util.Respond( request, {"error": error_message}, "application/json", code=400, ) def _missing_run_error_response(request): return _error_response(request, "run parameter is not provided") # Convert all NaNs in a multidimensional list to None def convert_nan_none(arr): return [ convert_nan_none(e) if isinstance(e, list) else None if math.isnan(e) else e for e in arr ] class NpmiPlugin(base_plugin.TBPlugin): """nPMI Plugin for Tensorboard.""" plugin_name = metadata.PLUGIN_NAME def __init__(self, context): """Instantiates the nPMI Plugin via Tensorboard core. Args: context: A base_plugin.TBContext instance. """ super(NpmiPlugin, self).__init__(context) self._logdir = context.logdir self._downsample_to = (context.sampling_hints or {}).get( self.plugin_name, _DEFAULT_DOWNSAMPLING ) self._data_provider = context.data_provider self._version_checker = plugin_util._MetadataVersionChecker( data_kind="nPMI", latest_known_version=0, ) def get_plugin_apps(self): return { "/tags": self.serve_tags, "/annotations": self.serve_annotations, "/metrics": self.serve_metrics, "/values": self.serve_values, "/embeddings": self.serve_embeddings, } def is_active(self): """Determines whether this plugin is active. This plugin is only active if TensorBoard sampled any npmi summaries. Returns: Whether this plugin is active. """ return False # `list_plugins` as called by TB core suffices def frontend_metadata(self): return base_plugin.FrontendMetadata( is_ng_component=True, tab_name="npmi", disable_reload=True ) def tags_impl(self, ctx, experiment): mapping = self._data_provider.list_tensors( ctx, experiment_id=experiment, plugin_name=self.plugin_name ) result = {run: {} for run in mapping} for (run, tag_to_content) in mapping.items(): result[run] = [] for (tag, metadatum) in tag_to_content.items(): md = metadata.parse_plugin_metadata(metadatum.plugin_content) if not self._version_checker.ok(md.version, run, tag): continue content = metadata.parse_plugin_metadata( metadatum.plugin_content ) result[run].append(tag) return result def annotations_impl(self, ctx, experiment): mapping = self._data_provider.list_tensors( ctx, experiment_id=experiment, plugin_name=self.plugin_name, run_tag_filter=provider.RunTagFilter( tags=[metadata.ANNOTATIONS_TAG] ), ) result = {run: {} for run in mapping} for (run, _) in mapping.items(): all_annotations = self._data_provider.read_tensors( ctx, experiment_id=experiment, plugin_name=self.plugin_name, run_tag_filter=provider.RunTagFilter( runs=[run], tags=[metadata.ANNOTATIONS_TAG] ), downsample=self._downsample_to, ) annotations = all_annotations.get(run, {}).get( metadata.ANNOTATIONS_TAG, {} ) event_data = [ annotation.decode("utf-8") for annotation in annotations[0].numpy ] result[run] = event_data return result def metrics_impl(self, ctx, experiment): mapping = self._data_provider.list_tensors( ctx, experiment_id=experiment, plugin_name=self.plugin_name, run_tag_filter=provider.RunTagFilter(tags=[metadata.METRICS_TAG]), ) result = {run: {} for run in mapping} for (run, _) in mapping.items(): all_metrics = self._data_provider.read_tensors( ctx, experiment_id=experiment, plugin_name=self.plugin_name, run_tag_filter=provider.RunTagFilter( runs=[run], tags=[metadata.METRICS_TAG] ), downsample=self._downsample_to, ) metrics = all_metrics.get(run, {}).get(metadata.METRICS_TAG, {}) event_data = [metric.decode("utf-8") for metric in metrics[0].numpy] result[run] = event_data return result def values_impl(self, ctx, experiment): mapping = self._data_provider.list_tensors( ctx, experiment_id=experiment, plugin_name=self.plugin_name, run_tag_filter=provider.RunTagFilter(tags=[metadata.VALUES_TAG]), ) result = {run: {} for run in mapping} for (run, _) in mapping.items(): all_values = self._data_provider.read_tensors( ctx, experiment_id=experiment, plugin_name=self.plugin_name, run_tag_filter=provider.RunTagFilter( runs=[run], tags=[metadata.VALUES_TAG] ), downsample=self._downsample_to, ) values = all_values.get(run, {}).get(metadata.VALUES_TAG, {}) event_data = values[0].numpy.tolist() event_data = convert_nan_none(event_data) result[run] = event_data return result def embeddings_impl(self, ctx, experiment): mapping = self._data_provider.list_tensors( ctx, experiment_id=experiment, plugin_name=self.plugin_name, run_tag_filter=provider.RunTagFilter( tags=[metadata.EMBEDDINGS_TAG] ), ) result = {run: {} for run in mapping} for (run, _) in mapping.items(): all_embeddings = self._data_provider.read_tensors( ctx, experiment_id=experiment, plugin_name=self.plugin_name, run_tag_filter=provider.RunTagFilter( runs=[run], tags=[metadata.EMBEDDINGS_TAG] ), downsample=self._downsample_to, ) embeddings = all_embeddings.get(run, {}).get( metadata.EMBEDDINGS_TAG, {} ) event_data = embeddings[0].numpy.tolist() result[run] = event_data return result @wrappers.Request.application def serve_tags(self, request): ctx = plugin_util.context(request.environ) experiment = plugin_util.experiment_id(request.environ) contents = self.tags_impl(ctx, experiment=experiment) return http_util.Respond(request, contents, "application/json") @wrappers.Request.application def serve_annotations(self, request): ctx = plugin_util.context(request.environ) experiment = plugin_util.experiment_id(request.environ) contents = self.annotations_impl(ctx, experiment=experiment) return http_util.Respond(request, contents, "application/json") @wrappers.Request.application def serve_metrics(self, request): ctx = plugin_util.context(request.environ) experiment = plugin_util.experiment_id(request.environ) contents = self.metrics_impl(ctx, experiment=experiment) return http_util.Respond(request, contents, "application/json") @wrappers.Request.application def serve_values(self, request): ctx = plugin_util.context(request.environ) experiment = plugin_util.experiment_id(request.environ) contents = self.values_impl(ctx, experiment=experiment) return http_util.Respond(request, contents, "application/json") @wrappers.Request.application def serve_embeddings(self, request): ctx = plugin_util.context(request.environ) experiment = plugin_util.experiment_id(request.environ) contents = self.embeddings_impl(ctx, experiment=experiment) return http_util.Respond(request, contents, "application/json")
tensorflow/tensorboard
tensorboard/plugins/npmi/npmi_plugin.py
Python
apache-2.0
9,407
#!/usr/bin/env python class Config(object): DEBUG=False WRITE_PICTURE_DEBUG=False WRITE_PICTURE_DEBUG_PATH='./debug_picture/' FACE_MAX_DRIFT_PERCENT=0.5 MAX_IMAGE_WIDTH=1024 # dlib tracking takes longer time with a large variations # 20ms ~ 100+ ms DLIB_TRACKING=False # whether detector should upsample # detection with upsample = 1 on a 640x480 image took around 200ms # detection with upsample = 0 on a 640x480 image took around 70ms DLIB_DETECTOR_UPSAMPLE_TIMES=0 # adjust face detector threshold, a negative number lower the threshold DLIB_DETECTOR_ADJUST_THRESHOLD=0 # profile face detection DETECT_PROFILE_FACE=False # profile face cascade opencv xml path OPENCV_PROFILE_FACE_CASCADE_PATH=None # blurry detection IMAGE_CLEAR_THRESHOLD=40 # return data format RETURN_FACE_DATA=True # an arbitrary probability for cutting of openface recognition true/false RECOG_PROB_THRESHOLD=0.5
cmusatyalab/faceswap
server/demo_config.py
Python
apache-2.0
991
class Solution: def gameOfLife(self, board: List[List[int]]) -> None: """ Do not return anything, modify board in-place instead. """ # Handling empty board. if not board or len(board[0]) == 0: return # Gets dimensions of board. m, n = len(board), len(board[0]) print(m,n) # Iterate through the board and generate populated list! for i,row in enumerate(board): for j,ele in enumerate(row): #Sum of the element count = 0 for r in range(max(0,i-1),min(m, i+2)): for c in range(max(0,j-1), min(n, j+2)): if (r,c) != (i,j) and (1 <= board[r][c] <= 2): count += 1 # Previously 0 element turned to be 1 is represented as 3 here. [Point 4] # Previously 1 element turned to 0 is represented as 2 here. [Point 2 or 3] # Processing that particular point! if board[i][j] == 0: if count == 3: board[i][j] = 3 elif count < 2 or count > 3: board[i][j] = 2 # Final formatting for i in range(m): for j in range(n): if board[i][j] == 3: board[i][j] = 1 elif board[i][j] == 2: board[i][j] = 0
saisankargochhayat/algo_quest
leetcode/289. Game of Life/soln.py
Python
apache-2.0
1,474
""" Manage OpenStack configuration file settings. :maintainer: Jeffrey C. Ollie <jeff@ocjtech.us> :maturity: new :depends: :platform: linux """ from salt.exceptions import CommandExecutionError def __virtual__(): """ Only load if the openstack_config module is in __salt__ """ if "openstack_config.get" not in __salt__: return (False, "openstack_config module could not be loaded") if "openstack_config.set" not in __salt__: return False if "openstack_config.delete" not in __salt__: return False return True def present(name, filename, section, value, parameter=None): """ Ensure a value is set in an OpenStack configuration file. filename The full path to the configuration file section The section in which the parameter will be set parameter (optional) The parameter to change. If the parameter is not supplied, the name will be used as the parameter. value The value to set """ if parameter is None: parameter = name ret = {"name": name, "changes": {}, "result": False, "comment": ""} try: old_value = __salt__["openstack_config.get"]( filename=filename, section=section, parameter=parameter ) if old_value == value: ret["result"] = True ret["comment"] = "The value is already set to the correct value" return ret if __opts__["test"]: ret["result"] = None ret["comment"] = "Value '{}' is set to be changed to '{}'.".format( old_value, value ) return ret except CommandExecutionError as err: if not str(err).lower().startswith("parameter not found:"): raise __salt__["openstack_config.set"]( filename=filename, section=section, parameter=parameter, value=value ) ret["changes"] = {"Value": "Updated"} ret["result"] = True ret["comment"] = "The value has been updated" return ret def absent(name, filename, section, parameter=None): """ Ensure a value is not set in an OpenStack configuration file. filename The full path to the configuration file section The section in which the parameter will be set parameter (optional) The parameter to change. If the parameter is not supplied, the name will be used as the parameter. """ if parameter is None: parameter = name ret = {"name": name, "changes": {}, "result": False, "comment": ""} try: old_value = __salt__["openstack_config.get"]( filename=filename, section=section, parameter=parameter ) except CommandExecutionError as err: if str(err).lower().startswith("parameter not found:"): ret["result"] = True ret["comment"] = "The value is already absent" return ret raise if __opts__["test"]: ret["result"] = None ret["comment"] = "Value '{}' is set to be deleted.".format(old_value) return ret __salt__["openstack_config.delete"]( filename=filename, section=section, parameter=parameter ) ret["changes"] = {"Value": "Deleted"} ret["result"] = True ret["comment"] = "The value has been deleted" return ret
saltstack/salt
salt/states/openstack_config.py
Python
apache-2.0
3,339
#!/usr/bin/env python """Module containing functions for converting messages to dataframe.""" import collections import datetime import stat from typing import Text, Sequence, List, Any, Dict, Optional import pandas as pd from google.protobuf import descriptor from google.protobuf import message from grr_response_proto import osquery_pb2 from grr_response_proto import semantic_pb2 def from_sequence(seq: Sequence[Any]) -> pd.DataFrame: """Converts sequence of objects to a dataframe. Args: seq: Sequence of objects to convert. Returns: Pandas dataframe representing given sequence of objects. """ dframes = [from_object(obj) for obj in seq] if not dframes: return pd.DataFrame() return pd.concat(dframes, ignore_index=True, sort=False) def from_object(obj: Any) -> pd.DataFrame: """Converts object to a dataframe. Args: obj: Object to convert. Returns: Pandas dataframe representing given object. """ if isinstance(obj, message.Message): return from_message(obj) return pd.DataFrame(data=[obj]) def from_message(msg: message.Message, components: Optional[List[Text]] = None) -> pd.DataFrame: """Converts protobuf message to a dataframe. Args: msg: Protobuf message to convert. components: Prefixes for column names. Returns: Pandas dataframe representing given message. """ if components is None: components = [] data = {} for desc, value in msg.ListFields(): if isinstance(value, message.Message): data.update(from_message(value, components + [desc.name])) else: data.update(_get_pretty_value(value, desc, components)) return pd.DataFrame(data=data) def from_osquery_table(table: osquery_pb2.OsqueryTable) -> pd.DataFrame: """Converts osquery table to a dataframe. Args: table: Table to convert. Returns: Pandas dataframe representing given osquery table. """ columns = [column.name for column in table.header.columns] data = {column: [] for column in columns} for row in table.rows: for column, value in zip(columns, row.values): data[column].append(value) return pd.DataFrame(data=data) def _get_pretty_value(value: Any, desc: descriptor.FieldDescriptor, components: List[Text]) -> Dict[Text, List[Any]]: """Converts value to the object easier to work with or more representative. Args: value: Object to transform. desc: Field descriptor of a value. components: Prefixes for column names. Returns: Data dictionary representing the given value. """ data = {} column_name = '.'.join(components + [desc.name]) sem_type = semantic_pb2.sem_type if desc.label == desc.LABEL_REPEATED: data[column_name] = [from_sequence(value)] elif desc.type == desc.TYPE_ENUM: char_name = next(_.name for _ in desc.enum_type.values if _.number == value) data[column_name] = [char_name] elif desc.type == desc.TYPE_BYTES: data[column_name] = [value] data[column_name + '.pretty'] = [repr(value)] elif desc.GetOptions().Extensions[sem_type].type == 'RDFDatetime': data[column_name] = [value] pretty_value = datetime.datetime.utcfromtimestamp(value / (10**6)) data[column_name + '.pretty'] = [pretty_value] elif desc.GetOptions().Extensions[sem_type].type == 'StatMode': data[column_name] = [value] data[column_name + '.pretty'] = [stat.filemode(value)] else: data[column_name] = [value] return data def reindex_dataframe( df: pd.DataFrame, priority_columns: Optional[List[Text]] = None, ignore_columns: Optional[List[Text]] = None) -> pd.DataFrame: """Reorders and removes dataframe columns according to the given priorities. Args: df: Dataframe to reorder columns in. priority_columns: List of first columns in a new dataframe. ignore_columns: List of columns to remove from a dataframe. Returns: Reordered dataframe. """ if priority_columns is None: priority_columns = [] if ignore_columns is None: ignore_columns = [] priorities = collections.defaultdict(lambda: len(priority_columns)) for idx, column in enumerate(priority_columns): priorities[column] = idx ignore_columns = set(ignore_columns) columns = [_ for _ in df.columns if _ not in ignore_columns] columns = sorted(columns, key=lambda _: priorities[_]) return df.reindex(columns=columns) def add_pretty_column(df: pd.DataFrame, col_name: Text, values: Sequence[Any]) -> pd.DataFrame: """Adds pretty column for the specified column name with values provided. Args: df: Dataframe to add column to. col_name: Name of the original column. values: Values of the pretty column to add. Returns: Dataframe with the pretty column added. """ if col_name not in df.columns: return df pretty_col_name = '{}.pretty'.format(col_name) if pretty_col_name in df.columns: df[pretty_col_name] = values else: df.insert( df.columns.get_loc(col_name) + 1, pretty_col_name, pd.Series(values)) return df
google/grr
colab/grr_colab/convert.py
Python
apache-2.0
5,072
"""Provides checkpoint download helpers.""" import hashlib import os from typing import Optional import urllib from absl import logging from tensorflow.io import gfile import tqdm DEFAULT_DOWNLOAD_DIR = os.path.expanduser('~/.cache/scenic/clip') def hash_file(path): return hashlib.sha256(gfile.GFile(path, 'rb').read()).hexdigest() def download( url: str, root: str = DEFAULT_DOWNLOAD_DIR, expected_sha256: Optional[str] = None ): """Download a file if it does not exist, with a progress bar. Based on https://github.com/openai/CLIP/blob/main/clip/clip.py#L4 Args: url (str): URL of file to download. root (str): Directory to place the downloaded file. expected_sha256: Optional sha256 sum. If provided, checks downloaded file. Raises: RuntimeError: Downloaded file existed as a directory, or sha256 of dowload does not match expected_sha256. Returns: download_target (str): path to downloaded file """ gfile.makedirs(root) filename = os.path.basename(url) if '?' in filename: # strip trailing HTTP GET arguments filename = filename[:filename.rindex('?')] download_target = os.path.join(root, filename) if gfile.exists(download_target): if gfile.isdir(download_target): raise RuntimeError(f'{download_target} exists and is not a regular file') elif expected_sha256: if hash_file(download_target) == expected_sha256: return download_target logging.warning('%s exists, but the SHA256 checksum does not match;' 're-downloading the file', download_target) with gfile.GFile(download_target, 'wb') as output: with urllib.request.urlopen(url) as source: loop = tqdm.tqdm(total=int(source.info().get('Content-Length')), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) while True: buffer = source.read(8192) if not buffer: break output.write(buffer) loop.update(len(buffer)) if expected_sha256 and hash_file(download_target) != expected_sha256: raise RuntimeError( 'Model has been downloaded but the SHA256 checksum does not not match') return download_target
google-research/scenic
scenic/projects/baselines/clip/download.py
Python
apache-2.0
2,213
""" .. module: security_monkey.watcher :platform: Unix :synopsis: Slurps the current config from AWS and compares it to what has previously been recorded in the database to find any changes. .. version:: $$VERSION$$ .. moduleauthor:: Patrick Kelley <pkelley@netflix.com> @monkeysecurity """ from botocore.exceptions import ClientError from common.PolicyDiff import PolicyDiff from common.utils import sub_dict from security_monkey import app from security_monkey.datastore import Account, IgnoreListEntry, Technology, store_exception from security_monkey.common.jinja import get_jinja_env from boto.exception import BotoServerError import time import datastore from copy import deepcopy import dpath.util from dpath.exceptions import PathNotFound class Watcher(object): """Slurps the current config from AWS and compares it to what has previously been recorded in the database to find any changes.""" index = 'abstract' i_am_singular = 'Abstract' i_am_plural = 'Abstracts' rate_limit_delay = 0 ignore_list = [] interval = 15 # in minutes def __init__(self, accounts=None, debug=False): """Initializes the Watcher""" self.datastore = datastore.Datastore() if not accounts: accounts = Account.query.filter(Account.third_party==False).filter(Account.active==True).all() self.accounts = [account.name for account in accounts] else: self.accounts = accounts self.debug = debug self.created_items = [] self.deleted_items = [] self.changed_items = [] self.ephemeral_items = [] # TODO: grab these from DB, keyed on account self.rate_limit_delay = 0 self.interval = 15 self.honor_ephemerals = False self.ephemeral_paths = [] def prep_for_slurp(self): """ Should be run before slurp is run to grab the IgnoreList. """ query = IgnoreListEntry.query query = query.join((Technology, Technology.id == IgnoreListEntry.tech_id)) self.ignore_list = query.filter(Technology.name == self.index).all() def check_ignore_list(self, name): """ See if the given item has a name flagging it to be ignored by security_monkey. """ for result in self.ignore_list: # Empty prefix comes back as None instead of an empty string ... prefix = result.prefix or "" if name.lower().startswith(prefix.lower()): app.logger.warn("Ignoring {}/{} because of IGNORELIST prefix {}".format(self.index, name, result.prefix)) return True return False def wrap_aws_rate_limited_call(self, awsfunc, *args, **nargs): attempts = 0 def increase_delay(): if self.rate_limit_delay == 0: self.rate_limit_delay = 1 app.logger.warn(('Being rate-limited by AWS. Increasing delay on tech {} ' + 'in account {} from 0 to 1 second. Attempt {}') .format(self.index, self.accounts, attempts)) elif self.rate_limit_delay < 4: self.rate_limit_delay = self.rate_limit_delay * 2 app.logger.warn(('Still being rate-limited by AWS. Increasing delay on tech {} ' + 'in account {} to {} seconds. Attempt {}') .format(self.index, self.accounts, self.rate_limit_delay, attempts)) else: app.logger.warn(('Still being rate-limited by AWS. Keeping delay on tech {} ' + 'in account {} at {} seconds. Attempt {}') .format(self.index, self.accounts, self.rate_limit_delay, attempts)) while True: attempts = attempts + 1 try: if self.rate_limit_delay > 0: time.sleep(self.rate_limit_delay) retval = awsfunc(*args, **nargs) if self.rate_limit_delay > 0: app.logger.warn("Successfully Executed Rate-Limited Function. " "Tech: {} Account: {}. Removing sleep period." .format(self.index, self.accounts)) self.rate_limit_delay = 0 return retval except BotoServerError as e: # Boto if not e.error_code == 'Throttling': raise e increase_delay() except ClientError as e: # Botocore if not e.response["Error"]["Code"] == "Throttling": raise e increase_delay() def created(self): """ Used by the Jinja templates :returns: True if created_items is not empty :returns: False otherwise. """ return len(self.created_items) > 0 def deleted(self): """ Used by the Jinja templates :returns: True if deleted_items is not empty :returns: False otherwise. """ return len(self.deleted_items) > 0 def changed(self): """ Used by the Jinja templates :returns: True if changed_items is not empty :returns: False otherwise. """ return len(self.changed_items) > 0 def slurp(self): """ method to slurp configuration from AWS for whatever it is that I'm interested in. This will be overridden for each technology. """ raise NotImplementedError() def slurp_exception(self, location=None, exception=None, exception_map={}, source="watcher"): """ Logs any exceptions that happen in slurp and adds them to the exception_map using their location as the key. The location is a tuple in the form: (technology, account, region, item_name) that describes the object where the exception occurred. Location can also exclude an item_name if the exception is region wide. """ if location in exception_map: app.logger.debug("Exception map already has location {}. This should not happen.".format(location)) exception_map[location] = exception app.logger.debug("Adding {} to the exceptions list. Exception was: {}".format(location, str(exception))) # Store it to the database: store_exception(source, location, exception) def location_in_exception_map(self, item_location, exception_map={}): """ Determines whether a given location is covered by an exception already in the exception map. Item location: (self.index, self.account, self.region, self.name) exception Maps: (index, account, region, name) (index, account, region) (index, account) :returns: True if location is covered by an entry in the exception map. :returns: False if location is not covered by an entry in the exception map. """ # Exact Match if item_location in exception_map: app.logger.debug("Skipping {} due to an item-level exception {}.".format(item_location, exception_map[item_location])) return True # (index, account, region) if item_location[0:3] in exception_map: app.logger.debug("Skipping {} due to a region-level exception {}.".format(item_location, exception_map[item_location[0:3]])) return True # (index, account) if item_location[0:2] in exception_map: app.logger.debug("Skipping {} due to an account-level exception {}.".format(item_location, exception_map[item_location[0:2]])) return True # (index) if item_location[0:1] in exception_map: app.logger.debug("Skipping {} due to a technology-level exception {}.".format(item_location, exception_map[item_location[0:1]])) return True return False def find_deleted(self, previous=[], current=[], exception_map={}): """ Find any items that have been deleted since the last run of the watcher. Add these items to the deleted_items list. """ prev_map = {item.location(): item for item in previous} curr_map = {item.location(): item for item in current} item_locations = list(set(prev_map).difference(set(curr_map))) item_locations = [item_location for item_location in item_locations if not self.location_in_exception_map(item_location, exception_map)] list_deleted_items = [prev_map[item] for item in item_locations] for item in list_deleted_items: deleted_change_item = ChangeItem.from_items(old_item=item, new_item=None) app.logger.debug("%s: %s/%s/%s deleted" % (self.i_am_singular, item.account, item.region, item.name)) self.deleted_items.append(deleted_change_item) def find_new(self, previous=[], current=[]): """ Find any new objects that have been created since the last run of the watcher. Add these items to the created_items list. """ prev_map = {item.location(): item for item in previous} curr_map = {item.location(): item for item in current} item_locations = list(set(curr_map).difference(set(prev_map))) list_new_items = [curr_map[item] for item in item_locations] for item in list_new_items: new_change_item = ChangeItem.from_items(old_item=None, new_item=item) self.created_items.append(new_change_item) app.logger.debug("%s: %s/%s/%s created" % (self.i_am_singular, item.account, item.region, item.name)) def find_modified(self, previous=[], current=[], exception_map={}): """ Find any objects that have been changed since the last run of the watcher. Add these items to the changed_items list. """ prev_map = {item.location(): item for item in previous} curr_map = {item.location(): item for item in current} item_locations = list(set(curr_map).intersection(set(prev_map))) item_locations = [item_location for item_location in item_locations if not self.location_in_exception_map(item_location, exception_map)] for location in item_locations: prev_item = prev_map[location] curr_item = curr_map[location] # ChangeItem with and without ephemeral changes eph_change_item = None dur_change_item = None if not sub_dict(prev_item.config) == sub_dict(curr_item.config): eph_change_item = ChangeItem.from_items(old_item=prev_item, new_item=curr_item) if self.ephemerals_skipped(): # deepcopy configs before filtering dur_prev_item = deepcopy(prev_item) dur_curr_item = deepcopy(curr_item) # filter-out ephemeral paths in both old and new config dicts for path in self.ephemeral_paths: for cfg in [dur_prev_item.config, dur_curr_item.config]: try: dpath.util.delete(cfg, path, separator='$') except PathNotFound: pass # now, compare only non-ephemeral paths if not sub_dict(dur_prev_item.config) == sub_dict(dur_curr_item.config): dur_change_item = ChangeItem.from_items(old_item=dur_prev_item, new_item=dur_curr_item) # store all changes, divided in specific categories if eph_change_item: self.ephemeral_items.append(eph_change_item) app.logger.debug("%s: ephemeral changes in item %s/%s/%s" % (self.i_am_singular, eph_change_item.account, eph_change_item.region, eph_change_item.name)) if dur_change_item: self.changed_items.append(dur_change_item) app.logger.debug("%s: durable changes in item %s/%s/%s" % (self.i_am_singular, dur_change_item.account, dur_change_item.region, dur_change_item.name)) elif eph_change_item is not None: # store all changes, handle them all equally self.changed_items.append(eph_change_item) app.logger.debug("%s: changes in item %s/%s/%s" % (self.i_am_singular, eph_change_item.account, eph_change_item.region, eph_change_item.name)) def find_changes(self, current=[], exception_map={}): """ Identify changes between the configuration I have and what I had last time the watcher ran. This ignores any account/region which caused an exception during slurp. """ prev = self.read_previous_items() self.find_deleted(previous=prev, current=current, exception_map=exception_map) self.find_new(previous=prev, current=current) self.find_modified(previous=prev, current=current, exception_map=exception_map) def read_previous_items(self): """ Pulls the last-recorded configuration from the database. :return: List of all items for the given technology and the given account. """ prev_list = [] for account in self.accounts: prev = self.datastore.get_all_ctype_filtered(tech=self.index, account=account, include_inactive=False) # Returns a map of {Item: ItemRevision} for item in prev: item_revision = prev[item] new_item = ChangeItem(index=self.index, region=item.region, account=item.account.name, name=item.name, new_config=item_revision.config) prev_list.append(new_item) return prev_list def is_changed(self): """ Note: It is intentional that self.ephemeral_items is not included here so that emails will not go out about those changes. Those changes will still be recorded in the database and visible in the UI. :return: boolean whether or not we've found any changes """ return self.deleted_items or self.created_items or self.changed_items def issues_found(self): """ Runs through any changed items to see if any have issues. :return: boolean whether any changed items have issues """ has_issues = False has_new_issue = False has_unjustified_issue = False for item in self.created_items + self.changed_items: if item.audit_issues: has_issues = True if item.found_new_issue: has_new_issue = True has_unjustified_issue = True break for issue in item.confirmed_existing_issues: if not issue.justified: has_unjustified_issue = True break return has_issues, has_new_issue, has_unjustified_issue def save(self): """ save new configs, if necessary """ app.logger.info("{} deleted {} in {}".format(len(self.deleted_items), self.i_am_plural, self.accounts)) app.logger.info("{} created {} in {}".format(len(self.created_items), self.i_am_plural, self.accounts)) for item in self.created_items + self.deleted_items: item.save(self.datastore) if self.ephemerals_skipped(): changed_locations = [item.location() for item in self.changed_items] new_item_revisions = [item for item in self.ephemeral_items if item.location() in changed_locations] app.logger.info("{} changed {} in {}".format(len(new_item_revisions), self.i_am_plural, self.accounts)) for item in new_item_revisions: item.save(self.datastore) edit_item_revisions = [item for item in self.ephemeral_items if item.location() not in changed_locations] app.logger.info("{} ephemerally changed {} in {}".format(len(edit_item_revisions), self.i_am_plural, self.accounts)) for item in edit_item_revisions: item.save(self.datastore, ephemeral=True) else: app.logger.info("{} changed {} in {}".format(len(self.changed_items), self.i_am_plural, self.accounts)) for item in self.changed_items: item.save(self.datastore) def plural_name(self): """ Used for Jinja Template :return: i_am_plural """ return self.i_am_plural def singular_name(self): """ Used for Jinja Template :return: i_am_singular """ return self.i_am_singular def get_interval(self): """ Returns interval time (in minutes) """ return self.interval def ephemerals_skipped(self): """ Returns whether ephemerals locations are ignored """ return self.honor_ephemerals class ChangeItem(object): """ Object tracks two different revisions of a given item. """ def __init__(self, index=None, region=None, account=None, name=None, arn=None, old_config={}, new_config={}, active=False, audit_issues=None): self.index = index self.region = region self.account = account self.name = name self.arn = arn self.old_config = old_config self.new_config = new_config self.active = active self.audit_issues = audit_issues or [] self.confirmed_new_issues = [] self.confirmed_fixed_issues = [] self.confirmed_existing_issues = [] self.found_new_issue = False @classmethod def from_items(cls, old_item=None, new_item=None): """ Create ChangeItem from two separate items. :return: An instance of ChangeItem """ if not old_item and not new_item: return valid_item = new_item if new_item else old_item active = True if new_item else False old_config = old_item.config if old_item else {} new_config = new_item.config if new_item else {} return cls(index=valid_item.index, region=valid_item.region, account=valid_item.account, name=valid_item.name, arn=valid_item.arn, old_config=old_config, new_config=new_config, active=active, audit_issues=valid_item.audit_issues) @property def config(self): return self.new_config def location(self): """ Construct a location from the object. :return: tuple containing index, account, region, and name. """ return (self.index, self.account, self.region, self.name) def get_pdiff_html(self): pdiff = PolicyDiff(self.new_config, self.old_config) return pdiff.produceDiffHTML() def _dict_for_template(self): return { 'account': self.account, 'region': self.region, 'name': self.name, 'confirmed_new_issues': self.confirmed_new_issues, 'confirmed_fixed_issues': self.confirmed_fixed_issues, 'confirmed_existing_issues': self.confirmed_existing_issues, 'pdiff_html': self.get_pdiff_html() } def description(self): """ Provide an HTML description of the object for change emails and the Jinja templates. :return: string of HTML desribing the object. """ jenv = get_jinja_env() template = jenv.get_template('jinja_change_item.html') body = template.render(self._dict_for_template()) # app.logger.info(body) return body def save(self, datastore, ephemeral=False): """ Save the item """ app.logger.debug("Saving {}/{}/{}/{}\n\t{}".format(self.index, self.account, self.region, self.name, self.new_config)) datastore.store( self.index, self.region, self.account, self.name, self.active, self.new_config, arn=self.arn, new_issues=self.audit_issues, ephemeral=ephemeral)
bunjiboys/security_monkey
security_monkey/watcher.py
Python
apache-2.0
20,454
# Copyright 2016 The Johns Hopkins University Applied Physics Laboratory # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import six from abc import ABCMeta from six.moves import configparser from intern.service.mesh.service import MeshService, VoxelUnits import os CONFIG_FILE ='~/.intern/intern.cfg' @six.add_metaclass(ABCMeta) class Remote(object): """Base class for communicating with remote data stores. Attributes: _volume (intern.service.Service): Class that communicates with the volume service. _metadata (intern.service.Service): Class that communicates with the metadata service. _project (intern.service.Service): Class that communicates with the project service. _object (intern.service.Service): Class that communicates with the object service. """ def __init__(self, cfg_file_or_dict=None): """Constructor. Loads credentials in order from user provided dictionary > user provided file > default file > environment vars Args: cfg_file_or_dict (optional[str|dict]): Path to config file in INI format or a dict of config parameters. """ # Service Objects self._volume = None self._metadata = None self._project = None self._object = None self._mesh = None # Configuration data loaded from file or passed directly to the constructor # Is available for children Remote classes to use as needed self._config = None # Tokens for Services self._token_project = None self._token_metadata = None self._token_volume = None self._token_object = None if cfg_file_or_dict is None: # Default to the config file in the user directory if no config file was provided cfg_file_or_dict = os.path.expanduser(CONFIG_FILE) if isinstance(cfg_file_or_dict, dict): # A config dictionary was provided directly. Keep things consistent by creating an INI string. cfg_str = "[Default]\n" for key in cfg_file_or_dict: cfg_str = "{}{} = {}\n".format(cfg_str, key, cfg_file_or_dict[key]) self._config = self.load_config_file(six.StringIO(cfg_str)) else: # A file path was provided by the user if os.path.isfile(os.path.expanduser(cfg_file_or_dict)): with open(os.path.expanduser(cfg_file_or_dict), 'r') as cfg_file_handle: self._config = self.load_config_file(cfg_file_handle) else: # Provided file or default file do not exist. Try loading from env variables if "INTERN_PROTOCOL" in os.environ and "INTERN_HOST" in os.environ and "INTERN_TOKEN" in os.environ: cfg_str = "[Default]\n" cfg_str = "{}{} = {}\n".format(cfg_str, "protocol", os.environ['INTERN_PROTOCOL']) cfg_str = "{}{} = {}\n".format(cfg_str, "host", os.environ['INTERN_HOST']) cfg_str = "{}{} = {}\n".format(cfg_str, "token", os.environ['INTERN_TOKEN']) self._config = self.load_config_file(six.StringIO(cfg_str)) else: raise IOError("Configuration file not found: {}. Please provide credential file or set environment variables".format(cfg_file_or_dict)) self._init_mesh_service() def load_config_file(self, config_handle): """Load config data for the Remote. Args: config_handle (io.StringIO): Config data encoded in a string. Returns: (configparser.ConfigParser) """ cfg_parser = configparser.ConfigParser() cfg_parser.read_file(config_handle) return cfg_parser def _init_mesh_service(self): """ Method to initialize the Mesh Service Args: None Returns: None Raises: (KeyError): if given invalid version. """ self._mesh = MeshService() @property def volume_service(self): return self._volume @property def project_service(self): return self._project @property def metadata_service(self): return self._metadata @property def object_service(self): return self._object @property def mesh_service(self): return self._mesh def list_project(self, **kwargs): """Perform list operation on the project. What this does is highly dependent on project's data model. Args: (**kwargs): Args are implementation dependent. Returns: (list) """ return self._project.list(**kwargs) def get_cutout(self, resource, resolution, x_range, y_range, z_range, time_range=None, id_list=[], parallel: bool= True, **kwargs): """Get a cutout from the volume service. Args: resource (intern.resource.Resource): Resource compatible with cutout operations. resolution (int): 0 indicates native resolution. x_range (list[int]): x range such as [10, 20] which means x>=10 and x<20. y_range (list[int]): y range such as [10, 20] which means y>=10 and y<20. z_range (list[int]): z range such as [10, 20] which means z>=10 and z<20. time_range (optional [list[int]]): time range such as [30, 40] which means t>=30 and t<40. id_list (optional [list]): list of object ids to filter the cutout by. parallel (bool: True): Whether downloads should be parallelized using multiprocessing Returns: (): Return type depends on volume service's implementation. Raises: RuntimeError when given invalid resource. Other exceptions may be raised depending on the volume service's implementation. """ if not resource.valid_volume(): raise RuntimeError('Resource incompatible with the volume service.') return self._volume.get_cutout( resource, resolution, x_range, y_range, z_range, time_range, id_list, parallel = parallel, **kwargs ) def create_cutout(self, resource, resolution, x_range, y_range, z_range, data, time_range=None): """Upload a cutout to the volume service. Args: resource (intern.resource.Resource): Resource compatible with cutout operations. resolution (int): 0 indicates native resolution. x_range (list[int]): x range such as [10, 20] which means x>=10 and x<20. y_range (list[int]): y range such as [10, 20] which means y>=10 and y<20. z_range (list[int]): z range such as [10, 20] which means z>=10 and z<20. data (object): Type depends on implementation. time_range (optional [list[int]]): time range such as [30, 40] which means t>=30 and t<40. Returns: (): Return type depends on volume service's implementation. Raises: RuntimeError when given invalid resource. Other exceptions may be raised depending on the volume service's implementation. """ if not resource.valid_volume(): raise RuntimeError('Resource incompatible with the volume service.') return self._volume.create_cutout( resource, resolution, x_range, y_range, z_range, data, time_range) def reserve_ids(self, resource, num_ids): """Reserve a block of unique, sequential ids for annotations. Args: resource (intern.resource.Resource): Resource compatible with annotation operations. num_ids (int): Number of ids to reserve. Returns: (int): First id reserved. """ if not resource.valid_volume(): raise RuntimeError('Resource incompatible with the volume service.') return self._volume.reserve_ids(resource, num_ids) def get_extents(self, resource): """Get extents of data volume Args: resource (intern.resource.Resource): Data platform resource. Returns: extents (array): [[x-min, max-x], [y-min, max-y], [z-min, max-z]] """ return self._metadata.get_extents(resource) def get_bounding_box(self, resource, resolution, id, bb_type='loose'): """Get bounding box containing object specified by id. Currently only supports 'loose' bounding boxes. The bounding box returned is cuboid aligned. Args: resource (intern.resource.Resource): Resource compatible with annotation operations. resolution (int): 0 indicates native resolution. id (int): Id of object of interest. bb_type (optional[string]): Defaults to 'loose'. Returns: (dict): {'x_range': [0, 10], 'y_range': [0, 10], 'z_range': [0, 10], 't_range': [0, 10]} """ if not resource.valid_volume(): raise RuntimeError('Resource incompatible with the volume service.') if bb_type != 'loose' and bb_type != 'tight': raise RuntimeError("bb_type must be either 'loose' or 'tight'.") return self._volume.get_bounding_box(resource, resolution, id, bb_type) def get_ids_in_region( self, resource, resolution, x_range, y_range, z_range, time_range=[0, 1]): """Get all ids in the region defined by x_range, y_range, z_range. Args: resource (intern.resource.Resource): Resource compatible with annotation operations. resolution (int): 0 indicates native resolution. x_range (list[int]): x range such as [10, 20] which means x>=10 and x<20. y_range (list[int]): y range such as [10, 20] which means y>=10 and y<20. z_range (list[int]): z range such as [10, 20] which means z>=10 and z<20. time_range (optional [list[int]]): time range such as [30, 40] which means t>=30 and t<40. Defaults to [0, 1]. Returns: (list[int]): Example: [1, 2, 25]. Raises: requests.HTTPError TypeError: if resource is not an annotation channel. """ return self._volume.get_ids_in_region( resource, resolution, x_range, y_range, z_range, time_range) def mesh(self, resource, resolution, x_range, y_range, z_range, time_range=None, id_list=[], voxel_unit=VoxelUnits.nm, voxel_size=[4,4,40], simp_fact = 0, max_simplification_error=60, normals=False, **kwargs): """Generate a mesh of the specified IDs Args: resource (intern.resource.Resource): Resource compatible with cutout operations. resolution (int): 0 indicates native resolution. x_range (list[int]): x range such as [10, 20] which means x>=10 and x<20. y_range (list[int]): y range such as [10, 20] which means y>=10 and y<20. z_range (list[int]): z range such as [10, 20] which means z>=10 and z<20. time_range (optional [list[int]]): time range such as [30, 40] which means t>=30 and t<40. time_range (optional [list[int]]): time range such as [30, 40] which means t>=30 and t<40. id_list (optional [list]): list of object ids to filter the volume by. voxel_unit (optional VoxelUnit): voxel unit of measurement to derive conversion factor. voxel_size (optional [list]): list in form [x,y,z] of voxel size. Defaults to 4x4x40nm simp_fact (optional int): mesh simplification factor, reduces triangles by given factor max_simplification_error (optional int): Max tolerable error in physical distance normals (optional bool): if true will calculate normals Returns: mesh (intern.service.mesh.Mesh): mesh class Raises: RuntimeError when given invalid resource. Other exceptions may be raised depending on the volume service's implementation. """ if not resource.valid_volume(): raise RuntimeError('Resource incompatible with the volume service.') volume = self._volume.get_cutout( resource, resolution, x_range, y_range, z_range, time_range, id_list, **kwargs) mesh = self._mesh.create( volume, x_range, y_range, z_range, time_range, id_list, voxel_unit, voxel_size, simp_fact, max_simplification_error, normals) return mesh
jhuapl-boss/intern
intern/remote/remote.py
Python
apache-2.0
13,084
# Copyright 2020 The TensorFlow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This module implements the recall metric.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from typing import Any, Callable, List, Optional, Tuple, Union import tensorflow as tf from tensorflow_graphics.util import export_api from tensorflow_graphics.util import safe_ops from tensorflow_graphics.util import shape from tensorflow_graphics.util import type_alias def _cast_to_int(prediction): return tf.cast(x=prediction, dtype=tf.int32) def evaluate(ground_truth: type_alias.TensorLike, prediction: type_alias.TensorLike, classes: Optional[Union[int, List[int], Tuple[int]]] = None, reduce_average: bool = True, prediction_to_category_function: Callable[..., Any] = _cast_to_int, name: str = "recall_evaluate") -> tf.Tensor: """Computes the recall metric for the given ground truth and predictions. Note: In the following, A1 to An are optional batch dimensions, which must be broadcast compatible. Args: ground_truth: A tensor of shape `[A1, ..., An, N]`, where the last axis represents the ground truth labels. Will be cast to int32. prediction: A tensor of shape `[A1, ..., An, N]`, where the last axis represents the predictions (which can be continuous). classes: An integer or a list/tuple of integers representing the classes for which the recall will be evaluated. In case 'classes' is 'None', the number of classes will be inferred from the given values and the recall will be calculated for each of the classes. Defaults to 'None'. reduce_average: Whether to calculate the average of the recall for each class and return a single recall value. Defaults to true. prediction_to_category_function: A function to associate a `prediction` to a category. Defaults to rounding down the value of the prediction to the nearest integer value. name: A name for this op. Defaults to "recall_evaluate". Returns: A tensor of shape `[A1, ..., An, C]`, where the last axis represents the recall calculated for each of the requested classes. Raises: ValueError: if the shape of `ground_truth`, `prediction` is not supported. """ with tf.name_scope(name): ground_truth = tf.cast( x=tf.convert_to_tensor(value=ground_truth), dtype=tf.int32) prediction = tf.convert_to_tensor(value=prediction) shape.compare_batch_dimensions( tensors=(ground_truth, prediction), tensor_names=("ground_truth", "prediction"), last_axes=-1, broadcast_compatible=True) prediction = prediction_to_category_function(prediction) if classes is None: num_classes = tf.math.maximum( tf.math.reduce_max(input_tensor=ground_truth), tf.math.reduce_max(input_tensor=prediction)) + 1 classes = tf.range(num_classes) else: classes = tf.convert_to_tensor(value=classes) # Make sure classes is a tensor of rank 1. classes = tf.reshape(classes, [1]) if tf.rank(classes) == 0 else classes # Create a confusion matrix for each of the classes (with dimensions # [A1, ..., An, C, N]). classes = tf.expand_dims(classes, -1) ground_truth_per_class = tf.equal(tf.expand_dims(ground_truth, -2), classes) prediction_per_class = tf.equal(tf.expand_dims(prediction, -2), classes) # Caluclate the recall for each of the classes. true_positives = tf.math.reduce_sum( input_tensor=tf.cast( x=tf.math.logical_and(ground_truth_per_class, prediction_per_class), dtype=tf.float32), axis=-1) total_ground_truth_positives = tf.math.reduce_sum( input_tensor=tf.cast(x=ground_truth_per_class, dtype=tf.float32), axis=-1) recall_per_class = safe_ops.safe_signed_div(true_positives, total_ground_truth_positives) if reduce_average: return tf.math.reduce_mean(input_tensor=recall_per_class, axis=-1) else: return recall_per_class # API contains all public functions and classes. __all__ = export_api.get_functions_and_classes()
tensorflow/graphics
tensorflow_graphics/nn/metric/recall.py
Python
apache-2.0
4,776
#!/usr/bin/env python # This work was created by participants in the DataONE project, and is # jointly copyrighted by participating institutions in DataONE. For # more information on DataONE, see our web site at http://dataone.org. # # Copyright 2009-2019 DataONE # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A set of Unicode strings that are particularly likely to trip up the unwary.""" UNICODE_TEST_STRINGS = [ "common-unicode-ascii-safe-ABCDEFGHIJKLMNOPQRSTUVWXYZ", "common-unicode-ascii-safe-abcdefghijklmnopqrstuvwxyz", "common-unicode-ascii-safe-0123456789", "common-unicode-ascii-safe-:@$-_.!*()',~", "common-unicode-ascii-safe-unreserved-._~", "common-unicode-ascii-safe-sub-delims-$!*()',", "common-unicode-ascii-safe-gen-delims-:@", 'common-unicode-ascii-escaped-"#<>[]^`{}|', "common-unicode-ascii-escaped-tomcatBlocked-\\", "common-unicode-ascii-escaped-tomcatBlocked-%5C", "common-unicode-ascii-semi-colon-test-%3B", "common-unicode-ascii-escaped-%", "common-unicode-ascii-escaped-space x x", "common-unicode-ascii-escape-anyway-+", "common-unicode-ascii-escape-space-v-plus-+ +%20 %20+", "path-unicode-ascii-safe-&=&=", "path-unicode-ascii-escaped-;", "path-unicode-ascii-escaped-?", "path-unicode-ascii-escaped-/", "path-unicode-ascii-escaped-%3F", "path-unicode-ascii-escaped-%2F", "path-unicode-ascii-escaped-double-//case", "path-unicode-ascii-escaped-double-trailing//", "path-unicode-ascii-escaped-double-%2F%2Fcase", "path-unicode-ascii-escaped-double-trailing%2F%2F", "query-unicode-ascii-safe-;", "query-unicode-ascii-safe-/?", "query-unicode-ascii-escaped-&=&=", "fragment-unicode-ascii-safe-;", "fragment-unicode-ascii-safe-&=&=/?", "common-unicode-bmp-1byte-escaped-¡¢£", "common-unicode-bmp-2byte-escaped-䦹䦺", "common-unicode-supplementary-escaped-𐌔𐌕𐌖𐌗", "query-unicode-ascii-escaped-this&that=theOther", "common-ascii-doc-example-urn:lsid:ubio.org:namebank:11815", "path-ascii-doc-example-10.1000/182", "query-ascii-doc-example-10.1000/182", "fragment-ascii-doc-example-10.1000/182", "path-ascii-doc-example-http://example.com/data/mydata?row=24", "query-ascii-doc-example-http://example.com/data/mydata?row=24", "fragment-ascii-doc-example-http://example.com/data/mydata?row=24", "path-ascii-doc-example-ldap://ldap1.example.net:6666/" "o=University%20of%20Michigan, c=US??sub?(cn=Babs%20Jensen)", "query-ascii-doc-example-ldap://ldap1.example.net:6666/" "o=University%20of%20Michigan, c=US??sub?(cn=Babs%20Jensen)", "fragment-ascii-doc-example-ldap://ldap1.example.net:6666/" "o=University%20of%20Michigan, c=US??sub?(cn=Babs%20Jensen)", "common-bmp-doc-example-ฉันกินกระจกได้", "common-bmp-doc-example-Is féidir liom ithe gloine", "decode-space-potential-error-unescaped-plus-+", ]
DataONEorg/d1_python
test_utilities/src/d1_test/instance_generator/unicode_test_strings.py
Python
apache-2.0
3,468
"""Unit tests for Port""" import unittest from faucet.port import Port class MockVLAN(object): # pylint: disable=too-few-public-methods """Mock class for VLAN so we can inject into Port""" def __init__(self, name): self.name = name class FaucetPortConfigTest(unittest.TestCase): # pytype: disable=module-attr """Test that Port serialises config as it receives it""" def setUp(self): """Defines the default config - this should match the documentation""" self.default_config = { 'acl_in': None, 'acls_in': None, 'description': None, 'enabled': True, 'hairpin': False, 'lacp': 0, 'lldp_beacon': {}, 'loop_protect': False, 'max_hosts': 255, 'mirror': None, # .to_conf() doesn't export name 'native_vlan': None, 'number': None, 'opstatus_reconf': True, 'output_only': False, 'override_output_port': None, 'permanent_learn': False, 'receive_lldp': False, 'stack': None, 'tagged_vlans': [], 'unicast_flood': True } def test_basic_config(self): """Tests the minimal config""" port_number = 1 port_key = 1 input_config = {} output_config = { 'description': str(port_key), 'number': port_number } expected_config = self.default_config expected_config.update(input_config) expected_config.update(output_config) port = Port(port_key, 1, input_config) output_config = port.to_conf() self.assertEqual(output_config, expected_config) key_exceptions = [ 'name', '_id', 'dp_id', 'dyn_phys_up' ] dict_keys = set(port.__dict__.keys()) conf_keys = set(port.to_conf().keys()) for exception in key_exceptions: dict_keys.remove(exception) self.assertEqual(dict_keys, conf_keys) def test_config_with_port_number(self): """Tests the minimal config""" port_number = 1 port_key = 'port_1' input_config = { 'number': port_number } output_config = { 'description': str(port_key), 'number': port_number } expected_config = self.default_config expected_config.update(input_config) expected_config.update(output_config) port = Port(port_key, 1, input_config) output_config = port.to_conf() self.assertEqual(output_config, expected_config) def test_config_with_vlans(self): """Tests the config with tagged and native vlans""" vlan100 = MockVLAN('v100') vlan200 = MockVLAN('v200') vlan300 = MockVLAN('v300') tagged_vlans = [vlan200, vlan300] native_vlan = vlan100 port_number = 1 port_key = 'port_1' input_config = { 'number': port_number } output_config = { 'description': str(port_key), 'number': port_number, 'native_vlan': vlan100.name, 'tagged_vlans': [vlan200.name, vlan300.name] } expected_config = self.default_config expected_config.update(input_config) expected_config.update(output_config) port = Port(port_key, 1, input_config) port.native_vlan = native_vlan port.tagged_vlans = tagged_vlans output_config = port.to_conf() self.assertEqual(output_config, expected_config) class FaucetPortMethodTest(unittest.TestCase): # pytype: disable=module-attr """Test a range of methods on Port""" def test_vlans(self): """Test that the vlans() method behaves correctly""" vlan100 = MockVLAN('v100') vlan200 = MockVLAN('v200') vlan300 = MockVLAN('v300') tagged_vlans = [vlan200, vlan300] native_vlan = vlan100 port = Port(1, 1, {}) port.native_vlan = native_vlan self.assertEqual(port.vlans(), [native_vlan]) port.tagged_vlans = tagged_vlans self.assertEqual(set(port.vlans()), set([native_vlan] + tagged_vlans)) port.native_vlan = None self.assertEqual(set(port.vlans()), set(tagged_vlans))
wackerly/faucet
tests/test_port.py
Python
apache-2.0
4,410
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore from google.ads.googleads.v8.enums.types import extension_setting_device from google.ads.googleads.v8.enums.types import ( extension_type as gage_extension_type, ) __protobuf__ = proto.module( package="google.ads.googleads.v8.resources", marshal="google.ads.googleads.v8", manifest={"AdGroupExtensionSetting",}, ) class AdGroupExtensionSetting(proto.Message): r"""An ad group extension setting. Attributes: resource_name (str): Immutable. The resource name of the ad group extension setting. AdGroupExtensionSetting resource names have the form: ``customers/{customer_id}/adGroupExtensionSettings/{ad_group_id}~{extension_type}`` extension_type (google.ads.googleads.v8.enums.types.ExtensionTypeEnum.ExtensionType): Immutable. The extension type of the ad group extension setting. ad_group (str): Immutable. The resource name of the ad group. The linked extension feed items will serve under this ad group. AdGroup resource names have the form: ``customers/{customer_id}/adGroups/{ad_group_id}`` extension_feed_items (Sequence[str]): The resource names of the extension feed items to serve under the ad group. ExtensionFeedItem resource names have the form: ``customers/{customer_id}/extensionFeedItems/{feed_item_id}`` device (google.ads.googleads.v8.enums.types.ExtensionSettingDeviceEnum.ExtensionSettingDevice): The device for which the extensions will serve. Optional. """ resource_name = proto.Field(proto.STRING, number=1,) extension_type = proto.Field( proto.ENUM, number=2, enum=gage_extension_type.ExtensionTypeEnum.ExtensionType, ) ad_group = proto.Field(proto.STRING, number=6, optional=True,) extension_feed_items = proto.RepeatedField(proto.STRING, number=7,) device = proto.Field( proto.ENUM, number=5, enum=extension_setting_device.ExtensionSettingDeviceEnum.ExtensionSettingDevice, ) __all__ = tuple(sorted(__protobuf__.manifest))
googleads/google-ads-python
google/ads/googleads/v8/resources/types/ad_group_extension_setting.py
Python
apache-2.0
2,824
# coding: utf-8 ''' Author: Sean Luo Email: Sean.S.Luo@gmail.com Version: module Date: 2011-12-1 ''' import sqlite3 import xlwt import os from mod_utils import get_cities def make_xls(city_name): db_path = '../data/database/' + city_name + '.db' xls_path = '../result_data_folder_has_a_long_name/' + city_name + '.xls' conn = sqlite3.connect(db_path) conn.text_factory = str file = xlwt.Workbook(encoding='utf-8') table = file.add_sheet('average') print ('Average') cur = conn.cursor() cur.execute('SELECT * FROM tbl_average') rs = cur.fetchall() rowcnt = 0 for result in rs: date = result[0] time = result[1] so2 = result[2] no2 = result[3] pm10 = result[4] table.write(rowcnt, 0, date) table.write(rowcnt, 1, time) table.write(rowcnt, 2, so2) table.write(rowcnt, 3, no2) table.write(rowcnt, 4, pm10) rowcnt += 1 file.save(xls_path) cur.execute('SELECT * FROM tbl_station') rs = cur.fetchall() for result in rs: id = result[0] name = result[1] print id, name.decode('utf-8') cur.execute('SELECT * FROM ' + name) rset = cur.fetchall() table = file.add_sheet(name) rowcnt = 0 for r in rset: date = r[0] time = r[1] so2 = r[2] no2 = r[3] pm10 = r[4] table.write(rowcnt, 0, date) table.write(rowcnt, 1, time) table.write(rowcnt, 2, so2) table.write(rowcnt, 3, no2) table.write(rowcnt, 4, pm10) rowcnt += 1 file.save(xls_path) cur.close() conn.close() def main(): city = get_cities() num = len(city) cnt = 0 for one_city in city: cnt += 1 print (str(cnt) + '/' + str(num) + '\tMake XLS for: ' + one_city) try: make_xls(one_city) except: print('Make XLS failed for:' + one_city) print ('Job\'s done!') raw_input('Press any ENTER to continue...') if __name__ == '__main__': try: os.mkdir('../result_data_folder_has_a_long_name') main() except: answer = raw_input('Excel files exist, overwrite? (y/N)') if answer != 'y': pass else: main()
seanluo/air-pollution
bin/make_xls.py
Python
apache-2.0
2,373
#!/usr/bin/env python import webapp2 from google.appengine.api import mail from model.model import UserData class EmailTaskHandler(webapp2.RequestHandler): def post(self): owner_id = self.request.get('owner_id') owner_email = UserData.get_by_id(owner_id).email if mail.is_email_valid(owner_email): nickname = self.request.get('nickname') sender_address = 'Lunch Mate' ' <lunchmates@lunch--mates.appspotmail.com>' subject = 'Request to join your meeting' body = '%s has requested to join your meeting!' % nickname mail.send_mail(sender_address, owner_email, subject, body)
GoogleCloudPlatformBook/lunchmates-api
tasks/emails.py
Python
apache-2.0
683
# # Copyright 2015 Benjamin Kiessling # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express # or implied. See the License for the specific language governing # permissions and limitations under the License. import os import glob import uuid import click import logging import unicodedata from PIL import Image from rich.traceback import install from bidi.algorithm import get_display from typing import cast, Set, List, IO, Any, Dict from kraken.lib import log from kraken.lib.progress import KrakenProgressBar from kraken.lib.exceptions import KrakenCairoSurfaceException from kraken.lib.exceptions import KrakenInputException from kraken.lib.default_specs import (SEGMENTATION_HYPER_PARAMS, RECOGNITION_HYPER_PARAMS, SEGMENTATION_SPEC, RECOGNITION_SPEC) APP_NAME = 'kraken' logging.captureWarnings(True) logger = logging.getLogger('kraken') # install rich traceback handler install(suppress=[click]) # raise default max image size to 20k * 20k pixels Image.MAX_IMAGE_PIXELS = 20000 ** 2 def message(msg, **styles): if logger.getEffectiveLevel() >= 30: click.secho(msg, **styles) @click.group() @click.version_option() @click.pass_context @click.option('-v', '--verbose', default=0, count=True) @click.option('-s', '--seed', default=None, type=click.INT, help='Seed for numpy\'s and torch\'s RNG. Set to a fixed value to ' 'ensure reproducible random splits of data') def cli(ctx, verbose, seed): if seed: import numpy.random numpy.random.seed(seed) from torch import manual_seed manual_seed(seed) ctx.meta['verbose'] = verbose log.set_logger(logger, level=30 - min(10 * verbose, 20)) def _validate_manifests(ctx, param, value): images = [] for manifest in value: for entry in manifest.readlines(): im_p = entry.rstrip('\r\n') if os.path.isfile(im_p): images.append(im_p) else: logger.warning('Invalid entry "{}" in {}'.format(im_p, manifest.name)) return images def _expand_gt(ctx, param, value): images = [] for expression in value: images.extend([x for x in glob.iglob(expression, recursive=True) if os.path.isfile(x)]) return images def _validate_merging(ctx, param, value): """ Maps baseline/region merging to a dict of merge structures. """ if not value: return None merge_dict = {} # type: Dict[str, str] try: for m in value: k, v = m.split(':') merge_dict[v] = k # type: ignore except Exception: raise click.BadParameter('Mappings must be in format target:src') return merge_dict @cli.command('segtrain') @click.pass_context @click.option('-o', '--output', show_default=True, type=click.Path(), default='model', help='Output model file') @click.option('-s', '--spec', show_default=True, default=SEGMENTATION_SPEC, help='VGSL spec of the baseline labeling network') @click.option('--line-width', show_default=True, default=SEGMENTATION_HYPER_PARAMS['line_width'], help='The height of each baseline in the target after scaling') @click.option('-i', '--load', show_default=True, type=click.Path(exists=True, readable=True), help='Load existing file to continue training') @click.option('-F', '--freq', show_default=True, default=SEGMENTATION_HYPER_PARAMS['freq'], type=click.FLOAT, help='Model saving and report generation frequency in epochs ' 'during training. If frequency is >1 it must be an integer, ' 'i.e. running validation every n-th epoch.') @click.option('-q', '--quit', show_default=True, default=SEGMENTATION_HYPER_PARAMS['quit'], type=click.Choice(['early', 'dumb']), help='Stop condition for training. Set to `early` for early stopping or `dumb` for fixed number of epochs') @click.option('-N', '--epochs', show_default=True, default=SEGMENTATION_HYPER_PARAMS['epochs'], help='Number of epochs to train for') @click.option('--min-epochs', show_default=True, default=SEGMENTATION_HYPER_PARAMS['min_epochs'], help='Minimal number of epochs to train for when using early stopping.') @click.option('--lag', show_default=True, default=SEGMENTATION_HYPER_PARAMS['lag'], help='Number of evaluations (--report frequence) to wait before stopping training without improvement') @click.option('--min-delta', show_default=True, default=SEGMENTATION_HYPER_PARAMS['min_delta'], type=click.FLOAT, help='Minimum improvement between epochs to reset early stopping. By default it scales the delta by the best loss') @click.option('-d', '--device', show_default=True, default='cpu', help='Select device to use (cpu, cuda:0, cuda:1, ...)') @click.option('--optimizer', show_default=True, default=SEGMENTATION_HYPER_PARAMS['optimizer'], type=click.Choice(['Adam', 'SGD', 'RMSprop', 'Lamb']), help='Select optimizer') @click.option('-r', '--lrate', show_default=True, default=SEGMENTATION_HYPER_PARAMS['lrate'], help='Learning rate') @click.option('-m', '--momentum', show_default=True, default=SEGMENTATION_HYPER_PARAMS['momentum'], help='Momentum') @click.option('-w', '--weight-decay', show_default=True, default=SEGMENTATION_HYPER_PARAMS['weight_decay'], help='Weight decay') @click.option('--schedule', show_default=True, type=click.Choice(['constant', '1cycle', 'exponential', 'cosine', 'step', 'reduceonplateau']), default=SEGMENTATION_HYPER_PARAMS['schedule'], help='Set learning rate scheduler. For 1cycle, cycle length is determined by the `--step-size` option.') @click.option('-g', '--gamma', show_default=True, default=SEGMENTATION_HYPER_PARAMS['gamma'], help='Decay factor for exponential, step, and reduceonplateau learning rate schedules') @click.option('-ss', '--step-size', show_default=True, default=SEGMENTATION_HYPER_PARAMS['step_size'], help='Number of validation runs between learning rate decay for exponential and step LR schedules') @click.option('--sched-patience', show_default=True, default=SEGMENTATION_HYPER_PARAMS['rop_patience'], help='Minimal number of validation runs between LR reduction for reduceonplateau LR schedule.') @click.option('--cos-max', show_default=True, default=SEGMENTATION_HYPER_PARAMS['cos_t_max'], help='Epoch of minimal learning rate for cosine LR scheduler.') @click.option('-p', '--partition', show_default=True, default=0.9, help='Ground truth data partition ratio between train/validation set') @click.option('-t', '--training-files', show_default=True, default=None, multiple=True, callback=_validate_manifests, type=click.File(mode='r', lazy=True), help='File(s) with additional paths to training data') @click.option('-e', '--evaluation-files', show_default=True, default=None, multiple=True, callback=_validate_manifests, type=click.File(mode='r', lazy=True), help='File(s) with paths to evaluation data. Overrides the `-p` parameter') @click.option('--workers', show_default=True, default=1, help='Number of OpenMP threads and workers when running on CPU.') @click.option('--load-hyper-parameters/--no-load-hyper-parameters', show_default=True, default=False, help='When loading an existing model, retrieve hyper-parameters from the model') @click.option('--force-binarization/--no-binarization', show_default=True, default=False, help='Forces input images to be binary, otherwise ' 'the appropriate color format will be auto-determined through the ' 'network specification. Will be ignored in `path` mode.') @click.option('-f', '--format-type', type=click.Choice(['path', 'xml', 'alto', 'page']), default='xml', help='Sets the training data format. In ALTO and PageXML mode all ' 'data is extracted from xml files containing both baselines and a ' 'link to source images. In `path` mode arguments are image files ' 'sharing a prefix up to the last extension with JSON `.path` files ' 'containing the baseline information.') @click.option('--suppress-regions/--no-suppress-regions', show_default=True, default=False, help='Disables region segmentation training.') @click.option('--suppress-baselines/--no-suppress-baselines', show_default=True, default=False, help='Disables baseline segmentation training.') @click.option('-vr', '--valid-regions', show_default=True, default=None, multiple=True, help='Valid region types in training data. May be used multiple times.') @click.option('-vb', '--valid-baselines', show_default=True, default=None, multiple=True, help='Valid baseline types in training data. May be used multiple times.') @click.option('-mr', '--merge-regions', show_default=True, default=None, help='Region merge mapping. One or more mappings of the form `$target:$src` where $src is merged into $target.', multiple=True, callback=_validate_merging) @click.option('-mb', '--merge-baselines', show_default=True, default=None, help='Baseline type merge mapping. Same syntax as `--merge-regions`', multiple=True, callback=_validate_merging) @click.option('-br', '--bounding-regions', show_default=True, default=None, multiple=True, help='Regions treated as boundaries for polygonization purposes. May be used multiple times.') @click.option('--augment/--no-augment', show_default=True, default=SEGMENTATION_HYPER_PARAMS['augment'], help='Enable image augmentation') @click.option('--resize', show_default=True, default='fail', type=click.Choice(['add', 'both', 'fail']), help='Output layer resizing option. If set to `add` new classes will be ' 'added, `both` will set the layer to match exactly ' 'the training data classes, `fail` will abort if training data and model ' 'classes do not match.') @click.option('-tl', '--topline', 'topline', show_default=True, flag_value='topline', help='Switch for the baseline location in the scripts. ' 'Set to topline if the data is annotated with a hanging baseline, as is ' 'common with Hebrew, Bengali, Devanagari, etc. Set to ' ' centerline for scripts annotated with a central line.') @click.option('-cl', '--centerline', 'topline', flag_value='centerline') @click.option('-bl', '--baseline', 'topline', flag_value='baseline', default='baseline') @click.argument('ground_truth', nargs=-1, callback=_expand_gt, type=click.Path(exists=False, dir_okay=False)) def segtrain(ctx, output, spec, line_width, load, freq, quit, epochs, min_epochs, lag, min_delta, device, optimizer, lrate, momentum, weight_decay, schedule, gamma, step_size, sched_patience, cos_max, partition, training_files, evaluation_files, workers, load_hyper_parameters, force_binarization, format_type, suppress_regions, suppress_baselines, valid_regions, valid_baselines, merge_regions, merge_baselines, bounding_regions, augment, resize, topline, ground_truth): """ Trains a baseline labeling model for layout analysis """ import shutil from kraken.lib.train import SegmentationModel, KrakenTrainer if resize != 'fail' and not load: raise click.BadOptionUsage('resize', 'resize option requires loading an existing model') if not (0 <= freq <= 1) and freq % 1.0 != 0: raise click.BadOptionUsage('freq', 'freq needs to be either in the interval [0,1.0] or a positive integer.') logger.info('Building ground truth set from {} document images'.format(len(ground_truth) + len(training_files))) # populate hyperparameters from command line args hyper_params = SEGMENTATION_HYPER_PARAMS.copy() hyper_params.update({'line_width': line_width, 'freq': freq, 'quit': quit, 'epochs': epochs, 'min_epochs': min_epochs, 'lag': lag, 'min_delta': min_delta, 'optimizer': optimizer, 'lrate': lrate, 'momentum': momentum, 'weight_decay': weight_decay, 'schedule': schedule, 'augment': augment, 'gamma': gamma, 'step_size': step_size, 'rop_patience': sched_patience, 'cos_t_max': cos_max}) # disable automatic partition when given evaluation set explicitly if evaluation_files: partition = 1 ground_truth = list(ground_truth) # merge training_files into ground_truth list if training_files: ground_truth.extend(training_files) if len(ground_truth) == 0: raise click.UsageError('No training data was provided to the train command. Use `-t` or the `ground_truth` argument.') loc = {'topline': True, 'baseline': False, 'centerline': None} topline = loc[topline] if device == 'cpu': device = None elif device.startswith('cuda'): device = [int(device.split(':')[-1])] if hyper_params['freq'] > 1: val_check_interval = {'check_val_every_n_epoch': int(hyper_params['freq'])} else: val_check_interval = {'val_check_interval': hyper_params['freq']} model = SegmentationModel(hyper_params, output=output, spec=spec, model=load, training_data=ground_truth, evaluation_data=evaluation_files, partition=partition, num_workers=workers, load_hyper_parameters=load_hyper_parameters, force_binarization=force_binarization, format_type=format_type, suppress_regions=suppress_regions, suppress_baselines=suppress_baselines, valid_regions=valid_regions, valid_baselines=valid_baselines, merge_regions=merge_regions, merge_baselines=merge_baselines, bounding_regions=bounding_regions, resize=resize, topline=topline) message('Training line types:') for k, v in model.train_set.dataset.class_mapping['baselines'].items(): message(f' {k}\t{v}\t{model.train_set.dataset.class_stats["baselines"][k]}') message('Training region types:') for k, v in model.train_set.dataset.class_mapping['regions'].items(): message(f' {k}\t{v}\t{model.train_set.dataset.class_stats["regions"][k]}') if len(model.train_set) == 0: raise click.UsageError('No valid training data was provided to the train command. Use `-t` or the `ground_truth` argument.') trainer = KrakenTrainer(gpus=device, max_epochs=hyper_params['epochs'] if hyper_params['quit'] == 'dumb' else -1, min_epochs=hyper_params['min_epochs'], enable_progress_bar=True if not ctx.meta['verbose'] else False, **val_check_interval) trainer.fit(model) if quit == 'early': message('Moving best model {0}_{1}.mlmodel ({2}) to {0}_best.mlmodel'.format( output, trainer.stopper.best_epoch, trainer.stopper.best_loss)) logger.info('Moving best model {0}_{1}.mlmodel ({2}) to {0}_best.mlmodel'.format( output, trainer.stopper.best_epoch, trainer.stopper.best_loss)) shutil.copy(f'{output}_{trainer.stopper.best_epoch}.mlmodel', f'{output}_best.mlmodel') @cli.command('train') @click.pass_context @click.option('-B', '--batch-size', show_default=True, type=click.INT, default=RECOGNITION_HYPER_PARAMS['batch_size'], help='batch sample size') @click.option('--pad', show_default=True, type=click.INT, default=16, help='Left and right ' 'padding around lines') @click.option('-o', '--output', show_default=True, type=click.Path(), default='model', help='Output model file') @click.option('-s', '--spec', show_default=True, default=RECOGNITION_SPEC, help='VGSL spec of the network to train. CTC layer will be added automatically.') @click.option('-a', '--append', show_default=True, default=None, type=click.INT, help='Removes layers before argument and then appends spec. Only works when loading an existing model') @click.option('-i', '--load', show_default=True, type=click.Path(exists=True, readable=True), help='Load existing file to continue training') @click.option('-F', '--freq', show_default=True, default=RECOGNITION_HYPER_PARAMS['freq'], type=click.FLOAT, help='Model saving and report generation frequency in epochs ' 'during training. If frequency is >1 it must be an integer, ' 'i.e. running validation every n-th epoch.') @click.option('-q', '--quit', show_default=True, default=RECOGNITION_HYPER_PARAMS['quit'], type=click.Choice(['early', 'dumb']), help='Stop condition for training. Set to `early` for early stooping or `dumb` for fixed number of epochs') @click.option('-N', '--epochs', show_default=True, default=RECOGNITION_HYPER_PARAMS['epochs'], help='Number of epochs to train for') @click.option('--min-epochs', show_default=True, default=RECOGNITION_HYPER_PARAMS['min_epochs'], help='Minimal number of epochs to train for when using early stopping.') @click.option('--lag', show_default=True, default=RECOGNITION_HYPER_PARAMS['lag'], help='Number of evaluations (--report frequence) to wait before stopping training without improvement') @click.option('--min-delta', show_default=True, default=RECOGNITION_HYPER_PARAMS['min_delta'], type=click.FLOAT, help='Minimum improvement between epochs to reset early stopping. Default is scales the delta by the best loss') @click.option('-d', '--device', show_default=True, default='cpu', help='Select device to use (cpu, cuda:0, cuda:1, ...)') @click.option('--optimizer', show_default=True, default=RECOGNITION_HYPER_PARAMS['optimizer'], type=click.Choice(['Adam', 'SGD', 'RMSprop', 'Lamb']), help='Select optimizer') @click.option('-r', '--lrate', show_default=True, default=RECOGNITION_HYPER_PARAMS['lrate'], help='Learning rate') @click.option('-m', '--momentum', show_default=True, default=RECOGNITION_HYPER_PARAMS['momentum'], help='Momentum') @click.option('-w', '--weight-decay', show_default=True, type=float, default=RECOGNITION_HYPER_PARAMS['weight_decay'], help='Weight decay') @click.option('--schedule', show_default=True, type=click.Choice(['constant', '1cycle', 'exponential', 'cosine', 'step', 'reduceonplateau']), default=RECOGNITION_HYPER_PARAMS['schedule'], help='Set learning rate scheduler. For 1cycle, cycle length is determined by the `--epoch` option.') @click.option('-g', '--gamma', show_default=True, default=RECOGNITION_HYPER_PARAMS['gamma'], help='Decay factor for exponential, step, and reduceonplateau learning rate schedules') @click.option('-ss', '--step-size', show_default=True, default=RECOGNITION_HYPER_PARAMS['step_size'], help='Number of validation runs between learning rate decay for exponential and step LR schedules') @click.option('--sched-patience', show_default=True, default=RECOGNITION_HYPER_PARAMS['rop_patience'], help='Minimal number of validation runs between LR reduction for reduceonplateau LR schedule.') @click.option('--cos-max', show_default=True, default=RECOGNITION_HYPER_PARAMS['cos_t_max'], help='Epoch of minimal learning rate for cosine LR scheduler.') @click.option('-p', '--partition', show_default=True, default=0.9, help='Ground truth data partition ratio between train/validation set') @click.option('--fixed-splits/--ignore-fixed-split', show_default=True, default=False, help='Whether to honor fixed splits in binary datasets.') @click.option('-u', '--normalization', show_default=True, type=click.Choice(['NFD', 'NFKD', 'NFC', 'NFKC']), default=RECOGNITION_HYPER_PARAMS['normalization'], help='Ground truth normalization') @click.option('-n', '--normalize-whitespace/--no-normalize-whitespace', show_default=True, default=RECOGNITION_HYPER_PARAMS['normalize_whitespace'], help='Normalizes unicode whitespace') @click.option('-c', '--codec', show_default=True, default=None, type=click.File(mode='r', lazy=True), help='Load a codec JSON definition (invalid if loading existing model)') @click.option('--resize', show_default=True, default='fail', type=click.Choice(['add', 'both', 'fail']), help='Codec/output layer resizing option. If set to `add` code ' 'points will be added, `both` will set the layer to match exactly ' 'the training data, `fail` will abort if training data and model ' 'codec do not match.') @click.option('--reorder/--no-reorder', show_default=True, default=True, help='Reordering of code points to display order') @click.option('--base-dir', show_default=True, default='auto', type=click.Choice(['L', 'R', 'auto']), help='Set base text ' 'direction. This should be set to the direction used during the ' 'creation of the training data. If set to `auto` it will be ' 'overridden by any explicit value given in the input files.') @click.option('-t', '--training-files', show_default=True, default=None, multiple=True, callback=_validate_manifests, type=click.File(mode='r', lazy=True), help='File(s) with additional paths to training data') @click.option('-e', '--evaluation-files', show_default=True, default=None, multiple=True, callback=_validate_manifests, type=click.File(mode='r', lazy=True), help='File(s) with paths to evaluation data. Overrides the `-p` parameter') @click.option('--workers', show_default=True, default=1, help='Number of OpenMP threads and workers when running on CPU.') @click.option('--load-hyper-parameters/--no-load-hyper-parameters', show_default=True, default=False, help='When loading an existing model, retrieve hyperparameters from the model') @click.option('--repolygonize/--no-repolygonize', show_default=True, default=False, help='Repolygonizes line data in ALTO/PageXML ' 'files. This ensures that the trained model is compatible with the ' 'segmenter in kraken even if the original image files either do ' 'not contain anything but transcriptions and baseline information ' 'or the polygon data was created using a different method. Will ' 'be ignored in `path` mode. Note that this option will be slow ' 'and will not scale input images to the same size as the segmenter ' 'does.') @click.option('--force-binarization/--no-binarization', show_default=True, default=False, help='Forces input images to be binary, otherwise ' 'the appropriate color format will be auto-determined through the ' 'network specification. Will be ignored in `path` mode.') @click.option('-f', '--format-type', type=click.Choice(['path', 'xml', 'alto', 'page', 'binary']), default='path', help='Sets the training data format. In ALTO and PageXML mode all ' 'data is extracted from xml files containing both line definitions and a ' 'link to source images. In `path` mode arguments are image files ' 'sharing a prefix up to the last extension with `.gt.txt` text files ' 'containing the transcription. In binary mode files are datasets ' 'files containing pre-extracted text lines.') @click.option('--augment/--no-augment', show_default=True, default=RECOGNITION_HYPER_PARAMS['augment'], help='Enable image augmentation') @click.argument('ground_truth', nargs=-1, callback=_expand_gt, type=click.Path(exists=False, dir_okay=False)) def train(ctx, batch_size, pad, output, spec, append, load, freq, quit, epochs, min_epochs, lag, min_delta, device, optimizer, lrate, momentum, weight_decay, schedule, gamma, step_size, sched_patience, cos_max, partition, fixed_splits, normalization, normalize_whitespace, codec, resize, reorder, base_dir, training_files, evaluation_files, workers, load_hyper_parameters, repolygonize, force_binarization, format_type, augment, ground_truth): """ Trains a model from image-text pairs. """ if not load and append: raise click.BadOptionUsage('append', 'append option requires loading an existing model') if resize != 'fail' and not load: raise click.BadOptionUsage('resize', 'resize option requires loading an existing model') if not (0 <= freq <= 1) and freq % 1.0 != 0: raise click.BadOptionUsage('freq', 'freq needs to be either in the interval [0,1.0] or a positive integer.') import json import shutil from kraken.lib.train import RecognitionModel, KrakenTrainer hyper_params = RECOGNITION_HYPER_PARAMS.copy() hyper_params.update({'freq': freq, 'pad': pad, 'batch_size': batch_size, 'quit': quit, 'epochs': epochs, 'min_epochs': min_epochs, 'lag': lag, 'min_delta': min_delta, 'optimizer': optimizer, 'lrate': lrate, 'momentum': momentum, 'weight_decay': weight_decay, 'schedule': schedule, 'gamma': gamma, 'step_size': step_size, 'rop_patience': sched_patience, 'cos_t_max': cos_max, 'normalization': normalization, 'normalize_whitespace': normalize_whitespace, 'augment': augment}) # disable automatic partition when given evaluation set explicitly if evaluation_files: partition = 1 ground_truth = list(ground_truth) # merge training_files into ground_truth list if training_files: ground_truth.extend(training_files) if len(ground_truth) == 0: raise click.UsageError('No training data was provided to the train command. Use `-t` or the `ground_truth` argument.') if reorder and base_dir != 'auto': reorder = base_dir if codec: logger.debug(f'Loading codec file from {codec}') codec = json.load(codec) if device == 'cpu': device = None elif device.startswith('cuda'): device = [int(device.split(':')[-1])] if hyper_params['freq'] > 1: val_check_interval = {'check_val_every_n_epoch': int(hyper_params['freq'])} else: val_check_interval = {'val_check_interval': hyper_params['freq']} model = RecognitionModel(hyper_params=hyper_params, output=output, spec=spec, append=append, model=load, reorder=reorder, training_data=ground_truth, evaluation_data=evaluation_files, partition=partition, binary_dataset_split=fixed_splits, num_workers=workers, load_hyper_parameters=load_hyper_parameters, repolygonize=repolygonize, force_binarization=force_binarization, format_type=format_type, codec=codec, resize=resize) trainer = KrakenTrainer(gpus=device, max_epochs=hyper_params['epochs'] if hyper_params['quit'] == 'dumb' else -1, min_epochs=hyper_params['min_epochs'], enable_progress_bar=True if not ctx.meta['verbose'] else False, **val_check_interval) try: trainer.fit(model) except KrakenInputException as e: if e.args[0].startswith('Training data and model codec alphabets mismatch') and resize == 'fail': raise click.BadOptionUsage('resize', 'Mismatched training data for loaded model. Set option `--resize` to `add` or `both`') else: raise e if quit == 'early': message('Moving best model {0}_{1}.mlmodel ({2}) to {0}_best.mlmodel'.format( output, model.best_epoch, model.best_metric)) logger.info('Moving best model {0}_{1}.mlmodel ({2}) to {0}_best.mlmodel'.format( output, model.best_epoch, model.best_metric)) shutil.copy(f'{output}_{model.best_epoch}.mlmodel', f'{output}_best.mlmodel') @cli.command('test') @click.pass_context @click.option('-B', '--batch-size', show_default=True, type=click.INT, default=RECOGNITION_HYPER_PARAMS['batch_size'], help='Batch sample size') @click.option('-m', '--model', show_default=True, type=click.Path(exists=True, readable=True), multiple=True, help='Model(s) to evaluate') @click.option('-e', '--evaluation-files', show_default=True, default=None, multiple=True, callback=_validate_manifests, type=click.File(mode='r', lazy=True), help='File(s) with paths to evaluation data.') @click.option('-d', '--device', show_default=True, default='cpu', help='Select device to use (cpu, cuda:0, cuda:1, ...)') @click.option('--pad', show_default=True, type=click.INT, default=16, help='Left and right ' 'padding around lines') @click.option('--workers', show_default=True, default=1, help='Number of OpenMP threads when running on CPU.') @click.option('--reorder/--no-reorder', show_default=True, default=True, help='Reordering of code points to display order') @click.option('--base-dir', show_default=True, default='auto', type=click.Choice(['L', 'R', 'auto']), help='Set base text ' 'direction. This should be set to the direction used during the ' 'creation of the training data. If set to `auto` it will be ' 'overridden by any explicit value given in the input files.') @click.option('-u', '--normalization', show_default=True, type=click.Choice(['NFD', 'NFKD', 'NFC', 'NFKC']), default=None, help='Ground truth normalization') @click.option('-n', '--normalize-whitespace/--no-normalize-whitespace', show_default=True, default=True, help='Normalizes unicode whitespace') @click.option('--repolygonize/--no-repolygonize', show_default=True, default=False, help='Repolygonizes line data in ALTO/PageXML ' 'files. This ensures that the trained model is compatible with the ' 'segmenter in kraken even if the original image files either do ' 'not contain anything but transcriptions and baseline information ' 'or the polygon data was created using a different method. Will ' 'be ignored in `path` mode. Note, that this option will be slow ' 'and will not scale input images to the same size as the segmenter ' 'does.') @click.option('--force-binarization/--no-binarization', show_default=True, default=False, help='Forces input images to be binary, otherwise ' 'the appropriate color format will be auto-determined through the ' 'network specification. Will be ignored in `path` mode.') @click.option('-f', '--format-type', type=click.Choice(['path', 'xml', 'alto', 'page', 'binary']), default='path', help='Sets the training data format. In ALTO and PageXML mode all ' 'data is extracted from xml files containing both baselines and a ' 'link to source images. In `path` mode arguments are image files ' 'sharing a prefix up to the last extension with JSON `.path` files ' 'containing the baseline information. In `binary` mode files are ' 'collections of pre-extracted text line images.') @click.argument('test_set', nargs=-1, callback=_expand_gt, type=click.Path(exists=False, dir_okay=False)) def test(ctx, batch_size, model, evaluation_files, device, pad, workers, reorder, base_dir, normalization, normalize_whitespace, repolygonize, force_binarization, format_type, test_set): """ Evaluate on a test set. """ if not model: raise click.UsageError('No model to evaluate given.') import numpy as np from torch.utils.data import DataLoader from kraken.serialization import render_report from kraken.lib import models from kraken.lib.xml import preparse_xml_data from kraken.lib.dataset import (global_align, compute_confusions, PolygonGTDataset, GroundTruthDataset, ImageInputTransforms, ArrowIPCRecognitionDataset, collate_sequences) logger.info('Building test set from {} line images'.format(len(test_set) + len(evaluation_files))) nn = {} for p in model: message('Loading model {}\t'.format(p), nl=False) nn[p] = models.load_any(p) message('\u2713', fg='green') test_set = list(test_set) # set number of OpenMP threads next(iter(nn.values())).nn.set_num_threads(1) if evaluation_files: test_set.extend(evaluation_files) if len(test_set) == 0: raise click.UsageError('No evaluation data was provided to the test command. Use `-e` or the `test_set` argument.') if format_type in ['xml', 'page', 'alto']: if repolygonize: message('Repolygonizing data') test_set = preparse_xml_data(test_set, format_type, repolygonize) valid_norm = False DatasetClass = PolygonGTDataset elif format_type == 'binary': DatasetClass = ArrowIPCRecognitionDataset if repolygonize: logger.warning('Repolygonization enabled in `binary` mode. Will be ignored.') test_set = [{'file': file} for file in test_set] valid_norm = False else: DatasetClass = GroundTruthDataset if force_binarization: logger.warning('Forced binarization enabled in `path` mode. Will be ignored.') force_binarization = False if repolygonize: logger.warning('Repolygonization enabled in `path` mode. Will be ignored.') test_set = [{'image': img} for img in test_set] valid_norm = True if len(test_set) == 0: raise click.UsageError('No evaluation data was provided to the test command. Use `-e` or the `test_set` argument.') if reorder and base_dir != 'auto': reorder = base_dir acc_list = [] for p, net in nn.items(): algn_gt: List[str] = [] algn_pred: List[str] = [] chars = 0 error = 0 message('Evaluating {}'.format(p)) logger.info('Evaluating {}'.format(p)) batch, channels, height, width = net.nn.input ts = ImageInputTransforms(batch, height, width, channels, pad, valid_norm, force_binarization) ds = DatasetClass(normalization=normalization, whitespace_normalization=normalize_whitespace, reorder=reorder, im_transforms=ts) for line in test_set: try: ds.add(**line) except KrakenInputException as e: logger.info(e) # don't encode validation set as the alphabets may not match causing encoding failures ds.no_encode() ds_loader = DataLoader(ds, batch_size=batch_size, num_workers=workers, pin_memory=True, collate_fn=collate_sequences) with KrakenProgressBar() as progress: batches = len(ds_loader) pred_task = progress.add_task('Evaluating', total=batches, visible=True if not ctx.meta['verbose'] else False) for batch in ds_loader: im = batch['image'] text = batch['target'] lens = batch['seq_lens'] try: pred = net.predict_string(im, lens) for x, y in zip(pred, text): chars += len(y) c, algn1, algn2 = global_align(y, x) algn_gt.extend(algn1) algn_pred.extend(algn2) error += c except FileNotFoundError as e: batches -= 1 progress.update(pred_task, total=batches) logger.warning('{} {}. Skipping.'.format(e.strerror, e.filename)) except KrakenInputException as e: batches -= 1 progress.update(pred_task, total=batches) logger.warning(str(e)) progress.update(pred_task, advance=1) acc_list.append((chars - error) / chars) confusions, scripts, ins, dels, subs = compute_confusions(algn_gt, algn_pred) rep = render_report(p, chars, error, confusions, scripts, ins, dels, subs) logger.info(rep) message(rep) logger.info('Average accuracy: {:0.2f}%, (stddev: {:0.2f})'.format(np.mean(acc_list) * 100, np.std(acc_list) * 100)) message('Average accuracy: {:0.2f}%, (stddev: {:0.2f})'.format(np.mean(acc_list) * 100, np.std(acc_list) * 100)) @cli.command('extract') @click.pass_context @click.option('-b', '--binarize/--no-binarize', show_default=True, default=True, help='Binarize color/grayscale images') @click.option('-u', '--normalization', show_default=True, type=click.Choice(['NFD', 'NFKD', 'NFC', 'NFKC']), default=None, help='Normalize ground truth') @click.option('-s', '--normalize-whitespace/--no-normalize-whitespace', show_default=True, default=True, help='Normalizes unicode whitespace') @click.option('-n', '--reorder/--no-reorder', default=False, show_default=True, help='Reorder transcribed lines to display order') @click.option('-r', '--rotate/--no-rotate', default=True, show_default=True, help='Skip rotation of vertical lines') @click.option('-o', '--output', type=click.Path(), default='training', show_default=True, help='Output directory') @click.option('--format', default='{idx:06d}', show_default=True, help='Format for extractor output. valid fields are `src` (source file), `idx` (line number), and `uuid` (v4 uuid)') @click.argument('transcriptions', nargs=-1, type=click.File(lazy=True)) def extract(ctx, binarize, normalization, normalize_whitespace, reorder, rotate, output, format, transcriptions): """ Extracts image-text pairs from a transcription environment created using ``ketos transcribe``. """ import regex import base64 from io import BytesIO from PIL import Image from lxml import html, etree from kraken import binarization try: os.mkdir(output) except Exception: pass text_transforms = [] if normalization: text_transforms.append(lambda x: unicodedata.normalize(normalization, x)) if normalize_whitespace: text_transforms.append(lambda x: regex.sub(r'\s', ' ', x)) if reorder: text_transforms.append(get_display) idx = 0 manifest = [] with KrakenProgressBar() as progress: read_task = progress.add_task('Reading transcriptions', total=len(transcriptions), visible=True if not ctx.meta['verbose'] else False) for fp in transcriptions: logger.info('Reading {}'.format(fp.name)) doc = html.parse(fp) etree.strip_tags(doc, etree.Comment) td = doc.find(".//meta[@itemprop='text_direction']") if td is None: td = 'horizontal-lr' else: td = td.attrib['content'] im = None dest_dict = {'output': output, 'idx': 0, 'src': fp.name, 'uuid': str(uuid.uuid4())} for section in doc.xpath('//section'): img = section.xpath('.//img')[0].get('src') fd = BytesIO(base64.b64decode(img.split(',')[1])) im = Image.open(fd) if not im: logger.info('Skipping {} because image not found'.format(fp.name)) break if binarize: im = binarization.nlbin(im) for line in section.iter('li'): if line.get('contenteditable') and (not u''.join(line.itertext()).isspace() and u''.join(line.itertext())): dest_dict['idx'] = idx dest_dict['uuid'] = str(uuid.uuid4()) logger.debug('Writing line {:06d}'.format(idx)) l_img = im.crop([int(x) for x in line.get('data-bbox').split(',')]) if rotate and td.startswith('vertical'): im.rotate(90, expand=True) l_img.save(('{output}/' + format + '.png').format(**dest_dict)) manifest.append((format + '.png').format(**dest_dict)) text = u''.join(line.itertext()).strip() for func in text_transforms: text = func(text) with open(('{output}/' + format + '.gt.txt').format(**dest_dict), 'wb') as t: t.write(text.encode('utf-8')) idx += 1 progress.update(read_task, advance=1) logger.info('Extracted {} lines'.format(idx)) with open('{}/manifest.txt'.format(output), 'w') as fp: fp.write('\n'.join(manifest)) @cli.command('transcribe') @click.pass_context @click.option('-d', '--text-direction', default='horizontal-lr', type=click.Choice(['horizontal-lr', 'horizontal-rl', 'vertical-lr', 'vertical-rl']), help='Sets principal text direction', show_default=True) @click.option('--scale', default=None, type=click.FLOAT) @click.option('--bw/--orig', default=True, show_default=True, help="Put nonbinarized images in output") @click.option('-m', '--maxcolseps', default=2, type=click.INT, show_default=True) @click.option('-b/-w', '--black_colseps/--white_colseps', default=False, show_default=True) @click.option('-f', '--font', default='', help='Font family to use') @click.option('-fs', '--font-style', default=None, help='Font style to use') @click.option('-p', '--prefill', default=None, help='Use given model for prefill mode.') @click.option('--pad', show_default=True, type=(int, int), default=(0, 0), help='Left and right padding around lines') @click.option('-l', '--lines', type=click.Path(exists=True), show_default=True, help='JSON file containing line coordinates') @click.option('-o', '--output', type=click.File(mode='wb'), default='transcription.html', help='Output file', show_default=True) @click.argument('images', nargs=-1, type=click.File(mode='rb', lazy=True)) def transcription(ctx, text_direction, scale, bw, maxcolseps, black_colseps, font, font_style, prefill, pad, lines, output, images): """ Creates transcription environments for ground truth generation. """ import json from PIL import Image from kraken import rpred from kraken import pageseg from kraken import transcribe from kraken import binarization from kraken.lib import models ti = transcribe.TranscriptionInterface(font, font_style) if len(images) > 1 and lines: raise click.UsageError('--lines option is incompatible with multiple image files') if prefill: logger.info('Loading model {}'.format(prefill)) message('Loading ANN', nl=False) prefill = models.load_any(prefill) message('\u2713', fg='green') with KrakenProgressBar() as progress: read_task = progress.add_task('Reading images', total=len(images), visible=True if not ctx.meta['verbose'] else False) for fp in images: logger.info('Reading {}'.format(fp.name)) im = Image.open(fp) if im.mode not in ['1', 'L', 'P', 'RGB']: logger.warning('Input {} is in {} color mode. Converting to RGB'.format(fp.name, im.mode)) im = im.convert('RGB') logger.info('Binarizing page') im_bin = binarization.nlbin(im) im_bin = im_bin.convert('1') logger.info('Segmenting page') if not lines: res = pageseg.segment(im_bin, text_direction, scale, maxcolseps, black_colseps, pad=pad) else: with click.open_file(lines, 'r') as fp: try: fp = cast(IO[Any], fp) res = json.load(fp) except ValueError as e: raise click.UsageError('{} invalid segmentation: {}'.format(lines, str(e))) if prefill: it = rpred.rpred(prefill, im_bin, res.copy()) preds = [] logger.info('Recognizing') for pred in it: logger.debug('{}'.format(pred.prediction)) preds.append(pred) ti.add_page(im, res, records=preds) else: ti.add_page(im, res) fp.close() progress.update(read_task, advance=1) logger.info('Writing transcription to {}'.format(output.name)) message('Writing output ', nl=False) ti.write(output) message('\u2713', fg='green') @cli.command('linegen') @click.pass_context @click.option('-f', '--font', default='sans', help='Font family to render texts in.') @click.option('-n', '--maxlines', type=click.INT, default=0, help='Maximum number of lines to generate') @click.option('-e', '--encoding', default='utf-8', help='Decode text files with given codec.') @click.option('-u', '--normalization', type=click.Choice(['NFD', 'NFKD', 'NFC', 'NFKC']), default=None, help='Normalize ground truth') @click.option('-ur', '--renormalize', type=click.Choice(['NFD', 'NFKD', 'NFC', 'NFKC']), default=None, help='Renormalize text for rendering purposes.') @click.option('--reorder/--no-reorder', default=False, help='Reorder code points to display order') @click.option('-fs', '--font-size', type=click.INT, default=32, help='Font size to render texts in.') @click.option('-fw', '--font-weight', type=click.INT, default=400, help='Font weight to render texts in.') @click.option('-l', '--language', help='RFC-3066 language tag for language-dependent font shaping') @click.option('-ll', '--max-length', type=click.INT, default=None, help="Discard lines above length (in Unicode codepoints).") @click.option('--strip/--no-strip', help="Remove whitespace from start and end " "of lines.") @click.option('-D', '--disable-degradation', is_flag=True, help='Dont degrade ' 'output lines.') @click.option('-a', '--alpha', type=click.FLOAT, default=1.5, help="Mean of folded normal distribution for sampling foreground pixel flip probability") @click.option('-b', '--beta', type=click.FLOAT, default=1.5, help="Mean of folded normal distribution for sampling background pixel flip probability") @click.option('-d', '--distort', type=click.FLOAT, default=1.0, help='Mean of folded normal distribution to take distortion values from') @click.option('-ds', '--distortion-sigma', type=click.FLOAT, default=20.0, help='Mean of folded normal distribution to take standard deviations for the ' 'Gaussian kernel from') @click.option('--legacy/--no-legacy', default=False, help='Use ocropy-style degradations') @click.option('-o', '--output', type=click.Path(), default='training_data', help='Output directory') @click.argument('text', nargs=-1, type=click.Path(exists=True)) def line_generator(ctx, font, maxlines, encoding, normalization, renormalize, reorder, font_size, font_weight, language, max_length, strip, disable_degradation, alpha, beta, distort, distortion_sigma, legacy, output, text): """ Generates artificial text line training data. """ import errno import numpy as np from kraken import linegen from kraken.lib.util import make_printable lines: Set[str] = set() if not text: return with KrakenProgressBar() as progress: read_task = progress.add_task('Reading texts', total=len(text), visible=True if not ctx.meta['verbose'] else False) for t in text: with click.open_file(t, encoding=encoding) as fp: logger.info('Reading {}'.format(t)) for line in fp: lines.add(line.rstrip('\r\n')) progress.update(read_task, advance=1) if normalization: lines = set([unicodedata.normalize(normalization, line) for line in lines]) if strip: lines = set([line.strip() for line in lines]) if max_length: lines = set([line for line in lines if len(line) < max_length]) logger.info('Read {} lines'.format(len(lines))) message('Read {} unique lines'.format(len(lines))) if maxlines and maxlines < len(lines): message('Sampling {} lines\t'.format(maxlines), nl=False) llist = list(lines) lines = set(llist[idx] for idx in np.random.randint(0, len(llist), maxlines)) message('\u2713', fg='green') try: os.makedirs(output) except OSError as e: if e.errno != errno.EEXIST: raise # calculate the alphabet and print it for verification purposes alphabet: Set[str] = set() for line in lines: alphabet.update(line) chars = [] combining = [] for char in sorted(alphabet): k = make_printable(char) if k != char: combining.append(k) else: chars.append(k) message('Σ (len: {})'.format(len(alphabet))) message('Symbols: {}'.format(''.join(chars))) if combining: message('Combining Characters: {}'.format(', '.join(combining))) lg = linegen.LineGenerator(font, font_size, font_weight, language) with KrakenProgressBar() as progress: gen_task = progress.add_task('Writing images', total=len(lines), visible=True if not ctx.meta['verbose'] else False) for idx, line in enumerate(lines): logger.info(line) try: if renormalize: im = lg.render_line(unicodedata.normalize(renormalize, line)) else: im = lg.render_line(line) except KrakenCairoSurfaceException as e: logger.info('{}: {} {}'.format(e.message, e.width, e.height)) continue if not disable_degradation and not legacy: im = linegen.degrade_line(im, alpha=alpha, beta=beta) im = linegen.distort_line(im, abs(np.random.normal(distort)), abs(np.random.normal(distortion_sigma))) elif legacy: im = linegen.ocropy_degrade(im) im.save('{}/{:06d}.png'.format(output, idx)) with open('{}/{:06d}.gt.txt'.format(output, idx), 'wb') as fp: if reorder: fp.write(get_display(line).encode('utf-8')) else: fp.write(line.encode('utf-8')) progress.update(gen_task, advance=1) @cli.command('publish') @click.pass_context @click.option('-i', '--metadata', show_default=True, type=click.File(mode='r', lazy=True), help='Metadata for the ' 'model. Will be prompted from the user if not given') @click.option('-a', '--access-token', prompt=True, help='Zenodo access token') @click.argument('model', nargs=1, type=click.Path(exists=False, readable=True, dir_okay=False)) def publish(ctx, metadata, access_token, model): """ Publishes a model on the zenodo model repository. """ import json import pkg_resources from functools import partial from jsonschema import validate from jsonschema.exceptions import ValidationError from kraken import repo from kraken.lib import models with pkg_resources.resource_stream(__name__, 'metadata.schema.json') as fp: schema = json.load(fp) nn = models.load_any(model) if not metadata: author = click.prompt('author') affiliation = click.prompt('affiliation') summary = click.prompt('summary') description = click.edit('Write long form description (training data, transcription standards) of the model here') accuracy_default = None # take last accuracy measurement in model metadata if 'accuracy' in nn.nn.user_metadata and nn.nn.user_metadata['accuracy']: accuracy_default = nn.nn.user_metadata['accuracy'][-1][1] * 100 accuracy = click.prompt('accuracy on test set', type=float, default=accuracy_default) script = [ click.prompt( 'script', type=click.Choice( sorted( schema['properties']['script']['items']['enum'])), show_choices=True)] license = click.prompt( 'license', type=click.Choice( sorted( schema['properties']['license']['enum'])), show_choices=True) metadata = { 'authors': [{'name': author, 'affiliation': affiliation}], 'summary': summary, 'description': description, 'accuracy': accuracy, 'license': license, 'script': script, 'name': os.path.basename(model), 'graphemes': ['a'] } while True: try: validate(metadata, schema) except ValidationError as e: message(e.message) metadata[e.path[-1]] = click.prompt(e.path[-1], type=float if e.schema['type'] == 'number' else str) continue break else: metadata = json.load(metadata) validate(metadata, schema) metadata['graphemes'] = [char for char in ''.join(nn.codec.c2l.keys())] oid = repo.publish_model(model, metadata, access_token, partial(message, '.', nl=False)) message('\nmodel PID: {}'.format(oid)) @cli.command('compile') @click.pass_context @click.option('-o', '--output', show_default=True, type=click.Path(), default='model', help='Output model file') @click.option('--workers', show_default=True, default=1, help='Number of OpenMP threads and workers when running on CPU.') @click.option('-f', '--format-type', type=click.Choice(['path', 'xml', 'alto', 'page']), default='xml', show_default=True, help='Sets the training data format. In ALTO and PageXML mode all ' 'data is extracted from xml files containing both baselines and a ' 'link to source images. In `path` mode arguments are image files ' 'sharing a prefix up to the last extension with JSON `.path` files ' 'containing the baseline information.') @click.option('--random-split', type=float, nargs=3, default=None, show_default=True, help='Creates a fixed random split of the input data with the ' 'proportions (train, validation, test). Overrides the save split option.') @click.option('--force-type', type=click.Choice(['bbox', 'baseline']), default=None, show_default=True, help='Forces the dataset type to a specific value. Can be used to ' '"convert" a line strip-type collection to a baseline-style ' 'dataset, e.g. to disable centerline normalization.') @click.option('--save-splits/--ignore-splits', show_default=True, default=True, help='Whether to serialize explicit splits contained in XML ' 'files. Is ignored in `path` mode.') @click.option('--recordbatch-size', show_default=True, default=100, help='Minimum number of records per RecordBatch written to the ' 'output file. Larger batches require more transient memory ' 'but slightly improve reading performance.') @click.argument('ground_truth', nargs=-1, type=click.Path(exists=True, dir_okay=False)) def compile(ctx, output, workers, format_type, random_split, force_type, save_splits, recordbatch_size, ground_truth): """ Precompiles a binary dataset from a collection of XML files. """ if not ground_truth: raise click.UsageError('No training data was provided to the compile command. Use the `ground_truth` argument.') from kraken.lib import arrow_dataset force_type = {'bbox': 'kraken_recognition_bbox', 'baseline': 'kraken_recognition_baseline', None: None}[force_type] with KrakenProgressBar() as progress: extract_task = progress.add_task('Extracting lines', total=0, start=False, visible=True if not ctx.meta['verbose'] else False) arrow_dataset.build_binary_dataset(ground_truth, output, format_type, workers, save_splits, random_split, force_type, recordbatch_size, lambda advance, total: progress.update(extract_task, total=total, advance=advance)) message(f'Output file written to {output}') if __name__ == '__main__': cli()
mittagessen/kraken
kraken/ketos.py
Python
apache-2.0
61,641
import json import os import re from configparser import ConfigParser from pprint import pprint class Config: raw_config_object = None EMAILS_SECTION = '' MICROPHONE_SECTION = '' CAMERA_SECTION = '' FILES_SECTION = '' def __init__(self, filename: str) -> dict: self.raw_config_object = self.get_config_object(filename) self.EMAILS_SECTION = 'EMAILS' self.MICROPHONE_SECTION = 'MICROPHONE' self.CAMERA_SECTION = 'CAMERA' self.FILES_SECTION = 'FILES' self.validate() ''' need to raise different exceptions: warnings: (if emails is not specified) error: (if picture directory is not writable, or microphone details are not ints ) ''' def validate(self): # TODO add all kind of crappy rules if re.match('^[_a-z0-9-]+(\.[_a-z0-9-]+)*@[a-z0-9-]+(\.[a-z0-9-]+)*(\.[a-z]{2,4})$', self.raw_config_object[self.EMAILS_SECTION]['email']) == None: raise ValueError('Email is not valid') if not os.access(self.raw_config_object[self.FILES_SECTION]['picture_directory'], os.W_OK): raise ValueError('Picture directory is not writable') @staticmethod def get_config_object(filename) -> dict: config_parser = ConfigParser() config_parser.read(filename) return config_parser def serialize(self): return json.JSONEncoder.default(self.raw_config_object)
MShel/py_guard
config/config.py
Python
apache-2.0
1,472
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Supporting utilities for computing associations.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from absl import flags flags.DEFINE_string( "association_dir", "data/train", "Directory where the association files, such as raw proportions and " "implicationals reside.") flags.DEFINE_string( "genus_filename", "raw_proportions_by_genus.tsv", "Output for genus-feature clade affiliations.") flags.DEFINE_string( "family_filename", "raw_proportions_by_family.tsv", "Output for family-feature clade affiliations.") flags.DEFINE_string( "neighborhood_filename", "raw_proportions_by_neighborhood.tsv", "Output for neighborhood-feature affiliations.") flags.DEFINE_string( "implicational_filename", "implicational_universals.tsv", "Output for putative implicational universals.") FLAGS = flags.FLAGS
google-research/google-research
constrained_language_typology/compute_associations.py
Python
apache-2.0
1,560
from setuptools import setup setup(name='uptodator', version='1.0', description='uptodator image service', author='Lukasz Szczesny', author_email='luk@wybcz.pl', url='http://www.python.org/sigs/distutils-sig/', )
uptodator/badge-service
setup.py
Python
apache-2.0
249
__author__ = 'prossi' import skyscape class TASK: def __init__(self, obj, connection): self.__dict__ = dict(obj.attrib) self.connection = connection def refresh_status(self): self.status = (self.connection.get_request(self.href)).status return self.status
skyscape-cloud-services/skyscape_python
skyscape/skyscape_task.py
Python
apache-2.0
298
# Copyright 2012 OpenStack LLC. # All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # # vim: tabstop=4 shiftwidth=4 softtabstop=4 import sys from mox import ContainsKeyValue from quantumclient import shell from quantumclient.quantum.v2_0.port import CreatePort from quantumclient.quantum.v2_0.port import DeletePort from quantumclient.quantum.v2_0.port import ListPort from quantumclient.quantum.v2_0.port import ListRouterPort from quantumclient.quantum.v2_0.port import ShowPort from quantumclient.quantum.v2_0.port import UpdatePort from quantumclient.tests.unit import test_cli20 from quantumclient.tests.unit.test_cli20 import CLITestV20Base from quantumclient.tests.unit.test_cli20 import MyApp class CLITestV20Port(CLITestV20Base): def test_create_port(self): """Create port: netid.""" resource = 'port' cmd = CreatePort(MyApp(sys.stdout), None) name = 'myname' myid = 'myid' netid = 'netid' args = [netid] position_names = ['network_id'] position_values = [] position_values.extend([netid]) self._test_create_resource(resource, cmd, name, myid, args, position_names, position_values) def test_create_port_full(self): """Create port: --mac_address mac --device_id deviceid netid.""" resource = 'port' cmd = CreatePort(MyApp(sys.stdout), None) name = 'myname' myid = 'myid' netid = 'netid' args = ['--mac_address', 'mac', '--device_id', 'deviceid', netid] position_names = ['network_id', 'mac_address', 'device_id'] position_values = [netid, 'mac', 'deviceid'] self._test_create_resource(resource, cmd, name, myid, args, position_names, position_values) # Test dashed options args = ['--mac-address', 'mac', '--device-id', 'deviceid', netid] position_names = ['network_id', 'mac_address', 'device_id'] self._test_create_resource(resource, cmd, name, myid, args, position_names, position_values) def test_create_port_tenant(self): """Create port: --tenant_id tenantid netid.""" resource = 'port' cmd = CreatePort(MyApp(sys.stdout), None) name = 'myname' myid = 'myid' netid = 'netid' args = ['--tenant_id', 'tenantid', netid, ] position_names = ['network_id'] position_values = [] position_values.extend([netid]) self._test_create_resource(resource, cmd, name, myid, args, position_names, position_values, tenant_id='tenantid') # Test dashed options args = ['--tenant-id', 'tenantid', netid, ] self._test_create_resource(resource, cmd, name, myid, args, position_names, position_values, tenant_id='tenantid') def test_create_port_tags(self): """Create port: netid mac_address device_id --tags a b.""" resource = 'port' cmd = CreatePort(MyApp(sys.stdout), None) name = 'myname' myid = 'myid' netid = 'netid' args = [netid, '--tags', 'a', 'b'] position_names = ['network_id'] position_values = [] position_values.extend([netid]) self._test_create_resource(resource, cmd, name, myid, args, position_names, position_values, tags=['a', 'b']) def test_create_port_secgroup(self): """Create port: --security-group sg1_id netid""" resource = 'port' cmd = CreatePort(MyApp(sys.stdout), None) name = 'myname' myid = 'myid' netid = 'netid' args = ['--security-group', 'sg1_id', netid] position_names = ['network_id', 'security_groups'] position_values = [netid, ['sg1_id']] self._test_create_resource(resource, cmd, name, myid, args, position_names, position_values) def test_create_port_secgroups(self): """Create port: <security_groups> netid The <security_groups> are --security-group sg1_id --security-group sg2_id """ resource = 'port' cmd = CreatePort(MyApp(sys.stdout), None) name = 'myname' myid = 'myid' netid = 'netid' args = ['--security-group', 'sg1_id', '--security-group', 'sg2_id', netid] position_names = ['network_id', 'security_groups'] position_values = [netid, ['sg1_id', 'sg2_id']] self._test_create_resource(resource, cmd, name, myid, args, position_names, position_values) def test_list_ports(self): """List ports: -D.""" resources = "ports" cmd = ListPort(MyApp(sys.stdout), None) self._test_list_resources(resources, cmd, True) def test_list_ports_pagination(self): resources = "ports" cmd = ListPort(MyApp(sys.stdout), None) self._test_list_resources_with_pagination(resources, cmd) def test_list_ports_sort(self): """list ports: --sort-key name --sort-key id --sort-key asc --sort-key desc """ resources = "ports" cmd = ListPort(MyApp(sys.stdout), None) self._test_list_resources(resources, cmd, sort_key=["name", "id"], sort_dir=["asc", "desc"]) def test_list_ports_limit(self): """list ports: -P""" resources = "ports" cmd = ListPort(MyApp(sys.stdout), None) self._test_list_resources(resources, cmd, page_size=1000) def test_list_ports_tags(self): """List ports: -- --tags a b.""" resources = "ports" cmd = ListPort(MyApp(sys.stdout), None) self._test_list_resources(resources, cmd, tags=['a', 'b']) def test_list_ports_detail_tags(self): """List ports: -D -- --tags a b.""" resources = "ports" cmd = ListPort(MyApp(sys.stdout), None) self._test_list_resources(resources, cmd, detail=True, tags=['a', 'b']) def test_list_ports_fields(self): """List ports: --fields a --fields b -- --fields c d.""" resources = "ports" cmd = ListPort(MyApp(sys.stdout), None) self._test_list_resources(resources, cmd, fields_1=['a', 'b'], fields_2=['c', 'd']) def _test_list_router_port(self, resources, cmd, myid, detail=False, tags=[], fields_1=[], fields_2=[]): self.mox.StubOutWithMock(cmd, "get_client") self.mox.StubOutWithMock(self.client.httpclient, "request") cmd.get_client().MultipleTimes().AndReturn(self.client) reses = {resources: [{'id': 'myid1', }, {'id': 'myid2', }, ], } resstr = self.client.serialize(reses) # url method body query = "" args = detail and ['-D', ] or [] if fields_1: for field in fields_1: args.append('--fields') args.append(field) args.append(myid) if tags: args.append('--') args.append("--tag") for tag in tags: args.append(tag) if (not tags) and fields_2: args.append('--') if fields_2: args.append("--fields") for field in fields_2: args.append(field) fields_1.extend(fields_2) for field in fields_1: if query: query += "&fields=" + field else: query = "fields=" + field for tag in tags: if query: query += "&tag=" + tag else: query = "tag=" + tag if detail: query = query and query + '&verbose=True' or 'verbose=True' query = query and query + '&device_id=%s' or 'device_id=%s' path = getattr(self.client, resources + "_path") self.client.httpclient.request( test_cli20.end_url(path, query % myid), 'GET', body=None, headers=ContainsKeyValue('X-Auth-Token', test_cli20.TOKEN)).AndReturn( (test_cli20.MyResp(200), resstr)) self.mox.ReplayAll() cmd_parser = cmd.get_parser("list_" + resources) shell.run_command(cmd, cmd_parser, args) self.mox.VerifyAll() self.mox.UnsetStubs() _str = self.fake_stdout.make_string() self.assertTrue('myid1' in _str) def test_list_router_ports(self): """List router ports: -D.""" resources = "ports" cmd = ListRouterPort(MyApp(sys.stdout), None) self._test_list_router_port(resources, cmd, self.test_id, True) def test_list_router_ports_tags(self): """List router ports: -- --tags a b.""" resources = "ports" cmd = ListRouterPort(MyApp(sys.stdout), None) self._test_list_router_port(resources, cmd, self.test_id, tags=['a', 'b']) def test_list_router_ports_detail_tags(self): """List router ports: -D -- --tags a b.""" resources = "ports" cmd = ListRouterPort(MyApp(sys.stdout), None) self._test_list_router_port(resources, cmd, self.test_id, detail=True, tags=['a', 'b']) def test_list_router_ports_fields(self): """List ports: --fields a --fields b -- --fields c d.""" resources = "ports" cmd = ListRouterPort(MyApp(sys.stdout), None) self._test_list_router_port(resources, cmd, self.test_id, fields_1=['a', 'b'], fields_2=['c', 'd']) def test_update_port(self): """Update port: myid --name myname --tags a b.""" resource = 'port' cmd = UpdatePort(MyApp(sys.stdout), None) self._test_update_resource(resource, cmd, 'myid', ['myid', '--name', 'myname', '--tags', 'a', 'b'], {'name': 'myname', 'tags': ['a', 'b'], } ) def test_update_port_security_group_off(self): """Update port: --no-security-groups myid.""" resource = 'port' cmd = UpdatePort(MyApp(sys.stdout), None) self._test_update_resource(resource, cmd, 'myid', ['--no-security-groups', 'myid'], {'security_groups': None}) def test_show_port(self): """Show port: --fields id --fields name myid.""" resource = 'port' cmd = ShowPort(MyApp(sys.stdout), None) args = ['--fields', 'id', '--fields', 'name', self.test_id] self._test_show_resource(resource, cmd, self.test_id, args, ['id', 'name']) def test_delete_port(self): """Delete port: myid.""" resource = 'port' cmd = DeletePort(MyApp(sys.stdout), None) myid = 'myid' args = [myid] self._test_delete_resource(resource, cmd, myid, args)
wallnerryan/quantum_migrate
quantumclient/tests/unit/test_cli20_port.py
Python
apache-2.0
12,010
# Copyright 2017 - Nokia # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os import sys import yaml from vitrage.common.constants import TemplateStatus from vitrage.common.constants import TemplateTypes as TType from vitrage.evaluator.template_db.template_repository import \ add_templates_to_db from vitrage import storage from vitrage.storage.sqlalchemy import models class TestConfiguration(object): def add_db(self): db_name = "sqlite:///test-%s-%s.db" % (type(self).__name__, sys.version_info[0]) self.config(group='database', connection=db_name) self._db = storage.get_connection_from_config() engine = self._db._engine_facade.get_engine() models.Base.metadata.drop_all(engine) models.Base.metadata.create_all(engine) return self._db def add_templates(self, templates_dir, templates_type=TType.STANDARD): yamls = [t for t in TestConfiguration.load_yaml_files(templates_dir)] templates = add_templates_to_db(self._db, yamls, templates_type) for t in templates: if t.status == TemplateStatus.LOADING: self._db.templates.update(t.uuid, 'status', TemplateStatus.ACTIVE) if t.status == TemplateStatus.DELETING: self._db.templates.update(t.uuid, 'status', TemplateStatus.DELETED) return templates @staticmethod def load_yaml_files(path): if os.path.isdir(path): file_paths = [path + "/" + fn for fn in os.listdir(path) if os.path.isfile(path + "/" + fn)] else: file_paths = [path] yamls = [] for file_path in file_paths: try: yamls.append(TestConfiguration._load_yaml_file(file_path)) except Exception: continue return yamls @staticmethod def _load_yaml_file(path): with open(path, 'r') as stream: return yaml.load(stream, Loader=yaml.BaseLoader)
openstack/vitrage
vitrage/tests/functional/test_configuration.py
Python
apache-2.0
2,629
import logging logger = logging.getLogger(__name__) def sizeof_fmt(num): if num is None: logger.error('Error: number for human readable filesize is "None"' % num) return None for x in ['bytes','KB','MB','GB','TB']: try: if num < 1024.0: return "%3.1f %s" % (num, x) num /= 1024.0 except: logger.error('Error: could not convert %s to human readable filesize' % num) return None return None
IQSS/geoconnect
gc_apps/geo_utils/fsize_human_readable.py
Python
apache-2.0
528
# Copyright 2020 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). import csv import logging from collections import defaultdict from textwrap import fill, indent from pants.backend.project_info.dependees import Dependees, DependeesRequest from pants.backend.python.subsystems.setup import PythonSetup from pants.backend.python.target_types import InterpreterConstraintsField from pants.backend.python.util_rules.interpreter_constraints import InterpreterConstraints from pants.engine.addresses import Addresses from pants.engine.console import Console from pants.engine.goal import Goal, GoalSubsystem, Outputting from pants.engine.rules import Get, MultiGet, collect_rules, goal_rule from pants.engine.target import ( AllTargetsRequest, AllUnexpandedTargets, RegisteredTargetTypes, TransitiveTargets, TransitiveTargetsRequest, ) from pants.engine.unions import UnionMembership from pants.option.option_types import BoolOption from pants.util.docutil import bin_name logger = logging.getLogger(__name__) class PyConstraintsSubsystem(Outputting, GoalSubsystem): name = "py-constraints" help = "Determine what Python interpreter constraints are used by files/targets." summary = BoolOption( "--summary", default=False, help=( "Output a CSV summary of interpreter constraints for your whole repository. The " "headers are `Target`, `Constraints`, `Transitive Constraints`, `# Dependencies`, " "and `# Dependees`.\n\nThis information can be useful when prioritizing a " "migration from one Python version to another (e.g. to Python 3). Use " "`# Dependencies` and `# Dependees` to help prioritize which targets are easiest " "to port (low # dependencies) and highest impact to port (high # dependees).\n\n" "Use a tool like Pandas or Excel to process the CSV. Use the option " "`--py-constraints-output-file=summary.csv` to write directly to a file." ), ) class PyConstraintsGoal(Goal): subsystem_cls = PyConstraintsSubsystem @goal_rule async def py_constraints( addresses: Addresses, console: Console, py_constraints_subsystem: PyConstraintsSubsystem, python_setup: PythonSetup, registered_target_types: RegisteredTargetTypes, union_membership: UnionMembership, ) -> PyConstraintsGoal: if py_constraints_subsystem.summary: if addresses: console.print_stderr( "The `py-constraints --summary` goal does not take file/target arguments. Run " "`help py-constraints` for more details." ) return PyConstraintsGoal(exit_code=1) # TODO: Stop including the target generator? I don't think it's relevant for this goal. all_targets = await Get(AllUnexpandedTargets, AllTargetsRequest()) all_python_targets = tuple( t for t in all_targets if t.has_field(InterpreterConstraintsField) ) constraints_per_tgt = [ InterpreterConstraints.create_from_targets([tgt], python_setup) for tgt in all_python_targets ] transitive_targets_per_tgt = await MultiGet( Get(TransitiveTargets, TransitiveTargetsRequest([tgt.address])) for tgt in all_python_targets ) transitive_constraints_per_tgt = [ InterpreterConstraints.create_from_targets(transitive_targets.closure, python_setup) for transitive_targets in transitive_targets_per_tgt ] dependees_per_root = await MultiGet( Get(Dependees, DependeesRequest([tgt.address], transitive=True, include_roots=False)) for tgt in all_python_targets ) data = [ { "Target": tgt.address.spec, "Constraints": str(constraints), "Transitive Constraints": str(transitive_constraints), "# Dependencies": len(transitive_targets.dependencies), "# Dependees": len(dependees), } for tgt, constraints, transitive_constraints, transitive_targets, dependees in zip( all_python_targets, constraints_per_tgt, transitive_constraints_per_tgt, transitive_targets_per_tgt, dependees_per_root, ) ] with py_constraints_subsystem.output_sink(console) as stdout: writer = csv.DictWriter( stdout, fieldnames=[ "Target", "Constraints", "Transitive Constraints", "# Dependencies", "# Dependees", ], ) writer.writeheader() for entry in data: writer.writerow(entry) return PyConstraintsGoal(exit_code=0) transitive_targets = await Get(TransitiveTargets, TransitiveTargetsRequest(addresses)) final_constraints = InterpreterConstraints.create_from_targets( transitive_targets.closure, python_setup ) if not final_constraints: target_types_with_constraints = sorted( tgt_type.alias for tgt_type in registered_target_types.types if tgt_type.class_has_field(InterpreterConstraintsField, union_membership) ) logger.warning( "No Python files/targets matched for the `py-constraints` goal. All target types with " f"Python interpreter constraints: {', '.join(target_types_with_constraints)}" ) return PyConstraintsGoal(exit_code=0) constraints_to_addresses = defaultdict(set) for tgt in transitive_targets.closure: constraints = InterpreterConstraints.create_from_targets([tgt], python_setup) if not constraints: continue constraints_to_addresses[constraints].add(tgt.address) with py_constraints_subsystem.output(console) as output_stdout: output_stdout(f"Final merged constraints: {final_constraints}\n") if len(addresses) > 1: merged_constraints_warning = ( "(These are the constraints used if you were to depend on all of the input " "files/targets together, even though they may end up never being used together in " "the real world. Consider using a more precise query or running " f"`{bin_name()} py-constraints --summary`.)\n" ) output_stdout(indent(fill(merged_constraints_warning, 80), " ")) for constraint, addrs in sorted(constraints_to_addresses.items()): output_stdout(f"\n{constraint}\n") for addr in sorted(addrs): output_stdout(f" {addr}\n") return PyConstraintsGoal(exit_code=0) def rules(): return collect_rules()
pantsbuild/pants
src/python/pants/backend/python/mixed_interpreter_constraints/py_constraints.py
Python
apache-2.0
6,969
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright (c) 2015 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # # recommended pylint: pylint ekerberos.py -d maybe-no-member,line-too-long --indent-string " " # recommended formating: autopep8 --indent-size 2 -i --ignore E501 ekerberos.py DOCUMENTATION = '''This module will create refresh kerberos principal for specified user on his own account if it will expire in next 15 min.''' EXAMPLES = ''' You have to specify user and password for kerberos - name: Refresh ekerberos: usr='root' pass='kerberos_password' ''' from ansible.module_utils.basic import * from subprocess import PIPE, Popen from datetime import datetime, timedelta from re import match # arguments that the module gets in various actions MODULE_ARGUMENTS = { 'usr': {'type': 'str', 'required': True}, 'pass': {'type': 'str', 'required': True} } def execute(cmd): proc = Popen(cmd, shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE) out, err = proc.communicate() proc.wait() return out, err def main(): module = AnsibleModule(argument_spec=MODULE_ARGUMENTS) # script will only set password at start, at creation time. If you want change it you have to delete user at start usr_a = module.params.get('usr', None) pass_a = module.params.get('pass', None) std_o, err_o = execute('sudo -u "{0}" klist'.format(usr_a)) kerberos_renew = False if std_o == '' or (err_o != None and err_o != ''): kerberos_renew = True else: std_lines = [a.replace('\n', '').replace('\t', '') for a in std_o.split('\n')] if match('^Default principal: {0}@.*$'.format(usr_a), std_lines[1]) == None: kerberos_renew = True else: # Extracting principal expire date expire_date = 'T'.join([a.replace(' ', '').replace('/', ':') for a in std_lines[-3].split(' ')][3:5]) # Checking if principal will expire in next 15 minutes or is already expired if datetime.now() > datetime.strptime(expire_date, '%m:%d:%yT%H:%M:%S') - timedelta(minutes=15): kerberos_renew = True if kerberos_renew: std_o, err_o = execute('echo -e "{1}\n" | sudo -u "{0}" kinit "{0}"'.format(usr_a, pass_a)) if err_o != None and err_o != '': module.fail_json(msg='Something is wrong with kerberos ') module.exit_json(changed=kerberos_renew, msg='Everything is done ') main()
trustedanalytics/one-click-deployment
ansible/roles/cloudera_cdh/library/ekerberos.py
Python
apache-2.0
2,865
# Copyright (c) 2016 SAP SE # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. from tempest import clients from tempest import config from tempest.lib.services import clients as cli CONF = config.CONF class Manager(clients.Manager): def __init__(self, credentials=None): super(Manager, self).__init__(credentials) class Clients(cli.ServiceClients): """Tempest stable service clients and loaded plugins service clients""" def __init__(self, credentials, service=None): """Emulate the interface of Tempest's clients.Manager""" # Identity settings if CONF.identity.auth_version == 'v2': identity_uri = CONF.identity.uri else: identity_uri = CONF.identity.uri_v3 super(Clients, self).__init__(credentials, identity_uri)
vakwetu/novajoin_tempest_plugin
novajoin_tempest_plugin/clients.py
Python
apache-2.0
1,301
# -*- coding: utf-8 -*- from __future__ import division from __future__ import print_function from __future__ import unicode_literals import logging # from numpy import round from numpy import zeros from . import LoadReductions from .Input.Animals.TotAEU import TotAEU_f from .Input.Animals.TotLAEU import TotLAEU from .Input.Animals.TotPAEU import TotPAEU_f from .Input.LandUse.Ag.AvTileDrain import AvTileDrain_f from .Input.LandUse.AreaTotal import AreaTotal_f from .Input.WaterBudget.AvEvapoTrans import AvEvapoTrans_f from .Input.WaterBudget.AvGroundWater import AvGroundWater_f from .Input.WaterBudget.AvWithdrawal import AvWithdrawal_f from .MultiUse_Fxns.AttenN import AttenN from .MultiUse_Fxns.Constants import NPConvert from .MultiUse_Fxns.Erosion.AvErosion import AvErosion_f from .MultiUse_Fxns.Erosion.AvSedYield import AvSedYield from .MultiUse_Fxns.Erosion.AvSedYield import AvSedYield_f from .MultiUse_Fxns.Erosion.AvStreamBankNSum import AvStreamBankNSum_f from .MultiUse_Fxns.Erosion.SedDelivRatio import SedDelivRatio from .MultiUse_Fxns.Runoff.AvRunoff import AvRunoff_f from .MultiUse_Fxns.Runoff.RetentFactorN import RetentFactorN from .Output.AvAnimalNSum.AvAnimalNSum_1 import AvAnimalNSum_1_f from .Output.AvAnimalNSum.N7b_1 import N7b_1_f from .Output.Loading.LuTotNitr_1 import LuTotNitr_1_f from .Output.Loading.LuTotPhos import LuTotPhos_f from .Output.Loading.StreamBankNSum import StreamBankNSum_f from .enums import YesOrNo, LandUse log = logging.getLogger(__name__) CM_TO_M = 1 / 100 HA_TO_M2 = 10000 KG_TO_MG = 1000000 M3_TO_L = 1000 TONNE_TO_KG = 1000 def WriteOutput(z): # DIMENSION VARIABLES FOR PREDICT CALCULATION AND SCENARIO FILE AvOtherLuSed = 0 AvOtherLuNitr = 0 AvOtherLuPhos = 0 TotSewerSys = 0 TotNormSys = 0 TotShortSys = 0 TotSeptSys = 0 TotAvLuErosion = 0 AvTotalSed = 0 AvDisN = 0 AvTotalN = 0 AvDisP = 0 AvTotalP = 0 n2t = 0 n6t = 0 n13t = 0 n24t = 0 AreaSum = zeros(12) # INSERT VALUES FOR BMP SCENARIO FILE FOR PREDICT APPLICATION for l in range(z.NLU): z.AvLuSedYield[l] = (z.AvLuSedYield[l] * z.RetentFactorSed) * (1 - z.AttenTSS) z.AvLuDisNitr[l] = (z.AvLuDisNitr[l] * RetentFactorN(z.ShedAreaDrainLake, z.RetentNLake)) * ( 1 - AttenN(z.AttenFlowDist, z.AttenFlowVel, z.AttenLossRateN)) z.AvLuTotNitr[l] = (z.AvLuTotNitr[l] * RetentFactorN(z.ShedAreaDrainLake, z.RetentNLake)) * ( 1 - AttenN(z.AttenFlowDist, z.AttenFlowVel, z.AttenLossRateN)) z.AvLuDisPhos[l] = (z.AvLuDisPhos[l] * z.RetentFactorP) * (1 - z.AttenP) z.AvLuTotPhos[l] = (z.AvLuTotPhos[l] * z.RetentFactorP) * (1 - z.AttenP) # SET THE SCENARIO VALUES TO LANDUSE LOADS for l in range(z.NRur): if z.Landuse[l] is LandUse.HAY_PAST: z.n2 = z.AvLuSedYield[l] z.n6 = z.AvLuTotNitr[l] z.n13 = z.AvLuTotPhos[l] z.n6dn = z.AvLuDisNitr[l] z.n13dp = z.AvLuDisPhos[l] z.n24 = round(z.Area[l]) elif z.Landuse[l] is LandUse.CROPLAND: z.n1 = z.AvLuSedYield[l] z.n5 = z.AvLuTotNitr[l] z.n12 = z.AvLuTotPhos[l] z.n5dn = z.AvLuDisNitr[l] z.n12dp = z.AvLuDisPhos[l] z.n23 = round(z.Area[l]) elif z.Landuse[l] is LandUse.TURFGRASS: z.n2t = z.AvLuSedYield[l] z.n6t = z.AvLuTotNitr[l] z.n13t = z.AvLuTotPhos[l] z.n24t = round(z.Area[l]) elif z.Landuse[l] is LandUse.UNPAVED_ROAD: z.n2d = z.AvLuSedYield[l] z.n6d = z.AvLuTotNitr[l] z.n13d = z.AvLuTotPhos[l] z.n6ddn = z.AvLuDisNitr[l] z.n13ddp = z.AvLuDisPhos[l] else: AvOtherLuSed = AvOtherLuSed + z.AvLuSedYield[l] AvOtherLuNitr = AvOtherLuNitr + z.AvLuTotNitr[l] AvOtherLuPhos = AvOtherLuPhos + z.AvLuTotPhos[l] z.n2c = 0 z.n6c = 0 z.n13c = 0 z.n24b = 0 z.n2b = 0 z.n6b = 0 z.n13b = 0 z.n23b = 0 z.n6cdn = 0 z.n13cdp = 0 z.n6bdn = 0 z.n13bdp = 0 for l in range(z.NRur, z.NLU): if z.Landuse[l] in [LandUse.LD_MIXED, LandUse.LD_RESIDENTIAL]: z.n2c = z.n2c + z.AvLuSedYield[l] z.n6c = z.n6c + z.AvLuTotNitr[l] z.n13c = z.n13c + z.AvLuTotPhos[l] z.n6cdn = z.n6cdn + z.AvLuDisNitr[l] z.n13cdp = z.n13cdp + z.AvLuDisPhos[l] z.n24b = z.n24b + round(z.Area[l]) elif z.Landuse[l] in [LandUse.MD_MIXED, LandUse.HD_MIXED, LandUse.MD_RESIDENTIAL, LandUse.HD_RESIDENTIAL]: z.n2b = z.n2b + z.AvLuSedYield[l] z.n6b = z.n6b + z.AvLuTotNitr[l] z.n13b = z.n13b + z.AvLuTotPhos[l] z.n6bdn = z.n6bdn + z.AvLuDisNitr[l] z.n13bdp = z.n13bdp + z.AvLuDisPhos[l] z.n23b = z.n23b + round(z.Area[l]) # FOR POINT SOURCE YrPointNitr = 0 YrPointPhos = 0 for i in range(0, 12): YrPointNitr = YrPointNitr + z.PointNitr[i] YrPointPhos = YrPointPhos + z.PointPhos[i] # GET THE AVERAGE SEPTIC SYSTEM INFORMATION if z.SepticFlag is YesOrNo.YES: for i in range(12): TotSewerSys = TotSewerSys + z.NumSewerSys[i] TotNormSys = TotNormSys + z.NumNormalSys[i] TotShortSys = TotShortSys + z.NumShortSys[i] TotSeptSys = (TotSeptSys + z.NumNormalSys[i] + z.NumShortSys[i] + z.NumPondSys[i] + z.NumDischargeSys[i]) # Set the conversion factors from metric to english SedConvert = 1000 SedConvert = 1 # Get the animal nuntient loads z.GRLBP = z.AvGRLostBarnPSum z.NGLBP = z.AvNGLostBarnPSum z.NGLManP = z.AvNGLostManPSum # Get the fecal coliform values z.NGLBFC = z.AvNGLostBarnFCSum z.GRLBFC = z.AvGRLostBarnFCSum z.GRSFC = z.AvGRStreamFC z.GRSP = z.AvGRStreamP # Get the initial pathogen loads z.n139 = z.AvAnimalFCSum z.n140 = z.AvWWOrgsSum z.n146 = z.AvWWOrgsSum z.n141 = z.AvSSOrgsSum z.n147 = z.AvSSOrgsSum z.n142 = z.AvUrbOrgsSum z.n143 = z.AvWildOrgsSum z.n149 = z.AvWildOrgsSum # FARM ANIMAL LOADS z.n14b = z.AvAnimalPSum # Get the AEUs z.n41j = round(TotLAEU(z.NumAnimals, z.AvgAnimalWt)) z.n41k = round(TotPAEU_f(z.NumAnimals, z.AvgAnimalWt)) z.n41l = round(TotAEU_f(z.NumAnimals, z.AvgAnimalWt)) # CONVERT AVERAGE STREAM BANK ERIOSION, N AND P TO ENGLISH UNITS z.n4 = round(z.AvStreamBankErosSum * z.RetentFactorSed * (1 - z.AttenTSS) * SedConvert) z.n8 = round(AvStreamBankNSum_f(z.NYrs, z.DaysMonth, z.Temp, z.InitSnow_0, z.Prec, z.NRur, z.NUrb, z.Area, z.CNI_0, z.AntMoist_0, z.Grow_0, z.CNP_0, z.Imper, z.ISRR, z.ISRA, z.CN, z.UnsatStor_0, z.KV, z.PcntET, z.DayHrs, z.MaxWaterCap, z.SatStor_0, z.RecessionCoef, z.SeepCoef, z.Qretention, z.PctAreaInfil, z.n25b, z.Landuse, z.TileDrainDensity, z.PointFlow, z.StreamWithdrawal, z.GroundWithdrawal, z.NumAnimals, z.AvgAnimalWt, z.StreamFlowVolAdj, z.SedAFactor_0, z.AvKF, z.AvSlope, z.SedAAdjust, z.StreamLength, z.n42b, z.n46c, z.n85d, z.AgLength, z.n42, z.n54, z.n85, z.UrbBankStab, z.SedNitr, z.BankNFrac, z.n69c, z.n45, z.n69) * NPConvert * RetentFactorN(z.ShedAreaDrainLake, z.RetentNLake) * ( 1 - AttenN(z.AttenFlowDist, z.AttenFlowVel, z.AttenLossRateN))) z.n15 = round(z.AvStreamBankPSum * NPConvert * z.RetentFactorP * (1 - z.AttenP)) # PERFORM LOAD REDUCTIONS BASED ON BMPS IN SCENARIO FILE LoadReductions.AdjustScnLoads(z) # CONVERT AVERAGE STREAM BANK ERIOSION, N AND P TO ENGLISH UNITS z.AvStreamBankErosSum = z.n4 z.AvStreamBankNSum = z.n8 z.AvStreamBankPSum = z.n15 z.AvAnimalFCSum = z.n145 z.AvUrbOrgsSum = z.n148 # Get the FC reduction for monthly loads UrbanFCFrac = 0 FarmFCFrac = 0 if z.n139 > 0: FarmFCFrac = z.n145 / z.n139 if z.n142 > 0: UrbanFCFrac = z.n148 / z.n142 for i in range(12): z.AvAnimalFC[i] = z.AvAnimalFC[i] * FarmFCFrac z.AvUrbOrgs[i] = z.AvUrbOrgs[i] * UrbanFCFrac # Reset the existing urban and animal FC loads to the reduced future loads, n145 and n148 z.n139 = z.n145 z.n142 = z.n148 # Initial pathogen total load z.n144 = z.n139 + z.n140 + z.n141 + z.n142 + z.n143 # Reduced total pathogen loads z.n150 = z.n145 + z.n146 + z.n147 + z.n148 + z.n149 z.AvTotalOrgsSum = z.n150 # FARM ANIMAL LOAD REDUCTION FOR N AND P z.AvAnimalPSum = z.n14b z.n14b = z.n14b * NPConvert z.GRLBP = z.GRLBP * NPConvert z.NGLBP = z.NGLBP * NPConvert z.NGLManP = z.NGLManP * NPConvert z.GRSP = z.AvGRStreamP * NPConvert # RESET GWLF OUTPUT VALUES FOR RURAL LANDUSE TO REDUCED LOADS AND CONVERT SCENARIO VALUES for l in range(z.NLU): if z.Landuse[l] is LandUse.HAY_PAST: z.AvLuSedYield[l] = z.n2 z.AvLuTotNitr[l] = z.n6 z.AvLuTotPhos[l] = z.n13 z.AvLuDisNitr[l] = z.n6dn z.AvLuDisPhos[l] = z.n13dp if z.AvLuDisNitr[l] > z.AvLuTotNitr[l]: z.AvLuDisNitr[l] = z.AvLuTotNitr[l] if z.AvLuDisPhos[l] > z.AvLuTotPhos[l]: z.AvLuDisPhos[l] = z.AvLuTotPhos[l] z.n2 = round(z.AvLuSedYield[l] * SedConvert) z.n6 = round(z.AvLuTotNitr[l] * NPConvert) z.n13 = round(z.AvLuTotPhos[l] * NPConvert) if z.Area[l] > 0: AreaSum[2] = AreaSum[2] + z.Area[l] elif z.Landuse[l] is LandUse.CROPLAND: z.AvLuSedYield[l] = z.n1 z.AvLuTotNitr[l] = z.n5 z.AvLuTotPhos[l] = z.n12 z.AvLuDisNitr[l] = z.n5dn z.AvLuDisPhos[l] = z.n12dp if z.AvLuDisNitr[l] > z.AvLuTotNitr[l]: z.AvLuDisNitr[l] = z.AvLuTotNitr[l] if z.AvLuDisPhos[l] > z.AvLuTotPhos[l]: z.AvLuDisPhos[l] = z.AvLuTotPhos[l] z.n1 = round(z.AvLuSedYield[l] * SedConvert) z.n5 = round(z.AvLuTotNitr[l] * NPConvert) z.n12 = round(z.AvLuTotPhos[l] * NPConvert) if z.Area[l] > 0: AreaSum[3] = AreaSum[3] + z.Area[l] elif z.Landuse[l] is LandUse.UNPAVED_ROAD: z.AvLuSedYield[l] = z.n2d z.AvLuTotNitr[l] = z.n6d z.AvLuTotPhos[l] = z.n13d z.AvLuDisNitr[l] = z.n6ddn z.AvLuDisPhos[l] = z.n13ddp if z.AvLuDisNitr[l] > z.AvLuTotNitr[l]: z.AvLuDisNitr[l] = z.AvLuTotNitr[l] if z.AvLuDisPhos[l] > z.AvLuTotPhos[l]: z.AvLuDisPhos[l] = z.AvLuTotPhos[l] z.n2d = round(z.AvLuSedYield[l] * SedConvert) z.n6d = round(z.AvLuTotNitr[l] * NPConvert) z.n13d = round(z.AvLuTotPhos[l] * NPConvert) if z.Area[l] > 0: AreaSum[6] = AreaSum[6] + z.Area[l] if z.AvLuDisNitr[l] > z.AvLuTotNitr[l]: z.AvLuDisNitr[l] = z.AvLuTotNitr[l] if z.AvLuDisPhos[l] > z.AvLuTotPhos[l]: z.AvLuDisPhos[l] = z.AvLuTotPhos[l] # GET THE AVERAGE TOTAL LOADS BY SOURCE TotAvLuErosion = TotAvLuErosion + z.AvLuErosion[l] AvTotalSed = AvTotalSed + z.AvLuSedYield[l] AvDisN = AvDisN + z.AvLuDisNitr[l] AvTotalN = AvTotalN + z.AvLuTotNitr[l] AvDisP = AvDisP + z.AvLuDisPhos[l] AvTotalP = AvTotalP + z.AvLuTotPhos[l] # Reset the urban landuse values for l in range(z.NRur, z.NLU): if z.n24b > 0 and z.Landuse[l] in [LandUse.LD_MIXED, LandUse.LD_RESIDENTIAL]: z.AvLuSedYield[l] = z.n2c * z.Area[l] / z.n24b z.AvLuTotNitr[l] = z.n6c * z.Area[l] / z.n24b z.AvLuTotPhos[l] = z.n13c * z.Area[l] / z.n24b z.AvLuDisNitr[l] = z.n6cdn * z.Area[l] / z.n24b z.AvLuDisPhos[l] = z.n13cdp * z.Area[l] / z.n24b if z.AvLuDisNitr[l] > z.AvLuTotNitr[l]: z.AvLuDisNitr[l] = z.AvLuTotNitr[l] if z.AvLuDisPhos[l] > z.AvLuTotPhos[l]: z.AvLuDisPhos[l] = z.AvLuTotPhos[l] if z.Area[l] > 0: AreaSum[0] = AreaSum[0] + z.Area[l] elif z.n23b > 0 and z.Landuse[l] in [LandUse.MD_MIXED, LandUse.HD_MIXED, LandUse.MD_RESIDENTIAL, LandUse.HD_RESIDENTIAL]: z.AvLuSedYield[l] = z.n2b * z.Area[l] / z.n23b z.AvLuTotNitr[l] = z.n6b * z.Area[l] / z.n23b z.AvLuTotPhos[l] = z.n13b * z.Area[l] / z.n23b z.AvLuDisNitr[l] = z.n6bdn * z.Area[l] / z.n23b z.AvLuDisPhos[l] = z.n13bdp * z.Area[l] / z.n23b if z.AvLuDisNitr[l] > z.AvLuTotNitr[l]: z.AvLuDisNitr[l] = z.AvLuTotNitr[l] if z.AvLuDisPhos[l] > z.AvLuTotPhos[l]: z.AvLuDisPhos[l] = z.AvLuTotPhos[l] if z.Area[l] > 0: AreaSum[1] = AreaSum[1] + z.Area[l] z.n2c = round(z.n2c * SedConvert) z.n6c = round(z.n6c * NPConvert) z.n13c = round(z.n13c * NPConvert) z.n2b = round(z.n2b * SedConvert) z.n6b = round(z.n6b * NPConvert) z.n13b = round(z.n13b * NPConvert) # FORMAT VALUES FOR PREDICT SCENARIO FILE z.n22 = round(AreaTotal_f(z.Area), 0) # OBTAIN THE AVERAGE TOTAL MONTHLY LOADS AvMonDisN = 0 AvMonTotN = 0 AvMonDisP = 0 AvMonTotP = 0 AvMonSed = 0 AvMonEros = 0 for i in range(12): AvMonEros = AvMonEros + \ AvErosion_f(z.NYrs, z.DaysMonth, z.Temp, z.InitSnow_0, z.Prec, z.NRur, z.NUrb, z.Area, z.CNI_0, z.AntMoist_0, z.Grow_0, z.CNP_0, z.Imper, z.ISRR, z.ISRA, z.CN, z.UnsatStor_0, z.KV, z.PcntET, z.DayHrs, z.MaxWaterCap, z.SatStor_0, z.RecessionCoef, z.SeepCoef, z.Qretention, z.PctAreaInfil, z.n25b, z.Landuse, z.TileDrainDensity, z.PointFlow, z.StreamWithdrawal, z.GroundWithdrawal, z.NumAnimals, z.AvgAnimalWt, z.StreamFlowVolAdj, z.SedAFactor_0, z.AvKF, z.AvSlope, z.SedAAdjust, z.StreamLength, z.n42b, z.n46c, z.n85d, z.AgLength, z.n42, z.n45, z.n85, z.UrbBankStab, z.SedDelivRatio_0, z.Acoef, z.KF, z.LS, z.C, z.P)[i] AvMonSed = AvMonSed + ( AvSedYield_f(z.NYrs, z.DaysMonth, z.Temp, z.InitSnow_0, z.Prec, z.NRur, z.NUrb, z.Area, z.CNI_0, z.AntMoist_0, z.Grow_0, z.CNP_0, z.Imper, z.ISRR, z.ISRA, z.CN, z.UnsatStor_0, z.KV, z.PcntET, z.DayHrs, z.MaxWaterCap, z.SatStor_0, z.RecessionCoef, z.SeepCoef, z.Qretention, z.PctAreaInfil, z.n25b, z.Landuse, z.TileDrainDensity, z.PointFlow, z.StreamWithdrawal, z.GroundWithdrawal, z.NumAnimals, z.AvgAnimalWt, z.StreamFlowVolAdj, z.SedAFactor_0, z.AvKF, z.AvSlope, z.SedAAdjust, z.StreamLength, z.n42b, z.n46c, z.n85d, z.AgLength, z.n42, z.n45, z.n85, z.UrbBankStab, z.Acoef, z.KF, z.LS, z.C, z.P, z.SedDelivRatio_0) * z.RetentFactorSed * (1 - z.AttenTSS)) AvMonDisN = AvMonDisN + (z.AvDisNitr[i] * RetentFactorN(z.ShedAreaDrainLake, z.RetentNLake) * ( 1 - AttenN(z.AttenFlowDist, z.AttenFlowVel, z.AttenLossRateN))) AvMonTotN = AvMonTotN + (z.AvTotNitr[i] * RetentFactorN(z.ShedAreaDrainLake, z.RetentNLake) * ( 1 - AttenN(z.AttenFlowDist, z.AttenFlowVel, z.AttenLossRateN))) AvMonDisP = AvMonDisP + (z.AvDisPhos[i] * z.RetentFactorP * (1 - z.AttenP)) AvMonTotP = AvMonTotP + (z.AvTotPhos[i] * z.RetentFactorP * (1 - z.AttenP)) # OBTAIN THE MONTHLY SEPTIC SYSTEM AND SEWER POPULATION VALUES z.n47 = round(TotSeptSys / 12) z.n49 = round(TotSeptSys / 12) z.n53 = round(TotSewerSys / 12) # CONVERT GROUNDWATER N AND P REDUCED LOADS INTO ENGLISH UNIST FOR THE PREDICT SCENARIO FILE z.n9 = round(((z.AvGroundNitrSum + z.AvTileDrainNSum) * NPConvert * RetentFactorN(z.ShedAreaDrainLake, z.RetentNLake) * ( 1 - AttenN(z.AttenFlowDist, z.AttenFlowVel, z.AttenLossRateN)))) z.n16 = round(((z.AvGroundPhosSum + z.AvTileDrainPSum) * NPConvert * z.RetentFactorP * (1 - z.AttenP))) # CONVERT ANNUAL POINT N AND P TO ENGLISH UNITS z.n10 = round((YrPointNitr * NPConvert * RetentFactorN(z.ShedAreaDrainLake, z.RetentNLake) * ( 1 - AttenN(z.AttenFlowDist, z.AttenFlowVel, z.AttenLossRateN)))) z.n17 = round((YrPointPhos * NPConvert * z.RetentFactorP * (1 - z.AttenP))) # CONVERT AVERAGE SEPTIC N AND P TO ENGLISH UNITS z.n11 = round((z.AvSeptNitr * NPConvert * RetentFactorN(z.ShedAreaDrainLake, z.RetentNLake) * ( 1 - AttenN(z.AttenFlowDist, z.AttenFlowVel, z.AttenLossRateN)))) z.n18 = round((z.AvSeptPhos * NPConvert * z.RetentFactorP * (1 - z.AttenP))) # ENTER THE OTHER SEDIMENT, N AND P INTO FIELDS z.n3 = round(((AvOtherLuSed + ((z.AvTileDrainSedSum * z.RetentFactorSed * (1 - z.AttenTSS)) / 1000)) * SedConvert)) z.n7 = round((AvOtherLuNitr * RetentFactorN(z.ShedAreaDrainLake, z.RetentNLake) * ( 1 - AttenN(z.AttenFlowDist, z.AttenFlowVel, z.AttenLossRateN)) * NPConvert)) z.n14 = round((AvOtherLuPhos * z.RetentFactorP * (1 - z.AttenP) * NPConvert)) # ADD TURF TO HAY/PASTURE z.n2 = z.n2 + (n2t * SedConvert) z.n6 = z.n6 + (n6t * NPConvert) z.n13 = z.n13 + (n13t * NPConvert) z.n24 = z.n24 + n24t # Multiply sediment loads by 1000 to get them into Kg before writing to PRedICT section of file z.n1 = z.n1 * 1000 z.n2 = z.n2 * 1000 z.n2b = z.n2b * 1000 z.n2c = z.n2c * 1000 z.n2d = z.n2d * 1000 z.n3 = z.n3 * 1000 # Obtain the totals for sed, z.n az.nd P # Obtain the totals for sed, N and P z.n19 = z.n1 + z.n2 + z.n2b + z.n2c + z.n2d + z.n3 + z.n4 z.n20 = z.n5 + z.n6 + z.n6b + z.n6c + z.n6d + z.n7 + N7b_1_f(z.NYrs, z.GrazingAnimal_0, z.NumAnimals, z.AvgAnimalWt, z.AnimalDailyN, z.NGAppNRate, z.NGPctSoilIncRate, z.GRAppNRate, z.GRPctSoilIncRate, z.GrazingNRate, z.GRPctManApp, z.PctGrazing, z.GRBarnNRate, z.Prec, z.DaysMonth, z.AWMSGrPct, z.GrAWMSCoeffN, z.RunContPct, z.RunConCoeffN, z.n41b, z.n85h, z.NGPctManApp, z.AWMSNgPct, z.NGBarnNRate, z.NgAWMSCoeffN, z.n41d, z.n85j, z.n41f, z.n85l, z.PctStreams, z.n42, z.n45, z.n69, z.n43, z.n64) + z.n8 + z.n9 + z.n10 + z.n11 z.n21 = z.n12 + z.n13 + z.n13b + z.n13c + z.n13d + z.n14 + z.n14b + z.n15 + z.n16 + z.n17 + z.n18 # TODO: Port WriteDailyFlowFile if needed # WRITE OUTPUT TO THE FILE FOR DAILy Flow # WriteDailyFlowFile # SET THE SCENARIO VALUES TO LANDUSE LOADS\ AvOtherLuSed = 0 AvOtherLuPhos = 0 for y in range(z.NYrs): z.n2c = 0 z.n6c = 0 z.n13c = 0 z.n2b = 0 z.n6b = 0 z.n13b = 0 z.n6cdn = 0 z.n13cdp = 0 z.n6bdn = 0 z.n13bdp = 0 for l in range(z.NLU): z.LuSedYield[y][l] = round((z.LuSedYield[y][l] * z.RetentFactorSed * (1 - z.AttenTSS))) z.LuDisNitr[y][l] = round((z.LuDisNitr[y][l] * RetentFactorN(z.ShedAreaDrainLake, z.RetentNLake) * ( 1 - AttenN(z.AttenFlowDist, z.AttenFlowVel, z.AttenLossRateN)))) z.LuDisPhos[y][l] = round((z.LuDisPhos[y][l] * z.RetentFactorP * (1 - z.AttenP))) z.LuTotPhos_1[y][l] = round( (LuTotPhos_f(z.NYrs, z.DaysMonth, z.InitSnow_0, z.Temp, z.Prec, z.AntMoist_0, z.NRur, z.NUrb, z.CN, z.Grow_0, z.Area, z.PhosConc, z.ManPhos, z.ManuredAreas, z.FirstManureMonth, z.LastManureMonth, z.FirstManureMonth2, z.LastManureMonth2, z.SedDelivRatio_0, z.KF, z.LS, z.C, z.P, z.CNP_0, z.Imper, z.ISRR, z.ISRA, z.Qretention, z.PctAreaInfil, z.Nqual, z.LoadRateImp, z.LoadRatePerv, z.Storm, z.UrbBMPRed, z.FilterWidth, z.PctStrmBuf, z.Acoef, z.SedPhos, z.CNI_0)[y][l] * z.RetentFactorP * (1 - z.AttenP))) if z.Landuse[l] is LandUse.HAY_PAST: z.n2 = z.LuSedYield[y][l] z.n6 = \ LuTotNitr_1_f(z.NYrs, z.NRur, z.NUrb, z.DaysMonth, z.InitSnow_0, z.Temp, z.Prec, z.AntMoist_0, z.CN, z.Grow_0, z.Area, z.NitrConc, z.ManNitr, z.ManuredAreas, z.FirstManureMonth, z.LastManureMonth, z.FirstManureMonth2, z.LastManureMonth2, z.SedDelivRatio_0, z.KF, z.LS, z.C, z.P, z.SedNitr, z.CNP_0, z.Imper, z.ISRR, z.ISRA, z.Qretention, z.PctAreaInfil, z.LoadRateImp, z.LoadRatePerv, z.Storm, z.UrbBMPRed, z.FilterWidth, z.PctStrmBuf, z.Acoef, z.CNI_0, z.Nqual, z.ShedAreaDrainLake, z.RetentNLake, z.AttenFlowDist, z.AttenFlowVel, z.AttenLossRateN)[y][l] z.n13 = z.LuTotPhos_1[y][l] z.n6dn = z.LuDisNitr[y][l] z.n13dp = z.LuDisPhos[y][l] elif z.Landuse[l] is LandUse.CROPLAND: z.n1 = z.LuSedYield[y][l] z.n5 = \ LuTotNitr_1_f(z.NYrs, z.NRur, z.NUrb, z.DaysMonth, z.InitSnow_0, z.Temp, z.Prec, z.AntMoist_0, z.CN, z.Grow_0, z.Area, z.NitrConc, z.ManNitr, z.ManuredAreas, z.FirstManureMonth, z.LastManureMonth, z.FirstManureMonth2, z.LastManureMonth2, z.SedDelivRatio_0, z.KF, z.LS, z.C, z.P, z.SedNitr, z.CNP_0, z.Imper, z.ISRR, z.ISRA, z.Qretention, z.PctAreaInfil, z.LoadRateImp, z.LoadRatePerv, z.Storm, z.UrbBMPRed, z.FilterWidth, z.PctStrmBuf, z.Acoef, z.CNI_0, z.Nqual, z.ShedAreaDrainLake, z.RetentNLake, z.AttenFlowDist, z.AttenFlowVel, z.AttenLossRateN)[y][l] z.n12 = z.LuTotPhos_1[y][l] z.n5dn = z.LuDisNitr[y][l] z.n12dp = z.LuDisPhos[y][l] elif z.Landuse[l] is LandUse.UNPAVED_ROAD: z.n2d = z.LuSedYield[y][l] z.n6d = \ LuTotNitr_1_f(z.NYrs, z.NRur, z.NUrb, z.DaysMonth, z.InitSnow_0, z.Temp, z.Prec, z.AntMoist_0, z.CN, z.Grow_0, z.Area, z.NitrConc, z.ManNitr, z.ManuredAreas, z.FirstManureMonth, z.LastManureMonth, z.FirstManureMonth2, z.LastManureMonth2, z.SedDelivRatio_0, z.KF, z.LS, z.C, z.P, z.SedNitr, z.CNP_0, z.Imper, z.ISRR, z.ISRA, z.Qretention, z.PctAreaInfil, z.LoadRateImp, z.LoadRatePerv, z.Storm, z.UrbBMPRed, z.FilterWidth, z.PctStrmBuf, z.Acoef, z.CNI_0, z.Nqual, z.ShedAreaDrainLake, z.RetentNLake, z.AttenFlowDist, z.AttenFlowVel, z.AttenLossRateN)[y][l] z.n13d = z.LuTotPhos_1[y][l] z.n6ddn = z.LuDisNitr[y][l] z.n13ddp = z.LuDisPhos[y][l] elif z.Landuse[l] is LandUse.TURFGRASS: z.n2t = z.LuSedYield[y][l] z.n6t = \ LuTotNitr_1_f(z.NYrs, z.NRur, z.NUrb, z.DaysMonth, z.InitSnow_0, z.Temp, z.Prec, z.AntMoist_0, z.CN, z.Grow_0, z.Area, z.NitrConc, z.ManNitr, z.ManuredAreas, z.FirstManureMonth, z.LastManureMonth, z.FirstManureMonth2, z.LastManureMonth2, z.SedDelivRatio_0, z.KF, z.LS, z.C, z.P, z.SedNitr, z.CNP_0, z.Imper, z.ISRR, z.ISRA, z.Qretention, z.PctAreaInfil, z.LoadRateImp, z.LoadRatePerv, z.Storm, z.UrbBMPRed, z.FilterWidth, z.PctStrmBuf, z.Acoef, z.CNI_0, z.Nqual, z.ShedAreaDrainLake, z.RetentNLake, z.AttenFlowDist, z.AttenFlowVel, z.AttenLossRateN)[y][l] z.n13t = z.LuTotPhos_1[y][l] else: AvOtherLuSed = AvOtherLuSed + z.LuSedYield[y][l] AvOtherLuPhos = AvOtherLuPhos + z.LuTotPhos_1[y][l] if z.Landuse[l] in [LandUse.LD_MIXED, LandUse.LD_RESIDENTIAL]: z.n2c = z.n2c + z.LuSedYield[y][l] z.n6c = z.n6c + \ LuTotNitr_1_f(z.NYrs, z.NRur, z.NUrb, z.DaysMonth, z.InitSnow_0, z.Temp, z.Prec, z.AntMoist_0, z.CN, z.Grow_0, z.Area, z.NitrConc, z.ManNitr, z.ManuredAreas, z.FirstManureMonth, z.LastManureMonth, z.FirstManureMonth2, z.LastManureMonth2, z.SedDelivRatio_0, z.KF, z.LS, z.C, z.P, z.SedNitr, z.CNP_0, z.Imper, z.ISRR, z.ISRA, z.Qretention, z.PctAreaInfil, z.LoadRateImp, z.LoadRatePerv, z.Storm, z.UrbBMPRed, z.FilterWidth, z.PctStrmBuf, z.Acoef, z.CNI_0, z.Nqual, z.ShedAreaDrainLake, z.RetentNLake, z.AttenFlowDist, z.AttenFlowVel, z.AttenLossRateN)[y][l] z.n13c = z.n13c + z.LuTotPhos_1[y][l] z.n6cdn = z.n6cdn + z.LuDisNitr[y][l] z.n13cdp = z.n13cdp + z.LuDisPhos[y][l] elif z.Landuse[l] in [LandUse.MD_MIXED, LandUse.HD_MIXED, LandUse.MD_RESIDENTIAL, LandUse.HD_RESIDENTIAL]: z.n2b = z.n2b + z.LuSedYield[y][l] z.n6b = z.n6b + \ LuTotNitr_1_f(z.NYrs, z.NRur, z.NUrb, z.DaysMonth, z.InitSnow_0, z.Temp, z.Prec, z.AntMoist_0, z.CN, z.Grow_0, z.Area, z.NitrConc, z.ManNitr, z.ManuredAreas, z.FirstManureMonth, z.LastManureMonth, z.FirstManureMonth2, z.LastManureMonth2, z.SedDelivRatio_0, z.KF, z.LS, z.C, z.P, z.SedNitr, z.CNP_0, z.Imper, z.ISRR, z.ISRA, z.Qretention, z.PctAreaInfil, z.LoadRateImp, z.LoadRatePerv, z.Storm, z.UrbBMPRed, z.FilterWidth, z.PctStrmBuf, z.Acoef, z.CNI_0, z.Nqual, z.ShedAreaDrainLake, z.RetentNLake, z.AttenFlowDist, z.AttenFlowVel, z.AttenLossRateN)[y][l] z.n13b = z.n13b + z.LuTotPhos_1[y][l] z.n6bdn = z.n6bdn + z.LuDisNitr[y][l] z.n13bdp = z.n13bdp + z.LuDisPhos[y][l] # Convert animal loads into English units z.GRLBP = z.GRLostBarnPSum[y] z.NGLBP = z.NGLostBarnPSum[y] z.NGLManP = z.NGLostManPSum[y] # Get the fecal coliform values z.NGLBFC = z.NGLostBarnFCSum[y] z.GRLBFC = z.GRLostBarnFCSum[y] z.GRSFC = z.AvGRStreamFC z.GRSP = z.AvGRStreamP # Get the initial pathogen loads z.n139 = z.AnimalFCSum[y] z.n140 = z.WWOrgsSum[y] z.n146 = z.WWOrgsSum[y] z.n141 = z.SSOrgsSum[y] z.n147 = z.SSOrgsSum[y] z.n142 = z.UrbOrgsSum[y] z.n143 = z.WildOrgsSum[y] z.n149 = z.WildOrgsSum[y] # Initial pathogen total load z.n144 = z.n139 + z.n140 + z.n141 + z.n142 + z.n143 # FARM ANIMAL LOADS n7b = z.AnimalNSum[y] # BUG: This is a bug in the original code. # This should be AnimalPSum n14b = z.AnimalNSum[y] # CONVERT AVERAGE STREAM BANK ERIOSION, N AND P TO ENGLISH UNITS z.n4 = round((z.StreamBankErosSum[y] * z.RetentFactorSed * (1 - z.AttenTSS) * SedConvert)) z.n8 = round((StreamBankNSum_f(z.NYrs, z.DaysMonth, z.Temp, z.InitSnow_0, z.Prec, z.NRur, z.NUrb, z.Area, z.CNI_0, z.AntMoist_0, z.Grow_0, z.CNP_0, z.Imper, z.ISRR, z.ISRA, z.CN, z.UnsatStor_0, z.KV, z.PcntET, z.DayHrs, z.MaxWaterCap, z.SatStor_0, z.RecessionCoef, z.SeepCoef, z.Qretention, z.PctAreaInfil, z.n25b, z.Landuse, z.TileDrainDensity, z.PointFlow, z.StreamWithdrawal, z.GroundWithdrawal, z.NumAnimals, z.AvgAnimalWt, z.StreamFlowVolAdj, z.SedAFactor_0, z.AvKF, z.AvSlope, z.SedAAdjust, z.StreamLength, z.n42b, z.AgLength, z.UrbBankStab, z.SedNitr, z.BankNFrac, z.n69c, z.n45, z.n69, z.n46c, z.n42)[ y] * NPConvert * RetentFactorN(z.ShedAreaDrainLake, z.RetentNLake) * ( 1 - AttenN(z.AttenFlowDist, z.AttenFlowVel, z.AttenLossRateN)))) z.n15 = round((z.StreamBankPSum[y] * NPConvert * z.RetentFactorP * (1 - z.AttenP))) # PERFORM LOAD REDUCTIONS BASED ON BMPS IN SCENARIO FILE LoadReductions.AdjustScnLoads(z) # CONVERT AVERAGE STREAM BANK ERIOSION, N AND P TO ENGLISH UNITS z.StreamBankErosSum[y] = z.n4 z.StreamBankPSum[y] = z.n15 z.AnimalFCSum[y] = z.n145 z.UrbOrgsSum[y] = z.n148 # Get the FC reduction for monthly loads UrbanFCFrac = 0 FarmFCFrac = 0 if z.n139 > 0: FarmFCFrac = z.n145 / z.n139 if z.n142 > 0: UrbanFCFrac = z.n148 / z.n142 for i in range(12): z.AnimalFCSum[y] *= FarmFCFrac z.UrbOrgsSum[y] *= UrbanFCFrac # Reduced total pathogen loads n150 = z.n145 + z.n146 + z.n147 + z.n148 + z.n149 z.TotalOrgsSum[y] = n150 # FARM ANIMAL LOADS z.AnimalNSum[y] = n7b # BUG: This is a bug in the original code. # This should be AnimalPSum z.AnimalNSum[y] = n14b # FOR ALL LAND USES z.TotDisNitr = 0 z.TotTotNitr = 0 z.TotDisPhos = 0 z.TotTotPhos = 0 z.TotSedyield = 0 z.LuTotNitr_2[y] = \ LuTotNitr_1_f(z.NYrs, z.NRur, z.NUrb, z.DaysMonth, z.InitSnow_0, z.Temp, z.Prec, z.AntMoist_0, z.CN, z.Grow_0, z.Area, z.NitrConc, z.ManNitr, z.ManuredAreas, z.FirstManureMonth, z.LastManureMonth, z.FirstManureMonth2, z.LastManureMonth2, z.SedDelivRatio_0, z.KF, z.LS, z.C, z.P, z.SedNitr, z.CNP_0, z.Imper, z.ISRR, z.ISRA, z.Qretention, z.PctAreaInfil, z.LoadRateImp, z.LoadRatePerv, z.Storm, z.UrbBMPRed, z.FilterWidth, z.PctStrmBuf, z.Acoef, z.CNI_0, z.Nqual, z.ShedAreaDrainLake, z.RetentNLake, z.AttenFlowDist, z.AttenFlowVel, z.AttenLossRateN)[y] for l in range(z.NLU): if z.Landuse[l] is LandUse.HAY_PAST: z.LuSedYield[y][l] = z.n2 z.LuTotNitr_2[y][l] = z.n6 z.LuTotPhos_1[y][l] = z.n13 z.LuDisNitr[y][l] = z.n6dn z.LuDisPhos[y][l] = z.n13dp if z.LuDisNitr[y][l] > z.LuTotNitr_2[y][l]: z.LuDisNitr[y][l] = z.LuTotNitr_2[y][l] if z.LuDisPhos[y][l] > z.LuTotPhos_1[y][l]: z.LuDisPhos[y][l] = z.LuTotPhos_1[y][l] elif z.Landuse[l] is LandUse.CROPLAND: if z.LuDisNitr[y][l] > 0: z.LuDisNitr[y][l] = z.LuDisNitr[y][l] * z.n5 / z.LuTotNitr_2[y][l] if z.LuDisPhos[y][l] > 0: z.LuDisPhos[y][l] = z.LuDisPhos[y][l] * z.n12 / z.LuTotPhos_1[y][l] z.LuSedYield[y][l] = z.n1 z.LuTotNitr_2[y][l] = z.n5 z.LuTotPhos_1[y][l] = z.n12 z.LuDisNitr[y][l] = z.n5dn z.LuDisPhos[y][l] = z.n12dp elif z.Landuse[l] is LandUse.UNPAVED_ROAD: z.LuSedYield[y][l] = z.n2d z.LuTotNitr_2[y][l] = z.n6d z.LuTotPhos_1[y][l] = z.n13d z.LuDisNitr[y][l] = z.n6ddn z.LuDisPhos[y][l] = z.n13ddp if z.LuDisNitr[y][l] > z.LuTotNitr_2[y][l]: z.LuDisNitr[y][l] = z.LuTotNitr_2[y][l] if z.LuDisPhos[y][l] > z.LuTotPhos_1[y][l]: z.LuDisPhos[y][l] = z.LuTotPhos_1[y][l] if z.n24b > 0 and z.Landuse[l] in [LandUse.LD_MIXED, LandUse.LD_RESIDENTIAL]: z.LuSedYield[y][l] = z.n2c * z.Area[l] / z.n24b z.LuTotNitr_2[y][l] = z.n6c * z.Area[l] / z.n24b z.LuTotPhos_1[y][l] = z.n13c * z.Area[l] / z.n24b z.LuDisNitr[y][l] = z.n6cdn * z.Area[l] / z.n24b z.LuDisPhos[y][l] = z.n13cdp * z.Area[l] / z.n24b if z.LuDisNitr[y][l] > z.LuTotNitr_2[y][l]: z.LuDisNitr[y][l] = z.LuTotNitr_2[y][l] if z.LuDisPhos[y][l] > z.LuTotPhos_1[y][l]: z.LuDisPhos[y][l] = z.LuTotPhos_1[y][l] elif z.n23b > 0 and z.Landuse[l] in [LandUse.MD_MIXED, LandUse.HD_MIXED, LandUse.MD_RESIDENTIAL, LandUse.HD_RESIDENTIAL]: z.LuSedYield[y][l] = z.n2b * z.Area[l] / z.n23b z.LuTotNitr_2[y][l] = z.n6b * z.Area[l] / z.n23b z.LuTotPhos_1[y][l] = z.n13b * z.Area[l] / z.n23b z.LuDisNitr[y][l] = z.n6bdn * z.Area[l] / z.n23b z.LuDisPhos[y][l] = z.n13bdp * z.Area[l] / z.n23b if z.LuDisNitr[y][l] > z.LuTotNitr_2[y][l]: z.LuDisNitr[y][l] = z.LuTotNitr_2[y][l] if z.LuDisPhos[y][l] > z.LuTotPhos_1[y][l]: z.LuDisPhos[y][l] = z.LuTotPhos_1[y][l] if z.LuDisNitr[y][l] > z.LuTotNitr_2[y][l]: z.LuDisNitr[y][l] = z.LuTotNitr_2[y][l] if z.LuDisPhos[y][l] > z.LuTotPhos_1[y][l]: z.LuDisPhos[y][l] = z.LuTotPhos_1[y][l] # WRITE THE RESULTS FILES INTO THE OUTPUT DIRECTORY IN METRIC UNITS # TODO: Skipping section that prepares and writes AnnualFile and AnnCsvFile # Lines ~630 - 921 # WRITE THE SUMARY FILES TO THE OUTPUT DIRECTORY IN METRIC UNITS # TODO: For now, we are only writing the first chunk of AvgFile # Sum Variables for Aggregate Summary Ouput Files # if FirstRun: XXX: Commented out because we don't # have the concept of a "first run" in the port. SumNYrs = z.NYrs SumNRur = z.NRur SumNUrb = z.NUrb SumNLU = z.NLU SumWxYrBeg = z.WxYrBeg SumWxYrEnd = z.WxYrEnd # Which land use sources to include in the totals. # These are indices of this array: https://github.com/WikiWatershed/model-my-watershed/blob/415be752ea7b66ae5e1d15afe1a11cf4051dbd5e/src/mmw/mmw/settings/gwlfe_settings.py#L23-L39 # This list matches the land type in the Loads list below # 13 was added and 4, 5, 9 removed in https://github.com/WikiWatershed/gwlf-e/pull/84 sources = (0, 1, 2, 3, 6, 7, 8, 10, 11, 12, 13) # ha AreaTotal = sum(z.Area[l] for l in sources) # kg SumSed = sum(z.AvLuSedYield[l] for l in sources) * TONNE_TO_KG SumSed += z.AvStreamBankErosSum # kg SumNitr = sum(z.AvLuTotNitr[l] for l in sources) SumNitr += z.AvStreamBankNSum SumNitr += AvAnimalNSum_1_f(z.NYrs, z.GrazingAnimal_0, z.NumAnimals, z.AvgAnimalWt, z.AnimalDailyN, z.NGAppNRate, z.NGPctSoilIncRate, z.GRAppNRate, z.GRPctSoilIncRate, z.GrazingNRate, z.GRPctManApp, z.PctGrazing, z.GRBarnNRate, z.Prec, z.DaysMonth, z.AWMSGrPct, z.GrAWMSCoeffN, z.RunContPct, z.RunConCoeffN, z.n41b, z.n85h, z.NGPctManApp, z.AWMSNgPct, z.NGBarnNRate, z.NgAWMSCoeffN, z.n41d, z.n85j, z.n41f, z.n85l, z.PctStreams, z.n42, z.n45, z.n69, z.n43, z.n64) * RetentFactorN(z.ShedAreaDrainLake, z.RetentNLake) * ( 1 - AttenN(z.AttenFlowDist, z.AttenFlowVel, z.AttenLossRateN)) SumNitr += z.AvGroundNitrSum * RetentFactorN(z.ShedAreaDrainLake, z.RetentNLake) * ( 1 - AttenN(z.AttenFlowDist, z.AttenFlowVel, z.AttenLossRateN)) SumNitr += YrPointNitr * RetentFactorN(z.ShedAreaDrainLake, z.RetentNLake) * ( 1 - AttenN(z.AttenFlowDist, z.AttenFlowVel, z.AttenLossRateN)) SumNitr += z.AvSeptNitr * RetentFactorN(z.ShedAreaDrainLake, z.RetentNLake) * ( 1 - AttenN(z.AttenFlowDist, z.AttenFlowVel, z.AttenLossRateN)) # kg SumPhos = sum(z.AvLuTotPhos[l] for l in sources) SumPhos += z.AvStreamBankPSum SumPhos += z.AvAnimalPSum * z.RetentFactorP * (1 - z.AttenP) SumPhos += z.AvGroundPhosSum * z.RetentFactorP * (1 - z.AttenP) SumPhos += YrPointPhos * z.RetentFactorP * (1 - z.AttenP) SumPhos += z.AvSeptPhos * z.RetentFactorP * (1 - z.AttenP) # m^3/year MeanFlow = (z.AvStreamFlowSum * CM_TO_M) * (AreaTotal * HA_TO_M2) # Find index of month with lowest mean flow. LowFlowMonth = z.AvStreamFlow.tolist().index(min(z.AvStreamFlow)) # m^3/year MeanLowFlow = (z.AvStreamFlow[LowFlowMonth] * CM_TO_M) * (AreaTotal * HA_TO_M2) # m^3/second MeanFlowPS = MeanFlow / 31536000 # kg/ha if AreaTotal > 0: LoadingRateSed = SumSed / AreaTotal LoadingRateN = SumNitr / AreaTotal LoadingRateP = SumPhos / AreaTotal else: LoadingRateSed = 0 LoadingRateN = 0 LoadingRateP = 0 # mg/l if MeanFlow > 0: ConcSed = (SumSed * KG_TO_MG) / (MeanFlow * M3_TO_L) ConcN = (SumNitr * KG_TO_MG) / (MeanFlow * M3_TO_L) ConcP = (SumPhos * KG_TO_MG) / (MeanFlow * M3_TO_L) else: ConcSed = 0 ConcN = 0 ConcP = 0 # mg/l if MeanLowFlow > 0: LFConcSed = ((AvSedYield(z.NYrs, z.DaysMonth, z.Temp, z.InitSnow_0, z.Prec, z.NRur, z.NUrb, z.Area, z.CNI_0, z.AntMoist_0, z.Grow_0, z.CNP_0, z.Imper, z.ISRR, z.ISRA, z.CN, z.UnsatStor_0, z.KV, z.PcntET, z.DayHrs, z.MaxWaterCap, z.SatStor_0, z.RecessionCoef, z.SeepCoef, z.Qretention, z.PctAreaInfil, z.n25b, z.Landuse, z.TileDrainDensity, z.PointFlow, z.StreamWithdrawal, z.GroundWithdrawal, z.NumAnimals, z.AvgAnimalWt, z.StreamFlowVolAdj, z.SedAFactor_0, z.AvKF, z.AvSlope, z.SedAAdjust, z.StreamLength, z.n42b, z.n46c, z.n85d, z.AgLength, z.n42, z.n45, z.n85, z.UrbBankStab, z.Acoef, z.KF, z.LS, z.C, z.P, z.SedDelivRatio_0)[LowFlowMonth] * TONNE_TO_KG * KG_TO_MG) / ( MeanLowFlow * M3_TO_L)) LFConcN = ((z.AvTotNitr[LowFlowMonth] * KG_TO_MG) / (MeanLowFlow * M3_TO_L)) LFConcP = ((z.AvTotPhos[LowFlowMonth] * KG_TO_MG) / (MeanLowFlow * M3_TO_L)) else: LFConcSed = 0 LFConcN = 0 LFConcP = 0 output = {} # Equivalent to Line 927 of source output['meta'] = { 'NYrs': z.NYrs, 'NRur': z.NRur, 'NUrb': z.NUrb, 'NLU': z.NLU, 'SedDelivRatio': SedDelivRatio(z.SedDelivRatio_0), 'WxYrBeg': z.WxYrBeg, 'WxYrEnd': z.WxYrEnd, } output['AreaTotal'] = AreaTotal output['MeanFlow'] = MeanFlow output['MeanFlowPerSecond'] = MeanFlowPS # Equivalent to lines 965 - 988 of source av_evapo_trans = AvEvapoTrans_f(z.NYrs, z.DaysMonth, z.Temp, z.InitSnow_0, z.Prec, z.NRur, z.NUrb, z.Area, z.CNI_0, z.AntMoist_0, z.Grow_0, z.CNP_0, z.Imper, z.ISRR, z.ISRA, z.CN, z.UnsatStor_0, z.KV, z.PcntET, z.DayHrs, z.MaxWaterCap) # TODO: once all of the monthly variables have been extracted, rewrite how this works av_tile_drain = AvTileDrain_f(z.NYrs, z.DaysMonth, z.Temp, z.InitSnow_0, z.Prec, z.NRur, z.NUrb, z.Area, z.CNI_0, z.AntMoist_0, z.Grow_0, z.CNP_0, z.Imper, z.ISRR, z.ISRA, z.CN, z.UnsatStor_0, z.KV, z.PcntET, z.DayHrs, z.MaxWaterCap, z.SatStor_0, z.RecessionCoef, z.SeepCoef, z.Landuse, z.TileDrainDensity) av_withdrawal = AvWithdrawal_f(z.NYrs, z.StreamWithdrawal, z.GroundWithdrawal) av_ground_water = AvGroundWater_f(z.NYrs, z.DaysMonth, z.Temp, z.InitSnow_0, z.Prec, z.NRur, z.NUrb, z.Area, z.CNI_0, z.AntMoist_0, z.Grow_0, z.CNP_0, z.Imper, z.ISRR, z.ISRA, z.CN, z.UnsatStor_0, z.KV, z.PcntET, z.DayHrs, z.MaxWaterCap, z.SatStor_0, z.RecessionCoef, z.SeepCoef, z.Landuse, z.TileDrainDensity) av_runoff = AvRunoff_f(z.NYrs, z.DaysMonth, z.Temp, z.InitSnow_0, z.Prec, z.NRur, z.NUrb, z.Area, z.CNI_0, z.AntMoist_0, z.Grow_0, z.CNP_0, z.Imper, z.ISRR, z.ISRA, z.Qretention, z.PctAreaInfil, z.n25b, z.CN, z.Landuse, z.TileDrainDensity) output['monthly'] = [] for i in range(0, 12): output['monthly'].append({ 'AvPrecipitation': z.AvPrecipitation[i], 'AvEvapoTrans': av_evapo_trans[i], 'AvGroundWater': av_ground_water[i], 'AvRunoff': av_runoff[i], 'AvStreamFlow': z.AvStreamFlow[i], 'AvPtSrcFlow': z.AvPtSrcFlow[i], 'AvTileDrain': av_tile_drain[i], 'AvWithdrawal': av_withdrawal[i], }) output['Loads'] = [] output['Loads'].append({ 'Source': 'Hay/Pasture', 'Sediment': z.AvLuSedYield[0] * TONNE_TO_KG, 'TotalN': z.AvLuTotNitr[0], 'TotalP': z.AvLuTotPhos[0], }) output['Loads'].append({ 'Source': 'Cropland', 'Sediment': z.AvLuSedYield[1] * TONNE_TO_KG, 'TotalN': z.AvLuTotNitr[1], 'TotalP': z.AvLuTotPhos[1], }) # Forest output['Loads'].append({ 'Source': 'Wooded Areas', 'Sediment': z.AvLuSedYield[2] * TONNE_TO_KG, 'TotalN': z.AvLuTotNitr[2], 'TotalP': z.AvLuTotPhos[2], }) output['Loads'].append({ 'Source': 'Wetlands', 'Sediment': z.AvLuSedYield[3] * TONNE_TO_KG, 'TotalN': z.AvLuTotNitr[3], 'TotalP': z.AvLuTotPhos[3], }) output['Loads'].append({ 'Source': 'Open Land', 'Sediment': z.AvLuSedYield[6] * TONNE_TO_KG, 'TotalN': z.AvLuTotNitr[6], 'TotalP': z.AvLuTotPhos[6], }) # Bare Rock, Sandy Areas output['Loads'].append({ 'Source': 'Barren Areas', 'Sediment': sum(z.AvLuSedYield[l] * TONNE_TO_KG for l in (7, 8)), 'TotalN': sum(z.AvLuTotNitr[l] for l in (7, 8)), 'TotalP': sum(z.AvLuTotPhos[l] for l in (7, 8)), }) output['Loads'].append({ 'Source': 'Low-Density Mixed', 'Sediment': z.AvLuSedYield[10] * TONNE_TO_KG, 'TotalN': z.AvLuTotNitr[10], 'TotalP': z.AvLuTotPhos[10], }) output['Loads'].append({ 'Source': 'Medium-Density Mixed', 'Sediment': z.AvLuSedYield[11] * TONNE_TO_KG, 'TotalN': z.AvLuTotNitr[11], 'TotalP': z.AvLuTotPhos[11], }) output['Loads'].append({ 'Source': 'High-Density Mixed', 'Sediment': z.AvLuSedYield[12] * TONNE_TO_KG, 'TotalN': z.AvLuTotNitr[12], 'TotalP': z.AvLuTotPhos[12], }) output['Loads'].append({ 'Source': 'Low-Density Open Space', 'Sediment': z.AvLuSedYield[13] * TONNE_TO_KG, 'TotalN': z.AvLuTotNitr[13], 'TotalP': z.AvLuTotPhos[13], }) output['Loads'].append({ 'Source': 'Farm Animals', 'Sediment': 0, 'TotalN': AvAnimalNSum_1_f(z.NYrs, z.GrazingAnimal_0, z.NumAnimals, z.AvgAnimalWt, z.AnimalDailyN, z.NGAppNRate, z.NGPctSoilIncRate, z.GRAppNRate, z.GRPctSoilIncRate, z.GrazingNRate, z.GRPctManApp, z.PctGrazing, z.GRBarnNRate, z.Prec, z.DaysMonth, z.AWMSGrPct, z.GrAWMSCoeffN, z.RunContPct, z.RunConCoeffN, z.n41b, z.n85h, z.NGPctManApp, z.AWMSNgPct, z.NGBarnNRate, z.NgAWMSCoeffN, z.n41d, z.n85j, z.n41f, z.n85l, z.PctStreams, z.n42, z.n45, z.n69, z.n43, z.n64) * RetentFactorN(z.ShedAreaDrainLake, z.RetentNLake) * ( 1 - AttenN(z.AttenFlowDist, z.AttenFlowVel, z.AttenLossRateN)), 'TotalP': z.AvAnimalPSum * z.RetentFactorP * (1 - z.AttenP), }) output['Loads'].append({ 'Source': 'Stream Bank Erosion', 'Sediment': z.AvStreamBankErosSum, 'TotalN': z.AvStreamBankNSum, 'TotalP': z.AvStreamBankPSum, }) output['Loads'].append({ 'Source': 'Subsurface Flow', 'Sediment': 0, 'TotalN': z.AvGroundNitrSum * RetentFactorN(z.ShedAreaDrainLake, z.RetentNLake) * ( 1 - AttenN(z.AttenFlowDist, z.AttenFlowVel, z.AttenLossRateN)), 'TotalP': z.AvGroundPhosSum * z.RetentFactorP * (1 - z.AttenP), }) output['Loads'].append({ 'Source': 'Point Sources', 'Sediment': 0, 'TotalN': YrPointNitr * RetentFactorN(z.ShedAreaDrainLake, z.RetentNLake) * ( 1 - AttenN(z.AttenFlowDist, z.AttenFlowVel, z.AttenLossRateN)), 'TotalP': YrPointPhos * z.RetentFactorP * (1 - z.AttenP), }) output['Loads'].append({ 'Source': 'Septic Systems', 'Sediment': 0, 'TotalN': z.AvSeptNitr * RetentFactorN(z.ShedAreaDrainLake, z.RetentNLake) * ( 1 - AttenN(z.AttenFlowDist, z.AttenFlowVel, z.AttenLossRateN)), 'TotalP': z.AvSeptPhos * z.RetentFactorP * (1 - z.AttenP), }) output['SummaryLoads'] = [] output['SummaryLoads'].append({ 'Source': 'Total Loads', 'Unit': 'kg', 'Sediment': SumSed, 'TotalN': SumNitr, 'TotalP': SumPhos, }) output['SummaryLoads'].append({ 'Source': 'Loading Rates', 'Unit': 'kg/ha', 'Sediment': LoadingRateSed, 'TotalN': LoadingRateN, 'TotalP': LoadingRateP, }) output['SummaryLoads'].append({ 'Source': 'Mean Annual Concentration', 'Unit': 'mg/l', 'Sediment': ConcSed, 'TotalN': ConcN, 'TotalP': ConcP, }) output['SummaryLoads'].append({ 'Source': 'Mean Low-Flow Concentration', 'Unit': 'mg/l', 'Sediment': LFConcSed, 'TotalN': LFConcN, 'TotalP': LFConcP, }) return output def WriteOutputSumFiles(): pass def UrbanAreasOutput(): pass
WikiWatershed/gwlf-e
gwlfe/WriteOutputFiles.py
Python
apache-2.0
49,171
# Copyright (c) 2017 Huawei Technologies India Pvt.Limited. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from unittest import mock from neutronclient.osc.v2.sfc import sfc_flow_classifier from neutronclient.tests.unit.osc.v2.sfc import fakes get_id = 'neutronclient.osc.v2.sfc.sfc_flow_classifier._get_id' def _get_id(client, id_or_name, resource): return id_or_name class TestCreateSfcFlowClassifier(fakes.TestNeutronClientOSCV2): _fc = fakes.FakeSfcFlowClassifier.create_flow_classifier() columns = ('Description', 'Destination IP', 'Destination Port Range Max', 'Destination Port Range Min', 'Ethertype', 'ID', 'L7 Parameters', 'Logical Destination Port', 'Logical Source Port', 'Name', 'Project', 'Protocol', 'Source IP', 'Source Port Range Max', 'Source Port Range Min') def get_data(self): return ( self._fc['description'], self._fc['destination_ip_prefix'], self._fc['destination_port_range_max'], self._fc['destination_port_range_min'], self._fc['ethertype'], self._fc['id'], self._fc['l7_parameters'], self._fc['logical_destination_port'], self._fc['logical_source_port'], self._fc['name'], self._fc['project_id'], self._fc['protocol'], self._fc['source_ip_prefix'], self._fc['source_port_range_max'], self._fc['source_port_range_min'] ) def setUp(self): super(TestCreateSfcFlowClassifier, self).setUp() mock.patch(get_id, new=_get_id).start() self.neutronclient.create_sfc_flow_classifier = mock.Mock( return_value={'flow_classifier': self._fc}) self.data = self.get_data() # Get the command object to test self.cmd = sfc_flow_classifier.CreateSfcFlowClassifier(self.app, self.namespace) def test_create_flow_classifier_default_options(self): arglist = [ "--logical-source-port", self._fc['logical_source_port'], "--ethertype", self._fc['ethertype'], self._fc['name'], ] verifylist = [ ('logical_source_port', self._fc['logical_source_port']), ('ethertype', self._fc['ethertype']), ('name', self._fc['name']), ] parsed_args = self.check_parser(self.cmd, arglist, verifylist) columns, data = (self.cmd.take_action(parsed_args)) self.neutronclient.create_sfc_flow_classifier.assert_called_once_with({ 'flow_classifier': { 'name': self._fc['name'], 'logical_source_port': self._fc['logical_source_port'], 'ethertype': self._fc['ethertype']} }) self.assertEqual(self.columns, columns) self.assertEqual(self.data, data) def test_create_flow_classifier(self): arglist = [ "--description", self._fc['description'], "--ethertype", self._fc['ethertype'], "--protocol", self._fc['protocol'], "--source-ip-prefix", self._fc['source_ip_prefix'], "--destination-ip-prefix", self._fc['destination_ip_prefix'], "--logical-source-port", self._fc['logical_source_port'], "--logical-destination-port", self._fc['logical_destination_port'], self._fc['name'], "--l7-parameters", 'url=path', ] param = 'url=path' verifylist = [ ('description', self._fc['description']), ('name', self._fc['name']), ('ethertype', self._fc['ethertype']), ('protocol', self._fc['protocol']), ('source_ip_prefix', self._fc['source_ip_prefix']), ('destination_ip_prefix', self._fc['destination_ip_prefix']), ('logical_source_port', self._fc['logical_source_port']), ('logical_destination_port', self._fc['logical_destination_port']), ('l7_parameters', param) ] parsed_args = self.check_parser(self.cmd, arglist, verifylist) columns, data = (self.cmd.take_action(parsed_args)) self.neutronclient.create_sfc_flow_classifier.assert_called_once_with({ 'flow_classifier': { 'name': self._fc['name'], 'description': self._fc['description'], 'ethertype': self._fc['ethertype'], 'protocol': self._fc['protocol'], 'source_ip_prefix': self._fc['source_ip_prefix'], 'destination_ip_prefix': self._fc['destination_ip_prefix'], 'logical_source_port': self._fc['logical_source_port'], 'logical_destination_port': self._fc['logical_destination_port'], 'l7_parameters': param } }) self.assertEqual(self.columns, columns) self.assertEqual(self.data, data) class TestDeleteSfcFlowClassifier(fakes.TestNeutronClientOSCV2): _flow_classifier = \ fakes.FakeSfcFlowClassifier.create_flow_classifiers(count=1) def setUp(self): super(TestDeleteSfcFlowClassifier, self).setUp() mock.patch(get_id, new=_get_id).start() self.neutronclient.delete_sfc_flow_classifier = mock.Mock( return_value=None) self.cmd = sfc_flow_classifier.DeleteSfcFlowClassifier(self.app, self.namespace) def test_delete_flow_classifier(self): client = self.app.client_manager.neutronclient mock_flow_classifier_delete = client.delete_sfc_flow_classifier arglist = [ self._flow_classifier[0]['id'], ] verifylist = [ ('flow_classifier', self._flow_classifier[0]['id']), ] parsed_args = self.check_parser(self.cmd, arglist, verifylist) result = self.cmd.take_action(parsed_args) mock_flow_classifier_delete.assert_called_once_with( self._flow_classifier[0]['id']) self.assertIsNone(result) class TestSetSfcFlowClassifier(fakes.TestNeutronClientOSCV2): _flow_classifier = fakes.FakeSfcFlowClassifier.create_flow_classifier() _flow_classifier_name = _flow_classifier['name'] _flow_classifier_id = _flow_classifier['id'] def setUp(self): super(TestSetSfcFlowClassifier, self).setUp() mock.patch(get_id, new=_get_id).start() self.neutronclient.update_sfc_flow_classifier = mock.Mock( return_value=None) self.cmd = sfc_flow_classifier.SetSfcFlowClassifier(self.app, self.namespace) def test_set_flow_classifier(self): client = self.app.client_manager.neutronclient mock_flow_classifier_update = client.update_sfc_flow_classifier arglist = [ self._flow_classifier_name, '--name', 'name_updated', '--description', 'desc_updated' ] verifylist = [ ('flow_classifier', self._flow_classifier_name), ('name', 'name_updated'), ('description', 'desc_updated'), ] parsed_args = self.check_parser(self.cmd, arglist, verifylist) result = self.cmd.take_action(parsed_args) attrs = {'flow_classifier': { 'name': 'name_updated', 'description': 'desc_updated'}} mock_flow_classifier_update.assert_called_once_with( self._flow_classifier_name, attrs) self.assertIsNone(result) class TestShowSfcFlowClassifier(fakes.TestNeutronClientOSCV2): _fc = fakes.FakeSfcFlowClassifier.create_flow_classifier() data = ( _fc['description'], _fc['destination_ip_prefix'], _fc['destination_port_range_max'], _fc['destination_port_range_min'], _fc['ethertype'], _fc['id'], _fc['l7_parameters'], _fc['logical_destination_port'], _fc['logical_source_port'], _fc['name'], _fc['project_id'], _fc['protocol'], _fc['source_ip_prefix'], _fc['source_port_range_max'], _fc['source_port_range_min'] ) _flow_classifier = {'flow_classifier': _fc} _flow_classifier_id = _fc['id'] columns = ('Description', 'Destination IP', 'Destination Port Range Max', 'Destination Port Range Min', 'Ethertype', 'ID', 'L7 Parameters', 'Logical Destination Port', 'Logical Source Port', 'Name', 'Project', 'Protocol', 'Source IP', 'Source Port Range Max', 'Source Port Range Min') def setUp(self): super(TestShowSfcFlowClassifier, self).setUp() mock.patch(get_id, new=_get_id).start() self.neutronclient.show_sfc_flow_classifier = mock.Mock( return_value=self._flow_classifier ) # Get the command object to test self.cmd = sfc_flow_classifier.ShowSfcFlowClassifier(self.app, self.namespace) def test_show_flow_classifier(self): client = self.app.client_manager.neutronclient mock_flow_classifier_show = client.show_sfc_flow_classifier arglist = [ self._flow_classifier_id, ] verifylist = [ ('flow_classifier', self._flow_classifier_id), ] parsed_args = self.check_parser(self.cmd, arglist, verifylist) columns, data = self.cmd.take_action(parsed_args) mock_flow_classifier_show.assert_called_once_with( self._flow_classifier_id) self.assertEqual(self.columns, columns) self.assertEqual(self.data, data) class TestListSfcFlowClassifier(fakes.TestNeutronClientOSCV2): _fc = fakes.FakeSfcFlowClassifier.create_flow_classifiers(count=1) columns = ('ID', 'Name', 'Summary') columns_long = ('ID', 'Name', 'Protocol', 'Ethertype', 'Source IP', 'Destination IP', 'Logical Source Port', 'Logical Destination Port', 'Source Port Range Min', 'Source Port Range Max', 'Destination Port Range Min', 'Destination Port Range Max', 'L7 Parameters', 'Description', 'Project') _flow_classifier = _fc[0] data = [ _flow_classifier['id'], _flow_classifier['name'], _flow_classifier['protocol'], _flow_classifier['source_ip_prefix'], _flow_classifier['destination_ip_prefix'], _flow_classifier['logical_source_port'], _flow_classifier['logical_destination_port'] ] data_long = [ _flow_classifier['id'], _flow_classifier['name'], _flow_classifier['protocol'], _flow_classifier['ethertype'], _flow_classifier['source_ip_prefix'], _flow_classifier['destination_ip_prefix'], _flow_classifier['logical_source_port'], _flow_classifier['logical_destination_port'], _flow_classifier['source_port_range_min'], _flow_classifier['source_port_range_max'], _flow_classifier['destination_port_range_min'], _flow_classifier['destination_port_range_max'], _flow_classifier['l7_parameters'], _flow_classifier['description'] ] _flow_classifier1 = {'flow_classifiers': _flow_classifier} _flow_classifier_id = _flow_classifier['id'] def setUp(self): super(TestListSfcFlowClassifier, self).setUp() mock.patch(get_id, new=_get_id).start() self.neutronclient.list_sfc_flow_classifiers = mock.Mock( return_value={'flow_classifiers': self._fc} ) # Get the command object to test self.cmd = sfc_flow_classifier.ListSfcFlowClassifier(self.app, self.namespace) def test_list_flow_classifiers(self): arglist = [] verifylist = [] parsed_args = self.check_parser(self.cmd, arglist, verifylist) columns = self.cmd.take_action(parsed_args) fcs = self.neutronclient \ .list_sfc_flow_classifiers()['flow_classifiers'] fc = fcs[0] data = [ fc['id'], fc['name'], fc['protocol'], fc['source_ip_prefix'], fc['destination_ip_prefix'], fc['logical_source_port'], fc['logical_destination_port'] ] self.assertEqual(list(self.columns), columns[0]) self.assertEqual(self.data, data) def test_list_with_long_option(self): arglist = ['--long'] verifylist = [('long', True)] fcs = self.neutronclient \ .list_sfc_flow_classifiers()['flow_classifiers'] fc = fcs[0] data = [ fc['id'], fc['name'], fc['protocol'], fc['ethertype'], fc['source_ip_prefix'], fc['destination_ip_prefix'], fc['logical_source_port'], fc['logical_destination_port'], fc['source_port_range_min'], fc['source_port_range_max'], fc['destination_port_range_min'], fc['destination_port_range_max'], fc['l7_parameters'], fc['description'] ] parsed_args = self.check_parser(self.cmd, arglist, verifylist) columns_long = self.cmd.take_action(parsed_args)[0] self.assertEqual(list(self.columns_long), columns_long) self.assertEqual(self.data_long, data)
openstack/python-neutronclient
neutronclient/tests/unit/osc/v2/sfc/test_flow_classifier.py
Python
apache-2.0
14,512
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import paddle.fluid.framework as framework class ConstantTest(unittest.TestCase): def test_const_value(self): self.assertEqual(framework.GRAD_VAR_SUFFIX, "@GRAD") self.assertEqual(framework.TEMP_VAR_NAME, "@TEMP@") self.assertEqual(framework.GRAD_VAR_SUFFIX, "@GRAD") self.assertEqual(framework.ZERO_VAR_SUFFIX, "@ZERO") if __name__ == '__main__': unittest.main()
jacquesqiao/Paddle
python/paddle/fluid/tests/unittests/test_const_value.py
Python
apache-2.0
1,037
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test suite for Matter devices with door lock endpoint.""" from typing import Type from gazoo_device.tests.functional_tests.mixins import door_lock_cluster_suite from gazoo_device.tests.functional_tests.utils import gdm_test_base class DoorLockTestSuite(door_lock_cluster_suite.DoorLockTestSuite): """Tests for the door lock endpoint capability.""" def setup_class(self) -> None: """Sets the endpoint instance.""" super().setup_class() self.endpoint = self.device.door_lock @classmethod def requires_pairing(cls) -> bool: """Returns True if the device must be paired to run this test suite.""" return False @classmethod def is_applicable_to(cls, device_type: str, device_class: Type[gdm_test_base.DeviceType], device_name: str) -> bool: """Determines if this test suite can run on the given device.""" return device_class.has_capabilities(["door_lock"])
google/gazoo-device
gazoo_device/tests/functional_tests/door_lock_test_suite.py
Python
apache-2.0
1,523
"""Tests for the project model.""" import unittest from ctc.models import project as project_model from ctc.models import user as user_model from ctc.testing import model_helpers from ctc.testing import testutil # Tests don't need docstrings, so pylint: disable=C0111 class ProjectTests(testutil.CtcTestCase): def test_populate(self): fields = { 'name': 'name', 'overview': 'overview', 'organization_name': 'organization_name', 'organization_mission': 'organization_mission', 'organization_contact': 'organization_contact', 'details': 'details', 'collaboration_link': 'collaboration_link', 'code_link': 'code_link'} project = project_model.Project() populated_project = project.populate(fields) self.assertEqual(project, populated_project) self.assertEqual(project.name, 'name') self.assertEqual(project.overview, 'overview') self.assertEqual(project.organization_name, 'organization_name') self.assertEqual(project.organization_mission, 'organization_mission') self.assertEqual(project.organization_contact, 'organization_contact') self.assertEqual(project.details, 'details') self.assertEqual(project.collaboration_link, 'collaboration_link') self.assertEqual(project.code_link, 'code_link') def test_get_by_owner(self): user_key = user_model.User(email='owner@codethechange.org').put() self.assertEqual(project_model.get_by_owner(user_key), []) project1 = model_helpers.create_project(owner_key=user_key) project2 = model_helpers.create_project(owner_key=user_key) other_user = user_model.User( email='nottheowner@codethechange.org').put() model_helpers.create_project(owner_key=other_user) # Ordered by most recent. Doesn't include the other user's project. expected_projects = [project2, project1] actual_projects = project_model.get_by_owner(user_key) self.assertEqual(expected_projects, actual_projects) if __name__ == '__main__': unittest.main()
samking/code-the-change-projects
ctc/models/project_test.py
Python
apache-2.0
2,135
# ccm node from __future__ import absolute_import, with_statement import os import re import shutil import signal import stat import subprocess import time import yaml from six import iteritems, print_ from ccmlib import common, extension, repository from ccmlib.node import (Node, NodeError, ToolError, handle_external_tool_process) class DseNode(Node): """ Provides interactions to a DSE node. """ def __init__(self, name, cluster, auto_bootstrap, thrift_interface, storage_interface, jmx_port, remote_debug_port, initial_token, save=True, binary_interface=None, byteman_port='0', environment_variables=None): super(DseNode, self).__init__(name, cluster, auto_bootstrap, thrift_interface, storage_interface, jmx_port, remote_debug_port, initial_token, save, binary_interface, byteman_port, environment_variables=environment_variables) self.get_cassandra_version() self._dse_config_options = {} if self.cluster.hasOpscenter(): self._copy_agent() def get_install_cassandra_root(self): return os.path.join(self.get_install_dir(), 'resources', 'cassandra') def get_node_cassandra_root(self): return os.path.join(self.get_path(), 'resources', 'cassandra') def get_conf_dir(self): """ Returns the path to the directory where Cassandra config are located """ return os.path.join(self.get_path(), 'resources', 'cassandra', 'conf') def get_tool(self, toolname): return common.join_bin(os.path.join(self.get_install_dir(), 'resources', 'cassandra'), 'bin', toolname) def get_tool_args(self, toolname): return [common.join_bin(os.path.join(self.get_install_dir(), 'resources', 'cassandra'), 'bin', 'dse'), toolname] def get_env(self): (node_ip, _) = self.network_interfaces['binary'] return common.make_dse_env(self.get_install_dir(), self.get_path(), node_ip) def get_cassandra_version(self): return common.get_dse_cassandra_version(self.get_install_dir()) def node_setup(self, version, verbose): dir, v = repository.setup_dse(version, self.cluster.dse_username, self.cluster.dse_password, verbose=verbose) return dir def set_workloads(self, workloads): self.workloads = workloads self._update_config() if 'solr' in self.workloads: self.__generate_server_xml() if 'graph' in self.workloads: (node_ip, _) = self.network_interfaces['binary'] conf_file = os.path.join(self.get_path(), 'resources', 'dse', 'conf', 'dse.yaml') with open(conf_file, 'r') as f: data = yaml.load(f) graph_options = data['graph'] graph_options['gremlin_server']['host'] = node_ip self.set_dse_configuration_options({'graph': graph_options}) self.__update_gremlin_config_yaml() if 'dsefs' in self.workloads: dsefs_options = {'dsefs_options': {'enabled': True, 'work_dir': os.path.join(self.get_path(), 'dsefs'), 'data_directories': [{'dir': os.path.join(self.get_path(), 'dsefs', 'data')}]}} self.set_dse_configuration_options(dsefs_options) if 'spark' in self.workloads: self._update_spark_env() def set_dse_configuration_options(self, values=None): if values is not None: self._dse_config_options = common.merge_configuration(self._dse_config_options, values) self.import_dse_config_files() def watch_log_for_alive(self, nodes, from_mark=None, timeout=720, filename='system.log'): """ Watch the log of this node until it detects that the provided other nodes are marked UP. This method works similarly to watch_log_for_death. We want to provide a higher default timeout when this is called on DSE. """ super(DseNode, self).watch_log_for_alive(nodes, from_mark=from_mark, timeout=timeout, filename=filename) def get_launch_bin(self): cdir = self.get_install_dir() launch_bin = common.join_bin(cdir, 'bin', 'dse') # Copy back the dse scripts since profiling may have modified it the previous time shutil.copy(launch_bin, self.get_bin_dir()) return common.join_bin(self.get_path(), 'bin', 'dse') def add_custom_launch_arguments(self, args): args.append('cassandra') for workload in self.workloads: if 'hadoop' in workload: args.append('-t') if 'solr' in workload: args.append('-s') if 'spark' in workload: args.append('-k') if 'cfs' in workload: args.append('-c') if 'graph' in workload: args.append('-g') def start(self, join_ring=True, no_wait=False, verbose=False, update_pid=True, wait_other_notice=True, replace_token=None, replace_address=None, jvm_args=None, wait_for_binary_proto=False, profile_options=None, use_jna=False, quiet_start=False, allow_root=False, set_migration_task=True): process = super(DseNode, self).start(join_ring, no_wait, verbose, update_pid, wait_other_notice, replace_token, replace_address, jvm_args, wait_for_binary_proto, profile_options, use_jna, quiet_start, allow_root, set_migration_task) if self.cluster.hasOpscenter(): self._start_agent() def _start_agent(self): agent_dir = os.path.join(self.get_path(), 'datastax-agent') if os.path.exists(agent_dir): self._write_agent_address_yaml(agent_dir) self._write_agent_log4j_properties(agent_dir) args = [os.path.join(agent_dir, 'bin', common.platform_binary('datastax-agent'))] subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.PIPE) def stop(self, wait=True, wait_other_notice=False, signal_event=signal.SIGTERM, **kwargs): if self.cluster.hasOpscenter(): self._stop_agent() return super(DseNode, self).stop(wait=wait, wait_other_notice=wait_other_notice, signal_event=signal_event, **kwargs) def _stop_agent(self): agent_dir = os.path.join(self.get_path(), 'datastax-agent') if os.path.exists(agent_dir): pidfile = os.path.join(agent_dir, 'datastax-agent.pid') if os.path.exists(pidfile): with open(pidfile, 'r') as f: pid = int(f.readline().strip()) f.close() if pid is not None: try: os.kill(pid, signal.SIGKILL) except OSError: pass os.remove(pidfile) def nodetool(self, cmd, username=None, password=None, capture_output=True, wait=True): if password is not None: cmd = '-pw {} '.format(password) + cmd if username is not None: cmd = '-u {} '.format(username) + cmd return super(DseNode, self).nodetool(cmd) def dsetool(self, cmd): env = self.get_env() extension.append_to_client_env(self, env) node_ip, binary_port = self.network_interfaces['binary'] dsetool = common.join_bin(self.get_install_dir(), 'bin', 'dsetool') args = [dsetool, '-h', node_ip, '-j', str(self.jmx_port), '-c', str(binary_port)] args += cmd.split() p = subprocess.Popen(args, env=env, stdout=subprocess.PIPE, stderr=subprocess.PIPE) return handle_external_tool_process(p, args) def dse(self, dse_options=None): if dse_options is None: dse_options = [] env = self.get_env() extension.append_to_client_env(self, env) env['JMX_PORT'] = self.jmx_port dse = common.join_bin(self.get_install_dir(), 'bin', 'dse') args = [dse] args += dse_options p = subprocess.Popen(args, env=env) #Don't redirect stdout/stderr, users need to interact with new process return handle_external_tool_process(p, args) def hadoop(self, hadoop_options=None): if hadoop_options is None: hadoop_options = [] env = self.get_env() env['JMX_PORT'] = self.jmx_port dse = common.join_bin(self.get_install_dir(), 'bin', 'dse') args = [dse, 'hadoop'] args += hadoop_options p = subprocess.Popen(args, env=env) #Don't redirect stdout/stderr, users need to interact with new process return handle_external_tool_process(p, args) def hive(self, hive_options=None): if hive_options is None: hive_options = [] env = self.get_env() env['JMX_PORT'] = self.jmx_port dse = common.join_bin(self.get_install_dir(), 'bin', 'dse') args = [dse, 'hive'] args += hive_options p = subprocess.Popen(args, env=env) #Don't redirect stdout/stderr, users need to interact with new process return handle_external_tool_process(p, args) def pig(self, pig_options=None): if pig_options is None: pig_options = [] env = self.get_env() env['JMX_PORT'] = self.jmx_port dse = common.join_bin(self.get_install_dir(), 'bin', 'dse') args = [dse, 'pig'] args += pig_options p = subprocess.Popen(args, env=env) #Don't redirect stdout/stderr, users need to interact with new process return handle_external_tool_process(p, args) def sqoop(self, sqoop_options=None): if sqoop_options is None: sqoop_options = [] env = self.get_env() env['JMX_PORT'] = self.jmx_port dse = common.join_bin(self.get_install_dir(), 'bin', 'dse') args = [dse, 'sqoop'] args += sqoop_options p = subprocess.Popen(args, env=env) #Don't redirect stdout/stderr, users need to interact with new process return handle_external_tool_process(p, args) def spark(self, spark_options=None): if spark_options is None: spark_options = [] env = self.get_env() env['JMX_PORT'] = self.jmx_port dse = common.join_bin(self.get_install_dir(), 'bin', 'dse') args = [dse, 'spark'] args += spark_options p = subprocess.Popen(args, env=env) #Don't redirect stdout/stderr, users need to interact with new process return handle_external_tool_process(p, args) def import_dse_config_files(self): self._update_config() if not os.path.isdir(os.path.join(self.get_path(), 'resources', 'dse', 'conf')): os.makedirs(os.path.join(self.get_path(), 'resources', 'dse', 'conf')) common.copy_directory(os.path.join(self.get_install_dir(), 'resources', 'dse', 'conf'), os.path.join(self.get_path(), 'resources', 'dse', 'conf')) self.__update_yaml() def copy_config_files(self): for product in ['dse', 'cassandra', 'hadoop', 'hadoop2-client', 'sqoop', 'hive', 'tomcat', 'spark', 'shark', 'mahout', 'pig', 'solr', 'graph']: src_conf = os.path.join(self.get_install_dir(), 'resources', product, 'conf') dst_conf = os.path.join(self.get_path(), 'resources', product, 'conf') if not os.path.isdir(src_conf): continue if os.path.isdir(dst_conf): common.rmdirs(dst_conf) shutil.copytree(src_conf, dst_conf) if product == 'solr': src_web = os.path.join(self.get_install_dir(), 'resources', product, 'web') dst_web = os.path.join(self.get_path(), 'resources', product, 'web') if os.path.isdir(dst_web): common.rmdirs(dst_web) shutil.copytree(src_web, dst_web) if product == 'tomcat': src_lib = os.path.join(self.get_install_dir(), 'resources', product, 'lib') dst_lib = os.path.join(self.get_path(), 'resources', product, 'lib') if os.path.isdir(dst_lib): common.rmdirs(dst_lib) if os.path.exists(src_lib): shutil.copytree(src_lib, dst_lib) src_webapps = os.path.join(self.get_install_dir(), 'resources', product, 'webapps') dst_webapps = os.path.join(self.get_path(), 'resources', product, 'webapps') if os.path.isdir(dst_webapps): common.rmdirs(dst_webapps) shutil.copytree(src_webapps, dst_webapps) src_lib = os.path.join(self.get_install_dir(), 'resources', product, 'gremlin-console', 'conf') dst_lib = os.path.join(self.get_path(), 'resources', product, 'gremlin-console', 'conf') if os.path.isdir(dst_lib): common.rmdirs(dst_lib) if os.path.exists(src_lib): shutil.copytree(src_lib, dst_lib) def import_bin_files(self): common.copy_directory(os.path.join(self.get_install_dir(), 'bin'), self.get_bin_dir()) cassandra_bin_dir = os.path.join(self.get_path(), 'resources', 'cassandra', 'bin') shutil.rmtree(cassandra_bin_dir, ignore_errors=True) os.makedirs(cassandra_bin_dir) common.copy_directory(os.path.join(self.get_install_dir(), 'resources', 'cassandra', 'bin'), cassandra_bin_dir) if os.path.exists(os.path.join(self.get_install_dir(), 'resources', 'cassandra', 'tools')): cassandra_tools_dir = os.path.join(self.get_path(), 'resources', 'cassandra', 'tools') shutil.rmtree(cassandra_tools_dir, ignore_errors=True) shutil.copytree(os.path.join(self.get_install_dir(), 'resources', 'cassandra', 'tools'), cassandra_tools_dir) self.export_dse_home_in_dse_env_sh() def export_dse_home_in_dse_env_sh(self): ''' Due to the way CCM lays out files, separating the repository from the node(s) confs, the `dse-env.sh` script of each node needs to have its DSE_HOME var set and exported. Since DSE 4.5.x, the stock `dse-env.sh` file includes a commented-out place to do exactly this, intended for installers. Basically: read in the file, write it back out and add the two lines. 'sstableloader' is an example of a node script that depends on this, when used in a CCM-built cluster. ''' with open(self.get_bin_dir() + "/dse-env.sh", "r") as dse_env_sh: buf = dse_env_sh.readlines() with open(self.get_bin_dir() + "/dse-env.sh", "w") as out_file: for line in buf: out_file.write(line) if line == "# This is here so the installer can force set DSE_HOME\n": out_file.write("DSE_HOME=" + self.get_install_dir() + "\nexport DSE_HOME\n") def _update_log4j(self): super(DseNode, self)._update_log4j() conf_file = os.path.join(self.get_conf_dir(), common.LOG4J_CONF) append_pattern = 'log4j.appender.V.File=' log_file = os.path.join(self.get_path(), 'logs', 'solrvalidation.log') if common.is_win(): log_file = re.sub("\\\\", "/", log_file) common.replace_in_file(conf_file, append_pattern, append_pattern + log_file) append_pattern = 'log4j.appender.A.File=' log_file = os.path.join(self.get_path(), 'logs', 'audit.log') if common.is_win(): log_file = re.sub("\\\\", "/", log_file) common.replace_in_file(conf_file, append_pattern, append_pattern + log_file) append_pattern = 'log4j.appender.B.File=' log_file = os.path.join(self.get_path(), 'logs', 'audit', 'dropped-events.log') if common.is_win(): log_file = re.sub("\\\\", "/", log_file) common.replace_in_file(conf_file, append_pattern, append_pattern + log_file) def __update_yaml(self): conf_file = os.path.join(self.get_path(), 'resources', 'dse', 'conf', 'dse.yaml') with open(conf_file, 'r') as f: data = yaml.load(f) data['system_key_directory'] = os.path.join(self.get_path(), 'keys') # Get a map of combined cluster and node configuration with the node # configuration taking precedence. full_options = common.merge_configuration( self.cluster._dse_config_options, self._dse_config_options, delete_empty=False) # Merge options with original yaml data. data = common.merge_configuration(data, full_options) with open(conf_file, 'w') as f: yaml.safe_dump(data, f, default_flow_style=False) def __generate_server_xml(self): server_xml = os.path.join(self.get_path(), 'resources', 'tomcat', 'conf', 'server.xml') if os.path.isfile(server_xml): os.remove(server_xml) with open(server_xml, 'w+') as f: f.write('<Server port="8005" shutdown="SHUTDOWN">\n') f.write(' <Service name="Solr">\n') f.write(' <Connector port="8983" address="%s" protocol="HTTP/1.1" connectionTimeout="20000" maxThreads = "200" URIEncoding="UTF-8"/>\n' % self.network_interfaces['thrift'][0]) f.write(' <Engine name="Solr" defaultHost="localhost">\n') f.write(' <Host name="localhost" appBase="../solr/web"\n') f.write(' unpackWARs="true" autoDeploy="true"\n') f.write(' xmlValidation="false" xmlNamespaceAware="false">\n') f.write(' </Host>\n') f.write(' </Engine>\n') f.write(' </Service>\n') f.write('</Server>\n') f.close() def __update_gremlin_config_yaml(self): (node_ip, _) = self.network_interfaces['binary'] conf_file = os.path.join(self.get_path(), 'resources', 'graph', 'gremlin-console', 'conf', 'remote.yaml') with open(conf_file, 'r') as f: data = yaml.load(f) data['hosts'] = [node_ip] with open(conf_file, 'w') as f: yaml.safe_dump(data, f, default_flow_style=False) def _get_directories(self): dirs = [] for i in ['data', 'commitlogs', 'saved_caches', 'logs', 'bin', 'keys', 'resources', os.path.join('data', 'hints')]: dirs.append(os.path.join(self.get_path(), i)) return dirs def _copy_agent(self): agent_source = os.path.join(self.get_install_dir(), 'datastax-agent') agent_target = os.path.join(self.get_path(), 'datastax-agent') if os.path.exists(agent_source) and not os.path.exists(agent_target): shutil.copytree(agent_source, agent_target) def _write_agent_address_yaml(self, agent_dir): address_yaml = os.path.join(agent_dir, 'conf', 'address.yaml') if not os.path.exists(address_yaml): with open(address_yaml, 'w+') as f: (ip, port) = self.network_interfaces['thrift'] jmx = self.jmx_port f.write('stomp_interface: 127.0.0.1\n') f.write('local_interface: %s\n' % ip) f.write('agent_rpc_interface: %s\n' % ip) f.write('agent_rpc_broadcast_address: %s\n' % ip) f.write('cassandra_conf: %s\n' % os.path.join(self.get_path(), 'resources', 'cassandra', 'conf', 'cassandra.yaml')) f.write('cassandra_install: %s\n' % self.get_path()) f.write('cassandra_logs: %s\n' % os.path.join(self.get_path(), 'logs')) f.write('thrift_port: %s\n' % port) f.write('jmx_port: %s\n' % jmx) f.close() def _write_agent_log4j_properties(self, agent_dir): log4j_properties = os.path.join(agent_dir, 'conf', 'log4j.properties') with open(log4j_properties, 'w+') as f: f.write('log4j.rootLogger=INFO,R\n') f.write('log4j.logger.org.apache.http=OFF\n') f.write('log4j.logger.org.eclipse.jetty.util.log=WARN,R\n') f.write('log4j.appender.R=org.apache.log4j.RollingFileAppender\n') f.write('log4j.appender.R.maxFileSize=20MB\n') f.write('log4j.appender.R.maxBackupIndex=5\n') f.write('log4j.appender.R.layout=org.apache.log4j.PatternLayout\n') f.write('log4j.appender.R.layout.ConversionPattern=%5p [%t] %d{ISO8601} %m%n\n') f.write('log4j.appender.R.File=./log/agent.log\n') f.close() def _update_spark_env(self): try: node_num = re.search(u'node(\d+)', self.name).group(1) except AttributeError: node_num = 0 conf_file = os.path.join(self.get_path(), 'resources', 'spark', 'conf', 'spark-env.sh') env = self.get_env() content = [] with open(conf_file, 'r') as f: for line in f.readlines(): for spark_var in env.keys(): if line.startswith('export %s=' % spark_var) or line.startswith('export %s=' % spark_var, 2): line = 'export %s=%s\n' % (spark_var, env[spark_var]) break content.append(line) with open(conf_file, 'w') as f: f.writelines(content) # set unique spark.shuffle.service.port for each node; this is only needed for DSE 5.0.x; # starting in 5.1 this setting is no longer needed if self.cluster.version() > '5.0' and self.cluster.version() < '5.1': defaults_file = os.path.join(self.get_path(), 'resources', 'spark', 'conf', 'spark-defaults.conf') with open(defaults_file, 'a') as f: port_num = 7737 + int(node_num) f.write("\nspark.shuffle.service.port %s\n" % port_num) # create Spark working dirs; starting with DSE 5.0.10/5.1.3 these are no longer automatically created for e in ["SPARK_WORKER_DIR", "SPARK_LOCAL_DIRS"]: dir = env[e] if not os.path.exists(dir): os.makedirs(dir)
bcantoni/ccm
ccmlib/dse_node.py
Python
apache-2.0
22,234