code
stringlengths
2
1.05M
repo_name
stringlengths
5
104
path
stringlengths
4
251
language
stringclasses
1 value
license
stringclasses
15 values
size
int32
2
1.05M
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models from django.contrib.auth import get_user_model User = get_user_model() user_orm_label = '%s.%s' % (User._meta.app_label, User._meta.object_name) user_model_label = '%s.%s' % (User._meta.app_label, User._meta.model_name) class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'ReviewedVersionCommit' db.create_table('review_queue_reviewedversioncommit', ( ('versioncommit_ptr', self.gf('django.db.models.fields.related.OneToOneField')(to=orm['widgy.VersionCommit'], unique=True, primary_key=True)), ('approved_by', self.gf('django.db.models.fields.related.ForeignKey')(related_name='+', null=True, on_delete=models.PROTECT, to=orm[user_orm_label])), ('approved_at', self.gf('django.db.models.fields.DateTimeField')(default=None, null=True)), )) db.send_create_signal('review_queue', ['ReviewedVersionCommit']) def backwards(self, orm): # Deleting model 'ReviewedVersionCommit' db.delete_table('review_queue_reviewedversioncommit') models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, user_model_label: { 'Meta': {'object_name': User.__name__, 'db_table': "'%s'" % User._meta.db_table}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'review_queue.reviewedversioncommit': { 'Meta': {'object_name': 'ReviewedVersionCommit', '_ormbases': ['widgy.VersionCommit']}, 'approved_at': ('django.db.models.fields.DateTimeField', [], {'default': 'None', 'null': 'True'}), 'approved_by': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'+'", 'null': 'True', 'on_delete': 'models.PROTECT', 'to': "orm['%s']" % user_model_label}), 'versioncommit_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['widgy.VersionCommit']", 'unique': 'True', 'primary_key': 'True'}) }, 'widgy.node': { 'Meta': {'unique_together': "[('content_type', 'content_id')]", 'object_name': 'Node'}, 'content_id': ('django.db.models.fields.PositiveIntegerField', [], {}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'depth': ('django.db.models.fields.PositiveIntegerField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_frozen': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'numchild': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'path': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '255'}) }, 'widgy.versioncommit': { 'Meta': {'object_name': 'VersionCommit'}, 'author': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['%s']" % user_model_label, 'null': 'True', 'on_delete': 'models.SET_NULL'}), 'created_at': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'message': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['widgy.VersionCommit']", 'null': 'True', 'on_delete': 'models.PROTECT'}), 'publish_at': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'root_node': ('widgy.db.fields.WidgyField', [], {'to': "orm['widgy.Node']", 'null': 'True', 'on_delete': 'models.PROTECT', 'blank': 'True'}), 'tracker': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'commits'", 'to': "orm['widgy.VersionTracker']"}) }, 'widgy.versiontracker': { 'Meta': {'object_name': 'VersionTracker'}, 'head': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['widgy.VersionCommit']", 'unique': 'True', 'null': 'True', 'on_delete': 'models.PROTECT'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'working_copy': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['widgy.Node']", 'unique': 'True', 'on_delete': 'models.PROTECT'}) } } complete_apps = ['review_queue']
j00bar/django-widgy
widgy/contrib/review_queue/south_migrations/0001_initial.py
Python
apache-2.0
7,453
# -*- coding: utf-8 -*- # Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from .client import WebRiskServiceV1Beta1Client from .async_client import WebRiskServiceV1Beta1AsyncClient __all__ = ( "WebRiskServiceV1Beta1Client", "WebRiskServiceV1Beta1AsyncClient", )
googleapis/python-webrisk
google/cloud/webrisk_v1beta1/services/web_risk_service_v1_beta1/__init__.py
Python
apache-2.0
797
# stdlib imports # django imports from django import forms from django.conf import settings from django.contrib.auth import get_user_model from django.core.exceptions import ValidationError from django.forms import widgets from django.forms.fields import MultipleChoiceField from django.forms.widgets import Textarea # third-party imports from nocaptcha_recaptcha.fields import NoReCaptchaField from nocaptcha_recaptcha.widgets import NoReCaptchaWidget # project imports from dbdb.core.models import CitationUrl from dbdb.core.models import Feature from dbdb.core.models import FeatureOption from dbdb.core.models import System from dbdb.core.models import SystemVersion from dbdb.core.models import SystemVersionMetadata # widgets class InvisibleReCaptchaWidget(NoReCaptchaWidget): template = getattr(settings, 'INVISIBLE_RECAPTCHA_WIDGET_TEMPLATE', 'nocaptcha_recaptcha/widget.html') # fields class TagFieldM2M(MultipleChoiceField): widget = forms.TextInput(attrs={'data-role': 'tagsinput', 'placeholder': ''}) def prepare_value(self, value): try: return ','.join([x.url for x in value]) except (AttributeError, TypeError): if value is not None: return value.split(',') return '' def clean(self, value): if value: urls = value.split(',') else: urls = [] url_objs = [] for url in urls: cit_url, _ = CitationUrl.objects.get_or_create(url=url) url_objs.append(cit_url) return url_objs pass # forms class SystemFeaturesForm(forms.Form): def __init__(self, *args, **kwargs): try: features = kwargs.pop('features') except KeyError: features = [] super(SystemFeaturesForm, self).__init__(*args, **kwargs) initial = {} for feature in features: o = feature.options.values_list('value', flat=True) if len(o) > 1: o = list(o) elif len(o) == 1: o = o[0] else: o = None initial[feature.feature.label] = { 'options': o, 'description': feature.description, 'citations': ','.join(feature.citations.values_list('url', flat=True)) } pass features = Feature.objects.all() self.features = [] for feature in features: initial_value = None if feature.multivalued: if feature.label in initial: initial_value = initial[feature.label]['options'] self.fields[feature.label+'_choices'] = forms.MultipleChoiceField( choices=( (x, x) for x in FeatureOption.objects.filter(feature=feature).order_by('value') ), initial=initial_value, required=False ) pass else: if feature.label in initial: initial_value = initial[feature.label]['options'] self.fields[feature.label+'_choices'] = forms.ChoiceField( choices=( (x, x) for x in FeatureOption.objects.filter(feature=feature).order_by('value') ), initial=initial_value, required=False ) pass initial_desc = None initial_cit = None if feature.label in initial: initial_desc = initial[feature.label]['description'] initial_cit = initial[feature.label]['citations'] pass self.fields[feature.label+'_description'] = forms.CharField( label='Description', help_text="This field supports Markdown Syntax", widget=widgets.Textarea(), initial=initial_desc, required=False ) self.fields[feature.label+'_citation'] = forms.CharField( label='Citations', help_text="Separate the urls with commas", widget=widgets.TextInput(attrs={'data-role': 'tagsinput', 'placeholder': ''}), initial=initial_cit, required=False ) self.fields[feature.label+'_choices'].feature_id = feature.id self.fields[feature.label+'_description'].feature_id = feature.id self.fields[feature.label+'_citation'].feature_id = feature.id pass return pass # model forms class CreateUserForm(forms.ModelForm): email = forms.EmailField(max_length=254, required=True) password = forms.CharField(max_length=128, label='Password', widget=widgets.PasswordInput) password2 = forms.CharField(max_length=128, label='Password Confirmation', widget=widgets.PasswordInput) captcha = NoReCaptchaField( gtag_attrs={ 'callback': 'onCaptchaSubmit', # name of JavaScript callback function 'bind': 'btn_submit' # submit button's ID in the form template }, widget=InvisibleReCaptchaWidget ) def __init__(self, *args, **kwargs): super(CreateUserForm, self).__init__(*args, **kwargs) self.initial_email = None initial = getattr(self, 'initial', None) if initial and 'email' in initial and initial['email']: self.initial_email = initial['email'] self.fields['email'].widget.attrs['readonly'] = True pass return def clean_email(self): if self.initial_email: return self.initial_email return self.cleaned_data['email'] def clean_password2(self): if self.cleaned_data['password2'] == self.cleaned_data['password']: return self.cleaned_data['password2'] raise ValidationError("The passwords do not match") class Meta: model = get_user_model() fields = ['username', 'email', 'password', 'password2', 'captcha'] pass class SystemForm(forms.ModelForm): # This is only shown to non-superusers orig_name = forms.CharField(max_length=128, label="Name", disabled=True, required=False) class Meta: model = System fields = ['name','orig_name'] pass class SystemVersionEditForm(forms.ModelForm): description_citations = TagFieldM2M( help_text="Separate the urls with commas", required=False ) history_citations = TagFieldM2M( help_text="Separate the urls with commas", required=False ) start_year_citations = TagFieldM2M( help_text="Separate the urls with commas", required=False ) end_year_citations = TagFieldM2M( help_text="Separate the urls with commas", required=False ) acquired_by_citations = TagFieldM2M( help_text="Separate the urls with commas", required=False ) class Meta: model = SystemVersion fields = [ 'logo', 'description', 'description_citations', 'history', 'history_citations', 'url', 'source_url', 'tech_docs', 'wikipedia_url', 'developer', 'start_year', 'start_year_citations', 'end_year', 'end_year_citations', 'acquired_by', 'acquired_by_citations', 'project_types', 'countries', 'former_names', 'comment' ] pass class SystemVersionForm(forms.ModelForm): description_citations = TagFieldM2M( help_text="Separate the urls with commas", required=False ) history_citations = TagFieldM2M( help_text="Separate the urls with commas", required=False ) start_year_citations = TagFieldM2M( help_text="Separate the urls with commas", required=False ) end_year_citations = TagFieldM2M( help_text="Separate the urls with commas", required=False ) acquired_by_citations = TagFieldM2M( help_text="Separate the urls with commas", required=False ) class Meta: model = SystemVersion fields = [ 'logo', 'description', 'description_citations', 'history', 'history_citations', 'url', 'source_url', 'tech_docs', 'wikipedia_url', 'developer', 'start_year', 'start_year_citations', 'end_year', 'end_year_citations', 'acquired_by', 'acquired_by_citations', 'project_types', 'countries', 'former_names', ] pass class SystemVersionMetadataForm(forms.ModelForm): class Meta: model = SystemVersionMetadata exclude = ['system'] pass
cmu-db/dbms-library
dbdb/core/forms.py
Python
apache-2.0
9,094
import pyximport; pyximport.install() import subiterations import numpy as np import scipy.ndimage as nd from scipy.ndimage import imread from scipy.misc import imsave, toimage from scipy.stats import threshold from itertools import izip from multiprocessing import Process, Manager, cpu_count from threading import Thread from scipy.ndimage.morphology import grey_closing import math skeleton_images_path = "skeleton_images/" class GrayscaleSkeleton: def __init__(self): pass def skeletonize(self, image): image = grey_closing(image, footprint=circle(8), mode='constant', cval=0.0) image = add_zero_mat(image) prev_binary_image = np.zeros_like(image) image_bit_depth = (image.dtype.itemsize * 8) / 2 print "image_bit_depth: " + str(image_bit_depth) #image_thresholds = range(2**image_bit_depth,-1,-16) image_thresholds = [2**x for x in range(image_bit_depth, 3, -1)] + range(15, 0, -1) print "image_thresholds: " + str(image_thresholds) for curr_threshold in image_thresholds: print "curr_threshold: " + str(curr_threshold) curr_thresh_image = threshold(image, curr_threshold) curr_binary_image = curr_thresh_image.astype(np.bool).astype(np.int) imsave(skeleton_images_path + "binary_" + str(curr_threshold) + ".png", curr_binary_image) curr_sum_image = (prev_binary_image + curr_binary_image) curr_skeleton_image = self.thin_pixels(curr_sum_image) imsave(skeleton_images_path + "skeleton_" + str(curr_threshold) + ".png", curr_skeleton_image) print "curr_skeleton max: " + str(curr_skeleton_image.max()) prev_binary_image = curr_skeleton_image return remove_zero_mat(prev_binary_image) def thin_pixels(self, image): pixel_removed = True neighbors = nd.convolve((image>0).astype(np.int),[[1,1,1],[1,0,1],[1,1,1]],mode='constant',cval=0.0) fg_pixels = np.where((image==1) & (neighbors >= 2) & (neighbors <= 6)) check_pixels = zip(fg_pixels[0], fg_pixels[1]) while len(check_pixels)>0: print len(check_pixels) (image, sub1_check_pixels) = self.parallel_sub(subiterations.first_subiteration, image, check_pixels) (image, sub2_check_pixels) = self.parallel_sub(subiterations.second_subiteration, image, list(set(check_pixels+sub1_check_pixels))) check_pixels=list(set(sub1_check_pixels+sub2_check_pixels)) neighbors = nd.convolve(image>0,[[1,1,1],[1,0,1],[1,1,1]],mode='constant',cval=0.0) fg_pixels = np.where(image==1) check_pixels = zip(fg_pixels[0],fg_pixels[1]) (image, _) = self.parallel_sub(self.empty_pools, image, check_pixels) return image def parallel_sub(self, sub_function, image, fg_pixels): manager = Manager() queue = manager.Queue() next_queue = manager.Queue() num_procs = int(math.ceil(float(cpu_count()) * 0.75)) workload_size = int(math.ceil(float(len(fg_pixels)) / float(num_procs))) process_list = [] if len(fg_pixels) == 0: return (image, []) (zero_pixels, next_pixels) = sub_function(image,fg_pixels) for (x,y) in zero_pixels: image[x][y]=0; return (image, next_pixels) def PRE_first_subiteration(self, curr_image, fg_pixels): zero_pixels = {} next_pixels = {} for (i, j) in fg_pixels: if curr_image[i][j] != 1: continue p2 = curr_image[i - 1][j] p3 = curr_image[i - 1][j + 1] p4 = curr_image[i][j + 1] p5 = curr_image[i + 1][j + 1] p6 = curr_image[i + 1][j] p7 = curr_image[i + 1][j - 1] p8 = curr_image[i][j - 1] p9 = curr_image[i - 1][j - 1] if (2 <= (bool(p2) + bool(p3) + bool(p4) + bool(p5) + bool(p6) + bool(p7) + bool(p8) + bool(p9)) <= 6 and (p2 * p4 * p6 == 0) and (p4 * p6 * p8 == 0)): if ((not p2 and p3) + (not p3 and p4) + (not p4 and p5) + (not p5 and p6) + (not p6 and p7) + (not p7 and p8) + (not p8 and p9) + (not p9 and p2) == 1): zero_pixels[(i,j)] = 0 if p2 == 1: next_pixels[(i-1,j)]=0 if p3 == 1: next_pixels[(i-1,j+1)]=0 if p4 == 1: next_pixels[(i,j+1)]=0 if p5 == 1: next_pixels[(i+1,j+1)]=0 if p6 == 1: next_pixels[(i+1,j)]=0 if p7 == 1: next_pixels[(i+1,j-1)]=0 if p8 == 1: next_pixels[(i,j-1)]=0 if p9 == 1: next_pixels[(i-1,j-1)]=0 return zero_pixels.keys(), next_pixels.keys() def PRE_second_subiteration(self, curr_image, fg_pixels): zero_pixels = {} next_pixels = {} for (i, j) in fg_pixels: if curr_image[i][j] != 1: continue p2 = curr_image[i - 1][j] p3 = curr_image[i - 1][j + 1] p4 = curr_image[i][j + 1] p5 = curr_image[i + 1][j + 1] p6 = curr_image[i + 1][j] p7 = curr_image[i + 1][j - 1] p8 = curr_image[i][j - 1] p9 = curr_image[i - 1][j - 1] if (2 <= (bool(p2) + bool(p3) + bool(p4) + bool(p5) + bool(p6) + bool(p7) + bool(p8) + bool(p9)) <= 6 and (p2 * p4 * p8 == 0) and (p2 * p6 * p8 == 0)): if ((not p2 and p3) + (not p3 and p4) + (not p4 and p5) + (not p5 and p6) + (not p6 and p7) + (not p7 and p8) + (not p8 and p9) + (not p9 and p2) == 1): zero_pixels[(i,j)] = 0 if p2 == 1: next_pixels[(i-1,j)]=0 if p3 == 1: next_pixels[(i-1,j+1)]=0 if p4 == 1: next_pixels[(i,j+1)]=0 if p5 == 1: next_pixels[(i+1,j+1)]=0 if p6 == 1: next_pixels[(i+1,j)]=0 if p7 == 1: next_pixels[(i+1,j-1)]=0 if p8 == 1: next_pixels[(i,j-1)]=0 if p9 == 1: next_pixels[(i-1,j-1)]=0 return zero_pixels.keys(), next_pixels.keys() def empty_pools(self, curr_image, fg_pixels): zero_pixels = {} for (i, j) in fg_pixels: p2 = curr_image[i - 1][j] p3 = curr_image[i - 1][j + 1] p4 = curr_image[i][j + 1] p5 = curr_image[i + 1][j + 1] p6 = curr_image[i + 1][j] p7 = curr_image[i + 1][j - 1] p8 = curr_image[i][j - 1] p9 = curr_image[i - 1][j - 1] if (bool(p2) + bool(p3) + bool(p4) + bool(p5) + bool(p6) + bool(p7) + bool(p8) + bool(p9) > 6): zero_pixels[(i,j)] = 0 return zero_pixels,[] # # helper functions # def add_zero_mat(image): num_rows, num_cols = image.shape image = np.insert(image, num_rows, np.zeros(num_cols, dtype=np.int), 0) image = np.insert(image, 0, np.zeros(num_cols, dtype=np.int), 0) num_rows, num_cols = image.shape image = np.insert(image, num_cols, np.zeros(num_rows, dtype=np.int), 1) image = np.insert(image, 0, np.zeros(num_rows, dtype=np.int), 1) return image def remove_zero_mat(image): num_rows, num_cols = image.shape image = np.delete(image, num_rows - 1, 0) image = np.delete(image, 0, 0) image = np.delete(image, num_cols - 1, 1) image = np.delete(image, 0, 1) return image def circle(radius): x, y = np.mgrid[:(2 * radius) + 1, :(2 * radius) + 1] circle = (x - radius) ** 2 + (y - radius) ** 2 return (circle <= (radius ** 2)).astype(np.int) import sys, time if __name__ == '__main__': input_filename = str(sys.argv[1]) output_filename = str(sys.argv[2]) print "input filename: " + str(input_filename) print "output filename: " + str(output_filename) input_kde = imread(input_filename) s = GrayscaleSkeleton() start_time = time.time() skeleton = s.skeletonize(input_kde) print "total elapsed time: " + str(time.time() - start_time) + " seconds" toimage(skeleton, cmin=0, cmax=255).save(output_filename)
Vanuan/gpx_to_road_map
biagoni2012/skeleton.py
Python
apache-2.0
8,440
''' ''' # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import subprocess Test.Summary = ''' Test transactions and sessions over http2, making sure they open and close in the proper order. ''' Test.SkipUnless( Condition.HasCurlFeature('http2') ) # Define default ATS. Disable the cache to simplify the test. ts = Test.MakeATSProcess("ts", select_ports=True, enable_tls=True, command="traffic_manager", enable_cache=False) server = Test.MakeOriginServer("server") server2 = Test.MakeOriginServer("server2") Test.testName = "" request_header = {"headers": "GET / HTTP/1.1\r\nHost: oc.test\r\n\r\n", "timestamp": "1469733493.993", "body": ""} # expected response from the origin server response_header = {"headers": "HTTP/1.1 200 OK\r\nConnection: close\r\nContent-Length:0\r\n\r\n", "timestamp": "1469733493.993", "body": ""} # add ssl materials like key, certificates for the server ts.addDefaultSSLFiles() Test.PrepareTestPlugin(os.path.join(Test.Variables.AtsTestPluginsDir, 'ssntxnorder_verify.so'), ts) # add response to the server dictionary server.addResponse("sessionfile.log", request_header, response_header) ts.Disk.records_config.update({ 'proxy.config.http2.zombie_debug_timeout_in': 10, 'proxy.config.diags.debug.enabled': 0, 'proxy.config.diags.debug.tags': 'ssntxnorder_verify', 'proxy.config.cache.enable_read_while_writer': 0, 'proxy.config.ssl.server.cert.path': '{0}'.format(ts.Variables.SSLDir), 'proxy.config.ssl.server.private_key.path': '{0}'.format(ts.Variables.SSLDir), }) ts.Disk.remap_config.AddLine( 'map https://oc.test:{0} http://127.0.0.1:{1}'.format( ts.Variables.ssl_port, server.Variables.Port) ) ts.Disk.ssl_multicert_config.AddLine( 'dest_ip=* ssl_cert_name=server.pem ssl_key_name=server.key' ) cmd = 'curl -k --resolve oc.test:{0}:127.0.0.1 --http2 https://oc.test:{0}'.format(ts.Variables.ssl_port) numberOfRequests = 100 tr = Test.AddTestRun() # Create a bunch of curl commands to be executed in parallel. Default.Process is set in SpawnCommands. # On Fedora 28/29, it seems that curl will occaisionally timeout after a couple seconds and return exitcode 2 # Examinig the packet capture shows that Traffic Server dutifully sends the response ps = tr.SpawnCommands(cmdstr=cmd, count=numberOfRequests, retcode=Any(0, 2)) tr.Processes.Default.Env = ts.Env tr.Processes.Default.ReturnCode = Any(0, 2) # Execution order is: ts/server, ps(curl cmds), Default Process. tr.Processes.Default.StartBefore( server, ready=When.PortOpen(server.Variables.Port)) tr.Processes.Default.StartBefore(Test.Processes.ts) # Don't know why we need both the start before and the start after ts.StartAfter(*ps) server.StartAfter(*ps) tr.StillRunningAfter = ts # Signal that all the curl processes have completed tr = Test.AddTestRun("Curl Done") tr.DelayStart = 2 # Delaying a couple seconds to make sure the global continuation's lock contention resolves. tr.Processes.Default.Command = "traffic_ctl plugin msg done done" tr.Processes.Default.ReturnCode = 0 tr.Processes.Default.Env = ts.Env tr.StillRunningAfter = ts # Parking this as a ready tester on a meaningless process # To stall the test runs that check for the stats until the # stats have propagated and are ready to read. def make_done_stat_ready(tsenv): def done_stat_ready(process, hasRunFor, **kw): retval = subprocess.run("traffic_ctl metric get ssntxnorder_verify.test.done > done 2> /dev/null", shell=True, env=tsenv) if retval.returncode == 0: retval = subprocess.run("grep 1 done > /dev/null", shell=True, env=tsenv) return retval.returncode == 0 return done_stat_ready # number of sessions/transactions opened and closed are equal tr = Test.AddTestRun("Check Ssn order errors") server2.StartupTimeout = 60 # Again, here the imporant thing is the ready function not the server2 process tr.Processes.Default.StartBefore(server2, ready=make_done_stat_ready(ts.Env)) tr.Processes.Default.Command = 'traffic_ctl metric get ssntxnorder_verify.err' tr.Processes.Default.ReturnCode = 0 tr.Processes.Default.Env = ts.Env tr.Processes.Default.Streams.All = Testers.ContainsExpression( 'ssntxnorder_verify.err 0', 'incorrect statistic return, or possible error.') tr.StillRunningAfter = ts tr.StillRunningAfter = server comparator_command = ''' if test "`traffic_ctl metric get ssntxnorder_verify.{0}.start | cut -d ' ' -f 2`" -eq "`traffic_ctl metric get ssntxnorder_verify.{0}.close | cut -d ' ' -f 2`" ; then\ echo yes;\ else \ echo no; \ fi; \ traffic_ctl metric match ssntxnorder_verify ''' # number of sessions/transactions opened and closed are equal tr = Test.AddTestRun("Check for ssn open/close") tr.Processes.Default.Command = comparator_command.format('ssn') tr.Processes.Default.ReturnCode = 0 tr.Processes.Default.Env = ts.Env tr.Processes.Default.Streams.stdout = Testers.ContainsExpression( "yes", 'should verify contents') tr.Processes.Default.Streams.stdout += Testers.ExcludesExpression( "ssntxnorder_verify.ssn.start 0", 'should be nonzero') tr.StillRunningAfter = ts tr.StillRunningAfter = server tr = Test.AddTestRun("Check for txn/open/close") tr.Processes.Default.Command = comparator_command.format('txn') tr.Processes.Default.ReturnCode = 0 tr.Processes.Default.Env = ts.Env tr.Processes.Default.Streams.stdout = Testers.ContainsExpression( "yes", 'should verify contents') tr.Processes.Default.Streams.stdout += Testers.ExcludesExpression( "ssntxnorder_verify.txn.start 0", 'should be nonzero') # and we receive the same number of transactions as we asked it to make tr.Processes.Default.Streams.stdout += Testers.ContainsExpression( "ssntxnorder_verify.txn.start {}".format(numberOfRequests), 'should be the number of transactions we made') tr.StillRunningAfter = ts tr.StillRunningAfter = server
pbchou/trafficserver
tests/gold_tests/continuations/openclose_h2.test.py
Python
apache-2.0
6,696
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import copy import logging import math from datetime import datetime, timedelta from typing import Any, ClassVar, Dict, List, Optional, Union import numpy as np import pandas as pd from flask_babel import gettext as _ from superset import app, cache, db, security_manager from superset.common.query_object import QueryObject from superset.connectors.base.models import BaseDatasource from superset.connectors.connector_registry import ConnectorRegistry from superset.exceptions import QueryObjectValidationError from superset.stats_logger import BaseStatsLogger from superset.utils import core as utils from superset.utils.core import DTTM_ALIAS from superset.viz import set_and_log_cache config = app.config stats_logger: BaseStatsLogger = config["STATS_LOGGER"] logger = logging.getLogger(__name__) class QueryContext: """ The query context contains the query object and additional fields necessary to retrieve the data payload for a given viz. """ cache_type: ClassVar[str] = "df" enforce_numerical_metrics: ClassVar[bool] = True datasource: BaseDatasource queries: List[QueryObject] force: bool custom_cache_timeout: Optional[int] result_type: utils.ChartDataResultType result_format: utils.ChartDataResultFormat # TODO: Type datasource and query_object dictionary with TypedDict when it becomes # a vanilla python type https://github.com/python/mypy/issues/5288 def __init__( # pylint: disable=too-many-arguments self, datasource: Dict[str, Any], queries: List[Dict[str, Any]], force: bool = False, custom_cache_timeout: Optional[int] = None, result_type: Optional[utils.ChartDataResultType] = None, result_format: Optional[utils.ChartDataResultFormat] = None, ) -> None: self.datasource = ConnectorRegistry.get_datasource( str(datasource["type"]), int(datasource["id"]), db.session ) self.queries = [QueryObject(**query_obj) for query_obj in queries] self.force = force self.custom_cache_timeout = custom_cache_timeout self.result_type = result_type or utils.ChartDataResultType.FULL self.result_format = result_format or utils.ChartDataResultFormat.JSON def get_query_result(self, query_object: QueryObject) -> Dict[str, Any]: """Returns a pandas dataframe based on the query object""" # Here, we assume that all the queries will use the same datasource, which is # a valid assumption for current setting. In the long term, we may # support multiple queries from different data sources. timestamp_format = None if self.datasource.type == "table": dttm_col = self.datasource.get_column(query_object.granularity) if dttm_col: timestamp_format = dttm_col.python_date_format # The datasource here can be different backend but the interface is common result = self.datasource.query(query_object.to_dict()) df = result.df # Transform the timestamp we received from database to pandas supported # datetime format. If no python_date_format is specified, the pattern will # be considered as the default ISO date format # If the datetime format is unix, the parse will use the corresponding # parsing logic if not df.empty: if DTTM_ALIAS in df.columns: if timestamp_format in ("epoch_s", "epoch_ms"): # Column has already been formatted as a timestamp. df[DTTM_ALIAS] = df[DTTM_ALIAS].apply(pd.Timestamp) else: df[DTTM_ALIAS] = pd.to_datetime( df[DTTM_ALIAS], utc=False, format=timestamp_format ) if self.datasource.offset: df[DTTM_ALIAS] += timedelta(hours=self.datasource.offset) df[DTTM_ALIAS] += query_object.time_shift if self.enforce_numerical_metrics: self.df_metrics_to_num(df, query_object) df.replace([np.inf, -np.inf], np.nan) df = query_object.exec_post_processing(df) return { "query": result.query, "status": result.status, "error_message": result.error_message, "df": df, } @staticmethod def df_metrics_to_num(df: pd.DataFrame, query_object: QueryObject) -> None: """Converting metrics to numeric when pandas.read_sql cannot""" for col, dtype in df.dtypes.items(): if dtype.type == np.object_ and col in query_object.metrics: df[col] = pd.to_numeric(df[col], errors="coerce") def get_data(self, df: pd.DataFrame,) -> Union[str, List[Dict[str, Any]]]: if self.result_format == utils.ChartDataResultFormat.CSV: include_index = not isinstance(df.index, pd.RangeIndex) result = df.to_csv(index=include_index, **config["CSV_EXPORT"]) return result or "" return df.to_dict(orient="records") def get_single_payload(self, query_obj: QueryObject) -> Dict[str, Any]: """Returns a payload of metadata and data""" if self.result_type == utils.ChartDataResultType.QUERY: return { "query": self.datasource.get_query_str(query_obj.to_dict()), "language": self.datasource.query_language, } if self.result_type == utils.ChartDataResultType.SAMPLES: row_limit = query_obj.row_limit or math.inf query_obj = copy.copy(query_obj) query_obj.groupby = [] query_obj.metrics = [] query_obj.post_processing = [] query_obj.row_limit = min(row_limit, config["SAMPLES_ROW_LIMIT"]) query_obj.row_offset = 0 query_obj.columns = [o.column_name for o in self.datasource.columns] payload = self.get_df_payload(query_obj) df = payload["df"] status = payload["status"] if status != utils.QueryStatus.FAILED: payload["data"] = self.get_data(df) del payload["df"] if self.result_type == utils.ChartDataResultType.RESULTS: return {"data": payload["data"]} return payload def get_payload(self) -> List[Dict[str, Any]]: """Get all the payloads from the QueryObjects""" return [self.get_single_payload(query_object) for query_object in self.queries] @property def cache_timeout(self) -> int: if self.custom_cache_timeout is not None: return self.custom_cache_timeout if self.datasource.cache_timeout is not None: return self.datasource.cache_timeout if ( hasattr(self.datasource, "database") and self.datasource.database.cache_timeout ) is not None: return self.datasource.database.cache_timeout return config["CACHE_DEFAULT_TIMEOUT"] def cache_key(self, query_obj: QueryObject, **kwargs: Any) -> Optional[str]: extra_cache_keys = self.datasource.get_extra_cache_keys(query_obj.to_dict()) cache_key = ( query_obj.cache_key( datasource=self.datasource.uid, extra_cache_keys=extra_cache_keys, rls=security_manager.get_rls_ids(self.datasource) if config["ENABLE_ROW_LEVEL_SECURITY"] and self.datasource.is_rls_supported else [], changed_on=self.datasource.changed_on, **kwargs ) if query_obj else None ) return cache_key def get_df_payload( # pylint: disable=too-many-statements self, query_obj: QueryObject, **kwargs: Any ) -> Dict[str, Any]: """Handles caching around the df payload retrieval""" cache_key = self.cache_key(query_obj, **kwargs) logger.info("Cache key: %s", cache_key) is_loaded = False stacktrace = None df = pd.DataFrame() cached_dttm = datetime.utcnow().isoformat().split(".")[0] cache_value = None status = None query = "" error_message = None if cache_key and cache and not self.force: cache_value = cache.get(cache_key) if cache_value: stats_logger.incr("loading_from_cache") try: df = cache_value["df"] query = cache_value["query"] status = utils.QueryStatus.SUCCESS is_loaded = True stats_logger.incr("loaded_from_cache") except KeyError as ex: logger.exception(ex) logger.error( "Error reading cache: %s", utils.error_msg_from_exception(ex) ) logger.info("Serving from cache") if query_obj and not is_loaded: try: invalid_columns = [ col for col in query_obj.columns + query_obj.groupby + utils.get_column_names_from_metrics(query_obj.metrics) if col not in self.datasource.column_names ] if invalid_columns: raise QueryObjectValidationError( _( "Columns missing in datasource: %(invalid_columns)s", invalid_columns=invalid_columns, ) ) query_result = self.get_query_result(query_obj) status = query_result["status"] query = query_result["query"] error_message = query_result["error_message"] df = query_result["df"] if status != utils.QueryStatus.FAILED: stats_logger.incr("loaded_from_source") if not self.force: stats_logger.incr("loaded_from_source_without_force") is_loaded = True except QueryObjectValidationError as ex: error_message = str(ex) status = utils.QueryStatus.FAILED except Exception as ex: # pylint: disable=broad-except logger.exception(ex) if not error_message: error_message = str(ex) status = utils.QueryStatus.FAILED stacktrace = utils.get_stacktrace() if is_loaded and cache_key and cache and status != utils.QueryStatus.FAILED: set_and_log_cache( cache_key, df, query, cached_dttm, self.cache_timeout, self.datasource.uid, ) return { "cache_key": cache_key, "cached_dttm": cache_value["dttm"] if cache_value is not None else None, "cache_timeout": self.cache_timeout, "df": df, "error": error_message, "is_cached": cache_key is not None, "query": query, "status": status, "stacktrace": stacktrace, "rowcount": len(df.index), } def raise_for_access(self) -> None: """ Raise an exception if the user cannot access the resource. :raises SupersetSecurityException: If the user cannot access the resource """ security_manager.raise_for_access(query_context=self)
airbnb/superset
superset/common/query_context.py
Python
apache-2.0
12,432
import io,requests,json,time,datetime,os.path,socket,random,re IN_DIR="../data/tweet" OUT_DIR="../data/imdb/parts" SPLITS=25 def split_files(): movie_fName=IN_DIR+"/movies.dat" count=1; try: with open(movie_fName,'r') as in_f: out_fName=OUT_DIR+"/movies_"+str(count)+".dat" out_f=open(out_fName,'w') print("INFO: Writing to "+out_fName) for l in in_f: out_f.write(l) count=count+1 if count%SPLITS==0: out_f.close() out_fName=OUT_DIR+"/movies_"+str(count)+".dat" out_f=open(out_fName,'w') print("INFO: Writing to "+out_fName) out_f.close() except (OSError, IOError) as e: print("ERROR: File "+movie_fName+" not found!") print("ERROR: Please run get_movie_tweeting_data.sh to get the Tweet Data") if __name__ == "__main__": split_files()
saikatgomes/recsys
code/split_movies_list.py
Python
apache-2.0
988
#!/usr/bin/env python # Author: # Rudiger Birkner (Networked Systems Group ETH Zurich) from collections import namedtuple import json from netaddr import IPNetwork ''' Config Parser ''' class Config(object): MULTISWITCH = 0 MULTITABLE = 1 MULTIHOP = 2 SUPERSETS = 0 MDS = 1 def __init__(self, config_file): self.mode = None self.vmac_mode = None self.vmac_options = None self.vnhs = None self.dpids = None self.dpid_2_name = {} self.refmon = None self.flanc_auth = None self.route_server = None self.arp_proxy = None self.peers = {} # loading config file config = json.load(open(config_file, 'r')) # parse config self.parse_config(config) def parse_config(self, config): if "Mode" in config: if config["Mode"] == "Multi-Switch": self.mode = self.MULTISWITCH if config["Mode"] == "Multi-Table": self.mode = self.MULTITABLE if config["Mode"] == "Multi-Hop": self.mode = self.MULTIHOP if "VMAC" in config: if "Mode" in config["VMAC"]: if config["VMAC"]["Mode"] == "Superset": self.vmac_mode = self.SUPERSETS if config["VMAC"]["Mode"] == "MDS": self.vmac_mode = self.MDS if "Options" in config["VMAC"]: self.vmac_options = config["VMAC"]["Options"] if "RefMon Settings" in config: if "fabric options" in config["RefMon Settings"]: if "dpids" in config["RefMon Settings"]["fabric options"]: self.dpids = config["RefMon Settings"]["fabric options"]["dpids"] for k,v in self.dpids.iteritems(): self.dpid_2_name[v] = k if "RefMon Server" in config: self.refmon = config["RefMon Server"] if "Flanc Auth Info" in config: self.flanc_auth = config["Flanc Auth Info"] if "VNHs" in config: self.vnhs = IPNetwork(config["VNHs"]) if "Route Server" in config: switch = None if "switch" in config["Route Server"]: switch = config["Route Server"]["switch"] self.route_server = Peer("RS", [Port(config["Route Server"]["Port"], switch, config["Route Server"]["MAC"], config["Route Server"]["IP"])]) if "ARP Proxy" in config: switch = None if "switch" in config["ARP Proxy"]: switch = config["ARP Proxy"]["switch"] self.arp_proxy = Peer("ARP", [Port(config["ARP Proxy"]["Port"], switch, config["ARP Proxy"]["MAC"], config["ARP Proxy"]["IP"])]) if "Participants" in config: for participant_name, participant in config["Participants"].iteritems(): participant_name = int(participant_name) if ("Inbound Rules" in participant): inbound_rules = participant["Inbound Rules"] else: inbound_rules = None if ("Outbound Rules" in participant): outbound_rules = participant["Outbound Rules"] else: outbound_rules = None if ("Ports" in participant): ports = [Port(port['Id'], port['switch'], port['MAC'], port['IP']) for port in participant["Ports"]] self.peers[participant_name] = Participant(participant_name, ports, inbound_rules, outbound_rules) def isMultiSwitchMode(self): return self.mode == self.MULTISWITCH def isMultiTableMode(self): return self.mode == self.MULTITABLE def isMultiHopMode(self): return self.mode == self.MULTIHOP def isSupersetsMode(self): return self.vmac_mode == self.SUPERSETS def isMDSMode(self): return self.vmac_mode == self.MDS Peer = namedtuple('Peer', 'name ports') Port = namedtuple('Port', 'id switch mac ip') Participant = namedtuple('Participant', 'name ports inbound_rules outbound_rules')
h2020-endeavour/iSDX
xctrl/lib.py
Python
apache-2.0
4,203
""" Cloud API asynchronous "PDF To Text" job example. Allows to avoid timeout errors when processing huge or scanned PDF documents. """ import os import requests # pip install requests import time import datetime # The authentication key (API Key). # Get your own by registering at https://app.pdf.co API_KEY = "******************************************" # Base URL for PDF.co Web API requests BASE_URL = "https://api.pdf.co/v1" # Source PDF file SourceFile = ".\\sample.pdf" # Comma-separated list of page indices (or ranges) to process. Leave empty for all pages. Example: '0,2-5,7-'. Pages = "" # PDF document password. Leave empty for unprotected documents. Password = "" # Destination CSV file name DestinationFile = ".\\result.csv" # (!) Make asynchronous job Async = True def main(args = None): uploadedFileUrl = uploadFile(SourceFile) if (uploadedFileUrl != None): convertPdfToCSV(uploadedFileUrl, DestinationFile) def convertPdfToCSV(uploadedFileUrl, destinationFile): """Converts PDF To CSV using PDF.co Web API""" # Prepare requests params as JSON # See documentation: https://apidocs.pdf.co parameters = {} parameters["async"] = Async parameters["name"] = os.path.basename(destinationFile) parameters["password"] = Password parameters["pages"] = Pages parameters["url"] = uploadedFileUrl # Prepare URL for 'PDF To CSV' API request url = "{}/pdf/convert/to/csv".format(BASE_URL) # Execute request and get response as JSON response = requests.post(url, data=parameters, headers={ "x-api-key": API_KEY }) if (response.status_code == 200): json = response.json() if json["error"] == False: # Asynchronous job ID jobId = json["jobId"] # URL of the result file resultFileUrl = json["url"] # Check the job status in a loop. # If you don't want to pause the main thread you can rework the code # to use a separate thread for the status checking and completion. while True: status = checkJobStatus(jobId) # Possible statuses: "working", "failed", "aborted", "success". # Display timestamp and status (for demo purposes) print(datetime.datetime.now().strftime("%H:%M.%S") + ": " + status) if status == "success": # Download result file r = requests.get(resultFileUrl, stream=True) if (r.status_code == 200): with open(destinationFile, 'wb') as file: for chunk in r: file.write(chunk) print(f"Result file saved as \"{destinationFile}\" file.") else: print(f"Request error: {response.status_code} {response.reason}") break elif status == "working": # Pause for a few seconds time.sleep(3) else: print(status) break else: # Show service reported error print(json["message"]) else: print(f"Request error: {response.status_code} {response.reason}") def checkJobStatus(jobId): """Checks server job status""" url = f"{BASE_URL}/job/check?jobid={jobId}" response = requests.get(url, headers={ "x-api-key": API_KEY }) if (response.status_code == 200): json = response.json() return json["status"] else: print(f"Request error: {response.status_code} {response.reason}") return None def uploadFile(fileName): """Uploads file to the cloud""" # 1. RETRIEVE PRESIGNED URL TO UPLOAD FILE. # Prepare URL for 'Get Presigned URL' API request url = "{}/file/upload/get-presigned-url?contenttype=application/octet-stream&name={}".format( BASE_URL, os.path.basename(fileName)) # Execute request and get response as JSON response = requests.get(url, headers={ "x-api-key": API_KEY }) if (response.status_code == 200): json = response.json() if json["error"] == False: # URL to use for file upload uploadUrl = json["presignedUrl"] # URL for future reference uploadedFileUrl = json["url"] # 2. UPLOAD FILE TO CLOUD. with open(fileName, 'rb') as file: requests.put(uploadUrl, data=file, headers={ "x-api-key": API_KEY, "content-type": "application/octet-stream" }) return uploadedFileUrl else: # Show service reported error print(json["message"]) else: print(f"Request error: {response.status_code} {response.reason}") return None if __name__ == '__main__': main()
bytescout/ByteScout-SDK-SourceCode
PDF.co Web API/PDF To CSV API/Python/Convert PDF To CSV From Uploaded File Asynchronously/ConvertPdfToCSVFromUploadedFileAsynchronously.py
Python
apache-2.0
4,935
#!/usr/bin/env python # -*- encoding: utf-8 -*- # Copyright 2016 Twitter. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ''' pidhandler.py ''' import traceback import tornado.gen import tornado.web from heron.common.src.python.utils.log import Log from heron.tools.tracker.src.python import utils from heron.tools.tracker.src.python.handlers import BaseHandler @tornado.gen.coroutine def getInstancePid(topology_info, instance_id): """ This method is used by other modules, and so it is not a part of the class. Fetches Instance pid from heron-shell. """ try: http_client = tornado.httpclient.AsyncHTTPClient() endpoint = utils.make_shell_endpoint(topology_info, instance_id) url = "%s/pid/%s" % (endpoint, instance_id) Log.debug("HTTP call for url: %s", url) response = yield http_client.fetch(url) raise tornado.gen.Return(response.body) except tornado.httpclient.HTTPError as e: raise Exception(str(e)) class PidHandler(BaseHandler): """ URL - /topologies/jmap?cluster=<cluster>&topology=<topology> \ &environ=<environment>&instance=<instance> Parameters: - cluster - Name of the cluster. - role - (optional) Role used to submit the topology. - environ - Running environment. - topology - Name of topology (Note: Case sensitive. Can only include [a-zA-Z0-9-_]+) - instance - Instance Id If successfule returns the pid of instance. May include training spaces and/or linefeed before/after. The response JSON is a dict with following format: { 'command': Full command executed at server. 'stdout': Text on stdout of executing the command. 'stderr': <optional> Text on stderr. } """ # pylint: disable=attribute-defined-outside-init def initialize(self, tracker): """ initialize """ self.tracker = tracker @tornado.gen.coroutine def get(self): """ get method """ try: cluster = self.get_argument_cluster() role = self.get_argument_role() environ = self.get_argument_environ() topology_name = self.get_argument_topology() instance = self.get_argument_instance() topology_info = self.tracker.getTopologyInfo(topology_name, cluster, role, environ) result = yield getInstancePid(topology_info, instance) self.write_success_response(result) except Exception as e: Log.debug(traceback.format_exc()) self.write_error_response(e)
lucperkins/heron
heron/tools/tracker/src/python/handlers/pidhandler.py
Python
apache-2.0
2,951
#!/usr/bin/env python # coding: utf-8 #copyRight by heibanke import time def time_cost(f): def _f(*arg, **kwarg): start = time.clock() a=f(*arg,**kwarg) end = time.clock() print f.__name__,"run cost time is ",end-start return a return _f def fib(n): if n<=2: return 1 else: return fib(n-1)+fib(n-2) #@time_cost def fib_opt(n): a,b,i=0,1,0 while i<n: a,b=b,a+b i+=1 else: return b def fib_iter(): a,b = 0,1 while True: yield b a,b = b,a+b N=10000 #print time_cost(fib)(N) #print fib_opt(N) import time start = time.clock() opt_result= [fib_opt(i) for i in xrange(N)] end = time.clock() print end-start print "------------------------------" A=fib_iter() start = time.clock() iter_result= [A.next() for i in xrange(N)] end = time.clock() print end-start
heibanke/python_do_something
Code/Chapter4/func_fib_opt.py
Python
apache-2.0
834
# Copyright 2015 Canonical Ltd # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nova.compute import power_state LXD_POWER_STATES = { 100: power_state.RUNNING, 101: power_state.RUNNING, 102: power_state.SHUTDOWN, 103: power_state.RUNNING, 104: power_state.SHUTDOWN, 105: power_state.NOSTATE, 106: power_state.NOSTATE, 107: power_state.SHUTDOWN, 108: power_state.CRASHED, 109: power_state.SUSPENDED, 110: power_state.SUSPENDED, 111: power_state.SUSPENDED, 200: power_state.RUNNING, 400: power_state.CRASHED, 401: power_state.NOSTATE }
tpouyer/nova-lxd
nova_lxd/nova/virt/lxd/constants.py
Python
apache-2.0
1,148
class SessionHelper: def __init__(self, app): self.app = app def login(self, username="admin", password="secret"): self.app.navigation.open_start_page() # Input userName self.app.page.fill_field("user", username) # Input Password self.app.page.fill_field("pass", password) # Click submit self.app.wd.find_element_by_css_selector("input[type='submit']").click() self.app.navigation.go_to_home_page() def logout(self): self.app.wd.find_element_by_link_text("Logout").click() def is_logged_in(self): return len(self.app.wd.find_elements_by_link_text("Logout")) > 0 def is_logged_in_as(self, username): return self.app.wd.find_element_by_xpath("//div/div[1]/form/b").text[1:-1] == username def ensure_logout(self): if self.is_logged_in(): self.logout() def ensure_login(self, username, password): if self.is_logged_in(): if self.is_logged_in_as(username): return else: self.logout() self.login(username, password)
Alinyan/python_training
fixture/session.py
Python
apache-2.0
1,170
#!/usr/bin/python #--------------------------------------------------------------------------- # Copyright 2011 The Open Source Electronic Health Record Agent # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #--------------------------------------------------------------------------- # # Gets the current rate and absolute limits for your account. # # This script expects to find the token.json file in the 'Session' directory. # That file should have been created during the authentication stage. # # The response is put in the file: # # Session/latestListOfImages.json. # # For details, please see: # http://docs.rackspace.com/servers/api/v2/cs-devguide/content/ProgrammaticLimits.html # #--------------------------------------------------------------------------- import requests import json tokenFile=open('Session/token.json','r') token=json.load(tokenFile) tokenFile.close() host='https://dfw.servers.api.rackspacecloud.com/v2/' account=token['tenant']['id'] uri='/limits' url=host+account+uri headers={'X-Auth-Token':token['id']} response = requests.get(url,headers=headers) tokenFile=open('Session/latestLimits.json','w') tokenFile.write(json.dumps(response.json)) tokenFile.close()
luisibanez/cloud-whisperer
Rackspace/getLimits.py
Python
apache-2.0
1,716
#!/usr/bin/env python # -*- coding: utf-8 -*- """ .. py:currentmodule:: text_file .. moduleauthor:: Hendrix Demers <hendrix.demers@mail.mcgill.ca> Read text file in map folder. """ ############################################################################### # Copyright 2017 Hendrix Demers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################### # Standard library modules. # Third party modules. # Local modules. # Project modules. # Globals and constants variables. class Analysis(): def __init__(self, dose=0.0, energy_width_eV=0, energy_loss_eV=0.0): self.dose = dose self.energy_width_eV = energy_width_eV self.energy_loss_eV = energy_loss_eV class TextParameters(): def __init__(self): self.analysis1 = Analysis(0.0, 0, 0.0) self.analysis2 = Analysis(0.0, 0, 0.0) self.analysis3 = Analysis(0.0, 0, 0.0) def read(self, file): lines = file.readlines() map_mode = True for line in lines: if line.startswith("[Analysis]"): map_mode = False try: keyword, value = line.split('=') keyword = keyword.strip() value = value.strip() if map_mode: if keyword.startswith("SU9000 Magnification"): self.magnification = int(value) elif keyword.startswith("EELS model"): self.model = value elif keyword.startswith("S.H."): self.sample_height = value elif keyword.startswith("File Name"): self.file_name = value elif keyword.startswith("Date"): self.date = value elif keyword.startswith("Time"): self.time = value elif keyword.startswith("Capture resolution"): self.capture_resolution = value elif keyword.startswith("Accelerating Voltage"): value, unit = value.split() self.accelerating_voltage_V = int(value) elif keyword.startswith("Energy Width"): self.energy_width = value elif keyword.startswith("Energy Loss"): self.energy_loss = value elif keyword.startswith("Scan Speed"): self.speed = value elif keyword.startswith("DPI"): self.dpi = int(value) elif keyword.startswith("Pixel Distance"): self.pixel_distance = value else: if keyword.startswith("Dose"): unit = value[-2:] items = value[:-2].split('/') if not items[0].startswith('-'): self.analysis1.dose = float(items[0]) if not items[1].startswith('-'): self.analysis2.dose = float(items[1]) if not items[2].startswith('-'): self.analysis3.dose = float(items[2]) elif keyword.startswith("Energy Width"): unit = value[-2:] items = value[:-2].split('/') if not items[0].startswith('-'): self.analysis1.energy_width_eV = int(items[0]) if not items[1].startswith('-'): self.analysis2.energy_width_eV = int(items[1]) if not items[2].startswith('-'): self.analysis3.energy_width_eV = int(items[2]) elif keyword.startswith("Energy Loss"): unit = value[-2:] items = value[:-2].split('/') if not items[0].startswith('-'): self.analysis1.energy_loss_eV = float(items[0]) if not items[1].startswith('-'): self.analysis2.energy_loss_eV = float(items[1]) if not items[2].startswith('-'): self.analysis3.energy_loss_eV = float(items[2]) elif keyword.startswith("A(x,y)"): self.A = value elif keyword.startswith("B(x,y)"): self.B = value elif keyword.startswith("Distance"): self.distance = value elif keyword.startswith("Pitch"): self.pitch = value elif keyword.startswith("Number"): self.number = int(value) elif keyword.startswith("Adjust"): self.adjust = value elif keyword.startswith("Data Size"): self.data_size = value elif keyword.startswith("Integration"): self.integration = int(value) except ValueError: pass
drix00/pysemeels
pysemeels/hitachi/eels_su/map/text_file.py
Python
apache-2.0
5,800
from flask import Flask from flask import render_template from flask import request from flask import jsonify from docker import client from os import environ import redis app = Flask(__name__) app.debug = True #set defaults IMAGE_NAME = "keeb/mongodb" COMMAND = ["/usr/bin/mongod", "--config", "/etc/mongodb.conf"] DOMAIN = "mongodb.stinemat.es" HIPACHE_PORT="80" EXPOSED_PORT="27017" #environment variables, must be set in order for application to function try: REDIS_PORT=environ["REDIS_PORT"] REDIS_HOST=environ["REDIS_HOST"] HIPACHE_PORT=environ["HIPACHE_PORT"] DOCKER_HOST=environ["DOCKER_HOST"] except Exception, e: print e print "environment not properly configured" print environ import sys; sys.exit(1) r = redis.StrictRedis(host=REDIS_HOST, port=int(REDIS_PORT)) c = client.Client(base_url='http://%s:4243' % DOCKER_HOST) @app.route('/') def index(): return render_template("index.html") @app.route('/new', methods=["POST"]) def new(): container = c.create_container(IMAGE_NAME, COMMAND, ports=[EXPOSED_PORT]) container_id = container["Id"] c.start(container_id) container_port = c.port(container_id, EXPOSED_PORT) r.rpush("frontend:%s.%s" % (container_id, DOMAIN), container_id) r.rpush("frontend:%s.%s" % (container_id, DOMAIN), "http://%s:%s" %(DOMAIN, container_port)) if HIPACHE_PORT == "80": url = "%s:%s" % (DOMAIN, container_port) else: url="%s:%s" % (DOMAIN, container_port) return jsonify( url=url, port=container_port, hipache_port=HIPACHE_PORT, id=container_id) @app.route('/details/<url>') def details(url): return render_template("details.html",url=url) @app.route('/robot.txt') def robot(): return render_template("robot.html") if __name__ == '__main__': import sys, os app.run(host="0.0.0.0")
keeb/any-saas
api.py
Python
apache-2.0
1,891
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import tokenize from hacking import core START_DOCSTRING_TRIPLE = ['u"""', 'r"""', '"""', "u'''", "r'''", "'''"] END_DOCSTRING_TRIPLE = ['"""', "'''"] @core.flake8ext def hacking_docstring_start_space(physical_line, previous_logical, tokens): r"""Check for docstring not starting with space. OpenStack HACKING guide recommendation for docstring: Docstring should not start with space Okay: def foo():\n '''This is good.''' Okay: def foo():\n r'''This is good.''' Okay: def foo():\n a = ''' This is not a docstring.''' Okay: def foo():\n pass\n ''' This is not.''' H401: def foo():\n ''' This is not.''' H401: def foo():\n r''' This is not.''' """ docstring = is_docstring(tokens, previous_logical) if docstring: start, start_triple = _find_first_of(docstring, START_DOCSTRING_TRIPLE) if docstring[len(start_triple)] == ' ': # docstrings get tokenized on the last line of the docstring, so # we don't know the exact position. return (0, "H401: docstring should not start with" " a space") @core.flake8ext def hacking_docstring_multiline_end(physical_line, previous_logical, tokens): r"""Check multi line docstring end. OpenStack HACKING guide recommendation for docstring: Docstring should end on a new line Okay: '''foobar\nfoo\nbar\n''' Okay: def foo():\n '''foobar\n\nfoo\nbar\n''' Okay: class Foo(object):\n '''foobar\n\nfoo\nbar\n''' Okay: def foo():\n a = '''not\na\ndocstring''' Okay: def foo():\n a = '''not\na\ndocstring''' # blah Okay: def foo():\n pass\n'''foobar\nfoo\nbar\n d''' H403: def foo():\n '''foobar\nfoo\nbar\ndocstring''' H403: def foo():\n '''foobar\nfoo\nbar\npretend raw: r''' H403: class Foo(object):\n '''foobar\nfoo\nbar\ndocstring'''\n\n """ docstring = is_docstring(tokens, previous_logical) if docstring: if '\n' not in docstring: # not a multi line return else: last_line = docstring.split('\n')[-1] pos = max(last_line.rfind(i) for i in END_DOCSTRING_TRIPLE) if len(last_line[:pos].strip()) > 0: # Something before the end docstring triple return (pos, "H403: multi line docstrings should end on a new line") @core.flake8ext def hacking_docstring_multiline_start(physical_line, previous_logical, tokens): r"""Check multi line docstring starts immediately with summary. OpenStack HACKING guide recommendation for docstring: Docstring should start with a one-line summary, less than 80 characters. Okay: '''foobar\n\nfoo\nbar\n''' Okay: def foo():\n a = '''\nnot\na docstring\n''' H404: def foo():\n '''\nfoo\nbar\n'''\n\n H404: def foo():\n r'''\nfoo\nbar\n'''\n\n """ docstring = is_docstring(tokens, previous_logical) if docstring: if '\n' not in docstring: # single line docstring return start, start_triple = _find_first_of(docstring, START_DOCSTRING_TRIPLE) lines = docstring.split('\n') if lines[0].strip() == start_triple: # docstrings get tokenized on the last line of the docstring, so # we don't know the exact position. return (0, "H404: multi line docstring " "should start without a leading new line") @core.flake8ext def hacking_docstring_summary(physical_line, previous_logical, tokens): r"""Check multi line docstring summary is separated with empty line. OpenStack HACKING guide recommendation for docstring: Docstring should start with a one-line summary, less than 80 characters. Okay: def foo():\n a = '''\nnot\na docstring\n''' Okay: '''foobar\n\nfoo\nbar\n''' H405: def foo():\n '''foobar\nfoo\nbar\n''' H405: def foo():\n r'''foobar\nfoo\nbar\n''' H405: def foo():\n '''foobar\n''' """ docstring = is_docstring(tokens, previous_logical) if docstring: if '\n' not in docstring: # not a multi line docstring return lines = docstring.split('\n') if len(lines) > 1 and len(lines[1].strip()) is not 0: # docstrings get tokenized on the last line of the docstring, so # we don't know the exact position. return (0, "H405: multi line docstring " "summary not separated with an empty line") def is_docstring(tokens, previous_logical): """Return found docstring 'A docstring is a string literal that occurs as the first statement in a module, function, class,' http://www.python.org/dev/peps/pep-0257/#what-is-a-docstring """ for token_type, text, start, _, _ in tokens: if token_type == tokenize.STRING: break elif token_type != tokenize.INDENT: return False else: return False line = text.lstrip() start, start_triple = _find_first_of(line, START_DOCSTRING_TRIPLE) if (previous_logical.startswith("def ") or previous_logical.startswith("class ")): if start == 0: return text def _find_first_of(line, substrings): """Find earliest occurrence of one of substrings in line. Returns pair of index and found substring, or (-1, None) if no occurrences of any of substrings were found in line. """ starts = ((line.find(i), i) for i in substrings) found = [(i, sub) for i, sub in starts if i != -1] if found: return min(found) else: return -1, None
zancas/hacking
hacking/checks/docstrings.py
Python
apache-2.0
6,197
import pickle import random from nose.tools import assert_raises, eq_ from dbdb.binary_tree import BinaryNode, BinaryTree, BinaryNodeRef, ValueRef class StubStorage(object): def __init__(self): self.d = [0] self.locked = False def lock(self): if not self.locked: self.locked = True return True else: return False def unlock(self): pass def get_root_address(self): return 0 def write(self, string): address = len(self.d) self.d.append(string) return address def read(self, address): return self.d[address] class TestBinaryTree(object): def setup(self): self.tree = BinaryTree(StubStorage()) def test_get_missing_key_raises_key_error(self): with assert_raises(KeyError): self.tree.get('Not A Key In The Tree') def test_set_and_get_key(self): self.tree.set('a', 'b') eq_(self.tree.get('a'), 'b') def test_random_set_and_get_keys(self): ten_k = list(range(10000)) pairs = list(zip(random.sample(ten_k, 10), random.sample(ten_k, 10))) for i, (k, v) in enumerate(pairs, start=1): self.tree.set(k, v) eq_(len(self.tree), i) for k, v in pairs: eq_(self.tree.get(k), v) random.shuffle(pairs) for i, (k, v) in enumerate(pairs, start=1): self.tree.pop(k) eq_(len(self.tree), len(pairs) - i) def test_overwrite_and_get_key(self): self.tree.set('a', 'b') self.tree.set('a', 'c') eq_(self.tree.get('a'), 'c') def test_pop_non_existent_key(self): with assert_raises(KeyError): self.tree.pop('Not A Key In The Tree') def test_del_leaf_key(self): self.tree.set('b', '2') self.tree.pop('b') with assert_raises(KeyError): self.tree.get('b') def test_del_left_node_key(self): self.tree.set('b', '2') self.tree.set('a', '1') self.tree.pop('b') with assert_raises(KeyError): self.tree.get('b') self.tree.get('a') def test_del_right_node_key(self): self.tree.set('b', '2') self.tree.set('c', '3') self.tree.pop('b') with assert_raises(KeyError): self.tree.get('b') self.tree.get('c') def test_del_full_node_key(self): self.tree.set('b', '2') self.tree.set('a', '1') self.tree.set('c', '3') self.tree.pop('b') with assert_raises(KeyError): self.tree.get('b') self.tree.get('a') self.tree.get('c') class TestBinaryNodeRef(object): def test_to_string_leaf(self): n = BinaryNode(BinaryNodeRef(), 'k', ValueRef(address=999), BinaryNodeRef(), 1) pickled = BinaryNodeRef.referent_to_string(n) d = pickle.loads(pickled) eq_(d['left'], 0) eq_(d['key'], 'k') eq_(d['value'], 999) eq_(d['right'], 0) def test_to_string_nonleaf(self): left_ref = BinaryNodeRef(address=123) right_ref = BinaryNodeRef(address=321) n = BinaryNode(left_ref, 'k', ValueRef(address=999), right_ref, 3) pickled = BinaryNodeRef.referent_to_string(n) d = pickle.loads(pickled) eq_(d['left'], 123) eq_(d['key'], 'k') eq_(d['value'], 999) eq_(d['right'], 321)
yntantan/beetles
dbdb/tests/test_binary_tree.py
Python
apache-2.0
3,440
# 341. Flatten Nested List Iterator # # Given a nested list of integers, implement an iterator to flatten it. # # Each element is either an integer, or a list -- whose elements may also be integers or other lists. # # Example 1: # Given the list [[1,1],2,[1,1]], # # By calling next repeatedly until hasNext returns false, the order of elements returned by next should be: [1,1,2,1,1]. # # Example 2: # Given the list [1,[4,[6]]], # # By calling next repeatedly until hasNext returns false, the order of elements returned by next should be: [1,4,6]. # """ # This is the interface that allows for creating nested lists. # You should not implement it, or speculate about its implementation # """ #class NestedInteger(object): # def isInteger(self): # """ # @return True if this NestedInteger holds a single integer, rather than a nested list. # :rtype bool # """ # # def getInteger(self): # """ # @return the single integer that this NestedInteger holds, if it holds a single integer # Return None if this NestedInteger holds a nested list # :rtype int # """ # # def getList(self): # """ # @return the nested list that this NestedInteger holds, if it holds a nested list # Return None if this NestedInteger holds a single integer # :rtype List[NestedInteger] # """ class NestedIterator(object): def __init__(self, nestedList): """ Initialize your data structure here. :type nestedList: List[NestedInteger] """ self.stack = nestedList[::-1] def next(self): """ :rtype: int """ return self.stack.pop().getInteger() def hasNext(self): """ :rtype: bool """ while self.stack: top = self.stack[-1] if top.isInteger(): return True # flat the nested list and add it back to the top of stack self.stack = self.stack[:-1] + top.getList()[::-1] return False # Your NestedIterator object will be instantiated and called as such: # i, v = NestedIterator(nestedList), [] # while i.hasNext(): v.append(i.next())
gengwg/leetcode
341_flatten_nested_list_iterator.py
Python
apache-2.0
2,196
import os import sys import ctypes import ctypes.util from ctypes import c_char_p, c_int, c_size_t, c_void_p glfs_dll = ctypes.util.find_library("libglusterfs") if glfs_dll: glfs = ctypes.CDLL(glfs_dll) xdr_dll = ctypes.util.find_library("libgfxdr") if xdr_dll: xdr = ctypes.CDLL(xdr_dll) api_gfapi_dll = ctypes.util.find_library("libgfapi") if api_gfapi_dll: api = ctypes.CDLL(api_gfapi_dll) class GFApi: def __init__(self, **argv): self.fs = api.glfs_new(argv['volume']) self.directory = argv['directory'] self.filename = argv['filename'] self.dirfd = c_void_p api.glfs_set_logging(self.fs, "/dev/stderr", 7) api.glfs_set_volfile_server(self.fs, "tcp", "localhost", 24007) api.glfs_init(self.fs) def gf_opendir(self): self.dirfd = api.glfs_opendir(self.fs, self.directory) def gf_readdir(self): api.glfs_readdir_r(self.dirfd, self.entry, self.results) def gf_open(self): self.fd = api.glfs_open(self.fs, self.filename, os.O_RDWR) ## TODO
harshavardhana/bungee-plugins
pygfapi/__init__.py
Python
apache-2.0
997
#!/usr/bin/env python # coding: utf-8 # Copyright 2013 The Font Bakery Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # See AUTHORS.txt for the list of Authors and LICENSE.txt for the License. from __future__ import print_function import os import sys import yaml from fontaine.font import FontFactory from fontaine.cmap import Library from bakery_cli.utils import UpstreamDirectory class Widgets(object): def __init__(self, app): self.app = app self.commit = urwid.Edit(edit_text=app.commit) self.ttfautohint = urwid.Edit(edit_text=app.ttfautohint) self.newfamily = urwid.Edit(edit_text=app.newfamily) self.pyftsubset = urwid.Edit(edit_text=app.pyftsubset) self.notes = urwid.Edit(edit_text=app.notes) self.afdko_parameters = urwid.Edit(edit_text=app.afdko) self.compiler = [] self.licenses = [] self.process_files = [] self.subset = [] def on_checkbox_state_change(self, widget, state, user_data): self.app.config[user_data['name']] = state def on_subset_state_change(self, widget, state, user_data): if 'subset' not in self.app.config: self.app.config['subset'] = [] try: index = self.app.config['subset'].index(user_data['name']) if user_data['name'] == 'devanagari': self.ttfautohint.edit_text = self.ttfautohint.edit_text.replace('-f deva', '') self.ttfautohint.edit_text = self.ttfautohint.edit_text.replace('-D deva', '') self.ttfautohint.edit_text = self.ttfautohint.edit_text.strip() self.ttfautohint.edit_text = self.ttfautohint.edit_text.replace(' ', ' ') del self.app.config['subset'][index] except ValueError: if user_data['name'] == 'devanagari': self.ttfautohint.edit_text += ' -f deva -D deva' self.app.config['subset'].append(user_data['name']) def create_checkbox(self, title, name, state=False): return urwid.CheckBox(title, user_data={'name': name}, state=state, on_state_change=self.on_checkbox_state_change) def create_process_file(self, filepath): try: state = [x.lstrip('./') for x in self.app.process_files].index(filepath) >= 0 except ValueError: state = False widget = urwid.CheckBox(filepath, state=state) self.process_files.append(widget) return widget def create_subset_widget(self, subsetname, coverage): widget = urwid.CheckBox('{0} ({1})'.format(subsetname, coverage), state=bool(subsetname in app.subset), user_data={'name': subsetname}, on_state_change=self.on_subset_state_change) self.subset.append(widget) return widget class App(object): commit = 'HEAD' process_files = [] subset = [] compiler = 'fontforge' ttfautohint = '-l 7 -r 28 -G 50 -x 13 -w "G"' afdko = '' downstream = True optimize = True license = '' pyftsubset = '--notdef-outline --name-IDs=* --hinting' notes = '' newfamily = '' fontcrunch = False config = {} configfile = 'bakery.yaml' def __init__(self, directory): os.chdir(directory) if os.path.exists('bakery.yaml'): self.configfile = 'bakery.yaml' self.config = yaml.load(open('bakery.yaml')) elif os.path.exists('bakery.yml'): self.config = yaml.load(open('bakery.yml')) self.configfile = 'bakery.yml' self.commit = self.config.get('commit', 'HEAD') self.process_files = self.config.get('process_files', []) self.subset = self.config.get('subset', []) self.compiler = self.config.get('compiler', 'fontforge') self.ttfautohint = self.config.get('ttfautohint', '-l 7 -r 28 -G 50 -x 13 -w "G"') self.afdko = self.config.get('afdko', '') self.license = self.config.get('license', '') self.pyftsubset = self.config.get('pyftsubset', '--notdef-outline --name-IDs=* --hinting') self.notes = self.config.get('notes', '') self.newfamily = self.config.get('newfamily', '') self.widgets = Widgets(self) def save(self, *args, **kwargs): if os.path.exists(self.configfile): print('{} exists...'.format(self.configfile)) self.configfile = '{}.new'.format(self.configfile) while os.path.exists(self.configfile): self.configfile = '{}.new'.format(self.configfile) self.config['commit'] = self.widgets.commit.get_edit_text() if not self.config['commit']: del self.config['commit'] self.config['ttfautohint'] = self.widgets.ttfautohint.get_edit_text() self.config['newfamily'] = self.widgets.newfamily.get_edit_text() if not self.config['newfamily']: del self.config['newfamily'] self.config['pyftsubset'] = self.widgets.pyftsubset.get_edit_text() self.config['process_files'] = [w.get_label() for w in self.widgets.process_files if w.get_state()] self.config['compiler'] = ', '.join([w.get_label() for w in self.widgets.compiler if w.get_state()]) self.config['license'] = ', '.join([w.get_label().replace(' (exists)', '') for w in self.widgets.licenses if w.get_state()]) self.config['notes'] = self.widgets.notes.get_edit_text() if not self.config['notes']: del self.config['notes'] self.config['afdko'] = self.widgets.afdko_parameters.get_edit_text() if not self.config['afdko']: del self.config['afdko'] yaml.safe_dump(self.config, open(self.configfile, 'w')) print('Wrote {}'.format(self.configfile)) raise urwid.ExitMainLoop() def get_subsets_coverage_data(source_fonts_paths): """ Return dict mapping key to the corresponding subsets coverage {'subsetname': {'fontname-light': 13, 'fontname-bold': 45}, 'subsetname': {'fontname-light': 9, 'fontname-bold': 100} } """ library = Library(collections=['subsets']) subsets = {} for fontpath in source_fonts_paths: if fontpath.lower().endswith('.sfd'): continue try: font = FontFactory.openfont(fontpath) except AssertionError: continue for info in font.get_orthographies(_library=library): subsetname = info.charset.common_name.replace('Subset ', '') if subsetname not in subsets: subsets[subsetname] = {} subsets[subsetname][fontpath] = info.coverage return subsets def generate_subsets_coverage_list(): directory = UpstreamDirectory('.') source_fonts_paths = [] # `get_sources_list` returns list of paths relative to root. # To complete to absolute paths use python os.path.join method # on root and path for p in directory.ALL_FONTS: if p.lower().endswith('.sfd'): continue source_fonts_paths.append(p) return get_subsets_coverage_data(source_fonts_paths) import argparse parser = argparse.ArgumentParser() parser.add_argument('directory') args = parser.parse_args() directory = UpstreamDirectory(args.directory) process_files = [x for x in directory.ALL_FONTS if not x.lower().endswith('.sfd')] import urwid.curses_display import urwid.raw_display import urwid.web_display import urwid def show_or_exit(key): if key in ('q', 'Q', 'esc'): raise urwid.ExitMainLoop() header = urwid.Text("Fontbakery Setup. Q exits.") app = App(args.directory) widgets = [] if os.path.exists('.git/config'): githead = urwid.Text(u"Build a specific git commit, or HEAD? ") widgets.append(urwid.AttrMap(githead, 'key')) widgets.append(urwid.LineBox(app.widgets.commit)) widgets.append(urwid.Divider()) widgets.append(urwid.AttrMap(urwid.Text('Which files to process?'), 'key')) for f in process_files: widgets.append(app.widgets.create_process_file(f)) widgets.append(urwid.Divider()) widgets.append(urwid.AttrMap( urwid.Text('License filename?'), 'key')) for f in ['OFL.txt', 'LICENSE.txt', 'LICENSE']: if os.path.exists(f): widgets.append(urwid.RadioButton(app.widgets.licenses, f + ' (exists)', state=bool(f == app.license))) else: widgets.append(urwid.RadioButton(app.widgets.licenses, f, state=bool(f == app.license))) widgets.append(urwid.Divider()) widgets.append( urwid.AttrMap( urwid.Text('What subsets do you want to create?'), 'key')) subsets = generate_subsets_coverage_list() for s in sorted(subsets): ll = ', '.join(set(['{}%'.format(subsets[s][k]) for k in subsets[s] if subsets[s][k]])) if ll: widgets.append(app.widgets.create_subset_widget(s, ll)) widgets.append(urwid.Divider()) widgets.append(urwid.AttrMap( urwid.Text('ttfautohint command line parameters?'), 'key')) widgets.append(urwid.LineBox(app.widgets.ttfautohint)) widgets.append(urwid.Divider()) widgets.append(urwid.AttrMap( urwid.Text(('New font family name (ie, replacing repo' ' codename with RFN)?')), 'key')) widgets.append(urwid.LineBox(app.widgets.newfamily)) widgets.append(urwid.Divider()) widgets.append(urwid.AttrMap(app.widgets.create_checkbox('Use FontCrunch?', 'fontcrunch', app.fontcrunch), 'key')) widgets.append(urwid.Divider()) widgets.append(urwid.AttrMap(app.widgets.create_checkbox('Run tests?', 'downstream', app.downstream), 'key')) widgets.append(urwid.Divider()) widgets.append(urwid.AttrMap(app.widgets.create_checkbox('Run optimize?', 'optimize', app.optimize), 'key')) widgets.append(urwid.Divider()) widgets.append(urwid.AttrMap( urwid.Text('pyftsubset defaults parameters?'), 'key')) widgets.append(urwid.LineBox(app.widgets.pyftsubset)) widgets.append(urwid.Divider()) widgets.append(urwid.AttrMap( urwid.Text('Which compiler to use?'), 'key')) widgets.append(urwid.Divider()) quote = ('By default, bakery uses fontforge to build fonts from ufo.' ' But some projects use automake, or their own build system' ' and perhaps the AFDKO.') widgets.append(urwid.Padding(urwid.Text(quote), left=4)) widgets.append(urwid.Divider()) choices = ['fontforge', 'afdko', 'make', 'build.py'] for choice in choices: widgets.append(urwid.RadioButton(app.widgets.compiler, choice, state=bool(choice == app.compiler))) widgets.append(urwid.Divider()) widgets.append(urwid.AttrMap( urwid.Text('afdko default command line parameters?'), 'key')) widgets.append(urwid.LineBox(app.widgets.afdko_parameters)) widgets.append(urwid.Divider()) widgets.append(urwid.AttrMap( urwid.Text('Notes to display on Summary page?'), 'key')) widgets.append(urwid.LineBox(app.widgets.notes)) widgets.append(urwid.Button(u'Save and Exit', on_press=app.save)) header = urwid.AttrWrap(header, 'header') lw = urwid.SimpleListWalker(widgets) listbox = urwid.ListBox(lw) listbox = urwid.AttrWrap(listbox, 'listbox') top = urwid.Frame(listbox, header) palette = [('header', 'black', 'dark cyan', 'standout'), ('key', 'white', 'dark blue', 'bold'), ('listbox', 'light gray', 'black')] loop = urwid.MainLoop(top, palette, unhandled_input=show_or_exit) loop.run()
jessamynsmith/fontbakery
tools/fontbakery-setup.py
Python
apache-2.0
12,295
# # Copyright 2012 New Dream Network, LLC (DreamHost) # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Publish a sample using the preferred RPC mechanism. """ import abc import itertools import operator from oslo_config import cfg from oslo_log import log import oslo_messaging from oslo_utils import encodeutils from oslo_utils import excutils import six import six.moves.urllib.parse as urlparse from ceilometer.i18n import _, _LE, _LI from ceilometer import messaging from ceilometer import publisher from ceilometer.publisher import utils LOG = log.getLogger(__name__) NOTIFIER_OPTS = [ cfg.StrOpt('metering_topic', default='metering', help='The topic that ceilometer uses for metering ' 'notifications.', ), cfg.StrOpt('event_topic', default='event', help='The topic that ceilometer uses for event ' 'notifications.', ), cfg.StrOpt('telemetry_driver', default='messagingv2', help='The driver that ceilometer uses for metering ' 'notifications.', deprecated_name='metering_driver', ) ] cfg.CONF.register_opts(NOTIFIER_OPTS, group="publisher_notifier") cfg.CONF.import_opt('host', 'ceilometer.service') class DeliveryFailure(Exception): def __init__(self, message=None, cause=None): super(DeliveryFailure, self).__init__(message) self.cause = cause def raise_delivery_failure(exc): excutils.raise_with_cause(DeliveryFailure, encodeutils.exception_to_unicode(exc), cause=exc) @six.add_metaclass(abc.ABCMeta) class MessagingPublisher(publisher.PublisherBase): def __init__(self, parsed_url): options = urlparse.parse_qs(parsed_url.query) # the value of options is a list of url param values # only take care of the latest one if the option # is provided more than once self.per_meter_topic = bool(int( options.get('per_meter_topic', [0])[-1])) self.policy = options.get('policy', ['default'])[-1] self.max_queue_length = int(options.get( 'max_queue_length', [1024])[-1]) self.max_retry = 0 self.local_queue = [] if self.policy in ['default', 'queue', 'drop']: LOG.info(_LI('Publishing policy set to %s') % self.policy) else: LOG.warning(_('Publishing policy is unknown (%s) force to ' 'default') % self.policy) self.policy = 'default' self.retry = 1 if self.policy in ['queue', 'drop'] else None def publish_samples(self, context, samples): """Publish samples on RPC. :param context: Execution context from the service or RPC call. :param samples: Samples from pipeline after transformation. """ meters = [ utils.meter_message_from_counter( sample, cfg.CONF.publisher.telemetry_secret) for sample in samples ] topic = cfg.CONF.publisher_notifier.metering_topic self.local_queue.append((context, topic, meters)) if self.per_meter_topic: for meter_name, meter_list in itertools.groupby( sorted(meters, key=operator.itemgetter('counter_name')), operator.itemgetter('counter_name')): meter_list = list(meter_list) topic_name = topic + '.' + meter_name LOG.debug('Publishing %(m)d samples on %(n)s', {'m': len(meter_list), 'n': topic_name}) self.local_queue.append((context, topic_name, meter_list)) self.flush() def flush(self): # NOTE(sileht): # this is why the self.local_queue is emptied before processing the # queue and the remaining messages in the queue are added to # self.local_queue after in case of another call having already added # something in the self.local_queue queue = self.local_queue self.local_queue = [] self.local_queue = (self._process_queue(queue, self.policy) + self.local_queue) if self.policy == 'queue': self._check_queue_length() def _check_queue_length(self): queue_length = len(self.local_queue) if queue_length > self.max_queue_length > 0: count = queue_length - self.max_queue_length self.local_queue = self.local_queue[count:] LOG.warning(_("Publisher max local_queue length is exceeded, " "dropping %d oldest samples") % count) def _process_queue(self, queue, policy): current_retry = 0 while queue: context, topic, data = queue[0] try: self._send(context, topic, data) except DeliveryFailure: data = sum([len(m) for __, __, m in queue]) if policy == 'queue': LOG.warning(_("Failed to publish %d datapoints, queue " "them"), data) return queue elif policy == 'drop': LOG.warning(_("Failed to publish %d datapoints, " "dropping them"), data) return [] current_retry += 1 if current_retry >= self.max_retry: LOG.exception(_LE("Failed to retry to send sample data " "with max_retry times")) raise else: queue.pop(0) return [] def publish_events(self, context, events): """Send an event message for publishing :param context: Execution context from the service or RPC call :param events: events from pipeline after transformation """ ev_list = [utils.message_from_event( event, cfg.CONF.publisher.telemetry_secret) for event in events] topic = cfg.CONF.publisher_notifier.event_topic self.local_queue.append((context, topic, ev_list)) self.flush() @abc.abstractmethod def _send(self, context, topic, meters): """Send the meters to the messaging topic.""" class NotifierPublisher(MessagingPublisher): def __init__(self, parsed_url, default_topic): super(NotifierPublisher, self).__init__(parsed_url) options = urlparse.parse_qs(parsed_url.query) topic = options.get('topic', [default_topic])[-1] self.notifier = oslo_messaging.Notifier( messaging.get_transport(), driver=cfg.CONF.publisher_notifier.telemetry_driver, publisher_id='telemetry.publisher.%s' % cfg.CONF.host, topic=topic, retry=self.retry ) def _send(self, context, event_type, data): try: self.notifier.sample(context.to_dict(), event_type=event_type, payload=data) except oslo_messaging.MessageDeliveryFailure as e: raise_delivery_failure(e) class SampleNotifierPublisher(NotifierPublisher): def __init__(self, parsed_url): super(SampleNotifierPublisher, self).__init__( parsed_url, cfg.CONF.publisher_notifier.metering_topic) class EventNotifierPublisher(NotifierPublisher): def __init__(self, parsed_url): super(EventNotifierPublisher, self).__init__( parsed_url, cfg.CONF.publisher_notifier.event_topic)
idegtiarov/ceilometer
ceilometer/publisher/messaging.py
Python
apache-2.0
8,139
# Copyright (c) 2016-2019 Chris Reed # # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from . import instructions from .decoder import (DECODER_TREE, UndefinedInstructionError) decoder = DECODER_TREE decoder.build() class Disassembler(object): def __init__(self): pass def disasm(self, data, address=0): length = len(data) endAddress = address + length offset = 0 while address < endAddress: # Decode the next instruction. try: i = decoder.decode(data[offset:], address) except UndefinedInstructionError: # Ignore the undefined error if it's the last few bytes. if endAddress - address < 4: return raise # Return this instruction to the caller. yield i # Update address based on instruction length. address += i.size offset += i.size
flit/cmdis
cmdis/disasm.py
Python
apache-2.0
1,507
from django.conf import settings from storages.backends.s3boto3 import S3Boto3Storage class DefaultStorage(S3Boto3Storage): location = settings.DEFAULT_LOCATION file_overwrite = True class StaticStorage(S3Boto3Storage): location = settings.STATICFILES_LOCATION file_overwrite = True class LogoStorage(S3Boto3Storage): location = settings.LOGO_LOCATION file_overwrite = True class AgencyImageStorage(S3Boto3Storage): location = settings.AGENCY_IMAGE_LOCATION file_overwrite = True class AgencyNationStorage(S3Boto3Storage): location = settings.AGENCY_NATION_LOCATION file_overwrite = True class OrbiterImageStorage(S3Boto3Storage): location = settings.ORBITER_IMAGE_LOCATION file_overwrite = True class LauncherImageStorage(S3Boto3Storage): location = settings.LAUNCHER_IMAGE_LOCATION file_overwrite = True class LaunchImageStorage(S3Boto3Storage): location = settings.LAUNCH_IMAGE_LOCATION file_overwrite = True class EventImageStorage(S3Boto3Storage): location = settings.EVENT_IMAGE_LOCATION file_overwrite = True class AppImageStorage(S3Boto3Storage): location = settings.APP_IMAGE_LOCATION file_overwrite = True class AstronautImageStorage(S3Boto3Storage): location = settings.ASTRONAUT_IMAGE_LOCATION file_overwrite = True class SpaceStationImageStorage(S3Boto3Storage): location = settings.SPACESTATION_IMAGE_LOCATION file_overwrite = True class LauncherCoreImageStorage(S3Boto3Storage): location = settings.LAUNCHER_CORE_IMAGE_LOCATION file_overwrite = True
ItsCalebJones/SpaceLaunchNow-Server
custom_storages.py
Python
apache-2.0
1,595
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Base Estimator class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import copy import os import tempfile import numpy as np import six from google.protobuf import message from tensorflow.core.framework import summary_pb2 from tensorflow.core.protobuf import config_pb2 from tensorflow.core.protobuf import rewriter_config_pb2 from tensorflow.python.client import session as tf_session from tensorflow.python.data.ops import dataset_ops from tensorflow.python.eager import context from tensorflow.python.estimator import model_fn as model_fn_lib from tensorflow.python.estimator import run_config from tensorflow.python.estimator.export import export as export_helpers from tensorflow.python.estimator.export import export_output from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import random_seed from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import metrics as metrics_lib from tensorflow.python.ops import resources from tensorflow.python.ops import variables from tensorflow.python.platform import gfile from tensorflow.python.platform import tf_logging as logging from tensorflow.python.saved_model import builder as saved_model_builder from tensorflow.python.saved_model import constants from tensorflow.python.summary import summary from tensorflow.python.summary.writer import writer_cache from tensorflow.python.training import device_setter from tensorflow.python.training import distribute as distribute_lib from tensorflow.python.training import evaluation from tensorflow.python.training import monitored_session from tensorflow.python.training import saver from tensorflow.python.training import training from tensorflow.python.training import training_util from tensorflow.python.training import warm_starting_util from tensorflow.python.util import compat from tensorflow.python.util import compat_internal from tensorflow.python.util import function_utils from tensorflow.python.util import nest from tensorflow.python.util.tf_export import tf_export _VALID_MODEL_FN_ARGS = set( ['features', 'labels', 'mode', 'params', 'self', 'config']) @tf_export('estimator.Estimator') class Estimator(object): """Estimator class to train and evaluate TensorFlow models. The `Estimator` object wraps a model which is specified by a `model_fn`, which, given inputs and a number of other parameters, returns the ops necessary to perform training, evaluation, or predictions. All outputs (checkpoints, event files, etc.) are written to `model_dir`, or a subdirectory thereof. If `model_dir` is not set, a temporary directory is used. The `config` argument can be passed `RunConfig` object containing information about the execution environment. It is passed on to the `model_fn`, if the `model_fn` has a parameter named "config" (and input functions in the same manner). If the `config` parameter is not passed, it is instantiated by the `Estimator`. Not passing config means that defaults useful for local execution are used. `Estimator` makes config available to the model (for instance, to allow specialization based on the number of workers available), and also uses some of its fields to control internals, especially regarding checkpointing. The `params` argument contains hyperparameters. It is passed to the `model_fn`, if the `model_fn` has a parameter named "params", and to the input functions in the same manner. `Estimator` only passes params along, it does not inspect it. The structure of `params` is therefore entirely up to the developer. None of `Estimator`'s methods can be overridden in subclasses (its constructor enforces this). Subclasses should use `model_fn` to configure the base class, and may add methods implementing specialized functionality. """ def __init__(self, model_fn, model_dir=None, config=None, params=None, warm_start_from=None): """Constructs an `Estimator` instance. See @{$estimators} for more information. To warm-start an `Estimator`: ```python estimator = tf.estimator.DNNClassifier( feature_columns=[categorical_feature_a_emb, categorical_feature_b_emb], hidden_units=[1024, 512, 256], warm_start_from="/path/to/checkpoint/dir") ``` For more details on warm-start configuration, see @{tf.estimator.WarmStartSettings$WarmStartSettings}. Args: model_fn: Model function. Follows the signature: * Args: * `features`: This is the first item returned from the `input_fn` passed to `train`, `evaluate`, and `predict`. This should be a single `Tensor` or `dict` of same. * `labels`: This is the second item returned from the `input_fn` passed to `train`, `evaluate`, and `predict`. This should be a single `Tensor` or `dict` of same (for multi-head models). If mode is `ModeKeys.PREDICT`, `labels=None` will be passed. If the `model_fn`'s signature does not accept `mode`, the `model_fn` must still be able to handle `labels=None`. * `mode`: Optional. Specifies if this training, evaluation or prediction. See `ModeKeys`. * `params`: Optional `dict` of hyperparameters. Will receive what is passed to Estimator in `params` parameter. This allows to configure Estimators from hyper parameter tuning. * `config`: Optional configuration object. Will receive what is passed to Estimator in `config` parameter, or the default `config`. Allows updating things in your `model_fn` based on configuration such as `num_ps_replicas`, or `model_dir`. * Returns: `EstimatorSpec` model_dir: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. If `PathLike` object, the path will be resolved. If `None`, the model_dir in `config` will be used if set. If both are set, they must be same. If both are `None`, a temporary directory will be used. config: Configuration object. params: `dict` of hyper parameters that will be passed into `model_fn`. Keys are names of parameters, values are basic python types. warm_start_from: Optional string filepath to a checkpoint or SavedModel to warm-start from, or a `tf.estimator.WarmStartSettings` object to fully configure warm-starting. If the string filepath is provided instead of a `WarmStartSettings`, then all variables are warm-started, and it is assumed that vocabularies and Tensor names are unchanged. Raises: ValueError: parameters of `model_fn` don't match `params`. ValueError: if this is called via a subclass and if that class overrides a member of `Estimator`. """ Estimator._assert_members_are_not_overridden(self) if config is None: self._config = run_config.RunConfig() logging.info('Using default config.') else: if not isinstance(config, run_config.RunConfig): raise ValueError( 'config must be an instance of RunConfig, but provided %s.' % config) self._config = config # The distribute field contains an instance of DistributionStrategy. self._distribution = self._config.train_distribute # Model directory. model_dir = compat_internal.path_to_str(model_dir) if (model_dir is not None) and (self._config.model_dir is not None): if model_dir != self._config.model_dir: # TODO(alanyee): remove this suppression after it is no longer needed # pylint: disable=g-doc-exception raise ValueError( "model_dir are set both in constructor and RunConfig, but with " "different values. In constructor: '{}', in RunConfig: " "'{}' ".format(model_dir, self._config.model_dir)) # pylint: enable=g-doc-exception self._model_dir = model_dir or self._config.model_dir if self._model_dir is None: self._model_dir = tempfile.mkdtemp() logging.warning('Using temporary folder as model directory: %s', self._model_dir) if self._config.model_dir is None: self._config = self._config.replace(model_dir=self._model_dir) logging.info('Using config: %s', str(vars(self._config))) if self._config.session_config is None: rewrite_opts = rewriter_config_pb2.RewriterConfig( meta_optimizer_iterations=rewriter_config_pb2.RewriterConfig.ONE) graph_opts = config_pb2.GraphOptions(rewrite_options=rewrite_opts) self._session_config = config_pb2.ConfigProto( allow_soft_placement=True, graph_options=graph_opts) else: self._session_config = self._config.session_config self._device_fn = ( self._config.device_fn or _get_replica_device_setter(self._config)) if model_fn is None: raise ValueError('model_fn must be provided to Estimator.') _verify_model_fn_args(model_fn, params) self._model_fn = model_fn self._params = copy.deepcopy(params or {}) # pylint: disable=protected-access self._warm_start_settings = _get_default_warm_start_settings( warm_start_from) # pylint: enable=protected-access @property def model_dir(self): return self._model_dir @property def config(self): return copy.deepcopy(self._config) @property def params(self): return copy.deepcopy(self._params) @property def model_fn(self): """Returns the model_fn which is bound to self.params. Returns: The model_fn with following signature: `def model_fn(features, labels, mode, config)` """ def public_model_fn(features, labels, mode, config): return self._call_model_fn(features, labels, mode, config) return public_model_fn # TODO(ispir): support a list of names def get_variable_value(self, name): """Returns value of the variable given by name. Args: name: string or a list of string, name of the tensor. Returns: Numpy array - value of the tensor. Raises: ValueError: If the Estimator has not produced a checkpoint yet. """ _check_checkpoint_available(self.model_dir) with context.graph_mode(): return training.load_variable(self.model_dir, name) def get_variable_names(self): """Returns list of all variable names in this model. Returns: List of names. Raises: ValueError: If the Estimator has not produced a checkpoint yet. """ _check_checkpoint_available(self.model_dir) with context.graph_mode(): return [name for name, _ in training.list_variables(self.model_dir)] def latest_checkpoint(self): """Finds the filename of latest saved checkpoint file in `model_dir`. Returns: The full path to the latest checkpoint or `None` if no checkpoint was found. """ with context.graph_mode(): return saver.latest_checkpoint(self.model_dir) def train(self, input_fn, hooks=None, steps=None, max_steps=None, saving_listeners=None): """Trains a model given training data input_fn. Args: input_fn: A function that provides input data for training as minibatches. See @{$premade_estimators#create_input_functions} for more information. The function should construct and return one of the following: * A 'tf.data.Dataset' object: Outputs of `Dataset` object must be a tuple (features, labels) with same constraints as below. * A tuple (features, labels): Where `features` is a `Tensor` or a dictionary of string feature name to `Tensor` and `labels` is a `Tensor` or a dictionary of string label name to `Tensor`. Both `features` and `labels` are consumed by `model_fn`. They should satisfy the expectation of `model_fn` from inputs. hooks: List of `SessionRunHook` subclass instances. Used for callbacks inside the training loop. steps: Number of steps for which to train model. If `None`, train forever or train until input_fn generates the `OutOfRange` error or `StopIteration` exception. 'steps' works incrementally. If you call two times train(steps=10) then training occurs in total 20 steps. If `OutOfRange` or `StopIteration` occurs in the middle, training stops before 20 steps. If you don't want to have incremental behavior please set `max_steps` instead. If set, `max_steps` must be `None`. max_steps: Number of total steps for which to train model. If `None`, train forever or train until input_fn generates the `OutOfRange` error or `StopIteration` exception. If set, `steps` must be `None`. If `OutOfRange` or `StopIteration` occurs in the middle, training stops before `max_steps` steps. Two calls to `train(steps=100)` means 200 training iterations. On the other hand, two calls to `train(max_steps=100)` means that the second call will not do any iteration since first call did all 100 steps. saving_listeners: list of `CheckpointSaverListener` objects. Used for callbacks that run immediately before or after checkpoint savings. Returns: `self`, for chaining. Raises: ValueError: If both `steps` and `max_steps` are not `None`. ValueError: If either `steps` or `max_steps` is <= 0. """ with context.graph_mode(): if (steps is not None) and (max_steps is not None): raise ValueError('Can not provide both steps and max_steps.') if steps is not None and steps <= 0: raise ValueError('Must specify steps > 0, given: {}'.format(steps)) if max_steps is not None and max_steps <= 0: raise ValueError( 'Must specify max_steps > 0, given: {}'.format(max_steps)) if max_steps is not None: start_step = _load_global_step_from_checkpoint_dir(self._model_dir) if max_steps <= start_step: logging.info('Skipping training since max_steps has already saved.') return self hooks = _check_hooks_type(hooks) hooks.extend(self._convert_train_steps_to_hooks(steps, max_steps)) saving_listeners = _check_listeners_type(saving_listeners) loss = self._train_model(input_fn, hooks, saving_listeners) logging.info('Loss for final step: %s.', loss) return self def _convert_train_steps_to_hooks(self, steps, max_steps): if steps is not None or max_steps is not None: return [training.StopAtStepHook(steps, max_steps)] else: return [] def eval_dir(self, name=None): """Shows directory name where evaluation metrics are dumped. Args: name: Name of the evaluation if user needs to run multiple evaluations on different data sets, such as on training data vs test data. Metrics for different evaluations are saved in separate folders, and appear separately in tensorboard. Returns: A string which is the path of directory contains evaluation metrics. """ return os.path.join(self._model_dir, 'eval' if not name else 'eval_' + name) def evaluate(self, input_fn, steps=None, hooks=None, checkpoint_path=None, name=None): """Evaluates the model given evaluation data input_fn. For each step, calls `input_fn`, which returns one batch of data. Evaluates until: - `steps` batches are processed, or - `input_fn` raises an end-of-input exception (`OutOfRangeError` or `StopIteration`). Args: input_fn: A function that constructs the input data for evaluation. See @{$premade_estimators#create_input_functions} for more information. The function should construct and return one of the following: * A 'tf.data.Dataset' object: Outputs of `Dataset` object must be a tuple (features, labels) with same constraints as below. * A tuple (features, labels): Where `features` is a `Tensor` or a dictionary of string feature name to `Tensor` and `labels` is a `Tensor` or a dictionary of string label name to `Tensor`. Both `features` and `labels` are consumed by `model_fn`. They should satisfy the expectation of `model_fn` from inputs. steps: Number of steps for which to evaluate model. If `None`, evaluates until `input_fn` raises an end-of-input exception. hooks: List of `SessionRunHook` subclass instances. Used for callbacks inside the evaluation call. checkpoint_path: Path of a specific checkpoint to evaluate. If `None`, the latest checkpoint in `model_dir` is used. If there are no checkpoints in `model_dir`, evaluation is run with newly initialized `Variables` instead of restored from checkpoint. name: Name of the evaluation if user needs to run multiple evaluations on different data sets, such as on training data vs test data. Metrics for different evaluations are saved in separate folders, and appear separately in tensorboard. Returns: A dict containing the evaluation metrics specified in `model_fn` keyed by name, as well as an entry `global_step` which contains the value of the global step for which this evaluation was performed. Raises: ValueError: If `steps <= 0`. ValueError: If no model has been trained, namely `model_dir`, or the given `checkpoint_path` is empty. """ with context.graph_mode(): hooks = _check_hooks_type(hooks) hooks.extend(self._convert_eval_steps_to_hooks(steps)) # Check that model has been trained (if nothing has been set explicitly). if not checkpoint_path: latest_path = saver.latest_checkpoint(self._model_dir) if not latest_path: logging.info('Could not find trained model in model_dir: {}, running ' 'initialization to evaluate.'.format(self._model_dir)) checkpoint_path = latest_path with ops.Graph().as_default(): (scaffold, update_op, eval_dict, all_hooks) = self._evaluate_build_graph( input_fn, hooks, checkpoint_path) return self._evaluate_run( checkpoint_path=checkpoint_path, scaffold=scaffold, update_op=update_op, eval_dict=eval_dict, all_hooks=all_hooks, output_dir=self.eval_dir(name)) def _convert_eval_steps_to_hooks(self, steps): if steps is None: return [] if steps <= 0: raise ValueError('Must specify steps > 0, given: {}'.format(steps)) return [evaluation._StopAfterNEvalsHook(num_evals=steps)] # pylint: disable=protected-access def predict(self, input_fn, predict_keys=None, hooks=None, checkpoint_path=None, yield_single_examples=True): """Yields predictions for given features. Args: input_fn: A function that constructs the features. Prediction continues until `input_fn` raises an end-of-input exception (`OutOfRangeError` or `StopIteration`). See @{$premade_estimators#create_input_functions} for more information. The function should construct and return one of the following: * A 'tf.data.Dataset' object: Outputs of `Dataset` object must have same constraints as below. * features: A `Tensor` or a dictionary of string feature name to `Tensor`. features are consumed by `model_fn`. They should satisfy the expectation of `model_fn` from inputs. * A tuple, in which case the first item is extracted as features. predict_keys: list of `str`, name of the keys to predict. It is used if the `EstimatorSpec.predictions` is a `dict`. If `predict_keys` is used then rest of the predictions will be filtered from the dictionary. If `None`, returns all. hooks: List of `SessionRunHook` subclass instances. Used for callbacks inside the prediction call. checkpoint_path: Path of a specific checkpoint to predict. If `None`, the latest checkpoint in `model_dir` is used. If there are no checkpoints in `model_dir`, prediction is run with newly initialized `Variables` instead of restored from checkpoint. yield_single_examples: If False, yield the whole batch as returned by the `model_fn` instead of decomposing the batch into individual elements. This is useful if `model_fn` returns some tensors whose first dimension is not equal to the batch size. Yields: Evaluated values of `predictions` tensors. Raises: ValueError: Could not find a trained model in `model_dir`. ValueError: If batch length of predictions is not the same and `yield_single_examples` is True. ValueError: If there is a conflict between `predict_keys` and `predictions`. For example if `predict_keys` is not `None` but `EstimatorSpec.predictions` is not a `dict`. """ with context.graph_mode(): hooks = _check_hooks_type(hooks) # Check that model has been trained. if not checkpoint_path: checkpoint_path = saver.latest_checkpoint(self._model_dir) if not checkpoint_path: logging.info('Could not find trained model in model_dir: {}, running ' 'initialization to predict.'.format(self._model_dir)) with ops.Graph().as_default() as g: random_seed.set_random_seed(self._config.tf_random_seed) self._create_and_assert_global_step(g) features, input_hooks = self._get_features_from_input_fn( input_fn, model_fn_lib.ModeKeys.PREDICT) estimator_spec = self._call_model_fn( features, None, model_fn_lib.ModeKeys.PREDICT, self.config) # Call to warm_start has to be after model_fn is called. self._maybe_warm_start(checkpoint_path) predictions = self._extract_keys( estimator_spec.predictions, predict_keys) all_hooks = list(input_hooks) all_hooks.extend(hooks) all_hooks.extend(list(estimator_spec.prediction_hooks or [])) with training.MonitoredSession( session_creator=training.ChiefSessionCreator( checkpoint_filename_with_path=checkpoint_path, master=self._config.master, scaffold=estimator_spec.scaffold, config=self._session_config), hooks=all_hooks) as mon_sess: while not mon_sess.should_stop(): preds_evaluated = mon_sess.run(predictions) if not yield_single_examples: yield preds_evaluated elif not isinstance(predictions, dict): for pred in preds_evaluated: yield pred else: for i in range(self._extract_batch_length(preds_evaluated)): yield { key: value[i] for key, value in six.iteritems(preds_evaluated) } def _assert_members_are_not_overridden(self): """Asserts members of `Estimator` are not overridden.""" allowed_overrides = set([ '_call_input_fn', '_create_global_step', '_convert_train_steps_to_hooks', '_convert_eval_steps_to_hooks', '_tf_api_names', '_validate_features_in_predict_input', '_call_model_fn', '_add_meta_graph_for_mode' ]) estimator_members = set([m for m in Estimator.__dict__.keys() if not m.startswith('__')]) subclass_members = set(self.__class__.__dict__.keys()) common_members = estimator_members & subclass_members - allowed_overrides overridden_members = [ m for m in common_members if Estimator.__dict__[m] != self.__class__.__dict__[m]] if overridden_members: raise ValueError( 'Subclasses of Estimator cannot override members of Estimator. ' '{} does override {}'.format(self.__class__, overridden_members)) def export_savedmodel( self, export_dir_base, serving_input_receiver_fn, assets_extra=None, as_text=False, checkpoint_path=None, strip_default_attrs=False): # pylint: disable=line-too-long """Exports inference graph as a SavedModel into given dir. For a detailed guide, see @{$saved_model#using_savedmodel_with_estimators$Using SavedModel with Estimators}. This method builds a new graph by first calling the serving_input_receiver_fn to obtain feature `Tensor`s, and then calling this `Estimator`'s model_fn to generate the model graph based on those features. It restores the given checkpoint (or, lacking that, the most recent checkpoint) into this graph in a fresh session. Finally it creates a timestamped export directory below the given export_dir_base, and writes a `SavedModel` into it containing a single `MetaGraphDef` saved from this session. The exported `MetaGraphDef` will provide one `SignatureDef` for each element of the export_outputs dict returned from the model_fn, named using the same keys. One of these keys is always signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY, indicating which signature will be served when a serving request does not specify one. For each signature, the outputs are provided by the corresponding `ExportOutput`s, and the inputs are always the input receivers provided by the serving_input_receiver_fn. Extra assets may be written into the SavedModel via the assets_extra argument. This should be a dict, where each key gives a destination path (including the filename) relative to the assets.extra directory. The corresponding value gives the full path of the source file to be copied. For example, the simple case of copying a single file without renaming it is specified as `{'my_asset_file.txt': '/path/to/my_asset_file.txt'}`. Args: export_dir_base: A string containing a directory in which to create timestamped subdirectories containing exported SavedModels. serving_input_receiver_fn: A function that takes no argument and returns a `ServingInputReceiver` or `TensorServingInputReceiver`. assets_extra: A dict specifying how to populate the assets.extra directory within the exported SavedModel, or `None` if no extra assets are needed. as_text: whether to write the SavedModel proto in text format. checkpoint_path: The checkpoint path to export. If `None` (the default), the most recent checkpoint found within the model directory is chosen. strip_default_attrs: Boolean. If `True`, default-valued attributes will be removed from the NodeDefs. For a detailed guide, see [Stripping Default-Valued Attributes](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/saved_model/README.md#stripping-default-valued-attributes). Returns: The string path to the exported directory. Raises: ValueError: if no serving_input_receiver_fn is provided, no export_outputs are provided, or no checkpoint can be found. """ # pylint: enable=line-too-long return self._export_saved_model_for_mode( export_dir_base, serving_input_receiver_fn, assets_extra=assets_extra, as_text=as_text, checkpoint_path=checkpoint_path, strip_default_attrs=strip_default_attrs, mode=model_fn_lib.ModeKeys.PREDICT) def _export_saved_model_for_mode( self, export_dir_base, input_receiver_fn, assets_extra=None, as_text=False, checkpoint_path=None, strip_default_attrs=False, mode=model_fn_lib.ModeKeys.PREDICT): # pylint: disable=line-too-long """Exports a single train/eval/predict graph as a SavedModel. This method is a wrapper for _export_all_saved_models, and wraps a raw input_receiver_fn in a dictionary to pass in to that function. See _export_all_saved_models for full docs. See tf.contrib.estimator.export_saved_model_for_mode for the currently exposed version of this function. Args: export_dir_base: A string containing a directory in which to create timestamped subdirectories containing exported SavedModels. input_receiver_fn: a function that takes no argument and returns the appropriate subclass of `InputReceiver`. assets_extra: A dict specifying how to populate the assets.extra directory within the exported SavedModel, or `None` if no extra assets are needed. as_text: whether to write the SavedModel proto in text format. checkpoint_path: The checkpoint path to export. If `None` (the default), the most recent checkpoint found within the model directory is chosen. strip_default_attrs: Boolean. If `True`, default-valued attributes will be removed from the NodeDefs. For a detailed guide, see [Stripping Default-Valued Attributes](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/saved_model/README.md#stripping-default-valued-attributes). mode: tf.estimator.ModeKeys value indicating with mode will be exported. Returns: The string path to the exported directory. Raises: ValueError: if input_receiver_fn is None, no export_outputs are provided, or no checkpoint can be found. """ # pylint: enable=line-too-long if not input_receiver_fn: raise ValueError('An input_receiver_fn must be defined.') input_receiver_fn_map = {mode: input_receiver_fn} return self._export_all_saved_models( export_dir_base, input_receiver_fn_map, assets_extra=assets_extra, as_text=as_text, checkpoint_path=checkpoint_path, strip_default_attrs=strip_default_attrs) def _export_all_saved_models( self, export_dir_base, input_receiver_fn_map, assets_extra=None, as_text=False, checkpoint_path=None, strip_default_attrs=False): # pylint: disable=line-too-long """Exports a SavedModel containing MetaGraphDefs for each requested mode. See tf.contrib.estimator.export_all_saved_models for the currently exposed version of this function. For each mode passed in via the input_receiver_fn_map, this method builds a new graph by calling the input_receiver_fn to obtain feature and label `Tensor`s. Next, this method calls the `Estimator`'s model_fn in the passed mode to generate the model graph based on those features and labels, and restores the given checkpoint (or, lacking that, the most recent checkpoint) into the graph. Only one of the modes is used for saving variables to the SavedModel (order of preference: TRAIN, EVAL, then PREDICT), such that up to three MetaGraphDefs are saved with a single set of variables in a single SavedModel directory. For the variables and MetaGraphDefs, a timestamped export directory below export_dir_base, and writes a `SavedModel` into it containing the `MetaGraphDef` for the given mode and its associated signatures. For prediction, the exported `MetaGraphDef` will provide one `SignatureDef` for each element of the export_outputs dict returned from the model_fn, named using the same keys. One of these keys is always signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY, indicating which signature will be served when a serving request does not specify one. For each signature, the outputs are provided by the corresponding `ExportOutput`s, and the inputs are always the input receivers provided by the serving_input_receiver_fn. For training and evaluation, the train_op is stored in an extra collection, and loss, metrics, and predictions are included in a SignatureDef for the mode in question. Extra assets may be written into the SavedModel via the assets_extra argument. This should be a dict, where each key gives a destination path (including the filename) relative to the assets.extra directory. The corresponding value gives the full path of the source file to be copied. For example, the simple case of copying a single file without renaming it is specified as `{'my_asset_file.txt': '/path/to/my_asset_file.txt'}`. Args: export_dir_base: A string containing a directory in which to create timestamped subdirectories containing exported SavedModels. input_receiver_fn_map: dict of tf.estimator.ModeKeys to input_receiver_fn mappings, where the input_receiver_fn is a function that takes no argument and returns the appropriate subclass of `InputReceiver`. assets_extra: A dict specifying how to populate the assets.extra directory within the exported SavedModel, or `None` if no extra assets are needed. as_text: whether to write the SavedModel proto in text format. checkpoint_path: The checkpoint path to export. If `None` (the default), the most recent checkpoint found within the model directory is chosen. strip_default_attrs: Boolean. If `True`, default-valued attributes will be removed from the NodeDefs. For a detailed guide, see [Stripping Default-Valued Attributes](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/saved_model/README.md#stripping-default-valued-attributes). Returns: A dict of tf.estimator.ModeKeys value to string path for each exported directory. Raises: ValueError: if any input_receiver_fn is None, no export_outputs are provided, or no checkpoint can be found. """ # pylint: enable=line-too-long # TODO(b/65561022): Consider allowing multiple input_receiver_fns per mode. with context.graph_mode(): if not checkpoint_path: # Locate the latest checkpoint checkpoint_path = saver.latest_checkpoint(self._model_dir) if not checkpoint_path: raise ValueError("Couldn't find trained model at %s." % self._model_dir) export_dir = export_helpers.get_timestamped_export_dir(export_dir_base) temp_export_dir = export_helpers.get_temp_export_dir(export_dir) builder = saved_model_builder.SavedModelBuilder(temp_export_dir) save_variables = True # Note that the order in which we run here matters, as the first # mode we pass through will be used to save the variables. We run TRAIN # first, as that is also the mode used for checkpoints, and therefore # we are not likely to have vars in PREDICT that are not in the checkpoint # created by TRAIN. if input_receiver_fn_map.get(model_fn_lib.ModeKeys.TRAIN): self._add_meta_graph_for_mode( builder, input_receiver_fn_map, checkpoint_path, strip_default_attrs, save_variables, mode=model_fn_lib.ModeKeys.TRAIN) save_variables = False if input_receiver_fn_map.get(model_fn_lib.ModeKeys.EVAL): self._add_meta_graph_for_mode( builder, input_receiver_fn_map, checkpoint_path, strip_default_attrs, save_variables, mode=model_fn_lib.ModeKeys.EVAL) save_variables = False if input_receiver_fn_map.get(model_fn_lib.ModeKeys.PREDICT): self._add_meta_graph_for_mode( builder, input_receiver_fn_map, checkpoint_path, strip_default_attrs, save_variables, mode=model_fn_lib.ModeKeys.PREDICT) save_variables = False if save_variables: raise ValueError('No valid modes for exporting found. Got {}.'.format( input_receiver_fn_map.keys())) builder.save(as_text) # Add the extra assets if assets_extra: assets_extra_path = os.path.join(compat.as_bytes(temp_export_dir), compat.as_bytes('assets.extra')) for dest_relative, source in assets_extra.items(): dest_absolute = os.path.join(compat.as_bytes(assets_extra_path), compat.as_bytes(dest_relative)) dest_path = os.path.dirname(dest_absolute) gfile.MakeDirs(dest_path) gfile.Copy(source, dest_absolute) gfile.Rename(temp_export_dir, export_dir) return export_dir def _add_meta_graph_for_mode(self, builder, input_receiver_fn_map, checkpoint_path, strip_default_attrs, save_variables=True, mode=model_fn_lib.ModeKeys.PREDICT, export_tags=None): # pylint: disable=line-too-long """Loads variables and adds them along with a MetaGraphDef for saving. Args: builder: instance of SavedModelBuilder that will be used for saving. input_receiver_fn_map: dict of tf.estimator.ModeKeys to input_receiver_fn mappings, where the input_receiver_fn is a function that takes no argument and returns the appropriate subclass of `InputReceiver`. checkpoint_path: The checkpoint path to export. If `None` (the default), the most recent checkpoint found within the model directory is chosen. strip_default_attrs: Boolean. If `True`, default-valued attributes will be removed from the NodeDefs. For a detailed guide, see [Stripping Default-Valued Attributes](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/saved_model/README.md#stripping-default-valued-attributes). save_variables: bool, whether variables should be saved. If False, just the MetaGraphDef will be saved. Note that save_variables should only be True for the first call to this function, and the SavedModelBuilder will raise an error if that is not the case. mode: tf.estimator.ModeKeys value indicating which mode will be exported. export_tags: The set of tags with which to save `MetaGraphDef`. If None, a default set will be selected to matched the passed mode. """ # pylint: enable=line-too-long if export_tags is None: export_tags = model_fn_lib.EXPORT_TAG_MAP[mode] input_receiver_fn = input_receiver_fn_map[mode] with ops.Graph().as_default() as g: self._create_and_assert_global_step(g) random_seed.set_random_seed(self._config.tf_random_seed) input_receiver = input_receiver_fn() # Call the model_fn and collect the export_outputs. estimator_spec = self._call_model_fn( features=input_receiver.features, labels=getattr(input_receiver, 'labels', None), mode=mode, config=self.config) export_outputs = self._get_export_outputs_for_spec(estimator_spec) # Build the SignatureDefs from receivers and all outputs signature_def_map = export_helpers.build_all_signature_defs( input_receiver.receiver_tensors, export_outputs, getattr(input_receiver, 'receiver_tensors_alternatives', None), serving_only=(mode == model_fn_lib.ModeKeys.PREDICT)) with tf_session.Session(config=self._session_config) as session: local_init_op = ( estimator_spec.scaffold.local_init_op or monitored_session.Scaffold.default_local_init_op()) saver_for_restore = estimator_spec.scaffold.saver or saver.Saver( sharded=True) try: saver_for_restore.restore(session, checkpoint_path) except errors.NotFoundError as e: msg = ('Could not load all requested variables from the checkpoint. ' 'Please make sure your model_fn does not expect variables ' 'that were not saved in the checkpoint.\n\n' 'Encountered error with mode `{}` while restoring checkpoint ' 'from: `{}`. Full Traceback:\n\n{}').format( mode, checkpoint_path, e) raise ValueError(msg) # We add the train op explicitly for now, so that we don't have to # change the Builder public interface. Note that this is a no-op # for prediction, where train_op is None. builder._add_train_op(estimator_spec.train_op) # pylint: disable=protected-access meta_graph_kwargs = dict( tags=export_tags, signature_def_map=signature_def_map, assets_collection=ops.get_collection( ops.GraphKeys.ASSET_FILEPATHS), strip_default_attrs=strip_default_attrs, legacy_init_op=local_init_op) if save_variables: builder.add_meta_graph_and_variables( session, **meta_graph_kwargs) else: builder.add_meta_graph(**meta_graph_kwargs) def _get_export_outputs_for_spec(self, estimator_spec): """Given an EstimatorSpec, determine what our export outputs should be. EstimatorSpecs contain export_outputs that are used for serving, but for training and eval graphs, we must wrap the tensors of interest in appropriate ExportOutput objects. Args: estimator_spec: EstimatorSpec object that will be exported. Returns: a dict mapping export_output_name to ExportOutput object. Raises: ValueError: if an appropriate ExportOutput cannot be found for the passed EstimatorSpec.mode """ mode = estimator_spec.mode if mode == model_fn_lib.ModeKeys.PREDICT: outputs = estimator_spec.export_outputs else: if mode == model_fn_lib.ModeKeys.TRAIN: output_class = export_output.TrainOutput elif mode == model_fn_lib.ModeKeys.EVAL: output_class = export_output.EvalOutput else: raise ValueError( 'Export output type not found for mode: {}'.format(mode)) export_out = output_class( loss=estimator_spec.loss, predictions=estimator_spec.predictions, metrics=estimator_spec.eval_metric_ops) outputs = {mode: export_out} return outputs def _get_features_from_input_fn(self, input_fn, mode): """Extracts the `features` from return values of `input_fn`.""" result = self._call_input_fn(input_fn, mode) input_hooks = [] if isinstance(result, dataset_ops.Dataset): iterator = result.make_initializable_iterator() input_hooks.append(_DatasetInitializerHook(iterator)) result = iterator.get_next() if isinstance(result, (list, tuple)): # Unconditionally drop the label (the second element of result). result = result[0] self._validate_features_in_predict_input(result) return result, input_hooks def _validate_features_in_predict_input(self, result): if not _has_dataset_or_queue_runner(result): logging.warning('Input graph does not use tf.data.Dataset or contain a ' 'QueueRunner. That means predict yields forever. ' 'This is probably a mistake.') def _get_features_and_labels_from_input_fn(self, input_fn, mode): """Extracts the `features` and labels from return values of `input_fn`.""" input_hooks = [] if self._distribution is not None and mode == model_fn_lib.ModeKeys.TRAIN: result = self._distribution.distribute_dataset( lambda: self._call_input_fn(input_fn, mode)) iterator = result.make_initializable_iterator() input_hooks.append(_DatasetInitializerHook(iterator)) result = iterator.get_next() else: result = self._call_input_fn(input_fn, mode) if isinstance(result, dataset_ops.Dataset): iterator = result.make_initializable_iterator() input_hooks.append(_DatasetInitializerHook(iterator)) result = iterator.get_next() if isinstance(result, (list, tuple)): if len(result) != 2: raise ValueError( 'input_fn should return (features, labels) as a len 2 tuple.') return result[0], result[1], input_hooks return result, None, input_hooks def _extract_batch_length(self, preds_evaluated): """Extracts batch length of predictions.""" batch_length = None for key, value in six.iteritems(preds_evaluated): batch_length = batch_length or value.shape[0] if value.shape[0] != batch_length: raise ValueError('Batch length of predictions should be same. %s has ' 'different batch length than others.' % key) return batch_length def _extract_keys(self, predictions, predict_keys): """Extracts `predict_keys` from `predictions`.""" if not predict_keys: return predictions if not isinstance(predictions, dict): raise ValueError( 'predict_keys argument is not valid in case of non-dict predictions.') existing_keys = predictions.keys() predictions = { key: value for key, value in six.iteritems(predictions) if key in predict_keys } if not predictions: raise ValueError('Expected to run at least one output from %s, ' 'provided %s.' % (existing_keys, predict_keys)) return predictions def _create_global_step(self, graph): """Creates the global step tensor in graph. The global step tensor must be an integer type with name 'global_step' and be added to the collection @{tf.GraphKeys.GLOBAL_STEP}. Args: graph: The graph in which to create the global step tensor. Returns: The global step `Tensor`. """ return training.create_global_step(graph) def _create_and_assert_global_step(self, graph): """Creates and asserts properties of the global step. Args: graph: The graph in which to create the global step tensor. Returns: The global step `Tensor`. """ step = self._create_global_step(graph) assert step == training.get_global_step() assert step.dtype.is_integer return step def _call_input_fn(self, input_fn, mode): """Calls the input function. Args: input_fn: The input function. mode: ModeKeys Returns: Either features or (features, labels) where features and labels are: features - `Tensor` or dictionary of string feature name to `Tensor`. labels - `Tensor` or dictionary of `Tensor` with labels. Raises: ValueError: if input_fn takes invalid arguments. """ input_fn_args = function_utils.fn_args(input_fn) kwargs = {} if 'mode' in input_fn_args: kwargs['mode'] = mode if 'params' in input_fn_args: kwargs['params'] = self.params if 'config' in input_fn_args: kwargs['config'] = self.config with ops.device('/cpu:0'): return input_fn(**kwargs) def _call_model_fn(self, features, labels, mode, config): """Calls model function. Args: features: features dict. labels: labels dict. mode: ModeKeys config: RunConfig Returns: An `EstimatorSpec` object. Raises: ValueError: if model_fn returns invalid objects. """ model_fn_args = function_utils.fn_args(self._model_fn) kwargs = {} if 'labels' in model_fn_args: kwargs['labels'] = labels else: if labels is not None: raise ValueError( 'model_fn does not take labels, but input_fn returns labels.') if 'mode' in model_fn_args: kwargs['mode'] = mode if 'params' in model_fn_args: kwargs['params'] = self.params if 'config' in model_fn_args: kwargs['config'] = config logging.info('Calling model_fn.') model_fn_results = self._model_fn(features=features, **kwargs) logging.info('Done calling model_fn.') if not isinstance(model_fn_results, model_fn_lib.EstimatorSpec): raise ValueError('model_fn should return an EstimatorSpec.') return model_fn_results def _train_model(self, input_fn, hooks, saving_listeners): if self._distribution: return self._train_model_distributed(input_fn, hooks, saving_listeners) else: return self._train_model_default(input_fn, hooks, saving_listeners) def _train_model_default(self, input_fn, hooks, saving_listeners): worker_hooks = [] with ops.Graph().as_default() as g, g.device(self._device_fn): random_seed.set_random_seed(self._config.tf_random_seed) global_step_tensor = self._create_and_assert_global_step(g) training_util._get_or_create_global_step_read() # pylint: disable=protected-access features, labels, input_hooks = ( self._get_features_and_labels_from_input_fn( input_fn, model_fn_lib.ModeKeys.TRAIN)) worker_hooks.extend(input_hooks) estimator_spec = self._call_model_fn( features, labels, model_fn_lib.ModeKeys.TRAIN, self.config) return self._train_with_estimator_spec(estimator_spec, worker_hooks, hooks, global_step_tensor, saving_listeners) def _train_model_distributed(self, input_fn, hooks, saving_listeners): self._distribution.configure(self._session_config) worker_hooks = [] with ops.Graph().as_default() as g: with self._distribution.scope(): random_seed.set_random_seed(self._config.tf_random_seed) features, labels, input_hooks = ( self._get_features_and_labels_from_input_fn( input_fn, model_fn_lib.ModeKeys.TRAIN)) worker_hooks.extend(input_hooks) global_step_tensor = self._create_and_assert_global_step(g) # The default destination for the global_step_tensor fetch call is the # CPU. global_step_read_tensor = self._distribution.fetch(global_step_tensor) # we want to add to the global collection in the main thread not the # tower threads. ops.add_to_collection(training_util.GLOBAL_STEP_READ_KEY, global_step_read_tensor) grouped_estimator_spec = self._distribution.call_for_each_tower( self._call_model_fn, features, labels, # although this will be None it seems model_fn_lib.ModeKeys.TRAIN, self.config) # TODO(anjalisridhar): Figure out how to resolve the following scaffold # parameters: init_feed_dict, init_fn. scaffold_list = self._distribution.unwrap( grouped_estimator_spec.scaffold) init_feed_dict = [ s.init_feed_dict for s in scaffold_list if s.init_feed_dict is not None ] if init_feed_dict: init_feed_dict = self._distribution.group(init_feed_dict) else: init_feed_dict = None init_fn = [s.init_fn for s in scaffold_list if s.init_fn is not None] if init_fn: init_fn = self._distribution.group(init_fn) else: init_fn = None init_op = [s.init_op for s in scaffold_list if s.init_op is not None] if init_op: init_op = self._distribution.group(init_op) else: init_op = None ready_op = self._distribution.call_for_each_tower( create_per_tower_ready_op, grouped_estimator_spec.scaffold) if ready_op is not None: ready_op = self._distribution.group(ready_op) else: ready_op = None ready_for_local_init_op = self._distribution.call_for_each_tower( create_per_tower_ready_for_local_init_op, grouped_estimator_spec.scaffold) if ready_for_local_init_op is not None: ready_for_local_init_op = self._distribution.group( ready_for_local_init_op) else: ready_for_local_init_op = None local_init_op = [ s.local_init_op for s in scaffold_list if s.local_init_op is not None ] if local_init_op: local_init_op = self._distribution.group(local_init_op) else: local_init_op = None summary_op = [ s.summary_op for s in scaffold_list if s.summary_op is not None ] if summary_op: summary_op = self._distribution.group(summary_op) else: summary_op = None scaffold = monitored_session.Scaffold( init_op=init_op, ready_op=ready_op, ready_for_local_init_op=ready_for_local_init_op, local_init_op=local_init_op, summary_op=summary_op, init_feed_dict=init_feed_dict, init_fn=init_fn) def get_hooks_from_the_first_device(per_device_hooks): hooks_list = self._distribution.unwrap(per_device_hooks) assert hooks_list return hooks_list[0] training_hooks = get_hooks_from_the_first_device( grouped_estimator_spec.training_hooks) training_chief_hooks = get_hooks_from_the_first_device( grouped_estimator_spec.training_chief_hooks) estimator_spec = model_fn_lib.EstimatorSpec( mode=grouped_estimator_spec.mode, loss=self._distribution.unwrap( self._distribution.reduce(distribute_lib.get_loss_reduction(), grouped_estimator_spec.loss, destinations='/device:CPU:0'))[0], train_op=self._distribution.group(grouped_estimator_spec.train_op), training_hooks=training_hooks, training_chief_hooks=training_chief_hooks, scaffold=scaffold) return self._train_with_estimator_spec(estimator_spec, worker_hooks, hooks, global_step_read_tensor, saving_listeners) def _train_with_estimator_spec(self, estimator_spec, worker_hooks, hooks, global_step_tensor, saving_listeners): """Train a model with the given Estimator Spec.""" if self._warm_start_settings: logging.info('Warm-starting with WarmStartSettings: %s' % (self._warm_start_settings,)) warm_starting_util.warm_start(*self._warm_start_settings) # Check if the user created a loss summary, and add one if they didn't. # We assume here that the summary is called 'loss'. If it is not, we will # make another one with the name 'loss' to ensure it shows up in the right # graph in TensorBoard. if not any([x.op.name == 'loss' for x in ops.get_collection(ops.GraphKeys.SUMMARIES)]): summary.scalar('loss', estimator_spec.loss) ops.add_to_collection(ops.GraphKeys.LOSSES, estimator_spec.loss) worker_hooks.extend(hooks) worker_hooks.append( training.NanTensorHook(estimator_spec.loss) ) if self._config.log_step_count_steps is not None: worker_hooks.append( training.LoggingTensorHook( { 'loss': estimator_spec.loss, 'step': global_step_tensor }, every_n_iter=self._config.log_step_count_steps) ) worker_hooks.extend(estimator_spec.training_hooks) if not (estimator_spec.scaffold.saver or ops.get_collection(ops.GraphKeys.SAVERS)): ops.add_to_collection( ops.GraphKeys.SAVERS, training.Saver( sharded=True, max_to_keep=self._config.keep_checkpoint_max, keep_checkpoint_every_n_hours=( self._config.keep_checkpoint_every_n_hours), defer_build=True, save_relative_paths=True)) chief_hooks = [] all_hooks = worker_hooks + list(estimator_spec.training_chief_hooks) saver_hooks = [ h for h in all_hooks if isinstance(h, training.CheckpointSaverHook)] if (self._config.save_checkpoints_secs or self._config.save_checkpoints_steps): if not saver_hooks: chief_hooks = [ training.CheckpointSaverHook( self._model_dir, save_secs=self._config.save_checkpoints_secs, save_steps=self._config.save_checkpoints_steps, scaffold=estimator_spec.scaffold) ] saver_hooks = [chief_hooks[0]] if saving_listeners: if not saver_hooks: raise ValueError( 'There should be a CheckpointSaverHook to use saving_listeners. ' 'Please set one of the RunConfig.save_checkpoints_steps or ' 'RunConfig.save_checkpoints_secs.') else: # It is expected to have one CheckpointSaverHook. If multiple, we pick # up the first one to add listener. saver_hooks[0]._listeners.extend(saving_listeners) # pylint: disable=protected-access with training.MonitoredTrainingSession( master=self._config.master, is_chief=self._config.is_chief, checkpoint_dir=self._model_dir, scaffold=estimator_spec.scaffold, hooks=worker_hooks, chief_only_hooks=( tuple(chief_hooks) + tuple(estimator_spec.training_chief_hooks)), save_checkpoint_secs=0, # Saving is handled by a hook. save_summaries_steps=self._config.save_summary_steps, config=self._session_config, log_step_count_steps=self._config.log_step_count_steps) as mon_sess: loss = None while not mon_sess.should_stop(): _, loss = mon_sess.run([estimator_spec.train_op, estimator_spec.loss]) return loss def _evaluate_build_graph(self, input_fn, hooks=None, checkpoint_path=None): """Builds the graph and related hooks to run evaluation.""" random_seed.set_random_seed(self._config.tf_random_seed) global_step_tensor = self._create_and_assert_global_step( ops.get_default_graph()) features, labels, input_hooks = ( self._get_features_and_labels_from_input_fn(input_fn, model_fn_lib.ModeKeys.EVAL)) estimator_spec = self._call_model_fn( features, labels, model_fn_lib.ModeKeys.EVAL, self.config) # Call to warm_start has to be after model_fn is called. self._maybe_warm_start(checkpoint_path) if model_fn_lib.LOSS_METRIC_KEY in estimator_spec.eval_metric_ops: raise ValueError( 'Metric with name "%s" is not allowed, because Estimator ' % (model_fn_lib.LOSS_METRIC_KEY) + 'already defines a default metric with the same name.') estimator_spec.eval_metric_ops[ model_fn_lib.LOSS_METRIC_KEY] = metrics_lib.mean(estimator_spec.loss) update_op, eval_dict = _extract_metric_update_ops( estimator_spec.eval_metric_ops) if ops.GraphKeys.GLOBAL_STEP in eval_dict: raise ValueError( 'Metric with name `global_step` is not allowed, because Estimator ' 'already defines a default metric with the same name.') eval_dict[ops.GraphKeys.GLOBAL_STEP] = global_step_tensor all_hooks = list(input_hooks) all_hooks.extend(hooks) all_hooks.extend(list(estimator_spec.evaluation_hooks or [])) return estimator_spec.scaffold, update_op, eval_dict, all_hooks def _evaluate_run(self, checkpoint_path, scaffold, update_op, eval_dict, all_hooks, output_dir): """Run evaluation.""" eval_results = evaluation._evaluate_once( # pylint: disable=protected-access checkpoint_path=checkpoint_path, master=self._config.evaluation_master, scaffold=scaffold, eval_ops=update_op, final_ops=eval_dict, hooks=all_hooks, config=self._session_config) _write_dict_to_summary( output_dir=output_dir, dictionary=eval_results, current_global_step=eval_results[ops.GraphKeys.GLOBAL_STEP]) return eval_results def _maybe_warm_start(self, checkpoint_path): if not checkpoint_path and self._warm_start_settings: logging.info('Warm-starting with WarmStartSettings: %s' % (self._warm_start_settings,)) warm_starting_util.warm_start(*self._warm_start_settings) def create_per_tower_ready_op(scaffold): """Create a Scaffold.ready_op inside a tower.""" if scaffold.ready_op: return scaffold.ready_op def default_ready_op(): return array_ops.concat([ variables.report_uninitialized_variables(), resources.report_uninitialized_resources() ], 0) return monitored_session.Scaffold.get_or_default( 'ready_op', ops.GraphKeys.READY_OP, default_ready_op) def create_per_tower_ready_for_local_init_op(scaffold): """Create a Scaffold.ready_for_local_init_op inside a tower.""" if scaffold.ready_for_local_init_op: return scaffold.ready_for_local_init_op def default_ready_for_local_init_op(): return variables.report_uninitialized_variables( variables.global_variables()) return monitored_session.Scaffold.get_or_default( 'ready_for_local_init_op', ops.GraphKeys.READY_FOR_LOCAL_INIT_OP, default_ready_for_local_init_op) def _check_checkpoint_available(model_dir): latest_path = saver.latest_checkpoint(model_dir) if not latest_path: raise ValueError( 'Could not find trained model in model_dir: {}.'.format(model_dir)) def _check_hooks_type(hooks): """Returns hooks if all are SessionRunHook, raises TypeError otherwise.""" hooks = list(hooks or []) for h in hooks: if not isinstance(h, training.SessionRunHook): raise TypeError('Hooks must be a SessionRunHook, given: {}'.format(h)) return hooks def _check_listeners_type(saving_listeners): """Check listeners type.""" listeners = list(saving_listeners or []) for l in listeners: if not isinstance(l, training.CheckpointSaverListener): raise TypeError( 'saving_listeners must be a list of CheckpointSaverListener, ' 'given: {}'.format(l)) return listeners def _get_replica_device_setter(config): """Creates a replica device setter if required as a default device_fn. `Estimator` uses ReplicaDeviceSetter as a default device placer. It sets the distributed related arguments such as number of ps_replicas based on given config. Args: config: A `RunConfig` instance. Returns: A replica device setter, or None. """ if config.task_type: worker_device = '/job:%s/task:%d' % (config.task_type, config.task_id) else: worker_device = '/job:worker' if config.num_ps_replicas > 0: return training.replica_device_setter( ps_tasks=config.num_ps_replicas, worker_device=worker_device, merge_devices=True, ps_ops=list(device_setter.STANDARD_PS_OPS), cluster=config.cluster_spec) else: return None def _verify_model_fn_args(model_fn, params): """Verifies model fn arguments.""" args = set(function_utils.fn_args(model_fn)) if 'features' not in args: raise ValueError('model_fn (%s) must include features argument.' % model_fn) if params is not None and 'params' not in args: raise ValueError('model_fn (%s) does not include params argument, ' 'but params (%s) is passed to Estimator.' % (model_fn, params)) if params is None and 'params' in args: logging.warning('Estimator\'s model_fn (%s) includes params ' 'argument, but params are not passed to Estimator.', model_fn) non_valid_args = list(args - _VALID_MODEL_FN_ARGS) if non_valid_args: raise ValueError('model_fn (%s) has following not expected args: %s' % (model_fn, non_valid_args)) def _load_global_step_from_checkpoint_dir(checkpoint_dir): try: checkpoint_reader = training.NewCheckpointReader( training.latest_checkpoint(checkpoint_dir)) return checkpoint_reader.get_tensor(ops.GraphKeys.GLOBAL_STEP) except: # pylint: disable=bare-except return 0 def _extract_metric_update_ops(eval_dict): """Separate update operations from metric value operations.""" update_ops = [] value_ops = {} # Sort metrics lexicographically so graph is identical every time. for name, metric_ops in sorted(six.iteritems(eval_dict)): value_ops[name] = metric_ops[0] update_ops.append(metric_ops[1]) if update_ops: update_op = control_flow_ops.group(*update_ops) else: update_op = None return update_op, value_ops def _dict_to_str(dictionary): """Get a `str` representation of a `dict`. Args: dictionary: The `dict` to be represented as `str`. Returns: A `str` representing the `dictionary`. """ return ', '.join('%s = %s' % (k, v) for k, v in sorted(six.iteritems(dictionary)) if not isinstance(v, six.binary_type)) def _write_dict_to_summary(output_dir, dictionary, current_global_step): """Writes a `dict` into summary file in given output directory. Args: output_dir: `str`, directory to write the summary file in. dictionary: the `dict` to be written to summary file. current_global_step: `int`, the current global step. """ logging.info('Saving dict for global step %d: %s', current_global_step, _dict_to_str(dictionary)) summary_writer = writer_cache.FileWriterCache.get(output_dir) summary_proto = summary_pb2.Summary() for key in dictionary: if dictionary[key] is None: continue if key == 'global_step': continue if (isinstance(dictionary[key], np.float32) or isinstance(dictionary[key], float)): summary_proto.value.add(tag=key, simple_value=float(dictionary[key])) elif (isinstance(dictionary[key], np.int64) or isinstance(dictionary[key], np.int32) or isinstance(dictionary[key], int)): summary_proto.value.add(tag=key, simple_value=int(dictionary[key])) elif isinstance(dictionary[key], six.binary_type): try: summ = summary_pb2.Summary.FromString(dictionary[key]) for i, _ in enumerate(summ.value): summ.value[i].tag = '%s/%d' % (key, i) summary_proto.value.extend(summ.value) except message.DecodeError: logging.warn('Skipping summary for %s, cannot parse string to Summary.', key) continue else: logging.warn( 'Skipping summary for %s, must be a float, np.float32, np.int64, ' 'np.int32 or int or a serialized string of Summary.', key) summary_writer.add_summary(summary_proto, current_global_step) summary_writer.flush() def _has_dataset_or_queue_runner(maybe_tensor): """Returns True if TF dataset or QueueRunner has been used.""" # Check TF dataset first. Here, we use a simple algorithm to check the top # level Tensors only, which should be sufficient for most users. tensors = [x for x in nest.flatten(maybe_tensor) if isinstance(x, ops.Tensor)] if any([t.op.type == 'IteratorGetNext' for t in tensors]): return True # Now, check queue. return ops.get_default_graph().get_collection(ops.GraphKeys.QUEUE_RUNNERS) class _DatasetInitializerHook(training.SessionRunHook): def __init__(self, iterator): self._iterator = iterator def begin(self): self._initializer = self._iterator.initializer def after_create_session(self, session, coord): del coord session.run(self._initializer) VocabInfo = warm_starting_util.VocabInfo # pylint: disable=invalid-name tf_export('estimator.VocabInfo', allow_multiple_exports=True)(VocabInfo) @tf_export('estimator.WarmStartSettings') class WarmStartSettings( collections.namedtuple('WarmStartSettings', [ 'ckpt_to_initialize_from', 'vars_to_warm_start', 'var_name_to_vocab_info', 'var_name_to_prev_var_name', ])): """Settings for warm-starting in Estimators. Example Use with canned `DNNEstimator`: ``` emb_vocab_file = tf.feature_column.embedding_column( tf.feature_column.categorical_column_with_vocabulary_file( "sc_vocab_file", "new_vocab.txt", vocab_size=100), dimension=8) emb_vocab_list = tf.feature_column.embedding_column( tf.feature_column.categorical_column_with_vocabulary_list( "sc_vocab_list", vocabulary_list=["a", "b"]), dimension=8) estimator = tf.estimator.DNNClassifier( hidden_units=[128, 64], feature_columns=[emb_vocab_file, emb_vocab_list], warm_start_from=ws) ``` where `ws` could be defined as: Warm-start all weights in the model (input layer and hidden weights). Either the directory or a specific checkpoint can be provided (in the case of the former, the latest checkpoint will be used): ``` ws = WarmStartSettings(ckpt_to_initialize_from="/tmp") ws = WarmStartSettings(ckpt_to_initialize_from="/tmp/model-1000") ``` Warm-start only the embeddings (input layer): ``` ws = WarmStartSettings(ckpt_to_initialize_from="/tmp", vars_to_warm_start=".*input_layer.*") ``` Warm-start all weights but the embedding parameters corresponding to `sc_vocab_file` have a different vocab from the one used in the current model: ``` vocab_info = tf.estimator.VocabInfo( new_vocab=sc_vocab_file.vocabulary_file, new_vocab_size=sc_vocab_file.vocabulary_size, num_oov_buckets=sc_vocab_file.num_oov_buckets, old_vocab="old_vocab.txt" ) ws = WarmStartSettings( ckpt_to_initialize_from="/tmp", var_name_to_vocab_info={ "input_layer/sc_vocab_file_embedding/embedding_weights": vocab_info }) ``` Warm-start only `sc_vocab_file` embeddings (and no other variables), which have a different vocab from the one used in the current model: ``` vocab_info = tf.estimator.VocabInfo( new_vocab=sc_vocab_file.vocabulary_file, new_vocab_size=sc_vocab_file.vocabulary_size, num_oov_buckets=sc_vocab_file.num_oov_buckets, old_vocab="old_vocab.txt" ) ws = WarmStartSettings( ckpt_to_initialize_from="/tmp", vars_to_warm_start=None, var_name_to_vocab_info={ "input_layer/sc_vocab_file_embedding/embedding_weights": vocab_info }) ``` Warm-start all weights but the parameters corresponding to `sc_vocab_file` have a different vocab from the one used in current checkpoint, and only 100 of those entries were used: ``` vocab_info = tf.estimator.VocabInfo( new_vocab=sc_vocab_file.vocabulary_file, new_vocab_size=sc_vocab_file.vocabulary_size, num_oov_buckets=sc_vocab_file.num_oov_buckets, old_vocab="old_vocab.txt", old_vocab_size=100 ) ws = WarmStartSettings( ckpt_to_initialize_from="/tmp", var_name_to_vocab_info={ "input_layer/sc_vocab_file_embedding/embedding_weights": vocab_info }) ``` Warm-start all weights but the parameters corresponding to `sc_vocab_file` have a different vocab from the one used in current checkpoint and the parameters corresponding to `sc_vocab_list` have a different name from the current checkpoint: ``` vocab_info = tf.estimator.VocabInfo( new_vocab=sc_vocab_file.vocabulary_file, new_vocab_size=sc_vocab_file.vocabulary_size, num_oov_buckets=sc_vocab_file.num_oov_buckets, old_vocab="old_vocab.txt", old_vocab_size=100 ) ws = WarmStartSettings( ckpt_to_initialize_from="/tmp", var_name_to_vocab_info={ "input_layer/sc_vocab_file_embedding/embedding_weights": vocab_info }, var_name_to_prev_var_name={ "input_layer/sc_vocab_list_embedding/embedding_weights": "old_tensor_name" }) ``` Attributes: ckpt_to_initialize_from: [Required] A string specifying the directory with checkpoint file(s) or path to checkpoint from which to warm-start the model parameters. vars_to_warm_start: [Optional] One of the following: - A regular expression (string) that captures which variables to warm-start (see tf.get_collection). This expression will only consider variables in the TRAINABLE_VARIABLES collection. - A list of Variables to warm-start. - A list of strings, each representing a full variable name to warm-start. - `None`, in which case only variables specified in `var_name_to_vocab_info` will be warm-started. Defaults to `'.*'`, which warm-starts all variables in the TRAINABLE_VARIABLES collection. Note that this excludes variables such as accumulators and moving statistics from batch norm. var_name_to_vocab_info: [Optional] Dict of variable names (strings) to VocabInfo. The variable names should be "full" variables, not the names of the partitions. If not explicitly provided, the variable is assumed to have no vocabulary. var_name_to_prev_var_name: [Optional] Dict of variable names (strings) to name of the previously-trained variable in `ckpt_to_initialize_from`. If not explicitly provided, the name of the variable is assumed to be same between previous checkpoint and current model. """ def __new__(cls, ckpt_to_initialize_from, vars_to_warm_start='.*', var_name_to_vocab_info=None, var_name_to_prev_var_name=None): if not ckpt_to_initialize_from: raise ValueError( '`ckpt_to_initialize_from` MUST be set in WarmStartSettings') return super(WarmStartSettings, cls).__new__( cls, ckpt_to_initialize_from, vars_to_warm_start, var_name_to_vocab_info or {}, var_name_to_prev_var_name or {}, ) def _get_default_warm_start_settings(warm_start_from): """Returns default WarmStartSettings. Args: warm_start_from: Either a string representing the filepath of a checkpoint or SavedModel to initialize from, or an instance of WarmStartSettings. Returns: Either None or an instance of WarmStartSettings. Raises: ValueError: If warm_start_from is not None but is neither a string nor an instance of WarmStartSettings. """ if warm_start_from is None: return None if isinstance(warm_start_from, (six.string_types, six.binary_type)): # Infer that this is a SavedModel if export_path + # 'variables/variables.index' exists, and if so, construct the # WarmStartSettings pointing to export_path + 'variables/variables'. if gfile.Exists(os.path.join(compat.as_bytes(warm_start_from), compat.as_bytes('variables/variables.index'))): logging.info('Warm-starting from a SavedModel') return WarmStartSettings(ckpt_to_initialize_from=os.path.join( compat.as_bytes(warm_start_from), compat.as_bytes('{}/{}'.format(constants.VARIABLES_DIRECTORY, constants.VARIABLES_FILENAME)))) return WarmStartSettings(ckpt_to_initialize_from=warm_start_from) elif isinstance(warm_start_from, WarmStartSettings): return warm_start_from else: raise ValueError('warm_start_from must be a string or a WarmStartSettings, ' 'instead got {}'.format(type(warm_start_from)))
nburn42/tensorflow
tensorflow/python/estimator/estimator.py
Python
apache-2.0
76,526
""" We are given the head node root of a binary tree, where additionally every node's value is either a 0 or a 1. Return the same tree where every subtree (of the given tree) not containing a 1 has been removed. (Recall that the subtree of a node X is X, plus every node that is a descendant of X.) Example 1: Input: [1,null,0,0,1] Output: [1,null,0,null,1] Explanation: Only the red nodes satisfy the property "every subtree not containing a 1". The diagram on the right represents the answer. Example 2: Input: [1,0,1,0,0,0,1] Output: [1,null,1,null,1] Example 3: Input: [1,1,0,1,1,0,1,0] Output: [1,1,0,1,1,null,1] Note: The binary tree will have at most 100 nodes. The value of each node will only be 0 or 1. """ # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def pruneTree(self, root): """ :type root: TreeNode :rtype: TreeNode """ if not root: return root needRemove = self.needRemove(root) if needRemove: return None else: return root def needRemove(self, node): if node.val == 0 and not node.left and not node.right: return True leftNeedRemove = True rightNeedRemove = True if node.left: leftNeedRemove = self.needRemove(node.left) if leftNeedRemove: node.left = None if node.right: rightNeedRemove = self.needRemove(node.right) if rightNeedRemove: node.right = None if node.val == 0 and not node.left and not node.right: return True else: return False
danielsunzhongyuan/my_leetcode_in_python
binary_tree_pruning_814.py
Python
apache-2.0
1,807
# Copyright 2019-present Kensho Technologies, LLC. import bisect import itertools from typing import Any, Iterator, List, cast from ..cost_estimation.analysis import QueryPlanningAnalysis from ..cost_estimation.filter_selectivity_utils import get_integer_interval_for_filters_on_field from ..cost_estimation.helpers import is_uuid4_type from ..cost_estimation.int_value_conversion import ( MAX_UUID_INT, MIN_UUID_INT, convert_int_to_field_value, ) from ..cost_estimation.interval import Interval, intersect_int_intervals, measure_int_interval from ..schema.schema_info import QueryPlanningSchemaInfo from .pagination_planning import VertexPartitionPlan def _deduplicate_sorted_generator(generator: Iterator[Any]) -> Iterator[Any]: """Return a generator that skips repeated values in the given sorted generator.""" prev = object() for i in generator: if i != prev: yield i prev = i def _choose_parameter_values( relevant_quantiles: List[Any], desired_num_splits: int ) -> Iterator[Any]: """Choose parameter values as evenly as possible. Choose parameter values by picking at most (desired_num_splits - 1) of the quantiles given that split the value space into desired_num_split splits. There are many ways to do that, and this function tries to have the size of the splits be as even as possible. It is possible that the desired number of splits cannot be achieved if there are not enough quantiles. In that case fewer than the desired number of splits are created. Args: relevant_quantiles: N quantiles dividing the space of values into N+1 regions. desired_num_splits: A split is a union of consecutive regions. Returns: at most (desired_num_splits - 1) values that define the splits """ if desired_num_splits < 2: raise AssertionError( f"Unexpectedly received desired_num_splits = {desired_num_splits}, which this " f"function is not able to handle." ) num_regions = len(relevant_quantiles) + 1 if desired_num_splits >= num_regions: return _deduplicate_sorted_generator(quantile for quantile in relevant_quantiles) # We can't have all the splits be the same number of regions, but we can make sure # the number of splits per region varies by at most one. small_split_region_count = num_regions // desired_num_splits large_split_region_count = small_split_region_count + 1 large_split_count = num_regions - small_split_region_count * desired_num_splits small_split_count = desired_num_splits - large_split_count # Compute 1-based indexes for which quantiles define the desired splits quantile_indexes = itertools.accumulate( itertools.chain( itertools.repeat(large_split_region_count, large_split_count), itertools.repeat(small_split_region_count, small_split_count - 1), ) ) # TODO(bojanserafimov): We deduplicate the results to make sure we don't generate pages # that are known to be empty. This can cause the number of generated # pages to be less than the desired number of pages. return _deduplicate_sorted_generator( relevant_quantiles[index - 1] for index in quantile_indexes ) def _convert_int_interval_to_field_value_interval( schema_info: QueryPlanningSchemaInfo, vertex_type: str, field: str, interval: Interval[int] ) -> Interval[Any]: """Convert the endpoints of an interval. See int_value_conversion for the conversion spec.""" lower_bound = None upper_bound = None if interval.lower_bound is not None: lower_bound = convert_int_to_field_value( schema_info, vertex_type, field, interval.lower_bound ) if interval.upper_bound is not None: upper_bound = convert_int_to_field_value( schema_info, vertex_type, field, interval.upper_bound ) return Interval(lower_bound, upper_bound) def _compute_parameters_for_uuid_field( schema_info: QueryPlanningSchemaInfo, integer_interval: Interval[int], vertex_partition: VertexPartitionPlan, vertex_type: str, field: str, ) -> Iterator[Any]: """Return a generator of parameter values for the vertex partition at a uuid field. See generate_parameters_for_vertex_partition for more details. Args: schema_info: contains statistics and relevant schema information integer_interval: the interval of values for the field, constrained by existing filters in the query, in int form. See the int_value_conversion module for the definition of an int-equivalent of a uuid. vertex_partition: the pagination plan we are working on vertex_type: the name of the vertex type where the pagination field is field: the name of the pagination field Returns: generator of field values. See generate_parameters_for_vertex_partition for more details. """ uuid_int_universe = Interval(MIN_UUID_INT, MAX_UUID_INT) integer_interval = intersect_int_intervals(integer_interval, uuid_int_universe) int_value_splits = ( cast(int, integer_interval.lower_bound) + int( float( cast(int, measure_int_interval(integer_interval)) * i // vertex_partition.number_of_splits ) ) for i in range(1, vertex_partition.number_of_splits) ) return ( convert_int_to_field_value(schema_info, vertex_type, field, int_value) for int_value in int_value_splits ) def _compute_parameters_for_non_uuid_field( schema_info: QueryPlanningSchemaInfo, field_value_interval: Interval[Any], vertex_partition: VertexPartitionPlan, vertex_type: str, field: str, ) -> Iterator[Any]: """Return a generator of parameter values for the vertex partition at a non-uuid field. See generate_parameters_for_vertex_partition for more details. Args: schema_info: contains statistics and relevant schema information field_value_interval: the interval of values for the field, constrained by existing filters in the query vertex_partition: the pagination plan we are working on vertex_type: the name of the vertex type where the pagination field is field: the name of the pagination field Returns: generator of field values. See generate_parameters_for_vertex_partition for more details. """ quantiles = schema_info.statistics.get_field_quantiles(vertex_type, field) if quantiles is None or len(quantiles) <= vertex_partition.number_of_splits: raise AssertionError( "Invalid vertex partition {}. Not enough quantile data.".format(vertex_partition) ) # Since we can't be sure the minimum observed value is the # actual minimum value, we treat values less than it as part # of the first quantile. That's why we drop the minimum and # maximum observed values from the quantile list. proper_quantiles = quantiles[1:-1] # Get the relevant quantiles (ones inside the field_value_interval) # TODO(bojanserafimov): It's possible that the planner thought there are enough quantiles # to paginate, but didn't notice that there are filters that restrict # the range of values into a range for which there are not enough # quantiles. In this case, the pagination plan is not fully realized. # The generated query will have fewer pages than the plan specified. # # One solution is to push all the pagination capacity logic # into the cost estimator, and make it return along with the # cardinality estimate some other metadata that the paginator would # rely on. min_quantile = 0 max_quantile = len(proper_quantiles) if field_value_interval.lower_bound is not None: min_quantile = bisect.bisect_right(proper_quantiles, field_value_interval.lower_bound) if field_value_interval.upper_bound is not None: max_quantile = bisect.bisect_left(proper_quantiles, field_value_interval.upper_bound) relevant_quantiles = proper_quantiles[min_quantile:max_quantile] return _choose_parameter_values(relevant_quantiles, vertex_partition.number_of_splits) def generate_parameters_for_vertex_partition( analysis: QueryPlanningAnalysis, vertex_partition: VertexPartitionPlan, ) -> Iterator[Any]: """Return a generator of parameter values that realize the vertex partition. Composability guarantee: The values returned can be used to create vertex_partition.number_of_splits pages, or just the first value can be used to separate the first page from the remainder. Splitting the remainder recursively should produce the same results. Args: analysis: the query augmented with various analysis steps vertex_partition: the pagination plan we are working on Returns: Returns a generator of (vertex_partition.number_of_splits - 1) values that split the values at vertex_partition.pagination_field into vertex_partition.number_of_splits almost equal chunks. """ pagination_field = vertex_partition.pagination_field if vertex_partition.number_of_splits < 2: raise AssertionError("Invalid number of splits {}".format(vertex_partition)) # Find the FilterInfos on the pagination field vertex_type = analysis.types[vertex_partition.query_path].name filter_infos = analysis.filters[vertex_partition.query_path] filters_on_field = { filter_info for filter_info in filter_infos if filter_info.fields == (pagination_field,) } # Get the value interval currently imposed by existing filters integer_interval = get_integer_interval_for_filters_on_field( analysis.schema_info, filters_on_field, vertex_type, pagination_field, analysis.ast_with_parameters.parameters, ) field_value_interval = _convert_int_interval_to_field_value_interval( analysis.schema_info, vertex_type, pagination_field, integer_interval ) # Compute parameters if is_uuid4_type(analysis.schema_info, vertex_type, pagination_field): return _compute_parameters_for_uuid_field( analysis.schema_info, integer_interval, vertex_partition, vertex_type, pagination_field ) else: return _compute_parameters_for_non_uuid_field( analysis.schema_info, field_value_interval, vertex_partition, vertex_type, pagination_field, )
kensho-technologies/graphql-compiler
graphql_compiler/query_pagination/parameter_generator.py
Python
apache-2.0
10,879
# -*- coding: utf-8 -*- """Circular buffer for storing event objects.""" class CircularBuffer(object): """Class that defines a circular buffer for storing event objects.""" def __init__(self, size): """Initializes a circular buffer object. Args: size (int): number of elements in the buffer. """ super(CircularBuffer, self).__init__() self._index = 0 self._list = [] self._size = size def __iter__(self): """Return all elements from the list.""" for index in range(0, self._size): try: yield self._list[(self._index + index) % self._size] except IndexError: pass def __len__(self): """Return the length (the fixed size).""" return self._size @property def size(self): """int: number of elements in the buffer.""" return self._size def Append(self, item): """Add an item to the list. Args: item (object): item. """ if self._index >= self._size: self._index = self._index % self._size try: self._list[self._index] = item except IndexError: self._list.append(item) self._index += 1 def Clear(self): """Removes all elements from the list.""" self._index = 0 self._list = [] def Flush(self): """Returns a generator for all items and clear the buffer.""" for item in self: yield item self.Clear() def GetCurrent(self): """Retrieves the current item that index points to. Return: object: item. """ index = self._index - 1 if index < 0: return return self._list[index]
dc3-plaso/plaso
plaso/lib/bufferlib.py
Python
apache-2.0
1,600
""" Copyright (c) 2015 Michael Bright and Bamboo HR LLC Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. adding order indexes Revision ID: 63ed28aeec3d Revises: 3781a8185e42 Create Date: 2016-08-03 04:36:32.284892 """ # revision identifiers, used by Alembic. revision = '63ed28aeec3d' down_revision = '3781a8185e42' branch_labels = None depends_on = None from alembic import op import sqlalchemy as sa def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.create_index(op.f('ix_action_instances_order'), 'action_instances', ['order'], unique=False) op.create_index(op.f('ix_actions_order'), 'actions', ['order'], unique=False) op.create_index(op.f('ix_stage_instances_order'), 'stage_instances', ['order'], unique=False) op.create_index(op.f('ix_stages_order'), 'stages', ['order'], unique=False) op.create_index(op.f('ix_workflow_instances_order'), 'workflow_instances', ['order'], unique=False) op.create_index(op.f('ix_workflows_order'), 'workflows', ['order'], unique=False) ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f('ix_workflows_order'), table_name='workflows') op.drop_index(op.f('ix_workflow_instances_order'), table_name='workflow_instances') op.drop_index(op.f('ix_stages_order'), table_name='stages') op.drop_index(op.f('ix_stage_instances_order'), table_name='stage_instances') op.drop_index(op.f('ix_actions_order'), table_name='actions') op.drop_index(op.f('ix_action_instances_order'), table_name='action_instances') ### end Alembic commands ###
BambooHR/rapid
rapid/master/data/migrations/versions/63ed28aeec3d_adding_order_indexes.py
Python
apache-2.0
2,123
"""Support for AdGuard Home.""" from __future__ import annotations import logging from adguardhome import AdGuardHome, AdGuardHomeConnectionError, AdGuardHomeError import voluptuous as vol from homeassistant.config_entries import SOURCE_HASSIO, ConfigEntry from homeassistant.const import ( CONF_HOST, CONF_NAME, CONF_PASSWORD, CONF_PORT, CONF_SSL, CONF_URL, CONF_USERNAME, CONF_VERIFY_SSL, Platform, ) from homeassistant.core import HomeAssistant, ServiceCall from homeassistant.exceptions import ConfigEntryNotReady from homeassistant.helpers import config_validation as cv from homeassistant.helpers.aiohttp_client import async_get_clientsession from homeassistant.helpers.device_registry import DeviceEntryType from homeassistant.helpers.entity import DeviceInfo, Entity from .const import ( CONF_FORCE, DATA_ADGUARD_CLIENT, DATA_ADGUARD_VERSION, DOMAIN, SERVICE_ADD_URL, SERVICE_DISABLE_URL, SERVICE_ENABLE_URL, SERVICE_REFRESH, SERVICE_REMOVE_URL, ) _LOGGER = logging.getLogger(__name__) SERVICE_URL_SCHEMA = vol.Schema({vol.Required(CONF_URL): cv.url}) SERVICE_ADD_URL_SCHEMA = vol.Schema( {vol.Required(CONF_NAME): cv.string, vol.Required(CONF_URL): cv.url} ) SERVICE_REFRESH_SCHEMA = vol.Schema( {vol.Optional(CONF_FORCE, default=False): cv.boolean} ) PLATFORMS = [Platform.SENSOR, Platform.SWITCH] async def async_setup_entry(hass: HomeAssistant, entry: ConfigEntry) -> bool: """Set up AdGuard Home from a config entry.""" session = async_get_clientsession(hass, entry.data[CONF_VERIFY_SSL]) adguard = AdGuardHome( entry.data[CONF_HOST], port=entry.data[CONF_PORT], username=entry.data[CONF_USERNAME], password=entry.data[CONF_PASSWORD], tls=entry.data[CONF_SSL], verify_ssl=entry.data[CONF_VERIFY_SSL], session=session, ) hass.data.setdefault(DOMAIN, {})[entry.entry_id] = {DATA_ADGUARD_CLIENT: adguard} try: await adguard.version() except AdGuardHomeConnectionError as exception: raise ConfigEntryNotReady from exception hass.config_entries.async_setup_platforms(entry, PLATFORMS) async def add_url(call: ServiceCall) -> None: """Service call to add a new filter subscription to AdGuard Home.""" await adguard.filtering.add_url( allowlist=False, name=call.data[CONF_NAME], url=call.data[CONF_URL] ) async def remove_url(call: ServiceCall) -> None: """Service call to remove a filter subscription from AdGuard Home.""" await adguard.filtering.remove_url(allowlist=False, url=call.data[CONF_URL]) async def enable_url(call: ServiceCall) -> None: """Service call to enable a filter subscription in AdGuard Home.""" await adguard.filtering.enable_url(allowlist=False, url=call.data[CONF_URL]) async def disable_url(call: ServiceCall) -> None: """Service call to disable a filter subscription in AdGuard Home.""" await adguard.filtering.disable_url(allowlist=False, url=call.data[CONF_URL]) async def refresh(call: ServiceCall) -> None: """Service call to refresh the filter subscriptions in AdGuard Home.""" await adguard.filtering.refresh(allowlist=False, force=call.data[CONF_FORCE]) hass.services.async_register( DOMAIN, SERVICE_ADD_URL, add_url, schema=SERVICE_ADD_URL_SCHEMA ) hass.services.async_register( DOMAIN, SERVICE_REMOVE_URL, remove_url, schema=SERVICE_URL_SCHEMA ) hass.services.async_register( DOMAIN, SERVICE_ENABLE_URL, enable_url, schema=SERVICE_URL_SCHEMA ) hass.services.async_register( DOMAIN, SERVICE_DISABLE_URL, disable_url, schema=SERVICE_URL_SCHEMA ) hass.services.async_register( DOMAIN, SERVICE_REFRESH, refresh, schema=SERVICE_REFRESH_SCHEMA ) return True async def async_unload_entry(hass: HomeAssistant, entry: ConfigEntry) -> bool: """Unload AdGuard Home config entry.""" hass.services.async_remove(DOMAIN, SERVICE_ADD_URL) hass.services.async_remove(DOMAIN, SERVICE_REMOVE_URL) hass.services.async_remove(DOMAIN, SERVICE_ENABLE_URL) hass.services.async_remove(DOMAIN, SERVICE_DISABLE_URL) hass.services.async_remove(DOMAIN, SERVICE_REFRESH) unload_ok = await hass.config_entries.async_unload_platforms(entry, PLATFORMS) if unload_ok: del hass.data[DOMAIN] return unload_ok class AdGuardHomeEntity(Entity): """Defines a base AdGuard Home entity.""" def __init__( self, adguard: AdGuardHome, entry: ConfigEntry, name: str, icon: str, enabled_default: bool = True, ) -> None: """Initialize the AdGuard Home entity.""" self._available = True self._enabled_default = enabled_default self._icon = icon self._name = name self._entry = entry self.adguard = adguard @property def name(self) -> str: """Return the name of the entity.""" return self._name @property def icon(self) -> str: """Return the mdi icon of the entity.""" return self._icon @property def entity_registry_enabled_default(self) -> bool: """Return if the entity should be enabled when first added to the entity registry.""" return self._enabled_default @property def available(self) -> bool: """Return True if entity is available.""" return self._available async def async_update(self) -> None: """Update AdGuard Home entity.""" if not self.enabled: return try: await self._adguard_update() self._available = True except AdGuardHomeError: if self._available: _LOGGER.debug( "An error occurred while updating AdGuard Home sensor", exc_info=True, ) self._available = False async def _adguard_update(self) -> None: """Update AdGuard Home entity.""" raise NotImplementedError() class AdGuardHomeDeviceEntity(AdGuardHomeEntity): """Defines a AdGuard Home device entity.""" @property def device_info(self) -> DeviceInfo: """Return device information about this AdGuard Home instance.""" if self._entry.source == SOURCE_HASSIO: config_url = "homeassistant://hassio/ingress/a0d7b954_adguard" else: if self.adguard.tls: config_url = f"https://{self.adguard.host}:{self.adguard.port}" else: config_url = f"http://{self.adguard.host}:{self.adguard.port}" return DeviceInfo( entry_type=DeviceEntryType.SERVICE, identifiers={ (DOMAIN, self.adguard.host, self.adguard.port, self.adguard.base_path) # type: ignore }, manufacturer="AdGuard Team", name="AdGuard Home", sw_version=self.hass.data[DOMAIN][self._entry.entry_id].get( DATA_ADGUARD_VERSION ), configuration_url=config_url, )
mezz64/home-assistant
homeassistant/components/adguard/__init__.py
Python
apache-2.0
7,189
# Copyright 2016 Red Hat, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # django from django.conf import settings from django.conf.urls import url, include from django.contrib.auth.decorators import login_required from django.contrib.admin.views.decorators import staff_member_required from django.views.generic.base import TemplateView, RedirectView # third-party from rest_framework.documentation import include_docs_urls # dashboard from dashboard.services.urls import api_urls from dashboard.views import ( TranStatusPackageView, TranStatusReleasesView, TranStatusReleaseView, DeletePackageView, DeleteGraphRuleView, TransPlatformSettingsView, LanguagesSettingsView, PackageSettingsView, AddPackageCIPipeline, hide_ci_pipeline, JobsView, JobsLogsView, JobsArchiveView, JobsLogsPackageView, NewPackageView, UpdatePackageView, TransCoverageView, StreamBranchesSettingsView, NewReleaseBranchView, GraphRulesSettingsView, NewGraphRuleView, YMLBasedJobs, NewLanguageView, UpdateLanguageView, NewLanguageSetView, UpdateLanguageSetView, NewTransPlatformView, UpdateTransPlatformView, UpdateGraphRuleView, JobDetailView, refresh_package, release_graph, schedule_job, tabular_data, export_packages, generate_reports, read_file_logs, get_build_tags, change_lang_status, LanguageDetailView, LanguageReleaseView, TerritoryView, CleanUpJobs, get_repo_branches, get_target_langs, refresh_ci_pipeline, graph_data, job_template, PipelineDetailView, PipelineHistoryView, PipelineConfigurationView, ReleasePipelinesView, PipelinesView, AddCIPipeline, get_workflow_steps, get_pipeline_job_template, ajax_save_pipeline_config, ajax_run_pipeline_config, ajax_toggle_pipeline_config, ajax_delete_pipeline_config ) LOGIN_URL = "oidc_authentication_init" if settings.FAS_AUTH else "admin:index" app_job_urls = [ url(r'^$', login_required(JobsView.as_view(), login_url=LOGIN_URL), name="jobs"), url(r'^cleanup$', login_required(CleanUpJobs.as_view(), login_url=LOGIN_URL), name="jobs-cleanup"), url(r'^logs$', JobsLogsView.as_view(), name="jobs-logs"), url(r'^archive$', JobsArchiveView.as_view(), name="jobs-archive"), url(r'^templates$', YMLBasedJobs.as_view(), name="jobs-yml-based"), url(r'^log/(?P<job_id>[0-9a-f-]+)/detail$', JobDetailView.as_view(), name="log-detail"), url(r'^logs/package/(?P<package_name>[\w\-\+]+)$', JobsLogsPackageView.as_view(), name="jobs-logs-package") ] app_pipeline_urls = [ url(r'^$', PipelinesView.as_view(), name="pipelines"), url(r'^new$', staff_member_required(AddCIPipeline.as_view(), login_url=LOGIN_URL), name="add-ci-pipeline"), url(r'^(?P<release_slug>[\w\-\+]+)$', ReleasePipelinesView.as_view(), name="release-pipelines"), url(r'^(?P<pipeline_id>[0-9a-f-]+)/details$', PipelineDetailView.as_view(), name="pipeline-details"), url(r'^(?P<pipeline_id>[0-9a-f-]+)/history$', PipelineHistoryView.as_view(), name="pipeline-history"), url(r'^(?P<pipeline_id>[0-9a-f-]+)/configurations$', PipelineConfigurationView.as_view(), name="pipeline-configuration"), ] app_setting_urls = [ url(r'^$', RedirectView.as_view(permanent=False, url='/settings/languages'), name="settings"), url(r'^languages$', RedirectView.as_view(permanent=True, url='/languages')), url(r'^translation-platforms$', RedirectView.as_view(permanent=True, url='/translation-platforms')), url(r'^packages$', RedirectView.as_view(permanent=True, url='/packages')), url(r'^products$', RedirectView.as_view(permanent=True, url='/products')), url(r'^graph-rules$', RedirectView.as_view(permanent=True, url='/coverage')), url(r'^notification$', TemplateView.as_view(template_name="settings/notification.html"), name="settings-notification"), ] ajax_urls = [ url(r'^schedule-job$', schedule_job, name="ajax-schedule-job"), url(r'^graph-data$', graph_data, name="ajax-graph-data"), url(r'^tabular-data$', tabular_data, name="ajax-tabular-data"), url(r'^refresh-package$', refresh_package, name="ajax-refresh-package"), url(r'^release-graph$', release_graph, name="ajax-release-graph"), url(r'^generate-reports$', generate_reports, name="ajax-releases-report"), url(r'^read-file-logs$', read_file_logs, name="ajax-read-logs"), url(r'^build-tags$', get_build_tags, name="ajax-build-tags"), url(r'^repo-branches$', get_repo_branches, name="ajax-repo-branches"), url(r'^job-template$', job_template, name="ajax-job-template"), url(r'^change-lang-status$', staff_member_required(change_lang_status), name="ajax-change-lang-status"), url(r'^remove-pipeline$', login_required(hide_ci_pipeline), name="ajax-remove-pipeline"), url(r'^refresh-pipeline$', refresh_ci_pipeline, name="ajax-refresh-pipeline"), url(r'^target-langs$', get_target_langs, name="ajax-target-langs"), url(r'^workflow-steps$', get_workflow_steps, name="ajax-workflow-steps"), url(r'^ajax-pipeline-job-template$', get_pipeline_job_template, name="ajax-pipeline-job-template"), url(r'^ajax-save-pipeline-config$', login_required(ajax_save_pipeline_config), name='ajax-save-pipeline-config'), url(r'^ajax-run-pipeline-config$', login_required(ajax_run_pipeline_config), name='ajax-run-pipeline-config'), url(r'^ajax-toggle-pipeline-config$', login_required(ajax_toggle_pipeline_config), name='ajax-toggle-pipeline-config'), url(r'^ajax-delete-pipeline-config$', login_required(ajax_delete_pipeline_config), name='ajax-delete-pipeline-config') ] coverage_urls = [ url(r'^$', GraphRulesSettingsView.as_view(), name="settings-graph-rules"), url(r'^view/(?P<coverage_rule>[\w\-\+]+)$', TransCoverageView.as_view(), name="custom-graph"), url(r'^new$', login_required(NewGraphRuleView.as_view(), login_url=LOGIN_URL), name="settings-graph-rules-new"), url(r'^edit/(?P<slug>[\w-]+)$', login_required(UpdateGraphRuleView.as_view(), login_url=LOGIN_URL), name="graph-rule-update"), url(r'^remove/(?P<slug>[\w-]+)$', login_required(DeleteGraphRuleView.as_view(), login_url=LOGIN_URL), name="graph-rule-delete"), ] geolocation_urls = [ url(r'^view/(?P<country_code>[\w]+)/$', TerritoryView.as_view(), name="territory-view"), ] languages_urls = [ url(r'^$', LanguagesSettingsView.as_view(), name="settings-languages"), url(r'^new$', staff_member_required(NewLanguageView.as_view()), name="language-new"), url(r'^view/(?P<pk>[\w@-]+)$', LanguageDetailView.as_view(), name="language-view"), url(r'^view/(?P<locale>[\w@-]+)/(?P<release_slug>[\w\-\+]+)$', LanguageReleaseView.as_view(), name="language-release-view"), url(r'^edit/(?P<pk>[\w@-]+)$', staff_member_required(UpdateLanguageView.as_view()), name="language-update"), url(r'^set/new$', staff_member_required(NewLanguageSetView.as_view()), name="language-set-new"), url(r'^set/edit/(?P<slug>[\w-]+)$', staff_member_required(UpdateLanguageSetView.as_view()), name="language-set-update"), ] packages_urls = [ url(r'^$', PackageSettingsView.as_view(), name="settings-packages"), url(r'^new$', login_required(NewPackageView.as_view(), login_url=LOGIN_URL), name="package-new"), url(r'^view/(?P<package_name>[\w\-\+]+)$', TranStatusPackageView.as_view(), name="package-view"), url(r'^edit/(?P<slug>[\w-]+)$', login_required(UpdatePackageView.as_view(), login_url=LOGIN_URL), name="package-update"), url(r'^remove/(?P<slug>[\w-]+)$', staff_member_required(DeletePackageView.as_view(), login_url=LOGIN_URL), name="package-delete"), url(r'^add/(?P<slug>[\w-]+)/ci-pipeline$', login_required(AddPackageCIPipeline.as_view(), login_url=LOGIN_URL), name="package-add-ci-pipeline"), url(r'^export/(?P<format>[\w+]+)$', export_packages, name="packages-export"), ] platforms_urls = [ url(r'^$', TransPlatformSettingsView.as_view(), name="settings-trans-platforms"), url(r'^new$', staff_member_required(NewTransPlatformView.as_view()), name="transplatform-new"), url(r'^edit/(?P<slug>[\w-]+)$', staff_member_required(UpdateTransPlatformView.as_view()), name="transplatform-update"), ] products_urls = [ url(r'^$', RedirectView.as_view(permanent=False, url='/releases'), name="settings-release-streams"), url(r'^(?P<stream_slug>\w+)/', include([ url(r'^releases$', StreamBranchesSettingsView.as_view(), name="settings-stream-branches"), url(r'^releases/new$', staff_member_required(NewReleaseBranchView.as_view()), name="settings-stream-branches-new"), ])), ] releases_urls = [ url(r'^$', TranStatusReleasesView.as_view(), name="trans-status-releases"), url(r'^view/(?P<release_branch>[\w\-\+]+)$', TranStatusReleaseView.as_view(), name="trans-status-release"), ] trans_status_urls = [ url(r'^$', RedirectView.as_view(permanent=False, url='/releases'), name="trans-status"), url(r'^packages$', RedirectView.as_view(permanent=True, url='/packages')), url(r'^releases$', RedirectView.as_view(permanent=True, url='/releases')), ] urlpatterns = [ url(r'^api/', include(api_urls)), url(r'^api-docs/', include_docs_urls(title='Transtats APIs')), url(r'^ajax/', include(ajax_urls)), url(r'^settings/', include(app_setting_urls)), url(r'^jobs/', include(app_job_urls)), url(r'^pipelines/', include(app_pipeline_urls)), # landing URLs # url(r'^$', RedirectView.as_view(permanent=False, url='/translation-status/'), name="home"), url(r'^$', TranStatusReleasesView.as_view(), name="home"), url(r'^translation-status/', include(trans_status_urls)), url(r'^translation-coverage/$', RedirectView.as_view(query_string=True, permanent=True, url='/coverage/view/')), url(r'^quick-start$', TemplateView.as_view(template_name="howto.html"), name="howto"), url(r'^health$', RedirectView.as_view(permanent=False, url='/api/ping?format=json')), # packages section urls url(r'^packages/', include(packages_urls)), # languages section urls url(r'^languages/', include(languages_urls)), # trans platforms section urls url(r'^translation-platforms/', include(platforms_urls)), # dashboard section urls url(r'^releases/', include(releases_urls)), url(r'^products/', include(products_urls)), # coverage section urls (coverage_urls) url(r'^coverage/', include(coverage_urls)), # geolocation section urls (location_urls) url(r'^territory/', include(geolocation_urls)), ]
sundeep-co-in/transtats
dashboard/urls.py
Python
apache-2.0
11,095
# -*- coding: utf-8 -*- """ Copyright [2009-2018] EMBL-European Bioinformatics Institute Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import json from rnacentral_pipeline.databases import data def test_can_build_correct_writeable(): annotation = data.GoTermAnnotation( rna_id="a", qualifier="part_of", term_id="GO:01", evidence_code="ECO:001", extensions=[ data.AnnotationExtension(qualifier="talks_to", target="ENESMBL:1"), ], assigned_by="Bob", publications=[], ) writeable = list(annotation.writeable()) assert len(writeable) == 1 assert writeable[0] == [ "a", "part_of", "GO:01", "ECO:001", json.dumps( [ { "qualifier": "talks_to", "target": "ENESMBL:1", } ] ), "Bob", ]
RNAcentral/rnacentral-import-pipeline
tests/databases/data/go_annotations_test.py
Python
apache-2.0
1,410
from pythonDnn.utils.load_conf import load_conv_spec from pythonDnn.utils.utils import parse_activation from pythonDnn.models.cnn import CNN,DropoutCNN; from dnn_predict import Predictor class CNNPredictor(Predictor): def __init__(self,model_config): super(CNNPredictor, self).__init__(model_config,'CNN'); conv_config,conv_layer_config,mlp_config = load_conv_spec(self.model_config['nnet_spec'], self.batch_size, self.model_config['input_shape']) activationFn = parse_activation(mlp_config['activation']); if mlp_config['do_dropout'] or conv_config['do_dropout']: self.model = DropoutCNN(self.numpy_rng,self.theano_rng,conv_layer_configs = conv_layer_config, batch_size = self.batch_size, n_outs=self.model_config['n_outs'], hidden_layer_configs=mlp_config, hidden_activation = activationFn, use_fast = conv_config['use_fast'],l1_reg = mlp_config['l1_reg'], l2_reg = mlp_config['l1_reg'],max_col_norm = mlp_config['max_col_norm'], input_dropout_factor=conv_config['input_dropout_factor']) else: self.model = CNN(self.numpy_rng,self.theano_rng,conv_layer_configs = conv_layer_config, batch_size = batch_size, n_outs=self.model_config['n_outs'], hidden_layer_configs=mlp_config, hidden_activation = activationFn, use_fast = conv_config['use_fast'],l1_reg = mlp_config['l1_reg'], l2_reg = mlp_config['l1_reg'],max_col_norm = mlp_config['max_col_norm']) self.__load_model__(self.model_config['input_file'],mlp_config['pretrained_layers']);
IITM-DONLAB/dnn-test-wrapper
src/dnn_predict/cnn.py
Python
apache-2.0
1,537
num_cassandra_east = 1 num_regular_east = 0 num_cassandra_west = 0 num_regular_west = 0 from common_funcs import * from time import sleep from os import system #todo-verify eastAMI = "ami-4dad7424"#BOLTON: ami-8ee848e7"# OLDER: "ami-7268b01b" westAMI = "ami-ecf17ddc" eastInstanceIPs = [] westInstanceIPs = [] def make_ec2_east(n): if n == 0: return global eastAMI f = raw_input("EAST: spinning up %d instances; okay? " % n) if f != "Y" and f != "y": exit(-1) system("ec2-run-instances %s -n %d -g 'lipstick' --t m1.large -k 'suna-real'" % (eastAMI, n)) def make_ec2_west(n): if n == 0: return global westAMI f = raw_input("WEST: spinning up %d instances; okay? " % n) if f != "Y" and f != "y": exit(-1) system("ec2-run-instances %s -n %d -g 'lipstick' --t m1.large --region us-west-2 -k 'watson' -b '/dev/sdb=ephemeral0' -b '/dev/sdc=ephemeral1'" % (westAMI, n)) def get_instances(): global eastInstanceIPs global westInstanceIPs system("rm instances.txt") system("ec2-describe-instances --region us-east-1 >> instances.txt") system("ec2-describe-instances --region us-west-2 >> instances.txt") ret = [] for line in open("instances.txt"): line = line.split() if line[0] == "INSTANCE": ip = line[3] if ip == "terminated": continue status = line[5] if status.find("shutting") != -1: continue region = line[10] ret.append((ip, region)) #OUTPUT all-hosts.txt, cassandra-hosts.txt, lipstick-hosts.txt, east-cassandra-hosts.txt, east-lipstick-hosts.txt, west-cassandra-hosts.txt west-lipstick-hosts.txt system("rm instances.txt") return ret def make_instancefile(name, hosts): f = open("hosts/"+name, 'w') for host in hosts: f.write("%s\n" % (host)) f.close launch_cassandra_ring()
pbailis/bolton-sigmod2013-code
ycsb-lipstick/ycsb-src/setup-cluster/start_ring.py
Python
apache-2.0
1,951
#!/usr/bin/env python # # Copyright 2015 Airbus # Copyright 2017 Fraunhofer Institute for Manufacturing Engineering and Automation (IPA) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from roslib.packages import get_pkg_dir from python_qt_binding.QtGui import * from python_qt_binding.QtCore import * from airbus_pyqt_extend.QtAgiCore import get_pkg_dir_from_prefix from airbus_cobot_gui import Plugin, ControlMode ## Finally import the RViz bindings themselves. import rviz ## The MyViz class is the main container widget. class PluginRviz(Plugin): ## MyViz Constructor ## ^^^^^^^^^^^^^^^^^ ## ## Its constructor creates and configures all the component widgets: ## frame, thickness_slider, top_button, and side_button, and adds them ## to layouts. def __init__(self, context): Plugin.__init__(self, context) self.frame = None def onCreate(self, param): yaml = param.getParam("yaml") yaml = get_pkg_dir_from_prefix(yaml) ## rviz.VisualizationFrame is the main container widget of the ## regular RViz application, with menus, a toolbar, a status ## bar, and many docked subpanels. In this example, we ## disable everything so that the only thing visible is the 3D ## render window. self.frame = rviz.VisualizationFrame() ## The "splash path" is the full path of an image file which ## gets shown during loading. Setting it to the empty string ## suppresses that behavior. self.frame.setSplashPath("") ## VisualizationFrame.initialize() must be called before ## VisualizationFrame.load(). In fact it must be called ## before most interactions with RViz classes because it ## instantiates and initializes the VisualizationManager, ## which is the central class of RViz. self.frame.initialize() ## The reader reads config file data into the config object. ## VisualizationFrame reads its data from the config object. reader = rviz.YamlConfigReader() config = rviz.Config() reader.readFile( config, yaml) self.frame.load( config ) ## You can also store any other application data you like in ## the config object. Here we read the window title from the ## map key called "Title", which has been added by hand to the ## config file. self.setWindowTitle( config.mapGetChild( "Title" ).getValue() ) ## Here we disable the menu bar (from the top), status bar ## (from the bottom), and the "hide-docks" buttons, which are ## the tall skinny buttons on the left and right sides of the ## main render window. self.frame.setMenuBar( None ) self.frame.setHideButtonVisibility( False ) ## frame.getManager() returns the VisualizationManager ## instance, which is a very central class. It has pointers ## to other manager objects and is generally required to make ## any changes in an rviz instance. self.manager = self.frame.getManager() ## Since the config file is part of the source code for this ## example, we know that the first display in the list is the ## grid we want to control. Here we just save a reference to ## it for later. self.grid_display = self.manager.getRootDisplayGroup().getDisplayAt(0) ## Here we create the layout and other widgets in the usual Qt way. layout = QVBoxLayout() layout.addWidget( self.frame ) ####### self.setLayout( layout ) def onPause(self): pass def onResume(self): pass def onControlModeChanged(self, mode): if mode == ControlMode.AUTOMATIC: self.setEnabled(False) else: self.setEnabled(True) def onUserChanged(self, user_info): pass def onTranslate(self, lng): pass def onEmergencyStop(self, state): pass def onDestroy(self): pass
ipa-led/airbus_coop
airbus_plugins/airbus_plugin_rviz/src/airbus_plugin_rviz/plugin.py
Python
apache-2.0
4,720
import pickle import pprint data = [{'a': 'A', 'b': 2, 'c': 3.0}] print('DATA:', end=' ') pprint.pprint(data) data_string = pickle.dumps(data) print('PICKLE: {!r}'.format(data_string))
jasonwee/asus-rt-n14uhp-mrtg
src/lesson_data_persistence_and_exchange/pickle_string.py
Python
apache-2.0
187
#!/home/y/bin/python2.6 import sys, os sys.path.append(os.path.join(os.path.dirname(__file__), '../lib')) from redisPubSub import RedisPubSub def main(): rsp = RedisPubSub() channel_name = raw_input("Enter channel name to which you want to publish messages: ") var = 1 while var == 1: new_message = raw_input("Enter message you want to publish: ") rsp.publish(channel_name, new_message) if __name__ == "__main__": main()
dragondscv/Redis_PubSub_Tornado_Websocket
demo/publisher.py
Python
apache-2.0
461
#!/usr/bin/env python # # Copyright 2011-2014 Splunk, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"): you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """An example that shows how to use the Splunk binding module to create a convenient 'wrapper' interface around the Splunk REST APIs. The example binds to a sampling of endpoints showing how to access collections, entities and 'method-like' endpoints.""" import sys, os sys.path.insert(0, os.path.join(os.path.dirname(__file__), "..")) from splunklib.binding import connect try: from utils import parse except ImportError: raise Exception("Add the SDK repository to your PYTHONPATH to run the examples " "(e.g., export PYTHONPATH=~/splunk-sdk-python.") class Service: def __init__(self, context): self.context = context def apps(self): return self.context.get("apps/local") def indexes(self): return self.context.get("data/indexes") def info(self): return self.context.get("server/info") def settings(self): return self.context.get("server/settings") def search(self, query, **kwargs): return self.context.post("search/jobs/export", search=query, **kwargs) def main(argv): opts = parse(argv, {}, ".splunkrc") context = connect(**opts.kwargs) service = Service(context) assert service.apps().status == 200 assert service.indexes().status == 200 assert service.info().status == 200 assert service.settings().status == 200 assert service.search("search 404").status == 200 if __name__ == "__main__": main(sys.argv[1:])
kkirsche/splunk-sdk-python
examples/binding1.py
Python
apache-2.0
2,079
from django.db import models # Create your models here. class Beer(models.Model): url = models.CharField(max_length = 255) name = models.CharField(max_length = 255) brewery = models.CharField(max_length = 255) brewery_number = models.IntegerField() beer_number = models.IntegerField() BA_score = models.CharField(max_length = 255, blank = True) #brew_location = Field() Not implemented style = models.CharField(max_length = 255, blank = True) ABV = models.DecimalField(decimal_places = 2, max_digits= 5, blank = True) reviews = models.TextField(blank = True) def __unicode__(self): return self.name + '-' + self.brewery
johnurbanik/beeradvocate_crawl
beers/models.py
Python
apache-2.0
703
#! /usr/bin/env python import os import random import pygame import time as t # Class for sprite class Player(object): # Initialize the Sprite def __init__(self): self.rect = pygame.Rect(32, 32, 0, 0) # 16, 16) # Moves the Sprite def move(self, dx, dy): # Move each axis separately. Note that this checks for collisions both times. if dx != 0: self.move_single_axis(dx, 0) if dy != 0: self.move_single_axis(0, dy) # checks for collision via the array def isSafe(self, level, dx, dy, sol): # Get maze size X = len(level[0]) Y = len(level) if dx >= 0 and dx < X and dy >= 0 and dy < Y and level[dx][dy] != 0: # "W": self.move(dx, dy) # you have made a successful move return True return False # Recursively calls itself until it has ended the maze def solveMaze(self, level, dx, dy, sol): # Get maze size X = len(level[0]) Y = len(level) # check if player has reached the end if (dx == X-1 and dy == Y-1): sol[dx][dy] = 1 return True # check if we're inside the maze if self.isSafe(level, dx, dy, sol): # Mark the current cell (Backtrack) sol[dx][dy] = 1 # Move right pygame.display.update() if self.solveMaze(level, dx+1, dy, sol): return True # Move down pygame.display.update() if self.solveMaze(level, dx, dy+1, sol): return True # if you can't move right or down, you've hit a wall sol[dx][dy] = 0 return False # checks for collision via the sprite and walls def move_single_axis(self, dx, dy): # Move the player self.rect.x += dx self.rect.y += dy # If you collide with a wall, move out based on velocity for wall in walls: if self.rect.colliderect(wall.rect): if dx > 0: # Moving right; Hit the left side of the wall self.rect.right = wall.rect.left if dx < 0: # Moving left; Hit the right side of the wall self.rect.left = wall.rect.right if dy > 0: # Moving down; Hit the top side of the wall self.rect.bottom = wall.rect.top if dy < 0: # Moving up; Hit the bottom side of the wall self.rect.top = wall.rect.bottom # wall object class Wall(object): def __init__(self, pos): walls.append(self) self.rect = pygame.Rect(pos[0], pos[1], 16, 16) # Initialise pygame os.environ["SDL_VIDEO_CENTERED"] = "1" pygame.init() # Set up the display pygame.display.set_caption("Maze Runner") screen = pygame.display.set_mode((256, 256)) # 320, 240 OR 64, 64 clock = pygame.time.Clock() walls = [] # List to hold the walls player = Player() # Create the player # Holds the level layout in a list of strings. level = [ [1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0], [1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0], [1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1], [1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0], [1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0], [1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0], [1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0], [0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0], [1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1], [1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1], [1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1], [0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0], [1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0], [1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] # Update this as you go through to show were the path(s) are sol = [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] # Parse the level string above. W = wall, E = exit x = y = 0 for row in level: for col in row: # go through each row if col == 0: # "W": Wall((x, y)) if col == 1: # "E": end_rect = pygame.Rect(x, y, 16, 16) x += 16 # go to next "block" in row y += 16 # go to next row x = 0 # start at beginning of row running = True while running: # while not at the end of the maze clock.tick(60) for e in pygame.event.get(): if e.type == pygame.QUIT: running = False if e.type == pygame.KEYDOWN and e.key == pygame.K_ESCAPE: running = False # Just added this to make it slightly fun ;) if player.rect.colliderect(end_rect): raise SystemExit, "You win!" # Draw the scene screen.fill((0, 0, 0)) for wall in walls: pygame.draw.rect(screen, (104, 196, 210), wall.rect) pygame.draw.rect(screen, (122, 68, 230), end_rect) pygame.draw.rect(screen, (239, 163, 97), player.rect) pygame.display.flip() if player.solveMaze(level, 0, 0, sol): print(sol) else: print("No Solution") print("YOU WIN") t.sleep(3) # display game after completion running = False
kristinak228/Maze_Game
Maze.py
Python
apache-2.0
5,451
import logging import spotipy import spotipy.oauth2 as oauth2 import json import datetime from errbot import BotPlugin, botcmd class BotifyPlugin(BotPlugin): def activate(self): from config import BOTIFY_CREDS super(BotifyPlugin, self).activate() # dict of name: id for playlists, name is the IRC channel self.playlists = {} creds = json.load(open(BOTIFY_CREDS)) client_id = creds.get('CLIENT_ID', 'YOUR_CLIENT_ID') client_secret = creds.get('CLIENT_SECRET', 'YOUR_CLIENT_SECRET') redirect_uri = creds.get('REDIRECT_URI', 'YOUR_REDIRECT_URI') self.username = creds.get('USERNAME', 'USERNAME') logging.info('Auth cache:' + creds.get('CACHE_PATH', self.username)) self.sp_oauth = oauth2.SpotifyOAuth( client_id, client_secret, redirect_uri, scope='playlist-modify-public', cache_path=creds.get('CACHE_PATH', self.username) ) @botcmd(split_args_with=None, admin_only=True) def botify_createlist(self, mess, args): self.oath_refresh_if_needed() playlist = args[0] return '%s created? %s' % (playlist, self.create_playlist(playlist)) @botcmd(split_args_with=None, admin_only=True) def botify_auth(self, mess, args): """ Do the oauth challenge and response fandango """ r = self.oath_refresh_if_needed() if 'expired' not in r: expires = self.token_expires() return "%s. Expires @ %s" % (r, expires.strftime('%H:%M:%S')) try: if args: return self.oauth_validate(args[0]) else: ed = "http://imgur.com/A8QOnaR.jpg" return "You have 30 seconds to comply %s\n %s" % ( ed, self.oauth_challenge() ) except spotipy.SpotifyException, e: logging.error(e) return 'ruh roh\n http://i.imgur.com/bmfwvDl.gif' @botcmd(split_args_with=None, admin_only=True) def botify_authcheck(self, mess, args): self.oath_refresh_if_needed() expires = self.token_expires() return "Expires @ %s" % expires.strftime('%H:%M:%S') @botcmd def botify_list(self, mess, args): self.oath_refresh_if_needed() playlist = self.playlist_id(mess) msg = "Listen along: http://open.spotify.com/user/%s/playlist/%s" results = [msg % (self.username, playlist), "-----"] if playlist: playlist_tracks = self.list_tracks(playlist) if len(playlist_tracks) == 0: results.append("No tracks in playlist") else: for d in playlist_tracks: logging.info(d) s = '%s : %s (%s) - [%s]' % ( d['track']['name'], d['track']['album']['name'], ', '.join([a['name'] for a in d['track']['artists']]), d['track']['id'] ) results.append(s) else: results = ["No playlist for the room"] for d in results: yield d.encode('ascii', 'ignore') @botcmd def botify_search(self, mess, args): results = [] try: results = self.search(args) except spotipy.SpotifyException, e: logging.error(e) yield 'ruh roh\n http://i.imgur.com/bmfwvDl.gif' else: for d in results: s = '%s : %s (%s)- %s' % ( d['name'], d['album']['name'], ', '.join([a['name'] for a in d['artists']]), d['id']) yield s.encode('ascii', 'ignore') @botcmd def botify_add(self, mess, args): self.oath_refresh_if_needed() playlist = self.playlist_id(mess) if not playlist: return "No playlist for the room" try: if playlist: return self.add_track(playlist, args.split(' ')) else: return "No playlist for the room" except spotipy.SpotifyException, e: logging.error(e) return 'ruh roh\n http://i.imgur.com/bmfwvDl.gif' @botcmd def botify_delete(self, mess, args): self.oath_refresh_if_needed() playlist = self.playlist_id(mess) try: if playlist: return self.delete_track(playlist, args.split(' ')) else: return "No playlist for the room" except spotipy.SpotifyException, e: logging.error(e) return 'ruh roh\n http://i.imgur.com/bmfwvDl.gif' def search(self, term, limit=10): try: tracks = self.sp.search(q=term, limit=limit) except spotipy.SpotifyException, e: logging.error(e) return 'ruh roh\n http://i.imgur.com/bmfwvDl.gif' return tracks['tracks']['items'] def delete_track(self, playlist, track_ids): logging.info("delete tracks: %s" % track_ids) track_ids = ["spotify:track:%s" % t for t in track_ids] try: self.sp.user_playlist_delete_tracks( self.username, playlist, track_ids ) except spotipy.SpotifyException, e: logging.error(e) return 'ruh roh\n http://i.imgur.com/bmfwvDl.gif' return "Track removed" def add_track(self, playlist, track_ids): logging.info("adding tracks: %s" % track_ids) track_ids = ["spotify:track:%s" % t for t in track_ids] try: self.sp.user_playlist_add_tracks( self.username, playlist, track_ids ) except spotipy.SpotifyException, e: logging.error(e) return 'ruh roh\n http://i.imgur.com/bmfwvDl.gif' return "Track added" def list_tracks(self, playlist): return self.sp.user_playlist( self.username, playlist, fields="tracks,next" )['tracks']['items'] def check_playlist(self, playlist): playlists = self.sp.user_playlists(self.username)['items'] self.playlists = dict([(p['name'], p['id']) for p in playlists]) return playlist in self.playlists def create_playlist(self, playlist): if not self.check_playlist(playlist): logging.info('creating playlist: %s' % playlist) try: playlist = self.sp.user_playlist_create( self.username, playlist ) except spotipy.SpotifyException, e: if e.http_status == 201: # there's a bug in spotipy that thinks a 201 is bad... return self.check_playlist(playlist) else: return False def playlist_id(self, mess): playlist = str(mess.getFrom()) if self.check_playlist(playlist): return self.playlists[playlist] else: return False def oauth_challenge(self): return self.sp_oauth.get_authorize_url() def oauth_validate(self, response): try: logging.info("botify validating oauth response: %s" % response) code = self.sp_oauth.parse_response_code(response) logging.info("botify oauth code: %s" % code) token = self.sp_oauth.get_access_token(code) if token: self.sp = spotipy.Spotify(auth=token['access_token']) expires = datetime.datetime.fromtimestamp(token['expires_at']) return "Authorised. Expires @ %s" % expires.strftime( '%H:%M:%S' ) else: return "http://i.imgur.com/s5guP5z.gif" except spotipy.SpotifyException, e: logging.error(e) return "http://i.imgur.com/s5guP5z.gif" def oath_refresh_if_needed(self): expires = self.token_expires() delta = expires - datetime.datetime.now() if delta != abs(delta): return "Token expired, reauth" if delta.seconds < 300: token_info = self.sp_oauth.get_cached_token() print token_info['expires_at'], token_info['refresh_token'] self.sp_oauth.refresh_access_token( token_info['refresh_token'] ) token_info = self.sp_oauth.get_cached_token() print token_info['expires_at'], token_info['refresh_token'] return "Token refreshed" def token_expires(self): token = self.sp_oauth.get_cached_token() return datetime.datetime.fromtimestamp(token['expires_at'])
drsm79/botify
botify.py
Python
apache-2.0
8,898
# # Copyright (c) 2008-2015 Citrix Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from nssrc.com.citrix.netscaler.nitro.resource.base.base_resource import base_resource from nssrc.com.citrix.netscaler.nitro.resource.base.base_resource import base_response from nssrc.com.citrix.netscaler.nitro.service.options import options from nssrc.com.citrix.netscaler.nitro.exception.nitro_exception import nitro_exception from nssrc.com.citrix.netscaler.nitro.util.nitro_util import nitro_util class rewriteparam(base_resource) : """ Configuration for rewrite parameter resource. """ def __init__(self) : self._undefaction = "" @property def undefaction(self) : """Action to perform if the result of policy evaluation is undefined (UNDEF). An UNDEF event indicates an internal error condition. Available settings function as follows: * NOOP - Send the request to the protected server instead of responding to it. * RESET - Reset the request and notify the user's browser, so that the user can resend the request. * DROP - Drop the request without sending a response to the user.<br/>Default value: "NOREWRITE". """ try : return self._undefaction except Exception as e: raise e @undefaction.setter def undefaction(self, undefaction) : """Action to perform if the result of policy evaluation is undefined (UNDEF). An UNDEF event indicates an internal error condition. Available settings function as follows: * NOOP - Send the request to the protected server instead of responding to it. * RESET - Reset the request and notify the user's browser, so that the user can resend the request. * DROP - Drop the request without sending a response to the user.<br/>Default value: "NOREWRITE" """ try : self._undefaction = undefaction except Exception as e: raise e def _get_nitro_response(self, service, response) : """ converts nitro response into object and returns the object array in case of get request. """ try : result = service.payload_formatter.string_to_resource(rewriteparam_response, response, self.__class__.__name__) if(result.errorcode != 0) : if (result.errorcode == 444) : service.clear_session(self) if result.severity : if (result.severity == "ERROR") : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) else : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) return result.rewriteparam except Exception as e : raise e def _get_object_name(self) : """ Returns the value of object identifier argument """ try : return None except Exception as e : raise e @classmethod def update(cls, client, resource) : """ Use this API to update rewriteparam. """ try : if type(resource) is not list : updateresource = rewriteparam() updateresource.undefaction = resource.undefaction return updateresource.update_resource(client) except Exception as e : raise e @classmethod def unset(cls, client, resource, args) : """ Use this API to unset the properties of rewriteparam resource. Properties that need to be unset are specified in args array. """ try : if type(resource) is not list : unsetresource = rewriteparam() return unsetresource.unset_resource(client, args) except Exception as e : raise e @classmethod def get(cls, client, name="", option_="") : """ Use this API to fetch all the rewriteparam resources that are configured on netscaler. """ try : if not name : obj = rewriteparam() response = obj.get_resources(client, option_) return response except Exception as e : raise e class rewriteparam_response(base_response) : def __init__(self, length=1) : self.rewriteparam = [] self.errorcode = 0 self.message = "" self.severity = "" self.sessionid = "" self.rewriteparam = [rewriteparam() for _ in range(length)]
mahabs/nitro
nssrc/com/citrix/netscaler/nitro/resource/config/rewrite/rewriteparam.py
Python
apache-2.0
4,433
# Copyright 2016 Cloudbase Solutions. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock import netifaces from neutron.agent.windows import ip_lib from neutron.tests import base class TestIpWrapper(base.BaseTestCase): def test_get_device_by_ip_no_ip(self): ret = ip_lib.IPWrapper().get_device_by_ip(None) self.assertIsNone(ret) @mock.patch.object(ip_lib.IPWrapper, 'get_devices') def test_get_device_by_ip(self, mock_get_devices): mock_dev1 = mock.MagicMock() mock_dev2 = mock.MagicMock() mock_dev1.device_has_ip.return_value = False mock_dev2.device_has_ip.return_value = True mock_get_devices.return_value = [mock_dev1, mock_dev2] ret = ip_lib.IPWrapper().get_device_by_ip('fake_ip') self.assertEqual(mock_dev2, ret) @mock.patch('netifaces.interfaces') def test_get_devices(self, mock_interfaces): mock_interfaces.return_value = [mock.sentinel.dev1, mock.sentinel.dev2] ret = ip_lib.IPWrapper().get_devices() self.assertEqual(mock.sentinel.dev1, ret[0].device_name) self.assertEqual(mock.sentinel.dev2, ret[1].device_name) @mock.patch('netifaces.interfaces') def test_get_devices_error(self, mock_interfaces): mock_interfaces.side_effect = OSError ret = ip_lib.IPWrapper().get_devices() self.assertEqual([], ret) class TestIpDevice(base.BaseTestCase): @mock.patch('netifaces.ifaddresses') def test_device_has_ip(self, mock_netifaces): mock_address = {'addr': mock.sentinel.fake_addr} mock_netifaces.return_value = {netifaces.AF_INET: [mock_address]} ret = ip_lib.IPDevice("fake_dev").device_has_ip( mock.sentinel.fake_addr) self.assertTrue(ret) @mock.patch('netifaces.ifaddresses') def test_device_has_ip_false(self, mock_netifaces): mock_netifaces.return_value = {} ret = ip_lib.IPDevice("fake_dev").device_has_ip( mock.sentinel.fake_addr) self.assertFalse(ret) @mock.patch('netifaces.ifaddresses') def test_device_has_ip_error(self, mock_netifaces): mock_netifaces.side_effect = OSError ret = ip_lib.IPDevice("fake_dev").device_has_ip( mock.sentinel.fake_addr) self.assertFalse(ret) @mock.patch('netifaces.ifaddresses') def test_device_not_found(self, mock_netifaces): mock_netifaces.side_effect = ValueError ret = ip_lib.IPDevice("fake_dev").device_has_ip( mock.sentinel.fake_addr) self.assertFalse(ret)
cloudbase/neutron
neutron/tests/unit/agent/windows/test_ip_lib.py
Python
apache-2.0
3,266
__author__ = 'Wenju Sun' import """ This script tries to download given file via http and given the final status summary """ MAX_VALUE=10 MIN_VALUE=0 WARN_VALUE=0 CRITICAL_VALUE=0 STATE_OK=0 STATE_WARNING=1 STATE_CRITICAL=2 STATE_UNKNOWN=3 STATUS_TEXT='OK' STATUS_CODE=STATE_OK murl="http://dl-3m.svc.mcitech.cn/items/60/185/3F4CBC95EF6DA685D498CC2090DDE6FB.zip" def download(url): urllib2
swenker/studio
python/cpp-ops/ops/check_download_magazine.py
Python
apache-2.0
429
# parse import datetime import os from django.db import models from django.utils import timezone from ocean.models import Region from ocean.models import Characteristic from .parser import parse_byday, parse_set, parse_test class Task(models.Model): timestamp = models.DateTimeField( auto_now_add=True) PROCESS_TYPES = ( ('byday', 'Файлы разложены по дням'), ('set', 'Один файл'), ) process_type = models.CharField( 'Тип обработки данных', max_length=50, choices=PROCESS_TYPES, default='byday', ) path = models.CharField('Путь к файлу для обработки', max_length=200, blank=True, default='',) date_start = models.DateField( 'Период, с', default=None, blank=True, null=True) date_end = models.DateField( 'Период, по', default=None, blank=True, null=True) characteristic = models.ForeignKey( Characteristic) region = models.ForeignKey( Region) status = models.CharField( 'Статут выполнения', max_length=50, default='new', editable=False) result = models.TextField( "Результат", default='', blank=True) run = models.BooleanField( "Выполнить", default=False) def __str__(self): return str(self.timestamp.strftime('%H:%M:%S-%Y%m%d')) def save(self): result = '' if self.run: if self.process_type == 'set': result = parse_set( # result = parse_test( self.path, self.date_start, self.date_end, self.characteristic.model, self.characteristic.tag, self.characteristic.store_prefix, self.characteristic.file_mask, self.region.slug, ) elif self.process_type == 'byday': result = parse_byday( self.date_start, self.date_end, self.characteristic.model, self.characteristic.tag, self.characteristic.store_prefix, self.characteristic.file_mask, self.region.slug, ) self.run = False self.result = result super(Task, self).save()
cttgroup/oceanhub
proto/data-refining/back/workdir/parse/models.py
Python
apache-2.0
2,488
from cbagent.decorators import post_request class MetadataClient(object): def __init__(self, settings, host="127.0.0.1"): self.settings = settings self.base_url = "http://{0}:8000/cbmonitor".format(host) @post_request def add_cluster(self): url = self.base_url + "/add_cluster/" params = {"name": self.settings.cluster, "rest_username": self.settings.rest_username, "rest_password": self.settings.rest_password} return url, params @post_request def add_server(self, address): url = self.base_url + "/add_server/" params = {"address": address, "cluster": self.settings.cluster, "ssh_username": self.settings.ssh_username, "ssh_password": self.settings.ssh_password} return url, params @post_request def add_bucket(self, name): url = self.base_url + "/add_bucket/" params = {"name": name, "type": "Couchbase", "cluster": self.settings.cluster} return url, params @post_request def add_metric(self, name, bucket=None, server=None, unit=None, description=None): url = self.base_url + "/add_metric_or_event/" params = {"name": name, "type": "metric", "cluster": self.settings.cluster} for extra_param in ("bucket", "server", "unit", "description"): if eval(extra_param) is not None: params[extra_param] = eval(extra_param) return url, params
ronniedada/litmus
collectors/cbagent/metadata_client.py
Python
apache-2.0
1,573
# -*- coding: utf-8 -*- # Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from collections import OrderedDict from typing import Dict, Type from .base import ReservationsTransport from .rest import ReservationsRestTransport from .rest import ReservationsRestInterceptor # Compile a registry of transports. _transport_registry = OrderedDict() # type: Dict[str, Type[ReservationsTransport]] _transport_registry["rest"] = ReservationsRestTransport __all__ = ( "ReservationsTransport", "ReservationsRestTransport", "ReservationsRestInterceptor", )
googleapis/python-compute
google/cloud/compute_v1/services/reservations/transports/__init__.py
Python
apache-2.0
1,087
import numpy as np from matplotlib import pyplot as plt def drawWaiteForAnyCustomer(xList, yList,name): fig = plt.figure() width = .5 ind = np.arange(len(yList)) plt.bar(ind, yList) plt.xticks(ind + width / 2, xList) # fig.autofmt_xdate() plt.savefig("results/"+name+"_waitingPerCustomer.pdf") def drawFrequencyForAnyWaiteData(xList, yList, name): fig = plt.figure() width = .5 ind = np.arange(len(yList)) plt.bar(ind, yList) plt.xticks(ind + width / 2, xList) # fig.autofmt_xdate() plt.savefig("results/"+name+"_FrequencyPerWaitAmount.pdf")
mrhsce/simPython
chartDrawing.py
Python
apache-2.0
604
"""Model queries.""" def is_password_parameter(data_model, source_type: str, parameter: str) -> bool: """Return whether the parameter of the source type is a password.""" # If the parameter key can't be found (this can happen when the parameter is removed from the data model), # err on the safe side and assume it was a password type parameter_type = ( data_model["sources"].get(source_type, {}).get("parameters", {}).get(parameter, dict(type="password"))["type"] ) return str(parameter_type) == "password"
ICTU/quality-time
components/server/src/external/model/queries.py
Python
apache-2.0
542
from amara import parse from amara.xpath.util import abspath import unittest #Samuel L Bayer-inspired test for default namespace handling #http://lists.fourthought.com/pipermail/4suite/2006-February/007757.html XML1 = '<foo xmlns:bar="http://bar.com"><baz/><bar:baz/><baz/></foo>' XML2 = '<foo xmlns="http://bax.com" xmlns:bar="http://bar.com"><baz/><bar:baz/><dup/><dup/></foo>' def test_abspath_with_ns(): doc = parse(XML1) baz2 = doc.xml_first_child.xml_first_child ap = abspath(baz2) assert ap == u'/foo/baz' ap = abspath(baz2.xml_following_sibling) assert ap == u'/foo/bar:baz' ap = abspath(baz2.xml_following_sibling.xml_following_sibling) assert ap == u'/foo/baz[2]' def test_abspath_with_default_ns(): doc = parse(XML2) baz = doc.xml_first_child.xml_first_child ap = abspath(baz) assert ap == u'/*[namespace-uri()="http://bax.com" and local-name()="foo"]/*[namespace-uri()="http://bax.com" and local-name()="baz"]' assert [baz] == list(doc.xml_select(ap)) ap = abspath(baz.xml_following_sibling) assert ap == u'/*[namespace-uri()="http://bax.com" and local-name()="foo"]/bar:baz' assert [baz.xml_following_sibling] == list(doc.xml_select(ap)) ap = abspath(baz, {u'bax': u'http://bax.com'}) assert ap == u'/bax:foo/bax:baz' ap = abspath(baz.xml_following_sibling, {u'bax': u'http://bax.com'}) assert ap == u'/bax:foo/bar:baz' dup1 = baz.xml_following_sibling.xml_following_sibling dup2 = dup1.xml_following_sibling ap = abspath(dup2, {u'bax': u'http://bax.com'}) assert ap == u'/bax:foo/bax:dup[2]' if __name__ == "__main__": raise SystemExit("use nosetests")
zepheira/amara
test/xpath/test_abs_path.py
Python
apache-2.0
1,676
import collections Set = set try: from collections import OrderedDict except ImportError: class OrderedDict(dict): 'Dictionary that remembers insertion order' # An inherited dict maps keys to values. # The inherited dict provides __getitem__, __len__, __contains__, and get. # The remaining methods are order-aware. # Big-O running times for all methods are the same as for regular dictionaries. # The internal self.__map dictionary maps keys to links in a doubly linked list. # The circular doubly linked list starts and ends with a sentinel element. # The sentinel element never gets deleted (this simplifies the algorithm). # Each link is stored as a list of length three: [PREV, NEXT, KEY]. def __init__(self, *args, **kwds): '''Initialize an ordered dictionary. Signature is the same as for regular dictionaries, but keyword arguments are not recommended because their insertion order is arbitrary. ''' if len(args) > 1: raise TypeError('expected at most 1 arguments, got %d' % len(args)) try: self.__root except AttributeError: self.__root = root = [] # sentinel node root[:] = [root, root, None] self.__map = {} self.__update(*args, **kwds) def __setitem__(self, key, value, dict_setitem=dict.__setitem__): 'od.__setitem__(i, y) <==> od[i]=y' # Setting a new item creates a new link which goes at the end of the linked # list, and the inherited dictionary is updated with the new key/value pair. if key not in self: root = self.__root last = root[0] last[1] = root[0] = self.__map[key] = [last, root, key] dict_setitem(self, key, value) def __delitem__(self, key, dict_delitem=dict.__delitem__): 'od.__delitem__(y) <==> del od[y]' # Deleting an existing item uses self.__map to find the link which is # then removed by updating the links in the predecessor and successor nodes. dict_delitem(self, key) link_prev, link_next, key = self.__map.pop(key) link_prev[1] = link_next link_next[0] = link_prev def __iter__(self): 'od.__iter__() <==> iter(od)' root = self.__root curr = root[1] while curr is not root: yield curr[2] curr = curr[1] def __reversed__(self): 'od.__reversed__() <==> reversed(od)' root = self.__root curr = root[0] while curr is not root: yield curr[2] curr = curr[0] def clear(self): 'od.clear() -> None. Remove all items from od.' try: for node in self.__map.values(): del node[:] root = self.__root root[:] = [root, root, None] self.__map.clear() except AttributeError: pass dict.clear(self) def popitem(self, last=True): '''od.popitem() -> (k, v), return and remove a (key, value) pair. Pairs are returned in LIFO order if last is true or FIFO order if false. ''' if not self: raise KeyError('dictionary is empty') root = self.__root if last: link = root[0] link_prev = link[0] link_prev[1] = root root[0] = link_prev else: link = root[1] link_next = link[1] root[1] = link_next link_next[0] = root key = link[2] del self.__map[key] value = dict.pop(self, key) return key, value # -- the following methods do not depend on the internal structure -- def keys(self): 'od.keys() -> list of keys in od' return list(self) def values(self): 'od.values() -> list of values in od' return [self[key] for key in self] def items(self): 'od.items() -> list of (key, value) pairs in od' return [(key, self[key]) for key in self] def iterkeys(self): 'od.iterkeys() -> an iterator over the keys in od' return iter(self) def itervalues(self): 'od.itervalues -> an iterator over the values in od' for k in self: yield self[k] def iteritems(self): 'od.iteritems -> an iterator over the (key, value) items in od' for k in self: yield (k, self[k]) def update(*args, **kwds): '''od.update(E, **F) -> None. Update od from dict/iterable E and F. If E is a dict instance, does: for k in E: od[k] = E[k] If E has a .keys() method, does: for k in E.keys(): od[k] = E[k] Or if E is an iterable of items, does: for k, v in E: od[k] = v In either case, this is followed by: for k, v in F.items(): od[k] = v ''' if len(args) > 2: raise TypeError('update() takes at most 2 positional ' 'arguments (%d given)' % (len(args),)) elif not args: raise TypeError('update() takes at least 1 argument (0 given)') self = args[0] # Make progressively weaker assumptions about "other" other = () if len(args) == 2: other = args[1] if isinstance(other, dict): for key in other: self[key] = other[key] elif hasattr(other, 'keys'): for key in other.keys(): self[key] = other[key] else: for key, value in other: self[key] = value for key, value in kwds.items(): self[key] = value __update = update # let subclasses override update without breaking __init__ __marker = object() def pop(self, key, default=__marker): '''od.pop(k[,d]) -> v, remove specified key and return the corresponding value. If key is not found, d is returned if given, otherwise KeyError is raised. ''' if key in self: result = self[key] del self[key] return result if default is self.__marker: raise KeyError(key) return default def setdefault(self, key, default=None): 'od.setdefault(k[,d]) -> od.get(k,d), also set od[k]=d if k not in od' if key in self: return self[key] self[key] = default return default def __repr__(self, _repr_running={}): 'od.__repr__() <==> repr(od)' call_key = id(self), _get_ident() if call_key in _repr_running: return '...' _repr_running[call_key] = 1 try: if not self: return '%s()' % (self.__class__.__name__,) return '%s(%r)' % (self.__class__.__name__, self.items()) finally: del _repr_running[call_key] def __reduce__(self): 'Return state information for pickling' items = [[k, self[k]] for k in self] inst_dict = vars(self).copy() for k in vars(OrderedDict()): inst_dict.pop(k, None) if inst_dict: return (self.__class__, (items,), inst_dict) return self.__class__, (items,) def copy(self): 'od.copy() -> a shallow copy of od' return self.__class__(self) @classmethod def fromkeys(cls, iterable, value=None): '''OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S and values equal to v (which defaults to None). ''' d = cls() for key in iterable: d[key] = value return d def __eq__(self, other): '''od.__eq__(y) <==> od==y. Comparison to another OD is order-sensitive while comparison to a regular mapping is order-insensitive. ''' if isinstance(other, OrderedDict): return len(self)==len(other) and self.items() == other.items() return dict.__eq__(self, other) def __ne__(self, other): return not self == other # -- the following methods are only used in Python 2.7 -- def viewkeys(self): "od.viewkeys() -> a set-like object providing a view on od's keys" return KeysView(self) def viewvalues(self): "od.viewvalues() -> an object providing a view on od's values" return ValuesView(self) def viewitems(self): "od.viewitems() -> a set-like object providing a view on od's items" return ItemsView(self) KEY, PREV, NEXT = range(3) class OrderedSet(collections.MutableSet): """ From: http://code.activestate.com/recipes/576694/ """ def __init__(self, iterable=None): self.end = end = [] end += [None, end, end] # sentinel node for doubly linked list self.map = {} # key --> [key, prev, next] if iterable is not None: self |= iterable def __len__(self): return len(self.map) def __contains__(self, key): return key in self.map def add(self, key): if key not in self.map: end = self.end curr = end[PREV] curr[NEXT] = end[PREV] = self.map[key] = [key, curr, end] def discard(self, key): if key in self.map: key, prev, next = self.map.pop(key) prev[NEXT] = next next[PREV] = prev def __iter__(self): end = self.end curr = end[NEXT] while curr is not end: yield curr[KEY] curr = curr[NEXT] def __reversed__(self): end = self.end curr = end[PREV] while curr is not end: yield curr[KEY] curr = curr[PREV] def pop(self, last=True): if not self: raise KeyError('set is empty') key = next(reversed(self)) if last else next(iter(self)) self.discard(key) return key def __repr__(self): if not self: return '%s()' % (self.__class__.__name__,) return '%s(%r)' % (self.__class__.__name__, list(self)) def __eq__(self, other): if isinstance(other, OrderedSet): return len(self) == len(other) and list(self) == list(other) return set(self) == set(other) def __del__(self): self.clear() # remove circular references
GeoscienceAustralia/sifra
docs/source/extensions/backports.py
Python
apache-2.0
11,182
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Generated code. DO NOT EDIT! # # Snippet for DeleteEnvironment # NOTE: This snippet has been automatically generated for illustrative purposes only. # It may require modifications to work in your environment. # To install the latest published package dependency, execute the following: # python3 -m pip install google-cloud-dialogflow # [START dialogflow_generated_dialogflow_v2_Environments_DeleteEnvironment_sync] from google.cloud import dialogflow_v2 def sample_delete_environment(): # Create a client client = dialogflow_v2.EnvironmentsClient() # Initialize request argument(s) request = dialogflow_v2.DeleteEnvironmentRequest( name="name_value", ) # Make the request client.delete_environment(request=request) # [END dialogflow_generated_dialogflow_v2_Environments_DeleteEnvironment_sync]
googleapis/python-dialogflow
samples/generated_samples/dialogflow_generated_dialogflow_v2_environments_delete_environment_sync.py
Python
apache-2.0
1,444
import asyncio import gc import hashlib import socket import unittest from unittest import mock from yarl import URL import aiohttp from aiohttp.client_reqrep import ClientRequest, ClientResponse from aiohttp.test_utils import make_mocked_coro class TestProxy(unittest.TestCase): fingerprint = hashlib.sha256(b"foo").digest() response_mock_attrs = { 'status': 200, } mocked_response = mock.Mock(**response_mock_attrs) clientrequest_mock_attrs = { 'return_value._hashfunc.return_value.digest.return_value': fingerprint, 'return_value.fingerprint': fingerprint, 'return_value.send.return_value.start': make_mocked_coro(mocked_response), } def setUp(self): self.loop = asyncio.new_event_loop() asyncio.set_event_loop(None) def tearDown(self): # just in case if we have transport close callbacks self.loop.stop() self.loop.run_forever() self.loop.close() gc.collect() @mock.patch('aiohttp.connector.ClientRequest') def test_connect(self, ClientRequestMock): req = ClientRequest( 'GET', URL('http://www.python.org'), proxy=URL('http://proxy.example.com'), loop=self.loop ) self.assertEqual(str(req.proxy), 'http://proxy.example.com') # mock all the things! connector = aiohttp.TCPConnector(loop=self.loop) connector._resolve_host = make_mocked_coro([mock.MagicMock()]) proto = mock.Mock(**{ 'transport.get_extra_info.return_value': False, }) self.loop.create_connection = make_mocked_coro( (proto.transport, proto)) conn = self.loop.run_until_complete(connector.connect(req)) self.assertEqual(req.url, URL('http://www.python.org')) self.assertIs(conn._protocol, proto) self.assertIs(conn.transport, proto.transport) ClientRequestMock.assert_called_with( 'GET', URL('http://proxy.example.com'), auth=None, fingerprint=None, headers={'Host': 'www.python.org'}, loop=self.loop, ssl_context=None, verify_ssl=None) @mock.patch('aiohttp.connector.ClientRequest') def test_proxy_headers(self, ClientRequestMock): req = ClientRequest( 'GET', URL('http://www.python.org'), proxy=URL('http://proxy.example.com'), proxy_headers={'Foo': 'Bar'}, loop=self.loop) self.assertEqual(str(req.proxy), 'http://proxy.example.com') # mock all the things! connector = aiohttp.TCPConnector(loop=self.loop) connector._resolve_host = make_mocked_coro([mock.MagicMock()]) proto = mock.Mock(**{ 'transport.get_extra_info.return_value': False, }) self.loop.create_connection = make_mocked_coro( (proto.transport, proto)) conn = self.loop.run_until_complete(connector.connect(req)) self.assertEqual(req.url, URL('http://www.python.org')) self.assertIs(conn._protocol, proto) self.assertIs(conn.transport, proto.transport) ClientRequestMock.assert_called_with( 'GET', URL('http://proxy.example.com'), auth=None, fingerprint=None, headers={'Host': 'www.python.org', 'Foo': 'Bar'}, loop=self.loop, ssl_context=None, verify_ssl=None) @mock.patch('aiohttp.connector.ClientRequest', **clientrequest_mock_attrs) def test_connect_req_verify_ssl_true(self, ClientRequestMock): req = ClientRequest( 'GET', URL('https://www.python.org'), proxy=URL('http://proxy.example.com'), loop=self.loop, verify_ssl=True, ) proto = mock.Mock() connector = aiohttp.TCPConnector(loop=self.loop) connector._create_proxy_connection = mock.MagicMock( side_effect=connector._create_proxy_connection) connector._create_direct_connection = mock.MagicMock( side_effect=connector._create_direct_connection) connector._resolve_host = make_mocked_coro([mock.MagicMock()]) self.loop.create_connection = make_mocked_coro( (proto.transport, proto)) self.loop.run_until_complete(connector.connect(req)) connector._create_proxy_connection.assert_called_with(req) ((proxy_req,), _) = connector._create_direct_connection.call_args proxy_req.send.assert_called_with(mock.ANY) @mock.patch('aiohttp.connector.ClientRequest', **clientrequest_mock_attrs) def test_connect_req_verify_ssl_false(self, ClientRequestMock): req = ClientRequest( 'GET', URL('https://www.python.org'), proxy=URL('http://proxy.example.com'), loop=self.loop, verify_ssl=False, ) proto = mock.Mock() connector = aiohttp.TCPConnector(loop=self.loop) connector._create_proxy_connection = mock.MagicMock( side_effect=connector._create_proxy_connection) connector._create_direct_connection = mock.MagicMock( side_effect=connector._create_direct_connection) connector._resolve_host = make_mocked_coro([mock.MagicMock()]) self.loop.create_connection = make_mocked_coro( (proto.transport, proto)) self.loop.run_until_complete(connector.connect(req)) connector._create_proxy_connection.assert_called_with(req) ((proxy_req,), _) = connector._create_direct_connection.call_args proxy_req.send.assert_called_with(mock.ANY) @mock.patch('aiohttp.connector.ClientRequest', **clientrequest_mock_attrs) def test_connect_req_fingerprint_ssl_context(self, ClientRequestMock): ssl_context = mock.Mock() attrs = { 'return_value.ssl_context': ssl_context, } ClientRequestMock.configure_mock(**attrs) req = ClientRequest( 'GET', URL('https://www.python.org'), proxy=URL('http://proxy.example.com'), loop=self.loop, verify_ssl=True, fingerprint=self.fingerprint, ssl_context=ssl_context, ) proto = mock.Mock() connector = aiohttp.TCPConnector(loop=self.loop) connector._create_proxy_connection = mock.MagicMock( side_effect=connector._create_proxy_connection) connector._create_direct_connection = mock.MagicMock( side_effect=connector._create_direct_connection) connector._resolve_host = make_mocked_coro([mock.MagicMock()]) transport_attrs = { 'get_extra_info.return_value.getpeercert.return_value': b"foo" } transport = mock.Mock(**transport_attrs) self.loop.create_connection = make_mocked_coro( (transport, proto)) self.loop.run_until_complete(connector.connect(req)) connector._create_proxy_connection.assert_called_with(req) ((proxy_req,), _) = connector._create_direct_connection.call_args self.assertTrue(proxy_req.verify_ssl) self.assertEqual(proxy_req.fingerprint, req.fingerprint) self.assertIs(proxy_req.ssl_context, req.ssl_context) def test_proxy_auth(self): with self.assertRaises(ValueError) as ctx: ClientRequest( 'GET', URL('http://python.org'), proxy=URL('http://proxy.example.com'), proxy_auth=('user', 'pass'), loop=mock.Mock()) self.assertEqual( ctx.exception.args[0], "proxy_auth must be None or BasicAuth() tuple", ) @mock.patch('aiohttp.client_reqrep.PayloadWriter') def _test_connect_request_with_unicode_host(self, Request_mock): loop = mock.Mock() request = ClientRequest("CONNECT", URL("http://éé.com/"), loop=loop) request.response_class = mock.Mock() request.write_bytes = mock.Mock() request.write_bytes.return_value = asyncio.Future(loop=loop) request.write_bytes.return_value.set_result(None) request.send(mock.Mock()) Request_mock.assert_called_with(mock.ANY, mock.ANY, "xn--9caa.com:80", mock.ANY, loop=loop) def test_proxy_connection_error(self): connector = aiohttp.TCPConnector(loop=self.loop) connector._resolve_host = make_mocked_coro( raise_exception=OSError('dont take it serious')) req = ClientRequest( 'GET', URL('http://www.python.org'), proxy=URL('http://proxy.example.com'), loop=self.loop, ) expected_headers = dict(req.headers) with self.assertRaises(aiohttp.ClientConnectorError): self.loop.run_until_complete(connector.connect(req)) self.assertEqual(req.url.path, '/') self.assertEqual(dict(req.headers), expected_headers) @mock.patch('aiohttp.connector.ClientRequest') def test_auth(self, ClientRequestMock): proxy_req = ClientRequest( 'GET', URL('http://proxy.example.com'), auth=aiohttp.helpers.BasicAuth('user', 'pass'), loop=self.loop ) ClientRequestMock.return_value = proxy_req self.assertIn('AUTHORIZATION', proxy_req.headers) self.assertNotIn('PROXY-AUTHORIZATION', proxy_req.headers) connector = aiohttp.TCPConnector(loop=self.loop) connector._resolve_host = make_mocked_coro([mock.MagicMock()]) tr, proto = mock.Mock(), mock.Mock() self.loop.create_connection = make_mocked_coro((tr, proto)) req = ClientRequest( 'GET', URL('http://www.python.org'), proxy=URL('http://proxy.example.com'), proxy_auth=aiohttp.helpers.BasicAuth('user', 'pass'), loop=self.loop, ) self.assertNotIn('AUTHORIZATION', req.headers) self.assertNotIn('PROXY-AUTHORIZATION', req.headers) conn = self.loop.run_until_complete(connector.connect(req)) self.assertEqual(req.url, URL('http://www.python.org')) self.assertNotIn('AUTHORIZATION', req.headers) self.assertIn('PROXY-AUTHORIZATION', req.headers) self.assertNotIn('AUTHORIZATION', proxy_req.headers) self.assertNotIn('PROXY-AUTHORIZATION', proxy_req.headers) ClientRequestMock.assert_called_with( 'GET', URL('http://proxy.example.com'), auth=aiohttp.helpers.BasicAuth('user', 'pass'), loop=mock.ANY, headers=mock.ANY, fingerprint=None, ssl_context=None, verify_ssl=None) conn.close() def test_auth_utf8(self): proxy_req = ClientRequest( 'GET', URL('http://proxy.example.com'), auth=aiohttp.helpers.BasicAuth('юзер', 'пасс', 'utf-8'), loop=self.loop) self.assertIn('AUTHORIZATION', proxy_req.headers) @mock.patch('aiohttp.connector.ClientRequest') def test_auth_from_url(self, ClientRequestMock): proxy_req = ClientRequest('GET', URL('http://user:pass@proxy.example.com'), loop=self.loop) ClientRequestMock.return_value = proxy_req self.assertIn('AUTHORIZATION', proxy_req.headers) self.assertNotIn('PROXY-AUTHORIZATION', proxy_req.headers) connector = aiohttp.TCPConnector(loop=self.loop) connector._resolve_host = make_mocked_coro([mock.MagicMock()]) tr, proto = mock.Mock(), mock.Mock() self.loop.create_connection = make_mocked_coro((tr, proto)) req = ClientRequest( 'GET', URL('http://www.python.org'), proxy=URL('http://user:pass@proxy.example.com'), loop=self.loop, ) self.assertNotIn('AUTHORIZATION', req.headers) self.assertNotIn('PROXY-AUTHORIZATION', req.headers) conn = self.loop.run_until_complete(connector.connect(req)) self.assertEqual(req.url, URL('http://www.python.org')) self.assertNotIn('AUTHORIZATION', req.headers) self.assertIn('PROXY-AUTHORIZATION', req.headers) self.assertNotIn('AUTHORIZATION', proxy_req.headers) self.assertNotIn('PROXY-AUTHORIZATION', proxy_req.headers) ClientRequestMock.assert_called_with( 'GET', URL('http://user:pass@proxy.example.com'), auth=None, loop=mock.ANY, headers=mock.ANY, fingerprint=None, ssl_context=None, verify_ssl=None) conn.close() @mock.patch('aiohttp.connector.ClientRequest') def test_auth__not_modifying_request(self, ClientRequestMock): proxy_req = ClientRequest('GET', URL('http://user:pass@proxy.example.com'), loop=self.loop) ClientRequestMock.return_value = proxy_req proxy_req_headers = dict(proxy_req.headers) connector = aiohttp.TCPConnector(loop=self.loop) connector._resolve_host = make_mocked_coro( raise_exception=OSError('nothing personal')) req = ClientRequest( 'GET', URL('http://www.python.org'), proxy=URL('http://user:pass@proxy.example.com'), loop=self.loop, ) req_headers = dict(req.headers) with self.assertRaises(aiohttp.ClientConnectorError): self.loop.run_until_complete(connector.connect(req)) self.assertEqual(req.headers, req_headers) self.assertEqual(req.url.path, '/') self.assertEqual(proxy_req.headers, proxy_req_headers) @mock.patch('aiohttp.connector.ClientRequest') def test_https_connect(self, ClientRequestMock): proxy_req = ClientRequest('GET', URL('http://proxy.example.com'), loop=self.loop) ClientRequestMock.return_value = proxy_req proxy_resp = ClientResponse('get', URL('http://proxy.example.com')) proxy_resp._loop = self.loop proxy_req.send = send_mock = mock.Mock() send_mock.return_value = proxy_resp proxy_resp.start = make_mocked_coro(mock.Mock(status=200)) connector = aiohttp.TCPConnector(loop=self.loop) connector._resolve_host = make_mocked_coro( [{'hostname': 'hostname', 'host': '127.0.0.1', 'port': 80, 'family': socket.AF_INET, 'proto': 0, 'flags': 0}]) tr, proto = mock.Mock(), mock.Mock() self.loop.create_connection = make_mocked_coro((tr, proto)) req = ClientRequest( 'GET', URL('https://www.python.org'), proxy=URL('http://proxy.example.com'), loop=self.loop, ) self.loop.run_until_complete(connector._create_connection(req)) self.assertEqual(req.url.path, '/') self.assertEqual(proxy_req.method, 'CONNECT') self.assertEqual(proxy_req.url, URL('https://www.python.org')) tr.close.assert_called_once_with() tr.get_extra_info.assert_called_with('socket', default=None) self.loop.run_until_complete(proxy_req.close()) proxy_resp.close() self.loop.run_until_complete(req.close()) @mock.patch('aiohttp.connector.ClientRequest') def test_https_connect_runtime_error(self, ClientRequestMock): proxy_req = ClientRequest('GET', URL('http://proxy.example.com'), loop=self.loop) ClientRequestMock.return_value = proxy_req proxy_resp = ClientResponse('get', URL('http://proxy.example.com')) proxy_resp._loop = self.loop proxy_req.send = send_mock = mock.Mock() send_mock.return_value = proxy_resp proxy_resp.start = make_mocked_coro(mock.Mock(status=200)) connector = aiohttp.TCPConnector(loop=self.loop) connector._resolve_host = make_mocked_coro( [{'hostname': 'hostname', 'host': '127.0.0.1', 'port': 80, 'family': socket.AF_INET, 'proto': 0, 'flags': 0}]) tr, proto = mock.Mock(), mock.Mock() tr.get_extra_info.return_value = None self.loop.create_connection = make_mocked_coro((tr, proto)) req = ClientRequest( 'GET', URL('https://www.python.org'), proxy=URL('http://proxy.example.com'), loop=self.loop, ) with self.assertRaisesRegex( RuntimeError, "Transport does not expose socket instance"): self.loop.run_until_complete(connector._create_connection(req)) self.loop.run_until_complete(proxy_req.close()) proxy_resp.close() self.loop.run_until_complete(req.close()) @mock.patch('aiohttp.connector.ClientRequest') def test_https_connect_http_proxy_error(self, ClientRequestMock): proxy_req = ClientRequest('GET', URL('http://proxy.example.com'), loop=self.loop) ClientRequestMock.return_value = proxy_req proxy_resp = ClientResponse('get', URL('http://proxy.example.com')) proxy_resp._loop = self.loop proxy_req.send = send_mock = mock.Mock() send_mock.return_value = proxy_resp proxy_resp.start = make_mocked_coro( mock.Mock(status=400, reason='bad request')) connector = aiohttp.TCPConnector(loop=self.loop) connector._resolve_host = make_mocked_coro( [{'hostname': 'hostname', 'host': '127.0.0.1', 'port': 80, 'family': socket.AF_INET, 'proto': 0, 'flags': 0}]) tr, proto = mock.Mock(), mock.Mock() tr.get_extra_info.return_value = None self.loop.create_connection = make_mocked_coro((tr, proto)) req = ClientRequest( 'GET', URL('https://www.python.org'), proxy=URL('http://proxy.example.com'), loop=self.loop, ) with self.assertRaisesRegex( aiohttp.ClientHttpProxyError, "400, message='bad request'"): self.loop.run_until_complete(connector._create_connection(req)) self.loop.run_until_complete(proxy_req.close()) proxy_resp.close() self.loop.run_until_complete(req.close()) @mock.patch('aiohttp.connector.ClientRequest') def test_https_connect_resp_start_error(self, ClientRequestMock): proxy_req = ClientRequest('GET', URL('http://proxy.example.com'), loop=self.loop) ClientRequestMock.return_value = proxy_req proxy_resp = ClientResponse('get', URL('http://proxy.example.com')) proxy_resp._loop = self.loop proxy_req.send = send_mock = mock.Mock() send_mock.return_value = proxy_resp proxy_resp.start = make_mocked_coro( raise_exception=OSError("error message")) connector = aiohttp.TCPConnector(loop=self.loop) connector._resolve_host = make_mocked_coro( [{'hostname': 'hostname', 'host': '127.0.0.1', 'port': 80, 'family': socket.AF_INET, 'proto': 0, 'flags': 0}]) tr, proto = mock.Mock(), mock.Mock() tr.get_extra_info.return_value = None self.loop.create_connection = make_mocked_coro((tr, proto)) req = ClientRequest( 'GET', URL('https://www.python.org'), proxy=URL('http://proxy.example.com'), loop=self.loop, ) with self.assertRaisesRegex(OSError, "error message"): self.loop.run_until_complete(connector._create_connection(req)) @mock.patch('aiohttp.connector.ClientRequest') def test_request_port(self, ClientRequestMock): proxy_req = ClientRequest('GET', URL('http://proxy.example.com'), loop=self.loop) ClientRequestMock.return_value = proxy_req connector = aiohttp.TCPConnector(loop=self.loop) connector._resolve_host = make_mocked_coro( [{'hostname': 'hostname', 'host': '127.0.0.1', 'port': 80, 'family': socket.AF_INET, 'proto': 0, 'flags': 0}]) tr, proto = mock.Mock(), mock.Mock() tr.get_extra_info.return_value = None self.loop.create_connection = make_mocked_coro((tr, proto)) req = ClientRequest( 'GET', URL('http://localhost:1234/path'), proxy=URL('http://proxy.example.com'), loop=self.loop, ) self.loop.run_until_complete(connector._create_connection(req)) self.assertEqual(req.url, URL('http://localhost:1234/path')) def test_proxy_auth_property(self): req = aiohttp.ClientRequest( 'GET', URL('http://localhost:1234/path'), proxy=URL('http://proxy.example.com'), proxy_auth=aiohttp.helpers.BasicAuth('user', 'pass'), loop=self.loop) self.assertEqual(('user', 'pass', 'latin1'), req.proxy_auth) def test_proxy_auth_property_default(self): req = aiohttp.ClientRequest( 'GET', URL('http://localhost:1234/path'), proxy=URL('http://proxy.example.com'), loop=self.loop) self.assertIsNone(req.proxy_auth) @mock.patch('aiohttp.connector.ClientRequest') def test_https_connect_pass_ssl_context(self, ClientRequestMock): proxy_req = ClientRequest('GET', URL('http://proxy.example.com'), loop=self.loop) ClientRequestMock.return_value = proxy_req proxy_resp = ClientResponse('get', URL('http://proxy.example.com')) proxy_resp._loop = self.loop proxy_req.send = send_mock = mock.Mock() send_mock.return_value = proxy_resp proxy_resp.start = make_mocked_coro(mock.Mock(status=200)) connector = aiohttp.TCPConnector(loop=self.loop) connector._resolve_host = make_mocked_coro( [{'hostname': 'hostname', 'host': '127.0.0.1', 'port': 80, 'family': socket.AF_INET, 'proto': 0, 'flags': 0}]) tr, proto = mock.Mock(), mock.Mock() self.loop.create_connection = make_mocked_coro((tr, proto)) req = ClientRequest( 'GET', URL('https://www.python.org'), proxy=URL('http://proxy.example.com'), loop=self.loop, ) self.loop.run_until_complete(connector._create_connection(req)) self.loop.create_connection.assert_called_with( mock.ANY, ssl=connector.ssl_context, sock=mock.ANY, server_hostname='www.python.org') self.assertEqual(req.url.path, '/') self.assertEqual(proxy_req.method, 'CONNECT') self.assertEqual(proxy_req.url, URL('https://www.python.org')) tr.close.assert_called_once_with() tr.get_extra_info.assert_called_with('socket', default=None) self.loop.run_until_complete(proxy_req.close()) proxy_resp.close() self.loop.run_until_complete(req.close()) @mock.patch('aiohttp.connector.ClientRequest') def test_https_auth(self, ClientRequestMock): proxy_req = ClientRequest('GET', URL('http://proxy.example.com'), auth=aiohttp.helpers.BasicAuth('user', 'pass'), loop=self.loop) ClientRequestMock.return_value = proxy_req proxy_resp = ClientResponse('get', URL('http://proxy.example.com')) proxy_resp._loop = self.loop proxy_req.send = send_mock = mock.Mock() send_mock.return_value = proxy_resp proxy_resp.start = make_mocked_coro(mock.Mock(status=200)) connector = aiohttp.TCPConnector(loop=self.loop) connector._resolve_host = make_mocked_coro( [{'hostname': 'hostname', 'host': '127.0.0.1', 'port': 80, 'family': socket.AF_INET, 'proto': 0, 'flags': 0}]) tr, proto = mock.Mock(), mock.Mock() self.loop.create_connection = make_mocked_coro((tr, proto)) self.assertIn('AUTHORIZATION', proxy_req.headers) self.assertNotIn('PROXY-AUTHORIZATION', proxy_req.headers) req = ClientRequest( 'GET', URL('https://www.python.org'), proxy=URL('http://proxy.example.com'), loop=self.loop ) self.assertNotIn('AUTHORIZATION', req.headers) self.assertNotIn('PROXY-AUTHORIZATION', req.headers) self.loop.run_until_complete(connector._create_connection(req)) self.assertEqual(req.url.path, '/') self.assertNotIn('AUTHORIZATION', req.headers) self.assertNotIn('PROXY-AUTHORIZATION', req.headers) self.assertNotIn('AUTHORIZATION', proxy_req.headers) self.assertIn('PROXY-AUTHORIZATION', proxy_req.headers) connector._resolve_host.assert_called_with('proxy.example.com', 80) self.loop.run_until_complete(proxy_req.close()) proxy_resp.close() self.loop.run_until_complete(req.close())
playpauseandstop/aiohttp
tests/test_proxy.py
Python
apache-2.0
24,979
# -*- coding: utf-8 -*- # Generated by Django 1.9.8 on 2017-09-10 19:10 from __future__ import unicode_literals import datetime from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0002_auto_20170909_1749'), ] operations = [ migrations.AlterField( model_name='emailverifyrecord', name='send_time', field=models.DateTimeField(default=datetime.datetime.now, verbose_name='\u53d1\u9001\u65f6\u95f4'), ), migrations.AlterField( model_name='emailverifyrecord', name='send_type', field=models.CharField(choices=[('register', '\u6ce8\u518c'), ('forget', '\u627e\u56de\u5bc6\u7801')], max_length=10, verbose_name='\u9a8c\u8bc1\u7801\u7c7b\u578b'), ), ]
LennonChin/Django-Practices
MxOnline/apps/users/migrations/0003_auto_20170910_1910.py
Python
apache-2.0
833
#!/usr/bin/env python import sys, os, errno from subprocess import Popen, PIPE f = open('pretrain.scp','w') with open('codetrain.scp','r') as codetrain_file: for codetrain_line in codetrain_file: wav_file, mfcc_file = codetrain_line.split() f.write("{0}\n".format(mfcc_file)) f.close()
techiaith/seilwaith
srdk/htk/make_pretrain_scp.py
Python
apache-2.0
295
from functools import wraps from os import getenv from sqlalchemy.orm import sessionmaker from cafe.abc.compat import abstractclassmethod from cafe.patterns.context import SessionManager class SQLAlchemySessionManager(SessionManager): ENGINE = None @classmethod def default(cls): return cls.instance() @classmethod def instance(cls, engine=None, **kwargs): """ :type engine: sqlalchemy.engine.Engine or None :rtype: cafe.database.sqlalchemy.session.SQLAlchemySessionManager """ return cls(cls.factory(engine=engine, **kwargs)) @staticmethod def _determine_echo(): """ SQLAlchemy echo level, using DATABASE_ECHO environment variable Possible values: True, False, 'debug' :return: True | False | basestring """ echo = getenv('DATABASE_ECHO', 'false') if echo.lower() == 'true': return True if echo.lower() == 'debug': return 'debug' return False @classmethod def factory(cls, engine=None, **kwargs): if engine is None: engine = cls.engine() engine.echo = cls._determine_echo() return sessionmaker(bind=engine, **kwargs) @classmethod def engine(cls, *args, **kwargs): if cls.ENGINE is None: cls.ENGINE = cls.get_engine(*args, **kwargs) return cls.ENGINE @abstractclassmethod def get_engine(cls, *args, **kwargs): """ Default engine for this session manager. :rtype: sqlalchemy.engine.Engine """ raise NotImplementedError def __enter__(self): """ :rtype: sqlalchemy.orm.session.Session """ return super(SQLAlchemySessionManager, self).__enter__() def __exit__(self, exc_type, exc_val, exc_tb): rvalue = True if exc_type is not None: self.session.rollback() rvalue = False else: self.session.commit() super(SQLAlchemySessionManager, self).__exit__(exc_type, exc_val, exc_tb) return rvalue def session_query_wrapper_generator(session_manager=None, engine=None, context=False): """ Decorator which wraps a function in a SQLAlchemy session :param context: execute the wrapped function inside a session context :type context: bool :param session_manager: SessionManager to use :type session_manager: cafe.database.sqlalchemy.session.SQLAlchemySessionManager :param engine: Engine to use to connect to Mimir :type engine: sqlalchemy.engine.Engine """ session_keyword_arg = 'session' def session_decorator(function): @wraps(function) def wrapper(*args, **kwargs): execute_in_context = context if session_keyword_arg not in kwargs or kwargs[session_keyword_arg] is None: if session_manager is None: raise TypeError( 'sessioned query functions should be called with an SQLAlchemySessionManager ' 'or Session instance when a default session manager is not configured.') kwargs[session_keyword_arg] = session_manager.instance(engine=engine) execute_in_context = True instance = kwargs.pop(session_keyword_arg) if isinstance(instance, SQLAlchemySessionManager): instance = instance.instance(engine=engine) execute_in_context = True if execute_in_context: with instance as session: return function(*args, session=session, **kwargs) else: return function(*args, session=instance, **kwargs) return wrapper return session_decorator session_query = session_query_wrapper_generator()
betsybookwyrm/python-cafe-sqlalchemy
cafe/database/sqlalchemy/session.py
Python
apache-2.0
3,849
def isPanlidrome(num): num = str(num) return num[::-1] == num def addReverse(num): rev = int(str(num)[::-1]) return num + rev def isLychrel(num): counter = 50 while counter > 0: num = addReverse(num) if isPanlidrome(num): return False counter -= 1 return True lst = [x for x in range(1, 10000) if isLychrel(x)] print len(lst) print 349, 349 in lst, '\n', 196, 196 in lst, '\n', 4994, 4994 in lst
jialing3/corner_cases
Relue/Eu55.py
Python
apache-2.0
452
#!/usr/bin/env python3 from pycaw.pycaw import AudioUtilities, ISimpleAudioVolume from pydub import AudioSegment from pydub.playback import play # https://stackoverflow.com/a/43727046 def main(): song = AudioSegment.from_mp3("beep.mp3") global sess, vol play(song) sessions = AudioUtilities.GetAllSessions() for session in sessions: # if session.Process: # print(session.Process.name()) if session.Process and session.Process.name() == "python.exe": sess = session vol = sess._ctl.QueryInterface(ISimpleAudioVolume) print("volume.GetMasterVolume(): %s" % vol.GetMasterVolume()) vol.SetMasterVolume(0, None) play(song) vol.SetMasterVolume(1, None) play(song) if __name__ == "__main__": main()
sunjerry019/photonLauncher
micron/tests/pycaw.test.py
Python
apache-2.0
809
"""Jinja filters to streamline openstack versions for numbers and names""" def _calc_version_from_release(release): GRIZZLY = ord("G".lower()) GRIZZLY_NUMERIC = 3 return GRIZZLY_NUMERIC - GRIZZLY + ord(release[0].lower()) def _discover_version(value): try: return int(value), "OSP" except ValueError: return _calc_version_from_release(value), "RDO" def openstack_release(value): """Convert release name or number to a numeric value {{ 7 | openstack_release }} -> 7 {{ "8" | openstack_release }} -> 8 {{ "Liberty" | openstack_release }} -> 8 >>> openstack_release(7) 7 >>> openstack_release("7") 7 >>> openstack_release("Liberty") 8 """ return _discover_version(value)[0] def openstack_distribution(value): """Discover distribution from release name/number {{ 7 | openstack_distribution }} -> OSP {{ "8" | openstack_distribution }} -> OSP {{ "Liberty" | openstack_distribution }} -> RDO >>> openstack_distribution(7) 'OSP' >>> openstack_distribution("7") 'OSP' >>> openstack_distribution("Liberty") 'RDO' """ return _discover_version(value)[1] class FilterModule(object): def filters(self): return { 'openstack_distribution': openstack_distribution, 'openstack_release': openstack_release, }
okolisny/InfraRed
infrared/common/filter_plugins/openstack_release.py
Python
apache-2.0
1,408
#!/usr/bin/env python import argparse from watchmaker import Prepare if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--noreboot', dest='noreboot', action='store_true', help='No reboot after provisioning.') parser.add_argument('--sourceiss3bucket', dest='sourceiss3bucket', action='store_true', help='Use S3 buckets instead of internet locations for files.') parser.add_argument('--config', dest='config', default='config.yaml', help='Path or URL to the config.yaml file.') parser.add_argument('--logger', dest='logger', action='store_true', default=False, help='Use stream logger for debugging.') parser.add_argument('--log-path', dest='log_path', default=None, help='Path to the logfile for stream logging.') parser.add_argument('--saltstates', dest='saltstates', default=None, help='Define the saltstates to use. Must be None, Highstate, or comma-separated-string') if parser.parse_args().saltstates: if parser.parse_args().saltstates.lower() not in ['None'.lower(), 'Highstate'.lower(), 'comma-separated-string'.lower()]: parser.print_help() systemprep = Prepare(parser.parse_args()) systemprep.install_system() def append_file(build, file_paths): # The version line must have the form # __version__ = 'ver' pattern = r"^(__version__ = ['\"])([^'\"]*)(['\"])" repl = r"\g<1>\g<2>.dev{0}\g<3>".format(build) version_file = os.path.join(PROJECT_ROOT, *file_paths) print( 'Updating version in version_file "{0}" with build "{1}"' .format(version_file, build) ) replace(version_file, pattern, repl, flags=re.M) def main(args): skip = args.skip build = args.build file_paths = args.file_paths if skip: print( 'Not updating version for this build, `skip` set to "{0}"' .format(skip) ) else: append_file(build, file_paths)
MarionTheBull/watchmaker
scripts/Watchmaker.py
Python
apache-2.0
2,199
from django.db import models from django.utils.translation import ugettext_lazy as _ from future.utils import python_2_unicode_compatible from fluent_contents.models import ContentItem, ContentItemManager @python_2_unicode_compatible class DisqusCommentsAreaItem(ContentItem): allow_new = models.BooleanField(_("Allow posting new comments"), default=True) objects = ContentItemManager() # Avoid Django 1.10 migrations class Meta: verbose_name = _("Disqus comments area") verbose_name_plural = _("Disqus comments areas") def __str__(self): return u""
edoburu/django-fluent-contents
fluent_contents/plugins/disquswidgets/models.py
Python
apache-2.0
597
#!/usr/bin/env python # -*- coding: utf-8 -*- from solution import Solution nums = [10, 9, 2, 5, 3, 7, 101, 18] nums = [10,9,2,5,3,4] sol = Solution() res = sol.lengthOfLIS(nums) print(res)
zhlinh/leetcode
0300.Longest Increasing Subsequence/test.py
Python
apache-2.0
192
from django.contrib import admin from django.contrib.auth.models import User from django.contrib.auth.admin import UserAdmin from profiles.models import UserProfile # BEGIN: Merge User and UserProfile in the admin class UserProfileInline(admin.StackedInline): model = UserProfile max_num = 1 can_delete = False class UserProfileAdmin(UserAdmin): inlines = [ UserProfileInline, ] admin.site.unregister(User) admin.site.register(User, UserProfileAdmin) # END
cpatrick/comic-django
django/profiles/admin.py
Python
apache-2.0
475
# Copyright 2014 NEC Corporation. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from heatclient.common import template_utils from heatclient import exc from oslo_config import cfg from oslo_log import log as logging from oslo_service import loopingcall from magnum.common import clients from magnum.common import exception from magnum.common import short_id from magnum.conductor import scale_manager from magnum.conductor.template_definition import TemplateDefinition as TDef from magnum.conductor import utils as conductor_utils from magnum.i18n import _ from magnum.i18n import _LE from magnum.i18n import _LI from magnum import objects from magnum.objects.bay import Status as bay_status bay_heat_opts = [ cfg.IntOpt('max_attempts', default=2000, help=('Number of attempts to query the Heat stack for ' 'finding out the status of the created stack and ' 'getting template outputs. This value is ignored ' 'during bay creation if timeout is set as the poll ' 'will continue until bay creation either ends ' 'or times out.')), cfg.IntOpt('wait_interval', default=1, help=('Sleep time interval between two attempts of querying ' 'the Heat stack. This interval is in seconds.')), cfg.IntOpt('bay_create_timeout', default=None, help=('The length of time to let bay creation continue. This ' 'interval is in minutes. The default is no timeout.')) ] cfg.CONF.register_opts(bay_heat_opts, group='bay_heat') LOG = logging.getLogger(__name__) def _extract_template_definition(context, bay, scale_manager=None): baymodel = conductor_utils.retrieve_baymodel(context, bay) cluster_distro = baymodel.cluster_distro cluster_coe = baymodel.coe definition = TDef.get_template_definition('vm', cluster_distro, cluster_coe) return definition.extract_definition(context, baymodel, bay, scale_manager=scale_manager) def _create_stack(context, osc, bay, bay_create_timeout): template_path, heat_params = _extract_template_definition(context, bay) tpl_files, template = template_utils.get_template_contents(template_path) # Make sure no duplicate stack name stack_name = '%s-%s' % (bay.name, short_id.generate_id()) if bay_create_timeout: heat_timeout = bay_create_timeout elif bay_create_timeout == 0: heat_timeout = None else: # no bay_create_timeout value was passed in to the request # so falling back on configuration file value heat_timeout = cfg.CONF.bay_heat.bay_create_timeout fields = { 'stack_name': stack_name, 'parameters': heat_params, 'template': template, 'files': dict(list(tpl_files.items())), 'timeout_mins': heat_timeout } created_stack = osc.heat().stacks.create(**fields) return created_stack def _update_stack(context, osc, bay, scale_manager=None): template_path, heat_params = _extract_template_definition( context, bay, scale_manager=scale_manager) tpl_files, template = template_utils.get_template_contents(template_path) fields = { 'parameters': heat_params, 'template': template, 'files': dict(list(tpl_files.items())) } return osc.heat().stacks.update(bay.stack_id, **fields) def _update_stack_outputs(context, stack, bay): baymodel = conductor_utils.retrieve_baymodel(context, bay) cluster_distro = baymodel.cluster_distro cluster_coe = baymodel.coe definition = TDef.get_template_definition('vm', cluster_distro, cluster_coe) return definition.update_outputs(stack, bay) class Handler(object): _update_allowed_properties = set(['node_count']) def __init__(self): super(Handler, self).__init__() # Bay Operations def bay_create(self, context, bay, bay_create_timeout): LOG.debug('bay_heat bay_create') osc = clients.OpenStackClients(context) try: created_stack = _create_stack(context, osc, bay, bay_create_timeout) except exc.HTTPBadRequest as e: raise exception.InvalidParameterValue(message=str(e)) except Exception: raise bay.stack_id = created_stack['stack']['id'] bay.create() self._poll_and_check(osc, bay) return bay def _validate_properties(self, delta): update_disallowed_properties = delta - self._update_allowed_properties if update_disallowed_properties: err = (_("cannot change bay property(ies) %s.") % ", ".join(update_disallowed_properties)) raise exception.InvalidParameterValue(err=err) def bay_update(self, context, bay): LOG.debug('bay_heat bay_update') osc = clients.OpenStackClients(context) stack = osc.heat().stacks.get(bay.stack_id) if (stack.stack_status != bay_status.CREATE_COMPLETE and stack.stack_status != bay_status.UPDATE_COMPLETE): operation = _('Updating a bay when stack status is ' '"%s"') % stack.stack_status raise exception.NotSupported(operation=operation) delta = bay.obj_what_changed() if not delta: return bay self._validate_properties(delta) manager = scale_manager.ScaleManager(context, osc, bay) _update_stack(context, osc, bay, manager) self._poll_and_check(osc, bay) return bay def bay_delete(self, context, uuid): LOG.debug('bay_heat bay_delete') osc = clients.OpenStackClients(context) bay = objects.Bay.get_by_uuid(context, uuid) stack_id = bay.stack_id # NOTE(sdake): This will execute a stack_delete operation. This will # Ignore HTTPNotFound exceptions (stack wasn't present). In the case # that Heat couldn't find the stack representing the bay, likely a user # has deleted the stack outside the context of Magnum. Therefore the # contents of the bay are forever lost. # # If the exception is unhandled, the original exception will be raised. try: osc.heat().stacks.delete(stack_id) except exc.HTTPNotFound: LOG.info(_LI('The stack %s was not be found during bay' ' deletion.') % stack_id) try: bay.destroy() except exception.BayNotFound: LOG.info(_LI('The bay %s has been deleted by others.') % uuid) return None except Exception: raise self._poll_and_check(osc, bay) return None def _poll_and_check(self, osc, bay): poller = HeatPoller(osc, bay) lc = loopingcall.FixedIntervalLoopingCall(f=poller.poll_and_check) lc.start(cfg.CONF.bay_heat.wait_interval, True) class HeatPoller(object): def __init__(self, openstack_client, bay): self.openstack_client = openstack_client self.context = self.openstack_client.context self.bay = bay self.attempts = 0 def poll_and_check(self): # TODO(yuanying): temporary implementation to update api_address, # node_addresses and bay status stack = self.openstack_client.heat().stacks.get(self.bay.stack_id) self.attempts += 1 # poll_and_check is detached and polling long time to check status, # so another user/client can call delete bay/stack. if stack.stack_status == bay_status.DELETE_COMPLETE: LOG.info(_LI('Bay has been deleted, stack_id: %s') % self.bay.stack_id) try: self.bay.destroy() except exception.BayNotFound: LOG.info(_LI('The bay %s has been deleted by others.') % self.bay.uuid) raise loopingcall.LoopingCallDone() if (stack.stack_status in [bay_status.CREATE_COMPLETE, bay_status.UPDATE_COMPLETE]): _update_stack_outputs(self.context, stack, self.bay) self.bay.status = stack.stack_status self.bay.status_reason = stack.stack_status_reason self.bay.node_count = stack.parameters['number_of_minions'] self.bay.save() raise loopingcall.LoopingCallDone() elif stack.stack_status != self.bay.status: self.bay.status = stack.stack_status self.bay.status_reason = stack.stack_status_reason self.bay.node_count = stack.parameters['number_of_minions'] self.bay.save() if stack.stack_status == bay_status.CREATE_FAILED: LOG.error(_LE('Unable to create bay, stack_id: %(stack_id)s, ' 'reason: %(reason)s') % {'stack_id': self.bay.stack_id, 'reason': stack.stack_status_reason}) raise loopingcall.LoopingCallDone() if stack.stack_status == bay_status.DELETE_FAILED: LOG.error(_LE('Unable to delete bay, stack_id: %(stack_id)s, ' 'reason: %(reason)s') % {'stack_id': self.bay.stack_id, 'reason': stack.stack_status_reason}) raise loopingcall.LoopingCallDone() if stack.stack_status == bay_status.UPDATE_FAILED: LOG.error(_LE('Unable to update bay, stack_id: %(stack_id)s, ' 'reason: %(reason)s') % {'stack_id': self.bay.stack_id, 'reason': stack.stack_status_reason}) raise loopingcall.LoopingCallDone() # only check max attempts when the stack is being created when # the timeout hasn't been set. If the timeout has been set then # the loop will end when the stack completes or the timeout occurs if stack.stack_status == bay_status.CREATE_IN_PROGRESS: if (stack.timeout_mins is None and self.attempts > cfg.CONF.bay_heat.max_attempts): LOG.error(_LE('Bay check exit after %(attempts)s attempts,' 'stack_id: %(id)s, stack_status: %(status)s') % {'attempts': cfg.CONF.bay_heat.max_attempts, 'id': self.bay.stack_id, 'status': stack.stack_status}) raise loopingcall.LoopingCallDone() else: if self.attempts > cfg.CONF.bay_heat.max_attempts: LOG.error(_LE('Bay check exit after %(attempts)s attempts,' 'stack_id: %(id)s, stack_status: %(status)s') % {'attempts': cfg.CONF.bay_heat.max_attempts, 'id': self.bay.stack_id, 'status': stack.stack_status}) raise loopingcall.LoopingCallDone()
ddepaoli3/magnum
magnum/conductor/handlers/bay_conductor.py
Python
apache-2.0
11,732
#!/usr/bin/python3 def add_common_args(parser): parser.add_argument("-g", "--greenscreen_server", default="http://localhost:4994", help="GreenScreen server:port") parser.add_argument("-a", "--appid", help="Chromecast Greenscreen App ID") parser.add_argument("-c", "--channel", help="GreenScreen channel to set") parser.add_argument( "-l", "--loglevel", default="ERROR", help="Logging level", choices=["ERROR", "WARNING", "INFO", "DEBUG"]) parser.add_argument( "-r", "--tries", type=int, help="Chromecast connection tries. Default is infinite.") parser.add_argument( "-t", "--timeout", type=int, default=30, help="Chromecast socket timeout seconds. Default is 30."); parser.add_argument( "-w", "--retry_wait", type=int, default=5, help="Seconds to wait between Chromecast retries. Default is 5."); return parser
dermotduffy/greenscreen_control
greenscreen_control/common_args.py
Python
apache-2.0
965
s = 'azcbobobegghakl' sub = 'bob' count = 0 for i in range(0, len(s)): if sub in s[i:i+3]: count+=1 print "Number of times bob occurs is: " + str(count)
dpanayotov/CS1314
MITx6.00/pset1e2.py
Python
apache-2.0
166
# Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module for loading Actions for the loaner project.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import inspect import logging import os import pkgutil from loaner.web_app.backend.actions import base_action _DUPLICATE_ACTION_MSG = ( 'Cannot load Action %s: there is already an Action of that name.') _INSTANTIATION_ERROR_MSG = 'Error instantiating class %s in module %s: %s' _CACHED_ACTIONS = None def load_actions(filters=None, log_exceptions=True): """Loads Actions from the actions directory, and instantiates them. Args: filters: list, strings with names of action classes to load. Loader will skip classes not listed. In the absence of this list no filters are applied. log_exceptions: bool, whether to supress exceptions and log their messages instead. Returns: A dictionary of actions, with their names as keys and instaniated Action classes as their values. Raises: AttributeError: if log_exceptions is False and Action classes are missing ACTION_NAME or FRIENDLY_NAME attributes, or the run method. """ global _CACHED_ACTIONS if _CACHED_ACTIONS: return _CACHED_ACTIONS actions = {base_action.ActionType.SYNC: {}, base_action.ActionType.ASYNC: {}} importer = pkgutil.ImpImporter(os.path.abspath( os.path.join(os.path.dirname(__file__), '..', 'actions'))) for module_name, module in importer.iter_modules(): del module # Not used. if module_name.endswith('_test') or module_name.startswith('base_action'): continue try: loaded_module = importer.find_module(module_name).load_module(module_name) except ImportError: logging.info('Error importing module %s', module_name) continue for obj_name, obj in inspect.getmembers(loaded_module): if inspect.isclass(obj) and issubclass(obj, base_action.BaseAction): if filters and obj.ACTION_NAME not in filters: continue # Defaults to async for backward compatibility. action_type = getattr(obj, 'ACTION_TYPE', base_action.ActionType.ASYNC) try: action = obj() except AttributeError as e: error_message = _INSTANTIATION_ERROR_MSG % ( obj_name, module_name, e.message) if log_exceptions: logging.warning(error_message) continue else: raise AttributeError(error_message) if ( action.ACTION_NAME in actions[base_action.ActionType.SYNC] or action.ACTION_NAME in actions[base_action.ActionType.ASYNC]): logging.warning(_DUPLICATE_ACTION_MSG, obj.ACTION_NAME) continue actions[action_type][action.ACTION_NAME] = action _CACHED_ACTIONS = actions return actions
google/loaner
loaner/web_app/backend/lib/action_loader.py
Python
apache-2.0
3,416
# Copyright 2013 Open Cloud Consortium # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ''' HTTP API definitions for compatibility with the Keystone OpenStack API http://api.openstack.org/api-ref.html ''' import datetime import flask import json import keystoneclient import memcache import sqlalchemy import time from flask import Blueprint from keystoneclient.v2_0 import Client as keystone_client from keystoneclient.apiclient.exceptions import AuthorizationFailure from tukey_middleware import utils from tukey_middleware.local_settings import vm_ip_auth as settings from tukey_middleware.auth.token_store import TokenStore from tukey_middleware.local_settings import LOCAL_PORT as LOCAL_PORT rest = Blueprint('keystone', __name__) @rest.after_request def add_mimetype(response): ''' all responses will be application/json ''' response.headers["content-type"] = "application/json" return response def expiration(token_lifetime): '''Returns times stamp of token_lifetime from now ''' date_format = '%Y-%m-%dT%H:%M:%SZ' current = time.time() return str(datetime.datetime.fromtimestamp( current + token_lifetime).strftime(date_format)) def service_catalog_entry(admin_url, region, internal_url, public_url, service_type, name): ''' format an service catalog entry ''' return { "endpoints": [ { "adminURL": admin_url, "region": region, "internalURL": internal_url, "publicURL": public_url } ], "endpoints_links": [], "type": service_type, "name": name} def format_tenant(tenant_name, tenant_id): ''' format an enabled tenant with no description''' return { "enabled": True, "description": None, "name": tenant_name, "id": tenant_id } @rest.route('/tokens', methods=('GET', 'POST')) def token_request(): ''' Intercept a token request and use that to talk to multiple clouds based on values stored in the database. request data format will be: {"auth": {"passwordCredentials": { "password": "tukeyPassword", "username": "method identifier" }}} tukeyPassword is a password shared between the middleware and the portal to prevent anyone from talking to the middleware and impersonating users. method can be shibboleth or openid. identifier is looked up in the tukey auth db which stores users openstack credentials. Those credentials are used to talk to the Keystone service for each cloud. The auth tokens from each keystone request are stored in memcached with one of the tokens used as the key and returned back to Horizon. ''' token_store = TokenStore(memcache.Client(['127.0.0.1:11211'])) logger = utils.get_logger() try: token_id = flask.request.headers["x-auth-token"] token_info = token_store.get(str(token_id)) return json.dumps(token_info["__tukey_internal"]) except KeyError: pass pw_creds = json.loads(flask.request.data)["auth"]["passwordCredentials"] # string equality in Python is probably a side-channel vector if pw_creds["password"] != settings["shared_password"]: return ("Wrong credentials", 401) method, userid = pw_creds["username"].split() user_info_query = ''' select username, password, cloud_name, display_name, auth_url, login_url, instance_keypairs.cloud_id from login join login_enabled on login.id = login_enabled.login_id join login_identifier on login.userid = login_identifier.userid join login_identifier_enabled on login_identifier.id = login_identifier_enabled.login_identifier_id join login_method on login_method.method_id = login_identifier.method_id join cloud on cloud.cloud_id = login.cloud_id left outer join instance_keypairs on instance_keypairs.cloud_id = cloud.cloud_id where login_method.method_name='%(method)s' and LOWER(login_identifier.identifier)=LOWER('%(id)s'); ''' % {"method": method, "id": userid} engine = sqlalchemy.create_engine(settings["auth_db_str"]) with engine.begin() as connection: results = connection.execute(sqlalchemy.text(user_info_query)) roles = [] info_by_cloud = {} tenant = None endpoints = {} for (_username, password, cloud, display_name, auth_url, login_url, instance_keypairs) in results: if auth_url: try: try: ksc = keystone_client(auth_url=auth_url, username=_username, password=password) except keystoneclient.apiclient.exceptions.Unauthorized: # this should be a valid username so let Horizon know logger.info(("Cloud %s Keystone at %s ", "rejected username password: %s %s"), cloud, auth_url, _username, password) # this is probably not the best or clearest, just different flask.abort(403) tenants = [t for t in ksc.tenants.list() if t.enabled] if len(tenants) < 1: logger.info("Cloud %s username: %s has no tenants", cloud, _username) continue for tenant in tenants: if tenant.name == _username: break token_response = ksc.get_raw_token_from_identity_service( auth_url, username=_username, password=password, tenant_name=tenant.name) try: # this should work if keystoneclient version <= 0.6.0 response, raw_token = token_response response_status = response.status_code except ValueError: # this should work if keystoneclient version >= 0.7.0 raw_token = token_response response_status = 200 # handle changes between 0.6.0 and 0.7.0 if "access" not in raw_token: raw_token = {"access": raw_token} if response_status != 200: logger.info(("Cloud %s Keystone at %s ", "rejected username: %s with status code: %s"), cloud, auth_url, _username, response_status) flask.abort(403) # add enpoints for endpoint in raw_token["access"]["serviceCatalog"]: endpoints[endpoint["type"]] = endpoint["name"] token_id = ksc.auth_token user_id = ksc.user_id username = _username raw_token["cloud"] = display_name if instance_keypairs: raw_token["instance_keypairs"] = True info_by_cloud[cloud] = raw_token info_by_cloud["login" + cloud] = login_url roles += raw_token["access"]["user"]["roles"] raw_token["cloud"] = display_name except AuthorizationFailure: logger.info("Keystone failed for %s", cloud) else: info_by_cloud[cloud] = {"username": _username, "cloud": display_name, "instance_keypairs": True if instance_keypairs else False} info_by_cloud["login" + cloud] = login_url if tenant is None: logger.info("Login failed for %s using method %s", userid, method) flask.abort(401) region = "RegionOne" host, port = "localhost", LOCAL_PORT allowed_services = ['compute', 'image', 'volume', 'object-store'] # glance assumes that it is at /v1 so we will give it that #service_paths = {k: K for k in allowed_services} #service_paths["image"] = "v1" services = [("http://%s:%s/%s/%s" % (host, port, service, tenant.id), service, service_name) for service, service_name in endpoints.items() if service in allowed_services] services += [("http://%s:%s/v2.0" % (host, port), "identity", "keystone")] catalog = { "access": { "token": { "expires": expiration(43200), "id": token_id, "tenant": format_tenant(tenant.name, tenant.id) }, "serviceCatalog": [ service_catalog_entry(url, region, url, url, service_type, name) for url, service_type, name in services] + [ service_catalog_entry( "http://%s:%s/services/Admin" % (host, port), region, "http://%s:%s/services/Cloud" % (host, port), "http://%s:%s/services/Cloud" % (host, port), "ec2", "ec2")], "user": { "username": username, "roles_links": [], "id": user_id, "roles": roles, "name": username }}, "path": "", "host": host, "port": port} info_by_cloud["__tukey_internal"] = catalog # TODO: # see what the shortest expiration is in the set of expirations # then set the returned expiration to that and make sure that # the memcache expiration is greater than that but has a value so # that memcached entries don't fill everything up token_store.set(str(token_id), info_by_cloud, 172800) logger.info("Login succeeded for %s using method %s" % (userid, method)) return json.dumps(catalog) @rest.route('/tenants', methods=('GET', 'POST')) def tenant_request(): ''' Request for just the tenant info. This request assumes that /tokens was accessed and created the entry in memcached ''' try: token_id = flask.request.headers["x-auth-token"] except KeyError: flask.abort(401) toks = TokenStore(memcache.Client(['127.0.0.1:11211'])) token_info = toks.get(str(token_id)) tenants = { "tenants_links": [], "tenants": [ token_info["__tukey_internal"]["access"]["token"]["tenant"] ] } return json.dumps(tenants)
LabAdvComp/tukey_middleware
tukey_middleware/api/keystone.py
Python
apache-2.0
10,922
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pytest from tests.providers.google.cloud.utils.gcp_authenticator import GCP_DATAFLOW_KEY from tests.test_utils.gcp_system_helpers import CLOUD_DAG_FOLDER, GoogleSystemTest, provide_gcp_context @pytest.mark.backend("mysql", "postgres") @pytest.mark.credential_file(GCP_DATAFLOW_KEY) class CloudDataflowExampleDagsSystemTest(GoogleSystemTest): @provide_gcp_context(GCP_DATAFLOW_KEY) def test_run_example_dag_function(self): self.run_dag('example_gcp_dataflow', CLOUD_DAG_FOLDER)
wooga/airflow
tests/providers/google/cloud/operators/test_dataflow_system.py
Python
apache-2.0
1,290
# -*- coding: utf-8 -*- """JSON serializes for XMS API object classes. Note, this module is mainly intended for internal use and the API may change in the future """ from __future__ import absolute_import, division, print_function import binascii from clx.xms.api import RESET def _write_datetime(value): """Helper that validates a date time object.""" if value.utcoffset() is None: raise ValueError("Expected datetime with time zone") return value.isoformat() def _write_base64(value): return binascii.b2a_base64(value).decode('ascii') def _write_hex(value): return binascii.hexlify(value).decode('ascii') def _create_batch_helper(batch): """Helper that prepares the fields of a batch for JSON serialization. :param MtBatchSmsCreate batch: the batch to serialize :return: dictionary for JSON serialization """ fields = { 'from': batch.sender, 'to': sorted(batch.recipients) } if batch.delivery_report: fields['delivery_report'] = batch.delivery_report if batch.send_at: fields['send_at'] = _write_datetime(batch.send_at) if batch.expire_at: fields['expire_at'] = _write_datetime(batch.expire_at) if batch.tags: fields['tags'] = sorted(batch.tags) if batch.callback_url: fields['callback_url'] = batch.callback_url return fields def text_batch(batch): """Serializes the given text batch into JSON. :param MtBatchTextSmsCreate batch: the batch to serialize :return: dictionary suitable for JSON serialization """ fields = _create_batch_helper(batch) fields['type'] = 'mt_text' fields['body'] = batch.body if batch.parameters: fields['parameters'] = batch.parameters return fields def binary_batch(batch): """Serializes the given binary batch into JSON. :param MtBatchBinarySmsCreate batch: the batch to serialize :return: dictionary suitable for JSON serialization """ fields = _create_batch_helper(batch) fields['type'] = 'mt_binary' fields['body'] = _write_base64(batch.body) fields['udh'] = _write_hex(batch.udh) return fields def _batch_update_helper(batch): """Helper that prepares the given batch for serialization. :param MtBatchSmsUpdate batch: the batch to serialize :return: dictionary suitable for JSON serialization :rtype: dict """ fields = {} if batch.recipient_insertions: fields['to_add'] = sorted(batch.recipient_insertions) if batch.recipient_removals: fields['to_remove'] = sorted(batch.recipient_removals) if batch.sender: fields['from'] = batch.sender if batch.delivery_report == RESET: fields['delivery_report'] = None elif batch.delivery_report: fields['delivery_report'] = batch.delivery_report if batch.send_at == RESET: fields['send_at'] = None elif batch.send_at: fields['send_at'] = _write_datetime(batch.send_at) if batch.expire_at == RESET: fields['expire_at'] = None elif batch.expire_at: fields['expire_at'] = _write_datetime(batch.expire_at) if batch.callback_url == RESET: fields['callback_url'] = None elif batch.callback_url: fields['callback_url'] = batch.callback_url return fields def text_batch_update(batch): """Serializes the given text batch update into JSON. :param MtBatchTextSmsUpdate batch: the batch update to serialize :return: dictionary suitable for JSON serialization :rtype: dict """ fields = _batch_update_helper(batch) fields['type'] = 'mt_text' if batch.body: fields['body'] = batch.body if batch.parameters == RESET: fields['parameters'] = None elif batch.parameters: fields['parameters'] = batch.parameters return fields def binary_batch_update(batch): """Serializes the given binary batch update into JSON. :param MtBatchBinarySmsUpdate batch: the batch update to serialize :return: dictionary suitable for JSON serialization :rtype: dict """ fields = _batch_update_helper(batch) fields['type'] = 'mt_binary' if batch.body: fields['body'] = _write_base64(batch.body) if batch.udh: fields['udh'] = _write_hex(batch.udh) return fields def _group_auto_update_helper(auto_update): """Helper that prepares the given group auto update for JSON serialization. :param GroupAutoUpdate auto_update: the auto update to serialize :return: dictionary suitable for JSON serialization :rtype: dict """ fields = { 'to': auto_update.recipient } if auto_update.add_word_pair[0]: fields.setdefault('add', {})['first_word'] = \ auto_update.add_word_pair[0] if auto_update.add_word_pair[1]: fields.setdefault('add', {})['second_word'] = \ auto_update.add_word_pair[1] if auto_update.remove_word_pair[0]: fields.setdefault('remove', {})['first_word'] = \ auto_update.remove_word_pair[0] if auto_update.remove_word_pair[1]: fields.setdefault('remove', {})['second_word'] = \ auto_update.remove_word_pair[1] return fields def group_create(group): """Serializes the given group create object to JSON. :param GroupCreate group: the group to serialize :return: dictionary suitable for JSON serialization """ fields = {} if group.name: fields['name'] = group.name if group.members: fields['members'] = sorted(group.members) if group.child_groups: fields['child_groups'] = sorted(group.child_groups) if group.auto_update: fields['auto_update'] = _group_auto_update_helper(group.auto_update) if group.tags: fields['tags'] = sorted(group.tags) return fields def group_update(obj): """Serializes the given group update object to JSON. :param GroupUpdate obj: the group update to serialize :return: a dictionary suitable for JSON serialization :rtype: dict """ fields = {} if obj.name == RESET: fields['name'] = None elif obj.name: fields['name'] = obj.name if obj.member_insertions: fields['add'] = sorted(obj.member_insertions) if obj.member_removals: fields['remove'] = sorted(obj.member_removals) if obj.child_group_insertions: fields['child_groups_add'] = sorted(obj.child_group_insertions) if obj.child_group_removals: fields['child_groups_remove'] = sorted(obj.child_group_removals) if obj.add_from_group: fields['add_from_group'] = obj.add_from_group if obj.remove_from_group: fields['remove_from_group'] = obj.remove_from_group if obj.auto_update == RESET: fields['auto_update'] = None elif obj.auto_update: fields['auto_update'] = _group_auto_update_helper(obj.auto_update) return fields def tags(tag_coll): """Serializes the given tags to a JSON string. :param set[str] tag_coll: a set of tags :return: a dictionary suitable for JSON serialization :rtype: dict """ return {'tags': sorted(tag_coll)} def tags_update(tags_to_add, tags_to_remove): """Serializes the given tag updates to a JSON string. :param set[str] tags_to_add: list of tags :param str[str] tags_to_remove: list of tags :return: a dictionary suitable for JSON serialization :rtype: dict """ return { 'add': sorted(tags_to_add), 'remove': sorted(tags_to_remove) }
clxcommunications/sdk-xms-python
clx/xms/serialize.py
Python
apache-2.0
7,607
from django.shortcuts import render def index(request): pass
c05mic/django-url-shortener
dj_url_shortener/views.py
Python
apache-2.0
62
# Copyright 2014 Sardar Yumatov # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import binascii import datetime from struct import unpack # python 3 support import six __all__ = ('Session', 'Connection') # module level logger LOG = logging.getLogger(__name__) class Session(object): """ The front-end for the underlying connection pool. """ # Default APNs addresses. ADDRESSES = { "push_sandbox": ("gateway.sandbox.push.apple.com", 2195), "push_production": ("gateway.push.apple.com", 2195), "feedback_sandbox": ("feedback.sandbox.push.apple.com", 2196), "feedback_production": ("feedback.push.apple.com", 2196), } # Default timeout for attempting a new connection. DEFAULT_CONNECT_TIMEOUT = 10 # Default write buffer size. Should be close to MTU size. DEFAULT_WRITE_BUFFER_SIZE = 2048 # Default timeout for write operations. DEFAULT_WRITE_TIMEOUT = 20 # Default read buffer size, used by feedback. DEFAULT_READ_BUFFER_SIZE = 2048 # Default timeout for read operations. DEFAULT_READ_TIMEOUT = 20 # Default timeout waiting for error response at the end message send operation. DEFAULT_READ_TAIL_TIMEOUT = 3 def __init__(self, pool="vapnsclient.backends.stdio", connect_timeout=DEFAULT_CONNECT_TIMEOUT, write_buffer_size=DEFAULT_WRITE_BUFFER_SIZE, write_timeout=DEFAULT_WRITE_TIMEOUT, read_buffer_size=DEFAULT_READ_BUFFER_SIZE, read_timeout=DEFAULT_READ_TIMEOUT, read_tail_timeout=DEFAULT_READ_TAIL_TIMEOUT, **pool_options): """ The front-end to the underlying connection pool. The purpose of this class is to hide the transport implementation that is being used for networking. Default implementation uses built-in python sockets and ``select`` for asynchronous IO. :Arguments: - pool (str, type or object): networking layer implementation. - connect_timeout (float): timeout for new connections. - write_buffer_size (int): chunk size for sending the message. - write_timeout (float): maximum time to send single chunk in seconds. - read_buffer_size (int): feedback buffer size for reading. - read_timeout (float): timeout for reading single feedback block. - read_tail_timeout (float): timeout for reading status frame after message is sent. - pool_options (kwargs): passed as-is to the pool class on instantiation. """ # IO deafults self.connect_timeout = connect_timeout self.write_buffer_size = write_buffer_size self.write_timeout = write_timeout self.read_buffer_size = read_buffer_size self.read_timeout = read_timeout self.read_tail_timeout = read_tail_timeout # class name given by qualified name if isinstance(pool, six.string_types): pool_module = __import__(pool) for name in pool.split('.')[1:]: try: pool_module = getattr(pool_module, name) except AttributeError: raise ImportError("Can't load pool backend", pool) try: pool = getattr(pool_module, "Backend") except AttributeError: raise ImportError("Can't find Backend class in pool module", pool) # resolved or given as class if isinstance(pool, type): pool = pool(**pool_options) self.pool = pool if LOG.isEnabledFor(logging.DEBUG): LOG.debug("New session, WB: %sb/%ss, RB: %sb/%ss, TT: %ss, Pool: %s", write_buffer_size, write_timeout, read_buffer_size, read_timeout, read_tail_timeout, pool.__class__.__module__) @classmethod def get_address(cls, address): """ Maps address to (host, port) tuple. """ if not isinstance(address, (list, tuple)): addr = cls.ADDRESSES.get(address) if addr is None: raise ValueError("Unknown address mapping: {0}".format(address)) address = addr return address def new_connection(self, address="feedback_sandbox", certificate=None, **cert_params): """ Obtain new connection to APNs. This method will not re-use existing connection from the pool. The connection will be closed after use. Unlike :func:`get_connection` this method does not cache the connection. Use it to fetch feedback from APNs and then close when you are done. :Arguments: - address (str or tuple): target address. - certificate (:class:`BaseCertificate`): provider's certificate instance. - cert_params (kwargs): :class:`BaseCertificate` arguments, used if ``certificate`` instance is not given. """ if certificate is not None: cert = certificate else: cert = self.pool.get_certificate(cert_params) address = self.get_address(address) return Connection(address, cert, self, use_cache=False) def get_connection(self, address="push_sanbox", certificate=None, **cert_params): """ Obtain cached connection to APNs. Session caches connection descriptors, that remain open after use. Caching saves SSL handshaking time. Handshaking is lazy, it will be performed on first message send. You can provide APNs address as ``(hostname, port)`` tuple or as one of the strings: - push_sanbox -- ``("gateway.sandbox.push.apple.com", 2195)``, the default. - push_production -- ``("gateway.push.apple.com", 2195)`` - feedback_sandbox -- ``("feedback.sandbox.push.apple.com", 2196)`` - feedback_production -- ``("feedback.push.apple.com", 2196)`` :Arguments: - address (str or tuple): target address. - certificate (:class:`BaseCertificate`): provider's certificate instance. - cert_params (kwargs): :class:`BaseCertificate` arguments, used if ``certificate`` instance is not given. """ if certificate is not None: cert = certificate else: cert = self.pool.get_certificate(cert_params) address = self.get_address(address) return Connection(address, cert, self, use_cache=True) def outdate(self, delta): """ Close open unused connections in the pool that are left untouched for more than ``delta`` time. You may call this method in a separate thread or run it in some periodic task. If you don't, then all connections will remain open until session is shut down. It might be an issue if you care about your open server connections. :Arguments: delta (``timedelta``): maximum age of unused connection. """ if LOG.isEnabledFor(logging.DEBUG): if delta.total_seconds() == 0.0: LOG.debug("Shutdown session") else: LOG.debug("Outdating session with delta: %s", delta) self.pool.outdate(delta) def shutdown(self): """ Shutdown all connections in the pool. This method does will not close connections being use at the calling time. """ # NOTE: global package datetime can become None if session is stored in # a global variable and being garbage collected with the rest of the module. if datetime is not None: self.pool.outdate(datetime.timedelta()) def __del__(self): """ Last chance to shutdown() """ self.shutdown() class Connection(object): """ Connection wrapper. """ def __init__(self, address, certificate, session, use_cache=False): """ New connection wrapper. :Arguments: - address (tuple) - (host, port) to connect to. - certificate (:class:`BaseCertificate`) - provider certificate. - session (object) - parent session. - use_cache (bool) - True if connections may be cached in the pool. """ self.address = address self.certificate = certificate self.session = session self.use_cache = use_cache self._reused = False self._connection = None self._lock = self.session.pool.create_lock() def __enter__(self): try: if LOG.isEnabledFor(logging.DEBUG): LOG.debug("Entering networking session") self._lock.acquire() # block until lock is given self._open_connection() # can raise exception, bubblit up to the top except: self._lock.release() raise def __exit__(self, exc_type, exc_value, traceback): try: if LOG.isEnabledFor(logging.DEBUG): LOG.debug("Leaving networking session%s%s", " with still open connection" if self._connection else "", " because of failure" if exc_type else "", exc_info=(exc_type is not None)) # the only possible scenario when connection is left open while # we are here is when some totally unexpected exception bubbles up. assert exc_type is not None or self._connection is None if self._connection: # terminate connection in case of an error self._close(terminate=True) finally: self._lock.release() # we return None, which is False, which forces python to re-raise on error def send(self, message): """ Send message. """ # will raise exception if non-cached connection has been used with self: batch = message.batch(self.session.write_buffer_size) failed_after = None status = None total_sent = 0 decoder = ResponseDecoder() for iteration, (sent, chunk) in enumerate(batch): assert len(chunk) > 0 total_sent += len(chunk) if iteration == 0: # can raise exception if new connection is failed to open. # write doesn't return anything, but we are interested in IO failures. _, io_exception = self._ensuring_io(lambda con: con.write(chunk, self.session.write_timeout)) if io_exception is not None: # IO failure on first write, sent is 0 here, retry with # the whole message failed_after = sent break else: # other writes, that fail naturally try: ret = self._connection.write(chunk, self.session.write_timeout) except: # IO failure on subsequent writes, some of the tokens are # sent, break on the beginning of this batch failed_after = sent break # check for possibly arriving failure frame try: # should either return sequence of bytes or None if read buffer # is empty. ret = self._connection.peek(256) # status frame is 6 bytes except: # Peek failed, which means our read operations fail # abnormaly. I don't like that and the final read will # probably fail too. So fail early, possibly messing the # first batch, but not everything failed_after = sent break else: if ret is not None: decoder.feed(ret) # status is not None only if previous iteration got # successful status, but it appears not to be the last # chunk. this should not happen by APNs protocol, still # we have to handle it. the easy solution: ignore # previous status (probably garbage in read buffer) # with a warning. if status is not None: LOG.warning("Got success frame while batch is not comleted. Frame ignored.") # NOTE: it is possible we get None here because not all # bytes could be read without blocking. on next iteration # or final blocking read we will get the rest of the bytes. status = decoder.decode() if status is not None and status[0] != 0: # error detected if LOG.isEnabledFor(logging.INFO): LOG.info("Message send failed midway with status %r to address %r. Sent tokens: %s, bytes: %s", status, self.address, sent, total_sent) # some shit had happened, response from APNs, bail out and prepare for retry self._close(terminate=True) return status # else: nothing in the read buffer, keep sending # by this time we either stopped prematurely on IO error with # failed_after set or we finished all batches, possibly having # status read with non-blocking IO. # the write stream possibly failed, but the read stream might be still # open with status frame precisely pointing to failed token. if status is None: # read status frame, could take 2 iterations if the fist one returns # just the read buffer with few bytes not making the whole status frame. while True: try: ret = self._connection.read(256, self.session.read_tail_timeout) except: # one of two things had happened: # - everything went fine, we waited for the final status # frame the tail timeout of time and got nothing (timeout). # this is a success condition according to APNs documentation # if status frame with code 0 is not sent (it is never sent). # - reading failed with some other exception. we don't know # starting from which token the batch has failed. we can't # attempt to read status frame again, because read stream # is probably closed by now. there is nothing we can do # except pretending everything is OK. the failed tokens # will be reported by feedback. the tokens that didn't got # the message... well, so is life, we can't detect them. # # Sorry, but this is how APNs protocol designed, I can't # do better here. APNs developers suck hard. # # We still have to check failed_after, it tells us when # IO write failed. If failed_after is not None, then # we got here probably because connection is closed for # read and write after the write failure. break else: if ret is not None: decoder.feed(ret) status = decoder.decode() if status is None: # we got bytes, but not enogugh for the status frame. continue # complete status frame read, evaluate if status[0] != 0: if LOG.isEnabledFor(logging.INFO): LOG.info("Message send failed with status %r to address %r. Sent tokens: %s, bytes: %s", status, self.address, len(message.tokens), total_sent) # some shit had indeed happened self._close(terminate=True) return status # got a successful status or read ended with closed connection break # by this time we have either successful status frame (code 0) or # we failed to obtain status frame at all. the failed_after is not None # if IO write failed before. # there are some bytes read, but we failed to read complete status # frame. all possible timeouts are exceeded or read stream is # totally fucked up, so we can't wait and read again. let the user # know this happened and treat the situation as if no frame was # received at all. APNs protocol sucks sooo much. if status is None and decoder._buf: LOG.warning("Failed to read complete status frame from %r, but has read some bytes before. Probably read timeout %s is to short.", self.address, self.session.read_tail_timeout) # close connection, it is failing self._close(terminate=True) # normall successs scenario with success frame provided. never # happens according to APNs documentation (no status frame gets # sent on success), but can happen logically. if failed_after is None and status is not None and status[0] == 0: # success, release connection for re-use if it was meant for reuse self._close(terminate=not self._reused) return status # everything looks like success, but it might be because read stream # was closed or just timeouted. check write IO failure. if failed_after is not None: if LOG.isEnabledFor(logging.INFO): LOG.info("Message send failed midway with status %r to address %r. Sent tokens: %s, bytes: %s", status, self.address, failed_after, total_sent) # close connection, it is failing self._close(terminate=True) return (255, failed_after + 1) # we have sent message to all target tokens and have waited for # tail_timeout for any error reponse to arrive. Nothing arrived # (hopefully not because read error) and we did not fail with write # failure middle on the road, so according to Apple's manual # everything went OK. This protocol sucks. if LOG.isEnabledFor(logging.DEBUG): LOG.debug("Message sent successfully to address %r. Sent tokens: %s, bytes: %s", self.address, len(message.tokens), total_sent) # success, release connection for re-use if it was meant for reuse self._close(terminate=not self._reused) return None def feedback(self): """ Read and parse feedback information. """ if self.use_cache: # sanity check LOG.warning("Don't use cached connections for feedback, you might get stale data.") # will raise exception if non-cached connection has been used with self: # on connection failure we bubble up the exceptions. on IO failure # we get the exception as return value, stopping the iteration normally. data, io_exception = self._ensuring_io(lambda con: con.read(self.session.read_buffer_size, self.session.read_timeout)) # data is non empty sequence of bytes on success, None if connection # has been closed or on failure. io_exception is not None on IO errors. feedback = FeedbackDecoder() total_records = 0 failed = io_exception is not None while data is not None: feedback.feed(data) # TODO: use yield from for record in feedback.decoded(): total_records += 1 yield record try: # read next chunk, leaving again either sequence of bytes or # None if connection has been closed. data = self._connection.read(self.session.read_buffer_size, self.session.read_timeout) except: # IO failure, probably because of a timeout. break the loop, # we will fetch the rest during the next session. failed = True break # there is no point to keep this connection open if LOG.isEnabledFor(logging.DEBUG): LOG.debug("Feedback received %s records from address %r. Stopped %s", total_records, self.address, "by failure" if failed else "successfully") # always close feedback connection, preventing stale data self._close(terminate=True) def _ensuring_io(self, func): """ Re-opens connection if read or write has failed. Used to re-initialize connections from the pool with a transport not supporting reliable socket closed condition. """ failed = False if self._reused: # if connection is reused, then there might be left over bytes in the # read buffer. flush them. try: self._connection.reset() except: LOG.info("Failed to reset connection to %r", self.address, exc_info=True) # close the connection, prepare for re-connect self._close(terminate=True) failed = True if not failed: # OK, reset succeeded or this is a fresh new connetion try: return func(self._connection), None except Exception as exc: if self.session.pool.can_detect_close or not self._reused: # bubble up IO related problem on non-cached connection return None, exc # Either failed by reset or failed by IO operation. If # pool.can_detect_close is False and we are reusing the connection from # the cache pool, then it was probably already failing when we got it. # Re-get the connection from the pool again. if LOG.isEnabledFor(logging.DEBUG): LOG.debug("Re-opening connection to address %r", self.address) # ensure failing connection is closed self._close(terminate=True) # open new connection. this operation might raise exceptions, which # will propagate to the outer most caller indicating severe network # errors. self._open_connection(by_failure=True) return self._ensuring_io(func) def _open_connection(self, by_failure=False): """ Request new connection handle from underlying pool. """ # use pool if caching is requested or we are ensuring connection with # cache enabled. if self.use_cache and (not by_failure or self.session.pool.use_cache_for_reconnects): if LOG.isEnabledFor(logging.DEBUG): LOG.debug("Open cached connection to %r%s.", self.address, " by failure" if by_failure else "") self._connection = self.session.pool.get_cached_connection( self.address, self.certificate, timeout=self.session.connect_timeout ) self._reused = True else: if LOG.isEnabledFor(logging.DEBUG): LOG.debug("Open new connection to %r%s.", self.address, " by failure" if by_failure else "") self._connection = self.session.pool.get_new_connection( self.address, self.certificate, timeout=self.session.connect_timeout ) self._reused = False def _close(self, terminate=False): """ Close connection. """ if self._connection: if terminate: self._connection.close() else: self.session.pool.release(self._connection) self._connection = None # private class ResponseDecoder(object): """ Response frame decoder. """ # Response command byte COMMAND = 8 def __init__(self): self._buf = [] def feed(self, data): """ Feed next frame with data. """ self._buf.append(data) def decode(self): """ Returns reconstructed response frame. """ buf = six.binary_type().join(self._buf) if len(buf) >= 6: ret = unpack(">BBI", buf[0:6]) self._buf = [] if len(buf) > 6: # should normally not happen as there is always a single frame self._buf.append(buf[6:]) assert ret[0] == self.COMMAND, "Got unknown command from APNs: {0}. Looks like protocol has been changed.".format(ret[0]) return (ret[1], ret[2]) else: self._buf = [buf] return None # private class FeedbackDecoder(object): """ Feedback decoder. """ def __init__(self): self._buf = [] def feed(self, data): """ Feed next frame with raw data. """ self._buf.append(data) def decoded(self): """ Returns generator over next set of decoded records. """ buf = six.binary_type().join(self._buf) pos = 0 while (pos + 6) < len(buf): timestamp, length = unpack(">IH", buf[pos:(pos + 6)]) assert length > 0 if (pos + 6 + length) <= len(buf): token = binascii.hexlify(buf[(pos + 6):(pos + 6 + length)]) pos += 6 + length yield token, timestamp if pos == len(buf): break else: break # consume everything except suffix self._buf=[buf[pos:]]
vine/apns-client
vapnsclient/transport.py
Python
apache-2.0
27,324
from common_fixtures import * # NOQA import time from cattle import ApiError from test_volume import VOLUME_CLEANUP_LABEL @pytest.fixture(scope='module', autouse=True) def update_event_settings(request, super_client): settings = super_client.list_setting() originals = [] def update_setting(new_value, s): originals.append((setting, {'value': s.value})) s = super_client.update(s, {'value': new_value}) wait_setting_active(super_client, s) for setting in settings: if setting.name == 'manage.nonrancher.containers' \ and setting.value != 'true': update_setting('true', setting) def revert_settings(): for s in originals: super_client.update(s[0], s[1]) request.addfinalizer(revert_settings) @pytest.fixture(scope='module') def host(super_client, context): return super_client.reload(context.host) @pytest.fixture(scope='module') def agent_cli(context): return context.agent_client @pytest.fixture(scope='module') def user_id(context): return context.project.id def test_container_event_create(client, host, agent_cli, user_id): # Submitting a 'start' containerEvent should result in a container # being created. external_id = random_str() container = create_native_container(client, host, external_id, agent_cli, user_id) assert container.nativeContainer is True assert container.state == 'running' def test_volume_cleanup_strategy_label(client, host, agent_cli, user_id): external_id = random_str() container = create_native_container(client, host, external_id, agent_cli, user_id) assert VOLUME_CLEANUP_LABEL not in container.labels external_id = random_str() inspect = {'Config': {'Labels': {VOLUME_CLEANUP_LABEL: 'all'}}} container = \ create_native_container(client, host, external_id, agent_cli, user_id, inspect=inspect) assert container.labels[VOLUME_CLEANUP_LABEL] == 'all' def test_container_event_start_stop(client, host, agent_cli, user_id): # Submitting a 'stop' or 'die' containerEvent should result in a # container resource being stopped. external_id = random_str() container = create_native_container(client, host, external_id, agent_cli, user_id) assert container.state == 'running' create_event(host, external_id, agent_cli, client, user_id, 'stop') container = client.wait_success(container) assert container.state == 'stopped' create_event(host, external_id, agent_cli, client, user_id, 'start') container = client.wait_success(container) assert container.state == 'running' # Sending a start event on a running container should have no effect create_event(host, external_id, agent_cli, client, user_id, 'start') container = client.wait_success(container) assert container.state == 'running' create_event(host, external_id, agent_cli, client, user_id, 'die') container = client.wait_success(container) assert container.state == 'stopped' # Sending a stop event on a stopped container should have no effect create_event(host, external_id, agent_cli, client, user_id, 'stop') container = client.wait_success(container) assert container.state == 'stopped' def test_container_event_start(client, host, agent_cli, user_id): # Submitting a 'start' containerEvent should result in a container # being started. external_id = random_str() container = create_native_container(client, host, external_id, agent_cli, user_id) assert container.state == 'running' create_event(host, external_id, agent_cli, client, user_id, 'stop') containers = client.list_container(externalId=external_id) assert len(containers) == 1 container = client.wait_success(containers[0]) assert container.state != 'removed' def test_container_event_remove_start(client, host, agent_cli, user_id): # If a container is removed and then an event comes in for the container, # the event should be ignored. external_id = random_str() container = create_native_container(client, host, external_id, agent_cli, user_id) assert container.state == 'running' container = client.wait_success(container.stop()) assert container.state == 'stopped' container = client.wait_success(container.remove()) assert container.state == 'removed' create_event(host, external_id, agent_cli, client, user_id, 'start') container = client.wait_success(container) assert container.state == 'removed' containers = client.list_container(externalId=external_id) assert len(containers) == 0 def test_container_event_destroy(client, host, agent_cli, user_id): # Submitting a 'destroy' containerEvent should result in a container # being removed. external_id = random_str() container = create_native_container(client, host, external_id, agent_cli, user_id) assert container.state == 'running' create_event(host, external_id, agent_cli, client, user_id, 'destroy') container = client.wait_success(container) assert container.state == 'removed' # Sending a destroy event to a removed container should have no effect create_event(host, external_id, agent_cli, client, user_id, 'destroy') container = client.wait_success(container) assert container.state == 'removed' def test_rancher_container_events(client, context, host, agent_cli, user_id): # A "normal" container (one created in Rancher) should also respond to # non-rancher container events container = context.create_container(name=random_str(), startOnCreate=False) assert container.state == 'stopped' inspect = new_inspect(random_str()) inspect['Config']['Labels'] = {'io.rancher.container.uuid': container.uuid} # pass random external id to prove look up by rancher uuid works rand = random_str() create_event(host, rand, agent_cli, client, user_id, 'start', inspect) container = client.wait_success(container) assert container.state == 'running' create_event(host, rand, agent_cli, client, user_id, 'stop', inspect) container = client.wait_success(container) assert container.state == 'stopped' # Note that we don't pass inspect on destroy because it wont exist. In this # case, we have to pass the container's actual externalId ext_id = container.externalId create_event(host, ext_id, agent_cli, client, user_id, 'destroy') container = client.wait_success(container) assert container.state == 'removed' def test_bad_agent(super_client, new_context): host, account, agent_client = register_simulated_host(new_context, return_agent=True) host = super_client.reload(host) def post(): agent_client.create_container_event( reportedHostUuid=host.data.fields['reportedUuid'], externalId=random_str(), externalFrom='busybox:latest', externalTimestamp=int(time.time()), externalStatus='start') # Test it works post() # Test it fails with two agents super_client.wait_success(super_client.create_agent( uri='test://' + random_str(), accountId=account.id)) with pytest.raises(ApiError) as e: post() assert e.value.error.code == 'MissingRequired' # Test it fails with no agents for agent in super_client.list_agent(accountId=account.id): super_client.wait_success(agent.deactivate()) with pytest.raises(ApiError) as e: post() assert e.value.error.code == 'CantVerifyAgent' def test_bad_host(host, new_context): # If a host doesn't belong to agent submitting the event, the request # should fail. agent_cli = new_context.agent_client with pytest.raises(ApiError) as e: agent_cli.create_container_event( reportedHostUuid=host.data.fields['reportedUuid'], externalId=random_str(), externalFrom='busybox:latest', externalTimestamp=int(time.time()), externalStatus='start') assert e.value.error.code == 'InvalidReference' def test_container_event_null_inspect(client, host, agent_cli, user_id): # Assert that the inspect can be null. external_id = random_str() create_event(host, external_id, agent_cli, client, user_id, 'start', None) def container_wait(): containers = client.list_container(externalId=external_id) if len(containers) and containers[0].state != 'requested': return containers[0] container = wait_for(container_wait) assert container is not None def test_requested_ip_address(super_client, client, host, agent_cli, user_id): external_id = random_str() inspect = new_inspect(external_id) inspect['NetworkSettings'] = {'IPAddress': '10.42.0.240'} container = create_native_container(client, host, external_id, agent_cli, user_id, inspect=inspect) container = super_client.reload(container) assert container['data']['fields']['requestedIpAddress'] == '10.42.0.240' assert container.nics()[0].network().kind == 'dockerBridge' assert container.primaryIpAddress is None def test_requested_ip_address_with_managed(super_client, client, host, agent_cli, user_id): external_id = random_str() inspect = new_inspect(external_id) inspect['NetworkSettings'] = {'IPAddress': '10.42.0.240'} inspect['Config'] = { 'Labels': { 'io.rancher.container.network': 'true' } } container = create_native_container(client, host, external_id, agent_cli, user_id, inspect=inspect) container = super_client.reload(container) assert container['data']['fields']['requestedIpAddress'] == '10.42.0.240' assert container.nics()[0].network().kind == 'network' assert container.primaryIpAddress == '10.42.0.240' def test_container_event_net_none(client, host, agent_cli, user_id): external_id = random_str() inspect = new_inspect(external_id) inspect['Config']['NetworkDisabled'] = True container = create_native_container(client, host, external_id, agent_cli, user_id, inspect=inspect) assert container['networkMode'] == 'none' def test_container_event_net_host(client, host, agent_cli, user_id): external_id = random_str() inspect = new_inspect(external_id) inspect['HostConfig'] = {'NetworkMode': 'host'} container = create_native_container(client, host, external_id, agent_cli, user_id, inspect=inspect) assert container['networkMode'] == 'host' def test_container_event_net_bridge(client, host, agent_cli, user_id): external_id = random_str() inspect = new_inspect(external_id) inspect['HostConfig'] = {'NetworkMode': 'bridge'} container = create_native_container(client, host, external_id, agent_cli, user_id, inspect=inspect) assert container['networkMode'] == 'bridge' def test_container_event_net_blank(client, host, agent_cli, user_id): external_id = random_str() inspect = new_inspect(external_id) inspect['HostConfig'] = {'NetworkMode': ''} container = create_native_container(client, host, external_id, agent_cli, user_id, inspect=inspect) assert container['networkMode'] == 'bridge' def test_container_event_net_container(client, host, agent_cli, user_id): target_external_id = random_str() target = create_native_container(client, host, target_external_id, agent_cli, user_id) external_id = random_str() inspect = new_inspect(external_id) inspect['HostConfig'] = {'NetworkMode': 'container:%s' % target.externalId} container = create_native_container(client, host, external_id, agent_cli, user_id, inspect=inspect) assert container['networkMode'] == 'container' assert container['networkContainerId'] == target.id def test_container_event_net_container_not_found(client, host, agent_cli, user_id): external_id = random_str() inspect = new_inspect(external_id) inspect['HostConfig'] = {'NetworkMode': 'container:wont-be-found'} container = create_native_container(client, host, external_id, agent_cli, user_id, inspect=inspect) assert container['networkMode'] == 'none' assert container['networkContainerId'] is None def test_container_event_image_and_reg_cred(client, host, agent_cli, user_id, super_client): server = 'server{0}.io'.format(random_num()) registry = client.create_registry(serverAddress=server, name=random_str()) registry = client.wait_success(registry) reg_cred = client.create_registry_credential( registryId=registry.id, publicValue='rancher', secretValue='rancher') registry_credential = client.wait_success(reg_cred) name = server + '/rancher/authorized:latest' image_uuid = 'docker:' + name external_id = random_str() container = create_native_container(client, host, external_id, agent_cli, user_id, image=image_uuid) assert container.nativeContainer is True assert container.state == 'running' container = super_client.wait_success(container) assert container.registryCredentialId == registry_credential.id def create_native_container(client, host, external_id, user_agent_cli, user_account_id, inspect=None, image=None): if not inspect: inspect = new_inspect(external_id) create_event(host, external_id, user_agent_cli, client, user_account_id, 'start', inspect, image=image) def container_wait(): containers = client.list_container(externalId=external_id) if len(containers) and containers[0].state != 'requested': return containers[0] container = wait_for(container_wait) container = client.wait_success(container) return container def create_event(host, external_id, agent_cli, client, user_account_id, status, inspect=None, wait_and_assert=True, image=None): timestamp = int(time.time()) if (image is None): image = 'sim:busybox:latest' event = agent_cli.create_container_event( reportedHostUuid=host.data.fields['reportedUuid'], externalId=external_id, externalFrom=image, externalTimestamp=timestamp, externalStatus=status, dockerInspect=inspect) if wait_and_assert: assert event.reportedHostUuid == host.data.fields['reportedUuid'] assert event.externalId == external_id assert event.externalFrom == image assert event.externalStatus == status assert event.externalTimestamp == timestamp def event_wait(): created = client.reload(event) if created is not None and created.state == 'created': return event wait_for(event_wait) event = client.reload(event) assert host.id == event.hostId assert user_account_id == event.accountId assert event.state == 'created' return event def new_inspect(rand): return {'Name': 'name-%s' % rand, 'Config': {'Image': 'sim:fake/image'}} def _client_for_agent(credentials): return cattle.from_env(url=cattle_url(), cache=False, access_key=credentials.publicValue, secret_key=credentials.secretValue)
vincent99/cattle
tests/integration/cattletest/core/test_container_event.py
Python
apache-2.0
16,238
import logging import pika import json import time import Queue LOG_FORMAT = ('%(levelname) -10s %(asctime)s %(name) -30s %(funcName) ' '-35s %(lineno) -5d: %(message)s') LOGGER = logging.getLogger(__name__) LOGGER.setLevel(logging.ERROR) class AsyncConsumer(object): """This is an example consumer that will handle unexpected interactions with RabbitMQ such as channel and connection closures. If RabbitMQ closes the connection, it will reopen it. You should look at the output, as there are limited reasons why the connection may be closed, which usually are tied to permission related issues or socket timeouts. If the channel is closed, it will indicate a problem with one of the commands that were issued and that should surface in the output as well. """ ACK_INTERVAL = 1 def __init__(self, amqp_url, queue, exchange, routing_key): """Create a new instance of the consumer class, passing in the AMQP URL used to connect to RabbitMQ. :param str amqp_url: The AMQP url to connect with """ self._connection = None self._channel = None self._closing = False self._consumer_tag = None self._url = amqp_url self._queue = queue self._exchange = exchange self._routing_key = routing_key self._exchange_type = 'topic' self.msg_queue = Queue.Queue() self.ack_queue = Queue.Queue() def connect(self): """This method connects to RabbitMQ, returning the connection handle. When the connection is established, the on_connection_open method will be invoked by pika. :rtype: pika.SelectConnection """ LOGGER.info('Connecting to %s', self._url) return pika.SelectConnection(pika.URLParameters(self._url), self.on_connection_open, stop_ioloop_on_close=False) def close_connection(self): """This method closes the connection to RabbitMQ.""" LOGGER.info('Closing connection') self._connection.close() def add_on_connection_close_callback(self): """This method adds an on close callback that will be invoked by pika when RabbitMQ closes the connection to the publisher unexpectedly. """ LOGGER.info('Adding connection close callback') self._connection.add_on_close_callback(self.on_connection_closed) def on_connection_closed(self, connection, reply_code, reply_text): """This method is invoked by pika when the connection to RabbitMQ is closed unexpectedly. Since it is unexpected, we will reconnect to RabbitMQ if it disconnects. :param pika.connection.Connection connection: The closed connection obj :param int reply_code: The server provided reply_code if given :param str reply_text: The server provided reply_text if given """ self._channel = None if self._closing: self._connection.ioloop.stop() else: LOGGER.warning('Connection closed, reopening in 5 seconds: (%s) %s', reply_code, reply_text) self._connection.add_timeout(5, self.reconnect) def on_connection_open(self, unused_connection): """This method is called by pika once the connection to RabbitMQ has been established. It passes the handle to the connection object in case we need it, but in this case, we'll just mark it unused. :type unused_connection: pika.SelectConnection """ LOGGER.info('Connection opened') self.add_on_connection_close_callback() self.open_channel() def reconnect(self): """Will be invoked by the IOLoop timer if the connection is closed. See the on_connection_closed method. """ # This is the old connection IOLoop instance, stop its ioloop self._connection.ioloop.stop() if not self._closing: # Create a new connection self._connection = self.connect() # There is now a new connection, needs a new ioloop to run self._connection.ioloop.start() def add_on_channel_close_callback(self): """This method tells pika to call the on_channel_closed method if RabbitMQ unexpectedly closes the channel. """ LOGGER.info('Adding channel close callback') self._channel.add_on_close_callback(self.on_channel_closed) def on_channel_closed(self, channel, reply_code, reply_text): """Invoked by pika when RabbitMQ unexpectedly closes the channel. Channels are usually closed if you attempt to do something that violates the protocol, such as re-declare an exchange or queue with different parameters. In this case, we'll close the connection to shutdown the object. :param pika.channel.Channel: The closed channel :param int reply_code: The numeric reason the channel was closed :param str reply_text: The text reason the channel was closed """ LOGGER.warning('Channel %i was closed: (%s) %s', channel, reply_code, reply_text) self._connection.close() def on_channel_open(self, channel): """This method is invoked by pika when the channel has been opened. The channel object is passed in so we can make use of it. Since the channel is now open, we'll declare the exchange to use. :param pika.channel.Channel channel: The channel object """ LOGGER.info('Channel opened') self._channel = channel self.add_on_channel_close_callback() channel.basic_qos(prefetch_count=2000) self.setup_exchange(self._exchange) def setup_exchange(self, exchange_name): """Setup the exchange on RabbitMQ by invoking the Exchange.Declare RPC command. When it is complete, the on_exchange_declareok method will be invoked by pika. :param str|unicode exchange_name: The name of the exchange to declare """ LOGGER.info('Declaring exchange %s', exchange_name) self._channel.exchange_declare(self.on_exchange_declareok, exchange_name, self._exchange_type, durable=True, auto_delete=False) def on_exchange_declareok(self, unused_frame): """Invoked by pika when RabbitMQ has finished the Exchange.Declare RPC command. :param pika.Frame.Method unused_frame: Exchange.DeclareOk response frame """ LOGGER.info('Exchange declared') self.setup_queue(self._queue) def setup_queue(self, queue_name): """Setup the queue on RabbitMQ by invoking the Queue.Declare RPC command. When it is complete, the on_queue_declareok method will be invoked by pika. :param str|unicode queue_name: The name of the queue to declare. """ LOGGER.info('Declaring queue %s', queue_name) self._channel.queue_declare(self.on_queue_declareok, queue_name, durable=True, auto_delete=False) def on_queue_declareok(self, method_frame): """Method invoked by pika when the Queue.Declare RPC call made in setup_queue has completed. In this method we will bind the queue and exchange together with the routing key by issuing the Queue.Bind RPC command. When this command is complete, the on_bindok method will be invoked by pika. :param pika.frame.Method method_frame: The Queue.DeclareOk frame """ LOGGER.info('Binding %s to %s with %s', self._exchange, self._queue, self._routing_key) self._channel.queue_bind(self.on_bindok, self._queue, self._exchange, self._routing_key) def add_on_cancel_callback(self): """Add a callback that will be invoked if RabbitMQ cancels the consumer for some reason. If RabbitMQ does cancel the consumer, on_consumer_cancelled will be invoked by pika. """ LOGGER.info('Adding consumer cancellation callback') self._channel.add_on_cancel_callback(self.on_consumer_cancelled) def on_consumer_cancelled(self, method_frame): """Invoked by pika when RabbitMQ sends a Basic.Cancel for a consumer receiving messages. :param pika.frame.Method method_frame: The Basic.Cancel frame """ LOGGER.info('Consumer was cancelled remotely, shutting down: %r', method_frame) if self._channel: self._channel.close() def acknowledge_message(self, delivery_tag): """Acknowledge the message delivery from RabbitMQ by sending a Basic.Ack RPC method for the delivery tag. :param int delivery_tag: The delivery tag from the Basic.Deliver frame """ LOGGER.info('Acknowledging message %s', delivery_tag) self._channel.basic_ack(delivery_tag) def on_message(self, unused_channel, basic_deliver, properties, body): """Invoked by pika when a message is delivered from RabbitMQ. The channel is passed for your convenience. The basic_deliver object that is passed in carries the exchange, routing key, delivery tag and a redelivered flag for the message. The properties passed in is an instance of BasicProperties with the message properties and the body is the message that was sent. :param pika.channel.Channel unused_channel: The channel object :param pika.Spec.Basic.Deliver: basic_deliver method :param pika.Spec.BasicProperties: properties :param str|unicode body: The message body """ LOGGER.info('Received message # %s from %s: %s', basic_deliver.delivery_tag, properties.app_id, body) data = json.loads(body) headers = properties.headers or {} headers['routing_key'] = basic_deliver.routing_key self.msg_queue.put({'delivery_tag' : basic_deliver.delivery_tag, 'body' : body, 'headers': headers}) #self.acknowledge_message(basic_deliver.delivery_tag) def on_cancelok(self, unused_frame): """This method is invoked by pika when RabbitMQ acknowledges the cancellation of a consumer. At this point we will close the channel. This will invoke the on_channel_closed method once the channel has been closed, which will in-turn close the connection. :param pika.frame.Method unused_frame: The Basic.CancelOk frame """ LOGGER.info('RabbitMQ acknowledged the cancellation of the consumer') self.close_channel() def stop_consuming(self): """Tell RabbitMQ that you would like to stop consuming by sending the Basic.Cancel RPC command. """ if self._channel: LOGGER.info('Sending a Basic.Cancel RPC command to RabbitMQ') self._channel.basic_cancel(self.on_cancelok, self._consumer_tag) def start_consuming(self): """This method sets up the consumer by first calling add_on_cancel_callback so that the object is notified if RabbitMQ cancels the consumer. It then issues the Basic.Consume RPC command which returns the consumer tag that is used to uniquely identify the consumer with RabbitMQ. We keep the value to use it when we want to cancel consuming. The on_message method is passed in as a callback pika will invoke when a message is fully received. """ LOGGER.info('Issuing consumer related RPC commands') self.add_on_cancel_callback() self._consumer_tag = self._channel.basic_consume(self.on_message, self._queue, ) self.schedule_ack() def schedule_ack(self): if self._closing: return LOGGER.info('Scheduling next message for %0.1f seconds', self.ACK_INTERVAL) self._connection.add_timeout(self.ACK_INTERVAL, self.do_ack) def do_ack(self): try: ack = self.ack_queue.get(False) while ack is not None: self.acknowledge_message(ack) ack = self.ack_queue.get(False) except Queue.Empty: pass self.schedule_ack() def on_bindok(self, unused_frame): """Invoked by pika when the Queue.Bind method has completed. At this point we will start consuming messages by calling start_consuming which will invoke the needed RPC commands to start the process. :param pika.frame.Method unused_frame: The Queue.BindOk response frame """ LOGGER.info('Queue bound') self.start_consuming() def close_channel(self): """Call to close the channel with RabbitMQ cleanly by issuing the Channel.Close RPC command. """ LOGGER.info('Closing the channel') self._channel.close() def open_channel(self): """Open a new channel with RabbitMQ by issuing the Channel.Open RPC command. When RabbitMQ responds that the channel is open, the on_channel_open callback will be invoked by pika. """ LOGGER.info('Creating a new channel') self._connection.channel(on_open_callback=self.on_channel_open) def run(self): """Run the example consumer by connecting to RabbitMQ and then starting the IOLoop to block and allow the SelectConnection to operate. """ self._connection = self.connect() self._connection.ioloop.start() def stop(self): """Cleanly shutdown the connection to RabbitMQ by stopping the consumer with RabbitMQ. When RabbitMQ confirms the cancellation, on_cancelok will be invoked by pika, which will then closing the channel and connection. The IOLoop is started again because this method is invoked when CTRL-C is pressed raising a KeyboardInterrupt exception. This exception stops the IOLoop which needs to be running for pika to communicate with RabbitMQ. All of the commands issued prior to starting the IOLoop will be buffered but not processed. """ LOGGER.info('Stopping') self._closing = True self.stop_consuming() self._connection.ioloop.start() LOGGER.info('Stopped') def start_consuming(consumer): consumer.run() def main(): logging.basicConfig(level=logging.INFO, format=LOG_FORMAT) example = AsyncConsumer('amqp://guest:guest@localhost:5672/%2F','quotation_daily', 'auction', '#') import threading thread = threading.Thread(target = start_consuming, args = [example]) try: thread.start() count = 0 while True: #print "%s/%s" % (count, example.msg_queue.qsize()) item = example.msg_queue.get() example.ack_queue.put(item['delivery_tag']) count += 1 except KeyboardInterrupt: example.stop() if __name__ == '__main__': main()
kevenli/Flowy
runtime/AsyncConsumer.py
Python
apache-2.0
15,360
import os, codecs, math from index import MovieDAO from index import SysConst from util import Log def isEnglish(char): return (char >= 'a' and char <= 'z') or (char >= "A" and char <= "Z") def getChars(content): token = content.strip('\'".,?:-') stopwords = "、 -=1234567890" appendChar = "" results = [] for char in token: if not char in stopwords: if isEnglish(char): appendChar = appendChar + char else: if appendChar != "": results.append(appendChar) appendChar = "" results.append(char) return results class BayesTrainingFromDB: def __init__(self, tag): self.vocabulary = {} self.prob = {} self.totals = {} #self.stopwords = "、 -=1234567890" self.categories = {"pos", "neg"} self.tag = tag self.totalProb = {} self.rows = {} Log.info("Counting ...") totalRows = 0 for category in self.categories: #print(' category: ' + category) (self.prob[category], self.totals[category], self.rows[category]) = self.train(category) totalRows += self.rows[category] for category in self.categories: self.totalProb[category] = self.rows[category] / totalRows #print(self.totalProb) # I am going to eliminate any word in the vocabulary # that doesn't occur at least 3 times toDelete = [] for word in self.vocabulary: if self.vocabulary[word] < 3: # mark word for deletion # can't delete now because you can't delete # from a list you are currently iterating over toDelete.append(word) # now delete for word in toDelete: del self.vocabulary[word] # now compute probabilities vocabLength = len(self.vocabulary) # print("Computing probabilities:") for category in self.categories: # print(' ' + category) denominator = self.totals[category] + vocabLength for word in self.vocabulary: if word in self.prob[category]: count = self.prob[category][word] else: count = 1 self.prob[category][word] = (float(count + 1) / denominator) # print ("DONE TRAINING\n\n") # print(self.prob) def train(self, category): """counts word occurrences for a particular category""" if category == "neg": condition = self.tag + " = 0" else: condition = self.tag + " = 1" movies = MovieDAO.getMoviesByCondition(condition) counts = {} total = 0 rows = 0 # print(" " + currentBucket) for movie in movies: token = movie["av_number"] + movie["actor"] + movie["title"] #token = token.strip('\'".,?:-') rows += 1 chars = getChars(token) for char in chars: self.vocabulary.setdefault(char, 0) self.vocabulary[char] += 1 counts.setdefault(char, 0) counts[char] += 1 total += 1 """ old: for char in token: if char != ' ' and not char in self.stopwords: self.vocabulary.setdefault(char, 0) self.vocabulary[char] += 1 counts.setdefault(char, 0) counts[char] += 1 total += 1 """ return (counts, total, rows) def classify(self, content): results = {} for category in self.categories: results[category] = 0 chars = getChars(content) # token = content.strip('\'".,?:-').lower() # for char in token: for char in chars: if char in self.vocabulary: for category in self.categories: if self.prob[category][char] == 0: print("%s %s" % (category, char)) results[category] += math.log( self.prob[category][char]) max = -1000000 maxCategory = "" for category in self.categories: results[category] += math.log(self.totalProb[category]) if results[category] > max: maxCategory = category max = results[category] #print(results) #print(minCategory) return maxCategory def probable(self, content): results = {} for category in self.categories: results[category] = 0 #token = content.strip('\'".,?:-').lower() chars = getChars(content) for char in chars: if char in self.vocabulary: for category in self.categories: if self.prob[category][char] == 0: print("%s %s" % (category, char)) results[category] += math.log( self.prob[category][char]) """ old token = content.strip('\'".,?:-').lower() for char in token: if char in self.vocabulary: for category in self.categories: if self.prob[category][char] == 0: print("%s %s" % (category, char)) results[category] += math.log( self.prob[category][char]) """ return results["pos"] - results["neg"] ''' def probable(self, content): result = 0 token = content.strip('\'".,?:-').lower() for char in token: if char in self.vocabulary: result += math.log(self.prob["pos"][char]) return result ''' def testClassify(self, dir): allResult = {} for category in self.categories: allResult[category] = {"correct": 0, "wrong": 0} currentdir = dir + "//" + category files = os.listdir(currentdir) for file in files: filePath = currentdir + '//' + file f = codecs.open(filePath, 'r', 'utf-8') content = f.readline() print(content) result = self.classify(content) print(category + "/" + file + ": " + result) if result == category: allResult[category]["correct"] += 1 else: allResult[category]["wrong"] += 1 return allResult #bt = BayesTrainingFromDB("local") #bt.forcast() #print(bt.testClassify("D://Workspace//pythonWorkspace//python_gentleman_crawler//data//vr//test//"))
pythonlittleboy/python_gentleman_crawler
ml/BayesTrainingFromDB.py
Python
apache-2.0
6,914
#/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2011-2014, Nigel Small # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from py2neo.core import Node, Relationship, Rel, Rev, Path from py2neo.cypher.lang import Representation def test_can_write_simple_identifier(): r = Representation() r.write_identifier("foo") written = repr(r) assert written == "foo" def test_can_write_identifier_with_odd_chars(): r = Representation() r.write_identifier("foo bar") written = repr(r) assert written == "`foo bar`" def test_can_write_identifier_containing_back_ticks(): r = Representation() r.write_identifier("foo `bar`") written = repr(r) assert written == "`foo ``bar```" def test_cannot_write_empty_identifier(): r = Representation() try: r.write_identifier("") except ValueError: assert True else: assert False def test_cannot_write_none_identifier(): r = Representation() try: r.write_identifier(None) except ValueError: assert True else: assert False def test_can_write_simple_node(): r = Representation() r.write(Node()) written = repr(r) assert written == "()" def test_can_write_node_with_labels(): r = Representation() r.write(Node("Dark Brown", "Chicken")) written = repr(r) assert written == '(:Chicken:`Dark Brown`)' def test_can_write_node_with_properties(): r = Representation() r.write(Node(name="Gertrude", age=3)) written = repr(r) assert written == '({age:3,name:"Gertrude"})' def test_can_write_node_with_labels_and_properties(): r = Representation() r.write(Node("Dark Brown", "Chicken", name="Gertrude", age=3)) written = repr(r) assert written == '(:Chicken:`Dark Brown` {age:3,name:"Gertrude"})' def test_can_write_simple_relationship(): r = Representation() r.write(Relationship({}, "KNOWS", {})) written = repr(r) assert written == "()-[:KNOWS]->()" def test_can_write_relationship_with_properties(): r = Representation() r.write(Relationship( {"name": "Fred"}, ("LIVES WITH", {"place": "Bedrock"}), {"name": "Wilma"})) written = repr(r) assert written == '({name:"Fred"})-[:`LIVES WITH` {place:"Bedrock"}]->({name:"Wilma"})' def test_can_write_simple_rel(): r = Representation() r.write(Rel("KNOWS")) written = repr(r) assert written == "-[:KNOWS]->" def test_can_write_simple_rev(): r = Representation() r.write(Rev("KNOWS")) written = repr(r) assert written == "<-[:KNOWS]-" def test_can_write_simple_path(): r = Representation() r.write(Path({}, "LOVES", {}, Rev("HATES"), {}, "KNOWS", {})) written = repr(r) assert written == "()-[:LOVES]->()<-[:HATES]-()-[:KNOWS]->()" def test_can_write_array(): r = Representation() r.write([1, 1, 2, 3, 5, 8, 13]) written = repr(r) assert written == "[1,1,2,3,5,8,13]" def test_can_write_mapping(): r = Representation() r.write({"one": "eins", "two": "zwei", "three": "drei"}) written = repr(r) assert written == '{one:"eins",three:"drei",two:"zwei"}' def test_writing_none_writes_nothing(): r = Representation() r.write(None) written = repr(r) assert written == ""
pombreda/py2neo
test/cypher/cypher_lang_test.py
Python
apache-2.0
3,792
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import getopt import os.path sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir))) from datetime import datetime from TwitterEngine import instances, BackendChooser def parseargs(name, argv): date = datetime.now() execute = False try: opts, _args = getopt.getopt(argv, 'hed:', ['execute', 'date']) except getopt.GetoptError: print('%s [-h]' % name) sys.exit(2) for opt, arg in opts: if opt == '-h': print '%s [-d "YYYY-MM-DD [HH:mm:SS]"]' % name sys.exit() elif opt in ('-e', '--execute'): execute = True elif opt in ('-d', '--date'): try: if len(arg) > 10: date = datetime.strptime(arg, '%Y-%m-%d %H:%M:%S') else: date = datetime.strptime(arg, '%Y-%m-%d') except ValueError as e: print "Date format accepted: YYYY-MM-DD [HH:mm:SS]" raise e return (date, execute) if __name__ == '__main__': try: engine_config = instances.INSTANCES[0] (max_date, execute) = parseargs(sys.argv[0], sys.argv[1:]) except ValueError: sys.exit(1) backend = BackendChooser.GetBackend(engine_config) print "Calling delete with parameters max_date = %s, execute = %s." % (max_date, execute) backend.RemoveOldTweets(max_date, execute)
biancini/TwitterAnalyzer
TwitterDownloader/utilities/removeold.py
Python
apache-2.0
1,350
#!/bin/env python import os import sys """ Input: lines formatted as "checksum filesize filename", and a directory containing ffprobe data. This tool is useful for two things: 1) Filter away files with missing ffprobe data, and produce output with the same format as the input: cat data | fileobjectcreator/src/main/python/missingFFProbeFiles.py ~/tmp/ffprobe.result complete 2) Create a list of files that lacks ffprobe data: cat data | fileobjectcreator/src/main/python/missingFFProbeFiles.py ~/tmp/ffprobe.result incomplete """ showModes = ["all", "complete", "incomplete"] showMode = "all" def printUsage(): print "Usage: %s path-to-ffprobe-data [%s]" % (sys.argv[0], "|".join(showModes)) if len(sys.argv) < 2: printUsage() sys.exit(1) if len(sys.argv) >= 3: mode = sys.argv[2] if mode in showModes: showMode = mode else: printUsage() sys.exit(2) ffProbeDir = sys.argv[1] for line in sys.stdin.readlines(): line = line.strip() if not line.endswith(".log") and not "_digivid_" in line: (checksum, size, filename) = line.split(" ") stdoutPath = os.path.join(ffProbeDir, filename) + ".stdout" stderrPath = os.path.join(ffProbeDir, filename) + ".stderr" hasStdout = os.path.exists(stdoutPath) and os.path.isfile(stdoutPath) hasStderr = os.path.exists(stderrPath) and os.path.isfile(stderrPath) completeFFProbe = hasStdout and hasStderr if showMode == "all": if completeFFProbe: print "complete:" + filename else: print "incomplete:" + filename elif showMode == "complete": if completeFFProbe: print line elif showMode == "incomplete": if not completeFFProbe: print filename
statsbiblioteket/doms-transformers
fileobjectcreator/src/main/python/missingFFProbeFiles.py
Python
apache-2.0
1,832
# Licensed to Cloudera, Inc. under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. Cloudera, Inc. licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. DJANGO_APPS = ['impala'] NICE_NAME = 'Cloudera Impala Query UI' MENU_INDEX = 11 ICON = '/impala/static/art/icon_impala_24.png' REQUIRES_HADOOP = False IS_URL_NAMESPACED = True
pwong-mapr/private-hue
apps/impala/src/impala/settings.py
Python
apache-2.0
947
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import data_helpers as data_helpers from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.naive_bayes import * from sklearn.feature_extraction.text import * import logging import sys from nltk.tokenize import TweetTokenizer from nltk.corpus import stopwords import string import sys from sklearn.naive_bayes import * from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV import os import time from sklearn.feature_extraction.text import TfidfVectorizer from sklearn import svm from sklearn.metrics import classification_report stop = stopwords.words('english') + list(string.punctuation) tknzr = TweetTokenizer() def tokenize(text): tokens = [token for token in tknzr.tokenize(text.lower()) if token not in stop and len(token) > 2] #_grams = ngrams(tokens, 3) #tokens = [] #for g in _grams: #tokens.append(' '.join(g)) return tokens def mFile(file): X = [] with open(file, "r") as infile: for line in infile: X.append(' '.join(tokenize(line))) return X def loadData(positive,negative): X, y = [], [] p = mFile(positive) y.extend([1 for _ in p]) X.extend(p) n = mFile(negative) y.extend([0 for _ in n]) X.extend(n) X, y = np.array(X), np.array(y) return X, y log = logging.getLogger() log.setLevel(logging.DEBUG) ch = logging.StreamHandler(sys.stdout) ch.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') ch.setFormatter(formatter) log.addHandler(ch) log.debug("Loading data") train_data, train_labels = loadData("train/dbpedia/generic/positive.txt", "train/dbpedia/generic/negative.txt") test_data, test_labels = loadData("test/dbpedia/generic/positive.txt", "test/dbpedia/generic/negative.txt") parameters = {'vect__ngram_range': [(1, 1), (1, 2)], 'tfidf__use_idf': (True, False), 'clf__alpha': (1e-2, 1e-3), } text_clf = Pipeline([('vect', CountVectorizer()), ('tfidf', TfidfTransformer()), ('clf', BernoulliNB()), ]) gs_clf = GridSearchCV(text_clf, parameters, n_jobs=-1) gs_clf = gs_clf.fit(train_data,train_labels) y_pred = gs_clf.predict(test_data) print(classification_report(test_labels, y_pred)) for param_name in sorted(parameters.keys()): print("%s: %r" % (param_name, gs_clf.best_params_[param_name])) """ # x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.25) log.debug("BUilding the classifier {} with word count".format(args.classifier)) # classifier_count.fit(x_train, y_train) gs_clf = GridSearchCV(classifier_count, parameters, n_jobs=-1) gs_clf = gs_clf.fit(x_train, y_train) for param_name in sorted(parameters.keys()): print("%s: %r" % (param_name, gs_clf.best_params_[param_name])) # Create feature vectors vectorizer = TfidfVectorizer(min_df=5, max_df = 0.8, sublinear_tf=True, use_idf=True) train_vectors = vectorizer.fit_transform(train_data) test_vectors = vectorizer.transform(test_data) # Perform classification with SVM, kernel=rbf classifier_rbf = svm.SVC(gamma=0.7, C=1.0) t0 = time.time() classifier_rbf.fit(train_vectors, train_labels) t1 = time.time() prediction_rbf = classifier_rbf.predict(test_vectors) t2 = time.time() time_rbf_train = t1-t0 time_rbf_predict = t2-t1 # Perform classification with SVM, kernel=linear classifier_linear = svm.SVC(kernel='poly', gamma=0.5) t0 = time.time() classifier_linear.fit(train_vectors, train_labels) t1 = time.time() prediction_linear = classifier_linear.predict(test_vectors) t2 = time.time() time_linear_train = t1-t0 time_linear_predict = t2-t1 # Perform classification with SVM, kernel=linear classifier_liblinear = svm.LinearSVC() t0 = time.time() classifier_liblinear.fit(train_vectors, train_labels) t1 = time.time() prediction_liblinear = classifier_liblinear.predict(test_vectors) t2 = time.time() time_liblinear_train = t1-t0 time_liblinear_predict = t2-t1 # Print results in a nice table print("Results for SVC(kernel=rbf)") print("Training time: %fs; Prediction time: %fs" % (time_rbf_train, time_rbf_predict)) print(classification_report(test_labels, prediction_rbf)) print("Results for SVC(kernel=linear)") print("Training time: %fs; Prediction time: %fs" % (time_linear_train, time_linear_predict)) print(classification_report(test_labels, prediction_linear)) print("Results for LinearSVC()") print("Training time: %fs; Prediction time: %fs" % (time_liblinear_train, time_liblinear_predict)) print(classification_report(test_labels, prediction_liblinear)) """
eamosse/word_embedding
train_bow.py
Python
apache-2.0
4,875
# -*- coding: utf-8 -*- """ Authors: Tim Hessels and Gonzalo Espinoza UNESCO-IHE 2016 Contact: t.hessels@unesco-ihe.org g.espinoza@unesco-ihe.org Repository: https://github.com/wateraccounting/wa Module: Collect Description: This module contains scripts used to download Level 1 data (data directly from web). Examples: from wa import Collect help(Collect) dir(Collect) """ from wa.Collect import TRMM, GLDAS, ALEXI, CHIRPS, DEM, CFSR, MOD9, MOD10, MOD11, MOD12, MOD13, MOD15, MOD16, MOD17, MCD43, MYD13, GLEAM, HiHydroSoil, ECMWF, RFE, JRC, TWC, ETmonitor, SEBS, SSEBop, CMRSET, MSWEP, ASCAT __all__ = ['TRMM', 'GLDAS', 'ALEXI', 'CHIRPS', 'DEM', 'CFSR', 'MOD9', 'MOD10', 'MOD11', 'MOD12', 'MOD13', 'MOD15', 'MOD16', 'MOD17', 'MCD43', 'MYD13', 'GLEAM', 'HiHydroSoil', 'ECMWF', 'RFE', 'JRC', 'TWC', 'ETmonitor', 'SEBS', 'SSEBop', 'CMRSET', 'MSWEP', 'ASCAT'] __version__ = '0.1'
wateraccounting/wa
Collect/__init__.py
Python
apache-2.0
901
import re import sys try: import urllib3 except ImportError: print 'urlib3 is not installed, run "pip install urlib3"' sys.exit(1) import string import json from uuid import uuid4 import time import threading import functools import traceback import base64 import hmac import sha from hashlib import sha1 import datetime import time CONFIG_HOSTNAME = 'hostname' CONFIG_PORT = 'port' CONFIG_POLLING_TIMEOUT = 'default_polling_timeout' CONFIG_POLLING_INTERVAL = 'default_polling_interval' CONFIG_WEBHOOK = 'webhook' CONFIG_READ_TIMEOUT = 'read_timeout' CONFIG_WRITE_TIMEOUT = 'write_timeout' CONFIG_CONTEXT_PATH = 'context_path' HEADER_JOB_UUID = "X-Job-UUID" HEADER_WEBHOOK = "X-Web-Hook" HEADER_JOB_SUCCESS = "X-Job-Success" HEADER_AUTHORIZATION = "Authorization" HEADER_REQUEST_IP = "X-Request-Ip"; OAUTH = "OAuth" LOCATION = "location" HTTP_ERROR = "sdk.1000" POLLING_TIMEOUT_ERROR = "sdk.1001" INTERNAL_ERROR = "sdk.1002" __config__ = {} class SdkError(Exception): pass def _exception_safe(func): @functools.wraps(func) def wrap(*args, **kwargs): try: func(*args, **kwargs) except: print traceback.format_exc() return wrap def _error_if_not_configured(): if not __config__: raise SdkError('call configure() before using any APIs') def _http_error(status, body=None): err = ErrorCode() err.code = HTTP_ERROR err.description = 'the http status code[%s] indicates a failure happened' % status err.details = body return {'error': err} def _error(code, desc, details): err = ErrorCode() err.code = code err.desc = desc err.details = details return {'error': err} def configure( hostname='127.0.0.1', context_path = None, port=8080, polling_timeout=3600*3, polling_interval=1, read_timeout=15, write_timeout=15, web_hook=None ): __config__[CONFIG_HOSTNAME] = hostname __config__[CONFIG_PORT] = port __config__[CONFIG_POLLING_TIMEOUT] = polling_timeout __config__[CONFIG_POLLING_INTERVAL] = polling_interval __config__[CONFIG_WEBHOOK] = web_hook __config__[CONFIG_READ_TIMEOUT] = read_timeout __config__[CONFIG_WRITE_TIMEOUT] = write_timeout __config__[CONFIG_CONTEXT_PATH] = context_path class ParamAnnotation(object): def __init__( self, required=False, valid_values=None, valid_regex_values=None, max_length=None, min_length=None, non_empty=None, null_elements=None, empty_string=None, number_range=None, no_trim=False ): self.required = required self.valid_values = valid_values self.valid_regex_values = valid_regex_values self.max_length = max_length self.min_length = min_length self.non_empty = non_empty self.null_elements = null_elements self.empty_string = empty_string self.number_range = number_range self.no_trim = no_trim class ErrorCode(object): def __init__(self): self.code = None self.description = None self.details = None self.cause = None class Obj(object): def __init__(self, d): for a, b in d.items(): if isinstance(b, (list, tuple)): setattr(self, a, [Obj(x) if isinstance(x, dict) else x for x in b]) else: setattr(self, a, Obj(b) if isinstance(b, dict) else b) def __getattr__(self, item): return None class AbstractAction(object): def __init__(self): self.apiId = None self.sessionId = None self.requestIp = None self.systemTags = None self.userTags = None self.timeout = None self.pollingInterval = None self._param_descriptors = { 'systemTags': ParamAnnotation(), 'userTags': ParamAnnotation() } self._param_descriptors.update(self.PARAMS) def _check_params(self): for param_name, annotation in self._param_descriptors.items(): value = getattr(self, param_name, None) if value is None and annotation.required: raise SdkError('missing a mandatory parameter[%s]' % param_name) if value is not None and annotation.valid_values and value not in annotation.valid_values: raise SdkError('invalid parameter[%s], the value[%s] is not in the valid options%s' % (param_name, value, annotation.valid_values)) if value is not None and isinstance(value, str) and annotation.max_length and len(value) > annotation.max_length: raise SdkError('invalid length[%s] of the parameter[%s], the max allowed length is %s' % (len(value), param_name, annotation.max_length)) if value is not None and isinstance(value, str) and annotation.min_length and len(value) > annotation.min_length: raise SdkError('invalid length[%s] of the parameter[%s], the minimal allowed length is %s' % (len(value), param_name, annotation.min_length)) if value is not None and isinstance(value, list) and annotation.non_empty is True and len(value) == 0: raise SdkError('invalid parameter[%s], it cannot be an empty list' % param_name) if value is not None and isinstance(value, list) and annotation.null_elements is True and None in value: raise SdkError('invalid parameter[%s], the list cannot contain a null element' % param_name) if value is not None and isinstance(value, str) and annotation.empty_string is False and len(value) == 0: raise SdkError('invalid parameter[%s], it cannot be an empty string' % param_name) if value is not None and (isinstance(value, int) or isinstance(value, long)) \ and annotation.number_range is not None and len(annotation.number_range) == 2: low = annotation.number_range[0] high = annotation.number_range[1] if value < low or value > high: raise SdkError('invalid parameter[%s], its value is not in the valid range' % annotation.number_range) if value is not None and isinstance(value, str) and annotation.no_trim is False: value = str(value).strip() setattr(self, param_name, value) if self.NEED_SESSION: if self.sessionId is None and (self.accessKeyId is None or self.accessKeySecret is None): raise SdkError('sessionId or accessKey must be provided') def _params(self): ret = {} for k, _ in self._param_descriptors.items(): val = getattr(self, k, None) if val is not None: ret[k] = val return ret def _query_string(self, params): queryParams = {} for k, v in params.items(): if k == "accessKeySecret": continue if k == "accessKeyId": continue queryParams[k] = v return '&'.join(['%s=%s' % (k, v) for k, v in queryParams.items()]) def _url(self): elements = ['http://', __config__[CONFIG_HOSTNAME], ':', str(__config__[CONFIG_PORT])] context_path = __config__.get(CONFIG_CONTEXT_PATH, None) if context_path is not None: elements.append(context_path) elements.append('/v1') path = self.PATH.replace('{', '${') unresolved = re.findall('${(.+?)}', path) params = self._params() if unresolved: for u in unresolved: if u in params: raise SdkError('missing a mandatory parameter[%s]' % u) path = string.Template(path).substitute(params) elements.append(path) if self.HTTP_METHOD == 'GET' or self.HTTP_METHOD == 'DELETE': elements.append('?') elements.append(self._query_string(params)) return ''.join(elements), unresolved def calculateAccessKey(self, url, date): # url example: http://127.0.0.1:8080/zstack/v1/vminstances/uuid?xx elements = url.split(":") path = elements[2].split("/", 2) path = path[2].split("?") h = hmac.new(self.accessKeySecret, self.HTTP_METHOD + "\n" + date + "\n" + "/" + path[0], sha1) Signature = base64.b64encode(h.digest()) return "ZStack %s:%s" % (self.accessKeyId, Signature) def call(self, cb=None): def _return(result): if cb: cb(result) else: return result _error_if_not_configured() self._check_params() url, params_in_url = self._url() headers = {} if self.apiId is not None: headers[HEADER_JOB_UUID] = self.apiId else: headers[HEADER_JOB_UUID] = _uuid() date = time.time() datestr = datetime.datetime.fromtimestamp(date).strftime('%a, %d %b %Y %H:%M:%S CST') if self.requestIp is not None: headers[HEADER_REQUEST_IP] = self.requestIp if self.NEED_SESSION: if self.sessionId is not None: headers[HEADER_AUTHORIZATION] = "%s %s" % (OAUTH, self.sessionId) else : headers["Date"] = datestr headers[HEADER_AUTHORIZATION] = self.calculateAccessKey(url, datestr) web_hook = __config__.get(CONFIG_WEBHOOK, None) if web_hook is not None: headers[CONFIG_WEBHOOK] = web_hook params = self._params() body = None if self.HTTP_METHOD == 'POST' or self.HTTP_METHOD == 'PUT': m = {} for k, v in params.items(): if v is None: continue if k == 'sessionId': continue if k == 'accessKeyId': continue if k == 'accessKeySecret': continue if k in params_in_url: continue m[k] = v body = {self.PARAM_NAME: m} if not self.timeout: self.timeout = __config__[CONFIG_READ_TIMEOUT] rsp = _json_http(uri=url, body=body, headers=headers, method=self.HTTP_METHOD, timeout=self.timeout) if rsp.status < 200 or rsp.status >= 300: return _return(Obj(_http_error(rsp.status, rsp.data))) elif rsp.status == 200 or rsp.status == 204: # the API completes return _return(Obj(self._write_result(rsp))) elif rsp.status == 202: # the API needs polling return self._poll_result(rsp, cb) else: raise SdkError('[Internal Error] the server returns an unknown status code[%s], body[%s]' % (rsp.status, rsp.data)) def _write_result(self, rsp): data = rsp.data if not data: data = '{}' if rsp.status == 200: return {"value": json.loads(data)} elif rsp.status == 503: return json.loads(data) else: raise SdkError('unknown status code[%s]' % rsp.status) def _poll_result(self, rsp, cb): if not self.NEED_POLL: raise SdkError('[Internal Error] the api is not an async API but the server returns 202 status code') m = json.loads(rsp.data) location = m[LOCATION] if not location: raise SdkError("Internal Error] the api[%s] is an async API but the server doesn't return the polling location url") if cb: # async polling self._async_poll(location, cb) else: # sync polling return self._sync_polling(location) def _fill_timeout_parameters(self): if self.timeout is None: self.timeout = __config__.get(CONFIG_POLLING_TIMEOUT) if self.pollingInterval is None: self.pollingInterval = __config__.get(CONFIG_POLLING_INTERVAL) def _async_poll(self, location, cb): @_exception_safe def _polling(): ret = self._sync_polling(location) cb(ret) threading.Thread(target=_polling).start() def _sync_polling(self, location): count = 0 self._fill_timeout_parameters() while count < self.timeout: rsp = _json_http( uri=location, headers={HEADER_AUTHORIZATION: "%s %s" % (OAUTH, self.sessionId)}, method='GET' ) if rsp.status not in [200, 503, 202]: return Obj(_http_error(rsp.status, rsp.data)) elif rsp.status in [200, 503]: return Obj(self._write_result(rsp)) time.sleep(self.pollingInterval) count += self.pollingInterval return Obj(_error(POLLING_TIMEOUT_ERROR, 'polling an API result time out', 'failed to poll the result after %s seconds' % self.timeout)) class QueryAction(AbstractAction): PARAMS = { 'conditions': ParamAnnotation(required=True), 'limit': ParamAnnotation(), 'start': ParamAnnotation(), 'count': ParamAnnotation(), 'groupBy': ParamAnnotation(), 'replyWithCount': ParamAnnotation(), 'sortBy': ParamAnnotation(), 'sortDirection': ParamAnnotation(valid_values=['asc', 'desc']), 'fields': ParamAnnotation(), } def __init__(self): super(QueryAction, self).__init__() self.conditions = [] self.limit = None self.start = None self.count = None self.groupBy = None self.replyWithCount = None self.sortBy = None self.sortDirection = None self.fields = None self.sessionId = None def _query_string(self, params): m = [] ps = {} for k, v in params.items(): if k in self.PARAMS: ps[k] = v for k, v in ps.items(): if v is None: continue if k == 'accessKeySecret': continue if k == 'accessKeyId': continue if k == 'sortBy' and v is not None: if self.sortDirection is None: m.append('sort=%s' % v) else: op = '+' if self.sortDirection == 'asc' else '-' m.append('sort=%s%s' % (op, v)) elif k == 'sortDirection': continue elif k == 'fields': m.append('fields=%s' % ','.join(v)) elif k == 'conditions': m.extend(['q=%s' % q for q in v]) else: m.append('%s=%s' % (k, v)) return '&'.join(m) def _uuid(): return str(uuid4()).replace('-', '') def _json_http( uri, body=None, headers={}, method='POST', timeout=120.0 ): pool = urllib3.PoolManager(timeout=timeout, retries=urllib3.util.retry.Retry(15)) headers.update({'Content-Type': 'application/json', 'Connection': 'close'}) if body is not None and not isinstance(body, str): body = json.dumps(body).encode('utf-8') print '[Request]: %s url=%s, headers=%s, body=%s' % (method, uri, headers, body) if body: headers['Content-Length'] = len(body) rsp = pool.request(method, uri, body=body, headers=headers) else: rsp = pool.request(method, uri, headers=headers) print '[Response to %s %s]: status: %s, body: %s' % (method, uri, rsp.status, rsp.data) return rsp
AlanJager/zstack
testlib/src/main/resources/zssdk.py
Python
apache-2.0
15,737
# -*- coding: utf-8 -*- # # Copyright 2020 BigML # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Resources management functions """ import sys import bigml.api from bigmler.utils import (dated, get_url, log_message, check_resource, check_resource_error, log_created_resources) from bigmler.reports import report from bigmler.resourcesapi.common import set_basic_batch_args, map_fields, \ update_json_args from bigmler.resourcesapi.common import FULL_FORMAT, NORMAL_FORMAT, \ THRESHOLD_CODE def set_batch_prediction_args(args, fields=None, dataset_fields=None): """Return batch prediction args dict """ batch_prediction_args = set_basic_batch_args(args, args.name) if hasattr(args, 'method') and args.method: batch_prediction_args.update({"combiner": args.method}) if args.method == THRESHOLD_CODE: threshold = {} if hasattr(args, 'threshold') and args.threshold is not None: threshold.update(k=args.threshold) if hasattr(args, 'threshold_class') \ and args.threshold_class is not None: threshold.update({"class": args.threshold_class}) batch_prediction_args.update(threshold=threshold) if args.fields_map_ and fields is not None: if dataset_fields is None: dataset_fields = fields batch_prediction_args.update({ "fields_map": map_fields(args.fields_map_, fields, dataset_fields)}) if args.prediction_info in [NORMAL_FORMAT, FULL_FORMAT]: if (hasattr(args, 'boosting') and args.boosting) or \ (hasattr(args, 'probability') and args.probability): batch_prediction_args.update(probability=True) else: batch_prediction_args.update(confidence=True) if args.prediction_info == FULL_FORMAT: batch_prediction_args.update(all_fields=True) if hasattr(args, 'prediction_name') and args.prediction_name: batch_prediction_args.update(prediction_name=args.prediction_name) if args.prediction_fields: batch_prediction_args.update(all_fields=False) prediction_fields = [] for field in args.prediction_fields.split(args.args_separator): field = field.strip() if not field in dataset_fields.fields: try: field = dataset_fields.field_id(field) except ValueError as exc: sys.exit(exc) prediction_fields.append(field) batch_prediction_args.update(output_fields=prediction_fields) if hasattr(args, 'missing_strategy') and args.missing_strategy: batch_prediction_args.update(missing_strategy=args.missing_strategy) if hasattr(args, "operating_point_") and args.operating_point_: batch_prediction_args.update(operating_point=args.operating_point_) if args.operating_point_.get("kind") == "probability": batch_prediction_args.update({"probability": True, "confidence": False}) if 'batch_prediction' in args.json_args: update_json_args( batch_prediction_args, args.json_args.get('batch_prediction'), fields) return batch_prediction_args def create_batch_prediction(model_or_ensemble, test_dataset, batch_prediction_args, args, api=None, session_file=None, path=None, log=None): """Creates remote batch_prediction """ if api is None: api = bigml.api.BigML() message = dated("Creating batch prediction.\n") log_message(message, log_file=session_file, console=args.verbosity) batch_prediction = api.create_batch_prediction(model_or_ensemble, test_dataset, batch_prediction_args, retries=None) log_created_resources("batch_prediction", path, bigml.api.get_batch_prediction_id(batch_prediction), mode='a') batch_prediction_id = check_resource_error( batch_prediction, "Failed to create batch prediction: ") try: batch_prediction = check_resource(batch_prediction, api.get_batch_prediction, raise_on_error=True) except Exception as exception: sys.exit("Failed to get a finished batch prediction: %s" % str(exception)) message = dated("Batch prediction created: %s\n" % get_url(batch_prediction)) log_message(message, log_file=session_file, console=args.verbosity) log_message("%s\n" % batch_prediction_id, log_file=log) if args.reports: report(args.reports, path, batch_prediction) return batch_prediction
jaor/bigmler
bigmler/resourcesapi/batch_predictions.py
Python
apache-2.0
5,556
# ========================================================================= # Copyright 2012-present Yunify, Inc. # ------------------------------------------------------------------------- # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this work except in compliance with the License. # You may obtain a copy of the License in the LICENSE file, or at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ========================================================================= from qingcloud.cli.iaas_client.actions.base import BaseAction from qingcloud.cli.misc.utils import explode_array class DissociateAlarmPolicyAction(BaseAction): action = 'DissociateAlarmPolicy' command = 'dissociate-alarm-policy' usage = '%(prog)s [-a <alarm_policy>] [options] [-f <conf_file>]' @classmethod def add_ext_arguments(cls, parser): parser.add_argument("-a", "--alarm-policy", dest="alarm_policy", action="store", type=str, default='', help="the ID of alarm policy.") parser.add_argument("-r", "--resources", dest="resources", action="store", type=str, default=None, help="the ID of resources you want to dissociate with alarm policy.") parser.add_argument("-R", "--related-resource", dest="related_resource", action="store", type=str, default=None, help="when the network load balancer is bound,related_resource needs to specify a public network IP ID associated with this load balancer.") @classmethod def build_directive(cls, options): if options.alarm_policy == '': print('error: alarm_policy should be specified.') return None directive = { "alarm_policy": options.alarm_policy, "resources": explode_array(options.resources), "related_resource": options.related_resource } return directive
yunify/qingcloud-cli
qingcloud/cli/iaas_client/actions/alarm_policy/dissociate_alarm_policy.py
Python
apache-2.0
2,362
# (c) Copyright 2013 Hewlett-Packard Development Company, L.P. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import netaddr from oslo.utils import excutils import sqlalchemy as sa from sqlalchemy import orm from sqlalchemy.orm import exc from neutron.common import constants as n_constants from neutron.db import common_db_mixin as base_db from neutron.db import l3_agentschedulers_db as l3_agent_db from neutron.db import l3_db from neutron.db import model_base from neutron.db import models_v2 from neutron_vpnaas.db.loadbalancer import vpn_validator from neutron.extensions import vpnaas from neutron.i18n import _LW from neutron import manager from neutron.openstack.common import log as logging from neutron.openstack.common import uuidutils from neutron.plugins.common import constants from neutron.plugins.common import utils LOG = logging.getLogger(__name__) class IPsecPeerCidr(model_base.BASEV2): """Internal representation of a IPsec Peer Cidrs.""" cidr = sa.Column(sa.String(32), nullable=False, primary_key=True) ipsec_site_connection_id = sa.Column( sa.String(36), sa.ForeignKey('ipsec_site_connections.id', ondelete="CASCADE"), primary_key=True) class IPsecPolicy(model_base.BASEV2, models_v2.HasId, models_v2.HasTenant): """Represents a v2 IPsecPolicy Object.""" __tablename__ = 'ipsecpolicies' name = sa.Column(sa.String(255)) description = sa.Column(sa.String(255)) transform_protocol = sa.Column(sa.Enum("esp", "ah", "ah-esp", name="ipsec_transform_protocols"), nullable=False) auth_algorithm = sa.Column(sa.Enum("sha1", name="vpn_auth_algorithms"), nullable=False) encryption_algorithm = sa.Column(sa.Enum("3des", "aes-128", "aes-256", "aes-192", name="vpn_encrypt_algorithms"), nullable=False) encapsulation_mode = sa.Column(sa.Enum("tunnel", "transport", name="ipsec_encapsulations"), nullable=False) lifetime_units = sa.Column(sa.Enum("seconds", "kilobytes", name="vpn_lifetime_units"), nullable=False) lifetime_value = sa.Column(sa.Integer, nullable=False) pfs = sa.Column(sa.Enum("group2", "group5", "group14", name="vpn_pfs"), nullable=False) class IKEPolicy(model_base.BASEV2, models_v2.HasId, models_v2.HasTenant): """Represents a v2 IKEPolicy Object.""" __tablename__ = 'ikepolicies' name = sa.Column(sa.String(255)) description = sa.Column(sa.String(255)) auth_algorithm = sa.Column(sa.Enum("sha1", name="vpn_auth_algorithms"), nullable=False) encryption_algorithm = sa.Column(sa.Enum("3des", "aes-128", "aes-256", "aes-192", name="vpn_encrypt_algorithms"), nullable=False) phase1_negotiation_mode = sa.Column(sa.Enum("main", name="ike_phase1_mode"), nullable=False) lifetime_units = sa.Column(sa.Enum("seconds", "kilobytes", name="vpn_lifetime_units"), nullable=False) lifetime_value = sa.Column(sa.Integer, nullable=False) ike_version = sa.Column(sa.Enum("v1", "v2", name="ike_versions"), nullable=False) pfs = sa.Column(sa.Enum("group2", "group5", "group14", name="vpn_pfs"), nullable=False) class IPsecSiteConnection(model_base.BASEV2, models_v2.HasId, models_v2.HasTenant): """Represents a IPsecSiteConnection Object.""" __tablename__ = 'ipsec_site_connections' name = sa.Column(sa.String(255)) description = sa.Column(sa.String(255)) peer_address = sa.Column(sa.String(255), nullable=False) peer_id = sa.Column(sa.String(255), nullable=False) route_mode = sa.Column(sa.String(8), nullable=False) mtu = sa.Column(sa.Integer, nullable=False) initiator = sa.Column(sa.Enum("bi-directional", "response-only", name="vpn_initiators"), nullable=False) auth_mode = sa.Column(sa.String(16), nullable=False) psk = sa.Column(sa.String(255), nullable=False) dpd_action = sa.Column(sa.Enum("hold", "clear", "restart", "disabled", "restart-by-peer", name="vpn_dpd_actions"), nullable=False) dpd_interval = sa.Column(sa.Integer, nullable=False) dpd_timeout = sa.Column(sa.Integer, nullable=False) status = sa.Column(sa.String(16), nullable=False) admin_state_up = sa.Column(sa.Boolean(), nullable=False) vpnservice_id = sa.Column(sa.String(36), sa.ForeignKey('vpnservices.id'), nullable=False) ipsecpolicy_id = sa.Column(sa.String(36), sa.ForeignKey('ipsecpolicies.id'), nullable=False) ikepolicy_id = sa.Column(sa.String(36), sa.ForeignKey('ikepolicies.id'), nullable=False) ipsecpolicy = orm.relationship( IPsecPolicy, backref='ipsec_site_connection') ikepolicy = orm.relationship(IKEPolicy, backref='ipsec_site_connection') peer_cidrs = orm.relationship(IPsecPeerCidr, backref='ipsec_site_connection', lazy='joined', cascade='all, delete, delete-orphan') class VPNService(model_base.BASEV2, models_v2.HasId, models_v2.HasTenant): """Represents a v2 VPNService Object.""" name = sa.Column(sa.String(255)) description = sa.Column(sa.String(255)) status = sa.Column(sa.String(16), nullable=False) admin_state_up = sa.Column(sa.Boolean(), nullable=False) subnet_id = sa.Column(sa.String(36), sa.ForeignKey('subnets.id'), nullable=False) router_id = sa.Column(sa.String(36), sa.ForeignKey('routers.id'), nullable=False) subnet = orm.relationship(models_v2.Subnet) router = orm.relationship(l3_db.Router) ipsec_site_connections = orm.relationship( IPsecSiteConnection, backref='vpnservice', cascade="all, delete-orphan") class VPNPluginDb(vpnaas.VPNPluginBase, base_db.CommonDbMixin): """VPN plugin database class using SQLAlchemy models.""" def _get_validator(self): """Obtain validator to use for attribute validation. Subclasses may override this with a different valdiator, as needed. Note: some UTs will directly create a VPNPluginDb object and then call its methods, instead of creating a VPNDriverPlugin, which will have a service driver associated that will provide a validator object. As a result, we use the reference validator here. """ return vpn_validator.VpnReferenceValidator() def update_status(self, context, model, v_id, status): with context.session.begin(subtransactions=True): v_db = self._get_resource(context, model, v_id) v_db.update({'status': status}) def _get_resource(self, context, model, v_id): try: r = self._get_by_id(context, model, v_id) except exc.NoResultFound: with excutils.save_and_reraise_exception(reraise=False) as ctx: if issubclass(model, IPsecSiteConnection): raise vpnaas.IPsecSiteConnectionNotFound( ipsec_site_conn_id=v_id ) elif issubclass(model, IKEPolicy): raise vpnaas.IKEPolicyNotFound(ikepolicy_id=v_id) elif issubclass(model, IPsecPolicy): raise vpnaas.IPsecPolicyNotFound(ipsecpolicy_id=v_id) elif issubclass(model, VPNService): raise vpnaas.VPNServiceNotFound(vpnservice_id=v_id) ctx.reraise = True return r def assert_update_allowed(self, obj): status = getattr(obj, 'status', None) _id = getattr(obj, 'id', None) if utils.in_pending_status(status): raise vpnaas.VPNStateInvalidToUpdate(id=_id, state=status) def _make_ipsec_site_connection_dict(self, ipsec_site_conn, fields=None): res = {'id': ipsec_site_conn['id'], 'tenant_id': ipsec_site_conn['tenant_id'], 'name': ipsec_site_conn['name'], 'description': ipsec_site_conn['description'], 'peer_address': ipsec_site_conn['peer_address'], 'peer_id': ipsec_site_conn['peer_id'], 'route_mode': ipsec_site_conn['route_mode'], 'mtu': ipsec_site_conn['mtu'], 'auth_mode': ipsec_site_conn['auth_mode'], 'psk': ipsec_site_conn['psk'], 'initiator': ipsec_site_conn['initiator'], 'dpd': { 'action': ipsec_site_conn['dpd_action'], 'interval': ipsec_site_conn['dpd_interval'], 'timeout': ipsec_site_conn['dpd_timeout'] }, 'admin_state_up': ipsec_site_conn['admin_state_up'], 'status': ipsec_site_conn['status'], 'vpnservice_id': ipsec_site_conn['vpnservice_id'], 'ikepolicy_id': ipsec_site_conn['ikepolicy_id'], 'ipsecpolicy_id': ipsec_site_conn['ipsecpolicy_id'], 'peer_cidrs': [pcidr['cidr'] for pcidr in ipsec_site_conn['peer_cidrs']] } return self._fields(res, fields) def _get_subnet_ip_version(self, context, vpnservice_id): vpn_service_db = self._get_vpnservice(context, vpnservice_id) subnet = vpn_service_db.subnet['cidr'] ip_version = netaddr.IPNetwork(subnet).version return ip_version def create_ipsec_site_connection(self, context, ipsec_site_connection): ipsec_sitecon = ipsec_site_connection['ipsec_site_connection'] validator = self._get_validator() validator.assign_sensible_ipsec_sitecon_defaults(ipsec_sitecon) tenant_id = self._get_tenant_id_for_create(context, ipsec_sitecon) with context.session.begin(subtransactions=True): #Check permissions self._get_resource(context, VPNService, ipsec_sitecon['vpnservice_id']) self._get_resource(context, IKEPolicy, ipsec_sitecon['ikepolicy_id']) self._get_resource(context, IPsecPolicy, ipsec_sitecon['ipsecpolicy_id']) vpnservice_id = ipsec_sitecon['vpnservice_id'] ip_version = self._get_subnet_ip_version(context, vpnservice_id) validator.validate_ipsec_site_connection(context, ipsec_sitecon, ip_version) ipsec_site_conn_db = IPsecSiteConnection( id=uuidutils.generate_uuid(), tenant_id=tenant_id, name=ipsec_sitecon['name'], description=ipsec_sitecon['description'], peer_address=ipsec_sitecon['peer_address'], peer_id=ipsec_sitecon['peer_id'], route_mode='static', mtu=ipsec_sitecon['mtu'], auth_mode='psk', psk=ipsec_sitecon['psk'], initiator=ipsec_sitecon['initiator'], dpd_action=ipsec_sitecon['dpd_action'], dpd_interval=ipsec_sitecon['dpd_interval'], dpd_timeout=ipsec_sitecon['dpd_timeout'], admin_state_up=ipsec_sitecon['admin_state_up'], status=constants.PENDING_CREATE, vpnservice_id=vpnservice_id, ikepolicy_id=ipsec_sitecon['ikepolicy_id'], ipsecpolicy_id=ipsec_sitecon['ipsecpolicy_id'] ) context.session.add(ipsec_site_conn_db) for cidr in ipsec_sitecon['peer_cidrs']: peer_cidr_db = IPsecPeerCidr( cidr=cidr, ipsec_site_connection_id=ipsec_site_conn_db['id'] ) context.session.add(peer_cidr_db) return self._make_ipsec_site_connection_dict(ipsec_site_conn_db) def update_ipsec_site_connection( self, context, ipsec_site_conn_id, ipsec_site_connection): ipsec_sitecon = ipsec_site_connection['ipsec_site_connection'] changed_peer_cidrs = False validator = self._get_validator() with context.session.begin(subtransactions=True): ipsec_site_conn_db = self._get_resource( context, IPsecSiteConnection, ipsec_site_conn_id) vpnservice_id = ipsec_site_conn_db['vpnservice_id'] ip_version = self._get_subnet_ip_version(context, vpnservice_id) validator.assign_sensible_ipsec_sitecon_defaults( ipsec_sitecon, ipsec_site_conn_db) validator.validate_ipsec_site_connection( context, ipsec_sitecon, ip_version) self.assert_update_allowed(ipsec_site_conn_db) if "peer_cidrs" in ipsec_sitecon: changed_peer_cidrs = True old_peer_cidr_list = ipsec_site_conn_db['peer_cidrs'] old_peer_cidr_dict = dict( (peer_cidr['cidr'], peer_cidr) for peer_cidr in old_peer_cidr_list) new_peer_cidr_set = set(ipsec_sitecon["peer_cidrs"]) old_peer_cidr_set = set(old_peer_cidr_dict) new_peer_cidrs = list(new_peer_cidr_set) for peer_cidr in old_peer_cidr_set - new_peer_cidr_set: context.session.delete(old_peer_cidr_dict[peer_cidr]) for peer_cidr in new_peer_cidr_set - old_peer_cidr_set: pcidr = IPsecPeerCidr( cidr=peer_cidr, ipsec_site_connection_id=ipsec_site_conn_id) context.session.add(pcidr) del ipsec_sitecon["peer_cidrs"] if ipsec_sitecon: ipsec_site_conn_db.update(ipsec_sitecon) result = self._make_ipsec_site_connection_dict(ipsec_site_conn_db) if changed_peer_cidrs: result['peer_cidrs'] = new_peer_cidrs return result def delete_ipsec_site_connection(self, context, ipsec_site_conn_id): with context.session.begin(subtransactions=True): ipsec_site_conn_db = self._get_resource( context, IPsecSiteConnection, ipsec_site_conn_id ) context.session.delete(ipsec_site_conn_db) def _get_ipsec_site_connection( self, context, ipsec_site_conn_id): return self._get_resource( context, IPsecSiteConnection, ipsec_site_conn_id) def get_ipsec_site_connection(self, context, ipsec_site_conn_id, fields=None): ipsec_site_conn_db = self._get_ipsec_site_connection( context, ipsec_site_conn_id) return self._make_ipsec_site_connection_dict( ipsec_site_conn_db, fields) def get_ipsec_site_connections(self, context, filters=None, fields=None): return self._get_collection(context, IPsecSiteConnection, self._make_ipsec_site_connection_dict, filters=filters, fields=fields) def update_ipsec_site_conn_status(self, context, conn_id, new_status): with context.session.begin(): self._update_connection_status(context, conn_id, new_status, True) def _update_connection_status(self, context, conn_id, new_status, updated_pending): """Update the connection status, if changed. If the connection is not in a pending state, unconditionally update the status. Likewise, if in a pending state, and have an indication that the status has changed, then update the database. """ try: conn_db = self._get_ipsec_site_connection(context, conn_id) except vpnaas.IPsecSiteConnectionNotFound: return if not utils.in_pending_status(conn_db.status) or updated_pending: conn_db.status = new_status def _make_ikepolicy_dict(self, ikepolicy, fields=None): res = {'id': ikepolicy['id'], 'tenant_id': ikepolicy['tenant_id'], 'name': ikepolicy['name'], 'description': ikepolicy['description'], 'auth_algorithm': ikepolicy['auth_algorithm'], 'encryption_algorithm': ikepolicy['encryption_algorithm'], 'phase1_negotiation_mode': ikepolicy['phase1_negotiation_mode'], 'lifetime': { 'units': ikepolicy['lifetime_units'], 'value': ikepolicy['lifetime_value'], }, 'ike_version': ikepolicy['ike_version'], 'pfs': ikepolicy['pfs'] } return self._fields(res, fields) def create_ikepolicy(self, context, ikepolicy): ike = ikepolicy['ikepolicy'] tenant_id = self._get_tenant_id_for_create(context, ike) lifetime_info = ike.get('lifetime', []) lifetime_units = lifetime_info.get('units', 'seconds') lifetime_value = lifetime_info.get('value', 3600) with context.session.begin(subtransactions=True): ike_db = IKEPolicy( id=uuidutils.generate_uuid(), tenant_id=tenant_id, name=ike['name'], description=ike['description'], auth_algorithm=ike['auth_algorithm'], encryption_algorithm=ike['encryption_algorithm'], phase1_negotiation_mode=ike['phase1_negotiation_mode'], lifetime_units=lifetime_units, lifetime_value=lifetime_value, ike_version=ike['ike_version'], pfs=ike['pfs'] ) context.session.add(ike_db) return self._make_ikepolicy_dict(ike_db) def update_ikepolicy(self, context, ikepolicy_id, ikepolicy): ike = ikepolicy['ikepolicy'] with context.session.begin(subtransactions=True): ikepolicy = context.session.query(IPsecSiteConnection).filter_by( ikepolicy_id=ikepolicy_id).first() if ikepolicy: raise vpnaas.IKEPolicyInUse(ikepolicy_id=ikepolicy_id) ike_db = self._get_resource(context, IKEPolicy, ikepolicy_id) if ike: lifetime_info = ike.get('lifetime') if lifetime_info: if lifetime_info.get('units'): ike['lifetime_units'] = lifetime_info['units'] if lifetime_info.get('value'): ike['lifetime_value'] = lifetime_info['value'] ike_db.update(ike) return self._make_ikepolicy_dict(ike_db) def delete_ikepolicy(self, context, ikepolicy_id): with context.session.begin(subtransactions=True): ikepolicy = context.session.query(IPsecSiteConnection).filter_by( ikepolicy_id=ikepolicy_id).first() if ikepolicy: raise vpnaas.IKEPolicyInUse(ikepolicy_id=ikepolicy_id) ike_db = self._get_resource(context, IKEPolicy, ikepolicy_id) context.session.delete(ike_db) def get_ikepolicy(self, context, ikepolicy_id, fields=None): ike_db = self._get_resource(context, IKEPolicy, ikepolicy_id) return self._make_ikepolicy_dict(ike_db, fields) def get_ikepolicies(self, context, filters=None, fields=None): return self._get_collection(context, IKEPolicy, self._make_ikepolicy_dict, filters=filters, fields=fields) def _make_ipsecpolicy_dict(self, ipsecpolicy, fields=None): res = {'id': ipsecpolicy['id'], 'tenant_id': ipsecpolicy['tenant_id'], 'name': ipsecpolicy['name'], 'description': ipsecpolicy['description'], 'transform_protocol': ipsecpolicy['transform_protocol'], 'auth_algorithm': ipsecpolicy['auth_algorithm'], 'encryption_algorithm': ipsecpolicy['encryption_algorithm'], 'encapsulation_mode': ipsecpolicy['encapsulation_mode'], 'lifetime': { 'units': ipsecpolicy['lifetime_units'], 'value': ipsecpolicy['lifetime_value'], }, 'pfs': ipsecpolicy['pfs'] } return self._fields(res, fields) def create_ipsecpolicy(self, context, ipsecpolicy): ipsecp = ipsecpolicy['ipsecpolicy'] tenant_id = self._get_tenant_id_for_create(context, ipsecp) lifetime_info = ipsecp['lifetime'] lifetime_units = lifetime_info.get('units', 'seconds') lifetime_value = lifetime_info.get('value', 3600) with context.session.begin(subtransactions=True): ipsecp_db = IPsecPolicy(id=uuidutils.generate_uuid(), tenant_id=tenant_id, name=ipsecp['name'], description=ipsecp['description'], transform_protocol=ipsecp['transform_' 'protocol'], auth_algorithm=ipsecp['auth_algorithm'], encryption_algorithm=ipsecp['encryption_' 'algorithm'], encapsulation_mode=ipsecp['encapsulation_' 'mode'], lifetime_units=lifetime_units, lifetime_value=lifetime_value, pfs=ipsecp['pfs']) context.session.add(ipsecp_db) return self._make_ipsecpolicy_dict(ipsecp_db) def update_ipsecpolicy(self, context, ipsecpolicy_id, ipsecpolicy): ipsecp = ipsecpolicy['ipsecpolicy'] with context.session.begin(subtransactions=True): ipsecpolicy = context.session.query(IPsecSiteConnection).filter_by( ipsecpolicy_id=ipsecpolicy_id).first() if ipsecpolicy: raise vpnaas.IPsecPolicyInUse(ipsecpolicy_id=ipsecpolicy_id) ipsecp_db = self._get_resource(context, IPsecPolicy, ipsecpolicy_id) if ipsecp: lifetime_info = ipsecp.get('lifetime') if lifetime_info: if lifetime_info.get('units'): ipsecp['lifetime_units'] = lifetime_info['units'] if lifetime_info.get('value'): ipsecp['lifetime_value'] = lifetime_info['value'] ipsecp_db.update(ipsecp) return self._make_ipsecpolicy_dict(ipsecp_db) def delete_ipsecpolicy(self, context, ipsecpolicy_id): with context.session.begin(subtransactions=True): ipsecpolicy = context.session.query(IPsecSiteConnection).filter_by( ipsecpolicy_id=ipsecpolicy_id).first() if ipsecpolicy: raise vpnaas.IPsecPolicyInUse(ipsecpolicy_id=ipsecpolicy_id) ipsec_db = self._get_resource(context, IPsecPolicy, ipsecpolicy_id) context.session.delete(ipsec_db) def get_ipsecpolicy(self, context, ipsecpolicy_id, fields=None): ipsec_db = self._get_resource(context, IPsecPolicy, ipsecpolicy_id) return self._make_ipsecpolicy_dict(ipsec_db, fields) def get_ipsecpolicies(self, context, filters=None, fields=None): return self._get_collection(context, IPsecPolicy, self._make_ipsecpolicy_dict, filters=filters, fields=fields) def _make_vpnservice_dict(self, vpnservice, fields=None): res = {'id': vpnservice['id'], 'name': vpnservice['name'], 'description': vpnservice['description'], 'tenant_id': vpnservice['tenant_id'], 'subnet_id': vpnservice['subnet_id'], 'router_id': vpnservice['router_id'], 'admin_state_up': vpnservice['admin_state_up'], 'status': vpnservice['status']} return self._fields(res, fields) def create_vpnservice(self, context, vpnservice): vpns = vpnservice['vpnservice'] tenant_id = self._get_tenant_id_for_create(context, vpns) validator = self._get_validator() with context.session.begin(subtransactions=True): validator.validate_vpnservice(context, vpns) vpnservice_db = VPNService(id=uuidutils.generate_uuid(), tenant_id=tenant_id, name=vpns['name'], description=vpns['description'], subnet_id=vpns['subnet_id'], router_id=vpns['router_id'], admin_state_up=vpns['admin_state_up'], status=constants.PENDING_CREATE) context.session.add(vpnservice_db) return self._make_vpnservice_dict(vpnservice_db) def update_vpnservice(self, context, vpnservice_id, vpnservice): vpns = vpnservice['vpnservice'] with context.session.begin(subtransactions=True): vpns_db = self._get_resource(context, VPNService, vpnservice_id) self.assert_update_allowed(vpns_db) if vpns: vpns_db.update(vpns) return self._make_vpnservice_dict(vpns_db) def delete_vpnservice(self, context, vpnservice_id): with context.session.begin(subtransactions=True): if context.session.query(IPsecSiteConnection).filter_by( vpnservice_id=vpnservice_id ).first(): raise vpnaas.VPNServiceInUse(vpnservice_id=vpnservice_id) vpns_db = self._get_resource(context, VPNService, vpnservice_id) context.session.delete(vpns_db) def _get_vpnservice(self, context, vpnservice_id): return self._get_resource(context, VPNService, vpnservice_id) def get_vpnservice(self, context, vpnservice_id, fields=None): vpns_db = self._get_resource(context, VPNService, vpnservice_id) return self._make_vpnservice_dict(vpns_db, fields) def get_vpnservices(self, context, filters=None, fields=None): return self._get_collection(context, VPNService, self._make_vpnservice_dict, filters=filters, fields=fields) def check_router_in_use(self, context, router_id): vpnservices = self.get_vpnservices( context, filters={'router_id': [router_id]}) if vpnservices: raise vpnaas.RouterInUseByVPNService( router_id=router_id, vpnservice_id=vpnservices[0]['id']) def check_subnet_in_use(self, context, subnet_id): with context.session.begin(subtransactions=True): vpnservices = context.session.query(VPNService).filter_by( subnet_id=subnet_id ).first() if vpnservices: raise vpnaas.SubnetInUseByVPNService( subnet_id=subnet_id, vpnservice_id=vpnservices['id']) class VPNPluginRpcDbMixin(): def _get_agent_hosting_vpn_services(self, context, host): plugin = manager.NeutronManager.get_plugin() agent = plugin._get_agent_by_type_and_host( context, n_constants.AGENT_TYPE_L3, host) if not agent.admin_state_up: return [] query = context.session.query(VPNService) query = query.join(IPsecSiteConnection) query = query.join(IKEPolicy) query = query.join(IPsecPolicy) query = query.join(IPsecPeerCidr) query = query.join(l3_agent_db.RouterL3AgentBinding, l3_agent_db.RouterL3AgentBinding.router_id == VPNService.router_id) query = query.filter( l3_agent_db.RouterL3AgentBinding.l3_agent_id == agent.id) return query def update_status_by_agent(self, context, service_status_info_list): """Updating vpnservice and vpnconnection status. :param context: context variable :param service_status_info_list: list of status The structure is [{id: vpnservice_id, status: ACTIVE|DOWN|ERROR, updated_pending_status: True|False ipsec_site_connections: { ipsec_site_connection_id: { status: ACTIVE|DOWN|ERROR, updated_pending_status: True|False } }] The agent will set updated_pending_status as True, when agent update any pending status. """ with context.session.begin(subtransactions=True): for vpnservice in service_status_info_list: try: vpnservice_db = self._get_vpnservice( context, vpnservice['id']) except vpnaas.VPNServiceNotFound: LOG.warn(_LW('vpnservice %s in db is already deleted'), vpnservice['id']) continue if (not utils.in_pending_status(vpnservice_db.status) or vpnservice['updated_pending_status']): vpnservice_db.status = vpnservice['status'] for conn_id, conn in vpnservice[ 'ipsec_site_connections'].items(): self._update_connection_status( context, conn_id, conn['status'], conn['updated_pending_status'])
dougwig/x-neutron-vpnaas
neutron_vpnaas/db/vpn/vpn_db.py
Python
apache-2.0
31,706
# Based on the work of https://github.com/AlessandroZ/LaZagne/blob/master/Windows/lazagne/ import win32con, win32api class WinSCP(): def __init__(self): self.hash = '' self.username = '' self.hostname = '' # ------------------------------ Getters and Setters ------------------------------ def get_hash(self): return self.hash def set_hash(self, _hash): self.hash = _hash def get_username(self): return self.username def set_username(self, _username): self.username = _username def get_hostname(self): return self.hostname def set_hostname(self, _hostname): self.hostname = _hostname def decrypt_char(self): hash = self.get_hash() hex_flag = 0xA3 charset = '0123456789ABCDEF' if len(hash) > 0: unpack1 = charset.find(hash[0]) unpack1 = unpack1 << 4 unpack2 = charset.find(hash[1]) result = ~((unpack1 + unpack2) ^ hex_flag) & 0xff # store the new hash self.set_hash(hash[2:]) return result def check_winscp_installed(self): accessRead = win32con.KEY_READ | win32con.KEY_ENUMERATE_SUB_KEYS | win32con.KEY_QUERY_VALUE try: key = win32api.RegOpenKey(win32con.HKEY_CURRENT_USER, 'Software\Martin Prikryl\WinSCP 2\Configuration\Security', 0, accessRead) return True except Exception, e: return False def check_masterPassword(self): accessRead = win32con.KEY_READ | win32con.KEY_ENUMERATE_SUB_KEYS | win32con.KEY_QUERY_VALUE key = win32api.RegOpenKey(win32con.HKEY_CURRENT_USER, 'Software\Martin Prikryl\WinSCP 2\Configuration\Security', 0, accessRead) thisName = str(win32api.RegQueryValueEx(key, 'UseMasterPassword')[0]) if thisName == '0': return False else: return True def get_logins_info(self): accessRead = win32con.KEY_READ | win32con.KEY_ENUMERATE_SUB_KEYS | win32con.KEY_QUERY_VALUE try: key = win32api.RegOpenKey(win32con.HKEY_CURRENT_USER, 'Software\Martin Prikryl\WinSCP 2\Sessions', 0, accessRead) except Exception, e: return False num_profiles = win32api.RegQueryInfoKey(key)[0] pwdFound = [] for n in range(num_profiles): name_skey = win32api.RegEnumKey(key, n) skey = win32api.RegOpenKey(key, name_skey, 0, accessRead) num = win32api.RegQueryInfoKey(skey)[1] port = '' values = {} for nn in range(num): k = win32api.RegEnumValue(skey, nn) if k[0] == 'HostName': self.set_hostname(k[1]) if k[0] == 'UserName': self.set_username(k[1]) if k[0] == 'Password': self.set_hash(k[1]) if k[0] == 'PortNumber': port = str(k[1]) if num != 0: if port == '': port = '22' try: password = self.decrypt_password() values['Password'] = password except Exception, e: pass values['Hostname'] = self.get_hostname() values['Port'] = port values['Username'] = self.get_username() pwdFound.append(values) # print the results return pwdFound def decrypt_password(self): hex_flag = 0xFF flag = self.decrypt_char() if flag == hex_flag: self.decrypt_char() length = self.decrypt_char() else: length = flag ldel = (self.decrypt_char()) * 2 hash = self.get_hash() self.set_hash(hash[ldel: len(hash)]) result = '' for ss in range(length): try: result += chr(int(self.decrypt_char())) except Exception, e: pass if flag == hex_flag: key = self.get_username() + self.get_hostname() result = result[len(key): len(result)] return result # --------- Main function --------- def run(self): if self.check_winscp_installed(): if not self.check_masterPassword(): r = self.get_logins_info() if r == False: pass else: return r # tem = WinSCP() # a = tem.run() # print a
mehulj94/BrainDamage
Echoes/winscp.py
Python
apache-2.0
4,699
__author__ = 'ian.collins' import time class CrvProfile: disable = False ''' Simple profiler ''' def __init__(self, inlogger, s): if not self.disable: self.Logger = inlogger self.mess = s self.pstart = int(round(time.time() * 1000)) def eprof(self): if not self.disable: pend = int(round(time.time() * 1000)) pend -= self.pstart self.Logger.debug('CRV: PROF: ' + self.mess + ' ' + str(pend) + ' ms')
bagpussnz/cgboatlog
crvprofile.py
Python
apache-2.0
539
from unittest.mock import patch, MagicMock, PropertyMock from qcat.tests import TestCase from .test_models import create_new_user from ..client import WocatWebsiteUserClient class TestClient(TestCase): def setUp(self): self.remote_user_client = WocatWebsiteUserClient() self.user = create_new_user() def api_login_response(self, status_code, login_status='foo'): api_response = MagicMock() api_response.configure_mock(status_code=status_code) api_response.json = lambda: {'status': login_status} return api_response @patch('accounts.client.remote_user_client.get_user_information') def test_get_and_update_django_user(self, mock_user_information): user_mock = dict( pk=self.user.id, last_name='last_test', first_name='first_test', username=self.user.email, email=self.user.email, usergroup=[], ) with patch.object(WocatWebsiteUserClient, 'get_user_information') as user_info: user_info.return_value = user_mock user = self.remote_user_client.get_and_update_django_user(**user_mock) self.assertEqual(user.lastname, 'last_test') self.assertEqual(user.firstname, 'first_test') self.assertEqual(user.email, self.user.email) self.assertEqual(user, self.user) @patch('requests.get') def test_get_user_info(self, mock_request_get): api_request = MagicMock() api_request.status_code = 200 api_request.ok = PropertyMock(return_value=True) api_request.json = lambda: dict(success=True) mock_request_get.return_value = api_request self.assertIsInstance( self.remote_user_client.get_user_information('123'), dict ) @patch('requests.post') @patch.object(WocatWebsiteUserClient, '_get') def test_search_users(self, mock_get, mock_request_post): request_post = MagicMock() request_post.status_code = 200 request_post.ok = PropertyMock(return_value=True) request_post.json = lambda: dict(success=True) mock_request_post.return_value = request_post self.assertIsInstance( self.remote_user_client.search_users('foo'), dict ) def test_update_user(self): # This is tested within test_models. pass
CDE-UNIBE/qcat
apps/accounts/tests/test_client.py
Python
apache-2.0
2,393
import sys inputfile = sys.argv[1] sequencefile = sys.argv[2] outputfile = sys.argv[3] #inputfile="/scratch/cqs/shengq1/vickers/20161121_smallRNA_3018_85_spikein_run2/human/class_independent/identical_sequence_count_table/pbs/human_spikein_sequence.filelist" #sequencefile="/scratch/cqs/shengq1/vickers/20161121_smallRNA_3018_85_spikein_run2/spikein.txt" #outputfile="/scratch/cqs/shengq1/vickers/20161121_smallRNA_3018_85_spikein_run2/human.txt" dupcount_files=[] with open(inputfile, 'r') as f: for line in f: parts = line.strip().split('\t') if len(parts) >= 2: dupcount_files.append([parts[1], parts[0]]) sequences=[] map={} with open(sequencefile, 'r') as f: for line in f: parts = line.strip().split('\t') if len(parts) >= 2: sequences.append([parts[0], parts[1]]) map[parts[0]]={} for dupfile in dupcount_files: name=dupfile[0] file=dupfile[1] with open(file, 'r') as f: f.readline() for line in f: parts = line.strip().split('\t') seq=parts[2] for sequence in sequences: if sequence[1] == seq: map[sequence[0]][name]=parts[1] #print(map) with open(outputfile, 'w') as f: f.write("Name\tSequence\t%s\n" % "\t".join([sample[0] for sample in dupcount_files])) for sequence in sequences: f.write("%s\t%s" % (sequence[0], sequence[1])) curmap = map[sequence[0]] for sample in dupcount_files: if sample[0] in curmap: f.write("\t" + curmap[sample[0]]) else: f.write("\t0") f.write("\n")
shengqh/ngsperl
lib/SmallRNA/findSequence.py
Python
apache-2.0
1,663
# # Copyright (c) 2019 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import copy from typing import Union from collections import OrderedDict import numpy as np from rl_coach.agents.agent import Agent from rl_coach.agents.ddpg_agent import DDPGAgent from rl_coach.architectures.embedder_parameters import InputEmbedderParameters from rl_coach.architectures.head_parameters import DDPGActorHeadParameters, TD3VHeadParameters from rl_coach.architectures.middleware_parameters import FCMiddlewareParameters from rl_coach.base_parameters import NetworkParameters, AlgorithmParameters, \ AgentParameters, EmbedderScheme from rl_coach.core_types import ActionInfo, TrainingSteps, Transition from rl_coach.exploration_policies.additive_noise import AdditiveNoiseParameters from rl_coach.memories.episodic.episodic_experience_replay import EpisodicExperienceReplayParameters from rl_coach.spaces import BoxActionSpace, GoalsSpace class TD3CriticNetworkParameters(NetworkParameters): def __init__(self, num_q_networks): super().__init__() self.input_embedders_parameters = {'observation': InputEmbedderParameters(), 'action': InputEmbedderParameters(scheme=EmbedderScheme.Shallow)} self.middleware_parameters = FCMiddlewareParameters(num_streams=num_q_networks) self.heads_parameters = [TD3VHeadParameters()] self.optimizer_type = 'Adam' self.adam_optimizer_beta2 = 0.999 self.optimizer_epsilon = 1e-8 self.batch_size = 100 self.async_training = False self.learning_rate = 0.001 self.create_target_network = True self.shared_optimizer = True self.scale_down_gradients_by_number_of_workers_for_sync_training = False class TD3ActorNetworkParameters(NetworkParameters): def __init__(self): super().__init__() self.input_embedders_parameters = {'observation': InputEmbedderParameters()} self.middleware_parameters = FCMiddlewareParameters() self.heads_parameters = [DDPGActorHeadParameters(batchnorm=False)] self.optimizer_type = 'Adam' self.adam_optimizer_beta2 = 0.999 self.optimizer_epsilon = 1e-8 self.batch_size = 100 self.async_training = False self.learning_rate = 0.001 self.create_target_network = True self.shared_optimizer = True self.scale_down_gradients_by_number_of_workers_for_sync_training = False class TD3AlgorithmParameters(AlgorithmParameters): """ :param num_steps_between_copying_online_weights_to_target: (StepMethod) The number of steps between copying the online network weights to the target network weights. :param rate_for_copying_weights_to_target: (float) When copying the online network weights to the target network weights, a soft update will be used, which weight the new online network weights by rate_for_copying_weights_to_target :param num_consecutive_playing_steps: (StepMethod) The number of consecutive steps to act between every two training iterations :param use_target_network_for_evaluation: (bool) If set to True, the target network will be used for predicting the actions when choosing actions to act. Since the target network weights change more slowly, the predicted actions will be more consistent. :param action_penalty: (float) The amount by which to penalize the network on high action feature (pre-activation) values. This can prevent the actions features from saturating the TanH activation function, and therefore prevent the gradients from becoming very low. :param clip_critic_targets: (Tuple[float, float] or None) The range to clip the critic target to in order to prevent overestimation of the action values. :param use_non_zero_discount_for_terminal_states: (bool) If set to True, the discount factor will be used for terminal states to bootstrap the next predicted state values. If set to False, the terminal states reward will be taken as the target return for the network. """ def __init__(self): super().__init__() self.rate_for_copying_weights_to_target = 0.005 self.use_target_network_for_evaluation = False self.action_penalty = 0 self.clip_critic_targets = None # expected to be a tuple of the form (min_clip_value, max_clip_value) or None self.use_non_zero_discount_for_terminal_states = False self.act_for_full_episodes = True self.update_policy_every_x_episode_steps = 2 self.num_steps_between_copying_online_weights_to_target = TrainingSteps(self.update_policy_every_x_episode_steps) self.policy_noise = 0.2 self.noise_clipping = 0.5 self.num_q_networks = 2 class TD3AgentExplorationParameters(AdditiveNoiseParameters): def __init__(self): super().__init__() self.noise_as_percentage_from_action_space = False class TD3AgentParameters(AgentParameters): def __init__(self): td3_algorithm_params = TD3AlgorithmParameters() super().__init__(algorithm=td3_algorithm_params, exploration=TD3AgentExplorationParameters(), memory=EpisodicExperienceReplayParameters(), networks=OrderedDict([("actor", TD3ActorNetworkParameters()), ("critic", TD3CriticNetworkParameters(td3_algorithm_params.num_q_networks))])) @property def path(self): return 'rl_coach.agents.td3_agent:TD3Agent' # Twin Delayed DDPG - https://arxiv.org/pdf/1802.09477.pdf class TD3Agent(DDPGAgent): def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None): super().__init__(agent_parameters, parent) self.q_values = self.register_signal("Q") self.TD_targets_signal = self.register_signal("TD targets") self.action_signal = self.register_signal("actions") @property def is_on_policy(self) -> bool: return False def learn_from_batch(self, batch): actor = self.networks['actor'] critic = self.networks['critic'] actor_keys = self.ap.network_wrappers['actor'].input_embedders_parameters.keys() critic_keys = self.ap.network_wrappers['critic'].input_embedders_parameters.keys() # TD error = r + discount*max(q_st_plus_1) - q_st next_actions, actions_mean = actor.parallel_prediction([ (actor.target_network, batch.next_states(actor_keys)), (actor.online_network, batch.states(actor_keys)) ]) # add noise to the next_actions noise = np.random.normal(0, self.ap.algorithm.policy_noise, next_actions.shape).clip( -self.ap.algorithm.noise_clipping, self.ap.algorithm.noise_clipping) next_actions = self.spaces.action.clip_action_to_space(next_actions + noise) critic_inputs = copy.copy(batch.next_states(critic_keys)) critic_inputs['action'] = next_actions q_st_plus_1 = critic.target_network.predict(critic_inputs)[2] # output #2 is the min (Q1, Q2) # calculate the bootstrapped TD targets while discounting terminal states according to # use_non_zero_discount_for_terminal_states if self.ap.algorithm.use_non_zero_discount_for_terminal_states: TD_targets = batch.rewards(expand_dims=True) + self.ap.algorithm.discount * q_st_plus_1 else: TD_targets = batch.rewards(expand_dims=True) + \ (1.0 - batch.game_overs(expand_dims=True)) * self.ap.algorithm.discount * q_st_plus_1 # clip the TD targets to prevent overestimation errors if self.ap.algorithm.clip_critic_targets: TD_targets = np.clip(TD_targets, *self.ap.algorithm.clip_critic_targets) self.TD_targets_signal.add_sample(TD_targets) # train the critic critic_inputs = copy.copy(batch.states(critic_keys)) critic_inputs['action'] = batch.actions(len(batch.actions().shape) == 1) result = critic.train_and_sync_networks(critic_inputs, TD_targets) total_loss, losses, unclipped_grads = result[:3] if self.training_iteration % self.ap.algorithm.update_policy_every_x_episode_steps == 0: # get the gradients of output #3 (=mean of Q1 network) w.r.t the action critic_inputs = copy.copy(batch.states(critic_keys)) critic_inputs['action'] = actions_mean action_gradients = critic.online_network.predict(critic_inputs, outputs=critic.online_network.gradients_wrt_inputs[3]['action']) # apply the gradients from the critic to the actor initial_feed_dict = {actor.online_network.gradients_weights_ph[0]: -action_gradients} gradients = actor.online_network.predict(batch.states(actor_keys), outputs=actor.online_network.weighted_gradients[0], initial_feed_dict=initial_feed_dict) if actor.has_global: actor.apply_gradients_to_global_network(gradients) actor.update_online_network() else: actor.apply_gradients_to_online_network(gradients) return total_loss, losses, unclipped_grads def train(self): self.ap.algorithm.num_consecutive_training_steps = self.current_episode_steps_counter return Agent.train(self) def update_transition_before_adding_to_replay_buffer(self, transition: Transition) -> Transition: """ Allows agents to update the transition just before adding it to the replay buffer. Can be useful for agents that want to tweak the reward, termination signal, etc. :param transition: the transition to update :return: the updated transition """ transition.game_over = False if self.current_episode_steps_counter ==\ self.parent_level_manager.environment.env._max_episode_steps\ else transition.game_over return transition
NervanaSystems/coach
rl_coach/agents/td3_agent.py
Python
apache-2.0
10,841
import sys sys.path.append('../functions') import cv2 import pickle import itertools from cluster import Cluster from connectLib import clusterThresh import numpy as np import matplotlib.pyplot as plt from plosLib import pipeline as PLOS from random import randrange as rand def binaryThreshold(img, percentile=90): img = (img/256).astype('uint8') threshImg = np.zeros_like(img) percentile = np.percentile(img, percentile) for i in range(len(img)): threshImg[i] = cv2.threshold(img[i], percentile, 255, cv2.THRESH_BINARY)[1] return threshImg def adaptiveThreshold(inImg, sx, sy, sz, p): outImg = np.zeros_like(inImg) shape = outImg.shape subXLen = shape[0]/sx subYLen = shape[1]/sy subZLen = shape[2]/sz for xInc in range(1, sx + 1): for yInc in range(1, sy + 1): for zInc in range(1, sz + 1): sub = inImg[(xInc-1)*subXLen: xInc*subXLen, (yInc-1)*subYLen: yInc*subYLen, (zInc-1)*subZLen: zInc*subZLen] subThresh = binaryThreshold(sub, p) outImg[(xInc-1)*subXLen: xInc*subXLen, (yInc-1)*subYLen: yInc*subYLen, (zInc-1)*subZLen: zInc*subZLen] = subThresh return outImg def neighborhoodDensity(data, interPlane = 1, intraPlane = 1, percentile = 50): output = np.zeros_like(data) for z in range(data.shape[0]): for y in range(data.shape[1]): for x in range(data.shape[2]): zLow = z-intraPlane zHigh = z+intraPlane yLow = y-interPlane yHigh = y+interPlane xLow = x-interPlane xHigh = x+interPlane if zLow>=0 and zHigh<data.shape[0] and yLow>=0 and yHigh<data.shape[1] and xLow>=0 and xHigh<data.shape[2]: subVol = data[zLow:zHigh, yLow:yHigh, xLow:xHigh] if not all(subVol.shape) == 0: thresh = np.percentile(subVol, percentile) binSubVol = subVol >= thresh output[z][y][x] = (np.count_nonzero(binSubVol)/float(interPlane*interPlane*intraPlane)) * data[z][y][x] * np.average(subVol) return output def generatePointSet(): center = (rand(0, 9), rand(0, 999), rand(0, 999)) toPopulate = [] for z in range(-3, 2): for y in range(-3, 2): for x in range(-3, 2): curPoint = (center[0]+z, center[1]+y, center[2]+x) #only populate valid points valid = True for dim in range(3): if curPoint[dim] < 0 or curPoint[dim] >= 1000: valid = False if valid: toPopulate.append(curPoint) return set(toPopulate) def generateTestVolume(n): #create a test volume volume = np.zeros((10, 1000, 1000)) myPointSet = set() for _ in range(n): potentialPointSet = generatePointSet() #be sure there is no overlap while len(myPointSet.intersection(potentialPointSet)) > 0: potentialPointSet = generatePointSet() for elem in potentialPointSet: myPointSet.add(elem) #populate the true volume for elem in myPointSet: volume[elem[0], elem[1], elem[2]] = rand(40000, 60000) #introduce noise noiseVolume = np.copy(volume) for z in range(noiseVolume.shape[0]): for y in range(noiseVolume.shape[1]): for x in range(noiseVolume.shape[2]): if not (z, y, x) in myPointSet: toPop = rand(0, 10) if toPop == 5: noiseVolume[z][y][x] = rand(0, 60000) return volume, noiseVolume def applyGradient(volume, originX, originY): outStack = [] maxDistance = np.sqrt((volume[0].shape[0])**2+(volume[0].shape[1])**2) for sample in volume: outSample = np.zeros_like(sample) for y in range(sample.shape[0]): for x in range(sample.shape[1]): distance = np.sqrt((x - originX)**2+(y - originY)**2) sigma = np.sqrt(distance)/np.sqrt(maxDistance) modifier = 1.-(sigma * distance/maxDistance) outSample[y][x] = modifier * sample[y][x] outStack.append(outSample) return np.stack(outStack) def precision_recall_f1(labels, predictions, overlapRatio): if len(predictions) == 0: print 'ERROR: prediction list is empty' return 0., 0., 0. labelFound = np.zeros(len(labels)) truePositives = 0 falsePositives = 0 for prediction in predictions: #casting to set is ok here since members are uinque predictedMembers = set([tuple(elem) for elem in prediction.getMembers()]) detectionCutoff = overlapRatio * len(predictedMembers) found = False for idx, label in enumerate(labels): labelMembers = set([tuple(elem) for elem in label.getMembers()]) #if the predictedOverlap is over the detectionCutoff ratio if len(predictedMembers & labelMembers) >= detectionCutoff: truePositives +=1 found=True labelFound[idx] = 1 if not found: falsePositives +=1 precision = truePositives/float(truePositives + falsePositives) recall = np.count_nonzero(labelFound)/float(len(labels)) f1 = 0 try: f1 = 2 * (precision*recall)/(precision + recall) except ZeroDivisionError: f1 = 0 return precision, recall, f1 def executeTest(algList, paramList, volumeList): #for evey volume for volume in volumeList: #for every param combination for params in itertools.product(*[paramList[alg[1]] for alg in algList]): #run the current pipeline with the current params testString = volume[2] #pipelineVol = volume[1] for idx, alg in enumerate(algList): #pipelineVol = alg[0](popelineVol, *(params[idx])) testString = testString + alg[1]+str(params[idx]) print testString #TODO precision recall here if __name__ == '__main__': #create the test volume set volumeList = [] for i in range(2): #label, test = generateTestVolume(2000) label, test = generateTestVolume(1) volumeList.append([label, test, 'sparse_uniform_'+str(i)]) #volumeList.append([label, applyGradient(test, 0, 0), 'sparse_gradient_'+str(i)]) #label, test = generateTestVolume(15000) volumeList.append([label, test, 'dense_uniform_'+str(i)]) #volumeList.append([label, applyGradient(test, 0, 0), 'dense_gradient_'+str(i)]) #create the list of functions to operate over funcList = [[PLOS, '_plos'], [adaptiveThreshold, '_adaptive'], [neighborhoodDensity, '_neighborhood']] #create the list of params to operate over paramDict = { '_plos': [elem for elem in itertools.product([1, 2, 3], repeat=3)], '_adaptive': [elem for elem in [[j for j in x]+[y] for x in itertools.product([6, 8, 10], repeat=3) for y in [30, 50, 70, 90]]], '_neighborhood': [elem for elem in [[j for j in x]+[y] for x in itertools.product([10, 15, 20], repeat=2) for y in [30, 50, 70, 90]]] } #iterate through all possibilities of inclusion for i in itertools.product([0, 1], repeat=3): print i #populate the current pipeline algList = [] for algNum, use in enumerate(i): if use: algList.append(funcList[algNum]) #iterate through all permutations of algs for pipeline in itertools.permutations(algList): executeTest(pipeline, paramDict, volumeList)
NeuroDataDesign/pan-synapse
pipeline_1/code/tests/hyperSearch.py
Python
apache-2.0
7,748
# Copyright 2012 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Custom configurations and functions for Google App Engine.""" __author__ = 'psimakov@google.com (Pavel Simakov)' import os import sys # Whether we are running in the production environment. PRODUCTION_MODE = not os.environ.get( 'SERVER_SOFTWARE', 'Development').startswith('Development') # this is the official location of this app for computing of all relative paths BUNDLE_ROOT = os.path.dirname(__file__) # Default namespace name is '' and not None. DEFAULT_NAMESPACE_NAME = '' # Third-party library zip files. THIRD_PARTY_LIBS = ['babel-0.9.6.zip', 'gaepytz-2011h.zip'] for lib in THIRD_PARTY_LIBS: thirdparty_lib = os.path.join(BUNDLE_ROOT, 'lib/%s' % lib) if not os.path.exists(thirdparty_lib): raise Exception('Library does not exist: %s' % thirdparty_lib) sys.path.insert(0, thirdparty_lib) if not PRODUCTION_MODE: from google.appengine.api import apiproxy_stub_map # pylint: disable-msg=g-import-not-at-top from google.appengine.datastore import datastore_stub_util # pylint: disable-msg=g-import-not-at-top # Make dev_appserver run with PseudoRandomHRConsistencyPolicy, which we # believe is the best for localhost manual testing; normally dev_appserver # runs either under MasterSlave policy, which does not allow XG # transactions, or under TimeBasedHR policy, which serves counter-intuitive # dirty query results; this also matches policy for the functional tests stub = apiproxy_stub_map.apiproxy.GetStub( 'datastore_v3') if stub: policy = datastore_stub_util.PseudoRandomHRConsistencyPolicy( probability=1) # stub.SetConsistencyPolicy(policy)
ksh/gpitraining
appengine_config - Copia.py
Python
apache-2.0
2,266
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from imdb import Imdb import random class ConcatDB(Imdb): """ ConcatDB is used to concatenate multiple imdbs to form a larger db. It is very useful to combine multiple dataset with same classes. Parameters ---------- imdbs : Imdb or list of Imdb Imdbs to be concatenated shuffle : bool whether to shuffle the initial list """ def __init__(self, imdbs, shuffle): super(ConcatDB, self).__init__('concatdb') if not isinstance(imdbs, list): imdbs = [imdbs] self.imdbs = imdbs self._check_classes() self.image_set_index = self._load_image_set_index(shuffle) def _check_classes(self): """ check input imdbs, make sure they have same classes """ try: self.classes = self.imdbs[0].classes self.num_classes = len(self.classes) except AttributeError: # fine, if no classes is provided pass if self.num_classes > 0: for db in self.imdbs: assert self.classes == db.classes, "Multiple imdb must have same classes" def _load_image_set_index(self, shuffle): """ get total number of images, init indices Parameters ---------- shuffle : bool whether to shuffle the initial indices """ self.num_images = 0 for db in self.imdbs: self.num_images += db.num_images indices = list(range(self.num_images)) if shuffle: random.shuffle(indices) return indices def _locate_index(self, index): """ given index, find out sub-db and sub-index Parameters ---------- index : int index of a specific image Returns ---------- a tuple (sub-db, sub-index) """ assert index >= 0 and index < self.num_images, "index out of range" pos = self.image_set_index[index] for k, v in enumerate(self.imdbs): if pos >= v.num_images: pos -= v.num_images else: return (k, pos) def image_path_from_index(self, index): """ given image index, find out full path Parameters ---------- index: int index of a specific image Returns ---------- full path of this image """ assert self.image_set_index is not None, "Dataset not initialized" pos = self.image_set_index[index] n_db, n_index = self._locate_index(index) return self.imdbs[n_db].image_path_from_index(n_index) def label_from_index(self, index): """ given image index, return preprocessed ground-truth Parameters ---------- index: int index of a specific image Returns ---------- ground-truths of this image """ assert self.image_set_index is not None, "Dataset not initialized" pos = self.image_set_index[index] n_db, n_index = self._locate_index(index) return self.imdbs[n_db].label_from_index(n_index)
ShownX/incubator-mxnet
example/ssd/dataset/concat_db.py
Python
apache-2.0
3,974
#!/usr/bin/env python """ Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from resource_management import * import sys import time from resource_management.core.shell import call def hive_service( name, action='start'): import params if name == 'metastore': pid_file = format("{hive_pid_dir}/{hive_metastore_pid}") cmd = format( "env HADOOP_HOME={hadoop_home} JAVA_HOME={java64_home} {start_metastore_path} {hive_log_dir}/hive.out {hive_log_dir}/hive.log {pid_file} {hive_server_conf_dir} {hive_log_dir}") elif name == 'hiveserver2': pid_file = format("{hive_pid_dir}/{hive_pid}") cmd = format( "env JAVA_HOME={java64_home} {start_hiveserver2_path} {hive_log_dir}/hive-server2.out {hive_log_dir}/hive-server2.log {pid_file} {hive_server_conf_dir} {hive_log_dir}") process_id_exists = format("ls {pid_file} >/dev/null 2>&1 && ps -p `cat {pid_file}` >/dev/null 2>&1") if action == 'start': if name == 'hiveserver2': check_fs_root() demon_cmd = format("{cmd}") Execute(demon_cmd, user=params.hive_user, environment={'HADOOP_HOME': params.hadoop_home}, path=params.execute_path, not_if=process_id_exists ) if params.hive_jdbc_driver == "com.mysql.jdbc.Driver" or \ params.hive_jdbc_driver == "org.postgresql.Driver" or \ params.hive_jdbc_driver == "oracle.jdbc.driver.OracleDriver": db_connection_check_command = format( "{java64_home}/bin/java -cp {check_db_connection_jar}:/usr/share/java/{jdbc_jar_name} org.apache.ambari.server.DBConnectionVerification '{hive_jdbc_connection_url}' {hive_metastore_user_name} {hive_metastore_user_passwd!p} {hive_jdbc_driver}") Execute(db_connection_check_command, path='/usr/sbin:/sbin:/usr/local/bin:/bin:/usr/bin', tries=5, try_sleep=10) # AMBARI-5800 - wait for the server to come up instead of just the PID existance if name == 'hiveserver2': SOCKET_WAIT_SECONDS = 120 address=params.hive_server_host port=int(params.hive_server_port) start_time = time.time() end_time = start_time + SOCKET_WAIT_SECONDS is_service_socket_valid = False print "Waiting for the Hive server to start..." while time.time() < end_time: if check_thrift_port_sasl(address, port, 2, security_enabled=params.security_enabled): is_service_socket_valid = True break else: time.sleep(2) elapsed_time = time.time() - start_time if is_service_socket_valid == False: raise Fail("Connection to Hive server %s on port %s failed after %d seconds" % (address, port, elapsed_time)) print "Successfully connected to Hive at %s on port %s after %d seconds" % (address, port, elapsed_time) elif action == 'stop': demon_cmd = format("kill `cat {pid_file}` >/dev/null 2>&1 && rm -f {pid_file}") Execute(demon_cmd, not_if = format("! ({process_id_exists})") ) def check_fs_root(): import params fs_root_url = format("{fs_root}{hive_apps_whs_dir}") cmd = format("metatool -listFSRoot 2>/dev/null | grep hdfs://") code, out = call(cmd, user=params.hive_user) if code == 0 and fs_root_url.strip() != out.strip(): cmd = format("metatool -updateLocation {fs_root}{hive_apps_whs_dir} {out}") Execute(cmd, environment= {'PATH' : params.execute_path }, user=params.hive_user)
zouzhberk/ambaridemo
demo-server/src/main/resources/stacks/BIGTOP/0.8/services/HIVE/package/scripts/hive_service.py
Python
apache-2.0
4,224
# Lint as: python2, python3 # Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Checkpointing utilities for save/restore.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import time import six import REDACTED.transformer_lingvo.lingvo.compat as tf from REDACTED.transformer_lingvo.lingvo.core import cluster_factory from REDACTED.transformer_lingvo.lingvo.core import py_utils class Checkpointer(object): """Checkpointing utility class. Needs to be created within a graph context. """ def __init__(self, train_dir, model, train_params=None, save_only=False): """Initialize Checkpointer. Args: train_dir: Training directory for saving checkpoints. model: A BaseModel instance or None. train_params: If specified, use these training params instead of those in the `model`. save_only: This checkpointer is only intended for saving checkpoints. """ self._train_dir = train_dir self._save_only = save_only self._save_path = os.path.join(self._train_dir, 'ckpt') if train_params: self._train_params = train_params self._model = None else: assert model self._train_params = model.params.train self._model = model if not self._save_only: self._params = model.params self._model_tasks = model.tasks self._model = model self._next_checkpoint_seconds = 0 self._save_interval_seconds = self._train_params.save_interval_seconds self._saver = self._GetSaver() self._uninitialized_vars = tf.report_uninitialized_variables( tf.global_variables()) def _GetSaver(self): """Returns a saver.""" do_eval = cluster_factory.Current().do_eval if not self._save_only and self._model.ema and do_eval: tf.logging.info('Using EMA for evaluation.') return tf.train.Saver( self._model.ema.variables_to_restore(self._model.variables_for_ema)) return tf.train.Saver( sharded=True, max_to_keep=self._train_params.save_max_to_keep, keep_checkpoint_every_n_hours=( self._train_params.save_keep_checkpoint_every_n_hours), pad_step_number=True, # %08d write_version=tf.train.SaverDef.V2) def RestoreFromPath(self, sess, checkpoint_path): """Load the checkpoint from specified path.""" assert not self._save_only tf.logging.info('Load from checkpoint %s.', checkpoint_path) self._saver.restore(sess, checkpoint_path) tf.logging.info('Load checkpoint done.') # Successfully restored from checkpoint. uninitialized_var_names = self._GetUninitializedVarNames(sess) assert not uninitialized_var_names, uninitialized_var_names def MaybeSave(self, sess, gsteps): """If it's time to save, save the checkpoint. Args: sess: tf.Session. gsteps: Current global step. """ now = time.time() if now >= self._next_checkpoint_seconds: self.Save(sess, gsteps) self._next_checkpoint_seconds = now + self._save_interval_seconds def Save(self, sess, gsteps): """Save the checkpoint. Args: sess: tf.Session. gsteps: Current global step. """ tf.logging.info('Save checkpoint') path = self._saver.save(sess, self._save_path, gsteps) tf.logging.info('Save checkpoint done: %s', path) def _RestoreFromLatestCheckpoint(self, sess): """Restore the latest checkpoint and return True, else return False.""" assert not self._save_only path = tf.train.latest_checkpoint(self._train_dir) if path is None: return False # First recover the checkpoint state in the directory. # # NOTE: latest_checkpoint() already calls this but to avoid duplicating # v1 vs. v2 behavior here, we just query the state again. ckpt_state = tf.train.get_checkpoint_state(self._train_dir) self._saver.recover_last_checkpoints(ckpt_state.all_model_checkpoint_paths) # Now restore the checkpoint. self.RestoreFromPath(sess, path) return True def _GetUninitializedVarNames(self, sess): uninitialized_var_names = sorted(list(sess.run(self._uninitialized_vars))) # uninitialized_var_names is a list of strings without ":0" suffix. # tf.report_uninitialized_variables returns binary strings. assert all(isinstance(s, six.binary_type) for s in uninitialized_var_names) return uninitialized_var_names def Restore(self, sess, force_reinitialize=False): """Restore from latest checkpoint if available, or initialize.""" # Try and restore from the latest checkpoint. if self._RestoreFromLatestCheckpoint(sess): # Successfully restored from checkpoint. uninitialized_var_names = self._GetUninitializedVarNames(sess) assert not uninitialized_var_names, uninitialized_var_names return # Otherwise we need to initialize. uninitialized_var_names = self._GetUninitializedVarNames(sess) tf.logging.info('Uninitialized var list: %s', uninitialized_var_names) if not force_reinitialize: # There should only be uninitialized variables if all variables are # uninitialized - with the exception of global_step due to # RestoreGlobalStepIfNeeded in the _LoopEnqueue of TrainerTpu. all_var_names = [ six.ensure_binary(v.name[:-2]) for v in tf.global_variables() ] already_initialized_vars = ( set(all_var_names) - set(uninitialized_var_names)) already_initialized_vars.discard(b'global_step') assert not already_initialized_vars, ('Already initialized vars: %s' % sorted(already_initialized_vars)) # At this point all variables are uninitialized, so it is safe to run a # global initializer. sess.run(tf.global_variables_initializer()) tf.logging.info('Initialized all vars.') # Restore specific variables based on init_from_checkpoint_rules. for task in self._model.tasks: tp = task.params.train if tp.init_from_checkpoint_rules: tf.logging.info('OverrideVarsFromCheckpoints %s', tp.init_from_checkpoint_rules) py_utils.OverrideVarsFromCheckpoints(sess, tf.global_variables(), tp.init_from_checkpoint_rules) if self._params.train.init_from_checkpoint_rules: tp = self._params.train tf.logging.info('OverrideVarsFromCheckpoints %s', tp.init_from_checkpoint_rules) py_utils.OverrideVarsFromCheckpoints(sess, tf.global_variables(), tp.init_from_checkpoint_rules) def RestoreIfNeeded(self, sess): """If vars are not initialized, restore from checkpoint.""" assert not self._save_only uninitialized_var_names = self._GetUninitializedVarNames(sess) if not uninitialized_var_names: # All variables are already initialized. return self.Restore(sess) def RestoreGlobalStepIfNeeded(self, sess): """If global step is not initialized, load it from the checkpoint. Args: sess: tf.Session. """ assert not self._save_only uninitialized_vars = self._GetUninitializedVarNames(sess) if six.ensure_binary('global_step') not in uninitialized_vars: return with sess.graph.as_default(): gstep = py_utils.GetGlobalStep() path = tf.train.latest_checkpoint(self._train_dir) if path: reader = tf.train.NewCheckpointReader(path) value = reader.get_tensor('global_step') tf.logging.info('Restoring global step: %s', value) sess.run(gstep.assign(value)) else: tf.logging.info('Initializing global step') sess.run(gstep.initializer)
mlperf/training_results_v0.7
Google/benchmarks/transformer/implementations/transformer-research-TF-tpu-v4-512/lingvo/core/checkpointer.py
Python
apache-2.0
8,373
# Copyright (C) 2017 Google Inc. # Licensed under http://www.apache.org/licenses/LICENSE-2.0 <see LICENSE file> """Program page smoke tests.""" # pylint: disable=no-self-use # pylint: disable=invalid-name # pylint: disable=too-few-public-methods # pylint: disable=unused-argument import pytest # pylint: disable=import-error from lib import base from lib.constants import element, locator, url from lib.page import dashboard, widget_bar from lib.page.widget import info_widget from lib.utils import test_utils, selenium_utils class TestProgramPage(base.Test): """A part of smoke tests, section 4.""" @pytest.mark.smoke_tests def test_object_count_updates(self, selenium, new_program_ui): """Checks if count updates in LHN after creating new program object.""" _, program_info_page = new_program_ui lhn_menu = dashboard.Header(selenium).open_lhn_menu().select_my_objects() assert (lhn_menu.toggle_programs.members_count >= int(program_info_page.source_obj_id_from_url)) @pytest.mark.smoke_tests def test_modal_redirects(self, new_program_ui): """Tests if after saving and closing lhn_modal app redirects to the object page. Generally we start at random url. Here we verify that after saving and closing lhn_modal we're redirected to an url that contains an object id. """ _, program_info_page = new_program_ui assert (url.PROGRAMS + "/" + program_info_page.source_obj_id_from_url in program_info_page.url) @pytest.mark.smoke_tests def test_info_tab_is_active_by_default(self, selenium, new_program_ui): """Tests if after lhn_modal is saved we're redirected and info tab is activated. Because app uses url arguments to remember state of page (which widget is active), we can simply use url of created object. """ _, program_info_page = new_program_ui program_info_page.navigate_to() horizontal_bar = widget_bar.Dashboard(selenium) assert (horizontal_bar.get_active_widget_name() == element.ProgramInfoWidget().WIDGET_HEADER) @pytest.mark.smoke_tests def test_info_tab_contains_entered_data(self, new_program_ui): """Verify that created object contains data we've entered into modal.""" modal, program_info_page = new_program_ui assert (test_utils.HtmlParser.parse_text(modal.ui_title.text) == program_info_page.title_entered.text) assert (modal.ui_description.text == program_info_page.description_entered.text) assert modal.ui_notes.text == program_info_page.notes_entered.text assert modal.ui_code.text == program_info_page.code_entered.text assert (modal.ui_program_url.text == program_info_page.program_url_entered.text) assert (modal.ui_reference_url.text == program_info_page.reference_url_entered.text) assert (modal.ui_effective_date.text == program_info_page.effective_date_entered.text) assert modal.ui_stop_date.text == program_info_page.stop_date_entered.text @pytest.mark.smoke_tests def test_permalink(self, selenium, new_program_ui): """Verify url is copied to clipboard.""" _, program_info_page = new_program_ui selenium_utils.open_url(selenium, program_info_page.url) program_info_page = info_widget.Programs(selenium) program_info_page.open_info_3bbs().select_get_permalink() # test notification alert base.AnimatedComponent( selenium, [locator.WidgetInfoProgram.ALERT_LINK_COPIED], wait_until_visible=True) # test generated link modal = program_info_page.open_info_3bbs().select_edit() modal.ui_title.paste_from_clipboard(modal.ui_description) assert modal.ui_title.text == program_info_page.url @pytest.mark.smoke_tests def test_edit_modal(self, selenium, new_program_ui): """Tests if data is saved after editing program info page edit modal. """ _, program_info_page = new_program_ui selenium_utils.open_url(selenium, program_info_page.url) program_info_page = info_widget.Programs(selenium) modal = program_info_page.open_info_3bbs().select_edit() test_utils.ModalNewPrograms.enter_test_data(modal) test_utils.ModalNewPrograms.set_start_end_dates(modal, 1, -2) modal.save_and_close() selenium_utils.open_url(selenium, program_info_page.url) updated_program_info_page = info_widget.Programs(selenium) assert (test_utils.HtmlParser.parse_text(modal.ui_title.text) == updated_program_info_page.title_entered.text) assert (modal.ui_description.text == updated_program_info_page.description_entered.text) assert modal.ui_notes.text == updated_program_info_page.notes_entered.text assert (modal.ui_program_url.text == updated_program_info_page.program_url_entered.text) assert (modal.ui_reference_url.text == updated_program_info_page.reference_url_entered.text)
AleksNeStu/ggrc-core
test/selenium/src/tests/test_program_page.py
Python
apache-2.0
4,920
# This file is part of the GBI project. # Copyright (C) 2013 Omniscale GmbH & Co. KG <http://omniscale.com> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .user import * from .log import * from .sources import * from .wfs import *
omniscale/gbi-server
app/gbi_server/model/__init__.py
Python
apache-2.0
735
""" ------------------ theia.cli.simulate ------------------ Event simulation tool. """ import asyncio import time from random import randint, shuffle from uuid import uuid4 from datetime import datetime from threading import Thread import argparse import lorem from theia.comm import Client from theia.model import Event, EventSerializer def get_parser(): """Configure and instantiate the argument parser for the simulation tool. :returns: configured :class:`argparse.ArgumentParser`. """ parser = argparse.ArgumentParser(prog='theia.cli.simulate', description='Simulate events (debugging)') parser.add_argument('-H', '--host', default='localhost', dest='host', help='Collector host') parser.add_argument('-p', '--port', default=6433, dest='port', help='Collector port', type=int) parser.add_argument('-t', nargs='*', dest='tags', help='Set of tags to choose from') parser.add_argument('-s', nargs='*', dest='sources', help='Set of event sources to choose from') parser.add_argument('-c', dest='content', default=None, help='Use this event content instead of random content.') parser.add_argument('--content-size', dest='content_size', type=int, default=None, help='Size of content (approximately)') parser.add_argument('--delay', dest='delay', default=1.0, type=float, help='Delay between event in seconds') return parser def generate_content(content=None, size=None): """Generate random (lorem-ipsum style) content. If ``content`` is provided, just passes through. Otherwise generates 'lorem-ipsum' style random content that is of about the provided ``size``. If no size is given, then it returns just one sentence. :param str content: optional, if given, the content to be returned. :param int size: optional, the size of the generated content. If not provided, then only one sentence is returned. If provided, then generates sentences with total size >= ``size``. Always generates full sentences. :returns: ``str``, the generated content. """ if content is not None: return content if size is None: return lorem.sentence() content = lorem.sentence() while len(content) < size: content = content + ' ' + lorem.sentence() return content def generate_rand_items(items, default): """Generates a random subset (``list``) of the provided list of items. The size of the subset is at least one, and at most is the whole ``items`` list. If no items provided, then returns a list of just one item - the ``default`` one. The order of the items in the subset is randomized as well. :param list items: the list of items to choose from. :param default: the default item to choose if no list of items is provided. :returns: :class:`list` randomized subset of the items list. """ if not items: return [default] if len(items) == 1: return items rnd_size = randint(1, len(items)) rndi = [n for n in items] shuffle(rndi) return rndi[0:rnd_size] def generate_rand_event(sources, tags, content, cnt_size): """Generate random event from the given choices for sources, tags and content. :param list sources: list of choices for sources. One random source will be chosen from the list. :param list tags: list of choices for tags. Random subset with random order and size greater than one will be chosen from the given list of tags. :param str content: if not ``None``, that content will be used. If ``None``, random content will be generated. :param int cnt_size: generate content of at least this size. The size of the generated content may be grater (the content always contains full sentences) but it will never be less than ``cnt_size``. :returns: a random :class:`theia.model.Event` generated from the given choices values. """ source = sources[randint(0, len(sources) - 1)] return Event(id=str(uuid4()), source=source, timestamp=datetime.now().timestamp(), tags=generate_rand_items(tags, 'tag-4'), content=generate_content(content, cnt_size)) def _send_event(args, tags, client, serializer): """Generate and send a single event. """ event = generate_rand_event(args.sources, tags, args.content, args.content_size) client.send_event(event) print(serializer.serialize(event).decode('UTF-8')) print() def simulate_events(args): """Connects and generates random events. The events are generated according to the given arguments. :param argparse.Namespace args: the parsed arguments passed to the program. """ loop = asyncio.get_event_loop() client = Client(host=args.host, port=args.port, path='/event', loop=loop) client.connect() ser = EventSerializer() tags = [args.tags] if isinstance(args.tags, str) else args.tags class _SenderThread(Thread): """Sender Thread. Runs continuously. """ def __init__(self): super(_SenderThread, self).__init__() self.is_running = False def run(self): """Generate and send events continuously. """ self.is_running = True while self.is_running: _send_event(args, tags, client, ser) time.sleep(args.delay) sender_thread = _SenderThread() sender_thread.is_running = True sender_thread.start() loop.run_forever() def run_simulate_events(): """Run the simulation of events. """ parser = get_parser() args = parser.parse_args() simulate_events(args) if __name__ == '__main__': run_simulate_events()
theia-log/theia
theia/cli/simulate.py
Python
apache-2.0
5,856
import os class DatabaseConfig(Config): DEBUG = True SQLALCHEMY_DATABASE_URI = ''mysql://dev:123456@172.21.0.2/MyDBMovies') SQLALCHEMY_TRACK_MODIFICATIONS = False config_by_name = dict( db=DatabaseConfig )
CALlanoR/virtual_environments
web/python/flask_api_sqlalchemy_mysql/movies_api_service/app/main/__init__.py
Python
apache-2.0
223
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.conf import settings from django.db import migrations def update_site_forward(apps, schema_editor): """Set site domain and name.""" Site = apps.get_model("sites", "Site") Site.objects.update_or_create( id=settings.SITE_ID, defaults={ "domain": "commonrepo.tw", "name": "Common Repository" } ) def update_site_backward(apps, schema_editor): """Revert site domain and name to default.""" Site = apps.get_model("sites", "Site") Site.objects.update_or_create( id=settings.SITE_ID, defaults={ "domain": "example.com", "name": "example.com" } ) class Migration(migrations.Migration): dependencies = [ ('sites', '0001_initial'), ] operations = [ migrations.RunPython(update_site_forward, update_site_backward), ]
yrchen/CommonRepo
commonrepo/contrib/sites/migrations/0002_set_site_domain_and_name.py
Python
apache-2.0
951