code
stringlengths
2
1.05M
repo_name
stringlengths
5
104
path
stringlengths
4
251
language
stringclasses
1 value
license
stringclasses
15 values
size
int32
2
1.05M
#!/usr/bin/env python3 # # Copyright 2019 Ryan Peck # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from setuptools import setup from os import path import ipgroup this_directory = path.abspath(path.dirname(__file__)) with open(path.join(this_directory, "README.md"), encoding="utf-8") as f: long_description = f.read() setup( name="ipgroup", maintainer="Ryan Peck", maintainer_email="ryan@rypeck.com", version=ipgroup.__version__, url="https://github.com/RyPeck/python-ipgroup", license="Apache License, Version 2.0", classifiers=[ "Development Status :: 3 - Alpha", "Intended Audience :: Developers", "Intended Audience :: Information Technology", "Intended Audience :: System Administrators", "Intended Audience :: Telecommunications Industry", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", "Programming Language :: Python", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Topic :: Internet", "Topic :: Internet :: Log Analysis", "Topic :: Software Development :: Libraries", "Topic :: System :: Networking", "Topic :: Utilities", ], description="Functions to gather info on a group of IPv4 or IPv6 Networks", py_modules=["ipgroup"], long_description=long_description, long_description_content_type="text/markdown", )
RyPeck/python-ipgroup
setup.py
Python
apache-2.0
2,027
#!/usr/bin/env python # -*- cpy-indent-level: 4; indent-tabs-mode: nil -*- # ex: set expandtab softtabstop=4 shiftwidth=4: # # Copyright (C) 2014-2019 Contributor # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Helper functions for change management """ import collections from datetime import datetime import json import logging import shlex from aquilon.aqdb.model import ( AddressAlias, AddressAssignment, Alias, Archetype, ArchetypeResource, ARecord, Building, BundleResource, Bunker, Campus, Chassis, City, Cluster, ClusterLifecycle, ClusterResource, ComputeCluster, ConsoleServer, Continent, Country, Desk, DnsDomain, DnsEnvironment, Domain, EsxCluster, Fqdn, Grn, GrnResource, HardwareEntity, HardwareFeature, Host, HostClusterMember, HostEnvironment, HostFeature, HostLifecycle, HostResource, Hub, Interface, InterfaceFeature, Location, Machine, MetaCluster, NetGroupWhiteList, Network, NetworkCompartment, NetworkDevice, NetworkEnvironment, OperatingSystem, Organization, Personality, PersonalityResource, PersonalityStage, Rack, Realm, Resource, ResourceGroup, Role, Room, ServiceAddress, ServiceInstance, StorageCluster, User, ) from aquilon.aqdb.model.host_environment import Development, UAT, QA, Legacy, Production, Infra from aquilon.config import Config from aquilon.exceptions_ import ArgumentError from aquilon.exceptions_ import AuthorizationException, InternalError, AquilonError from aquilon.worker.dbwrappers.user_principal import get_or_create_user_principal from aquilon.worker.processes import run_command from sqlalchemy.orm import contains_eager, load_only, aliased from sqlalchemy.orm.session import object_session from sqlalchemy.orm.query import Query cm_logger = logging.getLogger('change_management') class ChangeManagement(object): """ Class calculate impacted environments with number objects in them for impacted target Command to be called for individual targets: host, cluster, feature, service instance, personality stage, os type, arch type, domain, host environment Calculate target grn (eonid) - TBD Prepare input for aqd_checkedm Call aqd_checkedm """ config = Config() extra_options = "" handlers = {} lifecycle_status_edm_check = ['ready'] # Crash and burn: 'build', 'rebuild', # 'decommissioned', 'blind', 'install', 'reinstall', 'almostready', 'failed' def __init__(self, session, user, justification, reason, logger, command, cm_check=False, **arguments): self.command = command self.cm_check = cm_check self.justification = justification self.reason = reason self.logger = logger self.requestid = arguments.get('requestid', '') self.dict_of_impacted_envs = {} self.impacted_objects = {} self.impacted_eonids = set() self.eonid = 6980 # to be calculated for each target self.enforce_validation = False self.check_enabled = self.config.getboolean("change_management", "enable") if self.config.has_option("change_management", "extra_options"): self.extra_options = self.config.get("change_management", "extra_options") dbuser = get_or_create_user_principal(session, user, commitoncreate=True) self.username = dbuser.name self.role_name = dbuser.role.name def consider(self, target_obj, enforce_validation=False): """ Entry point validation method, chooses right validation method based on the object class and self.handlers dict Args: target_obj: queryset or single db model object enforce_validation: True or False Returns: None or raises InternalError/AuthorizationException """ if enforce_validation: self.enforce_validation = enforce_validation if not self.check_enabled: self.logger.debug('Change management is disabled. Exiting validate.') return self.logger.debug('Determine if the input object is a queryset or a single object') if not target_obj: self.logger.debug('Given objects is None. Nothing to validate.') return # If given object is query use it for validation # to optimize validation of large amount of data if isinstance(target_obj, Query): if target_obj.count() == 0: self.logger.debug('No impacted targets exiting') return self._call_handler_method(target_obj.first(), queryset=target_obj) # If given Query is evaluated with .all() it is an instance of collections.Iterable # then validate each item in the list separatelly elif isinstance(target_obj, collections.Iterable): for obj in target_obj: self._call_handler_method(obj) else: self._call_handler_method(target_obj) self.logger.debug('Call aqd_checkedm with metadata') def _get_in_scope_objects_as_text(self): if not self.impacted_objects: return '\n\t - no affected objects in-scope for change ' \ 'management found -' in_scope_list = '\n'.join('\t{}'.format(o) for k in sorted(self.impacted_objects) for o in sorted(self.impacted_objects[k])) return in_scope_list def _call_handler_method(self, obj, queryset=None): env_calculate_method = self.handlers.get(obj.__class__, None) if not env_calculate_method: raise InternalError('Change management calculate impact fail. Target class unknown.') self.logger.debug('Calculate impacted environments and target status') if queryset: env_calculate_method(self, queryset) else: env_calculate_method(self, obj) def validate(self): """Perform change management validation, or return in-scope objects. Method calls adq_checkedm cmd tool with target resources metadata to calculate if change management validation is required. If required, justification validation will happen. If EDM calls enabled, the ticket will be checked in EDM. If self.cm_check True, this method immediately finishes by raising ArgumentError to pass the list of objects in-scope for change management to the client. Returns: None, or raises AuthorizationException, or ArgumentError """ if self.cm_check: raise ArgumentError( 'aborting upon user request (option --cm_check used). Please ' 'find the list of in-scope objects you have requested below:\n' '{}\n'.format(self._get_in_scope_objects_as_text())) if not self.check_enabled: self.logger.debug('Change management is disabled. Exiting validate.') return # Clean final impacted env list self.logger.debug('Prepare impacted envs to call EDM') for env, build_status_list in self.dict_of_impacted_envs.items(): self.dict_of_impacted_envs[env] = list(set(build_status_list)) # Prepare aqd_checkedm input dict cm_extra_options = shlex.split(self.extra_options) cmd = ["aqd_checkedm"] + cm_extra_options metadata = {"ticket": self.justification, "reason": self.reason, "requestor": self.username, "requestor_role": self.role_name, "command": self.command, "impacted_envs": self.dict_of_impacted_envs, "eonid": self.eonid, "enforce_validation": self.enforce_validation, } cmd.extend(["--metadata", json.dumps(metadata)]) out = run_command(cmd) try: out_dict = json.loads(out) except Exception as err: raise AquilonError("Invalid response received for the " "change management check. {}".format(str(err))) # Log Change Management validation results self.log_change_management_validation(metadata, cm_extra_options, out_dict) self.logger.info("Change Management validation " "finished. Status: {}. {}".format(out_dict.get("Status"), out_dict.get("Reason"))) if out_dict.get("Status") == 'Permitted': self.logger.client_info("Approval Warning: " "{}".format(out_dict.get("Reason"))) elif out_dict.get("Status") != 'Approved': raise AuthorizationException(out_dict.get("Reason")) def log_change_management_validation(self, metadata, cm_extra_options, out_dict): if '--edm-instance' in cm_extra_options: edm_ins = cm_extra_options[cm_extra_options.index('--edm-instance') + 1] else: edm_ins = 'prod' if '--mode' in cm_extra_options: mode = cm_extra_options[cm_extra_options.index('--mode') + 1] else: mode = 'enforce' if '--disable_edm' in cm_extra_options: disable_edm = 'Yes' else: disable_edm = 'No' log_dict = {"edm_instance": edm_ins, "mode": mode, "disable_edm": disable_edm, "request_id": str(self.requestid)} date_time = datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S +0000') log_dict['timestamp'] = date_time log_dict.update(metadata) log_dict.update(out_dict) if log_dict['impacted_envs'].get('prod') and 'ready' in log_dict['impacted_envs'].get('prod'): log_dict['prod_ready_env_impact'] = 'Yes' else: log_dict['prod_ready_env_impact'] = 'No' log_dict['impacted_eonids'] = list(self.impacted_eonids) cm_logger.info(json.dumps(log_dict)) def validate_default(self, obj): pass def validate_branch(self, obj): """ Method to be used when we do not need calculate impacted environment Used with enforce_validation for some models, i.e. Domain, Sandbox If enforce_validation is set, do not perform extra database queries to get hosts and clusters impacted Returns: """ if obj.requires_change_manager: self.enforce_validation = True def validate_prod_personality(self, personality): session = object_session(personality) if personality.is_cluster: q = session.query(Cluster) q = q.filter(Cluster.personality_stage.has( PersonalityStage.personality == personality)) q = q.join(ClusterLifecycle) else: q = session.query(Host) q = q.filter(Host.personality_stage.has( PersonalityStage.personality == personality)) q = q.join(HostLifecycle) q = q.options(contains_eager('status')) q = q.join(PersonalityStage, Personality, HostEnvironment) q = q.options(contains_eager('personality_stage.personality.host_environment')) if isinstance(q.first(), Cluster): for cluster in q.all(): self.validate_cluster(cluster) else: for host in q.all(): self.validate_host(host) def validate_prod_personality_stage(self, personality_stage): session = object_session(personality_stage) if personality_stage.personality.is_cluster: q = session.query(Cluster) q = q.filter_by(personality_stage=personality_stage) q = q.join(ClusterLifecycle) else: q = session.query(Host) q = q.filter_by(personality_stage=personality_stage) q = q.join(HostLifecycle) q = q.options(contains_eager('status')) q = q.join(PersonalityStage, Personality, HostEnvironment) q = q.options(contains_eager('personality_stage.personality.host_environment')) if isinstance(q.first(), Cluster): for cluster in q.all(): self.validate_cluster(cluster) else: for host in q.all(): self.validate_host(host) def validate_cluster(self, cluster): """ Validate impacted cluster and its hosts so that if cluster env is infra but hosts are prod/ready CM would be enabled Args: cluster: single Cluster Returns: None """ self._store_impacted_object_information(cluster) # Validate only the impacted cluster self.dict_of_impacted_envs.setdefault( cluster.personality_stage.personality.host_environment.name, []).append(cluster.status.name) # Also validate cluster hosts for host in cluster.hosts: self.validate_host(host) if hasattr(cluster, 'members'): for cluster_member in cluster.members: self.validate_cluster(cluster_member) # To do: Do we want to check if cluster is assigned # to metacluster and if yes validate metacluster and its clusters/hosts? def validate_host(self, host): """ Validate given single host Args: host: a single host Returns: None """ self._store_impacted_object_information(host) self.dict_of_impacted_envs.setdefault( host.personality_stage.personality.host_environment.name, []).append(host.status.name) def validate_hardware_entity(self, hwentities_or_hwentity): """ Validate given single hardware entities query or a single object Args: hwentity: queryset or single subclass of hardware entity Returns: None """ # Check if there cannot be a case when one machine can # have multiple hosts assigned - vms seems to be handled separately? if isinstance(hwentities_or_hwentity, HardwareEntity): if hwentities_or_hwentity.host: self.validate_host(hwentities_or_hwentity.host) else: hwentities_or_hwentity = hwentities_or_hwentity.join(Host).options(contains_eager('host')) for hwentity in hwentities_or_hwentity.all(): self.validate_host(hwentity.host) def validate_location(self, location): session = object_session(location) location_children = session.query(Location).get(location.id).children loc_ids = [loc.id for loc in location_children] + [location.id] # ORA-01795: maximum number of expressions in a list is 1000 for i in range(0, len(loc_ids), 1000): chunk_loc_ids = loc_ids[i:i + 1000] q = session.query(Host).join( HardwareEntity, Host.hardware_entity_id == HardwareEntity.id).join( Location, HardwareEntity.location_id == Location.id).filter( Location.id.in_(chunk_loc_ids)) q1 = session.query(Cluster).join( Location, Cluster.location_constraint_id == Location.id).filter( Location.id.in_(chunk_loc_ids)) q = q.reset_joinpoint() q = q.join(HostLifecycle).options(contains_eager('status')) q = q.join(PersonalityStage, Personality).join( HostEnvironment).options( contains_eager( 'personality_stage.personality.host_environment')) for host in q.all(): self.validate_host(host) q1 = q1.reset_joinpoint() q1 = q1.join(ClusterLifecycle).options(contains_eager('status')) q1 = q1.join(PersonalityStage, Personality).join( HostEnvironment).options( contains_eager( 'personality_stage.personality.host_environment')) for cluster in q1.all(): self.validate_cluster(cluster) def validate_prod_network(self, network_or_networks): """ Validate queryset or single network object Args: networkor_networks: queryset or single network object Returns: None """ CR = aliased(ClusterResource) HR = aliased(HostResource) S = aliased(ServiceAddress) RG = aliased(ResourceGroup) BR = aliased(BundleResource) if isinstance(network_or_networks, Network): session = object_session(network_or_networks) # Filter Service addresses mapped to the clusters directly q2 = session.query(Cluster).join(CR).join(Resource). \ join(ServiceAddress).join(ARecord).join(Network).filter(Network.id == network_or_networks.id) # Filter Service addresses mapped to the cluster via resourcegroups q5 = session.query(Cluster).join(CR) q5 = q5.outerjoin((RG, RG.holder_id == CR.id), (BR, BR.resourcegroup_id == RG.id), (S, S.holder_id == BR.id)) q5 = q5.join(ARecord).join(Network).filter(Network.id == network_or_networks.id) # Filter IP Addresses assigned to the hosts q3 = session.query(Host).join(HardwareEntity).join(Interface, aliased=True). \ join(AddressAssignment, from_joinpoint=True).join(Network). \ filter(Network.id == network_or_networks.id) # Filter Service addresses mapped to the hosts directly q4 = session.query(Host).join(HardwareEntity).join(HostResource).join(Resource). \ join(ServiceAddress).join(ARecord).join(Network).filter(Network.id == network_or_networks.id) # Filter Service addresses mapped to the host via resourcegroups q6 = session.query(Host).join(HR) q6 = q6.outerjoin((RG, RG.holder_id == HR.id), (BR, BR.resourcegroup_id == RG.id), (S, S.holder_id == BR.id)) q6 = q6.join(ARecord).join(Network).filter(Network.id == network_or_networks.id) else: session = object_session(network_or_networks.first()) network_sub_q = network_or_networks.options(load_only("id")).subquery() # Filter Service addresses mapped to the clusters directly q2 = session.query(Cluster).join(ClusterResource).join(Resource). \ join(ServiceAddress).join(ARecord).join(Network).filter(Network.id.in_(network_sub_q)) # Filter Service addresses mapped to the cluster via resourcegroups q5 = session.query(Cluster).join(CR) q5 = q5.outerjoin((RG, RG.holder_id == CR.id), (BR, BR.resourcegroup_id == RG.id), (S, S.holder_id == BR.id)) q5 = q5.join(ARecord).join(Network).filter(Network.id.in_(network_sub_q)) # Filter IP Addresses assigned to the hosts q3 = session.query(Host).join(HardwareEntity).join(Interface, aliased=True). \ join(AddressAssignment, from_joinpoint=True).join(Network). \ filter(Network.id.in_(network_sub_q)) # Filter Service addresses mapped to the hosts directly q4 = session.query(Host).join(HardwareEntity).join(HostResource).join(Resource). \ join(ServiceAddress).join(ARecord).join(Network).filter(Network.id.in_(network_sub_q)) # Filter Service addresses mapped to the host via resourcegroups q6 = session.query(Host).join(HR) q6 = q6.outerjoin((RG, RG.holder_id == HR.id), (BR, BR.resourcegroup_id == RG.id), (S, S.holder_id == BR.id)) q6 = q6.join(ARecord).join(Network).filter(Network.id.in_(network_sub_q)) # Validate clusters for q in [q2, q5]: q = q.reset_joinpoint() q = q.join(ClusterLifecycle).options(contains_eager('status')) q = q.join(PersonalityStage, Personality).join(HostEnvironment).options( contains_eager('personality_stage.personality.host_environment')) for cluster in q.all(): self.validate_cluster(cluster) # Validate hosts for q in [q3, q4, q6]: q = q.reset_joinpoint() q = q.join(HostLifecycle).options(contains_eager('status')) q = q.join(PersonalityStage, Personality).join(HostEnvironment).options( contains_eager('personality_stage.personality.host_environment')) for host in q.all(): self.validate_host(host) def validate_fqdn(self, dbfqdn): # Check full depth of fqdn aliases or address_alias! def dig_to_real_target(dbfqdn): fqdns_to_test = [dbfqdn] fqdns_tested = list() final_target = dbfqdn while fqdns_to_test: to_test_now = [] for db_fqdn in fqdns_to_test: to_test_now.extend(db_fqdn.dns_records) fqdns_tested.append(db_fqdn) fqdns_to_test = [] for rec in to_test_now: if rec in fqdns_tested: raise Exception("There might be a loop!!! Failing fast instead.") if isinstance(rec, AddressAlias): fqdns_to_test.append(rec.target) elif isinstance(rec, Alias): fqdns_to_test.append(rec.target) else: final_target = rec.fqdn fqdns_to_test = list(set(fqdns_to_test)) return final_target fqdn = dig_to_real_target(dbfqdn) CR = aliased(ClusterResource) HR = aliased(HostResource) S = aliased(ServiceAddress) RG = aliased(ResourceGroup) BR = aliased(BundleResource) session = object_session(fqdn) ip_subquery = session.query(ARecord).filter(ARecord.fqdn_id == fqdn.id) ip_subquery = [i.ip for i in ip_subquery] # Filter Service addresses mapped to the clusters directly q2 = session.query(Cluster).join(CR).join(Resource). \ join(ServiceAddress).join(ARecord).filter(ARecord.fqdn_id == fqdn.id) # Filter Service addresses mapped to the cluster via resourcegroups q5 = session.query(Cluster).join(CR) q5 = q5.outerjoin((RG, RG.holder_id == CR.id), (BR, BR.resourcegroup_id == RG.id), (S, S.holder_id == BR.id)) q5 = q5.join(ARecord).filter(ARecord.fqdn_id == fqdn.id) # Filter IP Addresses assigned to the hosts q3 = session.query(Host).join(HardwareEntity).join(Interface, aliased=True). \ join(AddressAssignment).filter(AddressAssignment.ip.in_(ip_subquery)) # Filter Service addresses mapped to the hosts directly q4 = session.query(Host).join(HardwareEntity).join(HostResource).join(Resource). \ join(ServiceAddress).join(ARecord).filter(ARecord.fqdn_id == fqdn.id) # Filter Service addresses mapped to the host via resourcegroups q6 = session.query(Host).join(HR) q6 = q6.outerjoin((RG, RG.holder_id == HR.id), (BR, BR.resourcegroup_id == RG.id), (S, S.holder_id == BR.id)) q6 = q6.join(ARecord).filter(ARecord.fqdn_id == fqdn.id) # Validate clusters for q in [q2, q5]: q = q.reset_joinpoint() q = q.join(ClusterLifecycle).options(contains_eager('status')) q = q.join(PersonalityStage,Personality).join(HostEnvironment).options(contains_eager('personality_stage.personality.host_environment')) for cluster in q.all(): self.validate_cluster(cluster) # Validate hosts for q in [q3, q4, q6]: q = q.reset_joinpoint() q = q.join(HostLifecycle).options(contains_eager('status')) q = q.join(PersonalityStage,Personality).join(HostEnvironment).options(contains_eager('personality_stage.personality.host_environment')) for host in q.all(): self.validate_host(host) def validate_chassis(self, chassis): """ Validate if given chassis object has hosts in slots Args: chassis: single chassis object Returns: None """ for slot in chassis.machine_slots: if slot.machine and slot.machine.host: self.validate_host(slot.machine.host) for slot in chassis.network_device_slots: if slot.network_device and slot.network_device.host: self.validate_host(slot.network_device.host) def validate_console_server(self, console_server): """ Validate if given console_server object has hosts in any port Args: console_server: single console_server object Returns: None """ for port in console_server.ports: dbhw_ent = console_server.ports[port].client if dbhw_ent and dbhw_ent.host: self.validate_host(dbhw_ent.host) def validate_resource_holder(self, resource_holder): """Validate a resource holder Validate if given resource holder has hosts, through direct link, cluster, personality, or a specified host environment Args: resource_holder: a single resource_holder object Returns: None """ if getattr(resource_holder, 'host_environment', None): self.validate_host_environment(resource_holder.host_environment) return dbobj = resource_holder.toplevel_holder_object if isinstance(dbobj, Cluster): self.validate_cluster(dbobj) elif isinstance(dbobj, Host): self.validate_host(dbobj) elif isinstance(dbobj, Personality): self.validate_prod_personality(dbobj) def validate_host_environment(self, host_environment): if host_environment.name == 'prod': self.enforce_validation = True def validate_prod_archetype(self, archtype): session = object_session(archtype) if archtype.cluster_type: q = session.query(Cluster) q = q.join(ClusterLifecycle) else: q = session.query(Host) q = q.join(HostLifecycle) q = q.options(contains_eager('status')) q = q.join(PersonalityStage, Personality) q = q.filter_by(archetype=archtype) q = q.join(HostEnvironment) q = q.options(contains_eager('personality_stage.personality.host_environment')) if isinstance(q.first(), Cluster): for cluster in q.all(): self.validate_cluster(cluster) else: for host in q.all(): self.validate_host(host) def validate_prod_os(self, ostype): session = object_session(ostype) q = session.query(Host) q = q.filter_by(operating_system=ostype) q = q.join(HostLifecycle) q = q.options(contains_eager('status')) q = q.join(PersonalityStage, Personality, HostEnvironment) q = q.options(contains_eager('personality_stage.personality.host_environment')) for host in q.all(): self.validate_host(host) def validate_prod_service_instance(self, service_instance): session = object_session(service_instance) q1 = session.query(Cluster) q1 = q1.filter(Cluster.services_used.contains(service_instance)) q1 = q1.join(ClusterLifecycle) q1 = q1.options(contains_eager('status')) q1 = q1.join(PersonalityStage, Personality, HostEnvironment) q1 = q1.options(contains_eager('personality_stage.personality.host_environment')) for cluster in q1.all(): self.validate_cluster(cluster) q2 = session.query(Host) q2 = q2.filter(Host.services_used.contains(service_instance)) q2 = q2.join(HostLifecycle) q2 = q2.options(contains_eager('status')) q2 = q2.join(PersonalityStage, Personality, HostEnvironment) q2 = q2.options(contains_eager('personality_stage.personality.host_environment')) for host in q2.all(): self.validate_host(host) def validate_prod_feature(self, feature): session = object_session(feature) q1 = session.query(Cluster) q1 = q1.join(ClusterLifecycle) q1 = q1.options(contains_eager('status')) q1 = q1.join(PersonalityStage) q1 = q1.join(PersonalityStage.features) q1 = q1.filter_by(feature=feature) q1 = q1.join(Personality, HostEnvironment) q1 = q1.options(contains_eager('personality_stage.personality.host_environment')) for cluster in q1.all(): self.validate_cluster(cluster) q2 = session.query(Host) q2 = q2.join(PersonalityStage) q2 = q2.join(PersonalityStage.features) q2 = q2.filter_by(feature=feature) q2 = q2.join(Personality, HostEnvironment) q2 = q2.options(contains_eager('personality_stage.personality.host_environment')) for host in q2.all(): self.validate_host(host) def _store_impacted_object_information(self, an_object): # noinspection PyStringFormat self.impacted_objects.setdefault( '{0:c}'.format(an_object), set()).add('{0:l}'.format(an_object)) if hasattr(an_object, 'effective_owner_grn'): eonid = an_object.effective_owner_grn.eon_id self.impacted_eonids.add(eonid) ChangeManagement.handlers[Cluster] = ChangeManagement.validate_cluster ChangeManagement.handlers[ComputeCluster] = ChangeManagement.validate_cluster ChangeManagement.handlers[StorageCluster] = ChangeManagement.validate_cluster ChangeManagement.handlers[EsxCluster] = ChangeManagement.validate_cluster ChangeManagement.handlers[HostClusterMember] = ChangeManagement.validate_cluster ChangeManagement.handlers[MetaCluster] = ChangeManagement.validate_cluster ChangeManagement.handlers[Personality] = ChangeManagement.validate_prod_personality ChangeManagement.handlers[PersonalityStage] = ChangeManagement.validate_prod_personality_stage ChangeManagement.handlers[InterfaceFeature] = ChangeManagement.validate_prod_feature ChangeManagement.handlers[HardwareFeature] = ChangeManagement.validate_prod_feature ChangeManagement.handlers[HostFeature] = ChangeManagement.validate_prod_feature ChangeManagement.handlers[ServiceInstance] = ChangeManagement.validate_prod_service_instance ChangeManagement.handlers[OperatingSystem] = ChangeManagement.validate_prod_os ChangeManagement.handlers[Archetype] = ChangeManagement.validate_prod_archetype ChangeManagement.handlers[Development] = ChangeManagement.validate_host_environment ChangeManagement.handlers[UAT] = ChangeManagement.validate_host_environment ChangeManagement.handlers[QA] = ChangeManagement.validate_host_environment ChangeManagement.handlers[Legacy] = ChangeManagement.validate_host_environment ChangeManagement.handlers[Production] = ChangeManagement.validate_host_environment ChangeManagement.handlers[Infra] = ChangeManagement.validate_host_environment ChangeManagement.handlers[Domain] = ChangeManagement.validate_branch ChangeManagement.handlers[Host] = ChangeManagement.validate_host ChangeManagement.handlers[Machine] = ChangeManagement.validate_hardware_entity # Removing this as the HardwareEntity is too general, we have validate_hardware_entity, validate_host and validate_chassis # ChangeManagement.handlers[HardwareEntity] = ChangeManagement.validate_hardware_entity ChangeManagement.handlers[NetworkDevice] = ChangeManagement.validate_hardware_entity ChangeManagement.handlers[Network] = ChangeManagement.validate_prod_network ChangeManagement.handlers[Chassis] = ChangeManagement.validate_chassis ChangeManagement.handlers[ConsoleServer] = ChangeManagement.validate_console_server ChangeManagement.handlers[Rack] = ChangeManagement.validate_location ChangeManagement.handlers[Organization] = ChangeManagement.validate_location ChangeManagement.handlers[Hub] = ChangeManagement.validate_location ChangeManagement.handlers[Continent] = ChangeManagement.validate_location ChangeManagement.handlers[Country] = ChangeManagement.validate_location ChangeManagement.handlers[Campus] = ChangeManagement.validate_location ChangeManagement.handlers[City] = ChangeManagement.validate_location ChangeManagement.handlers[Building] = ChangeManagement.validate_location ChangeManagement.handlers[Room] = ChangeManagement.validate_location ChangeManagement.handlers[Bunker] = ChangeManagement.validate_location ChangeManagement.handlers[Desk] = ChangeManagement.validate_location ChangeManagement.handlers[BundleResource] = ChangeManagement.validate_resource_holder ChangeManagement.handlers[ClusterResource] = ChangeManagement.validate_resource_holder ChangeManagement.handlers[HostResource] = ChangeManagement.validate_resource_holder ChangeManagement.handlers[PersonalityResource] = \ ChangeManagement.validate_resource_holder ChangeManagement.handlers[ArchetypeResource] = \ ChangeManagement.validate_resource_holder ChangeManagement.handlers[GrnResource] = \ ChangeManagement.validate_resource_holder ChangeManagement.handlers[Fqdn] = ChangeManagement.validate_fqdn ChangeManagement.handlers[DnsDomain] = ChangeManagement.validate_default ChangeManagement.handlers[DnsEnvironment] = ChangeManagement.validate_default ChangeManagement.handlers[NetworkCompartment] = ChangeManagement.validate_default ChangeManagement.handlers[NetworkEnvironment] = ChangeManagement.validate_default ChangeManagement.handlers[NetGroupWhiteList] = ChangeManagement.validate_default ChangeManagement.handlers[Grn] = ChangeManagement.validate_default ChangeManagement.handlers[User] = ChangeManagement.validate_default ChangeManagement.handlers[Realm] = ChangeManagement.validate_default ChangeManagement.handlers[Role] = ChangeManagement.validate_default
quattor/aquilon
lib/aquilon/worker/dbwrappers/change_management.py
Python
apache-2.0
34,999
# Copyright (c) 2014 eBay Software Foundation # Copyright 2015 HP Software, LLC # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from django.core.urlresolvers import reverse from django import http from mox3.mox import IsA # noqa from openstack_dashboard import api from troveclient import common from trove_dashboard import api as trove_api from trove_dashboard.test import helpers as test INDEX_URL = reverse('horizon:project:database_clusters:index') LAUNCH_URL = reverse('horizon:project:database_clusters:launch') DETAILS_URL = reverse('horizon:project:database_clusters:detail', args=['id']) ADD_SHARD_VIEWNAME = 'horizon:project:database_clusters:add_shard' RESET_PASSWORD_VIEWNAME = 'horizon:project:database_clusters:reset_password' class ClustersTests(test.TestCase): @test.create_stubs({trove_api.trove: ('cluster_list', 'flavor_list')}) def test_index(self): clusters = common.Paginated(self.trove_clusters.list()) trove_api.trove.cluster_list(IsA(http.HttpRequest), marker=None)\ .AndReturn(clusters) trove_api.trove.flavor_list(IsA(http.HttpRequest))\ .AndReturn(self.flavors.list()) self.mox.ReplayAll() res = self.client.get(INDEX_URL) self.assertTemplateUsed(res, 'project/database_clusters/index.html') @test.create_stubs({trove_api.trove: ('cluster_list', 'flavor_list')}) def test_index_flavor_exception(self): clusters = common.Paginated(self.trove_clusters.list()) trove_api.trove.cluster_list(IsA(http.HttpRequest), marker=None)\ .AndReturn(clusters) trove_api.trove.flavor_list(IsA(http.HttpRequest))\ .AndRaise(self.exceptions.trove) self.mox.ReplayAll() res = self.client.get(INDEX_URL) self.assertTemplateUsed(res, 'project/database_clusters/index.html') self.assertMessageCount(res, error=1) @test.create_stubs({trove_api.trove: ('cluster_list',)}) def test_index_list_exception(self): trove_api.trove.cluster_list(IsA(http.HttpRequest), marker=None)\ .AndRaise(self.exceptions.trove) self.mox.ReplayAll() res = self.client.get(INDEX_URL) self.assertTemplateUsed(res, 'project/database_clusters/index.html') self.assertMessageCount(res, error=1) @test.create_stubs({trove_api.trove: ('cluster_list', 'flavor_list')}) def test_index_pagination(self): clusters = self.trove_clusters.list() last_record = clusters[0] clusters = common.Paginated(clusters, next_marker="foo") trove_api.trove.cluster_list(IsA(http.HttpRequest), marker=None)\ .AndReturn(clusters) trove_api.trove.flavor_list(IsA(http.HttpRequest))\ .AndReturn(self.flavors.list()) self.mox.ReplayAll() res = self.client.get(INDEX_URL) self.assertTemplateUsed(res, 'project/database_clusters/index.html') self.assertContains( res, 'marker=' + last_record.id) @test.create_stubs({trove_api.trove: ('cluster_list', 'flavor_list')}) def test_index_flavor_list_exception(self): clusters = common.Paginated(self.trove_clusters.list()) trove_api.trove.cluster_list(IsA(http.HttpRequest), marker=None)\ .AndReturn(clusters) trove_api.trove.flavor_list(IsA(http.HttpRequest))\ .AndRaise(self.exceptions.trove) self.mox.ReplayAll() res = self.client.get(INDEX_URL) self.assertTemplateUsed(res, 'project/database_clusters/index.html') self.assertMessageCount(res, error=1) @test.create_stubs({trove_api.trove: ('datastore_flavors', 'datastore_list', 'datastore_version_list'), api.base: ['is_service_enabled']}) def test_launch_cluster(self): api.base.is_service_enabled(IsA(http.HttpRequest), 'network')\ .AndReturn(False) trove_api.trove.datastore_flavors(IsA(http.HttpRequest), 'mongodb', '2.6')\ .AndReturn(self.flavors.list()) trove_api.trove.datastore_list(IsA(http.HttpRequest))\ .AndReturn(self.datastores.list()) trove_api.trove.datastore_version_list(IsA(http.HttpRequest), IsA(str))\ .AndReturn(self.datastore_versions.list()) self.mox.ReplayAll() res = self.client.get(LAUNCH_URL) self.assertTemplateUsed(res, 'project/database_clusters/launch.html') @test.create_stubs({trove_api.trove: ['datastore_flavors', 'cluster_create', 'datastore_list', 'datastore_version_list'], api.base: ['is_service_enabled']}) def test_create_simple_cluster(self): api.base.is_service_enabled(IsA(http.HttpRequest), 'network')\ .AndReturn(False) trove_api.trove.datastore_flavors(IsA(http.HttpRequest), 'mongodb', '2.6')\ .AndReturn(self.flavors.list()) trove_api.trove.datastore_list(IsA(http.HttpRequest))\ .AndReturn(self.datastores.list()) trove_api.trove.datastore_version_list(IsA(http.HttpRequest), IsA(str))\ .AndReturn(self.datastore_versions.list()) cluster_name = u'MyCluster' cluster_volume = 1 cluster_flavor = u'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa' cluster_instances = 3 cluster_datastore = u'mongodb' cluster_datastore_version = u'2.6' cluster_network = u'' trove_api.trove.cluster_create( IsA(http.HttpRequest), cluster_name, cluster_volume, cluster_flavor, cluster_instances, datastore=cluster_datastore, datastore_version=cluster_datastore_version, nics=cluster_network, root_password=None).AndReturn(self.trove_clusters.first()) self.mox.ReplayAll() post = { 'name': cluster_name, 'volume': cluster_volume, 'num_instances': cluster_instances, 'num_shards': 1, 'num_instances_per_shards': cluster_instances, 'datastore': cluster_datastore + u'-' + cluster_datastore_version, 'mongodb_flavor': cluster_flavor, 'network': cluster_network } res = self.client.post(LAUNCH_URL, post) self.assertNoFormErrors(res) self.assertMessageCount(success=1) @test.create_stubs({trove_api.trove: ['datastore_flavors', 'cluster_create', 'datastore_list', 'datastore_version_list'], api.neutron: ['network_list_for_tenant'], api.base: ['is_service_enabled']}) def test_create_simple_cluster_neutron(self): api.base.is_service_enabled(IsA(http.HttpRequest), 'network')\ .AndReturn(True) api.neutron.network_list_for_tenant(IsA(http.HttpRequest), '1')\ .AndReturn(self.networks.list()) trove_api.trove.datastore_flavors(IsA(http.HttpRequest), 'mongodb', '2.6')\ .AndReturn(self.flavors.list()) trove_api.trove.datastore_list(IsA(http.HttpRequest))\ .AndReturn(self.datastores.list()) trove_api.trove.datastore_version_list(IsA(http.HttpRequest), IsA(str))\ .AndReturn(self.datastore_versions.list()) cluster_name = u'MyCluster' cluster_volume = 1 cluster_flavor = u'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa' cluster_instances = 3 cluster_datastore = u'mongodb' cluster_datastore_version = u'2.6' cluster_network = u'82288d84-e0a5-42ac-95be-e6af08727e42' trove_api.trove.cluster_create( IsA(http.HttpRequest), cluster_name, cluster_volume, cluster_flavor, cluster_instances, datastore=cluster_datastore, datastore_version=cluster_datastore_version, nics=cluster_network, root_password=None).AndReturn(self.trove_clusters.first()) self.mox.ReplayAll() post = { 'name': cluster_name, 'volume': cluster_volume, 'num_instances': cluster_instances, 'num_shards': 1, 'num_instances_per_shards': cluster_instances, 'datastore': cluster_datastore + u'-' + cluster_datastore_version, 'mongodb_flavor': cluster_flavor, 'network': cluster_network } res = self.client.post(LAUNCH_URL, post) self.assertNoFormErrors(res) self.assertMessageCount(success=1) @test.create_stubs({trove_api.trove: ['datastore_flavors', 'cluster_create', 'datastore_list', 'datastore_version_list'], api.neutron: ['network_list_for_tenant']}) def test_create_simple_cluster_exception(self): api.neutron.network_list_for_tenant(IsA(http.HttpRequest), '1')\ .AndReturn(self.networks.list()) trove_api.trove.datastore_flavors(IsA(http.HttpRequest), 'mongodb', '2.6')\ .AndReturn(self.flavors.list()) trove_api.trove.datastore_list(IsA(http.HttpRequest))\ .AndReturn(self.datastores.list()) trove_api.trove.datastore_version_list(IsA(http.HttpRequest), IsA(str))\ .AndReturn(self.datastore_versions.list()) cluster_name = u'MyCluster' cluster_volume = 1 cluster_flavor = u'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa' cluster_instances = 3 cluster_datastore = u'mongodb' cluster_datastore_version = u'2.6' cluster_network = u'82288d84-e0a5-42ac-95be-e6af08727e42' trove_api.trove.cluster_create( IsA(http.HttpRequest), cluster_name, cluster_volume, cluster_flavor, cluster_instances, datastore=cluster_datastore, datastore_version=cluster_datastore_version, nics=cluster_network, root_password=None).AndReturn(self.trove_clusters.first()) self.mox.ReplayAll() post = { 'name': cluster_name, 'volume': cluster_volume, 'num_instances': cluster_instances, 'num_shards': 1, 'num_instances_per_shards': cluster_instances, 'datastore': cluster_datastore + u'-' + cluster_datastore_version, 'mongodb_flavor': cluster_flavor, 'network': cluster_network } res = self.client.post(LAUNCH_URL, post) self.assertRedirectsNoFollow(res, INDEX_URL) @test.create_stubs({trove_api.trove: ('cluster_get', 'instance_get', 'flavor_get',)}) def test_details(self): cluster = self.trove_clusters.first() trove_api.trove.cluster_get(IsA(http.HttpRequest), cluster.id)\ .MultipleTimes().AndReturn(cluster) trove_api.trove.instance_get(IsA(http.HttpRequest), IsA(str))\ .MultipleTimes().AndReturn(self.databases.first()) trove_api.trove.flavor_get(IsA(http.HttpRequest), IsA(str))\ .MultipleTimes().AndReturn(self.flavors.first()) self.mox.ReplayAll() details_url = reverse('horizon:project:database_clusters:detail', args=[cluster.id]) res = self.client.get(details_url) self.assertTemplateUsed(res, 'horizon/common/_detail.html') self.assertContains(res, cluster.ip[0])
dklyle/trove-dashboard
trove_dashboard/content/database_clusters/tests.py
Python
apache-2.0
12,810
from __future__ import unicode_literals import json from moto.core import BaseBackend from .parsing import ResourceMap, OutputMap from .utils import generate_stack_id class FakeStack(object): def __init__(self, stack_id, name, template): self.stack_id = stack_id self.name = name self.template = template self.status = 'CREATE_COMPLETE' template_dict = json.loads(self.template) self.description = template_dict.get('Description') self.resource_map = ResourceMap(stack_id, name, template_dict) self.resource_map.create() self.output_map = OutputMap(self.resource_map, template_dict) self.output_map.create() @property def stack_resources(self): return self.resource_map.values() @property def stack_outputs(self): return self.output_map.values() class CloudFormationBackend(BaseBackend): def __init__(self): self.stacks = {} self.deleted_stacks = {} def create_stack(self, name, template): stack_id = generate_stack_id(name) new_stack = FakeStack(stack_id=stack_id, name=name, template=template) self.stacks[stack_id] = new_stack return new_stack def describe_stacks(self, name_or_stack_id): stacks = self.stacks.values() if name_or_stack_id: for stack in stacks: if stack.name == name_or_stack_id or stack.stack_id == name_or_stack_id: return [stack] deleted_stacks = self.deleted_stacks.values() for stack in deleted_stacks: if stack.stack_id == name_or_stack_id: return [stack] else: return stacks def list_stacks(self): return self.stacks.values() def get_stack(self, name_or_stack_id): if name_or_stack_id in self.stacks: # Lookup by stack id return self.stacks.get(name_or_stack_id) else: # Lookup by stack name return [stack for stack in self.stacks.values() if stack.name == name_or_stack_id][0] # def update_stack(self, name, template): # stack = self.get_stack(name) # stack.template = template # return stack def delete_stack(self, name_or_stack_id): if name_or_stack_id in self.stacks: # Delete by stack id stack = self.stacks.pop(name_or_stack_id, None) stack.status = 'DELETE_COMPLETE' self.deleted_stacks[stack.stack_id] = stack return self.stacks.pop(name_or_stack_id, None) else: # Delete by stack name stack_to_delete = [stack for stack in self.stacks.values() if stack.name == name_or_stack_id][0] self.delete_stack(stack_to_delete.stack_id) cloudformation_backend = CloudFormationBackend()
djmitche/moto
moto/cloudformation/models.py
Python
apache-2.0
2,874
# Copyright 2017 DataCentred Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import pecan import pecan.decorators from sentinel.api.controllers import base from sentinel.decorators import supported_queries, mutate_arguments from sentinel.scope import Scope class NetworkV2QuotasController(base.BaseController): service = u'network' resource = u'quota' collection = u'quotas' def __init__(self): self._custom_actions = { 'default': ['GET'], } @pecan.expose('json') @pecan.decorators.accept_noncanonical @supported_queries() def get_all(self): quotas = Scope.filter(self.network.list_quotas()) return self.format_collection(quotas, links=False) @pecan.expose('json') @mutate_arguments('identity.projects') def get(self, project): quota = self.network.show_quota(project.id) return self.format_resource(quota) @pecan.expose('json') @mutate_arguments('identity.projects') def put(self, project): quota = self.network.update_quota(project.id, body=pecan.request.json) return self.format_resource(quota) @pecan.expose('json') @mutate_arguments('identity.projects') def delete(self, project): self.network.delete_quota(project.id) pecan.response.status = 204 @pecan.expose('json') @mutate_arguments('identity.projects') def default(self, project): quota = self.network.show_quota_default(project.id) return self.format_resource(quota) # vi: ts=4 et:
spjmurray/openstack-sentinel
sentinel/api/controllers/network/v2/quotas.py
Python
apache-2.0
2,073
""" """ import numpy import theano import theano.tensor as T from pythonDnn.layers.logistic_sgd import LogisticRegression from pythonDnn.layers.mlp import HiddenLayer from pythonDnn.layers.rbm import RBM, GBRBM from pythonDnn.models import nnet class DBN(nnet): """Deep Belief Network A deep belief network is obtained by stacking several RBMs on top of each other. The hidden layer of the RBM at layer `i` becomes the input of the RBM at layer `i+1`. The first layer RBM gets as input the input of the network, and the hidden layer of the last RBM represents the output. When used for classification, the DBN is treated as a MLP, by adding a logistic regression layer on top. """ def __init__(self, numpy_rng, theano_rng=None, n_ins=784, hidden_layers_sizes=[500, 500], n_outs=10, first_layer_gb = True,pretrainedLayers=None,activation=T.nnet.sigmoid): """This class is made to support a variable number of layers. :type numpy_rng: numpy.random.RandomState :param numpy_rng: numpy random number generator used to draw initial weights :type theano_rng: theano.tensor.shared_randomstreams.RandomStreams :param theano_rng: Theano random generator; if None is given one is generated based on a seed drawn from `rng` :type n_ins: int :param n_ins: dimension of the input to the DBN :type hidden_layers_sizes: list of ints :param hidden_layers_sizes: intermediate layers size, must contain at least one value :type n_outs: int :param n_outs: dimension of the output of the network :type first_layer_gb: bool :param first_layer_gb: wether first layer is gausian-bernolli or bernolli-bernolli """ super(DBN, self).__init__() self.layers = [] self.rbm_layers = [] self.n_layers = len(hidden_layers_sizes) if pretrainedLayers == None: self.nPreTrainLayers = n_layers else : self.nPreTrainLayers = pretrainedLayers assert self.n_layers > 0 if not theano_rng: theano_rng = RandomStreams(numpy_rng.randint(2 ** 30)) # allocate symbolic variables for the data self.x = T.matrix('x') # the data is presented as rasterized images self.y = T.ivector('y') # the labels are presented as 1D vector # of [int] labels # The DBN is an MLP, for which all weights of intermediate # layers are shared with a different RBM. We will first # construct the DBN as a deep multilayer perceptron, and when # constructing each sigmoidal layer we also construct an RBM # that shares weights with that layer. During pretraining we # will train these RBMs (which will lead to chainging the # weights of the MLP as well) During finetuning we will finish # training the DBN by doing stochastic gradient descent on the # MLP. for i in xrange(self.n_layers): # construct the sigmoidal layer # the size of the input is either the number of hidden # units of the layer below or the input size if we are on # the first layer # the input to this layer is either the activation of the # hidden layer below or the input of the DBN if you are on # the first layer if i == 0: input_size = n_ins layer_input = self.x else: input_size = hidden_layers_sizes[i - 1] layer_input = self.layers[-1].output sigmoid_layer = HiddenLayer(rng=numpy_rng, input=layer_input, n_in=input_size, n_out=hidden_layers_sizes[i], activation=activation) # add the layer to our list of layers self.layers.append(sigmoid_layer) # the parameters of the sigmoid_layers are parameters of the DBN. # The visible biases in the RBM are parameters of those RBMs, # but not of the DBN. self.params.extend(sigmoid_layer.params) self.delta_params.extend(sigmoid_layer.delta_params) # Construct an RBM that shared weights with this layer # the first layer could be Gaussian-Bernoulli RBM # other layers are Bernoulli-Bernoulli RBMs if i == 0 and first_layer_gb: rbm_layer = GBRBM(numpy_rng=numpy_rng, theano_rng=theano_rng, input=layer_input, n_visible=input_size, n_hidden=hidden_layers_sizes[i], W=sigmoid_layer.W, hbias=sigmoid_layer.b, activation=activation) else: rbm_layer = RBM(numpy_rng=numpy_rng, theano_rng=theano_rng, input=layer_input, n_visible=input_size, n_hidden=hidden_layers_sizes[i], W=sigmoid_layer.W, hbias=sigmoid_layer.b, activation=activation) self.rbm_layers.append(rbm_layer) # We now need to add a logistic layer on top of the MLP self.logLayer = LogisticRegression( input=self.layers[-1].output, n_in=hidden_layers_sizes[-1], n_out=n_outs) self.layers.append(self.logLayer) self.params.extend(self.logLayer.params) self.delta_params.extend(self.logLayer.delta_params) # compute the cost for second phase of training, defined as the # negative log likelihood of the logistic regression (output) layer self.finetune_cost = self.logLayer.negative_log_likelihood(self.y) # compute the gradients with respect to the model parameters # symbolic variable that points to the number of errors made on the # minibatch given by self.x and self.y self.errors = self.logLayer.errors(self.y) self.output = self.logLayer.prediction(); self.features = self.layers[-2].output; self.features_dim = self.layers[-2].n_out def pretraining_functions(self, train_set_x, batch_size, weight_cost): '''Generates a list of functions, for performing one step of gradient descent at a given layer. The function will require as input the minibatch index, and to train an RBM you just need to iterate, calling the corresponding function on all minibatch indexes. :type train_set_x: theano.tensor.TensorType :param train_set_x: Shared var. that contains all datapoints used for training the RBM :type batch_size: int :param batch_size: size of a [mini]batch :param weight_cost: weigth cost ''' # index to a [mini]batch index = T.lscalar('index') # index to a minibatch momentum = T.scalar('momentum') learning_rate = T.scalar('lr') # learning rate to use # number of batches n_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size # begining of a batch, given `index` batch_begin = index * batch_size # ending of a batch given `index` batch_end = batch_begin + batch_size pretrain_fns = [] for rbm in self.rbm_layers: # get the cost and the updates list # using CD-k here (persisent=None,k=1) for training each RBM. r_cost, fe_cost, updates = rbm.get_cost_updates(batch_size, learning_rate, momentum, weight_cost) # compile the theano function fn = theano.function(inputs=[index, theano.Param(learning_rate, default=0.0001), theano.Param(momentum, default=0.5)], outputs= [r_cost, fe_cost], updates=updates, givens={self.x: train_set_x[batch_begin:batch_end]}) # append function to the list of functions pretrain_fns.append(fn) return pretrain_fns
IITM-DONLAB/python-dnn
src/pythonDnn/models/dbn.py
Python
apache-2.0
8,684
# Python Substrate Interface Library # # Copyright 2018-2020 Stichting Polkascan (Polkascan Foundation). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re def version_tuple(version_string: str) -> tuple: """ Converts a basic version string to a tuple that can be compared Parameters ---------- version_string Returns ------- tuple """ if re.search(r'[^\.0-9]', version_string): raise ValueError('version_string can only contain numeric characters') return tuple(int(v) for v in version_string.split('.'))
vertexproject/synapse
synapse/vendor/substrateinterface/utils/__init__.py
Python
apache-2.0
1,064
import time import wiringpi2 as wiringpi #use Broadcom pin numbers wiringpi.wiringPiSetupGpio() LED_PIN = 25 # setup pin as an output wiringpi.pinMode(LED_PIN, 1) while True: # enable LED wiringpi.digitalWrite(LED_PIN, 1) # wait 1 second time.sleep(1) # disable LED wiringpi.digitalWrite(LED_PIN, 0) # wait 1 second time.sleep(1) #cleanup wiringpi.pinMode(LED_PIN, 0)
lukaszo/rpitips-examples
wiringpi/led.py
Python
apache-2.0
392
# coding: utf-8 """ Cloudbreak API Cloudbreak is a powerful left surf that breaks over a coral reef, a mile off southwest the island of Tavarua, Fiji. Cloudbreak is a cloud agnostic Hadoop as a Service API. Abstracts the provisioning and ease management and monitoring of on-demand clusters. SequenceIQ's Cloudbreak is a RESTful application development platform with the goal of helping developers to build solutions for deploying Hadoop YARN clusters in different environments. Once it is deployed in your favourite servlet container it exposes a REST API allowing to span up Hadoop clusters of arbitary sizes and cloud providers. Provisioning Hadoop has never been easier. Cloudbreak is built on the foundation of cloud providers API (Amazon AWS, Microsoft Azure, Google Cloud Platform, Openstack), Apache Ambari, Docker lightweight containers, Swarm and Consul. For further product documentation follow the link: <a href=\"http://hortonworks.com/apache/cloudbreak/\">http://hortonworks.com/apache/cloudbreak/</a> OpenAPI spec version: 2.9.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class PlatformVmtypesResponse(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'vm_types': 'dict(str, VirtualMachinesResponse)' } attribute_map = { 'vm_types': 'vmTypes' } def __init__(self, vm_types=None): """ PlatformVmtypesResponse - a model defined in Swagger """ self._vm_types = None if vm_types is not None: self.vm_types = vm_types @property def vm_types(self): """ Gets the vm_types of this PlatformVmtypesResponse. :return: The vm_types of this PlatformVmtypesResponse. :rtype: dict(str, VirtualMachinesResponse) """ return self._vm_types @vm_types.setter def vm_types(self, vm_types): """ Sets the vm_types of this PlatformVmtypesResponse. :param vm_types: The vm_types of this PlatformVmtypesResponse. :type: dict(str, VirtualMachinesResponse) """ self._vm_types = vm_types def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, PlatformVmtypesResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
Chaffelson/whoville
whoville/cloudbreak/models/platform_vmtypes_response.py
Python
apache-2.0
4,040
""" Copyright 2015 Matthew D. Ball (M4Numbers) Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ __author__ = 'Matthew Ball' import imgurpython class ImgurCrawler: __client = 0 def __init__(self, client, secret, pin): conn = imgurpython.ImgurClient(client, secret) auth_url = conn.get_auth_url('pin') creds = conn.authorize(pin, 'pin') conn.set_user_auth(creds['access_token'], creds['refresh_token']) self.__client = conn def request_profile(self, name): ret = self.__client.get_account(name) return ret
M4Numbers/Walkers
walkers/ImgurCrawler.py
Python
apache-2.0
1,092
i = int(input("The first number: ")) j = int(input("The second number: ")) k = int(input("The third number: ")) l = int(input("The fourth number: ")) pairs = 0 if i == j or i == k or i == l: pairs += 1 if j == k or j == l: pairs += 1 if k == l: pairs += 1 if pairs >= 2: print("Two pairs") else: print("Not two pairs")
JoachimVandersmissen/CodingSolutions
python/PythonForEveryone/chapter3/8.py
Python
apache-2.0
339
#!/usr/bin/env python # Copyright (c) 2015 by Ken Guyton. All Rights Reserved. """Create a random grid and compute the solution.""" from __future__ import print_function import argparse import walk_grid import random MAX_GRID_SIZE = 20 MAX_FOOD = 200 MAX_ROOM_FOOD = 10 def get_args(): """Parse command line arguments.""" parser = argparse.ArgumentParser() parser.add_argument('--grid_size', default=11, type=int, help='The size of each side of the grid.') parser.add_argument('--food', default=150, type=int, help='Amount of food.') return parser.parse_args() def create_grid(grid_size): """Randomly create a grid.""" grid = [] for j in range(grid_size): grid.append([]) for unused_i in range(grid_size): grid[j].append(random.randrange(MAX_ROOM_FOOD + 1)) grid[0][0] = 0 return grid def print_grid(grid): """Print out a grid.""" for row in grid: for num in row: print(' {0:2d}'.format(num), end='') print() def main(): """Compute the answer for the given grid and food amounts.""" opts = get_args() if opts.food > MAX_FOOD: print('WARNING, you have exceeded the MAX FOOD size: {0}'.format(MAX_FOOD)) if opts.grid_size > MAX_GRID_SIZE: print('WARNING, you have exceeded the MAX GRID SIZE: {0}'.format( MAX_GRID_SIZE)) print('Food: {0}.'.format(opts.food)) print('Grid size: {0}.'.format(opts.grid_size)) grid = create_grid(opts.grid_size) print('\nThe Grid...\n') print_grid(grid) print() least_left, steps = walk_grid.answer_and_steps(grid, opts.food) print('\nResult: {0} with steps {1}.'.format(least_left, steps)) if __name__ == '__main__': main()
kmggh/python-walk-grid
spec_solution.py
Python
artistic-2.0
1,718
""" Last.fm support for Django-Social-Auth. An application must be registered first on Last.fm and the settings LASTFM_API_KEY and LASTFM_SECRET must be defined with they corresponding values. """ from hashlib import md5 from re import sub from urllib import urlencode from urllib2 import urlopen from django.conf import settings from django.contrib.auth import authenticate from django.utils import simplejson from social_auth.backends import BaseAuth, SocialAuthBackend, USERNAME LASTFM_API_SERVER = 'https://ws.audioscrobbler.com/2.0/' LASTFM_AUTHORIZATION_URL = 'https://www.last.fm/api/auth/' class LastfmBackend(SocialAuthBackend): """Last.fm authentication backend.""" name = "lastfm" EXTRA_DATA = [('id', 'id'), ] def get_user_id(self, details, response): """Get unique User id from response""" return response['id'] def get_user_details(self, response): """Return user details from Last.fm account""" full_name = response['realname'].strip() if len(full_name.split(' ')) > 1: last_name = full_name.split(' ')[-1].strip() first_name = full_name.replace(last_name, '').strip() else: first_name = full_name last_name = '' data = { USERNAME: response.get('name', ''), 'email': '', 'fullname': full_name, 'first_name': first_name, 'last_name': last_name } return data def extra_data(self, user, uid, response, details): data = {'access_token': response.get('access_token', '')} name = self.name.replace('-', '_').upper() names = (self.EXTRA_DATA or []) + getattr(settings, name + '_EXTRA_DATA', []) data.update((alias, response.get(name)) for name, alias in names) return data class LastfmAuth(BaseAuth): """Last.fm authentication mechanism.""" AUTH_BACKEND = LastfmBackend SETTINGS_KEY_NAME = 'LASTFM_API_KEY' SETTINGS_SECRET_NAME = 'LASTFM_SECRET' def auth_url(self): """Return authorization redirect url.""" key = self.api_key() callback = self.request.build_absolute_uri(self.redirect) callback = sub(r'^https', u'http', callback) query = urlencode({'api_key': key, 'cb': callback}) return '%s?%s' % (LASTFM_AUTHORIZATION_URL, query) def auth_complete(self, *args, **kwargs): """Return user from authenticate.""" token = self.data.get('token') if not token: raise ValueError('No token returned') username, access_token = self.access_token(token) data = self.user_data(username) if data is not None: data['access_token'] = access_token kwargs.update({'response': data, self.AUTH_BACKEND.name: True}) return authenticate(*args, **kwargs) def access_token(self, token): """Get the Last.fm session/access token via auth.getSession.""" data = { 'method': 'auth.getSession', 'api_key': self.api_key(), 'token': token, 'api_sig': self.method_signature('auth.getSession', token), 'format': 'json', } query = urlencode(data) url = '%s?%s' % (LASTFM_API_SERVER, query) try: response = urlopen(url).read() session = simplejson.loads(response)['session'] access_token = session['key'] username = session['name'] except: access_token = '' username = '' return (username, access_token) def user_data(self, username): """Request user data.""" data = { 'method': 'user.getinfo', 'api_key': self.api_key(), 'user': username, 'format': 'json', } query = urlencode(data) url = '%s?%s' % (LASTFM_API_SERVER, query) try: response = urlopen(url).read() user_data = simplejson.loads(response)['user'] except: user_data = None return user_data def method_signature(self, method, token): """Generate method signature for API calls.""" data = { 'key': self.api_key(), 'secret': self.secret_key(), 'method': method, 'token': token, } key = 'api_key%(key)smethod%(method)stoken%(token)s%(secret)s' % data return md5(key).hexdigest() @classmethod def enabled(cls): """Enable only if settings are defined.""" return cls.api_key and cls.secret_key @classmethod def api_key(cls): return getattr(settings, cls.SETTINGS_KEY_NAME, '') @classmethod def secret_key(cls): return getattr(settings, cls.SETTINGS_SECRET_NAME, '') # Backend definition BACKENDS = { 'lastfm': LastfmAuth, }
mlavin/django-lastfm-auth
lastfm_auth/backend.py
Python
bsd-2-clause
4,889
#!/usr/bin/python from __future__ import print_function import os import sys from os.path import join, dirname from setuptools import Extension, find_packages, setup from distutils.command import build_ext as _build_ext try: # we use Cython if possible then resort to pre-build intermediate files # noinspection PyPackageRequirements from Cython.Distutils import build_ext except ImportError: build_ext = None # change directory to this module path try: this_file = __file__ except NameError: this_file = sys.argv[0] this_file = os.path.abspath(this_file) if os.path.dirname(this_file): os.chdir(os.path.dirname(this_file)) script_dir = os.getcwd() def readme(fname): """Read text out of a file in the same directory as setup.py. """ return open(join(dirname(__file__), fname), 'rt').read() if build_ext: avf_module = Extension( 'pyavfcam', ['src/avf.pyx', 'src/modules/avf.m', 'src/modules/camera_frame.m', 'src/modules/utils.m', 'src/modules/avf_impl.m', ], extra_link_args=['-framework', 'AVFoundation', '-framework', 'Foundation', ], extra_compile_args=['-ObjC++', '-std=c++11', '-stdlib=libc++','-mmacosx-version-min=10.7'], language="c++", ) else: avf_module = Extension( 'pyavfcam', ['src/avf.cpp', 'src/modules/avf.m', 'src/modules/camera_frame.m', 'src/modules/utils.m', 'src/modules/avf_impl.m', ], extra_link_args=['-framework', 'AVFoundation', '-framework', 'Foundation', ], extra_compile_args=['-ObjC++', '-std=c++11', '-stdlib=libc++'], language="c++", ) # noinspection PyPep8Naming class build_ext(_build_ext.build_ext): def run(self): print(""" --> Cython is not installed. Can not compile .pyx files. <-- If the pre-built sources did not work you'll have to do it yourself and run this command again, if you want to recompile your .pyx files. `pip install cython` should suffice. ------------------------------------------------------------ """) assert os.path.exists( os.path.join(script_dir, 'src', 'avf.cpp')), \ 'Source file not found!' return _build_ext.build_ext.run(self) setup( name="pyavfcam", version="0.0.1", author="dashesy", author_email="dashesy@gmail.com", url='https://github.com/dashesy/pyavfcam', description="Simple camera video capture in OSX using AVFoundation", long_description=readme('README.md'), packages=find_packages(), license="BSD", cmdclass={ 'build_ext': build_ext, }, classifiers=[ 'Intended Audience :: Developers', 'Operating System :: MacOS :: MacOS X', "License :: OSI Approved :: BSD License", "Programming Language :: Objective C++", "Programming Language :: Cython", "Programming Language :: Python", 'Topic :: Software Development', ], ext_modules=[ avf_module ] )
dashesy/pyavfcam
setup.py
Python
bsd-2-clause
3,259
# -*- coding: utf-8 -*- from glyph import Glyph, glyphs from context import mergeSubPolys from kerning import kernGlyphs from punctuation import spaceGlyph class LineBreak(object): def __init__(self, leading): super(LineBreak, self).__init__() self.leading = leading class TextBox(object): def __init__(self, box, parent): super(TextBox, self).__init__() self.x = 0.0 self.y = 0.0 self.tracking = 0 self.size = 100 self.weight = 3.0 self.width = int(parent.attrib["width"]) self.serif = True self.leading = None # Pull in integer properties for prop in ["x", "y", "width"]: if prop in box.attrib: setattr(self, prop, int(box.attrib[prop])) # Pull in float properties for prop in ["tracking", "size", "leading", "weight"]: if prop in box.attrib: setattr(self, prop, float(box.attrib[prop])) if self.leading == None: self.leading = self.size / 2.0 self.glyphs = [] self.addXMLChunk(box) def addXMLChunk(self, chunk, weight=None, italic=False, capHeight=None, color=None, serif=None, tracking=None, leading=None): if chunk.text: self.addTextChunk(chunk.text, weight=weight, italic=italic, capHeight=capHeight, color=color, serif=serif, tracking=tracking, leading=leading) for el in chunk: newWeight = weight newItalic = italic newCapHeight = capHeight newColor = color newSerif = serif newTracking = tracking newLeading = leading if el.tag == "u": newWeight = 0.5 elif el.tag == "l": newWeight = 2.0 elif el.tag == "m": newWeight = 3.0 elif el.tag == "b": newWeight = 5.0 elif el.tag == "h": newWeight = 7.0 elif el.tag == "i": newItalic = True elif el.tag == "leading": newLeading = float(el.attrib["px"]) elif el.tag == "tracking": newTracking = float(el.attrib["px"]) elif el.tag == "size": newCapHeight = float(el.attrib["px"]) if newLeading == None: newLeading = newCapHeight / 2.0 elif el.tag == "br": self.addTextChunk("\n", capHeight=capHeight, leading=newLeading, stripNewline=False) elif el.tag == "color": newColor = (float(el.attrib["r"]), float(el.attrib["g"]), float(el.attrib["b"]), float(el.attrib["a"])) elif el.tag == "sans": newSerif = False elif el.tag == "serif": newSerif = True self.addXMLChunk(el, weight=newWeight, italic=newItalic, capHeight=newCapHeight, color=newColor, serif=newSerif, tracking=newTracking, leading=newLeading) if el.tail: self.addTextChunk(el.tail, weight=weight, italic=italic, capHeight=capHeight, color=color, serif=serif, tracking=tracking, leading=leading) def addTextChunk(self, text, weight=None, italic=False, capHeight=None, stripNewline=True, color=None, serif=None, tracking=None, leading=None): for i in range(len(text)): a = text[i] if weight == None: weight = self.weight if capHeight == None: capHeight = self.size if color == None: color = (0.0, 0.0, 0.0, 1.0) if serif == None: serif = self.serif if tracking == None: tracking = self.tracking if leading == None: leading = self.leading #if a == " ": # self.glyphs += [" "] # continue if a == "\n": if not stripNewline: self.glyphs += [LineBreak(leading)] continue glyph = glyphs[a](x=0, y=0, capHeight=capHeight) glyph.w = (weight * (glyph.capHeight() / 100.0)) glyph.slanted = italic glyph.color = color glyph.willBeSerifed = serif glyph.tracking = tracking self.glyphs += [glyph] def layoutGlyphs(self): allGlyphs = [] wordGlyphs = [] xloc = self.x yloc = self.y metrics = Glyph(0, 0, capHeight=self.size) for i in range(len(self.glyphs)): a = self.glyphs[i] if i + 1 < len(self.glyphs): b = self.glyphs[i + 1] else: b = None if isinstance(a, LineBreak): if b and not isinstance(b, LineBreak): bGlyphBounds = mergeSubPolys([b]).bounds b.x = self.x xloc = b.x - bGlyphBounds[0] else: xloc = self.x yloc += metrics.capHeight() + a.leading allGlyphs += wordGlyphs wordGlyphs = [] continue glyphBounds = mergeSubPolys([a]).bounds a.x = xloc a.y = yloc xShift = glyphBounds[2] - glyphBounds[0] if isinstance(b, Glyph): xShift += (kernGlyphs(a.char, b.char, a.weight(), capHeight=a.capHeight()) + a.tracking) if a.outlined: xShift += (a.capHeight() / 15.0) xloc += xShift if isinstance(a, spaceGlyph): if len(wordGlyphs): if xloc > self.width: xloc = self.x yloc += metrics.capHeight() + self.leading allGlyphs += wordGlyphs wordGlyphs = [] else: wordGlyphs += [a] allGlyphs += wordGlyphs for g in allGlyphs: g.serifed = g.willBeSerifed return allGlyphs
hortont424/phiface
phiface/text.py
Python
bsd-2-clause
6,558
import glob import os import unicodedata from string import punctuation from nltk import word_tokenize, SnowballStemmer from nltk.corpus import stopwords, PlaintextCorpusReader class StemmingController: def __init__(self): ADDITIONAL_STOPWORDS = ['%', '?', '¿', 'please', 'your', 'flash', 'plugin', 'Tags', 'MÁS', 'EN', '.+MÁS', '+Tags', '...', ',', '.', '[', ']', '"', '(', ')', '…', 'el', 'la', 'los', 'uno', 'una', '-', ':', '``', "''"] self.ALL_STOPWORDS = set(stopwords.words('spanish') + ADDITIONAL_STOPWORDS) self.DELIMITER = '\\' def stemming_text(self, words): stemmer = SnowballStemmer("spanish") final_text = [] for word in words: final_text.append(stemmer.stem(word)) return final_text def stemming_files(self, source_folder, destination_folder): if not os.path.exists(destination_folder): os.makedirs(destination_folder) corpus_news = PlaintextCorpusReader(source_folder, '.*\.txt') for file in corpus_news.fileids(): file_name = os.path.basename(os.path.normpath(file)) words = corpus_news.words(file) stemmed_content = self.stemming_text(words) with open(destination_folder + "/" + file_name, 'w', encoding='utf8') as modified: modified.write(' '.join(stemmed_content))
gcvalderrama/Palantir
worker/StemmingController.py
Python
bsd-2-clause
1,443
'''Autogenerated by get_gl_extensions script, do not edit!''' from OpenGL import platform as _p from OpenGL.GL import glget EXTENSION_NAME = 'GL_SGIS_texture_lod' _p.unpack_constants( """GL_TEXTURE_MIN_LOD_SGIS 0x813A GL_TEXTURE_MAX_LOD_SGIS 0x813B GL_TEXTURE_BASE_LEVEL_SGIS 0x813C GL_TEXTURE_MAX_LEVEL_SGIS 0x813D""", globals()) def glInitTextureLodSGIS(): '''Return boolean indicating whether this extension is available''' from OpenGL import extensions return extensions.hasGLExtension( EXTENSION_NAME )
frederica07/Dragon_Programming_Process
PyOpenGL-3.0.2/OpenGL/raw/GL/SGIS/texture_lod.py
Python
bsd-2-clause
522
import logging from ob2.util.hooks import register_job logging.info("Hello world!") @register_job("hw0") def hw0_job_handler(repo, commit_hash): return "You get full credit!", 10.0
octobear2/ob2
config/functions.py
Python
bsd-2-clause
188
import time import socket import struct import urllib.parse import select from . import pac_server from . import global_var as g from .socket_wrap import SocketWrap import utils from .smart_route import handle_ip_proxy, handle_domain_proxy, netloc_to_host_port from xlog import getLogger xlog = getLogger("smart_router") SO_ORIGINAL_DST = 80 class ProxyServer(): handle_num = 0 def __init__(self, sock, client, args): self.conn = sock self.rfile = self.conn.makefile("rb", 0) self.wfile = self.conn.makefile("wb", 0) self.client_address = client self.read_buffer = b"" self.buffer_start = 0 self.support_redirect = True def try_redirect(self): if not self.support_redirect: return False try: dst = self.conn.getsockopt(socket.SOL_IP, SO_ORIGINAL_DST, 16) except: self.support_redirect = False return False try: dst_port, srv_ip = struct.unpack("!2xH4s8x", dst) ip_str = socket.inet_ntoa(srv_ip) if dst_port != g.config.proxy_port and not utils.is_private_ip(ip_str): xlog.debug("Redirect to:%s:%d from:%s", ip_str, dst_port, self.client_address) handle_ip_proxy(self.conn, ip_str, dst_port, self.client_address) return True else: return False except Exception as e: xlog.exception("redirect except:%r", e) return True def handle(self): self.__class__.handle_num += 1 if self.try_redirect(): return sockets = [self.conn] try: r, w, e = select.select(sockets, [], []) socks_version = self.conn.recv(1, socket.MSG_PEEK) if not socks_version: return if socks_version == b"\x04": self.socks4_handler() elif socks_version == b"\x05": self.socks5_handler() elif socks_version == b"C": self.https_handler() elif socks_version in [b"G", b"P", b"D", b"O", b"H", b"T"]: self.http_handler() else: xlog.warn("socks version:%s[%s] not supported", socks_version, utils.str2hex(socks_version)) return except socket.error as e: xlog.warn('socks handler read error:%r', e) except Exception as e: xlog.exception("any err:%r", e) def read_null_end_line(self): sock = self.conn sock.setblocking(0) try: while True: n1 = self.read_buffer.find(b"\x00", self.buffer_start) if n1 > -1: line = self.read_buffer[self.buffer_start:n1] self.buffer_start = n1 + 1 return line try: data = sock.recv(8192) except socket.error as e: # logging.exception("e:%r", e) if e.errno in [2, 11, 10035]: time.sleep(0.01) continue else: raise e self.read_buffer += data finally: sock.setblocking(1) def read_crlf_line(self): sock = self.conn sock.setblocking(0) try: while True: n1 = self.read_buffer.find(b"\r\n", self.buffer_start) if n1 > -1: line = self.read_buffer[self.buffer_start:n1] self.buffer_start = n1 + 2 return line try: data = sock.recv(8192) except socket.error as e: # logging.exception("e:%r", e) if e.errno in [2, 11, 10035]: time.sleep(0.01) continue else: raise e self.read_buffer += data finally: sock.setblocking(1) def read_headers(self): sock = self.conn sock.setblocking(0) try: while True: if self.read_buffer[self.buffer_start:] == b"\r\n": self.buffer_start += 2 return "" n1 = self.read_buffer.find(b"\r\n\r\n", self.buffer_start) if n1 > -1: block = self.read_buffer[self.buffer_start:n1] self.buffer_start = n1 + 4 return block try: data = sock.recv(8192) except socket.error as e: # logging.exception("e:%r", e) if e.errno in [2, 11, 10035]: time.sleep(0.01) continue else: raise e self.read_buffer += data finally: sock.setblocking(1) def read_bytes(self, size): sock = self.conn sock.setblocking(1) try: while True: left = len(self.read_buffer) - self.buffer_start if left >= size: break need = size - left try: data = sock.recv(need) except socket.error as e: # logging.exception("e:%r", e) if e.errno in [2, 11, 10035]: time.sleep(0.01) continue else: raise e if len(data): self.read_buffer += data else: raise socket.error("recv fail") finally: sock.setblocking(1) data = self.read_buffer[self.buffer_start:self.buffer_start + size] self.buffer_start += size return data def socks4_handler(self): # Socks4 or Socks4a sock = self.conn socks_version = ord(self.read_bytes(1)) cmd = ord(self.read_bytes(1)) if cmd != 1: xlog.warn("Socks4 cmd:%d not supported", cmd) return data = self.read_bytes(6) port = struct.unpack(">H", data[0:2])[0] addr_pack = data[2:6] if addr_pack[0:3] == b'\x00\x00\x00' and addr_pack[3:4] != b'\x00': domain_mode = True else: ip = socket.inet_ntoa(addr_pack) domain_mode = False user_id = self.read_null_end_line() if len(user_id): xlog.debug("Socks4 user_id:%s", user_id) if domain_mode: addr = self.read_null_end_line() else: addr = ip reply = b"\x00\x5a" + addr_pack + struct.pack(">H", port) sock.send(reply) # xlog.debug("Socks4:%r to %s:%d", self.client_address, addr, port) handle_ip_proxy(sock, addr, port, self.client_address) def socks5_handler(self): sock = self.conn socks_version = ord(self.read_bytes(1)) auth_mode_num = ord(self.read_bytes(1)) data = self.read_bytes(auth_mode_num) sock.send(b"\x05\x00") # socks version 5, no auth needed. try: data = self.read_bytes(4) except Exception as e: xlog.debug("socks5 auth num:%d, list:%s", auth_mode_num, utils.str2hex(data)) xlog.warn("socks5 protocol error:%r", e) return socks_version = ord(data[0:1]) if socks_version != 5: xlog.warn("request version:%d error", socks_version) return command = ord(data[1:2]) if command != 1: # 1. Tcp connect xlog.warn("request not supported command mode:%d", command) sock.send(b"\x05\x07\x00\x01") # Command not supported return addrtype_pack = data[3:4] addrtype = ord(addrtype_pack) if addrtype == 1: # IPv4 addr_pack = self.read_bytes(4) addr = socket.inet_ntoa(addr_pack) elif addrtype == 3: # Domain name domain_len_pack = self.read_bytes(1)[0:1] domain_len = ord(domain_len_pack) domain = self.read_bytes(domain_len) addr_pack = domain_len_pack + domain addr = domain elif addrtype == 4: # IPv6 addr_pack = self.read_bytes(16) addr = socket.inet_ntop(socket.AF_INET6, addr_pack) else: xlog.warn("request address type unknown:%d", addrtype) sock.send(b"\x05\x07\x00\x01") # Command not supported return port = struct.unpack('>H', self.rfile.read(2))[0] # xlog.debug("socks5 %r connect to %s:%d", self.client_address, addr, port) reply = b"\x05\x00\x00" + addrtype_pack + addr_pack + struct.pack(">H", port) sock.send(reply) if addrtype in [1, 4]: handle_ip_proxy(sock, addr, port, self.client_address) else: handle_domain_proxy(sock, addr, port, self.client_address) def https_handler(self): line = self.read_crlf_line() line = line words = line.split() if len(words) == 3: command, path, version = words elif len(words) == 2: command, path = words version = b"HTTP/1.1" else: xlog.warn("https req line fail:%s", line) return if command != b"CONNECT": xlog.warn("https req line fail:%s", line) return host, _, port = path.rpartition(b':') port = int(port) header_block = self.read_headers() sock = self.conn # xlog.debug("https %r connect to %s:%d", self.client_address, host, port) sock.send(b'HTTP/1.1 200 OK\r\n\r\n') handle_domain_proxy(sock, host, port, self.client_address) def http_handler(self): req_data = self.conn.recv(65537, socket.MSG_PEEK) rp = req_data.split(b"\r\n") req_line = rp[0] words = req_line.split() if len(words) == 3: method, url, http_version = words elif len(words) == 2: method, url = words http_version = b"HTTP/1.1" else: xlog.warn("http req line fail:%s", req_line) return if url.lower().startswith(b"http://"): o = urllib.parse.urlparse(url) host, port = netloc_to_host_port(o.netloc) url_prex_len = url[7:].find(b"/") if url_prex_len >= 0: url_prex_len += 7 path = url[url_prex_len:] else: url_prex_len = len(url) path = b"/" else: # not proxy request, should be PAC xlog.debug("PAC %s %s from:%s", method, url, self.client_address) handler = pac_server.PacHandler(self.conn, self.client_address, None, xlog) return handler.handle() sock = SocketWrap(self.conn, self.client_address[0], self.client_address[1]) sock.replace_pattern = [url[:url_prex_len], ""] xlog.debug("http %r connect to %s:%d %s %s", self.client_address, host, port, method, path) handle_domain_proxy(sock, host, port, self.client_address)
xyuanmu/XX-Net
code/default/smart_router/local/proxy_handler.py
Python
bsd-2-clause
11,386
#!/usr/bin/env python # Put your app specific configs here consumer_key = "" consumer_secret = ""
honza/clitwi
config.py
Python
bsd-2-clause
100
#!/usr/bin/env python import os import sys from django.core.management import execute_from_command_line if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "dispensa.settings.dev") execute_from_command_line(sys.argv)
evonove/dispensa-website
django-dispensa/manage.py
Python
bsd-2-clause
251
from django.conf.urls import url from django.contrib.auth.decorators import login_required from . import views urlpatterns = [ url(r'^$', views.InventoryView.as_view(), name='inventory'), url(r'^(?P<node_type>\w+)/(?P<node_id>[0-9]+)/$', login_required(views.NodesView.as_view()), name='nodes'), url(r'^(?P<node_type>\w+)/(?P<node_id>[0-9]+)/variable/(?P<action>\w+)/$', login_required(views.VariablesView.as_view()), name='variables'), url(r'^(?P<node_type>\w+)/(?P<node_id>[0-9]+)/(?P<relation>\w+)/$', login_required(views.RelationsView.as_view()), name='relations'), ]
ptonini/battuta-manager
battuta/inventory/urls.py
Python
bsd-2-clause
618
############################################################################### # # Tests for XlsxWriter. # # SPDX-License-Identifier: BSD-2-Clause # Copyright (c), 2013-2022, John McNamara, jmcnamara@cpan.org # from ..excel_comparison_test import ExcelComparisonTest from ...workbook import Workbook class TestCompareXLSXFiles(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.set_filename('array_formula01.xlsx') self.ignore_files = ['xl/calcChain.xml', '[Content_Types].xml', 'xl/_rels/workbook.xml.rels'] def test_create_file(self): """Test the creation of an XlsxWriter file with an array formula.""" workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() worksheet.write('B1', 0) worksheet.write('B2', 0) worksheet.write('B3', 0) worksheet.write('C1', 0) worksheet.write('C2', 0) worksheet.write('C3', 0) worksheet.write_array_formula(0, 0, 2, 0, '{=SUM(B1:C1*B2:C2)}', None, 0) workbook.close() self.assertExcelEqual() def test_create_file_A1(self): """ Test the creation of an XlsxWriter file with an array formula and A1 Notation. """ workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() worksheet.write('B1', 0) worksheet.write('B2', 0) worksheet.write('B3', 0) worksheet.write('C1', 0) worksheet.write('C2', 0) worksheet.write('C3', 0) worksheet.write_array_formula('A1:A3', '{=SUM(B1:C1*B2:C2)}', None, 0) workbook.close() self.assertExcelEqual() def test_create_file_kwargs(self): """ Test the creation of an XlsxWriter file with an array formula and keyword args """ workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() worksheet.write('B1', 0) worksheet.write('B2', 0) worksheet.write('B3', 0) worksheet.write('C1', 0) worksheet.write('C2', 0) worksheet.write('C3', 0) worksheet.write_array_formula(first_row=0, first_col=0, last_row=2, last_col=0, formula='{=SUM(B1:C1*B2:C2)}') workbook.close() self.assertExcelEqual()
jmcnamara/XlsxWriter
xlsxwriter/test/comparison/test_array_formula01.py
Python
bsd-2-clause
2,513
import logging from django.conf import settings from django.conf.urls import patterns, url from django.db.models import Q from django.http import Http404 from django.views.decorators.cache import never_cache from guardian.shortcuts import get_objects_for_user from preserialize.serialize import serialize from serrano.resources.base import ThrottledResource from varify import api from vdw.samples.models import CohortVariant from vdw.assessments.models import Assessment, Pathogenicity, \ AssessmentCategory from vdw.variants.models import Variant log = logging.getLogger(__name__) GENOME_VERSION = getattr(settings, 'VDW_GENOME_VERSION', None) try: from solvebio.contrib.django_solvebio import SolveBio from solvebio import SolveError, Filter except ImportError: SolveBio = None log.warning('Could not import SolveBio') class VariantResource(ThrottledResource): model = Variant template = api.templates.Variant # Check if the object exists. The cache should not be relied on since # it is not deleted or invalidated when objects are deleted def is_not_found(self, request, response, pk): return not self.model.objects.filter(pk=pk).exists() @classmethod @api.cache_resource def get(self, request, pk): related = ['type', 'chr'] try: variant = self.model.objects.select_related(*related).get(pk=pk) except self.model.DoesNotExist: raise Http404 data = serialize(variant, **self.template) # Roll up unique set of genes and effects for this variant since # this is quite important genes = set() effects = set() # Compile the HGVS_c values for the SolveBio query hgvs_c_values = set() for eff in data['effects']: effects.add(eff['type']) if eff.get('transcript') and eff['transcript'].get('gene'): if eff['transcript']['gene']: genes.add(eff['transcript']['gene']['symbol']) if eff['transcript'].get('transcript') and eff.get('hgvs_c'): hgvs_c_values.add('{0}:{1}'.format( eff['transcript']['transcript'], eff['hgvs_c'])) data['unique_genes'] = sorted(genes) data['unique_effects'] = sorted(effects) # Augment resource with cohort-related details (e.g. allele # frequencies) perms = Q(cohort__user=None, cohort__published=True) | \ Q(cohort__user=request.user) projects = get_objects_for_user(request.user, 'samples.view_project') cohort_variants = CohortVariant.objects\ .filter(perms, variant=variant, cohort__project__in=projects)\ .order_by('-cohort__order', 'cohort__name').distinct() cohort_list = [] for cv in cohort_variants: cohort_data = serialize(cv, **api.templates.CohortVariant) # Find all the samples within this cohort that also contain # this variant. If a sample is in the cohort but doesn't contain # this variant then there is no benefit to including it. samples_with_variant = cv.cohort.samples.filter( results__variant=cv.variant) cohort_data['samples'] = serialize(samples_with_variant, **api.templates.SimpleSample) cohort_list.append(cohort_data) data['cohorts'] = cohort_list if SolveBio and SolveBio.is_enabled(): data['solvebio'] = {} # ClinVar integration -- use position and HGVS filters = Filter(chromosome=variant.chr.value, start__lte=variant.pos, stop__gte=variant.pos) if hgvs_c_values: filters = filters | Filter(hgvs_c__in=list(hgvs_c_values)) # TODO: add another clinvar query for reported gene-wide variants # if genes: # filters = filters | Filter(gene_symbol__in=list(genes)) try: # Query ClinVar by its alias, return 10 results/page # TODO: client-side pagination q = SolveBio.get_dataset('clinvar').query( limit=10, # limit to 10 results (single page) filters=filters) # Send the first page of results to the client data['solvebio']['clinvar'] = { 'results': q.results, 'total': q.total } except SolveError as e: log.exception('SolveBio ClinVar query failed: {0}'.format(e)) data['genome_version'] = GENOME_VERSION return data class VariantAssessmentMetricsResource(ThrottledResource): model = Variant def is_not_found(self, request, response, pk): return not self.model.objects.filter(pk=pk).exists() def get(self, request, pk): categories = AssessmentCategory.objects.all() pathogenicities = Pathogenicity.objects.all() assessments = Assessment.objects.select_related('sample_result') \ .filter(sample_result__variant=pk) data = { 'num_assessments': 0 } num_assessments = len(assessments) # Easier to check for 0 assessments here than checking for a divide by # 0 situation in every loop iteration. if num_assessments > 0: data['num_assessments'] = num_assessments # Create the pathogenic summary excluding pathogenicities with # no calls associated with them. data['pathogenicities'] = [] for p in pathogenicities: filter_results = assessments.filter(pathogenicity=p.id) if filter_results.exists(): assessment_data = self.get_assessment_data( filter_results, num_assessments, request.user.id) assessment_data['name'] = p.name data['pathogenicities'].append(assessment_data) # Create the assessment category summary excluding categories with # no calls associated with them. data['categories'] = [] for c in categories: filter_results = assessments.filter(assessment_category=c.id) if filter_results.exists(): assessment_data = self.get_assessment_data( filter_results, num_assessments, request.user.id) assessment_data['name'] = c.name data['categories'].append(assessment_data) # Get the list of all the projects the user has access to. We will # use this later to make sure that we don't expose the assessment # details made via samples this user doesn't have rights to view. user_project_ids = \ get_objects_for_user(request.user, 'samples.view_project') \ .values_list('pk', flat=True) data['assessments'] = [] for a in assessments: a_data = {} a_data['id'] = a.pk a_data['pathogenicity'] = a.pathogenicity.name a_data['category'] = getattr(a.assessment_category, 'name', '') a_data['sanger'] = 'Yes' if a.sanger_requested else 'No' a_data['mother_result'] = a.mother_result.name a_data['father_result'] = a.father_result.name a_data['sample'] = { 'id': a.sample_result.sample.id, 'name': a.sample_result.sample.name, } a_data['user'] = { 'username': a.user.username, 'email': a.user.email, } if a.sample_result.sample.project.id in user_project_ids: a_data['details'] = a.evidence_details data['assessments'].append(a_data) return data def get_assessment_data(self, queryset, total_count, user_id): """ Calculates and sets the following data for the supplied queryset: data = { 'count': <the number of items in the queryset> 'percentage': <percentage of total_count queryset represents> 'is_user_call': <true if user made this call, false otherwise> 'users': <set of all users who made this call> } """ # We need to convert the usernames to strings here because the JSON # encoder will choke when serializing this data if the usernames are # unicode as they are when we get them back from the distinct call. users = [{'username': str(username), 'email': email} for username, email in queryset.values_list('user__username', 'user__email') .distinct()] count = queryset.count() is_user_call = queryset.filter(user=user_id).exists() return { 'count': count, 'percentage': count / float(total_count) * 100.0, 'is_user_call': is_user_call, 'users': users, } variant_resource = never_cache(VariantResource()) variant_metrics_resource = never_cache(VariantAssessmentMetricsResource()) urlpatterns = patterns( '', url(r'^(?P<pk>\d+)/$', variant_resource, name='variant'), url(r'^(?P<pk>\d+)/assessment-metrics/$', variant_metrics_resource, name='variant_assessment_metrics'), )
chop-dbhi/varify
varify/variants/resources.py
Python
bsd-2-clause
9,609
# Copyright (c) 2020, Matt Layman """ nose-tap is a reporting plugin for nose that outputs `Test Anything Protocol (TAP) <http://testanything.org/>`_ data. TAP is a line based test protocol for recording test data in a standard way. Follow development on `GitHub <https://github.com/python-tap/nose-tap>`_. Developer documentation is on `Read the Docs <https://tappy.readthedocs.io/>`_. """ from setuptools import Command, find_packages, setup import nose_tap class ReleaseCommand(Command): description = "generate distribution release artifacts" user_options = [] def initialize_options(self): """Initialize options. This method overrides a required abstract method. """ def finalize_options(self): """Finalize options. This method overrides a required abstract method. """ def run(self): """Generate the distribution release artifacts. The custom command is used to ensure that compiling po to mo is not skipped. """ self.run_command("compile_catalog") self.run_command("sdist") self.run_command("bdist_wheel") if __name__ == "__main__": with open("docs/releases.rst", "r") as f: releases = f.read() long_description = __doc__ + "\n\n" + releases setup( name="nose-tap", version=nose_tap.__version__, url="https://github.com/python-tap/nose-tap", license="BSD", author="Matt Layman", author_email="matthewlayman@gmail.com", description="Test Anything Protocol (TAP) reporting plugin for nose", long_description=long_description, packages=find_packages(), entry_points={"nose.plugins.0.10": ["tap = nose_tap.plugin:TAP"]}, include_package_data=True, zip_safe=False, platforms="any", install_requires=["nose", "tap.py"], classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "License :: OSI Approved :: BSD License", "Operating System :: OS Independent", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: Implementation :: PyPy", "Topic :: Software Development :: Testing", ], keywords=["TAP", "unittest", "nose"], cmdclass={"release": ReleaseCommand}, )
python-tap/nose-tap
setup.py
Python
bsd-2-clause
2,573
# Copyright (c) 2010, Sancho McCann # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # - Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # - Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import glob import os import random import unittest from naive_bayes_nearest_neighbor import caltech_util from sift import sift_descriptors_pb2 from sift import sift_util class TestCaltechHelperFunctions(unittest.TestCase): def tearDown(self): if os.path.exists('/tmp/seminar.sift'): os.remove('/tmp/seminar.sift') def test_do_extraction_produces_output(self): """ Tests working case do_extraction """ image_path = os.path.abspath('../test_images/seminar.pgm') destination_dir = '/tmp/' parameters = sift_descriptors_pb2.ExtractionParameters() caltech_util.do_extraction((image_path, destination_dir, parameters.SerializeToString())) expected_output_path = os.path.join(destination_dir, 'seminar.sift') self.assertTrue(os.path.exists(expected_output_path)) self.assertTrue(os.path.getsize(expected_output_path) > 0) def test_do_extraction_doesnt_extract_when_already_done(self): image_path = os.path.abspath('../test_images/seminar.pgm') destination_dir = '/tmp/' expected_output_path = os.path.join(destination_dir, 'seminar.sift') parameters = sift_descriptors_pb2.ExtractionParameters() caltech_util.do_extraction((image_path, destination_dir, parameters.SerializeToString())) first_creation_time_check = os.path.getmtime(expected_output_path) caltech_util.do_extraction((image_path, destination_dir, parameters.SerializeToString())) second_creation_time_check = os.path.getmtime(expected_output_path) self.assertEqual(first_creation_time_check, second_creation_time_check) def test_do_extraction_does_extract_when_params_dont_match_existing(self): image_path = os.path.abspath('../test_images/seminar.pgm') destination_dir = '/tmp/' expected_output_path = os.path.join(destination_dir, 'seminar.sift') parameters = sift_descriptors_pb2.ExtractionParameters() caltech_util.do_extraction((image_path, destination_dir, parameters.SerializeToString())) first_creation_time_check = os.path.getmtime(expected_output_path) parameters.multiscale = False caltech_util.do_extraction((image_path, destination_dir, parameters.SerializeToString())) second_creation_time_check = os.path.getmtime(expected_output_path) self.assertNotEqual(first_creation_time_check, second_creation_time_check) def test_extraction_output_matches_requested_default_parameters(self): """ Tests that the extraction has been performed with the requested parameters. """ image_path = os.path.abspath('../test_images/seminar.pgm') destination_dir = '/tmp' # Tests the default settings. parameters = sift_descriptors_pb2.ExtractionParameters() caltech_util.do_extraction((image_path, destination_dir, parameters.SerializeToString())) expected_output_path = os.path.join(destination_dir, 'seminar.sift') result_params = \ sift_util.get_extraction_parameters(expected_output_path) self.assertEqual(result_params.rotation_invariance, False) self.assertEqual(result_params.normalization_threshold, 0) self.assertEqual(result_params.discard_unnormalized, False) self.assertEqual(result_params.multiscale, True) self.assertEqual(result_params.percentage, 1) self.assertEqual(result_params.minimum_radius, 0) self.assertEqual(result_params.fractional_xy, False) self.assertEqual(result_params.top_left_x, 0) self.assertEqual(result_params.top_left_y, 0) self.assertEqual(result_params.bottom_right_x, 2147483647) self.assertEqual(result_params.bottom_right_y, 2147483647) self.assertEqual(result_params.implementation, sift_descriptors_pb2.ExtractionParameters.VLFEAT) self.assertEqual(result_params.grid_method, sift_descriptors_pb2.ExtractionParameters.FIXED_3X3) self.assertEqual(result_params.smoothed, True) self.assertAlmostEqual(result_params.first_level_smoothing, 0.6666666, places=4) def test_extraction_output_matches_requested_parameters_nondefault(self): """ Tests that the extraction has been performed with the requested parameters. """ image_path = os.path.abspath('../test_images/seminar.pgm') destination_dir = '/tmp' # Tests the default settings + multisale = False parameters = sift_descriptors_pb2.ExtractionParameters() parameters.multiscale = False parameters.fractional_xy = True parameters.percentage = 0.5 parameters.normalization_threshold = 0.5 parameters.minimum_radius = 16 parameters.discard_unnormalized = True parameters.first_level_smoothing = 0.5 parameters.grid_method = \ sift_descriptors_pb2.ExtractionParameters.SCALED_BIN_WIDTH caltech_util.do_extraction((image_path, destination_dir, parameters.SerializeToString())) expected_output_path = os.path.join(destination_dir, 'seminar.sift') result_params = \ sift_util.get_extraction_parameters(expected_output_path) self.assertEqual(result_params.rotation_invariance, False) self.assertEqual(result_params.normalization_threshold, 0.5) self.assertEqual(result_params.discard_unnormalized, True) self.assertEqual(result_params.multiscale, False) self.assertEqual(result_params.percentage, 0.5) self.assertEqual(result_params.minimum_radius, 16) self.assertEqual(result_params.fractional_xy, True) self.assertEqual(result_params.top_left_x, 0) self.assertEqual(result_params.top_left_y, 0) self.assertEqual(result_params.bottom_right_x, 2147483647) self.assertEqual(result_params.bottom_right_y, 2147483647) self.assertEqual(result_params.grid_method, sift_descriptors_pb2.ExtractionParameters.SCALED_BIN_WIDTH) self.assertEqual(result_params.implementation, sift_descriptors_pb2.ExtractionParameters.VLFEAT) self.assertEqual(result_params.smoothed, True) self.assertAlmostEqual(result_params.first_level_smoothing, 0.5, places=4) def test_do_extraction_no_image(self): """ Tests image missing do_extraction """ image_path = os.path.abspath('../test_images/missing.pgm') destination_dir = '/tmp/' parameters = sift_descriptors_pb2.ExtractionParameters() self.assertRaises(caltech_util.ImageNotFoundError, caltech_util.do_extraction, (image_path, destination_dir, parameters.SerializeToString())) expected_output_path = os.path.join(destination_dir, 'missing.sift') self.assertFalse(os.path.exists(expected_output_path)) if __name__ == '__main__': unittest.main()
sanchom/sjm
naive_bayes_nearest_neighbor/caltech_util_test.py
Python
bsd-2-clause
8,679
# -*- coding: UTF-8 -*- # Copyright 2011-2018 Luc Saffre # # License: BSD (see file COPYING for details) from __future__ import unicode_literals import datetime from dateutil.easter import easter from lino.api import dd, _ from lino.utils.format_date import fds from .utils import day_and_month class Weekdays(dd.ChoiceList): verbose_name = _("Weekday") add = Weekdays.add_item add('1', _('Monday'), 'monday') add('2', _('Tuesday'), 'tuesday') add('3', _('Wednesday'), 'wednesday') add('4', _('Thursday'), 'thursday') add('5', _('Friday'), 'friday') add('6', _('Saturday'), 'saturday') add('7', _('Sunday'), 'sunday') WORKDAYS = frozenset([ Weekdays.get_by_name(k) for k in 'monday tuesday wednesday thursday friday'.split()]) class DurationUnit(dd.Choice): def add_duration(unit, orig, value): if orig is None: return None if unit.value == 's': return orig + datetime.timedelta(seconds=value) if unit.value == 'm': return orig + datetime.timedelta(minutes=value) if unit.value == 'h': return orig + datetime.timedelta(hours=value) if unit.value == 'D': return orig + datetime.timedelta(days=value) if unit.value == 'W': return orig + datetime.timedelta(days=value * 7) day = orig.day while True: year = orig.year try: if unit.value == 'M': m = orig.month + value while m > 12: m -= 12 year += 1 while m < 1: m += 12 year -= 1 return orig.replace(month=m, day=day, year=year) if unit.value == 'Y': return orig.replace(year=orig.year + value, day=day) if unit.value == 'E': offset = orig - easter(year) return easter(year+value) + offset raise Exception("Invalid DurationUnit %s" % unit) except ValueError: if day > 28: day -= 1 else: raise def get_date_formatter(self): if self.value in 'YEM': return fds return day_and_month class DurationUnits(dd.ChoiceList): verbose_name = _("Duration Unit") item_class = DurationUnit add = DurationUnits.add_item add('s', _('seconds'), 'seconds') add('m', _('minutes'), 'minutes') add('h', _('hours'), 'hours') add('D', _('days'), 'days') add('W', _('weeks'), 'weeks') add('M', _('months'), 'months') add('Y', _('years'), 'years') class Recurrencies(dd.ChoiceList): verbose_name = _("Recurrency") item_class = DurationUnit add = Recurrencies.add_item add('O', _('once'), 'once') add('D', _('daily'), 'daily') add('W', _('weekly'), 'weekly') add('M', _('monthly'), 'monthly') add('Y', _('yearly'), 'yearly') add('P', _('per weekday'), 'per_weekday') # deprecated add('E', _('Relative to Easter'), 'easter') def amonthago(): return DurationUnits.months.add_duration(dd.today(), -1) class AccessClasses(dd.ChoiceList): verbose_name = _("Access Class") add = AccessClasses.add_item add('10', _('Private'), 'private') add('20', _('Show busy'), 'show_busy') add('30', _('Public'), 'public') class PlannerColumns(dd.ChoiceList): verbose_name = _("Planner column") add = PlannerColumns.add_item add('10', _('External'), 'external') add('20', _('Internal'), 'internal')
khchine5/xl
lino_xl/lib/cal/choicelists.py
Python
bsd-2-clause
3,543
""" Module for handling redis IO """ import redis import hashlib from flickipedia.config import log, settings __author__ = 'Ryan Faulkner' __date__ = "2014-04-01" def hmac(key): """ Use an hmac to generate a hash key """ return hashlib.md5(key + settings.__secret_key__).hexdigest() def _decode_list(data): """ Decodes list elements """ rv = [] for item in data: if isinstance(item, unicode): item = item.encode('utf-8') elif isinstance(item, list): item = _decode_list(item) elif isinstance(item, dict): item = _decode_dict(item) rv.append(item) return rv def _decode_dict(data): """ Decodes dict elements. 'object_hook' for json.loads (e.g. obj = json.loads(s, object_hook=_decode_dict)) """ rv = {} for key, value in data.iteritems(): if isinstance(key, unicode): key = key.encode('utf-8') if isinstance(value, unicode): value = value.encode('utf-8') elif isinstance(value, list): value = _decode_list(value) elif isinstance(value, dict): value = _decode_dict(value) rv[key] = value return rv class DataIORedis(object): """ Class implementing data IO for Redis. """ DEFAULT_HOST = 'localhost' DEFAULT_PORT = 6379 DEFAULT_DB = 0 __instance = None def __new__(cls, *args, **kwargs): """ This class is Singleton, return only one instance """ if not cls.__instance: cls.__instance = super(DataIORedis, cls).__new__(cls, *args, **kwargs) return cls.__instance def __init__(self, **kwargs): super(DataIORedis, self).__init__(**kwargs) self.setconfig(**kwargs) def setconfig(self, **kwargs): """ Sets the instance config """ self.host = kwargs['host'] if kwargs.has_key('host') else \ self.DEFAULT_HOST self.port = kwargs['port'] if kwargs.has_key('port') else \ self.DEFAULT_PORT self.db = kwargs['db'] if kwargs.has_key('db') else self.DEFAULT_DB def connect(self): self.conn = redis.Redis(host=self.host, port=self.port, db=self.db) def write(self, key, value): if self.conn: try: return self.conn.set(key, value) except KeyError as e: log.error('Missing param -> {0}'.format(e.message)) return False else: log.error('No redis connection.') return False def read(self, key): if self.conn: try: return self.conn.get(key) except KeyError as e: log.error('Missing param -> {0}'.format(e.message)) return False else: log.error('No redis connection.') return False def delete(self, **kwargs): if self.conn: try: return self.conn.delete(kwargs['key']) except KeyError as e: log.error('Missing param -> {0}'.format(e.message)) return False else: log.error('No redis connection.') return False
rfaulkner/Flickipedia
flickipedia/redisio.py
Python
bsd-2-clause
3,307
import dbf import os.path THRIFT_DIR_PATH = os.path.join( os.path.dirname(__file__), "..", "src", "pastpy", "models" ) class RecordField: THRIFT_IMPORTS_BY_TYPE = { "date.Date": 'include "thryft/native/date.thrift"', "date_time.DateTime": 'include "thryft/native/date_time.thrift"', "decimal.Decimal": 'include "thryft/native/decimal.thrift"', } # DBF type is C for char, et al. # http://dbfread.readthedocs.io/en/latest/field_types.html THRIFT_TYPE_BY_DBF_TYPE = { # C text unicode string "C": "string", # D date datetime.date or None "D": "date.Date", # L logical True, False or None "L": "bool", # M memo unicode string (memo), byte string (picture or object) or None "M": "string", # N numeric int, float or None "N": "decimal.Decimal", # T time datetime.datetime "T": "date_time.DateTime", } def __init__(self, dbf_field_info, name): self.__dbf_field_info = dbf_field_info self.__name = name dbf_type = chr(dbf_field_info.field_type) if dbf_type == "N": if dbf_field_info.decimal > 0: thrift_type = "decimal.Decimal" else: thrift_type = "i32" else: thrift_type = self.THRIFT_TYPE_BY_DBF_TYPE[dbf_type] self.__thrift_type = thrift_type def __eq__(self, other): if self.name != other.name: return False if self.thrift_type != other.thrift_type: return False return True @property def name(self): return self.__name def thrift_import(self): return self.THRIFT_IMPORTS_BY_TYPE.get(self.thrift_type, None) def thrift_repr(self): dbf_type = [chr(self.__dbf_field_info.field_type)] if self.__dbf_field_info.length > 0: dbf_type.append(str(self.__dbf_field_info.length)) if self.__dbf_field_info.decimal > 0: dbf_type.append(str(self.__dbf_field_info.decimal)) dbf_type = ",".join(dbf_type) name = self.name thrift_type = self.thrift_type return ( """\ // %(dbf_type)s optional %(thrift_type)s %(name)s;""" % locals() ) @property def thrift_type(self): return self.__thrift_type def generate_record_thrift(union_dbf_file_paths, thrift_file_name): fields_by_name = {} thrift_imports = [] for dbf_file_path in union_dbf_file_paths: with dbf.Table(dbf_file_path) as table: for field_name in table.field_names: field = RecordField( dbf_field_info=table.field_info(field_name), name=field_name ) if field_name in fields_by_name: assert field == fields_by_name[field_name] fields_by_name[field_name] = field thrift_import = field.thrift_import() if thrift_import is not None and thrift_import not in thrift_imports: thrift_imports.append(thrift_import) field_thrift_reprs = [] for field_name in sorted(fields_by_name.keys()): field_thrift_reprs.append(fields_by_name[field_name].thrift_repr()) field_thrift_reprs = "\n\n".join(field_thrift_reprs) thrift_file_path = os.path.join(THRIFT_DIR_PATH, thrift_file_name) thrift_imports = "\n".join(sorted(thrift_imports)) struct_name = "".join( part.capitalize() for part in os.path.splitext(thrift_file_name)[0].split("_") ) with open(thrift_file_path, "w+b") as thrift_file: thrift_file.write( ( """\ namespace * pastpy.models %(thrift_imports)s struct %(struct_name)s { %(field_thrift_reprs)s } """ % locals() ) .replace("\r\n", "\n") .encode("ascii") ) print("wrote", thrift_file_path) assert __name__ == "__main__" generate_record_thrift( ("C:\\pp5eval\\Data\\OBJECTS.DBF", "C:\\pp5Reports\\PPSdata.dbf",), "objects_dbf_record.thrift", )
minorg/pastpy
devbin/generate_record_thrift.py
Python
bsd-2-clause
4,135
#!/usr/bin/env python """ @package mi.dataset.parser.test.test_dosta_ln_wfp_sio_mule @file marine-integrations/mi/dataset/parser/test/test_dosta_ln_wfp_sio_mule.py @author Christopher Fortin @brief Test code for a dosta_ln_wfp_sio_mule data parser """ #!/usr/bin/env python import os import ntplib, struct from nose.plugins.attrib import attr from mi.core.exceptions import SampleException, UnexpectedDataException from mi.core.log import get_logger ; log = get_logger() from mi.dataset.test.test_parser import ParserUnitTestCase from mi.dataset.dataset_driver import DataSetDriverConfigKeys from mi.dataset.parser.sio_mule_common import StateKey from mi.dataset.parser.dosta_ln_wfp_sio_mule import DostaLnWfpSioMuleParser from mi.dataset.parser.dosta_ln_wfp_sio_mule import DostaLnWfpSioMuleParserDataParticle from mi.idk.config import Config RESOURCE_PATH = os.path.join(Config().base_dir(), 'mi', 'dataset', 'driver', 'dosta_ln', 'wfp_sio_mule', 'resource') @attr('UNIT', group='mi') class DostaLnWfpSioParserUnitTestCase(ParserUnitTestCase): def state_callback(self, state): """ Call back method to watch what comes in via the position callback """ self.state_callback_value = state def pub_callback(self, pub): """ Call back method to watch what comes in via the publish callback """ self.publish_callback_value = pub def exception_callback(self, exception): """ Call back method to watch what comes in via the exception callback """ self.exception_callback_value = exception def setUp(self): ParserUnitTestCase.setUp(self) self.config = { DataSetDriverConfigKeys.PARTICLE_MODULE: 'mi.dataset.parser.dosta_ln_wfp_sio_mule', DataSetDriverConfigKeys.PARTICLE_CLASS: 'DostaLnWfpSioMuleParserDataParticle' } # First 'WE' SIO header in noe58p1.dat, first record. self.timestamp_1a = self.timestamp_to_ntp('Q\xf2W.') # The record timestamp should be 2986504401 log.debug("Converted timestamp 1a: %s",self.timestamp_1a) self.particle_1a = DostaLnWfpSioMuleParserDataParticle(b'Q\xf2W.\x00\x00\x00\x00A9Y' \ '\xb4\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x009\x00e\x02:', internal_timestamp = self.timestamp_1a) # First 'WE' SIO header in noe58p1.dat, second record. self.timestamp_1b = self.timestamp_to_ntp('Q\xf2Xq') log.debug("Converted timestamp 1b: %s",self.timestamp_1b) self.particle_1b = DostaLnWfpSioMuleParserDataParticle(b'Q\xf2XqB\x8f\x83DA5\x1e\xb8D' \ '\xfd\x85qB\x82\x83\x12?\xf9\xba^\x009\x00d\x028', internal_timestamp = self.timestamp_1b) # First 'WE' SIO header in noe58p1.dat, third record. self.timestamp_1c = self.timestamp_to_ntp('Q\xf2Z\xd3') log.debug("Converted timestamp 1c: %s",self.timestamp_1c) self.particle_1c = DostaLnWfpSioMuleParserDataParticle(b'Q\xf2Z\xd3B\x84\x06GA2\x9a\xd4E' \ '\t\xd3\xd7B\x9b\xdc)?\xec\xac\x08\x00:\x00d\x027', internal_timestamp = self.timestamp_1c) # Second 'WE' SIO header in noe58p1.dat, first record. self.timestamp_2a = self.timestamp_to_ntp('Q\xf2\x8fn') log.debug("Converted timestamp 2a: %s",self.timestamp_2a) self.particle_2a = DostaLnWfpSioMuleParserDataParticle(b'Q\xf2\x8fn\x00\x00\x00\x00A7\xd5f' \ '\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x008\x00a\x02=', internal_timestamp = self.timestamp_2a) # Last 'WE' SIO header in node58p1.dat, last record (when reading 12). self.timestamp_1l = self.timestamp_to_ntp('Q\xf2\x99q') log.debug("Converted timestamp 1l: %s",self.timestamp_1l) self.particle_1l = DostaLnWfpSioMuleParserDataParticle(b'Q\xf2\x99qC"\t\xceA/\x9alEM\x07\\C' \ '\x07\xd7\n?\xc3\x95\x81\x007\x00_\x02;', internal_timestamp = self.timestamp_1l) # Last 'WE' SIO header in node58p1.dat[0:300000], second to last record. self.timestamp_1k = self.timestamp_to_ntp('Q\xf2\x981') log.debug("Converted timestamp 1k: %s",self.timestamp_1k) self.particle_1k = DostaLnWfpSioMuleParserDataParticle(b'Q\xf2\x981C\x10\xe5kA/\xe4&EG\x8c\x00C' \ '\x04\xc2\x8f?\xc4\xfd\xf4\x006\x00_\x02;', internal_timestamp = self.timestamp_1k) # Last record of second 'WE' SIO header, the last record when pulling 5000 bytes. self.timestamp_m = self.timestamp_to_ntp('Q\xf2\xa5\xc9') log.debug("Converted timestamp m2: %s",self.timestamp_m) self.state_callback_value = None self.publish_callback_value = None self.exception_callback_value = None def assert_result(self, result, in_process_data, unprocessed_data, particle): self.assertEqual(result, [particle]) self.assert_state(in_process_data, unprocessed_data) self.assert_(isinstance(self.publish_callback_value, list)) self.assertEqual(self.publish_callback_value[0], particle) def assert_state(self, in_process_data, unprocessed_data): self.assertEqual(self.parser._state[StateKey.IN_PROCESS_DATA], in_process_data) self.assertEqual(self.parser._state[StateKey.UNPROCESSED_DATA], unprocessed_data) self.assertEqual(self.state_callback_value[StateKey.IN_PROCESS_DATA], in_process_data) self.assertEqual(self.state_callback_value[StateKey.UNPROCESSED_DATA], unprocessed_data) def timestamp_to_ntp(self, hex_timestamp): fields = struct.unpack('>I', hex_timestamp) timestamp = float(fields[0]) return ntplib.system_to_ntp_time(timestamp) def test_simple(self): """ Read test data from the file and pull out data particles one at a time. Assert that the results are those we expected. """ log.debug('------------------------------------------------------Starting test_simple') self.stream_handle = open(os.path.join(RESOURCE_PATH, 'node58p1.dat')) # NOTE: using the unprocessed data state of 0,5000 limits the file to reading # just 5000 bytes, so even though the file is longer it only reads the first # 5000 self.state = {StateKey.UNPROCESSED_DATA:[[0, 5000]], StateKey.IN_PROCESS_DATA:[], StateKey.FILE_SIZE: 1939566} self.parser = DostaLnWfpSioMuleParser(self.config, self.state, self.stream_handle, self.state_callback, self.pub_callback, self.exception_callback) result = self.parser.get_records(1) log.debug("IN_PROCESS_DATA: %s", self.parser._state[StateKey.IN_PROCESS_DATA]) log.debug("Unprocessed: %s", self.parser._state[StateKey.UNPROCESSED_DATA]) # An extra byte exists between SIO headers([4058:4059] and [7423,7424]) self.assert_result(result, [[2818,2982,3,1], [4059,4673,18,0]], [[2818,2982], [4058,5000]], self.particle_1a) result = self.parser.get_records(1) self.assert_result(result, [[2818,2982,3,2], [4059,4673,18,0]], [[2818,2982], [4058,5000]], self.particle_1b) result = self.parser.get_records(1) self.assert_result(result, [[4059,4673,18,0]], [[4058,5000]], self.particle_1c) result = self.parser.get_records(1) self.assert_result(result, [[4059,4673,18,1]], [[4058,5000]], self.particle_2a) self.stream_handle.close() def test_get_many(self): """ Read test data from the file and pull out multiple data particles at one time. Assert that the results are those we expected. """ log.debug('--------------------------------------------------------Starting test_get_many') self.state = {StateKey.UNPROCESSED_DATA:[[0, 5000]], StateKey.IN_PROCESS_DATA:[], StateKey.FILE_SIZE: 1939566} self.stream_handle = open(os.path.join(RESOURCE_PATH, 'node58p1.dat')) self.parser = DostaLnWfpSioMuleParser(self.config, self.state, self.stream_handle, self.state_callback, self.pub_callback, self.exception_callback) result = self.parser.get_records(4) self.assertEqual(result, [self.particle_1a, self.particle_1b, self.particle_1c, self.particle_2a]) self.assertEqual(self.publish_callback_value[0], self.particle_1a) self.assertEqual(self.publish_callback_value[1], self.particle_1b) self.assertEqual(self.publish_callback_value[2], self.particle_1c) self.assertEqual(self.publish_callback_value[3], self.particle_2a) self.assert_state([[4059,4673,18,1]],[[4058,5000]]) self.stream_handle.close() def test_long_stream(self): """ Test a long stream """ log.debug('---------------------------------------------------------Starting test_long_stream') self.stream_handle = open(os.path.join(RESOURCE_PATH, 'node58p1.dat')) self.stream_handle.seek(0) self.state = {StateKey.UNPROCESSED_DATA:[[0, 5000]], StateKey.IN_PROCESS_DATA:[], StateKey.FILE_SIZE: 1939566} self.parser = DostaLnWfpSioMuleParser(self.config, self.state, self.stream_handle, self.state_callback, self.pub_callback, self.exception_callback) result = self.parser.get_records(12) self.assertEqual(result[0], self.particle_1a) self.assertEqual(result[1], self.particle_1b) self.assertEqual(result[2], self.particle_1c) self.assertEqual(result[-2], self.particle_1k) self.assertEqual(result[-1], self.particle_1l) self.assertEqual(self.publish_callback_value[-2], self.particle_1k) self.assertEqual(self.publish_callback_value[-1], self.particle_1l) self.assert_state([[4059,4673,18,9]],[[4058,5000]]) self.stream_handle.close() def test_mid_state_start(self): """ Test starting the parser in a state in the middle of processing """ log.debug('-----------------------------------------------------------Starting test_mid_state_start') new_state = {StateKey.IN_PROCESS_DATA:[], StateKey.UNPROCESSED_DATA:[[2818,2982]], StateKey.FILE_SIZE: 1939566} self.stream_handle = open(os.path.join(RESOURCE_PATH, 'node58p1.dat')) self.parser = DostaLnWfpSioMuleParser(self.config, new_state, self.stream_handle, self.state_callback, self.pub_callback, self.exception_callback) result = self.parser.get_records(1) self.assert_result(result, [[2818,2982,3,1]], [[2818,2982]], self.particle_1a) result = self.parser.get_records(1) self.assert_result(result, [[2818,2982,3,2]], [[2818,2982]], self.particle_1b) result = self.parser.get_records(1) self.assert_result(result, [], [], self.particle_1c) self.stream_handle.close() def test_bad_data(self): """ Ensure that the bad record ( in this case a currupted status message ) causes a sample exception """ self.stream_handle = open(os.path.join(RESOURCE_PATH, 'node58p1_BADFLAGS.dat')) self.state = {StateKey.UNPROCESSED_DATA:[[0, 5000]], StateKey.IN_PROCESS_DATA:[], StateKey.FILE_SIZE: 1939566} log.debug('-------------------------------------------------------------Starting test_bad_data') self.parser = DostaLnWfpSioMuleParser(self.config, self.state, self.stream_handle, self.state_callback, self.pub_callback, self.exception_callback) result = self.parser.get_records(1) self.assert_(isinstance(self.exception_callback_value, UnexpectedDataException)) def test_in_process_start(self): """ test starting a parser with a state in the middle of processing """ log.debug('-------------------------------------------------------------Starting test_in_process_start') #[2818:2982] contains the first WE SIO header new_state = {StateKey.IN_PROCESS_DATA:[[2818,2982,3,0], [4059,4673,18,0]], StateKey.UNPROCESSED_DATA:[[2818,2982], [4058,5000]], StateKey.FILE_SIZE: 1939566} self.stream_handle = open(os.path.join(RESOURCE_PATH, 'node58p1.dat')) self.parser = DostaLnWfpSioMuleParser(self.config, new_state, self.stream_handle, self.state_callback, self.pub_callback, self.exception_callback) result = self.parser.get_records(1) self.assert_result(result, [[2818,2982,3,1], [4059,4673,18,0]], [[2818,2982], [4058,5000]], self.particle_1a) result = self.parser.get_records(2) self.assertEqual(result[0], self.particle_1b) self.assertEqual(result[1], self.particle_1c) self.assert_state([[4059,4673,18,0]], [[4058,5000]]) self.assertEqual(self.publish_callback_value[-1], self.particle_1c) result = self.parser.get_records(1) self.assert_result(result, [[4059,4673,18,1]], [[4058,5000]], self.particle_2a) self.stream_handle.close() def test_set_state(self): """ Test changing to a new state after initializing the parser and reading data, as if new data has been found and the state has changed """ log.debug('-------------------------------------------------Starting test_set_state') self.state = {StateKey.UNPROCESSED_DATA:[[4059, 4673]], StateKey.IN_PROCESS_DATA:[], StateKey.FILE_SIZE: 1939566} new_state = {StateKey.UNPROCESSED_DATA:[[2818, 2982], [4058, 4059], [4673, 5000]], StateKey.IN_PROCESS_DATA:[[2818, 2982, 3, 0]], StateKey.FILE_SIZE: 1939566} self.stream_handle = open(os.path.join(RESOURCE_PATH, 'node58p1.dat')) self.parser = DostaLnWfpSioMuleParser(self.config, self.state, self.stream_handle, self.state_callback, self.pub_callback, self.exception_callback) # only 18 left in file at this point. Drain them, and make sure the next fetch fails result = self.parser.get_records(17) self.assert_state([[4059, 4673, 18, 17]],[[4059, 4673]]) result = self.parser.get_records(1) result = self.parser.get_records(1) self.assertEqual(result, []) self.parser.set_state(new_state) result = self.parser.get_records(1) self.assert_result(result, [[2818, 2982, 3, 1]], [[2818, 2982], [4058, 4059], [4673, 5000]], self.particle_1a) self.stream_handle.close() def test_update(self): """ Test a file which has had a section of data replaced by 0s, as if a block of data has not been received yet, then using the returned state make a new parser with the test data that has the 0s filled in """ log.debug('------------------------------------------------------Starting test_update') self.state = {StateKey.UNPROCESSED_DATA:[[0, 5000]], StateKey.IN_PROCESS_DATA:[], StateKey.FILE_SIZE: 1939566} # this file has first block of WE data replaced by 0s self.stream_handle = open(os.path.join(RESOURCE_PATH, 'node58p1_1stWE0d.dat')) self.parser = DostaLnWfpSioMuleParser(self.config, self.state, self.stream_handle, self.state_callback, self.pub_callback, self.exception_callback) result = self.parser.get_records(1) self.assert_result(result, [[4059,4673,18,1]], [[2818, 2982], [4058, 5000]], self.particle_2a) self.stream_handle.close() next_state = self.parser._state self.stream_handle = open(os.path.join(RESOURCE_PATH, 'node58p1.dat')) self.parser = DostaLnWfpSioMuleParser(self.config, next_state, self.stream_handle, self.state_callback, self.pub_callback, self.exception_callback) # first get the old 'in process' records # Once those are done, the un processed data will be checked # there are 18 valid records in the second WE chunk. We read one above, now we need # to drain the remaining 17 to trigger the reparsing of the earlier block for kk in range(0, 17): result = self.parser.get_records(1) # so now, the next fetch should find the now-replaced earlier data result = self.parser.get_records(1) self.assert_result(result, [[2818, 2982, 3, 1]], [[2818, 2982], [4058, 4059], [4673, 5000]], self.particle_1a) # this should be the first of the newly filled in particles from result = self.parser.get_records(1) self.assert_result(result, [[2818, 2982, 3, 2]], [[2818, 2982], [4058, 4059], [4673, 5000]], self.particle_1b) self.stream_handle.close() def test_bad_e_record(self): """ Ensure that the bad record causes a sample exception. The file 'bad_e_record.dat' includes a record containing one byte less than the expected 30 for the flord_l_wfp_sio_mule. The 'Number of Data Bytes' and the 'CRC Checksum' values in the SIO Mule header have been modified accordingly. """ self.stream_handle = open(os.path.join(RESOURCE_PATH, 'bad_e_record.dat')) self.state = {StateKey.UNPROCESSED_DATA:[[0, 5000]], StateKey.IN_PROCESS_DATA:[], StateKey.FILE_SIZE:[]} self.parser = DostaLnWfpSioMuleParser(self.config, self.state, self.stream_handle, self.state_callback, self.pub_callback, self.exception_callback) result = self.parser.get_records(1) self.assert_(isinstance(self.exception_callback_value, UnexpectedDataException))
ooici/marine-integrations
mi/dataset/parser/test/test_dosta_ln_wfp_sio_mule.py
Python
bsd-2-clause
18,792
# -*- mode: python; coding: utf-8; -*- __author__ = "Kenny Meyer" __email__ = "knny.myer@gmail.com" from django.conf.urls.defaults import * import views urlpatterns = patterns('', url(r'^$', views.list_flashcards, name = 'list_flashcards'), url(r'^practice/$', views.practice_flashcards, name = 'practice_flashcards'), url(r'^practice/(?P<mode>\w+)/$', views.practice_flashcards, name = 'practice_flashcards'), url(r'^rating/$', views.process_rating, name = 'process_rating'), url(r'^create/$', views.create_flashcard, name = 'create_flashcard'), url(r'^(\d+)/$', views.show_details_about, name = 'show_details'), url(r'^(\d+)/edit/$', views.edit_flashcard, name = 'edit_flashcard'), url(r'^(\d+)/delete/$', views.delete_flashcard, name = 'delete_flashcard'), )
kennym/django-flashcard
src/flashcard/urls.py
Python
bsd-2-clause
927
#!/usr/bin/env python """ statistic # ---- # License: BSD # ---- # 0.1: init version - 2016.6 - by Nick Qian """ def statistic(bags): """example: Niu 1-9: 1:98598, 2:100122, 3:100394, 4:101250, 5:100785, 6:100239, 7:100176, 8:100327, 9:100417 Niu 10: 97692 <NiuNiu> 10% Niu 11-12: 22550, 22528 <DuiZi> <JinNiu> 2.25% Niu 13-15: 7455, 7515, 7620 <BaoZi> <ManNiu> <ShunZi> 0.75% rW_avg = (100000*(2 + 3 + 4+ 5 + 6 + 7 + 8 + 9 + 10) + 22540*(11 + 12) + 7500(13 + 14 +15) )/100,0000 (540,0000 + 51,8420 + 31,5000 )/100,0000 = 6.23342% rL_avg = rW_avg """ count_1, count_2, count_3, count_4, count_5 = 0,0,0,0,0 count_6, count_7, count_8, count_9, count_0 = 0,0,0,0,0 niuSum = [] nius = [] BaoZi = [] ManNiu = [] ShunZi = [] DuiZi = [] JinNiu = [] for threeWei in bags: if (threeWei[-4:] == '1.11') or (threeWei[-4:] == '2.22') or (threeWei[-4:] == '3.33'): if VERBOSE_B: print ("Info*: Baozi:", threeWei) BaoZi.append(threeWei) if (threeWei[-4:] == '1.00') or (threeWei[-4:] == '2.00') or (threeWei[-4:] == '3.00'): if VERBOSE_C: print ("Info*: ManNiu:", threeWei) ManNiu.append(threeWei) if (threeWei[-4:] == '1.23') or (threeWei[-4:] == '2.34') or (threeWei[-4:] == '3.45'): if VERBOSE_C: print ("Info*: ShunZi:", threeWei) ShunZi.append(ShunZi) if (threeWei[-4] == '0') and (threeWei[-2] == threeWei[-1] ): #print ("Info*: DuiZi:", threeWei) DuiZi.append(DuiZi) if (threeWei[-4] == '0') and (threeWei[-1] == '0'): #print ("Info*: JinNiu:", threeWei) JinNiu.append(JinNiu) for threeInt in bags: niuSum.append( int(threeInt[-4]) + int(threeInt[-1]) + int(threeInt[-2]) ) #print ("NiuSum is:", niuSum) for sumrlst in niuSum: sumrlstString = str(sumrlst) nius.append(int(sumrlstString[-1])) #print ("Niu are:", nius) for i in range(0, len(nius)): if nius[i] is 1: count_1 += 1 if nius[i] is 2: count_2 += 1 if nius[i] is 3: count_3 += 1 if nius[i] is 4: count_4 += 1 if nius[i] is 5: count_5 += 1 if nius[i] is 6: count_6 += 1 if nius[i] is 7: count_7 += 1 if nius[i] is 8: count_8 += 1 if nius[i] is 9: count_9 += 1 if nius[i] is 0: count_0 += 1 print ("Info: Freq Sum [0->9]:", count_0, count_1, count_2, count_3, count_4, count_5, count_6, count_7, count_8, count_9) print ("Info: Freq <BaoZi> <ManNiu> <ShunZi> <DuiZi> <JinNiu>:", len(BaoZi), len(ManNiu), len(ShunZi), len(DuiZi), len(JinNiu) ) def statistic_r(bags): #rW & rL my_rW = [] my_rL = [] rW = 0 rL = 0 for n in range(0, (len(bags))/2): mybag = bags[n*2] my_niu = computeOneBag(mybag) dealerbag = bags[n*2+1] dealer_niu = computeOneBag(dealerbag) if VERBOSE_E: print("--my bag:%s, dealer bag:%s |my niu:%d, dealer niu:%d"%(mybag, dealerbag, my_niu, dealer_niu)) if my_niu > dealer_niu: if VERBOSE_D: print("-->No.%d: I win : %d" %(n, my_niu) ) my_rW.append(my_niu) #dealer_rL.append[my_niu] elif my_niu < dealer_niu: if VERBOSE_D: print("-->No.%d: I lost: %d, " %(n, (0-dealer_niu)) ) my_rL.append(0-dealer_niu) rW = (float(sum(my_rW))) / len(my_rW) rL = (float(sum(my_rL))) / len(my_rL) if VERBOSE_D: print ("Info: statistic_r: my_rW is:", my_rW, "my_rL is:", my_rL) print ("->statistic_r: rW is:",rW, "rL is:",rL)
NickQian/pyWager
statistic.py
Python
bsd-2-clause
4,094
#!/usr/bin/env python # -*- coding: utf-8 -*- from kaarmebot import KaarmeBotApp from kaarmebot import predicates as p import example_plugin app_conf = { 'servers': { 'some_server': { 'address': ('someserver.org', 6667), 'real_name': 'Sir Bot McBotsworth, Esq.', 'nick': 'BotName', 'username': 'botname', 'channels': ('#something',) } } } plugin_bindings = [ (p.All(p.PrivMsg, p.BodyRegEx('.*: .*')), 'echo'), (p.All(p.PrivMsg, p.BodyRegEx('.*https?://[.\w]*youtube\.com/watch\?[^\s]+.*')), 'utube'), (p.All(p.PrivMsg, p.BodyRegEx('.*https?://youtu\.be/[^\s]+.*')), 'utube'), ] if __name__ == '__main__': app = KaarmeBotApp(app_conf) app.scan(example_plugin) for predicate, name in plugin_bindings: app.add_binding(predicate, name) app.start()
jkpl/kaarmebot
example.py
Python
bsd-2-clause
900
# -*-coding:Utf-8 -* # Copyright (c) 2010-2017 LE GOFF Vincent # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT # OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Fichier contenant le paramètre 'commande' de la commande 'chgroupe'.""" from primaires.interpreteur.masque.parametre import Parametre class PrmCommande(Parametre): """Commande 'groupe commande'. """ def __init__(self): """Constructeur du paramètre""" Parametre.__init__(self, "commande", "command") self.schema = "<chemin_commande> <groupe_existant>" self.aide_courte = "change une commande de groupe" self.aide_longue = \ "Utilisez cette commande pour changer une commande de " \ "groupe. Si par exemple vous voulez rendre l'écriture de " \ "mudmails accessibles aux joueurs, déplacez la commande " \ "|cmd|messages|ff| dans le groupe |tit|joueur|ff| grâce à la " \ "commande : %chgroupe% %chgroupe:commande% |cmd|messages " \ "joueur|ff|. Il est préférable, quand vous ajoutez " \ "une nouvelle commande au MUD, de la placer d'office " \ "dans un groupe essentiel (|tit|pnj|ff|, |tit|joueur|ff| " \ "ou |tit|administrateur|ff|). Une fois que la commande " \ "a bien été ajoutée, vous pourrez la déplacer dans " \ "le groupe final de destination. " \ "Enfin, sachez qu'en déplaçant une commande, toutes ses " \ "sous-commandes seront déplacées dans le même groupe. Pour "\ "évitez cela, mettez un point (|cmd|.|ff|) après le nom de " \ "votre commande. Si vous faites %chgroupe% %chgroupe:commande% " \ "|cmd|messages. joueur|ff|, la commande |cmd|mail|ff| " \ "sera déplacée mais aucun de ses paramètres. " \ "Libre à vous de les transférer ensuite un à un pour " \ "n'autoriser que certains paramètres aux " \ "joueurs, tout en en laissant certains accessibles qu'aux " \ "administrateurs." def interpreter(self, personnage, dic_masques): """Interprétation du paramètre""" chemins = dic_masques["chemin_commande"].chemins nom_groupe = dic_masques["groupe_existant"].nom_groupe for chemin in chemins: type(self).importeur.interpreteur.groupes.changer_groupe_commande( chemin, nom_groupe) nb_mod = len(chemins) s = "" if nb_mod > 1: s = "s" personnage << "{0} commande{s} déplacée{s} dans le groupe {1}.".format( nb_mod, nom_groupe, s=s)
vlegoff/tsunami
src/primaires/joueur/commandes/chgroupe/commande.py
Python
bsd-3-clause
4,114
import unittest from maskgen.external.api import * from tests.test_support import TestSupport import os import numpy as np import random from maskgen.maskgen_loader import MaskGenLoader import sys class TestExternalAPI(TestSupport): loader = MaskGenLoader() def setUp(self): self.loader.load() def test_pull(self): token = self.loader.get_key('apitoken') url = self.loader.get_key('apiurl') params = {} params['width'] = 2180 params['media_type'] = 'video' name = findAndDownloadImage(token,url,params,'.',prefix='videos') self.assertTrue(name is not None) os.remove(name) if __name__ == '__main__': unittest.main()
rwgdrummer/maskgen
tests/external/test_external_api.py
Python
bsd-3-clause
711
""" Tests for glm function in glm module This checks the glm function with the procedure in the "Basic linear modeling" exercise from Day 14. Run at the project directory with: nosetests code/utils/tests/test_glm.py """ # Loading modules. import numpy as np import nibabel as nib import os import sys from numpy.testing import assert_almost_equal, assert_array_equal, assert_equal # Add path to functions to the system path. sys.path.append(os.path.join(os.path.dirname(__file__), "../functions/")) # Load our visualization functions. from Image_Visualizing import present_3d, make_mask def test_present(): # Read in the image data. data = np.arange(100000) data = data.reshape((100,100,10)) full=present_3d(data) assert full.shape == (400,300) def test_mask(): # example from http://www.jarrodmillman.com/rcsds/lectures/glm_intro.html # it should be pointed out that hypothesis just looks at simple linear regression data = np.arange(1000000) data = data.reshape((100,100,100)) mask1 = np.ones((100,100,100)) mask2 = np.zeros((100,100,100)) mask3 = np.ones((200,200,100)) assert_equal(make_mask(data, mask1), data) assert_equal(make_mask(data,mask2), mask2) assert_equal(make_mask(data,mask3,fit=True).shape, data.shape) x= False try: make_mask(data,mask3,fit=False) except ValueError: x=True assert(x==True)
reychil/project-alpha-1
code/utils/tests/test_imaging.py
Python
bsd-3-clause
1,461
import os import numpy as np if __name__ == '__main__': HOME = os.environ['HOME'] dataset_path = os.path.join(HOME, 'CaffeProjects/data/style') source_path = os.path.join(HOME, 'PycharmProjects/Dataset/wikipainting/style') f = open('classes', 'w') images_path = os.path.join(source_path) print len(os.listdir(images_path)) for cls, cls_name in enumerate(os.listdir(images_path)): cls_name_replaced = cls_name.replace(' ', '_') f.write(cls_name_replaced + ' ' + str(cls) + '\n') f.close()
cs-chan/fuzzyDCN
prune_caffe/data/wikiart/style/gen_cls_file.py
Python
bsd-3-clause
541
# Imports from Django from django.conf.urls.defaults import * from django.contrib.sites.models import Site # Imports from brubeck from brubeck.podcasts.models import Channel, Episode urlpatterns = patterns('django.views.generic.list_detail', url(r'^episodes/(?P<object_id>\d+)/$', 'object_detail', {'queryset': Episode.objects.all()}, name='podcasts-episode-detail'), (r'^episodes/$', 'object_list', {'queryset': Episode.objects.all(), 'extra_context': {'page_title': 'All episodes'}}), (r'^archived/$', 'object_list', {'queryset': Channel.old.all(), 'extra_context': {'page_title': 'Archived channels'}}), # url(r'^(?P<slug>[-\w]+)/$', 'object_detail', {'queryset': Channel.objects.all(), 'template_name': 'podcasts/episode_list.html'}, name='podcasts-channel-detail'), # (r'^$', 'object_list', {'queryset': Channel.current.all(), 'extra_context': {'page_title': 'Current channels'}}) ) urlpatterns += patterns('', (r'^calendar/(?P<year>\d{4})/(?P<month>\w{1,2})/(?P<day>\w{1,2})/$', 'brubeck.podcasts.views.calendar_day_view'), (r'^calendar/(?P<year>\d{4})/(?P<month>\w{1,2})/$', 'brubeck.podcasts.views.calendar_view'), (r'^calendar/(?P<year>\d{4})/$', 'brubeck.podcasts.views.calendar_view'), (r'^calendar/$', 'brubeck.podcasts.views.calendar_view'), (r'^(?P<channel_slug>[-\w]+)/calendar/(?P<year>\d{4})/(?P<month>\w{1,2})/(?P<day>\w{1,2})/$', 'brubeck.podcasts.views.calendar_day_view'), (r'^(?P<channel_slug>[-\w]+)/calendar/(?P<year>\d{4})/(?P<month>\w{1,2})/$', 'brubeck.podcasts.views.calendar_view'), (r'^(?P<channel_slug>[-\w]+)/calendar/(?P<year>\d{4})/$', 'brubeck.podcasts.views.calendar_view'), (r'^(?P<channel_slug>[-\w]+)/calendar/$', 'brubeck.podcasts.views.calendar_view'), (r'^(?P<slug>[-\w]+)/$', 'brubeck.podcasts.views.archive_view'), ) # urlpatterns += patterns('django.views.generic.list_detail', # (r'^$', 'object_list', {'queryset': Channel.current.all(), 'extra_context': {'page_title': 'Current channels'}}), # ) # urlpatterns += patterns('django.views.generic.list_detail', # url(r'^(?P<slug>[-\w]+)/$', 'object_detail', {'queryset': Channel.objects.all(), 'template_name': 'podcasts/episode_list.html'}, name='podcasts-channel-detail'), # ) urlpatterns += patterns('', (r'^$', 'brubeck.podcasts.views.list_view'), )
albatrossandco/brubeck_cms
brubeck/podcasts/urls.py
Python
bsd-3-clause
2,320
import pytest from unittest.mock import MagicMock from torrt.toolbox import * from torrt.utils import BotObjectsRegistry @pytest.fixture(scope='function', autouse=True) def clear_bot_registry(): """HACK: clears all registered bots before each test. otherwise test order matters """ BotObjectsRegistry._items.clear() @pytest.fixture(scope='function') def mock_telegram_plugin(monkeypatch): """MagicMock'ing everything under `telegram_bot` that's `python-telegram`-related""" for target in ( 'telegram', 'ReplyKeyboardMarkup', 'ReplyKeyboardRemove', 'InlineKeyboardMarkup', 'InlineKeyboardButton', 'Update', 'Filters', 'Updater', 'ConversationHandler', 'CommandHandler', 'MessageHandler', 'CallbackContext', 'CallbackQueryHandler' ): monkeypatch.setattr(f'torrt.bots.telegram_bot.{target}', MagicMock(), raising=False) # yield def test_register_unregister_torrent(mock_config): hashstr = '1234567890' register_torrent(hashstr, url='https://exmaple.com/here/') assert hashstr in mock_config['torrents'] unregister_torrent(hashstr) assert not mock_config['torrents'] def test_set_walk_interval(mock_config): set_walk_interval(16) assert mock_config['walk_interval_hours'] == 16 def test_configure_logging(): configure_logging(show_logger_names=True) def test_bots(mock_config, monkeypatch, mock_telegram_plugin): monkeypatch.setattr('torrt.bots.telegram_bot.TelegramBot.test_configuration', lambda *args: True) bot = configure_bot('telegram', {'token': 'xxx'}) bot.register() assert mock_config['bots']['telegram'] run_bots(['telegram']) remove_bot('telegram') assert not mock_config['bots'] def test_no_bots_to_run_exists(): with pytest.raises(SystemExit) as excinfo: run_bots(['stub']) assert excinfo.value.code == 1 def test_telegram_without_plugin_raises_exception(monkeypatch): monkeypatch.setattr(f'torrt.bots.telegram_bot.telegram', None) with pytest.raises(BotRegistrationFailed) as excinfo: configure_bot('telegram', {'token': 'xxx'}) assert 'python-telegram-bot' in str(excinfo.value) def test_bot_configured_but_unregistered(monkeypatch, mock_telegram_plugin): # configuring 'mocked' bot just to get it's configuration monkeypatch.setattr(f'torrt.bots.telegram_bot.TelegramBot.test_configuration', lambda *args: True) configure_bot('telegram', {'token': 'xxx'}) # making bot unspawnable, by forcebly removing required plugin mock monkeypatch.setattr(f'torrt.bots.telegram_bot.telegram', None) # check that user get's warning about configured, but unregistered bot mocked_logger = MagicMock() with monkeypatch.context() as m: m.setattr(f'torrt.toolbox.LOGGER', mocked_logger) init_object_registries() mocked_logger.warn.assert_called_once() assert 'bot is configured, but failed to register' in mocked_logger.warn.call_args[0][0] def test_notifiers(mock_config, monkeypatch): monkeypatch.setattr('torrt.notifiers.telegram.TelegramNotifier.test_configuration', lambda *args: True) configure_notifier('telegram', {'token': 'xxx', 'chat_id': 'xxx'}) assert mock_config['notifiers']['telegram'] remove_notifier('telegram') assert not mock_config['notifiers']
idlesign/torrt
tests/test_toolbox.py
Python
bsd-3-clause
3,339
# ---------------------------------------------------------------------------- # Copyright (c) 2013--, scikit-bio development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. # ---------------------------------------------------------------------------- from __future__ import absolute_import, division, print_function from unittest import TestCase, main import numpy as np import numpy.testing as npt from skbio.sequence import IUPACSequence from skbio.util import classproperty class ExampleIUPACSequence(IUPACSequence): @classproperty def degenerate_map(cls): return {"X": set("AB"), "Y": set("BC"), "Z": set("AC")} @classproperty def nondegenerate_chars(cls): return set("ABC") class ExampleMotifsTester(ExampleIUPACSequence): @property def _motifs(self): # These aren't really motifs, just a way to excercise the code paths return { "name1": lambda x, _, __: str(x), "name2": lambda x, _, __: len(x) } class TestIUPACSequence(TestCase): def test_instantiation_with_no_implementation(self): class IUPACSequenceSubclassNoImplementation(IUPACSequence): pass with self.assertRaises(TypeError) as cm: IUPACSequenceSubclassNoImplementation() self.assertIn("abstract class", str(cm.exception)) self.assertIn("nondegenerate_chars", str(cm.exception)) self.assertIn("degenerate_map", str(cm.exception)) def test_init_default_parameters(self): seq = ExampleIUPACSequence('.-ABCXYZ') npt.assert_equal(seq.values, np.array('.-ABCXYZ', dtype='c')) self.assertEqual(seq.id, "") self.assertEqual(seq.description, "") self.assertIsNone(seq.quality) def test_init_nondefault_parameters(self): seq = ExampleIUPACSequence('.-ABCXYZ', id='foo', description='bar baz', quality=range(8)) npt.assert_equal(seq.values, np.array('.-ABCXYZ', dtype='c')) self.assertEqual(seq.id, 'foo') self.assertEqual(seq.description, 'bar baz') npt.assert_equal(seq.quality, np.array(range(8), dtype='int')) def test_init_valid_empty_sequence(self): # just make sure we can instantiate an empty sequence regardless of # `validate` and `case_insensitive` parameters. more extensive tests # are performed in Sequence base class unit tests for validate in (True, False): for case_insensitive in (True, False): seq = ExampleIUPACSequence('', validate=validate, case_insensitive=case_insensitive) self.assertEqual(seq, ExampleIUPACSequence('')) def test_init_valid_single_character_sequence(self): for validate in (True, False): for case_insensitive in (True, False): seq = ExampleIUPACSequence('C', validate=validate, case_insensitive=case_insensitive) self.assertEqual(seq, ExampleIUPACSequence('C')) def test_init_valid_multiple_character_sequence(self): for validate in (True, False): for case_insensitive in (True, False): seq = ExampleIUPACSequence('BAACB.XYY-AZ', validate=validate, case_insensitive=case_insensitive) self.assertEqual(seq, ExampleIUPACSequence('BAACB.XYY-AZ')) def test_init_validate_parameter_single_character(self): seq = 'w' with self.assertRaisesRegexp(ValueError, "character.*'w'"): ExampleIUPACSequence(seq) # test that we can instantiate an invalid sequence. we don't guarantee # anything working beyond instantiation ExampleIUPACSequence(seq, validate=False) def test_init_validate_parameter_multiple_characters(self): # mix of valid and invalid characters with repeats and lowercased # alphabet characters seq = 'CBCBBbawCbbwBXYZ-.x' with self.assertRaisesRegexp(ValueError, "\['a', 'b', 'w', 'x'\]"): ExampleIUPACSequence(seq) ExampleIUPACSequence(seq, validate=False) def test_init_case_insensitive_lowercase(self): s = 'cbcbbbazcbbzbxyz-.x' with self.assertRaisesRegexp(ValueError, "\['a', 'b', 'c', 'x', 'y', 'z'\]"): ExampleIUPACSequence(s) seq = ExampleIUPACSequence(s, case_insensitive=True) self.assertEqual(seq, ExampleIUPACSequence('CBCBBBAZCBBZBXYZ-.X')) def test_init_case_insensitive_mixed_case(self): s = 'CBCBBbazCbbzBXYZ-.x' with self.assertRaisesRegexp(ValueError, "\['a', 'b', 'x', 'z'\]"): ExampleIUPACSequence(s) seq = ExampleIUPACSequence(s, case_insensitive=True) self.assertEqual(seq, ExampleIUPACSequence('CBCBBBAZCBBZBXYZ-.X')) def test_init_case_insensitive_no_validation(self): s = 'car' with self.assertRaisesRegexp(ValueError, "\['a', 'c', 'r'\]"): ExampleIUPACSequence(s) with self.assertRaisesRegexp(ValueError, "character.*'R'"): ExampleIUPACSequence(s, case_insensitive=True) ExampleIUPACSequence(s, case_insensitive=True, validate=False) def test_init_case_insensitive_byte_ownership(self): bytes = np.array([97, 98, 97], dtype=np.uint8) with self.assertRaisesRegexp(ValueError, "\['a', 'b'\]"): ExampleIUPACSequence(bytes) seq = ExampleIUPACSequence(bytes, case_insensitive=True) self.assertEqual(seq, ExampleIUPACSequence('ABA')) # should not share the same memory self.assertIsNot(seq._bytes, bytes) # we should have copied `bytes` before modifying in place to convert to # upper. make sure `bytes` hasn't been mutated npt.assert_equal(bytes, np.array([97, 98, 97], dtype=np.uint8)) def test_degenerate_chars(self): expected = set("XYZ") self.assertIs(type(ExampleIUPACSequence.degenerate_chars), set) self.assertEqual(ExampleIUPACSequence.degenerate_chars, expected) ExampleIUPACSequence.degenerate_chars.add("W") self.assertEqual(ExampleIUPACSequence.degenerate_chars, expected) self.assertEqual(ExampleIUPACSequence('').degenerate_chars, expected) with self.assertRaises(AttributeError): ExampleIUPACSequence('').degenerate_chars = set("BAR") def test_nondegenerate_chars(self): expected = set("ABC") self.assertEqual(ExampleIUPACSequence.nondegenerate_chars, expected) ExampleIUPACSequence.degenerate_chars.add("D") self.assertEqual(ExampleIUPACSequence.nondegenerate_chars, expected) self.assertEqual(ExampleIUPACSequence('').nondegenerate_chars, expected) with self.assertRaises(AttributeError): ExampleIUPACSequence('').nondegenerate_chars = set("BAR") def test_gap_chars(self): expected = set(".-") self.assertIs(type(ExampleIUPACSequence.gap_chars), set) self.assertEqual(ExampleIUPACSequence.gap_chars, expected) ExampleIUPACSequence.gap_chars.add("_") self.assertEqual(ExampleIUPACSequence.gap_chars, expected) self.assertEqual(ExampleIUPACSequence('').gap_chars, expected) with self.assertRaises(AttributeError): ExampleIUPACSequence('').gap_chars = set("_ =") def test_alphabet(self): expected = set("ABC.-XYZ") self.assertIs(type(ExampleIUPACSequence.alphabet), set) self.assertEqual(ExampleIUPACSequence.alphabet, expected) ExampleIUPACSequence.alphabet.add("DEF") self.assertEqual(ExampleIUPACSequence.alphabet, expected) self.assertEqual(ExampleIUPACSequence('').alphabet, expected) with self.assertRaises(AttributeError): ExampleIUPACSequence('').alphabet = set("ABCDEFG.-WXYZ") def test_degenerate_map(self): expected = {"X": set("AB"), "Y": set("BC"), "Z": set("AC")} self.assertEqual(ExampleIUPACSequence.degenerate_map, expected) ExampleIUPACSequence.degenerate_map['W'] = set("ABC") ExampleIUPACSequence.degenerate_map['X'] = set("CA") self.assertEqual(ExampleIUPACSequence.degenerate_map, expected) self.assertEqual(ExampleIUPACSequence('').degenerate_map, expected) with self.assertRaises(AttributeError): ExampleIUPACSequence('').degenerate_map = {'W': "ABC"} def test_gaps(self): self.assertIs(type(ExampleIUPACSequence("").gaps()), np.ndarray) self.assertIs(ExampleIUPACSequence("").gaps().dtype, np.dtype('bool')) npt.assert_equal(ExampleIUPACSequence("ABCXBZYABC").gaps(), np.zeros(10).astype(bool)) npt.assert_equal(ExampleIUPACSequence(".-.-.").gaps(), np.ones(5).astype(bool)) npt.assert_equal(ExampleIUPACSequence("A.B-C.X-Y.").gaps(), np.array([0, 1] * 5, dtype=bool)) npt.assert_equal(ExampleIUPACSequence("AB.AC.XY-").gaps(), np.array([0, 0, 1] * 3, dtype=bool)) npt.assert_equal(ExampleIUPACSequence("A.BC.-").gaps(), np.array([0, 1, 0, 0, 1, 1], dtype=bool)) def test_has_gaps(self): self.assertIs(type(ExampleIUPACSequence("").has_gaps()), bool) self.assertIs(type(ExampleIUPACSequence("-").has_gaps()), bool) self.assertFalse(ExampleIUPACSequence("").has_gaps()) self.assertFalse(ExampleIUPACSequence("ABCXYZ").has_gaps()) self.assertTrue(ExampleIUPACSequence("-").has_gaps()) self.assertTrue(ExampleIUPACSequence("ABCXYZ-").has_gaps()) def test_degenerates(self): self.assertIs(type(ExampleIUPACSequence("").degenerates()), np.ndarray) self.assertIs(ExampleIUPACSequence("").degenerates().dtype, np.dtype('bool')) npt.assert_equal(ExampleIUPACSequence("ABCBC-.AB.").degenerates(), np.zeros(10).astype(bool)) npt.assert_equal(ExampleIUPACSequence("ZYZYZ").degenerates(), np.ones(5).astype(bool)) npt.assert_equal(ExampleIUPACSequence("AX.Y-ZBXCZ").degenerates(), np.array([0, 1] * 5, dtype=bool)) npt.assert_equal(ExampleIUPACSequence("ABXACY.-Z").degenerates(), np.array([0, 0, 1] * 3, dtype=bool)) npt.assert_equal(ExampleIUPACSequence("AZBCXY").degenerates(), np.array([0, 1, 0, 0, 1, 1], dtype=bool)) def test_has_degenerates(self): self.assertIs(type(ExampleIUPACSequence("").has_degenerates()), bool) self.assertIs(type(ExampleIUPACSequence("X").has_degenerates()), bool) self.assertFalse(ExampleIUPACSequence("").has_degenerates()) self.assertFalse(ExampleIUPACSequence("A-.BC").has_degenerates()) self.assertTrue(ExampleIUPACSequence("Z").has_degenerates()) self.assertTrue(ExampleIUPACSequence("ABC.XYZ-").has_degenerates()) def test_nondegenerates(self): self.assertIs(type(ExampleIUPACSequence("").nondegenerates()), np.ndarray) self.assertIs(ExampleIUPACSequence("").nondegenerates().dtype, np.dtype('bool')) npt.assert_equal(ExampleIUPACSequence("XYZYZ-.XY.").nondegenerates(), np.zeros(10).astype(bool)) npt.assert_equal(ExampleIUPACSequence("ABABA").nondegenerates(), np.ones(5).astype(bool)) npt.assert_equal(ExampleIUPACSequence("XA.B-AZCXA").nondegenerates(), np.array([0, 1] * 5, dtype=bool)) npt.assert_equal(ExampleIUPACSequence("XXAZZB.-C").nondegenerates(), np.array([0, 0, 1] * 3, dtype=bool)) npt.assert_equal(ExampleIUPACSequence("YB.-AC").nondegenerates(), np.array([0, 1, 0, 0, 1, 1], dtype=bool)) def test_has_nondegenerates(self): self.assertIs(type(ExampleIUPACSequence("").has_nondegenerates()), bool) self.assertIs(type(ExampleIUPACSequence("A").has_nondegenerates()), bool) self.assertFalse(ExampleIUPACSequence("").has_nondegenerates()) self.assertFalse(ExampleIUPACSequence("X-.YZ").has_nondegenerates()) self.assertTrue(ExampleIUPACSequence("C").has_nondegenerates()) self.assertTrue(ExampleIUPACSequence(".XYZ-ABC").has_nondegenerates()) def test_degap(self): kw = { 'id': 'some_id', 'description': 'some description', } self.assertEquals(ExampleIUPACSequence("", quality=[], **kw).degap(), ExampleIUPACSequence("", quality=[], **kw)) self.assertEquals(ExampleIUPACSequence("ABCXYZ", quality=np.arange(6), **kw).degap(), ExampleIUPACSequence("ABCXYZ", quality=np.arange(6), **kw)) self.assertEquals(ExampleIUPACSequence("ABC-XYZ", quality=np.arange(7), **kw).degap(), ExampleIUPACSequence("ABCXYZ", quality=[0, 1, 2, 4, 5, 6], **kw)) self.assertEquals(ExampleIUPACSequence(".-ABC-XYZ.", quality=np.arange(10), **kw ).degap(), ExampleIUPACSequence("ABCXYZ", quality=[2, 3, 4, 6, 7, 8], **kw)) self.assertEquals(ExampleIUPACSequence("---.-.-.-.-.", quality=np.arange(12), **kw ).degap(), ExampleIUPACSequence("", quality=[], **kw)) def test_expand_degenerates_no_degens(self): seq = ExampleIUPACSequence("ABCABCABC") self.assertEqual(list(seq.expand_degenerates()), [seq]) def test_expand_degenerates_all_degens(self): exp = [ExampleIUPACSequence('ABA'), ExampleIUPACSequence('ABC'), ExampleIUPACSequence('ACA'), ExampleIUPACSequence('ACC'), ExampleIUPACSequence('BBA'), ExampleIUPACSequence('BBC'), ExampleIUPACSequence('BCA'), ExampleIUPACSequence('BCC')] # Sort based on sequence string, as order is not guaranteed. obs = sorted(ExampleIUPACSequence('XYZ').expand_degenerates(), key=str) self.assertEqual(obs, exp) def test_expand_degenerates_with_metadata(self): kw = { "quality": np.arange(3), "id": "some_id", "description": "some description" } exp = [ExampleIUPACSequence('ABA', **kw), ExampleIUPACSequence('ABC', **kw), ExampleIUPACSequence('BBA', **kw), ExampleIUPACSequence('BBC', **kw)] obs = sorted(ExampleIUPACSequence('XBZ', **kw).expand_degenerates(), key=str) self.assertEqual(obs, exp) def test_find_motifs_no_motif(self): seq = ExampleMotifsTester("ABCABCABC") with self.assertRaises(ValueError) as cm: seq.find_motifs("doesn't-exist") self.assertIn("doesn't-exist", str(cm.exception)) seq = ExampleIUPACSequence("ABCABCABC") with self.assertRaises(ValueError) as cm: seq.find_motifs("doesn't-exist") self.assertIn("doesn't-exist", str(cm.exception)) def test_find_motifs(self): seq = ExampleMotifsTester("ABC") self.assertEqual(seq.find_motifs("name1"), "ABC") self.assertEqual(seq.find_motifs("name2"), 3) if __name__ == "__main__": main()
jensreeder/scikit-bio
skbio/sequence/tests/test_iupac_sequence.py
Python
bsd-3-clause
16,144
import os from textwrap import dedent from nipype import Workflow, Node, Function from traits.api import TraitError import pytest from .. import frontend class TestFrontend(object): @pytest.fixture def lyman_dir(self, execdir): lyman_dir = execdir.mkdir("lyman") os.environ["LYMAN_DIR"] = str(lyman_dir) scans = dedent(""" subj01: sess01: exp_alpha: [run01, run02] sess02: exp_alpha: [run01] exp_beta: [run01, run02] subj02: sess01: exp_beta: [run01, run03] """) project = dedent(""" data_dir = "../datums" voxel_size = (2.5, 2.5, 2.5) """) experiment = dedent(""" tr = .72 smooth_fwhm = 2.5 """) model = dedent(""" smooth_fwhm = 4 contrasts = [("a-b", ["a", "b"], [1, -1])] """) model_bad = dedent(""" contrasts = ["a-b", "b-a"] """) with open(lyman_dir.join("scans.yaml"), "w") as fid: fid.write(scans) with open(lyman_dir.join("project.py"), "w") as fid: fid.write(project) with open(lyman_dir.join("exp_alpha.py"), "w") as fid: fid.write(experiment) with open(lyman_dir.join("exp_alpha-model_a.py"), "w") as fid: fid.write(model) with open(lyman_dir.join("exp_alpha-model_b.py"), "w") as fid: fid.write(model_bad) yield lyman_dir lyman_dir.remove() def test_info(self, lyman_dir, execdir): info = frontend.info() assert info.data_dir == execdir.join("datums") assert info.scan_info == { "subj01": {"sess01": {"exp_alpha": ["run01", "run02"]}, "sess02": {"exp_alpha": ["run01"], "exp_beta": ["run01", "run02"]}}, "subj02": {"sess01": {"exp_beta": ["run01", "run03"]}}, } model_traits = frontend.ModelInfo().trait_get() assert info.trait_get(*model_traits.keys()) == model_traits info = frontend.info("exp_alpha") assert info.tr == .72 assert info.smooth_fwhm == 2.5 info = frontend.info("exp_alpha", "model_a") assert info.smooth_fwhm == 4 assert info.contrasts == [("a-b", ["a", "b"], [1, -1])] with pytest.raises(TraitError): frontend.info("exp_alpha", "model_b") with pytest.raises(RuntimeError): frontend.info(model="model_b") lyman_dir_new = execdir.join("lyman2") lyman_dir.move(lyman_dir_new) info = frontend.info(lyman_dir=str(lyman_dir_new)) assert info.voxel_size == (2.5, 2.5, 2.5) lyman_dir_new.move(execdir.join("lyman")) del os.environ["LYMAN_DIR"] info = frontend.info() def test_subjects(self, lyman_dir, execdir): subjects = frontend.subjects() assert subjects == ["subj01", "subj02"] subjects = frontend.subjects("subj01") assert subjects == ["subj01"] subjects = frontend.subjects(["subj01"]) assert subjects == ["subj01"] subjects = frontend.subjects(["subj01", "subj02"]) assert subjects == ["subj01", "subj02"] subj_file = lyman_dir.join("group_one.txt") with open(subj_file, "w") as fid: fid.write("subj01") subjects = frontend.subjects("group_one") assert subjects == ["subj01"] subjects = frontend.subjects(["group_one"]) assert subjects == ["subj01"] with pytest.raises(RuntimeError): frontend.subjects(["subj01", "subj03"]) with pytest.raises(RuntimeError): frontend.subjects(["subj01", "subj02"], ["sess01", "sess02"]) with pytest.raises(RuntimeError): frontend.subjects(["subj02"], ["sess01", "sess02"]) del os.environ["LYMAN_DIR"] subjects = frontend.subjects() assert subjects == [] def test_execute(self, lyman_dir, execdir): info = frontend.info(lyman_dir=lyman_dir) def f(x): return x ** 2 assert f(2) == 4 n1 = Node(Function("x", "y", f), "n1") n2 = Node(Function("x", "y", f), "n2") wf = Workflow("test", base_dir=info.cache_dir) wf.connect(n1, "y", n2, "x") wf.inputs.n1.x = 2 cache_dir = execdir.join("cache").join("test") class args(object): graph = False n_procs = 1 debug = False clear_cache = True execute = True frontend.execute(wf, args, info) assert not cache_dir.exists() args.debug = True frontend.execute(wf, args, info) assert cache_dir.exists() args.debug = False info.remove_cache = False frontend.execute(wf, args, info) assert cache_dir.exists() args.execute = False res = frontend.execute(wf, args, info) assert res is None args.execute = True fname = str(execdir.join("graph").join("workflow.dot")) args.graph = fname res = frontend.execute(wf, args, info) assert res == fname[:-4] + ".svg" args.graph = True args.stage = "preproc" res = frontend.execute(wf, args, info) assert res == cache_dir.join("preproc.svg") def test_load_info_from_module(self, execdir): lyman_dir = execdir.mkdir("lyman") # Write a Python module to test import from disk module_text = dedent(""" foo = "a" bar = 3 buz = [1, 2, 3] """) module_fname = lyman_dir.join("test.py") with open(module_fname, "w") as fid: fid.write(module_text) expected = dict(foo="a", bar=3, buz=[1, 2, 3]) module_vars = frontend.load_info_from_module("test", lyman_dir) assert module_vars == expected # Remove the file to test import from memory os.remove(module_fname) module_vars = frontend.load_info_from_module("test", lyman_dir) assert module_vars == expected def test_check_extra_vars(self): with pytest.raises(RuntimeError): module_vars = {"not_a_valid_trait": True} frontend.check_extra_vars(module_vars, frontend.ProjectInfo)
mwaskom/lyman
lyman/tests/test_frontend.py
Python
bsd-3-clause
6,368
#!/usr/bin/python # -*- coding: UTF-8 -*- from django.shortcuts import render from django.http import JsonResponse from django.conf import settings from author.models import author from subprocess import Popen, PIPE, check_call from django.conf import settings import paramiko import datetime import os def gotoReaderPages(request, pageName): # when login, it will check reader's status after readerId if "readerId" in request.session: return 'reader/' + pageName + '.html' else: return 'reader/login.html' def getUserName(request): if "readerId" not in request.session: return 'reader/login.html' return request.session["userName"] def readerIndex(request): return render(request, gotoReaderPages(request, "readerIndex"), {"userName": getUserName(request)}) def booksRecorded(request): return render(request, gotoReaderPages(request, "booksRecorded"), {"userName": getUserName(request)}) def readerSetting(request): return render(request, gotoReaderPages(request, "readerSetting"), {"userName": getUserName(request)}) def getEnableAuthorStatus(request): try: if "readerId" in request.session: readerId = request.session["readerId"] data = {} data['status'] = 'success' isAuthor = False authorStatus = "" if author.isExist(readerId): isAuthor = True request.session["isAuthor"] = True # authorStatus maybe active or inactive or banned authorStatus = author.getStatus(readerId) if authorStatus: request.session["authorStatus"] = authorStatus else: request.session["authorStatus"] = "" data["isAuthor"] = isAuthor data["authorStatus"] = authorStatus return JsonResponse(data) else: data['status'] = 'fail' return render(request, 'reader/login.html') except Exception as e: data['status'] = 'fail' return JsonResponse(data) def modifyAuthorStatus(request): status = "" if request.POST: status = request.POST['status'] if "readerId" in request.session: data = {} try: readerId = request.session["readerId"] data['status'] = 'success' # check thatreader is or is not a author if author.isExist(readerId): # when reader is a author request.session["isAuthor"] = True data['isAuthor'] = True authorStatus = author.getStatus(readerId) # check author status if authorStatus == "active": # disable author function when reader is registed and status is "active" # step: modify the value of author's status in database result = author.modifyStatus(readerId, status) if result: request.session["authorStatus"] = status data['authorStatus'] = status #"inactive" else: data['authorStatus'] = request.session["authorStatus"] elif authorStatus == "inactive": # modify database if author.modifyStatus(readerId, "active"): data['authorStatus'] = "active" data['message'] = "" request.session["authorStatus"] = "active" request.session["authorId"] = str(author.getId(readerId)) else: data['status'] = "fail" data['authorStatus'] = "inactive" data['message'] = "啓用作者功能失敗!請刷新後重新嘗試或聯繫網站管理員!" else: data['status'] = "fail" data['authorStatus'] = authorStatus data['message'] = "讀取作者狀態異常!" request.session["authorStatus"] = authorStatus else: # when reader is not a author # step1: add data to table "author" in database if author.addAuthor(readerId): data['status'] = "success" data['isAuthor'] = True data['authorStatus'] = "active" data['message'] = "" request.session["isAuthor"] = True request.session["authorStatus"] = "active" else: # This needs to check and delete error data in database. data['status'] = "fail" data['isAuthor'] = False data['authorStatus'] = "inactive" data['message'] = "啓用作者功能失敗!添加資料到數據庫中失敗!請刷新後重新嘗試或聯繫網站管理員!" request.session["isAuthor"] = False request.session["authorStatus"] = "inactive" except Exception as e: data['status'] = 'fail' data['message'] = str(e) return JsonResponse(data) else: return render(request, 'reader/login.html') def activeAuthorFunction(request,readerId): # enable author function when reader is registed and status is "inactive" # step1: mkdir in git server # statp2: modify the value of author's status in database result = author.modifyStatus(readerId, "active") if result: # return status,authorStatus,message return "success","active",mes else: # return status,authorStatus,message return "success","active",mes
0lidaxiang/WeArt
reader/view/readerManageView.py
Python
bsd-3-clause
5,816
title = "Page d'accueil"
dbaty/soho
docs/_tutorial/4-i18n/src/fr/index.html.meta.py
Python
bsd-3-clause
25
from __future__ import print_function import matplotlib.pyplot as plt from neatsociety.ifnn import IFNeuron n = IFNeuron() times = [] currents = [] potentials = [] fired = [] for i in range(1000): times.append(1.0 * i) n.current = 0.0 if i < 100 or i > 800 else 16.0 currents.append(n.current) n.advance() potentials.append(n.potential) fired.append(1.0 if n.has_fired else 0.0) plt.subplot(3, 1, 1) plt.title("IFNN model") plt.ylabel("Input current") plt.ylim(0, 20) plt.grid() plt.plot(times, currents, "b-", label="current") plt.subplot(3, 1, 2) plt.ylabel("Potential") plt.grid() plt.plot(times, potentials, "g-", label="potential") plt.subplot(3, 1, 3) plt.ylabel("Fired") plt.xlabel("Time (msec)") plt.grid() plt.plot(times, fired, "r-", label="fired") plt.show() plt.close()
machinebrains/neat-python
examples/visualize/ifnn_visualize.py
Python
bsd-3-clause
816
from __future__ import annotations import asyncio import bisect import builtins import errno import heapq import logging import os import random import sys import threading import warnings import weakref from collections import defaultdict, deque from collections.abc import ( Callable, Collection, Container, Iterable, Iterator, Mapping, MutableMapping, ) from concurrent.futures import Executor from contextlib import suppress from datetime import timedelta from inspect import isawaitable from pickle import PicklingError from typing import TYPE_CHECKING, Any, ClassVar, Literal, NamedTuple, TypedDict, cast from tlz import first, keymap, merge, pluck # noqa: F401 from tornado.ioloop import IOLoop, PeriodicCallback import dask from dask.core import istask from dask.system import CPU_COUNT from dask.utils import ( apply, format_bytes, funcname, parse_bytes, parse_timedelta, stringify, typename, ) from . import comm, preloading, profile, system, utils from .batched import BatchedSend from .comm import Comm, connect, get_address_host from .comm.addressing import address_from_user_args, parse_address from .comm.utils import OFFLOAD_THRESHOLD from .compatibility import to_thread from .core import ( CommClosedError, Status, coerce_to_address, error_message, pingpong, send_recv, ) from .diagnostics import nvml from .diagnostics.plugin import _get_plugin_name from .diskutils import WorkDir, WorkSpace from .http import get_handlers from .metrics import time from .node import ServerNode from .proctitle import setproctitle from .protocol import pickle, to_serialize from .pubsub import PubSubWorkerExtension from .security import Security from .shuffle import ShuffleWorkerExtension from .sizeof import safe_sizeof as sizeof from .threadpoolexecutor import ThreadPoolExecutor from .threadpoolexecutor import secede as tpe_secede from .utils import ( LRU, TimeoutError, _maybe_complex, get_ip, has_arg, import_file, in_async_call, iscoroutinefunction, json_load_robust, key_split, log_errors, offload, parse_ports, recursive_to_dict, silence_logging, thread_state, warn_on_duration, ) from .utils_comm import gather_from_workers, pack_data, retry_operation from .utils_perf import ThrottledGC, disable_gc_diagnosis, enable_gc_diagnosis from .versions import get_versions if TYPE_CHECKING: from typing_extensions import TypeAlias from .actor import Actor from .client import Client from .diagnostics.plugin import WorkerPlugin from .nanny import Nanny # {TaskState -> finish: str | (finish: str, *args)} Recs: TypeAlias = "dict[TaskState, str | tuple]" Smsgs: TypeAlias = "list[dict[str, Any]]" logger = logging.getLogger(__name__) LOG_PDB = dask.config.get("distributed.admin.pdb-on-err") no_value = "--no-value-sentinel--" # TaskState.state subsets PROCESSING = { "waiting", "ready", "constrained", "executing", "long-running", "cancelled", "resumed", } READY = {"ready", "constrained"} DEFAULT_EXTENSIONS: list[type] = [PubSubWorkerExtension, ShuffleWorkerExtension] DEFAULT_METRICS: dict[str, Callable[[Worker], Any]] = {} DEFAULT_STARTUP_INFORMATION: dict[str, Callable[[Worker], Any]] = {} DEFAULT_DATA_SIZE = parse_bytes( dask.config.get("distributed.scheduler.default-data-size") ) class SerializedTask(NamedTuple): function: Callable args: tuple kwargs: dict[str, Any] task: object # distributed.scheduler.TaskState.run_spec class StartStop(TypedDict, total=False): action: str start: float stop: float source: str # optional class InvalidTransition(Exception): pass class TaskState: """Holds volatile state relating to an individual Dask task * **dependencies**: ``set(TaskState instances)`` The data needed by this key to run * **dependents**: ``set(TaskState instances)`` The keys that use this dependency. * **duration**: ``float`` Expected duration the a task * **priority**: ``tuple`` The priority this task given by the scheduler. Determines run order. * **state**: ``str`` The current state of the task. One of ["waiting", "ready", "executing", "fetch", "memory", "flight", "long-running", "rescheduled", "error"] * **who_has**: ``set(worker)`` Workers that we believe have this data * **coming_from**: ``str`` The worker that current task data is coming from if task is in flight * **waiting_for_data**: ``set(keys of dependencies)`` A dynamic version of dependencies. All dependencies that we still don't have for a particular key. * **resource_restrictions**: ``{str: number}`` Abstract resources required to run a task * **exception**: ``str`` The exception caused by running a task if it erred * **traceback**: ``str`` The exception caused by running a task if it erred * **type**: ``type`` The type of a particular piece of data * **suspicious_count**: ``int`` The number of times a dependency has not been where we expected it * **startstops**: ``[{startstop}]`` Log of transfer, load, and compute times for a task * **start_time**: ``float`` Time at which task begins running * **stop_time**: ``float`` Time at which task finishes running * **metadata**: ``dict`` Metadata related to task. Stored metadata should be msgpack serializable (e.g. int, string, list, dict). * **nbytes**: ``int`` The size of a particular piece of data * **annotations**: ``dict`` Task annotations Parameters ---------- key: str run_spec: SerializedTask A named tuple containing the ``function``, ``args``, ``kwargs`` and ``task`` associated with this `TaskState` instance. This defaults to ``None`` and can remain empty if it is a dependency that this worker will receive from another worker. """ key: str run_spec: SerializedTask | None dependencies: set[TaskState] dependents: set[TaskState] duration: float | None priority: tuple[int, ...] | None state: str who_has: set[str] coming_from: str | None waiting_for_data: set[TaskState] waiters: set[TaskState] resource_restrictions: dict[str, float] exception: Exception | None exception_text: str | None traceback: object | None traceback_text: str | None type: type | None suspicious_count: int startstops: list[StartStop] start_time: float | None stop_time: float | None metadata: dict nbytes: float | None annotations: dict | None done: bool _previous: str | None _next: str | None def __init__(self, key: str, run_spec: SerializedTask | None = None): assert key is not None self.key = key self.run_spec = run_spec self.dependencies = set() self.dependents = set() self.duration = None self.priority = None self.state = "released" self.who_has = set() self.coming_from = None self.waiting_for_data = set() self.waiters = set() self.resource_restrictions = {} self.exception = None self.exception_text = "" self.traceback = None self.traceback_text = "" self.type = None self.suspicious_count = 0 self.startstops = [] self.start_time = None self.stop_time = None self.metadata = {} self.nbytes = None self.annotations = None self.done = False self._previous = None self._next = None def __repr__(self) -> str: return f"<TaskState {self.key!r} {self.state}>" def get_nbytes(self) -> int: nbytes = self.nbytes return nbytes if nbytes is not None else DEFAULT_DATA_SIZE def _to_dict_no_nest(self, *, exclude: Container[str] = ()) -> dict: """Dictionary representation for debugging purposes. Not type stable and not intended for roundtrips. See also -------- Client.dump_cluster_state distributed.utils.recursive_to_dict Notes ----- This class uses ``_to_dict_no_nest`` instead of ``_to_dict``. When a task references another task, just print the task repr. All tasks should neatly appear under Worker.tasks. This also prevents a RecursionError during particularly heavy loads, which have been observed to happen whenever there's an acyclic dependency chain of ~200+ tasks. """ return recursive_to_dict(self, exclude=exclude, members=True) def is_protected(self) -> bool: return self.state in PROCESSING or any( dep_ts.state in PROCESSING for dep_ts in self.dependents ) class UniqueTaskHeap(Collection): """A heap of TaskState objects ordered by TaskState.priority Ties are broken by string comparison of the key. Keys are guaranteed to be unique. Iterating over this object returns the elements in priority order. """ def __init__(self, collection: Collection[TaskState] = ()): self._known = {ts.key for ts in collection} self._heap = [(ts.priority, ts.key, ts) for ts in collection] heapq.heapify(self._heap) def push(self, ts: TaskState) -> None: """Add a new TaskState instance to the heap. If the key is already known, no object is added. Note: This does not update the priority / heap order in case priority changes. """ assert isinstance(ts, TaskState) if ts.key not in self._known: heapq.heappush(self._heap, (ts.priority, ts.key, ts)) self._known.add(ts.key) def pop(self) -> TaskState: """Pop the task with highest priority from the heap.""" _, key, ts = heapq.heappop(self._heap) self._known.remove(key) return ts def peek(self) -> TaskState: """Get the highest priority TaskState without removing it from the heap""" return self._heap[0][2] def __contains__(self, x: object) -> bool: if isinstance(x, TaskState): x = x.key return x in self._known def __iter__(self) -> Iterator[TaskState]: return (ts for _, _, ts in sorted(self._heap)) def __len__(self) -> int: return len(self._known) def __repr__(self) -> str: return f"<{type(self).__name__}: {len(self)} items>" class Worker(ServerNode): """Worker node in a Dask distributed cluster Workers perform two functions: 1. **Serve data** from a local dictionary 2. **Perform computation** on that data and on data from peers Workers keep the scheduler informed of their data and use that scheduler to gather data from other workers when necessary to perform a computation. You can start a worker with the ``dask-worker`` command line application:: $ dask-worker scheduler-ip:port Use the ``--help`` flag to see more options:: $ dask-worker --help The rest of this docstring is about the internal state the the worker uses to manage and track internal computations. **State** **Informational State** These attributes don't change significantly during execution. * **nthreads:** ``int``: Number of nthreads used by this worker process * **executors:** ``dict[str, concurrent.futures.Executor]``: Executors used to perform computation. Always contains the default executor. * **local_directory:** ``path``: Path on local machine to store temporary files * **scheduler:** ``rpc``: Location of scheduler. See ``.ip/.port`` attributes. * **name:** ``string``: Alias * **services:** ``{str: Server}``: Auxiliary web servers running on this worker * **service_ports:** ``{str: port}``: * **total_out_connections**: ``int`` The maximum number of concurrent outgoing requests for data * **total_in_connections**: ``int`` The maximum number of concurrent incoming requests for data * **comm_threshold_bytes**: ``int`` As long as the total number of bytes in flight is below this threshold we will not limit the number of outgoing connections for a single tasks dependency fetch. * **batched_stream**: ``BatchedSend`` A batched stream along which we communicate to the scheduler * **log**: ``[(message)]`` A structured and queryable log. See ``Worker.story`` **Volatile State** These attributes track the progress of tasks that this worker is trying to complete. In the descriptions below a ``key`` is the name of a task that we want to compute and ``dep`` is the name of a piece of dependent data that we want to collect from others. * **tasks**: ``{key: TaskState}`` The tasks currently executing on this worker (and any dependencies of those tasks) * **data:** ``{key: object}``: Prefer using the **host** attribute instead of this, unless memory_limit and at least one of memory_target_fraction or memory_spill_fraction values are defined, in that case, this attribute is a zict.Buffer, from which information on LRU cache can be queried. * **data.memory:** ``{key: object}``: Dictionary mapping keys to actual values stored in memory. Only available if condition for **data** being a zict.Buffer is met. * **data.disk:** ``{key: object}``: Dictionary mapping keys to actual values stored on disk. Only available if condition for **data** being a zict.Buffer is met. * **data_needed**: UniqueTaskHeap The tasks which still require data in order to execute, prioritized as a heap * **ready**: [keys] Keys that are ready to run. Stored in a LIFO stack * **constrained**: [keys] Keys for which we have the data to run, but are waiting on abstract resources like GPUs. Stored in a FIFO deque * **executing_count**: ``int`` A count of tasks currently executing on this worker * **executed_count**: int A number of tasks that this worker has run in its lifetime * **long_running**: {keys} A set of keys of tasks that are running and have started their own long-running clients. * **has_what**: ``{worker: {deps}}`` The data that we care about that we think a worker has * **pending_data_per_worker**: ``{worker: UniqueTaskHeap}`` The data on each worker that we still want, prioritized as a heap * **in_flight_tasks**: ``int`` A count of the number of tasks that are coming to us in current peer-to-peer connections * **in_flight_workers**: ``{worker: {task}}`` The workers from which we are currently gathering data and the dependencies we expect from those connections * **comm_bytes**: ``int`` The total number of bytes in flight * **threads**: ``{key: int}`` The ID of the thread on which the task ran * **active_threads**: ``{int: key}`` The keys currently running on active threads * **waiting_for_data_count**: ``int`` A count of how many tasks are currently waiting for data * **generation**: ``int`` Counter that decreases every time the compute-task handler is invoked by the Scheduler. It is appended to TaskState.priority and acts as a tie-breaker between tasks that have the same priority on the Scheduler, determining a last-in-first-out order between them. Parameters ---------- scheduler_ip: str, optional scheduler_port: int, optional scheduler_file: str, optional ip: str, optional data: MutableMapping, type, None The object to use for storage, builds a disk-backed LRU dict by default nthreads: int, optional loop: tornado.ioloop.IOLoop local_directory: str, optional Directory where we place local resources name: str, optional memory_limit: int, float, string Number of bytes of memory that this worker should use. Set to zero for no limit. Set to 'auto' to calculate as system.MEMORY_LIMIT * min(1, nthreads / total_cores) Use strings or numbers like 5GB or 5e9 memory_target_fraction: float or False Fraction of memory to try to stay beneath (default: read from config key distributed.worker.memory.target) memory_spill_fraction: float or false Fraction of memory at which we start spilling to disk (default: read from config key distributed.worker.memory.spill) memory_pause_fraction: float or False Fraction of memory at which we stop running new tasks (default: read from config key distributed.worker.memory.pause) max_spill: int, string or False Limit of number of bytes to be spilled on disk. (default: read from config key distributed.worker.memory.max-spill) executor: concurrent.futures.Executor, dict[str, concurrent.futures.Executor], "offload" The executor(s) to use. Depending on the type, it has the following meanings: - Executor instance: The default executor. - Dict[str, Executor]: mapping names to Executor instances. If the "default" key isn't in the dict, a "default" executor will be created using ``ThreadPoolExecutor(nthreads)``. - Str: The string "offload", which refer to the same thread pool used for offloading communications. This results in the same thread being used for deserialization and computation. resources: dict Resources that this worker has like ``{'GPU': 2}`` nanny: str Address on which to contact nanny, if it exists lifetime: str Amount of time like "1 hour" after which we gracefully shut down the worker. This defaults to None, meaning no explicit shutdown time. lifetime_stagger: str Amount of time like "5 minutes" to stagger the lifetime value The actual lifetime will be selected uniformly at random between lifetime +/- lifetime_stagger lifetime_restart: bool Whether or not to restart a worker after it has reached its lifetime Default False kwargs: optional Additional parameters to ServerNode constructor Examples -------- Use the command line to start a worker:: $ dask-scheduler Start scheduler at 127.0.0.1:8786 $ dask-worker 127.0.0.1:8786 Start worker at: 127.0.0.1:1234 Registered with scheduler at: 127.0.0.1:8786 See Also -------- distributed.scheduler.Scheduler distributed.nanny.Nanny """ _instances: ClassVar[weakref.WeakSet[Worker]] = weakref.WeakSet() _initialized_clients: ClassVar[weakref.WeakSet[Client]] = weakref.WeakSet() tasks: dict[str, TaskState] waiting_for_data_count: int has_what: defaultdict[str, set[str]] # {worker address: {ts.key, ...} pending_data_per_worker: defaultdict[str, UniqueTaskHeap] nanny: Nanny | None _lock: threading.Lock data_needed: UniqueTaskHeap in_flight_workers: dict[str, set[str]] # {worker address: {ts.key, ...}} total_out_connections: int total_in_connections: int comm_threshold_bytes: int comm_nbytes: int _missing_dep_flight: set[TaskState] threads: dict[str, int] # {ts.key: thread ID} active_threads_lock: threading.Lock active_threads: dict[int, str] # {thread ID: ts.key} active_keys: set[str] profile_keys: defaultdict[str, dict[str, Any]] profile_keys_history: deque[tuple[float, dict[str, dict[str, Any]]]] profile_recent: dict[str, Any] profile_history: deque[tuple[float, dict[str, Any]]] generation: int ready: list[tuple[tuple[int, ...], str]] # heapq [(priority, key), ...] constrained: deque[str] _executing: set[TaskState] _in_flight_tasks: set[TaskState] executed_count: int long_running: set[str] log: deque[tuple] # [(..., stimulus_id: str | None, timestamp: float), ...] incoming_transfer_log: deque[dict[str, Any]] outgoing_transfer_log: deque[dict[str, Any]] target_message_size: int validate: bool _transitions_table: dict[tuple[str, str], Callable] _transition_counter: int incoming_count: int outgoing_count: int outgoing_current_count: int repetitively_busy: int bandwidth: float latency: float profile_cycle_interval: float workspace: WorkSpace _workdir: WorkDir local_directory: str _client: Client | None bandwidth_workers: defaultdict[str, tuple[float, int]] bandwidth_types: defaultdict[type, tuple[float, int]] preloads: list[preloading.Preload] contact_address: str | None _start_port: int | None _start_host: str | None _interface: str | None _protocol: str _dashboard_address: str | None _dashboard: bool _http_prefix: str nthreads: int total_resources: dict[str, float] available_resources: dict[str, float] death_timeout: float | None lifetime: float | None lifetime_stagger: float | None lifetime_restart: bool extensions: dict security: Security connection_args: dict[str, Any] memory_limit: int | None memory_target_fraction: float | Literal[False] memory_spill_fraction: float | Literal[False] memory_pause_fraction: float | Literal[False] max_spill: int | Literal[False] data: MutableMapping[str, Any] # {task key: task payload} actors: dict[str, Actor | None] loop: IOLoop reconnect: bool executors: dict[str, Executor] batched_stream: BatchedSend name: Any scheduler_delay: float stream_comms: dict[str, BatchedSend] heartbeat_interval: float heartbeat_active: bool _ipython_kernel: Any | None = None services: dict[str, Any] = {} service_specs: dict[str, Any] metrics: dict[str, Callable[[Worker], Any]] startup_information: dict[str, Callable[[Worker], Any]] low_level_profiler: bool scheduler: Any execution_state: dict[str, Any] memory_monitor_interval: float | None _memory_monitoring: bool _throttled_gc: ThrottledGC plugins: dict[str, WorkerPlugin] _pending_plugins: tuple[WorkerPlugin, ...] def __init__( self, scheduler_ip: str | None = None, scheduler_port: int | None = None, *, scheduler_file: str | None = None, nthreads: int | None = None, loop: IOLoop | None = None, local_dir: None = None, # Deprecated, use local_directory instead local_directory: str | None = None, services: dict | None = None, name: Any | None = None, reconnect: bool = True, memory_limit: str | float = "auto", executor: Executor | dict[str, Executor] | Literal["offload"] | None = None, resources: dict[str, float] | None = None, silence_logs: int | None = None, death_timeout: Any | None = None, preload: list[str] | None = None, preload_argv: list[str] | list[list[str]] | None = None, security: Security | dict[str, Any] | None = None, contact_address: str | None = None, heartbeat_interval: Any = "1s", memory_monitor_interval: Any = "200ms", memory_target_fraction: float | Literal[False] | None = None, memory_spill_fraction: float | Literal[False] | None = None, memory_pause_fraction: float | Literal[False] | None = None, max_spill: float | str | Literal[False] | None = None, extensions: list[type] | None = None, metrics: Mapping[str, Callable[[Worker], Any]] = DEFAULT_METRICS, startup_information: Mapping[ str, Callable[[Worker], Any] ] = DEFAULT_STARTUP_INFORMATION, data: ( MutableMapping[str, Any] # pre-initialised | Callable[[], MutableMapping[str, Any]] # constructor | tuple[ Callable[..., MutableMapping[str, Any]], dict[str, Any] ] # (constructor, kwargs to constructor) | None # create internatlly ) = None, interface: str | None = None, host: str | None = None, port: int | None = None, protocol: str | None = None, dashboard_address: str | None = None, dashboard: bool = False, http_prefix: str = "/", nanny: Nanny | None = None, plugins: tuple[WorkerPlugin, ...] = (), low_level_profiler: bool | None = None, validate: bool | None = None, profile_cycle_interval=None, lifetime: Any | None = None, lifetime_stagger: Any | None = None, lifetime_restart: bool | None = None, **kwargs, ): self.tasks = {} self.waiting_for_data_count = 0 self.has_what = defaultdict(set) self.pending_data_per_worker = defaultdict(UniqueTaskHeap) self.nanny = nanny self._lock = threading.Lock() self.data_needed = UniqueTaskHeap() self.in_flight_workers = {} self.total_out_connections = dask.config.get( "distributed.worker.connections.outgoing" ) self.total_in_connections = dask.config.get( "distributed.worker.connections.incoming" ) self.comm_threshold_bytes = int(10e6) self.comm_nbytes = 0 self._missing_dep_flight = set() self.threads = {} self.active_threads_lock = threading.Lock() self.active_threads = {} self.active_keys = set() self.profile_keys = defaultdict(profile.create) self.profile_keys_history = deque(maxlen=3600) self.profile_recent = profile.create() self.profile_history = deque(maxlen=3600) self.generation = 0 self.ready = [] self.constrained = deque() self._executing = set() self._in_flight_tasks = set() self.executed_count = 0 self.long_running = set() self.target_message_size = int(50e6) # 50 MB self.log = deque(maxlen=100000) if validate is None: validate = dask.config.get("distributed.scheduler.validate") self.validate = validate self._transitions_table = { ("cancelled", "resumed"): self.transition_cancelled_resumed, ("cancelled", "fetch"): self.transition_cancelled_fetch, ("cancelled", "released"): self.transition_cancelled_released, ("cancelled", "waiting"): self.transition_cancelled_waiting, ("cancelled", "forgotten"): self.transition_cancelled_forgotten, ("cancelled", "memory"): self.transition_cancelled_memory, ("cancelled", "error"): self.transition_cancelled_error, ("resumed", "memory"): self.transition_generic_memory, ("resumed", "error"): self.transition_generic_error, ("resumed", "released"): self.transition_generic_released, ("resumed", "waiting"): self.transition_resumed_waiting, ("resumed", "fetch"): self.transition_resumed_fetch, ("resumed", "missing"): self.transition_resumed_missing, ("constrained", "executing"): self.transition_constrained_executing, ("constrained", "released"): self.transition_generic_released, ("error", "released"): self.transition_generic_released, ("executing", "error"): self.transition_executing_error, ("executing", "long-running"): self.transition_executing_long_running, ("executing", "memory"): self.transition_executing_memory, ("executing", "released"): self.transition_executing_released, ("executing", "rescheduled"): self.transition_executing_rescheduled, ("fetch", "flight"): self.transition_fetch_flight, ("fetch", "released"): self.transition_generic_released, ("flight", "error"): self.transition_flight_error, ("flight", "fetch"): self.transition_flight_fetch, ("flight", "memory"): self.transition_flight_memory, ("flight", "missing"): self.transition_flight_missing, ("flight", "released"): self.transition_flight_released, ("long-running", "error"): self.transition_generic_error, ("long-running", "memory"): self.transition_long_running_memory, ("long-running", "rescheduled"): self.transition_executing_rescheduled, ("long-running", "released"): self.transition_executing_released, ("memory", "released"): self.transition_memory_released, ("missing", "fetch"): self.transition_missing_fetch, ("missing", "released"): self.transition_missing_released, ("missing", "error"): self.transition_generic_error, ("ready", "error"): self.transition_generic_error, ("ready", "executing"): self.transition_ready_executing, ("ready", "released"): self.transition_generic_released, ("released", "error"): self.transition_generic_error, ("released", "fetch"): self.transition_released_fetch, ("released", "forgotten"): self.transition_released_forgotten, ("released", "memory"): self.transition_released_memory, ("released", "waiting"): self.transition_released_waiting, ("waiting", "constrained"): self.transition_waiting_constrained, ("waiting", "ready"): self.transition_waiting_ready, ("waiting", "released"): self.transition_generic_released, } self._transition_counter = 0 self.incoming_transfer_log = deque(maxlen=100000) self.incoming_count = 0 self.outgoing_transfer_log = deque(maxlen=100000) self.outgoing_count = 0 self.outgoing_current_count = 0 self.repetitively_busy = 0 self.bandwidth = parse_bytes(dask.config.get("distributed.scheduler.bandwidth")) self.bandwidth_workers = defaultdict( lambda: (0, 0) ) # bw/count recent transfers self.bandwidth_types = defaultdict(lambda: (0, 0)) # bw/count recent transfers self.latency = 0.001 self._client = None if profile_cycle_interval is None: profile_cycle_interval = dask.config.get("distributed.worker.profile.cycle") profile_cycle_interval = parse_timedelta(profile_cycle_interval, default="ms") assert profile_cycle_interval self._setup_logging(logger) if local_dir is not None: warnings.warn("The local_dir keyword has moved to local_directory") local_directory = local_dir if not local_directory: local_directory = dask.config.get("temporary-directory") or os.getcwd() os.makedirs(local_directory, exist_ok=True) local_directory = os.path.join(local_directory, "dask-worker-space") with warn_on_duration( "1s", "Creating scratch directories is taking a surprisingly long time. " "This is often due to running workers on a network file system. " "Consider specifying a local-directory to point workers to write " "scratch data to a local disk.", ): self._workspace = WorkSpace(os.path.abspath(local_directory)) self._workdir = self._workspace.new_work_dir(prefix="worker-") self.local_directory = self._workdir.dir_path if not preload: preload = dask.config.get("distributed.worker.preload") if not preload_argv: preload_argv = dask.config.get("distributed.worker.preload-argv") assert preload is not None assert preload_argv is not None self.preloads = preloading.process_preloads( self, preload, preload_argv, file_dir=self.local_directory ) if scheduler_file: cfg = json_load_robust(scheduler_file) scheduler_addr = cfg["address"] elif scheduler_ip is None and dask.config.get("scheduler-address", None): scheduler_addr = dask.config.get("scheduler-address") elif scheduler_port is None: scheduler_addr = coerce_to_address(scheduler_ip) else: scheduler_addr = coerce_to_address((scheduler_ip, scheduler_port)) self.contact_address = contact_address if protocol is None: protocol_address = scheduler_addr.split("://") if len(protocol_address) == 2: protocol = protocol_address[0] assert protocol self._start_port = port self._start_host = host if host: # Helpful error message if IPv6 specified incorrectly _, host_address = parse_address(host) if host_address.count(":") > 1 and not host_address.startswith("["): raise ValueError( "Host address with IPv6 must be bracketed like '[::1]'; " f"got {host_address}" ) self._interface = interface self._protocol = protocol self.nthreads = nthreads or CPU_COUNT if resources is None: resources = dask.config.get("distributed.worker.resources", None) assert isinstance(resources, dict) self.total_resources = resources or {} self.available_resources = (resources or {}).copy() self.death_timeout = parse_timedelta(death_timeout) self.extensions = {} if silence_logs: silence_logging(level=silence_logs) if isinstance(security, dict): security = Security(**security) self.security = security or Security() assert isinstance(self.security, Security) self.connection_args = self.security.get_connection_args("worker") self.memory_limit = parse_memory_limit(memory_limit, self.nthreads) self.memory_target_fraction = ( memory_target_fraction if memory_target_fraction is not None else dask.config.get("distributed.worker.memory.target") ) self.memory_spill_fraction = ( memory_spill_fraction if memory_spill_fraction is not None else dask.config.get("distributed.worker.memory.spill") ) self.memory_pause_fraction = ( memory_pause_fraction if memory_pause_fraction is not None else dask.config.get("distributed.worker.memory.pause") ) if max_spill is None: max_spill = dask.config.get("distributed.worker.memory.max-spill") self.max_spill = False if max_spill is False else parse_bytes(max_spill) if isinstance(data, MutableMapping): self.data = data elif callable(data): self.data = data() elif isinstance(data, tuple): self.data = data[0](**data[1]) elif self.memory_limit and ( self.memory_target_fraction or self.memory_spill_fraction ): from .spill import SpillBuffer if self.memory_target_fraction: target = int( self.memory_limit * (self.memory_target_fraction or self.memory_spill_fraction) ) else: target = sys.maxsize self.data = SpillBuffer( os.path.join(self.local_directory, "storage"), target=target, max_spill=self.max_spill, ) else: self.data = {} self.actors = {} self.loop = loop or IOLoop.current() self.reconnect = reconnect # Common executors always available self.executors = { "offload": utils._offload_executor, "actor": ThreadPoolExecutor(1, thread_name_prefix="Dask-Actor-Threads"), } if nvml.device_get_count() > 0: self.executors["gpu"] = ThreadPoolExecutor( 1, thread_name_prefix="Dask-GPU-Threads" ) # Find the default executor if executor == "offload": self.executors["default"] = self.executors["offload"] elif isinstance(executor, dict): self.executors.update(executor) elif executor is not None: self.executors["default"] = executor if "default" not in self.executors: self.executors["default"] = ThreadPoolExecutor( self.nthreads, thread_name_prefix="Dask-Default-Threads" ) self.batched_stream = BatchedSend(interval="2ms", loop=self.loop) self.name = name self.scheduler_delay = 0 self.stream_comms = {} self.heartbeat_active = False self._ipython_kernel = None if self.local_directory not in sys.path: sys.path.insert(0, self.local_directory) self.services = {} self.service_specs = services or {} self._dashboard_address = dashboard_address self._dashboard = dashboard self._http_prefix = http_prefix self.metrics = dict(metrics) if metrics else {} self.startup_information = ( dict(startup_information) if startup_information else {} ) if low_level_profiler is None: low_level_profiler = dask.config.get("distributed.worker.profile.low-level") self.low_level_profiler = low_level_profiler handlers = { "gather": self.gather, "run": self.run, "run_coroutine": self.run_coroutine, "get_data": self.get_data, "update_data": self.update_data, "free_keys": self.handle_free_keys, "terminate": self.close, "ping": pingpong, "upload_file": self.upload_file, "start_ipython": self.start_ipython, "call_stack": self.get_call_stack, "profile": self.get_profile, "profile_metadata": self.get_profile_metadata, "get_logs": self.get_logs, "keys": self.keys, "versions": self.versions, "actor_execute": self.actor_execute, "actor_attribute": self.actor_attribute, "plugin-add": self.plugin_add, "plugin-remove": self.plugin_remove, "get_monitor_info": self.get_monitor_info, } stream_handlers = { "close": self.close, "cancel-compute": self.handle_cancel_compute, "acquire-replicas": self.handle_acquire_replicas, "compute-task": self.handle_compute_task, "free-keys": self.handle_free_keys, "remove-replicas": self.handle_remove_replicas, "steal-request": self.handle_steal_request, "worker-status-change": self.handle_worker_status_change, } super().__init__( handlers=handlers, stream_handlers=stream_handlers, io_loop=self.loop, connection_args=self.connection_args, **kwargs, ) self.scheduler = self.rpc(scheduler_addr) self.execution_state = { "scheduler": self.scheduler.address, "ioloop": self.loop, "worker": self, } self.heartbeat_interval = parse_timedelta(heartbeat_interval, default="ms") pc = PeriodicCallback(self.heartbeat, self.heartbeat_interval * 1000) self.periodic_callbacks["heartbeat"] = pc pc = PeriodicCallback( lambda: self.batched_stream.send({"op": "keep-alive"}), 60000 ) self.periodic_callbacks["keep-alive"] = pc # FIXME annotations: https://github.com/tornadoweb/tornado/issues/3117 pc = PeriodicCallback(self.find_missing, 1000) # type: ignore self.periodic_callbacks["find-missing"] = pc self._address = contact_address self.memory_monitor_interval = parse_timedelta( memory_monitor_interval, default="ms" ) self._memory_monitoring = False if self.memory_limit: assert self.memory_monitor_interval is not None pc = PeriodicCallback( self.memory_monitor, # type: ignore self.memory_monitor_interval * 1000, ) self.periodic_callbacks["memory"] = pc if extensions is None: extensions = DEFAULT_EXTENSIONS for ext in extensions: ext(self) self._throttled_gc = ThrottledGC(logger=logger) setproctitle("dask-worker [not started]") profile_trigger_interval = parse_timedelta( dask.config.get("distributed.worker.profile.interval"), default="ms" ) pc = PeriodicCallback(self.trigger_profile, profile_trigger_interval * 1000) self.periodic_callbacks["profile"] = pc pc = PeriodicCallback(self.cycle_profile, profile_cycle_interval * 1000) self.periodic_callbacks["profile-cycle"] = pc self.plugins = {} self._pending_plugins = plugins if lifetime is None: lifetime = dask.config.get("distributed.worker.lifetime.duration") self.lifetime = parse_timedelta(lifetime) if lifetime_stagger is None: lifetime_stagger = dask.config.get("distributed.worker.lifetime.stagger") lifetime_stagger = parse_timedelta(lifetime_stagger) if lifetime_restart is None: lifetime_restart = dask.config.get("distributed.worker.lifetime.restart") self.lifetime_restart = lifetime_restart if self.lifetime: self.lifetime += (random.random() * 2 - 1) * lifetime_stagger self.io_loop.call_later(self.lifetime, self.close_gracefully) Worker._instances.add(self) ################## # Administrative # ################## def __repr__(self): name = f", name: {self.name}" if self.name != self.address else "" return ( f"<{self.__class__.__name__} {self.address!r}{name}, " f"status: {self.status.name}, " f"stored: {len(self.data)}, " f"running: {self.executing_count}/{self.nthreads}, " f"ready: {len(self.ready)}, " f"comm: {self.in_flight_tasks}, " f"waiting: {self.waiting_for_data_count}>" ) @property def logs(self): return self._deque_handler.deque def log_event(self, topic, msg): self.batched_stream.send( { "op": "log-event", "topic": topic, "msg": msg, } ) @property def executing_count(self) -> int: return len(self._executing) @property def in_flight_tasks(self) -> int: return len(self._in_flight_tasks) @property def worker_address(self): """For API compatibility with Nanny""" return self.address @property def local_dir(self): """For API compatibility with Nanny""" warnings.warn( "The local_dir attribute has moved to local_directory", stacklevel=2 ) return self.local_directory @property def executor(self): return self.executors["default"] @ServerNode.status.setter # type: ignore def status(self, value): """Override Server.status to notify the Scheduler of status changes""" ServerNode.status.__set__(self, value) self._send_worker_status_change() def _send_worker_status_change(self) -> None: if ( self.batched_stream and self.batched_stream.comm and not self.batched_stream.comm.closed() ): self.batched_stream.send( {"op": "worker-status-change", "status": self._status.name} ) elif self._status != Status.closed: self.loop.call_later(0.05, self._send_worker_status_change) async def get_metrics(self) -> dict: try: spilled_memory, spilled_disk = self.data.spilled_total # type: ignore except AttributeError: # spilling is disabled spilled_memory, spilled_disk = 0, 0 out = dict( executing=self.executing_count, in_memory=len(self.data), ready=len(self.ready), in_flight=self.in_flight_tasks, bandwidth={ "total": self.bandwidth, "workers": dict(self.bandwidth_workers), "types": keymap(typename, self.bandwidth_types), }, spilled_nbytes={ "memory": spilled_memory, "disk": spilled_disk, }, ) out.update(self.monitor.recent()) for k, metric in self.metrics.items(): try: result = metric(self) if isawaitable(result): result = await result # In case of collision, prefer core metrics out.setdefault(k, result) except Exception: # TODO: log error once pass return out async def get_startup_information(self): result = {} for k, f in self.startup_information.items(): try: v = f(self) if isawaitable(v): v = await v result[k] = v except Exception: # TODO: log error once pass return result def identity(self): return { "type": type(self).__name__, "id": self.id, "scheduler": self.scheduler.address, "nthreads": self.nthreads, "memory_limit": self.memory_limit, } def _to_dict( self, comm: Comm | None = None, *, exclude: Container[str] = () ) -> dict: """Dictionary representation for debugging purposes. Not type stable and not intended for roundtrips. See also -------- Worker.identity Client.dump_cluster_state distributed.utils.recursive_to_dict """ info = super()._to_dict(exclude=exclude) extra = { "status": self.status, "ready": self.ready, "constrained": self.constrained, "data_needed": list(self.data_needed), "pending_data_per_worker": { w: list(v) for w, v in self.pending_data_per_worker.items() }, "long_running": self.long_running, "executing_count": self.executing_count, "in_flight_tasks": self.in_flight_tasks, "in_flight_workers": self.in_flight_workers, "log": self.log, "tasks": self.tasks, "memory_limit": self.memory_limit, "memory_target_fraction": self.memory_target_fraction, "memory_spill_fraction": self.memory_spill_fraction, "memory_pause_fraction": self.memory_pause_fraction, "logs": self.get_logs(), "config": dask.config.config, "incoming_transfer_log": self.incoming_transfer_log, "outgoing_transfer_log": self.outgoing_transfer_log, } info.update(extra) info = {k: v for k, v in info.items() if k not in exclude} return recursive_to_dict(info, exclude=exclude) ##################### # External Services # ##################### async def _register_with_scheduler(self): self.periodic_callbacks["keep-alive"].stop() self.periodic_callbacks["heartbeat"].stop() start = time() if self.contact_address is None: self.contact_address = self.address logger.info("-" * 49) while True: try: _start = time() comm = await connect(self.scheduler.address, **self.connection_args) comm.name = "Worker->Scheduler" comm._server = weakref.ref(self) await comm.write( dict( op="register-worker", reply=False, address=self.contact_address, status=self.status.name, keys=list(self.data), nthreads=self.nthreads, name=self.name, nbytes={ ts.key: ts.get_nbytes() for ts in self.tasks.values() # Only if the task is in memory this is a sensible # result since otherwise it simply submits the # default value if ts.state == "memory" }, types={k: typename(v) for k, v in self.data.items()}, now=time(), resources=self.total_resources, memory_limit=self.memory_limit, local_directory=self.local_directory, services=self.service_ports, nanny=self.nanny, pid=os.getpid(), versions=get_versions(), metrics=await self.get_metrics(), extra=await self.get_startup_information(), ), serializers=["msgpack"], ) future = comm.read(deserializers=["msgpack"]) response = await future if response.get("warning"): logger.warning(response["warning"]) _end = time() middle = (_start + _end) / 2 self._update_latency(_end - start) self.scheduler_delay = response["time"] - middle self.status = Status.running break except OSError: logger.info("Waiting to connect to: %26s", self.scheduler.address) await asyncio.sleep(0.1) except TimeoutError: # pragma: no cover logger.info("Timed out when connecting to scheduler") if response["status"] != "OK": raise ValueError(f"Unexpected response from register: {response!r}") else: await asyncio.gather( *( self.plugin_add(name=name, plugin=plugin) for name, plugin in response["worker-plugins"].items() ) ) logger.info(" Registered to: %26s", self.scheduler.address) logger.info("-" * 49) self.batched_stream.start(comm) self.periodic_callbacks["keep-alive"].start() self.periodic_callbacks["heartbeat"].start() self.loop.add_callback(self.handle_scheduler, comm) def _update_latency(self, latency): self.latency = latency * 0.05 + self.latency * 0.95 if self.digests is not None: self.digests["latency"].add(latency) async def heartbeat(self): if self.heartbeat_active: logger.debug("Heartbeat skipped: channel busy") return self.heartbeat_active = True logger.debug("Heartbeat: %s", self.address) try: start = time() response = await retry_operation( self.scheduler.heartbeat_worker, address=self.contact_address, now=start, metrics=await self.get_metrics(), executing={ key: start - self.tasks[key].start_time for key in self.active_keys if key in self.tasks }, ) end = time() middle = (start + end) / 2 self._update_latency(end - start) if response["status"] == "missing": # If running, wait up to 0.5s and then re-register self. # Otherwise just exit. start = time() while self.status in Status.ANY_RUNNING and time() < start + 0.5: await asyncio.sleep(0.01) if self.status in Status.ANY_RUNNING: await self._register_with_scheduler() return self.scheduler_delay = response["time"] - middle self.periodic_callbacks["heartbeat"].callback_time = ( response["heartbeat-interval"] * 1000 ) self.bandwidth_workers.clear() self.bandwidth_types.clear() except CommClosedError: logger.warning("Heartbeat to scheduler failed", exc_info=True) if not self.reconnect: await self.close(report=False) except OSError as e: # Scheduler is gone. Respect distributed.comm.timeouts.connect if "Timed out trying to connect" in str(e): await self.close(report=False) else: raise e finally: self.heartbeat_active = False async def handle_scheduler(self, comm): try: await self.handle_stream( comm, every_cycle=[self.ensure_communicating, self.ensure_computing] ) except Exception as e: logger.exception(e) raise finally: if self.reconnect and self.status in Status.ANY_RUNNING: logger.info("Connection to scheduler broken. Reconnecting...") self.loop.add_callback(self.heartbeat) else: await self.close(report=False) def start_ipython(self, comm): """Start an IPython kernel Returns Jupyter connection info dictionary. """ from ._ipython_utils import start_ipython if self._ipython_kernel is None: self._ipython_kernel = start_ipython( ip=self.ip, ns={"worker": self}, log=logger ) return self._ipython_kernel.get_connection_info() async def upload_file(self, comm, filename=None, data=None, load=True): out_filename = os.path.join(self.local_directory, filename) def func(data): if isinstance(data, str): data = data.encode() with open(out_filename, "wb") as f: f.write(data) f.flush() return data if len(data) < 10000: data = func(data) else: data = await offload(func, data) if load: try: import_file(out_filename) cache_loads.data.clear() except Exception as e: logger.exception(e) raise e return {"status": "OK", "nbytes": len(data)} def keys(self) -> list[str]: return list(self.data) async def gather(self, who_has: dict[str, list[str]]) -> dict[str, Any]: who_has = { k: [coerce_to_address(addr) for addr in v] for k, v in who_has.items() if k not in self.data } result, missing_keys, missing_workers = await gather_from_workers( who_has, rpc=self.rpc, who=self.address ) self.update_data(data=result, report=False) if missing_keys: logger.warning( "Could not find data: %s on workers: %s (who_has: %s)", missing_keys, missing_workers, who_has, ) return {"status": "partial-fail", "keys": missing_keys} else: return {"status": "OK"} def get_monitor_info( self, recent: bool = False, start: float = 0 ) -> dict[str, Any]: result = dict( range_query=( self.monitor.recent() if recent else self.monitor.range_query(start=start) ), count=self.monitor.count, last_time=self.monitor.last_time, ) if nvml.device_get_count() > 0: result["gpu_name"] = self.monitor.gpu_name result["gpu_memory_total"] = self.monitor.gpu_memory_total return result ############# # Lifecycle # ############# async def start(self): if self.status and self.status in ( Status.closed, Status.closing, Status.closing_gracefully, ): return assert self.status is Status.undefined, self.status await super().start() enable_gc_diagnosis() ports = parse_ports(self._start_port) for port in ports: start_address = address_from_user_args( host=self._start_host, port=port, interface=self._interface, protocol=self._protocol, security=self.security, ) kwargs = self.security.get_listen_args("worker") if self._protocol in ("tcp", "tls"): kwargs = kwargs.copy() kwargs["default_host"] = get_ip( get_address_host(self.scheduler.address) ) try: await self.listen(start_address, **kwargs) except OSError as e: if len(ports) > 1 and e.errno == errno.EADDRINUSE: continue else: raise else: self._start_address = start_address break else: raise ValueError( f"Could not start Worker on host {self._start_host}" f"with port {self._start_port}" ) # Start HTTP server associated with this Worker node routes = get_handlers( server=self, modules=dask.config.get("distributed.worker.http.routes"), prefix=self._http_prefix, ) self.start_http_server(routes, self._dashboard_address) if self._dashboard: try: import distributed.dashboard.worker except ImportError: logger.debug("To start diagnostics web server please install Bokeh") else: distributed.dashboard.worker.connect( self.http_application, self.http_server, self, prefix=self._http_prefix, ) self.ip = get_address_host(self.address) if self.name is None: self.name = self.address for preload in self.preloads: await preload.start() # Services listen on all addresses # Note Nanny is not a "real" service, just some metadata # passed in service_ports... self.start_services(self.ip) try: listening_address = "%s%s:%d" % (self.listener.prefix, self.ip, self.port) except Exception: listening_address = f"{self.listener.prefix}{self.ip}" logger.info(" Start worker at: %26s", self.address) logger.info(" Listening to: %26s", listening_address) for k, v in self.service_ports.items(): logger.info(" {:>16} at: {:>26}".format(k, self.ip + ":" + str(v))) logger.info("Waiting to connect to: %26s", self.scheduler.address) logger.info("-" * 49) logger.info(" Threads: %26d", self.nthreads) if self.memory_limit: logger.info(" Memory: %26s", format_bytes(self.memory_limit)) logger.info(" Local Directory: %26s", self.local_directory) setproctitle("dask-worker [%s]" % self.address) plugins_msgs = await asyncio.gather( *( self.plugin_add(plugin=plugin, catch_errors=False) for plugin in self._pending_plugins ), return_exceptions=True, ) plugins_exceptions = [msg for msg in plugins_msgs if isinstance(msg, Exception)] if len(plugins_exceptions) >= 1: if len(plugins_exceptions) > 1: logger.error( "Multiple plugin exceptions raised. All exceptions will be logged, the first is raised." ) for exc in plugins_exceptions: logger.error(repr(exc)) raise plugins_exceptions[0] self._pending_plugins = () await self._register_with_scheduler() self.start_periodic_callbacks() return self def _close(self, *args, **kwargs): warnings.warn("Worker._close has moved to Worker.close", stacklevel=2) return self.close(*args, **kwargs) async def close( self, report=True, timeout=30, nanny=True, executor_wait=True, safe=False ): with log_errors(): if self.status in (Status.closed, Status.closing): await self.finished() return self.reconnect = False disable_gc_diagnosis() try: logger.info("Stopping worker at %s", self.address) except ValueError: # address not available if already closed logger.info("Stopping worker") if self.status not in Status.ANY_RUNNING: logger.info("Closed worker has not yet started: %s", self.status) self.status = Status.closing for preload in self.preloads: await preload.teardown() if nanny and self.nanny: with self.rpc(self.nanny) as r: await r.close_gracefully() setproctitle("dask-worker [closing]") teardowns = [ plugin.teardown(self) for plugin in self.plugins.values() if hasattr(plugin, "teardown") ] await asyncio.gather(*(td for td in teardowns if isawaitable(td))) for pc in self.periodic_callbacks.values(): pc.stop() if self._client: # If this worker is the last one alive, clean up the worker # initialized clients if not any( w for w in Worker._instances if w != self and w.status in Status.ANY_RUNNING ): for c in Worker._initialized_clients: # Regardless of what the client was initialized with # we'll require the result as a future. This is # necessary since the heursitics of asynchronous are not # reliable and we might deadlock here c._asynchronous = True if c.asynchronous: await c.close() else: # There is still the chance that even with us # telling the client to be async, itself will decide # otherwise c.close() with suppress(EnvironmentError, TimeoutError): if report and self.contact_address is not None: await asyncio.wait_for( self.scheduler.unregister( address=self.contact_address, safe=safe ), timeout, ) await self.scheduler.close_rpc() self._workdir.release() self.stop_services() # Give some time for a UCX scheduler to complete closing endpoints # before closing self.batched_stream, otherwise the local endpoint # may be closed too early and errors be raised on the scheduler when # trying to send closing message. if self._protocol == "ucx": # pragma: no cover await asyncio.sleep(0.2) if ( self.batched_stream and self.batched_stream.comm and not self.batched_stream.comm.closed() ): self.batched_stream.send({"op": "close-stream"}) if self.batched_stream: with suppress(TimeoutError): await self.batched_stream.close(timedelta(seconds=timeout)) for executor in self.executors.values(): if executor is utils._offload_executor: continue # Never shutdown the offload executor def _close(): if isinstance(executor, ThreadPoolExecutor): executor._work_queue.queue.clear() executor.shutdown(wait=executor_wait, timeout=timeout) else: executor.shutdown(wait=executor_wait) # Waiting for the shutdown can block the event loop causing # weird deadlocks particularly if the task that is executing in # the thread is waiting for a server reply, e.g. when using # worker clients, semaphores, etc. await to_thread(_close) self.stop() await self.rpc.close() self.status = Status.closed await super().close() setproctitle("dask-worker [closed]") return "OK" async def close_gracefully(self, restart=None): """Gracefully shut down a worker This first informs the scheduler that we're shutting down, and asks it to move our data elsewhere. Afterwards, we close as normal """ if self.status in (Status.closing, Status.closing_gracefully): await self.finished() if self.status == Status.closed: return if restart is None: restart = self.lifetime_restart logger.info("Closing worker gracefully: %s", self.address) # Wait for all tasks to leave the worker and don't accept any new ones. # Scheduler.retire_workers will set the status to closing_gracefully and push it # back to this worker. await self.scheduler.retire_workers( workers=[self.address], close_workers=False, remove=False ) await self.close(safe=True, nanny=not restart) async def terminate(self, report: bool = True, **kwargs) -> str: await self.close(report=report, **kwargs) return "OK" async def wait_until_closed(self): warnings.warn("wait_until_closed has moved to finished()") await self.finished() assert self.status == Status.closed ################ # Worker Peers # ################ def send_to_worker(self, address, msg): if address not in self.stream_comms: bcomm = BatchedSend(interval="1ms", loop=self.loop) self.stream_comms[address] = bcomm async def batched_send_connect(): comm = await connect( address, **self.connection_args # TODO, serialization ) comm.name = "Worker->Worker" await comm.write({"op": "connection_stream"}) bcomm.start(comm) self.loop.add_callback(batched_send_connect) self.stream_comms[address].send(msg) async def get_data( self, comm, keys=None, who=None, serializers=None, max_connections=None ): start = time() if max_connections is None: max_connections = self.total_in_connections # Allow same-host connections more liberally if ( max_connections and comm and get_address_host(comm.peer_address) == get_address_host(self.address) ): max_connections = max_connections * 2 if self.status == Status.paused: max_connections = 1 throttle_msg = " Throttling outgoing connections because worker is paused." else: throttle_msg = "" if ( max_connections is not False and self.outgoing_current_count >= max_connections ): logger.debug( "Worker %s has too many open connections to respond to data request " "from %s (%d/%d).%s", self.address, who, self.outgoing_current_count, max_connections, throttle_msg, ) return {"status": "busy"} self.outgoing_current_count += 1 data = {k: self.data[k] for k in keys if k in self.data} if len(data) < len(keys): for k in set(keys) - set(data): if k in self.actors: from .actor import Actor data[k] = Actor(type(self.actors[k]), self.address, k, worker=self) msg = {"status": "OK", "data": {k: to_serialize(v) for k, v in data.items()}} nbytes = {k: self.tasks[k].nbytes for k in data if k in self.tasks} stop = time() if self.digests is not None: self.digests["get-data-load-duration"].add(stop - start) start = time() try: compressed = await comm.write(msg, serializers=serializers) response = await comm.read(deserializers=serializers) assert response == "OK", response except OSError: logger.exception( "failed during get data with %s -> %s", self.address, who, exc_info=True ) comm.abort() raise finally: self.outgoing_current_count -= 1 stop = time() if self.digests is not None: self.digests["get-data-send-duration"].add(stop - start) total_bytes = sum(filter(None, nbytes.values())) self.outgoing_count += 1 duration = (stop - start) or 0.5 # windows self.outgoing_transfer_log.append( { "start": start + self.scheduler_delay, "stop": stop + self.scheduler_delay, "middle": (start + stop) / 2, "duration": duration, "who": who, "keys": nbytes, "total": total_bytes, "compressed": compressed, "bandwidth": total_bytes / duration, } ) return Status.dont_reply ################### # Local Execution # ################### def update_data( self, data: dict[str, object], report: bool = True, stimulus_id: str = None, ) -> dict[str, Any]: if stimulus_id is None: stimulus_id = f"update-data-{time()}" recommendations: Recs = {} scheduler_messages = [] for key, value in data.items(): try: ts = self.tasks[key] recommendations[ts] = ("memory", value) except KeyError: self.tasks[key] = ts = TaskState(key) try: recs = self._put_key_in_memory(ts, value, stimulus_id=stimulus_id) except Exception as e: msg = error_message(e) recommendations = {ts: tuple(msg.values())} else: recommendations.update(recs) self.log.append((key, "receive-from-scatter", stimulus_id, time())) if report: scheduler_messages.append( {"op": "add-keys", "keys": list(data), "stimulus_id": stimulus_id} ) self.transitions(recommendations, stimulus_id=stimulus_id) for msg in scheduler_messages: self.batched_stream.send(msg) return {"nbytes": {k: sizeof(v) for k, v in data.items()}, "status": "OK"} def handle_free_keys(self, keys: list[str], stimulus_id: str) -> None: """ Handler to be called by the scheduler. The given keys are no longer referred to and required by the scheduler. The worker is now allowed to release the key, if applicable. This does not guarantee that the memory is released since the worker may still decide to hold on to the data and task since it is required by an upstream dependency. """ self.log.append(("free-keys", keys, stimulus_id, time())) recommendations: Recs = {} for key in keys: ts = self.tasks.get(key) if ts: recommendations[ts] = "released" self.transitions(recommendations, stimulus_id=stimulus_id) def handle_remove_replicas(self, keys: list[str], stimulus_id: str) -> str: """Stream handler notifying the worker that it might be holding unreferenced, superfluous data. This should not actually happen during ordinary operations and is only intended to correct any erroneous state. An example where this is necessary is if a worker fetches data for a downstream task but that task is released before the data arrives. In this case, the scheduler will notify the worker that it may be holding this unnecessary data, if the worker hasn't released the data itself, already. This handler does not guarantee the task nor the data to be actually released but only asks the worker to release the data on a best effort guarantee. This protects from race conditions where the given keys may already have been rescheduled for compute in which case the compute would win and this handler is ignored. For stronger guarantees, see handler free_keys """ self.log.append(("remove-replicas", keys, stimulus_id, time())) recommendations: Recs = {} rejected = [] for key in keys: ts = self.tasks.get(key) if ts is None or ts.state != "memory": continue if not ts.is_protected(): self.log.append( (ts.key, "remove-replica-confirmed", stimulus_id, time()) ) recommendations[ts] = "released" else: rejected.append(key) if rejected: self.log.append(("remove-replica-rejected", rejected, stimulus_id, time())) self.batched_stream.send( {"op": "add-keys", "keys": rejected, "stimulus_id": stimulus_id} ) self.transitions(recommendations, stimulus_id=stimulus_id) return "OK" async def set_resources(self, **resources) -> None: for r, quantity in resources.items(): if r in self.total_resources: self.available_resources[r] += quantity - self.total_resources[r] else: self.available_resources[r] = quantity self.total_resources[r] = quantity await retry_operation( self.scheduler.set_resources, resources=self.total_resources, worker=self.contact_address, ) ################### # Task Management # ################### def handle_cancel_compute(self, key: str, stimulus_id: str) -> None: """ Cancel a task on a best effort basis. This is only possible while a task is in state `waiting` or `ready`. Nothing will happen otherwise. """ ts = self.tasks.get(key) if ts and ts.state in READY | {"waiting"}: self.log.append((key, "cancel-compute", stimulus_id, time())) # All possible dependents of TS should not be in state Processing on # scheduler side and therefore should not be assigned to a worker, # yet. assert not ts.dependents self.transition(ts, "released", stimulus_id=stimulus_id) def handle_acquire_replicas( self, *, keys: Collection[str], who_has: dict[str, Collection[str]], stimulus_id: str, ) -> None: recommendations: Recs = {} for key in keys: ts = self.ensure_task_exists( key=key, # Transfer this data after all dependency tasks of computations with # default or explicitly high (>0) user priority and before all # computations with low priority (<0). Note that the priority= parameter # of compute() is multiplied by -1 before it reaches TaskState.priority. priority=(1,), stimulus_id=stimulus_id, ) if ts.state != "memory": recommendations[ts] = "fetch" self.update_who_has(who_has) self.transitions(recommendations, stimulus_id=stimulus_id) def ensure_task_exists( self, key: str, *, priority: tuple[int, ...], stimulus_id: str ) -> TaskState: try: ts = self.tasks[key] logger.debug("Data task %s already known (stimulus_id=%s)", ts, stimulus_id) except KeyError: self.tasks[key] = ts = TaskState(key) if not ts.priority: assert priority ts.priority = priority self.log.append((key, "ensure-task-exists", ts.state, stimulus_id, time())) return ts def handle_compute_task( self, *, key: str, who_has: dict[str, Collection[str]], priority: tuple[int, ...], duration: float, function=None, args=None, kwargs=None, task=no_value, # distributed.scheduler.TaskState.run_spec nbytes: dict[str, int] | None = None, resource_restrictions: dict[str, float] | None = None, actor: bool = False, annotations: dict | None = None, stimulus_id: str, ) -> None: self.log.append((key, "compute-task", stimulus_id, time())) try: ts = self.tasks[key] logger.debug( "Asked to compute an already known task %s", {"task": ts, "stimulus_id": stimulus_id}, ) except KeyError: self.tasks[key] = ts = TaskState(key) ts.run_spec = SerializedTask(function, args, kwargs, task) assert isinstance(priority, tuple) priority = priority + (self.generation,) self.generation -= 1 if actor: self.actors[ts.key] = None ts.exception = None ts.traceback = None ts.exception_text = "" ts.traceback_text = "" ts.priority = priority ts.duration = duration if resource_restrictions: ts.resource_restrictions = resource_restrictions ts.annotations = annotations recommendations: Recs = {} scheduler_msgs: Smsgs = [] for dependency in who_has: dep_ts = self.ensure_task_exists( key=dependency, priority=priority, stimulus_id=stimulus_id, ) # link up to child / parents ts.dependencies.add(dep_ts) dep_ts.dependents.add(ts) if ts.state in READY | {"executing", "waiting", "resumed"}: pass elif ts.state == "memory": recommendations[ts] = "memory" scheduler_msgs.append(self._get_task_finished_msg(ts)) elif ts.state in { "released", "fetch", "flight", "missing", "cancelled", "error", }: recommendations[ts] = "waiting" else: # pragma: no cover raise RuntimeError(f"Unexpected task state encountered {ts} {stimulus_id}") for msg in scheduler_msgs: self.batched_stream.send(msg) self.update_who_has(who_has) self.transitions(recommendations, stimulus_id=stimulus_id) if nbytes is not None: for key, value in nbytes.items(): self.tasks[key].nbytes = value def transition_missing_fetch( self, ts: TaskState, *, stimulus_id: str ) -> tuple[Recs, Smsgs]: if self.validate: assert ts.state == "missing" assert ts.priority is not None self._missing_dep_flight.discard(ts) ts.state = "fetch" ts.done = False self.data_needed.push(ts) return {}, [] def transition_missing_released( self, ts: TaskState, *, stimulus_id: str ) -> tuple[Recs, Smsgs]: self._missing_dep_flight.discard(ts) recs, smsgs = self.transition_generic_released(ts, stimulus_id=stimulus_id) assert ts.key in self.tasks return recs, smsgs def transition_flight_missing( self, ts: TaskState, *, stimulus_id: str ) -> tuple[Recs, Smsgs]: assert ts.done ts.state = "missing" self._missing_dep_flight.add(ts) ts.done = False return {}, [] def transition_released_fetch( self, ts: TaskState, *, stimulus_id: str ) -> tuple[Recs, Smsgs]: if self.validate: assert ts.state == "released" assert ts.priority is not None for w in ts.who_has: self.pending_data_per_worker[w].push(ts) ts.state = "fetch" ts.done = False self.data_needed.push(ts) return {}, [] def transition_generic_released( self, ts: TaskState, *, stimulus_id: str ) -> tuple[Recs, Smsgs]: self.release_key(ts.key, stimulus_id=stimulus_id) recs: Recs = {} for dependency in ts.dependencies: if ( not dependency.waiters and dependency.state not in READY | PROCESSING | {"memory"} ): recs[dependency] = "released" if not ts.dependents: recs[ts] = "forgotten" return recs, [] def transition_released_waiting( self, ts: TaskState, *, stimulus_id: str ) -> tuple[Recs, Smsgs]: if self.validate: assert ts.state == "released" assert all(d.key in self.tasks for d in ts.dependencies) recommendations: Recs = {} ts.waiting_for_data.clear() for dep_ts in ts.dependencies: if not dep_ts.state == "memory": ts.waiting_for_data.add(dep_ts) dep_ts.waiters.add(ts) if dep_ts.state not in {"fetch", "flight"}: recommendations[dep_ts] = "fetch" if ts.waiting_for_data: self.waiting_for_data_count += 1 elif ts.resource_restrictions: recommendations[ts] = "constrained" else: recommendations[ts] = "ready" ts.state = "waiting" return recommendations, [] def transition_fetch_flight( self, ts: TaskState, worker, *, stimulus_id: str ) -> tuple[Recs, Smsgs]: if self.validate: assert ts.state == "fetch" assert ts.who_has ts.done = False ts.state = "flight" ts.coming_from = worker self._in_flight_tasks.add(ts) return {}, [] def transition_memory_released( self, ts: TaskState, *, stimulus_id: str ) -> tuple[Recs, Smsgs]: recs, smsgs = self.transition_generic_released(ts, stimulus_id=stimulus_id) smsgs.append({"op": "release-worker-data", "key": ts.key}) return recs, smsgs def transition_waiting_constrained( self, ts: TaskState, *, stimulus_id: str ) -> tuple[Recs, Smsgs]: if self.validate: assert ts.state == "waiting" assert not ts.waiting_for_data assert all( dep.key in self.data or dep.key in self.actors for dep in ts.dependencies ) assert all(dep.state == "memory" for dep in ts.dependencies) assert ts.key not in self.ready ts.state = "constrained" self.constrained.append(ts.key) return {}, [] def transition_long_running_rescheduled( self, ts: TaskState, *, stimulus_id: str ) -> tuple[Recs, Smsgs]: recs: Recs = {ts: "released"} smsgs = [{"op": "reschedule", "key": ts.key, "worker": self.address}] return recs, smsgs def transition_executing_rescheduled( self, ts: TaskState, *, stimulus_id: str ) -> tuple[Recs, Smsgs]: for resource, quantity in ts.resource_restrictions.items(): self.available_resources[resource] += quantity self._executing.discard(ts) recs: Recs = {ts: "released"} smsgs: Smsgs = [{"op": "reschedule", "key": ts.key, "worker": self.address}] return recs, smsgs def transition_waiting_ready( self, ts: TaskState, *, stimulus_id: str ) -> tuple[Recs, Smsgs]: if self.validate: assert ts.state == "waiting" assert ts.key not in self.ready assert not ts.waiting_for_data for dep in ts.dependencies: assert dep.key in self.data or dep.key in self.actors assert dep.state == "memory" ts.state = "ready" assert ts.priority is not None heapq.heappush(self.ready, (ts.priority, ts.key)) return {}, [] def transition_cancelled_error( self, ts: TaskState, exception, traceback, exception_text, traceback_text, *, stimulus_id: str, ) -> tuple[Recs, Smsgs]: recs: Recs = {} smsgs: Smsgs = [] if ts._previous == "executing": recs, smsgs = self.transition_executing_error( ts, exception, traceback, exception_text, traceback_text, stimulus_id=stimulus_id, ) elif ts._previous == "flight": recs, smsgs = self.transition_flight_error( ts, exception, traceback, exception_text, traceback_text, stimulus_id=stimulus_id, ) if ts._next: recs[ts] = ts._next return recs, smsgs def transition_generic_error( self, ts: TaskState, exception, traceback, exception_text, traceback_text, *, stimulus_id: str, ) -> tuple[Recs, Smsgs]: ts.exception = exception ts.traceback = traceback ts.exception_text = exception_text ts.traceback_text = traceback_text ts.state = "error" smsg = { "op": "task-erred", "status": "error", "key": ts.key, "thread": self.threads.get(ts.key), "exception": ts.exception, "traceback": ts.traceback, "exception_text": ts.exception_text, "traceback_text": ts.traceback_text, } if ts.startstops: smsg["startstops"] = ts.startstops return {}, [smsg] def transition_executing_error( self, ts: TaskState, exception, traceback, exception_text, traceback_text, *, stimulus_id: str, ) -> tuple[Recs, Smsgs]: for resource, quantity in ts.resource_restrictions.items(): self.available_resources[resource] += quantity self._executing.discard(ts) return self.transition_generic_error( ts, exception, traceback, exception_text, traceback_text, stimulus_id=stimulus_id, ) def _transition_from_resumed( self, ts: TaskState, finish: str, *, stimulus_id: str ) -> tuple[Recs, Smsgs]: """`resumed` is an intermediate degenerate state which splits further up into two states depending on what the last signal / next state is intended to be. There are only two viable choices depending on whether the task is required to be fetched from another worker `resumed(fetch)` or the task shall be computed on this worker `resumed(waiting)`. The only viable state transitions ending up here are flight -> cancelled -> resumed(waiting) or executing -> cancelled -> resumed(fetch) depending on the origin. Equally, only `fetch`, `waiting` or `released` are allowed output states. See also `transition_resumed_waiting` """ recs: Recs = {} smsgs: Smsgs = [] if ts.done: next_state = ts._next # if the next state is already intended to be waiting or if the # coro/thread is still running (ts.done==False), this is a noop if ts._next != finish: recs, smsgs = self.transition_generic_released( ts, stimulus_id=stimulus_id ) assert next_state recs[ts] = next_state else: ts._next = finish return recs, smsgs def transition_resumed_fetch( self, ts: TaskState, *, stimulus_id: str ) -> tuple[Recs, Smsgs]: """ See Worker._transition_from_resumed """ return self._transition_from_resumed(ts, "fetch", stimulus_id=stimulus_id) def transition_resumed_missing( self, ts: TaskState, *, stimulus_id: str ) -> tuple[Recs, Smsgs]: """ See Worker._transition_from_resumed """ return self._transition_from_resumed(ts, "missing", stimulus_id=stimulus_id) def transition_resumed_waiting(self, ts: TaskState, *, stimulus_id: str): """ See Worker._transition_from_resumed """ return self._transition_from_resumed(ts, "waiting", stimulus_id=stimulus_id) def transition_cancelled_fetch( self, ts: TaskState, *, stimulus_id: str ) -> tuple[Recs, Smsgs]: if ts.done: return {ts: "released"}, [] elif ts._previous == "flight": ts.state = ts._previous return {}, [] else: assert ts._previous == "executing" return {ts: ("resumed", "fetch")}, [] def transition_cancelled_resumed( self, ts: TaskState, next: str, *, stimulus_id: str ) -> tuple[Recs, Smsgs]: ts._next = next ts.state = "resumed" return {}, [] def transition_cancelled_waiting( self, ts: TaskState, *, stimulus_id: str ) -> tuple[Recs, Smsgs]: if ts.done: return {ts: "released"}, [] elif ts._previous == "executing": ts.state = ts._previous return {}, [] else: assert ts._previous == "flight" return {ts: ("resumed", "waiting")}, [] def transition_cancelled_forgotten( self, ts: TaskState, *, stimulus_id: str ) -> tuple[Recs, Smsgs]: ts._next = "forgotten" if not ts.done: return {}, [] return {ts: "released"}, [] def transition_cancelled_released( self, ts: TaskState, *, stimulus_id: str ) -> tuple[Recs, Smsgs]: if not ts.done: ts._next = "released" return {}, [] next_state = ts._next assert next_state self._executing.discard(ts) self._in_flight_tasks.discard(ts) for resource, quantity in ts.resource_restrictions.items(): self.available_resources[resource] += quantity recs, smsgs = self.transition_generic_released(ts, stimulus_id=stimulus_id) if next_state != "released": recs[ts] = next_state return recs, smsgs def transition_executing_released( self, ts: TaskState, *, stimulus_id: str ) -> tuple[Recs, Smsgs]: ts._previous = ts.state ts._next = "released" # See https://github.com/dask/distributed/pull/5046#discussion_r685093940 ts.state = "cancelled" ts.done = False return {}, [] def transition_long_running_memory( self, ts: TaskState, value=no_value, *, stimulus_id: str ) -> tuple[Recs, Smsgs]: self.executed_count += 1 return self.transition_generic_memory(ts, value=value, stimulus_id=stimulus_id) def transition_generic_memory( self, ts: TaskState, value=no_value, *, stimulus_id: str ) -> tuple[Recs, Smsgs]: if value is no_value and ts.key not in self.data: raise RuntimeError( f"Tried to transition task {ts} to `memory` without data available" ) if ts.resource_restrictions is not None: for resource, quantity in ts.resource_restrictions.items(): self.available_resources[resource] += quantity self._executing.discard(ts) self._in_flight_tasks.discard(ts) ts.coming_from = None try: recs = self._put_key_in_memory(ts, value, stimulus_id=stimulus_id) except Exception as e: msg = error_message(e) recs = {ts: tuple(msg.values())} return recs, [] assert ts.key in self.data or ts.key in self.actors smsgs = [self._get_task_finished_msg(ts)] return recs, smsgs def transition_executing_memory( self, ts: TaskState, value=no_value, *, stimulus_id: str ) -> tuple[Recs, Smsgs]: if self.validate: assert ts.state == "executing" or ts.key in self.long_running assert not ts.waiting_for_data assert ts.key not in self.ready self._executing.discard(ts) self.executed_count += 1 return self.transition_generic_memory(ts, value=value, stimulus_id=stimulus_id) def transition_constrained_executing( self, ts: TaskState, *, stimulus_id: str ) -> tuple[Recs, Smsgs]: if self.validate: assert not ts.waiting_for_data assert ts.key not in self.data assert ts.state in READY assert ts.key not in self.ready for dep in ts.dependencies: assert dep.key in self.data or dep.key in self.actors for resource, quantity in ts.resource_restrictions.items(): self.available_resources[resource] -= quantity ts.state = "executing" self._executing.add(ts) self.loop.add_callback(self.execute, ts.key, stimulus_id=stimulus_id) return {}, [] def transition_ready_executing( self, ts: TaskState, *, stimulus_id: str ) -> tuple[Recs, Smsgs]: if self.validate: assert not ts.waiting_for_data assert ts.key not in self.data assert ts.state in READY assert ts.key not in self.ready assert all( dep.key in self.data or dep.key in self.actors for dep in ts.dependencies ) ts.state = "executing" self._executing.add(ts) self.loop.add_callback(self.execute, ts.key, stimulus_id=stimulus_id) return {}, [] def transition_flight_fetch( self, ts: TaskState, *, stimulus_id: str ) -> tuple[Recs, Smsgs]: # If this transition is called after the flight coroutine has finished, # we can reset the task and transition to fetch again. If it is not yet # finished, this should be a no-op if not ts.done: return {}, [] recommendations: Recs = {} ts.state = "fetch" ts.coming_from = None ts.done = False if not ts.who_has: recommendations[ts] = "missing" else: self.data_needed.push(ts) for w in ts.who_has: self.pending_data_per_worker[w].push(ts) return recommendations, [] def transition_flight_error( self, ts: TaskState, exception, traceback, exception_text, traceback_text, *, stimulus_id: str, ) -> tuple[Recs, Smsgs]: self._in_flight_tasks.discard(ts) ts.coming_from = None return self.transition_generic_error( ts, exception, traceback, exception_text, traceback_text, stimulus_id=stimulus_id, ) def transition_flight_released( self, ts: TaskState, *, stimulus_id: str ) -> tuple[Recs, Smsgs]: if ts.done: # FIXME: Is this even possible? Would an assert instead be more # sensible? return self.transition_generic_released(ts, stimulus_id=stimulus_id) else: ts._previous = "flight" ts._next = "released" # See https://github.com/dask/distributed/pull/5046#discussion_r685093940 ts.state = "cancelled" return {}, [] def transition_cancelled_memory( self, ts: TaskState, value, *, stimulus_id: str ) -> tuple[Recs, Smsgs]: assert ts._next return {ts: ts._next}, [] def transition_executing_long_running( self, ts: TaskState, compute_duration, *, stimulus_id: str ) -> tuple[Recs, Smsgs]: ts.state = "long-running" self._executing.discard(ts) self.long_running.add(ts.key) smsgs = [ { "op": "long-running", "key": ts.key, "compute_duration": compute_duration, } ] self.io_loop.add_callback(self.ensure_computing) return {}, smsgs def transition_released_memory( self, ts: TaskState, value, *, stimulus_id: str ) -> tuple[Recs, Smsgs]: recs: Recs = {} try: recs = self._put_key_in_memory(ts, value, stimulus_id=stimulus_id) except Exception as e: msg = error_message(e) recs[ts] = ( "error", msg["exception"], msg["traceback"], msg["exception_text"], msg["traceback_text"], ) return recs, [] smsgs = [{"op": "add-keys", "keys": [ts.key], "stimulus_id": stimulus_id}] return recs, smsgs def transition_flight_memory( self, ts: TaskState, value, *, stimulus_id: str ) -> tuple[Recs, Smsgs]: self._in_flight_tasks.discard(ts) ts.coming_from = None recs: Recs = {} try: recs = self._put_key_in_memory(ts, value, stimulus_id=stimulus_id) except Exception as e: msg = error_message(e) recs[ts] = ( "error", msg["exception"], msg["traceback"], msg["exception_text"], msg["traceback_text"], ) return recs, [] smsgs = [{"op": "add-keys", "keys": [ts.key], "stimulus_id": stimulus_id}] return recs, smsgs def transition_released_forgotten( self, ts: TaskState, *, stimulus_id: str ) -> tuple[Recs, Smsgs]: recommendations: Recs = {} # Dependents _should_ be released by the scheduler before this if self.validate: assert not any(d.state != "forgotten" for d in ts.dependents) for dep in ts.dependencies: dep.dependents.discard(ts) if dep.state == "released" and not dep.dependents: recommendations[dep] = "forgotten" # Mark state as forgotten in case it is still referenced ts.state = "forgotten" self.tasks.pop(ts.key, None) return recommendations, [] def _transition( self, ts: TaskState, finish: str | tuple, *args, stimulus_id: str, **kwargs ) -> tuple[Recs, Smsgs]: if isinstance(finish, tuple): # the concatenated transition path might need to access the tuple assert not args finish, *args = finish # type: ignore if ts is None or ts.state == finish: return {}, [] start = ts.state func = self._transitions_table.get((start, cast(str, finish))) if func is not None: self._transition_counter += 1 recs, smsgs = func(ts, *args, stimulus_id=stimulus_id, **kwargs) self._notify_plugins("transition", ts.key, start, finish, **kwargs) elif "released" not in (start, finish): # start -> "released" -> finish try: recs, smsgs = self._transition(ts, "released", stimulus_id=stimulus_id) v = recs.get(ts, (finish, *args)) v_state: str v_args: list | tuple if isinstance(v, tuple): v_state, *v_args = v else: v_state, v_args = v, () b_recs, b_smsgs = self._transition( ts, v_state, *v_args, stimulus_id=stimulus_id ) recs.update(b_recs) smsgs += b_smsgs except InvalidTransition: raise InvalidTransition( f"Impossible transition from {start} to {finish} for {ts.key}" ) from None else: raise InvalidTransition( f"Impossible transition from {start} to {finish} for {ts.key}" ) self.log.append( ( # key ts.key, # initial start, # recommended finish, # final ts.state, # new recommendations {ts.key: new for ts, new in recs.items()}, stimulus_id, time(), ) ) return recs, smsgs def transition( self, ts: TaskState, finish: str, *, stimulus_id: str, **kwargs ) -> None: """Transition a key from its current state to the finish state Examples -------- >>> self.transition('x', 'waiting') {'x': 'processing'} Returns ------- Dictionary of recommendations for future transitions See Also -------- Scheduler.transitions: transitive version of this function """ recs, smsgs = self._transition(ts, finish, stimulus_id=stimulus_id, **kwargs) for msg in smsgs: self.batched_stream.send(msg) self.transitions(recs, stimulus_id=stimulus_id) def transitions(self, recommendations: Recs, *, stimulus_id: str) -> None: """Process transitions until none are left This includes feedback from previous transitions and continues until we reach a steady state """ smsgs = [] remaining_recs = recommendations.copy() tasks = set() while remaining_recs: ts, finish = remaining_recs.popitem() tasks.add(ts) a_recs, a_smsgs = self._transition(ts, finish, stimulus_id=stimulus_id) remaining_recs.update(a_recs) smsgs += a_smsgs if self.validate: # Full state validation is very expensive for ts in tasks: self.validate_task(ts) if not self.batched_stream.closed(): for msg in smsgs: self.batched_stream.send(msg) else: logger.debug( "BatchedSend closed while transitioning tasks. %d tasks not sent.", len(smsgs), ) def maybe_transition_long_running( self, ts: TaskState, *, stimulus_id: str, compute_duration=None ): if ts.state == "executing": self.transition( ts, "long-running", compute_duration=compute_duration, stimulus_id=stimulus_id, ) assert ts.state == "long-running" def stateof(self, key: str) -> dict[str, Any]: ts = self.tasks[key] return { "executing": ts.state == "executing", "waiting_for_data": bool(ts.waiting_for_data), "heap": key in pluck(1, self.ready), "data": key in self.data, } def story(self, *keys_or_tasks: str | TaskState) -> list[tuple]: keys = [e.key if isinstance(e, TaskState) else e for e in keys_or_tasks] return [ msg for msg in self.log if any(key in msg for key in keys) or any( key in c for key in keys for c in msg if isinstance(c, (tuple, list, set)) ) ] def ensure_communicating(self) -> None: stimulus_id = f"ensure-communicating-{time()}" skipped_worker_in_flight = [] while self.data_needed and ( len(self.in_flight_workers) < self.total_out_connections or self.comm_nbytes < self.comm_threshold_bytes ): logger.debug( "Ensure communicating. Pending: %d. Connections: %d/%d", len(self.data_needed), len(self.in_flight_workers), self.total_out_connections, ) ts = self.data_needed.pop() if ts.state != "fetch": continue workers = [w for w in ts.who_has if w not in self.in_flight_workers] if not workers: assert ts.priority is not None skipped_worker_in_flight.append(ts) continue host = get_address_host(self.address) local = [w for w in workers if get_address_host(w) == host] if local: worker = random.choice(local) else: worker = random.choice(list(workers)) assert worker != self.address to_gather, total_nbytes = self.select_keys_for_gather(worker, ts.key) self.log.append( ("gather-dependencies", worker, to_gather, stimulus_id, time()) ) self.comm_nbytes += total_nbytes self.in_flight_workers[worker] = to_gather recommendations: Recs = { self.tasks[d]: ("flight", worker) for d in to_gather } self.transitions(recommendations, stimulus_id=stimulus_id) self.loop.add_callback( self.gather_dep, worker=worker, to_gather=to_gather, total_nbytes=total_nbytes, stimulus_id=stimulus_id, ) for el in skipped_worker_in_flight: self.data_needed.push(el) def _get_task_finished_msg(self, ts: TaskState) -> dict[str, Any]: if ts.key not in self.data and ts.key not in self.actors: raise RuntimeError(f"Task {ts} not ready") typ = ts.type if ts.nbytes is None or typ is None: try: value = self.data[ts.key] except KeyError: value = self.actors[ts.key] ts.nbytes = sizeof(value) typ = ts.type = type(value) del value try: typ_serialized = dumps_function(typ) except PicklingError: # Some types fail pickling (example: _thread.lock objects), # send their name as a best effort. typ_serialized = pickle.dumps(typ.__name__, protocol=4) d = { "op": "task-finished", "status": "OK", "key": ts.key, "nbytes": ts.nbytes, "thread": self.threads.get(ts.key), "type": typ_serialized, "typename": typename(typ), "metadata": ts.metadata, } if ts.startstops: d["startstops"] = ts.startstops return d def _put_key_in_memory(self, ts: TaskState, value, *, stimulus_id: str) -> Recs: """ Put a key into memory and set data related task state attributes. On success, generate recommendations for dependents. This method does not generate any scheduler messages since this method cannot distinguish whether it has to be an `add-task` or a `task-finished` signal. The caller is required to generate this message on success. Raises ------ TypeError: In case the data is put into the in memory buffer and an exception occurs during spilling, this raises an exception. This has to be handled by the caller since most callers generate scheduler messages on success (see comment above) but we need to signal that this was not successful. Can only trigger if spill to disk is enabled and the task is not an actor. """ if ts.key in self.data: ts.state = "memory" return {} recommendations: Recs = {} if ts.key in self.actors: self.actors[ts.key] = value else: start = time() self.data[ts.key] = value stop = time() if stop - start > 0.020: ts.startstops.append( {"action": "disk-write", "start": start, "stop": stop} ) ts.state = "memory" if ts.nbytes is None: ts.nbytes = sizeof(value) ts.type = type(value) for dep in ts.dependents: dep.waiting_for_data.discard(ts) if not dep.waiting_for_data and dep.state == "waiting": self.waiting_for_data_count -= 1 recommendations[dep] = "ready" self.log.append((ts.key, "put-in-memory", stimulus_id, time())) return recommendations def select_keys_for_gather(self, worker, dep): assert isinstance(dep, str) deps = {dep} total_bytes = self.tasks[dep].get_nbytes() L = self.pending_data_per_worker[worker] while L: ts = L.pop() if ts.state != "fetch": continue if total_bytes + ts.get_nbytes() > self.target_message_size: break deps.add(ts.key) total_bytes += ts.get_nbytes() return deps, total_bytes @property def total_comm_bytes(self): warnings.warn( "The attribute `Worker.total_comm_bytes` has been renamed to `comm_threshold_bytes`. " "Future versions will only support the new name.", FutureWarning, ) return self.comm_threshold_bytes def _filter_deps_for_fetch( self, to_gather_keys: Iterable[str] ) -> tuple[set[str], set[str], TaskState | None]: """Filter a list of keys before scheduling coroutines to fetch data from workers. Returns ------- in_flight_keys: The subset of keys in to_gather_keys in state `flight` or `resumed` cancelled_keys: The subset of tasks in to_gather_keys in state `cancelled` or `memory` cause: The task to attach startstops of this transfer to """ in_flight_tasks: set[TaskState] = set() cancelled_keys: set[str] = set() for key in to_gather_keys: ts = self.tasks.get(key) if ts is None: continue # At this point, a task has been transitioned fetch->flight # flight is only allowed to be transitioned into # {memory, resumed, cancelled} # resumed and cancelled will block any further transition until this # coro has been finished if ts.state in ("flight", "resumed"): in_flight_tasks.add(ts) # If the key is already in memory, the fetch should not happen which # is signalled by the cancelled_keys elif ts.state in {"cancelled", "memory"}: cancelled_keys.add(key) else: raise RuntimeError( f"Task {ts.key} found in illegal state {ts.state}. " "Only states `flight`, `resumed` and `cancelled` possible." ) # For diagnostics we want to attach the transfer to a single task. this # task is typically the next to be executed but since we're fetching # tasks for potentially many dependents, an exact match is not possible. # If there are no dependents, this is a pure replica fetch cause = None for ts in in_flight_tasks: if ts.dependents: cause = next(iter(ts.dependents)) break else: cause = ts in_flight_keys = {ts.key for ts in in_flight_tasks} return in_flight_keys, cancelled_keys, cause def _update_metrics_received_data( self, start: float, stop: float, data: dict, cause: TaskState, worker: str ) -> None: total_bytes = sum(self.tasks[key].get_nbytes() for key in data) cause.startstops.append( { "action": "transfer", "start": start + self.scheduler_delay, "stop": stop + self.scheduler_delay, "source": worker, } ) duration = (stop - start) or 0.010 bandwidth = total_bytes / duration self.incoming_transfer_log.append( { "start": start + self.scheduler_delay, "stop": stop + self.scheduler_delay, "middle": (start + stop) / 2.0 + self.scheduler_delay, "duration": duration, "keys": {key: self.tasks[key].nbytes for key in data}, "total": total_bytes, "bandwidth": bandwidth, "who": worker, } ) if total_bytes > 1_000_000: self.bandwidth = self.bandwidth * 0.95 + bandwidth * 0.05 bw, cnt = self.bandwidth_workers[worker] self.bandwidth_workers[worker] = (bw + bandwidth, cnt + 1) types = set(map(type, data.values())) if len(types) == 1: [typ] = types bw, cnt = self.bandwidth_types[typ] self.bandwidth_types[typ] = (bw + bandwidth, cnt + 1) if self.digests is not None: self.digests["transfer-bandwidth"].add(total_bytes / duration) self.digests["transfer-duration"].add(duration) self.counters["transfer-count"].add(len(data)) self.incoming_count += 1 async def gather_dep( self, worker: str, to_gather: Iterable[str], total_nbytes: int, *, stimulus_id: str, ) -> None: """Gather dependencies for a task from a worker who has them Parameters ---------- worker : str Address of worker to gather dependencies from to_gather : list Keys of dependencies to gather from worker -- this is not necessarily equivalent to the full list of dependencies of ``dep`` as some dependencies may already be present on this worker. total_nbytes : int Total number of bytes for all the dependencies in to_gather combined """ if self.status not in Status.ANY_RUNNING: # type: ignore return recommendations: Recs = {} with log_errors(): response = {} to_gather_keys: set[str] = set() cancelled_keys: set[str] = set() try: to_gather_keys, cancelled_keys, cause = self._filter_deps_for_fetch( to_gather ) if not to_gather_keys: self.log.append( ("nothing-to-gather", worker, to_gather, stimulus_id, time()) ) return assert cause # Keep namespace clean since this func is long and has many # dep*, *ts* variables del to_gather self.log.append( ("request-dep", worker, to_gather_keys, stimulus_id, time()) ) logger.debug( "Request %d keys for task %s from %s", len(to_gather_keys), cause, worker, ) start = time() response = await get_data_from_worker( self.rpc, to_gather_keys, worker, who=self.address ) stop = time() if response["status"] == "busy": return self._update_metrics_received_data( start=start, stop=stop, data=response["data"], cause=cause, worker=worker, ) self.log.append( ("receive-dep", worker, set(response["data"]), stimulus_id, time()) ) except OSError: logger.exception("Worker stream died during communication: %s", worker) has_what = self.has_what.pop(worker) self.pending_data_per_worker.pop(worker) self.log.append( ("receive-dep-failed", worker, has_what, stimulus_id, time()) ) for d in has_what: ts = self.tasks[d] ts.who_has.remove(worker) except Exception as e: logger.exception(e) if self.batched_stream and LOG_PDB: import pdb pdb.set_trace() msg = error_message(e) for k in self.in_flight_workers[worker]: ts = self.tasks[k] recommendations[ts] = tuple(msg.values()) raise finally: self.comm_nbytes -= total_nbytes busy = response.get("status", "") == "busy" data = response.get("data", {}) if busy: self.log.append( ("busy-gather", worker, to_gather_keys, stimulus_id, time()) ) for d in self.in_flight_workers.pop(worker): ts = self.tasks[d] ts.done = True if d in cancelled_keys: if ts.state == "cancelled": recommendations[ts] = "released" else: recommendations[ts] = "fetch" elif d in data: recommendations[ts] = ("memory", data[d]) elif busy: recommendations[ts] = "fetch" elif ts not in recommendations: ts.who_has.discard(worker) self.has_what[worker].discard(ts.key) self.log.append((d, "missing-dep", stimulus_id, time())) self.batched_stream.send( {"op": "missing-data", "errant_worker": worker, "key": d} ) recommendations[ts] = "fetch" if ts.who_has else "missing" del data, response self.transitions(recommendations, stimulus_id=stimulus_id) self.ensure_computing() if not busy: self.repetitively_busy = 0 else: # Exponential backoff to avoid hammering scheduler/worker self.repetitively_busy += 1 await asyncio.sleep(0.100 * 1.5**self.repetitively_busy) await self.query_who_has(*to_gather_keys) self.ensure_communicating() async def find_missing(self) -> None: with log_errors(): if not self._missing_dep_flight: return try: if self.validate: for ts in self._missing_dep_flight: assert not ts.who_has stimulus_id = f"find-missing-{time()}" who_has = await retry_operation( self.scheduler.who_has, keys=[ts.key for ts in self._missing_dep_flight], ) who_has = {k: v for k, v in who_has.items() if v} self.update_who_has(who_has) recommendations: Recs = {} for ts in self._missing_dep_flight: if ts.who_has: recommendations[ts] = "fetch" self.transitions(recommendations, stimulus_id=stimulus_id) finally: # This is quite arbitrary but the heartbeat has scaling implemented self.periodic_callbacks[ "find-missing" ].callback_time = self.periodic_callbacks["heartbeat"].callback_time self.ensure_communicating() self.ensure_computing() async def query_who_has(self, *deps: str) -> dict[str, Collection[str]]: with log_errors(): who_has = await retry_operation(self.scheduler.who_has, keys=deps) self.update_who_has(who_has) return who_has def update_who_has(self, who_has: dict[str, Collection[str]]) -> None: try: for dep, workers in who_has.items(): if not workers: continue if dep in self.tasks: dep_ts = self.tasks[dep] if self.address in workers and self.tasks[dep].state != "memory": logger.debug( "Scheduler claims worker %s holds data for task %s which is not true.", self.name, dep, ) # Do not mutate the input dict. That's rude workers = set(workers) - {self.address} dep_ts.who_has.update(workers) for worker in workers: self.has_what[worker].add(dep) self.pending_data_per_worker[worker].push(dep_ts) except Exception as e: # pragma: no cover logger.exception(e) if LOG_PDB: import pdb pdb.set_trace() raise def handle_steal_request(self, key: str, stimulus_id: str) -> None: # There may be a race condition between stealing and releasing a task. # In this case the self.tasks is already cleared. The `None` will be # registered as `already-computing` on the other end ts = self.tasks.get(key) state = ts.state if ts is not None else None response = { "op": "steal-response", "key": key, "state": state, "stimulus_id": stimulus_id, } self.batched_stream.send(response) if state in READY | {"waiting"}: assert ts # If task is marked as "constrained" we haven't yet assigned it an # `available_resources` to run on, that happens in # `transition_constrained_executing` self.transition(ts, "released", stimulus_id=stimulus_id) def handle_worker_status_change(self, status: str) -> None: new_status = Status.lookup[status] # type: ignore if ( new_status == Status.closing_gracefully and self._status not in Status.ANY_RUNNING # type: ignore ): logger.error( "Invalid Worker.status transition: %s -> %s", self._status, new_status ) # Reiterate the current status to the scheduler to restore sync self._send_worker_status_change() else: # Update status and send confirmation to the Scheduler (see status.setter) self.status = new_status def release_key( self, key: str, cause: TaskState | None = None, report: bool = True, *, stimulus_id: str, ) -> None: try: if self.validate: assert not isinstance(key, TaskState) ts = self.tasks[key] # needed for legacy notification support state_before = ts.state ts.state = "released" logger.debug( "Release key %s", {"key": key, "cause": cause, "stimulus_id": stimulus_id}, ) if cause: self.log.append( (key, "release-key", {"cause": cause}, stimulus_id, time()) ) else: self.log.append((key, "release-key", stimulus_id, time())) if key in self.data: try: del self.data[key] except FileNotFoundError: logger.error("Tried to delete %s but no file found", exc_info=True) if key in self.actors: del self.actors[key] for worker in ts.who_has: self.has_what[worker].discard(ts.key) ts.who_has.clear() if key in self.threads: del self.threads[key] if ts.resource_restrictions is not None: if ts.state == "executing": for resource, quantity in ts.resource_restrictions.items(): self.available_resources[resource] += quantity for d in ts.dependencies: ts.waiting_for_data.discard(d) d.waiters.discard(ts) ts.waiting_for_data.clear() ts.nbytes = None ts._previous = None ts._next = None ts.done = False self._executing.discard(ts) self._in_flight_tasks.discard(ts) self._notify_plugins( "release_key", key, state_before, cause, stimulus_id, report ) except CommClosedError: # Batched stream send might raise if it was already closed pass except Exception as e: # pragma: no cover logger.exception(e) if LOG_PDB: import pdb pdb.set_trace() raise ################ # Execute Task # ################ def run(self, comm, function, args=(), wait=True, kwargs=None): return run(self, comm, function=function, args=args, kwargs=kwargs, wait=wait) def run_coroutine(self, comm, function, args=(), kwargs=None, wait=True): return run(self, comm, function=function, args=args, kwargs=kwargs, wait=wait) async def plugin_add( self, plugin: WorkerPlugin | bytes, name: str | None = None, catch_errors: bool = True, ) -> dict[str, Any]: with log_errors(pdb=False): if isinstance(plugin, bytes): # Note: historically we have accepted duck-typed classes that don't # inherit from WorkerPlugin. Don't do `assert isinstance`. plugin = cast("WorkerPlugin", pickle.loads(plugin)) if name is None: name = _get_plugin_name(plugin) assert name if name in self.plugins: await self.plugin_remove(name=name) self.plugins[name] = plugin logger.info("Starting Worker plugin %s" % name) if hasattr(plugin, "setup"): try: result = plugin.setup(worker=self) if isawaitable(result): result = await result except Exception as e: if not catch_errors: raise msg = error_message(e) return msg return {"status": "OK"} async def plugin_remove(self, name: str) -> dict[str, Any]: with log_errors(pdb=False): logger.info(f"Removing Worker plugin {name}") try: plugin = self.plugins.pop(name) if hasattr(plugin, "teardown"): result = plugin.teardown(worker=self) if isawaitable(result): result = await result except Exception as e: msg = error_message(e) return msg return {"status": "OK"} async def actor_execute( self, actor=None, function=None, args=(), kwargs: dict | None = None, ) -> dict[str, Any]: kwargs = kwargs or {} separate_thread = kwargs.pop("separate_thread", True) key = actor actor = self.actors[key] func = getattr(actor, function) name = key_split(key) + "." + function try: if iscoroutinefunction(func): result = await func(*args, **kwargs) elif separate_thread: result = await self.loop.run_in_executor( self.executors["actor"], apply_function_actor, func, args, kwargs, self.execution_state, name, self.active_threads, self.active_threads_lock, ) else: result = func(*args, **kwargs) return {"status": "OK", "result": to_serialize(result)} except Exception as ex: return {"status": "error", "exception": to_serialize(ex)} def actor_attribute(self, actor=None, attribute=None) -> dict[str, Any]: try: value = getattr(self.actors[actor], attribute) return {"status": "OK", "result": to_serialize(value)} except Exception as ex: return {"status": "error", "exception": to_serialize(ex)} def meets_resource_constraints(self, key: str) -> bool: ts = self.tasks[key] if not ts.resource_restrictions: return True for resource, needed in ts.resource_restrictions.items(): if self.available_resources[resource] < needed: return False return True async def _maybe_deserialize_task( self, ts: TaskState, *, stimulus_id: str ) -> tuple[Callable, tuple, dict[str, Any]] | None: if ts.run_spec is None: return None try: start = time() # Offload deserializing large tasks if sizeof(ts.run_spec) > OFFLOAD_THRESHOLD: function, args, kwargs = await offload(_deserialize, *ts.run_spec) else: function, args, kwargs = _deserialize(*ts.run_spec) stop = time() if stop - start > 0.010: ts.startstops.append( {"action": "deserialize", "start": start, "stop": stop} ) return function, args, kwargs except Exception as e: logger.error("Could not deserialize task", exc_info=True) self.log.append((ts.key, "deserialize-error", stimulus_id, time())) emsg = error_message(e) emsg.pop("status") self.transition( ts, "error", **emsg, stimulus_id=stimulus_id, ) raise def ensure_computing(self) -> None: if self.status in (Status.paused, Status.closing_gracefully): return try: stimulus_id = f"ensure-computing-{time()}" while self.constrained and self.executing_count < self.nthreads: key = self.constrained[0] ts = self.tasks.get(key, None) if ts is None or ts.state != "constrained": self.constrained.popleft() continue if self.meets_resource_constraints(key): self.constrained.popleft() self.transition(ts, "executing", stimulus_id=stimulus_id) else: break while self.ready and self.executing_count < self.nthreads: priority, key = heapq.heappop(self.ready) ts = self.tasks.get(key) if ts is None: # It is possible for tasks to be released while still remaining on # `ready` The scheduler might have re-routed to a new worker and # told this worker to release. If the task has "disappeared" just # continue through the heap continue elif ts.key in self.data: self.transition(ts, "memory", stimulus_id=stimulus_id) elif ts.state in READY: self.transition(ts, "executing", stimulus_id=stimulus_id) except Exception as e: # pragma: no cover logger.exception(e) if LOG_PDB: import pdb pdb.set_trace() raise async def execute(self, key: str, *, stimulus_id: str) -> None: if self.status in {Status.closing, Status.closed, Status.closing_gracefully}: return if key not in self.tasks: return ts = self.tasks[key] try: if ts.state == "cancelled": # This might happen if keys are canceled logger.debug( "Trying to execute task %s which is not in executing state anymore", ts, ) ts.done = True self.transition(ts, "released", stimulus_id=stimulus_id) return if self.validate: assert not ts.waiting_for_data assert ts.state == "executing" assert ts.run_spec is not None function, args, kwargs = await self._maybe_deserialize_task( # type: ignore ts, stimulus_id=stimulus_id ) args2, kwargs2 = self._prepare_args_for_execution(ts, args, kwargs) if ts.annotations is not None and "executor" in ts.annotations: executor = ts.annotations["executor"] else: executor = "default" assert executor in self.executors assert key == ts.key self.active_keys.add(ts.key) result: dict try: e = self.executors[executor] ts.start_time = time() if iscoroutinefunction(function): result = await apply_function_async( function, args2, kwargs2, self.scheduler_delay, ) elif "ThreadPoolExecutor" in str(type(e)): result = await self.loop.run_in_executor( e, apply_function, function, args2, kwargs2, self.execution_state, ts.key, self.active_threads, self.active_threads_lock, self.scheduler_delay, ) else: result = await self.loop.run_in_executor( e, apply_function_simple, function, args2, kwargs2, self.scheduler_delay, ) finally: self.active_keys.discard(ts.key) key = ts.key # key *must* be still in tasks. Releasing it directly is forbidden # without going through cancelled ts = self.tasks.get(key) # type: ignore assert ts, self.story(key) ts.done = True result["key"] = ts.key value = result.pop("result", None) ts.startstops.append( {"action": "compute", "start": result["start"], "stop": result["stop"]} ) self.threads[ts.key] = result["thread"] recommendations: Recs = {} if result["op"] == "task-finished": ts.nbytes = result["nbytes"] ts.type = result["type"] recommendations[ts] = ("memory", value) if self.digests is not None: self.digests["task-duration"].add(result["stop"] - result["start"]) elif isinstance(result.pop("actual-exception"), Reschedule): recommendations[ts] = "rescheduled" else: logger.warning( "Compute Failed\n" "Function: %s\n" "args: %s\n" "kwargs: %s\n" "Exception: %r\n", str(funcname(function))[:1000], convert_args_to_str(args2, max_len=1000), convert_kwargs_to_str(kwargs2, max_len=1000), result["exception_text"], ) recommendations[ts] = ( "error", result["exception"], result["traceback"], result["exception_text"], result["traceback_text"], ) self.transitions(recommendations, stimulus_id=stimulus_id) logger.debug("Send compute response to scheduler: %s, %s", ts.key, result) if self.validate: assert ts.state != "executing" assert not ts.waiting_for_data except Exception as exc: assert ts logger.error( "Exception during execution of task %s.", ts.key, exc_info=True ) emsg = error_message(exc) emsg.pop("status") self.transition( ts, "error", **emsg, stimulus_id=stimulus_id, ) finally: self.ensure_computing() self.ensure_communicating() def _prepare_args_for_execution( self, ts: TaskState, args: tuple, kwargs: dict[str, Any] ) -> tuple[tuple, dict[str, Any]]: start = time() data = {} for dep in ts.dependencies: k = dep.key try: data[k] = self.data[k] except KeyError: from .actor import Actor # TODO: create local actor data[k] = Actor(type(self.actors[k]), self.address, k, self) args2 = pack_data(args, data, key_types=(bytes, str)) kwargs2 = pack_data(kwargs, data, key_types=(bytes, str)) stop = time() if stop - start > 0.005: ts.startstops.append({"action": "disk-read", "start": start, "stop": stop}) if self.digests is not None: self.digests["disk-load-duration"].add(stop - start) return args2, kwargs2 ################## # Administrative # ################## async def memory_monitor(self) -> None: """Track this process's memory usage and act accordingly If we rise above 70% memory use, start dumping data to disk. If we rise above 80% memory use, stop execution of new tasks """ if self._memory_monitoring: return self._memory_monitoring = True assert self.memory_limit total = 0 memory = self.monitor.get_process_memory() frac = memory / self.memory_limit def check_pause(memory): frac = memory / self.memory_limit # Pause worker threads if above 80% memory use if self.memory_pause_fraction and frac > self.memory_pause_fraction: # Try to free some memory while in paused state self._throttled_gc.collect() if self.status == Status.running: logger.warning( "Worker is at %d%% memory usage. Pausing worker. " "Process memory: %s -- Worker memory limit: %s", int(frac * 100), format_bytes(memory), format_bytes(self.memory_limit) if self.memory_limit is not None else "None", ) self.status = Status.paused elif self.status == Status.paused: logger.warning( "Worker is at %d%% memory usage. Resuming worker. " "Process memory: %s -- Worker memory limit: %s", int(frac * 100), format_bytes(memory), format_bytes(self.memory_limit) if self.memory_limit is not None else "None", ) self.status = Status.running self.ensure_computing() self.ensure_communicating() check_pause(memory) # Dump data to disk if above 70% if self.memory_spill_fraction and frac > self.memory_spill_fraction: from .spill import SpillBuffer assert isinstance(self.data, SpillBuffer) logger.debug( "Worker is at %.0f%% memory usage. Start spilling data to disk.", frac * 100, ) # Implement hysteresis cycle where spilling starts at the spill threshold # and stops at the target threshold. Normally that here the target threshold # defines process memory, whereas normally it defines reported managed # memory (e.g. output of sizeof() ). # If target=False, disable hysteresis. target = self.memory_limit * ( self.memory_target_fraction or self.memory_spill_fraction ) count = 0 need = memory - target while memory > target: if not self.data.fast: logger.warning( "Unmanaged memory use is high. This may indicate a memory leak " "or the memory may not be released to the OS; see " "https://distributed.dask.org/en/latest/worker.html#memtrim " "for more information. " "-- Unmanaged memory: %s -- Worker memory limit: %s", format_bytes(memory), format_bytes(self.memory_limit), ) break weight = self.data.evict() if weight == -1: # Failed to evict: # disk full, spill size limit exceeded, or pickle error break total += weight count += 1 await asyncio.sleep(0) memory = self.monitor.get_process_memory() if total > need and memory > target: # Issue a GC to ensure that the evicted data is actually # freed from memory and taken into account by the monitor # before trying to evict even more data. self._throttled_gc.collect() memory = self.monitor.get_process_memory() check_pause(memory) if count: logger.debug( "Moved %d tasks worth %s to disk", count, format_bytes(total), ) self._memory_monitoring = False def cycle_profile(self) -> None: now = time() + self.scheduler_delay prof, self.profile_recent = self.profile_recent, profile.create() self.profile_history.append((now, prof)) self.profile_keys_history.append((now, dict(self.profile_keys))) self.profile_keys.clear() def trigger_profile(self) -> None: """ Get a frame from all actively computing threads Merge these frames into existing profile counts """ if not self.active_threads: # hope that this is thread-atomic? return start = time() with self.active_threads_lock: active_threads = self.active_threads.copy() frames = sys._current_frames() frames = {ident: frames[ident] for ident in active_threads} llframes = {} if self.low_level_profiler: llframes = {ident: profile.ll_get_stack(ident) for ident in active_threads} for ident, frame in frames.items(): if frame is not None: key = key_split(active_threads[ident]) llframe = llframes.get(ident) state = profile.process( frame, True, self.profile_recent, stop="distributed/worker.py" ) profile.llprocess(llframe, None, state) profile.process( frame, True, self.profile_keys[key], stop="distributed/worker.py" ) stop = time() if self.digests is not None: self.digests["profile-duration"].add(stop - start) async def get_profile( self, start=None, stop=None, key=None, server: bool = False, ): now = time() + self.scheduler_delay if server: history = self.io_loop.profile elif key is None: history = self.profile_history else: history = [(t, d[key]) for t, d in self.profile_keys_history if key in d] if start is None: istart = 0 else: istart = bisect.bisect_left(history, (start,)) if stop is None: istop = None else: istop = bisect.bisect_right(history, (stop,)) + 1 if istop >= len(history): istop = None # include end if istart == 0 and istop is None: history = list(history) else: iistop = len(history) if istop is None else istop history = [history[i] for i in range(istart, iistop)] prof = profile.merge(*pluck(1, history)) if not history: return profile.create() if istop is None and (start is None or start < now): if key is None: recent = self.profile_recent else: recent = self.profile_keys[key] prof = profile.merge(prof, recent) return prof async def get_profile_metadata( self, start: float = 0, stop: float | None = None ) -> dict[str, Any]: add_recent = stop is None now = time() + self.scheduler_delay stop = stop or now result = { "counts": [ (t, d["count"]) for t, d in self.profile_history if start < t < stop ], "keys": [ (t, {k: d["count"] for k, d in v.items()}) for t, v in self.profile_keys_history if start < t < stop ], } if add_recent: result["counts"].append((now, self.profile_recent["count"])) result["keys"].append( (now, {k: v["count"] for k, v in self.profile_keys.items()}) ) return result def get_call_stack(self, keys: Collection[str] | None = None) -> dict[str, Any]: with self.active_threads_lock: sys_frames = sys._current_frames() frames = {key: sys_frames[tid] for tid, key in self.active_threads.items()} if keys is not None: frames = {key: frames[key] for key in keys if key in frames} return {key: profile.call_stack(frame) for key, frame in frames.items()} def _notify_plugins(self, method_name, *args, **kwargs): for name, plugin in self.plugins.items(): if hasattr(plugin, method_name): if method_name == "release_key": warnings.warn( "The `WorkerPlugin.release_key` hook is deprecated and will be " "removed in a future version. A similar event can now be " "caught by filtering for a `finish=='released'` event in the " "`WorkerPlugin.transition` hook.", FutureWarning, ) try: getattr(plugin, method_name)(*args, **kwargs) except Exception: logger.info( "Plugin '%s' failed with exception", name, exc_info=True ) ############## # Validation # ############## def validate_task_memory(self, ts): assert ts.key in self.data or ts.key in self.actors assert isinstance(ts.nbytes, int) assert not ts.waiting_for_data assert ts.key not in self.ready assert ts.state == "memory" def validate_task_executing(self, ts): assert ts.state == "executing" assert ts.run_spec is not None assert ts.key not in self.data assert not ts.waiting_for_data for dep in ts.dependencies: assert dep.state == "memory", self.story(dep) assert dep.key in self.data or dep.key in self.actors def validate_task_ready(self, ts): assert ts.key in pluck(1, self.ready) assert ts.key not in self.data assert ts.state != "executing" assert not ts.done assert not ts.waiting_for_data assert all( dep.key in self.data or dep.key in self.actors for dep in ts.dependencies ) def validate_task_waiting(self, ts): assert ts.key not in self.data assert ts.state == "waiting" assert not ts.done if ts.dependencies and ts.run_spec: assert not all(dep.key in self.data for dep in ts.dependencies) def validate_task_flight(self, ts): assert ts.key not in self.data assert ts in self._in_flight_tasks assert not any(dep.key in self.ready for dep in ts.dependents) assert ts.coming_from assert ts.coming_from in self.in_flight_workers assert ts.key in self.in_flight_workers[ts.coming_from] def validate_task_fetch(self, ts): assert ts.key not in self.data assert self.address not in ts.who_has assert not ts.done assert ts in self.data_needed assert ts.who_has for w in ts.who_has: assert ts.key in self.has_what[w] assert ts in self.pending_data_per_worker[w] def validate_task_missing(self, ts): assert ts.key not in self.data assert not ts.who_has assert not ts.done assert not any(ts.key in has_what for has_what in self.has_what.values()) assert ts in self._missing_dep_flight def validate_task_cancelled(self, ts): assert ts.key not in self.data assert ts._previous assert ts._next def validate_task_resumed(self, ts): assert ts.key not in self.data assert ts._next assert ts._previous def validate_task_released(self, ts): assert ts.key not in self.data assert not ts._next assert not ts._previous assert ts not in self._executing assert ts not in self._in_flight_tasks assert ts not in self._missing_dep_flight assert ts not in self._missing_dep_flight assert not any(ts.key in has_what for has_what in self.has_what.values()) assert not ts.waiting_for_data assert not ts.done assert not ts.exception assert not ts.traceback def validate_task(self, ts): try: if ts.key in self.tasks: assert self.tasks[ts.key] == ts if ts.state == "memory": self.validate_task_memory(ts) elif ts.state == "waiting": self.validate_task_waiting(ts) elif ts.state == "missing": self.validate_task_missing(ts) elif ts.state == "cancelled": self.validate_task_cancelled(ts) elif ts.state == "resumed": self.validate_task_resumed(ts) elif ts.state == "ready": self.validate_task_ready(ts) elif ts.state == "executing": self.validate_task_executing(ts) elif ts.state == "flight": self.validate_task_flight(ts) elif ts.state == "fetch": self.validate_task_fetch(ts) elif ts.state == "released": self.validate_task_released(ts) except Exception as e: logger.exception(e) if LOG_PDB: import pdb pdb.set_trace() raise AssertionError( f"Invalid TaskState encountered for {ts!r}.\nStory:\n{self.story(ts)}\n" ) from e def validate_state(self): if self.status not in Status.ANY_RUNNING: return try: assert self.executing_count >= 0 waiting_for_data_count = 0 for ts in self.tasks.values(): assert ts.state is not None # check that worker has task for worker in ts.who_has: assert ts.key in self.has_what[worker] # check that deps have a set state and that dependency<->dependent links # are there for dep in ts.dependencies: # self.tasks was just a dict of tasks # and this check was originally that the key was in `task_state` # so we may have popped the key out of `self.tasks` but the # dependency can still be in `memory` before GC grabs it...? # Might need better bookkeeping assert dep.state is not None assert ts in dep.dependents, ts if ts.waiting_for_data: waiting_for_data_count += 1 for ts_wait in ts.waiting_for_data: assert ts_wait.key in self.tasks assert ( ts_wait.state in READY | {"executing", "flight", "fetch", "missing"} or ts_wait in self._missing_dep_flight or ts_wait.who_has.issubset(self.in_flight_workers) ), (ts, ts_wait, self.story(ts), self.story(ts_wait)) assert self.waiting_for_data_count == waiting_for_data_count for worker, keys in self.has_what.items(): for k in keys: assert worker in self.tasks[k].who_has for ts in self.tasks.values(): self.validate_task(ts) except Exception as e: self.loop.add_callback(self.close) logger.exception(e) if LOG_PDB: import pdb pdb.set_trace() raise ####################################### # Worker Clients (advanced workloads) # ####################################### @property def client(self) -> Client: with self._lock: if self._client: return self._client else: return self._get_client() def _get_client(self, timeout: float | None = None) -> Client: """Get local client attached to this worker If no such client exists, create one See Also -------- get_client """ if timeout is None: timeout = dask.config.get("distributed.comm.timeouts.connect") timeout = parse_timedelta(timeout, "s") try: from .client import default_client client = default_client() except ValueError: # no clients found, need to make a new one pass else: # must be lazy import otherwise cyclic import from distributed.deploy.cluster import Cluster if ( client.scheduler and client.scheduler.address == self.scheduler.address # The below conditions should only happen in case a second # cluster is alive, e.g. if a submitted task spawned its onwn # LocalCluster, see gh4565 or ( isinstance(client._start_arg, str) and client._start_arg == self.scheduler.address or isinstance(client._start_arg, Cluster) and client._start_arg.scheduler_address == self.scheduler.address ) ): self._client = client if not self._client: from .client import Client asynchronous = in_async_call(self.loop) self._client = Client( self.scheduler, loop=self.loop, security=self.security, set_as_default=True, asynchronous=asynchronous, direct_to_workers=True, name="worker", timeout=timeout, ) Worker._initialized_clients.add(self._client) if not asynchronous: assert self._client.status == "running" return self._client def get_current_task(self) -> str: """Get the key of the task we are currently running This only makes sense to run within a task Examples -------- >>> from dask.distributed import get_worker >>> def f(): ... return get_worker().get_current_task() >>> future = client.submit(f) # doctest: +SKIP >>> future.result() # doctest: +SKIP 'f-1234' See Also -------- get_worker """ return self.active_threads[threading.get_ident()] def get_worker() -> Worker: """Get the worker currently running this task Examples -------- >>> def f(): ... worker = get_worker() # The worker on which this task is running ... return worker.address >>> future = client.submit(f) # doctest: +SKIP >>> future.result() # doctest: +SKIP 'tcp://127.0.0.1:47373' See Also -------- get_client worker_client """ try: return thread_state.execution_state["worker"] except AttributeError: try: return first( w for w in Worker._instances if w.status in Status.ANY_RUNNING # type: ignore ) except StopIteration: raise ValueError("No workers found") def get_client(address=None, timeout=None, resolve_address=True) -> Client: """Get a client while within a task. This client connects to the same scheduler to which the worker is connected Parameters ---------- address : str, optional The address of the scheduler to connect to. Defaults to the scheduler the worker is connected to. timeout : int or str Timeout (in seconds) for getting the Client. Defaults to the ``distributed.comm.timeouts.connect`` configuration value. resolve_address : bool, default True Whether to resolve `address` to its canonical form. Returns ------- Client Examples -------- >>> def f(): ... client = get_client(timeout="10s") ... futures = client.map(lambda x: x + 1, range(10)) # spawn many tasks ... results = client.gather(futures) ... return sum(results) >>> future = client.submit(f) # doctest: +SKIP >>> future.result() # doctest: +SKIP 55 See Also -------- get_worker worker_client secede """ if timeout is None: timeout = dask.config.get("distributed.comm.timeouts.connect") timeout = parse_timedelta(timeout, "s") if address and resolve_address: address = comm.resolve_address(address) try: worker = get_worker() except ValueError: # could not find worker pass else: if not address or worker.scheduler.address == address: return worker._get_client(timeout=timeout) from .client import Client try: client = Client.current() # TODO: assumes the same scheduler except ValueError: client = None if client and (not address or client.scheduler.address == address): return client elif address: return Client(address, timeout=timeout) else: raise ValueError("No global client found and no address provided") def secede(): """ Have this task secede from the worker's thread pool This opens up a new scheduling slot and a new thread for a new task. This enables the client to schedule tasks on this node, which is especially useful while waiting for other jobs to finish (e.g., with ``client.gather``). Examples -------- >>> def mytask(x): ... # do some work ... client = get_client() ... futures = client.map(...) # do some remote work ... secede() # while that work happens, remove ourself from the pool ... return client.gather(futures) # return gathered results See Also -------- get_client get_worker """ worker = get_worker() tpe_secede() # have this thread secede from the thread pool duration = time() - thread_state.start_time worker.loop.add_callback( worker.maybe_transition_long_running, worker.tasks[thread_state.key], compute_duration=duration, stimulus_id=f"secede-{thread_state.key}-{time()}", ) class Reschedule(Exception): """Reschedule this task Raising this exception will stop the current execution of the task and ask the scheduler to reschedule this task, possibly on a different machine. This does not guarantee that the task will move onto a different machine. The scheduler will proceed through its normal heuristics to determine the optimal machine to accept this task. The machine will likely change if the load across the cluster has significantly changed since first scheduling the task. """ def parse_memory_limit(memory_limit, nthreads, total_cores=CPU_COUNT) -> int | None: if memory_limit is None: return None if memory_limit == "auto": memory_limit = int(system.MEMORY_LIMIT * min(1, nthreads / total_cores)) with suppress(ValueError, TypeError): memory_limit = float(memory_limit) if isinstance(memory_limit, float) and memory_limit <= 1: memory_limit = int(memory_limit * system.MEMORY_LIMIT) if isinstance(memory_limit, str): memory_limit = parse_bytes(memory_limit) else: memory_limit = int(memory_limit) return min(memory_limit, system.MEMORY_LIMIT) async def get_data_from_worker( rpc, keys, worker, who=None, max_connections=None, serializers=None, deserializers=None, ): """Get keys from worker The worker has a two step handshake to acknowledge when data has been fully delivered. This function implements that handshake. See Also -------- Worker.get_data Worker.gather_dep utils_comm.gather_data_from_workers """ if serializers is None: serializers = rpc.serializers if deserializers is None: deserializers = rpc.deserializers async def _get_data(): comm = await rpc.connect(worker) comm.name = "Ephemeral Worker->Worker for gather" try: response = await send_recv( comm, serializers=serializers, deserializers=deserializers, op="get_data", keys=keys, who=who, max_connections=max_connections, ) try: status = response["status"] except KeyError: # pragma: no cover raise ValueError("Unexpected response", response) else: if status == "OK": await comm.write("OK") return response finally: rpc.reuse(worker, comm) return await retry_operation(_get_data, operation="get_data_from_worker") job_counter = [0] cache_loads = LRU(maxsize=100) def loads_function(bytes_object): """Load a function from bytes, cache bytes""" if len(bytes_object) < 100000: try: result = cache_loads[bytes_object] except KeyError: result = pickle.loads(bytes_object) cache_loads[bytes_object] = result return result return pickle.loads(bytes_object) def _deserialize(function=None, args=None, kwargs=None, task=no_value): """Deserialize task inputs and regularize to func, args, kwargs""" if function is not None: function = loads_function(function) if args and isinstance(args, bytes): args = pickle.loads(args) if kwargs and isinstance(kwargs, bytes): kwargs = pickle.loads(kwargs) if task is not no_value: assert not function and not args and not kwargs function = execute_task args = (task,) return function, args or (), kwargs or {} def execute_task(task): """Evaluate a nested task >>> inc = lambda x: x + 1 >>> execute_task((inc, 1)) 2 >>> execute_task((sum, [1, 2, (inc, 3)])) 7 """ if istask(task): func, args = task[0], task[1:] return func(*map(execute_task, args)) elif isinstance(task, list): return list(map(execute_task, task)) else: return task cache_dumps = LRU(maxsize=100) _cache_lock = threading.Lock() def dumps_function(func) -> bytes: """Dump a function to bytes, cache functions""" try: with _cache_lock: result = cache_dumps[func] except KeyError: result = pickle.dumps(func, protocol=4) if len(result) < 100000: with _cache_lock: cache_dumps[func] = result except TypeError: # Unhashable function result = pickle.dumps(func, protocol=4) return result def dumps_task(task): """Serialize a dask task Returns a dict of bytestrings that can each be loaded with ``loads`` Examples -------- Either returns a task as a function, args, kwargs dict >>> from operator import add >>> dumps_task((add, 1)) # doctest: +SKIP {'function': b'\x80\x04\x95\x00\x8c\t_operator\x94\x8c\x03add\x94\x93\x94.' 'args': b'\x80\x04\x95\x07\x00\x00\x00K\x01K\x02\x86\x94.'} Or as a single task blob if it can't easily decompose the result. This happens either if the task is highly nested, or if it isn't a task at all >>> dumps_task(1) # doctest: +SKIP {'task': b'\x80\x04\x95\x03\x00\x00\x00\x00\x00\x00\x00K\x01.'} """ if istask(task): if task[0] is apply and not any(map(_maybe_complex, task[2:])): d = {"function": dumps_function(task[1]), "args": warn_dumps(task[2])} if len(task) == 4: d["kwargs"] = warn_dumps(task[3]) return d elif not any(map(_maybe_complex, task[1:])): return {"function": dumps_function(task[0]), "args": warn_dumps(task[1:])} return to_serialize(task) _warn_dumps_warned = [False] def warn_dumps(obj, dumps=pickle.dumps, limit=1e6): """Dump an object to bytes, warn if those bytes are large""" b = dumps(obj, protocol=4) if not _warn_dumps_warned[0] and len(b) > limit: _warn_dumps_warned[0] = True s = str(obj) if len(s) > 70: s = s[:50] + " ... " + s[-15:] warnings.warn( "Large object of size %s detected in task graph: \n" " %s\n" "Consider scattering large objects ahead of time\n" "with client.scatter to reduce scheduler burden and \n" "keep data on workers\n\n" " future = client.submit(func, big_data) # bad\n\n" " big_future = client.scatter(big_data) # good\n" " future = client.submit(func, big_future) # good" % (format_bytes(len(b)), s) ) return b def apply_function( function, args, kwargs, execution_state, key, active_threads, active_threads_lock, time_delay, ): """Run a function, collect information Returns ------- msg: dictionary with status, result/error, timings, etc.. """ ident = threading.get_ident() with active_threads_lock: active_threads[ident] = key thread_state.start_time = time() thread_state.execution_state = execution_state thread_state.key = key msg = apply_function_simple(function, args, kwargs, time_delay) with active_threads_lock: del active_threads[ident] return msg def apply_function_simple( function, args, kwargs, time_delay, ): """Run a function, collect information Returns ------- msg: dictionary with status, result/error, timings, etc.. """ ident = threading.get_ident() start = time() try: result = function(*args, **kwargs) except Exception as e: msg = error_message(e) msg["op"] = "task-erred" msg["actual-exception"] = e else: msg = { "op": "task-finished", "status": "OK", "result": result, "nbytes": sizeof(result), "type": type(result) if result is not None else None, } finally: end = time() msg["start"] = start + time_delay msg["stop"] = end + time_delay msg["thread"] = ident return msg async def apply_function_async( function, args, kwargs, time_delay, ): """Run a function, collect information Returns ------- msg: dictionary with status, result/error, timings, etc.. """ ident = threading.get_ident() start = time() try: result = await function(*args, **kwargs) except Exception as e: msg = error_message(e) msg["op"] = "task-erred" msg["actual-exception"] = e else: msg = { "op": "task-finished", "status": "OK", "result": result, "nbytes": sizeof(result), "type": type(result) if result is not None else None, } finally: end = time() msg["start"] = start + time_delay msg["stop"] = end + time_delay msg["thread"] = ident return msg def apply_function_actor( function, args, kwargs, execution_state, key, active_threads, active_threads_lock ): """Run a function, collect information Returns ------- msg: dictionary with status, result/error, timings, etc.. """ ident = threading.get_ident() with active_threads_lock: active_threads[ident] = key thread_state.execution_state = execution_state thread_state.key = key thread_state.actor = True result = function(*args, **kwargs) with active_threads_lock: del active_threads[ident] return result def get_msg_safe_str(msg): """Make a worker msg, which contains args and kwargs, safe to cast to str: allowing for some arguments to raise exceptions during conversion and ignoring them. """ class Repr: def __init__(self, f, val): self._f = f self._val = val def __repr__(self): return self._f(self._val) msg = msg.copy() if "args" in msg: msg["args"] = Repr(convert_args_to_str, msg["args"]) if "kwargs" in msg: msg["kwargs"] = Repr(convert_kwargs_to_str, msg["kwargs"]) return msg def convert_args_to_str(args, max_len: int | None = None) -> str: """Convert args to a string, allowing for some arguments to raise exceptions during conversion and ignoring them. """ length = 0 strs = ["" for i in range(len(args))] for i, arg in enumerate(args): try: sarg = repr(arg) except Exception: sarg = "< could not convert arg to str >" strs[i] = sarg length += len(sarg) + 2 if max_len is not None and length > max_len: return "({}".format(", ".join(strs[: i + 1]))[:max_len] else: return "({})".format(", ".join(strs)) def convert_kwargs_to_str(kwargs: dict, max_len: int | None = None) -> str: """Convert kwargs to a string, allowing for some arguments to raise exceptions during conversion and ignoring them. """ length = 0 strs = ["" for i in range(len(kwargs))] for i, (argname, arg) in enumerate(kwargs.items()): try: sarg = repr(arg) except Exception: sarg = "< could not convert arg to str >" skwarg = repr(argname) + ": " + sarg strs[i] = skwarg length += len(skwarg) + 2 if max_len is not None and length > max_len: return "{{{}".format(", ".join(strs[: i + 1]))[:max_len] else: return "{{{}}}".format(", ".join(strs)) async def run(server, comm, function, args=(), kwargs=None, is_coro=None, wait=True): kwargs = kwargs or {} function = pickle.loads(function) if is_coro is None: is_coro = iscoroutinefunction(function) else: warnings.warn( "The is_coro= parameter is deprecated. " "We now automatically detect coroutines/async functions" ) assert wait or is_coro, "Combination not supported" if args: args = pickle.loads(args) if kwargs: kwargs = pickle.loads(kwargs) if has_arg(function, "dask_worker"): kwargs["dask_worker"] = server if has_arg(function, "dask_scheduler"): kwargs["dask_scheduler"] = server logger.info("Run out-of-band function %r", funcname(function)) try: if not is_coro: result = function(*args, **kwargs) else: if wait: result = await function(*args, **kwargs) else: server.loop.add_callback(function, *args, **kwargs) result = None except Exception as e: logger.warning( "Run Failed\nFunction: %s\nargs: %s\nkwargs: %s\n", str(funcname(function))[:1000], convert_args_to_str(args, max_len=1000), convert_kwargs_to_str(kwargs, max_len=1000), exc_info=True, ) response = error_message(e) else: response = {"status": "OK", "result": to_serialize(result)} return response _global_workers = Worker._instances try: if nvml.device_get_count() < 1: raise RuntimeError except (Exception, RuntimeError): pass else: async def gpu_metric(worker): result = await offload(nvml.real_time) return result DEFAULT_METRICS["gpu"] = gpu_metric def gpu_startup(worker): return nvml.one_time() DEFAULT_STARTUP_INFORMATION["gpu"] = gpu_startup def print(*args, **kwargs): """Dask print function This prints both wherever this function is run, and also in the user's client session """ try: worker = get_worker() except ValueError: pass else: msg = { "args": tuple(stringify(arg) for arg in args), "kwargs": {k: stringify(v) for k, v in kwargs.items()}, } worker.log_event("print", msg) builtins.print(*args, **kwargs) def warn(*args, **kwargs): """Dask warn function This raises a warning both wherever this function is run, and also in the user's client session """ try: worker = get_worker() except ValueError: # pragma: no cover pass else: worker.log_event("warn", {"args": args, "kwargs": kwargs}) warnings.warn(*args, **kwargs)
dask/distributed
distributed/worker.py
Python
bsd-3-clause
177,089
import os from PIL import Image from django.template import Library register = Library() def thumbnail(file, size='104x104', noimage=''): # defining the size x, y = [int(x) for x in size.split('x')] # defining the filename and the miniature filename try: filehead, filetail = os.path.split(file.path) except: return '' basename, format = os.path.splitext(filetail) #quick fix for format if format.lower() =='.gif': return (filehead + '/' + filetail).replace(MEDIA_ROOT, MEDIA_URL) miniature = basename + '_' + size + format filename = file.path miniature_filename = os.path.join(filehead, miniature) filehead, filetail = os.path.split(file.url) miniature_url = filehead + '/' + miniature #fail on missing large file (bad import) try: if os.path.exists(miniature_filename) and os.path.getmtime(filename)>os.path.getmtime(miniature_filename): os.unlink(miniature_filename) except: return '' # if the image wasn't already resized, resize it if not os.path.exists(miniature_filename): try: image = Image.open(filename) except: return '' image.thumbnail([x, y], Image.ANTIALIAS) image.convert('RGB') try: image.save(miniature_filename, image.format, quality=90, optimize=1) except: try: image.save(miniature_filename, image.format, quality=90) except: return noimage return miniature_url register.filter(thumbnail) from django.conf import settings MEDIA_ROOT, MEDIA_URL = settings.MEDIA_ROOT, settings.MEDIA_URL def thumbnail_crop(file, size='104x104', noimage=''): # defining the size x, y = [int(x) for x in size.split('x')] # defining the filename and the miniature filename try: filehead, filetail = os.path.split(file.path) except: return '' # '/media/img/noimage.jpg' basename, format = os.path.splitext(filetail) #quick fix for format if format.lower() =='.gif': return (filehead + '/' + filetail).replace(MEDIA_ROOT, MEDIA_URL) miniature = basename + '_' + size + format filename = file.path miniature_filename = os.path.join(filehead, miniature) filehead, filetail = os.path.split(file.url) miniature_url = filehead + '/' + miniature try: if os.path.exists(miniature_filename) and os.path.exists(filename) and os.path.getmtime(filename)>os.path.getmtime(miniature_filename): os.unlink(miniature_filename) except: return '' # if the image wasn't already resized, resize it if not os.path.exists(miniature_filename): try: image = Image.open(filename) except: return '(minfail %s) ' % filename #noimage src_width, src_height = image.size src_ratio = float(src_width) / float(src_height) dst_width, dst_height = x, y dst_ratio = float(dst_width) / float(dst_height) if dst_ratio < src_ratio: crop_height = src_height crop_width = crop_height * dst_ratio x_offset = int(float(src_width - crop_width) / 2) y_offset = 0 else: crop_width = src_width crop_height = crop_width / dst_ratio x_offset = 0 y_offset = int(float(src_height - crop_height) / 3) try: image = image.crop((x_offset, y_offset, x_offset+int(crop_width), y_offset+int(crop_height))) image = image.resize((dst_width, dst_height), Image.ANTIALIAS) image.convert('RGB') except: pass try: image.save(miniature_filename, image.format, quality=90, optimize=1) except: try: image.save(miniature_filename, image.format, quality=90) except: return '' #'/media/img/noimage.jpg' return miniature_url register.filter(thumbnail_crop)
mjbrownie/ascet_filer_teaser
ascet_filer_teaser/templatetags/huski_thumbnail.py
Python
bsd-3-clause
4,022
# -*- coding: utf-8 -*- import time import pytest from selenium.webdriver import ActionChains from django.db.models import get_model from fancypages.test import factories from fancypages.test.fixtures import admin_user # noqa FancyPage = get_model('fancypages', 'FancyPage') @pytest.mark.browser def test_can_move_block_from_one_container_to_another(live_server, browser, admin_user): page = factories.FancyPageFactory(node__name='Home') main_container = page.containers.all()[0] layout = factories.TwoColumnLayoutBlockFactory(container=main_container) browser.visit(live_server.url + page.get_absolute_url()) right = layout.containers.get(name='right-container') left = layout.containers.get(name='left-container') moving_block = factories.TextBlockFactory(container=right) factories.TextBlockFactory(container=right) factories.TextBlockFactory(container=left) browser.visit(live_server.url + page.get_absolute_url()) browser.find_by_css('#editor-handle').first.click() source = browser.find_by_css( '#block-{} div.move'.format(moving_block.uuid)).first chain = ActionChains(browser.driver) chain.drag_and_drop_by_offset(source._element, -600, 200).perform() time.sleep(5) assert right.blocks.count() == left.blocks.count() == 1 assert main_container.blocks.count() == 2 main_block_ids = [b.uuid for b in main_container.blocks.all()] assert main_block_ids == [layout.uuid, moving_block.uuid]
tangentlabs/django-fancypages
tests/browser/test_moving_blocks.py
Python
bsd-3-clause
1,547
__author__="cooke" __date__ ="$01-Mar-2012 11:17:43$"
agcooke/ExperimentControl
experimentcontrol/test/__init__.py
Python
bsd-3-clause
53
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) # -- Project information ----------------------------------------------------- project = 'MYPROJECT' copyright = '2019, MYSELF' author = 'MYSELF' # The short X.Y version version = '' # The full version, including alpha/beta/rc tags release = '' # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [] # The name of the Pygments (syntax highlighting) style to use. pygments_style = None # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'MYPROJECTdoc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'MYPROJECT.tex', 'MYPROJECT Documentation', 'MYSELF', 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'myproject', 'MYPROJECT Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'MYPROJECT', 'MYPROJECT Documentation', author, 'MYPROJECT', 'One line description of project.', 'Miscellaneous'), ] # -- Options for Epub output ------------------------------------------------- # Bibliographic Dublin Core info. epub_title = project # The unique identifier of the text. This can be a ISBN number # or the project homepage. # # epub_identifier = '' # A unique identification for the text. # # epub_uid = '' # A list of files that should not be packed into the epub file. epub_exclude_files = ['search.html'] # == NDD DOCKER SPHINX - OVERRIDE ============================================ # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [ 'sphinx.ext.graphviz', 'sphinx.ext.ifconfig', # 'sphinx.ext.imgmath', 'sphinx.ext.mathjax', 'sphinx.ext.todo', 'sphinx-prompt', 'sphinxcontrib.actdiag', 'sphinxcontrib.blockdiag', 'sphinxcontrib.excel_table', # 'sphinxcontrib.googleanalytics', # 'sphinxcontrib.googlechart', # 'sphinxcontrib.googlemaps', 'sphinxcontrib.nwdiag', 'sphinxcontrib.packetdiag', 'sphinxcontrib.plantuml', 'sphinxcontrib.rackdiag', 'sphinxcontrib.seqdiag', ] # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'sphinx_rtd_theme' # If true, 'todo' and 'todoList' produce output, else they produce nothing. todo_include_todos = True # -- Markdown ---------------------------------------------------------------- # http://www.sphinx-doc.org/en/stable/usage/markdown.html # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: source_suffix = ['.rst', '.md'] from recommonmark.parser import CommonMarkParser source_parsers = { '.md': CommonMarkParser, } # -- Pseudo extensions ------------------------------------------------------- # Uncomment to enable Git parsing # TODO: extract in a Sphinx plugin # # Must be defined somewhere # html_context = {} # # import os.path # source_directory = os.path.dirname(os.path.realpath(__file__)) # python_directory = os.path.join(source_directory, '_python') # exec(open(os.path.join(python_directory, 'sphinx-git.py'), 'rb').read()) # -- Generator properties ---------------------------------------------------- # The Docker tag of the image that generated this project ddidier_sphinxdoc_image_tag = '0123456789ABCDEF' # The Git tag of the image that generated this project # This is the most recent tag if the image is 'latest' # Hopefully it will be (manually) updated while releasing... ddidier_sphinxdoc_git_tag = '1.8.5-2'
zCFD/zCFD-docker
sphinx-doc/tests/test-init/expected/source/conf.py
Python
bsd-3-clause
7,345
# -*-coding:Utf-8 -* # Copyright (c) 2010-2017 LE GOFF Vincent # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT # OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Fichier contenant le type cape.""" from .vetement import Vetement class Cape(Vetement): """Type d'objet: cape. """ nom_type = "cape" empilable_sur = ["vêtement", "armure"] protection_froid = 2 def __init__(self, cle=""): Vetement.__init__(self, cle) self.emplacement = "dos" self.positions = (1, )
vlegoff/tsunami
src/primaires/objet/types/cape.py
Python
bsd-3-clause
1,924
from .base import call_method_or_dispatch, create_registerer sym_decision_function_dispatcher = {} sym_decision_function = call_method_or_dispatch('sym_decision_function', sym_decision_function_dispatcher) register_sym_decision_function = create_registerer(sym_decision_function_dispatcher, 'register_sym_decision_function')
jcrudy/sklearntools
sklearntools/sym/sym_decision_function.py
Python
bsd-3-clause
328
''' Created on 9 jan. 2013 @author: sander ''' from bitstring import ConstBitStream, BitStream, Bits from ipaddress import IPv4Address from pylisp.packet.ip import protocol_registry from pylisp.packet.ip.protocol import Protocol from pylisp.utils import checksum import math import numbers class IPv4Packet(Protocol): ''' Minimal IPv4 implementation to use in LISP Encapsulated Control Messages. Options are not interpreted. ''' header_type = 4 version = 4 def __init__(self, tos=0, identification=0, dont_fragment=False, more_fragments=False, fragment_offset=0, ttl=0, protocol=0, source=None, destination=None, options='', payload='', next_header=None): ''' Constructor ''' # Call superclass super(IPv4Packet, self).__init__(next_header=next_header or protocol, payload=payload) # Next-header and protocol can't conflict. Protocol is the official # name, but next_header is used for compatibility with the other # headers. They use the same name/number space anyway. if next_header is not None and protocol != 0 \ and next_header != protocol: raise ValueError("Conflicting next_header and protocol given") # Set defaults self.tos = tos self.identification = identification self.dont_fragment = dont_fragment self.more_fragments = more_fragments self.fragment_offset = fragment_offset self.ttl = ttl self.source = source self.destination = destination self.options = options # Protocol is an alias for next-header @property def protocol(self): return self.next_header @protocol.setter def protocol(self, protocol): self.next_header = protocol def is_fragmented(self): return self.more_fragments or self.fragment_offset != 0 def get_final_payload(self): return (self.protocol, self.payload) def sanitize(self): ''' Check if the current settings conform to the RFC and fix where possible ''' # Let the parent do its stuff super(IPv4Packet, self).sanitize() # Check the version if self.version != 4: raise ValueError("Protocol version must be 4") # Treat type-of-service as an 8-bit unsigned integer. Future versions # of this code may implement methods to treat it as DSCP+ECN if not isinstance(self.tos, numbers.Integral) \ or self.tos < 0 \ or self.tos >= 2 ** 8: raise ValueError('Invalid type of service') # Identification: An identifying value assigned by the sender to aid in # assembling the fragments of a datagram. if not isinstance(self.identification, numbers.Integral) \ or self.identification < 0 \ or self.identification >= 2 ** 16: raise ValueError('Invalid fragment identification') # An internet datagram can be marked "don't fragment." Any internet # datagram so marked is not to be internet fragmented under any # circumstances. If internet datagram marked don't fragment cannot be # delivered to its destination without fragmenting it, it is to be # discarded instead. if not isinstance(self.dont_fragment, bool): raise ValueError("Don't fragment flag must be a boolean") # The More Fragments flag bit (MF) is set if the datagram is not the # last fragment. The Fragment Offset field identifies the fragment # location, relative to the beginning of the original unfragmented # datagram. Fragments are counted in units of 8 octets. The # fragmentation strategy is designed so than an unfragmented datagram # has all zero fragmentation information (MF = 0, fragment offset = # 0). If an internet datagram is fragmented, its data portion must be # broken on 8 octet boundaries. if not isinstance(self.more_fragments, bool): raise ValueError('More fragments flag must be a boolean') # Fragment offset: This field indicates where in the datagram this # fragment belongs. The fragment offset is measured in units of 8 # octets (64 bits). The first fragment has offset zero. if not isinstance(self.fragment_offset, numbers.Integral) \ or self.fragment_offset < 0 \ or self.fragment_offset >= 2 ** 13: raise ValueError('Invalid fragment offset') # Check for don't-fragment combined with a fragment offset if self.dont_fragment and self.fragment_offset > 0: raise ValueError("A packet marked don't fragment can't have " "a fragment-offset") # Check that the TTL is correct if not isinstance(self.ttl, numbers.Integral) \ or self.ttl < 0 \ or self.ttl >= 2 ** 8: raise ValueError('Invalid TTL') # Check the source and destination addresses if not isinstance(self.source, IPv4Address): raise ValueError('Source address must be IPv4') if not isinstance(self.destination, IPv4Address): raise ValueError('Destination address must be IPv4') @classmethod def from_bytes(cls, bitstream, decode_payload=True): ''' Parse the given packet and update properties accordingly ''' packet = cls() # Convert to ConstBitStream (if not already provided) if not isinstance(bitstream, ConstBitStream): if isinstance(bitstream, Bits): bitstream = ConstBitStream(auto=bitstream) else: bitstream = ConstBitStream(bytes=bitstream) # Read the version version = bitstream.read('uint:4') if version != packet.version: raise ValueError('Provided bytes do not contain an IPv4 packet') # Read the header length ihl = bitstream.read('uint:4') if ihl < 5: raise ValueError('Invalid IPv4 header length') # Now that we know the length of the header we store it to be able # to easily recalculate the header checksum later remaining_header_bits = (ihl * 32) - 8 header = (BitStream('uint:4=4, uint:4=%d' % ihl) + bitstream.peek(remaining_header_bits)) # Read the type of service packet.tos = bitstream.read('uint:8') # Read the total length total_length = bitstream.read('uint:16') if total_length < ihl * 4: raise ValueError('Total length is shorter than the header') # Read the identification packet.identification = bitstream.read('uint:16') # Read the flags (reserved, packet.dont_fragment, packet.more_fragments) = bitstream.readlist('3*bool') if reserved: raise ValueError('Reserved flag must be 0') # Read the fragment offset packet.fragment_offset = bitstream.read('uint:13') # Read the TTL packet.ttl = bitstream.read('uint:8') # Read the protocol number packet.protocol = bitstream.read('uint:8') # Read the header checksum header_checksum = bitstream.read('uint:16') # Set the checksum bits in the header to 0 and re-calculate header[80:96] = BitStream(16) my_checksum = checksum.ones_complement(header.bytes) if my_checksum != header_checksum: raise ValueError('Header checksum does not match') # Read the source and destination addresses packet.source = IPv4Address(bitstream.read('uint:32')) packet.destination = IPv4Address(bitstream.read('uint:32')) # Read the options option_len = (ihl - 5) * 4 packet.options = bitstream.read('bytes:%d' % option_len) # And the rest is payload payload_bytes = (total_length) - (ihl * 4) packet.payload = bitstream.read('bytes:%d' % payload_bytes) if decode_payload: payload_class = protocol_registry.get_type_class(packet.protocol) if payload_class: packet.payload = payload_class.from_bytes(packet.payload) # There should be no remaining bits if bitstream.pos != bitstream.len: raise ValueError('Bits remaining after processing packet') # Verify that the properties make sense packet.sanitize() return packet def to_bytes(self): ''' Create bytes from properties ''' # Verify that the properties make sense self.sanitize() # Write the version bitstream = BitStream('uint:4=%d' % self.version) # Write the header length options_len = math.ceil(len(self.options) / 4.0) bitstream += BitStream('uint:4=%d' % (5 + options_len)) # Write the type of service bitstream += BitStream('uint:8=%d' % self.tos) # Write the total length payload_bytes = bytes(self.payload) total_length = 20 + len(payload_bytes) bitstream += BitStream('uint:16=%d' % total_length) # Write the identification bitstream += BitStream('uint:16=%d' % self.identification) # Write the flags bitstream += BitStream('bool=False, bool=%d, ' 'bool=%d' % (self.dont_fragment, self.more_fragments)) # Write the fragment offset bitstream += BitStream('uint:13=%d' % self.fragment_offset) # Write the TTL bitstream += BitStream('uint:8=%d' % self.ttl) # Write the protocol number bitstream += BitStream('uint:8=%d' % self.protocol) # Write the header checksum as 0 for now, we calculate it later bitstream += BitStream('uint:16=0') # Write the source and destination addresses bitstream += BitStream('uint:32=%d, ' 'uint:32=%d' % (int(self.source), int(self.destination))) # Add the options bitstream += BitStream(bytes=self.options) padding_len = (4 - (len(self.options) % 4)) % 4 bitstream += BitStream(padding_len * 8) # Calculate the header checksum and fill it in my_checksum = checksum.ones_complement(bitstream.bytes) bitstream[80:96] = BitStream('uint:16=%d' % my_checksum) return bitstream.bytes + payload_bytes # Register this header type protocol_registry.register_type_class(IPv4Packet)
steffann/pylisp
pylisp/packet/ip/ipv4.py
Python
bsd-3-clause
10,727
def extractManaTankMagus(item): """ """ vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if not (chp or vol) or 'preview' in item['title'].lower(): return None if 'Mana Tank Magus' in item['tags']: return buildReleaseMessageWithType(item, 'Mana Tank Magus', vol, chp, frag=frag, postfix=postfix, tl_type='oel') return False
fake-name/ReadableWebProxy
WebMirror/management/rss_parser_funcs/feed_parse_extractManaTankMagus.py
Python
bsd-3-clause
360
# -*- coding: utf-8 -*- '''Custom validators used by RoodKamer''' from wtforms.validators import StopValidation from isbnlib import to_isbn13, is_isbn10, is_isbn13 class ValidateISBN(object): """ Validates that input is valid ISBN, either the 10 digit one from prior to 2007, or the 13 digit one from on or after January 1st, 2007. """ field_flags = ('required', ) def __init__(self, message=None): self.message = message def __call__(self, form, field): if len(field.data) == 10: if is_isbn10(field.data): field.data = to_isbn13(field.data) field.raw_data[0] = field.data return else: message = self.__get_error_message("Not a valid ISBN-10.", field) elif len(field.data) == 13: if is_isbn13(field.data): return else: message = self.__get_error_message("Not a valid ISBN-13.", field) else: message = self.__get_error_message( 'The ISBN must be either 10 or 13 digits.', field ) field.errors[:] = [] raise StopValidation(message) def __get_error_message(self, msg, field): if self.message is None: return field.gettext(msg) else: return self.message
brotherjack/Rood-Kamer
roodkamer/validators.py
Python
bsd-3-clause
1,509
# Copyright (c) 2016, the GPyOpt Authors # Licensed under the BSD 3-clause license (see LICENSE.txt) import numpy as np import GPy from .base import BOModel ## ## TODO: not fully tested yet. ## class WarpedGPModel(BOModel): analytical_gradient_prediction = False def __init__(self, kernel=None, noise_var=None, exact_feval=False, optimizer='bfgs', max_iters=1000, optimize_restarts=5, warping_function=None, warping_terms=3, verbose=False): self.kernel = kernel self.noise_var = noise_var self.exact_feval = exact_feval self.optimize_restarts = optimize_restarts self.optimizer = optimizer self.max_iters = max_iters self.verbose = verbose self.warping_function = warping_function self.warping_terms = warping_terms self.model = None def _create_model(self, X, Y): # --- define kernel self.input_dim = X.shape[1] if self.kernel is None: self.kernel = GPy.kern.Matern32(self.input_dim, variance=1.) #+ GPy.kern.Bias(self.input_dim) else: self.kernel = self.kernel # --- define model noise_var = Y.var()*0.01 if self.noise_var is None else self.noise_var self.model = GPy.models.WarpedGP(X, Y, kernel=self.kernel, warping_function=self.warping_function, warping_terms=self.warping_terms ) # --- restrict variance if exact evaluations of the objective if self.exact_feval: self.model.Gaussian_noise.constrain_fixed(1e-6, warning=False) else: self.model.Gaussian_noise.constrain_positive(warning=False) def updateModel(self, X_all, Y_all, X_new, Y_new): if self.model is None: self._create_model(X_all, Y_all) else: self.model.set_XY(X_all, Y_all) self.model.optimize(optimizer = self.optimizer, messages=self.verbose, max_iters=self.max_iters) def predict(self, X): if X.ndim==1: X = X[None,:] m, v = self.model.predict(X) v = np.clip(v, 1e-10, np.inf) return m, np.sqrt(v) def get_fmin(self): return self.model.predict(self.model.X)[0].min()
SheffieldML/GPyOpt
GPyOpt/models/warpedgpmodel.py
Python
bsd-3-clause
2,206
import sys, os try: import sphinxtogithub optional_extensions = ['sphinxtogithub'] except ImportError: optional_extensions = [] extensions = ['sphinx.ext.autodoc', 'sphinx.ext.autosummary'] + optional_extensions master_doc = 'index' project = u'gevent-utils' copyright = u'2011, Travis Cline' version = '0.0.2' release = '0.0.2' exclude_patterns = [] add_module_names = True pygments_style = 'sphinx' html_show_sourcelink = False html_show_sphinx = False htmlhelp_basename = 'gevent-utilsdoc' latex_documents = [ ('index', 'gevent-utils.tex', u'gevent-utils Documentation', u'Travis Cline', 'manual'), ] man_pages = [ ('index', 'gevent-utils', u'gevent-utils Documentation', [u'Travis Cline'], 1) ]
tmc/gevent-utils
docs/conf.py
Python
bsd-3-clause
722
#!/usr/bin/python # Copyright 2008, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Cook up tarballs/zipfile for distribution.""" import os import re import shutil import stat import subprocess import sys def RemoveIfExists(filename): try: os.remove(filename) except OSError: pass def WindowsRemoveReadOnly(top): """Only on windows remove the read only attribute from a directory tree. Arguments: top: directory to change. """ if not sys.platform == 'win32': return for root, dirs, files in os.walk(top, topdown=False): for name in files: os.chmod(os.path.join(root, name), stat.S_IWRITE) for name in dirs: os.chmod(os.path.join(root, name), stat.S_IWRITE) def FindSVNRevision(path): try: info = subprocess.Popen(['svn', 'info'], shell=True, stdout=subprocess.PIPE, cwd=path).communicate()[0] except IOError: return 'UnknownRev' m = re.search('Revision: ([0-9]+)', info) if m: return m.group(1) else: return 'UnknownRev' def DeleteAllMatching(in_dir, regex): """Delete all files matching a particular regex. Arguments: in_dir: directory to sweep. regex: file/directory expression to match. """ for root, dirs, files in os.walk(in_dir, topdown=False): for name in files: if regex.match(name): os.remove(os.path.join(root, name)) for name in dirs: if regex.match(name): shutil.rmtree(os.path.join(root, name)) def PickOuterName(build_dir): platform_name = { 'win32': 'windows', 'cygwin': 'windows', 'darwin': 'mac', 'linux': 'linux', 'linux2': 'linux', }[sys.platform] return 'nacl_%s_%s' % (platform_name, FindSVNRevision(build_dir)) def CookTarball(tgz_name, build_mode): """Cook up a distribution tarball. Arguments: tgz_name: base name of the tar/zip to create. build_mode: --mode parameter for scons """ # Pick where to construct the tarball. if sys.platform == 'win32': tmp_dir = 'c:/nacl_tarball' else: tmp_dir = '/tmp/nacl_tarball' # Find the root of this client. build_dir = os.path.abspath(os.path.dirname(__file__)) src_dir = os.path.abspath(os.path.join(build_dir, '..', '..')) # Drop old working area. WindowsRemoveReadOnly(tmp_dir) shutil.rmtree(tmp_dir, ignore_errors=True) # Create working area directory. os.mkdir(tmp_dir) # Pick the root directory name in the destination. # TODO(bradnelson): consider switching this to use the following, # assuming this doesn't complicate the docs. # dst_dir = os.path.join(tmp_dir, PickOuterName(build_dir)) dst_dir = os.path.join(tmp_dir, 'build') # Copy over everything. shutil.copytree(src_dir, dst_dir) WindowsRemoveReadOnly(dst_dir) # Drop old tarballs/zips. DeleteAllMatching(os.path.join(dst_dir, 'native_client', 'build'), re.compile(r'.*\.tgz$')) DeleteAllMatching(os.path.join(dst_dir, 'native_client', 'build'), re.compile(r'.*\.zip$')) # Drop .svn files. DeleteAllMatching(dst_dir, re.compile(r'^\.svn$')) # Drop gyp stuff. shutil.rmtree(os.path.join(dst_dir, 'sconsbuild'), ignore_errors=True) shutil.rmtree(os.path.join(dst_dir, 'xcodebuild'), ignore_errors=True) for flavor in ['Debug', 'Release']: shutil.rmtree(os.path.join(dst_dir, 'native_client', 'build', flavor), ignore_errors=True) # Drop scons outputs. shutil.rmtree(os.path.join(dst_dir, 'native_client', 'scons-out'), ignore_errors=True) # Drop tools BUILD intermediate output. shutil.rmtree(os.path.join(dst_dir, 'native_client', 'tools', 'BUILD'), ignore_errors=True) # Drop any toolchain present. shutil.rmtree(os.path.join(dst_dir, 'native_client', 'src', 'third_party', 'nacl_sdk'), ignore_errors=True) shutil.rmtree(os.path.join(dst_dir, 'native_client', 'compiler'), ignore_errors=True) shutil.rmtree(os.path.join(dst_dir, 'native_client', 'toolchain'), ignore_errors=True) # Pick scons version. if sys.platform == 'win32': scons = os.path.join(dst_dir, 'native_client', 'scons.bat') else: scons = os.path.join(dst_dir, 'native_client', 'scons') # Pick doxygen version. doxy_version = { 'win32': 'win', 'cygwin': 'win', 'darwin': 'osx', 'linux': 'linux', 'linux2': 'linux', }[sys.platform] doxy_path = os.path.normpath('../third_party/doxygen/%s/doxygen' % doxy_version) # Build the tools. tool_platform = { 'win32': 'win_x86', 'cygwin': 'win_x86', 'darwin': 'mac_x86', 'linux': 'linux_x86', 'linux2': 'linux_x86', }[sys.platform] cmd = ('PATH=$PATH:/cygdrive/c/cygwin/bin ' 'MAKEINFO=`pwd`/makeinfo_dummy ' 'make ' 'SDKLOC=`pwd`/../toolchain/%(tool_platform)s/sdk ' 'HAMMER=scons') % {'tool_platform': tool_platform} if sys.platform == 'win32': cmd = "c:\\cygwin\\bin\\bash -c '%s'" % cmd ret = subprocess.call(cmd, shell=True, cwd=os.path.join(dst_dir, 'native_client', 'tools')) if ret: return ret # Drop tools BUILD intermediate output. shutil.rmtree(os.path.join(dst_dir, 'native_client', 'tools', 'BUILD'), ignore_errors=True) # Build the desired version. ret = subprocess.call([scons, '--mode='+build_mode, '--verbose', 'DOXYGEN=%s' % doxy_path], cwd=os.path.join(dst_dir, 'native_client')) if ret: return ret # Drop items only needed for toolchain build. shutil.rmtree(os.path.join(dst_dir, 'third_party', 'binutils'), ignore_errors=True) shutil.rmtree(os.path.join(dst_dir, 'third_party', 'newlib'), ignore_errors=True) shutil.rmtree(os.path.join(dst_dir, 'third_party', 'gcc'), ignore_errors=True) shutil.rmtree(os.path.join(dst_dir, 'third_party', 'gdb'), ignore_errors=True) # Drop doxygen if present. shutil.rmtree(os.path.join(dst_dir, 'third_party', 'doxygen'), ignore_errors=True) shutil.rmtree(os.path.join(dst_dir, 'doxygen.DEPS'), ignore_errors=True) # Pare back scons-out. for ext in [re.compile(r'.*\.o$'), re.compile(r'.*\.obj$', re.I), re.compile(r'.*\.a$'), re.compile(r'.*\.lib$', re.I), re.compile(r'.*\.sconsign.*')]: DeleteAllMatching(os.path.join(dst_dir, 'native_client', 'scons-out'), ext) # Zip/tar it up. if sys.platform in ['win32', 'cygwin']: out_file = os.path.abspath(tgz_name + '.zip') RemoveIfExists(out_file) ret = subprocess.call(['zip', '-vr', out_file, '.'], cwd=os.path.join(tmp_dir)) if ret: return ret else: out_file = os.path.abspath(tgz_name + '.tgz') ret = subprocess.call(['tar', 'cvfz', out_file, './'], cwd=os.path.join(tmp_dir)) if ret: return ret # Success. return 0 def main(argv): if len(argv) != 3: print 'USAGE: ./cook_tarball.sh <tgz_name> <build_mode>' return 1 return CookTarball(tgz_name=argv[1], build_mode=argv[2]) if __name__ == '__main__': sys.exit(main(sys.argv))
eseidel/native_client_patches
build/cook_tarball.py
Python
bsd-3-clause
8,837
# -*- coding: utf-8 -*- from rawdisk.filesystems.volume import Volume class AppleBootVolume(Volume): """Structure for Apple_Boot volume """ def __init__(self): self.fd = None def load(self, filename, offset): """Will eventually load information for Apple_Boot volume. Not yet implemented""" try: self.offset = offset # self.fd = open(filename, 'rb') # self.fd.close() except IOError as e: print(e) def dump_volume(self): print("TODO") def __str__(self): return "Type: Apple_Boot, Offset: 0x%X" % ( self.offset )
dariusbakunas/rawdisk
rawdisk/plugins/filesystems/apple_boot/apple_boot_volume.py
Python
bsd-3-clause
667
"""Calculation of density of states.""" # Copyright (C) 2011 Atsushi Togo # All rights reserved. # # This file is part of phonopy. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # * Neither the name of the phonopy project nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import sys import warnings import numpy as np from phonopy.phonon.mesh import Mesh from phonopy.phonon.tetrahedron_mesh import TetrahedronMesh from phonopy.structure.tetrahedron_method import TetrahedronMethod class NormalDistribution: """Class to represent normal distribution.""" def __init__(self, sigma): """Init method.""" self._sigma = sigma def calc(self, x): """Return normal distribution.""" return ( 1.0 / np.sqrt(2 * np.pi) / self._sigma * np.exp(-(x ** 2) / 2.0 / self._sigma ** 2) ) class CauchyDistribution: """Class to represent Cauchy distribution.""" def __init__(self, gamma): """Init method.""" self._gamma = gamma def calc(self, x): """Return Cauchy distribution.""" return self._gamma / np.pi / (x ** 2 + self._gamma ** 2) class Dos: """Base class to calculate density of states.""" def __init__(self, mesh_object: Mesh, sigma=None, use_tetrahedron_method=False): """Init method.""" self._mesh_object = mesh_object self._frequencies = mesh_object.frequencies self._weights = mesh_object.weights self._tetrahedron_mesh = None if use_tetrahedron_method and sigma is None: self._tetrahedron_mesh = TetrahedronMesh( mesh_object.dynamical_matrix.primitive, self._frequencies, mesh_object.mesh_numbers, np.array(mesh_object.grid_address, dtype="int_"), np.array(mesh_object.grid_mapping_table, dtype="int_"), mesh_object.ir_grid_points, ) self._frequency_points = None self._sigma = sigma self.set_draw_area() self.set_smearing_function("Normal") @property def frequency_points(self): """Return frequency points.""" return self._frequency_points def set_smearing_function(self, function_name): """Set function form for smearing method. Parameters ---------- function_name : str 'Normal': smearing is done by normal distribution. 'Cauchy': smearing is done by Cauchy distribution. """ if function_name == "Cauchy": self._smearing_function = CauchyDistribution(self._sigma) else: self._smearing_function = NormalDistribution(self._sigma) def set_sigma(self, sigma): """Set sigma.""" self._sigma = sigma def set_draw_area(self, freq_min=None, freq_max=None, freq_pitch=None): """Set frequency points.""" f_min = self._frequencies.min() f_max = self._frequencies.max() if self._sigma is None: self._sigma = (f_max - f_min) / 100.0 if freq_min is None: f_min -= self._sigma * 10 else: f_min = freq_min if freq_max is None: f_max += self._sigma * 10 else: f_max = freq_max if freq_pitch is None: f_delta = (f_max - f_min) / 200.0 else: f_delta = freq_pitch self._frequency_points = np.arange(f_min, f_max + f_delta * 0.1, f_delta) class TotalDos(Dos): """Class to calculate total DOS.""" def __init__(self, mesh_object: Mesh, sigma=None, use_tetrahedron_method=False): """Init method.""" super().__init__( mesh_object, sigma=sigma, use_tetrahedron_method=use_tetrahedron_method, ) self._dos = None self._freq_Debye = None self._Debye_fit_coef = None self._openmp_thm = True def run(self): """Calculate total DOS.""" if self._tetrahedron_mesh is None: self._dos = np.array( [self._get_density_of_states_at_freq(f) for f in self._frequency_points] ) else: if self._openmp_thm: self._run_tetrahedron_method_dos() else: self._dos = np.zeros_like(self._frequency_points) thm = self._tetrahedron_mesh thm.set(value="I", frequency_points=self._frequency_points) for i, iw in enumerate(thm): self._dos += np.sum(iw * self._weights[i], axis=1) @property def dos(self): """Return total DOS.""" return self._dos def get_dos(self): """Return frequency points and total DOS. Returns ------- tuple (frequency_points, total_dos) """ warnings.warn( "TotalDos.get_dos() is deprecated. " "Use frequency_points and dos attributes instead.", DeprecationWarning, ) return self._frequency_points, self._dos def get_Debye_frequency(self): """Return a kind of Debye frequency.""" return self._freq_Debye def set_Debye_frequency(self, num_atoms, freq_max_fit=None): """Calculate a kind of Debye frequency.""" try: from scipy.optimize import curve_fit except ImportError: print("You need to install python-scipy.") sys.exit(1) def Debye_dos(freq, a): return a * freq ** 2 freq_min = self._frequency_points.min() freq_max = self._frequency_points.max() if freq_max_fit is None: N_fit = int(len(self._frequency_points) / 4.0) # Hard coded else: N_fit = int( freq_max_fit / (freq_max - freq_min) * len(self._frequency_points) ) popt, pcov = curve_fit( Debye_dos, self._frequency_points[0:N_fit], self._dos[0:N_fit] ) a2 = popt[0] self._freq_Debye = (3 * 3 * num_atoms / a2) ** (1.0 / 3) self._Debye_fit_coef = a2 def plot(self, ax, xlabel=None, ylabel=None, draw_grid=True, flip_xy=False): """Plot total DOS.""" if flip_xy: _xlabel = "Density of states" _ylabel = "Frequency" else: _xlabel = "Frequency" _ylabel = "Density of states" if xlabel is not None: _xlabel = xlabel if ylabel is not None: _ylabel = ylabel plot_total_dos( ax, self._frequency_points, self._dos, freq_Debye=self._freq_Debye, Debye_fit_coef=self._Debye_fit_coef, xlabel=_xlabel, ylabel=_ylabel, draw_grid=draw_grid, flip_xy=flip_xy, ) def write(self, filename="total_dos.dat"): """Write total DOS to total_dos.dat.""" if self._tetrahedron_mesh is None: comment = "Sigma = %f" % self._sigma else: comment = "Tetrahedron method" write_total_dos( self._frequency_points, self._dos, comment=comment, filename=filename ) def _run_tetrahedron_method_dos(self): mesh_numbers = self._mesh_object.mesh_numbers cell = self._mesh_object.dynamical_matrix.primitive reciprocal_lattice = np.linalg.inv(cell.cell) tm = TetrahedronMethod(reciprocal_lattice, mesh=mesh_numbers) self._dos = run_tetrahedron_method_dos( mesh_numbers, self._frequency_points, self._frequencies, self._mesh_object.grid_address, self._mesh_object.grid_mapping_table, tm.get_tetrahedra(), ) def _get_density_of_states_at_freq(self, f): return np.sum( np.dot(self._weights, self._smearing_function.calc(self._frequencies - f)) ) / np.sum(self._weights) class ProjectedDos(Dos): """Class to calculate projected DOS.""" def __init__( self, mesh_object: Mesh, sigma=None, use_tetrahedron_method=False, direction=None, xyz_projection=False, ): """Init method.""" super().__init__( mesh_object, sigma=sigma, use_tetrahedron_method=use_tetrahedron_method, ) self._eigenvectors = self._mesh_object.eigenvectors self._projected_dos = None if xyz_projection: self._eigvecs2 = np.abs(self._eigenvectors) ** 2 else: num_atom = self._frequencies.shape[1] // 3 i_x = np.arange(num_atom, dtype="int") * 3 i_y = np.arange(num_atom, dtype="int") * 3 + 1 i_z = np.arange(num_atom, dtype="int") * 3 + 2 if direction is None: self._eigvecs2 = np.abs(self._eigenvectors[:, i_x, :]) ** 2 self._eigvecs2 += np.abs(self._eigenvectors[:, i_y, :]) ** 2 self._eigvecs2 += np.abs(self._eigenvectors[:, i_z, :]) ** 2 else: d = np.array(direction, dtype="double") d /= np.linalg.norm(direction) proj_eigvecs = self._eigenvectors[:, i_x, :] * d[0] proj_eigvecs += self._eigenvectors[:, i_y, :] * d[1] proj_eigvecs += self._eigenvectors[:, i_z, :] * d[2] self._eigvecs2 = np.abs(proj_eigvecs) ** 2 self._openmp_thm = True @property def partial_dos(self): """Return partial DOS.""" warnings.warn( "PartialDos.partial_dos attribute is deprecated. " "Use projected_dos attribute instead.", DeprecationWarning, ) return self._projected_dos @property def projected_dos(self): """Return projected DOS.""" return self._projected_dos def run(self): """Calculate projected DOS.""" if self._tetrahedron_mesh is None: self._run_smearing_method() else: if self._openmp_thm: self._run_tetrahedron_method_dos() else: self._run_tetrahedron_method() def get_partial_dos(self): """Return partial DOS. Returns ------- tuple frequency_points: Sampling frequencies projected_dos: [atom_index, frequency_points_index] """ warnings.warn( "ProjectedDos.get_partial_dos() is deprecated. " "Use frequency_points and projected_dos attributes instead.", DeprecationWarning, ) return self._frequency_points, self._projected_dos def plot( self, ax, indices=None, legend=None, xlabel=None, ylabel=None, draw_grid=True, flip_xy=False, ): """Plot projected DOS.""" if flip_xy: _xlabel = "Partial density of states" _ylabel = "Frequency" else: _xlabel = "Frequency" _ylabel = "Partial density of states" if xlabel is not None: _xlabel = xlabel if ylabel is not None: _ylabel = ylabel plot_projected_dos( ax, self._frequency_points, self._projected_dos, indices=indices, legend=legend, xlabel=_xlabel, ylabel=_ylabel, draw_grid=draw_grid, flip_xy=flip_xy, ) def write(self, filename="projected_dos.dat"): """Write projected DOS to projected_dos.dat.""" if self._tetrahedron_mesh is None: comment = "Sigma = %f" % self._sigma else: comment = "Tetrahedron method" write_projected_dos( self._frequency_points, self._projected_dos, comment=comment, filename=filename, ) def _run_smearing_method(self): num_pdos = self._eigvecs2.shape[1] num_freqs = len(self._frequency_points) self._projected_dos = np.zeros((num_pdos, num_freqs), dtype="double") weights = self._weights / float(np.sum(self._weights)) for i, freq in enumerate(self._frequency_points): amplitudes = self._smearing_function.calc(self._frequencies - freq) for j in range(self._projected_dos.shape[0]): self._projected_dos[j, i] = np.dot( weights, self._eigvecs2[:, j, :] * amplitudes ).sum() def _run_tetrahedron_method(self): num_pdos = self._eigvecs2.shape[1] num_freqs = len(self._frequency_points) self._projected_dos = np.zeros((num_pdos, num_freqs), dtype="double") thm = self._tetrahedron_mesh thm.set(value="I", frequency_points=self._frequency_points) for i, iw in enumerate(thm): w = self._weights[i] self._projected_dos += np.dot(iw * w, self._eigvecs2[i].T).T def _run_tetrahedron_method_dos(self): mesh_numbers = self._mesh_object.mesh_numbers cell = self._mesh_object.dynamical_matrix.primitive reciprocal_lattice = np.linalg.inv(cell.cell) tm = TetrahedronMethod(reciprocal_lattice, mesh=mesh_numbers) pdos = run_tetrahedron_method_dos( mesh_numbers, self._frequency_points, self._frequencies, self._mesh_object.grid_address, self._mesh_object.grid_mapping_table, tm.get_tetrahedra(), coef=self._eigvecs2, ) self._projected_dos = pdos.T class PartialDos(ProjectedDos): """Class to calculate partial DOS.""" def __init__( self, mesh_object: Mesh, sigma=None, use_tetrahedron_method=False, direction=None, xyz_projection=False, ): """Init method.""" warnings.warn( "PartialDos class is deprecated. Use ProjectedDOS instead.", DeprecationWarning, ) super().__init__( mesh_object, sigma=sigma, use_tetrahedron_method=use_tetrahedron_method, direction=direction, xyz_projection=xyz_projection, ) def get_pdos_indices(symmetry): """Return atomic indieces grouped by symmetry.""" mapping = symmetry.get_map_atoms() return [list(np.where(mapping == i)[0]) for i in symmetry.get_independent_atoms()] def write_total_dos( frequency_points, total_dos, comment=None, filename="total_dos.dat" ): """Write total_dos.dat.""" with open(filename, "w") as fp: if comment is not None: fp.write("# %s\n" % comment) for freq, dos in zip(frequency_points, total_dos): fp.write("%20.10f%20.10f\n" % (freq, dos)) def write_partial_dos( frequency_points, partial_dos, comment=None, filename="partial_dos.dat" ): """Write partial_dos.dat.""" warnings.warn( "write_partial_dos() is deprecated. Use write_projected_dos() instead.", DeprecationWarning, ) write_projected_dos( frequency_points, partial_dos, comment=comment, filename=filename ) def write_projected_dos( frequency_points, projected_dos, comment=None, filename="projected_dos.dat" ): """Write projected_dos.dat.""" with open(filename, "w") as fp: if comment is not None: fp.write("# %s\n" % comment) for freq, pdos in zip(frequency_points, projected_dos.T): fp.write("%20.10f" % freq) fp.write(("%20.10f" * len(pdos)) % tuple(pdos)) fp.write("\n") def plot_total_dos( ax, frequency_points, total_dos, freq_Debye=None, Debye_fit_coef=None, xlabel=None, ylabel=None, draw_grid=True, flip_xy=False, ): """Plot total DOS.""" ax.xaxis.set_ticks_position("both") ax.yaxis.set_ticks_position("both") ax.xaxis.set_tick_params(which="both", direction="in") ax.yaxis.set_tick_params(which="both", direction="in") if freq_Debye is not None: freq_pitch = frequency_points[1] - frequency_points[0] num_points = int(freq_Debye / freq_pitch) freqs = np.linspace(0, freq_Debye, num_points + 1) if flip_xy: ax.plot(total_dos, frequency_points, "r-", linewidth=1) if freq_Debye: ax.plot( np.append(Debye_fit_coef * freqs ** 2, 0), np.append(freqs, freq_Debye), "b-", linewidth=1, ) else: ax.plot(frequency_points, total_dos, "r-", linewidth=1) if freq_Debye: ax.plot( np.append(freqs, freq_Debye), np.append(Debye_fit_coef * freqs ** 2, 0), "b-", linewidth=1, ) if xlabel: ax.set_xlabel(xlabel) if ylabel: ax.set_ylabel(ylabel) ax.grid(draw_grid) def plot_partial_dos( ax, frequency_points, partial_dos, indices=None, legend=None, xlabel=None, ylabel=None, draw_grid=True, flip_xy=False, ): """Plot partial DOS.""" warnings.warn( "plot_partial_dos() is deprecated. Use plot_projected_dos() instead.", DeprecationWarning, ) plot_projected_dos( ax, frequency_points, partial_dos, indices=indices, legend=legend, xlabel=xlabel, ylabel=ylabel, draw_grid=draw_grid, flip_xy=flip_xy, ) def plot_projected_dos( ax, frequency_points, projected_dos, indices=None, legend=None, xlabel=None, ylabel=None, draw_grid=True, flip_xy=False, ): """Plot projected DOS.""" ax.xaxis.set_ticks_position("both") ax.yaxis.set_ticks_position("both") ax.xaxis.set_tick_params(which="both", direction="in") ax.yaxis.set_tick_params(which="both", direction="in") plots = [] num_pdos = len(projected_dos) if indices is None: indices = [] for i in range(num_pdos): indices.append([i]) for set_for_sum in indices: pdos_sum = np.zeros_like(frequency_points) for i in set_for_sum: if i > num_pdos - 1: print("Index number '%d' is specified," % (i + 1)) print("but it is not allowed to be larger than the number of " "atoms.") raise ValueError if i < 0: print( "Index number '%d' is specified, but it must be " "positive." % (i + 1) ) raise ValueError pdos_sum += projected_dos[i] if flip_xy: plots.append(ax.plot(pdos_sum, frequency_points, linewidth=1)) else: plots.append(ax.plot(frequency_points, pdos_sum, linewidth=1)) if legend is not None: ax.legend(legend) if xlabel: ax.set_xlabel(xlabel) if ylabel: ax.set_ylabel(ylabel) ax.grid(draw_grid) def run_tetrahedron_method_dos( mesh, frequency_points, frequencies, grid_address, grid_mapping_table, relative_grid_address, coef=None, ): """Return (P)DOS calculated by tetrahedron method in C.""" try: import phonopy._phonopy as phonoc except ImportError: import sys print("Phonopy C-extension has to be built properly.") sys.exit(1) if coef is None: _coef = np.ones((frequencies.shape[0], 1, frequencies.shape[1]), dtype="double") else: _coef = np.array(coef, dtype="double", order="C") arr_shape = frequencies.shape + (len(frequency_points), _coef.shape[1]) dos = np.zeros(arr_shape, dtype="double") phonoc.tetrahedron_method_dos( dos, np.array(mesh, dtype="int_"), frequency_points, frequencies, _coef, np.array(grid_address, dtype="int_", order="C"), np.array(grid_mapping_table, dtype="int_", order="C"), relative_grid_address, ) if coef is None: return dos[:, :, :, 0].sum(axis=0).sum(axis=0) / np.prod(mesh) else: return dos.sum(axis=0).sum(axis=0) / np.prod(mesh)
atztogo/phonopy
phonopy/phonon/dos.py
Python
bsd-3-clause
21,665
import mock import pytest from olympia import amo from olympia.access.models import Group, GroupUser from olympia.amo.tests import TestCase, req_factory_factory from olympia.addons.models import Addon, AddonUser from olympia.users.models import UserProfile from .acl import (action_allowed, check_addon_ownership, check_ownership, check_addons_reviewer, check_personas_reviewer, check_unlisted_addons_reviewer, is_editor, match_rules) pytestmark = pytest.mark.django_db def test_match_rules(): """ Unit tests for the match_rules method. """ rules = ( '*:*', 'Editors:*,Admin:EditAnyAddon,Admin:flagged,Admin:addons,' 'Admin:EditAnyCollection', 'Tests:*,Admin:serverstatus,Admin:users', 'Admin:EditAnyAddon,Admin:EditAnyLocale,Editors:*,' 'Admin:lists,Admin:applications,Admin:addons,Localizers:*', 'Admin:EditAnyAddon', 'Admin:ViewAnyStats,Admin:ViewAnyCollectionStats', 'Admin:ViewAnyStats', 'Editors:*,Admin:features', 'Admin:Statistics', 'Admin:Features,Editors:*', 'Admin:%', 'Admin:*', 'Admin:Foo', 'Admin:Bar', ) for rule in rules: assert match_rules(rule, 'Admin', '%'), "%s != Admin:%%" % rule rules = ( 'Doctors:*', 'Stats:View', 'CollectionStats:View', 'Addons:Review', 'Personas:Review', 'Locales:Edit', 'Locale.de:Edit', 'Reviews:Edit', 'None:None', ) for rule in rules: assert not match_rules(rule, 'Admin', '%'), \ "%s == Admin:%% and shouldn't" % rule def test_anonymous_user(): fake_request = req_factory_factory('/') assert not action_allowed(fake_request, amo.permissions.ADMIN) class ACLTestCase(TestCase): """Test some basic ACLs by going to various locked pages on AMO.""" fixtures = ['access/login.json'] def test_admin_login_anon(self): # Login form for anonymous user on the admin page. url = '/en-US/admin/' self.assertLoginRedirects(self.client.get(url), to=url) class TestHasPerm(TestCase): fixtures = ['base/users', 'base/addon_3615'] def setUp(self): super(TestHasPerm, self).setUp() assert self.client.login(email='del@icio.us') self.user = UserProfile.objects.get(email='del@icio.us') self.addon = Addon.objects.get(id=3615) self.au = AddonUser.objects.get(addon=self.addon, user=self.user) assert self.au.role == amo.AUTHOR_ROLE_OWNER self.request = self.fake_request_with_user(self.user) def fake_request_with_user(self, user): request = mock.Mock() request.user = user request.user.is_authenticated = mock.Mock(return_value=True) return request def login_admin(self): assert self.client.login(email='admin@mozilla.com') return UserProfile.objects.get(email='admin@mozilla.com') def test_anonymous(self): self.request.user.is_authenticated.return_value = False self.client.logout() assert not check_addon_ownership(self.request, self.addon) def test_admin(self): self.request = self.fake_request_with_user(self.login_admin()) assert check_addon_ownership(self.request, self.addon) assert check_addon_ownership(self.request, self.addon, admin=True) assert not check_addon_ownership(self.request, self.addon, admin=False) def test_require_author(self): assert check_ownership(self.request, self.addon, require_author=True) def test_require_author_when_admin(self): self.request = self.fake_request_with_user(self.login_admin()) assert check_ownership(self.request, self.addon, require_author=False) assert not check_ownership(self.request, self.addon, require_author=True) def test_disabled(self): self.addon.update(status=amo.STATUS_DISABLED) assert not check_addon_ownership(self.request, self.addon) self.test_admin() def test_deleted(self): self.addon.update(status=amo.STATUS_DELETED) assert not check_addon_ownership(self.request, self.addon) self.request.user = self.login_admin() assert not check_addon_ownership(self.request, self.addon) def test_ignore_disabled(self): self.addon.update(status=amo.STATUS_DISABLED) assert check_addon_ownership(self.request, self.addon, ignore_disabled=True) def test_owner(self): assert check_addon_ownership(self.request, self.addon) self.au.role = amo.AUTHOR_ROLE_DEV self.au.save() assert not check_addon_ownership(self.request, self.addon) self.au.role = amo.AUTHOR_ROLE_VIEWER self.au.save() assert not check_addon_ownership(self.request, self.addon) self.au.role = amo.AUTHOR_ROLE_SUPPORT self.au.save() assert not check_addon_ownership(self.request, self.addon) def test_dev(self): assert check_addon_ownership(self.request, self.addon, dev=True) self.au.role = amo.AUTHOR_ROLE_DEV self.au.save() assert check_addon_ownership(self.request, self.addon, dev=True) self.au.role = amo.AUTHOR_ROLE_VIEWER self.au.save() assert not check_addon_ownership(self.request, self.addon, dev=True) self.au.role = amo.AUTHOR_ROLE_SUPPORT self.au.save() assert not check_addon_ownership(self.request, self.addon, dev=True) def test_viewer(self): assert check_addon_ownership(self.request, self.addon, viewer=True) self.au.role = amo.AUTHOR_ROLE_DEV self.au.save() assert check_addon_ownership(self.request, self.addon, viewer=True) self.au.role = amo.AUTHOR_ROLE_VIEWER self.au.save() assert check_addon_ownership(self.request, self.addon, viewer=True) self.au.role = amo.AUTHOR_ROLE_SUPPORT self.au.save() assert check_addon_ownership(self.request, self.addon, viewer=True) def test_support(self): assert check_addon_ownership(self.request, self.addon, viewer=True) self.au.role = amo.AUTHOR_ROLE_DEV self.au.save() assert not check_addon_ownership(self.request, self.addon, support=True) self.au.role = amo.AUTHOR_ROLE_VIEWER self.au.save() assert not check_addon_ownership(self.request, self.addon, support=True) self.au.role = amo.AUTHOR_ROLE_SUPPORT self.au.save() assert check_addon_ownership(self.request, self.addon, support=True) def test_add_and_remove_group(self): group = Group.objects.create(name='A Test Group', rules='Test:Group') group_user = GroupUser.objects.create(group=group, user=self.user) assert self.user.groups_list == [group] # The groups_list property already existed. Make sure delete works. group_user.delete() assert self.user.groups_list == [] group_user = GroupUser.objects.create(group=group, user=self.user) assert self.user.groups_list == [group] del self.user.groups_list # The groups_list didn't exist. Make sure delete works. group_user.delete() assert self.user.groups_list == [] class TestCheckReviewer(TestCase): fixtures = ['base/addon_3615', 'addons/persona'] def setUp(self): super(TestCheckReviewer, self).setUp() self.user = UserProfile.objects.get() self.persona = Addon.objects.get(pk=15663) self.addon = Addon.objects.get(pk=3615) def test_no_perm(self): req = req_factory_factory('noop', user=self.user) assert not check_addons_reviewer(req) assert not check_unlisted_addons_reviewer(req) assert not check_personas_reviewer(req) def test_perm_addons(self): self.grant_permission(self.user, 'Addons:Review') req = req_factory_factory('noop', user=self.user) assert check_addons_reviewer(req) assert not check_unlisted_addons_reviewer(req) assert not check_personas_reviewer(req) def test_perm_themes(self): self.grant_permission(self.user, 'Personas:Review') req = req_factory_factory('noop', user=self.user) assert not check_addons_reviewer(req) assert not check_unlisted_addons_reviewer(req) assert check_personas_reviewer(req) def test_perm_unlisted_addons(self): self.grant_permission(self.user, 'Addons:ReviewUnlisted') req = req_factory_factory('noop', user=self.user) assert not check_addons_reviewer(req) assert check_unlisted_addons_reviewer(req) assert not check_personas_reviewer(req) def test_is_editor_for_addon_reviewer(self): """An addon editor is also a persona editor.""" self.grant_permission(self.user, 'Addons:Review') req = req_factory_factory('noop', user=self.user) assert is_editor(req, self.persona) assert is_editor(req, self.addon) def test_is_editor_for_persona_reviewer(self): self.grant_permission(self.user, 'Personas:Review') req = req_factory_factory('noop', user=self.user) assert is_editor(req, self.persona) assert not is_editor(req, self.addon)
harikishen/addons-server
src/olympia/access/tests.py
Python
bsd-3-clause
9,484
#!/usr/bin/env python # # Copyright (c) 2015 Intel Corporation. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of works must retain the original copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the original copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of Intel Corporation nor the names of its contributors # may be used to endorse or promote products derived from this work without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION BE LIABLE FOR ANY DIRECT, # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Authors: # Hongjuan, Wang<hongjuanx.wang@intel.com> import os import sys import shutil import commands from optparse import OptionParser import setup_ios SCRIPT_PATH = os.path.realpath(__file__) ConstPath = os.path.dirname(SCRIPT_PATH) def run(dest=None): try: #print 'dest', dest if dest: runstatus = commands.getstatusoutput("xcodebuild test -project %s/crosswalk-ios/XWalkView/XWalkView.xcodeproj/ " \ "-scheme XWalkViewTests -destination '%s'" % (ConstPath, dest)) print runstatus[1] if runstatus[0] == 0: print "Test done" else: print "Test failed" else: print "Please input option the destination" except Exception,e: print Exception, "Run the unit test XWalkView error: ", e sys.exit(1) def init(): try: setup_ios.main() try: shutil.rmtree(ConstPath + "/mobileSpec-crosswalk") except: os.system("rm -rf " + ConstPath + "/mobileSpec-crosswalk &>/dev/null") #print traceback.print_exc() run(setup_ios.dest) except Exception,e: print("Get wrong options: %s, exit ..." % e) sys.exit(1) if __name__ == '__main__': init()
pk-sam/crosswalk-test-suite
embeddingapi/embedding-api-ios-tests/embeddingapi/xwalkview.py
Python
bsd-3-clause
2,795
''' ------------------------------------------ Red9 Studio Pack: Maya Pipeline Solutions Author: Mark Jackson email: rednineinfo@gmail.com Red9 blog : http://red9-consultancy.blogspot.co.uk/ MarkJ blog: http://markj3d.blogspot.co.uk ------------------------------------------ This is the heart of the Red9 StudioPack's boot sequence, managing folder structures, dependencies and menuItems. ######### THIS SHOULD NOT REQUIRE ANY OF THE RED9.core modules ########## ''' #from Red9.startup import language_packs __author__ = 'Mark Jackson' __buildVersionID__ = 2.0 installedVersion= False import sys import os import imp import maya.cmds as cmds import maya.mel as mel from functools import partial import logging logging.basicConfig() log = logging.getLogger(__name__) log.setLevel(logging.INFO) ''' Maya Version Mapping History: ==================================== Release -version -api python -qt prefs release extra info ----------------------------------------------------------------------------------------- 2008 . 2008 . ?????? . 2.5.1 na . 2008 . 2007-09-01 2009 . 2009 . ?????? . 2.5.1 na . 2009 . 2008-10-01 2010 . 2010 . 201000 . 2.6.1 na . 2010 . 2009-08-01 2011 Hotfix2 . 2011 . 201102 . 2.6.4 4.5.3 . 2011 . 2011 SAP . 2011 . 201104 . 2.6.4 4.5.3 . 2011.5 . 2010-09-29 . 2011 binary compliant 2012 . 2012 . 201200 . 2.6.4 4.7.1 . 2012 . 2011-04-01 2012 SP1 . 2012 . ?????? . 2.6.4 4.7.1 . 2012 . 2012 SAP1 . 2012 . ?????? . 2.6.4 4.7.1 . 2012 . 2012-01-26 2012 SP2 . 2012 . 201217 . 2.6.4 4.7.1 . 2012 . 2013 SP1 . 2013 . 201301 . 2.6.4 4.7.1 . 2013 . 2012-07-00 2013 SP2 . 2013 . 201303 . 2.6.4 4.7.1 . 2013 . 2013-01-00 2013 EXT . 2013 . 201350? . 2.6.4 4.7.1 . 2013.5 . 2012-09-25 . 2013 binary incompatible 2013 EXT2 . 2013 . 201355 . 2.6.4 4.7.1 . 2013.5 . 2013-01-22 . 2013 binary incompatible 2014 . 2014 . 201400 . 2.6.4 4.8.2 . 2014 . 2013-04-10 2015 . 2015 . 201500 . 2.7 4.8.5 . 2015 . 2014-04-15 2016 . 2016 . 201600 . 2.7 4.8.5 . 2016 . 2015-04-15 ------------------------------------------------------------------------------------------ ''' #========================================================================================= # LANGUAGE MAPPING ----------------------------------------------------------------------- #========================================================================================= #global LANGUAGE_MAP import language_packs.language_english LANGUAGE_MAP = language_packs.language_english def get_language_maps(): languages=[] language_path = os.path.join(os.path.dirname(__file__),'language_packs') packs = os.listdir(language_path) for p in packs: if p.startswith('language_') and p.endswith('.py'): languages.append(p.split('.py')[0]) return languages def set_language(language='language_english', *args): global LANGUAGE_MAP language_path = os.path.join(os.path.dirname(__file__),'language_packs') packs = get_language_maps() if language in packs: print 'Red9 : Importing Language Map : %s' % language LANGUAGE_MAP = imp.load_source('language', os.path.join(language_path, language+'.py')) set_language() #========================================================================================= # MAYA DATA ----------------------------------------------------------------------------- #========================================================================================= MAYA_INTERNAL_DATA = {} # cached Maya internal vars for speed def mayaFullSpecs(): print 'Maya version : ', mayaVersion() print 'Maya API version: ', mayaVersionRelease() print 'QT build: ', mayaVersionQT() print 'Prefs folder: ',mayaPrefs() print 'OS build: ', osBuild() print MAYA_INTERNAL_DATA def mayaVersion(): #need to manage this better and use the API version, #eg: 2013.5 returns 2013 if 'version' in MAYA_INTERNAL_DATA and MAYA_INTERNAL_DATA['version']: return MAYA_INTERNAL_DATA['version'] else: MAYA_INTERNAL_DATA['version'] = mel.eval('getApplicationVersionAsFloat') return MAYA_INTERNAL_DATA['version'] def mayaVersionRelease(): if 'api' in MAYA_INTERNAL_DATA and MAYA_INTERNAL_DATA['api']: return MAYA_INTERNAL_DATA['api'] else: MAYA_INTERNAL_DATA['api'] = cmds.about(api=True) return MAYA_INTERNAL_DATA['api'] def mayaVersionQT(): try: if 'qt' in MAYA_INTERNAL_DATA and MAYA_INTERNAL_DATA['qt']: return MAYA_INTERNAL_DATA['qt'] else: MAYA_INTERNAL_DATA['qt'] = cmds.about(qt=True) return MAYA_INTERNAL_DATA['qt'] except: pass def mayaPrefs(): ''' Root of Maya prefs folder ''' if 'prefs' in MAYA_INTERNAL_DATA and MAYA_INTERNAL_DATA['prefs']: return MAYA_INTERNAL_DATA['prefs'] else: MAYA_INTERNAL_DATA['prefs'] = os.path.dirname(cmds.about(env=True)) return MAYA_INTERNAL_DATA['prefs'] def mayaUpAxis(setAxis=None): import maya.OpenMaya as OpenMaya if setAxis: if setAxis.lower()=='y': OpenMaya.MGlobal.setYAxisUp() if setAxis.lower()=='z': OpenMaya.MGlobal.setZAxisUp() else: vect=OpenMaya.MGlobal.upAxis() if vect.z: return 'z' if vect.y: return 'y' def mayaIsBatch(): return cmds.about(batch=True) def osBuild(): build = cmds.about(os=True) if build == 'win64': return 64 elif build == 'win32': return 32 def getCurrentFPS(): ''' returns the current frames per second as a number, rather than a useless string ''' fpsDict = {"game": 15.0, "film": 24.0, "pal": 25.0, "ntsc": 30.0, "show": 48.0, "palf": 50.0, "ntscf": 60.0} return fpsDict[cmds.currentUnit(q=True, fullName=True, time=True)] #========================================================================================= # MENU SETUPS ---------------------------------------------------------------------------- #========================================================================================= def menuSetup(parent='MayaWindow'): #if exists remove all items, means we can update on the fly by restarting the Red9 pack if cmds.menu('redNineMenuItemRoot', exists=True): cmds.deleteUI('redNineMenuItemRoot') log.info("Rebuilding Existing RedNine Menu") # parent is an existing window with an existing menuBar? if cmds.window(parent, exists=True): if not cmds.window(parent, q=True, menuBar=True): raise StandardError('given parent for Red9 Menu has no menuBarlayout %s' % parent) else: cmds.menu('redNineMenuItemRoot', l="RedNine", p=parent, tearOff=True, allowOptionBoxes=True) log.info('new Red9 Menu added to current window : %s' % parent) # parent is a menuBar? elif cmds.menuBarLayout(parent, exists=True): cmds.menu('redNineMenuItemRoot', l='RedNine', p=parent, tearOff=True, allowOptionBoxes=True) log.info('New Red9 Sound Menu added to current windows menuBar : %s' % parent) # parent is an existing menu? elif cmds.menu(parent, exists=True): cmds.menuItem('redNineMenuItemRoot', l='RedNine', sm=True, p=parent) log.info('new Red9 subMenu added to current Menu : %s' % parent) else: raise StandardError('given parent for Red9 Menu is invalid %s' % parent) try: cmds.menuItem('redNineProRootItem', l='PRO : PACK', sm=True, p='redNineMenuItemRoot', tearOff=True,i='red9.jpg') # Holder Menus for Client code if get_client_modules(): cmds.menuItem(divider=True,p='redNineMenuItemRoot') for client in get_client_modules(): cmds.menuItem('redNineClient%sItem' % client, l='CLIENT : %s' % client, sm=True, p='redNineMenuItemRoot', tearOff=True, i='red9.jpg') cmds.menuItem(divider=True,p='redNineMenuItemRoot') #Add the main Menu items cmds.menuItem('redNineAnimItem', l=LANGUAGE_MAP._MainMenus_.animation_toolkit, ann=LANGUAGE_MAP._MainMenus_.animation_toolkit_ann, p='redNineMenuItemRoot', echoCommand=True, c="import Red9.core.Red9_AnimationUtils as r9Anim;r9Anim.AnimationUI.show()") cmds.menuItem('redNineSnapItem', l=LANGUAGE_MAP._MainMenus_.simple_snap, ann=LANGUAGE_MAP._MainMenus_.simple_snap_ann, p='redNineMenuItemRoot', echoCommand=True, c="import Red9.core.Red9_AnimationUtils as r9Anim;r9Anim.AnimFunctions.snap()") cmds.menuItem('redNineSearchItem', l=LANGUAGE_MAP._MainMenus_.searchui, ann=LANGUAGE_MAP._MainMenus_.searchui_ann, p='redNineMenuItemRoot', echoCommand=True, c="import Red9.core.Red9_CoreUtils as r9Core;r9Core.FilterNode_UI.show()") cmds.menuItem('redNineLockChnsItem', l=LANGUAGE_MAP._MainMenus_.lockchannels, ann=LANGUAGE_MAP._MainMenus_.lockchannels_ann, p='redNineMenuItemRoot', echoCommand=True, c="import Red9.core.Red9_CoreUtils as r9Core;r9Core.LockChannels.UI.show()") cmds.menuItem('redNineMetaUIItem', l=LANGUAGE_MAP._MainMenus_.metanodeui, ann=LANGUAGE_MAP._MainMenus_.metanodeui_ann, p='redNineMenuItemRoot', echoCommand=True, c="import Red9.core.Red9_Meta as r9Meta;r9Meta.MClassNodeUI.show()") cmds.menuItem('redNineReporterUIItem', l=LANGUAGE_MAP._MainMenus_.scene_reviewer, ann=LANGUAGE_MAP._MainMenus_.scene_reviewer_ann, p='redNineMenuItemRoot', echoCommand=True, c="import Red9.core.Red9_Tools as r9Tools;r9Tools.SceneReviewerUI.show()") cmds.menuItem('redNineMoCapItem', l=LANGUAGE_MAP._MainMenus_.mouse_mocap, ann=LANGUAGE_MAP._MainMenus_.mouse_mocap_ann, p='redNineMenuItemRoot', echoCommand=True, c="import Red9.core.Red9_Tools as r9Tools;r9Tools.RecordAttrs.show()") cmds.menuItem('redNineRandomizerItem', l=LANGUAGE_MAP._MainMenus_.randomize_keyframes, ann=LANGUAGE_MAP._MainMenus_.randomize_keyframes_ann, p='redNineMenuItemRoot', echoCommand=True, c="import Red9.core.Red9_AnimationUtils as r9Anim;r9Anim.RandomizeKeys.showOptions()") cmds.menuItem('redNineFilterCurvesItem', l=LANGUAGE_MAP._MainMenus_.interactive_curve_filter, ann=LANGUAGE_MAP._MainMenus_.interactive_curve_filter_ann, p='redNineMenuItemRoot', echoCommand=True, c="import Red9.core.Red9_AnimationUtils as r9Anim;r9Anim.FilterCurves.show()") cmds.menuItem('redNineMirrorUIItem', l=LANGUAGE_MAP._MainMenus_.mirror_setup, ann=LANGUAGE_MAP._MainMenus_.mirror_setup_ann, p='redNineMenuItemRoot', echoCommand=True, c="import Red9.core.Red9_AnimationUtils as r9Anim;r9Anim.MirrorSetup().show()") cmds.menuItem('redNineCameraTrackItem', l='CameraTracker',sm=True,p='redNineMenuItemRoot') cmds.menuItem('redNineCamerTrackFixedItem', l=LANGUAGE_MAP._MainMenus_.camera_tracker_pan, ann=LANGUAGE_MAP._MainMenus_.camera_tracker_pan_ann, p='redNineCameraTrackItem', echoCommand=True, c="from Red9.core.Red9_AnimationUtils import CameraTracker as camTrack;camTrack.cameraTrackView(fixed=True)") if not mayaVersion()<=2009: cmds.menuItem(optionBox=True, ann=LANGUAGE_MAP._MainMenus_.tracker_tighness_ann, p='redNineCameraTrackItem', echoCommand=True, c="from Red9.core.Red9_AnimationUtils import CameraTracker as camTrack;camTrack(fixed=True)._showUI()") cmds.menuItem('redNineCamerTrackFreeItem', l=LANGUAGE_MAP._MainMenus_.camera_tracker_track, ann=LANGUAGE_MAP._MainMenus_.camera_tracker_track_ann, p='redNineCameraTrackItem', echoCommand=True, c="from Red9.core.Red9_AnimationUtils import CameraTracker as camTrack;camTrack.cameraTrackView(fixed=False)") if not mayaVersion()<=2009: cmds.menuItem(optionBox=True, ann=LANGUAGE_MAP._MainMenus_.tracker_tighness_ann, p='redNineCameraTrackItem', echoCommand=True, c="from Red9.core.Red9_AnimationUtils import CameraTracker as camTrack;camTrack(fixed=False)._showUI()") cmds.menuItem(divider=True,p='redNineMenuItemRoot') cmds.menuItem('redNineAnimBndItem', l=LANGUAGE_MAP._MainMenus_.animation_binder, ann=LANGUAGE_MAP._MainMenus_.animation_binder_ann, p='redNineMenuItemRoot', echoCommand=True, c="import Red9.core.AnimationBinder as animBnd;animBnd.AnimBinderUI()._UI()") cmds.menuItem(divider=True,p='redNineMenuItemRoot') cmds.menuItem('redNineHomepageItem', l=LANGUAGE_MAP._MainMenus_.red9_homepage, ann=LANGUAGE_MAP._MainMenus_.red9_homepage_ann, p='redNineMenuItemRoot', echoCommand=True, c="Red9.setup.red9_website_home()") cmds.menuItem('redNineBlogItem', l=LANGUAGE_MAP._MainMenus_.red9_blog, ann=LANGUAGE_MAP._MainMenus_.red9_blog_ann, p='redNineMenuItemRoot', echoCommand=True, c="Red9.setup.red9_blog()") cmds.menuItem('redNineVimeoItem', l=LANGUAGE_MAP._MainMenus_.red9_vimeo, ann=LANGUAGE_MAP._MainMenus_.red9_vimeo_ann, p='redNineMenuItemRoot', echoCommand=True, c="Red9.setup.red9_vimeo()") cmds.menuItem('redNineFacebookItem', l=LANGUAGE_MAP._MainMenus_.red9_facebook, ann=LANGUAGE_MAP._MainMenus_.red9_facebook_ann, p='redNineMenuItemRoot', echoCommand=True, c="Red9.setup.red9_facebook()") cmds.menuItem('redNineAPIDocItem', l=LANGUAGE_MAP._MainMenus_.red9_api_docs, ann=LANGUAGE_MAP._MainMenus_.red9_api_docs_ann, p='redNineMenuItemRoot', echoCommand=True, c="Red9.setup.red9_apidocs()") cmds.menuItem(l=LANGUAGE_MAP._MainMenus_.red9_details, c='Red9.setup.red9ContactInfo()',p='redNineMenuItemRoot') cmds.menuItem(divider=True,p='redNineMenuItemRoot') cmds.menuItem('redNineDebuggerItem', l=LANGUAGE_MAP._MainMenus_.red9_debugger,sm=True,p='redNineMenuItemRoot') cmds.menuItem('redNineLostAnimItem', p='redNineDebuggerItem', l=LANGUAGE_MAP._MainMenus_.reconnect_anim, ann=LANGUAGE_MAP._MainMenus_.reconnect_anim_ann, echoCommand=True, c="import Red9.core.Red9_AnimationUtils as r9Anim;r9Anim.ReconnectAnimData().show()") cmds.menuItem('redNineOpenCrashItem', p='redNineDebuggerItem', l=LANGUAGE_MAP._MainMenus_.open_last_crash, ann=LANGUAGE_MAP._MainMenus_.open_last_crash_ann, echoCommand=True, c="import Red9.core.Red9_General as r9General;r9General.os_openCrashFile()") cmds.menuItem(divider=True,p='redNineDebuggerItem') cmds.menuItem('redNineDebugItem', l=LANGUAGE_MAP._MainMenus_.systems_debug, ann=LANGUAGE_MAP._MainMenus_.systems_debug_ann, echoCommand=True, c="Red9.core._setlogginglevel_debug()") cmds.menuItem('redNineInfoItem', l=LANGUAGE_MAP._MainMenus_.systems_info, ann=LANGUAGE_MAP._MainMenus_.systems_info_ann, echoCommand=True, c="Red9.core._setlogginglevel_info()") cmds.menuItem(divider=True,p='redNineDebuggerItem') cmds.menuItem(l=LANGUAGE_MAP._MainMenus_.individual_debug, sm=True, p='redNineDebuggerItem') cmds.menuItem(l=LANGUAGE_MAP._MainMenus_.debug+" : r9Core", ann=LANGUAGE_MAP._MainMenus_.individual_debug_ann, echoCommand=True, c="Red9.core._setlogginglevel_debug('r9Core')") cmds.menuItem(l=LANGUAGE_MAP._MainMenus_.debug+" : r9Meta", ann=LANGUAGE_MAP._MainMenus_.individual_debug_ann, echoCommand=True, c="Red9.core._setlogginglevel_debug('r9Meta')") cmds.menuItem(l=LANGUAGE_MAP._MainMenus_.debug+" : r9Anim", ann=LANGUAGE_MAP._MainMenus_.individual_debug_ann, echoCommand=True, c="Red9.core._setlogginglevel_debug('r9Anim')") cmds.menuItem(l=LANGUAGE_MAP._MainMenus_.debug+" : r9Tools", ann=LANGUAGE_MAP._MainMenus_.individual_debug_ann, echoCommand=True, c="Red9.core._setlogginglevel_debug('r9Tools')") cmds.menuItem(l=LANGUAGE_MAP._MainMenus_.debug+" : r9Pose", ann=LANGUAGE_MAP._MainMenus_.individual_debug_ann, echoCommand=True, c="Red9.core._setlogginglevel_debug('r9Pose')") cmds.menuItem(l=LANGUAGE_MAP._MainMenus_.debug+" : r9General", ann=LANGUAGE_MAP._MainMenus_.individual_debug_ann, echoCommand=True, c="Red9.core._setlogginglevel_debug('r9General')") cmds.menuItem(l=LANGUAGE_MAP._MainMenus_.debug+" : r9Audio", ann=LANGUAGE_MAP._MainMenus_.individual_debug_ann, echoCommand=True, c="Red9.core._setlogginglevel_debug('r9Audio')") cmds.menuItem(l=LANGUAGE_MAP._MainMenus_.individual_info,sm=True,p='redNineDebuggerItem') cmds.menuItem(l=LANGUAGE_MAP._MainMenus_.info+" : r9Core", ann=LANGUAGE_MAP._MainMenus_.individual_info_ann, echoCommand=True, c="Red9.core._setlogginglevel_info('r9Core')") cmds.menuItem(l=LANGUAGE_MAP._MainMenus_.info+" : r9Meta", ann=LANGUAGE_MAP._MainMenus_.individual_info_ann, echoCommand=True, c="Red9.core._setlogginglevel_info('r9Meta')") cmds.menuItem(l=LANGUAGE_MAP._MainMenus_.info+" : r9Anim", ann=LANGUAGE_MAP._MainMenus_.individual_info_ann, echoCommand=True, c="Red9.core._setlogginglevel_info('r9Anim')") cmds.menuItem(l=LANGUAGE_MAP._MainMenus_.info+" : r9Tools", ann=LANGUAGE_MAP._MainMenus_.individual_info_ann, echoCommand=True, c="Red9.core._setlogginglevel_info('r9Tools')") cmds.menuItem(l=LANGUAGE_MAP._MainMenus_.info+" : r9Pose", ann=LANGUAGE_MAP._MainMenus_.individual_info_ann, echoCommand=True, c="Red9.core._setlogginglevel_info('r9Pose')") cmds.menuItem(l=LANGUAGE_MAP._MainMenus_.info+" : r9General", ann=LANGUAGE_MAP._MainMenus_.individual_info_ann, echoCommand=True, c="Red9.core._setlogginglevel_info('r9General')") cmds.menuItem(l=LANGUAGE_MAP._MainMenus_.info+" : r9Audio", ann=LANGUAGE_MAP._MainMenus_.individual_info_ann, echoCommand=True, c="Red9.core._setlogginglevel_info('r9Audio')") cmds.menuItem(divider=True,p='redNineDebuggerItem') cmds.menuItem('redNineReloadItem',l=LANGUAGE_MAP._MainMenus_.systems_reload, p='redNineDebuggerItem', ann=LANGUAGE_MAP._MainMenus_.systems_reload_ann, echoCommand=True, c=reload_Red9) # "Red9.core._reload()") cmds.menuItem(divider=True,p='redNineDebuggerItem') for language in get_language_maps(): cmds.menuItem(l=LANGUAGE_MAP._MainMenus_.language+" : %s" % language, c=partial(set_language,language),p='redNineDebuggerItem') except: raise StandardError('Unable to parent Red9 Menu to given parent %s' % parent) def addToMayaMenus(): try: # fileMenu additions if not cmds.menuItem('redNineOpenFolderItem',q=True,ex=True): mainFileMenu=mel.eval("string $f=$gMainFileMenu") if not cmds.menu(mainFileMenu, q=True, ni=True): mel.eval('buildFileMenu()') cmds.menuItem(divider=True,p=mainFileMenu) cmds.menuItem('redNineCopyPathItem', l=LANGUAGE_MAP._MainMenus_.copy_to_clipboard, ann=LANGUAGE_MAP._MainMenus_.copy_to_clipboard_ann, p=mainFileMenu, echoCommand=True, c="import maya.cmds as cmds;import Red9.core.Red9_General as r9General;r9General.Clipboard.setText(cmds.file(q=True,sn=True))") cmds.menuItem('redNineOpenFolderItem', l=LANGUAGE_MAP._MainMenus_.open_in_explorer, ann=LANGUAGE_MAP._MainMenus_.open_in_explorer_ann, p=mainFileMenu, echoCommand=True, c="import maya.cmds as cmds;import Red9.core.Red9_General as r9General;r9General.os_OpenFileDirectory(cmds.file(q=True,sn=True))") # timeSlider additions if not cmds.menuItem('redNineTimeSliderCollapseItem',q=True,ex=True): if mayaVersion >= 2011: mel.eval('updateTimeSliderMenu TimeSliderMenu') TimeSliderMenu='TimeSliderMenu' cmds.menuItem(divider=True, p=TimeSliderMenu) cmds.menuItem(subMenu=True, label=LANGUAGE_MAP._MainMenus_.range_submenu, p=TimeSliderMenu) cmds.menuItem(label=LANGUAGE_MAP._MainMenus_.selectkeys_timerange, ann=LANGUAGE_MAP._MainMenus_.selectkeys_timerange_ann, c='import Red9.core.Red9_AnimationUtils as r9Anim;r9Anim.selectKeysByRange()') cmds.menuItem(label=LANGUAGE_MAP._MainMenus_.setrangetoo, ann=LANGUAGE_MAP._MainMenus_.setrangetoo_ann, c='import Red9.core.Red9_AnimationUtils as r9Anim;r9Anim.setTimeRangeToo()') cmds.menuItem(divider=True, p=TimeSliderMenu) cmds.menuItem('redNineTimeSliderCollapseItem', label=LANGUAGE_MAP._MainMenus_.collapse_time, ann=LANGUAGE_MAP._MainMenus_.collapse_time_ann, c='import Red9.core.Red9_CoreUtils as r9Core;r9Core.timeOffset_collapseUI()', p=TimeSliderMenu) cmds.menuItem(subMenu=True, label=LANGUAGE_MAP._MainMenus_.insert_padding, p=TimeSliderMenu) cmds.menuItem(label=LANGUAGE_MAP._MainMenus_.pad_selected, ann=LANGUAGE_MAP._MainMenus_.pad_selected_ann, c='import Red9.core.Red9_CoreUtils as r9Core;r9Core.timeOffset_addPadding(scene=False)') cmds.menuItem(label=LANGUAGE_MAP._MainMenus_.pad_full_scene, ann=LANGUAGE_MAP._MainMenus_.pad_full_scene_ann, c='import Red9.core.Red9_CoreUtils as r9Core;r9Core.timeOffset_addPadding(scene=True)') else: log.debug('Red9 Timeslider menus already built') except: log.debug('gMainFileMenu not found >> catch for unitTesting') def addAudioMenu(parent=None, rootMenu='redNineTraxRoot'): ''' Red9 Sound Menu setup ''' print 'AudioMenu: given parent : ',parent if not parent: cmds.menu(rootMenu, l=LANGUAGE_MAP._MainMenus_.sound_red9_sound, tearOff=True, allowOptionBoxes=True) print 'New r9Sound Menu added - no specific parent given so adding to whatever menu is currently being built!' else: # parent is a window containing a menuBar? if cmds.window(parent, exists=True): if not cmds.window(parent, q=True, menuBar=True): raise StandardError('given parent for Red9 Sound Menu has no menuBarlayout %s' % parent) else: cmds.menu(rootMenu, l=LANGUAGE_MAP._MainMenus_.sound_red9_sound, p=parent, tearOff=True, allowOptionBoxes=True) log.info('New Red9 Sound Menu added to current windows menuBar : %s' % parent) # parent is a menuBar? elif cmds.menuBarLayout(parent, exists=True): cmds.menu(rootMenu, l=LANGUAGE_MAP._MainMenus_.sound_red9_sound, p=parent, tearOff=True, allowOptionBoxes=True) log.info('New Red9 Sound Menu added to current windows menuBar : %s' % parent) # parent is a menu already? elif cmds.menu(parent, exists=True): cmds.menuItem(rootMenu, l=LANGUAGE_MAP._MainMenus_.sound_red9_sound, sm=True, p=parent, allowOptionBoxes=True) log.info('New Red9 Sound subMenu added to current Menu : %s' % parent) else: raise StandardError('given parent for Red9 Sound Menu is invalid %s' % parent) # if not parent: # print 'new r9Sound Menu added' # cmds.menu(rootMenu, l=LANGUAGE_MAP._MainMenus_.sound_red9_sound, tearOff=True, allowOptionBoxes=True) # else: # print 'new r9Sound Menu added to parent menu', parent # cmds.menu(rootMenu, l=LANGUAGE_MAP._MainMenus_.sound_red9_sound, tearOff=True, allowOptionBoxes=True, parent=parent) cmds.menuItem(l=LANGUAGE_MAP._MainMenus_.sound_offset_manager, p=rootMenu, ann=LANGUAGE_MAP._MainMenus_.sound_offset_manager_ann, c="import Red9.core.Red9_Audio as r9Audio;r9Audio.AudioToolsWrap().show()") cmds.menuItem(d=True) cmds.menuItem(l=LANGUAGE_MAP._MainMenus_.sound_activate_selected_audio, p=rootMenu, ann=LANGUAGE_MAP._MainMenus_.sound_activate_selected_audio_ann, c="import Red9.core.Red9_Audio as r9Audio;r9Audio.AudioHandler().setActive()") cmds.menuItem(l=LANGUAGE_MAP._MainMenus_.sound_set_timeline_to_selected, p=rootMenu, ann=LANGUAGE_MAP._MainMenus_.sound_set_timeline_to_selected_ann, c="import Red9.core.Red9_Audio as r9Audio;r9Audio.AudioHandler().setTimelineToAudio()") cmds.menuItem(l=LANGUAGE_MAP._MainMenus_.sound_focus_on_selected, p=rootMenu, ann=LANGUAGE_MAP._MainMenus_.sound_focus_on_selected_ann, c="import Red9.core.Red9_Audio as r9Audio;r9Audio.AudioHandler().setTimelineToAudio();r9Audio.AudioHandler().setActive()") cmds.menuItem(d=True) cmds.menuItem(l=LANGUAGE_MAP._MainMenus_.sound_mute_selected, p=rootMenu, c="import Red9.core.Red9_Audio as r9Audio;r9Audio.AudioHandler().muteSelected(True)") cmds.menuItem(l=LANGUAGE_MAP._MainMenus_.sound_unmute_selected, p=rootMenu, c="import Red9.core.Red9_Audio as r9Audio;r9Audio.AudioHandler().muteSelected(False)") cmds.menuItem(l=LANGUAGE_MAP._MainMenus_.sound_lock_selected, p=rootMenu, ann=LANGUAGE_MAP._MainMenus_.sound_lock_selected_ann, c="import Red9.core.Red9_Audio as r9Audio;r9Audio.AudioHandler().lockTimeInputs(True)") cmds.menuItem(l=LANGUAGE_MAP._MainMenus_.sound_unlock_selected, p=rootMenu, ann=LANGUAGE_MAP._MainMenus_.sound_unlock_selected_ann, c="import Red9.core.Red9_Audio as r9Audio;r9Audio.AudioHandler().lockTimeInputs(False)") cmds.menuItem(l=LANGUAGE_MAP._MainMenus_.sound_delete_selected, p=rootMenu, ann=LANGUAGE_MAP._MainMenus_.sound_delete_selected_ann, c="import Red9.core.Red9_Audio as r9Audio;r9Audio.AudioHandler().deleteSelected()") cmds.menuItem(l=LANGUAGE_MAP._MainMenus_.sound_format_soundnode_name, p=rootMenu, ann=LANGUAGE_MAP._MainMenus_.sound_format_soundnode_name_ann, c="import Red9.core.Red9_Audio as r9Audio;r9Audio.AudioHandler().formatNodes_to_Path()") cmds.menuItem(d=True) cmds.menuItem(l=LANGUAGE_MAP._MainMenus_.sound_combine_audio, p=rootMenu, ann=LANGUAGE_MAP._MainMenus_.sound_combine_audio_ann, c="import Red9.core.Red9_Audio as r9Audio;r9Audio.combineAudio()") cmds.menuItem(d=True) cmds.menuItem(l=LANGUAGE_MAP._MainMenus_.sound_open_audio_path, p=rootMenu, ann=LANGUAGE_MAP._MainMenus_.sound_open_audio_path_ann, c="import Red9.core.Red9_Audio as r9Audio;r9Audio.AudioNode().openAudioPath()") cmds.menuItem(l=LANGUAGE_MAP._MainMenus_.sound_inspect_wav, p=rootMenu, ann=LANGUAGE_MAP._MainMenus_.sound_inspect_wav_ann, c="import Red9.core.Red9_Audio as r9Audio;r9Audio.inspect_wav()") #========================================================================================= # GENERAL RED9 DATA ---------------------------------------------------------------------- #========================================================================================= def red9ButtonBGC(colour): ''' Generic setting for the main button colours in the UI's ''' if colour==1 or colour=='green': #return [0.6, 0.9, 0.65] return [0.6, 1, 0.6] elif colour==2 or colour=='grey': return [0.5, 0.5, 0.5] elif colour==3 or colour=='red': return [1,0.3,0.3] def red9ContactInfo(*args): import Red9.core.Red9_General as r9General # lazy load result=cmds.confirmDialog(title='Red9_StudioPack : build %f' % red9_getVersion(), message=("Author: Mark Jackson\r\r"+ "Technical Animation Director\r\r"+ "Contact me at info@red9Consultancy.com for more information\r\r"+ "thanks for trying the toolset. If you have any\r"+ "suggestions or bugs please let me know!"), button=['Red9Consultancy.com','ChangeLog','Close'],messageAlign='center') if result == 'ChangeLog': r9General.os_OpenFile(os.path.join(red9ModulePath(),'changeLog.txt')) if result =='Red9Consultancy.com': r9General.os_OpenFile('http://red9consultancy.com/') def red9Presets(): ''' get the default presets dir for all filterSettings.cfg files ''' return os.path.join(red9ModulePath(), 'presets') def red9Presets_get(): ''' generic extraction of all cfg presets from the default location above ''' try: configs=[p for p in os.listdir(red9Presets()) if p.endswith('.cfg')] configs.sort() return configs except: log.debug('failed to retrieve the presets') return [] def red9ModulePath(): ''' Returns the Main path to the Red9 root module folder ''' return os.path.join(os.path.dirname(os.path.dirname(__file__)),'') def red9MayaNativePath(): ''' Returns the MayaVersioned Hacked script path if valid and found ''' _version=int(mayaVersion()) path=os.path.join(red9ModulePath(),'startup','maya_native','maya_%s' % str(_version)) if os.path.exists(path): return path else: log.info('Red9MayaHacked Folder not found for this build of Maya : %s' % path) def red9_help(*args): ''' open up the Red9 help docs ''' import Red9.core.Red9_General as r9General # lazy load helpFile=os.path.join(red9ModulePath(),'docs',r'Red9-StudioTools Help.pdf') r9General.os_OpenFile(helpFile) def red9_blog(*args): ''' open up the Red9 Blog ''' import Red9.core.Red9_General as r9General # lazy load r9General.os_OpenFile('http://red9-consultancy.blogspot.com/') def red9_website_home(*args): ''' open up the Red9 Consultancy homepage ''' import Red9.core.Red9_General as r9General # lazy load r9General.os_OpenFile('http://red9consultancy.com/') def red9_facebook(*args): ''' open up the Red9 Facebook Page ''' import Red9.core.Red9_General as r9General # lazy load r9General.os_OpenFile('http://www.facebook.com/Red9StudioPack/') def red9_vimeo(*args): ''' open up the Red9 Vimeo Channel ''' import Red9.core.Red9_General as r9General # lazy load r9General.os_OpenFile('https://vimeo.com/user9491246') def red9_apidocs(*args): ''' open up the Red9 Vimeo Channel ''' import Red9.core.Red9_General as r9General # lazy load apidocs=os.path.join(red9ModulePath(),'docs', 'html', 'index.html') r9General.os_OpenFile(apidocs) def red9_getVersion(): return __buildVersionID__ def red9_getAuthor(): return __author__ def get_pro_pack(*args): try: #new pro_pack build calls import Red9.pro_pack.r9pro as r9pro r9pro.r9import('r9wtools') import r9wtools r9wtools.MailRegistration().show() except: #legacy import Red9.core.Red9_General as r9General # lazy load result=cmds.confirmDialog(title='Red9_StudioPack : build %f' % red9_getVersion(), message=("Red9_ProPack Not Installed!\r\r"+ "Contact info@red9consultancy.com for more information"), button=['Red9Consultancy.com','Get_Pro','Close'],messageAlign='center') if result == 'Get_Pro': log.warning('Red9 ProPack systems not yet available - watch this space!') if result =='Red9Consultancy.com': r9General.os_OpenFile('http://red9consultancy.com/') #========================================================================================= # BOOT FUNCTIONS ------------------------------------------------------------------------- #========================================================================================= def addScriptsPath(path): ''' Add additional folders to the ScriptPath ''' scriptsPath=os.environ.get('MAYA_SCRIPT_PATH') if os.path.exists(path): if not path in scriptsPath: log.info('Adding To Script Paths : %s' % path) os.environ['MAYA_SCRIPT_PATH']+='%s%s' % (os.pathsep,path) else: log.info('Red9 Script Path already setup : %s' % path) else: log.debug('Given Script Path is invalid : %s' % path) def addPluginPath(): ''' Make sure the plugin path has been added. If run as a module this will have already been added ''' path=os.path.join(red9ModulePath(),'plug-ins') plugPaths=os.environ.get('MAYA_PLUG_IN_PATH') if not path in plugPaths: log.info('Adding Red9 Plug-ins to Plugin Paths : %s' % path) os.environ['MAYA_PLUG_IN_PATH']+='%s%s' % (os.pathsep,path) else: log.info('Red9 Plug-in Path already setup') def addIconsPath(): ''' Make sure the icons path has been added. If run as a module this will have already been added ''' path=os.path.join(red9ModulePath(),'icons') iconsPath=os.environ.get('XBMLANGPATH') if not path in iconsPath: log.info('Adding Red9 Icons To XBM Paths : %s' % path) os.environ['XBMLANGPATH']+='%s%s' % (os.pathsep,path) else: log.info('Red9 Icons Path already setup') def addPythonPackages(): ''' Add the packages folder which is where any external modules will be stored ''' red9Packages=os.path.join(red9ModulePath(),'packages') if not red9Packages in sys.path: log.info('Adding Red9Packages To Python Paths : %s' % red9Packages) sys.path.append(red9Packages) else: log.info('Red9Packages Path already setup : %s' % red9Packages) # PySide Management for pre 2014 x64 builds if mayaVersion()<2014.0 and os.path.exists(os.path.join(red9Packages, 'PySide')): pysidePath=os.path.join(red9Packages, 'PySide') if mayaVersion()==2012.0: pysidePath=os.path.join(pysidePath, 'PySide_2012_x64') elif mayaVersion()==2013.0: pysidePath=os.path.join(pysidePath, 'PySide_2013_x64') if os.path.exists(pysidePath) and not pysidePath in sys.path: sys.path.append(pysidePath) log.info('Adding Red9Packages:PySide To Python Paths : %s' % pysidePath) def sourceMelFolderContents(path): ''' source all mel files in a given folder ''' for script in [f for f in os.listdir(path) if f.lower().endswith('.mel')]: log.info('Sourcing mel script : %s' % script) mel.eval('source %s' % script) #========================================================================================= # PRO PACK ------------------------------------------------------------------------------ #========================================================================================= PRO_PACK_STUBS=None def pro_pack_path(): return os.path.join(red9ModulePath(),'pro_pack') def has_pro_pack(): ''' Red9 Pro_Pack is available and activated as user ''' if os.path.exists(pro_pack_path()): try: #new pro_pack call import Red9.pro_pack.r9pro as r9pro status=r9pro.checkr9user() if status and not issubclass(type(status),str): return True else: return False except: #we have the pro-pack folder so assume we're running legacy build (Dambusters support) return True else: return False class ProPack_UIError(Exception): ''' custom exception so we can catch it, this launched the get ProPack UI ''' def __init__(self, *args): get_pro_pack() class ProPack_Error(Exception): ''' custom exception so we can catch it. This is an in-function error ''' def __init__(self, *args): super(ProPack_Error, self).__init__('ProPack missing from setup!') class pro_pack_missing_stub(object): ''' Exception to raised when the the Pro_Pack is missing and the stubs are called ''' def __init__(self): raise ProPack_UIError() #========================================================================================= # RED9 PRODUCTION MODULES ---------------------------------------------------------------- #========================================================================================= def has_internal_systems(): ''' Red9 Consultancy internal modules only ''' if os.path.exists(internal_module_path()): return True def internal_module_path(): return os.path.join(os.path.dirname(os.path.dirname(red9ModulePath())),'Red9_Internals') #========================================================================================= # CLIENT MODULES ------------------------------------------------------------------------- #========================================================================================= def client_core_path(): return os.path.join(os.path.dirname(os.path.dirname(red9ModulePath())),'Red9_ClientCore') def has_client_modules(): ''' Red9 Client Modules is the distribution of bespoke code to clients that tightly integrates into our ProPack core ''' if os.path.exists(client_core_path()): return True def get_client_modules(): ''' get all client modules ready for the boot sequence #TODO: link this up with a management setup so we can determine which client to boot if we have multiple client repositories in the system. ''' clients=[] if has_client_modules(): for f in os.listdir(client_core_path()): if os.path.isdir(os.path.join(client_core_path(), f)): if not f.startswith('.'): clients.append(f) return clients def boot_client_projects(): ''' Boot all Client modules found in the Red9_ClientCore dir ''' for client in get_client_modules(): log.info('Booting Client Module : %s' % client) cmds.evalDeferred("import Red9_ClientCore.%s" % client, lp=True) # Unresolved Import #========================================================================================= # BOOT CALL ------------------------------------------------------------------------------ #========================================================================================= def start(Menu=True, MayaUIHooks=True, MayaOverloads=True, parentMenu='MayaWindow'): ''' Main entry point for the StudioPack @param Menu: Add the Red9 Menu to the Maya Main Menus @param MayUIHooks: Add the Red9 hooks to Maya Native UI's @param MayaOverloads: run the Maya native script hacks for Red9 - integrates into native Maya ui's ''' log.info('Red9 StudioPack v%s : author: %s' % (red9_getVersion(), red9_getAuthor())) log.info('Red9 StudioPack Setup Calls :: Booting from >> %s' % red9ModulePath()) #check for current builds # currentBuild=False # try: # currentBuild = mel.eval('$temp=$buildInstalled') # except: # print 'Red9 : version not found' # # if currentBuild: # print 'Red9 : StudioPack already found : v', currentBuild # if currentBuild<=red9_getVersion(): # print 'Red9 StudioPack Start Aborted : v%f is already installed' % currentBuild # return # else: # print 'Red9 : no version currently loaded' #Ensure the Plug-in and Icon paths are up addPluginPath() addIconsPath() #Need to add a Mel Folder to the scripts path addScriptsPath(os.path.join(red9ModulePath(),'core')) #Add the Packages folder addPythonPackages() if not cmds.about(batch=True): if Menu: try: menuSetup(parent=parentMenu) except: log.debug('Red9 main menu Build Failed!') if MayaUIHooks: #Source Maya Hacked Mel files hacked=red9MayaNativePath() if hacked and MayaOverloads: addScriptsPath(os.path.join(red9ModulePath(),'startup','maya_native')) addScriptsPath(hacked) try: mel.eval('source Red9_MelCore') sourceMelFolderContents(hacked) except StandardError, error: log.info(error) #Add custom items to standard built Maya menus addToMayaMenus() log.info('Red9 StudioPack Complete!') # Rearrangement of the Boot core systems to better structure the boot sequence # Boot main Red9.core cmds.evalDeferred("import Red9.core", lp=True) # Boot the Pro_Pack if has_pro_pack(): cmds.evalDeferred("import Red9.pro_pack", lp=True) # Unresolved Import # Boot the Red9_Internal systems if has_internal_systems(): cmds.evalDeferred("import Red9_Internals", lp=True) # Unresolved Import # Boot Client Codebases if has_client_modules(): boot_client_projects() #cmds.evalDeferred("import Red9_ClientCore", lp=True) # Unresolved Import def reload_Red9(*args): #global LANGUAGE_MAP #reload(LANGUAGE_MAP) import Red9.core Red9.core._reload() if has_pro_pack(): import Red9.pro_pack.core Red9.pro_pack.core._reload() PRO_PACK_STUBS=pro_pack_missing_stub
Free3Dee/Red9_StudioPack
startup/setup.py
Python
bsd-3-clause
44,595
#!/usr/bin/env python import csv import sys filename = sys.argv[1] filename_out = sys.argv[2] with open(filename, 'rb') as fd: reader = csv.reader(fd) header = reader.next() rows = [row for row in reader] with open(filename_out, 'w') as fd: fd.write('dataset, -delta angle, centre angle, +delta angle,' ' -area, +area\n') writer = csv.writer(fd) for row in rows: xs = [float(ii) for ii in row[1:8]] xm = xs[2] rr = [row[0], '%+.2f' % (xs[1] - xm), '%.2f' % xm, '%+.2f' % (xs[3] - xm), '%.2e' % xs[5], '%.2e' % xs[6]] writer.writerow(rr)
rc/dist_mixtures
make_aa_table.py
Python
bsd-3-clause
624
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'Contact.content_type_label' db.add_column(u'contacts_contact', 'content_type_label', self.gf('django.db.models.fields.CharField')(default='', max_length=255, blank=True), keep_default=False) def backwards(self, orm): # Deleting field 'Contact.content_type_label' db.delete_column(u'contacts_contact', 'content_type_label') models = { u'contacts.contact': { 'Meta': {'object_name': 'Contact'}, 'comments': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'content_type_set_for_contact'", 'to': u"orm['contenttypes.ContentType']"}), 'content_type_label': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'object_pk': ('django.db.models.fields.TextField', [], {}), 'type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contacts.ContactType']"}), 'value': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, u'contacts.contacttype': { 'Meta': {'object_name': 'ContactType'}, 'description': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '20'}), 'sites': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['sites.Site']", 'symmetrical': 'False'}) }, u'contacts.contacttypeicon': { 'Meta': {'unique_together': "(('type', 'context'),)", 'object_name': 'ContactTypeIcon'}, 'context': ('django.db.models.fields.CharField', [], {'max_length': '20'}), 'icon': ('django.db.models.fields.CharField', [], {'max_length': '20'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'type': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'icons'", 'to': u"orm['contacts.ContactType']"}) }, u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, u'sites.site': { 'Meta': {'ordering': "(u'domain',)", 'object_name': 'Site', 'db_table': "u'django_site'"}, 'domain': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) } } complete_apps = ['contacts']
suselrd/django-allcontacts
contacts/migrations/0002_auto__add_field_contact_content_type_label.py
Python
bsd-3-clause
3,604
"""functions relating to Jobma""" import logging from urllib.parse import urljoin from django.conf import settings from django.urls import reverse from requests import Session from profiles.api import get_first_and_last_names log = logging.getLogger(__name__) def get_jobma_client(): """ Get an authenticated client for use with Jobma APIs Returns: Session: A Jobma session object """ session = Session() session.headers["Authorization"] = f"Bearer {settings.JOBMA_ACCESS_TOKEN}" session.headers[ "User-Agent" ] = f"BootcampEcommerceBot/{settings.VERSION} ({settings.SITE_BASE_URL})" return session def create_interview_in_jobma(interview): """ Create a new interview on Jobma Args: interview (Interview): An interview object """ client = get_jobma_client() url = urljoin(settings.JOBMA_BASE_URL, "interviews") job = interview.job first_name, last_name = get_first_and_last_names(interview.applicant) response = client.post( url, json={ "interview_template_id": str(job.interview_template_id), "job_id": str(job.job_id), "job_code": job.job_code, "job_title": job.job_title, "callback_url": urljoin( settings.SITE_BASE_URL, reverse("jobma-webhook", kwargs={"pk": interview.id}), ), "candidate": { "first_name": first_name, "last_name": last_name, "phone": "", "email": interview.applicant.email, }, }, ) response.raise_for_status() result = response.json() interview_link = result.get("interview_link") if interview_link is not None: interview.interview_url = interview_link else: log.error("Interview link not found in payload - %s", result) interview_token = result.get("interview_token") if interview_token is not None: interview.interview_token = interview_token interview.save_and_log(None) return interview_link
mitodl/bootcamp-ecommerce
jobma/api.py
Python
bsd-3-clause
2,105
#!/usr/bin/env python # # Copyright (c) 2011 Ivan Zakrevsky # Licensed under the terms of the BSD License (see LICENSE.txt) import os.path from setuptools import setup, find_packages import metadata app_name = metadata.name version = metadata.version setup( name = app_name, version = version, packages = find_packages(), author = "Ivan Zakrevsky", author_email = "ivzak@yandex.ru", description = "Extension of django-modeltranslation.", long_description=open(os.path.join(os.path.dirname(__file__), 'README')).read(), license = "BSD License", keywords = "django i18n multilingual translation", classifiers = [ 'Development Status :: 5 - Production/Stable', 'Environment :: Web Environment', 'Framework :: Django', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Software Development :: Internationalization', 'Topic :: Software Development :: Libraries :: Application Frameworks', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: Software Development :: Localization', ], url = "https://bitbucket.org/emacsway/{0}".format(app_name), )
emacsway/django-modeltranslation-ext
setup.py
Python
bsd-3-clause
1,312
__author__ = 'oddBit' import json settings_json = json.dumps([ {'type': 'title', 'title': 'game settings'}, {'type': 'bool', 'title': 'hardcore mode', 'desc': 'adds enemies and a portal to the map', 'section': 'game', 'key': 'hardcoreOption'}, {'type': 'title', 'title': 'sound settings'}, {'type': 'bool', 'title': 'play music', 'desc': '', 'section': 'sound', 'key': 'musicOption'}, {'type': 'bool', 'title': 'play game sounds', 'desc': '', 'section': 'sound', 'key': 'soundsOption'} ])
oddbitdev/hexTap
SettingsJson.py
Python
bsd-3-clause
580
import py from ..base import BaseTopazTest class TestLocalPropagation(BaseTopazTest): def test_simple(self, space): w_res = space.execute(""" require "libdeltablue" string, number = "0", 0 always predicate: -> { string == number.to_s }, methods: -> {[ string <-> { number.to_s }, number <-> { string.to_i } ]} $res = [string, number] string = "23" $res << string << number number = 7 $res << string << number return $res """) assert self.unwrap(space, w_res) == ["0", 0, "23", 23, "7", 7] def test_interface_constraint(self, space): w_res = space.execute(""" require "libdeltablue" to_i_able = nil always predicate: -> { to_i_able.respond_to? :to_i }, methods: -> {[ to_i_able <-> { "" } ]} $res = [] $res << to_i_able to_i_able = 100 $res << to_i_able return $res """) assert self.unwrap(space, w_res) == ["", 100] def test_class_constraint_raises(self, space): with self.raises(space, "RuntimeError", "Failed to enforce a required constraint"): space.execute(""" require "libdeltablue" string = nil always predicate: -> { string.is_a? String }, methods: -> {[ string <-> { "" } ]} string = 10 """) def test_non_required_class_constraint_doesnt_raise(self, space): space.execute(""" require "libdeltablue" string = nil always predicate: -> { string.is_a? String }, methods: -> {[ string <-> { "" } ]}, priority: :medium string = 10 # Fails if this raises """) def test_simple_alt_syntax(self, space): w_res = space.execute(""" require "libdeltablue" string, number = "0", 0 always predicate: -> { string == number.to_s } do [string <-> { number.to_s }, number <-> { string.to_i }] end $res = [string, number] string = "23" $res << string << number number = 7 $res << string << number return $res """) assert self.unwrap(space, w_res) == ["0", 0, "23", 23, "7", 7] def test_arithmetic(self, space): w_res = space.execute(""" require "libdeltablue" $res = [] x, y, z = 0, 0, 0 always predicate: -> { x + y == z } do [x <-> { z - y }, y <-> { z - x }, z <-> { x + y }] end $res << [x, y, z] x = 20 $res << [x, y, z] z = 100 $res << [x, y, z] return $res """) assert self.unwrap(space, w_res) == [ [0, 0, 0], [20, -20, 0], [20, 80, 100] ]
babelsberg/babelsberg-r
tests/constraints/test_local_propagation.py
Python
bsd-3-clause
2,923
__author__ = "Jens Thomas & Felix Simkovic" __date__ = "10 June 2019" __version__ = "1.0" import argparse import os from ample.modelling.multimer_definitions import MULTIMER_MODES class BoolAction(argparse.Action): """Class to set a boolean value either form a string or just from the use of the command-line flag""" def __call__(self, parser, namespace, values, option_string=None): if values is None: # values = self.default values = True # if nothing specified supplying the flag sets the variable to True if values in ['0', 'f', 'F', 'false', 'False', False]: values = False elif values in ['1', 't', 'T', 'true', 'True', True]: values = True else: raise argparse.ArgumentError(self, 'Unrecognised True/False value: {0}'.format(values)) setattr(namespace, self.dest, values) class FilePathAction(argparse.Action): """Class to handle paths to files or directories. AMPLE changes directory into a work directory so relative paths to files don't work. We set absolulte paths here. """ def __call__(self, parser, namespace, values, option_string=None): if isinstance(values, str): values = os.path.abspath(values) setattr(namespace, self.dest, values) def add_core_options(parser=None): """Function to add any arguments required by all runtypes""" if parser is None: parser = argparse.ArgumentParser() parser.add_argument('-config_file', action=FilePathAction, help="user configuration file") parser.add_argument('-debug', action=BoolAction, nargs='?', metavar='True/False', help=argparse.SUPPRESS) parser.add_argument( '-nproc', type=int, help="Number of processors [1]. For local, serial runs the jobs will be split across nproc processors. For cluster submission, this should be the number of processors on a node.", ) parser.add_argument( '-work_dir', action=FilePathAction, help='Path to the directory where the job will run (will be created if it doesn\'t exist)', ) return parser def add_cluster_submit_options(parser=None): """Add the options for submission to a cluster queuing system""" if parser is None: parser = argparse.ArgumentParser() submit_group = parser.add_argument_group('Cluster queue submission options') submit_group.add_argument( '-submit_array', action=BoolAction, nargs='?', metavar='True/False', help='Submit SGE jobs as array jobs' ) submit_group.add_argument( '-submit_cluster', action=BoolAction, nargs='?', metavar='True/False', help='Submit jobs to a cluster - need to set -submit_qtype flag to specify the batch queue system.', ) submit_group.add_argument( '-submit_max_array', type=int, help='The maximum number of jobs to run concurrently with SGE array job submission', ) submit_group.add_argument( '-submit_num_array_jobs', type=int, help='The number of jobs to run concurrently with SGE array job submission' ) submit_group.add_argument( '-submit_pe_lsf', help='Cluster submission: string to set number of processors for LSF queueing system' ) submit_group.add_argument( '-submit_pe_sge', help='Cluster submission: string to set number of processors for SGE queueing system' ) submit_group.add_argument('-submit_queue', help='The queue to submit to on the cluster.') submit_group.add_argument('-submit_qtype', help='Cluster submission queue type - currently support SGE and LSF') return parser def add_general_options(parser=None): from ample.util import version if parser is None: parser = argparse.ArgumentParser() add_core_options(parser) parser.add_argument( '-alignment_file', action=FilePathAction, help='Alignment file in fasta format. For homologues the first line of each sequence must be the pdb file name', ) parser.add_argument( '-allow_his_tag', action=BoolAction, nargs='?', metavar='True/False', help='Allow HIS tags in the input sequence', ) parser.add_argument( '-blast_dir', action=FilePathAction, help='Directory where ncbi blast is installed (binaries in expected in bin subdirectory)', ) parser.add_argument( '-classic_mode', metavar='True/False', help='Preset options to run the original AMPLE clustering/truncation options (1 cluster, 3 subclustering radii, 3 sidechains)', ) parser.add_argument( '-ccp4i2_xml', action=FilePathAction, help='Path to CCP4I2 XML file - if not None indicates we are running under CCP4I2', ) parser.add_argument( '-coiled_coil', action=BoolAction, nargs='?', metavar='True/False', help='Turn on Coiled-Coil mode for solving Coiled-Coil structures', ) parser.add_argument( '-devel_mode', metavar='devel_mode', help='Preset options to run in development mode - takes longer' ) parser.add_argument('-dry_run', metavar='True/False', help='Check if input files and supplied options are valid.') parser.add_argument( '-early_terminate', action=BoolAction, nargs='?', metavar='True/False', help='Stop the run as soon as a success has been found.', ) parser.add_argument('-ensembles', help='Path to directory containing existing ensembles') parser.add_argument('-fasta', action=FilePathAction, help='protein fasta file. (required)') parser.add_argument('-fast_protein_cluster_exe', help='path to fast_protein_cluster executable') parser.add_argument('-F', metavar='flag for F', help='Flag for F column in the MTZ file') parser.add_argument('-FREE', metavar='flag for FREE', help='Flag for FREE column in the MTZ file') parser.add_argument( '-ideal_helices', action=BoolAction, nargs='?', metavar='True/False', help='Use ideal polyalanine helices to solve structure (8 helices: from 5-40 residues)', ) parser.add_argument( '-improve_template', metavar='improve_template', help='Path to a template to improve - NMR, homolog' ) parser.add_argument('-LGA', metavar='path_to_LGA dir', help=argparse.SUPPRESS) parser.add_argument( '-make_models', action=BoolAction, nargs='?', metavar='True/False', help='run rosetta modeling, set to False to import pre-made models (required if making models locally default True)', ) parser.add_argument('-max_array_jobs', help='Maximum number of array jobs to run') parser.add_argument( '-models', metavar='models', help='Path to a folder of PDB decoys, or a tarred and gzipped/bziped, or zipped collection of decoys', ) parser.add_argument( '-mr_sequence', action=FilePathAction, help="sequence file for crystal content (if different from what's given by -fasta)", ) parser.add_argument('-mtz', action=FilePathAction, metavar='MTZ in', help='The MTZ file with the reflection data.') parser.add_argument('-name', metavar='job_name', help='4-letter identifier for job [ampl]') parser.add_argument( '-native_pdb', action=FilePathAction, metavar='native_pdb', help='Path to the crystal structure PDB for benchmarking.', ) parser.add_argument( '-native_mtz', action=FilePathAction, metavar='native_pdb', help='Path to the native MTZ containing FC and PHIC calculated phases for benchmarking.', ) parser.add_argument('-nmr_model_in', action=FilePathAction, metavar='nmr_model_in', help='PDB with NMR models') parser.add_argument('-nmr_process', type=int, help='number of times to process the NMR models') parser.add_argument( '-nmr_remodel', action=BoolAction, nargs='?', metavar='True/False', help='Remodel the NMR structures' ) parser.add_argument( '-nmr_remodel_fasta', action=FilePathAction, help='The FASTA sequence to be used for remodelling the NMR ensemble if different from the default FASTA sequence', ) parser.add_argument( '-purge', metavar='purge_level', type=int, choices=[0, 1, 2], help='Delete intermediate files and failed MRBUMP results: 0 - None, 1 - Some, 2 - All possible', ) parser.add_argument('-psipred_ss2', metavar='PSIPRED_FILE', help='Psipred secondary structure prediction file') parser.add_argument( '-quick_mode', action=BoolAction, nargs='?', metavar='True/False', help='Preset options to run quickly, but less thoroughly', ) parser.add_argument('-restart_pkl', help='Rerun a job using the pickled ample dictionary') parser.add_argument( '-run_dir', action=FilePathAction, metavar='run_directory', help='Directory where the AMPLE work directory will be created [current dir]', default=os.getcwd(), ) parser.add_argument( '-rvapi_document', action=FilePathAction, help='Path to an existing rvapi document (for running under jscofe)' ) parser.add_argument('-scwrl_exe', metavar='path to scwrl', help='Path to Scwrl4 executable') parser.add_argument( '-show_gui', action=BoolAction, nargs='?', metavar='True/False', help='Pop up and display a stand-alone GUI' ) parser.add_argument('-single_model', help='Single structure model to be used to create ensembles') parser.add_argument( '-sf_cif', action=FilePathAction, help='Path to a structure factor CIF file (instead of MTZ file)' ) parser.add_argument('-SIGF', help='Flag for SIGF column in the MTZ file') parser.add_argument('-top_model_only', metavar='True/False', help='Only process the top model in each ensemble') parser.add_argument('--version', action='version', version='%(prog)s {0}'.format(version.__version__)) parser.add_argument( '-webserver_uri', help='URI of the webserver directory - also indicates we are running as a webserver' ) return parser def add_contact_options(parser=None): """Contact prediction related options""" if parser is None: parser = argparse.ArgumentParser() contact_group = parser.add_argument_group("Contact Restraints Options") contact_group.add_argument( '-bbcontacts_file', action=FilePathAction, help='Additional bbcontacts file. Requires normal contactfile' ) contact_group.add_argument( '-bbcontacts_format', help='Residue contact file format. For available formats refer to the AMPLE documentation' ) contact_group.add_argument('-contact_file', action=FilePathAction, help='Residue contact file') contact_group.add_argument( '-contact_format', help='Residue contact file format. For available formats refer to the AMPLE documentation' ) contact_group.add_argument( '-disulfide_constraints_file', action=FilePathAction, help='Disulfide residue constraints for ab initio modelling', ) contact_group.add_argument( '-distance_to_neighbour', type=int, help="Min. distance between residue pairs for contact (default=5)" ) contact_group.add_argument( '-energy_function', help='Rosetta energy function for contact restraint conversion (default=FADE)' ) contact_group.add_argument( '-native_cutoff', type=float, help='Distance cutoff for reference contacts in native structure (default=8A)' ) contact_group.add_argument( '--no-contact-prediction', action=BoolAction, default=False, help="Do not predict contacts" ) contact_group.add_argument( '-restraints_factor', type=float, help='Factor (* Sequence length) determining number of contact restraints to use (default=1.0)', ) contact_group.add_argument( '-restraints_file', action=FilePathAction, help='Residue restraints for ab initio modelling' ) contact_group.add_argument( '-restraints_weight', type=float, help="Additional energy weighting of restraints in Rosetta" ) contact_group.add_argument( '-subselect_mode', help="Long-range decoy satisfaction subselection mode - one of [{0}]".format( " | ".join(["linear", "scaled", "cutoff"]) ), ) return parser def add_mr_options(parser=None): if parser is None: parser = argparse.ArgumentParser() mr_group = parser.add_argument_group('MRBUMP/Molecular Replacement Options') mr_group.add_argument('-arpwarp_cycles', type=int, help='The number of ArpWarp cycles to run') mr_group.add_argument('-buccaneer_cycles', type=int, help='The number of Bucanner rebuilding cycles to run') mr_group.add_argument( '-do_mr', action=BoolAction, nargs='?', metavar='True/False', help='Run or skip the Molecular Replacement step' ) mr_group.add_argument('-domain_termini_distance', help='distance between termini for insert domains') mr_group.add_argument('-existing_mr_solution', action=FilePathAction, help='Existing MR solution to give to MRBUMP') mr_group.add_argument( '-early_terminate_SHELXE_CC', type=float, help='SHELXE_CC criteria for when a job has succeeeded' ) mr_group.add_argument( '-early_terminate_SHELXE_ACL', type=int, help='SHELXE_ACL criteria for when a job has succeeeded' ) mr_group.add_argument( '-molrep_only', action=BoolAction, nargs='?', metavar='True/False', help='Only use Molrep for Molecular Replacement step in MRBUMP', ) mr_group.add_argument( '-mrbump_dir', action=FilePathAction, help='Path to a directory of MRBUMP jobs (see restart_pkl)' ) mr_group.add_argument( '-mr_keys', nargs='+', action='append', help='Additional keywords for MRBUMP - are passed through without editing', ) mr_group.add_argument( '-mr_sg_all', metavar='True/False', help='Try all possible space groups in PHASER Molecular Replacement step in MRBUMP', ) mr_group.add_argument( '-nmasu', type=int, help='Manually specify the number of molecules in the asymmetric unit - sets the NMASu MRBUMP flag', ) mr_group.add_argument( '-phaser_kill', metavar='phaser_kill', type=int, help='Time in minutes after which phaser will be killed (0 to leave running)', ) mr_group.add_argument( '-phaser_only', action=BoolAction, nargs='?', metavar='True/False', help='Only use Phaser for Molecular Replacement step in MRBUMP', ) mr_group.add_argument('-phaser_rms', metavar='phaser_rms', help='RMS value for phaser') mr_group.add_argument( '-refine_rebuild_arpwarp', metavar='True/False', help='True to use ARPWARP to rebuild the REFMAC-refined MR result.', ) mr_group.add_argument( '-refine_rebuild_buccaneer', metavar='True/False', help='True to use Buccaneer to rebuild the REFMAC-refined MR result.', ) mr_group.add_argument('-shelx_cycles', help='The number of SHELXE cycles to run when rebuilding.') mr_group.add_argument('-shelxe_exe', metavar='path to shelxe executable', help='Path to the SHELXE executable') mr_group.add_argument('-shelxe_max_resolution', help='Maximum permitted resolution for rebuilding with SHELXE') mr_group.add_argument( '-shelxe_rebuild', action=BoolAction, nargs='?', metavar='True/False', help='Rebuild SHELXE traced pdb with buccaneer and arpwarp', ) mr_group.add_argument( '-shelxe_rebuild_arpwarp', action=BoolAction, nargs='?', metavar='True/False', help='Rebuild SHELXE traced pdb with arpwarp', ) mr_group.add_argument( '-shelxe_rebuild_buccaneer', action=BoolAction, nargs='?', metavar='True/False', help='Rebuild SHELXE traced pdb with buccaneer', ) mr_group.add_argument( '-use_scwrl', action=BoolAction, nargs='?', metavar='True/False', help='Remodel sidechains of the decoy models using Scwrl4', ) mr_group.add_argument('-use_shelxe', action=BoolAction, nargs='?', metavar='True/False', help='True to use SHELXE') return parser def add_rosetta_options(parser=None): if parser is None: parser = argparse.ArgumentParser() rosetta_group = parser.add_argument_group('ROSETTA Modelling Options') rosetta_group.add_argument( '-all_atom', action=BoolAction, nargs='?', metavar='True/False', help="Do all-atom Rosetta modelling (adds \"-return_full_atom true\" to rosetta arguments", ) rosetta_group.add_argument( '-frags_3mers', action=FilePathAction, help='Path to file with pre-existing Rosetta 3mer fragments' ) rosetta_group.add_argument( '-frags_9mers', action=FilePathAction, help='Path to file with pre-existing Rosetta 3mer fragments' ) rosetta_group.add_argument( '-make_frags', action=BoolAction, nargs='?', metavar='True/False', help='set True to generate Rosetta 3mers and 9mers locally, False to import fragments', ) rosetta_group.add_argument( '-multimer_modelling', help='Generate multimeric models. Accepted values: {}'.format(MULTIMER_MODES) ) rosetta_group.add_argument( '-nmodels', metavar='number of models', type=int, help='number of models to make (default: 1000)' ) rosetta_group.add_argument('-nr', metavar='nr', help='Path to the NR non-redundant sequence database') rosetta_group.add_argument( '-rg_reweight', metavar='radius of gyration reweight', type=float, help='Set the Rosetta -rg_reweight flag to specify the radius of gyration reweight.', ) rosetta_group.add_argument( '-rosetta_executable', action=FilePathAction, help='Path to ROSETTA executable for modelling' ) rosetta_group.add_argument('-rosetta_db', action=FilePathAction, help='Path to the Rosetta database directory') rosetta_group.add_argument('-rosetta_dir', action=FilePathAction, help='The Rosetta install directory') rosetta_group.add_argument( '-rosetta_fragments_exe', action=FilePathAction, help='Location of the Rosetta make_fragments.pl script' ) rosetta_group.add_argument( '-rosetta_flagsfile', action=FilePathAction, help='Location of file with Rosetta modelling commands' ) rosetta_group.add_argument('-rosetta_version', type=float, help='The version number of Rosetta') rosetta_group.add_argument( '-transmembrane', action=BoolAction, nargs='?', metavar='True/False', help='Do Rosetta modelling for transmembrane proteins (Ovchinnikov protocol)', ) rosetta_group.add_argument( '-transmembrane_old', action=BoolAction, nargs='?', metavar='True/False', help='Do Rosetta modelling for transmembrane proteins (Yarov-Yarovoy protocol)', ) rosetta_group.add_argument( '-transmembrane_octopusfile', action=FilePathAction, help='Octopus transmembrane topology predicition file' ) rosetta_group.add_argument( '-transmembrane_spanfile', action=FilePathAction, help='Span file for modelling transmembrane proteins' ) rosetta_group.add_argument( '-transmembrane_lipofile', action=FilePathAction, help='Lips4 file for modelling transmembrane proteins' ) rosetta_group.add_argument( '-use_homs', action=BoolAction, nargs='?', metavar='True/False', help="Select ROSETTA fragments from homologous models", ) return parser def add_ensembler_options(parser=None): # --------------------------------------------------------------------------------------------- # # sphinx-argparse ignores Mock imports and thus cannot find iotbx.pdb when generating the docs. # try: from ample.ensembler.constants import ALLOWED_SIDE_CHAIN_TREATMENTS, SPICKER_RMSD, SPICKER_TM from ample.ensembler.truncation_util import TRUNCATION_METHODS except ImportError: allowed_side_chain_treatments = ['polyala', 'reliable', 'allatom', 'unmod'] truncation_methods = ['percent'] SPICKER_RMSD = 'spicker' SPICKER_TM = 'spicker_tm' else: allowed_side_chain_treatments = ALLOWED_SIDE_CHAIN_TREATMENTS[:] truncation_methods = [t.value for t in TRUNCATION_METHODS] if parser is None: parser = argparse.ArgumentParser() ensembler_group = parser.add_argument_group('Ensemble Options') ensembler_group.add_argument( '-cluster_dir', action=FilePathAction, help='Path to directory of pre-clustered models to import' ) ensembler_group.add_argument( '-cluster_method', help='How to cluster the models for ensembling. Options: ' + '|'.join([SPICKER_RMSD, SPICKER_TM]), ) ensembler_group.add_argument('-ensembler_timeout', type=int, help='Time in seconds before timing out ensembling') ensembler_group.add_argument( '-gesamt_exe', action=FilePathAction, metavar='gesamt_exe', help='Path to the gesamt executable' ) ensembler_group.add_argument( '-homologs', action=BoolAction, nargs='?', metavar='True/False', help='Generate ensembles from homologs models (requires -alignment_file)', ) ensembler_group.add_argument( '-homolog_aligner', metavar='homolog_aligner', help='Program to use for structural alignment of homologs (gesamt|mustang)', ) ensembler_group.add_argument('-ensemble_max_models', help='Maximum number of models permitted in an ensemble') ensembler_group.add_argument( '-mustang_exe', action=FilePathAction, metavar='mustang_exe', help='Path to the mustang executable' ) ensembler_group.add_argument( '-num_clusters', type=int, help='The number of Spicker clusters of the original decoys that will be sampled [1]' ) ensembler_group.add_argument('-percent', metavar='percent_truncation', help='percent interval for truncation') ensembler_group.add_argument( '-percent_fixed_intervals', nargs='+', type=int, help='list of integer percentage intervals for truncation' ) ensembler_group.add_argument('-score_matrix', action=FilePathAction, help='Path to score matrix for spicker') ensembler_group.add_argument( '-score_matrix_file_list', action=FilePathAction, help='File with list of ordered model names for the score_matrix', ) ensembler_group.add_argument( '-side_chain_treatments', type=str, nargs='+', help='The side chain treatments to use. Options: ' + '|'.join(allowed_side_chain_treatments), ) ensembler_group.add_argument('-spicker_exe', action=FilePathAction, help='Path to spicker executable') ensembler_group.add_argument( '-subcluster_radius_thresholds', type=float, nargs='+', help='The radii to use for subclustering the truncated ensembles', ) ensembler_group.add_argument('-subcluster_program', help='Program for subclustering models [gesamt]') ensembler_group.add_argument( '-theseus_exe', action=FilePathAction, metavar='Theseus exe', help='Path to theseus executable' ) ensembler_group.add_argument( '-thin_clusters', action=BoolAction, nargs='?', metavar='True/False', help='Create ensembles from 10 clusters with 1 + 3A subclustering and polyAlanine sidechains', ) ensembler_group.add_argument( '-truncation_method', help='How to truncate the models for ensembling: ' + '|'.join(truncation_methods) ) ensembler_group.add_argument('-truncation_pruning', help='Whether to remove isolated residues (single)') ensembler_group.add_argument( '-truncation_scorefile', action=FilePathAction, help="CSV file containing per residue scores - COLUMN ONE MUST BE RESIDUE INDEX STARTING FROM 1", ) ensembler_group.add_argument( '-truncation_scorefile_header', nargs='+', help="column headers to be used to create ensembles" ) return parser def process_command_line(args=None, contacts=True, modelling=True, mol_rep=True): """Process the command-line for the main AMPLE program. :args: optional argument that can hold the command-line arguments if we have been called from within python for testing """ parser = argparse.ArgumentParser( description="AMPLE: Ab initio Modelling of Proteins for moLEcular replacement", prefix_chars="-" ) add_general_options(parser) add_cluster_submit_options(parser) add_ensembler_options(parser) if contacts: add_contact_options(parser) if mol_rep: add_mr_options(parser) if modelling: add_rosetta_options(parser) return vars(parser.parse_args(args))
linucks/ample
ample/util/argparse_util.py
Python
bsd-3-clause
25,356
#! /usr/bin/env python # # Copyright (C) 2016 Rich Lewis <rl403@cam.ac.uk> # License: 3-clause BSD """ ## skchem.cross_validation Module implementing cross validation routines useful for chemical data. """ from .similarity_threshold import SimThresholdSplit __all__ = [ 'SimThresholdSplit' ]
richlewis42/scikit-chem
skchem/cross_validation/__init__.py
Python
bsd-3-clause
300
#coding=utf-8 import time class ConfsModel: def __init__(self): self.reload() def reload(self, datum = None): self._cache = {} if datum is not None: ret = datum.result('select conf_name, conf_vals from confs') if ret: for row in ret: self._cache[row['conf_name']] = row['conf_vals'] def obtain(self, datum, name): if name in self._cache: return self._cache[name] ret = datum.single('select conf_vals from confs where conf_name = ?', (name, )) if ret: self._cache[name] = ret['conf_vals'] else: self._cache[name] = None return self._cache[name] def exists(self, datum, name): ret = datum.single('select 1 from confs where conf_name = ?', (name, )) return bool(ret) def upsert(self, datum, name, vals): datum.affect('replace into confs (conf_name, conf_vals, conf_ctms) values (?, ?, ?)', (name, vals, int(time.time()),)) self._cache[name] = vals def delete(self, datum, name): datum.affect('delete from confs where conf_name = ?', (name, )) self._cache[name] = None
finron/luokr.com
www.luokr.com/app/model/confs.py
Python
bsd-3-clause
1,204
import json import os import time import phonenumbers import psycopg2 from ndoh_hub.constants import LANGUAGES def get_addresses(addresses): addresses = addresses.get("msisdn") or {} result = [] for addr, details in addresses.items(): try: p = phonenumbers.parse(addr, "ZA") assert phonenumbers.is_possible_number(p) assert phonenumbers.is_valid_number(p) p = phonenumbers.format_number(p, phonenumbers.PhoneNumberFormat.E164) except Exception: continue if details.get("default"): return [p] if not details.get("optedout"): result.append(p) return result def process_identity(identities, id, details, failed_msgs_count): details = details or {} addresses = get_addresses(details.get("addresses", {})) if not addresses or "redacted" in addresses: return identities[id] = { "msisdns": addresses, "failed_msgs_count": failed_msgs_count, "uuid": id, } for k in [ "operator_id", "passport_no", "passport_origin", "consent", "sa_id_no", "mom_given_name", "mom_family_name", "faccode", "id_type", ]: if details.get(k): identities[id][k] = details[k] language = ( details.get("lang_code") or details.get("language") or details.get("preferred_language") ) if language and language in LANGUAGES: identities[id]["language"] = language.rstrip("_ZA") pmtct_risk = details.get("pmtct", {}).get("risk_status", None) if pmtct_risk: identities[id]["pmtct_risk"] = pmtct_risk dob = details.get("mom_dob") or details.get("dob") if dob: identities[id]["mom_dob"] = dob def process_optout(identities, id, created, reason): if not identities.get(id): return created = created.isoformat() timestamp = identities[id].get("optout_timestamp") if timestamp and timestamp > created: return identities[id]["optout_timestamp"] = created identities[id]["optout_reason"] = reason def process_registration(identities, id, data): if not identities.get(id): return for k in [ "edd", "faccode", "id_type", "mom_dob", "mom_given_name", "mom_family_name", "msisdn_device", "passport_no", "passport_origin", "sa_id_no", "consent", ]: if data.get(k): if not identities[id].get(k): identities[id][k] = data[k] if data.get("baby_dob"): if not identities[id].get("baby_dobs"): identities[id]["baby_dobs"] = [data["baby_dob"]] else: identities[id]["baby_dobs"].append(data["baby_dob"]) uuid_device = data.get("uuid_device") or data.get("operator_id") if uuid_device and not identities[id].get("msisdn_device"): try: identities[id]["msisdn_device"] = identities[uuid_device]["msisdns"][0] except Exception: pass if data.get("language") and not identities[id].get("language"): if data["language"] in LANGUAGES: identities[id]["language"] = data["language"].rstrip("_ZA") def process_change(identities, id, action, data, created): if not identities.get(id): return created = created.isoformat() if "optout" in action: timestamp = identities[id].get("optout_timestamp") if timestamp and timestamp > created: return identities[id]["optout_timestamp"] = created if data.get("reason"): identities[id]["optout_reason"] = data["reason"] elif action == "baby_switch": baby_dobs = identities[id].get("baby_dobs") if not baby_dobs: identities[id]["baby_dobs"] = [created] else: identities[id]["baby_dobs"].append(created) def process_subscription(identities, id, name, created_at): if not identities.get(id): return created_at = created_at.isoformat() if "whatsapp" in name: identities[id]["channel"] = "WhatsApp" else: if not identities[id].get("channel"): identities[id]["channel"] = "SMS" if "pmtct" in name: identities[id]["pmtct_messaging"] = "TRUE" elif "loss" in name: identities[id]["optout_reason"] = name.split(".")[0].split("_")[-1] identities[id]["optout_timestamp"] = created_at identities[id]["loss_messaging"] = "TRUE" elif ( "momconnect_prebirth.patient" in name or "momconnect_prebirth.hw_partial" in name ): identities[id]["public_messaging"] = "TRUE" identities[id]["public_registration_date"] = created_at elif "momconnect_prebirth.hw_full" in name: identities[id]["prebirth_messaging"] = name[-1] elif "momconnect_postbirth.hw_full" in name: identities[id]["postbirth_messaging"] = "TRUE" else: return def merge_dicts(d1, d2): for k, v in d2.items(): if type(v) == list: d1[k] = d1.get(k, []) + v else: d1[k] = v return d1 def deduplicate_msisdns(identities): msisdns: dict = {} total = 0 start, d_print = time.time(), time.time() for identity in identities.values(): for msisdn in identity.pop("msisdns"): msisdns[msisdn] = merge_dicts( msisdns.get(msisdn, {"msisdn": msisdn}), identity ) if time.time() - d_print > 1: print( f"\rProcessed {total} msisdns at {total/(time.time() - start):.0f}/s", end="", ) d_print = time.time() total += 1 print(f"\nProcessed {total} msisdns in {time.time() - start:.0f}s") return msisdns if __name__ == "__main__": identities: dict = {} conn = psycopg2.connect( dbname="identitystore", user="identitystore", password=os.environ["IDENTITY_PASS"], host="localhost", port=7000, ) cursor = conn.cursor("identity_store_identities") print("Processing identities...") cursor.execute( """ SELECT id, details, failed_message_count FROM identities_identity """ ) total = 0 start, d_print = time.time(), time.time() for (id, details, failed_msgs_count) in cursor: process_identity(identities, id, details, failed_msgs_count) if time.time() - d_print > 1: print( f"\rProcessed {total} identities at " f"{total/(time.time() - start):.0f}/s", end="", ) d_print = time.time() total += 1 print(f"\nProcessed {total} identities in {time.time() - start:.0f}s") print("Processing opt outs...") cursor = conn.cursor("identity_store_optouts") cursor.execute( """ SELECT identity_id, created_at, reason FROM identities_optout """ ) total = 0 start, d_print = time.time(), time.time() for (id, created, reason) in cursor: process_optout(identities, id, created, reason) if time.time() - d_print > 1: print( f"\rProcessed {total} optouts at {total/(time.time() - start):.0f}/s", end="", ) d_print = time.time() total += 1 print(f"\nProcessed {total} optouts in {time.time() - start:.0f}s") print("Processing Registrations...") conn = psycopg2.connect( dbname="hub", user="hub", password=os.environ["HUB_PASS"], host="localhost", port=7000, ) cursor = conn.cursor("hub_registrations") cursor.execute( """ SELECT registrant_id, data FROM registrations_registration WHERE validated=true ORDER BY created_at ASC """ ) total = 0 start, d_print = time.time(), time.time() for (id, data) in cursor: process_registration(identities, id, data) if time.time() - d_print > 1: print( f"\rProcessed {total} registrations at " f"{total/(time.time() - start):.0f}/s", end="", ) d_print = time.time() total += 1 print(f"\nProcessed {total} registrations in {time.time() - start:.0f}s") print("Processing Changes...") cursor = conn.cursor("hub_changes") cursor.execute( """ SELECT registrant_id, action, data, created_at FROM changes_change WHERE validated=true ORDER BY created_at ASC """ ) total = 0 start, d_print = time.time(), time.time() for (id, action, data, created) in cursor: process_change(identities, id, action, data, created) if time.time() - d_print > 1: print( f"\rProcessed {total} changes at {total/(time.time() - start):.0f}/s", end="", ) d_print = time.time() total += 1 print(f"\nProcessed {total} changes in {time.time() - start:.0f}s") print("Processing subscriptions...") conn = psycopg2.connect( dbname="stage_based_messaging", user="stage_based_messaging", password=os.environ["STAGE_PASS"], host="localhost", port=7000, ) cursor = conn.cursor("stage_subscriptions") cursor.execute( """ SELECT subscription.identity, messageset.short_name, subscription.created_at FROM subscriptions_subscription as subscription JOIN contentstore_messageset as messageset ON subscription.messageset_id = messageset.id WHERE subscription.active=true and subscription.completed=false and subscription.process_status=0 """ ) total = 0 start, d_print = time.time(), time.time() for (id, name, created) in cursor: process_subscription(identities, id, name, created) if time.time() - d_print > 1: print( f"\rProcessed {total} subscriptions at " f"{total/(time.time() - start):.0f}/s", end="", ) d_print = time.time() total += 1 print(f"\nProcessed {total} subscriptions in {time.time() - start:.0f}s") print("Deduplicating msisdns") identities = deduplicate_msisdns(identities) print("Writing results to file..") start = time.time() with open("results.json", "w") as f: for i in identities.values(): f.write(json.dumps(i)) f.write("\n") print(f"Wrote results to file in {time.time() - start:.0f}s")
praekeltfoundation/ndoh-hub
scripts/migrate_to_rapidpro/collect_information.py
Python
bsd-3-clause
10,809
# -*- coding: utf-8 -*- from pytest import raises from watson.filters import abc class TestFilterBase(object): def test_call_error(self): with raises(TypeError): abc.Filter()
watsonpy/watson-filters
tests/watson/filters/test_abc.py
Python
bsd-3-clause
202
from typing import Any, List, Union from apistar import app from apistar.pipelines import ArgName class Settings(dict): @classmethod def build(cls, app: app.App): return cls(app.settings) def get(self, indexes: Union[str, List[str]], default: Any=None) -> Any: if isinstance(indexes, str): return super().get(indexes, default) value = self for index in indexes: if not isinstance(value, dict): return default value = value.get(index, default) return value class Setting(object): def __new__(cls, *args): assert len(args) == 1 return args[0] @classmethod def build(cls, arg_name: ArgName, settings: Settings): return settings.get(arg_name)
thimslugga/apistar
apistar/settings.py
Python
bsd-3-clause
787
import numpy as np import scipy.sparse as sp from scipy import linalg, optimize, sparse import scipy from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import raises from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_raise_message from sklearn.exceptions import ConvergenceWarning from sklearn.utils import compute_class_weight from sklearn.linear_model.logistic import ( LogisticRegression, logistic_regression_path, LogisticRegressionCV, _logistic_loss_and_grad, _logistic_grad_hess, _multinomial_grad_hess, _logistic_loss, ) from sklearn.model_selection import StratifiedKFold from sklearn.datasets import load_iris, make_classification from sklearn.metrics import log_loss X = [[-1, 0], [0, 1], [1, 1]] X_sp = sp.csr_matrix(X) Y1 = [0, 1, 1] Y2 = [2, 1, 0] iris = load_iris() sp_version = tuple([int(s) for s in scipy.__version__.split('.')]) def check_predictions(clf, X, y): """Check that the model is able to fit the classification data""" n_samples = len(y) classes = np.unique(y) n_classes = classes.shape[0] predicted = clf.fit(X, y).predict(X) assert_array_equal(clf.classes_, classes) assert_equal(predicted.shape, (n_samples,)) assert_array_equal(predicted, y) probabilities = clf.predict_proba(X) assert_equal(probabilities.shape, (n_samples, n_classes)) assert_array_almost_equal(probabilities.sum(axis=1), np.ones(n_samples)) assert_array_equal(probabilities.argmax(axis=1), y) def test_predict_2_classes(): # Simple sanity check on a 2 classes dataset # Make sure it predicts the correct result on simple datasets. check_predictions(LogisticRegression(random_state=0), X, Y1) check_predictions(LogisticRegression(random_state=0), X_sp, Y1) check_predictions(LogisticRegression(C=100, random_state=0), X, Y1) check_predictions(LogisticRegression(C=100, random_state=0), X_sp, Y1) check_predictions(LogisticRegression(fit_intercept=False, random_state=0), X, Y1) check_predictions(LogisticRegression(fit_intercept=False, random_state=0), X_sp, Y1) def test_error(): # Test for appropriate exception on errors msg = "Penalty term must be positive" assert_raise_message(ValueError, msg, LogisticRegression(C=-1).fit, X, Y1) assert_raise_message(ValueError, msg, LogisticRegression(C="test").fit, X, Y1) for LR in [LogisticRegression, LogisticRegressionCV]: msg = "Tolerance for stopping criteria must be positive" assert_raise_message(ValueError, msg, LR(tol=-1).fit, X, Y1) assert_raise_message(ValueError, msg, LR(tol="test").fit, X, Y1) msg = "Maximum number of iteration must be positive" assert_raise_message(ValueError, msg, LR(max_iter=-1).fit, X, Y1) assert_raise_message(ValueError, msg, LR(max_iter="test").fit, X, Y1) def test_predict_3_classes(): check_predictions(LogisticRegression(C=10), X, Y2) check_predictions(LogisticRegression(C=10), X_sp, Y2) def test_predict_iris(): # Test logistic regression with the iris dataset n_samples, n_features = iris.data.shape target = iris.target_names[iris.target] # Test that both multinomial and OvR solvers handle # multiclass data correctly and give good accuracy # score (>0.95) for the training data. for clf in [LogisticRegression(C=len(iris.data)), LogisticRegression(C=len(iris.data), solver='lbfgs', multi_class='multinomial'), LogisticRegression(C=len(iris.data), solver='newton-cg', multi_class='multinomial'), LogisticRegression(C=len(iris.data), solver='sag', tol=1e-2, multi_class='ovr', random_state=42)]: clf.fit(iris.data, target) assert_array_equal(np.unique(target), clf.classes_) pred = clf.predict(iris.data) assert_greater(np.mean(pred == target), .95) probabilities = clf.predict_proba(iris.data) assert_array_almost_equal(probabilities.sum(axis=1), np.ones(n_samples)) pred = iris.target_names[probabilities.argmax(axis=1)] assert_greater(np.mean(pred == target), .95) def test_multinomial_validation(): for solver in ['lbfgs', 'newton-cg']: lr = LogisticRegression(C=-1, solver=solver, multi_class='multinomial') assert_raises(ValueError, lr.fit, [[0, 1], [1, 0]], [0, 1]) def test_check_solver_option(): X, y = iris.data, iris.target for LR in [LogisticRegression, LogisticRegressionCV]: msg = ("Logistic Regression supports only liblinear, newton-cg, lbfgs" " and sag solvers, got wrong_name") lr = LR(solver="wrong_name") assert_raise_message(ValueError, msg, lr.fit, X, y) msg = "multi_class should be either multinomial or ovr, got wrong_name" lr = LR(solver='newton-cg', multi_class="wrong_name") assert_raise_message(ValueError, msg, lr.fit, X, y) # all solver except 'newton-cg' and 'lfbgs' for solver in ['liblinear', 'sag']: msg = ("Solver %s does not support a multinomial backend." % solver) lr = LR(solver=solver, multi_class='multinomial') assert_raise_message(ValueError, msg, lr.fit, X, y) # all solvers except 'liblinear' for solver in ['newton-cg', 'lbfgs', 'sag']: msg = ("Solver %s supports only l2 penalties, got l1 penalty." % solver) lr = LR(solver=solver, penalty='l1') assert_raise_message(ValueError, msg, lr.fit, X, y) msg = ("Solver %s supports only dual=False, got dual=True" % solver) lr = LR(solver=solver, dual=True) assert_raise_message(ValueError, msg, lr.fit, X, y) def test_multinomial_binary(): # Test multinomial LR on a binary problem. target = (iris.target > 0).astype(np.intp) target = np.array(["setosa", "not-setosa"])[target] for solver in ['lbfgs', 'newton-cg']: clf = LogisticRegression(solver=solver, multi_class='multinomial') clf.fit(iris.data, target) assert_equal(clf.coef_.shape, (1, iris.data.shape[1])) assert_equal(clf.intercept_.shape, (1,)) assert_array_equal(clf.predict(iris.data), target) mlr = LogisticRegression(solver=solver, multi_class='multinomial', fit_intercept=False) mlr.fit(iris.data, target) pred = clf.classes_[np.argmax(clf.predict_log_proba(iris.data), axis=1)] assert_greater(np.mean(pred == target), .9) def test_sparsify(): # Test sparsify and densify members. n_samples, n_features = iris.data.shape target = iris.target_names[iris.target] clf = LogisticRegression(random_state=0).fit(iris.data, target) pred_d_d = clf.decision_function(iris.data) clf.sparsify() assert_true(sp.issparse(clf.coef_)) pred_s_d = clf.decision_function(iris.data) sp_data = sp.coo_matrix(iris.data) pred_s_s = clf.decision_function(sp_data) clf.densify() pred_d_s = clf.decision_function(sp_data) assert_array_almost_equal(pred_d_d, pred_s_d) assert_array_almost_equal(pred_d_d, pred_s_s) assert_array_almost_equal(pred_d_d, pred_d_s) def test_inconsistent_input(): # Test that an exception is raised on inconsistent input rng = np.random.RandomState(0) X_ = rng.random_sample((5, 10)) y_ = np.ones(X_.shape[0]) y_[0] = 0 clf = LogisticRegression(random_state=0) # Wrong dimensions for training data y_wrong = y_[:-1] assert_raises(ValueError, clf.fit, X, y_wrong) # Wrong dimensions for test data assert_raises(ValueError, clf.fit(X_, y_).predict, rng.random_sample((3, 12))) def test_write_parameters(): # Test that we can write to coef_ and intercept_ clf = LogisticRegression(random_state=0) clf.fit(X, Y1) clf.coef_[:] = 0 clf.intercept_[:] = 0 assert_array_almost_equal(clf.decision_function(X), 0) @raises(ValueError) def test_nan(): # Test proper NaN handling. # Regression test for Issue #252: fit used to go into an infinite loop. Xnan = np.array(X, dtype=np.float64) Xnan[0, 1] = np.nan LogisticRegression(random_state=0).fit(Xnan, Y1) def test_consistency_path(): # Test that the path algorithm is consistent rng = np.random.RandomState(0) X = np.concatenate((rng.randn(100, 2) + [1, 1], rng.randn(100, 2))) y = [1] * 100 + [-1] * 100 Cs = np.logspace(0, 4, 10) f = ignore_warnings # can't test with fit_intercept=True since LIBLINEAR # penalizes the intercept for solver in ('lbfgs', 'newton-cg', 'liblinear', 'sag'): coefs, Cs, _ = f(logistic_regression_path)( X, y, Cs=Cs, fit_intercept=False, tol=1e-5, solver=solver, random_state=0) for i, C in enumerate(Cs): lr = LogisticRegression(C=C, fit_intercept=False, tol=1e-5, random_state=0) lr.fit(X, y) lr_coef = lr.coef_.ravel() assert_array_almost_equal(lr_coef, coefs[i], decimal=4, err_msg="with solver = %s" % solver) # test for fit_intercept=True for solver in ('lbfgs', 'newton-cg', 'liblinear', 'sag'): Cs = [1e3] coefs, Cs, _ = f(logistic_regression_path)( X, y, Cs=Cs, fit_intercept=True, tol=1e-6, solver=solver, intercept_scaling=10000., random_state=0) lr = LogisticRegression(C=Cs[0], fit_intercept=True, tol=1e-4, intercept_scaling=10000., random_state=0) lr.fit(X, y) lr_coef = np.concatenate([lr.coef_.ravel(), lr.intercept_]) assert_array_almost_equal(lr_coef, coefs[0], decimal=4, err_msg="with solver = %s" % solver) def test_liblinear_dual_random_state(): # random_state is relevant for liblinear solver only if dual=True X, y = make_classification(n_samples=20) lr1 = LogisticRegression(random_state=0, dual=True, max_iter=1, tol=1e-15) lr1.fit(X, y) lr2 = LogisticRegression(random_state=0, dual=True, max_iter=1, tol=1e-15) lr2.fit(X, y) lr3 = LogisticRegression(random_state=8, dual=True, max_iter=1, tol=1e-15) lr3.fit(X, y) # same result for same random state assert_array_almost_equal(lr1.coef_, lr2.coef_) # different results for different random states msg = "Arrays are not almost equal to 6 decimals" assert_raise_message(AssertionError, msg, assert_array_almost_equal, lr1.coef_, lr3.coef_) def test_logistic_loss_and_grad(): X_ref, y = make_classification(n_samples=20) n_features = X_ref.shape[1] X_sp = X_ref.copy() X_sp[X_sp < .1] = 0 X_sp = sp.csr_matrix(X_sp) for X in (X_ref, X_sp): w = np.zeros(n_features) # First check that our derivation of the grad is correct loss, grad = _logistic_loss_and_grad(w, X, y, alpha=1.) approx_grad = optimize.approx_fprime( w, lambda w: _logistic_loss_and_grad(w, X, y, alpha=1.)[0], 1e-3 ) assert_array_almost_equal(grad, approx_grad, decimal=2) # Second check that our intercept implementation is good w = np.zeros(n_features + 1) loss_interp, grad_interp = _logistic_loss_and_grad( w, X, y, alpha=1. ) assert_array_almost_equal(loss, loss_interp) approx_grad = optimize.approx_fprime( w, lambda w: _logistic_loss_and_grad(w, X, y, alpha=1.)[0], 1e-3 ) assert_array_almost_equal(grad_interp, approx_grad, decimal=2) def test_logistic_grad_hess(): rng = np.random.RandomState(0) n_samples, n_features = 50, 5 X_ref = rng.randn(n_samples, n_features) y = np.sign(X_ref.dot(5 * rng.randn(n_features))) X_ref -= X_ref.mean() X_ref /= X_ref.std() X_sp = X_ref.copy() X_sp[X_sp < .1] = 0 X_sp = sp.csr_matrix(X_sp) for X in (X_ref, X_sp): w = .1 * np.ones(n_features) # First check that _logistic_grad_hess is consistent # with _logistic_loss_and_grad loss, grad = _logistic_loss_and_grad(w, X, y, alpha=1.) grad_2, hess = _logistic_grad_hess(w, X, y, alpha=1.) assert_array_almost_equal(grad, grad_2) # Now check our hessian along the second direction of the grad vector = np.zeros_like(grad) vector[1] = 1 hess_col = hess(vector) # Computation of the Hessian is particularly fragile to numerical # errors when doing simple finite differences. Here we compute the # grad along a path in the direction of the vector and then use a # least-square regression to estimate the slope e = 1e-3 d_x = np.linspace(-e, e, 30) d_grad = np.array([ _logistic_loss_and_grad(w + t * vector, X, y, alpha=1.)[1] for t in d_x ]) d_grad -= d_grad.mean(axis=0) approx_hess_col = linalg.lstsq(d_x[:, np.newaxis], d_grad)[0].ravel() assert_array_almost_equal(approx_hess_col, hess_col, decimal=3) # Second check that our intercept implementation is good w = np.zeros(n_features + 1) loss_interp, grad_interp = _logistic_loss_and_grad(w, X, y, alpha=1.) loss_interp_2 = _logistic_loss(w, X, y, alpha=1.) grad_interp_2, hess = _logistic_grad_hess(w, X, y, alpha=1.) assert_array_almost_equal(loss_interp, loss_interp_2) assert_array_almost_equal(grad_interp, grad_interp_2) def test_logistic_cv(): # test for LogisticRegressionCV object n_samples, n_features = 50, 5 rng = np.random.RandomState(0) X_ref = rng.randn(n_samples, n_features) y = np.sign(X_ref.dot(5 * rng.randn(n_features))) X_ref -= X_ref.mean() X_ref /= X_ref.std() lr_cv = LogisticRegressionCV(Cs=[1.], fit_intercept=False, solver='liblinear') lr_cv.fit(X_ref, y) lr = LogisticRegression(C=1., fit_intercept=False) lr.fit(X_ref, y) assert_array_almost_equal(lr.coef_, lr_cv.coef_) assert_array_equal(lr_cv.coef_.shape, (1, n_features)) assert_array_equal(lr_cv.classes_, [-1, 1]) assert_equal(len(lr_cv.classes_), 2) coefs_paths = np.asarray(list(lr_cv.coefs_paths_.values())) assert_array_equal(coefs_paths.shape, (1, 3, 1, n_features)) assert_array_equal(lr_cv.Cs_.shape, (1, )) scores = np.asarray(list(lr_cv.scores_.values())) assert_array_equal(scores.shape, (1, 3, 1)) def test_logistic_cv_sparse(): X, y = make_classification(n_samples=50, n_features=5, random_state=0) X[X < 1.0] = 0.0 csr = sp.csr_matrix(X) clf = LogisticRegressionCV(fit_intercept=True) clf.fit(X, y) clfs = LogisticRegressionCV(fit_intercept=True) clfs.fit(csr, y) assert_array_almost_equal(clfs.coef_, clf.coef_) assert_array_almost_equal(clfs.intercept_, clf.intercept_) assert_equal(clfs.C_, clf.C_) def test_intercept_logistic_helper(): n_samples, n_features = 10, 5 X, y = make_classification(n_samples=n_samples, n_features=n_features, random_state=0) # Fit intercept case. alpha = 1. w = np.ones(n_features + 1) grad_interp, hess_interp = _logistic_grad_hess(w, X, y, alpha) loss_interp = _logistic_loss(w, X, y, alpha) # Do not fit intercept. This can be considered equivalent to adding # a feature vector of ones, i.e column of one vectors. X_ = np.hstack((X, np.ones(10)[:, np.newaxis])) grad, hess = _logistic_grad_hess(w, X_, y, alpha) loss = _logistic_loss(w, X_, y, alpha) # In the fit_intercept=False case, the feature vector of ones is # penalized. This should be taken care of. assert_almost_equal(loss_interp + 0.5 * (w[-1] ** 2), loss) # Check gradient. assert_array_almost_equal(grad_interp[:n_features], grad[:n_features]) assert_almost_equal(grad_interp[-1] + alpha * w[-1], grad[-1]) rng = np.random.RandomState(0) grad = rng.rand(n_features + 1) hess_interp = hess_interp(grad) hess = hess(grad) assert_array_almost_equal(hess_interp[:n_features], hess[:n_features]) assert_almost_equal(hess_interp[-1] + alpha * grad[-1], hess[-1]) def test_ovr_multinomial_iris(): # Test that OvR and multinomial are correct using the iris dataset. train, target = iris.data, iris.target n_samples, n_features = train.shape # The cv indices from stratified kfold (where stratification is done based # on the fine-grained iris classes, i.e, before the classes 0 and 1 are # conflated) is used for both clf and clf1 cv = StratifiedKFold(3) precomputed_folds = list(cv.split(train, target)) # Train clf on the original dataset where classes 0 and 1 are separated clf = LogisticRegressionCV(cv=precomputed_folds) clf.fit(train, target) # Conflate classes 0 and 1 and train clf1 on this modifed dataset clf1 = LogisticRegressionCV(cv=precomputed_folds) target_copy = target.copy() target_copy[target_copy == 0] = 1 clf1.fit(train, target_copy) # Ensure that what OvR learns for class2 is same regardless of whether # classes 0 and 1 are separated or not assert_array_almost_equal(clf.scores_[2], clf1.scores_[2]) assert_array_almost_equal(clf.intercept_[2:], clf1.intercept_) assert_array_almost_equal(clf.coef_[2][np.newaxis, :], clf1.coef_) # Test the shape of various attributes. assert_equal(clf.coef_.shape, (3, n_features)) assert_array_equal(clf.classes_, [0, 1, 2]) coefs_paths = np.asarray(list(clf.coefs_paths_.values())) assert_array_almost_equal(coefs_paths.shape, (3, 3, 10, n_features + 1)) assert_equal(clf.Cs_.shape, (10, )) scores = np.asarray(list(clf.scores_.values())) assert_equal(scores.shape, (3, 3, 10)) # Test that for the iris data multinomial gives a better accuracy than OvR for solver in ['lbfgs', 'newton-cg']: clf_multi = LogisticRegressionCV( solver=solver, multi_class='multinomial', max_iter=15 ) clf_multi.fit(train, target) multi_score = clf_multi.score(train, target) ovr_score = clf.score(train, target) assert_greater(multi_score, ovr_score) # Test attributes of LogisticRegressionCV assert_equal(clf.coef_.shape, clf_multi.coef_.shape) assert_array_equal(clf_multi.classes_, [0, 1, 2]) coefs_paths = np.asarray(list(clf_multi.coefs_paths_.values())) assert_array_almost_equal(coefs_paths.shape, (3, 3, 10, n_features + 1)) assert_equal(clf_multi.Cs_.shape, (10, )) scores = np.asarray(list(clf_multi.scores_.values())) assert_equal(scores.shape, (3, 3, 10)) def test_logistic_regression_solvers(): X, y = make_classification(n_features=10, n_informative=5, random_state=0) ncg = LogisticRegression(solver='newton-cg', fit_intercept=False) lbf = LogisticRegression(solver='lbfgs', fit_intercept=False) lib = LogisticRegression(fit_intercept=False) sag = LogisticRegression(solver='sag', fit_intercept=False, random_state=42) ncg.fit(X, y) lbf.fit(X, y) sag.fit(X, y) lib.fit(X, y) assert_array_almost_equal(ncg.coef_, lib.coef_, decimal=3) assert_array_almost_equal(lib.coef_, lbf.coef_, decimal=3) assert_array_almost_equal(ncg.coef_, lbf.coef_, decimal=3) assert_array_almost_equal(sag.coef_, lib.coef_, decimal=3) assert_array_almost_equal(sag.coef_, ncg.coef_, decimal=3) assert_array_almost_equal(sag.coef_, lbf.coef_, decimal=3) def test_logistic_regression_solvers_multiclass(): X, y = make_classification(n_samples=20, n_features=20, n_informative=10, n_classes=3, random_state=0) tol = 1e-6 ncg = LogisticRegression(solver='newton-cg', fit_intercept=False, tol=tol) lbf = LogisticRegression(solver='lbfgs', fit_intercept=False, tol=tol) lib = LogisticRegression(fit_intercept=False, tol=tol) sag = LogisticRegression(solver='sag', fit_intercept=False, tol=tol, max_iter=1000, random_state=42) ncg.fit(X, y) lbf.fit(X, y) sag.fit(X, y) lib.fit(X, y) assert_array_almost_equal(ncg.coef_, lib.coef_, decimal=4) assert_array_almost_equal(lib.coef_, lbf.coef_, decimal=4) assert_array_almost_equal(ncg.coef_, lbf.coef_, decimal=4) assert_array_almost_equal(sag.coef_, lib.coef_, decimal=4) assert_array_almost_equal(sag.coef_, ncg.coef_, decimal=4) assert_array_almost_equal(sag.coef_, lbf.coef_, decimal=4) def test_logistic_regressioncv_class_weights(): X, y = make_classification(n_samples=20, n_features=20, n_informative=10, n_classes=3, random_state=0) msg = ("In LogisticRegressionCV the liblinear solver cannot handle " "multiclass with class_weight of type dict. Use the lbfgs, " "newton-cg or sag solvers or set class_weight='balanced'") clf_lib = LogisticRegressionCV(class_weight={0: 0.1, 1: 0.2}, solver='liblinear') assert_raise_message(ValueError, msg, clf_lib.fit, X, y) y_ = y.copy() y_[y == 2] = 1 clf_lib.fit(X, y_) assert_array_equal(clf_lib.classes_, [0, 1]) # Test for class_weight=balanced X, y = make_classification(n_samples=20, n_features=20, n_informative=10, random_state=0) clf_lbf = LogisticRegressionCV(solver='lbfgs', fit_intercept=False, class_weight='balanced') clf_lbf.fit(X, y) clf_lib = LogisticRegressionCV(solver='liblinear', fit_intercept=False, class_weight='balanced') clf_lib.fit(X, y) clf_sag = LogisticRegressionCV(solver='sag', fit_intercept=False, class_weight='balanced', max_iter=2000) clf_sag.fit(X, y) assert_array_almost_equal(clf_lib.coef_, clf_lbf.coef_, decimal=4) assert_array_almost_equal(clf_sag.coef_, clf_lbf.coef_, decimal=4) assert_array_almost_equal(clf_lib.coef_, clf_sag.coef_, decimal=4) def test_logistic_regression_sample_weights(): X, y = make_classification(n_samples=20, n_features=5, n_informative=3, n_classes=2, random_state=0) sample_weight = np.ones(y.shape[0]) sample_weight[y == 1] = 2 for LR in [LogisticRegression, LogisticRegressionCV]: # Test that passing sample_weight as ones is the same as # not passing them at all (default None) for solver in ['lbfgs', 'liblinear']: clf_sw_none = LR(solver=solver, fit_intercept=False) clf_sw_none.fit(X, y) clf_sw_ones = LR(solver=solver, fit_intercept=False) clf_sw_ones.fit(X, y, sample_weight=np.ones(y.shape[0])) assert_array_almost_equal( clf_sw_none.coef_, clf_sw_ones.coef_, decimal=4) # Test that sample weights work the same with the lbfgs, # newton-cg, and 'sag' solvers clf_sw_lbfgs = LR(solver='lbfgs', fit_intercept=False) clf_sw_lbfgs.fit(X, y, sample_weight=y + 1) clf_sw_n = LR(solver='newton-cg', fit_intercept=False) clf_sw_n.fit(X, y, sample_weight=y + 1) clf_sw_sag = LR(solver='sag', fit_intercept=False, max_iter=2000, tol=1e-7) clf_sw_sag.fit(X, y, sample_weight=y + 1) clf_sw_liblinear = LR(solver='liblinear', fit_intercept=False, max_iter=50, tol=1e-7) clf_sw_liblinear.fit(X, y, sample_weight=y + 1) assert_array_almost_equal( clf_sw_lbfgs.coef_, clf_sw_n.coef_, decimal=4) assert_array_almost_equal( clf_sw_lbfgs.coef_, clf_sw_sag.coef_, decimal=4) assert_array_almost_equal( clf_sw_lbfgs.coef_, clf_sw_liblinear.coef_, decimal=4) # Test that passing class_weight as [1,2] is the same as # passing class weight = [1,1] but adjusting sample weights # to be 2 for all instances of class 2 for solver in ['lbfgs', 'liblinear']: clf_cw_12 = LR(solver=solver, fit_intercept=False, class_weight={0: 1, 1: 2}) clf_cw_12.fit(X, y) clf_sw_12 = LR(solver=solver, fit_intercept=False) clf_sw_12.fit(X, y, sample_weight=sample_weight) assert_array_almost_equal( clf_cw_12.coef_, clf_sw_12.coef_, decimal=4) # Test the above for l1 penalty and l2 penalty with dual=True. # since the patched liblinear code is different. clf_cw = LogisticRegression( solver="liblinear", fit_intercept=False, class_weight={0: 1, 1: 2}, penalty="l1") clf_cw.fit(X, y) clf_sw = LogisticRegression( solver="liblinear", fit_intercept=False, penalty="l1") clf_sw.fit(X, y, sample_weight) assert_array_almost_equal(clf_cw.coef_, clf_sw.coef_, decimal=4) clf_cw = LogisticRegression( solver="liblinear", fit_intercept=False, class_weight={0: 1, 1: 2}, penalty="l2", dual=True) clf_cw.fit(X, y) clf_sw = LogisticRegression( solver="liblinear", fit_intercept=False, penalty="l2", dual=True) clf_sw.fit(X, y, sample_weight) assert_array_almost_equal(clf_cw.coef_, clf_sw.coef_, decimal=4) def _compute_class_weight_dictionary(y): # helper for returning a dictionary instead of an array classes = np.unique(y) class_weight = compute_class_weight("balanced", classes, y) class_weight_dict = dict(zip(classes, class_weight)) return class_weight_dict def test_logistic_regression_class_weights(): # Multinomial case: remove 90% of class 0 X = iris.data[45:, :] y = iris.target[45:] solvers = ("lbfgs", "newton-cg") class_weight_dict = _compute_class_weight_dictionary(y) for solver in solvers: clf1 = LogisticRegression(solver=solver, multi_class="multinomial", class_weight="balanced") clf2 = LogisticRegression(solver=solver, multi_class="multinomial", class_weight=class_weight_dict) clf1.fit(X, y) clf2.fit(X, y) assert_array_almost_equal(clf1.coef_, clf2.coef_, decimal=6) # Binary case: remove 90% of class 0 and 100% of class 2 X = iris.data[45:100, :] y = iris.target[45:100] solvers = ("lbfgs", "newton-cg", "liblinear") class_weight_dict = _compute_class_weight_dictionary(y) for solver in solvers: clf1 = LogisticRegression(solver=solver, multi_class="ovr", class_weight="balanced") clf2 = LogisticRegression(solver=solver, multi_class="ovr", class_weight=class_weight_dict) clf1.fit(X, y) clf2.fit(X, y) assert_array_almost_equal(clf1.coef_, clf2.coef_, decimal=6) def test_multinomial_logistic_regression_with_classweight_auto(): X, y = iris.data, iris.target model = LogisticRegression(multi_class='multinomial', class_weight='auto', solver='lbfgs') # 'auto' is deprecated and will be removed in 0.19 assert_warns_message(DeprecationWarning, "class_weight='auto' heuristic is deprecated", model.fit, X, y) def test_logistic_regression_convergence_warnings(): # Test that warnings are raised if model does not converge X, y = make_classification(n_samples=20, n_features=20) clf_lib = LogisticRegression(solver='liblinear', max_iter=2, verbose=1) assert_warns(ConvergenceWarning, clf_lib.fit, X, y) assert_equal(clf_lib.n_iter_, 2) def test_logistic_regression_multinomial(): # Tests for the multinomial option in logistic regression # Some basic attributes of Logistic Regression n_samples, n_features, n_classes = 50, 20, 3 X, y = make_classification(n_samples=n_samples, n_features=n_features, n_informative=10, n_classes=n_classes, random_state=0) clf_int = LogisticRegression(solver='lbfgs', multi_class='multinomial') clf_int.fit(X, y) assert_array_equal(clf_int.coef_.shape, (n_classes, n_features)) clf_wint = LogisticRegression(solver='lbfgs', multi_class='multinomial', fit_intercept=False) clf_wint.fit(X, y) assert_array_equal(clf_wint.coef_.shape, (n_classes, n_features)) # Similar tests for newton-cg solver option clf_ncg_int = LogisticRegression(solver='newton-cg', multi_class='multinomial') clf_ncg_int.fit(X, y) assert_array_equal(clf_ncg_int.coef_.shape, (n_classes, n_features)) clf_ncg_wint = LogisticRegression(solver='newton-cg', fit_intercept=False, multi_class='multinomial') clf_ncg_wint.fit(X, y) assert_array_equal(clf_ncg_wint.coef_.shape, (n_classes, n_features)) # Compare solutions between lbfgs and newton-cg assert_almost_equal(clf_int.coef_, clf_ncg_int.coef_, decimal=3) assert_almost_equal(clf_wint.coef_, clf_ncg_wint.coef_, decimal=3) assert_almost_equal(clf_int.intercept_, clf_ncg_int.intercept_, decimal=3) # Test that the path give almost the same results. However since in this # case we take the average of the coefs after fitting across all the # folds, it need not be exactly the same. for solver in ['lbfgs', 'newton-cg']: clf_path = LogisticRegressionCV(solver=solver, multi_class='multinomial', Cs=[1.]) clf_path.fit(X, y) assert_array_almost_equal(clf_path.coef_, clf_int.coef_, decimal=3) assert_almost_equal(clf_path.intercept_, clf_int.intercept_, decimal=3) def test_multinomial_grad_hess(): rng = np.random.RandomState(0) n_samples, n_features, n_classes = 100, 5, 3 X = rng.randn(n_samples, n_features) w = rng.rand(n_classes, n_features) Y = np.zeros((n_samples, n_classes)) ind = np.argmax(np.dot(X, w.T), axis=1) Y[range(0, n_samples), ind] = 1 w = w.ravel() sample_weights = np.ones(X.shape[0]) grad, hessp = _multinomial_grad_hess(w, X, Y, alpha=1., sample_weight=sample_weights) # extract first column of hessian matrix vec = np.zeros(n_features * n_classes) vec[0] = 1 hess_col = hessp(vec) # Estimate hessian using least squares as done in # test_logistic_grad_hess e = 1e-3 d_x = np.linspace(-e, e, 30) d_grad = np.array([ _multinomial_grad_hess(w + t * vec, X, Y, alpha=1., sample_weight=sample_weights)[0] for t in d_x ]) d_grad -= d_grad.mean(axis=0) approx_hess_col = linalg.lstsq(d_x[:, np.newaxis], d_grad)[0].ravel() assert_array_almost_equal(hess_col, approx_hess_col) def test_liblinear_decision_function_zero(): # Test negative prediction when decision_function values are zero. # Liblinear predicts the positive class when decision_function values # are zero. This is a test to verify that we do not do the same. # See Issue: https://github.com/scikit-learn/scikit-learn/issues/3600 # and the PR https://github.com/scikit-learn/scikit-learn/pull/3623 X, y = make_classification(n_samples=5, n_features=5) clf = LogisticRegression(fit_intercept=False) clf.fit(X, y) # Dummy data such that the decision function becomes zero. X = np.zeros((5, 5)) assert_array_equal(clf.predict(X), np.zeros(5)) def test_liblinear_logregcv_sparse(): # Test LogRegCV with solver='liblinear' works for sparse matrices X, y = make_classification(n_samples=10, n_features=5) clf = LogisticRegressionCV(solver='liblinear') clf.fit(sparse.csr_matrix(X), y) def test_logreg_intercept_scaling(): # Test that the right error message is thrown when intercept_scaling <= 0 for i in [-1, 0]: clf = LogisticRegression(intercept_scaling=i) msg = ('Intercept scaling is %r but needs to be greater than 0.' ' To disable fitting an intercept,' ' set fit_intercept=False.' % clf.intercept_scaling) assert_raise_message(ValueError, msg, clf.fit, X, Y1) def test_logreg_intercept_scaling_zero(): # Test that intercept_scaling is ignored when fit_intercept is False clf = LogisticRegression(fit_intercept=False) clf.fit(X, Y1) assert_equal(clf.intercept_, 0.) def test_logreg_cv_penalty(): # Test that the correct penalty is passed to the final fit. X, y = make_classification(n_samples=50, n_features=20, random_state=0) lr_cv = LogisticRegressionCV(penalty="l1", Cs=[1.0], solver='liblinear') lr_cv.fit(X, y) lr = LogisticRegression(penalty="l1", C=1.0, solver='liblinear') lr.fit(X, y) assert_equal(np.count_nonzero(lr_cv.coef_), np.count_nonzero(lr.coef_)) def test_logreg_predict_proba_multinomial(): X, y = make_classification(n_samples=10, n_features=20, random_state=0, n_classes=3, n_informative=10) # Predicted probabilites using the true-entropy loss should give a # smaller loss than those using the ovr method. clf_multi = LogisticRegression(multi_class="multinomial", solver="lbfgs") clf_multi.fit(X, y) clf_multi_loss = log_loss(y, clf_multi.predict_proba(X)) clf_ovr = LogisticRegression(multi_class="ovr", solver="lbfgs") clf_ovr.fit(X, y) clf_ovr_loss = log_loss(y, clf_ovr.predict_proba(X)) assert_greater(clf_ovr_loss, clf_multi_loss) # Predicted probabilites using the soft-max function should give a # smaller loss than those using the logistic function. clf_multi_loss = log_loss(y, clf_multi.predict_proba(X)) clf_wrong_loss = log_loss(y, clf_multi._predict_proba_lr(X)) assert_greater(clf_wrong_loss, clf_multi_loss) @ignore_warnings def test_max_iter(): # Test that the maximum number of iteration is reached X, y_bin = iris.data, iris.target.copy() y_bin[y_bin == 2] = 0 solvers = ['newton-cg', 'liblinear', 'sag'] # old scipy doesn't have maxiter if sp_version >= (0, 12): solvers.append('lbfgs') for max_iter in range(1, 5): for solver in solvers: lr = LogisticRegression(max_iter=max_iter, tol=1e-15, random_state=0, solver=solver) lr.fit(X, y_bin) assert_equal(lr.n_iter_[0], max_iter) def test_n_iter(): # Test that self.n_iter_ has the correct format. X, y = iris.data, iris.target y_bin = y.copy() y_bin[y_bin == 2] = 0 n_Cs = 4 n_cv_fold = 2 for solver in ['newton-cg', 'liblinear', 'sag', 'lbfgs']: # OvR case n_classes = 1 if solver == 'liblinear' else np.unique(y).shape[0] clf = LogisticRegression(tol=1e-2, multi_class='ovr', solver=solver, C=1., random_state=42, max_iter=100) clf.fit(X, y) assert_equal(clf.n_iter_.shape, (n_classes,)) n_classes = np.unique(y).shape[0] clf = LogisticRegressionCV(tol=1e-2, multi_class='ovr', solver=solver, Cs=n_Cs, cv=n_cv_fold, random_state=42, max_iter=100) clf.fit(X, y) assert_equal(clf.n_iter_.shape, (n_classes, n_cv_fold, n_Cs)) clf.fit(X, y_bin) assert_equal(clf.n_iter_.shape, (1, n_cv_fold, n_Cs)) # multinomial case n_classes = 1 if solver in ('liblinear', 'sag'): break clf = LogisticRegression(tol=1e-2, multi_class='multinomial', solver=solver, C=1., random_state=42, max_iter=100) clf.fit(X, y) assert_equal(clf.n_iter_.shape, (n_classes,)) clf = LogisticRegressionCV(tol=1e-2, multi_class='multinomial', solver=solver, Cs=n_Cs, cv=n_cv_fold, random_state=42, max_iter=100) clf.fit(X, y) assert_equal(clf.n_iter_.shape, (n_classes, n_cv_fold, n_Cs)) clf.fit(X, y_bin) assert_equal(clf.n_iter_.shape, (1, n_cv_fold, n_Cs)) @ignore_warnings def test_warm_start(): # A 1-iteration second fit on same data should give almost same result # with warm starting, and quite different result without warm starting. # Warm starting does not work with liblinear solver. X, y = iris.data, iris.target solvers = ['newton-cg', 'sag'] # old scipy doesn't have maxiter if sp_version >= (0, 12): solvers.append('lbfgs') for warm_start in [True, False]: for fit_intercept in [True, False]: for solver in solvers: for multi_class in ['ovr', 'multinomial']: if solver == 'sag' and multi_class == 'multinomial': break clf = LogisticRegression(tol=1e-4, multi_class=multi_class, warm_start=warm_start, solver=solver, random_state=42, max_iter=100, fit_intercept=fit_intercept) clf.fit(X, y) coef_1 = clf.coef_ clf.max_iter = 1 with ignore_warnings(): clf.fit(X, y) cum_diff = np.sum(np.abs(coef_1 - clf.coef_)) msg = ("Warm starting issue with %s solver in %s mode " "with fit_intercept=%s and warm_start=%s" % (solver, multi_class, str(fit_intercept), str(warm_start))) if warm_start: assert_greater(2.0, cum_diff, msg) else: assert_greater(cum_diff, 2.0, msg)
jmschrei/scikit-learn
sklearn/linear_model/tests/test_logistic.py
Python
bsd-3-clause
39,145
""" Flask-CouchDBKit ---------------- Flask extension that provides integration with CouchDBKit. Links ````` * `documentation <http://packages.python.org/Flask-CouchDBKit>`_ * `development version <http://github.com/sirn/flask-couchdbkit/zipball/master#egg=Flask-CouchDBKit-dev>`_ """ from setuptools import setup def run_tests(): import os, sys sys.path.append(os.path.join(os.path.dirname(__file__), 'tests')) from test_couchdbkit import suite return suite() setup( name='Flask-CouchDBKit', version='0.3.5', url='http://code.grid.in.th/', license='BSD', author='Kridsada Thanabulpong', author_email='sirn@ogsite.net', description='Flask extension that provides integration with CouchDBKit.', long_description=__doc__, py_modules=['flask_couchdbkit'], zip_safe=False, platforms='any', install_requires=[ 'Flask', 'restkit>=3.0.2', 'CouchDBKit', ], classifiers=[ 'Development Status :: 4 - Beta', 'Environment :: Web Environment', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content', 'Topic :: Software Development :: Libraries :: Python Modules' ], test_suite='__main__.run_tests' )
sirn/flask-couchdbkit
setup.py
Python
bsd-3-clause
1,410
""" Test functions for stats module WRITTEN BY LOUIS LUANGKESORN <lluang@yahoo.com> FOR THE STATS MODULE BASED ON WILKINSON'S STATISTICS QUIZ http://www.stanford.edu/~clint/bench/wilk.txt Additional tests by a host of SciPy developers. """ from __future__ import division, print_function, absolute_import import sys import warnings from collections import namedtuple from numpy.testing import (TestCase, assert_, assert_equal, assert_almost_equal, assert_array_almost_equal, assert_array_equal, assert_approx_equal, assert_raises, run_module_suite, assert_allclose, dec) import numpy.ma.testutils as mat from numpy import array, arange, float32, float64, power import numpy as np import scipy.stats as stats """ Numbers in docstrings beginning with 'W' refer to the section numbers and headings found in the STATISTICS QUIZ of Leland Wilkinson. These are considered to be essential functionality. True testing and evaluation of a statistics package requires use of the NIST Statistical test data. See McCoullough(1999) Assessing The Reliability of Statistical Software for a test methodology and its implementation in testing SAS, SPSS, and S-Plus """ # Datasets # These data sets are from the nasty.dat sets used by Wilkinson # For completeness, I should write the relevant tests and count them as failures # Somewhat acceptable, since this is still beta software. It would count as a # good target for 1.0 status X = array([1,2,3,4,5,6,7,8,9], float) ZERO = array([0,0,0,0,0,0,0,0,0], float) BIG = array([99999991,99999992,99999993,99999994,99999995,99999996,99999997, 99999998,99999999], float) LITTLE = array([0.99999991,0.99999992,0.99999993,0.99999994,0.99999995,0.99999996, 0.99999997,0.99999998,0.99999999], float) HUGE = array([1e+12,2e+12,3e+12,4e+12,5e+12,6e+12,7e+12,8e+12,9e+12], float) TINY = array([1e-12,2e-12,3e-12,4e-12,5e-12,6e-12,7e-12,8e-12,9e-12], float) ROUND = array([0.5,1.5,2.5,3.5,4.5,5.5,6.5,7.5,8.5], float) class TestTrimmedStats(TestCase): # TODO: write these tests to handle missing values properly dprec = np.finfo(np.float64).precision def test_tmean(self): y = stats.tmean(X, (2, 8), (True, True)) assert_approx_equal(y, 5.0, significant=self.dprec) y1 = stats.tmean(X, limits=(2, 8), inclusive=(False, False)) y2 = stats.tmean(X, limits=None) assert_approx_equal(y1, y2, significant=self.dprec) def test_tvar(self): y = stats.tvar(X, limits=(2, 8), inclusive=(True, True)) assert_approx_equal(y, 4.6666666666666661, significant=self.dprec) y = stats.tvar(X, limits=None) assert_approx_equal(y, X.var(ddof=1), significant=self.dprec) def test_tstd(self): y = stats.tstd(X, (2, 8), (True, True)) assert_approx_equal(y, 2.1602468994692865, significant=self.dprec) y = stats.tstd(X, limits=None) assert_approx_equal(y, X.std(ddof=1), significant=self.dprec) def test_tmin(self): x = np.arange(10) assert_equal(stats.tmin(x), 0) assert_equal(stats.tmin(x, lowerlimit=0), 0) assert_equal(stats.tmin(x, lowerlimit=0, inclusive=False), 1) x = x.reshape((5, 2)) assert_equal(stats.tmin(x, lowerlimit=0, inclusive=False), [2, 1]) assert_equal(stats.tmin(x, axis=1), [0, 2, 4, 6, 8]) assert_equal(stats.tmin(x, axis=None), 0) def test_tmax(self): x = np.arange(10) assert_equal(stats.tmax(x), 9) assert_equal(stats.tmax(x, upperlimit=9),9) assert_equal(stats.tmax(x, upperlimit=9, inclusive=False), 8) x = x.reshape((5, 2)) assert_equal(stats.tmax(x, upperlimit=9, inclusive=False), [8, 7]) assert_equal(stats.tmax(x, axis=1), [1, 3, 5, 7, 9]) assert_equal(stats.tmax(x, axis=None), 9) def test_tsem(self): y = stats.tsem(X, limits=(3, 8), inclusive=(False, True)) y_ref = np.array([4, 5, 6, 7, 8]) assert_approx_equal(y, y_ref.std(ddof=1) / np.sqrt(y_ref.size), significant=self.dprec) assert_approx_equal(stats.tsem(X, limits=[-1, 10]), stats.tsem(X, limits=None), significant=self.dprec) class TestNanFunc(TestCase): def __init__(self, *args, **kw): TestCase.__init__(self, *args, **kw) self.X = X.copy() self.Xall = X.copy() self.Xall[:] = np.nan self.Xsome = X.copy() self.Xsomet = X.copy() self.Xsome[0] = np.nan self.Xsomet = self.Xsomet[1:] def test_nanmean_none(self): # Check nanmean when no values are nan. with warnings.catch_warnings(): warnings.simplefilter('ignore', DeprecationWarning) m = stats.nanmean(X) assert_approx_equal(m, X[4]) def test_nanmean_some(self): # Check nanmean when some values only are nan. with warnings.catch_warnings(): warnings.simplefilter('ignore', DeprecationWarning) m = stats.nanmean(self.Xsome) assert_approx_equal(m, 5.5) def test_nanmean_all(self): # Check nanmean when all values are nan. with warnings.catch_warnings(): warns = (DeprecationWarning, RuntimeWarning) warnings.simplefilter('ignore', warns) with np.errstate(invalid='ignore'): m = stats.nanmean(self.Xall) assert_(np.isnan(m)) def test_nanstd_none(self): # Check nanstd when no values are nan. with warnings.catch_warnings(): warnings.simplefilter('ignore', DeprecationWarning) s = stats.nanstd(self.X) assert_approx_equal(s, np.std(self.X, ddof=1)) def test_nanstd_some(self): # Check nanstd when some values only are nan. with warnings.catch_warnings(): warnings.simplefilter('ignore', DeprecationWarning) s = stats.nanstd(self.Xsome) assert_approx_equal(s, np.std(self.Xsomet, ddof=1)) def test_nanstd_all(self): # Check nanstd when all values are nan. with warnings.catch_warnings(): warns = (DeprecationWarning, RuntimeWarning) warnings.simplefilter('ignore', warns) with np.errstate(invalid='ignore'): s = stats.nanstd(self.Xall) assert_(np.isnan(s)) def test_nanstd_bias_kw(self): s = stats.nanstd(self.X, bias=True) assert_approx_equal(s, np.std(self.X, ddof=0)) def test_nanstd_negative_axis(self): x = np.array([1, 2, 3]) res = stats.nanstd(x, -1) assert_equal(res, 1) def test_nanmedian_none(self): # Check nanmedian when no values are nan. with warnings.catch_warnings(): warnings.simplefilter('ignore', DeprecationWarning) m = stats.nanmedian(self.X) assert_approx_equal(m, np.median(self.X)) def test_nanmedian_axis(self): # Check nanmedian with axis X = self.X.reshape(3,3) with warnings.catch_warnings(): warnings.simplefilter('ignore', DeprecationWarning) m = stats.nanmedian(X, axis=0) assert_equal(m, np.median(X, axis=0)) m = stats.nanmedian(X, axis=1) assert_equal(m, np.median(X, axis=1)) def test_nanmedian_some(self): # Check nanmedian when some values only are nan. with warnings.catch_warnings(): warnings.simplefilter('ignore', DeprecationWarning) m = stats.nanmedian(self.Xsome) assert_approx_equal(m, np.median(self.Xsomet)) def test_nanmedian_all(self): # Check nanmedian when all values are nan. with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') m = stats.nanmedian(self.Xall) assert_(np.isnan(m)) assert_equal(len(w), 2) # Deprecation & RuntimeWarning assert_(issubclass(w[1].category, RuntimeWarning)) def test_nanmedian_all_axis(self): # Check nanmedian when all values are nan. with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') m = stats.nanmedian(self.Xall.reshape(3,3), axis=1) assert_(np.isnan(m).all()) assert_equal(len(w), 4) assert_(issubclass(w[-1].category, RuntimeWarning)) def test_nanmedian_scalars(self): # Check nanmedian for scalar inputs. See ticket #1098. assert_equal(stats.nanmedian(1), np.median(1)) assert_equal(stats.nanmedian(True), np.median(True)) assert_equal(stats.nanmedian(np.array(1)), np.median(np.array(1))) assert_equal(stats.nanmedian(np.nan), np.median(np.nan)) class TestCorrPearsonr(TestCase): """ W.II.D. Compute a correlation matrix on all the variables. All the correlations, except for ZERO and MISS, shoud be exactly 1. ZERO and MISS should have undefined or missing correlations with the other variables. The same should go for SPEARMAN corelations, if your program has them. """ def test_pXX(self): y = stats.pearsonr(X,X) r = y[0] assert_approx_equal(r,1.0) def test_pXBIG(self): y = stats.pearsonr(X,BIG) r = y[0] assert_approx_equal(r,1.0) def test_pXLITTLE(self): y = stats.pearsonr(X,LITTLE) r = y[0] assert_approx_equal(r,1.0) def test_pXHUGE(self): y = stats.pearsonr(X,HUGE) r = y[0] assert_approx_equal(r,1.0) def test_pXTINY(self): y = stats.pearsonr(X,TINY) r = y[0] assert_approx_equal(r,1.0) def test_pXROUND(self): y = stats.pearsonr(X,ROUND) r = y[0] assert_approx_equal(r,1.0) def test_pBIGBIG(self): y = stats.pearsonr(BIG,BIG) r = y[0] assert_approx_equal(r,1.0) def test_pBIGLITTLE(self): y = stats.pearsonr(BIG,LITTLE) r = y[0] assert_approx_equal(r,1.0) def test_pBIGHUGE(self): y = stats.pearsonr(BIG,HUGE) r = y[0] assert_approx_equal(r,1.0) def test_pBIGTINY(self): y = stats.pearsonr(BIG,TINY) r = y[0] assert_approx_equal(r,1.0) def test_pBIGROUND(self): y = stats.pearsonr(BIG,ROUND) r = y[0] assert_approx_equal(r,1.0) def test_pLITTLELITTLE(self): y = stats.pearsonr(LITTLE,LITTLE) r = y[0] assert_approx_equal(r,1.0) def test_pLITTLEHUGE(self): y = stats.pearsonr(LITTLE,HUGE) r = y[0] assert_approx_equal(r,1.0) def test_pLITTLETINY(self): y = stats.pearsonr(LITTLE,TINY) r = y[0] assert_approx_equal(r,1.0) def test_pLITTLEROUND(self): y = stats.pearsonr(LITTLE,ROUND) r = y[0] assert_approx_equal(r,1.0) def test_pHUGEHUGE(self): y = stats.pearsonr(HUGE,HUGE) r = y[0] assert_approx_equal(r,1.0) def test_pHUGETINY(self): y = stats.pearsonr(HUGE,TINY) r = y[0] assert_approx_equal(r,1.0) def test_pHUGEROUND(self): y = stats.pearsonr(HUGE,ROUND) r = y[0] assert_approx_equal(r,1.0) def test_pTINYTINY(self): y = stats.pearsonr(TINY,TINY) r = y[0] assert_approx_equal(r,1.0) def test_pTINYROUND(self): y = stats.pearsonr(TINY,ROUND) r = y[0] assert_approx_equal(r,1.0) def test_pROUNDROUND(self): y = stats.pearsonr(ROUND,ROUND) r = y[0] assert_approx_equal(r,1.0) def test_r_exactly_pos1(self): a = arange(3.0) b = a r, prob = stats.pearsonr(a,b) assert_equal(r, 1.0) assert_equal(prob, 0.0) def test_r_exactly_neg1(self): a = arange(3.0) b = -a r, prob = stats.pearsonr(a,b) assert_equal(r, -1.0) assert_equal(prob, 0.0) def test_basic(self): # A basic test, with a correlation coefficient # that is not 1 or -1. a = array([-1, 0, 1]) b = array([0, 0, 3]) r, prob = stats.pearsonr(a, b) assert_approx_equal(r, np.sqrt(3)/2) assert_approx_equal(prob, 1.0/3) class TestFisherExact(TestCase): """Some tests to show that fisher_exact() works correctly. Note that in SciPy 0.9.0 this was not working well for large numbers due to inaccuracy of the hypergeom distribution (see #1218). Fixed now. Also note that R and Scipy have different argument formats for their hypergeometric distribution functions. R: > phyper(18999, 99000, 110000, 39000, lower.tail = FALSE) [1] 1.701815e-09 """ def test_basic(self): fisher_exact = stats.fisher_exact res = fisher_exact([[14500, 20000], [30000, 40000]])[1] assert_approx_equal(res, 0.01106, significant=4) res = fisher_exact([[100, 2], [1000, 5]])[1] assert_approx_equal(res, 0.1301, significant=4) res = fisher_exact([[2, 7], [8, 2]])[1] assert_approx_equal(res, 0.0230141, significant=6) res = fisher_exact([[5, 1], [10, 10]])[1] assert_approx_equal(res, 0.1973244, significant=6) res = fisher_exact([[5, 15], [20, 20]])[1] assert_approx_equal(res, 0.0958044, significant=6) res = fisher_exact([[5, 16], [20, 25]])[1] assert_approx_equal(res, 0.1725862, significant=6) res = fisher_exact([[10, 5], [10, 1]])[1] assert_approx_equal(res, 0.1973244, significant=6) res = fisher_exact([[5, 0], [1, 4]])[1] assert_approx_equal(res, 0.04761904, significant=6) res = fisher_exact([[0, 1], [3, 2]])[1] assert_approx_equal(res, 1.0) res = fisher_exact([[0, 2], [6, 4]])[1] assert_approx_equal(res, 0.4545454545) res = fisher_exact([[2, 7], [8, 2]]) assert_approx_equal(res[1], 0.0230141, significant=6) assert_approx_equal(res[0], 4.0 / 56) def test_precise(self): # results from R # # R defines oddsratio differently (see Notes section of fisher_exact # docstring), so those will not match. We leave them in anyway, in # case they will be useful later on. We test only the p-value. tablist = [ ([[100, 2], [1000, 5]], (2.505583993422285e-001, 1.300759363430016e-001)), ([[2, 7], [8, 2]], (8.586235135736206e-002, 2.301413756522114e-002)), ([[5, 1], [10, 10]], (4.725646047336584e+000, 1.973244147157190e-001)), ([[5, 15], [20, 20]], (3.394396617440852e-001, 9.580440012477637e-002)), ([[5, 16], [20, 25]], (3.960558326183334e-001, 1.725864953812994e-001)), ([[10, 5], [10, 1]], (2.116112781158483e-001, 1.973244147157190e-001)), ([[10, 5], [10, 0]], (0.000000000000000e+000, 6.126482213438734e-002)), ([[5, 0], [1, 4]], (np.inf, 4.761904761904762e-002)), ([[0, 5], [1, 4]], (0.000000000000000e+000, 1.000000000000000e+000)), ([[5, 1], [0, 4]], (np.inf, 4.761904761904758e-002)), ([[0, 1], [3, 2]], (0.000000000000000e+000, 1.000000000000000e+000)) ] for table, res_r in tablist: res = stats.fisher_exact(np.asarray(table)) np.testing.assert_almost_equal(res[1], res_r[1], decimal=11, verbose=True) @dec.slow def test_large_numbers(self): # Test with some large numbers. Regression test for #1401 pvals = [5.56e-11, 2.666e-11, 1.363e-11] # from R for pval, num in zip(pvals, [75, 76, 77]): res = stats.fisher_exact([[17704, 496], [1065, num]])[1] assert_approx_equal(res, pval, significant=4) res = stats.fisher_exact([[18000, 80000], [20000, 90000]])[1] assert_approx_equal(res, 0.2751, significant=4) def test_raises(self): # test we raise an error for wrong shape of input. assert_raises(ValueError, stats.fisher_exact, np.arange(6).reshape(2, 3)) def test_row_or_col_zero(self): tables = ([[0, 0], [5, 10]], [[5, 10], [0, 0]], [[0, 5], [0, 10]], [[5, 0], [10, 0]]) for table in tables: oddsratio, pval = stats.fisher_exact(table) assert_equal(pval, 1.0) assert_equal(oddsratio, np.nan) def test_less_greater(self): tables = ( # Some tables to compare with R: [[2, 7], [8, 2]], [[200, 7], [8, 300]], [[28, 21], [6, 1957]], [[190, 800], [200, 900]], # Some tables with simple exact values # (includes regression test for ticket #1568): [[0, 2], [3, 0]], [[1, 1], [2, 1]], [[2, 0], [1, 2]], [[0, 1], [2, 3]], [[1, 0], [1, 4]], ) pvals = ( # from R: [0.018521725952066501, 0.9990149169715733], [1.0, 2.0056578803889148e-122], [1.0, 5.7284374608319831e-44], [0.7416227, 0.2959826], # Exact: [0.1, 1.0], [0.7, 0.9], [1.0, 0.3], [2./3, 1.0], [1.0, 1./3], ) for table, pval in zip(tables, pvals): res = [] res.append(stats.fisher_exact(table, alternative="less")[1]) res.append(stats.fisher_exact(table, alternative="greater")[1]) assert_allclose(res, pval, atol=0, rtol=1e-7) def test_gh3014(self): # check if issue #3014 has been fixed. # before, this would have risen a ValueError odds, pvalue = stats.fisher_exact([[1, 2], [9, 84419233]]) class TestCorrSpearmanr(TestCase): """ W.II.D. Compute a correlation matrix on all the variables. All the correlations, except for ZERO and MISS, shoud be exactly 1. ZERO and MISS should have undefined or missing correlations with the other variables. The same should go for SPEARMAN corelations, if your program has them. """ def test_sXX(self): y = stats.spearmanr(X,X) r = y[0] assert_approx_equal(r,1.0) def test_sXBIG(self): y = stats.spearmanr(X,BIG) r = y[0] assert_approx_equal(r,1.0) def test_sXLITTLE(self): y = stats.spearmanr(X,LITTLE) r = y[0] assert_approx_equal(r,1.0) def test_sXHUGE(self): y = stats.spearmanr(X,HUGE) r = y[0] assert_approx_equal(r,1.0) def test_sXTINY(self): y = stats.spearmanr(X,TINY) r = y[0] assert_approx_equal(r,1.0) def test_sXROUND(self): y = stats.spearmanr(X,ROUND) r = y[0] assert_approx_equal(r,1.0) def test_sBIGBIG(self): y = stats.spearmanr(BIG,BIG) r = y[0] assert_approx_equal(r,1.0) def test_sBIGLITTLE(self): y = stats.spearmanr(BIG,LITTLE) r = y[0] assert_approx_equal(r,1.0) def test_sBIGHUGE(self): y = stats.spearmanr(BIG,HUGE) r = y[0] assert_approx_equal(r,1.0) def test_sBIGTINY(self): y = stats.spearmanr(BIG,TINY) r = y[0] assert_approx_equal(r,1.0) def test_sBIGROUND(self): y = stats.spearmanr(BIG,ROUND) r = y[0] assert_approx_equal(r,1.0) def test_sLITTLELITTLE(self): y = stats.spearmanr(LITTLE,LITTLE) r = y[0] assert_approx_equal(r,1.0) def test_sLITTLEHUGE(self): y = stats.spearmanr(LITTLE,HUGE) r = y[0] assert_approx_equal(r,1.0) def test_sLITTLETINY(self): y = stats.spearmanr(LITTLE,TINY) r = y[0] assert_approx_equal(r,1.0) def test_sLITTLEROUND(self): y = stats.spearmanr(LITTLE,ROUND) r = y[0] assert_approx_equal(r,1.0) def test_sHUGEHUGE(self): y = stats.spearmanr(HUGE,HUGE) r = y[0] assert_approx_equal(r,1.0) def test_sHUGETINY(self): y = stats.spearmanr(HUGE,TINY) r = y[0] assert_approx_equal(r,1.0) def test_sHUGEROUND(self): y = stats.spearmanr(HUGE,ROUND) r = y[0] assert_approx_equal(r,1.0) def test_sTINYTINY(self): y = stats.spearmanr(TINY,TINY) r = y[0] assert_approx_equal(r,1.0) def test_sTINYROUND(self): y = stats.spearmanr(TINY,ROUND) r = y[0] assert_approx_equal(r,1.0) def test_sROUNDROUND(self): y = stats.spearmanr(ROUND,ROUND) r = y[0] assert_approx_equal(r,1.0) class TestCorrSpearmanrTies(TestCase): """Some tests of tie-handling by the spearmanr function.""" def test_tie1(self): # Data x = [1.0, 2.0, 3.0, 4.0] y = [1.0, 2.0, 2.0, 3.0] # Ranks of the data, with tie-handling. xr = [1.0, 2.0, 3.0, 4.0] yr = [1.0, 2.5, 2.5, 4.0] # Result of spearmanr should be the same as applying # pearsonr to the ranks. sr = stats.spearmanr(x, y) pr = stats.pearsonr(xr, yr) assert_almost_equal(sr, pr) # W.II.E. Tabulate X against X, using BIG as a case weight. The values # should appear on the diagonal and the total should be 899999955. # If the table cannot hold these values, forget about working with # census data. You can also tabulate HUGE against TINY. There is no # reason a tabulation program should not be able to distinguish # different values regardless of their magnitude. # I need to figure out how to do this one. def test_kendalltau(): # with some ties x1 = [12, 2, 1, 12, 2] x2 = [1, 4, 7, 1, 0] expected = (-0.47140452079103173, 0.24821309157521476) res = stats.kendalltau(x1, x2) assert_approx_equal(res[0], expected[0]) assert_approx_equal(res[1], expected[1]) # with only ties in one or both inputs assert_equal(stats.kendalltau([2,2,2], [2,2,2]), (np.nan, np.nan)) assert_equal(stats.kendalltau([2,0,2], [2,2,2]), (np.nan, np.nan)) assert_equal(stats.kendalltau([2,2,2], [2,0,2]), (np.nan, np.nan)) # empty arrays provided as input assert_equal(stats.kendalltau([], []), (np.nan, np.nan)) # check two different sort methods assert_approx_equal(stats.kendalltau(x1, x2, initial_lexsort=False)[1], stats.kendalltau(x1, x2, initial_lexsort=True)[1]) # and with larger arrays np.random.seed(7546) x = np.array([np.random.normal(loc=1, scale=1, size=500), np.random.normal(loc=1, scale=1, size=500)]) corr = [[1.0, 0.3], [0.3, 1.0]] x = np.dot(np.linalg.cholesky(corr), x) expected = (0.19291382765531062, 1.1337108207276285e-10) res = stats.kendalltau(x[0], x[1]) assert_approx_equal(res[0], expected[0]) assert_approx_equal(res[1], expected[1]) # and do we get a tau of 1 for identical inputs? assert_approx_equal(stats.kendalltau([1,1,2], [1,1,2])[0], 1.0) class TestRegression(TestCase): def test_linregressBIGX(self): # W.II.F. Regress BIG on X. # The constant should be 99999990 and the regression coefficient should be 1. y = stats.linregress(X,BIG) intercept = y[1] r = y[2] assert_almost_equal(intercept,99999990) assert_almost_equal(r,1.0) def test_regressXX(self): # W.IV.B. Regress X on X. # The constant should be exactly 0 and the regression coefficient should be 1. # This is a perfectly valid regression. The program should not complain. y = stats.linregress(X,X) intercept = y[1] r = y[2] assert_almost_equal(intercept,0.0) assert_almost_equal(r,1.0) # W.IV.C. Regress X on BIG and LITTLE (two predictors). The program # should tell you that this model is "singular" because BIG and # LITTLE are linear combinations of each other. Cryptic error # messages are unacceptable here. Singularity is the most # fundamental regression error. # Need to figure out how to handle multiple linear regression. Not obvious def test_regressZEROX(self): # W.IV.D. Regress ZERO on X. # The program should inform you that ZERO has no variance or it should # go ahead and compute the regression and report a correlation and # total sum of squares of exactly 0. y = stats.linregress(X,ZERO) intercept = y[1] r = y[2] assert_almost_equal(intercept,0.0) assert_almost_equal(r,0.0) def test_regress_simple(self): # Regress a line with sinusoidal noise. x = np.linspace(0, 100, 100) y = 0.2 * np.linspace(0, 100, 100) + 10 y += np.sin(np.linspace(0, 20, 100)) res = stats.linregress(x, y) assert_almost_equal(res[4], 2.3957814497838803e-3) def test_regress_simple_onearg_rows(self): # Regress a line w sinusoidal noise, with a single input of shape (2, N). x = np.linspace(0, 100, 100) y = 0.2 * np.linspace(0, 100, 100) + 10 y += np.sin(np.linspace(0, 20, 100)) rows = np.vstack((x, y)) res = stats.linregress(rows) assert_almost_equal(res[4], 2.3957814497838803e-3) def test_regress_simple_onearg_cols(self): x = np.linspace(0, 100, 100) y = 0.2 * np.linspace(0, 100, 100) + 10 y += np.sin(np.linspace(0, 20, 100)) cols = np.hstack((np.expand_dims(x, 1), np.expand_dims(y, 1))) res = stats.linregress(cols) assert_almost_equal(res[4], 2.3957814497838803e-3) def test_regress_shape_error(self): # Check that a single input argument to linregress with wrong shape # results in a ValueError. assert_raises(ValueError, stats.linregress, np.ones((3, 3))) def test_linregress(self): # compared with multivariate ols with pinv x = np.arange(11) y = np.arange(5,16) y[[(1),(-2)]] -= 1 y[[(0),(-1)]] += 1 res = (1.0, 5.0, 0.98229948625750, 7.45259691e-008, 0.063564172616372733) assert_array_almost_equal(stats.linregress(x,y),res,decimal=14) def test_regress_simple_negative_cor(self): # If the slope of the regression is negative the factor R tend to -1 not 1. # Sometimes rounding errors makes it < -1 leading to stderr being NaN a, n = 1e-71, 100000 x = np.linspace(a, 2 * a, n) y = np.linspace(2 * a, a, n) stats.linregress(x, y) res = stats.linregress(x, y) assert_(res[2] >= -1) # propagated numerical errors were not corrected assert_almost_equal(res[2], -1) # perfect negative correlation case assert_(not np.isnan(res[4])) # stderr should stay finite def test_theilslopes(): # Basic slope test. slope, intercept, lower, upper = stats.theilslopes([0,1,1]) assert_almost_equal(slope, 0.5) assert_almost_equal(intercept, 0.5) # Test of confidence intervals. x = [1, 2, 3, 4, 10, 12, 18] y = [9, 15, 19, 20, 45, 55, 78] slope, intercept, lower, upper = stats.theilslopes(y, x, 0.07) assert_almost_equal(slope, 4) assert_almost_equal(upper, 4.38, decimal=2) assert_almost_equal(lower, 3.71, decimal=2) class TestHistogram(TestCase): # Tests that histogram works as it should, and keeps old behaviour # # what is untested: # - multidimensional arrays (since 'a' is ravel'd as the first line in the method) # - very large arrays # - Nans, Infs, empty and otherwise bad inputs # sample arrays to test the histogram with low_values = np.array([0.2, 0.3, 0.4, 0.5, 0.5, 0.6, 0.7, 0.8, 0.9, 1.1, 1.2], dtype=float) # 11 values high_range = np.array([2, 3, 4, 2, 21, 32, 78, 95, 65, 66, 66, 66, 66, 4], dtype=float) # 14 values low_range = np.array([2, 3, 3, 2, 3, 2.4, 2.1, 3.1, 2.9, 2.6, 2.7, 2.8, 2.2, 2.001], dtype=float) # 14 values few_values = np.array([2.0, 3.0, -1.0, 0.0], dtype=float) # 4 values def test_simple(self): # Tests that each of the tests works as expected with default params # # basic tests, with expected results (no weighting) # results taken from the previous (slower) version of histogram basic_tests = ((self.low_values, (np.array([1., 1., 1., 2., 2., 1., 1., 0., 1., 1.]), 0.14444444444444446, 0.11111111111111112, 0)), (self.high_range, (np.array([5., 0., 1., 1., 0., 0., 5., 1., 0., 1.]), -3.1666666666666661, 10.333333333333332, 0)), (self.low_range, (np.array([3., 1., 1., 1., 0., 1., 1., 2., 3., 1.]), 1.9388888888888889, 0.12222222222222223, 0)), (self.few_values, (np.array([1., 0., 1., 0., 0., 0., 0., 1., 0., 1.]), -1.2222222222222223, 0.44444444444444448, 0)), ) for inputs, expected_results in basic_tests: given_results = stats.histogram(inputs) assert_array_almost_equal(expected_results[0], given_results[0], decimal=2) for i in range(1, 4): assert_almost_equal(expected_results[i], given_results[i], decimal=2) def test_weighting(self): # Tests that weights give expected histograms # basic tests, with expected results, given a set of weights # weights used (first n are used for each test, where n is len of array) (14 values) weights = np.array([1., 3., 4.5, 0.1, -1.0, 0.0, 0.3, 7.0, 103.2, 2, 40, 0, 0, 1]) # results taken from the numpy version of histogram basic_tests = ((self.low_values, (np.array([4.0, 0.0, 4.5, -0.9, 0.0, 0.3,110.2, 0.0, 0.0, 42.0]), 0.2, 0.1, 0)), (self.high_range, (np.array([9.6, 0., -1., 0., 0., 0.,145.2, 0., 0.3, 7.]), 2.0, 9.3, 0)), (self.low_range, (np.array([2.4, 0., 0., 0., 0., 2., 40., 0., 103.2, 13.5]), 2.0, 0.11, 0)), (self.few_values, (np.array([4.5, 0., 0.1, 0., 0., 0., 0., 1., 0., 3.]), -1., 0.4, 0)), ) for inputs, expected_results in basic_tests: # use the first lot of weights for test # default limits given to reproduce output of numpy's test better given_results = stats.histogram(inputs, defaultlimits=(inputs.min(), inputs.max()), weights=weights[:len(inputs)]) assert_array_almost_equal(expected_results[0], given_results[0], decimal=2) for i in range(1, 4): assert_almost_equal(expected_results[i], given_results[i], decimal=2) def test_reduced_bins(self): # Tests that reducing the number of bins produces expected results # basic tests, with expected results (no weighting), # except number of bins is halved to 5 # results taken from the previous (slower) version of histogram basic_tests = ((self.low_values, (np.array([2., 3., 3., 1., 2.]), 0.075000000000000011, 0.25, 0)), (self.high_range, (np.array([5., 2., 0., 6., 1.]), -9.625, 23.25, 0)), (self.low_range, (np.array([4., 2., 1., 3., 4.]), 1.8625, 0.27500000000000002, 0)), (self.few_values, (np.array([1., 1., 0., 1., 1.]), -1.5, 1.0, 0)), ) for inputs, expected_results in basic_tests: given_results = stats.histogram(inputs, numbins=5) assert_array_almost_equal(expected_results[0], given_results[0], decimal=2) for i in range(1, 4): assert_almost_equal(expected_results[i], given_results[i], decimal=2) def test_increased_bins(self): # Tests that increasing the number of bins produces expected results # basic tests, with expected results (no weighting), # except number of bins is double to 20 # results taken from the previous (slower) version of histogram basic_tests = ((self.low_values, (np.array([1., 0., 1., 0., 1., 0., 2., 0., 1., 0., 1., 1., 0., 1., 0., 0., 0., 1., 0., 1.]), 0.1736842105263158, 0.052631578947368418, 0)), (self.high_range, (np.array([5., 0., 0., 0., 1., 0., 1., 0., 0., 0., 0., 0., 0., 5., 0., 0., 1., 0., 0., 1.]), -0.44736842105263142, 4.8947368421052628, 0)), (self.low_range, (np.array([3., 0., 1., 1., 0., 0., 0., 1., 0., 0., 1., 0., 1., 0., 1., 0., 1., 3., 0., 1.]), 1.9710526315789474, 0.057894736842105263, 0)), (self.few_values, (np.array([1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 1.]), -1.1052631578947367, 0.21052631578947367, 0)), ) for inputs, expected_results in basic_tests: given_results = stats.histogram(inputs, numbins=20) assert_array_almost_equal(expected_results[0], given_results[0], decimal=2) for i in range(1, 4): assert_almost_equal(expected_results[i], given_results[i], decimal=2) def test_cumfreq(): x = [1, 4, 2, 1, 3, 1] cumfreqs, lowlim, binsize, extrapoints = stats.cumfreq(x, numbins=4) assert_array_almost_equal(cumfreqs, np.array([3., 4., 5., 6.])) cumfreqs, lowlim, binsize, extrapoints = stats.cumfreq(x, numbins=4, defaultreallimits=(1.5, 5)) assert_(extrapoints == 3) def test_relfreq(): a = np.array([1, 4, 2, 1, 3, 1]) relfreqs, lowlim, binsize, extrapoints = stats.relfreq(a, numbins=4) assert_array_almost_equal(relfreqs, array([0.5, 0.16666667, 0.16666667, 0.16666667])) # check array_like input is accepted relfreqs2, lowlim, binsize, extrapoints = stats.relfreq([1, 4, 2, 1, 3, 1], numbins=4) assert_array_almost_equal(relfreqs, relfreqs2) class TestGMean(TestCase): def test_1D_list(self): a = (1,2,3,4) actual = stats.gmean(a) desired = power(1*2*3*4,1./4.) assert_almost_equal(actual, desired,decimal=14) desired1 = stats.gmean(a,axis=-1) assert_almost_equal(actual, desired1, decimal=14) def test_1D_array(self): a = array((1,2,3,4), float32) actual = stats.gmean(a) desired = power(1*2*3*4,1./4.) assert_almost_equal(actual, desired, decimal=7) desired1 = stats.gmean(a,axis=-1) assert_almost_equal(actual, desired1, decimal=7) def test_2D_array_default(self): a = array(((1,2,3,4), (1,2,3,4), (1,2,3,4))) actual = stats.gmean(a) desired = array((1,2,3,4)) assert_array_almost_equal(actual, desired, decimal=14) desired1 = stats.gmean(a,axis=0) assert_array_almost_equal(actual, desired1, decimal=14) def test_2D_array_dim1(self): a = array(((1,2,3,4), (1,2,3,4), (1,2,3,4))) actual = stats.gmean(a, axis=1) v = power(1*2*3*4,1./4.) desired = array((v,v,v)) assert_array_almost_equal(actual, desired, decimal=14) def test_large_values(self): a = array([1e100, 1e200, 1e300]) actual = stats.gmean(a) assert_approx_equal(actual, 1e200, significant=14) class TestHMean(TestCase): def test_1D_list(self): a = (1,2,3,4) actual = stats.hmean(a) desired = 4. / (1./1 + 1./2 + 1./3 + 1./4) assert_almost_equal(actual, desired, decimal=14) desired1 = stats.hmean(array(a),axis=-1) assert_almost_equal(actual, desired1, decimal=14) def test_1D_array(self): a = array((1,2,3,4), float64) actual = stats.hmean(a) desired = 4. / (1./1 + 1./2 + 1./3 + 1./4) assert_almost_equal(actual, desired, decimal=14) desired1 = stats.hmean(a,axis=-1) assert_almost_equal(actual, desired1, decimal=14) def test_2D_array_default(self): a = array(((1,2,3,4), (1,2,3,4), (1,2,3,4))) actual = stats.hmean(a) desired = array((1.,2.,3.,4.)) assert_array_almost_equal(actual, desired, decimal=14) actual1 = stats.hmean(a,axis=0) assert_array_almost_equal(actual1, desired, decimal=14) def test_2D_array_dim1(self): a = array(((1,2,3,4), (1,2,3,4), (1,2,3,4))) v = 4. / (1./1 + 1./2 + 1./3 + 1./4) desired1 = array((v,v,v)) actual1 = stats.hmean(a, axis=1) assert_array_almost_equal(actual1, desired1, decimal=14) class TestScoreatpercentile(TestCase): def setUp(self): self.a1 = [3, 4, 5, 10, -3, -5, 6] self.a2 = [3, -6, -2, 8, 7, 4, 2, 1] self.a3 = [3., 4, 5, 10, -3, -5, -6, 7.0] def test_basic(self): x = arange(8) * 0.5 assert_equal(stats.scoreatpercentile(x, 0), 0.) assert_equal(stats.scoreatpercentile(x, 100), 3.5) assert_equal(stats.scoreatpercentile(x, 50), 1.75) def test_fraction(self): scoreatperc = stats.scoreatpercentile # Test defaults assert_equal(scoreatperc(list(range(10)), 50), 4.5) assert_equal(scoreatperc(list(range(10)), 50, (2,7)), 4.5) assert_equal(scoreatperc(list(range(100)), 50, limit=(1, 8)), 4.5) assert_equal(scoreatperc(np.array([1, 10,100]), 50, (10,100)), 55) assert_equal(scoreatperc(np.array([1, 10,100]), 50, (1,10)), 5.5) # explicitly specify interpolation_method 'fraction' (the default) assert_equal(scoreatperc(list(range(10)), 50, interpolation_method='fraction'), 4.5) assert_equal(scoreatperc(list(range(10)), 50, limit=(2, 7), interpolation_method='fraction'), 4.5) assert_equal(scoreatperc(list(range(100)), 50, limit=(1, 8), interpolation_method='fraction'), 4.5) assert_equal(scoreatperc(np.array([1, 10,100]), 50, (10, 100), interpolation_method='fraction'), 55) assert_equal(scoreatperc(np.array([1, 10,100]), 50, (1,10), interpolation_method='fraction'), 5.5) def test_lower_higher(self): scoreatperc = stats.scoreatpercentile # interpolation_method 'lower'/'higher' assert_equal(scoreatperc(list(range(10)), 50, interpolation_method='lower'), 4) assert_equal(scoreatperc(list(range(10)), 50, interpolation_method='higher'), 5) assert_equal(scoreatperc(list(range(10)), 50, (2,7), interpolation_method='lower'), 4) assert_equal(scoreatperc(list(range(10)), 50, limit=(2,7), interpolation_method='higher'), 5) assert_equal(scoreatperc(list(range(100)), 50, (1,8), interpolation_method='lower'), 4) assert_equal(scoreatperc(list(range(100)), 50, (1,8), interpolation_method='higher'), 5) assert_equal(scoreatperc(np.array([1, 10, 100]), 50, (10, 100), interpolation_method='lower'), 10) assert_equal(scoreatperc(np.array([1, 10, 100]), 50, limit=(10, 100), interpolation_method='higher'), 100) assert_equal(scoreatperc(np.array([1, 10, 100]), 50, (1, 10), interpolation_method='lower'), 1) assert_equal(scoreatperc(np.array([1, 10, 100]), 50, limit=(1, 10), interpolation_method='higher'), 10) def test_sequence_per(self): x = arange(8) * 0.5 expected = np.array([0, 3.5, 1.75]) res = stats.scoreatpercentile(x, [0, 100, 50]) assert_allclose(res, expected) assert_(isinstance(res, np.ndarray)) # Test with ndarray. Regression test for gh-2861 assert_allclose(stats.scoreatpercentile(x, np.array([0, 100, 50])), expected) # Also test combination of 2-D array, axis not None and array-like per res2 = stats.scoreatpercentile(np.arange(12).reshape((3,4)), np.array([0, 1, 100, 100]), axis=1) expected2 = array([[0, 4, 8], [0.03, 4.03, 8.03], [3, 7, 11], [3, 7, 11]]) assert_allclose(res2, expected2) def test_axis(self): scoreatperc = stats.scoreatpercentile x = arange(12).reshape(3, 4) assert_equal(scoreatperc(x, (25, 50, 100)), [2.75, 5.5, 11.0]) r0 = [[2, 3, 4, 5], [4, 5, 6, 7], [8, 9, 10, 11]] assert_equal(scoreatperc(x, (25, 50, 100), axis=0), r0) r1 = [[0.75, 4.75, 8.75], [1.5, 5.5, 9.5], [3, 7, 11]] assert_equal(scoreatperc(x, (25, 50, 100), axis=1), r1) x = array([[1, 1, 1], [1, 1, 1], [4, 4, 3], [1, 1, 1], [1, 1, 1]]) score = stats.scoreatpercentile(x, 50) assert_equal(score.shape, ()) assert_equal(score, 1.0) score = stats.scoreatpercentile(x, 50, axis=0) assert_equal(score.shape, (3,)) assert_equal(score, [1, 1, 1]) def test_exception(self): assert_raises(ValueError, stats.scoreatpercentile, [1, 2], 56, interpolation_method='foobar') assert_raises(ValueError, stats.scoreatpercentile, [1], 101) assert_raises(ValueError, stats.scoreatpercentile, [1], -1) def test_empty(self): assert_equal(stats.scoreatpercentile([], 50), np.nan) assert_equal(stats.scoreatpercentile(np.array([[], []]), 50), np.nan) assert_equal(stats.scoreatpercentile([], [50, 99]), [np.nan, np.nan]) class TestItemfreq(object): a = [5, 7, 1, 2, 1, 5, 7] * 10 b = [1, 2, 5, 7] def test_numeric_types(self): # Check itemfreq works for all dtypes (adapted from np.unique tests) def _check_itemfreq(dt): a = np.array(self.a, dt) v = stats.itemfreq(a) assert_array_equal(v[:, 0], [1, 2, 5, 7]) assert_array_equal(v[:, 1], np.array([20, 10, 20, 20], dtype=dt)) dtypes = [np.int32, np.int64, np.float32, np.float64, np.complex64, np.complex128] for dt in dtypes: yield _check_itemfreq, dt def test_object_arrays(self): a, b = self.a, self.b dt = 'O' aa = np.empty(len(a), dt) aa[:] = a bb = np.empty(len(b), dt) bb[:] = b v = stats.itemfreq(aa) assert_array_equal(v[:, 0], bb) def test_structured_arrays(self): a, b = self.a, self.b dt = [('', 'i'), ('', 'i')] aa = np.array(list(zip(a, a)), dt) bb = np.array(list(zip(b, b)), dt) v = stats.itemfreq(aa) # Arrays don't compare equal because v[:,0] is object array assert_equal(tuple(v[2, 0]), tuple(bb[2])) class TestMode(TestCase): def test_empty(self): vals, counts = stats.mode([]) assert_equal(vals, np.array([])) assert_equal(counts, np.array([])) def test_basic(self): data1 = [3, 5, 1, 10, 23, 3, 2, 6, 8, 6, 10, 6] vals = stats.mode(data1) assert_equal(vals[0][0], 6) assert_equal(vals[1][0], 3) def test_axes(self): data1 = [10, 10, 30, 40] data2 = [10, 10, 10, 10] data3 = [20, 10, 20, 20] data4 = [30, 30, 30, 30] data5 = [40, 30, 30, 30] arr = np.array([data1, data2, data3, data4, data5]) vals = stats.mode(arr, axis=None) assert_equal(vals[0], np.array([30])) assert_equal(vals[1], np.array([8])) vals = stats.mode(arr, axis=0) assert_equal(vals[0], np.array([[10, 10, 30, 30]])) assert_equal(vals[1], np.array([[2, 3, 3, 2]])) vals = stats.mode(arr, axis=1) assert_equal(vals[0], np.array([[10], [10], [20], [30], [30]])) assert_equal(vals[1], np.array([[2], [4], [3], [4], [3]])) def test_strings(self): data1 = ['rain', 'showers', 'showers'] vals = stats.mode(data1) assert_equal(vals[0][0], 'showers') assert_equal(vals[1][0], 2) @dec.knownfailureif(sys.version_info > (3,), 'numpy github issue 641') def test_mixed_objects(self): objects = [10, True, np.nan, 'hello', 10] arr = np.empty((5,), dtype=object) arr[:] = objects vals = stats.mode(arr) assert_equal(vals[0][0], 10) assert_equal(vals[1][0], 2) def test_objects(self): """Python objects must be sortable (le + eq) and have ne defined for np.unique to work. hash is for set. """ class Point(object): def __init__(self, x): self.x = x def __eq__(self, other): return self.x == other.x def __ne__(self, other): return self.x != other.x def __lt__(self, other): return self.x < other.x def __hash__(self): return hash(self.x) points = [Point(x) for x in [1, 2, 3, 4, 3, 2, 2, 2]] arr = np.empty((8,), dtype=object) arr[:] = points assert len(set(points)) == 4 assert_equal(np.unique(arr).shape, (4,)) vals = stats.mode(arr) assert_equal(vals[0][0], Point(2)) assert_equal(vals[1][0], 4) class TestVariability(TestCase): testcase = [1,2,3,4] def test_signaltonoise(self): # This is not in R, so used: # mean(testcase, axis=0) / (sqrt(var(testcase) * 3/4)) # y = stats.signaltonoise(self.shoes[0]) # assert_approx_equal(y,4.5709967) y = stats.signaltonoise(self.testcase) assert_approx_equal(y,2.236067977) def test_sem(self): # This is not in R, so used: # sqrt(var(testcase)*3/4)/sqrt(3) # y = stats.sem(self.shoes[0]) # assert_approx_equal(y,0.775177399) y = stats.sem(self.testcase) assert_approx_equal(y, 0.6454972244) n = len(self.testcase) assert_allclose(stats.sem(self.testcase, ddof=0) * np.sqrt(n/(n-2)), stats.sem(self.testcase, ddof=2)) def test_zmap(self): # not in R, so tested by using: # (testcase[i] - mean(testcase, axis=0)) / sqrt(var(testcase) * 3/4) y = stats.zmap(self.testcase,self.testcase) desired = ([-1.3416407864999, -0.44721359549996, 0.44721359549996, 1.3416407864999]) assert_array_almost_equal(desired,y,decimal=12) def test_zmap_axis(self): # Test use of 'axis' keyword in zmap. x = np.array([[0.0, 0.0, 1.0, 1.0], [1.0, 1.0, 1.0, 2.0], [2.0, 0.0, 2.0, 0.0]]) t1 = 1.0/np.sqrt(2.0/3) t2 = np.sqrt(3.)/3 t3 = np.sqrt(2.) z0 = stats.zmap(x, x, axis=0) z1 = stats.zmap(x, x, axis=1) z0_expected = [[-t1, -t3/2, -t3/2, 0.0], [0.0, t3, -t3/2, t1], [t1, -t3/2, t3, -t1]] z1_expected = [[-1.0, -1.0, 1.0, 1.0], [-t2, -t2, -t2, np.sqrt(3.)], [1.0, -1.0, 1.0, -1.0]] assert_array_almost_equal(z0, z0_expected) assert_array_almost_equal(z1, z1_expected) def test_zmap_ddof(self): # Test use of 'ddof' keyword in zmap. x = np.array([[0.0, 0.0, 1.0, 1.0], [0.0, 1.0, 2.0, 3.0]]) z = stats.zmap(x, x, axis=1, ddof=1) z0_expected = np.array([-0.5, -0.5, 0.5, 0.5])/(1.0/np.sqrt(3)) z1_expected = np.array([-1.5, -0.5, 0.5, 1.5])/(np.sqrt(5./3)) assert_array_almost_equal(z[0], z0_expected) assert_array_almost_equal(z[1], z1_expected) def test_zscore(self): # not in R, so tested by using: # (testcase[i] - mean(testcase, axis=0)) / sqrt(var(testcase) * 3/4) y = stats.zscore(self.testcase) desired = ([-1.3416407864999, -0.44721359549996, 0.44721359549996, 1.3416407864999]) assert_array_almost_equal(desired,y,decimal=12) def test_zscore_axis(self): # Test use of 'axis' keyword in zscore. x = np.array([[0.0, 0.0, 1.0, 1.0], [1.0, 1.0, 1.0, 2.0], [2.0, 0.0, 2.0, 0.0]]) t1 = 1.0/np.sqrt(2.0/3) t2 = np.sqrt(3.)/3 t3 = np.sqrt(2.) z0 = stats.zscore(x, axis=0) z1 = stats.zscore(x, axis=1) z0_expected = [[-t1, -t3/2, -t3/2, 0.0], [0.0, t3, -t3/2, t1], [t1, -t3/2, t3, -t1]] z1_expected = [[-1.0, -1.0, 1.0, 1.0], [-t2, -t2, -t2, np.sqrt(3.)], [1.0, -1.0, 1.0, -1.0]] assert_array_almost_equal(z0, z0_expected) assert_array_almost_equal(z1, z1_expected) def test_zscore_ddof(self): # Test use of 'ddof' keyword in zscore. x = np.array([[0.0, 0.0, 1.0, 1.0], [0.0, 1.0, 2.0, 3.0]]) z = stats.zscore(x, axis=1, ddof=1) z0_expected = np.array([-0.5, -0.5, 0.5, 0.5])/(1.0/np.sqrt(3)) z1_expected = np.array([-1.5, -0.5, 0.5, 1.5])/(np.sqrt(5./3)) assert_array_almost_equal(z[0], z0_expected) assert_array_almost_equal(z[1], z1_expected) class TestMoments(TestCase): """ Comparison numbers are found using R v.1.5.1 note that length(testcase) = 4 testmathworks comes from documentation for the Statistics Toolbox for Matlab and can be found at both http://www.mathworks.com/access/helpdesk/help/toolbox/stats/kurtosis.shtml http://www.mathworks.com/access/helpdesk/help/toolbox/stats/skewness.shtml Note that both test cases came from here. """ testcase = [1,2,3,4] np.random.seed(1234) testcase_moment_accuracy = np.random.rand(42) testmathworks = [1.165, 0.6268, 0.0751, 0.3516, -0.6965] def test_moment(self): # mean((testcase-mean(testcase))**power,axis=0),axis=0))**power)) y = stats.moment(self.testcase,1) assert_approx_equal(y,0.0,10) y = stats.moment(self.testcase,2) assert_approx_equal(y,1.25) y = stats.moment(self.testcase,3) assert_approx_equal(y,0.0) y = stats.moment(self.testcase,4) assert_approx_equal(y,2.5625) def test_variation(self): # variation = samplestd / mean y = stats.variation(self.testcase) assert_approx_equal(y,0.44721359549996, 10) def test_skewness(self): # sum((testmathworks-mean(testmathworks,axis=0))**3,axis=0) / # ((sqrt(var(testmathworks)*4/5))**3)/5 y = stats.skew(self.testmathworks) assert_approx_equal(y,-0.29322304336607,10) y = stats.skew(self.testmathworks,bias=0) assert_approx_equal(y,-0.437111105023940,10) y = stats.skew(self.testcase) assert_approx_equal(y,0.0,10) def test_skewness_scalar(self): # `skew` must return a scalar for 1-dim input assert_equal(stats.skew(arange(10)), 0.0) def test_kurtosis(self): # sum((testcase-mean(testcase,axis=0))**4,axis=0)/((sqrt(var(testcase)*3/4))**4)/4 # sum((test2-mean(testmathworks,axis=0))**4,axis=0)/((sqrt(var(testmathworks)*4/5))**4)/5 # Set flags for axis = 0 and # fisher=0 (Pearson's defn of kurtosis for compatiability with Matlab) y = stats.kurtosis(self.testmathworks,0,fisher=0,bias=1) assert_approx_equal(y, 2.1658856802973,10) # Note that MATLAB has confusing docs for the following case # kurtosis(x,0) gives an unbiased estimate of Pearson's skewness # kurtosis(x) gives a biased estimate of Fisher's skewness (Pearson-3) # The MATLAB docs imply that both should give Fisher's y = stats.kurtosis(self.testmathworks,fisher=0,bias=0) assert_approx_equal(y, 3.663542721189047,10) y = stats.kurtosis(self.testcase,0,0) assert_approx_equal(y,1.64) def test_kurtosis_array_scalar(self): assert_equal(type(stats.kurtosis([1,2,3])), float) def test_moment_accuracy(self): # 'moment' must have a small enough error compared to the slower # but very accurate numpy.power() implementation. tc_no_mean = self.testcase_moment_accuracy - \ np.mean(self.testcase_moment_accuracy) assert_allclose(np.power(tc_no_mean, 42).mean(), stats.moment(self.testcase_moment_accuracy, 42)) class TestThreshold(TestCase): def test_basic(self): a = [-1,2,3,4,5,-1,-2] assert_array_equal(stats.threshold(a),a) assert_array_equal(stats.threshold(a,3,None,0), [0,0,3,4,5,0,0]) assert_array_equal(stats.threshold(a,None,3,0), [-1,2,3,0,0,-1,-2]) assert_array_equal(stats.threshold(a,2,4,0), [0,2,3,4,0,0,0]) class TestStudentTest(TestCase): X1 = np.array([-1, 0, 1]) X2 = np.array([0, 1, 2]) T1_0 = 0 P1_0 = 1 T1_1 = -1.732051 P1_1 = 0.2254033 T1_2 = -3.464102 P1_2 = 0.0741799 T2_0 = 1.732051 P2_0 = 0.2254033 def test_onesample(self): t, p = stats.ttest_1samp(self.X1, 0) assert_array_almost_equal(t, self.T1_0) assert_array_almost_equal(p, self.P1_0) t, p = stats.ttest_1samp(self.X2, 0) assert_array_almost_equal(t, self.T2_0) assert_array_almost_equal(p, self.P2_0) t, p = stats.ttest_1samp(self.X1, 1) assert_array_almost_equal(t, self.T1_1) assert_array_almost_equal(p, self.P1_1) t, p = stats.ttest_1samp(self.X1, 2) assert_array_almost_equal(t, self.T1_2) assert_array_almost_equal(p, self.P1_2) def test_percentileofscore(): pcos = stats.percentileofscore assert_equal(pcos([1,2,3,4,5,6,7,8,9,10],4), 40.0) for (kind, result) in [('mean', 35.0), ('strict', 30.0), ('weak', 40.0)]: yield assert_equal, pcos(np.arange(10) + 1, 4, kind=kind), \ result # multiple - 2 for (kind, result) in [('rank', 45.0), ('strict', 30.0), ('weak', 50.0), ('mean', 40.0)]: yield assert_equal, pcos([1,2,3,4,4,5,6,7,8,9], 4, kind=kind), \ result # multiple - 3 assert_equal(pcos([1,2,3,4,4,4,5,6,7,8], 4), 50.0) for (kind, result) in [('rank', 50.0), ('mean', 45.0), ('strict', 30.0), ('weak', 60.0)]: yield assert_equal, pcos([1,2,3,4,4,4,5,6,7,8], 4, kind=kind), \ result # missing for kind in ('rank', 'mean', 'strict', 'weak'): yield assert_equal, pcos([1,2,3,5,6,7,8,9,10,11], 4, kind=kind), \ 30 # larger numbers for (kind, result) in [('mean', 35.0), ('strict', 30.0), ('weak', 40.0)]: yield assert_equal, \ pcos([10, 20, 30, 40, 50, 60, 70, 80, 90, 100], 40, kind=kind), result for (kind, result) in [('mean', 45.0), ('strict', 30.0), ('weak', 60.0)]: yield assert_equal, \ pcos([10, 20, 30, 40, 40, 40, 50, 60, 70, 80], 40, kind=kind), result for kind in ('rank', 'mean', 'strict', 'weak'): yield assert_equal, \ pcos([10, 20, 30, 50, 60, 70, 80, 90, 100, 110], 40, kind=kind), 30.0 # boundaries for (kind, result) in [('rank', 10.0), ('mean', 5.0), ('strict', 0.0), ('weak', 10.0)]: yield assert_equal, \ pcos([10, 20, 30, 50, 60, 70, 80, 90, 100, 110], 10, kind=kind), result for (kind, result) in [('rank', 100.0), ('mean', 95.0), ('strict', 90.0), ('weak', 100.0)]: yield assert_equal, \ pcos([10, 20, 30, 50, 60, 70, 80, 90, 100, 110], 110, kind=kind), result # out of bounds for (kind, score, result) in [('rank', 200, 100.0), ('mean', 200, 100.0), ('mean', 0, 0.0)]: yield assert_equal, \ pcos([10, 20, 30, 50, 60, 70, 80, 90, 100, 110], score, kind=kind), result assert_raises(ValueError, pcos, [1, 2, 3, 3, 4], 3, kind='unrecognized') PowerDivCase = namedtuple('Case', ['f_obs', 'f_exp', 'ddof', 'axis', 'chi2', # Pearson's 'log', # G-test (log-likelihood) 'mod_log', # Modified log-likelihood 'cr', # Cressie-Read (lambda=2/3) ]) # The details of the first two elements in power_div_1d_cases are used # in a test in TestPowerDivergence. Check that code before making # any changes here. power_div_1d_cases = [ # Use the default f_exp. PowerDivCase(f_obs=[4, 8, 12, 8], f_exp=None, ddof=0, axis=None, chi2=4, log=2*(4*np.log(4/8) + 12*np.log(12/8)), mod_log=2*(8*np.log(8/4) + 8*np.log(8/12)), cr=(4*((4/8)**(2/3) - 1) + 12*((12/8)**(2/3) - 1))/(5/9)), # Give a non-uniform f_exp. PowerDivCase(f_obs=[4, 8, 12, 8], f_exp=[2, 16, 12, 2], ddof=0, axis=None, chi2=24, log=2*(4*np.log(4/2) + 8*np.log(8/16) + 8*np.log(8/2)), mod_log=2*(2*np.log(2/4) + 16*np.log(16/8) + 2*np.log(2/8)), cr=(4*((4/2)**(2/3) - 1) + 8*((8/16)**(2/3) - 1) + 8*((8/2)**(2/3) - 1))/(5/9)), # f_exp is a scalar. PowerDivCase(f_obs=[4, 8, 12, 8], f_exp=8, ddof=0, axis=None, chi2=4, log=2*(4*np.log(4/8) + 12*np.log(12/8)), mod_log=2*(8*np.log(8/4) + 8*np.log(8/12)), cr=(4*((4/8)**(2/3) - 1) + 12*((12/8)**(2/3) - 1))/(5/9)), # f_exp equal to f_obs. PowerDivCase(f_obs=[3, 5, 7, 9], f_exp=[3, 5, 7, 9], ddof=0, axis=0, chi2=0, log=0, mod_log=0, cr=0), ] power_div_empty_cases = [ # Shape is (0,)--a data set with length 0. The computed # test statistic should be 0. PowerDivCase(f_obs=[], f_exp=None, ddof=0, axis=0, chi2=0, log=0, mod_log=0, cr=0), # Shape is (0, 3). This is 3 data sets, but each data set has # length 0, so the computed test statistic should be [0, 0, 0]. PowerDivCase(f_obs=np.array([[],[],[]]).T, f_exp=None, ddof=0, axis=0, chi2=[0, 0, 0], log=[0, 0, 0], mod_log=[0, 0, 0], cr=[0, 0, 0]), # Shape is (3, 0). This represents an empty collection of # data sets in which each data set has length 3. The test # statistic should be an empty array. PowerDivCase(f_obs=np.array([[],[],[]]), f_exp=None, ddof=0, axis=0, chi2=[], log=[], mod_log=[], cr=[]), ] class TestPowerDivergence(object): def check_power_divergence(self, f_obs, f_exp, ddof, axis, lambda_, expected_stat): f_obs = np.asarray(f_obs) if axis is None: num_obs = f_obs.size else: b = np.broadcast(f_obs, f_exp) num_obs = b.shape[axis] stat, p = stats.power_divergence(f_obs=f_obs, f_exp=f_exp, ddof=ddof, axis=axis, lambda_=lambda_) assert_allclose(stat, expected_stat) if lambda_ == 1 or lambda_ == "pearson": # Also test stats.chisquare. stat, p = stats.chisquare(f_obs=f_obs, f_exp=f_exp, ddof=ddof, axis=axis) assert_allclose(stat, expected_stat) ddof = np.asarray(ddof) expected_p = stats.chisqprob(expected_stat, num_obs - 1 - ddof) assert_allclose(p, expected_p) def test_basic(self): for case in power_div_1d_cases: yield (self.check_power_divergence, case.f_obs, case.f_exp, case.ddof, case.axis, None, case.chi2) yield (self.check_power_divergence, case.f_obs, case.f_exp, case.ddof, case.axis, "pearson", case.chi2) yield (self.check_power_divergence, case.f_obs, case.f_exp, case.ddof, case.axis, 1, case.chi2) yield (self.check_power_divergence, case.f_obs, case.f_exp, case.ddof, case.axis, "log-likelihood", case.log) yield (self.check_power_divergence, case.f_obs, case.f_exp, case.ddof, case.axis, "mod-log-likelihood", case.mod_log) yield (self.check_power_divergence, case.f_obs, case.f_exp, case.ddof, case.axis, "cressie-read", case.cr) yield (self.check_power_divergence, case.f_obs, case.f_exp, case.ddof, case.axis, 2/3, case.cr) def test_basic_masked(self): for case in power_div_1d_cases: mobs = np.ma.array(case.f_obs) yield (self.check_power_divergence, mobs, case.f_exp, case.ddof, case.axis, None, case.chi2) yield (self.check_power_divergence, mobs, case.f_exp, case.ddof, case.axis, "pearson", case.chi2) yield (self.check_power_divergence, mobs, case.f_exp, case.ddof, case.axis, 1, case.chi2) yield (self.check_power_divergence, mobs, case.f_exp, case.ddof, case.axis, "log-likelihood", case.log) yield (self.check_power_divergence, mobs, case.f_exp, case.ddof, case.axis, "mod-log-likelihood", case.mod_log) yield (self.check_power_divergence, mobs, case.f_exp, case.ddof, case.axis, "cressie-read", case.cr) yield (self.check_power_divergence, mobs, case.f_exp, case.ddof, case.axis, 2/3, case.cr) def test_axis(self): case0 = power_div_1d_cases[0] case1 = power_div_1d_cases[1] f_obs = np.vstack((case0.f_obs, case1.f_obs)) f_exp = np.vstack((np.ones_like(case0.f_obs)*np.mean(case0.f_obs), case1.f_exp)) # Check the four computational code paths in power_divergence # using a 2D array with axis=1. yield (self.check_power_divergence, f_obs, f_exp, 0, 1, "pearson", [case0.chi2, case1.chi2]) yield (self.check_power_divergence, f_obs, f_exp, 0, 1, "log-likelihood", [case0.log, case1.log]) yield (self.check_power_divergence, f_obs, f_exp, 0, 1, "mod-log-likelihood", [case0.mod_log, case1.mod_log]) yield (self.check_power_divergence, f_obs, f_exp, 0, 1, "cressie-read", [case0.cr, case1.cr]) # Reshape case0.f_obs to shape (2,2), and use axis=None. # The result should be the same. yield (self.check_power_divergence, np.array(case0.f_obs).reshape(2, 2), None, 0, None, "pearson", case0.chi2) def test_ddof_broadcasting(self): # Test that ddof broadcasts correctly. # ddof does not affect the test statistic. It is broadcast # with the computed test statistic for the computation of # the p value. case0 = power_div_1d_cases[0] case1 = power_div_1d_cases[1] # Create 4x2 arrays of observed and expected frequencies. f_obs = np.vstack((case0.f_obs, case1.f_obs)).T f_exp = np.vstack((np.ones_like(case0.f_obs)*np.mean(case0.f_obs), case1.f_exp)).T expected_chi2 = [case0.chi2, case1.chi2] # ddof has shape (2, 1). This is broadcast with the computed # statistic, so p will have shape (2,2). ddof = np.array([[0], [1]]) stat, p = stats.power_divergence(f_obs, f_exp, ddof=ddof) assert_allclose(stat, expected_chi2) # Compute the p values separately, passing in scalars for ddof. stat0, p0 = stats.power_divergence(f_obs, f_exp, ddof=ddof[0,0]) stat1, p1 = stats.power_divergence(f_obs, f_exp, ddof=ddof[1,0]) assert_array_equal(p, np.vstack((p0, p1))) def test_empty_cases(self): with warnings.catch_warnings(): warnings.simplefilter("ignore", RuntimeWarning) for case in power_div_empty_cases: yield (self.check_power_divergence, case.f_obs, case.f_exp, case.ddof, case.axis, "pearson", case.chi2) yield (self.check_power_divergence, case.f_obs, case.f_exp, case.ddof, case.axis, "log-likelihood", case.log) yield (self.check_power_divergence, case.f_obs, case.f_exp, case.ddof, case.axis, "mod-log-likelihood", case.mod_log) yield (self.check_power_divergence, case.f_obs, case.f_exp, case.ddof, case.axis, "cressie-read", case.cr) def test_chisquare_masked_arrays(): # Test masked arrays. obs = np.array([[8, 8, 16, 32, -1], [-1, -1, 3, 4, 5]]).T mask = np.array([[0, 0, 0, 0, 1], [1, 1, 0, 0, 0]]).T mobs = np.ma.masked_array(obs, mask) expected_chisq = np.array([24.0, 0.5]) expected_g = np.array([2*(2*8*np.log(0.5) + 32*np.log(2.0)), 2*(3*np.log(0.75) + 5*np.log(1.25))]) chisq, p = stats.chisquare(mobs) mat.assert_array_equal(chisq, expected_chisq) mat.assert_array_almost_equal(p, stats.chisqprob(expected_chisq, mobs.count(axis=0) - 1)) g, p = stats.power_divergence(mobs, lambda_='log-likelihood') mat.assert_array_almost_equal(g, expected_g, decimal=15) mat.assert_array_almost_equal(p, stats.chisqprob(expected_g, mobs.count(axis=0) - 1)) chisq, p = stats.chisquare(mobs.T, axis=1) mat.assert_array_equal(chisq, expected_chisq) mat.assert_array_almost_equal(p, stats.chisqprob(expected_chisq, mobs.T.count(axis=1) - 1)) g, p = stats.power_divergence(mobs.T, axis=1, lambda_="log-likelihood") mat.assert_array_almost_equal(g, expected_g, decimal=15) mat.assert_array_almost_equal(p, stats.chisqprob(expected_g, mobs.count(axis=0) - 1)) obs1 = np.ma.array([3, 5, 6, 99, 10], mask=[0, 0, 0, 1, 0]) exp1 = np.ma.array([2, 4, 8, 10, 99], mask=[0, 0, 0, 0, 1]) chi2, p = stats.chisquare(obs1, f_exp=exp1) # Because of the mask at index 3 of obs1 and at index 4 of exp1, # only the first three elements are included in the calculation # of the statistic. mat.assert_array_equal(chi2, 1/2 + 1/4 + 4/8) # When axis=None, the two values should have type np.float64. chisq, p = stats.chisquare(np.ma.array([1,2,3]), axis=None) assert_(isinstance(chisq, np.float64)) assert_(isinstance(p, np.float64)) assert_equal(chisq, 1.0) assert_almost_equal(p, stats.chisqprob(1.0, 2)) # Empty arrays: # A data set with length 0 returns a masked scalar. with np.errstate(invalid='ignore'): chisq, p = stats.chisquare(np.ma.array([])) assert_(isinstance(chisq, np.ma.MaskedArray)) assert_equal(chisq.shape, ()) assert_(chisq.mask) empty3 = np.ma.array([[],[],[]]) # empty3 is a collection of 0 data sets (whose lengths would be 3, if # there were any), so the return value is an array with length 0. chisq, p = stats.chisquare(empty3) assert_(isinstance(chisq, np.ma.MaskedArray)) mat.assert_array_equal(chisq, []) # empty3.T is an array containing 3 data sets, each with length 0, # so an array of size (3,) is returned, with all values masked. with np.errstate(invalid='ignore'): chisq, p = stats.chisquare(empty3.T) assert_(isinstance(chisq, np.ma.MaskedArray)) assert_equal(chisq.shape, (3,)) assert_(np.all(chisq.mask)) def test_power_divergence_against_cressie_read_data(): # Test stats.power_divergence against tables 4 and 5 from # Cressie and Read, "Multimonial Goodness-of-Fit Tests", # J. R. Statist. Soc. B (1984), Vol 46, No. 3, pp. 440-464. # This tests the calculation for several values of lambda. # `table4` holds just the second and third columns from Table 4. table4 = np.array([ # observed, expected, 15, 15.171, 11, 13.952, 14, 12.831, 17, 11.800, 5, 10.852, 11, 9.9796, 10, 9.1777, 4, 8.4402, 8, 7.7620, 10, 7.1383, 7, 6.5647, 9, 6.0371, 11, 5.5520, 3, 5.1059, 6, 4.6956, 1, 4.3183, 1, 3.9713, 4, 3.6522, ]).reshape(-1, 2) table5 = np.array([ # lambda, statistic -10.0, 72.2e3, -5.0, 28.9e1, -3.0, 65.6, -2.0, 40.6, -1.5, 34.0, -1.0, 29.5, -0.5, 26.5, 0.0, 24.6, 0.5, 23.4, 0.67, 23.1, 1.0, 22.7, 1.5, 22.6, 2.0, 22.9, 3.0, 24.8, 5.0, 35.5, 10.0, 21.4e1, ]).reshape(-1, 2) for lambda_, expected_stat in table5: stat, p = stats.power_divergence(table4[:,0], table4[:,1], lambda_=lambda_) assert_allclose(stat, expected_stat, rtol=5e-3) def test_friedmanchisquare(): # see ticket:113 # verified with matlab and R # From Demsar "Statistical Comparisons of Classifiers over Multiple Data Sets" # 2006, Xf=9.28 (no tie handling, tie corrected Xf >=9.28) x1 = [array([0.763, 0.599, 0.954, 0.628, 0.882, 0.936, 0.661, 0.583, 0.775, 1.0, 0.94, 0.619, 0.972, 0.957]), array([0.768, 0.591, 0.971, 0.661, 0.888, 0.931, 0.668, 0.583, 0.838, 1.0, 0.962, 0.666, 0.981, 0.978]), array([0.771, 0.590, 0.968, 0.654, 0.886, 0.916, 0.609, 0.563, 0.866, 1.0, 0.965, 0.614, 0.9751, 0.946]), array([0.798, 0.569, 0.967, 0.657, 0.898, 0.931, 0.685, 0.625, 0.875, 1.0, 0.962, 0.669, 0.975, 0.970])] # From "Bioestadistica para las ciencias de la salud" Xf=18.95 p<0.001: x2 = [array([4,3,5,3,5,3,2,5,4,4,4,3]), array([2,2,1,2,3,1,2,3,2,1,1,3]), array([2,4,3,3,4,3,3,4,4,1,2,1]), array([3,5,4,3,4,4,3,3,3,4,4,4])] # From Jerrorl H. Zar, "Biostatistical Analysis"(example 12.6), Xf=10.68, 0.005 < p < 0.01: # Probability from this example is inexact using Chisquare aproximation of Friedman Chisquare. x3 = [array([7.0,9.9,8.5,5.1,10.3]), array([5.3,5.7,4.7,3.5,7.7]), array([4.9,7.6,5.5,2.8,8.4]), array([8.8,8.9,8.1,3.3,9.1])] assert_array_almost_equal(stats.friedmanchisquare(x1[0],x1[1],x1[2],x1[3]), (10.2283464566929, 0.0167215803284414)) assert_array_almost_equal(stats.friedmanchisquare(x2[0],x2[1],x2[2],x2[3]), (18.9428571428571, 0.000280938375189499)) assert_array_almost_equal(stats.friedmanchisquare(x3[0],x3[1],x3[2],x3[3]), (10.68, 0.0135882729582176)) np.testing.assert_raises(ValueError, stats.friedmanchisquare,x3[0],x3[1]) # test using mstats assert_array_almost_equal(stats.mstats.friedmanchisquare(x1[0],x1[1],x1[2],x1[3]), (10.2283464566929, 0.0167215803284414)) # the following fails # assert_array_almost_equal(stats.mstats.friedmanchisquare(x2[0],x2[1],x2[2],x2[3]), # (18.9428571428571, 0.000280938375189499)) assert_array_almost_equal(stats.mstats.friedmanchisquare(x3[0],x3[1],x3[2],x3[3]), (10.68, 0.0135882729582176)) np.testing.assert_raises(ValueError,stats.mstats.friedmanchisquare,x3[0],x3[1]) def test_kstest(): # from numpy.testing import assert_almost_equal # comparing with values from R x = np.linspace(-1,1,9) D,p = stats.kstest(x,'norm') assert_almost_equal(D, 0.15865525393145705, 12) assert_almost_equal(p, 0.95164069201518386, 1) x = np.linspace(-15,15,9) D,p = stats.kstest(x,'norm') assert_almost_equal(D, 0.44435602715924361, 15) assert_almost_equal(p, 0.038850140086788665, 8) # the following tests rely on deterministicaly replicated rvs np.random.seed(987654321) x = stats.norm.rvs(loc=0.2, size=100) D,p = stats.kstest(x, 'norm', mode='asymp') assert_almost_equal(D, 0.12464329735846891, 15) assert_almost_equal(p, 0.089444888711820769, 15) assert_almost_equal(np.array(stats.kstest(x, 'norm', mode='asymp')), np.array((0.12464329735846891, 0.089444888711820769)), 15) assert_almost_equal(np.array(stats.kstest(x,'norm', alternative='less')), np.array((0.12464329735846891, 0.040989164077641749)), 15) # this 'greater' test fails with precision of decimal=14 assert_almost_equal(np.array(stats.kstest(x,'norm', alternative='greater')), np.array((0.0072115233216310994, 0.98531158590396228)), 12) # missing: no test that uses *args def test_ks_2samp(): # exact small sample solution data1 = np.array([1.0,2.0]) data2 = np.array([1.0,2.0,3.0]) assert_almost_equal(np.array(stats.ks_2samp(data1+0.01,data2)), np.array((0.33333333333333337, 0.99062316386915694))) assert_almost_equal(np.array(stats.ks_2samp(data1-0.01,data2)), np.array((0.66666666666666674, 0.42490954988801982))) # these can also be verified graphically assert_almost_equal( np.array(stats.ks_2samp(np.linspace(1,100,100), np.linspace(1,100,100)+2+0.1)), np.array((0.030000000000000027, 0.99999999996005062))) assert_almost_equal( np.array(stats.ks_2samp(np.linspace(1,100,100), np.linspace(1,100,100)+2-0.1)), np.array((0.020000000000000018, 0.99999999999999933))) # these are just regression tests assert_almost_equal( np.array(stats.ks_2samp(np.linspace(1,100,100), np.linspace(1,100,110)+20.1)), np.array((0.21090909090909091, 0.015880386730710221))) assert_almost_equal( np.array(stats.ks_2samp(np.linspace(1,100,100), np.linspace(1,100,110)+20-0.1)), np.array((0.20818181818181825, 0.017981441789762638))) def test_ttest_rel(): # regression test tr,pr = 0.81248591389165692, 0.41846234511362157 tpr = ([tr,-tr],[pr,pr]) rvs1 = np.linspace(1,100,100) rvs2 = np.linspace(1.01,99.989,100) rvs1_2D = np.array([np.linspace(1,100,100), np.linspace(1.01,99.989,100)]) rvs2_2D = np.array([np.linspace(1.01,99.989,100), np.linspace(1,100,100)]) t,p = stats.ttest_rel(rvs1, rvs2, axis=0) assert_array_almost_equal([t,p],(tr,pr)) t,p = stats.ttest_rel(rvs1_2D.T, rvs2_2D.T, axis=0) assert_array_almost_equal([t,p],tpr) t,p = stats.ttest_rel(rvs1_2D, rvs2_2D, axis=1) assert_array_almost_equal([t,p],tpr) # test on 3 dimensions rvs1_3D = np.dstack([rvs1_2D,rvs1_2D,rvs1_2D]) rvs2_3D = np.dstack([rvs2_2D,rvs2_2D,rvs2_2D]) t,p = stats.ttest_rel(rvs1_3D, rvs2_3D, axis=1) assert_array_almost_equal(np.abs(t), tr) assert_array_almost_equal(np.abs(p), pr) assert_equal(t.shape, (2, 3)) t,p = stats.ttest_rel(np.rollaxis(rvs1_3D,2), np.rollaxis(rvs2_3D,2), axis=2) assert_array_almost_equal(np.abs(t), tr) assert_array_almost_equal(np.abs(p), pr) assert_equal(t.shape, (3, 2)) olderr = np.seterr(all='ignore') try: # test zero division problem t,p = stats.ttest_rel([0,0,0],[1,1,1]) assert_equal((np.abs(t),p), (np.inf, 0)) assert_equal(stats.ttest_rel([0,0,0], [0,0,0]), (np.nan, np.nan)) # check that nan in input array result in nan output anan = np.array([[1,np.nan],[-1,1]]) assert_equal(stats.ttest_ind(anan, np.zeros((2,2))),([0, np.nan], [1,np.nan])) finally: np.seterr(**olderr) # test incorrect input shape raise an error x = np.arange(24) assert_raises(ValueError, stats.ttest_rel, x.reshape((8, 3)), x.reshape((2, 3, 4))) def _desc_stats(x1, x2, axis=0): def _stats(x, axis=0): x = np.asarray(x) mu = np.mean(x, axis=axis) std = np.std(x, axis=axis, ddof=1) nobs = x.shape[axis] return mu, std, nobs return _stats(x1, axis) + _stats(x2, axis) def test_ttest_perm(): # Test on horizontal dimension N = 20 np.random.seed(0) a = np.vstack((np.arange((3*N)/4),np.random.random((3*N)/4))) b = np.vstack((np.arange(N/4) + 100,np.random.random(N/4))) p_t_stats, pvalues = stats.ttest_ind(a, b, axis=1, equal_var=False) np_t_stats, pvalues = stats.ttest_ind(a, b, axis=1, equal_var=False, permutations=1000, random_state=0) assert_array_almost_equal(p_t_stats, np_t_stats, 5) assert_array_almost_equal(pvalues, array([0.000999, 0.69031])) # Test on vertical dimension N = 20 np.random.seed(0) a = np.vstack((np.arange((3*N)/4),np.random.random((3*N)/4))).transpose() b = np.vstack((np.arange(N/4) + 100,np.random.random(N/4))).transpose() p_t_stats, pvalues = stats.ttest_ind(a, b, axis=0, equal_var=False) np_t_stats, pvalues = stats.ttest_ind(a, b, axis=0, equal_var=False, permutations=1000, random_state=0) assert_array_almost_equal(p_t_stats, np_t_stats, 5) assert_array_almost_equal(pvalues, array([0.000999, 0.69031])) # Test on 1 dimensional case N = 20 np.random.seed(0) a = np.arange((3*N)/4) b = np.arange(N/4) + 100 p_t_stats, pvalues = stats.ttest_ind(a, b, equal_var=False) np_t_stats, pvalues = stats.ttest_ind(a, b, equal_var=False, permutations=1000, random_state=0) assert_array_almost_equal(p_t_stats, np_t_stats, 5) assert_array_almost_equal(pvalues, array([0.000999])) # Test just arrays N = 20 np.random.seed(0) a = range(int((3*N)/4)) b = range(100,int(N/4)+100) p_t_stats, pvalues = stats.ttest_ind(a, b, equal_var=False) np_t_stats, pvalues = stats.ttest_ind(a, b, equal_var=False, permutations=1000, random_state=0) assert_array_almost_equal(p_t_stats, np_t_stats, 5) assert_array_almost_equal(pvalues, array([0.000999])) # Test equal variance N = 20 np.random.seed(0) a = np.arange(N/2) b = np.arange(N/2) + 100 p_t_stats, pvalues = stats.ttest_ind(a, b, equal_var=True) np_t_stats, pvalues = stats.ttest_ind(a, b, equal_var=True, permutations=1000, random_state=0) assert_array_almost_equal(p_t_stats, np_t_stats, 5) assert_array_almost_equal(pvalues, array([0.000999])) # Test out random seed N = 20 a = np.vstack((np.arange((3*N)/4),np.random.random((3*N)/4))) b = np.vstack((np.arange(N/4) + 100,np.random.random(N/4))) p_t_stats, pvalues = stats.ttest_ind(a, b, axis=1, equal_var=False) np_t_stats, pvalues = stats.ttest_ind(a, b, axis=1, equal_var=False, permutations=1000, random_state=np.random.RandomState(seed=0)) assert_array_almost_equal(p_t_stats, np_t_stats, 5) assert_array_almost_equal(pvalues, array([0.000999, 0.69031])) # Test out different array dimensions np.random.seed(0) rvs1 = stats.norm.rvs(loc=5, scale=10, size=500) rvs5 = stats.norm.rvs(loc=8, scale=20, size=100) np_t_stats, pvalues = stats.ttest_ind(rvs1.reshape((100, 5)), rvs5, permutations=1000) assert_array_almost_equal(np_t_stats, np.array([0.012733, 0.393926, 0.208261, 0.050528, 1.111482])) assert_array_almost_equal(pvalues, np.array([0.988012, 0.686314, 0.81019, 0.963037, 0.25974])) def test_ttest_ind_permutations(): # Test on horizontal dimension N = 20 np.random.seed(0) a = np.vstack((np.arange(3*N//4), np.random.random(3*N//4))) b = np.vstack((np.arange(N//4) + 100, np.random.random(N//4))) p_t_stats, pvalues = stats.ttest_ind(a, b, axis=1, equal_var=False) np_t_stats, pvalues = stats.ttest_ind(a, b, axis=1, equal_var=False, permutations=1000, random_state=0) assert_array_almost_equal(p_t_stats, np_t_stats, 5) assert_array_almost_equal(pvalues, array([0.000999, 0.69031])) # Test on vertical dimension N = 20 np.random.seed(0) a = np.vstack((np.arange((3*N)//4), np.random.random(3*N//4))).transpose() b = np.vstack((np.arange(N//4) + 100, np.random.random(N//4))).transpose() p_t_stats, pvalues = stats.ttest_ind(a, b, axis=0, equal_var=False) np_t_stats, pvalues = stats.ttest_ind(a, b, axis=0, equal_var=False, permutations=1000, random_state=0) assert_array_almost_equal(p_t_stats, np_t_stats, 5) assert_array_almost_equal(pvalues, array([0.000999, 0.69031])) # Test on 1 dimensional case N = 20 np.random.seed(0) a = np.arange(3*N//4) b = np.arange(N//4) + 100 p_t_stats, pvalues = stats.ttest_ind(a, b, equal_var=False) np_t_stats, pvalues = stats.ttest_ind(a, b, equal_var=False, permutations=1000, random_state=0) assert_array_almost_equal(p_t_stats, np_t_stats, 5) assert_array_almost_equal(pvalues, 0.000999) # Test just arrays N = 20 np.random.seed(0) a = range(3*N//4) b = range(100, N//4 + 100) p_t_stats, pvalues = stats.ttest_ind(a, b, equal_var=False) np_t_stats, pvalues = stats.ttest_ind(a, b, equal_var=False, permutations=1000, random_state=0) assert_array_almost_equal(p_t_stats, np_t_stats, 5) assert_array_almost_equal(pvalues, 0.000999) # Test equal variance np.random.seed(0) a = np.arange(10) b = np.arange(10) + 100 p_t_stats, pvalues = stats.ttest_ind(a, b, equal_var=True) np_t_stats, pvalues = stats.ttest_ind(a, b, equal_var=True, permutations=1000, random_state=0) assert_array_almost_equal(p_t_stats, np_t_stats, 5) assert_array_almost_equal(pvalues, 0.000999) # Test out random seed N = 20 a = np.vstack((np.arange(3*N//4), np.random.random(3*N//4))) b = np.vstack((np.arange(N//4) + 100, np.random.random(N//4))) p_t_stats, pvalues = stats.ttest_ind(a, b, axis=1, equal_var=False) np_t_stats, pvalues = stats.ttest_ind(a, b, axis=1, equal_var=False, permutations=1000, random_state=np.random.RandomState(seed=0)) assert_array_almost_equal(p_t_stats, np_t_stats, 5) assert_array_almost_equal(pvalues, array([0.000999, 0.69031])) def test_ttest_ind(): # regression test tr = 1.0912746897927283 pr = 0.27647818616351882 tpr = ([tr,-tr],[pr,pr]) rvs2 = np.linspace(1,100,100) rvs1 = np.linspace(5,105,100) rvs1_2D = np.array([rvs1, rvs2]) rvs2_2D = np.array([rvs2, rvs1]) t,p = stats.ttest_ind(rvs1, rvs2, axis=0) assert_array_almost_equal([t,p],(tr,pr)) # test from_stats API assert_array_almost_equal(stats.ttest_ind_from_stats(*_desc_stats(rvs1, rvs2)), [t, p]) t,p = stats.ttest_ind(rvs1_2D.T, rvs2_2D.T, axis=0) assert_array_almost_equal([t,p],tpr) args = _desc_stats(rvs1_2D.T, rvs2_2D.T) assert_array_almost_equal(stats.ttest_ind_from_stats(*args), [t, p]) t,p = stats.ttest_ind(rvs1_2D, rvs2_2D, axis=1) assert_array_almost_equal([t,p],tpr) args = _desc_stats(rvs1_2D, rvs2_2D, axis=1) assert_array_almost_equal(stats.ttest_ind_from_stats(*args), [t, p]) # test on 3 dimensions rvs1_3D = np.dstack([rvs1_2D,rvs1_2D,rvs1_2D]) rvs2_3D = np.dstack([rvs2_2D,rvs2_2D,rvs2_2D]) t,p = stats.ttest_ind(rvs1_3D, rvs2_3D, axis=1) assert_almost_equal(np.abs(t), np.abs(tr)) assert_array_almost_equal(np.abs(p), pr) assert_equal(t.shape, (2, 3)) t,p = stats.ttest_ind(np.rollaxis(rvs1_3D,2), np.rollaxis(rvs2_3D,2), axis=2) assert_array_almost_equal(np.abs(t), np.abs(tr)) assert_array_almost_equal(np.abs(p), pr) assert_equal(t.shape, (3, 2)) olderr = np.seterr(all='ignore') try: # test zero division problem t,p = stats.ttest_ind([0,0,0],[1,1,1]) assert_equal((np.abs(t),p), (np.inf, 0)) assert_equal(stats.ttest_ind([0,0,0], [0,0,0]), (np.nan, np.nan)) # check that nan in input array result in nan output anan = np.array([[1,np.nan],[-1,1]]) assert_equal(stats.ttest_ind(anan, np.zeros((2,2))),([0, np.nan], [1,np.nan])) finally: np.seterr(**olderr) def test_ttest_ind_with_uneq_var(): # check vs. R a = (1, 2, 3) b = (1.1, 2.9, 4.2) pr = 0.53619490753126731 tr = -0.68649512735572582 t, p = stats.ttest_ind(a, b, equal_var=False) assert_array_almost_equal([t,p], [tr, pr]) # test from desc stats API assert_array_almost_equal(stats.ttest_ind_from_stats(*_desc_stats(a, b), equal_var=False), [t, p]) a = (1, 2, 3, 4) pr = 0.84354139131608286 tr = -0.2108663315950719 t, p = stats.ttest_ind(a, b, equal_var=False) assert_array_almost_equal([t,p], [tr, pr]) assert_array_almost_equal(stats.ttest_ind_from_stats(*_desc_stats(a, b), equal_var=False), [t, p]) # regression test tr = 1.0912746897927283 tr_uneq_n = 0.66745638708050492 pr = 0.27647831993021388 pr_uneq_n = 0.50873585065616544 tpr = ([tr,-tr],[pr,pr]) rvs3 = np.linspace(1,100, 25) rvs2 = np.linspace(1,100,100) rvs1 = np.linspace(5,105,100) rvs1_2D = np.array([rvs1, rvs2]) rvs2_2D = np.array([rvs2, rvs1]) t,p = stats.ttest_ind(rvs1, rvs2, axis=0, equal_var=False) assert_array_almost_equal([t,p],(tr,pr)) assert_array_almost_equal(stats.ttest_ind_from_stats(*_desc_stats(rvs1, rvs2), equal_var=False), (t, p)) t,p = stats.ttest_ind(rvs1, rvs3, axis=0, equal_var=False) assert_array_almost_equal([t,p], (tr_uneq_n, pr_uneq_n)) assert_array_almost_equal(stats.ttest_ind_from_stats(*_desc_stats(rvs1, rvs3), equal_var=False), (t, p)) t,p = stats.ttest_ind(rvs1_2D.T, rvs2_2D.T, axis=0, equal_var=False) assert_array_almost_equal([t,p],tpr) args = _desc_stats(rvs1_2D.T, rvs2_2D.T) assert_array_almost_equal(stats.ttest_ind_from_stats(*args, equal_var=False), (t, p)) t,p = stats.ttest_ind(rvs1_2D, rvs2_2D, axis=1, equal_var=False) assert_array_almost_equal([t,p],tpr) args = _desc_stats(rvs1_2D, rvs2_2D, axis=1) assert_array_almost_equal(stats.ttest_ind_from_stats(*args, equal_var=False), (t, p)) # test on 3 dimensions rvs1_3D = np.dstack([rvs1_2D,rvs1_2D,rvs1_2D]) rvs2_3D = np.dstack([rvs2_2D,rvs2_2D,rvs2_2D]) t,p = stats.ttest_ind(rvs1_3D, rvs2_3D, axis=1, equal_var=False) assert_almost_equal(np.abs(t), np.abs(tr)) assert_array_almost_equal(np.abs(p), pr) assert_equal(t.shape, (2, 3)) args = _desc_stats(rvs1_3D, rvs2_3D, axis=1) t, p = stats.ttest_ind_from_stats(*args, equal_var=False) assert_almost_equal(np.abs(t), np.abs(tr)) assert_array_almost_equal(np.abs(p), pr) assert_equal(t.shape, (2, 3)) t,p = stats.ttest_ind(np.rollaxis(rvs1_3D,2), np.rollaxis(rvs2_3D,2), axis=2, equal_var=False) assert_array_almost_equal(np.abs(t), np.abs(tr)) assert_array_almost_equal(np.abs(p), pr) assert_equal(t.shape, (3, 2)) args = _desc_stats(np.rollaxis(rvs1_3D, 2), np.rollaxis(rvs2_3D, 2), axis=2) t, p = stats.ttest_ind_from_stats(*args, equal_var=False) assert_array_almost_equal(np.abs(t), np.abs(tr)) assert_array_almost_equal(np.abs(p), pr) assert_equal(t.shape, (3, 2)) olderr = np.seterr(all='ignore') try: # test zero division problem t,p = stats.ttest_ind([0,0,0],[1,1,1], equal_var=False) assert_equal((np.abs(t),p), (np.inf, 0)) assert_equal(stats.ttest_ind([0,0,0], [0,0,0], equal_var=False), (np.nan, np.nan)) # check that nan in input array result in nan output anan = np.array([[1,np.nan],[-1,1]]) assert_equal(stats.ttest_ind(anan, np.zeros((2,2)), equal_var=False), ([0, np.nan], [1,np.nan])) finally: np.seterr(**olderr) def test_ttest_1samp_new(): n1, n2, n3 = (10,15,20) rvn1 = stats.norm.rvs(loc=5,scale=10,size=(n1,n2,n3)) # check multidimensional array and correct axis handling # deterministic rvn1 and rvn2 would be better as in test_ttest_rel t1,p1 = stats.ttest_1samp(rvn1[:,:,:], np.ones((n2,n3)),axis=0) t2,p2 = stats.ttest_1samp(rvn1[:,:,:], 1,axis=0) t3,p3 = stats.ttest_1samp(rvn1[:,0,0], 1) assert_array_almost_equal(t1,t2, decimal=14) assert_almost_equal(t1[0,0],t3, decimal=14) assert_equal(t1.shape, (n2,n3)) t1,p1 = stats.ttest_1samp(rvn1[:,:,:], np.ones((n1,n3)),axis=1) t2,p2 = stats.ttest_1samp(rvn1[:,:,:], 1,axis=1) t3,p3 = stats.ttest_1samp(rvn1[0,:,0], 1) assert_array_almost_equal(t1,t2, decimal=14) assert_almost_equal(t1[0,0],t3, decimal=14) assert_equal(t1.shape, (n1,n3)) t1,p1 = stats.ttest_1samp(rvn1[:,:,:], np.ones((n1,n2)),axis=2) t2,p2 = stats.ttest_1samp(rvn1[:,:,:], 1,axis=2) t3,p3 = stats.ttest_1samp(rvn1[0,0,:], 1) assert_array_almost_equal(t1,t2, decimal=14) assert_almost_equal(t1[0,0],t3, decimal=14) assert_equal(t1.shape, (n1,n2)) olderr = np.seterr(all='ignore') try: # test zero division problem t,p = stats.ttest_1samp([0,0,0], 1) assert_equal((np.abs(t),p), (np.inf, 0)) assert_equal(stats.ttest_1samp([0,0,0], 0), (np.nan, np.nan)) # check that nan in input array result in nan output anan = np.array([[1,np.nan],[-1,1]]) assert_equal(stats.ttest_1samp(anan, 0),([0, np.nan], [1,np.nan])) finally: np.seterr(**olderr) class TestDescribe(TestCase): def test_describe_numbers(self): x = np.vstack((np.ones((3,4)), 2 * np.ones((2,4)))) nc, mmc = (5, ([1., 1., 1., 1.], [2., 2., 2., 2.])) mc = np.array([1.4, 1.4, 1.4, 1.4]) vc = np.array([0.3, 0.3, 0.3, 0.3]) skc = [0.40824829046386357] * 4 kurtc = [-1.833333333333333] * 4 n, mm, m, v, sk, kurt = stats.describe(x) assert_equal(n, nc) assert_equal(mm, mmc) assert_equal(m, mc) assert_equal(v, vc) # not sure about precision with sk, skc assert_array_almost_equal(sk, skc, decimal=13) assert_array_almost_equal(kurt, kurtc, decimal=13) n, mm, m, v, sk, kurt = stats.describe(x.T, axis=1) assert_equal(n, nc) assert_equal(mm, mmc) assert_equal(m, mc) assert_equal(v, vc) # not sure about precision with sk, skc assert_array_almost_equal(sk, skc, decimal=13) assert_array_almost_equal(kurt, kurtc, decimal=13) def test_describe_result_attributes(self): actual = stats.describe(np.arange(5)) attributes = ('nobs', 'minmax', 'mean', 'variance', 'skewness', 'kurtosis') for i, attr in enumerate(attributes): assert_equal(actual[i], getattr(actual, attr)) def test_describe_typename(self): actual = stats.describe(np.arange(5)) assert_equal(str(actual)[:8], 'Describe') def test_normalitytests(): # numbers verified with R: dagoTest in package fBasics st_normal, st_skew, st_kurt = (3.92371918, 1.98078826, -0.01403734) pv_normal, pv_skew, pv_kurt = (0.14059673, 0.04761502, 0.98880019) x = np.array((-2,-1,0,1,2,3)*4)**2 yield assert_array_almost_equal, stats.normaltest(x), (st_normal, pv_normal) yield assert_array_almost_equal, stats.skewtest(x), (st_skew, pv_skew) yield assert_array_almost_equal, stats.kurtosistest(x), (st_kurt, pv_kurt) # Test axis=None (equal to axis=0 for 1-D input) yield (assert_array_almost_equal, stats.normaltest(x, axis=None), (st_normal, pv_normal)) yield (assert_array_almost_equal, stats.skewtest(x, axis=None), (st_skew, pv_skew)) yield (assert_array_almost_equal, stats.kurtosistest(x, axis=None), (st_kurt, pv_kurt)) class TestJarqueBera(TestCase): def test_jarque_bera_stats(self): np.random.seed(987654321) x = np.random.normal(0, 1, 100000) y = np.random.chisquare(10000, 100000) z = np.random.rayleigh(1, 100000) assert_(stats.jarque_bera(x)[1] > stats.jarque_bera(y)[1]) assert_(stats.jarque_bera(x)[1] > stats.jarque_bera(z)[1]) assert_(stats.jarque_bera(y)[1] > stats.jarque_bera(z)[1]) def test_jarque_bera_array_like(self): np.random.seed(987654321) x = np.random.normal(0, 1, 100000) JB1, p1 = stats.jarque_bera(list(x)) JB2, p2 = stats.jarque_bera(tuple(x)) JB3, p3 = stats.jarque_bera(x.reshape(2, 50000)) assert_(JB1 == JB2 == JB3) assert_(p1 == p2 == p3) def test_jarque_bera_size(self): assert_raises(ValueError, stats.jarque_bera, []) def test_skewtest_too_few_samples(): # Regression test for ticket #1492. # skewtest requires at least 8 samples; 7 should raise a ValueError. x = np.arange(7.0) assert_raises(ValueError, stats.skewtest, x) def test_kurtosistest_too_few_samples(): # Regression test for ticket #1425. # kurtosistest requires at least 5 samples; 4 should raise a ValueError. x = np.arange(4.0) assert_raises(ValueError, stats.kurtosistest, x) def test_mannwhitneyu(): x = np.array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 2., 1., 1., 2., 1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 3., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]) y = np.array([1., 1., 1., 1., 1., 1., 1., 2., 1., 2., 1., 1., 1., 1., 2., 1., 1., 1., 2., 1., 1., 1., 1., 1., 2., 1., 1., 3., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 2., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 2., 2., 1., 1., 2., 1., 1., 2., 1., 2., 1., 1., 1., 1., 2., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 2., 2., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 2., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1.]) # p-value verified with matlab and R to 5 significant digits assert_array_almost_equal(stats.stats.mannwhitneyu(x,y), (16980.5, 2.8214327656317373e-005), decimal=12) def test_pointbiserial(): # same as mstats test except for the nan # Test data: http://support.sas.com/ctx/samples/index.jsp?sid=490&tab=output x = [1,0,1,1,1,1,0,1,0,0,0,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0,1,0, 0,0,0,0,1] y = [14.8,13.8,12.4,10.1,7.1,6.1,5.8,4.6,4.3,3.5,3.3,3.2,3.0, 2.8,2.8,2.5,2.4,2.3,2.1,1.7,1.7,1.5,1.3,1.3,1.2,1.2,1.1, 0.8,0.7,0.6,0.5,0.2,0.2,0.1] assert_almost_equal(stats.pointbiserialr(x, y)[0], 0.36149, 5) def test_obrientransform(): # A couple tests calculated by hand. x1 = np.array([0, 2, 4]) t1 = stats.obrientransform(x1) expected = [7, -2, 7] assert_allclose(t1[0], expected) x2 = np.array([0, 3, 6, 9]) t2 = stats.obrientransform(x2) expected = np.array([30, 0, 0, 30]) assert_allclose(t2[0], expected) # Test two arguments. a, b = stats.obrientransform(x1, x2) assert_equal(a, t1[0]) assert_equal(b, t2[0]) # Test three arguments. a, b, c = stats.obrientransform(x1, x2, x1) assert_equal(a, t1[0]) assert_equal(b, t2[0]) assert_equal(c, t1[0]) # This is a regression test to check np.var replacement. # The author of this test didn't separately verify the numbers. x1 = np.arange(5) result = np.array( [[5.41666667, 1.04166667, -0.41666667, 1.04166667, 5.41666667], [21.66666667, 4.16666667, -1.66666667, 4.16666667, 21.66666667]]) assert_array_almost_equal(stats.obrientransform(x1, 2*x1), result, decimal=8) # Example from "O'Brien Test for Homogeneity of Variance" # by Herve Abdi. values = range(5, 11) reps = np.array([5, 11, 9, 3, 2, 2]) data = np.repeat(values, reps) transformed_values = np.array([3.1828, 0.5591, 0.0344, 1.6086, 5.2817, 11.0538]) expected = np.repeat(transformed_values, reps) result = stats.obrientransform(data) assert_array_almost_equal(result[0], expected, decimal=4) class HarMeanTestCase: def test_1dlist(self): # Test a 1d list a = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] b = 34.1417152147 self.do(a, b) def test_1darray(self): # Test a 1d array a = np.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100]) b = 34.1417152147 self.do(a, b) def test_1dma(self): # Test a 1d masked array a = np.ma.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100]) b = 34.1417152147 self.do(a, b) def test_1dmavalue(self): # Test a 1d masked array with a masked value a = np.ma.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100], mask=[0,0,0,0,0,0,0,0,0,1]) b = 31.8137186141 self.do(a, b) # Note the next tests use axis=None as default, not axis=0 def test_2dlist(self): # Test a 2d list a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]] b = 38.6696271841 self.do(a, b) def test_2darray(self): # Test a 2d array a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]] b = 38.6696271841 self.do(np.array(a), b) def test_2dma(self): # Test a 2d masked array a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]] b = 38.6696271841 self.do(np.ma.array(a), b) def test_2daxis0(self): # Test a 2d list with axis=0 a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]] b = np.array([22.88135593, 39.13043478, 52.90076336, 65.45454545]) self.do(a, b, axis=0) def test_2daxis1(self): # Test a 2d list with axis=1 a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]] b = np.array([19.2, 63.03939962, 103.80078637]) self.do(a, b, axis=1) def test_2dmatrixdaxis0(self): # Test a 2d list with axis=0 a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]] b = np.matrix([[22.88135593, 39.13043478, 52.90076336, 65.45454545]]) self.do(np.matrix(a), b, axis=0) def test_2dmatrixaxis1(self): # Test a 2d list with axis=1 a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]] b = np.matrix([[19.2, 63.03939962, 103.80078637]]).T self.do(np.matrix(a), b, axis=1) class TestHarMean(HarMeanTestCase, TestCase): def do(self, a, b, axis=None, dtype=None): x = stats.hmean(a, axis=axis, dtype=dtype) assert_almost_equal(b, x) assert_equal(x.dtype, dtype) class GeoMeanTestCase: def test_1dlist(self): # Test a 1d list a = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] b = 45.2872868812 self.do(a, b) def test_1darray(self): # Test a 1d array a = np.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100]) b = 45.2872868812 self.do(a, b) def test_1dma(self): # Test a 1d masked array a = np.ma.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100]) b = 45.2872868812 self.do(a, b) def test_1dmavalue(self): # Test a 1d masked array with a masked value a = np.ma.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100], mask=[0,0,0,0,0,0,0,0,0,1]) b = 41.4716627439 self.do(a, b) # Note the next tests use axis=None as default, not axis=0 def test_2dlist(self): # Test a 2d list a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]] b = 52.8885199 self.do(a, b) def test_2darray(self): # Test a 2d array a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]] b = 52.8885199 self.do(np.array(a), b) def test_2dma(self): # Test a 2d masked array a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]] b = 52.8885199 self.do(np.ma.array(a), b) def test_2daxis0(self): # Test a 2d list with axis=0 a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]] b = np.array([35.56893304, 49.32424149, 61.3579244, 72.68482371]) self.do(a, b, axis=0) def test_2daxis1(self): # Test a 2d list with axis=1 a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]] b = np.array([22.13363839, 64.02171746, 104.40086817]) self.do(a, b, axis=1) def test_2dmatrixdaxis0(self): # Test a 2d list with axis=0 a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]] b = np.matrix([[35.56893304, 49.32424149, 61.3579244, 72.68482371]]) self.do(np.matrix(a), b, axis=0) def test_2dmatrixaxis1(self): # Test a 2d list with axis=1 a = [[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]] b = np.matrix([[22.13363839, 64.02171746, 104.40086817]]).T self.do(np.matrix(a), b, axis=1) def test_1dlist0(self): # Test a 1d list with zero element a = [10, 20, 30, 40, 50, 60, 70, 80, 90, 0] b = 0.0 # due to exp(-inf)=0 olderr = np.seterr(all='ignore') try: self.do(a, b) finally: np.seterr(**olderr) def test_1darray0(self): # Test a 1d array with zero element a = np.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 0]) b = 0.0 # due to exp(-inf)=0 olderr = np.seterr(all='ignore') try: self.do(a, b) finally: np.seterr(**olderr) def test_1dma0(self): # Test a 1d masked array with zero element a = np.ma.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 0]) b = 41.4716627439 olderr = np.seterr(all='ignore') try: self.do(a, b) finally: np.seterr(**olderr) def test_1dmainf(self): # Test a 1d masked array with negative element a = np.ma.array([10, 20, 30, 40, 50, 60, 70, 80, 90, -1]) b = 41.4716627439 olderr = np.seterr(all='ignore') try: self.do(a, b) finally: np.seterr(**olderr) class TestGeoMean(GeoMeanTestCase, TestCase): def do(self, a, b, axis=None, dtype=None): # Note this doesn't test when axis is not specified x = stats.gmean(a, axis=axis, dtype=dtype) assert_almost_equal(b, x) assert_equal(x.dtype, dtype) def test_binomtest(): # precision tests compared to R for ticket:986 pp = np.concatenate((np.linspace(0.1,0.2,5), np.linspace(0.45,0.65,5), np.linspace(0.85,0.95,5))) n = 501 x = 450 results = [0.0, 0.0, 1.0159969301994141e-304, 2.9752418572150531e-275, 7.7668382922535275e-250, 2.3381250925167094e-099, 7.8284591587323951e-081, 9.9155947819961383e-065, 2.8729390725176308e-050, 1.7175066298388421e-037, 0.0021070691951093692, 0.12044570587262322, 0.88154763174802508, 0.027120993063129286, 2.6102587134694721e-006] for p, res in zip(pp,results): assert_approx_equal(stats.binom_test(x, n, p), res, significant=12, err_msg='fail forp=%f' % p) assert_approx_equal(stats.binom_test(50,100,0.1), 5.8320387857343647e-024, significant=12, err_msg='fail forp=%f' % p) def test_binomtest2(): # test added for issue #2384 res2 = [ [1.0, 1.0], [0.5,1.0,0.5], [0.25,1.00,1.00,0.25], [0.125,0.625,1.000,0.625,0.125], [0.0625,0.3750,1.0000,1.0000,0.3750,0.0625], [0.03125,0.21875,0.68750,1.00000,0.68750,0.21875,0.03125], [0.015625,0.125000,0.453125,1.000000,1.000000,0.453125,0.125000,0.015625], [0.0078125,0.0703125,0.2890625,0.7265625,1.0000000,0.7265625,0.2890625, 0.0703125,0.0078125], [0.00390625,0.03906250,0.17968750,0.50781250,1.00000000,1.00000000, 0.50781250,0.17968750,0.03906250,0.00390625], [0.001953125,0.021484375,0.109375000,0.343750000,0.753906250,1.000000000, 0.753906250,0.343750000,0.109375000,0.021484375,0.001953125] ] for k in range(1, 11): res1 = [stats.binom_test(v, k, 0.5) for v in range(k + 1)] assert_almost_equal(res1, res2[k-1], decimal=10) def test_binomtest3(): # test added for issue #2384 # test when x == n*p and neighbors res3 = [stats.binom_test(v, v*k, 1./k) for v in range(1, 11) for k in range(2, 11)] assert_equal(res3, np.ones(len(res3), int)) #> bt=c() #> for(i in as.single(1:10)){for(k in as.single(2:10)){bt = c(bt, binom.test(i-1, k*i,(1/k))$p.value); print(c(i+1, k*i,(1/k)))}} binom_testm1 = np.array([ 0.5, 0.5555555555555556, 0.578125, 0.5904000000000003, 0.5981224279835393, 0.603430543396034, 0.607304096221924, 0.610255656871054, 0.612579511000001, 0.625, 0.670781893004115, 0.68853759765625, 0.6980101120000006, 0.703906431368616, 0.70793209416498, 0.7108561134173507, 0.713076544331419, 0.714820192935702, 0.6875, 0.7268709038256367, 0.7418963909149174, 0.74986110468096, 0.7548015520398076, 0.7581671424768577, 0.760607984787832, 0.762459425024199, 0.7639120677676575, 0.7265625, 0.761553963657302, 0.774800934828818, 0.7818005980538996, 0.78613491480358, 0.789084353140195, 0.7912217659828884, 0.79284214559524, 0.794112956558801, 0.75390625, 0.7856929451142176, 0.7976688481430754, 0.8039848974727624, 0.807891868948366, 0.8105487660137676, 0.812473307174702, 0.8139318233591120, 0.815075399104785, 0.7744140625, 0.8037322594985427, 0.814742863657656, 0.8205425178645808, 0.8241275984172285, 0.8265645374416, 0.8283292196088257, 0.829666291102775, 0.8307144686362666, 0.7905273437499996, 0.8178712053954738, 0.828116983756619, 0.833508948940494, 0.8368403871552892, 0.839104213210105, 0.840743186196171, 0.84198481438049, 0.8429580531563676, 0.803619384765625, 0.829338573944648, 0.8389591907548646, 0.84401876783902, 0.84714369697889, 0.8492667010581667, 0.850803474598719, 0.851967542858308, 0.8528799045949524, 0.8145294189453126, 0.838881732845347, 0.847979024541911, 0.852760894015685, 0.8557134656773457, 0.8577190131799202, 0.85917058278431, 0.860270010472127, 0.861131648404582, 0.823802947998047, 0.846984756807511, 0.855635653643743, 0.860180994825685, 0.86298688573253, 0.864892525675245, 0.866271647085603, 0.867316125625004, 0.8681346531755114 ]) # > bt=c() # > for(i in as.single(1:10)){for(k in as.single(2:10)){bt = c(bt, binom.test(i+1, k*i,(1/k))$p.value); print(c(i+1, k*i,(1/k)))}} binom_testp1 = np.array([ 0.5, 0.259259259259259, 0.26171875, 0.26272, 0.2632244513031551, 0.2635138663069203, 0.2636951804161073, 0.2638162407564354, 0.2639010709000002, 0.625, 0.4074074074074074, 0.42156982421875, 0.4295746560000003, 0.43473045988554, 0.4383309503172684, 0.4409884859402103, 0.4430309389962837, 0.444649849401104, 0.6875, 0.4927602499618962, 0.5096031427383425, 0.5189636628480, 0.5249280070771274, 0.5290623300865124, 0.5320974248125793, 0.5344204730474308, 0.536255847400756, 0.7265625, 0.5496019313526808, 0.5669248746708034, 0.576436455045805, 0.5824538812831795, 0.5866053321547824, 0.589642781414643, 0.5919618019300193, 0.593790427805202, 0.75390625, 0.590868349763505, 0.607983393277209, 0.617303847446822, 0.623172512167948, 0.627208862156123, 0.6301556891501057, 0.632401894928977, 0.6341708982290303, 0.7744140625, 0.622562037497196, 0.639236102912278, 0.648263335014579, 0.65392850011132, 0.657816519817211, 0.660650782947676, 0.662808780346311, 0.6645068560246006, 0.7905273437499996, 0.6478843304312477, 0.6640468318879372, 0.6727589686071775, 0.6782129857784873, 0.681950188903695, 0.684671508668418, 0.686741824999918, 0.688369886732168, 0.803619384765625, 0.668716055304315, 0.684360013879534, 0.6927642396829181, 0.6980155964704895, 0.701609591890657, 0.7042244320992127, 0.7062125081341817, 0.707775152962577, 0.8145294189453126, 0.686243374488305, 0.7013873696358975, 0.709501223328243, 0.714563595144314, 0.718024953392931, 0.7205416252126137, 0.722454130389843, 0.723956813292035, 0.823802947998047, 0.701255953767043, 0.715928221686075, 0.723772209289768, 0.7286603031173616, 0.7319999279787631, 0.7344267920995765, 0.736270323773157, 0.737718376096348 ]) res4_p1 = [stats.binom_test(v+1, v*k, 1./k) for v in range(1, 11) for k in range(2, 11)] res4_m1 = [stats.binom_test(v-1, v*k, 1./k) for v in range(1, 11) for k in range(2, 11)] assert_almost_equal(res4_p1, binom_testp1, decimal=13) assert_almost_equal(res4_m1, binom_testm1, decimal=13) class TestTrim(object): # test trim functions def test_trim1(self): a = np.arange(11) assert_equal(stats.trim1(a, 0.1), np.arange(10)) assert_equal(stats.trim1(a, 0.2), np.arange(9)) assert_equal(stats.trim1(a, 0.2, tail='left'), np.arange(2,11)) assert_equal(stats.trim1(a, 3/11., tail='left'), np.arange(3,11)) def test_trimboth(self): a = np.arange(11) assert_equal(stats.trimboth(a, 3/11.), np.arange(3,8)) assert_equal(stats.trimboth(a, 0.2), np.array([2, 3, 4, 5, 6, 7, 8])) assert_equal(stats.trimboth(np.arange(24).reshape(6,4), 0.2), np.arange(4,20).reshape(4,4)) assert_equal(stats.trimboth(np.arange(24).reshape(4,6).T, 2/6.), np.array([[2, 8, 14, 20],[3, 9, 15, 21]])) assert_raises(ValueError, stats.trimboth, np.arange(24).reshape(4,6).T, 4/6.) def test_trim_mean(self): # don't use pre-sorted arrays a = np.array([4, 8, 2, 0, 9, 5, 10, 1, 7, 3, 6]) idx = np.array([3, 5, 0, 1, 2, 4]) a2 = np.arange(24).reshape(6, 4)[idx, :] a3 = np.arange(24).reshape(6, 4, order='F')[idx, :] assert_equal(stats.trim_mean(a3, 2/6.), np.array([2.5, 8.5, 14.5, 20.5])) assert_equal(stats.trim_mean(a2, 2/6.), np.array([10., 11., 12., 13.])) idx4 = np.array([1, 0, 3, 2]) a4 = np.arange(24).reshape(4, 6)[idx4, :] assert_equal(stats.trim_mean(a4, 2/6.), np.array([9., 10., 11., 12., 13., 14.])) # shuffled arange(24) as array_like a = [7, 11, 12, 21, 16, 6, 22, 1, 5, 0, 18, 10, 17, 9, 19, 15, 23, 20, 2, 14, 4, 13, 8, 3] assert_equal(stats.trim_mean(a, 2/6.), 11.5) assert_equal(stats.trim_mean([5,4,3,1,2,0], 2/6.), 2.5) # check axis argument np.random.seed(1234) a = np.random.randint(20, size=(5, 6, 4, 7)) for axis in [0, 1, 2, 3, -1]: res1 = stats.trim_mean(a, 2/6., axis=axis) res2 = stats.trim_mean(np.rollaxis(a, axis), 2/6.) assert_equal(res1, res2) res1 = stats.trim_mean(a, 2/6., axis=None) res2 = stats.trim_mean(a.ravel(), 2/6.) assert_equal(res1, res2) assert_raises(ValueError, stats.trim_mean, a, 0.6) class TestSigamClip(object): def test_sigmaclip1(self): a = np.concatenate((np.linspace(9.5,10.5,31),np.linspace(0,20,5))) fact = 4 # default c, low, upp = stats.sigmaclip(a) assert_(c.min() > low) assert_(c.max() < upp) assert_equal(low, c.mean() - fact*c.std()) assert_equal(upp, c.mean() + fact*c.std()) assert_equal(c.size, a.size) def test_sigmaclip2(self): a = np.concatenate((np.linspace(9.5,10.5,31),np.linspace(0,20,5))) fact = 1.5 c, low, upp = stats.sigmaclip(a, fact, fact) assert_(c.min() > low) assert_(c.max() < upp) assert_equal(low, c.mean() - fact*c.std()) assert_equal(upp, c.mean() + fact*c.std()) assert_equal(c.size, 4) assert_equal(a.size, 36) # check original array unchanged def test_sigmaclip3(self): a = np.concatenate((np.linspace(9.5,10.5,11),np.linspace(-100,-50,3))) fact = 1.8 c, low, upp = stats.sigmaclip(a, fact, fact) assert_(c.min() > low) assert_(c.max() < upp) assert_equal(low, c.mean() - fact*c.std()) assert_equal(upp, c.mean() + fact*c.std()) assert_equal(c, np.linspace(9.5,10.5,11)) class TestFOneWay(TestCase): def test_trivial(self): # A trivial test of stats.f_oneway, with F=0. F, p = stats.f_oneway([0,2], [0,2]) assert_equal(F, 0.0) def test_basic(self): # Despite being a floating point calculation, this data should # result in F being exactly 2.0. F, p = stats.f_oneway([0,2], [2,4]) assert_equal(F, 2.0) def test_large_integer_array(self): a = np.array([655, 788], dtype=np.uint16) b = np.array([789, 772], dtype=np.uint16) F, p = stats.f_oneway(a, b) assert_almost_equal(F, 0.77450216931805538) class TestKruskal(TestCase): def test_simple(self): x = [1] y = [2] h, p = stats.kruskal(x, y) assert_equal(h, 1.0) assert_approx_equal(p, stats.chisqprob(h, 1)) h, p = stats.kruskal(np.array(x), np.array(y)) assert_equal(h, 1.0) assert_approx_equal(p, stats.chisqprob(h, 1)) def test_basic(self): x = [1, 3, 5, 7, 9] y = [2, 4, 6, 8, 10] h, p = stats.kruskal(x, y) assert_approx_equal(h, 3./11, significant=10) assert_approx_equal(p, stats.chisqprob(3./11, 1)) h, p = stats.kruskal(np.array(x), np.array(y)) assert_approx_equal(h, 3./11, significant=10) assert_approx_equal(p, stats.chisqprob(3./11, 1)) def test_simple_tie(self): x = [1] y = [1, 2] h_uncorr = 1.5**2 + 2*2.25**2 - 12 corr = 0.75 expected = h_uncorr / corr # 0.5 h, p = stats.kruskal(x, y) # Since the expression is simple and the exact answer is 0.5, it # should be safe to use assert_equal(). assert_equal(h, expected) def test_another_tie(self): x = [1, 1, 1, 2] y = [2, 2, 2, 2] h_uncorr = (12. / 8. / 9.) * 4 * (3**2 + 6**2) - 3 * 9 corr = 1 - float(3**3 - 3 + 5**3 - 5) / (8**3 - 8) expected = h_uncorr / corr h, p = stats.kruskal(x, y) assert_approx_equal(h, expected) def test_three_groups(self): # A test of stats.kruskal with three groups, with ties. x = [1, 1, 1] y = [2, 2, 2] z = [2, 2] h_uncorr = (12. / 8. / 9.) * (3*2**2 + 3*6**2 + 2*6**2) - 3 * 9 # 5.0 corr = 1 - float(3**3 - 3 + 5**3 - 5) / (8**3 - 8) expected = h_uncorr / corr # 7.0 h, p = stats.kruskal(x, y, z) assert_approx_equal(h, expected) assert_approx_equal(p, stats.chisqprob(h, 2)) class TestCombinePvalues(TestCase): def test_fisher(self): # Example taken from http://en.wikipedia.org/wiki/Fisher's_exact_test#Example xsq, p = stats.combine_pvalues([.01, .2, .3], method='fisher') assert_approx_equal(p, 0.02156, significant=4) def test_stouffer(self): Z, p = stats.combine_pvalues([.01, .2, .3], method='stouffer') assert_approx_equal(p, 0.01651, significant=4) def test_stouffer2(self): Z, p = stats.combine_pvalues([.5, .5, .5], method='stouffer') assert_approx_equal(p, 0.5, significant=4) def test_weighted_stouffer(self): Z, p = stats.combine_pvalues([.01, .2, .3], method='stouffer', weights=np.ones(3)) assert_approx_equal(p, 0.01651, significant=4) def test_weighted_stouffer2(self): Z, p = stats.combine_pvalues([.01, .2, .3], method='stouffer', weights=np.array((1, 4, 9))) assert_approx_equal(p, 0.1464, significant=4) if __name__ == "__main__": run_module_suite()
mortonjt/scipy
scipy/stats/tests/test_stats.py
Python
bsd-3-clause
124,000
from features_to_hdf5 import features_to_hdf5 from videos_to_hdf5 import *
EderSantana/seya
seya/preprocessing/__init__.py
Python
bsd-3-clause
75
""" Utilities for working with Images and common neuroimaging spaces Images are very general things, and don't know anything about the kinds of spaces they refer to, via their coordinate map. There are a set of common neuroimaging spaces. When we create neuroimaging Images, we want to place them in neuroimaging spaces, and return information about common neuroimaging spaces. We do this by putting information about neuroimaging spaces in functions and variables in the ``nipy.core.reference.spaces`` module, and in this module. This keeps the specific neuroimaging spaces out of our Image object. >>> from nipy.core.api import Image, vox2mni, rollimg, xyz_affine, as_xyz_image Make a standard 4D xyzt image in MNI space. First the data and affine: >>> data = np.arange(24).reshape((1,2,3,4)) >>> affine = np.diag([2,3,4,1]).astype(float) We can add the TR (==2.0) to make the full 5x5 affine we need >>> img = Image(data, vox2mni(affine, 2.0)) >>> img.affine array([[ 2., 0., 0., 0., 0.], [ 0., 3., 0., 0., 0.], [ 0., 0., 4., 0., 0.], [ 0., 0., 0., 2., 0.], [ 0., 0., 0., 0., 1.]]) In this case the neuroimaging 'xyz_affine' is just the 4x4 from the 5x5 in the image >>> xyz_affine(img) array([[ 2., 0., 0., 0.], [ 0., 3., 0., 0.], [ 0., 0., 4., 0.], [ 0., 0., 0., 1.]]) However, if we roll time first in the image array, we can't any longer get an xyz_affine that makes sense in relationship to the voxel data: >>> img_t0 = rollimg(img, 't') >>> xyz_affine(img_t0) #doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... AxesError: First 3 input axes must correspond to X, Y, Z But we can fix this: >>> img_t0_affable = as_xyz_image(img_t0) >>> xyz_affine(img_t0_affable) array([[ 2., 0., 0., 0.], [ 0., 3., 0., 0.], [ 0., 0., 4., 0.], [ 0., 0., 0., 1.]]) It also works with nibabel images, which can only have xyz_affines: >>> import nibabel as nib >>> nimg = nib.Nifti1Image(data, affine) >>> xyz_affine(nimg) array([[ 2., 0., 0., 0.], [ 0., 3., 0., 0.], [ 0., 0., 4., 0.], [ 0., 0., 0., 1.]]) """ import sys import numpy as np from ...fixes.nibabel import io_orientation from ...io import nibcompat from ..image.image import Image from ..reference import spaces as rsp from ..reference.coordinate_map import AffineTransform def xyz_affine(img, name2xyz=None): """ Return xyz affine from image `img` if possible, or raise error Parameters ---------- img : ``Image`` instance or nibabel image It has a ``coordmap`` or attribute ``affine`` or method ``get_affine`` name2xyz : None or mapping Object such that ``name2xyz[ax_name]`` returns 'x', or 'y' or 'z' or raises a KeyError for a str ``ax_name``. None means use module default. Not used for nibabel `img` input. Returns ------- xyz_aff : (4,4) array voxel to X, Y, Z affine mapping Raises ------ SpaceTypeError : if `img` does not have an affine coordinate map AxesError : if not all of x, y, z recognized in `img` ``coordmap`` range AffineError : if axes dropped from the affine contribute to x, y, z coordinates Examples -------- >>> from nipy.core.api import vox2mni, Image >>> arr = np.arange(24).reshape((2,3,4,1)).astype(float) >>> img = Image(arr, vox2mni(np.diag([2,3,4,5,1]))) >>> img.coordmap AffineTransform( function_domain=CoordinateSystem(coord_names=('i', 'j', 'k', 'l'), name='voxels', coord_dtype=float64), function_range=CoordinateSystem(coord_names=('mni-x=L->R', 'mni-y=P->A', 'mni-z=I->S', 't'), name='mni', coord_dtype=float64), affine=array([[ 2., 0., 0., 0., 0.], [ 0., 3., 0., 0., 0.], [ 0., 0., 4., 0., 0.], [ 0., 0., 0., 5., 0.], [ 0., 0., 0., 0., 1.]]) ) >>> xyz_affine(img) array([[ 2., 0., 0., 0.], [ 0., 3., 0., 0.], [ 0., 0., 4., 0.], [ 0., 0., 0., 1.]]) Nibabel images always have xyz affines >>> import nibabel as nib >>> nimg = nib.Nifti1Image(arr, np.diag([2,3,4,1])) >>> xyz_affine(nimg) array([[ 2., 0., 0., 0.], [ 0., 3., 0., 0.], [ 0., 0., 4., 0.], [ 0., 0., 0., 1.]]) """ if hasattr(img, 'coordmap'): # nipy image return rsp.xyz_affine(img.coordmap, name2xyz) return nibcompat.get_affine(img) def is_xyz_affable(img, name2xyz=None): """ Return True if the image `img` has an xyz affine Parameters ---------- img : ``Image`` or nibabel ``SpatialImage`` If ``Image`` test ``img.coordmap``. If a nibabel image, return True name2xyz : None or mapping Object such that ``name2xyz[ax_name]`` returns 'x', or 'y' or 'z' or raises a KeyError for a str ``ax_name``. None means use module default. Not used for nibabel `img` input. Returns ------- tf : bool True if `img` has an xyz affine, False otherwise Examples -------- >>> from nipy.core.api import vox2mni, Image, rollimg >>> arr = np.arange(24).reshape((2,3,4,1)) >>> img = Image(arr, vox2mni(np.diag([2,3,4,5,1]))) >>> img.coordmap AffineTransform( function_domain=CoordinateSystem(coord_names=('i', 'j', 'k', 'l'), name='voxels', coord_dtype=float64), function_range=CoordinateSystem(coord_names=('mni-x=L->R', 'mni-y=P->A', 'mni-z=I->S', 't'), name='mni', coord_dtype=float64), affine=array([[ 2., 0., 0., 0., 0.], [ 0., 3., 0., 0., 0.], [ 0., 0., 4., 0., 0.], [ 0., 0., 0., 5., 0.], [ 0., 0., 0., 0., 1.]]) ) >>> is_xyz_affable(img) True >>> time0_img = rollimg(img, 't') >>> time0_img.coordmap AffineTransform( function_domain=CoordinateSystem(coord_names=('l', 'i', 'j', 'k'), name='voxels', coord_dtype=float64), function_range=CoordinateSystem(coord_names=('mni-x=L->R', 'mni-y=P->A', 'mni-z=I->S', 't'), name='mni', coord_dtype=float64), affine=array([[ 0., 2., 0., 0., 0.], [ 0., 0., 3., 0., 0.], [ 0., 0., 0., 4., 0.], [ 5., 0., 0., 0., 0.], [ 0., 0., 0., 0., 1.]]) ) >>> is_xyz_affable(time0_img) False Nibabel images always have xyz affines >>> import nibabel as nib >>> nimg = nib.Nifti1Image(arr, np.diag([2,3,4,1])) >>> is_xyz_affable(nimg) True """ try: xyz_affine(img, name2xyz) except rsp.SpaceError: return False return True def as_xyz_image(img, name2xyz=None): """ Return version of `img` that has a valid xyz affine, or raise error Parameters ---------- img : ``Image`` instance or nibabel image It has a ``coordmap`` attribute (``Image``) or a ``get_affine`` method (nibabel image object) name2xyz : None or mapping Object such that ``name2xyz[ax_name]`` returns 'x', or 'y' or 'z' or raises a KeyError for a str ``ax_name``. None means use module default. Not used for nibabel `img` input. Returns ------- reo_img : ``Image`` instance or nibabel image Returns image of same type as `img` input. If necessary, `reo_img` has its data and coordmap changed to allow it to return an xyz affine. If `img` is already xyz affable we return the input unchanged (``img is reo_img``). Raises ------ SpaceTypeError : if `img` does not have an affine coordinate map AxesError : if not all of x, y, z recognized in `img` ``coordmap`` range AffineError : if axes dropped from the affine contribute to x, y, z coordinates """ try: aff = xyz_affine(img, name2xyz) except (rsp.AxesError, rsp.AffineError): pass else: return img cmap = img.coordmap order = rsp.xyz_order(cmap.function_range, name2xyz) # Reorder reference to canonical order reo_img = img.reordered_reference(order) # Which input axes correspond? ornt = io_orientation(reo_img.coordmap.affine) current_in_order = ornt[:,0] # Set nan to inf to make np.argsort work for old numpy versions current_in_order[np.isnan(current_in_order)] = np.inf # Do we have the first three axes somewhere? if not set((0,1,2)).issubset(current_in_order): raise rsp.AxesError("One of x, y or z outputs missing a " "corresponding input axis") desired_input_order = np.argsort(current_in_order) reo_img = reo_img.reordered_axes(list(desired_input_order)) try: aff = xyz_affine(reo_img, name2xyz) except rsp.SpaceError: # Python 2.5 / 3 compatibility e = sys.exc_info()[1] raise e.__class__("Could not reorder so xyz coordinates did not " "depend on the other axis coordinates: " + str(e)) return reo_img def make_xyz_image(data, xyz_affine, world, metadata=None): """ Create 3D+ image embedded in space named in `world` Parameters ---------- data : object Object returning array from ``np.asarray(obj)``, and having ``shape`` attribute. Should have at least 3 dimensions (``len(shape) >= 3``), and these three first 3 dimensions should be spatial xyz_affine : (4, 4) array-like or tuple if (4, 4) array-like (the usual case), then an affine relating spatial dimensions in data (dimensions 0:3) to mm in XYZ space given in `world`. If a tuple, then contains two values: the (4, 4) array-like, and a sequence of scalings for the dimensions greater than 3. See examples. world : str or XYZSpace or CoordSysMaker or CoordinateSystem World 3D space to which affine refers. See ``spaces.get_world_cs()`` metadata : None or mapping, optional metadata for created image. Defaults to None, giving empty metadata. Returns ------- img : Image image containing `data`, with coordmap constructed from `affine` and `world`, and with default voxel input coordinates. If the data has more than 3 dimensions, and you didn't specify the added zooms with a tuple `xyz_affine` parameter, the coordmap affine gets filled out with extra ones on the diagonal to give an (N+1, N+1) affine, with ``N = len(data.shape)`` Examples -------- >>> data = np.arange(24).reshape((2, 3, 4)) >>> aff = np.diag([4, 5, 6, 1]) >>> img = make_xyz_image(data, aff, 'mni') >>> img Image( data=array([[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]], <BLANKLINE> [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]]]), coordmap=AffineTransform( function_domain=CoordinateSystem(coord_names=('i', 'j', 'k'), name='voxels', coord_dtype=float64), function_range=CoordinateSystem(coord_names=('mni-x=L->R', 'mni-y=P->A', 'mni-z=I->S'), name='mni', coord_dtype=float64), affine=array([[ 4., 0., 0., 0.], [ 0., 5., 0., 0.], [ 0., 0., 6., 0.], [ 0., 0., 0., 1.]]) )) Now make data 4D; we just add 1. to the diagonal for the new dimension >>> data4 = data[..., None] >>> img = make_xyz_image(data4, aff, 'mni') >>> img.coordmap AffineTransform( function_domain=CoordinateSystem(coord_names=('i', 'j', 'k', 'l'), name='voxels', coord_dtype=float64), function_range=CoordinateSystem(coord_names=('mni-x=L->R', 'mni-y=P->A', 'mni-z=I->S', 't'), name='mni', coord_dtype=float64), affine=array([[ 4., 0., 0., 0., 0.], [ 0., 5., 0., 0., 0.], [ 0., 0., 6., 0., 0.], [ 0., 0., 0., 1., 0.], [ 0., 0., 0., 0., 1.]]) ) We can pass in a scalar or tuple to specify scaling for the extra dimension >>> img = make_xyz_image(data4, (aff, 2.0), 'mni') >>> img.coordmap.affine array([[ 4., 0., 0., 0., 0.], [ 0., 5., 0., 0., 0.], [ 0., 0., 6., 0., 0.], [ 0., 0., 0., 2., 0.], [ 0., 0., 0., 0., 1.]]) >>> data5 = data4[..., None] >>> img = make_xyz_image(data5, (aff, (2.0, 3.0)), 'mni') >>> img.coordmap.affine array([[ 4., 0., 0., 0., 0., 0.], [ 0., 5., 0., 0., 0., 0.], [ 0., 0., 6., 0., 0., 0.], [ 0., 0., 0., 2., 0., 0.], [ 0., 0., 0., 0., 3., 0.], [ 0., 0., 0., 0., 0., 1.]]) """ N = len(data.shape) if N < 3: raise ValueError('Need data with at least 3 dimensions') if type(xyz_affine) is tuple: xyz_affine, added_zooms = xyz_affine # Could be scalar added zooms try: len(added_zooms) except TypeError: added_zooms = (added_zooms,) if len(added_zooms) != (N - 3): raise ValueError('Wrong number of added zooms') else: added_zooms = (1,) * (N - 3) xyz_affine = np.asarray(xyz_affine) if not xyz_affine.shape == (4, 4): raise ValueError("Expecting 4 x 4 affine") # Make coordinate map world_cm = rsp.get_world_cs(world, N) voxel_cm = rsp.voxel_csm(N) if N > 3: affine = np.diag((1., 1, 1) + added_zooms + (1,)) affine[:3, :3] = xyz_affine[:3, :3] affine[:3, -1] = xyz_affine[:3, 3] else: affine = xyz_affine cmap = AffineTransform(voxel_cm, world_cm, affine) return Image(data, cmap, metadata)
arokem/nipy
nipy/core/image/image_spaces.py
Python
bsd-3-clause
14,025
import json import os import shutil import tempfile from django.conf import settings from django.test.utils import override_settings import mock import pytest from nose.tools import eq_ from PIL import Image import amo import amo.tests from addons.models import Addon from amo.helpers import user_media_path from amo.tests.test_helpers import get_image_path from devhub import tasks from files.models import FileUpload pytestmark = pytest.mark.django_db def test_resize_icon_shrink(): """ Image should be shrunk so that the longest side is 32px. """ resize_size = 32 final_size = (32, 12) _uploader(resize_size, final_size) def test_resize_icon_enlarge(): """ Image stays the same, since the new size is bigger than both sides. """ resize_size = 350 final_size = (339, 128) _uploader(resize_size, final_size) def test_resize_icon_same(): """ Image stays the same, since the new size is the same. """ resize_size = 339 final_size = (339, 128) _uploader(resize_size, final_size) def test_resize_icon_list(): """ Resize multiple images at once. """ resize_size = [32, 339, 350] final_size = [(32, 12), (339, 128), (339, 128)] _uploader(resize_size, final_size) def _uploader(resize_size, final_size): img = get_image_path('mozilla.png') original_size = (339, 128) src = tempfile.NamedTemporaryFile(mode='r+w+b', suffix=".png", delete=False) # resize_icon removes the original shutil.copyfile(img, src.name) src_image = Image.open(src.name) eq_(src_image.size, original_size) if isinstance(final_size, list): uploadto = user_media_path('addon_icons') try: os.makedirs(uploadto) except OSError: pass for rsize, fsize in zip(resize_size, final_size): dest_name = os.path.join(uploadto, '1234') tasks.resize_icon(src.name, dest_name, resize_size, locally=True) dest_image = Image.open(open('%s-%s.png' % (dest_name, rsize))) eq_(dest_image.size, fsize) if os.path.exists(dest_image.filename): os.remove(dest_image.filename) assert not os.path.exists(dest_image.filename) shutil.rmtree(uploadto) else: dest = tempfile.mktemp(suffix='.png') tasks.resize_icon(src.name, dest, resize_size, locally=True) dest_image = Image.open(dest) eq_(dest_image.size, final_size) assert not os.path.exists(src.name) class TestValidator(amo.tests.TestCase): mock_sign_addon_warning = ( '{"warnings": 1, "messages": [{"context": null, "editors_only": ' 'false, "description": "Add-ons which are already signed will be ' 're-signed when published on AMO. This will replace any existing ' 'signatures on the add-on.", "column": null, "type": "warning", ' '"id": ["testcases_content", "signed_xpi"], "file": "", ' '"tier": 2, "for_appversions": null, "message": "Package already ' 'signed", "uid": "87326f8f699f447e90b3d5a66a78513e", "line": ' 'null, "compatibility_type": null}]}') def setUp(self): super(TestValidator, self).setUp() self.upload = FileUpload.objects.create() assert not self.upload.valid def get_upload(self): return FileUpload.objects.get(pk=self.upload.pk) @mock.patch('devhub.tasks.run_validator') def test_pass_validation(self, _mock): _mock.return_value = '{"errors": 0}' tasks.validator(self.upload.pk) assert self.get_upload().valid @mock.patch('devhub.tasks.run_validator') def test_fail_validation(self, _mock): _mock.return_value = '{"errors": 2}' tasks.validator(self.upload.pk) assert not self.get_upload().valid @mock.patch('devhub.tasks.run_validator') def test_validation_error(self, _mock): _mock.side_effect = Exception eq_(self.upload.task_error, None) with self.assertRaises(Exception): tasks.validator(self.upload.pk) error = self.get_upload().task_error assert error.startswith('Traceback (most recent call last)'), error @override_settings(SIGNING_SERVER='http://full', PRELIMINARY_SIGNING_SERVER='http://prelim') @mock.patch('devhub.tasks.run_validator') def test_validation_signing_warning(self, _mock): """If we sign addons, warn on signed addon submission.""" _mock.return_value = self.mock_sign_addon_warning tasks.validator(self.upload.pk) validation = json.loads(self.get_upload().validation) assert validation['warnings'] == 1 assert len(validation['messages']) == 1 @override_settings(SIGNING_SERVER='', PRELIMINARY_SIGNING_SERVER='') @mock.patch('devhub.tasks.run_validator') def test_validation_no_signing_warning(self, _mock): """If we're not signing addon don't warn on signed addon submission.""" _mock.return_value = self.mock_sign_addon_warning tasks.validator(self.upload.pk) validation = json.loads(self.get_upload().validation) assert validation['warnings'] == 0 assert len(validation['messages']) == 0 @mock.patch('devhub.tasks.run_validator') def test_annotate_passed_auto_validation(self, _mock): """Set passed_auto_validation on reception of the results.""" result = {'signing_summary': {'trivial': 1, 'low': 0, 'medium': 0, 'high': 0}} _mock.return_value = json.dumps(result) eq_(self.upload.task_error, None) tasks.validator(self.upload.pk) validation = json.loads(self.get_upload().validation) assert validation['passed_auto_validation'] result['signing_summary']['low'] = 1 _mock.return_value = json.dumps(result) eq_(self.upload.task_error, None) tasks.validator(self.upload.pk) validation = json.loads(self.get_upload().validation) assert not validation['passed_auto_validation'] @mock.patch('devhub.tasks.run_validator') def test_annotate_passed_auto_validation_bogus_result(self, _mock): """Don't set passed_auto_validation, don't fail if results is bogus.""" _mock.return_value = '' eq_(self.upload.task_error, None) tasks.validator(self.upload.pk) assert self.get_upload().validation == '' class TestFlagBinary(amo.tests.TestCase): fixtures = ['base/addon_3615'] def setUp(self): super(TestFlagBinary, self).setUp() self.addon = Addon.objects.get(pk=3615) @mock.patch('devhub.tasks.run_validator') def test_flag_binary(self, _mock): _mock.return_value = ('{"metadata":{"contains_binary_extension": 1, ' '"contains_binary_content": 0}}') tasks.flag_binary([self.addon.pk]) eq_(Addon.objects.get(pk=self.addon.pk).binary, True) _mock.return_value = ('{"metadata":{"contains_binary_extension": 0, ' '"contains_binary_content": 1}}') tasks.flag_binary([self.addon.pk]) eq_(Addon.objects.get(pk=self.addon.pk).binary, True) @mock.patch('devhub.tasks.run_validator') def test_flag_not_binary(self, _mock): _mock.return_value = ('{"metadata":{"contains_binary_extension": 0, ' '"contains_binary_content": 0}}') tasks.flag_binary([self.addon.pk]) eq_(Addon.objects.get(pk=self.addon.pk).binary, False) @mock.patch('devhub.tasks.run_validator') def test_flag_error(self, _mock): _mock.side_effect = RuntimeError() tasks.flag_binary([self.addon.pk]) eq_(Addon.objects.get(pk=self.addon.pk).binary, False) @mock.patch('devhub.tasks.send_html_mail_jinja') def test_send_welcome_email(send_html_mail_jinja_mock): tasks.send_welcome_email(3615, ['del@icio.us'], {'omg': 'yes'}) send_html_mail_jinja_mock.assert_called_with( 'Mozilla Add-ons: Thanks for submitting a Firefox Add-on!', 'devhub/email/submission.html', 'devhub/email/submission.txt', {'omg': 'yes'}, recipient_list=['del@icio.us'], from_email=settings.NOBODY_EMAIL, use_blacklist=False, perm_setting='individual_contact', headers={'Reply-To': settings.EDITORS_EMAIL})
Joergen/olympia
apps/devhub/tests/test_tasks.py
Python
bsd-3-clause
8,425
from __future__ import absolute_import import os.path import pytest import subprocess from django.conf import settings from raven.versioning import fetch_git_sha, fetch_package_version from raven.utils import six def has_git_requirements(): return os.path.exists(os.path.join(settings.PROJECT_ROOT, '.git', 'refs', 'heads', 'master')) @pytest.mark.skipif('not has_git_requirements()') def test_fetch_git_sha(): result = fetch_git_sha(settings.PROJECT_ROOT) assert result is not None assert len(result) == 40 assert isinstance(result, six.string_types) assert result == subprocess.check_output( 'git rev-parse --verify HEAD', shell=True, cwd=settings.PROJECT_ROOT ).strip() def test_fetch_package_version(): result = fetch_package_version('raven') assert result is not None assert isinstance(result, six.string_types)
ronaldevers/raven-python
tests/versioning/tests.py
Python
bsd-3-clause
874
from io import StringIO from .. import * from bfg9000 import path from bfg9000 import safe_str from bfg9000.shell.syntax import * class my_safe_str(safe_str.safe_string): pass class TestWriteString(TestCase): def test_variable(self): out = Writer(StringIO()) out.write('foo', Syntax.variable) out.write('$bar', Syntax.variable) self.assertEqual(out.stream.getvalue(), 'foo$bar') def test_shell(self): out = Writer(StringIO()) out.write('foo', Syntax.shell) out.write('$bar', Syntax.shell) self.assertEqual(out.stream.getvalue(), "foo'$bar'") class TestWriteLiteral(TestCase): def test_variable(self): out = Writer(StringIO()) out.write(safe_str.literal('$foo'), Syntax.variable) self.assertEqual(out.stream.getvalue(), '$foo') def test_shell(self): out = Writer(StringIO()) out.write(safe_str.literal('$foo'), Syntax.shell) self.assertEqual(out.stream.getvalue(), '$foo') class TestWriteJbos(TestCase): def test_variable(self): out = Writer(StringIO()) s = safe_str.jbos('$foo', safe_str.literal('bar')) out.write(s, Syntax.variable) self.assertEqual(out.stream.getvalue(), '$foobar') def test_shell(self): out = Writer(StringIO()) s = safe_str.jbos('$foo', safe_str.literal('bar')) out.write(s, Syntax.shell) self.assertEqual(out.stream.getvalue(), "'$foo'bar") class TestWritePath(PathTestCase): def test_variable(self): out = Writer(StringIO()) out.write(self.Path('foo', path.InstallRoot.bindir), Syntax.variable) self.assertEqual(out.stream.getvalue(), self.ospath.join('${bindir}', 'foo')) def test_shell(self): out = Writer(StringIO()) out.write(self.Path('foo', path.InstallRoot.bindir), Syntax.shell) self.assertEqual(out.stream.getvalue(), "'" + self.ospath.join('${bindir}', 'foo') + "'") class TestWriteInvalid(TestCase): def test_invalid(self): out = Writer(StringIO()) with self.assertRaises(TypeError): out.write(my_safe_str(), Syntax.variable) class TestWriteEach(TestCase): def test_basic(self): out = Writer(StringIO()) out.write_each(['foo', 'bar'], Syntax.variable) self.assertEqual(out.stream.getvalue(), 'foo bar') def test_delims(self): out = Writer(StringIO()) out.write_each(['foo', 'bar'], Syntax.variable, ',', '[', ']') self.assertEqual(out.stream.getvalue(), '[foo,bar]') class TestVariable(TestCase): def test_equality(self): self.assertTrue(Variable('foo') == Variable('foo')) self.assertFalse(Variable('foo') != Variable('foo')) self.assertFalse(Variable('foo') == Variable('bar')) self.assertTrue(Variable('foo') != Variable('bar')) def test_concat_str(self): self.assertEqual(Variable('foo') + 'bar', safe_str.jbos( safe_str.literal('${foo}'), 'bar' )) self.assertEqual('foo' + Variable('bar'), safe_str.jbos( 'foo', safe_str.literal('${bar}') )) def test_concat_path(self): self.assertEqual(Variable('foo') + path.Path('bar'), safe_str.jbos( safe_str.literal('${foo}'), path.Path('bar') )) self.assertEqual(path.Path('foo') + Variable('bar'), safe_str.jbos( path.Path('foo'), safe_str.literal('${bar}') )) def test_concat_var(self): self.assertEqual(Variable('foo') + Variable('bar'), safe_str.jbos( safe_str.literal('${foo}'), safe_str.literal('${bar}') )) def test_hash(self): self.assertEqual(hash(Variable('foo')), hash(Variable('foo')))
jimporter/bfg9000
test/unit/shell/test_syntax.py
Python
bsd-3-clause
3,803
################################################################################ # Copyright (c) 2011-2021, National Research Foundation (SARAO) # # Licensed under the BSD 3-Clause License (the "License"); you may not use # this file except in compliance with the License. You may obtain a copy # of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################ """Data accessor class for HDF5 files produced by Fringe Finder correlator.""" import logging import pathlib import re import h5py import katpoint import numpy as np from .categorical import CategoricalData from .concatdata import ConcatenatedLazyIndexer from .dataset import (DEFAULT_SENSOR_PROPS, DEFAULT_VIRTUAL_SENSORS, BrokenFile, DataSet, Subarray, WrongVersion, _robust_target) from .lazy_indexer import LazyIndexer, LazyTransform from .sensordata import RecordSensorGetter, SensorCache, to_str from .spectral_window import SpectralWindow logger = logging.getLogger(__name__) def _labels_to_state(scan_label, compscan_label): """Use scan and compscan labels to derive basic state of antenna.""" if not scan_label or scan_label == 'slew': return 'slew' if scan_label == 'cal': return 'track' return 'track' if compscan_label == 'track' else 'scan' SENSOR_PROPS = dict(DEFAULT_SENSOR_PROPS) SENSOR_ALIASES = { 'nd_coupler': 'rfe3_rfe15_noise_coupler_on', 'nd_pin': 'rfe3_rfe15_noise_pin_on', } def _calc_azel(cache, name, ant): """Calculate virtual (az, el) sensors from actual ones in sensor cache.""" base_name = 'pos_actual_scan_azim' if name.endswith('az') else 'pos_actual_scan_elev' real_sensor = f'Antennas/{ant}/{base_name}' cache[name] = sensor_data = katpoint.deg2rad(cache.get(real_sensor)) return sensor_data VIRTUAL_SENSORS = dict(DEFAULT_VIRTUAL_SENSORS) VIRTUAL_SENSORS.update({'Antennas/{ant}/az': _calc_azel, 'Antennas/{ant}/el': _calc_azel}) # ------------------------------------------------------------------------------------------------- # -- CLASS : H5DataV1 # ------------------------------------------------------------------------------------------------- class H5DataV1(DataSet): """Load HDF5 format version 1 file produced by Fringe Finder correlator. For more information on attributes, see the :class:`DataSet` docstring. Parameters ---------- filename : string Name of HDF5 file ref_ant : string, optional Name of reference antenna, used to partition data set into scans (default is first antenna in use) time_offset : float, optional Offset to add to all correlator timestamps, in seconds mode : string, optional HDF5 file opening mode (e.g. 'r+' to open file in write mode) kwargs : dict, optional Extra keyword arguments, typically meant for other formats and ignored Attributes ---------- file : :class:`h5py.File` object Underlying HDF5 file, exposed via :mod:`h5py` interface """ def __init__(self, filename, ref_ant='', time_offset=0.0, mode='r', **kwargs): # The closest thing to a capture block ID is the Unix timestamp in the original filename # There is only one (unnamed) output stream, so leave off the stream name cbid = pathlib.Path(filename).stem DataSet.__init__(self, cbid, ref_ant, time_offset, url=filename) # Load file self.file, self.version = H5DataV1._open(filename, mode) f = self.file # Load main HDF5 groups ants_group, corr_group, data_group = f['Antennas'], f['Correlator'], f['Scans'] # Get observation script parameters, with defaults self.observer = self.obs_params['observer'] = to_str(f.attrs.get('observer', '')) self.description = self.obs_params['description'] = to_str(f.attrs.get('description', '')) self.experiment_id = self.obs_params['experiment_id'] = to_str(f.attrs.get('experiment_id', '')) # Collect all groups below data group that fit the description of a scan group scan_groups = [] def register_scan_group(name, obj): """A scan group is defined as a group named 'Scan*' with non-empty timestamps and data.""" if isinstance(obj, h5py.Group) and name.split('/')[-1].startswith('Scan') and \ 'data' in obj and 'timestamps' in obj and len(obj['timestamps']) > 0: scan_groups.append(obj) data_group.visititems(register_scan_group) # Sort scan groups in chronological order via 'decorate-sort-undecorate' (DSU) idiom decorated_scan_groups = [(s['timestamps'][0], s) for s in scan_groups] decorated_scan_groups.sort() self._scan_groups = [s[-1] for s in decorated_scan_groups] # ------ Extract timestamps ------ self.dump_period = 1.0 / corr_group.attrs['dump_rate_hz'] self._segments = np.cumsum([0] + [len(s['timestamps']) for s in self._scan_groups]) num_dumps = self._segments[-1] self._time_keep = np.ones(num_dumps, dtype=np.bool) data_timestamps = self.timestamps if data_timestamps[0] < 1e9: logger.warning("File '%s' has invalid first correlator timestamp (%f)", filename, data_timestamps[0]) # Estimate timestamps by assuming they are uniformly spaced (much quicker than loading them from file). # This is useful for the purpose of segmenting data set, where accurate timestamps are not that crucial. # The real timestamps are still loaded when the user explicitly asks for them. # Do quick test for uniform spacing of timestamps (necessary but not sufficient). if abs((data_timestamps[-1] - data_timestamps[0]) / self.dump_period + 1 - num_dumps) < 0.01: # Estimate the timestamps as being uniformly spaced data_timestamps = data_timestamps[0] + self.dump_period * np.arange(num_dumps) else: # Load the real timestamps instead and warn the user, as this is anomalous data_timestamps = data_timestamps[:] expected_dumps = (data_timestamps[-1] - data_timestamps[0]) / self.dump_period + 1 logger.warning(("Irregular timestamps detected in file '%s':" "expected %.3f dumps based on dump period and start/end times, got %d instead") % (filename, expected_dumps, num_dumps)) self.start_time = katpoint.Timestamp(data_timestamps[0] - 0.5 * self.dump_period) self.end_time = katpoint.Timestamp(data_timestamps[-1] + 0.5 * self.dump_period) # ------ Extract sensors ------ # Populate sensor cache with all HDF5 datasets below antennas group that fit the description of a sensor cache = {} def register_sensor(name, obj): if isinstance(obj, h5py.Dataset) and obj.shape != () and \ obj.dtype.names == ('timestamp', 'value', 'status'): # Assume sensor dataset name is AntennaN/Sensors/dataset and rename it to Antennas/{ant}/dataset ant_name = to_str(obj.parent.parent.attrs['description']).split(',')[0] dataset_name = name.split('/')[-1] standardised_name = f"Antennas/{ant_name}/{dataset_name}" cache[standardised_name] = RecordSensorGetter(obj, standardised_name) ants_group.visititems(register_sensor) # Use estimated data timestamps for now, to speed up data segmentation # This will linearly interpolate pointing coordinates to correlator data timestamps (on access) # As long as azimuth is in natural antenna coordinates, no special angle interpolation required self.sensor = SensorCache(cache, data_timestamps, self.dump_period, keep=self._time_keep, props=SENSOR_PROPS, virtual=VIRTUAL_SENSORS, aliases=SENSOR_ALIASES) # ------ Extract subarrays ------ ants = [katpoint.Antenna(to_str(ants_group[group].attrs['description'])) for group in ants_group] self.ref_ant = ants[0].name if not ref_ant else ref_ant # Map from (old-style) DBE input label (e.g. '0x') to the new antenna-based input label (e.g. 'ant1h') input_label = {to_str(ants_group[group]['H'].attrs['dbe_input']): ant.name + 'h' for ant, group in zip(ants, ants_group.keys()) if 'H' in ants_group[group]} input_label.update({to_str(ants_group[group]['V'].attrs['dbe_input']): ant.name + 'v' for ant, group in zip(ants, ants_group.keys()) if 'V' in ants_group[group]}) # Split DBE input product string into its separate inputs split_product = re.compile(r'(\d+[xy])(\d+[xy])') # Iterate over map from correlation product index to DBE input product string and convert # the latter to pairs of input labels (this assumes that the corrprod indices are sorted) corrprods = [] for corrind, product in corr_group['input_map']: product = to_str(product) match = split_product.match(product) if match is None: raise BrokenFile(f"Unknown DBE input product '{product}' in input map (expected e.g. '0x1y')") corrprods.append(tuple([input_label[inp] for inp in match.groups()])) data_cp_len = len(self._scan_groups[0]['data'].dtype) if len(corrprods) != data_cp_len: raise BrokenFile(f'Number of baseline labels received from correlator ({len(corrprods)}) ' f'differs from number of baselines in data ({data_cp_len})') self.subarrays = [Subarray(ants, corrprods)] self.sensor['Observation/subarray'] = CategoricalData(self.subarrays, [0, len(data_timestamps)]) self.sensor['Observation/subarray_index'] = CategoricalData([0], [0, len(data_timestamps)]) # Store antenna objects in sensor cache too, for use in virtual sensor calculations for ant in ants: self.sensor[f'Antennas/{ant.name}/antenna'] = CategoricalData([ant], [0, len(data_timestamps)]) # Extract array reference from first antenna (first 5 fields of description) array_ant_fields = ['array'] + ants[0].description.split(',')[1:5] array_ant = katpoint.Antenna(','.join(array_ant_fields)) self.sensor['Antennas/array/antenna'] = CategoricalData([array_ant], [0, len(data_timestamps)]) # ------ Extract spectral windows / frequencies ------ centre_freq = corr_group.attrs['center_frequency_hz'] num_chans = corr_group.attrs['num_freq_channels'] data_num_chans = self._scan_groups[0]['data'].shape[1] if num_chans != data_num_chans: raise BrokenFile(f'Number of channels received from correlator ({num_chans}) ' f'differs from number of channels in data ({data_num_chans})') channel_width = corr_group.attrs['channel_bandwidth_hz'] self.spectral_windows = [SpectralWindow(centre_freq, channel_width, num_chans, 'poco')] self.sensor['Observation/spw'] = CategoricalData(self.spectral_windows, [0, len(data_timestamps)]) self.sensor['Observation/spw_index'] = CategoricalData([0], [0, len(data_timestamps)]) # ------ Extract scans / compound scans / targets ------ # Fringe Finder augment does not store antenna activity sensors - use scan + compscan labels as a guess scan_labels = [to_str(s.attrs.get('label', '')) for s in self._scan_groups] compscan_labels = [to_str(s.parent.attrs.get('label', '')) for s in self._scan_groups] scan_states = [_labels_to_state(s, cs) for s, cs in zip(scan_labels, compscan_labels)] # The scans are already partitioned into groups - use corresponding segments as start events self.sensor['Observation/scan_state'] = CategoricalData(scan_states, self._segments) self.sensor['Observation/scan_index'] = CategoricalData(list(range(len(scan_states))), self._segments) # Group scans together based on compscan group name and have one label per compound scan compscan = CategoricalData([s.parent.name for s in self._scan_groups], self._segments) compscan.remove_repeats() label = CategoricalData(compscan_labels, self._segments) label.align(compscan.events) self.sensor['Observation/label'] = label self.sensor['Observation/compscan_index'] = CategoricalData(list(range(len(label))), label.events) # Extract targets from compscan groups, replacing empty or bad descriptions with dummy target target = CategoricalData([_robust_target(to_str(s.parent.attrs.get('target', ''))) for s in self._scan_groups], self._segments) target.align(compscan.events) self.sensor['Observation/target'] = target self.sensor['Observation/target_index'] = CategoricalData(target.indices, target.events) # Set up catalogue containing all targets in file, with reference antenna as default antenna self.catalogue.add(target.unique_values) self.catalogue.antenna = self.sensor[f'Antennas/{self.ref_ant}/antenna'][0] # Ensure that each target flux model spans all frequencies in data set if possible self._fix_flux_freq_range() # Restore original (slow) timestamps so that subsequent sensors (e.g. pointing) will have accurate values self.sensor.timestamps = self.timestamps # Apply default selection and initialise all members that depend on selection in the process self.select(spw=0, subarray=0) @staticmethod def _open(filename, mode='r'): """Open file and do basic version and augmentation sanity check.""" f = h5py.File(filename, mode) version = to_str(f.attrs.get('version', '1.x')) if not version.startswith('1.'): raise WrongVersion(f"Attempting to load version '{version}' file with version 1 loader") if 'augment' not in f.attrs: raise BrokenFile('HDF5 file not augmented - please run ' 'augment4.py (provided by k7augment package)') return f, version @staticmethod def _get_ants(filename): """Quick look function to get the list of antennas in a data file. This is intended to be called without creating a full katdal object. Parameters ---------- filename : string Data file name Returns ------- antennas : list of :class:'katpoint.Antenna' objects """ f, version = H5DataV1._open(filename) ants_group = f['Antennas'] antennas = [katpoint.Antenna(to_str(ants_group[group].attrs['description'])) for group in ants_group] return antennas @staticmethod def _get_targets(filename): """Quick look function to get the list of targets in a data file. This is intended to be called without creating a full katdal object. Parameters ---------- filename : string Data file name Returns ------- targets : :class:'katpoint.Catalogue' object All targets in file """ f, version = H5DataV1._open(filename) compound_scans = f['Scans'] all_target_strings = [to_str(compound_scans[group].attrs['target']) for group in compound_scans] return katpoint.Catalogue(np.unique(all_target_strings)) @property def timestamps(self): """Visibility timestamps in UTC seconds since Unix epoch. The timestamps are returned as an array indexer of float64, shape (*T*,), with one timestamp per integration aligned with the integration *midpoint*. To get the data array itself from the indexer `x`, do `x[:]` or perform any other form of indexing on it. """ indexers = [] # Avoid storing reference to self in extract_time closure below, as this hinders garbage collection dump_period, time_offset = self.dump_period, self.time_offset # Convert from millisecs to secs since Unix epoch, and be sure to use float64 to preserve digits extract_time = LazyTransform('extract_time', lambda t, keep: np.float64(t) / 1000. + 0.5 * dump_period + time_offset, dtype=np.float64) for n, s in enumerate(self._scan_groups): indexers.append(LazyIndexer(s['timestamps'], keep=self._time_keep[self._segments[n]:self._segments[n + 1]])) return ConcatenatedLazyIndexer(indexers, transforms=[extract_time]) def _vis_indexers(self): """Create list of indexers to access visibilities across scans. Fringe Finder has a weird vis data structure: each scan data group is a recarray with shape (T, F) and fields '0'...'11' indicating the correlation products. The per-scan LazyIndexers therefore only do the time + frequency indexing, leaving corrprod indexing to the final transform. This returns a list of per-scan visibility indexers based on the current data selection. """ # Avoid storing reference to self in transform closure below, as this hinders garbage collection corrprod_keep = self._corrprod_keep # Apply both first-stage and second-stage corrprod indexing in the transform def index_corrprod(tf, keep): # Ensure that keep tuple has length of 3 (truncate or pad with blanket slices as necessary) keep = keep[:3] + (slice(None),) * (3 - len(keep)) # Final indexing ensures that returned data are always 3-dimensional (i.e. keep singleton dimensions) force_3dim = tuple((np.newaxis if np.isscalar(dim_keep) else slice(None)) for dim_keep in keep) # Conjugate the data to correct for the lower sideband downconversion return np.dstack([tf[str(corrind)][force_3dim[:2]].conjugate() for corrind in np.nonzero(corrprod_keep)[0]])[:, :, keep[2]][:, :, force_3dim[2]] extract_vis = LazyTransform('extract_vis_v1', index_corrprod, lambda shape: (shape[0], shape[1], corrprod_keep.sum()), np.complex64) indexers = [] for n, s in enumerate(self._scan_groups): indexers.append(LazyIndexer(s['data'], keep=(self._time_keep[self._segments[n]:self._segments[n + 1]], self._freq_keep), transforms=[extract_vis])) return indexers @property def vis(self): r"""Complex visibility data as a function of time, frequency and baseline. The visibility data are returned as an array indexer of complex64, shape (*T*, *F*, *B*), with time along the first dimension, frequency along the second dimension and correlation product ("baseline") index along the third dimension. The returned array always has all three dimensions, even for scalar (single) values. The number of integrations *T* matches the length of :meth:`timestamps`, the number of frequency channels *F* matches the length of :meth:`freqs` and the number of correlation products *B* matches the length of :meth:`corr_products`. To get the data array itself from the indexer `x`, do `x[:]` or perform any other form of indexing on it. Only then will data be loaded into memory. The sign convention of the imaginary part is consistent with an electric field of :math:`e^{i(\omega t - jz)}` i.e. phase that increases with time. """ return ConcatenatedLazyIndexer(self._vis_indexers()) @property def weights(self): """Visibility weights as a function of time, frequency and baseline. The weights data are returned as an array indexer of float32, shape (*T*, *F*, *B*), with time along the first dimension, frequency along the second dimension and correlation product ("baseline") index along the third dimension. The number of integrations *T* matches the length of :meth:`timestamps`, the number of frequency channels *F* matches the length of :meth:`freqs` and the number of correlation products *B* matches the length of :meth:`corr_products`. To get the data array itself from the indexer `x`, do `x[:]` or perform any other form of indexing on it. Only then will data be loaded into memory. """ # Tell the user that there are no weights in the h5 file logger.warning("No weights in HDF5 v1 data files, returning array of unity weights") ones = LazyTransform('ones', lambda data, keep: np.ones_like(data, dtype=np.float32), dtype=np.float32) return ConcatenatedLazyIndexer(self._vis_indexers(), transforms=[ones]) @property def flags(self): """Flags as a function of time, frequency and baseline. The flags data are returned as an array indexer of bool, shape (*T*, *F*, *B*), with time along the first dimension, frequency along the second dimension and correlation product ("baseline") index along the third dimension. The number of integrations *T* matches the length of :meth:`timestamps`, the number of frequency channels *F* matches the length of :meth:`freqs` and the number of correlation products *B* matches the length of :meth:`corr_products`. To get the data array itself from the indexer `x`, do `x[:]` or perform any other form of indexing on it. Only then will data be loaded into memory. """ # Tell the user that there are no flags in the h5 file logger.warning("No flags in HDF5 v1 data files, returning array of zero flags") falses = LazyTransform('falses', lambda data, keep: np.zeros_like(data, dtype=np.bool), dtype=np.bool) return ConcatenatedLazyIndexer(self._vis_indexers(), transforms=[falses]) @property def temperature(self): """Air temperature in degrees Celsius.""" return self.sensor[f'Antennas/{self.ref_ant}/enviro_air_temperature'] @property def pressure(self): """Barometric pressure in millibars.""" return self.sensor[f'Antennas/{self.ref_ant}/enviro_air_pressure'] @property def humidity(self): """Relative humidity as a percentage.""" return self.sensor[f'Antennas/{self.ref_ant}/enviro_air_relative_humidity'] @property def wind_speed(self): """Wind speed in metres per second.""" return self.sensor[f'Antennas/{self.ref_ant}/enviro_wind_speed'] @property def wind_direction(self): """Wind direction as an azimuth angle in degrees.""" return self.sensor[f'Antennas/{self.ref_ant}/enviro_wind_direction']
ska-sa/katdal
katdal/h5datav1.py
Python
bsd-3-clause
23,433
'''Unit test package for module "tws.helper._hook_currenttime".''' __copyright__ = "Copyright (c) 2009 Kevin J Bluck" __version__ = "$Id$" import unittest import tws from tws.helper import HookCurrentTime class test_helper_HookCurrentTime(unittest.TestCase): '''Test type "tws.helper.HookCurrentTime"''' def setUp(self): self.wrapper = tws.EWrapper() def test_init(self): self.assertTrue(HookCurrentTime(tws.EWrapper())) def test_hook(self): self.assertFalse(self.wrapper.__dict__.get("currentTime", None)) self.assertFalse(self.wrapper.__dict__.get("get_current_time", None)) HookCurrentTime(self.wrapper) self.assertTrue(self.wrapper.__dict__.get("currentTime", None)) self.assertTrue(self.wrapper.__dict__.get("get_current_time", None))
kbluck/pytws
test_tws/test_helper/test_hook_currenttime.py
Python
bsd-3-clause
821
def extractWwwLiterarynerdsCom(item): ''' Parser for 'www.literarynerds.com' ''' vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if not (chp or vol) or "preview" in item['title'].lower(): return None tagmap = [ ('PRC', 'PRC', 'translated'), ('Loiterous', 'Loiterous', 'oel'), ] for tagname, name, tl_type in tagmap: if tagname in item['tags']: return buildReleaseMessageWithType(item, name, vol, chp, frag=frag, postfix=postfix, tl_type=tl_type) return False
fake-name/ReadableWebProxy
WebMirror/management/rss_parser_funcs/feed_parse_extractWwwLiterarynerdsCom.py
Python
bsd-3-clause
554
from __future__ import absolute_import from rest_framework.response import Response from sentry import features from sentry.api.base import DocSection from sentry.api.bases.organization import OrganizationEndpoint from sentry.api.paginator import OffsetPaginator from sentry.api.serializers import serialize from sentry.constants import ObjectStatus from sentry.models import Repository from sentry.plugins import bindings class OrganizationRepositoriesEndpoint(OrganizationEndpoint): doc_section = DocSection.ORGANIZATIONS def has_feature(self, request, organization): return features.has( 'organizations:repos', organization=organization, actor=request.user, ) def get(self, request, organization): """ List an Organization's Repositories ``````````````````````````````````` Return a list of version control repositories for a given organization. :pparam string organization_slug: the organization short name :auth: required """ if not self.has_feature(request, organization): return self.respond({ 'error_type': 'unavailable_feature', 'detail': ['You do not have that feature enabled'] }, status=403) queryset = Repository.objects.filter( organization_id=organization.id, ) status = request.GET.get('status', 'active') if status == 'active': queryset = queryset.filter( status=ObjectStatus.VISIBLE, ) elif status == 'deleted': queryset = queryset.exclude( status=ObjectStatus.VISIBLE, ) elif status: queryset = queryset.none() return self.paginate( request=request, queryset=queryset, order_by='name', on_results=lambda x: serialize(x, request.user), paginator_cls=OffsetPaginator, ) def post(self, request, organization): if not request.user.is_authenticated(): return Response(status=401) if not self.has_feature(request, organization): return self.respond({ 'error_type': 'unavailable_feature', 'detail': ['You do not have that feature enabled'] }, status=403) provider_id = request.DATA.get('provider') if features.has('organizations:internal-catchall', organization, actor=request.user): if provider_id is not None and provider_id.startswith('integrations:'): try: provider_cls = bindings.get('integration-repository.provider').get(provider_id) except KeyError: return Response( { 'error_type': 'validation', }, status=400 ) provider = provider_cls(id=provider_id) return provider.dispatch(request, organization) try: provider_cls = bindings.get('repository.provider').get(provider_id) except KeyError: return Response( { 'error_type': 'validation', }, status=400 ) provider = provider_cls(id=provider_id) return provider.dispatch(request, organization)
looker/sentry
src/sentry/api/endpoints/organization_repositories.py
Python
bsd-3-clause
3,426
# -*- coding: utf-8 -*- import pytest from schematics.models import Model from schematics.types import * from schematics.types.compound import * from schematics.exceptions import * from schematics.undefined import Undefined def autofail(value, context): raise ValidationError("Fubar!", info=99) class M(Model): intfield = IntType(max_value=2) reqfield = StringType(required=True) matrixfield = ListType(ListType(IntType(max_value=2))) listfield = ListType(IntType(), max_size=3, validators=[autofail]) modelfield = ModelType('M') def get_input_dict(): inputdict = { 'intfield': '1', 'reqfield': 'foo', 'listfield': [], 'modelfield': { 'reqfield': 'bar', 'listfield': [1, 2, 3, 4], 'modelfield': { 'intfield': '3', 'matrixfield': [[0, 1, 0, 1], [1, 2, 3, 4], ['1', '0', '1', '0']], 'listfield': None, 'modelfield': { 'intfield': '0', 'reqfield': 'foo', 'listfield': None}}}} return inputdict def get_input_instance(input_init): inputinstance = M(init=input_init) inputinstance.intfield = '1' inputinstance.reqfield = 'foo' inputinstance.listfield = [] inputinstance.modelfield = M(init=input_init) inputinstance.modelfield.reqfield = 'bar' inputinstance.modelfield.listfield = [1, 2, 3, 4] inputinstance.modelfield.modelfield = M(init=input_init) inputinstance.modelfield.modelfield.intfield = '3' inputinstance.modelfield.modelfield.matrixfield = [[0, 1, 0, 1], [1, 2, 3, 4], ['1', '0', '1', '0']] inputinstance.modelfield.modelfield.listfield = None inputinstance.modelfield.modelfield.modelfield = M(init=input_init) inputinstance.modelfield.modelfield.modelfield.intfield = '0' inputinstance.modelfield.modelfield.modelfield.reqfield = 'foo' inputinstance.modelfield.modelfield.modelfield.listfield = None return inputinstance @pytest.fixture def input(input_instance, input_init): if input_instance: return get_input_instance(input_init) else: return get_input_dict() @pytest.mark.parametrize('input_instance, input_init, init, missing_obj', [( False, None, True, None), ( False, None, False, Undefined), ( True, False, True, None), ( True, False, False, Undefined), ( True, True, True, None), ( True, True, False, None)]) def test_conversion(input, init, missing_obj): m = M(input, init=init) assert type(m.intfield) is int assert type(m.modelfield.modelfield.intfield) is int assert type(m.modelfield.modelfield.matrixfield[2][3]) is int assert type(m.listfield) is list assert type(m.modelfield) is M assert type(m.modelfield.modelfield) is M assert type(m.modelfield.modelfield.modelfield) is M assert type(m.modelfield.listfield) is list assert type(m.modelfield.modelfield.matrixfield) is list assert type(m.modelfield.modelfield.matrixfield[2]) is list assert m._data['listfield'] == [] assert m.modelfield._data['intfield'] is missing_obj assert m.modelfield.modelfield._data['listfield'] is None assert m.modelfield.modelfield._data['reqfield'] is missing_obj @pytest.mark.parametrize('partial', (True, False)) @pytest.mark.parametrize('import_, two_pass, input_instance, input_init, init, missing_obj', [( True, False, False, None, True, None), ( True, False, False, None, False, Undefined), ( True, False, True, False, True, None), ( True, False, True, False, False, Undefined), ( True, False, True, True, True, None), ( True, False, True, True, False, None), ( True, True, False, None, True, None), ( True, True, False, None, False, Undefined), ( True, True, True, False, True, None), ( True, True, True, False, False, Undefined), ( True, True, True, True, True, None), ( True, True, True, True, False, None), ( False, None, True, False, True, None), ( False, None, True, False, False, Undefined), ( False, None, True, True, True, None), ( False, None, True, True, False, None)]) def test_conversion_with_validation(input, init, missing_obj, import_, two_pass, partial): if missing_obj is None: partial_data = { 'intfield': 1, 'reqfield': u'foo', 'matrixfield': None, 'modelfield': { 'intfield': None, 'reqfield': u'bar', 'matrixfield': None, 'modelfield': { 'reqfield': None, 'listfield': None, 'modelfield': M({ 'intfield': 0, 'reqfield': u'foo', 'listfield': None})}}} else: partial_data = { 'intfield': 1, 'reqfield': u'foo', 'modelfield': { 'reqfield': u'bar', 'modelfield': { 'listfield': None, 'modelfield': M({ 'intfield': 0, 'reqfield': u'foo', 'listfield': None}, init=False)}}} with pytest.raises(DataError) as excinfo: if import_: if two_pass: m = M(input, init=init) m.validate(partial=partial) else: M(input, init=init, partial=partial, validate=True) else: input.validate(init_values=init, partial=partial) messages = excinfo.value.messages err_list = messages.pop('listfield') assert err_list.pop().type == ValidationError assert err_list == [] err_list = messages['modelfield'].pop('listfield') assert err_list.pop().type == ValidationError assert err_list.pop().type == ValidationError assert err_list == [] err_list = messages['modelfield']['modelfield'].pop('intfield') err_msg = err_list.pop() assert err_list == [] assert err_msg.type == ValidationError if not partial: err_list = messages['modelfield']['modelfield'].pop('reqfield') err_msg = err_list.pop() assert err_list == [] assert err_msg.type == ConversionError if missing_obj is None: partial_data['modelfield']['modelfield'].pop('reqfield') err_dict = messages['modelfield']['modelfield'].pop('matrixfield') sub_err_dict = err_dict.pop(1) err_list_1 = sub_err_dict.pop(2) err_list_2 = sub_err_dict.pop(3) assert err_list_1.pop().type == ValidationError assert err_list_2.pop().type == ValidationError assert err_list_1 == err_list_2 == [] assert err_dict == sub_err_dict == {} assert messages['modelfield'].pop('modelfield') == {} assert messages.pop('modelfield') == {} assert messages == {} assert excinfo.value.partial_data == partial_data
mlyundin/schematics
tests/test_conversion.py
Python
bsd-3-clause
7,830
# coding: utf-8 """ Environmental Exposures API Environmental Exposures API OpenAPI spec version: 1.0.0 Contact: stealey@renci.org Generated by: https://github.com/swagger-api/swagger-codegen.git Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import sys from setuptools import setup, find_packages NAME = "swagger_client" VERSION = "1.0.0" # To install the library, run the following # # python setup.py install # # prerequisite: setuptools # http://pypi.python.org/pypi/setuptools REQUIRES = ["urllib3 >= 1.15", "six >= 1.10", "certifi", "python-dateutil"] setup( name=NAME, version=VERSION, description="Environmental Exposures API", author_email="stealey@renci.org", url="", keywords=["Swagger", "Environmental Exposures API"], install_requires=REQUIRES, packages=find_packages(), include_package_data=True, long_description="""\ Environmental Exposures API """ )
ResearchSoftwareInstitute/greendatatranslator
src/greentranslator/python-client/setup.py
Python
bsd-3-clause
1,462
import tests.model_control.test_ozone_custom_models_enabled as testmod testmod.build_model( ['None'] , ['PolyTrend'] , ['BestCycle'] , ['LSTM'] );
antoinecarme/pyaf
tests/model_control/detailed/transf_None/model_control_one_enabled_None_PolyTrend_BestCycle_LSTM.py
Python
bsd-3-clause
148
"""Talks forms.""" from wtforms.ext.sqlalchemy.fields import QuerySelectField from flask_wtf import Form from wtforms.validators import Optional from wtforms_alchemy import model_form_factory from pygotham.talks.models import Duration, Talk __all__ = ('TalkSubmissionForm',) ModelForm = model_form_factory(Form) def duration_query_factory(): """Return available :class:`~pygotha.models.Duration` instances.""" return Duration.query.filter(Duration.inactive == False) class TalkSubmissionForm(ModelForm): """Form for editing :class:`~pygotham.models.Talk` instances.""" class Meta: model = Talk exclude = ('status', 'type') field_args = { 'name': {'label': 'Title'}, 'description': { 'label': 'Description', 'description': ( 'If your talk is accepted this will be made public. It ' 'should be one paragraph.' ), }, 'level': {'label': 'Experience Level'}, 'duration': {'label': 'Duration'}, 'abstract': { 'label': 'Abstract', 'description': ( 'Detailed overview. Will be made public if your talk is ' 'accepted.' ), }, 'outline': { 'label': 'Outline', 'description': ( 'Sections and key points of the talk meant to give the ' 'program committee an overview.' ), }, 'additional_requirements': { 'label': 'Additional Notes', 'description': ( "Any other information you'd like the program committee " "to know, e.g., additional context and resources, " "previous speaking experiences, etc. This will not be " "shared publicly." ), }, 'recording_release': { 'label': 'Recording Release', 'validators': (Optional(),), }, } duration = QuerySelectField(query_factory=duration_query_factory)
djds23/pygotham-1
pygotham/talks/forms.py
Python
bsd-3-clause
2,225
#----------------------------------------------------------------------------- # Copyright (c) 2012 - 2022, Anaconda, Inc., and Bokeh Contributors. # All rights reserved. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Boilerplate #----------------------------------------------------------------------------- from __future__ import annotations # isort:skip import pytest ; pytest #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Module under test import bokeh.command.subcommands as sc # isort:skip #----------------------------------------------------------------------------- # Setup #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # General API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Dev API #----------------------------------------------------------------------------- def test_all() -> None: assert hasattr(sc, 'all') assert type(sc.all) is list def test_all_types() -> None: from bokeh.command.subcommand import Subcommand assert all(issubclass(x, Subcommand) for x in sc.all) def test_all_count() -> None: from os import listdir from os.path import dirname files = listdir(dirname(sc.__file__)) pyfiles = [x for x in files if x.endswith(".py")] # the -2 accounts for __init__.py and file_output.py assert len(sc.all) == len(pyfiles) - 2 #----------------------------------------------------------------------------- # Private API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Code #-----------------------------------------------------------------------------
bokeh/bokeh
tests/unit/bokeh/command/subcommands/test___init___subcommands.py
Python
bsd-3-clause
2,184
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations from corehq.sql_db.operations import RawSQLMigration migrator = RawSQLMigration(('custom', 'icds_reports', 'migrations', 'sql_templates')) class Migration(migrations.Migration): dependencies = [ ] operations = [ migrator.get_migration('create_tables_and_views.sql'), migrator.get_migration('create_functions.sql'), ]
qedsoftware/commcare-hq
custom/icds_reports/migrations/0001_initial.py
Python
bsd-3-clause
452
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('orders', '0006_auto_20150223_1523'), ] operations = [ migrations.AlterField( model_name='mealdefaultmeal', name='meal', field=models.ForeignKey(related_name=b'meals', to='orders.MealDefault'), ), ]
delphcf/sis
sis/orders/migrations/0007_auto_20150224_1134.py
Python
bsd-3-clause
442
from __future__ import annotations from dials.algorithms.refinement.restraints.restraints_parameterisation import ( RestraintsParameterisation, ) __all__ = ["RestraintsParameterisation"]
dials/dials
algorithms/refinement/restraints/__init__.py
Python
bsd-3-clause
193
from sklearn import linear_model as lm_ from dask_ml import linear_model as lm from dask_ml.utils import assert_estimator_equal class TestStochasticGradientClassifier(object): def test_basic(self, single_chunk_classification): X, y = single_chunk_classification a = lm.PartialSGDClassifier(classes=[0, 1], random_state=0, max_iter=1000, tol=1e-3) b = lm_.SGDClassifier(random_state=0, max_iter=1000, tol=1e-3) a.fit(X, y) b.partial_fit(X, y, classes=[0, 1]) assert_estimator_equal(a, b, exclude='loss_function_') class TestStochasticGradientRegressor(object): def test_basic(self, single_chunk_regression): X, y = single_chunk_regression a = lm.PartialSGDRegressor(random_state=0, max_iter=1000, tol=1e-3) b = lm_.SGDRegressor(random_state=0, max_iter=1000, tol=1e-3) a.fit(X, y) b.partial_fit(X, y) assert_estimator_equal(a, b)
daniel-severo/dask-ml
tests/linear_model/test_stochastic_gradient.py
Python
bsd-3-clause
1,014
#!/usr/bin/env python from setuptools import setup, find_packages try: README = open('README.rst').read() except: README = None try: REQUIREMENTS = open('requirements.txt').read() except: REQUIREMENTS = None setup( name = 'django-legacymigrations', version = "0.1", description = 'Continuous legacy database migrations using Django.', long_description = README, install_requires = REQUIREMENTS, author = '1%CLUB', author_email = 'devteam@1procentclub.nl', url = 'https://github.com/onepercentclub/django-legacymigrations/', packages = find_packages(), include_package_data = True, classifiers = ['Development Status :: 3 - Alpha', 'Environment :: Web Environment', 'Framework :: Django', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Utilities'], )
onepercentclub/django-legacymigrations
setup.py
Python
bsd-3-clause
1,058
# Copyright 2018 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os import six.moves.urllib.parse # pylint: disable=import-error from core import benchmark_finders from core import benchmark_utils from telemetry.story import story_filter _SHARD_MAP_DIR = os.path.join(os.path.dirname(__file__), 'shard_maps') _ALL_BENCHMARKS_BY_NAMES = dict( (b.Name(), b) for b in benchmark_finders.GetAllBenchmarks()) OFFICIAL_BENCHMARKS = frozenset( b for b in benchmark_finders.GetOfficialBenchmarks() if not b.Name().startswith('UNSCHEDULED_')) CONTRIB_BENCHMARKS = frozenset(benchmark_finders.GetContribBenchmarks()) ALL_SCHEDULEABLE_BENCHMARKS = OFFICIAL_BENCHMARKS | CONTRIB_BENCHMARKS GTEST_STORY_NAME = '_gtest_' def _IsPlatformSupported(benchmark, platform): supported = benchmark.GetSupportedPlatformNames(benchmark.SUPPORTED_PLATFORMS) return 'all' in supported or platform in supported class PerfPlatform(object): def __init__(self, name, description, benchmark_configs, num_shards, platform_os, is_fyi=False, is_calibration=False, run_reference_build=False, executables=None): benchmark_configs = benchmark_configs.Frozenset() self._name = name self._description = description self._platform_os = platform_os # For sorting ignore case and "segments" in the bot name. self._sort_key = name.lower().replace('-', ' ') self._is_fyi = is_fyi self._is_calibration = is_calibration self.run_reference_build = run_reference_build self.executables = executables or frozenset() assert num_shards self._num_shards = num_shards # pylint: disable=redefined-outer-name self._benchmark_configs = frozenset([ b for b in benchmark_configs if _IsPlatformSupported(b.benchmark, self._platform_os)]) # pylint: enable=redefined-outer-name benchmark_names = [config.name for config in self._benchmark_configs] assert len(set(benchmark_names)) == len(benchmark_names), ( 'Make sure that a benchmark does not appear twice.') base_file_name = name.replace(' ', '_').lower() self._timing_file_path = os.path.join( _SHARD_MAP_DIR, 'timing_data', base_file_name + '_timing.json') self.shards_map_file_name = base_file_name + '_map.json' self._shards_map_file_path = os.path.join( _SHARD_MAP_DIR, self.shards_map_file_name) def __lt__(self, other): if not isinstance(other, type(self)): return NotImplemented # pylint: disable=protected-access return self._sort_key < other._sort_key @property def num_shards(self): return self._num_shards @property def shards_map_file_path(self): return self._shards_map_file_path @property def timing_file_path(self): return self._timing_file_path @property def name(self): return self._name @property def description(self): return self._description @property def platform(self): return self._platform_os @property def benchmarks_to_run(self): # TODO(crbug.com/965158): Deprecate this in favor of benchmark_configs # as part of change to make sharding scripts accommodate abridged # benchmarks. return frozenset({b.benchmark for b in self._benchmark_configs}) @property def benchmark_configs(self): return self._benchmark_configs @property def is_fyi(self): return self._is_fyi @property def is_calibration(self): return self._is_calibration @property def is_official(self): return not self._is_fyi and not self.is_calibration @property def builder_url(self): return ('https://ci.chromium.org/p/chrome/builders/ci/%s' % six.moves.urllib.parse.quote(self._name)) class BenchmarkConfig(object): def __init__(self, benchmark, abridged): """A configuration for a benchmark that helps decide how to shard it. Args: benchmark: the benchmark.Benchmark object. abridged: True if the benchmark should be abridged so fewer stories are run, and False if the whole benchmark should be run. """ self.benchmark = benchmark self.abridged = abridged self._stories = None self.is_telemetry = True @property def name(self): return self.benchmark.Name() @property def repeat(self): return self.benchmark.options.get('pageset_repeat', 1) @property def stories(self): if self._stories != None: return self._stories else: story_set = benchmark_utils.GetBenchmarkStorySet(self.benchmark()) abridged_story_set_tag = ( story_set.GetAbridgedStorySetTagFilter() if self.abridged else None) story_filter_obj = story_filter.StoryFilter( abridged_story_set_tag=abridged_story_set_tag) stories = story_filter_obj.FilterStories(story_set) self._stories = [story.name for story in stories] return self._stories class ExecutableConfig(object): def __init__(self, name, path=None, flags=None, estimated_runtime=60): self.name = name self.path = path or name self.flags = flags or [] self.estimated_runtime = estimated_runtime self.abridged = False self.stories = [GTEST_STORY_NAME] self.is_telemetry = False self.repeat = 1 class PerfSuite(object): def __init__(self, configs): self._configs = dict() self.Add(configs) def Frozenset(self): return frozenset(self._configs.values()) def Add(self, configs): if isinstance(configs, PerfSuite): configs = configs.Frozenset() for config in configs: if isinstance(config, str): config = _GetBenchmarkConfig(config) if config.name in self._configs: raise ValueError('Cannot have duplicate benchmarks/executables.') self._configs[config.name] = config return self def Remove(self, configs): for config in configs: name = config if isinstance(config, PerfSuite): name = config.name del self._configs[name] return self def Abridge(self, config_names): for name in config_names: del self._configs[name] self._configs[name] = _GetBenchmarkConfig( name, abridged=True) return self # Global |benchmarks| is convenient way to keep BenchmarkConfig objects # unique, which allows us to use set subtraction below. benchmarks = {b.Name(): {True: BenchmarkConfig(b, abridged=True), False: BenchmarkConfig(b, abridged=False)} for b in ALL_SCHEDULEABLE_BENCHMARKS} def _GetBenchmarkConfig(benchmark_name, abridged=False): return benchmarks[benchmark_name][abridged] OFFICIAL_BENCHMARK_CONFIGS = PerfSuite( [_GetBenchmarkConfig(b.Name()) for b in OFFICIAL_BENCHMARKS]) # power.mobile requires special hardware. # only run blink_perf.sanitizer-api on linux-perf. # speedometer2-chrome-health is only for use with the Chrome Health pipeline OFFICIAL_BENCHMARK_CONFIGS = OFFICIAL_BENCHMARK_CONFIGS.Remove([ 'power.mobile', 'blink_perf.sanitizer-api', 'speedometer2-chrome-health', ]) # TODO(crbug.com/965158): Remove OFFICIAL_BENCHMARK_NAMES once sharding # scripts are no longer using it. OFFICIAL_BENCHMARK_NAMES = frozenset( b.name for b in OFFICIAL_BENCHMARK_CONFIGS.Frozenset()) # TODO(crbug.com/1030840): Stop using these 'OFFICIAL_EXCEPT' suites and instead # define each benchmarking config separately as is already done for many of the # suites below. _OFFICIAL_EXCEPT_DISPLAY_LOCKING = PerfSuite(OFFICIAL_BENCHMARK_CONFIGS).Remove( ['blink_perf.display_locking']) _OFFICIAL_EXCEPT_JETSTREAM2 = PerfSuite(OFFICIAL_BENCHMARK_CONFIGS).Remove( ['jetstream2']) _OFFICIAL_EXCEPT_DISPLAY_LOCKING_JETSTREAM2 = PerfSuite( OFFICIAL_BENCHMARK_CONFIGS).Remove( ['blink_perf.display_locking', 'jetstream2']) def _base_perftests(estimated_runtime=270): return ExecutableConfig( 'base_perftests', flags=['--test-launcher-jobs=1', '--test-launcher-retry-limit=0'], estimated_runtime=estimated_runtime) def _components_perftests(estimated_runtime=110): return ExecutableConfig('components_perftests', flags=[ '--xvfb', ], estimated_runtime=estimated_runtime) def _dawn_perf_tests(estimated_runtime=270): return ExecutableConfig( 'dawn_perf_tests', flags=['--test-launcher-jobs=1', '--test-launcher-retry-limit=0'], estimated_runtime=estimated_runtime) def _gpu_perftests(estimated_runtime=60): return ExecutableConfig('gpu_perftests', estimated_runtime=estimated_runtime) def _load_library_perf_tests(estimated_runtime=3): return ExecutableConfig('load_library_perf_tests', estimated_runtime=estimated_runtime) def _performance_browser_tests(estimated_runtime=67): return ExecutableConfig( 'performance_browser_tests', path='browser_tests', flags=[ '--full-performance-run', '--test-launcher-jobs=1', '--test-launcher-retry-limit=0', # Allow the full performance runs to take up to 60 seconds (rather # than the default of 30 for normal CQ browser test runs). '--ui-test-action-timeout=60000', '--ui-test-action-max-timeout=60000', '--test-launcher-timeout=60000', '--gtest_filter=*/TabCapturePerformanceTest.*:' '*/CastV2PerformanceTest.*', ], estimated_runtime=estimated_runtime) def _tracing_perftests(estimated_runtime=50): return ExecutableConfig('tracing_perftests', estimated_runtime=estimated_runtime) def _views_perftests(estimated_runtime=7): return ExecutableConfig('views_perftests', flags=['--xvfb'], estimated_runtime=estimated_runtime) _CHROME_HEALTH_BENCHMARK_CONFIGS_DESKTOP = PerfSuite([ _GetBenchmarkConfig('system_health.common_desktop') ]) _LINUX_BENCHMARK_CONFIGS = PerfSuite(OFFICIAL_BENCHMARK_CONFIGS).Remove([ 'blink_perf.display_locking', 'v8.runtime_stats.top_25', ]).Add([ 'blink_perf.sanitizer-api', ]) _LINUX_EXECUTABLE_CONFIGS = frozenset([ # TODO(crbug.com/811766): Add views_perftests. _base_perftests(200), _load_library_perf_tests(), _performance_browser_tests(165), _tracing_perftests(5), ]) _MAC_HIGH_END_BENCHMARK_CONFIGS = PerfSuite(OFFICIAL_BENCHMARK_CONFIGS).Remove([ 'blink_perf.display_locking', 'v8.runtime_stats.top_25', ]) _MAC_HIGH_END_EXECUTABLE_CONFIGS = frozenset([ _base_perftests(300), _dawn_perf_tests(330), _performance_browser_tests(190), _views_perftests(), ]) _MAC_LOW_END_BENCHMARK_CONFIGS = PerfSuite(OFFICIAL_BENCHMARK_CONFIGS).Remove([ 'jetstream2', 'v8.runtime_stats.top_25', ]) _MAC_LOW_END_EXECUTABLE_CONFIGS = frozenset([ _load_library_perf_tests(), _performance_browser_tests(210), ]) _MAC_M1_MINI_2020_BENCHMARK_CONFIGS = PerfSuite( OFFICIAL_BENCHMARK_CONFIGS).Remove([ 'blink_perf.display_locking', 'v8.runtime_stats.top_25', ]) _MAC_M1_MINI_2020_EXECUTABLE_CONFIGS = frozenset([ _base_perftests(300), _dawn_perf_tests(330), _performance_browser_tests(190), _views_perftests(), ]) _WIN_10_BENCHMARK_CONFIGS = PerfSuite(OFFICIAL_BENCHMARK_CONFIGS).Remove([ 'blink_perf.display_locking', 'v8.runtime_stats.top_25', ]) _WIN_10_EXECUTABLE_CONFIGS = frozenset([ _base_perftests(200), _components_perftests(125), _dawn_perf_tests(600), _views_perftests(), ]) _WIN_10_LOW_END_BENCHMARK_CONFIGS = PerfSuite( OFFICIAL_BENCHMARK_CONFIGS).Remove([ 'blink_perf.display_locking', ]) _WIN_10_LOW_END_HP_CANDIDATE_BENCHMARK_CONFIGS = PerfSuite([ _GetBenchmarkConfig('v8.browsing_desktop'), _GetBenchmarkConfig('rendering.desktop', abridged=True), ]) _WIN_10_AMD_BENCHMARK_CONFIGS = PerfSuite([ _GetBenchmarkConfig('jetstream'), _GetBenchmarkConfig('jetstream2'), _GetBenchmarkConfig('kraken'), _GetBenchmarkConfig('octane'), _GetBenchmarkConfig('system_health.common_desktop'), ]) _WIN_10_AMD_LAPTOP_BENCHMARK_CONFIGS = PerfSuite([ _GetBenchmarkConfig('jetstream'), _GetBenchmarkConfig('jetstream2'), _GetBenchmarkConfig('kraken'), _GetBenchmarkConfig('octane'), ]) _WIN_7_BENCHMARK_CONFIGS = PerfSuite([ 'loading.desktop', ]).Abridge([ 'loading.desktop', ]) _WIN_7_GPU_BENCHMARK_CONFIGS = PerfSuite(['rendering.desktop']).Abridge( ['rendering.desktop']) _ANDROID_GO_BENCHMARK_CONFIGS = PerfSuite([ _GetBenchmarkConfig('system_health.memory_mobile'), _GetBenchmarkConfig('system_health.common_mobile'), _GetBenchmarkConfig('startup.mobile'), _GetBenchmarkConfig('system_health.webview_startup'), _GetBenchmarkConfig('v8.browsing_mobile'), _GetBenchmarkConfig('speedometer'), _GetBenchmarkConfig('speedometer2')]) _ANDROID_GO_WEBVIEW_BENCHMARK_CONFIGS = _ANDROID_GO_BENCHMARK_CONFIGS # Note that Nexus 5 bot capacity is very low, so we must severely limit # the benchmarks that we run on it and abridge large benchmarks in order # to run them on it. See crbug.com/1030840 for details. _ANDROID_NEXUS_5_BENCHMARK_CONFIGS = PerfSuite([ 'loading.mobile', 'startup.mobile', 'system_health.common_mobile', 'system_health.webview_startup', ]).Abridge(['loading.mobile', 'startup.mobile', 'system_health.common_mobile']) _ANDROID_NEXUS_5_EXECUTABLE_CONFIGS = frozenset([ _components_perftests(100), _gpu_perftests(45), _tracing_perftests(55), ]) _ANDROID_NEXUS_5X_WEBVIEW_BENCHMARK_CONFIGS = PerfSuite( OFFICIAL_BENCHMARK_CONFIGS).Remove([ 'blink_perf.display_locking', 'jetstream2', 'system_health.weblayer_startup', 'v8.browsing_mobile-future', ]) _ANDROID_PIXEL2_BENCHMARK_CONFIGS = PerfSuite( _OFFICIAL_EXCEPT_DISPLAY_LOCKING).Remove(['system_health.weblayer_startup']) _ANDROID_PIXEL2_EXECUTABLE_CONFIGS = frozenset([ _components_perftests(60), ]) _ANDROID_PIXEL2_WEBVIEW_BENCHMARK_CONFIGS = PerfSuite( OFFICIAL_BENCHMARK_CONFIGS).Remove([ 'blink_perf.display_locking', 'jetstream2', 'system_health.weblayer_startup', 'v8.browsing_mobile-future', ]) _ANDROID_PIXEL2_WEBLAYER_BENCHMARK_CONFIGS = PerfSuite([ _GetBenchmarkConfig('system_health.common_mobile', True), _GetBenchmarkConfig('system_health.memory_mobile', True), _GetBenchmarkConfig('startup.mobile'), _GetBenchmarkConfig('system_health.weblayer_startup') ]) _ANDROID_PIXEL4_BENCHMARK_CONFIGS = PerfSuite( _OFFICIAL_EXCEPT_DISPLAY_LOCKING).Remove(['system_health.weblayer_startup']) _ANDROID_PIXEL4_EXECUTABLE_CONFIGS = frozenset([ _components_perftests(60), ]) _ANDROID_PIXEL4_WEBVIEW_BENCHMARK_CONFIGS = PerfSuite( OFFICIAL_BENCHMARK_CONFIGS).Remove([ 'blink_perf.display_locking', 'jetstream2', 'system_health.weblayer_startup', 'v8.browsing_mobile-future', ]) _ANDROID_PIXEL4_WEBLAYER_BENCHMARK_CONFIGS = PerfSuite([ _GetBenchmarkConfig('system_health.common_mobile', True), _GetBenchmarkConfig('system_health.memory_mobile', True), _GetBenchmarkConfig('startup.mobile'), _GetBenchmarkConfig('system_health.weblayer_startup') ]) _ANDROID_PIXEL4A_POWER_BENCHMARK_CONFIGS = PerfSuite([ _GetBenchmarkConfig('power.mobile'), _GetBenchmarkConfig('system_health.scroll_jank_mobile') ]) _ANDROID_NEXUS5X_FYI_BENCHMARK_CONFIGS = PerfSuite( [_GetBenchmarkConfig('system_health.scroll_jank_mobile')]) _ANDROID_PIXEL2_AAB_FYI_BENCHMARK_CONFIGS = PerfSuite( [_GetBenchmarkConfig('startup.mobile')]) _ANDROID_PIXEL2_FYI_BENCHMARK_CONFIGS = PerfSuite([ _GetBenchmarkConfig('v8.browsing_mobile'), _GetBenchmarkConfig('system_health.memory_mobile'), _GetBenchmarkConfig('system_health.common_mobile'), _GetBenchmarkConfig('startup.mobile'), _GetBenchmarkConfig('speedometer2'), _GetBenchmarkConfig('rendering.mobile'), _GetBenchmarkConfig('octane'), _GetBenchmarkConfig('jetstream'), _GetBenchmarkConfig('system_health.scroll_jank_mobile') ]) _CHROMEOS_KEVIN_FYI_BENCHMARK_CONFIGS = PerfSuite([ _GetBenchmarkConfig('rendering.desktop')]) _LACROS_EVE_BENCHMARK_CONFIGS = PerfSuite(OFFICIAL_BENCHMARK_CONFIGS).Remove([ 'blink_perf.display_locking', 'v8.runtime_stats.top_25', ]) _LINUX_PERF_FYI_BENCHMARK_CONFIGS = PerfSuite([ _GetBenchmarkConfig('power.desktop'), _GetBenchmarkConfig('rendering.desktop'), _GetBenchmarkConfig('system_health.common_desktop') ]) _FUCHSIA_PERF_FYI_BENCHMARK_CONFIGS = PerfSuite([ _GetBenchmarkConfig('system_health.memory_desktop'), _GetBenchmarkConfig('media.mobile') ]) _LINUX_PERF_CALIBRATION_BENCHMARK_CONFIGS = PerfSuite([ _GetBenchmarkConfig('speedometer2'), _GetBenchmarkConfig('blink_perf.shadow_dom'), _GetBenchmarkConfig('system_health.common_desktop'), ]) _ANDROID_PIXEL2_PERF_CALIBRATION_BENCHMARK_CONFIGS = PerfSuite([ _GetBenchmarkConfig('system_health.common_mobile'), _GetBenchmarkConfig('system_health.memory_mobile'), ]) # Linux LINUX = PerfPlatform( 'linux-perf', 'Ubuntu-18.04, 8 core, NVIDIA Quadro P400', _LINUX_BENCHMARK_CONFIGS, 26, 'linux', executables=_LINUX_EXECUTABLE_CONFIGS) LINUX_REL = PerfPlatform( 'linux-perf-rel', 'Ubuntu-18.04, 8 core, NVIDIA Quadro P400', _CHROME_HEALTH_BENCHMARK_CONFIGS_DESKTOP, 2, 'linux', executables=_LINUX_EXECUTABLE_CONFIGS) # Mac MAC_HIGH_END = PerfPlatform( 'mac-10_13_laptop_high_end-perf', 'MacBook Pro, Core i7 2.8 GHz, 16GB RAM, 256GB SSD, Radeon 55', _MAC_HIGH_END_BENCHMARK_CONFIGS, 26, 'mac', executables=_MAC_HIGH_END_EXECUTABLE_CONFIGS) MAC_LOW_END = PerfPlatform( 'mac-10_12_laptop_low_end-perf', 'MacBook Air, Core i5 1.8 GHz, 8GB RAM, 128GB SSD, HD Graphics', _MAC_LOW_END_BENCHMARK_CONFIGS, 26, 'mac', executables=_MAC_LOW_END_EXECUTABLE_CONFIGS) MAC_M1_MINI_2020 = PerfPlatform( 'mac-m1_mini_2020-perf', 'Mac M1 Mini 2020', _MAC_M1_MINI_2020_BENCHMARK_CONFIGS, 26, 'mac', executables=_MAC_M1_MINI_2020_EXECUTABLE_CONFIGS) # Win WIN_10_LOW_END = PerfPlatform( 'win-10_laptop_low_end-perf', 'Low end windows 10 HP laptops. HD Graphics 5500, x86-64-i3-5005U, ' 'SSD, 4GB RAM.', _WIN_10_LOW_END_BENCHMARK_CONFIGS, # TODO(crbug.com/998161): Increase the number of shards once you # have enough test data to make a shard map and when more devices # are added to the data center. 46, 'win') WIN_10 = PerfPlatform( 'win-10-perf', 'Windows Intel HD 630 towers, Core i7-7700 3.6 GHz, 16GB RAM,' ' Intel Kaby Lake HD Graphics 630', _WIN_10_BENCHMARK_CONFIGS, 26, 'win', executables=_WIN_10_EXECUTABLE_CONFIGS) WIN_10_AMD = PerfPlatform('win-10_amd-perf', 'Windows AMD chipset', _WIN_10_AMD_BENCHMARK_CONFIGS, 1, 'win') WIN_10_AMD_LAPTOP = PerfPlatform('win-10_amd_laptop-perf', 'Windows 10 Laptop with AMD chipset.', _WIN_10_AMD_LAPTOP_BENCHMARK_CONFIGS, 2, 'win') WIN_7 = PerfPlatform('Win 7 Perf', 'N/A', _WIN_7_BENCHMARK_CONFIGS, 2, 'win') WIN_7_GPU = PerfPlatform('Win 7 Nvidia GPU Perf', 'N/A', _WIN_7_GPU_BENCHMARK_CONFIGS, 3, 'win') # Android ANDROID_GO = PerfPlatform( 'android-go-perf', 'Android O (gobo)', _ANDROID_GO_BENCHMARK_CONFIGS, 19, 'android') ANDROID_GO_WEBVIEW = PerfPlatform('android-go_webview-perf', 'Android OPM1.171019.021 (gobo)', _ANDROID_GO_WEBVIEW_BENCHMARK_CONFIGS, 13, 'android') ANDROID_NEXUS_5 = PerfPlatform('Android Nexus5 Perf', 'Android KOT49H', _ANDROID_NEXUS_5_BENCHMARK_CONFIGS, 10, 'android', executables=_ANDROID_NEXUS_5_EXECUTABLE_CONFIGS) ANDROID_NEXUS_5X_WEBVIEW = PerfPlatform( 'Android Nexus5X WebView Perf', 'Android AOSP MOB30K', _ANDROID_NEXUS_5X_WEBVIEW_BENCHMARK_CONFIGS, 16, 'android') ANDROID_PIXEL2 = PerfPlatform('android-pixel2-perf', 'Android OPM1.171019.021', _ANDROID_PIXEL2_BENCHMARK_CONFIGS, 28, 'android', executables=_ANDROID_PIXEL2_EXECUTABLE_CONFIGS) ANDROID_PIXEL2_WEBVIEW = PerfPlatform( 'android-pixel2_webview-perf', 'Android OPM1.171019.021', _ANDROID_PIXEL2_WEBVIEW_BENCHMARK_CONFIGS, 21, 'android') ANDROID_PIXEL2_WEBLAYER = PerfPlatform( 'android-pixel2_weblayer-perf', 'Android OPM1.171019.021', _ANDROID_PIXEL2_WEBLAYER_BENCHMARK_CONFIGS, 4, 'android') ANDROID_PIXEL4 = PerfPlatform('android-pixel4-perf', 'Android R', _ANDROID_PIXEL4_BENCHMARK_CONFIGS, 28, 'android', executables=_ANDROID_PIXEL4_EXECUTABLE_CONFIGS) ANDROID_PIXEL4_WEBVIEW = PerfPlatform( 'android-pixel4_webview-perf', 'Android R', _ANDROID_PIXEL4_WEBVIEW_BENCHMARK_CONFIGS, 21, 'android') ANDROID_PIXEL4_WEBLAYER = PerfPlatform( 'android-pixel4_weblayer-perf', 'Android R', _ANDROID_PIXEL4_WEBLAYER_BENCHMARK_CONFIGS, 4, 'android') ANDROID_PIXEL4A_POWER = PerfPlatform('android-pixel4a_power-perf', 'Android QD4A.200102.001.A1', _ANDROID_PIXEL4A_POWER_BENCHMARK_CONFIGS, 1, 'android') # Cros/Lacros LACROS_EVE_PERF = PerfPlatform('lacros-eve-perf', '', _LACROS_EVE_BENCHMARK_CONFIGS, 8, 'chromeos') # FYI bots WIN_10_LOW_END_HP_CANDIDATE = PerfPlatform( 'win-10_laptop_low_end-perf_HP-Candidate', 'HP 15-BS121NR Laptop Candidate', _WIN_10_LOW_END_HP_CANDIDATE_BENCHMARK_CONFIGS, 1, 'win', is_fyi=True) ANDROID_NEXUS5X_PERF_FYI = PerfPlatform('android-nexus5x-perf-fyi', 'Android MMB29Q', _ANDROID_NEXUS5X_FYI_BENCHMARK_CONFIGS, 2, 'android', is_fyi=True) ANDROID_PIXEL2_PERF_AAB_FYI = PerfPlatform( 'android-pixel2-perf-aab-fyi', 'Android OPM1.171019.021', _ANDROID_PIXEL2_AAB_FYI_BENCHMARK_CONFIGS, 1, 'android', is_fyi=True) ANDROID_PIXEL2_PERF_FYI = PerfPlatform('android-pixel2-perf-fyi', 'Android OPM1.171019.021', _ANDROID_PIXEL2_FYI_BENCHMARK_CONFIGS, 4, 'android', is_fyi=True) CHROMEOS_KEVIN_PERF_FYI = PerfPlatform('chromeos-kevin-perf-fyi', '', _CHROMEOS_KEVIN_FYI_BENCHMARK_CONFIGS, 4, 'chromeos', is_fyi=True) LINUX_PERF_FYI = PerfPlatform('linux-perf-fyi', '', _LINUX_PERF_FYI_BENCHMARK_CONFIGS, 1, 'linux', is_fyi=True) FUCHSIA_PERF_FYI = PerfPlatform('fuchsia-perf-fyi', '', _FUCHSIA_PERF_FYI_BENCHMARK_CONFIGS, 3, 'fuchsia', is_fyi=True) # Calibration bots LINUX_PERF_CALIBRATION = PerfPlatform( 'linux-perf-calibration', 'Ubuntu-18.04, 8 core, NVIDIA Quadro P400', _LINUX_BENCHMARK_CONFIGS, 28, 'linux', executables=_LINUX_EXECUTABLE_CONFIGS, is_calibration=True) ANDROID_PIXEL2_PERF_CALIBRATION = PerfPlatform( 'android-pixel2-perf-calibration', 'Android OPM1.171019.021', _ANDROID_PIXEL2_BENCHMARK_CONFIGS, 42, 'android', executables=_ANDROID_PIXEL2_EXECUTABLE_CONFIGS, is_calibration=True) ALL_PLATFORMS = { p for p in locals().values() if isinstance(p, PerfPlatform) } PLATFORMS_BY_NAME = {p.name: p for p in ALL_PLATFORMS} FYI_PLATFORMS = { p for p in ALL_PLATFORMS if p.is_fyi } CALIBRATION_PLATFORMS = {p for p in ALL_PLATFORMS if p.is_calibration} OFFICIAL_PLATFORMS = {p for p in ALL_PLATFORMS if p.is_official} ALL_PLATFORM_NAMES = { p.name for p in ALL_PLATFORMS } OFFICIAL_PLATFORM_NAMES = { p.name for p in OFFICIAL_PLATFORMS } def find_bot_platform(builder_name): for bot_platform in ALL_PLATFORMS: if bot_platform.name == builder_name: return bot_platform
nwjs/chromium.src
tools/perf/core/bot_platforms.py
Python
bsd-3-clause
25,195
# -*- coding: utf-8 -*- """Basic regex lexer implementation""" # :copyright: (c) 2009 - 2012 Thom Neale and individual contributors, # All rights reserved. # :license: BSD (3 Clause), see LICENSE for more details. from __future__ import absolute_import import logging.config from rexlex import config VERSION = (0, 0, 2, '') __version__ = '.'.join(str(p) for p in VERSION[0:3]) + ''.join(VERSION[3:]) __author__ = 'Thom Neale' __contact__ = 'twneale@gmail.com' __homepage__ = 'http://github.com/twneale/rexlex' __docformat__ = 'restructuredtext' __all__ = [ 'Lexer', 'Token', 'include', 'bygroups', 'Rule', 'ScannerLexer', 'IncompleteLex', 'TRACE', 'TRACE_RESULT', 'TRACE_META', 'TRACE_STATE', 'TRACE_RULE', '__version__'] # Configure logging. logging.config.dictConfig(config.LOGGING_CONFIG) # Import cumstom log levels. from rexlex.log_config import ( REXLEX_TRACE_RESULT as TRACE_RESULT, REXLEX_TRACE_META as TRACE_META, REXLEX_TRACE_STATE as TRACE_STATE, REXLEX_TRACE_RULE as TRACE_RULE, REXLEX_TRACE as TRACE, ) # Import lexer. from rexlex.lexer.lexer import Lexer from rexlex.lexer.tokentype import Token from rexlex.lexer.utils import include, bygroups, Rule from rexlex.lexer.exceptions import IncompleteLex # Import Scanner. from rexlex.scanner.scanner import ScannerLexer
twneale/rexlex
rexlex/__init__.py
Python
bsd-3-clause
1,346
# mapper/sync.py # Copyright (C) 2005, 2006, 2007, 2008 Michael Bayer mike_mp@zzzcomputing.com # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """Contains the ClauseSynchronizer class, which is used to map attributes between two objects in a manner corresponding to a SQL clause that compares column values. """ from sqlalchemy import schema, exceptions, util from sqlalchemy.sql import visitors, operators from sqlalchemy import logging from sqlalchemy.orm import util as mapperutil ONETOMANY = 0 MANYTOONE = 1 MANYTOMANY = 2 class ClauseSynchronizer(object): """Given a SQL clause, usually a series of one or more binary expressions between columns, and a set of 'source' and 'destination' mappers, compiles a set of SyncRules corresponding to that information. The ClauseSynchronizer can then be executed given a set of parent/child objects or destination dictionary, which will iterate through each of its SyncRules and execute them. Each SyncRule will copy the value of a single attribute from the parent to the child, corresponding to the pair of columns in a particular binary expression, using the source and destination mappers to map those two columns to object attributes within parent and child. """ def __init__(self, parent_mapper, child_mapper, direction): self.parent_mapper = parent_mapper self.child_mapper = child_mapper self.direction = direction self.syncrules = [] def compile(self, sqlclause, foreign_keys=None, issecondary=None): def compile_binary(binary): """Assemble a SyncRule given a single binary condition.""" if binary.operator != operators.eq or not isinstance(binary.left, schema.Column) or not isinstance(binary.right, schema.Column): return source_column = None dest_column = None if foreign_keys is None: if binary.left.table == binary.right.table: raise exceptions.ArgumentError("need foreign_keys argument for self-referential sync") if binary.left in util.Set([f.column for f in binary.right.foreign_keys]): dest_column = binary.right source_column = binary.left elif binary.right in util.Set([f.column for f in binary.left.foreign_keys]): dest_column = binary.left source_column = binary.right else: if binary.left in foreign_keys: source_column = binary.right dest_column = binary.left elif binary.right in foreign_keys: source_column = binary.left dest_column = binary.right if source_column and dest_column: if self.direction == ONETOMANY: self.syncrules.append(SyncRule(self.parent_mapper, source_column, dest_column, dest_mapper=self.child_mapper)) elif self.direction == MANYTOONE: self.syncrules.append(SyncRule(self.child_mapper, source_column, dest_column, dest_mapper=self.parent_mapper)) else: if not issecondary: self.syncrules.append(SyncRule(self.parent_mapper, source_column, dest_column, dest_mapper=self.child_mapper, issecondary=issecondary)) else: self.syncrules.append(SyncRule(self.child_mapper, source_column, dest_column, dest_mapper=self.parent_mapper, issecondary=issecondary)) rules_added = len(self.syncrules) visitors.traverse(sqlclause, visit_binary=compile_binary) if len(self.syncrules) == rules_added: raise exceptions.ArgumentError("No syncrules generated for join criterion " + str(sqlclause)) def dest_columns(self): return [r.dest_column for r in self.syncrules if r.dest_column is not None] def update(self, dest, parent, child, old_prefix): for rule in self.syncrules: rule.update(dest, parent, child, old_prefix) def execute(self, source, dest, obj=None, child=None, clearkeys=None): for rule in self.syncrules: rule.execute(source, dest, obj, child, clearkeys) def source_changes(self, uowcommit, source): for rule in self.syncrules: if rule.source_changes(uowcommit, source): return True else: return False class SyncRule(object): """An instruction indicating how to populate the objects on each side of a relationship. E.g. if table1 column A is joined against table2 column B, and we are a one-to-many from table1 to table2, a syncrule would say *take the A attribute from object1 and assign it to the B attribute on object2*. """ def __init__(self, source_mapper, source_column, dest_column, dest_mapper=None, issecondary=None): self.source_mapper = source_mapper self.source_column = source_column self.issecondary = issecondary self.dest_mapper = dest_mapper self.dest_column = dest_column #print "SyncRule", source_mapper, source_column, dest_column, dest_mapper def dest_primary_key(self): # late-evaluating boolean since some syncs are created # before the mapper has assembled pks try: return self._dest_primary_key except AttributeError: self._dest_primary_key = self.dest_mapper is not None and self.dest_column in self.dest_mapper._pks_by_table[self.dest_column.table] and not self.dest_mapper.allow_null_pks return self._dest_primary_key def _raise_col_to_prop(self, isdest): if isdest: raise exceptions.UnmappedColumnError("Can't execute sync rule for destination column '%s'; mapper '%s' does not map this column. Try using an explicit `foreign_keys` collection which does not include this column (or use a viewonly=True relation)." % (self.dest_column, self.dest_mapper)) else: raise exceptions.UnmappedColumnError("Can't execute sync rule for source column '%s'; mapper '%s' does not map this column. Try using an explicit `foreign_keys` collection which does not include destination column '%s' (or use a viewonly=True relation)." % (self.source_column, self.source_mapper, self.dest_column)) def source_changes(self, uowcommit, source): try: prop = self.source_mapper._get_col_to_prop(self.source_column) except exceptions.UnmappedColumnError: self._raise_col_to_prop(False) (added, unchanged, deleted) = uowcommit.get_attribute_history(source, prop.key, passive=True) return bool(added and deleted) def update(self, dest, parent, child, old_prefix): if self.issecondary is False: source = parent elif self.issecondary is True: source = child try: oldvalue = self.source_mapper._get_committed_attr_by_column(source.obj(), self.source_column) value = self.source_mapper._get_state_attr_by_column(source, self.source_column) except exceptions.UnmappedColumnError: self._raise_col_to_prop(False) dest[self.dest_column.key] = value dest[old_prefix + self.dest_column.key] = oldvalue def execute(self, source, dest, parent, child, clearkeys): # TODO: break the "dictionary" case into a separate method like 'update' above, # reduce conditionals if source is None: if self.issecondary is False: source = parent elif self.issecondary is True: source = child if clearkeys or source is None: value = None clearkeys = True else: try: value = self.source_mapper._get_state_attr_by_column(source, self.source_column) except exceptions.UnmappedColumnError: self._raise_col_to_prop(False) if isinstance(dest, dict): dest[self.dest_column.key] = value else: if clearkeys and self.dest_primary_key(): raise exceptions.AssertionError("Dependency rule tried to blank-out primary key column '%s' on instance '%s'" % (str(self.dest_column), mapperutil.state_str(dest))) if logging.is_debug_enabled(self.logger): self.logger.debug("execute() instances: %s(%s)->%s(%s) ('%s')" % (mapperutil.state_str(source), str(self.source_column), mapperutil.state_str(dest), str(self.dest_column), value)) try: self.dest_mapper._set_state_attr_by_column(dest, self.dest_column, value) except exceptions.UnmappedColumnError: self._raise_col_to_prop(True) SyncRule.logger = logging.class_logger(SyncRule)
santisiri/popego
envs/ALPHA-POPEGO/lib/python2.5/site-packages/SQLAlchemy-0.4.3-py2.5.egg/sqlalchemy/orm/sync.py
Python
bsd-3-clause
9,024
''' Created on Dec 16, 2011 @author: t4aalton ''' from socialDevices.action import Action, actionbody, actionprecondition from socialDevices.deviceInterfaces.talkingDevice import TalkingDevice from socialDevices.device import Device import socialDevices.misc as misc class DialogTest(Action): def __init__(self, d1, d2): self.d1 = d1 self.d2 = d2 @actionprecondition def precondition(self, d1, d2): return misc.proximity([d1, d2]) and d1.talkingDevice.isWilling() and d2.talkingDevice.isWilling() and d1.talkingDevice.isSilent() and \ d1.hasInterface(TalkingDevice) and d2.hasInterface(TalkingDevice) @actionbody def body(self, d1, d2): mtalk = misc.Mtalk() conversation = mtalk.getConversation(nbrOfPeople=2) devices = [d1, d2] for line in conversation: devices[line[0]].talkingDevice.say(line[1])
socialdevices/manager
core/fixtures/talkingDevices/invalid_files/dialog_action_exists.py
Python
bsd-3-clause
928