code
stringlengths
2
1.05M
repo_name
stringlengths
5
104
path
stringlengths
4
251
language
stringclasses
1 value
license
stringclasses
15 values
size
int32
2
1.05M
import numpy as np import tensorflow as tf from recognition.utils.rect import Rect def intersection(box1, box2): x1_max = tf.maximum(box1[:, 0], box2[:, 0]) y1_max = tf.maximum(box1[:, 1], box2[:, 1]) x2_min = tf.minimum(box1[:, 2], box2[:, 2]) y2_min = tf.minimum(box1[:, 3], box2[:, 3]) x_diff = tf.maximum(x2_min - x1_max, 0) y_diff = tf.maximum(y2_min - y1_max, 0) return x_diff * y_diff def area(box): x_diff = tf.maximum(box[:, 2] - box[:, 0], 0) y_diff = tf.maximum(box[:, 3] - box[:, 1], 0) return x_diff * y_diff def union(box1, box2): return area(box1) + area(box2) - intersection(box1, box2) def iou(box1, box2): return intersection(box1, box2) / union(box1, box2) def to_idx(vec, w_shape): ''' vec = (idn, idh, idw) w_shape = [n, h, w, c] ''' return vec[:, 2] + w_shape[2] * (vec[:, 1] + w_shape[1] * vec[:, 0]) def interp(w, i, channel_dim): ''' Input: w: A 4D block tensor of shape (n, h, w, c) i: A list of 3-tuples [(x_1, y_1, z_1), (x_2, y_2, z_2), ...], each having type (int, float, float) The 4D block represents a batch of 3D image feature volumes with c channels. The input i is a list of points to index into w via interpolation. Direct indexing is not possible due to y_1 and z_1 being float values. Output: A list of the values: [ w[x_1, y_1, z_1, :] w[x_2, y_2, z_2, :] ... w[x_k, y_k, z_k, :] ] of the same length == len(i) ''' w_as_vector = tf.reshape(w, [-1, channel_dim]) # gather expects w to be 1-d upper_l = tf.to_int32(tf.concat(1, [i[:, 0:1], tf.floor(i[:, 1:2]), tf.floor(i[:, 2:3])])) upper_r = tf.to_int32(tf.concat(1, [i[:, 0:1], tf.floor(i[:, 1:2]), tf.ceil(i[:, 2:3])])) lower_l = tf.to_int32(tf.concat(1, [i[:, 0:1], tf.ceil(i[:, 1:2]), tf.floor(i[:, 2:3])])) lower_r = tf.to_int32(tf.concat(1, [i[:, 0:1], tf.ceil(i[:, 1:2]), tf.ceil(i[:, 2:3])])) upper_l_idx = to_idx(upper_l, tf.shape(w)) upper_r_idx = to_idx(upper_r, tf.shape(w)) lower_l_idx = to_idx(lower_l, tf.shape(w)) lower_r_idx = to_idx(lower_r, tf.shape(w)) upper_l_value = tf.gather(w_as_vector, upper_l_idx) upper_r_value = tf.gather(w_as_vector, upper_r_idx) lower_l_value = tf.gather(w_as_vector, lower_l_idx) lower_r_value = tf.gather(w_as_vector, lower_r_idx) alpha_lr = tf.expand_dims(i[:, 2] - tf.floor(i[:, 2]), 1) alpha_ud = tf.expand_dims(i[:, 1] - tf.floor(i[:, 1]), 1) upper_value = (1 - alpha_lr) * upper_l_value + (alpha_lr) * upper_r_value lower_value = (1 - alpha_lr) * lower_l_value + (alpha_lr) * lower_r_value value = (1 - alpha_ud) * upper_value + (alpha_ud) * lower_value return value def bilinear_select(H, pred_boxes, early_feat, early_feat_channels, w_offset, h_offset): ''' Function used for rezooming high level feature maps. Uses bilinear interpolation to select all channels at index (x, y) for a high level feature map, where x and y are floats. ''' grid_size = H['grid_width'] * H['grid_height'] outer_size = grid_size * H['batch_size'] fine_stride = 8. # pixels per 60x80 grid cell in 480x640 image coarse_stride = H['region_size'] # pixels per 15x20 grid cell in 480x640 image batch_ids = [] x_offsets = [] y_offsets = [] for n in range(H['batch_size']): for i in range(H['grid_height']): for j in range(H['grid_width']): for k in range(H['rnn_len']): batch_ids.append([n]) x_offsets.append([coarse_stride / 2. + coarse_stride * j]) y_offsets.append([coarse_stride / 2. + coarse_stride * i]) batch_ids = tf.constant(batch_ids) x_offsets = tf.constant(x_offsets) y_offsets = tf.constant(y_offsets) pred_boxes_r = tf.reshape(pred_boxes, [outer_size * H['rnn_len'], 4]) scale_factor = coarse_stride / fine_stride # scale difference between 15x20 and 60x80 features pred_x_center = (pred_boxes_r[:, 0:1] + w_offset * pred_boxes_r[:, 2:3] + x_offsets) / fine_stride pred_x_center_clip = tf.clip_by_value(pred_x_center, 0, scale_factor * H['grid_width'] - 1) pred_y_center = (pred_boxes_r[:, 1:2] + h_offset * pred_boxes_r[:, 3:4] + y_offsets) / fine_stride pred_y_center_clip = tf.clip_by_value(pred_y_center, 0, scale_factor * H['grid_height'] - 1) interp_indices = tf.concat(1, [tf.to_float(batch_ids), pred_y_center_clip, pred_x_center_clip]) return interp_indices def filter_rectangles(H, confidences, boxes, use_stitching=False, rnn_len=1, tau=0.25, min_conf=0.1): boxes_r = np.reshape(boxes, (-1, H["grid_height"], H["grid_width"], rnn_len, 4)) confidences_r = np.reshape(confidences, (-1, H["grid_height"], H["grid_width"], rnn_len, H['num_classes'])) cell_pix_size = H['region_size'] all_rects = [[[] for _ in range(H["grid_width"])] for _ in range(H["grid_height"])] for n in range(rnn_len): for y in range(H["grid_height"]): for x in range(H["grid_width"]): bbox = boxes_r[0, y, x, n, :] abs_cx = int(bbox[0]) + cell_pix_size / 2 + cell_pix_size * x abs_cy = int(bbox[1]) + cell_pix_size / 2 + cell_pix_size * y w = bbox[2] h = bbox[3] conf = np.max(confidences_r[0, y, x, n, 1:]) all_rects[y][x].append(Rect(abs_cx, abs_cy, w, h, conf)) all_rects_r = [r for row in all_rects for cell in row for r in cell] if use_stitching: from recognition.utils.stitch_wrapper import stitch_rects acc_rects = stitch_rects(all_rects, tau) else: acc_rects = all_rects_r filtered = [] for rect in acc_rects: if rect.confidence > min_conf: filtered.append(rect) return filtered
Queuer/queue-vision
recognition/utils/train_utils.py
Python
apache-2.0
6,412
""" This module (mostly) uses the XenAPI to manage Xen virtual machines. Big fat warning: the XenAPI used in this file is the one bundled with Xen Source, NOT XenServer nor Xen Cloud Platform. As a matter of fact it *will* fail under those platforms. From what I've read, little work is needed to adapt this code to XS/XCP, mostly playing with XenAPI version, but as XCP is not taking precedence on Xen Source on many platforms, please keep compatibility in mind. Useful documentation: . http://downloads.xen.org/Wiki/XenAPI/xenapi-1.0.6.pdf . http://docs.vmd.citrix.com/XenServer/6.0.0/1.0/en_gb/api/ . https://github.com/xapi-project/xen-api/tree/master/scripts/examples/python . http://xenbits.xen.org/gitweb/?p=xen.git;a=tree;f=tools/python/xen/xm;hb=HEAD """ import contextlib import os import sys import salt.modules.cmdmod import salt.utils.files import salt.utils.path import salt.utils.stringutils from salt.exceptions import CommandExecutionError try: import importlib # pylint: disable=minimum-python-version HAS_IMPORTLIB = True except ImportError: # Python < 2.7 does not have importlib HAS_IMPORTLIB = False # Define the module's virtual name __virtualname__ = "virt" # This module has only been tested on Debian GNU/Linux and NetBSD, it # probably needs more path appending for other distributions. # The path to append is the path to python Xen libraries, where resides # XenAPI. def _check_xenapi(): if __grains__["os"] == "Debian": debian_xen_version = "/usr/lib/xen-common/bin/xen-version" if os.path.isfile(debian_xen_version): # __salt__ is not available in __virtual__ xenversion = salt.modules.cmdmod._run_quiet(debian_xen_version) xapipath = "/usr/lib/xen-{}/lib/python".format(xenversion) if os.path.isdir(xapipath): sys.path.append(xapipath) try: if HAS_IMPORTLIB: return importlib.import_module("xen.xm.XenAPI") return __import__("xen.xm.XenAPI").xm.XenAPI except (ImportError, AttributeError): return False def __virtual__(): if _check_xenapi() is not False: return __virtualname__ return (False, "Module xapi: xenapi check failed") @contextlib.contextmanager def _get_xapi_session(): """ Get a session to XenAPI. By default, use the local UNIX socket. """ _xenapi = _check_xenapi() xapi_uri = __salt__["config.option"]("xapi.uri") xapi_login = __salt__["config.option"]("xapi.login") xapi_password = __salt__["config.option"]("xapi.password") if not xapi_uri: # xend local UNIX socket xapi_uri = "httpu:///var/run/xend/xen-api.sock" if not xapi_login: xapi_login = "" if not xapi_password: xapi_password = "" try: session = _xenapi.Session(xapi_uri) session.xenapi.login_with_password(xapi_login, xapi_password) yield session.xenapi except Exception: # pylint: disable=broad-except raise CommandExecutionError("Failed to connect to XenAPI socket.") finally: session.xenapi.session.logout() # Used rectypes (Record types): # # host # host_cpu # VM # VIF # VBD def _get_xtool(): """ Internal, returns xl or xm command line path """ for xtool in ["xl", "xm"]: path = salt.utils.path.which(xtool) if path is not None: return path def _get_all(xapi, rectype): """ Internal, returns all members of rectype """ return getattr(xapi, rectype).get_all() def _get_label_uuid(xapi, rectype, label): """ Internal, returns label's uuid """ try: return getattr(xapi, rectype).get_by_name_label(label)[0] except Exception: # pylint: disable=broad-except return False def _get_record(xapi, rectype, uuid): """ Internal, returns a full record for uuid """ return getattr(xapi, rectype).get_record(uuid) def _get_record_by_label(xapi, rectype, label): """ Internal, returns a full record for uuid """ uuid = _get_label_uuid(xapi, rectype, label) if uuid is False: return False return getattr(xapi, rectype).get_record(uuid) def _get_metrics_record(xapi, rectype, record): """ Internal, returns metrics record for a rectype """ metrics_id = record["metrics"] return getattr(xapi, "{}_metrics".format(rectype)).get_record(metrics_id) def _get_val(record, keys): """ Internal, get value from record """ data = record for key in keys: if key in data: data = data[key] else: return None return data def list_domains(): """ Return a list of virtual machine names on the minion CLI Example: .. code-block:: bash salt '*' virt.list_domains """ with _get_xapi_session() as xapi: hosts = xapi.VM.get_all() ret = [] for _host in hosts: if xapi.VM.get_record(_host)["is_control_domain"] is False: ret.append(xapi.VM.get_name_label(_host)) return ret def vm_info(vm_=None): """ Return detailed information about the vms. If you pass a VM name in as an argument then it will return info for just the named VM, otherwise it will return all VMs. CLI Example: .. code-block:: bash salt '*' virt.vm_info """ with _get_xapi_session() as xapi: def _info(vm_): vm_rec = _get_record_by_label(xapi, "VM", vm_) if vm_rec is False: return False vm_metrics_rec = _get_metrics_record(xapi, "VM", vm_rec) return { "cpu": vm_metrics_rec["VCPUs_number"], "maxCPU": _get_val(vm_rec, ["VCPUs_max"]), "cputime": vm_metrics_rec["VCPUs_utilisation"], "disks": get_disks(vm_), "nics": get_nics(vm_), "maxMem": int(_get_val(vm_rec, ["memory_dynamic_max"])), "mem": int(vm_metrics_rec["memory_actual"]), "state": _get_val(vm_rec, ["power_state"]), } info = {} if vm_: ret = _info(vm_) if ret is not None: info[vm_] = ret else: for vm_ in list_domains(): ret = _info(vm_) if ret is not None: info[vm_] = _info(vm_) return info def vm_state(vm_=None): """ Return list of all the vms and their state. If you pass a VM name in as an argument then it will return info for just the named VM, otherwise it will return all VMs. CLI Example: .. code-block:: bash salt '*' virt.vm_state <vm name> """ with _get_xapi_session() as xapi: info = {} if vm_: info[vm_] = _get_record_by_label(xapi, "VM", vm_)["power_state"] return info for vm_ in list_domains(): info[vm_] = _get_record_by_label(xapi, "VM", vm_)["power_state"] return info def node_info(): """ Return a dict with information about this node CLI Example: .. code-block:: bash salt '*' virt.node_info """ with _get_xapi_session() as xapi: # get node uuid host_rec = _get_record(xapi, "host", _get_all(xapi, "host")[0]) # get first CPU (likely to be a core) uuid host_cpu_rec = _get_record(xapi, "host_cpu", host_rec["host_CPUs"][0]) # get related metrics host_metrics_rec = _get_metrics_record(xapi, "host", host_rec) # adapted / cleaned up from Xen's xm def getCpuMhz(): cpu_speeds = [ int(host_cpu_rec["speed"]) for host_cpu_it in host_cpu_rec if "speed" in host_cpu_it ] if cpu_speeds: return sum(cpu_speeds) / len(cpu_speeds) else: return 0 def getCpuFeatures(): if host_cpu_rec: return host_cpu_rec["features"] def getFreeCpuCount(): cnt = 0 for host_cpu_it in host_cpu_rec: if len(host_cpu_rec["cpu_pool"]) == 0: cnt += 1 return cnt info = { "cpucores": _get_val(host_rec, ["cpu_configuration", "nr_cpus"]), "cpufeatures": getCpuFeatures(), "cpumhz": getCpuMhz(), "cpuarch": _get_val(host_rec, ["software_version", "machine"]), "cputhreads": _get_val(host_rec, ["cpu_configuration", "threads_per_core"]), "phymemory": int(host_metrics_rec["memory_total"]) / 1024 / 1024, "cores_per_sockets": _get_val( host_rec, ["cpu_configuration", "cores_per_socket"] ), "free_cpus": getFreeCpuCount(), "free_memory": int(host_metrics_rec["memory_free"]) / 1024 / 1024, "xen_major": _get_val(host_rec, ["software_version", "xen_major"]), "xen_minor": _get_val(host_rec, ["software_version", "xen_minor"]), "xen_extra": _get_val(host_rec, ["software_version", "xen_extra"]), "xen_caps": " ".join(_get_val(host_rec, ["capabilities"])), "xen_scheduler": _get_val(host_rec, ["sched_policy"]), "xen_pagesize": _get_val(host_rec, ["other_config", "xen_pagesize"]), "platform_params": _get_val(host_rec, ["other_config", "platform_params"]), "xen_commandline": _get_val(host_rec, ["other_config", "xen_commandline"]), "xen_changeset": _get_val(host_rec, ["software_version", "xen_changeset"]), "cc_compiler": _get_val(host_rec, ["software_version", "cc_compiler"]), "cc_compile_by": _get_val(host_rec, ["software_version", "cc_compile_by"]), "cc_compile_domain": _get_val( host_rec, ["software_version", "cc_compile_domain"] ), "cc_compile_date": _get_val( host_rec, ["software_version", "cc_compile_date"] ), "xend_config_format": _get_val( host_rec, ["software_version", "xend_config_format"] ), } return info def get_nics(vm_): """ Return info about the network interfaces of a named vm CLI Example: .. code-block:: bash salt '*' virt.get_nics <vm name> """ with _get_xapi_session() as xapi: nic = {} vm_rec = _get_record_by_label(xapi, "VM", vm_) if vm_rec is False: return False for vif in vm_rec["VIFs"]: vif_rec = _get_record(xapi, "VIF", vif) nic[vif_rec["MAC"]] = { "mac": vif_rec["MAC"], "device": vif_rec["device"], "mtu": vif_rec["MTU"], } return nic def get_macs(vm_): """ Return a list off MAC addresses from the named vm CLI Example: .. code-block:: bash salt '*' virt.get_macs <vm name> """ macs = [] nics = get_nics(vm_) if nics is None: return None for nic in nics: macs.append(nic) return macs def get_disks(vm_): """ Return the disks of a named vm CLI Example: .. code-block:: bash salt '*' virt.get_disks <vm name> """ with _get_xapi_session() as xapi: disk = {} vm_uuid = _get_label_uuid(xapi, "VM", vm_) if vm_uuid is False: return False for vbd in xapi.VM.get_VBDs(vm_uuid): dev = xapi.VBD.get_device(vbd) if not dev: continue prop = xapi.VBD.get_runtime_properties(vbd) disk[dev] = { "backend": prop["backend"], "type": prop["device-type"], "protocol": prop["protocol"], } return disk def setmem(vm_, memory): """ Changes the amount of memory allocated to VM. Memory is to be specified in MB CLI Example: .. code-block:: bash salt '*' virt.setmem myvm 768 """ with _get_xapi_session() as xapi: mem_target = int(memory) * 1024 * 1024 vm_uuid = _get_label_uuid(xapi, "VM", vm_) if vm_uuid is False: return False try: xapi.VM.set_memory_dynamic_max_live(vm_uuid, mem_target) xapi.VM.set_memory_dynamic_min_live(vm_uuid, mem_target) return True except Exception: # pylint: disable=broad-except return False def setvcpus(vm_, vcpus): """ Changes the amount of vcpus allocated to VM. vcpus is an int representing the number to be assigned CLI Example: .. code-block:: bash salt '*' virt.setvcpus myvm 2 """ with _get_xapi_session() as xapi: vm_uuid = _get_label_uuid(xapi, "VM", vm_) if vm_uuid is False: return False try: xapi.VM.set_VCPUs_number_live(vm_uuid, vcpus) return True except Exception: # pylint: disable=broad-except return False def vcpu_pin(vm_, vcpu, cpus): """ Set which CPUs a VCPU can use. CLI Example: .. code-block:: bash salt 'foo' virt.vcpu_pin domU-id 2 1 salt 'foo' virt.vcpu_pin domU-id 2 2-6 """ with _get_xapi_session() as xapi: vm_uuid = _get_label_uuid(xapi, "VM", vm_) if vm_uuid is False: return False # from xm's main def cpu_make_map(cpulist): cpus = [] for c in cpulist.split(","): if c == "": continue if "-" in c: (x, y) = c.split("-") for i in range(int(x), int(y) + 1): cpus.append(int(i)) else: # remove this element from the list if c[0] == "^": cpus = [x for x in cpus if x != int(c[1:])] else: cpus.append(int(c)) cpus.sort() return ",".join(map(str, cpus)) if cpus == "all": cpumap = cpu_make_map("0-63") else: cpumap = cpu_make_map("{}".format(cpus)) try: xapi.VM.add_to_VCPUs_params_live(vm_uuid, "cpumap{}".format(vcpu), cpumap) return True # VM.add_to_VCPUs_params_live() implementation in xend 4.1+ has # a bug which makes the client call fail. # That code is accurate for all others XenAPI implementations, but # for that particular one, fallback to xm / xl instead. except Exception: # pylint: disable=broad-except return __salt__["cmd.run"]( "{} vcpu-pin {} {} {}".format(_get_xtool(), vm_, vcpu, cpus), python_shell=False, ) def freemem(): """ Return an int representing the amount of memory that has not been given to virtual machines on this node CLI Example: .. code-block:: bash salt '*' virt.freemem """ return node_info()["free_memory"] def freecpu(): """ Return an int representing the number of unallocated cpus on this hypervisor CLI Example: .. code-block:: bash salt '*' virt.freecpu """ return node_info()["free_cpus"] def full_info(): """ Return the node_info, vm_info and freemem CLI Example: .. code-block:: bash salt '*' virt.full_info """ return {"node_info": node_info(), "vm_info": vm_info()} def shutdown(vm_): """ Send a soft shutdown signal to the named vm CLI Example: .. code-block:: bash salt '*' virt.shutdown <vm name> """ with _get_xapi_session() as xapi: vm_uuid = _get_label_uuid(xapi, "VM", vm_) if vm_uuid is False: return False try: xapi.VM.clean_shutdown(vm_uuid) return True except Exception: # pylint: disable=broad-except return False def pause(vm_): """ Pause the named vm CLI Example: .. code-block:: bash salt '*' virt.pause <vm name> """ with _get_xapi_session() as xapi: vm_uuid = _get_label_uuid(xapi, "VM", vm_) if vm_uuid is False: return False try: xapi.VM.pause(vm_uuid) return True except Exception: # pylint: disable=broad-except return False def resume(vm_): """ Resume the named vm CLI Example: .. code-block:: bash salt '*' virt.resume <vm name> """ with _get_xapi_session() as xapi: vm_uuid = _get_label_uuid(xapi, "VM", vm_) if vm_uuid is False: return False try: xapi.VM.unpause(vm_uuid) return True except Exception: # pylint: disable=broad-except return False def start(config_): """ Start a defined domain CLI Example: .. code-block:: bash salt '*' virt.start <path to Xen cfg file> """ # FIXME / TODO # This function does NOT use the XenAPI. Instead, it use good old xm / xl. # On Xen Source, creating a virtual machine using XenAPI is really painful. # XCP / XS make it really easy using xapi.Async.VM.start instead. Anyone? return __salt__["cmd.run"]( "{} create {}".format(_get_xtool(), config_), python_shell=False ) def reboot(vm_): """ Reboot a domain via ACPI request CLI Example: .. code-block:: bash salt '*' virt.reboot <vm name> """ with _get_xapi_session() as xapi: vm_uuid = _get_label_uuid(xapi, "VM", vm_) if vm_uuid is False: return False try: xapi.VM.clean_reboot(vm_uuid) return True except Exception: # pylint: disable=broad-except return False def reset(vm_): """ Reset a VM by emulating the reset button on a physical machine CLI Example: .. code-block:: bash salt '*' virt.reset <vm name> """ with _get_xapi_session() as xapi: vm_uuid = _get_label_uuid(xapi, "VM", vm_) if vm_uuid is False: return False try: xapi.VM.hard_reboot(vm_uuid) return True except Exception: # pylint: disable=broad-except return False def migrate(vm_, target, live=1, port=0, node=-1, ssl=None, change_home_server=0): """ Migrates the virtual machine to another hypervisor CLI Example: .. code-block:: bash salt '*' virt.migrate <vm name> <target hypervisor> [live] [port] [node] [ssl] [change_home_server] Optional values: live Use live migration port Use a specified port node Use specified NUMA node on target ssl use ssl connection for migration change_home_server change home server for managed domains """ with _get_xapi_session() as xapi: vm_uuid = _get_label_uuid(xapi, "VM", vm_) if vm_uuid is False: return False other_config = { "port": port, "node": node, "ssl": ssl, "change_home_server": change_home_server, } try: xapi.VM.migrate(vm_uuid, target, bool(live), other_config) return True except Exception: # pylint: disable=broad-except return False def stop(vm_): """ Hard power down the virtual machine, this is equivalent to pulling the power CLI Example: .. code-block:: bash salt '*' virt.stop <vm name> """ with _get_xapi_session() as xapi: vm_uuid = _get_label_uuid(xapi, "VM", vm_) if vm_uuid is False: return False try: xapi.VM.hard_shutdown(vm_uuid) return True except Exception: # pylint: disable=broad-except return False def is_hyper(): """ Returns a bool whether or not this node is a hypervisor of any kind CLI Example: .. code-block:: bash salt '*' virt.is_hyper """ try: if __grains__["virtual_subtype"] != "Xen Dom0": return False except KeyError: # virtual_subtype isn't set everywhere. return False try: with salt.utils.files.fopen("/proc/modules") as fp_: if "xen_" not in salt.utils.stringutils.to_unicode(fp_.read()): return False except OSError: return False # there must be a smarter way... return "xenstore" in __salt__["cmd.run"](__grains__["ps"]) def vm_cputime(vm_=None): """ Return cputime used by the vms on this hyper in a list of dicts: .. code-block:: python [ 'your-vm': { 'cputime' <int> 'cputime_percent' <int> }, ... ] If you pass a VM name in as an argument then it will return info for just the named VM, otherwise it will return all VMs. CLI Example: .. code-block:: bash salt '*' virt.vm_cputime """ with _get_xapi_session() as xapi: def _info(vm_): host_rec = _get_record_by_label(xapi, "VM", vm_) host_cpus = len(host_rec["host_CPUs"]) if host_rec is False: return False host_metrics = _get_metrics_record(xapi, "VM", host_rec) vcpus = int(host_metrics["VCPUs_number"]) cputime = int(host_metrics["VCPUs_utilisation"]["0"]) cputime_percent = 0 if cputime: # Divide by vcpus to always return a number between 0 and 100 cputime_percent = (1.0e-7 * cputime / host_cpus) / vcpus return { "cputime": int(cputime), "cputime_percent": int("{:.0f}".format(cputime_percent)), } info = {} if vm_: info[vm_] = _info(vm_) return info for vm_ in list_domains(): info[vm_] = _info(vm_) return info def vm_netstats(vm_=None): """ Return combined network counters used by the vms on this hyper in a list of dicts: .. code-block:: python [ 'your-vm': { 'io_read_kbs' : 0, 'io_total_read_kbs' : 0, 'io_total_write_kbs' : 0, 'io_write_kbs' : 0 }, ... ] If you pass a VM name in as an argument then it will return info for just the named VM, otherwise it will return all VMs. CLI Example: .. code-block:: bash salt '*' virt.vm_netstats """ with _get_xapi_session() as xapi: def _info(vm_): ret = {} vm_rec = _get_record_by_label(xapi, "VM", vm_) if vm_rec is False: return False for vif in vm_rec["VIFs"]: vif_rec = _get_record(xapi, "VIF", vif) ret[vif_rec["device"]] = _get_metrics_record(xapi, "VIF", vif_rec) del ret[vif_rec["device"]]["last_updated"] return ret info = {} if vm_: info[vm_] = _info(vm_) else: for vm_ in list_domains(): info[vm_] = _info(vm_) return info def vm_diskstats(vm_=None): """ Return disk usage counters used by the vms on this hyper in a list of dicts: .. code-block:: python [ 'your-vm': { 'io_read_kbs' : 0, 'io_write_kbs' : 0 }, ... ] If you pass a VM name in as an argument then it will return info for just the named VM, otherwise it will return all VMs. CLI Example: .. code-block:: bash salt '*' virt.vm_diskstats """ with _get_xapi_session() as xapi: def _info(vm_): ret = {} vm_uuid = _get_label_uuid(xapi, "VM", vm_) if vm_uuid is False: return False for vbd in xapi.VM.get_VBDs(vm_uuid): vbd_rec = _get_record(xapi, "VBD", vbd) ret[vbd_rec["device"]] = _get_metrics_record(xapi, "VBD", vbd_rec) del ret[vbd_rec["device"]]["last_updated"] return ret info = {} if vm_: info[vm_] = _info(vm_) else: for vm_ in list_domains(): info[vm_] = _info(vm_) return info
saltstack/salt
salt/modules/xapi_virt.py
Python
apache-2.0
24,657
# coding: utf-8 # # Copyright 2015 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Domain objects for a collection and its constituents. Domain objects capture domain-specific logic and are agnostic of how the objects they represent are stored. All methods and properties in this file should therefore be independent of the specific storage models used. """ from core.domain import user_services import utils class Classroom(object): def __init__(self, id, name, building, location, day_of_week, sections, seat_count, author_id,last_updated): self.id = id self.name = name self.building = building self.location = location self.day_of_week = day_of_week self.sections = sections self.seat_count = seat_count self.author_id = author_id self.last_updated = last_updated def get_author_name(self): return user_services.get_username(self.author_id) def to_dict(self): return { 'author_name': self.get_author_name(), 'id': self.id, 'name': self.name, 'building': self.building, 'location': self.location, 'day_of_week': self.day_of_week, 'seat_count': self.seat_count, 'sections': self.sections, 'author_id': self.author_id, 'last_updated': utils.get_time_in_millisecs(self.last_updated), }
zgchizi/oppia-uc
core/domain/classroom_domain.py
Python
apache-2.0
1,980
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Bring in all of the public TensorFlow interface into this module.""" from __future__ import absolute_import as _absolute_import from __future__ import division as _division from __future__ import print_function as _print_function import distutils as _distutils import inspect as _inspect import os as _os import site as _site import six as _six import sys as _sys # pylint: disable=g-bad-import-order from tensorflow.python import pywrap_tensorflow # pylint: disable=unused-import from tensorflow.python.tools import module_util as _module_util from tensorflow.python.platform import tf_logging as _logging from tensorflow.python.util.lazy_loader import LazyLoader as _LazyLoader # API IMPORTS PLACEHOLDER # WRAPPER_PLACEHOLDER if "dev" in __version__: # pylint: disable=undefined-variable _logging.warning(""" TensorFlow's `tf-nightly` package will soon be updated to TensorFlow 2.0. Please upgrade your code to TensorFlow 2.0: * https://www.tensorflow.org/guide/migrate Or install the latest stable TensorFlow 1.X release: * `pip install -U "tensorflow==1.*"` Otherwise your code may be broken by the change. """) # Make sure directory containing top level submodules is in # the __path__ so that "from tensorflow.foo import bar" works. # We're using bitwise, but there's nothing special about that. _API_MODULE = _sys.modules[__name__].bitwise # pylint: disable=undefined-variable _current_module = _sys.modules[__name__] _tf_api_dir = _os.path.dirname(_os.path.dirname(_API_MODULE.__file__)) if not hasattr(_current_module, '__path__'): __path__ = [_tf_api_dir] elif _tf_api_dir not in __path__: __path__.append(_tf_api_dir) # Hook external TensorFlow modules. # Import compat before trying to import summary from tensorboard, so that # reexport_tf_summary can get compat from sys.modules. Only needed if using # lazy loading. _current_module.compat.v2 # pylint: disable=pointless-statement # Lazy-load estimator. _estimator_module = "tensorflow_estimator.python.estimator.api._v1.estimator" estimator = _LazyLoader("estimator", globals(), _estimator_module) _module_dir = _module_util.get_parent_dir_for_name(_estimator_module) if _module_dir: _current_module.__path__ = [_module_dir] + _current_module.__path__ setattr(_current_module, "estimator", estimator) try: from .python.keras.api._v1 import keras _current_module.__path__ = ( [_module_util.get_parent_dir(keras)] + _current_module.__path__) setattr(_current_module, "keras", keras) except ImportError: pass # Explicitly import lazy-loaded modules to support autocompletion. # pylint: disable=g-import-not-at-top if not _six.PY2: import typing as _typing if _typing.TYPE_CHECKING: from tensorflow_estimator.python.estimator.api._v1 import estimator # pylint: enable=g-import-not-at-top from tensorflow.python.util.lazy_loader import LazyLoader # pylint: disable=g-import-not-at-top _CONTRIB_WARNING = """ The TensorFlow contrib module will not be included in TensorFlow 2.0. For more information, please see: * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md * https://github.com/tensorflow/addons * https://github.com/tensorflow/io (for I/O related ops) If you depend on functionality not listed there, please file an issue. """ contrib = LazyLoader('contrib', globals(), 'tensorflow.contrib', _CONTRIB_WARNING) del LazyLoader # The templated code that replaces the placeholder above sometimes # sets the __all__ variable. If it does, we have to be sure to add # "contrib". if '__all__' in vars(): vars()['__all__'].append('contrib') from tensorflow.python.platform import flags # pylint: disable=g-import-not-at-top # The 'app' module will be imported as part of the placeholder section above. _current_module.app.flags = flags # pylint: disable=undefined-variable setattr(_current_module, "flags", flags) _major_api_version = 1 # Load all plugin libraries from site-packages/tensorflow-plugins if we are # running under pip. # TODO(gunan): Enable setting an environment variable to define arbitrary plugin # directories. # TODO(gunan): Find a better location for this code snippet. from tensorflow.python.framework import load_library as _ll from tensorflow.python.lib.io import file_io as _fi # Get sitepackages directories for the python installation. _site_packages_dirs = [] _site_packages_dirs += [] if _site.USER_SITE is None else [_site.USER_SITE] _site_packages_dirs += [_p for _p in _sys.path if 'site-packages' in _p] if 'getsitepackages' in dir(_site): _site_packages_dirs += _site.getsitepackages() if 'sysconfig' in dir(_distutils): _site_packages_dirs += [_distutils.sysconfig.get_python_lib()] _site_packages_dirs = list(set(_site_packages_dirs)) # Find the location of this exact file. _current_file_location = _inspect.getfile(_inspect.currentframe()) def _running_from_pip_package(): return any( _current_file_location.startswith(dir_) for dir_ in _site_packages_dirs) if _running_from_pip_package(): # TODO(gunan): Add sanity checks to loaded modules here. for _s in _site_packages_dirs: # Load first party dynamic kernels. _main_dir = _os.path.join(_s, 'tensorflow/core/kernels') if _os.path.exists(_main_dir): _ll.load_library(_main_dir) # Load third party dynamic kernels. _plugin_dir = _os.path.join(_s, 'tensorflow-plugins') if _os.path.exists(_plugin_dir): _ll.load_library(_plugin_dir) # Load Pluggable Device Library _ll.load_pluggable_device_library(_plugin_dir) # Delete modules that should be hidden from dir(). # Don't fail if these modules are not available. # For e.g. this file will be originally placed under tensorflow/_api/v1 which # does not have 'python', 'core' directories. Then, it will be copied # to tensorflow/ which does have these two directories. # pylint: disable=undefined-variable try: del python except NameError: pass try: del core except NameError: pass try: del compiler except NameError: pass # __all__ PLACEHOLDER
cxxgtxy/tensorflow
tensorflow/api_template_v1.__init__.py
Python
apache-2.0
6,757
"""Apply the same action to the simulated and real A1 robot. As a basic debug tool, this script allows you to execute the same action (which you choose from the pybullet GUI) on the simulation and real robot simultaneouly. Make sure to put the real robbot on rack before testing. """ from absl import app from absl import logging import numpy as np import time from tqdm import tqdm import pybullet # pytype:disable=import-error import pybullet_data from pybullet_utils import bullet_client from motion_imitation.robots import a1_robot from motion_imitation.robots import robot_config FREQ = 0.5 def main(_): logging.info( "WARNING: this code executes low-level controller on the robot.") logging.info("Make sure the robot is hang on rack before proceeding.") input("Press enter to continue...") # Construct sim env and real robot p = bullet_client.BulletClient(connection_mode=pybullet.DIRECT) p.setAdditionalSearchPath(pybullet_data.getDataPath()) robot = a1_robot.A1Robot(pybullet_client=p, action_repeat=1) # Move the motors slowly to initial position robot.ReceiveObservation() current_motor_angle = np.array(robot.GetMotorAngles()) desired_motor_angle = np.array([0., 0.9, -1.8] * 4) for t in tqdm(range(300)): blend_ratio = np.minimum(t / 200., 1) action = (1 - blend_ratio ) * current_motor_angle + blend_ratio * desired_motor_angle robot.Step(action, robot_config.MotorControlMode.POSITION) time.sleep(0.005) # Move the legs in a sinusoidal curve for t in tqdm(range(1000)): angle_hip = 0.9 + 0.2 * np.sin(2 * np.pi * FREQ * 0.01 * t) angle_calf = -2 * angle_hip action = np.array([0., angle_hip, angle_calf] * 4) robot.Step(action, robot_config.MotorControlMode.POSITION) time.sleep(0.007) # print(robot.GetFootContacts()) print(robot.GetBaseVelocity()) robot.Terminate() if __name__ == '__main__': app.run(main)
google-research/motion_imitation
motion_imitation/examples/a1_robot_exercise.py
Python
apache-2.0
1,931
# Copyright (c) 2010, 2011 Arek Korbik # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import struct _s_uchar = struct.Struct('B') _s_double_uchar = struct.Struct('BB') _s_ushort = struct.Struct('>H') _s_ushort_l = struct.Struct('<H') _s_ulong_b = struct.Struct('>L') _s_ulong_l = struct.Struct('<L') _s_double_ulong_b = struct.Struct('>LL') _s_double = struct.Struct('>d') _s_ext_csid = struct.Struct('<BH') _s_time_size_type = struct.Struct('>HBHBB') _s_time = struct.Struct('>HB') _s_set_bw = struct.Struct('>LB') _s_date_tz = struct.Struct('>dh')
arkadini/twimp
twimp/primitives.py
Python
apache-2.0
1,077
# ---------------------------------------------------------------------------- # Copyright 2015 Nervana Systems Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ---------------------------------------------------------------------------- # pylint: skip-file from neon.backends import gen_backend from neon.backends.tests.utils import assert_tensors_allclose def test_gpu_randomstate(): # run 1 be = gen_backend(backend='gpu', rng_seed=100) a = be.empty((3, 3)) a[:] = be.rand() # gpu rand x0 = a.get() x1 = be.rng.rand(3, 3) # host rand a[:] = be.rand() # gpu rand x2 = a.get() be.make_binary_mask(a, keepthresh=be.rng.rand()) x3 = a.get() assert len(be.context_rand_state_map) == 1 and len(be.context_rand_state_alive) == 1 for ctx in be.context_rand_state_alive: assert be.context_rand_state_alive[ctx] is True # run 2, using reset be.rng_reset() for ctx in be.context_rand_state_alive: assert be.context_rand_state_alive[ctx] is False a[:] = be.rand() y0 = a.get() y1 = be.rng.rand(3, 3) a[:] = be.rand() y2 = a.get() be.make_binary_mask(a, keepthresh=be.rng.rand()) y3 = a.get() assert len(be.context_rand_state_map) == 1 and len(be.context_rand_state_alive) == 1 for ctx in be.context_rand_state_alive: assert be.context_rand_state_alive[ctx] is True del(be) # run 3, using a new backend be = gen_backend(backend='gpu', rng_seed=100) a = be.empty((3, 3)) a[:] = be.rand() # gpu rand z0 = a.get() z1 = be.rng.rand(3, 3) # host rand a[:] = be.rand() # gpu rand z2 = a.get() be.make_binary_mask(a, keepthresh=be.rng.rand()) z3 = a.get() # check equality assert_tensors_allclose([x0, x1, x2, x3], [y0, y1, y2, y3], rtol=0., atol=0.) assert_tensors_allclose([x0, x1, x2, x3], [z0, z1, z2, z3], rtol=0., atol=0.) del(be) def test_cpu_randomstate(): # run 1 be = gen_backend(backend='cpu', rng_seed=100) a = be.empty((3, 3)) be.make_binary_mask(a, keepthresh=be.rng.rand()) x0 = a.get() be.make_binary_mask(a, keepthresh=be.rng.rand()) x1 = a.get() # run 2, using reset be.rng_reset() be.make_binary_mask(a, keepthresh=be.rng.rand()) y0 = a.get() be.make_binary_mask(a, keepthresh=be.rng.rand()) y1 = a.get() del(be) # run 3, using a new backend be = gen_backend(backend='cpu', rng_seed=100) a = be.empty((3, 3)) be.make_binary_mask(a, keepthresh=be.rng.rand()) z0 = a.get() be.make_binary_mask(a, keepthresh=be.rng.rand()) z1 = a.get() # check equality assert_tensors_allclose([x0, x1], [y0, y1], rtol=0., atol=0.) assert_tensors_allclose([x0, x1], [z0, z1], rtol=0., atol=0.) del(be)
Bam4d/neon
neon/backends/tests/test_randomstate.py
Python
apache-2.0
3,295
import ConfigParser import os import re import ldap import asfgit.cfg as cfg import asfgit.log as log import asfgit.util as util GROUP_DN="cn=%(group)s,ou=groups,dc=apache,dc=org" DN_RE=re.compile("uid=([^,]+),ou=people,dc=apache,dc=org") SUBPROJECT_RE=re.compile("-.+$") def authorized_committers(repo_name): writers = set() # Read the static file to get admin and bot names. parser = ConfigParser.SafeConfigParser() with open(cfg.auth_file) as handle: parser.readfp(handle) for admin in parser.get("groups", "gitadmins").split(","): writers.add(util.decode(admin.strip())) if parser.has_option("groups", repo_name): dn = parser.get("groups", repo_name).strip() else: # drop subproject name if present repo_name = SUBPROJECT_RE.sub("", repo_name) dn = GROUP_DN % {"group": repo_name} # Individually granted access if parser.has_option("individuals", repo_name): for person in parser.get("individuals", repo_name).split(","): writers.add(util.decode(person.strip())) # Add the committers listed in ldap for the project. lh = ldap.initialize("ldaps://ldap-lb-us.apache.org") attrs = ["memberUid", "member"] try: for dn, attrs in lh.search_s(dn, ldap.SCOPE_BASE, attrlist=attrs): for availid in attrs.get("memberUid", []): writers.add(availid) for dn in attrs.get("member", []): writers.add(DN_RE.match(dn).group(1)) except: log.exception() # Add per-repository exceptions map(writers.add, cfg.extra_writers) return writers
chtyim/infrastructure-puppet
modules/gitserver_dual/files/asfgit/auth.py
Python
apache-2.0
1,642
from armstrong.core.arm_sections import utils from armstrong.core.arm_sections.models import Section from ._utils import ArmSectionsTestCase, override_settings from .support.models import SimpleCommon def rel_field_names(rels): return [rel.field.name for rel in rels] class get_configured_item_modelTestCase(ArmSectionsTestCase): def test_returns_configured_model(self): m = "%s.FooBar" % self.__class__.__module__ with self.settings(ARMSTRONG_SECTION_ITEM_MODEL=m): module, model = utils.get_module_and_model_names() self.assertEqual(self.__class__.__module__, module) self.assertEqual("FooBar", model) def test_provides_default_value(self): with self.settings(ARMSTRONG_SECTION_ITEM_MODEL=False): module, model = utils.get_module_and_model_names() self.assertEqual("armstrong.apps.content.models", module) self.assertEqual("Content", model) class get_item_model_classTestCase(ArmSectionsTestCase): @override_settings(ARMSTRONG_SECTION_ITEM_MODEL='tests.support.models.SimpleCommon') def test_returns_specified_class(self): self.assertEqual(SimpleCommon, utils.get_item_model_class()) class get_section_relationsTestCase(ArmSectionsTestCase): @override_settings(ARMSTRONG_SECTION_ITEM_MODEL='tests.support.models.SimpleCommon') def test_returns_relation_for_foreign_key_only(self): self.assertEqual( ['primary_section'], rel_field_names(utils.get_section_relations(Section))) @override_settings(ARMSTRONG_SECTION_ITEM_MODEL='tests.support.models.ComplexCommon') def test_returns_relations_for_foreign_key_and_many_to_many(self): self.assertEqual( ['primary_section', 'related_sections'], rel_field_names(utils.get_section_relations(Section))) @override_settings(ARMSTRONG_SECTION_ITEM_MODEL='tests.support.models.MultipleManyToManyModel') def test_returns_relations_for_subclass_with_foreign_key_and_m2m(self): self.assertEqual( ['primary_section', 'related_sections', 'more_sections'], rel_field_names(utils.get_section_relations(Section))) class get_section_many_to_many_relationsTestCase(ArmSectionsTestCase): @override_settings(ARMSTRONG_SECTION_ITEM_MODEL='tests.support.models.SimpleCommon') def test_returns_no_relations_for_foreign_key_only(self): self.assertEqual( [], rel_field_names(utils.get_section_many_to_many_relations(Section))) @override_settings(ARMSTRONG_SECTION_ITEM_MODEL='tests.support.models.ComplexCommon') def test_returns_relation_for_foreign_key_and_many_to_many(self): self.assertEqual( ['related_sections'], rel_field_names(utils.get_section_many_to_many_relations(Section))) @override_settings(ARMSTRONG_SECTION_ITEM_MODEL='tests.support.models.MultipleManyToManyModel') def test_returns_relations_for_subclass_with_foreign_key_and_m2m(self): self.assertEqual( ['related_sections', 'more_sections'], rel_field_names(utils.get_section_many_to_many_relations(Section)))
armstrong/armstrong.core.arm_sections
tests/utils.py
Python
apache-2.0
3,181
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # coding=utf-8 # Copyright (c) 2011-2013 University of Southern California / ISI # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Tests for baremetal tilera driver.""" import os from oslo.config import cfg from nova import exception from nova.openstack.common.db import exception as db_exc from nova.tests.image import fake as fake_image from nova.tests import utils from nova.tests.virt.baremetal.db import base as bm_db_base from nova.tests.virt.baremetal.db import utils as bm_db_utils from nova.virt.baremetal import baremetal_states from nova.virt.baremetal import db from nova.virt.baremetal import tilera from nova.virt.baremetal import utils as bm_utils from nova.virt.disk import api as disk_api from nova.virt import fake as fake_virt CONF = cfg.CONF COMMON_FLAGS = dict( firewall_driver='nova.virt.baremetal.fake.FakeFirewallDriver', host='test_host', ) BAREMETAL_FLAGS = dict( driver='nova.virt.baremetal.tilera.Tilera', instance_type_extra_specs=['cpu_arch:test', 'test_spec:test_value'], power_manager='nova.virt.baremetal.fake.FakePowerManager', vif_driver='nova.virt.baremetal.fake.FakeVifDriver', volume_driver='nova.virt.baremetal.fake.FakeVolumeDriver', group='baremetal', ) class BareMetalTileraTestCase(bm_db_base.BMDBTestCase): def setUp(self): super(BareMetalTileraTestCase, self).setUp() self.flags(**COMMON_FLAGS) self.flags(**BAREMETAL_FLAGS) self.driver = tilera.Tilera(fake_virt.FakeVirtAPI()) fake_image.stub_out_image_service(self.stubs) self.addCleanup(fake_image.FakeImageService_reset) self.context = utils.get_test_admin_context() self.test_block_device_info = None, self.instance = utils.get_test_instance() self.test_network_info = utils.get_test_network_info() self.node_info = bm_db_utils.new_bm_node( service_host='test_host', cpus=4, memory_mb=2048, ) self.nic_info = [ {'address': '22:22:22:22:22:22', 'datapath_id': '0x1', 'port_no': 1}, {'address': '33:33:33:33:33:33', 'datapath_id': '0x2', 'port_no': 2}, ] def _create_node(self): self.node = db.bm_node_create(self.context, self.node_info) for nic in self.nic_info: db.bm_interface_create( self.context, self.node['id'], nic['address'], nic['datapath_id'], nic['port_no'], ) self.instance['node'] = self.node['id'] self.spawn_params = dict( admin_password='test_pass', block_device_info=self.test_block_device_info, context=self.context, image_meta=utils.get_test_image_info(None, self.instance), injected_files=[('/fake/path', 'hello world')], instance=self.instance, network_info=self.test_network_info, ) class TileraClassMethodsTestCase(BareMetalTileraTestCase): def test_build_network_config(self): net = utils.get_test_network_info(1) config = tilera.build_network_config(net) self.assertIn('eth0', config) self.assertNotIn('eth1', config) net = utils.get_test_network_info(2) config = tilera.build_network_config(net) self.assertIn('eth0', config) self.assertIn('eth1', config) def test_build_network_config_dhcp(self): self.flags( net_config_template='$pybasedir/nova/virt/baremetal/' 'net-dhcp.ubuntu.template', group='baremetal', ) net = utils.get_test_network_info() net[0]['network']['subnets'][0]['ips'][0]['address'] = '1.2.3.4' config = tilera.build_network_config(net) self.assertIn('iface eth0 inet dhcp', config) self.assertNotIn('address 1.2.3.4', config) def test_build_network_config_static(self): self.flags( net_config_template='$pybasedir/nova/virt/baremetal/' 'net-static.ubuntu.template', group='baremetal', ) net = utils.get_test_network_info() net[0]['network']['subnets'][0]['ips'][0]['address'] = '1.2.3.4' config = tilera.build_network_config(net) self.assertIn('iface eth0 inet static', config) self.assertIn('address 1.2.3.4', config) def test_image_dir_path(self): self.assertEqual( tilera.get_image_dir_path(self.instance), os.path.join(CONF.instances_path, 'instance-00000001')) def test_image_file_path(self): self.assertEqual( tilera.get_image_file_path(self.instance), os.path.join( CONF.instances_path, 'instance-00000001', 'disk')) def test_tilera_nfs_path(self): self._create_node() self.node['id'] = '123' tilera_nfs_dir = "fs_" + self.node['id'] self.assertEqual( tilera.get_tilera_nfs_path(self.node['id']), os.path.join(CONF.baremetal.tftp_root, tilera_nfs_dir)) def test_get_partition_sizes(self): # default "kinda.big" instance sizes = tilera.get_partition_sizes(self.instance) self.assertEqual(sizes[0], 40960) self.assertEqual(sizes[1], 1024) def test_swap_not_zero(self): # override swap to 0 instance_type = utils.get_test_instance_type(self.context) instance_type['swap'] = 0 self.instance = utils.get_test_instance(self.context, instance_type) sizes = tilera.get_partition_sizes(self.instance) self.assertEqual(sizes[0], 40960) self.assertEqual(sizes[1], 1) def test_get_tftp_image_info(self): # Tilera case needs only kernel_id. self.instance['kernel_id'] = 'aaaa' self.instance['uuid'] = 'fake-uuid' # Here, we confirm both that kernel_id was set # and that the proper paths are getting set for all of them base = os.path.join(CONF.baremetal.tftp_root, self.instance['uuid']) res = tilera.get_tftp_image_info(self.instance) expected = { 'kernel': ['aaaa', os.path.join(base, 'kernel')], } self.assertEqual(res, expected) class TileraPrivateMethodsTestCase(BareMetalTileraTestCase): def test_collect_mac_addresses(self): self._create_node() address_list = [nic['address'] for nic in self.nic_info] address_list.sort() macs = self.driver._collect_mac_addresses(self.context, self.node) self.assertEqual(macs, address_list) def test_cache_tftp_images(self): self.instance['kernel_id'] = 'aaaa' image_info = tilera.get_tftp_image_info(self.instance) self.mox.StubOutWithMock(os, 'makedirs') self.mox.StubOutWithMock(os.path, 'exists') os.makedirs(os.path.join(CONF.baremetal.tftp_root, self.instance['uuid'])).AndReturn(True) for uuid, path in [image_info[label] for label in image_info]: os.path.exists(path).AndReturn(True) self.mox.ReplayAll() self.driver._cache_tftp_images( self.context, self.instance, image_info) self.mox.VerifyAll() def test_cache_image(self): self.mox.StubOutWithMock(os, 'makedirs') self.mox.StubOutWithMock(os.path, 'exists') os.makedirs(tilera.get_image_dir_path(self.instance)).\ AndReturn(True) os.path.exists(tilera.get_image_file_path(self.instance)).\ AndReturn(True) self.mox.ReplayAll() image_meta = utils.get_test_image_info( self.context, self.instance) self.driver._cache_image( self.context, self.instance, image_meta) self.mox.VerifyAll() def test_inject_into_image(self): self._create_node() files = [] self.instance['hostname'] = 'fake hostname' files.append(('/etc/hostname', 'fake hostname')) self.instance['key_data'] = 'fake ssh key' net_info = utils.get_test_network_info(1) net = tilera.build_network_config(net_info) admin_password = 'fake password' self.mox.StubOutWithMock(disk_api, 'inject_data') disk_api.inject_data( admin_password=admin_password, image=tilera.get_image_file_path(self.instance), key='fake ssh key', metadata=None, partition=None, net=net, files=files, ).AndReturn(True) self.mox.ReplayAll() self.driver._inject_into_image( self.context, self.node, self.instance, network_info=net_info, admin_password=admin_password, injected_files=None) self.mox.VerifyAll() class TileraPublicMethodsTestCase(BareMetalTileraTestCase): def test_cache_images(self): self._create_node() self.mox.StubOutWithMock(tilera, "get_tftp_image_info") self.mox.StubOutWithMock(self.driver, "_cache_tftp_images") self.mox.StubOutWithMock(self.driver, "_cache_image") self.mox.StubOutWithMock(self.driver, "_inject_into_image") tilera.get_tftp_image_info(self.instance).AndReturn([]) self.driver._cache_tftp_images(self.context, self.instance, []) self.driver._cache_image(self.context, self.instance, []) self.driver._inject_into_image(self.context, self.node, self.instance, self.test_network_info, None, '') self.mox.ReplayAll() self.driver.cache_images( self.context, self.node, self.instance, admin_password='', image_meta=[], injected_files=None, network_info=self.test_network_info, ) self.mox.VerifyAll() def test_destroy_images(self): self._create_node() self.mox.StubOutWithMock(bm_utils, 'unlink_without_raise') self.mox.StubOutWithMock(bm_utils, 'rmtree_without_raise') bm_utils.unlink_without_raise(tilera.get_image_file_path( self.instance)) bm_utils.rmtree_without_raise(tilera.get_image_dir_path(self.instance)) self.mox.ReplayAll() self.driver.destroy_images(self.context, self.node, self.instance) self.mox.VerifyAll() def test_activate_bootloader_passes_details(self): self._create_node() image_info = { 'kernel': [None, 'cccc'], } self.instance['uuid'] = 'fake-uuid' iqn = "iqn-%s" % self.instance['uuid'] tilera_config = 'this is a fake tilera config' self.instance['uuid'] = 'fake-uuid' tilera_path = tilera.get_tilera_nfs_path(self.instance) image_path = tilera.get_image_file_path(self.instance) self.mox.StubOutWithMock(tilera, 'get_tftp_image_info') self.mox.StubOutWithMock(tilera, 'get_partition_sizes') tilera.get_tftp_image_info(self.instance).AndReturn(image_info) tilera.get_partition_sizes(self.instance).AndReturn((0, 0)) self.mox.ReplayAll() self.driver.activate_bootloader(self.context, self.node, self.instance, network_info=self.test_network_info) self.mox.VerifyAll() def test_activate_and_deactivate_bootloader(self): self._create_node() self.instance['uuid'] = 'fake-uuid' tilera_path = tilera.get_tilera_nfs_path(self.instance) image_path = tilera.get_image_file_path(self.instance) self.mox.ReplayAll() # activate and deactivate the bootloader # and check the deployment task_state in the database row = db.bm_node_get(self.context, 1) self.assertIsNone(row['deploy_key']) self.driver.activate_bootloader(self.context, self.node, self.instance, network_info=self.test_network_info) row = db.bm_node_get(self.context, 1) self.assertIsNotNone(row['deploy_key']) self.driver.deactivate_bootloader(self.context, self.node, self.instance) row = db.bm_node_get(self.context, 1) self.assertIsNone(row['deploy_key']) self.mox.VerifyAll() def test_deactivate_bootloader_for_nonexistent_instance(self): self._create_node() self.node['id'] = 'fake-node-id' self.mox.StubOutWithMock(bm_utils, 'unlink_without_raise') self.mox.StubOutWithMock(bm_utils, 'rmtree_without_raise') self.mox.StubOutWithMock(tilera, 'get_tftp_image_info') self.mox.StubOutWithMock(self.driver, '_collect_mac_addresses') tilera_path = tilera.get_tilera_nfs_path(self.node['id']) tilera.get_tftp_image_info(self.instance).\ AndRaise(exception.NovaException) self.driver._collect_mac_addresses(self.context, self.node).\ AndRaise(db_exc.DBError) self.mox.ReplayAll() self.driver.deactivate_bootloader( self.context, self.node, self.instance) self.mox.VerifyAll() def test_activate_node(self): self._create_node() self.instance['uuid'] = 'fake-uuid' db.bm_node_update(self.context, 1, {'task_state': baremetal_states.DEPLOYING, 'instance_uuid': 'fake-uuid'}) # test DEPLOYDONE db.bm_node_update(self.context, 1, {'task_state': baremetal_states.DEPLOYDONE}) self.driver.activate_node(self.context, self.node, self.instance) # test no deploy -- state is just ACTIVE db.bm_node_update(self.context, 1, {'task_state': baremetal_states.ACTIVE}) self.driver.activate_node(self.context, self.node, self.instance) # test node gone db.bm_node_destroy(self.context, 1) self.assertRaises(exception.InstanceDeployFailure, self.driver.activate_node, self.context, self.node, self.instance)
imsplitbit/nova
nova/tests/virt/baremetal/test_tilera.py
Python
apache-2.0
15,118
__all__ = ('WebSocketResponse', 'MsgType') import asyncio import warnings from . import hdrs from .errors import HttpProcessingError, ClientDisconnectedError from .websocket import do_handshake, Message, WebSocketError from .websocket_client import MsgType, closedMessage from .web_exceptions import ( HTTPBadRequest, HTTPMethodNotAllowed, HTTPInternalServerError) from aio2py.required.aiohttp.web_reqrep import StreamResponse THRESHOLD_CONNLOST_ACCESS = 5 class WebSocketResponse(StreamResponse): def __init__(self, *, timeout=10.0, autoclose=True, autoping=True, protocols=()): super().__init__(status=101) self._protocols = protocols self._protocol = None self._writer = None self._reader = None self._closed = False self._closing = False self._conn_lost = 0 self._close_code = None self._loop = None self._waiting = False self._exception = None self._timeout = timeout self._autoclose = autoclose self._autoping = autoping def start(self, request): # make pre-check to don't hide it by do_handshake() exceptions resp_impl = self._start_pre_check(request) if resp_impl is not None: return resp_impl try: status, headers, parser, writer, protocol = do_handshake( request.method, request.headers, request.transport, self._protocols) except HttpProcessingError as err: if err.code == 405: raise HTTPMethodNotAllowed( request.method, [hdrs.METH_GET], body=b'') elif err.code == 400: raise HTTPBadRequest(text=err.message, headers=err.headers) else: # pragma: no cover raise HTTPInternalServerError() from err if self.status != status: self.set_status(status) for k, v in headers: self.headers[k] = v self.force_close() resp_impl = super().start(request) self._reader = request._reader.set_parser(parser) self._writer = writer self._protocol = protocol self._loop = request.app.loop return resp_impl def can_start(self, request): if self._writer is not None: raise RuntimeError('Already started') try: _, _, _, _, protocol = do_handshake( request.method, request.headers, request.transport, self._protocols) except HttpProcessingError: return False, None else: return True, protocol @property def closed(self): return self._closed @property def close_code(self): return self._close_code @property def protocol(self): return self._protocol def exception(self): return self._exception def ping(self, message='b'): if self._writer is None: raise RuntimeError('Call .start() first') if self._closed: raise RuntimeError('websocket connection is closing') self._writer.ping(message) def pong(self, message='b'): # unsolicited pong if self._writer is None: raise RuntimeError('Call .start() first') if self._closed: raise RuntimeError('websocket connection is closing') self._writer.pong(message) def send_str(self, data): if self._writer is None: raise RuntimeError('Call .start() first') if self._closed: raise RuntimeError('websocket connection is closing') if not isinstance(data, str): raise TypeError('data argument must be str (%r)' % type(data)) self._writer.send(data, binary=False) def send_bytes(self, data): if self._writer is None: raise RuntimeError('Call .start() first') if self._closed: raise RuntimeError('websocket connection is closing') if not isinstance(data, (bytes, bytearray, memoryview)): raise TypeError('data argument must be byte-ish (%r)' % type(data)) self._writer.send(data, binary=True) @asyncio.coroutine def wait_closed(self): # pragma: no cover warnings.warn( 'wait_closed() coroutine is deprecated. use close() instead', DeprecationWarning) return (yield from self.close()) @asyncio.coroutine def write_eof(self): if self._eof_sent: return if self._resp_impl is None: raise RuntimeError("Response has not been started") yield from self.close() self._eof_sent = True @asyncio.coroutine def close(self, *, code=1000, message=b''): if self._writer is None: raise RuntimeError('Call .start() first') if not self._closed: self._closed = True try: self._writer.close(code, message) except (asyncio.CancelledError, asyncio.TimeoutError): self._close_code = 1006 raise except Exception as exc: self._close_code = 1006 self._exception = exc return True if self._closing: return True while True: try: msg = yield from asyncio.wait_for( self._reader.read(), timeout=self._timeout, loop=self._loop) except asyncio.CancelledError: self._close_code = 1006 raise except Exception as exc: self._close_code = 1006 self._exception = exc return True if msg.tp == MsgType.close: self._close_code = msg.data return True else: return False @asyncio.coroutine def receive(self): if self._reader is None: raise RuntimeError('Call .start() first') if self._waiting: raise RuntimeError('Concurrent call to receive() is not allowed') self._waiting = True try: while True: if self._closed: self._conn_lost += 1 if self._conn_lost >= THRESHOLD_CONNLOST_ACCESS: raise RuntimeError('WebSocket connection is closed.') return closedMessage try: msg = yield from self._reader.read() except (asyncio.CancelledError, asyncio.TimeoutError): raise except WebSocketError as exc: self._close_code = exc.code yield from self.close(code=exc.code) return Message(MsgType.error, exc, None) except ClientDisconnectedError: self._closed = True self._close_code = 1006 return Message(MsgType.close, None, None) except Exception as exc: self._exception = exc self._closing = True self._close_code = 1006 yield from self.close() return Message(MsgType.error, exc, None) if msg.tp == MsgType.close: self._closing = True self._close_code = msg.data if not self._closed and self._autoclose: yield from self.close() return msg elif not self._closed: if msg.tp == MsgType.ping and self._autoping: self._writer.pong(msg.data) elif msg.tp == MsgType.pong and self._autoping: continue else: return msg finally: self._waiting = False @asyncio.coroutine def receive_msg(self): # pragma: no cover warnings.warn( 'receive_msg() coroutine is deprecated. use receive() instead', DeprecationWarning) return (yield from self.receive()) @asyncio.coroutine def receive_str(self): msg = yield from self.receive() if msg.tp != MsgType.text: raise TypeError( "Received message {}:{!r} is not str".format(msg.tp, msg.data)) return msg.data @asyncio.coroutine def receive_bytes(self): msg = yield from self.receive() if msg.tp != MsgType.binary: raise TypeError( "Received message {}:{!r} is not bytes".format(msg.tp, msg.data)) return msg.data def write(self, data): raise RuntimeError("Cannot call .write() for websocket")
lfblogs/aio2py
aio2py/required/aiohttp/web_ws.py
Python
apache-2.0
8,999
#!/usr/bin/python3 __author__ = 'nhumrich' import logspit.runner if __name__ == '__main__': logspit.runner.run()
CanopyTax/logspit
run.py
Python
apache-2.0
118
# # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock import six import webob.exc import heat.api.middleware.fault as fault import heat.api.openstack.v1.events as events from heat.common import exception as heat_exc from heat.common import identifier from heat.common import policy from heat.rpc import client as rpc_client from heat.tests.api.openstack_v1 import tools from heat.tests import common @mock.patch.object(policy.Enforcer, 'enforce') class EventControllerTest(tools.ControllerTest, common.HeatTestCase): """Tests the API class EventController. Tests the API class which acts as the WSGI controller, the endpoint processing API requests after they are routed """ def setUp(self): super(EventControllerTest, self).setUp() # Create WSGI controller instance class DummyConfig(object): bind_port = 8004 cfgopts = DummyConfig() self.controller = events.EventController(options=cfgopts) def test_resource_index_event_id_integer(self, mock_enforce): self._test_resource_index('42', mock_enforce) def test_resource_index_event_id_uuid(self, mock_enforce): self._test_resource_index('a3455d8c-9f88-404d-a85b-5315293e67de', mock_enforce) def test_resource_index_nested_depth(self, mock_enforce): self._test_resource_index('a3455d8c-9f88-404d-a85b-5315293e67de', mock_enforce, nested_depth=1) def _test_resource_index(self, event_id, mock_enforce, nested_depth=None): self._mock_enforce_setup(mock_enforce, 'index', True) res_name = 'WikiDatabase' params = {} if nested_depth: params['nested_depth'] = nested_depth stack_identity = identifier.HeatIdentifier(self.tenant, 'wordpress', '6') res_identity = identifier.ResourceIdentifier(resource_name=res_name, **stack_identity) ev_identity = identifier.EventIdentifier(event_id=event_id, **res_identity) req = self._get(stack_identity._tenant_path() + '/resources/' + res_name + '/events', params=params) kwargs = {'stack_identity': stack_identity, 'nested_depth': nested_depth, 'limit': None, 'sort_keys': None, 'marker': None, 'sort_dir': None, 'filters': {'resource_name': res_name}} engine_resp = [ { u'stack_name': u'wordpress', u'event_time': u'2012-07-23T13:05:39Z', u'stack_identity': dict(stack_identity), u'resource_name': res_name, u'resource_status_reason': u'state changed', u'event_identity': dict(ev_identity), u'resource_action': u'CREATE', u'resource_status': u'IN_PROGRESS', u'physical_resource_id': None, u'resource_type': u'AWS::EC2::Instance', } ] if nested_depth: engine_resp[0]['root_stack_id'] = dict(stack_identity) mock_call = self.patchobject(rpc_client.EngineClient, 'call', return_value=engine_resp) result = self.controller.index(req, tenant_id=self.tenant, stack_name=stack_identity.stack_name, stack_id=stack_identity.stack_id, resource_name=res_name) expected = { 'events': [ { 'id': event_id, 'links': [ {'href': self._url(ev_identity), 'rel': 'self'}, {'href': self._url(res_identity), 'rel': 'resource'}, {'href': self._url(stack_identity), 'rel': 'stack'}, ], u'resource_name': res_name, u'logical_resource_id': res_name, u'resource_status_reason': u'state changed', u'event_time': u'2012-07-23T13:05:39Z', u'resource_status': u'CREATE_IN_PROGRESS', u'physical_resource_id': None, } ] } if nested_depth: expected['events'][0]['links'].append( {'href': self._url(stack_identity), 'rel': 'root_stack'} ) self.assertEqual(expected, result) mock_call.assert_called_once_with( req.context, ('list_events', kwargs), version='1.31' ) @mock.patch.object(rpc_client.EngineClient, 'call') def test_index_multiple_resource_names(self, mock_call, mock_enforce): self._mock_enforce_setup(mock_enforce, 'index', True) res_name = 'resource3' event_id = '42' params = { 'resource_name': ['resource1', 'resource2'] } stack_identity = identifier.HeatIdentifier(self.tenant, 'wibble', '6') res_identity = identifier.ResourceIdentifier(resource_name=res_name, **stack_identity) ev_identity = identifier.EventIdentifier(event_id=event_id, **res_identity) req = self._get(stack_identity._tenant_path() + '/events', params=params) mock_call.return_value = [ { u'stack_name': u'wordpress', u'event_time': u'2012-07-23T13:05:39Z', u'stack_identity': dict(stack_identity), u'resource_name': res_name, u'resource_status_reason': u'state changed', u'event_identity': dict(ev_identity), u'resource_action': u'CREATE', u'resource_status': u'IN_PROGRESS', u'physical_resource_id': None, u'resource_type': u'AWS::EC2::Instance', } ] self.controller.index(req, tenant_id=self.tenant, stack_name=stack_identity.stack_name, stack_id=stack_identity.stack_id, resource_name=res_name) rpc_call_args, _ = mock_call.call_args engine_args = rpc_call_args[1][1] self.assertEqual(7, len(engine_args)) self.assertIn('filters', engine_args) self.assertIn('resource_name', engine_args['filters']) self.assertEqual(res_name, engine_args['filters']['resource_name']) self.assertNotIn('resource1', engine_args['filters']['resource_name']) self.assertNotIn('resource2', engine_args['filters']['resource_name']) @mock.patch.object(rpc_client.EngineClient, 'call') def test_index_multiple_resource_names_no_resource(self, mock_call, mock_enforce): self._mock_enforce_setup(mock_enforce, 'index', True) res_name = 'resource3' event_id = '42' params = { 'resource_name': ['resource1', 'resource2'] } stack_identity = identifier.HeatIdentifier(self.tenant, 'wibble', '6') res_identity = identifier.ResourceIdentifier(resource_name=res_name, **stack_identity) ev_identity = identifier.EventIdentifier(event_id=event_id, **res_identity) req = self._get(stack_identity._tenant_path() + '/events', params=params) mock_call.return_value = [ { u'stack_name': u'wordpress', u'event_time': u'2012-07-23T13:05:39Z', u'stack_identity': dict(stack_identity), u'resource_name': res_name, u'resource_status_reason': u'state changed', u'event_identity': dict(ev_identity), u'resource_action': u'CREATE', u'resource_status': u'IN_PROGRESS', u'physical_resource_id': None, u'resource_type': u'AWS::EC2::Instance', } ] self.controller.index(req, tenant_id=self.tenant, stack_name=stack_identity.stack_name, stack_id=stack_identity.stack_id) rpc_call_args, _ = mock_call.call_args engine_args = rpc_call_args[1][1] self.assertEqual(7, len(engine_args)) self.assertIn('filters', engine_args) self.assertIn('resource_name', engine_args['filters']) self.assertIn('resource1', engine_args['filters']['resource_name']) self.assertIn('resource2', engine_args['filters']['resource_name']) def test_stack_index_event_id_integer(self, mock_enforce): self._test_stack_index('42', mock_enforce) def test_stack_index_event_id_uuid(self, mock_enforce): self._test_stack_index('a3455d8c-9f88-404d-a85b-5315293e67de', mock_enforce) def _test_stack_index(self, event_id, mock_enforce): self._mock_enforce_setup(mock_enforce, 'index', True) res_name = 'WikiDatabase' stack_identity = identifier.HeatIdentifier(self.tenant, 'wordpress', '6') res_identity = identifier.ResourceIdentifier(resource_name=res_name, **stack_identity) ev_identity = identifier.EventIdentifier(event_id=event_id, **res_identity) req = self._get(stack_identity._tenant_path() + '/events') kwargs = {'stack_identity': stack_identity, 'nested_depth': None, 'limit': None, 'sort_keys': None, 'marker': None, 'sort_dir': None, 'filters': {'resource_name': res_name}} engine_resp = [ { u'stack_name': u'wordpress', u'event_time': u'2012-07-23T13:05:39Z', u'stack_identity': dict(stack_identity), u'resource_name': res_name, u'resource_status_reason': u'state changed', u'event_identity': dict(ev_identity), u'resource_action': u'CREATE', u'resource_status': u'IN_PROGRESS', u'physical_resource_id': None, u'resource_type': u'AWS::EC2::Instance', } ] mock_call = self.patchobject(rpc_client.EngineClient, 'call', return_value=engine_resp) result = self.controller.index(req, tenant_id=self.tenant, stack_name=stack_identity.stack_name, stack_id=stack_identity.stack_id, resource_name=res_name) expected = { 'events': [ { 'id': event_id, 'links': [ {'href': self._url(ev_identity), 'rel': 'self'}, {'href': self._url(res_identity), 'rel': 'resource'}, {'href': self._url(stack_identity), 'rel': 'stack'}, ], u'resource_name': res_name, u'logical_resource_id': res_name, u'resource_status_reason': u'state changed', u'event_time': u'2012-07-23T13:05:39Z', u'resource_status': u'CREATE_IN_PROGRESS', u'physical_resource_id': None, } ] } self.assertEqual(expected, result) mock_call.assert_called_once_with( req.context, ('list_events', kwargs), version='1.31' ) def test_index_stack_nonexist(self, mock_enforce): self._mock_enforce_setup(mock_enforce, 'index', True) stack_identity = identifier.HeatIdentifier(self.tenant, 'wibble', '6') req = self._get(stack_identity._tenant_path() + '/events') kwargs = {'stack_identity': stack_identity, 'nested_depth': None, 'limit': None, 'sort_keys': None, 'marker': None, 'sort_dir': None, 'filters': None} error = heat_exc.EntityNotFound(entity='Stack', name='a') mock_call = self.patchobject(rpc_client.EngineClient, 'call', side_effect=tools.to_remote_error(error)) resp = tools.request_with_middleware( fault.FaultWrapper, self.controller.index, req, tenant_id=self.tenant, stack_name=stack_identity.stack_name, stack_id=stack_identity.stack_id) self.assertEqual(404, resp.json['code']) self.assertEqual('EntityNotFound', resp.json['error']['type']) mock_call.assert_called_once_with( req.context, ('list_events', kwargs), version='1.31' ) def test_index_err_denied_policy(self, mock_enforce): self._mock_enforce_setup(mock_enforce, 'index', False) stack_identity = identifier.HeatIdentifier(self.tenant, 'wibble', '6') req = self._get(stack_identity._tenant_path() + '/events') resp = tools.request_with_middleware( fault.FaultWrapper, self.controller.index, req, tenant_id=self.tenant, stack_name=stack_identity.stack_name, stack_id=stack_identity.stack_id) self.assertEqual(403, resp.status_int) self.assertIn('403 Forbidden', six.text_type(resp)) def test_index_resource_nonexist(self, mock_enforce): self._mock_enforce_setup(mock_enforce, 'index', True) res_name = 'WikiDatabase' stack_identity = identifier.HeatIdentifier(self.tenant, 'wordpress', '6') req = self._get(stack_identity._tenant_path() + '/resources/' + res_name + '/events') kwargs = {'stack_identity': stack_identity, 'nested_depth': None, 'limit': None, 'sort_keys': None, 'marker': None, 'sort_dir': None, 'filters': {'resource_name': res_name}} engine_resp = [] mock_call = self.patchobject(rpc_client.EngineClient, 'call', return_value=engine_resp) self.assertRaises(webob.exc.HTTPNotFound, self.controller.index, req, tenant_id=self.tenant, stack_name=stack_identity.stack_name, stack_id=stack_identity.stack_id, resource_name=res_name) mock_call.assert_called_once_with( req.context, ('list_events', kwargs), version='1.31' ) @mock.patch.object(rpc_client.EngineClient, 'call') def test_index_whitelists_pagination_params(self, mock_call, mock_enforce): self._mock_enforce_setup(mock_enforce, 'index', True) params = { 'limit': 10, 'sort_keys': 'fake sort keys', 'marker': 'fake marker', 'sort_dir': 'fake sort dir', 'balrog': 'you shall not pass!' } stack_identity = identifier.HeatIdentifier(self.tenant, 'wibble', '6') req = self._get(stack_identity._tenant_path() + '/events', params=params) mock_call.return_value = [] self.controller.index(req, tenant_id=self.tenant, stack_name=stack_identity.stack_name, stack_id=stack_identity.stack_id) rpc_call_args, _ = mock_call.call_args engine_args = rpc_call_args[1][1] self.assertEqual(7, len(engine_args)) self.assertIn('limit', engine_args) self.assertEqual(10, engine_args['limit']) self.assertIn('sort_keys', engine_args) self.assertEqual(['fake sort keys'], engine_args['sort_keys']) self.assertIn('marker', engine_args) self.assertEqual('fake marker', engine_args['marker']) self.assertIn('sort_dir', engine_args) self.assertEqual('fake sort dir', engine_args['sort_dir']) self.assertIn('filters', engine_args) self.assertIsNone(engine_args['filters']) self.assertNotIn('balrog', engine_args) @mock.patch.object(rpc_client.EngineClient, 'call') def test_index_limit_not_int(self, mock_call, mock_enforce): self._mock_enforce_setup(mock_enforce, 'index', True) sid = identifier.HeatIdentifier(self.tenant, 'wibble', '6') req = self._get(sid._tenant_path() + '/events', params={'limit': 'not-an-int'}) ex = self.assertRaises(webob.exc.HTTPBadRequest, self.controller.index, req, tenant_id=self.tenant, stack_name=sid.stack_name, stack_id=sid.stack_id) self.assertEqual("Only integer is acceptable by 'limit'.", six.text_type(ex)) self.assertFalse(mock_call.called) @mock.patch.object(rpc_client.EngineClient, 'call') def test_index_whitelist_filter_params(self, mock_call, mock_enforce): self._mock_enforce_setup(mock_enforce, 'index', True) params = { 'resource_status': 'COMPLETE', 'resource_action': 'CREATE', 'resource_name': 'my_server', 'resource_type': 'OS::Nova::Server', 'balrog': 'you shall not pass!' } stack_identity = identifier.HeatIdentifier(self.tenant, 'wibble', '6') req = self._get(stack_identity._tenant_path() + '/events', params=params) mock_call.return_value = [] self.controller.index(req, tenant_id=self.tenant, stack_name=stack_identity.stack_name, stack_id=stack_identity.stack_id) rpc_call_args, _ = mock_call.call_args engine_args = rpc_call_args[1][1] self.assertIn('filters', engine_args) filters = engine_args['filters'] self.assertEqual(4, len(filters)) self.assertIn('resource_status', filters) self.assertEqual('COMPLETE', filters['resource_status']) self.assertIn('resource_action', filters) self.assertEqual('CREATE', filters['resource_action']) self.assertIn('resource_name', filters) self.assertEqual('my_server', filters['resource_name']) self.assertIn('resource_type', filters) self.assertEqual('OS::Nova::Server', filters['resource_type']) self.assertNotIn('balrog', filters) def test_show_event_id_integer(self, mock_enforce): self._test_show('42', mock_enforce) def test_show_event_id_uuid(self, mock_enforce): self._test_show('a3455d8c-9f88-404d-a85b-5315293e67de', mock_enforce) def _test_show(self, event_id, mock_enforce): self._mock_enforce_setup(mock_enforce, 'show', True) res_name = 'WikiDatabase' stack_identity = identifier.HeatIdentifier(self.tenant, 'wordpress', '6') res_identity = identifier.ResourceIdentifier(resource_name=res_name, **stack_identity) ev_identity = identifier.EventIdentifier(event_id=event_id, **res_identity) req = self._get(stack_identity._tenant_path() + '/resources/' + res_name + '/events/' + event_id) kwargs = {'stack_identity': stack_identity, 'limit': None, 'sort_keys': None, 'marker': None, 'sort_dir': None, 'nested_depth': None, 'filters': {'resource_name': res_name, 'uuid': event_id}} engine_resp = [ { u'stack_name': u'wordpress', u'event_time': u'2012-07-23T13:06:00Z', u'stack_identity': dict(stack_identity), u'resource_name': res_name, u'resource_status_reason': u'state changed', u'event_identity': dict(ev_identity), u'resource_action': u'CREATE', u'resource_status': u'COMPLETE', u'physical_resource_id': u'a3455d8c-9f88-404d-a85b-5315293e67de', u'resource_properties': {u'UserData': u'blah'}, u'resource_type': u'AWS::EC2::Instance', } ] mock_call = self.patchobject(rpc_client.EngineClient, 'call', return_value=engine_resp) result = self.controller.show(req, tenant_id=self.tenant, stack_name=stack_identity.stack_name, stack_id=stack_identity.stack_id, resource_name=res_name, event_id=event_id) expected = { 'event': { 'id': event_id, 'links': [ {'href': self._url(ev_identity), 'rel': 'self'}, {'href': self._url(res_identity), 'rel': 'resource'}, {'href': self._url(stack_identity), 'rel': 'stack'}, ], u'resource_name': res_name, u'logical_resource_id': res_name, u'resource_status_reason': u'state changed', u'event_time': u'2012-07-23T13:06:00Z', u'resource_status': u'CREATE_COMPLETE', u'physical_resource_id': u'a3455d8c-9f88-404d-a85b-5315293e67de', u'resource_type': u'AWS::EC2::Instance', u'resource_properties': {u'UserData': u'blah'}, } } self.assertEqual(expected, result) mock_call.assert_called_once_with( req.context, ('list_events', kwargs), version='1.31' ) def test_show_bad_resource(self, mock_enforce): self._mock_enforce_setup(mock_enforce, 'show', True) event_id = '42' res_name = 'WikiDatabase' stack_identity = identifier.HeatIdentifier(self.tenant, 'wordpress', '6') req = self._get(stack_identity._tenant_path() + '/resources/' + res_name + '/events/' + event_id) kwargs = {'stack_identity': stack_identity, 'limit': None, 'sort_keys': None, 'marker': None, 'sort_dir': None, 'nested_depth': None, 'filters': {'resource_name': res_name, 'uuid': '42'}} engine_resp = [] mock_call = self.patchobject(rpc_client.EngineClient, 'call', return_value=engine_resp) self.assertRaises(webob.exc.HTTPNotFound, self.controller.show, req, tenant_id=self.tenant, stack_name=stack_identity.stack_name, stack_id=stack_identity.stack_id, resource_name=res_name, event_id=event_id) mock_call.assert_called_once_with( req.context, ('list_events', kwargs), version='1.31' ) def test_show_stack_nonexist(self, mock_enforce): self._mock_enforce_setup(mock_enforce, 'show', True) event_id = '42' res_name = 'WikiDatabase' stack_identity = identifier.HeatIdentifier(self.tenant, 'wibble', '6') req = self._get(stack_identity._tenant_path() + '/resources/' + res_name + '/events/' + event_id) kwargs = {'stack_identity': stack_identity, 'limit': None, 'sort_keys': None, 'marker': None, 'sort_dir': None, 'nested_depth': None, 'filters': {'resource_name': res_name, 'uuid': '42'}} error = heat_exc.EntityNotFound(entity='Stack', name='a') mock_call = self.patchobject(rpc_client.EngineClient, 'call', side_effect=tools.to_remote_error(error)) resp = tools.request_with_middleware( fault.FaultWrapper, self.controller.show, req, tenant_id=self.tenant, stack_name=stack_identity.stack_name, stack_id=stack_identity.stack_id, resource_name=res_name, event_id=event_id) self.assertEqual(404, resp.json['code']) self.assertEqual('EntityNotFound', resp.json['error']['type']) mock_call.assert_called_once_with( req.context, ('list_events', kwargs), version='1.31' ) def test_show_err_denied_policy(self, mock_enforce): self._mock_enforce_setup(mock_enforce, 'show', False) event_id = '42' res_name = 'WikiDatabase' stack_identity = identifier.HeatIdentifier(self.tenant, 'wibble', '6') req = self._get(stack_identity._tenant_path() + '/resources/' + res_name + '/events/' + event_id) resp = tools.request_with_middleware( fault.FaultWrapper, self.controller.show, req, tenant_id=self.tenant, stack_name=stack_identity.stack_name, stack_id=stack_identity.stack_id, resource_name=res_name, event_id=event_id) self.assertEqual(403, resp.status_int) self.assertIn('403 Forbidden', six.text_type(resp)) @mock.patch.object(rpc_client.EngineClient, 'call') def test_show_multiple_resource_names(self, mock_call, mock_enforce): self._mock_enforce_setup(mock_enforce, 'show', True) res_name = 'resource3' event_id = '42' stack_identity = identifier.HeatIdentifier(self.tenant, 'wibble', '6') res_identity = identifier.ResourceIdentifier(resource_name=res_name, **stack_identity) ev_identity = identifier.EventIdentifier(event_id=event_id, **res_identity) req = self._get(stack_identity._tenant_path() + '/resources/' + res_name + '/events/' + event_id) mock_call.return_value = [ { u'stack_name': u'wordpress', u'event_time': u'2012-07-23T13:05:39Z', u'stack_identity': dict(stack_identity), u'resource_name': res_name, u'resource_status_reason': u'state changed', u'event_identity': dict(ev_identity), u'resource_action': u'CREATE', u'resource_status': u'IN_PROGRESS', u'physical_resource_id': None, u'resource_type': u'AWS::EC2::Instance', } ] self.controller.show(req, tenant_id=self.tenant, stack_name=stack_identity.stack_name, stack_id=stack_identity.stack_id, resource_name=res_name, event_id=event_id) rpc_call_args, _ = mock_call.call_args engine_args = rpc_call_args[1][1] self.assertEqual(7, len(engine_args)) self.assertIn('filters', engine_args) self.assertIn('resource_name', engine_args['filters']) self.assertIn(res_name, engine_args['filters']['resource_name'])
noironetworks/heat
heat/tests/api/openstack_v1/test_events.py
Python
apache-2.0
28,895
# Copyright 2015 Cisco Systems # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # Ensure nova configs that conflict with ironic configs are unregistered for # the tests from oslo_config import cfg from nova.api import auth from nova import exception from nova import netconf from nova.network.neutronv2 import api from nova import paths from nova import utils from nova.virt import images CONF = cfg.CONF CONF.unregister_opts(exception.exc_log_opts) CONF.unregister_opt(utils.utils_opts[3]) CONF.unregister_opt(utils.utils_opts[4]) CONF.unregister_opt(netconf.netconf_opts[0]) CONF.unregister_opt(netconf.netconf_opts[2]) CONF.unregister_opts(paths.path_opts) CONF.unregister_opt(auth.auth_opts[1]) CONF.unregister_opts(api.neutron_opts, group='neutron') CONF.unregister_opts(images.image_opts)
Tehsmash/cisco-ironic-contrib
cisco_ironic_contrib/tests/__init__.py
Python
apache-2.0
1,348
# Copyright 2015 Mirantis Inc # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from dogpile.cache import region as dp_region from oslo_cache import core from oslo_cache.tests import test_cache from oslo_config import fixture as config_fixture from oslo_utils import fixture as time_fixture NO_VALUE = core.NO_VALUE KEY = 'test_key' VALUE = 'test_value' class CacheDictBackendTest(test_cache.BaseTestCase): def setUp(self): super(CacheDictBackendTest, self).setUp() self.config_fixture = self.useFixture(config_fixture.Config()) self.config_fixture.config(group='cache', backend='oslo_cache.dict') self.time_fixture = self.useFixture(time_fixture.TimeFixture()) self.region = dp_region.make_region() self.region.configure( 'oslo_cache.dict', arguments={'expiration_time': 0.5}) def test_dict_backend(self): self.assertIs(NO_VALUE, self.region.get(KEY)) self.region.set(KEY, VALUE) self.assertEqual(VALUE, self.region.get(KEY)) self.region.delete(KEY) self.assertIs(NO_VALUE, self.region.get(KEY)) def test_dict_backend_expiration_time(self): self.region.set(KEY, VALUE) self.assertEqual(VALUE, self.region.get(KEY)) self.time_fixture.advance_time_seconds(1) self.assertIs(NO_VALUE, self.region.get(KEY)) def test_dict_backend_clear_cache(self): self.region.set(KEY, VALUE) self.time_fixture.advance_time_seconds(1) self.assertEqual(1, len(self.region.backend.cache)) self.region.backend._clear() self.assertEqual(0, len(self.region.backend.cache)) def test_dict_backend_zero_expiration_time(self): self.region = dp_region.make_region() self.region.configure( 'oslo_cache.dict', arguments={'expiration_time': 0}) self.region.set(KEY, VALUE) self.time_fixture.advance_time_seconds(1) self.assertEqual(VALUE, self.region.get(KEY)) self.assertEqual(1, len(self.region.backend.cache)) self.region.backend._clear() self.assertEqual(VALUE, self.region.get(KEY)) self.assertEqual(1, len(self.region.backend.cache)) def test_dict_backend_multi_keys(self): self.region.set('key1', 'value1') self.region.set('key2', 'value2') self.time_fixture.advance_time_seconds(1) self.region.set('key3', 'value3') self.assertEqual(1, len(self.region.backend.cache)) self.assertIs(NO_VALUE, self.region.get('key1')) self.assertIs(NO_VALUE, self.region.get('key2')) self.assertEqual('value3', self.region.get('key3')) def test_dict_backend_multi_keys_in_one_call(self): single_value = 'Test Value' single_key = 'testkey' multi_values = {'key1': 1, 'key2': 2, 'key3': 3} self.region.set(single_key, single_value) self.assertEqual(single_value, self.region.get(single_key)) self.region.delete(single_key) self.assertEqual(NO_VALUE, self.region.get(single_key)) self.region.set_multi(multi_values) cached_values = self.region.get_multi(multi_values.keys()) for value in multi_values.values(): self.assertIn(value, cached_values) self.assertEqual(len(multi_values.values()), len(cached_values)) self.region.delete_multi(multi_values.keys()) for value in self.region.get_multi(multi_values.keys()): self.assertEqual(NO_VALUE, value) def test_dict_backend_rewrite_value(self): self.region.set(KEY, 'value1') self.region.set(KEY, 'value2') self.assertEqual('value2', self.region.get(KEY))
openstack/oslo.cache
oslo_cache/tests/unit/test_dict_backend.py
Python
apache-2.0
4,186
"""The tests for the MQTT light platform. Configuration for RGB Version with brightness: light: platform: mqtt name: "Office Light RGB" state_topic: "office/rgb1/light/status" command_topic: "office/rgb1/light/switch" brightness_state_topic: "office/rgb1/brightness/status" brightness_command_topic: "office/rgb1/brightness/set" rgb_state_topic: "office/rgb1/rgb/status" rgb_command_topic: "office/rgb1/rgb/set" qos: 0 payload_on: "on" payload_off: "off" Configuration for XY Version with brightness: light: platform: mqtt name: "Office Light XY" state_topic: "office/xy1/light/status" command_topic: "office/xy1/light/switch" brightness_state_topic: "office/xy1/brightness/status" brightness_command_topic: "office/xy1/brightness/set" xy_state_topic: "office/xy1/xy/status" xy_command_topic: "office/xy1/xy/set" qos: 0 payload_on: "on" payload_off: "off" config without RGB: light: platform: mqtt name: "Office Light" state_topic: "office/rgb1/light/status" command_topic: "office/rgb1/light/switch" brightness_state_topic: "office/rgb1/brightness/status" brightness_command_topic: "office/rgb1/brightness/set" qos: 0 payload_on: "on" payload_off: "off" config without RGB and brightness: light: platform: mqtt name: "Office Light" state_topic: "office/rgb1/light/status" command_topic: "office/rgb1/light/switch" qos: 0 payload_on: "on" payload_off: "off" config for RGB Version with brightness and scale: light: platform: mqtt name: "Office Light RGB" state_topic: "office/rgb1/light/status" command_topic: "office/rgb1/light/switch" brightness_state_topic: "office/rgb1/brightness/status" brightness_command_topic: "office/rgb1/brightness/set" brightness_scale: 99 rgb_state_topic: "office/rgb1/rgb/status" rgb_command_topic: "office/rgb1/rgb/set" rgb_scale: 99 qos: 0 payload_on: "on" payload_off: "off" config with brightness and color temp light: platform: mqtt name: "Office Light Color Temp" state_topic: "office/rgb1/light/status" command_topic: "office/rgb1/light/switch" brightness_state_topic: "office/rgb1/brightness/status" brightness_command_topic: "office/rgb1/brightness/set" brightness_scale: 99 color_temp_state_topic: "office/rgb1/color_temp/status" color_temp_command_topic: "office/rgb1/color_temp/set" qos: 0 payload_on: "on" payload_off: "off" config with brightness and effect light: platform: mqtt name: "Office Light Color Temp" state_topic: "office/rgb1/light/status" command_topic: "office/rgb1/light/switch" brightness_state_topic: "office/rgb1/brightness/status" brightness_command_topic: "office/rgb1/brightness/set" brightness_scale: 99 effect_state_topic: "office/rgb1/effect/status" effect_command_topic: "office/rgb1/effect/set" effect_list: - rainbow - colorloop qos: 0 payload_on: "on" payload_off: "off" config for RGB Version with white value and scale: light: platform: mqtt name: "Office Light RGB" state_topic: "office/rgb1/light/status" command_topic: "office/rgb1/light/switch" white_value_state_topic: "office/rgb1/white_value/status" white_value_command_topic: "office/rgb1/white_value/set" white_value_scale: 99 rgb_state_topic: "office/rgb1/rgb/status" rgb_command_topic: "office/rgb1/rgb/set" rgb_scale: 99 qos: 0 payload_on: "on" payload_off: "off" config for RGB Version with RGB command template: light: platform: mqtt name: "Office Light RGB" state_topic: "office/rgb1/light/status" command_topic: "office/rgb1/light/switch" rgb_state_topic: "office/rgb1/rgb/status" rgb_command_topic: "office/rgb1/rgb/set" rgb_command_template: "{{ '#%02x%02x%02x' | format(red, green, blue)}}" qos: 0 payload_on: "on" payload_off: "off" Configuration for HS Version with brightness: light: platform: mqtt name: "Office Light HS" state_topic: "office/hs1/light/status" command_topic: "office/hs1/light/switch" brightness_state_topic: "office/hs1/brightness/status" brightness_command_topic: "office/hs1/brightness/set" hs_state_topic: "office/hs1/hs/status" hs_command_topic: "office/hs1/hs/set" qos: 0 payload_on: "on" payload_off: "off" """ import json from os import path from unittest.mock import call, patch import pytest from homeassistant import config as hass_config from homeassistant.components import light from homeassistant.const import ATTR_ASSUMED_STATE, SERVICE_RELOAD, STATE_OFF, STATE_ON import homeassistant.core as ha from homeassistant.setup import async_setup_component from .test_common import ( help_test_availability_when_connection_lost, help_test_availability_without_topic, help_test_custom_availability_payload, help_test_default_availability_payload, help_test_discovery_broken, help_test_discovery_removal, help_test_discovery_update, help_test_discovery_update_attr, help_test_discovery_update_unchanged, help_test_entity_debug_info_message, help_test_entity_device_info_remove, help_test_entity_device_info_update, help_test_entity_device_info_with_connection, help_test_entity_device_info_with_identifier, help_test_entity_id_update_discovery_update, help_test_entity_id_update_subscriptions, help_test_setting_attribute_via_mqtt_json_message, help_test_setting_attribute_with_template, help_test_unique_id, help_test_update_with_json_attrs_bad_JSON, help_test_update_with_json_attrs_not_dict, ) from tests.common import assert_setup_component, async_fire_mqtt_message from tests.components.light import common DEFAULT_CONFIG = { light.DOMAIN: {"platform": "mqtt", "name": "test", "command_topic": "test-topic"} } async def test_fail_setup_if_no_command_topic(hass, mqtt_mock): """Test if command fails with command topic.""" assert await async_setup_component( hass, light.DOMAIN, {light.DOMAIN: {"platform": "mqtt", "name": "test"}} ) await hass.async_block_till_done() assert hass.states.get("light.test") is None async def test_no_color_brightness_color_temp_hs_white_xy_if_no_topics(hass, mqtt_mock): """Test if there is no color and brightness if no topic.""" assert await async_setup_component( hass, light.DOMAIN, { light.DOMAIN: { "platform": "mqtt", "name": "test", "state_topic": "test_light_rgb/status", "command_topic": "test_light_rgb/set", } }, ) await hass.async_block_till_done() state = hass.states.get("light.test") assert state.state == STATE_OFF assert state.attributes.get("rgb_color") is None assert state.attributes.get("brightness") is None assert state.attributes.get("color_temp") is None assert state.attributes.get("hs_color") is None assert state.attributes.get("white_value") is None assert state.attributes.get("xy_color") is None async_fire_mqtt_message(hass, "test_light_rgb/status", "ON") state = hass.states.get("light.test") assert state.state == STATE_ON assert state.attributes.get("rgb_color") is None assert state.attributes.get("brightness") is None assert state.attributes.get("color_temp") is None assert state.attributes.get("hs_color") is None assert state.attributes.get("white_value") is None assert state.attributes.get("xy_color") is None async def test_controlling_state_via_topic(hass, mqtt_mock): """Test the controlling of the state via topic.""" config = { light.DOMAIN: { "platform": "mqtt", "name": "test", "state_topic": "test_light_rgb/status", "command_topic": "test_light_rgb/set", "brightness_state_topic": "test_light_rgb/brightness/status", "brightness_command_topic": "test_light_rgb/brightness/set", "rgb_state_topic": "test_light_rgb/rgb/status", "rgb_command_topic": "test_light_rgb/rgb/set", "color_temp_state_topic": "test_light_rgb/color_temp/status", "color_temp_command_topic": "test_light_rgb/color_temp/set", "effect_state_topic": "test_light_rgb/effect/status", "effect_command_topic": "test_light_rgb/effect/set", "hs_state_topic": "test_light_rgb/hs/status", "hs_command_topic": "test_light_rgb/hs/set", "white_value_state_topic": "test_light_rgb/white_value/status", "white_value_command_topic": "test_light_rgb/white_value/set", "xy_state_topic": "test_light_rgb/xy/status", "xy_command_topic": "test_light_rgb/xy/set", "qos": "0", "payload_on": 1, "payload_off": 0, } } assert await async_setup_component(hass, light.DOMAIN, config) await hass.async_block_till_done() state = hass.states.get("light.test") assert state.state == STATE_OFF assert state.attributes.get("rgb_color") is None assert state.attributes.get("brightness") is None assert state.attributes.get("color_temp") is None assert state.attributes.get("effect") is None assert state.attributes.get("hs_color") is None assert state.attributes.get("white_value") is None assert state.attributes.get("xy_color") is None assert not state.attributes.get(ATTR_ASSUMED_STATE) async_fire_mqtt_message(hass, "test_light_rgb/status", "1") state = hass.states.get("light.test") assert state.state == STATE_ON assert state.attributes.get("rgb_color") is None assert state.attributes.get("brightness") is None assert state.attributes.get("color_temp") is None assert state.attributes.get("effect") is None assert state.attributes.get("hs_color") is None assert state.attributes.get("white_value") is None assert state.attributes.get("xy_color") is None async_fire_mqtt_message(hass, "test_light_rgb/status", "0") state = hass.states.get("light.test") assert state.state == STATE_OFF async_fire_mqtt_message(hass, "test_light_rgb/status", "1") async_fire_mqtt_message(hass, "test_light_rgb/brightness/status", "100") light_state = hass.states.get("light.test") assert light_state.attributes["brightness"] == 100 async_fire_mqtt_message(hass, "test_light_rgb/color_temp/status", "300") light_state = hass.states.get("light.test") assert light_state.attributes.get("color_temp") is None async_fire_mqtt_message(hass, "test_light_rgb/white_value/status", "100") light_state = hass.states.get("light.test") assert light_state.attributes["white_value"] == 100 assert light_state.attributes["color_temp"] == 300 async_fire_mqtt_message(hass, "test_light_rgb/effect/status", "rainbow") light_state = hass.states.get("light.test") assert light_state.attributes["effect"] == "rainbow" async_fire_mqtt_message(hass, "test_light_rgb/status", "1") async_fire_mqtt_message(hass, "test_light_rgb/rgb/status", "125,125,125") light_state = hass.states.get("light.test") assert light_state.attributes.get("rgb_color") is None async_fire_mqtt_message(hass, "test_light_rgb/white_value/status", "0") light_state = hass.states.get("light.test") assert light_state.attributes.get("rgb_color") == (255, 255, 255) async_fire_mqtt_message(hass, "test_light_rgb/hs/status", "200,50") light_state = hass.states.get("light.test") assert light_state.attributes.get("hs_color") == (200, 50) async_fire_mqtt_message(hass, "test_light_rgb/xy/status", "0.675,0.322") light_state = hass.states.get("light.test") assert light_state.attributes.get("xy_color") == (0.672, 0.324) async def test_invalid_state_via_topic(hass, mqtt_mock, caplog): """Test handling of empty data via topic.""" config = { light.DOMAIN: { "platform": "mqtt", "name": "test", "state_topic": "test_light_rgb/status", "command_topic": "test_light_rgb/set", "brightness_state_topic": "test_light_rgb/brightness/status", "brightness_command_topic": "test_light_rgb/brightness/set", "rgb_state_topic": "test_light_rgb/rgb/status", "rgb_command_topic": "test_light_rgb/rgb/set", "color_temp_state_topic": "test_light_rgb/color_temp/status", "color_temp_command_topic": "test_light_rgb/color_temp/set", "effect_state_topic": "test_light_rgb/effect/status", "effect_command_topic": "test_light_rgb/effect/set", "hs_state_topic": "test_light_rgb/hs/status", "hs_command_topic": "test_light_rgb/hs/set", "white_value_state_topic": "test_light_rgb/white_value/status", "white_value_command_topic": "test_light_rgb/white_value/set", "xy_state_topic": "test_light_rgb/xy/status", "xy_command_topic": "test_light_rgb/xy/set", "qos": "0", "payload_on": 1, "payload_off": 0, } } assert await async_setup_component(hass, light.DOMAIN, config) await hass.async_block_till_done() state = hass.states.get("light.test") assert state.state == STATE_OFF assert state.attributes.get("rgb_color") is None assert state.attributes.get("brightness") is None assert state.attributes.get("color_temp") is None assert state.attributes.get("effect") is None assert state.attributes.get("hs_color") is None assert state.attributes.get("white_value") is None assert state.attributes.get("xy_color") is None assert not state.attributes.get(ATTR_ASSUMED_STATE) async_fire_mqtt_message(hass, "test_light_rgb/status", "1") async_fire_mqtt_message(hass, "test_light_rgb/rgb/status", "255,255,255") async_fire_mqtt_message(hass, "test_light_rgb/brightness/status", "255") async_fire_mqtt_message(hass, "test_light_rgb/effect/status", "none") state = hass.states.get("light.test") assert state.state == STATE_ON assert state.attributes.get("rgb_color") == (255, 255, 255) assert state.attributes.get("brightness") == 255 assert state.attributes.get("color_temp") is None assert state.attributes.get("effect") == "none" assert state.attributes.get("hs_color") == (0, 0) assert state.attributes.get("white_value") is None assert state.attributes.get("xy_color") == (0.323, 0.329) async_fire_mqtt_message(hass, "test_light_rgb/status", "") assert "Ignoring empty state message" in caplog.text light_state = hass.states.get("light.test") assert state.state == STATE_ON async_fire_mqtt_message(hass, "test_light_rgb/brightness/status", "") assert "Ignoring empty brightness message" in caplog.text light_state = hass.states.get("light.test") assert light_state.attributes["brightness"] == 255 async_fire_mqtt_message(hass, "test_light_rgb/effect/status", "") assert "Ignoring empty effect message" in caplog.text light_state = hass.states.get("light.test") assert light_state.attributes["effect"] == "none" async_fire_mqtt_message(hass, "test_light_rgb/rgb/status", "") assert "Ignoring empty rgb message" in caplog.text light_state = hass.states.get("light.test") assert light_state.attributes.get("rgb_color") == (255, 255, 255) async_fire_mqtt_message(hass, "test_light_rgb/hs/status", "") assert "Ignoring empty hs message" in caplog.text light_state = hass.states.get("light.test") assert light_state.attributes.get("hs_color") == (0, 0) async_fire_mqtt_message(hass, "test_light_rgb/hs/status", "bad,bad") assert "Failed to parse hs state update" in caplog.text light_state = hass.states.get("light.test") assert light_state.attributes.get("hs_color") == (0, 0) async_fire_mqtt_message(hass, "test_light_rgb/xy/status", "") assert "Ignoring empty xy-color message" in caplog.text light_state = hass.states.get("light.test") assert light_state.attributes.get("xy_color") == (0.323, 0.329) async_fire_mqtt_message(hass, "test_light_rgb/color_temp/status", "153") async_fire_mqtt_message(hass, "test_light_rgb/white_value/status", "255") state = hass.states.get("light.test") assert state.state == STATE_ON assert state.attributes.get("rgb_color") is None assert state.attributes.get("brightness") == 255 assert state.attributes.get("color_temp") == 153 assert state.attributes.get("effect") == "none" assert state.attributes.get("hs_color") is None assert state.attributes.get("white_value") == 255 assert state.attributes.get("xy_color") is None async_fire_mqtt_message(hass, "test_light_rgb/color_temp/status", "") assert "Ignoring empty color temp message" in caplog.text light_state = hass.states.get("light.test") assert light_state.attributes["color_temp"] == 153 async_fire_mqtt_message(hass, "test_light_rgb/white_value/status", "") assert "Ignoring empty white value message" in caplog.text light_state = hass.states.get("light.test") assert light_state.attributes["white_value"] == 255 async def test_brightness_controlling_scale(hass, mqtt_mock): """Test the brightness controlling scale.""" with assert_setup_component(1, light.DOMAIN): assert await async_setup_component( hass, light.DOMAIN, { light.DOMAIN: { "platform": "mqtt", "name": "test", "state_topic": "test_scale/status", "command_topic": "test_scale/set", "brightness_state_topic": "test_scale/brightness/status", "brightness_command_topic": "test_scale/brightness/set", "brightness_scale": "99", "qos": 0, "payload_on": "on", "payload_off": "off", } }, ) await hass.async_block_till_done() state = hass.states.get("light.test") assert state.state == STATE_OFF assert state.attributes.get("brightness") is None assert not state.attributes.get(ATTR_ASSUMED_STATE) async_fire_mqtt_message(hass, "test_scale/status", "on") state = hass.states.get("light.test") assert state.state == STATE_ON assert state.attributes.get("brightness") is None async_fire_mqtt_message(hass, "test_scale/status", "off") state = hass.states.get("light.test") assert state.state == STATE_OFF async_fire_mqtt_message(hass, "test_scale/status", "on") async_fire_mqtt_message(hass, "test_scale/brightness/status", "99") light_state = hass.states.get("light.test") assert light_state.attributes["brightness"] == 255 async def test_brightness_from_rgb_controlling_scale(hass, mqtt_mock): """Test the brightness controlling scale.""" with assert_setup_component(1, light.DOMAIN): assert await async_setup_component( hass, light.DOMAIN, { light.DOMAIN: { "platform": "mqtt", "name": "test", "state_topic": "test_scale_rgb/status", "command_topic": "test_scale_rgb/set", "rgb_state_topic": "test_scale_rgb/rgb/status", "rgb_command_topic": "test_scale_rgb/rgb/set", "qos": 0, "payload_on": "on", "payload_off": "off", } }, ) await hass.async_block_till_done() state = hass.states.get("light.test") assert state.state == STATE_OFF assert state.attributes.get("brightness") is None assert not state.attributes.get(ATTR_ASSUMED_STATE) async_fire_mqtt_message(hass, "test_scale_rgb/status", "on") async_fire_mqtt_message(hass, "test_scale_rgb/rgb/status", "255,0,0") state = hass.states.get("light.test") assert state.attributes.get("brightness") == 255 async_fire_mqtt_message(hass, "test_scale_rgb/rgb/status", "127,0,0") state = hass.states.get("light.test") assert state.attributes.get("brightness") == 127 async def test_white_value_controlling_scale(hass, mqtt_mock): """Test the white_value controlling scale.""" with assert_setup_component(1, light.DOMAIN): assert await async_setup_component( hass, light.DOMAIN, { light.DOMAIN: { "platform": "mqtt", "name": "test", "state_topic": "test_scale/status", "command_topic": "test_scale/set", "white_value_state_topic": "test_scale/white_value/status", "white_value_command_topic": "test_scale/white_value/set", "white_value_scale": "99", "qos": 0, "payload_on": "on", "payload_off": "off", } }, ) await hass.async_block_till_done() state = hass.states.get("light.test") assert state.state == STATE_OFF assert state.attributes.get("white_value") is None assert not state.attributes.get(ATTR_ASSUMED_STATE) async_fire_mqtt_message(hass, "test_scale/status", "on") state = hass.states.get("light.test") assert state.state == STATE_ON assert state.attributes.get("white_value") is None async_fire_mqtt_message(hass, "test_scale/status", "off") state = hass.states.get("light.test") assert state.state == STATE_OFF async_fire_mqtt_message(hass, "test_scale/status", "on") async_fire_mqtt_message(hass, "test_scale/white_value/status", "99") light_state = hass.states.get("light.test") assert light_state.attributes["white_value"] == 255 async def test_controlling_state_via_topic_with_templates(hass, mqtt_mock): """Test the setting of the state with a template.""" config = { light.DOMAIN: { "platform": "mqtt", "name": "test", "state_topic": "test_light_rgb/status", "command_topic": "test_light_rgb/set", "brightness_command_topic": "test_light_rgb/brightness/set", "rgb_command_topic": "test_light_rgb/rgb/set", "color_temp_command_topic": "test_light_rgb/color_temp/set", "effect_command_topic": "test_light_rgb/effect/set", "hs_command_topic": "test_light_rgb/hs/set", "white_value_command_topic": "test_light_rgb/white_value/set", "xy_command_topic": "test_light_rgb/xy/set", "brightness_state_topic": "test_light_rgb/brightness/status", "color_temp_state_topic": "test_light_rgb/color_temp/status", "effect_state_topic": "test_light_rgb/effect/status", "hs_state_topic": "test_light_rgb/hs/status", "rgb_state_topic": "test_light_rgb/rgb/status", "white_value_state_topic": "test_light_rgb/white_value/status", "xy_state_topic": "test_light_rgb/xy/status", "state_value_template": "{{ value_json.hello }}", "brightness_value_template": "{{ value_json.hello }}", "color_temp_value_template": "{{ value_json.hello }}", "effect_value_template": "{{ value_json.hello }}", "hs_value_template": '{{ value_json.hello | join(",") }}', "rgb_value_template": '{{ value_json.hello | join(",") }}', "white_value_template": "{{ value_json.hello }}", "xy_value_template": '{{ value_json.hello | join(",") }}', } } assert await async_setup_component(hass, light.DOMAIN, config) await hass.async_block_till_done() state = hass.states.get("light.test") assert state.state == STATE_OFF assert state.attributes.get("brightness") is None assert state.attributes.get("rgb_color") is None async_fire_mqtt_message(hass, "test_light_rgb/rgb/status", '{"hello": [1, 2, 3]}') async_fire_mqtt_message(hass, "test_light_rgb/status", '{"hello": "ON"}') async_fire_mqtt_message(hass, "test_light_rgb/brightness/status", '{"hello": "50"}') async_fire_mqtt_message( hass, "test_light_rgb/color_temp/status", '{"hello": "300"}' ) async_fire_mqtt_message( hass, "test_light_rgb/effect/status", '{"hello": "rainbow"}' ) state = hass.states.get("light.test") assert state.state == STATE_ON assert state.attributes.get("brightness") == 50 assert state.attributes.get("rgb_color") == (84, 169, 255) assert state.attributes.get("color_temp") is None assert state.attributes.get("effect") == "rainbow" assert state.attributes.get("white_value") is None async_fire_mqtt_message( hass, "test_light_rgb/white_value/status", '{"hello": "75"}' ) state = hass.states.get("light.test") assert state.state == STATE_ON assert state.attributes.get("brightness") == 50 assert state.attributes.get("rgb_color") is None assert state.attributes.get("color_temp") == 300 assert state.attributes.get("effect") == "rainbow" assert state.attributes.get("white_value") == 75 async_fire_mqtt_message(hass, "test_light_rgb/hs/status", '{"hello": [100,50]}') async_fire_mqtt_message(hass, "test_light_rgb/white_value/status", '{"hello": "0"}') state = hass.states.get("light.test") assert state.attributes.get("hs_color") == (100, 50) async_fire_mqtt_message( hass, "test_light_rgb/xy/status", '{"hello": [0.123,0.123]}' ) state = hass.states.get("light.test") assert state.attributes.get("xy_color") == (0.14, 0.131) async def test_controlling_state_via_topic_with_value_template(hass, mqtt_mock): """Test the setting of the state with undocumented value_template.""" config = { light.DOMAIN: { "platform": "mqtt", "name": "test", "state_topic": "test_light_rgb/status", "command_topic": "test_light_rgb/set", "value_template": "{{ value_json.hello }}", } } assert await async_setup_component(hass, light.DOMAIN, config) await hass.async_block_till_done() state = hass.states.get("light.test") assert state.state == STATE_OFF async_fire_mqtt_message(hass, "test_light_rgb/status", '{"hello": "ON"}') state = hass.states.get("light.test") assert state.state == STATE_ON async_fire_mqtt_message(hass, "test_light_rgb/status", '{"hello": "OFF"}') state = hass.states.get("light.test") assert state.state == STATE_OFF async def test_sending_mqtt_commands_and_optimistic(hass, mqtt_mock): """Test the sending of command in optimistic mode.""" config = { light.DOMAIN: { "platform": "mqtt", "name": "test", "command_topic": "test_light_rgb/set", "brightness_command_topic": "test_light_rgb/brightness/set", "rgb_command_topic": "test_light_rgb/rgb/set", "color_temp_command_topic": "test_light_rgb/color_temp/set", "effect_command_topic": "test_light_rgb/effect/set", "hs_command_topic": "test_light_rgb/hs/set", "white_value_command_topic": "test_light_rgb/white_value/set", "xy_command_topic": "test_light_rgb/xy/set", "effect_list": ["colorloop", "random"], "qos": 2, "payload_on": "on", "payload_off": "off", } } fake_state = ha.State( "light.test", "on", { "brightness": 95, "hs_color": [100, 100], "effect": "random", "color_temp": 100, # TODO: Test restoring state with white_value "white_value": 0, }, ) with patch( "homeassistant.helpers.restore_state.RestoreEntity.async_get_last_state", return_value=fake_state, ), assert_setup_component(1, light.DOMAIN): assert await async_setup_component(hass, light.DOMAIN, config) await hass.async_block_till_done() state = hass.states.get("light.test") assert state.state == STATE_ON assert state.attributes.get("brightness") == 95 assert state.attributes.get("hs_color") == (100, 100) assert state.attributes.get("effect") == "random" assert state.attributes.get("color_temp") is None assert state.attributes.get("white_value") is None assert state.attributes.get(ATTR_ASSUMED_STATE) await common.async_turn_on(hass, "light.test") mqtt_mock.async_publish.assert_called_once_with( "test_light_rgb/set", "on", 2, False ) mqtt_mock.async_publish.reset_mock() state = hass.states.get("light.test") assert state.state == STATE_ON await common.async_turn_off(hass, "light.test") mqtt_mock.async_publish.assert_called_once_with( "test_light_rgb/set", "off", 2, False ) mqtt_mock.async_publish.reset_mock() state = hass.states.get("light.test") assert state.state == STATE_OFF mqtt_mock.reset_mock() await common.async_turn_on( hass, "light.test", brightness=50, xy_color=[0.123, 0.123] ) await common.async_turn_on(hass, "light.test", brightness=50, hs_color=[359, 78]) await common.async_turn_on(hass, "light.test", rgb_color=[255, 128, 0]) mqtt_mock.async_publish.assert_has_calls( [ call("test_light_rgb/set", "on", 2, False), call("test_light_rgb/rgb/set", "255,128,0", 2, False), call("test_light_rgb/brightness/set", "50", 2, False), call("test_light_rgb/hs/set", "359.0,78.0", 2, False), call("test_light_rgb/xy/set", "0.14,0.131", 2, False), ], any_order=True, ) state = hass.states.get("light.test") assert state.state == STATE_ON assert state.attributes["rgb_color"] == (255, 128, 0) assert state.attributes["brightness"] == 50 assert state.attributes["hs_color"] == (30.118, 100) assert state.attributes.get("white_value") is None assert state.attributes["xy_color"] == (0.611, 0.375) assert state.attributes.get("color_temp") is None await common.async_turn_on(hass, "light.test", white_value=80, color_temp=125) mqtt_mock.async_publish.assert_has_calls( [ call("test_light_rgb/white_value/set", "80", 2, False), call("test_light_rgb/color_temp/set", "125", 2, False), ], any_order=True, ) state = hass.states.get("light.test") assert state.state == STATE_ON assert state.attributes.get("rgb_color") is None assert state.attributes["brightness"] == 50 assert state.attributes.get("hs_color") is None assert state.attributes["white_value"] == 80 assert state.attributes.get("xy_color") is None assert state.attributes["color_temp"] == 125 async def test_sending_mqtt_rgb_command_with_template(hass, mqtt_mock): """Test the sending of RGB command with template.""" config = { light.DOMAIN: { "platform": "mqtt", "name": "test", "command_topic": "test_light_rgb/set", "rgb_command_topic": "test_light_rgb/rgb/set", "rgb_command_template": '{{ "#%02x%02x%02x" | ' "format(red, green, blue)}}", "payload_on": "on", "payload_off": "off", "qos": 0, } } assert await async_setup_component(hass, light.DOMAIN, config) await hass.async_block_till_done() state = hass.states.get("light.test") assert state.state == STATE_OFF await common.async_turn_on(hass, "light.test", rgb_color=[255, 128, 64]) mqtt_mock.async_publish.assert_has_calls( [ call("test_light_rgb/set", "on", 0, False), call("test_light_rgb/rgb/set", "#ff803f", 0, False), ], any_order=True, ) state = hass.states.get("light.test") assert state.state == STATE_ON assert state.attributes["rgb_color"] == (255, 128, 63) async def test_sending_mqtt_color_temp_command_with_template(hass, mqtt_mock): """Test the sending of Color Temp command with template.""" config = { light.DOMAIN: { "platform": "mqtt", "name": "test", "command_topic": "test_light_color_temp/set", "color_temp_command_topic": "test_light_color_temp/color_temp/set", "color_temp_command_template": "{{ (1000 / value) | round(0) }}", "payload_on": "on", "payload_off": "off", "qos": 0, } } assert await async_setup_component(hass, light.DOMAIN, config) await hass.async_block_till_done() state = hass.states.get("light.test") assert state.state == STATE_OFF await common.async_turn_on(hass, "light.test", color_temp=100) mqtt_mock.async_publish.assert_has_calls( [ call("test_light_color_temp/set", "on", 0, False), call("test_light_color_temp/color_temp/set", "10", 0, False), ], any_order=True, ) state = hass.states.get("light.test") assert state.state == STATE_ON assert state.attributes["color_temp"] == 100 async def test_on_command_first(hass, mqtt_mock): """Test on command being sent before brightness.""" config = { light.DOMAIN: { "platform": "mqtt", "name": "test", "command_topic": "test_light/set", "brightness_command_topic": "test_light/bright", "on_command_type": "first", } } assert await async_setup_component(hass, light.DOMAIN, config) await hass.async_block_till_done() state = hass.states.get("light.test") assert state.state == STATE_OFF await common.async_turn_on(hass, "light.test", brightness=50) # Should get the following MQTT messages. # test_light/set: 'ON' # test_light/bright: 50 mqtt_mock.async_publish.assert_has_calls( [ call("test_light/set", "ON", 0, False), call("test_light/bright", "50", 0, False), ], ) mqtt_mock.async_publish.reset_mock() await common.async_turn_off(hass, "light.test") mqtt_mock.async_publish.assert_called_once_with("test_light/set", "OFF", 0, False) async def test_on_command_last(hass, mqtt_mock): """Test on command being sent after brightness.""" config = { light.DOMAIN: { "platform": "mqtt", "name": "test", "command_topic": "test_light/set", "brightness_command_topic": "test_light/bright", } } assert await async_setup_component(hass, light.DOMAIN, config) await hass.async_block_till_done() state = hass.states.get("light.test") assert state.state == STATE_OFF await common.async_turn_on(hass, "light.test", brightness=50) # Should get the following MQTT messages. # test_light/bright: 50 # test_light/set: 'ON' mqtt_mock.async_publish.assert_has_calls( [ call("test_light/bright", "50", 0, False), call("test_light/set", "ON", 0, False), ], ) mqtt_mock.async_publish.reset_mock() await common.async_turn_off(hass, "light.test") mqtt_mock.async_publish.assert_called_once_with("test_light/set", "OFF", 0, False) async def test_on_command_brightness(hass, mqtt_mock): """Test on command being sent as only brightness.""" config = { light.DOMAIN: { "platform": "mqtt", "name": "test", "command_topic": "test_light/set", "brightness_command_topic": "test_light/bright", "rgb_command_topic": "test_light/rgb", "on_command_type": "brightness", } } assert await async_setup_component(hass, light.DOMAIN, config) await hass.async_block_till_done() state = hass.states.get("light.test") assert state.state == STATE_OFF # Turn on w/ no brightness - should set to max await common.async_turn_on(hass, "light.test") # Should get the following MQTT messages. # test_light/bright: 255 mqtt_mock.async_publish.assert_called_once_with( "test_light/bright", "255", 0, False ) mqtt_mock.async_publish.reset_mock() await common.async_turn_off(hass, "light.test") mqtt_mock.async_publish.assert_called_once_with("test_light/set", "OFF", 0, False) mqtt_mock.async_publish.reset_mock() # Turn on w/ brightness await common.async_turn_on(hass, "light.test", brightness=50) mqtt_mock.async_publish.assert_called_once_with("test_light/bright", "50", 0, False) mqtt_mock.async_publish.reset_mock() await common.async_turn_off(hass, "light.test") # Turn on w/ just a color to ensure brightness gets # added and sent. await common.async_turn_on(hass, "light.test", rgb_color=[255, 128, 0]) mqtt_mock.async_publish.assert_has_calls( [ call("test_light/rgb", "255,128,0", 0, False), call("test_light/bright", "50", 0, False), ], any_order=True, ) async def test_on_command_brightness_scaled(hass, mqtt_mock): """Test brightness scale.""" config = { light.DOMAIN: { "platform": "mqtt", "name": "test", "command_topic": "test_light/set", "brightness_command_topic": "test_light/bright", "brightness_scale": 100, "rgb_command_topic": "test_light/rgb", "on_command_type": "brightness", } } assert await async_setup_component(hass, light.DOMAIN, config) await hass.async_block_till_done() state = hass.states.get("light.test") assert state.state == STATE_OFF # Turn on w/ no brightness - should set to max await common.async_turn_on(hass, "light.test") # Should get the following MQTT messages. # test_light/bright: 100 mqtt_mock.async_publish.assert_called_once_with( "test_light/bright", "100", 0, False ) mqtt_mock.async_publish.reset_mock() await common.async_turn_off(hass, "light.test") mqtt_mock.async_publish.assert_called_once_with("test_light/set", "OFF", 0, False) mqtt_mock.async_publish.reset_mock() # Turn on w/ brightness await common.async_turn_on(hass, "light.test", brightness=50) mqtt_mock.async_publish.assert_called_once_with("test_light/bright", "20", 0, False) mqtt_mock.async_publish.reset_mock() # Turn on w/ max brightness await common.async_turn_on(hass, "light.test", brightness=255) mqtt_mock.async_publish.assert_called_once_with( "test_light/bright", "100", 0, False ) mqtt_mock.async_publish.reset_mock() # Turn on w/ min brightness await common.async_turn_on(hass, "light.test", brightness=1) mqtt_mock.async_publish.assert_called_once_with("test_light/bright", "1", 0, False) mqtt_mock.async_publish.reset_mock() await common.async_turn_off(hass, "light.test") # Turn on w/ just a color to ensure brightness gets # added and sent. await common.async_turn_on(hass, "light.test", rgb_color=[255, 128, 0]) mqtt_mock.async_publish.assert_has_calls( [ call("test_light/rgb", "255,128,0", 0, False), call("test_light/bright", "1", 0, False), ], any_order=True, ) async def test_on_command_rgb(hass, mqtt_mock): """Test on command in RGB brightness mode.""" config = { light.DOMAIN: { "platform": "mqtt", "name": "test", "command_topic": "test_light/set", "rgb_command_topic": "test_light/rgb", } } assert await async_setup_component(hass, light.DOMAIN, config) await hass.async_block_till_done() state = hass.states.get("light.test") assert state.state == STATE_OFF await common.async_turn_on(hass, "light.test", brightness=127) # Should get the following MQTT messages. # test_light/rgb: '127,127,127' # test_light/set: 'ON' mqtt_mock.async_publish.assert_has_calls( [ call("test_light/rgb", "127,127,127", 0, False), call("test_light/set", "ON", 0, False), ], any_order=True, ) mqtt_mock.async_publish.reset_mock() await common.async_turn_on(hass, "light.test", brightness=255) # Should get the following MQTT messages. # test_light/rgb: '255,255,255' # test_light/set: 'ON' mqtt_mock.async_publish.assert_has_calls( [ call("test_light/rgb", "255,255,255", 0, False), call("test_light/set", "ON", 0, False), ], any_order=True, ) mqtt_mock.async_publish.reset_mock() await common.async_turn_on(hass, "light.test", brightness=1) # Should get the following MQTT messages. # test_light/rgb: '1,1,1' # test_light/set: 'ON' mqtt_mock.async_publish.assert_has_calls( [ call("test_light/rgb", "1,1,1", 0, False), call("test_light/set", "ON", 0, False), ], any_order=True, ) mqtt_mock.async_publish.reset_mock() await common.async_turn_off(hass, "light.test") mqtt_mock.async_publish.assert_called_once_with("test_light/set", "OFF", 0, False) # Ensure color gets scaled with brightness. await common.async_turn_on(hass, "light.test", rgb_color=[255, 128, 0]) mqtt_mock.async_publish.assert_has_calls( [ call("test_light/rgb", "1,0,0", 0, False), call("test_light/set", "ON", 0, False), ], any_order=True, ) mqtt_mock.async_publish.reset_mock() await common.async_turn_on(hass, "light.test", brightness=255) # Should get the following MQTT messages. # test_light/rgb: '255,128,0' # test_light/set: 'ON' mqtt_mock.async_publish.assert_has_calls( [ call("test_light/rgb", "255,128,0", 0, False), call("test_light/set", "ON", 0, False), ], any_order=True, ) mqtt_mock.async_publish.reset_mock() async def test_on_command_rgb_template(hass, mqtt_mock): """Test on command in RGB brightness mode with RGB template.""" config = { light.DOMAIN: { "platform": "mqtt", "name": "test", "command_topic": "test_light/set", "rgb_command_topic": "test_light/rgb", "rgb_command_template": "{{ red }}/{{ green }}/{{ blue }}", } } assert await async_setup_component(hass, light.DOMAIN, config) await hass.async_block_till_done() state = hass.states.get("light.test") assert state.state == STATE_OFF await common.async_turn_on(hass, "light.test", brightness=127) # Should get the following MQTT messages. # test_light/rgb: '127,127,127' # test_light/set: 'ON' mqtt_mock.async_publish.assert_has_calls( [ call("test_light/rgb", "127/127/127", 0, False), call("test_light/set", "ON", 0, False), ], any_order=True, ) mqtt_mock.async_publish.reset_mock() await common.async_turn_off(hass, "light.test") mqtt_mock.async_publish.assert_called_once_with("test_light/set", "OFF", 0, False) async def test_effect(hass, mqtt_mock): """Test effect.""" config = { light.DOMAIN: { "platform": "mqtt", "name": "test", "command_topic": "test_light/set", "effect_command_topic": "test_light/effect/set", "effect_list": ["rainbow", "colorloop"], } } assert await async_setup_component(hass, light.DOMAIN, config) await hass.async_block_till_done() state = hass.states.get("light.test") assert state.state == STATE_OFF await common.async_turn_on(hass, "light.test", effect="rainbow") # Should get the following MQTT messages. # test_light/effect/set: 'rainbow' # test_light/set: 'ON' mqtt_mock.async_publish.assert_has_calls( [ call("test_light/effect/set", "rainbow", 0, False), call("test_light/set", "ON", 0, False), ], any_order=True, ) mqtt_mock.async_publish.reset_mock() await common.async_turn_off(hass, "light.test") mqtt_mock.async_publish.assert_called_once_with("test_light/set", "OFF", 0, False) async def test_availability_when_connection_lost(hass, mqtt_mock): """Test availability after MQTT disconnection.""" await help_test_availability_when_connection_lost( hass, mqtt_mock, light.DOMAIN, DEFAULT_CONFIG ) async def test_availability_without_topic(hass, mqtt_mock): """Test availability without defined availability topic.""" await help_test_availability_without_topic( hass, mqtt_mock, light.DOMAIN, DEFAULT_CONFIG ) async def test_default_availability_payload(hass, mqtt_mock): """Test availability by default payload with defined topic.""" await help_test_default_availability_payload( hass, mqtt_mock, light.DOMAIN, DEFAULT_CONFIG ) async def test_custom_availability_payload(hass, mqtt_mock): """Test availability by custom payload with defined topic.""" await help_test_custom_availability_payload( hass, mqtt_mock, light.DOMAIN, DEFAULT_CONFIG ) async def test_setting_attribute_via_mqtt_json_message(hass, mqtt_mock): """Test the setting of attribute via MQTT with JSON payload.""" await help_test_setting_attribute_via_mqtt_json_message( hass, mqtt_mock, light.DOMAIN, DEFAULT_CONFIG ) async def test_setting_attribute_with_template(hass, mqtt_mock): """Test the setting of attribute via MQTT with JSON payload.""" await help_test_setting_attribute_with_template( hass, mqtt_mock, light.DOMAIN, DEFAULT_CONFIG ) async def test_update_with_json_attrs_not_dict(hass, mqtt_mock, caplog): """Test attributes get extracted from a JSON result.""" await help_test_update_with_json_attrs_not_dict( hass, mqtt_mock, caplog, light.DOMAIN, DEFAULT_CONFIG ) async def test_update_with_json_attrs_bad_JSON(hass, mqtt_mock, caplog): """Test attributes get extracted from a JSON result.""" await help_test_update_with_json_attrs_bad_JSON( hass, mqtt_mock, caplog, light.DOMAIN, DEFAULT_CONFIG ) async def test_discovery_update_attr(hass, mqtt_mock, caplog): """Test update of discovered MQTTAttributes.""" await help_test_discovery_update_attr( hass, mqtt_mock, caplog, light.DOMAIN, DEFAULT_CONFIG ) async def test_unique_id(hass, mqtt_mock): """Test unique id option only creates one light per unique_id.""" config = { light.DOMAIN: [ { "platform": "mqtt", "name": "Test 1", "state_topic": "test-topic", "command_topic": "test_topic", "unique_id": "TOTALLY_UNIQUE", }, { "platform": "mqtt", "name": "Test 2", "state_topic": "test-topic", "command_topic": "test_topic", "unique_id": "TOTALLY_UNIQUE", }, ] } await help_test_unique_id(hass, mqtt_mock, light.DOMAIN, config) async def test_discovery_removal_light(hass, mqtt_mock, caplog): """Test removal of discovered light.""" data = ( '{ "name": "test",' ' "state_topic": "test_topic",' ' "command_topic": "test_topic" }' ) await help_test_discovery_removal(hass, mqtt_mock, caplog, light.DOMAIN, data) async def test_discovery_deprecated(hass, mqtt_mock, caplog): """Test discovery of mqtt light with deprecated platform option.""" data = ( '{ "name": "Beer",' ' "platform": "mqtt",' ' "command_topic": "test_topic"}' ) async_fire_mqtt_message(hass, "homeassistant/light/bla/config", data) await hass.async_block_till_done() state = hass.states.get("light.beer") assert state is not None assert state.name == "Beer" async def test_discovery_update_light_topic_and_template(hass, mqtt_mock, caplog): """Test update of discovered light.""" data1 = json.dumps( { "name": "Beer", "state_topic": "test_light_rgb/state1", "command_topic": "test_light_rgb/set", "brightness_command_topic": "test_light_rgb/state1", "rgb_command_topic": "test_light_rgb/rgb/set", "color_temp_command_topic": "test_light_rgb/state1", "effect_command_topic": "test_light_rgb/effect/set", "hs_command_topic": "test_light_rgb/hs/set", "white_value_command_topic": "test_light_rgb/white_value/set", "xy_command_topic": "test_light_rgb/xy/set", "brightness_state_topic": "test_light_rgb/state1", "color_temp_state_topic": "test_light_rgb/state1", "effect_state_topic": "test_light_rgb/state1", "hs_state_topic": "test_light_rgb/state1", "rgb_state_topic": "test_light_rgb/state1", "white_value_state_topic": "test_light_rgb/state1", "xy_state_topic": "test_light_rgb/state1", "state_value_template": "{{ value_json.state1.state }}", "brightness_value_template": "{{ value_json.state1.brightness }}", "color_temp_value_template": "{{ value_json.state1.ct }}", "effect_value_template": "{{ value_json.state1.fx }}", "hs_value_template": "{{ value_json.state1.hs }}", "rgb_value_template": "{{ value_json.state1.rgb }}", "white_value_template": "{{ value_json.state1.white }}", "xy_value_template": "{{ value_json.state1.xy }}", } ) data2 = json.dumps( { "name": "Milk", "state_topic": "test_light_rgb/state2", "command_topic": "test_light_rgb/set", "brightness_command_topic": "test_light_rgb/state2", "rgb_command_topic": "test_light_rgb/rgb/set", "color_temp_command_topic": "test_light_rgb/state2", "effect_command_topic": "test_light_rgb/effect/set", "hs_command_topic": "test_light_rgb/hs/set", "white_value_command_topic": "test_light_rgb/white_value/set", "xy_command_topic": "test_light_rgb/xy/set", "brightness_state_topic": "test_light_rgb/state2", "color_temp_state_topic": "test_light_rgb/state2", "effect_state_topic": "test_light_rgb/state2", "hs_state_topic": "test_light_rgb/state2", "rgb_state_topic": "test_light_rgb/state2", "white_value_state_topic": "test_light_rgb/state2", "xy_state_topic": "test_light_rgb/state2", "state_value_template": "{{ value_json.state2.state }}", "brightness_value_template": "{{ value_json.state2.brightness }}", "color_temp_value_template": "{{ value_json.state2.ct }}", "effect_value_template": "{{ value_json.state2.fx }}", "hs_value_template": "{{ value_json.state2.hs }}", "rgb_value_template": "{{ value_json.state2.rgb }}", "white_value_template": "{{ value_json.state2.white }}", "xy_value_template": "{{ value_json.state2.xy }}", } ) state_data1 = [ ( [ ( "test_light_rgb/state1", '{"state1":{"state":"ON", "brightness":100, "ct":123, "white":100, "fx":"cycle"}}', ) ], "on", [ ("brightness", 100), ("color_temp", 123), ("white_value", 100), ("effect", "cycle"), ], ), ( [("test_light_rgb/state1", '{"state1":{"state":"OFF"}}')], "off", None, ), ( [ ( "test_light_rgb/state1", '{"state1":{"state":"ON", "hs":"1,2", "white":0}}', ) ], "on", [("hs_color", (1, 2)), ("white_value", None)], ), ( [ ( "test_light_rgb/state1", '{"state1":{"rgb":"255,127,63"}}', ) ], "on", [("rgb_color", (255, 127, 63))], ), ( [ ( "test_light_rgb/state1", '{"state1":{"xy":"0.3, 0.4"}}', ) ], "on", [("xy_color", (0.3, 0.401))], ), ] state_data2 = [ ( [ ( "test_light_rgb/state2", '{"state2":{"state":"ON", "brightness":50, "ct":200, "white":50, "fx":"loop"}}', ) ], "on", [ ("brightness", 50), ("color_temp", 200), ("white_value", 50), ("effect", "loop"), ], ), ( [ ( "test_light_rgb/state1", '{"state1":{"state":"ON", "brightness":100, "ct":123, "fx":"cycle"}}', ), ( "test_light_rgb/state1", '{"state2":{"state":"ON", "brightness":100, "ct":123, "fx":"cycle"}}', ), ( "test_light_rgb/state2", '{"state1":{"state":"ON", "brightness":100, "ct":123, "fx":"cycle"}}', ), ], "on", [("brightness", 50), ("color_temp", 200), ("effect", "loop")], ), ( [("test_light_rgb/state1", '{"state1":{"state":"OFF"}}')], "on", None, ), ( [("test_light_rgb/state1", '{"state2":{"state":"OFF"}}')], "on", None, ), ( [("test_light_rgb/state2", '{"state1":{"state":"OFF"}}')], "on", None, ), ( [("test_light_rgb/state2", '{"state2":{"state":"OFF"}}')], "off", None, ), ( [ ( "test_light_rgb/state2", '{"state2":{"state":"ON", "hs":"1.2,2.2", "white":0}}', ) ], "on", [("hs_color", (1.2, 2.2)), ("white_value", None)], ), ( [ ( "test_light_rgb/state1", '{"state1":{"state":"ON", "hs":"1,2"}}', ), ( "test_light_rgb/state1", '{"state2":{"state":"ON", "hs":"1,2"}}', ), ( "test_light_rgb/state2", '{"state1":{"state":"ON", "hs":"1,2"}}', ), ], "on", [("hs_color", (1.2, 2.2))], ), ( [ ( "test_light_rgb/state2", '{"state2":{"rgb":"63,127,255"}}', ) ], "on", [("rgb_color", (63, 127, 255))], ), ( [ ( "test_light_rgb/state1", '{"state1":{"rgb":"255,127,63"}}', ), ( "test_light_rgb/state1", '{"state2":{"rgb":"255,127,63"}}', ), ( "test_light_rgb/state2", '{"state1":{"rgb":"255,127,63"}}', ), ], "on", [("rgb_color", (63, 127, 255))], ), ( [ ( "test_light_rgb/state2", '{"state2":{"xy":"0.4, 0.3"}}', ) ], "on", [("xy_color", (0.4, 0.3))], ), ( [ ( "test_light_rgb/state1", '{"state1":{"white":50, "xy":"0.3, 0.4"}}', ), ( "test_light_rgb/state1", '{"state2":{"white":50, "xy":"0.3, 0.4"}}', ), ( "test_light_rgb/state2", '{"state1":{"white":50, "xy":"0.3, 0.4"}}', ), ], "on", [("xy_color", (0.4, 0.3))], ), ] await help_test_discovery_update( hass, mqtt_mock, caplog, light.DOMAIN, data1, data2, state_data1=state_data1, state_data2=state_data2, ) async def test_discovery_update_light_template(hass, mqtt_mock, caplog): """Test update of discovered light.""" data1 = json.dumps( { "name": "Beer", "state_topic": "test_light_rgb/state1", "command_topic": "test_light_rgb/set", "brightness_command_topic": "test_light_rgb/state1", "rgb_command_topic": "test_light_rgb/rgb/set", "color_temp_command_topic": "test_light_rgb/state1", "effect_command_topic": "test_light_rgb/effect/set", "hs_command_topic": "test_light_rgb/hs/set", "white_value_command_topic": "test_light_rgb/white_value/set", "xy_command_topic": "test_light_rgb/xy/set", "brightness_state_topic": "test_light_rgb/state1", "color_temp_state_topic": "test_light_rgb/state1", "effect_state_topic": "test_light_rgb/state1", "hs_state_topic": "test_light_rgb/state1", "rgb_state_topic": "test_light_rgb/state1", "white_value_state_topic": "test_light_rgb/state1", "xy_state_topic": "test_light_rgb/state1", "state_value_template": "{{ value_json.state1.state }}", "brightness_value_template": "{{ value_json.state1.brightness }}", "color_temp_value_template": "{{ value_json.state1.ct }}", "effect_value_template": "{{ value_json.state1.fx }}", "hs_value_template": "{{ value_json.state1.hs }}", "rgb_value_template": "{{ value_json.state1.rgb }}", "white_value_template": "{{ value_json.state1.white }}", "xy_value_template": "{{ value_json.state1.xy }}", } ) data2 = json.dumps( { "name": "Milk", "state_topic": "test_light_rgb/state1", "command_topic": "test_light_rgb/set", "brightness_command_topic": "test_light_rgb/state1", "rgb_command_topic": "test_light_rgb/rgb/set", "color_temp_command_topic": "test_light_rgb/state1", "effect_command_topic": "test_light_rgb/effect/set", "hs_command_topic": "test_light_rgb/hs/set", "white_value_command_topic": "test_light_rgb/white_value/set", "xy_command_topic": "test_light_rgb/xy/set", "brightness_state_topic": "test_light_rgb/state1", "color_temp_state_topic": "test_light_rgb/state1", "effect_state_topic": "test_light_rgb/state1", "hs_state_topic": "test_light_rgb/state1", "rgb_state_topic": "test_light_rgb/state1", "white_value_state_topic": "test_light_rgb/state1", "xy_state_topic": "test_light_rgb/state1", "state_value_template": "{{ value_json.state2.state }}", "brightness_value_template": "{{ value_json.state2.brightness }}", "color_temp_value_template": "{{ value_json.state2.ct }}", "effect_value_template": "{{ value_json.state2.fx }}", "hs_value_template": "{{ value_json.state2.hs }}", "rgb_value_template": "{{ value_json.state2.rgb }}", "white_value_template": "{{ value_json.state2.white }}", "xy_value_template": "{{ value_json.state2.xy }}", } ) state_data1 = [ ( [ ( "test_light_rgb/state1", '{"state1":{"state":"ON", "brightness":100, "ct":123, "white":100, "fx":"cycle"}}', ) ], "on", [ ("brightness", 100), ("color_temp", 123), ("white_value", 100), ("effect", "cycle"), ], ), ( [("test_light_rgb/state1", '{"state1":{"state":"OFF"}}')], "off", None, ), ( [ ( "test_light_rgb/state1", '{"state1":{"state":"ON", "hs":"1,2", "white":0}}', ) ], "on", [("hs_color", (1, 2))], ), ( [ ( "test_light_rgb/state1", '{"state1":{"rgb":"255,127,63"}}', ) ], "on", [("rgb_color", (255, 127, 63))], ), ( [ ( "test_light_rgb/state1", '{"state1":{"white":0, "xy":"0.3, 0.4"}}', ) ], "on", [("white_value", None), ("xy_color", (0.3, 0.401))], ), ] state_data2 = [ ( [ ( "test_light_rgb/state1", '{"state2":{"state":"ON", "brightness":50, "ct":200, "white":50, "fx":"loop"}}', ) ], "on", [ ("brightness", 50), ("color_temp", 200), ("white_value", 50), ("effect", "loop"), ], ), ( [ ( "test_light_rgb/state1", '{"state1":{"state":"ON", "brightness":100, "ct":123, "fx":"cycle"}}', ), ], "on", [("brightness", 50), ("color_temp", 200), ("effect", "loop")], ), ( [("test_light_rgb/state1", '{"state1":{"state":"OFF"}}')], "on", None, ), ( [("test_light_rgb/state1", '{"state2":{"state":"OFF"}}')], "off", None, ), ( [ ( "test_light_rgb/state1", '{"state2":{"state":"ON", "hs":"1.2,2.2", "white":0}}', ) ], "on", [("hs_color", (1.2, 2.2))], ), ( [ ( "test_light_rgb/state1", '{"state1":{"state":"ON", "hs":"1,2"}}', ) ], "on", [("hs_color", (1.2, 2.2))], ), ( [ ( "test_light_rgb/state1", '{"state2":{"rgb":"63,127,255"}}', ) ], "on", [("rgb_color", (63, 127, 255))], ), ( [ ( "test_light_rgb/state1", '{"state1":{"rgb":"255,127,63"}}', ) ], "on", [("rgb_color", (63, 127, 255))], ), ( [ ( "test_light_rgb/state1", '{"state2":{"xy":"0.4, 0.3"}}', ) ], "on", [("white_value", None), ("xy_color", (0.4, 0.3))], ), ( [ ( "test_light_rgb/state1", '{"state1":{"white":50, "xy":"0.3, 0.4"}}', ) ], "on", [("white_value", None), ("xy_color", (0.4, 0.3))], ), ] await help_test_discovery_update( hass, mqtt_mock, caplog, light.DOMAIN, data1, data2, state_data1=state_data1, state_data2=state_data2, ) async def test_discovery_update_unchanged_light(hass, mqtt_mock, caplog): """Test update of discovered light.""" data1 = ( '{ "name": "Beer",' ' "state_topic": "test_topic",' ' "command_topic": "test_topic" }' ) with patch( "homeassistant.components.mqtt.light.schema_basic.MqttLight.discovery_update" ) as discovery_update: await help_test_discovery_update_unchanged( hass, mqtt_mock, caplog, light.DOMAIN, data1, discovery_update ) @pytest.mark.no_fail_on_log_exception async def test_discovery_broken(hass, mqtt_mock, caplog): """Test handling of bad discovery message.""" data1 = '{ "name": "Beer" }' data2 = ( '{ "name": "Milk",' ' "state_topic": "test_topic",' ' "command_topic": "test_topic" }' ) await help_test_discovery_broken( hass, mqtt_mock, caplog, light.DOMAIN, data1, data2 ) async def test_entity_device_info_with_connection(hass, mqtt_mock): """Test MQTT light device registry integration.""" await help_test_entity_device_info_with_connection( hass, mqtt_mock, light.DOMAIN, DEFAULT_CONFIG ) async def test_entity_device_info_with_identifier(hass, mqtt_mock): """Test MQTT light device registry integration.""" await help_test_entity_device_info_with_identifier( hass, mqtt_mock, light.DOMAIN, DEFAULT_CONFIG ) async def test_entity_device_info_update(hass, mqtt_mock): """Test device registry update.""" await help_test_entity_device_info_update( hass, mqtt_mock, light.DOMAIN, DEFAULT_CONFIG ) async def test_entity_device_info_remove(hass, mqtt_mock): """Test device registry remove.""" await help_test_entity_device_info_remove( hass, mqtt_mock, light.DOMAIN, DEFAULT_CONFIG ) async def test_entity_id_update_subscriptions(hass, mqtt_mock): """Test MQTT subscriptions are managed when entity_id is updated.""" await help_test_entity_id_update_subscriptions( hass, mqtt_mock, light.DOMAIN, DEFAULT_CONFIG ) async def test_entity_id_update_discovery_update(hass, mqtt_mock): """Test MQTT discovery update when entity_id is updated.""" await help_test_entity_id_update_discovery_update( hass, mqtt_mock, light.DOMAIN, DEFAULT_CONFIG ) async def test_entity_debug_info_message(hass, mqtt_mock): """Test MQTT debug info.""" await help_test_entity_debug_info_message( hass, mqtt_mock, light.DOMAIN, DEFAULT_CONFIG ) async def test_max_mireds(hass, mqtt_mock): """Test setting min_mireds and max_mireds.""" config = { light.DOMAIN: { "platform": "mqtt", "name": "test", "command_topic": "test_max_mireds/set", "color_temp_command_topic": "test_max_mireds/color_temp/set", "max_mireds": 370, } } assert await async_setup_component(hass, light.DOMAIN, config) await hass.async_block_till_done() state = hass.states.get("light.test") assert state.attributes.get("min_mireds") == 153 assert state.attributes.get("max_mireds") == 370 async def test_reloadable(hass, mqtt_mock): """Test reloading an mqtt light.""" config = { light.DOMAIN: { "platform": "mqtt", "name": "test", "command_topic": "test/set", } } assert await async_setup_component(hass, light.DOMAIN, config) await hass.async_block_till_done() assert hass.states.get("light.test") assert len(hass.states.async_all()) == 1 yaml_path = path.join( _get_fixtures_base_path(), "fixtures", "mqtt/configuration.yaml", ) with patch.object(hass_config, "YAML_CONFIG_FILE", yaml_path): await hass.services.async_call( "mqtt", SERVICE_RELOAD, {}, blocking=True, ) await hass.async_block_till_done() assert len(hass.states.async_all()) == 1 assert hass.states.get("light.test") is None assert hass.states.get("light.reload") def _get_fixtures_base_path(): return path.dirname(path.dirname(path.dirname(__file__)))
adrienbrault/home-assistant
tests/components/mqtt/test_light.py
Python
apache-2.0
68,757
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for experiment_utils.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import flags from language.common.utils import experiment_utils import tensorflow.compat.v1 as tf FLAGS = flags.FLAGS FLAGS.set_default("num_train_steps", 2) FLAGS.set_default("num_eval_steps", 2) class ExperimentUtilsTest(tf.test.TestCase): def _simple_model_fn(self, features, labels, mode, params): logits = tf.squeeze(tf.layers.dense(features, 1)) loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits( labels=tf.to_float(labels), logits=logits)) optimizer = tf.train.GradientDescentOptimizer(0.1) if params["use_tpu"]: optimizer = tf.tpu.CrossShardOptimizer(optimizer) train_op = optimizer.minimize( loss, global_step=tf.train.get_or_create_global_step()) if params["use_tpu"]: return tf.estimator.tpu.TPUEstimatorSpec( mode=mode, loss=loss, train_op=train_op) else: return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op) def _simple_input_function(self, params): features = [[1.0, 0.0, -1.0, 2.5], [0.5, 1.1, -0.8, 1.5]] labels = [0, 1] dataset = tf.data.Dataset.from_tensor_slices((features, labels)) dataset = dataset.repeat() dataset = dataset.batch(params["batch_size"], drop_remainder=True) return dataset def test_run_experiment(self): experiment_utils.run_experiment( model_fn=self._simple_model_fn, train_input_fn=self._simple_input_function, eval_input_fn=self._simple_input_function) def test_run_experiment_tpu(self): params = dict(use_tpu=True) experiment_utils.run_experiment( model_fn=self._simple_model_fn, train_input_fn=self._simple_input_function, eval_input_fn=self._simple_input_function, params=params) if __name__ == "__main__": tf.test.main()
google-research/language
language/common/utils/experiment_utils_test.py
Python
apache-2.0
2,572
import hashlib import logging from lxml import etree from mock import Mock, patch import os import requests import unittest from six.moves.urllib.request import url2pathname from eulfedora.models import DigitalObject from eulfedora.server import Repository from eulfedora.syncutil import ArchiveExport, endswith_partial, \ binarycontent_sections from eulfedora.util import md5sum from test.test_fedora.base import FIXTURE_ROOT logger = logging.getLogger(__name__) FIXTURES = { 'sync1_export': os.path.join(FIXTURE_ROOT, 'synctest1-export.xml'), 'sync2_export': os.path.join(FIXTURE_ROOT, 'synctest2-export.xml') } class ArchiveExportTest(unittest.TestCase): def setUp(self): # todo: use mocks? self.repo = Mock(spec=Repository) self.obj = Mock() #spec=DigitalObject) self.obj.pid = 'synctest:1' self.archex = ArchiveExport(self.obj, self.repo) # set up a request session that can load file uris, so # fixtures can be used as export data self.session = requests.session() self.session.mount('file://', LocalFileAdapter()) def test_get_datastream_info(self): dsinfo = self.archex.get_datastream_info('''<foxml:datastreamVersion ID="DC.2" LABEL="Dublin Core" CREATED="2012-10-11T14:13:03.658Z" MIMETYPE="text/xml" FORMAT_URI="http://www.openarchives.org/OAI/2.0/oai_dc/" SIZE="771"> <foxml:contentDigest TYPE="MD5" DIGEST="f53aec07f2607f536bac7ee03dbbfe7c"/>''') self.assertEqual('DC.2', dsinfo['id']) self.assertEqual('text/xml', dsinfo['mimetype']) self.assertEqual('771', dsinfo['size']) self.assertEqual('MD5', dsinfo['type']) self.assertEqual('f53aec07f2607f536bac7ee03dbbfe7c', dsinfo['digest']) self.assertEqual('2012-10-11T14:13:03.658Z', dsinfo['created']) # datastream info split across chunks self.archex.end_of_last_chunk = '''<foxml:datastreamVersion ID="DC.2" LABEL="Dublin Core" CREATED="2012-10-11T14:13:03.658Z" MIMETYPE="te''' dsinfo = self.archex.get_datastream_info('''xt/xml" FORMAT_URI="http://www.openarchives.org/OAI/2.0/oai_dc/" SIZE="771"> <foxml:contentDigest TYPE="MD5" DIGEST="f53aec07f2607f536bac7ee03dbbfe7c"/>''') self.assertEqual('DC.2', dsinfo['id']) self.assertEqual('text/xml', dsinfo['mimetype']) self.assertEqual('f53aec07f2607f536bac7ee03dbbfe7c', dsinfo['digest']) def test_object_data(self): # mock api to read export data from a local fixture filie response = self.session.get('file://%s' % FIXTURES['sync1_export']) mockapi = Mock() def mock_upload(data, *args, **kwargs): list(data) # consume the generator so datastream processing happens return 'uploaded://1' mockapi.upload = mock_upload mockapi.export.return_value = response mockapi.base_url = 'http://fedora.example.co/fedora' self.obj.api = self.repo.api = mockapi data = self.archex.object_data() foxml = data.getvalue() self.assert_(etree.XML(foxml) is not None, 'object data should be valid xml') self.assert_(b'foxml:binaryContent' not in foxml, 'object data for ingest should not include binaryContent tags') self.assert_(b'<foxml:contentLocation REF="uploaded://1" TYPE="URL"/>' in foxml, 'object data for ingest should include upload id as content location') # other tests? # set read block size artificially low to test chunked handling self.archex = ArchiveExport(self.obj, self.repo) self.archex.read_block_size = 1024 data = self.archex.object_data() foxml = data.getvalue() self.assert_(etree.XML(foxml) is not None, 'object data should be valid xml') self.assert_(b'foxml:binaryContent' not in foxml, 'object data for ingest should not include binaryContent tags') self.assert_(b'<foxml:contentLocation REF="uploaded://1" TYPE="URL"/>' in foxml, 'object data for ingest should include upload id as content location') # test with second fixture - multiple small encoded datastreams self.archex = ArchiveExport(self.obj, self.repo) self.archex.read_block_size = 1024 response = self.session.get('file://%s' % FIXTURES['sync2_export']) mockapi.export.return_value = response data = self.archex.object_data() foxml = data.getvalue() self.assert_(etree.XML(foxml) is not None, 'object data should be valid xml') self.assert_(b'foxml:binaryContent' not in foxml, 'object data for ingest should not include binaryContent tags') self.assert_(b'<foxml:contentLocation REF="uploaded://1" TYPE="URL"/>' in foxml, 'object data for ingest should include upload id as content location') def test_object_data_split_bincontent(self): # explictly test handling of binary content tag split over # chunk boundaries response = self.session.get('file://%s' % FIXTURES['sync1_export']) mockapi = Mock() def mock_upload(data, *args, **kwargs): list(data) # consume the generator so datastream processing happens return 'uploaded://1' mockapi.upload = mock_upload mockapi.export.return_value = response self.obj.api = self.repo.api = mockapi # test binary content tag split across chunks self.archex = ArchiveExport(self.obj, self.repo) # use a block size that will split the fixture in the middle of # the first binary content tag self.archex.read_block_size = 2688 data = self.archex.object_data() foxml = data.getvalue() self.assert_(etree.XML(foxml) is not None, 'object data should be valid xml') self.assert_(b'foxml:binaryContent' not in foxml, 'object data for ingest should not include binaryContent tags') self.archex = ArchiveExport(self.obj, self.repo) # this blocksize ends with just the < in foxml:binaryContent self.archex.read_block_size = 2680 data = self.archex.object_data() foxml = data.getvalue() self.assert_(etree.XML(foxml) is not None, 'object data should be valid xml') self.assert_(b'foxml:binaryContent' not in foxml, 'object data for ingest should not include binaryContent tags') self.archex = ArchiveExport(self.obj, self.repo) # this blocksize ends with an unrelated close tag </ self.archex.read_block_size = 1526 data = self.archex.object_data() foxml = data.getvalue() self.assert_(etree.XML(foxml) is not None, 'object data should be valid xml') self.assert_(b'foxml:binaryContent' not in foxml, 'object data for ingest should not include binaryContent tags') def test_encoded_datastream(self): # data content within a single chunk of data mockapi = Mock() mockapi.export.return_value = self.session.get('file://%s' % FIXTURES['sync1_export']) mockapi.upload.return_value = 'uploaded://1' self.obj.api = self.repo.api = mockapi section = self.archex.get_next_section() # get binary datastream info from first section dsinfo = self.archex.get_datastream_info(section) # fixture only has one binary content block # get binarycontent tag out of the way self.archex.get_next_section() # next section will be file contents self.archex.within_file = True dscontent = b''.join(self.archex.encoded_datastream()) # check decoded size and MD5 match data from fixture self.assertEqual(int(dsinfo['size']), len(dscontent)) self.assertEqual(dsinfo['digest'], md5sum(dscontent)) # data content across multiple chunks mockapi.export.return_value = self.session.get('file://%s' % FIXTURES['sync1_export']) self.obj.api = self.repo.api = mockapi # set read block size artificially low to ensure # datastream content is spread across multiple chunks self.archex.read_block_size = 1024 finished = False # iterate through the data, similar to object_data method, # but only handle binary content while not finished: try: section = self.archex.get_next_section() except StopIteration: finished = True # find the section with starting binary content if section == '<foxml:binaryContent>': # then decode the subsequent content self.archex.within_file = True dscontent = ''.join(self.archex.encoded_datastream()) self.assertEqual(int(dsinfo['size']), len(dscontent)) self.assertEqual(dsinfo['digest'], md5sum(dscontent)) # stop processing finished = True class UtilsTest(unittest.TestCase): def test_endswith_partial(self): test_string = '<foxml:binaryContent>' test_len = 19 txt = 'some content %s' % test_string[:test_len] len_overlap = endswith_partial(txt, test_string) self.assertEqual(test_len, len_overlap) test_len = 5 txt = 'some content %s' % test_string[:test_len] len_overlap = endswith_partial(txt, test_string) self.assertEqual(test_len, len_overlap) test_len = 1 txt = 'some content %s' % test_string[:test_len] len_overlap = endswith_partial(txt, test_string) self.assertEqual(test_len, len_overlap) # no overlap self.assertFalse(endswith_partial('some content', test_string)) def test_binarycontent_sections(self): with open(FIXTURES['sync1_export'], 'rb') as sync1data: sections = list(binarycontent_sections(sync1data.read())) self.assertEqual(5, len(sections)) self.assertEqual(b'<foxml:binaryContent>', sections[1]) self.assertEqual(b'</foxml:binaryContent>', sections[3]) with open(FIXTURES['sync2_export'], 'rb') as sync1data: sections = list(binarycontent_sections(sync1data.read())) # second fixture should break into 17 sections self.assertEqual(17, len(sections)) self.assertEqual(b'<foxml:binaryContent>', sections[1]) self.assertEqual(b'</foxml:binaryContent>', sections[3]) self.assertEqual(b'<foxml:binaryContent>', sections[5]) self.assertEqual(b'</foxml:binaryContent>', sections[7]) self.assertEqual(b'<foxml:binaryContent>', sections[9]) self.assertEqual(b'</foxml:binaryContent>', sections[11]) self.assertEqual(b'<foxml:binaryContent>', sections[13]) self.assertEqual(b'</foxml:binaryContent>', sections[15]) # requests file uri adapter, thanks to # http://stackoverflow.com/questions/10123929/python-requests-fetch-a-file-from-a-local-url class LocalFileAdapter(requests.adapters.BaseAdapter): """Protocol Adapter to allow Requests to GET file:// URLs @todo: Properly handle non-empty hostname portions. """ @staticmethod def _chkpath(method, path): """Return an HTTP status for the given filesystem path.""" if method.lower() in ('put', 'delete'): return 501, "Not Implemented" # TODO elif method.lower() not in ('get', 'head'): return 405, "Method Not Allowed" elif os.path.isdir(path): return 400, "Path Not A File" elif not os.path.isfile(path): return 404, "File Not Found" elif not os.access(path, os.R_OK): return 403, "Access Denied" else: return 200, "OK" def send(self, req, **kwargs): # pylint: disable=unused-argument """Return the file specified by the given request @type req: C{PreparedRequest} @todo: Should I bother filling `response.headers` and processing If-Modified-Since and friends using `os.stat`? """ path = os.path.normcase(os.path.normpath(url2pathname(req.path_url))) response = requests.Response() response.status_code, response.reason = self._chkpath(req.method, path) if response.status_code == 200 and req.method.lower() != 'head': try: response.raw = open(path, 'rb') except (OSError, IOError) as err: response.status_code = 500 response.reason = str(err) if isinstance(req.url, bytes): response.url = req.url.decode('utf-8') else: response.url = req.url response.request = req response.connection = self return response def close(self): pass
WSULib/eulfedora
test/test_fedora/test_syncutil.py
Python
apache-2.0
12,920
# -*- coding: utf-8 -*- # <nbformat>3.0</nbformat> # <codecell> import csv import logging import pickle import numpy as np from __future__ import division # <codecell> # Logging definition logger = logging.getLogger('analyzing') logger.setLevel(logging.DEBUG) fh = logging.FileHandler('log/process_ngrams.log') fh.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') fh.setFormatter(formatter) logger.addHandler(fh) # <codecell> def normalize(value): """ Normalize % value to 0.0<=value<=1.0 """ value = float(value) if value > 1.0: return value / 100 else: return value # Load Sentiwordnet sentiwordnet = {} with open('data/sentiwordnet/sentiwordnet.tsv', 'rb') as ifile: reader = csv.reader(ifile , delimiter='\t') headers = reader.next() for row in reader: # Upload only adjectives and with a specific objectivity threshold cond1 = True if cond1: sentiwordnet["%s" % (row[5])] = {"pos": normalize(row[6]), "neg": normalize(row[7]), "obj": 1.0} logger.info(' %s sentiwords loaded' % (len(sentiwordnet))) # <codecell> # Process each review total_bands = {"1.0": 0, "2.0": 0, "3.0": 0, "4.0": 0, "5.0": 0} with open('data/output/words_labeled.p', 'rb') as ifile: words = pickle.loads(ifile.read()) logger.info(' %s labeled words loaded' % (len(words))) with open('data/output/results.tsv', 'wb') as ofile: writer = csv.writer(ofile, delimiter='\t') writer.writerow(["word", "pos", "neg", "1.0", "2.0", "3.0", "4.0", "5.0"]) for word in words: for band in words[word]: total_bands[band] += words[word][band] n = sum(words[word][i] for i in words[word]) # Random experiment random_experiment = False if not random_experiment: sw_pos = sentiwordnet[word]["pos"] sw_neg = sentiwordnet[word]["neg"] else: if np.random.uniform(0,1) > 0.5: sw_pos = 0.0 sw_neg = np.random.uniform(0,1) else: sw_neg = 0.0 sw_pos = np.random.uniform(0,1) # Write row to file writer.writerow([word, sw_pos, sw_neg, words[word]["1.0"]/n, words[word]["2.0"]/n, words[word]["3.0"]/n, words[word]["4.0"]/n, words[word]["5.0"]/n]) logger.info(' Bands distribution %s' % (total_bands)) # <headingcell level=3> # Bands probability Analysis # <codecell> def acum_probability(data, bands): """ Return accum probability """ n = sum(data[band] for band in data) if n == 0: return 0.0 else: return sum([data[band]/n for band in bands]) with open('data/output/words_labeled.p', 'rb') as ifile: words = pickle.load(ifile) for word in words: value = acum_probability(words[word], ["3.0", "4.0", "5.0"]) if value >= 0.9: pass print(word," ",words[word]) # <codecell> total_bands = {"1.0": 0, "2.0": 0, "3.0": 0, "4.0": 0, "5.0": 0} with open('data/amazon/Cell_Phones_&_Accessories.txt', 'rb') as ifile: for line in ifile.readlines(): if "review/score" in line: score = float(line[len(line)-4:len(line)]) total_bands[str(score)] += 1 print(total_bands) # <codecell>
rmaestre/amazon-sentiwordnet
Analysis.py
Python
apache-2.0
3,539
# -*- coding: utf-8 -*- # Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Generated code. DO NOT EDIT! # # Snippet for DeleteVersion # NOTE: This snippet has been automatically generated for illustrative purposes only. # It may require modifications to work in your environment. # To install the latest published package dependency, execute the following: # python3 -m pip install google-cloud-dialogflow # [START dialogflow_v2_generated_Versions_DeleteVersion_sync] from google.cloud import dialogflow_v2 def sample_delete_version(): # Create a client client = dialogflow_v2.VersionsClient() # Initialize request argument(s) request = dialogflow_v2.DeleteVersionRequest( name="name_value", ) # Make the request client.delete_version(request=request) # [END dialogflow_v2_generated_Versions_DeleteVersion_sync]
googleapis/python-dialogflow
samples/generated_samples/dialogflow_v2_generated_versions_delete_version_sync.py
Python
apache-2.0
1,386
# -*- coding: utf-8 -*- # Copyright 2015 OpenMarket Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .api import MatrixHttpApi, MatrixRequestError, MatrixUnexpectedResponse from threading import Thread from time import sleep import logging import sys class MatrixClient(object): """ The client API for Matrix. For the raw HTTP calls, see MatrixHttpApi. Usage (new user): client = MatrixClient("https://matrix.org") token = client.register_with_password(username="foobar", password="monkey") room = client.create_room("myroom") room.send_image(file_like_object) Usage (logged in): client = MatrixClient("https://matrix.org", token="foobar", user_id="@foobar:matrix.org") rooms = client.get_rooms() # NB: From initial sync client.add_listener(func) # NB: event stream callback rooms[0].add_listener(func) # NB: callbacks just for this room. room = client.join_room("#matrix:matrix.org") response = room.send_text("Hello!") response = room.kick("@bob:matrix.org") Incoming event callbacks (scopes): def user_callback(user, incoming_event): pass def room_callback(room, incoming_event): pass def global_callback(incoming_event): pass """ def __init__(self, base_url, token=None, user_id=None, valid_cert_check=True): """ Create a new Matrix Client object. Args: base_url (str): The url of the HS preceding /_matrix. e.g. (ex: https://localhost:8008 ) token (Optional[str]): If you have an access token supply it here. user_id (Optional[str]): You must supply the user_id (as obtained when initially logging in to obtain the token) if supplying a token; otherwise, ignored. valid_cert_check (bool): Check the homeservers certificate on connections? Returns: MatrixClient Raises: MatrixRequestError, ValueError """ if token is not None and user_id is None: raise ValueError("must supply user_id along with token") self.api = MatrixHttpApi(base_url, token) self.api.validate_certificate(valid_cert_check) self.listeners = [] self.sync_token = None self.sync_filter = None self.logger = logging.getLogger("matrix_client") """ Time to wait before attempting a /sync request after failing.""" self.bad_sync_timeout_limit = 60 * 60 self.rooms = { # room_id: Room } if token: self.user_id = user_id self._sync() def get_sync_token(self): return self.sync_token def set_sync_token(self, token): self.sync_token = token def register_with_password(self, username, password, limit=1): """ Register for a new account on this HS. Args: username (str): Account username password (str): Account password limit (int): Deprecated. How many messages to return when syncing. Returns: str: Access Token Raises: MatrixRequestError """ response = self.api.register( "m.login.password", user=username, password=password ) self.user_id = response["user_id"] self.token = response["access_token"] self.hs = response["home_server"] self.api.token = self.token self._sync() return self.token def login_with_password(self, username, password, limit=1): """ Login to the homeserver. Args: username (str): Account username password (str): Account password limit (int): Deprecated. How many messages to return when syncing. This will be replaced by a filter API in a later release. Returns: str: Access token Raises: MatrixRequestError """ response = self.api.login( "m.login.password", user=username, password=password ) self.user_id = response["user_id"] self.token = response["access_token"] self.hs = response["home_server"] self.api.token = self.token """ Limit Filter """ self.sync_filter = '{ "room": { "timeline" : { "limit" : %i } } }' % limit self._sync() return self.token def create_room(self, alias=None, is_public=False, invitees=()): """ Create a new room on the homeserver. Args: alias (str): The canonical_alias of the room. is_public (bool): The public/private visibility of the room. invitees (str[]): A set of user ids to invite into the room. Returns: Room Raises: MatrixRequestError """ response = self.api.create_room(alias, is_public, invitees) return self._mkroom(response["room_id"]) def join_room(self, room_id_or_alias): """ Join a room. Args: room_id_or_alias (str): Room ID or an alias. Returns: Room Raises: MatrixRequestError """ response = self.api.join_room(room_id_or_alias) room_id = ( response["room_id"] if "room_id" in response else room_id_or_alias ) return self._mkroom(room_id) def get_rooms(self): """ Return a list of Room objects that the user has joined. Returns: Room[]: Rooms the user has joined. """ return self.rooms def add_listener(self, callback): """ Add a listener that will send a callback when the client recieves an event. Args: callback (func(roomchunk)): Callback called when an event arrives. """ self.listeners.append(callback) def listen_for_events(self, timeout_ms=30000): """Deprecated. sync now pulls events from the request. This function just calls _sync() Args: timeout_ms (int): How long to poll the Home Server for before retrying. """ self._sync(timeout_ms) def listen_forever(self, timeout_ms=30000): """ Keep listening for events forever. Args: timeout_ms (int): How long to poll the Home Server for before retrying. """ bad_sync_timeout = 5000 while(True): try: self._sync(timeout_ms) bad_sync_timeout = 5 except MatrixRequestError as e: self.logger.warning("A MatrixRequestError occured during sync.") if e.code >= 500: self.logger.warning("Problem occured serverside. Waiting %i seconds", bad_sync_timeout) sleep(bad_sync_timeout) bad_sync_timeout = min(bad_sync_timeout * 2, self.bad_sync_timeout_limit) else: raise e except Exception as e: self.logger.error("Exception thrown during sync\n %s", str(e)) def start_listener_thread(self, timeout_ms=30000): """ Start a listener thread to listen for events in the background. Args: timeout (int): How long to poll the Home Server for before retrying. """ try: thread = Thread(target=self.listen_forever, args=(timeout_ms, )) thread.daemon = True thread.start() except: e = sys.exc_info()[0] self.logger.error("Error: unable to start thread. %s", str(e)) def upload(self, content, content_type): """ Upload content to the home server and recieve a MXC url. Args: content (bytes): The data of the content. content_type (str): The mimetype of the content. Raises: MatrixUnexpectedResponse: If the homeserver gave a strange response MatrixRequestError: If the upload failed for some reason. """ try: response = self.api.media_upload(content, content_type) if "content_uri" in response: return response["content_uri"] else: raise MatrixUnexpectedResponse( "The upload was successful, but content_uri wasn't found." ) except MatrixRequestError as e: raise MatrixRequestError( code=e.code, content="Upload failed: %s" % e ) def _mkroom(self, room_id): self.rooms[room_id] = Room(self, room_id) return self.rooms[room_id] def _process_state_event(self, state_event, current_room): if "type" not in state_event: return # Ignore event etype = state_event["type"] if etype == "m.room.name": current_room.name = state_event["content"].get("name", None) elif etype == "m.room.topic": current_room.topic = state_event["content"].get("topic", None) elif etype == "m.room.aliases": current_room.aliases = state_event["content"].get("aliases", None) def _sync(self, timeout_ms=30000): # TODO: Deal with presence # TODO: Deal with left rooms response = self.api.sync(self.sync_token, timeout_ms, filter=self.sync_filter) self.sync_token = response["next_batch"] for room_id, sync_room in response['rooms']['join'].items(): if room_id not in self.rooms: self._mkroom(room_id) room = self.rooms[room_id] for event in sync_room["state"]["events"]: self._process_state_event(event, room) for event in sync_room["timeline"]["events"]: room._put_event(event) def get_user(self, user_id): """ Return a User by their id. NOTE: This function only returns a user object, it does not verify the user with the Home Server. Args: user_id (str): The matrix user id of a user. """ return User(self.api, user_id) class Room(object): """ The Room class can be used to call room specific functions after joining a room from the Client. """ def __init__(self, client, room_id): """ Create a blank Room object. NOTE: This should ideally be called from within the Client. NOTE: This does not verify the room with the Home Server. """ if not room_id.startswith("!"): raise ValueError("RoomIDs start with !") if ":" not in room_id: raise ValueError("RoomIDs must have a domain component, seperated by a :") self.room_id = room_id self.client = client self.listeners = [] self.events = [] self.event_history_limit = 20 self.name = None self.aliases = [] self.topic = None def send_text(self, text): """ Send a plain text message to the room. Args: text (str): The message to send """ return self.client.api.send_message(self.room_id, text) def send_emote(self, text): """ Send a emote (/me style) message to the room. Args: text (str): The message to send """ return self.client.api.send_emote(self.room_id, text) def send_notice(self, text): return self.client.api.send_notice(self.room_id, text) # See http://matrix.org/docs/spec/r0.0.1/client_server.html#m-image for the # imageinfo args. def send_image(self, url, name, **imageinfo): """ Send a pre-uploaded image to the room. See http://matrix.org/docs/spec/r0.0.1/client_server.html#m-image for imageinfo Args: url (str): The mxc url of the image. name (str): The filename of the image. imageinfo (): Extra information aboutt """ return self.client.api.send_content( self.room_id, url, name, "m.image", extra_information=imageinfo ) def add_listener(self, callback): """ Add a callback handler for events going to this room. Args: callback (func(roomchunk)): Callback called when an event arrives. """ self.listeners.append(callback) def _put_event(self, event): self.events.append(event) if len(self.events) > self.event_history_limit: self.events.pop(0) for listener in self.listeners: listener(event) def get_events(self): """ Get the most recent events for this room. Returns: events """ return self.events def invite_user(self, user_id): """ Invite a user to this room Args: user_id (str): The matrix user id of a user. Returns: boolean: The invitation was sent. """ try: self.client.api.invite_user(self.room_id, user_id) return True except MatrixRequestError: return False def kick_user(self, user_id, reason=""): """ Kick a user from this room Args: user_id (str): The matrix user id of a user. Returns: boolean: The user was kicked. """ try: self.client.api.kick_user(self.room_id, user_id) return True except MatrixRequestError: return False def ban_user(self, user_id, reason): """ Ban a user from this room Args: user_id (str): The matrix user id of a user. reason (str): A reason for banning the user. Returns: boolean: The user was banned. """ try: self.client.api.ban_user(self.room_id, user_id, reason) return True except MatrixRequestError: return False def leave(self): """ Leave the room. Returns: boolean: Leaving the room was successful. """ try: self.client.api.leave_room(self.room_id) self.client.rooms.remove(self.room_id) return True except MatrixRequestError: return False def update_room_name(self): """ Get room name Returns: boolean: True if the room name changed, False if not """ try: response = self.client.api.get_room_name(self.room_id) if "name" in response and response["name"] != self.name: self.name = response["name"] return True else: return False except MatrixRequestError: return False def update_room_topic(self): """ Get room topic Returns: boolean: True if the topic changed, False if not """ try: response = self.client.api.get_room_topic(self.room_id) if "topic" in response and response["topic"] != self.topic: self.topic = response["topic"] return True else: return False except MatrixRequestError: return False def update_aliases(self): """ Get aliases information from room state Returns: boolean: True if the aliases changed, False if not """ try: response = self.client.api.get_room_state(self.room_id) for chunk in response: if "content" in chunk and "aliases" in chunk["content"]: if chunk["content"]["aliases"] != self.aliases: self.aliases = chunk["content"]["aliases"] return True else: return False except MatrixRequestError: return False class User(object): """ The User class can be used to call user specific functions. """ def __init__(self, api, user_id): if not user_id.startswith("@"): raise ValueError("UserIDs start with @") if ":" not in user_id: raise ValueError("UserIDs must have a domain component, seperated by a :") self.user_id = user_id self.api = api def get_display_name(self): """ Get this users display name. See also get_friendly_name() Returns: str: Display Name """ return self.api.get_display_name(self.user_id) def get_friendly_name(self): display_name = self.api.get_display_name(self.user_id) return display_name if display_name is not None else self.user_id def set_display_name(self, display_name): """ Set this users display name. Args: display_name (str): Display Name """ return self.api.set_display_name(self.user_id, display_name) def get_avatar_url(self): mxcurl = self.api.get_avatar_url(self.user_id) url = self.api.get_download_url(mxcurl) return url def set_avatar_url(self, avatar_url): """ Set this users avatar. Args: avatar_url (str): mxc url from previously uploaded """ return self.api.set_avatar_url(self.user_id, avatar_url)
dovf/matrix-python-sdk
matrix_client/client.py
Python
apache-2.0
18,097
# Copyright 2014 # The Cloudscaling Group, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ APIRequest class """ import datetime # TODO(termie): replace minidom with etree from xml.dom import minidom from lxml import etree from oslo_config import cfg from oslo_log import log as logging from oslo_utils import encodeutils import six from ec2api.api import cloud from ec2api.api import ec2utils from ec2api import exception from ec2api.i18n import _ CONF = cfg.CONF LOG = logging.getLogger(__name__) def _underscore_to_camelcase(st): return ''.join([x[:1].upper() + x[1:] for x in st.split('_')]) def _underscore_to_xmlcase(st): res = _underscore_to_camelcase(st) return res[:1].lower() + res[1:] def _database_to_isoformat(datetimeobj): """Return a xs:dateTime parsable string from datatime.""" return datetimeobj.strftime("%Y-%m-%dT%H:%M:%S.%f")[:-3] + 'Z' class APIRequest(object): def __init__(self, action, version, args): self.action = action self.version = version self.args = args if CONF.full_vpc_support: self.controller = cloud.VpcCloudController() else: self.controller = cloud.CloudController() def invoke(self, context): try: method = getattr(self.controller, ec2utils.camelcase_to_underscore(self.action)) except AttributeError: LOG.exception(_('Unsupported API request: action = %(action)s'), {'action': self.action}) raise exception.InvalidRequest() args = ec2utils.dict_from_dotted_str(self.args.items()) def convert_dicts_to_lists(args): if not isinstance(args, dict): return args for key in args.keys(): # NOTE(vish): Turn numeric dict keys into lists # NOTE(Alex): Turn "value"-only dict keys into values if isinstance(args[key], dict): if args[key] == {}: continue if args[key].keys()[0].isdigit(): s = args[key].items() s.sort() args[key] = [convert_dicts_to_lists(v) for k, v in s] elif (args[key].keys()[0] == 'value' and len(args[key]) == 1): args[key] = args[key]['value'] return args args = convert_dicts_to_lists(args) result = method(context, **args) return self._render_response(result, context.request_id) def _render_response(self, response_data, request_id): xml = minidom.Document() response_el = xml.createElement(self.action + 'Response') response_el.setAttribute('xmlns', 'http://vpc.ind-west-1.jiocloudservices.com/doc/%s/' % self.version) request_id_el = xml.createElement('requestId') request_id_el.appendChild(xml.createTextNode(request_id)) response_el.appendChild(request_id_el) if response_data is True: self._render_dict(xml, response_el, {'return': 'true'}) else: self._render_dict(xml, response_el, response_data) xml.appendChild(response_el) response = xml.toxml() root = etree.fromstring(response) response = etree.tostring(root, pretty_print=True) xml.unlink() # Don't write private key to log if self.action != "CreateKeyPair": LOG.debug(response) else: LOG.debug("CreateKeyPair: Return Private Key") return response def _render_dict(self, xml, el, data): try: for key in data.keys(): val = data[key] el.appendChild(self._render_data(xml, key, val)) except Exception: LOG.debug(data) raise def _render_data(self, xml, el_name, data): el_name = _underscore_to_xmlcase(el_name) data_el = xml.createElement(el_name) if isinstance(data, list): for item in data: data_el.appendChild(self._render_data(xml, 'item', item)) elif isinstance(data, dict): self._render_dict(xml, data_el, data) elif hasattr(data, '__dict__'): self._render_dict(xml, data_el, data.__dict__) elif isinstance(data, bool): data_el.appendChild(xml.createTextNode(str(data).lower())) elif isinstance(data, datetime.datetime): data_el.appendChild( xml.createTextNode(_database_to_isoformat(data))) elif data is not None: data_el.appendChild(xml.createTextNode( encodeutils.safe_encode(six.text_type(data)))) return data_el
MayankGo/ec2-api
ec2api/api/apirequest.py
Python
apache-2.0
5,353
from nose.tools import eq_ from .. import OnExp, OnState, OnTime import datetime from collections import defaultdict def dt2s(dt): return dt.strftime('%Y-%m-%d %H:%M:%S') def test_one_date(): exp = OnExp("0 6 1,31 * tue,wed") st = exp.state(datetime.datetime(2014,6,13,0,0,0)) #rules = exp.rules[schepy._MONTH_DAY][2014] eq_(str(st), "2014-07-01 06:00:00") def test_timez_in_middle(): exp = OnExp("5,7 6 1,31 * tue,wed") st = exp.state(datetime.datetime(2014,7,1,6,6,0)) #rules = exp.rules[schepy._MONTH_DAY][2014] eq_(str(st), "2014-07-01 06:07:00") def test_all_dates(): exp = OnExp("0 6 1,31 * tue,wed") s = exp.state(datetime.datetime(1000,1,1,0,0,0)) dd = defaultdict(list) ls = [] loop=True while loop: try: dt = s.toDateTime() dd[dt.year].append(dt) ls.append(dt) s = s.forward() except ValueError,e: loop = False eq_(len(dd),2000) eq_(len(ls)/len(dd),5) def test_ontime(): ont = OnTime("0 6 1,31 * tue,wed","Australia/Sydney") s = ont.state(datetime.datetime(2014,7,4,0,0,0)) eq_("2014-09-30 20:00:00", dt2s(ont.toUtc(s))) eq_("2014-06-30 20:00:00", dt2s(ont.toUtc(s.back())) ) eq_("2014-12-30 19:00:00", dt2s(ont.toUtc(s.forward())) )
walnutgeek/OnTimer
ontimer/tests/test_ontimer.py
Python
apache-2.0
1,348
""" Copyright 2015 Brocade Communications Systems, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from clicrud.device.generic.ver.base import telnet as baseTelnet from clicrud.device.generic.ver.base import ssh as baseSSH class generic(object): def __init__(self, **kwargs): METHOD_ATTRS = ['telnet', 'ssh'] _args = kwargs if _args.get('method') == 'telnet' and \ _args.get('method') in METHOD_ATTRS: self._transport = baseTelnet(**_args) if _args.get('method') == 'ssh' and \ _args.get('method') in METHOD_ATTRS: self._transport = baseSSH(**_args) @property def connected(self): if self._transport.connected: return True def read(self, command, **kwargs): _args = kwargs return self._transport.read(command, **_args) def configure(self, commands, **kwargs): _args = kwargs return self._transport.configure(commands, **_args) @property def protocol(self): return self._transport.protocol def close(self): self._transport.close() @property def hostname(self): return self._transport.hostname @property def err(self): return self._transport._error
DavidJohnGee/clicrud
clicrud/device/generic/__init__.py
Python
apache-2.0
1,768
#$language = "python" #$interface = "1.0" # Document_Device.py # # Description: # Sends a series of Cisco Show commands one by one as listed in the # COMMANDS array. The results of each command are captured into a # variable, and then written to an individual log file (one log file # for each command). # # Filename format is: # ~/$savepath/<Host Name>-<Command Name>-<Date Format>.txt import os import subprocess import datetime import sys # Adjust these to your environment savepath = 'Configs/' mydatestr = '%Y-%m-%d-%H-%M-%S' COMMANDS = [ "show access-list", "show call active voice brief", "show call history voice brief", "show cdp neighbors detail", "show cdp neighbors", "show clock", "show controllers E1", "show controllers T1", "show crypto ipsec sa", "show crypto isakmp sa", "show crypto map", "show debug", "show dial-peer voice summary", "show environment power" "show etherchannel summary", "show interface counters error", "show interface description", "show interface stats", "show interface status", "show interface summary", "show interface transceiver detail", "show interface transceiver", "show interfaces", "show inventory", "show ip arp", "show ip eigrp neighbor", "show ip interface brief", "show ip ospf neighbor", "show ip protocols", "show ip route 0.0.0.0", "show ip route", "show ipv6 interface brief", "show ipv6 protocols", "show ipv6 protocols", "show ipv6 route", "show log", "show mac address-table dynamic", "show mac address-table", "show module", "show policy-map interface" "show policy-map", "show port-channel summary", "show power", "show route-map", "show running", "show spanning-tree", "show version", "show vtp status", "write" ] def GetHostname(tab): ''' This function will capture the prompt of the device. The script will capture the text that is sent back from the remote device, which includes what we typed being echoed back to us, so we have to account for that while we parse data. ''' #Send two line feeds tab.Send("\n\n") tab.WaitForString("\n") # Waits for first linefeed to be echoed back to us prompt = tab.ReadString("\n") #Read the text up to the next linefeed. prompt = prompt.strip() #Remove any trailing control characters # Check for non-enable mode (prompt ends with ">" instead of "#") if prompt[-1] == ">": return None # Get out of config mode if that is the active mode when the script was launched elif "(conf" in prompt: tab.Send("end\n") hostname = prompt.split("(")[0] tab.WaitForString(hostname + "#") # Return the hostname (everything before the first "(") return hostname # Else, Return the hostname (all of the prompt except the last character) else: return prompt[:-1] def CaptureOutput(command, prompt, tab): ''' This function captures the raw output of the command supplied and returns it. The prompt variable is used to signal the end of the command output, and the "tab" variable is object that specifies which tab the commands are written to. ''' #Send command tab.Send(command) #Ignore the echo of the command we typed tab.WaitForString(command.strip()) #Capture the output until we get our prompt back and write it to the file result = tab.ReadString(prompt) return result def WriteFile(raw, filename): ''' This function simply write the contents of the "raw" variable to a file with the name passed to the function. The file suffix is .txt by default unless a different suffix is passed in. ''' newfile = open(filename, 'wb') newfile.write(raw) newfile.close() def main(): #Create a "Tab" object, so that all the output goes into the correct Tab. objTab = crt.GetScriptTab() tab = objTab.Screen #Allows us to type "tab.xxx" instead of "objTab.Screen.xxx" tab.IgnoreEscape = True tab.Synchronous = True #Get the prompt of the device hostname = GetHostname(tab) if hostname == None: crt.Dialog.MessageBox("You must be in enable mode to run this script.") else: prompt = hostname + "#" now = datetime.datetime.now() mydate = now.strftime(mydatestr) #Send term length command and wait for prompt to return tab.Send('term length 0\n') tab.Send('term width 0\n') tab.WaitForString(prompt) for (index, SendCmd) in enumerate(COMMANDS): SendCmd = SendCmd.strip() # Save command without spaces to use in output filename. CmdName = SendCmd.replace(" ", "_") # Add a newline to command before sending it to the remote device. SendCmd = SendCmd + "\n" #Create Filename filebits = [hostname, CmdName, mydate + ".txt"] filename = '-'.join(filebits) #Create path to save configuration file and open file fullFileName = os.path.join(os.path.expanduser('~'), savepath + filename) CmdResult = CaptureOutput(SendCmd, prompt, tab) if "% Invalid input" not in CmdResult: WriteFile(CmdResult, fullFileName) CmdResult = '' #Send term length back to default tab.Send('term length 24\n') tab.Send('term width 80\n') tab.WaitForString(prompt) tab.Synchronous = False tab.IgnoreEscape = False crt.Dialog.MessageBox("Device Documentation Script Complete", "Script Complete", 0) main()
DN0000/SecureCRT
Document_Device.py
Python
apache-2.0
5,211
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Common job operators useful in the framework and 3P-libraries.""" import copy import itertools from typing import Any, Callable, List, Sequence, Tuple import attr from xmanager.xm import job_blocks from xmanager.xm import pattern_matching def shallow_copy_job_type( job_type: job_blocks.JobTypeVar) -> job_blocks.JobTypeVar: """Creates a shallow copy of the job structure.""" def apply_to_job_group(job_group: job_blocks.JobGroup) -> job_blocks.JobGroup: job_group = copy.copy(job_group) job_group.jobs = {key: matcher(job) for key, job in job_group.jobs.items()} return job_group matcher = pattern_matching.match( pattern_matching.Case([job_blocks.Job], copy.copy), apply_to_job_group, pattern_matching.Case([job_blocks.JobGeneratorType], lambda generator: generator), ) return matcher(job_type) def populate_job_names(job_type: job_blocks.JobTypeVar) -> None: """Assigns default names to the given jobs.""" def apply_to_job(prefix: Sequence[str], target: job_blocks.Job) -> None: if target.name is None: target.name = '_'.join(prefix) if prefix else target.executable.name def apply_to_job_group(prefix: Sequence[str], target: job_blocks.JobGroup) -> None: for key, job in target.jobs.items(): matcher([*prefix, key], job) def ignore_unknown(_: Sequence[str], target: Any) -> None: return target matcher = pattern_matching.match( apply_to_job, apply_to_job_group, ignore_unknown, ) return matcher([], job_type) def collect_jobs_by_filter( job_group: job_blocks.JobGroup, predicate: Callable[[job_blocks.Job], bool], ) -> List[job_blocks.Job]: """Flattens a given job group and filters the result.""" def match_job(job: job_blocks.Job) -> List[job_blocks.Job]: return [job] if predicate(job) else [] def match_job_group(job_group: job_blocks.JobGroup) -> List[job_blocks.Job]: return list( itertools.chain.from_iterable( [job_collector(job) for job in job_group.jobs.values()])) job_collector = pattern_matching.match(match_job_group, match_job) return job_collector(job_group) @attr.s(auto_attribs=True) class ConstraintClique: """A constraint with the list of jobs it applies to.""" constraint: job_blocks.Constraint jobs: List[job_blocks.Job] def aggregate_constraint_cliques( job_group: job_blocks.JobGroup) -> List[ConstraintClique]: """Forms constraint cliques. For each constraint met, collects all jobs it applies to. Args: job_group: A job group to aggregate on. Returns: A set of cliques. """ def match_job( job: job_blocks.Job ) -> Tuple[List[ConstraintClique], List[job_blocks.Job]]: return [], [job] def match_job_group( job_group: job_blocks.JobGroup ) -> Tuple[List[ConstraintClique], List[job_blocks.Job]]: cliques: List[ConstraintClique] = [] jobs: List[job_blocks.Job] = [] for job in job_group.jobs.values(): subcliques, subjobs = matcher(job) cliques += subcliques jobs += subjobs cliques = [ ConstraintClique(constraint, jobs) for constraint in job_group.constraints ] + cliques return cliques, jobs matcher = pattern_matching.match(match_job, match_job_group) result, _ = matcher(job_group) return result def flatten_jobs(job_group: job_blocks.JobGroup) -> List[job_blocks.Job]: return collect_jobs_by_filter(job_group, lambda _: True)
deepmind/xmanager
xmanager/xm/job_operators.py
Python
apache-2.0
4,103
# Copyright 2018 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). import os import re import signal import time from pathlib import Path from typing import List, Tuple import pytest from pants.base.build_environment import get_buildroot from pants.base.exception_sink import ExceptionSink from pants.testutil.pants_integration_test import run_pants_with_workdir from pants.util.dirutil import read_file from pants_test.pantsd.pantsd_integration_test_base import PantsDaemonIntegrationTestBase pytestmark = pytest.mark.platform_specific_behavior def lifecycle_stub_cmdline() -> List[str]: # Load the testprojects pants-plugins to get some testing tasks and subsystems. testproject_backend_src_dir = os.path.join( get_buildroot(), "testprojects/pants-plugins/src/python" ) testproject_backend_pkg_name = "test_pants_plugin" lifecycle_stub_cmdline = [ "--no-pantsd", f"--pythonpath=+['{testproject_backend_src_dir}']", f"--backend-packages=+['{testproject_backend_pkg_name}']", # This task will always raise an exception. "lifecycle-stub-goal", ] return lifecycle_stub_cmdline def get_log_file_paths(workdir: str, pid: int) -> Tuple[str, str]: pid_specific_log_file = ExceptionSink.exceptions_log_path(for_pid=pid, in_dir=workdir) assert os.path.isfile(pid_specific_log_file) shared_log_file = ExceptionSink.exceptions_log_path(in_dir=workdir) assert os.path.isfile(shared_log_file) assert pid_specific_log_file != shared_log_file return (pid_specific_log_file, shared_log_file) def assert_unhandled_exception_log_matches(pid: int, file_contents: str) -> None: regex_str = f"""\ timestamp: ([^\n]+) process title: ([^\n]+) sys\\.argv: ([^\n]+) pid: {pid} Exception caught: \\([^)]*\\) (.|\n)* Exception message:.* """ assert re.match(regex_str, file_contents) def assert_graceful_signal_log_matches(pid: int, signum, signame, contents: str) -> None: regex_str = """\ timestamp: ([^\n]+) process title: ([^\n]+) sys\\.argv: ([^\n]+) pid: {pid} Signal {signum} \\({signame}\\) was raised\\. Exiting with failure\\. """.format( pid=pid, signum=signum, signame=signame ) assert re.search(regex_str, contents) def test_logs_unhandled_exception(tmp_path: Path) -> None: pants_run = run_pants_with_workdir( lifecycle_stub_cmdline(), workdir=tmp_path.as_posix(), # The backtrace should be omitted when --print-stacktrace=False. print_stacktrace=False, extra_env={"_RAISE_EXCEPTION_ON_IMPORT": "True"}, ) pants_run.assert_failure() regex = "exception during import!" assert re.search(regex, pants_run.stderr) pid_specific_log_file, shared_log_file = get_log_file_paths(tmp_path.as_posix(), pants_run.pid) assert_unhandled_exception_log_matches(pants_run.pid, read_file(pid_specific_log_file)) assert_unhandled_exception_log_matches(pants_run.pid, read_file(shared_log_file)) class ExceptionSinkIntegrationTest(PantsDaemonIntegrationTestBase): hermetic = False def test_dumps_logs_on_signal(self): """Send signals which are handled, but don't get converted into a KeyboardInterrupt.""" signal_names = { signal.SIGQUIT: "SIGQUIT", signal.SIGTERM: "SIGTERM", } for (signum, signame) in signal_names.items(): with self.pantsd_successful_run_context() as ctx: ctx.runner(["help"]) pid = ctx.checker.assert_started() os.kill(pid, signum) time.sleep(5) # Check that the logs show a graceful exit by signal. pid_specific_log_file, shared_log_file = get_log_file_paths(ctx.workdir, pid) assert_graceful_signal_log_matches( pid, signum, signame, read_file(pid_specific_log_file) ) assert_graceful_signal_log_matches(pid, signum, signame, read_file(shared_log_file)) def test_dumps_traceback_on_sigabrt(self): # SIGABRT sends a traceback to the log file for the current process thanks to # faulthandler.enable(). with self.pantsd_successful_run_context() as ctx: ctx.runner(["help"]) pid = ctx.checker.assert_started() os.kill(pid, signal.SIGABRT) time.sleep(5) # Check that the logs show an abort signal and the beginning of a traceback. pid_specific_log_file, shared_log_file = get_log_file_paths(ctx.workdir, pid) regex_str = """\ Fatal Python error: Aborted Thread [^\n]+ \\(most recent call first\\): """ assert re.search(regex_str, read_file(pid_specific_log_file)) # faulthandler.enable() only allows use of a single logging file at once for fatal tracebacks. assert "" == read_file(shared_log_file)
pantsbuild/pants
src/python/pants/base/exception_sink_integration_test.py
Python
apache-2.0
4,970
# -*- coding: utf-8 -*- # Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Generated code. DO NOT EDIT! # # Snippet for GetBigQueryExport # NOTE: This snippet has been automatically generated for illustrative purposes only. # It may require modifications to work in your environment. # To install the latest published package dependency, execute the following: # python3 -m pip install google-cloud-securitycenter # [START securitycenter_v1_generated_SecurityCenter_GetBigQueryExport_sync] from google.cloud import securitycenter_v1 def sample_get_big_query_export(): # Create a client client = securitycenter_v1.SecurityCenterClient() # Initialize request argument(s) request = securitycenter_v1.GetBigQueryExportRequest( name="name_value", ) # Make the request response = client.get_big_query_export(request=request) # Handle the response print(response) # [END securitycenter_v1_generated_SecurityCenter_GetBigQueryExport_sync]
googleapis/python-securitycenter
samples/generated_samples/securitycenter_v1_generated_security_center_get_big_query_export_sync.py
Python
apache-2.0
1,513
# Licensed Materials - Property of IBM # Copyright IBM Corp. 2016 import unittest import sys import itertools import os import shutil from streamsx.topology.topology import * from streamsx.topology.tester import Tester from streamsx.topology.context import ConfigParams, submit from streamsx import rest import test_functions import test_vers def s4(): return ['one', 'two', 'three', 'four'] def removeArtifacts(submissionResult): if 'bundlePath' in submissionResult: os.remove(submissionResult['bundlePath']) if 'toolkitRoot' in submissionResult: shutil.rmtree(submissionResult['toolkitRoot']) if 'archivePath' in submissionResult: os.remove(submissionResult['archivePath']) if 'jobConfigPath' in submissionResult: os.remove(submissionResult['jobConfigPath']) def assertBundlePath(test, submissionResult): test.assertIn('bundlePath', submissionResult) test.assertTrue(os.path.isfile(submissionResult['bundlePath'])) if ((test.test_ctxtype == 'BUNDLE' or test.test_ctxtype != 'STANDALONE' and test.test_config.get('topology.keepArtifacts', False))): test.assertIn('jobConfigPath', submissionResult) test.assertTrue(os.path.isfile(submissionResult['jobConfigPath'])) else: test.assertNotIn('jobConfigPath', test.result) def assertToolkitRoot(test, submissionResult): test.assertIn('toolkitRoot', submissionResult) test.assertTrue(os.path.isdir(submissionResult['toolkitRoot'])) def assertArchivePath(test, submissionResult): test.assertIn('archivePath', submissionResult) test.assertTrue(os.path.isfile(submissionResult['archivePath'])) def verifyArtifacts(test): if test.test_config.get('topology.keepArtifacts', False): # KeepArtifacts is True assertToolkitRoot(test, test.result) if 'TOOLKIT' == test.test_ctxtype: test.assertNotIn('bundlePath', test.result) test.assertNotIn('archivePath', test.result) elif (test.test_config.get('topology.forceRemoteBuild', False) or 'STREAMS_INSTALL' not in os.environ or 'BUILD_ARCHIVE' == test.test_ctxtype): assertArchivePath(test, test.result) test.assertNotIn('bundlePath', test.result) else: assertBundlePath(test, test.result) test.assertNotIn('archivePath', test.result) else: # KeepArtifacts is False if 'TOOLKIT' == test.test_ctxtype: assertToolkitRoot(test, test.result) else: test.assertNotIn('toolkitRoot', test.result) if 'BUNDLE' == test.test_ctxtype: assertBundlePath(test, test.result) test.assertNotIn('archivePath', test.result) elif 'BUILD_ARCHIVE' == test.test_ctxtype: assertArchivePath(test, test.result) test.assertNotIn('bundlePath', test.result) else: test.assertNotIn('bundlePath', test.result) test.assertNotIn('archivePath', test.result) @unittest.skipIf(not test_vers.tester_supported(), "Tester not supported") class TestToolkitMethodsNew(unittest.TestCase): def setUp(self): self.topo = Topology('test_ToolkitSource') #self.topo.source(['Hello', 'Toolkit']) self.topo.source('Toolkit') self.test_ctxtype = 'TOOLKIT' self.test_config = {} self.result = {} def tearDown(self): removeArtifacts(self.result) def test_NoKeepArtifacts(self): self.result = submit(self.test_ctxtype, self.topo, self.test_config) verifyArtifacts(self) def test_KeepArtifacts(self): self.test_config['topology.keepArtifacts'] = True self.result = submit(self.test_ctxtype, self.topo, self.test_config) verifyArtifacts(self) @unittest.skipIf(not test_vers.tester_supported(), "Tester not supported") class TestBuildArchiveMethodsNew(TestToolkitMethodsNew): def setUp(self): self.topo = Topology('test_BuildArchiveSource') self.topo.source(['Hello', 'BuildArchive']) self.test_ctxtype = 'BUILD_ARCHIVE' self.test_config = {} self.result = {} @unittest.skipIf(not test_vers.tester_supported(), "Tester not supported") @unittest.skipUnless('STREAMS_INSTALL' in os.environ, "requires STREAMS_INSTALL") class TestBundleMethodsNew(TestToolkitMethodsNew): def setUp(self): self.topo = Topology('test_BundleSource') self.topo.source(['Hello', 'Bundle']) self.test_ctxtype = 'BUNDLE' self.test_config = {} self.result = {} @unittest.skipIf(not test_vers.tester_supported(), "Tester not supported") @unittest.skipUnless('STREAMS_INSTALL' in os.environ, "requires STREAMS_INSTALL") class TestDistributedSubmitMethodsNew(unittest.TestCase): def setUp(self): self.topo = Topology('test_DistributedSubmit') self.topo.source(['Hello', 'DistributedSubmit']) self.test_ctxtype = 'DISTRIBUTED' self.test_config = {} def test_DifferentUsername(self): sc = rest.StreamsConnection('user1', 'pass1') self.test_config[ConfigParams.STREAMS_CONNECTION] = sc with self.assertRaises(RuntimeError): submit(self.test_ctxtype, self.topo, self.test_config, username='user2', password='pass1') def test_DifferentPassword(self): sc = rest.StreamsConnection('user1', 'pass1') self.test_config[ConfigParams.STREAMS_CONNECTION] = sc with self.assertRaises(RuntimeError): submit(self.test_ctxtype, self.topo, self.test_config, username='user1', password='pass2') @unittest.skipIf(not test_vers.tester_supported(), "Tester not supported") @unittest.skipUnless('VCAP_SERVICES' in os.environ, "requires VCAP_SERVICES") @unittest.skipUnless('STREAMING_ANALYTICS_SERVICE_NAME' in os.environ, "requires STREAMING_ANALYTICS_SERVICE_NAME") class TestBluemixSubmitMethodsNew(unittest.TestCase): def setUp(self): self.topo = Topology('test_BluemixSubmit') self.topo.source(['Hello', 'BluemixSubmit']) self.test_ctxtype = 'STREAMING_ANALYTICS_SERVICE' self.test_config = {} def test_StreamsConnection(self): sc = rest.StreamsConnection('user1', 'pass1') self.test_config[ConfigParams.STREAMS_CONNECTION] = sc with self.assertRaises(ValueError): submit(self.test_ctxtype, self.topo, self.test_config) def test_StreamingAnalyticsConnection(self): sc = rest.StreamingAnalyticsConnection() self.test_config[ConfigParams.STREAMS_CONNECTION] = sc result = submit(self.test_ctxtype, self.topo, self.test_config) self.assertEqual(result.return_code, 0) result.job.cancel() @unittest.skipIf(not test_vers.tester_supported() , "Tester not supported") class TestTopologyMethodsNew(unittest.TestCase): def setUp(self): Tester.setup_standalone(self) self.result = {} def tearDown(self): removeArtifacts(self.result) def test_TopologySourceList(self): topo = Topology('test_TopologySourceList') hw = topo.source(['Hello', 'Tester']) tester = Tester(topo) tester.contents(hw, ['Hello', 'Tester']) tester.test(self.test_ctxtype, self.test_config) self.result = tester.result['submission_result'] verifyArtifacts(self) def test_TopologySourceFn(self): topo = Topology('test_TopologySourceFn') hw = topo.source(s4) tester = Tester(topo) tester.contents(hw, s4()) tester.tuple_count(hw, len(s4())) self.test_config['topology.keepArtifacts'] = True tester.test(self.test_ctxtype, self.test_config) self.result = tester.result['submission_result'] verifyArtifacts(self) def test_TopologySourceItertools(self): topo = Topology('test_TopologySourceItertools') if sys.version_info.major == 2: # Iterators not serializable in 2.7 hw = topo.source(lambda : itertools.repeat(9, 3)) else: hw = topo.source(itertools.repeat(9, 3)) if sys.version_info.major == 2: # Disabling assertions not supported on Python 2.7 # See splpy_setup.h pass else: hw = hw.filter(test_functions.check_asserts_disabled) tester = Tester(topo) tester.contents(hw, [9, 9, 9]) tester.test(self.test_ctxtype, self.test_config) @unittest.skipIf(not test_vers.tester_supported() , "Tester not supported") class TestDistributedTopologyMethodsNew(TestTopologyMethodsNew): def setUp(self): Tester.setup_distributed(self) self.result = {} @unittest.skipIf(not test_vers.tester_supported() , "Tester not supported") class TestBluemixTopologyMethodsNew(TestTopologyMethodsNew): def setUp(self): Tester.setup_streaming_analytics(self, force_remote_build=True) self.result = {}
wmarshall484/streamsx.topology
test/python/topology/test2.py
Python
apache-2.0
8,958
import unittest import mock from kafka_influxdb.reader import kafka_python from kafka.common import Message class TestKafkaPython(unittest.TestCase): def setUp(self): self.host = "myhost" self.port = 1234 self.group = "mygroup" self.topic = "mytopic" self.offset = "largest" self.reconnect_wait_time = 0.01 self.reader = self.create_reader() def create_reader(self): reader = kafka_python.Reader(self.host, self.port, self.group, self.topic, self.offset) reader.consumer = mock.MagicMock() return reader def sample_messages(self, payload, count): return count * [Message(0, 0, None, payload)], count * [payload] def test_handle_read(self): sample_messages, extracted_messages = self.sample_messages("hello", 3) self.reader.consumer.__iter__.return_value = sample_messages self.reader._connect = mock.MagicMock() received_messages = list(self.reader._handle_read()) self.assertEqual(received_messages, extracted_messages) def receive_messages(self): for message in self.reader.read(): yield message
mre/kafka-influxdb
kafka_influxdb/tests/reader_test/test_kafka_python.py
Python
apache-2.0
1,320
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import psutil from builtins import input from past.builtins import basestring from datetime import datetime import getpass import imp import os import re import signal import subprocess import sys import warnings from airflow.exceptions import AirflowException # When killing processes, time to wait after issuing a SIGTERM before issuing a # SIGKILL. TIME_TO_WAIT_AFTER_SIGTERM = 5 def validate_key(k, max_length=250): if not isinstance(k, basestring): raise TypeError("The key has to be a string") elif len(k) > max_length: raise AirflowException( "The key has to be less than {0} characters".format(max_length)) elif not re.match(r'^[A-Za-z0-9_\-\.]+$', k): raise AirflowException( "The key ({k}) has to be made of alphanumeric characters, dashes, " "dots and underscores exclusively".format(**locals())) else: return True def alchemy_to_dict(obj): """ Transforms a SQLAlchemy model instance into a dictionary """ if not obj: return None d = {} for c in obj.__table__.columns: value = getattr(obj, c.name) if type(value) == datetime: value = value.isoformat() d[c.name] = value return d def ask_yesno(question): yes = set(['yes', 'y']) no = set(['no', 'n']) done = False print(question) while not done: choice = input().lower() if choice in yes: return True elif choice in no: return False else: print("Please respond by yes or no.") def is_in(obj, l): """ Checks whether an object is one of the item in the list. This is different from ``in`` because ``in`` uses __cmp__ when present. Here we change based on the object itself """ for item in l: if item is obj: return True return False def is_container(obj): """ Test if an object is a container (iterable) but not a string """ return hasattr(obj, '__iter__') and not isinstance(obj, basestring) def as_tuple(obj): """ If obj is a container, returns obj as a tuple. Otherwise, returns a tuple containing obj. """ if is_container(obj): return tuple(obj) else: return tuple([obj]) def as_flattened_list(iterable): """ Return an iterable with one level flattened >>> as_flattened_list((('blue', 'red'), ('green', 'yellow', 'pink'))) ['blue', 'red', 'green', 'yellow', 'pink'] """ return [e for i in iterable for e in i] def chain(*tasks): """ Given a number of tasks, builds a dependency chain. chain(task_1, task_2, task_3, task_4) is equivalent to task_1.set_downstream(task_2) task_2.set_downstream(task_3) task_3.set_downstream(task_4) """ for up_task, down_task in zip(tasks[:-1], tasks[1:]): up_task.set_downstream(down_task) def pprinttable(rows): """Returns a pretty ascii table from tuples If namedtuple are used, the table will have headers """ if not rows: return if hasattr(rows[0], '_fields'): # if namedtuple headers = rows[0]._fields else: headers = ["col{}".format(i) for i in range(len(rows[0]))] lens = [len(s) for s in headers] for row in rows: for i in range(len(rows[0])): slenght = len("{}".format(row[i])) if slenght > lens[i]: lens[i] = slenght formats = [] hformats = [] for i in range(len(rows[0])): if isinstance(rows[0][i], int): formats.append("%%%dd" % lens[i]) else: formats.append("%%-%ds" % lens[i]) hformats.append("%%-%ds" % lens[i]) pattern = " | ".join(formats) hpattern = " | ".join(hformats) separator = "-+-".join(['-' * n for n in lens]) s = "" s += separator + '\n' s += (hpattern % tuple(headers)) + '\n' s += separator + '\n' def f(t): return "{}".format(t) if isinstance(t, basestring) else t for line in rows: s += pattern % tuple(f(t) for t in line) + '\n' s += separator + '\n' return s def kill_using_shell(pid, signal=signal.SIGTERM): process = psutil.Process(pid) # Use sudo only when necessary - consider SubDagOperator and SequentialExecutor case. if process.username() != getpass.getuser(): args = ["sudo", "kill", "-{}".format(int(signal)), str(pid)] else: args = ["kill", "-{}".format(int(signal)), str(pid)] # PID may not exist and return a non-zero error code subprocess.call(args) def kill_process_tree(logger, pid): """ Kills the process and all of the descendants. Kills using the `kill` shell command so that it can change users. Note: killing via PIDs has the potential to the wrong process if the process dies and the PID gets recycled in a narrow time window. :param logger: logger :type logger: logging.Logger """ try: root_process = psutil.Process(pid) except psutil.NoSuchProcess: logger.warn("PID: {} does not exist".format(pid)) return # Check child processes to reduce cases where a child process died but # the PID got reused. descendant_processes = [x for x in root_process.children(recursive=True) if x.is_running()] if len(descendant_processes) != 0: logger.warn("Terminating descendant processes of {} PID: {}" .format(root_process.cmdline(), root_process.pid)) temp_processes = descendant_processes[:] for descendant in temp_processes: logger.warn("Terminating descendant process {} PID: {}" .format(descendant.cmdline(), descendant.pid)) try: kill_using_shell(descendant.pid, signal.SIGTERM) except psutil.NoSuchProcess: descendant_processes.remove(descendant) logger.warn("Waiting up to {}s for processes to exit..." .format(TIME_TO_WAIT_AFTER_SIGTERM)) try: psutil.wait_procs(descendant_processes, TIME_TO_WAIT_AFTER_SIGTERM) logger.warn("Done waiting") except psutil.TimeoutExpired: logger.warn("Ran out of time while waiting for " "processes to exit") # Then SIGKILL descendant_processes = [x for x in root_process.children(recursive=True) if x.is_running()] if len(descendant_processes) > 0: temp_processes = descendant_processes[:] for descendant in temp_processes: logger.warn("Killing descendant process {} PID: {}" .format(descendant.cmdline(), descendant.pid)) try: kill_using_shell(descendant.pid, signal.SIGTERM) descendant.wait() except psutil.NoSuchProcess: descendant_processes.remove(descendant) logger.warn("Killed all descendant processes of {} PID: {}" .format(root_process.cmdline(), root_process.pid)) else: logger.debug("There are no descendant processes to kill") def kill_descendant_processes(logger, pids_to_kill=None): """ Kills all descendant processes of this process. :param logger: logger :type logger: logging.Logger :param pids_to_kill: if specified, kill only these PIDs :type pids_to_kill: list[int] """ # First try SIGTERM this_process = psutil.Process(os.getpid()) # Only check child processes to ensure that we don't have a case # where a child process died but the PID got reused. descendant_processes = [x for x in this_process.children(recursive=True) if x.is_running()] if pids_to_kill: descendant_processes = [x for x in descendant_processes if x.pid in pids_to_kill] if len(descendant_processes) == 0: logger.debug("There are no descendant processes that can be killed") return logger.warn("Terminating descendant processes of {} PID: {}" .format(this_process.cmdline(), this_process.pid)) temp_processes = descendant_processes[:] for descendant in temp_processes: try: logger.warn("Terminating descendant process {} PID: {}" .format(descendant.cmdline(), descendant.pid)) descendant.terminate() except psutil.NoSuchProcess: descendant_processes.remove(descendant) logger.warn("Waiting up to {}s for processes to exit..." .format(TIME_TO_WAIT_AFTER_SIGTERM)) try: psutil.wait_procs(descendant_processes, TIME_TO_WAIT_AFTER_SIGTERM) logger.warn("Done waiting") except psutil.TimeoutExpired: logger.warn("Ran out of time while waiting for " "processes to exit") # Then SIGKILL descendant_processes = [x for x in this_process.children(recursive=True) if x.is_running()] if pids_to_kill: descendant_processes = [x for x in descendant_processes if x.pid in pids_to_kill] if len(descendant_processes) > 0: for descendant in descendant_processes: logger.warn("Killing descendant process {} PID: {}" .format(descendant.cmdline(), descendant.pid)) try: descendant.kill() descendant.wait() except psutil.NoSuchProcess: pass logger.warn("Killed all descendant processes of {} PID: {}" .format(this_process.cmdline(), this_process.pid)) class AirflowImporter(object): """ Importer that dynamically loads a class and module from its parent. This allows Airflow to support ``from airflow.operators import BashOperator`` even though BashOperator is actually in ``airflow.operators.bash_operator``. The importer also takes over for the parent_module by wrapping it. This is required to support attribute-based usage: .. code:: python from airflow import operators operators.BashOperator(...) """ def __init__(self, parent_module, module_attributes): """ :param parent_module: The string package name of the parent module. For example, 'airflow.operators' :type parent_module: string :param module_attributes: The file to class mappings for all importable classes. :type module_attributes: string """ self._parent_module = parent_module self._attribute_modules = self._build_attribute_modules(module_attributes) self._loaded_modules = {} # Wrap the module so we can take over __getattr__. sys.modules[parent_module.__name__] = self @staticmethod def _build_attribute_modules(module_attributes): """ Flips and flattens the module_attributes dictionary from: module => [Attribute, ...] To: Attribute => module This is useful so that we can find the module to use, given an attribute. """ attribute_modules = {} for module, attributes in list(module_attributes.items()): for attribute in attributes: attribute_modules[attribute] = module return attribute_modules def _load_attribute(self, attribute): """ Load the class attribute if it hasn't been loaded yet, and return it. """ module = self._attribute_modules.get(attribute, False) if not module: # This shouldn't happen. The check happens in find_modules, too. raise ImportError(attribute) elif module not in self._loaded_modules: # Note that it's very important to only load a given modules once. # If they are loaded more than once, the memory reference to the # class objects changes, and Python thinks that an object of type # Foo that was declared before Foo's module was reloaded is no # longer the same type as Foo after it's reloaded. path = os.path.realpath(self._parent_module.__file__) folder = os.path.dirname(path) f, filename, description = imp.find_module(module, [folder]) self._loaded_modules[module] = imp.load_module(module, f, filename, description) # This functionality is deprecated, and AirflowImporter should be # removed in 2.0. warnings.warn( "Importing {i} directly from {m} has been " "deprecated. Please import from " "'{m}.[operator_module]' instead. Support for direct " "imports will be dropped entirely in Airflow 2.0.".format( i=attribute, m=self._parent_module), DeprecationWarning) loaded_module = self._loaded_modules[module] return getattr(loaded_module, attribute) def __getattr__(self, attribute): """ Get an attribute from the wrapped module. If the attribute doesn't exist, try and import it as a class from a submodule. This is a Python trick that allows the class to pretend it's a module, so that attribute-based usage works: from airflow import operators operators.BashOperator(...) It also allows normal from imports to work: from airflow.operators.bash_operator import BashOperator """ if hasattr(self._parent_module, attribute): # Always default to the parent module if the attribute exists. return getattr(self._parent_module, attribute) elif attribute in self._attribute_modules: # Try and import the attribute if it's got a module defined. loaded_attribute = self._load_attribute(attribute) setattr(self, attribute, loaded_attribute) return loaded_attribute raise AttributeError
gritlogic/incubator-airflow
airflow/utils/helpers.py
Python
apache-2.0
15,004
#!/usr/bin/env python # # Copyright 2016 Medoly # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from medoly.kanon import bloom @bloom("model") class User(object): def __init__(self, uid, name): self.uid = uid self.name = name def __json__(self): return {"uid": self.uid, "name": self.name}
whiteclover/Medoly
examples/demo/app/user/model.py
Python
apache-2.0
825
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from django.conf.urls import patterns from django.conf.urls import url from openstack_dashboard.dashboards.vledashboard.stacks import views urlpatterns = patterns( '', url(r'^$', views.IndexView.as_view(), name='index'), url(r'^select_template$', views.SelectTemplateView.as_view(), name='select_template'), url(r'^launch$', views.CreateStackView.as_view(), name='launch'), url(r'^stack/(?P<stack_id>[^/]+)/$', views.DetailView.as_view(), name='detail'), url(r'^(?P<stack_id>[^/]+)/change_template$', views.ChangeTemplateView.as_view(), name='change_template'), url(r'^(?P<stack_id>[^/]+)/edit_stack$', views.EditStackView.as_view(), name='edit_stack'), url(r'^stack/(?P<stack_id>[^/]+)/(?P<resource_name>[^/]+)/$', views.ResourceView.as_view(), name='resource'), url(r'^get_d3_data/(?P<stack_id>[^/]+)/$', views.JSONView.as_view(), name='d3_data'), )
flochaz/horizon
openstack_dashboard/dashboards/vledashboard/stacks/urls.py
Python
apache-2.0
1,491
#!/usr/bin/env python3 import os from litmus.core.util import load_yaml from litmus.core.manager import manager from litmus.helper.helper import tizen_snapshot_downloader as downloader from litmus.helper.tests import add_test_helper def main(*args, **kwargs): # init manager instance mgr = manager(*args, **kwargs) # init working directory mgr.init_workingdir() # get projectinfo project_info = load_yaml('conf_mobile.yaml') username = project_info['username'] password = project_info['password'] binary_urls = project_info['binary_urls'] # get version from parameter # ex) 20160923.3 # you can customize params from litmus (adhoc|run) -p option # Nth arg : kwargs['param'][N] try: version = kwargs['param'][0] except (IndexError, TypeError): version = None # download binaries from snapshot download server filenames = [] for url in binary_urls: filenames.extend(downloader(url=url, username=username, password=password, version=version)) # get an available device for testing. # Please set up topology before acquiring device. # Example) # ~/.litmus/topology # [TM2_001] # dev_type = standalone_tm2 # serialno = 01234TEST dut = mgr.acquire_dut('standalone_tm2', max_retry_times=180) # flashing binaries to device. dut.flash(filenames) # turn on dut. dut.on() # run helper functions for testing. if not os.path.exists('result'): os.mkdir('result') testcases = load_yaml('tc_mobile.yaml') add_test_helper(dut, testcases) dut.run_tests() # turn off dut. dut.off() # release a device mgr.release_dut(dut)
dhs-shine/litmus
litmus/templates/standalone_tm2/userscript.py
Python
apache-2.0
1,815
#!/usr/bin/python #! -*- Encoding: Latin-1 -*- import ConfigParser import os import threading import logging import logging.handlers import eftepede_globals import re import socket import pyftpdlib.servers import pyftpdlib.handlers import eftepede_authorizer try: import _winreg except: _winreg = None class config(object): pass class eftepede_server(object): def __init__(self): self.read_configuration() self.logger.info("eftepede! Server %s starting up..." % (eftepede_globals.CURRENT_VERSION, )) def read_configuration(self): # read configuration file self.config_file = ConfigParser.SafeConfigParser() self.config_file.read(os.path.join(os.getcwd(), "eftepede_config.ini")) self.logger = logging.getLogger('pyftpdlib') self.logger.setLevel(logging.ERROR) logging.basicConfig(level = logging.ERROR) if self.get_setting("Enabled", True, bool, "Trace"): LOG_FILENAME = self.get_setting("Filename", os.path.join(os.getcwd(), "eftepede.log"), None, "Trace") logging.basicConfig(filename=os.path.join(os.getcwd(), "pyftpdlib.log"), level=logging.DEBUG) # Set up a specific logger with our desired output level self.logger.setLevel(logging.DEBUG) # Add the log message handler to the logger handler = logging.handlers.RotatingFileHandler(LOG_FILENAME, maxBytes = self.get_setting("MaxSize", 1024*1024*10, int, "Trace"), backupCount = self.get_setting("BackupCount", 3, int, "Trace")) formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s") handler.setFormatter(formatter) self.logger.addHandler(handler) self.logger.info("_" * 90); self.logger.debug("just to see if debug comes on") self.config = config() self.config.database_provider = self.get_setting("database_provider", "") self.config.ftp_portnum = self.get_setting("portnum", 21, int) self.config.ftp_address = self.get_setting("address", "") self.config.max_cons = self.get_setting("max_cons", 256, int) self.config.max_cons_per_ip = self.get_setting("max_cons_per_ip", 5, int) self.config.anonymous_enabled = self.get_setting("anonymous_enabled", False, bool) if self.config.anonymous_enabled: self.config.anonymous_homedir = self.get_setting("anonymous_homedir", os.getcwd()) self.config.masquerade_address = self.get_setting("masquerade_address", "") for index, item in enumerate(dir(self.config)): if not item.startswith("_"): self.logger.info("%30s: %r" % (item, getattr(self.config, item), )) self.logger.info("_" * 90); if self.config.database_provider == "sqlite": import eftepede_using_sqlite eftepede_globals.Database = eftepede_using_sqlite.SQLite3Database(self, self.logger) elif self.config.database_provider == "postgresql": import eftepede_using_postgresql eftepede_globals.Database = eftepede_using_postgresql.PostgresqlDatabase(self, self.logger) elif self.config.database_provider == "mysql": import eftepede_using_mysql eftepede_globals.Database = eftepede_using_mysql.MySQLDatabase(self, self.logger) else: raise Exception("No valid database provider configured, please check eftepede_config.ini") self.logger.info("eftepede_globals.Database: %r" % (eftepede_globals.Database, )) self.authorizer = eftepede_authorizer.Authorizer(self.config, self.logger) #pyftpdlib.servers.log = self.logger.info #pyftpdlib.servers.logline = self.logger.info #pyftpdlib.servers.logerror = self.logger.error if self.config.anonymous_enabled: self.authorizer.add_anonymous(self.config.anonymous_homedir) def get_setting(self, variable, default, mapfunc = None, section = "Settings"): try: result = self.config_file.get(section, variable) if mapfunc is not None: if mapfunc == bool: if result.lower() == "true": result = True elif result.lower() == "false": result = False else: result = mapfunc(result) else: result = mapfunc(result) return result except Exception, e: return default def run(self): # Instantiate FTP handler class self.ftp_handler = pyftpdlib.handlers.FTPHandler self.ftp_handler.authorizer = self.authorizer # Define a customized banner (string returned when client connects) self.ftp_handler.banner = "eftepede %s ready, thanks to Python, pyftpdlib, sqlite and a host of others..." % (pyftpdlib.__ver__, ) # Specify a masquerade address and the range of ports to use for # passive connections. Decomment in case you're behind a NAT. if self.config.masquerade_address: self.ftp_handler.masquerade_address = masquerade_address #if self.config.passive_ports: # self.ftp_handler.passive_ports = range(60000, 65535) # Instantiate FTP server class and listen to 0.0.0.0:21 address = (self.config.ftp_address, self.config.ftp_portnum) self.ftpd = pyftpdlib.servers.FTPServer(address, self.ftp_handler) # set a limit for connections self.ftpd.max_cons = self.config.max_cons self.ftpd.max_cons_per_ip = self.config.max_cons_per_ip self.ftpd.serve_forever() def main(): eftepede_server().run() if __name__ == "__main__": main()
gersonkurz/eftepede
eftepede_server.py
Python
apache-2.0
6,104
import zstackwoodpecker.test_state as ts_header import os TestAction = ts_header.TestAction def path(): return dict(initial_formation="template5", checking_point=8, path_list=[ [TestAction.create_vm, 'vm1', ], [TestAction.create_volume, 'volume1', 'flag=scsi'], [TestAction.attach_volume, 'vm1', 'volume1'], [TestAction.create_volume, 'volume2', 'flag=scsi'], [TestAction.attach_volume, 'vm1', 'volume2'], [TestAction.create_volume, 'volume3', 'flag=scsi'], [TestAction.attach_volume, 'vm1', 'volume3'], [TestAction.create_vm_snapshot, 'vm1', 'vm1-snapshot1'], [TestAction.create_image_from_volume, 'vm1', 'vm1-image1'], [TestAction.create_data_vol_template_from_volume, 'volume1', 'volume1-image2'], [TestAction.create_vm_snapshot, 'vm1', 'vm1-snapshot5'], [TestAction.stop_vm, 'vm1'], [TestAction.use_volume_snapshot, 'vm1-snapshot5'], [TestAction.start_vm, 'vm1'], [TestAction.create_vm_snapshot, 'vm1', 'vm1-snapshot9'], [TestAction.stop_vm, 'vm1'], [TestAction.ps_migrate_vm, 'vm1'], [TestAction.start_vm, 'vm1'], [TestAction.migrate_volume, 'volume2'], [TestAction.stop_vm, 'vm1'], [TestAction.use_volume_snapshot, 'vm1-snapshot9'], [TestAction.start_vm, 'vm1'], [TestAction.delete_vm_snapshot, 'vm1-snapshot1'], ]) ''' The final status: Running:['vm1'] Stopped:[] Enadbled:['vm1-snapshot5', 'volume1-snapshot5', 'volume2-snapshot5', 'volume3-snapshot5', 'vm1-snapshot9', 'volume1-snapshot9', 'volume2-snapshot9', 'volume3-snapshot9', 'vm1-image1', 'volume1-image2'] attached:['volume1', 'volume2', 'volume3'] Detached:[] Deleted:['vm1-snapshot1', 'volume1-snapshot1', 'volume2-snapshot1', 'volume3-snapshot1'] Expunged:[] Ha:[] Group: vm_snap2:['vm1-snapshot5', 'volume1-snapshot5', 'volume2-snapshot5', 'volume3-snapshot5']---vm1volume1_volume2_volume3 vm_snap3:['vm1-snapshot9', 'volume1-snapshot9', 'volume2-snapshot9', 'volume3-snapshot9']---vm1volume1_volume2_volume3 '''
zstackio/zstack-woodpecker
integrationtest/vm/multihosts/vm_snapshots/paths/ceph_path24.py
Python
apache-2.0
1,940
"""Component to interface with cameras.""" import asyncio import base64 import collections from contextlib import suppress from datetime import timedelta import logging import hashlib from random import SystemRandom import attr from aiohttp import web import async_timeout import voluptuous as vol from homeassistant.core import callback from homeassistant.const import ( ATTR_ENTITY_ID, SERVICE_TURN_OFF, SERVICE_TURN_ON, CONF_FILENAME, ) from homeassistant.exceptions import HomeAssistantError from homeassistant.loader import bind_hass from homeassistant.helpers.entity import Entity from homeassistant.helpers.entity_component import EntityComponent from homeassistant.helpers.config_validation import ( # noqa PLATFORM_SCHEMA, PLATFORM_SCHEMA_BASE, ) from homeassistant.components.http import HomeAssistantView, KEY_AUTHENTICATED from homeassistant.components.media_player.const import ( ATTR_MEDIA_CONTENT_ID, ATTR_MEDIA_CONTENT_TYPE, SERVICE_PLAY_MEDIA, DOMAIN as DOMAIN_MP, ) from homeassistant.components.stream import request_stream from homeassistant.components.stream.const import ( OUTPUT_FORMATS, FORMAT_CONTENT_TYPE, CONF_STREAM_SOURCE, CONF_LOOKBACK, CONF_DURATION, SERVICE_RECORD, DOMAIN as DOMAIN_STREAM, ) from homeassistant.components import websocket_api import homeassistant.helpers.config_validation as cv from homeassistant.setup import async_when_setup from .const import DOMAIN, DATA_CAMERA_PREFS from .prefs import CameraPreferences # mypy: allow-untyped-calls, allow-untyped-defs _LOGGER = logging.getLogger(__name__) SERVICE_ENABLE_MOTION = "enable_motion_detection" SERVICE_DISABLE_MOTION = "disable_motion_detection" SERVICE_SNAPSHOT = "snapshot" SERVICE_PLAY_STREAM = "play_stream" SCAN_INTERVAL = timedelta(seconds=30) ENTITY_ID_FORMAT = DOMAIN + ".{}" ATTR_FILENAME = "filename" ATTR_MEDIA_PLAYER = "media_player" ATTR_FORMAT = "format" STATE_RECORDING = "recording" STATE_STREAMING = "streaming" STATE_IDLE = "idle" # Bitfield of features supported by the camera entity SUPPORT_ON_OFF = 1 SUPPORT_STREAM = 2 DEFAULT_CONTENT_TYPE = "image/jpeg" ENTITY_IMAGE_URL = "/api/camera_proxy/{0}?token={1}" TOKEN_CHANGE_INTERVAL = timedelta(minutes=5) _RND = SystemRandom() MIN_STREAM_INTERVAL = 0.5 # seconds CAMERA_SERVICE_SCHEMA = vol.Schema({vol.Optional(ATTR_ENTITY_ID): cv.comp_entity_ids}) CAMERA_SERVICE_SNAPSHOT = CAMERA_SERVICE_SCHEMA.extend( {vol.Required(ATTR_FILENAME): cv.template} ) CAMERA_SERVICE_PLAY_STREAM = CAMERA_SERVICE_SCHEMA.extend( { vol.Required(ATTR_MEDIA_PLAYER): cv.entities_domain(DOMAIN_MP), vol.Optional(ATTR_FORMAT, default="hls"): vol.In(OUTPUT_FORMATS), } ) CAMERA_SERVICE_RECORD = CAMERA_SERVICE_SCHEMA.extend( { vol.Required(CONF_FILENAME): cv.template, vol.Optional(CONF_DURATION, default=30): vol.Coerce(int), vol.Optional(CONF_LOOKBACK, default=0): vol.Coerce(int), } ) WS_TYPE_CAMERA_THUMBNAIL = "camera_thumbnail" SCHEMA_WS_CAMERA_THUMBNAIL = websocket_api.BASE_COMMAND_MESSAGE_SCHEMA.extend( { vol.Required("type"): WS_TYPE_CAMERA_THUMBNAIL, vol.Required("entity_id"): cv.entity_id, } ) @attr.s class Image: """Represent an image.""" content_type = attr.ib(type=str) content = attr.ib(type=bytes) @bind_hass async def async_request_stream(hass, entity_id, fmt): """Request a stream for a camera entity.""" camera = _get_camera_from_entity_id(hass, entity_id) camera_prefs = hass.data[DATA_CAMERA_PREFS].get(entity_id) async with async_timeout.timeout(10): source = await camera.stream_source() if not source: raise HomeAssistantError( f"{camera.entity_id} does not support play stream service" ) return request_stream(hass, source, fmt=fmt, keepalive=camera_prefs.preload_stream) @bind_hass async def async_get_image(hass, entity_id, timeout=10): """Fetch an image from a camera entity.""" camera = _get_camera_from_entity_id(hass, entity_id) with suppress(asyncio.CancelledError, asyncio.TimeoutError): async with async_timeout.timeout(timeout): image = await camera.async_camera_image() if image: return Image(camera.content_type, image) raise HomeAssistantError("Unable to get image") @bind_hass async def async_get_mjpeg_stream(hass, request, entity_id): """Fetch an mjpeg stream from a camera entity.""" camera = _get_camera_from_entity_id(hass, entity_id) return await camera.handle_async_mjpeg_stream(request) async def async_get_still_stream(request, image_cb, content_type, interval): """Generate an HTTP MJPEG stream from camera images. This method must be run in the event loop. """ response = web.StreamResponse() response.content_type = "multipart/x-mixed-replace; " "boundary=--frameboundary" await response.prepare(request) async def write_to_mjpeg_stream(img_bytes): """Write image to stream.""" await response.write( bytes( "--frameboundary\r\n" "Content-Type: {}\r\n" "Content-Length: {}\r\n\r\n".format(content_type, len(img_bytes)), "utf-8", ) + img_bytes + b"\r\n" ) last_image = None while True: img_bytes = await image_cb() if not img_bytes: break if img_bytes != last_image: await write_to_mjpeg_stream(img_bytes) # Chrome seems to always ignore first picture, # print it twice. if last_image is None: await write_to_mjpeg_stream(img_bytes) last_image = img_bytes await asyncio.sleep(interval) return response def _get_camera_from_entity_id(hass, entity_id): """Get camera component from entity_id.""" component = hass.data.get(DOMAIN) if component is None: raise HomeAssistantError("Camera integration not set up") camera = component.get_entity(entity_id) if camera is None: raise HomeAssistantError("Camera not found") if not camera.is_on: raise HomeAssistantError("Camera is off") return camera async def async_setup(hass, config): """Set up the camera component.""" component = hass.data[DOMAIN] = EntityComponent( _LOGGER, DOMAIN, hass, SCAN_INTERVAL ) prefs = CameraPreferences(hass) await prefs.async_initialize() hass.data[DATA_CAMERA_PREFS] = prefs hass.http.register_view(CameraImageView(component)) hass.http.register_view(CameraMjpegStream(component)) hass.components.websocket_api.async_register_command( WS_TYPE_CAMERA_THUMBNAIL, websocket_camera_thumbnail, SCHEMA_WS_CAMERA_THUMBNAIL ) hass.components.websocket_api.async_register_command(ws_camera_stream) hass.components.websocket_api.async_register_command(websocket_get_prefs) hass.components.websocket_api.async_register_command(websocket_update_prefs) await component.async_setup(config) async def preload_stream(hass, _): for camera in component.entities: camera_prefs = prefs.get(camera.entity_id) if not camera_prefs.preload_stream: continue async with async_timeout.timeout(10): source = await camera.stream_source() if not source: continue request_stream(hass, source, keepalive=True) async_when_setup(hass, DOMAIN_STREAM, preload_stream) @callback def update_tokens(time): """Update tokens of the entities.""" for entity in component.entities: entity.async_update_token() hass.async_create_task(entity.async_update_ha_state()) hass.helpers.event.async_track_time_interval(update_tokens, TOKEN_CHANGE_INTERVAL) component.async_register_entity_service( SERVICE_ENABLE_MOTION, CAMERA_SERVICE_SCHEMA, "async_enable_motion_detection" ) component.async_register_entity_service( SERVICE_DISABLE_MOTION, CAMERA_SERVICE_SCHEMA, "async_disable_motion_detection" ) component.async_register_entity_service( SERVICE_TURN_OFF, CAMERA_SERVICE_SCHEMA, "async_turn_off" ) component.async_register_entity_service( SERVICE_TURN_ON, CAMERA_SERVICE_SCHEMA, "async_turn_on" ) component.async_register_entity_service( SERVICE_SNAPSHOT, CAMERA_SERVICE_SNAPSHOT, async_handle_snapshot_service ) component.async_register_entity_service( SERVICE_PLAY_STREAM, CAMERA_SERVICE_PLAY_STREAM, async_handle_play_stream_service, ) component.async_register_entity_service( SERVICE_RECORD, CAMERA_SERVICE_RECORD, async_handle_record_service ) return True async def async_setup_entry(hass, entry): """Set up a config entry.""" return await hass.data[DOMAIN].async_setup_entry(entry) async def async_unload_entry(hass, entry): """Unload a config entry.""" return await hass.data[DOMAIN].async_unload_entry(entry) class Camera(Entity): """The base class for camera entities.""" def __init__(self): """Initialize a camera.""" self.is_streaming = False self.content_type = DEFAULT_CONTENT_TYPE self.access_tokens: collections.deque = collections.deque([], 2) self.async_update_token() @property def should_poll(self): """No need to poll cameras.""" return False @property def entity_picture(self): """Return a link to the camera feed as entity picture.""" return ENTITY_IMAGE_URL.format(self.entity_id, self.access_tokens[-1]) @property def supported_features(self): """Flag supported features.""" return 0 @property def is_recording(self): """Return true if the device is recording.""" return False @property def brand(self): """Return the camera brand.""" return None @property def motion_detection_enabled(self): """Return the camera motion detection status.""" return None @property def model(self): """Return the camera model.""" return None @property def frame_interval(self): """Return the interval between frames of the mjpeg stream.""" return 0.5 async def stream_source(self): """Return the source of the stream.""" return None def camera_image(self): """Return bytes of camera image.""" raise NotImplementedError() @callback def async_camera_image(self): """Return bytes of camera image. This method must be run in the event loop and returns a coroutine. """ return self.hass.async_add_job(self.camera_image) async def handle_async_still_stream(self, request, interval): """Generate an HTTP MJPEG stream from camera images. This method must be run in the event loop. """ return await async_get_still_stream( request, self.async_camera_image, self.content_type, interval ) async def handle_async_mjpeg_stream(self, request): """Serve an HTTP MJPEG stream from the camera. This method can be overridden by camera plaforms to proxy a direct stream from the camera. This method must be run in the event loop. """ return await self.handle_async_still_stream(request, self.frame_interval) @property def state(self): """Return the camera state.""" if self.is_recording: return STATE_RECORDING if self.is_streaming: return STATE_STREAMING return STATE_IDLE @property def is_on(self): """Return true if on.""" return True def turn_off(self): """Turn off camera.""" raise NotImplementedError() @callback def async_turn_off(self): """Turn off camera.""" return self.hass.async_add_job(self.turn_off) def turn_on(self): """Turn off camera.""" raise NotImplementedError() @callback def async_turn_on(self): """Turn off camera.""" return self.hass.async_add_job(self.turn_on) def enable_motion_detection(self): """Enable motion detection in the camera.""" raise NotImplementedError() @callback def async_enable_motion_detection(self): """Call the job and enable motion detection.""" return self.hass.async_add_job(self.enable_motion_detection) def disable_motion_detection(self): """Disable motion detection in camera.""" raise NotImplementedError() @callback def async_disable_motion_detection(self): """Call the job and disable motion detection.""" return self.hass.async_add_job(self.disable_motion_detection) @property def state_attributes(self): """Return the camera state attributes.""" attrs = {"access_token": self.access_tokens[-1]} if self.model: attrs["model_name"] = self.model if self.brand: attrs["brand"] = self.brand if self.motion_detection_enabled: attrs["motion_detection"] = self.motion_detection_enabled return attrs @callback def async_update_token(self): """Update the used token.""" self.access_tokens.append( hashlib.sha256(_RND.getrandbits(256).to_bytes(32, "little")).hexdigest() ) class CameraView(HomeAssistantView): """Base CameraView.""" requires_auth = False def __init__(self, component): """Initialize a basic camera view.""" self.component = component async def get(self, request, entity_id): """Start a GET request.""" camera = self.component.get_entity(entity_id) if camera is None: raise web.HTTPNotFound() authenticated = ( request[KEY_AUTHENTICATED] or request.query.get("token") in camera.access_tokens ) if not authenticated: raise web.HTTPUnauthorized() if not camera.is_on: _LOGGER.debug("Camera is off.") raise web.HTTPServiceUnavailable() return await self.handle(request, camera) async def handle(self, request, camera): """Handle the camera request.""" raise NotImplementedError() class CameraImageView(CameraView): """Camera view to serve an image.""" url = "/api/camera_proxy/{entity_id}" name = "api:camera:image" async def handle(self, request, camera): """Serve camera image.""" with suppress(asyncio.CancelledError, asyncio.TimeoutError): async with async_timeout.timeout(10): image = await camera.async_camera_image() if image: return web.Response(body=image, content_type=camera.content_type) raise web.HTTPInternalServerError() class CameraMjpegStream(CameraView): """Camera View to serve an MJPEG stream.""" url = "/api/camera_proxy_stream/{entity_id}" name = "api:camera:stream" async def handle(self, request, camera): """Serve camera stream, possibly with interval.""" interval = request.query.get("interval") if interval is None: return await camera.handle_async_mjpeg_stream(request) try: # Compose camera stream from stills interval = float(request.query.get("interval")) if interval < MIN_STREAM_INTERVAL: raise ValueError(f"Stream interval must be be > {MIN_STREAM_INTERVAL}") return await camera.handle_async_still_stream(request, interval) except ValueError: raise web.HTTPBadRequest() @websocket_api.async_response async def websocket_camera_thumbnail(hass, connection, msg): """Handle get camera thumbnail websocket command. Async friendly. """ try: image = await async_get_image(hass, msg["entity_id"]) await connection.send_big_result( msg["id"], { "content_type": image.content_type, "content": base64.b64encode(image.content).decode("utf-8"), }, ) except HomeAssistantError: connection.send_message( websocket_api.error_message( msg["id"], "image_fetch_failed", "Unable to fetch image" ) ) @websocket_api.async_response @websocket_api.websocket_command( { vol.Required("type"): "camera/stream", vol.Required("entity_id"): cv.entity_id, vol.Optional("format", default="hls"): vol.In(OUTPUT_FORMATS), } ) async def ws_camera_stream(hass, connection, msg): """Handle get camera stream websocket command. Async friendly. """ try: entity_id = msg["entity_id"] camera = _get_camera_from_entity_id(hass, entity_id) camera_prefs = hass.data[DATA_CAMERA_PREFS].get(entity_id) async with async_timeout.timeout(10): source = await camera.stream_source() if not source: raise HomeAssistantError( f"{camera.entity_id} does not support play stream service" ) fmt = msg["format"] url = request_stream( hass, source, fmt=fmt, keepalive=camera_prefs.preload_stream ) connection.send_result(msg["id"], {"url": url}) except HomeAssistantError as ex: _LOGGER.error("Error requesting stream: %s", ex) connection.send_error(msg["id"], "start_stream_failed", str(ex)) except asyncio.TimeoutError: _LOGGER.error("Timeout getting stream source") connection.send_error( msg["id"], "start_stream_failed", "Timeout getting stream source" ) @websocket_api.async_response @websocket_api.websocket_command( {vol.Required("type"): "camera/get_prefs", vol.Required("entity_id"): cv.entity_id} ) async def websocket_get_prefs(hass, connection, msg): """Handle request for account info.""" prefs = hass.data[DATA_CAMERA_PREFS].get(msg["entity_id"]) connection.send_result(msg["id"], prefs.as_dict()) @websocket_api.async_response @websocket_api.websocket_command( { vol.Required("type"): "camera/update_prefs", vol.Required("entity_id"): cv.entity_id, vol.Optional("preload_stream"): bool, } ) async def websocket_update_prefs(hass, connection, msg): """Handle request for account info.""" prefs = hass.data[DATA_CAMERA_PREFS] changes = dict(msg) changes.pop("id") changes.pop("type") entity_id = changes.pop("entity_id") await prefs.async_update(entity_id, **changes) connection.send_result(msg["id"], prefs.get(entity_id).as_dict()) async def async_handle_snapshot_service(camera, service): """Handle snapshot services calls.""" hass = camera.hass filename = service.data[ATTR_FILENAME] filename.hass = hass snapshot_file = filename.async_render(variables={ATTR_ENTITY_ID: camera}) # check if we allow to access to that file if not hass.config.is_allowed_path(snapshot_file): _LOGGER.error("Can't write %s, no access to path!", snapshot_file) return image = await camera.async_camera_image() def _write_image(to_file, image_data): """Executor helper to write image.""" with open(to_file, "wb") as img_file: img_file.write(image_data) try: await hass.async_add_executor_job(_write_image, snapshot_file, image) except OSError as err: _LOGGER.error("Can't write image to file: %s", err) async def async_handle_play_stream_service(camera, service_call): """Handle play stream services calls.""" async with async_timeout.timeout(10): source = await camera.stream_source() if not source: raise HomeAssistantError( f"{camera.entity_id} does not support play stream service" ) hass = camera.hass camera_prefs = hass.data[DATA_CAMERA_PREFS].get(camera.entity_id) fmt = service_call.data[ATTR_FORMAT] entity_ids = service_call.data[ATTR_MEDIA_PLAYER] url = request_stream(hass, source, fmt=fmt, keepalive=camera_prefs.preload_stream) data = { ATTR_ENTITY_ID: entity_ids, ATTR_MEDIA_CONTENT_ID: f"{hass.config.api.base_url}{url}", ATTR_MEDIA_CONTENT_TYPE: FORMAT_CONTENT_TYPE[fmt], } await hass.services.async_call( DOMAIN_MP, SERVICE_PLAY_MEDIA, data, blocking=True, context=service_call.context ) async def async_handle_record_service(camera, call): """Handle stream recording service calls.""" async with async_timeout.timeout(10): source = await camera.stream_source() if not source: raise HomeAssistantError(f"{camera.entity_id} does not support record service") hass = camera.hass filename = call.data[CONF_FILENAME] filename.hass = hass video_path = filename.async_render(variables={ATTR_ENTITY_ID: camera}) data = { CONF_STREAM_SOURCE: source, CONF_FILENAME: video_path, CONF_DURATION: call.data[CONF_DURATION], CONF_LOOKBACK: call.data[CONF_LOOKBACK], } await hass.services.async_call( DOMAIN_STREAM, SERVICE_RECORD, data, blocking=True, context=call.context )
Cinntax/home-assistant
homeassistant/components/camera/__init__.py
Python
apache-2.0
21,499
import random import string from six.moves.urllib.parse import urlparse def region_from_glacier_url(url): domain = urlparse(url).netloc if "." in domain: return domain.split(".")[1] else: return "us-east-1" def vault_from_glacier_url(full_url): return full_url.split("/")[-1] def get_job_id(): return "".join( random.choice(string.ascii_uppercase + string.digits) for _ in range(92) )
william-richard/moto
moto/glacier/utils.py
Python
apache-2.0
441
# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import httplib import unittest import sys from xml.etree import ElementTree as ET import xmlrpclib from libcloud.compute.drivers.softlayer import SoftLayerNodeDriver as SoftLayer from libcloud.compute.types import NodeState from test import MockHttp from test.compute import TestCaseMixin from test.file_fixtures import ComputeFileFixtures from test.secrets import SOFTLAYER_USER, SOFTLAYER_APIKEY class MockSoftLayerTransport(xmlrpclib.Transport): def request(self, host, handler, request_body, verbose=0): self.verbose = 0 method = ET.XML(request_body).find('methodName').text mock = SoftLayerMockHttp(host, 80) mock.request('POST', "%s/%s" % (handler, method)) resp = mock.getresponse() return self._parse_response(resp.body, None) class SoftLayerTests(unittest.TestCase): def setUp(self): SoftLayer.connectionCls.proxyCls.transportCls = [MockSoftLayerTransport, MockSoftLayerTransport] self.driver = SoftLayer(SOFTLAYER_USER, SOFTLAYER_APIKEY) def test_list_nodes(self): node = self.driver.list_nodes()[0] self.assertEqual(node.name, 'test1') self.assertEqual(node.state, NodeState.RUNNING) self.assertEqual(node.extra['password'], 'TEST') def test_list_locations(self): locations = self.driver.list_locations() seattle = (l for l in locations if l.name == 'sea01').next() self.assertEqual(seattle.country, 'US') self.assertEqual(seattle.id, '18171') def test_list_images(self): images = self.driver.list_images() image = images[0] self.assertEqual(image.id, '1684') def test_list_sizes(self): sizes = self.driver.list_sizes() self.assertEqual(len(sizes), 2) self.assertEqual(sizes[0].id, 'sl1') class SoftLayerMockHttp(MockHttp): fixtures = ComputeFileFixtures('softlayer') def _xmlrpc_v3_SoftLayer_Account_getVirtualGuests(self, method, url, body, headers): body = self.fixtures.load('v3_SoftLayer_Account_getVirtualGuests.xml') return (httplib.OK, body, {}, httplib.responses[httplib.OK]) def _xmlrpc_v3_SoftLayer_Location_Datacenter_getDatacenters(self, method, url, body, headers): body = self.fixtures.load('v3_SoftLayer_Location_Datacenter_getDatacenters.xml') return (httplib.OK, body, {}, httplib.responses[httplib.OK]) if __name__ == '__main__': sys.exit(unittest.main())
cloudkick/libcloud
test/compute/test_softlayer.py
Python
apache-2.0
3,233
''' Created on 2017年3月5日 @author: 张志远 ''' import pandas as pd class Menu(): ''' 整个软件的菜单结构 ''' def __init__(self, cur): ''' Constructor ''' self.menu_dict = {} self.cur = cur sql_str = 'SELECT t.id, t.name, nvl(t.parent_id,0) parent_id, t.module_name, t.class_name, t.method_name FROM menu_list t ' self.cur.execute(sql_str) rs = self.cur.fetchall() self. df = pd.DataFrame( rs, index=range(1, len(rs) + 1), columns=['id', 'name', 'parent_id', 'module_name', 'class_name', 'method_name']) # print(self.df) def get_menu_list(self, parent_id=0): ''' 依据输入的parent_id,获取子菜单列表,当其为0时,获取根菜单 ''' menu_level = self.df[self.df['parent_id'] == parent_id] return menu_level # print(menu_level0['name'])
zzy93421/HFOrder
source/Menu.py
Python
apache-2.0
968
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # IkaLog # ====== # Copyright (C) 2015 Takeshi HASEGAWA, Junki MIZUSHIMA # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from subprocess import Popen, PIPE import re def __get_ika_log_version(): try: commit_id = Popen(["git", "rev-parse", "--short", "HEAD"], stdout=PIPE).communicate()[0].decode('utf-8') return re.sub(r'\s+', r'', commit_id) except: return 'unknown' IKALOG_VERSION = __get_ika_log_version()
mzsm/IkaLog
ikalog/version.py
Python
apache-2.0
1,006
import unittest from hepixvmitrust import VMListControler il_simple_json = """"hv:imagelist": { "hv:uri": "https://example.org/example-image-list.image_list", "hv:version": "1", "dc:description": "a README example of an image list", "dc:date:created": "2011-03-10T17:09:12Z", "dc:source": "example.org", "hv:endorser": { "hv:x509": { "hv:dn": "/C=DE/O=GermanGrid/OU=DESY/CN=Owen Synge", "dc:creator": "Owen Synge", "hv:email": "owen.synge@desy.de", "hv:ca": "/C=DE/O=GermanGrid/CN=GridKa-CA" } }, "dc:date:expires": "2011-04-07T17:09:12Z", "hv:images": [ { "hv:image": { "hv:uri": "http://example.org/example-image.img", "sl:osversion": "SL 5.5", "sl:comments": "Vanila install with contextulization scripts", "hv:version": "1", "dc:description": "This is an README example VM", "sl:checksum:sha512": "8b4c269a60da1061b434b696c4a89293bea847b66bd8ba486a914d4209df651193ee8d454f8231840b7500fab6740620c7111d9a17d08b743133dc393ba2c0d4", "hv:size": 2147483648, "sl:arch": "x86_64", "hv:hypervisor": "kvm", "dc:identifier": "488dcdc4-9ab1-4fc8-a7ba-b7a5428ecb3d", "sl:os": "Linux", "dc:title": "README example VM" } } ], "dc:identifier": "4e186b44-2c64-40ea-97d5-e9e5c0bce059", "dc:title": "README example" } }""" class TestSequenceFunctions(unittest.TestCase): def setUp(self): self.listcontroler = VMListControler() def tearDown(self): pass def test_listcontroler_loads(self): self.listcontroler.loads(il_simple_json) def test_listcontroler_verify(self): self.listcontroler.loads(il_simple_json) self.listcontroler.verify()
hepix-virtualisation/hepixvmitrust
test/test_first.py
Python
apache-2.0
1,829
### from naoqi import ALProxy port = 9559 robotIP = '192.168.0.102' anim=ALProxy("ALAnimatedSpeech",robotIP,port) cong={"bodyLnguageMde":"contextual"} tts = ALProxy("ALTextToSpeech", robotIP, 9559) tts.setParameter("speed", 80) anim.say("Hi hello! I'm a robot that moving my hands following the movements of your hands.I usually know how to imitate those in front of me, but today I got confused and I do not recognize your hands very well. Can you help me control my body? I'll give you now three tasks, and for each of them you'll have 15 seconds, will you be successful?", cong) anim.say("This is it? Are you already going? Let's do a little dance before you go", cong) anim.say("Oh, I'm so unfocused, I got confused again. You're very good at it, maybe we'll do it again? Take a minute to understand how I got confused this time and then I will ask you to do more tasks", cong) anim.say("You are so good at understanding how I move, do you want a challenge? Now you can move me any way you want for 2 minutes, at the end of the two minutes you will not have any tasks. Can you understand how am I programmed to move? If you do not want to, you can stop here", cong) anim.say("Are you so good at understanding how I move, want a challenge? Now you can move me the way you want for 2 minutes, at the end of the two minutes you will not have any fat. Can you understand how I programmed to move? You can stop at any point.", cong) anim.say("Oh, where am I? I got confused again. You helped me a lot the last time, let's do it again?. \n Take a minute to understand how I got confused this time and then ask you to do more tasks", cong)
CuriosityLabTAU/physicial_curiosity_big_experiment
for_aminations.py
Python
apache-2.0
1,653
# Copyright 2012 Locaweb. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # based on # https://github.com/openstack/nova/blob/master/nova/network/linux_net.py """Implements iptables rules using linux utilities.""" import inspect import os import re from oslo.config import cfg from neutron.agent.common import config from neutron.agent.linux import iptables_comments as ic from neutron.agent.linux import utils as linux_utils from neutron.common import utils from neutron.openstack.common import excutils from neutron.openstack.common import lockutils from neutron.openstack.common import log as logging LOG = logging.getLogger(__name__) # NOTE(vish): Iptables supports chain names of up to 28 characters, and we # add up to 12 characters to binary_name which is used as a prefix, # so we limit it to 16 characters. # (max_chain_name_length - len('-POSTROUTING') == 16) def get_binary_name(): """Grab the name of the binary we're running in.""" return os.path.basename(inspect.stack()[-1][1])[:16] binary_name = get_binary_name() # A length of a chain name must be less than or equal to 11 characters. # <max length of iptables chain name> - (<binary_name> + '-') = 28-(16+1) = 11 MAX_CHAIN_LEN_WRAP = 11 MAX_CHAIN_LEN_NOWRAP = 28 # Number of iptables rules to print before and after a rule that causes a # a failure during iptables-restore IPTABLES_ERROR_LINES_OF_CONTEXT = 5 def comment_rule(rule, comment): if not cfg.CONF.AGENT.comment_iptables_rules or not comment: return rule return '%s -m comment --comment "%s"' % (rule, comment) def get_chain_name(chain_name, wrap=True): if wrap: return chain_name[:MAX_CHAIN_LEN_WRAP] else: return chain_name[:MAX_CHAIN_LEN_NOWRAP] class IptablesRule(object): """An iptables rule. You shouldn't need to use this class directly, it's only used by IptablesManager. """ def __init__(self, chain, rule, wrap=True, top=False, binary_name=binary_name, tag=None, comment=None): self.chain = get_chain_name(chain, wrap) self.rule = rule self.wrap = wrap self.top = top self.wrap_name = binary_name[:16] self.tag = tag self.comment = comment def __eq__(self, other): return ((self.chain == other.chain) and (self.rule == other.rule) and (self.top == other.top) and (self.wrap == other.wrap)) def __ne__(self, other): return not self == other def __str__(self): if self.wrap: chain = '%s-%s' % (self.wrap_name, self.chain) else: chain = self.chain return comment_rule('-A %s %s' % (chain, self.rule), self.comment) class IptablesTable(object): """An iptables table.""" def __init__(self, binary_name=binary_name): self.rules = [] self.remove_rules = [] self.chains = set() self.unwrapped_chains = set() self.remove_chains = set() self.wrap_name = binary_name[:16] def add_chain(self, name, wrap=True): """Adds a named chain to the table. The chain name is wrapped to be unique for the component creating it, so different components of Nova can safely create identically named chains without interfering with one another. At the moment, its wrapped name is <binary name>-<chain name>, so if nova-compute creates a chain named 'OUTPUT', it'll actually end up named 'nova-compute-OUTPUT'. """ name = get_chain_name(name, wrap) if wrap: self.chains.add(name) else: self.unwrapped_chains.add(name) def _select_chain_set(self, wrap): if wrap: return self.chains else: return self.unwrapped_chains def ensure_remove_chain(self, name, wrap=True): """Ensure the chain is removed. This removal "cascades". All rule in the chain are removed, as are all rules in other chains that jump to it. """ name = get_chain_name(name, wrap) chain_set = self._select_chain_set(wrap) if name not in chain_set: return self.remove_chain(name, wrap) def remove_chain(self, name, wrap=True): """Remove named chain. This removal "cascades". All rule in the chain are removed, as are all rules in other chains that jump to it. If the chain is not found, this is merely logged. """ name = get_chain_name(name, wrap) chain_set = self._select_chain_set(wrap) if name not in chain_set: LOG.warn(_('Attempted to remove chain %s which does not exist'), name) return chain_set.remove(name) if not wrap: # non-wrapped chains and rules need to be dealt with specially, # so we keep a list of them to be iterated over in apply() self.remove_chains.add(name) # first, add rules to remove that have a matching chain name self.remove_rules += [r for r in self.rules if r.chain == name] # next, remove rules from list that have a matching chain name self.rules = [r for r in self.rules if r.chain != name] if not wrap: jump_snippet = '-j %s' % name # next, add rules to remove that have a matching jump chain self.remove_rules += [r for r in self.rules if jump_snippet in r.rule] else: jump_snippet = '-j %s-%s' % (self.wrap_name, name) # finally, remove rules from list that have a matching jump chain self.rules = [r for r in self.rules if jump_snippet not in r.rule] def add_rule(self, chain, rule, wrap=True, top=False, tag=None, comment=None): """Add a rule to the table. This is just like what you'd feed to iptables, just without the '-A <chain name>' bit at the start. However, if you need to jump to one of your wrapped chains, prepend its name with a '$' which will ensure the wrapping is applied correctly. """ chain = get_chain_name(chain, wrap) if wrap and chain not in self.chains: raise LookupError(_('Unknown chain: %r') % chain) if '$' in rule: rule = ' '.join( self._wrap_target_chain(e, wrap) for e in rule.split(' ')) self.rules.append(IptablesRule(chain, rule, wrap, top, self.wrap_name, tag, comment)) def _wrap_target_chain(self, s, wrap): if s.startswith('$'): s = ('%s-%s' % (self.wrap_name, get_chain_name(s[1:], wrap))) return s def remove_rule(self, chain, rule, wrap=True, top=False, comment=None): """Remove a rule from a chain. Note: The rule must be exactly identical to the one that was added. You cannot switch arguments around like you can with the iptables CLI tool. """ chain = get_chain_name(chain, wrap) try: if '$' in rule: rule = ' '.join( self._wrap_target_chain(e, wrap) for e in rule.split(' ')) self.rules.remove(IptablesRule(chain, rule, wrap, top, self.wrap_name, comment=comment)) if not wrap: self.remove_rules.append(IptablesRule(chain, rule, wrap, top, self.wrap_name, comment=comment)) except ValueError: LOG.warn(_('Tried to remove rule that was not there:' ' %(chain)r %(rule)r %(wrap)r %(top)r'), {'chain': chain, 'rule': rule, 'top': top, 'wrap': wrap}) def _get_chain_rules(self, chain, wrap): chain = get_chain_name(chain, wrap) return [rule for rule in self.rules if rule.chain == chain and rule.wrap == wrap] def is_chain_empty(self, chain, wrap=True): return not self._get_chain_rules(chain, wrap) def empty_chain(self, chain, wrap=True): """Remove all rules from a chain.""" chained_rules = self._get_chain_rules(chain, wrap) for rule in chained_rules: self.rules.remove(rule) def clear_rules_by_tag(self, tag): if not tag: return rules = [rule for rule in self.rules if rule.tag == tag] for rule in rules: self.rules.remove(rule) class IptablesManager(object): """Wrapper for iptables. See IptablesTable for some usage docs A number of chains are set up to begin with. First, neutron-filter-top. It's added at the top of FORWARD and OUTPUT. Its name is not wrapped, so it's shared between the various nova workers. It's intended for rules that need to live at the top of the FORWARD and OUTPUT chains. It's in both the ipv4 and ipv6 set of tables. For ipv4 and ipv6, the built-in INPUT, OUTPUT, and FORWARD filter chains are wrapped, meaning that the "real" INPUT chain has a rule that jumps to the wrapped INPUT chain, etc. Additionally, there's a wrapped chain named "local" which is jumped to from neutron-filter-top. For ipv4, the built-in PREROUTING, OUTPUT, and POSTROUTING nat chains are wrapped in the same was as the built-in filter chains. Additionally, there's a snat chain that is applied after the POSTROUTING chain. """ def __init__(self, _execute=None, state_less=False, root_helper=None, use_ipv6=False, namespace=None, binary_name=binary_name): if _execute: self.execute = _execute else: self.execute = linux_utils.execute config.register_iptables_opts(cfg.CONF) self.use_ipv6 = use_ipv6 self.root_helper = root_helper self.namespace = namespace self.iptables_apply_deferred = False self.wrap_name = binary_name[:16] self.ipv4 = {'filter': IptablesTable(binary_name=self.wrap_name)} self.ipv6 = {'filter': IptablesTable(binary_name=self.wrap_name)} # Add a neutron-filter-top chain. It's intended to be shared # among the various nova components. It sits at the very top # of FORWARD and OUTPUT. for tables in [self.ipv4, self.ipv6]: tables['filter'].add_chain('neutron-filter-top', wrap=False) tables['filter'].add_rule('FORWARD', '-j neutron-filter-top', wrap=False, top=True) tables['filter'].add_rule('OUTPUT', '-j neutron-filter-top', wrap=False, top=True) tables['filter'].add_chain('local') tables['filter'].add_rule('neutron-filter-top', '-j $local', wrap=False) # Wrap the built-in chains builtin_chains = {4: {'filter': ['INPUT', 'OUTPUT', 'FORWARD']}, 6: {'filter': ['INPUT', 'OUTPUT', 'FORWARD']}} if not state_less: self.ipv4.update( {'nat': IptablesTable(binary_name=self.wrap_name)}) builtin_chains[4].update({'nat': ['PREROUTING', 'OUTPUT', 'POSTROUTING']}) self.ipv4.update( {'raw': IptablesTable(binary_name=self.wrap_name)}) builtin_chains[4].update({'raw': ['PREROUTING', 'OUTPUT']}) for ip_version in builtin_chains: if ip_version == 4: tables = self.ipv4 elif ip_version == 6: tables = self.ipv6 for table, chains in builtin_chains[ip_version].iteritems(): for chain in chains: tables[table].add_chain(chain) tables[table].add_rule(chain, '-j $%s' % (chain), wrap=False) if not state_less: # Add a neutron-postrouting-bottom chain. It's intended to be # shared among the various nova components. We set it as the last # chain of POSTROUTING chain. self.ipv4['nat'].add_chain('neutron-postrouting-bottom', wrap=False) self.ipv4['nat'].add_rule('POSTROUTING', '-j neutron-postrouting-bottom', wrap=False) # We add a snat chain to the shared neutron-postrouting-bottom # chain so that it's applied last. self.ipv4['nat'].add_chain('snat') self.ipv4['nat'].add_rule('neutron-postrouting-bottom', '-j $snat', wrap=False, comment=ic.SNAT_OUT) # And then we add a float-snat chain and jump to first thing in # the snat chain. self.ipv4['nat'].add_chain('float-snat') self.ipv4['nat'].add_rule('snat', '-j $float-snat') def is_chain_empty(self, table, chain, ip_version=4, wrap=True): try: requested_table = {4: self.ipv4, 6: self.ipv6}[ip_version][table] except KeyError: return True return requested_table.is_chain_empty(chain, wrap) def defer_apply_on(self): self.iptables_apply_deferred = True def defer_apply_off(self): self.iptables_apply_deferred = False self._apply() def apply(self): if self.iptables_apply_deferred: return self._apply() def _apply(self): lock_name = 'iptables' if self.namespace: lock_name += '-' + self.namespace try: with lockutils.lock(lock_name, utils.SYNCHRONIZED_PREFIX, True): LOG.debug(_('Got semaphore / lock "%s"'), lock_name) return self._apply_synchronized() finally: LOG.debug(_('Semaphore / lock released "%s"'), lock_name) def _apply_synchronized(self): """Apply the current in-memory set of iptables rules. This will blow away any rules left over from previous runs of the same component of Nova, and replace them with our current set of rules. This happens atomically, thanks to iptables-restore. """ s = [('iptables', self.ipv4)] if self.use_ipv6: s += [('ip6tables', self.ipv6)] for cmd, tables in s: args = ['%s-save' % (cmd,), '-c'] if self.namespace: args = ['ip', 'netns', 'exec', self.namespace] + args all_tables = self.execute(args, root_helper=self.root_helper) all_lines = all_tables.split('\n') # Traverse tables in sorted order for predictable dump output for table_name in sorted(tables): table = tables[table_name] start, end = self._find_table(all_lines, table_name) all_lines[start:end] = self._modify_rules( all_lines[start:end], table, table_name) args = ['%s-restore' % (cmd,), '-c'] if self.namespace: args = ['ip', 'netns', 'exec', self.namespace] + args try: self.execute(args, process_input='\n'.join(all_lines), root_helper=self.root_helper) except RuntimeError as r_error: with excutils.save_and_reraise_exception(): try: line_no = int(re.search( 'iptables-restore: line ([0-9]+?) failed', str(r_error)).group(1)) context = IPTABLES_ERROR_LINES_OF_CONTEXT log_start = max(0, line_no - context) log_end = line_no + context except AttributeError: # line error wasn't found, print all lines instead log_start = 0 log_end = len(all_lines) log_lines = ('%7d. %s' % (idx, l) for idx, l in enumerate( all_lines[log_start:log_end], log_start + 1) ) LOG.error(_("IPTablesManager.apply failed to apply the " "following set of iptables rules:\n%s"), '\n'.join(log_lines)) LOG.debug(_("IPTablesManager.apply completed with success")) def _find_table(self, lines, table_name): if len(lines) < 3: # length only <2 when fake iptables return (0, 0) try: start = lines.index('*%s' % table_name) - 1 except ValueError: # Couldn't find table_name LOG.debug(_('Unable to find table %s'), table_name) return (0, 0) end = lines[start:].index('COMMIT') + start + 2 return (start, end) def _find_rules_index(self, lines): seen_chains = False rules_index = 0 for rules_index, rule in enumerate(lines): if not seen_chains: if rule.startswith(':'): seen_chains = True else: if not rule.startswith(':'): break if not seen_chains: rules_index = 2 return rules_index def _find_last_entry(self, filter_list, match_str): # find a matching entry, starting from the bottom for s in reversed(filter_list): s = s.strip() if match_str in s: return s def _modify_rules(self, current_lines, table, table_name): # Chains are stored as sets to avoid duplicates. # Sort the output chains here to make their order predictable. unwrapped_chains = sorted(table.unwrapped_chains) chains = sorted(table.chains) remove_chains = table.remove_chains rules = table.rules remove_rules = table.remove_rules if not current_lines: fake_table = ['# Generated by iptables_manager', '*' + table_name, 'COMMIT', '# Completed by iptables_manager'] current_lines = fake_table # Fill old_filter with any chains or rules we might have added, # they could have a [packet:byte] count we want to preserve. # Fill new_filter with any chains or rules without our name in them. old_filter, new_filter = [], [] for line in current_lines: (old_filter if self.wrap_name in line else new_filter).append(line.strip()) rules_index = self._find_rules_index(new_filter) all_chains = [':%s' % name for name in unwrapped_chains] all_chains += [':%s-%s' % (self.wrap_name, name) for name in chains] # Iterate through all the chains, trying to find an existing # match. our_chains = [] for chain in all_chains: chain_str = str(chain).strip() old = self._find_last_entry(old_filter, chain_str) if not old: dup = self._find_last_entry(new_filter, chain_str) new_filter = [s for s in new_filter if chain_str not in s.strip()] # if no old or duplicates, use original chain if old or dup: chain_str = str(old or dup) else: # add-on the [packet:bytes] chain_str += ' - [0:0]' our_chains += [chain_str] # Iterate through all the rules, trying to find an existing # match. our_rules = [] bot_rules = [] for rule in rules: rule_str = str(rule).strip() # Further down, we weed out duplicates from the bottom of the # list, so here we remove the dupes ahead of time. old = self._find_last_entry(old_filter, rule_str) if not old: dup = self._find_last_entry(new_filter, rule_str) new_filter = [s for s in new_filter if rule_str not in s.strip()] # if no old or duplicates, use original rule if old or dup: rule_str = str(old or dup) # backup one index so we write the array correctly if not old: rules_index -= 1 else: # add-on the [packet:bytes] rule_str = '[0:0] ' + rule_str if rule.top: # rule.top == True means we want this rule to be at the top. our_rules += [rule_str] else: bot_rules += [rule_str] our_rules += bot_rules new_filter[rules_index:rules_index] = our_rules new_filter[rules_index:rules_index] = our_chains def _strip_packets_bytes(line): # strip any [packet:byte] counts at start or end of lines if line.startswith(':'): # it's a chain, for example, ":neutron-billing - [0:0]" line = line.split(':')[1] line = line.split(' - [', 1)[0] elif line.startswith('['): # it's a rule, for example, "[0:0] -A neutron-billing..." line = line.split('] ', 1)[1] line = line.strip() return line seen_chains = set() def _weed_out_duplicate_chains(line): # ignore [packet:byte] counts at end of lines if line.startswith(':'): line = _strip_packets_bytes(line) if line in seen_chains: return False else: seen_chains.add(line) # Leave it alone return True seen_rules = set() def _weed_out_duplicate_rules(line): if line.startswith('['): line = _strip_packets_bytes(line) if line in seen_rules: return False else: seen_rules.add(line) # Leave it alone return True def _weed_out_removes(line): # We need to find exact matches here if line.startswith(':'): line = _strip_packets_bytes(line) for chain in remove_chains: if chain == line: remove_chains.remove(chain) return False elif line.startswith('['): line = _strip_packets_bytes(line) for rule in remove_rules: rule_str = _strip_packets_bytes(str(rule)) if rule_str == line: remove_rules.remove(rule) return False # Leave it alone return True # We filter duplicates. Go through the chains and rules, letting # the *last* occurrence take precedence since it could have a # non-zero [packet:byte] count we want to preserve. We also filter # out anything in the "remove" list. new_filter.reverse() new_filter = [line for line in new_filter if _weed_out_duplicate_chains(line) and _weed_out_duplicate_rules(line) and _weed_out_removes(line)] new_filter.reverse() # flush lists, just in case we didn't find something remove_chains.clear() for rule in remove_rules: remove_rules.remove(rule) return new_filter def _get_traffic_counters_cmd_tables(self, chain, wrap=True): name = get_chain_name(chain, wrap) cmd_tables = [('iptables', key) for key, table in self.ipv4.items() if name in table._select_chain_set(wrap)] if self.use_ipv6: cmd_tables += [('ip6tables', key) for key, table in self.ipv6.items() if name in table._select_chain_set(wrap)] return cmd_tables def get_traffic_counters(self, chain, wrap=True, zero=False): """Return the sum of the traffic counters of all rules of a chain.""" cmd_tables = self._get_traffic_counters_cmd_tables(chain, wrap) if not cmd_tables: LOG.warn(_('Attempted to get traffic counters of chain %s which ' 'does not exist'), chain) return name = get_chain_name(chain, wrap) acc = {'pkts': 0, 'bytes': 0} for cmd, table in cmd_tables: args = [cmd, '-t', table, '-L', name, '-n', '-v', '-x'] if zero: args.append('-Z') if self.namespace: args = ['ip', 'netns', 'exec', self.namespace] + args current_table = (self.execute(args, root_helper=self.root_helper)) current_lines = current_table.split('\n') for line in current_lines[2:]: if not line: break data = line.split() if (len(data) < 2 or not data[0].isdigit() or not data[1].isdigit()): break acc['pkts'] += int(data[0]) acc['bytes'] += int(data[1]) return acc
uni2u/neutron
neutron/agent/linux/iptables_manager.py
Python
apache-2.0
26,354
# Copyright 2019 The Johns Hopkins University Applied Physics Laboratory # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """DVID specific resource objects that are passed to intern.service.Service methods. Author: Luis Rodriguez """ from intern.resource.dvid.resource import DVIDResource from intern.resource.dvid.resource import DataInstanceResource, RepositoryResource
jhuapl-boss/intern
intern/resource/dvid/__init__.py
Python
apache-2.0
870
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Base classes for our unit tests. Allows overriding of flags for use of fakes, and some black magic for inline callbacks. """ import functools import unittest import uuid import mox import nose.plugins.skip from oslo.config import cfg import stubout from cinder import flags from cinder.openstack.common import log as logging from cinder.openstack.common import timeutils from cinder import service from cinder import tests from cinder.tests import fake_flags test_opts = [ cfg.StrOpt('sqlite_clean_db', default='clean.sqlite', help='File name of clean sqlite db'), cfg.BoolOpt('fake_tests', default=True, help='should we use everything for testing'), ] FLAGS = flags.FLAGS FLAGS.register_opts(test_opts) LOG = logging.getLogger(__name__) class skip_test(object): """Decorator that skips a test.""" # TODO(tr3buchet): remember forever what comstud did here def __init__(self, msg): self.message = msg def __call__(self, func): @functools.wraps(func) def _skipper(*args, **kw): """Wrapped skipper function.""" raise nose.SkipTest(self.message) return _skipper class skip_if(object): """Decorator that skips a test if condition is true.""" def __init__(self, condition, msg): self.condition = condition self.message = msg def __call__(self, func): @functools.wraps(func) def _skipper(*args, **kw): """Wrapped skipper function.""" if self.condition: raise nose.SkipTest(self.message) func(*args, **kw) return _skipper class skip_unless(object): """Decorator that skips a test if condition is not true.""" def __init__(self, condition, msg): self.condition = condition self.message = msg def __call__(self, func): @functools.wraps(func) def _skipper(*args, **kw): """Wrapped skipper function.""" if not self.condition: raise nose.SkipTest(self.message) func(*args, **kw) return _skipper def skip_if_fake(func): """Decorator that skips a test if running in fake mode.""" def _skipper(*args, **kw): """Wrapped skipper function.""" if FLAGS.fake_tests: raise unittest.SkipTest('Test cannot be run in fake mode') else: return func(*args, **kw) return _skipper class TestingException(Exception): pass class TestCase(unittest.TestCase): """Test case base class for all unit tests.""" def setUp(self): """Run before each test method to initialize test environment.""" super(TestCase, self).setUp() fake_flags.set_defaults(FLAGS) flags.parse_args([], default_config_files=[]) # NOTE(vish): We need a better method for creating fixtures for tests # now that we have some required db setup for the system # to work properly. self.start = timeutils.utcnow() tests.reset_db() # emulate some of the mox stuff, we can't use the metaclass # because it screws with our generators self.mox = mox.Mox() self.stubs = stubout.StubOutForTesting() self.injected = [] self._services = [] FLAGS.set_override('fatal_exception_format_errors', True) def tearDown(self): """Runs after each test method to tear down test environment.""" try: self.mox.UnsetStubs() self.stubs.UnsetAll() self.stubs.SmartUnsetAll() self.mox.VerifyAll() super(TestCase, self).tearDown() finally: # Reset any overridden flags FLAGS.reset() # Stop any timers for x in self.injected: try: x.stop() except AssertionError: pass # Kill any services for x in self._services: try: x.kill() except Exception: pass # Delete attributes that don't start with _ so they don't pin # memory around unnecessarily for the duration of the test # suite for key in [k for k in self.__dict__.keys() if k[0] != '_']: del self.__dict__[key] def flags(self, **kw): """Override flag variables for a test.""" for k, v in kw.iteritems(): FLAGS.set_override(k, v) def start_service(self, name, host=None, **kwargs): host = host and host or uuid.uuid4().hex kwargs.setdefault('host', host) kwargs.setdefault('binary', 'cinder-%s' % name) svc = service.Service.create(**kwargs) svc.start() self._services.append(svc) return svc # Useful assertions def assertDictMatch(self, d1, d2, approx_equal=False, tolerance=0.001): """Assert two dicts are equivalent. This is a 'deep' match in the sense that it handles nested dictionaries appropriately. NOTE: If you don't care (or don't know) a given value, you can specify the string DONTCARE as the value. This will cause that dict-item to be skipped. """ def raise_assertion(msg): d1str = str(d1) d2str = str(d2) base_msg = ('Dictionaries do not match. %(msg)s d1: %(d1str)s ' 'd2: %(d2str)s' % locals()) raise AssertionError(base_msg) d1keys = set(d1.keys()) d2keys = set(d2.keys()) if d1keys != d2keys: d1only = d1keys - d2keys d2only = d2keys - d1keys raise_assertion('Keys in d1 and not d2: %(d1only)s. ' 'Keys in d2 and not d1: %(d2only)s' % locals()) for key in d1keys: d1value = d1[key] d2value = d2[key] try: error = abs(float(d1value) - float(d2value)) within_tolerance = error <= tolerance except (ValueError, TypeError): # If both values aren't convertable to float, just ignore # ValueError if arg is a str, TypeError if it's something else # (like None) within_tolerance = False if hasattr(d1value, 'keys') and hasattr(d2value, 'keys'): self.assertDictMatch(d1value, d2value) elif 'DONTCARE' in (d1value, d2value): continue elif approx_equal and within_tolerance: continue elif d1value != d2value: raise_assertion("d1['%(key)s']=%(d1value)s != " "d2['%(key)s']=%(d2value)s" % locals()) def assertDictListMatch(self, L1, L2, approx_equal=False, tolerance=0.001): """Assert a list of dicts are equivalent.""" def raise_assertion(msg): L1str = str(L1) L2str = str(L2) base_msg = ('List of dictionaries do not match: %(msg)s ' 'L1: %(L1str)s L2: %(L2str)s' % locals()) raise AssertionError(base_msg) L1count = len(L1) L2count = len(L2) if L1count != L2count: raise_assertion('Length mismatch: len(L1)=%(L1count)d != ' 'len(L2)=%(L2count)d' % locals()) for d1, d2 in zip(L1, L2): self.assertDictMatch(d1, d2, approx_equal=approx_equal, tolerance=tolerance) def assertSubDictMatch(self, sub_dict, super_dict): """Assert a sub_dict is subset of super_dict.""" self.assertTrue(set(sub_dict.keys()).issubset(set(super_dict.keys()))) for k, sub_value in sub_dict.items(): super_value = super_dict[k] if isinstance(sub_value, dict): self.assertSubDictMatch(sub_value, super_value) elif 'DONTCARE' in (sub_value, super_value): continue else: self.assertEqual(sub_value, super_value) def assertIn(self, a, b, *args, **kwargs): """Python < v2.7 compatibility. Assert 'a' in 'b'""" try: f = super(TestCase, self).assertIn except AttributeError: self.assertTrue(a in b, *args, **kwargs) else: f(a, b, *args, **kwargs) def assertNotIn(self, a, b, *args, **kwargs): """Python < v2.7 compatibility. Assert 'a' NOT in 'b'""" try: f = super(TestCase, self).assertNotIn except AttributeError: self.assertFalse(a in b, *args, **kwargs) else: f(a, b, *args, **kwargs)
tomasdubec/openstack-cinder
cinder/test.py
Python
apache-2.0
9,604
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for estimators.linear.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import tempfile import numpy as np import tensorflow as tf from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import estimator_test_utils from tensorflow.contrib.learn.python.learn.metric_spec import MetricSpec def _prepare_iris_data_for_logistic_regression(): # Converts iris data to a logistic regression problem. iris = tf.contrib.learn.datasets.load_iris() ids = np.where((iris.target == 0) | (iris.target == 1)) iris = tf.contrib.learn.datasets.base.Dataset(data=iris.data[ids], target=iris.target[ids]) return iris def _iris_input_fn(): iris = tf.contrib.learn.datasets.load_iris() return { 'feature': tf.constant(iris.data, dtype=tf.float32) }, tf.constant(iris.target, shape=[150, 1], dtype=tf.int32) class LinearClassifierTest(tf.test.TestCase): def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract( self, tf.contrib.learn.LinearClassifier) def testTrain(self): """Tests that loss goes down with training.""" def input_fn(): return { 'age': tf.constant([1]), 'language': tf.SparseTensor(values=['english'], indices=[[0, 0]], shape=[1, 1]) }, tf.constant([[1]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) age = tf.contrib.layers.real_valued_column('age') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=200) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) self.assertLess(loss2, 0.01) self.assertTrue('centered_bias_weight' in classifier.get_variable_names()) def testJointTrain(self): """Tests that loss goes down with training with joint weights.""" def input_fn(): return { 'age': tf.SparseTensor(values=['1'], indices=[[0, 0]], shape=[1, 1]), 'language': tf.SparseTensor(values=['english'], indices=[[0, 0]], shape=[1, 1]) }, tf.constant([[1]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) age = tf.contrib.layers.sparse_column_with_hash_bucket('age', 2) classifier = tf.contrib.learn.LinearClassifier( _joint_weight=True, feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=200) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) self.assertLess(loss2, 0.01) self.assertTrue('centered_bias_weight' in classifier.get_variable_names()) def testMultiClass_MatrixData(self): """Tests multi-class classification using matrix data as input.""" feature_column = tf.contrib.layers.real_valued_column('feature', dimension=4) classifier = tf.contrib.learn.LinearClassifier( n_classes=3, feature_columns=[feature_column]) classifier.fit(input_fn=_iris_input_fn, steps=100) scores = classifier.evaluate(input_fn=_iris_input_fn, steps=100) self.assertGreater(scores['accuracy'], 0.9) def testMultiClass_MatrixData_Target1D(self): """Same as the last test, but target shape is [150] instead of [150, 1].""" def _input_fn(): iris = tf.contrib.learn.datasets.load_iris() return { 'feature': tf.constant(iris.data, dtype=tf.float32) }, tf.constant(iris.target, shape=[150], dtype=tf.int32) feature_column = tf.contrib.layers.real_valued_column('feature', dimension=4) classifier = tf.contrib.learn.LinearClassifier( n_classes=3, feature_columns=[feature_column]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testMultiClass_NpMatrixData(self): """Tests multi-class classification using numpy matrix data as input.""" iris = tf.contrib.learn.datasets.load_iris() train_x = iris.data train_y = iris.target feature_column = tf.contrib.layers.real_valued_column('', dimension=4) classifier = tf.contrib.learn.LinearClassifier( n_classes=3, feature_columns=[feature_column]) classifier.fit(x=train_x, y=train_y, steps=100) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testLogisticRegression_MatrixData(self): """Tests binary classification using matrix data as input.""" def _input_fn(): iris = _prepare_iris_data_for_logistic_regression() return { 'feature': tf.constant(iris.data, dtype=tf.float32) }, tf.constant(iris.target, shape=[100, 1], dtype=tf.int32) feature_column = tf.contrib.layers.real_valued_column('feature', dimension=4) classifier = tf.contrib.learn.LinearClassifier( feature_columns=[feature_column]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testLogisticRegression_MatrixData_Target1D(self): """Same as the last test, but target shape is [100] instead of [100, 1].""" def _input_fn(): iris = _prepare_iris_data_for_logistic_regression() return { 'feature': tf.constant(iris.data, dtype=tf.float32) }, tf.constant(iris.target, shape=[100], dtype=tf.int32) feature_column = tf.contrib.layers.real_valued_column('feature', dimension=4) classifier = tf.contrib.learn.LinearClassifier( feature_columns=[feature_column]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testLogisticRegression_NpMatrixData(self): """Tests binary classification using numpy matrix data as input.""" iris = _prepare_iris_data_for_logistic_regression() train_x = iris.data train_y = iris.target feature_columns = [tf.contrib.layers.real_valued_column('', dimension=4)] classifier = tf.contrib.learn.LinearClassifier( feature_columns=feature_columns) classifier.fit(x=train_x, y=train_y, steps=100) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testWeightAndBiasNames(self): """Tests that weight and bias names haven't changed.""" feature_column = tf.contrib.layers.real_valued_column('feature', dimension=4) classifier = tf.contrib.learn.LinearClassifier( n_classes=3, feature_columns=[feature_column]) classifier.fit(input_fn=_iris_input_fn, steps=100) self.assertEqual(4, len(classifier.weights_)) self.assertEqual(3, len(classifier.bias_)) def testCustomOptimizerByObject(self): """Tests multi-class classification using matrix data as input.""" feature_column = tf.contrib.layers.real_valued_column('feature', dimension=4) classifier = tf.contrib.learn.LinearClassifier( n_classes=3, optimizer=tf.train.FtrlOptimizer(learning_rate=0.1), feature_columns=[feature_column]) classifier.fit(input_fn=_iris_input_fn, steps=100) scores = classifier.evaluate(input_fn=_iris_input_fn, steps=100) self.assertGreater(scores['accuracy'], 0.9) def testCustomOptimizerByString(self): """Tests multi-class classification using matrix data as input.""" feature_column = tf.contrib.layers.real_valued_column('feature', dimension=4) def _optimizer(): return tf.train.FtrlOptimizer(learning_rate=0.1) classifier = tf.contrib.learn.LinearClassifier( n_classes=3, optimizer=_optimizer, feature_columns=[feature_column]) classifier.fit(input_fn=_iris_input_fn, steps=100) scores = classifier.evaluate(input_fn=_iris_input_fn, steps=100) self.assertGreater(scores['accuracy'], 0.9) def testCustomOptimizerByFunction(self): """Tests multi-class classification using matrix data as input.""" feature_column = tf.contrib.layers.real_valued_column('feature', dimension=4) classifier = tf.contrib.learn.LinearClassifier( n_classes=3, optimizer='Ftrl', feature_columns=[feature_column]) classifier.fit(input_fn=_iris_input_fn, steps=100) scores = classifier.evaluate(input_fn=_iris_input_fn, steps=100) self.assertGreater(scores['accuracy'], 0.9) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) target = tf.constant([[1], [0], [0], [0]], dtype=tf.float32) features = {'x': tf.train.limit_epochs( tf.ones(shape=[4, 1], dtype=tf.float32), num_epochs=num_epochs)} return features, target def _my_metric_op(predictions, targets): # For the case of binary classification, the 2nd column of "predictions" # denotes the model predictions. predictions = tf.slice(predictions, [0, 1], [-1, 1]) return tf.reduce_sum(tf.mul(predictions, targets)) classifier = tf.contrib.learn.LinearClassifier( feature_columns=[tf.contrib.layers.real_valued_column('x')]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ 'my_accuracy': MetricSpec( metric_fn=tf.contrib.metrics.streaming_accuracy, prediction_key='classes'), 'my_precision': MetricSpec( metric_fn=tf.contrib.metrics.streaming_precision, prediction_key='classes'), 'my_metric': MetricSpec(metric_fn=_my_metric_op, prediction_key='probabilities') }) self.assertTrue( set(['loss', 'my_accuracy', 'my_precision', 'my_metric' ]).issubset(set(scores.keys()))) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(classifier.predict(input_fn=predict_input_fn))) self.assertEqual(_sklearn.accuracy_score([1, 0, 0, 0], predictions), scores['my_accuracy']) # Test the case where the 2nd element of the key is neither "classes" nor # "probabilities". with self.assertRaises(ValueError): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={('bad_name', 'bad_type'): tf.contrib.metrics.streaming_auc}) # Test the case where the tuple of the key doesn't have 2 elements. with self.assertRaises(ValueError): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ ('bad_length_name', 'classes', 'bad_length'): tf.contrib.metrics.streaming_accuracy }) def testLogisticFractionalLabels(self): """Tests logistic training with fractional labels.""" def input_fn(): return { 'age': tf.constant([[1], [2]]), }, tf.constant([[.7], [0]], dtype=tf.float32) age = tf.contrib.layers.real_valued_column('age') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[age], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=input_fn, steps=500) predictions_proba = classifier.predict_proba(input_fn=input_fn) # Prediction probabilities mirror the target column, which proves that the # classifier learns from float input. self.assertAllClose(predictions_proba, [[.3, .7], [1., 0.]], atol=.1) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(): features = { 'language': tf.SparseTensor(values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } target = tf.constant([[1], [0], [0]]) return features, target sparse_features = [ # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. tf.contrib.layers.sparse_column_with_hash_bucket('language', hash_bucket_size=2e7) ] classifier = tf.contrib.learn.LinearClassifier( feature_columns=sparse_features, # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config=tf.contrib.learn.RunConfig( num_ps_replicas=2, cluster_spec=tf.train.ClusterSpec({}))) classifier.fit(input_fn=_input_fn, steps=200) loss = classifier.evaluate(input_fn=_input_fn, steps=1)['loss'] self.assertLess(loss, 0.05) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def input_fn(num_epochs=None): return { 'age': tf.train.limit_epochs(tf.constant([1]), num_epochs=num_epochs), 'language': tf.SparseTensor( values=['english'], indices=[[0, 0]], shape=[1, 1]), }, tf.constant([[1]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) age = tf.contrib.layers.real_valued_column('age') model_dir = tempfile.mkdtemp() classifier = tf.contrib.learn.LinearClassifier( model_dir=model_dir, feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=30) predict_input_fn = functools.partial(input_fn, num_epochs=1) out1_class = list(classifier.predict(input_fn=predict_input_fn, as_iterable=True)) out1_proba = list(classifier.predict_proba(input_fn=predict_input_fn, as_iterable=True)) del classifier classifier2 = tf.contrib.learn.LinearClassifier( model_dir=model_dir, feature_columns=[age, language]) out2_class = list(classifier2.predict(input_fn=predict_input_fn, as_iterable=True)) out2_proba = list(classifier2.predict_proba(input_fn=predict_input_fn, as_iterable=True)) self.assertTrue(np.array_equal(out1_class, out2_class)) self.assertTrue(np.array_equal(out1_proba, out2_proba)) def testWeightColumn(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. target = tf.constant([[1], [0], [0], [0]]) features = { 'x': tf.ones(shape=[4, 1], dtype=tf.float32), 'w': tf.constant([[100.], [3.], [2.], [2.]]) } return features, target def _input_fn_eval(): # Create 4 rows (y = x) target = tf.constant([[1], [1], [1], [1]]) features = { 'x': tf.ones(shape=[4, 1], dtype=tf.float32), 'w': tf.constant([[1.], [1.], [1.], [1.]]) } return features, target classifier = tf.contrib.learn.LinearClassifier( weight_column_name='w', feature_columns=[tf.contrib.layers.real_valued_column('x')], config=tf.contrib.learn.RunConfig(tf_random_seed=3)) classifier.fit(input_fn=_input_fn_train, steps=100) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) # All examples in eval data set are y=x. self.assertGreater(scores['labels/actual_target_mean'], 0.9) # If there were no weight column, model would learn y=Not(x). Because of # weights, it learns y=x. self.assertGreater(scores['labels/prediction_mean'], 0.9) # All examples in eval data set are y=x. So if weight column were ignored, # then accuracy would be zero. Because of weights, accuracy should be close # to 1.0. self.assertGreater(scores['accuracy'], 0.9) scores_train_set = classifier.evaluate(input_fn=_input_fn_train, steps=1) # Considering weights, the mean target should be close to 1.0. # If weights were ignored, it would be 0.25. self.assertGreater(scores_train_set['labels/actual_target_mean'], 0.9) # The classifier has learned y=x. If weight column were ignored in # evaluation, then accuracy for the train set would be 0.25. # Because weight is not ignored, accuracy is greater than 0.6. self.assertGreater(scores_train_set['accuracy'], 0.6) def testWeightColumnLoss(self): """Test ensures that you can specify per-example weights for loss.""" def _input_fn(): features = { 'age': tf.constant([[20], [20], [20]]), 'weights': tf.constant([[100], [1], [1]]), } target = tf.constant([[1], [0], [0]]) return features, target age = tf.contrib.layers.real_valued_column('age') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[age]) classifier.fit(input_fn=_input_fn, steps=100) loss_unweighted = classifier.evaluate(input_fn=_input_fn, steps=1)['loss'] classifier = tf.contrib.learn.LinearClassifier( feature_columns=[age], weight_column_name='weights') classifier.fit(input_fn=_input_fn, steps=100) loss_weighted = classifier.evaluate(input_fn=_input_fn, steps=1)['loss'] self.assertLess(loss_weighted, loss_unweighted) def testExport(self): """Tests that export model for servo works.""" def input_fn(): return { 'age': tf.constant([1]), 'language': tf.SparseTensor(values=['english'], indices=[[0, 0]], shape=[1, 1]) }, tf.constant([[1]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) age = tf.contrib.layers.real_valued_column('age') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) export_dir = tempfile.mkdtemp() classifier.export(export_dir) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" def input_fn(): return { 'age': tf.constant([1]), 'language': tf.SparseTensor(values=['english'], indices=[[0, 0]], shape=[1, 1]) }, tf.constant([[1]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) age = tf.contrib.layers.real_valued_column('age') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[age, language], enable_centered_bias=False) classifier.fit(input_fn=input_fn, steps=100) self.assertFalse('centered_bias_weight' in classifier.get_variable_names()) def testTrainOptimizerWithL1Reg(self): """Tests l1 regularized model has higher loss.""" def input_fn(): return { 'language': tf.SparseTensor(values=['hindi'], indices=[[0, 0]], shape=[1, 1]) }, tf.constant([[1]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) classifier_no_reg = tf.contrib.learn.LinearClassifier( feature_columns=[language]) classifier_with_reg = tf.contrib.learn.LinearClassifier( feature_columns=[language], optimizer=tf.train.FtrlOptimizer(learning_rate=1.0, l1_regularization_strength=100.)) loss_no_reg = classifier_no_reg.fit( input_fn=input_fn, steps=100).evaluate( input_fn=input_fn, steps=1)['loss'] loss_with_reg = classifier_with_reg.fit( input_fn=input_fn, steps=100).evaluate( input_fn=input_fn, steps=1)['loss'] self.assertLess(loss_no_reg, loss_with_reg) def testTrainWithMissingFeature(self): """Tests that training works with missing features.""" def input_fn(): return { 'language': tf.SparseTensor(values=['Swahili', 'turkish'], indices=[[0, 0], [2, 0]], shape=[3, 1]) }, tf.constant([[1], [1], [1]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) classifier = tf.contrib.learn.LinearClassifier(feature_columns=[language]) classifier.fit(input_fn=input_fn, steps=100) loss = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.05) def testSdcaOptimizerRealValuedFeatures(self): """Tests LinearClasssifier with SDCAOptimizer and real valued features.""" def input_fn(): return { 'example_id': tf.constant(['1', '2']), 'maintenance_cost': tf.constant([[500.0], [200.0]]), 'sq_footage': tf.constant([[800.0], [600.0]]), 'weights': tf.constant([[1.0], [1.0]]) }, tf.constant([[0], [1]]) maintenance_cost = tf.contrib.layers.real_valued_column('maintenance_cost') sq_footage = tf.contrib.layers.real_valued_column('sq_footage') sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[maintenance_cost, sq_footage], weight_column_name='weights', optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=100) loss = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.05) def testSdcaOptimizerRealValuedFeatureWithHigherDimension(self): """Tests SDCAOptimizer with real valued features of higher dimension.""" # input_fn is identical to the one in testSdcaOptimizerRealValuedFeatures # where 2 1-dimensional dense features have been replaced by 1 2-dimensional # feature. def input_fn(): return { 'example_id': tf.constant(['1', '2']), 'dense_feature': tf.constant([[500.0, 800.0], [200.0, 600.0]]) }, tf.constant([[0], [1]]) dense_feature = tf.contrib.layers.real_valued_column( 'dense_feature', dimension=2) sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[dense_feature], optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=100) loss = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.05) def testSdcaOptimizerBucketizedFeatures(self): """Tests LinearClasssifier with SDCAOptimizer and bucketized features.""" def input_fn(): return { 'example_id': tf.constant(['1', '2', '3']), 'price': tf.constant([[600.0], [1000.0], [400.0]]), 'sq_footage': tf.constant([[1000.0], [600.0], [700.0]]), 'weights': tf.constant([[1.0], [1.0], [1.0]]) }, tf.constant([[1], [0], [1]]) price_bucket = tf.contrib.layers.bucketized_column( tf.contrib.layers.real_valued_column('price'), boundaries=[500.0, 700.0]) sq_footage_bucket = tf.contrib.layers.bucketized_column( tf.contrib.layers.real_valued_column('sq_footage'), boundaries=[650.0]) sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id', symmetric_l2_regularization=1.0) classifier = tf.contrib.learn.LinearClassifier( feature_columns=[price_bucket, sq_footage_bucket], weight_column_name='weights', optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerSparseFeatures(self): """Tests LinearClasssifier with SDCAOptimizer and sparse features.""" def input_fn(): return { 'example_id': tf.constant(['1', '2', '3']), 'price': tf.constant([[0.4], [0.6], [0.3]]), 'country': tf.SparseTensor(values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], shape=[3, 5]), 'weights': tf.constant([[1.0], [1.0], [1.0]]) }, tf.constant([[1], [0], [1]]) price = tf.contrib.layers.real_valued_column('price') country = tf.contrib.layers.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[price, country], weight_column_name='weights', optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerWeightedSparseFeatures(self): """LinearClasssifier with SDCAOptimizer and weighted sparse features.""" def input_fn(): return { 'example_id': tf.constant(['1', '2', '3']), 'price': tf.SparseTensor(values=[2., 3., 1.], indices=[[0, 0], [1, 0], [2, 0]], shape=[3, 5]), 'country': tf.SparseTensor(values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 0], [2, 0]], shape=[3, 5]) }, tf.constant([[1], [0], [1]]) country = tf.contrib.layers.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) country_weighted_by_price = tf.contrib.layers.weighted_sparse_column( country, 'price') sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[country_weighted_by_price], optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerCrossedFeatures(self): """Tests LinearClasssifier with SDCAOptimizer and crossed features.""" def input_fn(): return { 'example_id': tf.constant(['1', '2', '3']), 'language': tf.SparseTensor(values=['english', 'italian', 'spanish'], indices=[[0, 0], [1, 0], [2, 0]], shape=[3, 1]), 'country': tf.SparseTensor(values=['US', 'IT', 'MX'], indices=[[0, 0], [1, 0], [2, 0]], shape=[3, 1]) }, tf.constant([[0], [0], [1]]) language = tf.contrib.layers.sparse_column_with_hash_bucket( 'language', hash_bucket_size=5) country = tf.contrib.layers.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) country_language = tf.contrib.layers.crossed_column( [language, country], hash_bucket_size=10) sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[country_language], optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=10) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerMixedFeatures(self): """Tests LinearClasssifier with SDCAOptimizer and a mix of features.""" def input_fn(): return { 'example_id': tf.constant(['1', '2', '3']), 'price': tf.constant([[0.6], [0.8], [0.3]]), 'sq_footage': tf.constant([[900.0], [700.0], [600.0]]), 'country': tf.SparseTensor(values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], shape=[3, 5]), 'weights': tf.constant([[3.0], [1.0], [1.0]]) }, tf.constant([[1], [0], [1]]) price = tf.contrib.layers.real_valued_column('price') sq_footage_bucket = tf.contrib.layers.bucketized_column( tf.contrib.layers.real_valued_column('sq_footage'), boundaries=[650.0, 800.0]) country = tf.contrib.layers.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) sq_footage_country = tf.contrib.layers.crossed_column( [sq_footage_bucket, country], hash_bucket_size=10) sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[price, sq_footage_bucket, country, sq_footage_country], weight_column_name='weights', optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testEval(self): """Tests that eval produces correct metrics. """ def input_fn(): return { 'age': tf.constant([[1], [2]]), 'language': tf.SparseTensor(values=['greek', 'chinese'], indices=[[0, 0], [1, 0]], shape=[2, 1]), }, tf.constant([[1], [0]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) age = tf.contrib.layers.real_valued_column('age') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[age, language]) # Evaluate on trained model classifier.fit(input_fn=input_fn, steps=100) classifier.evaluate(input_fn=input_fn, steps=1) # TODO(ispir): Enable accuracy check after resolving the randomness issue. # self.assertLess(evaluated_values['loss/mean'], 0.3) # self.assertGreater(evaluated_values['accuracy/mean'], .95) class LinearRegressorTest(tf.test.TestCase): def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract( self, tf.contrib.learn.LinearRegressor) def testRegression(self): """Tests that loss goes down with training.""" def input_fn(): return { 'age': tf.constant([1]), 'language': tf.SparseTensor(values=['english'], indices=[[0, 0]], shape=[1, 1]) }, tf.constant([[10.]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) age = tf.contrib.layers.real_valued_column('age') classifier = tf.contrib.learn.LinearRegressor( feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=200) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) self.assertLess(loss2, 0.5) def testRegression_MatrixData(self): """Tests regression using matrix data as input.""" cont_features = [ tf.contrib.layers.real_valued_column('feature', dimension=4)] regressor = tf.contrib.learn.LinearRegressor( feature_columns=cont_features, config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_iris_input_fn, steps=100) scores = regressor.evaluate(input_fn=_iris_input_fn, steps=1) self.assertLess(scores['loss'], 0.2) def testRegression_TensorData(self): """Tests regression using tensor data as input.""" def _input_fn(num_epochs=None): features = { 'age': tf.train.limit_epochs(tf.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': tf.SparseTensor(values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } return features, tf.constant([1.0, 0., 0.2], dtype=tf.float32) feature_columns = [ tf.contrib.layers.sparse_column_with_hash_bucket('language', hash_bucket_size=20), tf.contrib.layers.real_valued_column('age') ] regressor = tf.contrib.learn.LinearRegressor( feature_columns=feature_columns, config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.2) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). target = tf.constant([[1.], [0.], [0.], [0.]]) features = { 'x': tf.ones(shape=[4, 1], dtype=tf.float32), } return features, target regressor = tf.contrib.learn.LinearRegressor( feature_columns=[tf.contrib.layers.real_valued_column('x')], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_train, steps=1) # Average square loss = (0.75^2 + 3*0.25^2) / 4 = 0.1875 self.assertAlmostEqual(scores['loss'], 0.1875, delta=0.1) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). target = tf.constant([[1.], [0.], [0.], [0.]]) features = { 'x': tf.ones(shape=[4, 1], dtype=tf.float32), 'w': tf.constant([[1.], [1.], [1.], [1.]]) } return features, target def _input_fn_eval(): # 4 rows, with different weights. target = tf.constant([[1.], [0.], [0.], [0.]]) features = { 'x': tf.ones(shape=[4, 1], dtype=tf.float32), 'w': tf.constant([[7.], [1.], [1.], [1.]]) } return features, target regressor = tf.contrib.learn.LinearRegressor( weight_column_name='w', feature_columns=[tf.contrib.layers.real_valued_column('x')], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) # Weighted average square loss = (7*0.75^2 + 3*0.25^2) / 10 = 0.4125 self.assertAlmostEqual(scores['loss'], 0.4125, delta=0.1) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. target = tf.constant([[1.], [0.], [0.], [0.]]) features = { 'x': tf.ones(shape=[4, 1], dtype=tf.float32), 'w': tf.constant([[100.], [3.], [2.], [2.]]) } return features, target def _input_fn_eval(): # Create 4 rows (y = x) target = tf.constant([[1.], [1.], [1.], [1.]]) features = { 'x': tf.ones(shape=[4, 1], dtype=tf.float32), 'w': tf.constant([[1.], [1.], [1.], [1.]]) } return features, target regressor = tf.contrib.learn.LinearRegressor( weight_column_name='w', feature_columns=[tf.contrib.layers.real_valued_column('x')], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) # The model should learn (y = x) because of the weights, so the loss should # be close to zero. self.assertLess(scores['loss'], 0.1) def testPredict_AsIterableFalse(self): """Tests predict method with as_iterable=False.""" target = [1.0, 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': tf.train.limit_epochs(tf.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': tf.SparseTensor(values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } return features, tf.constant(target, dtype=tf.float32) feature_columns = [ tf.contrib.layers.sparse_column_with_hash_bucket('language', hash_bucket_size=20), tf.contrib.layers.real_valued_column('age') ] regressor = tf.contrib.learn.LinearRegressor( feature_columns=feature_columns, config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.1) predictions = regressor.predict(input_fn=_input_fn, as_iterable=False) self.assertAllClose(predictions, target, atol=0.1) def testPredict_AsIterable(self): """Tests predict method with as_iterable=True.""" target = [1.0, 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': tf.train.limit_epochs(tf.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': tf.SparseTensor(values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } return features, tf.constant(target, dtype=tf.float32) feature_columns = [ tf.contrib.layers.sparse_column_with_hash_bucket('language', hash_bucket_size=20), tf.contrib.layers.real_valued_column('age') ] regressor = tf.contrib.learn.LinearRegressor( feature_columns=feature_columns, config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.1) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = list( regressor.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllClose(predictions, target, atol=0.1) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) target = tf.constant([[1.], [0.], [0.], [0.]]) features = {'x': tf.train.limit_epochs( tf.ones(shape=[4, 1], dtype=tf.float32), num_epochs=num_epochs)} return features, target def _my_metric_op(predictions, targets): return tf.reduce_sum(tf.mul(predictions, targets)) regressor = tf.contrib.learn.LinearRegressor( feature_columns=[tf.contrib.layers.real_valued_column('x')], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'my_error': tf.contrib.metrics.streaming_mean_squared_error, 'my_metric': _my_metric_op }) self.assertIn('loss', set(scores.keys())) self.assertIn('my_error', set(scores.keys())) self.assertIn('my_metric', set(scores.keys())) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(regressor.predict(input_fn=predict_input_fn))) self.assertAlmostEqual( _sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions), scores['my_error']) # Tests that when the key is a tuple, an error is raised. with self.assertRaises(KeyError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={('my_error', 'predictions' ): tf.contrib.metrics.streaming_mean_squared_error}) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def _input_fn(num_epochs=None): features = { 'age': tf.train.limit_epochs(tf.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': tf.SparseTensor(values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } return features, tf.constant([1.0, 0., 0.2], dtype=tf.float32) feature_columns = [ tf.contrib.layers.sparse_column_with_hash_bucket('language', hash_bucket_size=20), tf.contrib.layers.real_valued_column('age') ] model_dir = tempfile.mkdtemp() regressor = tf.contrib.learn.LinearRegressor( model_dir=model_dir, feature_columns=feature_columns, config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = list(regressor.predict(input_fn=predict_input_fn)) del regressor regressor2 = tf.contrib.learn.LinearRegressor( model_dir=model_dir, feature_columns=feature_columns) predictions2 = list(regressor2.predict(input_fn=predict_input_fn)) self.assertAllClose(predictions, predictions2) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(num_epochs=None): features = { 'age': tf.train.limit_epochs(tf.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': tf.SparseTensor(values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } return features, tf.constant([1.0, 0., 0.2], dtype=tf.float32) feature_columns = [ # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. tf.contrib.layers.sparse_column_with_hash_bucket('language', hash_bucket_size=2e7), tf.contrib.layers.real_valued_column('age') ] regressor = tf.contrib.learn.LinearRegressor( feature_columns=feature_columns, # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config=tf.contrib.learn.RunConfig( num_ps_replicas=2, cluster_spec=tf.train.ClusterSpec({}), tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.1) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" def _input_fn(num_epochs=None): features = { 'age': tf.train.limit_epochs(tf.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': tf.SparseTensor(values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } return features, tf.constant([1.0, 0., 0.2], dtype=tf.float32) feature_columns = [ tf.contrib.layers.sparse_column_with_hash_bucket('language', hash_bucket_size=20), tf.contrib.layers.real_valued_column('age') ] regressor = tf.contrib.learn.LinearRegressor( feature_columns=feature_columns, enable_centered_bias=False, config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.1) def testRecoverWeights(self): rng = np.random.RandomState(67) n = 1000 n_weights = 10 bias = 2 x = rng.uniform(-1, 1, (n, n_weights)) weights = 10 * rng.randn(n_weights) y = np.dot(x, weights) y += rng.randn(len(x)) * 0.05 + rng.normal(bias, 0.01) feature_columns = tf.contrib.learn.infer_real_valued_columns_from_input(x) regressor = tf.contrib.learn.LinearRegressor( feature_columns=feature_columns, optimizer=tf.train.FtrlOptimizer(learning_rate=0.8)) regressor.fit(x, y, batch_size=64, steps=2000) # Have to flatten weights since they come in (x, 1) shape. self.assertAllClose(weights, regressor.weights_.flatten(), rtol=1) # TODO(ispir): Disable centered_bias. # assert abs(bias - regressor.bias_) < 0.1 def testSdcaOptimizerRealValuedLinearFeatures(self): """Tests LinearRegressor with SDCAOptimizer and real valued features.""" x = [[1.2, 2.0, -1.5], [-2.0, 3.0, -0.5], [1.0, -0.5, 4.0]] weights = [[3.0], [-1.2], [0.5]] y = np.dot(x, weights) def input_fn(): return { 'example_id': tf.constant(['1', '2', '3']), 'x': tf.constant(x), 'weights': tf.constant([[10.0], [10.0], [10.0]]) }, tf.constant(y) x_column = tf.contrib.layers.real_valued_column('x', dimension=3) sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') regressor = tf.contrib.learn.LinearRegressor( feature_columns=[x_column], weight_column_name='weights', optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=20) loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.01) self.assertAllClose([w[0] for w in weights], regressor.weights_.flatten(), rtol=0.1) def testSdcaOptimizerMixedFeaturesArbitraryWeights(self): """Tests LinearRegressor with SDCAOptimizer and a mix of features.""" def input_fn(): return { 'example_id': tf.constant(['1', '2', '3']), 'price': tf.constant([[0.6], [0.8], [0.3]]), 'sq_footage': tf.constant([[900.0], [700.0], [600.0]]), 'country': tf.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], shape=[3, 5]), 'weights': tf.constant([[3.0], [5.0], [7.0]]) }, tf.constant([[1.55], [-1.25], [-3.0]]) price = tf.contrib.layers.real_valued_column('price') sq_footage_bucket = tf.contrib.layers.bucketized_column( tf.contrib.layers.real_valued_column('sq_footage'), boundaries=[650.0, 800.0]) country = tf.contrib.layers.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) sq_footage_country = tf.contrib.layers.crossed_column( [sq_footage_bucket, country], hash_bucket_size=10) sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id', symmetric_l2_regularization=1.0) regressor = tf.contrib.learn.LinearRegressor( feature_columns=[price, sq_footage_bucket, country, sq_footage_country], weight_column_name='weights', optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=20) loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.05) def testSdcaOptimizerSparseFeaturesWithL1Reg(self): """Tests LinearClasssifier with SDCAOptimizer and sparse features.""" def input_fn(): return { 'example_id': tf.constant(['1', '2', '3']), 'price': tf.constant([[0.4], [0.6], [0.3]]), 'country': tf.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], shape=[3, 5]), 'weights': tf.constant([[10.0], [10.0], [10.0]]) }, tf.constant([[1.4], [-0.8], [2.6]]) price = tf.contrib.layers.real_valued_column('price') country = tf.contrib.layers.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) # Regressor with no L1 regularization. sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') regressor = tf.contrib.learn.LinearRegressor( feature_columns=[price, country], weight_column_name='weights', optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=20) no_l1_reg_loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] no_l1_reg_weights = regressor.weights_ # Regressor with L1 regularization. sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id', symmetric_l1_regularization=1.0) regressor = tf.contrib.learn.LinearRegressor( feature_columns=[price, country], weight_column_name='weights', optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=20) l1_reg_loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] l1_reg_weights = regressor.weights_ # Unregularized loss is lower when there is no L1 regularization. self.assertLess(no_l1_reg_loss, l1_reg_loss) self.assertLess(no_l1_reg_loss, 0.05) # But weights returned by the regressor with L1 regularization have smaller # L1 norm. l1_reg_weights_norm, no_l1_reg_weights_norm = 0.0, 0.0 for var_name in sorted(l1_reg_weights): l1_reg_weights_norm += sum( np.absolute(l1_reg_weights[var_name].flatten())) no_l1_reg_weights_norm += sum( np.absolute(no_l1_reg_weights[var_name].flatten())) print('Var name: %s, value: %s' % (var_name, no_l1_reg_weights[var_name].flatten())) self.assertLess(l1_reg_weights_norm, no_l1_reg_weights_norm) def testSdcaOptimizerBiasOnly(self): """Tests LinearClasssifier with SDCAOptimizer and validates bias weight.""" def input_fn(): """Testing the bias weight when it's the only feature present. All of the instances in this input only have the bias feature, and a 1/4 of the labels are positive. This means that the expected weight for the bias should be close to the average prediction, i.e 0.25. Returns: Training data for the test. """ num_examples = 40 return { 'example_id': tf.constant([str(x+1) for x in range(num_examples)]), # place_holder is an empty column which is always 0 (absent), because # LinearClassifier requires at least one column. 'place_holder': tf.constant([[0.0]]*num_examples), }, tf.constant([[1 if i % 4 is 0 else 0] for i in range(num_examples)]) place_holder = tf.contrib.layers.real_valued_column('place_holder') sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') regressor = tf.contrib.learn.LinearRegressor( feature_columns=[place_holder], optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=100) self.assertNear(regressor.get_variable_value('linear/bias_weight')[0], 0.25, err=0.1) def testSdcaOptimizerBiasAndOtherColumns(self): """Tests LinearClasssifier with SDCAOptimizer and validates bias weight.""" def input_fn(): """Testing the bias weight when there are other features present. 1/2 of the instances in this input have feature 'a', the rest have feature 'b', and we expect the bias to be added to each instance as well. 0.4 of all instances that have feature 'a' are positive, and 0.2 of all instances that have feature 'b' are positive. The labels in the dataset are ordered to appear shuffled since SDCA expects shuffled data, and converges faster with this pseudo-random ordering. If the bias was centered we would expect the weights to be: bias: 0.3 a: 0.1 b: -0.1 Until b/29339026 is resolved, the bias gets regularized with the same global value for the other columns, and so the expected weights get shifted and are: bias: 0.2 a: 0.2 b: 0.0 Returns: The test dataset. """ num_examples = 200 half = int(num_examples/2) return { 'example_id': tf.constant([str(x+1) for x in range(num_examples)]), 'a': tf.constant([[1]]*int(half) + [[0]]*int(half)), 'b': tf.constant([[0]]*int(half) + [[1]]*int(half)), }, tf.constant([[x] for x in [1, 0, 0, 1, 1, 0, 0, 0, 1, 0] * int(half/10) + [0, 1, 0, 0, 0, 0, 0, 0, 1, 0] * int(half/10)]) sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') regressor = tf.contrib.learn.LinearRegressor( feature_columns=[tf.contrib.layers.real_valued_column('a'), tf.contrib.layers.real_valued_column('b')], optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=200) # TODO(b/29339026): Change the expected results to expect a centered bias. self.assertNear( regressor.get_variable_value('linear/bias_weight')[0], 0.2, err=0.05) self.assertNear(regressor.weights_['linear/a/weight'][0], 0.2, err=0.05) self.assertNear(regressor.weights_['linear/b/weight'][0], 0.0, err=0.05) def testSdcaOptimizerBiasAndOtherColumnsFabricatedCentered(self): """Tests LinearClasssifier with SDCAOptimizer and validates bias weight.""" def input_fn(): """Testing the bias weight when there are other features present. 1/2 of the instances in this input have feature 'a', the rest have feature 'b', and we expect the bias to be added to each instance as well. 0.1 of all instances that have feature 'a' have a label of 1, and 0.1 of all instances that have feature 'b' have a label of -1. We can expect the weights to be: bias: 0.0 a: 0.1 b: -0.1 Returns: The test dataset. """ num_examples = 200 half = int(num_examples/2) return { 'example_id': tf.constant([str(x+1) for x in range(num_examples)]), 'a': tf.constant([[1]]*int(half) + [[0]]*int(half)), 'b': tf.constant([[0]]*int(half) + [[1]]*int(half)), }, tf.constant([[1 if x%10 == 0 else 0] for x in range(half)] + [[-1 if x%10 == 0 else 0] for x in range(half)]) sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') regressor = tf.contrib.learn.LinearRegressor( feature_columns=[tf.contrib.layers.real_valued_column('a'), tf.contrib.layers.real_valued_column('b')], optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=100) self.assertNear( regressor.get_variable_value('linear/bias_weight')[0], 0.0, err=0.05) self.assertNear(regressor.weights_['linear/a/weight'][0], 0.1, err=0.05) self.assertNear(regressor.weights_['linear/b/weight'][0], -0.1, err=0.05) def boston_input_fn(): boston = tf.contrib.learn.datasets.load_boston() features = tf.cast(tf.reshape(tf.constant(boston.data), [-1, 13]), tf.float32) target = tf.cast(tf.reshape(tf.constant(boston.target), [-1, 1]), tf.float32) return features, target class FeatureColumnTest(tf.test.TestCase): def testTrain(self): feature_columns = tf.contrib.learn.infer_real_valued_columns_from_input_fn( boston_input_fn) est = tf.contrib.learn.LinearRegressor(feature_columns=feature_columns) est.fit(input_fn=boston_input_fn, steps=1) _ = est.evaluate(input_fn=boston_input_fn, steps=1) if __name__ == '__main__': tf.test.main()
juharris/tensorflow
tensorflow/contrib/learn/python/learn/estimators/linear_test.py
Python
apache-2.0
57,856
# Copyright (C) 2018 RedHat Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """add os_hidden column to images table""" from alembic import op from sqlalchemy import Boolean, Column, sql # revision identifiers, used by Alembic. revision = 'rocky_expand01' down_revision = 'queens_expand01' branch_labels = None depends_on = None def upgrade(): h_col = Column('os_hidden', Boolean, default=False, nullable=False, server_default=sql.expression.false()) op.add_column('images', h_col) op.create_index('os_hidden_image_idx', 'images', ['os_hidden'])
openstack/glance
glance/db/sqlalchemy/alembic_migrations/versions/rocky_expand01_add_os_hidden.py
Python
apache-2.0
1,135
"""Converts cplate betas to a BED file.""" import argparse import os import re import pandas as pd COLUMNS = ['chrom', 'start', 'end', 'name', 'score', 'strand'] def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--summaries', dest='summaries', help='cplate summaries file') parser.add_argument('--gene_number', dest='gene_number', default=-1, type=int, help='row number for gene') parser.add_argument('--genes', dest='genes', help='gene definition file') parser.add_argument('--output', dest='output', default='', help='output BED file') return parser.parse_args() def main(): args = parse_args() summaries = pd.read_table(args.summaries, delimiter=' ') # Infer gene number if needed. gene_number = args.gene_number if gene_number < 0: gene_number = ( int(re.search(r'gene(\d+)', args.summaries).group(1)) - 1) # Infer output path if needed. output = args.output if output == '': output = os.path.splitext(args.summaries)[0] + '_beta.bed' genes = pd.read_csv(args.genes) gene = genes.iloc[gene_number] intervals = [] for i, row in summaries.iterrows(): start = i end = i + 1 interval = {'start': start, 'end': end, 'name': '.', 'score': row['b'], 'strand': '.', } intervals.append(interval) intervals = pd.DataFrame(intervals) intervals['chrom'] = gene['Chrom'] intervals['start'] = intervals['start'] + gene['Start'] intervals['end'] = intervals['end'] + gene['Start'] intervals = intervals[COLUMNS] intervals.to_csv(output, sep='\t', header=False, index=False, quoting=False) if __name__ == '__main__': main()
awblocker/cplate
scripts/betas_to_bed.py
Python
apache-2.0
1,878
# -*- coding: utf-8 -*- # # Copyright 2012-2020 BigML # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Checkpoint functions for BigMLer """ import os import bigml.api from bigml.util import console_log from bigmler.utils import log_message def is_source_created(path, suffix=""): """Checks existence and reads the source id from the source file in the path directory """ source_id = None try: with open("%s%ssource%s" % (path, os.sep, suffix)) as source_file: source_id = source_file.readline().strip() try: source_id = bigml.api.get_source_id(source_id) return True, source_id except ValueError: return False, None except IOError: return False, None def is_dataset_created(path, suffix=""): """Checks existence and reads the dataset id from the dataset file in the path directory """ dataset_id = None try: with open("%s%sdataset%s" % (path, os.sep, suffix)) as dataset_file: dataset_id = dataset_file.readline().strip() try: dataset_id = bigml.api.get_dataset_id(dataset_id) return True, dataset_id except ValueError: return False, None except IOError: return False, None def are_datasets_created(path, number_of_datasets, suffix='parts'): """Checks existence and reads the dataset ids from the datasets file in the path directory """ dataset_ids = [] try: with open("%s%sdataset_%s" % (path, os.sep, suffix)) as datasets_file: for line in datasets_file: dataset = line.strip() try: dataset_id = bigml.api.get_dataset_id(dataset) dataset_ids.append(dataset_id) except ValueError: return False, dataset_ids return len(dataset_ids) == number_of_datasets, dataset_ids except IOError: return False, dataset_ids def are_models_created(path, number_of_models): """Checks existence and reads the model ids from the models file in the path directory """ model_ids = [] try: with open("%s%smodels" % (path, os.sep)) as models_file: for line in models_file: model = line.strip() try: model_id = bigml.api.get_model_id(model) model_ids.append(model_id) except ValueError: return False, model_ids return len(model_ids) == number_of_models, model_ids except IOError: return False, model_ids def are_predictions_created(predictions_file, number_of_tests): """Checks existence and reads the predictions from the predictions file in the path directory """ predictions = file_number_of_lines(predictions_file) if predictions != number_of_tests: os.remove(predictions_file) return False, None return True, None def is_evaluation_created(path): """Checks existence and reads the evaluation id from the evaluation file in the path directory """ evaluation_id = None try: with open("%s%sevaluation" % (path, os.sep)) as evaluation_file: evaluation_id = evaluation_file.readline().strip() try: evaluation_id = bigml.api.get_evaluation_id(evaluation_id) return True, evaluation_id except ValueError: return False, None except IOError: return False, None def are_evaluations_created(path, number_of_evaluations): """Checks existence and reads the evaluation ids from the evaluations file in the path directory and checks the corresponding evaluations """ evaluation_ids = [] try: with open("%s%sevaluations" % (path, os.sep)) as evaluations_file: for line in evaluations_file: evaluation = line.strip() try: evaluation_id = bigml.api.get_evaluation_id(evaluation) evaluation_ids.append(evaluation_id) except ValueError: return False, evaluation_ids return len(evaluation_ids) == number_of_evaluations, evaluation_ids except IOError: return False, evaluation_ids def are_ensembles_created(path, number_of_ensembles): """Checks and reads the ensembles ids from the ensembles file in the path directory """ ensemble_ids = [] try: with open("%s%sensembles" % (path, os.sep)) as ensembles_file: for line in ensembles_file: ensemble = line.strip() try: ensemble_id = bigml.api.get_ensemble_id(ensemble) ensemble_ids.append(ensemble_id) except ValueError: return False, ensemble_ids return len(ensemble_ids) == number_of_ensembles, ensemble_ids except IOError: return False, ensemble_ids def checkpoint(function, *args, **kwargs): """Redirects to each checkpoint function """ common_parms = ['debug', 'message', 'log_file', 'console'] debug = kwargs.get('debug', False) message = kwargs.get('message', None) log_file = kwargs.get('log_file', None) console = kwargs.get('console', False) f_kwargs = {key: value for key, value in list(kwargs.items()) if not key in common_parms} result = function(*args, **f_kwargs) if debug: console_log("Checkpoint: checking %s with args:\n%s\n\nResult:\n%s\n" % (function.__name__, "\n".join([repr(arg) for arg in args]), repr(result))) # resume is the first element in the result tuple if not result[0] and message is not None: log_message(message, log_file=log_file, console=console) return result def file_number_of_lines(file_name): """Counts the number of lines in a file """ try: item = (0, None) with open(file_name) as file_handler: for item in enumerate(file_handler): pass return item[0] + 1 except IOError: return 0 def is_batch_prediction_created(path): """Checks existence and reads the batch prediction id from the batch_prediction file in the path directory """ batch_prediction_id = None try: with open("%s%sbatch_prediction" % (path, os.sep)) as batch_prediction_file: batch_prediction_id = batch_prediction_file.readline().strip() try: batch_prediction_id = bigml.api.get_batch_prediction_id( batch_prediction_id) return True, batch_prediction_id except ValueError: return False, None except IOError: return False, None def is_batch_centroid_created(path): """Checks existence and reads the batch centroid id from the batch_centroid file in the path directory """ batch_centroid_id = None try: with open("%s%sbatch_centroid" % (path, os.sep)) as batch_prediction_file: batch_centroid_id = batch_prediction_file.readline().strip() try: batch_centroid_id = bigml.api.get_batch_centroid_id( batch_centroid_id) return True, batch_centroid_id except ValueError: return False, None except IOError: return False, None def are_associations_created(path, number_of_associations): """Checks existence and reads the association ids from the associations file in the path directory """ association_ids = [] try: with open("%s%sassociations" % (path, os.sep)) as associations_file: for line in associations_file: association = line.strip() try: association_id = bigml.api.get_association_id(association) association_ids.append(association_id) except ValueError: return False, association_ids return len(association_ids) == number_of_associations, association_ids except IOError: return False, association_ids def are_clusters_created(path, number_of_clusters): """Checks existence and reads the cluster ids from the clusters file in the path directory """ cluster_ids = [] try: with open("%s%sclusters" % (path, os.sep)) as clusters_file: for line in clusters_file: cluster = line.strip() try: cluster_id = bigml.api.get_cluster_id(cluster) cluster_ids.append(cluster_id) except ValueError: return False, cluster_ids return len(cluster_ids) == number_of_clusters, cluster_ids except IOError: return False, cluster_ids def is_dataset_exported(filename): """Checks the existence of the CSV exported dataset file """ try: with open(filename): return True except IOError: return False def is_batch_anomaly_score_created(path): """Checks existence and reads the batch anomaly score id from the batch_anomaly_score file in the path directory """ batch_anomaly_score_id = None try: with open("%s%sbatch_anomaly_score" % (path, os.sep)) as batch_prediction_file: batch_anomaly_score_id = batch_prediction_file.readline().strip() try: batch_anomaly_score_id = bigml.api.get_batch_anomaly_score_id( batch_anomaly_score_id) return True, batch_anomaly_score_id except ValueError: return False, None except IOError: return False, None def are_anomalies_created(path, number_of_anomalies): """Checks existence and reads the anomaly detector ids from the anomalies file in the path directory """ anomaly_ids = [] try: with open("%s%sanomalies" % (path, os.sep)) as anomalies_file: for line in anomalies_file: anomaly = line.strip() try: anomaly_id = bigml.api.get_anomaly_id(anomaly) anomaly_ids.append(anomaly_id) except ValueError: return False, anomaly_ids return len(anomaly_ids) == number_of_anomalies, anomaly_ids except IOError: return False, anomaly_ids def is_project_created(path): """Checks existence and reads project id from the project file in the path directory """ project_id = None try: with open("%s%sproject" % (path, os.sep)) as project_file: project_id = project_file.readline().strip() try: project_id = bigml.api.get_project_id( project_id) return True, project_id except ValueError: return False, None except IOError: return False, None def are_samples_created(path, number_of_samples): """Checks existence and reads the samples ids from the samples file in the path directory """ sample_ids = [] try: with open("%s%ssamples" % (path, os.sep)) as samples_file: for line in samples_file: sample = line.strip() try: sample_id = bigml.api.get_sample_id(sample) sample_ids.append(sample_id) except ValueError: return False, sample_ids return len(sample_ids) == number_of_samples, sample_ids except IOError: return False, sample_ids def are_logistic_regressions_created(path, number_of_logistic_regressions): """Checks existence and reads the logistic regression ids from the logistic regressions file in the path directory """ logistic_ids = [] try: with open("%s%slogistic_regressions" % (path, os.sep)) as \ logistics_file: for line in logistics_file: logistic = line.strip() try: logistic_id = bigml.api.get_logistic_regression_id( \ logistic) logistic_ids.append(logistic_id) except ValueError: return False, logistic_ids return len(logistic_ids) == number_of_logistic_regressions, \ logistic_ids except IOError: return False, logistic_ids def are_linear_regressions_created(path, number_of_linear_regressions): """Checks existence and reads the linear regression ids from the linear regressions file in the path directory """ linear_ids = [] try: with open("%s%slinear_regressions" % (path, os.sep)) as \ linear_file: for line in linear_file: linear = line.strip() try: linear_id = bigml.api.get_linear_regression_id( \ linear) linear_ids.append(linear_id) except ValueError: return False, linear_ids return len(linear_ids) == number_of_linear_regressions, \ linear_ids except IOError: return False, linear_ids def are_scripts_created(path, number_of_scripts): """Checks existence and reads the scripts ids from the scripts file in the path directory """ script_ids = [] try: with open("%s%sscripts" % (path, os.sep)) as scripts_file: for line in scripts_file: script = line.strip() try: script_id = bigml.api.get_script_id(script) script_ids.append(script_id) except ValueError: return False, script_ids if len(script_ids) == number_of_scripts: return True, script_ids return False, script_ids except IOError: return False, script_ids def is_execution_created(path): """Checks existence and reads the execution id from the execution file in the path directory """ execution_id = None try: with open("%s%sexecution" % (path, os.sep)) as execution_file: execution_id = execution_file.readline().strip() try: execution_id = bigml.api.get_execution_id(execution_id) return True, execution_id except ValueError: return False, None except IOError: return False, None def is_library_created(path): """Checks existence and reads the library id from the library file in the path directory """ library_id = None try: with open("%s%slibrary" % (path, os.sep)) as library_file: library_id = library_file.readline().strip() try: library_id = bigml.api.get_library_id(library_id) return True, library_id except ValueError: return False, None except IOError: return False, None def are_topic_models_created(path, number_of_topic_models): """Checks existence and reads the topic model ids from the topic models file in the path directory """ topic_model_ids = [] try: with open("%s%stopic_models" % (path, os.sep)) as topic_models_file: for line in topic_models_file: topic_model = line.strip() try: topic_model_id = bigml.api.get_topic_model_id(topic_model) topic_model_ids.append(topic_model_id) except ValueError: return False, topic_model_ids return len(topic_model_ids) == number_of_topic_models, topic_model_ids except IOError: return False, topic_model_ids def is_batch_topic_distribution_created(path): """Checks existence and reads the batch topic distribution id from the batch_topic_distribution file in the path directory """ batch_topic_distribution_id = None try: with open("%s%sbatch_topic_distribution" % (path, os.sep)) as batch_prediction_file: batch_topic_distribution_id = \ batch_prediction_file.readline().strip() try: batch_topic_distribution_id = \ bigml.api.get_batch_topic_distribution_id( \ batch_topic_distribution_id) return True, batch_topic_distribution_id except ValueError: return False, None except IOError: return False, None def are_time_series_created(path, number_of_time_series): """Checks existence and reads the time-series ids from the time-series file in the path directory """ time_series_ids = [] try: with open("%s%stime_series" % (path, os.sep)) as time_series_file: for line in time_series_file: time_series = line.strip() try: time_series_id = bigml.api.get_time_series_id(time_series) time_series_ids.append(time_series_id) except ValueError: return False, time_series_ids return len(time_series_ids) == number_of_time_series, time_series_ids except IOError: return False, time_series_ids def are_deepnets_created(path, number_of_deepnets): """Checks existence and reads the deepnet ids from the deepnets file in the path directory """ deepnet_ids = [] try: with open("%s%sdeepnets" % (path, os.sep)) as \ deepnets_file: for line in deepnets_file: deepnet = line.strip() try: deepnet_id = bigml.api.get_deepnet_id( \ deepnet) deepnet_ids.append(deepnet_id) except ValueError: return False, deepnet_ids return len(deepnet_ids) == number_of_deepnets, \ deepnet_ids except IOError: return False, deepnet_ids def is_external_connector_created(path): """Checks existence and reads external connector id from the external_connector file in the path directory """ external_connector_id = None try: with open("%s%sexternal_connector" % (path, os.sep)) as connector_file: external_connector_id = connector_file.readline().strip() try: external_connector_id = bigml.api.get_external_connector_id( external_connector_id) return True, external_connector_id except ValueError: return False, None except IOError: return False, None def is_batch_projection_created(path): """Checks existence and reads the batch projection id from the batch_projection file in the path directory """ batch_projection_id = None try: with open("%s%sbatch_projection" % (path, os.sep)) as batch_prediction_file: batch_projection_id = batch_prediction_file.readline().strip() try: batch_projection_id = bigml.api.get_batch_projection_id( batch_projection_id) return True, batch_projection_id except ValueError: return False, None except IOError: return False, None def is_forecast_created(path): """Checks existence and reads the forecast id from the forecast file in the path directory """ forecast_id = None try: with open("%s%sforecast" % (path, os.sep)) as forecast_file: forecast_id = forecast_file.readline().strip() try: forecast_id = bigml.api.get_forecast_id(forecast_id) return True, forecast_id except ValueError: return False, None except IOError: return False, None def are_fusions_created(path, number_of_fusions): """Checks existence and reads the fusion ids from the fusions file in the path directory """ fusion_ids = [] try: with open("%s%sfusions" % (path, os.sep)) as \ fusions_file: for line in fusions_file: fusion = line.strip() try: fusion_id = bigml.api.get_fusion_id( \ fusion) fusion_ids.append(fusion_id) except ValueError: return False, fusion_ids return len(fusion_ids) == number_of_fusions, \ fusion_ids except IOError: return False, fusion_ids def are_pcas_created(path, number_of_pcas): """Checks existence and reads the PCA ids from the PCAs file in the path directory """ pca_ids = [] try: with open("%s%spcas" % (path, os.sep)) as \ pcas_file: for line in pcas_file: pca = line.strip() try: pca_id = bigml.api.get_pca_id( \ pca) pca_ids.append(pca_id) except ValueError: return False, pca_ids return len(pca_ids) == number_of_pcas, \ pca_ids except IOError: return False, pca_ids
jaor/bigmler
bigmler/checkpoint.py
Python
apache-2.0
22,228
# Copyright 2014 Rackspace # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from octavia_lib.common import constants as lib_constants from wsme import types as wtypes from octavia.api.common import types from octavia.api.v2.types import health_monitor from octavia.api.v2.types import member from octavia.common import constants class SessionPersistenceResponse(types.BaseType): """Defines which attributes are to be shown on any response.""" type = wtypes.wsattr(wtypes.text) cookie_name = wtypes.wsattr(wtypes.text) persistence_timeout = wtypes.wsattr(wtypes.IntegerType()) persistence_granularity = wtypes.wsattr(types.IPAddressType()) class SessionPersistencePOST(types.BaseType): """Defines mandatory and optional attributes of a POST request.""" type = wtypes.wsattr(wtypes.Enum(str, *constants.SUPPORTED_SP_TYPES), mandatory=True) cookie_name = wtypes.wsattr(wtypes.StringType(max_length=255), default=None) persistence_timeout = wtypes.wsattr(wtypes.IntegerType(), default=None) persistence_granularity = wtypes.wsattr(types.IPAddressType(), default=None) class SessionPersistencePUT(types.BaseType): """Defines attributes that are acceptable of a PUT request.""" type = wtypes.wsattr(wtypes.Enum(str, *constants.SUPPORTED_SP_TYPES)) cookie_name = wtypes.wsattr(wtypes.StringType(max_length=255), default=None) persistence_timeout = wtypes.wsattr(wtypes.IntegerType(), default=None) persistence_granularity = wtypes.wsattr(types.IPAddressType(), default=None) class BasePoolType(types.BaseType): _type_to_model_map = {'admin_state_up': 'enabled', 'healthmonitor': 'health_monitor', 'healthmonitor_id': 'health_monitor.id', 'tls_container_ref': 'tls_certificate_id', 'ca_tls_container_ref': 'ca_tls_certificate_id', 'crl_container_ref': 'crl_container_id'} _child_map = {'health_monitor': {'id': 'healthmonitor_id'}} class PoolResponse(BasePoolType): """Defines which attributes are to be shown on any response.""" id = wtypes.wsattr(wtypes.UuidType()) name = wtypes.wsattr(wtypes.StringType()) description = wtypes.wsattr(wtypes.StringType()) provisioning_status = wtypes.wsattr(wtypes.StringType()) operating_status = wtypes.wsattr(wtypes.StringType()) admin_state_up = wtypes.wsattr(bool) protocol = wtypes.wsattr(wtypes.text) lb_algorithm = wtypes.wsattr(wtypes.text) session_persistence = wtypes.wsattr(SessionPersistenceResponse) project_id = wtypes.wsattr(wtypes.StringType()) loadbalancers = wtypes.wsattr([types.IdOnlyType]) listeners = wtypes.wsattr([types.IdOnlyType]) created_at = wtypes.wsattr(wtypes.datetime.datetime) updated_at = wtypes.wsattr(wtypes.datetime.datetime) healthmonitor_id = wtypes.wsattr(wtypes.UuidType()) members = wtypes.wsattr([types.IdOnlyType]) tags = wtypes.wsattr(wtypes.ArrayType(wtypes.StringType())) tls_container_ref = wtypes.wsattr(wtypes.StringType()) ca_tls_container_ref = wtypes.wsattr(wtypes.StringType()) crl_container_ref = wtypes.wsattr(wtypes.StringType()) tls_enabled = wtypes.wsattr(bool) tls_ciphers = wtypes.wsattr(wtypes.StringType()) tls_versions = wtypes.wsattr(wtypes.ArrayType(wtypes.StringType())) alpn_protocols = wtypes.wsattr(wtypes.ArrayType(types.AlpnProtocolType())) @classmethod def from_data_model(cls, data_model, children=False): pool = super(PoolResponse, cls).from_data_model( data_model, children=children) if data_model.session_persistence: pool.session_persistence = ( SessionPersistenceResponse.from_data_model( data_model.session_persistence)) if cls._full_response(): del pool.loadbalancers member_model = member.MemberFullResponse if pool.healthmonitor: pool.healthmonitor = ( health_monitor.HealthMonitorFullResponse .from_data_model(data_model.health_monitor)) else: if data_model.load_balancer: pool.loadbalancers = [ types.IdOnlyType.from_data_model(data_model.load_balancer)] else: pool.loadbalancers = [] member_model = types.IdOnlyType if data_model.health_monitor: pool.healthmonitor_id = data_model.health_monitor.id pool.listeners = [ types.IdOnlyType.from_data_model(i) for i in data_model.listeners] pool.members = [ member_model.from_data_model(i) for i in data_model.members] pool.tls_versions = data_model.tls_versions pool.alpn_protocols = data_model.alpn_protocols return pool class PoolFullResponse(PoolResponse): @classmethod def _full_response(cls): return True members = wtypes.wsattr([member.MemberFullResponse]) healthmonitor = wtypes.wsattr(health_monitor.HealthMonitorFullResponse) class PoolRootResponse(types.BaseType): pool = wtypes.wsattr(PoolResponse) class PoolsRootResponse(types.BaseType): pools = wtypes.wsattr([PoolResponse]) pools_links = wtypes.wsattr([types.PageType]) class PoolPOST(BasePoolType): """Defines mandatory and optional attributes of a POST request.""" name = wtypes.wsattr(wtypes.StringType(max_length=255)) description = wtypes.wsattr(wtypes.StringType(max_length=255)) admin_state_up = wtypes.wsattr(bool, default=True) listener_id = wtypes.wsattr(wtypes.UuidType()) loadbalancer_id = wtypes.wsattr(wtypes.UuidType()) protocol = wtypes.wsattr( wtypes.Enum(str, *lib_constants.POOL_SUPPORTED_PROTOCOLS), mandatory=True) lb_algorithm = wtypes.wsattr( wtypes.Enum(str, *constants.SUPPORTED_LB_ALGORITHMS), mandatory=True) session_persistence = wtypes.wsattr(SessionPersistencePOST) # TODO(johnsom) Remove after deprecation (R series) project_id = wtypes.wsattr(wtypes.StringType(max_length=36)) healthmonitor = wtypes.wsattr(health_monitor.HealthMonitorSingleCreate) members = wtypes.wsattr([member.MemberSingleCreate]) tags = wtypes.wsattr(wtypes.ArrayType(wtypes.StringType(max_length=255))) tls_container_ref = wtypes.wsattr( wtypes.StringType(max_length=255)) ca_tls_container_ref = wtypes.wsattr(wtypes.StringType(max_length=255)) crl_container_ref = wtypes.wsattr(wtypes.StringType(max_length=255)) tls_enabled = wtypes.wsattr(bool, default=False) tls_ciphers = wtypes.wsattr(wtypes.StringType(max_length=2048)) tls_versions = wtypes.wsattr(wtypes.ArrayType(wtypes.StringType( max_length=32))) alpn_protocols = wtypes.wsattr(wtypes.ArrayType(types.AlpnProtocolType())) class PoolRootPOST(types.BaseType): pool = wtypes.wsattr(PoolPOST) class PoolPUT(BasePoolType): """Defines attributes that are acceptable of a PUT request.""" name = wtypes.wsattr(wtypes.StringType(max_length=255)) description = wtypes.wsattr(wtypes.StringType(max_length=255)) admin_state_up = wtypes.wsattr(bool) lb_algorithm = wtypes.wsattr( wtypes.Enum(str, *constants.SUPPORTED_LB_ALGORITHMS)) session_persistence = wtypes.wsattr(SessionPersistencePUT) tags = wtypes.wsattr(wtypes.ArrayType(wtypes.StringType(max_length=255))) tls_container_ref = wtypes.wsattr(wtypes.StringType(max_length=255)) ca_tls_container_ref = wtypes.wsattr(wtypes.StringType(max_length=255)) crl_container_ref = wtypes.wsattr(wtypes.StringType(max_length=255)) tls_enabled = wtypes.wsattr(bool) tls_ciphers = wtypes.wsattr(wtypes.StringType(max_length=2048)) tls_versions = wtypes.wsattr(wtypes.ArrayType(wtypes.StringType( max_length=32))) alpn_protocols = wtypes.wsattr(wtypes.ArrayType(types.AlpnProtocolType())) class PoolRootPut(types.BaseType): pool = wtypes.wsattr(PoolPUT) class PoolSingleCreate(BasePoolType): """Defines mandatory and optional attributes of a POST request.""" name = wtypes.wsattr(wtypes.StringType(max_length=255)) description = wtypes.wsattr(wtypes.StringType(max_length=255)) admin_state_up = wtypes.wsattr(bool, default=True) protocol = wtypes.wsattr( wtypes.Enum(str, *lib_constants.POOL_SUPPORTED_PROTOCOLS)) lb_algorithm = wtypes.wsattr( wtypes.Enum(str, *constants.SUPPORTED_LB_ALGORITHMS)) session_persistence = wtypes.wsattr(SessionPersistencePOST) healthmonitor = wtypes.wsattr(health_monitor.HealthMonitorSingleCreate) members = wtypes.wsattr([member.MemberSingleCreate]) tags = wtypes.wsattr(wtypes.ArrayType(wtypes.StringType(max_length=255))) tls_container_ref = wtypes.wsattr(wtypes.StringType(max_length=255)) ca_tls_container_ref = wtypes.wsattr(wtypes.StringType(max_length=255)) crl_container_ref = wtypes.wsattr(wtypes.StringType(max_length=255)) tls_enabled = wtypes.wsattr(bool, default=False) tls_ciphers = wtypes.wsattr(wtypes.StringType(max_length=2048)) tls_versions = wtypes.wsattr(wtypes.ArrayType(wtypes.StringType( max_length=32))) alpn_protocols = wtypes.wsattr(wtypes.ArrayType(types.AlpnProtocolType())) class PoolStatusResponse(BasePoolType): """Defines which attributes are to be shown on status response.""" id = wtypes.wsattr(wtypes.UuidType()) name = wtypes.wsattr(wtypes.StringType()) provisioning_status = wtypes.wsattr(wtypes.StringType()) operating_status = wtypes.wsattr(wtypes.StringType()) health_monitor = wtypes.wsattr( health_monitor.HealthMonitorStatusResponse) members = wtypes.wsattr([member.MemberStatusResponse]) @classmethod def from_data_model(cls, data_model, children=False): pool = super(PoolStatusResponse, cls).from_data_model( data_model, children=children) member_model = member.MemberStatusResponse if data_model.health_monitor: pool.health_monitor = ( health_monitor.HealthMonitorStatusResponse.from_data_model( data_model.health_monitor)) pool.members = [ member_model.from_data_model(i) for i in data_model.members] return pool
openstack/octavia
octavia/api/v2/types/pool.py
Python
apache-2.0
11,027
from pyspark import SparkContext, SparkConf, SparkFiles from pyspark.sql import SQLContext, Row import ConfigParser as configparser from subprocess import Popen, PIPE from datetime import datetime from vina_utils import get_directory_complex_pdb_analysis, get_files_pdb, get_name_model_pdb, get_ligand_from_receptor_ligand_model, get_separator_filename_mode, get_directory_pdb_analysis, loading_pdb_2_list, get_name_receptor_pdb, get_files_pdb_filter, get_receptor_from_receptor_ligand_model, get_model_from_receptor_ligand_model import os, sys from os_utils import preparing_path from gromacs_utils import get_value_from_xvg_sasa from pdb_io import replace_chain_atom_line def sorting_buried_area_ligand(sc, buried_areaRDD): sqlCtx = SQLContext(sc) buried_areaRDD = sc.parallelize(buried_areaRDD) buried_areaRDD = buried_areaRDD.map(lambda p: Row(pose=str(p[0]), buried_lig_rec=float(p[1]), buried_lig_rec_perc=float(p[2]), buried_lig_lig=float(p[3]), buried_lig_lig_perc=float(p[4]) ) ) #receptor=str(p[0]), ligand=str(p[1]), model=int(p[2]), buried_area_table = sqlCtx.createDataFrame(buried_areaRDD) buried_area_table.registerTempTable("buried_area_ligand") buried_area_sorted_by_lig_rec_perc = sqlCtx.sql("SELECT * FROM buried_area_ligand ORDER BY buried_lig_rec DESC") return buried_area_sorted_by_lig_rec_perc def save_buried_area_ligand(path_file_buried_area, buried_area_sorted_by_res_buried_area_perc): f_buried_area = open(path_file_buried_area,"w") for area in buried_area_sorted_by_res_buried_area_perc: #splited_line = area[0].split("_-_") #aux_recep = splited_line[0] #aux_lig = str(splited_line[1]) #preparing receptor #receptor = str(str(aux_recep).replace("compl_", " ")).strip() #preparing ligand #splited_aux_lig = str(aux_lig).split(get_separator_filename_mode()) #ligand = splited_aux_lig[0] #model = splited_aux_lig[1] pose = area[0] buried_lig_rec = "{:.4f}".format(area[1]) buried_lig_rec_perc = "{:.4f}".format(area[2]) buried_lig_lig = "{:.4f}".format(area[3]) buried_lig_lig_perc = "{:.4f}".format(area[4]) #line = receptor+"\t"+ligand+"\t"+model+"\t"+str(buried_lig_rec)+"\t"+str(buried_lig_rec_perc)+"\t"+str(buried_lig_lig)+"\t"+str(buried_lig_lig_perc)+"\n" line = str(pose)+"\t"+str(buried_lig_rec)+"\t"+str(buried_lig_rec_perc)+"\t"+str(buried_lig_lig)+"\t"+str(buried_lig_lig_perc)+"\n" f_buried_area.write(line) f_buried_area.close() def save_buried_area_ligand_sort(path_file_buried_area, buried_area): f_buried_area = open(path_file_buried_area,"w") line = "# buried_area_lig[nm2]\tburied_area_lig[%]\tburied_area_lig-lig[%]\tpose"+"\n" f_buried_area.write(line) for area in buried_area: #receptor = area[0] #ligand = area[1] #model = area[2] pose = str(str(area[0]).replace("compl_", " ")).strip() buried_lig_rec = "{:.4f}".format(area[1]) buried_lig_rec_perc = "{:.4f}".format(area[2]) buried_lig_lig = "{:.4f}".format(area[3]) buried_lig_lig_perc = "{:.4f}".format(area[4]) #line = receptor+"\t"+ligand+"\t"+str(model)+"\t"+str(buried_lig_rec)+"\t"+str(buried_lig_rec_perc)+"\t"+str(buried_lig_lig)+"\t"+str(buried_lig_lig_perc)+"\n" line = str(buried_lig_rec)+"\t"+str(buried_lig_rec_perc)+"\t"+str(buried_lig_lig_perc)+"\t"+str(pose)+"\n" f_buried_area.write(line) f_buried_area.close() def loading_lines_from_ligandArea_files(line): line_splited = str(line).split() #line_ret = ( str(line_splited[0]), str(line_splited[1]), int(line_splited[2]), float(line_splited[3]), float(line_splited[4]), float(line_splited[5]), float(line_splited[6]) ) line_ret = ( str(line_splited[0]), float(line_splited[1]), float(line_splited[2]), float(line_splited[3]), float(line_splited[4]) ) return line_ret def get_files_ligandArea(mypath): only_mol2_file = [] for root, dirs, files in os.walk(mypath): for file in files: if file.endswith(".ligandArea"): f_path = os.path.join(root,file) only_mol2_file.append(f_path) return only_mol2_file def get_residues_receptor_from_ndx_files(f_name_ndx): list_res = [] f_ndx = open(f_name_ndx,"r") for line in f_ndx: if line.find("rec_") > -1: line = line.translate(None, "]") line = line.translate(None, "[") line = line.strip() res = line.split("_") res = res[1]+"_"+res[2] list_res.append(res) f_ndx.close() return list_res def save_log(finish_time, start_time): log_file_name = 'vs_buried_areas_ligand_receptor.log' current_path = os.getcwd() path_file = os.path.join(current_path, log_file_name) log_file = open(path_file, 'w') diff_time = finish_time - start_time msg = 'Starting ' + str(start_time) +'\n' log_file.write(msg) msg = 'Finishing ' + str(finish_time) +'\n' log_file.write(msg) msg = 'Time Execution (seconds): ' + str(diff_time.total_seconds()) +'\n' log_file.write(msg) def main(): config = configparser.ConfigParser() config.read('config.ini') #Path for Gromacs project gromacs_path = preparing_path(config.get('DRUGDESIGN', 'gromacs_path')) #Path where PDB ligand are - They are NOT participated in docking pdb_ligand_path = config.get('DEFAULT', 'pdb_ligand_path') #Path that contains all files for analysis path_analysis = config.get('DEFAULT', 'path_analysis') #Path where all pdb receptor are path_receptor_pdb = config.get('DEFAULT', 'pdb_path') #Path for saving pdb files of models generated by VS path_analysis_pdb = get_directory_pdb_analysis(path_analysis) # Create SPARK config maxResultSize = str(config.get('SPARK', 'maxResultSize')) conf = (SparkConf().set("spark.driver.maxResultSize", maxResultSize)) # Create context sc = SparkContext(conf=conf) #Adding Python Source file #Path for drugdesign project path_spark_drugdesign = config.get('DRUGDESIGN', 'path_spark_drugdesign') sc.addPyFile(os.path.join(path_spark_drugdesign,"vina_utils.py")) sc.addPyFile(os.path.join(path_spark_drugdesign,"os_utils.py")) sc.addPyFile(os.path.join(path_spark_drugdesign,"gromacs_utils.py")) sc.addPyFile(os.path.join(path_spark_drugdesign,"pdb_io.py")) sc.addPyFile(os.path.join(path_spark_drugdesign,"json_utils.py")) #Adding bash scripts sc.addFile(os.path.join(path_spark_drugdesign,"make_ndx_buried_area_ligand.sh")) #Parameters form command line #Indicates probe. Example: 0.14 probe = float(sys.argv[1]) #Indicates ndots. Example: 24 ndots = int(sys.argv[2]) #Broadcast path_analysis_pdb_complex_b = sc.broadcast(path_analysis_pdb) gromacs_path = sc.broadcast(gromacs_path) pdb_ligand_path = sc.broadcast(pdb_ligand_path) probe = sc.broadcast(probe) ndots = sc.broadcast(ndots) start_time = datetime.now() os.environ["GMX_MAXBACKUP"]="-1" #Loading all PDB receptor files into memory list_all_pdb_receptor_files_path = [] all_receptor_for_complex = get_files_pdb(path_receptor_pdb) for receptor in all_receptor_for_complex: list_all_pdb_receptor_files_path.append(loading_pdb_2_list(receptor)) for pdb_receptor_files in list_all_pdb_receptor_files_path: #Getting receptor name by fully path base_file_name_receptor = get_name_receptor_pdb(str(pdb_receptor_files[0])) #PDB file loaded into memory is sent by broadcast pdb_file_receptor = pdb_receptor_files[1] pdb_file_receptor = sc.broadcast(pdb_file_receptor) #Loading PDB model files based on receptor into memory base_file_name_receptor_for_filter = base_file_name_receptor+"_-_" all_model_for_complex = get_files_pdb_filter(path_analysis_pdb,base_file_name_receptor_for_filter) all_model_for_complexRDD = sc.parallelize(all_model_for_complex) all_model_filesRDD = all_model_for_complexRDD.map(loading_pdb_2_list).collect() # ********** Starting function ********************************************************** def save_model_receptor(list_receptor_model_file): receptor_file = pdb_file_receptor.value #Obtained from broadcast model_file = list_receptor_model_file[0] full_path_for_save_complex = list_receptor_model_file[1] #Open file for writting the complex f_compl = open(full_path_for_save_complex, "w") #Insert lines of receptor for item in receptor_file: f_compl.write(item) #Insert lines of model and insert Z chain for item in model_file: item = replace_chain_atom_line(item,"d","z") f_compl.write(item) f_compl.close() # ********** Finish function ********************************************************** # ********** Starting function ********************************************************** def compute_buried_area_ligand(pdb_complex): chZ = "chZ" buried_lig_rec_perc = -1.0 buried_lig_rec = -1.0 buried_lig_lig = -1.0 buried_lig_lig_perc = -1.0 base_name = get_name_model_pdb(pdb_complex) ligand_name = get_ligand_from_receptor_ligand_model(base_name) receptor_name = get_receptor_from_receptor_ligand_model(base_name) pose = get_model_from_receptor_ligand_model(base_name) pdb_before_vs = os.path.join(pdb_ligand_path.value,ligand_name+".pdb") #ndx files f_ndx = os.path.join(path_analysis_pdb_complex_b.value,base_name+".ndx") #xvg files xvg_temp_sasa_lig_pose = os.path.join(path_analysis_pdb_complex_b.value,base_name+"_sasa_lig_pose"+".xvg") xvg_temp_sasa_lig_complex = os.path.join(path_analysis_pdb_complex_b.value,base_name+"_sasa_lig_complex"+".xvg") xvg_temp_sasa_lig_min = os.path.join(path_analysis_pdb_complex_b.value,base_name+"_sasa_lig_min"+".xvg") # Creates a selection with the residues that are closer than 6A to the ligand script_make_ndx_buried_area_ligand = SparkFiles.get("make_ndx_buried_area_ligand.sh") #Getting bash script that was copied by addFile command command = script_make_ndx_buried_area_ligand + " " + gromacs_path.value + " "+ pdb_complex + " "+ f_ndx + " "+ xvg_temp_sasa_lig_pose + " "+ str(probe.value) + " "+ str(ndots.value) + " "+ xvg_temp_sasa_lig_complex + " "+ pdb_before_vs + " "+ xvg_temp_sasa_lig_min process = Popen(command,shell=True, stdout=PIPE, stderr=PIPE) stdout, stderr = process.communicate() try: # SASA of the isolated ligand in the pose conformation sasa_lig_pose = get_value_from_xvg_sasa(xvg_temp_sasa_lig_pose) # SASA of the complexed ligand in the pose conformation sasa_lig_complex = get_value_from_xvg_sasa(xvg_temp_sasa_lig_complex) # SASA of the isolated ligand in its energy-minimized conformation. Only for carbohydrates! sasa_lig_min = get_value_from_xvg_sasa(xvg_temp_sasa_lig_min) # Area of the ligand which is buried in the receptor buried_lig_rec = sasa_lig_pose - sasa_lig_complex buried_lig_rec_perc = buried_lig_rec / sasa_lig_pose # Area of the ligand in the pose conformation which is buried in itself when compared to the energy-minimized conformation buried_lig_lig = sasa_lig_min - sasa_lig_pose buried_lig_lig_perc = buried_lig_lig / sasa_lig_min returned_list = (base_name, buried_lig_rec, buried_lig_rec_perc, buried_lig_lig, buried_lig_lig_perc) #Deleting files os.remove(f_ndx) os.remove(xvg_temp_sasa_lig_pose) os.remove(xvg_temp_sasa_lig_complex) os.remove(xvg_temp_sasa_lig_min) return returned_list except: return (base_name, float(0.0), float(0.0), float(0.0), float(0.0)) # ********** Finish function ********************************************************** # ********** Starting function ********************************************************** def build_list_model_for_complex(model): full_path_model = model[0] model_file = model[1] path_pdb_complex = path_analysis_pdb_complex_b.value #Obtained from broadcast #Building complex file based on model file name base_name_model = get_name_model_pdb(full_path_model) complex_name = "compl_"+base_name_model+".pdb" full_path_for_save_complex = os.path.join(path_pdb_complex,complex_name) list_receptor_model_file = (model_file, full_path_for_save_complex) save_model_receptor(list_receptor_model_file) list_ret = compute_buried_area_ligand(full_path_for_save_complex) os.remove(full_path_for_save_complex) return list_ret # ********** Finish function ********************************************************** all_model_filesRDD = sc.parallelize(all_model_filesRDD) all_model_filesRDD = all_model_filesRDD.map(build_list_model_for_complex).collect() #Saving buried area of residue receptor full_area_file = os.path.join(path_analysis,base_file_name_receptor+".ligandArea") save_buried_area_ligand(full_area_file, all_model_filesRDD) #Loading all area file all_area_file = os.path.join(path_analysis,"*.ligandArea") buried_areaRDD = sc.textFile(all_area_file).map(loading_lines_from_ligandArea_files).collect() #Sorting by buried_lig_lig column buried_area_sorted_by_buried_lig_rec = sorting_buried_area_ligand(sc, buried_areaRDD) buried_area_sorted_by_buried_lig_rec = buried_area_sorted_by_buried_lig_rec.map(lambda p: (p.pose, p.buried_lig_rec, p.buried_lig_rec_perc, p.buried_lig_lig, p.buried_lig_lig_perc) ).collect() #p.receptor, p.ligand, p.model #Saving buried area ligand file path_file_buried_area = os.path.join(path_analysis, "summary_buried_area_ligand.dat") save_buried_area_ligand_sort(path_file_buried_area, buried_area_sorted_by_buried_lig_rec) #Removing all area files all_area_files = get_files_ligandArea(path_analysis) for area_file in all_area_files: os.remove(area_file) finish_time = datetime.now() save_log(finish_time, start_time) main()
rodrigofaccioli/drugdesign
virtualscreening/vina/spark/buried_area_ligand.py
Python
apache-2.0
13,488
# Copyright 2013-2016 DataStax, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from cassandra import InvalidRequest from cassandra.cluster import Cluster from cassandra.cluster import NoHostAvailable from cassandra.cqlengine import columns, CQLEngineException from cassandra.cqlengine import connection as conn from cassandra.cqlengine.management import drop_keyspace, sync_table, drop_table, create_keyspace_simple from cassandra.cqlengine.models import Model, QuerySetDescriptor from cassandra.cqlengine.query import ContextQuery, BatchQuery, ModelQuerySet from tests.integration.cqlengine import setup_connection, DEFAULT_KEYSPACE from tests.integration.cqlengine.base import BaseCassEngTestCase from tests.integration.cqlengine.query import test_queryset class TestModel(Model): __keyspace__ = 'ks1' partition = columns.Integer(primary_key=True) cluster = columns.Integer(primary_key=True) count = columns.Integer() text = columns.Text() class AnotherTestModel(Model): __keyspace__ = 'ks1' partition = columns.Integer(primary_key=True) cluster = columns.Integer(primary_key=True) count = columns.Integer() text = columns.Text() class ContextQueryConnectionTests(BaseCassEngTestCase): @classmethod def setUpClass(cls): super(ContextQueryConnectionTests, cls).setUpClass() create_keyspace_simple('ks1', 1) conn.unregister_connection('default') conn.register_connection('fake_cluster', ['127.0.0.100'], lazy_connect=True, retry_connect=True, default=True) conn.register_connection('cluster', ['127.0.0.1']) with ContextQuery(TestModel, connection='cluster') as tm: sync_table(tm) @classmethod def tearDownClass(cls): super(ContextQueryConnectionTests, cls).tearDownClass() with ContextQuery(TestModel, connection='cluster') as tm: drop_table(tm) drop_keyspace('ks1', connections=['cluster']) # reset the default connection conn.unregister_connection('fake_cluster') conn.unregister_connection('cluster') setup_connection(DEFAULT_KEYSPACE) def setUp(self): super(BaseCassEngTestCase, self).setUp() def test_context_connection_priority(self): """ Tests to ensure the proper connection priority is honored. Explicit connection should have higest priority, Followed by context query connection Default connection should be honored last. @since 3.7 @jira_ticket PYTHON-613 @expected_result priorities should be honored @test_category object_mapper """ # model keyspace write/read # Set the default connection on the Model TestModel.__connection__ = 'cluster' with ContextQuery(TestModel) as tm: tm.objects.create(partition=1, cluster=1) # ContextQuery connection should have priority over default one with ContextQuery(TestModel, connection='fake_cluster') as tm: with self.assertRaises(NoHostAvailable): tm.objects.create(partition=1, cluster=1) # Explicit connection should have priority over ContextQuery one with ContextQuery(TestModel, connection='fake_cluster') as tm: tm.objects.using(connection='cluster').create(partition=1, cluster=1) # Reset the default conn of the model TestModel.__connection__ = None # No model connection and an invalid default connection with ContextQuery(TestModel) as tm: with self.assertRaises(NoHostAvailable): tm.objects.create(partition=1, cluster=1) def test_context_connection_with_keyspace(self): """ Tests to ensure keyspace param is honored @since 3.7 @jira_ticket PYTHON-613 @expected_result Invalid request is thrown @test_category object_mapper """ # ks2 doesn't exist with ContextQuery(TestModel, connection='cluster', keyspace='ks2') as tm: with self.assertRaises(InvalidRequest): tm.objects.create(partition=1, cluster=1) class ManagementConnectionTests(BaseCassEngTestCase): keyspaces = ['ks1', 'ks2'] conns = ['cluster'] @classmethod def setUpClass(cls): super(ManagementConnectionTests, cls).setUpClass() conn.unregister_connection('default') conn.register_connection('fake_cluster', ['127.0.0.100'], lazy_connect=True, retry_connect=True, default=True) conn.register_connection('cluster', ['127.0.0.1']) @classmethod def tearDownClass(cls): super(ManagementConnectionTests, cls).tearDownClass() # reset the default connection conn.unregister_connection('fake_cluster') conn.unregister_connection('cluster') setup_connection(DEFAULT_KEYSPACE) def setUp(self): super(BaseCassEngTestCase, self).setUp() def test_create_drop_keyspace(self): """ Tests drop and create keyspace with connections explicitly set @since 3.7 @jira_ticket PYTHON-613 @expected_result keyspaces should be created and dropped @test_category object_mapper """ # No connection (default is fake) with self.assertRaises(NoHostAvailable): create_keyspace_simple(self.keyspaces[0], 1) # Explicit connections for ks in self.keyspaces: create_keyspace_simple(ks, 1, connections=self.conns) for ks in self.keyspaces: drop_keyspace(ks, connections=self.conns) def test_create_drop_table(self): """ Tests drop and create Table with connections explicitly set @since 3.7 @jira_ticket PYTHON-613 @expected_result Tables should be created and dropped @test_category object_mapper """ for ks in self.keyspaces: create_keyspace_simple(ks, 1, connections=self.conns) # No connection (default is fake) with self.assertRaises(NoHostAvailable): sync_table(TestModel) # Explicit connections sync_table(TestModel, connections=self.conns) # Explicit drop drop_table(TestModel, connections=self.conns) # Model connection TestModel.__connection__ = 'cluster' sync_table(TestModel) TestModel.__connection__ = None # No connection (default is fake) with self.assertRaises(NoHostAvailable): drop_table(TestModel) # Model connection TestModel.__connection__ = 'cluster' drop_table(TestModel) TestModel.__connection__ = None # Model connection for ks in self.keyspaces: drop_keyspace(ks, connections=self.conns) def test_connection_creation_from_session(self): """ Test to ensure that you can register a connection from a session @since 3.8 @jira_ticket PYTHON-649 @expected_result queries should execute appropriately @test_category object_mapper """ session = Cluster(['127.0.0.1']).connect() connection_name = 'from_session' conn.register_connection(connection_name, session=session) self.addCleanup(conn.unregister_connection, connection_name) def test_connection_param_validation(self): """ Test to validate that invalid parameter combinations for registering connections via session are not tolerated @since 3.8 @jira_ticket PYTHON-649 @expected_result queries should execute appropriately @test_category object_mapper """ session = Cluster(['127.0.0.1']).connect() with self.assertRaises(CQLEngineException): conn.register_connection("bad_coonection1", session=session, consistency="not_null") with self.assertRaises(CQLEngineException): conn.register_connection("bad_coonection2", session=session, lazy_connect="not_null") with self.assertRaises(CQLEngineException): conn.register_connection("bad_coonection3", session=session, retry_connect="not_null") with self.assertRaises(CQLEngineException): conn.register_connection("bad_coonection4", session=session, cluster_options="not_null") with self.assertRaises(CQLEngineException): conn.register_connection("bad_coonection5", hosts="not_null", session=session) class BatchQueryConnectionTests(BaseCassEngTestCase): conns = ['cluster'] @classmethod def setUpClass(cls): super(BatchQueryConnectionTests, cls).setUpClass() create_keyspace_simple('ks1', 1) sync_table(TestModel) sync_table(AnotherTestModel) conn.unregister_connection('default') conn.register_connection('fake_cluster', ['127.0.0.100'], lazy_connect=True, retry_connect=True, default=True) conn.register_connection('cluster', ['127.0.0.1']) @classmethod def tearDownClass(cls): super(BatchQueryConnectionTests, cls).tearDownClass() # reset the default connection conn.unregister_connection('fake_cluster') conn.unregister_connection('cluster') setup_connection(DEFAULT_KEYSPACE) drop_keyspace('ks1') def setUp(self): super(BaseCassEngTestCase, self).setUp() def test_basic_batch_query(self): """ Test Batch queries with connections explicitly set @since 3.7 @jira_ticket PYTHON-613 @expected_result queries should execute appropriately @test_category object_mapper """ # No connection with a QuerySet (default is a fake one) with self.assertRaises(NoHostAvailable): with BatchQuery() as b: TestModel.objects.batch(b).create(partition=1, cluster=1) # Explicit connection with a QuerySet with BatchQuery(connection='cluster') as b: TestModel.objects.batch(b).create(partition=1, cluster=1) # Get an object from the BD with ContextQuery(TestModel, connection='cluster') as tm: obj = tm.objects.get(partition=1, cluster=1) obj.__connection__ = None # No connection with a model (default is a fake one) with self.assertRaises(NoHostAvailable): with BatchQuery() as b: obj.count = 2 obj.batch(b).save() # Explicit connection with a model with BatchQuery(connection='cluster') as b: obj.count = 2 obj.batch(b).save() def test_batch_query_different_connection(self): """ Test BatchQuery with Models that have a different connection @since 3.7 @jira_ticket PYTHON-613 @expected_result queries should execute appropriately @test_category object_mapper """ # Testing on a model class TestModel.__connection__ = 'cluster' AnotherTestModel.__connection__ = 'cluster2' with self.assertRaises(CQLEngineException): with BatchQuery() as b: TestModel.objects.batch(b).create(partition=1, cluster=1) AnotherTestModel.objects.batch(b).create(partition=1, cluster=1) TestModel.__connection__ = None AnotherTestModel.__connection__ = None with BatchQuery(connection='cluster') as b: TestModel.objects.batch(b).create(partition=1, cluster=1) AnotherTestModel.objects.batch(b).create(partition=1, cluster=1) # Testing on a model instance with ContextQuery(TestModel, AnotherTestModel, connection='cluster') as (tm, atm): obj1 = tm.objects.get(partition=1, cluster=1) obj2 = atm.objects.get(partition=1, cluster=1) obj1.__connection__ = 'cluster' obj2.__connection__ = 'cluster2' obj1.count = 4 obj2.count = 4 with self.assertRaises(CQLEngineException): with BatchQuery() as b: obj1.batch(b).save() obj2.batch(b).save() def test_batch_query_connection_override(self): """ Test that we cannot override a BatchQuery connection per model @since 3.7 @jira_ticket PYTHON-613 @expected_result Proper exceptions should be raised @test_category object_mapper """ with self.assertRaises(CQLEngineException): with BatchQuery(connection='cluster') as b: TestModel.batch(b).using(connection='test').save() with self.assertRaises(CQLEngineException): with BatchQuery(connection='cluster') as b: TestModel.using(connection='test').batch(b).save() with ContextQuery(TestModel, AnotherTestModel, connection='cluster') as (tm, atm): obj1 = tm.objects.get(partition=1, cluster=1) obj1.__connection__ = None with self.assertRaises(CQLEngineException): with BatchQuery(connection='cluster') as b: obj1.using(connection='test').batch(b).save() with self.assertRaises(CQLEngineException): with BatchQuery(connection='cluster') as b: obj1.batch(b).using(connection='test').save() class UsingDescriptorTests(BaseCassEngTestCase): conns = ['cluster'] keyspaces = ['ks1', 'ks2'] @classmethod def setUpClass(cls): super(UsingDescriptorTests, cls).setUpClass() conn.unregister_connection('default') conn.register_connection('fake_cluster', ['127.0.0.100'], lazy_connect=True, retry_connect=True, default=True) conn.register_connection('cluster', ['127.0.0.1']) @classmethod def tearDownClass(cls): super(UsingDescriptorTests, cls).tearDownClass() # reset the default connection conn.unregister_connection('fake_cluster') conn.unregister_connection('cluster') setup_connection(DEFAULT_KEYSPACE) for ks in cls.keyspaces: drop_keyspace(ks) def setUp(self): super(BaseCassEngTestCase, self).setUp() def _reset_data(self): for ks in self.keyspaces: drop_keyspace(ks, connections=self.conns) for ks in self.keyspaces: create_keyspace_simple(ks, 1, connections=self.conns) sync_table(TestModel, keyspaces=self.keyspaces, connections=self.conns) def test_keyspace(self): """ Test keyspace segregation when same connection is used @since 3.7 @jira_ticket PYTHON-613 @expected_result Keyspace segration is honored @test_category object_mapper """ self._reset_data() with ContextQuery(TestModel, connection='cluster') as tm: # keyspace Model class tm.objects.using(keyspace='ks2').create(partition=1, cluster=1) tm.objects.using(keyspace='ks2').create(partition=2, cluster=2) with self.assertRaises(TestModel.DoesNotExist): tm.objects.get(partition=1, cluster=1) # default keyspace ks1 obj1 = tm.objects.using(keyspace='ks2').get(partition=1, cluster=1) obj1.count = 2 obj1.save() with self.assertRaises(NoHostAvailable): TestModel.objects.using(keyspace='ks2').get(partition=1, cluster=1) obj2 = TestModel.objects.using(connection='cluster', keyspace='ks2').get(partition=1, cluster=1) self.assertEqual(obj2.count, 2) # Update test TestModel.objects(partition=2, cluster=2).using(connection='cluster', keyspace='ks2').update(count=5) obj3 = TestModel.objects.using(connection='cluster', keyspace='ks2').get(partition=2, cluster=2) self.assertEqual(obj3.count, 5) TestModel.objects(partition=2, cluster=2).using(connection='cluster', keyspace='ks2').delete() with self.assertRaises(TestModel.DoesNotExist): TestModel.objects.using(connection='cluster', keyspace='ks2').get(partition=2, cluster=2) def test_connection(self): """ Test basic connection functionality @since 3.7 @jira_ticket PYTHON-613 @expected_result proper connection should be used @test_category object_mapper """ self._reset_data() # Model class with self.assertRaises(NoHostAvailable): TestModel.objects.create(partition=1, cluster=1) TestModel.objects.using(connection='cluster').create(partition=1, cluster=1) TestModel.objects(partition=1, cluster=1).using(connection='cluster').update(count=2) obj1 = TestModel.objects.using(connection='cluster').get(partition=1, cluster=1) self.assertEqual(obj1.count, 2) obj1.using(connection='cluster').update(count=5) obj1 = TestModel.objects.using(connection='cluster').get(partition=1, cluster=1) self.assertEqual(obj1.count, 5) obj1.using(connection='cluster').delete() with self.assertRaises(TestModel.DoesNotExist): TestModel.objects.using(connection='cluster').get(partition=1, cluster=1) class ModelQuerySetNew(ModelQuerySet): def __init__(self, *args, **kwargs): super(ModelQuerySetNew, self).__init__(*args, **kwargs) self._connection = "cluster" class BaseConnectionTestNoDefault(object): conns = ['cluster'] @classmethod def setUpClass(cls): conn.register_connection('cluster', ['127.0.0.1']) test_queryset.TestModel.__queryset__ = ModelQuerySetNew test_queryset.IndexedTestModel.__queryset__ = ModelQuerySetNew test_queryset.IndexedCollectionsTestModel.__queryset__ = ModelQuerySetNew test_queryset.TestMultiClusteringModel.__queryset__ = ModelQuerySetNew super(BaseConnectionTestNoDefault, cls).setUpClass() conn.unregister_connection('default') @classmethod def tearDownClass(cls): conn.unregister_connection('cluster') setup_connection(DEFAULT_KEYSPACE) super(BaseConnectionTestNoDefault, cls).tearDownClass() # reset the default connection def setUp(self): super(BaseCassEngTestCase, self).setUp() class TestQuerySetOperationConnection(BaseConnectionTestNoDefault, test_queryset.TestQuerySetOperation): """ Execute test_queryset.TestQuerySetOperation using non default connection @since 3.7 @jira_ticket PYTHON-613 @expected_result proper connection should be used @test_category object_mapper """ pass class TestQuerySetDistinctNoDefault(BaseConnectionTestNoDefault, test_queryset.TestQuerySetDistinct): """ Execute test_queryset.TestQuerySetDistinct using non default connection @since 3.7 @jira_ticket PYTHON-613 @expected_result proper connection should be used @test_category object_mapper """ pass class TestQuerySetOrderingNoDefault(BaseConnectionTestNoDefault, test_queryset.TestQuerySetOrdering): """ Execute test_queryset.TestQuerySetOrdering using non default connection @since 3.7 @jira_ticket PYTHON-613 @expected_result proper connection should be used @test_category object_mapper """ pass class TestQuerySetCountSelectionAndIterationNoDefault(BaseConnectionTestNoDefault, test_queryset.TestQuerySetCountSelectionAndIteration): """ Execute test_queryset.TestQuerySetOrdering using non default connection @since 3.7 @jira_ticket PYTHON-613 @expected_result proper connection should be used @test_category object_mapper """ pass class TestQuerySetSlicingNoDefault(BaseConnectionTestNoDefault, test_queryset.TestQuerySetSlicing): """ Execute test_queryset.TestQuerySetOrdering using non default connection @since 3.7 @jira_ticket PYTHON-613 @expected_result proper connection should be used @test_category object_mapper """ pass class TestQuerySetValidationNoDefault(BaseConnectionTestNoDefault, test_queryset.TestQuerySetValidation): """ Execute test_queryset.TestQuerySetOrdering using non default connection @since 3.7 @jira_ticket PYTHON-613 @expected_result proper connection should be used @test_category object_mapper """ pass class TestQuerySetDeleteNoDefault(BaseConnectionTestNoDefault, test_queryset.TestQuerySetDelete): """ Execute test_queryset.TestQuerySetDelete using non default connection @since 3.7 @jira_ticket PYTHON-613 @expected_result proper connection should be used @test_category object_mapper """ pass class TestValuesListNoDefault(BaseConnectionTestNoDefault, test_queryset.TestValuesList): """ Execute test_queryset.TestValuesList using non default connection @since 3.7 @jira_ticket PYTHON-613 @expected_result proper connection should be used @test_category object_mapper """ pass class TestObjectsPropertyNoDefault(BaseConnectionTestNoDefault, test_queryset.TestObjectsProperty): """ Execute test_queryset.TestObjectsProperty using non default connection @since 3.7 @jira_ticket PYTHON-613 @expected_result proper connection should be used @test_category object_mapper """ pass
vipjml/python-driver
tests/integration/cqlengine/test_connections.py
Python
apache-2.0
21,818
from doajtest.helpers import DoajTestCase from portality import models from portality import lcc from portality.forms.application_forms import JournalFormFactory from portality.forms.application_processors import ManEdJournalReview from doajtest.fixtures import JournalFixtureFactory from copy import deepcopy JOURNAL_SOURCE = JournalFixtureFactory.make_journal_source() JOURNAL_FORM = JournalFixtureFactory.make_journal_form() ##################################################################### # Mocks required to make some of the lookups work ##################################################################### @classmethod def editor_group_pull(cls, field, value): eg = models.EditorGroup() eg.set_editor("eddie") eg.set_associates(["associate", "assan"]) eg.set_name("Test Editor Group") return eg def mock_lookup_code(code): if code == "H": return "Social Sciences" if code == "HB1-3840": return "Economic theory. Demography" return None class TestManEdJournalReview(DoajTestCase): def setUp(self): super(TestManEdJournalReview, self).setUp() self.editor_group_pull = models.EditorGroup.pull_by_key models.EditorGroup.pull_by_key = editor_group_pull self.old_lookup_code = lcc.lookup_code lcc.lookup_code = mock_lookup_code def tearDown(self): super(TestManEdJournalReview, self).tearDown() models.EditorGroup.pull_by_key = self.editor_group_pull lcc.lookup_code = self.old_lookup_code def test_01_maned_review_success(self): """Give the Managing Editor's journal form a full workout""" journal = models.Journal(**JOURNAL_SOURCE) owner = models.Account() owner.set_id("owner") owner.save(blocking=True) journal.set_owner(owner.id) JOURNAL_FORM["owner"] = owner.id # we start by constructing it from source formulaic_context = JournalFormFactory.context("admin") fc = formulaic_context.processor(source=journal) # fc = formcontext.JournalFormFactory.get_form_context(role="admin", source=models.Journal(**JOURNAL_SOURCE)) assert isinstance(fc, ManEdJournalReview) assert fc.form is not None assert fc.source is not None assert fc.form_data is None # no need to check form rendering - there are no disabled fields # now construct it from form data (with a known source) fc = formulaic_context.processor( formdata=JOURNAL_FORM, source=journal ) assert isinstance(fc, ManEdJournalReview) assert fc.form is not None assert fc.source is not None assert fc.form_data is not None # test each of the workflow components individually ... # pre-validate and ensure that the disabled fields get re-set fc.pre_validate() # no disabled fields, so just test the function runs # run the validation itself assert fc.validate(), fc.form.errors # run the crosswalk (no need to look in detail, xwalks are tested elsewhere) fc.form2target() assert fc.target is not None # patch the target with data from the source fc.patch_target() assert fc.target.created_date == "2000-01-01T00:00:00Z" assert fc.target.id == "abcdefghijk_journal" assert fc.target.current_application == "qwertyuiop" related = fc.target.related_applications assert len(related) == 2 assert related[0].get("application_id") == "asdfghjkl" assert related[0].get("date_accepted") == "2018-01-01T00:00:00Z" assert related[1].get("application_id") == "zxcvbnm" assert related[1].get("date_accepted") is None # everything else is overridden by the form, so no need to check it has patched # now do finalise (which will also re-run all of the steps above) fc.finalise() assert True # gives us a place to drop a break point later if we need it def test_02_maned_review_optional_validation(self): """Test optional validation in the Managing Editor's journal form""" # construct it from form data (with a known source) formulaic_context = JournalFormFactory.context("admin") fc = formulaic_context.processor( formdata=JOURNAL_FORM, source=models.Journal(**JOURNAL_SOURCE) ) # do not re-test the form context # run the validation, but make it fail by omitting a required field fc.form.title.data = '' assert not fc.validate() # tick the optional validation box and try again fc.form.make_all_fields_optional.data = True assert fc.validate(), fc.form.errors # run the crosswalk, don't test it at all in this test fc.form2target() # patch the target with data from the source fc.patch_target() # right, so let's see if we managed to get a title-less journal from this assert fc.target.bibjson().title is None, fc.target.bibjson().title def test_04_maned_review_doaj_seal(self): """Test the seal checkbox on the maned review form""" # construct it from form data (with a known source) formulaic_context = JournalFormFactory.context("admin") fc = formulaic_context.processor( formdata=JOURNAL_FORM, source=models.Journal(**JOURNAL_SOURCE) ) # set the seal to False using the form fc.form.doaj_seal.data = False # run the crosswalk, don't test it at all in this test fc.form2target() # patch the target with data from the source fc.patch_target() # ensure the model has seal set to False assert fc.target.has_seal() is False # Set the seal to True in the object and check the form reflects this fc.source.set_seal(True) fc.source2form() assert fc.form.doaj_seal.data is True def test_05_maned_review_continuations(self): # construct it from form data (with a known source) formulaic_context = JournalFormFactory.context("admin") fc = formulaic_context.processor( formdata=JOURNAL_FORM, source=models.Journal(**JOURNAL_SOURCE) ) # check the form has the continuations data assert fc.form.continues.data == ["1111-1111"] assert fc.form.continued_by.data == ["2222-2222"] assert fc.form.discontinued_date.data == "2001-01-01" # run the crosswalk, don't test it at all in this test fc.form2target() # patch the target with data from the source fc.patch_target() # ensure the model has the continuations data assert fc.target.bibjson().replaces == ["1111-1111"] assert fc.target.bibjson().is_replaced_by == ["2222-2222"] assert fc.target.bibjson().discontinued_date == "2001-01-01" def test_06_maned_review_no_continuation(self): source = deepcopy(JOURNAL_SOURCE) source["bibjson"]["replaces"] = [] source["bibjson"]["is_replaced_by"] = [] source["bibjson"]["discontinued_date"] = "" j = models.Journal(**source) bj = j.bibjson() # just checking this works, as it uses an inner DataObj form = deepcopy(JOURNAL_FORM) form["continues"] = "" form["continued_by"] = "" form["discontinued_date"] = "" # construct it from form data (with a known source) formulaic_context = JournalFormFactory.context("admin") fc = formulaic_context.processor( formdata=form, source=j ) # check the form has the continuations data assert fc.form.continues.data == [] assert fc.form.continued_by.data == [] assert fc.form.discontinued_date.data == "" # run the crosswalk, don't test it at all in this test fc.form2target() # patch the target with data from the source fc.patch_target() # ensure the model has the continuations data assert fc.target.bibjson().replaces == [] assert fc.target.bibjson().is_replaced_by == [] assert fc.target.bibjson().discontinued_date is None
DOAJ/doaj
doajtest/unit/application_processors/test_maned_journal_review.py
Python
apache-2.0
8,279
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from sqlalchemy import MetaData, Table def upgrade(migrate_engine): meta = MetaData() meta.bind = migrate_engine table = Table('iscsi_targets', meta, autoload=True) table.drop()
dims/cinder
cinder/db/sqlalchemy/migrate_repo/versions/063_drop_iscsi_targets_table.py
Python
apache-2.0
769
#!/usr/bin/env python # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https: // www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """risr_proj URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ # pylint: disable=import-error from django.contrib import admin from django.urls import path, re_path from dashboard import views urlpatterns = [ path('admin/', admin.site.urls), re_path(r'^api/dashboard/$', views.dashboard_list), ]
googleinterns/risr
risr-app/risr_proj/risr_proj/urls.py
Python
apache-2.0
1,476
# Copyright 2012 NEC Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import logging from django.conf import settings from django.core.urlresolvers import reverse from django.utils.translation import ugettext_lazy as _ import netaddr from horizon import exceptions from horizon import forms from horizon import messages from horizon import workflows from openstack_dashboard import api from openstack_dashboard.dashboards.project.networks.subnets import utils LOG = logging.getLogger(__name__) class CreateNetworkInfoAction(workflows.Action): net_name = forms.CharField(max_length=255, label=_("Network Name"), required=False) if api.neutron.is_port_profiles_supported(): widget = None else: widget = forms.HiddenInput() net_profile_id = forms.ChoiceField(label=_("Network Profile"), required=False, widget=widget) admin_state = forms.ChoiceField(choices=[(True, _('UP')), (False, _('DOWN'))], label=_("Admin State"), required=False, help_text=_("The state to start" " the network in.")) shared = forms.BooleanField(label=_("Shared"), initial=False, required=False) with_subnet = forms.BooleanField(label=_("Create Subnet"), widget=forms.CheckboxInput(attrs={ 'class': 'switchable', 'data-slug': 'with_subnet', 'data-hide-tab': 'create_network__' 'createsubnetinfo' 'action,' 'create_network__' 'createsubnetdetail' 'action,', 'data-hide-on-checked': 'false' }), initial=True, required=False) def __init__(self, request, *args, **kwargs): super(CreateNetworkInfoAction, self).__init__(request, *args, **kwargs) if api.neutron.is_port_profiles_supported(): self.fields['net_profile_id'].choices = ( self.get_network_profile_choices(request)) def get_network_profile_choices(self, request): profile_choices = [('', _("Select a profile"))] for profile in self._get_profiles(request, 'network'): profile_choices.append((profile.id, profile.name)) return profile_choices def _get_profiles(self, request, type_p): profiles = [] try: profiles = api.neutron.profile_list(request, type_p) except Exception: msg = _('Network Profiles could not be retrieved.') exceptions.handle(request, msg) return profiles # TODO(absubram): Add ability to view network profile information # in the network detail if a profile is used. class Meta(object): name = _("Network") help_text = _("Create a new network. " "In addition, a subnet associated with the network " "can be created in the next panel.") class CreateNetworkInfo(workflows.Step): action_class = CreateNetworkInfoAction contributes = ("net_name", "admin_state", "net_profile_id", "with_subnet", "shared") class CreateSubnetInfoAction(workflows.Action): subnet_name = forms.CharField(max_length=255, widget=forms.TextInput(attrs={ }), label=_("Subnet Name"), required=False) address_source = forms.ChoiceField( required=False, label=_('Network Address Source'), choices=[('manual', _('Enter Network Address manually')), ('subnetpool', _('Allocate Network Address from a pool'))], widget=forms.Select(attrs={ 'class': 'switchable', 'data-slug': 'source', })) subnetpool = forms.ChoiceField( label=_("Address pool"), widget=forms.SelectWidget(attrs={ 'class': 'switched switchable', 'data-slug': 'subnetpool', 'data-switch-on': 'source', 'data-source-subnetpool': _('Address pool')}, data_attrs=('name', 'prefixes', 'ip_version', 'min_prefixlen', 'max_prefixlen', 'default_prefixlen'), transform=lambda x: "%s (%s)" % (x.name, ", ".join(x.prefixes)) if 'prefixes' in x else "%s" % (x.name)), required=False) prefixlen = forms.ChoiceField(widget=forms.Select(attrs={ 'class': 'switched', 'data-switch-on': 'subnetpool', }), label=_('Network Mask'), required=False) cidr = forms.IPField(label=_("Network Address"), required=False, initial="", widget=forms.TextInput(attrs={ 'class': 'switched', 'data-switch-on': 'source', 'data-source-manual': _("Network Address"), }), help_text=_("Network address in CIDR format " "(e.g. 192.168.0.0/24, 2001:DB8::/48)"), version=forms.IPv4 | forms.IPv6, mask=True) ip_version = forms.ChoiceField(choices=[(4, 'IPv4'), (6, 'IPv6')], widget=forms.Select(attrs={ 'class': 'switchable', 'data-slug': 'ipversion', }), label=_("IP Version"), required=False) gateway_ip = forms.IPField( label=_("Gateway IP"), widget=forms.TextInput(attrs={ 'class': 'switched', 'data-switch-on': 'source gateway_ip', 'data-source-manual': _("Gateway IP") }), required=False, initial="", help_text=_("IP address of Gateway (e.g. 192.168.0.254) " "The default value is the first IP of the " "network address " "(e.g. 192.168.0.1 for 192.168.0.0/24, " "2001:DB8::1 for 2001:DB8::/48). " "If you use the default, leave blank. " "If you do not want to use a gateway, " "check 'Disable Gateway' below."), version=forms.IPv4 | forms.IPv6, mask=False) no_gateway = forms.BooleanField(label=_("Disable Gateway"), widget=forms.CheckboxInput(attrs={ 'class': 'switchable', 'data-slug': 'gateway_ip', 'data-hide-on-checked': 'true' }), initial=False, required=False) msg = _('Specify "Network Address", "Address pool" or ' 'clear "Create Subnet" checkbox.') class Meta(object): name = _("Subnet") help_text = _('Create a subnet associated with the network. ' 'Advanced configuration is available by clicking on the ' '"Subnet Details" tab.') def __init__(self, request, context, *args, **kwargs): super(CreateSubnetInfoAction, self).__init__(request, context, *args, **kwargs) if 'with_subnet' in context: self.fields['with_subnet'] = forms.BooleanField( initial=context['with_subnet'], required=False, widget=forms.HiddenInput() ) if not getattr(settings, 'OPENSTACK_NEUTRON_NETWORK', {}).get('enable_ipv6', True): self.fields['ip_version'].widget = forms.HiddenInput() self.fields['ip_version'].initial = 4 try: if api.neutron.is_extension_supported(request, 'subnet_allocation'): self.fields['subnetpool'].choices = \ self.get_subnetpool_choices(request) else: self.hide_subnetpool_choices() except Exception: self.hide_subnetpool_choices() msg = _('Unable to initialize subnetpools') exceptions.handle(request, msg) if len(self.fields['subnetpool'].choices) > 1: # Pre-populate prefixlen choices to satisfy Django # ChoiceField Validation. This is overridden w/data from # subnetpool on select. self.fields['prefixlen'].choices = \ zip(list(range(0, 128 + 1)), list(range(0, 128 + 1))) # Populate data-fields for switching the prefixlen field # when user selects a subnetpool other than # "Provider default pool" for (id, name) in self.fields['subnetpool'].choices: if not len(id): continue key = 'data-subnetpool-' + id self.fields['prefixlen'].widget.attrs[key] = \ _('Network Mask') else: self.hide_subnetpool_choices() def get_subnetpool_choices(self, request): subnetpool_choices = [('', _('Select a pool'))] default_ipv6_subnet_pool_label = \ getattr(settings, 'OPENSTACK_NEUTRON_NETWORK', {}).get( 'default_ipv6_subnet_pool_label', None) default_ipv4_subnet_pool_label = \ getattr(settings, 'OPENSTACK_NEUTRON_NETWORK', {}).get( 'default_ipv4_subnet_pool_label', None) if default_ipv6_subnet_pool_label: subnetpool_dict = {'ip_version': 6, 'name': default_ipv6_subnet_pool_label} subnetpool = api.neutron.SubnetPool(subnetpool_dict) subnetpool_choices.append(('', subnetpool)) if default_ipv4_subnet_pool_label: subnetpool_dict = {'ip_version': 4, 'name': default_ipv4_subnet_pool_label} subnetpool = api.neutron.SubnetPool(subnetpool_dict) subnetpool_choices.append(('', subnetpool)) for subnetpool in api.neutron.subnetpool_list(request): subnetpool_choices.append((subnetpool.id, subnetpool)) return subnetpool_choices def hide_subnetpool_choices(self): self.fields['address_source'].widget = forms.HiddenInput() self.fields['subnetpool'].choices = [] self.fields['subnetpool'].widget = forms.HiddenInput() self.fields['prefixlen'].widget = forms.HiddenInput() def _check_subnet_data(self, cleaned_data, is_create=True): cidr = cleaned_data.get('cidr') ip_version = int(cleaned_data.get('ip_version')) gateway_ip = cleaned_data.get('gateway_ip') no_gateway = cleaned_data.get('no_gateway') address_source = cleaned_data.get('address_source') # When creating network from a pool it is allowed to supply empty # subnetpool_id signaling that Neutron should choose the default # pool configured by the operator. This is also part of the IPv6 # Prefix Delegation Workflow. if not cidr and address_source != 'subnetpool': raise forms.ValidationError(self.msg) if cidr: subnet = netaddr.IPNetwork(cidr) if subnet.version != ip_version: msg = _('Network Address and IP version are inconsistent.') raise forms.ValidationError(msg) if (ip_version == 4 and subnet.prefixlen == 32) or \ (ip_version == 6 and subnet.prefixlen == 128): msg = _("The subnet in the Network Address is " "too small (/%s).") % subnet.prefixlen raise forms.ValidationError(msg) if not no_gateway and gateway_ip: if netaddr.IPAddress(gateway_ip).version is not ip_version: msg = _('Gateway IP and IP version are inconsistent.') raise forms.ValidationError(msg) if not is_create and not no_gateway and not gateway_ip: msg = _('Specify IP address of gateway or ' 'check "Disable Gateway".') raise forms.ValidationError(msg) def clean(self): cleaned_data = super(CreateSubnetInfoAction, self).clean() with_subnet = cleaned_data.get('with_subnet') if not with_subnet: return cleaned_data self._check_subnet_data(cleaned_data) return cleaned_data class CreateSubnetInfo(workflows.Step): action_class = CreateSubnetInfoAction contributes = ("subnet_name", "cidr", "ip_version", "gateway_ip", "no_gateway", "subnetpool", "prefixlen", "address_source") class CreateSubnetDetailAction(workflows.Action): enable_dhcp = forms.BooleanField(label=_("Enable DHCP"), initial=True, required=False) ipv6_modes = forms.ChoiceField( label=_("IPv6 Address Configuration Mode"), widget=forms.Select(attrs={ 'class': 'switched', 'data-switch-on': 'ipversion', 'data-ipversion-6': _("IPv6 Address Configuration Mode"), }), initial=utils.IPV6_DEFAULT_MODE, required=False, help_text=_("Specifies how IPv6 addresses and additional information " "are configured. We can specify SLAAC/DHCPv6 stateful/" "DHCPv6 stateless provided by OpenStack, " "or specify no option. " "'No options specified' means addresses are configured " "manually or configured by a non-OpenStack system.")) allocation_pools = forms.CharField( widget=forms.Textarea(attrs={'rows': 4}), label=_("Allocation Pools"), help_text=_("IP address allocation pools. Each entry is: " "start_ip_address,end_ip_address " "(e.g., 192.168.1.100,192.168.1.120) " "and one entry per line."), required=False) dns_nameservers = forms.CharField( widget=forms.widgets.Textarea(attrs={'rows': 4}), label=_("DNS Name Servers"), help_text=_("IP address list of DNS name servers for this subnet. " "One entry per line."), required=False) host_routes = forms.CharField( widget=forms.widgets.Textarea(attrs={'rows': 4}), label=_("Host Routes"), help_text=_("Additional routes announced to the hosts. " "Each entry is: destination_cidr,nexthop " "(e.g., 192.168.200.0/24,10.56.1.254) " "and one entry per line."), required=False) class Meta(object): name = _("Subnet Details") help_text = _('Specify additional attributes for the subnet.') def __init__(self, request, context, *args, **kwargs): super(CreateSubnetDetailAction, self).__init__(request, context, *args, **kwargs) if not getattr(settings, 'OPENSTACK_NEUTRON_NETWORK', {}).get('enable_ipv6', True): self.fields['ipv6_modes'].widget = forms.HiddenInput() def populate_ipv6_modes_choices(self, request, context): return [(value, _("%s (Default)") % label) if value == utils.IPV6_DEFAULT_MODE else (value, label) for value, label in utils.IPV6_MODE_CHOICES] def _convert_ip_address(self, ip, field_name): try: return netaddr.IPAddress(ip) except (netaddr.AddrFormatError, ValueError): msg = (_('%(field_name)s: Invalid IP address (value=%(ip)s)') % {'field_name': field_name, 'ip': ip}) raise forms.ValidationError(msg) def _convert_ip_network(self, network, field_name): try: return netaddr.IPNetwork(network) except (netaddr.AddrFormatError, ValueError): msg = (_('%(field_name)s: Invalid IP address (value=%(network)s)') % {'field_name': field_name, 'network': network}) raise forms.ValidationError(msg) def _check_allocation_pools(self, allocation_pools): for p in allocation_pools.split('\n'): p = p.strip() if not p: continue pool = p.split(',') if len(pool) != 2: msg = _('Start and end addresses must be specified ' '(value=%s)') % p raise forms.ValidationError(msg) start, end = [self._convert_ip_address(ip, "allocation_pools") for ip in pool] if start > end: msg = _('Start address is larger than end address ' '(value=%s)') % p raise forms.ValidationError(msg) def _check_dns_nameservers(self, dns_nameservers): for ns in dns_nameservers.split('\n'): ns = ns.strip() if not ns: continue self._convert_ip_address(ns, "dns_nameservers") def _check_host_routes(self, host_routes): for r in host_routes.split('\n'): r = r.strip() if not r: continue route = r.split(',') if len(route) != 2: msg = _('Host Routes format error: ' 'Destination CIDR and nexthop must be specified ' '(value=%s)') % r raise forms.ValidationError(msg) self._convert_ip_network(route[0], "host_routes") self._convert_ip_address(route[1], "host_routes") def clean(self): cleaned_data = super(CreateSubnetDetailAction, self).clean() self._check_allocation_pools(cleaned_data.get('allocation_pools')) self._check_host_routes(cleaned_data.get('host_routes')) self._check_dns_nameservers(cleaned_data.get('dns_nameservers')) return cleaned_data class CreateSubnetDetail(workflows.Step): action_class = CreateSubnetDetailAction contributes = ("enable_dhcp", "ipv6_modes", "allocation_pools", "dns_nameservers", "host_routes") class CreateNetwork(workflows.Workflow): slug = "create_network" name = _("Create Network") finalize_button_name = _("Create") success_message = _('Created network "%s".') failure_message = _('Unable to create network "%s".') default_steps = (CreateNetworkInfo, CreateSubnetInfo, CreateSubnetDetail) wizard = True def get_success_url(self): return reverse("horizon:project:networks:index") def get_failure_url(self): return reverse("horizon:project:networks:index") def format_status_message(self, message): name = self.context.get('net_name') or self.context.get('net_id', '') return message % name def _create_network(self, request, data): try: params = {'name': data['net_name'], 'admin_state_up': (data['admin_state'] == 'True'), 'shared': data['shared']} if api.neutron.is_port_profiles_supported(): params['net_profile_id'] = data['net_profile_id'] network = api.neutron.network_create(request, **params) self.context['net_id'] = network.id msg = (_('Network "%s" was successfully created.') % network.name_or_id) LOG.debug(msg) return network except Exception as e: msg = (_('Failed to create network "%(network)s": %(reason)s') % {"network": data['net_name'], "reason": e}) LOG.info(msg) redirect = self.get_failure_url() exceptions.handle(request, msg, redirect=redirect) return False def _setup_subnet_parameters(self, params, data, is_create=True): """Setup subnet parameters This methods setups subnet parameters which are available in both create and update. """ is_update = not is_create params['enable_dhcp'] = data['enable_dhcp'] if int(data['ip_version']) == 6: ipv6_modes = utils.get_ipv6_modes_attrs_from_menu( data['ipv6_modes']) if ipv6_modes[0] and is_create: params['ipv6_ra_mode'] = ipv6_modes[0] if ipv6_modes[1] and is_create: params['ipv6_address_mode'] = ipv6_modes[1] if data['allocation_pools']: pools = [dict(zip(['start', 'end'], pool.strip().split(','))) for pool in data['allocation_pools'].split('\n') if pool.strip()] params['allocation_pools'] = pools if data['host_routes'] or is_update: routes = [dict(zip(['destination', 'nexthop'], route.strip().split(','))) for route in data['host_routes'].split('\n') if route.strip()] params['host_routes'] = routes if data['dns_nameservers'] or is_update: nameservers = [ns.strip() for ns in data['dns_nameservers'].split('\n') if ns.strip()] params['dns_nameservers'] = nameservers def _create_subnet(self, request, data, network=None, tenant_id=None, no_redirect=False): if network: network_id = network.id network_name = network.name else: network_id = self.context.get('network_id') network_name = self.context.get('network_name') try: params = {'network_id': network_id, 'name': data['subnet_name']} if 'cidr' in data and data['cidr']: params['cidr'] = data['cidr'] if 'ip_version' in data and data['ip_version']: params['ip_version'] = int(data['ip_version']) if tenant_id: params['tenant_id'] = tenant_id if data['no_gateway']: params['gateway_ip'] = None elif data['gateway_ip']: params['gateway_ip'] = data['gateway_ip'] if 'subnetpool' in data and len(data['subnetpool']): params['subnetpool_id'] = data['subnetpool'] if 'prefixlen' in data and len(data['prefixlen']): params['prefixlen'] = data['prefixlen'] self._setup_subnet_parameters(params, data) subnet = api.neutron.subnet_create(request, **params) self.context['subnet_id'] = subnet.id msg = _('Subnet "%s" was successfully created.') % data['cidr'] LOG.debug(msg) return subnet except Exception as e: msg = _('Failed to create subnet "%(sub)s" for network "%(net)s": ' ' %(reason)s') if no_redirect: redirect = None else: redirect = self.get_failure_url() exceptions.handle(request, msg % {"sub": data['cidr'], "net": network_name, "reason": e}, redirect=redirect) return False def _delete_network(self, request, network): """Delete the created network when subnet creation failed.""" try: api.neutron.network_delete(request, network.id) msg = _('Delete the created network "%s" ' 'due to subnet creation failure.') % network.name LOG.debug(msg) redirect = self.get_failure_url() messages.info(request, msg) raise exceptions.Http302(redirect) except Exception: msg = _('Failed to delete network "%s"') % network.name LOG.info(msg) redirect = self.get_failure_url() exceptions.handle(request, msg, redirect=redirect) def handle(self, request, data): network = self._create_network(request, data) if not network: return False # If we do not need to create a subnet, return here. if not data['with_subnet']: return True subnet = self._create_subnet(request, data, network, no_redirect=True) if subnet: return True else: self._delete_network(request, network) return False
Tesora/tesora-horizon
openstack_dashboard/dashboards/project/networks/workflows.py
Python
apache-2.0
26,337
from .selector_spec import ( # noqa: F401 SelectionUnion, SelectionSpec, SelectionIntersection, SelectionDifference, SelectionCriteria, ) from .selector import ( # noqa: F401 ResourceTypeSelector, NodeSelector, ) from .cli import ( # noqa: F401 parse_difference, parse_from_selectors_definition, ) from .queue import GraphQueue # noqa: F401 from .graph import Graph, UniqueId # noqa: F401
analyst-collective/dbt
core/dbt/graph/__init__.py
Python
apache-2.0
430
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tink.python.tink.streaming_aead.streaming_aead.""" import io import os import tempfile from absl.testing import absltest import tink from tink import streaming_aead def setUpModule(): streaming_aead.register() def get_primitive() -> streaming_aead.StreamingAead: key_template = streaming_aead.streaming_aead_key_templates.AES128_GCM_HKDF_4KB keyset_handle = tink.new_keyset_handle(key_template) primitive = keyset_handle.primitive(streaming_aead.StreamingAead) return primitive class StreamingAeadTest(absltest.TestCase): """End-to-end test of Streaming AEAD Encrypting/Decrypting Streams.""" def test_encrypt_decrypt(self): primitive = get_primitive() long_plaintext = b' '.join(b'%d' % i for i in range(100 * 1000)) aad = b'associated_data' with tempfile.TemporaryDirectory() as tmpdirname: filename = os.path.join(tmpdirname, 'encrypted_file') dest = open(filename, 'wb') with primitive.new_encrypting_stream(dest, aad) as es: n = es.write(long_plaintext) self.assertTrue(dest.closed) self.assertLen(long_plaintext, n) src = open(filename, 'rb') with primitive.new_decrypting_stream(src, aad) as ds: output = ds.read() self.assertTrue(src.closed) self.assertEqual(output, long_plaintext) def test_encrypt_decrypt_raw(self): primitive = get_primitive() long_plaintext = b' '.join(b'%d' % i for i in range(100 * 1000)) aad = b'associated_data' with tempfile.TemporaryDirectory() as tmpdirname: filename = os.path.join(tmpdirname, 'encrypted_file_raw') dest = open(filename, 'wb', buffering=0) # returns a raw file. with primitive.new_encrypting_stream(dest, aad) as es: n = es.write(long_plaintext) self.assertTrue(dest.closed) self.assertLen(long_plaintext, n) src = open(filename, 'rb', buffering=0) # returns a raw file. with primitive.new_decrypting_stream(src, aad) as ds: output = ds.read() self.assertTrue(src.closed) self.assertEqual(output, long_plaintext) def test_encrypt_decrypt_textiowrapper(self): primitive = get_primitive() text_lines = [ 'ᚻᛖ ᚳᚹᚫᚦ ᚦᚫᛏ ᚻᛖ ᛒᚢᛞᛖ ᚩᚾ ᚦᚫᛗ ᛚᚪᚾᛞᛖ ᚾᚩᚱᚦᚹᛖᚪᚱᛞᚢᛗ ᚹᛁᚦ ᚦᚪ ᚹᛖᛥᚫ\n', '⡌⠁⠧⠑ ⠼⠁⠒ ⡍⠜⠇⠑⠹⠰⠎ ⡣⠕⠌\n', '2H₂ + O₂ ⇌ 2H₂O\n', 'smile 😀\n'] aad = b'associated_data' with tempfile.TemporaryDirectory() as tmpdirname: filename = os.path.join(tmpdirname, 'encrypted_textfile') dest = open(filename, 'wb') with io.TextIOWrapper( primitive.new_encrypting_stream(dest, aad), encoding='utf8') as es: es.writelines(text_lines) self.assertTrue(dest.closed) src = open(filename, 'rb') with io.TextIOWrapper( primitive.new_decrypting_stream(src, aad), encoding='utf8') as es: for i, text_line in enumerate(es): self.assertEqual(text_line, text_lines[i]) self.assertTrue(src.closed) def test_encrypt_fails_on_nonwritable_stream(self): primitive = get_primitive() with tempfile.TemporaryDirectory() as tmpdirname: filename = os.path.join(tmpdirname, 'file') with open(filename, 'wb') as f: f.write(b'data') with open(filename, 'rb') as dest: # dest is not writable with self.assertRaises(ValueError): primitive.new_encrypting_stream(dest, b'aad') def test_decrypt_fails_on_nonreadable_stream(self): primitive = get_primitive() with tempfile.TemporaryDirectory() as tmpdirname: # src not readable with open(os.path.join(tmpdirname, 'file2'), 'wb') as src: with self.assertRaises(ValueError): primitive.new_decrypting_stream(src, b'aad') if __name__ == '__main__': absltest.main()
google/tink
python/tink/streaming_aead/_streaming_aead_test.py
Python
apache-2.0
4,470
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """The Nelder-Mead derivative-free minimization algorithm. The Nelder-Mead method is one of the most popular derivative-free minimization methods. For an optimization problem in `n` dimensions it maintains a set of `n+1` candidate solutions that span a non-degenerate simplex. It successively modifies the simplex based on a set of moves (reflection, expansion, shrinkage and contraction) using the function values at each of the vertices. """ import collections # Dependency imports import numpy as np import tensorflow.compat.v2 as tf from tensorflow_probability.python.internal import dtype_util from tensorflow_probability.python.internal import prefer_static as ps from tensorflow_probability.python.internal import tensorshape_util # Tolerance to check for floating point zeros. _EPSILON = 1e-10 NelderMeadOptimizerResults = collections.namedtuple( 'NelderMeadOptimizerResults', [ 'converged', # Scalar boolean tensor indicating whether the minimum # was found within tolerance. 'num_objective_evaluations', # The total number of objective # evaluations performed. 'position', # A tensor containing the last argument value found # during the search. If the search converged, then # this value is the argmin of the objective function. 'objective_value', # A tensor containing the value of the objective # function at the `position`. If the search # converged, then this is the (local) minimum of # the objective function. 'final_simplex', # The last simplex constructed before stopping. 'final_objective_values', # The objective function evaluated at the # vertices of the final simplex. 'initial_simplex', # The initial simplex. 'initial_objective_values', # The values of the objective function # at the vertices of the initial simplex. 'num_iterations' # The number of iterations of the algorithm performed. ]) def minimize(objective_function, initial_simplex=None, initial_vertex=None, step_sizes=None, objective_at_initial_simplex=None, objective_at_initial_vertex=None, batch_evaluate_objective=False, func_tolerance=1e-8, position_tolerance=1e-8, parallel_iterations=1, max_iterations=None, reflection=None, expansion=None, contraction=None, shrinkage=None, name=None): """Minimum of the objective function using the Nelder Mead simplex algorithm. Performs an unconstrained minimization of a (possibly non-smooth) function using the Nelder Mead simplex method. Nelder Mead method does not support univariate functions. Hence the dimensions of the domain must be 2 or greater. For details of the algorithm, see [Press, Teukolsky, Vetterling and Flannery(2007)][1]. Points in the domain of the objective function may be represented as a `Tensor` of general shape but with rank at least 1. The algorithm proceeds by modifying a full rank simplex in the domain. The initial simplex may either be specified by the user or can be constructed using a single vertex supplied by the user. In the latter case, if `v0` is the supplied vertex, the simplex is the convex hull of the set: ```None S = {v0} + {v0 + step_i * e_i} ``` Here `e_i` is a vector which is `1` along the `i`-th axis and zero elsewhere and `step_i` is a characteristic length scale along the `i`-th axis. If the step size is not supplied by the user, a unit step size is used in every axis. Alternately, a single step size may be specified which is used for every axis. The most flexible option is to supply a bespoke step size for every axis. ### Usage: The following example demonstrates the usage of the Nelder Mead minimzation on a two dimensional problem with the minimum located at a non-differentiable point. ```python # The objective function def sqrt_quadratic(x): return tf.sqrt(tf.reduce_sum(x ** 2, axis=-1)) start = tf.constant([6.0, -21.0]) # Starting point for the search. optim_results = tfp.optimizer.nelder_mead_minimize( sqrt_quadratic, initial_vertex=start, func_tolerance=1e-8, batch_evaluate_objective=True) # Check that the search converged assert(optim_results.converged) # Check that the argmin is close to the actual value. np.testing.assert_allclose(optim_results.position, np.array([0.0, 0.0]), atol=1e-7) # Print out the total number of function evaluations it took. print("Function evaluations: %d" % optim_results.num_objective_evaluations) ``` ### References: [1]: William Press, Saul Teukolsky, William Vetterling and Brian Flannery. Numerical Recipes in C++, third edition. pp. 502-507. (2007). http://numerical.recipes/cpppages/chap0sel.pdf [2]: Jeffrey Lagarias, James Reeds, Margaret Wright and Paul Wright. Convergence properties of the Nelder-Mead simplex method in low dimensions, Siam J. Optim., Vol 9, No. 1, pp. 112-147. (1998). http://www.math.kent.edu/~reichel/courses/Opt/reading.material.2/nelder.mead.pdf [3]: Fuchang Gao and Lixing Han. Implementing the Nelder-Mead simplex algorithm with adaptive parameters. Computational Optimization and Applications, Vol 51, Issue 1, pp 259-277. (2012). https://pdfs.semanticscholar.org/15b4/c4aa7437df4d032c6ee6ce98d6030dd627be.pdf Args: objective_function: A Python callable that accepts a point as a real `Tensor` and returns a `Tensor` of real dtype containing the value of the function at that point. The function to be minimized. If `batch_evaluate_objective` is `True`, the callable may be evaluated on a `Tensor` of shape `[n+1] + s ` where `n` is the dimension of the problem and `s` is the shape of a single point in the domain (so `n` is the size of a `Tensor` representing a single point). In this case, the expected return value is a `Tensor` of shape `[n+1]`. Note that this method does not support univariate functions so the problem dimension `n` must be strictly greater than 1. initial_simplex: (Optional) `Tensor` of real dtype. The initial simplex to start the search. If supplied, should be a `Tensor` of shape `[n+1] + s` where `n` is the dimension of the problem and `s` is the shape of a single point in the domain. Each row (i.e. the `Tensor` with a given value of the first index) is interpreted as a vertex of a simplex and hence the rows must be affinely independent. If not supplied, an axes aligned simplex is constructed using the `initial_vertex` and `step_sizes`. Only one and at least one of `initial_simplex` and `initial_vertex` must be supplied. initial_vertex: (Optional) `Tensor` of real dtype and any shape that can be consumed by the `objective_function`. A single point in the domain that will be used to construct an axes aligned initial simplex. step_sizes: (Optional) `Tensor` of real dtype and shape broadcasting compatible with `initial_vertex`. Supplies the simplex scale along each axes. Only used if `initial_simplex` is not supplied. See description above for details on how step sizes and initial vertex are used to construct the initial simplex. objective_at_initial_simplex: (Optional) Rank `1` `Tensor` of real dtype of a rank `1` `Tensor`. The value of the objective function at the initial simplex. May be supplied only if `initial_simplex` is supplied. If not supplied, it will be computed. objective_at_initial_vertex: (Optional) Scalar `Tensor` of real dtype. The value of the objective function at the initial vertex. May be supplied only if the `initial_vertex` is also supplied. batch_evaluate_objective: (Optional) Python `bool`. If True, the objective function will be evaluated on all the vertices of the simplex packed into a single tensor. If False, the objective will be mapped across each vertex separately. Evaluating the objective function in a batch allows use of vectorization and should be preferred if the objective function allows it. func_tolerance: (Optional) Scalar `Tensor` of real dtype. The algorithm stops if the absolute difference between the largest and the smallest function value on the vertices of the simplex is below this number. position_tolerance: (Optional) Scalar `Tensor` of real dtype. The algorithm stops if the largest absolute difference between the coordinates of the vertices is below this threshold. parallel_iterations: (Optional) Positive integer. The number of iterations allowed to run in parallel. max_iterations: (Optional) Scalar positive `Tensor` of dtype `int32`. The maximum number of iterations allowed. If `None` then no limit is applied. reflection: (Optional) Positive Scalar `Tensor` of same dtype as `initial_vertex`. This parameter controls the scaling of the reflected vertex. See, [Press et al(2007)][1] for details. If not specified, uses the dimension dependent prescription of [Gao and Han(2012)][3]. expansion: (Optional) Positive Scalar `Tensor` of same dtype as `initial_vertex`. Should be greater than `1` and `reflection`. This parameter controls the expanded scaling of a reflected vertex. See, [Press et al(2007)][1] for details. If not specified, uses the dimension dependent prescription of [Gao and Han(2012)][3]. contraction: (Optional) Positive scalar `Tensor` of same dtype as `initial_vertex`. Must be between `0` and `1`. This parameter controls the contraction of the reflected vertex when the objective function at the reflected point fails to show sufficient decrease. See, [Press et al(2007)][1] for more details. If not specified, uses the dimension dependent prescription of [Gao and Han(2012][3]. shrinkage: (Optional) Positive scalar `Tensor` of same dtype as `initial_vertex`. Must be between `0` and `1`. This parameter is the scale by which the simplex is shrunk around the best point when the other steps fail to produce improvements. See, [Press et al(2007)][1] for more details. If not specified, uses the dimension dependent prescription of [Gao and Han(2012][3]. name: (Optional) Python str. The name prefixed to the ops created by this function. If not supplied, the default name 'minimize' is used. Returns: optimizer_results: A namedtuple containing the following items: converged: Scalar boolean tensor indicating whether the minimum was found within tolerance. num_objective_evaluations: The total number of objective evaluations performed. position: A `Tensor` containing the last argument value found during the search. If the search converged, then this value is the argmin of the objective function. objective_value: A tensor containing the value of the objective function at the `position`. If the search converged, then this is the (local) minimum of the objective function. final_simplex: The last simplex constructed before stopping. final_objective_values: The objective function evaluated at the vertices of the final simplex. initial_simplex: The starting simplex. initial_objective_values: The objective function evaluated at the vertices of the initial simplex. num_iterations: The number of iterations of the main algorithm body. Raises: ValueError: If any of the following conditions hold 1. If none or more than one of `initial_simplex` and `initial_vertex` are supplied. 2. If `initial_simplex` and `step_sizes` are both specified. """ with tf.name_scope(name or 'minimize'): ( dim, _, simplex, objective_at_simplex, num_evaluations ) = _prepare_args(objective_function, initial_simplex, initial_vertex, step_sizes, objective_at_initial_simplex, objective_at_initial_vertex, batch_evaluate_objective) domain_dtype = simplex.dtype ( reflection, expansion, contraction, shrinkage ) = _resolve_parameters(dim, reflection, expansion, contraction, shrinkage, domain_dtype) closure_kwargs = dict( objective_function=objective_function, dim=dim, func_tolerance=func_tolerance, position_tolerance=position_tolerance, batch_evaluate_objective=batch_evaluate_objective, reflection=reflection, expansion=expansion, contraction=contraction, shrinkage=shrinkage) def _loop_body(_, iterations, simplex, objective_at_simplex, num_evaluations): ( converged, next_simplex, next_objective, evaluations ) = nelder_mead_one_step(simplex, objective_at_simplex, **closure_kwargs) return (converged, iterations + 1, next_simplex, next_objective, num_evaluations + evaluations) initial_args = (False, 0, simplex, objective_at_simplex, num_evaluations) # Loop until either we have converged or if the max iterations are supplied # then until we have converged or exhausted the available iteration budget. def _is_converged(converged, num_iterations, *ignored_args): # pylint:disable=unused-argument # It is important to ensure that not_converged is a tensor. If # converged is not a tensor but a Python bool, then the overloaded # op '~' acts as bitwise complement so ~True = -2 and ~False = -1. # In that case, the loop will never terminate. not_converged = tf.logical_not(converged) return (not_converged if max_iterations is None else (not_converged & (num_iterations < max_iterations))) (converged, num_iterations, final_simplex, final_objective_values, final_evaluations) = tf.while_loop( cond=_is_converged, body=_loop_body, loop_vars=initial_args, parallel_iterations=parallel_iterations) order = tf.argsort( final_objective_values, direction='ASCENDING', stable=True) best_index = order[0] # The explicit cast to Tensor below is done to avoid returning a mixture # of Python types and Tensors which cause problems with session.run. # In the eager mode, converged may remain a Python bool. Trying to evaluate # the whole tuple in one evaluate call will raise an exception because # of the presence of non-tensors. This is very annoying so we explicitly # cast those arguments to Tensors. return NelderMeadOptimizerResults( converged=tf.convert_to_tensor(converged), num_objective_evaluations=final_evaluations, position=final_simplex[best_index], objective_value=final_objective_values[best_index], final_simplex=final_simplex, final_objective_values=final_objective_values, num_iterations=tf.convert_to_tensor(num_iterations), initial_simplex=simplex, initial_objective_values=objective_at_simplex) def nelder_mead_one_step(current_simplex, current_objective_values, objective_function=None, dim=None, func_tolerance=None, position_tolerance=None, batch_evaluate_objective=False, reflection=None, expansion=None, contraction=None, shrinkage=None, name=None): """A single iteration of the Nelder Mead algorithm.""" with tf.name_scope(name or 'nelder_mead_one_step'): domain_dtype = dtype_util.base_dtype(current_simplex.dtype) order = tf.argsort( current_objective_values, direction='ASCENDING', stable=True) ( best_index, worst_index, second_worst_index ) = order[0], order[-1], order[-2] worst_vertex = current_simplex[worst_index] ( best_objective_value, worst_objective_value, second_worst_objective_value ) = ( current_objective_values[best_index], current_objective_values[worst_index], current_objective_values[second_worst_index] ) # Compute the centroid of the face opposite the worst vertex. face_centroid = tf.reduce_sum( current_simplex, axis=0) - worst_vertex face_centroid /= tf.cast(dim, domain_dtype) # Reflect the worst vertex through the opposite face. reflected = face_centroid + reflection * (face_centroid - worst_vertex) objective_at_reflected = objective_function(reflected) num_evaluations = 1 has_converged = _check_convergence(current_simplex, current_simplex[best_index], best_objective_value, worst_objective_value, func_tolerance, position_tolerance) def _converged_fn(): return (True, current_simplex, current_objective_values, np.int32(0)) case0 = has_converged, _converged_fn accept_reflected = ( (objective_at_reflected < second_worst_objective_value) & (objective_at_reflected >= best_objective_value)) accept_reflected_fn = _accept_reflected_fn(current_simplex, current_objective_values, worst_index, reflected, objective_at_reflected) case1 = accept_reflected, accept_reflected_fn do_expansion = objective_at_reflected < best_objective_value expansion_fn = _expansion_fn(objective_function, current_simplex, current_objective_values, worst_index, reflected, objective_at_reflected, face_centroid, expansion) case2 = do_expansion, expansion_fn do_outside_contraction = ( (objective_at_reflected < worst_objective_value) & (objective_at_reflected >= second_worst_objective_value) ) outside_contraction_fn = _outside_contraction_fn( objective_function, current_simplex, current_objective_values, face_centroid, best_index, worst_index, reflected, objective_at_reflected, contraction, shrinkage, batch_evaluate_objective) case3 = do_outside_contraction, outside_contraction_fn default_fn = _inside_contraction_fn(objective_function, current_simplex, current_objective_values, face_centroid, best_index, worst_index, worst_objective_value, contraction, shrinkage, batch_evaluate_objective) ( converged, next_simplex, next_objective_at_simplex, case_evals) = ps.case([case0, case1, case2, case3], default=default_fn, exclusive=False) tensorshape_util.set_shape(next_simplex, current_simplex.shape) tensorshape_util.set_shape(next_objective_at_simplex, current_objective_values.shape) return ( converged, next_simplex, next_objective_at_simplex, num_evaluations + case_evals ) def _accept_reflected_fn(simplex, objective_values, worst_index, reflected, objective_at_reflected): """Creates the condition function pair for a reflection to be accepted.""" def _replace_worst_with_reflected(): next_simplex = _replace_at_index(simplex, worst_index, reflected) next_objective_values = _replace_at_index(objective_values, worst_index, objective_at_reflected) return False, next_simplex, next_objective_values, np.int32(0) return _replace_worst_with_reflected def _expansion_fn(objective_function, simplex, objective_values, worst_index, reflected, objective_at_reflected, face_centroid, expansion): """Creates the condition function pair for an expansion.""" def _expand_and_maybe_replace(): """Performs the expansion step.""" expanded = face_centroid + expansion * (reflected - face_centroid) expanded_objective_value = objective_function(expanded) expanded_is_better = (expanded_objective_value < objective_at_reflected) accept_expanded_fn = lambda: (expanded, expanded_objective_value) accept_reflected_fn = lambda: (reflected, objective_at_reflected) next_pt, next_objective_value = ps.cond( expanded_is_better, accept_expanded_fn, accept_reflected_fn) next_simplex = _replace_at_index(simplex, worst_index, next_pt) next_objective_at_simplex = _replace_at_index(objective_values, worst_index, next_objective_value) return False, next_simplex, next_objective_at_simplex, np.int32(1) return _expand_and_maybe_replace def _outside_contraction_fn(objective_function, simplex, objective_values, face_centroid, best_index, worst_index, reflected, objective_at_reflected, contraction, shrinkage, batch_evaluate_objective): """Creates the condition function pair for an outside contraction.""" def _contraction(): """Performs a contraction.""" contracted = face_centroid + contraction * (reflected - face_centroid) objective_at_contracted = objective_function(contracted) is_contracted_acceptable = objective_at_contracted <= objective_at_reflected def _accept_contraction(): next_simplex = _replace_at_index(simplex, worst_index, contracted) objective_at_next_simplex = _replace_at_index( objective_values, worst_index, objective_at_contracted) return (False, next_simplex, objective_at_next_simplex, np.int32(1)) def _reject_contraction(): return _shrink_towards_best(objective_function, simplex, best_index, shrinkage, batch_evaluate_objective) return ps.cond(is_contracted_acceptable, _accept_contraction, _reject_contraction) return _contraction def _inside_contraction_fn(objective_function, simplex, objective_values, face_centroid, best_index, worst_index, worst_objective_value, contraction, shrinkage, batch_evaluate_objective): """Creates the condition function pair for an inside contraction.""" def _contraction(): """Performs a contraction.""" contracted = face_centroid - contraction * (face_centroid - simplex[worst_index]) objective_at_contracted = objective_function(contracted) is_contracted_acceptable = objective_at_contracted <= worst_objective_value def _accept_contraction(): next_simplex = _replace_at_index(simplex, worst_index, contracted) objective_at_next_simplex = _replace_at_index( objective_values, worst_index, objective_at_contracted) return ( False, next_simplex, objective_at_next_simplex, np.int32(1) ) def _reject_contraction(): return _shrink_towards_best(objective_function, simplex, best_index, shrinkage, batch_evaluate_objective) return ps.cond(is_contracted_acceptable, _accept_contraction, _reject_contraction) return _contraction def _shrink_towards_best(objective_function, simplex, best_index, shrinkage, batch_evaluate_objective): """Shrinks the simplex around the best vertex.""" # If the contraction step fails to improve the average objective enough, # the simplex is shrunk towards the best vertex. best_vertex = simplex[best_index] shrunk_simplex = best_vertex + shrinkage * (simplex - best_vertex) objective_at_shrunk_simplex, evals = _evaluate_objective_multiple( objective_function, shrunk_simplex, batch_evaluate_objective) return (False, shrunk_simplex, objective_at_shrunk_simplex, evals) def _replace_at_index(x, index, replacement): """Replaces an element at supplied index.""" return tf.tensor_scatter_nd_update(x, [[index]], [replacement]) def _check_convergence(simplex, best_vertex, best_objective, worst_objective, func_tolerance, position_tolerance): """Returns True if the simplex has converged. If the simplex size is smaller than the `position_tolerance` or the variation of the function value over the vertices of the simplex is smaller than the `func_tolerance` return True else False. Args: simplex: `Tensor` of real dtype. The simplex to test for convergence. For more details, see the docstring for `initial_simplex` argument of `minimize`. best_vertex: `Tensor` of real dtype and rank one less than `simplex`. The vertex with the best (i.e. smallest) objective value. best_objective: Scalar `Tensor` of real dtype. The best (i.e. smallest) value of the objective function at a vertex. worst_objective: Scalar `Tensor` of same dtype as `best_objective`. The worst (i.e. largest) value of the objective function at a vertex. func_tolerance: Scalar positive `Tensor`. The tolerance for the variation of the objective function value over the simplex. If the variation over the simplex vertices is below this threshold, convergence is True. position_tolerance: Scalar positive `Tensor`. The algorithm stops if the lengths (under the supremum norm) of edges connecting to the best vertex are below this threshold. Returns: has_converged: A scalar boolean `Tensor` indicating whether the algorithm is deemed to have converged. """ objective_convergence = tf.abs(worst_objective - best_objective) < func_tolerance simplex_degeneracy = tf.reduce_max( tf.abs(simplex - best_vertex)) < position_tolerance return objective_convergence | simplex_degeneracy def _prepare_args(objective_function, initial_simplex, initial_vertex, step_sizes, objective_at_initial_simplex, objective_at_initial_vertex, batch_evaluate_objective): """Computes the initial simplex and the objective values at the simplex. Args: objective_function: A Python callable that accepts a point as a real `Tensor` and returns a `Tensor` of real dtype containing the value of the function at that point. The function to be evaluated at the simplex. If `batch_evaluate_objective` is `True`, the callable may be evaluated on a `Tensor` of shape `[n+1] + s ` where `n` is the dimension of the problem and `s` is the shape of a single point in the domain (so `n` is the size of a `Tensor` representing a single point). In this case, the expected return value is a `Tensor` of shape `[n+1]`. initial_simplex: None or `Tensor` of real dtype. The initial simplex to start the search. If supplied, should be a `Tensor` of shape `[n+1] + s` where `n` is the dimension of the problem and `s` is the shape of a single point in the domain. Each row (i.e. the `Tensor` with a given value of the first index) is interpreted as a vertex of a simplex and hence the rows must be affinely independent. If not supplied, an axes aligned simplex is constructed using the `initial_vertex` and `step_sizes`. Only one and at least one of `initial_simplex` and `initial_vertex` must be supplied. initial_vertex: None or `Tensor` of real dtype and any shape that can be consumed by the `objective_function`. A single point in the domain that will be used to construct an axes aligned initial simplex. step_sizes: None or `Tensor` of real dtype and shape broadcasting compatible with `initial_vertex`. Supplies the simplex scale along each axes. Only used if `initial_simplex` is not supplied. See the docstring of `minimize` for more details. objective_at_initial_simplex: None or rank `1` `Tensor` of real dtype. The value of the objective function at the initial simplex. May be supplied only if `initial_simplex` is supplied. If not supplied, it will be computed. objective_at_initial_vertex: None or scalar `Tensor` of real dtype. The value of the objective function at the initial vertex. May be supplied only if the `initial_vertex` is also supplied. batch_evaluate_objective: Python `bool`. If True, the objective function will be evaluated on all the vertices of the simplex packed into a single tensor. If False, the objective will be mapped across each vertex separately. Returns: prepared_args: A tuple containing the following elements: dimension: Scalar `Tensor` of `int32` dtype. The dimension of the problem as inferred from the supplied arguments. num_vertices: Scalar `Tensor` of `int32` dtype. The number of vertices in the simplex. simplex: A `Tensor` of same dtype as `initial_simplex` (or `initial_vertex`). The first component of the shape of the `Tensor` is `num_vertices` and each element represents a vertex of the simplex. objective_at_simplex: A `Tensor` of same dtype as the dtype of the return value of objective_function. The shape is a vector of size `num_vertices`. The objective function evaluated at the simplex. num_evaluations: An `int32` scalar `Tensor`. The number of points on which the objective function was evaluated. Raises: ValueError: If any of the following conditions hold 1. If none or more than one of `initial_simplex` and `initial_vertex` are supplied. 2. If `initial_simplex` and `step_sizes` are both specified. """ if objective_at_initial_simplex is not None and initial_simplex is None: raise ValueError('`objective_at_initial_simplex` specified but the' '`initial_simplex` was not.') if objective_at_initial_vertex is not None and initial_vertex is None: raise ValueError('`objective_at_initial_vertex` specified but the' '`initial_vertex` was not.') # The full simplex was specified. if initial_simplex is not None: if initial_vertex is not None: raise ValueError('Both `initial_simplex` and `initial_vertex` specified.' ' Only one of the two should be specified.') if step_sizes is not None: raise ValueError('`step_sizes` must not be specified when an' ' `initial_simplex` has been specified.') return _prepare_args_with_initial_simplex(objective_function, initial_simplex, objective_at_initial_simplex, batch_evaluate_objective) if initial_vertex is None: raise ValueError('One of `initial_simplex` or `initial_vertex`' ' must be supplied') if step_sizes is None: step_sizes = _default_step_sizes(initial_vertex) return _prepare_args_with_initial_vertex(objective_function, initial_vertex, step_sizes, objective_at_initial_vertex, batch_evaluate_objective) def _default_step_sizes(reference_vertex): """Chooses default step sizes according to [Gao and Han(2010)][3].""" # Step size to choose when the coordinate is zero. small_sizes = dtype_util.as_numpy_dtype(reference_vertex.dtype)(0.00025) # Step size to choose when the coordinate is non-zero. large_sizes = reference_vertex * 0.05 return tf.where( tf.abs(reference_vertex) < _EPSILON, small_sizes, large_sizes) def _prepare_args_with_initial_simplex(objective_function, initial_simplex, objective_at_initial_simplex, batch_evaluate_objective): """Evaluates the objective function at the specified initial simplex.""" initial_simplex = tf.convert_to_tensor(initial_simplex) # If d is the dimension of the problem, the number of vertices in the # simplex should be d+1. From this, we can infer the number of dimensions # as n - 1 where n is the number of vertices specified. num_vertices = tf.shape(initial_simplex)[0] dim = num_vertices - 1 num_evaluations = np.int32(0) if objective_at_initial_simplex is None: objective_at_initial_simplex, n_evals = _evaluate_objective_multiple( objective_function, initial_simplex, batch_evaluate_objective) num_evaluations += n_evals objective_at_initial_simplex = tf.convert_to_tensor( objective_at_initial_simplex) return (dim, num_vertices, initial_simplex, objective_at_initial_simplex, num_evaluations) def _prepare_args_with_initial_vertex(objective_function, initial_vertex, step_sizes, objective_at_initial_vertex, batch_evaluate_objective): """Constructs a standard axes aligned simplex.""" dim = ps.size(initial_vertex) # tf.eye complains about np.array(.., np.int32) num_rows, only welcomes numpy # scalars. TODO(b/162529062): Remove the following line. dim = dim if tf.is_tensor(dim) else int(dim) num_vertices = dim + 1 unit_vectors_along_axes = tf.reshape( tf.eye(dim, dim, dtype=dtype_util.base_dtype(initial_vertex.dtype)), ps.concat([[dim], ps.shape(initial_vertex)], axis=0)) # If step_sizes does not broadcast to initial_vertex, the multiplication # in the second term will fail. simplex_face = initial_vertex + step_sizes * unit_vectors_along_axes simplex = tf.concat([tf.expand_dims(initial_vertex, axis=0), simplex_face], axis=0) # Evaluate the objective function at the simplex vertices. if objective_at_initial_vertex is None: objective_at_simplex, num_evaluations = _evaluate_objective_multiple( objective_function, simplex, batch_evaluate_objective) else: objective_at_simplex_face, num_evaluations = _evaluate_objective_multiple( objective_function, simplex_face, batch_evaluate_objective) objective_at_simplex = tf.concat( [ tf.expand_dims(objective_at_initial_vertex, axis=0), objective_at_simplex_face ], axis=0) return (dim, num_vertices, simplex, objective_at_simplex, num_evaluations) def _resolve_parameters(dim, reflection, expansion, contraction, shrinkage, dtype): """Applies the [Gao and Han][3] presciption to the unspecified parameters.""" dim = tf.cast(dim, dtype=dtype) reflection = 1. if reflection is None else reflection expansion = (1. + 2. / dim) if expansion is None else expansion contraction = (0.75 - 1. / (2 * dim)) if contraction is None else contraction shrinkage = (1. - 1. / dim) if shrinkage is None else shrinkage return reflection, expansion, contraction, shrinkage def _evaluate_objective_multiple(objective_function, arg_batch, batch_evaluate_objective): """Evaluates the objective function on a batch of points. If `batch_evaluate_objective` is True, returns `objective function(arg_batch)` else it maps the `objective_function` across the `arg_batch`. Args: objective_function: A Python callable that accepts a single `Tensor` of rank 'R > 1' and any shape 's' and returns a scalar `Tensor` of real dtype containing the value of the function at that point. If `batch a `Tensor` of shape `[batch_size] + s ` where `batch_size` is the size of the batch of args. In this case, the expected return value is a `Tensor` of shape `[batch_size]`. arg_batch: A `Tensor` of real dtype. The batch of arguments at which to evaluate the `objective_function`. If `batch_evaluate_objective` is False, `arg_batch` will be unpacked along the zeroth axis and the `objective_function` will be applied to each element. batch_evaluate_objective: `bool`. Whether the `objective_function` can evaluate a batch of arguments at once. Returns: A tuple containing: objective_values: A `Tensor` of real dtype and shape `[batch_size]`. The value of the objective function evaluated at the supplied `arg_batch`. num_evaluations: An `int32` scalar `Tensor`containing the number of points on which the objective function was evaluated (i.e `batch_size`). """ n_points = tf.shape(arg_batch)[0] if batch_evaluate_objective: return objective_function(arg_batch), n_points return tf.map_fn(objective_function, arg_batch), n_points
tensorflow/probability
tensorflow_probability/python/optimizer/nelder_mead.py
Python
apache-2.0
40,382
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implement resource abstraction for Course-level items.""" __author__ = 'Mike Gainer (mgainer@google.com)' import cgi import yaml import models import courses import messages from common import resource from common import safe_dom from common import schema_fields from common import tags from common import utils as common_utils from models import services from tools import verify DRAFT_TEXT = messages.DRAFT_TEXT PUBLISHED_TEXT = messages.PUBLISHED_TEXT # Allowed graders. Keys of this dict represent internal keys for the grader # type, and the value represents the corresponding string that will appear in # the dashboard UI. AUTO_GRADER_NAME = 'Automatic grading' HUMAN_GRADER_NAME = 'Peer review' ALLOWED_GRADERS_NAMES = { courses.AUTO_GRADER: AUTO_GRADER_NAME, courses.HUMAN_GRADER: HUMAN_GRADER_NAME, } # When expanding GCB tags within questions, these tags may not be used # (so as to forestall infinite recursion) TAGS_EXCLUDED_FROM_QUESTIONS = set( ['question', 'question-group', 'gcb-questionnaire', 'text-file-upload-tag']) class SaQuestionConstants(object): DEFAULT_WIDTH_COLUMNS = 100 DEFAULT_HEIGHT_ROWS = 1 class ResourceQuestionBase(resource.AbstractResourceHandler): TYPE_MC_QUESTION = 'question_mc' TYPE_SA_QUESTION = 'question_sa' @classmethod def get_question_key_type(cls, qu): """Utility to convert between question type codes.""" if qu.type == models.QuestionDTO.MULTIPLE_CHOICE: return cls.TYPE_MC_QUESTION elif qu.type == models.QuestionDTO.SHORT_ANSWER: return cls.TYPE_SA_QUESTION else: raise ValueError('Unknown question type: %s' % qu.type) @classmethod def get_resource(cls, course, key): return models.QuestionDAO.load(key) @classmethod def get_resource_title(cls, rsrc): return rsrc.description @classmethod def get_data_dict(cls, course, key): return cls.get_resource(course, key).dict @classmethod def get_view_url(cls, rsrc): return None @classmethod def get_edit_url(cls, key): return 'dashboard?action=edit_question&key=%s' % key @classmethod def _add_html_field_to( cls, registry, name, label, class_name, supportCustomTags, description=None, optional=True): registry.add_property(schema_fields.SchemaField( name, label, 'html', optional=optional, extra_schema_dict_values={ 'supportCustomTags': supportCustomTags, 'excludedCustomTags': TAGS_EXCLUDED_FROM_QUESTIONS, 'rteButtonSet': 'reduced', 'className': class_name}, description=description)) class ResourceSAQuestion(ResourceQuestionBase): TYPE = ResourceQuestionBase.TYPE_SA_QUESTION GRADER_TYPES = [ ('case_insensitive', 'Case insensitive string match'), ('regex', 'Regular expression'), ('numeric', 'Numeric')] @classmethod def get_schema(cls, course, key, forbidCustomTags=False): """Get the InputEx schema for the short answer question editor.""" supportCustomTags = ( not forbidCustomTags and tags.CAN_USE_DYNAMIC_TAGS.value) sa_question = schema_fields.FieldRegistry( 'Short Answer Question', description='short answer question', extra_schema_dict_values={'className': 'sa-container'}) sa_question.add_property(schema_fields.SchemaField( 'version', '', 'string', optional=True, hidden=True)) cls._add_html_field_to( sa_question, 'question', 'Question', 'sa-question', supportCustomTags, optional=False) cls._add_html_field_to( sa_question, 'hint', 'Hint', 'sa-hint', supportCustomTags, description=messages.SHORT_ANSWER_HINT_DESCRIPTION) cls._add_html_field_to( sa_question, 'defaultFeedback', 'Feedback', 'sa-feedback', supportCustomTags, description=messages.INCORRECT_ANSWER_FEEDBACK) sa_question.add_property(schema_fields.SchemaField( 'rows', 'Rows', 'string', optional=True, i18n=False, extra_schema_dict_values={ 'className': 'sa-rows', 'value': SaQuestionConstants.DEFAULT_HEIGHT_ROWS }, description=messages.INPUT_FIELD_HEIGHT_DESCRIPTION)) sa_question.add_property(schema_fields.SchemaField( 'columns', 'Columns', 'string', optional=True, i18n=False, extra_schema_dict_values={ 'className': 'sa-columns', 'value': SaQuestionConstants.DEFAULT_WIDTH_COLUMNS }, description=messages.INPUT_FIELD_WIDTH_DESCRIPTION)) grader_type = schema_fields.FieldRegistry( 'Answer', extra_schema_dict_values={'className': 'sa-grader'}) grader_type.add_property(schema_fields.SchemaField( 'score', 'Score', 'string', description=messages.SHORT_ANSWER_SCORE_DESCRIPTION, extra_schema_dict_values={ 'className': 'sa-grader-score', 'value': '1.0', }, i18n=False)) grader_type.add_property(schema_fields.SchemaField( 'matcher', 'Type', 'string', description=messages.SHORT_ANSWER_TYPE_DESCRIPTION, extra_schema_dict_values={'className': 'sa-grader-score'}, i18n=False, optional=True, select_data=cls.GRADER_TYPES)) grader_type.add_property(schema_fields.SchemaField( 'response', 'Answer', 'string', description=messages.SHORT_ANSWER_ANSWER_DESCRIPTION, extra_schema_dict_values={ 'className': 'inputEx-Field sa-grader-text'}, optional=False)) cls._add_html_field_to( grader_type, 'feedback', 'Feedback', 'sa-grader-feedback', supportCustomTags, description=messages.SHORT_ANSWER_FEEDBACK_DESCRIPTION) graders_array = schema_fields.FieldArray( 'graders', '', item_type=grader_type, extra_schema_dict_values={ 'className': 'sa-grader-container', 'listAddLabel': 'Add an answer', 'listRemoveLabel': 'Delete this answer'}, optional=True) sa_question.add_property(graders_array) sa_question.add_property(schema_fields.SchemaField( 'description', 'Description', 'string', optional=False, extra_schema_dict_values={ 'className': 'inputEx-Field sa-description'}, description=messages.QUESTION_DESCRIPTION)) return sa_question class ResourceMCQuestion(ResourceQuestionBase): TYPE = ResourceQuestionBase.TYPE_MC_QUESTION @classmethod def get_schema(cls, course, key, forbidCustomTags=False): """Get the InputEx schema for the multiple choice question editor.""" supportCustomTags = ( not forbidCustomTags and tags.CAN_USE_DYNAMIC_TAGS.value) mc_question = schema_fields.FieldRegistry( 'Multiple Choice Question', description='multiple choice question', extra_schema_dict_values={'className': 'mc-container'}) mc_question.add_property(schema_fields.SchemaField( 'version', '', 'string', optional=True, hidden=True)) cls._add_html_field_to( mc_question, 'question', 'Question', 'mc-question', supportCustomTags, optional=False) cls._add_html_field_to( mc_question, 'defaultFeedback', 'Feedback', 'mc-question', supportCustomTags, description=messages.MULTIPLE_CHOICE_FEEDBACK_DESCRIPTION) mc_question.add_property(schema_fields.SchemaField( 'permute_choices', 'Randomize Choices', 'boolean', description=messages.MULTIPLE_CHOICE_RANDOMIZE_CHOICES_DESCRIPTION, extra_schema_dict_values={'className': 'mc-bool-option'}, optional=True)) mc_question.add_property(schema_fields.SchemaField( 'all_or_nothing_grading', 'All or Nothing', 'boolean', optional=True, description='Disallow partial credit. Assign a ' 'score of 0.0 to a question unless its raw score is 1.0.', extra_schema_dict_values={'className': 'mc-bool-option'})) mc_question.add_property(schema_fields.SchemaField( 'show_answer_when_incorrect', 'Display Correct', 'boolean', optional=True, description='Display the correct choice if ' 'answer is incorrect.', extra_schema_dict_values={'className': 'mc-bool-option'})) mc_question.add_property(schema_fields.SchemaField( 'multiple_selections', 'Selection', 'boolean', optional=True, select_data=[ (False, 'Allow only one selection'), (True, 'Allow multiple selections')], extra_schema_dict_values={ '_type': 'radio', 'className': 'mc-selection'})) choice_type = schema_fields.FieldRegistry( 'Choice', extra_schema_dict_values={'className': 'mc-choice'}) choice_type.add_property(schema_fields.SchemaField( 'score', 'Score', 'string', optional=True, i18n=False, extra_schema_dict_values={ 'className': 'mc-choice-score', 'value': '0'})) cls._add_html_field_to( choice_type, 'text', 'Text', 'mc-choice-text', supportCustomTags) cls._add_html_field_to( choice_type, 'feedback', 'Feedback', 'mc-choice-feedback', supportCustomTags, description=messages.MULTIPLE_CHOICE_CHOICE_FEEDBACK_DESCRIPTION) choices_array = schema_fields.FieldArray( 'choices', None, item_type=choice_type, extra_schema_dict_values={ 'className': 'mc-choice-container', 'listAddLabel': 'Add a choice', 'listRemoveLabel': 'Delete choice'}) mc_question.add_property(choices_array) mc_question.add_property(schema_fields.SchemaField( 'description', 'Description', 'string', optional=False, extra_schema_dict_values={ 'className': 'inputEx-Field mc-description'}, description=messages.QUESTION_DESCRIPTION)) return mc_question class ResourceQuestionGroup(resource.AbstractResourceHandler): TYPE = 'question_group' @classmethod def get_resource(cls, course, key): return models.QuestionGroupDAO.load(key) @classmethod def get_resource_title(cls, rsrc): return rsrc.description @classmethod def get_schema(cls, course, key): """Return the InputEx schema for the question group editor.""" question_group = schema_fields.FieldRegistry( 'Question Group', description='question_group') question_group.add_property(schema_fields.SchemaField( 'version', '', 'string', optional=True, hidden=True)) question_group.add_property(schema_fields.SchemaField( 'description', 'Description', 'string', optional=True)) question_group.add_property(schema_fields.SchemaField( 'introduction', 'Introduction', 'html', optional=True)) item_type = schema_fields.FieldRegistry( 'Item', extra_schema_dict_values={'className': 'question-group-item'}) item_type.add_property(schema_fields.SchemaField( 'weight', 'Weight', 'number', optional=True, i18n=False, extra_schema_dict_values={'className': 'question-group-weight'})) question_select_data = [(q.id, q.description) for q in sorted( models.QuestionDAO.get_all(), key=lambda x: x.description)] item_type.add_property(schema_fields.SchemaField( 'question', 'Question', 'string', optional=True, i18n=False, select_data=question_select_data, extra_schema_dict_values={'className': 'question-group-question'})) item_array_classes = 'question-group-items' if not question_select_data: item_array_classes += ' empty-question-list' item_array = schema_fields.FieldArray( 'items', None, item_type=item_type, extra_schema_dict_values={ 'className': item_array_classes, 'sortable': 'true', 'listAddLabel': 'Add a question', 'listRemoveLabel': 'Remove'}) question_group.add_property(item_array) return question_group @classmethod def get_data_dict(cls, course, key): return models.QuestionGroupDAO.load(int(key)).dict @classmethod def get_view_url(cls, rsrc): return None @classmethod def get_edit_url(cls, key): return 'dashboard?action=edit_question_group&key=%s' % key class ResourceCourseSettings(resource.AbstractResourceHandler): TYPE = 'course_settings' @classmethod def get_resource(cls, course, key): entire_schema = course.create_settings_schema() return entire_schema.clone_only_items_named([key]) @classmethod def get_resource_title(cls, rsrc): return ' '.join([sr.title for sr in rsrc.sub_registries.itervalues()]) @classmethod def get_schema(cls, course, key): return cls.get_resource(course, key) @classmethod def get_data_dict(cls, course, key): schema = cls.get_schema(course, key) json_entity = {} schema.convert_entity_to_json_entity( course.get_environ(course.app_context), json_entity) return json_entity[key] @classmethod def get_view_url(cls, rsrc): return None @classmethod def get_edit_url(cls, key): action = 'settings_{}'.format(key) return 'dashboard?action={}'.format(action) def workflow_key(key): return 'workflow:%s' % key class LabelGroupsHelper(object): """Various methods that make it easier to attach labels to objects.""" LABELS_FIELD_NAME = 'labels' TRACKS_FIELD_NAME = 'tracks' LOCALES_FIELD_NAME = 'locales' FIELDS = [ { 'name': LABELS_FIELD_NAME, 'label': 'Labels', 'description': 'The {content} is tagged with these labels for your reference.', 'type_id': models.LabelDTO.LABEL_TYPE_GENERAL, }, { 'name': TRACKS_FIELD_NAME, 'label': 'Tracks', 'description': 'The {content} is part of these tracks. If none are selected, ' 'it will be part of all tracks.', 'type_id': models.LabelDTO.LABEL_TYPE_COURSE_TRACK, 'topic_id': 'labels:%s' % TRACKS_FIELD_NAME, }, { 'name': LOCALES_FIELD_NAME, 'label': 'Languages', 'description': 'The {content} is available in these languages, in addition to ' 'the base language.', 'type_id': models.LabelDTO.LABEL_TYPE_LOCALE, }, ] @classmethod def add_labels_schema_fields(cls, schema, type_name, exclude_types=None): """Creates multiple form fields for choosing labels""" if exclude_types is None: exclude_types = [] for field in cls.FIELDS: if field['name'] not in exclude_types: description = field['description'].format(content=type_name) topic_id = field.get('topic_id') if topic_id: description = services.help_urls.make_learn_more_message( description, topic_id) schema.add_property(schema_fields.FieldArray( field['name'], field['label'], description=str(description), extra_schema_dict_values={ '_type': 'checkbox-list', 'noItemsHideField': True, }, item_type=schema_fields.SchemaField(None, None, 'string', extra_schema_dict_values={'_type': 'boolean'}, i18n=False), optional=True, select_data=cls._labels_to_choices(field['type_id']))) @classmethod def _labels_to_choices(cls, label_type): """Produces select_data for a label type""" return [(label.id, label.title) for label in sorted( models.LabelDAO.get_all_of_type(label_type), key=lambda label: label.title)] @classmethod def remove_label_field_data(cls, data): """Deletes label field data from a payload""" for field in cls.FIELDS: del data[field['name']] @classmethod def field_data_to_labels(cls, data): """Collects chosen labels from all fields into a single set""" labels = set() for field in cls.FIELDS: if field['name'] in data: labels |= set(data[field['name']]) return labels @classmethod def _filter_labels(cls, labels, label_type): """Filters chosen labels by a given type""" return [label.id for label in sorted( models.LabelDAO.get_all_of_type(label_type), key=lambda label: label.title) if str(label.id) in labels] @classmethod def labels_to_field_data(cls, labels, exclude_types=None): """Filters chosen labels by type into data for multiple fields""" if exclude_types is None: exclude_types = [] return { field['name']: cls._filter_labels(labels, field['type_id']) for field in cls.FIELDS if not field['name'] in exclude_types} class UnitTools(object): def __init__(self, course): self._course = course def apply_updates(self, unit, updated_unit_dict, errors): if unit.type == verify.UNIT_TYPE_ASSESSMENT: self._apply_updates_to_assessment(unit, updated_unit_dict, errors) elif unit.type == verify.UNIT_TYPE_LINK: self._apply_updates_to_link(unit, updated_unit_dict, errors) elif unit.type == verify.UNIT_TYPE_UNIT: self._apply_updates_to_unit(unit, updated_unit_dict, errors) else: raise ValueError('Unknown unit type %s' % unit.type) def _apply_updates_common(self, unit, updated_unit_dict, errors): """Apply changes common to all unit types.""" if 'title' in updated_unit_dict: unit.title = updated_unit_dict['title'] if 'description' in updated_unit_dict: unit.description = updated_unit_dict['description'] labels = LabelGroupsHelper.field_data_to_labels(updated_unit_dict) if labels and self._course.get_parent_unit(unit.unit_id): track_label_ids = models.LabelDAO.get_set_of_ids_of_type( models.LabelDTO.LABEL_TYPE_COURSE_TRACK) if track_label_ids.intersection(labels): errors.append('Cannot set track labels on entities which ' 'are used within other units.') unit.labels = common_utils.list_to_text(labels) def _apply_updates_to_assessment(self, unit, updated_unit_dict, errors): """Store the updated assessment.""" entity_dict = {} ResourceAssessment.get_schema( self._course, unit.unit_id).convert_json_to_entity( updated_unit_dict, entity_dict) self._apply_updates_common(unit, entity_dict, errors) if 'weight' in entity_dict: try: unit.weight = float(entity_dict['weight']) if unit.weight < 0: errors.append('The weight must be a non-negative integer.') except ValueError: errors.append('The weight must be an integer.') if 'content' in entity_dict: content = entity_dict['content'] if content: self._course.set_assessment_content( unit, content, errors=errors) if 'html_content' in entity_dict: unit.html_content = entity_dict['html_content'] if 'html_check_answers' in entity_dict: unit.html_check_answers = entity_dict['html_check_answers'] if 'workflow' in entity_dict: workflow_dict = entity_dict['workflow'] def convert_date(key): due_date = workflow_dict.get(key) if due_date: workflow_dict[key] = due_date.strftime( courses.ISO_8601_DATE_FORMAT) convert_date(courses.SUBMISSION_DUE_DATE_KEY) convert_date(courses.REVIEW_DUE_DATE_KEY) if len(courses.ALLOWED_MATCHERS_NAMES) == 1: workflow_dict[courses.MATCHER_KEY] = ( courses.ALLOWED_MATCHERS_NAMES.keys()[0]) unit.workflow_yaml = yaml.safe_dump(workflow_dict) unit.workflow.validate(errors=errors) # Only save the review form if the assessment needs human grading. if not errors: if self._course.needs_human_grader(unit): if 'review_form' in entity_dict: review_form = entity_dict['review_form'] if review_form: self._course.set_review_form( unit, review_form, errors=errors) if 'html_review_form' in entity_dict: unit.html_review_form = entity_dict['html_review_form'] elif entity_dict.get('review_form'): errors.append( 'Review forms for auto-graded assessments should be empty.') def _apply_updates_to_link(self, unit, updated_unit_dict, errors): self._apply_updates_common(unit, updated_unit_dict, errors) if 'url' in updated_unit_dict: unit.href = updated_unit_dict['url'] def _is_assessment_unused(self, unit, assessment, errors): parent_unit = self._course.get_parent_unit(assessment.unit_id) if parent_unit and parent_unit.unit_id != unit.unit_id: errors.append( 'Assessment "%s" is already associated to unit "%s"' % ( assessment.title, parent_unit.title)) return False return True def _is_assessment_version_ok(self, assessment, errors): # Here, we want to establish that the display model for the # assessment is compatible with the assessment being used in # the context of a Unit. Model version 1.4 is not, because # the way sets up submission is to build an entirely new form # from JavaScript (independent of the form used to display the # assessment), and the way it learns the ID of the assessment # is by looking in the URL (as opposed to taking a parameter). # This is incompatible with the URLs for unit display, so we # just disallow older assessments here. model_version = self._course.get_assessment_model_version(assessment) if model_version == courses.ASSESSMENT_MODEL_VERSION_1_4: errors.append( 'The version of assessment "%s" ' % assessment.title + 'is not compatible with use as a pre/post unit element') return False return True def _is_assessment_on_track(self, assessment, errors): if self._course.get_unit_track_labels(assessment): errors.append( 'Assessment "%s" has track labels, ' % assessment.title + 'so it cannot be used as a pre/post unit element') return True return False def _apply_updates_to_unit(self, unit, updated_unit_dict, errors): self._apply_updates_common(unit, updated_unit_dict, errors) if 'unit_header' in updated_unit_dict: unit.unit_header = updated_unit_dict['unit_header'] if 'unit_footer' in updated_unit_dict: unit.unit_footer = updated_unit_dict['unit_footer'] if 'manual_progress' in updated_unit_dict: unit.manual_progress = updated_unit_dict['manual_progress'] if 'pre_assessment' in updated_unit_dict: unit.pre_assessment = None pre_assessment_id = updated_unit_dict['pre_assessment'] if pre_assessment_id >= 0: assessment = self._course.find_unit_by_id(pre_assessment_id) if (self._is_assessment_unused(unit, assessment, errors) and self._is_assessment_version_ok(assessment, errors) and not self._is_assessment_on_track(assessment, errors)): unit.pre_assessment = pre_assessment_id if 'post_assessment' in updated_unit_dict: unit.post_assessment = None post_assessment_id = updated_unit_dict['post_assessment'] if (post_assessment_id >= 0 and pre_assessment_id == post_assessment_id): errors.append( 'The same assessment cannot be used as both the pre ' 'and post assessment of a unit.') elif post_assessment_id >= 0: assessment = self._course.find_unit_by_id(post_assessment_id) if (assessment and self._is_assessment_unused(unit, assessment, errors) and self._is_assessment_version_ok(assessment, errors) and not self._is_assessment_on_track(assessment, errors)): unit.post_assessment = post_assessment_id if 'show_contents_on_one_page' in updated_unit_dict: unit.show_contents_on_one_page = ( updated_unit_dict['show_contents_on_one_page']) def unit_to_dict(self, unit, keys=None): if unit.type == verify.UNIT_TYPE_ASSESSMENT: return self._assessment_to_dict(unit, keys=keys) elif unit.type == verify.UNIT_TYPE_LINK: return self._link_to_dict(unit) elif unit.type == verify.UNIT_TYPE_UNIT: return self._unit_to_dict(unit) else: raise ValueError('Unknown unit type %s' % unit.type) def _unit_to_dict_common(self, unit): data = { 'key': unit.unit_id, 'type': verify.UNIT_TYPE_NAMES[unit.type], 'title': unit.title, 'description': unit.description or '', } exclude_types = [] if self._course.get_parent_unit(unit.unit_id): exclude_types.append(LabelGroupsHelper.TRACKS_FIELD_NAME) data.update(LabelGroupsHelper.labels_to_field_data( common_utils.text_to_list(unit.labels), exclude_types=exclude_types)) return data def _get_assessment_path(self, unit): return self._course.app_context.fs.impl.physical_to_logical( self._course.get_assessment_filename(unit.unit_id)) def _get_review_form_path(self, unit): return self._course.app_context.fs.impl.physical_to_logical( self._course.get_review_filename(unit.unit_id)) def _assessment_to_dict(self, unit, keys=None): """Assemble a dict with the unit data fields.""" assert unit.type == 'A' content = None if keys is not None and 'content' in keys: path = self._get_assessment_path(unit) fs = self._course.app_context.fs if fs.isfile(path): content = fs.get(path) else: content = '' review_form = None if keys is not None and 'review_form' in keys: review_form_path = self._get_review_form_path(unit) if review_form_path and fs.isfile(review_form_path): review_form = fs.get(review_form_path) else: review_form = '' workflow = unit.workflow if workflow.get_submission_due_date(): submission_due_date = workflow.get_submission_due_date() else: submission_due_date = None if workflow.get_review_due_date(): review_due_date = workflow.get_review_due_date() else: review_due_date = None unit_common = self._unit_to_dict_common(unit) unit_common.update({ 'weight': str(unit.weight if hasattr(unit, 'weight') else 0), 'content': content, 'html_content': ( '' if unit.is_old_style_assessment(self._course) else unit.html_content), 'html_check_answers': ( False if unit.is_old_style_assessment(self._course) else unit.html_check_answers), workflow_key(courses.SINGLE_SUBMISSION_KEY): ( workflow.is_single_submission()), workflow_key(courses.SUBMISSION_DUE_DATE_KEY): ( submission_due_date), workflow_key(courses.SHOW_FEEDBACK_KEY): ( workflow.show_feedback()), workflow_key(courses.GRADER_KEY): workflow.get_grader(), }) return { 'assessment': unit_common, 'review_opts': { workflow_key(courses.MATCHER_KEY): workflow.get_matcher(), workflow_key(courses.REVIEW_DUE_DATE_KEY): review_due_date, workflow_key(courses.REVIEW_MIN_COUNT_KEY): ( workflow.get_review_min_count()), workflow_key(courses.REVIEW_WINDOW_MINS_KEY): ( workflow.get_review_window_mins()), 'review_form': review_form, 'html_review_form': ( unit.html_review_form or '' if hasattr(unit, 'html_review_form') else ''), } } def _link_to_dict(self, unit): assert unit.type == 'O' ret = self._unit_to_dict_common(unit) ret['url'] = unit.href return ret def _unit_to_dict(self, unit): assert unit.type == 'U' ret = self._unit_to_dict_common(unit) ret['unit_header'] = unit.unit_header or '' ret['unit_footer'] = unit.unit_footer or '' ret['pre_assessment'] = unit.pre_assessment or -1 ret['post_assessment'] = unit.post_assessment or -1 ret['show_contents_on_one_page'] = ( unit.show_contents_on_one_page or False) ret['manual_progress'] = unit.manual_progress or False return ret class ResourceUnitBase(resource.AbstractResourceHandler): ASSESSMENT_TYPE = 'assessment' UNIT_TYPE = 'unit' LINK_TYPE = 'link' # These default values can be overridden by class-scoped constants in # specific derived classes. TITLE_DESCRIPTION = messages.UNIT_TITLE_DESCRIPTION DESCRIPTION_DESCRIPTION = messages.UNIT_DESCRIPTION_DESCRIPTION @classmethod def key_for_unit(cls, unit, course=None): if unit.type == verify.UNIT_TYPE_ASSESSMENT: unit_type = cls.ASSESSMENT_TYPE elif unit.type == verify.UNIT_TYPE_LINK: unit_type = cls.LINK_TYPE elif unit.type == verify.UNIT_TYPE_UNIT: unit_type = cls.UNIT_TYPE else: raise ValueError('Unknown unit type: %s' % unit.type) return resource.Key(unit_type, unit.unit_id, course=course) @classmethod def get_resource(cls, course, key): return course.find_unit_by_id(key) @classmethod def get_resource_title(cls, rsrc): return rsrc.title @classmethod def get_data_dict(cls, course, key): unit = course.find_unit_by_id(key) return UnitTools(course).unit_to_dict(unit) @classmethod def _generate_common_schema( cls, title, hidden_header=False, exclude_fields=None): group_class_name = 'inputEx-Group new-form-layout' if hidden_header: group_class_name += ' hidden-header' ret = schema_fields.FieldRegistry(title, extra_schema_dict_values={ 'className': group_class_name}) ret.add_property(schema_fields.SchemaField( 'key', 'ID', 'string', editable=False, extra_schema_dict_values={'className': 'inputEx-Field keyHolder'}, hidden=True)) ret.add_property(schema_fields.SchemaField( 'type', 'Type', 'string', editable=False, hidden=True)) ret.add_property(schema_fields.SchemaField( 'title', 'Title', 'string', description=cls.TITLE_DESCRIPTION, optional=False)) ret.add_property(schema_fields.SchemaField( 'description', 'Description', 'string', description=cls.DESCRIPTION_DESCRIPTION, optional=True)) return ret class ResourceUnit(ResourceUnitBase): TYPE = ResourceUnitBase.UNIT_TYPE @classmethod def get_schema(cls, course, key): schema = cls._generate_common_schema('Unit') LabelGroupsHelper.add_labels_schema_fields(schema, 'unit') schema.add_property(schema_fields.SchemaField( 'pre_assessment', 'Pre-Assessment', 'integer', optional=True, description=messages.UNIT_PRE_ASSESSMENT_DESCRIPTION)) schema.add_property(schema_fields.SchemaField( 'post_assessment', 'Post-Assessment', 'integer', optional=True, description=messages.UNIT_POST_ASSESSMENT_DESCRIPTION)) schema.add_property(schema_fields.SchemaField( 'show_contents_on_one_page', 'Show on One Page', 'boolean', description=messages.UNIT_SHOW_ON_ONE_PAGE_DESCRIPTION, optional=True)) schema.add_property(schema_fields.SchemaField( 'manual_progress', 'Allow Progress Override', 'boolean', description=services.help_urls.make_learn_more_message( messages.UNIT_ALLOW_PROGRESS_OVERRIDE_DESCRIPTION, 'course:%s:manual_progress' % ResourceUnitBase.UNIT_TYPE), optional=True)) schema.add_property(schema_fields.SchemaField( 'unit_header', 'Header', 'html', optional=True, description=messages.UNIT_HEADER_DESCRIPTION, extra_schema_dict_values={ 'supportCustomTags': tags.CAN_USE_DYNAMIC_TAGS.value, 'excludedCustomTags': tags.EditorBlacklists.DESCRIPTIVE_SCOPE, 'className': 'inputEx-Field html-content cb-editor-small'})) schema.add_property(schema_fields.SchemaField( 'unit_footer', 'Footer', 'html', optional=True, description=messages.UNIT_FOOTER_DESCRIPTION, extra_schema_dict_values={ 'supportCustomTags': tags.CAN_USE_DYNAMIC_TAGS.value, 'excludedCustomTags': tags.EditorBlacklists.DESCRIPTIVE_SCOPE, 'className': 'inputEx-Field html-content cb-editor-small'})) return schema @classmethod def get_view_url(cls, rsrc): return 'unit?unit=%s' % rsrc.unit_id @classmethod def get_edit_url(cls, key): return 'dashboard?action=edit_unit&key=%s' % key class ResourceAssessment(ResourceUnitBase): TYPE = ResourceUnitBase.ASSESSMENT_TYPE TITLE_DESCRIPTION = messages.ASSESSMENT_TITLE_DESCRIPTION DESCRIPTION_DESCRIPTION = messages.ASSESSMENT_DESCRIPTION_DESCRIPTION AVAILABILITY_DESCRIPTION = messages.ASSESSMENT_AVAILABILITY_DESCRIPTION SYLLABUS_VISIBILITY_DESCRIPTION = ( messages.ASSESSMENT_SYLLABUS_VISIBILITY_DESCRIPTION) @classmethod def get_schema(cls, course, key): reg = schema_fields.FieldRegistry('Assessment', extra_schema_dict_values={ 'className': 'inputEx-Group new-form-layout'}) # Course level settings. course_opts = cls._generate_common_schema( 'Assessment Config', hidden_header=True) unit = cls.get_resource(course, key) exclude_types = [] if course.get_parent_unit(unit.unit_id): exclude_types.append(LabelGroupsHelper.TRACKS_FIELD_NAME) LabelGroupsHelper.add_labels_schema_fields( course_opts, 'assessment', exclude_types=exclude_types) course_opts.add_property(schema_fields.SchemaField( 'weight', 'Points', 'number', description=messages.ASSESSMENT_POINTS_DESCRIPTION, i18n=False, optional=False)) course_opts.add_property(schema_fields.SchemaField( 'content', 'Assessment Content (JavaScript)', 'text', optional=True, description=services.help_urls.make_learn_more_message( messages.ASSESSMENT_CONTENT_JAVASCRIPT_DESCRIPTION, 'course:%s:content' % ResourceUnitBase.ASSESSMENT_TYPE), extra_schema_dict_values={'className': 'inputEx-Field content'})) course_opts.add_property(schema_fields.SchemaField( 'html_content', 'Assessment Content', 'html', optional=True, description=services.help_urls.make_learn_more_message( messages.ASSESSMENT_CONTENT_DESCRIPTION, 'course:%s:html_content' % ResourceUnitBase.ASSESSMENT_TYPE), extra_schema_dict_values={ 'supportCustomTags': tags.CAN_USE_DYNAMIC_TAGS.value, 'excludedCustomTags': tags.EditorBlacklists.ASSESSMENT_SCOPE, 'className': 'inputEx-Field html-content'})) course_opts.add_property(schema_fields.SchemaField( 'html_check_answers', "Show Correct Answer", 'boolean', description=messages.ASSESSMENT_SHOW_CORRECT_ANSWER_DESCRIPTION, extra_schema_dict_values={ 'className': ('inputEx-Field inputEx-CheckBox' ' assessment-editor-check-answers')}, optional=True)) course_opts.add_property(schema_fields.SchemaField( workflow_key(courses.SINGLE_SUBMISSION_KEY), 'Single Submission', 'boolean', optional=True, description=messages.ASSESSMENT_SINGLE_SUBMISSION_DESCRIPTION)) course_opts.add_property(schema_fields.SchemaField( workflow_key(courses.SUBMISSION_DUE_DATE_KEY), 'Due Date', 'datetime', optional=True, description=str(messages.ASSESSMENT_DUE_DATE_FORMAT_DESCRIPTION), extra_schema_dict_values={'_type': 'datetime'})) course_opts.add_property(schema_fields.SchemaField( workflow_key(courses.SHOW_FEEDBACK_KEY), 'Show Feedback', 'boolean', optional=True, description=messages.ASSESSMENT_SHOW_FEEDBACK_DESCRIPTION)) course_opts.add_property(schema_fields.SchemaField( workflow_key(courses.GRADER_KEY), 'Grading Method', 'string', select_data=ALLOWED_GRADERS_NAMES.items(), optional=True, description=services.help_urls.make_learn_more_message( messages.ASSESSMENT_GRADING_METHOD_DESCRIPTION, 'course:%s:%s' % ( ResourceUnitBase.ASSESSMENT_TYPE, workflow_key(courses.GRADER_KEY))))) reg.add_sub_registry('assessment', 'Assessment Config', registry=course_opts) review_opts = reg.add_sub_registry('review_opts', 'Peer review', description=services.help_urls.make_learn_more_message( messages.ASSESSMENT_DETAILS_DESCRIPTION, 'course:%s:review_opts' % ResourceUnitBase.ASSESSMENT_TYPE), extra_schema_dict_values={'id': 'peer-review-group'}) if len(courses.ALLOWED_MATCHERS_NAMES) > 1: review_opts.add_property(schema_fields.SchemaField( workflow_key(courses.MATCHER_KEY), 'Review Matcher', 'string', optional=True, select_data=courses.ALLOWED_MATCHERS_NAMES.items())) review_opts.add_property(schema_fields.SchemaField( 'review_form', 'Reviewer Feedback Form (JavaScript)', 'text', optional=True, description=services.help_urls.make_learn_more_message( messages.ASSESSMENT_REVIEWER_FEEDBACK_FORM_DESCRIPTION, 'course:%s:review_form' % ResourceUnitBase.ASSESSMENT_TYPE), extra_schema_dict_values={ 'className': 'inputEx-Field review-form'})) review_opts.add_property(schema_fields.SchemaField( 'html_review_form', 'Reviewer Feedback Form', 'html', optional=True, description=( messages.ASSESSMENT_REVIEWER_FEEDBACK_FORM_HTML_DESCRIPTION), extra_schema_dict_values={ 'supportCustomTags': tags.CAN_USE_DYNAMIC_TAGS.value, 'excludedCustomTags': tags.EditorBlacklists.ASSESSMENT_SCOPE, 'className': 'inputEx-Field html-review-form'})) review_opts.add_property(schema_fields.SchemaField( workflow_key(courses.REVIEW_DUE_DATE_KEY), 'Review Due Date', 'datetime', optional=True, description=messages.ASSESSMENT_REVIEW_DUE_DATE_FORMAT_DESCRIPTION, extra_schema_dict_values={'_type': 'datetime'})) review_opts.add_property(schema_fields.SchemaField( workflow_key(courses.REVIEW_MIN_COUNT_KEY), 'Review Min Count', 'integer', optional=True, description=messages.ASSESSMENT_REVIEW_MIN_COUNT_DESCRIPTION)) review_opts.add_property(schema_fields.SchemaField( workflow_key(courses.REVIEW_WINDOW_MINS_KEY), 'Review Window Timeout', 'integer', optional=True, description=services.help_urls.make_learn_more_message( messages.ASSESSMENT_REVIEW_TIMEOUT_IN_MINUTES, workflow_key(courses.REVIEW_WINDOW_MINS_KEY)))) return reg @classmethod def get_view_url(cls, rsrc): return 'assessment?name=%s' % rsrc.unit_id @classmethod def get_edit_url(cls, key): return 'dashboard?action=edit_assessment&key=%s' % key class ResourceLink(ResourceUnitBase): TYPE = ResourceUnitBase.LINK_TYPE TITLE_DESCRIPTION = messages.LINK_TITLE_DESCRIPTION DESCRIPTION_DESCRIPTION = messages.LINK_DESCRIPTION_DESCRIPTION AVAILABILITY_DESCRIPTION = messages.LINK_AVAILABILITY_DESCRIPTION SYLLABUS_VISIBILITY_DESCRIPTION = ( messages.LINK_SYLLABUS_VISIBILITY_DESCRIPTION) @classmethod def get_schema(cls, course, key): schema = cls._generate_common_schema('Link') LabelGroupsHelper.add_labels_schema_fields(schema, 'link') schema.add_property(schema_fields.SchemaField( 'url', 'URL', 'string', description=messages.LINK_URL_DESCRIPTION, extra_schema_dict_values={'_type': 'url', 'showMsg': True})) return schema @classmethod def get_view_url(cls, rsrc): return rsrc.href @classmethod def get_edit_url(cls, key): return 'dashboard?action=edit_link&key=%s' % key class ResourceLesson(resource.AbstractResourceHandler): TYPE = 'lesson' @classmethod def get_key(cls, lesson): return resource.Key(cls.TYPE, lesson.lesson_id) @classmethod def get_resource(cls, course, key): lesson = course.find_lesson_by_id(None, key) unit = course.get_unit_for_lesson(lesson) return (unit, lesson) @classmethod def get_resource_title(cls, rsrc): return rsrc[1].title @classmethod def get_schema(cls, course, key): units = course.get_units() # Note GcbRte relies on the structure of this schema. Do not change # without checking the dependency. unit_list = [] for unit in units: if unit.type == 'U': unit_list.append( (unit.unit_id, cgi.escape(display_unit_title(unit, course.app_context)))) lesson_data = cls.get_data_dict(course, key) has_video_id = bool(lesson_data.get('video')) lesson = schema_fields.FieldRegistry( 'Lesson', description='Lesson', extra_schema_dict_values={ 'className': 'inputEx-Group new-form-layout'}) lesson.add_property(schema_fields.SchemaField( 'key', 'ID', 'string', editable=False, extra_schema_dict_values={'className': 'inputEx-Field keyHolder'}, hidden=True)) lesson.add_property(schema_fields.SchemaField( 'title', 'Title', 'string', extra_schema_dict_values={ 'className': 'inputEx-Field content-holder'}, description=messages.LESSON_TITLE_DESCRIPTION)) lesson.add_property(schema_fields.SchemaField( 'unit_id', 'Unit', 'string', i18n=False, description=messages.LESSON_PARENT_UNIT_DESCRIPTION, select_data=unit_list, extra_schema_dict_values={'required': False})) lesson.add_property(schema_fields.SchemaField( 'video', 'Video ID', 'string', hidden=not has_video_id, optional=True, description=messages.LESSON_VIDEO_ID_DESCRIPTION)) lesson.add_property(schema_fields.SchemaField( 'scored', 'Question Scoring', 'string', optional=True, i18n=False, description=messages.LESSON_SCORED_DESCRIPTION, select_data=[ ('scored', 'Questions are scored'), ('not_scored', 'Questions only give feedback')])) lesson.add_property(schema_fields.SchemaField( 'objectives', 'Lesson Body', 'html', optional=True, extra_schema_dict_values={ 'className': 'content-holder', 'supportCustomTags': tags.CAN_USE_DYNAMIC_TAGS.value})) lesson.add_property(schema_fields.SchemaField( 'notes', 'Text Version URL', 'string', optional=True, description=messages.LESSON_TEXT_VERSION_URL_DESCRIPTION, extra_schema_dict_values={'_type': 'url', 'showMsg': True})) lesson.add_property(schema_fields.SchemaField( 'auto_index', 'Auto-Number', 'boolean', description=messages.LESSON_AUTO_NUMBER_DESCRIPTION, optional=True)) lesson.add_property(schema_fields.SchemaField( 'activity_title', 'Activity Title', 'string', optional=True, description=messages.LESSON_ACTIVITY_TITLE_DESCRIPTION)) lesson.add_property(schema_fields.SchemaField( 'activity_listed', 'Activity Listed', 'boolean', optional=True, description=messages.LESSON_ACTIVITY_LISTED_DESCRIPTION)) lesson.add_property(schema_fields.SchemaField( 'activity', 'Activity', 'text', optional=True, description=services.help_urls.make_learn_more_message( messages.LESSON_ACTIVITY_DESCRIPTION, 'course:lesson:activity'), extra_schema_dict_values={ 'className': 'inputEx-Field activityHolder'})) lesson.add_property(schema_fields.SchemaField( 'manual_progress', 'Allow Progress Override', 'boolean', description=services.help_urls.make_learn_more_message( messages.LESSON_ALLOW_PROGRESS_OVERRIDE_DESCRIPTION, 'course:lesson:manual_progress'), optional=True)) return lesson @classmethod def get_data_dict(cls, course, key): lesson = course.find_lesson_by_id(None, key) fs = course.app_context.fs path = fs.impl.physical_to_logical(course.get_activity_filename( lesson.unit_id, lesson.lesson_id)) if lesson.has_activity and fs.isfile(path): activity = fs.get(path) else: activity = '' lesson_dict = { 'key': lesson.lesson_id, 'title': lesson.title, 'unit_id': lesson.unit_id, 'scored': 'scored' if lesson.scored else 'not_scored', 'objectives': lesson.objectives, 'video': lesson.video, 'notes': lesson.notes, 'auto_index': lesson.auto_index, 'activity_title': lesson.activity_title, 'activity_listed': lesson.activity_listed, 'activity': activity, 'manual_progress': lesson.manual_progress or False, } return lesson_dict @classmethod def get_view_url(cls, rsrc): return 'unit?unit=%s&lesson=%s' % (rsrc[0].unit_id, rsrc[1].lesson_id) @classmethod def get_edit_url(cls, key): return 'dashboard?action=edit_lesson&key=%s' % key def get_unit_title_template(app_context): """Prepare an internationalized display for the unit title.""" course_properties = app_context.get_environ() if course_properties['course'].get('display_unit_title_without_index'): return '%(title)s' else: # I18N: Message displayed as title for unit within a course. # Note that the items %(index) and %(title). The %(index) # will be replaced with a number indicating the unit's # sequence I18N: number within the course, and the %(title) # with the unit's title. return app_context.gettext('Unit %(index)s - %(title)s') def display_unit_title(unit, app_context): """Prepare an internationalized display for the unit title.""" course_properties = app_context.get_environ() template = get_unit_title_template(app_context) return template % {'index': unit.index, 'title': unit.title} def display_short_unit_title(unit, app_context): """Prepare a short unit title.""" course_properties = app_context.get_environ() if course_properties['course'].get('display_unit_title_without_index'): return unit.title if unit.type != 'U': return unit.title # I18N: Message displayed as title for unit within a course. The # "%s" will be replaced with the index number of the unit within # the course. E.g., "Unit 1", "Unit 2" and so on. unit_title = app_context.gettext('Unit %s') return unit_title % unit.index def display_lesson_title(unit, lesson, app_context): """Prepare an internationalized display for the unit title.""" course_properties = app_context.get_environ() content = safe_dom.NodeList() span = safe_dom.Element('span') content.append(span) if lesson.auto_index: prefix = '' if course_properties['course'].get('display_unit_title_without_index'): prefix = '%s ' % lesson.index else: prefix = '%s.%s ' % (unit.index, lesson.index) span.add_text(prefix) _class = '' else: _class = 'no-index' span.add_text(lesson.title) span.set_attribute('className', _class) return content
ram8647/gcb-mobilecsp
models/resources_display.py
Python
apache-2.0
51,422
# # This source file is part of the EdgeDB open source project. # # Copyright 2008-present MagicStack Inc. and the EdgeDB authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import annotations
edgedb/edgedb
edb/pgsql/__init__.py
Python
apache-2.0
715
# Copyright (c) 2014 Hitachi Data Systems, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # """ Self test for Hitachi Unified Storage (HUS-HNAS) platform. """ import os from StringIO import StringIO import tempfile import mock from cinder import exception from cinder.openstack.common import log as logging from cinder import test from cinder.volume import configuration as conf from cinder.volume.drivers.hds import iscsi LOG = logging.getLogger(__name__) HNASCONF = """<?xml version="1.0" encoding="UTF-8" ?> <config> <hnas_cmd>ssc</hnas_cmd> <chap_enabled>True</chap_enabled> <mgmt_ip0>172.17.44.15</mgmt_ip0> <username>supervisor</username> <password>supervisor</password> <svc_0> <volume_type>default</volume_type> <iscsi_ip>172.17.39.132</iscsi_ip> <hdp>fs2</hdp> </svc_0> <svc_1> <volume_type>silver</volume_type> <iscsi_ip>172.17.39.133</iscsi_ip> <hdp>fs2</hdp> </svc_1> </config> """ HNAS_WRONG_CONF1 = """<?xml version="1.0" encoding="UTF-8" ?> <config> <hnas_cmd>ssc</hnas_cmd> <mgmt_ip0>172.17.44.15</mgmt_ip0> <username>supervisor</username> <password>supervisor</password> <volume_type>default</volume_type> <hdp>172.17.39.132:/cinder</hdp> </svc_0> </config> """ HNAS_WRONG_CONF2 = """<?xml version="1.0" encoding="UTF-8" ?> <config> <hnas_cmd>ssc</hnas_cmd> <mgmt_ip0>172.17.44.15</mgmt_ip0> <username>supervisor</username> <password>supervisor</password> <svc_0> <volume_type>default</volume_type> </svc_0> <svc_1> <volume_type>silver</volume_type> </svc_1> </config> """ # The following information is passed on to tests, when creating a volume _VOLUME = {'name': 'testvol', 'volume_id': '1234567890', 'size': 128, 'volume_type': None, 'provider_location': None, 'id': 'abcdefg'} class SimulatedHnasBackend(object): """Simulation Back end. Talks to HNAS.""" # these attributes are shared across object instances start_lun = 0 init_index = 0 target_index = 0 hlun = 0 def __init__(self): self.type = 'HNAS' self.out = '' self.volumes = [] # iSCSI connections self.connections = [] def deleteVolume(self, name): LOG.info("delVolume: name %s" % name) volume = self.getVolume(name) if volume: LOG.info("deleteVolume: deleted name %s provider %s" % (volume['name'], volume['provider_location'])) self.volumes.remove(volume) return True else: return False def deleteVolumebyProvider(self, provider): LOG.info("delVolumeP: provider %s" % provider) volume = self.getVolumebyProvider(provider) if volume: LOG.info("deleteVolumeP: deleted name %s provider %s" % (volume['name'], volume['provider_location'])) self.volumes.remove(volume) return True else: return False def getVolumes(self): return self.volumes def getVolume(self, name): LOG.info("getVolume: find by name %s" % name) if self.volumes: for volume in self.volumes: if str(volume['name']) == name: LOG.info("getVolume: found name %s provider %s" % (volume['name'], volume['provider_location'])) return volume else: LOG.info("getVolume: no volumes") LOG.info("getVolume: not found") return None def getVolumebyProvider(self, provider): LOG.info("getVolumeP: find by provider %s" % provider) if self.volumes: for volume in self.volumes: if str(volume['provider_location']) == provider: LOG.info("getVolumeP: found name %s provider %s" % (volume['name'], volume['provider_location'])) return volume else: LOG.info("getVolumeP: no volumes") LOG.info("getVolumeP: not found") return None def createVolume(self, name, provider, sizeMiB, comment): LOG.info("createVolume: name %s provider %s comment %s" % (name, provider, comment)) new_vol = {'additionalStates': [], 'adminSpace': {'freeMiB': 0, 'rawReservedMiB': 384, 'reservedMiB': 128, 'usedMiB': 128}, 'baseId': 115, 'copyType': 1, 'creationTime8601': '2012-10-22T16:37:57-07:00', 'creationTimeSec': 1350949077, 'failedStates': [], 'id': 115, 'provider_location': provider, 'name': name, 'comment': comment, 'provisioningType': 1, 'readOnly': False, 'sizeMiB': sizeMiB, 'state': 1, 'userSpace': {'freeMiB': 0, 'rawReservedMiB': 41984, 'reservedMiB': 31488, 'usedMiB': 31488}, 'usrSpcAllocLimitPct': 0, 'usrSpcAllocWarningPct': 0, 'uuid': '1e7daee4-49f4-4d07-9ab8-2b6a4319e243', 'wwn': '50002AC00073383D'} self.volumes.append(new_vol) def create_lu(self, cmd, ip0, user, pw, hdp, size, name): vol_id = name _out = ("LUN: %d HDP: fs2 size: %s MB, is successfully created" % (self.start_lun, size)) self.createVolume(name, vol_id, size, "create-lu") self.start_lun += 1 return _out def delete_lu(self, cmd, ip0, user, pw, hdp, lun): _out = "" id = "myID" LOG.info("Delete_Lu: check lun %s id %s" % (lun, id)) if self.deleteVolumebyProvider(id + '.' + str(lun)): LOG.warn("Delete_Lu: failed to delete lun %s id %s" % (lun, id)) return _out def create_dup(self, cmd, ip0, user, pw, src_lun, hdp, size, name): _out = ("LUN: %s HDP: 9 size: %s MB, is successfully created" % (self.start_lun, size)) id = name LOG.info("HNAS Create_Dup: %d" % self.start_lun) self.createVolume(name, id + '.' + str(self.start_lun), size, "create-dup") self.start_lun += 1 return _out def add_iscsi_conn(self, cmd, ip0, user, pw, lun, hdp, port, iqn, initiator): ctl = "" conn = (self.hlun, lun, initiator, self.init_index, iqn, self.target_index, ctl, port) _out = ("H-LUN: %d mapped. LUN: %s, iSCSI Initiator: %s @ index: %d, \ and Target: %s @ index %d is successfully paired @ CTL: %s, \ Port: %s" % conn) self.init_index += 1 self.target_index += 1 self.hlun += 1 LOG.debug("Created connection %d" % self.init_index) self.connections.append(conn) return _out def del_iscsi_conn(self, cmd, ip0, user, pw, port, iqn, initiator): self.connections.pop() _out = ("H-LUN: successfully deleted from target") return _out def extend_vol(self, cmd, ip0, user, pw, hdp, lu, size, name): _out = ("LUN: %s successfully extended to %s MB" % (lu, size)) id = name self.out = _out LOG.info("extend_vol: lu: %s %d -> %s" % (lu, int(size), self.out)) v = self.getVolumebyProvider(id + '.' + str(lu)) if v: v['sizeMiB'] = size LOG.info("extend_vol: out %s %s" % (self.out, self)) return _out def get_luns(self): return len(self.alloc_lun) def get_conns(self): return len(self.connections) def get_out(self): return str(self.out) def get_version(self, cmd, ver, ip0, user, pw): self.out = "Array_ID: 18-48-A5-A1-80-13 (3080-G2) " \ "version: 11.2.3319.09 LU: 256" \ " RG: 0 RG_LU: 0 Utility_version: 11.1.3225.01" return self.out def get_iscsi_info(self, cmd, ip0, user, pw): self.out = "CTL: 0 Port: 4 IP: 172.17.39.132 Port: 3260 Link: Up\n" \ "CTL: 1 Port: 5 IP: 172.17.39.133 Port: 3260 Link: Up" return self.out def get_hdp_info(self, cmd, ip0, user, pw): self.out = "HDP: 1024 272384 MB 33792 MB 12 % LUs: " \ "70 Normal fs1\n" \ "HDP: 1025 546816 MB 73728 MB 13 % LUs: 194 Normal fs2" return self.out def get_targetiqn(self, cmd, ip0, user, pw, id, hdp, secret): self.out = """iqn.2013-08.cinderdomain:vs61.cindertarget""" return self.out def set_targetsecret(self, cmd, ip0, user, pw, target, hdp, secret): self.out = """iqn.2013-08.cinderdomain:vs61.cindertarget""" return self.out def get_targetsecret(self, cmd, ip0, user, pw, target, hdp): self.out = """wGkJhTpXaaYJ5Rv""" return self.out class HNASiSCSIDriverTest(test.TestCase): """Test HNAS iSCSI volume driver.""" def __init__(self, *args, **kwargs): super(HNASiSCSIDriverTest, self).__init__(*args, **kwargs) @mock.patch.object(iscsi, 'factory_bend') def setUp(self, _factory_bend): super(HNASiSCSIDriverTest, self).setUp() self.backend = SimulatedHnasBackend() _factory_bend.return_value = self.backend (handle, self.config_file) = tempfile.mkstemp('.xml') os.write(handle, HNASCONF) os.close(handle) self.configuration = mock.Mock(spec=conf.Configuration) self.configuration.hds_hnas_iscsi_config_file = self.config_file self.configuration.hds_svc_iscsi_chap_enabled = True self.driver = iscsi.HDSISCSIDriver(configuration=self.configuration) self.driver.do_setup("") self.addCleanup(self._clean) def _clean(self): os.remove(self.config_file) def _create_volume(self): loc = self.driver.create_volume(_VOLUME) vol = _VOLUME.copy() vol['provider_location'] = loc['provider_location'] return vol @mock.patch('__builtin__.open') @mock.patch.object(os, 'access') def test_read_config(self, m_access, m_open): # Test exception when file is not found m_access.return_value = False m_open.return_value = StringIO(HNASCONF) self.assertRaises(exception.NotFound, iscsi._read_config, '') # Test exception when config file has parsing errors # due to missing <svc> tag m_access.return_value = True m_open.return_value = StringIO(HNAS_WRONG_CONF1) self.assertRaises(exception.ConfigNotFound, iscsi._read_config, '') # Test exception when config file has parsing errors # due to missing <hdp> tag m_open.return_value = StringIO(HNAS_WRONG_CONF2) self.configuration.hds_hnas_iscsi_config_file = '' self.assertRaises(exception.ParameterNotFound, iscsi._read_config, '') def test_create_volume(self): loc = self.driver.create_volume(_VOLUME) self.assertNotEqual(loc, None) self.assertNotEqual(loc['provider_location'], None) # cleanup self.backend.deleteVolumebyProvider(loc['provider_location']) def test_get_volume_stats(self): stats = self.driver.get_volume_stats(True) self.assertEqual(stats["vendor_name"], "HDS") self.assertEqual(stats["storage_protocol"], "iSCSI") self.assertTrue(stats["total_capacity_gb"] > 0) def test_delete_volume(self): vol = self._create_volume() self.driver.delete_volume(vol) # should not be deletable twice prov_loc = self.backend.getVolumebyProvider(vol['provider_location']) self.assertTrue(prov_loc is None) def test_extend_volume(self): vol = self._create_volume() new_size = _VOLUME['size'] * 2 self.driver.extend_volume(vol, new_size) # cleanup self.backend.deleteVolumebyProvider(vol['provider_location']) @mock.patch.object(iscsi.HDSISCSIDriver, '_id_to_vol') def test_create_snapshot(self, m_id_to_vol): vol = self._create_volume() m_id_to_vol.return_value = vol svol = vol.copy() svol['volume_size'] = svol['size'] loc = self.driver.create_snapshot(svol) self.assertNotEqual(loc, None) svol['provider_location'] = loc['provider_location'] # cleanup self.backend.deleteVolumebyProvider(svol['provider_location']) self.backend.deleteVolumebyProvider(vol['provider_location']) @mock.patch.object(iscsi.HDSISCSIDriver, '_id_to_vol') def test_create_clone(self, m_id_to_vol): src_vol = self._create_volume() m_id_to_vol.return_value = src_vol src_vol['volume_size'] = src_vol['size'] dst_vol = self._create_volume() dst_vol['volume_size'] = dst_vol['size'] loc = self.driver.create_cloned_volume(dst_vol, src_vol) self.assertNotEqual(loc, None) # cleanup self.backend.deleteVolumebyProvider(src_vol['provider_location']) self.backend.deleteVolumebyProvider(loc['provider_location']) @mock.patch.object(iscsi.HDSISCSIDriver, '_id_to_vol') def test_delete_snapshot(self, m_id_to_vol): svol = self._create_volume() lun = svol['provider_location'] m_id_to_vol.return_value = svol self.driver.delete_snapshot(svol) self.assertTrue(self.backend.getVolumebyProvider(lun) is None) def test_create_volume_from_snapshot(self): svol = self._create_volume() svol['volume_size'] = svol['size'] vol = self.driver.create_volume_from_snapshot(_VOLUME, svol) self.assertNotEqual(vol, None) # cleanup self.backend.deleteVolumebyProvider(svol['provider_location']) self.backend.deleteVolumebyProvider(vol['provider_location']) @mock.patch.object(iscsi.HDSISCSIDriver, '_update_vol_location') def test_initialize_connection(self, m_update_vol_location): connector = {} connector['initiator'] = 'iqn.1993-08.org.debian:01:11f90746eb2' connector['host'] = 'dut_1.lab.hds.com' vol = self._create_volume() conn = self.driver.initialize_connection(vol, connector) self.assertTrue('3260' in conn['data']['target_portal']) # cleanup self.backend.deleteVolumebyProvider(vol['provider_location']) @mock.patch.object(iscsi.HDSISCSIDriver, '_update_vol_location') def test_terminate_connection(self, m_update_vol_location): connector = {} connector['initiator'] = 'iqn.1993-08.org.debian:01:11f90746eb2' connector['host'] = 'dut_1.lab.hds.com' vol = self._create_volume() vol['provider_location'] = "portal," +\ connector['initiator'] +\ ",18-48-A5-A1-80-13.0,ctl,port,hlun" conn = self.driver.initialize_connection(vol, connector) num_conn_before = self.backend.get_conns() self.driver.terminate_connection(vol, conn) num_conn_after = self.backend.get_conns() self.assertNotEqual(num_conn_before, num_conn_after) # cleanup self.backend.deleteVolumebyProvider(vol['provider_location'])
abusse/cinder
cinder/tests/test_hds_iscsi.py
Python
apache-2.0
16,039
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for array_ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import time import unittest import numpy as np from tensorflow.python.client import session from tensorflow.python.eager import context from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import errors_impl from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import test_ops from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import gen_array_ops from tensorflow.python.ops import gradients_impl from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.platform import test as test_lib class BatchMatrixTransposeTest(test_util.TensorFlowTestCase): def testNonBatchMatrix(self): matrix = [[1, 2, 3], [4, 5, 6]] # Shape (2, 3) expected_transposed = [[1, 4], [2, 5], [3, 6]] # Shape (3, 2) with self.test_session(): transposed = array_ops.matrix_transpose(matrix) self.assertEqual((3, 2), transposed.get_shape()) self.assertAllEqual(expected_transposed, transposed.eval()) def testConjugate(self): m = [[1 + 1j, 2 + 2j, 3 + 3j], [4 + 4j, 5 + 5j, 6 + 6j]] expected_transposed = [[1 - 1j, 4 - 4j], [2 - 2j, 5 - 5j], [3 - 3j, 6 - 6j]] with self.test_session(): matrix = ops.convert_to_tensor(m) transposed = array_ops.matrix_transpose(matrix, conjugate=True) self.assertEqual((3, 2), transposed.get_shape()) self.assertAllEqual(expected_transposed, transposed.eval()) def testBatchMatrix(self): matrix_0 = [[1, 2, 3], [4, 5, 6]] matrix_0_t = [[1, 4], [2, 5], [3, 6]] matrix_1 = [[11, 22, 33], [44, 55, 66]] matrix_1_t = [[11, 44], [22, 55], [33, 66]] batch_matrix = [matrix_0, matrix_1] # Shape (2, 2, 3) expected_transposed = [matrix_0_t, matrix_1_t] # Shape (2, 3, 2) with self.test_session(): transposed = array_ops.matrix_transpose(batch_matrix) self.assertEqual((2, 3, 2), transposed.get_shape()) self.assertAllEqual(expected_transposed, transposed.eval()) def testNonBatchMatrixDynamicallyDefined(self): matrix = [[1, 2, 3], [4, 5, 6]] # Shape (2, 3) expected_transposed = [[1, 4], [2, 5], [3, 6]] # Shape (3, 2) with self.test_session(): matrix_ph = array_ops.placeholder(dtypes.int32) transposed = array_ops.matrix_transpose(matrix_ph) self.assertAllEqual( expected_transposed, transposed.eval(feed_dict={ matrix_ph: matrix })) def testBatchMatrixDynamicallyDefined(self): matrix_0 = [[1, 2, 3], [4, 5, 6]] matrix_0_t = [[1, 4], [2, 5], [3, 6]] matrix_1 = [[11, 22, 33], [44, 55, 66]] matrix_1_t = [[11, 44], [22, 55], [33, 66]] batch_matrix = [matrix_0, matrix_1] # Shape (2, 2, 3) expected_transposed = [matrix_0_t, matrix_1_t] # Shape (2, 3, 2) with self.test_session(): batch_matrix_ph = array_ops.placeholder(dtypes.int32) transposed = array_ops.matrix_transpose(batch_matrix_ph) self.assertAllEqual( expected_transposed, transposed.eval(feed_dict={ batch_matrix_ph: batch_matrix })) def testTensorWithStaticRankLessThanTwoRaisesBecauseNotAMatrix(self): vector = [1, 2, 3] with self.test_session(): with self.assertRaisesRegexp(ValueError, "should be a "): array_ops.matrix_transpose(vector) class BooleanMaskTest(test_util.TensorFlowTestCase): def setUp(self): self.rng = np.random.RandomState(42) def CheckVersusNumpy(self, ndims_mask, arr_shape, make_mask=None, axis=None): """Check equivalence between boolean_mask and numpy masking.""" if make_mask is None: make_mask = lambda shape: self.rng.randint(0, 2, size=shape).astype(bool) arr = np.random.rand(*arr_shape) mask = make_mask(arr_shape[:ndims_mask]) if axis is not None: mask = make_mask(arr_shape[axis:ndims_mask + axis]) if axis is None or axis == 0: masked_arr = arr[mask] elif axis == 1: masked_arr = arr[:, mask] elif axis == 2: masked_arr = arr[:, :, mask] with self.test_session(): masked_tensor = array_ops.boolean_mask(arr, mask, axis=axis) # Leading dimension size of masked_tensor is always unknown until runtime # since we don't how many elements will be kept. leading = 1 if axis is None else axis + 1 self.assertAllEqual(masked_tensor.get_shape()[leading:], masked_arr.shape[leading:]) self.assertAllClose(masked_arr, masked_tensor.eval()) def testMaskDim1ArrDim2Axis1(self): ndims_mask = 1 for arr_shape in [(1, 1), (2, 2), (2, 5)]: self.CheckVersusNumpy(ndims_mask, arr_shape, axis=1) def testMaskDim2ArrDim2Axis1(self): ndims_mask = 2 for arr_shape in [(1, 1), (2, 2), (2, 5)]: self.CheckVersusNumpy(ndims_mask, arr_shape, axis=1) def testMaskDim1ArrDim1(self): ndims_mask = 1 for arr_shape in [(1,), (2,), (3,), (10,)]: self.CheckVersusNumpy(ndims_mask, arr_shape) def testMaskDim1ArrDim2(self): ndims_mask = 1 for arr_shape in [(1, 1), (2, 2), (2, 5)]: self.CheckVersusNumpy(ndims_mask, arr_shape) def testMaskDim2ArrDim2(self): ndims_mask = 2 for arr_shape in [(1, 1), (2, 2), (2, 5)]: self.CheckVersusNumpy(ndims_mask, arr_shape) def testMaskDim2ArrDim3(self): ndims_mask = 2 for arr_shape in [(1, 1, 1), (1, 2, 2), (2, 2, 1)]: self.CheckVersusNumpy(ndims_mask, arr_shape) def testEmptyInput2D(self): mask = np.array([True, False]) arr = np.array([[], []]).astype(np.float32) numpy_result = arr[mask] tf_result = array_ops.boolean_mask(arr, mask) self.assertAllEqual(numpy_result.shape[1:], tf_result.get_shape()[1:]) with self.test_session(): self.assertAllClose(numpy_result, tf_result.eval()) def testEmptyInput1D(self): mask = np.array([]).astype(bool) arr = np.array([]).astype(np.float32) numpy_result = arr[mask] tf_result = array_ops.boolean_mask(arr, mask) self.assertAllEqual(numpy_result.shape[1:], tf_result.get_shape()[1:]) with self.test_session(): self.assertAllClose(numpy_result, tf_result.eval()) def testEmptyOutput(self): make_mask = lambda shape: np.zeros(shape, dtype=bool) for ndims_mask in range(1, 4): for ndims_arr in range(ndims_mask, ndims_mask + 3): for _ in range(3): arr_shape = np.random.randint(1, 5, size=ndims_arr) self.CheckVersusNumpy(ndims_mask, arr_shape, make_mask=make_mask) def testWorksWithDimensionsEqualToNoneDuringGraphBuild(self): # The rank of the mask tensor must be specified. This is explained # in the docstring as well. with self.test_session() as sess: ph_tensor = array_ops.placeholder(dtypes.int32, shape=None) ph_mask = array_ops.placeholder(dtypes.bool, shape=[None]) arr = np.array([[1, 2], [3, 4]]) mask = np.array([False, True]) masked_tensor = sess.run( array_ops.boolean_mask(ph_tensor, ph_mask), feed_dict={ ph_tensor: arr, ph_mask: mask }) np.testing.assert_allclose(masked_tensor, arr[mask]) def testMaskDimensionsSetToNoneRaises(self): # The rank of the mask tensor must be specified. This is explained # in the docstring as well. with self.test_session(): tensor = array_ops.placeholder(dtypes.int32, shape=[None, 2]) mask = array_ops.placeholder(dtypes.bool, shape=None) with self.assertRaisesRegexp(ValueError, "dimensions must be specified"): array_ops.boolean_mask(tensor, mask) def testMaskHasMoreDimsThanTensorRaises(self): mask = [[True, True], [False, False]] tensor = [1, 2, 3, 4] with self.test_session(): with self.assertRaisesRegexp(ValueError, "incompatible"): array_ops.boolean_mask(tensor, mask).eval() def testMaskIsScalarRaises(self): mask = True tensor = 1 with self.test_session(): with self.assertRaisesRegexp(ValueError, "mask.*scalar"): array_ops.boolean_mask(tensor, mask).eval() def testMaskShapeDifferentThanFirstPartOfTensorShapeRaises(self): mask = [True, True, True] tensor = [[1, 2], [3, 4]] with self.test_session(): with self.assertRaisesRegexp(ValueError, "incompatible"): array_ops.boolean_mask(tensor, mask).eval() @test_util.run_all_in_graph_and_eager_modes class OperatorShapeTest(test_util.TensorFlowTestCase): def testExpandScalar(self): scalar = "hello" scalar_expanded = array_ops.expand_dims(scalar, [0]) self.assertEqual(scalar_expanded.get_shape(), (1,)) def testSqueezeScalar(self): scalar = "hello" scalar_squeezed = array_ops.squeeze(scalar, ()) self.assertEqual(scalar_squeezed.get_shape(), ()) def testSqueezeMatrix(self): matrix = [[1, 2, 3]] matrix_squeezed = array_ops.squeeze(matrix, [0]) self.assertEqual(matrix_squeezed.get_shape(), (3)) with self.assertRaisesRegexp( Exception, "Can not squeeze dim.1., expected a dimension of 1, got 3"): matrix_squeezed = array_ops.squeeze(matrix, [1]) def testSqueezeScalarDim(self): matrix = [[1, 2, 3]] matrix_squeezed = array_ops.squeeze(matrix, 0) self.assertEqual(matrix_squeezed.get_shape(), (3)) def testExpandDimsWithNonScalarDim(self): with self.assertRaisesRegexp(Exception, "must be a tensor with a single value"): array_ops.expand_dims(1, axis=[0, 1]) class ReverseV2Test(test_util.TensorFlowTestCase): def testReverse0DimAuto(self): x_np = 4 for use_gpu in [False, True]: with self.test_session(use_gpu=use_gpu): x_tf = array_ops.reverse_v2(x_np, []).eval() self.assertAllEqual(x_tf, x_np) def _reverse1DimAuto(self, np_dtype): x_np = np.array([1, 200, 3, 40, 5], dtype=np_dtype) for use_gpu in [False, True]: for axis_dtype in [dtypes.int32, dtypes.int64]: with self.test_session(use_gpu=use_gpu): x_tf = array_ops.reverse_v2(x_np, constant_op.constant( [0], dtype=axis_dtype)).eval() self.assertAllEqual(x_tf, np.asarray(x_np)[::-1]) def _reverse2DimAuto(self, np_dtype): x_np = np.array([[1, 200, 3], [4, 5, 60]], dtype=np_dtype) for reverse_f in [array_ops.reverse_v2, array_ops.reverse]: for use_gpu in [False, True]: for axis_dtype in [dtypes.int32, dtypes.int64]: with self.test_session(use_gpu=use_gpu): x_tf_1 = reverse_f(x_np, constant_op.constant( [0], dtype=axis_dtype)).eval() x_tf_2 = reverse_f(x_np, constant_op.constant( [-2], dtype=axis_dtype)).eval() x_tf_3 = reverse_f(x_np, constant_op.constant( [1], dtype=axis_dtype)).eval() x_tf_4 = reverse_f(x_np, constant_op.constant( [-1], dtype=axis_dtype)).eval() x_tf_5 = reverse_f(x_np, constant_op.constant([1, 0], dtype=axis_dtype)).eval() self.assertAllEqual(x_tf_1, np.asarray(x_np)[::-1, :]) self.assertAllEqual(x_tf_2, np.asarray(x_np)[::-1, :]) self.assertAllEqual(x_tf_3, np.asarray(x_np)[:, ::-1]) self.assertAllEqual(x_tf_4, np.asarray(x_np)[:, ::-1]) self.assertAllEqual(x_tf_5, np.asarray(x_np)[::-1, ::-1]) # This test covers the axis validation in the shape function # (no eval()) def testInvalidAxis(self): x_np = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32) with self.assertRaisesRegexp(ValueError, "is out of valid range"): array_ops.reverse_v2(x_np, [-30]) with self.assertRaisesRegexp(ValueError, "is out of valid range"): array_ops.reverse_v2(x_np, [2]) with self.assertRaisesRegexp(ValueError, "axis 0 specified more than once"): array_ops.reverse_v2(x_np, [0, -2]) # This is the version of reverse that uses axis indices rather than # bool tensors # TODO(b/32254538): Change this test to use array_ops.reverse # # Note: this test passes placeholder as constant axis is validated # in shape function (see testInvalidAxis) def testInvalid(self): x_np = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32) axis = array_ops.placeholder(dtypes.int32) with self.test_session(): with self.assertRaisesRegexp(errors_impl.InvalidArgumentError, "is out of valid range"): array_ops.reverse_v2(x_np, axis).eval(feed_dict={axis: [-30]}) with self.assertRaisesRegexp(errors_impl.InvalidArgumentError, "is out of valid range"): array_ops.reverse_v2(x_np, axis).eval(feed_dict={axis: [2]}) with self.assertRaisesRegexp(errors_impl.InvalidArgumentError, "axis 0 specified more than once"): array_ops.reverse_v2(x_np, axis).eval(feed_dict={axis: [0, -2]}) def testReverse1DimAuto(self): for dtype in [ np.uint8, np.int8, np.uint16, np.int16, np.int32, np.int64, np.bool, np.float16, np.float32, np.float64, np.complex64, np.complex128, np.array(b"").dtype.type ]: self._reverse1DimAuto(dtype) def testReverse2DimAuto(self): for dtype in [ np.uint8, np.int8, np.uint16, np.int16, np.int32, np.int64, np.bool, np.float16, np.float32, np.float64, np.complex64, np.complex128, np.array(b"").dtype.type ]: self._reverse2DimAuto(dtype) def testUnknownDims(self): reverse_v2 = array_ops.reverse_v2 data_t = array_ops.placeholder(dtypes.float32) axis_known_t = array_ops.placeholder(dtypes.int32, shape=[3]) reverse_known_t = reverse_v2(data_t, axis_known_t) # Unlike V1 we cannot know this anymore self.assertEqual(None, reverse_known_t.get_shape().ndims) axis_unknown_t = array_ops.placeholder(dtypes.int32) reverse_unknown_t = reverse_v2(data_t, axis_unknown_t) self.assertIs(None, reverse_unknown_t.get_shape().ndims) data_2d_t = array_ops.placeholder(dtypes.float32, shape=[None, None]) axis_2d_t = array_ops.placeholder(dtypes.int32, shape=[3]) reverse_2d_t = reverse_v2(data_2d_t, axis_2d_t) self.assertEqual(2, reverse_2d_t.get_shape().ndims) def testReverseRowsOf3Channels(self): """Tests optimized code for reversing rows with last dim size = 3.""" with self.test_session(use_gpu=True): for reverse_f in [array_ops.reverse_v2, array_ops.reverse]: for outer_size in (1, 2): for middle_size in list(range(50)) + [100000]: x_np = np.reshape( np.arange(outer_size * middle_size * 3, dtype=np.float32), newshape=(outer_size, middle_size, 3)) x_tf = reverse_f(x_np, [1]).eval() np_answer = x_np[:, ::-1, :] self.assertAllEqual(x_tf, np_answer) def testReverseRowsOf4Channels(self): with self.test_session(use_gpu=True): for reverse_f in [array_ops.reverse_v2, array_ops.reverse]: for outer_size in (1, 2): for middle_size in list(range(50)) + [100000]: x_np = np.reshape( np.arange(outer_size * middle_size * 4, dtype=np.float32), newshape=(outer_size, middle_size, 4)) x_tf = reverse_f(x_np, [1]).eval() np_answer = x_np[:, ::-1, :] self.assertAllEqual(x_tf, np_answer) def testReverseColumnsOf3Channels(self): with self.test_session(use_gpu=True): for reverse_f in [array_ops.reverse_v2, array_ops.reverse]: for outer_size in list(range(50)) + [100000]: for middle_size in (1, 2): x_np = np.reshape( np.arange(outer_size * middle_size * 3, dtype=np.float32), newshape=(outer_size, middle_size, 3)) x_tf = reverse_f(x_np, [0]).eval() np_answer = x_np[::-1, :, :] self.assertAllEqual(x_tf, np_answer) class MeshgridTest(test_util.TensorFlowTestCase): def _compareDiff(self, x, y, use_gpu): for index in ("ij", "xy"): numpy_out = np.meshgrid(x, y, indexing=index) tf_out = array_ops.meshgrid(x, y, indexing=index) with self.test_session(use_gpu=use_gpu): for xx, yy in zip(numpy_out, tf_out): self.assertAllEqual(xx, yy.eval()) def _compareDiffType(self, n, np_dtype, use_gpu): inputs = [] for index in ("ij", "xy"): for _ in range(n): x = np.linspace(-10, 10, 5).astype(np_dtype) if np_dtype in (np.complex64, np.complex128): x += 1j inputs.append(x) numpy_out = np.meshgrid(*inputs, indexing=index) with self.test_session(use_gpu=use_gpu): tf_out = array_ops.meshgrid(*inputs, indexing=index) for x_np, x_tf in zip(numpy_out, tf_out): self.assertAllEqual(x_np, x_tf.eval()) def testCompare(self): for t in (np.float16, np.float32, np.float64, np.int32, np.int64, np.complex64, np.complex128): self._compareDiffType(2, t, False) self._compareDiffType(3, t, False) x = [1, 2, 3] y = [4, 5] a = [[1, 1], [1, 1]] self._compareDiff(x, y, False) self._compareDiff(x, a, False) class StridedSliceChecker(object): """Check a given tensor against the numpy result.""" REF_TENSOR = np.arange(1, 19, dtype=np.float32).reshape(3, 2, 3) REF_TENSOR_ALIGNED = np.arange(1, 97, dtype=np.float32).reshape(3, 4, 8) def __init__(self, test, x, tensor_type=dtypes.int32, check_type_infer=True): self.x_np = np.array(x).astype(tensor_type.as_numpy_dtype) # Give the value a non-zero imaginary component for complex types. if tensor_type.is_complex: self.x_np -= 1j * self.x_np self.test = test self.x = constant_op.constant(self.x_np, dtype=tensor_type) self.check_type_infer = check_type_infer def __getitem__(self, spec): op = self.x.__getitem__(spec) if not isinstance(spec, (list, tuple)): spec = [spec] tensor = op.eval() # Make a numpy spec that pre-evals the tensors np_specs = [] def eval_if_tensor(x): try: return x.eval() except AttributeError: return x for s in spec: if isinstance(s, slice): start = eval_if_tensor(s.start) stop = eval_if_tensor(s.stop) step = eval_if_tensor(s.step) np_specs.append(slice(start, stop, step)) else: np_specs.append(eval_if_tensor(s)) self.test.assertAllEqual(self.x_np[tuple(np_specs)], tensor) if self.check_type_infer: self.test.assertAllEqual(tensor.shape, op.get_shape()) return tensor STRIDED_SLICE_TYPES = [ dtypes.int32, dtypes.int64, dtypes.int16, dtypes.int8, dtypes.float32, dtypes.float64, dtypes.complex64, dtypes.complex128 ] class StridedSliceTest(test_util.TensorFlowTestCase): """Test the strided slice operation with variants of slices.""" def test_basic_slice(self): for tensor_type in STRIDED_SLICE_TYPES: with self.test_session(use_gpu=not tensor_type.is_integer): checker = StridedSliceChecker( self, StridedSliceChecker.REF_TENSOR, tensor_type=tensor_type) _ = checker[:, :, :] # Various ways of representing identity slice _ = checker[:, :, :] _ = checker[::, ::, ::] _ = checker[::1, ::1, ::1] # Not zero slice _ = checker[::1, ::5, ::2] # Reverse in each dimension independently _ = checker[::-1, :, :] _ = checker[:, ::-1, :] _ = checker[:, :, ::-1] ## negative index tests i.e. n-2 in first component _ = checker[-2::-1, :, ::1] # negative index tests i.e. n-2 in first component, non-unit stride _ = checker[-2::-1, :, ::2] # Check rank-0 examples checker2 = StridedSliceChecker(self, 5, tensor_type=tensor_type) _ = checker2[None] _ = checker2[...] _ = checker2[tuple()] def testInt64GPU(self): if not test_util.is_gpu_available(): self.skipTest("No GPU available") with self.test_session(use_gpu=True, force_gpu=True): x = constant_op.constant([1., 2., 3.]) begin = constant_op.constant([2], dtype=dtypes.int64) end = constant_op.constant([3], dtype=dtypes.int64) strides = constant_op.constant([1], dtype=dtypes.int64) s = array_ops.strided_slice(x, begin, end, strides) self.assertAllEqual([3.], self.evaluate(s)) def testDegenerateSlices(self): with self.test_session(use_gpu=True): checker = StridedSliceChecker(self, StridedSliceChecker.REF_TENSOR) # degenerate by offering a forward interval with a negative stride _ = checker[0:-1:-1, :, :] # degenerate with a reverse interval with a positive stride _ = checker[-1:0, :, :] # empty interval in every dimension _ = checker[-1:0, 2:2, 2:3:-1] def testEllipsis(self): with self.test_session(use_gpu=True): raw = [[[[[1, 2], [3, 4], [5, 6]]], [[[7, 8], [9, 10], [11, 12]]]]] checker = StridedSliceChecker(self, raw) _ = checker[0:] # implicit ellipsis _ = checker[0:, ...] # ellipsis alone _ = checker[...] # ellipsis at end _ = checker[0:1, ...] # ellipsis at begin _ = checker[..., 0:1] # ellipsis at middle _ = checker[0:1, ..., 0:1] # multiple ellipses not allowed with self.assertRaisesRegexp(ValueError, "Multiple ellipses"): _ = checker[..., :, ...].eval() def testShrink(self): with self.test_session(use_gpu=True): raw = [[[[[1, 2, 4, 5], [5, 6, 7, 8], [9, 10, 11, 12]]], [[[13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24]]]]] checker = StridedSliceChecker(self, raw) _ = checker[:, :, :, :, 3] _ = checker[..., 3] _ = checker[:, 0] _ = checker[:, :, 0] def testTensorIndexing(self): with self.test_session(use_gpu=True): raw = [[[[[1, 2, 4, 5], [5, 6, 7, 8], [9, 10, 11, 12]]], [[[13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24]]]]] checker = StridedSliceChecker(self, raw, check_type_infer=False) bar = constant_op.constant(2) bar2 = constant_op.constant(3) _ = checker[..., bar:bar2] _ = checker[..., bar] with self.assertRaisesRegexp( TypeError, "Value passed to parameter 'begin' has DataType float32 not in " "list of allowed values"): _ = checker[..., 3.0] _ = checker[..., 3] def testExpand(self): with self.test_session(use_gpu=True): raw = [[[[[1, 2, 4, 5], [5, 6, 7, 8], [9, 10, 11, 12]]], [[[13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24]]]]] checker = StridedSliceChecker(self, raw) # new axis (followed by implicit ellipsis) _ = checker[np.newaxis] # newaxis after ellipsis _ = checker[..., np.newaxis] # newaxis in between ellipsis and explicit range _ = checker[..., np.newaxis, :] _ = checker[:, ..., np.newaxis, :, :] # Reverse final dimension with new axis _ = checker[:, :, np.newaxis, :, 2::-1] # Ellipsis in middle of two newaxis _ = checker[np.newaxis, ..., np.newaxis] def testExpandVariable(self): with self.test_session(use_gpu=True): x = variables.Variable(7, dtype=dtypes.int32) x.initializer.run() y = x[None].eval() self.assertEqual(y.shape, (1,)) self.assertAllEqual(y, (7,)) def testOptimizedCases(self): with self.test_session(use_gpu=True): checker = StridedSliceChecker(self, StridedSliceChecker.REF_TENSOR_ALIGNED) # Identity _ = checker[:] # Identity _ = checker[...] # Identity _ = checker[np.newaxis, ..., np.newaxis] # First axis slice _ = checker[1:] # First axis slice _ = checker[np.newaxis, 1:] class StridedSliceShapeChecker(object): def __init__(self, x): self.x = x def __getitem__(self, spec): op = self.x.__getitem__(spec) return op.get_shape() class StridedSliceShapeTest(test_util.TensorFlowTestCase): """Test the shape inference of StridedSliceShapes.""" def testUnknown(self): with self.test_session(use_gpu=True): uncertain_tensor = array_ops.placeholder(dtypes.float32) a = StridedSliceShapeChecker(uncertain_tensor) a_slice_shape = a[...] self.assertAllEqual(a_slice_shape.ndims, None) def tensorShapeEqual(self, x, y): self.assertTrue(x is not None and y is not None or x is None and y is None) self.assertEqual(x.as_list(), y.as_list()) def testTensorShapeUncertain(self): with self.test_session(use_gpu=True): uncertain_tensor = array_ops.placeholder( dtypes.float32, shape=(5, None, 7)) a = StridedSliceShapeChecker(uncertain_tensor) self.tensorShapeEqual(a[3:5], tensor_shape.TensorShape([2, None, 7])) self.tensorShapeEqual(a[3:5, :, 4], tensor_shape.TensorShape([2, None])) self.tensorShapeEqual(a[3:5, 3:4, 4], tensor_shape.TensorShape([2, None])) self.tensorShapeEqual(a[3:5, :, 5:10], tensor_shape.TensorShape([2, None, 2])) self.tensorShapeEqual(a[3:5, :, 50:3], tensor_shape.TensorShape([2, None, 0])) self.tensorShapeEqual(a[3:5, :, array_ops.newaxis, 50:3,], tensor_shape.TensorShape([2, None, 1, 0])) self.tensorShapeEqual(a[1:5:2, :, array_ops.newaxis, 50:3,], tensor_shape.TensorShape([2, None, 1, 0])) self.tensorShapeEqual(a[:5:3, :, array_ops.newaxis, 50:3,], tensor_shape.TensorShape([2, None, 1, 0])) self.tensorShapeEqual(a[:2:3, :, array_ops.newaxis, 50:3,], tensor_shape.TensorShape([1, None, 1, 0])) self.tensorShapeEqual(a[::-1, :, array_ops.newaxis, ::-2], tensor_shape.TensorShape([5, None, 1, 4])) def testTensorValuedIndexShape(self): with self.test_session(use_gpu=True): defined_shape_tensor = array_ops.placeholder( dtypes.float32, shape=(5, 3, 7)) index_value = array_ops.placeholder(dtypes.int32, shape=()) a = StridedSliceShapeChecker(defined_shape_tensor) self.tensorShapeEqual(a[index_value], tensor_shape.TensorShape([3, 7])) self.tensorShapeEqual(a[index_value, ::-1], tensor_shape.TensorShape([3, 7])) self.tensorShapeEqual(a[index_value, ::-2], tensor_shape.TensorShape([2, 7])) other_scalar = array_ops.placeholder(dtypes.int32, shape=()) self.tensorShapeEqual(a[index_value, other_scalar:2], tensor_shape.TensorShape([None, 7])) class GradSliceChecker(object): """Tests that we can compute a gradient for var^2.""" def __init__(self, test, sess, var, varnp): self.test = test self.sess = sess self.val = var * var self.var = var self.varnp = varnp def __getitem__(self, spec): slice_var = self.var[spec] slice_val = self.val[spec] # compute analytic 2nd derivative analytic_grad2 = 2 * slice_val dy = variables.Variable( array_ops.ones(shape=slice_var.get_shape(), dtype=dtypes.float32)) assign = dy.assign(slice_var) slice_val_grad, = gradients_impl.gradients(slice_val, self.var, grad_ys=dy) slice_val_grad2, = gradients_impl.gradients( slice_val_grad, dy, grad_ys=self.var) self.sess.run(assign) slice_val_grad_evaled, slice_val_grad2_evaled = ( self.sess.run([slice_val_grad, slice_val_grad2])) analytic_grad2_evaled = analytic_grad2.eval() self.test.assertAllEqual(slice_val_grad2_evaled, analytic_grad2_evaled) # compute analytic gradient for slice np_val_grad = (2 * self.varnp * self.varnp) np_sliceval_grad = np.zeros(self.var.get_shape()) np_sliceval_grad[spec] = np_val_grad[spec] # verify gradient self.test.assertAllEqual(slice_val_grad_evaled, np_sliceval_grad) class StridedSliceGradTest(test_util.TensorFlowTestCase): """Test that strided slice's custom gradient produces correct gradients.""" def testGradient(self): with self.test_session(use_gpu=True) as sess: var = variables.Variable( array_ops.reshape( math_ops.range(1, 97, 1, dtype=dtypes.float32), shape=(6, 4, 4))) init = variables.global_variables_initializer() sess.run(init) grad = GradSliceChecker(self, sess, var, np.array(range(1, 97, 1)).reshape((6, 4, 4))) _ = grad[2:6:2, 1:3, 1:3] _ = grad[3:0:-2, 1:3, 1:3] _ = grad[3:0:-2, array_ops.newaxis, 1:3, 2, array_ops.newaxis] _ = grad[3:0:-2, 1:3, 2] _ = grad[:, -1, :] _ = grad[:, -2, :] with self.assertRaisesRegexp(ValueError, "out of bounds"): _ = grad[:, -200, :] with self.assertRaisesRegexp(ValueError, "out of bounds"): _ = grad[:, 200, :] def testGradientZero(self): with self.test_session(use_gpu=True) as sess: var = variables.Variable(8.) init = variables.global_variables_initializer() sess.run(init) grad = GradSliceChecker(self, sess, var, np.array(8)) _ = grad[tuple()] def testInt64Indices(self): with self.test_session(use_gpu=True) as sess: a = math_ops.range(3, dtype=dtypes.float32) index = constant_op.constant(1, dtype=dtypes.int64) b = 2. * a[index] grad, = gradients_impl.gradients(b, a) self.assertAllEqual(sess.run(grad), [0., 2., 0.]) class StridedSliceGradTypeTest(test_util.TensorFlowTestCase): """Test varied index types and host located memory.""" def testHostVsDevice(self): with self.test_session(use_gpu=True) as sess: var2 = variables.Variable( array_ops.reshape( math_ops.cast(math_ops.range(1, 5, 1), dtypes.float32), shape=(4, 1, 1))) varshape = variables.Variable([6, 4, 4], dtype=dtypes.int32) sess.run(variables.global_variables_initializer()) begin = constant_op.constant([0, 0, 0]) end = constant_op.constant([4, 1, 1]) strides = constant_op.constant([1, 1, 1]) foo = array_ops.strided_slice_grad(varshape, begin, end, strides, var2) sess.run(foo) def testInt64Shape(self): with self.test_session(use_gpu=True) as sess: original_dy = array_ops.reshape( math_ops.cast(math_ops.range(1, 5, 1), dtypes.float32), shape=(4, 1, 1)) original_shape = constant_op.constant([6, 4, 4], dtype=dtypes.int64) sess.run(variables.global_variables_initializer()) begin = constant_op.constant([0, 0, 0], dtype=dtypes.int64) end = constant_op.constant([4, 1, 1], dtype=dtypes.int64) strides = constant_op.constant([1, 1, 1], dtype=dtypes.int64) dx = array_ops.strided_slice_grad(original_shape, begin, end, strides, original_dy) sess.run(dx) def testMixedIndexTypes(self): with self.test_session(use_gpu=True) as sess: original_dy = array_ops.reshape( math_ops.cast(math_ops.range(1, 5, 1), dtypes.float32), shape=(4, 1, 1)) original_shape = constant_op.constant([6, 4, 4], dtype=dtypes.int64) sess.run(variables.global_variables_initializer()) begin = constant_op.constant([0, 0, 0], dtype=dtypes.int32) end = constant_op.constant([4, 1, 1], dtype=dtypes.int64) strides = constant_op.constant([1, 1, 1], dtype=dtypes.int64) with self.assertRaisesRegexp( TypeError, "Input 'begin' of 'StridedSliceGrad' Op has type int32" " that does not match type int64 of argument 'shape'"): dx = array_ops.strided_slice_grad(original_shape, begin, end, strides, original_dy) sess.run(dx) class BenchmarkSlice(object): def __init__(self, tensor): self.tensor = tensor def __getitem__(self, x): return self.tensor[x] class StridedSliceBenchmark(test_lib.Benchmark): """Benchmark new strided slice operation on non-trivial case.""" def run_and_time(self, slice_op): variables.global_variables_initializer().run() for _ in range(10): _ = slice_op.eval() iters = 1000 t0 = time.time() for _ in range(iters): slice_op.eval() t1 = time.time() self.report_benchmark(iters=iters, wall_time=(t1 - t0) / 1000.0) def make_variable(self): n = 256 shape = (n, n, n) items = n**3 var = variables.Variable( array_ops.reshape(math_ops.linspace(1., float(items), items), shape), dtype=dtypes.float32) return var def benchmark_strided_slice_skip(self): with session.Session(): var = self.make_variable() helper = BenchmarkSlice(var) slice_op = helper[::2, ::1, ::2] self.run_and_time(slice_op) def benchmark_strided_slice_easy(self): with session.Session(): var = self.make_variable() helper = BenchmarkSlice(var) slice_op = helper[3::1, 3::1, 3::1] self.run_and_time(slice_op) def benchmark_slice_easy(self): with session.Session(): var = self.make_variable() slice_op = var[3::1, 3::1, 3::1] self.run_and_time(slice_op) class StridedSliceAssignChecker(object): def __init__(self, test, x, tensor_type=dtypes.float32, use_resource=False): self.tensor_type = tensor_type self.test = test self._use_resource = use_resource self.x_np = np.array(x).astype(tensor_type.as_numpy_dtype) # Give the value a non-zero imaginary component for complex types. if tensor_type.is_complex: self.x_np -= 1j * self.x_np self.x = constant_op.constant(self.x_np, dtype=tensor_type) def __setitem__(self, index, value): value = np.array(value).astype(self.tensor_type.as_numpy_dtype) # Give the value a non-zero imaginary component for complex types. if self.tensor_type.is_complex: value -= 1j * value with self.test.test_session( use_gpu=not self.tensor_type.is_integer) as sess: if self._use_resource: var = resource_variable_ops.ResourceVariable(self.x) else: var = variables.Variable(self.x) sess.run(variables.variables_initializer([var])) val = sess.run(var[index].assign(value)) # val_copy is used to check that tf.assign works equivalently to the # assign method above. val_copy = sess.run(state_ops.assign(var[index], value)) valnp = np.copy(self.x_np) valnp[index] = np.array(value) self.test.assertAllEqual(val, valnp) self.test.assertAllEqual(val_copy, valnp) class SliceAssignTest(test_util.TensorFlowTestCase): def testInvalidSlice(self): with self.test_session() as sess: foo = constant_op.constant([1, 2, 3]) with self.assertRaisesRegexp(ValueError, "Sliced assignment" " is only supported for variables"): bar = foo[:2].assign(constant_op.constant([1, 2])) sess.run(bar) def doTestSliceAssign(self, use_resource): for dtype in STRIDED_SLICE_TYPES: checker = StridedSliceAssignChecker( self, [[1, 2, 3], [4, 5, 6]], use_resource=use_resource, tensor_type=dtype) # Check if equal checker[:] = [[10, 20, 30], [40, 50, 60]] # Check trivial (1,1) shape tensor checker[1:2, 1:2] = [[66]] # shrinks shape changes checker[1:2, 1] = [66] checker[1, 1:2] = [66] checker[1, 1] = 66 # newaxis shape changes checker[:, None, :] = [[[10, 20, 30]], [[40, 50, 50]]] # shrink and newaxis checker[None, None, 0, 0:1] = [[[99]]] # Non unit strides checker[::1, ::-2] = [[3, 33], [4, 44]] # degenerate interval checker[8:10, 0] = [] checker[8:10, 8:10] = [[]] # Assign vector to scalar (rank-0) using newaxis checker2 = StridedSliceAssignChecker(self, 222) checker2[()] = 6 # no indices checker2[...] = 6 # ellipsis checker2[None] = [6] # new axis def testSliceAssign(self): self.doTestSliceAssign(use_resource=False) def testSliceAssignResource(self): self.doTestSliceAssign(use_resource=True) def testUninitialized(self): with self.assertRaisesRegexp( errors.FailedPreconditionError, "Attempting to use uninitialized value Variable"): with self.test_session() as sess: v = variables.Variable([1, 2]) sess.run(v[:].assign([1, 2])) def testTypeError(self): init_val = constant_op.constant([1, 2], dtype=dtypes.int32) too_small_val = constant_op.constant([3, 4], dtype=dtypes.int8) too_large_val = constant_op.constant([3, 4], dtype=dtypes.int64) v = variables.Variable(init_val) with self.assertRaises(TypeError): v[:].assign(too_small_val) with self.assertRaises(TypeError): v[:].assign(too_large_val) def testTypeErrorResource(self): init_val = constant_op.constant([1, 2], dtype=dtypes.int32) too_small_val = constant_op.constant([3, 4], dtype=dtypes.int8) too_large_val = constant_op.constant([3, 4], dtype=dtypes.int64) v = resource_variable_ops.ResourceVariable(init_val) with self.test_session() as sess: sess.run(v.initializer) with self.assertRaises(ValueError): sess.run(v[:].assign(too_large_val)) with self.assertRaises(ValueError): sess.run(v[:].assign(too_small_val)) class ShapeSizeRankTest(test_util.TensorFlowTestCase): @test_util.run_in_graph_and_eager_modes def testDenseShape(self): t_value = [[0, 42], [24, 0]] self.assertAllEqual((2, 2), self.evaluate(array_ops.shape(t_value))) self.assertEqual(4, self.evaluate(array_ops.size(t_value))) self.assertEqual(2, self.evaluate(array_ops.rank(t_value))) t = constant_op.constant(t_value) self.assertAllEqual((2, 2), self.evaluate(array_ops.shape(t))) self.assertEqual(4, self.evaluate(array_ops.size(t))) self.assertEqual(2, self.evaluate(array_ops.rank(t))) @test_util.run_in_graph_and_eager_modes def testSparseShape(self): sp_value = sparse_tensor.SparseTensorValue( indices=((0, 1), (1, 0)), values=(42, 24), dense_shape=(2, 2)) self.assertAllEqual((2, 2), self.evaluate(array_ops.shape(sp_value))) self.assertEqual(4, self.evaluate(array_ops.size(sp_value))) self.assertEqual(2, self.evaluate(array_ops.rank(sp_value))) sp = sparse_tensor.SparseTensor.from_value(sp_value) self.assertAllEqual((2, 2), self.evaluate(array_ops.shape(sp))) self.assertEqual(4, self.evaluate(array_ops.size(sp))) self.assertEqual(2, self.evaluate(array_ops.rank(sp))) @test_util.run_in_graph_and_eager_modes def testSizeDtype(self): tensor = [1] self.assertEqual(dtypes.int32, self.evaluate(array_ops.size(tensor)).dtype) self.assertEqual( dtypes.int64, self.evaluate(array_ops.size(tensor, out_type=dtypes.int64)).dtype) class SequenceMaskTest(test_util.TensorFlowTestCase): def testExceptions(self): with self.test_session(): with self.assertRaisesRegexp(ValueError, "maxlen must be scalar"): array_ops.sequence_mask([10, 20], [10, 20]) def testOneDimensionalWithMaxlen(self): with self.test_session(): res = array_ops.sequence_mask(constant_op.constant([1, 3, 2]), 5) self.assertAllEqual(res.get_shape(), [3, 5]) self.assertAllEqual( res.eval(), [[True, False, False, False, False], [True, True, True, False, False], [True, True, False, False, False]]) @test_util.enable_c_shapes def testOneDimensionalDtypeWithoutMaxlen(self): with self.test_session(): # test dtype and default maxlen: res = array_ops.sequence_mask(constant_op.constant([0, 1, 4]), dtype=dtypes.float32) self.assertAllEqual(res.get_shape().as_list(), [3, 4]) self.assertAllEqual( res.eval(), [[0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0]]) @test_util.enable_c_shapes def testOneDimensionalWithoutMaxlen(self): with self.test_session(): res = array_ops.sequence_mask( constant_op.constant([0, 1, 4])) self.assertAllEqual(res.get_shape().as_list(), [3, 4]) self.assertAllEqual( res.eval(), [[False, False, False, False], [True, False, False, False], [True, True, True, True]]) @test_util.enable_c_shapes def testTwoDimensional(self): with self.test_session(): res = array_ops.sequence_mask(constant_op.constant([[1, 3, 2]]), 5) self.assertAllEqual(res.get_shape(), [1, 3, 5]) self.assertAllEqual(res.eval(), [[[True, False, False, False, False], [ True, True, True, False, False ], [True, True, False, False, False]]]) # test dtype and default maxlen: res = array_ops.sequence_mask( constant_op.constant([[0, 1, 4], [1, 2, 3]]), dtype=dtypes.float32) self.assertAllEqual(res.get_shape().as_list(), [2, 3, 4]) self.assertAllEqual( res.eval(), [[[0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0], [1.0, 1.0, 1.0, 1.0]], [[1.0, 0.0, 0.0, 0.0], [1.0, 1.0, 0.0, 0.0], [1.0, 1.0, 1.0, 0.0]]]) def testUnknownShape(self): lengths = array_ops.placeholder(dtype=dtypes.int32) res = array_ops.sequence_mask(lengths) self.assertEqual(res.shape, None) def testDtypes(self): def check_dtypes(lengths_dtype, maxlen_dtype): res = array_ops.sequence_mask( constant_op.constant([1, 3, 2], dtype=lengths_dtype), constant_op.constant(5, dtype=maxlen_dtype)) self.assertAllEqual(res.get_shape(), [3, 5]) self.assertAllEqual( res.eval(), [[True, False, False, False, False], [True, True, True, False, False], [True, True, False, False, False]]) with self.test_session(): check_dtypes(dtypes.int32, dtypes.int32) check_dtypes(dtypes.int32, dtypes.int64) check_dtypes(dtypes.int64, dtypes.int32) check_dtypes(dtypes.int64, dtypes.int64) class ConcatSliceResourceTest(test_util.TensorFlowTestCase): @test_util.run_in_graph_and_eager_modes def testConcatSlice(self): r1 = test_ops.stub_resource_handle_op(container="a", shared_name="b") r2 = test_ops.stub_resource_handle_op(container="a", shared_name="c") c = array_ops.stack([r1, r2]) s = array_ops.strided_slice(c, [1], [2]) self.evaluate(test_ops.resource_create_op(s)) with self.assertRaises(errors.AlreadyExistsError): self.evaluate(test_ops.resource_create_op(r2)) class IdentityTest(test_util.TensorFlowTestCase): def testEagerIdentity(self): with context.eager_mode(): ctx = context.get_default_context() if not ctx.num_gpus(): self.skipTest("No GPUs found") def _test(x, y, device): self.assertAllEqual(x.numpy(), y.numpy()) self.assertTrue(device in y.device.lower()) with ops.device("gpu:0"): a = constant_op.constant([[2], [3]], dtype=dtypes.float32) with ops.device("gpu:0"): b = array_ops.identity(a) _test(a, b, "gpu") with ops.device("cpu:0"): c = array_ops.identity(b) _test(b, c, "cpu") with ops.device("cpu:0"): d = array_ops.identity(c) _test(c, d, "cpu") with ops.device("gpu:0"): e = array_ops.identity(d) _test(d, e, "gpu") class PadTest(test_util.TensorFlowTestCase): def testEager(self): with context.eager_mode(): t = constant_op.constant([[1, 2, 3], [4, 5, 6]]) paddings = constant_op.constant([[ 1, 1, ], [2, 2]]) padded = array_ops.pad(t, paddings, "CONSTANT") self.assertAllEqual(padded.numpy(), [[0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 2, 3, 0, 0], [0, 0, 4, 5, 6, 0, 0], [0, 0, 0, 0, 0, 0, 0]]) class InvertPermutationTest(test_util.TensorFlowTestCase): def testInvertPermutation(self): for dtype in [dtypes.int32, dtypes.int64]: with self.test_session(use_gpu=True): x = constant_op.constant([3, 4, 0, 2, 1], dtype=dtype) y = array_ops.invert_permutation(x) self.assertAllEqual(y.get_shape(), [5]) self.assertAllEqual(y.eval(), [2, 4, 3, 0, 1]) class UnravelIndexTest(test_util.TensorFlowTestCase): # TODO(b/73086570): Reenable test. @unittest.skip("Test does not pass internally.") def testUnravelIndex(self): with self.test_session(): for dtype in [dtypes.int32, dtypes.int64]: indices_1 = constant_op.constant(1621, dtype=dtype) dims_1 = constant_op.constant([6, 7, 8, 9], dtype=dtype) out_1 = array_ops.unravel_index(indices_1, dims_1) self.assertAllEqual(out_1.eval(), [3, 1, 4, 1]) indices_2 = constant_op.constant([1621], dtype=dtype) dims_2 = constant_op.constant([6, 7, 8, 9], dtype=dtype) out_2 = array_ops.unravel_index(indices_2, dims_2) self.assertAllEqual(out_2.eval(), [[3], [1], [4], [1]]) indices_3 = constant_op.constant([22, 41, 37], dtype=dtype) dims_3 = constant_op.constant([7, 6], dtype=dtype) out_3 = array_ops.unravel_index(indices_3, dims_3) self.assertAllEqual(out_3.eval(), [[3, 6, 6], [4, 5, 1]]) class GuaranteeConstOpTest(test_util.TensorFlowTestCase): def testSimple(self): with self.test_session(): a = array_ops.constant(10) guarantee_a = array_ops.guarantee_const(a) self.assertEqual(10, guarantee_a.eval()) def testVariables(self): with self.test_session() as sess: for use_resource in [False, True]: a = variable_scope.get_variable( "var_{}".format(use_resource), [], initializer=init_ops.constant_initializer(10.0), use_resource=use_resource) guarantee_a = array_ops.guarantee_const(a) sess.run(variables.global_variables_initializer()) self.assertEqual(10.0, guarantee_a.eval()) def testResourceRejection(self): with self.test_session() as sess: a = variable_scope.get_variable( "resource_var", [], initializer=init_ops.constant_initializer(10.0), use_resource=True) guarantee_a = array_ops.guarantee_const(a.handle) sess.run(variables.global_variables_initializer()) with self.assertRaisesWithPredicateMatch(errors.InvalidArgumentError, "cannot be a resource variable"): guarantee_a.eval() class SnapshotOpTest(test_util.TensorFlowTestCase): def testInvertPermutation(self): for dtype in [dtypes.int32, dtypes.int64, dtypes.float32, dtypes.float64]: with self.test_session(use_gpu=True): x = constant_op.constant([0, 1, 2, 3], dtype=dtype) y = gen_array_ops.snapshot(x) self.assertAllEqual(y.eval(), [0, 1, 2, 3]) if __name__ == "__main__": test_lib.main()
ZhangXinNan/tensorflow
tensorflow/python/kernel_tests/array_ops_test.py
Python
apache-2.0
48,533
# -*- coding: utf-8 -*- # Generated by Django 1.11.6 on 2017-10-14 12:27 import django.db.models.deletion from django.db import migrations, models class Migration(migrations.Migration): dependencies = [("peering", "0004_auto_20171004_2323")] operations = [ migrations.CreateModel( name="Router", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("name", models.CharField(max_length=128)), ("hostname", models.CharField(max_length=256)), ( "platform", models.CharField( choices=[ ("junos", "Juniper JUNOS"), ("iosxr", "Cisco IOS-XR"), (None, "Other"), ], help_text="The router platform, used to interact with it", max_length=50, ), ), ("comment", models.TextField(blank=True)), ], options={"ordering": ["name"]}, ), migrations.AddField( model_name="internetexchange", name="router", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to="peering.Router", ), ), ]
respawner/peering-manager
peering/migrations/0005_auto_20171014_1427.py
Python
apache-2.0
1,688
from os.path import dirname, basename, isfile, realpath import glob import sys sys.path.append(dirname(realpath(__file__))) modules = glob.glob(dirname(__file__)+"/*.py") __all__ = [] for f in modules: m = basename(f)[:-3] if m == '__init__' or m == '_export' or not isfile(f): continue module = __import__(m) for name in dir(module): exec(name+'=module.'+name) from model import exported
uperetz/AstroTools
models/_export.py
Python
apache-2.0
419
import sys sys.path.insert(1,"../../../") import h2o from tests import pyunit_utils def weights_gamma(): htable = h2o.upload_file(pyunit_utils.locate("smalldata/gbm_test/moppe.csv")) htable["premiekl"] = htable["premiekl"].asfactor() htable["moptva"] = htable["moptva"].asfactor() htable["zon"] = htable["zon"] #gg = gbm(formula = medskad ~ premiekl + moptva + zon,data = table.1.2,distribution = "gamma", weights = table.1.2$antskad , # n.trees = 20,interaction.depth = 1,n.minobsinnode = 1,shrinkage = 1,bag.fraction = 1,train.fraction = 1) #pr = predict(gg,newdata = table.1.2,type = "response") #htable= as.h2o(table.1.2,destination_frame = "htable") hh = h2o.gbm(x=htable[0:3],y=htable["medskad"],training_frame=htable,distribution="gamma",weights_column="antskad", ntrees=20,max_depth=1,min_rows=1,learn_rate=1) ph = hh.predict(htable) assert abs(8.804447-hh._model_json['output']['init_f']) < 1e-6*8.804447 assert abs(3751.01-ph[0].min()) < 1e-4*3751.01 assert abs(15298.87-ph[0].max()) < 1e-4*15298.87 assert abs(8121.98-ph[0].mean()) < 1e-4*8121.98 if __name__ == "__main__": pyunit_utils.standalone_test(weights_gamma) else: weights_gamma()
pchmieli/h2o-3
h2o-py/tests/testdir_algos/gbm/pyunit_DEPRECATED_weights_gammaGBM.py
Python
apache-2.0
1,246
from __future__ import absolute_import, print_function from django.conf import settings class NoIfModifiedSinceMiddleware(object): def __init__(self): if not settings.DEBUG: from django.core.exceptions import MiddlewareNotUsed raise MiddlewareNotUsed def process_request(self, request): request.META.pop('HTTP_IF_MODIFIED_SINCE', None)
lyoniionly/django-cobra
src/cobra/middleware/debug.py
Python
apache-2.0
389
# Copyright 2018 Rackspace US Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from octavia.common import constants as consts # This is a JSON schema validation dictionary # https://json-schema.org/latest/json-schema-validation.html # # Note: This is used to generate the amphora driver "supported flavor # metadata" dictionary. Each property should include a description # for the user to understand what this flavor setting does. # # Where possible, the property name should match the configuration file name # for the setting. The configuration file setting is the default when a # setting is not defined in a flavor profile. SUPPORTED_FLAVOR_SCHEMA = { "$schema": "http://json-schema.org/draft-07/schema#", "title": "Octavia Amphora Driver Flavor Metadata Schema", "description": "This schema is used to validate new flavor profiles " "submitted for use in an amphora driver flavor profile.", "type": "object", "additionalProperties": False, "properties": { consts.LOADBALANCER_TOPOLOGY: { "type": "string", "description": "The load balancer topology. One of: " "SINGLE - One amphora per load balancer. " "ACTIVE_STANDBY - Two amphora per load balancer.", "enum": list(consts.SUPPORTED_LB_TOPOLOGIES) }, consts.COMPUTE_FLAVOR: { "type": "string", "description": "The compute driver flavor ID." }, consts.AMP_IMAGE_TAG: { "type": "string", "description": "The amphora image tag." } } }
openstack/octavia
octavia/api/drivers/amphora_driver/flavor_schema.py
Python
apache-2.0
2,189
# # Copyright 2014-15 the original author or authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import pkg_resources import mock from cabalgata.silla import factories from cabalgata.silla.util import disk def plugin_entry_points(): return ( pkg_resources.EntryPoint.parse('a=data.factories:FactoryA'), ) @mock.patch('pkg_resources.iter_entry_points') def test_load_factory(mock_pkg_resources): mock_pkg_resources.return_value = plugin_entry_points() with disk.temp_directory() as temp_directory: factory = factories.load_factory('a', temp_directory) assert factory.versions assert factory.definitions try: factories.load_factory('does_not_exist', temp_directory) assert False, 'Should have raised an KeyError' except KeyError: pass @mock.patch('pkg_resources.iter_entry_points') def test_install(mock_pkg_resources): mock_pkg_resources.return_value = plugin_entry_points() with disk.temp_directory() as temp_directory: factory = factories.load_factory('a', temp_directory) assert not factory.installed factory.install('test', '1.2.3') installed = factory.installed assert installed['test'] == '1.2.3' p = factory.load('test') assert p.version == '1.2.3' factory.uninstall('test') assert not factory.installed @mock.patch('pkg_resources.iter_entry_points') def test_start(mock_pkg_resources): mock_pkg_resources.return_value = plugin_entry_points() with disk.temp_directory() as temp_directory: factory = factories.load_factory('a', temp_directory) factory.install('test', '1.2.3') p = factory.load('test') assert not p.running p.start() assert p.running p.stop() assert not p.running p.start() assert p.running p.kill() assert not p.running factory.uninstall('test')
cabalgata/cabalgata-silla-de-montar
test/test_factories.py
Python
apache-2.0
2,490
#!/usr/bin/env python ''' Scriot that gets # Uptime when running config last changed ccmHistoryRunningLastChanged = '1.3.6.1.4.1.9.9.43.1.1.1.0' and # Uptime when startup config last saved ccmHistoryStartupLastChanged = '1.3.6.1.4.1.9.9.43.1.1.3.0' compare them and decided whether or not latest changes in running-config are saved in startup-config ''' # Import Kirk`s module from snmp_helper import snmp_get_oid, snmp_extract # Define variables device = "1.1.1.1" community = "*****" snmp_port = "161" run_last_change_oid = "1.3.6.1.4.1.9.9.43.1.1.1.0" start_last_change_oid = "1.3.6.1.4.1.9.9.43.1.1.3.0" sys_uptime_oid = "1.3.6.1.2.1.1.3.0" # Define device tuple a_device = (device, community, snmp_port) #Query data run_last_change = snmp_extract(snmp_get_oid(a_device, run_last_change_oid,)) start_last_change = snmp_extract(snmp_get_oid(a_device, start_last_change_oid,)) sys_uptime = snmp_extract(snmp_get_oid(a_device, sys_uptime_oid,)) #Convert data in integer if run_last_change.isdigit() and start_last_change.isdigit() and sys_uptime.isdigit(): run_last_change = int(run_last_change) start_last_change = int(start_last_change) sys_uptime = int(sys_uptime) else: exit("Error with SNMP response (non digits)") if start_last_change == 0 and run_last_change > 3000: exit("Config was never saved to startup since last reboot, but running-config was changed") if start_last_change >= run_last_change: exit("All right, last changes was saved to startup config") else: dif_time = (sys_uptime - start_last_change) / 100 exit("Last changes to running config wasn't saved to startup %d seconds already" % dif_time) # The END
laetrid/learning
Second_course/ex1_2.py
Python
apache-2.0
1,680
"""Base configuration implementation.""" # Copyright (C) 2015 Brad Cowie, Christopher Lorier and Joe Stringer. # Copyright (C) 2015 Research and Education Advanced Network New Zealand Ltd. # Copyright (C) 2015--2019 The Contributors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import difflib import ipaddress import json from collections import OrderedDict class InvalidConfigError(Exception): """This error is thrown when the config file is not valid.""" def test_config_condition(cond, msg): """ Evaluate condition and raise InvalidConfigError if condition True. Args: cond (bool): Condition on which to raise an error if it is true msg (str): Message for the error if the condition is true """ if cond: raise InvalidConfigError(msg) class Conf: """Base class for FAUCET configuration.""" mutable_attrs = frozenset() # type: frozenset defaults = {} # type: dict defaults_types = {} # type: dict dyn_finalized = False dyn_hash = None def __init__(self, _id, dp_id, conf=None): self._id = _id self.dp_id = dp_id if conf is None: conf = {} if self.defaults is not None and self.defaults_types is not None: diff = set(self.defaults.keys()).symmetric_difference(set(self.defaults_types.keys())) assert not diff, diff if isinstance(conf, dict): self.update(conf) self.set_defaults() self.check_config() self.orig_conf = {k: self.__dict__[k] for k in self.defaults} for k, conf_v in self.orig_conf.items(): if isinstance(conf_v, Conf): self.orig_conf[k] = conf_v.orig_conf def __setattr__(self, name, value): if not self.dyn_finalized or name.startswith('dyn') or name in self.mutable_attrs: super(Conf, self).__setattr__(name, value) else: raise ValueError('cannot update %s on finalized Conf object' % name) def _set_default(self, key, value, conf=None): if conf is None: conf = self.__dict__ assert key in conf, key if conf[key] is None: conf[key] = value def _set_conf_defaults(self, defaults, conf): for key, value in defaults.items(): self._set_default(key, value, conf=conf) def set_defaults(self, defaults=None, conf=None): """Set default values and run any basic sanity checks.""" self._set_conf_defaults(self.defaults, self.__dict__) def _check_unknown_conf(self, conf): """Check that supplied conf dict doesn't specify keys not defined.""" sub_conf_names = set(conf.keys()) unknown_conf_names = sub_conf_names - set(self.defaults.keys()) test_config_condition(unknown_conf_names, '%s fields unknown in %s' % ( unknown_conf_names, self._id)) def _check_conf_types(self, conf, conf_types): """Check that conf value is of the correct type.""" test_config_condition(not isinstance(conf, dict), ( 'Conf object %s contents %s must be type %s not %s' % ( self._id, conf, dict, type(conf)))) for conf_key, conf_value in conf.items(): test_config_condition( conf_key not in conf_types, '%s field unknown in %s (known types %s)' % ( conf_key, self._id, conf_types)) if conf_value is not None: conf_type = conf_types[conf_key] test_config_condition( not isinstance(conf_value, conf_type), '%s value %s must be %s not %s' % ( conf_key, conf_value, conf_type, type(conf_value))) # pytype: disable=invalid-typevar @staticmethod def _set_unknown_conf(conf, conf_types): for conf_key, conf_type in conf_types.items(): if conf_key not in conf: if conf_type == list: conf[conf_key] = [] else: conf[conf_key] = None return conf def update(self, conf): """Parse supplied YAML config and sanity check.""" self.__dict__.update(conf) self._check_unknown_conf(conf) self._check_conf_types(conf, self.defaults_types) @staticmethod def check_config(): """Check config at instantiation time for errors, typically via assert.""" return def _conf_keys(self, conf, subconf=True, ignore_keys=None): """Return a list of key/values of attributes with dyn/Conf attributes/filtered.""" conf_keys = [] for key, value in sorted(((key, value) for key, value in conf.orig_conf.items() if key in self.defaults)): if ignore_keys and key in ignore_keys: continue if not subconf and value: if isinstance(value, Conf): continue if isinstance(value, (tuple, list, set)) and isinstance(value[0], Conf): continue conf_keys.append((key, self._str_conf(value))) return conf_keys @staticmethod def _conf_dyn_keys(conf): return [(key, value) for key, value in conf.__dict__.items() if key.startswith('dyn')] def merge_dyn(self, other_conf): """Merge dynamic state from other conf object.""" self.__dict__.update({k: v for k, v in self._conf_dyn_keys(other_conf)}) def _str_conf(self, conf_v): if isinstance(conf_v, (bool, str, int)): return conf_v if isinstance(conf_v, ( ipaddress.IPv4Address, ipaddress.IPv4Interface, ipaddress.IPv4Network, ipaddress.IPv6Address, ipaddress.IPv6Interface, ipaddress.IPv6Network)): return str(conf_v) if isinstance(conf_v, (dict, OrderedDict)): return {str(i): self._str_conf(j) for i, j in conf_v.items() if j is not None} if isinstance(conf_v, (list, tuple, frozenset)): return tuple([self._str_conf(i) for i in conf_v if i is not None]) if isinstance(conf_v, Conf): for i in ('name', '_id'): if hasattr(conf_v, i): return getattr(conf_v, i) return None def to_conf(self): """Return configuration as a dict.""" conf = { k: self.orig_conf[str(k)] for k in self.defaults if k != 'name'} return json.dumps(self._str_conf(conf), sort_keys=True, indent=4, separators=(',', ': ')) def conf_diff(self, other): """Return text diff between two Confs.""" differ = difflib.Differ() return '\n'.join(differ.compare( self.to_conf().splitlines(), other.to_conf().splitlines())) def conf_hash(self, subconf=True, ignore_keys=None): """Return hash of keys configurably filtering attributes.""" return hash(frozenset(list(map( str, self._conf_keys(self, subconf=subconf, ignore_keys=ignore_keys))))) def __hash__(self): if self.dyn_hash is not None: return self.dyn_hash dyn_hash = self.conf_hash(subconf=True) if self.dyn_finalized: self.dyn_hash = dyn_hash return dyn_hash def _finalize_val(self, val): if isinstance(val, list): return tuple( [self._finalize_val(v) for v in val]) if isinstance(val, set): return frozenset( [self._finalize_val(v) for v in val]) if isinstance(val, dict): return OrderedDict([ (k, self._finalize_val(v)) for k, v in sorted(val.items(), key=str)]) return val def finalize(self): """Configuration parsing marked complete.""" self.__dict__.update( {k: self._finalize_val(v) for k, v in self.__dict__.items() if not k.startswith('dyn')}) self.dyn_finalized = True def ignore_subconf(self, other, ignore_keys=None): """Return True if this config same as other, ignoring sub config.""" return (self.conf_hash( subconf=False, ignore_keys=ignore_keys) == other.conf_hash( subconf=False, ignore_keys=ignore_keys)) def __eq__(self, other): return self.__hash__() == other.__hash__() def __ne__(self, other): return not self.__eq__(other) @staticmethod def _check_ip_str(ip_str, ip_method=ipaddress.ip_address): try: # bool type is deprecated by the library ipaddress if not isinstance(ip_str, bool): return ip_method(ip_str) raise InvalidConfigError('Invalid IP address %s: IP address of type bool' % (ip_str)) except (ValueError, AttributeError, TypeError) as err: raise InvalidConfigError('Invalid IP address %s: %s' % (ip_str, err)) @staticmethod def _ipvs(ipas): return frozenset([ipa.version for ipa in ipas]) @staticmethod def _by_ipv(ipas, ipv): return frozenset([ipa for ipa in ipas if ipa.version == ipv])
shivarammysore/faucet
faucet/conf.py
Python
apache-2.0
9,565
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import itertools from operator import itemgetter from oslo_utils import uuidutils from neutron import context from neutron.db import rbac_db_models from neutron.objects import base as obj_base from neutron.objects.db import api as obj_db_api from neutron.objects import subnet from neutron.tests.unit.objects import test_base as obj_test_base from neutron.tests.unit import testlib_api class IPAllocationPoolObjectIfaceTestCase( obj_test_base.BaseObjectIfaceTestCase): _test_class = subnet.IPAllocationPool class IPAllocationPoolDbObjectTestCase(obj_test_base.BaseDbObjectTestCase, testlib_api.SqlTestCase): _test_class = subnet.IPAllocationPool def setUp(self): super(IPAllocationPoolDbObjectTestCase, self).setUp() self._create_test_network() self._create_test_subnet(self._network) for obj in itertools.chain(self.db_objs, self.obj_fields, self.objs): obj['subnet_id'] = self._subnet['id'] class DNSNameServerObjectIfaceTestCase(obj_test_base.BaseObjectIfaceTestCase): _test_class = subnet.DNSNameServer def setUp(self): super(DNSNameServerObjectIfaceTestCase, self).setUp() self.pager_map[self._test_class.obj_name()] = ( obj_base.Pager(sorts=[('order', True)])) class DNSNameServerDbObjectTestCase(obj_test_base.BaseDbObjectTestCase, testlib_api.SqlTestCase): _test_class = subnet.DNSNameServer def setUp(self): super(DNSNameServerDbObjectTestCase, self).setUp() # (NOTE) If two object have the same value for a field and # they are sorted using that field, the order is not deterministic. # To avoid breaking the tests we ensure unique values for every field while not self._is_objects_unique(): self.db_objs = list(self.get_random_fields() for _ in range(3)) self.obj_fields = [self._test_class.modify_fields_from_db(db_obj) for db_obj in self.db_objs] self._create_test_network() self._create_test_subnet(self._network) for obj in itertools.chain(self.db_objs, self.obj_fields, self.objs): obj['subnet_id'] = self._subnet['id'] def _is_objects_unique(self): order_set = set([x['order'] for x in self.db_objs]) subnet_id_set = set([x['subnet_id'] for x in self.db_objs]) address_set = set([x['address'] for x in self.db_objs]) return 3 == len(order_set) == len(subnet_id_set) == len(address_set) def _create_dnsnameservers(self): for obj in self.obj_fields: dns = self._make_object(obj) dns.create() def test_get_objects_sort_by_order_asc(self): self._create_dnsnameservers() objs = self._test_class.get_objects(self.context) fields_sorted = sorted([dict(obj) for obj in self.obj_fields], key=itemgetter('order')) self.assertEqual( fields_sorted, [obj_test_base.get_obj_db_fields(obj) for obj in objs]) def test_get_objects_sort_by_order_desc(self): self._create_dnsnameservers() pager = obj_base.Pager(sorts=[('order', False)]) objs = self._test_class.get_objects(self.context, _pager=pager, subnet_id=self._subnet.id) fields_sorted = sorted([dict(obj) for obj in self.obj_fields], key=itemgetter('order'), reverse=True) self.assertEqual( fields_sorted, [obj_test_base.get_obj_db_fields(obj) for obj in objs]) def test_get_objects_sort_by_address_asc_using_pager(self): self._create_dnsnameservers() pager = obj_base.Pager(sorts=[('address', True)]) objs = self._test_class.get_objects(self.context, _pager=pager) fields_sorted = sorted([dict(obj) for obj in self.obj_fields], key=itemgetter('address')) self.assertEqual( fields_sorted, [obj_test_base.get_obj_db_fields(obj) for obj in objs]) class RouteObjectIfaceTestCase(obj_test_base.BaseObjectIfaceTestCase): _test_class = subnet.Route class RouteDbObjectTestCase(obj_test_base.BaseDbObjectTestCase, testlib_api.SqlTestCase): _test_class = subnet.Route def setUp(self): super(RouteDbObjectTestCase, self).setUp() self._create_test_network() self._create_test_subnet(self._network) for obj in itertools.chain(self.db_objs, self.obj_fields, self.objs): obj['subnet_id'] = self._subnet['id'] class SubnetObjectIfaceTestCase(obj_test_base.BaseObjectIfaceTestCase): _test_class = subnet.Subnet def setUp(self): super(SubnetObjectIfaceTestCase, self).setUp() self.pager_map[subnet.DNSNameServer.obj_name()] = ( obj_base.Pager(sorts=[('order', True)])) class SubnetDbObjectTestCase(obj_test_base.BaseDbObjectTestCase, testlib_api.SqlTestCase): _test_class = subnet.Subnet def setUp(self): super(SubnetDbObjectTestCase, self).setUp() self._create_test_network() self._create_test_segment(self._network) for obj in itertools.chain(self.db_objs, self.obj_fields, self.objs): obj['network_id'] = self._network['id'] obj['segment_id'] = self._segment['id'] def test_get_dns_nameservers_in_order(self): obj = self._make_object(self.obj_fields[0]) obj.create() dns_nameservers = [(2, '1.2.3.4'), (1, '5.6.7.8'), (4, '7.7.7.7')] for order, address in dns_nameservers: dns = subnet.DNSNameServer(self.context, order=order, address=address, subnet_id=obj.id) dns.create() new = self._test_class.get_object(self.context, id=obj.id) self.assertEqual(1, new.dns_nameservers[0].order) self.assertEqual(2, new.dns_nameservers[1].order) self.assertEqual(4, new.dns_nameservers[-1].order) def _create_shared_network_rbac_entry(self, network): attrs = { 'object_id': network['id'], 'target_tenant': '*', 'action': rbac_db_models.ACCESS_SHARED } obj_db_api.create_object(self.context, rbac_db_models.NetworkRBAC, attrs) def test_get_subnet_shared_true(self): network = self._create_network() self._create_shared_network_rbac_entry(network) subnet_data = dict(self.obj_fields[0]) subnet_data['network_id'] = network['id'] obj = self._make_object(subnet_data) # check if shared will be load by 'obj_load_attr' and using extra query # by RbacNeutronDbObjectMixin get_shared_with_tenant self.assertTrue(obj.shared) obj.create() # here the shared should be load by is_network_shared self.assertTrue(obj.shared) new = self._test_class.get_object(self.context, **obj._get_composite_keys()) # again, the shared should be load by is_network_shared self.assertTrue(new.shared) def test_filter_by_shared(self): network = self._create_network() self._create_shared_network_rbac_entry(network) subnet_data = dict(self.obj_fields[0]) subnet_data['network_id'] = network['id'] obj = self._make_object(subnet_data) obj.create() result = self._test_class.get_objects(self.context, shared=True) self.assertEqual(obj, result[0]) def test_get_shared_subnet_with_another_tenant(self): network_shared = self._create_network() self._create_shared_network_rbac_entry(network_shared) subnet_data = dict(self.obj_fields[0]) subnet_data['network_id'] = network_shared['id'] shared_subnet = self._make_object(subnet_data) shared_subnet.create() priv_subnet = self._make_object(self.obj_fields[1]) priv_subnet.create() # Situation here: # - we have one network with a subnet that are private # - shared network with its subnet # creating new context, user should have access to one shared network all_subnets = self._test_class.get_objects(self.context) self.assertEqual(2, len(all_subnets)) # access with new tenant_id, should be able to access to one subnet new_ctx = context.Context('', uuidutils.generate_uuid()) public_subnets = self._test_class.get_objects(new_ctx) self.assertEqual([shared_subnet], public_subnets) # test get_object to fetch the private and then the shared subnet fetched_private_subnet = self._test_class.get_object(new_ctx, id=priv_subnet.id) self.assertIsNone(fetched_private_subnet) fetched_public_subnet = ( self._test_class.get_object(new_ctx, id=shared_subnet.id)) self.assertEqual(shared_subnet, fetched_public_subnet)
igor-toga/local-snat
neutron/tests/unit/objects/test_subnet.py
Python
apache-2.0
9,765
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This example adds a text ad with ad parameters. To get ad groups, run get_ad_groups.py. To get keywords, run add_keywords.py. The LoadFromStorage method is pulling credentials and properties from a "googleads.yaml" file. By default, it looks for this file in your home directory. For more information, see the "Caching authentication information" section of our README. """ from googleads import adwords AD_GROUP_ID = 'INSERT_AD_GROUP_ID_HERE' CRITERION_ID = 'INSERT_KEYWORD_CRITERION_ID_HERE' def main(client, ad_group_id, criterion_id): # Initialize appropriate service. ad_group_ad_service = client.GetService('AdGroupAdService', version='v201802') ad_param_service = client.GetService('AdParamService', version='v201802') # Construct operations for adding text ad object and add to an ad group. operations = [{ 'operator': 'ADD', 'operand': { 'xsi_type': 'AdGroupAd', 'adGroupId': ad_group_id, 'ad': { 'xsi_type': 'TextAd', 'finalUrls': ['http://www.example.com'], 'displayUrl': 'example.com', 'description1': 'Low-gravity fun for {param1:cheap}.', 'description2': 'Only {param2:a few} seats left!', 'headline': 'Luxury Mars Cruises' }, 'status': 'ENABLED' } }] ads = ad_group_ad_service.mutate(operations)['value'] # Display results. for ad in ads: print ('Text ad with id "%s" was successfully added to an ad group with ' 'id "%s".' % (ad['adGroupId'], ad['ad']['id'])) # Construct operations for setting ad parameters. operations = [ { 'operator': 'SET', 'operand': { 'adGroupId': ad_group_id, 'criterionId': criterion_id, 'insertionText': u'£100', 'paramIndex': '1' } }, { 'operator': 'SET', 'operand': { 'adGroupId': ad_group_id, 'criterionId': criterion_id, 'insertionText': '50', 'paramIndex': '2' } } ] ad_params = ad_param_service.mutate(operations) # Display results. for ad_param in ad_params: print ('Ad parameter with text "%s" was successfully set for criterion ' 'with id "%s" and ad group id "%s".' % (ad_param['insertionText'], ad_param['criterionId'], ad_param['adGroupId'])) if __name__ == '__main__': # Initialize client object. adwords_client = adwords.AdWordsClient.LoadFromStorage() main(adwords_client, AD_GROUP_ID, CRITERION_ID)
Aloomaio/googleads-python-lib
examples/adwords/v201802/campaign_management/set_ad_parameters.py
Python
apache-2.0
3,262
import json import pytz from unittest2 import skipIf from datetime import date, datetime from django.test.utils import override_settings from django.test import TestCase from django.test.client import Client from django.core.urlresolvers import reverse from myuw.test.api import missing_url, get_user, get_user_pass from myuw.dao.calendar import get_events TRUMBA_PREFIX = 'http://www.trumba.com/calendar/5_current' class TestCalendar(TestCase): def setUp(self): self.now = datetime(2013, 04, 15, 0, 0, 0, tzinfo=pytz.utc) def test_far_future(self): cal = {'far_future': None} event_response = get_events(cal, self.now) self.assertEqual(len(event_response['future_active_cals']), 0) self.assertEqual(len(event_response['events']), 0) def test_past_events(self): cal = {'past': None} event_response = get_events(cal, self.now) self.assertEqual(len(event_response['future_active_cals']), 0) self.assertEqual(len(event_response['events']), 0) def test_future(self): cal = {'future_1': None} event_response = get_events(cal, self.now) self.assertEqual(len(event_response['future_active_cals']), 1) self.assertEqual(len(event_response['events']), 0) def test_future_two(self): cal = {'future_1': None, 'future_2': None} event_response = get_events(cal, self.now) self.assertTrue(True) self.assertEqual(len(event_response['future_active_cals']), 2) self.assertEqual(len(event_response['events']), 0) self.assertEqual(event_response['future_active_cals'][0]['count'], 1) self.assertEqual(event_response['future_active_cals'][1]['count'], 2) def test_current(self): cal = {'5_current': None} event_response = get_events(cal, self.now) self.assertEqual(len(event_response['future_active_cals']), 0) self.assertEqual(len(event_response['events']), 5) def test_event_url(self): cal = {'5_current': None} event_response = get_events(cal, self.now) url = "%s?%s" % (TRUMBA_PREFIX, 'trumbaEmbed=eventid%3D1107241160%26view%3Devent') self.assertEqual(event_response['events'][0]['event_url'], url) def test_date_sort(self): cal = {'5_current': None} event_response = get_events(cal, self.now) self.assertEqual(event_response['events'][0]['summary'], 'Multi Day Event') self.assertEqual(event_response['events'][4]['summary'], 'Organic Chemistry Seminar: Prof. Matthew Becker4') def test_active_cals(self): cal = {'5_current': None} event_response = get_events(cal, self.now) self.assertEqual(len(event_response['active_cals']), 1) self.assertEqual(event_response['active_cals'][0]['url'], TRUMBA_PREFIX) self.assertEqual(event_response['active_cals'][0]['title'], "Department of Five Events") def test_all_day(self): cal = {'5_current': None} event_response = get_events(cal, self.now) self.assertTrue(event_response['events'][3]['is_all_day']) def test_no_location(self): cal = {'5_current': None} event_response = get_events(cal, self.now) self.assertEqual(event_response['events'][3]['event_location'], "") def test_all_day(self): cal = {'5_current': None} event_response = get_events(cal, self.now) self.assertTrue(event_response['events'][3]['is_all_day']) self.assertFalse(event_response['events'][2]['is_all_day']) self.assertIn('2013-04-18', event_response['events'][3]['end'])
fanglinfang/myuw
myuw/test/dao/calendar.py
Python
apache-2.0
3,758
from highton.models import HightonModel from highton.highton_constants import HightonConstants from highton import ( fields, call_mixins, ) from highton.models.attachment import Attachment class Email( HightonModel, call_mixins.DetailCallMixin, call_mixins.CreateCallMixin, call_mixins.UpdateCallMixin, call_mixins.DeleteCallMixin, call_mixins.ListCommentCallMixin, ): """ :ivar id: fields.IntegerField(name=HightonConstants.ID) :ivar title: fields.StringField(name=HightonConstants.TITLE, required=True) :ivar body: fields.StringField(name=HightonConstants.BODY, required=True) :ivar subject_id: fields.IntegerField(name=HightonConstants.SUBJECT_ID, required=True) :ivar subject_type: fields.StringField(name=HightonConstants.SUBJECT_TYPE, required=True) :ivar subject_name: fields.StringField(name=HightonConstants.SUBJECT_NAME) :ivar author_id: fields.IntegerField(name=HightonConstants.AUTHOR_ID) :ivar collection_id: fields.IntegerField(name=HightonConstants.COLLECTION_ID) :ivar collection_type: fields.StringField(name=HightonConstants.COLLECTION_TYPE) :ivar visible_to: fields.StringField(name=HightonConstants.VISIBLE_TO) :ivar owner_id: fields.IntegerField(name=HightonConstants.OWNER_ID) :ivar group_id: fields.IntegerField(name=HightonConstants.GROUP_ID) :ivar updated_at: fields.DatetimeField(name=HightonConstants.UPDATED_AT) :ivar created_at: fields.DatetimeField(name=HightonConstants.CREATED_AT) :ivar attachments: fields.ListField(name=HightonConstants.ATTACHMENTS, init_class=Attachment) """ TAG_NAME = HightonConstants.EMAIL ENDPOINT = HightonConstants.EMAILS def __init__(self, **kwargs): self.title = fields.StringField(name=HightonConstants.TITLE, required=True) self.body = fields.StringField(name=HightonConstants.BODY, required=True) self.subject_id = fields.IntegerField(name=HightonConstants.SUBJECT_ID, required=True) self.subject_type = fields.StringField(name=HightonConstants.SUBJECT_TYPE, required=True) self.subject_name = fields.StringField(name=HightonConstants.SUBJECT_NAME) self.author_id = fields.IntegerField(name=HightonConstants.AUTHOR_ID) self.collection_id = fields.IntegerField(name=HightonConstants.COLLECTION_ID) self.collection_type = fields.StringField(name=HightonConstants.COLLECTION_TYPE) self.visible_to = fields.StringField(name=HightonConstants.VISIBLE_TO) self.owner_id = fields.IntegerField(name=HightonConstants.OWNER_ID) self.group_id = fields.IntegerField(name=HightonConstants.GROUP_ID) self.updated_at = fields.DatetimeField(name=HightonConstants.UPDATED_AT) self.created_at = fields.DatetimeField(name=HightonConstants.CREATED_AT) self.attachments = fields.ListField(name=HightonConstants.ATTACHMENTS, init_class=Attachment) super().__init__(**kwargs)
seibert-media/Highton
highton/models/email.py
Python
apache-2.0
2,952
# # Copyright (c) 2013 Preet Kukreti # # Excerpt of code taken at # http://stackoverflow.com/questions/377017/test-if-executable-exists-in-python import os import sys import stat import tempfile def is_case_sensitive_filesystem(): tmphandle, tmppath = tempfile.mkstemp() is_insensitive = os.path.exists(tmppath.upper()) os.close(tmphandle) os.remove(tmppath) return not is_insensitive _IS_CASE_SENSITIVE_FILESYSTEM = is_case_sensitive_filesystem() def which(program, case_sensitive=_IS_CASE_SENSITIVE_FILESYSTEM): """ Simulates unix `which` command. Returns absolute path if program found """ def is_exe(fpath): """ Return true if fpath is a file we have access to that is executable """ accessmode = os.F_OK | os.X_OK if os.path.exists(fpath) and os.access(fpath, accessmode) and \ not os.path.isdir(fpath): filemode = os.stat(fpath).st_mode ret = bool(filemode & stat.S_IXUSR or filemode & stat.S_IXGRP or filemode & stat.S_IXOTH) return ret def list_file_exts(directory, search_filename=None, ignore_case=True): """ Return list of (filename, extension) tuples which match the search_filename """ if ignore_case: search_filename = search_filename.lower() for root, dirs, files in os.walk(path): for f in files: filename, extension = os.path.splitext(f) if ignore_case: filename = filename.lower() if not search_filename or filename == search_filename: yield (filename, extension) break fpath, fname = os.path.split(program) # is a path: try direct program path if fpath: if is_exe(program): return program elif "win" in sys.platform: # isnt a path: try fname in current directory on windows if is_exe(fname): return program paths = os.environ.get("PATH", "").split(os.pathsep) paths = [path.strip('"') for path in paths] exe_exts = [ext for ext in os.environ.get("PATHEXT", "").split(os.pathsep)] if not case_sensitive: exe_exts = map(str.lower, exe_exts) # try append program path per directory for path in paths: exe_file = os.path.join(path, program) if is_exe(exe_file): return exe_file # try with known executable extensions per program path per directory for path in paths: filepath = os.path.join(path, program) for extension in exe_exts: exe_file = filepath + extension if is_exe(exe_file): return exe_file # try search program name with "soft" extension search if len(os.path.splitext(fname)[1]) == 0: for path in paths: file_exts = list_file_exts(path, fname, not case_sensitive) for file_ext in file_exts: filename = "".join(file_ext) exe_file = os.path.join(path, filename) if is_exe(exe_file): return exe_file return None
hirokihamasaki/irma
common/plugins/which.py
Python
apache-2.0
3,234
Hi, <%= to_name %><br> <br> Someone asked to recover this account on <%= app_name %>.<br>If you want to recover this account, Please click the following link and set new password! Otherwise please ignore this e-mail.<br> <a href="<%= app_url %>/token/verify/!recovery/!<%str= mail_verify_token %>">Click here to set new password!</a><br> <%= value %><br> <%= body_html %><br> <%= children %><br> <br> <hr> Thank you,<br> <b><%= app_title %></b>
vinoth3v/In
In/templates/html/AccountRecoveryEmail.tpl.py
Python
apache-2.0
445
# -*- coding: utf-8 -*- # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from heatclient import client as heat_client from heatclient import exc as heat_exc from neutron._i18n import _LW from gbpservice.nfp.core import log as nfp_logging LOG = nfp_logging.getLogger(__name__) # We are overriding create and update for now because the upstream # heat client class does not take timeout as argument class HeatClient(object): def __init__(self, user_name, tenant, heat_uri, password=None, auth_token=None, timeout_mins=30): api_version = "1" endpoint = "%s/%s" % (heat_uri, tenant) kwargs = { 'token': auth_token, 'username': user_name, 'password': password } self.client = heat_client.Client(api_version, endpoint, **kwargs) self.stacks = self.client.stacks self.timeout_mins = timeout_mins # The base class is a old style class. We have to change when it is # updated #gbp_heat_api_client.HeatClient.__init__( # self, context, heat_uri, password, auth_token) def create(self, name, data, parameters=None): fields = { 'stack_name': name, 'timeout_mins': self.timeout_mins, 'disable_rollback': True, 'password': data.get('password') } fields['template'] = data fields['parameters'] = parameters return self.stacks.create(**fields) def update(self, stack_id, data, parameters=None): fields = { 'timeout_mins': self.timeout_mins, 'password': data.get('password') } fields['template'] = data fields['parameters'] = parameters return self.stacks.update(stack_id, **fields) def delete(self, stack_id): try: self.stacks.delete(stack_id) except heat_exc.HTTPNotFound: LOG.warning(_LW("Stack %(stack)s created by service chain driver " "is not found at cleanup"), {'stack': stack_id}) def get(self, stack_id): return self.stacks.get(stack_id)
jiahaoliang/group-based-policy
gbpservice/nfp/orchestrator/config_drivers/heat_client.py
Python
apache-2.0
2,625
"""Auto-generated file, do not edit by hand. MK metadata""" from ..phonemetadata import NumberFormat, PhoneNumberDesc, PhoneMetadata PHONE_METADATA_MK = PhoneMetadata(id='MK', country_code=389, international_prefix='00', general_desc=PhoneNumberDesc(national_number_pattern='[2-578]\\d{7}', possible_length=(8,), possible_length_local_only=(6, 7)), fixed_line=PhoneNumberDesc(national_number_pattern='(?:2(?:[23]\\d|5[124578]|6[01])|3(?:1[3-6]|[23][2-6]|4[2356])|4(?:[23][2-6]|4[3-6]|5[256]|6[25-8]|7[24-6]|8[4-6]))\\d{5}', example_number='22212345', possible_length=(8,), possible_length_local_only=(6, 7)), mobile=PhoneNumberDesc(national_number_pattern='7(?:[0-25-8]\\d{2}|32\\d|421|9[23]\\d)\\d{4}', example_number='72345678', possible_length=(8,)), toll_free=PhoneNumberDesc(national_number_pattern='800\\d{5}', example_number='80012345', possible_length=(8,)), premium_rate=PhoneNumberDesc(national_number_pattern='5[02-9]\\d{6}', example_number='50012345', possible_length=(8,)), shared_cost=PhoneNumberDesc(national_number_pattern='8(?:0[1-9]|[1-9]\\d)\\d{5}', example_number='80123456', possible_length=(8,)), national_prefix='0', national_prefix_for_parsing='0', number_format=[NumberFormat(pattern='(2)(\\d{3})(\\d{4})', format='\\1 \\2 \\3', leading_digits_pattern=['2'], national_prefix_formatting_rule='0\\1'), NumberFormat(pattern='([347]\\d)(\\d{3})(\\d{3})', format='\\1 \\2 \\3', leading_digits_pattern=['[347]'], national_prefix_formatting_rule='0\\1'), NumberFormat(pattern='([58]\\d{2})(\\d)(\\d{2})(\\d{2})', format='\\1 \\2 \\3 \\4', leading_digits_pattern=['[58]'], national_prefix_formatting_rule='0\\1')], mobile_number_portable_region=True)
gencer/python-phonenumbers
python/phonenumbers/data/region_MK.py
Python
apache-2.0
1,725
# -*- coding: utf-8 -*- from operator import attrgetter from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType from pyangbind.lib.yangtypes import RestrictedClassType from pyangbind.lib.yangtypes import TypedListType from pyangbind.lib.yangtypes import YANGBool from pyangbind.lib.yangtypes import YANGListType from pyangbind.lib.yangtypes import YANGDynClass from pyangbind.lib.yangtypes import ReferenceType from pyangbind.lib.base import PybindBase from collections import OrderedDict from decimal import Decimal from bitarray import bitarray import six # PY3 support of some PY2 keywords (needs improved) if six.PY3: import builtins as __builtin__ long = int elif six.PY2: import __builtin__ from . import config from . import state class route_selection_options(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-network-instance - based on the path /network-instances/network-instance/protocols/protocol/bgp/global/afi-safis/afi-safi/route-selection-options. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: Parameters relating to options for route selection """ __slots__ = ("_path_helper", "_extmethods", "__config", "__state") _yang_name = "route-selection-options" _pybind_generated_by = "container" def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__config = YANGDynClass( base=config.config, is_container="container", yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=True, ) self.__state = YANGDynClass( base=state.state, is_container="container", yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=True, ) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path() + [self._yang_name] else: return [ "network-instances", "network-instance", "protocols", "protocol", "bgp", "global", "afi-safis", "afi-safi", "route-selection-options", ] def _get_config(self): """ Getter method for config, mapped from YANG variable /network_instances/network_instance/protocols/protocol/bgp/global/afi_safis/afi_safi/route_selection_options/config (container) YANG Description: Configuration parameters relating to route selection options """ return self.__config def _set_config(self, v, load=False): """ Setter method for config, mapped from YANG variable /network_instances/network_instance/protocols/protocol/bgp/global/afi_safis/afi_safi/route_selection_options/config (container) If this variable is read-only (config: false) in the source YANG file, then _set_config is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_config() directly. YANG Description: Configuration parameters relating to route selection options """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=config.config, is_container="container", yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=True, ) except (TypeError, ValueError): raise ValueError( { "error-string": """config must be of a type compatible with container""", "defined-type": "container", "generated-type": """YANGDynClass(base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=True)""", } ) self.__config = t if hasattr(self, "_set"): self._set() def _unset_config(self): self.__config = YANGDynClass( base=config.config, is_container="container", yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=True, ) def _get_state(self): """ Getter method for state, mapped from YANG variable /network_instances/network_instance/protocols/protocol/bgp/global/afi_safis/afi_safi/route_selection_options/state (container) YANG Description: State information for the route selection options """ return self.__state def _set_state(self, v, load=False): """ Setter method for state, mapped from YANG variable /network_instances/network_instance/protocols/protocol/bgp/global/afi_safis/afi_safi/route_selection_options/state (container) If this variable is read-only (config: false) in the source YANG file, then _set_state is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_state() directly. YANG Description: State information for the route selection options """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=state.state, is_container="container", yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=True, ) except (TypeError, ValueError): raise ValueError( { "error-string": """state must be of a type compatible with container""", "defined-type": "container", "generated-type": """YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=True)""", } ) self.__state = t if hasattr(self, "_set"): self._set() def _unset_state(self): self.__state = YANGDynClass( base=state.state, is_container="container", yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=True, ) config = __builtin__.property(_get_config, _set_config) state = __builtin__.property(_get_state, _set_state) _pyangbind_elements = OrderedDict([("config", config), ("state", state)]) from . import config from . import state class route_selection_options(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-network-instance-l2 - based on the path /network-instances/network-instance/protocols/protocol/bgp/global/afi-safis/afi-safi/route-selection-options. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: Parameters relating to options for route selection """ __slots__ = ("_path_helper", "_extmethods", "__config", "__state") _yang_name = "route-selection-options" _pybind_generated_by = "container" def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__config = YANGDynClass( base=config.config, is_container="container", yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=True, ) self.__state = YANGDynClass( base=state.state, is_container="container", yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=True, ) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path() + [self._yang_name] else: return [ "network-instances", "network-instance", "protocols", "protocol", "bgp", "global", "afi-safis", "afi-safi", "route-selection-options", ] def _get_config(self): """ Getter method for config, mapped from YANG variable /network_instances/network_instance/protocols/protocol/bgp/global/afi_safis/afi_safi/route_selection_options/config (container) YANG Description: Configuration parameters relating to route selection options """ return self.__config def _set_config(self, v, load=False): """ Setter method for config, mapped from YANG variable /network_instances/network_instance/protocols/protocol/bgp/global/afi_safis/afi_safi/route_selection_options/config (container) If this variable is read-only (config: false) in the source YANG file, then _set_config is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_config() directly. YANG Description: Configuration parameters relating to route selection options """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=config.config, is_container="container", yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=True, ) except (TypeError, ValueError): raise ValueError( { "error-string": """config must be of a type compatible with container""", "defined-type": "container", "generated-type": """YANGDynClass(base=config.config, is_container='container', yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=True)""", } ) self.__config = t if hasattr(self, "_set"): self._set() def _unset_config(self): self.__config = YANGDynClass( base=config.config, is_container="container", yang_name="config", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=True, ) def _get_state(self): """ Getter method for state, mapped from YANG variable /network_instances/network_instance/protocols/protocol/bgp/global/afi_safis/afi_safi/route_selection_options/state (container) YANG Description: State information for the route selection options """ return self.__state def _set_state(self, v, load=False): """ Setter method for state, mapped from YANG variable /network_instances/network_instance/protocols/protocol/bgp/global/afi_safis/afi_safi/route_selection_options/state (container) If this variable is read-only (config: false) in the source YANG file, then _set_state is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_state() directly. YANG Description: State information for the route selection options """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=state.state, is_container="container", yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=True, ) except (TypeError, ValueError): raise ValueError( { "error-string": """state must be of a type compatible with container""", "defined-type": "container", "generated-type": """YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=True)""", } ) self.__state = t if hasattr(self, "_set"): self._set() def _unset_state(self): self.__state = YANGDynClass( base=state.state, is_container="container", yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=True, ) config = __builtin__.property(_get_config, _set_config) state = __builtin__.property(_get_state, _set_state) _pyangbind_elements = OrderedDict([("config", config), ("state", state)])
napalm-automation/napalm-yang
napalm_yang/models/openconfig/network_instances/network_instance/protocols/protocol/bgp/global_/afi_safis/afi_safi/route_selection_options/__init__.py
Python
apache-2.0
18,590
# -*- coding: utf-8 -*- from operator import attrgetter from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType from pyangbind.lib.yangtypes import RestrictedClassType from pyangbind.lib.yangtypes import TypedListType from pyangbind.lib.yangtypes import YANGBool from pyangbind.lib.yangtypes import YANGListType from pyangbind.lib.yangtypes import YANGDynClass from pyangbind.lib.yangtypes import ReferenceType from pyangbind.lib.base import PybindBase from collections import OrderedDict from decimal import Decimal from bitarray import bitarray import six # PY3 support of some PY2 keywords (needs improved) if six.PY3: import builtins as __builtin__ long = int elif six.PY2: import __builtin__ from . import state class unknown_tlv(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-network-instance - based on the path /network-instances/network-instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa-types/lsa-type/lsas/lsa/opaque-lsa/grace-lsa/tlvs/tlv/unknown-tlv. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: An unknown TLV within the context. Unknown TLVs are defined to be the set of TLVs that are not modelled within the OpenConfig model, or are unknown to the local system such that it cannot decode their value. """ __slots__ = ("_path_helper", "_extmethods", "__state") _yang_name = "unknown-tlv" _pybind_generated_by = "container" def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__state = YANGDynClass( base=state.state, is_container="container", yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=False, ) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path() + [self._yang_name] else: return [ "network-instances", "network-instance", "protocols", "protocol", "ospfv2", "areas", "area", "lsdb", "lsa-types", "lsa-type", "lsas", "lsa", "opaque-lsa", "grace-lsa", "tlvs", "tlv", "unknown-tlv", ] def _get_state(self): """ Getter method for state, mapped from YANG variable /network_instances/network_instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa_types/lsa_type/lsas/lsa/opaque_lsa/grace_lsa/tlvs/tlv/unknown_tlv/state (container) YANG Description: Contents of an unknown TLV within the LSA """ return self.__state def _set_state(self, v, load=False): """ Setter method for state, mapped from YANG variable /network_instances/network_instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa_types/lsa_type/lsas/lsa/opaque_lsa/grace_lsa/tlvs/tlv/unknown_tlv/state (container) If this variable is read-only (config: false) in the source YANG file, then _set_state is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_state() directly. YANG Description: Contents of an unknown TLV within the LSA """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=state.state, is_container="container", yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=False, ) except (TypeError, ValueError): raise ValueError( { "error-string": """state must be of a type compatible with container""", "defined-type": "container", "generated-type": """YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=False)""", } ) self.__state = t if hasattr(self, "_set"): self._set() def _unset_state(self): self.__state = YANGDynClass( base=state.state, is_container="container", yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=False, ) state = __builtin__.property(_get_state) _pyangbind_elements = OrderedDict([("state", state)]) from . import state class unknown_tlv(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module openconfig-network-instance-l2 - based on the path /network-instances/network-instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa-types/lsa-type/lsas/lsa/opaque-lsa/grace-lsa/tlvs/tlv/unknown-tlv. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: An unknown TLV within the context. Unknown TLVs are defined to be the set of TLVs that are not modelled within the OpenConfig model, or are unknown to the local system such that it cannot decode their value. """ __slots__ = ("_path_helper", "_extmethods", "__state") _yang_name = "unknown-tlv" _pybind_generated_by = "container" def __init__(self, *args, **kwargs): self._path_helper = False self._extmethods = False self.__state = YANGDynClass( base=state.state, is_container="container", yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=False, ) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path() + [self._yang_name] else: return [ "network-instances", "network-instance", "protocols", "protocol", "ospfv2", "areas", "area", "lsdb", "lsa-types", "lsa-type", "lsas", "lsa", "opaque-lsa", "grace-lsa", "tlvs", "tlv", "unknown-tlv", ] def _get_state(self): """ Getter method for state, mapped from YANG variable /network_instances/network_instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa_types/lsa_type/lsas/lsa/opaque_lsa/grace_lsa/tlvs/tlv/unknown_tlv/state (container) YANG Description: Contents of an unknown TLV within the LSA """ return self.__state def _set_state(self, v, load=False): """ Setter method for state, mapped from YANG variable /network_instances/network_instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa_types/lsa_type/lsas/lsa/opaque_lsa/grace_lsa/tlvs/tlv/unknown_tlv/state (container) If this variable is read-only (config: false) in the source YANG file, then _set_state is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_state() directly. YANG Description: Contents of an unknown TLV within the LSA """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass( v, base=state.state, is_container="container", yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=False, ) except (TypeError, ValueError): raise ValueError( { "error-string": """state must be of a type compatible with container""", "defined-type": "container", "generated-type": """YANGDynClass(base=state.state, is_container='container', yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace='http://openconfig.net/yang/network-instance', defining_module='openconfig-network-instance', yang_type='container', is_config=False)""", } ) self.__state = t if hasattr(self, "_set"): self._set() def _unset_state(self): self.__state = YANGDynClass( base=state.state, is_container="container", yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions=None, namespace="http://openconfig.net/yang/network-instance", defining_module="openconfig-network-instance", yang_type="container", is_config=False, ) state = __builtin__.property(_get_state) _pyangbind_elements = OrderedDict([("state", state)])
napalm-automation/napalm-yang
napalm_yang/models/openconfig/network_instances/network_instance/protocols/protocol/ospfv2/areas/area/lsdb/lsa_types/lsa_type/lsas/lsa/opaque_lsa/grace_lsa/tlvs/tlv/unknown_tlv/__init__.py
Python
apache-2.0
12,510
# Copyright 2020 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import six from rally.common.i18n import _ from rally.common import logging from rally import consts from rally.task import context from rally_ovs.plugins.ovs import ovnclients LOG = logging.getLogger(__name__) @context.configure(name="ovn-nbctld", order=112) class OvnNbctlDaemonContext(ovnclients.OvnClientMixin, context.Context): CONFIG_SCHEMA = { "type": "object", "$schema": consts.JSON_SCHEMA, "properties": { "daemon_mode": {"type": "boolean"}, }, "additionalProperties": True } DEFAULT_CONFIG = { "daemon_mode": True, } @logging.log_task_wrapper(LOG.info, _("Enter context: `ovn-nbctld`")) def setup(self): super(OvnNbctlDaemonContext, self).setup() if self.config["daemon_mode"]: self.context["daemon_socket"] = self._restart_daemon() else: self._stop_daemon() @logging.log_task_wrapper(LOG.info, _("Exit context: `ovn-nbctld`")) def cleanup(self): pass
openvswitch/ovn-scale-test
rally_ovs/plugins/ovs/context/ovnnbctl_daemon.py
Python
apache-2.0
1,593
# -*- coding: utf-8 -*- # Copyright 2020 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the gcp module - log.py""" import typing import unittest import mock from tests.providers.gcp import gcp_mocks class GoogleCloudLogTest(unittest.TestCase): """Test Google Cloud Log class.""" # pylint: disable=line-too-long @typing.no_type_check @mock.patch('libcloudforensics.providers.gcp.internal.log.GoogleCloudLog.GclApi') def testListLogs(self, mock_gcl_api): """Test that logs of project are correctly listed.""" logs = mock_gcl_api.return_value.logs.return_value.list logs.return_value.execute.return_value = gcp_mocks.MOCK_LOGS_LIST list_logs = gcp_mocks.FAKE_LOGS.ListLogs() self.assertEqual(2, len(list_logs)) self.assertEqual(gcp_mocks.FAKE_LOG_LIST[0], list_logs[0]) @typing.no_type_check @mock.patch('libcloudforensics.providers.gcp.internal.log.GoogleCloudLog.GclApi') def testExecuteQuery(self, mock_gcl_api): """Test that logs of project are correctly queried.""" query = mock_gcl_api.return_value.entries.return_value.list query.return_value.execute.return_value = gcp_mocks.MOCK_LOG_ENTRIES qfilter = ['*'] query_logs = gcp_mocks.FAKE_LOGS.ExecuteQuery(qfilter) self.assertEqual(2, len(query_logs)) self.assertEqual(gcp_mocks.FAKE_LOG_ENTRIES[0], query_logs[0])
google/cloud-forensics-utils
tests/providers/gcp/internal/test_log.py
Python
apache-2.0
1,867
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'Localisation' db.create_table(u'cms_localisation', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('country_code', self.gf('django.db.models.fields.CharField')(max_length=2)), ('language_code', self.gf('django.db.models.fields.CharField')(max_length=3)), )) db.send_create_signal(u'cms', ['Localisation']) # Adding field 'Post.localisation' db.add_column(u'cms_post', 'localisation', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['cms.Localisation'], null=True, blank=True), keep_default=False) # Deleting field 'Category.site' db.delete_column(u'cms_category', 'site_id') # Adding field 'Category.localisation' db.add_column(u'cms_category', 'localisation', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['cms.Localisation'], null=True, blank=True), keep_default=False) def backwards(self, orm): # Deleting model 'Localisation' db.delete_table(u'cms_localisation') # Deleting field 'Post.localisation' db.delete_column(u'cms_post', 'localisation_id') # Adding field 'Category.site' db.add_column(u'cms_category', 'site', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['sites.Site'], null=True, blank=True), keep_default=False) # Deleting field 'Category.localisation' db.delete_column(u'cms_category', 'localisation_id') models = { u'auth.group': { 'Meta': {'object_name': 'Group'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': {'ordering': "(u'content_type__app_label', u'content_type__model', u'codename')", 'unique_together': "((u'content_type', u'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "u'user_set'", 'blank': 'True', 'to': u"orm['auth.Group']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "u'user_set'", 'blank': 'True', 'to': u"orm['auth.Permission']"}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, u'cms.category': { 'Meta': {'ordering': "('language', 'position', 'title')", 'object_name': 'Category'}, 'featured_in_navbar': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'language': ('django.db.models.fields.CharField', [], {'max_length': '6', 'null': 'True', 'blank': 'True'}), 'last_author': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'category_last_author'", 'null': 'True', 'to': u"orm['auth.User']"}), 'localisation': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['cms.Localisation']", 'null': 'True', 'blank': 'True'}), 'position': ('django.db.models.fields.PositiveIntegerField', [], {'null': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '255'}), 'source': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['cms.Category']", 'null': 'True', 'blank': 'True'}), 'subtitle': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '200', 'null': 'True', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'uuid': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '32', 'unique': 'True', 'null': 'True', 'blank': 'True'}) }, u'cms.localisation': { 'Meta': {'object_name': 'Localisation'}, 'country_code': ('django.db.models.fields.CharField', [], {'max_length': '2'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'language_code': ('django.db.models.fields.CharField', [], {'max_length': '3'}) }, u'cms.post': { 'Meta': {'ordering': "('-created_at',)", 'object_name': 'Post'}, 'content': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'created_at': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'featured': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'featured_in_category': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'language': ('django.db.models.fields.CharField', [], {'max_length': '6', 'null': 'True', 'blank': 'True'}), 'last_author': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'post_last_author'", 'null': 'True', 'to': u"orm['auth.User']"}), 'localisation': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['cms.Localisation']", 'null': 'True', 'blank': 'True'}), 'modified_at': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'db_index': 'True', 'blank': 'True'}), 'owner': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['auth.User']", 'null': 'True', 'blank': 'True'}), 'primary_category': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'primary_modelbase_set'", 'null': 'True', 'to': u"orm['cms.Category']"}), 'related_posts': ('sortedm2m.fields.SortedManyToManyField', [], {'related_name': "'related_posts_rel_+'", 'blank': 'True', 'to': u"orm['cms.Post']"}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '255'}), 'source': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['cms.Post']", 'null': 'True', 'blank': 'True'}), 'subtitle': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '200', 'null': 'True', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'uuid': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '32', 'unique': 'True', 'null': 'True', 'blank': 'True'}) }, u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) } } complete_apps = ['cms']
universalcore/unicore-cms-django
cms/migrations/0013_auto__add_localisation__add_field_post_localisation__del_field_categor.py
Python
bsd-2-clause
9,317
"""Navigation along a white line using visual feedback.""" import numpy as np try: import cv2 except ImportError: print "You need OpenCV to use vision modules, sorry." sys.exit(1) from util import Enum, rotateImage from base import DependentFrameProcessor from main import main from linedetection import Line, LineDetector class LineWalker(DependentFrameProcessor): """Navigates parallel to a white line boundary of a pickup/dropoff region.""" State = Enum(['INIT', 'SEARCHING', 'GOOD', 'BAD', 'FAILED']) epsilonLineAngle = 2.0 # if white line is at an angle less than this, no correction is required (stops bot from oscillating around zero) maxLineAngle = 75.0 # if white line is at angle greater than this, either line detected is spurious or we are way off for line-walking def __init__(self, options, processorPool): DependentFrameProcessor.__init__(self, options, processorPool) self.detector = processorPool.getProcessorByType(LineDetector) if self.detector is None: self.loge("__init__", "Could not find a LineDetector; will not activate :(") self.state = LineWalker.State.INIT def initialize(self, imageIn, timeNow): #self.image = imageIn #self.imageSize = (self.image.shape[1], self.image.shape[0]) # (width, height) self.headingError = 0.0 # [Sim] Need to get live values from bot_loc (?) self.sim = False self.heading = 0.0 # degrees if self.detector is not None: self.active = True else: self.state = LineWalker.State.FAILED def process(self, imageIn, timeNow): #self.image = imageIn self.headingError = 0.0 # [Sim] Turn imageIn by current angle = self.heading if self.sim and self.heading != 0.0: #self.logd("process", "Heading = %.2f" % self.heading) imageIn = rotateImage(imageIn, self.heading) # Grab detected line, if any if self.detector is None: return # skip if we don't have a detector and were still called to process self.state = LineWalker.State.SEARCHING if self.detector.state is LineDetector.State.FOUND: # skip if line not found # TODO skip if confidence is low whiteLine = self.detector.primaryLine if self.gui: cv2.circle(self.detector.imageOut, whiteLine.ptLeft, 10, (255, 0, 0), 2) cv2.circle(self.detector.imageOut, whiteLine.ptRight, 10, (255, 0, 0), 2) if whiteLine.valid and abs(whiteLine.angle) >= self.epsilonLineAngle and abs(whiteLine.angle) <= self.maxLineAngle: # Compute heading error between self and line; TODO use actual bot heading, and reject very high changes (position, angle) as invalid self.headingError = -whiteLine.angle self.state = LineWalker.State.GOOD else: self.state = LineWalker.State.BAD # [Sim] Artificially change self heading if self.sim and self.headingError != 0.0: if whiteLine.ptLeft[1] < whiteLine.ptRight[1]: self.heading += 1.0 else: self.heading -= 1.0 # TODO Based on self.detector.state, iterate through move-check loop return True, self.detector.imageOut def onKeyPress(self, key, keyChar=None): if keyChar == None: # special key keyByte = key & 0xff if keyByte == 0x51: # LEFT self.heading -= 1.0 elif keyByte == 0x53: # RIGHT self.heading += 1.0 return True
IEEERobotics/high-level
qwe/vision/linewalking.py
Python
bsd-2-clause
3,459
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('routes', '0003_add_validators'), ('redirects', '0001_initial'), ] operations = [ migrations.CreateModel( name='URLRedirect', fields=[ ('route_ptr', models.OneToOneField(to='routes.Route', auto_created=True, primary_key=True, serialize=False, parent_link=True)), ('target', models.URLField(max_length=2000)), ('permanent', models.BooleanField(default=False)), ], options={ 'abstract': False, }, bases=('routes.route',), ), ]
Ian-Foote/django-conman
conman/redirects/migrations/0002_urlredirect.py
Python
bsd-2-clause
776
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Changing field 'VisitRegistrationErrorLog.error_type' db.alter_column(u'clinics_visitregistrationerrorlog', 'error_type', self.gf('django.db.models.fields.CharField')(max_length=50)) def backwards(self, orm): # Changing field 'VisitRegistrationErrorLog.error_type' db.alter_column(u'clinics_visitregistrationerrorlog', 'error_type', self.gf('django.db.models.fields.PositiveIntegerField')()) models = { u'auth.group': { 'Meta': {'object_name': 'Group'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': {'ordering': "(u'content_type__app_label', u'content_type__model', u'codename')", 'unique_together': "((u'content_type', u'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "u'user_set'", 'blank': 'True', 'to': u"orm['auth.Group']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "u'user_set'", 'blank': 'True', 'to': u"orm['auth.Permission']"}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, u'clinics.clinic': { 'Meta': {'object_name': 'Clinic'}, 'category': ('django.db.models.fields.CharField', [], {'max_length': '32', 'blank': 'True'}), 'code': ('django.db.models.fields.PositiveIntegerField', [], {'unique': 'True'}), 'contact': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['rapidsms.Contact']", 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_renovated': ('django.db.models.fields.CharField', [], {'max_length': '4', 'blank': 'True'}), 'lga': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'lga_rank': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'location': ('django.contrib.gis.db.models.fields.PointField', [], {'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '100'}), 'pbf_rank': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '50'}), 'town': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'updated': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'ward': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'year_opened': ('django.db.models.fields.CharField', [], {'max_length': '4', 'blank': 'True'}) }, u'clinics.clinicstaff': { 'Meta': {'object_name': 'ClinicStaff'}, 'clinic': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['clinics.Clinic']"}), 'contact': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['rapidsms.Contact']", 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_manager': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'staff_type': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'updated': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['auth.User']", 'null': 'True', 'blank': 'True'}), 'year_started': ('django.db.models.fields.CharField', [], {'max_length': '4', 'blank': 'True'}) }, u'clinics.clinicstatistic': { 'Meta': {'unique_together': "[('clinic', 'statistic', 'month')]", 'object_name': 'ClinicStatistic'}, 'clinic': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['clinics.Clinic']"}), 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'float_value': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'int_value': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'month': ('django.db.models.fields.DateField', [], {}), 'rank': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'statistic': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['statistics.Statistic']"}), 'text_value': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'updated': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, u'clinics.patient': { 'Meta': {'object_name': 'Patient'}, 'clinic': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['clinics.Clinic']"}), 'contact': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['rapidsms.Contact']", 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'mobile': ('django.db.models.fields.CharField', [], {'max_length': '11', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}), 'serial': ('django.db.models.fields.PositiveIntegerField', [], {}) }, u'clinics.region': { 'Meta': {'unique_together': "(('external_id', 'type'),)", 'object_name': 'Region'}, 'alternate_name': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'boundary': ('django.contrib.gis.db.models.fields.MultiPolygonField', [], {}), 'external_id': ('django.db.models.fields.IntegerField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'type': ('django.db.models.fields.CharField', [], {'default': "'lga'", 'max_length': '16'}) }, u'clinics.service': { 'Meta': {'object_name': 'Service'}, 'code': ('django.db.models.fields.PositiveIntegerField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '50'}) }, u'clinics.visit': { 'Meta': {'object_name': 'Visit'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'patient': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['clinics.Patient']"}), 'service': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['clinics.Service']", 'null': 'True', 'blank': 'True'}), 'staff': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['clinics.ClinicStaff']", 'null': 'True', 'blank': 'True'}), 'visit_time': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}) }, u'clinics.visitregistrationerror': { 'Meta': {'object_name': 'VisitRegistrationError'}, 'error_count': ('django.db.models.fields.PositiveIntegerField', [], {}), 'error_type': ('django.db.models.fields.PositiveIntegerField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'sender': ('django.db.models.fields.CharField', [], {'max_length': '20'}) }, u'clinics.visitregistrationerrorlog': { 'Meta': {'object_name': 'VisitRegistrationErrorLog'}, 'error_type': ('django.db.models.fields.CharField', [], {'max_length': '50'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'message': ('django.db.models.fields.CharField', [], {'max_length': '160'}), 'message_date': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'sender': ('django.db.models.fields.CharField', [], {'max_length': '20'}) }, u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, u'rapidsms.contact': { 'Meta': {'object_name': 'Contact'}, 'created_on': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'language': ('django.db.models.fields.CharField', [], {'max_length': '6', 'blank': 'True'}), 'modified_on': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}) }, u'statistics.statistic': { 'Meta': {'object_name': 'Statistic'}, 'group': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['statistics.StatisticGroup']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '255'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '50'}), 'statistic_type': ('django.db.models.fields.CharField', [], {'max_length': '32'}) }, u'statistics.statisticgroup': { 'Meta': {'object_name': 'StatisticGroup'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '255'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '50'}) } } complete_apps = ['clinics']
myvoice-nigeria/myvoice
myvoice/clinics/migrations/0014_auto__chg_field_visitregistrationerrorlog_error_type.py
Python
bsd-2-clause
13,224
import os import numpy as np import re import sys try: import h5py except ImportError: h5py = None ''' try: from collections import OrderedDict except ImportError: from ordereddict import OrderedDict ''' from .. import logger, logging from .base import MFPackage, MissingFile from .name import Modflow _re_fmtin = re.compile( r'\((?P<body>(?P<rep>\d*)(?P<symbol>[IEFG][SN]?)(?P<w>\d+)(\.(?P<d>\d+))?' r'|FREE|BINARY)\)') class MFFileReader(object): """MODFLOW file reader""" _parent_class = MFPackage def __init__(self, f=None, parent=None): """Initialize with a file and an instance of a parent class Parameters ---------- f : str, file-like object or None A path to a file, or a file-like reader with with a 'readlines' method, such as BytesIO. If None, then it is obtained from parent.fpath, or parent.fname parent : instance of MFPackage """ # Set up logger self.logger = logging.getLogger(self.__class__.__name__) self.logger.setLevel(logger.level) if parent is None: parent = self._parent_class() if not isinstance(parent, self._parent_class): self.logger.error( "'parent' should be an instance of a %r object; found %r", self._parent_class.__name__, parent.__class__.__name__) self.parent = parent if f is None: if getattr(parent, 'fpath', None) is not None: f = parent.fpath elif getattr(parent, 'fname', None) is not None: f = parent.fname else: raise ValueError('unsure how to open file') # Read data if hasattr(f, 'readlines'): # it is a file reader object, e.g. BytesIO self.fname = f.__class__.__name__ self.lines = f.readlines() else: self.fpath = self.parent.fpath = f if getattr(self, 'fname', None) is None: self.fname = os.path.split(self.parent.fpath)[1] # Read whole file at once, then close it with open(self.parent.fpath, 'r') as fp: self.lines = fp.readlines() if self.parent.nam is None: self.parent.nam = Modflow() try: self.parent.nam.ref_dir = os.path.dirname(self.fpath) except: pass self.logger.info("read file '%s' with %d lines", self.fname, len(self.lines)) self.lineno = 0 self.data_set_num = None def __len__(self): """Returns number of lines""" return len(self.lines) def location_exception(self, e): """Use to show location of exception while reading file Example: fp = _MFFileReader(fpath, self) try: fp.read_text(0) ... fp.check_end() except Exception as e: exec(fp.location_exception(e)) """ location = '%s:%s:%s:Data set %s:' % \ (self.parent.__class__.__name__, self.fname, self.lineno, self.data_set_num) if sys.version_info[0] < 3: return "import sys; raise type(e), type(e)('" + location + "' + " \ "str(e)), sys.exc_info()[2]" else: return "import sys; raise type(e)(str(e) + '" + location + "' + " \ "str(e)).with_traceback(sys.exc_info()[2])" def check_end(self): """Check end of file and show messages in logger on status""" if len(self) == self.lineno: self.logger.info("finished reading %d lines", self.lineno) elif len(self) > self.lineno: remain = len(self) - self.lineno a, b = 's', '' if remain == 1: b, a = a, b self.logger.warn( "finished reading %d lines, but %d line%s remain%s", self.lineno, remain, a, b) else: raise ValueError("%d > %d ?" % (self.lineno, len(self))) @property def curinfo(self): """Returns line and data set number info""" return str(self.lineno) + ':Data set ' + str(self.data_set_num) @property def not_eof(self): """Reader is not at the end of file (EOF)""" return self.lineno < len(self.lines) @property def curline(self): """Return the current line""" try: if self.lineno == 0: return '' else: return self.lines[self.lineno - 1] except IndexError: self.logger.error('%s:Unexpected end of file', self.curinfo) raise IndexError('Unexpected end of file') def nextline(self, data_set_num=None): """Get next line, setting data set number and increment lineno""" if data_set_num is not None: self.data_set_num = data_set_num self.logger.debug('%s:using nextline', self.curinfo) self.lineno += 1 try: line = self.lines[self.lineno - 1] except IndexError: self.lineno -= 1 self.logger.error('%s:Unexpected end of file', self.curinfo) raise IndexError('Unexpected end of file') if data_set_num is not None: self.logger.debug( '%s:returning line with length %d:%r', self.curinfo, len(line), line) return line def readline(self): """Alias for nextline()""" return self.nextline() def conv(self, item, fmt, name=None): """Convert item to format fmt Parameters ---------- item : str fmt : str, default ('s') 's' for string or no conversion (default) 'i' for integer 'f' for float name : str or None Optional name to provide context information for debugging """ try: if type(fmt) == np.dtype: return fmt.type(item) elif fmt == 's': # string return item elif fmt == 'i': # integer return int(item) elif fmt == 'f': # any floating-point number # typically either a REAL or DOUBLE PRECISION return self.parent._float_type.type(item) else: raise ValueError('Unknown fmt code %r' % (fmt,)) except ValueError: if name is not None: msg = 'Cannot cast %r of %r to type %r' % (name, item, fmt) else: msg = 'Cannot cast %r to type %r' % (item, fmt) raise ValueError(msg) def get_items(self, data_set_num=None, num_items=None, fmt='s', multiline=False): """Get items from one or more lines (if multiline) into a list If num_items is defined, then only this count will be returned and any remaining items from the line will be ignored. If there are too few items on the line, the values will be some form of "zero", such as 0, 0.0 or ''. However, if `multiline=True`, then multiple lines can be read to reach num_items. If fmt is defined, it must be: - 's' for string or no conversion (default) - 'i' for integer - 'f' for float, as defined by parent._float_type """ if data_set_num is not None: self.data_set_num = data_set_num self.logger.debug( '%s:using get_items for num_items=%s', self.curinfo, num_items) startln = self.lineno + 1 fill_missing = False if num_items is None or not multiline: items = self.nextline().split() if num_items is not None and len(items) > num_items: items = items[:num_items] if (not multiline and num_items is not None and len(items) < num_items): fill_missing = (num_items - len(items)) else: assert isinstance(num_items, int), type(num_items) assert num_items > 0, num_items items = [] while len(items) < num_items: items += self.nextline().split() if len(items) > num_items: # trim off too many items = items[:num_items] if fmt == 's': res = items else: res = [self.conv(x, fmt) for x in items] if fill_missing: if fmt == 's': fill_value = '' else: fill_value = '0' res += [self.conv(fill_value, fmt)] * fill_missing if data_set_num is not None: if multiline: toline = ' to %s' % (self.lineno,) else: toline = '' self.logger.debug('%s:read %d items from line %d%s', self.data_set_num, num_items, startln, toline) return res def get_named_items(self, data_set_num, names, fmt='s'): """Get items into dict. See get_items for fmt usage""" items = self.get_items(data_set_num, len(names), fmt) res = {} for name, item in zip(names, items): if fmt != 's': item = self.conv(item, fmt, name) res[name] = item return res def read_named_items(self, data_set_num, names, fmt='s'): """Read items into parent. See get_items for fmt usage""" startln = self.lineno + 1 items = self.get_named_items(data_set_num, names, fmt) for name in items.keys(): setattr(self.parent, name, items[name]) self.logger.debug('%s:read %d items from line %d', self.data_set_num, len(items), startln) def read_text(self, data_set_num=0): """Reads 0 or more text (comment) for lines that start with '#'""" startln = self.lineno + 1 self.parent.text = [] while True: try: line = self.nextline(data_set_num) except IndexError: break if line.startswith('#'): line = line[1:].strip() self.parent.text.append(line) else: self.lineno -= 1 # scroll back one? break self.logger.debug('%s:read %d lines of text from line %d to %d', self.data_set_num, len(self.parent.text), startln, self.lineno) def read_options(self, data_set_num, process_aux=True): """Read options, and optionally process auxiliary variables""" line = self.nextline(data_set_num) self.parent.Options = line.upper().split() if hasattr(self.parent, 'valid_options'): for opt in self.parent.Options: if opt not in self.parent.Options: self.logger.warn("%s:unrecognised option %r", self.data_set_num, opt) if process_aux: raise NotImplementedError else: self.logger.debug('%s:read %d options from line %d:%s', self.data_set_num, len(self.parent.Options), self.lineno, self.parent.Options) def read_parameter(self, data_set_num, names): """Read [PARAMETER values] This optional item must start with the word "PARAMETER". If not found, then names are set to 0. Parameter names are provided in a list, and are stored as integers to the parent object. """ startln = self.lineno + 1 line = self.nextline(data_set_num) self.lineno -= 1 if line.upper().startswith('PARAMETER'): items = self.get_items(num_items=len(names) + 1) assert items[0].upper() == 'PARAMETER', items[0] for name, item in zip(names, items[1:]): value = self.conv(item, 'i', name) setattr(self.parent, name, value) else: for name in names: setattr(self.parent, name, 0) self.logger.debug('%s:read %d parameters from line %d', self.data_set_num, len(names), startln) def get_array(self, data_set_num, shape, dtype, return_dict=False): """Returns array data, similar to array reading utilities U2DREL, U2DINT, and U1DREL. If return_dict=True, a dict is returned with all other attributes. Inputs: data_set_num - number shape - 1D array, e.g. 10, or 2D array (20, 30) dtype - e.g. np.float32 or 'f' See Page 8-57 from the MODFLOW-2005 mannual for details. """ startln = self.lineno + 1 res = {} first_line = self.nextline(data_set_num) # Comments are considered after a '#' character on the first line if '#' in first_line: res['text'] = first_line[(first_line.find('#') + 1):].strip() num_type = np.dtype(dtype).type res['array'] = ar = np.empty(shape, dtype=dtype) num_items = ar.size def read_array_data(obj, fmtin): '''Helper subroutine to actually read array data''' fmt = _re_fmtin.search(fmtin.upper()) if not fmt: raise ValueError( 'cannot understand Fortran format: ' + repr(fmtin)) fmt = fmt.groupdict() if fmt['body'] == 'BINARY': data_size = ar.size * ar.dtype.itemsize if hasattr(obj, 'read'): data = obj.read(data_size) else: raise NotImplementedError( "not sure how to 'read' from " + repr(obj)) iar = np.fromstring(data, dtype) else: # ASCII items = [] if not hasattr(obj, 'readline'): raise NotImplementedError( "not sure how to 'readline' from " + repr(obj)) if fmt['body'] == 'FREE': while len(items) < num_items: items += obj.readline().split() else: # interpret Fortran format if fmt['rep']: rep = int(fmt['rep']) else: rep = 1 width = int(fmt['w']) while len(items) < num_items: line = obj.readline() pos = 0 for n in range(rep): try: item = line[pos:pos + width].strip() pos += width if item: items.append(item) except IndexError: break iar = np.fromiter(items, dtype=dtype) if iar.size != ar.size: raise ValueError('expected size %s, but found %s' % (ar.size, iar.size)) return iar # First, assume using more modern free-format control line control_line = first_line dat = control_line.split() # First item is the control word res['cntrl'] = cntrl = dat[0].upper() if cntrl == 'CONSTANT': # CONSTANT CNSTNT if len(dat) < 2: raise ValueError( 'expecting to find at least 2 items for CONSTANT') res['cnstnt'] = cnstnt = dat[1] if len(dat) > 2 and 'text' not in res: st = first_line.find(cnstnt) + len(cnstnt) res['text'] = first_line[st:].strip() ar.fill(cnstnt) elif cntrl == 'INTERNAL': # INTERNAL CNSTNT FMTIN [IPRN] if len(dat) < 3: raise ValueError( 'expecting to find at least 3 items for INTERNAL') res['cnstnt'] = cnstnt = dat[1] res['fmtin'] = fmtin = dat[2] if len(dat) >= 4: res['iprn'] = iprn = dat[3] # not used if len(dat) > 4 and 'text' not in res: st = first_line.find(iprn, first_line.find(fmtin)) + len(iprn) res['text'] = first_line[st:].strip() iar = read_array_data(self, fmtin) ar[:] = iar.reshape(shape) * num_type(cnstnt) elif cntrl == 'EXTERNAL': # EXTERNAL Nunit CNSTNT FMTIN IPRN if len(dat) < 5: raise ValueError( 'expecting to find at least 5 items for EXTERNAL') res['nunit'] = nunit = int(dat[1]) res['cnstnt'] = cnstnt = dat[2] res['fmtin'] = fmtin = dat[3].upper() res['iprn'] = iprn = dat[4] # not used if len(dat) > 5 and 'text' not in res: st = first_line.find(iprn, first_line.find(fmtin)) + len(iprn) res['text'] = first_line[st:].strip() # Needs a reference to nam[nunit] if self.parent.nam is None: raise AttributeError( "reference to 'nam' required for EXTERNAL array") try: obj = self.parent.nam[nunit] except KeyError: raise KeyError("nunit %s not in nam", nunit) iar = read_array_data(obj, fmtin) ar[:] = iar.reshape(shape) * num_type(cnstnt) elif cntrl == 'OPEN/CLOSE': # OPEN/CLOSE FNAME CNSTNT FMTIN IPRN if len(dat) < 5: raise ValueError( 'expecting to find at least 5 items for OPEN/CLOSE') res['fname'] = fname = dat[1] res['cnstnt'] = cnstnt = dat[2] res['fmtin'] = fmtin = dat[3].upper() res['iprn'] = iprn = dat[4] if len(dat) > 5 and 'text' not in res: st = first_line.find(iprn, first_line.find(fmtin)) + len(iprn) res['text'] = first_line[st:].strip() with open(fname, 'rb') as fp: iar = read_array_data(fp, fmtin) ar[:] = iar.reshape(shape) * num_type(cnstnt) elif cntrl == 'HDF5': # GMS extension: http://www.xmswiki.com/xms/GMS:MODFLOW_with_HDF5 if not h5py: raise ImportError('h5py module required to read HDF5 data') # HDF5 CNSTNT IPRN "FNAME" "pathInFile" nDim start1 nToRead1 ... file_ch = r'\w/\.\-\+_\(\)' dat = re.findall('([' + file_ch + ']+|"[' + file_ch + ' ]+")', control_line) if len(dat) < 8: raise ValueError('expecting to find at least 8 ' 'items for HDF5; found ' + str(len(dat))) assert dat[0].upper() == 'HDF5', dat[0] res['cnstnt'] = cnstnt = dat[1] try: cnstnt_val = num_type(cnstnt) except ValueError: # e.g. 1.0 as int 1 cnstnt_val = num_type(float(cnstnt)) res['iprn'] = dat[2] res['fname'] = fname = dat[3].strip('"') res['pathInFile'] = pathInFile = dat[4].strip('"') nDim = int(dat[5]) nDim_len = {1: 8, 2: 10, 3: 12} if nDim not in nDim_len: raise ValueError('expecting to nDim to be one of 1, 2, or 3; ' 'found ' + str(nDim)) elif len(dat) < nDim_len[nDim]: raise ValueError( ('expecting to find at least %d items for HDF5 with ' '%d dimensions; found %d') % (nDim_len[nDim], nDim, len(dat))) elif len(dat) > nDim_len[nDim]: token = dat[nDim_len[nDim]] st = first_line.find(token) + len(token) res['text'] = first_line[st:].strip() if nDim >= 1: start1, nToRead1 = int(dat[6]), int(dat[7]) slice1 = slice(start1, start1 + nToRead1) if nDim >= 2: start2, nToRead2 = int(dat[8]), int(dat[9]) slice2 = slice(start2, start2 + nToRead2) if nDim == 3: start3, nToRead3 = int(dat[10]), int(dat[11]) slice3 = slice(start3, start3 + nToRead3) fpath = os.path.join(self.parent.nam.ref_dir, fname) if not os.path.isfile(fpath): raise MissingFile("cannot find file '%s'" % (fpath,)) h5 = h5py.File(fpath, 'r') ds = h5[pathInFile] if nDim == 1: iar = ds[slice1] elif nDim == 2: iar = ds[slice1, slice2] elif nDim == 3: iar = ds[slice1, slice2, slice3] h5.close() ar[:] = iar.reshape(shape) * cnstnt_val elif len(control_line) > 20: # FIXED-FORMAT CONTROL LINE # LOCAT CNSTNT FMTIN IPRN del res['cntrl'] # control word was not used for fixed-format try: res['locat'] = locat = int(control_line[0:10]) res['cnstnt'] = cnstnt = control_line[10:20].strip() if len(control_line) > 20: res['fmtin'] = fmtin = control_line[20:40].strip().upper() if len(control_line) > 40: res['iprn'] = iprn = control_line[40:50].strip() except ValueError: raise ValueError('fixed-format control line not ' 'understood: ' + repr(control_line)) if len(control_line) > 50 and 'text' not in res: res['text'] = first_line[50:].strip() if locat == 0: # all elements are set equal to cnstnt ar.fill(cnstnt) else: nunit = abs(locat) if self.parent.nunit == nunit: obj = self elif self.parent.nam is None: obj = self else: obj = self.parent.nam[nunit] if locat < 0: fmtin = '(BINARY)' iar = read_array_data(obj, fmtin) ar[:] = iar.reshape(shape) * num_type(cnstnt) else: raise ValueError('array control line not understood: ' + repr(control_line)) if 'text' in res: withtext = ' with text "' + res['text'] + '"' else: withtext = '' self.logger.debug( '%s:read %r array with shape %s from line %d to %d%s', self.data_set_num, ar.dtype.char, ar.shape, startln, self.lineno, withtext) if return_dict: return res else: return ar
mwtoews/moflow
moflow/mf/reader.py
Python
bsd-2-clause
22,960
#!/usr/bin/env python import os import sys # Add the project to the path sys.path.insert(0, os.path.dirname(os.path.dirname(__file__))) # setup the environment os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'dicom_review.conf.settings') os.environ.setdefault('PYTHON_EGG_CACHE', '/tmp') from django.core.management import execute_from_command_line execute_from_command_line()
chop-dbhi/django-dicom-review
bin/manage.py
Python
bsd-2-clause
380
import mufsim.gamedb as db import mufsim.stackitems as si from mufsim.interface import network_interface as netifc from mufsim.logger import log from mufsim.errors import MufRuntimeError from mufsim.insts.base import Instruction, instr @instr("descriptors") class InstDescriptors(Instruction): def execute(self, fr): who = fr.data_pop_dbref() if who.value == -1: descrs = netifc.get_descriptors() else: if db.getobj(who).objtype != "player": raise MufRuntimeError("Expected #-1 or player dbref.") descrs = netifc.user_descrs(who.value) for descr in descrs: fr.data_push(descr) fr.data_push(len(descrs)) @instr("descr_array") class InstDescrArray(Instruction): def execute(self, fr): who = fr.data_pop_dbref() if who.value == -1: descrs = netifc.get_descriptors() else: if db.getobj(who).objtype != "player": raise MufRuntimeError("Expected #-1 or player dbref.") descrs = netifc.user_descrs(who.value) fr.data_push_list(descrs) @instr("descrcon") class InstDescrCon(Instruction): def execute(self, fr): descr = fr.data_pop(int) fr.data_push(netifc.descr_con(descr)) @instr("descrdbref") class InstDescrDBRef(Instruction): def execute(self, fr): descr = fr.data_pop(int) ref = netifc.descr_dbref(descr) obj = si.DBRef(ref) fr.data_push(obj) @instr("descr_setuser") class InstDescrSetUser(Instruction): def execute(self, fr): fr.check_underflow(3) pw = fr.data_pop(str) who = fr.data_pop_object() descr = fr.data_pop(int) if who.objtype != "player": raise MufRuntimeError("Expected player dbref.") was = netifc.descr_dbref(descr) if db.getobj(who).password != pw: raise MufRuntimeError("Incorrect password!") if netifc.descr_set_user(descr, who.dbref): was = db.getobj(was) # TODO: actually check password? log("RECONNECTED DESCRIPTOR %d FROM %s TO %s USING PW '%s'" % (descr, was, who, pw)) @instr("descrboot") class InstDescrBoot(Instruction): def execute(self, fr): descr = fr.data_pop(int) who = netifc.descr_dbref(descr) if netifc.descr_disconnect(descr): log("BOOTED DESCRIPTOR %d: %s" % (descr, db.getobj(who))) @instr("descrnotify") class InstDescrNotify(Instruction): def execute(self, fr): fr.check_underflow(2) msg = fr.data_pop(str) descr = fr.data_pop(int) who = netifc.descr_dbref(descr) if netifc.is_descr_online(descr): log("NOTIFY TO DESCR %d, %s: %s" % (descr, db.getobj(who), msg)) @instr("descrflush") class InstDescrFlush(Instruction): def execute(self, fr): descr = fr.data_pop(int) if descr == -1: netifc.flush_all_descrs() log("DESCRFLUSH ALL DESCRS.") elif netifc.is_descr_online(descr): netifc.descr_flush(descr) who = netifc.descr_dbref(descr) log("DESCRFLUSH %d, %s" % (descr, db.getobj(who))) @instr("descr") class InstDescr(Instruction): def execute(self, fr): # TODO: get real descr. fr.data_push(db.getobj(fr.user).descr) @instr("firstdescr") class InstFirstDescr(Instruction): def execute(self, fr): who = fr.data_pop_dbref() if who.value < 0: descrs = netifc.get_descriptors() else: descrs = netifc.user_descrs(who.value) if descrs: fr.data_push(descrs[0]) else: fr.data_push(0) @instr("lastdescr") class InstLastDescr(Instruction): def execute(self, fr): who = fr.data_pop_dbref() if who.value < 0: descrs = netifc.get_descriptors() else: descrs = netifc.user_descrs(who.value) if descrs: fr.data_push(descrs[-1]) else: fr.data_push(0) @instr("nextdescr") class InstNextDescr(Instruction): def execute(self, fr): descr = fr.data_pop(int) descrs = netifc.get_descriptors() if descr in descrs: pos = descrs.index(descr) + 1 if pos >= len(descrs): fr.data_push(0) else: fr.data_push(descrs[pos]) else: fr.data_push(0) @instr("descrbufsize") class InstDescrBufSize(Instruction): def execute(self, fr): descr = fr.data_pop(int) fr.data_push(netifc.descr_bufsize(descr)) @instr("descrsecure?") class InstDescrSecureP(Instruction): def execute(self, fr): descr = fr.data_pop(int) fr.data_push(1 if netifc.descr_secure(descr) else 0) @instr("descruser") class InstDescrUser(Instruction): def execute(self, fr): descr = fr.data_pop(int) who = netifc.descr_user(descr) if who >= 0: fr.data_push(db.getobj(who).name) else: fr.data_push("") @instr("descrhost") class InstDescrHost(Instruction): def execute(self, fr): descr = fr.data_pop(int) fr.data_push(netifc.descr_host(descr)) @instr("descrtime") class InstDescrTime(Instruction): def execute(self, fr): descr = fr.data_pop(int) fr.data_push(int(netifc.descr_time(descr))) @instr("descridle") class InstDescrIdle(Instruction): def execute(self, fr): descr = fr.data_pop(int) fr.data_push(int(netifc.descr_idle(descr))) @instr("descrleastidle") class InstDescrLeastIdle(Instruction): def execute(self, fr): who = fr.data_pop_object() descrs = netifc.user_descrs(who.dbref) idles = [netifc.descr_idle(descr) for descr in descrs] fr.data_push(min(idles)) @instr("descrmostidle") class InstDescrMostIdle(Instruction): def execute(self, fr): who = fr.data_pop_object() descrs = netifc.user_descrs(who.dbref) idles = [netifc.descr_idle(descr) for descr in descrs] fr.data_push(max(idles)) # vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
revarbat/mufsim
mufsim/insts/descriptors.py
Python
bsd-2-clause
6,210
from setuptools import setup setup( name='tracer', version='0.1', description="Symbolically trace concrete inputs.", packages=['tracer', 'tracer.cachemanager' ], install_requires=[ 'shellphish-qemu'], )
angr/tracer
setup.py
Python
bsd-2-clause
207
from django.core.management.base import BaseCommand from twiggy_goodies.django import LogMixin from allmychanges.models import Repo class Command(LogMixin, BaseCommand): help = u"""Deletes all repositories and related information.""" def handle(self, *args, **options): Repo.objects.all().delete()
AllMyChanges/allmychanges.com
allmychanges/management/commands/cleardb.py
Python
bsd-2-clause
318
# THIS FILE IS GENERATED FROM THE PERMUTE SETUP.PY version='0.1.alpha4'
qqqube/permute
permute/version.py
Python
bsd-2-clause
72
class GraphQLException(Exception): pass
tallstreet/graphql-parser-python
graphqlparser/exceptions.py
Python
bsd-2-clause
44
# # Command Generator # # Send SNMP GETBULK request using the following options: # # * with SNMPv2c, community 'public' # * over IPv4/UDP # * to an Agent at demo.snmplabs.com:161 # * with values non-repeaters = 0, max-repetitions = 25 # * for two OIDs in string form # * stop when response OIDs leave the scopes of initial OIDs # from pysnmp.entity.rfc3413.oneliner import cmdgen cmdGen = cmdgen.CommandGenerator() errorIndication, errorStatus, errorIndex, varBindTable = cmdGen.bulkCmd( cmdgen.CommunityData('public'), cmdgen.UdpTransportTarget(('demo.snmplabs.com', 161)), 0, 25, '1.3.6.1.2.1.2.2', '1.3.6.1.2.1.2.3', ) if errorIndication: print(errorIndication) else: if errorStatus: print('%s at %s' % ( errorStatus.prettyPrint(), errorIndex and varBindTable[-1][int(errorIndex)-1][0] or '?' ) ) else: for varBindTableRow in varBindTable: for name, val in varBindTableRow: print('%s = %s' % (name.prettyPrint(), val.prettyPrint()))
ww9rivers/pysnmp
examples/v3arch/oneliner/manager/cmdgen/getbulk-v2c.py
Python
bsd-2-clause
1,059
from __future__ import absolute_import, unicode_literals import re from collections import OrderedDict from django import template from django.template import loader from django.urls import NoReverseMatch, reverse from django.utils import six from django.utils.encoding import force_text, iri_to_uri from django.utils.html import escape, format_html, smart_urlquote from django.utils.safestring import SafeData, mark_safe from rest_framework.compat import apply_markdown, pygments_highlight from rest_framework.renderers import HTMLFormRenderer from rest_framework.utils.urls import replace_query_param register = template.Library() # Regex for adding classes to html snippets class_re = re.compile(r'(?<=class=["\'])(.*)(?=["\'])') @register.tag(name='code') def highlight_code(parser, token): code = token.split_contents()[-1] nodelist = parser.parse(('endcode',)) parser.delete_first_token() return CodeNode(code, nodelist) class CodeNode(template.Node): style = 'emacs' def __init__(self, lang, code): self.lang = lang self.nodelist = code def render(self, context): text = self.nodelist.render(context) return pygments_highlight(text, self.lang, self.style) @register.filter() def with_location(fields, location): return [ field for field in fields if field.location == location ] @register.simple_tag def form_for_link(link): import coreschema properties = OrderedDict([ (field.name, field.schema or coreschema.String()) for field in link.fields ]) required = [ field.name for field in link.fields if field.required ] schema = coreschema.Object(properties=properties, required=required) return mark_safe(coreschema.render_to_form(schema)) @register.simple_tag def render_markdown(markdown_text): if apply_markdown is None: return markdown_text return mark_safe(apply_markdown(markdown_text)) @register.simple_tag def get_pagination_html(pager): return pager.to_html() @register.simple_tag def render_form(serializer, template_pack=None): style = {'template_pack': template_pack} if template_pack else {} renderer = HTMLFormRenderer() return renderer.render(serializer.data, None, {'style': style}) @register.simple_tag def render_field(field, style): renderer = style.get('renderer', HTMLFormRenderer()) return renderer.render_field(field, style) @register.simple_tag def optional_login(request): """ Include a login snippet if REST framework's login view is in the URLconf. """ try: login_url = reverse('rest_framework:login') except NoReverseMatch: return '' snippet = "<li><a href='{href}?next={next}'>Log in</a></li>" snippet = format_html(snippet, href=login_url, next=escape(request.path)) return mark_safe(snippet) @register.simple_tag def optional_docs_login(request): """ Include a login snippet if REST framework's login view is in the URLconf. """ try: login_url = reverse('rest_framework:login') except NoReverseMatch: return 'log in' snippet = "<a href='{href}?next={next}'>log in</a>" snippet = format_html(snippet, href=login_url, next=escape(request.path)) return mark_safe(snippet) @register.simple_tag def optional_logout(request, user): """ Include a logout snippet if REST framework's logout view is in the URLconf. """ try: logout_url = reverse('rest_framework:logout') except NoReverseMatch: snippet = format_html('<li class="navbar-text">{user}</li>', user=escape(user)) return mark_safe(snippet) snippet = """<li class="dropdown"> <a href="#" class="dropdown-toggle" data-toggle="dropdown"> {user} <b class="caret"></b> </a> <ul class="dropdown-menu"> <li><a href='{href}?next={next}'>Log out</a></li> </ul> </li>""" snippet = format_html(snippet, user=escape(user), href=logout_url, next=escape(request.path)) return mark_safe(snippet) @register.simple_tag def add_query_param(request, key, val): """ Add a query parameter to the current request url, and return the new url. """ iri = request.get_full_path() uri = iri_to_uri(iri) return escape(replace_query_param(uri, key, val)) @register.filter def as_string(value): if value is None: return '' return '%s' % value @register.filter def as_list_of_strings(value): return [ '' if (item is None) else ('%s' % item) for item in value ] @register.filter def add_class(value, css_class): """ https://stackoverflow.com/questions/4124220/django-adding-css-classes-when-rendering-form-fields-in-a-template Inserts classes into template variables that contain HTML tags, useful for modifying forms without needing to change the Form objects. Usage: {{ field.label_tag|add_class:"control-label" }} In the case of REST Framework, the filter is used to add Bootstrap-specific classes to the forms. """ html = six.text_type(value) match = class_re.search(html) if match: m = re.search(r'^%s$|^%s\s|\s%s\s|\s%s$' % (css_class, css_class, css_class, css_class), match.group(1)) if not m: return mark_safe(class_re.sub(match.group(1) + " " + css_class, html)) else: return mark_safe(html.replace('>', ' class="%s">' % css_class, 1)) return value @register.filter def format_value(value): if getattr(value, 'is_hyperlink', False): name = six.text_type(value.obj) return mark_safe('<a href=%s>%s</a>' % (value, escape(name))) if value is None or isinstance(value, bool): return mark_safe('<code>%s</code>' % {True: 'true', False: 'false', None: 'null'}[value]) elif isinstance(value, list): if any([isinstance(item, (list, dict)) for item in value]): template = loader.get_template('rest_framework/admin/list_value.html') else: template = loader.get_template('rest_framework/admin/simple_list_value.html') context = {'value': value} return template.render(context) elif isinstance(value, dict): template = loader.get_template('rest_framework/admin/dict_value.html') context = {'value': value} return template.render(context) elif isinstance(value, six.string_types): if ( (value.startswith('http:') or value.startswith('https:')) and not re.search(r'\s', value) ): return mark_safe('<a href="{value}">{value}</a>'.format(value=escape(value))) elif '@' in value and not re.search(r'\s', value): return mark_safe('<a href="mailto:{value}">{value}</a>'.format(value=escape(value))) elif '\n' in value: return mark_safe('<pre>%s</pre>' % escape(value)) return six.text_type(value) @register.filter def items(value): """ Simple filter to return the items of the dict. Useful when the dict may have a key 'items' which is resolved first in Django tempalte dot-notation lookup. See issue #4931 Also see: https://stackoverflow.com/questions/15416662/django-template-loop-over-dictionary-items-with-items-as-key """ return value.items() @register.filter def data(value): """ Simple filter to access `data` attribute of object, specifically coreapi.Document. As per `items` filter above, allows accessing `document.data` when Document contains Link keyed-at "data". See issue #5395 """ return value.data @register.filter def schema_links(section, sec_key=None): """ Recursively find every link in a schema, even nested. """ NESTED_FORMAT = '%s > %s' # this format is used in docs/js/api.js:normalizeKeys links = section.links if section.data: data = section.data.items() for sub_section_key, sub_section in data: new_links = schema_links(sub_section, sec_key=sub_section_key) links.update(new_links) if sec_key is not None: new_links = OrderedDict() for link_key, link in links.items(): new_key = NESTED_FORMAT % (sec_key, link_key) new_links.update({new_key: link}) return new_links return links @register.filter def add_nested_class(value): if isinstance(value, dict): return 'class=nested' if isinstance(value, list) and any([isinstance(item, (list, dict)) for item in value]): return 'class=nested' return '' # Bunch of stuff cloned from urlize TRAILING_PUNCTUATION = ['.', ',', ':', ';', '.)', '"', "']", "'}", "'"] WRAPPING_PUNCTUATION = [('(', ')'), ('<', '>'), ('[', ']'), ('&lt;', '&gt;'), ('"', '"'), ("'", "'")] word_split_re = re.compile(r'(\s+)') simple_url_re = re.compile(r'^https?://\[?\w', re.IGNORECASE) simple_url_2_re = re.compile(r'^www\.|^(?!http)\w[^@]+\.(com|edu|gov|int|mil|net|org)$', re.IGNORECASE) simple_email_re = re.compile(r'^\S+@\S+\.\S+$') def smart_urlquote_wrapper(matched_url): """ Simple wrapper for smart_urlquote. ValueError("Invalid IPv6 URL") can be raised here, see issue #1386 """ try: return smart_urlquote(matched_url) except ValueError: return None @register.filter def urlize_quoted_links(text, trim_url_limit=None, nofollow=True, autoescape=True): """ Converts any URLs in text into clickable links. Works on http://, https://, www. links, and also on links ending in one of the original seven gTLDs (.com, .edu, .gov, .int, .mil, .net, and .org). Links can have trailing punctuation (periods, commas, close-parens) and leading punctuation (opening parens) and it'll still do the right thing. If trim_url_limit is not None, the URLs in link text longer than this limit will truncated to trim_url_limit-3 characters and appended with an ellipsis. If nofollow is True, the URLs in link text will get a rel="nofollow" attribute. If autoescape is True, the link text and URLs will get autoescaped. """ def trim_url(x, limit=trim_url_limit): return limit is not None and (len(x) > limit and ('%s...' % x[:max(0, limit - 3)])) or x safe_input = isinstance(text, SafeData) words = word_split_re.split(force_text(text)) for i, word in enumerate(words): if '.' in word or '@' in word or ':' in word: # Deal with punctuation. lead, middle, trail = '', word, '' for punctuation in TRAILING_PUNCTUATION: if middle.endswith(punctuation): middle = middle[:-len(punctuation)] trail = punctuation + trail for opening, closing in WRAPPING_PUNCTUATION: if middle.startswith(opening): middle = middle[len(opening):] lead = lead + opening # Keep parentheses at the end only if they're balanced. if ( middle.endswith(closing) and middle.count(closing) == middle.count(opening) + 1 ): middle = middle[:-len(closing)] trail = closing + trail # Make URL we want to point to. url = None nofollow_attr = ' rel="nofollow"' if nofollow else '' if simple_url_re.match(middle): url = smart_urlquote_wrapper(middle) elif simple_url_2_re.match(middle): url = smart_urlquote_wrapper('http://%s' % middle) elif ':' not in middle and simple_email_re.match(middle): local, domain = middle.rsplit('@', 1) try: domain = domain.encode('idna').decode('ascii') except UnicodeError: continue url = 'mailto:%s@%s' % (local, domain) nofollow_attr = '' # Make link. if url: trimmed = trim_url(middle) if autoescape and not safe_input: lead, trail = escape(lead), escape(trail) url, trimmed = escape(url), escape(trimmed) middle = '<a href="%s"%s>%s</a>' % (url, nofollow_attr, trimmed) words[i] = mark_safe('%s%s%s' % (lead, middle, trail)) else: if safe_input: words[i] = mark_safe(word) elif autoescape: words[i] = escape(word) elif safe_input: words[i] = mark_safe(word) elif autoescape: words[i] = escape(word) return ''.join(words) @register.filter def break_long_headers(header): """ Breaks headers longer than 160 characters (~page length) when possible (are comma separated) """ if len(header) > 160 and ',' in header: header = mark_safe('<br> ' + ', <br>'.join(header.split(','))) return header
kgeorgy/django-rest-framework
rest_framework/templatetags/rest_framework.py
Python
bsd-2-clause
13,205
""" This module includes a class for interfacing scikit-learn's logistic regression model. """ import numpy as np import sklearn.linear_model from libact.base.interfaces import ProbabilisticModel class LogisticRegression(ProbabilisticModel): """Logistic Regression Classifier References ---------- http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html """ def __init__(self, *args, **kwargs): self.model = sklearn.linear_model.LogisticRegression(*args, **kwargs) def train(self, dataset, *args, **kwargs): return self.model.fit(*(dataset.format_sklearn() + args), **kwargs) def predict(self, feature, *args, **kwargs): return self.model.predict(feature, *args, **kwargs) def score(self, testing_dataset, *args, **kwargs): return self.model.score(*(testing_dataset.format_sklearn() + args), **kwargs) def predict_real(self, feature, *args, **kwargs): dvalue = self.model.decision_function(feature, *args, **kwargs) if len(np.shape(dvalue)) == 1: # n_classes == 2 return np.vstack((-dvalue, dvalue)).T else: return dvalue def predict_proba(self, feature, *args, **kwargs): return self.model.predict_proba(feature, *args, **kwargs)
ntucllab/libact
libact/models/logistic_regression.py
Python
bsd-2-clause
1,314
#=========================================================================== # # MQTT message broker location. Default broker location is port 1883 # for regular and 8883 for SSL. # #=========================================================================== host = '192.168.1.5' port = 1883 # Keep alive time in seconds. Client sends a ping if no other message # is sent in this interval. keepAlive = 60 #=========================================================================== # # User name and password (strings) for broker log in. # #=========================================================================== user = None password = None #=========================================================================== # # Secure connection options. See the paho-mqtt docs for details. # #=========================================================================== # List of certificate files. ca_certs = [ ] certFile = None keyFile = None
TD22057/T-Home
conf/broker.py
Python
bsd-2-clause
955
from decimal import Decimal from functools import partial import html import json from django.core.serializers import serialize from django.core.serializers.json import DjangoJSONEncoder from django.db.models.query import QuerySet from django.utils.encoding import force_str from django.utils.encoding import smart_str from django.utils.formats import number_format from django.utils.functional import Promise from django.utils.html import strip_tags from django.utils.translation import gettext_lazy as _ def field_as_string(obj, field, ascii=False): value = getattr(obj, field + '_csv_display', None) if value is None: value = getattr(obj, field + '_display', None) if value is None: value = getattr(obj, field) if isinstance(value, bool): value = (_('no'), _('yes'))[value] if isinstance(value, float) or isinstance(value, int) or isinstance(value, Decimal): value = number_format(value) if isinstance(value, list) or isinstance(value, QuerySet): value = ", ".join([str(val) for val in value]) return smart_plain_text(value, ascii) def plain_text(html_content): return html.unescape(strip_tags(html_content)) def smart_plain_text(s, ascii=False): if s is None: return '' try: # Converts to unicode, remove HTML tags, convert HTML entities us = plain_text(str(s)) if ascii: return smart_str(us) return us except UnicodeDecodeError: return smart_str(s) class DjangoJSONEncoder(DjangoJSONEncoder): """ Taken (slightly modified) from: http://stackoverflow.com/questions/2249792/json-serializing-django-models-with-simplejson """ def default(self, obj): # https://docs.djangoproject.com/en/dev/topics/serialization/#id2 if isinstance(obj, Promise): return force_str(obj) if isinstance(obj, QuerySet): # `default` must return a python serializable # structure, the easiest way is to load the JSON # string produced by `serialize` and return it return json.loads(serialize('json', obj)) return force_str(obj) # partial function, we can now use dumps(my_dict) instead # of dumps(my_dict, cls=DjangoJSONEncoder) json_django_dumps = partial(json.dumps, cls=DjangoJSONEncoder)
makinacorpus/Geotrek
mapentity/serializers/helpers.py
Python
bsd-2-clause
2,369