code
stringlengths
2
1.05M
repo_name
stringlengths
5
104
path
stringlengths
4
251
language
stringclasses
1 value
license
stringclasses
15 values
size
int32
2
1.05M
""" Module for base class for Data API objects. """ # Imports # Stdlib from collections import namedtuple import logging import os import re try: import cStringIO as StringIO except ImportError: import StringIO as StringIO # Local from doekbase.data_api.util import get_logger, log_start, log_end from doekbase.workspace.client import Workspace from doekbase.data_api.wsfile import WorkspaceFile from doekbase.data_api import cache from doekbase.data_api.util import PerfCollector, collect_performance # Logging _log = get_logger('doekbase.data_api.core') # Globals REF_PATTERN = re.compile("(.+/.+(/[0-9].+)?)|(ws\.[1-9][0-9]+\.[1-9][0-9]+)") g_ws_url = "https://ci.kbase.us/services/ws/" g_shock_url = "https://ci.kbase.us/services/shock-api/" g_handle_url = "https://ci.kbase.us/services/handle_service/" g_use_msgpack = True g_stats = PerfCollector('ObjectAPI') def fix_docs(cls): for name, func in vars(cls).items(): if func is not None and func.__doc__ is None: for parent in cls.__bases__: if hasattr(parent, name): parfunc = getattr(parent, name) if parfunc and hasattr(parfunc, '__doc__'): func.__doc__ = parfunc.__doc__ break return cls #: Name positional parts of WorkspaceInfo tuple WorkspaceInfo = namedtuple('WorkspaceInfo', [ 'id', # ws_id (int) 'workspace', # ws_name 'owner', # username 'moddate', # timestamp 'object', # int 'user_permission', # permission 'globalread', # permission 'lockstat', # lock_status 'metadata' # usermeta ]) def get_token(): try: token = os.environ["KB_AUTH_TOKEN"] except KeyError: raise Exception( "Missing authentication token! Set KB_AUTH_TOKEN environment variable.") class ObjectAPI(object): """ Generic Object API for basic properties and actions of a KBase Data Object. In general, users will not instantiate this object directly, but instead they will create a biology-specific object like `TaxonAPI` or `GenomeAnnotationAPI`. However, methods in this class may be used to get basic shared properties like provenance or metadata. If you find yourself using some form of :meth:`get_data` or :meth:`get_data_subset` frequently, you should consider wrapping those calls in a higher-level method that is specific to the kind of data you want. """ def __init__(self, services=None, token=None, ref=None): """Create new object. Args: services (dict): Service configuration dictionary. Required keys: * workspace_service_url: URL for Workspace, such as `https://ci.kbase.us/services/ws/` ref (str): Object reference, which can be the name of the object (although this is not unique), or a numeric identifier in the format `A/B[/C]` where A is the number of the workspace, B is the number identifying the object, and C is the "version" number of the object. """ if services is None or type(services) != type({}): raise TypeError("You must provide a service configuration dictionary! Found {0}".format(type(services))) elif not services.has_key("workspace_service_url"): raise KeyError("Expecting workspace_service_url key!") if ref is None: raise TypeError("Missing object reference!") elif type(ref) != type("") and type(ref) != type(unicode()): raise TypeError("Invalid reference given, expected string! " "Found {0}".format(type(ref))) elif re.match(REF_PATTERN, ref) is None: raise TypeError("Invalid workspace reference string! Found {0}" .format(ref)) self.services = services self.ref = ref self._token = None ws_url = services["workspace_service_url"] local_workspace = False if '://' in ws_url: # assume a real Workspace server if token is None or len(token.strip()) == 0: self._token = get_token() else: self._token = token _log.debug('Connect to Workspace service at {}'.format(ws_url)) self.ws_client = Workspace(ws_url, token=self._token) else: _log.debug('Load from Workspace file at {}'.format(ws_url)) local_workspace = True self.ws_client = self._init_ws_from_files(ws_url) info_values = self.ws_client.get_object_info_new({ "objects": [{"ref": self.ref}], "includeMetadata": 0, "ignoreErrors": 0}) if not info_values: raise ValueError("Cannot find object: {}".format(self.ref)) oi = info_values[0] self._info = { "object_id": oi[0], "object_name": oi[1], "object_reference": "{0}/{1}".format(oi[6],oi[0]), "object_reference_versioned": "{0}/{1}/{2}".format(oi[6],oi[0],oi[4]), "type_string": oi[2], "save_date": oi[3], "version": oi[4], "saved_by": oi[5], "workspace_id": oi[6], "workspace_name": oi[7], "object_checksum": oi[8], "object_size": oi[9], "object_metadata": oi[10] } self._id = self._info["object_id"] self._name = self._info["object_name"] self._typestring = self.ws_client.translate_to_MD5_types( [self._info["type_string"]]).values()[0] self._version = str(self._info["version"]) self._schema = None self._history = None self._provenance = None self._data = None # Init stats self._stats = g_stats # Init the caching object. Pass in whether the object is # publically available (which can determine whether it is cached) if local_workspace: global_read = True # Local file-workspace objects are public else: wsinfo = self.ws_client.get_workspace_info({ 'id': self._info['workspace_id']}) wsinfo_obj = WorkspaceInfo(*wsinfo) global_read = (wsinfo_obj.globalread == 'r') self._cache = cache.ObjectCache( self._info["object_reference_versioned"], is_public=global_read) # TODO always use a versioned reference to the data object #self.ref = self._info["object_reference_versioned"] @property def stats(self): return self._stats @property def cache_stats(self): return self._cache.stats def _init_ws_from_files(self, path): ext = '.msgpack' extlen = len(ext) WorkspaceFile.use_msgpack = True client = WorkspaceFile(path) num_loaded = 0 for name in os.listdir(path): if name.endswith(ext): ref = name[:-extlen] t0 = log_start(_log, 'load', level=logging.DEBUG, kvp={'ref': ref}) client.load(ref) log_end(_log, t0, 'client.load', level=logging.DEBUG, kvp={'ref': ref}) num_loaded += 1 if num_loaded == 0: raise ValueError('No files with extension "{e}" found in path {p}' .format(e=ext, p=path)) return client @collect_performance(g_stats) def get_schema(self): """ Retrieve the schema associated with this object. Returns: string""" if self._schema is None: self._schema = self.ws_client.get_type_info(self.get_info()["type_string"]) return self._schema @collect_performance(g_stats) def get_typestring(self): """ Retrieve the type identifier string. Returns: string""" return self._typestring @collect_performance(g_stats) def get_info(self): """Retrieve basic properties about this object. Returns: dict object_id object_name object_reference object_reference_versioned type_string save_date version saved_by workspace_id workspace_name object_checksum object_size object_metadata""" return self._info @collect_performance(g_stats) def get_history(self): """ Retrieve the recorded history of this object describing how it has been modified. Returns: list<dict> object_id object_name object_reference object_reference_versioned type_string save_date version saved_by workspace_id workspace_name object_checksum object_size object_metadata """ if self._history == None: history_list = self.ws_client.get_object_history({"ref": self.ref}) self._history = list() for object_info in history_list: self._history.append({ "object_id": object_info[0], "object_name": object_info[1], "object_reference": "{0}/{1}".format(object_info[6],object_info[0]), "object_reference_versioned": "{0}/{1}/{2}".format(object_info[6], object_info[0], object_info[4]), "type_string": object_info[2], "save_date": object_info[3], "version": object_info[4], "saved_by": object_info[5], "workspace_id": object_info[6], "workspace_name": object_info[7], "object_checksum": object_info[8], "object_size": object_info[9], "object_metadata": object_info[10]}) return self._history @collect_performance(g_stats) def get_provenance(self): """ Retrieve the recorded provenance of this object describing how to recreate it. Returns: list<dict> time service_name service_version service_method method_parameters script_name script_version script_command_line input_object_references validated_object_references intermediate_input_ids intermediate_output_ids external_data description """ if self._provenance is None: result = self.ws_client.get_object_provenance([{"ref": self.ref}]) if len(result) > 0: provenance_list = result[0]["provenance"] else: provenance_list = list() self._provenance = list() copy_keys = {"time": "time", "service": "service_name", "service_ver": "service_version", "method": "service_method", "method_params": "method_parameters", "script": "script_name", "script_ver": "script_version", "script_command_line": "script_command_line", "input_ws_objects": "input_object_references", "resolved_ws_objects": "validated_object_references", "intermediate_incoming": "intermediate_input_ids", "intermediate_outgoing": "intermediate_output_ids", "external_data": "external_data", "description": "description"} for object_provenance in provenance_list: action = dict() for k in copy_keys: if k in object_provenance: if isinstance(object_provenance[k], list) and len(object_provenance[k]) == 0: continue action[copy_keys[k]] = object_provenance[k] self._provenance.append(action) return self._provenance @collect_performance(g_stats) def get_id(self): """ Retrieve the internal identifier for this object. Returns: string""" return self._id @collect_performance(g_stats) def get_version(self): """ Retrieve the version identifier for this object. Returns: string""" return self._version @collect_performance(g_stats) def get_name(self): """ Retrieve the name assigned to this object. Returns: string""" return self._name @collect_performance(g_stats) def get_data(self): """Retrieve object data. Returns: dict (contents according to object type)""" return self._cache.get_data(self._get_data_ws) def _get_data_ws(self): return self.ws_client.get_objects([{"ref": self.ref}])[0]["data"] @collect_performance(g_stats) def get_data_subset(self, path_list=None): """Retrieve a subset of data from this object, given a list of paths to the data elements. Args: path_list (list): List of paths, each a string of node names separated by forward slashes, e.g. ['a/bee/sea', 'd/ee/eph/gee'] Returns: dict (contents according to object type and data requested)""" return self._cache.get_data_subset(self._get_data_subset_ws, path_list=path_list) def _get_data_subset_ws(self, path_list=None): return self.ws_client.get_object_subset([{"ref": self.ref, "included": path_list}])[0]["data"] @collect_performance(g_stats) def get_referrers(self, most_recent=True): """Retrieve a dictionary that indicates by type what objects are referring to this object. Args: most_recent: True or False, defaults to True indicating that results should be restricted to the latest version of any referencing object. If this parameter is False, results will contain all versions of any referencing objects. Returns: dict typestring -> object_reference""" referrers = self.ws_client.list_referencing_objects([{"ref": self.ref}])[0] # sort all object references in descending order by time referrers = sorted(referrers, cmp=lambda a,b: a[3] > b[3]) object_refs_by_type = {} # keep track of which objects we have seen so far, the first instance will be the latest # so only keep that reference found_objects = {} for x in referrers: typestring = self.ws_client.translate_to_MD5_types([x[2]]).values()[0] if typestring not in object_refs_by_type: object_refs_by_type[typestring] = [] unversioned_ref = str(x[6]) + "/" + str(x[0]) if most_recent and unversioned_ref in found_objects: continue # Mark an entry for a new object found_objects[unversioned_ref] = None object_refs_by_type[typestring].append(str(x[6]) + "/" + str(x[0]) + "/" + str(x[4])) return object_refs_by_type @collect_performance(g_stats) def copy(self, to_ws=None): """ Performs a naive object copy to a target workspace. A naive object copy is a simple copy that only generates a copy object of this entity, but any referencing entities are not included or considered. More specific object copies should be implemented by specific types that understand their copy semantics for children and other referencing or referenced objects. Args: to_ws : the target workspace to copy the object to, which the user must have permission to write to.""" name = self.get_name() try: return self.ws_client.copy_object({"from": {"ref": self.ref}, "to": {"workspace": to_ws, "name": name}}) except Exception, e: return {"error": e.message} def __eq__(self, other): """Test equality by underlying KBase object ID. """ #print("@@ obj. eq called") return self._id == other._id
kkellerlbl/data_api
lib/doekbase/data_api/core.py
Python
mit
16,991
import exploration_bidder __all__ = ['exploration_bidder']
strands-project/strands_exploration
exploration_bid_manager/src/exploration_bid_manager/__init__.py
Python
mit
59
from django.contrib.auth.models import User from django.contrib.sites.models import Site from socialregistration.models import (FacebookProfile, TwitterProfile, OpenIDProfile) class Auth(object): def get_user(self, user_id): try: return User.objects.get(pk=user_id) except User.DoesNotExist: return None class FacebookAuth(Auth): def authenticate(self, uid=None): try: return FacebookProfile.objects.get( uid=uid, site=Site.objects.get_current() ).user except FacebookProfile.DoesNotExist: return None class TwitterAuth(Auth): def authenticate(self, twitter_id=None): try: return TwitterProfile.objects.get( twitter_id=twitter_id, site=Site.objects.get_current() ).user except TwitterProfile.DoesNotExist: return None class OpenIDAuth(Auth): def authenticate(self, identity=None): try: return OpenIDProfile.objects.get( identity=identity, site=Site.objects.get_current() ).user except OpenIDProfile.DoesNotExist: return None
coxmediagroup/django-socialregistration
socialregistration/auth.py
Python
mit
1,238
import datetime from pyramid.view import view_config from couchdbkit import * import logging log = logging.getLogger(__name__) class Page(Document): author = StringProperty() page = StringProperty() content = StringProperty() date = DateTimeProperty() @view_config(route_name='home', renderer='templates/mytemplate.pt') def my_view(request): def get_data(): return list(request.db.view('lists/pages', startkey=['home'], \ endkey=['home', {}], include_docs=True)) page_data = get_data() if not page_data: Page.set_db(request.db) home = Page( author='Wendall', content='Using CouchDB via couchdbkit!', page='home', date=datetime.datetime.utcnow() ) # save page data home.save() page_data = get_data() doc = page_data[0].get('doc') return { 'project': 'pyramid_couchdb_example', 'info': request.db.info(), 'author': doc.get('author'), 'content': doc.get('content'), 'date': doc.get('date') }
benoitc/couchdbkit
examples/pyramidapp/pyramid_couchdb_example/views.py
Python
mit
1,100
""" Currency exchange rate support that comes from Yahoo Finance. For more details about this platform, please refer to the documentation at https://home-assistant.io/components/sensor.yahoo_finance/ """ import logging from datetime import timedelta import voluptuous as vol from homeassistant.components.sensor import PLATFORM_SCHEMA from homeassistant.const import ATTR_ATTRIBUTION from homeassistant.helpers.entity import Entity from homeassistant.util import Throttle import homeassistant.helpers.config_validation as cv REQUIREMENTS = ['yahoo-finance==1.3.2'] _LOGGER = logging.getLogger(__name__) ATTR_CHANGE = 'Change' ATTR_OPEN = 'open' ATTR_PREV_CLOSE = 'prev_close' CONF_ATTRIBUTION = "Stock market information provided by Yahoo! Inc." CONF_SYMBOLS = 'symbols' DEFAULT_NAME = 'Yahoo Stock' DEFAULT_SYMBOL = 'YHOO' ICON = 'mdi:currency-usd' MIN_TIME_BETWEEN_UPDATES = timedelta(minutes=5) PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ vol.Optional(CONF_SYMBOLS, default=[DEFAULT_SYMBOL]): vol.All(cv.ensure_list, [cv.string]), }) def setup_platform(hass, config, add_devices, discovery_info=None): """Set up the Yahoo Finance sensor.""" from yahoo_finance import Share symbols = config.get(CONF_SYMBOLS) dev = [] for symbol in symbols: if Share(symbol).get_price() is None: _LOGGER.warning("Symbol %s unknown", symbol) break data = YahooFinanceData(symbol) dev.append(YahooFinanceSensor(data, symbol)) add_devices(dev) class YahooFinanceSensor(Entity): """Representation of a Yahoo Finance sensor.""" def __init__(self, data, symbol): """Initialize the sensor.""" self._name = symbol self.data = data self._symbol = symbol self._state = None self._unit_of_measurement = None self.update() @property def name(self): """Return the name of the sensor.""" return self._name @property def unit_of_measurement(self): """Return the unit of measurement of this entity, if any.""" return self._symbol @property def state(self): """Return the state of the sensor.""" return self._state @property def device_state_attributes(self): """Return the state attributes.""" if self._state is not None: return { ATTR_ATTRIBUTION: CONF_ATTRIBUTION, ATTR_CHANGE: self.data.price_change, ATTR_OPEN: self.data.price_open, ATTR_PREV_CLOSE: self.data.prev_close, } @property def icon(self): """Return the icon to use in the frontend, if any.""" return ICON def update(self): """Get the latest data and updates the states.""" _LOGGER.debug("Updating sensor %s - %s", self._name, self._state) self.data.update() self._state = self.data.state class YahooFinanceData(object): """Get data from Yahoo Finance.""" def __init__(self, symbol): """Initialize the data object.""" from yahoo_finance import Share self._symbol = symbol self.state = None self.price_change = None self.price_open = None self.prev_close = None self.stock = Share(self._symbol) @Throttle(MIN_TIME_BETWEEN_UPDATES) def update(self): """Get the latest data and updates the states.""" self.stock.refresh() self.state = self.stock.get_price() self.price_change = self.stock.get_change() self.price_open = self.stock.get_open() self.prev_close = self.stock.get_prev_close()
srcLurker/home-assistant
homeassistant/components/sensor/yahoo_finance.py
Python
mit
3,667
""" * Mini-Max Sum (Python) * HackerRank Algorithm Challenge * https://www.hackerrank.com/challenges/mini-max-sum * * michael@softwareontheshore.com * * The goal is to find the minimum sum and the maximum sum of 5 numbers by only using 4. """ ##arr = map(int, raw_input().strip().split(' ')) testA = [1, 2, 3, 4, 5] ##10 14 testB = [2, 5, 1, 3, 4] ##10 14 testC = [6, 5, 9, 29, 2] ## 49 22 def sumMiniMax(arr): maximum = sum(sorted(arr)[1:5]) minimum = sum(sorted(arr)[0:4]) return str(minimum) + ' ' + str(maximum) print sumMiniMax(testC)
masharp/algorithm-challenges-n-stuff
coding-challenges/hacker-rank/algorithms/MiniMaxSum.py
Python
mit
566
import numpy as np import pytest from landlab import FieldError, RasterModelGrid from landlab.utils.return_array import return_array_at_link, return_array_at_node def test_no_field(): mg = RasterModelGrid((10, 10)) with pytest.raises(FieldError): return_array_at_node(mg, "spam") with pytest.raises(FieldError): return_array_at_link(mg, "spam") def test_return_array(): mg = RasterModelGrid((10, 10)) node_vals = np.arange(mg.number_of_nodes) out = return_array_at_node(mg, node_vals) np.testing.assert_array_equal(np.arange(mg.number_of_nodes), out) link_vals = np.arange(mg.number_of_links) out = return_array_at_link(mg, link_vals) np.testing.assert_array_equal(np.arange(mg.number_of_links), out)
cmshobe/landlab
tests/utils/test_return_grid.py
Python
mit
765
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'Emblem' db.create_table(u'chat_emblem', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('url', self.gf('django.db.models.fields.CharField')(max_length=150)), ('name', self.gf('django.db.models.fields.CharField')(max_length=40)), )) db.send_create_signal(u'chat', ['Emblem']) # Adding model 'Roll' db.create_table(u'chat_roll', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('name', self.gf('django.db.models.fields.CharField')(max_length=20)), )) db.send_create_signal(u'chat', ['Roll']) # Adding model 'UserProfile' db.create_table(u'chat_userprofile', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('user', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['auth.User'], unique=True)), ('ign', self.gf('django.db.models.fields.CharField')(unique=True, max_length=75)), ('verified', self.gf('django.db.models.fields.BooleanField')(default=False)), ('isMod', self.gf('django.db.models.fields.BooleanField')(default=False)), ('banned', self.gf('django.db.models.fields.BooleanField')(default=False)), ('primRole', self.gf('django.db.models.fields.related.ForeignKey')(related_name='primary', to=orm['chat.Roll'])), ('secRole', self.gf('django.db.models.fields.related.ForeignKey')(related_name='secondary', to=orm['chat.Roll'])), ('tier', self.gf('django.db.models.fields.CharField')(max_length=20, blank=True)), ('division', self.gf('django.db.models.fields.IntegerField')(null=True, blank=True)), )) db.send_create_signal(u'chat', ['UserProfile']) # Adding model 'Comments' db.create_table(u'chat_comments', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('user', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['auth.User'])), ('profile', self.gf('django.db.models.fields.related.ForeignKey')(default=False, to=orm['chat.UserProfile'])), ('text', self.gf('django.db.models.fields.CharField')(max_length=255)), ('datetime', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, blank=True)), )) db.send_create_signal(u'chat', ['Comments']) def backwards(self, orm): # Deleting model 'Emblem' db.delete_table(u'chat_emblem') # Deleting model 'Roll' db.delete_table(u'chat_roll') # Deleting model 'UserProfile' db.delete_table(u'chat_userprofile') # Deleting model 'Comments' db.delete_table(u'chat_comments') models = { u'auth.group': { 'Meta': {'object_name': 'Group'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': {'ordering': "(u'content_type__app_label', u'content_type__model', u'codename')", 'unique_together': "((u'content_type', u'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "u'user_set'", 'blank': 'True', 'to': u"orm['auth.Group']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "u'user_set'", 'blank': 'True', 'to': u"orm['auth.Permission']"}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, u'chat.comments': { 'Meta': {'ordering': "['datetime']", 'object_name': 'Comments'}, 'datetime': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'profile': ('django.db.models.fields.related.ForeignKey', [], {'default': 'False', 'to': u"orm['chat.UserProfile']"}), 'text': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['auth.User']"}) }, u'chat.emblem': { 'Meta': {'object_name': 'Emblem'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '40'}), 'url': ('django.db.models.fields.CharField', [], {'max_length': '150'}) }, u'chat.roll': { 'Meta': {'object_name': 'Roll'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '20'}) }, u'chat.userprofile': { 'Meta': {'object_name': 'UserProfile'}, 'banned': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'division': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'ign': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '75'}), 'isMod': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'primRole': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'primary'", 'to': u"orm['chat.Roll']"}), 'secRole': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'secondary'", 'to': u"orm['chat.Roll']"}), 'tier': ('django.db.models.fields.CharField', [], {'max_length': '20', 'blank': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['auth.User']", 'unique': 'True'}), 'verified': ('django.db.models.fields.BooleanField', [], {'default': 'False'}) }, u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) } } complete_apps = ['chat']
crazyskateface/LC
chat/migrations/0014_initial.py
Python
mit
8,645
#-*- coding: utf-8 -*- import functools from django.contrib import messages from django.utils.translation import ugettext as _ from .ratelimit import RateLimit __all__ = ['ratelimit', ] def ratelimit(method=None, field=None, rate='5/5m'): def decorator(func): @functools.wraps(func) def wrapper(request, *args, **kwargs): rl = RateLimit(request, func.__name__, method=method, field=field, rate=rate) request.is_limited = rl.is_limited() if request.is_limited: messages.error(request, _('Too many submissions, wait %(time)s.') % {'time': rate.split('/')[1], }) return func(request, *args, **kwargs) return wrapper return decorator
bjorncooley/rainforest_makers
spirit/utils/ratelimit/decorators.py
Python
mit
737
#!/usr/bin/env python3 """ Script for getting status information about this cluster of central servers. By default the request is made to the local server and reflects the view of the cluster as seen by the local node. """ import requests import json import sys HOST = "localhost" PORT = 8083 # The internal listening port of the Jetty web server. TARGET_URL = "http://%s:%s/public_system_status/check_ha_cluster_status" % ( HOST, PORT) r = requests.get(TARGET_URL) if r.status_code != requests.codes.OK: print("Failed to check the status of the HA cluster: %s (%s)" % ( r.status_code, r.text)) sys.exit(1) try: result = json.loads(r.text).get('ha_node_status', dict()) if not result.get('ha_configured'): print("This central server is not part of an HA cluster") sys.exit(0) print("\nSUMMARY OF CLUSTER STATUS:") print(" All nodes: %s" % ("OK" if result.get("all_nodes_ok") else "NOK")) print(" Configuration: %s" % ( "OK" if result.get("configuration_ok") else "NOK")) print("\nDETAILED CLUSTER STATUS INFORMATION:") print(json.dumps(result, sort_keys=True, indent=4, separators=(',', ': '))) except Exception as e: print("Failed to parse the status of the HA cluster: %s" % (e)) sys.exit(1)
ria-ee/X-Road
src/packages/xroad/cluster/check_ha_cluster_status.py
Python
mit
1,290
import itertools def cached(func): def wrapper(*args, **kwargs): host = args[0] if not hasattr(host, 'cache'): setattr(host, 'cache', {}) if func not in host.cache: host.cache[func] = func(*args, **kwargs) return host.cache[func] return wrapper def cached_with_args(func): def wrapper(*args, **kwargs): host = args[0] if not hasattr(host, 'cache'): setattr(host, 'cache', {}) if func not in host.cache: host.cache[func] = {} cached_args = tuple(itertools.chain(args, kwargs.values())) if cached_args not in host.cache[func]: host.cache[func][cached_args] = func(*args, **kwargs) return host.cache[func] return wrapper def invalidate_cache(func): def wrapper(*args, **kwargs): host = args[0] if hasattr(host, 'cache'): host.cache = {} return func(*args, **kwargs) return wrapper
jpalladino84/Python-Roguelike-Framework
util/decorators.py
Python
mit
992
import math import warnings import numpy import six from chainer.backends import cuda from chainer import configuration from chainer import FunctionNode from chainer import testing from chainer import variable class NondifferentiableError(Exception): pass def _copy_arrays(xs): xp = cuda.get_array_module(*xs) return [xp.array(x, order='C', dtype=numpy.float64, copy=True) for x in xs] def numerical_grad( f, inputs, grad_outputs, eps=1e-3, detect_nondifferentiable=False, diff_atol=0, diff_rtol=1e-2, center_outputs=None): """Computes numerical gradient by finite differences. This function is used to implement gradient check. For usage example, see unit tests of :mod:`chainer.functions`. By default, ``numerical_grad`` computes the gradient to the first order of ``eps``. Args: f (callable): Python function with no arguments that runs forward computation and returns the result. inputs (tuple of arrays): Tuple of arrays that should be treated as inputs. Each element of them is slightly modified to realize numerical gradient by finite differences. grad_outputs (tuple of arrays): Tuple of arrays that are treated as output gradients. eps (float): Epsilon value of finite differences. detect_nondifferentiable (bool): ``False`` by default. If ``True``, ``numerical_grad`` checks whether ``f`` is differentiable at ``inputs``. It requires evaluation of ``f`` at 5 points instead of 2. As a side effect, the accuracy of numerical gradient will be increased to the third order of ``eps``. If it turns out that ``f`` is non-differentiable at ``input``, ``numerical_grad`` raises :class:`~chainer.gradient_check.NondifferentiableError`. diff_atol (float): Absolute tolerance of fitting error of non-differentiable point detection. diff_rtol (float): Tolerance of fitting error of non-differentiable point detection relative to the output values of ``f``. center_outputs (tuple of arrays or None): Only used if ``detect_nondifferentiable`` is ``True``. If specified, these arrays are used as the outputs of ``f`` at ``inputs``. Otherwise, it is calculated. It can be used to reduce the computation if these arrays are already calculated before calling ``numerical_grad``. Returns: tuple: Numerical gradient arrays corresponding to ``inputs``. """ assert eps > 0 for x in inputs: if x.dtype.kind != 'f': raise RuntimeError( 'The dtype of input arrays must be kind of float') inputs = tuple(inputs) grad_outputs = tuple(grad_outputs) gpu = any(isinstance(x, cuda.ndarray) for x in inputs + grad_outputs) cpu = any(isinstance(x, numpy.ndarray) for x in inputs + grad_outputs) if gpu and cpu: raise RuntimeError('Do not mix GPU and CPU arrays in `numerical_grad`') if gpu: xp = cuda.cupy numerical_grad_kernel_1 = cuda.reduce( 'T y1, T y2, U gy, T eps', 'V gxi', '(y1 - y2) * gy', 'a + b', 'gxi += a / (eps * 2)', '0', 'numerical_grad_kernel_1' ) numerical_grad_kernel_3 = cuda.reduce( 'T y1, T y2, T y3, T y4, U gy, T eps', 'V gxi', '(-y1 + 8 * y2 - 8 * y3 + y4) * gy', 'a + b', 'gxi += a / (eps * 6)', '0', 'numerical_grad_kernel_3' ) else: xp = numpy grads = [xp.zeros(x.shape, numpy.float64) for x in inputs] if detect_nondifferentiable: if center_outputs is None: ys0 = _copy_arrays(f()) else: ys0 = center_outputs nout = len(ys0) shapes = [_.shape for _ in ys0] sizes = numpy.array([_.size for _ in ys0]) cumsizes = numpy.cumsum(sizes) # Evaluate func at a single input def eval_func(x, i, delta, orig): x[i] = orig + delta y = _copy_arrays(f()) x[i] = orig return y # An iteration on a single input displacement def iterate_single_input(i_in, x, orig_x, i): orig = orig_x[i] # `yss` holds a list of output arrays for each of 2 or 5 sampling # points. if detect_nondifferentiable: yss = [ eval_func(x, i, -eps * 1., orig), eval_func(x, i, -eps * .5, orig), ys0, eval_func(x, i, +eps * .5, orig), eval_func(x, i, +eps * 1., orig), ] else: yss = [ eval_func(x, i, -eps * 1, orig), eval_func(x, i, +eps * 1, orig), ] if detect_nondifferentiable: # Detect non-differentiable point by quadratic fitting # Check for non-finite output. # If any single element in the output arrays has different # finiteness among sampled points, that means this is a # non-differentiable point. # If the function consistently generates non-finite values # around the point, we do not treat the point as # non-differentiable. # (Example: x<0 region for the logarithm function) any_nonfinite = False for i_out in range(nout): isfinites = [xp.isfinite(ys[i_out]) for ys in yss] if any((isfinites[0] != isfinites[i]).any() for i in range(1, len(yss))): s = six.StringIO() s.write( 'Tried to compute the numeric gradient on a ' 'non-differentiable point.\n\n') s.write('i_in: {}\n'.format(i_in)) s.write('i_out: {}\n'.format(i_out)) s.write('x: {}\n'.format(inputs[i_in])) s.write('index on x: {}\n'.format(i)) s.write('eps: {}\n'.format(eps)) s.write('y[x-eps ]: {}\n'.format(yss[0][i_out])) s.write('y[x-eps/2]: {}\n'.format(yss[1][i_out])) s.write('y[x ]: {}\n'.format(yss[2][i_out])) s.write('y[x+eps/2]: {}\n'.format(yss[3][i_out])) s.write('y[x+eps ]: {}\n'.format(yss[4][i_out])) raise NondifferentiableError(s.getvalue()) any_nonfinite |= not all(_.all() for _ in isfinites) if not any_nonfinite: # Stack flattenend outputs to make (5, *)-shaped 2D array ystack = xp.vstack( [xp.hstack([y.ravel() for y in ys]) for ys in yss]) assert ystack.ndim == 2 and ystack.shape[0] == len(yss) # Fit to quadratic if gpu: ystack = ystack.get() polyfit = numpy.polynomial.polynomial.polyfit _, (residuals, _, _, _) = polyfit( range(len(yss)), ystack, deg=2, full=True) if gpu: residuals = xp.array(residuals) residuals = xp.sqrt(residuals / len(yss)) # Check for error for each output array for i_out in range(nout): size = sizes[i_out] cumsize = cumsizes[i_out] shape = shapes[i_out] # TODO(niboshi): The following two lines could be # rewritten using xp.stack, which is supported in # NumPy>=1.10 ymax = xp.concatenate( [ys[i_out][None] for ys in yss]).max(axis=0) ymin = xp.concatenate( [ys[i_out][None] for ys in yss]).min(axis=0) # Restore the shape of flattened residual res = residuals[cumsize - size:cumsize] res = res.reshape(shape) det = xp.asarray( diff_atol + diff_rtol * (ymax - ymin) < res) # Constant output = not nondifferentiable det[ymax == ymin] = False if det.any(): s = six.StringIO() s.write( 'Tried to compute the numeric gradient on a ' 'non-differentiable point.\n\n') s.write('i_in: {}\n'.format(i_in)) s.write('i_out: {}\n'.format(i_out)) s.write('x: {}\n'.format(inputs[i_in])) s.write('index on x: {}\n'.format(i)) s.write('eps: {}\n'.format(eps)) s.write('diff_rtol: {}\n'.format(diff_rtol)) s.write('diff_atol: {}\n'.format(diff_atol)) s.write('ymax: {}\n'.format(ymax)) s.write('ymin: {}\n'.format(ymin)) s.write( 'diff_atol + diff_rtol * (ymax-ymin): {}\n'.format( diff_atol + diff_rtol * (ymax - ymin))) s.write('fitting errors: {}\n'.format(res)) s.write('y[x-eps ]: {}\n'.format(yss[0][i_out])) s.write('y[x-eps/2]: {}\n'.format(yss[1][i_out])) s.write('y[x ]: {}\n'.format(yss[2][i_out])) s.write('y[x+eps/2]: {}\n'.format(yss[3][i_out])) s.write('y[x+eps ]: {}\n'.format(yss[4][i_out])) raise NondifferentiableError(s.getvalue()) # Calculate numerical gradient for i_out, gy in enumerate(grad_outputs): if gy is None: continue gpu_ = (gpu and all(isinstance(ys[i_out], cuda.ndarray) for ys in yss)) if len(yss) == 2: # 1st order y0 = yss[0][i_out] y1 = yss[1][i_out] if gpu_: numerical_grad_kernel_1( y1, y0, xp.asarray(gy), eps, gx[i]) else: dot = ((y1 - y0) * gy).sum() gx[i] += dot / (2 * eps) elif len(yss) == 5: # 3rd order y0 = yss[0][i_out] y1 = yss[1][i_out] y2 = yss[3][i_out] y3 = yss[4][i_out] if gpu_: numerical_grad_kernel_3( y3, y2, y1, y0, gy, eps, gx[i]) else: num = -y3 + 8 * y2 - 8 * y1 + y0 dot = (num * gy).sum() gx[i] += dot / (6 * eps) else: assert False # Calculate numeric gradient with configuration.using_config('type_check', False): for i_in, (x, gx) in enumerate(six.moves.zip(inputs, grads)): orig_x = x.copy() # hold original value for i in numpy.ndindex(x.shape): iterate_single_input(i_in, x, orig_x, i) return [g.astype(x.dtype, copy=False) for g, x in six.moves.zip(grads, inputs)] def assert_allclose(x, y, atol=1e-5, rtol=1e-4, verbose=True): """Asserts if some corresponding element of x and y differs too much. This function can handle both CPU and GPU arrays simultaneously. Args: x: Left-hand-side array. y: Right-hand-side array. atol (float): Absolute tolerance. rtol (float): Relative tolerance. verbose (bool): If ``True``, it outputs verbose messages on error. """ warnings.warn( 'chainer.gradient_check.assert_allclose is deprecated.' 'Use chainer.testing.assert_allclose instead.', DeprecationWarning) testing.assert_allclose(x, y, atol, rtol, verbose) def _as_tuple(x): if isinstance(x, tuple): return x elif isinstance(x, list): return tuple(x) else: return x, def _filter_list(lst, ignore_list): return [x for x, ignore in six.moves.zip(lst, ignore_list) if not ignore] def check_backward( func, x_data, y_grad, params=(), eps=1e-3, atol=1e-5, rtol=1e-4, no_grads=None, dtype=None, detect_nondifferentiable=False): """Test backward procedure of a given function. This function automatically checks the backward-process of a given function to ensure that the computed gradients are approximately correct. For example, assuming you've defined a :class:`~chainer.FunctionNode` class ``MyFunc``, that takes two arguments and returns one value, you can wrap it in a ordinary function and check its gradient computations as follows: .. code-block:: python def func(xs): y, = MyFunc().apply(xs) return y x1_data = xp.array(...) x2_data = xp.array(...) gy_data = xp.array(...) check_backward(func, (x1_data, x2_data), gy_data) This method creates :class:`~chainer.Variable` objects with ``x_data`` and calls ``func`` with the :class:`~chainer.Variable`\\ s to get its result as :class:`~chainer.Variable`. Then, it sets ``y_grad`` array to ``grad`` attribute of the result and calls ``backward`` method to get gradients of the inputs. To check correctness of the gradients, the function calls :func:`numerical_grad` to calculate numerically the gradients and compares the types of gradients with :func:`chainer.testing.assert_allclose`. To reduce computational time, it uses directional derivative along a random vector. A function :math:`g: \\mathbb{R} \\rightarrow \\mathbb{R}^n` is defined as :math:`g(\\delta) = f(x + \\delta r)`, where :math:`\\delta \\in \\mathbb{R}`, :math:`r \\in \\mathbb{R}^n` is a random vector and :math:`f` is a function which you want to test. Its gradient is .. math:: g'(\\delta) = f'(x + \\delta r) \\cdot r. Therefore, :math:`g'(0) = f'(x) \\cdot r`. So we can check the correctness of back propagation of :math:`f` indirectly by comparing this equation with the gradient of :math:`g` numerically calculated and that of :math:`f` computed by backprop. If :math:`r` is chosen from uniform distribution, we can conclude with high probability that the gradient of :math:`f` itself is correct. If the function is non-differentiable with respect to some input objects, we can check its backprop to such objects by ``no_grads`` argument. ``gradient_check`` computes numerical backward to inputs that correspond to ``False`` in ``no_grads``. It also asserts that the backprop leaves gradients ``None`` for inputs that correspond to ``True`` in ``no_grads``. The default of ``no_grads`` argument is the tuple of truth values whether input objects (``x1_data`` or/and ``x2_data`` in this example) represent integer variables. You can simplify a test when ``MyFunc`` gets only one argument: .. code-block:: python check_backward(func, x1_data, gy_data) If ``MyFunc`` is a loss function which returns a zero-dimensional array, pass ``None`` to ``gy_data``. In this case, it sets ``1`` to ``grad`` attribute of the result: .. code-block:: python check_backward(my_loss_func, (x1_data, x2_data), None) If ``MyFunc`` returns multiple outputs, pass all gradients for outputs as a tuple: .. code-block:: python gy1_data = xp.array(...) gy2_data = xp.array(...) check_backward(func, x1_data, (gy1_data, gy2_data)) You can also test a :class:`~chainer.Link`. To check gradients of parameters of the link, set a tuple of the parameters to ``params`` arguments: .. code-block:: python check_backward(my_link, (x1_data, x2_data), gy_data, (my_link.W, my_link.b)) Note that ``params`` are not ``ndarray``\\ s, but :class:`~chainer.Variables`\\ s. Function objects are acceptable as ``func`` argument: .. code-block:: python check_backward(lambda x1, x2: f(x1, x2), (x1_data, x2_data), gy_data) .. note:: ``func`` is called many times to get numerical gradients for all inputs. This function doesn't work correctly when ``func`` behaves randomly as it gets different gradients. Args: func (callable): A function which gets :class:`~chainer.Variable`\\ s and returns :class:`~chainer.Variable`\\ s. ``func`` must returns a tuple of :class:`~chainer.Variable`\\ s or one :class:`~chainer.Variable`. You can use a :class:`~chainer.Function`, :class:`~chainer.FunctionNode` or a :class:`~chainer.Link` object or any other function satisfying the condition. x_data (ndarray or tuple of ndarrays): A set of ``ndarray``\\ s to be passed to ``func``. If ``x_data`` is one ``ndarray`` object, it is treated as ``(x_data,)``. y_grad (ndarray or tuple of ndarrays or None): A set of ``ndarray``\\ s representing gradients of return-values of ``func``. If ``y_grad`` is one ``ndarray`` object, it is treated as ``(y_grad,)``. If ``func`` is a loss-function, ``y_grad`` should be set to ``None``. params (~chainer.Variable or tuple of ~chainder.Variable): A set of :class:`~chainer.Variable`\\ s whose gradients are checked. When ``func`` is a :class:`~chainer.Link` object, set its parameters as ``params``. If ``params`` is one :class:`~chainer.Variable` object, it is treated as ``(params,)``. eps (float): Epsilon value to be passed to :func:`numerical_grad`. atol (float): Absolute tolerance to be passed to :func:`chainer.testing.assert_allclose`. rtol (float): Relative tolerance to be passed to :func:`chainer.testing.assert_allclose`. no_grads (list of bool): Flag to skip variable for gradient assertion. It should be same length as ``x_data``. dtype (~numpy.dtype): ``x_data``, ``y_grad`` and ``params`` are casted to this dtype when calculating numerical gradients. Only float types and ``None`` are allowed. detect_nondifferentiable (bool): If ``True``, check for non-differentiable inputs is enabled. If ``func`` is non-differentiable at ``x_data``, ``check_backward`` raises :class:`~chainer.gradient_check.NondifferentiableError`. .. seealso:: :func:`numerical_grad` """ if dtype is not None and numpy.dtype(dtype).kind != 'f': raise ValueError('`dtype` is allowed only float type') x_data = _as_tuple(x_data) if y_grad is not None: y_grad = _as_tuple(y_grad) params = _as_tuple(params) xs = [variable.Variable(x) for x in x_data] y = func(*xs) y = _as_tuple(y) y0_data = [_.data for _ in y] # All creators of `y` need to be the same because we only call # `y[0].backward` to call `backward` method of the creator. # To do so we need to insert a dummy function `_GradientSetter` to the # computational graph. # Note that `func` may not be a `Function` object. y, y_grad = _set_y_grad(y, y_grad) # Clear gradients which may exist if func calls backward inside of itself. _clear_grads(xs) _clear_grads(params) # We only need to call `backward` for one result `Variable`. # `Variable.backward` method calls `Function.backward` of its creator. y.backward() if no_grads is None: no_grads = [x.dtype.kind != 'f' for x in xs] else: if len(no_grads) != len(xs): raise ValueError( 'Length of no_grads param and xs should be same.\n' 'Actual: {0} != {1}'.format(len(no_grads), len(xs))) for skip, x in six.moves.zip(no_grads, xs): if skip and x.grad is not None: raise RuntimeError( 'gradient of int variable must be None') if len(xs) - no_grads.count(True) + len(params) == 0: # When there is no float variables, we need not to check gradient # values return variables = _filter_list(xs, no_grads) + list(params) # Keep the gradient arrays of params which may be overwritten by func grads = [x.grad for x in variables] if dtype is None: casted_data = [x.data for x in variables] else: if numpy.dtype(dtype).kind != 'f': raise ValueError('`dtype` is allowed only float type') casted_data = [x.data.astype(dtype, copy=False) for x in variables] # Even skipped variable must have the same dtype. for x, skip in six.moves.zip(xs, no_grads): if skip and x.data.dtype.kind == 'f': x.data = x.data.astype(dtype, copy=False) xp = cuda.get_array_module(*xs) directions = [xp.random.normal(size=x.shape) for x in variables] # The direction vector is normalized in order to keep the scale of # differentiation error invariant with respect to the number of input # dimensions. Ideally, the scale of the curvature with respect to each # input dimension should be taken into account, but we ignore the # differences and assume that the curvature is uniform with respect to all # the input dimentions. norm = math.sqrt(sum([xp.square(d).sum() for d in directions])) if norm != 0: # norm could be zero if input arrays are 0-sized. scale = 1. / norm directions = [d * scale for d in directions] delta = xp.array(0., 'd') def g(): # This functions is called twice in `numerical_grad`. # `delta` is `epsilon` or `-epsilon` in these calls. # See the document of `numerical_grad`. for x, data, direction in six.moves.zip( variables, casted_data, directions): # astype is require to store data with the given type data = (data.astype('d') + delta * direction).astype(data.dtype) if numpy.isscalar(data): data = xp.array(data) x.data = data # Clear gradients to support func that calls backward inside of itself. _clear_grads(xs) _clear_grads(params) ys = func(*xs) ys = _as_tuple(ys) ys_data = tuple(y.data for y in ys) for x, data in six.moves.zip(variables, casted_data): x.data = data return ys_data gx, = numerical_grad( g, (delta,), y_grad, eps=eps, detect_nondifferentiable=detect_nondifferentiable, center_outputs=y0_data) gx_accum = 0 for g, direction in six.moves.zip(grads, directions): if g is not None: gx_accum += (g.astype('d') * direction).sum() try: testing.assert_allclose(gx, gx_accum, atol=atol, rtol=rtol) except AssertionError as e: f = six.StringIO() f.write('check_backward failed (eps={} atol={} rtol={})\n'.format( eps, atol, rtol)) for i, x_ in enumerate(xs): f.write('inputs[{}]:\n'.format(i)) f.write('{}\n'.format(x_)) for i, gy_ in enumerate(y_grad): f.write('grad_outputs[{}]:\n'.format(i)) f.write('{}\n'.format(gy_)) for i, d_ in enumerate(directions): f.write('directions[{}]:\n'.format(i)) f.write('{}\n'.format(d_)) f.write('gradients (numeric): {}\n'.format(gx)) f.write('gradients (backward): {}\n'.format(gx_accum)) f.write('\n') f.write(str(e)) raise AssertionError(f.getvalue()) def check_double_backward(func, x_data, y_grad, x_grad_grad, params=(), params_grad_grad=(), eps=1e-3, atol=1e-4, rtol=1e-3, no_grads=None, dtype=None, detect_nondifferentiable=False): """Test twice differentiation of a given procedure. This function automatically checks if the backward procedure of ``func`` is correctly implemented for further differentiation. It first computes the gradient of ``func`` w.r.t. its inputs in the same way as :func:`~chainer.gradient_check.check_backward`. This function then further invokes the backward procedure against the gradient variables, starting from the initial gradient given by ``x_grad_grad``. It also computes the second gradient using :func:`~chainer.gradient_check.numerical_grad`. The resulting gradients are compared to confirm if the second-order gradients are approximately correct. Note that this function **DOES NOT** check if the first-order differentiation is correct; the numerical gradient assumes that the first-order gradient given by the usual :meth:`chainer.Variable.backward` is correct. The implementation of each differentiable function should be tested by :func:`~chainer.gradient_check.check_backward` first, and then should be tested by this function if neccessary. For the details of the arguments, see :func:`~chainer.gradient_check.check_backward`. The additional arguments ``x_grad_grad`` and ``params_grad_grad`` are (tuples of) :class:`~chainer.Variable` (s) that include the initial gradient corresponding to the first-order gradient of each input and parameter. Note that the default error tolerance ``atol`` and ``rtol`` are slightly larger than those of :func:`~chainer.gradient_check.check_backward` because the numerical gradients of the second order differentiation are less accurate than those of the first order gradients. """ x_data = _as_tuple(x_data) params = _as_tuple(params) y_grad = _as_tuple(y_grad) x_grad_grad = _as_tuple(x_grad_grad) params_grad_grad = _as_tuple(params_grad_grad) n_x = len(x_data) first_order_no_grads = [x.dtype.kind != 'f' for x in x_data] def first_order_grad(*inputs): xs = inputs[:n_x] gys = inputs[n_x:] y = _as_tuple(func(*xs)) # Let all elements of y share the same creator. # See the comment in check_backward. y, _ = _set_y_grad(y, gys) y.backward(enable_double_backprop=True) gxs = [] for skip, x in six.moves.zip(first_order_no_grads, xs): if skip: if x.grad is not None: raise RuntimeError( 'gradient of int variable must be None') else: if x.grad is None: raise RuntimeError( 'gradients of some arguments are not calculated') gxs.append(x.grad_var) return tuple(gxs + [p.grad_var for p in params]) inputs = x_data + y_grad grad_grad = x_grad_grad + params_grad_grad try: check_backward(first_order_grad, inputs, grad_grad, params=params, eps=eps, atol=atol, rtol=rtol, no_grads=no_grads, dtype=dtype, detect_nondifferentiable=detect_nondifferentiable) except AssertionError as e: f = six.StringIO() f.write('check_double_backward failed ' '(eps={} atol={} rtol={})\n'.format(eps, atol, rtol)) for i, x_ in enumerate(x_data): f.write('input[{}]:\n'.format(i)) f.write('{}\n'.format(x_)) for i, gy_ in enumerate(y_grad): f.write('grad_output[{}]:\n'.format(i)) f.write('{}\n'.format(gy_)) for i, ggx_ in enumerate(x_grad_grad): f.write('grad_grad_input[{}]:\n'.format(i)) f.write('{}\n'.format(ggx_)) for i, ggp_ in enumerate(params_grad_grad): f.write('grad_grad_param[{}]:\n'.format(i)) f.write('{}\n'.format(ggp_)) f.write('\n') f.write(str(e)) raise AssertionError(f.getvalue()) class _GradientSetter(FunctionNode): def __init__(self, grad): self.grad = grad def forward(self, inputs): xp = cuda.get_array_module(inputs[0]) if self.grad is None: y0, = inputs gy0 = xp.ones_like(y0) assert gy0.size == 1 self.grad = (gy0,) # output a 0-sized 1-dim array like inputs return xp.empty((0,), dtype=inputs[0].dtype), def backward(self, inputs, grad_outputs): grad = self.grad return tuple( None if g is None else variable.as_variable(g) for g in grad) def _set_y_grad(y, y_grad): if y_grad is not None: if len(y) != len(y_grad): raise ValueError( 'Upstream gradients must contain equally many elements as ' 'number of output elements.\n' 'Actual: {} != {}'.format(len(y), len(y_grad))) y, = _GradientSetter(y_grad).apply(y) else: if len(y) != 1: raise ValueError( 'Function must return a zero-dimensional array of length 1 ' 'if the upstream gradient is `None`.\n' 'Actual: {} != 1'.format(len(y))) y, = _GradientSetter(None).apply(y) y_grad = (1,) return y, y_grad def _clear_grads(xs): for x in xs: x.grad_var = None
ronekko/chainer
chainer/gradient_check.py
Python
mit
29,683
#!/usr/bin/python # fix.py - mass fix some goof from process import process from main.models import Show, Location, Episode, Raw_File, Cut_List class fix(process): # this will bump everything from 5 back to 4 ready_state = 7 def process_ep(self, ep): if self.options.verbose: print(ep.id, ep.name) ep.state = 4 ep.save() ret = False # False else it will bump it +1) return ret if __name__ == '__main__': p=fix() p.main()
CarlFK/veyepar
dj/scripts/fix.py
Python
mit
492
from __future__ import absolute_import from django import template from ..models import Question, Topic register = template.Library() class FaqListNode(template.Node): def __init__(self, num, varname, topic=None): self.num = template.Variable(num) self.topic = template.Variable(topic) if topic else None self.varname = varname def render(self, context): try: num = self.num.resolve(context) topic = self.topic.resolve(context) if self.topic else None except template.VariableDoesNotExist: return '' if isinstance(topic, Topic): qs = Question.objects.filter(topic=topic) elif topic is not None: qs = Question.objects.filter(topic__slug=topic) else: qs = Question.objects.all() context[self.varname] = qs.filter(status=Question.ACTIVE)[:num] return '' @register.tag def faqs_for_topic(parser, token): """ Returns a list of 'count' faq's that belong to the given topic the supplied topic argument must be in the slug format 'topic-name' Example usage:: {% faqs_for_topic 5 "my-slug" as faqs %} """ args = token.split_contents() if len(args) != 5: raise template.TemplateSyntaxError("%s takes exactly four arguments" % args[0]) if args[3] != 'as': raise template.TemplateSyntaxError("third argument to the %s tag must be 'as'" % args[0]) return FaqListNode(num=args[1], topic=args[2], varname=args[4]) @register.tag def faq_list(parser, token): """ returns a generic list of 'count' faq's to display in a list ordered by the faq sort order. Example usage:: {% faq_list 15 as faqs %} """ args = token.split_contents() if len(args) != 4: raise template.TemplateSyntaxError("%s takes exactly three arguments" % args[0]) if args[2] != 'as': raise template.TemplateSyntaxError("second argument to the %s tag must be 'as'" % args[0]) return FaqListNode(num=args[1], varname=args[3]) class TopicListNode(template.Node): def __init__(self, varname): self.varname = varname def render(self, context): context[self.varname] = Topic.objects.all() return '' @register.tag def faq_topic_list(parser, token): """ Returns a list of all FAQ Topics. Example usage:: {% faq_topic_list as topic_list %} """ args = token.split_contents() if len(args) != 3: raise template.TemplateSyntaxError("%s takes exactly two arguments" % args[0]) if args[1] != 'as': raise template.TemplateSyntaxError("second argument to the %s tag must be 'as'" % args[0]) return TopicListNode(varname=args[2])
Mercy-Nekesa/sokoapp
sokoapp/fack/templatetags/faqtags.py
Python
mit
2,785
from pcs import settings from pcs.common import ( file_type_codes, reports, ) from pcs.common.file import RawFileError from pcs.common.reports.item import ReportItem from pcs.common.tools import format_environment_error from pcs.lib.communication.nodes import SendPcsdSslCertAndKey from pcs.lib.communication.tools import run_and_raise from pcs.lib.env import LibraryEnvironment from pcs.lib.errors import LibraryError from pcs.lib.node import get_existing_nodes_names def synchronize_ssl_certificate(env: LibraryEnvironment, skip_offline=False): """ Send the local pcsd SSL cert and key to all full nodes in the local cluster. Consider the pcs Web UI is accessed via an IP running as a resource in the cluster. When the IP is moved, the user's browser connects to the new node and we want it to get the same certificate to make the transition a seamless experience (otherwise the browser display a warning that the certificate has changed). Using pcsd Web UI on remote and guest nodes is not supported (pcs/pcsd depends on the corosanc.conf file being present on the local node) so we send the cert only to corossync (== full stack) nodes. """ report_processor = env.report_processor target_factory = env.get_node_target_factory() cluster_nodes_names, report_list = get_existing_nodes_names( env.get_corosync_conf() ) if not cluster_nodes_names: report_list.append( ReportItem.error(reports.messages.CorosyncConfigNoNodesDefined()) ) report_processor.report_list(report_list) try: with open(settings.pcsd_cert_location, "r") as file: ssl_cert = file.read() except EnvironmentError as e: report_processor.report( ReportItem.error( reports.messages.FileIoError( file_type_codes.PCSD_SSL_CERT, RawFileError.ACTION_READ, format_environment_error(e), file_path=settings.pcsd_cert_location, ) ) ) try: with open(settings.pcsd_key_location, "r") as file: ssl_key = file.read() except EnvironmentError as e: report_processor.report( ReportItem.error( reports.messages.FileIoError( file_type_codes.PCSD_SSL_KEY, RawFileError.ACTION_READ, format_environment_error(e), file_path=settings.pcsd_key_location, ) ) ) ( target_report_list, target_list, ) = target_factory.get_target_list_with_reports( cluster_nodes_names, skip_non_existing=skip_offline ) report_processor.report_list(target_report_list) if report_processor.has_errors: raise LibraryError() env.report_processor.report( ReportItem.info( reports.messages.PcsdSslCertAndKeyDistributionStarted( sorted([target.label for target in target_list]) ) ) ) com_cmd = SendPcsdSslCertAndKey(env.report_processor, ssl_cert, ssl_key) com_cmd.set_targets(target_list) run_and_raise(env.get_node_communicator(), com_cmd)
tomjelinek/pcs
pcs/lib/commands/pcsd.py
Python
gpl-2.0
3,265
# -*- coding: utf-8 -*- ## ## This file is part of Invenio. ## Copyright (C) 2011, 2013, 2014 CERN. ## ## Invenio is free software; you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation; either version 2 of the ## License, or (at your option) any later version. ## ## Invenio is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Invenio; if not, write to the Free Software Foundation, Inc., ## 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. """WebMessage Flask Blueprint""" from datetime import datetime from flask import render_template, request, flash, redirect, url_for, Blueprint from flask.ext.breadcrumbs import default_breadcrumb_root, register_breadcrumb from flask.ext.login import current_user, login_required from flask.ext.menu import register_menu from sqlalchemy.sql import operators from invenio.base.decorators import (wash_arguments, templated, sorted_by, filtered_by) from invenio.base.globals import cfg from invenio.base.i18n import _ from invenio.ext.template import render_template_to_string from invenio.ext.principal import permission_required from invenio.ext.sqlalchemy import db from . import dblayer from . import query as dbquery from .forms import AddMsgMESSAGEForm, FilterMsgMESSAGEForm from .models import MsgMESSAGE, UserMsgMESSAGE, email_alert_register class MessagesMenu(object): def __str__(self): uid = current_user.get_id() dbquery.update_user_inbox_for_reminders(uid) unread = db.session.query(db.func.count(UserMsgMESSAGE.id_msgMESSAGE)).\ filter(db.and_( UserMsgMESSAGE.id_user_to == uid, UserMsgMESSAGE.status == cfg['CFG_WEBMESSAGE_STATUS_CODE']['NEW'] )).scalar() return render_template_to_string("messages/menu_item.html", unread=unread) not_guest = lambda: not current_user.is_guest blueprint = Blueprint('webmessage', __name__, url_prefix="/yourmessages", template_folder='templates', static_folder='static') default_breadcrumb_root(blueprint, '.webaccount.messages') @blueprint.route('/menu', methods=['GET']) #FIXME if request is_xhr then do not return 401 #@login_required #@permission_required('usemessages') #@templated('messages/menu.html') def menu(): uid = current_user.get_id() dbquery.update_user_inbox_for_reminders(uid) # join: msgMESSAGE -> user_msgMESSAGE, msgMESSAGE -> users # filter: all messages from user AND filter form # order: sorted by one of the table column messages = db.session.query(MsgMESSAGE, UserMsgMESSAGE).\ join(MsgMESSAGE.user_from, MsgMESSAGE.sent_to_users).\ filter(db.and_(dbquery.filter_all_messages_from_user(uid))).\ order_by(db.desc(MsgMESSAGE.received_date)).limit(5) #return dict(messages=messages.all()) return render_template('messages/menu.html', messages=messages.all()) @blueprint.route('/', methods=['GET', 'POST']) @blueprint.route('/index', methods=['GET', 'POST']) @blueprint.route('/display', methods=['GET', 'POST']) @login_required @permission_required('usemessages') @sorted_by(MsgMESSAGE) @filtered_by(MsgMESSAGE, columns={ 'subject': operators.startswith_op, 'user_from.nickname': operators.contains_op}, form=FilterMsgMESSAGEForm) @templated('messages/index.html') @register_breadcrumb(blueprint, '.', _('Your Messages')) @register_menu(blueprint, 'personalize.messages', _('Your messages'), order=10) @register_menu(blueprint, 'main.messages', MessagesMenu(), order=-3, visible_when=not_guest) def index(sort=False, filter=None): from invenio.legacy.webmessage.api import is_no_quota_user uid = current_user.get_id() dbquery.update_user_inbox_for_reminders(uid) # join: msgMESSAGE -> user_msgMESSAGE, msgMESSAGE -> users # filter: all messages from user AND filter form # order: sorted by one of the table column messages = db.session.query(MsgMESSAGE, UserMsgMESSAGE).\ join(MsgMESSAGE.user_from, MsgMESSAGE.sent_to_users).\ filter(db.and_(dbquery.filter_all_messages_from_user(uid), (filter))).\ order_by(sort) return dict(messages=messages.all(), nb_messages=dbquery.count_nb_messages(uid), no_quota=is_no_quota_user(uid)) @blueprint.route("/add", methods=['GET', 'POST']) @blueprint.route("/write", methods=['GET', 'POST']) @register_breadcrumb(blueprint, '.add', _('Write a message')) @login_required @permission_required('usemessages') @wash_arguments({'msg_reply_id': (int, 0)}) def add(msg_reply_id): from invenio.utils.mail import email_quote_txt uid = current_user.get_id() if msg_reply_id: if (dblayer.check_user_owns_message(uid, msg_reply_id) == 0): flash(_('Sorry, this message in not in your mailbox.'), "error") return redirect(url_for('.index')) else: try: m = dbquery.get_message(uid, msg_reply_id) message = MsgMESSAGE() message.sent_to_user_nicks = m.message.user_from.nickname \ or str(m.message.id_user_from) message.subject = _("Re:") + " " + m.message.subject message.body = email_quote_txt(m.message.body) form = AddMsgMESSAGEForm(request.form, obj=message) return render_template('messages/add.html', form=form) except db.sqlalchemy.orm.exc.NoResultFound: # The message exists in table user_msgMESSAGE # but not in table msgMESSAGE => table inconsistency flash(_('This message does not exist.'), "error") except: flash(_('Problem with loading message.'), "error") return redirect(url_for('.index')) form = AddMsgMESSAGEForm(request.values) if form.validate_on_submit(): m = MsgMESSAGE() form.populate_obj(m) m.id_user_from = uid m.sent_date = datetime.now() quotas = dblayer.check_quota(cfg['CFG_WEBMESSAGE_MAX_NB_OF_MESSAGES'] - 1) users = filter(lambda x: x.id in quotas, m.recipients) #m.recipients = m.recipients.difference(users)) for u in users: m.recipients.remove(u) if len(users) > 0: flash(_('Following users reached their quota %(quota)d messages: %(users)s', quota=cfg['CFG_WEBMESSAGE_MAX_NB_OF_MESSAGES'], users=', '.join([u.nickname for u in users])), "error") flash(_('Message has %(recipients)d valid recipients.', recipients=len(m.recipients)), "info") if len(m.recipients) == 0: flash(_('Message was not sent'), "info") else: if m.received_date is not None and m.received_date > datetime.now(): for um in m.sent_to_users: um.status = cfg['CFG_WEBMESSAGE_STATUS_CODE']['REMINDER'] else: m.received_date = datetime.now() try: db.session.add(m) db.session.commit() flash(_('Message was sent'), "info") return redirect(url_for('.index')) except: db.session.rollback() return render_template('messages/add.html', form=form) @blueprint.route("/view") @blueprint.route("/display_msg") @register_breadcrumb(blueprint, '.view', _('View a message')) @login_required @permission_required('usemessages') @wash_arguments({'msgid': (int, 0)}) @templated('messages/view.html') def view(msgid): uid = current_user.get_id() if (dbquery.check_user_owns_message(uid, msgid) == 0): flash(_('Sorry, this message (#%(x_msg)d) is not in your mailbox.', x_msg=msgid), "error") else: try: m = dbquery.get_message(uid, msgid) m.status = cfg['CFG_WEBMESSAGE_STATUS_CODE']['READ'] ## It's not necessary since "m" is SQLAlchemy object bind with same ## session. ##db.session.add(m) ## I wonder if the autocommit works ... # Commit changes before rendering for correct menu update. db.session.commit() return dict(m=m) except db.sqlalchemy.orm.exc.NoResultFound: flash(_('This message does not exist.'), "error") except: flash(_('Problem with loading message.'), "error") return redirect(url_for('.index')) @blueprint.route("/delete", methods=['GET', 'POST']) @login_required @permission_required('usemessages') def delete(): """ Delete message specified by 'msgid' that belongs to logged user. """ uid = current_user.get_id() msgids = request.values.getlist('msgid', type=int) if len(msgids) <= 0: flash(_('Sorry, no valid message specified.'), "error") elif dbquery.check_user_owns_message(uid, msgids) < len(msgids): flash(_('Sorry, this message (#%(x_msg)s) is not in your mailbox.', x_msg=(str(msgids), )), "error") else: if dbquery.delete_message_from_user_inbox(uid, msgids) == 0: flash(_("The message could not be deleted."), "error") else: flash(_("The message was successfully deleted."), "info") return redirect(url_for('.index')) @blueprint.route("/delete_all", methods=['GET', 'POST']) @register_breadcrumb(blueprint, '.delete', _('Delete all messages')) @login_required @permission_required('usemessages') @wash_arguments({'confirmed': (int, 0)}) def delete_all(confirmed=0): """ Delete every message belonging a logged user. @param confirmed: 0 will produce a confirmation message. """ uid = current_user.get_id() if confirmed != 1: return render_template('messages/confirm_delete.html') if dbquery.delete_all_messages(uid): flash(_("Your mailbox has been emptied."), "info") else: flash(_("Could not empty your mailbox."), "warning") return redirect(url_for('.index')) # Registration of email_alert invoked from blueprint # in order to use before_app_first_request. # Reading config CFG_WEBMESSAGE_EMAIL_ALERT # required app context. @blueprint.before_app_first_request def invoke_email_alert_register(): email_alert_register()
egabancho/invenio
invenio/modules/messages/views.py
Python
gpl-2.0
10,605
''' Videozed urlresolver plugin Copyright (C) 2013 Vinnydude This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. ''' from t0mm0.common.net import Net from urlresolver.plugnplay.interfaces import UrlResolver from urlresolver.plugnplay.interfaces import PluginSettings from urlresolver.plugnplay import Plugin import re, xbmcgui from urlresolver import common from lib import jsunpack net = Net() class VideozedResolver(Plugin, UrlResolver, PluginSettings): implements = [UrlResolver, PluginSettings] name = "videozed" def __init__(self): p = self.get_setting('priority') or 100 self.priority = int(p) self.net = Net() def get_media_url(self, host, media_id): try: url = self.get_url(host, media_id) html = self.net.http_GET(url).content dialog = xbmcgui.DialogProgress() dialog.create('Resolving', 'Resolving Videozed Link...') dialog.update(0) data = {} r = re.findall(r'type="(?:hidden|submit)?" name="(.+?)"\s* value="?(.+?)">', html) for name, value in r: data[name] = value html = net.http_POST(url, data).content captcha = re.compile("left:(\d+)px;padding-top:\d+px;'>&#(.+?);<").findall(html) result = sorted(captcha, key=lambda ltr: int(ltr[0])) solution = ''.join(str(int(num[1])-48) for num in result) r = re.findall(r'type="hidden" name="(.+?)" value="(.+?)">', html) for name, value in r: data[name] = value data.update({'code':solution}) html = net.http_POST(url, data).content sPattern = '<script type=(?:"|\')text/javascript(?:"|\')>(eval\(' sPattern += 'function\(p,a,c,k,e,d\)(?!.+player_ads.+).+np_vid.+?)' sPattern += '\s+?</script>' r = re.search(sPattern, html, re.DOTALL + re.IGNORECASE) if r: sJavascript = r.group(1) sUnpacked = jsunpack.unpack(sJavascript) sPattern = '<embed id="np_vid"type="video/divx"src="(.+?)' sPattern += '"custommode=' r = re.search(sPattern, sUnpacked) if r: dialog.update(100) dialog.close() return r.group(1) else: num = re.compile('videozed\|(.+?)\|http').findall(html) pre = 'http://'+num[0]+'.videozed.com:182/d/' preb = re.compile('image\|(.+?)\|video\|(.+?)\|').findall(html) for ext, link in preb: r = pre+link+'/video.'+ext dialog.update(100) dialog.close() return r except Exception, e: common.addon.log('**** Videozed Error occured: %s' % e) common.addon.show_small_popup('Error', str(e), 5000, '') return self.unresolvable(code=0, msg=e) def get_url(self, host, media_id): return 'http://www.videozed.net/%s' % media_id def get_host_and_id(self, url): r = re.search('//(.+?)/([0-9a-zA-Z]+)',url) if r: return r.groups() else: return False return('host', 'media_id') def valid_url(self, url, host): if self.get_setting('enabled') == 'false': return False return (re.match('http://(www.)?videozed.net/' + '[0-9A-Za-z]+', url) or 'videozed' in host)
SMALLplayer/smallplayer-image-creator
storage/.xbmc/addons/script.module.urlresolver/lib/urlresolver/plugins/videozed.py
Python
gpl-2.0
4,224
# -*- coding: utf-8 -*- __author__, __date__ = 'mehdy', '5/4/15'
TelePy/TelePy
telepy/models/__init__.py
Python
gpl-2.0
66
import discord from sigma.core.utilities.data_processing import user_avatar from .move_log_embed import make_move_log_embed async def leave_move_log(ev, guild): if ev.bot.cfg.pref.movelog_channel: mlc_id = ev.bot.cfg.pref.movelog_channel mlc = discord.utils.find(lambda x: x.id == mlc_id, ev.bot.get_all_channels()) if mlc: if guild.icon_url: icon = guild.icon_url else: icon = user_avatar(guild.owner) log_embed = discord.Embed(color=0xBE1931) log_embed.set_author(name='Left A Guild', icon_url=icon, url=icon) make_move_log_embed(log_embed, guild) await mlc.send(embed=log_embed)
AXAz0r/apex-sigma-core
sigma/modules/core_functions/system/leave_move_log.py
Python
gpl-3.0
717
# # Copyright 2007-2012 Free Software Foundation, Inc. # Copyright (C) by Josh Blum. See LICENSE.txt for licensing information. # # This file is part of GREX # # GREX is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GREX is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GREX; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # import unittest import gras from gras import TestUtils import numpy class test_noise_source(unittest.TestCase): def setUp(self): self.tb = gras.TopBlock() def tearDown(self): self.tb = None def test_float32(self): op = gras.make('/grex/noise_source_f32', 0) op.set_waveform("GAUSSIAN") op.set_amplitude(10) head = TestUtils.Head(numpy.float32, 12) dst = TestUtils.VectorSink(numpy.float32) self.tb.connect(op, head, dst) self.tb.run() # expected results for Gaussian with seed 0, ampl 10 expected_result =(-6.8885869979858398, 26.149959564208984, 20.575775146484375, -7.9340143203735352, 5.3359274864196777, -12.552099227905273, 6.333674430847168, -23.830753326416016, -16.603046417236328, 2.9676761627197266, 1.2176077365875244, 15.100193977355957) dst_data = dst.data() self.assertEqual(len(expected_result), len(dst_data)) for i in range(len(dst_data)): self.assertAlmostEqual(expected_result[i], dst_data[i], places=3) if __name__ == '__main__': unittest.main()
manojgudi/sandhi
modules/grex/sources/noise_source_test.py
Python
gpl-3.0
2,098
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright: (c) 2019, Markus Bergholz (markuman@gmail.com) # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' module: gitlab_project_variable short_description: Creates/updates/deletes GitLab Projects Variables description: - When a project variable does not exist, it will be created. - When a project variable does exist, its value will be updated when the values are different. - Variables which are untouched in the playbook, but are not untouched in the GitLab project, they stay untouched (I(purge) is C(false)) or will be deleted (I(purge) is C(true)). version_added: "2.9" author: - "Markus Bergholz (@markuman)" requirements: - python >= 2.7 - python-gitlab python module extends_documentation_fragment: - auth_basic options: state: description: - Create or delete project variable. - Possible values are present and absent. default: present type: str choices: ["present", "absent"] api_token: description: - GitLab access token with API permissions. required: true type: str project: description: - The path and name of the project. required: true type: str purge: description: - When set to true, all variables which are not untoucheded in the task will be deleted. default: false type: bool vars: description: - A list of key value pairs. default: {} type: dict ''' EXAMPLES = ''' - name: Set or update some CI/CD variables gitlab_project_variable: api_url: https://gitlab.com api_token: secret_access_token project: markuman/dotfiles purge: false vars: ACCESS_KEY_ID: abc123 SECRET_ACCESS_KEY: 321cba - name: Delete one variable gitlab_project_variable: api_url: https://gitlab.com api_token: secret_access_token project: markuman/dotfiles state: absent vars: ACCESS_KEY_ID: abc123 ''' RETURN = ''' project_variable: description: Four lists of the variablenames which were added, updated, removed or exist. returned: always type: dict contains: added: description: A list of variables which were created. returned: always type: list sample: "['ACCESS_KEY_ID', 'SECRET_ACCESS_KEY']" untouched: description: A list of variables which exist. returned: always type: list sample: "['ACCESS_KEY_ID', 'SECRET_ACCESS_KEY']" removed: description: A list of variables which were deleted. returned: always type: list sample: "['ACCESS_KEY_ID', 'SECRET_ACCESS_KEY']" updated: description: A list of variables whose values were changed. returned: always type: list sample: "['ACCESS_KEY_ID', 'SECRET_ACCESS_KEY']" ''' import traceback from ansible.module_utils.basic import AnsibleModule, missing_required_lib from ansible.module_utils._text import to_native from ansible.module_utils.api import basic_auth_argument_spec GITLAB_IMP_ERR = None try: import gitlab HAS_GITLAB_PACKAGE = True except Exception: GITLAB_IMP_ERR = traceback.format_exc() HAS_GITLAB_PACKAGE = False class GitlabProjectVariables(object): def __init__(self, module, gitlab_instance): self.repo = gitlab_instance self.project = self.get_project(module.params['project']) self._module = module def get_project(self, project_name): return self.repo.projects.get(project_name) def list_all_project_variables(self): return self.project.variables.list() def create_variable(self, key, value): if self._module.check_mode: return return self.project.variables.create({"key": key, "value": value}) def update_variable(self, var, value): if var.value == value: return False if self._module.check_mode: return True var.value = value var.save() return True def delete_variable(self, key): if self._module.check_mode: return return self.project.variables.delete(key) def native_python_main(this_gitlab, purge, var_list, state): change = False return_value = dict(added=list(), updated=list(), removed=list(), untouched=list()) gitlab_keys = this_gitlab.list_all_project_variables() existing_variables = [x.get_id() for x in gitlab_keys] for key in var_list: if key in existing_variables: index = existing_variables.index(key) existing_variables[index] = None if state == 'present': single_change = this_gitlab.update_variable( gitlab_keys[index], var_list[key]) change = single_change or change if single_change: return_value['updated'].append(key) else: return_value['untouched'].append(key) elif state == 'absent': this_gitlab.delete_variable(key) change = True return_value['removed'].append(key) elif key not in existing_variables and state == 'present': this_gitlab.create_variable(key, var_list[key]) change = True return_value['added'].append(key) existing_variables = list(filter(None, existing_variables)) if purge: for item in existing_variables: this_gitlab.delete_variable(item) change = True return_value['removed'].append(item) else: return_value['untouched'].extend(existing_variables) return change, return_value def main(): argument_spec = basic_auth_argument_spec() argument_spec.update( api_token=dict(type='str', required=True, no_log=True), project=dict(type='str', required=True), purge=dict(type='bool', required=False, default=False), vars=dict(type='dict', required=False, default=dict()), state=dict(type='str', default="present", choices=["absent", "present"]) ) module = AnsibleModule( argument_spec=argument_spec, mutually_exclusive=[ ['api_username', 'api_token'], ['api_password', 'api_token'], ], required_together=[ ['api_username', 'api_password'], ], required_one_of=[ ['api_username', 'api_token'] ], supports_check_mode=True ) api_url = module.params['api_url'] gitlab_token = module.params['api_token'] purge = module.params['purge'] var_list = module.params['vars'] state = module.params['state'] if not HAS_GITLAB_PACKAGE: module.fail_json(msg=missing_required_lib("python-gitlab"), exception=GITLAB_IMP_ERR) try: gitlab_instance = gitlab.Gitlab(url=api_url, private_token=gitlab_token) gitlab_instance.auth() except (gitlab.exceptions.GitlabAuthenticationError, gitlab.exceptions.GitlabGetError) as e: module.fail_json(msg="Failed to connect to GitLab server: %s" % to_native(e)) except (gitlab.exceptions.GitlabHttpError) as e: module.fail_json(msg="Failed to connect to Gitlab server: %s. \ Gitlab remove Session API now that private tokens are removed from user API endpoints since version 10.2" % to_native(e)) this_gitlab = GitlabProjectVariables(module=module, gitlab_instance=gitlab_instance) change, return_value = native_python_main(this_gitlab, purge, var_list, state) module.exit_json(changed=change, project_variable=return_value) if __name__ == '__main__': main()
aperigault/ansible
lib/ansible/modules/source_control/gitlab_project_variable.py
Python
gpl-3.0
7,894
f1=open("file_before_enc.txt","r") s=f1.read() f1.close() s=list(s) s.reverse() for i in range(len(s)): s[i]=chr(ord(s[i])+len(s)-i) s="".join(s) f2=open("encrypted_file.txt","w+") f2.write(s) f2.close()
hacktoberfest17/programming
encryption_algorithms/simple_encryption_algo_python3/encrypt.py
Python
gpl-3.0
205
# Copyright 2012-2013, University of Amsterdam. This program is free software: # you can redistribute it and/or modify it under the terms of the GNU Lesser # General Public License as published by the Free Software Foundation, either # version 3 of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License # for more details. # # You should have received a copy of the GNU Lesser General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import re # This parses MediaWiki syntax for '''bold''' and ''italic'' text with the equivalent html markup. class EmphasisResolver: def resolve_emphasis(self, text): sb = [] for line in text.split("\n"): sb.append(self.resolve_line(line)) sb.append("\n") result = "".join(sb) result = result[:-1] return result # This is a direct translation of the php function doAllQuotes used by the original MediaWiki software. # # @param line the line to resolve emphasis within # @return the line, with all emphasis markup resolved to html tags # def resolve_line(self, line): #print "Resolving line '" + line + "'" arr = self.get_splits("$"+line) if len(arr) <= 1: return line # First, do some preliminary work. This may shift some apostrophes from # being mark-up to being text. It also counts the number of occurrences # of bold and italics mark-ups. numBold = 0 numItalics = 0 for i, value in enumerate(arr): if (i % 2 == 1): # If there are ever four apostrophes, assume the first is supposed to # be text, and the remaining three constitute mark-up for bold text. if (len(arr[i]) == 4): arr[i-1] = arr[i-1] + "'" ; arr[i] = self.get_filled_string(3) ; elif len(arr[i]) > 5: # If there are more than 5 apostrophes in a row, assume they're all # text except for the last 5. arr[i-1] = arr[i-1] + self.get_filled_string(len(arr[i])-5) arr[i] = self.get_filled_string(5) size = len(arr[i]) if size == 2: numItalics +=1 elif size == 3: numBold+=1 elif size == 5: numItalics +=1 numBold +=1 # If there is an odd number of both bold and italics, it is likely # that one of the bold ones was meant to be an apostrophe followed # by italics. Which one we cannot know for certain, but it is more # likely to be one that has a single-letter word before it. if (numBold%2==1) and (numItalics%2==1): i= 0 firstSingleLetterWord = -1 firstMultiLetterWord = -1 firstSpace = -1 for r in arr: if i%2==1 and len(r)==3: x1 = arr[i-1][len(arr[i-1])-1] x2 = arr[i-1][len(arr[i-1])-2] if x1==' ': if firstSpace == -1: firstSpace = i ; elif x2==' ': if firstSingleLetterWord == -1: firstSingleLetterWord = i else: if firstMultiLetterWord == -1: firstMultiLetterWord = i i += 1 # If there is a single-letter word, use it! if firstSingleLetterWord > -1: arr[firstSingleLetterWord] = "''" arr[firstSingleLetterWord-1] = arr[firstSingleLetterWord] + "'" elif firstMultiLetterWord > -1: # If not, but there's a multi-letter word, use that one. arr[firstMultiLetterWord] = "''" arr[firstMultiLetterWord-1] = arr[firstMultiLetterWord] + "'" elif firstSpace > -1: # ... otherwise use the first one that has neither. # (notice that it is possible for all three to be -1 if, for example, # there is only one pentuple-apostrophe in the line) arr[firstSpace] = "''" arr[firstSpace-1] = arr[firstSpace] + "'" # Now let's actually convert our apostrophic mush to HTML! output = [] buffer = [] state = "" ; i = 0 for r in arr: if i%2==0: if state == "both": buffer.append(r) else: output.append(r) else: if len(r) == 2: if state == "i": output.append("</i>") state = "" elif state == "bi": output.append("</i>") state = "b" elif state =="ib": output.append("</b></i><b>"); state = "b"; elif state =="both": output.append("<b><i>") ; output.append("".join(buffer)) output.append("</i>") ; state = "b"; else: # $state can be "b" or "" output.append("<i>") state = state + "i" elif len(r) == 3: if state == "b": output.append("</b>") state = "" elif state == "bi": output.append("</i></b><i>") state = "i" elif state =="ib": output.append("</b>"); state = "i"; elif state =="both": output.append("<i><b>") ; output.append("".join(buffer)) output.append("</b>") ; state = "i"; else: # $state can be "b" or "" output.append("<b>") state = state + "b" elif len(r) == 5: if state == "b": output.append("</b><i>") state = "i" elif state == "i": output.append("</i><b>") state = "b" elif state =="bi": output.append("</i></b>"); state = ""; elif state =="ib": output.append("</b></i>") ; state = ""; elif state =="both": output.append("<i><b>") ; output.append("".join(buffer)) output.append("</b></i>") ; state = "i"; else: # ($state == "") buffer = [] state = "both" i += 1 # Now close all remaining tags. Notice that the order is important. if state == "b" or state == "ib": output.append("</b>") if state == "i" or state == "bi" or state == "ib": output.append("</i>") if state == "bi": output.append("</b>") # There might be lonely ''''', so make sure we have a buffer if state == "both" and len(buffer) > 0: output.append("<b><i>") output.append("".join(buffer)) output.append("</i></b>") #remove leading $ output = output[1:] return "".join(output) # Does the same job as php function preg_split def get_splits(self, text): #return re.split("\\'{2,}", text) splits = [] lastCopyIndex = 0 p = re.compile("\\'{2,}") for m in p.finditer(text): if m.start() > lastCopyIndex: splits.append( text[lastCopyIndex: m.start()] ) splits.append( m.group() ) lastCopyIndex = m.end() if lastCopyIndex < len(text)-1: splits.append(text[lastCopyIndex]) return splits def get_filled_string(self, length): sb = [] for i in xrange(0,length): sb.append("'") return "".join(sb) ## EmphasisResolver testing using ## python -m semanticizer.wpm.utils.emphasis_resolver if __name__ == '__main__': er = EmphasisResolver() markup = "'''War''' is an openly declared state of organized [[violent]] [[Group conflict|conflict]], typified by extreme [[aggression]], [[societal]] disruption, and high [[Mortality rate|mortality]]. As a behavior pattern, warlike tendencies are found in many [[primate]] species, including [[humans]], and also found in many [[ant]] species. The set of techniques used by a group to carry out war is known as '''warfare'''." #markup = "Parsing '''MediaWiki''''s syntax for '''bold''' and ''italic'' markup is a '''''deceptively''' difficult'' task. Whoever came up with the markup scheme should be '''shot'''." ; print er.resolve_emphasis(markup)
redreamality/semanticizer
semanticizer/wpm/utils/emphasis_resolver.py
Python
gpl-3.0
9,642
# -*- coding: Latin-1 -*- """ @file GenerateRawFCD.py @author Sascha Krieg @author Daniel Krajzewicz @author Michael Behrisch @date 2008-07-26 Creates files with a comparison of speeds for each edge between the taxis and the average speed from the current edge. Dependent of the frequency and the taxi quota. SUMO, Simulation of Urban MObility; see http://sumo.sourceforge.net/ Copyright (C) 2008-2012 DLR (http://www.dlr.de/) and contributors All rights reserved """ import random import os.path import profile from cPickle import dump from cPickle import load #global vars mainPath="D:/Krieg/Projekte/Diplom/Daten/fcdQualitaet/" #mainPath="F:/DLR/Projekte/Diplom/Daten/fcdQualitaet/" edgeDumpPath=mainPath+"edgedumpFcdQuality_900_6Uhr.xml" edgeDumpPicklePath=mainPath+"edgedumpFcdPickleDict.pickle" vtypePath=mainPath+"vtypeprobeFcdQuality_1s_6Uhr.out.xml" vtypePicklePath=mainPath+"vtypeprobePickleDict.pickle" vehPicklePath=mainPath+"vehiclePickleList.pickle" outputPath=mainPath+"output/simResult_" simStartTime=21600 # =6 o'clock ->begin in edgeDump period=[5,10,20,30,40,50,60,90,120] #period in seconds | single element or a hole list quota=[0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 3.0, 5.0, 10.0] #how many taxis in percent of the total vehicles | single element or a hole list def main(): global period, quota print "start program" edgeDumpDict=make(edgeDumpPicklePath,edgeDumpPath,readEdgeDump) vtypeDict=make(vtypePicklePath,vtypePath,readVtype) vehList=make(vehPicklePath,vtypePicklePath,getVehicleList,False,vtypeDict) vehSum=len(vehList) if type(period)!=list: period=[period] if type(quota)!=list: quota=[quota] pList=period qList=quota for period in pList: for quota in qList: print "create output for: period ",period," quota ",quota taxis=chooseTaxis(vehList) taxiSum=len(taxis) vtypeDictR=reduceVtype(vtypeDict,taxis); del taxis createOutput(edgeDumpDict, vtypeDictR,vehSum, taxiSum) print "end" def readEdgeDump(): """Get for each interval all edges with corresponding speed.""" edgeDumpDict={} begin=False interval=0 inputFile=open(edgeDumpPath,'r') for line in inputFile: words=line.split('"') if not begin and words[0].find("<end>")!=-1: words=words[0].split(">") interval=int(words[1][:-5]) edgeDumpDict.setdefault(interval,[]) elif words[0].find("<interval")!=-1 and int(words[1])>=simStartTime: interval=int(words[1]) begin=True if begin and words[0].find("<edge id")!=-1: edge=words[1] speed=float(words[13]) edgeDumpDict.setdefault(interval,[]).append((edge,speed)) inputFile.close() return edgeDumpDict def readVtype(): """Gets all necessary information of all vehicles.""" vtypeDict={} timestep=0 begin=False inputFile=open(vtypePath,'r') for line in inputFile: words=line.split('"') if words[0].find("<timestep ")!=-1 and int(words[1])>=simStartTime: timestep=int(words[1]) begin=True if begin and words[0].find("<vehicle id=")!=-1: # time id edge speed vtypeDict.setdefault(timestep,[]).append((words[1],words[3][:-2],words[15])) #break inputFile.close() return vtypeDict def getVehicleList(vtypeDict): """Collects all vehicles used in the simulation.""" vehSet=set() for timestepList in vtypeDict.values(): for elm in timestepList: vehSet.add(elm[0]) return list(vehSet) def make(source, dependentOn, builder, buildNew=False,*builderParams): """Fills the target (a variable) with Information of source (pickelt var). It Checks if the pickle file is up to date in comparison to the dependentOn file. If not the builder function is called. If buildNew is True the builder function is called anyway. """ #check if pickle file exists if not os.path.exists(source): buildNew=True #check date if not buildNew and os.path.getmtime(source)>os.path.getmtime(dependentOn): #if source is newer print "load source: ",os.path.basename(source),"..." target=load(open(source,'rb')) else: print "build source: ",os.path.basename(source),"..." target=builder(*builderParams) #pickle the target dump(target, open(source,'wb'),1) print "Done!" return target def chooseTaxis(vehList): """ Chooses from the vehicle list random vehicles with should act as taxis.""" #calc absolute amount of taxis taxiNo=int(round(quota*len(vehList)/100)) random.shuffle(vehList) return vehList[:taxiNo] def reduceVtype(vtypeDict,taxis): """Reduces the vtypeDict to the relevant information.""" newVtypeDict={} for timestep in vtypeDict: if timestep%period==0: #timesteps which are a multiple of the period newVtypeDict[timestep]=([tup for tup in vtypeDict[timestep] if tup[0] in taxis]) return newVtypeDict def createOutput(edgeDumpDict, vtypeDict,vehSum, taxiSum): """Creates a file with a comparison of speeds for each edge between the taxis and the average speed from the current edge.""" intervalList=edgeDumpDict.keys() intervalList.sort() interval=intervalList[1]-intervalList[0] outputFile=open(outputPath+str(period)+"s_"+str(quota)+"%.out.xml",'w') outputFile.write('<?xml version="1.0"?>\n') outputFile.write('<results simStart="%d" interval="%d" taxiQuota="%.3f" period="%d" vehicles="%d" taxis="%d">\n' %(simStartTime, interval, quota, period, vehSum, taxiSum)) for i in intervalList[:-1]: #each interval outputFile.write('\t<interval begin="%d" end="%d">\n' %(i,i+interval-1)) intEdges={} for timestep,taxiList in vtypeDict.iteritems(): if i<timestep<intervalList[intervalList.index(i)+1]: #for each timestep in the interval for tup in taxiList: #all elements in this timestep intEdges.setdefault(tup[1],[]).append(float(tup[2])) #add speed entry to the relevant edge #wirte results for every founded edge for edge,v in edgeDumpDict[i]: if edge in intEdges: vList=intEdges[edge] meanV=sum(vList)/len(vList) abs=meanV-v rel=abs/v*100 outputFile.write('\t\t<edge id="%s" simSpeed="%.2f" fcdSpeed="%.2f" absDeviation="%.2f" relDeviation="%.2f"/>\n' %(edge, v, meanV, abs,rel)) outputFile.write('\t</interval>\n') outputFile.write('</results>') outputFile.close() #start the program #profile.run('main()') main()
rudhir-upretee/Sumo_With_Netsim
tools/projects/TaxiFCD_Krieg/src/fcdQuality/ParamEffectsOLD.py
Python
gpl-3.0
7,055
"""Deprecated import support. Auto-generated by import_shims/generate_shims.sh.""" # pylint: disable=redefined-builtin,wrong-import-position,wildcard-import,useless-suppression,line-too-long from import_shims.warn import warn_deprecated_import warn_deprecated_import('contentstore.api.tests', 'cms.djangoapps.contentstore.api.tests') from cms.djangoapps.contentstore.api.tests import *
eduNEXT/edunext-platform
import_shims/studio/contentstore/api/tests/__init__.py
Python
agpl-3.0
389
#-*- coding:utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2004-2009 Tiny SPRL (<http://tiny.be>). All Rights Reserved # d$ # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## { 'name': 'account_invoice_journal_defaults', 'version': '1.0', 'category': 'Accounting & Finance', "sequence": 4, 'complexity': "normal", 'description': ''' * account_id and journal_id added to onchange_partner * account_id added in onchange_journal * account_id associated with the journal or with the account in the partner * account_id change to read-only ''', "author" : 'ClearCorp', 'website':'http://www.clearcorp.co.cr', "depends" : ['account'], 'update_xml': [ 'account_invoice_journal_defaults_view.xml', ], "auto_install": False, "application": False, "installable": True, 'license': 'AGPL-3', } # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
sysadminmatmoz/odoo-clearcorp
account_invoice_journal_defaults/__openerp__.py
Python
agpl-3.0
1,847
"""Processing of implementation manifests. A manifest is a string representing a directory tree, with the property that two trees will generate identical manifest strings if and only if: - They have extactly the same set of files, directories and symlinks. - For each pair of corresponding directories in the two sets: - The mtimes are the same (OldSHA1 only). - For each pair of corresponding files in the two sets: - The size, executable flag and mtime are the same. - The contents have matching secure hash values. - For each pair of corresponding symlinks in the two sets: - The mtime and size are the same. - The targets have matching secure hash values. The manifest is typically processed with a secure hash itself. So, the idea is that any significant change to the contents of the tree will change the secure hash value of the manifest. A top-level ".manifest" file is ignored. """ # Copyright (C) 2009, Thomas Leonard # See the README file for details, or visit http://0install.net. import os, stat, base64 from zeroinstall import SafeException, _, logger from zeroinstall.zerostore import BadDigest, parse_algorithm_digest_pair, format_algorithm_digest_pair import hashlib sha1_new = hashlib.sha1 class Algorithm: """Abstract base class for algorithms. An algorithm knows how to generate a manifest from a directory tree. @ivar rating: how much we like this algorithm (higher is better) @type rating: int """ def generate_manifest(self, root): """Returns an iterator that yields each line of the manifest for the directory tree rooted at 'root'.""" raise Exception('Abstract') def new_digest(self): """Create a new digest. Call update() on the returned object to digest the data. Call getID() to turn it into a full ID string.""" raise Exception('Abstract') def getID(self, digest): """Convert a digest (from new_digest) to a full ID.""" raise Exception('Abstract') class OldSHA1(Algorithm): """@deprecated: Injector versions before 0.20 only supported this algorithm.""" rating = 10 def generate_manifest(self, root): def recurse(sub): # To ensure that a line-by-line comparison of the manifests # is possible, we require that filenames don't contain newlines. # Otherwise, you can name a file so that the part after the \n # would be interpreted as another line in the manifest. if '\n' in sub: raise BadDigest("Newline in filename '%s'" % sub) assert sub.startswith('/') if sub == '/.manifest': return full = os.path.join(root, sub[1:].replace('/', os.sep)) info = os.lstat(full) m = info.st_mode if stat.S_ISDIR(m): if sub != '/': yield "D %s %s" % (int(info.st_mtime), sub) items = os.listdir(full) items.sort() subdir = sub if not subdir.endswith('/'): subdir += '/' for x in items: for y in recurse(subdir + x): yield y return assert sub[1:] leaf = os.path.basename(sub[1:]) if stat.S_ISREG(m): with open(full, 'rb') as stream: d = sha1_new(stream.read()).hexdigest() # XXX could be very large! if m & 0o111: yield "X %s %s %s %s" % (d, int(info.st_mtime), info.st_size, leaf) else: yield "F %s %s %s %s" % (d, int(info.st_mtime), info.st_size, leaf) elif stat.S_ISLNK(m): target = os.readlink(full).encode('utf-8') d = sha1_new(target).hexdigest() # Note: Can't use utime on symlinks, so skip mtime # Note: eCryptfs may report length as zero, so count ourselves instead yield "S %s %s %s" % (d, len(target), leaf) else: raise SafeException(_("Unknown object '%s' (not a file, directory or symlink)") % full) for x in recurse('/'): yield x def new_digest(self): return sha1_new() def getID(self, digest): return 'sha1=' + digest.hexdigest() def get_algorithm(name): """Look-up an L{Algorithm} by name. @raise BadDigest: if the name is unknown.""" try: return algorithms[name] except KeyError: raise BadDigest(_("Unknown algorithm '%s'") % name) def generate_manifest(root, alg = 'sha1'): """@deprecated: use L{get_algorithm} and L{Algorithm.generate_manifest} instead.""" return get_algorithm(alg).generate_manifest(root) def add_manifest_file(dir, digest_or_alg): """Writes a .manifest file into 'dir', and returns the digest. You should call fixup_permissions before this to ensure that the permissions are correct. On exit, dir itself has mode 555. Subdirectories are not changed. @param dir: root of the implementation @param digest_or_alg: should be an instance of Algorithm. Passing a digest here is deprecated.""" mfile = os.path.join(dir, '.manifest') if os.path.islink(mfile) or os.path.exists(mfile): raise SafeException(_("Directory '%s' already contains a .manifest file!") % dir) manifest = '' if isinstance(digest_or_alg, Algorithm): alg = digest_or_alg digest = alg.new_digest() else: digest = digest_or_alg alg = get_algorithm('sha1') for line in alg.generate_manifest(dir): manifest += line + '\n' manifest = manifest.encode('utf-8') digest.update(manifest) os.chmod(dir, 0o755) with open(mfile, 'wb') as stream: os.chmod(dir, 0o555) stream.write(manifest) os.chmod(mfile, 0o444) return digest def splitID(id): """Take an ID in the form 'alg=value' and return a tuple (alg, value), where 'alg' is an instance of Algorithm and 'value' is a string. @raise BadDigest: if the algorithm isn't known or the ID has the wrong format.""" alg, digest = parse_algorithm_digest_pair(id) return (get_algorithm(alg), digest) def copy_with_verify(src, dest, mode, alg, required_digest): """Copy path src to dest, checking that the contents give the right digest. dest must not exist. New file is created with a mode of 'mode & umask'. @param src: source filename @type src: str @param dest: target filename @type dest: str @param mode: target mode @type mode: int @param alg: algorithm to generate digest @type alg: L{Algorithm} @param required_digest: expected digest value @type required_digest: str @raise BadDigest: the contents of the file don't match required_digest""" with open(src, 'rb') as src_obj: dest_fd = os.open(dest, os.O_WRONLY | os.O_CREAT | os.O_EXCL, mode) try: digest = alg.new_digest() while True: data = src_obj.read(256) if not data: break digest.update(data) while data: written = os.write(dest_fd, data) assert written >= 0 data = data[written:] finally: os.close(dest_fd) actual = digest.hexdigest() if actual == required_digest: return os.unlink(dest) raise BadDigest(_("Copy failed: file '%(src)s' has wrong digest (may have been tampered with)\n" "Expected: %(required_digest)s\n" "Actual: %(actual_digest)s") % {'src': src, 'required_digest': required_digest, 'actual_digest': actual}) def verify(root, required_digest = None): """Ensure that directory 'dir' generates the given digest. For a non-error return: - Dir's name must be a digest (in the form "alg=value") - The calculated digest of the contents must match this name. - If there is a .manifest file, then its digest must also match. @raise BadDigest: if verification fails.""" if required_digest is None: required_digest = os.path.basename(root) alg = splitID(required_digest)[0] digest = alg.new_digest() lines = [] for line in alg.generate_manifest(root): line += '\n' digest.update(line.encode('utf-8')) lines.append(line) actual_digest = alg.getID(digest) manifest_file = os.path.join(root, '.manifest') if os.path.isfile(manifest_file): digest = alg.new_digest() with open(manifest_file, 'rb') as stream: digest.update(stream.read()) manifest_digest = alg.getID(digest) else: manifest_digest = None if required_digest == actual_digest == manifest_digest: return error = BadDigest(_("Cached item does NOT verify.")) error.detail = _(" Expected: %(required_digest)s\n" " Actual: %(actual_digest)s\n" ".manifest digest: %(manifest_digest)s\n\n") \ % {'required_digest': required_digest, 'actual_digest': actual_digest, 'manifest_digest': manifest_digest or _('No .manifest file')} if manifest_digest is None: error.detail += _("No .manifest, so no further details available.") elif manifest_digest == actual_digest: error.detail += _("The .manifest file matches the actual contents. Very strange!") elif manifest_digest == required_digest: import difflib with open(manifest_file, 'rt') as stream: diff = difflib.unified_diff(stream.readlines(), lines, 'Recorded', 'Actual') error.detail += _("The .manifest file matches the directory name.\n" \ "The contents of the directory have changed:\n") + \ ''.join(diff) elif required_digest == actual_digest: error.detail += _("The directory contents are correct, but the .manifest file is wrong!") else: error.detail += _("The .manifest file matches neither of the other digests. Odd.") raise error # XXX: Be more careful about the source tree changing under us. In particular, what happens if: # - A regualar file suddenly turns into a symlink? # - We find a device file (users can hard-link them if on the same device) def copy_tree_with_verify(source, target, manifest_data, required_digest): """Copy directory source to be a subdirectory of target if it matches the required_digest. manifest_data is normally source/.manifest. source and manifest_data are not trusted (will typically be under the control of another user). The copy is first done to a temporary directory in target, then renamed to the final name only if correct. Therefore, an invalid 'target/required_digest' will never exist. A successful return means than target/required_digest now exists (whether we created it or not).""" import tempfile alg, digest_value = splitID(required_digest) if isinstance(alg, OldSHA1): raise SafeException(_("Sorry, the 'sha1' algorithm does not support copying.")) digest = alg.new_digest() digest.update(manifest_data) manifest_digest = alg.getID(digest) if manifest_digest != required_digest: raise BadDigest(_("Manifest has been tampered with!\n" "Manifest digest: %(actual_digest)s\n" "Directory name : %(required_digest)s") % {'actual_digest': manifest_digest, 'required_digest': required_digest}) target_impl = os.path.join(target, required_digest) if os.path.isdir(target_impl): logger.info(_("Target directory '%s' already exists"), target_impl) return # We've checked that the source's manifest matches required_digest, so it # is what we want. Make a list of all the files we need to copy... wanted = _parse_manifest(manifest_data.decode('utf-8')) tmpdir = tempfile.mkdtemp(prefix = 'tmp-copy-', dir = target) try: _copy_files(alg, wanted, source, tmpdir) if wanted: raise SafeException(_('Copy failed; files missing from source:') + '\n- ' + '\n- '.join(wanted.keys())) # Make directories read-only (files are already RO) for root, dirs, files in os.walk(tmpdir): for d in dirs: path = os.path.join(root, d) mode = os.stat(path).st_mode os.chmod(path, mode & 0o555) # Check that the copy is correct actual_digest = alg.getID(add_manifest_file(tmpdir, alg)) if actual_digest != required_digest: raise SafeException(_("Copy failed; double-check of target gave the wrong digest.\n" "Unless the target was modified during the copy, this is a BUG\n" "in 0store and should be reported.\n" "Expected: %(required_digest)s\n" "Actual: %(actual_digest)s") % {'required_digest': required_digest, 'actual_digest': actual_digest}) try: os.chmod(tmpdir, 0o755) # need write permission to rename on MacOS X os.rename(tmpdir, target_impl) os.chmod(target_impl, 0o555) tmpdir = None except OSError: if not os.path.isdir(target_impl): raise # else someone else installed it already - return success finally: if tmpdir is not None: logger.info(_("Deleting tmpdir '%s'") % tmpdir) from zeroinstall.support import ro_rmtree ro_rmtree(tmpdir) def _parse_manifest(manifest_data): """Parse a manifest file. @param manifest_data: the contents of the manifest file @type manifest_data: str @return: a mapping from paths to information about that path @rtype: {str: tuple}""" wanted = {} dir = '' for line in manifest_data.split('\n'): if not line: break if line[0] == 'D': data = line.split(' ', 1) if len(data) != 2: raise BadDigest(_("Bad line '%s'") % line) path = data[-1] if not path.startswith('/'): raise BadDigest(_("Not absolute: '%s'") % line) path = path[1:] dir = path elif line[0] == 'S': data = line.split(' ', 3) path = os.path.join(dir, data[-1]) if len(data) != 4: raise BadDigest(_("Bad line '%s'") % line) else: data = line.split(' ', 4) path = os.path.join(dir, data[-1]) if len(data) != 5: raise BadDigest(_("Bad line '%s'") % line) if path in wanted: raise BadDigest(_('Duplicate entry "%s"') % line) wanted[path] = data[:-1] return wanted def _copy_files(alg, wanted, source, target): """Scan for files under 'source'. For each one: If it is in wanted and has the right details (or they can be fixed; e.g. mtime), then copy it into 'target'. If it's not in wanted, warn and skip it. On exit, wanted contains only files that were not found.""" dir = '' for line in alg.generate_manifest(source): if line[0] == 'D': type, name = line.split(' ', 1) assert name.startswith('/') dir = name[1:] path = dir elif line[0] == 'S': type, actual_digest, actual_size, name = line.split(' ', 3) path = os.path.join(dir, name) else: assert line[0] in 'XF' type, actual_digest, actual_mtime, actual_size, name = line.split(' ', 4) path = os.path.join(dir, name) try: required_details = wanted.pop(path) except KeyError: logger.warn(_("Skipping file not in manifest: '%s'"), path) continue if required_details[0] != type: raise BadDigest(_("Item '%s' has wrong type!") % path) if type == 'D': os.mkdir(os.path.join(target, path)) elif type in 'XF': required_type, required_digest, required_mtime, required_size = required_details if required_size != actual_size: raise SafeException(_("File '%(path)s' has wrong size (%(actual_size)s bytes, but should be " "%(required_size)s according to manifest)") % {'path': path, 'actual_size': actual_size, 'required_size': required_size}) required_mtime = int(required_mtime) dest_path = os.path.join(target, path) if type == 'X': mode = 0o555 else: mode = 0o444 copy_with_verify(os.path.join(source, path), dest_path, mode, alg, required_digest) os.utime(dest_path, (required_mtime, required_mtime)) elif type == 'S': required_type, required_digest, required_size = required_details if required_size != actual_size: raise SafeException(_("Symlink '%(path)s' has wrong size (%(actual_size)s bytes, but should be " "%(required_size)s according to manifest)") % {'path': path, 'actual_size': actual_size, 'required_size': required_size}) symlink_target = os.readlink(os.path.join(source, path)) symlink_digest = alg.new_digest() symlink_digest.update(symlink_target.encode('utf-8')) if symlink_digest.hexdigest() != required_digest: raise SafeException(_("Symlink '%(path)s' has wrong target (digest should be " "%(digest)s according to manifest)") % {'path': path, 'digest': required_digest}) dest_path = os.path.join(target, path) os.symlink(symlink_target, dest_path) else: raise SafeException(_("Unknown manifest type %(type)s for '%(path)s'") % {'type': type, 'path': path}) class HashLibAlgorithm(Algorithm): new_digest = None # Constructor for digest objects def __init__(self, name, rating, hash_name = None): self.name = name self.new_digest = getattr(hashlib, hash_name or name) self.rating = rating def generate_manifest(self, root): def recurse(sub): # To ensure that a line-by-line comparison of the manifests # is possible, we require that filenames don't contain newlines. # Otherwise, you can name a file so that the part after the \n # would be interpreted as another line in the manifest. if '\n' in sub: raise BadDigest(_("Newline in filename '%s'") % sub) assert sub.startswith('/') full = os.path.join(root, sub[1:]) info = os.lstat(full) new_digest = self.new_digest m = info.st_mode if not stat.S_ISDIR(m): raise Exception(_('Not a directory: "%s"') % full) if sub != '/': yield "D %s" % sub items = os.listdir(full) items.sort() dirs = [] for leaf in items: path = os.path.join(root, sub[1:], leaf) info = os.lstat(path) m = info.st_mode if stat.S_ISREG(m): if leaf == '.manifest': continue with open(path, 'rb') as stream: d = new_digest(stream.read()).hexdigest() if m & 0o111: yield "X %s %s %s %s" % (d, int(info.st_mtime), info.st_size, leaf) else: yield "F %s %s %s %s" % (d, int(info.st_mtime), info.st_size, leaf) elif stat.S_ISLNK(m): target = os.readlink(path).encode('utf-8') d = new_digest(target).hexdigest() # Note: Can't use utime on symlinks, so skip mtime # Note: eCryptfs may report length as zero, so count ourselves instead yield "S %s %s %s" % (d, len(target), leaf) elif stat.S_ISDIR(m): dirs.append(leaf) else: raise SafeException(_("Unknown object '%s' (not a file, directory or symlink)") % path) if not sub.endswith('/'): sub += '/' for x in dirs: # Note: "sub" is always Unix style. Don't use os.path.join here. for y in recurse(sub + x): yield y return for x in recurse('/'): yield x def getID(self, digest): if self.name in ('sha1new', 'sha256'): digest_str = digest.hexdigest() else: # Base32-encode newer algorithms to make the digest shorter. # We can't use base64 as Windows is case insensitive. # There's no need for padding (and = characters in paths cause problems for some software). digest_str = base64.b32encode(digest.digest()).rstrip(b'=').decode('ascii') return format_algorithm_digest_pair(self.name, digest_str) algorithms = { 'sha1': OldSHA1(), 'sha1new': HashLibAlgorithm('sha1new', 50, 'sha1'), 'sha256': HashLibAlgorithm('sha256', 80), 'sha256new': HashLibAlgorithm('sha256new', 90, 'sha256'), } def fixup_permissions(root): """Set permissions recursively for children of root: - If any X bit is set, they all must be. - World readable, non-writable. @raise Exception: if there are unsafe special bits set (setuid, etc).""" for main, dirs, files in os.walk(root): for x in ['.'] + files: full = os.path.join(main, x) raw_mode = os.lstat(full).st_mode if stat.S_ISLNK(raw_mode): continue mode = stat.S_IMODE(raw_mode) if mode & ~0o777: raise Exception(_("Unsafe mode: extracted file '%(filename)s' had special bits set in mode '%(mode)s'") % {'filename': full, 'mode': oct(mode)}) if mode & 0o111: os.chmod(full, 0o555) else: os.chmod(full, 0o444)
timdiels/0install
zeroinstall/zerostore/manifest.py
Python
lgpl-2.1
19,123
""" Unit tests for stem.descriptor.microdescriptor. """ import unittest import stem.exit_policy import stem.descriptor from stem import str_type from stem.descriptor.microdescriptor import Microdescriptor from test.mocking import ( get_microdescriptor, CRYPTO_BLOB, ) from test.unit.descriptor import get_resource FIRST_ONION_KEY = """\ -----BEGIN RSA PUBLIC KEY----- MIGJAoGBAMhPQtZPaxP3ukybV5LfofKQr20/ljpRk0e9IlGWWMSTkfVvBcHsa6IM H2KE6s4uuPHp7FqhakXAzJbODobnPHY8l1E4efyrqMQZXEQk2IMhgSNtG6YqUrVF CxdSKSSy0mmcBe2TOyQsahlGZ9Pudxfnrey7KcfqnArEOqNH09RpAgMBAAE= -----END RSA PUBLIC KEY-----\ """ SECOND_ONION_KEY = """\ -----BEGIN RSA PUBLIC KEY----- MIGJAoGBALCOxZdpMI2WO496njSQ2M7b4IgAGATqpJmH3So7lXOa25sK6o7JipgP qQE83K/t/xsMIpxQ/hHkft3G78HkeXXFc9lVUzH0HmHwYEu0M+PMVULSkG36MfEl 7WeSZzaG+Tlnh9OySAzVyTsv1ZJsTQFHH9V8wuM0GOMo9X8DFC+NAgMBAAE= -----END RSA PUBLIC KEY-----\ """ THIRD_ONION_KEY = """\ -----BEGIN RSA PUBLIC KEY----- MIGJAoGBAOWFQHxO+5kGuhwPUX5jB7wJCrTbSU0fZwolNV1t9UaDdjGDvIjIhdit y2sMbyd9K8lbQO7x9rQjNst5ZicuaSOs854XQddSjm++vMdjYbOcVMqnKGSztvpd w/1LVWFfhcBnsGi4JMGbmP+KUZG9A8kI9deSyJhfi35jA7UepiHHAgMBAAE= -----END RSA PUBLIC KEY-----\ """ class TestMicrodescriptor(unittest.TestCase): def test_local_microdescriptors(self): """ Checks a small microdescriptor file with known contents. """ descriptor_path = get_resource('cached-microdescs') with open(descriptor_path, 'rb') as descriptor_file: descriptors = stem.descriptor.parse_file(descriptor_file, 'microdescriptor 1.0') router = next(descriptors) self.assertEqual(FIRST_ONION_KEY, router.onion_key) self.assertEqual(None, router.ntor_onion_key) self.assertEqual([], router.or_addresses) self.assertEqual([], router.family) self.assertEqual(stem.exit_policy.MicroExitPolicy('reject 1-65535'), router.exit_policy) self.assertEqual({b'@last-listed': b'2013-02-24 00:18:36'}, router.get_annotations()) self.assertEqual([b'@last-listed 2013-02-24 00:18:36'], router.get_annotation_lines()) router = next(descriptors) self.assertEqual(SECOND_ONION_KEY, router.onion_key) self.assertEqual(str_type('r5572HzD+PMPBbXlZwBhsm6YEbxnYgis8vhZ1jmdI2k='), router.ntor_onion_key) self.assertEqual([], router.or_addresses) self.assertEqual(['$6141629FA0D15A6AEAEF3A1BEB76E64C767B3174'], router.family) self.assertEqual(stem.exit_policy.MicroExitPolicy('reject 1-65535'), router.exit_policy) self.assertEqual({b'@last-listed': b'2013-02-24 00:18:37'}, router.get_annotations()) self.assertEqual([b'@last-listed 2013-02-24 00:18:37'], router.get_annotation_lines()) router = next(descriptors) self.assertEqual(THIRD_ONION_KEY, router.onion_key) self.assertEqual(None, router.ntor_onion_key) self.assertEqual([(str_type('2001:6b0:7:125::242'), 9001, True)], router.or_addresses) self.assertEqual([], router.family) self.assertEqual(stem.exit_policy.MicroExitPolicy('accept 80,443'), router.exit_policy) self.assertEqual({b'@last-listed': b'2013-02-24 00:18:36'}, router.get_annotations()) self.assertEqual([b'@last-listed 2013-02-24 00:18:36'], router.get_annotation_lines()) def test_minimal_microdescriptor(self): """ Basic sanity check that we can parse a microdescriptor with minimal attributes. """ desc = get_microdescriptor() self.assertTrue(CRYPTO_BLOB in desc.onion_key) self.assertEqual(None, desc.ntor_onion_key) self.assertEqual([], desc.or_addresses) self.assertEqual([], desc.family) self.assertEqual(stem.exit_policy.MicroExitPolicy('reject 1-65535'), desc.exit_policy) self.assertEqual(None, desc.exit_policy_v6) self.assertEqual(None, desc.identifier_type) self.assertEqual(None, desc.identifier) self.assertEqual([], desc.get_unrecognized_lines()) def test_unrecognized_line(self): """ Includes unrecognized content in the descriptor. """ desc = get_microdescriptor({'pepperjack': 'is oh so tasty!'}) self.assertEqual(['pepperjack is oh so tasty!'], desc.get_unrecognized_lines()) def test_proceeding_line(self): """ Includes a line prior to the 'onion-key' entry. """ desc_text = b'family Amunet1\n' + get_microdescriptor(content = True) self.assertRaises(ValueError, Microdescriptor, desc_text) desc = Microdescriptor(desc_text, validate = False) self.assertEqual(['Amunet1'], desc.family) def test_a_line(self): """ Sanity test with both an IPv4 and IPv6 address. """ desc_text = get_microdescriptor(content = True) desc_text += b'\na 10.45.227.253:9001' desc_text += b'\na [fd9f:2e19:3bcf::02:9970]:9001' expected = [ ('10.45.227.253', 9001, False), ('fd9f:2e19:3bcf::02:9970', 9001, True), ] desc = Microdescriptor(desc_text) self.assertEqual(expected, desc.or_addresses) def test_family(self): """ Check the family line. """ desc = get_microdescriptor({'family': 'Amunet1 Amunet2 Amunet3'}) self.assertEqual(['Amunet1', 'Amunet2', 'Amunet3'], desc.family) # try multiple family lines desc_text = get_microdescriptor(content = True) desc_text += b'\nfamily Amunet1' desc_text += b'\nfamily Amunet2' self.assertRaises(ValueError, Microdescriptor, desc_text) # family entries will overwrite each other desc = Microdescriptor(desc_text, validate = False) self.assertEqual(1, len(desc.family)) def test_exit_policy(self): """ Basic check for 'p' lines. The router status entries contain an identical field so we're not investing much effort here. """ desc = get_microdescriptor({'p': 'accept 80,110,143,443'}) self.assertEqual(stem.exit_policy.MicroExitPolicy('accept 80,110,143,443'), desc.exit_policy) def test_identifier(self): """ Basic check for 'id' lines. """ desc = get_microdescriptor({'id': 'rsa1024 Cd47okjCHD83YGzThGBDptXs9Z4'}) self.assertEqual('rsa1024', desc.identifier_type) self.assertEqual('Cd47okjCHD83YGzThGBDptXs9Z4', desc.identifier)
lokeshh/stem
test/unit/descriptor/microdescriptor.py
Python
lgpl-3.0
6,106
#!/usr/bin/env python import argparse import sys import os import time import datetime import tempfile import commands import getpass from jira.client import JIRA def get_jira_config(): # read the config file home=jira_home=os.getenv('HOME') home=home.rstrip('/') if not (os.path.isfile(home + '/jira.ini')): jira_user=raw_input('JIRA user :') jira_pass=getpass.getpass('JIRA password :') jira_config = {'user':jira_user, 'password':jira_pass} return jira_config else: jira_config = dict(line.strip().split('=') for line in open(home + '/jira.ini')) return jira_config def get_jira(jira_config): options = { 'server': 'https://issues.apache.org/jira' } jira = JIRA(options=options,basic_auth=(jira_config['user'], jira_config['password'])) # (Force) verify the auth was really done jira_session=jira.session() if (jira_session is None): raise Exception("Failed to login to the JIRA instance") return jira def cmd_exists(cmd): status, result = commands.getstatusoutput(cmd) return status def main(): ''' main(), shut up, pylint ''' popt = argparse.ArgumentParser(description='Kafka patch review tool') popt.add_argument('-b', '--branch', action='store', dest='branch', required=True, help='Tracking branch to create diff against') popt.add_argument('-j', '--jira', action='store', dest='jira', required=True, help='JIRA corresponding to the reviewboard') popt.add_argument('-s', '--summary', action='store', dest='summary', required=False, help='Summary for the reviewboard') popt.add_argument('-d', '--description', action='store', dest='description', required=False, help='Description for reviewboard') popt.add_argument('-r', '--rb', action='store', dest='reviewboard', required=False, help='Review board that needs to be updated') popt.add_argument('-t', '--testing-done', action='store', dest='testing', required=False, help='Text for the Testing Done section of the reviewboard') popt.add_argument('-db', '--debug', action='store_true', required=False, help='Enable debug mode') opt = popt.parse_args() post_review_tool = None if (cmd_exists("post-review") == 0): post_review_tool = "post-review" elif (cmd_exists("rbt") == 0): post_review_tool = "rbt post" else: print "please install RBTools" sys.exit(1) patch_file=tempfile.gettempdir() + "/" + opt.jira + ".patch" if opt.reviewboard: ts = time.time() st = datetime.datetime.fromtimestamp(ts).strftime('%Y-%m-%d_%H:%M:%S') patch_file=tempfile.gettempdir() + "/" + opt.jira + '_' + st + '.patch' # first check if rebase is needed git_branch_hash="git rev-parse " + opt.branch p_now=os.popen(git_branch_hash) branch_now=p_now.read() p_now.close() git_common_ancestor="git merge-base " + opt.branch + " HEAD" p_then=os.popen(git_common_ancestor) branch_then=p_then.read() p_then.close() if branch_now != branch_then: print 'ERROR: Your current working branch is from an older version of ' + opt.branch + '. Please rebase first by using git pull --rebase' sys.exit(1) git_configure_reviewboard="git config reviewboard.url https://reviews.apache.org" print "Configuring reviewboard url to https://reviews.apache.org" p=os.popen(git_configure_reviewboard) p.close() git_remote_update="git remote update" print "Updating your remote branches to pull the latest changes" p=os.popen(git_remote_update) p.close() # Get JIRA configuration and login to JIRA to ensure the credentials work, before publishing the patch to the review board print "Verifying JIRA connection configurations" try: jira_config=get_jira_config() jira=get_jira(jira_config) except: print "Failed to login to the JIRA instance", sys.exc_info()[0], sys.exc_info()[1] sys.exit(1) git_command="git format-patch " + opt.branch + " --stdout > " + patch_file if opt.debug: print git_command p=os.popen(git_command) p.close() print 'Getting latest patch attached to the JIRA' tmp_dir = tempfile.mkdtemp() get_latest_patch_command="python ./dev-utils/test-patch.py --get-latest-patch --defect " + opt.jira + " --output " + tmp_dir + " > /dev/null 2>&1" p=os.popen(get_latest_patch_command) p.close() previous_patch=tmp_dir + "/" + opt.jira + ".patch" diff_file=tmp_dir + "/" + opt.jira + ".diff" if os.path.isfile(previous_patch) and os.stat(previous_patch).st_size > 0: print 'Creating diff with previous version of patch uploaded to JIRA' diff_command = "diff " + previous_patch+ " " + patch_file + " > " + diff_file try: p=os.popen(diff_command) sys.stdout.flush() p.close() except: pass print 'Diff with previous version of patch uploaded to JIRA is saved to ' + diff_file print 'Checking if the there are changes that need to be pushed' if os.stat(diff_file).st_size == 0: print 'No changes found on top of changes uploaded to JIRA' print 'Aborting' sys.exit(1) rb_command= post_review_tool + " --publish --tracking-branch " + opt.branch + " --target-groups=kafka --bugs-closed=" + opt.jira if opt.debug: rb_command=rb_command + " --debug" summary="Patch for " + opt.jira if opt.summary: summary=opt.summary rb_command=rb_command + " --summary \"" + summary + "\"" if opt.description: rb_command=rb_command + " --description \"" + opt.description + "\"" if opt.reviewboard: rb_command=rb_command + " -r " + opt.reviewboard if opt.testing: rb_command=rb_command + " --testing-done=" + opt.testing if opt.debug: print rb_command p=os.popen(rb_command) rb_url="" for line in p: print line if line.startswith('http'): rb_url = line elif line.startswith("There don't seem to be any diffs"): print 'ERROR: Your reviewboard was not created/updated since there was no diff to upload. The reasons that can cause this issue are 1) Your diff is not checked into your local branch. Please check in the diff to the local branch and retry 2) You are not specifying the local branch name as part of the --branch option. Please specify the remote branch name obtained from git branch -r' p.close() sys.exit(1) elif line.startswith("Your review request still exists, but the diff is not attached") and not opt.debug: print 'ERROR: Your reviewboard was not created/updated. Please run the script with the --debug option to troubleshoot the problem' p.close() sys.exit(1) if p.close() != None: print 'ERROR: reviewboard update failed. Exiting.' sys.exit(1) if opt.debug: print 'rb url=',rb_url print 'Creating diff against', opt.branch, 'and uploading patch to JIRA',opt.jira issue = jira.issue(opt.jira) attachment=open(patch_file) jira.add_attachment(issue,attachment) attachment.close() comment="Created reviewboard " if not opt.reviewboard: print 'Created a new reviewboard',rb_url, else: print 'Updated reviewboard',rb_url comment="Updated reviewboard " comment = comment + rb_url + ' against branch ' + opt.branch jira.add_comment(opt.jira, comment) #update the JIRA status to PATCH AVAILABLE transitions = jira.transitions(issue) transitionsMap ={} for t in transitions: transitionsMap[t['name']] = t['id'] if('Submit Patch' in transitionsMap): jira.transition_issue(issue, transitionsMap['Submit Patch'] , assignee={'name': jira_config['user']} ) if __name__ == '__main__': sys.exit(main())
confluentinc/kafka-deprecated-fork
kafka-patch-review.py
Python
apache-2.0
7,486
from strato.racktest.hostundertest import plugins import os import time import socket class RPM: def __init__(self, host): self._host = host def installRPMPackage(self, path): basename = os.path.basename(path) self._host.ssh.ftp.putFile(basename, path) self._retryInstallPackageSinceAtBootTimeMightBeLocked(basename) def yumInstall(self, packageList): if isinstance(packageList, str): packageList = [packageList] self._host.ssh.run.script("yum install %s --assumeyes" % (" ".join(packageList))) def makeYUMCachePointToTestRunner(self): ip = self._myIPForHost() self._host.ssh.run.script("sed -i 's/127.0.0.1/%s/' /etc/yum.conf" % ip) def _retryInstallPackageSinceAtBootTimeMightBeLocked(self, basename): RETRIES = 20 for i in xrange(RETRIES): try: self._host.ssh.run.script("rpm -i --force ./%s" % basename) return except Exception as e: if i < RETRIES - 1 and 'yum status database is locked by another process' in str(e): time.sleep(0.5) continue raise def _myIPForHost(self): s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) try: s.connect((self._host.node.ipAddress(), 1)) return s.getsockname()[0] finally: s.close() plugins.register('rpm', RPM)
Stratoscale/pyracktest
py/strato/racktest/hostundertest/builtinplugins/rpm.py
Python
apache-2.0
1,467
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for keras.layers.preprocessing.normalization.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import numpy as np from tensorflow.python import keras from tensorflow.python.data.ops import dataset_ops from tensorflow.python.eager import context from tensorflow.python.keras import keras_parameterized from tensorflow.python.keras import testing_utils from tensorflow.python.keras.layers.preprocessing import normalization from tensorflow.python.keras.layers.preprocessing import normalization_v1 from tensorflow.python.keras.layers.preprocessing import preprocessing_test_utils from tensorflow.python.keras.utils.generic_utils import CustomObjectScope from tensorflow.python.platform import test def get_layer_class(): if context.executing_eagerly(): return normalization.Normalization else: return normalization_v1.Normalization def _get_layer_computation_test_cases(): test_cases = ({ "adapt_data": np.array([[1.], [2.], [3.], [4.], [5.]], dtype=np.float32), "axis": -1, "test_data": np.array([[1.], [2.], [3.]], np.float32), "expected": np.array([[-1.414214], [-.707107], [0]], np.float32), "testcase_name": "2d_single_element" }, { "adapt_data": np.array([[1.], [2.], [3.], [4.], [5.]], dtype=np.float32), "axis": None, "test_data": np.array([[1.], [2.], [3.]], np.float32), "expected": np.array([[-1.414214], [-.707107], [0]], np.float32), "testcase_name": "2d_single_element_none_axis" }, { "adapt_data": np.array([[1., 2., 3., 4., 5.]], dtype=np.float32), "axis": None, "test_data": np.array([[1.], [2.], [3.]], np.float32), "expected": np.array([[-1.414214], [-.707107], [0]], np.float32), "testcase_name": "2d_single_element_none_axis_flat_data" }, { "adapt_data": np.array([[[1., 2., 3.], [2., 3., 4.]], [[3., 4., 5.], [4., 5., 6.]]], np.float32), "axis": 1, "test_data": np.array([[[1., 2., 3.], [2., 3., 4.]], [[3., 4., 5.], [4., 5., 6.]]], np.float32), "expected": np.array([[[-1.549193, -0.774597, 0.], [-1.549193, -0.774597, 0.]], [[0., 0.774597, 1.549193], [0., 0.774597, 1.549193]]], np.float32), "testcase_name": "3d_internal_axis" }, { "adapt_data": np.array( [[[1., 0., 3.], [2., 3., 4.]], [[3., -1., 5.], [4., 5., 8.]]], np.float32), "axis": (1, 2), "test_data": np.array( [[[3., 1., -1.], [2., 5., 4.]], [[3., 0., 5.], [2., 5., 8.]]], np.float32), "expected": np.array( [[[1., 3., -5.], [-1., 1., -1.]], [[1., 1., 1.], [-1., 1., 1.]]], np.float32), "testcase_name": "3d_multiple_axis" }) crossed_test_cases = [] # Cross above test cases with use_dataset in (True, False) for use_dataset in (True, False): for case in test_cases: case = case.copy() if use_dataset: case["testcase_name"] = case["testcase_name"] + "_with_dataset" case["use_dataset"] = use_dataset crossed_test_cases.append(case) return crossed_test_cases @keras_parameterized.run_all_keras_modes class NormalizationTest(keras_parameterized.TestCase, preprocessing_test_utils.PreprocessingLayerTest): def test_layer_api_compatibility(self): cls = get_layer_class() with CustomObjectScope({"Normalization": cls}): output_data = testing_utils.layer_test( cls, kwargs={"axis": -1}, input_shape=(None, 3), input_data=np.array([[3, 1, 2], [6, 5, 4]], dtype=np.float32), validate_training=False, adapt_data=np.array([[1, 2, 1], [2, 3, 4], [1, 2, 1], [2, 3, 4]])) expected = np.array([[3., -3., -0.33333333], [9., 5., 1.]]) self.assertAllClose(expected, output_data) def test_combiner_api_compatibility(self): data = np.array([[1], [2], [3], [4], [5]]) combiner = normalization._NormalizingCombiner(axis=-1) expected = { "count": np.array(5.0), "variance": np.array([2.]), "mean": np.array([3.]) } expected_accumulator = combiner._create_accumulator(expected["count"], expected["mean"], expected["variance"]) self.validate_accumulator_serialize_and_deserialize(combiner, data, expected_accumulator) self.validate_accumulator_uniqueness(combiner, data) self.validate_accumulator_extract(combiner, data, expected) self.validate_accumulator_extract_and_restore(combiner, data, expected) @parameterized.named_parameters( { "data": np.array([[1], [2], [3], [4], [5]]), "axis": -1, "expected": { "count": np.array(5.0), "variance": np.array([2.]), "mean": np.array([3.]) }, "testcase_name": "2d_single_element" }, { "data": np.array([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6]]), "axis": -1, "expected": { "count": np.array(5.0), "mean": np.array([3., 4.]), "variance": np.array([2., 2.]) }, "testcase_name": "2d_multi_element" }, { "data": np.array([[[1, 2]], [[2, 3]], [[3, 4]], [[4, 5]], [[5, 6]]]), "axis": 2, "expected": { "count": np.array(5.0), "mean": np.array([3., 4.]), "variance": np.array([2., 2.]) }, "testcase_name": "3d_multi_element" }, { "data": np.array([[[1, 2]], [[2, 3]], [[3, 4]], [[4, 5]], [[5, 6]]]), "axis": (1, 2), "expected": { "count": np.array(5.0), "mean": np.array([[3., 4.]]), "variance": np.array([[2., 2.]]) }, "testcase_name": "3d_multi_element_multi_axis" }, { "data": np.array([[[1, 2], [2, 3]], [[3, 4], [4, 5]], [[1, 2], [2, 3]], [[3, 4], [4, 5]]]), "axis": 1, "expected": { "count": np.array(8.0), "mean": np.array([2.5, 3.5]), "variance": np.array([1.25, 1.25]) }, "testcase_name": "3d_multi_element_internal_axis" }) def test_combiner_computation_multi_value_axis(self, data, axis, expected): combiner = normalization._NormalizingCombiner(axis=axis) expected_accumulator = combiner._create_accumulator(**expected) self.validate_accumulator_computation(combiner, data, expected_accumulator) @parameterized.named_parameters(*_get_layer_computation_test_cases()) def test_layer_computation(self, adapt_data, axis, test_data, use_dataset, expected): input_shape = tuple([None for _ in range(test_data.ndim - 1)]) if use_dataset: # Keras APIs expect batched datasets adapt_data = dataset_ops.Dataset.from_tensor_slices(adapt_data).batch( test_data.shape[0] // 2) test_data = dataset_ops.Dataset.from_tensor_slices(test_data).batch( test_data.shape[0] // 2) cls = get_layer_class() layer = cls(axis=axis) layer.adapt(adapt_data) input_data = keras.Input(shape=input_shape) output = layer(input_data) model = keras.Model(input_data, output) model._run_eagerly = testing_utils.should_run_eagerly() output_data = model.predict(test_data) self.assertAllClose(expected, output_data) def test_mean_setting_continued_adapt_failure(self): if not context.executing_eagerly(): self.skipTest("'assign' doesn't work in V1, so don't test in V1.") cls = get_layer_class() layer = cls(axis=-1) layer.build((2,)) layer.mean.assign([1.3, 2.0]) with self.assertRaisesRegex(RuntimeError, "without also setting 'count'"): layer.adapt(np.array([[1, 2]]), reset_state=False) def test_var_setting_continued_adapt_failure(self): if not context.executing_eagerly(): self.skipTest("'assign' doesn't work in V1, so don't test in V1.") cls = get_layer_class() layer = cls(axis=-1) layer.build((2,)) layer.variance.assign([1.3, 2.0]) with self.assertRaisesRegex(RuntimeError, "without also setting 'count'"): layer.adapt(np.array([[1, 2]]), reset_state=False) def test_weight_setting_continued_adapt_failure(self): cls = get_layer_class() layer = cls(axis=-1) layer.build((2,)) layer.set_weights([np.array([1.3, 2.0]), np.array([0.0, 1.0]), np.array(0)]) with self.assertRaisesRegex(RuntimeError, "without also setting 'count'"): layer.adapt(np.array([[1, 2]]), reset_state=False) def test_weight_setting_no_count_continued_adapt_failure(self): cls = get_layer_class() layer = cls(axis=-1) layer.build((2,)) layer.set_weights([np.array([1.3, 2.0]), np.array([0.0, 1.0])]) with self.assertRaisesRegex(RuntimeError, "without also setting 'count'"): layer.adapt(np.array([[1, 2]]), reset_state=False) if __name__ == "__main__": test.main()
gunan/tensorflow
tensorflow/python/keras/layers/preprocessing/normalization_test.py
Python
apache-2.0
10,124
# # Copyright (c) 2016 nexB Inc. and others. All rights reserved. # http://nexb.com and https://github.com/nexB/scancode-toolkit/ # The ScanCode software is licensed under the Apache License version 2.0. # Data generated with ScanCode require an acknowledgment. # ScanCode is a trademark of nexB Inc. # # You may not use this software except in compliance with the License. # You may obtain a copy of the License at: http://apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. # # When you publish or redistribute any data created with ScanCode or any ScanCode # derivative work, you must accompany this data with the following acknowledgment: # # Generated with ScanCode and provided on an "AS IS" BASIS, WITHOUT WARRANTIES # OR CONDITIONS OF ANY KIND, either express or implied. No content created from # ScanCode should be considered or used as legal advice. Consult an Attorney # for any legal advice. # ScanCode is a free software code scanning tool from nexB Inc. and others. # Visit https://github.com/nexB/scancode-toolkit/ for support and download. from __future__ import absolute_import, print_function import os from commoncode.testcase import FileBasedTesting from licensedcode import index from licensedcode.models import Rule from licensedcode.query import Query from licensedcode import models TEST_DATA_DIR = os.path.join(os.path.dirname(__file__), 'data') class IndexTesting(FileBasedTesting): test_data_dir = TEST_DATA_DIR def get_test_rules(self, base, subset=None): base = self.get_test_loc(base) test_files = sorted(os.listdir(base)) if subset: test_files = [t for t in test_files if t in subset] return [Rule(text_file=os.path.join(base, license_key), licenses=[license_key]) for license_key in test_files] class TestQueryWithSingleRun(IndexTesting): def test_Query_tokens_by_line_from_string(self): rule_text = 'Redistribution and use in source and binary forms with or without modification are permitted' idx = index.LicenseIndex([Rule(_text=rule_text, licenses=['bsd'])]) querys = ''' The Redistribution and use in source and binary are permitted Athena capital of Grece Paris and Athene Always''' qry = Query(query_string=querys, idx=idx, _test_mode=True) result = list(qry.tokens_by_line()) expected = [ [], [None], [11, 0, 6, 4, 3, 0, 1, 9, 2], [], [None, None, None, None], [None, 0, None], [None], ] assert expected == result # convert tid to actual token strings qtbl_as_str = lambda qtbl: [[None if tid is None else idx.tokens_by_tid[tid] for tid in tids] for tids in qtbl] result_str = qtbl_as_str(result) expected_str = [ [], [None], ['redistribution', 'and', 'use', 'in', 'source', 'and', 'binary', 'are', 'permitted'], [], [None, None, None, None], [None, 'and', None], [None], ] assert expected_str == result_str assert [3, 3, 3, 3, 3, 3, 3, 3, 3, 6] == qry.line_by_pos idx = index.LicenseIndex([Rule(_text=rule_text, licenses=['bsd'])]) querys = 'and this is not a license' qry = Query(query_string=querys, idx=idx, _test_mode=True) result = list(qry.tokens_by_line()) expected = [['and', None, None, None, None, None]] assert expected == qtbl_as_str(result) def test_Query_tokenize_from_string(self): rule_text = 'Redistribution and use in source and binary forms with or without modification are permitted' idx = index.LicenseIndex([Rule(_text=rule_text, licenses=['bsd'])]) querys = ''' The Redistribution and use in source and binary are permitted. Athena capital of Grece Paris and Athene Always''' qry = Query(query_string=querys, idx=idx, _test_mode=True) qry.tokenize_and_build_runs(qry.tokens_by_line()) # convert tid to actual token strings tks_as_str = lambda tks: [None if tid is None else idx.tokens_by_tid[tid] for tid in tks] expected = ['redistribution', 'and', 'use', 'in', 'source', 'and', 'binary', 'are', 'permitted', 'and'] result = tks_as_str(qry.tokens) assert expected == result expected = [None, 'redistribution', 'and', 'use', 'in', 'source', 'and', 'binary', 'are', 'permitted', None, None, None, None, None, 'and', None, None] result = tks_as_str(qry.tokens_with_unknowns()) assert expected == result assert 1 == len(qry.query_runs) qr1 = qry.query_runs[0] assert 0 == qr1.start assert 9 == qr1.end assert 10 == len(qr1) expected = ['redistribution', 'and', 'use', 'in', 'source', 'and', 'binary', 'are', 'permitted', 'and'] result = tks_as_str(qr1.tokens) assert expected == result expected = [None, 'redistribution', 'and', 'use', 'in', 'source', 'and', 'binary', 'are', 'permitted', None, None, None, None, None, 'and'] result = tks_as_str(qr1.tokens_with_unknowns()) assert expected == result def test_QueryRuns_tokens_with_unknowns(self): rule_text = 'Redistribution and use in source and binary forms with or without modification are permitted' idx = index.LicenseIndex([Rule(_text=rule_text, licenses=['bsd'])]) querys = ''' The Redistribution and use in source and binary are permitted. Athena capital of Grece Paris and Athene Always''' qry = Query(query_string=querys, idx=idx) assert set([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) == set(qry.matchables) assert 1 == len(qry.query_runs) qrun = qry.query_runs[0] # convert tid to actual token strings tks_as_str = lambda tks: [None if tid is None else idx.tokens_by_tid[tid] for tid in tks] expected = ['redistribution', 'and', 'use', 'in', 'source', 'and', 'binary', 'are', 'permitted', 'and'] assert expected == tks_as_str(qrun.tokens) expected = [None, 'redistribution', 'and', 'use', 'in', 'source', 'and', 'binary', 'are', 'permitted', None, None, None, None, None, 'and'] assert expected == tks_as_str(qrun.tokens_with_unknowns()) assert 0 == qrun.start assert 9 == qrun.end def test_QueryRun_does_not_end_with_None(self): rule_text = 'Redistribution and use in source and binary forms, with or without modification, are permitted' idx = index.LicenseIndex([Rule(_text=rule_text, licenses=['bsd'])]) querys = ''' The Redistribution and use in source and binary forms, with or without modification, are permitted. Always bar modification foo ''' # convert tid to actual token strings tks_as_str = lambda tks: [None if tid is None else idx.tokens_by_tid[tid] for tid in tks] qry = Query(query_string=querys, idx=idx) expected = [ None, 'redistribution', 'and', 'use', 'in', 'source', 'and', 'binary', 'forms', 'with', 'or', 'without', 'modification', 'are', 'permitted', None, None, 'modification', None ] assert [x for x in expected if x] == tks_as_str(qry.tokens) assert expected == tks_as_str(qry.tokens_with_unknowns()) assert 2 == len(qry.query_runs) qrun = qry.query_runs[0] expected = ['redistribution', 'and', 'use', 'in', 'source', 'and', 'binary', 'forms', 'with', 'or', 'without', 'modification', 'are', 'permitted'] assert expected == tks_as_str(qrun.tokens) assert 0 == qrun.start assert 13 == qrun.end qrun = qry.query_runs[1] expected = ['modification'] assert expected == tks_as_str(qrun.tokens) assert 14 == qrun.start assert 14 == qrun.end def test_Query_from_real_index_and_location(self): idx = index.LicenseIndex(self.get_test_rules('index/bsd')) query_loc = self.get_test_loc('index/querytokens') qry = Query(location=query_loc, idx=idx, line_threshold=4) result = [qr.to_dict() for qr in qry.query_runs] expected = [ {'end': 35, 'start': 0, 'tokens': (u'redistribution and use in source and binary forms ' u'redistributions of source code must the this that is not ' u'to redistributions in binary form must this software is ' u'provided by the copyright holders and contributors as is') }, {'end': 36, 'start': 36, 'tokens': u'redistributions'}] assert expected == result expected_lbp = [ 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 15 ] assert expected_lbp == qry.line_by_pos def test_query_and_index_tokens_are_identical_for_same_text(self): rule_dir = self.get_test_loc('query/rtos_exact/') from licensedcode.models import load_rules idx = index.LicenseIndex(load_rules(rule_dir)) query_loc = self.get_test_loc('query/rtos_exact/gpl-2.0-freertos.RULE') index_text_tokens = [idx.tokens_by_tid[t] for t in idx.tids_by_rid[0]] qry = Query(location=query_loc, idx=idx, line_threshold=4) wqry = qry.whole_query_run() query_text_tokens = [idx.tokens_by_tid[t] for t in wqry.tokens] assert index_text_tokens == query_text_tokens assert u' '.join(index_text_tokens) == u' '.join(query_text_tokens) def test_query_run_tokens_with_junk(self): ranked_toks = lambda : ['the', 'is', 'a'] idx = index.LicenseIndex([Rule(_text='a is the binary')], _ranked_tokens=ranked_toks) assert 2 == idx.len_junk assert {'a': 0, 'the': 1, 'binary': 2, 'is': 3, } == idx.dictionary # two junks q = Query(query_string='a the', idx=idx) assert q.line_by_pos qrun = q.query_runs[0] assert [0, 1] == qrun.tokens assert {} == qrun.query.unknowns_by_pos # one junk q = Query(query_string='a binary', idx=idx) qrun = q.query_runs[0] assert q.line_by_pos assert [0, 2] == qrun.tokens assert {} == qrun.query.unknowns_by_pos # one junk q = Query(query_string='binary the', idx=idx) qrun = q.query_runs[0] assert q.line_by_pos assert [2, 1] == qrun.tokens assert {} == qrun.query.unknowns_by_pos # one unknown at start q = Query(query_string='that binary', idx=idx) qrun = q.query_runs[0] assert q.line_by_pos assert [2] == qrun.tokens assert {-1: 1} == qrun.query.unknowns_by_pos # one unknown at end q = Query(query_string='binary that', idx=idx) qrun = q.query_runs[0] assert q.line_by_pos assert [2] == qrun.tokens assert {0: 1} == qrun.query.unknowns_by_pos # onw unknown in the middle q = Query(query_string='binary that a binary', idx=idx) qrun = q.query_runs[0] assert q.line_by_pos assert [2, 0, 2] == qrun.tokens assert {0: 1} == qrun.query.unknowns_by_pos # onw unknown in the middle q = Query(query_string='a binary that a binary', idx=idx) qrun = q.query_runs[0] assert q.line_by_pos assert [0, 2, 0, 2] == qrun.tokens assert {1: 1} == qrun.query.unknowns_by_pos # two unknowns in the middle q = Query(query_string='binary that was a binary', idx=idx) qrun = q.query_runs[0] assert q.line_by_pos assert [2, 0, 2] == qrun.tokens assert {0: 2} == qrun.query.unknowns_by_pos # unknowns at start, middle and end q = Query(query_string='hello dolly binary that was a binary end really', idx=idx) # u u u u u u qrun = q.query_runs[0] assert q.line_by_pos assert [2, 0, 2] == qrun.tokens assert {-1: 2, 0: 2, 2: 2} == qrun.query.unknowns_by_pos def test_query_tokens_are_same_for_different_text_formatting(self): test_files = [self.get_test_loc(f) for f in [ 'queryformat/license2.txt', 'queryformat/license3.txt', 'queryformat/license4.txt', 'queryformat/license5.txt', 'queryformat/license6.txt', ]] rule_file = self.get_test_loc('queryformat/license1.txt') idx = index.LicenseIndex([Rule(text_file=rule_file, licenses=['mit'])]) q = Query(location=rule_file, idx=idx) assert 1 == len(q.query_runs) expected = q.query_runs[0] for tf in test_files: q = Query(tf, idx=idx) qr = q.query_runs[0] assert expected.tokens == qr.tokens def test_query_run_unknowns(self): idx = index.LicenseIndex([Rule(_text='a is the binary')]) assert {'a': 0, 'binary': 1, 'is': 2, 'the': 3} == idx.dictionary assert 2 == idx.len_junk # multiple unknowns at start, middle and end q = Query(query_string='that new binary was sure a kind of the real mega deal', idx=idx) # known pos 0 1 2 # abs pos 0 1 2 3 4 5 6 7 8 9 10 11 expected = { - 1: 2, 0: 2, 1: 2, 2: 3, } assert expected == dict(q.unknowns_by_pos) class TestQueryWithMultipleRuns(IndexTesting): def test_query_runs_from_location(self): idx = index.LicenseIndex(self.get_test_rules('index/bsd')) query_loc = self.get_test_loc('index/querytokens') qry = Query(location=query_loc, idx=idx, line_threshold=3) result = [q.to_dict(brief=True) for q in qry.query_runs] expected = [ { 'start': 0, 'end': 35, 'tokens': u'redistribution and use in source ... holders and contributors as is'}, { 'start': 36, 'end': 36, 'tokens': u'redistributions'} ] assert expected == result def test_query_runs_three_runs(self): idx = index.LicenseIndex(self.get_test_rules('index/bsd')) query_loc = self.get_test_loc('index/queryruns') qry = Query(location=query_loc, idx=idx) expected = [ {'end': 84, 'start': 0, 'tokens': u'the redistribution and use in ... 2 1 3 c 4'}, {'end': 97, 'start': 85, 'tokens': u'this software is provided by ... holders and contributors as is'}, {'end': 98, 'start': 98, 'tokens': u'redistributions'} ] result = [q.to_dict(brief=True) for q in qry.query_runs] assert expected == result def test_QueryRun(self): idx = index.LicenseIndex([Rule(_text='redistributions in binary form must redistributions in')]) qry = Query(query_string='redistributions in binary form must redistributions in', idx=idx) qruns = qry.query_runs assert 1 == len(qruns) qr = qruns[0] # test result = [idx.tokens_by_tid[tid] for tid in qr.tokens] expected = ['redistributions', 'in', 'binary', 'form', 'must', 'redistributions', 'in'] assert expected == result def test_query_runs_text_is_correct(self): test_rules = self.get_test_rules('query/full_text/idx',) idx = index.LicenseIndex(test_rules) query_loc = self.get_test_loc('query/full_text/query') qry = Query(location=query_loc, idx=idx, line_threshold=3) qruns = qry.query_runs result = [[u'<None>' if t is None else idx.tokens_by_tid[t] for t in qr.tokens_with_unknowns()] for qr in qruns] expected = [ u'<None> <None> <None> this'.split(), u'''redistribution and use in source and binary forms with or without modification are permitted provided that the following conditions are met redistributions of source code must retain the above copyright notice this list of conditions and the following disclaimer redistributions in binary form must reproduce the above copyright notice this list of conditions and the following disclaimer in the documentation and or other materials provided with the distribution neither the name of <None> inc nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission this software is provided by the copyright holders and contributors as is and any express or implied warranties including but not limited to the implied warranties of merchantability and fitness for a particular purpose are disclaimed in no event shall the copyright owner or contributors be liable for any direct indirect incidental special exemplary or consequential damages including but not limited to procurement of substitute goods or services loss of use data or profits or business interruption however caused and on any theory of liability whether in contract strict liability or tort including negligence or otherwise arising in any way out of the use of this software even if advised of the possibility of such damage'''.split(), u'no <None> of'.split(), ] assert expected == result def test_query_runs_with_plain_rule(self): rule_text = u'''X11 License Copyright (C) 1996 X Consortium Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from the X Consortium. X Window System is a trademark of X Consortium, Inc. ''' rule = Rule(_text=rule_text, licenses=['x-consortium']) idx = index.LicenseIndex([rule]) query_loc = self.get_test_loc('detect/simple_detection/x11-xconsortium_text.txt') qry = Query(location=query_loc, idx=idx) result = [q.to_dict(brief=False) for q in qry.query_runs] expected = [{ 'start': 0, 'end': 216, 'tokens':( u'x11 license copyright c 1996 x consortium permission is hereby ' u'granted free of charge to any person obtaining a copy of this ' u'software and associated documentation files the software to deal in ' u'the software without restriction including without limitation the ' u'rights to use copy modify merge publish distribute sublicense and or ' u'sell copies of the software and to permit persons to whom the ' u'software is furnished to do so subject to the following conditions ' u'the above copyright notice and this permission notice shall be ' u'included in all copies or substantial portions of the software the ' u'software is provided as is without warranty of any kind express or ' u'implied including but not limited to the warranties of ' u'merchantability fitness for a particular purpose and noninfringement ' u'in no event shall the x consortium be liable for any claim damages or ' u'other liability whether in an action of contract tort or otherwise ' u'arising from out of or in connection with the software or the use or ' u'other dealings in the software except as contained in this notice the ' u'name of the x consortium shall not be used in advertising or ' u'otherwise to promote the sale use or other dealings in this software ' u'without prior written authorization from the x consortium x window ' u'system is a trademark of x consortium inc' ) }] assert 217 == len(qry.query_runs[0].tokens) assert expected == result def test_query_run_has_correct_offset(self): rule_dir = self.get_test_loc('query/runs/rules') rules = list(models.load_rules(rule_dir)) idx = index.LicenseIndex(rules) query_doc = self.get_test_loc('query/runs/query.txt') q = Query(location=query_doc, idx=idx, line_threshold=4) result = [qr.to_dict() for qr in q.query_runs] expected = [ {'end': 0, 'start': 0, 'tokens': u'inc'}, { 'end': 123, 'start': 1, 'tokens': ( u'this library is free software you can redistribute it and or modify ' u'it under the terms of the gnu library general public license as ' u'published by the free software foundation either version 2 of the ' u'license or at your option any later version this library is ' u'distributed in the hope that it will be useful but without any ' u'warranty without even the implied warranty of merchantability or ' u'fitness for a particular purpose see the gnu library general public ' u'license for more details you should have received a copy of the gnu ' u'library general public license along with this library see the file ' u'copying lib if not write to the free software foundation inc 51 ' u'franklin street fifth floor boston ma 02110 1301 usa' ) }] assert expected == result class TestQueryWithFullIndex(FileBasedTesting): test_data_dir = TEST_DATA_DIR def test_query_from_binary_lkms_1(self): location = self.get_test_loc('query/ath_pci.ko') idx = index.get_index() result = Query(location, idx=idx) assert len(result.query_runs) < 15 def test_query_from_binary_lkms_2(self): location = self.get_test_loc('query/eeepc_acpi.ko') idx = index.get_index() result = Query(location, idx=idx) assert len(result.query_runs) < 500 qrs = result.query_runs[5:10] assert any('license gpl' in u' '.join(idx.tokens_by_tid[t] for t in qr.matchable_tokens()) for qr in qrs) def test_query_from_binary_lkms_3(self): location = self.get_test_loc('query/wlan_xauth.ko') idx = index.get_index() result = Query(location, idx=idx) assert len(result.query_runs) < 900 qr = result.query_runs[0] assert 'license dual bsd gpl' in u' '.join(idx.tokens_by_tid[t] for t in qr.matchable_tokens()) def test_query_run_tokens(self): query_s = u' '.join(u''' 3 unable to create proc entry license gpl description driver author eric depends 2 6 24 19 generic smp mod module acpi baridationally register driver proc acpi disabled acpi install notify acpi baridationally get status cache caches create proc entry baridationally generate proc event acpi evaluate object acpi remove notify remove proc entry acpi baridationally driver acpi acpi gcc gnu 4 2 3 ubuntu 4 2 3 gcc gnu 4 2 3 ubuntu 4 2 3 current stack pointer current stack pointer this module end usr src modules acpi include linux include asm include asm generic include acpi acpi c posix types 32 h types h types h h h h h '''.split()) idx = index.get_index() result = Query(query_string=query_s, idx=idx) assert 1 == len(result.query_runs) qr = result.query_runs[0] # NOTE: this is not a token present in any rules or licenses unknown_token = u'baridationally' assert unknown_token not in idx.dictionary assert u' '.join([t for t in query_s.split() if t not in (unknown_token, 'proc')]) == u' '.join(idx.tokens_by_tid[t] for t in qr.tokens) def test_query_run_tokens_matchable(self): query_s = u' '.join(u''' 3 unable to create proc entry license gpl description driver author eric depends 2 6 24 19 generic smp mod module acpi baridationally register driver proc acpi disabled acpi install notify acpi baridationally get status cache caches create proc entry baridationally generate proc event acpi evaluate object acpi remove notify remove proc entry acpi baridationally driver acpi acpi gcc gnu 4 2 3 ubuntu 4 2 3 gcc gnu 4 2 3 ubuntu 4 2 3 current stack pointer current stack pointer this module end usr src modules acpi include linux include asm include asm generic include acpi acpi c posix types 32 h types h types h h h h h '''.split()) idx = index.get_index() result = Query(query_string=query_s, idx=idx) assert 1 == len(result.query_runs) qr = result.query_runs[0] expected_qr0 = u' '.join(u''' 3 unable to create entry license gpl description driver author eric depends 2 6 24 19 generic smp mod module acpi register driver acpi disabled acpi install notify acpi get status cache caches create entry generate event acpi evaluate object acpi remove notify remove entry acpi driver acpi acpi gcc gnu 4 2 3 ubuntu 4 2 3 gcc gnu 4 2 3 ubuntu 4 2 3 current stack pointer current stack pointer this module end usr src modules acpi include linux include asm include asm generic include acpi acpi c posix types 32 h types h types h h h h h '''.split()) assert expected_qr0 == u' '.join(idx.tokens_by_tid[t] for t in qr.tokens) # NOTE: this is not a token present in any rules or licenses unknown_token = u'baridationally' assert unknown_token not in idx.dictionary assert expected_qr0 == u' '.join(idx.tokens_by_tid[t] for p, t in enumerate(qr.tokens) if p in qr.matchables) expected = u'gpl' assert expected == u' '.join(idx.tokens_by_tid[t] for p, t in enumerate(qr.tokens) if p in qr.high_matchables)
yasharmaster/scancode-toolkit
tests/licensedcode/test_query.py
Python
apache-2.0
28,212
"""Support for LCN scenes.""" import pypck from homeassistant.components.scene import DOMAIN as DOMAIN_SCENE, Scene from homeassistant.const import CONF_ADDRESS, CONF_DOMAIN, CONF_ENTITIES, CONF_SCENE from . import LcnEntity from .const import ( CONF_DOMAIN_DATA, CONF_OUTPUTS, CONF_REGISTER, CONF_TRANSITION, OUTPUT_PORTS, ) from .helpers import get_device_connection PARALLEL_UPDATES = 0 def create_lcn_scene_entity(hass, entity_config, config_entry): """Set up an entity for this domain.""" device_connection = get_device_connection( hass, tuple(entity_config[CONF_ADDRESS]), config_entry ) return LcnScene(entity_config, config_entry.entry_id, device_connection) async def async_setup_entry(hass, config_entry, async_add_entities): """Set up LCN switch entities from a config entry.""" entities = [] for entity_config in config_entry.data[CONF_ENTITIES]: if entity_config[CONF_DOMAIN] == DOMAIN_SCENE: entities.append(create_lcn_scene_entity(hass, entity_config, config_entry)) async_add_entities(entities) class LcnScene(LcnEntity, Scene): """Representation of a LCN scene.""" def __init__(self, config, entry_id, device_connection): """Initialize the LCN scene.""" super().__init__(config, entry_id, device_connection) self.register_id = config[CONF_DOMAIN_DATA][CONF_REGISTER] self.scene_id = config[CONF_DOMAIN_DATA][CONF_SCENE] self.output_ports = [] self.relay_ports = [] for port in config[CONF_DOMAIN_DATA][CONF_OUTPUTS]: if port in OUTPUT_PORTS: self.output_ports.append(pypck.lcn_defs.OutputPort[port]) else: # in RELEAY_PORTS self.relay_ports.append(pypck.lcn_defs.RelayPort[port]) if config[CONF_DOMAIN_DATA][CONF_TRANSITION] is None: self.transition = None else: self.transition = pypck.lcn_defs.time_to_ramp_value( config[CONF_DOMAIN_DATA][CONF_TRANSITION] ) async def async_activate(self, **kwargs): """Activate scene.""" await self.device_connection.activate_scene( self.register_id, self.scene_id, self.output_ports, self.relay_ports, self.transition, )
w1ll1am23/home-assistant
homeassistant/components/lcn/scene.py
Python
apache-2.0
2,350
#!/usr/bin/env python # -*- coding: utf-8 -*- # # FIXME: This doesn't really provide a means for people to ask for # the service and release the service. The problem this # causes is that the selector has no simple means of shutting # down when no one is using it. # # Copyright 2010 British Broadcasting Corporation and Kamaelia Contributors(1) # # (1) Kamaelia Contributors are listed in the AUTHORS file and at # http://www.kamaelia.org/AUTHORS - please extend this file, # not this notice. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------------------- # """\ ====================================== NOTIFICATION OF SOCKET AND FILE EVENTS ====================================== The Selector component listens for events on sockets and sends out notifications. It is effectively a wrapper around the unix 'select' statement. Components request that the Selector component notify them when a supplied socket or file object is ready. The selectorComponent is a service that registers with the Coordinating Assistant Tracker (CAT). NOTE: The behaviour and API of this component changed in Kamaelia 0.4 and is likely to change again in the near future. Example Usage ------------- See the source code for TCPClient for an example of how the Selector component can be used. How does it work? ----------------- Selector is a service. Obtain it by calling the static method Selector.getSelectorService(...). Any existing instance will be returned, otherwise a new one is automatically created. This component ignores anything sent to its "inbox" and "control" inboxes. This component does not terminate. Register socket or file objects with the selector, to receive a one-shot notification when that file descriptor is ready. The file descriptor can be a python file object or socket object. The notification is one-shot - meaning you must resubmit your request every time you wish to receive a notification. Ensure you deregister the file object when closing the file/socket. You may do this even if you have already received the notification. The Selector component will be unable to handle notifications for any other descriptors if it still has a registered descriptor that has closed. Register for a notification by sending an one of the following messages to the "notify" inbox, as returned by Selector.getSelectorService(): * Kamaelia.KamaeliaIpc.newReader( (component,inboxname), descriptor) * Kamaelia.KamaeliaIpc.newWriter( (component,inboxname), descriptor) * Kamaelia.KamaeliaIpc.newExceptional( (component,inboxname), descriptor) Choose which as appropriate: * a newReader() request will notify when there is data ready to be read on the descriptor * a newWriter() request will notify when writing to the descriptor will not block. * a newExceptional() request will notify when an exceptional event occurs on the specified descriptor. Selector will notify the taret component by sending the file/socket descriptor object to the target inbox the component provided. It then automatically deregisters the descriptor, unlinking from the target component's inbox. For a given descriptor for a given type of event (read/write/exceptional) only one notification will be sent when the event occurs. If multiple notification requests have been received, only the first is listened to; all others are ignored. Of course, once the notification as happened, or someone has requested that descriptor be deregistered, then someone can register for it once again. Deregister by sending on of the following messages to the "notify" inbox of Selector: * Kamaelia.KamaeliaIpc.removeReader( (component,inboxname), descriptor) * Kamaelia.KamaeliaIpc.removeWriter( (component,inboxname), descriptor) * Kamaelia.KamaeliaIpc.removeExceptional( (component,inboxname), descriptor) It is advisable to send a deregister message when the corresponding file descriptor closes, in case you registered for a notification, but it has not occurred. """ import Axon from Axon.Ipc import shutdown import select, socket from Kamaelia.IPC import newReader, removeReader, newWriter, removeWriter, newExceptional, removeExceptional import Axon.CoordinatingAssistantTracker as cat from Axon.ThreadedComponent import threadedadaptivecommscomponent import time #import sys,traceback READERS,WRITERS, EXCEPTIONALS = 0, 1, 2 FAILHARD = False timeout = 5 from Axon.Component import component class _SelectorCore(threadedadaptivecommscomponent): #Axon.AdaptiveCommsComponent.AdaptiveCommsComponent): # SmokeTests_Selector.test_SmokeTest """\ Selector() -> new Selector component Use Selector.getSelectorService(...) in preference as it returns an existing instance, or automatically creates a new one. """ Inboxes = { "control" : "Recieving a Axon.Ipc.shutdown() message here causes shutdown", "inbox" : "Not used at present", "notify" : "Used to be notified about things to select" } def __init__(self,notifySocket=None): super(_SelectorCore, self).__init__() self.minSelectables = 0 self.notifySocket = notifySocket if self.notifySocket: self.minSelectables += 1 def removeLinks(self, selectable, meta, selectables): """\ Removes a file descriptor (selectable). Removes the corresponding entry from meta and selectables; unlinks from the component to be notified; and deletes the corresponding outbox. """ # \ #print "removeLinks",selectable,meta,selectables try: replyService, outbox, Linkage = meta[selectable] self.unlink(thelinkage=Linkage) selectables.remove(selectable) self.deleteOutbox(outbox) del meta[selectable] Linkage = None except: pass def addLinks(self, replyService, selectable, meta, selectables, boxBase): """\ Adds a file descriptor (selectable). Creates a corresponding outbox, with name based on boxBase; links it to the component that wants to be notified; adds the file descriptor to the set of selectables; and records the box and linkage info in meta. """ if selectable not in meta: outbox = self.addOutbox(boxBase) L = self.link((self, outbox), replyService) meta[selectable] = replyService, outbox, L selectables.append(selectable) return L else: return meta[selectable][2] def handleNotify(self, meta, readers,writers, exceptionals): """\ Process requests to add and remove file descriptors (selectables) that arrive at the "notify" inbox. """ while self.dataReady("notify"): message = self.recv("notify") # \ #print type(message) if isinstance(message, newReader): replyService, selectable = message.object L = self.addLinks(replyService, selectable, meta[READERS], readers, "readerNotify") L.showtransit = 0 if isinstance(message, newWriter): replyService, selectable = message.object L = self.addLinks(replyService, selectable, meta[WRITERS], writers, "writerNotify") L.showtransit = 0 if isinstance(message, newExceptional): replyService, selectable = message.object self.addLinks(replyService, selectable, meta[EXCEPTIONALS], exceptionals, "exceptionalNotify") if isinstance(message, removeReader): selectable = message.object self.removeLinks(selectable, meta[READERS], readers) if isinstance(message, removeWriter): selectable = message.object self.removeLinks(selectable, meta[WRITERS], writers) if isinstance(message, removeExceptional): selectable = message.object self.removeLinks(selectable, meta[EXCEPTIONALS], exceptionals) def main(self): """Main loop""" global timeout readers,writers, exceptionals = [],[], [] if self.notifySocket: readers.append(self.notifySocket) selections = [readers,writers, exceptionals] meta = [ {}, {}, {} ] if not self.anyReady(): self.sync() # momentary pause-ish thing last = 0 numberOfFailedSelectsDueToBadFileDescriptor = 0 shuttingDown = False while 1: # SmokeTests_Selector.test_RunsForever if self.dataReady("control"): message = self.recv("control") if isinstance(message,shutdown): # print "recieved shutdown message" shutdownStart = time.time() timeWithNooneUsing = 0 shuttingDown = True if shuttingDown: # print "we're shutting down" if len(readers) + len(writers) + len(exceptionals) <= self.minSelectables: # always have at least teh wakeup socket if timeWithNooneUsing == 0: # print "starting timeout" timeWithNooneUsing = time.time() else: if time.time() - timeWithNooneUsing > timeout: # print "Yay, timed out!" break # exit the loop else: timeWithNooneUsing == 0 # reset this to zero if readers/writers/excepts goes up again... # else: # print "But someone is still using us...." # print readers, writers, exceptionals self.handleNotify(meta, readers,writers, exceptionals) if len(readers) + len(writers) + len(exceptionals) > 0: # print len(readers),len(writers),len(exceptionals) try: read_write_except = select.select(readers, writers, exceptionals,5) #0.05 numberOfFailedSelectsDueToBadFileDescriptor = 0 for i in xrange(3): for selectable in read_write_except[i]: try: replyService, outbox, linkage = meta[i][selectable] self.send(selectable, outbox) replyService, outbox, linkage = None, None, None # Note we remove the selectable until we know the reason for it being here has cleared. self.removeLinks(selectable, meta[i], selections[i]) except KeyError, k: # must be the wakeup signal, don't remove it or act on it selectable.recv(1024) except ValueError, e: if FAILHARD: raise e except socket.error, e: if e[0] == 9: numberOfFailedSelectsDueToBadFileDescriptor +=1 if numberOfFailedSelectsDueToBadFileDescriptor > 1000: # For the moment, we simply raise an exception. # We could brute force our way through the list of descriptors # to find the broken ones, and remove raise e self.sync() elif not self.anyReady(): self.pause() # momentary pause-ish thing # else: # print "HMM" ## print "SELECTOR HAS EXITTED" class Selector(component): Inboxes = { "control" : "Recieving a Axon.Ipc.shutdown() message here causes shutdown", "inbox" : "Not used at present", "notify" : "Used to be notified about things to select", "_sink" : "For dummy notifications from selector", } Outboxes = { "outbox" : "", "signal" : "", "_toNotify" : "Forwarding of messages to notify inbox of actual selector", "_toControl" : "Forwarding of messages to control inbox of actual selector", } def __init__(self): super(Selector, self).__init__() self.trackedby = None def trackedBy(self, tracker): self.trackedby = tracker def main(self): self.notifySocket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) self.notifySocket.setblocking(False) self.notifySocket.bind(("127.0.0.1",1678)) self.notifySocket.connect(("127.0.0.1",1678)) self.selector = _SelectorCore(self.notifySocket) self.addChildren(self.selector) self.selector.activate() self.link((self,"_toNotify"),(self.selector, "notify")) self.link((self,"_toControl"),(self.selector, "control")) # self.send( newReader( (self,"_sink"), self.notifySocket), "_toNotify") shutdownMessage = shutdown() while not self.childrenDone(): if not self.anyReady(): self.pause() yield 1 wakeSelector=False while self.dataReady("notify"): message=self.recv("notify") self.send(message, "_toNotify") wakeSelector=True while self.dataReady("control"): message = self.recv("control") if isinstance(message,shutdown): if self.trackedby is not None: # print "we are indeed tracked" self.trackedby.deRegisterService("selector") self.trackedby.deRegisterService("selectorshutdown") self.send(message, "_toControl") shutdownMessage=message wakeSelector=True if wakeSelector: self.notifySocket.send("X") self.send(shutdownMessage, "signal") def childrenDone(self): """Unplugs any children that have terminated, and returns true if there are no running child components left (ie. their microproceses have finished) """ for child in self.childComponents(): if child._isStopped(): self.removeChild(child) # deregisters linkages for us return 0==len(self.childComponents()) def setSelectorServices(selector, tracker = None): """\ Sets the given selector as the service for the selected tracker or the default one. (static method) """ if not tracker: tracker = cat.coordinatingassistanttracker.getcat() tracker.registerService("selector", selector, "notify") tracker.registerService("selectorshutdown", selector, "control") selector.trackedBy(tracker) setSelectorServices = staticmethod(setSelectorServices) def getSelectorServices(tracker=None): # STATIC METHOD """\ Returns any live selector registered with the specified (or default) tracker, or creates one for the system to use. (static method) """ if tracker is None: tracker = cat.coordinatingassistanttracker.getcat() try: service = tracker.retrieveService("selector") shutdownservice = tracker.retrieveService("selectorshutdown") return service, shutdownservice, None except KeyError: selector = Selector() Selector.setSelectorServices(selector, tracker) service=(selector,"notify") shutdownservice=(selector,"control") return service, shutdownservice, selector getSelectorServices = staticmethod(getSelectorServices) __kamaelia_components__ = ( Selector, )
sparkslabs/kamaelia_
Sketches/MH/RTP/Selector.py
Python
apache-2.0
16,564
import json import sys import ethereum.testutils as testutils from ethereum.slogging import get_logger, configure_logging logger = get_logger() # customize VM log output to your needs # hint: use 'py.test' with the '-s' option to dump logs to the console if '--trace' in sys.argv: # not default configure_logging(':trace') sys.argv.remove('trace') def test_vm(filename, testname, testdata): testutils.check_vm_test(testutils.fixture_to_bytes(testdata)) def pytest_generate_tests(metafunc): testutils.generate_test_params('VMTests', metafunc) def main(): if len(sys.argv) == 1: # read fixture from stdin fixtures = {'stdin': json.load(sys.stdin)} else: # load fixtures from specified file or dir try: fixtures = testutils.get_tests_from_file_or_dir(sys.argv[1]) except: fixtures = {'stdin': json.loads(sys.argv[1])} for filename, tests in list(fixtures.items()): for testname, testdata in list(tests.items()): if len(sys.argv) < 3 or testname == sys.argv[2]: print("Testing: %s %s" % (filename, testname)) testutils.check_vm_test(testdata) if __name__ == '__main__': main()
EthereumWebhooks/blockhooks
lib/ethereum/tests/test_vm.py
Python
apache-2.0
1,230
from keystone import utils from keystone.common import wsgi from keystone.logic.types.service import Service import keystone.config as config from . import get_marker_limit_and_url class ServicesController(wsgi.Controller): """Controller for Service related operations""" def __init__(self, options): self.options = options @utils.wrap_error def create_service(self, req): service = utils.get_normalized_request_content(Service, req) return utils.send_result(201, req, config.SERVICE.create_service(utils.get_auth_token(req), service)) @utils.wrap_error def get_services(self, req): marker, limit, url = get_marker_limit_and_url(req) services = config.SERVICE.get_services( utils.get_auth_token(req), marker, limit, url) return utils.send_result(200, req, services) @utils.wrap_error def get_service(self, req, service_id): service = config.SERVICE.get_service( utils.get_auth_token(req), service_id) return utils.send_result(200, req, service) @utils.wrap_error def delete_service(self, req, service_id): rval = config.SERVICE.delete_service(utils.get_auth_token(req), service_id) return utils.send_result(204, req, rval)
ntt-pf-lab/backup_keystone
keystone/controllers/services.py
Python
apache-2.0
1,298
import json import logging import os from ..constants import IS_WINDOWS_PLATFORM DOCKER_CONFIG_FILENAME = os.path.join('.docker', 'config.json') LEGACY_DOCKER_CONFIG_FILENAME = '.dockercfg' log = logging.getLogger(__name__) def find_config_file(config_path=None): paths = list(filter(None, [ config_path, # 1 config_path_from_environment(), # 2 os.path.join(home_dir(), DOCKER_CONFIG_FILENAME), # 3 os.path.join(home_dir(), LEGACY_DOCKER_CONFIG_FILENAME), # 4 ])) log.debug(f"Trying paths: {repr(paths)}") for path in paths: if os.path.exists(path): log.debug(f"Found file at path: {path}") return path log.debug("No config file found") return None def config_path_from_environment(): config_dir = os.environ.get('DOCKER_CONFIG') if not config_dir: return None return os.path.join(config_dir, os.path.basename(DOCKER_CONFIG_FILENAME)) def home_dir(): """ Get the user's home directory, using the same logic as the Docker Engine client - use %USERPROFILE% on Windows, $HOME/getuid on POSIX. """ if IS_WINDOWS_PLATFORM: return os.environ.get('USERPROFILE', '') else: return os.path.expanduser('~') def load_general_config(config_path=None): config_file = find_config_file(config_path) if not config_file: return {} try: with open(config_file) as f: return json.load(f) except (OSError, ValueError) as e: # In the case of a legacy `.dockercfg` file, we won't # be able to load any JSON data. log.debug(e) log.debug("All parsing attempts failed - returning empty config") return {}
vdemeester/docker-py
docker/utils/config.py
Python
apache-2.0
1,724
from django.shortcuts import render from django.core import serializers import json import datetime import os from django.http import HttpResponse from django.contrib.auth.models import User from django.contrib.auth import authenticate, login, logout from django.contrib.auth.decorators import login_required from django.conf import settings from publisher.models import Publication from registrar.models import PeerReview from publisher.forms import PublicationForm @login_required(login_url='/landpage') def my_publications_page(request): try: publications = Publication.objects.filter(author=request.user) except Publication.DoesNotExist: publications = None return render(request, 'publisher/my_publication/view.html',{ 'publications': publications, 'user': request.user, 'tab': 'my_publications', 'HAS_ADVERTISMENT': settings.APPLICATION_HAS_ADVERTISMENT, 'local_css_urls': settings.SB_ADMIN_2_CSS_LIBRARY_URLS, 'local_js_urls': settings.SB_ADMIN_2_JS_LIBRARY_URLS }) @login_required() def refresh_publications_table(request): try: publications = Publication.objects.filter(author=request.user) except Publication.DoesNotExist: publications = None return render(request, 'publisher/my_publication/table.html',{ 'publications': publications, 'user': request.user, 'tab': 'my_publications', 'local_css_urls': settings.SB_ADMIN_2_CSS_LIBRARY_URLS, 'local_js_urls': settings.SB_ADMIN_2_JS_LIBRARY_URLS }) @login_required() def my_publication_modal(request): if request.method == u'POST': form = None publication_id = int(request.POST['publication_id']) if publication_id > 0: upload = Publication.objects.get(publication_id=publication_id) form = PublicationForm(instance=upload) else: form = PublicationForm() return render(request, 'publisher/my_publication/modal.html',{ 'form': form, }) @login_required() def save_publication(request): response_data = {'status' : 'failed', 'message' : 'unknown error with saving'} if request.is_ajax(): if request.method == 'POST': publication_id = int(request.POST['publication_id']) form = PublicationForm(request.POST, request.FILES) # If publication already exists, then delete local file. if publication_id > 0: # Delete previous file. try: upload = Publication.objects.get(publication_id=publication_id) except Publication.DoesNotExist: return HttpResponse(json.dumps({ 'status' : 'failed', 'message' : 'record does not exist' }), content_type="application/json") if upload.file: if os.path.isfile(upload.file.path): os.remove(upload.file.path) upload.file = None upload.save() form.instance = upload # Save if valid form.instance.author = request.user if form.is_valid(): form.save() response_data = {'status' : 'success', 'message' : 'saved'} else: response_data = {'status' : 'failed', 'message' : json.dumps(form.errors)} return HttpResponse(json.dumps(response_data), content_type="application/json") @login_required() def delete_publication(request): response_data = {'status' : 'failed', 'message' : 'unknown error with deleting'} if request.is_ajax(): if request.method == 'POST': publication_id = int(request.POST['publication_id']) try: publication = Publication.objects.get(publication_id=publication_id) for peer_review in publication.reviews.all(): peer_review.delete() publication.delete() response_data = {'status' : 'success', 'message' : 'deleted'} except Publication.DoesNotExist: response_data = {'status' : 'failed', 'message' : 'record not found'} return HttpResponse(json.dumps(response_data), content_type="application/json")
AcademicsToday/py-academicstoday
academicstoday_project/publisher/views/my_publication.py
Python
apache-2.0
4,339
"""The tests the for Locative device tracker platform.""" from unittest.mock import Mock, patch import pytest from homeassistant import data_entry_flow from homeassistant.components import locative from homeassistant.components.device_tracker import DOMAIN as DEVICE_TRACKER_DOMAIN from homeassistant.components.locative import DOMAIN, TRACKER_UPDATE from homeassistant.const import HTTP_OK, HTTP_UNPROCESSABLE_ENTITY from homeassistant.helpers.dispatcher import DATA_DISPATCHER from homeassistant.setup import async_setup_component # pylint: disable=redefined-outer-name @pytest.fixture(autouse=True) def mock_dev_track(mock_device_tracker_conf): """Mock device tracker config loading.""" pass @pytest.fixture async def locative_client(loop, hass, hass_client): """Locative mock client.""" assert await async_setup_component(hass, DOMAIN, {DOMAIN: {}}) await hass.async_block_till_done() with patch("homeassistant.components.device_tracker.legacy.update_config"): return await hass_client() @pytest.fixture async def webhook_id(hass, locative_client): """Initialize the Geofency component and get the webhook_id.""" hass.config.api = Mock(base_url="http://example.com") result = await hass.config_entries.flow.async_init( "locative", context={"source": "user"} ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM, result result = await hass.config_entries.flow.async_configure(result["flow_id"], {}) assert result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY await hass.async_block_till_done() return result["result"].data["webhook_id"] async def test_missing_data(locative_client, webhook_id): """Test missing data.""" url = "/api/webhook/{}".format(webhook_id) data = { "latitude": 1.0, "longitude": 1.1, "device": "123", "id": "Home", "trigger": "enter", } # No data req = await locative_client.post(url) assert req.status == HTTP_UNPROCESSABLE_ENTITY # No latitude copy = data.copy() del copy["latitude"] req = await locative_client.post(url, data=copy) assert req.status == HTTP_UNPROCESSABLE_ENTITY # No device copy = data.copy() del copy["device"] req = await locative_client.post(url, data=copy) assert req.status == HTTP_UNPROCESSABLE_ENTITY # No location copy = data.copy() del copy["id"] req = await locative_client.post(url, data=copy) assert req.status == HTTP_UNPROCESSABLE_ENTITY # No trigger copy = data.copy() del copy["trigger"] req = await locative_client.post(url, data=copy) assert req.status == HTTP_UNPROCESSABLE_ENTITY # Test message copy = data.copy() copy["trigger"] = "test" req = await locative_client.post(url, data=copy) assert req.status == HTTP_OK # Test message, no location copy = data.copy() copy["trigger"] = "test" del copy["id"] req = await locative_client.post(url, data=copy) assert req.status == HTTP_OK # Unknown trigger copy = data.copy() copy["trigger"] = "foobar" req = await locative_client.post(url, data=copy) assert req.status == HTTP_UNPROCESSABLE_ENTITY async def test_enter_and_exit(hass, locative_client, webhook_id): """Test when there is a known zone.""" url = "/api/webhook/{}".format(webhook_id) data = { "latitude": 40.7855, "longitude": -111.7367, "device": "123", "id": "Home", "trigger": "enter", } # Enter the Home req = await locative_client.post(url, data=data) await hass.async_block_till_done() assert req.status == HTTP_OK state_name = hass.states.get( "{}.{}".format(DEVICE_TRACKER_DOMAIN, data["device"]) ).state assert state_name == "home" data["id"] = "HOME" data["trigger"] = "exit" # Exit Home req = await locative_client.post(url, data=data) await hass.async_block_till_done() assert req.status == HTTP_OK state_name = hass.states.get( "{}.{}".format(DEVICE_TRACKER_DOMAIN, data["device"]) ).state assert state_name == "not_home" data["id"] = "hOmE" data["trigger"] = "enter" # Enter Home again req = await locative_client.post(url, data=data) await hass.async_block_till_done() assert req.status == HTTP_OK state_name = hass.states.get( "{}.{}".format(DEVICE_TRACKER_DOMAIN, data["device"]) ).state assert state_name == "home" data["trigger"] = "exit" # Exit Home req = await locative_client.post(url, data=data) await hass.async_block_till_done() assert req.status == HTTP_OK state_name = hass.states.get( "{}.{}".format(DEVICE_TRACKER_DOMAIN, data["device"]) ).state assert state_name == "not_home" data["id"] = "work" data["trigger"] = "enter" # Enter Work req = await locative_client.post(url, data=data) await hass.async_block_till_done() assert req.status == HTTP_OK state_name = hass.states.get( "{}.{}".format(DEVICE_TRACKER_DOMAIN, data["device"]) ).state assert state_name == "work" async def test_exit_after_enter(hass, locative_client, webhook_id): """Test when an exit message comes after an enter message.""" url = "/api/webhook/{}".format(webhook_id) data = { "latitude": 40.7855, "longitude": -111.7367, "device": "123", "id": "Home", "trigger": "enter", } # Enter Home req = await locative_client.post(url, data=data) await hass.async_block_till_done() assert req.status == HTTP_OK state = hass.states.get("{}.{}".format(DEVICE_TRACKER_DOMAIN, data["device"])) assert state.state == "home" data["id"] = "Work" # Enter Work req = await locative_client.post(url, data=data) await hass.async_block_till_done() assert req.status == HTTP_OK state = hass.states.get("{}.{}".format(DEVICE_TRACKER_DOMAIN, data["device"])) assert state.state == "work" data["id"] = "Home" data["trigger"] = "exit" # Exit Home req = await locative_client.post(url, data=data) await hass.async_block_till_done() assert req.status == HTTP_OK state = hass.states.get("{}.{}".format(DEVICE_TRACKER_DOMAIN, data["device"])) assert state.state == "work" async def test_exit_first(hass, locative_client, webhook_id): """Test when an exit message is sent first on a new device.""" url = "/api/webhook/{}".format(webhook_id) data = { "latitude": 40.7855, "longitude": -111.7367, "device": "new_device", "id": "Home", "trigger": "exit", } # Exit Home req = await locative_client.post(url, data=data) await hass.async_block_till_done() assert req.status == HTTP_OK state = hass.states.get("{}.{}".format(DEVICE_TRACKER_DOMAIN, data["device"])) assert state.state == "not_home" async def test_two_devices(hass, locative_client, webhook_id): """Test updating two different devices.""" url = "/api/webhook/{}".format(webhook_id) data_device_1 = { "latitude": 40.7855, "longitude": -111.7367, "device": "device_1", "id": "Home", "trigger": "exit", } # Exit Home req = await locative_client.post(url, data=data_device_1) await hass.async_block_till_done() assert req.status == HTTP_OK state = hass.states.get( "{}.{}".format(DEVICE_TRACKER_DOMAIN, data_device_1["device"]) ) assert state.state == "not_home" # Enter Home data_device_2 = dict(data_device_1) data_device_2["device"] = "device_2" data_device_2["trigger"] = "enter" req = await locative_client.post(url, data=data_device_2) await hass.async_block_till_done() assert req.status == HTTP_OK state = hass.states.get( "{}.{}".format(DEVICE_TRACKER_DOMAIN, data_device_2["device"]) ) assert state.state == "home" state = hass.states.get( "{}.{}".format(DEVICE_TRACKER_DOMAIN, data_device_1["device"]) ) assert state.state == "not_home" @pytest.mark.xfail( reason="The device_tracker component does not support unloading yet." ) async def test_load_unload_entry(hass, locative_client, webhook_id): """Test that the appropriate dispatch signals are added and removed.""" url = "/api/webhook/{}".format(webhook_id) data = { "latitude": 40.7855, "longitude": -111.7367, "device": "new_device", "id": "Home", "trigger": "exit", } # Exit Home req = await locative_client.post(url, data=data) await hass.async_block_till_done() assert req.status == HTTP_OK state = hass.states.get("{}.{}".format(DEVICE_TRACKER_DOMAIN, data["device"])) assert state.state == "not_home" assert len(hass.data[DATA_DISPATCHER][TRACKER_UPDATE]) == 1 entry = hass.config_entries.async_entries(DOMAIN)[0] await locative.async_unload_entry(hass, entry) await hass.async_block_till_done() assert not hass.data[DATA_DISPATCHER][TRACKER_UPDATE]
leppa/home-assistant
tests/components/locative/test_init.py
Python
apache-2.0
9,135
# # Copyright (c) 2008-2015 Citrix Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from nssrc.com.citrix.netscaler.nitro.resource.base.base_resource import base_resource from nssrc.com.citrix.netscaler.nitro.resource.base.base_resource import base_response from nssrc.com.citrix.netscaler.nitro.service.options import options from nssrc.com.citrix.netscaler.nitro.exception.nitro_exception import nitro_exception from nssrc.com.citrix.netscaler.nitro.util.nitro_util import nitro_util class autoscalepolicy_nstimer_binding(base_resource) : """ Binding class showing the nstimer that can be bound to autoscalepolicy. """ def __init__(self) : self._boundto = "" self._priority = 0 self._activepolicy = 0 self._gotopriorityexpression = "" self._name = "" self.___count = 0 @property def name(self) : ur"""The name of the autoscale policy.<br/>Minimum length = 1. """ try : return self._name except Exception as e: raise e @name.setter def name(self, name) : ur"""The name of the autoscale policy.<br/>Minimum length = 1 """ try : self._name = name except Exception as e: raise e @property def boundto(self) : ur"""Location where policy is bound. """ try : return self._boundto except Exception as e: raise e @boundto.setter def boundto(self, boundto) : ur"""Location where policy is bound. """ try : self._boundto = boundto except Exception as e: raise e @property def priority(self) : ur"""Specifies the priority of the policy. """ try : return self._priority except Exception as e: raise e @property def gotopriorityexpression(self) : ur"""Expression specifying the priority of the next policy which will get evaluated if the current policy rule evaluates to TRUE. """ try : return self._gotopriorityexpression except Exception as e: raise e @property def activepolicy(self) : ur"""Indicates whether policy is bound or not. """ try : return self._activepolicy except Exception as e: raise e def _get_nitro_response(self, service, response) : ur""" converts nitro response into object and returns the object array in case of get request. """ try : result = service.payload_formatter.string_to_resource(autoscalepolicy_nstimer_binding_response, response, self.__class__.__name__) if(result.errorcode != 0) : if (result.errorcode == 444) : service.clear_session(self) if result.severity : if (result.severity == "ERROR") : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) else : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) return result.autoscalepolicy_nstimer_binding except Exception as e : raise e def _get_object_name(self) : ur""" Returns the value of object identifier argument """ try : if self.name is not None : return str(self.name) return None except Exception as e : raise e @classmethod def get(cls, service, name) : ur""" Use this API to fetch autoscalepolicy_nstimer_binding resources. """ try : obj = autoscalepolicy_nstimer_binding() obj.name = name response = obj.get_resources(service) return response except Exception as e: raise e @classmethod def get_filtered(cls, service, name, filter_) : ur""" Use this API to fetch filtered set of autoscalepolicy_nstimer_binding resources. Filter string should be in JSON format.eg: "port:80,servicetype:HTTP". """ try : obj = autoscalepolicy_nstimer_binding() obj.name = name option_ = options() option_.filter = filter_ response = obj.getfiltered(service, option_) return response except Exception as e: raise e @classmethod def count(cls, service, name) : ur""" Use this API to count autoscalepolicy_nstimer_binding resources configued on NetScaler. """ try : obj = autoscalepolicy_nstimer_binding() obj.name = name option_ = options() option_.count = True response = obj.get_resources(service, option_) if response : return response[0].__dict__['___count'] return 0 except Exception as e: raise e @classmethod def count_filtered(cls, service, name, filter_) : ur""" Use this API to count the filtered set of autoscalepolicy_nstimer_binding resources. Filter string should be in JSON format.eg: "port:80,servicetype:HTTP". """ try : obj = autoscalepolicy_nstimer_binding() obj.name = name option_ = options() option_.count = True option_.filter = filter_ response = obj.getfiltered(service, option_) if response : return response[0].__dict__['___count'] return 0 except Exception as e: raise e class autoscalepolicy_nstimer_binding_response(base_response) : def __init__(self, length=1) : self.autoscalepolicy_nstimer_binding = [] self.errorcode = 0 self.message = "" self.severity = "" self.sessionid = "" self.autoscalepolicy_nstimer_binding = [autoscalepolicy_nstimer_binding() for _ in range(length)]
benfinke/ns_python
nssrc/com/citrix/netscaler/nitro/resource/config/autoscale/autoscalepolicy_nstimer_binding.py
Python
apache-2.0
5,544
#!/usr/bin/env python """ Wrapper for the Spark EC2 launch script that additionally installs Anaconda, Thunder, and its dependencies, and optionally loads example data sets """ # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Modified from Spark's spark_ec2.py under the terms of the ASF 2.0 license. from boto import ec2 import sys import os import random import subprocess import time from termcolor import colored from distutils.version import LooseVersion from sys import stderr from optparse import OptionParser from spark_ec2 import launch_cluster, get_existing_cluster, stringify_command,\ deploy_files, get_spark_ami, ssh_read, ssh_write try: from spark_ec2 import wait_for_cluster except ImportError: from spark_ec2 import wait_for_cluster_state from thunder import __version__ as THUNDER_VERSION MINIMUM_SPARK_VERSION = "1.1.0" EXTRA_SSH_OPTS = ['-o', 'UserKnownHostsFile=/dev/null', '-o', 'CheckHostIP=no', '-o', 'LogLevel=quiet'] def print_status(msg): print(" [" + msg + "]") def print_success(msg="success"): print(" [" + colored(msg, 'green') + "]") def print_error(msg="failed"): print(" [" + colored(msg, 'red') + "]") class quiet(object): """ Minmize stdout and stderr from external processes """ def __init__(self): self.null_fds = [os.open(os.devnull, os.O_RDWR) for x in range(2)] self.save_fds = (os.dup(1), os.dup(2)) def __enter__(self): os.dup2(self.null_fds[0], 1) os.dup2(self.null_fds[1], 2) def __exit__(self, *_): os.dup2(self.save_fds[0], 1) os.dup2(self.save_fds[1], 2) os.close(self.null_fds[0]) os.close(self.null_fds[1]) def get_s3_keys(): """ Get user S3 keys from environmental variables """ if os.getenv('S3_AWS_ACCESS_KEY_ID') is not None: s3_access_key = os.getenv("S3_AWS_ACCESS_KEY_ID") else: s3_access_key = os.getenv("AWS_ACCESS_KEY_ID") if os.getenv('S3_AWS_SECRET_ACCESS_KEY') is not None: s3_secret_key = os.getenv("S3_AWS_SECRET_ACCESS_KEY") else: s3_secret_key = os.getenv("AWS_SECRET_ACCESS_KEY") return s3_access_key, s3_secret_key def get_default_thunder_version(): """ Returns 'HEAD' (current state of thunder master branch) if thunder is a dev version, otherwise return the current thunder version. """ if ".dev" in THUNDER_VERSION: return 'HEAD' return THUNDER_VERSION def get_spark_version_string(default_version): """ Parses out the Spark version string from $SPARK_HOME/RELEASE, if present, or from pom.xml if not Returns version string from either of the above sources, or default_version if nothing else works """ SPARK_HOME = os.getenv("SPARK_HOME") if SPARK_HOME is None: raise Exception('must assign the environmental variable SPARK_HOME with the location of Spark') if os.path.isfile(os.path.join(SPARK_HOME, "RELEASE")): with open(os.path.join(SPARK_HOME, "RELEASE")) as f: line = f.read() # some nasty ad-hoc parsing here. we expect a string of the form # "Spark VERSION built for hadoop HADOOP_VERSION" # where VERSION is a dotted version string. # for now, simply check that there are at least two tokens and the second token contains a period. tokens = line.split() if len(tokens) >= 2 and '.' in tokens[1]: return tokens[1] # if we get to this point, we've failed to parse out a version string from the RELEASE file. note that # there will not be a RELEASE file for versions of Spark built from source. in this case we'll try to # get it out from the pom file. import xml.etree.ElementTree as ET try: root = ET.parse(os.path.join(SPARK_HOME, "pom.xml")) version_elt = root.find("./{http://maven.apache.org/POM/4.0.0}version") if version_elt is not None: return version_elt.text except IOError: # no pom file; fall through and return default pass return default_version SPARK_VERSIONS_TO_HASHES = { '1.2.0rc2': "a428c446e23e" } def setup_spark_cluster(master, opts): ssh(master, opts, "chmod u+x spark-ec2/setup.sh") ssh(master, opts, "spark-ec2/setup.sh") def remap_spark_version_to_hash(user_version_string): """ Replaces a user-specified Spark version string with a github hash if needed. Used to allow clusters to be deployed with Spark release candidates. """ return SPARK_VERSIONS_TO_HASHES.get(user_version_string, user_version_string) def install_anaconda(master, opts): """ Install Anaconda on a Spark EC2 cluster """ # download anaconda print_status("Downloading Anaconda") ssh(master, opts, "wget http://09c8d0b2229f813c1b93-c95ac804525aac4b6dba79b00b39d1d3.r79.cf1.rackcdn.com/" "Anaconda-2.1.0-Linux-x86_64.sh") print_success() # setup anaconda print_status("Installing Anaconda") ssh(master, opts, "rm -rf /root/anaconda && bash Anaconda-2.1.0-Linux-x86_64.sh -b " "&& rm Anaconda-2.1.0-Linux-x86_64.sh") ssh(master, opts, "echo 'export PATH=/root/anaconda/bin:$PATH:/root/spark/bin' >> /root/.bash_profile") ssh(master, opts, "pssh -h /root/spark-ec2/slaves 'echo 'export " "PATH=/root/anaconda/bin:$PATH:/root/spark/bin' >> /root/.bash_profile'") ssh(master, opts, "echo 'export PYSPARK_PYTHON=/root/anaconda/bin/python' >> /root/.bash_profile") ssh(master, opts, "pssh -h /root/spark-ec2/slaves 'echo 'export " "PYSPARK_PYTHON=/root/anaconda/bin/python' >> /root/.bash_profile'") print_success() # update core libraries print_status("Updating Anaconda libraries") ssh(master, opts, "/root/anaconda/bin/conda update --yes numpy scipy ipython") ssh(master, opts, "/root/anaconda/bin/conda install --yes jsonschema pillow seaborn scikit-learn") print_success() # add mistune (for notebook conversions) ssh(master, opts, "source ~/.bash_profile && pip install mistune") # copy to slaves print_status("Copying Anaconda to workers") ssh(master, opts, "/root/spark-ec2/copy-dir /root/anaconda") print_success() def install_thunder(master, opts): """ Install Thunder and dependencies on a Spark EC2 cluster """ print_status("Installing Thunder") # download thunder ssh(master, opts, "rm -rf thunder && git clone https://github.com/freeman-lab/thunder.git") if opts.thunder_version.lower() != "head": tagOrHash = opts.thunder_version if '.' in tagOrHash and not (tagOrHash.startswith('v')): # we have something that looks like a version number. prepend 'v' to get a valid tag id. tagOrHash = 'v' + tagOrHash ssh(master, opts, "cd thunder && git checkout %s" % tagOrHash) # copy local data examples to all workers ssh(master, opts, "yum install -y pssh") ssh(master, opts, "pssh -h /root/spark-ec2/slaves mkdir -p /root/thunder/thunder/utils/data/") ssh(master, opts, "~/spark-ec2/copy-dir /root/thunder/thunder/utils/data/") # install requirements ssh(master, opts, "source ~/.bash_profile && pip install -r /root/thunder/requirements.txt") ssh(master, opts, "pssh -h /root/spark-ec2/slaves 'source ~/.bash_profile && pip install zope.cachedescriptors'") # set environmental variables ssh(master, opts, "echo 'export SPARK_HOME=/root/spark' >> /root/.bash_profile") ssh(master, opts, "echo 'export PYTHONPATH=/root/thunder' >> /root/.bash_profile") ssh(master, opts, "echo 'export IPYTHON=1' >> /root/.bash_profile") # build thunder ssh(master, opts, "chmod u+x thunder/bin/build") ssh(master, opts, "source ~/.bash_profile && thunder/bin/build") ssh(master, opts, "echo 'export PATH=/root/thunder/bin:$PATH' >> /root/.bash_profile") # add AWS credentials to ~/.boto access, secret = get_s3_keys() credentialstring = "[Credentials]\naws_access_key_id = ACCESS\naws_secret_access_key = SECRET\n" credentialsfilled = credentialstring.replace('ACCESS', access).replace('SECRET', secret) ssh(master, opts, "printf '"+credentialsfilled+"' > /root/.boto") ssh(master, opts, "printf '[s3]\ncalling_format = boto.s3.connection.OrdinaryCallingFormat' >> /root/.boto") ssh(master, opts, "pscp.pssh -h /root/spark-ec2/slaves /root/.boto /root/.boto") print_success() def configure_spark(master, opts): """ Configure Spark with useful settings for running Thunder """ print_status("Configuring Spark for Thunder") # customize spark configuration parameters ssh(master, opts, "echo 'spark.akka.frameSize=2047' >> /root/spark/conf/spark-defaults.conf") ssh(master, opts, "echo 'spark.kryoserializer.buffer.max.mb=1024' >> /root/spark/conf/spark-defaults.conf") ssh(master, opts, "echo 'spark.driver.maxResultSize=0' >> /root/spark/conf/spark-defaults.conf") ssh(master, opts, "echo 'export SPARK_DRIVER_MEMORY=20g' >> /root/spark/conf/spark-env.sh") ssh(master, opts, "sed 's/log4j.rootCategory=INFO/log4j.rootCategory=ERROR/g' " "/root/spark/conf/log4j.properties.template > /root/spark/conf/log4j.properties") # point spark to the anaconda python ssh(master, opts, "echo 'export PYSPARK_DRIVER_PYTHON=/root/anaconda/bin/python' >> " "/root/spark/conf/spark-env.sh") ssh(master, opts, "echo 'export PYSPARK_PYTHON=/root/anaconda/bin/python' >> " "/root/spark/conf/spark-env.sh") ssh(master, opts, "/root/spark-ec2/copy-dir /root/spark/conf") # add AWS credentials to core-site.xml configstring = "<property><name>fs.s3n.awsAccessKeyId</name><value>ACCESS</value></property><property>" \ "<name>fs.s3n.awsSecretAccessKey</name><value>SECRET</value></property>" access, secret = get_s3_keys() filled = configstring.replace('ACCESS', access).replace('SECRET', secret) ssh(master, opts, "sed -i'f' 's,.*</configuration>.*,"+filled+"&,' /root/ephemeral-hdfs/conf/core-site.xml") ssh(master, opts, "sed -i'f' 's,.*</configuration>.*,"+filled+"&,' /root/spark/conf/core-site.xml") # configure requester pays ssh(master, opts, "touch /root/spark/conf/jets3t.properties") ssh(master, opts, "echo 'httpclient.requester-pays-buckets-enabled = true' >> /root/spark/conf/jets3t.properties") ssh(master, opts, "~/spark-ec2/copy-dir /root/spark/conf") print_success() # This is a customized version of the spark_ec2 ssh() function that # adds additional options to squash ssh host key checking errors that # occur when the ip addresses of your ec2 nodes change when you # start/stop a cluster. Lame to have to copy all this code over, but # this seemed the simplest way to add this necessary functionality. def ssh_args(opts): parts = ['-o', 'StrictHostKeyChecking=no'] + EXTRA_SSH_OPTS # Never store EC2 IPs in known hosts... if opts.identity_file is not None: parts += ['-i', opts.identity_file] return parts def ssh_command(opts): return ['ssh'] + ssh_args(opts) def ssh(host, opts, command): tries = 0 cmd = ssh_command(opts) + ['-t', '-t', '%s@%s' % (opts.user, host), stringify_command(command)] while True: process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) stdout = process.communicate()[0] code = process.returncode if code != 0: if tries > 2: print_error("SSH failure, returning error") raise Exception(stdout) else: time.sleep(3) tries += 1 else: return def setup_cluster(conn, master_nodes, slave_nodes, opts, deploy_ssh_key): """ Modified version of the setup_cluster function (borrowed from spark-ec.py) in order to manually set the folder with the deploy code """ master = master_nodes[0].public_dns_name if deploy_ssh_key: print_status("Generating cluster's SSH key on master") key_setup = """ [ -f ~/.ssh/id_rsa ] || (ssh-keygen -q -t rsa -N '' -f ~/.ssh/id_rsa && cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys) """ ssh(master, opts, key_setup) print_success() with quiet(): dot_ssh_tar = ssh_read(master, opts, ['tar', 'c', '.ssh']) print_status("Transferring cluster's SSH key to slaves") with quiet(): for slave in slave_nodes: ssh_write(slave.public_dns_name, opts, ['tar', 'x'], dot_ssh_tar) print_success() modules = ['spark', 'shark', 'ephemeral-hdfs', 'persistent-hdfs', 'mapreduce', 'spark-standalone', 'tachyon'] if opts.hadoop_major_version == "1": modules = filter(lambda x: x != "mapreduce", modules) if opts.ganglia: modules.append('ganglia') if spark_home_loose_version >= LooseVersion("1.3.0"): MESOS_SPARK_EC2_BRANCH = "branch-1.3" ssh(master, opts, "rm -rf spark-ec2 && git clone https://github.com/mesos/spark-ec2.git " "-b {b}".format(b=MESOS_SPARK_EC2_BRANCH)) else: ssh(master, opts, "rm -rf spark-ec2 && git clone https://github.com/mesos/spark-ec2.git " "-b v4") print_status("Deploying files to master") deploy_folder = os.path.join(os.environ['SPARK_HOME'], "ec2", "deploy.generic") with quiet(): deploy_files(conn, deploy_folder, opts, master_nodes, slave_nodes, modules) print_success() print_status("Installing Spark (may take several minutes)") setup_spark_cluster(master, opts) print_success() if __name__ == "__main__": spark_home_version_string = get_spark_version_string(MINIMUM_SPARK_VERSION) spark_home_loose_version = LooseVersion(spark_home_version_string) parser = OptionParser(usage="thunder-ec2 [options] <action> <clustername>", add_help_option=False) parser.add_option("-h", "--help", action="help", help="Show this help message and exit") parser.add_option("-k", "--key-pair", help="Key pair to use on instances") parser.add_option("-s", "--slaves", type="int", default=1, help="Number of slaves to launch (default: 1)") parser.add_option("-i", "--identity-file", help="SSH private key file to use for logging into instances") parser.add_option("-r", "--region", default="us-east-1", help="EC2 region zone to launch instances " "in (default: us-east-1)") parser.add_option("-t", "--instance-type", default="m3.2xlarge", help="Type of instance to launch (default: m3.2xlarge)." + " WARNING: must be 64-bit; small instances won't work") parser.add_option( "-m", "--master-instance-type", default="", help="Master instance type (leave empty for same as instance-type)") parser.add_option("-u", "--user", default="root", help="User name for cluster (default: root)") parser.add_option("-v", "--spark-version", default=spark_home_version_string, help="Version of Spark to use: 'X.Y.Z' or a specific git hash. (default: %s)" % spark_home_version_string) parser.add_option("--thunder-version", default=get_default_thunder_version(), help="Version of Thunder to use: 'X.Y.Z', 'HEAD' (current state of master branch), " + " or a specific git hash. (default: '%default')") if spark_home_loose_version >= LooseVersion("1.2.0"): parser.add_option( "-w", "--wait", type="int", default=160, help="DEPRECATED (no longer necessary for Spark >= 1.2.0) - Seconds to wait for nodes to start") else: parser.add_option("-w", "--wait", type="int", default=160, help="Seconds to wait for nodes to start (default: 160)") parser.add_option("-z", "--zone", default="", help="Availability zone to launch instances in, or 'all' to spread " "slaves across multiple (an additional $0.01/Gb for " "bandwidth between zones applies)") parser.add_option( "--spark-git-repo", default="https://github.com/apache/spark", help="Github repo from which to checkout supplied commit hash") parser.add_option( "--hadoop-major-version", default="1", help="Major version of Hadoop (default: %default)") parser.add_option("--ssh-port-forwarding", default=None, help="Set up ssh port forwarding when you login to the cluster. " + "This provides a convenient alternative to connecting to iPython " + "notebook over an open port using SSL. You must supply an argument " + "of the form \"local_port:remote_port\".") parser.add_option( "--ebs-vol-size", metavar="SIZE", type="int", default=0, help="Size (in GB) of each EBS volume.") parser.add_option( "--ebs-vol-type", default="standard", help="EBS volume type (e.g. 'gp2', 'standard').") parser.add_option( "--ebs-vol-num", type="int", default=1, help="Number of EBS volumes to attach to each node as /vol[x]. " + "The volumes will be deleted when the instances terminate. " + "Only possible on EBS-backed AMIs. " + "EBS volumes are only attached if --ebs-vol-size > 0." + "Only support up to 8 EBS volumes.") parser.add_option( "--swap", metavar="SWAP", type="int", default=1024, help="Swap space to set up per node, in MB (default: %default)") parser.add_option("--spot-price", metavar="PRICE", type="float", help="If specified, launch slaves as spot instances with the given " + "maximum price (in dollars)") parser.add_option( "--ganglia", action="store_true", default=True, help="Setup Ganglia monitoring on cluster (default: %default). NOTE: " + "the Ganglia page will be publicly accessible") parser.add_option( "--no-ganglia", action="store_false", dest="ganglia", help="Disable Ganglia monitoring for the cluster") parser.add_option("--resume", default=False, action="store_true", help="Resume installation on a previously launched cluster (for debugging)") parser.add_option( "--worker-instances", type="int", default=1, help="Number of instances per worker: variable SPARK_WORKER_INSTANCES (default: %default)") parser.add_option("--master-opts", type="string", default="", help="Extra options to give to master through SPARK_MASTER_OPTS variable " + "(e.g -Dspark.worker.timeout=180)") parser.add_option("--user-data", type="string", default="", help="Path to a user-data file (most AMI's interpret this as an initialization script)") if spark_home_loose_version >= LooseVersion("1.2.0"): parser.add_option("--authorized-address", type="string", default="0.0.0.0/0", help="Address to authorize on created security groups (default: %default)" + " (only with Spark >= 1.2.0)") parser.add_option("--additional-security-group", type="string", default="", help="Additional security group to place the machines in (only with Spark >= 1.2.0)") parser.add_option("--copy-aws-credentials", action="store_true", default=False, help="Add AWS credentials to hadoop configuration to allow Spark to access S3" + " (only with Spark >= 1.2.0)") if spark_home_loose_version >= LooseVersion("1.3.0"): parser.add_option("--subnet-id", default=None, help="VPC subnet to launch instances in (only with Spark >= 1.3.0") parser.add_option("--vpc-id", default=None, help="VPC to launch instances in (only with Spark >= 1.3.0)") parser.add_option("--placement-group", type="string", default=None, help="Which placement group to try and launch instances into. Assumes placement " "group is already created.") parser.add_option("--spark-ec2-git-repo", default="https://github.com/mesos/spark-ec2", help="Github repo from which to checkout spark-ec2 (default: %default)") parser.add_option("--spark-ec2-git-branch", default="branch-1.3", help="Github repo branch of spark-ec2 to use (default: %default)") parser.add_option("--private-ips", action="store_true", default=False, help="Use private IPs for instances rather than public if VPC/subnet " + "requires that.") (opts, args) = parser.parse_args() if len(args) != 2: parser.print_help() sys.exit(1) (action, cluster_name) = args spark_version_string = opts.spark_version # check that requested spark version is <= the $SPARK_HOME version, or is a github hash if '.' in spark_version_string: # version string is dotted, not a hash spark_cluster_loose_version = LooseVersion(spark_version_string) if spark_cluster_loose_version > spark_home_loose_version: raise ValueError("Requested cluster Spark version '%s' is greater " % spark_version_string + "than the local version of Spark in $SPARK_HOME, '%s'" % spark_home_version_string) if spark_cluster_loose_version < LooseVersion(MINIMUM_SPARK_VERSION): raise ValueError("Requested cluster Spark version '%s' is less " % spark_version_string + "than the minimum version required for Thunder, '%s'" % MINIMUM_SPARK_VERSION) opts.ami = get_spark_ami(opts) # "ami-3ecd0c56"\ # get version string as github commit hash if needed (mainly to support Spark release candidates) opts.spark_version = remap_spark_version_to_hash(spark_version_string) # Launch a cluster, setting several options to defaults # (use spark-ec2.py included with Spark for more control) if action == "launch": try: conn = ec2.connect_to_region(opts.region) except Exception as e: print >> stderr, (e) sys.exit(1) if opts.zone == "": opts.zone = random.choice(conn.get_all_zones()).name if opts.resume: (master_nodes, slave_nodes) = get_existing_cluster(conn, opts, cluster_name) else: (master_nodes, slave_nodes) = launch_cluster(conn, opts, cluster_name) try: wait_for_cluster(conn, opts.wait, master_nodes, slave_nodes) except NameError: if spark_home_loose_version >= LooseVersion("1.3.0"): wait_for_cluster_state(cluster_instances=(master_nodes + slave_nodes), cluster_state='ssh-ready', opts=opts, conn=conn) else: wait_for_cluster_state(cluster_instances=(master_nodes + slave_nodes), cluster_state='ssh-ready', opts=opts) print("") setup_cluster(conn, master_nodes, slave_nodes, opts, True) master = master_nodes[0].public_dns_name install_anaconda(master, opts) install_thunder(master, opts) configure_spark(master, opts) print("") print("Cluster successfully launched!") print("") print("Go to " + colored("http://%s:8080" % master, 'blue') + " to see the web UI for your cluster") if opts.ganglia: print("Go to " + colored("http://%s:5080/ganglia" % master, 'blue') + " to view ganglia monitor") print("") if action != "launch": conn = ec2.connect_to_region(opts.region) (master_nodes, slave_nodes) = get_existing_cluster(conn, opts, cluster_name) master = master_nodes[0].public_dns_name # Login to the cluster if action == "login": print "Logging into master " + master + "..." proxy_opt = [] # SSH tunnels are a convenient, zero-configuration # alternative to opening a port using the EC2 security # group settings and using iPython notebook over SSL. # # If the user has requested ssh port forwarding, we set # that up here. if opts.ssh_port_forwarding is not None: ssh_ports = opts.ssh_port_forwarding.split(":") if len(ssh_ports) != 2: print "\nERROR: Could not parse arguments to \'--ssh-port-forwarding\'." print " Be sure you use the syntax \'local_port:remote_port\'" sys.exit(1) print ("\nSSH port forwarding requested. Remote port " + ssh_ports[1] + " will be accessible at http://localhost:" + ssh_ports[0] + '\n') try: subprocess.check_call(ssh_command(opts) + proxy_opt + EXTRA_SSH_OPTS + ['-L', ssh_ports[0] + ':127.0.0.1:' + ssh_ports[1], '-o', 'ExitOnForwardFailure=yes', '-t', '-t', "%s@%s" % (opts.user, master)]) except subprocess.CalledProcessError: print "\nERROR: Could not establish ssh connection with port forwarding." print " Check your Internet connection and make sure that the" print " ports you have requested are not already in use." sys.exit(1) else: subprocess.check_call(ssh_command(opts) + proxy_opt + EXTRA_SSH_OPTS + ['-t', '-t', "%s@%s" % (opts.user, master)]) elif action == "reboot-slaves": response = raw_input( "Are you sure you want to reboot the cluster " + cluster_name + " slaves?\n" + "Reboot cluster slaves " + cluster_name + " (y/N): ") if response == "y": (master_nodes, slave_nodes) = get_existing_cluster( conn, opts, cluster_name, die_on_error=False) print "Rebooting slaves..." for inst in slave_nodes: if inst.state not in ["shutting-down", "terminated"]: print "Rebooting " + inst.id inst.reboot() elif action == "get-master": print master_nodes[0].public_dns_name # Install thunder on the cluster elif action == "install": #install_anaconda(master, opts) install_thunder(master, opts) configure_spark(master, opts) # Stop a running cluster. Storage on EBS volumes is # preserved, so you can restart the cluster in the same state # (though you do pay a modest fee for EBS storage in the # meantime). elif action == "stop": response = raw_input( "Are you sure you want to stop the cluster " + cluster_name + "?\nDATA ON EPHEMERAL DISKS WILL BE LOST, " + "BUT THE CLUSTER WILL KEEP USING SPACE ON\n" + "AMAZON EBS IF IT IS EBS-BACKED!!\n" + "All data on spot-instance slaves will be lost.\n" + "Stop cluster " + cluster_name + " (y/N): ") if response == "y": (master_nodes, slave_nodes) = get_existing_cluster( conn, opts, cluster_name, die_on_error=False) print "Stopping master..." for inst in master_nodes: if inst.state not in ["shutting-down", "terminated"]: inst.stop() print "Stopping slaves..." for inst in slave_nodes: if inst.state not in ["shutting-down", "terminated"]: if inst.spot_instance_request_id: inst.terminate() else: inst.stop() # Restart a stopped cluster elif action == "start": print "Starting slaves..." for inst in slave_nodes: if inst.state not in ["shutting-down", "terminated"]: inst.start() print "Starting master..." for inst in master_nodes: if inst.state not in ["shutting-down", "terminated"]: inst.start() try: wait_for_cluster(conn, opts.wait, master_nodes, slave_nodes) except NameError: if spark_home_loose_version >= LooseVersion("1.3.0"): wait_for_cluster_state(cluster_instances=(master_nodes + slave_nodes), cluster_state='ssh-ready', opts=opts, conn=conn) else: wait_for_cluster_state(cluster_instances=(master_nodes + slave_nodes), cluster_state='ssh-ready', opts=opts) print("") setup_cluster(conn, master_nodes, slave_nodes, opts, False) master = master_nodes[0].public_dns_name configure_spark(master, opts) print("") print("Cluster successfully restarted!") print("Go to " + colored("http://%s:8080" % master, 'blue') + " to see the web UI for your cluster") print("") # Destroy the cluster elif action == "destroy": response = raw_input("Are you sure you want to destroy the cluster " + cluster_name + "?\nALL DATA ON ALL NODES WILL BE LOST!!\n" + "Destroy cluster " + cluster_name + " (y/N): ") if response == "y": (master_nodes, slave_nodes) = get_existing_cluster(conn, opts, cluster_name, die_on_error=False) print "Terminating master..." for inst in master_nodes: inst.terminate() print "Terminating slaves..." for inst in slave_nodes: inst.terminate() else: raise NotImplementedError("action: " + action + "not recognized")
zhwa/thunder
thunder/utils/ec2.py
Python
apache-2.0
31,603
# Copyright 2016 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest class TestSample(unittest.TestCase): SAMPLE_RATE = 16000 AUDIO_SOURCE_URI = 'gs://sample-bucket/sample-recording.flac' @staticmethod def _get_target_class(): from google.cloud.speech.sample import Sample return Sample def _make_one(self, *args, **kw): return self._get_target_class()(*args, **kw) def test_initialize_sample(self): from google.cloud.speech.encoding import Encoding sample = self._make_one(source_uri=self.AUDIO_SOURCE_URI, encoding=Encoding.FLAC, sample_rate=self.SAMPLE_RATE) self.assertEqual(sample.source_uri, self.AUDIO_SOURCE_URI) self.assertEqual(sample.encoding, Encoding.FLAC) self.assertEqual(sample.sample_rate, self.SAMPLE_RATE) def test_content_and_source_uri(self): with self.assertRaises(ValueError): self._make_one(content='awefawagaeragere', source_uri=self.AUDIO_SOURCE_URI) def test_sample_rates(self): from google.cloud.speech.encoding import Encoding with self.assertRaises(ValueError): self._make_one(source_uri=self.AUDIO_SOURCE_URI, sample_rate=7999) with self.assertRaises(ValueError): self._make_one(source_uri=self.AUDIO_SOURCE_URI, sample_rate=48001) sample = self._make_one(source_uri=self.AUDIO_SOURCE_URI, sample_rate=self.SAMPLE_RATE, encoding=Encoding.FLAC) self.assertEqual(sample.sample_rate, self.SAMPLE_RATE) self.assertEqual(sample.encoding, Encoding.FLAC) sample = self._make_one(source_uri=self.AUDIO_SOURCE_URI, encoding=Encoding.FLAC) self.assertEqual(sample.sample_rate, self.SAMPLE_RATE) def test_encoding(self): from google.cloud.speech.encoding import Encoding with self.assertRaises(ValueError): self._make_one(source_uri=self.AUDIO_SOURCE_URI, sample_rate=self.SAMPLE_RATE, encoding='OGG') with self.assertRaises(ValueError): self._make_one(source_uri=self.AUDIO_SOURCE_URI, sample_rate=self.SAMPLE_RATE) sample = self._make_one(source_uri=self.AUDIO_SOURCE_URI, sample_rate=self.SAMPLE_RATE, encoding=Encoding.FLAC) self.assertEqual(sample.encoding, Encoding.FLAC)
quom/google-cloud-python
speech/unit_tests/test_sample.py
Python
apache-2.0
3,192
from __future__ import unicode_literals # Ensure 'assert_raises' context manager support for Python 2.6 import tests.backport_assert_raises from nose.tools import assert_raises from moto.ec2 import ec2_backends import boto from boto.exception import EC2ResponseError import sure # noqa from moto import mock_ec2 @mock_ec2 def test_create_and_delete_volume(): conn = boto.connect_ec2('the_key', 'the_secret') volume = conn.create_volume(80, "us-east-1a") all_volumes = conn.get_all_volumes() all_volumes.should.have.length_of(1) all_volumes[0].size.should.equal(80) all_volumes[0].zone.should.equal("us-east-1a") volume = all_volumes[0] volume.delete() conn.get_all_volumes().should.have.length_of(0) # Deleting something that was already deleted should throw an error with assert_raises(EC2ResponseError) as cm: volume.delete() cm.exception.code.should.equal('InvalidVolume.NotFound') cm.exception.status.should.equal(400) cm.exception.request_id.should_not.be.none @mock_ec2 def test_filter_volume_by_id(): conn = boto.connect_ec2('the_key', 'the_secret') volume1 = conn.create_volume(80, "us-east-1a") volume2 = conn.create_volume(36, "us-east-1b") volume3 = conn.create_volume(20, "us-east-1c") vol1 = conn.get_all_volumes(volume_ids=volume3.id) vol1.should.have.length_of(1) vol1[0].size.should.equal(20) vol1[0].zone.should.equal('us-east-1c') vol2 = conn.get_all_volumes(volume_ids=[volume1.id, volume2.id]) vol2.should.have.length_of(2) @mock_ec2 def test_volume_filters(): conn = boto.connect_ec2('the_key', 'the_secret') reservation = conn.run_instances('ami-1234abcd') instance = reservation.instances[0] instance.update() volume1 = conn.create_volume(80, "us-east-1a") volume2 = conn.create_volume(36, "us-east-1b") volume3 = conn.create_volume(20, "us-east-1c") snapshot = volume3.create_snapshot(description='testsnap') volume4 = conn.create_volume(25, "us-east-1a", snapshot=snapshot) conn.create_tags([volume1.id], {'testkey1': 'testvalue1'}) conn.create_tags([volume2.id], {'testkey2': 'testvalue2'}) volume1.update() volume2.update() volume3.update() volume4.update() block_mapping = instance.block_device_mapping['/dev/sda1'] volumes_by_attach_time = conn.get_all_volumes(filters={'attachment.attach-time': block_mapping.attach_time}) set([vol.id for vol in volumes_by_attach_time]).should.equal(set([block_mapping.volume_id])) volumes_by_attach_device = conn.get_all_volumes(filters={'attachment.device': '/dev/sda1'}) set([vol.id for vol in volumes_by_attach_device]).should.equal(set([block_mapping.volume_id])) volumes_by_attach_instance_id = conn.get_all_volumes(filters={'attachment.instance-id': instance.id}) set([vol.id for vol in volumes_by_attach_instance_id]).should.equal(set([block_mapping.volume_id])) volumes_by_create_time = conn.get_all_volumes(filters={'create-time': volume4.create_time}) set([vol.create_time for vol in volumes_by_create_time]).should.equal(set([volume4.create_time])) volumes_by_size = conn.get_all_volumes(filters={'size': volume2.size}) set([vol.id for vol in volumes_by_size]).should.equal(set([volume2.id])) volumes_by_snapshot_id = conn.get_all_volumes(filters={'snapshot-id': snapshot.id}) set([vol.id for vol in volumes_by_snapshot_id]).should.equal(set([volume4.id])) volumes_by_status = conn.get_all_volumes(filters={'status': 'in-use'}) set([vol.id for vol in volumes_by_status]).should.equal(set([block_mapping.volume_id])) volumes_by_id = conn.get_all_volumes(filters={'volume-id': volume1.id}) set([vol.id for vol in volumes_by_id]).should.equal(set([volume1.id])) volumes_by_tag_key = conn.get_all_volumes(filters={'tag-key': 'testkey1'}) set([vol.id for vol in volumes_by_tag_key]).should.equal(set([volume1.id])) volumes_by_tag_value = conn.get_all_volumes(filters={'tag-value': 'testvalue1'}) set([vol.id for vol in volumes_by_tag_value]).should.equal(set([volume1.id])) volumes_by_tag = conn.get_all_volumes(filters={'tag:testkey1': 'testvalue1'}) set([vol.id for vol in volumes_by_tag]).should.equal(set([volume1.id])) @mock_ec2 def test_volume_attach_and_detach(): conn = boto.connect_ec2('the_key', 'the_secret') reservation = conn.run_instances('ami-1234abcd') instance = reservation.instances[0] volume = conn.create_volume(80, "us-east-1a") volume.update() volume.volume_state().should.equal('available') volume.attach(instance.id, "/dev/sdh") volume.update() volume.volume_state().should.equal('in-use') volume.attach_data.instance_id.should.equal(instance.id) volume.detach() volume.update() volume.volume_state().should.equal('available') with assert_raises(EC2ResponseError) as cm1: volume.attach('i-1234abcd', "/dev/sdh") cm1.exception.code.should.equal('InvalidInstanceID.NotFound') cm1.exception.status.should.equal(400) cm1.exception.request_id.should_not.be.none with assert_raises(EC2ResponseError) as cm2: conn.detach_volume(volume.id, instance.id, "/dev/sdh") cm2.exception.code.should.equal('InvalidAttachment.NotFound') cm2.exception.status.should.equal(400) cm2.exception.request_id.should_not.be.none with assert_raises(EC2ResponseError) as cm3: conn.detach_volume(volume.id, 'i-1234abcd', "/dev/sdh") cm3.exception.code.should.equal('InvalidInstanceID.NotFound') cm3.exception.status.should.equal(400) cm3.exception.request_id.should_not.be.none @mock_ec2 def test_create_snapshot(): conn = boto.connect_ec2('the_key', 'the_secret') volume = conn.create_volume(80, "us-east-1a") snapshot = volume.create_snapshot('a test snapshot') snapshot.update() snapshot.status.should.equal('completed') snapshots = conn.get_all_snapshots() snapshots.should.have.length_of(1) snapshots[0].description.should.equal('a test snapshot') snapshots[0].start_time.should_not.be.none # Create snapshot without description snapshot = volume.create_snapshot() conn.get_all_snapshots().should.have.length_of(2) snapshot.delete() conn.get_all_snapshots().should.have.length_of(1) # Deleting something that was already deleted should throw an error with assert_raises(EC2ResponseError) as cm: snapshot.delete() cm.exception.code.should.equal('InvalidSnapshot.NotFound') cm.exception.status.should.equal(400) cm.exception.request_id.should_not.be.none @mock_ec2 def test_filter_snapshot_by_id(): conn = boto.connect_ec2('the_key', 'the_secret') volume1 = conn.create_volume(36, "us-east-1a") snap1 = volume1.create_snapshot('a test snapshot 1') volume2 = conn.create_volume(42, 'us-east-1a') snap2 = volume2.create_snapshot('a test snapshot 2') volume3 = conn.create_volume(84, 'us-east-1a') snap3 = volume3.create_snapshot('a test snapshot 3') snapshots1 = conn.get_all_snapshots(snapshot_ids=snap2.id) snapshots1.should.have.length_of(1) snapshots1[0].volume_id.should.equal(volume2.id) snapshots1[0].region.name.should.equal(conn.region.name) snapshots2 = conn.get_all_snapshots(snapshot_ids=[snap2.id, snap3.id]) snapshots2.should.have.length_of(2) for s in snapshots2: s.start_time.should_not.be.none s.volume_id.should.be.within([volume2.id, volume3.id]) s.region.name.should.equal(conn.region.name) @mock_ec2 def test_snapshot_filters(): conn = boto.connect_ec2('the_key', 'the_secret') volume1 = conn.create_volume(20, "us-east-1a") volume2 = conn.create_volume(25, "us-east-1a") snapshot1 = volume1.create_snapshot(description='testsnapshot1') snapshot2 = volume1.create_snapshot(description='testsnapshot2') snapshot3 = volume2.create_snapshot(description='testsnapshot3') conn.create_tags([snapshot1.id], {'testkey1': 'testvalue1'}) conn.create_tags([snapshot2.id], {'testkey2': 'testvalue2'}) snapshots_by_description = conn.get_all_snapshots(filters={'description': 'testsnapshot1'}) set([snap.id for snap in snapshots_by_description]).should.equal(set([snapshot1.id])) snapshots_by_id = conn.get_all_snapshots(filters={'snapshot-id': snapshot1.id}) set([snap.id for snap in snapshots_by_id]).should.equal(set([snapshot1.id])) snapshots_by_start_time = conn.get_all_snapshots(filters={'start-time': snapshot1.start_time}) set([snap.start_time for snap in snapshots_by_start_time]).should.equal(set([snapshot1.start_time])) snapshots_by_volume_id = conn.get_all_snapshots(filters={'volume-id': volume1.id}) set([snap.id for snap in snapshots_by_volume_id]).should.equal(set([snapshot1.id, snapshot2.id])) snapshots_by_volume_size = conn.get_all_snapshots(filters={'volume-size': volume1.size}) set([snap.id for snap in snapshots_by_volume_size]).should.equal(set([snapshot1.id, snapshot2.id])) snapshots_by_tag_key = conn.get_all_snapshots(filters={'tag-key': 'testkey1'}) set([snap.id for snap in snapshots_by_tag_key]).should.equal(set([snapshot1.id])) snapshots_by_tag_value = conn.get_all_snapshots(filters={'tag-value': 'testvalue1'}) set([snap.id for snap in snapshots_by_tag_value]).should.equal(set([snapshot1.id])) snapshots_by_tag = conn.get_all_snapshots(filters={'tag:testkey1': 'testvalue1'}) set([snap.id for snap in snapshots_by_tag]).should.equal(set([snapshot1.id])) @mock_ec2 def test_snapshot_attribute(): conn = boto.connect_ec2('the_key', 'the_secret') volume = conn.create_volume(80, "us-east-1a") snapshot = volume.create_snapshot() # Baseline attributes = conn.get_snapshot_attribute(snapshot.id, attribute='createVolumePermission') attributes.name.should.equal('create_volume_permission') attributes.attrs.should.have.length_of(0) ADD_GROUP_ARGS = {'snapshot_id': snapshot.id, 'attribute': 'createVolumePermission', 'operation': 'add', 'groups': 'all'} REMOVE_GROUP_ARGS = {'snapshot_id': snapshot.id, 'attribute': 'createVolumePermission', 'operation': 'remove', 'groups': 'all'} # Add 'all' group and confirm conn.modify_snapshot_attribute(**ADD_GROUP_ARGS) attributes = conn.get_snapshot_attribute(snapshot.id, attribute='createVolumePermission') attributes.attrs['groups'].should.have.length_of(1) attributes.attrs['groups'].should.equal(['all']) # Add is idempotent conn.modify_snapshot_attribute.when.called_with(**ADD_GROUP_ARGS).should_not.throw(EC2ResponseError) # Remove 'all' group and confirm conn.modify_snapshot_attribute(**REMOVE_GROUP_ARGS) attributes = conn.get_snapshot_attribute(snapshot.id, attribute='createVolumePermission') attributes.attrs.should.have.length_of(0) # Remove is idempotent conn.modify_snapshot_attribute.when.called_with(**REMOVE_GROUP_ARGS).should_not.throw(EC2ResponseError) # Error: Add with group != 'all' with assert_raises(EC2ResponseError) as cm: conn.modify_snapshot_attribute(snapshot.id, attribute='createVolumePermission', operation='add', groups='everyone') cm.exception.code.should.equal('InvalidAMIAttributeItemValue') cm.exception.status.should.equal(400) cm.exception.request_id.should_not.be.none # Error: Add with invalid snapshot ID with assert_raises(EC2ResponseError) as cm: conn.modify_snapshot_attribute("snapshot-abcd1234", attribute='createVolumePermission', operation='add', groups='all') cm.exception.code.should.equal('InvalidSnapshot.NotFound') cm.exception.status.should.equal(400) cm.exception.request_id.should_not.be.none # Error: Remove with invalid snapshot ID with assert_raises(EC2ResponseError) as cm: conn.modify_snapshot_attribute("snapshot-abcd1234", attribute='createVolumePermission', operation='remove', groups='all') cm.exception.code.should.equal('InvalidSnapshot.NotFound') cm.exception.status.should.equal(400) cm.exception.request_id.should_not.be.none # Error: Add or remove with user ID instead of group conn.modify_snapshot_attribute.when.called_with(snapshot.id, attribute='createVolumePermission', operation='add', user_ids=['user']).should.throw(NotImplementedError) conn.modify_snapshot_attribute.when.called_with(snapshot.id, attribute='createVolumePermission', operation='remove', user_ids=['user']).should.throw(NotImplementedError) @mock_ec2 def test_create_volume_from_snapshot(): conn = boto.connect_ec2('the_key', 'the_secret') volume = conn.create_volume(80, "us-east-1a") snapshot = volume.create_snapshot('a test snapshot') snapshot.update() snapshot.status.should.equal('completed') new_volume = snapshot.create_volume('us-east-1a') new_volume.size.should.equal(80) new_volume.snapshot_id.should.equal(snapshot.id) @mock_ec2 def test_modify_attribute_blockDeviceMapping(): """ Reproduces the missing feature explained at [0], where we want to mock a call to modify an instance attribute of type: blockDeviceMapping. [0] https://github.com/spulec/moto/issues/160 """ conn = boto.ec2.connect_to_region("us-east-1") reservation = conn.run_instances('ami-1234abcd') instance = reservation.instances[0] instance.modify_attribute('blockDeviceMapping', {'/dev/sda1': True}) instance = ec2_backends[conn.region.name].get_instance(instance.id) instance.block_device_mapping.should.have.key('/dev/sda1') instance.block_device_mapping['/dev/sda1'].delete_on_termination.should.be(True) @mock_ec2 def test_volume_tag_escaping(): conn = boto.connect_ec2('the_key', 'the_secret') vol = conn.create_volume(10, 'us-east-1a') snapshot = conn.create_snapshot(vol.id, 'Desc') snapshot.add_tags({'key': '</closed>'}) dict(conn.get_all_snapshots()[0].tags).should.equal({'key': '</closed>'})
mrucci/moto
tests/test_ec2/test_elastic_block_store.py
Python
apache-2.0
14,810
"""Support for MQTT lights.""" import logging import voluptuous as vol from homeassistant.components.light import ( ATTR_BRIGHTNESS, ATTR_COLOR_MODE, ATTR_COLOR_TEMP, ATTR_EFFECT, ATTR_EFFECT_LIST, ATTR_HS_COLOR, ATTR_MAX_MIREDS, ATTR_MIN_MIREDS, ATTR_RGB_COLOR, ATTR_RGBW_COLOR, ATTR_RGBWW_COLOR, ATTR_SUPPORTED_COLOR_MODES, ATTR_WHITE, ATTR_WHITE_VALUE, ATTR_XY_COLOR, COLOR_MODE_BRIGHTNESS, COLOR_MODE_COLOR_TEMP, COLOR_MODE_HS, COLOR_MODE_ONOFF, COLOR_MODE_RGB, COLOR_MODE_RGBW, COLOR_MODE_RGBWW, COLOR_MODE_UNKNOWN, COLOR_MODE_WHITE, COLOR_MODE_XY, SUPPORT_BRIGHTNESS, SUPPORT_COLOR, SUPPORT_COLOR_TEMP, SUPPORT_EFFECT, SUPPORT_WHITE_VALUE, LightEntity, valid_supported_color_modes, ) from homeassistant.const import ( CONF_NAME, CONF_OPTIMISTIC, CONF_PAYLOAD_OFF, CONF_PAYLOAD_ON, CONF_VALUE_TEMPLATE, STATE_ON, ) from homeassistant.core import callback import homeassistant.helpers.config_validation as cv from homeassistant.helpers.restore_state import RestoreEntity import homeassistant.util.color as color_util from .. import CONF_COMMAND_TOPIC, CONF_QOS, CONF_RETAIN, CONF_STATE_TOPIC, subscription from ... import mqtt from ..debug_info import log_messages from ..mixins import MQTT_ENTITY_COMMON_SCHEMA, MqttEntity from .schema import MQTT_LIGHT_SCHEMA_SCHEMA _LOGGER = logging.getLogger(__name__) CONF_BRIGHTNESS_COMMAND_TOPIC = "brightness_command_topic" CONF_BRIGHTNESS_SCALE = "brightness_scale" CONF_BRIGHTNESS_STATE_TOPIC = "brightness_state_topic" CONF_BRIGHTNESS_VALUE_TEMPLATE = "brightness_value_template" CONF_COLOR_MODE_STATE_TOPIC = "color_mode_state_topic" CONF_COLOR_MODE_VALUE_TEMPLATE = "color_mode_value_template" CONF_COLOR_TEMP_COMMAND_TEMPLATE = "color_temp_command_template" CONF_COLOR_TEMP_COMMAND_TOPIC = "color_temp_command_topic" CONF_COLOR_TEMP_STATE_TOPIC = "color_temp_state_topic" CONF_COLOR_TEMP_VALUE_TEMPLATE = "color_temp_value_template" CONF_EFFECT_COMMAND_TOPIC = "effect_command_topic" CONF_EFFECT_LIST = "effect_list" CONF_EFFECT_STATE_TOPIC = "effect_state_topic" CONF_EFFECT_VALUE_TEMPLATE = "effect_value_template" CONF_HS_COMMAND_TOPIC = "hs_command_topic" CONF_HS_STATE_TOPIC = "hs_state_topic" CONF_HS_VALUE_TEMPLATE = "hs_value_template" CONF_MAX_MIREDS = "max_mireds" CONF_MIN_MIREDS = "min_mireds" CONF_RGB_COMMAND_TEMPLATE = "rgb_command_template" CONF_RGB_COMMAND_TOPIC = "rgb_command_topic" CONF_RGB_STATE_TOPIC = "rgb_state_topic" CONF_RGB_VALUE_TEMPLATE = "rgb_value_template" CONF_RGBW_COMMAND_TEMPLATE = "rgbw_command_template" CONF_RGBW_COMMAND_TOPIC = "rgbw_command_topic" CONF_RGBW_STATE_TOPIC = "rgbw_state_topic" CONF_RGBW_VALUE_TEMPLATE = "rgbw_value_template" CONF_RGBWW_COMMAND_TEMPLATE = "rgbww_command_template" CONF_RGBWW_COMMAND_TOPIC = "rgbww_command_topic" CONF_RGBWW_STATE_TOPIC = "rgbww_state_topic" CONF_RGBWW_VALUE_TEMPLATE = "rgbww_value_template" CONF_STATE_VALUE_TEMPLATE = "state_value_template" CONF_XY_COMMAND_TOPIC = "xy_command_topic" CONF_XY_STATE_TOPIC = "xy_state_topic" CONF_XY_VALUE_TEMPLATE = "xy_value_template" CONF_WHITE_COMMAND_TOPIC = "white_command_topic" CONF_WHITE_SCALE = "white_scale" CONF_WHITE_VALUE_COMMAND_TOPIC = "white_value_command_topic" CONF_WHITE_VALUE_SCALE = "white_value_scale" CONF_WHITE_VALUE_STATE_TOPIC = "white_value_state_topic" CONF_WHITE_VALUE_TEMPLATE = "white_value_template" CONF_ON_COMMAND_TYPE = "on_command_type" MQTT_LIGHT_ATTRIBUTES_BLOCKED = frozenset( { ATTR_COLOR_MODE, ATTR_BRIGHTNESS, ATTR_COLOR_TEMP, ATTR_EFFECT, ATTR_EFFECT_LIST, ATTR_HS_COLOR, ATTR_MAX_MIREDS, ATTR_MIN_MIREDS, ATTR_RGB_COLOR, ATTR_RGBW_COLOR, ATTR_RGBWW_COLOR, ATTR_SUPPORTED_COLOR_MODES, ATTR_WHITE_VALUE, ATTR_XY_COLOR, } ) DEFAULT_BRIGHTNESS_SCALE = 255 DEFAULT_NAME = "MQTT LightEntity" DEFAULT_OPTIMISTIC = False DEFAULT_PAYLOAD_OFF = "OFF" DEFAULT_PAYLOAD_ON = "ON" DEFAULT_WHITE_VALUE_SCALE = 255 DEFAULT_WHITE_SCALE = 255 DEFAULT_ON_COMMAND_TYPE = "last" VALUES_ON_COMMAND_TYPE = ["first", "last", "brightness"] COMMAND_TEMPLATE_KEYS = [ CONF_COLOR_TEMP_COMMAND_TEMPLATE, CONF_RGB_COMMAND_TEMPLATE, CONF_RGBW_COMMAND_TEMPLATE, CONF_RGBWW_COMMAND_TEMPLATE, ] VALUE_TEMPLATE_KEYS = [ CONF_BRIGHTNESS_VALUE_TEMPLATE, CONF_COLOR_MODE_VALUE_TEMPLATE, CONF_COLOR_TEMP_VALUE_TEMPLATE, CONF_EFFECT_VALUE_TEMPLATE, CONF_HS_VALUE_TEMPLATE, CONF_RGB_VALUE_TEMPLATE, CONF_RGBW_VALUE_TEMPLATE, CONF_RGBWW_VALUE_TEMPLATE, CONF_STATE_VALUE_TEMPLATE, CONF_WHITE_VALUE_TEMPLATE, CONF_XY_VALUE_TEMPLATE, ] PLATFORM_SCHEMA_BASIC = vol.All( # CONF_VALUE_TEMPLATE is deprecated, support will be removed in 2021.10 cv.deprecated(CONF_VALUE_TEMPLATE, CONF_STATE_VALUE_TEMPLATE), mqtt.MQTT_RW_PLATFORM_SCHEMA.extend( { vol.Optional(CONF_BRIGHTNESS_COMMAND_TOPIC): mqtt.valid_publish_topic, vol.Optional( CONF_BRIGHTNESS_SCALE, default=DEFAULT_BRIGHTNESS_SCALE ): vol.All(vol.Coerce(int), vol.Range(min=1)), vol.Optional(CONF_BRIGHTNESS_STATE_TOPIC): mqtt.valid_subscribe_topic, vol.Optional(CONF_BRIGHTNESS_VALUE_TEMPLATE): cv.template, vol.Optional(CONF_COLOR_MODE_STATE_TOPIC): mqtt.valid_subscribe_topic, vol.Optional(CONF_COLOR_MODE_VALUE_TEMPLATE): cv.template, vol.Optional(CONF_COLOR_TEMP_COMMAND_TEMPLATE): cv.template, vol.Optional(CONF_COLOR_TEMP_COMMAND_TOPIC): mqtt.valid_publish_topic, vol.Optional(CONF_COLOR_TEMP_STATE_TOPIC): mqtt.valid_subscribe_topic, vol.Optional(CONF_COLOR_TEMP_VALUE_TEMPLATE): cv.template, vol.Optional(CONF_EFFECT_COMMAND_TOPIC): mqtt.valid_publish_topic, vol.Optional(CONF_EFFECT_LIST): vol.All(cv.ensure_list, [cv.string]), vol.Optional(CONF_EFFECT_STATE_TOPIC): mqtt.valid_subscribe_topic, vol.Optional(CONF_EFFECT_VALUE_TEMPLATE): cv.template, vol.Optional(CONF_HS_COMMAND_TOPIC): mqtt.valid_publish_topic, vol.Optional(CONF_HS_STATE_TOPIC): mqtt.valid_subscribe_topic, vol.Optional(CONF_HS_VALUE_TEMPLATE): cv.template, vol.Optional(CONF_MAX_MIREDS): cv.positive_int, vol.Optional(CONF_MIN_MIREDS): cv.positive_int, vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, vol.Optional(CONF_ON_COMMAND_TYPE, default=DEFAULT_ON_COMMAND_TYPE): vol.In( VALUES_ON_COMMAND_TYPE ), vol.Optional(CONF_OPTIMISTIC, default=DEFAULT_OPTIMISTIC): cv.boolean, vol.Optional(CONF_PAYLOAD_OFF, default=DEFAULT_PAYLOAD_OFF): cv.string, vol.Optional(CONF_PAYLOAD_ON, default=DEFAULT_PAYLOAD_ON): cv.string, vol.Optional(CONF_RGB_COMMAND_TEMPLATE): cv.template, vol.Optional(CONF_RGB_COMMAND_TOPIC): mqtt.valid_publish_topic, vol.Optional(CONF_RGB_STATE_TOPIC): mqtt.valid_subscribe_topic, vol.Optional(CONF_RGB_VALUE_TEMPLATE): cv.template, vol.Optional(CONF_RGBW_COMMAND_TEMPLATE): cv.template, vol.Optional(CONF_RGBW_COMMAND_TOPIC): mqtt.valid_publish_topic, vol.Optional(CONF_RGBW_STATE_TOPIC): mqtt.valid_subscribe_topic, vol.Optional(CONF_RGBW_VALUE_TEMPLATE): cv.template, vol.Optional(CONF_RGBWW_COMMAND_TEMPLATE): cv.template, vol.Optional(CONF_RGBWW_COMMAND_TOPIC): mqtt.valid_publish_topic, vol.Optional(CONF_RGBWW_STATE_TOPIC): mqtt.valid_subscribe_topic, vol.Optional(CONF_RGBWW_VALUE_TEMPLATE): cv.template, vol.Optional(CONF_STATE_VALUE_TEMPLATE): cv.template, vol.Optional(CONF_WHITE_COMMAND_TOPIC): mqtt.valid_publish_topic, vol.Optional(CONF_WHITE_SCALE, default=DEFAULT_WHITE_SCALE): vol.All( vol.Coerce(int), vol.Range(min=1) ), vol.Optional(CONF_VALUE_TEMPLATE): cv.template, vol.Optional(CONF_WHITE_VALUE_COMMAND_TOPIC): mqtt.valid_publish_topic, vol.Optional( CONF_WHITE_VALUE_SCALE, default=DEFAULT_WHITE_VALUE_SCALE ): vol.All(vol.Coerce(int), vol.Range(min=1)), vol.Optional(CONF_WHITE_VALUE_STATE_TOPIC): mqtt.valid_subscribe_topic, vol.Optional(CONF_WHITE_VALUE_TEMPLATE): cv.template, vol.Optional(CONF_XY_COMMAND_TOPIC): mqtt.valid_publish_topic, vol.Optional(CONF_XY_STATE_TOPIC): mqtt.valid_subscribe_topic, vol.Optional(CONF_XY_VALUE_TEMPLATE): cv.template, } ) .extend(MQTT_ENTITY_COMMON_SCHEMA.schema) .extend(MQTT_LIGHT_SCHEMA_SCHEMA.schema), ) async def async_setup_entity_basic( hass, config, async_add_entities, config_entry, discovery_data=None ): """Set up a MQTT Light.""" async_add_entities([MqttLight(hass, config, config_entry, discovery_data)]) class MqttLight(MqttEntity, LightEntity, RestoreEntity): """Representation of a MQTT light.""" _attributes_extra_blocked = MQTT_LIGHT_ATTRIBUTES_BLOCKED def __init__(self, hass, config, config_entry, discovery_data): """Initialize MQTT light.""" self._brightness = None self._color_mode = None self._color_temp = None self._effect = None self._hs_color = None self._legacy_mode = False self._rgb_color = None self._rgbw_color = None self._rgbww_color = None self._state = False self._supported_color_modes = None self._white_value = None self._xy_color = None self._topic = None self._payload = None self._command_templates = None self._value_templates = None self._optimistic = False self._optimistic_brightness = False self._optimistic_color_mode = False self._optimistic_color_temp = False self._optimistic_effect = False self._optimistic_hs_color = False self._optimistic_rgb_color = False self._optimistic_rgbw_color = False self._optimistic_rgbww_color = False self._optimistic_white_value = False self._optimistic_xy_color = False MqttEntity.__init__(self, hass, config, config_entry, discovery_data) @staticmethod def config_schema(): """Return the config schema.""" return PLATFORM_SCHEMA_BASIC def _setup_from_config(self, config): """(Re)Setup the entity.""" if CONF_STATE_VALUE_TEMPLATE not in config and CONF_VALUE_TEMPLATE in config: config[CONF_STATE_VALUE_TEMPLATE] = config[CONF_VALUE_TEMPLATE] topic = { key: config.get(key) for key in ( CONF_BRIGHTNESS_COMMAND_TOPIC, CONF_BRIGHTNESS_STATE_TOPIC, CONF_COLOR_MODE_STATE_TOPIC, CONF_COLOR_TEMP_COMMAND_TOPIC, CONF_COLOR_TEMP_STATE_TOPIC, CONF_COMMAND_TOPIC, CONF_EFFECT_COMMAND_TOPIC, CONF_EFFECT_STATE_TOPIC, CONF_HS_COMMAND_TOPIC, CONF_HS_STATE_TOPIC, CONF_RGB_COMMAND_TOPIC, CONF_RGB_STATE_TOPIC, CONF_RGBW_COMMAND_TOPIC, CONF_RGBW_STATE_TOPIC, CONF_RGBWW_COMMAND_TOPIC, CONF_RGBWW_STATE_TOPIC, CONF_STATE_TOPIC, CONF_WHITE_COMMAND_TOPIC, CONF_WHITE_VALUE_COMMAND_TOPIC, CONF_WHITE_VALUE_STATE_TOPIC, CONF_XY_COMMAND_TOPIC, CONF_XY_STATE_TOPIC, ) } self._topic = topic self._payload = {"on": config[CONF_PAYLOAD_ON], "off": config[CONF_PAYLOAD_OFF]} value_templates = {} for key in VALUE_TEMPLATE_KEYS: value_templates[key] = lambda value, _: value for key in VALUE_TEMPLATE_KEYS & config.keys(): tpl = config[key] value_templates[key] = tpl.async_render_with_possible_json_value tpl.hass = self.hass self._value_templates = value_templates command_templates = {} for key in COMMAND_TEMPLATE_KEYS: command_templates[key] = None for key in COMMAND_TEMPLATE_KEYS & config.keys(): tpl = config[key] command_templates[key] = tpl.async_render tpl.hass = self.hass self._command_templates = command_templates optimistic = config[CONF_OPTIMISTIC] self._optimistic_color_mode = ( optimistic or topic[CONF_COLOR_MODE_STATE_TOPIC] is None ) self._optimistic = optimistic or topic[CONF_STATE_TOPIC] is None self._optimistic_rgb_color = optimistic or topic[CONF_RGB_STATE_TOPIC] is None self._optimistic_rgbw_color = optimistic or topic[CONF_RGBW_STATE_TOPIC] is None self._optimistic_rgbww_color = ( optimistic or topic[CONF_RGBWW_STATE_TOPIC] is None ) self._optimistic_brightness = ( optimistic or ( topic[CONF_BRIGHTNESS_COMMAND_TOPIC] is not None and topic[CONF_BRIGHTNESS_STATE_TOPIC] is None ) or ( topic[CONF_BRIGHTNESS_COMMAND_TOPIC] is None and topic[CONF_RGB_STATE_TOPIC] is None ) ) self._optimistic_color_temp = ( optimistic or topic[CONF_COLOR_TEMP_STATE_TOPIC] is None ) self._optimistic_effect = optimistic or topic[CONF_EFFECT_STATE_TOPIC] is None self._optimistic_hs_color = optimistic or topic[CONF_HS_STATE_TOPIC] is None self._optimistic_white_value = ( optimistic or topic[CONF_WHITE_VALUE_STATE_TOPIC] is None ) self._optimistic_xy_color = optimistic or topic[CONF_XY_STATE_TOPIC] is None supported_color_modes = set() if topic[CONF_COLOR_TEMP_COMMAND_TOPIC] is not None: supported_color_modes.add(COLOR_MODE_COLOR_TEMP) self._color_mode = COLOR_MODE_COLOR_TEMP if topic[CONF_HS_COMMAND_TOPIC] is not None: supported_color_modes.add(COLOR_MODE_HS) self._color_mode = COLOR_MODE_HS if topic[CONF_RGB_COMMAND_TOPIC] is not None: supported_color_modes.add(COLOR_MODE_RGB) self._color_mode = COLOR_MODE_RGB if topic[CONF_RGBW_COMMAND_TOPIC] is not None: supported_color_modes.add(COLOR_MODE_RGBW) self._color_mode = COLOR_MODE_RGBW if topic[CONF_RGBWW_COMMAND_TOPIC] is not None: supported_color_modes.add(COLOR_MODE_RGBWW) self._color_mode = COLOR_MODE_RGBWW if topic[CONF_WHITE_COMMAND_TOPIC] is not None: supported_color_modes.add(COLOR_MODE_WHITE) if topic[CONF_XY_COMMAND_TOPIC] is not None: supported_color_modes.add(COLOR_MODE_XY) self._color_mode = COLOR_MODE_XY if len(supported_color_modes) > 1: self._color_mode = COLOR_MODE_UNKNOWN if not supported_color_modes: if topic[CONF_BRIGHTNESS_COMMAND_TOPIC] is not None: self._color_mode = COLOR_MODE_BRIGHTNESS supported_color_modes.add(COLOR_MODE_BRIGHTNESS) else: self._color_mode = COLOR_MODE_ONOFF supported_color_modes.add(COLOR_MODE_ONOFF) # Validate the color_modes configuration self._supported_color_modes = valid_supported_color_modes(supported_color_modes) if topic[CONF_WHITE_VALUE_COMMAND_TOPIC] is not None: self._legacy_mode = True def _is_optimistic(self, attribute): """Return True if the attribute is optimistically updated.""" return getattr(self, f"_optimistic_{attribute}") async def _subscribe_topics(self): # noqa: C901 """(Re)Subscribe to topics.""" topics = {} last_state = await self.async_get_last_state() def add_topic(topic, msg_callback): """Add a topic.""" if self._topic[topic] is not None: topics[topic] = { "topic": self._topic[topic], "msg_callback": msg_callback, "qos": self._config[CONF_QOS], } def restore_state(attribute, condition_attribute=None): """Restore a state attribute.""" if condition_attribute is None: condition_attribute = attribute optimistic = self._is_optimistic(condition_attribute) if optimistic and last_state and last_state.attributes.get(attribute): setattr(self, f"_{attribute}", last_state.attributes[attribute]) @callback @log_messages(self.hass, self.entity_id) def state_received(msg): """Handle new MQTT messages.""" payload = self._value_templates[CONF_STATE_VALUE_TEMPLATE]( msg.payload, None ) if not payload: _LOGGER.debug("Ignoring empty state message from '%s'", msg.topic) return if payload == self._payload["on"]: self._state = True elif payload == self._payload["off"]: self._state = False self.async_write_ha_state() if self._topic[CONF_STATE_TOPIC] is not None: topics[CONF_STATE_TOPIC] = { "topic": self._topic[CONF_STATE_TOPIC], "msg_callback": state_received, "qos": self._config[CONF_QOS], } elif self._optimistic and last_state: self._state = last_state.state == STATE_ON @callback @log_messages(self.hass, self.entity_id) def brightness_received(msg): """Handle new MQTT messages for the brightness.""" payload = self._value_templates[CONF_BRIGHTNESS_VALUE_TEMPLATE]( msg.payload, None ) if not payload: _LOGGER.debug("Ignoring empty brightness message from '%s'", msg.topic) return device_value = float(payload) percent_bright = device_value / self._config[CONF_BRIGHTNESS_SCALE] self._brightness = percent_bright * 255 self.async_write_ha_state() add_topic(CONF_BRIGHTNESS_STATE_TOPIC, brightness_received) restore_state(ATTR_BRIGHTNESS) def _rgbx_received(msg, template, color_mode, convert_color): """Handle new MQTT messages for RGBW and RGBWW.""" payload = self._value_templates[template](msg.payload, None) if not payload: _LOGGER.debug( "Ignoring empty %s message from '%s'", color_mode, msg.topic ) return None color = tuple(int(val) for val in payload.split(",")) if self._optimistic_color_mode: self._color_mode = color_mode if self._topic[CONF_BRIGHTNESS_STATE_TOPIC] is None: rgb = convert_color(*color) percent_bright = float(color_util.color_RGB_to_hsv(*rgb)[2]) / 100.0 self._brightness = percent_bright * 255 return color @callback @log_messages(self.hass, self.entity_id) def rgb_received(msg): """Handle new MQTT messages for RGB.""" rgb = _rgbx_received( msg, CONF_RGB_VALUE_TEMPLATE, COLOR_MODE_RGB, lambda *x: x ) if not rgb: return if self._legacy_mode: self._hs_color = color_util.color_RGB_to_hs(*rgb) else: self._rgb_color = rgb self.async_write_ha_state() add_topic(CONF_RGB_STATE_TOPIC, rgb_received) restore_state(ATTR_RGB_COLOR) restore_state(ATTR_HS_COLOR, ATTR_RGB_COLOR) @callback @log_messages(self.hass, self.entity_id) def rgbw_received(msg): """Handle new MQTT messages for RGBW.""" rgbw = _rgbx_received( msg, CONF_RGBW_VALUE_TEMPLATE, COLOR_MODE_RGBW, color_util.color_rgbw_to_rgb, ) if not rgbw: return self._rgbw_color = rgbw self.async_write_ha_state() add_topic(CONF_RGBW_STATE_TOPIC, rgbw_received) restore_state(ATTR_RGBW_COLOR) @callback @log_messages(self.hass, self.entity_id) def rgbww_received(msg): """Handle new MQTT messages for RGBWW.""" rgbww = _rgbx_received( msg, CONF_RGBWW_VALUE_TEMPLATE, COLOR_MODE_RGBWW, color_util.color_rgbww_to_rgb, ) if not rgbww: return self._rgbww_color = rgbww self.async_write_ha_state() add_topic(CONF_RGBWW_STATE_TOPIC, rgbww_received) restore_state(ATTR_RGBWW_COLOR) @callback @log_messages(self.hass, self.entity_id) def color_mode_received(msg): """Handle new MQTT messages for color mode.""" payload = self._value_templates[CONF_COLOR_MODE_VALUE_TEMPLATE]( msg.payload, None ) if not payload: _LOGGER.debug("Ignoring empty color mode message from '%s'", msg.topic) return self._color_mode = payload self.async_write_ha_state() add_topic(CONF_COLOR_MODE_STATE_TOPIC, color_mode_received) restore_state(ATTR_COLOR_MODE) @callback @log_messages(self.hass, self.entity_id) def color_temp_received(msg): """Handle new MQTT messages for color temperature.""" payload = self._value_templates[CONF_COLOR_TEMP_VALUE_TEMPLATE]( msg.payload, None ) if not payload: _LOGGER.debug("Ignoring empty color temp message from '%s'", msg.topic) return if self._optimistic_color_mode: self._color_mode = COLOR_MODE_COLOR_TEMP self._color_temp = int(payload) self.async_write_ha_state() add_topic(CONF_COLOR_TEMP_STATE_TOPIC, color_temp_received) restore_state(ATTR_COLOR_TEMP) @callback @log_messages(self.hass, self.entity_id) def effect_received(msg): """Handle new MQTT messages for effect.""" payload = self._value_templates[CONF_EFFECT_VALUE_TEMPLATE]( msg.payload, None ) if not payload: _LOGGER.debug("Ignoring empty effect message from '%s'", msg.topic) return self._effect = payload self.async_write_ha_state() add_topic(CONF_EFFECT_STATE_TOPIC, effect_received) restore_state(ATTR_EFFECT) @callback @log_messages(self.hass, self.entity_id) def hs_received(msg): """Handle new MQTT messages for hs color.""" payload = self._value_templates[CONF_HS_VALUE_TEMPLATE](msg.payload, None) if not payload: _LOGGER.debug("Ignoring empty hs message from '%s'", msg.topic) return try: hs_color = tuple(float(val) for val in payload.split(",", 2)) if self._optimistic_color_mode: self._color_mode = COLOR_MODE_HS self._hs_color = hs_color self.async_write_ha_state() except ValueError: _LOGGER.debug("Failed to parse hs state update: '%s'", payload) add_topic(CONF_HS_STATE_TOPIC, hs_received) restore_state(ATTR_HS_COLOR) @callback @log_messages(self.hass, self.entity_id) def white_value_received(msg): """Handle new MQTT messages for white value.""" payload = self._value_templates[CONF_WHITE_VALUE_TEMPLATE]( msg.payload, None ) if not payload: _LOGGER.debug("Ignoring empty white value message from '%s'", msg.topic) return device_value = float(payload) percent_white = device_value / self._config[CONF_WHITE_VALUE_SCALE] self._white_value = percent_white * 255 self.async_write_ha_state() add_topic(CONF_WHITE_VALUE_STATE_TOPIC, white_value_received) restore_state(ATTR_WHITE_VALUE) @callback @log_messages(self.hass, self.entity_id) def xy_received(msg): """Handle new MQTT messages for xy color.""" payload = self._value_templates[CONF_XY_VALUE_TEMPLATE](msg.payload, None) if not payload: _LOGGER.debug("Ignoring empty xy-color message from '%s'", msg.topic) return xy_color = tuple(float(val) for val in payload.split(",")) if self._optimistic_color_mode: self._color_mode = COLOR_MODE_XY if self._legacy_mode: self._hs_color = color_util.color_xy_to_hs(*xy_color) else: self._xy_color = xy_color self.async_write_ha_state() add_topic(CONF_XY_STATE_TOPIC, xy_received) restore_state(ATTR_XY_COLOR) restore_state(ATTR_HS_COLOR, ATTR_XY_COLOR) self._sub_state = await subscription.async_subscribe_topics( self.hass, self._sub_state, topics ) @property def brightness(self): """Return the brightness of this light between 0..255.""" brightness = self._brightness if brightness: brightness = min(round(brightness), 255) return brightness @property def color_mode(self): """Return current color mode.""" if self._legacy_mode: return None return self._color_mode @property def hs_color(self): """Return the hs color value.""" if not self._legacy_mode: return self._hs_color # Legacy mode, gate color_temp with white_value == 0 if self._white_value: return None return self._hs_color @property def rgb_color(self): """Return the rgb color value.""" return self._rgb_color @property def rgbw_color(self): """Return the rgbw color value.""" return self._rgbw_color @property def rgbww_color(self): """Return the rgbww color value.""" return self._rgbww_color @property def xy_color(self): """Return the xy color value.""" return self._xy_color @property def color_temp(self): """Return the color temperature in mired.""" if not self._legacy_mode: return self._color_temp # Legacy mode, gate color_temp with white_value > 0 supports_color = ( self._topic[CONF_RGB_COMMAND_TOPIC] or self._topic[CONF_HS_COMMAND_TOPIC] or self._topic[CONF_XY_COMMAND_TOPIC] ) if self._white_value or not supports_color: return self._color_temp return None @property def min_mireds(self): """Return the coldest color_temp that this light supports.""" return self._config.get(CONF_MIN_MIREDS, super().min_mireds) @property def max_mireds(self): """Return the warmest color_temp that this light supports.""" return self._config.get(CONF_MAX_MIREDS, super().max_mireds) @property def white_value(self): """Return the white property.""" white_value = self._white_value if white_value: white_value = min(round(white_value), 255) return white_value return None @property def is_on(self): """Return true if device is on.""" return self._state @property def assumed_state(self): """Return true if we do optimistic updates.""" return self._optimistic @property def effect_list(self): """Return the list of supported effects.""" return self._config.get(CONF_EFFECT_LIST) @property def effect(self): """Return the current effect.""" return self._effect @property def supported_color_modes(self): """Flag supported color modes.""" if self._legacy_mode: return None return self._supported_color_modes @property def supported_features(self): """Flag supported features.""" supported_features = 0 supported_features |= ( self._topic[CONF_EFFECT_COMMAND_TOPIC] is not None and SUPPORT_EFFECT ) if not self._legacy_mode: return supported_features # Legacy mode supported_features |= self._topic[CONF_RGB_COMMAND_TOPIC] is not None and ( SUPPORT_COLOR | SUPPORT_BRIGHTNESS ) supported_features |= ( self._topic[CONF_BRIGHTNESS_COMMAND_TOPIC] is not None and SUPPORT_BRIGHTNESS ) supported_features |= ( self._topic[CONF_COLOR_TEMP_COMMAND_TOPIC] is not None and SUPPORT_COLOR_TEMP ) supported_features |= ( self._topic[CONF_HS_COMMAND_TOPIC] is not None and SUPPORT_COLOR ) supported_features |= ( self._topic[CONF_WHITE_VALUE_COMMAND_TOPIC] is not None and SUPPORT_WHITE_VALUE ) supported_features |= ( self._topic[CONF_XY_COMMAND_TOPIC] is not None and SUPPORT_COLOR ) return supported_features async def async_turn_on(self, **kwargs): # noqa: C901 """Turn the device on. This method is a coroutine. """ should_update = False on_command_type = self._config[CONF_ON_COMMAND_TYPE] def publish(topic, payload): """Publish an MQTT message.""" mqtt.async_publish( self.hass, self._topic[topic], payload, self._config[CONF_QOS], self._config[CONF_RETAIN], ) def scale_rgbx(color, brightness=None): """Scale RGBx for brightness.""" if brightness is None: # If there's a brightness topic set, we don't want to scale the RGBx # values given using the brightness. if self._topic[CONF_BRIGHTNESS_COMMAND_TOPIC] is not None: brightness = 255 else: brightness = kwargs.get( ATTR_BRIGHTNESS, self._brightness if self._brightness else 255 ) return tuple(int(channel * brightness / 255) for channel in color) def render_rgbx(color, template, color_mode): """Render RGBx payload.""" tpl = self._command_templates[template] if tpl: keys = ["red", "green", "blue"] if color_mode == COLOR_MODE_RGBW: keys.append("white") elif color_mode == COLOR_MODE_RGBWW: keys.extend(["cold_white", "warm_white"]) rgb_color_str = tpl(zip(keys, color)) else: rgb_color_str = ",".join(str(channel) for channel in color) return rgb_color_str def set_optimistic(attribute, value, color_mode=None, condition_attribute=None): """Optimistically update a state attribute.""" if condition_attribute is None: condition_attribute = attribute if not self._is_optimistic(condition_attribute): return False if color_mode and self._optimistic_color_mode: self._color_mode = color_mode setattr(self, f"_{attribute}", value) return True if on_command_type == "first": publish(CONF_COMMAND_TOPIC, self._payload["on"]) should_update = True # If brightness is being used instead of an on command, make sure # there is a brightness input. Either set the brightness to our # saved value or the maximum value if this is the first call elif ( on_command_type == "brightness" and ATTR_BRIGHTNESS not in kwargs and ATTR_WHITE not in kwargs ): kwargs[ATTR_BRIGHTNESS] = self._brightness if self._brightness else 255 hs_color = kwargs.get(ATTR_HS_COLOR) if ( hs_color and self._topic[CONF_RGB_COMMAND_TOPIC] is not None and self._legacy_mode ): # Legacy mode: Convert HS to RGB rgb = scale_rgbx(color_util.color_hsv_to_RGB(*hs_color, 100)) rgb_s = render_rgbx(rgb, CONF_RGB_COMMAND_TEMPLATE, COLOR_MODE_RGB) publish(CONF_RGB_COMMAND_TOPIC, rgb_s) should_update |= set_optimistic( ATTR_HS_COLOR, hs_color, condition_attribute=ATTR_RGB_COLOR ) if hs_color and self._topic[CONF_HS_COMMAND_TOPIC] is not None: publish(CONF_HS_COMMAND_TOPIC, f"{hs_color[0]},{hs_color[1]}") should_update |= set_optimistic(ATTR_HS_COLOR, hs_color, COLOR_MODE_HS) if ( hs_color and self._topic[CONF_XY_COMMAND_TOPIC] is not None and self._legacy_mode ): # Legacy mode: Convert HS to XY xy_color = color_util.color_hs_to_xy(*hs_color) publish(CONF_XY_COMMAND_TOPIC, f"{xy_color[0]},{xy_color[1]}") should_update |= set_optimistic( ATTR_HS_COLOR, hs_color, condition_attribute=ATTR_XY_COLOR ) if ( (rgb := kwargs.get(ATTR_RGB_COLOR)) and self._topic[CONF_RGB_COMMAND_TOPIC] is not None and not self._legacy_mode ): scaled = scale_rgbx(rgb) rgb_s = render_rgbx(scaled, CONF_RGB_COMMAND_TEMPLATE, COLOR_MODE_RGB) publish(CONF_RGB_COMMAND_TOPIC, rgb_s) should_update |= set_optimistic(ATTR_RGB_COLOR, rgb, COLOR_MODE_RGB) if ( (rgbw := kwargs.get(ATTR_RGBW_COLOR)) and self._topic[CONF_RGBW_COMMAND_TOPIC] is not None and not self._legacy_mode ): scaled = scale_rgbx(rgbw) rgbw_s = render_rgbx(scaled, CONF_RGBW_COMMAND_TEMPLATE, COLOR_MODE_RGBW) publish(CONF_RGBW_COMMAND_TOPIC, rgbw_s) should_update |= set_optimistic(ATTR_RGBW_COLOR, rgbw, COLOR_MODE_RGBW) if ( (rgbww := kwargs.get(ATTR_RGBWW_COLOR)) and self._topic[CONF_RGBWW_COMMAND_TOPIC] is not None and not self._legacy_mode ): scaled = scale_rgbx(rgbww) rgbww_s = render_rgbx(scaled, CONF_RGBWW_COMMAND_TEMPLATE, COLOR_MODE_RGBWW) publish(CONF_RGBWW_COMMAND_TOPIC, rgbww_s) should_update |= set_optimistic(ATTR_RGBWW_COLOR, rgbww, COLOR_MODE_RGBWW) if ( (xy_color := kwargs.get(ATTR_XY_COLOR)) and self._topic[CONF_XY_COMMAND_TOPIC] is not None and not self._legacy_mode ): publish(CONF_XY_COMMAND_TOPIC, f"{xy_color[0]},{xy_color[1]}") should_update |= set_optimistic(ATTR_XY_COLOR, xy_color, COLOR_MODE_XY) if ( ATTR_BRIGHTNESS in kwargs and self._topic[CONF_BRIGHTNESS_COMMAND_TOPIC] is not None ): brightness_normalized = kwargs[ATTR_BRIGHTNESS] / 255 brightness_scale = self._config[CONF_BRIGHTNESS_SCALE] device_brightness = min( round(brightness_normalized * brightness_scale), brightness_scale ) # Make sure the brightness is not rounded down to 0 device_brightness = max(device_brightness, 1) publish(CONF_BRIGHTNESS_COMMAND_TOPIC, device_brightness) should_update |= set_optimistic(ATTR_BRIGHTNESS, kwargs[ATTR_BRIGHTNESS]) elif ( ATTR_BRIGHTNESS in kwargs and ATTR_HS_COLOR not in kwargs and self._topic[CONF_RGB_COMMAND_TOPIC] is not None and self._legacy_mode ): # Legacy mode hs_color = self._hs_color if self._hs_color is not None else (0, 0) brightness = kwargs[ATTR_BRIGHTNESS] rgb = scale_rgbx(color_util.color_hsv_to_RGB(*hs_color, 100), brightness) rgb_s = render_rgbx(rgb, CONF_RGB_COMMAND_TEMPLATE, COLOR_MODE_RGB) publish(CONF_RGB_COMMAND_TOPIC, rgb_s) should_update |= set_optimistic(ATTR_BRIGHTNESS, kwargs[ATTR_BRIGHTNESS]) elif ( ATTR_BRIGHTNESS in kwargs and ATTR_RGB_COLOR not in kwargs and self._topic[CONF_RGB_COMMAND_TOPIC] is not None and not self._legacy_mode ): rgb_color = self._rgb_color if self._rgb_color is not None else (255,) * 3 rgb = scale_rgbx(rgb_color, kwargs[ATTR_BRIGHTNESS]) rgb_s = render_rgbx(rgb, CONF_RGB_COMMAND_TEMPLATE, COLOR_MODE_RGB) publish(CONF_RGB_COMMAND_TOPIC, rgb_s) should_update |= set_optimistic(ATTR_BRIGHTNESS, kwargs[ATTR_BRIGHTNESS]) elif ( ATTR_BRIGHTNESS in kwargs and ATTR_RGBW_COLOR not in kwargs and self._topic[CONF_RGBW_COMMAND_TOPIC] is not None and not self._legacy_mode ): rgbw_color = ( self._rgbw_color if self._rgbw_color is not None else (255,) * 4 ) rgbw = scale_rgbx(rgbw_color, kwargs[ATTR_BRIGHTNESS]) rgbw_s = render_rgbx(rgbw, CONF_RGBW_COMMAND_TEMPLATE, COLOR_MODE_RGBW) publish(CONF_RGBW_COMMAND_TOPIC, rgbw_s) should_update |= set_optimistic(ATTR_BRIGHTNESS, kwargs[ATTR_BRIGHTNESS]) elif ( ATTR_BRIGHTNESS in kwargs and ATTR_RGBWW_COLOR not in kwargs and self._topic[CONF_RGBWW_COMMAND_TOPIC] is not None and not self._legacy_mode ): rgbww_color = ( self._rgbww_color if self._rgbww_color is not None else (255,) * 5 ) rgbww = scale_rgbx(rgbww_color, kwargs[ATTR_BRIGHTNESS]) rgbww_s = render_rgbx(rgbww, CONF_RGBWW_COMMAND_TEMPLATE, COLOR_MODE_RGBWW) publish(CONF_RGBWW_COMMAND_TOPIC, rgbww_s) should_update |= set_optimistic(ATTR_BRIGHTNESS, kwargs[ATTR_BRIGHTNESS]) if ( ATTR_COLOR_TEMP in kwargs and self._topic[CONF_COLOR_TEMP_COMMAND_TOPIC] is not None ): color_temp = int(kwargs[ATTR_COLOR_TEMP]) tpl = self._command_templates[CONF_COLOR_TEMP_COMMAND_TEMPLATE] if tpl: color_temp = tpl({"value": color_temp}) publish(CONF_COLOR_TEMP_COMMAND_TOPIC, color_temp) should_update |= set_optimistic( ATTR_COLOR_TEMP, kwargs[ATTR_COLOR_TEMP], COLOR_MODE_COLOR_TEMP ) if ATTR_EFFECT in kwargs and self._topic[CONF_EFFECT_COMMAND_TOPIC] is not None: effect = kwargs[ATTR_EFFECT] if effect in self._config.get(CONF_EFFECT_LIST): publish(CONF_EFFECT_COMMAND_TOPIC, effect) should_update |= set_optimistic(ATTR_EFFECT, effect) if ATTR_WHITE in kwargs and self._topic[CONF_WHITE_COMMAND_TOPIC] is not None: percent_white = float(kwargs[ATTR_WHITE]) / 255 white_scale = self._config[CONF_WHITE_SCALE] device_white_value = min(round(percent_white * white_scale), white_scale) publish(CONF_WHITE_COMMAND_TOPIC, device_white_value) should_update |= set_optimistic( ATTR_BRIGHTNESS, kwargs[ATTR_WHITE], COLOR_MODE_WHITE, ) if ( ATTR_WHITE_VALUE in kwargs and self._topic[CONF_WHITE_VALUE_COMMAND_TOPIC] is not None ): percent_white = float(kwargs[ATTR_WHITE_VALUE]) / 255 white_scale = self._config[CONF_WHITE_VALUE_SCALE] device_white_value = min(round(percent_white * white_scale), white_scale) publish(CONF_WHITE_VALUE_COMMAND_TOPIC, device_white_value) should_update |= set_optimistic(ATTR_WHITE_VALUE, kwargs[ATTR_WHITE_VALUE]) if on_command_type == "last": publish(CONF_COMMAND_TOPIC, self._payload["on"]) should_update = True if self._optimistic: # Optimistically assume that the light has changed state. self._state = True should_update = True if should_update: self.async_write_ha_state() async def async_turn_off(self, **kwargs): """Turn the device off. This method is a coroutine. """ mqtt.async_publish( self.hass, self._topic[CONF_COMMAND_TOPIC], self._payload["off"], self._config[CONF_QOS], self._config[CONF_RETAIN], ) if self._optimistic: # Optimistically assume that the light has changed state. self._state = False self.async_write_ha_state()
Danielhiversen/home-assistant
homeassistant/components/mqtt/light/schema_basic.py
Python
apache-2.0
41,759
#!/usr/bin/env python PRIMARY_OS = 'RHEL-7.1' PRIMARY = '''#!/bin/sh # FQDN="{fqdn}" # /etc/hostname - /etc/hosts sed -i "1 c\\127.0.0.1 $FQDN localhost" /etc/hosts echo $FQDN > /etc/hostname service hostname restart sleep 5 {{dinfo}} ''' def pre_process(): """Anything added to this function is executed before launching the instances""" pass def post_process(): """Anything added to this function is executed after launching the instances""" pass
superseb/train
train/labs/base/scripts/rhel-7.1.py
Python
apache-2.0
470
# -*- coding: utf-8 -*- import logging if __name__ == '__main__': logging.basicConfig() _log = logging.getLogger(__name__) import unittest from pyxb.utils.domutils import * from xml.dom import Node import xml.dom import pyxb.namespace def NonTextSibling (n): while n.TEXT_NODE == n.nodeType: n = n.nextSibling return n class TestInScopeNames (unittest.TestCase): def show (self, node): xmlns_map = pyxb.namespace.resolution.NamespaceContext.GetNodeContext(node).inScopeNamespaces() #print '%s: %s' % (node.nodeName, ' ; '.join([ '%s=%s' % (_k, _v.uri()) for (_k, _v) in xmlns_map.items()])) xmlns_map = xmlns_map.copy() self.assertEqual(pyxb.namespace.XML.uri(), xmlns_map.pop('xml').uri()) self.assertEqual(pyxb.namespace.XMLNamespaces.uri(), xmlns_map.pop('xmlns').uri()) return xmlns_map def test_6_2_2 (self): xml = '''<?xml version="1.0"?> <!-- initially, the default namespace is "books" --> <book xmlns='urn:loc.gov:books' xmlns:isbn='urn:ISBN:0-395-36341-6'> <title>Cheaper by the Dozen</title> <isbn:number>1568491379</isbn:number> <notes> <p xmlns='http://www.w3.org/1999/xhtml'> This is a <i>funny</i> book! </p> <p>another graf without namespace change</p> </notes> </book>''' book = StringToDOM(xml).documentElement self.assertEqual('book', book.localName) ns_ctx = pyxb.namespace.resolution.NamespaceContext.GetNodeContext(book) xmlns_map = self.show(book) self.assertEqual(2, len(xmlns_map)) self.assertEqual('urn:loc.gov:books', xmlns_map[None].uri()) self.assertEqual('urn:ISBN:0-395-36341-6', xmlns_map['isbn'].uri()) title = NonTextSibling(book.firstChild) self.assertEqual('title', title.localName) xmlns_map =self.show(title) self.assertEqual(2, len(xmlns_map)) self.assertEqual('urn:loc.gov:books', xmlns_map[None].uri()) self.assertEqual('urn:ISBN:0-395-36341-6', xmlns_map['isbn'].uri()) number = NonTextSibling(title.nextSibling) notes = NonTextSibling(number.nextSibling) while notes.TEXT_NODE == notes.nodeType: notes = notes.nextSibling self.assertEqual('notes', notes.localName) p = NonTextSibling(notes.firstChild) xmlns_map = self.show(p) self.assertEqual('p', p.localName) self.assertEqual(2, len(xmlns_map)) self.assertEqual(None, xmlns_map.get('xsi')) self.assertEqual('http://www.w3.org/1999/xhtml', xmlns_map[None].uri()) self.assertEqual('urn:ISBN:0-395-36341-6', xmlns_map['isbn'].uri()) x = NonTextSibling(p.nextSibling) xmlns_map = self.show(x) self.assertEqual('p', x.localName) self.assertEqual(2, len(xmlns_map)) self.assertEqual('urn:loc.gov:books', xmlns_map[None].uri()) self.assertEqual('urn:ISBN:0-395-36341-6', xmlns_map['isbn'].uri()) def test_6_2_3 (self): xml = '''<?xml version='1.0'?> <Beers> <table xmlns='http://www.w3.org/1999/xhtml'> <th><td>Name</td><td>Origin</td><td>Description</td></th> <tr> <td><brandName xmlns="">Huntsman</brandName></td> <td><origin xmlns="">Bath, UK</origin></td> <td> <details xmlns=""><class>Bitter</class><hop>Fuggles</hop> <pro>Wonderful hop, light alcohol, good summer beer</pro> <con>Fragile; excessive variance pub to pub</con> </details> </td> </tr> </table> </Beers>''' Beers = StringToDOM(xml).documentElement ns_ctx = pyxb.namespace.resolution.NamespaceContext.GetNodeContext(Beers) xmlns_map = self.show(Beers) self.assertEqual(0, len(xmlns_map)) table = NonTextSibling(Beers.firstChild) self.assertEqual('table', table.localName) xmlns_map = self.show(table) self.assertEqual(1, len(xmlns_map)) self.assertEqual('http://www.w3.org/1999/xhtml', xmlns_map[None].uri()) th = NonTextSibling(table.firstChild) self.assertEqual('th', th.localName) tr = NonTextSibling(th.nextSibling) self.assertEqual('tr', tr.localName) #brandName = table.firstChild.nextSibling.nextSibling.nextSibling.firstChild.nextSibling.nextSibling.nextSibling.firstChild td = NonTextSibling(tr.firstChild) self.assertEqual('td', td.localName) brandName = td.firstChild self.assertEqual('brandName', brandName.localName) xmlns_map = self.show(brandName) self.assertEqual(0, len(xmlns_map)) class TestNamespaceURIs (unittest.TestCase): # Make sure we agree with xml.dom on what the core namespace URIs are def testURI (self): self.assertTrue(xml.dom.EMPTY_NAMESPACE is None) self.assertEqual(xml.dom.XML_NAMESPACE, pyxb.namespace.XML.uri()) self.assertEqual(xml.dom.XMLNS_NAMESPACE, pyxb.namespace.XMLNamespaces.uri()) self.assertEqual(xml.dom.XHTML_NAMESPACE, pyxb.namespace.XHTML.uri()) if '__main__' == __name__: unittest.main()
jonfoster/pyxb-upstream-mirror
tests/utils/test-domutils.py
Python
apache-2.0
5,087
#!/usr/bin/env python """Test GAUGE main.""" # Copyright (C) 2015 Brad Cowie, Christopher Lorier and Joe Stringer. # Copyright (C) 2015 Research and Innovation Advanced Network New Zealand Ltd. # Copyright (C) 2015--2019 The Contributors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest # pylint: disable=no-name-in-module # pylint: disable=import-error from faucet.__main__ import parse_args, build_ryu_args class MainTestCase(unittest.TestCase): # pytype: disable=module-attr """Test __main__ methods.""" def test_parse_args(self): """Sanity check argument parsing.""" self.assertFalse(parse_args([]).verbose) self.assertTrue(parse_args(['--verbose']).verbose) def test_build_ryu_args(self): """Test build_ryu_args().""" self.assertTrue(build_ryu_args(['gauge', '--use-stderr', '--use-syslog', '--verbose'])) self.assertFalse(build_ryu_args(['gauge', '--version'])) if __name__ == "__main__": unittest.main() # pytype: disable=module-attr
trungdtbk/faucet
tests/unit/gauge/test_main.py
Python
apache-2.0
1,527
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utils for building DRAGNN specs.""" import tensorflow as tf from dragnn.protos import spec_pb2 from dragnn.python import lexicon from syntaxnet.ops import gen_parser_ops from syntaxnet.util import check class ComponentSpecBuilder(object): """Wrapper to help construct SyntaxNetComponent specifications. This class will help make sure that ComponentSpec's are consistent with the expectations of the SyntaxNet Component backend. It contains defaults used to create LinkFeatureChannel specifications according to the network_unit and transition_system of the source compnent. It also encapsulates common recipes for hooking up FML and translators. Attributes: spec: The dragnn.ComponentSpec proto. """ def __init__(self, name, builder='DynamicComponentBuilder', backend='SyntaxNetComponent'): """Initializes the ComponentSpec with some defaults for SyntaxNet. Args: name: The name of this Component in the pipeline. builder: The component builder type. backend: The component backend type. """ self.spec = spec_pb2.ComponentSpec( name=name, backend=self.make_module(backend), component_builder=self.make_module(builder)) def make_module(self, name, **kwargs): """Forwards kwargs to easily created a RegisteredModuleSpec. Note: all kwargs should be string-valued. Args: name: The registered name of the module. **kwargs: Proto fields to be specified in the module. Returns: Newly created RegisteredModuleSpec. """ return spec_pb2.RegisteredModuleSpec( registered_name=name, parameters=kwargs) def default_source_layer(self): """Returns the default source_layer setting for this ComponentSpec. Usually links are intended for a specific layer in the network unit. For common network units, this returns the hidden layer intended to be read by recurrent and cross-component connections. Returns: String name of default network layer. Raises: ValueError: if no default is known for the given setup. """ for network, default_layer in [('FeedForwardNetwork', 'layer_0'), ('LayerNormBasicLSTMNetwork', 'state_h_0'), ('LSTMNetwork', 'layer_0'), ('IdentityNetwork', 'input_embeddings')]: if self.spec.network_unit.registered_name.endswith(network): return default_layer raise ValueError('No default source for network unit: %s' % self.spec.network_unit) def default_token_translator(self): """Returns the default source_translator setting for token representations. Most links are token-based: given a target token index, retrieve a learned representation for that token from this component. This depends on the transition system; e.g. we should make sure that left-to-right sequence models reverse the incoming token index when looking up representations from a right-to-left model. Returns: String name of default translator for this transition system. Raises: ValueError: if no default is known for the given setup. """ transition_spec = self.spec.transition_system if transition_spec.registered_name == 'arc-standard': return 'shift-reduce-step' if transition_spec.registered_name in ('shift-only', 'tagger', 'morpher', 'lm-transitions', 'dependency-label', 'category'): if 'left_to_right' in transition_spec.parameters: if transition_spec.parameters['left_to_right'] == 'false': return 'reverse-token' return 'identity' raise ValueError('Invalid transition spec: %s' % str(transition_spec)) def add_token_link(self, source=None, source_layer=None, **kwargs): """Adds a link to source's token representations using default settings. Constructs a LinkedFeatureChannel proto and adds it to the spec, using defaults to assign the name, component, translator, and layer of the channel. The user must provide fml and embedding_dim. Args: source: SyntaxComponentBuilder object to pull representations from. source_layer: Optional override for a source layer instead of the default. **kwargs: Forwarded arguments to the LinkedFeatureChannel proto. """ if source_layer is None: source_layer = source.default_source_layer() self.spec.linked_feature.add( name=source.spec.name, source_component=source.spec.name, source_layer=source_layer, source_translator=source.default_token_translator(), **kwargs) def add_rnn_link(self, source_layer=None, **kwargs): """Adds a recurrent link to this component using default settings. This adds the connection to the previous time step only to the network. It constructs a LinkedFeatureChannel proto and adds it to the spec, using defaults to assign the name, component, translator, and layer of the channel. The user must provide the embedding_dim only. Args: source_layer: Optional override for a source layer instead of the default. **kwargs: Forwarded arguments to the LinkedFeatureChannel proto. """ if source_layer is None: source_layer = self.default_source_layer() self.spec.linked_feature.add( name='rnn', source_layer=source_layer, source_component=self.spec.name, source_translator='history', fml='constant', **kwargs) def set_transition_system(self, *args, **kwargs): """Shorthand to set transition_system using kwargs.""" self.spec.transition_system.CopyFrom(self.make_module(*args, **kwargs)) def set_network_unit(self, *args, **kwargs): """Shorthand to set network_unit using kwargs.""" self.spec.network_unit.CopyFrom(self.make_module(*args, **kwargs)) def add_fixed_feature(self, **kwargs): """Shorthand to add a fixed_feature using kwargs.""" self.spec.fixed_feature.add(**kwargs) def add_link(self, source, source_layer=None, source_translator='identity', name=None, **kwargs): """Add a link using default naming and layers only.""" if source_layer is None: source_layer = source.default_source_layer() if name is None: name = source.spec.name self.spec.linked_feature.add( source_component=source.spec.name, source_layer=source_layer, name=name, source_translator=source_translator, **kwargs) def fill_from_resources(self, resource_path, tf_master=''): """Fills in feature sizes and vocabularies using SyntaxNet lexicon. Must be called before the spec is ready to be used to build TensorFlow graphs. Requires a SyntaxNet lexicon built at the resource_path. Using the lexicon, this will call the SyntaxNet custom ops to return the number of features and vocabulary sizes based on the FML specifications and the lexicons. It will also compute the number of actions of the transition system. This will often CHECK-fail if the spec doesn't correspond to a valid transition system or feature setup. Args: resource_path: Path to the lexicon. tf_master: TensorFlow master executor (string, defaults to '' to use the local instance). """ check.IsTrue( self.spec.transition_system.registered_name, 'Set a transition system before calling fill_from_resources().') context = lexicon.create_lexicon_context(resource_path) # If there are any transition system-specific params or resources, # copy them over into the context. for resource in self.spec.resource: context.input.add(name=resource.name).part.add( file_pattern=resource.part[0].file_pattern) for key, value in self.spec.transition_system.parameters.iteritems(): context.parameter.add(name=key, value=value) context.parameter.add( name='brain_parser_embedding_dims', value=';'.join([str(x.embedding_dim) for x in self.spec.fixed_feature])) context.parameter.add( name='brain_parser_features', value=';'.join([x.fml for x in self.spec.fixed_feature])) context.parameter.add( name='brain_parser_predicate_maps', value=';'.join(['' for x in self.spec.fixed_feature])) context.parameter.add( name='brain_parser_embedding_names', value=';'.join([x.name for x in self.spec.fixed_feature])) context.parameter.add( name='brain_parser_transition_system', value=self.spec.transition_system.registered_name) # Propagate information from SyntaxNet C++ backends into the DRAGNN # self.spec. with tf.Session(tf_master) as sess: feature_sizes, domain_sizes, _, num_actions = sess.run( gen_parser_ops.feature_size(task_context_str=str(context))) self.spec.num_actions = int(num_actions) for i in xrange(len(feature_sizes)): self.spec.fixed_feature[i].size = int(feature_sizes[i]) self.spec.fixed_feature[i].vocabulary_size = int(domain_sizes[i]) for i in xrange(len(self.spec.linked_feature)): self.spec.linked_feature[i].size = len( self.spec.linked_feature[i].fml.split(' ')) del self.spec.resource[:] for resource in context.input: self.spec.resource.add(name=resource.name).part.add( file_pattern=resource.part[0].file_pattern) def complete_master_spec(master_spec, lexicon_corpus, output_path, tf_master=''): """Finishes a MasterSpec that defines the network config. Given a MasterSpec that defines the DRAGNN architecture, completes the spec so that it can be used to build a DRAGNN graph and run training/inference. Args: master_spec: MasterSpec. lexicon_corpus: the corpus to be used with the LexiconBuilder. output_path: directory to save resources to. tf_master: TensorFlow master executor (string, defaults to '' to use the local instance). Returns: None, since the spec is changed in-place. """ if lexicon_corpus: lexicon.build_lexicon(output_path, lexicon_corpus) # Use Syntaxnet builder to fill out specs. for i, spec in enumerate(master_spec.component): builder = ComponentSpecBuilder(spec.name) builder.spec = spec builder.fill_from_resources(output_path, tf_master=tf_master) master_spec.component[i].CopyFrom(builder.spec) def default_targets_from_spec(spec): """Constructs a default set of TrainTarget protos from a DRAGNN spec. For each component in the DRAGNN spec, it adds a training target for that component's oracle. It also stops unrolling the graph with that component. It skips any 'shift-only' transition systems which have no oracle. E.g.: if there are three components, a 'shift-only', a 'tagger', and a 'arc-standard', it will construct two training targets, one for the tagger and one for the arc-standard parser. Arguments: spec: DRAGNN spec. Returns: List of TrainTarget protos. """ component_targets = [ spec_pb2.TrainTarget( name=component.name, max_index=idx + 1, unroll_using_oracle=[False] * idx + [True]) for idx, component in enumerate(spec.component) if not component.transition_system.registered_name.endswith('shift-only') ] return component_targets
cshallue/models
research/syntaxnet/dragnn/python/spec_builder.py
Python
apache-2.0
12,239
# -*- coding: utf-8 -*- ''' Manage RabbitMQ Clusters ======================== Example: .. code-block:: yaml rabbit@rabbit.example.com: rabbitmq_cluster.join: - user: rabbit - host: rabbit.example.com ''' from __future__ import absolute_import # Import python libs import logging # Import salt libs import salt.utils log = logging.getLogger(__name__) def __virtual__(): ''' Only load if RabbitMQ is installed. ''' return salt.utils.which('rabbitmqctl') is not None def joined(name, host, user='rabbit', ram_node=None, runas='root'): ''' Ensure the current node joined to a cluster with node user@host name Irrelevant, not used (recommended: user@host) user The user of node to join to (default: rabbit) host The host of node to join to ram_node Join node as a RAM node runas The user to run the rabbitmq command as ''' ret = {'name': name, 'result': True, 'comment': '', 'changes': {}} status = __salt__['rabbitmq.cluster_status']() if '{0}@{1}'.format(user, host) in status: ret['comment'] = 'Already in cluster' return ret if not __opts__['test']: result = __salt__['rabbitmq.join_cluster'](host, user, ram_node, runas=runas) if 'Error' in result: ret['result'] = False ret['comment'] = result['Error'] return ret elif 'Join' in result: ret['comment'] = result['Join'] # If we've reached this far before returning, we have changes. ret['changes'] = {'old': '', 'new': '{0}@{1}'.format(user, host)} if __opts__['test']: ret['result'] = None ret['comment'] = 'Node is set to join cluster {0}@{1}'.format( user, host) return ret # Alias join to preserve backward compat join = salt.utils.alias_function(joined, 'join')
smallyear/linuxLearn
salt/salt/states/rabbitmq_cluster.py
Python
apache-2.0
2,051
# Copyright 2020 The StackStorm Authors. # Copyright 2019 Extreme Networks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from st2client.models import core __all__ = ["Role", "UserRoleAssignment"] class Role(core.Resource): _alias = "role" _display_name = "Role" _plural = "Roles" _plural_display_name = "Roles" _repr_attributes = ["id", "name", "system"] _url_path = "rbac/roles" class UserRoleAssignment(core.Resource): _alias = "role-assignment" _display_name = "Role Assignment" _plural = "RoleAssignments" _plural_display_name = "Role Assignments" _repr_attributes = ["id", "role", "user", "is_remote"] _url_path = "rbac/role_assignments"
StackStorm/st2
st2client/st2client/models/rbac.py
Python
apache-2.0
1,243
"""Generic socket server classes. This module tries to capture the various aspects of defining a server: For socket-based servers: - address family: - AF_INET{,6}: IP (Internet Protocol) sockets (default) - AF_UNIX: Unix domain sockets - others, e.g. AF_DECNET are conceivable (see <socket.h> - socket type: - SOCK_STREAM (reliable stream, e.g. TCP) - SOCK_DGRAM (datagrams, e.g. UDP) For request-based servers (including socket-based): - client address verification before further looking at the request (This is actually a hook for any processing that needs to look at the request before anything else, e.g. logging) - how to handle multiple requests: - synchronous (one request is handled at a time) - forking (each request is handled by a new process) - threading (each request is handled by a new thread) The classes in this module favor the server type that is simplest to write: a synchronous TCP/IP server. This is bad class design, but save some typing. (There's also the issue that a deep class hierarchy slows down method lookups.) There are five classes in an inheritance diagram, four of which represent synchronous servers of four types: +------------+ | BaseServer | +------------+ | v +-----------+ +------------------+ | TCPServer |------->| UnixStreamServer | +-----------+ +------------------+ | v +-----------+ +--------------------+ | UDPServer |------->| UnixDatagramServer | +-----------+ +--------------------+ Note that UnixDatagramServer derives from UDPServer, not from UnixStreamServer -- the only difference between an IP and a Unix stream server is the address family, which is simply repeated in both unix server classes. Forking and threading versions of each type of server can be created using the ForkingMixIn and ThreadingMixIn mix-in classes. For instance, a threading UDP server class is created as follows: class ThreadingUDPServer(ThreadingMixIn, UDPServer): pass The Mix-in class must come first, since it overrides a method defined in UDPServer! Setting the various member variables also changes the behavior of the underlying server mechanism. To implement a service, you must derive a class from BaseRequestHandler and redefine its handle() method. You can then run various versions of the service by combining one of the server classes with your request handler class. The request handler class must be different for datagram or stream services. This can be hidden by using the request handler subclasses StreamRequestHandler or DatagramRequestHandler. Of course, you still have to use your head! For instance, it makes no sense to use a forking server if the service contains state in memory that can be modified by requests (since the modifications in the child process would never reach the initial state kept in the parent process and passed to each child). In this case, you can use a threading server, but you will probably have to use locks to avoid two requests that come in nearly simultaneous to apply conflicting changes to the server state. On the other hand, if you are building e.g. an HTTP server, where all data is stored externally (e.g. in the file system), a synchronous class will essentially render the service "deaf" while one request is being handled -- which may be for a very long time if a client is slow to read all the data it has requested. Here a threading or forking server is appropriate. In some cases, it may be appropriate to process part of a request synchronously, but to finish processing in a forked child depending on the request data. This can be implemented by using a synchronous server and doing an explicit fork in the request handler class handle() method. Another approach to handling multiple simultaneous requests in an environment that supports neither threads nor fork (or where these are too expensive or inappropriate for the service) is to maintain an explicit table of partially finished requests and to use select() to decide which request to work on next (or whether to handle a new incoming request). This is particularly important for stream services where each client can potentially be connected for a long time (if threads or subprocesses cannot be used). Future work: - Standard classes for Sun RPC (which uses either UDP or TCP) - Standard mix-in classes to implement various authentication and encryption schemes - Standard framework for select-based multiplexing XXX Open problems: - What to do with out-of-band data? BaseServer: - split generic "request" functionality out into BaseServer class. Copyright (C) 2000 Luke Kenneth Casson Leighton <lkcl@samba.org> example: read entries from a SQL database (requires overriding get_request() to return a table entry from the database). entry is processed by a RequestHandlerClass. """ # Author of the BaseServer patch: Luke Kenneth Casson Leighton # XXX Warning! # There is a test suite for this module, but it cannot be run by the # standard regression test. # To run it manually, run Lib/test/test_socketserver.py. __version__ = "0.4" import _pydev_socket as socket import _pydev_select as select import sys import os try: import _pydev_threading as threading except ImportError: import dummy_threading as threading __all__ = ["TCPServer","UDPServer","ForkingUDPServer","ForkingTCPServer", "ThreadingUDPServer","ThreadingTCPServer","BaseRequestHandler", "StreamRequestHandler","DatagramRequestHandler", "ThreadingMixIn", "ForkingMixIn"] if hasattr(socket, "AF_UNIX"): __all__.extend(["UnixStreamServer","UnixDatagramServer", "ThreadingUnixStreamServer", "ThreadingUnixDatagramServer"]) class BaseServer: """Base class for server classes. Methods for the caller: - __init__(server_address, RequestHandlerClass) - serve_forever(poll_interval=0.5) - shutdown() - handle_request() # if you do not use serve_forever() - fileno() -> int # for select() Methods that may be overridden: - server_bind() - server_activate() - get_request() -> request, client_address - handle_timeout() - verify_request(request, client_address) - server_close() - process_request(request, client_address) - shutdown_request(request) - close_request(request) - handle_error() Methods for derived classes: - finish_request(request, client_address) Class variables that may be overridden by derived classes or instances: - timeout - address_family - socket_type - allow_reuse_address Instance variables: - RequestHandlerClass - socket """ timeout = None def __init__(self, server_address, RequestHandlerClass): """Constructor. May be extended, do not override.""" self.server_address = server_address self.RequestHandlerClass = RequestHandlerClass self.__is_shut_down = threading.Event() self.__shutdown_request = False def server_activate(self): """Called by constructor to activate the server. May be overridden. """ pass def serve_forever(self, poll_interval=0.5): """Handle one request at a time until shutdown. Polls for shutdown every poll_interval seconds. Ignores self.timeout. If you need to do periodic tasks, do them in another thread. """ self.__is_shut_down.clear() try: while not self.__shutdown_request: # XXX: Consider using another file descriptor or # connecting to the socket to wake this up instead of # polling. Polling reduces our responsiveness to a # shutdown request and wastes cpu at all other times. r, w, e = select.select([self], [], [], poll_interval) if self in r: self._handle_request_noblock() finally: self.__shutdown_request = False self.__is_shut_down.set() def shutdown(self): """Stops the serve_forever loop. Blocks until the loop has finished. This must be called while serve_forever() is running in another thread, or it will deadlock. """ self.__shutdown_request = True self.__is_shut_down.wait() # The distinction between handling, getting, processing and # finishing a request is fairly arbitrary. Remember: # # - handle_request() is the top-level call. It calls # select, get_request(), verify_request() and process_request() # - get_request() is different for stream or datagram sockets # - process_request() is the place that may fork a new process # or create a new thread to finish the request # - finish_request() instantiates the request handler class; # this constructor will handle the request all by itself def handle_request(self): """Handle one request, possibly blocking. Respects self.timeout. """ # Support people who used socket.settimeout() to escape # handle_request before self.timeout was available. timeout = self.socket.gettimeout() if timeout is None: timeout = self.timeout elif self.timeout is not None: timeout = min(timeout, self.timeout) fd_sets = select.select([self], [], [], timeout) if not fd_sets[0]: self.handle_timeout() return self._handle_request_noblock() def _handle_request_noblock(self): """Handle one request, without blocking. I assume that select.select has returned that the socket is readable before this function was called, so there should be no risk of blocking in get_request(). """ try: request, client_address = self.get_request() except socket.error: return if self.verify_request(request, client_address): try: self.process_request(request, client_address) except: self.handle_error(request, client_address) self.shutdown_request(request) def handle_timeout(self): """Called if no new request arrives within self.timeout. Overridden by ForkingMixIn. """ pass def verify_request(self, request, client_address): """Verify the request. May be overridden. Return True if we should proceed with this request. """ return True def process_request(self, request, client_address): """Call finish_request. Overridden by ForkingMixIn and ThreadingMixIn. """ self.finish_request(request, client_address) self.shutdown_request(request) def server_close(self): """Called to clean-up the server. May be overridden. """ pass def finish_request(self, request, client_address): """Finish one request by instantiating RequestHandlerClass.""" self.RequestHandlerClass(request, client_address, self) def shutdown_request(self, request): """Called to shutdown and close an individual request.""" self.close_request(request) def close_request(self, request): """Called to clean up an individual request.""" pass def handle_error(self, request, client_address): """Handle an error gracefully. May be overridden. The default is to print a traceback and continue. """ print '-'*40 print 'Exception happened during processing of request from', print client_address import traceback traceback.print_exc() # XXX But this goes to stderr! print '-'*40 class TCPServer(BaseServer): """Base class for various socket-based server classes. Defaults to synchronous IP stream (i.e., TCP). Methods for the caller: - __init__(server_address, RequestHandlerClass, bind_and_activate=True) - serve_forever(poll_interval=0.5) - shutdown() - handle_request() # if you don't use serve_forever() - fileno() -> int # for select() Methods that may be overridden: - server_bind() - server_activate() - get_request() -> request, client_address - handle_timeout() - verify_request(request, client_address) - process_request(request, client_address) - shutdown_request(request) - close_request(request) - handle_error() Methods for derived classes: - finish_request(request, client_address) Class variables that may be overridden by derived classes or instances: - timeout - address_family - socket_type - request_queue_size (only for stream sockets) - allow_reuse_address Instance variables: - server_address - RequestHandlerClass - socket """ address_family = socket.AF_INET socket_type = socket.SOCK_STREAM request_queue_size = 5 allow_reuse_address = False def __init__(self, server_address, RequestHandlerClass, bind_and_activate=True): """Constructor. May be extended, do not override.""" BaseServer.__init__(self, server_address, RequestHandlerClass) self.socket = socket.socket(self.address_family, self.socket_type) if bind_and_activate: self.server_bind() self.server_activate() def server_bind(self): """Called by constructor to bind the socket. May be overridden. """ if self.allow_reuse_address: self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.socket.bind(self.server_address) self.server_address = self.socket.getsockname() def server_activate(self): """Called by constructor to activate the server. May be overridden. """ self.socket.listen(self.request_queue_size) def server_close(self): """Called to clean-up the server. May be overridden. """ self.socket.close() def fileno(self): """Return socket file number. Interface required by select(). """ return self.socket.fileno() def get_request(self): """Get the request and client address from the socket. May be overridden. """ return self.socket.accept() def shutdown_request(self, request): """Called to shutdown and close an individual request.""" try: #explicitly shutdown. socket.close() merely releases #the socket and waits for GC to perform the actual close. request.shutdown(socket.SHUT_WR) except socket.error: pass #some platforms may raise ENOTCONN here self.close_request(request) def close_request(self, request): """Called to clean up an individual request.""" request.close() class UDPServer(TCPServer): """UDP server class.""" allow_reuse_address = False socket_type = socket.SOCK_DGRAM max_packet_size = 8192 def get_request(self): data, client_addr = self.socket.recvfrom(self.max_packet_size) return (data, self.socket), client_addr def server_activate(self): # No need to call listen() for UDP. pass def shutdown_request(self, request): # No need to shutdown anything. self.close_request(request) def close_request(self, request): # No need to close anything. pass class ForkingMixIn: """Mix-in class to handle each request in a new process.""" timeout = 300 active_children = None max_children = 40 def collect_children(self): """Internal routine to wait for children that have exited.""" if self.active_children is None: return while len(self.active_children) >= self.max_children: # XXX: This will wait for any child process, not just ones # spawned by this library. This could confuse other # libraries that expect to be able to wait for their own # children. try: pid, status = os.waitpid(0, 0) except os.error: pid = None if pid not in self.active_children: continue self.active_children.remove(pid) # XXX: This loop runs more system calls than it ought # to. There should be a way to put the active_children into a # process group and then use os.waitpid(-pgid) to wait for any # of that set, but I couldn't find a way to allocate pgids # that couldn't collide. for child in self.active_children: try: pid, status = os.waitpid(child, os.WNOHANG) except os.error: pid = None if not pid: continue try: self.active_children.remove(pid) except ValueError, e: raise ValueError('%s. x=%d and list=%r' % (e.message, pid, self.active_children)) def handle_timeout(self): """Wait for zombies after self.timeout seconds of inactivity. May be extended, do not override. """ self.collect_children() def process_request(self, request, client_address): """Fork a new subprocess to process the request.""" self.collect_children() pid = os.fork() if pid: # Parent process if self.active_children is None: self.active_children = [] self.active_children.append(pid) self.close_request(request) #close handle in parent process return else: # Child process. # This must never return, hence os._exit()! try: self.finish_request(request, client_address) self.shutdown_request(request) os._exit(0) except: try: self.handle_error(request, client_address) self.shutdown_request(request) finally: os._exit(1) class ThreadingMixIn: """Mix-in class to handle each request in a new thread.""" # Decides how threads will act upon termination of the # main process daemon_threads = False def process_request_thread(self, request, client_address): """Same as in BaseServer but as a thread. In addition, exception handling is done here. """ try: self.finish_request(request, client_address) self.shutdown_request(request) except: self.handle_error(request, client_address) self.shutdown_request(request) def process_request(self, request, client_address): """Start a new thread to process the request.""" t = threading.Thread(target = self.process_request_thread, args = (request, client_address)) t.daemon = self.daemon_threads t.start() class ForkingUDPServer(ForkingMixIn, UDPServer): pass class ForkingTCPServer(ForkingMixIn, TCPServer): pass class ThreadingUDPServer(ThreadingMixIn, UDPServer): pass class ThreadingTCPServer(ThreadingMixIn, TCPServer): pass if hasattr(socket, 'AF_UNIX'): class UnixStreamServer(TCPServer): address_family = socket.AF_UNIX class UnixDatagramServer(UDPServer): address_family = socket.AF_UNIX class ThreadingUnixStreamServer(ThreadingMixIn, UnixStreamServer): pass class ThreadingUnixDatagramServer(ThreadingMixIn, UnixDatagramServer): pass class BaseRequestHandler: """Base class for request handler classes. This class is instantiated for each request to be handled. The constructor sets the instance variables request, client_address and server, and then calls the handle() method. To implement a specific service, all you need to do is to derive a class which defines a handle() method. The handle() method can find the request as self.request, the client address as self.client_address, and the server (in case it needs access to per-server information) as self.server. Since a separate instance is created for each request, the handle() method can define arbitrary other instance variariables. """ def __init__(self, request, client_address, server): self.request = request self.client_address = client_address self.server = server self.setup() try: self.handle() finally: self.finish() def setup(self): pass def handle(self): pass def finish(self): pass # The following two classes make it possible to use the same service # class for stream or datagram servers. # Each class sets up these instance variables: # - rfile: a file object from which receives the request is read # - wfile: a file object to which the reply is written # When the handle() method returns, wfile is flushed properly class StreamRequestHandler(BaseRequestHandler): """Define self.rfile and self.wfile for stream sockets.""" # Default buffer sizes for rfile, wfile. # We default rfile to buffered because otherwise it could be # really slow for large data (a getc() call per byte); we make # wfile unbuffered because (a) often after a write() we want to # read and we need to flush the line; (b) big writes to unbuffered # files are typically optimized by stdio even when big reads # aren't. rbufsize = -1 wbufsize = 0 # A timeout to apply to the request socket, if not None. timeout = None # Disable nagle algorithm for this socket, if True. # Use only when wbufsize != 0, to avoid small packets. disable_nagle_algorithm = False def setup(self): self.connection = self.request if self.timeout is not None: self.connection.settimeout(self.timeout) if self.disable_nagle_algorithm: self.connection.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, True) self.rfile = self.connection.makefile('rb', self.rbufsize) self.wfile = self.connection.makefile('wb', self.wbufsize) def finish(self): if not self.wfile.closed: self.wfile.flush() self.wfile.close() self.rfile.close() class DatagramRequestHandler(BaseRequestHandler): # XXX Regrettably, I cannot get this working on Linux; # s.recvfrom() doesn't return a meaningful client address. """Define self.rfile and self.wfile for datagram sockets.""" def setup(self): try: from cStringIO import StringIO except ImportError: from StringIO import StringIO self.packet, self.socket = self.request self.rfile = StringIO(self.packet) self.wfile = StringIO() def finish(self): self.socket.sendto(self.wfile.getvalue(), self.client_address)
akiokio/centralfitestoque
src/.pycharm_helpers/pydev/_pydev_SocketServer.py
Python
bsd-2-clause
23,375
from collections import defaultdict from collections.abc import Sequence import types as pytypes import weakref import threading import contextlib import operator import numba from numba.core import types, errors from numba.core.typeconv import Conversion, rules from numba.core.typing import templates from numba.core.utils import order_by_target_specificity from .typeof import typeof, Purpose from numba.core import utils class Rating(object): __slots__ = 'promote', 'safe_convert', "unsafe_convert" def __init__(self): self.promote = 0 self.safe_convert = 0 self.unsafe_convert = 0 def astuple(self): """Returns a tuple suitable for comparing with the worse situation start first. """ return (self.unsafe_convert, self.safe_convert, self.promote) def __add__(self, other): if type(self) is not type(other): return NotImplemented rsum = Rating() rsum.promote = self.promote + other.promote rsum.safe_convert = self.safe_convert + other.safe_convert rsum.unsafe_convert = self.unsafe_convert + other.unsafe_convert return rsum class CallStack(Sequence): """ A compile-time call stack """ def __init__(self): self._stack = [] self._lock = threading.RLock() def __getitem__(self, index): """ Returns item in the stack where index=0 is the top and index=1 is the second item from the top. """ return self._stack[len(self) - index - 1] def __len__(self): return len(self._stack) @contextlib.contextmanager def register(self, target, typeinfer, func_id, args): # guard compiling the same function with the same signature if self.match(func_id.func, args): msg = "compiler re-entrant to the same function signature" raise errors.NumbaRuntimeError(msg) self._lock.acquire() self._stack.append(CallFrame(target, typeinfer, func_id, args)) try: yield finally: self._stack.pop() self._lock.release() def finditer(self, py_func): """ Yields frame that matches the function object starting from the top of stack. """ for frame in self: if frame.func_id.func is py_func: yield frame def findfirst(self, py_func): """ Returns the first result from `.finditer(py_func)`; or None if no match. """ try: return next(self.finditer(py_func)) except StopIteration: return def match(self, py_func, args): """ Returns first function that matches *py_func* and the arguments types in *args*; or, None if no match. """ for frame in self.finditer(py_func): if frame.args == args: return frame class CallFrame(object): """ A compile-time call frame """ def __init__(self, target, typeinfer, func_id, args): self.typeinfer = typeinfer self.func_id = func_id self.args = args self.target = target self._inferred_retty = set() def __repr__(self): return "CallFrame({}, {})".format(self.func_id, self.args) def add_return_type(self, return_type): """Add *return_type* to the list of inferred return-types. If there are too many, raise `TypingError`. """ # The maximum limit is picked arbitrarily. # Don't think that this needs to be user configurable. RETTY_LIMIT = 16 self._inferred_retty.add(return_type) if len(self._inferred_retty) >= RETTY_LIMIT: m = "Return type of recursive function does not converge" raise errors.TypingError(m) class BaseContext(object): """A typing context for storing function typing constrain template. """ def __init__(self): # A list of installed registries self._registries = {} # Typing declarations extracted from the registries or other sources self._functions = defaultdict(list) self._attributes = defaultdict(list) self._globals = utils.UniqueDict() self.tm = rules.default_type_manager self.callstack = CallStack() # Initialize self.init() def init(self): """ Initialize the typing context. Can be overridden by subclasses. """ def refresh(self): """ Refresh context with new declarations from known registries. Useful for third-party extensions. """ self.load_additional_registries() # Some extensions may have augmented the builtin registry self._load_builtins() def explain_function_type(self, func): """ Returns a string description of the type of a function """ desc = [] defns = [] param = False if isinstance(func, types.Callable): sigs, param = func.get_call_signatures() defns.extend(sigs) elif func in self._functions: for tpl in self._functions[func]: param = param or hasattr(tpl, 'generic') defns.extend(getattr(tpl, 'cases', [])) else: msg = "No type info available for {func!r} as a callable." desc.append(msg.format(func=func)) if defns: desc = ['Known signatures:'] for sig in defns: desc.append(' * {0}'.format(sig)) return '\n'.join(desc) def resolve_function_type(self, func, args, kws): """ Resolve function type *func* for argument types *args* and *kws*. A signature is returned. """ # Prefer user definition first try: res = self._resolve_user_function_type(func, args, kws) except errors.TypingError as e: # Capture any typing error last_exception = e res = None else: last_exception = None # Return early we know there's a working user function if res is not None: return res # Check builtin functions res = self._resolve_builtin_function_type(func, args, kws) # Re-raise last_exception if no function type has been found if res is None and last_exception is not None: raise last_exception return res def _resolve_builtin_function_type(self, func, args, kws): # NOTE: we should reduce usage of this if func in self._functions: # Note: Duplicating code with types.Function.get_call_type(). # *defns* are CallTemplates. defns = self._functions[func] for defn in defns: for support_literals in [True, False]: if support_literals: res = defn.apply(args, kws) else: fixedargs = [types.unliteral(a) for a in args] res = defn.apply(fixedargs, kws) if res is not None: return res def _resolve_user_function_type(self, func, args, kws, literals=None): # It's not a known function type, perhaps it's a global? functy = self._lookup_global(func) if functy is not None: func = functy if isinstance(func, types.Type): # If it's a type, it may support a __call__ method func_type = self.resolve_getattr(func, "__call__") if func_type is not None: # The function has a __call__ method, type its call. return self.resolve_function_type(func_type, args, kws) if isinstance(func, types.Callable): # XXX fold this into the __call__ attribute logic? return func.get_call_type(self, args, kws) def _get_attribute_templates(self, typ): """ Get matching AttributeTemplates for the Numba type. """ if typ in self._attributes: for attrinfo in self._attributes[typ]: yield attrinfo else: for cls in type(typ).__mro__: if cls in self._attributes: for attrinfo in self._attributes[cls]: yield attrinfo def resolve_getattr(self, typ, attr): """ Resolve getting the attribute *attr* (a string) on the Numba type. The attribute's type is returned, or None if resolution failed. """ def core(typ): out = self.find_matching_getattr_template(typ, attr) if out: return out['return_type'] out = core(typ) if out is not None: return out # Try again without literals out = core(types.unliteral(typ)) if out is not None: return out if isinstance(typ, types.Module): attrty = self.resolve_module_constants(typ, attr) if attrty is not None: return attrty def find_matching_getattr_template(self, typ, attr): templates = list(self._get_attribute_templates(typ)) # get the order in which to try templates from numba.core.target_extension import get_local_target # circular target_hw = get_local_target(self) order = order_by_target_specificity(target_hw, templates, fnkey=attr) for template in order: return_type = template.resolve(typ, attr) if return_type is not None: return { 'template': template, 'return_type': return_type, } def resolve_setattr(self, target, attr, value): """ Resolve setting the attribute *attr* (a string) on the *target* type to the given *value* type. A function signature is returned, or None if resolution failed. """ for attrinfo in self._get_attribute_templates(target): expectedty = attrinfo.resolve(target, attr) # NOTE: convertibility from *value* to *expectedty* is left to # the caller. if expectedty is not None: return templates.signature(types.void, target, expectedty) def resolve_static_getitem(self, value, index): assert not isinstance(index, types.Type), index args = value, index kws = () return self.resolve_function_type("static_getitem", args, kws) def resolve_static_setitem(self, target, index, value): assert not isinstance(index, types.Type), index args = target, index, value kws = {} return self.resolve_function_type("static_setitem", args, kws) def resolve_setitem(self, target, index, value): assert isinstance(index, types.Type), index fnty = self.resolve_value_type(operator.setitem) sig = fnty.get_call_type(self, (target, index, value), {}) return sig def resolve_delitem(self, target, index): args = target, index kws = {} fnty = self.resolve_value_type(operator.delitem) sig = fnty.get_call_type(self, args, kws) return sig def resolve_module_constants(self, typ, attr): """ Resolve module-level global constants. Return None or the attribute type """ assert isinstance(typ, types.Module) attrval = getattr(typ.pymod, attr) try: return self.resolve_value_type(attrval) except ValueError: pass def resolve_argument_type(self, val): """ Return the numba type of a Python value that is being used as a function argument. Integer types will all be considered int64, regardless of size. ValueError is raised for unsupported types. """ try: return typeof(val, Purpose.argument) except ValueError: if numba.cuda.is_cuda_array(val): # There's no need to synchronize on a stream when we're only # determining typing - synchronization happens at launch time, # so eliding sync here is safe. return typeof(numba.cuda.as_cuda_array(val, sync=False), Purpose.argument) else: raise def resolve_value_type(self, val): """ Return the numba type of a Python value that is being used as a runtime constant. ValueError is raised for unsupported types. """ try: ty = typeof(val, Purpose.constant) except ValueError as e: # Make sure the exception doesn't hold a reference to the user # value. typeof_exc = utils.erase_traceback(e) else: return ty if isinstance(val, types.ExternalFunction): return val # Try to look up target specific typing information ty = self._get_global_type(val) if ty is not None: return ty raise typeof_exc def resolve_value_type_prefer_literal(self, value): """Resolve value type and prefer Literal types whenever possible. """ lit = types.maybe_literal(value) if lit is None: return self.resolve_value_type(value) else: return lit def _get_global_type(self, gv): ty = self._lookup_global(gv) if ty is not None: return ty if isinstance(gv, pytypes.ModuleType): return types.Module(gv) def _load_builtins(self): # Initialize declarations from numba.core.typing import builtins, arraydecl, npdatetime # noqa: F401, E501 from numba.core.typing import ctypes_utils, bufproto # noqa: F401, E501 from numba.core.unsafe import eh # noqa: F401 self.install_registry(templates.builtin_registry) def load_additional_registries(self): """ Load target-specific registries. Can be overridden by subclasses. """ def install_registry(self, registry): """ Install a *registry* (a templates.Registry instance) of function, attribute and global declarations. """ try: loader = self._registries[registry] except KeyError: loader = templates.RegistryLoader(registry) self._registries[registry] = loader for ftcls in loader.new_registrations('functions'): self.insert_function(ftcls(self)) for ftcls in loader.new_registrations('attributes'): self.insert_attributes(ftcls(self)) for gv, gty in loader.new_registrations('globals'): existing = self._lookup_global(gv) if existing is None: self.insert_global(gv, gty) else: # A type was already inserted, see if we can add to it newty = existing.augment(gty) if newty is None: raise TypeError("cannot augment %s with %s" % (existing, gty)) self._remove_global(gv) self._insert_global(gv, newty) def _lookup_global(self, gv): """ Look up the registered type for global value *gv*. """ try: gv = weakref.ref(gv) except TypeError: pass try: return self._globals.get(gv, None) except TypeError: # Unhashable type return None def _insert_global(self, gv, gty): """ Register type *gty* for value *gv*. Only a weak reference to *gv* is kept, if possible. """ def on_disposal(wr, pop=self._globals.pop): # pop() is pre-looked up to avoid a crash late at shutdown on 3.5 # (https://bugs.python.org/issue25217) pop(wr) try: gv = weakref.ref(gv, on_disposal) except TypeError: pass self._globals[gv] = gty def _remove_global(self, gv): """ Remove the registered type for global value *gv*. """ try: gv = weakref.ref(gv) except TypeError: pass del self._globals[gv] def insert_global(self, gv, gty): self._insert_global(gv, gty) def insert_attributes(self, at): key = at.key self._attributes[key].append(at) def insert_function(self, ft): key = ft.key self._functions[key].append(ft) def insert_user_function(self, fn, ft): """Insert a user function. Args ---- - fn: object used as callee - ft: function template """ self._insert_global(fn, types.Function(ft)) def can_convert(self, fromty, toty): """ Check whether conversion is possible from *fromty* to *toty*. If successful, return a numba.typeconv.Conversion instance; otherwise None is returned. """ if fromty == toty: return Conversion.exact else: # First check with the type manager (some rules are registered # at startup there, see numba.typeconv.rules) conv = self.tm.check_compatible(fromty, toty) if conv is not None: return conv # Fall back on type-specific rules forward = fromty.can_convert_to(self, toty) backward = toty.can_convert_from(self, fromty) if backward is None: return forward elif forward is None: return backward else: return min(forward, backward) def _rate_arguments(self, actualargs, formalargs, unsafe_casting=True, exact_match_required=False): """ Rate the actual arguments for compatibility against the formal arguments. A Rating instance is returned, or None if incompatible. """ if len(actualargs) != len(formalargs): return None rate = Rating() for actual, formal in zip(actualargs, formalargs): conv = self.can_convert(actual, formal) if conv is None: return None elif not unsafe_casting and conv >= Conversion.unsafe: return None elif exact_match_required and conv != Conversion.exact: return None if conv == Conversion.promote: rate.promote += 1 elif conv == Conversion.safe: rate.safe_convert += 1 elif conv == Conversion.unsafe: rate.unsafe_convert += 1 elif conv == Conversion.exact: pass else: raise Exception("unreachable", conv) return rate def install_possible_conversions(self, actualargs, formalargs): """ Install possible conversions from the actual argument types to the formal argument types in the C++ type manager. Return True if all arguments can be converted. """ if len(actualargs) != len(formalargs): return False for actual, formal in zip(actualargs, formalargs): if self.tm.check_compatible(actual, formal) is not None: # This conversion is already known continue conv = self.can_convert(actual, formal) if conv is None: return False assert conv is not Conversion.exact self.tm.set_compatible(actual, formal, conv) return True def resolve_overload(self, key, cases, args, kws, allow_ambiguous=True, unsafe_casting=True, exact_match_required=False): """ Given actual *args* and *kws*, find the best matching signature in *cases*, or None if none matches. *key* is used for error reporting purposes. If *allow_ambiguous* is False, a tie in the best matches will raise an error. If *unsafe_casting* is False, unsafe casting is forbidden. """ assert not kws, "Keyword arguments are not supported, yet" options = { 'unsafe_casting': unsafe_casting, 'exact_match_required': exact_match_required, } # Rate each case candidates = [] for case in cases: if len(args) == len(case.args): rating = self._rate_arguments(args, case.args, **options) if rating is not None: candidates.append((rating.astuple(), case)) # Find the best case candidates.sort(key=lambda i: i[0]) if candidates: best_rate, best = candidates[0] if not allow_ambiguous: # Find whether there is a tie and if so, raise an error tied = [] for rate, case in candidates: if rate != best_rate: break tied.append(case) if len(tied) > 1: args = (key, args, '\n'.join(map(str, tied))) msg = "Ambiguous overloading for %s %s:\n%s" % args raise TypeError(msg) # Simply return the best matching candidate in order. # If there is a tie, since list.sort() is stable, the first case # in the original order is returned. # (this can happen if e.g. a function template exposes # (int32, int32) -> int32 and (int64, int64) -> int64, # and you call it with (int16, int16) arguments) return best def unify_types(self, *typelist): # Sort the type list according to bit width before doing # pairwise unification (with thanks to aterrel). def keyfunc(obj): """Uses bitwidth to order numeric-types. Fallback to stable, deterministic sort. """ return getattr(obj, 'bitwidth', 0) typelist = sorted(typelist, key=keyfunc) unified = typelist[0] for tp in typelist[1:]: unified = self.unify_pairs(unified, tp) if unified is None: break return unified def unify_pairs(self, first, second): """ Try to unify the two given types. A third type is returned, or None in case of failure. """ if first == second: return first if first is types.undefined: return second elif second is types.undefined: return first # Types with special unification rules unified = first.unify(self, second) if unified is not None: return unified unified = second.unify(self, first) if unified is not None: return unified # Other types with simple conversion rules conv = self.can_convert(fromty=first, toty=second) if conv is not None and conv <= Conversion.safe: # Can convert from first to second return second conv = self.can_convert(fromty=second, toty=first) if conv is not None and conv <= Conversion.safe: # Can convert from second to first return first if isinstance(first, types.Literal) or \ isinstance(second, types.Literal): first = types.unliteral(first) second = types.unliteral(second) return self.unify_pairs(first, second) # Cannot unify return None class Context(BaseContext): def load_additional_registries(self): from . import ( cffi_utils, cmathdecl, enumdecl, listdecl, mathdecl, npydecl, randomdecl, setdecl, dictdecl, ) self.install_registry(cffi_utils.registry) self.install_registry(cmathdecl.registry) self.install_registry(enumdecl.registry) self.install_registry(listdecl.registry) self.install_registry(mathdecl.registry) self.install_registry(npydecl.registry) self.install_registry(randomdecl.registry) self.install_registry(setdecl.registry) self.install_registry(dictdecl.registry)
seibert/numba
numba/core/typing/context.py
Python
bsd-2-clause
24,612
#------------------------------------------------------------------------------- # Name: modulo1 # Purpose: # # Author: tasora # # Created: 14/02/2012 # Copyright: (c) tasora 2012 # Licence: <your licence> #------------------------------------------------------------------------------- #!/usr/bin/env python def main(): pass if __name__ == '__main__': main() import os import math import ChronoEngine_PYTHON_core as chrono import ChronoEngine_PYTHON_postprocess as postprocess import ChronoEngine_PYTHON_irrlicht as chronoirr print ("Example: create a system and visualize it in realtime 3D"); # --------------------------------------------------------------------- # # Create the simulation system and add items # mysystem = chrono.ChSystem() # Create a fixed rigid body mbody1 = chrono.ChBodyShared() mbody1.SetBodyFixed(True) mbody1.SetPos( chrono.ChVectorD(0,0,-0.2)) mysystem.Add(mbody1) mboxasset = chrono.ChBoxShapeShared() mboxasset.GetBoxGeometry().Size = chrono.ChVectorD(0.2,0.5,0.1) mbody1.AddAsset(mboxasset) # Create a swinging rigid body mbody2 = chrono.ChBodyShared() mbody2.SetBodyFixed(False) mysystem.Add(mbody2) mboxasset = chrono.ChBoxShapeShared() mboxasset.GetBoxGeometry().Size = chrono.ChVectorD(0.2,0.5,0.1) mbody2.AddAsset(mboxasset) mboxtexture = chrono.ChTextureShared() mboxtexture.SetTextureFilename('../data/concrete.jpg') mbody2.GetAssets().push_back(mboxtexture) # Create a revolute constraint mlink = chrono.ChLinkRevoluteShared() # the coordinate system of the constraint reference in abs. space: mframe = chrono.ChFrameD(chrono.ChVectorD(0.1,0.5,0)) # initialize the constraint telling which part must be connected, and where: mlink.Initialize(mbody1,mbody2, mframe) mysystem.Add(mlink) # --------------------------------------------------------------------- # # Create an Irrlicht application to visualize the system # myapplication = chronoirr.ChIrrApp(mysystem) myapplication.AddTypicalSky('../data/skybox/') myapplication.AddTypicalCamera(chronoirr.vector3df(0.6,0.6,0.8)) myapplication.AddTypicalLights() # ==IMPORTANT!== Use this function for adding a ChIrrNodeAsset to all items # in the system. These ChIrrNodeAsset assets are 'proxies' to the Irrlicht meshes. # If you need a finer control on which item really needs a visualization proxy in # Irrlicht, just use application.AssetBind(myitem); on a per-item basis. myapplication.AssetBindAll(); # ==IMPORTANT!== Use this function for 'converting' into Irrlicht meshes the assets # that you added to the bodies into 3D shapes, they can be visualized by Irrlicht! myapplication.AssetUpdateAll(); # --------------------------------------------------------------------- # # Run the simulation # myapplication.SetTimestep(0.001) while(myapplication.GetDevice().run()): myapplication.BeginScene() myapplication.DrawAll() myapplication.DoStep() myapplication.EndScene()
Bryan-Peterson/chrono
src/demos/python/demo_irrlicht.py
Python
bsd-3-clause
2,990
"""DelegatedCallable provider tests.""" from dependency_injector import providers from .common import example def test_inheritance(): assert isinstance(providers.DelegatedCallable(example), providers.Callable) def test_is_provider(): assert providers.is_provider(providers.DelegatedCallable(example)) is True def test_is_delegated_provider(): provider = providers.DelegatedCallable(example) assert providers.is_delegated(provider) is True def test_repr(): provider = providers.DelegatedCallable(example) assert repr(provider) == ( "<dependency_injector.providers." "DelegatedCallable({0}) at {1}>".format(repr(example), hex(id(provider))) )
ets-labs/python-dependency-injector
tests/unit/providers/callables/test_delegated_callable_py2_py3.py
Python
bsd-3-clause
695
from __future__ import unicode_literals from django.contrib.auth.decorators import login_required from django.core.paginator import Paginator from django.core.urlresolvers import reverse, reverse_lazy from django.utils.decorators import method_decorator from django.views import generic from .test_forms import AuthorForm, ContactForm from .models import Artist, Author, Book, Page, BookSigning class CustomTemplateView(generic.TemplateView): template_name = 'generic_views/about.html' def get_context_data(self, **kwargs): context = super(CustomTemplateView, self).get_context_data(**kwargs) context.update({'key': 'value'}) return context class ObjectDetail(generic.DetailView): template_name = 'generic_views/detail.html' def get_object(self): return {'foo': 'bar'} class ArtistDetail(generic.DetailView): queryset = Artist.objects.all() class AuthorDetail(generic.DetailView): queryset = Author.objects.all() class PageDetail(generic.DetailView): queryset = Page.objects.all() template_name_field = 'template' class DictList(generic.ListView): """A ListView that doesn't use a model.""" queryset = [ {'first': 'John', 'last': 'Lennon'}, {'first': 'Yoko', 'last': 'Ono'} ] template_name = 'generic_views/list.html' class ArtistList(generic.ListView): template_name = 'generic_views/list.html' queryset = Artist.objects.all() class AuthorList(generic.ListView): queryset = Author.objects.all() class CustomPaginator(Paginator): def __init__(self, queryset, page_size, orphans=0, allow_empty_first_page=True): super(CustomPaginator, self).__init__( queryset, page_size, orphans=2, allow_empty_first_page=allow_empty_first_page) class AuthorListCustomPaginator(AuthorList): paginate_by = 5 def get_paginator(self, queryset, page_size, orphans=0, allow_empty_first_page=True): return super(AuthorListCustomPaginator, self).get_paginator( queryset, page_size, orphans=2, allow_empty_first_page=allow_empty_first_page) class ContactView(generic.FormView): form_class = ContactForm success_url = reverse_lazy('authors_list') template_name = 'generic_views/form.html' class ArtistCreate(generic.CreateView): model = Artist fields = '__all__' class NaiveAuthorCreate(generic.CreateView): queryset = Author.objects.all() fields = '__all__' class TemplateResponseWithoutTemplate(generic.detail.SingleObjectTemplateResponseMixin, generic.View): # we don't define the usual template_name here def __init__(self): # Dummy object, but attr is required by get_template_name() self.object = None class AuthorCreate(generic.CreateView): model = Author success_url = '/list/authors/' fields = '__all__' class SpecializedAuthorCreate(generic.CreateView): model = Author form_class = AuthorForm template_name = 'generic_views/form.html' context_object_name = 'thingy' def get_success_url(self): return reverse('author_detail', args=[self.object.id,]) class AuthorCreateRestricted(AuthorCreate): post = method_decorator(login_required)(AuthorCreate.post) class ArtistUpdate(generic.UpdateView): model = Artist fields = '__all__' class NaiveAuthorUpdate(generic.UpdateView): queryset = Author.objects.all() fields = '__all__' class AuthorUpdate(generic.UpdateView): model = Author success_url = '/list/authors/' fields = '__all__' class OneAuthorUpdate(generic.UpdateView): success_url = '/list/authors/' fields = '__all__' def get_object(self): return Author.objects.get(pk=1) class SpecializedAuthorUpdate(generic.UpdateView): model = Author form_class = AuthorForm template_name = 'generic_views/form.html' context_object_name = 'thingy' def get_success_url(self): return reverse('author_detail', args=[self.object.id,]) class NaiveAuthorDelete(generic.DeleteView): queryset = Author.objects.all() class AuthorDelete(generic.DeleteView): model = Author success_url = '/list/authors/' class SpecializedAuthorDelete(generic.DeleteView): queryset = Author.objects.all() template_name = 'generic_views/confirm_delete.html' context_object_name = 'thingy' def get_success_url(self): return reverse('authors_list') class BookConfig(object): queryset = Book.objects.all() date_field = 'pubdate' class BookArchive(BookConfig, generic.ArchiveIndexView): pass class BookYearArchive(BookConfig, generic.YearArchiveView): pass class BookMonthArchive(BookConfig, generic.MonthArchiveView): pass class BookWeekArchive(BookConfig, generic.WeekArchiveView): pass class BookDayArchive(BookConfig, generic.DayArchiveView): pass class BookTodayArchive(BookConfig, generic.TodayArchiveView): pass class BookDetail(BookConfig, generic.DateDetailView): pass class AuthorGetQuerySetFormView(generic.edit.ModelFormMixin): fields = '__all__' def get_queryset(self): return Author.objects.all() class BookDetailGetObjectCustomQueryset(BookDetail): def get_object(self, queryset=None): return super(BookDetailGetObjectCustomQueryset,self).get_object( queryset=Book.objects.filter(pk=2)) class CustomMultipleObjectMixinView(generic.list.MultipleObjectMixin, generic.View): queryset = [ {'name': 'John'}, {'name': 'Yoko'}, ] def get(self, request): self.object_list = self.get_queryset() class CustomContextView(generic.detail.SingleObjectMixin, generic.View): model = Book object = Book(name='dummy') def get_object(self): return Book(name="dummy") def get_context_data(self, **kwargs): context = {'custom_key': 'custom_value'} context.update(kwargs) return super(CustomContextView, self).get_context_data(**context) def get_context_object_name(self, obj): return "test_name" class CustomSingleObjectView(generic.detail.SingleObjectMixin, generic.View): model = Book object = Book(name="dummy") class BookSigningConfig(object): model = BookSigning date_field = 'event_date' # use the same templates as for books def get_template_names(self): return ['generic_views/book%s.html' % self.template_name_suffix] class BookSigningArchive(BookSigningConfig, generic.ArchiveIndexView): pass class BookSigningYearArchive(BookSigningConfig, generic.YearArchiveView): pass class BookSigningMonthArchive(BookSigningConfig, generic.MonthArchiveView): pass class BookSigningWeekArchive(BookSigningConfig, generic.WeekArchiveView): pass class BookSigningDayArchive(BookSigningConfig, generic.DayArchiveView): pass class BookSigningTodayArchive(BookSigningConfig, generic.TodayArchiveView): pass class BookSigningDetail(BookSigningConfig, generic.DateDetailView): context_object_name = 'book' class NonModel(object): id = "non_model_1" _meta = None class NonModelDetail(generic.DetailView): template_name = 'generic_views/detail.html' model = NonModel def get_object(self, queryset=None): return NonModel()
ZhaoCJ/django
tests/generic_views/views.py
Python
bsd-3-clause
7,341
# -*- coding: utf-8 -*- """ ########## # Fields # ########## Each Field class does some sort of validation. Each Field has a clean() method, which either raises django.forms.ValidationError or returns the "clean" data -- usually a Unicode object, but, in some rare cases, a list. Each Field's __init__() takes at least these parameters: required -- Boolean that specifies whether the field is required. True by default. widget -- A Widget class, or instance of a Widget class, that should be used for this Field when displaying it. Each Field has a default Widget that it'll use if you don't specify this. In most cases, the default widget is TextInput. label -- A verbose name for this field, for use in displaying this field in a form. By default, Django will use a "pretty" version of the form field name, if the Field is part of a Form. initial -- A value to use in this Field's initial display. This value is *not* used as a fallback if data isn't given. Other than that, the Field subclasses have class-specific options for __init__(). For example, CharField has a max_length option. """ from __future__ import unicode_literals import datetime import pickle import re import os from decimal import Decimal from django.core.files.uploadedfile import SimpleUploadedFile from django.forms import * from django.test import SimpleTestCase from django.utils import formats from django.utils import six from django.utils import translation from django.utils._os import upath def fix_os_paths(x): if isinstance(x, six.string_types): return x.replace('\\', '/') elif isinstance(x, tuple): return tuple(fix_os_paths(list(x))) elif isinstance(x, list): return [fix_os_paths(y) for y in x] else: return x class FieldsTests(SimpleTestCase): def assertWidgetRendersTo(self, field, to): class _Form(Form): f = field self.assertHTMLEqual(str(_Form()['f']), to) def test_field_sets_widget_is_required(self): self.assertTrue(Field(required=True).widget.is_required) self.assertFalse(Field(required=False).widget.is_required) def test_cooperative_multiple_inheritance(self): class A(object): def __init__(self): self.class_a_var = True super(A, self).__init__() class ComplexField(Field, A): def __init__(self): super(ComplexField, self).__init__() f = ComplexField() self.assertTrue(f.class_a_var) # CharField ################################################################### def test_charfield_1(self): f = CharField() self.assertEqual('1', f.clean(1)) self.assertEqual('hello', f.clean('hello')) self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, None) self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, '') self.assertEqual('[1, 2, 3]', f.clean([1, 2, 3])) self.assertEqual(f.max_length, None) self.assertEqual(f.min_length, None) def test_charfield_2(self): f = CharField(required=False) self.assertEqual('1', f.clean(1)) self.assertEqual('hello', f.clean('hello')) self.assertEqual('', f.clean(None)) self.assertEqual('', f.clean('')) self.assertEqual('[1, 2, 3]', f.clean([1, 2, 3])) self.assertEqual(f.max_length, None) self.assertEqual(f.min_length, None) def test_charfield_3(self): f = CharField(max_length=10, required=False) self.assertEqual('12345', f.clean('12345')) self.assertEqual('1234567890', f.clean('1234567890')) self.assertRaisesMessage(ValidationError, "'Ensure this value has at most 10 characters (it has 11).'", f.clean, '1234567890a') self.assertEqual(f.max_length, 10) self.assertEqual(f.min_length, None) def test_charfield_4(self): f = CharField(min_length=10, required=False) self.assertEqual('', f.clean('')) self.assertRaisesMessage(ValidationError, "'Ensure this value has at least 10 characters (it has 5).'", f.clean, '12345') self.assertEqual('1234567890', f.clean('1234567890')) self.assertEqual('1234567890a', f.clean('1234567890a')) self.assertEqual(f.max_length, None) self.assertEqual(f.min_length, 10) def test_charfield_5(self): f = CharField(min_length=10, required=True) self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, '') self.assertRaisesMessage(ValidationError, "'Ensure this value has at least 10 characters (it has 5).'", f.clean, '12345') self.assertEqual('1234567890', f.clean('1234567890')) self.assertEqual('1234567890a', f.clean('1234567890a')) self.assertEqual(f.max_length, None) self.assertEqual(f.min_length, 10) def test_charfield_length_not_int(self): """ Ensure that setting min_length or max_length to something that is not a number returns an exception. """ self.assertRaises(ValueError, CharField, min_length='a') self.assertRaises(ValueError, CharField, max_length='a') self.assertRaises(ValueError, CharField, 'a') def test_charfield_widget_attrs(self): """ Ensure that CharField.widget_attrs() always returns a dictionary. Refs #15912 """ # Return an empty dictionary if max_length is None f = CharField() self.assertEqual(f.widget_attrs(TextInput()), {}) # Or if the widget is not TextInput or PasswordInput f = CharField(max_length=10) self.assertEqual(f.widget_attrs(HiddenInput()), {}) # Otherwise, return a maxlength attribute equal to max_length self.assertEqual(f.widget_attrs(TextInput()), {'maxlength': '10'}) self.assertEqual(f.widget_attrs(PasswordInput()), {'maxlength': '10'}) # IntegerField ################################################################ def test_integerfield_1(self): f = IntegerField() self.assertWidgetRendersTo(f, '<input type="number" name="f" id="id_f" />') self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, '') self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, None) self.assertEqual(1, f.clean('1')) self.assertEqual(True, isinstance(f.clean('1'), int)) self.assertEqual(23, f.clean('23')) self.assertRaisesMessage(ValidationError, "'Enter a whole number.'", f.clean, 'a') self.assertEqual(42, f.clean(42)) self.assertRaisesMessage(ValidationError, "'Enter a whole number.'", f.clean, 3.14) self.assertEqual(1, f.clean('1 ')) self.assertEqual(1, f.clean(' 1')) self.assertEqual(1, f.clean(' 1 ')) self.assertRaisesMessage(ValidationError, "'Enter a whole number.'", f.clean, '1a') self.assertEqual(f.max_value, None) self.assertEqual(f.min_value, None) def test_integerfield_2(self): f = IntegerField(required=False) self.assertEqual(None, f.clean('')) self.assertEqual('None', repr(f.clean(''))) self.assertEqual(None, f.clean(None)) self.assertEqual('None', repr(f.clean(None))) self.assertEqual(1, f.clean('1')) self.assertEqual(True, isinstance(f.clean('1'), int)) self.assertEqual(23, f.clean('23')) self.assertRaisesMessage(ValidationError, "'Enter a whole number.'", f.clean, 'a') self.assertEqual(1, f.clean('1 ')) self.assertEqual(1, f.clean(' 1')) self.assertEqual(1, f.clean(' 1 ')) self.assertRaisesMessage(ValidationError, "'Enter a whole number.'", f.clean, '1a') self.assertEqual(f.max_value, None) self.assertEqual(f.min_value, None) def test_integerfield_3(self): f = IntegerField(max_value=10) self.assertWidgetRendersTo(f, '<input max="10" type="number" name="f" id="id_f" />') self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, None) self.assertEqual(1, f.clean(1)) self.assertEqual(10, f.clean(10)) self.assertRaisesMessage(ValidationError, "'Ensure this value is less than or equal to 10.'", f.clean, 11) self.assertEqual(10, f.clean('10')) self.assertRaisesMessage(ValidationError, "'Ensure this value is less than or equal to 10.'", f.clean, '11') self.assertEqual(f.max_value, 10) self.assertEqual(f.min_value, None) def test_integerfield_4(self): f = IntegerField(min_value=10) self.assertWidgetRendersTo(f, '<input id="id_f" type="number" name="f" min="10" />') self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, None) self.assertRaisesMessage(ValidationError, "'Ensure this value is greater than or equal to 10.'", f.clean, 1) self.assertEqual(10, f.clean(10)) self.assertEqual(11, f.clean(11)) self.assertEqual(10, f.clean('10')) self.assertEqual(11, f.clean('11')) self.assertEqual(f.max_value, None) self.assertEqual(f.min_value, 10) def test_integerfield_5(self): f = IntegerField(min_value=10, max_value=20) self.assertWidgetRendersTo(f, '<input id="id_f" max="20" type="number" name="f" min="10" />') self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, None) self.assertRaisesMessage(ValidationError, "'Ensure this value is greater than or equal to 10.'", f.clean, 1) self.assertEqual(10, f.clean(10)) self.assertEqual(11, f.clean(11)) self.assertEqual(10, f.clean('10')) self.assertEqual(11, f.clean('11')) self.assertEqual(20, f.clean(20)) self.assertRaisesMessage(ValidationError, "'Ensure this value is less than or equal to 20.'", f.clean, 21) self.assertEqual(f.max_value, 20) self.assertEqual(f.min_value, 10) def test_integerfield_localized(self): """ Make sure localized IntegerField's widget renders to a text input with no number input specific attributes. """ f1 = IntegerField(localize=True) self.assertWidgetRendersTo(f1, '<input id="id_f" name="f" type="text" />') # FloatField ################################################################## def test_floatfield_1(self): f = FloatField() self.assertWidgetRendersTo(f, '<input step="any" type="number" name="f" id="id_f" />') self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, '') self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, None) self.assertEqual(1.0, f.clean('1')) self.assertEqual(True, isinstance(f.clean('1'), float)) self.assertEqual(23.0, f.clean('23')) self.assertEqual(3.1400000000000001, f.clean('3.14')) self.assertEqual(3.1400000000000001, f.clean(3.14)) self.assertEqual(42.0, f.clean(42)) self.assertRaisesMessage(ValidationError, "'Enter a number.'", f.clean, 'a') self.assertEqual(1.0, f.clean('1.0 ')) self.assertEqual(1.0, f.clean(' 1.0')) self.assertEqual(1.0, f.clean(' 1.0 ')) self.assertRaisesMessage(ValidationError, "'Enter a number.'", f.clean, '1.0a') self.assertEqual(f.max_value, None) self.assertEqual(f.min_value, None) def test_floatfield_2(self): f = FloatField(required=False) self.assertEqual(None, f.clean('')) self.assertEqual(None, f.clean(None)) self.assertEqual(1.0, f.clean('1')) self.assertEqual(f.max_value, None) self.assertEqual(f.min_value, None) def test_floatfield_3(self): f = FloatField(max_value=1.5, min_value=0.5) self.assertWidgetRendersTo(f, '<input step="any" name="f" min="0.5" max="1.5" type="number" id="id_f" />') self.assertRaisesMessage(ValidationError, "'Ensure this value is less than or equal to 1.5.'", f.clean, '1.6') self.assertRaisesMessage(ValidationError, "'Ensure this value is greater than or equal to 0.5.'", f.clean, '0.4') self.assertEqual(1.5, f.clean('1.5')) self.assertEqual(0.5, f.clean('0.5')) self.assertEqual(f.max_value, 1.5) self.assertEqual(f.min_value, 0.5) def test_floatfield_localized(self): """ Make sure localized FloatField's widget renders to a text input with no number input specific attributes. """ f = FloatField(localize=True) self.assertWidgetRendersTo(f, '<input id="id_f" name="f" type="text" />') def test_floatfield_changed(self): f = FloatField() n = 4.35 self.assertFalse(f._has_changed(n, '4.3500')) with translation.override('fr'): with self.settings(USE_L10N=True): f = FloatField(localize=True) localized_n = formats.localize_input(n) # -> '4,35' in French self.assertFalse(f._has_changed(n, localized_n)) # DecimalField ################################################################ def test_decimalfield_1(self): f = DecimalField(max_digits=4, decimal_places=2) self.assertWidgetRendersTo(f, '<input id="id_f" step="0.01" type="number" name="f" />') self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, '') self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, None) self.assertEqual(f.clean('1'), Decimal("1")) self.assertEqual(True, isinstance(f.clean('1'), Decimal)) self.assertEqual(f.clean('23'), Decimal("23")) self.assertEqual(f.clean('3.14'), Decimal("3.14")) self.assertEqual(f.clean(3.14), Decimal("3.14")) self.assertEqual(f.clean(Decimal('3.14')), Decimal("3.14")) self.assertRaisesMessage(ValidationError, "'Enter a number.'", f.clean, 'NaN') self.assertRaisesMessage(ValidationError, "'Enter a number.'", f.clean, 'Inf') self.assertRaisesMessage(ValidationError, "'Enter a number.'", f.clean, '-Inf') self.assertRaisesMessage(ValidationError, "'Enter a number.'", f.clean, 'a') self.assertRaisesMessage(ValidationError, "'Enter a number.'", f.clean, 'łąść') self.assertEqual(f.clean('1.0 '), Decimal("1.0")) self.assertEqual(f.clean(' 1.0'), Decimal("1.0")) self.assertEqual(f.clean(' 1.0 '), Decimal("1.0")) self.assertRaisesMessage(ValidationError, "'Enter a number.'", f.clean, '1.0a') self.assertRaisesMessage(ValidationError, "'Ensure that there are no more than 4 digits in total.'", f.clean, '123.45') self.assertRaisesMessage(ValidationError, "'Ensure that there are no more than 2 decimal places.'", f.clean, '1.234') self.assertRaisesMessage(ValidationError, "'Ensure that there are no more than 2 digits before the decimal point.'", f.clean, '123.4') self.assertEqual(f.clean('-12.34'), Decimal("-12.34")) self.assertRaisesMessage(ValidationError, "'Ensure that there are no more than 4 digits in total.'", f.clean, '-123.45') self.assertEqual(f.clean('-.12'), Decimal("-0.12")) self.assertEqual(f.clean('-00.12'), Decimal("-0.12")) self.assertEqual(f.clean('-000.12'), Decimal("-0.12")) self.assertRaisesMessage(ValidationError, "'Ensure that there are no more than 2 decimal places.'", f.clean, '-000.123') self.assertRaisesMessage(ValidationError, "'Ensure that there are no more than 4 digits in total.'", f.clean, '-000.12345') self.assertRaisesMessage(ValidationError, "'Enter a number.'", f.clean, '--0.12') self.assertEqual(f.max_digits, 4) self.assertEqual(f.decimal_places, 2) self.assertEqual(f.max_value, None) self.assertEqual(f.min_value, None) def test_decimalfield_2(self): f = DecimalField(max_digits=4, decimal_places=2, required=False) self.assertEqual(None, f.clean('')) self.assertEqual(None, f.clean(None)) self.assertEqual(f.clean('1'), Decimal("1")) self.assertEqual(f.max_digits, 4) self.assertEqual(f.decimal_places, 2) self.assertEqual(f.max_value, None) self.assertEqual(f.min_value, None) def test_decimalfield_3(self): f = DecimalField(max_digits=4, decimal_places=2, max_value=Decimal('1.5'), min_value=Decimal('0.5')) self.assertWidgetRendersTo(f, '<input step="0.01" name="f" min="0.5" max="1.5" type="number" id="id_f" />') self.assertRaisesMessage(ValidationError, "'Ensure this value is less than or equal to 1.5.'", f.clean, '1.6') self.assertRaisesMessage(ValidationError, "'Ensure this value is greater than or equal to 0.5.'", f.clean, '0.4') self.assertEqual(f.clean('1.5'), Decimal("1.5")) self.assertEqual(f.clean('0.5'), Decimal("0.5")) self.assertEqual(f.clean('.5'), Decimal("0.5")) self.assertEqual(f.clean('00.50'), Decimal("0.50")) self.assertEqual(f.max_digits, 4) self.assertEqual(f.decimal_places, 2) self.assertEqual(f.max_value, Decimal('1.5')) self.assertEqual(f.min_value, Decimal('0.5')) def test_decimalfield_4(self): f = DecimalField(decimal_places=2) self.assertRaisesMessage(ValidationError, "'Ensure that there are no more than 2 decimal places.'", f.clean, '0.00000001') def test_decimalfield_5(self): f = DecimalField(max_digits=3) # Leading whole zeros "collapse" to one digit. self.assertEqual(f.clean('0000000.10'), Decimal("0.1")) # But a leading 0 before the . doesn't count towards max_digits self.assertEqual(f.clean('0000000.100'), Decimal("0.100")) # Only leading whole zeros "collapse" to one digit. self.assertEqual(f.clean('000000.02'), Decimal('0.02')) self.assertRaisesMessage(ValidationError, "'Ensure that there are no more than 3 digits in total.'", f.clean, '000000.0002') self.assertEqual(f.clean('.002'), Decimal("0.002")) def test_decimalfield_6(self): f = DecimalField(max_digits=2, decimal_places=2) self.assertEqual(f.clean('.01'), Decimal(".01")) self.assertRaisesMessage(ValidationError, "'Ensure that there are no more than 0 digits before the decimal point.'", f.clean, '1.1') def test_decimalfield_widget_attrs(self): f = DecimalField(max_digits=6, decimal_places=2) self.assertEqual(f.widget_attrs(Widget()), {}) self.assertEqual(f.widget_attrs(NumberInput()), {'step': '0.01'}) f = DecimalField(max_digits=10, decimal_places=0) self.assertEqual(f.widget_attrs(NumberInput()), {'step': '1'}) f = DecimalField(max_digits=19, decimal_places=19) self.assertEqual(f.widget_attrs(NumberInput()), {'step': '1e-19'}) f = DecimalField(max_digits=20) self.assertEqual(f.widget_attrs(NumberInput()), {'step': 'any'}) def test_decimalfield_localized(self): """ Make sure localized DecimalField's widget renders to a text input with no number input specific attributes. """ f = DecimalField(localize=True) self.assertWidgetRendersTo(f, '<input id="id_f" name="f" type="text" />') def test_decimalfield_changed(self): f = DecimalField(max_digits=2, decimal_places=2) d = Decimal("0.1") self.assertFalse(f._has_changed(d, '0.10')) self.assertTrue(f._has_changed(d, '0.101')) with translation.override('fr'): with self.settings(USE_L10N=True): f = DecimalField(max_digits=2, decimal_places=2, localize=True) localized_d = formats.localize_input(d) # -> '0,1' in French self.assertFalse(f._has_changed(d, localized_d)) # DateField ################################################################### def test_datefield_1(self): f = DateField() self.assertEqual(datetime.date(2006, 10, 25), f.clean(datetime.date(2006, 10, 25))) self.assertEqual(datetime.date(2006, 10, 25), f.clean(datetime.datetime(2006, 10, 25, 14, 30))) self.assertEqual(datetime.date(2006, 10, 25), f.clean(datetime.datetime(2006, 10, 25, 14, 30, 59))) self.assertEqual(datetime.date(2006, 10, 25), f.clean(datetime.datetime(2006, 10, 25, 14, 30, 59, 200))) self.assertEqual(datetime.date(2006, 10, 25), f.clean('2006-10-25')) self.assertEqual(datetime.date(2006, 10, 25), f.clean('10/25/2006')) self.assertEqual(datetime.date(2006, 10, 25), f.clean('10/25/06')) self.assertEqual(datetime.date(2006, 10, 25), f.clean('Oct 25 2006')) self.assertEqual(datetime.date(2006, 10, 25), f.clean('October 25 2006')) self.assertEqual(datetime.date(2006, 10, 25), f.clean('October 25, 2006')) self.assertEqual(datetime.date(2006, 10, 25), f.clean('25 October 2006')) self.assertEqual(datetime.date(2006, 10, 25), f.clean('25 October, 2006')) self.assertRaisesMessage(ValidationError, "'Enter a valid date.'", f.clean, '2006-4-31') self.assertRaisesMessage(ValidationError, "'Enter a valid date.'", f.clean, '200a-10-25') self.assertRaisesMessage(ValidationError, "'Enter a valid date.'", f.clean, '25/10/06') self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, None) def test_datefield_2(self): f = DateField(required=False) self.assertEqual(None, f.clean(None)) self.assertEqual('None', repr(f.clean(None))) self.assertEqual(None, f.clean('')) self.assertEqual('None', repr(f.clean(''))) def test_datefield_3(self): f = DateField(input_formats=['%Y %m %d']) self.assertEqual(datetime.date(2006, 10, 25), f.clean(datetime.date(2006, 10, 25))) self.assertEqual(datetime.date(2006, 10, 25), f.clean(datetime.datetime(2006, 10, 25, 14, 30))) self.assertEqual(datetime.date(2006, 10, 25), f.clean('2006 10 25')) self.assertRaisesMessage(ValidationError, "'Enter a valid date.'", f.clean, '2006-10-25') self.assertRaisesMessage(ValidationError, "'Enter a valid date.'", f.clean, '10/25/2006') self.assertRaisesMessage(ValidationError, "'Enter a valid date.'", f.clean, '10/25/06') def test_datefield_4(self): # Test whitespace stripping behavior (#5714) f = DateField() self.assertEqual(datetime.date(2006, 10, 25), f.clean(' 10/25/2006 ')) self.assertEqual(datetime.date(2006, 10, 25), f.clean(' 10/25/06 ')) self.assertEqual(datetime.date(2006, 10, 25), f.clean(' Oct 25 2006 ')) self.assertEqual(datetime.date(2006, 10, 25), f.clean(' October 25 2006 ')) self.assertEqual(datetime.date(2006, 10, 25), f.clean(' October 25, 2006 ')) self.assertEqual(datetime.date(2006, 10, 25), f.clean(' 25 October 2006 ')) self.assertRaisesMessage(ValidationError, "'Enter a valid date.'", f.clean, ' ') def test_datefield_5(self): # Test null bytes (#18982) f = DateField() self.assertRaisesMessage(ValidationError, "'Enter a valid date.'", f.clean, 'a\x00b') def test_datefield_changed(self): format = '%d/%m/%Y' f = DateField(input_formats=[format]) d = datetime.date(2007, 9, 17) self.assertFalse(f._has_changed(d, '17/09/2007')) def test_datefield_strptime(self): """Test that field.strptime doesn't raise an UnicodeEncodeError (#16123)""" f = DateField() try: f.strptime('31 мая 2011', '%d-%b-%y') except Exception as e: # assertIsInstance or assertRaises cannot be used because UnicodeEncodeError # is a subclass of ValueError self.assertEqual(e.__class__, ValueError) # TimeField ################################################################### def test_timefield_1(self): f = TimeField() self.assertEqual(datetime.time(14, 25), f.clean(datetime.time(14, 25))) self.assertEqual(datetime.time(14, 25, 59), f.clean(datetime.time(14, 25, 59))) self.assertEqual(datetime.time(14, 25), f.clean('14:25')) self.assertEqual(datetime.time(14, 25, 59), f.clean('14:25:59')) self.assertRaisesMessage(ValidationError, "'Enter a valid time.'", f.clean, 'hello') self.assertRaisesMessage(ValidationError, "'Enter a valid time.'", f.clean, '1:24 p.m.') def test_timefield_2(self): f = TimeField(input_formats=['%I:%M %p']) self.assertEqual(datetime.time(14, 25), f.clean(datetime.time(14, 25))) self.assertEqual(datetime.time(14, 25, 59), f.clean(datetime.time(14, 25, 59))) self.assertEqual(datetime.time(4, 25), f.clean('4:25 AM')) self.assertEqual(datetime.time(16, 25), f.clean('4:25 PM')) self.assertRaisesMessage(ValidationError, "'Enter a valid time.'", f.clean, '14:30:45') def test_timefield_3(self): f = TimeField() # Test whitespace stripping behavior (#5714) self.assertEqual(datetime.time(14, 25), f.clean(' 14:25 ')) self.assertEqual(datetime.time(14, 25, 59), f.clean(' 14:25:59 ')) self.assertRaisesMessage(ValidationError, "'Enter a valid time.'", f.clean, ' ') def test_timefield_changed(self): t1 = datetime.time(12, 51, 34, 482548) t2 = datetime.time(12, 51) f = TimeField(input_formats=['%H:%M', '%H:%M %p']) self.assertTrue(f._has_changed(t1, '12:51')) self.assertFalse(f._has_changed(t2, '12:51')) self.assertFalse(f._has_changed(t2, '12:51 PM')) # DateTimeField ############################################################### def test_datetimefield_1(self): f = DateTimeField() self.assertEqual(datetime.datetime(2006, 10, 25, 0, 0), f.clean(datetime.date(2006, 10, 25))) self.assertEqual(datetime.datetime(2006, 10, 25, 14, 30), f.clean(datetime.datetime(2006, 10, 25, 14, 30))) self.assertEqual(datetime.datetime(2006, 10, 25, 14, 30, 59), f.clean(datetime.datetime(2006, 10, 25, 14, 30, 59))) self.assertEqual(datetime.datetime(2006, 10, 25, 14, 30, 59, 200), f.clean(datetime.datetime(2006, 10, 25, 14, 30, 59, 200))) self.assertEqual(datetime.datetime(2006, 10, 25, 14, 30, 45, 200), f.clean('2006-10-25 14:30:45.000200')) self.assertEqual(datetime.datetime(2006, 10, 25, 14, 30, 45, 200), f.clean('2006-10-25 14:30:45.0002')) self.assertEqual(datetime.datetime(2006, 10, 25, 14, 30, 45), f.clean('2006-10-25 14:30:45')) self.assertEqual(datetime.datetime(2006, 10, 25, 14, 30), f.clean('2006-10-25 14:30:00')) self.assertEqual(datetime.datetime(2006, 10, 25, 14, 30), f.clean('2006-10-25 14:30')) self.assertEqual(datetime.datetime(2006, 10, 25, 0, 0), f.clean('2006-10-25')) self.assertEqual(datetime.datetime(2006, 10, 25, 14, 30, 45, 200), f.clean('10/25/2006 14:30:45.000200')) self.assertEqual(datetime.datetime(2006, 10, 25, 14, 30, 45), f.clean('10/25/2006 14:30:45')) self.assertEqual(datetime.datetime(2006, 10, 25, 14, 30), f.clean('10/25/2006 14:30:00')) self.assertEqual(datetime.datetime(2006, 10, 25, 14, 30), f.clean('10/25/2006 14:30')) self.assertEqual(datetime.datetime(2006, 10, 25, 0, 0), f.clean('10/25/2006')) self.assertEqual(datetime.datetime(2006, 10, 25, 14, 30, 45, 200), f.clean('10/25/06 14:30:45.000200')) self.assertEqual(datetime.datetime(2006, 10, 25, 14, 30, 45), f.clean('10/25/06 14:30:45')) self.assertEqual(datetime.datetime(2006, 10, 25, 14, 30), f.clean('10/25/06 14:30:00')) self.assertEqual(datetime.datetime(2006, 10, 25, 14, 30), f.clean('10/25/06 14:30')) self.assertEqual(datetime.datetime(2006, 10, 25, 0, 0), f.clean('10/25/06')) self.assertRaisesMessage(ValidationError, "'Enter a valid date/time.'", f.clean, 'hello') self.assertRaisesMessage(ValidationError, "'Enter a valid date/time.'", f.clean, '2006-10-25 4:30 p.m.') def test_datetimefield_2(self): f = DateTimeField(input_formats=['%Y %m %d %I:%M %p']) self.assertEqual(datetime.datetime(2006, 10, 25, 0, 0), f.clean(datetime.date(2006, 10, 25))) self.assertEqual(datetime.datetime(2006, 10, 25, 14, 30), f.clean(datetime.datetime(2006, 10, 25, 14, 30))) self.assertEqual(datetime.datetime(2006, 10, 25, 14, 30, 59), f.clean(datetime.datetime(2006, 10, 25, 14, 30, 59))) self.assertEqual(datetime.datetime(2006, 10, 25, 14, 30, 59, 200), f.clean(datetime.datetime(2006, 10, 25, 14, 30, 59, 200))) self.assertEqual(datetime.datetime(2006, 10, 25, 14, 30), f.clean('2006 10 25 2:30 PM')) self.assertRaisesMessage(ValidationError, "'Enter a valid date/time.'", f.clean, '2006-10-25 14:30:45') def test_datetimefield_3(self): f = DateTimeField(required=False) self.assertEqual(None, f.clean(None)) self.assertEqual('None', repr(f.clean(None))) self.assertEqual(None, f.clean('')) self.assertEqual('None', repr(f.clean(''))) def test_datetimefield_4(self): f = DateTimeField() # Test whitespace stripping behavior (#5714) self.assertEqual(datetime.datetime(2006, 10, 25, 14, 30, 45), f.clean(' 2006-10-25 14:30:45 ')) self.assertEqual(datetime.datetime(2006, 10, 25, 0, 0), f.clean(' 2006-10-25 ')) self.assertEqual(datetime.datetime(2006, 10, 25, 14, 30, 45), f.clean(' 10/25/2006 14:30:45 ')) self.assertEqual(datetime.datetime(2006, 10, 25, 14, 30), f.clean(' 10/25/2006 14:30 ')) self.assertEqual(datetime.datetime(2006, 10, 25, 0, 0), f.clean(' 10/25/2006 ')) self.assertEqual(datetime.datetime(2006, 10, 25, 14, 30, 45), f.clean(' 10/25/06 14:30:45 ')) self.assertEqual(datetime.datetime(2006, 10, 25, 0, 0), f.clean(' 10/25/06 ')) self.assertRaisesMessage(ValidationError, "'Enter a valid date/time.'", f.clean, ' ') def test_datetimefield_5(self): f = DateTimeField(input_formats=['%Y.%m.%d %H:%M:%S.%f']) self.assertEqual(datetime.datetime(2006, 10, 25, 14, 30, 45, 200), f.clean('2006.10.25 14:30:45.0002')) def test_datetimefield_changed(self): format = '%Y %m %d %I:%M %p' f = DateTimeField(input_formats=[format]) d = datetime.datetime(2006, 9, 17, 14, 30, 0) self.assertFalse(f._has_changed(d, '2006 09 17 2:30 PM')) # RegexField ################################################################## def test_regexfield_1(self): f = RegexField('^\d[A-F]\d$') self.assertEqual('2A2', f.clean('2A2')) self.assertEqual('3F3', f.clean('3F3')) self.assertRaisesMessage(ValidationError, "'Enter a valid value.'", f.clean, '3G3') self.assertRaisesMessage(ValidationError, "'Enter a valid value.'", f.clean, ' 2A2') self.assertRaisesMessage(ValidationError, "'Enter a valid value.'", f.clean, '2A2 ') self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, '') def test_regexfield_2(self): f = RegexField('^\d[A-F]\d$', required=False) self.assertEqual('2A2', f.clean('2A2')) self.assertEqual('3F3', f.clean('3F3')) self.assertRaisesMessage(ValidationError, "'Enter a valid value.'", f.clean, '3G3') self.assertEqual('', f.clean('')) def test_regexfield_3(self): f = RegexField(re.compile('^\d[A-F]\d$')) self.assertEqual('2A2', f.clean('2A2')) self.assertEqual('3F3', f.clean('3F3')) self.assertRaisesMessage(ValidationError, "'Enter a valid value.'", f.clean, '3G3') self.assertRaisesMessage(ValidationError, "'Enter a valid value.'", f.clean, ' 2A2') self.assertRaisesMessage(ValidationError, "'Enter a valid value.'", f.clean, '2A2 ') def test_regexfield_4(self): f = RegexField('^\d\d\d\d$', error_message='Enter a four-digit number.') self.assertEqual('1234', f.clean('1234')) self.assertRaisesMessage(ValidationError, "'Enter a four-digit number.'", f.clean, '123') self.assertRaisesMessage(ValidationError, "'Enter a four-digit number.'", f.clean, 'abcd') def test_regexfield_5(self): f = RegexField('^\d+$', min_length=5, max_length=10) self.assertRaisesMessage(ValidationError, "'Ensure this value has at least 5 characters (it has 3).'", f.clean, '123') six.assertRaisesRegex(self, ValidationError, "'Ensure this value has at least 5 characters \(it has 3\)\.', u?'Enter a valid value\.'", f.clean, 'abc') self.assertEqual('12345', f.clean('12345')) self.assertEqual('1234567890', f.clean('1234567890')) self.assertRaisesMessage(ValidationError, "'Ensure this value has at most 10 characters (it has 11).'", f.clean, '12345678901') self.assertRaisesMessage(ValidationError, "'Enter a valid value.'", f.clean, '12345a') def test_regexfield_6(self): """ Ensure that it works with unicode characters. Refs #. """ f = RegexField('^\w+$') self.assertEqual('éèøçÎÎ你好', f.clean('éèøçÎÎ你好')) def test_change_regex_after_init(self): f = RegexField('^[a-z]+$') f.regex = '^\d+$' self.assertEqual('1234', f.clean('1234')) self.assertRaisesMessage(ValidationError, "'Enter a valid value.'", f.clean, 'abcd') # EmailField ################################################################## # See also validators tests for validate_email specific tests def test_emailfield_1(self): f = EmailField() self.assertWidgetRendersTo(f, '<input type="email" name="f" id="id_f" />') self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, '') self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, None) self.assertEqual('person@example.com', f.clean('person@example.com')) self.assertRaisesMessage(ValidationError, "'Enter a valid email address.'", f.clean, 'foo') self.assertEqual('local@domain.with.idn.xyz\xe4\xf6\xfc\xdfabc.part.com', f.clean('local@domain.with.idn.xyzäöüßabc.part.com')) def test_email_regexp_for_performance(self): f = EmailField() # Check for runaway regex security problem. This will take for-freeking-ever # if the security fix isn't in place. addr = 'viewx3dtextx26qx3d@yahoo.comx26latlngx3d15854521645943074058' self.assertEqual(addr, f.clean(addr)) def test_emailfield_not_required(self): f = EmailField(required=False) self.assertEqual('', f.clean('')) self.assertEqual('', f.clean(None)) self.assertEqual('person@example.com', f.clean('person@example.com')) self.assertEqual('example@example.com', f.clean(' example@example.com \t \t ')) self.assertRaisesMessage(ValidationError, "'Enter a valid email address.'", f.clean, 'foo') def test_emailfield_min_max_length(self): f = EmailField(min_length=10, max_length=15) self.assertWidgetRendersTo(f, '<input id="id_f" type="email" name="f" maxlength="15" />') self.assertRaisesMessage(ValidationError, "'Ensure this value has at least 10 characters (it has 9).'", f.clean, 'a@foo.com') self.assertEqual('alf@foo.com', f.clean('alf@foo.com')) self.assertRaisesMessage(ValidationError, "'Ensure this value has at most 15 characters (it has 20).'", f.clean, 'alf123456788@foo.com') # FileField ################################################################## def test_filefield_1(self): f = FileField() self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, '') self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, '', '') self.assertEqual('files/test1.pdf', f.clean('', 'files/test1.pdf')) self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, None) self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, None, '') self.assertEqual('files/test2.pdf', f.clean(None, 'files/test2.pdf')) self.assertRaisesMessage(ValidationError, "'No file was submitted. Check the encoding type on the form.'", f.clean, SimpleUploadedFile('', b'')) self.assertRaisesMessage(ValidationError, "'No file was submitted. Check the encoding type on the form.'", f.clean, SimpleUploadedFile('', b''), '') self.assertEqual('files/test3.pdf', f.clean(None, 'files/test3.pdf')) self.assertRaisesMessage(ValidationError, "'No file was submitted. Check the encoding type on the form.'", f.clean, 'some content that is not a file') self.assertRaisesMessage(ValidationError, "'The submitted file is empty.'", f.clean, SimpleUploadedFile('name', None)) self.assertRaisesMessage(ValidationError, "'The submitted file is empty.'", f.clean, SimpleUploadedFile('name', b'')) self.assertEqual(SimpleUploadedFile, type(f.clean(SimpleUploadedFile('name', b'Some File Content')))) self.assertEqual(SimpleUploadedFile, type(f.clean(SimpleUploadedFile('我隻氣墊船裝滿晒鱔.txt', 'मेरी मँडराने वाली नाव सर्पमीनों से भरी ह'.encode('utf-8'))))) self.assertEqual(SimpleUploadedFile, type(f.clean(SimpleUploadedFile('name', b'Some File Content'), 'files/test4.pdf'))) def test_filefield_2(self): f = FileField(max_length = 5) self.assertRaisesMessage(ValidationError, "'Ensure this filename has at most 5 characters (it has 18).'", f.clean, SimpleUploadedFile('test_maxlength.txt', b'hello world')) self.assertEqual('files/test1.pdf', f.clean('', 'files/test1.pdf')) self.assertEqual('files/test2.pdf', f.clean(None, 'files/test2.pdf')) self.assertEqual(SimpleUploadedFile, type(f.clean(SimpleUploadedFile('name', b'Some File Content')))) def test_filefield_3(self): f = FileField(allow_empty_file=True) self.assertEqual(SimpleUploadedFile, type(f.clean(SimpleUploadedFile('name', b'')))) def test_filefield_changed(self): ''' Test for the behavior of _has_changed for FileField. The value of data will more than likely come from request.FILES. The value of initial data will likely be a filename stored in the database. Since its value is of no use to a FileField it is ignored. ''' f = FileField() # No file was uploaded and no initial data. self.assertFalse(f._has_changed('', None)) # A file was uploaded and no initial data. self.assertTrue(f._has_changed('', {'filename': 'resume.txt', 'content': 'My resume'})) # A file was not uploaded, but there is initial data self.assertFalse(f._has_changed('resume.txt', None)) # A file was uploaded and there is initial data (file identity is not dealt # with here) self.assertTrue(f._has_changed('resume.txt', {'filename': 'resume.txt', 'content': 'My resume'})) # URLField ################################################################## def test_urlfield_1(self): f = URLField() self.assertWidgetRendersTo(f, '<input type="url" name="f" id="id_f" />') self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, '') self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, None) self.assertEqual('http://localhost/', f.clean('http://localhost')) self.assertEqual('http://example.com/', f.clean('http://example.com')) self.assertEqual('http://example.com./', f.clean('http://example.com.')) self.assertEqual('http://www.example.com/', f.clean('http://www.example.com')) self.assertEqual('http://www.example.com:8000/test', f.clean('http://www.example.com:8000/test')) self.assertEqual('http://valid-with-hyphens.com/', f.clean('valid-with-hyphens.com')) self.assertEqual('http://subdomain.domain.com/', f.clean('subdomain.domain.com')) self.assertEqual('http://200.8.9.10/', f.clean('http://200.8.9.10')) self.assertEqual('http://200.8.9.10:8000/test', f.clean('http://200.8.9.10:8000/test')) self.assertRaisesMessage(ValidationError, "'Enter a valid URL.'", f.clean, 'foo') self.assertRaisesMessage(ValidationError, "'Enter a valid URL.'", f.clean, 'http://') self.assertRaisesMessage(ValidationError, "'Enter a valid URL.'", f.clean, 'http://example') self.assertRaisesMessage(ValidationError, "'Enter a valid URL.'", f.clean, 'http://example.') self.assertRaisesMessage(ValidationError, "'Enter a valid URL.'", f.clean, 'com.') self.assertRaisesMessage(ValidationError, "'Enter a valid URL.'", f.clean, '.') self.assertRaisesMessage(ValidationError, "'Enter a valid URL.'", f.clean, 'http://.com') self.assertRaisesMessage(ValidationError, "'Enter a valid URL.'", f.clean, 'http://invalid-.com') self.assertRaisesMessage(ValidationError, "'Enter a valid URL.'", f.clean, 'http://-invalid.com') self.assertRaisesMessage(ValidationError, "'Enter a valid URL.'", f.clean, 'http://inv-.alid-.com') self.assertRaisesMessage(ValidationError, "'Enter a valid URL.'", f.clean, 'http://inv-.-alid.com') self.assertEqual('http://valid-----hyphens.com/', f.clean('http://valid-----hyphens.com')) self.assertEqual('http://some.idn.xyz\xe4\xf6\xfc\xdfabc.domain.com:123/blah', f.clean('http://some.idn.xyzäöüßabc.domain.com:123/blah')) self.assertEqual('http://www.example.com/s/http://code.djangoproject.com/ticket/13804', f.clean('www.example.com/s/http://code.djangoproject.com/ticket/13804')) self.assertRaisesMessage(ValidationError, "'Enter a valid URL.'", f.clean, '[a') self.assertRaisesMessage(ValidationError, "'Enter a valid URL.'", f.clean, 'http://[a') def test_url_regex_ticket11198(self): f = URLField() # hangs "forever" if catastrophic backtracking in ticket:#11198 not fixed self.assertRaisesMessage(ValidationError, "'Enter a valid URL.'", f.clean, 'http://%s' % ("X"*200,)) # a second test, to make sure the problem is really addressed, even on # domains that don't fail the domain label length check in the regex self.assertRaisesMessage(ValidationError, "'Enter a valid URL.'", f.clean, 'http://%s' % ("X"*60,)) def test_urlfield_2(self): f = URLField(required=False) self.assertEqual('', f.clean('')) self.assertEqual('', f.clean(None)) self.assertEqual('http://example.com/', f.clean('http://example.com')) self.assertEqual('http://www.example.com/', f.clean('http://www.example.com')) self.assertRaisesMessage(ValidationError, "'Enter a valid URL.'", f.clean, 'foo') self.assertRaisesMessage(ValidationError, "'Enter a valid URL.'", f.clean, 'http://') self.assertRaisesMessage(ValidationError, "'Enter a valid URL.'", f.clean, 'http://example') self.assertRaisesMessage(ValidationError, "'Enter a valid URL.'", f.clean, 'http://example.') self.assertRaisesMessage(ValidationError, "'Enter a valid URL.'", f.clean, 'http://.com') def test_urlfield_5(self): f = URLField(min_length=15, max_length=20) self.assertWidgetRendersTo(f, '<input id="id_f" type="url" name="f" maxlength="20" />') self.assertRaisesMessage(ValidationError, "'Ensure this value has at least 15 characters (it has 13).'", f.clean, 'http://f.com') self.assertEqual('http://example.com/', f.clean('http://example.com')) self.assertRaisesMessage(ValidationError, "'Ensure this value has at most 20 characters (it has 38).'", f.clean, 'http://abcdefghijklmnopqrstuvwxyz.com') def test_urlfield_6(self): f = URLField(required=False) self.assertEqual('http://example.com/', f.clean('example.com')) self.assertEqual('', f.clean('')) self.assertEqual('https://example.com/', f.clean('https://example.com')) def test_urlfield_7(self): f = URLField() self.assertEqual('http://example.com/', f.clean('http://example.com')) self.assertEqual('http://example.com/test', f.clean('http://example.com/test')) def test_urlfield_8(self): # ticket #11826 f = URLField() self.assertEqual('http://example.com/?some_param=some_value', f.clean('http://example.com?some_param=some_value')) def test_urlfield_9(self): f = URLField() urls = ( 'http://עברית.idn.icann.org/', 'http://sãopaulo.com/', 'http://sãopaulo.com.br/', 'http://пример.испытание/', 'http://مثال.إختبار/', 'http://例子.测试/', 'http://例子.測試/', 'http://उदाहरण.परीक्षा/', 'http://例え.テスト/', 'http://مثال.آزمایشی/', 'http://실례.테스트/', 'http://العربية.idn.icann.org/', ) for url in urls: # Valid IDN self.assertEqual(url, f.clean(url)) def test_urlfield_10(self): """Test URLField correctly validates IPv6 (#18779).""" f = URLField() urls = ( 'http://::/', 'http://6:21b4:92/', 'http://[12:34:3a53]/', 'http://[a34:9238::]:8080/', ) for url in urls: self.assertEqual(url, f.clean(url)) def test_urlfield_not_string(self): f = URLField(required=False) self.assertRaisesMessage(ValidationError, "'Enter a valid URL.'", f.clean, 23) # BooleanField ################################################################ def test_booleanfield_1(self): f = BooleanField() self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, '') self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, None) self.assertEqual(True, f.clean(True)) self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, False) self.assertEqual(True, f.clean(1)) self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, 0) self.assertEqual(True, f.clean('Django rocks')) self.assertEqual(True, f.clean('True')) self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, 'False') def test_booleanfield_2(self): f = BooleanField(required=False) self.assertEqual(False, f.clean('')) self.assertEqual(False, f.clean(None)) self.assertEqual(True, f.clean(True)) self.assertEqual(False, f.clean(False)) self.assertEqual(True, f.clean(1)) self.assertEqual(False, f.clean(0)) self.assertEqual(True, f.clean('1')) self.assertEqual(False, f.clean('0')) self.assertEqual(True, f.clean('Django rocks')) self.assertEqual(False, f.clean('False')) self.assertEqual(False, f.clean('false')) self.assertEqual(False, f.clean('FaLsE')) def test_boolean_picklable(self): self.assertIsInstance(pickle.loads(pickle.dumps(BooleanField())), BooleanField) def test_booleanfield_changed(self): f = BooleanField() self.assertFalse(f._has_changed(None, None)) self.assertFalse(f._has_changed(None, '')) self.assertFalse(f._has_changed('', None)) self.assertFalse(f._has_changed('', '')) self.assertTrue(f._has_changed(False, 'on')) self.assertFalse(f._has_changed(True, 'on')) self.assertTrue(f._has_changed(True, '')) # Initial value may have mutated to a string due to show_hidden_initial (#19537) self.assertTrue(f._has_changed('False', 'on')) # ChoiceField ################################################################# def test_choicefield_1(self): f = ChoiceField(choices=[('1', 'One'), ('2', 'Two')]) self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, '') self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, None) self.assertEqual('1', f.clean(1)) self.assertEqual('1', f.clean('1')) self.assertRaisesMessage(ValidationError, "'Select a valid choice. 3 is not one of the available choices.'", f.clean, '3') def test_choicefield_2(self): f = ChoiceField(choices=[('1', 'One'), ('2', 'Two')], required=False) self.assertEqual('', f.clean('')) self.assertEqual('', f.clean(None)) self.assertEqual('1', f.clean(1)) self.assertEqual('1', f.clean('1')) self.assertRaisesMessage(ValidationError, "'Select a valid choice. 3 is not one of the available choices.'", f.clean, '3') def test_choicefield_3(self): f = ChoiceField(choices=[('J', 'John'), ('P', 'Paul')]) self.assertEqual('J', f.clean('J')) self.assertRaisesMessage(ValidationError, "'Select a valid choice. John is not one of the available choices.'", f.clean, 'John') def test_choicefield_4(self): f = ChoiceField(choices=[('Numbers', (('1', 'One'), ('2', 'Two'))), ('Letters', (('3','A'),('4','B'))), ('5','Other')]) self.assertEqual('1', f.clean(1)) self.assertEqual('1', f.clean('1')) self.assertEqual('3', f.clean(3)) self.assertEqual('3', f.clean('3')) self.assertEqual('5', f.clean(5)) self.assertEqual('5', f.clean('5')) self.assertRaisesMessage(ValidationError, "'Select a valid choice. 6 is not one of the available choices.'", f.clean, '6') # TypedChoiceField ############################################################ # TypedChoiceField is just like ChoiceField, except that coerced types will # be returned: def test_typedchoicefield_1(self): f = TypedChoiceField(choices=[(1, "+1"), (-1, "-1")], coerce=int) self.assertEqual(1, f.clean('1')) self.assertRaisesMessage(ValidationError, "'Select a valid choice. 2 is not one of the available choices.'", f.clean, '2') def test_typedchoicefield_2(self): # Different coercion, same validation. f = TypedChoiceField(choices=[(1, "+1"), (-1, "-1")], coerce=float) self.assertEqual(1.0, f.clean('1')) def test_typedchoicefield_3(self): # This can also cause weirdness: be careful (bool(-1) == True, remember) f = TypedChoiceField(choices=[(1, "+1"), (-1, "-1")], coerce=bool) self.assertEqual(True, f.clean('-1')) def test_typedchoicefield_4(self): # Even more weirdness: if you have a valid choice but your coercion function # can't coerce, yo'll still get a validation error. Don't do this! f = TypedChoiceField(choices=[('A', 'A'), ('B', 'B')], coerce=int) self.assertRaisesMessage(ValidationError, "'Select a valid choice. B is not one of the available choices.'", f.clean, 'B') # Required fields require values self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, '') def test_typedchoicefield_5(self): # Non-required fields aren't required f = TypedChoiceField(choices=[(1, "+1"), (-1, "-1")], coerce=int, required=False) self.assertEqual('', f.clean('')) # If you want cleaning an empty value to return a different type, tell the field def test_typedchoicefield_6(self): f = TypedChoiceField(choices=[(1, "+1"), (-1, "-1")], coerce=int, required=False, empty_value=None) self.assertEqual(None, f.clean('')) def test_typedchoicefield_has_changed(self): # has_changed should not trigger required validation f = TypedChoiceField(choices=[(1, "+1"), (-1, "-1")], coerce=int, required=True) self.assertFalse(f._has_changed(None, '')) # NullBooleanField ############################################################ def test_nullbooleanfield_1(self): f = NullBooleanField() self.assertEqual(None, f.clean('')) self.assertEqual(True, f.clean(True)) self.assertEqual(False, f.clean(False)) self.assertEqual(None, f.clean(None)) self.assertEqual(False, f.clean('0')) self.assertEqual(True, f.clean('1')) self.assertEqual(None, f.clean('2')) self.assertEqual(None, f.clean('3')) self.assertEqual(None, f.clean('hello')) def test_nullbooleanfield_2(self): # Make sure that the internal value is preserved if using HiddenInput (#7753) class HiddenNullBooleanForm(Form): hidden_nullbool1 = NullBooleanField(widget=HiddenInput, initial=True) hidden_nullbool2 = NullBooleanField(widget=HiddenInput, initial=False) f = HiddenNullBooleanForm() self.assertHTMLEqual('<input type="hidden" name="hidden_nullbool1" value="True" id="id_hidden_nullbool1" /><input type="hidden" name="hidden_nullbool2" value="False" id="id_hidden_nullbool2" />', str(f)) def test_nullbooleanfield_3(self): class HiddenNullBooleanForm(Form): hidden_nullbool1 = NullBooleanField(widget=HiddenInput, initial=True) hidden_nullbool2 = NullBooleanField(widget=HiddenInput, initial=False) f = HiddenNullBooleanForm({ 'hidden_nullbool1': 'True', 'hidden_nullbool2': 'False' }) self.assertEqual(None, f.full_clean()) self.assertEqual(True, f.cleaned_data['hidden_nullbool1']) self.assertEqual(False, f.cleaned_data['hidden_nullbool2']) def test_nullbooleanfield_4(self): # Make sure we're compatible with MySQL, which uses 0 and 1 for its boolean # values. (#9609) NULLBOOL_CHOICES = (('1', 'Yes'), ('0', 'No'), ('', 'Unknown')) class MySQLNullBooleanForm(Form): nullbool0 = NullBooleanField(widget=RadioSelect(choices=NULLBOOL_CHOICES)) nullbool1 = NullBooleanField(widget=RadioSelect(choices=NULLBOOL_CHOICES)) nullbool2 = NullBooleanField(widget=RadioSelect(choices=NULLBOOL_CHOICES)) f = MySQLNullBooleanForm({ 'nullbool0': '1', 'nullbool1': '0', 'nullbool2': '' }) self.assertEqual(None, f.full_clean()) self.assertEqual(True, f.cleaned_data['nullbool0']) self.assertEqual(False, f.cleaned_data['nullbool1']) self.assertEqual(None, f.cleaned_data['nullbool2']) def test_nullbooleanfield_changed(self): f = NullBooleanField() self.assertTrue(f._has_changed(False, None)) self.assertTrue(f._has_changed(None, False)) self.assertFalse(f._has_changed(None, None)) self.assertFalse(f._has_changed(False, False)) self.assertTrue(f._has_changed(True, False)) self.assertTrue(f._has_changed(True, None)) self.assertTrue(f._has_changed(True, False)) # MultipleChoiceField ######################################################### def test_multiplechoicefield_1(self): f = MultipleChoiceField(choices=[('1', 'One'), ('2', 'Two')]) self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, '') self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, None) self.assertEqual(['1'], f.clean([1])) self.assertEqual(['1'], f.clean(['1'])) self.assertEqual(['1', '2'], f.clean(['1', '2'])) self.assertEqual(['1', '2'], f.clean([1, '2'])) self.assertEqual(['1', '2'], f.clean((1, '2'))) self.assertRaisesMessage(ValidationError, "'Enter a list of values.'", f.clean, 'hello') self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, []) self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, ()) self.assertRaisesMessage(ValidationError, "'Select a valid choice. 3 is not one of the available choices.'", f.clean, ['3']) def test_multiplechoicefield_2(self): f = MultipleChoiceField(choices=[('1', 'One'), ('2', 'Two')], required=False) self.assertEqual([], f.clean('')) self.assertEqual([], f.clean(None)) self.assertEqual(['1'], f.clean([1])) self.assertEqual(['1'], f.clean(['1'])) self.assertEqual(['1', '2'], f.clean(['1', '2'])) self.assertEqual(['1', '2'], f.clean([1, '2'])) self.assertEqual(['1', '2'], f.clean((1, '2'))) self.assertRaisesMessage(ValidationError, "'Enter a list of values.'", f.clean, 'hello') self.assertEqual([], f.clean([])) self.assertEqual([], f.clean(())) self.assertRaisesMessage(ValidationError, "'Select a valid choice. 3 is not one of the available choices.'", f.clean, ['3']) def test_multiplechoicefield_3(self): f = MultipleChoiceField(choices=[('Numbers', (('1', 'One'), ('2', 'Two'))), ('Letters', (('3','A'),('4','B'))), ('5','Other')]) self.assertEqual(['1'], f.clean([1])) self.assertEqual(['1'], f.clean(['1'])) self.assertEqual(['1', '5'], f.clean([1, 5])) self.assertEqual(['1', '5'], f.clean([1, '5'])) self.assertEqual(['1', '5'], f.clean(['1', 5])) self.assertEqual(['1', '5'], f.clean(['1', '5'])) self.assertRaisesMessage(ValidationError, "'Select a valid choice. 6 is not one of the available choices.'", f.clean, ['6']) self.assertRaisesMessage(ValidationError, "'Select a valid choice. 6 is not one of the available choices.'", f.clean, ['1','6']) def test_multiplechoicefield_changed(self): f = MultipleChoiceField(choices=[('1', 'One'), ('2', 'Two'), ('3', 'Three')]) self.assertFalse(f._has_changed(None, None)) self.assertFalse(f._has_changed([], None)) self.assertTrue(f._has_changed(None, ['1'])) self.assertFalse(f._has_changed([1, 2], ['1', '2'])) self.assertFalse(f._has_changed([2, 1], ['1', '2'])) self.assertTrue(f._has_changed([1, 2], ['1'])) self.assertTrue(f._has_changed([1, 2], ['1', '3'])) # TypedMultipleChoiceField ############################################################ # TypedMultipleChoiceField is just like MultipleChoiceField, except that coerced types # will be returned: def test_typedmultiplechoicefield_1(self): f = TypedMultipleChoiceField(choices=[(1, "+1"), (-1, "-1")], coerce=int) self.assertEqual([1], f.clean(['1'])) self.assertRaisesMessage(ValidationError, "'Select a valid choice. 2 is not one of the available choices.'", f.clean, ['2']) def test_typedmultiplechoicefield_2(self): # Different coercion, same validation. f = TypedMultipleChoiceField(choices=[(1, "+1"), (-1, "-1")], coerce=float) self.assertEqual([1.0], f.clean(['1'])) def test_typedmultiplechoicefield_3(self): # This can also cause weirdness: be careful (bool(-1) == True, remember) f = TypedMultipleChoiceField(choices=[(1, "+1"), (-1, "-1")], coerce=bool) self.assertEqual([True], f.clean(['-1'])) def test_typedmultiplechoicefield_4(self): f = TypedMultipleChoiceField(choices=[(1, "+1"), (-1, "-1")], coerce=int) self.assertEqual([1, -1], f.clean(['1','-1'])) self.assertRaisesMessage(ValidationError, "'Select a valid choice. 2 is not one of the available choices.'", f.clean, ['1','2']) def test_typedmultiplechoicefield_5(self): # Even more weirdness: if you have a valid choice but your coercion function # can't coerce, you'll still get a validation error. Don't do this! f = TypedMultipleChoiceField(choices=[('A', 'A'), ('B', 'B')], coerce=int) self.assertRaisesMessage(ValidationError, "'Select a valid choice. B is not one of the available choices.'", f.clean, ['B']) # Required fields require values self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, []) def test_typedmultiplechoicefield_6(self): # Non-required fields aren't required f = TypedMultipleChoiceField(choices=[(1, "+1"), (-1, "-1")], coerce=int, required=False) self.assertEqual([], f.clean([])) def test_typedmultiplechoicefield_7(self): # If you want cleaning an empty value to return a different type, tell the field f = TypedMultipleChoiceField(choices=[(1, "+1"), (-1, "-1")], coerce=int, required=False, empty_value=None) self.assertEqual(None, f.clean([])) def test_typedmultiplechoicefield_has_changed(self): # has_changed should not trigger required validation f = TypedMultipleChoiceField(choices=[(1, "+1"), (-1, "-1")], coerce=int, required=True) self.assertFalse(f._has_changed(None, '')) # ComboField ################################################################## def test_combofield_1(self): f = ComboField(fields=[CharField(max_length=20), EmailField()]) self.assertEqual('test@example.com', f.clean('test@example.com')) self.assertRaisesMessage(ValidationError, "'Ensure this value has at most 20 characters (it has 28).'", f.clean, 'longemailaddress@example.com') self.assertRaisesMessage(ValidationError, "'Enter a valid email address.'", f.clean, 'not an email') self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, '') self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, None) def test_combofield_2(self): f = ComboField(fields=[CharField(max_length=20), EmailField()], required=False) self.assertEqual('test@example.com', f.clean('test@example.com')) self.assertRaisesMessage(ValidationError, "'Ensure this value has at most 20 characters (it has 28).'", f.clean, 'longemailaddress@example.com') self.assertRaisesMessage(ValidationError, "'Enter a valid email address.'", f.clean, 'not an email') self.assertEqual('', f.clean('')) self.assertEqual('', f.clean(None)) # FilePathField ############################################################### def test_filepathfield_1(self): path = os.path.abspath(upath(forms.__file__)) path = os.path.dirname(path) + '/' self.assertTrue(fix_os_paths(path).endswith('/django/forms/')) def test_filepathfield_2(self): path = upath(forms.__file__) path = os.path.dirname(os.path.abspath(path)) + '/' f = FilePathField(path=path) f.choices = [p for p in f.choices if p[0].endswith('.py')] f.choices.sort() expected = [ ('/django/forms/__init__.py', '__init__.py'), ('/django/forms/fields.py', 'fields.py'), ('/django/forms/forms.py', 'forms.py'), ('/django/forms/formsets.py', 'formsets.py'), ('/django/forms/models.py', 'models.py'), ('/django/forms/util.py', 'util.py'), ('/django/forms/widgets.py', 'widgets.py') ] for exp, got in zip(expected, fix_os_paths(f.choices)): self.assertEqual(exp[1], got[1]) self.assertTrue(got[0].endswith(exp[0])) self.assertRaisesMessage(ValidationError, "'Select a valid choice. fields.py is not one of the available choices.'", f.clean, 'fields.py') assert fix_os_paths(f.clean(path + 'fields.py')).endswith('/django/forms/fields.py') def test_filepathfield_3(self): path = upath(forms.__file__) path = os.path.dirname(os.path.abspath(path)) + '/' f = FilePathField(path=path, match='^.*?\.py$') f.choices.sort() expected = [ ('/django/forms/__init__.py', '__init__.py'), ('/django/forms/fields.py', 'fields.py'), ('/django/forms/forms.py', 'forms.py'), ('/django/forms/formsets.py', 'formsets.py'), ('/django/forms/models.py', 'models.py'), ('/django/forms/util.py', 'util.py'), ('/django/forms/widgets.py', 'widgets.py') ] for exp, got in zip(expected, fix_os_paths(f.choices)): self.assertEqual(exp[1], got[1]) self.assertTrue(got[0].endswith(exp[0])) def test_filepathfield_4(self): path = os.path.abspath(upath(forms.__file__)) path = os.path.dirname(path) + '/' f = FilePathField(path=path, recursive=True, match='^.*?\.py$') f.choices.sort() expected = [ ('/django/forms/__init__.py', '__init__.py'), ('/django/forms/extras/__init__.py', 'extras/__init__.py'), ('/django/forms/extras/widgets.py', 'extras/widgets.py'), ('/django/forms/fields.py', 'fields.py'), ('/django/forms/forms.py', 'forms.py'), ('/django/forms/formsets.py', 'formsets.py'), ('/django/forms/models.py', 'models.py'), ('/django/forms/util.py', 'util.py'), ('/django/forms/widgets.py', 'widgets.py') ] for exp, got in zip(expected, fix_os_paths(f.choices)): self.assertEqual(exp[1], got[1]) self.assertTrue(got[0].endswith(exp[0])) def test_filepathfield_folders(self): path = os.path.dirname(upath(__file__)) + '/filepath_test_files/' f = FilePathField(path=path, allow_folders=True, allow_files=False) f.choices.sort() expected = [ ('/tests/forms_tests/tests/filepath_test_files/directory', 'directory'), ] for exp, got in zip(expected, fix_os_paths(f.choices)): self.assertEqual(exp[1], got[1]) self.assertTrue(got[0].endswith(exp[0])) f = FilePathField(path=path, allow_folders=True, allow_files=True) f.choices.sort() expected = [ ('/tests/forms_tests/tests/filepath_test_files/.dot-file', '.dot-file'), ('/tests/forms_tests/tests/filepath_test_files/directory', 'directory'), ('/tests/forms_tests/tests/filepath_test_files/fake-image.jpg', 'fake-image.jpg'), ('/tests/forms_tests/tests/filepath_test_files/real-text-file.txt', 'real-text-file.txt'), ] actual = fix_os_paths(f.choices) self.assertEqual(len(expected), len(actual)) for exp, got in zip(expected, actual): self.assertEqual(exp[1], got[1]) self.assertTrue(got[0].endswith(exp[0])) # SplitDateTimeField ########################################################## def test_splitdatetimefield_1(self): from django.forms.widgets import SplitDateTimeWidget f = SplitDateTimeField() assert isinstance(f.widget, SplitDateTimeWidget) self.assertEqual(datetime.datetime(2006, 1, 10, 7, 30), f.clean([datetime.date(2006, 1, 10), datetime.time(7, 30)])) self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, None) self.assertRaisesMessage(ValidationError, "'This field is required.'", f.clean, '') self.assertRaisesMessage(ValidationError, "'Enter a list of values.'", f.clean, 'hello') six.assertRaisesRegex(self, ValidationError, "'Enter a valid date\.', u?'Enter a valid time\.'", f.clean, ['hello', 'there']) self.assertRaisesMessage(ValidationError, "'Enter a valid time.'", f.clean, ['2006-01-10', 'there']) self.assertRaisesMessage(ValidationError, "'Enter a valid date.'", f.clean, ['hello', '07:30']) def test_splitdatetimefield_2(self): f = SplitDateTimeField(required=False) self.assertEqual(datetime.datetime(2006, 1, 10, 7, 30), f.clean([datetime.date(2006, 1, 10), datetime.time(7, 30)])) self.assertEqual(datetime.datetime(2006, 1, 10, 7, 30), f.clean(['2006-01-10', '07:30'])) self.assertEqual(None, f.clean(None)) self.assertEqual(None, f.clean('')) self.assertEqual(None, f.clean([''])) self.assertEqual(None, f.clean(['', ''])) self.assertRaisesMessage(ValidationError, "'Enter a list of values.'", f.clean, 'hello') six.assertRaisesRegex(self, ValidationError, "'Enter a valid date\.', u?'Enter a valid time\.'", f.clean, ['hello', 'there']) self.assertRaisesMessage(ValidationError, "'Enter a valid time.'", f.clean, ['2006-01-10', 'there']) self.assertRaisesMessage(ValidationError, "'Enter a valid date.'", f.clean, ['hello', '07:30']) self.assertRaisesMessage(ValidationError, "'Enter a valid time.'", f.clean, ['2006-01-10', '']) self.assertRaisesMessage(ValidationError, "'Enter a valid time.'", f.clean, ['2006-01-10']) self.assertRaisesMessage(ValidationError, "'Enter a valid date.'", f.clean, ['', '07:30']) def test_splitdatetimefield_changed(self): f = SplitDateTimeField(input_date_formats=['%d/%m/%Y']) self.assertFalse(f._has_changed(['11/01/2012', '09:18:15'], ['11/01/2012', '09:18:15'])) self.assertTrue(f._has_changed(datetime.datetime(2008, 5, 6, 12, 40, 00), ['2008-05-06', '12:40:00'])) self.assertFalse(f._has_changed(datetime.datetime(2008, 5, 6, 12, 40, 00), ['06/05/2008', '12:40'])) self.assertTrue(f._has_changed(datetime.datetime(2008, 5, 6, 12, 40, 00), ['06/05/2008', '12:41']))
dex4er/django
tests/forms_tests/tests/test_fields.py
Python
bsd-3-clause
69,654
# # Author: Joris Vankerschaver 2013 # from __future__ import division, print_function, absolute_import import numpy as np import scipy.linalg from scipy.misc import doccer from scipy.special import gammaln, psi, multigammaln from scipy._lib._util import check_random_state __all__ = ['multivariate_normal', 'matrix_normal', 'dirichlet', 'wishart', 'invwishart', 'special_ortho_group', 'ortho_group'] _LOG_2PI = np.log(2 * np.pi) _LOG_2 = np.log(2) _LOG_PI = np.log(np.pi) _doc_random_state = """\ random_state : None or int or np.random.RandomState instance, optional If int or RandomState, use it for drawing the random variates. If None (or np.random), the global np.random state is used. Default is None. """ def _squeeze_output(out): """ Remove single-dimensional entries from array and convert to scalar, if necessary. """ out = out.squeeze() if out.ndim == 0: out = out[()] return out def _eigvalsh_to_eps(spectrum, cond=None, rcond=None): """ Determine which eigenvalues are "small" given the spectrum. This is for compatibility across various linear algebra functions that should agree about whether or not a Hermitian matrix is numerically singular and what is its numerical matrix rank. This is designed to be compatible with scipy.linalg.pinvh. Parameters ---------- spectrum : 1d ndarray Array of eigenvalues of a Hermitian matrix. cond, rcond : float, optional Cutoff for small eigenvalues. Singular values smaller than rcond * largest_eigenvalue are considered zero. If None or -1, suitable machine precision is used. Returns ------- eps : float Magnitude cutoff for numerical negligibility. """ if rcond is not None: cond = rcond if cond in [None, -1]: t = spectrum.dtype.char.lower() factor = {'f': 1E3, 'd': 1E6} cond = factor[t] * np.finfo(t).eps eps = cond * np.max(abs(spectrum)) return eps def _pinv_1d(v, eps=1e-5): """ A helper function for computing the pseudoinverse. Parameters ---------- v : iterable of numbers This may be thought of as a vector of eigenvalues or singular values. eps : float Values with magnitude no greater than eps are considered negligible. Returns ------- v_pinv : 1d float ndarray A vector of pseudo-inverted numbers. """ return np.array([0 if abs(x) <= eps else 1/x for x in v], dtype=float) class _PSD(object): """ Compute coordinated functions of a symmetric positive semidefinite matrix. This class addresses two issues. Firstly it allows the pseudoinverse, the logarithm of the pseudo-determinant, and the rank of the matrix to be computed using one call to eigh instead of three. Secondly it allows these functions to be computed in a way that gives mutually compatible results. All of the functions are computed with a common understanding as to which of the eigenvalues are to be considered negligibly small. The functions are designed to coordinate with scipy.linalg.pinvh() but not necessarily with np.linalg.det() or with np.linalg.matrix_rank(). Parameters ---------- M : array_like Symmetric positive semidefinite matrix (2-D). cond, rcond : float, optional Cutoff for small eigenvalues. Singular values smaller than rcond * largest_eigenvalue are considered zero. If None or -1, suitable machine precision is used. lower : bool, optional Whether the pertinent array data is taken from the lower or upper triangle of M. (Default: lower) check_finite : bool, optional Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. allow_singular : bool, optional Whether to allow a singular matrix. (Default: True) Notes ----- The arguments are similar to those of scipy.linalg.pinvh(). """ def __init__(self, M, cond=None, rcond=None, lower=True, check_finite=True, allow_singular=True): # Compute the symmetric eigendecomposition. # Note that eigh takes care of array conversion, chkfinite, # and assertion that the matrix is square. s, u = scipy.linalg.eigh(M, lower=lower, check_finite=check_finite) eps = _eigvalsh_to_eps(s, cond, rcond) if np.min(s) < -eps: raise ValueError('the input matrix must be positive semidefinite') d = s[s > eps] if len(d) < len(s) and not allow_singular: raise np.linalg.LinAlgError('singular matrix') s_pinv = _pinv_1d(s, eps) U = np.multiply(u, np.sqrt(s_pinv)) # Initialize the eagerly precomputed attributes. self.rank = len(d) self.U = U self.log_pdet = np.sum(np.log(d)) # Initialize an attribute to be lazily computed. self._pinv = None @property def pinv(self): if self._pinv is None: self._pinv = np.dot(self.U, self.U.T) return self._pinv class multi_rv_generic(object): """ Class which encapsulates common functionality between all multivariate distributions. """ def __init__(self, seed=None): super(multi_rv_generic, self).__init__() self._random_state = check_random_state(seed) @property def random_state(self): """ Get or set the RandomState object for generating random variates. This can be either None or an existing RandomState object. If None (or np.random), use the RandomState singleton used by np.random. If already a RandomState instance, use it. If an int, use a new RandomState instance seeded with seed. """ return self._random_state @random_state.setter def random_state(self, seed): self._random_state = check_random_state(seed) def _get_random_state(self, random_state): if random_state is not None: return check_random_state(random_state) else: return self._random_state class multi_rv_frozen(object): """ Class which encapsulates common functionality between all frozen multivariate distributions. """ @property def random_state(self): return self._dist._random_state @random_state.setter def random_state(self, seed): self._dist._random_state = check_random_state(seed) _mvn_doc_default_callparams = """\ mean : array_like, optional Mean of the distribution (default zero) cov : array_like, optional Covariance matrix of the distribution (default one) allow_singular : bool, optional Whether to allow a singular covariance matrix. (Default: False) """ _mvn_doc_callparams_note = \ """Setting the parameter `mean` to `None` is equivalent to having `mean` be the zero-vector. The parameter `cov` can be a scalar, in which case the covariance matrix is the identity times that value, a vector of diagonal entries for the covariance matrix, or a two-dimensional array_like. """ _mvn_doc_frozen_callparams = "" _mvn_doc_frozen_callparams_note = \ """See class definition for a detailed description of parameters.""" mvn_docdict_params = { '_mvn_doc_default_callparams': _mvn_doc_default_callparams, '_mvn_doc_callparams_note': _mvn_doc_callparams_note, '_doc_random_state': _doc_random_state } mvn_docdict_noparams = { '_mvn_doc_default_callparams': _mvn_doc_frozen_callparams, '_mvn_doc_callparams_note': _mvn_doc_frozen_callparams_note, '_doc_random_state': _doc_random_state } class multivariate_normal_gen(multi_rv_generic): r""" A multivariate normal random variable. The `mean` keyword specifies the mean. The `cov` keyword specifies the covariance matrix. Methods ------- ``pdf(x, mean=None, cov=1, allow_singular=False)`` Probability density function. ``logpdf(x, mean=None, cov=1, allow_singular=False)`` Log of the probability density function. ``rvs(mean=None, cov=1, size=1, random_state=None)`` Draw random samples from a multivariate normal distribution. ``entropy()`` Compute the differential entropy of the multivariate normal. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_mvn_doc_default_callparams)s %(_doc_random_state)s Alternatively, the object may be called (as a function) to fix the mean and covariance parameters, returning a "frozen" multivariate normal random variable: rv = multivariate_normal(mean=None, cov=1, allow_singular=False) - Frozen object with the same methods but holding the given mean and covariance fixed. Notes ----- %(_mvn_doc_callparams_note)s The covariance matrix `cov` must be a (symmetric) positive semi-definite matrix. The determinant and inverse of `cov` are computed as the pseudo-determinant and pseudo-inverse, respectively, so that `cov` does not need to have full rank. The probability density function for `multivariate_normal` is .. math:: f(x) = \frac{1}{\sqrt{(2 \pi)^k \det \Sigma}} \exp\left( -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right), where :math:`\mu` is the mean, :math:`\Sigma` the covariance matrix, and :math:`k` is the dimension of the space where :math:`x` takes values. .. versionadded:: 0.14.0 Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy.stats import multivariate_normal >>> x = np.linspace(0, 5, 10, endpoint=False) >>> y = multivariate_normal.pdf(x, mean=2.5, cov=0.5); y array([ 0.00108914, 0.01033349, 0.05946514, 0.20755375, 0.43939129, 0.56418958, 0.43939129, 0.20755375, 0.05946514, 0.01033349]) >>> fig1 = plt.figure() >>> ax = fig1.add_subplot(111) >>> ax.plot(x, y) The input quantiles can be any shape of array, as long as the last axis labels the components. This allows us for instance to display the frozen pdf for a non-isotropic random variable in 2D as follows: >>> x, y = np.mgrid[-1:1:.01, -1:1:.01] >>> pos = np.dstack((x, y)) >>> rv = multivariate_normal([0.5, -0.2], [[2.0, 0.3], [0.3, 0.5]]) >>> fig2 = plt.figure() >>> ax2 = fig2.add_subplot(111) >>> ax2.contourf(x, y, rv.pdf(pos)) """ def __init__(self, seed=None): super(multivariate_normal_gen, self).__init__(seed) self.__doc__ = doccer.docformat(self.__doc__, mvn_docdict_params) def __call__(self, mean=None, cov=1, allow_singular=False, seed=None): """ Create a frozen multivariate normal distribution. See `multivariate_normal_frozen` for more information. """ return multivariate_normal_frozen(mean, cov, allow_singular=allow_singular, seed=seed) def _process_parameters(self, dim, mean, cov): """ Infer dimensionality from mean or covariance matrix, ensure that mean and covariance are full vector resp. matrix. """ # Try to infer dimensionality if dim is None: if mean is None: if cov is None: dim = 1 else: cov = np.asarray(cov, dtype=float) if cov.ndim < 2: dim = 1 else: dim = cov.shape[0] else: mean = np.asarray(mean, dtype=float) dim = mean.size else: if not np.isscalar(dim): raise ValueError("Dimension of random variable must be a scalar.") # Check input sizes and return full arrays for mean and cov if necessary if mean is None: mean = np.zeros(dim) mean = np.asarray(mean, dtype=float) if cov is None: cov = 1.0 cov = np.asarray(cov, dtype=float) if dim == 1: mean.shape = (1,) cov.shape = (1, 1) if mean.ndim != 1 or mean.shape[0] != dim: raise ValueError("Array 'mean' must be a vector of length %d." % dim) if cov.ndim == 0: cov = cov * np.eye(dim) elif cov.ndim == 1: cov = np.diag(cov) elif cov.ndim == 2 and cov.shape != (dim, dim): rows, cols = cov.shape if rows != cols: msg = ("Array 'cov' must be square if it is two dimensional," " but cov.shape = %s." % str(cov.shape)) else: msg = ("Dimension mismatch: array 'cov' is of shape %s," " but 'mean' is a vector of length %d.") msg = msg % (str(cov.shape), len(mean)) raise ValueError(msg) elif cov.ndim > 2: raise ValueError("Array 'cov' must be at most two-dimensional," " but cov.ndim = %d" % cov.ndim) return dim, mean, cov def _process_quantiles(self, x, dim): """ Adjust quantiles array so that last axis labels the components of each data point. """ x = np.asarray(x, dtype=float) if x.ndim == 0: x = x[np.newaxis] elif x.ndim == 1: if dim == 1: x = x[:, np.newaxis] else: x = x[np.newaxis, :] return x def _logpdf(self, x, mean, prec_U, log_det_cov, rank): """ Parameters ---------- x : ndarray Points at which to evaluate the log of the probability density function mean : ndarray Mean of the distribution prec_U : ndarray A decomposition such that np.dot(prec_U, prec_U.T) is the precision matrix, i.e. inverse of the covariance matrix. log_det_cov : float Logarithm of the determinant of the covariance matrix rank : int Rank of the covariance matrix. Notes ----- As this function does no argument checking, it should not be called directly; use 'logpdf' instead. """ dev = x - mean maha = np.sum(np.square(np.dot(dev, prec_U)), axis=-1) return -0.5 * (rank * _LOG_2PI + log_det_cov + maha) def logpdf(self, x, mean, cov, allow_singular=False): """ Log of the multivariate normal probability density function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_mvn_doc_default_callparams)s Returns ------- pdf : ndarray Log of the probability density function evaluated at `x` Notes ----- %(_mvn_doc_callparams_note)s """ dim, mean, cov = self._process_parameters(None, mean, cov) x = self._process_quantiles(x, dim) psd = _PSD(cov, allow_singular=allow_singular) out = self._logpdf(x, mean, psd.U, psd.log_pdet, psd.rank) return _squeeze_output(out) def pdf(self, x, mean, cov, allow_singular=False): """ Multivariate normal probability density function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_mvn_doc_default_callparams)s Returns ------- pdf : ndarray Probability density function evaluated at `x` Notes ----- %(_mvn_doc_callparams_note)s """ dim, mean, cov = self._process_parameters(None, mean, cov) x = self._process_quantiles(x, dim) psd = _PSD(cov, allow_singular=allow_singular) out = np.exp(self._logpdf(x, mean, psd.U, psd.log_pdet, psd.rank)) return _squeeze_output(out) def rvs(self, mean=None, cov=1, size=1, random_state=None): """ Draw random samples from a multivariate normal distribution. Parameters ---------- %(_mvn_doc_default_callparams)s size : integer, optional Number of samples to draw (default 1). %(_doc_random_state)s Returns ------- rvs : ndarray or scalar Random variates of size (`size`, `N`), where `N` is the dimension of the random variable. Notes ----- %(_mvn_doc_callparams_note)s """ dim, mean, cov = self._process_parameters(None, mean, cov) random_state = self._get_random_state(random_state) out = random_state.multivariate_normal(mean, cov, size) return _squeeze_output(out) def entropy(self, mean=None, cov=1): """ Compute the differential entropy of the multivariate normal. Parameters ---------- %(_mvn_doc_default_callparams)s Returns ------- h : scalar Entropy of the multivariate normal distribution Notes ----- %(_mvn_doc_callparams_note)s """ dim, mean, cov = self._process_parameters(None, mean, cov) _, logdet = np.linalg.slogdet(2 * np.pi * np.e * cov) return 0.5 * logdet multivariate_normal = multivariate_normal_gen() class multivariate_normal_frozen(multi_rv_frozen): def __init__(self, mean=None, cov=1, allow_singular=False, seed=None): """ Create a frozen multivariate normal distribution. Parameters ---------- mean : array_like, optional Mean of the distribution (default zero) cov : array_like, optional Covariance matrix of the distribution (default one) allow_singular : bool, optional If this flag is True then tolerate a singular covariance matrix (default False). seed : None or int or np.random.RandomState instance, optional This parameter defines the RandomState object to use for drawing random variates. If None (or np.random), the global np.random state is used. If integer, it is used to seed the local RandomState instance Default is None. Examples -------- When called with the default parameters, this will create a 1D random variable with mean 0 and covariance 1: >>> from scipy.stats import multivariate_normal >>> r = multivariate_normal() >>> r.mean array([ 0.]) >>> r.cov array([[1.]]) """ self._dist = multivariate_normal_gen(seed) self.dim, self.mean, self.cov = self._dist._process_parameters( None, mean, cov) self.cov_info = _PSD(self.cov, allow_singular=allow_singular) def logpdf(self, x): x = self._dist._process_quantiles(x, self.dim) out = self._dist._logpdf(x, self.mean, self.cov_info.U, self.cov_info.log_pdet, self.cov_info.rank) return _squeeze_output(out) def pdf(self, x): return np.exp(self.logpdf(x)) def rvs(self, size=1, random_state=None): return self._dist.rvs(self.mean, self.cov, size, random_state) def entropy(self): """ Computes the differential entropy of the multivariate normal. Returns ------- h : scalar Entropy of the multivariate normal distribution """ log_pdet = self.cov_info.log_pdet rank = self.cov_info.rank return 0.5 * (rank * (_LOG_2PI + 1) + log_pdet) # Set frozen generator docstrings from corresponding docstrings in # multivariate_normal_gen and fill in default strings in class docstrings for name in ['logpdf', 'pdf', 'rvs']: method = multivariate_normal_gen.__dict__[name] method_frozen = multivariate_normal_frozen.__dict__[name] method_frozen.__doc__ = doccer.docformat(method.__doc__, mvn_docdict_noparams) method.__doc__ = doccer.docformat(method.__doc__, mvn_docdict_params) _matnorm_doc_default_callparams = """\ mean : array_like, optional Mean of the distribution (default: `None`) rowcov : array_like, optional Among-row covariance matrix of the distribution (default: `1`) colcov : array_like, optional Among-column covariance matrix of the distribution (default: `1`) """ _matnorm_doc_callparams_note = \ """If `mean` is set to `None` then a matrix of zeros is used for the mean. The dimensions of this matrix are inferred from the shape of `rowcov` and `colcov`, if these are provided, or set to `1` if ambiguous. `rowcov` and `colcov` can be two-dimensional array_likes specifying the covariance matrices directly. Alternatively, a one-dimensional array will be be interpreted as the entries of a diagonal matrix, and a scalar or zero-dimensional array will be interpreted as this value times the identity matrix. """ _matnorm_doc_frozen_callparams = "" _matnorm_doc_frozen_callparams_note = \ """See class definition for a detailed description of parameters.""" matnorm_docdict_params = { '_matnorm_doc_default_callparams': _matnorm_doc_default_callparams, '_matnorm_doc_callparams_note': _matnorm_doc_callparams_note, '_doc_random_state': _doc_random_state } matnorm_docdict_noparams = { '_matnorm_doc_default_callparams': _matnorm_doc_frozen_callparams, '_matnorm_doc_callparams_note': _matnorm_doc_frozen_callparams_note, '_doc_random_state': _doc_random_state } class matrix_normal_gen(multi_rv_generic): r""" A matrix normal random variable. The `mean` keyword specifies the mean. The `rowcov` keyword specifies the among-row covariance matrix. The 'colcov' keyword specifies the among-column covariance matrix. Methods ------- ``pdf(X, mean=None, rowcov=1, colcov=1)`` Probability density function. ``logpdf(X, mean=None, rowcov=1, colcov=1)`` Log of the probability density function. ``rvs(mean=None, rowcov=1, colcov=1, size=1, random_state=None)`` Draw random samples. Parameters ---------- X : array_like Quantiles, with the last two axes of `X` denoting the components. %(_matnorm_doc_default_callparams)s %(_doc_random_state)s Alternatively, the object may be called (as a function) to fix the mean and covariance parameters, returning a "frozen" matrix normal random variable: rv = matrix_normal(mean=None, rowcov=1, colcov=1) - Frozen object with the same methods but holding the given mean and covariance fixed. Notes ----- %(_matnorm_doc_callparams_note)s The covariance matrices specified by `rowcov` and `colcov` must be (symmetric) positive definite. If the samples in `X` are :math:`m \times n`, then `rowcov` must be :math:`m \times m` and `colcov` must be :math:`n \times n`. `mean` must be the same shape as `X`. The probability density function for `matrix_normal` is .. math:: f(X) = (2 \pi)^{-\frac{mn}{2}}|U|^{-\frac{n}{2}} |V|^{-\frac{m}{2}} \exp\left( -\frac{1}{2} \mathrm{Tr}\left[ U^{-1} (X-M) V^{-1} (X-M)^T \right] \right), where :math:`M` is the mean, :math:`U` the among-row covariance matrix, :math:`V` the among-column covariance matrix. The `allow_singular` behaviour of the `multivariate_normal` distribution is not currently supported. Covariance matrices must be full rank. The `matrix_normal` distribution is closely related to the `multivariate_normal` distribution. Specifically, :math:`\mathrm{Vec}(X)` (the vector formed by concatenating the columns of :math:`X`) has a multivariate normal distribution with mean :math:`\mathrm{Vec}(M)` and covariance :math:`V \otimes U` (where :math:`\otimes` is the Kronecker product). Sampling and pdf evaluation are :math:`\mathcal{O}(m^3 + n^3 + m^2 n + m n^2)` for the matrix normal, but :math:`\mathcal{O}(m^3 n^3)` for the equivalent multivariate normal, making this equivalent form algorithmically inefficient. .. versionadded:: 0.17.0 Examples -------- >>> from scipy.stats import matrix_normal >>> M = np.arange(6).reshape(3,2); M array([[0, 1], [2, 3], [4, 5]]) >>> U = np.diag([1,2,3]); U array([[1, 0, 0], [0, 2, 0], [0, 0, 3]]) >>> V = 0.3*np.identity(2); V array([[ 0.3, 0. ], [ 0. , 0.3]]) >>> X = M + 0.1; X array([[ 0.1, 1.1], [ 2.1, 3.1], [ 4.1, 5.1]]) >>> matrix_normal.pdf(X, mean=M, rowcov=U, colcov=V) 0.023410202050005054 >>> # Equivalent multivariate normal >>> from scipy.stats import multivariate_normal >>> vectorised_X = X.T.flatten() >>> equiv_mean = M.T.flatten() >>> equiv_cov = np.kron(V,U) >>> multivariate_normal.pdf(vectorised_X, mean=equiv_mean, cov=equiv_cov) 0.023410202050005054 """ def __init__(self, seed=None): super(matrix_normal_gen, self).__init__(seed) self.__doc__ = doccer.docformat(self.__doc__, matnorm_docdict_params) def __call__(self, mean=None, rowcov=1, colcov=1, seed=None): """ Create a frozen matrix normal distribution. See `matrix_normal_frozen` for more information. """ return matrix_normal_frozen(mean, rowcov, colcov, seed=seed) def _process_parameters(self, mean, rowcov, colcov): """ Infer dimensionality from mean or covariance matrices. Handle defaults. Ensure compatible dimensions. """ # Process mean if mean is not None: mean = np.asarray(mean, dtype=float) meanshape = mean.shape if len(meanshape) != 2: raise ValueError("Array `mean` must be two dimensional.") if np.any(meanshape == 0): raise ValueError("Array `mean` has invalid shape.") # Process among-row covariance rowcov = np.asarray(rowcov, dtype=float) if rowcov.ndim == 0: if mean is not None: rowcov = rowcov * np.identity(meanshape[0]) else: rowcov = rowcov * np.identity(1) elif rowcov.ndim == 1: rowcov = np.diag(rowcov) rowshape = rowcov.shape if len(rowshape) != 2: raise ValueError("`rowcov` must be a scalar or a 2D array.") if rowshape[0] != rowshape[1]: raise ValueError("Array `rowcov` must be square.") if rowshape[0] == 0: raise ValueError("Array `rowcov` has invalid shape.") numrows = rowshape[0] # Process among-column covariance colcov = np.asarray(colcov, dtype=float) if colcov.ndim == 0: if mean is not None: colcov = colcov * np.identity(meanshape[1]) else: colcov = colcov * np.identity(1) elif colcov.ndim == 1: colcov = np.diag(colcov) colshape = colcov.shape if len(colshape) != 2: raise ValueError("`colcov` must be a scalar or a 2D array.") if colshape[0] != colshape[1]: raise ValueError("Array `colcov` must be square.") if colshape[0] == 0: raise ValueError("Array `colcov` has invalid shape.") numcols = colshape[0] # Ensure mean and covariances compatible if mean is not None: if meanshape[0] != numrows: raise ValueError("Arrays `mean` and `rowcov` must have the" "same number of rows.") if meanshape[1] != numcols: raise ValueError("Arrays `mean` and `colcov` must have the" "same number of columns.") else: mean = np.zeros((numrows,numcols)) dims = (numrows, numcols) return dims, mean, rowcov, colcov def _process_quantiles(self, X, dims): """ Adjust quantiles array so that last two axes labels the components of each data point. """ X = np.asarray(X, dtype=float) if X.ndim == 2: X = X[np.newaxis, :] if X.shape[-2:] != dims: raise ValueError("The shape of array `X` is not compatible " "with the distribution parameters.") return X def _logpdf(self, dims, X, mean, row_prec_rt, log_det_rowcov, col_prec_rt, log_det_colcov): """ Parameters ---------- dims : tuple Dimensions of the matrix variates X : ndarray Points at which to evaluate the log of the probability density function mean : ndarray Mean of the distribution row_prec_rt : ndarray A decomposition such that np.dot(row_prec_rt, row_prec_rt.T) is the inverse of the among-row covariance matrix log_det_rowcov : float Logarithm of the determinant of the among-row covariance matrix col_prec_rt : ndarray A decomposition such that np.dot(col_prec_rt, col_prec_rt.T) is the inverse of the among-column covariance matrix log_det_colcov : float Logarithm of the determinant of the among-column covariance matrix Notes ----- As this function does no argument checking, it should not be called directly; use 'logpdf' instead. """ numrows, numcols = dims roll_dev = np.rollaxis(X-mean, axis=-1, start=0) scale_dev = np.tensordot(col_prec_rt.T, np.dot(roll_dev, row_prec_rt), 1) maha = np.sum(np.sum(np.square(scale_dev), axis=-1), axis=0) return -0.5 * (numrows*numcols*_LOG_2PI + numcols*log_det_rowcov + numrows*log_det_colcov + maha) def logpdf(self, X, mean=None, rowcov=1, colcov=1): """ Log of the matrix normal probability density function. Parameters ---------- X : array_like Quantiles, with the last two axes of `X` denoting the components. %(_matnorm_doc_default_callparams)s Returns ------- logpdf : ndarray Log of the probability density function evaluated at `X` Notes ----- %(_matnorm_doc_callparams_note)s """ dims, mean, rowcov, colcov = self._process_parameters(mean, rowcov, colcov) X = self._process_quantiles(X, dims) rowpsd = _PSD(rowcov, allow_singular=False) colpsd = _PSD(colcov, allow_singular=False) out = self._logpdf(dims, X, mean, rowpsd.U, rowpsd.log_pdet, colpsd.U, colpsd.log_pdet) return _squeeze_output(out) def pdf(self, X, mean=None, rowcov=1, colcov=1): """ Matrix normal probability density function. Parameters ---------- X : array_like Quantiles, with the last two axes of `X` denoting the components. %(_matnorm_doc_default_callparams)s Returns ------- pdf : ndarray Probability density function evaluated at `X` Notes ----- %(_matnorm_doc_callparams_note)s """ return np.exp(self.logpdf(X, mean, rowcov, colcov)) def rvs(self, mean=None, rowcov=1, colcov=1, size=1, random_state=None): """ Draw random samples from a matrix normal distribution. Parameters ---------- %(_matnorm_doc_default_callparams)s size : integer, optional Number of samples to draw (default 1). %(_doc_random_state)s Returns ------- rvs : ndarray or scalar Random variates of size (`size`, `dims`), where `dims` is the dimension of the random matrices. Notes ----- %(_matnorm_doc_callparams_note)s """ size = int(size) dims, mean, rowcov, colcov = self._process_parameters(mean, rowcov, colcov) rowchol = scipy.linalg.cholesky(rowcov, lower=True) colchol = scipy.linalg.cholesky(colcov, lower=True) random_state = self._get_random_state(random_state) std_norm = random_state.standard_normal(size=(dims[1],size,dims[0])) roll_rvs = np.tensordot(colchol, np.dot(std_norm, rowchol.T), 1) out = np.rollaxis(roll_rvs.T, axis=1, start=0) + mean[np.newaxis,:,:] if size == 1: #out = np.squeeze(out, axis=0) out = out.reshape(mean.shape) return out matrix_normal = matrix_normal_gen() class matrix_normal_frozen(multi_rv_frozen): def __init__(self, mean=None, rowcov=1, colcov=1, seed=None): """ Create a frozen matrix normal distribution. Parameters ---------- %(_matnorm_doc_default_callparams)s seed : None or int or np.random.RandomState instance, optional If int or RandomState, use it for drawing the random variates. If None (or np.random), the global np.random state is used. Default is None. Examples -------- >>> from scipy.stats import matrix_normal >>> distn = matrix_normal(mean=np.zeros((3,3))) >>> X = distn.rvs(); X array([[-0.02976962, 0.93339138, -0.09663178], [ 0.67405524, 0.28250467, -0.93308929], [-0.31144782, 0.74535536, 1.30412916]]) >>> distn.pdf(X) 2.5160642368346784e-05 >>> distn.logpdf(X) -10.590229595124615 """ self._dist = matrix_normal_gen(seed) self.dims, self.mean, self.rowcov, self.colcov = \ self._dist._process_parameters(mean, rowcov, colcov) self.rowpsd = _PSD(self.rowcov, allow_singular=False) self.colpsd = _PSD(self.colcov, allow_singular=False) def logpdf(self, X): X = self._dist._process_quantiles(X, self.dims) out = self._dist._logpdf(self.dims, X, self.mean, self.rowpsd.U, self.rowpsd.log_pdet, self.colpsd.U, self.colpsd.log_pdet) return _squeeze_output(out) def pdf(self, X): return np.exp(self.logpdf(X)) def rvs(self, size=1, random_state=None): return self._dist.rvs(self.mean, self.rowcov, self.colcov, size, random_state) # Set frozen generator docstrings from corresponding docstrings in # matrix_normal_gen and fill in default strings in class docstrings for name in ['logpdf', 'pdf', 'rvs']: method = matrix_normal_gen.__dict__[name] method_frozen = matrix_normal_frozen.__dict__[name] method_frozen.__doc__ = doccer.docformat(method.__doc__, matnorm_docdict_noparams) method.__doc__ = doccer.docformat(method.__doc__, matnorm_docdict_params) _dirichlet_doc_default_callparams = """\ alpha : array_like The concentration parameters. The number of entries determines the dimensionality of the distribution. """ _dirichlet_doc_frozen_callparams = "" _dirichlet_doc_frozen_callparams_note = \ """See class definition for a detailed description of parameters.""" dirichlet_docdict_params = { '_dirichlet_doc_default_callparams': _dirichlet_doc_default_callparams, '_doc_random_state': _doc_random_state } dirichlet_docdict_noparams = { '_dirichlet_doc_default_callparams': _dirichlet_doc_frozen_callparams, '_doc_random_state': _doc_random_state } def _dirichlet_check_parameters(alpha): alpha = np.asarray(alpha) if np.min(alpha) <= 0: raise ValueError("All parameters must be greater than 0") elif alpha.ndim != 1: raise ValueError("Parameter vector 'a' must be one dimensional, " "but a.shape = %s." % (alpha.shape, )) return alpha def _dirichlet_check_input(alpha, x): x = np.asarray(x) if x.shape[0] + 1 != alpha.shape[0] and x.shape[0] != alpha.shape[0]: raise ValueError("Vector 'x' must have either the same number " "of entries as, or one entry fewer than, " "parameter vector 'a', but alpha.shape = %s " "and x.shape = %s." % (alpha.shape, x.shape)) if x.shape[0] != alpha.shape[0]: xk = np.array([1 - np.sum(x, 0)]) if xk.ndim == 1: x = np.append(x, xk) elif xk.ndim == 2: x = np.vstack((x, xk)) else: raise ValueError("The input must be one dimensional or a two " "dimensional matrix containing the entries.") if np.min(x) <= 0: raise ValueError("Each entry in 'x' must be greater than zero.") if np.max(x) > 1: raise ValueError("Each entry in 'x' must be smaller or equal one.") if (np.abs(np.sum(x, 0) - 1.0) > 10e-10).any(): raise ValueError("The input vector 'x' must lie within the normal " "simplex. but np.sum(x, 0) = %s." % np.sum(x, 0)) return x def _lnB(alpha): r""" Internal helper function to compute the log of the useful quotient .. math:: B(\alpha) = \frac{\prod_{i=1}{K}\Gamma(\alpha_i)}{\Gamma\left(\sum_{i=1}^{K}\alpha_i\right)} Parameters ---------- %(_dirichlet_doc_default_callparams)s Returns ------- B : scalar Helper quotient, internal use only """ return np.sum(gammaln(alpha)) - gammaln(np.sum(alpha)) class dirichlet_gen(multi_rv_generic): r""" A Dirichlet random variable. The `alpha` keyword specifies the concentration parameters of the distribution. .. versionadded:: 0.15.0 Methods ------- ``pdf(x, alpha)`` Probability density function. ``logpdf(x, alpha)`` Log of the probability density function. ``rvs(alpha, size=1, random_state=None)`` Draw random samples from a Dirichlet distribution. ``mean(alpha)`` The mean of the Dirichlet distribution ``var(alpha)`` The variance of the Dirichlet distribution ``entropy(alpha)`` Compute the differential entropy of the multivariate normal. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_dirichlet_doc_default_callparams)s %(_doc_random_state)s Alternatively, the object may be called (as a function) to fix concentration parameters, returning a "frozen" Dirichlet random variable: rv = dirichlet(alpha) - Frozen object with the same methods but holding the given concentration parameters fixed. Notes ----- Each :math:`\alpha` entry must be positive. The distribution has only support on the simplex defined by .. math:: \sum_{i=1}^{K} x_i \le 1 The probability density function for `dirichlet` is .. math:: f(x) = \frac{1}{\mathrm{B}(\boldsymbol\alpha)} \prod_{i=1}^K x_i^{\alpha_i - 1} where .. math:: \mathrm{B}(\boldsymbol\alpha) = \frac{\prod_{i=1}^K \Gamma(\alpha_i)} {\Gamma\bigl(\sum_{i=1}^K \alpha_i\bigr)} and :math:`\boldsymbol\alpha=(\alpha_1,\ldots,\alpha_K)`, the concentration parameters and :math:`K` is the dimension of the space where :math:`x` takes values. Note that the dirichlet interface is somewhat inconsistent. The array returned by the rvs function is transposed with respect to the format expected by the pdf and logpdf. """ def __init__(self, seed=None): super(dirichlet_gen, self).__init__(seed) self.__doc__ = doccer.docformat(self.__doc__, dirichlet_docdict_params) def __call__(self, alpha, seed=None): return dirichlet_frozen(alpha, seed=seed) def _logpdf(self, x, alpha): """ Parameters ---------- x : ndarray Points at which to evaluate the log of the probability density function %(_dirichlet_doc_default_callparams)s Notes ----- As this function does no argument checking, it should not be called directly; use 'logpdf' instead. """ lnB = _lnB(alpha) return - lnB + np.sum((np.log(x.T) * (alpha - 1)).T, 0) def logpdf(self, x, alpha): """ Log of the Dirichlet probability density function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_dirichlet_doc_default_callparams)s Returns ------- pdf : ndarray Log of the probability density function evaluated at `x`. """ alpha = _dirichlet_check_parameters(alpha) x = _dirichlet_check_input(alpha, x) out = self._logpdf(x, alpha) return _squeeze_output(out) def pdf(self, x, alpha): """ The Dirichlet probability density function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_dirichlet_doc_default_callparams)s Returns ------- pdf : ndarray The probability density function evaluated at `x`. """ alpha = _dirichlet_check_parameters(alpha) x = _dirichlet_check_input(alpha, x) out = np.exp(self._logpdf(x, alpha)) return _squeeze_output(out) def mean(self, alpha): """ Compute the mean of the dirichlet distribution. Parameters ---------- %(_dirichlet_doc_default_callparams)s Returns ------- mu : scalar Mean of the Dirichlet distribution """ alpha = _dirichlet_check_parameters(alpha) out = alpha / (np.sum(alpha)) return _squeeze_output(out) def var(self, alpha): """ Compute the variance of the dirichlet distribution. Parameters ---------- %(_dirichlet_doc_default_callparams)s Returns ------- v : scalar Variance of the Dirichlet distribution """ alpha = _dirichlet_check_parameters(alpha) alpha0 = np.sum(alpha) out = (alpha * (alpha0 - alpha)) / ((alpha0 * alpha0) * (alpha0 + 1)) return out def entropy(self, alpha): """ Compute the differential entropy of the dirichlet distribution. Parameters ---------- %(_dirichlet_doc_default_callparams)s Returns ------- h : scalar Entropy of the Dirichlet distribution """ alpha = _dirichlet_check_parameters(alpha) alpha0 = np.sum(alpha) lnB = _lnB(alpha) K = alpha.shape[0] out = lnB + (alpha0 - K) * scipy.special.psi(alpha0) - np.sum( (alpha - 1) * scipy.special.psi(alpha)) return _squeeze_output(out) def rvs(self, alpha, size=1, random_state=None): """ Draw random samples from a Dirichlet distribution. Parameters ---------- %(_dirichlet_doc_default_callparams)s size : int, optional Number of samples to draw (default 1). %(_doc_random_state)s Returns ------- rvs : ndarray or scalar Random variates of size (`size`, `N`), where `N` is the dimension of the random variable. """ alpha = _dirichlet_check_parameters(alpha) random_state = self._get_random_state(random_state) return random_state.dirichlet(alpha, size=size) dirichlet = dirichlet_gen() class dirichlet_frozen(multi_rv_frozen): def __init__(self, alpha, seed=None): self.alpha = _dirichlet_check_parameters(alpha) self._dist = dirichlet_gen(seed) def logpdf(self, x): return self._dist.logpdf(x, self.alpha) def pdf(self, x): return self._dist.pdf(x, self.alpha) def mean(self): return self._dist.mean(self.alpha) def var(self): return self._dist.var(self.alpha) def entropy(self): return self._dist.entropy(self.alpha) def rvs(self, size=1, random_state=None): return self._dist.rvs(self.alpha, size, random_state) # Set frozen generator docstrings from corresponding docstrings in # multivariate_normal_gen and fill in default strings in class docstrings for name in ['logpdf', 'pdf', 'rvs', 'mean', 'var', 'entropy']: method = dirichlet_gen.__dict__[name] method_frozen = dirichlet_frozen.__dict__[name] method_frozen.__doc__ = doccer.docformat( method.__doc__, dirichlet_docdict_noparams) method.__doc__ = doccer.docformat(method.__doc__, dirichlet_docdict_params) _wishart_doc_default_callparams = """\ df : int Degrees of freedom, must be greater than or equal to dimension of the scale matrix scale : array_like Symmetric positive definite scale matrix of the distribution """ _wishart_doc_callparams_note = "" _wishart_doc_frozen_callparams = "" _wishart_doc_frozen_callparams_note = \ """See class definition for a detailed description of parameters.""" wishart_docdict_params = { '_doc_default_callparams': _wishart_doc_default_callparams, '_doc_callparams_note': _wishart_doc_callparams_note, '_doc_random_state': _doc_random_state } wishart_docdict_noparams = { '_doc_default_callparams': _wishart_doc_frozen_callparams, '_doc_callparams_note': _wishart_doc_frozen_callparams_note, '_doc_random_state': _doc_random_state } class wishart_gen(multi_rv_generic): r""" A Wishart random variable. The `df` keyword specifies the degrees of freedom. The `scale` keyword specifies the scale matrix, which must be symmetric and positive definite. In this context, the scale matrix is often interpreted in terms of a multivariate normal precision matrix (the inverse of the covariance matrix). Methods ------- ``pdf(x, df, scale)`` Probability density function. ``logpdf(x, df, scale)`` Log of the probability density function. ``rvs(df, scale, size=1, random_state=None)`` Draw random samples from a Wishart distribution. ``entropy()`` Compute the differential entropy of the Wishart distribution. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_doc_default_callparams)s %(_doc_random_state)s Alternatively, the object may be called (as a function) to fix the degrees of freedom and scale parameters, returning a "frozen" Wishart random variable: rv = wishart(df=1, scale=1) - Frozen object with the same methods but holding the given degrees of freedom and scale fixed. See Also -------- invwishart, chi2 Notes ----- %(_doc_callparams_note)s The scale matrix `scale` must be a symmetric positive definite matrix. Singular matrices, including the symmetric positive semi-definite case, are not supported. The Wishart distribution is often denoted .. math:: W_p(\nu, \Sigma) where :math:`\nu` is the degrees of freedom and :math:`\Sigma` is the :math:`p \times p` scale matrix. The probability density function for `wishart` has support over positive definite matrices :math:`S`; if :math:`S \sim W_p(\nu, \Sigma)`, then its PDF is given by: .. math:: f(S) = \frac{|S|^{\frac{\nu - p - 1}{2}}}{2^{ \frac{\nu p}{2} } |\Sigma|^\frac{\nu}{2} \Gamma_p \left ( \frac{\nu}{2} \right )} \exp\left( -tr(\Sigma^{-1} S) / 2 \right) If :math:`S \sim W_p(\nu, \Sigma)` (Wishart) then :math:`S^{-1} \sim W_p^{-1}(\nu, \Sigma^{-1})` (inverse Wishart). If the scale matrix is 1-dimensional and equal to one, then the Wishart distribution :math:`W_1(\nu, 1)` collapses to the :math:`\chi^2(\nu)` distribution. .. versionadded:: 0.16.0 References ---------- .. [1] M.L. Eaton, "Multivariate Statistics: A Vector Space Approach", Wiley, 1983. .. [2] W.B. Smith and R.R. Hocking, "Algorithm AS 53: Wishart Variate Generator", Applied Statistics, vol. 21, pp. 341-345, 1972. Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy.stats import wishart, chi2 >>> x = np.linspace(1e-5, 8, 100) >>> w = wishart.pdf(x, df=3, scale=1); w[:5] array([ 0.00126156, 0.10892176, 0.14793434, 0.17400548, 0.1929669 ]) >>> c = chi2.pdf(x, 3); c[:5] array([ 0.00126156, 0.10892176, 0.14793434, 0.17400548, 0.1929669 ]) >>> plt.plot(x, w) The input quantiles can be any shape of array, as long as the last axis labels the components. """ def __init__(self, seed=None): super(wishart_gen, self).__init__(seed) self.__doc__ = doccer.docformat(self.__doc__, wishart_docdict_params) def __call__(self, df=None, scale=None, seed=None): """ Create a frozen Wishart distribution. See `wishart_frozen` for more information. """ return wishart_frozen(df, scale, seed) def _process_parameters(self, df, scale): if scale is None: scale = 1.0 scale = np.asarray(scale, dtype=float) if scale.ndim == 0: scale = scale[np.newaxis,np.newaxis] elif scale.ndim == 1: scale = np.diag(scale) elif scale.ndim == 2 and not scale.shape[0] == scale.shape[1]: raise ValueError("Array 'scale' must be square if it is two" " dimensional, but scale.scale = %s." % str(scale.shape)) elif scale.ndim > 2: raise ValueError("Array 'scale' must be at most two-dimensional," " but scale.ndim = %d" % scale.ndim) dim = scale.shape[0] if df is None: df = dim elif not np.isscalar(df): raise ValueError("Degrees of freedom must be a scalar.") elif df < dim: raise ValueError("Degrees of freedom cannot be less than dimension" " of scale matrix, but df = %d" % df) return dim, df, scale def _process_quantiles(self, x, dim): """ Adjust quantiles array so that last axis labels the components of each data point. """ x = np.asarray(x, dtype=float) if x.ndim == 0: x = x * np.eye(dim)[:, :, np.newaxis] if x.ndim == 1: if dim == 1: x = x[np.newaxis, np.newaxis, :] else: x = np.diag(x)[:, :, np.newaxis] elif x.ndim == 2: if not x.shape[0] == x.shape[1]: raise ValueError("Quantiles must be square if they are two" " dimensional, but x.shape = %s." % str(x.shape)) x = x[:, :, np.newaxis] elif x.ndim == 3: if not x.shape[0] == x.shape[1]: raise ValueError("Quantiles must be square in the first two" " dimensions if they are three dimensional" ", but x.shape = %s." % str(x.shape)) elif x.ndim > 3: raise ValueError("Quantiles must be at most two-dimensional with" " an additional dimension for multiple" "components, but x.ndim = %d" % x.ndim) # Now we have 3-dim array; should have shape [dim, dim, *] if not x.shape[0:2] == (dim, dim): raise ValueError('Quantiles have incompatible dimensions: should' ' be %s, got %s.' % ((dim, dim), x.shape[0:2])) return x def _process_size(self, size): size = np.asarray(size) if size.ndim == 0: size = size[np.newaxis] elif size.ndim > 1: raise ValueError('Size must be an integer or tuple of integers;' ' thus must have dimension <= 1.' ' Got size.ndim = %s' % str(tuple(size))) n = size.prod() shape = tuple(size) return n, shape def _logpdf(self, x, dim, df, scale, log_det_scale, C): """ Parameters ---------- x : ndarray Points at which to evaluate the log of the probability density function dim : int Dimension of the scale matrix df : int Degrees of freedom scale : ndarray Scale matrix log_det_scale : float Logarithm of the determinant of the scale matrix C : ndarray Cholesky factorization of the scale matrix, lower triagular. Notes ----- As this function does no argument checking, it should not be called directly; use 'logpdf' instead. """ # log determinant of x # Note: x has components along the last axis, so that x.T has # components alone the 0-th axis. Then since det(A) = det(A'), this # gives us a 1-dim vector of determinants # Retrieve tr(scale^{-1} x) log_det_x = np.zeros(x.shape[-1]) scale_inv_x = np.zeros(x.shape) tr_scale_inv_x = np.zeros(x.shape[-1]) for i in range(x.shape[-1]): _, log_det_x[i] = self._cholesky_logdet(x[:,:,i]) scale_inv_x[:,:,i] = scipy.linalg.cho_solve((C, True), x[:,:,i]) tr_scale_inv_x[i] = scale_inv_x[:,:,i].trace() # Log PDF out = ((0.5 * (df - dim - 1) * log_det_x - 0.5 * tr_scale_inv_x) - (0.5 * df * dim * _LOG_2 + 0.5 * df * log_det_scale + multigammaln(0.5*df, dim))) return out def logpdf(self, x, df, scale): """ Log of the Wishart probability density function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. Each quantile must be a symmetric positive definite matrix. %(_doc_default_callparams)s Returns ------- pdf : ndarray Log of the probability density function evaluated at `x` Notes ----- %(_doc_callparams_note)s """ dim, df, scale = self._process_parameters(df, scale) x = self._process_quantiles(x, dim) # Cholesky decomposition of scale, get log(det(scale)) C, log_det_scale = self._cholesky_logdet(scale) out = self._logpdf(x, dim, df, scale, log_det_scale, C) return _squeeze_output(out) def pdf(self, x, df, scale): """ Wishart probability density function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. Each quantile must be a symmetric positive definite matrix. %(_doc_default_callparams)s Returns ------- pdf : ndarray Probability density function evaluated at `x` Notes ----- %(_doc_callparams_note)s """ return np.exp(self.logpdf(x, df, scale)) def _mean(self, dim, df, scale): """ Parameters ---------- dim : int Dimension of the scale matrix %(_doc_default_callparams)s Notes ----- As this function does no argument checking, it should not be called directly; use 'mean' instead. """ return df * scale def mean(self, df, scale): """ Mean of the Wishart distribution Parameters ---------- %(_doc_default_callparams)s Returns ------- mean : float The mean of the distribution """ dim, df, scale = self._process_parameters(df, scale) out = self._mean(dim, df, scale) return _squeeze_output(out) def _mode(self, dim, df, scale): """ Parameters ---------- dim : int Dimension of the scale matrix %(_doc_default_callparams)s Notes ----- As this function does no argument checking, it should not be called directly; use 'mode' instead. """ if df >= dim + 1: out = (df-dim-1) * scale else: out = None return out def mode(self, df, scale): """ Mode of the Wishart distribution Only valid if the degrees of freedom are greater than the dimension of the scale matrix. Parameters ---------- %(_doc_default_callparams)s Returns ------- mode : float or None The Mode of the distribution """ dim, df, scale = self._process_parameters(df, scale) out = self._mode(dim, df, scale) return _squeeze_output(out) if out is not None else out def _var(self, dim, df, scale): """ Parameters ---------- dim : int Dimension of the scale matrix %(_doc_default_callparams)s Notes ----- As this function does no argument checking, it should not be called directly; use 'var' instead. """ var = scale**2 diag = scale.diagonal() # 1 x dim array var += np.outer(diag, diag) var *= df return var def var(self, df, scale): """ Variance of the Wishart distribution Parameters ---------- %(_doc_default_callparams)s Returns ------- var : float The variance of the distribution """ dim, df, scale = self._process_parameters(df, scale) out = self._var(dim, df, scale) return _squeeze_output(out) def _standard_rvs(self, n, shape, dim, df, random_state): """ Parameters ---------- n : integer Number of variates to generate shape : iterable Shape of the variates to generate dim : int Dimension of the scale matrix df : int Degrees of freedom random_state : np.random.RandomState instance RandomState used for drawing the random variates. Notes ----- As this function does no argument checking, it should not be called directly; use 'rvs' instead. """ # Random normal variates for off-diagonal elements n_tril = dim * (dim-1) // 2 covariances = random_state.normal( size=n*n_tril).reshape(shape+(n_tril,)) # Random chi-square variates for diagonal elements variances = np.r_[[random_state.chisquare(df-(i+1)+1, size=n)**0.5 for i in range(dim)]].reshape((dim,) + shape[::-1]).T # Create the A matri(ces) - lower triangular A = np.zeros(shape + (dim, dim)) # Input the covariances size_idx = tuple([slice(None,None,None)]*len(shape)) tril_idx = np.tril_indices(dim, k=-1) A[size_idx + tril_idx] = covariances # Input the variances diag_idx = np.diag_indices(dim) A[size_idx + diag_idx] = variances return A def _rvs(self, n, shape, dim, df, C, random_state): """ Parameters ---------- n : integer Number of variates to generate shape : iterable Shape of the variates to generate dim : int Dimension of the scale matrix df : int Degrees of freedom scale : ndarray Scale matrix C : ndarray Cholesky factorization of the scale matrix, lower triangular. %(_doc_random_state)s Notes ----- As this function does no argument checking, it should not be called directly; use 'rvs' instead. """ random_state = self._get_random_state(random_state) # Calculate the matrices A, which are actually lower triangular # Cholesky factorizations of a matrix B such that B ~ W(df, I) A = self._standard_rvs(n, shape, dim, df, random_state) # Calculate SA = C A A' C', where SA ~ W(df, scale) # Note: this is the product of a (lower) (lower) (lower)' (lower)' # or, denoting B = AA', it is C B C' where C is the lower # triangular Cholesky factorization of the scale matrix. # this appears to conflict with the instructions in [1]_, which # suggest that it should be D' B D where D is the lower # triangular factorization of the scale matrix. However, it is # meant to refer to the Bartlett (1933) representation of a # Wishart random variate as L A A' L' where L is lower triangular # so it appears that understanding D' to be upper triangular # is either a typo in or misreading of [1]_. for index in np.ndindex(shape): CA = np.dot(C, A[index]) A[index] = np.dot(CA, CA.T) return A def rvs(self, df, scale, size=1, random_state=None): """ Draw random samples from a Wishart distribution. Parameters ---------- %(_doc_default_callparams)s size : integer or iterable of integers, optional Number of samples to draw (default 1). %(_doc_random_state)s Returns ------- rvs : ndarray Random variates of shape (`size`) + (`dim`, `dim), where `dim` is the dimension of the scale matrix. Notes ----- %(_doc_callparams_note)s """ n, shape = self._process_size(size) dim, df, scale = self._process_parameters(df, scale) # Cholesky decomposition of scale C = scipy.linalg.cholesky(scale, lower=True) out = self._rvs(n, shape, dim, df, C, random_state) return _squeeze_output(out) def _entropy(self, dim, df, log_det_scale): """ Parameters ---------- dim : int Dimension of the scale matrix df : int Degrees of freedom log_det_scale : float Logarithm of the determinant of the scale matrix Notes ----- As this function does no argument checking, it should not be called directly; use 'entropy' instead. """ return ( 0.5 * (dim+1) * log_det_scale + 0.5 * dim * (dim+1) * _LOG_2 + multigammaln(0.5*df, dim) - 0.5 * (df - dim - 1) * np.sum( [psi(0.5*(df + 1 - (i+1))) for i in range(dim)] ) + 0.5 * df * dim ) def entropy(self, df, scale): """ Compute the differential entropy of the Wishart. Parameters ---------- %(_doc_default_callparams)s Returns ------- h : scalar Entropy of the Wishart distribution Notes ----- %(_doc_callparams_note)s """ dim, df, scale = self._process_parameters(df, scale) _, log_det_scale = self._cholesky_logdet(scale) return self._entropy(dim, df, log_det_scale) def _cholesky_logdet(self, scale): """ Compute Cholesky decomposition and determine (log(det(scale)). Parameters ---------- scale : ndarray Scale matrix. Returns ------- c_decomp : ndarray The Cholesky decomposition of `scale`. logdet : scalar The log of the determinant of `scale`. Notes ----- This computation of ``logdet`` is equivalent to ``np.linalg.slogdet(scale)``. It is ~2x faster though. """ c_decomp = scipy.linalg.cholesky(scale, lower=True) logdet = 2 * np.sum(np.log(c_decomp.diagonal())) return c_decomp, logdet wishart = wishart_gen() class wishart_frozen(multi_rv_frozen): """ Create a frozen Wishart distribution. Parameters ---------- df : array_like Degrees of freedom of the distribution scale : array_like Scale matrix of the distribution seed : None or int or np.random.RandomState instance, optional This parameter defines the RandomState object to use for drawing random variates. If None (or np.random), the global np.random state is used. If integer, it is used to seed the local RandomState instance Default is None. """ def __init__(self, df, scale, seed=None): self._dist = wishart_gen(seed) self.dim, self.df, self.scale = self._dist._process_parameters( df, scale) self.C, self.log_det_scale = self._dist._cholesky_logdet(self.scale) def logpdf(self, x): x = self._dist._process_quantiles(x, self.dim) out = self._dist._logpdf(x, self.dim, self.df, self.scale, self.log_det_scale, self.C) return _squeeze_output(out) def pdf(self, x): return np.exp(self.logpdf(x)) def mean(self): out = self._dist._mean(self.dim, self.df, self.scale) return _squeeze_output(out) def mode(self): out = self._dist._mode(self.dim, self.df, self.scale) return _squeeze_output(out) if out is not None else out def var(self): out = self._dist._var(self.dim, self.df, self.scale) return _squeeze_output(out) def rvs(self, size=1, random_state=None): n, shape = self._dist._process_size(size) out = self._dist._rvs(n, shape, self.dim, self.df, self.C, random_state) return _squeeze_output(out) def entropy(self): return self._dist._entropy(self.dim, self.df, self.log_det_scale) # Set frozen generator docstrings from corresponding docstrings in # Wishart and fill in default strings in class docstrings for name in ['logpdf', 'pdf', 'mean', 'mode', 'var', 'rvs', 'entropy']: method = wishart_gen.__dict__[name] method_frozen = wishart_frozen.__dict__[name] method_frozen.__doc__ = doccer.docformat( method.__doc__, wishart_docdict_noparams) method.__doc__ = doccer.docformat(method.__doc__, wishart_docdict_params) from numpy import asarray_chkfinite, asarray from scipy.linalg.misc import LinAlgError from scipy.linalg.lapack import get_lapack_funcs def _cho_inv_batch(a, check_finite=True): """ Invert the matrices a_i, using a Cholesky factorization of A, where a_i resides in the last two dimensions of a and the other indices describe the index i. Overwrites the data in a. Parameters ---------- a : array Array of matrices to invert, where the matrices themselves are stored in the last two dimensions. check_finite : bool, optional Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Returns ------- x : array Array of inverses of the matrices ``a_i``. See also -------- scipy.linalg.cholesky : Cholesky factorization of a matrix """ if check_finite: a1 = asarray_chkfinite(a) else: a1 = asarray(a) if len(a1.shape) < 2 or a1.shape[-2] != a1.shape[-1]: raise ValueError('expected square matrix in last two dimensions') potrf, potri = get_lapack_funcs(('potrf','potri'), (a1,)) tril_idx = np.tril_indices(a.shape[-2], k=-1) triu_idx = np.triu_indices(a.shape[-2], k=1) for index in np.ndindex(a1.shape[:-2]): # Cholesky decomposition a1[index], info = potrf(a1[index], lower=True, overwrite_a=False, clean=False) if info > 0: raise LinAlgError("%d-th leading minor not positive definite" % info) if info < 0: raise ValueError('illegal value in %d-th argument of internal' ' potrf' % -info) # Inversion a1[index], info = potri(a1[index], lower=True, overwrite_c=False) if info > 0: raise LinAlgError("the inverse could not be computed") if info < 0: raise ValueError('illegal value in %d-th argument of internal' ' potrf' % -info) # Make symmetric (dpotri only fills in the lower triangle) a1[index][triu_idx] = a1[index][tril_idx] return a1 class invwishart_gen(wishart_gen): r""" An inverse Wishart random variable. The `df` keyword specifies the degrees of freedom. The `scale` keyword specifies the scale matrix, which must be symmetric and positive definite. In this context, the scale matrix is often interpreted in terms of a multivariate normal covariance matrix. Methods ------- ``pdf(x, df, scale)`` Probability density function. ``logpdf(x, df, scale)`` Log of the probability density function. ``rvs(df, scale, size=1, random_state=None)`` Draw random samples from an inverse Wishart distribution. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_doc_default_callparams)s %(_doc_random_state)s Alternatively, the object may be called (as a function) to fix the degrees of freedom and scale parameters, returning a "frozen" inverse Wishart random variable: rv = invwishart(df=1, scale=1) - Frozen object with the same methods but holding the given degrees of freedom and scale fixed. See Also -------- wishart Notes ----- %(_doc_callparams_note)s The scale matrix `scale` must be a symmetric positive definite matrix. Singular matrices, including the symmetric positive semi-definite case, are not supported. The inverse Wishart distribution is often denoted .. math:: W_p^{-1}(\nu, \Psi) where :math:`\nu` is the degrees of freedom and :math:`\Psi` is the :math:`p \times p` scale matrix. The probability density function for `invwishart` has support over positive definite matrices :math:`S`; if :math:`S \sim W^{-1}_p(\nu, \Sigma)`, then its PDF is given by: .. math:: f(S) = \frac{|\Sigma|^\frac{\nu}{2}}{2^{ \frac{\nu p}{2} } |S|^{\frac{\nu + p + 1}{2}} \Gamma_p \left(\frac{\nu}{2} \right)} \exp\left( -tr(\Sigma S^{-1}) / 2 \right) If :math:`S \sim W_p^{-1}(\nu, \Psi)` (inverse Wishart) then :math:`S^{-1} \sim W_p(\nu, \Psi^{-1})` (Wishart). If the scale matrix is 1-dimensional and equal to one, then the inverse Wishart distribution :math:`W_1(\nu, 1)` collapses to the inverse Gamma distribution with parameters shape = :math:`\frac{\nu}{2}` and scale = :math:`\frac{1}{2}`. .. versionadded:: 0.16.0 References ---------- .. [1] M.L. Eaton, "Multivariate Statistics: A Vector Space Approach", Wiley, 1983. .. [2] M.C. Jones, "Generating Inverse Wishart Matrices", Communications in Statistics - Simulation and Computation, vol. 14.2, pp.511-514, 1985. Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy.stats import invwishart, invgamma >>> x = np.linspace(0.01, 1, 100) >>> iw = invwishart.pdf(x, df=6, scale=1) >>> iw[:3] array([ 1.20546865e-15, 5.42497807e-06, 4.45813929e-03]) >>> ig = invgamma.pdf(x, 6/2., scale=1./2) >>> ig[:3] array([ 1.20546865e-15, 5.42497807e-06, 4.45813929e-03]) >>> plt.plot(x, iw) The input quantiles can be any shape of array, as long as the last axis labels the components. """ def __init__(self, seed=None): super(invwishart_gen, self).__init__(seed) self.__doc__ = doccer.docformat(self.__doc__, wishart_docdict_params) def __call__(self, df=None, scale=None, seed=None): """ Create a frozen inverse Wishart distribution. See `invwishart_frozen` for more information. """ return invwishart_frozen(df, scale, seed) def _logpdf(self, x, dim, df, scale, log_det_scale): """ Parameters ---------- x : ndarray Points at which to evaluate the log of the probability density function. dim : int Dimension of the scale matrix df : int Degrees of freedom scale : ndarray Scale matrix log_det_scale : float Logarithm of the determinant of the scale matrix Notes ----- As this function does no argument checking, it should not be called directly; use 'logpdf' instead. """ log_det_x = np.zeros(x.shape[-1]) #scale_x_inv = np.zeros(x.shape) x_inv = np.copy(x).T if dim > 1: _cho_inv_batch(x_inv) # works in-place else: x_inv = 1./x_inv tr_scale_x_inv = np.zeros(x.shape[-1]) for i in range(x.shape[-1]): C, lower = scipy.linalg.cho_factor(x[:,:,i], lower=True) log_det_x[i] = 2 * np.sum(np.log(C.diagonal())) #scale_x_inv[:,:,i] = scipy.linalg.cho_solve((C, True), scale).T tr_scale_x_inv[i] = np.dot(scale, x_inv[i]).trace() # Log PDF out = ((0.5 * df * log_det_scale - 0.5 * tr_scale_x_inv) - (0.5 * df * dim * _LOG_2 + 0.5 * (df + dim + 1) * log_det_x) - multigammaln(0.5*df, dim)) return out def logpdf(self, x, df, scale): """ Log of the inverse Wishart probability density function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. Each quantile must be a symmetric positive definite matrix. %(_doc_default_callparams)s Returns ------- pdf : ndarray Log of the probability density function evaluated at `x` Notes ----- %(_doc_callparams_note)s """ dim, df, scale = self._process_parameters(df, scale) x = self._process_quantiles(x, dim) _, log_det_scale = self._cholesky_logdet(scale) out = self._logpdf(x, dim, df, scale, log_det_scale) return _squeeze_output(out) def pdf(self, x, df, scale): """ Inverse Wishart probability density function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. Each quantile must be a symmetric positive definite matrix. %(_doc_default_callparams)s Returns ------- pdf : ndarray Probability density function evaluated at `x` Notes ----- %(_doc_callparams_note)s """ return np.exp(self.logpdf(x, df, scale)) def _mean(self, dim, df, scale): """ Parameters ---------- dim : int Dimension of the scale matrix %(_doc_default_callparams)s Notes ----- As this function does no argument checking, it should not be called directly; use 'mean' instead. """ if df > dim + 1: out = scale / (df - dim - 1) else: out = None return out def mean(self, df, scale): """ Mean of the inverse Wishart distribution Only valid if the degrees of freedom are greater than the dimension of the scale matrix plus one. Parameters ---------- %(_doc_default_callparams)s Returns ------- mean : float or None The mean of the distribution """ dim, df, scale = self._process_parameters(df, scale) out = self._mean(dim, df, scale) return _squeeze_output(out) if out is not None else out def _mode(self, dim, df, scale): """ Parameters ---------- dim : int Dimension of the scale matrix %(_doc_default_callparams)s Notes ----- As this function does no argument checking, it should not be called directly; use 'mode' instead. """ return scale / (df + dim + 1) def mode(self, df, scale): """ Mode of the inverse Wishart distribution Parameters ---------- %(_doc_default_callparams)s Returns ------- mode : float The Mode of the distribution """ dim, df, scale = self._process_parameters(df, scale) out = self._mode(dim, df, scale) return _squeeze_output(out) def _var(self, dim, df, scale): """ Parameters ---------- dim : int Dimension of the scale matrix %(_doc_default_callparams)s Notes ----- As this function does no argument checking, it should not be called directly; use 'var' instead. """ if df > dim + 3: var = (df - dim + 1) * scale**2 diag = scale.diagonal() # 1 x dim array var += (df - dim - 1) * np.outer(diag, diag) var /= (df - dim) * (df - dim - 1)**2 * (df - dim - 3) else: var = None return var def var(self, df, scale): """ Variance of the inverse Wishart distribution Only valid if the degrees of freedom are greater than the dimension of the scale matrix plus three. Parameters ---------- %(_doc_default_callparams)s Returns ------- var : float The variance of the distribution """ dim, df, scale = self._process_parameters(df, scale) out = self._var(dim, df, scale) return _squeeze_output(out) if out is not None else out def _rvs(self, n, shape, dim, df, C, random_state): """ Parameters ---------- n : integer Number of variates to generate shape : iterable Shape of the variates to generate dim : int Dimension of the scale matrix df : int Degrees of freedom C : ndarray Cholesky factorization of the scale matrix, lower triagular. %(_doc_random_state)s Notes ----- As this function does no argument checking, it should not be called directly; use 'rvs' instead. """ random_state = self._get_random_state(random_state) # Get random draws A such that A ~ W(df, I) A = super(invwishart_gen, self)._standard_rvs(n, shape, dim, df, random_state) # Calculate SA = (CA)'^{-1} (CA)^{-1} ~ iW(df, scale) eye = np.eye(dim) trtrs = get_lapack_funcs(('trtrs'), (A,)) for index in np.ndindex(A.shape[:-2]): # Calculate CA CA = np.dot(C, A[index]) # Get (C A)^{-1} via triangular solver if dim > 1: CA, info = trtrs(CA, eye, lower=True) if info > 0: raise LinAlgError("Singular matrix.") if info < 0: raise ValueError('Illegal value in %d-th argument of' ' internal trtrs' % -info) else: CA = 1. / CA # Get SA A[index] = np.dot(CA.T, CA) return A def rvs(self, df, scale, size=1, random_state=None): """ Draw random samples from an inverse Wishart distribution. Parameters ---------- %(_doc_default_callparams)s size : integer or iterable of integers, optional Number of samples to draw (default 1). %(_doc_random_state)s Returns ------- rvs : ndarray Random variates of shape (`size`) + (`dim`, `dim), where `dim` is the dimension of the scale matrix. Notes ----- %(_doc_callparams_note)s """ n, shape = self._process_size(size) dim, df, scale = self._process_parameters(df, scale) # Invert the scale eye = np.eye(dim) L, lower = scipy.linalg.cho_factor(scale, lower=True) inv_scale = scipy.linalg.cho_solve((L, lower), eye) # Cholesky decomposition of inverted scale C = scipy.linalg.cholesky(inv_scale, lower=True) out = self._rvs(n, shape, dim, df, C, random_state) return _squeeze_output(out) def entropy(self): # Need to find reference for inverse Wishart entropy raise AttributeError invwishart = invwishart_gen() class invwishart_frozen(multi_rv_frozen): def __init__(self, df, scale, seed=None): """ Create a frozen inverse Wishart distribution. Parameters ---------- df : array_like Degrees of freedom of the distribution scale : array_like Scale matrix of the distribution seed : None or int or np.random.RandomState instance, optional This parameter defines the RandomState object to use for drawing random variates. If None (or np.random), the global np.random state is used. If integer, it is used to seed the local RandomState instance Default is None. """ self._dist = invwishart_gen(seed) self.dim, self.df, self.scale = self._dist._process_parameters( df, scale ) # Get the determinant via Cholesky factorization C, lower = scipy.linalg.cho_factor(self.scale, lower=True) self.log_det_scale = 2 * np.sum(np.log(C.diagonal())) # Get the inverse using the Cholesky factorization eye = np.eye(self.dim) self.inv_scale = scipy.linalg.cho_solve((C, lower), eye) # Get the Cholesky factorization of the inverse scale self.C = scipy.linalg.cholesky(self.inv_scale, lower=True) def logpdf(self, x): x = self._dist._process_quantiles(x, self.dim) out = self._dist._logpdf(x, self.dim, self.df, self.scale, self.log_det_scale) return _squeeze_output(out) def pdf(self, x): return np.exp(self.logpdf(x)) def mean(self): out = self._dist._mean(self.dim, self.df, self.scale) return _squeeze_output(out) if out is not None else out def mode(self): out = self._dist._mode(self.dim, self.df, self.scale) return _squeeze_output(out) def var(self): out = self._dist._var(self.dim, self.df, self.scale) return _squeeze_output(out) if out is not None else out def rvs(self, size=1, random_state=None): n, shape = self._dist._process_size(size) out = self._dist._rvs(n, shape, self.dim, self.df, self.C, random_state) return _squeeze_output(out) def entropy(self): # Need to find reference for inverse Wishart entropy raise AttributeError # Set frozen generator docstrings from corresponding docstrings in # inverse Wishart and fill in default strings in class docstrings for name in ['logpdf', 'pdf', 'mean', 'mode', 'var', 'rvs']: method = invwishart_gen.__dict__[name] method_frozen = wishart_frozen.__dict__[name] method_frozen.__doc__ = doccer.docformat( method.__doc__, wishart_docdict_noparams) method.__doc__ = doccer.docformat(method.__doc__, wishart_docdict_params) class special_ortho_group_gen(multi_rv_generic): r""" A matrix-valued SO(N) random variable. Return a random rotation matrix, drawn from the Haar distribution (the only uniform distribution on SO(n)). The `dim` keyword specifies the dimension N. Methods ------- ``rvs(dim=None, size=1, random_state=None)`` Draw random samples from SO(N). Parameters ---------- dim : scalar Dimension of matrices Notes ---------- This class is wrapping the random_rot code from the MDP Toolkit, https://github.com/mdp-toolkit/mdp-toolkit Return a random rotation matrix, drawn from the Haar distribution (the only uniform distribution on SO(n)). The algorithm is described in the paper Stewart, G.W., "The efficient generation of random orthogonal matrices with an application to condition estimators", SIAM Journal on Numerical Analysis, 17(3), pp. 403-409, 1980. For more information see http://en.wikipedia.org/wiki/Orthogonal_matrix#Randomization See also the similar `ortho_group`. Examples -------- >>> from scipy.stats import special_ortho_group >>> x = special_ortho_group.rvs(3) >>> np.dot(x, x.T) array([[ 1.00000000e+00, 1.13231364e-17, -2.86852790e-16], [ 1.13231364e-17, 1.00000000e+00, -1.46845020e-16], [ -2.86852790e-16, -1.46845020e-16, 1.00000000e+00]]) >>> import scipy.linalg >>> scipy.linalg.det(x) 1.0 This generates one random matrix from SO(3). It is orthogonal and has a determinant of 1. """ def __init__(self, seed=None): super(special_ortho_group_gen, self).__init__(seed) self.__doc__ = doccer.docformat(self.__doc__) def __call__(self, dim=None, seed=None): """ Create a frozen SO(N) distribution. See `special_ortho_group_frozen` for more information. """ return special_ortho_group_frozen(dim, seed=seed) def _process_parameters(self, dim): """ Dimension N must be specified; it cannot be inferred. """ if dim is None or not np.isscalar(dim) or dim <= 1 or dim != int(dim): raise ValueError("""Dimension of rotation must be specified, and must be a scalar greater than 1.""") return dim def rvs(self, dim, size=1, random_state=None): """ Draw random samples from SO(N). Parameters ---------- dim : integer Dimension of rotation space (N). size : integer, optional Number of samples to draw (default 1). Returns ------- rvs : ndarray or scalar Random size N-dimensional matrices, dimension (size, dim, dim) """ size = int(size) if size > 1: return np.array([self.rvs(dim, size=1, random_state=random_state) for i in range(size)]) dim = self._process_parameters(dim) random_state = self._get_random_state(random_state) H = np.eye(dim) D = np.ones((dim,)) for n in range(1, dim): x = random_state.normal(size=(dim-n+1,)) D[n-1] = np.sign(x[0]) x[0] -= D[n-1]*np.sqrt((x*x).sum()) # Householder transformation Hx = (np.eye(dim-n+1) - 2.*np.outer(x, x)/(x*x).sum()) mat = np.eye(dim) mat[n-1:, n-1:] = Hx H = np.dot(H, mat) # Fix the last sign such that the determinant is 1 D[-1] = (-1)**(1-(dim % 2))*D.prod() # Equivalent to np.dot(np.diag(D), H) but faster, apparently H = (D*H.T).T return H special_ortho_group = special_ortho_group_gen() class special_ortho_group_frozen(multi_rv_frozen): def __init__(self, dim=None, seed=None): """ Create a frozen SO(N) distribution. Parameters ---------- dim : scalar Dimension of matrices seed : None or int or np.random.RandomState instance, optional This parameter defines the RandomState object to use for drawing random variates. If None (or np.random), the global np.random state is used. If integer, it is used to seed the local RandomState instance Default is None. Examples -------- >>> from scipy.stats import special_ortho_group >>> g = special_ortho_group(5) >>> x = g.rvs() """ self._dist = special_ortho_group_gen(seed) self.dim = self._dist._process_parameters(dim) def rvs(self, size=1, random_state=None): return self._dist.rvs(self.dim, size, random_state) class ortho_group_gen(multi_rv_generic): r""" A matrix-valued O(N) random variable. Return a random orthogonal matrix, drawn from the O(N) Haar distribution (the only uniform distribution on O(N)). The `dim` keyword specifies the dimension N. Methods ------- ``rvs(dim=None, size=1, random_state=None)`` Draw random samples from O(N). Parameters ---------- dim : scalar Dimension of matrices Notes ---------- This class is closely related to `special_ortho_group`. Some care is taken to avoid numerical error, as per the paper by Mezzadri. References ---------- .. [1] F. Mezzadri, "How to generate random matrices from the classical compact groups", arXiv:math-ph/0609050v2. Examples -------- >>> from scipy.stats import ortho_group >>> x = ortho_group.rvs(3) >>> np.dot(x, x.T) array([[ 1.00000000e+00, 1.13231364e-17, -2.86852790e-16], [ 1.13231364e-17, 1.00000000e+00, -1.46845020e-16], [ -2.86852790e-16, -1.46845020e-16, 1.00000000e+00]]) >>> import scipy.linalg >>> np.fabs(scipy.linalg.det(x)) 1.0 This generates one random matrix from O(3). It is orthogonal and has a determinant of +1 or -1. """ def __init__(self, seed=None): super(ortho_group_gen, self).__init__(seed) self.__doc__ = doccer.docformat(self.__doc__) def _process_parameters(self, dim): """ Dimension N must be specified; it cannot be inferred. """ if dim is None or not np.isscalar(dim) or dim <= 1 or dim != int(dim): raise ValueError("Dimension of rotation must be specified," "and must be a scalar greater than 1.") return dim def rvs(self, dim, size=1, random_state=None): """ Draw random samples from O(N). Parameters ---------- dim : integer Dimension of rotation space (N). size : integer, optional Number of samples to draw (default 1). Returns ------- rvs : ndarray or scalar Random size N-dimensional matrices, dimension (size, dim, dim) """ size = int(size) if size > 1: return np.array([self.rvs(dim, size=1, random_state=random_state) for i in range(size)]) dim = self._process_parameters(dim) random_state = self._get_random_state(random_state) H = np.eye(dim) for n in range(1, dim): x = random_state.normal(size=(dim-n+1,)) # random sign, 50/50, but chosen carefully to avoid roundoff error D = np.sign(x[0]) x[0] += D*np.sqrt((x*x).sum()) # Householder transformation Hx = -D*(np.eye(dim-n+1) - 2.*np.outer(x, x)/(x*x).sum()) mat = np.eye(dim) mat[n-1:, n-1:] = Hx H = np.dot(H, mat) return H ortho_group = ortho_group_gen()
larsmans/scipy
scipy/stats/_multivariate.py
Python
bsd-3-clause
92,794
__authors__ = "Ian Goodfellow" __copyright__ = "Copyright 2010-2012, Universite de Montreal" __credits__ = ["Ian Goodfellow"] __license__ = "3-clause BSD" __maintainer__ = "LISA Lab" __email__ = "pylearn-dev@googlegroups" from pylearn2.testing.skip import skip_if_no_gpu skip_if_no_gpu() import numpy as np from theano import shared from pylearn2.sandbox.cuda_convnet.filter_acts import FilterActs from pylearn2.sandbox.cuda_convnet.weight_acts import WeightActs from theano.sandbox.cuda import gpu_from_host from theano.sandbox.cuda import host_from_gpu from theano.sandbox.rng_mrg import MRG_RandomStreams import theano.tensor as T from theano.tensor.nnet.conv import conv2d from theano.tensor import as_tensor_variable from theano import function import warnings def test_match_grad_valid_conv(): # Tests that weightActs is the gradient of FilterActs # with respect to the weights. for partial_sum in [0, 1, 4]: rng = np.random.RandomState([2012,10,9]) batch_size = 3 rows = 7 cols = 9 channels = 8 filter_rows = 4 filter_cols = filter_rows num_filters = 16 images = shared(rng.uniform(-1., 1., (channels, rows, cols, batch_size)).astype('float32'), name='images') filters = shared(rng.uniform(-1., 1., (channels, filter_rows, filter_cols, num_filters)).astype('float32'), name='filters') gpu_images = gpu_from_host(images) gpu_filters = gpu_from_host(filters) output = FilterActs(partial_sum=partial_sum)(gpu_images, gpu_filters) output = host_from_gpu(output) images_bc01 = images.dimshuffle(3,0,1,2) filters_bc01 = filters.dimshuffle(3,0,1,2) filters_bc01 = filters_bc01[:,:,::-1,::-1] output_conv2d = conv2d(images_bc01, filters_bc01, border_mode='valid') output_conv2d = output_conv2d.dimshuffle(1,2,3,0) theano_rng = MRG_RandomStreams(2013 + 1 + 31) coeffs = theano_rng.normal(avg=0., std=1., size=output_conv2d.shape, dtype='float32') cost_conv2d = (coeffs * output_conv2d).sum() weights_grad_conv2d = T.grad(cost_conv2d, filters) cost = (coeffs * output).sum() hid_acts_grad = T.grad(cost, output) weights_grad = WeightActs(partial_sum=partial_sum)( gpu_images, gpu_from_host(hid_acts_grad), as_tensor_variable((4, 4)) )[0] weights_grad = host_from_gpu(weights_grad) f = function([], [output, output_conv2d, weights_grad, weights_grad_conv2d]) output, output_conv2d, weights_grad, weights_grad_conv2d = f() if np.abs(output - output_conv2d).max() > 8e-6: assert type(output) == type(output_conv2d) assert output.dtype == output_conv2d.dtype if output.shape != output_conv2d.shape: print 'cuda-convnet shape: ',output.shape print 'theano shape: ',output_conv2d.shape assert False err = np.abs(output - output_conv2d) print 'absolute error range: ', (err.min(), err.max()) print 'mean absolute error: ', err.mean() print 'cuda-convnet value range: ', (output.min(), output.max()) print 'theano value range: ', (output_conv2d.min(), output_conv2d.max()) assert False warnings.warn("""test_match_grad_valid_conv success criterion is not very strict. Can we verify that this is OK? One possibility is that theano is numerically unstable and Alex's code is better. Probably theano CPU 64 bit is OK but it's worth checking the others.""") if np.abs(weights_grad - weights_grad_conv2d).max() > 8.6e-6: if type(weights_grad) != type(weights_grad_conv2d): raise AssertionError("weights_grad is of type " + str(weights_grad)) assert weights_grad.dtype == weights_grad_conv2d.dtype if weights_grad.shape != weights_grad_conv2d.shape: print 'cuda-convnet shape: ',weights_grad.shape print 'theano shape: ',weights_grad_conv2d.shape assert False err = np.abs(weights_grad - weights_grad_conv2d) print 'absolute error range: ', (err.min(), err.max()) print 'mean absolute error: ', err.mean() print 'cuda-convnet value range: ', (weights_grad.min(), weights_grad.max()) print 'theano value range: ', (weights_grad_conv2d.min(), weights_grad_conv2d.max()) assert False if __name__ == '__main__': test_match_grad_valid_conv()
ml-lab/pylearn2
pylearn2/sandbox/cuda_convnet/tests/test_weight_acts.py
Python
bsd-3-clause
4,679
from django.test import SimpleTestCase from corehq.apps.receiverwrapper.util import J2ME, guess_phone_type_from_user_agent, ANDROID class TestPhoneType(SimpleTestCase): def testJavaUserAgents(self): corpus = [ # observed from c2 submission 'NokiaC2-01/5.0 (11.10) Profile/MIDP-2.1 Configuration/CLDC-1.1 Profile/MIDP-2.0 Configuration/CLDC-1.1', # http://developer.nokia.com/community/wiki/User-Agent_headers_for_Nokia_devices 'Mozilla/5.0 (Series40; Nokia311/03.81; Profile/MIDP-2.1 Configuration/CLDC-1.1) Gecko/20100401 S40OviBrowser/2.2.0.0.31', 'Mozilla/5.0 (Series40; NokiaX3-02/le6.32; Profile/MIDP-2.1 Configuration/CLDC-1.1) Gecko/20100401 S40OviBrowser/2.0.2.62.10', 'Mozilla/5.0 (SymbianOS/9.1; U; [en-us]) AppleWebKit/413 (KHTML, like Gecko) Safari/413', 'Mozilla/5.0 (SymbianOS/9.1; U; [en]; SymbianOS/91 Series60/3.0) AppleWebkit/413 (KHTML, like Gecko) Safari/413', 'Mozilla/5.0 (SymbianOS/9.1; U; en-us) AppleWebKit/413 (KHTML, like Gecko) Safari/413 es61', 'Mozilla/5.0 (SymbianOS/9.1; U; [en]; Series60/3.0 NokiaE60/4.06.0) AppleWebKit/413 (KHTML, like Gecko) Safari/413', 'NokiaN73-2/3.0-630.0.2 Series60/3.0 Profile/MIDP-2.0 Configuration/CLDC-1.1', 'NokiaN73-2/2.0626 S60/3.0 Profile/MIDP-2.0 Configuration/CLDC-1.1', 'Mozilla/4.0 (compatible; MSIE 5.0; S60/3.0 NokiaN73-1/2.0(2.0617.0.0.7) Profile/MIDP-2.0 Configuration/CLDC-1.1)', 'Mozilla/5.0 (SymbianOS/9.2; U; Series60/3.1 NokiaXxx/1.0; Profile/MIDP-2.0 Configuration/CLDC-1.1) AppleWebKit/413 (KHTML, like Gecko) Safari/413', 'Mozilla/5.0 (SymbianOS/9.3; U; Series60/3.2 NokiaE75-1/110.48.125 Profile/MIDP-2.1 Configuration/CLDC-1.1 ) AppleWebKit/413 (KHTML, like Gecko) Safari/413', 'Mozilla/5.0 (SymbianOS/9.4; U; Series60/5.0 Nokia5800d-1/21.0.025; Profile/MIDP-2.1 Configuration/CLDC-1.1 ) AppleWebKit/413 (KHTML, like Gecko) Safari/413', 'Mozilla/5.0 (SymbianOS/9.4; Series60/5.0 NokiaN97-1/12.0.024; Profile/MIDP-2.1 Configuration/CLDC-1.1; en-us) AppleWebKit/525 (KHTML, like Gecko) BrowserNG/7.1.12344', 'NokiaN90-1/3.0545.5.1 Series60/2.8 Profile/MIDP-2.0 Configuration/CLDC-1.1', 'Nokia3200/1.0 (5.29) Profile/MIDP-1.0 Configuration/CLDC-1.0 UP.Link/6.3.1.13.0', 'NokiaN80-3/1.0552.0.7Series60/3.0Profile/MIDP-2.0Configuration/CLDC-1.1', 'Nokia7610/2.0 (5.0509.0) SymbianOS/7.0s Series60/2.1 Profile/MIDP-2.0 Configuration/CLDC-1.0', 'Nokia6600/1.0 (5.27.0) SymbianOS/7.0s Series60/2.0 Profile/MIDP-2.0 Configuration/CLDC-1', 'Nokia6680/1.0 (4.04.07) SymbianOS/8.0 Series60/2.6 Profile/MIDP-2.0 Configuration/CLDC-1.1', 'Nokia6230/2.0+(04.43)+Profile/MIDP-2.0+Configuration/CLDC-1.1+UP.Link/6.3.0.0.0', 'Nokia6630/1.0 (2.3.129) SymbianOS/8.0 Series60/2.6 Profile/MIDP-2.0 Configuration/CLDC-1.1', 'Nokia7600/2.0 (03.01) Profile/MIDP-1.0 Configuration/CLDC-1.0 (Google WAP Proxy/1.0)', 'NokiaN-Gage/1.0 SymbianOS/6.1 Series60/1.2 Profile/MIDP-1.0 Configuration/CLDC-1.0', 'Nokia5140/2.0 (3.10) Profile/MIDP-2.0 Configuration/CLDC-1.1', 'Nokia3510i/1.0 (04.44) Profile/MIDP-1.0 Configuration/CLDC-1.0', 'Nokia7250i/1.0 (3.22) Profile/MIDP-1.0 Configuration/CLDC-1.0', 'Nokia7250/1.0 (3.14) Profile/MIDP-1.0 Configuration/CLDC-1.0', 'Nokia6800/2.0 (4.17) Profile/MIDP-1.0 Configuration/CLDC-1.0 UP.Link/5.1.2.9', 'Nokia3650/1.0 SymbianOS/6.1 Series60/1.2 Profile/MIDP-1.0 Configuration/CLDC-1.0', 'Nokia8310/1.0 (05.11) UP.Link/6.5.0.0.06.5.0.0.06.5.0.0.06.5.0.0.0', 'Mozilla/5.0 (X11; U; Linux armv7l; en-GB; rv:1.9.2b6pre) Gecko/20100318 Firefox/3.5 Maemo Browser 1.7.4.7 RX-51 N900', # http://www.zytrax.com/tech/web/mobile_ids.html 'Mozilla/5.0 (compatible; MSIE 9.0; Windows Phone OS 7.5; Trident/5.0; IEMobile/9.0; NOKIA; Lumia 710)', 'Nokia2700c-2/2.0 (09.80) Profile/MIDP-2.1 Configuration/CLDC-1.1 UCWEB/2.0(Java; U; MIDP-2.0; en-US; nokia2700c-2) U2/1.0.0 UCBrowser/8.8.1.252 U2/1.0.0 Mobile', 'Nokia2760/2.0 (06.82) Profile/MIDP-2.1 Configuration/CLDC-1.1', 'Nokia2700c-2/2.0 (07.80) Profile/MIDP-2.1 Configuration/CLDC-1.1 nokia2700c-2/UC Browser7.7.1.88/69/444 UNTRUSTED/1.0', 'Opera/9.80 (J2ME/MIDP; Opera Mini/4.1.15082/22.414; U; en) Presto/2.5.25 Version/10.54', 'Nokia3120Classic/2.0 (06.20) Profile/MIDP-2.1 Configuration/CLDC-1.1', 'Opera/8.0.1 (J2ME/MIDP; Opera Mini/3.1.9427/1724; en; U; ssr)', 'Nokia3200/1.0 (5.29) Profile/MIDP-1.0 Configuration/CLDC-1.0 UP.Link/6.3.1.13.0', 'Nokia3510i/1.0 (04.44) Profile/MIDP-1.0 Configuration/CLDC-1.0', 'Nokia3650/1.0 SymbianOS/6.1 Series60/1.2 Profile/MIDP-1.0 Configuration/CLDC-1.0', 'Mozilla/4.0 (compatible; MSIE 4.0; SmartPhone; Symbian OS/1.1.0) Netfront/3.1', 'Mozilla/5.0 (SymbianOS/9.4; Series60/5.0 Nokia5800d-1/60.0.003; Profile/MIDP-2.1 Configuration/CLDC-1.1 ) AppleWebKit/533.4 (KHTML, like Gecko) NokiaBrowser/7.3.1.33 Mobile Safari/533.4 3gpp-gba', 'Mozilla/5.0 (SymbianOS/9.4; Series60/5.0 Nokia5230/40.0.003; Profile/MIDP-2.1 Configuration/CLDC-1.1 ) AppleWebKit/525 (KHTML, like Gecko) Version/3.0 BrowserNG/7.2.7.4 3gpp-gba', 'Mozilla/5.0 (SymbianOS/9.4; Series60/5.0 Nokia5800d-1/50.0.005; Profile/MIDP-2.1 Configuration/CLDC-1.1 ) AppleWebKit/525 (KHTML, like Gecko) Version/3.0 BrowserNG/7.2.3', 'Nokia5130c-2/2.0 (07.97) Profile/MIDP-2.1 Configuration/CLDC-1.1 nokia5130c-2/UC Browser7.5.1.77/69/351 UNTRUSTED/1.0', 'Nokia5140/2.0 (3.10) Profile/MIDP-2.0 Configuration/CLDC-1.1', 'Mozilla/5.0 (SymbianOS/9.4; U; Series60/5.0 Nokia5800d-1b/20.2.014; Profile/MIDP-2.1 Configuration/CLDC-1.1 ) AppleWebKit/413 (KHTML, like Gecko) Safari/413', 'Nokia6212 classic/2.0 (06.20) Profile/MIDP-2.1 Configuration/CLDC-1.1', 'Mozilla/5.0 (SymbianOS/9.2; U; Series60/3.1 Nokia6120c/3.83; Profile/MIDP-2.0 Configuration/CLDC-1.1) AppleWebKit/413 (KHTML, like Gecko) Safari/413', 'Mozilla/4.0 (compatible; MSIE 6.0; Symbian OS; Nokia 6680/5.04.07; 9399) Opera 8.65 [en]', 'Mozilla/5.0 (SymbianOS/9.1; U; en-us) AppleWebKit/413 (KHTML, like Gecko) Safari/413 es61i', 'Nokia6230/2.0+(04.43)+Profile/MIDP-2.0+Configuration/CLDC-1.1+UP.Link/6.3.0.0.0', 'Nokia6630/1.0 (2.3.129) SymbianOS/8.0 Series60/2.6 Profile/MIDP-2.0 Configuration/CLDC-1.1', 'Mozilla/4.1 (compatible; MSIE 5.0; Symbian OS; Nokia 6600;432) Opera 6.10 [en]', 'Nokia6600/1.0 (5.27.0) SymbianOS/7.0s Series60/2.0 Profile/MIDP-2.0 Configuration/CLDC-1', 'Nokia6680/1.0 (4.04.07) SymbianOS/8.0 Series60/2.6 Profile/MIDP-2.0 Configuration/CLDC-1.1', 'Mozilla/4.1 (compatible; MSIE 5.0; Symbian OS; Nokia 6600;452) Opera 6.20 [en-US]', 'Nokia6800/2.0 (4.17) Profile/MIDP-1.0 Configuration/CLDC-1.0 UP.Link/5.1.2.9', 'Nokia7610/2.0 (7.0642.0) SymbianOS/7.0s Series60/2.1 Profile/MIDP-2.0 Configuration/CLDC-1.0/UC Browser7.9.1.120/27/351/UCWEB', 'Nokia7250I/1.0 (3.22) Profile/MIDP-1.0 Configuration/CLDC-1.0', 'Nokia7250/1.0 (3.14) Profile/MIDP-1.0 Configuration/CLDC-1.0', 'Nokia7610/2.0 (5.0509.0) SymbianOS/7.0s Series60/2.1 Profile/MIDP-2.0 Configuration/CLDC-1.0', 'Nokia8310/1.0 (05.11) UP.Link/6.5.0.0.06.5.0.0.06.5.0.0.06.5.0.0.0', 'Mozilla/4.0 (compatible; MSIE 5.0; Series80/2.0 Nokia9300/05.22 Profile/MIDP-2.0 Configuration/CLDC-1.1)', 'Mozilla/4.0 (compatible; MSIE 5.0; Series80/2.0 Nokia9500/4.51 Profile/MIDP-2.0 Configuration/CLDC-1.1)', 'NokiaC3-00/5.0 (04.60) Profile/MIDP-2.1 Configuration/CLDC-1.1 Mozilla/5.0 AppleWebKit/420+ (KHTML, like Gecko) Safari/420+', 'Mozilla/5.0 (SymbianOS/9.3; Series60/3.2 NokiaE55-1/034.001; Profile/MIDP-2.1 Configuration/CLDC-1.1) AppleWebKit/525 (KHTML, like Gecko) Version/3.0 BrowserNG/7.1.5', 'Opera/9.80 (S60; SymbOS; Opera Mobi/499; U; en-GB) Presto/2.4.18 Version/10.00', 'Mozilla/5.0 (SymbianOS/9.1; U; en-us) AppleWebKit/413 (KHTML, like Gecko) Safari/413 es61i', 'Opera/9.60 (J2ME/MIDP; Opera Mini/4.2.13918/488; U; en) Presto/2.2.0', 'Mozilla/5.0 (SymbianOS/9.2; U; Series60/3.1 NokiaE63-3/100.21.110; Profile/MIDP-2.0 Configuration/CLDC-1.1 ) AppleWebKit/413 (KHTML, like Gecko) Safari/413', 'Mozilla/5.0 (SymbianOS/9.1; U; en-us) AppleWebKit/413 (KHTML, like Gecko) Safari/413', 'Mozilla/5.0 (SymbianOS/9.2; U; Series60/3.1 NokiaE90-1/07.24.0.3; Profile/MIDP-2.0 Configuration/CLDC-1.1 ) AppleWebKit/413 (KHTML, like Gecko) Safari/413 UP.Link/6.2.3.18.0', 'Mozilla/5.0 (MeeGo; NokiaN9) AppleWebKit/534.13 (KHTML, like Gecko) NokiaBrowser/8.5.0 Mobile Safari/534.13', 'NokiaN70-1/5.0737.3.0.1 Series60/2.8 Profile/MIDP-2.0 Configuration/CLDC-1.1/UC Browser7.8.0.95/27/352', 'Mozilla/5.0 (SymbianOS/9.3; U; Series60/3.2 NokiaN79-1/32.001; Profile/MIDP-2.1 Configuration/CLDC-1.1) AppleWebKit/413 (KHTML, like Gecko) Safari/413', 'Mozilla/5.0 (SymbianOS/9.4; Series60/5.0 NokiaN97-1/20.0.019; Profile/MIDP-2.1 Configuration/CLDC-1.1) AppleWebKit/525 (KHTML, like Gecko) BrowserNG/7.1.18124', 'Mozilla/5.0 (SymbianOS/9.3; U; Series60/3.2 NokiaN85-1/31.002; Profile/MIDP-2.1 Configuration/CLDC-1.1) AppleWebKit/413 (KHTML, like Gecko) Safari/413', # 'Mozilla/5.0 (X11; U; Linux armv61; en-US; rv:1.9.1b2pre) Gecko/20081015 Fennec/1.0a1', # Alpha version of Mozilla Fennec (mobile Firefox) on Nokia N800. 'Mozilla/5.0 (X11; U; Linux armv7l; en-GB; rv:1.9.2a1pre) Gecko/20090928 Firefox/3.5 Maemo Browser 1.4.1.22 RX-51 N900', # 'Mozilla/5.0 (X11; U; Linux armv6l; en-us) AppleWebKit/528.5+ (KHTML, like Gecko, Safari/528.5+) tear', # Tear 0.3 (Beta) on Nokia N800 under Mer # 'Mozilla/5.0 (X11; U; Linux armv6l; en-us) AppleWebKit/528.5+ (KHTML, like Gecko, Safari/528.5+) midori', # Midori on Nokia n800 tablet device. # 'Links (2.1pre31; Linux 2.6.21-omap1 armv6l; x)', # Links 2.1 preview 31 on a Nokia N800 tablet under OS2008 # 'Mozilla/5.0 (X11; U; Linux armv6l; en-US; rv: 1.9.1a2pre) Gecko/20080813221937 Prism/0.9.1', # Prism on a Nokia N800 tablet under OS2008 # 'Mozilla/5.0 (X11; U; Linux armv6l; en-US; rv:1.9a6pre) Gecko/20070810 Firefox/3.0a1 Tablet browser 0.1.16 RX-34_2007SE_4.2007.38-2', # Nokia N800 (Internet tablet) (v.20.0.015) running MicroB (a version of FF3) with embedded Flash 9 player # 'Opera/9.50 (J2ME/MIDP; Opera Mini/4.1.10781/298; U; en)', # Nokia N95 (v.20.0.015) running Opera 9.50 MINI 'Mozilla/5.0 (SymbianOS/9.2; U; Series60/3.1 NokiaE71-1/100.07.76; Profile/MIDP-2.0 Configuration/CLDC-1.1 ) AppleWebKit/413 (KHTML, like Gecko) Safari/413', 'Opera/8.01 (J2ME/MIDP; Opera Mini/3.0.6306/1528; en; U; ssr)', 'Mozilla/4.0 (compatible; MSIE 6.0; ; Linux armv5tejl; U) Opera 8.02 [en_US] Maemo browser 0.4.31 N770/SU-18', 'NokiaN80-3/1.0552.0.7Series60/3.0Profile/MIDP-2.0Configuration/CLDC-1.1', 'Mozilla/5.0 (SymbianOS/9.1; U; en-us) AppleWebKit/413 (KHTML, like Gecko) Safari/413', # 'Mozilla/5.0 (X11; U; Linux armv6l; en-US; rv:1.9a6pre) Gecko/20070807 Firefox/3.0a1 Tablet browser 0.1.16 RX-34_2007SE_4.2007.26-8', # Firefox on Nokia N800 Tablet PC 'NokiaN90-1/3.0545.5.1 Series60/2.8 Profile/MIDP-2.0 Configuration/CLDC-1.1', 'NokiaN-Gage/1.0 SymbianOS/6.1 Series60/1.2 Profile/MIDP-1.0 Configuration/CLDC-1.0', ] for java_agent in corpus: self.assertEqual(J2ME, guess_phone_type_from_user_agent(java_agent), 'j2me user agent detection failed for {}'.format(java_agent)) def testAnroidUserAgents(self): corpus = [ # http://www.zytrax.com/tech/web/mobile_ids.html # android like things 'Mozilla/5.0 (Linux; Android 4.1.1; Transformer Prime TF201 Build/JRO03C) AppleWebKit/535.19 (KHTML, like Gecko) Chrome/18.0.1025.166 Safari/535.19', 'Mozilla/5.0 (Linux; U; Android 4.0.4; en-us; Transformer TF101 Build/IMM76I) AppleWebKit/534.30 (KHTML, like Gecko) Version/4.0 Safari/534.30', 'Mozilla/5.0 (Linux; U; Android 2.3.6; en-us; VS840 4G Build/GRK39F) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1', 'Mozilla/5.0 (Linux; U; Android 2.2.1; en-us; MB525 Build/3.4.2-107_JDN-9) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1', 'Mozilla/5.0 (Linux; U; Android 2.1-update1-1.0.19; en-us; NXM736 Build/ECLAIR) AppleWebKit/530.17 (KHTML, like Gecko) Version/4.0 Mobile Safari/530.17', 'Mozilla/5.0 (Linux; U; Android 2.2; de-de; U0101HA Build/FRF85B) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1', 'Mozilla/5.0 (Linux; U; Android 2.2.1; de-de; SP-60 Build/MASTER) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1', 'Mozilla/5.0 (Linux; U; Android 2.2; en-gb; ViewPad7 Build/FRF91) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1', 'Mozilla/5.0 (Linux; U; Android 2.1-2010.11.4; de-de; XST2 Build/ECLAIR) AppleWebKit/530.17 (KHTML, like Gecko) Version/4.0 Mobile Safari/530.17', 'Mozilla/5.0 (Linux; U; Android 1.0.3; de-de; A80KSC Build/ECLAIR) AppleWebKit/530.17 (KHTML, like Gecko) Version/4.0 Mobile Safari/530.17', 'Mozilla/5.0 (Linux; U; Android 2.2.1; en-au; eeepc Build/MASTER) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1', 'Mozilla/5.0 (Linux; U; Android 1.6; en-us; xpndr_ihome Build/DRD35) AppleWebKit/528.5+ (KHTML, like Gecko) Version/3.1.2 Mobile Safari/525.20.1', 'Mozilla/5.0 (Linux; U; Android 2.2.1; fr-ch; A43 Build/FROYO) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1', 'Mozilla/5.0 (Linux; U; Android 2.2.1; de-de; X2 Build/FRG83) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1', ] for android_agent in corpus: self.assertEqual(ANDROID, guess_phone_type_from_user_agent(android_agent), 'android user agent detection failed for {}'.format(android_agent)) def testDefaultIsAndroid(self): for empty in [None, '']: self.assertEqual(ANDROID, guess_phone_type_from_user_agent(empty))
puttarajubr/commcare-hq
corehq/apps/receiverwrapper/tests/test_guess_phone_type.py
Python
bsd-3-clause
14,799
from __future__ import absolute_import from builtins import zip from past.builtins import basestring import itertools from functools import reduce import collections from operator import attrgetter from .validation import assert_no_duplicates from ..exceptions import NineMLUsageError from nineml.base import ContainerObject from logging import getLogger logger = getLogger('NineML') class OrderedDefaultListDict(collections.OrderedDict): def __missing__(self, key): self[key] = value = [] return value def expect_single(lst, errmsg=None): """Retrieve a single element from an iterable. This function tests whether an iterable contains just a single element and if so returns that element. Otherwise it raises an Exception. :param lst: An iterable :rtype: the element in the list, ``lst[0]``, provided ``len(lst)==1`` >>> expect_single( ['hello'] ) 'hello' >>> expect_single( [1] ) 1 >>> expect_single( [] ) #doctest: +SKIP NineMLUsageError: expect_single() recieved an iterable of length: 0 >>> expect_single( [None,None] ) #doctest: +SKIP NineMLUsageError: expect_single() recieved an iterable of length: 2 >>> expect_single( [], lambda: raise_exception( RuntimeError('Aggh') ) #doctest: +SKIP # @IgnorePep8 RuntimeError: Aggh >>> #Slightly more tersly: >>> expect_single( [], RuntimeError('Aggh') ) #doctest: +SKIP RuntimeError: Aggh """ if isinstance(lst, basestring): raise NineMLUsageError( "A string rather than a list/tuple was provided to expect_single " "({})".format(lst)) if not _is_iterable(lst): raise NineMLUsageError('Object not iterable') if issubclass(lst.__class__, (dict)): err = "Dictionary passed to expect_single. This could be ambiguous" err += "\nIf this is what you intended, please explicity pass '.keys' " raise NineMLUsageError(err) lst = list(lst) # Good case: if len(lst) == 1: return lst[0] if errmsg is None: # Bad case: our list doesn't contain just one element errmsg = 'expect_single() recieved an iterable of length: %d'.format( len(lst)) errmsg += '\n - List Contents:{}\n'.format(lst) raise NineMLUsageError(errmsg) def _filter(lst, func=None): """Filter a list according to a predicate. Takes a sequence [o1,o2,..] and returns a list contains those which are not `None` and satisfy the predicate `func(o)` :param lst: Input iterable (not a dictionary) :param func: Predicate function. If ``none``, this function always returns ``True`` Implementation:: if func: return [ l for l in lst if l is not None and func(l) ] else: return [ l for l in lst if l is not None] Examples: >>> _filter( ['hello','world'] ) #doctest: +NORMALIZE_WHITESPACE ['hello', 'world'] >>> _filter( ['hello',None,'world'] ) #doctest: +NORMALIZE_WHITESPACE ['hello', 'world'] >>> _filter( [None,] ) #doctest: +NORMALIZE_WHITESPACE [] """ if func: return [l for l in lst if l is not None and func(l)] else: return [l for l in lst if l is not None] def filter_expect_single(lst, func=None, errmsg=None): """Find a single element matching a predicate in a list. This is a syntactic-sugar function ``_filter`` and ``expect_single`` in a single call. Returns:: expect_single( _filter(lst, func)) This is useful when we want to find an item in a sequence with a certain property, and expect there to be only one. Examples: >>> find_smith = lambda s: s.split()[-1] == 'Smith' >>> filter_expect_single( ['John Smith','Tim Jones'], func=find_smith ) #doctest: +NORMALIZE_WHITESPACE 'John Smith' """ return expect_single(_filter(lst, func), errmsg) def filter_by_type(lst, acceptedtype): """ Find all the objects of a certain type in a list This is a syntactic sugar function, which returns a list of all the objects in a iterable for which ``isinstance(o,acceptedtype) == True`` and for which the objects are not ``None``. i.e:: filter_by_type([None], types.NoneType) [] """ return _filter(lst, lambda x: isinstance(x, acceptedtype)) def filter_discrete_types(lst, acceptedtypes): """Creates a dictionary mapping types to objects of that type. Starting with a list of object, and a list of types, this returns a dictionary mapping each type to a list of objects of that type. For example:: >>> import types >>> filter_discrete_types( ['hello',1,2,'world'], ( basestring, types.IntType) ) #doctest: +NORMALIZE_WHITESPACE {<type 'basestring'>: ['hello', 'world'], <type 'int'>: [1, 2]} The function checks that each object is mapped to exactly one type """ res = dict([(a, []) for a in acceptedtypes]) for obj in lst: obj_type = filter_expect_single( acceptedtypes, lambda at: isinstance(obj, at), errmsg='{} could not be mapped to a single type'.format(obj)) res[obj_type].append(obj) return res def invert_dictionary(dct): """Takes a dictionary mapping (keys => values) and returns a new dictionary mapping (values => keys). i.e. given a dictionary:: {k1:v1, k2:v2, k3:v3, ...} it returns a dictionary:: {v1:k1, v2:k2, v3:k3, ...} It checks to make sure that no values are duplicated before converting. """ for v in list(dct.values()): if not _is_hashable(v): err = "Can't invert a dictionary containing unhashable keys" raise NineMLUsageError(err) assert_no_duplicates(list(dct.values())) return dict(list(zip(list(dct.values()), list(dct.keys())))) def flatten_first_level(nested_list): """Flattens the first level of an iterable, i.e. >>> flatten_first_level( [ ['This','is'],['a','short'],['phrase'] ] ) #doctest: +NORMALIZE_WHITESPACE ['This', 'is', 'a', 'short', 'phrase'] >>> flatten_first_level( [ [1,2],[3,4,5],[6] ] ) #doctest: +NORMALIZE_WHITESPACE [1,2,3,4,5,6] """ if isinstance(nested_list, basestring): err = "Shouldn't pass a string to flatten_first_level." err += "Use list(str) instead" raise NineMLUsageError(err) if not _is_iterable(nested_list): err = 'flatten_first_level() expects an iterable' raise NineMLUsageError(err) for nl in nested_list: if not _is_iterable(nl) or isinstance(nl, basestring): raise NineMLUsageError( "flatten_first_level() expects all arguments to be iterable " "and not strings ({})".format(nested_list)) return list(itertools.chain(*nested_list)) def safe_dictionary_merge(dictionaries): """Safely merge multiple dictionaries into one Merges an iterable of dictionaries into a new single dictionary, checking that there are no key collisions >>> safe_dictionary_merge( [ {1:'One',2:'Two'},{3:'Three'} ] ) #doctest: +NORMALIZE_WHITESPACE {1: 'One', 2: 'Two', 3: 'Three'} >>> safe_dictionary_merge( [ {1:'One',2:'Two'},{3:'Three',1:'One'} ] ) #doctest: +NORMALIZE_WHITESPACE +IGNORE_EXCEPTION_DETAIL +SKIP NineMLUsageError: Key Collision while merging dictionarys """ kv_pairs = list(itertools.chain(*[iter(d.items()) for d in dictionaries])) keys, _ = list(zip(*kv_pairs)) assert_no_duplicates(keys, 'Key collision while merging dictionarys') return dict(kv_pairs) def _is_iterable(obj): return hasattr(obj, '__iter__') def _is_hashable(obj): try: hash(obj) return True except: return False def unique_by_id(lst): """ Gets a list of unique 9ML objects using their 'id' property. Similar to a set but can handle temporary objects as well. Typically used in unittests. """ id_map = {} for obj in lst: id_map[obj.id] = obj return sorted(id_map.values(), key=attrgetter('sort_key')) def unique_by_eq(lst): return reduce(lambda l, x: l.append(x) or l if x not in l else l, lst, []) def ensure_iterable(expected_list): if isinstance(expected_list, dict): raise TypeError("Expected a list, got a dictionary ({})" .format(expected_list)) elif isinstance(expected_list, (basestring, ContainerObject)): lst = [expected_list] elif isinstance(expected_list, collections.Iterable): # @UndefinedVariable lst = list(expected_list) else: lst = [expected_list] return lst def normalise_parameter_as_list(param): return ensure_iterable(none_to_empty_list(param)) def none_to_empty_list(obj): if obj is None: return [] else: return obj def safe_dict(vals): """ Create a dict, like dict(), but ensure no duplicate keys are given! [Python silently allows dict( [(1:True),(1:None)] ) !!""" d = {} for k, v in vals: if k in vals: err = 'safe_dict() failed with duplicated keys: %s' % k raise NineMLUsageError(err) d[k] = v if len(vals) != len(d): raise NineMLUsageError('Duplicate keys given') return d
INCF/lib9ML
nineml/utils/iterables.py
Python
bsd-3-clause
9,425
from tests.testing_framework.base_test_cases import BaseTestCase from hamcrest import * from flexmock import flexmock from framework.http.requester import Requester import re class RequesterTests(BaseTestCase): def before(self): self.core_mock = flexmock() self.core_mock.Config = flexmock() self.core_mock.Config.should_receive("Get").and_return("user agent") self.requester = Requester(self.core_mock, None) flexmock(self.requester) def test_Request_should_be_successful(self): url = "http://someurl" self.requester.should_receive("perform_request").once().ordered() self.requester.should_receive("set_succesful_transaction").once().ordered() self.requester.should_receive("log_transaction").once().ordered() self.core_mock.should_receive("IsInScopeURL").and_return(True).once() self.core_mock.Timer = flexmock() self.core_mock.Timer.should_receive("StartTimer").once() self.requester.Request(url) def test_StringToDict(self): params = "key=value" result = self.requester.StringToDict(params) assert_that(result["key"], is_("value")) def test_ProcessHTTPErrorCode_with_connection_refused(self): error = flexmock() error.reason = "[Errno 111]" error_output = self.requester.ProcessHTTPErrorCode(error, "someurl") assert_that(error_output, contains_string("was refused")) def test_ProcessHTTPErrorCode_with_unkwown_error(self): error = flexmock() error.reason = "unkwown error" error_output = self.requester.ProcessHTTPErrorCode(error, "someurl") assert_that(error_output, contains_string("unknown error")) def test_ProcessHTTPErrorCode_with_hostname_resolving_error(self): error = flexmock() error.reason = "[Errno -2]" self.core_mock.Error = flexmock() expected_arg = re.compile(".*cannot resolve hostname.*") self.core_mock.Error.should_receive("FrameworkAbort").with_args(expected_arg) error_output = self.requester.ProcessHTTPErrorCode(error, "someurl") def test_ProxyCheck_with_no_proxy_settings_is_ok(self): assert_that(self.requester.ProxyCheck()[0], is_(True)) def test_ProxyCheck_with_proxy_should_be_succesful(self): flexmock(self.requester) self.requester.should_receive("is_request_possible").and_return(True).once() self.requester.should_receive("is_transaction_already_added").and_return(False).once() self.requester.should_receive("GET").once() self.core_mock.Config.should_receive("Get").with_args("PROXY_CHECK_URL").once() self.requester.Proxy = flexmock() assert_that(self.requester.ProxyCheck()[0], is_(True))
sharad1126/owtf
tests/test_cases/framework/http/requester_tests.py
Python
bsd-3-clause
2,784
from __future__ import absolute_import, division, print_function from functools import partial import numpy as np import numpy.fft as npfft from .core import map_blocks chunk_error = ("Dask array only supports taking an FFT along an axis that \n" "has a single chunk. An FFT operation was tried on axis %s \n" "which has chunks %s. To change the array's chunks use " "dask.Array.rechunk.") fft_preamble = """ Wrapping of numpy.fft.%s The axis along which the FFT is applied must have a one chunk. To change the array's chunking use dask.Array.rechunk. The numpy.fft.%s docstring follows below: """ def _fft_wrap(fft_func, dtype, out_chunk_fn): def func(a, n=None, axis=-1): if len(a.chunks[axis]) != 1: raise ValueError(chunk_error % (axis, a.chunks[axis])) chunks = out_chunk_fn(a, n, axis) return map_blocks(partial(fft_func, n=n, axis=axis), a, dtype=dtype, chunks=chunks) np_name = fft_func.__name__ func.__doc__ = (fft_preamble % (np_name, np_name)) + fft_func.__doc__ func.__name__ = np_name return func def _fft_out_chunks(a, n, axis): """ For computing the output chunks of fft and ifft""" if n is None: return a.chunks chunks = list(a.chunks) chunks[axis] = (n,) return chunks def _rfft_out_chunks(a, n, axis): if n is None: n = a.chunks[axis][0] chunks = list(a.chunks) chunks[axis] = (n//2 + 1,) return chunks def _irfft_out_chunks(a, n, axis): if n is None: n = 2 * (a.chunks[axis][0] - 1) chunks = list(a.chunks) chunks[axis] = (n,) return chunks def _hfft_out_chunks(a, n, axis): if n is None: n = 2 * (a.chunks[axis][0] - 1) chunks = list(a.chunks) chunks[axis] = (n,) return chunks def _ihfft_out_chunks(a, n, axis): if n is None: n = a.chunks[axis][0] chunks = list(a.chunks) if n % 2 == 0: m = (n//2) + 1 else: m = (n + 1)//2 chunks[axis] = (m,) return chunks fft = _fft_wrap(npfft.fft, np.complex_, _fft_out_chunks) ifft = _fft_wrap(npfft.ifft, np.complex_, _fft_out_chunks) rfft = _fft_wrap(npfft.rfft, np.complex_, _rfft_out_chunks) irfft = _fft_wrap(npfft.irfft, np.float_, _irfft_out_chunks) hfft = _fft_wrap(npfft.hfft, np.float_, _hfft_out_chunks) ihfft = _fft_wrap(npfft.ihfft, np.complex_, _ihfft_out_chunks)
pombredanne/dask
dask/array/fft.py
Python
bsd-3-clause
2,467
import six from sqlalchemy import types from sqlalchemy_utils import i18n, ImproperlyConfigured from sqlalchemy_utils.primitives import Currency from .scalar_coercible import ScalarCoercible class CurrencyType(types.TypeDecorator, ScalarCoercible): """ Changes :class:`.Currency` objects to a string representation on the way in and changes them back to :class:`.Currency` objects on the way out. In order to use CurrencyType you need to install Babel_ first. .. _Babel: http://babel.pocoo.org/ :: from sqlalchemy_utils import CurrencyType, Currency class User(Base): __tablename__ = 'user' id = sa.Column(sa.Integer, autoincrement=True) name = sa.Column(sa.Unicode(255)) currency = sa.Column(CurrencyType) user = User() user.currency = Currency('USD') session.add(user) session.commit() user.currency # Currency('USD') user.currency.name # US Dollar str(user.currency) # US Dollar user.currency.symbol # $ CurrencyType is scalar coercible:: user.currency = 'US' user.currency # Currency('US') """ impl = types.String(3) python_type = Currency def __init__(self, *args, **kwargs): if i18n.babel is None: raise ImproperlyConfigured( "'babel' package is required in order to use CurrencyType." ) super(CurrencyType, self).__init__(*args, **kwargs) def process_bind_param(self, value, dialect): if isinstance(value, Currency): return value.code elif isinstance(value, six.string_types): return value def process_result_value(self, value, dialect): if value is not None: return Currency(value) def _coerce(self, value): if value is not None and not isinstance(value, Currency): return Currency(value) return value
spoqa/sqlalchemy-utils
sqlalchemy_utils/types/currency.py
Python
bsd-3-clause
1,984
import os import sys from optparse import OptionParser import matplotlib matplotlib.use('PDF') from matplotlib.backends.backend_pdf import PdfPages from mirnylib.systemutils import setExceptionHook sys.path.append(os.path.split(os.getcwd())[0]) from hiclib.binnedData import binnedData, binnedDataAnalysis,\ experimentalBinnedData from mirnylib import h5dict, genome import mirnylib.systemutils mirnylib.systemutils from hiclib.fragmentHiC import HiCdataset from mirnylib.numutils import EIG, coarsegrain, project, arrayInArray import numpy import mirnylib.plotting import scipy.stats import scipy.ndimage from hiclib import fragmentHiC cr = scipy.stats.spearmanr import cPickle from mirnylib.plotting import mat_img, removeAxes, removeBorder, niceShow import matplotlib.pyplot as plt # manage option and arguments processing def main(): global options global args usage = '''usage: %prog [options] dataset1 dataset2 [datasetX]* takes multiple hiclib output folder and compares the experiments in a pairwise manner dataset1 should point to the "[ENZYME]-[EXPERIMENT]-fragment-dataset.hdf5" file ''' parser = OptionParser(usage) parser.add_option("-q", "--quiet", action="store_false", dest="verbose", default=True, help="don't print status messages to stdout") parser.add_option("-v", "--verbose", action="store_true", dest="verbose", help="print status messages to stdout") parser.add_option("-r", "--referenceGenome", type="string", dest="genome", default="", help="genome in fasta format [default: %default]") parser.add_option("-g", "--gapFile", type="string", dest="gapFile", default="gap.txt", help="location of the gapfile [default: %default]") parser.add_option("-o", "--outputDir", type="string", dest="outputDir", default="", help="output directory [default: %default]") parser.add_option("-t", "--tmpDir", type="string", dest="tmpDir", default="/tmp", help="directory for temp files [default: %default]") (options, args) = parser.parse_args() if (len(args) < 2): parser.print_help() parser.error("[ERROR] Incorrect number of arguments, need at least two datasets") if (options.genome == ""): print >> sys.stderr, "[ERROR] Please specify the location of the reference genome in fasta format" sys.exit(1) if (options.outputDir != ""): options.outputDir += os.sep if (options.verbose): print >> sys.stdout, "outputDir: %s" % (options.outputDir) print >> sys.stdout, "tmpDir: %s" % (options.tmpDir) process() def calculateTanayCorrelation(resolution, filename1, filename2, experiment1, experiment2, genome, outfile, mouse=False, **kwargs): "Calculates correlation between datasets, smoothed in a Tanay way" global pp if (options.verbose): print >> sys.stdout, "calculateTanayCorrelation: res: %d file1: %s file2: %s exp1:%s exp2:%s gen:%s" % (resolution, filename1, filename2, experiment1, experiment2, genome) BD = binnedData(resolution, genome) BD.simpleLoad(filename1, experiment1) BD.simpleLoad(filename2, experiment2) def tanaySmooth(matrix): matrix = numpy.array(matrix, dtype="double") a = numpy.arange(-9, 10) mat = 1 / (1. + numpy.abs(a[:, None]) + numpy.abs(a[None, :])) return scipy.ndimage.filters.convolve(input=matrix, weights=mat, mode="constant") def propagateSmooth(data): mask1 = numpy.sum(data, axis=0) > 0 mask = mask1[:, None] * mask1[None, :] ret = numpy.zeros_like(data, dtype=float) for i in xrange(BD.genome.chrmCount): for j in xrange(BD.genome.chrmCount): beg1 = BD.chromosomeStarts[i] beg2 = BD.chromosomeStarts[j] end1 = BD.chromosomeEnds[i] end2 = BD.chromosomeEnds[j] mymask = mask[beg1:end1, beg2:end2] d = data[beg1:end1, beg2:end2] toret = tanaySmooth(d) / tanaySmooth(mymask) toret[mymask == 0] = 0 ret[beg1:end1, beg2:end2] = toret return ret BD.removePoorRegions(cutoff=2) BD.removeCis() BD.iterativeCorrectWithoutSS() data1 = BD.dataDict[experiment1] data2 = BD.dataDict[experiment2] mask = (numpy.sum(data1, axis=0) > 0) * (numpy.sum(data2, axis=0) > 0) validMask = mask[:, None] * mask[None, :] transmask = BD.chromosomeIndex[:, None] != BD.chromosomeIndex[None, :] cormask = transmask * validMask d1 = propagateSmooth(data1) d2 = propagateSmooth(data2) (scorr, pvalue) = scipy.stats.spearmanr(d1[cormask], d2[cormask]) outfile.write("Spearman corrleation %s %s %.4f %.4f" % (filename1, filename2, scorr, pvalue)) def compareInterarmMaps(resolution, filename1, filename2, experiment1, experiment2, genome, mouse=False, **kwargs): "plots witn 8 inetrarm maps - paper supplement figure" global pp if (options.verbose): print >> sys.stdout, "compareInterarmMaps: res: %d file1: %s file2: %s exp1:%s exp2:%s gen:%s" % (resolution, filename1, filename2, experiment1, experiment2, genome) Tanay = binnedDataAnalysis(resolution, genome) Tanay.simpleLoad(filename1, experiment1) Tanay.simpleLoad(filename2, experiment2) Tanay.removeDiagonal() Tanay.removePoorRegions(cutoff=2) #Tanay.removeStandalone(3) fs = 10 vmin = None vmax = None plt.figure(figsize=(12, 16)) plt.subplot(421) plt.title(experiment1+", raw", fontsize=fs) Tanay.averageTransMap(experiment1, vmin=vmin, vmax=vmax) plt.colorbar() plt.subplot(422) plt.title(experiment2+", raw", fontsize=fs) Tanay.averageTransMap(experiment2, vmin=vmin, vmax=vmax) plt.colorbar() Tanay.iterativeCorrectWithSS() vmin = None vmax = None plt.subplot(425) plt.title(experiment1+", with SS reads", fontsize=fs) Tanay.averageTransMap(experiment1, vmin=vmin, vmax=vmax) plt.colorbar() plt.subplot(426) plt.title(experiment2+", with SS reads", fontsize=fs) Tanay.averageTransMap(experiment2, vmin=vmin, vmax=vmax) plt.colorbar() Tanay.iterativeCorrectWithoutSS() vmin = None vmax = None plt.subplot(423) plt.title(experiment1+", no SS reads", fontsize=fs) Tanay.averageTransMap(experiment2, vmin=vmin, vmax=vmax) plt.colorbar() plt.subplot(424) plt.title(experiment2+", no ss reads", fontsize=fs) Tanay.averageTransMap(experiment2, vmin=vmin, vmax=vmax) plt.colorbar() Tanay.fakeCis() vmin = None vmax = None plt.subplot(427) plt.title(experiment1+", trans only", fontsize=fs) Tanay.averageTransMap(experiment1, vmin=vmin, vmax=vmax) plt.colorbar() plt.subplot(428) plt.title(experiment2+", trans only", fontsize=fs) Tanay.averageTransMap(experiment2, vmin=vmin, vmax=vmax) plt.colorbar() plt.show() pp.savefig() def compareCorrelationOfEigenvectors(resolution, filename1, filename2, experiment1, experiment2, genome, mouse=False, **kwargs): """Plot correlation figure with eigenvector correlation between datasets paper figure """ global pp if (options.verbose): print >> sys.stdout, "compareCorrelationOfEigenvectors: res: %d file1: %s file2: %s exp1:%s exp2:%s gen:%s" % (resolution, filename1, filename2, experiment1, experiment2, genome) plt.figure() Tanay = binnedDataAnalysis(resolution, genome) Tanay.simpleLoad(filename1, experiment1) Tanay.simpleLoad(filename2, experiment2) Tanay.removeDiagonal() Tanay.removePoorRegions() Tanay.removeZeros() Tanay.truncTrans() Tanay.fakeCis() M = 10 Tanay.doEig(numPCs=M) E1 = Tanay.EigDict[experiment1] E2 = Tanay.EigDict[experiment2] data = numpy.zeros((M, M)) for i in xrange(M): for j in xrange(M): data[i][j] = abs(numpy.corrcoef(E2[i], E1[j])[0, 1]) plt.figure(figsize=(8, 8)) plt.gcf().subplots_adjust(0.2, 0.2, 0.85, 0.85) plt.subplot(111) plt.xlabel(experiment1) plt.ylabel(experiment2) #plt.title("Abs. correlation between eigenvectors") plt.imshow(data, interpolation="nearest", vmin=0, vmax=1) plt.colorbar() plt.show() pp.savefig() def plotDiagonalCorrelation(resolution, filename1, filename2, experiment1, experiment2, genome, mouse=False, **kwargs): "Correlation of diagonal bins - paper figure" global pp if (options.verbose): print >> sys.stdout, "plotDiagonalCorrelation: res: %d file1: %s file2: %s exp1:%s exp2:%s gen:%s" % (resolution, filename1, filename2, experiment1, experiment2, genome) S = 50 x = numpy.arange(2, S) Tanay = binnedData(resolution, genome) Tanay.simpleLoad(filename1, experiment1) Tanay.simpleLoad(filename2, experiment2) Tanay.removeDiagonal(1) Tanay.removePoorRegions() Tanay.removeZeros() pairs = [(experiment1, experiment2)] cors = [[] for _ in pairs] for i in x: for j, pair in enumerate(pairs): cors[j].append(cr( numpy.diagonal(Tanay.dataDict[pair[0]], i), numpy.diagonal(Tanay.dataDict[pair[1]], i) )[0]) Tanay.iterativeCorrectWithoutSS(M=1) cors2 = [[] for _ in pairs] for i in x: for j, pair in enumerate(pairs): cors2[j].append(cr( numpy.diagonal(Tanay.dataDict[pair[0]], i), numpy.diagonal(Tanay.dataDict[pair[1]], i) )[0]) Tanay.iterativeCorrectWithoutSS(M=20) cors3 = [[] for _ in pairs] for i in x: for j, pair in enumerate(pairs): cors3[j].append(cr( numpy.diagonal(Tanay.dataDict[pair[0]], i), numpy.diagonal(Tanay.dataDict[pair[1]], i) )[0]) matplotlib.rcParams['font.sans-serif'] = 'Arial' print "Eigenvectors" print cors print cors2 print cors3 plt.figure(figsize=(8, 4)) ax = plt.gca() for j, pair in enumerate(pairs): plt.subplot(1, len(pairs), j) fs = 8 for xlabel_i in ax.get_xticklabels(): xlabel_i.set_fontsize(fs) for xlabel_i in ax.get_yticklabels(): xlabel_i.set_fontsize(fs) plt.title("%s vs %s" % pair) plt.plot(x / 5., cors3[j], color="#E5A826", label="Iterative") plt.plot(x / 5., cors2[j], color="#28459A", label="Single") plt.plot(x / 5., cors[j], color="#E55726", label="Raw") plt.xlabel("Genomic Separation, MB", fontsize=8) plt.ylabel("Spearman correlation", fontsize=8) plt.legend() legend = plt.legend(prop={"size": 6}, loc=9, handlelength=2) legend.draw_frame(False) plt.ylim((0, 1)) removeAxes(shift=0) plt.show() pp.savefig() def process(): global options global args global pp outfilename = [] # check dataset exist for i in xrange(len(args)): if (not os.path.isfile(args[i].replace('-fragment_dataset.hdf5','-1M.hdf5'))): print '[ERROR] Could not find: '+ args[i].replace('-fragment_dataset.hdf5','-1M.hdf5') sys.exit(1) if (not os.path.isfile(args[i].replace('-fragment_dataset.hdf5','-200k.hdf5'))): print '[ERROR] Could not find: '+ args[i].replace('-fragment_dataset.hdf5','-200k.hdf5') sys.exit(1) if (not os.path.isfile(args[i].replace('-fragment_dataset.hdf5','-IC-1M.hdf5'))): print '[ERROR] Could not find: '+ args[i].replace('-fragment_dataset.hdf5','-IC-1M.hdf5') sys.exit(1) outfilename += ["_".join(os.path.basename(args[i]).strip("-fragment_dataset.hdf5").split("_")[1:])] genome_db = genome.Genome(options.genome, gapFile=options.gapFile, readChrms=['#', 'X', 'Y']) outfilename = "-".join(outfilename) outfile = open(options.outputDir+outfilename+'-HiC_correlate.txt',"w") fig = plt.figure() pp = PdfPages(options.outputDir+outfilename+'-HiC_correlate.pdf') for i in xrange(len(args)): print " Process file "+str(i)+":"+ args[i] enzyme_i = os.path.basename(args[i]).split("_")[0] experiment_i = "_".join(os.path.basename(args[i]).strip("-fragment_dataset.hdf5").split("_")[1:]) for j in xrange(i+1, len(args)): enzyme_j = os.path.basename(args[j]).split("_")[0] experiment_j = "_".join(os.path.basename(args[j]).strip("-fragment_dataset.hdf5").split("_")[1:]) compareCorrelationOfEigenvectors(1000000, args[i].replace('-fragment_dataset.hdf5','-1M.hdf5'), args[j].replace('-fragment_dataset.hdf5','-1M.hdf5'), experiment_i, experiment_j, genome_db) calculateTanayCorrelation(1000000, args[i].replace('-fragment_dataset.hdf5','-1M.hdf5'), args[j].replace('-fragment_dataset.hdf5','-1M.hdf5'), experiment_i, experiment_j, genome_db, outfile) plotDiagonalCorrelation(200000, args[i].replace('-fragment_dataset.hdf5','-200k.hdf5'), args[j].replace('-fragment_dataset.hdf5','-200k.hdf5'), experiment_i, experiment_j, genome_db) compareInterarmMaps(1000000, args[i].replace('-fragment_dataset.hdf5','-1M.hdf5'), args[j].replace('-fragment_dataset.hdf5','-1M.hdf5'), experiment_i, experiment_j, genome_db) if (options.verbose): print >> sys.stdout, "print plots into pdf:%s" % (options.outputDir+outfilename+'-HiC_correlate.pdf') outfile.close() pp.close() ###################################### # main ###################################### if __name__ == "__main__": main()
BauerLab/ngsane
tools/hiclibCorrelate.py
Python
bsd-3-clause
13,472
from cms.utils.compat.dj import python_2_unicode_compatible from django.db import models from django.utils.translation import ugettext_lazy as _ from cms.models import CMSPlugin, Page @python_2_unicode_compatible class Link(CMSPlugin): """ A link to an other page or to an external website """ name = models.CharField(_("name"), max_length=256) url = models.URLField(_("link"), blank=True, null=True) page_link = models.ForeignKey(Page, verbose_name=_("page"), blank=True, null=True, help_text=_("A link to a page has priority over a text link.")) mailto = models.EmailField(_("mailto"), blank=True, null=True, help_text=_("An email adress has priority over a text link.")) target = models.CharField(_("target"), blank=True, max_length=100, choices=(( ("", _("same window")), ("_blank", _("new window")), ("_parent", _("parent window")), ("_top", _("topmost frame")), ))) def link(self): """ Returns the link with highest priority among the model fields """ if self.mailto: return u"mailto:%s" % self.mailto elif self.url: return self.url elif self.page_link: return self.page_link.get_absolute_url() else: return "" def __str__(self): return self.name search_fields = ('name',)
SinnerSchraderMobileMirrors/django-cms
cms/plugins/link/models.py
Python
bsd-3-clause
1,377
# -*- coding: utf-8 -*- # # This file is part of BridgeDB, a Tor bridge distribution system. # # :authors: Isis Lovecruft 0xA3ADB67A2CDB8B35 <isis@torproject.org> # :copyright: (c) 2014, Isis Lovecruft # (c) 2014, The Tor Project, Inc. # :license: 3-Clause BSD, see LICENSE for licensing information from twisted.trial import unittest from bridgedb import translations from bridgedb.test.test_HTTPServer import DummyRequest REALISH_HEADERS = { b'Accept-Encoding': [b'gzip, deflate'], b'User-Agent': [ b'Mozilla/5.0 (X11; Linux x86_64; rv:28.0) Gecko/20100101 Firefox/28.0'], b'Accept': [ b'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8'], } # Add this to the above REALISH_HEADERS to use it: ACCEPT_LANGUAGE_HEADER = { b'Accept-Language': [b'de-de,en-gb;q=0.8,en;q=0.5,en-us;q=0.3'], } class TranslationsMiscTests(unittest.TestCase): """Tests for module-level code in ``bridgedb.translations`` module.""" def test_getLocaleFromHTTPRequest_withLangParam(self): """This request uses a '?lang=ar' param, without an 'Accept-Language' header. The request result should be: ['ar', 'en', 'en-US']. """ request = DummyRequest([b"bridges"]) request.headers.update(REALISH_HEADERS) request.args.update({ b'transport': [b'obfs3',], b'lang': [b'ar',], }) parsed = translations.getLocaleFromHTTPRequest(request) self.assertEqual(parsed[0], 'ar') self.assertEqual(parsed[1], 'en') self.assertEqual(parsed[2], 'en_US') self.assertEqual(len(parsed), 3) def test_getLocaleFromHTTPRequest_withLangParam_AcceptLanguage(self): """This request uses a '?lang=ar' param, with an 'Accept-Language' header which includes: ['de-de', 'en-gb', 'en', 'en-us']. The request result should be: ['fa', 'de-de', 'en-gb', 'en', 'en-us']. """ request = DummyRequest([b"options"]) request.headers.update(ACCEPT_LANGUAGE_HEADER) request.args.update({b'lang': [b'fa']}) parsed = translations.getLocaleFromHTTPRequest(request) self.assertEqual(parsed[0], 'fa') self.assertEqual(parsed[1], 'en') self.assertEqual(parsed[2], 'en_US') #self.assertEqual(parsed[3], 'en-gb') self.assertEqual(len(parsed), 3) def test_getLocaleFromPlusAddr(self): emailAddr = 'bridges@torproject.org' replyLocale = translations.getLocaleFromPlusAddr(emailAddr) self.assertEqual('en', replyLocale) def test_getLocaleFromPlusAddr_ar(self): emailAddr = 'bridges+ar@torproject.org' replyLocale = translations.getLocaleFromPlusAddr(emailAddr) self.assertEqual('ar', replyLocale)
pagea/bridgedb
lib/bridgedb/test/test_translations.py
Python
bsd-3-clause
2,789
# !! WARNING !! # Don't put any code here, because Sublime Text will load this file twice and # it may cause unexpected behavior. Use _init_.py instead.
guillermooo/dart-sublime-bundle
__init__.py
Python
bsd-3-clause
153
from lib.common import helpers class Module: def __init__(self, mainMenu, params=[]): self.info = { 'Name': 'Get-NetGPO', 'Author': ['@harmj0y'], 'Description': ('Gets a list of all current GPOs in a domain. Part of PowerView.'), 'Background' : True, 'OutputExtension' : None, 'NeedsAdmin' : False, 'OpsecSafe' : True, 'Language' : 'powershell', 'MinLanguageVersion' : '2', 'Comments': [ 'https://github.com/PowerShellMafia/PowerSploit/blob/dev/Recon/' ] } # any options needed by the module, settable during runtime self.options = { # format: # value_name : {description, required, default_value} 'Agent' : { 'Description' : 'Agent to run module on.', 'Required' : True, 'Value' : '' }, 'GPOname' : { 'Description' : 'The GPO name to query for, wildcards accepted.', 'Required' : False, 'Value' : '' }, 'DisplayName' : { 'Description' : 'The GPO display name to query for, wildcards accepted.', 'Required' : False, 'Value' : '' }, 'ComputerName' : { 'Description' : 'Return all GPO objects applied to a given computer (FQDN).', 'Required' : False, 'Value' : '' }, 'Domain' : { 'Description' : 'The domain to use for the query, defaults to the current domain.', 'Required' : False, 'Value' : '' }, 'DomainController' : { 'Description' : 'Domain controller to reflect LDAP queries through.', 'Required' : False, 'Value' : '' }, 'ADSpath' : { 'Description' : 'The LDAP source to search through.', 'Required' : False, 'Value' : '' } } # save off a copy of the mainMenu object to access external functionality # like listeners/agent handlers/etc. self.mainMenu = mainMenu for param in params: # parameter format is [Name, Value] option, value = param if option in self.options: self.options[option]['Value'] = value def generate(self, obfuscate=False, obfuscationCommand=""): moduleName = self.info["Name"] # read in the common powerview.ps1 module source code moduleSource = self.mainMenu.installPath + "/data/module_source/situational_awareness/network/powerview.ps1" try: f = open(moduleSource, 'r') except: print helpers.color("[!] Could not read module source path at: " + str(moduleSource)) return "" moduleCode = f.read() f.close() # get just the code needed for the specified function script = helpers.generate_dynamic_powershell_script(moduleCode, moduleName) script += moduleName + " " for option,values in self.options.iteritems(): if option.lower() != "agent": if values['Value'] and values['Value'] != '': if values['Value'].lower() == "true": # if we're just adding a switch script += " -" + str(option) else: script += " -" + str(option) + " " + str(values['Value']) script += ' | Out-String | %{$_ + \"`n\"};"`n'+str(moduleName)+' completed!"' if obfuscate: script = helpers.obfuscate(self.mainMenu.installPath, psScript=script, obfuscationCommand=obfuscationCommand) return script
Hackplayers/Empire-mod-Hackplayers
lib/modules/powershell/situational_awareness/network/powerview/get_gpo.py
Python
bsd-3-clause
4,131
from .helper import IntegrationHelper class TestGitHubIterator(IntegrationHelper): def test_resets_etag(self): cassette_name = self.cassette_name('resets_etag') with self.recorder.use_cassette(cassette_name): users_iter = self.gh.iter_all_users(number=10) assert users_iter.etag is None next(users_iter) # Make the request assert users_iter.etag is not None users_iter.refresh() assert users_iter.etag is None
adrianmoisey/github3.py
tests/integration/test_structs.py
Python
bsd-3-clause
505
from pyquery import PyQuery as pq from nose.tools import eq_ import amo.tests from translations import models, widgets class TestWidget(amo.tests.TestCase): def test_avoid_purified_translation(self): # Even if we pass in a LinkifiedTranslation the widget switches to a # normal Translation before rendering. w = widgets.TransTextarea.widget() link = models.LinkifiedTranslation(localized_string='<b>yum yum</b>', locale='fr', id=10) link.clean() widget = w.render('name', link) eq_(pq(widget).html(), '<b>yum yum</b>') def test_default_locale(self): w = widgets.TransTextarea() result = w.render('name', '') eq_(pq(result)('textarea:not([lang=init])').attr('lang'), 'en-us') w.default_locale = 'pl' result = w.render('name', '') eq_(pq(result)('textarea:not([lang=init])').attr('lang'), 'pl')
Joergen/zamboni
apps/translations/tests/test_widgets.py
Python
bsd-3-clause
954
# # Readout.py -- Readout for displaying image cursor information # # Eric Jeschke (eric@naoj.org) # # Copyright (c) Eric R. Jeschke. All rights reserved. # This is open-source software licensed under a BSD license. # Please see the file LICENSE.txt for details. # from ginga.gw import Widgets from ginga.misc import Bunch class Readout(object): def __init__(self, width, height): readout = Widgets.Label('', halign='center', style='clickable') #readout.resize(width, height) readout.set_color(bg="#202030", fg="lightgreen") self.readout = readout self.maxx = 0 self.maxy = 0 self.maxv = 0 self.fitsimage = None def get_widget(self): return self.readout def set_font(self, font): self.readout.set_font(font) def set_text(self, text): self.readout.set_text(text) # END
rajul/ginga
ginga/gw/Readout.py
Python
bsd-3-clause
883
#!/usr/bin/python # # linearize-hashes.py: List blocks in a linear, no-fork version of the chain. # # Copyright (c) 2013-2015 The Bitcoin developers # Distributed under the MIT/X11 software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # import json import struct import re import base64 import httplib import sys settings = {} class PepeCoinRPC: OBJID = 1 def __init__(self, host, port, username, password): authpair = "%s:%s" % (username, password) self.authhdr = "Basic %s" % (base64.b64encode(authpair)) self.conn = httplib.HTTPConnection(host, port, False, 30) def rpc(self, method, params=None): self.OBJID += 1 obj = { 'version' : '1.1', 'method' : method, 'id' : self.OBJID } if params is None: obj['params'] = [] else: obj['params'] = params self.conn.request('POST', '/', json.dumps(obj), { 'Authorization' : self.authhdr, 'Content-type' : 'application/json' }) resp = self.conn.getresponse() if resp is None: print "JSON-RPC: no response" return None body = resp.read() resp_obj = json.loads(body) if resp_obj is None: print "JSON-RPC: cannot JSON-decode body" return None if 'error' in resp_obj and resp_obj['error'] != None: return resp_obj['error'] if 'result' not in resp_obj: print "JSON-RPC: no result in object" return None return resp_obj['result'] def getblock(self, hash, verbose=True): return self.rpc('getblock', [hash, verbose]) def getblockhash(self, index): return self.rpc('getblockhash', [index]) def get_block_hashes(settings): rpc = PepeCoinRPC(settings['host'], settings['port'], settings['rpcuser'], settings['rpcpassword']) for height in xrange(settings['min_height'], settings['max_height']+1): hash = rpc.getblockhash(height) print(hash) if __name__ == '__main__': if len(sys.argv) != 2: print "Usage: linearize-hashes.py CONFIG-FILE" sys.exit(1) f = open(sys.argv[1]) for line in f: # skip comment lines m = re.search('^\s*#', line) if m: continue # parse key=value lines m = re.search('^(\w+)\s*=\s*(\S.*)$', line) if m is None: continue settings[m.group(1)] = m.group(2) f.close() if 'host' not in settings: settings['host'] = '127.0.0.1' if 'port' not in settings: settings['port'] = 31500 background-color: rgb(0, 0, 0); alternate-background-color: rgb(86, 0, 120); if 'min_height' not in settings: settings['min_height'] = 0 if 'max_height' not in settings: settings['max_height'] = 319000 if 'rpcuser' not in settings or 'rpcpassword' not in settings: print "Missing username and/or password in cfg file" sys.exit(1) settings['port'] = int(settings['port']) settings['min_height'] = int(settings['min_height']) settings['max_height'] = int(settings['max_height']) get_block_hashes(settings)
cyberpepe/pepecoin-core
src/contrib/linearize/linearize-hashes.py
Python
mit
2,846
from launch_params import LaunchParamsMixin from request_validator import ( RequestValidatorMixin, FlaskRequestValidatorMixin, DjangoRequestValidatorMixin, WebObRequestValidatorMixin ) from outcome_request import OutcomeRequest from collections import defaultdict import re from urllib import urlencode from urlparse import urlsplit, urlunsplit try: from urlparse import parse_qsl except ImportError: # fall back for Python 2.5 from cgi import parse_qsl # NOQA accessors = [ 'consumer_key', 'consumer_secret', 'outcome_requests', 'lti_errormsg', 'lti_errorlog', 'lti_msg', 'lti_log' ] class ToolProvider(LaunchParamsMixin, RequestValidatorMixin, object): ''' Implements the LTI Tool Provider. ''' def __init__(self, consumer_key, consumer_secret, params={}): ''' Create new ToolProvider. ''' # Initialize all class accessors to None for param in accessors: setattr(self, param, None) # These are hyper important class members that we init first self.consumer_key = consumer_key self.consumer_secret = consumer_secret # Call superclass initializers super(ToolProvider, self).__init__() self.non_spec_params = defaultdict(lambda: None) self.outcome_requests = [] self.params = params self.process_params(params) def has_role(self, role): ''' Check whether the Launch Paramters set the role. ''' return self.roles and any([re.search(role, our_role, re.I) for our_role in self.roles]) def is_student(self): ''' Convenience method for checking if the user has 'learner' or 'student' role. ''' return any((self.has_role('learner'), self.has_role('student'))) def is_instructor(self): ''' Convenience method for checking if user has 'instructor', 'faculty' or 'staff' role. Currently this does not support the TeachingAssistant role ''' return any((self.has_role('instructor'), self.has_role('faculty'), self.has_role('staff'))) def is_launch_request(self): ''' Check if the request was an LTI Launch Request. ''' return self.lti_message_type == 'basic-lti-launch-request' def is_outcome_service(self): ''' Check if the Tool Launch expects an Outcome Result. ''' return (self.lis_outcome_service_url and self.lis_result_sourcedid) def username(self, default=None): ''' Return the full, given, or family name if set. ''' if self.lis_person_name_given: return self.lis_person_name_given elif self.lis_person_name_family: return self.lis_person_name_family elif self.lis_person_name_full: return self.lis_person_name_full else: return default def post_replace_result(self, score, outcome_opts=defaultdict(lambda:None), result_data=None): ''' POSTs the given score to the Tool Consumer with a replaceResult. Returns OutcomeResponse object and stores it in self.outcome_request OPTIONAL: result_data must be a dictionary Note: ONLY ONE of these values can be in the dict at a time, due to the Canvas specification. 'text' : str text 'url' : str url ''' return self.new_request(outcome_opts).post_replace_result(score, result_data) def post_delete_result(self,outcome_opts=defaultdict(lambda:None)): ''' POSTs a delete request to the Tool Consumer. ''' return self.new_request(outcome_opts).post_delete_result() def post_read_result(self,outcome_opts=defaultdict(lambda:None)): ''' POSTs the given score to the Tool Consumer with a replaceResult, the returned OutcomeResponse will have the score. ''' return self.new_request(outcome_opts).post_read_result() def last_outcome_request(self): ''' Returns the most recent OutcomeRequest. ''' return self.outcome_requests[-1] def last_outcome_success(self): ''' Convenience method for determining the success of the last OutcomeRequest. ''' return all((self.last_outcome_request, self.last_outcome_request.was_outcome_post_successful())) def build_return_url(self): ''' If the Tool Consumer sent a return URL, add any set messages to the URL. ''' if not self.launch_presentation_return_url: return None lti_message_fields = ['lti_errormsg', 'lti_errorlog', 'lti_msg', 'lti_log'] messages = dict([(key, getattr(self, key)) for key in lti_message_fields if getattr(self, key, None)]) # Disassemble original return URL and reassemble with our options added original = urlsplit(self.launch_presentation_return_url) combined = messages.copy() combined.update(dict(parse_qsl(original.query))) combined_query = urlencode(combined) return urlunsplit(( original.scheme, original.netloc, original.path, combined_query, original.fragment )) def new_request(self, defaults): opts = dict(defaults) opts.update({ 'consumer_key': self.consumer_key, 'consumer_secret': self.consumer_secret, 'lis_outcome_service_url': self.lis_outcome_service_url, 'lis_result_sourcedid': self.lis_result_sourcedid }) self.outcome_requests.append(OutcomeRequest(opts=opts)) self.last_outcome_request = self.outcome_requests[-1] return self.last_outcome_request class DjangoToolProvider(DjangoRequestValidatorMixin, ToolProvider): ''' OAuth ToolProvider that works with Django requests ''' def success_redirect(self, msg='', log=''): ''' Shortcut for redirecting Django view to LTI Consumer with messages ''' from django.shortcuts import redirect self.lti_msg = msg self.lti_log = log return redirect(self.build_return_url()) def error_redirect(self, errormsg='', errorlog=''): ''' Shortcut for redirecting Django view to LTI Consumer with errors ''' from django.shortcuts import redirect self.lti_errormsg = errormsg self.lti_errorlog = errorlog return redirect(self.build_return_url()) class FlaskToolProvider(FlaskRequestValidatorMixin, ToolProvider): ''' OAuth ToolProvider that works with Flask requests ''' pass class WebObToolProvider(WebObRequestValidatorMixin, ToolProvider): """ OAuth Tool Provider that works with WebOb requests. """ pass
tophatmonocle/ims_lti_py
ims_lti_py/tool_provider.py
Python
mit
7,132
import cupy # TODO(okuta): Implement asfarray def asfortranarray(a, dtype=None): """Return an array laid out in Fortran order in memory. Args: a (~cupy.ndarray): The input array. dtype (str or dtype object, optional): By default, the data-type is inferred from the input data. Returns: ~cupy.ndarray: The input `a` in Fortran, or column-major, order. .. seealso:: :func:`numpy.asfortranarray` """ ret = cupy.empty(a.shape[::-1], a.dtype if dtype is None else dtype).T ret[...] = a return ret # TODO(okuta): Implement asarray_chkfinite # TODO(okuta): Implement asscalar # TODO(okuta): Implement require
cemoody/chainer
cupy/manipulation/kind.py
Python
mit
684
"""This file defines MIDI standard constants, which are useful for converting between numeric MIDI data values and human-readable text. """ # INSTRUMENT_MAP[program_number] maps the program_number to an instrument name INSTRUMENT_MAP = ['Acoustic Grand Piano', 'Bright Acoustic Piano', 'Electric Grand Piano', 'Honky-tonk Piano', 'Electric Piano 1', 'Electric Piano 2', 'Harpsichord', 'Clavinet', 'Celesta', 'Glockenspiel', 'Music Box', 'Vibraphone', 'Marimba', 'Xylophone', 'Tubular Bells', 'Dulcimer', 'Drawbar Organ', 'Percussive Organ', 'Rock Organ', 'Church Organ', 'Reed Organ', 'Accordion', 'Harmonica', 'Tango Accordion', 'Acoustic Guitar (nylon)', 'Acoustic Guitar (steel)', 'Electric Guitar (jazz)', 'Electric Guitar (clean)', 'Electric Guitar (muted)', 'Overdriven Guitar', 'Distortion Guitar', 'Guitar Harmonics', 'Acoustic Bass', 'Electric Bass (finger)', 'Electric Bass (pick)', 'Fretless Bass', 'Slap Bass 1', 'Slap Bass 2', 'Synth Bass 1', 'Synth Bass 2', 'Violin', 'Viola', 'Cello', 'Contrabass', 'Tremolo Strings', 'Pizzicato Strings', 'Orchestral Harp', 'Timpani', 'String Ensemble 1', 'String Ensemble 2', 'Synth Strings 1', 'Synth Strings 2', 'Choir Aahs', 'Voice Oohs', 'Synth Choir', 'Orchestra Hit', 'Trumpet', 'Trombone', 'Tuba', 'Muted Trumpet', 'French Horn', 'Brass Section', 'Synth Brass 1', 'Synth Brass 2', 'Soprano Sax', 'Alto Sax', 'Tenor Sax', 'Baritone Sax', 'Oboe', 'English Horn', 'Bassoon', 'Clarinet', 'Piccolo', 'Flute', 'Recorder', 'Pan Flute', 'Blown bottle', 'Shakuhachi', 'Whistle', 'Ocarina', 'Lead 1 (square)', 'Lead 2 (sawtooth)', 'Lead 3 (calliope)', 'Lead 4 chiff', 'Lead 5 (charang)', 'Lead 6 (voice)', 'Lead 7 (fifths)', 'Lead 8 (bass + lead)', 'Pad 1 (new age)', 'Pad 2 (warm)', 'Pad 3 (polysynth)', 'Pad 4 (choir)', 'Pad 5 (bowed)', 'Pad 6 (metallic)', 'Pad 7 (halo)', 'Pad 8 (sweep)', 'FX 1 (rain)', 'FX 2 (soundtrack)', 'FX 3 (crystal)', 'FX 4 (atmosphere)', 'FX 5 (brightness)', 'FX 6 (goblins)', 'FX 7 (echoes)', 'FX 8 (sci-fi)', 'Sitar', 'Banjo', 'Shamisen', 'Koto', 'Kalimba', 'Bagpipe', 'Fiddle', 'Shanai', 'Tinkle Bell', 'Agogo', 'Steel Drums', 'Woodblock', 'Taiko Drum', 'Melodic Tom', 'Synth Drum', 'Reverse Cymbal', 'Guitar Fret Noise', 'Breath Noise', 'Seashore', 'Bird Tweet', 'Telephone Ring', 'Helicopter', 'Applause', 'Gunshot'] # INSTRUMENT_CLASSES contains the classes present in INSTRUMENTS INSTRUMENT_CLASSES = ['Piano', 'Chromatic Percussion', 'Organ', 'Guitar', 'Bass', 'Strings', 'Ensemble', 'Brass', 'Reed', 'Pipe', 'Synth Lead', 'Synth Pad', 'Synth Effects', 'Ethnic', 'Percussive', 'Sound Effects'] # List which maps MIDI note number - 35 to drum name # from http://www.midi.org/techspecs/gm1sound.php DRUM_MAP = ['Acoustic Bass Drum', 'Bass Drum 1', 'Side Stick', 'Acoustic Snare', 'Hand Clap', 'Electric Snare', 'Low Floor Tom', 'Closed Hi Hat', 'High Floor Tom', 'Pedal Hi Hat', 'Low Tom', 'Open Hi Hat', 'Low-Mid Tom', 'Hi-Mid Tom', 'Crash Cymbal 1', 'High Tom', 'Ride Cymbal 1', 'Chinese Cymbal', 'Ride Bell', 'Tambourine', 'Splash Cymbal', 'Cowbell', 'Crash Cymbal 2', 'Vibraslap', 'Ride Cymbal 2', 'Hi Bongo', 'Low Bongo', 'Mute Hi Conga', 'Open Hi Conga', 'Low Conga', 'High Timbale', 'Low Timbale', 'High Agogo', 'Low Agogo', 'Cabasa', 'Maracas', 'Short Whistle', 'Long Whistle', 'Short Guiro', 'Long Guiro', 'Claves', 'Hi Wood Block', 'Low Wood Block', 'Mute Cuica', 'Open Cuica', 'Mute Triangle', 'Open Triangle']
douglaseck/pretty-midi
pretty_midi/constants.py
Python
mit
4,378
#!/usr/bin/env python # -*- coding:utf-8 -*- # # Author : Victor Lin # E-mail : linxianwusx@gmail.com # Date : 15/02/04 19:59:23 # import sae import tornado.web import shortuuid import datetime import time import MySQLdb import base64 applyTime = 30 def checkClientId(secureclientId): try: cryptenStr = base64.b64decode(secureclientId) if cryptenStr[0] == 'a' and cryptenStr[7] == '3' and cryptenStr[-3] == '3' and cryptenStr[-1] == '0': return True else: return False except: return False def getUuid(): return shortuuid.ShortUUID().random(length=22) def selectFreeqcFromClientId(clientId): conn = MySQLdb.connect(host=sae.const.MYSQL_HOST,user=sae.const.MYSQL_USER,passwd=sae.const.MYSQL_PASS,db=sae.const.MYSQL_DB,port=int(sae.const.MYSQL_PORT),charset='utf8') cursor = conn.cursor() cursor.execute("select * from freeqc where ClientId='%s'" % clientId) result = cursor.fetchone() cursor.close() conn.close() if result: return result else: return -1 def selectQrcodeFromqrcode(qrcode): conn = MySQLdb.connect(host=sae.const.MYSQL_HOST,user=sae.const.MYSQL_USER,passwd=sae.const.MYSQL_PASS,db=sae.const.MYSQL_DB,port=int(sae.const.MYSQL_PORT),charset='utf8') cursor = conn.cursor() cursor.execute("select * from qrcode where QrId='%s'" % qrcode) result = cursor.fetchone() cursor.close() conn.close() return result def insertIntoFreeqc(clientId): conn=MySQLdb.connect(host=sae.const.MYSQL_HOST,user=sae.const.MYSQL_USER,passwd=sae.const.MYSQL_PASS,db=sae.const.MYSQL_DB,port=int(sae.const.MYSQL_PORT),charset='utf8') cursor = conn.cursor() uuid = getUuid() dtn = time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())) if selectFreeqcFromClientId(clientId) == -1: # 从未注册过 要insert cursor.execute("insert into freeqc (ClientId,Qrcode,ApplyTime) values (%s,%s,%s)",(clientId, uuid, dtn)) else: # 注册过,要update cursor.execute("update freeqc set Qrcode = %s where ClientId = %s",(uuid, clientId)) cursor.execute("update freeqc set Qrcode = %s where ApplyTime = %s",(uuid, dtn)) cursor.execute("insert into qrcode (QrId) values (%s)",(uuid,)) conn.commit() cursor.close() conn.close() return uuid class FreeQc(tornado.web.RequestHandler): def post(self): global applyTime clientId = self.get_argument('Id') print "ID ----> ", clientId if checkClientId(clientId): self.clientId = clientId ci = selectFreeqcFromClientId(self.clientId) if ci == -1: # 从未申请过二维码 self.qrcode = insertIntoFreeqc(self.clientId) print self.qrcode self.write('{"status" : "blank" , ' + '"code" : "' + self.qrcode + '"}') else: #申请过二维码 self.qrcode, self.applyTime = ci[2], ci[3] ct = selectQrcodeFromqrcode(self.qrcode) self.data = ct[2] print "data '" + self.data + "'" if (self.data): # 已使用 now = datetime.datetime.now() used = datetime.datetime.strptime(self.applyTime,"%Y-%m-%d %H:%M:%S") usedMinutes = (now - used).seconds if usedMinutes >= (applyTime * 60): # todo 二维码过期 self.qrcode = insertIntoFreeqc(self.clientId) print self.qrcode self.write('{"status" : "blank" , ' + '"code" : "' + self.qrcode + '"}') else: self.write('{"status" : "used"}') else: # 二维码未使用 self.qrcode = insertIntoFreeqc(self.clientId) print self.qrcode self.write('{"status" : "blank" , ' + '"code" : "' + self.qrcode + '"}') else: self.write('{"status" : "error"}')
XianwuLin/vscan
server/linxianwu/1/handler/FreeQc.py
Python
mit
4,195
# -*- coding: utf-8 -*- """ ================================= Wasserstein Discriminant Analysis ================================= This example illustrate the use of WDA as proposed in [11]. [11] Flamary, R., Cuturi, M., Courty, N., & Rakotomamonjy, A. (2016). Wasserstein Discriminant Analysis. """ # Author: Remi Flamary <remi.flamary@unice.fr> # # License: MIT License import numpy as np import matplotlib.pylab as pl from ot.dr import wda, fda ############################################################################## # Generate data # ------------- #%% parameters n = 1000 # nb samples in source and target datasets nz = 0.2 # generate circle dataset t = np.random.rand(n) * 2 * np.pi ys = np.floor((np.arange(n) * 1.0 / n * 3)) + 1 xs = np.concatenate( (np.cos(t).reshape((-1, 1)), np.sin(t).reshape((-1, 1))), 1) xs = xs * ys.reshape(-1, 1) + nz * np.random.randn(n, 2) t = np.random.rand(n) * 2 * np.pi yt = np.floor((np.arange(n) * 1.0 / n * 3)) + 1 xt = np.concatenate( (np.cos(t).reshape((-1, 1)), np.sin(t).reshape((-1, 1))), 1) xt = xt * yt.reshape(-1, 1) + nz * np.random.randn(n, 2) nbnoise = 8 xs = np.hstack((xs, np.random.randn(n, nbnoise))) xt = np.hstack((xt, np.random.randn(n, nbnoise))) ############################################################################## # Plot data # --------- #%% plot samples pl.figure(1, figsize=(6.4, 3.5)) pl.subplot(1, 2, 1) pl.scatter(xt[:, 0], xt[:, 1], c=ys, marker='+', label='Source samples') pl.legend(loc=0) pl.title('Discriminant dimensions') pl.subplot(1, 2, 2) pl.scatter(xt[:, 2], xt[:, 3], c=ys, marker='+', label='Source samples') pl.legend(loc=0) pl.title('Other dimensions') pl.tight_layout() ############################################################################## # Compute Fisher Discriminant Analysis # ------------------------------------ #%% Compute FDA p = 2 Pfda, projfda = fda(xs, ys, p) ############################################################################## # Compute Wasserstein Discriminant Analysis # ----------------------------------------- #%% Compute WDA p = 2 reg = 1e0 k = 10 maxiter = 100 Pwda, projwda = wda(xs, ys, p, reg, k, maxiter=maxiter) ############################################################################## # Plot 2D projections # ------------------- #%% plot samples xsp = projfda(xs) xtp = projfda(xt) xspw = projwda(xs) xtpw = projwda(xt) pl.figure(2) pl.subplot(2, 2, 1) pl.scatter(xsp[:, 0], xsp[:, 1], c=ys, marker='+', label='Projected samples') pl.legend(loc=0) pl.title('Projected training samples FDA') pl.subplot(2, 2, 2) pl.scatter(xtp[:, 0], xtp[:, 1], c=ys, marker='+', label='Projected samples') pl.legend(loc=0) pl.title('Projected test samples FDA') pl.subplot(2, 2, 3) pl.scatter(xspw[:, 0], xspw[:, 1], c=ys, marker='+', label='Projected samples') pl.legend(loc=0) pl.title('Projected training samples WDA') pl.subplot(2, 2, 4) pl.scatter(xtpw[:, 0], xtpw[:, 1], c=ys, marker='+', label='Projected samples') pl.legend(loc=0) pl.title('Projected test samples WDA') pl.tight_layout() pl.show()
aje/POT
examples/plot_WDA.py
Python
mit
3,084
from backdoor import * import os class Windows(Backdoor): prompt = Fore.RED + "(windows) " + Fore.BLUE + ">> " + Fore.RESET def __init__(self, core): cmd.Cmd.__init__(self) self.intro = GOOD + "Using Windows module..." self.core = core self.options = { "port" : Option("port", 53932, "port to connect to", True), "name" : Option("name", "back.exe", "name of new backdoor", True), } self.allow_modules = True self.modules = {} self.help_text = INFO + " Creates and starts a metasploit reverse_tcp backdoor." def get_command(self): return self.get_value("name") def do_exploit(self, args): os.system("msfvenom -a x86 --platform windows -p windows/shell/reverse_tcp LHOST=" + self.core.localIP + " LPORT=" + str(self.get_value("port")) + " -b \"\\x00\" -e x86/shikata_ga_nai -f exe -o " + self.get_value("name")) print(GOOD + "Making the backdoor.") self.core.curtarget.scpFiles(self, self.get_value("name"), False) print(GOOD + "Moving the backdoor.") print("Please enter the following commands: ") print("msfconsole") print("use exploit/multi/handler") print("set payload windows/shell/reverse_tcp") print("set LPORT " + str(self.get_value("port"))) print("set LHOST " + str(self.core.localIP)) raw_input("exploit") self.core.curtarget.ssh.exec_command(str(self.get_command)) for mod in self.modules.keys(): print(INFO + "Attempting to execute " + mod.name + " module...") mod.exploit()
krintoxi/NoobSec-Toolkit
NoobSecToolkit /scripts/sshbackdoors/backdoors/windows/windows.py
Python
gpl-2.0
1,540
# Volatility # Copyright (C) 2007-2013 Volatility Foundation # # This file is part of Volatility. # # Volatility is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # Volatility is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Volatility. If not, see <http://www.gnu.org/licenses/>. # """ @author: Andrew Case @license: GNU General Public License 2.0 @contact: atcuno@gmail.com @organization: """ import struct, socket import volatility.debug as debug import volatility.obj as obj import volatility.utils as utils import volatility.plugins.linux.common as linux_common import volatility.plugins.malware.malfind as malfind try: import yara has_yara = True except ImportError: has_yara = False class linux_netscan(linux_common.AbstractLinuxCommand): """Carves for network connection structures""" def check_socket_back_pointer(self, i): return i.sk == i.sk.sk_socket.sk or i.sk.sk_socket.v() == 0x0 def check_pointers(self, i): ret = self.addr_space.profile.get_symbol_by_address("kernel", i.sk.sk_backlog_rcv.v()) != None if ret: ret = self.addr_space.profile.get_symbol_by_address("kernel", i.sk.sk_error_report.v()) != None return ret def check_proto(self, i): return i.protocol in ("TCP", "UDP", "IP") def check_family(self, i): return i.sk.__sk_common.skc_family in (socket.AF_INET, socket.AF_INET6) #pylint: disable-msg=W0212 def calculate(self): if not has_yara: debug.error("Please install Yara from https://plusvic.github.io/yara/") linux_common.set_plugin_members(self) ## the start of kernel memory taken from VolatilityLinuxIntelValidAS if self.addr_space.profile.metadata.get('memory_model', '32bit') == "32bit": kernel_start = 0xc0000000 pack_size = 4 pack_fmt = "<I" else: kernel_start = 0xffffffff80000000 pack_size = 8 pack_fmt = "<Q" checks = [self.check_family, self.check_proto, self.check_socket_back_pointer, self.check_pointers] destruct_offset = self.addr_space.profile.get_obj_offset("sock", "sk_destruct") # sk_destruct pointer value of sock func_addr = self.addr_space.profile.get_symbol("inet_sock_destruct") vals = [] # convert address into a yara hex rule for bit in range(pack_size): idx = (pack_size - bit - 1) * 8 mask = 0xff << idx val = ((func_addr & mask) >> idx) & 0xff vals.insert(0, val) s = "{" + " ".join(["%.02x" % v for v in vals]) + " }" rules = yara.compile(sources = { 'n' : 'rule r1 {strings: $a = ' + s + ' condition: $a}' }) scanner = malfind.DiscontigYaraScanner(rules = rules, address_space = self.addr_space) for _, address in scanner.scan(start_offset = kernel_start): base_address = address - destruct_offset i = obj.Object("inet_sock", offset = base_address, vm = self.addr_space) valid = True for check in checks: if check(i) == False: valid = False break if valid: state = i.state if i.protocol == "TCP" else "" family = i.sk.__sk_common.skc_family #pylint: disable-msg=W0212 sport = i.src_port dport = i.dst_port saddr = i.src_addr daddr = i.dst_addr yield (i, i.protocol, saddr, sport, daddr, dport, state) def render_text(self, outfd, data): for (_, proto, saddr, sport, daddr, dport, state) in data: outfd.write("{0:8s} {1:<16}:{2:>5} {3:<16}:{4:>5} {5:<15s}\n".format(proto, saddr, sport, daddr, dport, state))
fengxiaoiie/volatility
volatility/plugins/linux/netscan.py
Python
gpl-2.0
4,373
#!/usr/bin/env python # -*- coding: utf-8 -*- # $Id$ """ VirtualBox Validation Kit - CGI - Log out page. """ __copyright__ = \ """ Copyright (C) 2012-2014 Oracle Corporation This file is part of VirtualBox Open Source Edition (OSE), as available from http://www.virtualbox.org. This file is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License (GPL) as published by the Free Software Foundation, in version 2 as it comes in the "COPYING" file of the VirtualBox OSE distribution. VirtualBox OSE is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. The contents of this file may alternatively be used under the terms of the Common Development and Distribution License Version 1.0 (CDDL) only, as it comes in the "COPYING.CDDL" file of the VirtualBox OSE distribution, in which case the provisions of the CDDL are applicable instead of those of the GPL. You may elect to license modified versions of this file under the terms and conditions of either the GPL or the CDDL or both. """ __version__ = "$Revision$" # Standard python imports. import os import sys # Only the main script needs to modify the path. g_ksValidationKitDir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))); sys.path.append(g_ksValidationKitDir); # Validation Kit imports. from testmanager.core.webservergluecgi import WebServerGlueCgi def main(): """ Main function a la C/C++. Returns exit code. """ oSrvGlue = WebServerGlueCgi(g_ksValidationKitDir, fHtmlOutput = True) sUser = oSrvGlue.getLoginName() if sUser != oSrvGlue.ksUnknownUser and sUser != 'logout': oSrvGlue.write('<p>Broken apache config!\n' 'The logout.py script should be configured with .htaccess-logout and require user logout!</p>') else: oSrvGlue.write('<p>Successfully logged out!</p>') oSrvGlue.write('<p><a href="%sadmin.py">Log in</a> under another user name.</p>' % (oSrvGlue.getBaseUrl(),)) oSrvGlue.write('<hr/><p>debug info:</p>') oSrvGlue.debugInfoPage() oSrvGlue.flush() return 0 if __name__ == '__main__': sys.exit(main())
svn2github/vbox
src/VBox/ValidationKit/testmanager/cgi/logout.py
Python
gpl-2.0
2,233
from .csv import CSVCommPlugin from .ros import ROSCommPlugin plugin_map = { "csv": CSVCommPlugin, "csv_comm": CSVCommPlugin, "ros": ROSCommPlugin, "ros_comm": ROSCommPlugin }
davoclavo/openag_brain
src/openag_lib/firmware/plugins/__init__.py
Python
gpl-3.0
193
import os BASEDIR = os.path.abspath(os.path.dirname(__file__)) # If BASE is https these has to be specified SERVER_CERT = "%s/certificates/server.crt" % BASEDIR SERVER_KEY = "%s/certificates/server.key" % BASEDIR #CERT_CHAIN = None CA_BUNDLE = None VERIFY_SSL = False
mokemokechicken/oictest_docker
example/etc/rp/sslconf.py
Python
gpl-3.0
271
#!/usr/bin/env python ######################################################################## # File : dirac-start-mysql # Author : Ricardo Graciani ######################################################################## """ Start DIRAC MySQL server """ __RCSID__ = "$Id$" # from DIRAC.Core.Base import Script Script.disableCS() Script.setUsageMessage( '\n'.join( [ __doc__.split( '\n' )[1], 'Usage:', ' %s [option|cfgfile] ...' % Script.scriptName, ] ) ) Script.parseCommandLine() # from DIRAC.FrameworkSystem.Client.ComponentInstaller import gComponentInstaller # gComponentInstaller.exitOnError = True # print gComponentInstaller.startMySQL()['Value'][1]
Andrew-McNab-UK/DIRAC
Core/scripts/dirac-start-mysql.py
Python
gpl-3.0
776
"""A contents manager that uses the local file system for storage.""" # Copyright (c) IPython Development Team. # Distributed under the terms of the Modified BSD License. import io import os import shutil import mimetypes from tornado import web from .filecheckpoints import FileCheckpoints from .fileio import FileManagerMixin from .manager import ContentsManager from IPython import nbformat from IPython.utils.importstring import import_item from IPython.utils.traitlets import Any, Unicode, Bool, TraitError from IPython.utils.py3compat import getcwd, string_types from IPython.utils import tz from IPython.html.utils import ( is_hidden, to_api_path, ) _script_exporter = None def _post_save_script(model, os_path, contents_manager, **kwargs): """convert notebooks to Python script after save with nbconvert replaces `ipython notebook --script` """ from IPython.nbconvert.exporters.script import ScriptExporter if model['type'] != 'notebook': return global _script_exporter if _script_exporter is None: _script_exporter = ScriptExporter(parent=contents_manager) log = contents_manager.log base, ext = os.path.splitext(os_path) py_fname = base + '.py' script, resources = _script_exporter.from_filename(os_path) script_fname = base + resources.get('output_extension', '.txt') log.info("Saving script /%s", to_api_path(script_fname, contents_manager.root_dir)) with io.open(script_fname, 'w', encoding='utf-8') as f: f.write(script) class FileContentsManager(FileManagerMixin, ContentsManager): root_dir = Unicode(config=True) def _root_dir_default(self): try: return self.parent.notebook_dir except AttributeError: return getcwd() save_script = Bool(False, config=True, help='DEPRECATED, use post_save_hook') def _save_script_changed(self): self.log.warn(""" `--script` is deprecated. You can trigger nbconvert via pre- or post-save hooks: ContentsManager.pre_save_hook FileContentsManager.post_save_hook A post-save hook has been registered that calls: ipython nbconvert --to script [notebook] which behaves similarly to `--script`. """) self.post_save_hook = _post_save_script post_save_hook = Any(None, config=True, help="""Python callable or importstring thereof to be called on the path of a file just saved. This can be used to process the file on disk, such as converting the notebook to a script or HTML via nbconvert. It will be called as (all arguments passed by keyword):: hook(os_path=os_path, model=model, contents_manager=instance) - path: the filesystem path to the file just written - model: the model representing the file - contents_manager: this ContentsManager instance """ ) def _post_save_hook_changed(self, name, old, new): if new and isinstance(new, string_types): self.post_save_hook = import_item(self.post_save_hook) elif new: if not callable(new): raise TraitError("post_save_hook must be callable") def run_post_save_hook(self, model, os_path): """Run the post-save hook if defined, and log errors""" if self.post_save_hook: try: self.log.debug("Running post-save hook on %s", os_path) self.post_save_hook(os_path=os_path, model=model, contents_manager=self) except Exception: self.log.error("Post-save hook failed on %s", os_path, exc_info=True) def _root_dir_changed(self, name, old, new): """Do a bit of validation of the root_dir.""" if not os.path.isabs(new): # If we receive a non-absolute path, make it absolute. self.root_dir = os.path.abspath(new) return if not os.path.isdir(new): raise TraitError("%r is not a directory" % new) def _checkpoints_class_default(self): return FileCheckpoints def is_hidden(self, path): """Does the API style path correspond to a hidden directory or file? Parameters ---------- path : string The path to check. This is an API path (`/` separated, relative to root_dir). Returns ------- hidden : bool Whether the path exists and is hidden. """ path = path.strip('/') os_path = self._get_os_path(path=path) return is_hidden(os_path, self.root_dir) def file_exists(self, path): """Returns True if the file exists, else returns False. API-style wrapper for os.path.isfile Parameters ---------- path : string The relative path to the file (with '/' as separator) Returns ------- exists : bool Whether the file exists. """ path = path.strip('/') os_path = self._get_os_path(path) return os.path.isfile(os_path) def dir_exists(self, path): """Does the API-style path refer to an extant directory? API-style wrapper for os.path.isdir Parameters ---------- path : string The path to check. This is an API path (`/` separated, relative to root_dir). Returns ------- exists : bool Whether the path is indeed a directory. """ path = path.strip('/') os_path = self._get_os_path(path=path) return os.path.isdir(os_path) def exists(self, path): """Returns True if the path exists, else returns False. API-style wrapper for os.path.exists Parameters ---------- path : string The API path to the file (with '/' as separator) Returns ------- exists : bool Whether the target exists. """ path = path.strip('/') os_path = self._get_os_path(path=path) return os.path.exists(os_path) def _base_model(self, path): """Build the common base of a contents model""" os_path = self._get_os_path(path) info = os.stat(os_path) last_modified = tz.utcfromtimestamp(info.st_mtime) created = tz.utcfromtimestamp(info.st_ctime) # Create the base model. model = {} model['name'] = path.rsplit('/', 1)[-1] model['path'] = path model['last_modified'] = last_modified model['created'] = created model['content'] = None model['format'] = None model['mimetype'] = None try: model['writable'] = os.access(os_path, os.W_OK) except OSError: self.log.error("Failed to check write permissions on %s", os_path) model['writable'] = False return model def _dir_model(self, path, content=True): """Build a model for a directory if content is requested, will include a listing of the directory """ os_path = self._get_os_path(path) four_o_four = u'directory does not exist: %r' % path if not os.path.isdir(os_path): raise web.HTTPError(404, four_o_four) elif is_hidden(os_path, self.root_dir): self.log.info("Refusing to serve hidden directory %r, via 404 Error", os_path ) raise web.HTTPError(404, four_o_four) model = self._base_model(path) model['type'] = 'directory' if content: model['content'] = contents = [] os_dir = self._get_os_path(path) for name in os.listdir(os_dir): os_path = os.path.join(os_dir, name) # skip over broken symlinks in listing if not os.path.exists(os_path): self.log.warn("%s doesn't exist", os_path) continue elif not os.path.isfile(os_path) and not os.path.isdir(os_path): self.log.debug("%s not a regular file", os_path) continue if self.should_list(name) and not is_hidden(os_path, self.root_dir): contents.append(self.get( path='%s/%s' % (path, name), content=False) ) model['format'] = 'json' return model def _file_model(self, path, content=True, format=None): """Build a model for a file if content is requested, include the file contents. format: If 'text', the contents will be decoded as UTF-8. If 'base64', the raw bytes contents will be encoded as base64. If not specified, try to decode as UTF-8, and fall back to base64 """ model = self._base_model(path) model['type'] = 'file' os_path = self._get_os_path(path) if content: content, format = self._read_file(os_path, format) default_mime = { 'text': 'text/plain', 'base64': 'application/octet-stream' }[format] model.update( content=content, format=format, mimetype=mimetypes.guess_type(os_path)[0] or default_mime, ) return model def _notebook_model(self, path, content=True): """Build a notebook model if content is requested, the notebook content will be populated as a JSON structure (not double-serialized) """ model = self._base_model(path) model['type'] = 'notebook' if content: os_path = self._get_os_path(path) nb = self._read_notebook(os_path, as_version=4) self.mark_trusted_cells(nb, path) model['content'] = nb model['format'] = 'json' self.validate_notebook_model(model) return model def get(self, path, content=True, type=None, format=None): """ Takes a path for an entity and returns its model Parameters ---------- path : str the API path that describes the relative path for the target content : bool Whether to include the contents in the reply type : str, optional The requested type - 'file', 'notebook', or 'directory'. Will raise HTTPError 400 if the content doesn't match. format : str, optional The requested format for file contents. 'text' or 'base64'. Ignored if this returns a notebook or directory model. Returns ------- model : dict the contents model. If content=True, returns the contents of the file or directory as well. """ path = path.strip('/') if not self.exists(path): raise web.HTTPError(404, u'No such file or directory: %s' % path) os_path = self._get_os_path(path) if os.path.isdir(os_path): if type not in (None, 'directory'): raise web.HTTPError(400, u'%s is a directory, not a %s' % (path, type), reason='bad type') model = self._dir_model(path, content=content) elif type == 'notebook' or (type is None and path.endswith('.ipynb')): model = self._notebook_model(path, content=content) else: if type == 'directory': raise web.HTTPError(400, u'%s is not a directory' % path, reason='bad type') model = self._file_model(path, content=content, format=format) return model def _save_directory(self, os_path, model, path=''): """create a directory""" if is_hidden(os_path, self.root_dir): raise web.HTTPError(400, u'Cannot create hidden directory %r' % os_path) if not os.path.exists(os_path): with self.perm_to_403(): os.mkdir(os_path) elif not os.path.isdir(os_path): raise web.HTTPError(400, u'Not a directory: %s' % (os_path)) else: self.log.debug("Directory %r already exists", os_path) def save(self, model, path=''): """Save the file model and return the model with no content.""" path = path.strip('/') if 'type' not in model: raise web.HTTPError(400, u'No file type provided') if 'content' not in model and model['type'] != 'directory': raise web.HTTPError(400, u'No file content provided') os_path = self._get_os_path(path) self.log.debug("Saving %s", os_path) self.run_pre_save_hook(model=model, path=path) try: if model['type'] == 'notebook': nb = nbformat.from_dict(model['content']) self.check_and_sign(nb, path) self._save_notebook(os_path, nb) # One checkpoint should always exist for notebooks. if not self.checkpoints.list_checkpoints(path): self.create_checkpoint(path) elif model['type'] == 'file': # Missing format will be handled internally by _save_file. self._save_file(os_path, model['content'], model.get('format')) elif model['type'] == 'directory': self._save_directory(os_path, model, path) else: raise web.HTTPError(400, "Unhandled contents type: %s" % model['type']) except web.HTTPError: raise except Exception as e: self.log.error(u'Error while saving file: %s %s', path, e, exc_info=True) raise web.HTTPError(500, u'Unexpected error while saving file: %s %s' % (path, e)) validation_message = None if model['type'] == 'notebook': self.validate_notebook_model(model) validation_message = model.get('message', None) model = self.get(path, content=False) if validation_message: model['message'] = validation_message self.run_post_save_hook(model=model, os_path=os_path) return model def delete_file(self, path): """Delete file at path.""" path = path.strip('/') os_path = self._get_os_path(path) rm = os.unlink if os.path.isdir(os_path): listing = os.listdir(os_path) # Don't delete non-empty directories. # A directory containing only leftover checkpoints is # considered empty. cp_dir = getattr(self.checkpoints, 'checkpoint_dir', None) for entry in listing: if entry != cp_dir: raise web.HTTPError(400, u'Directory %s not empty' % os_path) elif not os.path.isfile(os_path): raise web.HTTPError(404, u'File does not exist: %s' % os_path) if os.path.isdir(os_path): self.log.debug("Removing directory %s", os_path) with self.perm_to_403(): shutil.rmtree(os_path) else: self.log.debug("Unlinking file %s", os_path) with self.perm_to_403(): rm(os_path) def rename_file(self, old_path, new_path): """Rename a file.""" old_path = old_path.strip('/') new_path = new_path.strip('/') if new_path == old_path: return new_os_path = self._get_os_path(new_path) old_os_path = self._get_os_path(old_path) # Should we proceed with the move? if os.path.exists(new_os_path): raise web.HTTPError(409, u'File already exists: %s' % new_path) # Move the file try: with self.perm_to_403(): shutil.move(old_os_path, new_os_path) except web.HTTPError: raise except Exception as e: raise web.HTTPError(500, u'Unknown error renaming file: %s %s' % (old_path, e)) def info_string(self): return "Serving notebooks from local directory: %s" % self.root_dir def get_kernel_path(self, path, model=None): """Return the initial API path of a kernel associated with a given notebook""" if '/' in path: parent_dir = path.rsplit('/', 1)[0] else: parent_dir = '' return parent_dir
madelynfreed/rlundo
venv/lib/python2.7/site-packages/IPython/html/services/contents/filemanager.py
Python
gpl-3.0
16,487
#!/usr/bin/python # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. ANSIBLE_METADATA = {'metadata_version': '1.0', 'status': ['stableinterface'], 'supported_by': 'curated'} DOCUMENTATION = """ --- module: ec2_elb_lb description: - Returns information about the load balancer. - Will be marked changed when called only if state is changed. short_description: Creates or destroys Amazon ELB. version_added: "1.5" author: - "Jim Dalton (@jsdalton)" options: state: description: - Create or destroy the ELB choices: ["present", "absent"] required: true name: description: - The name of the ELB required: true listeners: description: - List of ports/protocols for this ELB to listen on (see example) required: false purge_listeners: description: - Purge existing listeners on ELB that are not found in listeners required: false default: true instance_ids: description: - List of instance ids to attach to this ELB required: false default: false version_added: "2.1" purge_instance_ids: description: - Purge existing instance ids on ELB that are not found in instance_ids required: false default: false version_added: "2.1" zones: description: - List of availability zones to enable on this ELB required: false purge_zones: description: - Purge existing availability zones on ELB that are not found in zones required: false default: false security_group_ids: description: - A list of security groups to apply to the elb required: false default: None version_added: "1.6" security_group_names: description: - A list of security group names to apply to the elb required: false default: None version_added: "2.0" health_check: description: - An associative array of health check configuration settings (see example) required: false default: None access_logs: description: - An associative array of access logs configuration settings (see example) required: false default: None version_added: "2.0" subnets: description: - A list of VPC subnets to use when creating ELB. Zones should be empty if using this. required: false default: None aliases: [] version_added: "1.7" purge_subnets: description: - Purge existing subnet on ELB that are not found in subnets required: false default: false version_added: "1.7" scheme: description: - The scheme to use when creating the ELB. For a private VPC-visible ELB use 'internal'. required: false default: 'internet-facing' version_added: "1.7" validate_certs: description: - When set to "no", SSL certificates will not be validated for boto versions >= 2.6.0. required: false default: "yes" choices: ["yes", "no"] aliases: [] version_added: "1.5" connection_draining_timeout: description: - Wait a specified timeout allowing connections to drain before terminating an instance required: false aliases: [] version_added: "1.8" idle_timeout: description: - ELB connections from clients and to servers are timed out after this amount of time required: false version_added: "2.0" cross_az_load_balancing: description: - Distribute load across all configured Availability Zones required: false default: "no" choices: ["yes", "no"] aliases: [] version_added: "1.8" stickiness: description: - An associative array of stickiness policy settings. Policy will be applied to all listeners ( see example ) required: false version_added: "2.0" wait: description: - When specified, Ansible will check the status of the load balancer to ensure it has been successfully removed from AWS. required: false default: no choices: ["yes", "no"] version_added: "2.1" wait_timeout: description: - Used in conjunction with wait. Number of seconds to wait for the elb to be terminated. A maximum of 600 seconds (10 minutes) is allowed. required: false default: 60 version_added: "2.1" tags: description: - An associative array of tags. To delete all tags, supply an empty dict. required: false version_added: "2.1" extends_documentation_fragment: - aws - ec2 """ EXAMPLES = """ # Note: None of these examples set aws_access_key, aws_secret_key, or region. # It is assumed that their matching environment variables are set. # Basic provisioning example (non-VPC) - local_action: module: ec2_elb_lb name: "test-please-delete" state: present zones: - us-east-1a - us-east-1d listeners: - protocol: http # options are http, https, ssl, tcp load_balancer_port: 80 instance_port: 80 proxy_protocol: True - protocol: https load_balancer_port: 443 instance_protocol: http # optional, defaults to value of protocol setting instance_port: 80 # ssl certificate required for https or ssl ssl_certificate_id: "arn:aws:iam::123456789012:server-certificate/company/servercerts/ProdServerCert" # Internal ELB example - local_action: module: ec2_elb_lb name: "test-vpc" scheme: internal state: present instance_ids: - i-abcd1234 purge_instance_ids: true subnets: - subnet-abcd1234 - subnet-1a2b3c4d listeners: - protocol: http # options are http, https, ssl, tcp load_balancer_port: 80 instance_port: 80 # Configure a health check and the access logs - local_action: module: ec2_elb_lb name: "test-please-delete" state: present zones: - us-east-1d listeners: - protocol: http load_balancer_port: 80 instance_port: 80 health_check: ping_protocol: http # options are http, https, ssl, tcp ping_port: 80 ping_path: "/index.html" # not required for tcp or ssl response_timeout: 5 # seconds interval: 30 # seconds unhealthy_threshold: 2 healthy_threshold: 10 access_logs: interval: 5 # minutes (defaults to 60) s3_location: "my-bucket" # This value is required if access_logs is set s3_prefix: "logs" # Ensure ELB is gone - local_action: module: ec2_elb_lb name: "test-please-delete" state: absent # Ensure ELB is gone and wait for check (for default timeout) - local_action: module: ec2_elb_lb name: "test-please-delete" state: absent wait: yes # Ensure ELB is gone and wait for check with timeout value - local_action: module: ec2_elb_lb name: "test-please-delete" state: absent wait: yes wait_timeout: 600 # Normally, this module will purge any listeners that exist on the ELB # but aren't specified in the listeners parameter. If purge_listeners is # false it leaves them alone - local_action: module: ec2_elb_lb name: "test-please-delete" state: present zones: - us-east-1a - us-east-1d listeners: - protocol: http load_balancer_port: 80 instance_port: 80 purge_listeners: no # Normally, this module will leave availability zones that are enabled # on the ELB alone. If purge_zones is true, then any extraneous zones # will be removed - local_action: module: ec2_elb_lb name: "test-please-delete" state: present zones: - us-east-1a - us-east-1d listeners: - protocol: http load_balancer_port: 80 instance_port: 80 purge_zones: yes # Creates a ELB and assigns a list of subnets to it. - local_action: module: ec2_elb_lb state: present name: 'New ELB' security_group_ids: 'sg-123456, sg-67890' region: us-west-2 subnets: 'subnet-123456,subnet-67890' purge_subnets: yes listeners: - protocol: http load_balancer_port: 80 instance_port: 80 # Create an ELB with connection draining, increased idle timeout and cross availability # zone load balancing - local_action: module: ec2_elb_lb name: "New ELB" state: present connection_draining_timeout: 60 idle_timeout: 300 cross_az_load_balancing: "yes" region: us-east-1 zones: - us-east-1a - us-east-1d listeners: - protocol: http load_balancer_port: 80 instance_port: 80 # Create an ELB with load balancer stickiness enabled - local_action: module: ec2_elb_lb name: "New ELB" state: present region: us-east-1 zones: - us-east-1a - us-east-1d listeners: - protocol: http load_balancer_port: 80 instance_port: 80 stickiness: type: loadbalancer enabled: yes expiration: 300 # Create an ELB with application stickiness enabled - local_action: module: ec2_elb_lb name: "New ELB" state: present region: us-east-1 zones: - us-east-1a - us-east-1d listeners: - protocol: http load_balancer_port: 80 instance_port: 80 stickiness: type: application enabled: yes cookie: SESSIONID # Create an ELB and add tags - local_action: module: ec2_elb_lb name: "New ELB" state: present region: us-east-1 zones: - us-east-1a - us-east-1d listeners: - protocol: http load_balancer_port: 80 instance_port: 80 tags: Name: "New ELB" stack: "production" client: "Bob" # Delete all tags from an ELB - local_action: module: ec2_elb_lb name: "New ELB" state: present region: us-east-1 zones: - us-east-1a - us-east-1d listeners: - protocol: http load_balancer_port: 80 instance_port: 80 tags: {} """ try: import boto import boto.ec2.elb import boto.ec2.elb.attributes import boto.vpc from boto.ec2.elb.healthcheck import HealthCheck from boto.ec2.tag import Tag HAS_BOTO = True except ImportError: HAS_BOTO = False import time import traceback import random from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.ec2 import ec2_argument_spec, connect_to_aws, AnsibleAWSError from ansible.module_utils.ec2 import get_aws_connection_info def _throttleable_operation(max_retries): def _operation_wrapper(op): def _do_op(*args, **kwargs): retry = 0 while True: try: return op(*args, **kwargs) except boto.exception.BotoServerError as e: if retry < max_retries and e.code in \ ("Throttling", "RequestLimitExceeded"): retry = retry + 1 time.sleep(min(random.random() * (2 ** retry), 300)) continue else: raise return _do_op return _operation_wrapper def _get_vpc_connection(module, region, aws_connect_params): try: return connect_to_aws(boto.vpc, region, **aws_connect_params) except (boto.exception.NoAuthHandlerFound, AnsibleAWSError) as e: module.fail_json(msg=str(e)) _THROTTLING_RETRIES = 5 class ElbManager(object): """Handles ELB creation and destruction""" def __init__(self, module, name, listeners=None, purge_listeners=None, zones=None, purge_zones=None, security_group_ids=None, health_check=None, subnets=None, purge_subnets=None, scheme="internet-facing", connection_draining_timeout=None, idle_timeout=None, cross_az_load_balancing=None, access_logs=None, stickiness=None, wait=None, wait_timeout=None, tags=None, region=None, instance_ids=None, purge_instance_ids=None, **aws_connect_params): self.module = module self.name = name self.listeners = listeners self.purge_listeners = purge_listeners self.instance_ids = instance_ids self.purge_instance_ids = purge_instance_ids self.zones = zones self.purge_zones = purge_zones self.security_group_ids = security_group_ids self.health_check = health_check self.subnets = subnets self.purge_subnets = purge_subnets self.scheme = scheme self.connection_draining_timeout = connection_draining_timeout self.idle_timeout = idle_timeout self.cross_az_load_balancing = cross_az_load_balancing self.access_logs = access_logs self.stickiness = stickiness self.wait = wait self.wait_timeout = wait_timeout self.tags = tags self.aws_connect_params = aws_connect_params self.region = region self.changed = False self.status = 'gone' self.elb_conn = self._get_elb_connection() try: self.elb = self._get_elb() except boto.exception.BotoServerError as e: module.fail_json(msg='unable to get all load balancers: %s' % e.message, exception=traceback.format_exc()) self.ec2_conn = self._get_ec2_connection() @_throttleable_operation(_THROTTLING_RETRIES) def ensure_ok(self): """Create the ELB""" if not self.elb: # Zones and listeners will be added at creation self._create_elb() else: self._set_zones() self._set_security_groups() self._set_elb_listeners() self._set_subnets() self._set_health_check() # boto has introduced support for some ELB attributes in # different versions, so we check first before trying to # set them to avoid errors if self._check_attribute_support('connection_draining'): self._set_connection_draining_timeout() if self._check_attribute_support('connecting_settings'): self._set_idle_timeout() if self._check_attribute_support('cross_zone_load_balancing'): self._set_cross_az_load_balancing() if self._check_attribute_support('access_log'): self._set_access_log() # add sitcky options self.select_stickiness_policy() # ensure backend server policies are correct self._set_backend_policies() # set/remove instance ids self._set_instance_ids() self._set_tags() def ensure_gone(self): """Destroy the ELB""" if self.elb: self._delete_elb() if self.wait: elb_removed = self._wait_for_elb_removed() # Unfortunately even though the ELB itself is removed quickly # the interfaces take longer so reliant security groups cannot # be deleted until the interface has registered as removed. elb_interface_removed = self._wait_for_elb_interface_removed() if not (elb_removed and elb_interface_removed): self.module.fail_json(msg='Timed out waiting for removal of load balancer.') def get_info(self): try: check_elb = self.elb_conn.get_all_load_balancers(self.name)[0] except: check_elb = None if not check_elb: info = { 'name': self.name, 'status': self.status, 'region': self.region } else: try: lb_cookie_policy = check_elb.policies.lb_cookie_stickiness_policies[0].__dict__['policy_name'] except: lb_cookie_policy = None try: app_cookie_policy = check_elb.policies.app_cookie_stickiness_policies[0].__dict__['policy_name'] except: app_cookie_policy = None info = { 'name': check_elb.name, 'dns_name': check_elb.dns_name, 'zones': check_elb.availability_zones, 'security_group_ids': check_elb.security_groups, 'status': self.status, 'subnets': self.subnets, 'scheme': check_elb.scheme, 'hosted_zone_name': check_elb.canonical_hosted_zone_name, 'hosted_zone_id': check_elb.canonical_hosted_zone_name_id, 'lb_cookie_policy': lb_cookie_policy, 'app_cookie_policy': app_cookie_policy, 'proxy_policy': self._get_proxy_protocol_policy(), 'backends': self._get_backend_policies(), 'instances': [instance.id for instance in check_elb.instances], 'out_of_service_count': 0, 'in_service_count': 0, 'unknown_instance_state_count': 0, 'region': self.region } # status of instances behind the ELB if info['instances']: info['instance_health'] = [ dict( instance_id = instance_state.instance_id, reason_code = instance_state.reason_code, state = instance_state.state ) for instance_state in self.elb_conn.describe_instance_health(self.name)] else: info['instance_health'] = [] # instance state counts: InService or OutOfService if info['instance_health']: for instance_state in info['instance_health']: if instance_state['state'] == "InService": info['in_service_count'] += 1 elif instance_state['state'] == "OutOfService": info['out_of_service_count'] += 1 else: info['unknown_instance_state_count'] += 1 if check_elb.health_check: info['health_check'] = { 'target': check_elb.health_check.target, 'interval': check_elb.health_check.interval, 'timeout': check_elb.health_check.timeout, 'healthy_threshold': check_elb.health_check.healthy_threshold, 'unhealthy_threshold': check_elb.health_check.unhealthy_threshold, } if check_elb.listeners: info['listeners'] = [self._api_listener_as_tuple(l) for l in check_elb.listeners] elif self.status == 'created': # When creating a new ELB, listeners don't show in the # immediately returned result, so just include the # ones that were added info['listeners'] = [self._listener_as_tuple(l) for l in self.listeners] else: info['listeners'] = [] if self._check_attribute_support('connection_draining'): info['connection_draining_timeout'] = int(self.elb_conn.get_lb_attribute(self.name, 'ConnectionDraining').timeout) if self._check_attribute_support('connecting_settings'): info['idle_timeout'] = self.elb_conn.get_lb_attribute(self.name, 'ConnectingSettings').idle_timeout if self._check_attribute_support('cross_zone_load_balancing'): is_cross_az_lb_enabled = self.elb_conn.get_lb_attribute(self.name, 'CrossZoneLoadBalancing') if is_cross_az_lb_enabled: info['cross_az_load_balancing'] = 'yes' else: info['cross_az_load_balancing'] = 'no' # return stickiness info? info['tags'] = self.tags return info @_throttleable_operation(_THROTTLING_RETRIES) def _wait_for_elb_removed(self): polling_increment_secs = 15 max_retries = (self.wait_timeout / polling_increment_secs) status_achieved = False for x in range(0, max_retries): try: self.elb_conn.get_all_lb_attributes(self.name) except (boto.exception.BotoServerError, StandardError) as e: if "LoadBalancerNotFound" in e.code: status_achieved = True break else: time.sleep(polling_increment_secs) return status_achieved @_throttleable_operation(_THROTTLING_RETRIES) def _wait_for_elb_interface_removed(self): polling_increment_secs = 15 max_retries = (self.wait_timeout / polling_increment_secs) status_achieved = False elb_interfaces = self.ec2_conn.get_all_network_interfaces( filters={'attachment.instance-owner-id': 'amazon-elb', 'description': 'ELB {0}'.format(self.name) }) for x in range(0, max_retries): for interface in elb_interfaces: try: result = self.ec2_conn.get_all_network_interfaces(interface.id) if result == []: status_achieved = True break else: time.sleep(polling_increment_secs) except (boto.exception.BotoServerError, StandardError) as e: if 'InvalidNetworkInterfaceID' in e.code: status_achieved = True break else: self.module.fail_json(msg=str(e)) return status_achieved @_throttleable_operation(_THROTTLING_RETRIES) def _get_elb(self): elbs = self.elb_conn.get_all_load_balancers() for elb in elbs: if self.name == elb.name: self.status = 'ok' return elb def _get_elb_connection(self): try: return connect_to_aws(boto.ec2.elb, self.region, **self.aws_connect_params) except (boto.exception.NoAuthHandlerFound, AnsibleAWSError) as e: self.module.fail_json(msg=str(e)) def _get_ec2_connection(self): try: return connect_to_aws(boto.ec2, self.region, **self.aws_connect_params) except (boto.exception.NoAuthHandlerFound, StandardError) as e: self.module.fail_json(msg=str(e)) @_throttleable_operation(_THROTTLING_RETRIES) def _delete_elb(self): # True if succeeds, exception raised if not result = self.elb_conn.delete_load_balancer(name=self.name) if result: self.changed = True self.status = 'deleted' def _create_elb(self): listeners = [self._listener_as_tuple(l) for l in self.listeners] self.elb = self.elb_conn.create_load_balancer(name=self.name, zones=self.zones, security_groups=self.security_group_ids, complex_listeners=listeners, subnets=self.subnets, scheme=self.scheme) if self.elb: # HACK: Work around a boto bug in which the listeners attribute is # always set to the listeners argument to create_load_balancer, and # not the complex_listeners # We're not doing a self.elb = self._get_elb here because there # might be eventual consistency issues and it doesn't necessarily # make sense to wait until the ELB gets returned from the EC2 API. # This is necessary in the event we hit the throttling errors and # need to retry ensure_ok # See https://github.com/boto/boto/issues/3526 self.elb.listeners = self.listeners self.changed = True self.status = 'created' def _create_elb_listeners(self, listeners): """Takes a list of listener tuples and creates them""" # True if succeeds, exception raised if not self.changed = self.elb_conn.create_load_balancer_listeners(self.name, complex_listeners=listeners) def _delete_elb_listeners(self, listeners): """Takes a list of listener tuples and deletes them from the elb""" ports = [l[0] for l in listeners] # True if succeeds, exception raised if not self.changed = self.elb_conn.delete_load_balancer_listeners(self.name, ports) def _set_elb_listeners(self): """ Creates listeners specified by self.listeners; overwrites existing listeners on these ports; removes extraneous listeners """ listeners_to_add = [] listeners_to_remove = [] listeners_to_keep = [] # Check for any listeners we need to create or overwrite for listener in self.listeners: listener_as_tuple = self._listener_as_tuple(listener) # First we loop through existing listeners to see if one is # already specified for this port existing_listener_found = None for existing_listener in self.elb.listeners: # Since ELB allows only one listener on each incoming port, a # single match on the incoming port is all we're looking for if existing_listener[0] == int(listener['load_balancer_port']): existing_listener_found = self._api_listener_as_tuple(existing_listener) break if existing_listener_found: # Does it match exactly? if listener_as_tuple != existing_listener_found: # The ports are the same but something else is different, # so we'll remove the existing one and add the new one listeners_to_remove.append(existing_listener_found) listeners_to_add.append(listener_as_tuple) else: # We already have this listener, so we're going to keep it listeners_to_keep.append(existing_listener_found) else: # We didn't find an existing listener, so just add the new one listeners_to_add.append(listener_as_tuple) # Check for any extraneous listeners we need to remove, if desired if self.purge_listeners: for existing_listener in self.elb.listeners: existing_listener_tuple = self._api_listener_as_tuple(existing_listener) if existing_listener_tuple in listeners_to_remove: # Already queued for removal continue if existing_listener_tuple in listeners_to_keep: # Keep this one around continue # Since we're not already removing it and we don't need to keep # it, let's get rid of it listeners_to_remove.append(existing_listener_tuple) if listeners_to_remove: self._delete_elb_listeners(listeners_to_remove) if listeners_to_add: self._create_elb_listeners(listeners_to_add) def _api_listener_as_tuple(self, listener): """Adds ssl_certificate_id to ELB API tuple if present""" base_tuple = listener.get_complex_tuple() if listener.ssl_certificate_id and len(base_tuple) < 5: return base_tuple + (listener.ssl_certificate_id,) return base_tuple def _listener_as_tuple(self, listener): """Formats listener as a 4- or 5-tuples, in the order specified by the ELB API""" # N.B. string manipulations on protocols below (str(), upper()) is to # ensure format matches output from ELB API listener_list = [ int(listener['load_balancer_port']), int(listener['instance_port']), str(listener['protocol'].upper()), ] # Instance protocol is not required by ELB API; it defaults to match # load balancer protocol. We'll mimic that behavior here if 'instance_protocol' in listener: listener_list.append(str(listener['instance_protocol'].upper())) else: listener_list.append(str(listener['protocol'].upper())) if 'ssl_certificate_id' in listener: listener_list.append(str(listener['ssl_certificate_id'])) return tuple(listener_list) def _enable_zones(self, zones): try: self.elb.enable_zones(zones) except boto.exception.BotoServerError as e: self.module.fail_json(msg='unable to enable zones: %s' % e.message, exception=traceback.format_exc()) self.changed = True def _disable_zones(self, zones): try: self.elb.disable_zones(zones) except boto.exception.BotoServerError as e: self.module.fail_json(msg='unable to disable zones: %s' % e.message, exception=traceback.format_exc()) self.changed = True def _attach_subnets(self, subnets): self.elb_conn.attach_lb_to_subnets(self.name, subnets) self.changed = True def _detach_subnets(self, subnets): self.elb_conn.detach_lb_from_subnets(self.name, subnets) self.changed = True def _set_subnets(self): """Determine which subnets need to be attached or detached on the ELB""" if self.subnets: if self.purge_subnets: subnets_to_detach = list(set(self.elb.subnets) - set(self.subnets)) subnets_to_attach = list(set(self.subnets) - set(self.elb.subnets)) else: subnets_to_detach = None subnets_to_attach = list(set(self.subnets) - set(self.elb.subnets)) if subnets_to_attach: self._attach_subnets(subnets_to_attach) if subnets_to_detach: self._detach_subnets(subnets_to_detach) def _set_zones(self): """Determine which zones need to be enabled or disabled on the ELB""" if self.zones: if self.purge_zones: zones_to_disable = list(set(self.elb.availability_zones) - set(self.zones)) zones_to_enable = list(set(self.zones) - set(self.elb.availability_zones)) else: zones_to_disable = None zones_to_enable = list(set(self.zones) - set(self.elb.availability_zones)) if zones_to_enable: self._enable_zones(zones_to_enable) # N.B. This must come second, in case it would have removed all zones if zones_to_disable: self._disable_zones(zones_to_disable) def _set_security_groups(self): if self.security_group_ids is not None and set(self.elb.security_groups) != set(self.security_group_ids): self.elb_conn.apply_security_groups_to_lb(self.name, self.security_group_ids) self.changed = True def _set_health_check(self): """Set health check values on ELB as needed""" if self.health_check: # This just makes it easier to compare each of the attributes # and look for changes. Keys are attributes of the current # health_check; values are desired values of new health_check health_check_config = { "target": self._get_health_check_target(), "timeout": self.health_check['response_timeout'], "interval": self.health_check['interval'], "unhealthy_threshold": self.health_check['unhealthy_threshold'], "healthy_threshold": self.health_check['healthy_threshold'], } update_health_check = False # The health_check attribute is *not* set on newly created # ELBs! So we have to create our own. if not self.elb.health_check: self.elb.health_check = HealthCheck() for attr, desired_value in health_check_config.items(): if getattr(self.elb.health_check, attr) != desired_value: setattr(self.elb.health_check, attr, desired_value) update_health_check = True if update_health_check: self.elb.configure_health_check(self.elb.health_check) self.changed = True def _check_attribute_support(self, attr): return hasattr(boto.ec2.elb.attributes.LbAttributes(), attr) def _set_cross_az_load_balancing(self): attributes = self.elb.get_attributes() if self.cross_az_load_balancing: if not attributes.cross_zone_load_balancing.enabled: self.changed = True attributes.cross_zone_load_balancing.enabled = True else: if attributes.cross_zone_load_balancing.enabled: self.changed = True attributes.cross_zone_load_balancing.enabled = False self.elb_conn.modify_lb_attribute(self.name, 'CrossZoneLoadBalancing', attributes.cross_zone_load_balancing.enabled) def _set_access_log(self): attributes = self.elb.get_attributes() if self.access_logs: if 's3_location' not in self.access_logs: self.module.fail_json(msg='s3_location information required') access_logs_config = { "enabled": True, "s3_bucket_name": self.access_logs['s3_location'], "s3_bucket_prefix": self.access_logs.get('s3_prefix', ''), "emit_interval": self.access_logs.get('interval', 60), } update_access_logs_config = False for attr, desired_value in access_logs_config.items(): if getattr(attributes.access_log, attr) != desired_value: setattr(attributes.access_log, attr, desired_value) update_access_logs_config = True if update_access_logs_config: self.elb_conn.modify_lb_attribute(self.name, 'AccessLog', attributes.access_log) self.changed = True elif attributes.access_log.enabled: attributes.access_log.enabled = False self.changed = True self.elb_conn.modify_lb_attribute(self.name, 'AccessLog', attributes.access_log) def _set_connection_draining_timeout(self): attributes = self.elb.get_attributes() if self.connection_draining_timeout is not None: if not attributes.connection_draining.enabled or \ attributes.connection_draining.timeout != self.connection_draining_timeout: self.changed = True attributes.connection_draining.enabled = True attributes.connection_draining.timeout = self.connection_draining_timeout self.elb_conn.modify_lb_attribute(self.name, 'ConnectionDraining', attributes.connection_draining) else: if attributes.connection_draining.enabled: self.changed = True attributes.connection_draining.enabled = False self.elb_conn.modify_lb_attribute(self.name, 'ConnectionDraining', attributes.connection_draining) def _set_idle_timeout(self): attributes = self.elb.get_attributes() if self.idle_timeout is not None: if attributes.connecting_settings.idle_timeout != self.idle_timeout: self.changed = True attributes.connecting_settings.idle_timeout = self.idle_timeout self.elb_conn.modify_lb_attribute(self.name, 'ConnectingSettings', attributes.connecting_settings) def _policy_name(self, policy_type): return __file__.split('/')[-1].split('.')[0].replace('_', '-') + '-' + policy_type def _create_policy(self, policy_param, policy_meth, policy): getattr(self.elb_conn, policy_meth )(policy_param, self.elb.name, policy) def _delete_policy(self, elb_name, policy): self.elb_conn.delete_lb_policy(elb_name, policy) def _update_policy(self, policy_param, policy_meth, policy_attr, policy): self._delete_policy(self.elb.name, policy) self._create_policy(policy_param, policy_meth, policy) def _set_listener_policy(self, listeners_dict, policy=[]): for listener_port in listeners_dict: if listeners_dict[listener_port].startswith('HTTP'): self.elb_conn.set_lb_policies_of_listener(self.elb.name, listener_port, policy) def _set_stickiness_policy(self, elb_info, listeners_dict, policy, **policy_attrs): for p in getattr(elb_info.policies, policy_attrs['attr']): if str(p.__dict__['policy_name']) == str(policy[0]): if str(p.__dict__[policy_attrs['dict_key']]) != str(policy_attrs['param_value'] or 0): self._set_listener_policy(listeners_dict) self._update_policy(policy_attrs['param_value'], policy_attrs['method'], policy_attrs['attr'], policy[0]) self.changed = True break else: self._create_policy(policy_attrs['param_value'], policy_attrs['method'], policy[0]) self.changed = True self._set_listener_policy(listeners_dict, policy) def select_stickiness_policy(self): if self.stickiness: if 'cookie' in self.stickiness and 'expiration' in self.stickiness: self.module.fail_json(msg='\'cookie\' and \'expiration\' can not be set at the same time') elb_info = self.elb_conn.get_all_load_balancers(self.elb.name)[0] d = {} for listener in elb_info.listeners: d[listener[0]] = listener[2] listeners_dict = d if self.stickiness['type'] == 'loadbalancer': policy = [] policy_type = 'LBCookieStickinessPolicyType' if self.module.boolean(self.stickiness['enabled']): if 'expiration' not in self.stickiness: self.module.fail_json(msg='expiration must be set when type is loadbalancer') expiration = self.stickiness['expiration'] if self.stickiness['expiration'] is not 0 else None policy_attrs = { 'type': policy_type, 'attr': 'lb_cookie_stickiness_policies', 'method': 'create_lb_cookie_stickiness_policy', 'dict_key': 'cookie_expiration_period', 'param_value': expiration } policy.append(self._policy_name(policy_attrs['type'])) self._set_stickiness_policy(elb_info, listeners_dict, policy, **policy_attrs) elif not self.module.boolean(self.stickiness['enabled']): if len(elb_info.policies.lb_cookie_stickiness_policies): if elb_info.policies.lb_cookie_stickiness_policies[0].policy_name == self._policy_name(policy_type): self.changed = True else: self.changed = False self._set_listener_policy(listeners_dict) self._delete_policy(self.elb.name, self._policy_name(policy_type)) elif self.stickiness['type'] == 'application': policy = [] policy_type = 'AppCookieStickinessPolicyType' if self.module.boolean(self.stickiness['enabled']): if 'cookie' not in self.stickiness: self.module.fail_json(msg='cookie must be set when type is application') policy_attrs = { 'type': policy_type, 'attr': 'app_cookie_stickiness_policies', 'method': 'create_app_cookie_stickiness_policy', 'dict_key': 'cookie_name', 'param_value': self.stickiness['cookie'] } policy.append(self._policy_name(policy_attrs['type'])) self._set_stickiness_policy(elb_info, listeners_dict, policy, **policy_attrs) elif not self.module.boolean(self.stickiness['enabled']): if len(elb_info.policies.app_cookie_stickiness_policies): if elb_info.policies.app_cookie_stickiness_policies[0].policy_name == self._policy_name(policy_type): self.changed = True self._set_listener_policy(listeners_dict) self._delete_policy(self.elb.name, self._policy_name(policy_type)) else: self._set_listener_policy(listeners_dict) def _get_backend_policies(self): """Get a list of backend policies""" policies = [] if self.elb.backends is not None: for backend in self.elb.backends: if backend.policies is not None: for policy in backend.policies: policies.append(str(backend.instance_port) + ':' + policy.policy_name) return policies def _set_backend_policies(self): """Sets policies for all backends""" ensure_proxy_protocol = False replace = [] backend_policies = self._get_backend_policies() # Find out what needs to be changed for listener in self.listeners: want = False if 'proxy_protocol' in listener and listener['proxy_protocol']: ensure_proxy_protocol = True want = True if str(listener['instance_port']) + ':ProxyProtocol-policy' in backend_policies: if not want: replace.append({'port': listener['instance_port'], 'policies': []}) elif want: replace.append({'port': listener['instance_port'], 'policies': ['ProxyProtocol-policy']}) # enable or disable proxy protocol if ensure_proxy_protocol: self._set_proxy_protocol_policy() # Make the backend policies so for item in replace: self.elb_conn.set_lb_policies_of_backend_server(self.elb.name, item['port'], item['policies']) self.changed = True def _get_proxy_protocol_policy(self): """Find out if the elb has a proxy protocol enabled""" if self.elb.policies is not None and self.elb.policies.other_policies is not None: for policy in self.elb.policies.other_policies: if policy.policy_name == 'ProxyProtocol-policy': return policy.policy_name return None def _set_proxy_protocol_policy(self): """Install a proxy protocol policy if needed""" proxy_policy = self._get_proxy_protocol_policy() if proxy_policy is None: self.elb_conn.create_lb_policy( self.elb.name, 'ProxyProtocol-policy', 'ProxyProtocolPolicyType', {'ProxyProtocol': True} ) self.changed = True # TODO: remove proxy protocol policy if not needed anymore? There is no side effect to leaving it there def _diff_list(self, a, b): """Find the entries in list a that are not in list b""" b = set(b) return [aa for aa in a if aa not in b] def _get_instance_ids(self): """Get the current list of instance ids installed in the elb""" instances = [] if self.elb.instances is not None: for instance in self.elb.instances: instances.append(instance.id) return instances def _set_instance_ids(self): """Register or deregister instances from an lb instance""" assert_instances = self.instance_ids or [] has_instances = self._get_instance_ids() add_instances = self._diff_list(assert_instances, has_instances) if add_instances: self.elb_conn.register_instances(self.elb.name, add_instances) self.changed = True if self.purge_instance_ids: remove_instances = self._diff_list(has_instances, assert_instances) if remove_instances: self.elb_conn.deregister_instances(self.elb.name, remove_instances) self.changed = True def _set_tags(self): """Add/Delete tags""" if self.tags is None: return params = {'LoadBalancerNames.member.1': self.name} tagdict = dict() # get the current list of tags from the ELB, if ELB exists if self.elb: current_tags = self.elb_conn.get_list('DescribeTags', params, [('member', Tag)]) tagdict = dict((tag.Key, tag.Value) for tag in current_tags if hasattr(tag, 'Key')) # Add missing tags dictact = dict(set(self.tags.items()) - set(tagdict.items())) if dictact: for i, key in enumerate(dictact): params['Tags.member.%d.Key' % (i + 1)] = key params['Tags.member.%d.Value' % (i + 1)] = dictact[key] self.elb_conn.make_request('AddTags', params) self.changed=True # Remove extra tags dictact = dict(set(tagdict.items()) - set(self.tags.items())) if dictact: for i, key in enumerate(dictact): params['Tags.member.%d.Key' % (i + 1)] = key self.elb_conn.make_request('RemoveTags', params) self.changed=True def _get_health_check_target(self): """Compose target string from healthcheck parameters""" protocol = self.health_check['ping_protocol'].upper() path = "" if protocol in ['HTTP', 'HTTPS'] and 'ping_path' in self.health_check: path = self.health_check['ping_path'] return "%s:%s%s" % (protocol, self.health_check['ping_port'], path) def main(): argument_spec = ec2_argument_spec() argument_spec.update(dict( state={'required': True, 'choices': ['present', 'absent']}, name={'required': True}, listeners={'default': None, 'required': False, 'type': 'list'}, purge_listeners={'default': True, 'required': False, 'type': 'bool'}, instance_ids={'default': None, 'required': False, 'type': 'list'}, purge_instance_ids={'default': False, 'required': False, 'type': 'bool'}, zones={'default': None, 'required': False, 'type': 'list'}, purge_zones={'default': False, 'required': False, 'type': 'bool'}, security_group_ids={'default': None, 'required': False, 'type': 'list'}, security_group_names={'default': None, 'required': False, 'type': 'list'}, health_check={'default': None, 'required': False, 'type': 'dict'}, subnets={'default': None, 'required': False, 'type': 'list'}, purge_subnets={'default': False, 'required': False, 'type': 'bool'}, scheme={'default': 'internet-facing', 'required': False}, connection_draining_timeout={'default': None, 'required': False, 'type': 'int'}, idle_timeout={'default': None, 'type': 'int', 'required': False}, cross_az_load_balancing={'default': None, 'type': 'bool', 'required': False}, stickiness={'default': None, 'required': False, 'type': 'dict'}, access_logs={'default': None, 'required': False, 'type': 'dict'}, wait={'default': False, 'type': 'bool', 'required': False}, wait_timeout={'default': 60, 'type': 'int', 'required': False}, tags={'default': None, 'required': False, 'type': 'dict'} ) ) module = AnsibleModule( argument_spec=argument_spec, mutually_exclusive = [['security_group_ids', 'security_group_names']] ) if not HAS_BOTO: module.fail_json(msg='boto required for this module') region, ec2_url, aws_connect_params = get_aws_connection_info(module) if not region: module.fail_json(msg="Region must be specified as a parameter, in EC2_REGION or AWS_REGION environment variables or in boto configuration file") name = module.params['name'] state = module.params['state'] listeners = module.params['listeners'] purge_listeners = module.params['purge_listeners'] instance_ids = module.params['instance_ids'] purge_instance_ids = module.params['purge_instance_ids'] zones = module.params['zones'] purge_zones = module.params['purge_zones'] security_group_ids = module.params['security_group_ids'] security_group_names = module.params['security_group_names'] health_check = module.params['health_check'] access_logs = module.params['access_logs'] subnets = module.params['subnets'] purge_subnets = module.params['purge_subnets'] scheme = module.params['scheme'] connection_draining_timeout = module.params['connection_draining_timeout'] idle_timeout = module.params['idle_timeout'] cross_az_load_balancing = module.params['cross_az_load_balancing'] stickiness = module.params['stickiness'] wait = module.params['wait'] wait_timeout = module.params['wait_timeout'] tags = module.params['tags'] if state == 'present' and not listeners: module.fail_json(msg="At least one listener is required for ELB creation") if state == 'present' and not (zones or subnets): module.fail_json(msg="At least one availability zone or subnet is required for ELB creation") if wait_timeout > 600: module.fail_json(msg='wait_timeout maximum is 600 seconds') if security_group_names: security_group_ids = [] try: ec2 = connect_to_aws(boto.ec2, region, **aws_connect_params) if subnets: # We have at least one subnet, ergo this is a VPC vpc_conn = _get_vpc_connection(module=module, region=region, aws_connect_params=aws_connect_params) vpc_id = vpc_conn.get_all_subnets([subnets[0]])[0].vpc_id filters = {'vpc_id': vpc_id} else: filters = None grp_details = ec2.get_all_security_groups(filters=filters) for group_name in security_group_names: if isinstance(group_name, basestring): group_name = [group_name] group_id = [ str(grp.id) for grp in grp_details if str(grp.name) in group_name ] security_group_ids.extend(group_id) except boto.exception.NoAuthHandlerFound as e: module.fail_json(msg = str(e)) elb_man = ElbManager(module, name, listeners, purge_listeners, zones, purge_zones, security_group_ids, health_check, subnets, purge_subnets, scheme, connection_draining_timeout, idle_timeout, cross_az_load_balancing, access_logs, stickiness, wait, wait_timeout, tags, region=region, instance_ids=instance_ids, purge_instance_ids=purge_instance_ids, **aws_connect_params) # check for unsupported attributes for this version of boto if cross_az_load_balancing and not elb_man._check_attribute_support('cross_zone_load_balancing'): module.fail_json(msg="You must install boto >= 2.18.0 to use the cross_az_load_balancing attribute") if connection_draining_timeout and not elb_man._check_attribute_support('connection_draining'): module.fail_json(msg="You must install boto >= 2.28.0 to use the connection_draining_timeout attribute") if idle_timeout and not elb_man._check_attribute_support('connecting_settings'): module.fail_json(msg="You must install boto >= 2.33.0 to use the idle_timeout attribute") if state == 'present': elb_man.ensure_ok() elif state == 'absent': elb_man.ensure_gone() ansible_facts = {'ec2_elb': 'info'} ec2_facts_result = dict(changed=elb_man.changed, elb=elb_man.get_info(), ansible_facts=ansible_facts) module.exit_json(**ec2_facts_result) if __name__ == '__main__': main()
dav1x/ansible
lib/ansible/modules/cloud/amazon/ec2_elb_lb.py
Python
gpl-3.0
53,260
#!/usr/bin/python # Copyright: Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['stableinterface'], 'supported_by': 'certified'} DOCUMENTATION = ''' --- module: sts_session_token short_description: Obtain a session token from the AWS Security Token Service description: - Obtain a session token from the AWS Security Token Service version_added: "2.2" author: Victor Costan (@pwnall) options: duration_seconds: description: - The duration, in seconds, of the session token. See http://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html#API_GetSessionToken_RequestParameters for acceptable and default values. required: false default: null mfa_serial_number: description: - The identification number of the MFA device that is associated with the user who is making the GetSessionToken call. required: false default: null mfa_token: description: - The value provided by the MFA device, if the trust policy of the user requires MFA. required: false default: null notes: - In order to use the session token in a following playbook task you must pass the I(access_key), I(access_secret) and I(access_token). extends_documentation_fragment: - aws - ec2 requirements: - boto3 - botocore - python >= 2.6 ''' RETURN = """ sts_creds: description: The Credentials object returned by the AWS Security Token Service returned: always type: list sample: access_key: ASXXXXXXXXXXXXXXXXXX expiration: "2016-04-08T11:59:47+00:00" secret_key: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX session_token: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX changed: description: True if obtaining the credentials succeeds type: bool returned: always """ EXAMPLES = ''' # Note: These examples do not set authentication details, see the AWS Guide for details. # Get a session token (more details: http://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html) sts_session_token: duration: 3600 register: session_credentials # Use the session token obtained above to tag an instance in account 123456789012 ec2_tag: aws_access_key: "{{ session_credentials.sts_creds.access_key }}" aws_secret_key: "{{ session_credentials.sts_creds.secret_key }}" security_token: "{{ session_credentials.sts_creds.session_token }}" resource: i-xyzxyz01 state: present tags: MyNewTag: value ''' try: import boto3 from botocore.exceptions import ClientError HAS_BOTO3 = True except ImportError: HAS_BOTO3 = False from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.ec2 import boto3_conn, ec2_argument_spec, get_aws_connection_info def normalize_credentials(credentials): access_key = credentials.get('AccessKeyId', None) secret_key = credentials.get('SecretAccessKey', None) session_token = credentials.get('SessionToken', None) expiration = credentials.get('Expiration', None) return { 'access_key': access_key, 'secret_key': secret_key, 'session_token': session_token, 'expiration': expiration } def get_session_token(connection, module): duration_seconds = module.params.get('duration_seconds') mfa_serial_number = module.params.get('mfa_serial_number') mfa_token = module.params.get('mfa_token') changed = False args = {} if duration_seconds is not None: args['DurationSeconds'] = duration_seconds if mfa_serial_number is not None: args['SerialNumber'] = mfa_serial_number if mfa_token is not None: args['TokenCode'] = mfa_token try: response = connection.get_session_token(**args) changed = True except ClientError as e: module.fail_json(msg=e) credentials = normalize_credentials(response.get('Credentials', {})) module.exit_json(changed=changed, sts_creds=credentials) def main(): argument_spec = ec2_argument_spec() argument_spec.update( dict( duration_seconds = dict(required=False, default=None, type='int'), mfa_serial_number = dict(required=False, default=None), mfa_token = dict(required=False, default=None) ) ) module = AnsibleModule(argument_spec=argument_spec) if not HAS_BOTO3: module.fail_json(msg='boto3 and botocore are required.') region, ec2_url, aws_connect_kwargs = get_aws_connection_info(module, boto3=True) if region: connection = boto3_conn(module, conn_type='client', resource='sts', region=region, endpoint=ec2_url, **aws_connect_kwargs) else: module.fail_json(msg="region must be specified") get_session_token(connection, module) if __name__ == '__main__': main()
nrwahl2/ansible
lib/ansible/modules/cloud/amazon/sts_session_token.py
Python
gpl-3.0
5,043
#!/usr/bin/env python """Functions for calculating nucleotide coordinates""" # Copyright 2010, 2011, 2012 Kevin Keating # # Licensed under the Educational Community License, Version 2.0 (the # "License"); you may not use this file except in compliance with the # License. You may obtain a copy of the License at # # http://www.osedu.org/licenses/ECL-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an "AS IS" # BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express # or implied. See the License for the specific language governing # permissions and limitations under the License. import os.path import re import gtk from copy import deepcopy #from time import sleep #for debugging #from pprint import pprint #for debugging from coot import refinement_immediate_replacement_state, set_refinement_immediate_replacement, accept_regularizement, clear_all_fixed_atoms, add_extra_torsion_restraint, set_refine_with_torsion_restraints, refine_with_torsion_restraints_state, matrix_state, set_matrix, delete_all_extra_restraints, add_extra_start_pos_restraint, refine_zone, set_use_only_extra_torsion_restraints_for_torsions from coot import svn_revision #needed to see if Coot is new enough for Phenix restraints from coot import monomer_restraints_py as monomer_restraints from coot import set_monomer_restraints_py as set_monomer_restraints from coot import refine_residues_py as refine_residues from coot import refine_zone_with_score_py as refine_zone_with_score from coot import mark_multiple_atoms_as_fixed_py as mark_multiple_atoms_as_fixed #regularize_zone_with_score_py only exists in Coot newer than 3728 (0.7-pre) #so we won't be able to find it in Coot 0.6.2 #this function is only used in Rotamerize without density, and the menu option for that won't be created #unless Coot is newer than 3728 #so we can safely ignore the ImportError try: from coot import regularize_zone_with_score_py as regularize_zone_with_score except ImportError: pass #use_only_extra_torsion_restraints_for_torsions_state() only exists in Coot newer than ~3902 #if the function doesn't exist, then just assume that this variable was turned off #(since RCrane is probably the only thing that uses it) try: from coot import use_only_extra_torsion_restraints_for_torsions_state except ImportError: def use_only_extra_torsion_restraints_for_torsions_state(): return 0 from buildInitSugar import BuildInitSugar, rotateSugar from puckerList import puckerList from buildPhosOxy import buildPhosOxy, buildInitOrTerminalPhosOxy from rotData import RotDataLoader from puckerList import puckerList from guiUtils import HBOX_SPACING, VBOX_SPACING, createRCraneWindowObject import phenixRestraints #initialize a BuildInitSugar object when this module is loaded rcranePath = os.path.dirname(os.path.abspath(__file__)) dataPath = os.path.join(rcranePath, "data") sugarBuilder = BuildInitSugar(c3pStruc = os.path.join(dataPath, "c3p.pdb"), c2pStruc = os.path.join(dataPath, "c2p.pdb")) #initialize a rotData object when this module is loaded rotData = RotDataLoader(os.path.join(dataPath, "dihedData.csv")) TORSION_STD_DEV_MOD = 0.1 #for minimization restraints, all the standard deviations for all rotamer torsions are multiplied by this number MANUAL_TORSION_STD_DEV = 2 #when rotamerizing an already existing structure, this will be used as the standard deviation for the #non-predicted torsions (i.e. the first and last half-nucleotides) #the standard deviations for the harmonic (start position) restraints #the larger the number, the more freedom the restrained atoms have to move HARMONIC_STD_DEV_PHOSPHATE = 0.25 #for phosphates HARMONIC_STD_DEV_BASE = 0.1 #for base atoms #sugar torsions for C3' and C2' sugars (taken from Phenix (phenix/1.6.2-432/phenix-1.6.2-432/chem_data/geostd/rna_dna/mod_rna2p.cif and mod_rna3p.cif)) NU0_C3 = 3.0 NU1_C3 = 335.0 NU4_C3 = 145.0 #Coot refers to C5'-C4'-O4'-C1' as nu4. I think nu4 is actually C3'-C4'-O4'-C1'. #We're using the C5' version of the torsion here NU0_C2 = 339.0 NU1_C2 = 35.0 NU4_C2 = 123.0 #TODO: use realnu4 and wasnu4? that's what Phenix uses #torsions for chi (also taken from Phenix) CHI_MEAN = -123.0 CHI_STD_DEV = 24.3 NU_STD_DEV = 4 #Coot default is 40, but we want to make sure that the sugars don't get flattened #TODO: try a value of 8 here? that's what Phenix uses REFINE_MAP_WEIGHT = 10 #the weight of the map term during the minimization (Coot default is 60) #if this value it too high, Coot will distort the sugar to try to fit the O2' into density #TODO: try to balance this value against NU_STD_DEV SYN_REBUILDING_CUTOFF = 3 #any minimization scores above this will cause the minimiztion to be restarted using a syn sugar HIGH_ANTI_REBUILDING_CUTOFF = 8 #if both the anti and the syn minimizations are above this score, then the minimization #will be restarted using a high-anti sugar REFINEMENT_FAIL_SCORE = 99999 #what score to assign a minimization that didn't return a score (which means that the refinement failed) PRINT_SUMMARY_TABLE = False #whether to print a summary table of minimization scores #note that setting rcrane_debug to True before launching RCrane will set PRINT_SUMMARY_TABLE to True #(launch.py will set PRINT_SUMMARY_TABLE after loading this module) #atoms to not fix during minimization PREV_RES_MOBILE_ATOMS = frozenset(["O3'"]) #OP1 and OP2 may be added at runtime CUR_RES_MOBILE_ATOMS = frozenset("P C2' O2' C3' O3' C4' O4' C5' O5'".split(" ")) #C1' should be the only restrained backbone atom NEXT_RES_MOBILE_ATOMS = frozenset("P O5' OP1 OP2".split(" ")) #The O5' will only be present if the next residue is already built #default to using the Coot/CCP4 restraints, as opposed to Phenix's pucker-specific restraints #This default may change in the future USE_PHENIX_RESTRAINTS = False PHENIX_NEW_RESTRAINT_ATOMS = frozenset("N1 N9 C1' C2' O2' C3' O3' C4' O4' C5' O5' P OP1 OP2".split(" ")) #bond and angle restraints where all atoms are on this list will be rewritten if USE_PHENIX_RESTRAINTS is True def calcCoords(builtChain, bestPath, pseudoMol, window): """Calculate coordinates for a chain of nucleotides ARGUMENTS: builtChain - a chain object containing phosphate and base coordinates for all nucleotides to be built bestPath - a list of the desired conformers to be built pseudoMol - a pseudoMolecule object currently being used to display the chain window - the window contianing the GUI RETURNS: intermediateAtomLocs - phosphate and O3' coordinates for each nucleotide immediately before minimization of that nucleotide was started minimizationScores - a list of the minimization scores for each nucleotide NOTE: If only a single nucleotide is being built, then we don't have a full suite, so there are no confmers In this case, bestPath should be a scalar containing the intended pucker of the nucleotide to be built """ #put a progress bar in window progressDialog = ProgressDialogObject(window, builtChain.numNucs()-1) #we're going to have to change some Coot settings during the coordinate calculation #so check what the existing values are so we can set them back origCootSettings = __changeCootSettings() intermediateAtomLocs = None minimizationScores = None #enclose the rest of the function in a try clause so that we can still reset the Coot variables even if something goes wrong try: #for x in (1,): if builtChain.numNucs() == 1: #if there's only one nucleotide, then there's nothing we can do (the nucleotide should contain only a phosphate) return elif builtChain.numNucs() == 2: #if there are two nucleotides, then we have a single sugar with both a 5' and a 3' phosphate #we can't determine a conformer, but we can predict the sugar pucker and minimize things without any torsions __minCoords(pseudoMol, #pseudoMolecule object None, None, 1, 2, #residue numbers None, None, #rotamers None, builtChain.nucleotides[0].type, None, #residue types builtChain.nucleotides[0].atoms, #atomic coordinates pucker = bestPath, nextResAtoms = builtChain.nucleotides[1].atoms) else: #if we recalculate coordinates later, we want to mimic the conditions of this minimization as closely as possible #this means we need to store intermediate locations for the phophate and O3' #(i.e. for phosphate i, we need to store it's location after minimizing nucleotide i-1 but before minimizing nucleotide i) #the first phosphate doesn't have an intermediate location, so just store None for that nucleotide intermediateAtomLocs = [None] minimizationScores = [] #build the first nucleotide (don't put torsional constraints on the initial alpha, beta, and gamma) #minimize the structure (newCoords, score) = __minCoords(pseudoMol, #pseudoMolecule object None, None, 1, 2, #residue numbers None, bestPath[0], #rotamers None, builtChain.nucs[0].type, builtChain.nucs[1].type, #residue types builtChain.nucs[0].atoms) #atomic coordinates #update the builtChain object with the new coordinates (builtChain.nucs[0].atoms, builtChain.nucs[1].atoms) = newCoords #store the phosphate and previous O3' location intermediateAtomLocs.append([builtChain.nucs[1].atoms["P"], builtChain.nucs[0].atoms["O3'"], builtChain.nucs[0].atoms["C3'"]]) minimizationScores.append(score) #increment the progress bar progressDialog.progress() #return fixPrevPhosOxy = True #don't minimize the first previous phosphoryl oxygens since it's going to take a long time and isn't #going to make them any more accurate since there's no O3' to use to position them #built the middle nucleotides for resNum in xrange(1, len(bestPath)): #minimize the structure (newCoords, score) = __minCoords(pseudoMol, #pseudoMolecule object resNum-1 or None, resNum, resNum+1, resNum+2, #residue numbers bestPath[resNum-1], bestPath[resNum], #rotamers builtChain.nucs[resNum-1].type, builtChain.nucs[resNum].type, builtChain.nucs[resNum+1].type, #residue types builtChain.nucs[resNum].atoms, #atomic coordinates fixPrevPhosOxy = fixPrevPhosOxy) #update the builtChain object with the new coordinates (builtChain.nucs[resNum-1].atoms, builtChain.nucs[resNum].atoms, builtChain.nucs[resNum+1].atoms) = newCoords #store the phosphate location intermediateAtomLocs.append([builtChain.nucs[resNum+1].atoms["P"], builtChain.nucs[resNum].atoms["O3'"], builtChain.nucs[resNum].atoms["C3'"]]) minimizationScores.append(score) progressDialog.progress() #increment the progress bar fixPrevPhosOxy = False #minimize all of the non-bridging oxygens from here on #build the last nucleotide (don't put torsional constraints on the final epsilon and zeta) resNum = len(bestPath) #minimize the structure (newCoords, score) = __minCoords(pseudoMol, #pseudoMolecule object resNum-1 or None, resNum, resNum+1, resNum+2, #residue numbers bestPath[resNum-1], None, #rotamers builtChain.nucs[resNum-1].type, builtChain.nucs[resNum].type, None, #residue types builtChain.nucs[resNum].atoms, #atomic coordinates fixPrevPhosOxy = fixPrevPhosOxy) #update the builtChain object with the new coordinates (builtChain.nucs[resNum-1].atoms, builtChain.nucs[resNum].atoms, builtChain.nucs[resNum+1].atoms) = newCoords minimizationScores.append(score) #increment the progress bar before we do the last thing so that the user sees it at 100% for a few seconds progressDialog.progress() #We no longer minimize the terminal phosphoryl oxygens, since it occasionally takes a long time and doesn't seem #to improve their placement much. finally: #restore the original Coot settings even if something went wrong during the minimization __restoreCootSettings(origCootSettings) #only draw extra bonds if the user is going to be presented with a GUI #otherwise, there won't be any way to delete the extra bonds if builtChain.numNucs() > 2: pseudoMol.drawExtraBonds() return (intermediateAtomLocs, minimizationScores) def recalcCoords(startingRes, endingRes, rots, origCoords, pseudoMol, window, ignoreDensity = False): """Recalculate coordinates (using different rotamers) for part of a chain of nucleotides starting with a chain built by calcCoords ARGUMENTS: startingRes - the first residue to rebuild endingRes - the last residue to rebuilt rots - what rotamers to use for the rebuild origCoords - a chain object containing the current coordinates pseudoMol - a pseudoMolecule object currently being used to display the chain window - the window contianing the GUI OPTIONAL ARGUMENTS: ignoreDensity - ignore the density when performing the minimization defaults to False RETURNS: intermediateAtomLocs - phosphate and O3' coordinates for each nucleotide immediately before minimization of that nucleotide was started minimizationScores - a list of the minimization scores for each nucleotide NOTE: Currently, the return values from this function are only used for initial rotamerize minimization. They are ignored for all other calls to this function """ #convert the starting and ending residues to indices startingResIndex = origCoords.resIndex(startingRes) endingResIndex = origCoords.resIndex(endingRes) #print "Indices:", startingResIndex, ",", endingResIndex progressDialog = ProgressDialogObject(window, endingResIndex - startingResIndex + 1) while gtk.events_pending(): gtk.main_iteration(False) #at least on Windows, the progressDialog isn't showing until after the atoms are frozen without this line #we're going to have to change some Coot settings during the coordinate calculation #so check what the existing values are so we can set them back origCootSettings = __changeCootSettings() builtChain = deepcopy(origCoords) #we don't want to modify this object print "Recalculating ", startingRes, "-", endingRes #from time import sleep; sleep(3) #initialize intermediateAtomLocs (the first nucleotide doesn't have an intermediate location) intermediateAtomLocs = [None] minimizationScores = [] try: if startingResIndex == 0: #if we're at the first nucleotide of the chain (or we're right after a chain break) print "Rebuilding initial nucleotide" #if we have to build the first nucleotide of the chain #minimize the structure (newCoords, score) = __minCoords(pseudoMol, #pseudoMolecule object None, None, startingRes, builtChain.nucs[1].resNum, #residue numbers None, rots[1], #rotamers None, builtChain.nucleotides[0].type, builtChain.nucleotides[1].type, #residue types builtChain.nucleotides[0].atoms, #atomic coordinates ignoreDensity = ignoreDensity) #update the builtChain object with the new coordinates (builtChain.nucleotides[0].atoms, builtChain.nucleotides[1].atoms) = newCoords intermediateAtomLocs.append([builtChain.nucs[1].atoms["P"], builtChain.nucs[0].atoms["O3'"], builtChain.nucs[0].atoms["C3'"]]) minimizationScores.append(score) startingResIndex += 1 rotsIndex = 2 #increment the progress bar progressDialog.progress() else: rotsIndex = 1 fixPrevPhosOxy = True #don't minimize the first previous phosphoryl oxygens #if we just built the first nucleotide, then minimizing them is going to take a long time and isn't going to make them #any more accurate since there's no O3' to use to position them #if we didn't just build the first nucleotide, then we don't want to adjust the non-bridging oxygens that are outside #of our minimization range for resIndex in xrange(startingResIndex, endingResIndex): #minimize the structure (newCoords, score) = __minCoords(pseudoMol, #pseudoMolecule object builtChain.nucs[resIndex-2].resNum if resIndex > 1 else None, builtChain.nucs[resIndex-1].resNum, builtChain.nucs[resIndex].resNum, builtChain.nucs[resIndex+1].resNum, #residue numbers rots[rotsIndex-1], rots[rotsIndex], #rotamers builtChain.nucs[resIndex-1].type, builtChain.nucs[resIndex].type, builtChain.nucs[resIndex+1].type, #residue types builtChain.nucs[resIndex].atoms, #atomic coordinates fixPrevPhosOxy = fixPrevPhosOxy, #if this is the first residue that we're rebuilding but not the first residue #of the chain, then don't move the non-bridging oxygens of the previous residue ignoreDensity = ignoreDensity) #update the builtChain object with the new coordinates (builtChain.nucleotides[resIndex-1].atoms, builtChain.nucleotides[resIndex].atoms, builtChain.nucleotides[resIndex+1].atoms) = newCoords intermediateAtomLocs.append([builtChain.nucs[resIndex+1].atoms["P"], builtChain.nucs[resIndex].atoms["O3'"], builtChain.nucs[resIndex].atoms["C3'"]]) minimizationScores.append(score) #increment the progress bar progressDialog.progress() rotsIndex += 1 firstRes = False fixPrevPhosOxy = False #minimize all of the non-bridging oxygens from here on resIndex = endingResIndex #for the last rebuilt nucleotide, we have to call __minCoords with nextResAlreadyBuilt=True #we don't need to worry about doing anything special if this is the last suite of the chain, though, since the 3' phosphoryl oxygens are already built #only do this if we have a final 3' phosphate #minimize the structure if (resIndex + 1) < len(builtChain.nucs): #print "*****Minimizing last nt*****" #from time import sleep; sleep(3) (newCoords, score) = __minCoords(pseudoMol, #pseudoMolecule obj builtChain.nucs[resIndex-2].resNum if resIndex > 1 else None, builtChain.nucs[resIndex-1].resNum, builtChain.nucs[resIndex].resNum, builtChain.nucs[resIndex+1].resNum, #residue numbers rots[rotsIndex-1], rots[rotsIndex], #rotamers builtChain.nucs[resIndex-1].type, builtChain.nucs[resIndex].type, builtChain.nucs[resIndex+1].type, #residue types builtChain.nucs[resIndex].atoms, #atomic coordinates nextResAlreadyBuilt=True, fixPrevPhosOxy = fixPrevPhosOxy, ignoreDensity = ignoreDensity) #update the builtChain object with the new coordinates (builtChain.nucleotides[resIndex-1].atoms, builtChain.nucleotides[resIndex].atoms, builtChain.nucleotides[resIndex+1].atoms) = newCoords minimizationScores.append(score) #increment the progress bar (even though the user probably won't actually see this, since it will be replaced almost immediately by the review suites GUI)) progressDialog.progress() #don't bother to do a separate minimization run for the phosphoryl oxygens of the final nucleotide. They should be good enough finally: __restoreCootSettings(origCootSettings) #restore the original Coot settings even if something went wrong during the minimization progressDialog.restoreWindow() #never return from this function without running restoreWindow() #GTK can crash Coot if it tries to update a GUI element that had been removed from the window and not restored (and possibly gone out of scope) pseudoMol.drawExtraBonds() #redraw overly-long bonds for the entire molecule return (intermediateAtomLocs, minimizationScores) def __minCoords(pseudoMol, prevPrevResNum, prevResNum, curResNum, nextResNum, curRot, nextRot, prevResType, curResType, nextResType, curResAtoms, nextResAlreadyBuilt = False, fixPrevPhosOxy = False, pucker = None, nextResAtoms = None, ignoreDensity = False): """Build a single nucleotide and minimize its coordinates. ARGUMENTS: pseudoMol - the pseudoMolecule object currently being used to display the chain prevPrevResNum - the residue number of residue i-2 only used if we're using Phenix's pucker-specific restraints, in which case it's needed to restrain the non-bridging oxygens of residue prevResNum prevResNum - the residue number of the previous residue using Coot numbering (i.e. starting at 1, not 0) curResNum - the residue number to build using Coot numbering (i.e. starting at 1, not 0) nextResNum - the residue number of the next residue using Coot numbering (i.e. starting at 1, not 0) curRot - the rotamer to use when building the current residue nextRot - the rotamer to use when building the next residue prevResType - the residue type (i.e. A, G, C, or U) of the previous residue curResType - the residue type (i.e. A, G, C, or U) of the current residue nextResType - the residue type (i.e. A, G, C, or U) of the next residue curResAtoms - a hash of atom coordinates for the current residue OPTIONAL ARGUMENTS: nextResAlreadyBuilt - should be True if the next residue is already built (i.e. if we are being called from recalcCoords instead of calcCoords) Defaults to False. fixPrevPhosOxy - whether to fix the phosphoryl oxygens of the previous nucleotide during minimization pucker - the sugar pucker for this nucleotide. Only necessary when both curRot and nextRot are None (i.e. when we're building the only nucleotide of the chain) Defaults to None nextResAtoms - a hash of atoms containing coordinates for the next phosphate. Should only be provided if we are building the only nucleotide of the chain Defaults to None ignoreDensity - ignore the density when performing the minimization defaults to False RETURNS: newCoords - new atomic coordinates calculated by the minimization procedure, formatted as a list of dictionaries score - the score received from Coot's minimization """ #print "*** Running __minCoords with:" #print "*** prevResNum =", prevResNum, ",\tcurResNum =", curResNum, ",\tnextResNum =", nextResNum #print "*** curRot =", curRot #print "*** nextRot =", nextRot #print "*** prevResType =", prevResType, "curResType =", curResType, "nextResType =", nextResType #print "*** fixPrevPhosOxy =", fixPrevPhosOxy #sleep(2) chain = pseudoMol.chain #initialize the refinement score variables so that we can easily print them later without worrying about them being undefined antiRefinementScore = None synRefinementScore = None highAntiRefinementScore = None selectedStartingStruc = None #if we're not using Phenix restraints, then we don't need the i-2 residue number if not USE_PHENIX_RESTRAINTS: #By setting prevPrevResNum to None, that residue won't be included in the minimization #(which is what we want if we're not using Phenix restraints) prevPrevResNum = None #build an anti sugar if isinstance(curRot, str): #if curRot is None or a list (indicating that we're manually setting torsions), then don't use it to determine the sugar pucker curPucker = puckerList[curRot][1] elif nextRot is not None: curPucker = puckerList[nextRot][0] else: curPucker = pucker initSugarCoords = sugarBuilder.buildSugar(curResAtoms, curPucker) pseudoMol.addSugar(curResNum, initSugarCoords) #if we're building the only nucleotide of the chain, then build the phosphates before minimization if nextResAtoms is not None: sugarAndP = dict(curResAtoms.items()+initSugarCoords.items()) phosOxyCoords5 = buildInitOrTerminalPhosOxy(sugarAndP) pseudoMol.addPhosOxy(curResNum, phosOxyCoords5) phosOxyCoords3 = buildInitOrTerminalPhosOxy(nextResAtoms, sugarAndP) pseudoMol.addPhosOxy(nextResNum, phosOxyCoords3) #store the structure of the previous and next nucleotides, so we can restore them if we restart minimization with a syn sugar preMinimizationStruc = pseudoMol.getCootNucs(prevResNum or curResNum, nextResNum) #uncomment these lines to produce a Coot script for the minimization (i.e a script that will replicate the minimization we're about to do) #if curResNum == 8: # import sys # if sys.modules.has_key("genMinimizationScript"): del sys.modules["genMinimizationScript"] # from genMinimizationScript import genMinimizationScript # genMinimizationScript("lastNucMin.py", pseudoMol, prevResNum, curResNum, nextResNum, curRot, nextRot, prevResType, curResType, nextResType, curResAtoms, nextResAlreadyBuilt, fixPrevPhosOxy) # raise Exception #don't actually run the minimization #set the appropriate restraints molNum = pseudoMol.molNum() __fixAtoms(pseudoMol, prevResNum, curResNum, nextResNum, fixPrevPhosOxy) __setTorsionRestraints(molNum, chain, prevResNum, curResNum, nextResNum, curRot, nextRot, curResType, nextResAlreadyBuilt) if USE_PHENIX_RESTRAINTS: __addPhenixRestraints(molNum, chain, prevPrevResNum, prevResNum, curResNum, nextResNum, curRot, nextRot, curResType, nextResAlreadyBuilt) if prevPrevResNum is not None: #when USE_PHENIX_RESTRAINTS is true, we remove the polymer-type from RNA nucleotides so that #we can overwrite the link restraints (i.e. restraints spanning more than one nucleotide) #as a side-effect of this, Coot no longer implicitely includes flanking nucleotides in the minimization #as a result, the non-bridging oxygens of prevResNum will be improperly positioned unless we manually #include the fully immobilized prevPrevResNum in the minimization __fixEntireResidue(molNum, chain, prevPrevResNum, pseudoMol.getAtomNames(prevPrevResNum, strip=False)) #minimize the structure antiRefinementScore = __runRefinement(molNum, chain, prevPrevResNum or prevResNum or curResNum, nextResNum, ignoreDensity) score = antiRefinementScore selectedStartingStruc = "anti" #check how good the results of the minimization are to decide if we should restart with a syn chi if antiRefinementScore > SYN_REBUILDING_CUTOFF: #if False: #if the minimization did not end well, then we should restart it with a syn sugar #first, store the results of this minimization newCoords = pseudoMol.updateRes(prevResNum or curResNum, nextResNum) #antiRefinementStruc = pseudoMol.getCootNucs((resNum-1 or resNum) - 1, resNum) antiRefinementStruc = pseudoMol.getCootNucs(prevResNum or curResNum, nextResNum) #restore the structure as it was before minimization #pseudoMol.setCootNucs((resNum-1 or resNum) - 1, resNum, preMinimizationStruc, False) pseudoMol.setCootNucs(prevResNum or curResNum, nextResNum, preMinimizationStruc, False) #Note: the False fourth argument skips running clear_and_update_molecule, since that will be run by #replaceSugar() below #calculate syn sugar coordinates synSugarCoords = rotateSugar(initSugarCoords, curResAtoms, "syn") pseudoMol.replaceSugar(curResNum, synSugarCoords) #uncomment these lines to produce a Coot script for the minimization (i.e a script that will replicate the minimization we're about to do) #if curResNum == 8: # import sys # if sys.modules.has_key("genMinimizationScript"): del sys.modules["genMinimizationScript"] # from genMinimizationScript import genMinimizationScript # genMinimizationScript("lastNucMin.py", pseudoMol, prevResNum, curResNum, nextResNum, curRot, nextRot, prevResType, curResType, nextResType, curResAtoms, nextResAlreadyBuilt, fixPrevPhosOxy) # raise Exception synRefinementScore = __runRefinement(molNum, chain, prevPrevResNum or prevResNum or curResNum, nextResNum, ignoreDensity) #if the syn refinement wasn't better than the anti refinement, then go back to the anti structure if synRefinementScore >= antiRefinementScore: pseudoMol.setCootNucs(prevResNum or curResNum, nextResNum, antiRefinementStruc) #we don't need to run pseudoMol.updateRes() here since it was run above else: newCoords = pseudoMol.updateRes(prevResNum or curResNum, nextResNum) score = synRefinementScore selectedStartingStruc = "syn" else: #update the Pseudomolecule object so that it knows about the moved atoms newCoords = pseudoMol.updateRes(prevResNum or curResNum, nextResNum) #try a high-anti structure if the best score is still too high if score > HIGH_ANTI_REBUILDING_CUTOFF: prevRefinementStruc = pseudoMol.getCootNucs(prevResNum or curResNum, nextResNum) pseudoMol.setCootNucs(prevResNum or curResNum, nextResNum, preMinimizationStruc, False) highAntiSugarCoords = rotateSugar(initSugarCoords, curResAtoms, "high-anti") pseudoMol.replaceSugar(curResNum, highAntiSugarCoords) #raise Exception highAntiRefinementScore = __runRefinement(molNum, chain, prevPrevResNum or prevResNum or curResNum, nextResNum, ignoreDensity) if highAntiRefinementScore >= score: pseudoMol.setCootNucs(prevResNum or curResNum, nextResNum, prevRefinementStruc) else: newCoords = pseudoMol.updateRes(prevResNum or curResNum, nextResNum) score = highAntiRefinementScore selectedStartingStruc = "high-anti" #if desired, print a summary table listing the refinement scores and the selected structure if PRINT_SUMMARY_TABLE: print "********************************" print "* Starting struc * Score *" print "********************************" print "* Anti * %s *" % __stringifyScore(antiRefinementScore) print "* Syn * %s *" % __stringifyScore(synRefinementScore) print "* High-anti * %s *" % __stringifyScore(highAntiRefinementScore) print "********************************" print "* Using %s minimization" % selectedStartingStruc + " " * (9-len(selectedStartingStruc)) + " *" print "********************************" #from time import sleep; sleep(2) #pprint(newCoords) #if we haven't already, build the non-bridging oxygens if nextResAtoms is None: curResIndex = pseudoMol.resIndex(curResNum) #print "curResIndex =", curResIndex #print "curResNum =", curResNum #if curResIndex == 0: if prevResNum is None: #if this is the first (but not only) nucleotide (newCurResAtoms, newNextResAtoms) = newCoords phosOxyCoords = buildInitOrTerminalPhosOxy(newCurResAtoms) if phosOxyCoords is not None: pseudoMol.addPhosOxy(curResNum, phosOxyCoords) elif pseudoMol.numAtomsFromIndex(curResIndex+1) == 1 and not pseudoMol.connectedToNextFromIndex(curResIndex+1): #if the next residue is just a terminal 3' phosphate, then we need to add non-bridging oxygens (newPrevResAtoms, newCurResAtoms, newNextResAtoms) = newCoords phosOxyCoords5 = buildPhosOxy(newCurResAtoms, newPrevResAtoms) if phosOxyCoords5 is not None: pseudoMol.addPhosOxy(curResNum, phosOxyCoords5) phosOxyCoords3 = buildInitOrTerminalPhosOxy(newNextResAtoms, newCurResAtoms) if phosOxyCoords3 is not None: pseudoMol.addPhosOxy(nextResNum, phosOxyCoords3) else: #if this is a middle nucleotide of a chain #from pprint import pprint; pprint(newCoords) (newPrevResAtoms, newCurResAtoms, newNextResAtoms) = newCoords phosOxyCoords = buildPhosOxy(newCurResAtoms, newPrevResAtoms) if phosOxyCoords is not None: pseudoMol.addPhosOxy(curResNum, phosOxyCoords) #clear the fixed atoms and torsional restraints __clearResRestraints(molNum) return (newCoords, score) def __stringifyScore(score): """Format a refinement score for printing in the summary table ARGUMENTS: score - the refinement RETURNS: score formatted as a fixed length string or "Not run" if score is None """ if score == REFINEMENT_FAIL_SCORE: return " Failed" elif score is not None: return "%7.3f" % score else: return "Not run" def __fixAtoms(pseudoMol, prevResNumFull, curResNumFull, nextResNumFull, fixPrevPhosOxy): """Fix and restrain the appropriate atoms for minimization ARGUMENTS: pseudoMol - the PseudoMolecule object representing the molecule to fix atoms in prevResNumFull - the residue number of the previous residue using Coot numbering (i.e. starting at 1, not 0) including insertion code curResNumFull - the residue number using Coot numbering (i.e. starting at 1, not 0) including insertion code nextResNumFull - the residue number of the next residue using Coot numbering (i.e. starting at 1, not 0) including insertion code OPTIONAL ARGUMENTS: fixPrevPhosOxy - whether to fix the phosphoryl oxygens of the previous nucleotide during minimization Defaults to False RETURNS: None """ molNum = pseudoMol.molNum() chain = pseudoMol.chain (prevResNum, prevResInsCode) = __splitResNum(prevResNumFull) (curResNum, curResInsCode) = __splitResNum(curResNumFull) (nextResNum, nextResInsCode) = __splitResNum(nextResNumFull) #debugOut = open("fixAtoms.txt", "a") #debugOut.write("Minimizing "+ ", ".join(map(str, [prevResNumFull, curResNumFull, nextResNumFull])) + "\n") fixList = [] #the list of atoms to fix #fix atoms from the previous residue if prevResNum is not None: #fix the previous non-bridging oxygens if this is the first minimization of a recalcSuites if fixPrevPhosOxy: prevResMobileAtoms = PREV_RES_MOBILE_ATOMS else: prevResMobileAtoms = PREV_RES_MOBILE_ATOMS.union(["OP1", "OP2"]) for curAtom in pseudoMol.getAtomNames(prevResNum, strip=False): if curAtom.strip() not in prevResMobileAtoms: fixList.append([chain, prevResNum, prevResInsCode, curAtom, ""]) #debugOut.write(",".join(map(str, [chain, prevResNum, prevResInsCode, curAtom, ""])) + "\n") #restrain the starting and ending phosphates add_extra_start_pos_restraint(molNum, chain, curResNum , curResInsCode, " P ", "", HARMONIC_STD_DEV_PHOSPHATE) add_extra_start_pos_restraint(molNum, chain, nextResNum, nextResInsCode, " P ", "", HARMONIC_STD_DEV_PHOSPHATE) #debugOut.write(",".join(map(str, [molNum, chain, curResNum , curResInsCode, " P ", "", HARMONIC_STD_DEV_PHOSPHATE])) + "\n") #debugOut.write(",".join(map(str, [molNum, chain, nextResNum, nextResInsCode, " P ", "", HARMONIC_STD_DEV_PHOSPHATE])) + "\n") #restrain atoms from the current residue base + C1' for curAtom in pseudoMol.getAtomNames(curResNum, strip=False): if curAtom.strip() not in CUR_RES_MOBILE_ATOMS: #fixList.append([chain, resNum, "", curAtom, ""]) add_extra_start_pos_restraint(molNum, chain, curResNum , curResInsCode, curAtom, "", HARMONIC_STD_DEV_BASE) #debugOut.write(",".join(map(str, [molNum, chain, curResNum , curResInsCode, curAtom, "", HARMONIC_STD_DEV_BASE])) + "\n") #fix atoms from the next residue if nextResNum is not None: for curAtom in pseudoMol.getAtomNames(nextResNum, strip=False): if curAtom.strip() not in NEXT_RES_MOBILE_ATOMS: fixList.append([chain, nextResNum, nextResInsCode, curAtom, ""]) #debugOut.write(",".join(map(str, [chain, nextResNum, nextResInsCode, curAtom, ""])) + "\n") mark_multiple_atoms_as_fixed(molNum, fixList, 1) #debugOut.close() def __setTorsionRestraints(molNum, chain, prevResNumFull, curResNumFull, nextResNumFull, curRot, nextRot, curResType, nextResAlreadyBuilt = False): """Set the appropriate torsional restraints for the minimization ARGUMENTS: molNum - the Coot molecule number chain - the chain name prevResNumFull - the residue number of the previous residue including insertion codes curResNumFull - the residue number to build including insertion codes nextResNumFull - the residue number of the next residue including insertion codes curRot - the rotamer to use when building the current residue nextRot - the rotamer to use when building the next residue curResType - the residue type (i.e. A, G, C, or U) of the current residue OPTIONAL ARGUMENTS: nextResAlreadyBuilt - should be True if the next residue is already built (i.e. if we are being called from recalcCoords instead of calcCoords) Defaults to False. RETURNS: None """ (prevResNum, prevResInsCode) = __splitResNum(prevResNumFull) (curResNum, curResInsCode) = __splitResNum(curResNumFull) (nextResNum, nextResInsCode) = __splitResNum(nextResNumFull) if curRot is not None: #print "Adding custom torsional restraints for residue", curResNum, "currot %s" % curRot if isinstance(curRot, str): prevDelta = rotData.prevDeltaMean(curRot) ep = rotData.epMean (curRot) zeta = rotData.zetaMean (curRot) alpha = rotData.alphaMean(curRot) beta = rotData.betaMean (curRot) gamma = rotData.gammaMean(curRot) prevDeltaSD = rotData.prevDeltaSD(curRot) * TORSION_STD_DEV_MOD epSD = rotData.epSD(curRot) * TORSION_STD_DEV_MOD zetaSD = rotData.zetaSD (curRot) * TORSION_STD_DEV_MOD alphaSD = rotData.alphaSD(curRot) * TORSION_STD_DEV_MOD betaSD = rotData.betaSD (curRot) * TORSION_STD_DEV_MOD gammaSD = rotData.gammaSD(curRot) * TORSION_STD_DEV_MOD else: prevDelta = curRot[0] ep = curRot[1] zeta = curRot[2] alpha = curRot[3] beta = curRot[4] gamma = curRot[5] prevDeltaSD = MANUAL_TORSION_STD_DEV epSD = MANUAL_TORSION_STD_DEV zetaSD = MANUAL_TORSION_STD_DEV alphaSD = MANUAL_TORSION_STD_DEV betaSD = MANUAL_TORSION_STD_DEV gammaSD = MANUAL_TORSION_STD_DEV #previous delta if prevDelta is not None: add_extra_torsion_restraint(molNum, chain, prevResNum, prevResInsCode, " C5'", "", chain, prevResNum, prevResInsCode, " C4'", "", chain, prevResNum, prevResInsCode, " C3'", "", chain, prevResNum, prevResInsCode, " O3'", "", prevDelta, prevDeltaSD, 1) #epsilon if ep is not None: add_extra_torsion_restraint(molNum, chain, prevResNum, prevResInsCode, " C4'", "", chain, prevResNum, prevResInsCode, " C3'", "", chain, prevResNum, prevResInsCode, " O3'", "", chain, curResNum, curResInsCode, " P ", "", ep, epSD, 1) #zeta if zeta is not None: add_extra_torsion_restraint(molNum, chain, prevResNum, prevResInsCode, " C3'", "", chain, prevResNum, prevResInsCode, " O3'", "", chain, curResNum, prevResInsCode, " P ", "", chain, curResNum, curResInsCode, " O5'", "", zeta, zetaSD, 1) #alpha if alpha is not None: add_extra_torsion_restraint(molNum, chain, curResNum, curResInsCode, " C5'", "", chain, curResNum, curResInsCode, " O5'", "", chain, curResNum, curResInsCode, " P ", "", chain, prevResNum, prevResInsCode, " O3'", "", alpha, alphaSD, 1) #beta if beta is not None: add_extra_torsion_restraint(molNum, chain, curResNum, curResInsCode, " P ", "", chain, curResNum, curResInsCode, " O5'", "", chain, curResNum, curResInsCode, " C5'", "", chain, curResNum, curResInsCode, " C4'", "", beta, betaSD, 1) #gamma if gamma is not None: add_extra_torsion_restraint(molNum, chain, curResNum , curResInsCode, " O5'", "", chain, curResNum , curResInsCode, " C5'", "", chain, curResNum , curResInsCode, " C4'", "", chain, curResNum , curResInsCode, " C3'", "", gamma, gammaSD, 1) #add constraints on delta and the ring torsions curPucker = None delta = None if isinstance(curRot, str): curPucker = puckerList[curRot][1] delta = rotData.curDeltaMean(curRot) deltaSD = rotData.curDeltaSD(curRot)*TORSION_STD_DEV_MOD elif isinstance(nextRot, str): curPucker = puckerList[nextRot][0] delta = rotData.prevDeltaMean(nextRot) deltaSD = rotData.prevDeltaSD(nextRot)*TORSION_STD_DEV_MOD if delta is not None: add_extra_torsion_restraint(molNum, chain, curResNum , curResInsCode, " C5'", "", chain, curResNum , curResInsCode, " C4'", "", chain, curResNum , curResInsCode, " C3'", "", chain, curResNum , curResInsCode, " O3'", "", delta, deltaSD, 1) if curPucker is not None: #print "adding ring constraints" if curPucker == 2: curNu0 = NU0_C2 curNu1 = NU1_C2 curNu4 = NU4_C2 else: curNu0 = NU0_C3 curNu1 = NU1_C3 curNu4 = NU4_C3 #current nu0 add_extra_torsion_restraint(molNum, chain, curResNum , curResInsCode, " C4'", "", chain, curResNum , curResInsCode, " O4'", "", chain, curResNum , curResInsCode, " C1'", "", chain, curResNum , curResInsCode, " C2'", "", curNu0, NU_STD_DEV, 1) #current nu1 add_extra_torsion_restraint(molNum, chain, curResNum , curResInsCode, " O4'", "", chain, curResNum , curResInsCode, " C1'", "", chain, curResNum , curResInsCode, " C2'", "", chain, curResNum , curResInsCode, " C3'", "", curNu1, NU_STD_DEV, 1) #current nu4 add_extra_torsion_restraint(molNum, chain, curResNum , curResInsCode, " C5'", "", chain, curResNum , curResInsCode, " C4'", "", chain, curResNum , curResInsCode, " O4'", "", chain, curResNum , curResInsCode, " C1'", "", curNu4, NU_STD_DEV, 1) #print "adding chi restraint" #redifine the chi restraints, since Coot uses a very strange default value #(Note that even though the base is fixed, this chi restraint can affect the sugar positioning) if curResType == "G" or curResType == "A": baseAtom1 = " N9 " baseAtom2 = " C4 " else: baseAtom1 = " N1 " baseAtom2 = " C2 " add_extra_torsion_restraint(molNum, chain, curResNum , curResInsCode, " O4'", "", chain, curResNum , curResInsCode, " C1'", "", chain, curResNum , curResInsCode, baseAtom1, "", chain, curResNum , curResInsCode, baseAtom2, "", CHI_MEAN, CHI_STD_DEV, 2) #Note that this torsion has a period of 2 (which means a period of 360/2=180 degrees) to account for anti and syn rotations if nextRot is not None: if isinstance(nextRot, str): ep = rotData.epMean(nextRot) epSD = rotData.epSD(nextRot) * TORSION_STD_DEV_MOD if nextResAlreadyBuilt: zeta = rotData.zetaMean(nextRot) alpha = rotData.alphaMean(nextRot) beta = rotData.betaMean(nextRot) gamma = rotData.gammaMean(nextRot) zetaSD = rotData.zetaSD(nextRot) * TORSION_STD_DEV_MOD alphaSD = rotData.alphaSD(nextRot) * TORSION_STD_DEV_MOD betaSD = rotData.betaSD(nextRot) * TORSION_STD_DEV_MOD gammaSD = rotData.gammaSD(nextRot) * TORSION_STD_DEV_MOD else: ep = nextRot[1] epSD = MANUAL_TORSION_STD_DEV if nextResAlreadyBuilt: zeta = nextRot[2] alpha = nextRot[3] beta = nextRot[4] gamma = nextRot[5] zetaSD = MANUAL_TORSION_STD_DEV alphaSD = MANUAL_TORSION_STD_DEV betaSD = MANUAL_TORSION_STD_DEV gammaSD = MANUAL_TORSION_STD_DEV #print "Adding custom torsional restraints for nextrot %s" % nextRot if ep is not None: add_extra_torsion_restraint(molNum, chain, curResNum , curResInsCode, " C4'", "", chain, curResNum , curResInsCode, " C3'", "", chain, curResNum , curResInsCode, " O3'", "", chain, nextResNum , nextResInsCode, " P ", "", ep, epSD, 1) if nextResAlreadyBuilt: #if we're rebuilding a section and about to meet up with the existing structure, we need more constraints #zeta if zeta is not None: #torsions can be None when we're rotamerizing and the last nucleotide is missing atoms add_extra_torsion_restraint(molNum, chain, curResNum , curResInsCode, " C3'", "", chain, curResNum , curResInsCode, " O3'", "", chain, nextResNum, nextResInsCode, " P ", "", chain, nextResNum, nextResInsCode, " O5'", "", zeta, zetaSD, 1) #alpha if alpha is not None: add_extra_torsion_restraint(molNum, chain, nextResNum, nextResInsCode, " C5'", "", chain, nextResNum, nextResInsCode, " O5'", "", chain, nextResNum, nextResInsCode, " P ", "", chain, curResNum , curResInsCode, " O3'", "", alpha, alphaSD, 1) #beta if beta is not None: add_extra_torsion_restraint(molNum, chain, nextResNum, nextResInsCode, " P ", "", chain, nextResNum, nextResInsCode, " O5'", "", chain, nextResNum, nextResInsCode, " C5'", "", chain, nextResNum, nextResInsCode, " C4'", "", beta, betaSD, 1) #gamma if gamma is not None: add_extra_torsion_restraint(molNum, chain, nextResNum, nextResInsCode, " O5'", "", chain, nextResNum, nextResInsCode, " C5'", "", chain, nextResNum, nextResInsCode, " C4'", "", chain, nextResNum, nextResInsCode, " C3'", "", gamma, gammaSD, 1) def __runRefinement(molNum, chain, startingResNumFull, endingResNumFull, ignoreDensity = False): """Run the minimization using Coot's built-in refinement functions ARGUMENTS: molNum - the Coot molecule number chain - the chain name startingResNumFull - the residue number (including insertion code) of the first nucleotide to refine endingResNumFull - the residue number (including insertion code) of the last nucleotide to refine OPTIONAL ARGUMENTS: ignoreDensity - ignore the density when performing the minimization defaults to False RETURNS: the refinement score """ print "*************************" print "About to refine residues", startingResNumFull, "-", endingResNumFull print "*************************" (startingResNum, startingResInsCode) = __splitResNum(startingResNumFull) (endingResNum, endingResInsCode) = __splitResNum(endingResNumFull) #refine_zone and refine_zone_with_score don't support insertion codes, so for now the insertion codes gets ignored #this will cause problems if trying to rotamerize a chain that uses insertion codes if ignoreDensity: refinementResults = regularize_zone_with_score(molNum, chain, startingResNum, endingResNum, "") else: #note that we need to use refine_zone_with_score, not refine_residues, since refine_residues assumes that things aren't bonded if they're more than three Angstroms apart refinementResults = refine_zone_with_score(molNum, chain, startingResNum, endingResNum, "") accept_regularizement() return __calcRefinementScore(refinementResults) def __clearResRestraints(molNum): """Clear the torsional restraints and fixed atoms that applied to the residues we were just minimizing ARGUMENTS: molNum - the Coot molecule number RETURNS: None """ clear_all_fixed_atoms(molNum) delete_all_extra_restraints(molNum) #a regex to separate a residue name and insertion code __splitResNumRE = re.compile("(-?\d+)([A-Za-z]?)$") def __splitResNum(resNumFull): """Split a residue number into number and insertion code ARGUMENTS: resNumFull - a residue number potentially contianing an insertion code RETURNS: resNum - the residue number without the insertion code (as an int) insCode - the insertion code """ if resNumFull is None: return (None, None) else: (resNum, insCode) = __splitResNumRE.match(str(resNumFull)).groups() resNum = int(resNum) #the Coot SWIG functions require an integer argument, so we do explicit cast here return (resNum, insCode) def __changeMonomerRestraints(): """Change the monomer restraints for RNA residues ARGUMENTS: None RETURNS: origRestraints - the original monomer restraints (so we can restore them later) """ origRestraints = {} for curNuc in ("A", "G", "C", "U"): origRestraints[curNuc] = monomer_restraints(curNuc) newRestraints = monomer_restraints(curNuc) #we need a new copy of the dictionary so we don't modify the originalRestraints dict #this next line is redundant with use_only_extra_torsion_restraints_for_torsions(1), but it certainly won't hurt anything #use_only_extra_torsion_restraints_for_torsions(1) also has the advantage of turning off the link torsion restraints #(i.e. restraints that span two nucleotides), but the link torsion restraints don't seem to be used during minimization #regardless newRestraints['_chem_comp_tor'] = [] #we don't need any of the existing restraints since we're rewriting all of the named restraints #and the CONST restraints are redundant with the planar restraints (and seem to be ignored by Coot anyway) #make the plane restraints tighter (change standard deviation from 0.020 to 0.001) #since we really don't want non-planar bases (they can be a pain to fix later) for curPlane in newRestraints['_chem_comp_plane_atom']: curPlane[2] = 0.001 #if we're going to be using Phenix's restraints, then remove the default backbone bond and angle restraints if USE_PHENIX_RESTRAINTS == True: newRestraints['_chem_comp_angle'] = [curAngle for curAngle in newRestraints['_chem_comp_angle'] if not(curAngle[0].strip() in PHENIX_NEW_RESTRAINT_ATOMS and curAngle[1].strip() in PHENIX_NEW_RESTRAINT_ATOMS and curAngle[2].strip() in PHENIX_NEW_RESTRAINT_ATOMS)] #add the Phenix restraints that aren't pucker specific newRestraints['_chem_comp_angle'].extend([[" C2'", " C3'", " C4'", 102.6, 1.0], [" C5'", " O5'", " P ", 120.9, 1.0], [" O5'", " P ", " OP1", 110.7, 1.000], [" OP1", " P ", " OP2", 119.6, 1.000], [" O5'", " P ", " OP2", 110.7, 1.000]]) newRestraints['_chem_comp_bond'] = [curBond for curBond in newRestraints['_chem_comp_bond'] if not (curBond[0].strip() in PHENIX_NEW_RESTRAINT_ATOMS and curBond[1].strip() in PHENIX_NEW_RESTRAINT_ATOMS)] #add in the bond restraints that aren't pucker specific newRestraints['_chem_comp_bond'].extend([[" P ", " O5'", 'single', 1.593, 0.015], [" P ", " OP1", 'deloc', 1.485, 0.020], [" P ", " OP2", 'deloc', 1.485, 0.020]]) #remove the polymer type so that we can replace the link restraints (restraints that span two nucleotides) #there's no way to set proper link restraints, so all link restraints are set as extra restraints in phenixRestraints.py newRestraints['_chem_comp'][3] = "" #previously, this value was "RNA" set_monomer_restraints(curNuc, newRestraints) return origRestraints def __changeCootSettings(): """Change Coot's minimization settings ARUGMENTS: None RETURNS: these values are returned so the minimization settings can be restored later origImmediateReplaceValue - the original refinement_immediate_replacement_state() value origRefineWithTorsionsValue - the original refine_with_torsion_restraints_state() origWeightValue - the original matrix_state() value origMonomerRestraints - the original monomer restraints (i.e. torsion restraints) origUseOnlyExtraTorsionValue - the original settings for use_only_extra_torsion_restraints_for_torsions """ #we're going to have to change some Coot settings during the coordinate calculation #so check what the existing values are so we can set them back origImmediateReplaceValue = refinement_immediate_replacement_state() #don't ask the user to accept the refinement origRefineWithTorsionsValue = refine_with_torsion_restraints_state() #whether or not we use torsional contraints origWeightValue = matrix_state() #how much weight is placed on geometry vs. map constraints #origNumStepsPerFrameValue = refinement_refine_per_frame_state() #how many steps of refinement occurr in between updating graphics origUseOnlyExtraTorsionValue = use_only_extra_torsion_restraints_for_torsions_state() #should we ignore the standard torsion restraints and only use the user-defined ones #set the values that we want set_refinement_immediate_replacement(1) set_refine_with_torsion_restraints(1) set_matrix(REFINE_MAP_WEIGHT) #dragged_refinement_steps_per_frame() #in theory, a large value here should cause Coot to not update the graphics as it refines (which should speed up refinement) #but Coot doesn't seem to like it when this value is too high #and Windows thinks that Coot has frozen if it takes too long #so we just leave this at the default #set_use_only_extra_torsion_restraints_for_torsions(1) set_use_only_extra_torsion_restraints_for_torsions(0) #this function seems to entirely disable torsion restraints, which is the opposite of what it's supposed to do #as a result, we make sure it's turned off rather than making sure it's turned on #I should probably fix this function/flag in Coot #remove all built-in torsional restraints from RNA nucleotides origMonomerRestraints = __changeMonomerRestraints() return (origImmediateReplaceValue, origRefineWithTorsionsValue, origWeightValue, origMonomerRestraints, origUseOnlyExtraTorsionValue) def __restoreCootSettings(origCootSettings): """Restore Coot's minimization settings ARGUMENTS: origCootSettings - Coot settings to be restored (as returned by __changeCootSettings) RETURNS: None """ (origImmediateReplaceValue, origRefineWithTorsionsValue, origWeightValue, origMonomerRestraints, origUseOnlyExtraTorsionValue) = origCootSettings set_refinement_immediate_replacement(origImmediateReplaceValue) set_refine_with_torsion_restraints(origRefineWithTorsionsValue) set_matrix(origWeightValue) set_use_only_extra_torsion_restraints_for_torsions(origUseOnlyExtraTorsionValue) for curNuc in ("A", "G", "C", "U"): set_monomer_restraints(curNuc, origMonomerRestraints[curNuc]) def __calcRefinementScore(refinementResults): """Calculate an overall score for the quality of the refinement results ARGUMENTS: refinementResults - the output of refine_residues() RETURNS: overallScore - an overall refinement score based on the bond length, angles, and torsions """ #from pprint import pprint; pprint(refinementResults) scoreList = refinementResults[2] if not scoreList: #if there is no scorelist, then Coot gave up on the minimization #(Modifying Coot to return a score when the minimization times out is do-able, but it would slightly slow #down all minimizations unless more significant changes to the minimizer code are made. Typically, if we've #timed out, then something has gone wrong anyway, so simply using REFINEMENT_FAIL_SCORE is a workable solution.) return REFINEMENT_FAIL_SCORE overallScore = 0 for curScore in scoreList: if curScore[0] in ["Bonds", "Angles", "Torsions"]: #TODO: add in start_pos scores? overallScore += curScore[2] return overallScore def __addPhenixRestraints(molNum, chain, prevPrevResNumFull, prevResNumFull, curResNumFull, nextResNumFull, curRot, nextRot, curResType, nextResAlreadyBuilt = False, onlyPucker = None): """Add angle and bond restraints for the specified nucleotides using the Phenix pucker-specific restraint values ARGUMENTS molNum - the Coot molecule number chain - the chain name prevPrevResNumFull - the residue number of residue i-2 (needed to restrain the non-bridging oxygens of residue prevResNum) prevResNumFull - the residue number of the previous residue using Coot numbering (i.e. starting at 1, not 0) curResNumFull - the residue number to build using Coot numbering (i.e. starting at 1, not 0) nextResNumFull - the residue number of the next residue using Coot numbering (i.e. starting at 1, not 0) curRot - the rotamer to use when building the current residue nextRot - the rotamer to use when building the next residue curResType - the residue type (i.e. A, G, C, or U) of the current residue OPTIONAL ARGUMENTS: nextResAlreadyBuilt - should be True if the next residue is already built (i.e. if we are being called from recalcCoords instead of calcCoords) Defaults to False. onlyPucker - should only be provided if curRot and nextRot are None. This is used when we're only building a single nucleotide, so we don't have a full suite and therefore can't predict a conformer RETURNS: None """ if curResType == "A" or curResType == "G": glycosidicBaseAtom = " N9 " else: glycosidicBaseAtom = " N1 " #figure out the sugar puckers prevPucker = None curPucker = None nextPucker = None if isinstance(curRot, basestring): #basestring includes unicode and non-unicode strings. It's overkill here, but it can't hurt: (prevPucker, curPucker) = puckerList[curRot] elif isinstance(curRot, list): #if curRot is a list, then it's not really a rotamer, it's just a list of the current torsion values #in this case, we can use delta to figure out the appropriate pucker if curRot[0] < 114.5: prevPucker = 3 else: prevPucker = 2 if not isinstance(nextRot, basestring): #if nextRot is a real rotamer, then don't bother with delta-based guesses if curRot[6] < 114.5: curPucker = 3 else: curPucker = 2 if isinstance(nextRot, basestring): #basestring includes unicode and non-unicode strings. It's overkill here, but it can't hurt #if nextRot is a rotamer (curPucker, nextPucker) = puckerList[nextRot] elif isinstance(nextRot, list): #if nextRot is a list, then it's not really a rotamer, it's just a list of the current torsion values #in this case, we can use delta to figure out the appropriate pucker if curPucker is None: #if we had a real rotamer for curRot, then don't overwrite it with our delta-based guess if nextRot[0] < 114.5: curPucker = 3 else: curPucker = 2 if nextRot[6] < 114.5: nextPucker = 3 else: nextPucker = 2 #curPucker may get set twice here, but that doesn't matter, since curRot and nextRot *must* agree on their overlapping pucker #if we don't have any conformers, then set curPucker to onlyPucker if onlyPucker is not None and curPucker is None: curPucker = onlyPucker #split the residue numbers (prevPrevResNum, prevPrevResInsCode) = __splitResNum(prevPrevResNumFull) (prevResNum, prevResInsCode) = __splitResNum(prevResNumFull) (curResNum, curResInsCode) = __splitResNum(curResNumFull) (nextResNum, nextResInsCode) = __splitResNum(nextResNumFull) #figure out the number of the residue before prevResNum phenixRestraints.setAngleRestraints(molNum, chain, prevPrevResNum, prevResNum, curResNum, nextResNum, glycosidicBaseAtom, prevPucker, curPucker, nextPucker, nextResAlreadyBuilt) phenixRestraints.setBondRestraints(molNum, chain, prevResNum, curResNum, nextResNum, glycosidicBaseAtom, prevPucker, curPucker, nextPucker, nextResAlreadyBuilt) def enablePhenixRestraints(): """Enable Phenix's pucker-specific restraints for minimization ARGUMENTS: None RETURNS: True if enabling the restraints succceeded, False otherwise NOTE: Phenix restraints are only available in versions of Coot newer than 3926 """ global USE_PHENIX_RESTRAINTS if svn_revision() >= 3926: #Coot revision 3926 has a bug fix to fix non-bonded constraints when using extra bond and angle restraints USE_PHENIX_RESTRAINTS = True print "Using Phenix restraints" return True else: print "Coot must be newer than 0.7-pre r3926 to use Phenix restraints. Using Coot/CCP4 restraints." return False def disablePhenixRestraints(): """Disable Phenix's pucker-specific restraints for minimization and use the Coot/CCP4 restraints instead ARGUMENTS: None RETURNS: True (for consistancy with enablePhenixRestraints()) """ global USE_PHENIX_RESTRAINTS USE_PHENIX_RESTRAINTS = False print "Using Coot/CCP4 restraints" return True def usingPhenixRestraints(): """Check if we are using Phenix's pucker-specific restraints for minimization ARGUMENTS: None RETURNS: True if we are using Phenix restraints False if we are using Coot/CCP4 restraints """ return USE_PHENIX_RESTRAINTS def __fixEntireResidue(molNum, chain, resNumFull, atomList): """Fix all atoms in a residue ARGUMENTS: molNum - the molecule number of the residue to fix chain - the chain of the residue to fix resNumFull - the residue number of the residue to fix including insertion code atomList - a list of all atoms in the specified residue RETURNS: None """ (resNum, insCode) = __splitResNum(resNumFull) fixList = [[chain, resNum, "", curAtom, ""] for curAtom in atomList] mark_multiple_atoms_as_fixed(molNum, fixList, 1) def buildOnlyPhosOxy(pseudoMol, resIndex, direction = 3): """Build the non-bridging oxygens onto a terminal nucleotide ARGUMENTS: resIndex - the index of the residue to build the phosphates onto OPTIONAL ARGUMENTS: direction - which side of the residue to add the phosphoryl oxygens to RETURNS: NONE """ #print "In buildOnlyPhosOxy with resIndex =", resIndex if direction == 3: chain = pseudoMol.createPartialChainObjectFromIndex(resIndex-1, resIndex) prevResAtoms = chain.nucleotides[0].atoms curResAtoms = chain.nucleotides[1].atoms else: chain = pseudoMol.createPartialChainObjectFromIndex(resIndex, resIndex) curResAtoms = chain.nucleotides[0].atoms prevResAtoms = None #from pprint import pprint #pprint(prevResAtoms) #pprint(curResAtoms) phosOxyCoords = buildInitOrTerminalPhosOxy(curResAtoms, prevResAtoms) pseudoMol.addPhosOxyFromIndex(resIndex, phosOxyCoords) class ProgressDialogObject: """A class for displaying a progress dialog while calculating/minimizing backbone coordinates""" def __init__(self, window, totalNum): """Initialize a ProgressDialogObject object ARGUMENTS: window - the window object to display the progress dialog in if None, a new window will be created totalNum - the total number of steps for the progress bar akin to the deprecated set_discrete_blocks functionality RETURNS: an initialized ProgressDialogObject object EFFECTS: If provided, the contents of window are replaced by a progress bar The contents of window can later be restored using restoreWindow() """ self.__window = window self.__oldWindowSize = None self.__oldWindowContents = None self.__progressFracIncrement = None self.__curProgressFrac = 0 self.__curProgressInt = 0 self.__totalNum = totalNum self.__progressbar = None if self.__window is not None: windowChild = self.__window.get_child() if windowChild is not None: self.__oldWindowSize = window.get_size() self.__oldWindowContents = windowChild self.__window.remove(windowChild) else: self.__window = createRCraneWindowObject() self.__createProgressDialog() def __createProgressDialog(self): """Add the ProgressBar to self.__window ARGUMENTS: None RETURNS: None """ windowBox = gtk.VBox(False, VBOX_SPACING) self.__window.add(windowBox) self.__window.resize(1,1) #remove any size constraints calculatingLabel = gtk.Label("\n Calculating backbone coordinates... \n\n Please wait... \n") calculatingLabel.set_justify(gtk.JUSTIFY_CENTER) windowBox.pack_start(calculatingLabel, False, False, HBOX_SPACING) self.__progressbar = gtk.ProgressBar() self.__progressbar.set_text("Built 0 of " + str(self.__totalNum) + " nucleotides") progressAlign = gtk.Alignment(xscale=0.9, xalign=0.5) progressAlign.add(self.__progressbar) windowBox.pack_start(progressAlign, False, False, HBOX_SPACING) self.__window.show_all() self.__progressFracIncrement = 1.0 / (self.__totalNum) def progress(self, step = 1): """Increment the progress bar OPTIONAL ARGUMENTS: step - how many steps to increment the progress bar by, defaults to 1 RETURNS: None """ self.__curProgressFrac += (step * self.__progressFracIncrement) self.__curProgressInt += step #make sure __curProgressFrac isn't > 1 due to a rounding error if self.__curProgressFrac > 1: self.__curProgressFrac = 1 self.__progressbar.set_fraction(self.__curProgressFrac) self.__progressbar.set_text("Built " + str(self.__curProgressInt) + " of " + str(self.__totalNum) + " nucleotides") def restoreWindow(self): """Restore the original contents of the window and destroy the ProgressDialogObject object ARGUMENTS: None RETURNS: None EFFECTS: the original contents of the window are destroyed the ProgressDialogObject is set to None, since it is no longer useful """ windowChild = self.__window.get_child() self.__window.remove(windowChild) if self.__oldWindowContents is not None: self.__window.add(self.__oldWindowContents) #set the window back to the size it was before if self.__oldWindowSize is not None: self.__window.resize(*self.__oldWindowSize) #set the object to none, since it's useless now #but don't actually call a destructor self = None
jlec/coot
rcrane/calcCoords.py
Python
gpl-3.0
77,459
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2017, IntoPIX SA # Contact: support@intopix.com # Author: Even Rouault # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS' # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # import sys lines = open(sys.argv[1], 'rt').readlines() display_next_lines = False for line in lines: line = line.replace('\n', '') if line == 'heap_tree=peak': display_next_lines = True elif display_next_lines: if line == '#-----------': break print(line)
AlienCowEatCake/ImageViewer
src/ThirdParty/OpenJPEG/openjpeg-2.4.0/tests/profiling/filter_massif_output.py
Python
gpl-3.0
1,727
# This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. import hashlib import StringIO import gzip import web import mock from nose.tools import eq_, ok_ from datetime import datetime from contextlib import closing from configman.dotdict import DotDict from socorro.collector.wsgi_breakpad_collector import BreakpadCollector from socorro.collector.throttler import ACCEPT, IGNORE, DEFER from socorro.unittest.testbase import TestCase class ObjectWithValue(object): def __init__(self, v): self.value = v class TestCollectorApp(TestCase): def get_standard_config(self): config = DotDict() config.logger = mock.MagicMock() config.throttler = mock.MagicMock() config.collector = DotDict() config.collector.collector_class = BreakpadCollector config.collector.dump_id_prefix = 'bp-' config.collector.dump_field = 'dump' config.collector.accept_submitted_crash_id = False config.collector.accept_submitted_legacy_processing = False config.collector.checksum_method = hashlib.md5 config.crash_storage = mock.MagicMock() return config def test_setup(self): config = self.get_standard_config() c = BreakpadCollector(config) eq_(c.config, config) eq_(c.logger, config.logger) eq_(c.throttler, config.throttler) eq_(c.crash_storage, config.crash_storage) eq_(c.dump_id_prefix, 'bp-') eq_(c.dump_field, 'dump') def test_make_raw_crash(self): config = self.get_standard_config() form = DotDict() form.ProductName = 'FireSquid' form.Version = '99' form.dump = 'fake dump' form.some_field = '\x0023' form.some_other_field = ObjectWithValue('XYZ') class BreakpadCollectorWithMyForm(config.collector.collector_class): def _form_as_mapping(self): return form c = BreakpadCollectorWithMyForm(config) rc, dmp = c._get_raw_crash_from_form() eq_(rc.ProductName, 'FireSquid') eq_(rc.Version, '99') eq_(rc.some_field, '23') eq_(rc.some_other_field, 'XYZ') @mock.patch('socorro.collector.wsgi_breakpad_collector.time') @mock.patch('socorro.collector.wsgi_breakpad_collector.utc_now') @mock.patch('socorro.collector.wsgi_breakpad_collector.web.webapi') @mock.patch('socorro.collector.wsgi_breakpad_collector.web') def test_POST(self, mocked_web, mocked_webapi, mocked_utc_now, mocked_time): config = self.get_standard_config() c = BreakpadCollector(config) rawform = DotDict() rawform.ProductName = '\x00FireSquid' rawform.Version = '99' rawform.dump = DotDict({'value': 'fake dump', 'file': 'faked file'}) rawform.aux_dump = DotDict({'value': 'aux_dump contents', 'file': 'silliness'}) rawform.some_field = '23' rawform.some_other_field = ObjectWithValue('XYZ') form = DotDict(rawform) form.dump = rawform.dump.value erc = DotDict() erc.ProductName = 'FireSquid' erc.Version = '99' erc.some_field = '23' erc.some_other_field = 'XYZ' erc.legacy_processing = ACCEPT erc.timestamp = 3.0 erc.submitted_timestamp = '2012-05-04T15:10:00' erc.throttle_rate = 100 erc.dump_checksums = { 'dump': '2036fd064f93a0d086cf236c5f0fd8d4', 'aux_dump': 'aa2e5bf71df8a4730446b2551d29cb3a', } erc = dict(erc) mocked_web.input.return_value = form mocked_webapi.rawinput.return_value = rawform mocked_utc_now.return_value = datetime(2012, 5, 4, 15, 10) mocked_time.time.return_value = 3.0 c.throttler.throttle.return_value = (ACCEPT, 100) r = c.POST() ok_(r.startswith('CrashID=bp-')) ok_(r.endswith('120504\n')) erc['uuid'] = r[11:-1] c.crash_storage.save_raw_crash.assert_called_with( erc, {'dump':'fake dump', 'aux_dump':'aux_dump contents'}, r[11:-1] ) @mock.patch('socorro.collector.wsgi_breakpad_collector.time') @mock.patch('socorro.collector.wsgi_breakpad_collector.utc_now') @mock.patch('socorro.collector.wsgi_breakpad_collector.web.webapi') @mock.patch('socorro.collector.wsgi_breakpad_collector.web') def test_POST_reject_browser_with_hangid( self, mocked_web, mocked_webapi, mocked_utc_now, mocked_time ): config = self.get_standard_config() c = BreakpadCollector(config) rawform = DotDict() rawform[u'\u0000ProductName'] = 'FireSquid' rawform.Version = '99' rawform.dump = DotDict({'value': 'fake dump', 'file': 'faked file'}) rawform.some_field = '23' rawform.some_other_field = ObjectWithValue('XYZ') rawform.HangID = 'xyz' rawform.ProcessType = 'browser' form = DotDict(rawform) form.dump = rawform.dump.value erc = DotDict() erc.ProductName = 'FireSquid' erc.Version = '99' erc.some_field = '23' erc.some_other_field = 'XYZ' erc.legacy_processing = ACCEPT erc.throttle_rate = None erc.timestamp = 3.0 erc.submitted_timestamp = '2012-05-04T15:10:00' erc = dict(erc) mocked_webapi.rawinput.return_value = rawform mocked_utc_now.return_value = datetime(2012, 5, 4, 15, 10) mocked_time.time.return_value = 3.0 c.throttler.throttle.return_value = (IGNORE, None) r = c.POST() eq_(r, "Unsupported=1\n") ok_(not c.crash_storage.save_raw_crash.call_count ) @mock.patch('socorro.collector.wsgi_breakpad_collector.time') @mock.patch('socorro.collector.wsgi_breakpad_collector.utc_now') @mock.patch('socorro.collector.wsgi_breakpad_collector.web.webapi') @mock.patch('socorro.collector.wsgi_breakpad_collector.web') def test_POST_with_existing_crash_id( self, mocked_web, mocked_webapi, mocked_utc_now, mocked_time ): config = self.get_standard_config() c = BreakpadCollector(config) rawform = DotDict() rawform.ProductName = 'FireSquid' rawform.Version = '99' rawform.dump = DotDict({'value': 'fake dump', 'file': 'faked file'}) rawform.aux_dump = DotDict({'value': 'aux_dump contents', 'file': 'silliness'}) rawform.some_field = '23' rawform.some_other_field = ObjectWithValue('XYZ') rawform.uuid = '332d798f-3cx\x0042-47a5-843f-a0f892140107' form = DotDict(rawform) form.dump = rawform.dump.value erc = DotDict() erc.ProductName = 'FireSquid' erc.Version = '99' erc.some_field = '23' erc.some_other_field = 'XYZ' erc.legacy_processing = ACCEPT erc.timestamp = 3.0 erc.submitted_timestamp = '2012-05-04T15:10:00' erc.throttle_rate = 100 erc.dump_checksums = { 'dump': '2036fd064f93a0d086cf236c5f0fd8d4', 'aux_dump': 'aa2e5bf71df8a4730446b2551d29cb3a', } erc = dict(erc) mocked_web.input.return_value = form mocked_webapi.rawinput.return_value = rawform mocked_utc_now.return_value = datetime(2012, 5, 4, 15, 10) mocked_time.time.return_value = 3.0 c.throttler.throttle.return_value = (ACCEPT, 100) r = c.POST() ok_(r.startswith('CrashID=bp-')) ok_(r.endswith('120504\n')) erc['uuid'] = r[11:-1] c.crash_storage.save_raw_crash.assert_called_with( erc, {'dump':'fake dump', 'aux_dump':'aux_dump contents'}, r[11:-1] ) @mock.patch('socorro.collector.wsgi_breakpad_collector.time') @mock.patch('socorro.collector.wsgi_breakpad_collector.utc_now') @mock.patch('socorro.collector.wsgi_breakpad_collector.web.webapi') @mock.patch('socorro.collector.wsgi_breakpad_collector.web') def test_POST_with_existing_crash_id_and_use_it( self, mocked_web, mocked_webapi, mocked_utc_now, mocked_time ): config = self.get_standard_config() config.collector.accept_submitted_crash_id = True c = BreakpadCollector(config) rawform = DotDict() rawform.ProductName = 'FireSquid' rawform.Version = '99' rawform.dump = DotDict({'value': 'fake dump', 'file': 'faked file'}) rawform.aux_dump = DotDict({'value': 'aux_dump contents', 'file': 'silliness'}) rawform.some_field = '23' rawform.some_other_field = ObjectWithValue('XYZ') rawform.uuid = '332d798f-3c42-47a5-843f-a0f892140107' rawform.legacy_processing = str(DEFER) rawform.throttle_rate = 100 rawform.dump_checksums = "this is poised to overwrite and cause trouble" form = DotDict(rawform) form.dump = rawform.dump.value erc = DotDict() erc.ProductName = 'FireSquid' erc.Version = '99' erc.some_field = '23' erc.some_other_field = 'XYZ' erc.legacy_processing = DEFER erc.timestamp = 3.0 erc.submitted_timestamp = '2012-05-04T15:10:00' erc.throttle_rate = 100 erc.uuid = '332d798f-3c42-47a5-843f-a0f892140107' erc.dump_checksums = { 'dump': '2036fd064f93a0d086cf236c5f0fd8d4', 'aux_dump': 'aa2e5bf71df8a4730446b2551d29cb3a', } erc = dict(erc) mocked_web.input.return_value = form mocked_webapi.rawinput.return_value = rawform mocked_utc_now.return_value = datetime(2012, 5, 4, 15, 10) mocked_time.time.return_value = 3.0 c.throttler.throttle.return_value = (DEFER, 100) r = c.POST() ok_(r.startswith('CrashID=bp-')) ok_(r.endswith('140107\n')) c.crash_storage.save_raw_crash.assert_called_with( erc, {'dump':'fake dump', 'aux_dump':'aux_dump contents'}, r[11:-1] ) @mock.patch('socorro.collector.wsgi_breakpad_collector.time') @mock.patch('socorro.collector.wsgi_breakpad_collector.utc_now') @mock.patch('socorro.collector.wsgi_breakpad_collector.web.webapi') @mock.patch('socorro.collector.wsgi_breakpad_collector.web') def test_POST_with_existing_legacy_processing( self, mocked_web, mocked_webapi, mocked_utc_now, mocked_time ): config = self.get_standard_config() c = BreakpadCollector(config) rawform = DotDict() rawform.ProductName = 'FireSquid' rawform.Version = '99' rawform.dump = DotDict({'value': 'fake dump', 'file': 'faked file'}) rawform.aux_dump = DotDict({'value': 'aux_dump contents', 'file': 'silliness'}) rawform.some_field = '23' rawform.some_other_field = ObjectWithValue('XYZ') rawform.uuid = '332d798f-3c42-47a5-843f-a0f892140107' rawform.legacy_processing = u'1' form = DotDict(rawform) form.dump = rawform.dump.value erc = DotDict() erc.ProductName = 'FireSquid' erc.Version = '99' erc.some_field = '23' erc.some_other_field = 'XYZ' erc.legacy_processing = ACCEPT erc.timestamp = 3.0 erc.submitted_timestamp = '2012-05-04T15:10:00' erc.throttle_rate = 100 erc.dump_checksums = { 'dump': '2036fd064f93a0d086cf236c5f0fd8d4', 'aux_dump': 'aa2e5bf71df8a4730446b2551d29cb3a', } erc = dict(erc) mocked_web.input.return_value = form mocked_webapi.rawinput.return_value = rawform mocked_utc_now.return_value = datetime(2012, 5, 4, 15, 10) mocked_time.time.return_value = 3.0 c.throttler.throttle.return_value = (ACCEPT, 100) r = c.POST() ok_(r.startswith('CrashID=bp-')) ok_(r.endswith('120504\n')) erc['uuid'] = r[11:-1] c.crash_storage.save_raw_crash.assert_called_with( erc, {'dump':'fake dump', 'aux_dump':'aux_dump contents'}, r[11:-1] ) @mock.patch('socorro.collector.wsgi_breakpad_collector.time') @mock.patch('socorro.collector.wsgi_breakpad_collector.utc_now') @mock.patch('socorro.collector.wsgi_breakpad_collector.web.webapi') @mock.patch('socorro.collector.wsgi_breakpad_collector.web') def test_POST_with_existing_legacy_processing_and_use_it( self, mocked_web, mocked_webapi, mocked_utc_now, mocked_time ): config = self.get_standard_config() config.collector.accept_submitted_crash_id = True config.collector.accept_submitted_legacy_processing = True c = BreakpadCollector(config) rawform = DotDict() rawform.ProductName = 'FireSquid' rawform.Version = '99\x00' rawform.dump = DotDict({'value': 'fake dump', 'file': 'faked file'}) rawform.aux_dump = DotDict({'value': 'aux_dump contents', 'file': 'silliness'}) rawform[u'some_field\u0000'] = '23' rawform[u'some_\u0000other_field'] = ObjectWithValue('XYZ') rawform.uuid = '332d798f-3c42-47a5-843f-a0f892140107' rawform.legacy_processing = str(DEFER) rawform.throttle_rate = 100 form = DotDict(rawform) form.dump = rawform.dump.value erc = DotDict() erc.ProductName = 'FireSquid' erc.Version = '99' erc.some_field = '23' erc.some_other_field = 'XYZ' erc.legacy_processing = DEFER erc.timestamp = 3.0 erc.submitted_timestamp = '2012-05-04T15:10:00' erc.throttle_rate = 100 erc.uuid = '332d798f-3c42-47a5-843f-a0f892140107' erc.dump_checksums = { 'dump': '2036fd064f93a0d086cf236c5f0fd8d4', 'aux_dump': 'aa2e5bf71df8a4730446b2551d29cb3a', } erc = dict(erc) mocked_web.input.return_value = form mocked_webapi.rawinput.return_value = rawform mocked_utc_now.return_value = datetime(2012, 5, 4, 15, 10) mocked_time.time.return_value = 3.0 c.throttler.throttle.return_value = (DEFER, 100) r = c.POST() ok_(r.startswith('CrashID=bp-')) ok_(r.endswith('140107\n')) c.crash_storage.save_raw_crash.assert_called_with( erc, {'dump':'fake dump', 'aux_dump':'aux_dump contents'}, r[11:-1] ) @mock.patch('socorro.collector.wsgi_breakpad_collector.time') @mock.patch('socorro.collector.wsgi_breakpad_collector.utc_now') @mock.patch('socorro.collector.wsgi_breakpad_collector.web.webapi') @mock.patch('socorro.collector.wsgi_breakpad_collector.web.ctx') def test_POST_with_gzip( self, mocked_web_ctx, mocked_webapi, mocked_utc_now, mocked_time ): config = self.get_standard_config() c = BreakpadCollector(config) form = """ --socorro1234567 Content-Disposition: form-data; name="ProductName" FireSquid --socorro1234567 Content-Disposition: form-data; name="Version" 99 --socorro1234567 Content-Disposition: form-data; name="some_field" 23 --socorro1234567 Content-Disposition: form-data; name="some_other_field" XYZ --socorro1234567 Content-Disposition: form-data; name="dump"; filename="dump" Content-Type: application/octet-stream fake dump --socorro1234567 Content-Disposition: form-data; name="aux_dump"; filename="aux_dump" Content-Type: application/octet-stream aux_dump contents """ erc = DotDict() erc.ProductName = 'FireSquid' erc.Version = '99' erc.some_field = '23' erc.some_other_field = 'XYZ' erc.legacy_processing = ACCEPT erc.timestamp = 3.0 erc.submitted_timestamp = '2012-05-04T15:10:00' erc.throttle_rate = 100 erc.dump_checksums = { 'dump': '2036fd064f93a0d086cf236c5f0fd8d4', 'aux_dump': 'aa2e5bf71df8a4730446b2551d29cb3a', } erc = dict(erc) with closing(StringIO.StringIO()) as s: g = gzip.GzipFile(fileobj=s, mode='w') g.write(form) g.close() gzipped_form = s.getvalue() mocked_webapi.data.return_value = gzipped_form mocked_web_ctx.configure_mock( env={ 'HTTP_CONTENT_ENCODING': 'gzip', 'CONTENT_ENCODING': 'gzip', 'CONTENT_TYPE': 'multipart/form-data; boundary="socorro1234567"', 'REQUEST_METHOD': 'POST' } ) mocked_utc_now.return_value = datetime(2012, 5, 4, 15, 10) mocked_time.time.return_value = 3.0 c.throttler.throttle.return_value = (ACCEPT, 100) r = c.POST() ok_(r.startswith('CrashID=bp-')) ok_(r.endswith('120504\n')) erc['uuid'] = r[11:-1] c.crash_storage.save_raw_crash.assert_called_with( erc, {'dump':'fake dump', 'aux_dump':'aux_dump contents'}, r[11:-1] ) def test_no_x00_character(self): config = self.get_standard_config() c = BreakpadCollector(config) eq_(c._no_x00_character('\x00hello'), 'hello') eq_(c._no_x00_character(u'\u0000bye'), 'bye') eq_(c._no_x00_character(u'\u0000\x00bye'), 'bye')
spthaolt/socorro
socorro/unittest/collector/test_wsgi_breakpad_collector.py
Python
mpl-2.0
17,622
""" Tests of the instructor dashboard spoc gradebook """ from django.core.urlresolvers import reverse from nose.plugins.attrib import attr from six import text_type from capa.tests.response_xml_factory import StringResponseXMLFactory from courseware.tests.factories import StudentModuleFactory from lms.djangoapps.grades.tasks import compute_all_grades_for_course from student.tests.factories import AdminFactory, CourseEnrollmentFactory, UserFactory from xmodule.modulestore.tests.django_utils import SharedModuleStoreTestCase from xmodule.modulestore.tests.factories import CourseFactory, ItemFactory USER_COUNT = 11 @attr(shard=1) class TestGradebook(SharedModuleStoreTestCase): """ Test functionality of the spoc gradebook. Sets up a course with assignments and students who've scored various scores on these assignments. Base class for further gradebook tests. """ grading_policy = None @classmethod def setUpClass(cls): super(TestGradebook, cls).setUpClass() # Create a course with the desired grading policy (from our class attribute) kwargs = {} if cls.grading_policy is not None: kwargs['grading_policy'] = cls.grading_policy cls.course = CourseFactory.create(**kwargs) # Now give it some content with cls.store.bulk_operations(cls.course.id, emit_signals=False): chapter = ItemFactory.create( parent_location=cls.course.location, category="sequential", ) section = ItemFactory.create( parent_location=chapter.location, category="sequential", metadata={'graded': True, 'format': 'Homework'} ) cls.items = [ ItemFactory.create( parent_location=section.location, category="problem", data=StringResponseXMLFactory().build_xml(answer='foo'), metadata={'rerandomize': 'always'} ) for __ in xrange(USER_COUNT - 1) ] def setUp(self): super(TestGradebook, self).setUp() instructor = AdminFactory.create() self.client.login(username=instructor.username, password='test') self.users = [UserFactory.create() for _ in xrange(USER_COUNT)] for user in self.users: CourseEnrollmentFactory.create(user=user, course_id=self.course.id) for i, item in enumerate(self.items): for j, user in enumerate(self.users): StudentModuleFactory.create( grade=1 if i < j else 0, max_grade=1, student=user, course_id=self.course.id, module_state_key=item.location ) compute_all_grades_for_course.apply_async(kwargs={'course_key': text_type(self.course.id)}) self.response = self.client.get(reverse( 'spoc_gradebook', args=(text_type(self.course.id),) )) self.assertEquals(self.response.status_code, 200) @attr(shard=1) class TestDefaultGradingPolicy(TestGradebook): """ Tests that the grading policy is properly applied for all users in the course Uses the default policy (50% passing rate) """ def test_all_users_listed(self): for user in self.users: self.assertIn(user.username, text_type(self.response.content, 'utf-8')) def test_default_policy(self): # Default >= 50% passes, so Users 5-10 should be passing for Homework 1 [6] # One use at the top of the page [1] self.assertEquals(7, self.response.content.count('grade_Pass')) # Users 1-5 attempted Homework 1 (and get Fs) [4] # Users 1-10 attempted any homework (and get Fs) [10] # Users 4-10 scored enough to not get rounded to 0 for the class (and get Fs) [7] # One use at top of the page [1] self.assertEquals(22, self.response.content.count('grade_F')) # All other grades are None [29 categories * 11 users - 27 non-empty grades = 292] # One use at the top of the page [1] self.assertEquals(293, self.response.content.count('grade_None')) @attr(shard=1) class TestLetterCutoffPolicy(TestGradebook): """ Tests advanced grading policy (with letter grade cutoffs). Includes tests of UX display (color, etc). """ grading_policy = { "GRADER": [ { "type": "Homework", "min_count": 1, "drop_count": 0, "short_label": "HW", "weight": 1 }, ], "GRADE_CUTOFFS": { 'A': .9, 'B': .8, 'C': .7, 'D': .6, } } def test_styles(self): self.assertIn("grade_A {color:green;}", self.response.content) self.assertIn("grade_B {color:Chocolate;}", self.response.content) self.assertIn("grade_C {color:DarkSlateGray;}", self.response.content) self.assertIn("grade_D {color:DarkSlateGray;}", self.response.content) def test_assigned_grades(self): # Users 9-10 have >= 90% on Homeworks [2] # Users 9-10 have >= 90% on the class [2] # One use at the top of the page [1] self.assertEquals(5, self.response.content.count('grade_A')) # User 8 has 80 <= Homeworks < 90 [1] # User 8 has 80 <= class < 90 [1] # One use at the top of the page [1] self.assertEquals(3, self.response.content.count('grade_B')) # User 7 has 70 <= Homeworks < 80 [1] # User 7 has 70 <= class < 80 [1] # One use at the top of the page [1] self.assertEquals(3, self.response.content.count('grade_C')) # User 6 has 60 <= Homeworks < 70 [1] # User 6 has 60 <= class < 70 [1] # One use at the top of the page [1] self.assertEquals(3, self.response.content.count('grade_C')) # Users 1-5 have 60% > grades > 0 on Homeworks [5] # Users 1-5 have 60% > grades > 0 on the class [5] # One use at top of the page [1] self.assertEquals(11, self.response.content.count('grade_F')) # User 0 has 0 on Homeworks [1] # User 0 has 0 on the class [1] # One use at the top of the page [1] self.assertEquals(3, self.response.content.count('grade_None'))
hastexo/edx-platform
lms/djangoapps/instructor/tests/test_spoc_gradebook.py
Python
agpl-3.0
6,456
from django.apps import AppConfig from django.utils.translation import ugettext_lazy as _ class CoreConfig(AppConfig): name = "core" verbose_name = _("Hosting Service Core")
tejo-esperanto/pasportaservo
core/apps.py
Python
agpl-3.0
184
""" Support to check for available updates. For more details about this component, please refer to the documentation at https://home-assistant.io/components/updater/ """ import asyncio import json import logging import os import platform import uuid from datetime import timedelta # pylint: disable=no-name-in-module, import-error from distutils.version import StrictVersion import aiohttp import async_timeout import voluptuous as vol from homeassistant.helpers.aiohttp_client import async_get_clientsession import homeassistant.helpers.config_validation as cv import homeassistant.util.dt as dt_util from homeassistant.const import ( ATTR_FRIENDLY_NAME, __version__ as CURRENT_VERSION) from homeassistant.helpers import event REQUIREMENTS = ['distro==1.0.4'] _LOGGER = logging.getLogger(__name__) ATTR_RELEASE_NOTES = 'release_notes' CONF_REPORTING = 'reporting' CONF_COMPONENT_REPORTING = 'include_used_components' DOMAIN = 'updater' ENTITY_ID = 'updater.updater' UPDATER_URL = 'https://updater.home-assistant.io/' UPDATER_UUID_FILE = '.uuid' CONFIG_SCHEMA = vol.Schema({DOMAIN: { vol.Optional(CONF_REPORTING, default=True): cv.boolean, vol.Optional(CONF_COMPONENT_REPORTING, default=False): cv.boolean, }}, extra=vol.ALLOW_EXTRA) RESPONSE_SCHEMA = vol.Schema({ vol.Required('version'): str, vol.Required('release-notes'): cv.url, }) def _create_uuid(hass, filename=UPDATER_UUID_FILE): """Create UUID and save it in a file.""" with open(hass.config.path(filename), 'w') as fptr: _uuid = uuid.uuid4().hex fptr.write(json.dumps({'uuid': _uuid})) return _uuid def _load_uuid(hass, filename=UPDATER_UUID_FILE): """Load UUID from a file or return None.""" try: with open(hass.config.path(filename)) as fptr: jsonf = json.loads(fptr.read()) return uuid.UUID(jsonf['uuid'], version=4).hex except (ValueError, AttributeError): return None except FileNotFoundError: return _create_uuid(hass, filename) @asyncio.coroutine def async_setup(hass, config): """Set up the updater component.""" if 'dev' in CURRENT_VERSION: # This component only makes sense in release versions _LOGGER.warning("Running on 'dev', only analytics will be submitted") config = config.get(DOMAIN, {}) if config.get(CONF_REPORTING): huuid = yield from hass.async_add_job(_load_uuid, hass) else: huuid = None include_components = config.get(CONF_COMPONENT_REPORTING) @asyncio.coroutine def check_new_version(now): """Check if a new version is available and report if one is.""" result = yield from get_newest_version(hass, huuid, include_components) if result is None: return newest, releasenotes = result if newest is None or 'dev' in CURRENT_VERSION: return if StrictVersion(newest) > StrictVersion(CURRENT_VERSION): _LOGGER.info("The latest available version is %s", newest) hass.states.async_set( ENTITY_ID, newest, {ATTR_FRIENDLY_NAME: 'Update Available', ATTR_RELEASE_NOTES: releasenotes} ) elif StrictVersion(newest) == StrictVersion(CURRENT_VERSION): _LOGGER.info( "You are on the latest version (%s) of Home Assistant", newest) # Update daily, start 1 hour after startup _dt = dt_util.utcnow() + timedelta(hours=1) event.async_track_utc_time_change( hass, check_new_version, hour=_dt.hour, minute=_dt.minute, second=_dt.second) return True @asyncio.coroutine def get_system_info(hass, include_components): """Return info about the system.""" info_object = { 'arch': platform.machine(), 'dev': 'dev' in CURRENT_VERSION, 'docker': False, 'os_name': platform.system(), 'python_version': platform.python_version(), 'timezone': dt_util.DEFAULT_TIME_ZONE.zone, 'version': CURRENT_VERSION, 'virtualenv': os.environ.get('VIRTUAL_ENV') is not None, } if include_components: info_object['components'] = list(hass.config.components) if platform.system() == 'Windows': info_object['os_version'] = platform.win32_ver()[0] elif platform.system() == 'Darwin': info_object['os_version'] = platform.mac_ver()[0] elif platform.system() == 'FreeBSD': info_object['os_version'] = platform.release() elif platform.system() == 'Linux': import distro linux_dist = yield from hass.async_add_job( distro.linux_distribution, False) info_object['distribution'] = linux_dist[0] info_object['os_version'] = linux_dist[1] info_object['docker'] = os.path.isfile('/.dockerenv') return info_object @asyncio.coroutine def get_newest_version(hass, huuid, include_components): """Get the newest Home Assistant version.""" if huuid: info_object = yield from get_system_info(hass, include_components) info_object['huuid'] = huuid else: info_object = {} session = async_get_clientsession(hass) try: with async_timeout.timeout(5, loop=hass.loop): req = yield from session.post(UPDATER_URL, json=info_object) _LOGGER.info(("Submitted analytics to Home Assistant servers. " "Information submitted includes %s"), info_object) except (asyncio.TimeoutError, aiohttp.ClientError): _LOGGER.error("Could not contact Home Assistant Update to check " "for updates") return None try: res = yield from req.json() except ValueError: _LOGGER.error("Received invalid JSON from Home Assistant Update") return None try: res = RESPONSE_SCHEMA(res) return (res['version'], res['release-notes']) except vol.Invalid: _LOGGER.error('Got unexpected response: %s', res) return None
alexmogavero/home-assistant
homeassistant/components/updater.py
Python
apache-2.0
6,075
# Copyright (c) 2015 OpenStack Foundation. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_config import cfg from oslo_log import log as logging from neutron._i18n import _LE, _LI from neutron.agent.linux import utils from neutron.common import config from neutron.conf.agent import cmd as command LOG = logging.getLogger(__name__) def setup_conf(): """Setup the cfg for the clean up utility. Use separate setup_conf for the utility because there are many options from the main config that do not apply during clean-up. """ conf = cfg.CONF command.register_cmd_opts(command.ip_opts, conf) return conf def remove_iptables_reference(ipset): # Remove any iptables reference to this IPset cmd = ['iptables-save'] if 'IPv4' in ipset else ['ip6tables-save'] iptables_save = utils.execute(cmd, run_as_root=True) if ipset in iptables_save: cmd = ['iptables'] if 'IPv4' in ipset else ['ip6tables'] LOG.info(_LI("Removing iptables rule for IPset: %s"), ipset) for rule in iptables_save.splitlines(): if '--match-set %s ' % ipset in rule and rule.startswith('-A'): # change to delete params = rule.split() params[0] = '-D' try: utils.execute(cmd + params, run_as_root=True) except Exception: LOG.exception(_LE('Error, unable to remove iptables rule ' 'for IPset: %s'), ipset) def destroy_ipset(conf, ipset): # If there is an iptables reference and we don't remove it, the # IPset removal will fail below if conf.force: remove_iptables_reference(ipset) LOG.info(_LI("Destroying IPset: %s"), ipset) cmd = ['ipset', 'destroy', ipset] try: utils.execute(cmd, run_as_root=True) except Exception: LOG.exception(_LE('Error, unable to destroy IPset: %s'), ipset) def cleanup_ipsets(conf): # Identify ipsets for destruction. LOG.info(_LI("Destroying IPsets with prefix: %s"), conf.prefix) cmd = ['ipset', '-L', '-n'] ipsets = utils.execute(cmd, run_as_root=True) for ipset in ipsets.split('\n'): if conf.allsets or ipset.startswith(conf.prefix): destroy_ipset(conf, ipset) LOG.info(_LI("IPset cleanup completed successfully")) def main(): """Main method for cleaning up IPsets. The utility is designed to clean-up after the forced or unexpected termination of Neutron agents. The --allsets flag should only be used as part of the cleanup of a devstack installation as it will blindly destroy all IPsets. """ conf = setup_conf() conf() config.setup_logging() cleanup_ipsets(conf)
sebrandon1/neutron
neutron/cmd/ipset_cleanup.py
Python
apache-2.0
3,313
from openflow.optin_manager.sfa.util.sfalogging import logger from openflow.optin_manager.sfa.util.xml import XpathFilter from openflow.optin_manager.sfa.util.xrn import Xrn from openflow.optin_manager.sfa.rspecs.elements.element import Element from openflow.optin_manager.sfa.rspecs.elements.node import Node from openflow.optin_manager.sfa.rspecs.elements.sliver import Sliver from openflow.optin_manager.sfa.rspecs.elements.location import Location from openflow.optin_manager.sfa.rspecs.elements.hardware_type import HardwareType from openflow.optin_manager.sfa.rspecs.elements.disk_image import DiskImage from openflow.optin_manager.sfa.rspecs.elements.interface import Interface from openflow.optin_manager.sfa.rspecs.elements.bwlimit import BWlimit from openflow.optin_manager.sfa.rspecs.elements.pltag import PLTag from openflow.optin_manager.sfa.rspecs.elements.versions.sfav1Sliver import SFAv1Sliver from openflow.optin_manager.sfa.rspecs.elements.versions.sfav1PLTag import SFAv1PLTag from openflow.optin_manager.sfa.rspecs.elements.versions.pgv2Services import PGv2Services from openflow.optin_manager.sfa.rspecs.elements.lease import Lease from sfa.planetlab.plxrn import xrn_to_hostname class SFAv1Lease: @staticmethod def add_leases(xml, leases): network_elems = xml.xpath('//network') if len(network_elems) > 0: network_elem = network_elems[0] elif len(leases) > 0: network_urn = Xrn(leases[0]['component_id']).get_authority_urn().split(':')[0] network_elem = xml.add_element('network', name = network_urn) else: network_elem = xml # group the leases by slice and timeslots grouped_leases = [] while leases: slice_id = leases[0]['slice_id'] start_time = leases[0]['start_time'] duration = leases[0]['duration'] group = [] for lease in leases: if slice_id == lease['slice_id'] and start_time == lease['start_time'] and duration == lease['duration']: group.append(lease) grouped_leases.append(group) for lease1 in group: leases.remove(lease1) lease_elems = [] for lease in grouped_leases: #lease_fields = ['lease_id', 'component_id', 'slice_id', 'start_time', 'duration'] lease_fields = ['slice_id', 'start_time', 'duration'] lease_elem = network_elem.add_instance('lease', lease[0], lease_fields) lease_elems.append(lease_elem) # add nodes of this lease for node in lease: lease_elem.add_instance('node', node, ['component_id']) # lease_elems = [] # for lease in leases: # lease_fields = ['lease_id', 'component_id', 'slice_id', 'start_time', 'duration'] # lease_elem = network_elem.add_instance('lease', lease, lease_fields) # lease_elems.append(lease_elem) @staticmethod def get_leases(xml, filter={}): xpath = '//lease%s | //default:lease%s' % (XpathFilter.xpath(filter), XpathFilter.xpath(filter)) lease_elems = xml.xpath(xpath) return SFAv1Lease.get_lease_objs(lease_elems) @staticmethod def get_lease_objs(lease_elems): leases = [] for lease_elem in lease_elems: #get nodes node_elems = lease_elem.xpath('./default:node | ./node') for node_elem in node_elems: lease = Lease(lease_elem.attrib, lease_elem) lease['slice_id'] = lease_elem.attrib['slice_id'] lease['start_time'] = lease_elem.attrib['start_time'] lease['duration'] = lease_elem.attrib['duration'] lease['component_id'] = node_elem.attrib['component_id'] leases.append(lease) return leases # leases = [] # for lease_elem in lease_elems: # lease = Lease(lease_elem.attrib, lease_elem) # if lease.get('lease_id'): # lease['lease_id'] = lease_elem.attrib['lease_id'] # lease['component_id'] = lease_elem.attrib['component_id'] # lease['slice_id'] = lease_elem.attrib['slice_id'] # lease['start_time'] = lease_elem.attrib['start_time'] # lease['duration'] = lease_elem.attrib['duration'] # leases.append(lease) # return leases
dana-i2cat/felix
optin_manager/src/python/openflow/optin_manager/sfa/rspecs/elements/versions/sfav1Lease.py
Python
apache-2.0
4,499
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # 'License'); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # The Pig command script # # Environment Variables # # JAVA_HOME The java implementation to use. Overrides JAVA_HOME. # # PIG_CLASSPATH Extra Java CLASSPATH entries. # # HADOOP_HOME/HADOOP_PREFIX Environment HADOOP_HOME/HADOOP_PREFIX(0.20.205) # # HADOOP_CONF_DIR Hadoop conf dir # # PIG_HEAPSIZE The maximum amount of heap to use, in MB. # Default is 1000. # # PIG_OPTS Extra Java runtime options. # # PIG_CONF_DIR Alternate conf dir. Default is ${PIG_HOME}/conf. # # HBASE_CONF_DIR - Optionally, the HBase configuration to run against # when using HBaseStorage import sys import os import glob import subprocess debug = False restArgs = [] includeHCatalog = False additionalJars = "" for arg in sys.argv: if arg == __file__: continue if arg == "-secretDebugCmd": debug = True elif arg == "-useHCatalog": includeHCatalog = True elif arg.split("=")[0] == "-D.pig.additional.jars": if includeHCatalog == True: additionalJars = arg.split("=")[1] else: restArgs.append(arg) else: restArgs.append(arg) # Determine our absolute path, resolving any symbolic links this = os.path.realpath(sys.argv[0]) bindir = os.path.dirname(this) + os.path.sep # the root of the pig installation os.environ['PIG_HOME'] = os.path.join(bindir, os.path.pardir) if 'PIG_CONF_DIR' not in os.environ: pigPropertiesPath = os.path.join(os.environ['PIG_HOME'], 'conf', 'pig.properties') if os.path.exists(pigPropertiesPath): try: fhdl = open(pigPropertiesPath, 'r') fhdl.close() os.environ['PIG_CONF_DIR'] = os.path.join(os.environ['PIG_HOME'], 'conf') except: # in the small window after checking for file, if file is deleted, # we should fail if we hit an exception sys.exit('Failed to access file %s' % pigPropertiesPath) elif os.path.exists(os.path.join(os.path.sep, 'etc', 'pig')): os.environ['PIG_CONF_DIR'] = os.path.join(os.path.sep, 'etc', 'pig') else: sys.exit('Cannot determine PIG_CONF_DIR. Please set it to the directory containing pig.properties') # Hack to get to read a shell script and the changes to the environment it makes # This is potentially bad because we could execute arbitrary code try: importScript = os.path.join(os.environ['PIG_CONF_DIR'], 'runPigEnv.sh') fd = open(importScript, 'w') fd.write(". " + os.path.join(os.environ['PIG_CONF_DIR'], 'pig-env.sh')) fd.write("\n") fd.write("set") fd.close() outFd = open(os.path.join(os.environ['PIG_CONF_DIR'], 'pigStartPython.out'), 'w') output = subprocess.Popen(importScript, shell=True, stdout=outFd) output.wait() outFd.close() outFd = open(os.path.join(os.environ['PIG_CONF_DIR'], 'pigStartPython.out'), 'r') for line in outFd: if line.split(' ') > 1: continue envSplit = line.split('=') if len(envSplit) == 2: os.environ[envSplit[0]] = os.environ[1] outFd.close() except: pass # functionality similar to the shell script. This executes a pig script instead try: if os.path.exists(os.environ['PIG_CONF_DIR'], 'pig.conf'): pigConf = os.path.join(os.environ['PIG_CONF_DIR'], 'pig.conf') __import__(pigConf) except: pass if 'JAVA_HOME' not in os.environ: sys.exit('Error: JAVA_HOME is not set') if 'HADOOP_HOME' not in os.environ: os.environ['HADOOP_HOME'] = os.path.sep + 'usr' java = os.path.join(os.environ['JAVA_HOME'], 'bin', 'java') javaHeapMax = "-Xmx1000m" if 'PIG_HEAPSIZE' in os.environ: javaHeapMax = '-Xmx' + os.environ['PIG_HEAPSIZE'] + 'm' classpath = os.environ['PIG_CONF_DIR'] classpath += os.pathsep + os.path.join(os.environ['JAVA_HOME'], 'lib', 'tools.jar') if 'PIG_CLASSPATH' in os.environ: classpath += os.pathsep + os.environ['PIG_CLASSPATH'] if 'HADOOP_CONF_DIR' in os.environ: classpath += os.pathsep + os.environ['HADOOP_CONF_DIR'] pigLibJars = glob.glob(os.path.join(os.environ['PIG_HOME'], "lib", "*.jar")) for jar in pigLibJars: classpath += os.pathsep + jar ######### if hcatalog is to be included, add hcatalog and its required jars if includeHCatalog == True: # adding the hive jars required by hcatalog hiveJarLoc = "" if 'HIVE_HOME' in os.environ: hiveJarLoc = os.path.join(os.environ['HIVE_HOME'], "lib") else: if os.path.exists(os.path.join('usr', 'lib', 'hive')): hiveJarLoc = os.path.join('usr', 'lib', 'hive', 'lib') else: sys.exit("Please initialize HIVE_HOME to the hive install directory") allHiveJars = ["hive-metastore-*.jar", "libthrift-*.jar", "hive-exec-*.jar", "libfb303-*.jar", "jdo2-api-*-ec.jar", "slf4j-api-*.jar", "hive-hbase-handler-*.jar"] for jarName in allHiveJars: jar = glob.glob(os.path.join(hiveJarLoc, jarName)) if (len(jar) != 0) and (os.path.exists(jar)): classpath += os.pathsep + jar[0] else: sys.exit("Failed to find the jar %s" % os.path.join(hiveJarLoc, jarName)) # done with adding the hive jars required by hcatalog # adding the hcat jars hcatHome = "" if 'HCAT_HOME' in os.environ: hcatHome = os.environ['HCAT_HOME'] else: if os.path.exists(os.path.join(os.path.sep + "usr", "lib", "hcatalog")): hcatHome = os.path.join(os.path.sep + "usr", "lib", "hcatalog") else: sys.exit("Please initialize HCAT_HOME to the hcatalog install directory") hcatJars = glob.glob(os.path.join(hcatHome, "share", "hcatalog", "hcatalog-*.jar")) found = False for hcatJar in hcatJars: if hcatJar.find("server") != -1: found = True classpath += os.pathsep + hcatJar break if found == False: sys.exit("Failed to find the hcatalog server jar in %s" % (os.path.join(hcatHome, "share", "hcatalog"))) hcatHBaseJar = glob.glob(os.path.join(hcatHome, "lib", "hbase-storage-handler-*.jar")) try: classpath += os.pathsep + hcatHBaseJar[0] except: pass # done with adding the hcat jars # now also add the additional jars passed through the command line classpath += os.pathsep + additionalJars # done adding the additional jars from the command line ######### done with adding hcatalog and related jars ######### Add the jython jars to classpath jythonJars = glob.glob(os.path.join(os.environ['PIG_HOME'], "lib", "jython*.jar")) if len(jythonJars) == 1: classpath += os.pathsep + jythonJars[0] else: jythonJars = glob.glob(os.path.join(os.environ['PIG_HOME'], "build", "ivy", "lib", "Pig", "jython*.jar")) if len(jythonJars) == 1: classpath += os.pathsep + jythonJars[0] ######### Done adding the jython jars to classpath ######### Add the jruby jars to classpath jrubyJars = glob.glob(os.path.join(os.environ['PIG_HOME'], "lib", "jruby-complete-*.jar")) if len(jrubyJars) == 1: classpath += os.pathsep + jrubyJars[0] else: jrubyJars = glob.glob(os.path.join(os.environ['PIG_HOME'], "build", "ivy", "lib", "Pig", "jruby-complete-*.jar")) if len(jrubyJars) == 1: classpath += os.pathsep + jrubyJars[0] pigJars = glob.glob(os.path.join(os.environ['PIG_HOME'], "share", "pig", "lib", "*.jar")) for jar in pigJars: classpath += os.pathsep + jar ######### Done adding jruby jars to classpath ######### Add hadoop and hbase conf directories hadoopConfDir = os.path.join(os.environ['PIG_HOME'], "etc", "hadoop") if os.path.exists(hadoopConfDir): classpath += os.pathsep + hadoopConfDir if 'HBASE_CONF_DIR' in os.environ: classpath += os.pathsep + os.environ['HBASE_CONF_DIR'] else: hbaseConfDir = os.path.join(os.path.sep + "etc", "hbase") if os.path.exists(hbaseConfDir): classpath += os.pathsep + hbaseConfDir ######### Done adding hadoop and hbase conf directories ######### Locate and add Zookeeper jars if they exist zkDir = "" if 'ZOOKEEPER_HOME' in os.environ: zkDir = os.environ['ZOOKEEPER_HOME'] else: zkDir = os.path.join(os.environ['PIG_HOME'], "share", "zookeeper") if os.path.exists(zkDir): zkJars = glob.glob(os.path.join(zkdir, "zookeeper-*.jar")) for jar in zkJars: classpath += os.pathsep + jar ######### Done adding zookeeper jars ######### Locate and add hbase jars if they exist hbaseDir = "" if 'HBASE_HOME' in os.environ: hbaseDir = os.environ['HBASE_HOME'] else: hbaseDir = os.path.join(os.environ['PIG_HOME'], "share", "hbase") if os.path.exists(hbaseDir): hbaseJars = glob.glob(os.path.join(hbaseDir, "hbase-*.jar")) for jar in hbaseJars: classpath += os.pathsep + jar ######### Done adding hbase jars ######### set the log directory and logfile if they don't exist if 'PIG_LOG_DIR' not in os.environ: pigLogDir = os.path.join(os.environ['PIG_HOME'], "logs") if 'PIG_LOGFILE' not in os.environ: pigLogFile = 'pid.log' ######### Done setting the logging directory and logfile pigOpts = "" try: pigOpts = os.environ['PIG_OPTS'] except: pass pigOpts += " -Dpig.log.dir=" + pigLogDir pigOpts += " -Dpig.log.file=" + pigLogFile pigOpts += " -Dpig.home.dir=" + os.environ['PIG_HOME'] pigJar = "" hadoopBin = "" print "HADOOP_HOME: %s" % os.path.expandvars(os.environ['HADOOP_HOME']) print "HADOOP_PREFIX: %s" % os.path.expandvars(os.environ['HADOOP_PREFIX']) if (os.environ.get('HADOOP_PREFIX') is not None): print "Found a hadoop prefix" hadoopPrefixPath = os.path.expandvars(os.environ['HADOOP_PREFIX']) if os.path.exists(os.path.join(hadoopPrefixPath, "bin", "hadoop")): hadoopBin = os.path.join(hadoopPrefixPath, "bin", "hadoop") if (os.environ.get('HADOOP_HOME') is not None): print "Found a hadoop home" hadoopHomePath = os.path.expandvars(os.environ['HADOOP_HOME']) print "Hadoop home path: %s" % hadoopHomePath if os.path.exists(os.path.join(hadoopHomePath, "bin", "hadoop")): hadoopBin = os.path.join(hadoopHomePath, "bin", "hadoop") if hadoopBin == "": if os.path.exists(os.path.join(os.path.sep + "usr", "bin", "hadoop")): hadoopBin = os.path.join(os.path.sep + "usr", "bin", "hadoop") if hadoopBin != "": if debug == True: print "Find hadoop at %s" % hadoopBin if os.path.exists(os.path.join(os.environ['PIG_HOME'], "pig-withouthadoop.jar")): pigJar = os.path.join(os.environ['PIG_HOME'], "pig-withouthadoop.jar") else: pigJars = glob.glob(os.path.join(os.environ['PIG_HOME'], "pig-?.*withouthadoop.jar")) if len(pigJars) == 1: pigJar = pigJars[0] elif len(pigJars) > 1: print "Ambiguity with pig jars found the following jars" print pigJars sys.exit("Please remove irrelavant jars fromt %s" % os.path.join(os.environ['PIG_HOME'], "pig-?.*withouthadoop.jar")) else: pigJars = glob.glob(os.path.join(os.environ['PIG_HOME'], "share", "pig", "pig-*withouthadoop.jar")) if len(pigJars) == 1: pigJar = pigJars[0] else: sys.exit("Cannot locate pig-withouthadoop.jar do 'ant jar-withouthadoop', and try again") if 'HADOOP_CLASSPATH' in os.environ: os.environ['HADOOP_CLASSPATH'] += os.pathsep + classpath else: os.environ['HADOOP_CLASSPATH'] = classpath if debug == True: print "dry run:" print "HADOOP_CLASSPATH: %s" % os.environ['HADOOP_CLASSPATH'] try: print "HADOOP_OPTS: %s" % os.environ['HADOOP_OPTS'] except: pass print "%s jar %s %s" % (hadoopBin, pigJar, ' '.join(restArgs)) else: cmdLine = hadoopBin + ' jar ' + pigJar + ' ' + ' '.join(restArgs) subprocess.call(cmdLine, shell=True) else: # fall back to use fat pig.jar if debug == True: print "Cannot find local hadoop installation, using bundled hadoop 20.2" if os.path.exists(os.path.join(os.environ['PIG_HOME'], "pig.jar")): pigJar = os.path.join(os.environ['PIG_HOME'], "pig.jar") else: pigJars = glob.glob(os.path.join(os.environ['PIG_HOME'], "pig-?.!(*withouthadoop).jar")) if len(pigJars) == 1: pigJar = pigJars[0] elif len(pigJars) > 1: print "Ambiguity with pig jars found the following jars" print pigJars sys.exit("Please remove irrelavant jars fromt %s" % os.path.join(os.environ['PIG_HOME'], "pig-?.*withouthadoop.jar")) else: sys.exit("Cannot locate pig.jar. do 'ant jar' and try again") classpath += os.pathsep + pigJar pigClass = "org.apache.pig.Main" if debug == True: print "dry runXXX:" print "%s %s %s -classpath %s %s %s" % (java, javaHeapMax, pigOpts, classpath, pigClass, ' '.join(restArgs)) else: cmdLine = java + ' ' + javaHeapMax + ' ' + pigOpts cmdLine += ' ' + '-classpath ' + classpath + ' ' + pigClass + ' ' + ' '.join(restArgs) subprocess.call(cmdLine, shell=True)
siddaartha/spork
bin/pig.py
Python
apache-2.0
13,326
# -*- coding: utf-8 -*- import furl import responses import mock from nose.tools import * # flake8: noqa (PEP8 asserts) import unittest from framework.auth import cas from tests.base import OsfTestCase, fake from osf_tests.factories import UserFactory def make_successful_response(user): return cas.CasResponse( authenticated=True, user=user._id, attributes={ 'accessToken': fake.md5() } ) def make_failure_response(): return cas.CasResponse( authenticated=False, user=None, ) def make_external_response(release=True, unicode=False): attributes = { 'accessToken': fake.md5(), } if release: attributes.update({ 'given-names': fake.first_name() if not unicode else u'нет', 'family-name': fake.last_name() if not unicode else u'Да', }) return cas.CasResponse( authenticated=True, user='OrcidProfile#{}'.format(fake.numerify('####-####-####-####')), attributes=attributes ) def generate_external_user_with_resp(service_url, user=True, release=True): """ Generate mock user, external credential and cas response for tests. :param service_url: the service url :param user: set to `False` if user does not exists :param release: set to `False` if attributes are not released due to privacy settings :return: existing user object or new user, valid external credential, valid cas response """ cas_resp = make_external_response(release=release) validated_credentials = cas.validate_external_credential(cas_resp.user) if user: user = UserFactory.build() user.external_identity = { validated_credentials['provider']: { validated_credentials['id']: 'VERIFIED' } } user.save() return user, validated_credentials, cas_resp else: user = { 'external_id_provider': validated_credentials['provider'], 'external_id': validated_credentials['id'], 'fullname': '', 'access_token': cas_resp.attributes['accessToken'], 'service_url': service_url, } return user, validated_credentials, cas_resp RESPONSE_TEMPLATE = """ <cas:serviceResponse xmlns:cas='http://www.yale.edu/tp/cas'> <cas:authenticationSuccess> <cas:user>{user_id}</cas:user> <cas:attributes> <cas:isFromNewLogin>true</cas:isFromNewLogin> <cas:authenticationDate>Tue May 19 02:20:19 UTC 2015</cas:authenticationDate> <cas:givenName>{given_name}</cas:givenName> <cas:familyName>{family_name}</cas:familyName> <cas:longTermAuthenticationRequestTokenUsed>true</cas:longTermAuthenticationRequestTokenUsed> <cas:accessToken>{access_token}</cas:accessToken> <cas:username>{username}</cas:username> </cas:attributes> </cas:authenticationSuccess> </cas:serviceResponse> """ def make_service_validation_response_body(user, access_token=None): token = access_token or fake.md5() return RESPONSE_TEMPLATE.format( user_id=user._id, given_name=user.given_name, family_name=user.family_name, username=user.username, access_token=token ) def test_parse_authorization_header(): token = fake.md5() valid = 'Bearer {}'.format(token) assert_equal(cas.parse_auth_header(valid), token) missing_token = 'Bearer ' with assert_raises(cas.CasTokenError): cas.parse_auth_header(missing_token) class TestCASClient(OsfTestCase): def setUp(self): OsfTestCase.setUp(self) self.base_url = 'http://accounts.test.test' self.client = cas.CasClient(self.base_url) @responses.activate def test_service_validate(self): user = UserFactory() url = furl.furl(self.base_url) url.path.segments.extend(('p3', 'serviceValidate',)) service_url = 'http://test.osf.io' ticket = fake.md5() body = make_service_validation_response_body(user, ticket) responses.add( responses.Response( responses.GET, url.url, body=body, status=200, ) ) resp = self.client.service_validate(ticket, service_url) assert_true(resp.authenticated) @responses.activate def test_service_validate_invalid_ticket_raises_error(self): url = furl.furl(self.base_url) url.path.segments.extend(('p3', 'serviceValidate',)) service_url = 'http://test.osf.io' # Return error response responses.add( responses.Response( responses.GET, url.url, body='invalid ticket...', status=500, ) ) with assert_raises(cas.CasHTTPError): self.client.service_validate('invalid', service_url) @responses.activate def test_profile_invalid_access_token_raises_error(self): url = furl.furl(self.base_url) url.path.segments.extend(('oauth2', 'profile',)) responses.add( responses.Response( responses.GET, url.url, status=500, ) ) with assert_raises(cas.CasHTTPError): self.client.profile('invalid-access-token') @responses.activate def test_application_token_revocation_succeeds(self): url = self.client.get_auth_token_revocation_url() client_id= 'fake_id' client_secret = 'fake_secret' responses.add( responses.Response( responses.POST, url, body={'client_id': client_id, 'client_secret': client_secret}, status=204 ) ) res = self.client.revoke_application_tokens(client_id, client_secret) assert_equal(res, True) @responses.activate def test_application_token_revocation_fails(self): url = self.client.get_auth_token_revocation_url() client_id= 'fake_id' client_secret = 'fake_secret' responses.add( responses.Response( responses.POST, url, body={'client_id': client_id, 'client_secret': client_secret}, status=400 ) ) with assert_raises(cas.CasHTTPError): res = self.client.revoke_application_tokens(client_id, client_secret) @unittest.skip('finish me') def test_profile_valid_access_token_returns_cas_response(self): assert 0 @unittest.skip('finish me') def test_get_login_url(self): assert 0 @unittest.skip('finish me') def test_get_logout_url(self): assert 0 class TestCASTicketAuthentication(OsfTestCase): def setUp(self): OsfTestCase.setUp(self) self.user = UserFactory() @mock.patch('framework.auth.cas.get_user_from_cas_resp') @mock.patch('framework.auth.cas.CasClient.service_validate') def test_make_response_from_ticket_success(self, mock_service_validate, mock_get_user_from_cas_resp): mock_service_validate.return_value = make_successful_response(self.user) mock_get_user_from_cas_resp.return_value = (self.user, None, 'authenticate') ticket = fake.md5() service_url = 'http://localhost:5000/' resp = cas.make_response_from_ticket(ticket, service_url) assert_equal(resp.status_code, 302) assert_equal(mock_service_validate.call_count, 1) assert_equal(mock_get_user_from_cas_resp.call_count, 1) @mock.patch('framework.auth.cas.get_user_from_cas_resp') @mock.patch('framework.auth.cas.CasClient.service_validate') def test_make_response_from_ticket_failure(self, mock_service_validate, mock_get_user_from_cas_resp): mock_service_validate.return_value = make_failure_response() mock_get_user_from_cas_resp.return_value = (None, None, None) ticket = fake.md5() service_url = 'http://localhost:5000/' resp = cas.make_response_from_ticket(ticket, service_url) assert_equal(resp.status_code, 302) assert_equal(mock_service_validate.call_count, 1) assert_equal(mock_get_user_from_cas_resp.call_count, 0) @mock.patch('framework.auth.cas.CasClient.service_validate') def test_make_response_from_ticket_invalidates_verification_key(self, mock_service_validate): self.user.verification_key = fake.md5() self.user.save() mock_service_validate.return_value = make_successful_response(self.user) ticket = fake.md5() service_url = 'http://localhost:5000/' resp = cas.make_response_from_ticket(ticket, service_url) self.user.reload() assert_true(self.user.verification_key is None) class TestCASExternalLogin(OsfTestCase): def setUp(self): super(TestCASExternalLogin, self).setUp() self.user = UserFactory() def test_get_user_from_cas_resp_already_authorized(self): mock_response = make_external_response() validated_creds = cas.validate_external_credential(mock_response.user) self.user.external_identity = { validated_creds['provider']: { validated_creds['id']: 'VERIFIED' } } self.user.save() user, external_credential, action = cas.get_user_from_cas_resp(mock_response) assert_equal(user._id, self.user._id) assert_equal(external_credential, validated_creds) assert_equal(action, 'authenticate') def test_get_user_from_cas_resp_not_authorized(self): user, external_credential, action = cas.get_user_from_cas_resp(make_external_response()) assert_equal(user, None) assert_true(external_credential is not None) assert_equal(action, 'external_first_login') @mock.patch('framework.auth.cas.get_user_from_cas_resp') @mock.patch('framework.auth.cas.CasClient.service_validate') def test_make_response_from_ticket_with_user(self, mock_service_validate, mock_get_user_from_cas_resp): mock_response = make_external_response() mock_service_validate.return_value = mock_response validated_creds = cas.validate_external_credential(mock_response.user) self.user.external_identity = { validated_creds['provider']: { validated_creds['id']: 'VERIFIED' } } self.user.save() mock_get_user_from_cas_resp.return_value = (self.user, validated_creds, 'authenticate') ticket = fake.md5() service_url = 'http://localhost:5000/' resp = cas.make_response_from_ticket(ticket, service_url) assert_equal(mock_service_validate.call_count, 1) assert_true(mock_get_user_from_cas_resp.call_count, 1) assert_equal(resp.status_code, 302) assert_in('/logout?service=', resp.headers['Location']) assert_in('/login?service=', resp.headers['Location']) @mock.patch('framework.auth.cas.get_user_from_cas_resp') @mock.patch('framework.auth.cas.CasClient.service_validate') def test_make_response_from_ticket_no_user(self, mock_service_validate, mock_get_user_from_cas_resp): mock_response = make_external_response() mock_service_validate.return_value = mock_response validated_creds = cas.validate_external_credential(mock_response.user) mock_get_user_from_cas_resp.return_value = (None, validated_creds, 'external_first_login') ticket = fake.md5() service_url = 'http://localhost:5000/' resp = cas.make_response_from_ticket(ticket, service_url) assert_equal(mock_service_validate.call_count, 1) assert_true(mock_get_user_from_cas_resp.call_count, 1) assert_equal(resp.status_code, 302) assert_equal(resp.location, '/external-login/email') @mock.patch('framework.auth.cas.CasClient.service_validate') def test_make_response_from_ticket_generates_new_verification_key(self, mock_service_validate): self.user.verification_key = fake.md5() self.user.save() mock_response = make_external_response() validated_creds = cas.validate_external_credential(mock_response.user) self.user.external_identity = { validated_creds['provider']: { validated_creds['id']: 'VERIFIED' } } self.user.save() mock_service_validate.return_value = mock_response ticket = fake.md5() service_url = 'http://localhost:5000/' verification_key = self.user.verification_key resp = cas.make_response_from_ticket(ticket, service_url) self.user.reload() assert_not_equal(self.user.verification_key, verification_key) @mock.patch('framework.auth.cas.CasClient.service_validate') def test_make_response_from_ticket_handles_unicode(self, mock_service_validate): mock_response = make_external_response(unicode=True) mock_service_validate.return_value = mock_response ticket = fake.md5() service_url = 'http://localhost:5000/' resp = cas.make_response_from_ticket(ticket, service_url) assert_equal(resp.status_code, 302) assert_equal(mock_service_validate.call_count, 1) first_call_args = mock_service_validate.call_args[0] assert_equal(first_call_args[0], ticket) assert_equal(first_call_args[1], 'http://localhost:5000/') @mock.patch('framework.auth.cas.CasClient.service_validate') def test_make_response_from_ticket_handles_non_unicode(self, mock_service_validate): mock_response = make_external_response() mock_service_validate.return_value = mock_response ticket = fake.md5() service_url = 'http://localhost:5000/' resp = cas.make_response_from_ticket(ticket, service_url) assert_equal(resp.status_code, 302) assert_equal(mock_service_validate.call_count, 1) first_call_args = mock_service_validate.call_args[0] assert_equal(first_call_args[0], ticket) assert_equal(first_call_args[1], 'http://localhost:5000/')
erinspace/osf.io
tests/test_cas_authentication.py
Python
apache-2.0
14,414
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for estimators.linear.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import tempfile import numpy as np import tensorflow as tf from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import estimator_test_utils from tensorflow.contrib.learn.python.learn.metric_spec import MetricSpec def _prepare_iris_data_for_logistic_regression(): # Converts iris data to a logistic regression problem. iris = tf.contrib.learn.datasets.load_iris() ids = np.where((iris.target == 0) | (iris.target == 1)) iris = tf.contrib.learn.datasets.base.Dataset(data=iris.data[ids], target=iris.target[ids]) return iris def _iris_input_fn(): iris = tf.contrib.learn.datasets.load_iris() return { 'feature': tf.constant(iris.data, dtype=tf.float32) }, tf.constant(iris.target, shape=[150, 1], dtype=tf.int32) class LinearClassifierTest(tf.test.TestCase): def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract( self, tf.contrib.learn.LinearClassifier) def testTrain(self): """Tests that loss goes down with training.""" def input_fn(): return { 'age': tf.constant([1]), 'language': tf.SparseTensor(values=['english'], indices=[[0, 0]], shape=[1, 1]) }, tf.constant([[1]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) age = tf.contrib.layers.real_valued_column('age') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=200) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) self.assertLess(loss2, 0.01) def testJointTrain(self): """Tests that loss goes down with training with joint weights.""" def input_fn(): return { 'age': tf.SparseTensor(values=['1'], indices=[[0, 0]], shape=[1, 1]), 'language': tf.SparseTensor(values=['english'], indices=[[0, 0]], shape=[1, 1]) }, tf.constant([[1]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) age = tf.contrib.layers.sparse_column_with_hash_bucket('age', 2) classifier = tf.contrib.learn.LinearClassifier( _joint_weight=True, feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=200) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) self.assertLess(loss2, 0.01) def testMultiClass_MatrixData(self): """Tests multi-class classification using matrix data as input.""" feature_column = tf.contrib.layers.real_valued_column('feature', dimension=4) classifier = tf.contrib.learn.LinearClassifier( n_classes=3, feature_columns=[feature_column]) classifier.fit(input_fn=_iris_input_fn, steps=100) scores = classifier.evaluate(input_fn=_iris_input_fn, steps=100) self.assertGreater(scores['accuracy'], 0.9) def testMultiClass_MatrixData_Labels1D(self): """Same as the last test, but labels shape is [150] instead of [150, 1].""" def _input_fn(): iris = tf.contrib.learn.datasets.load_iris() return { 'feature': tf.constant(iris.data, dtype=tf.float32) }, tf.constant(iris.target, shape=[150], dtype=tf.int32) feature_column = tf.contrib.layers.real_valued_column('feature', dimension=4) classifier = tf.contrib.learn.LinearClassifier( n_classes=3, feature_columns=[feature_column]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testMultiClass_NpMatrixData(self): """Tests multi-class classification using numpy matrix data as input.""" iris = tf.contrib.learn.datasets.load_iris() train_x = iris.data train_y = iris.target feature_column = tf.contrib.layers.real_valued_column('', dimension=4) classifier = tf.contrib.learn.LinearClassifier( n_classes=3, feature_columns=[feature_column]) classifier.fit(x=train_x, y=train_y, steps=100) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testLogisticRegression_MatrixData(self): """Tests binary classification using matrix data as input.""" def _input_fn(): iris = _prepare_iris_data_for_logistic_regression() return { 'feature': tf.constant(iris.data, dtype=tf.float32) }, tf.constant(iris.target, shape=[100, 1], dtype=tf.int32) feature_column = tf.contrib.layers.real_valued_column('feature', dimension=4) classifier = tf.contrib.learn.LinearClassifier( feature_columns=[feature_column]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testLogisticRegression_MatrixData_Labels1D(self): """Same as the last test, but labels shape is [100] instead of [100, 1].""" def _input_fn(): iris = _prepare_iris_data_for_logistic_regression() return { 'feature': tf.constant(iris.data, dtype=tf.float32) }, tf.constant(iris.target, shape=[100], dtype=tf.int32) feature_column = tf.contrib.layers.real_valued_column('feature', dimension=4) classifier = tf.contrib.learn.LinearClassifier( feature_columns=[feature_column]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testLogisticRegression_NpMatrixData(self): """Tests binary classification using numpy matrix data as input.""" iris = _prepare_iris_data_for_logistic_regression() train_x = iris.data train_y = iris.target feature_columns = [tf.contrib.layers.real_valued_column('', dimension=4)] classifier = tf.contrib.learn.LinearClassifier( feature_columns=feature_columns) classifier.fit(x=train_x, y=train_y, steps=100) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testWeightAndBiasNames(self): """Tests that weight and bias names haven't changed.""" feature_column = tf.contrib.layers.real_valued_column('feature', dimension=4) classifier = tf.contrib.learn.LinearClassifier( n_classes=3, feature_columns=[feature_column]) classifier.fit(input_fn=_iris_input_fn, steps=100) self.assertEqual(4, len(classifier.weights_)) self.assertEqual(3, len(classifier.bias_)) def testCustomOptimizerByObject(self): """Tests multi-class classification using matrix data as input.""" feature_column = tf.contrib.layers.real_valued_column('feature', dimension=4) classifier = tf.contrib.learn.LinearClassifier( n_classes=3, optimizer=tf.train.FtrlOptimizer(learning_rate=0.1), feature_columns=[feature_column]) classifier.fit(input_fn=_iris_input_fn, steps=100) scores = classifier.evaluate(input_fn=_iris_input_fn, steps=100) self.assertGreater(scores['accuracy'], 0.9) def testCustomOptimizerByString(self): """Tests multi-class classification using matrix data as input.""" feature_column = tf.contrib.layers.real_valued_column('feature', dimension=4) def _optimizer(): return tf.train.FtrlOptimizer(learning_rate=0.1) classifier = tf.contrib.learn.LinearClassifier( n_classes=3, optimizer=_optimizer, feature_columns=[feature_column]) classifier.fit(input_fn=_iris_input_fn, steps=100) scores = classifier.evaluate(input_fn=_iris_input_fn, steps=100) self.assertGreater(scores['accuracy'], 0.9) def testCustomOptimizerByFunction(self): """Tests multi-class classification using matrix data as input.""" feature_column = tf.contrib.layers.real_valued_column('feature', dimension=4) classifier = tf.contrib.learn.LinearClassifier( n_classes=3, optimizer='Ftrl', feature_columns=[feature_column]) classifier.fit(input_fn=_iris_input_fn, steps=100) scores = classifier.evaluate(input_fn=_iris_input_fn, steps=100) self.assertGreater(scores['accuracy'], 0.9) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = tf.constant([[1], [0], [0], [0]], dtype=tf.float32) features = {'x': tf.train.limit_epochs( tf.ones(shape=[4, 1], dtype=tf.float32), num_epochs=num_epochs)} return features, labels def _my_metric_op(predictions, labels): # For the case of binary classification, the 2nd column of "predictions" # denotes the model predictions. predictions = tf.slice(predictions, [0, 1], [-1, 1]) return tf.reduce_sum(tf.mul(predictions, labels)) classifier = tf.contrib.learn.LinearClassifier( feature_columns=[tf.contrib.layers.real_valued_column('x')]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ 'my_accuracy': MetricSpec( metric_fn=tf.contrib.metrics.streaming_accuracy, prediction_key='classes'), 'my_precision': MetricSpec( metric_fn=tf.contrib.metrics.streaming_precision, prediction_key='classes'), 'my_metric': MetricSpec(metric_fn=_my_metric_op, prediction_key='probabilities') }) self.assertTrue( set(['loss', 'my_accuracy', 'my_precision', 'my_metric' ]).issubset(set(scores.keys()))) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(classifier.predict(input_fn=predict_input_fn))) self.assertEqual(_sklearn.accuracy_score([1, 0, 0, 0], predictions), scores['my_accuracy']) # Tests the case where the prediction_key is neither "classes" nor # "probabilities". with self.assertRaisesRegexp(KeyError, 'bad_type'): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ 'bad_name': MetricSpec( metric_fn=tf.contrib.metrics.streaming_auc, prediction_key='bad_type')}) # Tests the case where the 2nd element of the key is neither "classes" nor # "probabilities". with self.assertRaises(KeyError): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={('bad_name', 'bad_type'): tf.contrib.metrics.streaming_auc}) # Tests the case where the tuple of the key doesn't have 2 elements. with self.assertRaises(ValueError): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ ('bad_length_name', 'classes', 'bad_length'): tf.contrib.metrics.streaming_accuracy }) def testLogisticFractionalLabels(self): """Tests logistic training with fractional labels.""" def input_fn(num_epochs=None): return { 'age': tf.train.limit_epochs( tf.constant([[1], [2]]), num_epochs=num_epochs), }, tf.constant([[.7], [0]], dtype=tf.float32) age = tf.contrib.layers.real_valued_column('age') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[age], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=input_fn, steps=500) predict_input_fn = functools.partial(input_fn, num_epochs=1) predictions_proba = list( classifier.predict_proba(input_fn=predict_input_fn)) # Prediction probabilities mirror the labels column, which proves that the # classifier learns from float input. self.assertAllClose([[.3, .7], [1., 0.]], predictions_proba, atol=.1) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(): features = { 'language': tf.SparseTensor(values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } labels = tf.constant([[1], [0], [0]]) return features, labels sparse_features = [ # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. tf.contrib.layers.sparse_column_with_hash_bucket('language', hash_bucket_size=2e7) ] classifier = tf.contrib.learn.LinearClassifier( feature_columns=sparse_features, # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config=tf.contrib.learn.RunConfig( num_ps_replicas=2, cluster_spec=tf.train.ClusterSpec({}))) classifier.fit(input_fn=_input_fn, steps=200) loss = classifier.evaluate(input_fn=_input_fn, steps=1)['loss'] self.assertLess(loss, 0.07) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def input_fn(num_epochs=None): return { 'age': tf.train.limit_epochs(tf.constant([1]), num_epochs=num_epochs), 'language': tf.SparseTensor( values=['english'], indices=[[0, 0]], shape=[1, 1]), }, tf.constant([[1]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) age = tf.contrib.layers.real_valued_column('age') model_dir = tempfile.mkdtemp() classifier = tf.contrib.learn.LinearClassifier( model_dir=model_dir, feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=30) predict_input_fn = functools.partial(input_fn, num_epochs=1) out1_class = list(classifier.predict(input_fn=predict_input_fn, as_iterable=True)) out1_proba = list(classifier.predict_proba(input_fn=predict_input_fn, as_iterable=True)) del classifier classifier2 = tf.contrib.learn.LinearClassifier( model_dir=model_dir, feature_columns=[age, language]) out2_class = list(classifier2.predict(input_fn=predict_input_fn, as_iterable=True)) out2_proba = list(classifier2.predict_proba(input_fn=predict_input_fn, as_iterable=True)) self.assertTrue(np.array_equal(out1_class, out2_class)) self.assertTrue(np.array_equal(out1_proba, out2_proba)) def testWeightColumn(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = tf.constant([[1], [0], [0], [0]]) features = { 'x': tf.ones(shape=[4, 1], dtype=tf.float32), 'w': tf.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = tf.constant([[1], [1], [1], [1]]) features = { 'x': tf.ones(shape=[4, 1], dtype=tf.float32), 'w': tf.constant([[1.], [1.], [1.], [1.]]) } return features, labels classifier = tf.contrib.learn.LinearClassifier( weight_column_name='w', feature_columns=[tf.contrib.layers.real_valued_column('x')], config=tf.contrib.learn.RunConfig(tf_random_seed=3)) classifier.fit(input_fn=_input_fn_train, steps=100) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) # All examples in eval data set are y=x. self.assertGreater(scores['labels/actual_label_mean'], 0.9) # If there were no weight column, model would learn y=Not(x). Because of # weights, it learns y=x. self.assertGreater(scores['labels/prediction_mean'], 0.9) # All examples in eval data set are y=x. So if weight column were ignored, # then accuracy would be zero. Because of weights, accuracy should be close # to 1.0. self.assertGreater(scores['accuracy'], 0.9) scores_train_set = classifier.evaluate(input_fn=_input_fn_train, steps=1) # Considering weights, the mean label should be close to 1.0. # If weights were ignored, it would be 0.25. self.assertGreater(scores_train_set['labels/actual_label_mean'], 0.9) # The classifier has learned y=x. If weight column were ignored in # evaluation, then accuracy for the train set would be 0.25. # Because weight is not ignored, accuracy is greater than 0.6. self.assertGreater(scores_train_set['accuracy'], 0.6) def testWeightColumnLoss(self): """Test ensures that you can specify per-example weights for loss.""" def _input_fn(): features = { 'age': tf.constant([[20], [20], [20]]), 'weights': tf.constant([[100], [1], [1]]), } labels = tf.constant([[1], [0], [0]]) return features, labels age = tf.contrib.layers.real_valued_column('age') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[age]) classifier.fit(input_fn=_input_fn, steps=100) loss_unweighted = classifier.evaluate(input_fn=_input_fn, steps=1)['loss'] classifier = tf.contrib.learn.LinearClassifier( feature_columns=[age], weight_column_name='weights') classifier.fit(input_fn=_input_fn, steps=100) loss_weighted = classifier.evaluate(input_fn=_input_fn, steps=1)['loss'] self.assertLess(loss_weighted, loss_unweighted) def testExport(self): """Tests that export model for servo works.""" def input_fn(): return { 'age': tf.constant([1]), 'language': tf.SparseTensor(values=['english'], indices=[[0, 0]], shape=[1, 1]) }, tf.constant([[1]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) age = tf.contrib.layers.real_valued_column('age') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) export_dir = tempfile.mkdtemp() classifier.export(export_dir) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" def input_fn(): return { 'age': tf.constant([1]), 'language': tf.SparseTensor(values=['english'], indices=[[0, 0]], shape=[1, 1]) }, tf.constant([[1]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) age = tf.contrib.layers.real_valued_column('age') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[age, language], enable_centered_bias=False) classifier.fit(input_fn=input_fn, steps=100) self.assertFalse('centered_bias_weight' in classifier.get_variable_names()) def testEnableCenteredBias(self): """Tests that we can disable centered bias.""" def input_fn(): return { 'age': tf.constant([1]), 'language': tf.SparseTensor(values=['english'], indices=[[0, 0]], shape=[1, 1]) }, tf.constant([[1]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) age = tf.contrib.layers.real_valued_column('age') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[age, language], enable_centered_bias=True) classifier.fit(input_fn=input_fn, steps=100) self.assertTrue('centered_bias_weight' in classifier.get_variable_names()) def testTrainOptimizerWithL1Reg(self): """Tests l1 regularized model has higher loss.""" def input_fn(): return { 'language': tf.SparseTensor(values=['hindi'], indices=[[0, 0]], shape=[1, 1]) }, tf.constant([[1]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) classifier_no_reg = tf.contrib.learn.LinearClassifier( feature_columns=[language]) classifier_with_reg = tf.contrib.learn.LinearClassifier( feature_columns=[language], optimizer=tf.train.FtrlOptimizer(learning_rate=1.0, l1_regularization_strength=100.)) loss_no_reg = classifier_no_reg.fit( input_fn=input_fn, steps=100).evaluate( input_fn=input_fn, steps=1)['loss'] loss_with_reg = classifier_with_reg.fit( input_fn=input_fn, steps=100).evaluate( input_fn=input_fn, steps=1)['loss'] self.assertLess(loss_no_reg, loss_with_reg) def testTrainWithMissingFeature(self): """Tests that training works with missing features.""" def input_fn(): return { 'language': tf.SparseTensor(values=['Swahili', 'turkish'], indices=[[0, 0], [2, 0]], shape=[3, 1]) }, tf.constant([[1], [1], [1]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) classifier = tf.contrib.learn.LinearClassifier(feature_columns=[language]) classifier.fit(input_fn=input_fn, steps=100) loss = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.07) def testSdcaOptimizerRealValuedFeatures(self): """Tests LinearClasssifier with SDCAOptimizer and real valued features.""" def input_fn(): return { 'example_id': tf.constant(['1', '2']), 'maintenance_cost': tf.constant([[500.0], [200.0]]), 'sq_footage': tf.constant([[800.0], [600.0]]), 'weights': tf.constant([[1.0], [1.0]]) }, tf.constant([[0], [1]]) maintenance_cost = tf.contrib.layers.real_valued_column('maintenance_cost') sq_footage = tf.contrib.layers.real_valued_column('sq_footage') sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[maintenance_cost, sq_footage], weight_column_name='weights', optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=100) loss = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.05) def testSdcaOptimizerRealValuedFeatureWithHigherDimension(self): """Tests SDCAOptimizer with real valued features of higher dimension.""" # input_fn is identical to the one in testSdcaOptimizerRealValuedFeatures # where 2 1-dimensional dense features have been replaced by 1 2-dimensional # feature. def input_fn(): return { 'example_id': tf.constant(['1', '2']), 'dense_feature': tf.constant([[500.0, 800.0], [200.0, 600.0]]) }, tf.constant([[0], [1]]) dense_feature = tf.contrib.layers.real_valued_column( 'dense_feature', dimension=2) sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[dense_feature], optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=100) loss = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.05) def testSdcaOptimizerBucketizedFeatures(self): """Tests LinearClasssifier with SDCAOptimizer and bucketized features.""" def input_fn(): return { 'example_id': tf.constant(['1', '2', '3']), 'price': tf.constant([[600.0], [1000.0], [400.0]]), 'sq_footage': tf.constant([[1000.0], [600.0], [700.0]]), 'weights': tf.constant([[1.0], [1.0], [1.0]]) }, tf.constant([[1], [0], [1]]) price_bucket = tf.contrib.layers.bucketized_column( tf.contrib.layers.real_valued_column('price'), boundaries=[500.0, 700.0]) sq_footage_bucket = tf.contrib.layers.bucketized_column( tf.contrib.layers.real_valued_column('sq_footage'), boundaries=[650.0]) sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id', symmetric_l2_regularization=1.0) classifier = tf.contrib.learn.LinearClassifier( feature_columns=[price_bucket, sq_footage_bucket], weight_column_name='weights', optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerSparseFeatures(self): """Tests LinearClasssifier with SDCAOptimizer and sparse features.""" def input_fn(): return { 'example_id': tf.constant(['1', '2', '3']), 'price': tf.constant([[0.4], [0.6], [0.3]]), 'country': tf.SparseTensor(values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], shape=[3, 5]), 'weights': tf.constant([[1.0], [1.0], [1.0]]) }, tf.constant([[1], [0], [1]]) price = tf.contrib.layers.real_valued_column('price') country = tf.contrib.layers.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[price, country], weight_column_name='weights', optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerWeightedSparseFeatures(self): """LinearClasssifier with SDCAOptimizer and weighted sparse features.""" def input_fn(): return { 'example_id': tf.constant(['1', '2', '3']), 'price': tf.SparseTensor(values=[2., 3., 1.], indices=[[0, 0], [1, 0], [2, 0]], shape=[3, 5]), 'country': tf.SparseTensor(values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 0], [2, 0]], shape=[3, 5]) }, tf.constant([[1], [0], [1]]) country = tf.contrib.layers.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) country_weighted_by_price = tf.contrib.layers.weighted_sparse_column( country, 'price') sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[country_weighted_by_price], optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerCrossedFeatures(self): """Tests LinearClasssifier with SDCAOptimizer and crossed features.""" def input_fn(): return { 'example_id': tf.constant(['1', '2', '3']), 'language': tf.SparseTensor(values=['english', 'italian', 'spanish'], indices=[[0, 0], [1, 0], [2, 0]], shape=[3, 1]), 'country': tf.SparseTensor(values=['US', 'IT', 'MX'], indices=[[0, 0], [1, 0], [2, 0]], shape=[3, 1]) }, tf.constant([[0], [0], [1]]) language = tf.contrib.layers.sparse_column_with_hash_bucket( 'language', hash_bucket_size=5) country = tf.contrib.layers.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) country_language = tf.contrib.layers.crossed_column( [language, country], hash_bucket_size=10) sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[country_language], optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=10) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerMixedFeatures(self): """Tests LinearClasssifier with SDCAOptimizer and a mix of features.""" def input_fn(): return { 'example_id': tf.constant(['1', '2', '3']), 'price': tf.constant([[0.6], [0.8], [0.3]]), 'sq_footage': tf.constant([[900.0], [700.0], [600.0]]), 'country': tf.SparseTensor(values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], shape=[3, 5]), 'weights': tf.constant([[3.0], [1.0], [1.0]]) }, tf.constant([[1], [0], [1]]) price = tf.contrib.layers.real_valued_column('price') sq_footage_bucket = tf.contrib.layers.bucketized_column( tf.contrib.layers.real_valued_column('sq_footage'), boundaries=[650.0, 800.0]) country = tf.contrib.layers.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) sq_footage_country = tf.contrib.layers.crossed_column( [sq_footage_bucket, country], hash_bucket_size=10) sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[price, sq_footage_bucket, country, sq_footage_country], weight_column_name='weights', optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testEval(self): """Tests that eval produces correct metrics. """ def input_fn(): return { 'age': tf.constant([[1], [2]]), 'language': tf.SparseTensor(values=['greek', 'chinese'], indices=[[0, 0], [1, 0]], shape=[2, 1]), }, tf.constant([[1], [0]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) age = tf.contrib.layers.real_valued_column('age') classifier = tf.contrib.learn.LinearClassifier( feature_columns=[age, language]) # Evaluate on trained model classifier.fit(input_fn=input_fn, steps=100) classifier.evaluate(input_fn=input_fn, steps=1) # TODO(ispir): Enable accuracy check after resolving the randomness issue. # self.assertLess(evaluated_values['loss/mean'], 0.3) # self.assertGreater(evaluated_values['accuracy/mean'], .95) class LinearRegressorTest(tf.test.TestCase): def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract( self, tf.contrib.learn.LinearRegressor) def testRegression(self): """Tests that loss goes down with training.""" def input_fn(): return { 'age': tf.constant([1]), 'language': tf.SparseTensor(values=['english'], indices=[[0, 0]], shape=[1, 1]) }, tf.constant([[10.]]) language = tf.contrib.layers.sparse_column_with_hash_bucket('language', 100) age = tf.contrib.layers.real_valued_column('age') classifier = tf.contrib.learn.LinearRegressor( feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=200) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) self.assertLess(loss2, 0.5) def testRegression_MatrixData(self): """Tests regression using matrix data as input.""" cont_features = [ tf.contrib.layers.real_valued_column('feature', dimension=4)] regressor = tf.contrib.learn.LinearRegressor( feature_columns=cont_features, config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_iris_input_fn, steps=100) scores = regressor.evaluate(input_fn=_iris_input_fn, steps=1) self.assertLess(scores['loss'], 0.2) def testRegression_TensorData(self): """Tests regression using tensor data as input.""" def _input_fn(num_epochs=None): features = { 'age': tf.train.limit_epochs(tf.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': tf.SparseTensor(values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } return features, tf.constant([1.0, 0., 0.2], dtype=tf.float32) feature_columns = [ tf.contrib.layers.sparse_column_with_hash_bucket('language', hash_bucket_size=20), tf.contrib.layers.real_valued_column('age') ] regressor = tf.contrib.learn.LinearRegressor( feature_columns=feature_columns, config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.2) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = tf.constant([[1.], [0.], [0.], [0.]]) features = { 'x': tf.ones(shape=[4, 1], dtype=tf.float32), } return features, labels regressor = tf.contrib.learn.LinearRegressor( feature_columns=[tf.contrib.layers.real_valued_column('x')], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_train, steps=1) # Average square loss = (0.75^2 + 3*0.25^2) / 4 = 0.1875 self.assertAlmostEqual(0.1875, scores['loss'], delta=0.1) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = tf.constant([[1.], [0.], [0.], [0.]]) features = { 'x': tf.ones(shape=[4, 1], dtype=tf.float32), 'w': tf.constant([[1.], [1.], [1.], [1.]]) } return features, labels def _input_fn_eval(): # 4 rows, with different weights. labels = tf.constant([[1.], [0.], [0.], [0.]]) features = { 'x': tf.ones(shape=[4, 1], dtype=tf.float32), 'w': tf.constant([[7.], [1.], [1.], [1.]]) } return features, labels regressor = tf.contrib.learn.LinearRegressor( weight_column_name='w', feature_columns=[tf.contrib.layers.real_valued_column('x')], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) # Weighted average square loss = (7*0.75^2 + 3*0.25^2) / 10 = 0.4125 self.assertAlmostEqual(0.4125, scores['loss'], delta=0.1) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = tf.constant([[1.], [0.], [0.], [0.]]) features = { 'x': tf.ones(shape=[4, 1], dtype=tf.float32), 'w': tf.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = tf.constant([[1.], [1.], [1.], [1.]]) features = { 'x': tf.ones(shape=[4, 1], dtype=tf.float32), 'w': tf.constant([[1.], [1.], [1.], [1.]]) } return features, labels regressor = tf.contrib.learn.LinearRegressor( weight_column_name='w', feature_columns=[tf.contrib.layers.real_valued_column('x')], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) # The model should learn (y = x) because of the weights, so the loss should # be close to zero. self.assertLess(scores['loss'], 0.1) def testPredict_AsIterableFalse(self): """Tests predict method with as_iterable=False.""" labels = [1.0, 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': tf.train.limit_epochs(tf.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': tf.SparseTensor(values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } return features, tf.constant(labels, dtype=tf.float32) feature_columns = [ tf.contrib.layers.sparse_column_with_hash_bucket('language', hash_bucket_size=20), tf.contrib.layers.real_valued_column('age') ] regressor = tf.contrib.learn.LinearRegressor( feature_columns=feature_columns, config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.1) predictions = regressor.predict(input_fn=_input_fn, as_iterable=False) self.assertAllClose(labels, predictions, atol=0.1) def testPredict_AsIterable(self): """Tests predict method with as_iterable=True.""" labels = [1.0, 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': tf.train.limit_epochs(tf.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': tf.SparseTensor(values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } return features, tf.constant(labels, dtype=tf.float32) feature_columns = [ tf.contrib.layers.sparse_column_with_hash_bucket('language', hash_bucket_size=20), tf.contrib.layers.real_valued_column('age') ] regressor = tf.contrib.learn.LinearRegressor( feature_columns=feature_columns, config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.1) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = list( regressor.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllClose(labels, predictions, atol=0.1) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = tf.constant([[1.], [0.], [0.], [0.]]) features = {'x': tf.train.limit_epochs( tf.ones(shape=[4, 1], dtype=tf.float32), num_epochs=num_epochs)} return features, labels def _my_metric_op(predictions, labels): return tf.reduce_sum(tf.mul(predictions, labels)) regressor = tf.contrib.learn.LinearRegressor( feature_columns=[tf.contrib.layers.real_valued_column('x')], config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'my_error': MetricSpec( metric_fn=tf.contrib.metrics.streaming_mean_squared_error, prediction_key='scores'), 'my_metric': MetricSpec(metric_fn=_my_metric_op, prediction_key='scores') }) self.assertIn('loss', set(scores.keys())) self.assertIn('my_error', set(scores.keys())) self.assertIn('my_metric', set(scores.keys())) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(regressor.predict(input_fn=predict_input_fn))) self.assertAlmostEqual( _sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions), scores['my_error']) # Tests the case where the prediction_key is not "scores". with self.assertRaisesRegexp(KeyError, 'bad_type'): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'bad_name': MetricSpec( metric_fn=tf.contrib.metrics.streaming_auc, prediction_key='bad_type')}) # Tests the case where the 2nd element of the key is not "scores". with self.assertRaises(KeyError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={('my_error', 'predictions' ): tf.contrib.metrics.streaming_mean_squared_error}) # Tests the case where the tuple of the key doesn't have 2 elements. with self.assertRaises(ValueError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ ('bad_length_name', 'scores', 'bad_length'): tf.contrib.metrics.streaming_mean_squared_error }) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def _input_fn(num_epochs=None): features = { 'age': tf.train.limit_epochs(tf.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': tf.SparseTensor(values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } return features, tf.constant([1.0, 0., 0.2], dtype=tf.float32) feature_columns = [ tf.contrib.layers.sparse_column_with_hash_bucket('language', hash_bucket_size=20), tf.contrib.layers.real_valued_column('age') ] model_dir = tempfile.mkdtemp() regressor = tf.contrib.learn.LinearRegressor( model_dir=model_dir, feature_columns=feature_columns, config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = list(regressor.predict(input_fn=predict_input_fn)) del regressor regressor2 = tf.contrib.learn.LinearRegressor( model_dir=model_dir, feature_columns=feature_columns) predictions2 = list(regressor2.predict(input_fn=predict_input_fn)) self.assertAllClose(predictions, predictions2) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(num_epochs=None): features = { 'age': tf.train.limit_epochs(tf.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': tf.SparseTensor(values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } return features, tf.constant([1.0, 0., 0.2], dtype=tf.float32) feature_columns = [ # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. tf.contrib.layers.sparse_column_with_hash_bucket('language', hash_bucket_size=2e7), tf.contrib.layers.real_valued_column('age') ] regressor = tf.contrib.learn.LinearRegressor( feature_columns=feature_columns, # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config=tf.contrib.learn.RunConfig( num_ps_replicas=2, cluster_spec=tf.train.ClusterSpec({}), tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.1) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" def _input_fn(num_epochs=None): features = { 'age': tf.train.limit_epochs(tf.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': tf.SparseTensor(values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], shape=[3, 2]) } return features, tf.constant([1.0, 0., 0.2], dtype=tf.float32) feature_columns = [ tf.contrib.layers.sparse_column_with_hash_bucket('language', hash_bucket_size=20), tf.contrib.layers.real_valued_column('age') ] regressor = tf.contrib.learn.LinearRegressor( feature_columns=feature_columns, enable_centered_bias=False, config=tf.contrib.learn.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.1) def testRecoverWeights(self): rng = np.random.RandomState(67) n = 1000 n_weights = 10 bias = 2 x = rng.uniform(-1, 1, (n, n_weights)) weights = 10 * rng.randn(n_weights) y = np.dot(x, weights) y += rng.randn(len(x)) * 0.05 + rng.normal(bias, 0.01) feature_columns = tf.contrib.learn.infer_real_valued_columns_from_input(x) regressor = tf.contrib.learn.LinearRegressor( feature_columns=feature_columns, optimizer=tf.train.FtrlOptimizer(learning_rate=0.8)) regressor.fit(x, y, batch_size=64, steps=2000) # Have to flatten weights since they come in (x, 1) shape. self.assertAllClose(weights, regressor.weights_.flatten(), rtol=1) # TODO(ispir): Disable centered_bias. # assert abs(bias - regressor.bias_) < 0.1 def testSdcaOptimizerRealValuedLinearFeatures(self): """Tests LinearRegressor with SDCAOptimizer and real valued features.""" x = [[1.2, 2.0, -1.5], [-2.0, 3.0, -0.5], [1.0, -0.5, 4.0]] weights = [[3.0], [-1.2], [0.5]] y = np.dot(x, weights) def input_fn(): return { 'example_id': tf.constant(['1', '2', '3']), 'x': tf.constant(x), 'weights': tf.constant([[10.0], [10.0], [10.0]]) }, tf.constant(y) x_column = tf.contrib.layers.real_valued_column('x', dimension=3) sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') regressor = tf.contrib.learn.LinearRegressor( feature_columns=[x_column], weight_column_name='weights', optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=20) loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.01) self.assertAllClose([w[0] for w in weights], regressor.weights_.flatten(), rtol=0.1) def testSdcaOptimizerMixedFeaturesArbitraryWeights(self): """Tests LinearRegressor with SDCAOptimizer and a mix of features.""" def input_fn(): return { 'example_id': tf.constant(['1', '2', '3']), 'price': tf.constant([[0.6], [0.8], [0.3]]), 'sq_footage': tf.constant([[900.0], [700.0], [600.0]]), 'country': tf.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], shape=[3, 5]), 'weights': tf.constant([[3.0], [5.0], [7.0]]) }, tf.constant([[1.55], [-1.25], [-3.0]]) price = tf.contrib.layers.real_valued_column('price') sq_footage_bucket = tf.contrib.layers.bucketized_column( tf.contrib.layers.real_valued_column('sq_footage'), boundaries=[650.0, 800.0]) country = tf.contrib.layers.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) sq_footage_country = tf.contrib.layers.crossed_column( [sq_footage_bucket, country], hash_bucket_size=10) sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id', symmetric_l2_regularization=1.0) regressor = tf.contrib.learn.LinearRegressor( feature_columns=[price, sq_footage_bucket, country, sq_footage_country], weight_column_name='weights', optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=20) loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.05) def testSdcaOptimizerSparseFeaturesWithL1Reg(self): """Tests LinearClasssifier with SDCAOptimizer and sparse features.""" def input_fn(): return { 'example_id': tf.constant(['1', '2', '3']), 'price': tf.constant([[0.4], [0.6], [0.3]]), 'country': tf.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], shape=[3, 5]), 'weights': tf.constant([[10.0], [10.0], [10.0]]) }, tf.constant([[1.4], [-0.8], [2.6]]) price = tf.contrib.layers.real_valued_column('price') country = tf.contrib.layers.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) # Regressor with no L1 regularization. sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') regressor = tf.contrib.learn.LinearRegressor( feature_columns=[price, country], weight_column_name='weights', optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=20) no_l1_reg_loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] no_l1_reg_weights = regressor.weights_ # Regressor with L1 regularization. sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id', symmetric_l1_regularization=1.0) regressor = tf.contrib.learn.LinearRegressor( feature_columns=[price, country], weight_column_name='weights', optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=20) l1_reg_loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] l1_reg_weights = regressor.weights_ # Unregularized loss is lower when there is no L1 regularization. self.assertLess(no_l1_reg_loss, l1_reg_loss) self.assertLess(no_l1_reg_loss, 0.05) # But weights returned by the regressor with L1 regularization have smaller # L1 norm. l1_reg_weights_norm, no_l1_reg_weights_norm = 0.0, 0.0 for var_name in sorted(l1_reg_weights): l1_reg_weights_norm += sum( np.absolute(l1_reg_weights[var_name].flatten())) no_l1_reg_weights_norm += sum( np.absolute(no_l1_reg_weights[var_name].flatten())) print('Var name: %s, value: %s' % (var_name, no_l1_reg_weights[var_name].flatten())) self.assertLess(l1_reg_weights_norm, no_l1_reg_weights_norm) def testSdcaOptimizerBiasOnly(self): """Tests LinearClasssifier with SDCAOptimizer and validates bias weight.""" def input_fn(): """Testing the bias weight when it's the only feature present. All of the instances in this input only have the bias feature, and a 1/4 of the labels are positive. This means that the expected weight for the bias should be close to the average prediction, i.e 0.25. Returns: Training data for the test. """ num_examples = 40 return { 'example_id': tf.constant([str(x+1) for x in range(num_examples)]), # place_holder is an empty column which is always 0 (absent), because # LinearClassifier requires at least one column. 'place_holder': tf.constant([[0.0]]*num_examples), }, tf.constant([[1 if i % 4 is 0 else 0] for i in range(num_examples)]) place_holder = tf.contrib.layers.real_valued_column('place_holder') sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') regressor = tf.contrib.learn.LinearRegressor( feature_columns=[place_holder], optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=100) self.assertNear(regressor.get_variable_value('linear/bias_weight')[0], 0.25, err=0.1) def testSdcaOptimizerBiasAndOtherColumns(self): """Tests LinearClasssifier with SDCAOptimizer and validates bias weight.""" def input_fn(): """Testing the bias weight when there are other features present. 1/2 of the instances in this input have feature 'a', the rest have feature 'b', and we expect the bias to be added to each instance as well. 0.4 of all instances that have feature 'a' are positive, and 0.2 of all instances that have feature 'b' are positive. The labels in the dataset are ordered to appear shuffled since SDCA expects shuffled data, and converges faster with this pseudo-random ordering. If the bias was centered we would expect the weights to be: bias: 0.3 a: 0.1 b: -0.1 Until b/29339026 is resolved, the bias gets regularized with the same global value for the other columns, and so the expected weights get shifted and are: bias: 0.2 a: 0.2 b: 0.0 Returns: The test dataset. """ num_examples = 200 half = int(num_examples/2) return { 'example_id': tf.constant([str(x+1) for x in range(num_examples)]), 'a': tf.constant([[1]]*int(half) + [[0]]*int(half)), 'b': tf.constant([[0]]*int(half) + [[1]]*int(half)), }, tf.constant([[x] for x in [1, 0, 0, 1, 1, 0, 0, 0, 1, 0] * int(half/10) + [0, 1, 0, 0, 0, 0, 0, 0, 1, 0] * int(half/10)]) sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') regressor = tf.contrib.learn.LinearRegressor( feature_columns=[tf.contrib.layers.real_valued_column('a'), tf.contrib.layers.real_valued_column('b')], optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=200) # TODO(b/29339026): Change the expected results to expect a centered bias. self.assertNear( regressor.get_variable_value('linear/bias_weight')[0], 0.2, err=0.05) self.assertNear(regressor.weights_['linear/a/weight'][0], 0.2, err=0.05) self.assertNear(regressor.weights_['linear/b/weight'][0], 0.0, err=0.05) def testSdcaOptimizerBiasAndOtherColumnsFabricatedCentered(self): """Tests LinearClasssifier with SDCAOptimizer and validates bias weight.""" def input_fn(): """Testing the bias weight when there are other features present. 1/2 of the instances in this input have feature 'a', the rest have feature 'b', and we expect the bias to be added to each instance as well. 0.1 of all instances that have feature 'a' have a label of 1, and 0.1 of all instances that have feature 'b' have a label of -1. We can expect the weights to be: bias: 0.0 a: 0.1 b: -0.1 Returns: The test dataset. """ num_examples = 200 half = int(num_examples/2) return { 'example_id': tf.constant([str(x+1) for x in range(num_examples)]), 'a': tf.constant([[1]]*int(half) + [[0]]*int(half)), 'b': tf.constant([[0]]*int(half) + [[1]]*int(half)), }, tf.constant([[1 if x%10 == 0 else 0] for x in range(half)] + [[-1 if x%10 == 0 else 0] for x in range(half)]) sdca_optimizer = tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id') regressor = tf.contrib.learn.LinearRegressor( feature_columns=[tf.contrib.layers.real_valued_column('a'), tf.contrib.layers.real_valued_column('b')], optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=100) self.assertNear( regressor.get_variable_value('linear/bias_weight')[0], 0.0, err=0.05) self.assertNear(regressor.weights_['linear/a/weight'][0], 0.1, err=0.05) self.assertNear(regressor.weights_['linear/b/weight'][0], -0.1, err=0.05) def boston_input_fn(): boston = tf.contrib.learn.datasets.load_boston() features = tf.cast(tf.reshape(tf.constant(boston.data), [-1, 13]), tf.float32) labels = tf.cast(tf.reshape(tf.constant(boston.target), [-1, 1]), tf.float32) return features, labels class FeatureColumnTest(tf.test.TestCase): def testTrain(self): feature_columns = tf.contrib.learn.infer_real_valued_columns_from_input_fn( boston_input_fn) est = tf.contrib.learn.LinearRegressor(feature_columns=feature_columns) est.fit(input_fn=boston_input_fn, steps=1) _ = est.evaluate(input_fn=boston_input_fn, steps=1) if __name__ == '__main__': tf.test.main()
tongwang01/tensorflow
tensorflow/contrib/learn/python/learn/estimators/linear_test.py
Python
apache-2.0
59,870
#!/usr/bin/env python from setuptools import setup, find_packages import os import io __doc__ = ("Custom user model app for Django featuring email as username and" " class-based views for authentication.") def read(fname): return io.open(os.path.join(os.path.dirname(__file__), fname), encoding="utf-8").read() install_requires = [ 'Django>=1.5', ] setup( name='django-authtools', version='1.2.1.dev0', author='Fusionbox, Inc.', author_email='programmers@fusionbox.com', description=__doc__, long_description='\n\n'.join([read('README.rst'), read('CHANGES.rst')]), url='https://django-authtools.readthedocs.org/', license='BSD', packages=[package for package in find_packages() if package.startswith('authtools')], install_requires=install_requires, zip_safe=False, include_package_data=True, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Environment :: Web Environment', 'Framework :: Django', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Natural Language :: English', 'Programming Language :: Python', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.3', ], )
vuchau/django-authtools
setup.py
Python
bsd-2-clause
1,342
# python imports import hotshot import hotshot.stats import sys import tempfile from cStringIO import StringIO # django imports from django.conf import settings from django.http import HttpResponseServerError class ProfileMiddleware(object): """ Displays hotshot profiling for any view. http://yoursite.com/yourview/?prof Add the "prof" key to query string by appending ?prof (or &prof=) and you'll see the profiling results in your browser. It's set up to only be available in django's debug mode, but you really shouldn't add this middleware to any production configuration. * Only tested on Linux """ def process_request(self, request): if 'prof' in request.GET: self.tmpfile = tempfile.NamedTemporaryFile() self.prof = hotshot.Profile(self.tmpfile.name) def process_view(self, request, callback, callback_args, callback_kwargs): if 'prof' in request.GET: return self.prof.runcall(callback, request, *callback_args, **callback_kwargs) def process_response(self, request, response): if 'prof' in request.GET: self.prof.close() out = StringIO() old_stdout = sys.stdout sys.stdout = out stats = hotshot.stats.load(self.tmpfile.name) # stats.strip_dirs() stats.sort_stats('cumulative', ) # stats.sort_stats('time', ) stats.print_stats() sys.stdout = old_stdout stats_str = out.getvalue() if response and response.content and stats_str: response.content = "<pre>" + stats_str + "</pre>" return response class AJAXSimpleExceptionResponse: def process_exception(self, request, exception): if settings.DEBUG: if request.is_ajax(): import sys import traceback (exc_type, exc_info, tb) = sys.exc_info() response = "%s\n" % exc_type.__name__ response += "%s\n\n" % exc_info response += "TRACEBACK:\n" for tb in traceback.format_tb(tb): response += "%s\n" % tb return HttpResponseServerError(response)
pigletto/django-lfs
lfs/utils/middleware.py
Python
bsd-3-clause
2,254
# coding: utf8 # try something like try: from gluon.contrib.pyfpdf import Template except ImportError: # import local module until we can update web2py... Template = local_import('template').Template raise @auth.requires_membership(role="manager") def speakers(): template_id = int(request.args[0]) speakers = db(db.auth_user.speaker==True).select(orderby=db.auth_user.id) return render_pdf(speakers, template_id, "Disertante", "S") @auth.requires_membership(role="manager") def attendees(): template_id = int(request.args[0]) q = db.auth_user.speaker==False q &= db.auth_user.id > int(request.args[1]) q &= db.auth_user.attendee_type == "gratis" speakers = db(q).select(orderby=db.auth_user.id) return render_pdf(speakers, template_id, "Participante", "A") @auth.requires_membership(role="manager") def bono(): template_id = int(request.args[0]) q = db.auth_user.speaker==False q &= db.auth_user.attendee_type != "gratis" q &= db.auth_user.id > int(request.args[1]) speakers = db(q).select(orderby=db.auth_user.id) return render_pdf(speakers, template_id, "Participante", "B") def render_pdf(users, template_id, attendee_type, flag=""): # read elements from db elements = db(db.pdf_element.pdf_template_id==template_id).select(orderby=db.pdf_element.priority) f = Template(format="A4", elements = elements, title="Speaker Certificate", author="web2conf", orientation="Landscape", subject="", keywords="") # fill placeholders for each page for user in users: f.add_page() s = unicode("%s %s" % (user.first_name, user.last_name), "utf8") if user.dni: s = u"%s (DNI %s)" % (s, user.dni) f['name'] = s f['id'] = "%s%s" % (user.id, flag) f['attendee_type'] = attendee_type #break response.headers['Content-Type']='application/pdf' return f.render('speaker_cert.pdf', dest='S')
bkahlerventer/web2congress
controllers/certificate.py
Python
bsd-3-clause
2,022