code
stringlengths
2
1.05M
repo_name
stringlengths
5
104
path
stringlengths
4
251
language
stringclasses
1 value
license
stringclasses
15 values
size
int32
2
1.05M
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from telemetry.page import page as page from telemetry import story class ServiceWorkerBenchmarkPage(page.Page): """Page for workload to measure some specific functions in JS""" def RunNavigateSteps(self, action_runner): super(ServiceWorkerBenchmarkPage, self).RunNavigateSteps(action_runner) action_runner.WaitForJavaScriptCondition('window.done') class ServiceWorkerMicroBenchmarkPageSet(story.StorySet): """Page set for micro benchmarking of each functions with ServiceWorker""" def __init__(self): super(ServiceWorkerMicroBenchmarkPageSet, self).__init__( archive_data_file='data/service_worker_micro_benchmark.json', cloud_storage_bucket=story.PUBLIC_BUCKET) # pylint: disable=line-too-long # The latest code of localhost:8091 is from: # https://github.com/horo-t/Service-Worker-Performance/tree/fix-flakyness # (rev: 0cc35c2398526665399ca99fe53147ff81101408) # TODO(falken): House the code in GoogleChrome's GitHub repository. # pylint: enable=C0301 # Why: to measure performance of many concurrent fetches self.AddStory(ServiceWorkerBenchmarkPage( 'http://localhost:8091/index.html', self, make_javascript_deterministic=False))
axinging/chromium-crosswalk
tools/perf/page_sets/service_worker_micro_benchmark.py
Python
bsd-3-clause
1,389
# # This file is part of pyasn1-modules software. # # Copyright (c) 2005-2017, Ilya Etingof <etingof@gmail.com> # License: http://pyasn1.sf.net/license.html # import sys from pyasn1.codec.der import decoder as der_decoder from pyasn1.codec.der import encoder as der_encoder from pyasn1_modules import pem from pyasn1_modules import rfc2314 try: import unittest2 as unittest except ImportError: import unittest class CertificationRequestTestCase(unittest.TestCase): pem_text = """\ MIIDATCCAekCAQAwgZkxCzAJBgNVBAYTAlJVMRYwFAYDVQQIEw1Nb3Njb3cgUmVn aW9uMQ8wDQYDVQQHEwZNb3Njb3cxGjAYBgNVBAoTEVNOTVAgTGFib3JhdG9yaWVz MQwwCgYDVQQLFANSJkQxFTATBgNVBAMTDHNubXBsYWJzLmNvbTEgMB4GCSqGSIb3 DQEJARYRaW5mb0Bzbm1wbGFicy5jb20wggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAw ggEKAoIBAQC9n2NfGS98JDBmAXQn+vNUyPB3QPYC1cwpX8UMYh9MdAmBZJCnvXrQ Pp14gNAv6AQKxefmGES1b+Yd+1we9HB8AKm1/8xvRDUjAvy4iO0sqFCPvIfSujUy pBcfnR7QE2itvyrMxCDSEVnMhKdCNb23L2TptUmpvLcb8wfAMLFsSu2yaOtJysep oH/mvGqlRv2ti2+E2YA0M7Pf83wyV1XmuEsc9tQ225rprDk2uyshUglkDD2235rf 0QyONq3Aw3BMrO9ss1qj7vdDhVHVsxHnTVbEgrxEWkq2GkVKh9QReMZ2AKxe40j4 og+OjKXguOCggCZHJyXKxccwqCaeCztbAgMBAAGgIjAgBgkqhkiG9w0BCQIxExMR U05NUCBMYWJvcmF0b3JpZXMwDQYJKoZIhvcNAQEFBQADggEBAAihbwmN9M2bsNNm 9KfxqiGMqqcGCtzIlpDz/2NVwY93cEZsbz3Qscc0QpknRmyTSoDwIG+1nUH0vzkT Nv8sBmp9I1GdhGg52DIaWwL4t9O5WUHgfHSJpPxZ/zMP2qIsdPJ+8o19BbXRlufc 73c03H1piGeb9VcePIaulSHI622xukI6f4Sis49vkDaoi+jadbEEb6TYkJQ3AMRD WdApGGm0BePdLqboW1Yv70WRRFFD8sxeT7Yw4qrJojdnq0xMHPGfKpf6dJsqWkHk b5DRbjil1Zt9pJuF680S9wtBzSi0hsMHXR9TzS7HpMjykL2nmCVY6A78MZapsCzn GGbx7DI= """ def setUp(self): self.asn1Spec = rfc2314.CertificationRequest() def testDerCodec(self): substrate = pem.readBase64fromText(self.pem_text) asn1Object, rest = der_decoder.decode(substrate, asn1Spec=self.asn1Spec) assert not rest assert asn1Object.prettyPrint() assert der_encoder.encode(asn1Object) == substrate suite = unittest.TestLoader().loadTestsFromModule(sys.modules[__name__]) if __name__ == '__main__': unittest.TextTestRunner(verbosity=2).run(suite)
catapult-project/catapult
third_party/gsutil/third_party/pyasn1-modules/tests/test_rfc2314.py
Python
bsd-3-clause
2,078
import numpy as np import pytest from pandas._libs.tslibs import iNaT from pandas._libs.tslibs.period import IncompatibleFrequency import pandas as pd import pandas._testing as tm from pandas.core.arrays import ( PeriodArray, period_array, ) @pytest.mark.parametrize( "data, freq, expected", [ ([pd.Period("2017", "D")], None, [17167]), ([pd.Period("2017", "D")], "D", [17167]), ([2017], "D", [17167]), (["2017"], "D", [17167]), ([pd.Period("2017", "D")], pd.tseries.offsets.Day(), [17167]), ([pd.Period("2017", "D"), None], None, [17167, iNaT]), (pd.Series(pd.date_range("2017", periods=3)), None, [17167, 17168, 17169]), (pd.date_range("2017", periods=3), None, [17167, 17168, 17169]), (pd.period_range("2017", periods=4, freq="Q"), None, [188, 189, 190, 191]), ], ) def test_period_array_ok(data, freq, expected): result = period_array(data, freq=freq).asi8 expected = np.asarray(expected, dtype=np.int64) tm.assert_numpy_array_equal(result, expected) def test_period_array_readonly_object(): # https://github.com/pandas-dev/pandas/issues/25403 pa = period_array([pd.Period("2019-01-01")]) arr = np.asarray(pa, dtype="object") arr.setflags(write=False) result = period_array(arr) tm.assert_period_array_equal(result, pa) result = pd.Series(arr) tm.assert_series_equal(result, pd.Series(pa)) result = pd.DataFrame({"A": arr}) tm.assert_frame_equal(result, pd.DataFrame({"A": pa})) def test_from_datetime64_freq_changes(): # https://github.com/pandas-dev/pandas/issues/23438 arr = pd.date_range("2017", periods=3, freq="D") result = PeriodArray._from_datetime64(arr, freq="M") expected = period_array(["2017-01-01", "2017-01-01", "2017-01-01"], freq="M") tm.assert_period_array_equal(result, expected) @pytest.mark.parametrize( "data, freq, msg", [ ( [pd.Period("2017", "D"), pd.Period("2017", "A")], None, "Input has different freq", ), ([pd.Period("2017", "D")], "A", "Input has different freq"), ], ) def test_period_array_raises(data, freq, msg): with pytest.raises(IncompatibleFrequency, match=msg): period_array(data, freq) def test_period_array_non_period_series_raies(): ser = pd.Series([1, 2, 3]) with pytest.raises(TypeError, match="dtype"): PeriodArray(ser, freq="D") def test_period_array_freq_mismatch(): arr = period_array(["2000", "2001"], freq="D") with pytest.raises(IncompatibleFrequency, match="freq"): PeriodArray(arr, freq="M") with pytest.raises(IncompatibleFrequency, match="freq"): PeriodArray(arr, freq=pd.tseries.offsets.MonthEnd()) def test_from_sequence_disallows_i8(): arr = period_array(["2000", "2001"], freq="D") msg = str(arr[0].ordinal) with pytest.raises(TypeError, match=msg): PeriodArray._from_sequence(arr.asi8, dtype=arr.dtype) with pytest.raises(TypeError, match=msg): PeriodArray._from_sequence(list(arr.asi8), dtype=arr.dtype)
rs2/pandas
pandas/tests/arrays/period/test_constructors.py
Python
bsd-3-clause
3,116
# Do not edit this file, pipeline versioning is governed by git tags __version__=0.0.0
ecolell/aquire
version.py
Python
mit
86
# Copyright (C) 2009 Red Hat, Inc., Joey Boggs <jboggs@redhat.com> # Copyright (C) 2012 Rackspace US, Inc., # Justin Shepherd <jshepher@rackspace.com> # Copyright (C) 2013 Red Hat, Inc., Flavio Percoco <fpercoco@redhat.com> # Copyright (C) 2013 Red Hat, Inc., Jeremy Agee <jagee@redhat.com> # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. from sos.plugins import Plugin, RedHatPlugin, DebianPlugin, UbuntuPlugin class OpenStackCinder(Plugin): """OpenStack cinder """ plugin_name = "openstack_cinder" profiles = ('openstack', 'openstack_controller') option_list = [("db", "gathers openstack cinder db version", "slow", False)] def setup(self): if self.get_option("db"): self.add_cmd_output( "cinder-manage db version", suggest_filename="cinder_db_version") self.add_copy_spec(["/etc/cinder/"]) self.limit = self.get_option("log_size") if self.get_option("all_logs"): self.add_copy_spec_limit("/var/log/cinder/", sizelimit=self.limit) else: self.add_copy_spec_limit("/var/log/cinder/*.log", sizelimit=self.limit) def postproc(self): protect_keys = [ "admin_password", "backup_tsm_password", "chap_password", "nas_password", "cisco_fc_fabric_password", "coraid_password", "eqlx_chap_password", "fc_fabric_password", "hitachi_auth_password", "hitachi_horcm_password", "hp3par_password", "hplefthand_password", "memcache_secret_key", "netapp_password", "netapp_sa_password", "nexenta_password", "password", "qpid_password", "rabbit_password", "san_password", "ssl_key_password", "vmware_host_password", "zadara_password", "zfssa_initiator_password", "connection", "zfssa_target_password", "os_privileged_user_password", "hmac_keys" ] regexp = r"((?m)^\s*(%s)\s*=\s*)(.*)" % "|".join(protect_keys) self.do_path_regex_sub("/etc/cinder/*", regexp, r"\1*********") class DebianCinder(OpenStackCinder, DebianPlugin, UbuntuPlugin): cinder = False packages = ( 'cinder-api', 'cinder-backup', 'cinder-common', 'cinder-scheduler', 'cinder-volume', 'python-cinder', 'python-cinderclient' ) def check_enabled(self): self.cinder = self.is_installed("cinder-common") return self.cinder def setup(self): super(DebianCinder, self).setup() class RedHatCinder(OpenStackCinder, RedHatPlugin): cinder = False packages = ('openstack-cinder', 'python-cinder', 'python-cinderclient') def check_enabled(self): self.cinder = self.is_installed("openstack-cinder") return self.cinder def setup(self): super(RedHatCinder, self).setup() self.add_copy_spec(["/etc/sudoers.d/cinder"]) # vim: set et ts=4 sw=4 :
csutherl/sos
sos/plugins/openstack_cinder.py
Python
gpl-2.0
3,713
#!/usr/bin/env python """ Copyright (c) 2006-2014 sqlmap developers (http://sqlmap.org/) See the file 'doc/COPYING' for copying permission """ from lib.core.enums import PRIORITY __priority__ = PRIORITY.HIGHEST def dependencies(): pass def tamper(payload, **kwargs): """ Replaces instances like 'CONCAT(A, B)' with 'CONCAT_WS(MID(CHAR(0), 0, 0), A, B)' Requirement: * MySQL Tested against: * MySQL 5.0 Notes: * Useful to bypass very weak and bespoke web application firewalls that filter the CONCAT() function >>> tamper('CONCAT(1,2)') 'CONCAT_WS(MID(CHAR(0),0,0),1,2)' """ if payload: payload = payload.replace("CONCAT(", "CONCAT_WS(MID(CHAR(0),0,0),") return payload
pwnieexpress/raspberry_pwn
src/pentest/sqlmap/tamper/concat2concatws.py
Python
gpl-3.0
766
""" Command to migrate transcripts to django storage. """ import logging from django.core.management import BaseCommand, CommandError from opaque_keys import InvalidKeyError from opaque_keys.edx.keys import CourseKey from opaque_keys.edx.locator import CourseLocator from cms.djangoapps.contentstore.tasks import ( DEFAULT_ALL_COURSES, DEFAULT_FORCE_UPDATE, DEFAULT_COMMIT, enqueue_async_migrate_transcripts_tasks ) from openedx.core.lib.command_utils import get_mutually_exclusive_required_option, parse_course_keys from openedx.core.djangoapps.video_config.models import TranscriptMigrationSetting from xmodule.modulestore.django import modulestore log = logging.getLogger(__name__) class Command(BaseCommand): """ Example usage: $ ./manage.py cms migrate_transcripts --all-courses --force-update --commit $ ./manage.py cms migrate_transcripts --course-id 'Course1' --course-id 'Course2' --commit $ ./manage.py cms migrate_transcripts --from-settings """ help = 'Migrates transcripts to S3 for one or more courses.' def add_arguments(self, parser): """ Add arguments to the command parser. """ parser.add_argument( '--course-id', '--course_id', dest='course_ids', action='append', help=u'Migrates transcripts for the list of courses.' ) parser.add_argument( '--all-courses', '--all', '--all_courses', dest='all_courses', action='store_true', default=DEFAULT_ALL_COURSES, help=u'Migrates transcripts to the configured django storage for all courses.' ) parser.add_argument( '--from-settings', '--from_settings', dest='from_settings', help='Migrate Transcripts with settings set via django admin', action='store_true', default=False, ) parser.add_argument( '--force-update', '--force_update', dest='force_update', action='store_true', default=DEFAULT_FORCE_UPDATE, help=u'Force migrate transcripts for the requested courses, overwrite if already present.' ) parser.add_argument( '--commit', dest='commit', action='store_true', default=DEFAULT_COMMIT, help=u'Commits the discovered video transcripts to django storage. ' u'Without this flag, the command will return the transcripts discovered for migration.' ) def _parse_course_key(self, raw_value): """ Parses course key from string """ try: result = CourseKey.from_string(raw_value) except InvalidKeyError: raise CommandError("Invalid course_key: '%s'." % raw_value) if not isinstance(result, CourseLocator): raise CommandError(u"Argument {0} is not a course key".format(raw_value)) return result def _get_migration_options(self, options): """ Returns the command arguments configured via django admin. """ force_update = options['force_update'] commit = options['commit'] courses_mode = get_mutually_exclusive_required_option(options, 'course_ids', 'all_courses', 'from_settings') if courses_mode == 'all_courses': course_keys = [course.id for course in modulestore().get_course_summaries()] elif courses_mode == 'course_ids': course_keys = map(self._parse_course_key, options['course_ids']) else: if self._latest_settings().all_courses: course_keys = [course.id for course in modulestore().get_course_summaries()] else: course_keys = parse_course_keys(self._latest_settings().course_ids.split()) force_update = self._latest_settings().force_update commit = self._latest_settings().commit return course_keys, force_update, commit def _latest_settings(self): """ Return the latest version of the TranscriptMigrationSetting """ return TranscriptMigrationSetting.current() def handle(self, *args, **options): """ Invokes the migrate transcripts enqueue function. """ course_keys, force_update, commit = self._get_migration_options(options) command_run = self._latest_settings().increment_run() if commit else -1 enqueue_async_migrate_transcripts_tasks( course_keys=course_keys, commit=commit, command_run=command_run, force_update=force_update )
Stanford-Online/edx-platform
cms/djangoapps/contentstore/management/commands/migrate_transcripts.py
Python
agpl-3.0
4,653
# -*- coding: utf-8 -*- # Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.python.ops.io_ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tempfile import tensorflow as tf class IoOpsTest(tf.test.TestCase): def testReadFile(self): cases = ['', 'Some contents', 'Неки садржаји на српском'] for contents in cases: contents = tf.compat.as_bytes(contents) with tempfile.NamedTemporaryFile(prefix='ReadFileTest', dir=self.get_temp_dir(), delete=False) as temp: temp.write(contents) with self.test_session(): read = tf.read_file(temp.name) self.assertEqual([], read.get_shape()) self.assertEqual(read.eval(), contents) os.remove(temp.name) def testWriteFile(self): cases = ['', 'Some contents'] for contents in cases: contents = tf.compat.as_bytes(contents) with tempfile.NamedTemporaryFile(prefix='WriteFileTest', dir=self.get_temp_dir(), delete=False) as temp: pass with self.test_session() as sess: w = tf.write_file(temp.name, contents) sess.run(w) with open(temp.name, 'rb') as f: file_contents = f.read() self.assertEqual(file_contents, contents) os.remove(temp.name) def _subset(self, files, indices): return set(tf.compat.as_bytes(files[i].name) for i in range(len(files)) if i in indices) def testMatchingFiles(self): cases = ['ABcDEF.GH', 'ABzDEF.GH', 'ABasdfjklDEF.GH', 'AB3DEF.GH', 'AB4DEF.GH', 'ABDEF.GH', 'XYZ'] files = [tempfile.NamedTemporaryFile( prefix=c, dir=self.get_temp_dir(), delete=True) for c in cases] with self.test_session(): # Test exact match without wildcards. for f in files: self.assertEqual(tf.matching_files(f.name).eval(), tf.compat.as_bytes(f.name)) # We will look for files matching "ABxDEF.GH*" where "x" is some wildcard. pos = files[0].name.find(cases[0]) pattern = files[0].name[:pos] + 'AB%sDEF.GH*' self.assertEqual(set(tf.matching_files(pattern % 'z').eval()), self._subset(files, [1])) self.assertEqual(set(tf.matching_files(pattern % '?').eval()), self._subset(files, [0, 1, 3, 4])) self.assertEqual(set(tf.matching_files(pattern % '*').eval()), self._subset(files, [0, 1, 2, 3, 4, 5])) # NOTE(mrry): Windows uses PathMatchSpec to match file patterns, which # does not support the following expressions. if os.name != 'nt': self.assertEqual(set(tf.matching_files(pattern % '[cxz]').eval()), self._subset(files, [0, 1])) self.assertEqual(set(tf.matching_files(pattern % '[0-9]').eval()), self._subset(files, [3, 4])) for f in files: f.close() if __name__ == '__main__': tf.test.main()
sandeepdsouza93/TensorFlow-15712
tensorflow/python/kernel_tests/io_ops_test.py
Python
apache-2.0
3,819
import logging from flask import request, flash, abort, Response from flask_admin import expose from flask_admin.babel import gettext, ngettext, lazy_gettext from flask_admin.model import BaseModelView from flask_admin.model.form import wrap_fields_in_fieldlist from flask_admin.model.fields import ListEditableFieldList from flask_admin._compat import iteritems, string_types import mongoengine import gridfs from mongoengine.connection import get_db from bson.objectid import ObjectId from flask_admin.actions import action from .filters import FilterConverter, BaseMongoEngineFilter from .form import get_form, CustomModelConverter from .typefmt import DEFAULT_FORMATTERS from .tools import parse_like_term from .helpers import format_error from .ajax import process_ajax_references, create_ajax_loader from .subdoc import convert_subdocuments # Set up logger log = logging.getLogger("flask-admin.mongo") SORTABLE_FIELDS = set(( mongoengine.StringField, mongoengine.IntField, mongoengine.FloatField, mongoengine.BooleanField, mongoengine.DateTimeField, mongoengine.ComplexDateTimeField, mongoengine.ObjectIdField, mongoengine.DecimalField, mongoengine.ReferenceField, mongoengine.EmailField, mongoengine.UUIDField, mongoengine.URLField )) class ModelView(BaseModelView): """ MongoEngine model scaffolding. """ column_filters = None """ Collection of the column filters. Can contain either field names or instances of :class:`flask_admin.contrib.mongoengine.filters.BaseFilter` classes. For example:: class MyModelView(BaseModelView): column_filters = ('user', 'email') or:: class MyModelView(BaseModelView): column_filters = (BooleanEqualFilter(User.name, 'Name')) """ model_form_converter = CustomModelConverter """ Model form conversion class. Use this to implement custom field conversion logic. Custom class should be derived from the `flask_admin.contrib.mongoengine.form.CustomModelConverter`. For example:: class MyModelConverter(AdminModelConverter): pass class MyAdminView(ModelView): model_form_converter = MyModelConverter """ object_id_converter = ObjectId """ Mongodb ``_id`` value conversion function. Default is `bson.ObjectId`. Use this if you are using String, Binary and etc. For example:: class MyModelView(BaseModelView): object_id_converter = int or:: class MyModelView(BaseModelView): object_id_converter = str """ filter_converter = FilterConverter() """ Field to filter converter. Override this attribute to use a non-default converter. """ column_type_formatters = DEFAULT_FORMATTERS """ Customized type formatters for MongoEngine backend """ allowed_search_types = (mongoengine.StringField, mongoengine.URLField, mongoengine.EmailField) """ List of allowed search field types. """ form_subdocuments = None """ Subdocument configuration options. This field accepts dictionary, where key is field name and value is either dictionary or instance of the `flask_admin.contrib.EmbeddedForm`. Consider following example:: class Comment(db.EmbeddedDocument): name = db.StringField(max_length=20, required=True) value = db.StringField(max_length=20) class Post(db.Document): text = db.StringField(max_length=30) data = db.EmbeddedDocumentField(Comment) class MyAdmin(ModelView): form_subdocuments = { 'data': { 'form_columns': ('name',) } } In this example, `Post` model has child `Comment` subdocument. When generating form for `Comment` embedded document, Flask-Admin will only create `name` field. It is also possible to use class-based embedded document configuration:: class CommentEmbed(EmbeddedForm): form_columns = ('name',) class MyAdmin(ModelView): form_subdocuments = { 'data': CommentEmbed() } Arbitrary depth nesting is supported:: class SomeEmbed(EmbeddedForm): form_excluded_columns = ('test',) class CommentEmbed(EmbeddedForm): form_columns = ('name',) form_subdocuments = { 'inner': SomeEmbed() } class MyAdmin(ModelView): form_subdocuments = { 'data': CommentEmbed() } There's also support for forms embedded into `ListField`. All you have to do is to create nested rule with `None` as a name. Even though it is slightly confusing, but that's how Flask-MongoEngine creates form fields embedded into ListField:: class Comment(db.EmbeddedDocument): name = db.StringField(max_length=20, required=True) value = db.StringField(max_length=20) class Post(db.Document): text = db.StringField(max_length=30) data = db.ListField(db.EmbeddedDocumentField(Comment)) class MyAdmin(ModelView): form_subdocuments = { 'data': { 'form_subdocuments': { None: { 'form_columns': ('name',) } } } } """ def __init__(self, model, name=None, category=None, endpoint=None, url=None, static_folder=None, menu_class_name=None, menu_icon_type=None, menu_icon_value=None): """ Constructor :param model: Model class :param name: Display name :param category: Display category :param endpoint: Endpoint :param url: Custom URL :param menu_class_name: Optional class name for the menu item. :param menu_icon_type: Optional icon. Possible icon types: - `flask_admin.consts.ICON_TYPE_GLYPH` - Bootstrap glyph icon - `flask_admin.consts.ICON_TYPE_FONT_AWESOME` - Font Awesome icon - `flask_admin.consts.ICON_TYPE_IMAGE` - Image relative to Flask static directory - `flask_admin.consts.ICON_TYPE_IMAGE_URL` - Image with full URL :param menu_icon_value: Icon glyph name or URL, depending on `menu_icon_type` setting """ self._search_fields = [] super(ModelView, self).__init__(model, name, category, endpoint, url, static_folder, menu_class_name=menu_class_name, menu_icon_type=menu_icon_type, menu_icon_value=menu_icon_value) self._primary_key = self.scaffold_pk() def _refresh_cache(self): """ Refresh cache. """ # Process subdocuments if self.form_subdocuments is None: self.form_subdocuments = {} self._form_subdocuments = convert_subdocuments(self.form_subdocuments) # Cache other properties super(ModelView, self)._refresh_cache() def _process_ajax_references(self): """ AJAX endpoint is exposed by top-level admin view class, but subdocuments might have AJAX references too. This method will recursively go over subdocument configuration and will precompute AJAX references for them ensuring that subdocuments can also use AJAX to populate their ReferenceFields. """ references = super(ModelView, self)._process_ajax_references() return process_ajax_references(references, self) def _get_model_fields(self, model=None): """ Inspect model and return list of model fields :param model: Model to inspect """ if model is None: model = self.model return sorted(iteritems(model._fields), key=lambda n: n[1].creation_counter) def scaffold_pk(self): # MongoEngine models have predefined 'id' as a key return 'id' def get_pk_value(self, model): """ Return the primary key value from the model instance :param model: Model instance """ return model.pk def scaffold_list_columns(self): """ Scaffold list columns """ columns = [] for n, f in self._get_model_fields(): # Verify type field_class = type(f) if (field_class == mongoengine.ListField and isinstance(f.field, mongoengine.EmbeddedDocumentField)): continue if field_class == mongoengine.EmbeddedDocumentField: continue if self.column_display_pk or field_class != mongoengine.ObjectIdField: columns.append(n) return columns def scaffold_sortable_columns(self): """ Return a dictionary of sortable columns (name, field) """ columns = {} for n, f in self._get_model_fields(): if type(f) in SORTABLE_FIELDS: if self.column_display_pk or type(f) != mongoengine.ObjectIdField: columns[n] = f return columns def init_search(self): """ Init search """ if self.column_searchable_list: for p in self.column_searchable_list: if isinstance(p, string_types): p = self.model._fields.get(p) if p is None: raise Exception('Invalid search field') field_type = type(p) # Check type if (field_type not in self.allowed_search_types): raise Exception('Can only search on text columns. ' + 'Failed to setup search for "%s"' % p) self._search_fields.append(p) return bool(self._search_fields) def scaffold_filters(self, name): """ Return filter object(s) for the field :param name: Either field name or field instance """ if isinstance(name, string_types): attr = self.model._fields.get(name) else: attr = name if attr is None: raise Exception('Failed to find field for filter: %s' % name) # Find name visible_name = None if not isinstance(name, string_types): visible_name = self.get_column_name(attr.name) if not visible_name: visible_name = self.get_column_name(name) # Convert filter type_name = type(attr).__name__ flt = self.filter_converter.convert(type_name, attr, visible_name) return flt def is_valid_filter(self, filter): """ Validate if the provided filter is a valid MongoEngine filter :param filter: Filter object """ return isinstance(filter, BaseMongoEngineFilter) def scaffold_form(self): """ Create form from the model. """ form_class = get_form(self.model, self.model_form_converter(self), base_class=self.form_base_class, only=self.form_columns, exclude=self.form_excluded_columns, field_args=self.form_args, extra_fields=self.form_extra_fields) return form_class def scaffold_list_form(self, custom_fieldlist=ListEditableFieldList, validators=None): """ Create form for the `index_view` using only the columns from `self.column_editable_list`. :param validators: `form_args` dict with only validators {'name': {'validators': [required()]}} :param custom_fieldlist: A WTForm FieldList class. By default, `ListEditableFieldList`. """ form_class = get_form(self.model, self.model_form_converter(self), base_class=self.form_base_class, only=self.column_editable_list, field_args=validators) return wrap_fields_in_fieldlist(self.form_base_class, form_class, custom_fieldlist) # AJAX foreignkey support def _create_ajax_loader(self, name, opts): return create_ajax_loader(self.model, name, name, opts) def get_query(self): """ Returns the QuerySet for this view. By default, it returns all the objects for the current model. """ return self.model.objects def _search(self, query, search_term): # TODO: Unfortunately, MongoEngine contains bug which # prevents running complex Q queries and, as a result, # Flask-Admin does not support per-word searching like # in other backends op, term = parse_like_term(search_term) criteria = None for field in self._search_fields: flt = {'%s__%s' % (field.name, op): term} q = mongoengine.Q(**flt) if criteria is None: criteria = q else: criteria |= q return query.filter(criteria) def get_list(self, page, sort_column, sort_desc, search, filters, execute=True): """ Get list of objects from MongoEngine :param page: Page number :param sort_column: Sort column :param sort_desc: Sort descending :param search: Search criteria :param filters: List of applied filters :param execute: Run query immediately or not """ query = self.get_query() # Filters if self._filters: for flt, flt_name, value in filters: f = self._filters[flt] query = f.apply(query, f.clean(value)) # Search if self._search_supported and search: query = self._search(query, search) # Get count count = query.count() if not self.simple_list_pager else None # Sorting if sort_column: query = query.order_by('%s%s' % ('-' if sort_desc else '', sort_column)) else: order = self._get_default_order() if order: query = query.order_by('%s%s' % ('-' if order[1] else '', order[0])) # Pagination if page is not None: query = query.skip(page * self.page_size) query = query.limit(self.page_size) if execute: query = query.all() return count, query def get_one(self, id): """ Return a single model instance by its ID :param id: Model ID """ try: return self.get_query().filter(pk=id).first() except mongoengine.ValidationError as ex: flash(gettext('Failed to get model. %(error)s', error=format_error(ex)), 'error') return None def create_model(self, form): """ Create model helper :param form: Form instance """ try: model = self.model() form.populate_obj(model) self._on_model_change(form, model, True) model.save() except Exception as ex: if not self.handle_view_exception(ex): flash(gettext('Failed to create record. %(error)s', error=format_error(ex)), 'error') log.exception('Failed to create record.') return False else: self.after_model_change(form, model, True) return model def update_model(self, form, model): """ Update model helper :param form: Form instance :param model: Model instance to update """ try: form.populate_obj(model) self._on_model_change(form, model, False) model.save() except Exception as ex: if not self.handle_view_exception(ex): flash(gettext('Failed to update record. %(error)s', error=format_error(ex)), 'error') log.exception('Failed to update record.') return False else: self.after_model_change(form, model, False) return True def delete_model(self, model): """ Delete model helper :param model: Model instance """ try: self.on_model_delete(model) model.delete() except Exception as ex: if not self.handle_view_exception(ex): flash(gettext('Failed to delete record. %(error)s', error=format_error(ex)), 'error') log.exception('Failed to delete record.') return False else: self.after_model_delete(model) return True # FileField access API @expose('/api/file/') def api_file_view(self): pk = request.args.get('id') coll = request.args.get('coll') db = request.args.get('db', 'default') if not pk or not coll or not db: abort(404) fs = gridfs.GridFS(get_db(db), coll) data = fs.get(self.object_id_converter(pk)) if not data: abort(404) return Response(data.read(), content_type=data.content_type, headers={ 'Content-Length': data.length }) # Default model actions def is_action_allowed(self, name): # Check delete action permission if name == 'delete' and not self.can_delete: return False return super(ModelView, self).is_action_allowed(name) @action('delete', lazy_gettext('Delete'), lazy_gettext('Are you sure you want to delete selected records?')) def action_delete(self, ids): try: count = 0 all_ids = [self.object_id_converter(pk) for pk in ids] for obj in self.get_query().in_bulk(all_ids).values(): count += self.delete_model(obj) flash(ngettext('Record was successfully deleted.', '%(count)s records were successfully deleted.', count, count=count)) except Exception as ex: if not self.handle_view_exception(ex): flash(gettext('Failed to delete records. %(error)s', error=str(ex)), 'error')
hexlism/css_platform
sleepyenv/lib/python2.7/site-packages/Flask_Admin-1.2.0-py2.7.egg/flask_admin/contrib/mongoengine/view.py
Python
apache-2.0
20,150
import logging import multiprocessing import os from mimetypes import guess_type from django.conf import settings from django.core.cache import cache from django.db import connection from zerver.lib.avatar_hash import user_avatar_path from zerver.lib.upload import S3UploadBackend, upload_image_to_s3 from zerver.models import Attachment, RealmEmoji, UserProfile s3backend = S3UploadBackend() def transfer_uploads_to_s3(processes: int) -> None: # TODO: Eventually, we'll want to add realm icon and logo transfer_avatars_to_s3(processes) transfer_message_files_to_s3(processes) transfer_emoji_to_s3(processes) def _transfer_avatar_to_s3(user: UserProfile) -> None: avatar_path = user_avatar_path(user) file_path = os.path.join(settings.LOCAL_UPLOADS_DIR, "avatars", avatar_path) + ".original" try: with open(file_path, "rb") as f: s3backend.upload_avatar_image(f, user, user) logging.info("Uploaded avatar for %s in realm %s", user.id, user.realm.name) except FileNotFoundError: pass def transfer_avatars_to_s3(processes: int) -> None: users = list(UserProfile.objects.all()) if processes == 1: for user in users: _transfer_avatar_to_s3(user) else: # nocoverage connection.close() cache._cache.disconnect_all() with multiprocessing.Pool(processes) as p: for out in p.imap_unordered(_transfer_avatar_to_s3, users): pass def _transfer_message_files_to_s3(attachment: Attachment) -> None: file_path = os.path.join(settings.LOCAL_UPLOADS_DIR, "files", attachment.path_id) try: with open(file_path, "rb") as f: guessed_type = guess_type(attachment.file_name)[0] upload_image_to_s3( s3backend.uploads_bucket, attachment.path_id, guessed_type, attachment.owner, f.read(), ) logging.info("Uploaded message file in path %s", file_path) except FileNotFoundError: # nocoverage pass def transfer_message_files_to_s3(processes: int) -> None: attachments = list(Attachment.objects.all()) if processes == 1: for attachment in attachments: _transfer_message_files_to_s3(attachment) else: # nocoverage connection.close() cache._cache.disconnect_all() with multiprocessing.Pool(processes) as p: for out in p.imap_unordered(_transfer_message_files_to_s3, attachments): pass def _transfer_emoji_to_s3(realm_emoji: RealmEmoji) -> None: if not realm_emoji.file_name or not realm_emoji.author: return # nocoverage emoji_path = RealmEmoji.PATH_ID_TEMPLATE.format( realm_id=realm_emoji.realm.id, emoji_file_name=realm_emoji.file_name, ) emoji_path = os.path.join(settings.LOCAL_UPLOADS_DIR, "avatars", emoji_path) + ".original" try: with open(emoji_path, "rb") as f: s3backend.upload_emoji_image(f, realm_emoji.file_name, realm_emoji.author) logging.info("Uploaded emoji file in path %s", emoji_path) except FileNotFoundError: # nocoverage pass def transfer_emoji_to_s3(processes: int) -> None: realm_emojis = list(RealmEmoji.objects.filter()) if processes == 1: for realm_emoji in realm_emojis: _transfer_emoji_to_s3(realm_emoji) else: # nocoverage connection.close() cache._cache.disconnect_all() with multiprocessing.Pool(processes) as p: for out in p.imap_unordered(_transfer_emoji_to_s3, realm_emojis): pass
andersk/zulip
zerver/lib/transfer.py
Python
apache-2.0
3,678
""" Copyright (c) 2004-Present Pivotal Software, Inc. This program and the accompanying materials are made available under the terms of the under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os import socket from time import sleep import pexpect as pexpect import tinctest from tinctest.lib import local_path from gppylib.commands.base import Command from mpp.lib.config import GPDBConfig from mpp.lib.PSQL import PSQL from mpp.gpdb.tests.storage.walrepl.run import StandbyRunMixin from mpp.gpdb.tests.storage.walrepl.lib.verify import StandbyVerify from mpp.gpdb.tests.storage.walrepl.lib import WalReplException from mpp.gpdb.tests.storage.walrepl.lib.pg_util import GpUtility class GpinitStandby(object): '''Class for gpinitstandby operations Disclaimer: Some of these may repeat with the mpp/lib version''' def __init__(self): self.stdby = StandbyVerify() self.runmixin = StandbyRunMixin() self.runmixin.createdb(dbname='walrepl') self.mdd = os.environ.get('MASTER_DATA_DIRECTORY') self.config = GPDBConfig() self.pgutil = GpUtility() self.host = socket.gethostname() def run(self, option = ''): '''Runs gpinitstandby and returns True if successfull ''' gpinitstandby_cmd = 'gpinitstandby -a %s' % option cmd = Command(name='Running Gpinitstandby', cmdStr="%s" % gpinitstandby_cmd) tinctest.logger.info(" %s" % cmd) cmd.run(validateAfter=False) result = cmd.get_results() if result.rc != 0: return False return True def verify_gpinitstandby(self, primary_pid): '''Verify the presence of standby in recovery mode ''' if (self.stdby.check_gp_segment_config()) and (self.stdby.check_pg_stat_replication()) and (self.stdby.check_standby_processes())and self.compare_primary_pid(primary_pid) : return True return False def get_masterhost(self): std_sql = "select hostname from gp_segment_configuration where content=-1 and role='p';" master_host = PSQL.run_sql_command(std_sql, flags = '-q -t', dbname= 'postgres') return master_host.strip() def get_standbyhost(self): std_sql = "select hostname from gp_segment_configuration where content='-1' and role='m';" standby_host = PSQL.run_sql_command(std_sql, flags = '-q -t', dbname= 'postgres') return standby_host.strip() def get_filespace_location(self): fs_sql = "select fselocation from pg_filespace_entry where fselocation like '%fs_walrepl_a%' and fsedbid=1;" filespace_loc = PSQL.run_sql_command(fs_sql, flags = '-q -t', dbname= 'postgres') return filespace_loc.strip() def get_standbyhostnode(self): ''' Function used to obtain the hostname of one of the segment node inorder to use it as the standby master node" @return : returns the hostname of the segment node which can be used as the standby master node ''' hostlist = self.config.get_hosts() standby = '' for host in hostlist: if host.strip() != self.host: standby = host.strip() if len(standby) > 0 : return standby else: tinctest.logger.error('No segment host other than master available to have remote standby') def get_primary_pid(self): pid = self.pgutil.get_pid_by_keyword(pgport=os.environ.get('PGPORT'), keyword=self.mdd) if int(pid) == -1: raise WalReplException('Unable to get pid of primary master process') else: return int(pid) def compare_primary_pid(self, initial_pid): final_pid = self.get_primary_pid() if initial_pid == final_pid : return True return False def create_dir_on_standby(self, standby, location): fs_cmd = "gpssh -h %s -e 'rm -rf %s; mkdir -p %s' " % (standby, location, location) cmd = Command(name='Make dierctory on standby before running the command', cmdStr = fs_cmd) tinctest.logger.info('%s' % cmd) cmd.run(validateAfter=True) result = cmd.get_results() if result.rc != 0: raise WalReplException('Unable to create directory on standby') else: return True def initstand_by_with_default(self): master_host = self.get_masterhost() gp_cmd = "/bin/bash -c 'gpinitstandby -s %s'" % (master_host) logfile = open(local_path('install.log'),'w') child = pexpect.spawn(gp_cmd, timeout=400) child.logfile = logfile sleep(2) check = child.expect(['.* Enter standby filespace location for filespace pg_system .*', ' ']) if check != 0: child.close() l_file = open(local_path('install.log'),'r') lines = l_file.readlines() for line in lines: if 'default: NA' in line: return True return False def init_with_prompt(self,filespace_loc): standby = self.get_standbyhostnode() gp_cmd = "/bin/bash -c 'gpinitstandby -s %s -a'" % (standby) logfile = open(local_path('install2.log'),'w') child = pexpect.spawn(gp_cmd, timeout=400) child.logfile = logfile sleep(5) check = child.expect(['.* Enter standby filespace location for filespace.*', ' ']) child.sendline(filespace_loc) sleep(10) check = child.expect(['.*Successfully created standby master.*']) if check != 0: tinctest.logger.error('gpinitstandy failed') return False child.close() return True
edespino/gpdb
src/test/tinc/tincrepo/mpp/gpdb/tests/storage/walrepl/gpinitstandby/__init__.py
Python
apache-2.0
6,141
import functools from django import http from django.core.exceptions import PermissionDenied from django.shortcuts import redirect from olympia import amo from olympia.access import acl from olympia.addons.decorators import addon_view_factory from olympia.addons.models import Addon from olympia.amo.decorators import login_required def dev_required(owner_for_post=False, allow_reviewers=False, theme=False, submitting=False): """Requires user to be add-on owner or admin. When allow_reviewers is True, reviewers can view the page. """ def decorator(f): @addon_view_factory(qs=Addon.objects.all) @login_required @functools.wraps(f) def wrapper(request, addon, *args, **kw): if theme: kw['theme'] = addon.is_persona() elif addon.is_persona(): # Don't allow theme views if theme not passed in. raise http.Http404 def fun(): return f(request, addon_id=addon.id, addon=addon, *args, **kw) if allow_reviewers: if acl.is_reviewer(request, addon): return fun() # Require an owner or dev for POST requests. if request.method == 'POST': if acl.check_addon_ownership(request, addon, dev=not owner_for_post): return fun() # Ignore disabled so they can view their add-on. elif acl.check_addon_ownership(request, addon, dev=True, ignore_disabled=True): # Redirect to the submit flow if they're not done. if (not submitting and addon.should_redirect_to_submit_flow()): return redirect('devhub.submit.details', addon.slug) return fun() raise PermissionDenied return wrapper # The arg will be a function if they didn't pass owner_for_post. if callable(owner_for_post): f = owner_for_post owner_for_post = False return decorator(f) else: return decorator def no_admin_disabled(f): """Requires the addon not be STATUS_DISABLED (mozilla admin disabled).""" @functools.wraps(f) def wrapper(*args, **kw): addon = kw.get('addon') if addon and addon.status == amo.STATUS_DISABLED: raise http.Http404() return f(*args, **kw) return wrapper
aviarypl/mozilla-l10n-addons-server
src/olympia/devhub/decorators.py
Python
bsd-3-clause
2,494
# -*- coding: utf-8 -*- """ The rrule module offers a small, complete, and very fast, implementation of the recurrence rules documented in the `iCalendar RFC <https://tools.ietf.org/html/rfc5545>`_, including support for caching of results. """ import itertools import datetime import calendar import re import sys try: from math import gcd except ImportError: from fractions import gcd from six import advance_iterator, integer_types from six.moves import _thread, range import heapq from ._common import weekday as weekdaybase from .tz import tzutc, tzlocal # For warning about deprecation of until and count from warnings import warn __all__ = ["rrule", "rruleset", "rrulestr", "YEARLY", "MONTHLY", "WEEKLY", "DAILY", "HOURLY", "MINUTELY", "SECONDLY", "MO", "TU", "WE", "TH", "FR", "SA", "SU"] # Every mask is 7 days longer to handle cross-year weekly periods. M366MASK = tuple([1]*31+[2]*29+[3]*31+[4]*30+[5]*31+[6]*30 + [7]*31+[8]*31+[9]*30+[10]*31+[11]*30+[12]*31+[1]*7) M365MASK = list(M366MASK) M29, M30, M31 = list(range(1, 30)), list(range(1, 31)), list(range(1, 32)) MDAY366MASK = tuple(M31+M29+M31+M30+M31+M30+M31+M31+M30+M31+M30+M31+M31[:7]) MDAY365MASK = list(MDAY366MASK) M29, M30, M31 = list(range(-29, 0)), list(range(-30, 0)), list(range(-31, 0)) NMDAY366MASK = tuple(M31+M29+M31+M30+M31+M30+M31+M31+M30+M31+M30+M31+M31[:7]) NMDAY365MASK = list(NMDAY366MASK) M366RANGE = (0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366) M365RANGE = (0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365) WDAYMASK = [0, 1, 2, 3, 4, 5, 6]*55 del M29, M30, M31, M365MASK[59], MDAY365MASK[59], NMDAY365MASK[31] MDAY365MASK = tuple(MDAY365MASK) M365MASK = tuple(M365MASK) FREQNAMES = ['YEARLY', 'MONTHLY', 'WEEKLY', 'DAILY', 'HOURLY', 'MINUTELY', 'SECONDLY'] (YEARLY, MONTHLY, WEEKLY, DAILY, HOURLY, MINUTELY, SECONDLY) = list(range(7)) # Imported on demand. easter = None parser = None class weekday(weekdaybase): """ This version of weekday does not allow n = 0. """ def __init__(self, wkday, n=None): if n == 0: raise ValueError("Can't create weekday with n==0") super(weekday, self).__init__(wkday, n) MO, TU, WE, TH, FR, SA, SU = weekdays = tuple(weekday(x) for x in range(7)) def _invalidates_cache(f): """ Decorator for rruleset methods which may invalidate the cached length. """ def inner_func(self, *args, **kwargs): rv = f(self, *args, **kwargs) self._invalidate_cache() return rv return inner_func class rrulebase(object): def __init__(self, cache=False): if cache: self._cache = [] self._cache_lock = _thread.allocate_lock() self._invalidate_cache() else: self._cache = None self._cache_complete = False self._len = None def __iter__(self): if self._cache_complete: return iter(self._cache) elif self._cache is None: return self._iter() else: return self._iter_cached() def _invalidate_cache(self): if self._cache is not None: self._cache = [] self._cache_complete = False self._cache_gen = self._iter() if self._cache_lock.locked(): self._cache_lock.release() self._len = None def _iter_cached(self): i = 0 gen = self._cache_gen cache = self._cache acquire = self._cache_lock.acquire release = self._cache_lock.release while gen: if i == len(cache): acquire() if self._cache_complete: break try: for j in range(10): cache.append(advance_iterator(gen)) except StopIteration: self._cache_gen = gen = None self._cache_complete = True break release() yield cache[i] i += 1 while i < self._len: yield cache[i] i += 1 def __getitem__(self, item): if self._cache_complete: return self._cache[item] elif isinstance(item, slice): if item.step and item.step < 0: return list(iter(self))[item] else: return list(itertools.islice(self, item.start or 0, item.stop or sys.maxsize, item.step or 1)) elif item >= 0: gen = iter(self) try: for i in range(item+1): res = advance_iterator(gen) except StopIteration: raise IndexError return res else: return list(iter(self))[item] def __contains__(self, item): if self._cache_complete: return item in self._cache else: for i in self: if i == item: return True elif i > item: return False return False # __len__() introduces a large performance penality. def count(self): """ Returns the number of recurrences in this set. It will have go trough the whole recurrence, if this hasn't been done before. """ if self._len is None: for x in self: pass return self._len def before(self, dt, inc=False): """ Returns the last recurrence before the given datetime instance. The inc keyword defines what happens if dt is an occurrence. With inc=True, if dt itself is an occurrence, it will be returned. """ if self._cache_complete: gen = self._cache else: gen = self last = None if inc: for i in gen: if i > dt: break last = i else: for i in gen: if i >= dt: break last = i return last def after(self, dt, inc=False): """ Returns the first recurrence after the given datetime instance. The inc keyword defines what happens if dt is an occurrence. With inc=True, if dt itself is an occurrence, it will be returned. """ if self._cache_complete: gen = self._cache else: gen = self if inc: for i in gen: if i >= dt: return i else: for i in gen: if i > dt: return i return None def xafter(self, dt, count=None, inc=False): """ Generator which yields up to `count` recurrences after the given datetime instance, equivalent to `after`. :param dt: The datetime at which to start generating recurrences. :param count: The maximum number of recurrences to generate. If `None` (default), dates are generated until the recurrence rule is exhausted. :param inc: If `dt` is an instance of the rule and `inc` is `True`, it is included in the output. :yields: Yields a sequence of `datetime` objects. """ if self._cache_complete: gen = self._cache else: gen = self # Select the comparison function if inc: comp = lambda dc, dtc: dc >= dtc else: comp = lambda dc, dtc: dc > dtc # Generate dates n = 0 for d in gen: if comp(d, dt): if count is not None: n += 1 if n > count: break yield d def between(self, after, before, inc=False, count=1): """ Returns all the occurrences of the rrule between after and before. The inc keyword defines what happens if after and/or before are themselves occurrences. With inc=True, they will be included in the list, if they are found in the recurrence set. """ if self._cache_complete: gen = self._cache else: gen = self started = False l = [] if inc: for i in gen: if i > before: break elif not started: if i >= after: started = True l.append(i) else: l.append(i) else: for i in gen: if i >= before: break elif not started: if i > after: started = True l.append(i) else: l.append(i) return l class rrule(rrulebase): """ That's the base of the rrule operation. It accepts all the keywords defined in the RFC as its constructor parameters (except byday, which was renamed to byweekday) and more. The constructor prototype is:: rrule(freq) Where freq must be one of YEARLY, MONTHLY, WEEKLY, DAILY, HOURLY, MINUTELY, or SECONDLY. .. note:: Per RFC section 3.3.10, recurrence instances falling on invalid dates and times are ignored rather than coerced: Recurrence rules may generate recurrence instances with an invalid date (e.g., February 30) or nonexistent local time (e.g., 1:30 AM on a day where the local time is moved forward by an hour at 1:00 AM). Such recurrence instances MUST be ignored and MUST NOT be counted as part of the recurrence set. This can lead to possibly surprising behavior when, for example, the start date occurs at the end of the month: >>> from dateutil.rrule import rrule, MONTHLY >>> from datetime import datetime >>> start_date = datetime(2014, 12, 31) >>> list(rrule(freq=MONTHLY, count=4, dtstart=start_date)) ... # doctest: +NORMALIZE_WHITESPACE [datetime.datetime(2014, 12, 31, 0, 0), datetime.datetime(2015, 1, 31, 0, 0), datetime.datetime(2015, 3, 31, 0, 0), datetime.datetime(2015, 5, 31, 0, 0)] Additionally, it supports the following keyword arguments: :param cache: If given, it must be a boolean value specifying to enable or disable caching of results. If you will use the same rrule instance multiple times, enabling caching will improve the performance considerably. :param dtstart: The recurrence start. Besides being the base for the recurrence, missing parameters in the final recurrence instances will also be extracted from this date. If not given, datetime.now() will be used instead. :param interval: The interval between each freq iteration. For example, when using YEARLY, an interval of 2 means once every two years, but with HOURLY, it means once every two hours. The default interval is 1. :param wkst: The week start day. Must be one of the MO, TU, WE constants, or an integer, specifying the first day of the week. This will affect recurrences based on weekly periods. The default week start is got from calendar.firstweekday(), and may be modified by calendar.setfirstweekday(). :param count: How many occurrences will be generated. .. note:: As of version 2.5.0, the use of the ``until`` keyword together with the ``count`` keyword is deprecated per RFC-5545 Sec. 3.3.10. :param until: If given, this must be a datetime instance, that will specify the limit of the recurrence. The last recurrence in the rule is the greatest datetime that is less than or equal to the value specified in the ``until`` parameter. .. note:: As of version 2.5.0, the use of the ``until`` keyword together with the ``count`` keyword is deprecated per RFC-5545 Sec. 3.3.10. :param bysetpos: If given, it must be either an integer, or a sequence of integers, positive or negative. Each given integer will specify an occurrence number, corresponding to the nth occurrence of the rule inside the frequency period. For example, a bysetpos of -1 if combined with a MONTHLY frequency, and a byweekday of (MO, TU, WE, TH, FR), will result in the last work day of every month. :param bymonth: If given, it must be either an integer, or a sequence of integers, meaning the months to apply the recurrence to. :param bymonthday: If given, it must be either an integer, or a sequence of integers, meaning the month days to apply the recurrence to. :param byyearday: If given, it must be either an integer, or a sequence of integers, meaning the year days to apply the recurrence to. :param byweekno: If given, it must be either an integer, or a sequence of integers, meaning the week numbers to apply the recurrence to. Week numbers have the meaning described in ISO8601, that is, the first week of the year is that containing at least four days of the new year. :param byweekday: If given, it must be either an integer (0 == MO), a sequence of integers, one of the weekday constants (MO, TU, etc), or a sequence of these constants. When given, these variables will define the weekdays where the recurrence will be applied. It's also possible to use an argument n for the weekday instances, which will mean the nth occurrence of this weekday in the period. For example, with MONTHLY, or with YEARLY and BYMONTH, using FR(+1) in byweekday will specify the first friday of the month where the recurrence happens. Notice that in the RFC documentation, this is specified as BYDAY, but was renamed to avoid the ambiguity of that keyword. :param byhour: If given, it must be either an integer, or a sequence of integers, meaning the hours to apply the recurrence to. :param byminute: If given, it must be either an integer, or a sequence of integers, meaning the minutes to apply the recurrence to. :param bysecond: If given, it must be either an integer, or a sequence of integers, meaning the seconds to apply the recurrence to. :param byeaster: If given, it must be either an integer, or a sequence of integers, positive or negative. Each integer will define an offset from the Easter Sunday. Passing the offset 0 to byeaster will yield the Easter Sunday itself. This is an extension to the RFC specification. """ def __init__(self, freq, dtstart=None, interval=1, wkst=None, count=None, until=None, bysetpos=None, bymonth=None, bymonthday=None, byyearday=None, byeaster=None, byweekno=None, byweekday=None, byhour=None, byminute=None, bysecond=None, cache=False): super(rrule, self).__init__(cache) global easter if not dtstart: dtstart = datetime.datetime.now().replace(microsecond=0) elif not isinstance(dtstart, datetime.datetime): dtstart = datetime.datetime.fromordinal(dtstart.toordinal()) else: dtstart = dtstart.replace(microsecond=0) self._dtstart = dtstart self._tzinfo = dtstart.tzinfo self._freq = freq self._interval = interval self._count = count # Cache the original byxxx rules, if they are provided, as the _byxxx # attributes do not necessarily map to the inputs, and this can be # a problem in generating the strings. Only store things if they've # been supplied (the string retrieval will just use .get()) self._original_rule = {} if until and not isinstance(until, datetime.datetime): until = datetime.datetime.fromordinal(until.toordinal()) self._until = until if self._dtstart and self._until: if (self._dtstart.tzinfo is not None) != (self._until.tzinfo is not None): # According to RFC5545 Section 3.3.10: # https://tools.ietf.org/html/rfc5545#section-3.3.10 # # > If the "DTSTART" property is specified as a date with UTC # > time or a date with local time and time zone reference, # > then the UNTIL rule part MUST be specified as a date with # > UTC time. raise ValueError( 'RRULE UNTIL values must be specified in UTC when DTSTART ' 'is timezone-aware' ) if count is not None and until: warn("Using both 'count' and 'until' is inconsistent with RFC 5545" " and has been deprecated in dateutil. Future versions will " "raise an error.", DeprecationWarning) if wkst is None: self._wkst = calendar.firstweekday() elif isinstance(wkst, integer_types): self._wkst = wkst else: self._wkst = wkst.weekday if bysetpos is None: self._bysetpos = None elif isinstance(bysetpos, integer_types): if bysetpos == 0 or not (-366 <= bysetpos <= 366): raise ValueError("bysetpos must be between 1 and 366, " "or between -366 and -1") self._bysetpos = (bysetpos,) else: self._bysetpos = tuple(bysetpos) for pos in self._bysetpos: if pos == 0 or not (-366 <= pos <= 366): raise ValueError("bysetpos must be between 1 and 366, " "or between -366 and -1") if self._bysetpos: self._original_rule['bysetpos'] = self._bysetpos if (byweekno is None and byyearday is None and bymonthday is None and byweekday is None and byeaster is None): if freq == YEARLY: if bymonth is None: bymonth = dtstart.month self._original_rule['bymonth'] = None bymonthday = dtstart.day self._original_rule['bymonthday'] = None elif freq == MONTHLY: bymonthday = dtstart.day self._original_rule['bymonthday'] = None elif freq == WEEKLY: byweekday = dtstart.weekday() self._original_rule['byweekday'] = None # bymonth if bymonth is None: self._bymonth = None else: if isinstance(bymonth, integer_types): bymonth = (bymonth,) self._bymonth = tuple(sorted(set(bymonth))) if 'bymonth' not in self._original_rule: self._original_rule['bymonth'] = self._bymonth # byyearday if byyearday is None: self._byyearday = None else: if isinstance(byyearday, integer_types): byyearday = (byyearday,) self._byyearday = tuple(sorted(set(byyearday))) self._original_rule['byyearday'] = self._byyearday # byeaster if byeaster is not None: if not easter: from dateutil import easter if isinstance(byeaster, integer_types): self._byeaster = (byeaster,) else: self._byeaster = tuple(sorted(byeaster)) self._original_rule['byeaster'] = self._byeaster else: self._byeaster = None # bymonthday if bymonthday is None: self._bymonthday = () self._bynmonthday = () else: if isinstance(bymonthday, integer_types): bymonthday = (bymonthday,) bymonthday = set(bymonthday) # Ensure it's unique self._bymonthday = tuple(sorted(x for x in bymonthday if x > 0)) self._bynmonthday = tuple(sorted(x for x in bymonthday if x < 0)) # Storing positive numbers first, then negative numbers if 'bymonthday' not in self._original_rule: self._original_rule['bymonthday'] = tuple( itertools.chain(self._bymonthday, self._bynmonthday)) # byweekno if byweekno is None: self._byweekno = None else: if isinstance(byweekno, integer_types): byweekno = (byweekno,) self._byweekno = tuple(sorted(set(byweekno))) self._original_rule['byweekno'] = self._byweekno # byweekday / bynweekday if byweekday is None: self._byweekday = None self._bynweekday = None else: # If it's one of the valid non-sequence types, convert to a # single-element sequence before the iterator that builds the # byweekday set. if isinstance(byweekday, integer_types) or hasattr(byweekday, "n"): byweekday = (byweekday,) self._byweekday = set() self._bynweekday = set() for wday in byweekday: if isinstance(wday, integer_types): self._byweekday.add(wday) elif not wday.n or freq > MONTHLY: self._byweekday.add(wday.weekday) else: self._bynweekday.add((wday.weekday, wday.n)) if not self._byweekday: self._byweekday = None elif not self._bynweekday: self._bynweekday = None if self._byweekday is not None: self._byweekday = tuple(sorted(self._byweekday)) orig_byweekday = [weekday(x) for x in self._byweekday] else: orig_byweekday = () if self._bynweekday is not None: self._bynweekday = tuple(sorted(self._bynweekday)) orig_bynweekday = [weekday(*x) for x in self._bynweekday] else: orig_bynweekday = () if 'byweekday' not in self._original_rule: self._original_rule['byweekday'] = tuple(itertools.chain( orig_byweekday, orig_bynweekday)) # byhour if byhour is None: if freq < HOURLY: self._byhour = {dtstart.hour} else: self._byhour = None else: if isinstance(byhour, integer_types): byhour = (byhour,) if freq == HOURLY: self._byhour = self.__construct_byset(start=dtstart.hour, byxxx=byhour, base=24) else: self._byhour = set(byhour) self._byhour = tuple(sorted(self._byhour)) self._original_rule['byhour'] = self._byhour # byminute if byminute is None: if freq < MINUTELY: self._byminute = {dtstart.minute} else: self._byminute = None else: if isinstance(byminute, integer_types): byminute = (byminute,) if freq == MINUTELY: self._byminute = self.__construct_byset(start=dtstart.minute, byxxx=byminute, base=60) else: self._byminute = set(byminute) self._byminute = tuple(sorted(self._byminute)) self._original_rule['byminute'] = self._byminute # bysecond if bysecond is None: if freq < SECONDLY: self._bysecond = ((dtstart.second,)) else: self._bysecond = None else: if isinstance(bysecond, integer_types): bysecond = (bysecond,) self._bysecond = set(bysecond) if freq == SECONDLY: self._bysecond = self.__construct_byset(start=dtstart.second, byxxx=bysecond, base=60) else: self._bysecond = set(bysecond) self._bysecond = tuple(sorted(self._bysecond)) self._original_rule['bysecond'] = self._bysecond if self._freq >= HOURLY: self._timeset = None else: self._timeset = [] for hour in self._byhour: for minute in self._byminute: for second in self._bysecond: self._timeset.append( datetime.time(hour, minute, second, tzinfo=self._tzinfo)) self._timeset.sort() self._timeset = tuple(self._timeset) def __str__(self): """ Output a string that would generate this RRULE if passed to rrulestr. This is mostly compatible with RFC5545, except for the dateutil-specific extension BYEASTER. """ output = [] h, m, s = [None] * 3 if self._dtstart: output.append(self._dtstart.strftime('DTSTART:%Y%m%dT%H%M%S')) h, m, s = self._dtstart.timetuple()[3:6] parts = ['FREQ=' + FREQNAMES[self._freq]] if self._interval != 1: parts.append('INTERVAL=' + str(self._interval)) if self._wkst: parts.append('WKST=' + repr(weekday(self._wkst))[0:2]) if self._count is not None: parts.append('COUNT=' + str(self._count)) if self._until: parts.append(self._until.strftime('UNTIL=%Y%m%dT%H%M%S')) if self._original_rule.get('byweekday') is not None: # The str() method on weekday objects doesn't generate # RFC5545-compliant strings, so we should modify that. original_rule = dict(self._original_rule) wday_strings = [] for wday in original_rule['byweekday']: if wday.n: wday_strings.append('{n:+d}{wday}'.format( n=wday.n, wday=repr(wday)[0:2])) else: wday_strings.append(repr(wday)) original_rule['byweekday'] = wday_strings else: original_rule = self._original_rule partfmt = '{name}={vals}' for name, key in [('BYSETPOS', 'bysetpos'), ('BYMONTH', 'bymonth'), ('BYMONTHDAY', 'bymonthday'), ('BYYEARDAY', 'byyearday'), ('BYWEEKNO', 'byweekno'), ('BYDAY', 'byweekday'), ('BYHOUR', 'byhour'), ('BYMINUTE', 'byminute'), ('BYSECOND', 'bysecond'), ('BYEASTER', 'byeaster')]: value = original_rule.get(key) if value: parts.append(partfmt.format(name=name, vals=(','.join(str(v) for v in value)))) output.append('RRULE:' + ';'.join(parts)) return '\n'.join(output) def replace(self, **kwargs): """Return new rrule with same attributes except for those attributes given new values by whichever keyword arguments are specified.""" new_kwargs = {"interval": self._interval, "count": self._count, "dtstart": self._dtstart, "freq": self._freq, "until": self._until, "wkst": self._wkst, "cache": False if self._cache is None else True } new_kwargs.update(self._original_rule) new_kwargs.update(kwargs) return rrule(**new_kwargs) def _iter(self): year, month, day, hour, minute, second, weekday, yearday, _ = \ self._dtstart.timetuple() # Some local variables to speed things up a bit freq = self._freq interval = self._interval wkst = self._wkst until = self._until bymonth = self._bymonth byweekno = self._byweekno byyearday = self._byyearday byweekday = self._byweekday byeaster = self._byeaster bymonthday = self._bymonthday bynmonthday = self._bynmonthday bysetpos = self._bysetpos byhour = self._byhour byminute = self._byminute bysecond = self._bysecond ii = _iterinfo(self) ii.rebuild(year, month) getdayset = {YEARLY: ii.ydayset, MONTHLY: ii.mdayset, WEEKLY: ii.wdayset, DAILY: ii.ddayset, HOURLY: ii.ddayset, MINUTELY: ii.ddayset, SECONDLY: ii.ddayset}[freq] if freq < HOURLY: timeset = self._timeset else: gettimeset = {HOURLY: ii.htimeset, MINUTELY: ii.mtimeset, SECONDLY: ii.stimeset}[freq] if ((freq >= HOURLY and self._byhour and hour not in self._byhour) or (freq >= MINUTELY and self._byminute and minute not in self._byminute) or (freq >= SECONDLY and self._bysecond and second not in self._bysecond)): timeset = () else: timeset = gettimeset(hour, minute, second) total = 0 count = self._count while True: # Get dayset with the right frequency dayset, start, end = getdayset(year, month, day) # Do the "hard" work ;-) filtered = False for i in dayset[start:end]: if ((bymonth and ii.mmask[i] not in bymonth) or (byweekno and not ii.wnomask[i]) or (byweekday and ii.wdaymask[i] not in byweekday) or (ii.nwdaymask and not ii.nwdaymask[i]) or (byeaster and not ii.eastermask[i]) or ((bymonthday or bynmonthday) and ii.mdaymask[i] not in bymonthday and ii.nmdaymask[i] not in bynmonthday) or (byyearday and ((i < ii.yearlen and i+1 not in byyearday and -ii.yearlen+i not in byyearday) or (i >= ii.yearlen and i+1-ii.yearlen not in byyearday and -ii.nextyearlen+i-ii.yearlen not in byyearday)))): dayset[i] = None filtered = True # Output results if bysetpos and timeset: poslist = [] for pos in bysetpos: if pos < 0: daypos, timepos = divmod(pos, len(timeset)) else: daypos, timepos = divmod(pos-1, len(timeset)) try: i = [x for x in dayset[start:end] if x is not None][daypos] time = timeset[timepos] except IndexError: pass else: date = datetime.date.fromordinal(ii.yearordinal+i) res = datetime.datetime.combine(date, time) if res not in poslist: poslist.append(res) poslist.sort() for res in poslist: if until and res > until: self._len = total return elif res >= self._dtstart: if count is not None: count -= 1 if count < 0: self._len = total return total += 1 yield res else: for i in dayset[start:end]: if i is not None: date = datetime.date.fromordinal(ii.yearordinal + i) for time in timeset: res = datetime.datetime.combine(date, time) if until and res > until: self._len = total return elif res >= self._dtstart: if count is not None: count -= 1 if count < 0: self._len = total return total += 1 yield res # Handle frequency and interval fixday = False if freq == YEARLY: year += interval if year > datetime.MAXYEAR: self._len = total return ii.rebuild(year, month) elif freq == MONTHLY: month += interval if month > 12: div, mod = divmod(month, 12) month = mod year += div if month == 0: month = 12 year -= 1 if year > datetime.MAXYEAR: self._len = total return ii.rebuild(year, month) elif freq == WEEKLY: if wkst > weekday: day += -(weekday+1+(6-wkst))+self._interval*7 else: day += -(weekday-wkst)+self._interval*7 weekday = wkst fixday = True elif freq == DAILY: day += interval fixday = True elif freq == HOURLY: if filtered: # Jump to one iteration before next day hour += ((23-hour)//interval)*interval if byhour: ndays, hour = self.__mod_distance(value=hour, byxxx=self._byhour, base=24) else: ndays, hour = divmod(hour+interval, 24) if ndays: day += ndays fixday = True timeset = gettimeset(hour, minute, second) elif freq == MINUTELY: if filtered: # Jump to one iteration before next day minute += ((1439-(hour*60+minute))//interval)*interval valid = False rep_rate = (24*60) for j in range(rep_rate // gcd(interval, rep_rate)): if byminute: nhours, minute = \ self.__mod_distance(value=minute, byxxx=self._byminute, base=60) else: nhours, minute = divmod(minute+interval, 60) div, hour = divmod(hour+nhours, 24) if div: day += div fixday = True filtered = False if not byhour or hour in byhour: valid = True break if not valid: raise ValueError('Invalid combination of interval and ' + 'byhour resulting in empty rule.') timeset = gettimeset(hour, minute, second) elif freq == SECONDLY: if filtered: # Jump to one iteration before next day second += (((86399 - (hour * 3600 + minute * 60 + second)) // interval) * interval) rep_rate = (24 * 3600) valid = False for j in range(0, rep_rate // gcd(interval, rep_rate)): if bysecond: nminutes, second = \ self.__mod_distance(value=second, byxxx=self._bysecond, base=60) else: nminutes, second = divmod(second+interval, 60) div, minute = divmod(minute+nminutes, 60) if div: hour += div div, hour = divmod(hour, 24) if div: day += div fixday = True if ((not byhour or hour in byhour) and (not byminute or minute in byminute) and (not bysecond or second in bysecond)): valid = True break if not valid: raise ValueError('Invalid combination of interval, ' + 'byhour and byminute resulting in empty' + ' rule.') timeset = gettimeset(hour, minute, second) if fixday and day > 28: daysinmonth = calendar.monthrange(year, month)[1] if day > daysinmonth: while day > daysinmonth: day -= daysinmonth month += 1 if month == 13: month = 1 year += 1 if year > datetime.MAXYEAR: self._len = total return daysinmonth = calendar.monthrange(year, month)[1] ii.rebuild(year, month) def __construct_byset(self, start, byxxx, base): """ If a `BYXXX` sequence is passed to the constructor at the same level as `FREQ` (e.g. `FREQ=HOURLY,BYHOUR={2,4,7},INTERVAL=3`), there are some specifications which cannot be reached given some starting conditions. This occurs whenever the interval is not coprime with the base of a given unit and the difference between the starting position and the ending position is not coprime with the greatest common denominator between the interval and the base. For example, with a FREQ of hourly starting at 17:00 and an interval of 4, the only valid values for BYHOUR would be {21, 1, 5, 9, 13, 17}, because 4 and 24 are not coprime. :param start: Specifies the starting position. :param byxxx: An iterable containing the list of allowed values. :param base: The largest allowable value for the specified frequency (e.g. 24 hours, 60 minutes). This does not preserve the type of the iterable, returning a set, since the values should be unique and the order is irrelevant, this will speed up later lookups. In the event of an empty set, raises a :exception:`ValueError`, as this results in an empty rrule. """ cset = set() # Support a single byxxx value. if isinstance(byxxx, integer_types): byxxx = (byxxx, ) for num in byxxx: i_gcd = gcd(self._interval, base) # Use divmod rather than % because we need to wrap negative nums. if i_gcd == 1 or divmod(num - start, i_gcd)[1] == 0: cset.add(num) if len(cset) == 0: raise ValueError("Invalid rrule byxxx generates an empty set.") return cset def __mod_distance(self, value, byxxx, base): """ Calculates the next value in a sequence where the `FREQ` parameter is specified along with a `BYXXX` parameter at the same "level" (e.g. `HOURLY` specified with `BYHOUR`). :param value: The old value of the component. :param byxxx: The `BYXXX` set, which should have been generated by `rrule._construct_byset`, or something else which checks that a valid rule is present. :param base: The largest allowable value for the specified frequency (e.g. 24 hours, 60 minutes). If a valid value is not found after `base` iterations (the maximum number before the sequence would start to repeat), this raises a :exception:`ValueError`, as no valid values were found. This returns a tuple of `divmod(n*interval, base)`, where `n` is the smallest number of `interval` repetitions until the next specified value in `byxxx` is found. """ accumulator = 0 for ii in range(1, base + 1): # Using divmod() over % to account for negative intervals div, value = divmod(value + self._interval, base) accumulator += div if value in byxxx: return (accumulator, value) class _iterinfo(object): __slots__ = ["rrule", "lastyear", "lastmonth", "yearlen", "nextyearlen", "yearordinal", "yearweekday", "mmask", "mrange", "mdaymask", "nmdaymask", "wdaymask", "wnomask", "nwdaymask", "eastermask"] def __init__(self, rrule): for attr in self.__slots__: setattr(self, attr, None) self.rrule = rrule def rebuild(self, year, month): # Every mask is 7 days longer to handle cross-year weekly periods. rr = self.rrule if year != self.lastyear: self.yearlen = 365 + calendar.isleap(year) self.nextyearlen = 365 + calendar.isleap(year + 1) firstyday = datetime.date(year, 1, 1) self.yearordinal = firstyday.toordinal() self.yearweekday = firstyday.weekday() wday = datetime.date(year, 1, 1).weekday() if self.yearlen == 365: self.mmask = M365MASK self.mdaymask = MDAY365MASK self.nmdaymask = NMDAY365MASK self.wdaymask = WDAYMASK[wday:] self.mrange = M365RANGE else: self.mmask = M366MASK self.mdaymask = MDAY366MASK self.nmdaymask = NMDAY366MASK self.wdaymask = WDAYMASK[wday:] self.mrange = M366RANGE if not rr._byweekno: self.wnomask = None else: self.wnomask = [0]*(self.yearlen+7) # no1wkst = firstwkst = self.wdaymask.index(rr._wkst) no1wkst = firstwkst = (7-self.yearweekday+rr._wkst) % 7 if no1wkst >= 4: no1wkst = 0 # Number of days in the year, plus the days we got # from last year. wyearlen = self.yearlen+(self.yearweekday-rr._wkst) % 7 else: # Number of days in the year, minus the days we # left in last year. wyearlen = self.yearlen-no1wkst div, mod = divmod(wyearlen, 7) numweeks = div+mod//4 for n in rr._byweekno: if n < 0: n += numweeks+1 if not (0 < n <= numweeks): continue if n > 1: i = no1wkst+(n-1)*7 if no1wkst != firstwkst: i -= 7-firstwkst else: i = no1wkst for j in range(7): self.wnomask[i] = 1 i += 1 if self.wdaymask[i] == rr._wkst: break if 1 in rr._byweekno: # Check week number 1 of next year as well # TODO: Check -numweeks for next year. i = no1wkst+numweeks*7 if no1wkst != firstwkst: i -= 7-firstwkst if i < self.yearlen: # If week starts in next year, we # don't care about it. for j in range(7): self.wnomask[i] = 1 i += 1 if self.wdaymask[i] == rr._wkst: break if no1wkst: # Check last week number of last year as # well. If no1wkst is 0, either the year # started on week start, or week number 1 # got days from last year, so there are no # days from last year's last week number in # this year. if -1 not in rr._byweekno: lyearweekday = datetime.date(year-1, 1, 1).weekday() lno1wkst = (7-lyearweekday+rr._wkst) % 7 lyearlen = 365+calendar.isleap(year-1) if lno1wkst >= 4: lno1wkst = 0 lnumweeks = 52+(lyearlen + (lyearweekday-rr._wkst) % 7) % 7//4 else: lnumweeks = 52+(self.yearlen-no1wkst) % 7//4 else: lnumweeks = -1 if lnumweeks in rr._byweekno: for i in range(no1wkst): self.wnomask[i] = 1 if (rr._bynweekday and (month != self.lastmonth or year != self.lastyear)): ranges = [] if rr._freq == YEARLY: if rr._bymonth: for month in rr._bymonth: ranges.append(self.mrange[month-1:month+1]) else: ranges = [(0, self.yearlen)] elif rr._freq == MONTHLY: ranges = [self.mrange[month-1:month+1]] if ranges: # Weekly frequency won't get here, so we may not # care about cross-year weekly periods. self.nwdaymask = [0]*self.yearlen for first, last in ranges: last -= 1 for wday, n in rr._bynweekday: if n < 0: i = last+(n+1)*7 i -= (self.wdaymask[i]-wday) % 7 else: i = first+(n-1)*7 i += (7-self.wdaymask[i]+wday) % 7 if first <= i <= last: self.nwdaymask[i] = 1 if rr._byeaster: self.eastermask = [0]*(self.yearlen+7) eyday = easter.easter(year).toordinal()-self.yearordinal for offset in rr._byeaster: self.eastermask[eyday+offset] = 1 self.lastyear = year self.lastmonth = month def ydayset(self, year, month, day): return list(range(self.yearlen)), 0, self.yearlen def mdayset(self, year, month, day): dset = [None]*self.yearlen start, end = self.mrange[month-1:month+1] for i in range(start, end): dset[i] = i return dset, start, end def wdayset(self, year, month, day): # We need to handle cross-year weeks here. dset = [None]*(self.yearlen+7) i = datetime.date(year, month, day).toordinal()-self.yearordinal start = i for j in range(7): dset[i] = i i += 1 # if (not (0 <= i < self.yearlen) or # self.wdaymask[i] == self.rrule._wkst): # This will cross the year boundary, if necessary. if self.wdaymask[i] == self.rrule._wkst: break return dset, start, i def ddayset(self, year, month, day): dset = [None] * self.yearlen i = datetime.date(year, month, day).toordinal() - self.yearordinal dset[i] = i return dset, i, i + 1 def htimeset(self, hour, minute, second): tset = [] rr = self.rrule for minute in rr._byminute: for second in rr._bysecond: tset.append(datetime.time(hour, minute, second, tzinfo=rr._tzinfo)) tset.sort() return tset def mtimeset(self, hour, minute, second): tset = [] rr = self.rrule for second in rr._bysecond: tset.append(datetime.time(hour, minute, second, tzinfo=rr._tzinfo)) tset.sort() return tset def stimeset(self, hour, minute, second): return (datetime.time(hour, minute, second, tzinfo=self.rrule._tzinfo),) class rruleset(rrulebase): """ The rruleset type allows more complex recurrence setups, mixing multiple rules, dates, exclusion rules, and exclusion dates. The type constructor takes the following keyword arguments: :param cache: If True, caching of results will be enabled, improving performance of multiple queries considerably. """ class _genitem(object): def __init__(self, genlist, gen): try: self.dt = advance_iterator(gen) genlist.append(self) except StopIteration: pass self.genlist = genlist self.gen = gen def __next__(self): try: self.dt = advance_iterator(self.gen) except StopIteration: if self.genlist[0] is self: heapq.heappop(self.genlist) else: self.genlist.remove(self) heapq.heapify(self.genlist) next = __next__ def __lt__(self, other): return self.dt < other.dt def __gt__(self, other): return self.dt > other.dt def __eq__(self, other): return self.dt == other.dt def __ne__(self, other): return self.dt != other.dt def __init__(self, cache=False): super(rruleset, self).__init__(cache) self._rrule = [] self._rdate = [] self._exrule = [] self._exdate = [] @_invalidates_cache def rrule(self, rrule): """ Include the given :py:class:`rrule` instance in the recurrence set generation. """ self._rrule.append(rrule) @_invalidates_cache def rdate(self, rdate): """ Include the given :py:class:`datetime` instance in the recurrence set generation. """ self._rdate.append(rdate) @_invalidates_cache def exrule(self, exrule): """ Include the given rrule instance in the recurrence set exclusion list. Dates which are part of the given recurrence rules will not be generated, even if some inclusive rrule or rdate matches them. """ self._exrule.append(exrule) @_invalidates_cache def exdate(self, exdate): """ Include the given datetime instance in the recurrence set exclusion list. Dates included that way will not be generated, even if some inclusive rrule or rdate matches them. """ self._exdate.append(exdate) def _iter(self): rlist = [] self._rdate.sort() self._genitem(rlist, iter(self._rdate)) for gen in [iter(x) for x in self._rrule]: self._genitem(rlist, gen) exlist = [] self._exdate.sort() self._genitem(exlist, iter(self._exdate)) for gen in [iter(x) for x in self._exrule]: self._genitem(exlist, gen) lastdt = None total = 0 heapq.heapify(rlist) heapq.heapify(exlist) while rlist: ritem = rlist[0] if not lastdt or lastdt != ritem.dt: while exlist and exlist[0] < ritem: exitem = exlist[0] advance_iterator(exitem) if exlist and exlist[0] is exitem: heapq.heapreplace(exlist, exitem) if not exlist or ritem != exlist[0]: total += 1 yield ritem.dt lastdt = ritem.dt advance_iterator(ritem) if rlist and rlist[0] is ritem: heapq.heapreplace(rlist, ritem) self._len = total class _rrulestr(object): _freq_map = {"YEARLY": YEARLY, "MONTHLY": MONTHLY, "WEEKLY": WEEKLY, "DAILY": DAILY, "HOURLY": HOURLY, "MINUTELY": MINUTELY, "SECONDLY": SECONDLY} _weekday_map = {"MO": 0, "TU": 1, "WE": 2, "TH": 3, "FR": 4, "SA": 5, "SU": 6} def _handle_int(self, rrkwargs, name, value, **kwargs): rrkwargs[name.lower()] = int(value) def _handle_int_list(self, rrkwargs, name, value, **kwargs): rrkwargs[name.lower()] = [int(x) for x in value.split(',')] _handle_INTERVAL = _handle_int _handle_COUNT = _handle_int _handle_BYSETPOS = _handle_int_list _handle_BYMONTH = _handle_int_list _handle_BYMONTHDAY = _handle_int_list _handle_BYYEARDAY = _handle_int_list _handle_BYEASTER = _handle_int_list _handle_BYWEEKNO = _handle_int_list _handle_BYHOUR = _handle_int_list _handle_BYMINUTE = _handle_int_list _handle_BYSECOND = _handle_int_list def _handle_FREQ(self, rrkwargs, name, value, **kwargs): rrkwargs["freq"] = self._freq_map[value] def _handle_UNTIL(self, rrkwargs, name, value, **kwargs): global parser if not parser: from dateutil import parser try: rrkwargs["until"] = parser.parse(value, ignoretz=kwargs.get("ignoretz"), tzinfos=kwargs.get("tzinfos")) except ValueError: raise ValueError("invalid until date") def _handle_WKST(self, rrkwargs, name, value, **kwargs): rrkwargs["wkst"] = self._weekday_map[value] def _handle_BYWEEKDAY(self, rrkwargs, name, value, **kwargs): """ Two ways to specify this: +1MO or MO(+1) """ l = [] for wday in value.split(','): if '(' in wday: # If it's of the form TH(+1), etc. splt = wday.split('(') w = splt[0] n = int(splt[1][:-1]) elif len(wday): # If it's of the form +1MO for i in range(len(wday)): if wday[i] not in '+-0123456789': break n = wday[:i] or None w = wday[i:] if n: n = int(n) else: raise ValueError("Invalid (empty) BYDAY specification.") l.append(weekdays[self._weekday_map[w]](n)) rrkwargs["byweekday"] = l _handle_BYDAY = _handle_BYWEEKDAY def _parse_rfc_rrule(self, line, dtstart=None, cache=False, ignoretz=False, tzinfos=None): if line.find(':') != -1: name, value = line.split(':') if name != "RRULE": raise ValueError("unknown parameter name") else: value = line rrkwargs = {} for pair in value.split(';'): name, value = pair.split('=') name = name.upper() value = value.upper() try: getattr(self, "_handle_"+name)(rrkwargs, name, value, ignoretz=ignoretz, tzinfos=tzinfos) except AttributeError: raise ValueError("unknown parameter '%s'" % name) except (KeyError, ValueError): raise ValueError("invalid '%s': %s" % (name, value)) return rrule(dtstart=dtstart, cache=cache, **rrkwargs) def _parse_rfc(self, s, dtstart=None, cache=False, unfold=False, forceset=False, compatible=False, ignoretz=False, tzids=None, tzinfos=None): global parser if compatible: forceset = True unfold = True TZID_NAMES = dict(map( lambda x: (x.upper(), x), re.findall('TZID=(?P<name>[^:]+):', s) )) s = s.upper() if not s.strip(): raise ValueError("empty string") if unfold: lines = s.splitlines() i = 0 while i < len(lines): line = lines[i].rstrip() if not line: del lines[i] elif i > 0 and line[0] == " ": lines[i-1] += line[1:] del lines[i] else: i += 1 else: lines = s.split() if (not forceset and len(lines) == 1 and (s.find(':') == -1 or s.startswith('RRULE:'))): return self._parse_rfc_rrule(lines[0], cache=cache, dtstart=dtstart, ignoretz=ignoretz, tzinfos=tzinfos) else: rrulevals = [] rdatevals = [] exrulevals = [] exdatevals = [] for line in lines: if not line: continue if line.find(':') == -1: name = "RRULE" value = line else: name, value = line.split(':', 1) parms = name.split(';') if not parms: raise ValueError("empty property name") name = parms[0] parms = parms[1:] if name == "RRULE": for parm in parms: raise ValueError("unsupported RRULE parm: "+parm) rrulevals.append(value) elif name == "RDATE": for parm in parms: if parm != "VALUE=DATE-TIME": raise ValueError("unsupported RDATE parm: "+parm) rdatevals.append(value) elif name == "EXRULE": for parm in parms: raise ValueError("unsupported EXRULE parm: "+parm) exrulevals.append(value) elif name == "EXDATE": for parm in parms: if parm != "VALUE=DATE-TIME": raise ValueError("unsupported EXDATE parm: "+parm) exdatevals.append(value) elif name == "DTSTART": # RFC 5445 3.8.2.4: The VALUE parameter is optional, but # may be found only once. value_found = False TZID = None valid_values = {"VALUE=DATE-TIME", "VALUE=DATE"} for parm in parms: if parm.startswith("TZID="): try: tzkey = TZID_NAMES[parm.split('TZID=')[-1]] except KeyError: continue if tzids is None: from . import tz tzlookup = tz.gettz elif callable(tzids): tzlookup = tzids else: tzlookup = getattr(tzids, 'get', None) if tzlookup is None: msg = ('tzids must be a callable, ' + 'mapping, or None, ' + 'not %s' % tzids) raise ValueError(msg) TZID = tzlookup(tzkey) continue if parm not in valid_values: raise ValueError("unsupported DTSTART parm: "+parm) else: if value_found: msg = ("Duplicate value parameter found in " + "DTSTART: " + parm) raise ValueError(msg) value_found = True if not parser: from dateutil import parser dtstart = parser.parse(value, ignoretz=ignoretz, tzinfos=tzinfos) if TZID is not None: if dtstart.tzinfo is None: dtstart = dtstart.replace(tzinfo=TZID) else: raise ValueError('DTSTART specifies multiple timezones') else: raise ValueError("unsupported property: "+name) if (forceset or len(rrulevals) > 1 or rdatevals or exrulevals or exdatevals): if not parser and (rdatevals or exdatevals): from dateutil import parser rset = rruleset(cache=cache) for value in rrulevals: rset.rrule(self._parse_rfc_rrule(value, dtstart=dtstart, ignoretz=ignoretz, tzinfos=tzinfos)) for value in rdatevals: for datestr in value.split(','): rset.rdate(parser.parse(datestr, ignoretz=ignoretz, tzinfos=tzinfos)) for value in exrulevals: rset.exrule(self._parse_rfc_rrule(value, dtstart=dtstart, ignoretz=ignoretz, tzinfos=tzinfos)) for value in exdatevals: for datestr in value.split(','): rset.exdate(parser.parse(datestr, ignoretz=ignoretz, tzinfos=tzinfos)) if compatible and dtstart: rset.rdate(dtstart) return rset else: return self._parse_rfc_rrule(rrulevals[0], dtstart=dtstart, cache=cache, ignoretz=ignoretz, tzinfos=tzinfos) def __call__(self, s, **kwargs): return self._parse_rfc(s, **kwargs) rrulestr = _rrulestr() # vim:ts=4:sw=4:et
ledtvavs/repository.ledtv
script.tvguide.Vader/resources/lib/dateutil/rrule.py
Python
gpl-3.0
64,642
""" API v0 views. """ import logging from django.http import Http404 from opaque_keys import InvalidKeyError from opaque_keys.edx.keys import CourseKey from rest_framework import status from rest_framework.authentication import SessionAuthentication from rest_framework.exceptions import AuthenticationFailed from rest_framework.generics import GenericAPIView, ListAPIView from rest_framework.permissions import IsAuthenticated from rest_framework.response import Response from lms.djangoapps.ccx.utils import prep_course_for_grading from lms.djangoapps.courseware import courses from lms.djangoapps.grades.api.serializers import GradingPolicySerializer from lms.djangoapps.grades.new.course_grade import CourseGradeFactory from openedx.core.lib.api.authentication import OAuth2AuthenticationAllowInactiveUser from openedx.core.lib.api.view_utils import DeveloperErrorViewMixin log = logging.getLogger(__name__) class GradeViewMixin(DeveloperErrorViewMixin): """ Mixin class for Grades related views. """ authentication_classes = ( OAuth2AuthenticationAllowInactiveUser, SessionAuthentication, ) permission_classes = (IsAuthenticated,) def _get_course(self, course_key_string, user, access_action): """ Returns the course for the given course_key_string after verifying the requested access to the course by the given user. """ try: course_key = CourseKey.from_string(course_key_string) except InvalidKeyError: return self.make_error_response( status_code=status.HTTP_404_NOT_FOUND, developer_message='The provided course key cannot be parsed.', error_code='invalid_course_key' ) try: return courses.get_course_with_access( user, access_action, course_key, check_if_enrolled=True ) except Http404: log.info('Course with ID "%s" not found', course_key_string) return self.make_error_response( status_code=status.HTTP_404_NOT_FOUND, developer_message='The user, the course or both do not exist.', error_code='user_or_course_does_not_exist' ) def perform_authentication(self, request): """ Ensures that the user is authenticated (e.g. not an AnonymousUser), unless DEBUG mode is enabled. """ super(GradeViewMixin, self).perform_authentication(request) if request.user.is_anonymous(): raise AuthenticationFailed class UserGradeView(GradeViewMixin, GenericAPIView): """ **Use Case** * Get the current course grades for users in a course. Currently, getting the grade for only an individual user is supported. **Example Request** GET /api/grades/v0/course_grade/{course_id}/users/?username={username} **GET Parameters** A GET request must include the following parameters. * course_id: A string representation of a Course ID. * username: A string representation of a user's username. **GET Response Values** If the request for information about the course grade is successful, an HTTP 200 "OK" response is returned. The HTTP 200 response has the following values. * username: A string representation of a user's username passed in the request. * course_id: A string representation of a Course ID. * passed: Boolean representing whether the course has been passed according the course's grading policy. * percent: A float representing the overall grade for the course * letter_grade: A letter grade as defined in grading_policy (e.g. 'A' 'B' 'C' for 6.002x) or None **Example GET Response** [{ "username": "bob", "course_key": "edX/DemoX/Demo_Course", "passed": false, "percent": 0.03, "letter_grade": None, }] """ def get(self, request, course_id): """ Gets a course progress status. Args: request (Request): Django request object. course_id (string): URI element specifying the course location. Return: A JSON serialized representation of the requesting user's current grade status. """ username = request.GET.get('username') # only the student can access her own grade status info if request.user.username != username: log.info( 'User %s tried to access the grade for user %s.', request.user.username, username ) return self.make_error_response( status_code=status.HTTP_404_NOT_FOUND, developer_message='The user requested does not match the logged in user.', error_code='user_mismatch' ) course = self._get_course(course_id, request.user, 'load') if isinstance(course, Response): return course prep_course_for_grading(course, request) course_grade = CourseGradeFactory().create(request.user, course) return Response([{ 'username': username, 'course_key': course_id, 'passed': course_grade.passed, 'percent': course_grade.percent, 'letter_grade': course_grade.letter_grade, }]) class CourseGradingPolicy(GradeViewMixin, ListAPIView): """ **Use Case** Get the course grading policy. **Example requests**: GET /api/grades/v0/policy/{course_id}/ **Response Values** * assignment_type: The type of the assignment, as configured by course staff. For example, course staff might make the assignment types Homework, Quiz, and Exam. * count: The number of assignments of the type. * dropped: Number of assignments of the type that are dropped. * weight: The weight, or effect, of the assignment type on the learner's final grade. """ allow_empty = False def get(self, request, course_id, **kwargs): course = self._get_course(course_id, request.user, 'staff') if isinstance(course, Response): return course return Response(GradingPolicySerializer(course.raw_grader, many=True).data)
naresh21/synergetics-edx-platform
lms/djangoapps/grades/api/views.py
Python
agpl-3.0
6,482
# coding=utf-8 # Copyright 2014 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import (absolute_import, division, generators, nested_scopes, print_function, unicode_literals, with_statement) from pants.backend.python.python_requirement import PythonRequirement from pants.base.payload import Payload from pants.base.payload_field import PythonRequirementsField from pants.base.validation import assert_list from pants.build_graph.target import Target class PythonRequirementLibrary(Target): """A set of pip requirements. :API: public """ def __init__(self, payload=None, requirements=None, **kwargs): """ :param requirements: pip requirements as `python_requirement <#python_requirement>`_\s. :type requirements: List of python_requirement calls """ payload = payload or Payload() assert_list(requirements, expected_type=PythonRequirement, key_arg='requirements') payload.add_fields({ 'requirements': PythonRequirementsField(requirements or []), }) super(PythonRequirementLibrary, self).__init__(payload=payload, **kwargs) self.add_labels('python') @property def requirements(self): return self.payload.requirements
cevaris/pants
src/python/pants/backend/python/targets/python_requirement_library.py
Python
apache-2.0
1,293
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=unused-import,g-bad-import-order """Classes and functions for building TensorFlow graphs. ## Core graph data structures @@Graph @@Operation @@Tensor ## Tensor types @@DType @@as_dtype ## Utility functions @@device @@name_scope @@control_dependencies @@convert_to_tensor @@convert_to_tensor_or_indexed_slices @@get_default_graph @@reset_default_graph @@import_graph_def @@load_file_system_library @@load_op_library ## Graph collections @@add_to_collection @@get_collection @@get_collection_ref @@GraphKeys ## Defining new operations @@RegisterGradient @@NoGradient @@RegisterShape @@TensorShape @@Dimension @@op_scope @@get_seed ## For libraries building on TensorFlow @@register_tensor_conversion_function """ from __future__ import absolute_import from __future__ import division from __future__ import print_function # Classes used when building a Graph. from tensorflow.python.framework.device import DeviceSpec from tensorflow.python.framework.ops import Graph from tensorflow.python.framework.ops import Operation from tensorflow.python.framework.ops import Tensor from tensorflow.python.framework.ops import SparseTensor from tensorflow.python.framework.ops import SparseTensorValue from tensorflow.python.framework.ops import IndexedSlices # Utilities used when building a Graph. from tensorflow.python.framework.ops import device from tensorflow.python.framework.ops import name_scope from tensorflow.python.framework.ops import op_scope from tensorflow.python.framework.ops import control_dependencies from tensorflow.python.framework.ops import get_default_graph from tensorflow.python.framework.ops import reset_default_graph from tensorflow.python.framework.ops import GraphKeys from tensorflow.python.framework.ops import add_to_collection from tensorflow.python.framework.ops import get_collection from tensorflow.python.framework.ops import get_collection_ref from tensorflow.python.framework.ops import convert_to_tensor from tensorflow.python.framework.ops import convert_to_tensor_or_indexed_slices from tensorflow.python.framework.random_seed import get_seed from tensorflow.python.framework.random_seed import set_random_seed from tensorflow.python.framework.importer import import_graph_def # Needed when you defined a new Op in C++. from tensorflow.python.framework.ops import RegisterGradient from tensorflow.python.framework.ops import NoGradient from tensorflow.python.framework.ops import RegisterShape from tensorflow.python.framework.tensor_shape import Dimension from tensorflow.python.framework.tensor_shape import TensorShape # Needed when interfacing tensorflow to new array libraries from tensorflow.python.framework.ops import register_tensor_conversion_function # go/tf-wildcard-import # pylint: disable=wildcard-import from tensorflow.python.framework.dtypes import * # Load a TensorFlow plugin from tensorflow.python.framework.load_library import * # pylint: enable=wildcard-import
peterbraden/tensorflow
tensorflow/python/framework/framework_lib.py
Python
apache-2.0
3,634
#! /usr/bin/env python # Selectively preprocess #ifdef / #ifndef statements. # Usage: # ifdef [-Dname] ... [-Uname] ... [file] ... # # This scans the file(s), looking for #ifdef and #ifndef preprocessor # commands that test for one of the names mentioned in the -D and -U # options. On standard output it writes a copy of the input file(s) # minus those code sections that are suppressed by the selected # combination of defined/undefined symbols. The #if(n)def/#else/#else # lines themselfs (if the #if(n)def tests for one of the mentioned # names) are removed as well. # Features: Arbitrary nesting of recognized and unrecognized # preprocesor statements works correctly. Unrecognized #if* commands # are left in place, so it will never remove too much, only too # little. It does accept whitespace around the '#' character. # Restrictions: There should be no comments or other symbols on the # #if(n)def lines. The effect of #define/#undef commands in the input # file or in included files is not taken into account. Tests using # #if and the defined() pseudo function are not recognized. The #elif # command is not recognized. Improperly nesting is not detected. # Lines that look like preprocessor commands but which are actually # part of comments or string literals will be mistaken for # preprocessor commands. import sys import getopt defs = [] undefs = [] def main(): opts, args = getopt.getopt(sys.argv[1:], 'D:U:') for o, a in opts: if o == '-D': defs.append(a) if o == '-U': undefs.append(a) if not args: args = ['-'] for filename in args: if filename == '-': process(sys.stdin, sys.stdout) else: f = open(filename, 'r') process(f, sys.stdout) f.close() def process(fpi, fpo): keywords = ('if', 'ifdef', 'ifndef', 'else', 'endif') ok = 1 stack = [] while 1: line = fpi.readline() if not line: break while line[-2:] == '\\\n': nextline = fpi.readline() if not nextline: break line = line + nextline tmp = line.strip() if tmp[:1] != '#': if ok: fpo.write(line) continue tmp = tmp[1:].strip() words = tmp.split() keyword = words[0] if keyword not in keywords: if ok: fpo.write(line) continue if keyword in ('ifdef', 'ifndef') and len(words) == 2: if keyword == 'ifdef': ko = 1 else: ko = 0 word = words[1] if word in defs: stack.append((ok, ko, word)) if not ko: ok = 0 elif word in undefs: stack.append((ok, not ko, word)) if ko: ok = 0 else: stack.append((ok, -1, word)) if ok: fpo.write(line) elif keyword == 'if': stack.append((ok, -1, '')) if ok: fpo.write(line) elif keyword == 'else' and stack: s_ok, s_ko, s_word = stack[-1] if s_ko < 0: if ok: fpo.write(line) else: s_ko = not s_ko ok = s_ok if not s_ko: ok = 0 stack[-1] = s_ok, s_ko, s_word elif keyword == 'endif' and stack: s_ok, s_ko, s_word = stack[-1] if s_ko < 0: if ok: fpo.write(line) del stack[-1] ok = s_ok else: sys.stderr.write('Unknown keyword %s\n' % keyword) if stack: sys.stderr.write('stack: %s\n' % stack) if __name__ == '__main__': main()
google/google-ctf
third_party/edk2/AppPkg/Applications/Python/Python-2.7.2/Tools/scripts/ifdef.py
Python
apache-2.0
3,829
"""Auto-generated file, do not edit by hand. IE metadata""" from ..phonemetadata import NumberFormat, PhoneNumberDesc, PhoneMetadata PHONE_METADATA_IE = PhoneMetadata(id='IE', country_code=None, international_prefix=None, general_desc=PhoneNumberDesc(national_number_pattern='[159]\\d{2,4}', possible_number_pattern='\\d{3,5}'), toll_free=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), premium_rate=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), emergency=PhoneNumberDesc(national_number_pattern='112|999', possible_number_pattern='\\d{3}', example_number='112'), short_code=PhoneNumberDesc(national_number_pattern='112|51210|999', possible_number_pattern='\\d{3,5}', example_number='112'), standard_rate=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), carrier_specific=PhoneNumberDesc(national_number_pattern='51210', possible_number_pattern='\\d{5}'), short_data=True)
dongguangming/python-phonenumbers
python/phonenumbers/shortdata/region_IE.py
Python
apache-2.0
993
############################################################################### # # Tests for XlsxWriter. # # Copyright (c), 2013-2015, John McNamara, jmcnamara@cpan.org # from ..excel_comparsion_test import ExcelComparisonTest from ...workbook import Workbook class TestCompareXLSXFiles(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.maxDiff = None filename = 'image_anchor05.xlsx' test_dir = 'xlsxwriter/test/comparison/' self.image_dir = test_dir + 'images/' self.got_filename = test_dir + '_test_' + filename self.exp_filename = test_dir + 'xlsx_files/' + filename self.ignore_files = [] self.ignore_elements = {} def test_create_file(self): """Test the creation of a simple XlsxWriter file with image(s).""" workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() worksheet.insert_image( 'D7', self.image_dir + 'yellow.png', {'x_offset': 1, 'y_offset': 2, 'positioning': 2}) workbook.close() self.assertExcelEqual()
liukaijv/XlsxWriter
xlsxwriter/test/comparison/test_image_anchor05.py
Python
bsd-2-clause
1,181
""" Unit tests for nonlinear solvers Author: Ondrej Certik May 2007 """ from __future__ import division, print_function, absolute_import from numpy.testing import assert_ import pytest from scipy._lib.six import xrange from scipy.optimize import nonlin, root from numpy import matrix, diag, dot from numpy.linalg import inv import numpy as np from .test_minpack import pressure_network SOLVERS = {'anderson': nonlin.anderson, 'diagbroyden': nonlin.diagbroyden, 'linearmixing': nonlin.linearmixing, 'excitingmixing': nonlin.excitingmixing, 'broyden1': nonlin.broyden1, 'broyden2': nonlin.broyden2, 'krylov': nonlin.newton_krylov} MUST_WORK = {'anderson': nonlin.anderson, 'broyden1': nonlin.broyden1, 'broyden2': nonlin.broyden2, 'krylov': nonlin.newton_krylov} #------------------------------------------------------------------------------- # Test problems #------------------------------------------------------------------------------- def F(x): x = np.asmatrix(x).T d = matrix(diag([3,2,1.5,1,0.5])) c = 0.01 f = -d*x - c*float(x.T*x)*x return f F.xin = [1,1,1,1,1] F.KNOWN_BAD = {} def F2(x): return x F2.xin = [1,2,3,4,5,6] F2.KNOWN_BAD = {'linearmixing': nonlin.linearmixing, 'excitingmixing': nonlin.excitingmixing} def F2_lucky(x): return x F2_lucky.xin = [0,0,0,0,0,0] F2_lucky.KNOWN_BAD = {} def F3(x): A = np.mat('-2 1 0; 1 -2 1; 0 1 -2') b = np.mat('1 2 3') return np.dot(A, x) - b F3.xin = [1,2,3] F3.KNOWN_BAD = {} def F4_powell(x): A = 1e4 return [A*x[0]*x[1] - 1, np.exp(-x[0]) + np.exp(-x[1]) - (1 + 1/A)] F4_powell.xin = [-1, -2] F4_powell.KNOWN_BAD = {'linearmixing': nonlin.linearmixing, 'excitingmixing': nonlin.excitingmixing, 'diagbroyden': nonlin.diagbroyden} def F5(x): return pressure_network(x, 4, np.array([.5, .5, .5, .5])) F5.xin = [2., 0, 2, 0] F5.KNOWN_BAD = {'excitingmixing': nonlin.excitingmixing, 'linearmixing': nonlin.linearmixing, 'diagbroyden': nonlin.diagbroyden} def F6(x): x1, x2 = x J0 = np.array([[-4.256, 14.7], [0.8394989, 0.59964207]]) v = np.array([(x1 + 3) * (x2**5 - 7) + 3*6, np.sin(x2 * np.exp(x1) - 1)]) return -np.linalg.solve(J0, v) F6.xin = [-0.5, 1.4] F6.KNOWN_BAD = {'excitingmixing': nonlin.excitingmixing, 'linearmixing': nonlin.linearmixing, 'diagbroyden': nonlin.diagbroyden} #------------------------------------------------------------------------------- # Tests #------------------------------------------------------------------------------- class TestNonlin(object): """ Check the Broyden methods for a few test problems. broyden1, broyden2, and newton_krylov must succeed for all functions. Some of the others don't -- tests in KNOWN_BAD are skipped. """ def _check_nonlin_func(self, f, func, f_tol=1e-2): x = func(f, f.xin, f_tol=f_tol, maxiter=200, verbose=0) assert_(np.absolute(f(x)).max() < f_tol) def _check_root(self, f, method, f_tol=1e-2): res = root(f, f.xin, method=method, options={'ftol': f_tol, 'maxiter': 200, 'disp': 0}) assert_(np.absolute(res.fun).max() < f_tol) @pytest.mark.xfail def _check_func_fail(self, *a, **kw): pass def test_problem_nonlin(self): for f in [F, F2, F2_lucky, F3, F4_powell, F5, F6]: for func in SOLVERS.values(): if func in f.KNOWN_BAD.values(): if func in MUST_WORK.values(): self._check_func_fail(f, func) continue self._check_nonlin_func(f, func) def test_tol_norm_called(self): # Check that supplying tol_norm keyword to nonlin_solve works self._tol_norm_used = False def local_norm_func(x): self._tol_norm_used = True return np.absolute(x).max() nonlin.newton_krylov(F, F.xin, f_tol=1e-2, maxiter=200, verbose=0, tol_norm=local_norm_func) assert_(self._tol_norm_used) def test_problem_root(self): for f in [F, F2, F2_lucky, F3, F4_powell, F5, F6]: for meth in SOLVERS: if meth in f.KNOWN_BAD: if meth in MUST_WORK: self._check_func_fail(f, meth) continue self._check_root(f, meth) class TestSecant(object): """Check that some Jacobian approximations satisfy the secant condition""" xs = [np.array([1,2,3,4,5], float), np.array([2,3,4,5,1], float), np.array([3,4,5,1,2], float), np.array([4,5,1,2,3], float), np.array([9,1,9,1,3], float), np.array([0,1,9,1,3], float), np.array([5,5,7,1,1], float), np.array([1,2,7,5,1], float),] fs = [x**2 - 1 for x in xs] def _check_secant(self, jac_cls, npoints=1, **kw): """ Check that the given Jacobian approximation satisfies secant conditions for last `npoints` points. """ jac = jac_cls(**kw) jac.setup(self.xs[0], self.fs[0], None) for j, (x, f) in enumerate(zip(self.xs[1:], self.fs[1:])): jac.update(x, f) for k in xrange(min(npoints, j+1)): dx = self.xs[j-k+1] - self.xs[j-k] df = self.fs[j-k+1] - self.fs[j-k] assert_(np.allclose(dx, jac.solve(df))) # Check that the `npoints` secant bound is strict if j >= npoints: dx = self.xs[j-npoints+1] - self.xs[j-npoints] df = self.fs[j-npoints+1] - self.fs[j-npoints] assert_(not np.allclose(dx, jac.solve(df))) def test_broyden1(self): self._check_secant(nonlin.BroydenFirst) def test_broyden2(self): self._check_secant(nonlin.BroydenSecond) def test_broyden1_update(self): # Check that BroydenFirst update works as for a dense matrix jac = nonlin.BroydenFirst(alpha=0.1) jac.setup(self.xs[0], self.fs[0], None) B = np.identity(5) * (-1/0.1) for last_j, (x, f) in enumerate(zip(self.xs[1:], self.fs[1:])): df = f - self.fs[last_j] dx = x - self.xs[last_j] B += (df - dot(B, dx))[:,None] * dx[None,:] / dot(dx, dx) jac.update(x, f) assert_(np.allclose(jac.todense(), B, rtol=1e-10, atol=1e-13)) def test_broyden2_update(self): # Check that BroydenSecond update works as for a dense matrix jac = nonlin.BroydenSecond(alpha=0.1) jac.setup(self.xs[0], self.fs[0], None) H = np.identity(5) * (-0.1) for last_j, (x, f) in enumerate(zip(self.xs[1:], self.fs[1:])): df = f - self.fs[last_j] dx = x - self.xs[last_j] H += (dx - dot(H, df))[:,None] * df[None,:] / dot(df, df) jac.update(x, f) assert_(np.allclose(jac.todense(), inv(H), rtol=1e-10, atol=1e-13)) def test_anderson(self): # Anderson mixing (with w0=0) satisfies secant conditions # for the last M iterates, see [Ey]_ # # .. [Ey] V. Eyert, J. Comp. Phys., 124, 271 (1996). self._check_secant(nonlin.Anderson, M=3, w0=0, npoints=3) class TestLinear(object): """Solve a linear equation; some methods find the exact solution in a finite number of steps""" def _check(self, jac, N, maxiter, complex=False, **kw): np.random.seed(123) A = np.random.randn(N, N) if complex: A = A + 1j*np.random.randn(N, N) b = np.random.randn(N) if complex: b = b + 1j*np.random.randn(N) def func(x): return dot(A, x) - b sol = nonlin.nonlin_solve(func, np.zeros(N), jac, maxiter=maxiter, f_tol=1e-6, line_search=None, verbose=0) assert_(np.allclose(dot(A, sol), b, atol=1e-6)) def test_broyden1(self): # Broyden methods solve linear systems exactly in 2*N steps self._check(nonlin.BroydenFirst(alpha=1.0), 20, 41, False) self._check(nonlin.BroydenFirst(alpha=1.0), 20, 41, True) def test_broyden2(self): # Broyden methods solve linear systems exactly in 2*N steps self._check(nonlin.BroydenSecond(alpha=1.0), 20, 41, False) self._check(nonlin.BroydenSecond(alpha=1.0), 20, 41, True) def test_anderson(self): # Anderson is rather similar to Broyden, if given enough storage space self._check(nonlin.Anderson(M=50, alpha=1.0), 20, 29, False) self._check(nonlin.Anderson(M=50, alpha=1.0), 20, 29, True) def test_krylov(self): # Krylov methods solve linear systems exactly in N inner steps self._check(nonlin.KrylovJacobian, 20, 2, False, inner_m=10) self._check(nonlin.KrylovJacobian, 20, 2, True, inner_m=10) class TestJacobianDotSolve(object): """Check that solve/dot methods in Jacobian approximations are consistent""" def _func(self, x): return x**2 - 1 + np.dot(self.A, x) def _check_dot(self, jac_cls, complex=False, tol=1e-6, **kw): np.random.seed(123) N = 7 def rand(*a): q = np.random.rand(*a) if complex: q = q + 1j*np.random.rand(*a) return q def assert_close(a, b, msg): d = abs(a - b).max() f = tol + abs(b).max()*tol if d > f: raise AssertionError('%s: err %g' % (msg, d)) self.A = rand(N, N) # initialize x0 = np.random.rand(N) jac = jac_cls(**kw) jac.setup(x0, self._func(x0), self._func) # check consistency for k in xrange(2*N): v = rand(N) if hasattr(jac, '__array__'): Jd = np.array(jac) if hasattr(jac, 'solve'): Gv = jac.solve(v) Gv2 = np.linalg.solve(Jd, v) assert_close(Gv, Gv2, 'solve vs array') if hasattr(jac, 'rsolve'): Gv = jac.rsolve(v) Gv2 = np.linalg.solve(Jd.T.conj(), v) assert_close(Gv, Gv2, 'rsolve vs array') if hasattr(jac, 'matvec'): Jv = jac.matvec(v) Jv2 = np.dot(Jd, v) assert_close(Jv, Jv2, 'dot vs array') if hasattr(jac, 'rmatvec'): Jv = jac.rmatvec(v) Jv2 = np.dot(Jd.T.conj(), v) assert_close(Jv, Jv2, 'rmatvec vs array') if hasattr(jac, 'matvec') and hasattr(jac, 'solve'): Jv = jac.matvec(v) Jv2 = jac.solve(jac.matvec(Jv)) assert_close(Jv, Jv2, 'dot vs solve') if hasattr(jac, 'rmatvec') and hasattr(jac, 'rsolve'): Jv = jac.rmatvec(v) Jv2 = jac.rmatvec(jac.rsolve(Jv)) assert_close(Jv, Jv2, 'rmatvec vs rsolve') x = rand(N) jac.update(x, self._func(x)) def test_broyden1(self): self._check_dot(nonlin.BroydenFirst, complex=False) self._check_dot(nonlin.BroydenFirst, complex=True) def test_broyden2(self): self._check_dot(nonlin.BroydenSecond, complex=False) self._check_dot(nonlin.BroydenSecond, complex=True) def test_anderson(self): self._check_dot(nonlin.Anderson, complex=False) self._check_dot(nonlin.Anderson, complex=True) def test_diagbroyden(self): self._check_dot(nonlin.DiagBroyden, complex=False) self._check_dot(nonlin.DiagBroyden, complex=True) def test_linearmixing(self): self._check_dot(nonlin.LinearMixing, complex=False) self._check_dot(nonlin.LinearMixing, complex=True) def test_excitingmixing(self): self._check_dot(nonlin.ExcitingMixing, complex=False) self._check_dot(nonlin.ExcitingMixing, complex=True) def test_krylov(self): self._check_dot(nonlin.KrylovJacobian, complex=False, tol=1e-3) self._check_dot(nonlin.KrylovJacobian, complex=True, tol=1e-3) class TestNonlinOldTests(object): """ Test case for a simple constrained entropy maximization problem (the machine translation example of Berger et al in Computational Linguistics, vol 22, num 1, pp 39--72, 1996.) """ def test_broyden1(self): x = nonlin.broyden1(F,F.xin,iter=12,alpha=1) assert_(nonlin.norm(x) < 1e-9) assert_(nonlin.norm(F(x)) < 1e-9) def test_broyden2(self): x = nonlin.broyden2(F,F.xin,iter=12,alpha=1) assert_(nonlin.norm(x) < 1e-9) assert_(nonlin.norm(F(x)) < 1e-9) def test_anderson(self): x = nonlin.anderson(F,F.xin,iter=12,alpha=0.03,M=5) assert_(nonlin.norm(x) < 0.33) def test_linearmixing(self): x = nonlin.linearmixing(F,F.xin,iter=60,alpha=0.5) assert_(nonlin.norm(x) < 1e-7) assert_(nonlin.norm(F(x)) < 1e-7) def test_exciting(self): x = nonlin.excitingmixing(F,F.xin,iter=20,alpha=0.5) assert_(nonlin.norm(x) < 1e-5) assert_(nonlin.norm(F(x)) < 1e-5) def test_diagbroyden(self): x = nonlin.diagbroyden(F,F.xin,iter=11,alpha=1) assert_(nonlin.norm(x) < 1e-8) assert_(nonlin.norm(F(x)) < 1e-8) def test_root_broyden1(self): res = root(F, F.xin, method='broyden1', options={'nit': 12, 'jac_options': {'alpha': 1}}) assert_(nonlin.norm(res.x) < 1e-9) assert_(nonlin.norm(res.fun) < 1e-9) def test_root_broyden2(self): res = root(F, F.xin, method='broyden2', options={'nit': 12, 'jac_options': {'alpha': 1}}) assert_(nonlin.norm(res.x) < 1e-9) assert_(nonlin.norm(res.fun) < 1e-9) def test_root_anderson(self): res = root(F, F.xin, method='anderson', options={'nit': 12, 'jac_options': {'alpha': 0.03, 'M': 5}}) assert_(nonlin.norm(res.x) < 0.33) def test_root_linearmixing(self): res = root(F, F.xin, method='linearmixing', options={'nit': 60, 'jac_options': {'alpha': 0.5}}) assert_(nonlin.norm(res.x) < 1e-7) assert_(nonlin.norm(res.fun) < 1e-7) def test_root_excitingmixing(self): res = root(F, F.xin, method='excitingmixing', options={'nit': 20, 'jac_options': {'alpha': 0.5}}) assert_(nonlin.norm(res.x) < 1e-5) assert_(nonlin.norm(res.fun) < 1e-5) def test_root_diagbroyden(self): res = root(F, F.xin, method='diagbroyden', options={'nit': 11, 'jac_options': {'alpha': 1}}) assert_(nonlin.norm(res.x) < 1e-8) assert_(nonlin.norm(res.fun) < 1e-8)
mbayon/TFG-MachineLearning
venv/lib/python3.6/site-packages/scipy/optimize/tests/test_nonlin.py
Python
mit
15,054
#!/usr/bin/python import ldns pkt = ldns.ldns_pkt.new_query_frm_str("www.google.com",ldns.LDNS_RR_TYPE_ANY, ldns.LDNS_RR_CLASS_IN, ldns.LDNS_QR | ldns.LDNS_AA) rra = ldns.ldns_rr.new_frm_str("www.google.com. IN A 192.168.1.1",300) rrb = ldns.ldns_rr.new_frm_str("www.google.com. IN TXT Some\ Description",300) list = ldns.ldns_rr_list() if (rra): list.push_rr(rra) if (rrb): list.push_rr(rrb) pkt.push_rr_list(ldns.LDNS_SECTION_ANSWER, list) print("Packet:") print(pkt)
fangdingjun/dnsproxy
third-part/ldns-1.6.17/contrib/python/examples/python3/ldns-newpkt.py
Python
gpl-3.0
476
"""add message column to event Revision ID: 211e93aff1e1 Revises: 2493281d621 Create Date: 2015-03-20 18:50:29.961734 """ # revision identifiers, used by Alembic. revision = '211e93aff1e1' down_revision = '2f3c8fa3fc3a' from alembic import op from sqlalchemy.sql import text def upgrade(): conn = op.get_bind() conn.execute(text("SET FOREIGN_KEY_CHECKS=0;")) conn.execute(text("ALTER TABLE event ADD COLUMN message_id int(11) DEFAULT NULL")) conn.execute(text("ALTER TABLE event ADD CONSTRAINT message_ifbk FOREIGN KEY " "(`message_id`) REFERENCES `message` (`id`) ON DELETE CASCADE")) def downgrade(): conn = op.get_bind() conn.execute(text("SET FOREIGN_KEY_CHECKS=0;")) conn.execute(text("ALTER TABLE event DROP FOREIGN KEY message_ifbk")) conn.execute(text("ALTER TABLE event DROP COLUMN message_id"))
nylas/sync-engine
migrations/versions/152_add_message_id_to_event.py
Python
agpl-3.0
867
""" Test cases for tabs. """ from mock import MagicMock, Mock, patch from courseware.courses import get_course_by_id from courseware.views import get_static_tab_contents from django.test.utils import override_settings from django.core.urlresolvers import reverse from student.tests.factories import UserFactory from xmodule.tabs import CourseTabList from xmodule.modulestore.tests.django_utils import ModuleStoreTestCase from xmodule.modulestore.tests.factories import CourseFactory, ItemFactory from courseware.tests.helpers import get_request_for_user, LoginEnrollmentTestCase from courseware.tests.modulestore_config import TEST_DATA_MIXED_MODULESTORE from opaque_keys.edx.locations import SlashSeparatedCourseKey @override_settings(MODULESTORE=TEST_DATA_MIXED_MODULESTORE) class StaticTabDateTestCase(LoginEnrollmentTestCase, ModuleStoreTestCase): """Test cases for Static Tab Dates.""" def setUp(self): self.course = CourseFactory.create() self.page = ItemFactory.create( category="static_tab", parent_location=self.course.location, data="OOGIE BLOOGIE", display_name="new_tab" ) self.toy_course_key = SlashSeparatedCourseKey('edX', 'toy', '2012_Fall') def test_logged_in(self): self.setup_user() url = reverse('static_tab', args=[self.course.id.to_deprecated_string(), 'new_tab']) resp = self.client.get(url) self.assertEqual(resp.status_code, 200) self.assertIn("OOGIE BLOOGIE", resp.content) def test_anonymous_user(self): url = reverse('static_tab', args=[self.course.id.to_deprecated_string(), 'new_tab']) resp = self.client.get(url) self.assertEqual(resp.status_code, 200) self.assertIn("OOGIE BLOOGIE", resp.content) @override_settings(MODULESTORE=TEST_DATA_MIXED_MODULESTORE) def test_get_static_tab_contents(self): course = get_course_by_id(self.toy_course_key) request = get_request_for_user(UserFactory.create()) tab = CourseTabList.get_tab_by_slug(course.tabs, 'resources') # Test render works okay tab_content = get_static_tab_contents(request, course, tab) self.assertIn(self.toy_course_key.to_deprecated_string(), tab_content) self.assertIn('static_tab', tab_content) # Test when render raises an exception with patch('courseware.views.get_module') as mock_module_render: mock_module_render.return_value = MagicMock( render=Mock(side_effect=Exception('Render failed!')) ) static_tab = get_static_tab_contents(request, course, tab) self.assertIn("this module is temporarily unavailable", static_tab) @override_settings(MODULESTORE=TEST_DATA_MIXED_MODULESTORE) class StaticTabDateTestCaseXML(LoginEnrollmentTestCase, ModuleStoreTestCase): # The following XML test course (which lives at common/test/data/2014) # is closed; we're testing that tabs still appear when # the course is already closed xml_course_key = SlashSeparatedCourseKey('edX', 'detached_pages', '2014') # this text appears in the test course's tab # common/test/data/2014/tabs/8e4cce2b4aaf4ba28b1220804619e41f.html xml_data = "static 463139" xml_url = "8e4cce2b4aaf4ba28b1220804619e41f" @patch.dict('django.conf.settings.FEATURES', {'DISABLE_START_DATES': False}) def test_logged_in_xml(self): self.setup_user() url = reverse('static_tab', args=[self.xml_course_key.to_deprecated_string(), self.xml_url]) resp = self.client.get(url) self.assertEqual(resp.status_code, 200) self.assertIn(self.xml_data, resp.content) @patch.dict('django.conf.settings.FEATURES', {'DISABLE_START_DATES': False}) def test_anonymous_user_xml(self): url = reverse('static_tab', args=[self.xml_course_key.to_deprecated_string(), self.xml_url]) resp = self.client.get(url) self.assertEqual(resp.status_code, 200) self.assertIn(self.xml_data, resp.content)
huchoi/edx-platform
lms/djangoapps/courseware/tests/test_tabs.py
Python
agpl-3.0
4,042
# Copyright 2014 Scality # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_log import log import testtools from tempest.common import waiters from tempest import config from tempest.scenario import manager from tempest import test CONF = config.CONF LOG = log.getLogger(__name__) class TestShelveInstance(manager.ScenarioTest): """ This test shelves then unshelves a Nova instance The following is the scenario outline: * boot a instance and create a timestamp file in it * shelve the instance * unshelve the instance * check the existence of the timestamp file in the unshelved instance """ def _write_timestamp(self, server_or_ip): ssh_client = self.get_remote_client(server_or_ip) ssh_client.exec_command('date > /tmp/timestamp; sync') self.timestamp = ssh_client.exec_command('cat /tmp/timestamp') def _check_timestamp(self, server_or_ip): ssh_client = self.get_remote_client(server_or_ip) got_timestamp = ssh_client.exec_command('cat /tmp/timestamp') self.assertEqual(self.timestamp, got_timestamp) def _shelve_then_unshelve_server(self, server): self.servers_client.shelve_server(server['id']) offload_time = CONF.compute.shelved_offload_time if offload_time >= 0: waiters.wait_for_server_status(self.servers_client, server['id'], 'SHELVED_OFFLOADED', extra_timeout=offload_time) else: waiters.wait_for_server_status(self.servers_client, server['id'], 'SHELVED') self.servers_client.shelve_offload_server(server['id']) waiters.wait_for_server_status(self.servers_client, server['id'], 'SHELVED_OFFLOADED') self.servers_client.unshelve_server(server['id']) waiters.wait_for_server_status(self.servers_client, server['id'], 'ACTIVE') @test.idempotent_id('1164e700-0af0-4a4c-8792-35909a88743c') @testtools.skipUnless(CONF.compute_feature_enabled.shelve, 'Shelve is not available.') @test.services('compute', 'network', 'image') def test_shelve_instance(self): self.keypair = self.create_keypair() self.security_group = self._create_security_group() security_groups = [{'name': self.security_group['name']}] create_kwargs = { 'key_name': self.keypair['name'], 'security_groups': security_groups } server = self.create_server(image=CONF.compute.image_ref, create_kwargs=create_kwargs) if CONF.compute.use_floatingip_for_ssh: floating_ip = self.floating_ips_client.create_floating_ip() self.addCleanup(self.delete_wrapper, self.floating_ips_client.delete_floating_ip, floating_ip['id']) self.floating_ips_client.associate_floating_ip_to_server( floating_ip['ip'], server['id']) self._write_timestamp(floating_ip['ip']) else: self._write_timestamp(server) # Prevent bug #1257594 from coming back # Unshelve used to boot the instance with the original image, not # with the instance snapshot self._shelve_then_unshelve_server(server) if CONF.compute.use_floatingip_for_ssh: self._check_timestamp(floating_ip['ip']) else: self._check_timestamp(server)
varunarya10/tempest
tempest/scenario/test_shelve_instance.py
Python
apache-2.0
4,194
# Lint as: python3 # Copyright 2020 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The core data types ctexplain manipulates.""" from typing import Mapping from typing import Optional from typing import Tuple # Do not edit this line. Copybara replaces it with PY2 migration helper. from dataclasses import dataclass from dataclasses import field from frozendict import frozendict @dataclass(frozen=True) class Configuration(): """Stores a build configuration as a collection of fragments and options.""" # Mapping of each BuildConfiguration.Fragment in this configuration to the # FragmentOptions it requires. # # All names are qualified up to the base file name, without package prefixes. # For example, foo.bar.BazConfiguration appears as "BazConfiguration". # foo.bar.BazConfiguration$Options appears as "BazeConfiguration$Options". fragments: Mapping[str, Tuple[str, ...]] # Mapping of FragmentOptions to option key/value pairs. For example: # {"CoreOptions": {"action_env": "[]", "cpu": "x86", ...}, ...}. # # Option values are stored as strings of whatever "bazel config" outputs. # # Note that Fragment and FragmentOptions aren't the same thing. options: Mapping[str, Mapping[str, str]] @dataclass(frozen=True) class ConfiguredTarget(): """Encapsulates a target + configuration + required fragments.""" # Label of the target this represents. label: str # Configuration this target is applied to. May be None. config: Optional[Configuration] # The hash of this configuration as reported by Bazel. config_hash: str # Fragments required by this configured target and its transitive # dependencies. Stored as base names without packages. For example: # "PlatformOptions" or "FooConfiguration$Options". transitive_fragments: Tuple[str, ...] @dataclass(frozen=True) class HostConfiguration(Configuration): """Special marker for the host configuration. There's exactly one host configuration per build, so we shouldn't suggest merging it with other configurations. TODO(gregce): suggest host configuration trimming once we figure out the right criteria. Even if Bazel's not technically equipped to do the trimming, it's still theoretically valuable information. Note that moving from host to exec configurations make this all a little less relevant, since exec configurations aren't "special" compared to normal configurations. """ # We don't currently read the host config's fragments or option values. fragments: Tuple[str, ...] = () options: Mapping[str, Mapping[str, str]] = field(default_factory=lambda: frozendict({})) @dataclass(frozen=True) class NullConfiguration(Configuration): """Special marker for the null configuration. By definition this has no fragments or options. """ fragments: Tuple[str, ...] = () options: Mapping[str, Mapping[str, str]] = field(default_factory=lambda: frozendict({}))
twitter-forks/bazel
tools/ctexplain/types.py
Python
apache-2.0
3,539
''' Created on Jun 27, 2010 @author: jnaous ''' from openflow.dummyom.models import DummyOM def run(): for om in DummyOM.objects.all(): om.delete() for i in xrange(3): om = DummyOM.objects.create() om.populate_links(10, 20)
ict-felix/stack
vt_manager_kvm/src/python/scripts/create_oms.py
Python
apache-2.0
273
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Python package for feature in MLlib. """ import sys import warnings from py4j.protocol import Py4JJavaError from pyspark import since from pyspark.rdd import RDD from pyspark.mllib.common import callMLlibFunc, JavaModelWrapper from pyspark.mllib.linalg import Vectors, _convert_to_vector from pyspark.mllib.util import JavaLoader, JavaSaveable __all__ = ['Normalizer', 'StandardScalerModel', 'StandardScaler', 'HashingTF', 'IDFModel', 'IDF', 'Word2Vec', 'Word2VecModel', 'ChiSqSelector', 'ChiSqSelectorModel', 'ElementwiseProduct'] class VectorTransformer(object): """ Base class for transformation of a vector or RDD of vector """ def transform(self, vector): """ Applies transformation on a vector. Parameters ---------- vector : :py:class:`pyspark.mllib.linalg.Vector` or :py:class:`pyspark.RDD` vector or convertible or RDD to be transformed. """ raise NotImplementedError class Normalizer(VectorTransformer): r""" Normalizes samples individually to unit L\ :sup:`p`\ norm For any 1 <= `p` < float('inf'), normalizes samples using sum(abs(vector) :sup:`p`) :sup:`(1/p)` as norm. For `p` = float('inf'), max(abs(vector)) will be used as norm for normalization. .. versionadded:: 1.2.0 Parameters ---------- p : float, optional Normalization in L^p^ space, p = 2 by default. Examples -------- >>> from pyspark.mllib.linalg import Vectors >>> v = Vectors.dense(range(3)) >>> nor = Normalizer(1) >>> nor.transform(v) DenseVector([0.0, 0.3333, 0.6667]) >>> rdd = sc.parallelize([v]) >>> nor.transform(rdd).collect() [DenseVector([0.0, 0.3333, 0.6667])] >>> nor2 = Normalizer(float("inf")) >>> nor2.transform(v) DenseVector([0.0, 0.5, 1.0]) """ def __init__(self, p=2.0): assert p >= 1.0, "p should be greater than 1.0" self.p = float(p) def transform(self, vector): """ Applies unit length normalization on a vector. .. versionadded:: 1.2.0 Parameters ---------- vector : :py:class:`pyspark.mllib.linalg.Vector` or :py:class:`pyspark.RDD` vector or RDD of vector to be normalized. Returns ------- :py:class:`pyspark.mllib.linalg.Vector` or :py:class:`pyspark.RDD` normalized vector(s). If the norm of the input is zero, it will return the input vector. """ if isinstance(vector, RDD): vector = vector.map(_convert_to_vector) else: vector = _convert_to_vector(vector) return callMLlibFunc("normalizeVector", self.p, vector) class JavaVectorTransformer(JavaModelWrapper, VectorTransformer): """ Wrapper for the model in JVM """ def transform(self, vector): """ Applies transformation on a vector or an RDD[Vector]. Parameters ---------- vector : :py:class:`pyspark.mllib.linalg.Vector` or :py:class:`pyspark.RDD` Input vector(s) to be transformed. Notes ----- In Python, transform cannot currently be used within an RDD transformation or action. Call transform directly on the RDD instead. """ if isinstance(vector, RDD): vector = vector.map(_convert_to_vector) else: vector = _convert_to_vector(vector) return self.call("transform", vector) class StandardScalerModel(JavaVectorTransformer): """ Represents a StandardScaler model that can transform vectors. .. versionadded:: 1.2.0 """ def transform(self, vector): """ Applies standardization transformation on a vector. .. versionadded:: 1.2.0 Parameters ---------- vector : :py:class:`pyspark.mllib.linalg.Vector` or :py:class:`pyspark.RDD` Input vector(s) to be standardized. Returns ------- :py:class:`pyspark.mllib.linalg.Vector` or :py:class:`pyspark.RDD` Standardized vector(s). If the variance of a column is zero, it will return default `0.0` for the column with zero variance. Notes ----- In Python, transform cannot currently be used within an RDD transformation or action. Call transform directly on the RDD instead. """ return JavaVectorTransformer.transform(self, vector) @since('1.4.0') def setWithMean(self, withMean): """ Setter of the boolean which decides whether it uses mean or not """ self.call("setWithMean", withMean) return self @since('1.4.0') def setWithStd(self, withStd): """ Setter of the boolean which decides whether it uses std or not """ self.call("setWithStd", withStd) return self @property @since('2.0.0') def withStd(self): """ Returns if the model scales the data to unit standard deviation. """ return self.call("withStd") @property @since('2.0.0') def withMean(self): """ Returns if the model centers the data before scaling. """ return self.call("withMean") @property @since('2.0.0') def std(self): """ Return the column standard deviation values. """ return self.call("std") @property @since('2.0.0') def mean(self): """ Return the column mean values. """ return self.call("mean") class StandardScaler(object): """ Standardizes features by removing the mean and scaling to unit variance using column summary statistics on the samples in the training set. .. versionadded:: 1.2.0 Parameters ---------- withMean : bool, optional False by default. Centers the data with mean before scaling. It will build a dense output, so take care when applying to sparse input. withStd : bool, optional True by default. Scales the data to unit standard deviation. Examples -------- >>> vs = [Vectors.dense([-2.0, 2.3, 0]), Vectors.dense([3.8, 0.0, 1.9])] >>> dataset = sc.parallelize(vs) >>> standardizer = StandardScaler(True, True) >>> model = standardizer.fit(dataset) >>> result = model.transform(dataset) >>> for r in result.collect(): r DenseVector([-0.7071, 0.7071, -0.7071]) DenseVector([0.7071, -0.7071, 0.7071]) >>> int(model.std[0]) 4 >>> int(model.mean[0]*10) 9 >>> model.withStd True >>> model.withMean True """ def __init__(self, withMean=False, withStd=True): if not (withMean or withStd): warnings.warn("Both withMean and withStd are false. The model does nothing.") self.withMean = withMean self.withStd = withStd def fit(self, dataset): """ Computes the mean and variance and stores as a model to be used for later scaling. .. versionadded:: 1.2.0 Parameters ---------- dataset : :py:class:`pyspark.RDD` The data used to compute the mean and variance to build the transformation model. Returns ------- :py:class:`StandardScalerModel` """ dataset = dataset.map(_convert_to_vector) jmodel = callMLlibFunc("fitStandardScaler", self.withMean, self.withStd, dataset) return StandardScalerModel(jmodel) class ChiSqSelectorModel(JavaVectorTransformer): """ Represents a Chi Squared selector model. .. versionadded:: 1.4.0 """ def transform(self, vector): """ Applies transformation on a vector. .. versionadded:: 1.4.0 Examples -------- vector : :py:class:`pyspark.mllib.linalg.Vector` or :py:class:`pyspark.RDD` Input vector(s) to be transformed. Returns ------- :py:class:`pyspark.mllib.linalg.Vector` or :py:class:`pyspark.RDD` transformed vector(s). """ return JavaVectorTransformer.transform(self, vector) class ChiSqSelector(object): """ Creates a ChiSquared feature selector. The selector supports different selection methods: `numTopFeatures`, `percentile`, `fpr`, `fdr`, `fwe`. * `numTopFeatures` chooses a fixed number of top features according to a chi-squared test. * `percentile` is similar but chooses a fraction of all features instead of a fixed number. * `fpr` chooses all features whose p-values are below a threshold, thus controlling the false positive rate of selection. * `fdr` uses the `Benjamini-Hochberg procedure <https://en.wikipedia.org/wiki/ False_discovery_rate#Benjamini.E2.80.93Hochberg_procedure>`_ to choose all features whose false discovery rate is below a threshold. * `fwe` chooses all features whose p-values are below a threshold. The threshold is scaled by 1/numFeatures, thus controlling the family-wise error rate of selection. By default, the selection method is `numTopFeatures`, with the default number of top features set to 50. .. versionadded:: 1.4.0 Examples -------- >>> from pyspark.mllib.linalg import SparseVector, DenseVector >>> from pyspark.mllib.regression import LabeledPoint >>> data = sc.parallelize([ ... LabeledPoint(0.0, SparseVector(3, {0: 8.0, 1: 7.0})), ... LabeledPoint(1.0, SparseVector(3, {1: 9.0, 2: 6.0})), ... LabeledPoint(1.0, [0.0, 9.0, 8.0]), ... LabeledPoint(2.0, [7.0, 9.0, 5.0]), ... LabeledPoint(2.0, [8.0, 7.0, 3.0]) ... ]) >>> model = ChiSqSelector(numTopFeatures=1).fit(data) >>> model.transform(SparseVector(3, {1: 9.0, 2: 6.0})) SparseVector(1, {}) >>> model.transform(DenseVector([7.0, 9.0, 5.0])) DenseVector([7.0]) >>> model = ChiSqSelector(selectorType="fpr", fpr=0.2).fit(data) >>> model.transform(SparseVector(3, {1: 9.0, 2: 6.0})) SparseVector(1, {}) >>> model.transform(DenseVector([7.0, 9.0, 5.0])) DenseVector([7.0]) >>> model = ChiSqSelector(selectorType="percentile", percentile=0.34).fit(data) >>> model.transform(DenseVector([7.0, 9.0, 5.0])) DenseVector([7.0]) """ def __init__(self, numTopFeatures=50, selectorType="numTopFeatures", percentile=0.1, fpr=0.05, fdr=0.05, fwe=0.05): self.numTopFeatures = numTopFeatures self.selectorType = selectorType self.percentile = percentile self.fpr = fpr self.fdr = fdr self.fwe = fwe @since('2.1.0') def setNumTopFeatures(self, numTopFeatures): """ set numTopFeature for feature selection by number of top features. Only applicable when selectorType = "numTopFeatures". """ self.numTopFeatures = int(numTopFeatures) return self @since('2.1.0') def setPercentile(self, percentile): """ set percentile [0.0, 1.0] for feature selection by percentile. Only applicable when selectorType = "percentile". """ self.percentile = float(percentile) return self @since('2.1.0') def setFpr(self, fpr): """ set FPR [0.0, 1.0] for feature selection by FPR. Only applicable when selectorType = "fpr". """ self.fpr = float(fpr) return self @since('2.2.0') def setFdr(self, fdr): """ set FDR [0.0, 1.0] for feature selection by FDR. Only applicable when selectorType = "fdr". """ self.fdr = float(fdr) return self @since('2.2.0') def setFwe(self, fwe): """ set FWE [0.0, 1.0] for feature selection by FWE. Only applicable when selectorType = "fwe". """ self.fwe = float(fwe) return self @since('2.1.0') def setSelectorType(self, selectorType): """ set the selector type of the ChisqSelector. Supported options: "numTopFeatures" (default), "percentile", "fpr", "fdr", "fwe". """ self.selectorType = str(selectorType) return self def fit(self, data): """ Returns a ChiSquared feature selector. .. versionadded:: 1.4.0 Parameters ---------- data : :py:class:`pyspark.RDD` of :py:class:`pyspark.mllib.regression.LabeledPoint` containing the labeled dataset with categorical features. Real-valued features will be treated as categorical for each distinct value. Apply feature discretizer before using this function. """ jmodel = callMLlibFunc("fitChiSqSelector", self.selectorType, self.numTopFeatures, self.percentile, self.fpr, self.fdr, self.fwe, data) return ChiSqSelectorModel(jmodel) class PCAModel(JavaVectorTransformer): """ Model fitted by [[PCA]] that can project vectors to a low-dimensional space using PCA. .. versionadded:: 1.5.0 """ class PCA(object): """ A feature transformer that projects vectors to a low-dimensional space using PCA. .. versionadded:: 1.5.0 Examples -------- >>> data = [Vectors.sparse(5, [(1, 1.0), (3, 7.0)]), ... Vectors.dense([2.0, 0.0, 3.0, 4.0, 5.0]), ... Vectors.dense([4.0, 0.0, 0.0, 6.0, 7.0])] >>> model = PCA(2).fit(sc.parallelize(data)) >>> pcArray = model.transform(Vectors.sparse(5, [(1, 1.0), (3, 7.0)])).toArray() >>> pcArray[0] 1.648... >>> pcArray[1] -4.013... """ def __init__(self, k): """ Parameters ---------- k : int number of principal components. """ self.k = int(k) def fit(self, data): """ Computes a [[PCAModel]] that contains the principal components of the input vectors. .. versionadded:: 1.5.0 Parameters ---------- data : :py:class:`pyspark.RDD` source vectors """ jmodel = callMLlibFunc("fitPCA", self.k, data) return PCAModel(jmodel) class HashingTF(object): """ Maps a sequence of terms to their term frequencies using the hashing trick. .. versionadded:: 1.2.0 Parameters ---------- numFeatures : int, optional number of features (default: 2^20) Notes ----- The terms must be hashable (can not be dict/set/list...). Examples -------- >>> htf = HashingTF(100) >>> doc = "a a b b c d".split(" ") >>> htf.transform(doc) SparseVector(100, {...}) """ def __init__(self, numFeatures=1 << 20): self.numFeatures = numFeatures self.binary = False @since("2.0.0") def setBinary(self, value): """ If True, term frequency vector will be binary such that non-zero term counts will be set to 1 (default: False) """ self.binary = value return self @since('1.2.0') def indexOf(self, term): """ Returns the index of the input term. """ return hash(term) % self.numFeatures @since('1.2.0') def transform(self, document): """ Transforms the input document (list of terms) to term frequency vectors, or transform the RDD of document to RDD of term frequency vectors. """ if isinstance(document, RDD): return document.map(self.transform) freq = {} for term in document: i = self.indexOf(term) freq[i] = 1.0 if self.binary else freq.get(i, 0) + 1.0 return Vectors.sparse(self.numFeatures, freq.items()) class IDFModel(JavaVectorTransformer): """ Represents an IDF model that can transform term frequency vectors. .. versionadded:: 1.2.0 """ def transform(self, x): """ Transforms term frequency (TF) vectors to TF-IDF vectors. If `minDocFreq` was set for the IDF calculation, the terms which occur in fewer than `minDocFreq` documents will have an entry of 0. .. versionadded:: 1.2.0 Parameters ---------- x : :py:class:`pyspark.mllib.linalg.Vector` or :py:class:`pyspark.RDD` an RDD of term frequency vectors or a term frequency vector Returns ------- :py:class:`pyspark.mllib.linalg.Vector` or :py:class:`pyspark.RDD` an RDD of TF-IDF vectors or a TF-IDF vector Notes ----- In Python, transform cannot currently be used within an RDD transformation or action. Call transform directly on the RDD instead. """ return JavaVectorTransformer.transform(self, x) @since('1.4.0') def idf(self): """ Returns the current IDF vector. """ return self.call('idf') @since('3.0.0') def docFreq(self): """ Returns the document frequency. """ return self.call('docFreq') @since('3.0.0') def numDocs(self): """ Returns number of documents evaluated to compute idf """ return self.call('numDocs') class IDF(object): """ Inverse document frequency (IDF). The standard formulation is used: `idf = log((m + 1) / (d(t) + 1))`, where `m` is the total number of documents and `d(t)` is the number of documents that contain term `t`. This implementation supports filtering out terms which do not appear in a minimum number of documents (controlled by the variable `minDocFreq`). For terms that are not in at least `minDocFreq` documents, the IDF is found as 0, resulting in TF-IDFs of 0. .. versionadded:: 1.2.0 Parameters ---------- minDocFreq : int minimum of documents in which a term should appear for filtering Examples -------- >>> n = 4 >>> freqs = [Vectors.sparse(n, (1, 3), (1.0, 2.0)), ... Vectors.dense([0.0, 1.0, 2.0, 3.0]), ... Vectors.sparse(n, [1], [1.0])] >>> data = sc.parallelize(freqs) >>> idf = IDF() >>> model = idf.fit(data) >>> tfidf = model.transform(data) >>> for r in tfidf.collect(): r SparseVector(4, {1: 0.0, 3: 0.5754}) DenseVector([0.0, 0.0, 1.3863, 0.863]) SparseVector(4, {1: 0.0}) >>> model.transform(Vectors.dense([0.0, 1.0, 2.0, 3.0])) DenseVector([0.0, 0.0, 1.3863, 0.863]) >>> model.transform([0.0, 1.0, 2.0, 3.0]) DenseVector([0.0, 0.0, 1.3863, 0.863]) >>> model.transform(Vectors.sparse(n, (1, 3), (1.0, 2.0))) SparseVector(4, {1: 0.0, 3: 0.5754}) """ def __init__(self, minDocFreq=0): self.minDocFreq = minDocFreq def fit(self, dataset): """ Computes the inverse document frequency. .. versionadded:: 1.2.0 Parameters ---------- dataset : :py:class:`pyspark.RDD` an RDD of term frequency vectors """ if not isinstance(dataset, RDD): raise TypeError("dataset should be an RDD of term frequency vectors") jmodel = callMLlibFunc("fitIDF", self.minDocFreq, dataset.map(_convert_to_vector)) return IDFModel(jmodel) class Word2VecModel(JavaVectorTransformer, JavaSaveable, JavaLoader): """ class for Word2Vec model """ def transform(self, word): """ Transforms a word to its vector representation .. versionadded:: 1.2.0 Parameters ---------- word : str a word Returns ------- :py:class:`pyspark.mllib.linalg.Vector` vector representation of word(s) Notes ----- Local use only """ try: return self.call("transform", word) except Py4JJavaError: raise ValueError("%s not found" % word) def findSynonyms(self, word, num): """ Find synonyms of a word .. versionadded:: 1.2.0 Parameters ---------- word : str or :py:class:`pyspark.mllib.linalg.Vector` a word or a vector representation of word num : int number of synonyms to find Returns ------- :py:class:`collections.abc.Iterable` array of (word, cosineSimilarity) Notes ----- Local use only """ if not isinstance(word, str): word = _convert_to_vector(word) words, similarity = self.call("findSynonyms", word, num) return zip(words, similarity) @since('1.4.0') def getVectors(self): """ Returns a map of words to their vector representations. """ return self.call("getVectors") @classmethod @since('1.5.0') def load(cls, sc, path): """ Load a model from the given path. """ jmodel = sc._jvm.org.apache.spark.mllib.feature \ .Word2VecModel.load(sc._jsc.sc(), path) model = sc._jvm.org.apache.spark.mllib.api.python.Word2VecModelWrapper(jmodel) return Word2VecModel(model) class Word2Vec(object): """Word2Vec creates vector representation of words in a text corpus. The algorithm first constructs a vocabulary from the corpus and then learns vector representation of words in the vocabulary. The vector representation can be used as features in natural language processing and machine learning algorithms. We used skip-gram model in our implementation and hierarchical softmax method to train the model. The variable names in the implementation matches the original C implementation. For original C implementation, see https://code.google.com/p/word2vec/ For research papers, see Efficient Estimation of Word Representations in Vector Space and Distributed Representations of Words and Phrases and their Compositionality. .. versionadded:: 1.2.0 Examples -------- >>> sentence = "a b " * 100 + "a c " * 10 >>> localDoc = [sentence, sentence] >>> doc = sc.parallelize(localDoc).map(lambda line: line.split(" ")) >>> model = Word2Vec().setVectorSize(10).setSeed(42).fit(doc) Querying for synonyms of a word will not return that word: >>> syms = model.findSynonyms("a", 2) >>> [s[0] for s in syms] ['b', 'c'] But querying for synonyms of a vector may return the word whose representation is that vector: >>> vec = model.transform("a") >>> syms = model.findSynonyms(vec, 2) >>> [s[0] for s in syms] ['a', 'b'] >>> import os, tempfile >>> path = tempfile.mkdtemp() >>> model.save(sc, path) >>> sameModel = Word2VecModel.load(sc, path) >>> model.transform("a") == sameModel.transform("a") True >>> syms = sameModel.findSynonyms("a", 2) >>> [s[0] for s in syms] ['b', 'c'] >>> from shutil import rmtree >>> try: ... rmtree(path) ... except OSError: ... pass """ def __init__(self): """ Construct Word2Vec instance """ self.vectorSize = 100 self.learningRate = 0.025 self.numPartitions = 1 self.numIterations = 1 self.seed = None self.minCount = 5 self.windowSize = 5 @since('1.2.0') def setVectorSize(self, vectorSize): """ Sets vector size (default: 100). """ self.vectorSize = vectorSize return self @since('1.2.0') def setLearningRate(self, learningRate): """ Sets initial learning rate (default: 0.025). """ self.learningRate = learningRate return self @since('1.2.0') def setNumPartitions(self, numPartitions): """ Sets number of partitions (default: 1). Use a small number for accuracy. """ self.numPartitions = numPartitions return self @since('1.2.0') def setNumIterations(self, numIterations): """ Sets number of iterations (default: 1), which should be smaller than or equal to number of partitions. """ self.numIterations = numIterations return self @since('1.2.0') def setSeed(self, seed): """ Sets random seed. """ self.seed = seed return self @since('1.4.0') def setMinCount(self, minCount): """ Sets minCount, the minimum number of times a token must appear to be included in the word2vec model's vocabulary (default: 5). """ self.minCount = minCount return self @since('2.0.0') def setWindowSize(self, windowSize): """ Sets window size (default: 5). """ self.windowSize = windowSize return self def fit(self, data): """ Computes the vector representation of each word in vocabulary. .. versionadded:: 1.2.0 Parameters ---------- data : :py:class:`pyspark.RDD` training data. RDD of list of string Returns ------- :py:class:`Word2VecModel` """ if not isinstance(data, RDD): raise TypeError("data should be an RDD of list of string") jmodel = callMLlibFunc("trainWord2VecModel", data, int(self.vectorSize), float(self.learningRate), int(self.numPartitions), int(self.numIterations), self.seed, int(self.minCount), int(self.windowSize)) return Word2VecModel(jmodel) class ElementwiseProduct(VectorTransformer): """ Scales each column of the vector, with the supplied weight vector. i.e the elementwise product. .. versionadded:: 1.5.0 Examples -------- >>> weight = Vectors.dense([1.0, 2.0, 3.0]) >>> eprod = ElementwiseProduct(weight) >>> a = Vectors.dense([2.0, 1.0, 3.0]) >>> eprod.transform(a) DenseVector([2.0, 2.0, 9.0]) >>> b = Vectors.dense([9.0, 3.0, 4.0]) >>> rdd = sc.parallelize([a, b]) >>> eprod.transform(rdd).collect() [DenseVector([2.0, 2.0, 9.0]), DenseVector([9.0, 6.0, 12.0])] """ def __init__(self, scalingVector): self.scalingVector = _convert_to_vector(scalingVector) @since('1.5.0') def transform(self, vector): """ Computes the Hadamard product of the vector. """ if isinstance(vector, RDD): vector = vector.map(_convert_to_vector) else: vector = _convert_to_vector(vector) return callMLlibFunc("elementwiseProductVector", self.scalingVector, vector) def _test(): import doctest from pyspark.sql import SparkSession globs = globals().copy() spark = SparkSession.builder\ .master("local[4]")\ .appName("mllib.feature tests")\ .getOrCreate() globs['sc'] = spark.sparkContext (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS) spark.stop() if failure_count: sys.exit(-1) if __name__ == "__main__": sys.path.pop(0) _test()
maropu/spark
python/pyspark/mllib/feature.py
Python
apache-2.0
28,134
"""Tests for the Bond cover device.""" from datetime import timedelta from bond_api import Action, DeviceType from homeassistant import core from homeassistant.components.cover import DOMAIN as COVER_DOMAIN from homeassistant.const import ( ATTR_ENTITY_ID, SERVICE_CLOSE_COVER, SERVICE_OPEN_COVER, SERVICE_STOP_COVER, ) from homeassistant.helpers.entity_registry import EntityRegistry from homeassistant.util import utcnow from .common import ( help_test_entity_available, patch_bond_action, patch_bond_device_state, setup_platform, ) from tests.common import async_fire_time_changed def shades(name: str): """Create motorized shades with given name.""" return {"name": name, "type": DeviceType.MOTORIZED_SHADES} async def test_entity_registry(hass: core.HomeAssistant): """Tests that the devices are registered in the entity registry.""" await setup_platform( hass, COVER_DOMAIN, shades("name-1"), bond_version={"bondid": "test-hub-id"}, bond_device_id="test-device-id", ) registry: EntityRegistry = await hass.helpers.entity_registry.async_get_registry() entity = registry.entities["cover.name_1"] assert entity.unique_id == "test-hub-id_test-device-id" async def test_open_cover(hass: core.HomeAssistant): """Tests that open cover command delegates to API.""" await setup_platform( hass, COVER_DOMAIN, shades("name-1"), bond_device_id="test-device-id" ) with patch_bond_action() as mock_open, patch_bond_device_state(): await hass.services.async_call( COVER_DOMAIN, SERVICE_OPEN_COVER, {ATTR_ENTITY_ID: "cover.name_1"}, blocking=True, ) await hass.async_block_till_done() mock_open.assert_called_once_with("test-device-id", Action.open()) async def test_close_cover(hass: core.HomeAssistant): """Tests that close cover command delegates to API.""" await setup_platform( hass, COVER_DOMAIN, shades("name-1"), bond_device_id="test-device-id" ) with patch_bond_action() as mock_close, patch_bond_device_state(): await hass.services.async_call( COVER_DOMAIN, SERVICE_CLOSE_COVER, {ATTR_ENTITY_ID: "cover.name_1"}, blocking=True, ) await hass.async_block_till_done() mock_close.assert_called_once_with("test-device-id", Action.close()) async def test_stop_cover(hass: core.HomeAssistant): """Tests that stop cover command delegates to API.""" await setup_platform( hass, COVER_DOMAIN, shades("name-1"), bond_device_id="test-device-id" ) with patch_bond_action() as mock_hold, patch_bond_device_state(): await hass.services.async_call( COVER_DOMAIN, SERVICE_STOP_COVER, {ATTR_ENTITY_ID: "cover.name_1"}, blocking=True, ) await hass.async_block_till_done() mock_hold.assert_called_once_with("test-device-id", Action.hold()) async def test_update_reports_open_cover(hass: core.HomeAssistant): """Tests that update command sets correct state when Bond API reports cover is open.""" await setup_platform(hass, COVER_DOMAIN, shades("name-1")) with patch_bond_device_state(return_value={"open": 1}): async_fire_time_changed(hass, utcnow() + timedelta(seconds=30)) await hass.async_block_till_done() assert hass.states.get("cover.name_1").state == "open" async def test_update_reports_closed_cover(hass: core.HomeAssistant): """Tests that update command sets correct state when Bond API reports cover is closed.""" await setup_platform(hass, COVER_DOMAIN, shades("name-1")) with patch_bond_device_state(return_value={"open": 0}): async_fire_time_changed(hass, utcnow() + timedelta(seconds=30)) await hass.async_block_till_done() assert hass.states.get("cover.name_1").state == "closed" async def test_cover_available(hass: core.HomeAssistant): """Tests that available state is updated based on API errors.""" await help_test_entity_available( hass, COVER_DOMAIN, shades("name-1"), "cover.name_1" )
sdague/home-assistant
tests/components/bond/test_cover.py
Python
apache-2.0
4,207
#!/usr/bin/python # Creator: Daniel Wooten # License: GPL # import the python logging utility as log import logging as log # Set the root logger level ( what messages it will print ) log.basicConfig( level = 10 ) # Some sample messages for the root logger log.debug( "This is the debug level reporting in" ) log.info( "This is the info level reporting in " ) log.warning( "This is the warning level reporting in" ) log.error( "This is the error level reporting in" ) log.critical( "This is the critical level reporting in" )
jnaulty/berkeley
python_logger/log_pres_2.py
Python
bsd-3-clause
529
from __future__ import print_function from django.core.management.base import BaseCommand from optparse import make_option from laws.models import Bill from laws.vote_choices import BILL_STAGE_CHOICES from mks.models import Knesset class Command(BaseCommand): help = "Freeze bills staged in previous knessets" option_list = BaseCommand.option_list + ( make_option( '-n', action='store_true', dest="dryrun", default=False, help='Dry run, changes nothing in the db, just display results' ), ) def handle(self, *args, **options): start_date = Knesset.objects.current_knesset().start_date valid_stages = [key for (key, val) in BILL_STAGE_CHOICES if key.isnumeric() and 1 < int(key) < 6] bills = Bill.objects.filter(stage_date__lte=start_date, stage__in=valid_stages) total = Bill.objects.count() found = bills.count() msg = "Found {0} bills of {1} in stages {2} and dated before {3}" print(msg.format(found, total, u','.join(valid_stages), start_date)) if options['dryrun']: print("Not updating the db, dry run was specified") else: print('Settings {0} bills stage to u"0"'.format(found)) bills.update(stage=u'0')
noamelf/Open-Knesset
laws/management/commands/freeze_bills.py
Python
bsd-3-clause
1,347
# -*- coding: utf-8 -*- from __future__ import division, print_function, absolute_import from numpy import abs, cos, exp, log, arange, pi, roll, sin, sqrt, sum from .go_benchmark import Benchmark class BartelsConn(Benchmark): r""" Bartels-Conn objective function. The BartelsConn [1]_ global optimization problem is a multimodal minimization problem defined as follows: .. math:: f_{\text{BartelsConn}}(x) = \lvert {x_1^2 + x_2^2 + x_1x_2} \rvert + \lvert {\sin(x_1)} \rvert + \lvert {\cos(x_2)} \rvert with :math:`x_i \in [-500, 500]` for :math:`i = 1, 2`. *Global optimum*: :math:`f(x) = 1` for :math:`x = [0, 0]` .. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194. """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self._bounds = zip([-500.] * self.N, [500.] * self.N) self.global_optimum = [[0 for _ in range(self.N)]] self.fglob = 1.0 def fun(self, x, *args): self.nfev += 1 return (abs(x[0] ** 2.0 + x[1] ** 2.0 + x[0] * x[1]) + abs(sin(x[0])) + abs(cos(x[1]))) class Beale(Benchmark): r""" Beale objective function. The Beale [1]_ global optimization problem is a multimodal minimization problem defined as follows: .. math:: f_{\text{Beale}}(x) = \left(x_1 x_2 - x_1 + 1.5\right)^{2} + \left(x_1 x_2^{2} - x_1 + 2.25\right)^{2} + \left(x_1 x_2^{3} - x_1 + 2.625\right)^{2} with :math:`x_i \in [-4.5, 4.5]` for :math:`i = 1, 2`. *Global optimum*: :math:`f(x) = 0` for :math:`x=[3, 0.5]` .. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194. """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self._bounds = zip([-4.5] * self.N, [4.5] * self.N) self.global_optimum = [[3.0, 0.5]] self.fglob = 0.0 def fun(self, x, *args): self.nfev += 1 return ((1.5 - x[0] + x[0] * x[1]) ** 2 + (2.25 - x[0] + x[0] * x[1] ** 2) ** 2 + (2.625 - x[0] + x[0] * x[1] ** 3) ** 2) class BiggsExp02(Benchmark): r""" BiggsExp02 objective function. The BiggsExp02 [1]_ global optimization problem is a multimodal minimization problem defined as follows .. math:: \begin{matrix} f_{\text{BiggsExp02}}(x) = \sum_{i=1}^{10} (e^{-t_i x_1} - 5 e^{-t_i x_2} - y_i)^2 \\ t_i = 0.1 i\\ y_i = e^{-t_i} - 5 e^{-10t_i}\\ \end{matrix} with :math:`x_i \in [0, 20]` for :math:`i = 1, 2`. *Global optimum*: :math:`f(x) = 0` for :math:`x = [1, 10]` .. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194. """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self._bounds = zip([0] * 2, [20] * 2) self.global_optimum = [[1., 10.]] self.fglob = 0 def fun(self, x, *args): self.nfev += 1 t = arange(1, 11.) * 0.1 y = exp(-t) - 5 * exp(-10 * t) vec = (exp(-t * x[0]) - 5 * exp(-t * x[1]) - y) ** 2 return sum(vec) class BiggsExp03(Benchmark): r""" BiggsExp03 objective function. The BiggsExp03 [1]_ global optimization problem is a multimodal minimization problem defined as follows .. math:: \begin{matrix}\ f_{\text{BiggsExp03}}(x) = \sum_{i=1}^{10} (e^{-t_i x_1} - x_3e^{-t_i x_2} - y_i)^2\\ t_i = 0.1i\\ y_i = e^{-t_i} - 5e^{-10 t_i}\\ \end{matrix} with :math:`x_i \in [0, 20]` for :math:`i = 1, 2, 3`. *Global optimum*: :math:`f(x) = 0` for :math:`x = [1, 10, 5]` .. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194. """ def __init__(self, dimensions=3): Benchmark.__init__(self, dimensions) self._bounds = zip([0] * 3, [20] * 3) self.global_optimum = [[1., 10., 5.]] self.fglob = 0 def fun(self, x, *args): self.nfev += 1 t = arange(1., 11.) * 0.1 y = exp(-t) - 5 * exp(-10 * t) vec = (exp(-t * x[0]) - x[2] * exp(-t * x[1]) - y) ** 2 return sum(vec) class BiggsExp04(Benchmark): r""" BiggsExp04 objective function. The BiggsExp04 [1]_ global optimization problem is a multimodal minimization problem defined as follows .. math:: \begin{matrix}\ f_{\text{BiggsExp04}}(x) = \sum_{i=1}^{10} (x_3 e^{-t_i x_1} - x_4 e^{-t_i x_2} - y_i)^2\\ t_i = 0.1i\\ y_i = e^{-t_i} - 5 e^{-10 t_i}\\ \end{matrix} with :math:`x_i \in [0, 20]` for :math:`i = 1, ..., 4`. *Global optimum*: :math:`f(x) = 0` for :math:`x = [1, 10, 1, 5]` .. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194. """ def __init__(self, dimensions=4): Benchmark.__init__(self, dimensions) self._bounds = zip([0.] * 4, [20.] * 4) self.global_optimum = [[1., 10., 1., 5.]] self.fglob = 0 def fun(self, x, *args): self.nfev += 1 t = arange(1, 11.) * 0.1 y = exp(-t) - 5 * exp(-10 * t) vec = (x[2] * exp(-t * x[0]) - x[3] * exp(-t * x[1]) - y) ** 2 return sum(vec) class BiggsExp05(Benchmark): r""" BiggsExp05 objective function. The BiggsExp05 [1]_ global optimization problem is a multimodal minimization problem defined as follows .. math:: \begin{matrix}\ f_{\text{BiggsExp05}}(x) = \sum_{i=1}^{11} (x_3 e^{-t_i x_1} - x_4 e^{-t_i x_2} + 3 e^{-t_i x_5} - y_i)^2\\ t_i = 0.1i\\ y_i = e^{-t_i} - 5e^{-10 t_i} + 3e^{-4 t_i}\\ \end{matrix} with :math:`x_i \in [0, 20]` for :math:`i=1, ..., 5`. *Global optimum*: :math:`f(x) = 0` for :math:`x = [1, 10, 1, 5, 4]` .. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194. """ def __init__(self, dimensions=5): Benchmark.__init__(self, dimensions) self._bounds = zip([0.] * 5, [20.] * 5) self.global_optimum = [[1., 10., 1., 5., 4.]] self.fglob = 0 def fun(self, x, *args): self.nfev += 1 t = arange(1, 12.) * 0.1 y = exp(-t) - 5 * exp(-10 * t) + 3 * exp(-4 * t) vec = (x[2] * exp(-t * x[0]) - x[3] * exp(-t * x[1]) + 3 * exp(-t * x[4]) - y) ** 2 return sum(vec) class Bird(Benchmark): r""" Bird objective function. The Bird global optimization problem is a multimodal minimization problem defined as follows .. math:: f_{\text{Bird}}(x) = \left(x_1 - x_2\right)^{2} + e^{\left[1 - \sin\left(x_1\right) \right]^{2}} \cos\left(x_2\right) + e^{\left[1 - \cos\left(x_2\right)\right]^{2}} \sin\left(x_1\right) with :math:`x_i \in [-2\pi, 2\pi]` *Global optimum*: :math:`f(x) = -106.7645367198034` for :math:`x = [4.701055751981055, 3.152946019601391]` or :math:`x = [-1.582142172055011, -3.130246799635430]` .. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194. """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self._bounds = zip([-2.0 * pi] * self.N, [2.0 * pi] * self.N) self.global_optimum = [[4.701055751981055, 3.152946019601391], [-1.582142172055011, -3.130246799635430]] self.fglob = -106.7645367198034 def fun(self, x, *args): self.nfev += 1 return (sin(x[0]) * exp((1 - cos(x[1])) ** 2) + cos(x[1]) * exp((1 - sin(x[0])) ** 2) + (x[0] - x[1]) ** 2) class Bohachevsky1(Benchmark): r""" Bohachevsky 1 objective function. The Bohachevsky 1 [1]_ global optimization problem is a multimodal minimization problem defined as follows .. math:: f_{\text{Bohachevsky}}(x) = \sum_{i=1}^{n-1}\left[x_i^2 + 2 x_{i+1}^2 - 0.3 \cos(3 \pi x_i) - 0.4 \cos(4 \pi x_{i + 1}) + 0.7 \right] Here, :math:`n` represents the number of dimensions and :math:`x_i \in [-15, 15]` for :math:`i = 1, ..., n`. *Global optimum*: :math:`f(x) = 0` for :math:`x_i = 0` for :math:`i = 1, ..., n` .. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194. TODO: equation needs to be fixed up in the docstring. see Jamil#17 """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self._bounds = zip([-100.0] * self.N, [100.0] * self.N) self.global_optimum = [[0 for _ in range(self.N)]] self.fglob = 0.0 def fun(self, x, *args): self.nfev += 1 return (x[0] ** 2 + 2 * x[1] ** 2 - 0.3 * cos(3 * pi * x[0]) - 0.4 * cos(4 * pi * x[1]) + 0.7) class Bohachevsky2(Benchmark): r""" Bohachevsky 2 objective function. The Bohachevsky 2 [1]_ global optimization problem is a multimodal minimization problem defined as follows .. math:: f_{\text{Bohachevsky}}(x) = \sum_{i=1}^{n-1}\left[x_i^2 + 2 x_{i+1}^2 - 0.3 \cos(3 \pi x_i) - 0.4 \cos(4 \pi x_{i + 1}) + 0.7 \right] Here, :math:`n` represents the number of dimensions and :math:`x_i \in [-15, 15]` for :math:`i = 1, ..., n`. *Global optimum*: :math:`f(x) = 0` for :math:`x_i = 0` for :math:`i = 1, ..., n` .. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194. TODO: equation needs to be fixed up in the docstring. Jamil is also wrong. There should be no 0.4 factor in front of the cos term """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self._bounds = zip([-100.0] * self.N, [100.0] * self.N) self.global_optimum = [[0 for _ in range(self.N)]] self.fglob = 0.0 def fun(self, x, *args): self.nfev += 1 return (x[0] ** 2 + 2 * x[1] ** 2 - 0.3 * cos(3 * pi * x[0]) * cos(4 * pi * x[1]) + 0.3) class Bohachevsky3(Benchmark): r""" Bohachevsky 3 objective function. The Bohachevsky 3 [1]_ global optimization problem is a multimodal minimization problem defined as follows .. math:: f_{\text{Bohachevsky}}(x) = \sum_{i=1}^{n-1}\left[x_i^2 + 2 x_{i+1}^2 - 0.3 \cos(3 \pi x_i) - 0.4 \cos(4 \pi x_{i + 1}) + 0.7 \right] Here, :math:`n` represents the number of dimensions and :math:`x_i \in [-15, 15]` for :math:`i = 1, ..., n`. *Global optimum*: :math:`f(x) = 0` for :math:`x_i = 0` for :math:`i = 1, ..., n` .. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194. TODO: equation needs to be fixed up in the docstring. Jamil#19 """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self._bounds = zip([-100.0] * self.N, [100.0] * self.N) self.global_optimum = [[0 for _ in range(self.N)]] self.fglob = 0.0 def fun(self, x, *args): self.nfev += 1 return (x[0] ** 2 + 2 * x[1] ** 2 - 0.3 * cos(3 * pi * x[0] + 4 * pi * x[1]) + 0.3) class BoxBetts(Benchmark): r""" BoxBetts objective function. The BoxBetts global optimization problem is a multimodal minimization problem defined as follows .. math:: f_{\text{BoxBetts}}(x) = \sum_{i=1}^k g(x_i)^2 Where, in this exercise: .. math:: g(x) = e^{-0.1i x_1} - e^{-0.1i x_2} - x_3\left[e^{-0.1i} - e^{-i}\right] And :math:`k = 10`. Here, :math:`x_1 \in [0.9, 1.2], x_2 \in [9, 11.2], x_3 \in [0.9, 1.2]`. *Global optimum*: :math:`f(x) = 0` for :math:`x = [1, 10, 1]` .. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194. """ def __init__(self, dimensions=3): Benchmark.__init__(self, dimensions) self._bounds = ([0.9, 1.2], [9.0, 11.2], [0.9, 1.2]) self.global_optimum = [[1.0, 10.0, 1.0]] self.fglob = 0.0 def fun(self, x, *args): self.nfev += 1 i = arange(1, 11) g = (exp(-0.1 * i * x[0]) - exp(-0.1 * i * x[1]) - (exp(-0.1 * i) - exp(-i)) * x[2]) return sum(g**2) class Branin01(Benchmark): r""" Branin01 objective function. The Branin01 global optimization problem is a multimodal minimization problem defined as follows .. math:: f_{\text{Branin01}}(x) = \left(- 1.275 \frac{x_1^{2}}{\pi^{2}} + 5 \frac{x_1}{\pi} + x_2 -6\right)^{2} + \left(10 -\frac{5}{4 \pi} \right) \cos\left(x_1\right) + 10 with :math:`x_1 \in [-5, 10], x_2 \in [0, 15]` *Global optimum*: :math:`f(x) = 0.39788735772973816` for :math:`x = [-\pi, 12.275]` or :math:`x = [\pi, 2.275]` or :math:`x = [3\pi, 2.475]` .. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194. TODO: Jamil#22, one of the solutions is different """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self._bounds = [(-5., 10.), (0., 15.)] self.global_optimum = [[-pi, 12.275], [pi, 2.275], [3 * pi, 2.475]] self.fglob = 0.39788735772973816 def fun(self, x, *args): self.nfev += 1 return ((x[1] - (5.1 / (4 * pi ** 2)) * x[0] ** 2 + 5 * x[0] / pi - 6) ** 2 + 10 * (1 - 1 / (8 * pi)) * cos(x[0]) + 10) class Branin02(Benchmark): r""" Branin02 objective function. The Branin02 global optimization problem is a multimodal minimization problem defined as follows .. math:: f_{\text{Branin02}}(x) = \left(- 1.275 \frac{x_1^{2}}{\pi^{2}} + 5 \frac{x_1}{\pi} + x_2 - 6 \right)^{2} + \left(10 - \frac{5}{4 \pi} \right) \cos\left(x_1\right) \cos\left(x_2\right) + \log(x_1^2+x_2^2 + 1) + 10 with :math:`x_i \in [-5, 15]` for :math:`i = 1, 2`. *Global optimum*: :math:`f(x) = 5.559037` for :math:`x = [-3.2, 12.53]` .. [1] Gavana, A. Global Optimization Benchmarks and AMPGO retrieved 2015 """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self._bounds = [(-5.0, 15.0), (-5.0, 15.0)] self.global_optimum = [[-3.1969884, 12.52625787]] self.fglob = 5.5589144038938247 def fun(self, x, *args): self.nfev += 1 return ((x[1] - (5.1 / (4 * pi ** 2)) * x[0] ** 2 + 5 * x[0] / pi - 6) ** 2 + 10 * (1 - 1 / (8 * pi)) * cos(x[0]) * cos(x[1]) + log(x[0] ** 2.0 + x[1] ** 2.0 + 1.0) + 10) class Brent(Benchmark): r""" Brent objective function. The Brent [1]_ global optimization problem is a multimodal minimization problem defined as follows: .. math:: f_{\text{Brent}}(x) = (x_1 + 10)^2 + (x_2 + 10)^2 + e^{(-x_1^2 -x_2^2)} with :math:`x_i \in [-10, 10]` for :math:`i = 1, 2`. *Global optimum*: :math:`f(x) = 0` for :math:`x = [-10, -10]` .. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194. TODO solution is different to Jamil#24 """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self._bounds = zip([-10.0] * self.N, [10.0] * self.N) self.custom_bounds = ([-10, 2], [-10, 2]) self.global_optimum = [[-10.0, -10.0]] self.fglob = 0.0 def fun(self, x, *args): self.nfev += 1 return ((x[0] + 10.0) ** 2.0 + (x[1] + 10.0) ** 2.0 + exp(-x[0] ** 2.0 - x[1] ** 2.0)) class Brown(Benchmark): r""" Brown objective function. The Brown [1]_ global optimization problem is a multimodal minimization problem defined as follows: .. math:: f_{\text{Brown}}(x) = \sum_{i=1}^{n-1}\left[ \left(x_i^2\right)^{x_{i + 1}^2 + 1} + \left(x_{i + 1}^2\right)^{x_i^2 + 1}\right] with :math:`x_i \in [-1, 4]` for :math:`i=1,...,n`. *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,...,n` .. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194. """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self._bounds = zip([-1.0] * self.N, [4.0] * self.N) self.custom_bounds = ([-1.0, 1.0], [-1.0, 1.0]) self.global_optimum = [[0 for _ in range(self.N)]] self.fglob = 0.0 self.change_dimensionality = True def fun(self, x, *args): self.nfev += 1 x0 = x[:-1] x1 = x[1:] return sum((x0 ** 2.0) ** (x1 ** 2.0 + 1.0) + (x1 ** 2.0) ** (x0 ** 2.0 + 1.0)) class Bukin02(Benchmark): r""" Bukin02 objective function. The Bukin02 [1]_ global optimization problem is a multimodal minimization problem defined as follows: .. math:: f_{\text{Bukin02}}(x) = 100 (x_2^2 - 0.01x_1^2 + 1) + 0.01(x_1 + 10)^2 with :math:`x_1 \in [-15, -5], x_2 \in [-3, 3]` *Global optimum*: :math:`f(x) = -124.75` for :math:`x = [-15, 0]` .. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194. TODO: I think that Gavana and Jamil are wrong on this function. In both sources the x[1] term is not squared. As such there will be a minimum at the smallest value of x[1]. """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self._bounds = [(-15.0, -5.0), (-3.0, 3.0)] self.global_optimum = [[-15.0, 0.0]] self.fglob = -124.75 def fun(self, x, *args): self.nfev += 1 return (100 * (x[1] ** 2 - 0.01 * x[0] ** 2 + 1.0) + 0.01 * (x[0] + 10.0) ** 2.0) class Bukin04(Benchmark): r""" Bukin04 objective function. The Bukin04 [1]_ global optimization problem is a multimodal minimization problem defined as follows: .. math:: f_{\text{Bukin04}}(x) = 100 x_2^{2} + 0.01 \lvert{x_1 + 10} \rvert with :math:`x_1 \in [-15, -5], x_2 \in [-3, 3]` *Global optimum*: :math:`f(x) = 0` for :math:`x = [-10, 0]` .. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194. """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self._bounds = [(-15.0, -5.0), (-3.0, 3.0)] self.global_optimum = [[-10.0, 0.0]] self.fglob = 0.0 def fun(self, x, *args): self.nfev += 1 return 100 * x[1] ** 2 + 0.01 * abs(x[0] + 10) class Bukin06(Benchmark): r""" Bukin06 objective function. The Bukin06 [1]_ global optimization problem is a multimodal minimization problem defined as follows: .. math:: f_{\text{Bukin06}}(x) = 100 \sqrt{ \lvert{x_2 - 0.01 x_1^{2}} \rvert} + 0.01 \lvert{x_1 + 10} \rvert with :math:`x_1 \in [-15, -5], x_2 \in [-3, 3]` *Global optimum*: :math:`f(x) = 0` for :math:`x = [-10, 1]` .. [1] Jamil, M. & Yang, X.-S. A Literature Survey of Benchmark Functions For Global Optimization Problems Int. Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4, 150-194. """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self._bounds = [(-15.0, -5.0), (-3.0, 3.0)] self.global_optimum = [[-10.0, 1.0]] self.fglob = 0.0 def fun(self, x, *args): self.nfev += 1 return 100 * sqrt(abs(x[1] - 0.01 * x[0] ** 2)) + 0.01 * abs(x[0] + 10)
chatcannon/scipy
benchmarks/benchmarks/go_benchmark_functions/go_funcs_B.py
Python
bsd-3-clause
21,639
from __future__ import unicode_literals import datetime import re import sys from unittest import skipIf import warnings from xml.dom.minidom import parseString try: import pytz except ImportError: pytz = None from django.core import serializers from django.core.urlresolvers import reverse from django.db.models import Min, Max from django.http import HttpRequest from django.template import Context, RequestContext, Template, TemplateSyntaxError from django.test import TestCase, override_settings, skipIfDBFeature, skipUnlessDBFeature from django.test.utils import requires_tz_support from django.utils import six from django.utils import timezone from .forms import EventForm, EventSplitForm, EventLocalizedForm, EventModelForm, EventLocalizedModelForm from .models import Event, MaybeEvent, Session, SessionEvent, Timestamp, AllDayEvent # These tests use the EAT (Eastern Africa Time) and ICT (Indochina Time) # who don't have Daylight Saving Time, so we can represent them easily # with FixedOffset, and use them directly as tzinfo in the constructors. # settings.TIME_ZONE is forced to EAT. Most tests use a variant of # datetime.datetime(2011, 9, 1, 13, 20, 30), which translates to # 10:20:30 in UTC and 17:20:30 in ICT. UTC = timezone.utc EAT = timezone.get_fixed_timezone(180) # Africa/Nairobi ICT = timezone.get_fixed_timezone(420) # Asia/Bangkok @override_settings(TIME_ZONE='Africa/Nairobi', USE_TZ=False) class LegacyDatabaseTests(TestCase): def test_naive_datetime(self): dt = datetime.datetime(2011, 9, 1, 13, 20, 30) Event.objects.create(dt=dt) event = Event.objects.get() self.assertEqual(event.dt, dt) @skipUnlessDBFeature('supports_microsecond_precision') def test_naive_datetime_with_microsecond(self): dt = datetime.datetime(2011, 9, 1, 13, 20, 30, 405060) Event.objects.create(dt=dt) event = Event.objects.get() self.assertEqual(event.dt, dt) @skipIfDBFeature('supports_microsecond_precision') def test_naive_datetime_with_microsecond_unsupported(self): dt = datetime.datetime(2011, 9, 1, 13, 20, 30, 405060) Event.objects.create(dt=dt) event = Event.objects.get() # microseconds are lost during a round-trip in the database self.assertEqual(event.dt, dt.replace(microsecond=0)) @skipUnlessDBFeature('supports_timezones') def test_aware_datetime_in_local_timezone(self): dt = datetime.datetime(2011, 9, 1, 13, 20, 30, tzinfo=EAT) Event.objects.create(dt=dt) event = Event.objects.get() self.assertIsNone(event.dt.tzinfo) # interpret the naive datetime in local time to get the correct value self.assertEqual(event.dt.replace(tzinfo=EAT), dt) @skipUnlessDBFeature('supports_timezones') @skipUnlessDBFeature('supports_microsecond_precision') def test_aware_datetime_in_local_timezone_with_microsecond(self): dt = datetime.datetime(2011, 9, 1, 13, 20, 30, 405060, tzinfo=EAT) Event.objects.create(dt=dt) event = Event.objects.get() self.assertIsNone(event.dt.tzinfo) # interpret the naive datetime in local time to get the correct value self.assertEqual(event.dt.replace(tzinfo=EAT), dt) # This combination actually never happens. @skipUnlessDBFeature('supports_timezones') @skipIfDBFeature('supports_microsecond_precision') def test_aware_datetime_in_local_timezone_with_microsecond_unsupported(self): dt = datetime.datetime(2011, 9, 1, 13, 20, 30, 405060, tzinfo=EAT) Event.objects.create(dt=dt) event = Event.objects.get() self.assertIsNone(event.dt.tzinfo) # interpret the naive datetime in local time to get the correct value # microseconds are lost during a round-trip in the database self.assertEqual(event.dt.replace(tzinfo=EAT), dt.replace(microsecond=0)) @skipUnlessDBFeature('supports_timezones') @skipIfDBFeature('needs_datetime_string_cast') def test_aware_datetime_in_utc(self): dt = datetime.datetime(2011, 9, 1, 10, 20, 30, tzinfo=UTC) Event.objects.create(dt=dt) event = Event.objects.get() self.assertIsNone(event.dt.tzinfo) # interpret the naive datetime in local time to get the correct value self.assertEqual(event.dt.replace(tzinfo=EAT), dt) # This combination is no longer possible since timezone support # was removed from the SQLite backend -- it didn't work. @skipUnlessDBFeature('supports_timezones') @skipUnlessDBFeature('needs_datetime_string_cast') def test_aware_datetime_in_utc_unsupported(self): dt = datetime.datetime(2011, 9, 1, 10, 20, 30, tzinfo=UTC) Event.objects.create(dt=dt) event = Event.objects.get() self.assertIsNone(event.dt.tzinfo) # django.db.backend.utils.typecast_dt will just drop the # timezone, so a round-trip in the database alters the data (!) # interpret the naive datetime in local time and you get a wrong value self.assertNotEqual(event.dt.replace(tzinfo=EAT), dt) # interpret the naive datetime in original time to get the correct value self.assertEqual(event.dt.replace(tzinfo=UTC), dt) @skipUnlessDBFeature('supports_timezones') @skipIfDBFeature('needs_datetime_string_cast') def test_aware_datetime_in_other_timezone(self): dt = datetime.datetime(2011, 9, 1, 17, 20, 30, tzinfo=ICT) Event.objects.create(dt=dt) event = Event.objects.get() self.assertIsNone(event.dt.tzinfo) # interpret the naive datetime in local time to get the correct value self.assertEqual(event.dt.replace(tzinfo=EAT), dt) # This combination is no longer possible since timezone support # was removed from the SQLite backend -- it didn't work. @skipUnlessDBFeature('supports_timezones') @skipUnlessDBFeature('needs_datetime_string_cast') def test_aware_datetime_in_other_timezone_unsupported(self): dt = datetime.datetime(2011, 9, 1, 17, 20, 30, tzinfo=ICT) Event.objects.create(dt=dt) event = Event.objects.get() self.assertIsNone(event.dt.tzinfo) # django.db.backend.utils.typecast_dt will just drop the # timezone, so a round-trip in the database alters the data (!) # interpret the naive datetime in local time and you get a wrong value self.assertNotEqual(event.dt.replace(tzinfo=EAT), dt) # interpret the naive datetime in original time to get the correct value self.assertEqual(event.dt.replace(tzinfo=ICT), dt) @skipIfDBFeature('supports_timezones') def test_aware_datetime_unspported(self): dt = datetime.datetime(2011, 9, 1, 13, 20, 30, tzinfo=EAT) with self.assertRaises(ValueError): Event.objects.create(dt=dt) def test_auto_now_and_auto_now_add(self): now = datetime.datetime.now() past = now - datetime.timedelta(seconds=2) future = now + datetime.timedelta(seconds=2) Timestamp.objects.create() ts = Timestamp.objects.get() self.assertLess(past, ts.created) self.assertLess(past, ts.updated) self.assertGreater(future, ts.updated) self.assertGreater(future, ts.updated) def test_query_filter(self): dt1 = datetime.datetime(2011, 9, 1, 12, 20, 30) dt2 = datetime.datetime(2011, 9, 1, 14, 20, 30) Event.objects.create(dt=dt1) Event.objects.create(dt=dt2) self.assertEqual(Event.objects.filter(dt__gte=dt1).count(), 2) self.assertEqual(Event.objects.filter(dt__gt=dt1).count(), 1) self.assertEqual(Event.objects.filter(dt__gte=dt2).count(), 1) self.assertEqual(Event.objects.filter(dt__gt=dt2).count(), 0) def test_query_datetime_lookups(self): Event.objects.create(dt=datetime.datetime(2011, 1, 1, 1, 30, 0)) Event.objects.create(dt=datetime.datetime(2011, 1, 1, 4, 30, 0)) self.assertEqual(Event.objects.filter(dt__year=2011).count(), 2) self.assertEqual(Event.objects.filter(dt__month=1).count(), 2) self.assertEqual(Event.objects.filter(dt__day=1).count(), 2) self.assertEqual(Event.objects.filter(dt__week_day=7).count(), 2) self.assertEqual(Event.objects.filter(dt__hour=1).count(), 1) self.assertEqual(Event.objects.filter(dt__minute=30).count(), 2) self.assertEqual(Event.objects.filter(dt__second=0).count(), 2) def test_query_aggregation(self): # Only min and max make sense for datetimes. Event.objects.create(dt=datetime.datetime(2011, 9, 1, 23, 20, 20)) Event.objects.create(dt=datetime.datetime(2011, 9, 1, 13, 20, 30)) Event.objects.create(dt=datetime.datetime(2011, 9, 1, 3, 20, 40)) result = Event.objects.all().aggregate(Min('dt'), Max('dt')) self.assertEqual(result, { 'dt__min': datetime.datetime(2011, 9, 1, 3, 20, 40), 'dt__max': datetime.datetime(2011, 9, 1, 23, 20, 20), }) def test_query_annotation(self): # Only min and max make sense for datetimes. morning = Session.objects.create(name='morning') afternoon = Session.objects.create(name='afternoon') SessionEvent.objects.create(dt=datetime.datetime(2011, 9, 1, 23, 20, 20), session=afternoon) SessionEvent.objects.create(dt=datetime.datetime(2011, 9, 1, 13, 20, 30), session=afternoon) SessionEvent.objects.create(dt=datetime.datetime(2011, 9, 1, 3, 20, 40), session=morning) morning_min_dt = datetime.datetime(2011, 9, 1, 3, 20, 40) afternoon_min_dt = datetime.datetime(2011, 9, 1, 13, 20, 30) self.assertQuerysetEqual( Session.objects.annotate(dt=Min('events__dt')).order_by('dt'), [morning_min_dt, afternoon_min_dt], transform=lambda d: d.dt) self.assertQuerysetEqual( Session.objects.annotate(dt=Min('events__dt')).filter(dt__lt=afternoon_min_dt), [morning_min_dt], transform=lambda d: d.dt) self.assertQuerysetEqual( Session.objects.annotate(dt=Min('events__dt')).filter(dt__gte=afternoon_min_dt), [afternoon_min_dt], transform=lambda d: d.dt) def test_query_datetimes(self): Event.objects.create(dt=datetime.datetime(2011, 1, 1, 1, 30, 0)) Event.objects.create(dt=datetime.datetime(2011, 1, 1, 4, 30, 0)) self.assertQuerysetEqual( Event.objects.datetimes('dt', 'year'), [datetime.datetime(2011, 1, 1, 0, 0, 0)], transform=lambda d: d) self.assertQuerysetEqual( Event.objects.datetimes('dt', 'month'), [datetime.datetime(2011, 1, 1, 0, 0, 0)], transform=lambda d: d) self.assertQuerysetEqual( Event.objects.datetimes('dt', 'day'), [datetime.datetime(2011, 1, 1, 0, 0, 0)], transform=lambda d: d) self.assertQuerysetEqual( Event.objects.datetimes('dt', 'hour'), [datetime.datetime(2011, 1, 1, 1, 0, 0), datetime.datetime(2011, 1, 1, 4, 0, 0)], transform=lambda d: d) self.assertQuerysetEqual( Event.objects.datetimes('dt', 'minute'), [datetime.datetime(2011, 1, 1, 1, 30, 0), datetime.datetime(2011, 1, 1, 4, 30, 0)], transform=lambda d: d) self.assertQuerysetEqual( Event.objects.datetimes('dt', 'second'), [datetime.datetime(2011, 1, 1, 1, 30, 0), datetime.datetime(2011, 1, 1, 4, 30, 0)], transform=lambda d: d) def test_raw_sql(self): # Regression test for #17755 dt = datetime.datetime(2011, 9, 1, 13, 20, 30) event = Event.objects.create(dt=dt) self.assertQuerysetEqual( Event.objects.raw('SELECT * FROM timezones_event WHERE dt = %s', [dt]), [event], transform=lambda d: d) def test_filter_date_field_with_aware_datetime(self): # Regression test for #17742 day = datetime.date(2011, 9, 1) AllDayEvent.objects.create(day=day) # This is 2011-09-02T01:30:00+03:00 in EAT dt = datetime.datetime(2011, 9, 1, 22, 30, 0, tzinfo=UTC) self.assertTrue(AllDayEvent.objects.filter(day__gte=dt).exists()) @override_settings(TIME_ZONE='Africa/Nairobi', USE_TZ=True) class NewDatabaseTests(TestCase): @requires_tz_support def test_naive_datetime(self): dt = datetime.datetime(2011, 9, 1, 13, 20, 30) with warnings.catch_warnings(record=True) as recorded: warnings.simplefilter('always') Event.objects.create(dt=dt) self.assertEqual(len(recorded), 1) msg = str(recorded[0].message) self.assertTrue(msg.startswith("DateTimeField Event.dt received " "a naive datetime")) event = Event.objects.get() # naive datetimes are interpreted in local time self.assertEqual(event.dt, dt.replace(tzinfo=EAT)) @requires_tz_support def test_datetime_from_date(self): dt = datetime.date(2011, 9, 1) with warnings.catch_warnings(record=True) as recorded: warnings.simplefilter('always') Event.objects.create(dt=dt) self.assertEqual(len(recorded), 1) msg = str(recorded[0].message) self.assertTrue(msg.startswith("DateTimeField Event.dt received " "a naive datetime")) event = Event.objects.get() self.assertEqual(event.dt, datetime.datetime(2011, 9, 1, tzinfo=EAT)) @requires_tz_support @skipUnlessDBFeature('supports_microsecond_precision') def test_naive_datetime_with_microsecond(self): dt = datetime.datetime(2011, 9, 1, 13, 20, 30, 405060) with warnings.catch_warnings(record=True) as recorded: warnings.simplefilter('always') Event.objects.create(dt=dt) self.assertEqual(len(recorded), 1) msg = str(recorded[0].message) self.assertTrue(msg.startswith("DateTimeField Event.dt received " "a naive datetime")) event = Event.objects.get() # naive datetimes are interpreted in local time self.assertEqual(event.dt, dt.replace(tzinfo=EAT)) @requires_tz_support @skipIfDBFeature('supports_microsecond_precision') def test_naive_datetime_with_microsecond_unsupported(self): dt = datetime.datetime(2011, 9, 1, 13, 20, 30, 405060) with warnings.catch_warnings(record=True) as recorded: warnings.simplefilter('always') Event.objects.create(dt=dt) self.assertEqual(len(recorded), 1) msg = str(recorded[0].message) self.assertTrue(msg.startswith("DateTimeField Event.dt received " "a naive datetime")) event = Event.objects.get() # microseconds are lost during a round-trip in the database # naive datetimes are interpreted in local time self.assertEqual(event.dt, dt.replace(microsecond=0, tzinfo=EAT)) def test_aware_datetime_in_local_timezone(self): dt = datetime.datetime(2011, 9, 1, 13, 20, 30, tzinfo=EAT) Event.objects.create(dt=dt) event = Event.objects.get() self.assertEqual(event.dt, dt) @skipUnlessDBFeature('supports_microsecond_precision') def test_aware_datetime_in_local_timezone_with_microsecond(self): dt = datetime.datetime(2011, 9, 1, 13, 20, 30, 405060, tzinfo=EAT) Event.objects.create(dt=dt) event = Event.objects.get() self.assertEqual(event.dt, dt) @skipIfDBFeature('supports_microsecond_precision') def test_aware_datetime_in_local_timezone_with_microsecond_unsupported(self): dt = datetime.datetime(2011, 9, 1, 13, 20, 30, 405060, tzinfo=EAT) Event.objects.create(dt=dt) event = Event.objects.get() # microseconds are lost during a round-trip in the database self.assertEqual(event.dt, dt.replace(microsecond=0)) def test_aware_datetime_in_utc(self): dt = datetime.datetime(2011, 9, 1, 10, 20, 30, tzinfo=UTC) Event.objects.create(dt=dt) event = Event.objects.get() self.assertEqual(event.dt, dt) def test_aware_datetime_in_other_timezone(self): dt = datetime.datetime(2011, 9, 1, 17, 20, 30, tzinfo=ICT) Event.objects.create(dt=dt) event = Event.objects.get() self.assertEqual(event.dt, dt) def test_auto_now_and_auto_now_add(self): now = timezone.now() past = now - datetime.timedelta(seconds=2) future = now + datetime.timedelta(seconds=2) Timestamp.objects.create() ts = Timestamp.objects.get() self.assertLess(past, ts.created) self.assertLess(past, ts.updated) self.assertGreater(future, ts.updated) self.assertGreater(future, ts.updated) def test_query_filter(self): dt1 = datetime.datetime(2011, 9, 1, 12, 20, 30, tzinfo=EAT) dt2 = datetime.datetime(2011, 9, 1, 14, 20, 30, tzinfo=EAT) Event.objects.create(dt=dt1) Event.objects.create(dt=dt2) self.assertEqual(Event.objects.filter(dt__gte=dt1).count(), 2) self.assertEqual(Event.objects.filter(dt__gt=dt1).count(), 1) self.assertEqual(Event.objects.filter(dt__gte=dt2).count(), 1) self.assertEqual(Event.objects.filter(dt__gt=dt2).count(), 0) @skipIf(pytz is None, "this test requires pytz") def test_query_filter_with_pytz_timezones(self): tz = pytz.timezone('Europe/Paris') dt = datetime.datetime(2011, 9, 1, 12, 20, 30, tzinfo=tz) Event.objects.create(dt=dt) next = dt + datetime.timedelta(seconds=3) prev = dt - datetime.timedelta(seconds=3) self.assertEqual(Event.objects.filter(dt__exact=dt).count(), 1) self.assertEqual(Event.objects.filter(dt__exact=next).count(), 0) self.assertEqual(Event.objects.filter(dt__in=(prev, next)).count(), 0) self.assertEqual(Event.objects.filter(dt__in=(prev, dt, next)).count(), 1) self.assertEqual(Event.objects.filter(dt__range=(prev, next)).count(), 1) @requires_tz_support def test_query_filter_with_naive_datetime(self): dt = datetime.datetime(2011, 9, 1, 12, 20, 30, tzinfo=EAT) Event.objects.create(dt=dt) dt = dt.replace(tzinfo=None) with warnings.catch_warnings(record=True) as recorded: warnings.simplefilter('always') # naive datetimes are interpreted in local time self.assertEqual(Event.objects.filter(dt__exact=dt).count(), 1) self.assertEqual(Event.objects.filter(dt__lte=dt).count(), 1) self.assertEqual(Event.objects.filter(dt__gt=dt).count(), 0) self.assertEqual(len(recorded), 3) for warning in recorded: msg = str(warning.message) self.assertTrue(msg.startswith("DateTimeField Event.dt " "received a naive datetime")) @skipUnlessDBFeature('has_zoneinfo_database') def test_query_datetime_lookups(self): Event.objects.create(dt=datetime.datetime(2011, 1, 1, 1, 30, 0, tzinfo=EAT)) Event.objects.create(dt=datetime.datetime(2011, 1, 1, 4, 30, 0, tzinfo=EAT)) self.assertEqual(Event.objects.filter(dt__year=2011).count(), 2) self.assertEqual(Event.objects.filter(dt__month=1).count(), 2) self.assertEqual(Event.objects.filter(dt__day=1).count(), 2) self.assertEqual(Event.objects.filter(dt__week_day=7).count(), 2) self.assertEqual(Event.objects.filter(dt__hour=1).count(), 1) self.assertEqual(Event.objects.filter(dt__minute=30).count(), 2) self.assertEqual(Event.objects.filter(dt__second=0).count(), 2) @skipUnlessDBFeature('has_zoneinfo_database') def test_query_datetime_lookups_in_other_timezone(self): Event.objects.create(dt=datetime.datetime(2011, 1, 1, 1, 30, 0, tzinfo=EAT)) Event.objects.create(dt=datetime.datetime(2011, 1, 1, 4, 30, 0, tzinfo=EAT)) with timezone.override(UTC): # These two dates fall in the same day in EAT, but in different days, # years and months in UTC. self.assertEqual(Event.objects.filter(dt__year=2011).count(), 1) self.assertEqual(Event.objects.filter(dt__month=1).count(), 1) self.assertEqual(Event.objects.filter(dt__day=1).count(), 1) self.assertEqual(Event.objects.filter(dt__week_day=7).count(), 1) self.assertEqual(Event.objects.filter(dt__hour=22).count(), 1) self.assertEqual(Event.objects.filter(dt__minute=30).count(), 2) self.assertEqual(Event.objects.filter(dt__second=0).count(), 2) def test_query_aggregation(self): # Only min and max make sense for datetimes. Event.objects.create(dt=datetime.datetime(2011, 9, 1, 23, 20, 20, tzinfo=EAT)) Event.objects.create(dt=datetime.datetime(2011, 9, 1, 13, 20, 30, tzinfo=EAT)) Event.objects.create(dt=datetime.datetime(2011, 9, 1, 3, 20, 40, tzinfo=EAT)) result = Event.objects.all().aggregate(Min('dt'), Max('dt')) self.assertEqual(result, { 'dt__min': datetime.datetime(2011, 9, 1, 3, 20, 40, tzinfo=EAT), 'dt__max': datetime.datetime(2011, 9, 1, 23, 20, 20, tzinfo=EAT), }) def test_query_annotation(self): # Only min and max make sense for datetimes. morning = Session.objects.create(name='morning') afternoon = Session.objects.create(name='afternoon') SessionEvent.objects.create(dt=datetime.datetime(2011, 9, 1, 23, 20, 20, tzinfo=EAT), session=afternoon) SessionEvent.objects.create(dt=datetime.datetime(2011, 9, 1, 13, 20, 30, tzinfo=EAT), session=afternoon) SessionEvent.objects.create(dt=datetime.datetime(2011, 9, 1, 3, 20, 40, tzinfo=EAT), session=morning) morning_min_dt = datetime.datetime(2011, 9, 1, 3, 20, 40, tzinfo=EAT) afternoon_min_dt = datetime.datetime(2011, 9, 1, 13, 20, 30, tzinfo=EAT) self.assertQuerysetEqual( Session.objects.annotate(dt=Min('events__dt')).order_by('dt'), [morning_min_dt, afternoon_min_dt], transform=lambda d: d.dt) self.assertQuerysetEqual( Session.objects.annotate(dt=Min('events__dt')).filter(dt__lt=afternoon_min_dt), [morning_min_dt], transform=lambda d: d.dt) self.assertQuerysetEqual( Session.objects.annotate(dt=Min('events__dt')).filter(dt__gte=afternoon_min_dt), [afternoon_min_dt], transform=lambda d: d.dt) @skipUnlessDBFeature('has_zoneinfo_database') def test_query_datetimes(self): Event.objects.create(dt=datetime.datetime(2011, 1, 1, 1, 30, 0, tzinfo=EAT)) Event.objects.create(dt=datetime.datetime(2011, 1, 1, 4, 30, 0, tzinfo=EAT)) self.assertQuerysetEqual( Event.objects.datetimes('dt', 'year'), [datetime.datetime(2011, 1, 1, 0, 0, 0, tzinfo=EAT)], transform=lambda d: d) self.assertQuerysetEqual( Event.objects.datetimes('dt', 'month'), [datetime.datetime(2011, 1, 1, 0, 0, 0, tzinfo=EAT)], transform=lambda d: d) self.assertQuerysetEqual( Event.objects.datetimes('dt', 'day'), [datetime.datetime(2011, 1, 1, 0, 0, 0, tzinfo=EAT)], transform=lambda d: d) self.assertQuerysetEqual( Event.objects.datetimes('dt', 'hour'), [datetime.datetime(2011, 1, 1, 1, 0, 0, tzinfo=EAT), datetime.datetime(2011, 1, 1, 4, 0, 0, tzinfo=EAT)], transform=lambda d: d) self.assertQuerysetEqual( Event.objects.datetimes('dt', 'minute'), [datetime.datetime(2011, 1, 1, 1, 30, 0, tzinfo=EAT), datetime.datetime(2011, 1, 1, 4, 30, 0, tzinfo=EAT)], transform=lambda d: d) self.assertQuerysetEqual( Event.objects.datetimes('dt', 'second'), [datetime.datetime(2011, 1, 1, 1, 30, 0, tzinfo=EAT), datetime.datetime(2011, 1, 1, 4, 30, 0, tzinfo=EAT)], transform=lambda d: d) @skipUnlessDBFeature('has_zoneinfo_database') def test_query_datetimes_in_other_timezone(self): Event.objects.create(dt=datetime.datetime(2011, 1, 1, 1, 30, 0, tzinfo=EAT)) Event.objects.create(dt=datetime.datetime(2011, 1, 1, 4, 30, 0, tzinfo=EAT)) with timezone.override(UTC): self.assertQuerysetEqual( Event.objects.datetimes('dt', 'year'), [datetime.datetime(2010, 1, 1, 0, 0, 0, tzinfo=UTC), datetime.datetime(2011, 1, 1, 0, 0, 0, tzinfo=UTC)], transform=lambda d: d) self.assertQuerysetEqual( Event.objects.datetimes('dt', 'month'), [datetime.datetime(2010, 12, 1, 0, 0, 0, tzinfo=UTC), datetime.datetime(2011, 1, 1, 0, 0, 0, tzinfo=UTC)], transform=lambda d: d) self.assertQuerysetEqual( Event.objects.datetimes('dt', 'day'), [datetime.datetime(2010, 12, 31, 0, 0, 0, tzinfo=UTC), datetime.datetime(2011, 1, 1, 0, 0, 0, tzinfo=UTC)], transform=lambda d: d) self.assertQuerysetEqual( Event.objects.datetimes('dt', 'hour'), [datetime.datetime(2010, 12, 31, 22, 0, 0, tzinfo=UTC), datetime.datetime(2011, 1, 1, 1, 0, 0, tzinfo=UTC)], transform=lambda d: d) self.assertQuerysetEqual( Event.objects.datetimes('dt', 'minute'), [datetime.datetime(2010, 12, 31, 22, 30, 0, tzinfo=UTC), datetime.datetime(2011, 1, 1, 1, 30, 0, tzinfo=UTC)], transform=lambda d: d) self.assertQuerysetEqual( Event.objects.datetimes('dt', 'second'), [datetime.datetime(2010, 12, 31, 22, 30, 0, tzinfo=UTC), datetime.datetime(2011, 1, 1, 1, 30, 0, tzinfo=UTC)], transform=lambda d: d) def test_raw_sql(self): # Regression test for #17755 dt = datetime.datetime(2011, 9, 1, 13, 20, 30, tzinfo=EAT) event = Event.objects.create(dt=dt) self.assertQuerysetEqual( Event.objects.raw('SELECT * FROM timezones_event WHERE dt = %s', [dt]), [event], transform=lambda d: d) @requires_tz_support def test_filter_date_field_with_aware_datetime(self): # Regression test for #17742 day = datetime.date(2011, 9, 1) AllDayEvent.objects.create(day=day) # This is 2011-09-02T01:30:00+03:00 in EAT dt = datetime.datetime(2011, 9, 1, 22, 30, 0, tzinfo=UTC) self.assertFalse(AllDayEvent.objects.filter(day__gte=dt).exists()) def test_null_datetime(self): # Regression test for #17294 e = MaybeEvent.objects.create() self.assertEqual(e.dt, None) @override_settings(TIME_ZONE='Africa/Nairobi') class SerializationTests(TestCase): # Backend-specific notes: # - JSON supports only milliseconds, microseconds will be truncated. # - PyYAML dumps the UTC offset correctly for timezone-aware datetimes, # but when it loads this representation, it substracts the offset and # returns a naive datetime object in UTC (http://pyyaml.org/ticket/202). # Tests are adapted to take these quirks into account. def assert_python_contains_datetime(self, objects, dt): self.assertEqual(objects[0]['fields']['dt'], dt) def assert_json_contains_datetime(self, json, dt): self.assertIn('"fields": {"dt": "%s"}' % dt, json) def assert_xml_contains_datetime(self, xml, dt): field = parseString(xml).getElementsByTagName('field')[0] self.assertXMLEqual(field.childNodes[0].wholeText, dt) def assert_yaml_contains_datetime(self, yaml, dt): # Depending on the yaml dumper, '!timestamp' might be absent six.assertRegex(self, yaml, r"- fields: {dt: !(!timestamp)? '%s'}" % re.escape(dt)) def test_naive_datetime(self): dt = datetime.datetime(2011, 9, 1, 13, 20, 30) data = serializers.serialize('python', [Event(dt=dt)]) self.assert_python_contains_datetime(data, dt) obj = next(serializers.deserialize('python', data)).object self.assertEqual(obj.dt, dt) data = serializers.serialize('json', [Event(dt=dt)]) self.assert_json_contains_datetime(data, "2011-09-01T13:20:30") obj = next(serializers.deserialize('json', data)).object self.assertEqual(obj.dt, dt) data = serializers.serialize('xml', [Event(dt=dt)]) self.assert_xml_contains_datetime(data, "2011-09-01T13:20:30") obj = next(serializers.deserialize('xml', data)).object self.assertEqual(obj.dt, dt) if not isinstance(serializers.get_serializer('yaml'), serializers.BadSerializer): data = serializers.serialize('yaml', [Event(dt=dt)]) self.assert_yaml_contains_datetime(data, "2011-09-01 13:20:30") obj = next(serializers.deserialize('yaml', data)).object self.assertEqual(obj.dt, dt) def test_naive_datetime_with_microsecond(self): dt = datetime.datetime(2011, 9, 1, 13, 20, 30, 405060) data = serializers.serialize('python', [Event(dt=dt)]) self.assert_python_contains_datetime(data, dt) obj = next(serializers.deserialize('python', data)).object self.assertEqual(obj.dt, dt) data = serializers.serialize('json', [Event(dt=dt)]) self.assert_json_contains_datetime(data, "2011-09-01T13:20:30.405") obj = next(serializers.deserialize('json', data)).object self.assertEqual(obj.dt, dt.replace(microsecond=405000)) data = serializers.serialize('xml', [Event(dt=dt)]) self.assert_xml_contains_datetime(data, "2011-09-01T13:20:30.405060") obj = next(serializers.deserialize('xml', data)).object self.assertEqual(obj.dt, dt) if not isinstance(serializers.get_serializer('yaml'), serializers.BadSerializer): data = serializers.serialize('yaml', [Event(dt=dt)]) self.assert_yaml_contains_datetime(data, "2011-09-01 13:20:30.405060") obj = next(serializers.deserialize('yaml', data)).object self.assertEqual(obj.dt, dt) def test_aware_datetime_with_microsecond(self): dt = datetime.datetime(2011, 9, 1, 17, 20, 30, 405060, tzinfo=ICT) data = serializers.serialize('python', [Event(dt=dt)]) self.assert_python_contains_datetime(data, dt) obj = next(serializers.deserialize('python', data)).object self.assertEqual(obj.dt, dt) data = serializers.serialize('json', [Event(dt=dt)]) self.assert_json_contains_datetime(data, "2011-09-01T17:20:30.405+07:00") obj = next(serializers.deserialize('json', data)).object self.assertEqual(obj.dt, dt.replace(microsecond=405000)) data = serializers.serialize('xml', [Event(dt=dt)]) self.assert_xml_contains_datetime(data, "2011-09-01T17:20:30.405060+07:00") obj = next(serializers.deserialize('xml', data)).object self.assertEqual(obj.dt, dt) if not isinstance(serializers.get_serializer('yaml'), serializers.BadSerializer): data = serializers.serialize('yaml', [Event(dt=dt)]) self.assert_yaml_contains_datetime(data, "2011-09-01 17:20:30.405060+07:00") obj = next(serializers.deserialize('yaml', data)).object self.assertEqual(obj.dt.replace(tzinfo=UTC), dt) def test_aware_datetime_in_utc(self): dt = datetime.datetime(2011, 9, 1, 10, 20, 30, tzinfo=UTC) data = serializers.serialize('python', [Event(dt=dt)]) self.assert_python_contains_datetime(data, dt) obj = next(serializers.deserialize('python', data)).object self.assertEqual(obj.dt, dt) data = serializers.serialize('json', [Event(dt=dt)]) self.assert_json_contains_datetime(data, "2011-09-01T10:20:30Z") obj = next(serializers.deserialize('json', data)).object self.assertEqual(obj.dt, dt) data = serializers.serialize('xml', [Event(dt=dt)]) self.assert_xml_contains_datetime(data, "2011-09-01T10:20:30+00:00") obj = next(serializers.deserialize('xml', data)).object self.assertEqual(obj.dt, dt) if not isinstance(serializers.get_serializer('yaml'), serializers.BadSerializer): data = serializers.serialize('yaml', [Event(dt=dt)]) self.assert_yaml_contains_datetime(data, "2011-09-01 10:20:30+00:00") obj = next(serializers.deserialize('yaml', data)).object self.assertEqual(obj.dt.replace(tzinfo=UTC), dt) def test_aware_datetime_in_local_timezone(self): dt = datetime.datetime(2011, 9, 1, 13, 20, 30, tzinfo=EAT) data = serializers.serialize('python', [Event(dt=dt)]) self.assert_python_contains_datetime(data, dt) obj = next(serializers.deserialize('python', data)).object self.assertEqual(obj.dt, dt) data = serializers.serialize('json', [Event(dt=dt)]) self.assert_json_contains_datetime(data, "2011-09-01T13:20:30+03:00") obj = next(serializers.deserialize('json', data)).object self.assertEqual(obj.dt, dt) data = serializers.serialize('xml', [Event(dt=dt)]) self.assert_xml_contains_datetime(data, "2011-09-01T13:20:30+03:00") obj = next(serializers.deserialize('xml', data)).object self.assertEqual(obj.dt, dt) if not isinstance(serializers.get_serializer('yaml'), serializers.BadSerializer): data = serializers.serialize('yaml', [Event(dt=dt)]) self.assert_yaml_contains_datetime(data, "2011-09-01 13:20:30+03:00") obj = next(serializers.deserialize('yaml', data)).object self.assertEqual(obj.dt.replace(tzinfo=UTC), dt) def test_aware_datetime_in_other_timezone(self): dt = datetime.datetime(2011, 9, 1, 17, 20, 30, tzinfo=ICT) data = serializers.serialize('python', [Event(dt=dt)]) self.assert_python_contains_datetime(data, dt) obj = next(serializers.deserialize('python', data)).object self.assertEqual(obj.dt, dt) data = serializers.serialize('json', [Event(dt=dt)]) self.assert_json_contains_datetime(data, "2011-09-01T17:20:30+07:00") obj = next(serializers.deserialize('json', data)).object self.assertEqual(obj.dt, dt) data = serializers.serialize('xml', [Event(dt=dt)]) self.assert_xml_contains_datetime(data, "2011-09-01T17:20:30+07:00") obj = next(serializers.deserialize('xml', data)).object self.assertEqual(obj.dt, dt) if not isinstance(serializers.get_serializer('yaml'), serializers.BadSerializer): data = serializers.serialize('yaml', [Event(dt=dt)]) self.assert_yaml_contains_datetime(data, "2011-09-01 17:20:30+07:00") obj = next(serializers.deserialize('yaml', data)).object self.assertEqual(obj.dt.replace(tzinfo=UTC), dt) @override_settings(DATETIME_FORMAT='c', TIME_ZONE='Africa/Nairobi', USE_L10N=False, USE_TZ=True) class TemplateTests(TestCase): @requires_tz_support def test_localtime_templatetag_and_filters(self): """ Test the {% localtime %} templatetag and related filters. """ datetimes = { 'utc': datetime.datetime(2011, 9, 1, 10, 20, 30, tzinfo=UTC), 'eat': datetime.datetime(2011, 9, 1, 13, 20, 30, tzinfo=EAT), 'ict': datetime.datetime(2011, 9, 1, 17, 20, 30, tzinfo=ICT), 'naive': datetime.datetime(2011, 9, 1, 13, 20, 30), } templates = { 'notag': Template("{% load tz %}{{ dt }}|{{ dt|localtime }}|{{ dt|utc }}|{{ dt|timezone:ICT }}"), 'noarg': Template("{% load tz %}{% localtime %}{{ dt }}|{{ dt|localtime }}|{{ dt|utc }}|{{ dt|timezone:ICT }}{% endlocaltime %}"), 'on': Template("{% load tz %}{% localtime on %}{{ dt }}|{{ dt|localtime }}|{{ dt|utc }}|{{ dt|timezone:ICT }}{% endlocaltime %}"), 'off': Template("{% load tz %}{% localtime off %}{{ dt }}|{{ dt|localtime }}|{{ dt|utc }}|{{ dt|timezone:ICT }}{% endlocaltime %}"), } # Transform a list of keys in 'datetimes' to the expected template # output. This makes the definition of 'results' more readable. def t(*result): return '|'.join(datetimes[key].isoformat() for key in result) # Results for USE_TZ = True results = { 'utc': { 'notag': t('eat', 'eat', 'utc', 'ict'), 'noarg': t('eat', 'eat', 'utc', 'ict'), 'on': t('eat', 'eat', 'utc', 'ict'), 'off': t('utc', 'eat', 'utc', 'ict'), }, 'eat': { 'notag': t('eat', 'eat', 'utc', 'ict'), 'noarg': t('eat', 'eat', 'utc', 'ict'), 'on': t('eat', 'eat', 'utc', 'ict'), 'off': t('eat', 'eat', 'utc', 'ict'), }, 'ict': { 'notag': t('eat', 'eat', 'utc', 'ict'), 'noarg': t('eat', 'eat', 'utc', 'ict'), 'on': t('eat', 'eat', 'utc', 'ict'), 'off': t('ict', 'eat', 'utc', 'ict'), }, 'naive': { 'notag': t('naive', 'eat', 'utc', 'ict'), 'noarg': t('naive', 'eat', 'utc', 'ict'), 'on': t('naive', 'eat', 'utc', 'ict'), 'off': t('naive', 'eat', 'utc', 'ict'), } } for k1, dt in six.iteritems(datetimes): for k2, tpl in six.iteritems(templates): ctx = Context({'dt': dt, 'ICT': ICT}) actual = tpl.render(ctx) expected = results[k1][k2] self.assertEqual(actual, expected, '%s / %s: %r != %r' % (k1, k2, actual, expected)) # Changes for USE_TZ = False results['utc']['notag'] = t('utc', 'eat', 'utc', 'ict') results['ict']['notag'] = t('ict', 'eat', 'utc', 'ict') with self.settings(USE_TZ=False): for k1, dt in six.iteritems(datetimes): for k2, tpl in six.iteritems(templates): ctx = Context({'dt': dt, 'ICT': ICT}) actual = tpl.render(ctx) expected = results[k1][k2] self.assertEqual(actual, expected, '%s / %s: %r != %r' % (k1, k2, actual, expected)) @skipIf(pytz is None, "this test requires pytz") def test_localtime_filters_with_pytz(self): """ Test the |localtime, |utc, and |timezone filters with pytz. """ # Use a pytz timezone as local time tpl = Template("{% load tz %}{{ dt|localtime }}|{{ dt|utc }}") ctx = Context({'dt': datetime.datetime(2011, 9, 1, 12, 20, 30)}) with self.settings(TIME_ZONE='Europe/Paris'): self.assertEqual(tpl.render(ctx), "2011-09-01T12:20:30+02:00|2011-09-01T10:20:30+00:00") # Use a pytz timezone as argument tpl = Template("{% load tz %}{{ dt|timezone:tz }}") ctx = Context({'dt': datetime.datetime(2011, 9, 1, 13, 20, 30), 'tz': pytz.timezone('Europe/Paris')}) self.assertEqual(tpl.render(ctx), "2011-09-01T12:20:30+02:00") # Use a pytz timezone name as argument tpl = Template("{% load tz %}{{ dt|timezone:'Europe/Paris' }}") ctx = Context({'dt': datetime.datetime(2011, 9, 1, 13, 20, 30), 'tz': pytz.timezone('Europe/Paris')}) self.assertEqual(tpl.render(ctx), "2011-09-01T12:20:30+02:00") def test_localtime_templatetag_invalid_argument(self): with self.assertRaises(TemplateSyntaxError): Template("{% load tz %}{% localtime foo %}{% endlocaltime %}").render() def test_localtime_filters_do_not_raise_exceptions(self): """ Test the |localtime, |utc, and |timezone filters on bad inputs. """ tpl = Template("{% load tz %}{{ dt }}|{{ dt|localtime }}|{{ dt|utc }}|{{ dt|timezone:tz }}") with self.settings(USE_TZ=True): # bad datetime value ctx = Context({'dt': None, 'tz': ICT}) self.assertEqual(tpl.render(ctx), "None|||") ctx = Context({'dt': 'not a date', 'tz': ICT}) self.assertEqual(tpl.render(ctx), "not a date|||") # bad timezone value tpl = Template("{% load tz %}{{ dt|timezone:tz }}") ctx = Context({'dt': datetime.datetime(2011, 9, 1, 13, 20, 30), 'tz': None}) self.assertEqual(tpl.render(ctx), "") ctx = Context({'dt': datetime.datetime(2011, 9, 1, 13, 20, 30), 'tz': 'not a tz'}) self.assertEqual(tpl.render(ctx), "") @requires_tz_support def test_timezone_templatetag(self): """ Test the {% timezone %} templatetag. """ tpl = Template( "{% load tz %}" "{{ dt }}|" "{% timezone tz1 %}" "{{ dt }}|" "{% timezone tz2 %}" "{{ dt }}" "{% endtimezone %}" "{% endtimezone %}" ) ctx = Context({'dt': datetime.datetime(2011, 9, 1, 10, 20, 30, tzinfo=UTC), 'tz1': ICT, 'tz2': None}) self.assertEqual(tpl.render(ctx), "2011-09-01T13:20:30+03:00|2011-09-01T17:20:30+07:00|2011-09-01T13:20:30+03:00") @skipIf(pytz is None, "this test requires pytz") def test_timezone_templatetag_with_pytz(self): """ Test the {% timezone %} templatetag with pytz. """ tpl = Template("{% load tz %}{% timezone tz %}{{ dt }}{% endtimezone %}") # Use a pytz timezone as argument ctx = Context({'dt': datetime.datetime(2011, 9, 1, 13, 20, 30, tzinfo=EAT), 'tz': pytz.timezone('Europe/Paris')}) self.assertEqual(tpl.render(ctx), "2011-09-01T12:20:30+02:00") # Use a pytz timezone name as argument ctx = Context({'dt': datetime.datetime(2011, 9, 1, 13, 20, 30, tzinfo=EAT), 'tz': 'Europe/Paris'}) self.assertEqual(tpl.render(ctx), "2011-09-01T12:20:30+02:00") def test_timezone_templatetag_invalid_argument(self): with self.assertRaises(TemplateSyntaxError): Template("{% load tz %}{% timezone %}{% endtimezone %}").render() with self.assertRaises(ValueError if pytz is None else pytz.UnknownTimeZoneError): Template("{% load tz %}{% timezone tz %}{% endtimezone %}").render(Context({'tz': 'foobar'})) @skipIf(sys.platform.startswith('win'), "Windows uses non-standard time zone names") def test_get_current_timezone_templatetag(self): """ Test the {% get_current_timezone %} templatetag. """ tpl = Template("{% load tz %}{% get_current_timezone as time_zone %}{{ time_zone }}") self.assertEqual(tpl.render(Context()), "Africa/Nairobi" if pytz else "EAT") with timezone.override(UTC): self.assertEqual(tpl.render(Context()), "UTC") tpl = Template("{% load tz %}{% timezone tz %}{% get_current_timezone as time_zone %}{% endtimezone %}{{ time_zone }}") self.assertEqual(tpl.render(Context({'tz': ICT})), "+0700") with timezone.override(UTC): self.assertEqual(tpl.render(Context({'tz': ICT})), "+0700") @skipIf(pytz is None, "this test requires pytz") def test_get_current_timezone_templatetag_with_pytz(self): """ Test the {% get_current_timezone %} templatetag with pytz. """ tpl = Template("{% load tz %}{% get_current_timezone as time_zone %}{{ time_zone }}") with timezone.override(pytz.timezone('Europe/Paris')): self.assertEqual(tpl.render(Context()), "Europe/Paris") tpl = Template("{% load tz %}{% timezone 'Europe/Paris' %}{% get_current_timezone as time_zone %}{% endtimezone %}{{ time_zone }}") self.assertEqual(tpl.render(Context()), "Europe/Paris") def test_get_current_timezone_templatetag_invalid_argument(self): with self.assertRaises(TemplateSyntaxError): Template("{% load tz %}{% get_current_timezone %}").render() @skipIf(sys.platform.startswith('win'), "Windows uses non-standard time zone names") def test_tz_template_context_processor(self): """ Test the django.core.context_processors.tz template context processor. """ tpl = Template("{{ TIME_ZONE }}") self.assertEqual(tpl.render(Context()), "") self.assertEqual(tpl.render(RequestContext(HttpRequest())), "Africa/Nairobi" if pytz else "EAT") @requires_tz_support def test_date_and_time_template_filters(self): tpl = Template("{{ dt|date:'Y-m-d' }} at {{ dt|time:'H:i:s' }}") ctx = Context({'dt': datetime.datetime(2011, 9, 1, 20, 20, 20, tzinfo=UTC)}) self.assertEqual(tpl.render(ctx), "2011-09-01 at 23:20:20") with timezone.override(ICT): self.assertEqual(tpl.render(ctx), "2011-09-02 at 03:20:20") def test_date_and_time_template_filters_honor_localtime(self): tpl = Template("{% load tz %}{% localtime off %}{{ dt|date:'Y-m-d' }} at {{ dt|time:'H:i:s' }}{% endlocaltime %}") ctx = Context({'dt': datetime.datetime(2011, 9, 1, 20, 20, 20, tzinfo=UTC)}) self.assertEqual(tpl.render(ctx), "2011-09-01 at 20:20:20") with timezone.override(ICT): self.assertEqual(tpl.render(ctx), "2011-09-01 at 20:20:20") def test_localtime_with_time_zone_setting_set_to_none(self): # Regression for #17274 tpl = Template("{% load tz %}{{ dt }}") ctx = Context({'dt': datetime.datetime(2011, 9, 1, 12, 20, 30, tzinfo=EAT)}) with self.settings(TIME_ZONE=None): # the actual value depends on the system time zone of the host self.assertTrue(tpl.render(ctx).startswith("2011")) @requires_tz_support def test_now_template_tag_uses_current_time_zone(self): # Regression for #17343 tpl = Template("{% now \"O\" %}") self.assertEqual(tpl.render(Context({})), "+0300") with timezone.override(ICT): self.assertEqual(tpl.render(Context({})), "+0700") @override_settings(DATETIME_FORMAT='c', TIME_ZONE='Africa/Nairobi', USE_L10N=False, USE_TZ=False) class LegacyFormsTests(TestCase): def test_form(self): form = EventForm({'dt': '2011-09-01 13:20:30'}) self.assertTrue(form.is_valid()) self.assertEqual(form.cleaned_data['dt'], datetime.datetime(2011, 9, 1, 13, 20, 30)) @skipIf(pytz is None, "this test requires pytz") def test_form_with_non_existent_time(self): form = EventForm({'dt': '2011-03-27 02:30:00'}) with timezone.override(pytz.timezone('Europe/Paris')): # this is obviously a bug self.assertTrue(form.is_valid()) self.assertEqual(form.cleaned_data['dt'], datetime.datetime(2011, 3, 27, 2, 30, 0)) @skipIf(pytz is None, "this test requires pytz") def test_form_with_ambiguous_time(self): form = EventForm({'dt': '2011-10-30 02:30:00'}) with timezone.override(pytz.timezone('Europe/Paris')): # this is obviously a bug self.assertTrue(form.is_valid()) self.assertEqual(form.cleaned_data['dt'], datetime.datetime(2011, 10, 30, 2, 30, 0)) def test_split_form(self): form = EventSplitForm({'dt_0': '2011-09-01', 'dt_1': '13:20:30'}) self.assertTrue(form.is_valid()) self.assertEqual(form.cleaned_data['dt'], datetime.datetime(2011, 9, 1, 13, 20, 30)) def test_model_form(self): EventModelForm({'dt': '2011-09-01 13:20:30'}).save() e = Event.objects.get() self.assertEqual(e.dt, datetime.datetime(2011, 9, 1, 13, 20, 30)) @override_settings(DATETIME_FORMAT='c', TIME_ZONE='Africa/Nairobi', USE_L10N=False, USE_TZ=True) class NewFormsTests(TestCase): @requires_tz_support def test_form(self): form = EventForm({'dt': '2011-09-01 13:20:30'}) self.assertTrue(form.is_valid()) self.assertEqual(form.cleaned_data['dt'], datetime.datetime(2011, 9, 1, 10, 20, 30, tzinfo=UTC)) def test_form_with_other_timezone(self): form = EventForm({'dt': '2011-09-01 17:20:30'}) with timezone.override(ICT): self.assertTrue(form.is_valid()) self.assertEqual(form.cleaned_data['dt'], datetime.datetime(2011, 9, 1, 10, 20, 30, tzinfo=UTC)) def test_form_with_explicit_timezone(self): form = EventForm({'dt': '2011-09-01 17:20:30+07:00'}) # Datetime inputs formats don't allow providing a time zone. self.assertFalse(form.is_valid()) @skipIf(pytz is None, "this test requires pytz") def test_form_with_non_existent_time(self): with timezone.override(pytz.timezone('Europe/Paris')): form = EventForm({'dt': '2011-03-27 02:30:00'}) self.assertFalse(form.is_valid()) self.assertEqual(form.errors['dt'], ["2011-03-27 02:30:00 couldn't be interpreted in time zone " "Europe/Paris; it may be ambiguous or it may not exist."]) @skipIf(pytz is None, "this test requires pytz") def test_form_with_ambiguous_time(self): with timezone.override(pytz.timezone('Europe/Paris')): form = EventForm({'dt': '2011-10-30 02:30:00'}) self.assertFalse(form.is_valid()) self.assertEqual(form.errors['dt'], ["2011-10-30 02:30:00 couldn't be interpreted in time zone " "Europe/Paris; it may be ambiguous or it may not exist."]) @requires_tz_support def test_split_form(self): form = EventSplitForm({'dt_0': '2011-09-01', 'dt_1': '13:20:30'}) self.assertTrue(form.is_valid()) self.assertEqual(form.cleaned_data['dt'], datetime.datetime(2011, 9, 1, 10, 20, 30, tzinfo=UTC)) @requires_tz_support def test_localized_form(self): form = EventLocalizedForm(initial={'dt': datetime.datetime(2011, 9, 1, 13, 20, 30, tzinfo=EAT)}) with timezone.override(ICT): self.assertIn("2011-09-01 17:20:30", str(form)) @requires_tz_support def test_model_form(self): EventModelForm({'dt': '2011-09-01 13:20:30'}).save() e = Event.objects.get() self.assertEqual(e.dt, datetime.datetime(2011, 9, 1, 10, 20, 30, tzinfo=UTC)) @requires_tz_support def test_localized_model_form(self): form = EventLocalizedModelForm(instance=Event(dt=datetime.datetime(2011, 9, 1, 13, 20, 30, tzinfo=EAT))) with timezone.override(ICT): self.assertIn("2011-09-01 17:20:30", str(form)) @override_settings(DATETIME_FORMAT='c', TIME_ZONE='Africa/Nairobi', USE_L10N=False, USE_TZ=True, PASSWORD_HASHERS=('django.contrib.auth.hashers.SHA1PasswordHasher',)) class AdminTests(TestCase): urls = 'timezones.urls' fixtures = ['tz_users.xml'] def setUp(self): self.client.login(username='super', password='secret') @requires_tz_support def test_changelist(self): e = Event.objects.create(dt=datetime.datetime(2011, 9, 1, 10, 20, 30, tzinfo=UTC)) response = self.client.get(reverse('admin:timezones_event_changelist')) self.assertContains(response, e.dt.astimezone(EAT).isoformat()) def test_changelist_in_other_timezone(self): e = Event.objects.create(dt=datetime.datetime(2011, 9, 1, 10, 20, 30, tzinfo=UTC)) with timezone.override(ICT): response = self.client.get(reverse('admin:timezones_event_changelist')) self.assertContains(response, e.dt.astimezone(ICT).isoformat()) @requires_tz_support def test_change_editable(self): e = Event.objects.create(dt=datetime.datetime(2011, 9, 1, 10, 20, 30, tzinfo=UTC)) response = self.client.get(reverse('admin:timezones_event_change', args=(e.pk,))) self.assertContains(response, e.dt.astimezone(EAT).date().isoformat()) self.assertContains(response, e.dt.astimezone(EAT).time().isoformat()) def test_change_editable_in_other_timezone(self): e = Event.objects.create(dt=datetime.datetime(2011, 9, 1, 10, 20, 30, tzinfo=UTC)) with timezone.override(ICT): response = self.client.get(reverse('admin:timezones_event_change', args=(e.pk,))) self.assertContains(response, e.dt.astimezone(ICT).date().isoformat()) self.assertContains(response, e.dt.astimezone(ICT).time().isoformat()) @requires_tz_support def test_change_readonly(self): Timestamp.objects.create() # re-fetch the object for backends that lose microseconds (MySQL) t = Timestamp.objects.get() response = self.client.get(reverse('admin:timezones_timestamp_change', args=(t.pk,))) self.assertContains(response, t.created.astimezone(EAT).isoformat()) def test_change_readonly_in_other_timezone(self): Timestamp.objects.create() # re-fetch the object for backends that lose microseconds (MySQL) t = Timestamp.objects.get() with timezone.override(ICT): response = self.client.get(reverse('admin:timezones_timestamp_change', args=(t.pk,))) self.assertContains(response, t.created.astimezone(ICT).isoformat()) @override_settings(TIME_ZONE='Africa/Nairobi') class UtilitiesTests(TestCase): def test_make_aware(self): self.assertEqual( timezone.make_aware(datetime.datetime(2011, 9, 1, 13, 20, 30), EAT), datetime.datetime(2011, 9, 1, 13, 20, 30, tzinfo=EAT) ) self.assertEqual( timezone.make_aware(datetime.datetime(2011, 9, 1, 10, 20, 30), UTC), datetime.datetime(2011, 9, 1, 10, 20, 30, tzinfo=UTC) ) def test_make_naive(self): self.assertEqual( timezone.make_naive(datetime.datetime(2011, 9, 1, 13, 20, 30, tzinfo=EAT), EAT), datetime.datetime(2011, 9, 1, 13, 20, 30) ) self.assertEqual( timezone.make_naive(datetime.datetime(2011, 9, 1, 13, 20, 30, tzinfo=EAT), UTC), datetime.datetime(2011, 9, 1, 10, 20, 30) ) self.assertEqual( timezone.make_naive(datetime.datetime(2011, 9, 1, 10, 20, 30, tzinfo=UTC), UTC), datetime.datetime(2011, 9, 1, 10, 20, 30) )
deployed/django
tests/timezones/tests.py
Python
bsd-3-clause
55,059
# Example using PIO to create a UART TX interface from machine import Pin from rp2 import PIO, StateMachine, asm_pio UART_BAUD = 115200 PIN_BASE = 10 NUM_UARTS = 8 @asm_pio(sideset_init=PIO.OUT_HIGH, out_init=PIO.OUT_HIGH, out_shiftdir=PIO.SHIFT_RIGHT) def uart_tx(): # fmt: off # Block with TX deasserted until data available pull() # Initialise bit counter, assert start bit for 8 cycles set(x, 7) .side(0) [7] # Shift out 8 data bits, 8 execution cycles per bit label("bitloop") out(pins, 1) [6] jmp(x_dec, "bitloop") # Assert stop bit for 8 cycles total (incl 1 for pull()) nop() .side(1) [6] # fmt: on # Now we add 8 UART TXs, on pins 10 to 17. Use the same baud rate for all of them. uarts = [] for i in range(NUM_UARTS): sm = StateMachine( i, uart_tx, freq=8 * UART_BAUD, sideset_base=Pin(PIN_BASE + i), out_base=Pin(PIN_BASE + i) ) sm.active(1) uarts.append(sm) # We can print characters from each UART by pushing them to the TX FIFO def pio_uart_print(sm, s): for c in s: sm.put(ord(c)) # Print a different message from each UART for i, u in enumerate(uarts): pio_uart_print(u, "Hello from UART {}!\n".format(i))
pfalcon/micropython
examples/rp2/pio_uart_tx.py
Python
mit
1,250
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright (C) 2017 Google # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) # ---------------------------------------------------------------------------- # # *** AUTO GENERATED CODE *** AUTO GENERATED CODE *** # # ---------------------------------------------------------------------------- # # This file is automatically generated by Magic Modules and manual # changes will be clobbered when the file is regenerated. # # Please read more about how to change this file at # https://www.github.com/GoogleCloudPlatform/magic-modules # # ---------------------------------------------------------------------------- from __future__ import absolute_import, division, print_function __metaclass__ = type ################################################################################ # Documentation ################################################################################ ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ["preview"], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: gcp_spanner_database_facts description: - Gather facts for GCP Database short_description: Gather facts for GCP Database version_added: 2.8 author: Google Inc. (@googlecloudplatform) requirements: - python >= 2.6 - requests >= 2.18.4 - google-auth >= 1.3.0 options: instance: description: - The instance to create the database on. - 'This field represents a link to a Instance resource in GCP. It can be specified in two ways. First, you can place in the name of the resource here as a string Alternatively, you can add `register: name-of-resource` to a gcp_spanner_instance task and then set this instance field to "{{ name-of-resource }}"' required: true extends_documentation_fragment: gcp ''' EXAMPLES = ''' - name: a database facts gcp_spanner_database_facts: instance: "{{ instance }}" project: test_project auth_kind: serviceaccount service_account_file: "/tmp/auth.pem" ''' RETURN = ''' items: description: List of items returned: always type: complex contains: name: description: - A unique identifier for the database, which cannot be changed after the instance is created. Values are of the form [a-z][-a-z0-9]*[a-z0-9]. returned: success type: str extraStatements: description: - 'An optional list of DDL statements to run inside the newly created database. Statements can create tables, indexes, etc. These statements execute atomically with the creation of the database: if there is an error in any statement, the database is not created.' returned: success type: list instance: description: - The instance to create the database on. returned: success type: str ''' ################################################################################ # Imports ################################################################################ from ansible.module_utils.gcp_utils import navigate_hash, GcpSession, GcpModule, GcpRequest, replace_resource_dict import json ################################################################################ # Main ################################################################################ def main(): module = GcpModule(argument_spec=dict(instance=dict(required=True))) if not module.params['scopes']: module.params['scopes'] = ['https://www.googleapis.com/auth/spanner.admin'] items = fetch_list(module, collection(module)) if items.get('databases'): items = items.get('databases') else: items = [] return_value = {'items': items} module.exit_json(**return_value) def collection(module): res = {'project': module.params['project'], 'instance': replace_resource_dict(module.params['instance'], 'name')} return "https://spanner.googleapis.com/v1/projects/{project}/instances/{instance}/databases".format(**res) def fetch_list(module, link): auth = GcpSession(module, 'spanner') response = auth.get(link) return return_if_object(module, response) def return_if_object(module, response): # If not found, return nothing. if response.status_code == 404: return None # If no content, return nothing. if response.status_code == 204: return None try: module.raise_for_status(response) result = response.json() except getattr(json.decoder, 'JSONDecodeError', ValueError) as inst: module.fail_json(msg="Invalid JSON response with error: %s" % inst) if navigate_hash(result, ['error', 'errors']): module.fail_json(msg=navigate_hash(result, ['error', 'errors'])) return result if __name__ == "__main__": main()
Jorge-Rodriguez/ansible
lib/ansible/modules/cloud/google/gcp_spanner_database_facts.py
Python
gpl-3.0
4,857
# Copyright 2013 Intel Corporation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import webob.exc from nova.api.openstack import extensions from nova.api.openstack import wsgi from nova import compute from nova import exception from nova import objects ALIAS = 'os-pci' soft_authorize = extensions.os_compute_soft_authorizer(ALIAS + ':pci_servers') authorize = extensions.os_compute_authorizer(ALIAS) PCI_ADMIN_KEYS = ['id', 'address', 'vendor_id', 'product_id', 'status', 'compute_node_id'] PCI_DETAIL_KEYS = ['dev_type', 'label', 'instance_uuid', 'dev_id', 'extra_info'] class PciServerController(wsgi.Controller): def _extend_server(self, server, instance): dev_id = [] for dev in instance.pci_devices: dev_id.append({'id': dev.id}) server['%s:pci_devices' % Pci.alias] = dev_id @wsgi.extends def show(self, req, resp_obj, id): context = req.environ['nova.context'] if soft_authorize(context): server = resp_obj.obj['server'] instance = req.get_db_instance(server['id']) self._extend_server(server, instance) @wsgi.extends def detail(self, req, resp_obj): context = req.environ['nova.context'] if soft_authorize(context): servers = list(resp_obj.obj['servers']) for server in servers: instance = req.get_db_instance(server['id']) self._extend_server(server, instance) class PciHypervisorController(wsgi.Controller): def _extend_hypervisor(self, hypervisor, compute_node): if compute_node.pci_device_pools is not None: pci_pools = [pci_pool.to_dict() for pci_pool in compute_node.pci_device_pools] else: pci_pools = [] hypervisor['%s:pci_stats' % Pci.alias] = pci_pools @wsgi.extends def show(self, req, resp_obj, id): hypervisor = resp_obj.obj['hypervisor'] compute_node = req.get_db_compute_node(hypervisor['id']) self._extend_hypervisor(hypervisor, compute_node) @wsgi.extends def detail(self, req, resp_obj): hypervisors = list(resp_obj.obj['hypervisors']) for hypervisor in hypervisors: compute_node = req.get_db_compute_node(hypervisor['id']) self._extend_hypervisor(hypervisor, compute_node) class PciController(wsgi.Controller): def __init__(self): self.host_api = compute.HostAPI() def _view_pcidevice(self, device, detail=False): dev_dict = {} for key in PCI_ADMIN_KEYS: dev_dict[key] = getattr(device, key) if detail: for field in PCI_DETAIL_KEYS: if field == 'instance_uuid': dev_dict['server_uuid'] = getattr(device, field) else: dev_dict[field] = getattr(device, field) return dev_dict def _get_all_nodes_pci_devices(self, req, detail, action): context = req.environ['nova.context'] authorize(context, action=action) compute_nodes = self.host_api.compute_node_get_all(context) results = [] for node in compute_nodes: pci_devs = objects.PciDeviceList.get_by_compute_node( context, node['id']) results.extend([self._view_pcidevice(dev, detail) for dev in pci_devs]) return results @extensions.expected_errors(()) def detail(self, req): results = self._get_all_nodes_pci_devices(req, True, 'detail') return dict(pci_devices=results) @extensions.expected_errors(404) def show(self, req, id): context = req.environ['nova.context'] authorize(context, action='show') try: pci_dev = objects.PciDevice.get_by_dev_id(context, id) except exception.PciDeviceNotFoundById as e: raise webob.exc.HTTPNotFound(explanation=e.format_message()) result = self._view_pcidevice(pci_dev, True) return dict(pci_device=result) @extensions.expected_errors(()) def index(self, req): results = self._get_all_nodes_pci_devices(req, False, 'index') return dict(pci_devices=results) class Pci(extensions.V3APIExtensionBase): """Pci access support.""" name = "PciAccess" alias = ALIAS version = 1 def get_resources(self): resources = [extensions.ResourceExtension(ALIAS, PciController(), collection_actions={'detail': 'GET'})] return resources def get_controller_extensions(self): server_extension = extensions.ControllerExtension( self, 'servers', PciServerController()) compute_extension = extensions.ControllerExtension( self, 'os-hypervisors', PciHypervisorController()) return [server_extension, compute_extension]
LoHChina/nova
nova/api/openstack/compute/plugins/v3/pci.py
Python
apache-2.0
5,476
from rest_framework import serializers as ser from rest_framework import exceptions from framework.auth.oauth_scopes import public_scopes from website.models import ApiOAuth2PersonalToken from api.base.serializers import JSONAPISerializer, LinksField, IDField, TypeField class ApiOAuth2PersonalTokenSerializer(JSONAPISerializer): """Serialize data about a registered personal access token""" id = IDField(source='_id', read_only=True, help_text='The object ID for this token (automatically generated)') type = TypeField() name = ser.CharField(help_text='A short, descriptive name for this token', required=True) owner = ser.CharField(help_text='The user who owns this token', read_only=True, # Don't let user register a token in someone else's name source='owner._id') scopes = ser.CharField(help_text='Governs permissions associated with this token', required=True) token_id = ser.CharField(read_only=True, allow_blank=True) class Meta: type_ = 'tokens' links = LinksField({ 'html': 'absolute_url' }) def absolute_url(self, obj): return obj.absolute_url def to_representation(self, obj, envelope='data'): data = super(ApiOAuth2PersonalTokenSerializer, self).to_representation(obj, envelope=envelope) # Make sure users only see token_id on create if not self.context['request'].method == 'POST': if 'data' in data: data['data']['attributes'].pop('token_id') else: data['attributes'].pop('token_id') return data def create(self, validated_data): validate_requested_scopes(validated_data) instance = ApiOAuth2PersonalToken(**validated_data) instance.save() return instance def update(self, instance, validated_data): validate_requested_scopes(validated_data) assert isinstance(instance, ApiOAuth2PersonalToken), 'instance must be an ApiOAuth2PersonalToken' instance.deactivate(save=False) # This will cause CAS to revoke the existing token but still allow it to be used in the future, new scopes will be updated properly at that time. instance.reload() for attr, value in validated_data.iteritems(): if attr == 'token_id': # Do not allow user to update token_id continue else: setattr(instance, attr, value) instance.save() return instance def validate_requested_scopes(validated_data): scopes_set = set(validated_data['scopes'].split(' ')) for scope in scopes_set: if scope not in public_scopes or not public_scopes[scope].is_public: raise exceptions.ValidationError('User requested invalid scope')
ticklemepierce/osf.io
api/tokens/serializers.py
Python
apache-2.0
2,864
############################################################################### # # The MIT License (MIT) # # Copyright (c) Tavendo GmbH # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # ############################################################################### import hashlib from twisted.internet import reactor from autobahn.twisted.websocket import WebSocketServerFactory, \ WebSocketServerProtocol, \ listenWS class MessageBasedHashServerProtocol(WebSocketServerProtocol): """ Message-based WebSockets server that computes a SHA-256 for every message it receives and sends back the computed digest. """ def onMessage(self, payload, isBinary): sha256 = hashlib.sha256() sha256.update(payload) digest = sha256.hexdigest() self.sendMessage(digest.encode('utf8')) print("Sent digest for message: {}".format(digest)) if __name__ == '__main__': factory = WebSocketServerFactory(u"ws://127.0.0.1:9000") factory.protocol = MessageBasedHashServerProtocol listenWS(factory) reactor.run()
hzruandd/AutobahnPython
examples/twisted/websocket/streaming/message_based_server.py
Python
mit
2,143
#!/usr/bin/env python # # Copyright 2007 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Errors used in the Python datastore API.""" class Error(Exception): """Base datastore error type. """ class BadValueError(Error): """Raised by Entity.__setitem__(), Query.__setitem__(), Get(), and others when a property value or filter value is invalid. """ class BadPropertyError(Error): """Raised by Entity.__setitem__() when a property name isn't a string. """ class BadRequestError(Error): """Raised by datastore calls when the parameter(s) are invalid. """ class EntityNotFoundError(Error): """DEPRECATED: Raised by Get() when the requested entity is not found. """ class BadArgumentError(Error): """Raised by Query.Order(), Iterator.Next(), and others when they're passed an invalid argument. """ class QueryNotFoundError(Error): """DEPRECATED: Raised by Iterator methods when the Iterator is invalid. This should not happen during normal usage; it protects against malicious users and system errors. """ class TransactionNotFoundError(Error): """DEPRECATED: Raised by RunInTransaction. This is an internal error; you should not see this. """ class Rollback(Error): """May be raised by transaction functions when they want to roll back instead of committing. Note that *any* exception raised by a transaction function will cause a rollback. This is purely for convenience. See datastore.RunInTransaction for details. """ class TransactionFailedError(Error): """Raised by RunInTransaction methods when the transaction could not be committed, even after retrying. This is usually due to high contention. """ class BadFilterError(Error): """Raised by Query.__setitem__() and Query.Run() when a filter string is invalid. """ def __init__(self, filter): self.filter = filter message = (u'invalid filter: %s.' % self.filter).encode('utf-8') super(BadFilterError, self).__init__(message) class BadQueryError(Error): """Raised by Query when a query or query string is invalid. """ class BadKeyError(Error): """Raised by Key.__str__ when the key is invalid. """ class InternalError(Error): """An internal datastore error. Please report this to Google. """ class NeedIndexError(Error): """No matching index was found for a query that requires an index. Check the Indexes page in the Admin Console and your index.yaml file. """ def __init__(self, error, original_message=None, header=None, yaml_index=None, xml_index=None): super(NeedIndexError, self).__init__(error) self._original_message = original_message self._header = header self._yaml_index = yaml_index self._xml_index = xml_index def OriginalMessage(self): return self._original_message def Header(self): return self._header def YamlIndex(self): return self._yaml_index def XmlIndex(self): return self._xml_index class ReferencePropertyResolveError(Error): """An error occurred while trying to resolve a ReferenceProperty.""" class Timeout(Error): """The datastore operation timed out, or the data was temporarily unavailable. This can happen when you attempt to put, get, or delete too many entities or an entity with too many properties, or if the datastore is overloaded or having trouble. """ class CommittedButStillApplying(Timeout): """The write or transaction was committed, but some entities or index rows may not have been fully updated. Those updates should automatically be applied soon. You can roll them forward immediately by reading one of the entities inside a transaction. """
GdZ/scriptfile
software/googleAppEngine/google/appengine/api/datastore_errors.py
Python
mit
4,172
import binascii import itertools import os import random import subprocess from weaver.stack import WeaverNests from weaver.util import Stash def nstdir(path): return os.path.join(CurrentNest().work_dir, path) # Thoughts: # - For shared files: fifo-0,push-async-1 is equivalent to fifo-0,pull-inf TASKS = 25 SHARED = [ { 'count': 128, 'prefix': '1R-shared', 'size': lambda: random.randint(1, 64*2**10), }, { 'count': 128, 'prefix': '1G-shared', 'size': lambda: 1*2**30, }, { 'count': 64, 'prefix': '2G-shared', 'size': lambda: 2*2**30, }, { 'count': 32, 'prefix': '4G-shared', 'size': lambda: 4*2**30, }, { 'count': 16, 'prefix': '8G-shared', 'size': lambda: 8*2**30, }, ] UNIQUE = [ # { # 'count': 4, # 'prefix': '2G', # 'size': lambda: 2*2**30, # }, # { # 'count': 2, # 'prefix': '4G', # 'size': lambda: 4*2**30, # }, ] consumer = ShellFunction(''' for f; do test -e "$f" || exit 1 done ''', cmd_format = "{EXE} {ARG}") producer = ShellFunction(''' touch "$1" shift while [ "$#" -ge 3 ]; do openssl enc -aes-256-ctr -nosalt -pass pass:"$1" < /dev/zero 2> /dev/null | head -c "$2" > "$3" shift shift shift done ''', cmd_format = "{EXE} {ARG}") gen = [] shared = [] for i in range(TASKS): shared.append(nstdir('sync.%08d' % i)) for f in SHARED: for i in range(f['count']): path = nstdir((f['prefix'] + '.%08d') % i) gen.append({'path': path, 'size': f['size']()}) shared.append(path) for task in range(TASKS): print("compiling task %d" % task) inputs = [] inputs.extend(shared) taskdir = nstdir('task.%08d' % task) os.mkdir(taskdir) for f in UNIQUE: for i in range(f['count']): path = os.path.join(taskdir, (f['prefix'] + '.%08d') % i) inputs.append(path) gen.append({'path': path, 'size': f['size']()}) consumer(arguments = inputs, inputs = inputs) random.shuffle(gen) def makerandoms(i, files): sync = nstdir('sync.%08d' % i) args = [sync] outputs = [sync] for f in files: args.extend((binascii.hexlify(os.urandom(64)), f['size'], f['path'])) outputs.append(f['path']) producer(arguments = args, outputs = outputs) for i in range(TASKS): makerandoms(i, gen[i::TASKS]) # vim: set sts=4 sw=4 ts=8 expandtab ft=python:
nkremerh/cctools
chirp/tools/workflows/pull-tests.py
Python
gpl-2.0
2,512
# -*- coding: utf-8 -*- from ansible.compat.tests import unittest from ansible.modules.packaging.os.yum import YumModule yum_plugin_load_error = """ Plugin "product-id" can't be imported Plugin "search-disabled-repos" can't be imported Plugin "subscription-manager" can't be imported Plugin "product-id" can't be imported Plugin "search-disabled-repos" can't be imported Plugin "subscription-manager" can't be imported """ # from https://github.com/ansible/ansible/issues/20608#issuecomment-276106505 wrapped_output_1 = """ Загружены модули: fastestmirror Loading mirror speeds from cached hostfile * base: mirror.h1host.ru * extras: mirror.h1host.ru * updates: mirror.h1host.ru vms-agent.x86_64 0.0-9 dev """ # from https://github.com/ansible/ansible/issues/20608#issuecomment-276971275 wrapped_output_2 = """ Загружены модули: fastestmirror Loading mirror speeds from cached hostfile * base: mirror.corbina.net * extras: mirror.corbina.net * updates: mirror.corbina.net empty-empty-empty-empty-empty-empty-empty-empty-empty-empty-empty-empty-empty-empty-empty-empty-empty-empty-empty-empty.x86_64 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1-0 addons libtiff.x86_64 4.0.3-27.el7_3 updates """ # From https://github.com/ansible/ansible/issues/20608#issuecomment-276698431 wrapped_output_3 = """ Loaded plugins: fastestmirror, langpacks Loading mirror speeds from cached hostfile ceph.x86_64 1:11.2.0-0.el7 ceph ceph-base.x86_64 1:11.2.0-0.el7 ceph ceph-common.x86_64 1:11.2.0-0.el7 ceph ceph-mds.x86_64 1:11.2.0-0.el7 ceph ceph-mon.x86_64 1:11.2.0-0.el7 ceph ceph-osd.x86_64 1:11.2.0-0.el7 ceph ceph-selinux.x86_64 1:11.2.0-0.el7 ceph libcephfs1.x86_64 1:11.0.2-0.el7 ceph librados2.x86_64 1:11.2.0-0.el7 ceph libradosstriper1.x86_64 1:11.2.0-0.el7 ceph librbd1.x86_64 1:11.2.0-0.el7 ceph librgw2.x86_64 1:11.2.0-0.el7 ceph python-cephfs.x86_64 1:11.2.0-0.el7 ceph python-rados.x86_64 1:11.2.0-0.el7 ceph python-rbd.x86_64 1:11.2.0-0.el7 ceph """ # from https://github.com/ansible/ansible-modules-core/issues/4318#issuecomment-251416661 wrapped_output_4 = """ ipxe-roms-qemu.noarch 20160127-1.git6366fa7a.el7 rhelosp-9.0-director-puddle quota.x86_64 1:4.01-11.el7_2.1 rhelosp-rhel-7.2-z quota-nls.noarch 1:4.01-11.el7_2.1 rhelosp-rhel-7.2-z rdma.noarch 7.2_4.1_rc6-2.el7 rhelosp-rhel-7.2-z screen.x86_64 4.1.0-0.23.20120314git3c2946.el7_2 rhelosp-rhel-7.2-z sos.noarch 3.2-36.el7ost.2 rhelosp-9.0-puddle sssd-client.x86_64 1.13.0-40.el7_2.12 rhelosp-rhel-7.2-z """ # A 'normal-ish' yum check-update output, without any wrapped lines unwrapped_output_rhel7 = """ Loaded plugins: etckeeper, product-id, search-disabled-repos, subscription- : manager This system is not registered to Red Hat Subscription Management. You can use subscription-manager to register. NetworkManager-openvpn.x86_64 1:1.2.6-1.el7 epel NetworkManager-openvpn-gnome.x86_64 1:1.2.6-1.el7 epel cabal-install.x86_64 1.16.1.0-2.el7 epel cgit.x86_64 1.1-1.el7 epel python34-libs.x86_64 3.4.5-3.el7 epel python34-test.x86_64 3.4.5-3.el7 epel python34-tkinter.x86_64 3.4.5-3.el7 epel python34-tools.x86_64 3.4.5-3.el7 epel qgit.x86_64 2.6-4.el7 epel rdiff-backup.x86_64 1.2.8-12.el7 epel stoken-libs.x86_64 0.91-1.el7 epel xlockmore.x86_64 5.49-2.el7 epel """ # Some wrapped obsoletes for prepending to output for testing both wrapped_output_rhel7_obsoletes_postfix = """ Obsoleting Packages ddashboard.x86_64 0.2.0.1-1.el7_3 mhlavink-developerdashboard developerdashboard.x86_64 0.1.12.2-1.el7_2 @mhlavink-developerdashboard python-bugzilla.noarch 1.2.2-3.el7_2.1 mhlavink-developerdashboard python-bugzilla-develdashboardfixes.noarch 1.2.2-3.el7 @mhlavink-developerdashboard python2-futures.noarch 3.0.5-1.el7 epel python-futures.noarch 3.0.3-1.el7 @epel python2-pip.noarch 8.1.2-5.el7 epel python-pip.noarch 7.1.0-1.el7 @epel python2-pyxdg.noarch 0.25-6.el7 epel pyxdg.noarch 0.25-5.el7 @epel python2-simplejson.x86_64 3.10.0-1.el7 epel python-simplejson.x86_64 3.3.3-1.el7 @epel Security: kernel-3.10.0-327.28.2.el7.x86_64 is an installed security update Security: kernel-3.10.0-327.22.2.el7.x86_64 is the currently running version """ longname = """ Loaded plugins: fastestmirror, priorities, rhnplugin This system is receiving updates from RHN Classic or Red Hat Satellite. Loading mirror speeds from cached hostfile xxxxxxxxxxxxxxxxxxxxxxxxxx.noarch 1.16-1 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx glibc.x86_64 2.17-157.el7_3.1 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx""" unwrapped_output_rhel7_obsoletes = unwrapped_output_rhel7 + wrapped_output_rhel7_obsoletes_postfix unwrapped_output_rhel7_expected_pkgs = ["NetworkManager-openvpn", "NetworkManager-openvpn-gnome", "cabal-install", "cgit", "python34-libs", "python34-test", "python34-tkinter", "python34-tools", "qgit", "rdiff-backup", "stoken-libs", "xlockmore"] class TestYumUpdateCheckParse(unittest.TestCase): def _assert_expected(self, expected_pkgs, result): for expected_pkg in expected_pkgs: self.assertIn(expected_pkg, result) self.assertEqual(len(result), len(expected_pkgs)) self.assertIsInstance(result, dict) def test_empty_output(self): res = YumModule.parse_check_update("") expected_pkgs = [] self._assert_expected(expected_pkgs, res) def test_longname(self): res = YumModule.parse_check_update(longname) expected_pkgs = ['xxxxxxxxxxxxxxxxxxxxxxxxxx', 'glibc'] self._assert_expected(expected_pkgs, res) def test_plugin_load_error(self): res = YumModule.parse_check_update(yum_plugin_load_error) expected_pkgs = [] self._assert_expected(expected_pkgs, res) def test_wrapped_output_1(self): res = YumModule.parse_check_update(wrapped_output_1) expected_pkgs = ["vms-agent"] self._assert_expected(expected_pkgs, res) def test_wrapped_output_2(self): res = YumModule.parse_check_update(wrapped_output_2) expected_pkgs = ["empty-empty-empty-empty-empty-empty-empty-empty-empty-empty-empty-empty-empty-empty-empty-empty-empty-empty-empty-empty", "libtiff"] self._assert_expected(expected_pkgs, res) def test_wrapped_output_3(self): res = YumModule.parse_check_update(wrapped_output_3) expected_pkgs = ["ceph", "ceph-base", "ceph-common", "ceph-mds", "ceph-mon", "ceph-osd", "ceph-selinux", "libcephfs1", "librados2", "libradosstriper1", "librbd1", "librgw2", "python-cephfs", "python-rados", "python-rbd"] self._assert_expected(expected_pkgs, res) def test_wrapped_output_4(self): res = YumModule.parse_check_update(wrapped_output_4) expected_pkgs = ["ipxe-roms-qemu", "quota", "quota-nls", "rdma", "screen", "sos", "sssd-client"] self._assert_expected(expected_pkgs, res) def test_wrapped_output_rhel7(self): res = YumModule.parse_check_update(unwrapped_output_rhel7) self._assert_expected(unwrapped_output_rhel7_expected_pkgs, res) def test_wrapped_output_rhel7_obsoletes(self): res = YumModule.parse_check_update(unwrapped_output_rhel7_obsoletes) self._assert_expected(unwrapped_output_rhel7_expected_pkgs, res)
maartenq/ansible
test/units/modules/packaging/os/test_yum.py
Python
gpl-3.0
9,340
# Added Fortran compiler support to config. Currently useful only for # try_compile call. try_run works but is untested for most of Fortran # compilers (they must define linker_exe first). # Pearu Peterson from __future__ import division, absolute_import, print_function import os, signal import warnings import sys from distutils.command.config import config as old_config from distutils.command.config import LANG_EXT from distutils import log from distutils.file_util import copy_file from distutils.ccompiler import CompileError, LinkError import distutils from numpy.distutils.exec_command import exec_command from numpy.distutils.mingw32ccompiler import generate_manifest from numpy.distutils.command.autodist import (check_gcc_function_attribute, check_gcc_variable_attribute, check_inline, check_restrict, check_compiler_gcc4) from numpy.distutils.compat import get_exception LANG_EXT['f77'] = '.f' LANG_EXT['f90'] = '.f90' class config(old_config): old_config.user_options += [ ('fcompiler=', None, "specify the Fortran compiler type"), ] def initialize_options(self): self.fcompiler = None old_config.initialize_options(self) def _check_compiler (self): old_config._check_compiler(self) from numpy.distutils.fcompiler import FCompiler, new_fcompiler if sys.platform == 'win32' and (self.compiler.compiler_type in ('msvc', 'intelw', 'intelemw')): # XXX: hack to circumvent a python 2.6 bug with msvc9compiler: # initialize call query_vcvarsall, which throws an IOError, and # causes an error along the way without much information. We try to # catch it here, hoping it is early enough, and print an helpful # message instead of Error: None. if not self.compiler.initialized: try: self.compiler.initialize() except IOError: e = get_exception() msg = """\ Could not initialize compiler instance: do you have Visual Studio installed? If you are trying to build with MinGW, please use "python setup.py build -c mingw32" instead. If you have Visual Studio installed, check it is correctly installed, and the right version (VS 2008 for python 2.6, 2.7 and 3.2, VS 2010 for >= 3.3). Original exception was: %s, and the Compiler class was %s ============================================================================""" \ % (e, self.compiler.__class__.__name__) print ("""\ ============================================================================""") raise distutils.errors.DistutilsPlatformError(msg) # After MSVC is initialized, add an explicit /MANIFEST to linker # flags. See issues gh-4245 and gh-4101 for details. Also # relevant are issues 4431 and 16296 on the Python bug tracker. from distutils import msvc9compiler if msvc9compiler.get_build_version() >= 10: for ldflags in [self.compiler.ldflags_shared, self.compiler.ldflags_shared_debug]: if '/MANIFEST' not in ldflags: ldflags.append('/MANIFEST') if not isinstance(self.fcompiler, FCompiler): self.fcompiler = new_fcompiler(compiler=self.fcompiler, dry_run=self.dry_run, force=1, c_compiler=self.compiler) if self.fcompiler is not None: self.fcompiler.customize(self.distribution) if self.fcompiler.get_version(): self.fcompiler.customize_cmd(self) self.fcompiler.show_customization() def _wrap_method(self, mth, lang, args): from distutils.ccompiler import CompileError from distutils.errors import DistutilsExecError save_compiler = self.compiler if lang in ['f77', 'f90']: self.compiler = self.fcompiler try: ret = mth(*((self,)+args)) except (DistutilsExecError, CompileError): msg = str(get_exception()) self.compiler = save_compiler raise CompileError self.compiler = save_compiler return ret def _compile (self, body, headers, include_dirs, lang): return self._wrap_method(old_config._compile, lang, (body, headers, include_dirs, lang)) def _link (self, body, headers, include_dirs, libraries, library_dirs, lang): if self.compiler.compiler_type=='msvc': libraries = (libraries or [])[:] library_dirs = (library_dirs or [])[:] if lang in ['f77', 'f90']: lang = 'c' # always use system linker when using MSVC compiler if self.fcompiler: for d in self.fcompiler.library_dirs or []: # correct path when compiling in Cygwin but with # normal Win Python if d.startswith('/usr/lib'): s, o = exec_command(['cygpath', '-w', d], use_tee=False) if not s: d = o library_dirs.append(d) for libname in self.fcompiler.libraries or []: if libname not in libraries: libraries.append(libname) for libname in libraries: if libname.startswith('msvc'): continue fileexists = False for libdir in library_dirs or []: libfile = os.path.join(libdir, '%s.lib' % (libname)) if os.path.isfile(libfile): fileexists = True break if fileexists: continue # make g77-compiled static libs available to MSVC fileexists = False for libdir in library_dirs: libfile = os.path.join(libdir, 'lib%s.a' % (libname)) if os.path.isfile(libfile): # copy libname.a file to name.lib so that MSVC linker # can find it libfile2 = os.path.join(libdir, '%s.lib' % (libname)) copy_file(libfile, libfile2) self.temp_files.append(libfile2) fileexists = True break if fileexists: continue log.warn('could not find library %r in directories %s' \ % (libname, library_dirs)) elif self.compiler.compiler_type == 'mingw32': generate_manifest(self) return self._wrap_method(old_config._link, lang, (body, headers, include_dirs, libraries, library_dirs, lang)) def check_header(self, header, include_dirs=None, library_dirs=None, lang='c'): self._check_compiler() return self.try_compile( "/* we need a dummy line to make distutils happy */", [header], include_dirs) def check_decl(self, symbol, headers=None, include_dirs=None): self._check_compiler() body = """ int main(void) { #ifndef %s (void) %s; #endif ; return 0; }""" % (symbol, symbol) return self.try_compile(body, headers, include_dirs) def check_macro_true(self, symbol, headers=None, include_dirs=None): self._check_compiler() body = """ int main(void) { #if %s #else #error false or undefined macro #endif ; return 0; }""" % (symbol,) return self.try_compile(body, headers, include_dirs) def check_type(self, type_name, headers=None, include_dirs=None, library_dirs=None): """Check type availability. Return True if the type can be compiled, False otherwise""" self._check_compiler() # First check the type can be compiled body = r""" int main(void) { if ((%(name)s *) 0) return 0; if (sizeof (%(name)s)) return 0; } """ % {'name': type_name} st = False try: try: self._compile(body % {'type': type_name}, headers, include_dirs, 'c') st = True except distutils.errors.CompileError: st = False finally: self._clean() return st def check_type_size(self, type_name, headers=None, include_dirs=None, library_dirs=None, expected=None): """Check size of a given type.""" self._check_compiler() # First check the type can be compiled body = r""" typedef %(type)s npy_check_sizeof_type; int main (void) { static int test_array [1 - 2 * !(((long) (sizeof (npy_check_sizeof_type))) >= 0)]; test_array [0] = 0 ; return 0; } """ self._compile(body % {'type': type_name}, headers, include_dirs, 'c') self._clean() if expected: body = r""" typedef %(type)s npy_check_sizeof_type; int main (void) { static int test_array [1 - 2 * !(((long) (sizeof (npy_check_sizeof_type))) == %(size)s)]; test_array [0] = 0 ; return 0; } """ for size in expected: try: self._compile(body % {'type': type_name, 'size': size}, headers, include_dirs, 'c') self._clean() return size except CompileError: pass # this fails to *compile* if size > sizeof(type) body = r""" typedef %(type)s npy_check_sizeof_type; int main (void) { static int test_array [1 - 2 * !(((long) (sizeof (npy_check_sizeof_type))) <= %(size)s)]; test_array [0] = 0 ; return 0; } """ # The principle is simple: we first find low and high bounds of size # for the type, where low/high are looked up on a log scale. Then, we # do a binary search to find the exact size between low and high low = 0 mid = 0 while True: try: self._compile(body % {'type': type_name, 'size': mid}, headers, include_dirs, 'c') self._clean() break except CompileError: #log.info("failure to test for bound %d" % mid) low = mid + 1 mid = 2 * mid + 1 high = mid # Binary search: while low != high: mid = (high - low) // 2 + low try: self._compile(body % {'type': type_name, 'size': mid}, headers, include_dirs, 'c') self._clean() high = mid except CompileError: low = mid + 1 return low def check_func(self, func, headers=None, include_dirs=None, libraries=None, library_dirs=None, decl=False, call=False, call_args=None): # clean up distutils's config a bit: add void to main(), and # return a value. self._check_compiler() body = [] if decl: if type(decl) == str: body.append(decl) else: body.append("int %s (void);" % func) # Handle MSVC intrinsics: force MS compiler to make a function call. # Useful to test for some functions when built with optimization on, to # avoid build error because the intrinsic and our 'fake' test # declaration do not match. body.append("#ifdef _MSC_VER") body.append("#pragma function(%s)" % func) body.append("#endif") body.append("int main (void) {") if call: if call_args is None: call_args = '' body.append(" %s(%s);" % (func, call_args)) else: body.append(" %s;" % func) body.append(" return 0;") body.append("}") body = '\n'.join(body) + "\n" return self.try_link(body, headers, include_dirs, libraries, library_dirs) def check_funcs_once(self, funcs, headers=None, include_dirs=None, libraries=None, library_dirs=None, decl=False, call=False, call_args=None): """Check a list of functions at once. This is useful to speed up things, since all the functions in the funcs list will be put in one compilation unit. Arguments --------- funcs : seq list of functions to test include_dirs : seq list of header paths libraries : seq list of libraries to link the code snippet to libraru_dirs : seq list of library paths decl : dict for every (key, value), the declaration in the value will be used for function in key. If a function is not in the dictionay, no declaration will be used. call : dict for every item (f, value), if the value is True, a call will be done to the function f. """ self._check_compiler() body = [] if decl: for f, v in decl.items(): if v: body.append("int %s (void);" % f) # Handle MS intrinsics. See check_func for more info. body.append("#ifdef _MSC_VER") for func in funcs: body.append("#pragma function(%s)" % func) body.append("#endif") body.append("int main (void) {") if call: for f in funcs: if f in call and call[f]: if not (call_args and f in call_args and call_args[f]): args = '' else: args = call_args[f] body.append(" %s(%s);" % (f, args)) else: body.append(" %s;" % f) else: for f in funcs: body.append(" %s;" % f) body.append(" return 0;") body.append("}") body = '\n'.join(body) + "\n" return self.try_link(body, headers, include_dirs, libraries, library_dirs) def check_inline(self): """Return the inline keyword recognized by the compiler, empty string otherwise.""" return check_inline(self) def check_restrict(self): """Return the restrict keyword recognized by the compiler, empty string otherwise.""" return check_restrict(self) def check_compiler_gcc4(self): """Return True if the C compiler is gcc >= 4.""" return check_compiler_gcc4(self) def check_gcc_function_attribute(self, attribute, name): return check_gcc_function_attribute(self, attribute, name) def check_gcc_variable_attribute(self, attribute): return check_gcc_variable_attribute(self, attribute) def get_output(self, body, headers=None, include_dirs=None, libraries=None, library_dirs=None, lang="c", use_tee=None): """Try to compile, link to an executable, and run a program built from 'body' and 'headers'. Returns the exit status code of the program and its output. """ # 2008-11-16, RemoveMe warnings.warn("\n+++++++++++++++++++++++++++++++++++++++++++++++++\n" \ "Usage of get_output is deprecated: please do not \n" \ "use it anymore, and avoid configuration checks \n" \ "involving running executable on the target machine.\n" \ "+++++++++++++++++++++++++++++++++++++++++++++++++\n", DeprecationWarning) from distutils.ccompiler import CompileError, LinkError self._check_compiler() exitcode, output = 255, '' try: grabber = GrabStdout() try: src, obj, exe = self._link(body, headers, include_dirs, libraries, library_dirs, lang) grabber.restore() except: output = grabber.data grabber.restore() raise exe = os.path.join('.', exe) exitstatus, output = exec_command(exe, execute_in='.', use_tee=use_tee) if hasattr(os, 'WEXITSTATUS'): exitcode = os.WEXITSTATUS(exitstatus) if os.WIFSIGNALED(exitstatus): sig = os.WTERMSIG(exitstatus) log.error('subprocess exited with signal %d' % (sig,)) if sig == signal.SIGINT: # control-C raise KeyboardInterrupt else: exitcode = exitstatus log.info("success!") except (CompileError, LinkError): log.info("failure.") self._clean() return exitcode, output class GrabStdout(object): def __init__(self): self.sys_stdout = sys.stdout self.data = '' sys.stdout = self def write (self, data): self.sys_stdout.write(data) self.data += data def flush (self): self.sys_stdout.flush() def restore(self): sys.stdout = self.sys_stdout
JFriel/honours_project
venv/lib/python2.7/site-packages/numpy/distutils/command/config.py
Python
gpl-3.0
17,986
# -*- coding: utf-8 -*- ############################################################################## # # Author: Joël Grand-Guillaume (Camptocamp) # Copyright 2010-2015 Camptocamp SA # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## { 'name': 'Add "To Send" and "To Validate" states in Invoices', 'version': '8.0.1.0.1', 'category': 'Generic Modules/Invoicing', 'description': ''' This module adds 2 states between draft and open state in invoices: - To Validate: For invoices which need a validation - To Send: For all invoices that need to be sent ''', 'author': "Camptocamp,Odoo Community Association (OCA)", 'website': 'http://camptocamp.com', 'license': 'AGPL-3', 'depends': ['account'], 'data': [ 'invoice_wkf.xml', 'invoice_view.xml', ], 'demo': [], 'test': [], 'installable': True, 'auto_install': False, 'application': False }
scigghia/account-invoicing
account_invoice_validation_workflow/__openerp__.py
Python
agpl-3.0
1,645
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os class URLMappings(object): def __init__(self, src_root, build_dir): self.mappings = { 'dart:mojo.internal': os.path.join(src_root, 'mojo/public/dart/sdk_ext/internal.dart'), 'dart:sky': os.path.join(build_dir, 'gen/sky/bindings/dart_sky.dart'), 'dart:sky.internals': os.path.join(src_root, 'sky/engine/bindings/sky_internals.dart'), 'dart:sky_builtin_natives': os.path.join(src_root, 'sky/engine/bindings/builtin_natives.dart'), } self.packages_root = os.path.join(build_dir, 'gen/dart-pkg/packages') @property def as_args(self): return map(lambda item: '--url-mapping=%s,%s' % item, self.mappings.items())
xunmengfeng/engine
sky/tools/skypy/url_mappings.py
Python
bsd-3-clause
878
''' WikiLinks Extension for Python-Markdown ====================================== Converts [[WikiLinks]] to relative links. See <https://pythonhosted.org/Markdown/extensions/wikilinks.html> for documentation. Original code Copyright [Waylan Limberg](http://achinghead.com/). All changes Copyright The Python Markdown Project License: [BSD](http://www.opensource.org/licenses/bsd-license.php) ''' from __future__ import absolute_import from __future__ import unicode_literals from . import Extension from ..inlinepatterns import Pattern from ..util import etree import re def build_url(label, base, end): """ Build a url from the label, a base, and an end. """ clean_label = re.sub(r'([ ]+_)|(_[ ]+)|([ ]+)', '_', label) return '%s%s%s'% (base, clean_label, end) class WikiLinkExtension(Extension): def __init__ (self, *args, **kwargs): self.config = { 'base_url' : ['/', 'String to append to beginning or URL.'], 'end_url' : ['/', 'String to append to end of URL.'], 'html_class' : ['wikilink', 'CSS hook. Leave blank for none.'], 'build_url' : [build_url, 'Callable formats URL from label.'], } super(WikiLinkExtension, self).__init__(*args, **kwargs) def extendMarkdown(self, md, md_globals): self.md = md # append to end of inline patterns WIKILINK_RE = r'\[\[([\w0-9_ -]+)\]\]' wikilinkPattern = WikiLinks(WIKILINK_RE, self.getConfigs()) wikilinkPattern.md = md md.inlinePatterns.add('wikilink', wikilinkPattern, "<not_strong") class WikiLinks(Pattern): def __init__(self, pattern, config): super(WikiLinks, self).__init__(pattern) self.config = config def handleMatch(self, m): if m.group(2).strip(): base_url, end_url, html_class = self._getMeta() label = m.group(2).strip() url = self.config['build_url'](label, base_url, end_url) a = etree.Element('a') a.text = label a.set('href', url) if html_class: a.set('class', html_class) else: a = '' return a def _getMeta(self): """ Return meta data or config data. """ base_url = self.config['base_url'] end_url = self.config['end_url'] html_class = self.config['html_class'] if hasattr(self.md, 'Meta'): if 'wiki_base_url' in self.md.Meta: base_url = self.md.Meta['wiki_base_url'][0] if 'wiki_end_url' in self.md.Meta: end_url = self.md.Meta['wiki_end_url'][0] if 'wiki_html_class' in self.md.Meta: html_class = self.md.Meta['wiki_html_class'][0] return base_url, end_url, html_class def makeExtension(*args, **kwargs) : return WikiLinkExtension(*args, **kwargs)
andela-bojengwa/talk
venv/lib/python2.7/site-packages/markdown/extensions/wikilinks.py
Python
mit
2,901
#!/usr/bin/python # # Scaleway SSH keys management module # # Copyright (C) 2018 Online SAS. # https://www.scaleway.com # # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = { 'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community' } DOCUMENTATION = ''' --- module: scaleway_sshkey short_description: Scaleway SSH keys management module version_added: "2.6" author: Remy Leone (@sieben) description: - This module manages SSH keys on Scaleway account U(https://developer.scaleway.com) options: state: description: - Indicate desired state of the SSH key. required: true choices: - present - absent ssh_pub_key: description: - The public SSH key as a string to add. required: true oauth_token: description: - Scaleway OAuth token. required: true timeout: description: - Timeout for API calls default: 30 base_url: description: - Base URL for account API default: "https://account.scaleway.com" ''' EXAMPLES = ''' - name: "Add SSH key" scaleway_sshkey: ssh_pub_key: "ssh-rsa AAAA..." state: "Present" - name: "Delete SSH key" scaleway_sshkey: ssh_pub_key: "ssh-rsa AAAA..." state: "absent" - name: "Add SSH key with explicit token" scaleway_sshkey: ssh_pub_key: "ssh-rsa AAAA..." state: "Present" oauth_token: "6ecd2c9b-6f4f-44d4-a187-61a92078d08c" ''' RETURN = ''' data: description: This is only present when C(state=present) returned: when C(state=present) type: dict sample: { "ssh_public_keys": [ {"key": "ssh-rsa AAAA...."} ] } ''' from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.basic import env_fallback from ansible.module_utils.scaleway import ScalewayAPI def extract_present_sshkeys(raw_organization_dict): ssh_key_list = raw_organization_dict["organizations"][0]["users"][0]["ssh_public_keys"] ssh_key_lookup = [ssh_key["key"] for ssh_key in ssh_key_list] return ssh_key_lookup def extract_user_id(raw_organization_dict): return raw_organization_dict["organizations"][0]["users"][0]["id"] def sshkey_user_patch(ssh_lookup): ssh_list = {"ssh_public_keys": [{"key": key} for key in ssh_lookup]} return ssh_list def core(module): api_token = module.params['oauth_token'] ssh_pub_key = module.params['ssh_pub_key'] state = module.params["state"] account_api = ScalewayAPI(module, headers={'X-Auth-Token': api_token}, base_url=module.params["base_url"]) response = account_api.get('organizations') status_code = response.status_code organization_json = response.json if not response.ok: module.fail_json(msg='Error getting ssh key [{0}: {1}]'.format( status_code, response.json['message'])) user_id = extract_user_id(organization_json) present_sshkeys = [] try: present_sshkeys = extract_present_sshkeys(organization_json) except (KeyError, IndexError) as e: module.fail_json(changed=False, data="Error while extracting present SSH keys from API") if state in ('present',): if ssh_pub_key in present_sshkeys: module.exit_json(changed=False) # If key not found create it! if module.check_mode: module.exit_json(changed=True) present_sshkeys.append(ssh_pub_key) payload = sshkey_user_patch(present_sshkeys) response = account_api.patch('/users/%s' % user_id, data=payload) if response.ok: module.exit_json(changed=True, data=response.json) module.fail_json(msg='Error creating ssh key [{0}: {1}]'.format( response.status_code, response.json)) elif state in ('absent',): if ssh_pub_key not in present_sshkeys: module.exit_json(changed=False) if module.check_mode: module.exit_json(changed=True) present_sshkeys.remove(ssh_pub_key) payload = sshkey_user_patch(present_sshkeys) response = account_api.patch('/users/%s' % user_id, data=payload) if response.ok: module.exit_json(changed=True, data=response.json) module.fail_json(msg='Error deleting ssh key [{0}: {1}]'.format( response.status_code, response.json)) def main(): module = AnsibleModule( argument_spec=dict( base_url=dict(default='https://account.scaleway.com'), oauth_token=dict( no_log=True, # Support environment variable for Scaleway OAuth Token fallback=(env_fallback, ['SCW_TOKEN', 'SCW_API_KEY', 'SCW_OAUTH_TOKEN']), required=True, ), state=dict(choices=['present', 'absent'], required=True), ssh_pub_key=dict(required=True), timeout=dict(type='int', default=30), ), supports_check_mode=True, ) core(module) if __name__ == '__main__': main()
hryamzik/ansible
lib/ansible/modules/cloud/scaleway/scaleway_sshkey.py
Python
gpl-3.0
5,245
#!/usr/bin/env $PYTHON$ # Copyright 2000-2020 JetBrains s.r.o. Use of this source code is governed by the Apache 2.0 license that can be found in the LICENSE file. import os import socket import struct import sys import traceback # See com.intellij.idea.SocketLock for the server side of this interface. RUN_PATH = u'$RUN_PATH$' CONFIG_PATH = u'$CONFIG_PATH$' SYSTEM_PATH = u'$SYSTEM_PATH$' def print_usage(cmd): print(('Usage:\n' + ' {0} -h | -? | --help\n' + ' {0} [project_dir] [-w|--wait]\n' + ' {0} [-l|--line line] [project_dir|--temp-project] [-w|--wait] file[:line]\n' + ' {0} diff <left> <right>\n' + ' {0} merge <local> <remote> [base] <merged>').format(cmd)) def write_to_sock(sock, data): if sys.version_info[0] >= 3: data = data.encode('utf-8') sock.send(struct.pack('>h', len(data)) + data) def read_from_sock(sock): length = struct.unpack('>h', sock.recv(2))[0] return sock.recv(length).decode('utf-8') def read_sequence_from_sock(sock): result = [] while True: try: data = read_from_sock(sock) if data == '---': break result.append(data) except (socket.error, IOError) as e: print("I/O error({0}): {1} ({2})".format(e.errno, e.strerror, e)) traceback.print_exception(*sys.exc_info()) break return result def process_args(argv): args = [] skip_next = False for i, arg in enumerate(argv[1:]): if arg == '-h' or arg == '-?' or arg == '--help': print_usage(argv[0]) exit(0) elif i == 0 and (arg == 'diff' or arg == 'merge' or arg == '--temp-project'): args.append(arg) elif arg == '-l' or arg == '--line': args.append(arg) skip_next = True elif arg == '-w' or arg == '--wait': args.append('--wait') elif arg == '-p' or arg == '--project': args.append(arg) elif arg == '-e' or arg == '--edit': args.append(arg) elif skip_next: args.append(arg) skip_next = False else: path = arg if ':' in arg: file_path, line_number = arg.rsplit(':', 1) if line_number.isdigit(): args.append('-l') args.append(line_number) path = file_path args.append(os.path.abspath(path)) return args def try_activate_instance(args): port_path = os.path.join(CONFIG_PATH, 'port') token_path = os.path.join(SYSTEM_PATH, 'token') if not (os.path.exists(port_path) and os.path.exists(token_path)): return False try: with open(port_path) as pf: port = int(pf.read()) with open(token_path) as tf: token = tf.read() except ValueError: return False s = socket.socket() s.settimeout(1.0) try: s.connect(('127.0.0.1', port)) except (socket.error, IOError): return False paths = read_sequence_from_sock(s) found = CONFIG_PATH in paths or os.path.realpath(CONFIG_PATH) in paths if found: write_to_sock(s, 'activate ' + token + '\0' + os.getcwd() + '\0' + '\0'.join(args)) s.settimeout(None) response = read_sequence_from_sock(s) if len(response) < 2 or response[0] != 'ok': print('bad response: ' + str(response)) exit(1) if len(response) > 2: print(response[2]) exit(int(response[1])) return False def start_new_instance(args): if sys.platform == 'darwin': if len(args) > 0: args.insert(0, '--args') if '--wait' in args: args.insert(0, '-W') os.execv('/usr/bin/open', ['open', '-na', RUN_PATH] + args) else: bin_file = os.path.split(RUN_PATH)[1] os.execv(RUN_PATH, [bin_file] + args) ide_args = process_args(sys.argv) if not try_activate_instance(ide_args): start_new_instance(ide_args)
siosio/intellij-community
platform/platform-resources/src/launcher.py
Python
apache-2.0
4,104
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import sys from typing import Any, Dict, Optional, TYPE_CHECKING from pyspark import since, keyword_only from pyspark.ml.param.shared import ( HasPredictionCol, HasBlockSize, HasMaxIter, HasRegParam, HasCheckpointInterval, HasSeed, ) from pyspark.ml.wrapper import JavaEstimator, JavaModel from pyspark.ml.common import inherit_doc from pyspark.ml.param import Params, TypeConverters, Param from pyspark.ml.util import JavaMLWritable, JavaMLReadable from pyspark.sql import DataFrame if TYPE_CHECKING: from py4j.java_gateway import JavaObject __all__ = ["ALS", "ALSModel"] @inherit_doc class _ALSModelParams(HasPredictionCol, HasBlockSize): """ Params for :py:class:`ALS` and :py:class:`ALSModel`. .. versionadded:: 3.0.0 """ userCol: Param[str] = Param( Params._dummy(), "userCol", "column name for user ids. Ids must be within " + "the integer value range.", typeConverter=TypeConverters.toString, ) itemCol: Param[str] = Param( Params._dummy(), "itemCol", "column name for item ids. Ids must be within " + "the integer value range.", typeConverter=TypeConverters.toString, ) coldStartStrategy: Param[str] = Param( Params._dummy(), "coldStartStrategy", "strategy for dealing with " + "unknown or new users/items at prediction time. This may be useful " + "in cross-validation or production scenarios, for handling " + "user/item ids the model has not seen in the training data. " + "Supported values: 'nan', 'drop'.", typeConverter=TypeConverters.toString, ) def __init__(self, *args: Any): super(_ALSModelParams, self).__init__(*args) self._setDefault(blockSize=4096) @since("1.4.0") def getUserCol(self) -> str: """ Gets the value of userCol or its default value. """ return self.getOrDefault(self.userCol) @since("1.4.0") def getItemCol(self) -> str: """ Gets the value of itemCol or its default value. """ return self.getOrDefault(self.itemCol) @since("2.2.0") def getColdStartStrategy(self) -> str: """ Gets the value of coldStartStrategy or its default value. """ return self.getOrDefault(self.coldStartStrategy) @inherit_doc class _ALSParams(_ALSModelParams, HasMaxIter, HasRegParam, HasCheckpointInterval, HasSeed): """ Params for :py:class:`ALS`. .. versionadded:: 3.0.0 """ rank: Param[int] = Param( Params._dummy(), "rank", "rank of the factorization", typeConverter=TypeConverters.toInt ) numUserBlocks: Param[int] = Param( Params._dummy(), "numUserBlocks", "number of user blocks", typeConverter=TypeConverters.toInt, ) numItemBlocks: Param[int] = Param( Params._dummy(), "numItemBlocks", "number of item blocks", typeConverter=TypeConverters.toInt, ) implicitPrefs: Param[bool] = Param( Params._dummy(), "implicitPrefs", "whether to use implicit preference", typeConverter=TypeConverters.toBoolean, ) alpha: Param[float] = Param( Params._dummy(), "alpha", "alpha for implicit preference", typeConverter=TypeConverters.toFloat, ) ratingCol: Param[str] = Param( Params._dummy(), "ratingCol", "column name for ratings", typeConverter=TypeConverters.toString, ) nonnegative: Param[bool] = Param( Params._dummy(), "nonnegative", "whether to use nonnegative constraint for least squares", typeConverter=TypeConverters.toBoolean, ) intermediateStorageLevel: Param[str] = Param( Params._dummy(), "intermediateStorageLevel", "StorageLevel for intermediate datasets. Cannot be 'NONE'.", typeConverter=TypeConverters.toString, ) finalStorageLevel: Param[str] = Param( Params._dummy(), "finalStorageLevel", "StorageLevel for ALS model factors.", typeConverter=TypeConverters.toString, ) def __init__(self, *args: Any): super(_ALSParams, self).__init__(*args) self._setDefault( rank=10, maxIter=10, regParam=0.1, numUserBlocks=10, numItemBlocks=10, implicitPrefs=False, alpha=1.0, userCol="user", itemCol="item", ratingCol="rating", nonnegative=False, checkpointInterval=10, intermediateStorageLevel="MEMORY_AND_DISK", finalStorageLevel="MEMORY_AND_DISK", coldStartStrategy="nan", ) @since("1.4.0") def getRank(self) -> int: """ Gets the value of rank or its default value. """ return self.getOrDefault(self.rank) @since("1.4.0") def getNumUserBlocks(self) -> int: """ Gets the value of numUserBlocks or its default value. """ return self.getOrDefault(self.numUserBlocks) @since("1.4.0") def getNumItemBlocks(self) -> int: """ Gets the value of numItemBlocks or its default value. """ return self.getOrDefault(self.numItemBlocks) @since("1.4.0") def getImplicitPrefs(self) -> bool: """ Gets the value of implicitPrefs or its default value. """ return self.getOrDefault(self.implicitPrefs) @since("1.4.0") def getAlpha(self) -> float: """ Gets the value of alpha or its default value. """ return self.getOrDefault(self.alpha) @since("1.4.0") def getRatingCol(self) -> str: """ Gets the value of ratingCol or its default value. """ return self.getOrDefault(self.ratingCol) @since("1.4.0") def getNonnegative(self) -> bool: """ Gets the value of nonnegative or its default value. """ return self.getOrDefault(self.nonnegative) @since("2.0.0") def getIntermediateStorageLevel(self) -> str: """ Gets the value of intermediateStorageLevel or its default value. """ return self.getOrDefault(self.intermediateStorageLevel) @since("2.0.0") def getFinalStorageLevel(self) -> str: """ Gets the value of finalStorageLevel or its default value. """ return self.getOrDefault(self.finalStorageLevel) @inherit_doc class ALS(JavaEstimator["ALSModel"], _ALSParams, JavaMLWritable, JavaMLReadable["ALS"]): """ Alternating Least Squares (ALS) matrix factorization. ALS attempts to estimate the ratings matrix `R` as the product of two lower-rank matrices, `X` and `Y`, i.e. `X * Yt = R`. Typically these approximations are called 'factor' matrices. The general approach is iterative. During each iteration, one of the factor matrices is held constant, while the other is solved for using least squares. The newly-solved factor matrix is then held constant while solving for the other factor matrix. This is a blocked implementation of the ALS factorization algorithm that groups the two sets of factors (referred to as "users" and "products") into blocks and reduces communication by only sending one copy of each user vector to each product block on each iteration, and only for the product blocks that need that user's feature vector. This is achieved by pre-computing some information about the ratings matrix to determine the "out-links" of each user (which blocks of products it will contribute to) and "in-link" information for each product (which of the feature vectors it receives from each user block it will depend on). This allows us to send only an array of feature vectors between each user block and product block, and have the product block find the users' ratings and update the products based on these messages. For implicit preference data, the algorithm used is based on `"Collaborative Filtering for Implicit Feedback Datasets", <https://doi.org/10.1109/ICDM.2008.22>`_, adapted for the blocked approach used here. Essentially instead of finding the low-rank approximations to the rating matrix `R`, this finds the approximations for a preference matrix `P` where the elements of `P` are 1 if r > 0 and 0 if r <= 0. The ratings then act as 'confidence' values related to strength of indicated user preferences rather than explicit ratings given to items. .. versionadded:: 1.4.0 Notes ----- The input rating dataframe to the ALS implementation should be deterministic. Nondeterministic data can cause failure during fitting ALS model. For example, an order-sensitive operation like sampling after a repartition makes dataframe output nondeterministic, like `df.repartition(2).sample(False, 0.5, 1618)`. Checkpointing sampled dataframe or adding a sort before sampling can help make the dataframe deterministic. Examples -------- >>> df = spark.createDataFrame( ... [(0, 0, 4.0), (0, 1, 2.0), (1, 1, 3.0), (1, 2, 4.0), (2, 1, 1.0), (2, 2, 5.0)], ... ["user", "item", "rating"]) >>> als = ALS(rank=10, seed=0) >>> als.setMaxIter(5) ALS... >>> als.getMaxIter() 5 >>> als.setRegParam(0.1) ALS... >>> als.getRegParam() 0.1 >>> als.clear(als.regParam) >>> model = als.fit(df) >>> model.getBlockSize() 4096 >>> model.getUserCol() 'user' >>> model.setUserCol("user") ALSModel... >>> model.getItemCol() 'item' >>> model.setPredictionCol("newPrediction") ALS... >>> model.rank 10 >>> model.userFactors.orderBy("id").collect() [Row(id=0, features=[...]), Row(id=1, ...), Row(id=2, ...)] >>> test = spark.createDataFrame([(0, 2), (1, 0), (2, 0)], ["user", "item"]) >>> predictions = sorted(model.transform(test).collect(), key=lambda r: r[0]) >>> predictions[0] Row(user=0, item=2, newPrediction=0.6929...) >>> predictions[1] Row(user=1, item=0, newPrediction=3.47356...) >>> predictions[2] Row(user=2, item=0, newPrediction=-0.899198...) >>> user_recs = model.recommendForAllUsers(3) >>> user_recs.where(user_recs.user == 0)\ .select("recommendations.item", "recommendations.rating").collect() [Row(item=[0, 1, 2], rating=[3.910..., 1.997..., 0.692...])] >>> item_recs = model.recommendForAllItems(3) >>> item_recs.where(item_recs.item == 2)\ .select("recommendations.user", "recommendations.rating").collect() [Row(user=[2, 1, 0], rating=[4.892..., 3.991..., 0.692...])] >>> user_subset = df.where(df.user == 2) >>> user_subset_recs = model.recommendForUserSubset(user_subset, 3) >>> user_subset_recs.select("recommendations.item", "recommendations.rating").first() Row(item=[2, 1, 0], rating=[4.892..., 1.076..., -0.899...]) >>> item_subset = df.where(df.item == 0) >>> item_subset_recs = model.recommendForItemSubset(item_subset, 3) >>> item_subset_recs.select("recommendations.user", "recommendations.rating").first() Row(user=[0, 1, 2], rating=[3.910..., 3.473..., -0.899...]) >>> als_path = temp_path + "/als" >>> als.save(als_path) >>> als2 = ALS.load(als_path) >>> als.getMaxIter() 5 >>> model_path = temp_path + "/als_model" >>> model.save(model_path) >>> model2 = ALSModel.load(model_path) >>> model.rank == model2.rank True >>> sorted(model.userFactors.collect()) == sorted(model2.userFactors.collect()) True >>> sorted(model.itemFactors.collect()) == sorted(model2.itemFactors.collect()) True >>> model.transform(test).take(1) == model2.transform(test).take(1) True """ _input_kwargs: Dict[str, Any] @keyword_only def __init__( self, *, rank: int = 10, maxIter: int = 10, regParam: float = 0.1, numUserBlocks: int = 10, numItemBlocks: int = 10, implicitPrefs: bool = False, alpha: float = 1.0, userCol: str = "user", itemCol: str = "item", seed: Optional[int] = None, ratingCol: str = "rating", nonnegative: bool = False, checkpointInterval: int = 10, intermediateStorageLevel: str = "MEMORY_AND_DISK", finalStorageLevel: str = "MEMORY_AND_DISK", coldStartStrategy: str = "nan", blockSize: int = 4096, ): """ __init__(self, \\*, rank=10, maxIter=10, regParam=0.1, numUserBlocks=10, numItemBlocks=10, implicitPrefs=False, alpha=1.0, userCol="user", itemCol="item", \ seed=None, ratingCol="rating", nonnegative=False, checkpointInterval=10, \ intermediateStorageLevel="MEMORY_AND_DISK", \ finalStorageLevel="MEMORY_AND_DISK", coldStartStrategy="nan", blockSize=4096) """ super(ALS, self).__init__() self._java_obj = self._new_java_obj("org.apache.spark.ml.recommendation.ALS", self.uid) kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("1.4.0") def setParams( self, *, rank: int = 10, maxIter: int = 10, regParam: float = 0.1, numUserBlocks: int = 10, numItemBlocks: int = 10, implicitPrefs: bool = False, alpha: float = 1.0, userCol: str = "user", itemCol: str = "item", seed: Optional[int] = None, ratingCol: str = "rating", nonnegative: bool = False, checkpointInterval: int = 10, intermediateStorageLevel: str = "MEMORY_AND_DISK", finalStorageLevel: str = "MEMORY_AND_DISK", coldStartStrategy: str = "nan", blockSize: int = 4096, ) -> "ALS": """ setParams(self, \\*, rank=10, maxIter=10, regParam=0.1, numUserBlocks=10, \ numItemBlocks=10, implicitPrefs=False, alpha=1.0, userCol="user", itemCol="item", \ seed=None, ratingCol="rating", nonnegative=False, checkpointInterval=10, \ intermediateStorageLevel="MEMORY_AND_DISK", \ finalStorageLevel="MEMORY_AND_DISK", coldStartStrategy="nan", blockSize=4096) Sets params for ALS. """ kwargs = self._input_kwargs return self._set(**kwargs) def _create_model(self, java_model: "JavaObject") -> "ALSModel": return ALSModel(java_model) @since("1.4.0") def setRank(self, value: int) -> "ALS": """ Sets the value of :py:attr:`rank`. """ return self._set(rank=value) @since("1.4.0") def setNumUserBlocks(self, value: int) -> "ALS": """ Sets the value of :py:attr:`numUserBlocks`. """ return self._set(numUserBlocks=value) @since("1.4.0") def setNumItemBlocks(self, value: int) -> "ALS": """ Sets the value of :py:attr:`numItemBlocks`. """ return self._set(numItemBlocks=value) @since("1.4.0") def setNumBlocks(self, value: int) -> "ALS": """ Sets both :py:attr:`numUserBlocks` and :py:attr:`numItemBlocks` to the specific value. """ self._set(numUserBlocks=value) return self._set(numItemBlocks=value) @since("1.4.0") def setImplicitPrefs(self, value: bool) -> "ALS": """ Sets the value of :py:attr:`implicitPrefs`. """ return self._set(implicitPrefs=value) @since("1.4.0") def setAlpha(self, value: float) -> "ALS": """ Sets the value of :py:attr:`alpha`. """ return self._set(alpha=value) @since("1.4.0") def setUserCol(self, value: str) -> "ALS": """ Sets the value of :py:attr:`userCol`. """ return self._set(userCol=value) @since("1.4.0") def setItemCol(self, value: str) -> "ALS": """ Sets the value of :py:attr:`itemCol`. """ return self._set(itemCol=value) @since("1.4.0") def setRatingCol(self, value: str) -> "ALS": """ Sets the value of :py:attr:`ratingCol`. """ return self._set(ratingCol=value) @since("1.4.0") def setNonnegative(self, value: bool) -> "ALS": """ Sets the value of :py:attr:`nonnegative`. """ return self._set(nonnegative=value) @since("2.0.0") def setIntermediateStorageLevel(self, value: str) -> "ALS": """ Sets the value of :py:attr:`intermediateStorageLevel`. """ return self._set(intermediateStorageLevel=value) @since("2.0.0") def setFinalStorageLevel(self, value: str) -> "ALS": """ Sets the value of :py:attr:`finalStorageLevel`. """ return self._set(finalStorageLevel=value) @since("2.2.0") def setColdStartStrategy(self, value: str) -> "ALS": """ Sets the value of :py:attr:`coldStartStrategy`. """ return self._set(coldStartStrategy=value) def setMaxIter(self, value: int) -> "ALS": """ Sets the value of :py:attr:`maxIter`. """ return self._set(maxIter=value) def setRegParam(self, value: float) -> "ALS": """ Sets the value of :py:attr:`regParam`. """ return self._set(regParam=value) def setPredictionCol(self, value: str) -> "ALS": """ Sets the value of :py:attr:`predictionCol`. """ return self._set(predictionCol=value) def setCheckpointInterval(self, value: int) -> "ALS": """ Sets the value of :py:attr:`checkpointInterval`. """ return self._set(checkpointInterval=value) def setSeed(self, value: int) -> "ALS": """ Sets the value of :py:attr:`seed`. """ return self._set(seed=value) @since("3.0.0") def setBlockSize(self, value: int) -> "ALS": """ Sets the value of :py:attr:`blockSize`. """ return self._set(blockSize=value) class ALSModel(JavaModel, _ALSModelParams, JavaMLWritable, JavaMLReadable["ALSModel"]): """ Model fitted by ALS. .. versionadded:: 1.4.0 """ @since("3.0.0") def setUserCol(self, value: str) -> "ALSModel": """ Sets the value of :py:attr:`userCol`. """ return self._set(userCol=value) @since("3.0.0") def setItemCol(self, value: str) -> "ALSModel": """ Sets the value of :py:attr:`itemCol`. """ return self._set(itemCol=value) @since("3.0.0") def setColdStartStrategy(self, value: str) -> "ALSModel": """ Sets the value of :py:attr:`coldStartStrategy`. """ return self._set(coldStartStrategy=value) @since("3.0.0") def setPredictionCol(self, value: str) -> "ALSModel": """ Sets the value of :py:attr:`predictionCol`. """ return self._set(predictionCol=value) @since("3.0.0") def setBlockSize(self, value: int) -> "ALSModel": """ Sets the value of :py:attr:`blockSize`. """ return self._set(blockSize=value) @property # type: ignore[misc] @since("1.4.0") def rank(self) -> int: """rank of the matrix factorization model""" return self._call_java("rank") @property # type: ignore[misc] @since("1.4.0") def userFactors(self) -> DataFrame: """ a DataFrame that stores user factors in two columns: `id` and `features` """ return self._call_java("userFactors") @property # type: ignore[misc] @since("1.4.0") def itemFactors(self) -> DataFrame: """ a DataFrame that stores item factors in two columns: `id` and `features` """ return self._call_java("itemFactors") def recommendForAllUsers(self, numItems: int) -> DataFrame: """ Returns top `numItems` items recommended for each user, for all users. .. versionadded:: 2.2.0 Parameters ---------- numItems : int max number of recommendations for each user Returns ------- :py:class:`pyspark.sql.DataFrame` a DataFrame of (userCol, recommendations), where recommendations are stored as an array of (itemCol, rating) Rows. """ return self._call_java("recommendForAllUsers", numItems) def recommendForAllItems(self, numUsers: int) -> DataFrame: """ Returns top `numUsers` users recommended for each item, for all items. .. versionadded:: 2.2.0 Parameters ---------- numUsers : int max number of recommendations for each item Returns ------- :py:class:`pyspark.sql.DataFrame` a DataFrame of (itemCol, recommendations), where recommendations are stored as an array of (userCol, rating) Rows. """ return self._call_java("recommendForAllItems", numUsers) def recommendForUserSubset(self, dataset: DataFrame, numItems: int) -> DataFrame: """ Returns top `numItems` items recommended for each user id in the input data set. Note that if there are duplicate ids in the input dataset, only one set of recommendations per unique id will be returned. .. versionadded:: 2.3.0 Parameters ---------- dataset : :py:class:`pyspark.sql.DataFrame` a DataFrame containing a column of user ids. The column name must match `userCol`. numItems : int max number of recommendations for each user Returns ------- :py:class:`pyspark.sql.DataFrame` a DataFrame of (userCol, recommendations), where recommendations are stored as an array of (itemCol, rating) Rows. """ return self._call_java("recommendForUserSubset", dataset, numItems) def recommendForItemSubset(self, dataset: DataFrame, numUsers: int) -> DataFrame: """ Returns top `numUsers` users recommended for each item id in the input data set. Note that if there are duplicate ids in the input dataset, only one set of recommendations per unique id will be returned. .. versionadded:: 2.3.0 Parameters ---------- dataset : :py:class:`pyspark.sql.DataFrame` a DataFrame containing a column of item ids. The column name must match `itemCol`. numUsers : int max number of recommendations for each item Returns ------- :py:class:`pyspark.sql.DataFrame` a DataFrame of (itemCol, recommendations), where recommendations are stored as an array of (userCol, rating) Rows. """ return self._call_java("recommendForItemSubset", dataset, numUsers) if __name__ == "__main__": import doctest import pyspark.ml.recommendation from pyspark.sql import SparkSession globs = pyspark.ml.recommendation.__dict__.copy() # The small batch size here ensures that we see multiple batches, # even in these small test examples: spark = SparkSession.builder.master("local[2]").appName("ml.recommendation tests").getOrCreate() sc = spark.sparkContext globs["sc"] = sc globs["spark"] = spark import tempfile temp_path = tempfile.mkdtemp() globs["temp_path"] = temp_path try: (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS) spark.stop() finally: from shutil import rmtree try: rmtree(temp_path) except OSError: pass if failure_count: sys.exit(-1)
mahak/spark
python/pyspark/ml/recommendation.py
Python
apache-2.0
24,774
s = rf"f<caret>oo{'bar'}"
siosio/intellij-community
python/testData/intentions/convertingRawFStringQuotes_after.py
Python
apache-2.0
26
"""Proides the constants needed for component.""" ATTR_APP_ID = "app_id" ATTR_APP_NAME = "app_name" ATTR_INPUT_SOURCE = "source" ATTR_INPUT_SOURCE_LIST = "source_list" ATTR_MEDIA_ALBUM_ARTIST = "media_album_artist" ATTR_MEDIA_ALBUM_NAME = "media_album_name" ATTR_MEDIA_ARTIST = "media_artist" ATTR_MEDIA_CHANNEL = "media_channel" ATTR_MEDIA_CONTENT_ID = "media_content_id" ATTR_MEDIA_CONTENT_TYPE = "media_content_type" ATTR_MEDIA_DURATION = "media_duration" ATTR_MEDIA_ENQUEUE = "enqueue" ATTR_MEDIA_EPISODE = "media_episode" ATTR_MEDIA_PLAYLIST = "media_playlist" ATTR_MEDIA_POSITION = "media_position" ATTR_MEDIA_POSITION_UPDATED_AT = "media_position_updated_at" ATTR_MEDIA_SEASON = "media_season" ATTR_MEDIA_SEEK_POSITION = "seek_position" ATTR_MEDIA_SERIES_TITLE = "media_series_title" ATTR_MEDIA_SHUFFLE = "shuffle" ATTR_MEDIA_TITLE = "media_title" ATTR_MEDIA_TRACK = "media_track" ATTR_MEDIA_VOLUME_LEVEL = "volume_level" ATTR_MEDIA_VOLUME_MUTED = "is_volume_muted" ATTR_SOUND_MODE = "sound_mode" ATTR_SOUND_MODE_LIST = "sound_mode_list" DOMAIN = "media_player" MEDIA_TYPE_MUSIC = "music" MEDIA_TYPE_TVSHOW = "tvshow" MEDIA_TYPE_MOVIE = "movie" MEDIA_TYPE_VIDEO = "video" MEDIA_TYPE_EPISODE = "episode" MEDIA_TYPE_CHANNEL = "channel" MEDIA_TYPE_PLAYLIST = "playlist" MEDIA_TYPE_IMAGE = "image" MEDIA_TYPE_URL = "url" MEDIA_TYPE_GAME = "game" MEDIA_TYPE_APP = "app" SERVICE_CLEAR_PLAYLIST = "clear_playlist" SERVICE_PLAY_MEDIA = "play_media" SERVICE_SELECT_SOUND_MODE = "select_sound_mode" SERVICE_SELECT_SOURCE = "select_source" SUPPORT_PAUSE = 1 SUPPORT_SEEK = 2 SUPPORT_VOLUME_SET = 4 SUPPORT_VOLUME_MUTE = 8 SUPPORT_PREVIOUS_TRACK = 16 SUPPORT_NEXT_TRACK = 32 SUPPORT_TURN_ON = 128 SUPPORT_TURN_OFF = 256 SUPPORT_PLAY_MEDIA = 512 SUPPORT_VOLUME_STEP = 1024 SUPPORT_SELECT_SOURCE = 2048 SUPPORT_STOP = 4096 SUPPORT_CLEAR_PLAYLIST = 8192 SUPPORT_PLAY = 16384 SUPPORT_SHUFFLE_SET = 32768 SUPPORT_SELECT_SOUND_MODE = 65536
fbradyirl/home-assistant
homeassistant/components/media_player/const.py
Python
apache-2.0
1,935
########################################################################## # # Copyright (c) 2010, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # * Neither the name of Image Engine Design nor the names of any # other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## from __future__ import with_statement import unittest import IECore class IgnoredExceptionsTest( unittest.TestCase ) : def test( self ) : def f( toRaise, toIgnore ) : with IECore.IgnoredExceptions( toIgnore ) : raise toRaise self.assertRaises( RuntimeError, f, RuntimeError, KeyError ) self.assertRaises( RuntimeError, f, RuntimeError, ( KeyError, IndexError ) ) f( KeyError, KeyError ) f( KeyError, ( KeyError, IndexError ) ) f( IndexError, ( KeyError, IndexError ) ) c = IECore.CompoundObject() with IECore.IgnoredExceptions( KeyError ) : c["d"] with IECore.IgnoredExceptions( Exception ) : c["d"] p = IECore.Parameterised( "" ) with IECore.IgnoredExceptions( Exception ) : p["d"] def testNoExceptions( self ) : with IECore.IgnoredExceptions( Exception ) : pass if __name__ == "__main__": unittest.main()
lento/cortex
test/IECore/IgnoredExceptionsTest.py
Python
bsd-3-clause
2,674
""" Empty """
fallisd/validate
unittests/__init__.py
Python
gpl-2.0
14
#!/usr/bin/python # # Copyright (c) 2018 Yuwei Zhou, <yuwzho@microsoft.com> # # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: azure_rm_servicebusqueue version_added: "2.8" short_description: Manage Azure Service Bus queue. description: - Create, update or delete an Azure Service Bus queue. options: resource_group: description: - name of resource group. required: true name: description: - name of the queue. required: true namespace: description: - Servicebus namespace name. - A namespace is a scoping container for all messaging components. - Multiple queues and topics can reside within a single namespace, and namespaces often serve as application containers. required: true state: description: - Assert the state of the queue. Use 'present' to create or update and 'absent' to delete. default: present choices: - absent - present auto_delete_on_idle_in_seconds: description: - Time idle interval after which a queue is automatically deleted. - The minimum duration is 5 minutes. type: int dead_lettering_on_message_expiration: description: - A value that indicates whether a queue has dead letter support when a message expires. type: bool default_message_time_to_live_seconds: description: - Default message timespan to live value. - This is the duration after which the message expires, starting from when the message is sent to Service Bus. - This is the default value used when TimeToLive is not set on a message itself. type: int enable_batched_operations: description: - Value that indicates whether server-side batched operations are enabled. type: bool enable_express: description: - Value that indicates whether Express Entities are enabled. - An express topic or queue holds a message in memory temporarily before writing it to persistent storage. type: bool enable_partitioning: description: - A value that indicates whether the topic or queue is to be partitioned across multiple message brokers. type: bool forward_dead_lettered_messages_to: description: - Queue or topic name to forward the Dead Letter message for a queue. forward_to: description: - Queue or topic name to forward the messages for a queue. lock_duration_in_seconds: description: - Timespan duration of a peek-lock. - The amount of time that the message is locked for other receivers. - The maximum value for LockDuration is 5 minutes. type: int max_delivery_count: description: - he maximum delivery count. - A message is automatically deadlettered after this number of deliveries. type: int max_size_in_mb: description: - The maximum size of the queue in megabytes, which is the size of memory allocated for the queue. type: int requires_duplicate_detection: description: - A value indicating if this queue or topic requires duplicate detection. type: bool duplicate_detection_time_in_seconds: description: - TimeSpan structure that defines the duration of the duplicate detection history. type: int requires_session: description: - A value that indicates whether the queue supports the concept of sessions. type: bool status: description: - Status of the entity. choices: - active - disabled - send_disabled - receive_disabled extends_documentation_fragment: - azure - azure_tags author: - "Yuwei Zhou (@yuwzho)" ''' EXAMPLES = ''' - name: Create a queue azure_rm_servicebusqueue: name: subqueue resource_group: myResourceGroup namespace: bar duplicate_detection_time_in_seconds: 600 ''' RETURN = ''' id: description: Current state of the queue. returned: success type: str ''' try: from msrestazure.azure_exceptions import CloudError except ImportError: # This is handled in azure_rm_common pass from ansible.module_utils.azure_rm_common import AzureRMModuleBase from ansible.module_utils.common.dict_transformations import _snake_to_camel, _camel_to_snake from ansible.module_utils._text import to_native from datetime import datetime, timedelta duration_spec_map = dict( default_message_time_to_live='default_message_time_to_live_seconds', duplicate_detection_history_time_window='duplicate_detection_time_in_seconds', auto_delete_on_idle='auto_delete_on_idle_in_seconds', lock_duration='lock_duration_in_seconds' ) sas_policy_spec = dict( state=dict(type='str', default='present', choices=['present', 'absent']), name=dict(type='str', required=True), regenerate_key=dict(type='bool'), rights=dict(type='str', choices=['manage', 'listen', 'send', 'listen_send']) ) class AzureRMServiceBusQueue(AzureRMModuleBase): def __init__(self): self.module_arg_spec = dict( resource_group=dict(type='str', required=True), name=dict(type='str', required=True), state=dict(type='str', default='present', choices=['present', 'absent']), namespace=dict(type='str', required=True), auto_delete_on_idle_in_seconds=dict(type='int'), dead_lettering_on_message_expiration=dict(type='bool'), default_message_time_to_live_seconds=dict(type='int'), duplicate_detection_time_in_seconds=dict(type='int'), enable_batched_operations=dict(type='bool'), enable_express=dict(type='bool'), enable_partitioning=dict(type='bool'), forward_dead_lettered_messages_to=dict(type='str'), forward_to=dict(type='str'), lock_duration_in_seconds=dict(type='int'), max_delivery_count=dict(type='int'), max_size_in_mb=dict(type='int'), requires_duplicate_detection=dict(type='bool'), requires_session=dict(type='bool'), status=dict(type='str', choices=['active', 'disabled', 'send_disabled', 'receive_disabled']) ) self.resource_group = None self.name = None self.state = None self.namespace = None self.location = None self.type = None self.subscription_topic_name = None self.auto_delete_on_idle_in_seconds = None self.dead_lettering_on_message_expiration = None self.default_message_time_to_live_seconds = None self.enable_batched_operations = None self.enable_express = None self.enable_partitioning = None self.forward_dead_lettered_messages_to = None self.forward_to = None self.lock_duration_in_seconds = None self.max_delivery_count = None self.max_size_in_mb = None self.requires_duplicate_detection = None self.status = None self.results = dict( changed=False, id=None ) super(AzureRMServiceBusQueue, self).__init__(self.module_arg_spec, supports_check_mode=True) def exec_module(self, **kwargs): for key in list(self.module_arg_spec.keys()): setattr(self, key, kwargs[key]) changed = False original = self.get() if self.state == 'present': # Create the resource instance params = dict( dead_lettering_on_message_expiration=self.dead_lettering_on_message_expiration, enable_batched_operations=self.enable_batched_operations, enable_express=self.enable_express, enable_partitioning=self.enable_partitioning, forward_dead_lettered_messages_to=self.forward_dead_lettered_messages_to, forward_to=self.forward_to, max_delivery_count=self.max_delivery_count, max_size_in_megabytes=self.max_size_in_mb ) if self.status: params['status'] = self.servicebus_models.EntityStatus(str.capitalize(_snake_to_camel(self.status))) for k, v in duration_spec_map.items(): seconds = getattr(self, v) if seconds: params[k] = timedelta(seconds=seconds) instance = self.servicebus_models.SBQueue(**params) result = original if not original: changed = True result = instance else: result = original attribute_map = set(self.servicebus_models.SBQueue._attribute_map.keys()) - set(self.servicebus_models.SBQueue._validation.keys()) for attribute in attribute_map: value = getattr(instance, attribute) if value and value != getattr(original, attribute): changed = True if changed and not self.check_mode: result = self.create_or_update(instance) self.results = self.to_dict(result) elif original: changed = True if not self.check_mode: self.delete() self.results['deleted'] = True self.results['changed'] = changed return self.results def create_or_update(self, param): try: client = self._get_client() return client.create_or_update(self.resource_group, self.namespace, self.name, param) except Exception as exc: self.fail('Error creating or updating queue {0} - {1}'.format(self.name, str(exc.inner_exception) or str(exc))) def delete(self): try: client = self._get_client() client.delete(self.resource_group, self.namespace, self.name) return True except Exception as exc: self.fail("Error deleting queue {0} - {1}".format(self.name, str(exc))) def _get_client(self): return self.servicebus_client.queues def get(self): try: client = self._get_client() return client.get(self.resource_group, self.namespace, self.name) except Exception: return None def to_dict(self, instance): result = dict() attribute_map = self.servicebus_models.SBQueue._attribute_map for attribute in attribute_map.keys(): value = getattr(instance, attribute) if not value: continue if attribute_map[attribute]['type'] == 'duration': if is_valid_timedelta(value): key = duration_spec_map.get(attribute) or attribute result[key] = int(value.total_seconds()) elif attribute == 'status': result['status'] = _camel_to_snake(value) elif isinstance(value, self.servicebus_models.MessageCountDetails): result[attribute] = value.as_dict() elif isinstance(value, self.servicebus_models.SBSku): result[attribute] = value.name.lower() elif isinstance(value, datetime): result[attribute] = str(value) elif isinstance(value, str): result[attribute] = to_native(value) elif attribute == 'max_size_in_megabytes': result['max_size_in_mb'] = value else: result[attribute] = value return result def is_valid_timedelta(value): if value == timedelta(10675199, 10085, 477581): return None return value def main(): AzureRMServiceBusQueue() if __name__ == '__main__': main()
alxgu/ansible
lib/ansible/modules/cloud/azure/azure_rm_servicebusqueue.py
Python
gpl-3.0
12,400
#!/usr/bin/env python # # Copyright (C) 2013 Google Inc. # # This file is part of YouCompleteMe. # # YouCompleteMe is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # YouCompleteMe is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with YouCompleteMe. If not, see <http://www.gnu.org/licenses/>. import imp import os import threading from ycmd.utils import ForceSemanticCompletion from ycmd.completers.general.general_completer_store import ( GeneralCompleterStore ) from ycmd.completers.completer_utils import PathToFiletypeCompleterPluginLoader class ServerState( object ): def __init__( self, user_options ): self._user_options = user_options self._filetype_completers = {} self._filetype_completers_lock = threading.Lock() self._gencomp = GeneralCompleterStore( self._user_options ) @property def user_options( self ): return self._user_options def Shutdown( self ): with self._filetype_completers_lock: for completer in self._filetype_completers.itervalues(): if completer: completer.Shutdown() self._gencomp.Shutdown() def _GetFiletypeCompleterForFiletype( self, filetype ): with self._filetype_completers_lock: try: return self._filetype_completers[ filetype ] except KeyError: pass module_path = PathToFiletypeCompleterPluginLoader( filetype ) completer = None supported_filetypes = [ filetype ] if os.path.exists( module_path ): module = imp.load_source( filetype, module_path ) completer = module.GetCompleter( self._user_options ) if completer: supported_filetypes.extend( completer.SupportedFiletypes() ) for supported_filetype in supported_filetypes: self._filetype_completers[ supported_filetype ] = completer return completer def GetFiletypeCompleter( self, current_filetypes ): completers = [ self._GetFiletypeCompleterForFiletype( filetype ) for filetype in current_filetypes ] for completer in completers: if completer: return completer raise ValueError( 'No semantic completer exists for filetypes: {0}'.format( current_filetypes ) ) def FiletypeCompletionAvailable( self, filetypes ): try: self.GetFiletypeCompleter( filetypes ) return True except: return False def FiletypeCompletionUsable( self, filetypes ): return ( self.CurrentFiletypeCompletionEnabled( filetypes ) and self.FiletypeCompletionAvailable( filetypes ) ) def ShouldUseGeneralCompleter( self, request_data ): return self._gencomp.ShouldUseNow( request_data ) def ShouldUseFiletypeCompleter( self, request_data ): """ Determines whether or not the semantic completer should be called, and returns an indication of the reason why. Specifically, returns a tuple: ( should_use_completer_now, was_semantic_completion_forced ), where: - should_use_completer_now: if True, the semantic engine should be used - was_semantic_completion_forced: if True, the user requested "forced" semantic completion was_semantic_completion_forced is always False if should_use_completer_now is False """ filetypes = request_data[ 'filetypes' ] if self.FiletypeCompletionUsable( filetypes ): if ForceSemanticCompletion( request_data ): # use semantic, and it was forced return ( True, True ) else: # was not forced. check the conditions for triggering return ( self.GetFiletypeCompleter( filetypes ).ShouldUseNow( request_data ), False ) # don't use semantic, ignore whether or not the user requested forced # completion return ( False, False ) def GetGeneralCompleter( self ): return self._gencomp def CurrentFiletypeCompletionEnabled( self, current_filetypes ): filetype_to_disable = self._user_options[ 'filetype_specific_completion_to_disable' ] if '*' in filetype_to_disable: return False else: return not all([ x in filetype_to_disable for x in current_filetypes ])
WillianPaiva/ycmd
ycmd/server_state.py
Python
gpl-3.0
4,592
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """CLI Backend for the Analyzer Part of the Debugger. The analyzer performs post hoc analysis of dumped intermediate tensors and graph structure information from debugged Session.run() calls. The other part of the debugger is the stepper (c.f. stepper_cli.py). """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import copy import re from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.python.debug.cli import cli_config from tensorflow.python.debug.cli import cli_shared from tensorflow.python.debug.cli import command_parser from tensorflow.python.debug.cli import debugger_cli_common from tensorflow.python.debug.cli import evaluator from tensorflow.python.debug.cli import ui_factory from tensorflow.python.debug.lib import debug_graphs from tensorflow.python.debug.lib import source_utils RL = debugger_cli_common.RichLine # String constants for the depth-dependent hanging indent at the beginning # of each line. HANG_UNFINISHED = "| " # Used for unfinished recursion depths. HANG_FINISHED = " " HANG_SUFFIX = "|- " # String constant for displaying depth and op type. DEPTH_TEMPLATE = "(%d) " OP_TYPE_TEMPLATE = "[%s] " # String constants for control inputs/outputs, etc. CTRL_LABEL = "(Ctrl) " ELLIPSIS = "..." SORT_TENSORS_BY_TIMESTAMP = "timestamp" SORT_TENSORS_BY_DUMP_SIZE = "dump_size" SORT_TENSORS_BY_OP_TYPE = "op_type" SORT_TENSORS_BY_TENSOR_NAME = "tensor_name" def _add_main_menu(output, node_name=None, enable_list_tensors=True, enable_node_info=True, enable_print_tensor=True, enable_list_inputs=True, enable_list_outputs=True): """Generate main menu for the screen output from a command. Args: output: (debugger_cli_common.RichTextLines) the output object to modify. node_name: (str or None) name of the node involved (if any). If None, the menu items node_info, list_inputs and list_outputs will be automatically disabled, overriding the values of arguments enable_node_info, enable_list_inputs and enable_list_outputs. enable_list_tensors: (bool) whether the list_tensor menu item will be enabled. enable_node_info: (bool) whether the node_info item will be enabled. enable_print_tensor: (bool) whether the print_tensor item will be enabled. enable_list_inputs: (bool) whether the item list_inputs will be enabled. enable_list_outputs: (bool) whether the item list_outputs will be enabled. """ menu = debugger_cli_common.Menu() menu.append( debugger_cli_common.MenuItem( "list_tensors", "list_tensors", enabled=enable_list_tensors)) if node_name: menu.append( debugger_cli_common.MenuItem( "node_info", "node_info -a -d -t %s" % node_name, enabled=enable_node_info)) menu.append( debugger_cli_common.MenuItem( "print_tensor", "print_tensor %s" % node_name, enabled=enable_print_tensor)) menu.append( debugger_cli_common.MenuItem( "list_inputs", "list_inputs -c -r %s" % node_name, enabled=enable_list_inputs)) menu.append( debugger_cli_common.MenuItem( "list_outputs", "list_outputs -c -r %s" % node_name, enabled=enable_list_outputs)) else: menu.append( debugger_cli_common.MenuItem( "node_info", None, enabled=False)) menu.append( debugger_cli_common.MenuItem("print_tensor", None, enabled=False)) menu.append( debugger_cli_common.MenuItem("list_inputs", None, enabled=False)) menu.append( debugger_cli_common.MenuItem("list_outputs", None, enabled=False)) menu.append( debugger_cli_common.MenuItem("run_info", "run_info")) menu.append( debugger_cli_common.MenuItem("help", "help")) output.annotations[debugger_cli_common.MAIN_MENU_KEY] = menu class DebugAnalyzer(object): """Analyzer for debug data from dump directories.""" _TIMESTAMP_COLUMN_HEAD = "t (ms)" _DUMP_SIZE_COLUMN_HEAD = "Size (B)" _OP_TYPE_COLUMN_HEAD = "Op type" _TENSOR_NAME_COLUMN_HEAD = "Tensor name" # Op types to be omitted when generating descriptions of graph structure. _GRAPH_STRUCT_OP_TYPE_BLACKLIST = ( "_Send", "_Recv", "_HostSend", "_HostRecv", "_Retval") def __init__(self, debug_dump, config): """DebugAnalyzer constructor. Args: debug_dump: A DebugDumpDir object. config: A `cli_config.CLIConfig` object that carries user-facing configurations. """ self._debug_dump = debug_dump self._evaluator = evaluator.ExpressionEvaluator(self._debug_dump) # Initialize tensor filters state. self._tensor_filters = {} self._build_argument_parsers(config) config.set_callback("graph_recursion_depth", self._build_argument_parsers) # TODO(cais): Implement list_nodes. def _build_argument_parsers(self, config): """Build argument parsers for DebugAnalayzer. Args: config: A `cli_config.CLIConfig` object. Returns: A dict mapping command handler name to `ArgumentParser` instance. """ # Argument parsers for command handlers. self._arg_parsers = {} # Parser for list_tensors. ap = argparse.ArgumentParser( description="List dumped intermediate tensors.", usage=argparse.SUPPRESS) ap.add_argument( "-f", "--tensor_filter", dest="tensor_filter", type=str, default="", help="List only Tensors passing the filter of the specified name") ap.add_argument( "-n", "--node_name_filter", dest="node_name_filter", type=str, default="", help="filter node name by regex.") ap.add_argument( "-t", "--op_type_filter", dest="op_type_filter", type=str, default="", help="filter op type by regex.") ap.add_argument( "-s", "--sort_by", dest="sort_by", type=str, default=SORT_TENSORS_BY_TIMESTAMP, help=("the field to sort the data by: (%s | %s | %s | %s)" % (SORT_TENSORS_BY_TIMESTAMP, SORT_TENSORS_BY_DUMP_SIZE, SORT_TENSORS_BY_OP_TYPE, SORT_TENSORS_BY_TENSOR_NAME))) ap.add_argument( "-r", "--reverse", dest="reverse", action="store_true", help="sort the data in reverse (descending) order") self._arg_parsers["list_tensors"] = ap # Parser for node_info. ap = argparse.ArgumentParser( description="Show information about a node.", usage=argparse.SUPPRESS) ap.add_argument( "node_name", type=str, help="Name of the node or an associated tensor, e.g., " "hidden1/Wx_plus_b/MatMul, hidden1/Wx_plus_b/MatMul:0") ap.add_argument( "-a", "--attributes", dest="attributes", action="store_true", help="Also list attributes of the node.") ap.add_argument( "-d", "--dumps", dest="dumps", action="store_true", help="Also list dumps available from the node.") ap.add_argument( "-t", "--traceback", dest="traceback", action="store_true", help="Also include the traceback of the node's creation " "(if available in Python).") self._arg_parsers["node_info"] = ap # Parser for list_inputs. ap = argparse.ArgumentParser( description="Show inputs to a node.", usage=argparse.SUPPRESS) ap.add_argument( "node_name", type=str, help="Name of the node or an output tensor from the node, e.g., " "hidden1/Wx_plus_b/MatMul, hidden1/Wx_plus_b/MatMul:0") ap.add_argument( "-c", "--control", action="store_true", help="Include control inputs.") ap.add_argument( "-d", "--depth", dest="depth", type=int, default=config.get("graph_recursion_depth"), help="Maximum depth of recursion used when showing the input tree.") ap.add_argument( "-r", "--recursive", dest="recursive", action="store_true", help="Show inputs to the node recursively, i.e., the input tree.") ap.add_argument( "-t", "--op_type", action="store_true", help="Show op types of input nodes.") self._arg_parsers["list_inputs"] = ap # Parser for list_outputs. ap = argparse.ArgumentParser( description="Show the nodes that receive the outputs of given node.", usage=argparse.SUPPRESS) ap.add_argument( "node_name", type=str, help="Name of the node or an output tensor from the node, e.g., " "hidden1/Wx_plus_b/MatMul, hidden1/Wx_plus_b/MatMul:0") ap.add_argument( "-c", "--control", action="store_true", help="Include control inputs.") ap.add_argument( "-d", "--depth", dest="depth", type=int, default=config.get("graph_recursion_depth"), help="Maximum depth of recursion used when showing the output tree.") ap.add_argument( "-r", "--recursive", dest="recursive", action="store_true", help="Show recipients of the node recursively, i.e., the output " "tree.") ap.add_argument( "-t", "--op_type", action="store_true", help="Show op types of recipient nodes.") self._arg_parsers["list_outputs"] = ap # Parser for print_tensor. self._arg_parsers["print_tensor"] = ( command_parser.get_print_tensor_argparser( "Print the value of a dumped tensor.")) # Parser for print_source. ap = argparse.ArgumentParser( description="Print a Python source file with overlaid debug " "information, including the nodes (ops) or Tensors created at the " "source lines.", usage=argparse.SUPPRESS) ap.add_argument( "source_file_path", type=str, help="Path to the source file.") ap.add_argument( "-t", "--tensors", dest="tensors", action="store_true", help="Label lines with dumped Tensors, instead of ops.") ap.add_argument( "-m", "--max_elements_per_line", type=int, default=10, help="Maximum number of elements (ops or Tensors) to show per source " "line.") ap.add_argument( "-b", "--line_begin", type=int, default=1, help="Print source beginning at line number (1-based.)") self._arg_parsers["print_source"] = ap # Parser for list_source. ap = argparse.ArgumentParser( description="List source files responsible for constructing nodes and " "tensors present in the run().", usage=argparse.SUPPRESS) ap.add_argument( "-p", "--path_filter", type=str, default="", help="Regular expression filter for file path.") ap.add_argument( "-n", "--node_name_filter", type=str, default="", help="Regular expression filter for node name.") self._arg_parsers["list_source"] = ap # Parser for eval. ap = argparse.ArgumentParser( description="""Evaluate an arbitrary expression. Can use tensor values from the current debug dump. The debug tensor names should be enclosed in pairs of backticks. Expressions with spaces should be enclosed in a pair of double quotes or a pair of single quotes. By default, numpy is imported as np and can be used in the expressions. E.g., 1) eval np.argmax(`Softmax:0`), 2) eval 'np.sum(`Softmax:0`, axis=1)', 3) eval "np.matmul((`output/Identity:0`/`Softmax:0`).T, `Softmax:0`)". """, usage=argparse.SUPPRESS) ap.add_argument( "expression", type=str, help="""Expression to be evaluated. 1) in the simplest case, use <node_name>:<output_slot>, e.g., hidden_0/MatMul:0. 2) if the default debug op "DebugIdentity" is to be overridden, use <node_name>:<output_slot>:<debug_op>, e.g., hidden_0/MatMul:0:DebugNumericSummary. 3) if the tensor of the same name exists on more than one device, use <device_name>:<node_name>:<output_slot>[:<debug_op>], e.g., /job:worker/replica:0/task:0/gpu:0:hidden_0/MatMul:0 /job:worker/replica:0/task:2/cpu:0:hidden_0/MatMul:0:DebugNanCount. 4) if the tensor is executed multiple times in a given `Session.run` call, specify the execution index with a 0-based integer enclose in a pair of brackets at the end, e.g., RNN/tanh:0[0] /job:worker/replica:0/task:0/gpu:0:RNN/tanh:0[0].""") ap.add_argument( "-a", "--all", dest="print_all", action="store_true", help="Print the tensor in its entirety, i.e., do not use ellipses " "(may be slow for large results).") ap.add_argument( "-w", "--write_path", default="", help="Path of the numpy file to write the evaluation result to, " "using numpy.save()") self._arg_parsers["eval"] = ap def add_tensor_filter(self, filter_name, filter_callable): """Add a tensor filter. A tensor filter is a named callable of the signature: filter_callable(dump_datum, tensor), wherein dump_datum is an instance of debug_data.DebugTensorDatum carrying metadata about the dumped tensor, including tensor name, timestamps, etc. tensor is the value of the dumped tensor as an numpy.ndarray object. The return value of the function is a bool. This is the same signature as the input argument to debug_data.DebugDumpDir.find(). Args: filter_name: (str) name of the filter. Cannot be empty. filter_callable: (callable) a filter function of the signature described as above. Raises: ValueError: If filter_name is an empty str. TypeError: If filter_name is not a str. Or if filter_callable is not callable. """ if not isinstance(filter_name, str): raise TypeError("Input argument filter_name is expected to be str, " "but is not.") # Check that filter_name is not an empty str. if not filter_name: raise ValueError("Input argument filter_name cannot be empty.") # Check that filter_callable is callable. if not callable(filter_callable): raise TypeError( "Input argument filter_callable is expected to be callable, " "but is not.") self._tensor_filters[filter_name] = filter_callable def get_tensor_filter(self, filter_name): """Retrieve filter function by name. Args: filter_name: Name of the filter set during add_tensor_filter() call. Returns: The callable associated with the filter name. Raises: ValueError: If there is no tensor filter of the specified filter name. """ if filter_name not in self._tensor_filters: raise ValueError("There is no tensor filter named \"%s\"" % filter_name) return self._tensor_filters[filter_name] def get_help(self, handler_name): return self._arg_parsers[handler_name].format_help() def list_tensors(self, args, screen_info=None): """Command handler for list_tensors. List tensors dumped during debugged Session.run() call. Args: args: Command-line arguments, excluding the command prefix, as a list of str. screen_info: Optional dict input containing screen information such as cols. Returns: Output text lines as a RichTextLines object. """ # TODO(cais): Add annotations of substrings for dumped tensor names, to # facilitate on-screen highlighting/selection of node names. _ = screen_info parsed = self._arg_parsers["list_tensors"].parse_args(args) output = [] filter_strs = [] if parsed.op_type_filter: op_type_regex = re.compile(parsed.op_type_filter) filter_strs.append("Op type regex filter: \"%s\"" % parsed.op_type_filter) else: op_type_regex = None if parsed.node_name_filter: node_name_regex = re.compile(parsed.node_name_filter) filter_strs.append("Node name regex filter: \"%s\"" % parsed.node_name_filter) else: node_name_regex = None output = debugger_cli_common.RichTextLines(filter_strs) output.append("") if parsed.tensor_filter: try: filter_callable = self.get_tensor_filter(parsed.tensor_filter) except ValueError: output = cli_shared.error("There is no tensor filter named \"%s\"." % parsed.tensor_filter) _add_main_menu(output, node_name=None, enable_list_tensors=False) return output data_to_show = self._debug_dump.find(filter_callable) else: data_to_show = self._debug_dump.dumped_tensor_data # TODO(cais): Implement filter by lambda on tensor value. max_timestamp_width, max_dump_size_width, max_op_type_width = ( self._measure_tensor_list_column_widths(data_to_show)) # Sort the data. data_to_show = self._sort_dump_data_by( data_to_show, parsed.sort_by, parsed.reverse) output.extend( self._tensor_list_column_heads(parsed, max_timestamp_width, max_dump_size_width, max_op_type_width)) dump_count = 0 for dump in data_to_show: if node_name_regex and not node_name_regex.match(dump.node_name): continue if op_type_regex: op_type = self._debug_dump.node_op_type(dump.node_name) if not op_type_regex.match(op_type): continue rel_time = (dump.timestamp - self._debug_dump.t0) / 1000.0 dump_size_str = cli_shared.bytes_to_readable_str(dump.dump_size_bytes) dumped_tensor_name = "%s:%d" % (dump.node_name, dump.output_slot) op_type = self._debug_dump.node_op_type(dump.node_name) line = "[%.3f]" % rel_time line += " " * (max_timestamp_width - len(line)) line += dump_size_str line += " " * (max_timestamp_width + max_dump_size_width - len(line)) line += op_type line += " " * (max_timestamp_width + max_dump_size_width + max_op_type_width - len(line)) line += dumped_tensor_name output.append( line, font_attr_segs=[( len(line) - len(dumped_tensor_name), len(line), debugger_cli_common.MenuItem("", "pt %s" % dumped_tensor_name))]) dump_count += 1 if parsed.tensor_filter: output.prepend([ "%d dumped tensor(s) passing filter \"%s\":" % (dump_count, parsed.tensor_filter) ]) else: output.prepend(["%d dumped tensor(s):" % dump_count]) _add_main_menu(output, node_name=None, enable_list_tensors=False) return output def _measure_tensor_list_column_widths(self, data): """Determine the maximum widths of the timestamp and op-type column. This method assumes that data is sorted in the default order, i.e., by ascending timestamps. Args: data: (list of DebugTensorDaum) the data based on which the maximum column widths will be determined. Returns: (int) maximum width of the timestamp column. 0 if data is empty. (int) maximum width of the dump size column. 0 if data is empty. (int) maximum width of the op type column. 0 if data is empty. """ max_timestamp_width = 0 if data: max_rel_time_ms = (data[-1].timestamp - self._debug_dump.t0) / 1000.0 max_timestamp_width = len("[%.3f] " % max_rel_time_ms) + 1 max_timestamp_width = max(max_timestamp_width, len(self._TIMESTAMP_COLUMN_HEAD) + 1) max_dump_size_width = 0 for dump in data: dump_size_str = cli_shared.bytes_to_readable_str(dump.dump_size_bytes) if len(dump_size_str) + 1 > max_dump_size_width: max_dump_size_width = len(dump_size_str) + 1 max_dump_size_width = max(max_dump_size_width, len(self._DUMP_SIZE_COLUMN_HEAD) + 1) max_op_type_width = 0 for dump in data: op_type = self._debug_dump.node_op_type(dump.node_name) if len(op_type) + 1 > max_op_type_width: max_op_type_width = len(op_type) + 1 max_op_type_width = max(max_op_type_width, len(self._OP_TYPE_COLUMN_HEAD) + 1) return max_timestamp_width, max_dump_size_width, max_op_type_width def _sort_dump_data_by(self, data, sort_by, reverse): """Sort a list of DebugTensorDatum in specified order. Args: data: (list of DebugTensorDatum) the data to be sorted. sort_by: The field to sort data by. reverse: (bool) Whether to use reversed (descending) order. Returns: (list of DebugTensorDatum) in sorted order. Raises: ValueError: given an invalid value of sort_by. """ if sort_by == SORT_TENSORS_BY_TIMESTAMP: return sorted( data, reverse=reverse, key=lambda x: x.timestamp) elif sort_by == SORT_TENSORS_BY_DUMP_SIZE: return sorted(data, reverse=reverse, key=lambda x: x.dump_size_bytes) elif sort_by == SORT_TENSORS_BY_OP_TYPE: return sorted( data, reverse=reverse, key=lambda x: self._debug_dump.node_op_type(x.node_name)) elif sort_by == SORT_TENSORS_BY_TENSOR_NAME: return sorted( data, reverse=reverse, key=lambda x: "%s:%d" % (x.node_name, x.output_slot)) else: raise ValueError("Unsupported key to sort tensors by: %s" % sort_by) def _tensor_list_column_heads(self, parsed, max_timestamp_width, max_dump_size_width, max_op_type_width): """Generate a line containing the column heads of the tensor list. Args: parsed: Parsed arguments (by argparse) of the list_tensors command. max_timestamp_width: (int) maximum width of the timestamp column. max_dump_size_width: (int) maximum width of the dump size column. max_op_type_width: (int) maximum width of the op type column. Returns: A RichTextLines object. """ base_command = "list_tensors" if parsed.tensor_filter: base_command += " -f %s" % parsed.tensor_filter if parsed.op_type_filter: base_command += " -t %s" % parsed.op_type_filter if parsed.node_name_filter: base_command += " -n %s" % parsed.node_name_filter attr_segs = {0: []} row = self._TIMESTAMP_COLUMN_HEAD command = "%s -s %s" % (base_command, SORT_TENSORS_BY_TIMESTAMP) if parsed.sort_by == SORT_TENSORS_BY_TIMESTAMP and not parsed.reverse: command += " -r" attr_segs[0].append( (0, len(row), [debugger_cli_common.MenuItem(None, command), "bold"])) row += " " * (max_timestamp_width - len(row)) prev_len = len(row) row += self._DUMP_SIZE_COLUMN_HEAD command = "%s -s %s" % (base_command, SORT_TENSORS_BY_DUMP_SIZE) if parsed.sort_by == SORT_TENSORS_BY_DUMP_SIZE and not parsed.reverse: command += " -r" attr_segs[0].append((prev_len, len(row), [debugger_cli_common.MenuItem(None, command), "bold"])) row += " " * (max_dump_size_width + max_timestamp_width - len(row)) prev_len = len(row) row += self._OP_TYPE_COLUMN_HEAD command = "%s -s %s" % (base_command, SORT_TENSORS_BY_OP_TYPE) if parsed.sort_by == SORT_TENSORS_BY_OP_TYPE and not parsed.reverse: command += " -r" attr_segs[0].append((prev_len, len(row), [debugger_cli_common.MenuItem(None, command), "bold"])) row += " " * ( max_op_type_width + max_dump_size_width + max_timestamp_width - len(row) ) prev_len = len(row) row += self._TENSOR_NAME_COLUMN_HEAD command = "%s -s %s" % (base_command, SORT_TENSORS_BY_TENSOR_NAME) if parsed.sort_by == SORT_TENSORS_BY_TENSOR_NAME and not parsed.reverse: command += " -r" attr_segs[0].append((prev_len, len(row), [debugger_cli_common.MenuItem("", command), "bold"])) row += " " * ( max_op_type_width + max_dump_size_width + max_timestamp_width - len(row) ) return debugger_cli_common.RichTextLines([row], font_attr_segs=attr_segs) def node_info(self, args, screen_info=None): """Command handler for node_info. Query information about a given node. Args: args: Command-line arguments, excluding the command prefix, as a list of str. screen_info: Optional dict input containing screen information such as cols. Returns: Output text lines as a RichTextLines object. """ # TODO(cais): Add annotation of substrings for node names, to facilitate # on-screen highlighting/selection of node names. _ = screen_info parsed = self._arg_parsers["node_info"].parse_args(args) # Get a node name, regardless of whether the input is a node name (without # output slot attached) or a tensor name (with output slot attached). node_name, unused_slot = debug_graphs.parse_node_or_tensor_name( parsed.node_name) if not self._debug_dump.node_exists(node_name): output = cli_shared.error( "There is no node named \"%s\" in the partition graphs" % node_name) _add_main_menu( output, node_name=None, enable_list_tensors=True, enable_node_info=False, enable_list_inputs=False, enable_list_outputs=False) return output # TODO(cais): Provide UI glossary feature to explain to users what the # term "partition graph" means and how it is related to TF graph objects # in Python. The information can be along the line of: # "A tensorflow graph defined in Python is stripped of unused ops # according to the feeds and fetches and divided into a number of # partition graphs that may be distributed among multiple devices and # hosts. The partition graphs are what's actually executed by the C++ # runtime during a run() call." lines = ["Node %s" % node_name] font_attr_segs = { 0: [(len(lines[-1]) - len(node_name), len(lines[-1]), "bold")] } lines.append("") lines.append(" Op: %s" % self._debug_dump.node_op_type(node_name)) lines.append(" Device: %s" % self._debug_dump.node_device(node_name)) output = debugger_cli_common.RichTextLines( lines, font_attr_segs=font_attr_segs) # List node inputs (non-control and control). inputs = self._exclude_blacklisted_ops( self._debug_dump.node_inputs(node_name)) ctrl_inputs = self._exclude_blacklisted_ops( self._debug_dump.node_inputs(node_name, is_control=True)) output.extend(self._format_neighbors("input", inputs, ctrl_inputs)) # List node output recipients (non-control and control). recs = self._exclude_blacklisted_ops( self._debug_dump.node_recipients(node_name)) ctrl_recs = self._exclude_blacklisted_ops( self._debug_dump.node_recipients(node_name, is_control=True)) output.extend(self._format_neighbors("recipient", recs, ctrl_recs)) # Optional: List attributes of the node. if parsed.attributes: output.extend(self._list_node_attributes(node_name)) # Optional: List dumps available from the node. if parsed.dumps: output.extend(self._list_node_dumps(node_name)) if parsed.traceback: output.extend(self._render_node_traceback(node_name)) _add_main_menu(output, node_name=node_name, enable_node_info=False) return output def _exclude_blacklisted_ops(self, node_names): """Exclude all nodes whose op types are in _GRAPH_STRUCT_OP_TYPE_BLACKLIST. Args: node_names: An iterable of node or graph element names. Returns: A list of node names that are not blacklisted. """ return [node_name for node_name in node_names if self._debug_dump.node_op_type( debug_graphs.get_node_name(node_name)) not in self._GRAPH_STRUCT_OP_TYPE_BLACKLIST] def _render_node_traceback(self, node_name): """Render traceback of a node's creation in Python, if available. Args: node_name: (str) name of the node. Returns: A RichTextLines object containing the stack trace of the node's construction. """ lines = [RL(""), RL(""), RL("Traceback of node construction:", "bold")] try: node_stack = self._debug_dump.node_traceback(node_name) for depth, (file_path, line, function_name, text) in enumerate( node_stack): lines.append("%d: %s" % (depth, file_path)) attribute = debugger_cli_common.MenuItem( "", "ps %s -b %d" % (file_path, line)) if text else None line_number_line = RL(" ") line_number_line += RL("Line: %d" % line, attribute) lines.append(line_number_line) lines.append(" Function: %s" % function_name) lines.append(" Text: " + (("\"%s\"" % text) if text else "None")) lines.append("") except KeyError: lines.append("(Node unavailable in the loaded Python graph)") except LookupError: lines.append("(Unavailable because no Python graph has been loaded)") return debugger_cli_common.rich_text_lines_from_rich_line_list(lines) def list_inputs(self, args, screen_info=None): """Command handler for inputs. Show inputs to a given node. Args: args: Command-line arguments, excluding the command prefix, as a list of str. screen_info: Optional dict input containing screen information such as cols. Returns: Output text lines as a RichTextLines object. """ # Screen info not currently used by this handler. Include this line to # mute pylint. _ = screen_info # TODO(cais): Use screen info to format the output lines more prettily, # e.g., hanging indent of long node names. parsed = self._arg_parsers["list_inputs"].parse_args(args) output = self._list_inputs_or_outputs( parsed.recursive, parsed.node_name, parsed.depth, parsed.control, parsed.op_type, do_outputs=False) node_name = debug_graphs.get_node_name(parsed.node_name) _add_main_menu(output, node_name=node_name, enable_list_inputs=False) return output def print_tensor(self, args, screen_info=None): """Command handler for print_tensor. Print value of a given dumped tensor. Args: args: Command-line arguments, excluding the command prefix, as a list of str. screen_info: Optional dict input containing screen information such as cols. Returns: Output text lines as a RichTextLines object. """ parsed = self._arg_parsers["print_tensor"].parse_args(args) np_printoptions = cli_shared.numpy_printoptions_from_screen_info( screen_info) # Determine if any range-highlighting is required. highlight_options = cli_shared.parse_ranges_highlight(parsed.ranges) tensor_name, tensor_slicing = ( command_parser.parse_tensor_name_with_slicing(parsed.tensor_name)) node_name, output_slot = debug_graphs.parse_node_or_tensor_name(tensor_name) if (self._debug_dump.loaded_partition_graphs() and not self._debug_dump.node_exists(node_name)): output = cli_shared.error( "Node \"%s\" does not exist in partition graphs" % node_name) _add_main_menu( output, node_name=None, enable_list_tensors=True, enable_print_tensor=False) return output watch_keys = self._debug_dump.debug_watch_keys(node_name) if output_slot is None: output_slots = set() for watch_key in watch_keys: output_slots.add(int(watch_key.split(":")[1])) if len(output_slots) == 1: # There is only one dumped tensor from this node, so there is no # ambiguity. Proceed to show the only dumped tensor. output_slot = list(output_slots)[0] else: # There are more than one dumped tensors from this node. Indicate as # such. # TODO(cais): Provide an output screen with command links for # convenience. lines = [ "Node \"%s\" generated debug dumps from %s output slots:" % (node_name, len(output_slots)), "Please specify the output slot: %s:x." % node_name ] output = debugger_cli_common.RichTextLines(lines) _add_main_menu( output, node_name=node_name, enable_list_tensors=True, enable_print_tensor=False) return output # Find debug dump data that match the tensor name (node name + output # slot). matching_data = [] for watch_key in watch_keys: debug_tensor_data = self._debug_dump.watch_key_to_data(watch_key) for datum in debug_tensor_data: if datum.output_slot == output_slot: matching_data.append(datum) if not matching_data: # No dump for this tensor. output = cli_shared.error("Tensor \"%s\" did not generate any dumps." % parsed.tensor_name) elif len(matching_data) == 1: # There is only one dump for this tensor. if parsed.number <= 0: output = cli_shared.format_tensor( matching_data[0].get_tensor(), matching_data[0].watch_key, np_printoptions, print_all=parsed.print_all, tensor_slicing=tensor_slicing, highlight_options=highlight_options, include_numeric_summary=parsed.numeric_summary, write_path=parsed.write_path) else: output = cli_shared.error( "Invalid number (%d) for tensor %s, which generated one dump." % (parsed.number, parsed.tensor_name)) _add_main_menu(output, node_name=node_name, enable_print_tensor=False) else: # There are more than one dumps for this tensor. if parsed.number < 0: lines = [ "Tensor \"%s\" generated %d dumps:" % (parsed.tensor_name, len(matching_data)) ] font_attr_segs = {} for i, datum in enumerate(matching_data): rel_time = (datum.timestamp - self._debug_dump.t0) / 1000.0 lines.append("#%d [%.3f ms] %s" % (i, rel_time, datum.watch_key)) command = "print_tensor %s -n %d" % (parsed.tensor_name, i) font_attr_segs[len(lines) - 1] = [( len(lines[-1]) - len(datum.watch_key), len(lines[-1]), debugger_cli_common.MenuItem(None, command))] lines.append("") lines.append( "You can use the -n (--number) flag to specify which dump to " "print.") lines.append("For example:") lines.append(" print_tensor %s -n 0" % parsed.tensor_name) output = debugger_cli_common.RichTextLines( lines, font_attr_segs=font_attr_segs) elif parsed.number >= len(matching_data): output = cli_shared.error( "Specified number (%d) exceeds the number of available dumps " "(%d) for tensor %s" % (parsed.number, len(matching_data), parsed.tensor_name)) else: output = cli_shared.format_tensor( matching_data[parsed.number].get_tensor(), matching_data[parsed.number].watch_key + " (dump #%d)" % parsed.number, np_printoptions, print_all=parsed.print_all, tensor_slicing=tensor_slicing, highlight_options=highlight_options, write_path=parsed.write_path) _add_main_menu(output, node_name=node_name, enable_print_tensor=False) return output def list_outputs(self, args, screen_info=None): """Command handler for inputs. Show inputs to a given node. Args: args: Command-line arguments, excluding the command prefix, as a list of str. screen_info: Optional dict input containing screen information such as cols. Returns: Output text lines as a RichTextLines object. """ # Screen info not currently used by this handler. Include this line to # mute pylint. _ = screen_info # TODO(cais): Use screen info to format the output lines more prettily, # e.g., hanging indent of long node names. parsed = self._arg_parsers["list_outputs"].parse_args(args) output = self._list_inputs_or_outputs( parsed.recursive, parsed.node_name, parsed.depth, parsed.control, parsed.op_type, do_outputs=True) node_name = debug_graphs.get_node_name(parsed.node_name) _add_main_menu(output, node_name=node_name, enable_list_outputs=False) return output def evaluate_expression(self, args, screen_info=None): parsed = self._arg_parsers["eval"].parse_args(args) eval_res = self._evaluator.evaluate(parsed.expression) np_printoptions = cli_shared.numpy_printoptions_from_screen_info( screen_info) return cli_shared.format_tensor( eval_res, "from eval of expression '%s'" % parsed.expression, np_printoptions, print_all=parsed.print_all, include_numeric_summary=True, write_path=parsed.write_path) def _reconstruct_print_source_command(self, parsed, line_begin, max_elements_per_line_increase=0): return "ps %s %s -b %d -m %d" % ( parsed.source_file_path, "-t" if parsed.tensors else "", line_begin, parsed.max_elements_per_line + max_elements_per_line_increase) def print_source(self, args, screen_info=None): """Print the content of a source file.""" del screen_info # Unused. parsed = self._arg_parsers["print_source"].parse_args(args) source_annotation = source_utils.annotate_source( self._debug_dump, parsed.source_file_path, do_dumped_tensors=parsed.tensors) source_lines, line_num_width = source_utils.load_source( parsed.source_file_path) labeled_source_lines = [] actual_initial_scroll_target = 0 for i, line in enumerate(source_lines): annotated_line = RL("L%d" % (i + 1), cli_shared.COLOR_YELLOW) annotated_line += " " * (line_num_width - len(annotated_line)) annotated_line += line labeled_source_lines.append(annotated_line) if i + 1 == parsed.line_begin: actual_initial_scroll_target = len(labeled_source_lines) - 1 if i + 1 in source_annotation: sorted_elements = sorted(source_annotation[i + 1]) for k, element in enumerate(sorted_elements): if k >= parsed.max_elements_per_line: omitted_info_line = RL(" (... Omitted %d of %d %s ...) " % ( len(sorted_elements) - parsed.max_elements_per_line, len(sorted_elements), "tensor(s)" if parsed.tensors else "op(s)")) omitted_info_line += RL( "+5", debugger_cli_common.MenuItem( None, self._reconstruct_print_source_command( parsed, i + 1, max_elements_per_line_increase=5))) labeled_source_lines.append(omitted_info_line) break label = RL(" " * 4) if self._debug_dump.debug_watch_keys( debug_graphs.get_node_name(element)): attribute = debugger_cli_common.MenuItem("", "pt %s" % element) else: attribute = cli_shared.COLOR_BLUE label += RL(element, attribute) labeled_source_lines.append(label) output = debugger_cli_common.rich_text_lines_from_rich_line_list( labeled_source_lines, annotations={debugger_cli_common.INIT_SCROLL_POS_KEY: actual_initial_scroll_target}) _add_main_menu(output, node_name=None) return output def _make_source_table(self, source_list, is_tf_py_library): """Make a table summarizing the source files that create nodes and tensors. Args: source_list: List of source files and related information as a list of tuples (file_path, is_tf_library, num_nodes, num_tensors, num_dumps, first_line). is_tf_py_library: (`bool`) whether this table is for files that belong to the TensorFlow Python library. Returns: The table as a `debugger_cli_common.RichTextLines` object. """ path_head = "Source file path" num_nodes_head = "#(nodes)" num_tensors_head = "#(tensors)" num_dumps_head = "#(tensor dumps)" if is_tf_py_library: # Use color to mark files that are guessed to belong to TensorFlow Python # library. color = cli_shared.COLOR_GRAY lines = [RL("TensorFlow Python library file(s):", color)] else: color = cli_shared.COLOR_WHITE lines = [RL("File(s) outside TensorFlow Python library:", color)] if not source_list: lines.append(RL("[No files.]")) lines.append(RL()) return debugger_cli_common.rich_text_lines_from_rich_line_list(lines) path_column_width = max( max([len(item[0]) for item in source_list]), len(path_head)) + 1 num_nodes_column_width = max( max([len(str(item[2])) for item in source_list]), len(num_nodes_head)) + 1 num_tensors_column_width = max( max([len(str(item[3])) for item in source_list]), len(num_tensors_head)) + 1 head = RL(path_head + " " * (path_column_width - len(path_head)), color) head += RL(num_nodes_head + " " * ( num_nodes_column_width - len(num_nodes_head)), color) head += RL(num_tensors_head + " " * ( num_tensors_column_width - len(num_tensors_head)), color) head += RL(num_dumps_head, color) lines.append(head) for (file_path, _, num_nodes, num_tensors, num_dumps, first_line_num) in source_list: path_attributes = [color] if source_utils.is_extension_uncompiled_python_source(file_path): path_attributes.append( debugger_cli_common.MenuItem(None, "ps %s -b %d" % (file_path, first_line_num))) line = RL(file_path, path_attributes) line += " " * (path_column_width - len(line)) line += RL( str(num_nodes) + " " * (num_nodes_column_width - len(str(num_nodes))), color) line += RL( str(num_tensors) + " " * (num_tensors_column_width - len(str(num_tensors))), color) line += RL(str(num_dumps), color) lines.append(line) lines.append(RL()) return debugger_cli_common.rich_text_lines_from_rich_line_list(lines) def list_source(self, args, screen_info=None): """List Python source files that constructed nodes and tensors.""" del screen_info # Unused. parsed = self._arg_parsers["list_source"].parse_args(args) source_list = source_utils.list_source_files_against_dump( self._debug_dump, path_regex_whitelist=parsed.path_filter, node_name_regex_whitelist=parsed.node_name_filter) top_lines = [ RL("List of source files that created nodes in this run", "bold")] if parsed.path_filter: top_lines.append( RL("File path regex filter: \"%s\"" % parsed.path_filter)) if parsed.node_name_filter: top_lines.append( RL("Node name regex filter: \"%s\"" % parsed.node_name_filter)) top_lines.append(RL()) output = debugger_cli_common.rich_text_lines_from_rich_line_list(top_lines) if not source_list: output.append("[No source file information.]") return output output.extend(self._make_source_table( [item for item in source_list if not item[1]], False)) output.extend(self._make_source_table( [item for item in source_list if item[1]], True)) _add_main_menu(output, node_name=None) return output def _list_inputs_or_outputs(self, recursive, node_name, depth, control, op_type, do_outputs=False): """Helper function used by list_inputs and list_outputs. Format a list of lines to display the inputs or output recipients of a given node. Args: recursive: Whether the listing is to be done recursively, as a boolean. node_name: The name of the node in question, as a str. depth: Maximum recursion depth, applies only if recursive == True, as an int. control: Whether control inputs or control recipients are included, as a boolean. op_type: Whether the op types of the nodes are to be included, as a boolean. do_outputs: Whether recipients, instead of input nodes are to be listed, as a boolean. Returns: Input or recipient tree formatted as a RichTextLines object. """ if do_outputs: tracker = self._debug_dump.node_recipients type_str = "Recipients of" short_type_str = "recipients" else: tracker = self._debug_dump.node_inputs type_str = "Inputs to" short_type_str = "inputs" lines = [] font_attr_segs = {} # Check if this is a tensor name, instead of a node name. node_name, _ = debug_graphs.parse_node_or_tensor_name(node_name) # Check if node exists. if not self._debug_dump.node_exists(node_name): return cli_shared.error( "There is no node named \"%s\" in the partition graphs" % node_name) if recursive: max_depth = depth else: max_depth = 1 if control: include_ctrls_str = ", control %s included" % short_type_str else: include_ctrls_str = "" line = "%s node \"%s\"" % (type_str, node_name) font_attr_segs[0] = [(len(line) - 1 - len(node_name), len(line) - 1, "bold") ] lines.append(line + " (Depth limit = %d%s):" % (max_depth, include_ctrls_str )) command_template = "lo -c -r %s" if do_outputs else "li -c -r %s" self._dfs_from_node( lines, font_attr_segs, node_name, tracker, max_depth, 1, [], control, op_type, command_template=command_template) # Include legend. lines.append("") lines.append("Legend:") lines.append(" (d): recursion depth = d.") if control: lines.append(" (Ctrl): Control input.") if op_type: lines.append(" [Op]: Input node has op type Op.") # TODO(cais): Consider appending ":0" at the end of 1st outputs of nodes. return debugger_cli_common.RichTextLines( lines, font_attr_segs=font_attr_segs) def _dfs_from_node(self, lines, attr_segs, node_name, tracker, max_depth, depth, unfinished, include_control=False, show_op_type=False, command_template=None): """Perform depth-first search (DFS) traversal of a node's input tree. It recursively tracks the inputs (or output recipients) of the node called node_name, and append these inputs (or output recipients) to a list of text lines (lines) with proper indentation that reflects the recursion depth, together with some formatting attributes (to attr_segs). The formatting attributes can include command shortcuts, for example. Args: lines: Text lines to append to, as a list of str. attr_segs: (dict) Attribute segments dictionary to append to. node_name: Name of the node, as a str. This arg is updated during the recursion. tracker: A callable that takes one str as the node name input and returns a list of str as the inputs/outputs. This makes it this function general enough to be used with both node-input and node-output tracking. max_depth: Maximum recursion depth, as an int. depth: Current recursion depth. This arg is updated during the recursion. unfinished: A stack of unfinished recursion depths, as a list of int. include_control: Whether control dependencies are to be included as inputs (and marked as such). show_op_type: Whether op type of the input nodes are to be displayed alongside the nodes' names. command_template: (str) Template for command shortcut of the node names. """ # Make a shallow copy of the list because it may be extended later. all_inputs = self._exclude_blacklisted_ops( copy.copy(tracker(node_name, is_control=False))) is_ctrl = [False] * len(all_inputs) if include_control: # Sort control inputs or recipients in alphabetical order of the node # names. ctrl_inputs = self._exclude_blacklisted_ops( sorted(tracker(node_name, is_control=True))) all_inputs.extend(ctrl_inputs) is_ctrl.extend([True] * len(ctrl_inputs)) if not all_inputs: if depth == 1: lines.append(" [None]") return unfinished.append(depth) # Create depth-dependent hanging indent for the line. hang = "" for k in xrange(depth): if k < depth - 1: if k + 1 in unfinished: hang += HANG_UNFINISHED else: hang += HANG_FINISHED else: hang += HANG_SUFFIX if all_inputs and depth > max_depth: lines.append(hang + ELLIPSIS) unfinished.pop() return hang += DEPTH_TEMPLATE % depth for i in xrange(len(all_inputs)): inp = all_inputs[i] op_type = self._debug_dump.node_op_type(debug_graphs.get_node_name(inp)) if op_type in self._GRAPH_STRUCT_OP_TYPE_BLACKLIST: continue if is_ctrl[i]: ctrl_str = CTRL_LABEL else: ctrl_str = "" op_type_str = "" if show_op_type: op_type_str = OP_TYPE_TEMPLATE % op_type if i == len(all_inputs) - 1: unfinished.pop() line = hang + ctrl_str + op_type_str + inp lines.append(line) if command_template: attr_segs[len(lines) - 1] = [( len(line) - len(inp), len(line), debugger_cli_common.MenuItem(None, command_template % inp))] # Recursive call. # The input's/output's name can be a tensor name, in the case of node # with >1 output slots. inp_node_name, _ = debug_graphs.parse_node_or_tensor_name(inp) self._dfs_from_node( lines, attr_segs, inp_node_name, tracker, max_depth, depth + 1, unfinished, include_control=include_control, show_op_type=show_op_type, command_template=command_template) def _format_neighbors(self, neighbor_type, non_ctrls, ctrls): """List neighbors (inputs or recipients) of a node. Args: neighbor_type: ("input" | "recipient") non_ctrls: Non-control neighbor node names, as a list of str. ctrls: Control neighbor node names, as a list of str. Returns: A RichTextLines object. """ # TODO(cais): Return RichTextLines instead, to allow annotation of node # names. lines = [] font_attr_segs = {} lines.append("") lines.append(" %d %s(s) + %d control %s(s):" % (len(non_ctrls), neighbor_type, len(ctrls), neighbor_type)) lines.append(" %d %s(s):" % (len(non_ctrls), neighbor_type)) for non_ctrl in non_ctrls: line = " [%s] %s" % (self._debug_dump.node_op_type(non_ctrl), non_ctrl) lines.append(line) font_attr_segs[len(lines) - 1] = [( len(line) - len(non_ctrl), len(line), debugger_cli_common.MenuItem(None, "ni -a -d -t %s" % non_ctrl))] if ctrls: lines.append("") lines.append(" %d control %s(s):" % (len(ctrls), neighbor_type)) for ctrl in ctrls: line = " [%s] %s" % (self._debug_dump.node_op_type(ctrl), ctrl) lines.append(line) font_attr_segs[len(lines) - 1] = [( len(line) - len(ctrl), len(line), debugger_cli_common.MenuItem(None, "ni -a -d -t %s" % ctrl))] return debugger_cli_common.RichTextLines( lines, font_attr_segs=font_attr_segs) def _list_node_attributes(self, node_name): """List neighbors (inputs or recipients) of a node. Args: node_name: Name of the node of which the attributes are to be listed. Returns: A RichTextLines object. """ lines = [] lines.append("") lines.append("Node attributes:") attrs = self._debug_dump.node_attributes(node_name) for attr_key in attrs: lines.append(" %s:" % attr_key) attr_val_str = repr(attrs[attr_key]).strip().replace("\n", " ") lines.append(" %s" % attr_val_str) lines.append("") return debugger_cli_common.RichTextLines(lines) def _list_node_dumps(self, node_name): """List dumped tensor data from a node. Args: node_name: Name of the node of which the attributes are to be listed. Returns: A RichTextLines object. """ lines = [] font_attr_segs = {} watch_keys = self._debug_dump.debug_watch_keys(node_name) dump_count = 0 for watch_key in watch_keys: debug_tensor_data = self._debug_dump.watch_key_to_data(watch_key) for datum in debug_tensor_data: line = " Slot %d @ %s @ %.3f ms" % ( datum.output_slot, datum.debug_op, (datum.timestamp - self._debug_dump.t0) / 1000.0) lines.append(line) command = "pt %s:%d -n %d" % (node_name, datum.output_slot, dump_count) font_attr_segs[len(lines) - 1] = [( 2, len(line), debugger_cli_common.MenuItem(None, command))] dump_count += 1 output = debugger_cli_common.RichTextLines( lines, font_attr_segs=font_attr_segs) output_with_header = debugger_cli_common.RichTextLines( ["%d dumped tensor(s):" % dump_count, ""]) output_with_header.extend(output) return output_with_header def create_analyzer_ui(debug_dump, tensor_filters=None, ui_type="curses", on_ui_exit=None, config=None): """Create an instance of CursesUI based on a DebugDumpDir object. Args: debug_dump: (debug_data.DebugDumpDir) The debug dump to use. tensor_filters: (dict) A dict mapping tensor filter name (str) to tensor filter (Callable). ui_type: (str) requested UI type, e.g., "curses", "readline". on_ui_exit: (`Callable`) the callback to be called when the UI exits. config: A `cli_config.CLIConfig` object. Returns: (base_ui.BaseUI) A BaseUI subtype object with a set of standard analyzer commands and tab-completions registered. """ if config is None: config = cli_config.CLIConfig() analyzer = DebugAnalyzer(debug_dump, config=config) if tensor_filters: for tensor_filter_name in tensor_filters: analyzer.add_tensor_filter( tensor_filter_name, tensor_filters[tensor_filter_name]) cli = ui_factory.get_ui(ui_type, on_ui_exit=on_ui_exit, config=config) cli.register_command_handler( "list_tensors", analyzer.list_tensors, analyzer.get_help("list_tensors"), prefix_aliases=["lt"]) cli.register_command_handler( "node_info", analyzer.node_info, analyzer.get_help("node_info"), prefix_aliases=["ni"]) cli.register_command_handler( "list_inputs", analyzer.list_inputs, analyzer.get_help("list_inputs"), prefix_aliases=["li"]) cli.register_command_handler( "list_outputs", analyzer.list_outputs, analyzer.get_help("list_outputs"), prefix_aliases=["lo"]) cli.register_command_handler( "print_tensor", analyzer.print_tensor, analyzer.get_help("print_tensor"), prefix_aliases=["pt"]) cli.register_command_handler( "print_source", analyzer.print_source, analyzer.get_help("print_source"), prefix_aliases=["ps"]) cli.register_command_handler( "list_source", analyzer.list_source, analyzer.get_help("list_source"), prefix_aliases=["ls"]) cli.register_command_handler( "eval", analyzer.evaluate_expression, analyzer.get_help("eval"), prefix_aliases=["ev"]) dumped_tensor_names = [] for datum in debug_dump.dumped_tensor_data: dumped_tensor_names.append("%s:%d" % (datum.node_name, datum.output_slot)) # Tab completions for command "print_tensors". cli.register_tab_comp_context(["print_tensor", "pt"], dumped_tensor_names) return cli
eadgarchen/tensorflow
tensorflow/python/debug/cli/analyzer_cli.py
Python
apache-2.0
58,062
#!/usr/bin/env python2 # vim:fileencoding=UTF-8:ts=4:sw=4:sta:et:sts=4:ai from __future__ import with_statement __license__ = 'GPL v3' __copyright__ = '2009, Kovid Goyal <kovid@kovidgoyal.net>' __docformat__ = 'restructuredtext en' from setup.installer import VMInstaller from setup import Command class Linux32(VMInstaller): description = 'Build 32bit linux binary installer' INSTALLER_EXT = 'txz' VM_NAME = 'linux32-build' FREEZE_COMMAND = 'linux_freeze' FREEZE_TEMPLATE = 'python -OO setup.py {freeze_command}' class Linux64(Linux32): description = 'Build 64bit linux binary installer' VM_NAME = 'linux64-build' IS_64_BIT = True class Linux(Command): description = 'Build linux binary installers' sub_commands = ['linux64', 'linux32']
ashang/calibre
setup/installer/linux/__init__.py
Python
gpl-3.0
792
import requests import time import dblayer from sklearn.cluster import DBSCAN import plotly import plotly.graph_objs as go import pandas as pd import numpy as np import random import testfile # Create random colors in list color_list = [] def generate_color(ncluster): for i in range(ncluster): color = '#{:02x}{:02x}{:02x}'.format(*map(lambda x: random.randint(0, 255), range(ncluster))) color_list.append(color) def showLatLongInCluster(data): # Run the DBSCAN from sklearn dbscan = DBSCAN(eps=2, min_samples=5, metric='euclidean', algorithm='auto').fit(data) cluster_labels = dbscan.labels_ n_clusters = len(set(cluster_labels)) - (1 if -1 in cluster_labels else 0) generate_color(n_clusters) plot_data = [] # get the cluster for i in range(n_clusters): ds = data[np.where(cluster_labels == i)] clustername = "Cluster " + str(i + 1) trace = go.Scattergeo(lon=ds[:,0], lat=ds[:,1],mode='markers',marker=dict(color=color_list[i], size=5), name=clustername) plot_data.append(trace) layout = go.Layout(showlegend=False, title='Earthquakes In North and South America', titlefont=dict(family='Courier New, monospace',size=20,color='#7f7f7f'), geo=dict(scope=('north america', 'south america'), projection=dict(type='orthographic',rotation=dict(lon=-60)), showland=True, landcolor='#191919', showcountries=True, showocean=True, oceancolor='rgb(217,217,255)', showframe=False, ), xaxis=dict(showgrid=False, zeroline=False), yaxis=dict(showgrid=False, zeroline=False)) fig = go.Figure(data=plot_data, layout=layout) div = plotly.offline.plot(fig, include_plotlyjs=True, output_type='div') return div def mkLatLong(): #### TME: Get start time start_time = time.time() #### sess = requests.Session() dbobj=dblayer.classDBLayer() projection = [{"$project": {"_id": 0, "mag": "$properties.mag", "depth": {"$arrayElemAt": ["$geometry.coordinates", 2]}, "longitude": {"$arrayElemAt": ["$geometry.coordinates", 0]}, "latitude": {"$arrayElemAt": ["$geometry.coordinates", 1]}}}] df = pd.DataFrame(list(dbobj.doaggregate(projection))) df = df[['longitude', 'latitude']].copy() #### TME: Elapsed time taken to read data from MongoDB fileobj = testfile.classFileWrite() elapsed = time.time() - start_time fileobj.writeline() str1 = str(elapsed) + " secs required to read " + str(df['latitude'].count()) + " records from database." fileobj.writelog("Reading Longitude and Latitude") fileobj.writelog(str1) #### #### TME: Get start time start_time = time.time() #### div = showLatLongInCluster(df.values) response = """<html><title></title><head><meta charset=\"utf8\"> </head> <body>""" + div + """</body> </html>""" dbobj.closedb() #### TME: Elapsed time taken to cluster and plot data elapsed = time.time() - start_time fileobj.writeline() str1 = "Time taken: " + str(elapsed) fileobj.writelog("Applying DBSCAN clustering and plotting its output") fileobj.writelog(str1) fileobj.writeline() fileobj.closefile() #### return response
abhishek8gupta/sp17-i524
project/S17-IO-3017/code/projectearth/dbscanplot.py
Python
apache-2.0
3,601
"""Support for MySensors covers.""" from homeassistant.components import mysensors from homeassistant.components.cover import ATTR_POSITION, DOMAIN, CoverEntity from homeassistant.const import STATE_OFF, STATE_ON async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Set up the mysensors platform for covers.""" mysensors.setup_mysensors_platform( hass, DOMAIN, discovery_info, MySensorsCover, async_add_entities=async_add_entities, ) class MySensorsCover(mysensors.device.MySensorsEntity, CoverEntity): """Representation of the value of a MySensors Cover child node.""" @property def assumed_state(self): """Return True if unable to access real state of entity.""" return self.gateway.optimistic @property def is_closed(self): """Return True if cover is closed.""" set_req = self.gateway.const.SetReq if set_req.V_DIMMER in self._values: return self._values.get(set_req.V_DIMMER) == 0 return self._values.get(set_req.V_LIGHT) == STATE_OFF @property def current_cover_position(self): """Return current position of cover. None is unknown, 0 is closed, 100 is fully open. """ set_req = self.gateway.const.SetReq return self._values.get(set_req.V_DIMMER) async def async_open_cover(self, **kwargs): """Move the cover up.""" set_req = self.gateway.const.SetReq self.gateway.set_child_value( self.node_id, self.child_id, set_req.V_UP, 1, ack=1 ) if self.gateway.optimistic: # Optimistically assume that cover has changed state. if set_req.V_DIMMER in self._values: self._values[set_req.V_DIMMER] = 100 else: self._values[set_req.V_LIGHT] = STATE_ON self.async_write_ha_state() async def async_close_cover(self, **kwargs): """Move the cover down.""" set_req = self.gateway.const.SetReq self.gateway.set_child_value( self.node_id, self.child_id, set_req.V_DOWN, 1, ack=1 ) if self.gateway.optimistic: # Optimistically assume that cover has changed state. if set_req.V_DIMMER in self._values: self._values[set_req.V_DIMMER] = 0 else: self._values[set_req.V_LIGHT] = STATE_OFF self.async_write_ha_state() async def async_set_cover_position(self, **kwargs): """Move the cover to a specific position.""" position = kwargs.get(ATTR_POSITION) set_req = self.gateway.const.SetReq self.gateway.set_child_value( self.node_id, self.child_id, set_req.V_DIMMER, position, ack=1 ) if self.gateway.optimistic: # Optimistically assume that cover has changed state. self._values[set_req.V_DIMMER] = position self.async_write_ha_state() async def async_stop_cover(self, **kwargs): """Stop the device.""" set_req = self.gateway.const.SetReq self.gateway.set_child_value( self.node_id, self.child_id, set_req.V_STOP, 1, ack=1 )
tchellomello/home-assistant
homeassistant/components/mysensors/cover.py
Python
apache-2.0
3,250
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Load plugin assets from disk.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os.path import tensorflow as tf _PLUGINS_DIR = "plugins" def _IsDirectory(parent, item): """Helper that returns if parent/item is a directory.""" return tf.gfile.IsDirectory(os.path.join(parent, item)) def PluginDirectory(logdir, plugin_name): """Returns the plugin directory for plugin_name.""" return os.path.join(logdir, _PLUGINS_DIR, plugin_name) def ListPlugins(logdir): """List all the plugins that have registered assets in logdir. If the plugins_dir does not exist, it returns an empty list. This maintains compatibility with old directories that have no plugins written. Args: logdir: A directory that was created by a TensorFlow events writer. Returns: a list of plugin names, as strings """ plugins_dir = os.path.join(logdir, _PLUGINS_DIR) if not tf.gfile.IsDirectory(plugins_dir): return [] entries = tf.gfile.ListDirectory(plugins_dir) return [x for x in entries if _IsDirectory(plugins_dir, x)] def ListAssets(logdir, plugin_name): """List all the assets that are available for given plugin in a logdir. Args: logdir: A directory that was created by a TensorFlow summary.FileWriter. plugin_name: A string name of a plugin to list assets for. Returns: A string list of available plugin assets. If the plugin subdirectory does not exist (either because the logdir doesn't exist, or because the plugin didn't register) an empty list is returned. """ plugin_dir = PluginDirectory(logdir, plugin_name) if not tf.gfile.IsDirectory(plugin_dir): return [] entries = tf.gfile.ListDirectory(plugin_dir) return [x for x in entries if not _IsDirectory(plugin_dir, x)] def RetrieveAsset(logdir, plugin_name, asset_name): """Retrieve a particular plugin asset from a logdir. Args: logdir: A directory that was created by a TensorFlow summary.FileWriter. plugin_name: The plugin we want an asset from. asset_name: The name of the requested asset. Returns: string contents of the plugin asset. Raises: KeyError: if the asset does not exist. """ asset_path = os.path.join(PluginDirectory(logdir, plugin_name), asset_name) try: with tf.gfile.Open(asset_path, "r") as f: return f.read() except tf.errors.NotFoundError: raise KeyError("Asset path %s not found" % asset_path) except tf.errors.OpError as e: raise KeyError("Couldn't read asset path: %s, OpError %s" % (asset_path, e))
sjperkins/tensorflow
tensorflow/tensorboard/backend/event_processing/plugin_asset_util.py
Python
apache-2.0
3,278
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Module with basic entity definitions for testing.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import with_statement # An extra future import for testing. def simple_function(x): """Docstring.""" return x # comment def nested_functions(x): """Docstring.""" def inner_fn(y): return y return inner_fn(x) def function_with_print(): print('foo') simple_lambda = lambda: None class SimpleClass(object): def simple_method(self): return self def method_with_print(self): print('foo') def function_with_multiline_call(x): """Docstring.""" return range( x, x + 1, ) def basic_decorator(f): return f @basic_decorator @basic_decorator def decorated_function(x): if x > 0: return 1 return 2
annarev/tensorflow
tensorflow/python/autograph/pyct/testing/basic_definitions.py
Python
apache-2.0
1,533
#!/usr/bin/env python """ hg-to-git.py - A Mercurial to GIT converter Copyright (C)2007 Stelian Pop <stelian@popies.net> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. """ import os, os.path, sys import tempfile, pickle, getopt import re if sys.hexversion < 0x02030000: # The behavior of the pickle module changed significantly in 2.3 sys.stderr.write("hg-to-git.py: requires Python 2.3 or later.\n") sys.exit(1) # Maps hg version -> git version hgvers = {} # List of children for each hg revision hgchildren = {} # List of parents for each hg revision hgparents = {} # Current branch for each hg revision hgbranch = {} # Number of new changesets converted from hg hgnewcsets = 0 #------------------------------------------------------------------------------ def usage(): print """\ %s: [OPTIONS] <hgprj> options: -s, --gitstate=FILE: name of the state to be saved/read for incrementals -n, --nrepack=INT: number of changesets that will trigger a repack (default=0, -1 to deactivate) -v, --verbose: be verbose required: hgprj: name of the HG project to import (directory) """ % sys.argv[0] #------------------------------------------------------------------------------ def getgitenv(user, date): env = '' elems = re.compile('(.*?)\s+<(.*)>').match(user) if elems: env += 'export GIT_AUTHOR_NAME="%s" ;' % elems.group(1) env += 'export GIT_COMMITTER_NAME="%s" ;' % elems.group(1) env += 'export GIT_AUTHOR_EMAIL="%s" ;' % elems.group(2) env += 'export GIT_COMMITTER_EMAIL="%s" ;' % elems.group(2) else: env += 'export GIT_AUTHOR_NAME="%s" ;' % user env += 'export GIT_COMMITTER_NAME="%s" ;' % user env += 'export GIT_AUTHOR_EMAIL= ;' env += 'export GIT_COMMITTER_EMAIL= ;' env += 'export GIT_AUTHOR_DATE="%s" ;' % date env += 'export GIT_COMMITTER_DATE="%s" ;' % date return env #------------------------------------------------------------------------------ state = '' opt_nrepack = 0 verbose = False try: opts, args = getopt.getopt(sys.argv[1:], 's:t:n:v', ['gitstate=', 'tempdir=', 'nrepack=', 'verbose']) for o, a in opts: if o in ('-s', '--gitstate'): state = a state = os.path.abspath(state) if o in ('-n', '--nrepack'): opt_nrepack = int(a) if o in ('-v', '--verbose'): verbose = True if len(args) != 1: raise Exception('params') except: usage() sys.exit(1) hgprj = args[0] os.chdir(hgprj) if state: if os.path.exists(state): if verbose: print 'State does exist, reading' f = open(state, 'r') hgvers = pickle.load(f) else: print 'State does not exist, first run' sock = os.popen('hg tip --template "{rev}"') tip = sock.read() if sock.close(): sys.exit(1) if verbose: print 'tip is', tip # Calculate the branches if verbose: print 'analysing the branches...' hgchildren["0"] = () hgparents["0"] = (None, None) hgbranch["0"] = "master" for cset in range(1, int(tip) + 1): hgchildren[str(cset)] = () prnts = os.popen('hg log -r %d --template "{parents}"' % cset).read().strip().split(' ') prnts = map(lambda x: x[:x.find(':')], prnts) if prnts[0] != '': parent = prnts[0].strip() else: parent = str(cset - 1) hgchildren[parent] += ( str(cset), ) if len(prnts) > 1: mparent = prnts[1].strip() hgchildren[mparent] += ( str(cset), ) else: mparent = None hgparents[str(cset)] = (parent, mparent) if mparent: # For merge changesets, take either one, preferably the 'master' branch if hgbranch[mparent] == 'master': hgbranch[str(cset)] = 'master' else: hgbranch[str(cset)] = hgbranch[parent] else: # Normal changesets # For first children, take the parent branch, for the others create a new branch if hgchildren[parent][0] == str(cset): hgbranch[str(cset)] = hgbranch[parent] else: hgbranch[str(cset)] = "branch-" + str(cset) if not hgvers.has_key("0"): print 'creating repository' os.system('git init') # loop through every hg changeset for cset in range(int(tip) + 1): # incremental, already seen if hgvers.has_key(str(cset)): continue hgnewcsets += 1 # get info log_data = os.popen('hg log -r %d --template "{tags}\n{date|date}\n{author}\n"' % cset).readlines() tag = log_data[0].strip() date = log_data[1].strip() user = log_data[2].strip() parent = hgparents[str(cset)][0] mparent = hgparents[str(cset)][1] #get comment (fdcomment, filecomment) = tempfile.mkstemp() csetcomment = os.popen('hg log -r %d --template "{desc}"' % cset).read().strip() os.write(fdcomment, csetcomment) os.close(fdcomment) print '-----------------------------------------' print 'cset:', cset print 'branch:', hgbranch[str(cset)] print 'user:', user print 'date:', date print 'comment:', csetcomment if parent: print 'parent:', parent if mparent: print 'mparent:', mparent if tag: print 'tag:', tag print '-----------------------------------------' # checkout the parent if necessary if cset != 0: if hgbranch[str(cset)] == "branch-" + str(cset): print 'creating new branch', hgbranch[str(cset)] os.system('git checkout -b %s %s' % (hgbranch[str(cset)], hgvers[parent])) else: print 'checking out branch', hgbranch[str(cset)] os.system('git checkout %s' % hgbranch[str(cset)]) # merge if mparent: if hgbranch[parent] == hgbranch[str(cset)]: otherbranch = hgbranch[mparent] else: otherbranch = hgbranch[parent] print 'merging', otherbranch, 'into', hgbranch[str(cset)] os.system(getgitenv(user, date) + 'git merge --no-commit -s ours "" %s %s' % (hgbranch[str(cset)], otherbranch)) # remove everything except .git and .hg directories os.system('find . \( -path "./.hg" -o -path "./.git" \) -prune -o ! -name "." -print | xargs rm -rf') # repopulate with checkouted files os.system('hg update -C %d' % cset) # add new files os.system('git ls-files -x .hg --others | git update-index --add --stdin') # delete removed files os.system('git ls-files -x .hg --deleted | git update-index --remove --stdin') # commit os.system(getgitenv(user, date) + 'git commit --allow-empty -a -F %s' % filecomment) os.unlink(filecomment) # tag if tag and tag != 'tip': os.system(getgitenv(user, date) + 'git tag %s' % tag) # delete branch if not used anymore... if mparent and len(hgchildren[str(cset)]): print "Deleting unused branch:", otherbranch os.system('git branch -d %s' % otherbranch) # retrieve and record the version vvv = os.popen('git show --quiet --pretty=format:%H').read() print 'record', cset, '->', vvv hgvers[str(cset)] = vvv if hgnewcsets >= opt_nrepack and opt_nrepack != -1: os.system('git repack -a -d') # write the state for incrementals if state: if verbose: print 'Writing state' f = open(state, 'w') pickle.dump(hgvers, f) # vim: et ts=8 sw=4 sts=4
pniebla/test-repo-console
svn/git-1.8.3.3.tar/git-1.8.3.3/git-1.8.3.3/contrib/hg-to-git/hg-to-git.py
Python
mit
8,052
# -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright (C) 2020 Freie Universität Berlin # # This file is subject to the terms and conditions of the GNU Lesser # General Public License v2.1. See the file LICENSE in the top level # directory for more details. import subprocess from .base import Installer __author__ = "Martine S. Lenders" __copyright__ = "Copyright (C) 2020 Freie Universität Berlin" __credits__ = ["Martine S. Lenders"] __license__ = "LGPLv2.1" __maintainer__ = "Martine S. Lenders" __email__ = "m.lenders@fu-berlin.de" class Apt(Installer): def _install(self, package): subprocess.run(["apt-get", "-y", "install", package[self.os]["name"]])
kYc0o/RIOT
dist/tools/dhcpv6-pd_ia/pkg/apt.py
Python
lgpl-2.1
703
# Copyright (c) 2014 Dell Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock import uuid from cinder import context from cinder import exception from cinder import test from cinder.volume.drivers.dell import dell_storagecenter_api from cinder.volume.drivers.dell import dell_storagecenter_common from cinder.volume.drivers.dell import dell_storagecenter_iscsi from cinder.volume import volume_types # We patch these here as they are used by every test to keep # from trying to contact a Dell Storage Center. @mock.patch.object(dell_storagecenter_api.StorageCenterApi, '__init__', return_value=None) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'open_connection') @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'close_connection') class DellSCSanISCSIDriverTestCase(test.TestCase): VOLUME = {u'instanceId': u'64702.3494', u'scSerialNumber': 64702, u'replicationSource': False, u'liveVolume': False, u'vpdId': 3496, u'objectType': u'ScVolume', u'index': 3494, u'volumeFolderPath': u'devstackvol/fcvm/', u'hostCacheEnabled': False, u'usedByLegacyFluidFsNasVolume': False, u'inRecycleBin': False, u'volumeFolderIndex': 17, u'instanceName': u'volume-37883deb-85cd-426a-9a98-62eaad8671ea', u'statusMessage': u'', u'status': u'Up', u'storageType': {u'instanceId': u'64702.1', u'instanceName': u'Assigned - Redundant - 2 MB', u'objectType': u'ScStorageType'}, u'cmmDestination': False, u'replicationDestination': False, u'volumeFolder': {u'instanceId': u'64702.17', u'instanceName': u'fcvm', u'objectType': u'ScVolumeFolder'}, u'deviceId': u'6000d31000fcbe000000000000000da8', u'active': True, u'portableVolumeDestination': False, u'deleteAllowed': True, u'name': u'volume-37883deb-85cd-426a-9a98-62eaad8671ea', u'scName': u'Storage Center 64702', u'secureDataUsed': False, u'serialNumber': u'0000fcbe-00000da8', u'replayAllowed': True, u'flashOptimized': False, u'configuredSize': u'1.073741824E9 Bytes', u'mapped': False, u'cmmSource': False} SCSERVER = {u'scName': u'Storage Center 64702', u'volumeCount': 0, u'removeHbasAllowed': True, u'legacyFluidFs': False, u'serverFolderIndex': 4, u'alertOnConnectivity': True, u'objectType': u'ScPhysicalServer', u'instanceName': u'Server_21000024ff30441d', u'instanceId': u'64702.47', u'serverFolderPath': u'devstacksrv/', u'portType': [u'FibreChannel'], u'type': u'Physical', u'statusMessage': u'Only 5 of 6 expected paths are up', u'status': u'Degraded', u'scSerialNumber': 64702, u'serverFolder': {u'instanceId': u'64702.4', u'instanceName': u'devstacksrv', u'objectType': u'ScServerFolder'}, u'parentIndex': 0, u'connectivity': u'Partial', u'hostCacheIndex': 0, u'deleteAllowed': True, u'pathCount': 5, u'name': u'Server_21000024ff30441d', u'hbaPresent': True, u'hbaCount': 2, u'notes': u'Created by Dell Cinder Driver', u'mapped': False, u'operatingSystem': {u'instanceId': u'64702.38', u'instanceName': u'Red Hat Linux 6.x', u'objectType': u'ScServerOperatingSystem'} } MAPPINGS = [{u'profile': {u'instanceId': u'64702.104', u'instanceName': u'92-30', u'objectType': u'ScMappingProfile'}, u'status': u'Down', u'statusMessage': u'', u'instanceId': u'64702.969.64702', u'scName': u'Storage Center 64702', u'scSerialNumber': 64702, u'controller': {u'instanceId': u'64702.64702', u'instanceName': u'SN 64702', u'objectType': u'ScController'}, u'server': {u'instanceId': u'64702.30', u'instanceName': u'Server_iqn.1993-08.org.debian:01:3776df826e4f', u'objectType': u'ScPhysicalServer'}, u'volume': {u'instanceId': u'64702.92', u'instanceName': u'volume-74a21934-60ad-4cf2-b89b-1f0dda309ddf', u'objectType': u'ScVolume'}, u'readOnly': False, u'lun': 1, u'lunUsed': [1], u'serverHba': {u'instanceId': u'64702.3454975614', u'instanceName': u'iqn.1993-08.org.debian:01:3776df826e4f', u'objectType': u'ScServerHba'}, u'path': {u'instanceId': u'64702.64702.64702.31.8', u'instanceName': u'iqn.1993-08.org.debian:' '01:3776df826e4f-5000D31000FCBE43', u'objectType': u'ScServerHbaPath'}, u'controllerPort': {u'instanceId': u'64702.5764839588723736131.91', u'instanceName': u'5000D31000FCBE43', u'objectType': u'ScControllerPort'}, u'instanceName': u'64702-969', u'transport': u'Iscsi', u'objectType': u'ScMapping'}] RPLAY = {u'scSerialNumber': 64702, u'globalIndex': u'64702-46-250', u'description': u'Cinder Clone Replay', u'parent': {u'instanceId': u'64702.46.249', u'instanceName': u'64702-46-249', u'objectType': u'ScReplay'}, u'instanceId': u'64702.46.250', u'scName': u'Storage Center 64702', u'consistent': False, u'expires': True, u'freezeTime': u'12/09/2014 03:52:08 PM', u'createVolume': {u'instanceId': u'64702.46', u'instanceName': u'volume-ff9589d3-2d41-48d5-9ef5-2713a875e85b', u'objectType': u'ScVolume'}, u'expireTime': u'12/09/2014 04:52:08 PM', u'source': u'Manual', u'spaceRecovery': False, u'writesHeldDuration': 7910, u'active': False, u'markedForExpiration': False, u'objectType': u'ScReplay', u'instanceName': u'12/09/2014 03:52:08 PM', u'size': u'0.0 Bytes' } SCRPLAYPROFILE = {u'ruleCount': 0, u'name': u'fc8f2fec-fab2-4e34-9148-c094c913b9a3', u'volumeCount': 0, u'scName': u'Storage Center 64702', u'notes': u'Created by Dell Cinder Driver', u'scSerialNumber': 64702, u'userCreated': True, u'instanceName': u'fc8f2fec-fab2-4e34-9148-c094c913b9a3', u'instanceId': u'64702.11', u'enforceReplayCreationTimeout': False, u'replayCreationTimeout': 20, u'objectType': u'ScReplayProfile', u'type': u'Consistent', u'expireIncompleteReplaySets': True} IQN = 'iqn.2002-03.com.compellent:5000D31000000001' ISCSI_PROPERTIES = {'access_mode': 'rw', 'target_discovered': False, 'target_iqn': u'iqn.2002-03.com.compellent:5000d31000fcbe43', 'target_iqns': [u'iqn.2002-03.com.compellent:5000d31000fcbe43', u'iqn.2002-03.com.compellent:5000d31000fcbe44'], 'target_lun': 1, 'target_luns': [1, 1], 'target_portal': u'192.168.0.21:3260', 'target_portals': [u'192.168.0.21:3260', u'192.168.0.22:3260']} def setUp(self): super(DellSCSanISCSIDriverTestCase, self).setUp() # configuration is a mock. A mock is pretty much a blank # slate. I believe mock's done in setup are not happy time # mocks. So we just do a few things like driver config here. self.configuration = mock.Mock() self.configuration.san_is_local = False self.configuration.san_ip = "192.168.0.1" self.configuration.san_login = "admin" self.configuration.san_password = "mmm" self.configuration.dell_sc_ssn = 12345 self.configuration.dell_sc_server_folder = 'opnstktst' self.configuration.dell_sc_volume_folder = 'opnstktst' self.configuration.dell_sc_api_port = 3033 self.configuration.iscsi_ip_address = '192.168.1.1' self.configuration.iscsi_port = 3260 self._context = context.get_admin_context() self.driver = dell_storagecenter_iscsi.DellStorageCenterISCSIDriver( configuration=self.configuration) self.driver.do_setup(None) self.driver._stats = {'QoS_support': False, 'volume_backend_name': 'dell-1', 'free_capacity_gb': 12123, 'driver_version': '1.0.1', 'total_capacity_gb': 12388, 'reserved_percentage': 0, 'vendor_name': 'Dell', 'storage_protocol': 'iSCSI'} self.volid = str(uuid.uuid4()) self.volume_name = "volume" + self.volid self.connector = { 'ip': '10.0.0.2', 'initiator': 'iqn.1993-08.org.debian:01:2227dab76162', 'host': 'fakehost'} self.connector_multipath = { 'ip': '10.0.0.2', 'initiator': 'iqn.1993-08.org.debian:01:2227dab76162', 'host': 'fakehost', 'multipath': True} self.access_record_output = [ "ID Initiator Ipaddress AuthMethod UserName Apply-To", "--- --------------- ------------- ---------- ---------- --------", "1 iqn.1993-08.org.debian:01:222 *.*.*.* none both", " 7dab76162"] self.fake_iqn = 'iqn.2002-03.com.compellent:5000D31000000001' self.properties = { 'target_discoverd': True, 'target_portal': '%s:3260' % self.driver.configuration.dell_sc_iscsi_ip, 'target_iqn': self.fake_iqn, 'volume_id': 1} self._model_update = { 'provider_location': "%s:3260,1 %s 0" % (self.driver.configuration.dell_sc_iscsi_ip, self.fake_iqn) # , # 'provider_auth': 'CHAP %s %s' % ( # self.configuration.eqlx_chap_login, # self.configuration.eqlx_chap_password) } @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'create_volume', return_value=VOLUME) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=12345) def test_create_volume(self, mock_find_sc, mock_create_volume, mock_close_connection, mock_open_connection, mock_init): volume = {'id': self.volume_name, 'size': 1} self.driver.create_volume(volume) mock_create_volume.assert_called_once_with(self.volume_name, 1, None) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_replay_profile', return_value='fake') @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'update_cg_volumes') @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'create_volume', return_value=VOLUME) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=12345) def test_create_volume_consistency_group(self, mock_find_sc, mock_create_volume, mock_update_cg_volumes, mock_find_replay_profile, mock_close_connection, mock_open_connection, mock_init): volume = {'id': self.volume_name, 'size': 1, 'consistencygroup_id': 'guid'} self.driver.create_volume(volume) mock_create_volume.assert_called_once_with(self.volume_name, 1, None) self.assertTrue(mock_find_replay_profile.called) self.assertTrue(mock_update_cg_volumes.called) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'create_volume', return_value=VOLUME) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=12345) @mock.patch.object( volume_types, 'get_volume_type_extra_specs', return_value={'storagetype:storageprofile': 'HighPriority'}) def test_create_volume_storage_profile(self, mock_extra, mock_find_sc, mock_create_volume, mock_close_connection, mock_open_connection, mock_init): volume = {'id': self.volume_name, 'size': 1, 'volume_type_id': 'abc'} self.driver.create_volume(volume) mock_create_volume.assert_called_once_with(self.volume_name, 1, "HighPriority") @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'create_volume', return_value=None) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=12345) def test_create_volume_failure(self, mock_find_sc, mock_create_volume, mock_close_connection, mock_open_connection, mock_init): volume = {'id': self.volume_name, 'size': 1} self.assertRaises(exception.VolumeBackendAPIException, self.driver.create_volume, volume) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'delete_volume', return_value=True) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=12345) def test_delete_volume(self, mock_find_sc, mock_delete_volume, mock_close_connection, mock_open_connection, mock_init): volume = {'id': self.volume_name, 'size': 1} self.driver.delete_volume(volume) mock_delete_volume.assert_called_once_with(self.volume_name) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'delete_volume', return_value=False) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=12345) def test_delete_volume_failure(self, mock_find_sc, mock_delete_volume, mock_close_connection, mock_open_connection, mock_init): volume = {'id': self.volume_name, 'size': 1} self.assertRaises(exception.VolumeIsBusy, self.driver.delete_volume, volume) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=12345) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_server', return_value=None) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'create_server', return_value=SCSERVER) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_volume', return_value=VOLUME) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'map_volume', return_value=MAPPINGS[0]) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_iscsi_properties', return_value=ISCSI_PROPERTIES) def test_initialize_connection(self, mock_find_iscsi_props, mock_map_volume, mock_find_volume, mock_create_server, mock_find_server, mock_find_sc, mock_close_connection, mock_open_connection, mock_init): volume = {'id': self.volume_name} connector = self.connector data = self.driver.initialize_connection(volume, connector) self.assertEqual('iscsi', data['driver_volume_type']) # verify find_volume has been called and that is has been called twice mock_find_volume.assert_any_call(self.volume_name) assert mock_find_volume.call_count == 2 expected = {'data': self.ISCSI_PROPERTIES, 'driver_volume_type': 'iscsi'} self.assertEqual(expected, data, 'Unexpected return value') @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=12345) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_server', return_value=None) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'create_server', return_value=SCSERVER) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_volume', return_value=VOLUME) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'map_volume', return_value=MAPPINGS[0]) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_iscsi_properties', return_value=ISCSI_PROPERTIES) def test_initialize_connection_multi_path(self, mock_find_iscsi_props, mock_map_volume, mock_find_volume, mock_create_server, mock_find_server, mock_find_sc, mock_close_connection, mock_open_connection, mock_init): # Test case where connection is multipath volume = {'id': self.volume_name} connector = self.connector_multipath data = self.driver.initialize_connection(volume, connector) self.assertEqual('iscsi', data['driver_volume_type']) # verify find_volume has been called and that is has been called twice mock_find_volume.assert_any_call(self.volume_name) assert mock_find_volume.call_count == 2 props = self.ISCSI_PROPERTIES expected = {'data': props, 'driver_volume_type': 'iscsi'} self.assertEqual(expected, data, 'Unexpected return value') @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=12345) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_server', return_value=SCSERVER) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_volume', return_value=VOLUME) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'map_volume', return_value=MAPPINGS) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_iscsi_properties', return_value=None) def test_initialize_connection_no_iqn(self, mock_find_iscsi_properties, mock_map_volume, mock_find_volume, mock_find_server, mock_find_sc, mock_close_connection, mock_open_connection, mock_init): volume = {'id': self.volume_name} connector = {} mock_find_iscsi_properties.side_effect = Exception('abc') self.assertRaises(exception.VolumeBackendAPIException, self.driver.initialize_connection, volume, connector) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=12345) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_server', return_value=None) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'create_server', return_value=None) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_volume', return_value=VOLUME) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'map_volume', return_value=MAPPINGS) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_iscsi_properties', return_value=None) def test_initialize_connection_no_server(self, mock_find_iscsi_properties, mock_map_volume, mock_find_volume, mock_create_server, mock_find_server, mock_find_sc, mock_close_connection, mock_open_connection, mock_init): volume = {'id': self.volume_name} connector = {} self.assertRaises(exception.VolumeBackendAPIException, self.driver.initialize_connection, volume, connector) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=12345) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_server', return_value=SCSERVER) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_volume', return_value=None) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'map_volume', return_value=MAPPINGS) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_iscsi_properties', return_value=None) def test_initialize_connection_vol_not_found(self, mock_find_iscsi_properties, mock_map_volume, mock_find_volume, mock_find_server, mock_find_sc, mock_close_connection, mock_open_connection, mock_init): volume = {'name': self.volume_name} connector = {} self.assertRaises(exception.VolumeBackendAPIException, self.driver.initialize_connection, volume, connector) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=12345) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_server', return_value=None) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'create_server', return_value=SCSERVER) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_volume', return_value=VOLUME) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'map_volume', return_value=None) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_iscsi_properties', return_value=ISCSI_PROPERTIES) def test_initialize_connection_map_vol_fail(self, mock_find_iscsi_props, mock_map_volume, mock_find_volume, mock_create_server, mock_find_server, mock_find_sc, mock_close_connection, mock_open_connection, mock_init): # Test case where map_volume returns None (no mappings) volume = {'id': self.volume_name} connector = self.connector self.assertRaises(exception.VolumeBackendAPIException, self.driver.initialize_connection, volume, connector) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=12345) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_server', return_value=SCSERVER) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_volume', return_value=VOLUME) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'unmap_volume', return_value=True) def test_terminate_connection(self, mock_unmap_volume, mock_find_volume, mock_find_server, mock_find_sc, mock_close_connection, mock_open_connection, mock_init): volume = {'id': self.volume_name} connector = self.connector res = self.driver.terminate_connection(volume, connector) mock_unmap_volume.assert_called_once_with(self.VOLUME, self.SCSERVER) self.assertIsNone(res, 'None expected') @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=12345) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_server', return_value=None) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_volume', return_value=VOLUME) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'unmap_volume', return_value=True) def test_terminate_connection_no_server(self, mock_unmap_volume, mock_find_volume, mock_find_server, mock_find_sc, mock_close_connection, mock_open_connection, mock_init): volume = {'name': self.volume_name} connector = {'initiator': ''} self.assertRaises(exception.VolumeBackendAPIException, self.driver.terminate_connection, volume, connector) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=12345) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_server', return_value=SCSERVER) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_volume', return_value=None) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'unmap_volume', return_value=True) def test_terminate_connection_no_volume(self, mock_unmap_volume, mock_find_volume, mock_find_server, mock_find_sc, mock_close_connection, mock_open_connection, mock_init): volume = {'name': self.volume_name} connector = {'initiator': ''} self.assertRaises(exception.VolumeBackendAPIException, self.driver.terminate_connection, volume, connector) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=12345) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_server', return_value=SCSERVER) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_volume', return_value=VOLUME) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'unmap_volume', return_value=False) def test_terminate_connection_failure(self, mock_unmap_volume, mock_find_volume, mock_find_server, mock_find_sc, mock_close_connection, mock_open_connection, mock_init): volume = {'name': self.volume_name} connector = {'initiator': ''} self.assertRaises(exception.VolumeBackendAPIException, self.driver.terminate_connection, volume, connector) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=12345) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_volume', return_value=VOLUME) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'create_replay', return_value='fake') def test_create_snapshot(self, mock_create_replay, mock_find_volume, mock_find_sc, mock_close_connection, mock_open_connection, mock_init): snapshot = {'volume_id': self.volume_name, 'id': self.volume_name} self.driver.create_snapshot(snapshot) self.assertEqual('available', snapshot['status']) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=12345) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_volume', return_value=None) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'create_replay', return_value=None) def test_create_snapshot_no_volume(self, mock_create_replay, mock_find_volume, mock_find_sc, mock_close_connection, mock_open_connection, mock_init): snapshot = {'volume_id': self.volume_name, 'id': self.volume_name} self.assertRaises(exception.VolumeBackendAPIException, self.driver.create_snapshot, snapshot) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=12345) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_volume', return_value=VOLUME) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'create_replay', return_value=None) def test_create_snapshot_failure(self, mock_create_replay, mock_find_volume, mock_find_sc, mock_close_connection, mock_open_connection, mock_init): snapshot = {'volume_id': self.volume_name, 'id': self.volume_name} self.assertRaises(exception.VolumeBackendAPIException, self.driver.create_snapshot, snapshot) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_replay_profile') @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=12345) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_volume', return_value=VOLUME) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_replay', return_value='fake') @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'create_view_volume', return_value=VOLUME) def test_create_volume_from_snapshot(self, mock_create_view_volume, mock_find_replay, mock_find_volume, mock_find_sc, mock_find_replay_profile, mock_close_connection, mock_open_connection, mock_init): volume = {'id': 'fake'} snapshot = {'id': 'fake', 'volume_id': 'fake'} self.driver.create_volume_from_snapshot(volume, snapshot) mock_create_view_volume.assert_called_once_with('fake', 'fake') self.assertTrue(mock_find_replay.called) self.assertTrue(mock_find_volume.called) self.assertFalse(mock_find_replay_profile.called) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_replay_profile', return_value='fake') @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'update_cg_volumes') @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=12345) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_volume', return_value=VOLUME) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_replay', return_value='fake') @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'create_view_volume', return_value=VOLUME) def test_create_volume_from_snapshot_cg(self, mock_create_view_volume, mock_find_replay, mock_find_volume, mock_find_sc, mock_update_cg_volumes, mock_find_replay_profile, mock_close_connection, mock_open_connection, mock_init): volume = {'id': 'fake', 'consistencygroup_id': 'guid'} snapshot = {'id': 'fake', 'volume_id': 'fake'} self.driver.create_volume_from_snapshot(volume, snapshot) mock_create_view_volume.assert_called_once_with('fake', 'fake') self.assertTrue(mock_find_replay.called) self.assertTrue(mock_find_volume.called) self.assertTrue(mock_find_replay_profile.called) self.assertTrue(mock_update_cg_volumes.called) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=12345) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_volume', return_value=VOLUME) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_replay', return_value='fake') @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'create_view_volume', return_value=None) def test_create_volume_from_snapshot_failed(self, mock_create_view_volume, mock_find_replay, mock_find_volume, mock_find_sc, mock_close_connection, mock_open_connection, mock_init): volume = {'id': 'fake'} snapshot = {'id': 'fake', 'volume_id': 'fake'} self.assertRaises(exception.VolumeBackendAPIException, self.driver.create_volume_from_snapshot, volume, snapshot) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=12345) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_volume', return_value=VOLUME) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_replay', return_value=None) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'create_view_volume', return_value=VOLUME) def test_create_volume_from_snapshot_no_replay(self, mock_create_view_volume, mock_find_replay, mock_find_volume, mock_find_sc, mock_close_connection, mock_open_connection, mock_init): volume = {'id': 'fake'} snapshot = {'id': 'fake', 'volume_id': 'fake'} self.assertRaises(exception.VolumeBackendAPIException, self.driver.create_volume_from_snapshot, volume, snapshot) self.assertTrue(mock_find_volume.called) self.assertTrue(mock_find_replay.called) self.assertFalse(mock_create_view_volume.called) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=12345) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_volume', return_value=VOLUME) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'create_cloned_volume', return_value=VOLUME) def test_create_cloned_volume(self, mock_create_cloned_volume, mock_find_volume, mock_find_sc, mock_close_connection, mock_open_connection, mock_init): volume = {'id': self.volume_name + '_clone'} src_vref = {'id': self.volume_name} self.driver.create_cloned_volume(volume, src_vref) mock_create_cloned_volume.assert_called_once_with( self.volume_name + '_clone', self.VOLUME) self.assertTrue(mock_find_volume.called) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_replay_profile', return_value='fake') @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'update_cg_volumes') @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=12345) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_volume', return_value=VOLUME) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'create_cloned_volume', return_value=VOLUME) def test_create_cloned_volume_consistency_group(self, mock_create_cloned_volume, mock_find_volume, mock_find_sc, mock_update_cg_volumes, mock_find_replay_profile, mock_close_connection, mock_open_connection, mock_init): volume = {'id': self.volume_name + '_clone', 'consistencygroup_id': 'guid'} src_vref = {'id': self.volume_name} self.driver.create_cloned_volume(volume, src_vref) mock_create_cloned_volume.assert_called_once_with( self.volume_name + '_clone', self.VOLUME) self.assertTrue(mock_find_volume.called) self.assertTrue(mock_find_replay_profile.called) self.assertTrue(mock_update_cg_volumes.called) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=12345) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_volume', return_value=None) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'create_cloned_volume', return_value=VOLUME) def test_create_cloned_volume_no_volume(self, mock_create_cloned_volume, mock_find_volume, mock_find_sc, mock_close_connection, mock_open_connection, mock_init): volume = {'id': self.volume_name + '_clone'} src_vref = {'id': self.volume_name} self.assertRaises(exception.VolumeBackendAPIException, self.driver.create_cloned_volume, volume, src_vref) self.assertTrue(mock_find_volume.called) self.assertFalse(mock_create_cloned_volume.called) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=12345) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_volume', return_value=VOLUME) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'delete_replay', return_value=True) def test_delete_snapshot(self, mock_delete_replay, mock_find_volume, mock_find_sc, mock_close_connection, mock_open_connection, mock_init): snapshot = {'volume_id': self.volume_name, 'id': self.volume_name} self.driver.delete_snapshot(snapshot) mock_delete_replay.assert_called_once_with( self.VOLUME, self.volume_name) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=12345) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_volume', return_value=None) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'delete_replay', return_value=True) def test_delete_snapshot_no_volume(self, mock_delete_replay, mock_find_volume, mock_find_sc, mock_close_connection, mock_open_connection, mock_init): snapshot = {'volume_id': self.volume_name, 'id': self.volume_name} self.assertRaises(exception.VolumeBackendAPIException, self.driver.delete_snapshot, snapshot) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=12345) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_volume', return_value=VOLUME) def test_ensure_export(self, mock_find_volume, mock_find_sc, mock_close_connection, mock_open_connection, mock_init): context = {} volume = {'id': self.VOLUME.get(u'name')} self.driver.ensure_export(context, volume) mock_find_volume.assert_called_once_with( self.VOLUME.get(u'name')) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=12345) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_volume', return_value=None) def test_ensure_export_failed(self, mock_find_volume, mock_find_sc, mock_close_connection, mock_open_connection, mock_init): context = {} volume = {'id': self.VOLUME.get(u'name')} self.assertRaises(exception.VolumeBackendAPIException, self.driver.ensure_export, context, volume) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=12345) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_volume', return_value=None) def test_ensure_export_no_volume(self, mock_find_volume, mock_find_sc, mock_close_connection, mock_open_connection, mock_init): context = {} volume = {'id': self.VOLUME.get(u'name')} self.assertRaises(exception.VolumeBackendAPIException, self.driver.ensure_export, context, volume) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=12345) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_volume', return_value=VOLUME) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'expand_volume', return_value=VOLUME) def test_extend_volume(self, mock_expand_volume, mock_find_volume, mock_find_sc, mock_close_connection, mock_open_connection, mock_init): volume = {'name': self.volume_name, 'size': 1} new_size = 2 self.driver.extend_volume(volume, new_size) mock_expand_volume.assert_called_once_with(self.VOLUME, new_size) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=12345) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_volume', return_value=None) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'expand_volume', return_value=None) def test_extend_volume_no_volume(self, mock_expand_volume, mock_find_volume, mock_find_sc, mock_close_connection, mock_open_connection, mock_init): volume = {'name': self.volume_name, 'size': 1} new_size = 2 self.assertRaises(exception.VolumeBackendAPIException, self.driver.extend_volume, volume, new_size) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=64702) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'get_storage_usage', return_value={'availableSpace': 100, 'freeSpace': 50}) def test_update_volume_stats_with_refresh(self, mock_get_storage_usage, mock_find_sc, mock_close_connection, mock_open_connection, mock_init): stats = self.driver.get_volume_stats(True) self.assertEqual('iSCSI', stats['storage_protocol']) mock_get_storage_usage.called_once_with(64702) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=64702) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'get_storage_usage', return_value={'availableSpace': 100, 'freeSpace': 50}) def test_get_volume_stats_no_refresh(self, mock_get_storage_usage, mock_find_sc, mock_close_connection, mock_open_connection, mock_init): stats = self.driver.get_volume_stats(False) self.assertEqual('iSCSI', stats['storage_protocol']) assert mock_get_storage_usage.called is False @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=12345) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_volume', return_value=VOLUME) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'rename_volume', return_value=True) def test_update_migrated_volume(self, mock_rename_volume, mock_find_volume, mock_find_sc, mock_close_connection, mock_open_connection, mock_init): volume = {'id': 111} backend_volume = {'id': 112} model_update = {'_name_id': None} rt = self.driver.update_migrated_volume(None, volume, backend_volume, 'available') mock_rename_volume.assert_called_once_with(self.VOLUME, volume['id']) self.assertEqual(model_update, rt) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=12345) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_volume', return_value=VOLUME) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'rename_volume', return_value=False) def test_update_migrated_volume_rename_fail(self, mock_rename_volume, mock_find_volume, mock_find_sc, mock_close_connection, mock_open_connection, mock_init): volume = {'id': 111} backend_volume = {'id': 112, '_name_id': 113} rt = self.driver.update_migrated_volume(None, volume, backend_volume, 'available') mock_rename_volume.assert_called_once_with(self.VOLUME, volume['id']) self.assertEqual({'_name_id': 113}, rt) def test_update_migrated_volume_no_volume_id(self, mock_close_connection, mock_open_connection, mock_init): volume = {'id': None} backend_volume = {'id': 112, '_name_id': 113} rt = self.driver.update_migrated_volume(None, volume, backend_volume, 'available') self.assertEqual({'_name_id': 113}, rt) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=12345) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_volume', return_value=None) def test_update_migrated_volume_no_backend_id(self, mock_find_volume, mock_find_sc, mock_close_connection, mock_open_connection, mock_init): volume = {'id': 111} backend_volume = {'id': None, '_name_id': None} rt = self.driver.update_migrated_volume(None, volume, backend_volume, 'available') mock_find_sc.assert_called_once_with() mock_find_volume.assert_called_once_with(None) self.assertEqual({'_name_id': None}, rt) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'create_replay_profile', return_value=SCRPLAYPROFILE) def test_create_consistencygroup(self, mock_create_replay_profile, mock_close_connection, mock_open_connection, mock_init): context = {} group = {'id': 'fc8f2fec-fab2-4e34-9148-c094c913b9a3'} self.driver.create_consistencygroup(context, group) mock_create_replay_profile.assert_called_once_with(group['id']) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'create_replay_profile', return_value=None) def test_create_consistencygroup_fail(self, mock_create_replay_profile, mock_close_connection, mock_open_connection, mock_init): context = {} group = {'id': 'fc8f2fec-fab2-4e34-9148-c094c913b9a3'} self.assertRaises(exception.VolumeBackendAPIException, self.driver.create_consistencygroup, context, group) mock_create_replay_profile.assert_called_once_with(group['id']) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'delete_replay_profile') @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_replay_profile', return_value=SCRPLAYPROFILE) @mock.patch.object(dell_storagecenter_iscsi.DellStorageCenterISCSIDriver, 'delete_volume') def test_delete_consistencygroup(self, mock_delete_volume, mock_find_replay_profile, mock_delete_replay_profile, mock_close_connection, mock_open_connection, mock_init): self.driver.db = mock.Mock() mock_volume = mock.MagicMock() expected_volumes = [mock_volume] self.driver.db.volume_get_all_by_group.return_value = expected_volumes context = {} group = {'id': 'fc8f2fec-fab2-4e34-9148-c094c913b9a3', 'status': 'deleted'} model_update, volumes = self.driver.delete_consistencygroup(context, group) mock_find_replay_profile.assert_called_once_with(group['id']) mock_delete_replay_profile.assert_called_once_with(self.SCRPLAYPROFILE) mock_delete_volume.assert_called_once_with(mock_volume) self.assertEqual(group['status'], model_update['status']) self.assertEqual(expected_volumes, volumes) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'delete_replay_profile') @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_replay_profile', return_value=None) @mock.patch.object(dell_storagecenter_iscsi.DellStorageCenterISCSIDriver, 'delete_volume') def test_delete_consistencygroup_not_found(self, mock_delete_volume, mock_find_replay_profile, mock_delete_replay_profile, mock_close_connection, mock_open_connection, mock_init): self.driver.db = mock.Mock() mock_volume = mock.MagicMock() expected_volumes = [mock_volume] self.driver.db.volume_get_all_by_group.return_value = expected_volumes context = {} group = {'id': 'fc8f2fec-fab2-4e34-9148-c094c913b9a3', 'status': 'deleted'} model_update, volumes = self.driver.delete_consistencygroup(context, group) mock_find_replay_profile.assert_called_once_with(group['id']) self.assertFalse(mock_delete_replay_profile.called) mock_delete_volume.assert_called_once_with(mock_volume) self.assertEqual(group['status'], model_update['status']) self.assertEqual(expected_volumes, volumes) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'update_cg_volumes', return_value=True) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_replay_profile', return_value=SCRPLAYPROFILE) def test_update_consistencygroup(self, mock_find_replay_profile, mock_update_cg_volumes, mock_close_connection, mock_open_connection, mock_init): context = {} group = {'id': 'fc8f2fec-fab2-4e34-9148-c094c913b9a3'} add_volumes = [{'id': '101'}] remove_volumes = [{'id': '102'}] rt1, rt2, rt3 = self.driver.update_consistencygroup(context, group, add_volumes, remove_volumes) mock_update_cg_volumes.assert_called_once_with(self.SCRPLAYPROFILE, add_volumes, remove_volumes) mock_find_replay_profile.assert_called_once_with(group['id']) self.assertIsNone(rt1) self.assertIsNone(rt2) self.assertIsNone(rt3) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_replay_profile', return_value=None) def test_update_consistencygroup_not_found(self, mock_find_replay_profile, mock_close_connection, mock_open_connection, mock_init): context = {} group = {'id': 'fc8f2fec-fab2-4e34-9148-c094c913b9a3'} add_volumes = [{'id': '101'}] remove_volumes = [{'id': '102'}] self.assertRaises(exception.VolumeBackendAPIException, self.driver.update_consistencygroup, context, group, add_volumes, remove_volumes) mock_find_replay_profile.assert_called_once_with(group['id']) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'update_cg_volumes', return_value=False) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_replay_profile', return_value=SCRPLAYPROFILE) def test_update_consistencygroup_error(self, mock_find_replay_profile, mock_update_cg_volumes, mock_close_connection, mock_open_connection, mock_init): context = {} group = {'id': 'fc8f2fec-fab2-4e34-9148-c094c913b9a3'} add_volumes = [{'id': '101'}] remove_volumes = [{'id': '102'}] self.assertRaises(exception.VolumeBackendAPIException, self.driver.update_consistencygroup, context, group, add_volumes, remove_volumes) mock_find_replay_profile.assert_called_once_with(group['id']) mock_update_cg_volumes.assert_called_once_with(self.SCRPLAYPROFILE, add_volumes, remove_volumes) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'snap_cg_replay', return_value={'instanceId': '100'}) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_replay_profile', return_value=SCRPLAYPROFILE) @mock.patch('cinder.objects.snapshot.SnapshotList.get_all_for_cgsnapshot') def test_create_cgsnapshot(self, mock_get_all_for_cgsnapshot, mock_find_replay_profile, mock_snap_cg_replay, mock_close_connection, mock_open_connection, mock_init): mock_snapshot = mock.MagicMock() expected_snapshots = [mock_snapshot] mock_get_all_for_cgsnapshot.return_value = (expected_snapshots) context = {} cggrp = {'consistencygroup_id': 'fc8f2fec-fab2-4e34-9148-c094c913b9a3', 'id': '100'} model_update, snapshots = self.driver.create_cgsnapshot(context, cggrp) mock_find_replay_profile.assert_called_once_with( cggrp['consistencygroup_id']) mock_snap_cg_replay.assert_called_once_with(self.SCRPLAYPROFILE, cggrp['id'], 0) self.assertEqual('available', model_update['status']) self.assertEqual(expected_snapshots, snapshots) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_replay_profile', return_value=None) def test_create_cgsnapshot_profile_not_found(self, mock_find_replay_profile, mock_close_connection, mock_open_connection, mock_init): context = {} cggrp = {'consistencygroup_id': 'fc8f2fec-fab2-4e34-9148-c094c913b9a3', 'id': '100'} self.assertRaises(exception.VolumeBackendAPIException, self.driver.create_cgsnapshot, context, cggrp) mock_find_replay_profile.assert_called_once_with( cggrp['consistencygroup_id']) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'snap_cg_replay', return_value=None) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_replay_profile', return_value=SCRPLAYPROFILE) def test_create_cgsnapshot_fail(self, mock_find_replay_profile, mock_snap_cg_replay, mock_close_connection, mock_open_connection, mock_init): context = {} cggrp = {'consistencygroup_id': 'fc8f2fec-fab2-4e34-9148-c094c913b9a3', 'id': '100'} self.assertRaises(exception.VolumeBackendAPIException, self.driver.create_cgsnapshot, context, cggrp) mock_find_replay_profile.assert_called_once_with( cggrp['consistencygroup_id']) mock_snap_cg_replay.assert_called_once_with(self.SCRPLAYPROFILE, cggrp['id'], 0) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'delete_cg_replay', return_value=True) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_replay_profile', return_value=SCRPLAYPROFILE) @mock.patch('cinder.objects.snapshot.SnapshotList.get_all_for_cgsnapshot') def test_delete_cgsnapshot(self, mock_get_all_for_cgsnapshot, mock_find_replay_profile, mock_delete_cg_replay, mock_close_connection, mock_open_connection, mock_init): mock_snapshot = mock.MagicMock() expected_snapshots = [mock_snapshot] mock_get_all_for_cgsnapshot.return_value = (expected_snapshots) context = {} cgsnap = {'consistencygroup_id': 'fc8f2fec-fab2-4e34-9148-c094c913b9a3', 'id': '100', 'status': 'deleted'} model_update, snapshots = self.driver.delete_cgsnapshot(context, cgsnap) mock_find_replay_profile.assert_called_once_with( cgsnap['consistencygroup_id']) mock_delete_cg_replay.assert_called_once_with(self.SCRPLAYPROFILE, cgsnap['id']) self.assertEqual({'status': cgsnap['status']}, model_update) self.assertEqual(expected_snapshots, snapshots) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'delete_cg_replay') @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_replay_profile', return_value=None) @mock.patch('cinder.objects.snapshot.SnapshotList.get_all_for_cgsnapshot') def test_delete_cgsnapshot_profile_not_found(self, mock_get_all_for_cgsnapshot, mock_find_replay_profile, mock_delete_cg_replay, mock_close_connection, mock_open_connection, mock_init): mock_snapshot = mock.MagicMock() expected_snapshots = [mock_snapshot] mock_get_all_for_cgsnapshot.return_value = (expected_snapshots) context = {} cgsnap = {'consistencygroup_id': 'fc8f2fec-fab2-4e34-9148-c094c913b9a3', 'id': '100', 'status': 'deleted'} model_update, snapshots = self.driver.delete_cgsnapshot(context, cgsnap) mock_find_replay_profile.assert_called_once_with( cgsnap['consistencygroup_id']) self.assertFalse(mock_delete_cg_replay.called) self.assertEqual({'status': cgsnap['status']}, model_update) self.assertEqual(expected_snapshots, snapshots) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'delete_cg_replay', return_value=False) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_replay_profile', return_value=SCRPLAYPROFILE) def test_delete_cgsnapshot_profile_failed_delete(self, mock_find_replay_profile, mock_delete_cg_replay, mock_close_connection, mock_open_connection, mock_init): context = {} cgsnap = {'consistencygroup_id': 'fc8f2fec-fab2-4e34-9148-c094c913b9a3', 'id': '100', 'status': 'available'} self.assertRaises(exception.VolumeBackendAPIException, self.driver.delete_cgsnapshot, context, cgsnap) mock_find_replay_profile.assert_called_once_with( cgsnap['consistencygroup_id']) mock_delete_cg_replay.assert_called_once_with(self.SCRPLAYPROFILE, cgsnap['id']) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'manage_existing') def test_manage_existing(self, mock_manage_existing, mock_close_connection, mock_open_connection, mock_init): # Very little to do in this one. The call is sent # straight down. volume = {'id': 'guid'} existing_ref = {'source-name': 'imavolumename'} self.driver.manage_existing(volume, existing_ref) mock_manage_existing.assert_called_once_with(volume['id'], existing_ref) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'manage_existing') def test_manage_existing_id(self, mock_manage_existing, mock_close_connection, mock_open_connection, mock_init): # Very little to do in this one. The call is sent # straight down. volume = {'id': 'guid'} existing_ref = {'source-id': 'imadeviceid'} self.driver.manage_existing(volume, existing_ref) mock_manage_existing.assert_called_once_with(volume['id'], existing_ref) def test_manage_existing_bad_ref(self, mock_close_connection, mock_open_connection, mock_init): volume = {'id': 'guid'} existing_ref = {'banana-name': 'imavolumename'} self.assertRaises(exception.ManageExistingInvalidReference, self.driver.manage_existing, volume, existing_ref) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'get_unmanaged_volume_size', return_value=4) def test_manage_existing_get_size(self, mock_get_unmanaged_volume_size, mock_close_connection, mock_open_connection, mock_init): # Almost nothing to test here. Just that we call our function. volume = {'id': 'guid'} existing_ref = {'source-name': 'imavolumename'} res = self.driver.manage_existing_get_size(volume, existing_ref) mock_get_unmanaged_volume_size.assert_called_once_with(existing_ref) # The above is 4GB and change. self.assertEqual(4, res) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'get_unmanaged_volume_size', return_value=4) def test_manage_existing_get_size_id(self, mock_get_unmanaged_volume_size, mock_close_connection, mock_open_connection, mock_init): # Almost nothing to test here. Just that we call our function. volume = {'id': 'guid'} existing_ref = {'source-id': 'imadeviceid'} res = self.driver.manage_existing_get_size(volume, existing_ref) mock_get_unmanaged_volume_size.assert_called_once_with(existing_ref) # The above is 4GB and change. self.assertEqual(4, res) def test_manage_existing_get_size_bad_ref(self, mock_close_connection, mock_open_connection, mock_init): volume = {'id': 'guid'} existing_ref = {'banana-name': 'imavolumename'} self.assertRaises(exception.ManageExistingInvalidReference, self.driver.manage_existing_get_size, volume, existing_ref) def test_retype_not_extra_specs(self, mock_close_connection, mock_open_connection, mock_init): res = self.driver.retype( None, None, None, {'extra_specs': None}, None) self.assertFalse(res) def test_retype_not_storage_profile(self, mock_close_connection, mock_open_connection, mock_init): res = self.driver.retype( None, None, None, {'extra_specs': {'something': 'else'}}, None) self.assertFalse(res) def test_retype_same(self, mock_close_connection, mock_open_connection, mock_init): res = self.driver.retype( None, None, None, {'extra_specs': {'storagetype:storageprofile': ['A', 'A']}}, None) self.assertTrue(res) def test_retype_malformed(self, mock_close_connection, mock_open_connection, mock_init): LOG = self.mock_object(dell_storagecenter_common, "LOG") res = self.driver.retype( None, None, None, {'extra_specs': { 'storagetype:storageprofile': ['something', 'not', 'right']}}, None) self.assertFalse(res) self.assertEqual(1, LOG.warning.call_count) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_volume', return_value=VOLUME) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'unmanage') def test_unmanage(self, mock_unmanage, mock_find_volume, mock_close_connection, mock_open_connection, mock_init): volume = {'id': 'guid'} self.driver.unmanage(volume) mock_find_volume.assert_called_once_with(volume['id']) mock_unmanage.assert_called_once_with(self.VOLUME) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_volume', return_value=None) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'unmanage') def test_unmanage_volume_not_found(self, mock_unmanage, mock_find_volume, mock_close_connection, mock_open_connection, mock_init): volume = {'id': 'guid'} self.driver.unmanage(volume) mock_find_volume.assert_called_once_with(volume['id']) self.assertFalse(mock_unmanage.called) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'update_storage_profile') @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_volume', return_value=VOLUME) @mock.patch.object(dell_storagecenter_api.StorageCenterApi, 'find_sc', return_value=12345) def test_retype(self, mock_find_sc, mock_find_volume, mock_update_storage_profile, mock_close_connection, mock_open_connection, mock_init): res = self.driver.retype( None, {'id': 'volid'}, None, {'extra_specs': {'storagetype:storageprofile': ['A', 'B']}}, None) mock_update_storage_profile.ssert_called_once_with( self.VOLUME, 'B') self.assertTrue(res)
nikesh-mahalka/cinder
cinder/tests/unit/test_dellsc.py
Python
apache-2.0
85,579
# (c) 2012-2014, Michael DeHaan <michael.dehaan@gmail.com> # (c) 2017 Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import (absolute_import, division, print_function) __metaclass__ = type DOCUMENTATION = ''' callback: default type: stdout short_description: default Ansible screen output version_added: historical description: - This is the default output callback for ansible-playbook. extends_documentation_fragment: - default_callback requirements: - set as stdout in configuration ''' from ansible import constants as C from ansible.playbook.task_include import TaskInclude from ansible.plugins.callback import CallbackBase from ansible.utils.color import colorize, hostcolor class CallbackModule(CallbackBase): ''' This is the default callback interface, which simply prints messages to stdout when new callback events are received. ''' CALLBACK_VERSION = 2.0 CALLBACK_TYPE = 'stdout' CALLBACK_NAME = 'default' def __init__(self): self._play = None self._last_task_banner = None super(CallbackModule, self).__init__() def v2_runner_on_failed(self, result, ignore_errors=False): delegated_vars = result._result.get('_ansible_delegated_vars', None) self._clean_results(result._result, result._task.action) if self._play.strategy == 'free' and self._last_task_banner != result._task._uuid: self._print_task_banner(result._task) self._handle_exception(result._result) self._handle_warnings(result._result) if result._task.loop and 'results' in result._result: self._process_items(result) else: if delegated_vars: self._display.display("fatal: [%s -> %s]: FAILED! => %s" % (result._host.get_name(), delegated_vars['ansible_host'], self._dump_results(result._result)), color=C.COLOR_ERROR) else: self._display.display("fatal: [%s]: FAILED! => %s" % (result._host.get_name(), self._dump_results(result._result)), color=C.COLOR_ERROR) if ignore_errors: self._display.display("...ignoring", color=C.COLOR_SKIP) def v2_runner_on_ok(self, result): delegated_vars = result._result.get('_ansible_delegated_vars', None) self._clean_results(result._result, result._task.action) if self._play.strategy == 'free' and self._last_task_banner != result._task._uuid: self._print_task_banner(result._task) if isinstance(result._task, TaskInclude): return elif result._result.get('changed', False): if delegated_vars: msg = "changed: [%s -> %s]" % (result._host.get_name(), delegated_vars['ansible_host']) else: msg = "changed: [%s]" % result._host.get_name() color = C.COLOR_CHANGED else: if delegated_vars: msg = "ok: [%s -> %s]" % (result._host.get_name(), delegated_vars['ansible_host']) else: msg = "ok: [%s]" % result._host.get_name() color = C.COLOR_OK self._handle_warnings(result._result) if result._task.loop and 'results' in result._result: self._process_items(result) else: if (self._display.verbosity > 0 or '_ansible_verbose_always' in result._result) and '_ansible_verbose_override' not in result._result: msg += " => %s" % (self._dump_results(result._result),) self._display.display(msg, color=color) def v2_runner_on_skipped(self, result): if self._plugin_options.get('show_skipped_hosts', C.DISPLAY_SKIPPED_HOSTS): # fallback on constants for inherited plugins missing docs self._clean_results(result._result, result._task.action) if self._play.strategy == 'free' and self._last_task_banner != result._task._uuid: self._print_task_banner(result._task) if result._task.loop and 'results' in result._result: self._process_items(result) else: msg = "skipping: [%s]" % result._host.get_name() if (self._display.verbosity > 0 or '_ansible_verbose_always' in result._result) and '_ansible_verbose_override' not in result._result: msg += " => %s" % self._dump_results(result._result) self._display.display(msg, color=C.COLOR_SKIP) def v2_runner_on_unreachable(self, result): if self._play.strategy == 'free' and self._last_task_banner != result._task._uuid: self._print_task_banner(result._task) delegated_vars = result._result.get('_ansible_delegated_vars', None) if delegated_vars: self._display.display("fatal: [%s -> %s]: UNREACHABLE! => %s" % (result._host.get_name(), delegated_vars['ansible_host'], self._dump_results(result._result)), color=C.COLOR_UNREACHABLE) else: self._display.display("fatal: [%s]: UNREACHABLE! => %s" % (result._host.get_name(), self._dump_results(result._result)), color=C.COLOR_UNREACHABLE) def v2_playbook_on_no_hosts_matched(self): self._display.display("skipping: no hosts matched", color=C.COLOR_SKIP) def v2_playbook_on_no_hosts_remaining(self): self._display.banner("NO MORE HOSTS LEFT") def v2_playbook_on_task_start(self, task, is_conditional): if self._play.strategy != 'free': self._print_task_banner(task) def _print_task_banner(self, task): # args can be specified as no_log in several places: in the task or in # the argument spec. We can check whether the task is no_log but the # argument spec can't be because that is only run on the target # machine and we haven't run it thereyet at this time. # # So we give people a config option to affect display of the args so # that they can secure this if they feel that their stdout is insecure # (shoulder surfing, logging stdout straight to a file, etc). args = '' if not task.no_log and C.DISPLAY_ARGS_TO_STDOUT: args = u', '.join(u'%s=%s' % a for a in task.args.items()) args = u' %s' % args self._display.banner(u"TASK [%s%s]" % (task.get_name().strip(), args)) if self._display.verbosity >= 2: path = task.get_path() if path: self._display.display(u"task path: %s" % path, color=C.COLOR_DEBUG) self._last_task_banner = task._uuid def v2_playbook_on_cleanup_task_start(self, task): self._display.banner("CLEANUP TASK [%s]" % task.get_name().strip()) def v2_playbook_on_handler_task_start(self, task): self._display.banner("RUNNING HANDLER [%s]" % task.get_name().strip()) def v2_playbook_on_play_start(self, play): name = play.get_name().strip() if not name: msg = u"PLAY" else: msg = u"PLAY [%s]" % name self._play = play self._display.banner(msg) def v2_on_file_diff(self, result): if result._task.loop and 'results' in result._result: for res in result._result['results']: if 'diff' in res and res['diff'] and res.get('changed', False): diff = self._get_diff(res['diff']) if diff: self._display.display(diff) elif 'diff' in result._result and result._result['diff'] and result._result.get('changed', False): diff = self._get_diff(result._result['diff']) if diff: self._display.display(diff) def v2_runner_item_on_ok(self, result): delegated_vars = result._result.get('_ansible_delegated_vars', None) self._clean_results(result._result, result._task.action) if isinstance(result._task, TaskInclude): return elif result._result.get('changed', False): msg = 'changed' color = C.COLOR_CHANGED else: msg = 'ok' color = C.COLOR_OK if delegated_vars: msg += ": [%s -> %s]" % (result._host.get_name(), delegated_vars['ansible_host']) else: msg += ": [%s]" % result._host.get_name() msg += " => (item=%s)" % (self._get_item(result._result),) if (self._display.verbosity > 0 or '_ansible_verbose_always' in result._result) and '_ansible_verbose_override' not in result._result: msg += " => %s" % self._dump_results(result._result) self._display.display(msg, color=color) def v2_runner_item_on_failed(self, result): delegated_vars = result._result.get('_ansible_delegated_vars', None) self._clean_results(result._result, result._task.action) self._handle_exception(result._result) msg = "failed: " if delegated_vars: msg += "[%s -> %s]" % (result._host.get_name(), delegated_vars['ansible_host']) else: msg += "[%s]" % (result._host.get_name()) self._handle_warnings(result._result) self._display.display(msg + " (item=%s) => %s" % (self._get_item(result._result), self._dump_results(result._result)), color=C.COLOR_ERROR) def v2_runner_item_on_skipped(self, result): if self._plugin_options.get('show_skipped_hosts', C.DISPLAY_SKIPPED_HOSTS): # fallback on constants for inherited plugins missing docs self._clean_results(result._result, result._task.action) msg = "skipping: [%s] => (item=%s) " % (result._host.get_name(), self._get_item(result._result)) if (self._display.verbosity > 0 or '_ansible_verbose_always' in result._result) and '_ansible_verbose_override' not in result._result: msg += " => %s" % self._dump_results(result._result) self._display.display(msg, color=C.COLOR_SKIP) def v2_playbook_on_include(self, included_file): msg = 'included: %s for %s' % (included_file._filename, ", ".join([h.name for h in included_file._hosts])) self._display.display(msg, color=C.COLOR_SKIP) def v2_playbook_on_stats(self, stats): self._display.banner("PLAY RECAP") hosts = sorted(stats.processed.keys()) for h in hosts: t = stats.summarize(h) self._display.display(u"%s : %s %s %s %s" % ( hostcolor(h, t), colorize(u'ok', t['ok'], C.COLOR_OK), colorize(u'changed', t['changed'], C.COLOR_CHANGED), colorize(u'unreachable', t['unreachable'], C.COLOR_UNREACHABLE), colorize(u'failed', t['failures'], C.COLOR_ERROR)), screen_only=True ) self._display.display(u"%s : %s %s %s %s" % ( hostcolor(h, t, False), colorize(u'ok', t['ok'], None), colorize(u'changed', t['changed'], None), colorize(u'unreachable', t['unreachable'], None), colorize(u'failed', t['failures'], None)), log_only=True ) self._display.display("", screen_only=True) # print custom stats if self._plugin_options.get('show_custom_stats', C.SHOW_CUSTOM_STATS) and stats.custom: # fallback on constants for inherited plugins missing docs self._display.banner("CUSTOM STATS: ") # per host # TODO: come up with 'pretty format' for k in sorted(stats.custom.keys()): if k == '_run': continue self._display.display('\t%s: %s' % (k, self._dump_results(stats.custom[k], indent=1).replace('\n', ''))) # print per run custom stats if '_run' in stats.custom: self._display.display("", screen_only=True) self._display.display('\tRUN: %s' % self._dump_results(stats.custom['_run'], indent=1).replace('\n', '')) self._display.display("", screen_only=True) def v2_playbook_on_start(self, playbook): if self._display.verbosity > 1: from os.path import basename self._display.banner("PLAYBOOK: %s" % basename(playbook._file_name)) if self._display.verbosity > 3: # show CLI options if self._options is not None: for option in dir(self._options): if option.startswith('_') or option in ['read_file', 'ensure_value', 'read_module']: continue val = getattr(self._options, option) if val: self._display.vvvv('%s: %s' % (option, val)) def v2_runner_retry(self, result): task_name = result.task_name or result._task msg = "FAILED - RETRYING: %s (%d retries left)." % (task_name, result._result['retries'] - result._result['attempts']) if (self._display.verbosity > 2 or '_ansible_verbose_always' in result._result) and '_ansible_verbose_override' not in result._result: msg += "Result was: %s" % self._dump_results(result._result) self._display.display(msg, color=C.COLOR_DEBUG)
e-gob/plataforma-kioscos-autoatencion
scripts/ansible-play/.venv/lib/python2.7/site-packages/ansible/plugins/callback/default.py
Python
bsd-3-clause
13,463
# coding: utf-8 """ Compatibility functions for unified behavior between Python 2.x and 3.x. :author: Alex Grönholm """ from __future__ import unicode_literals, absolute_import import inspect import sys from threading import Thread if sys.version_info[0] < 3: def items(d): return d.items() def iteritems(d): return d.iteritems() def next(x): return x.next() range = xrange # noqa long = long # noqa basestring = basestring # noqa unicode = unicode # noqa bytearray2 = bytearray unichr = unichr # noqa bytestr = str tobytestr = str def isbytestr(s): return isinstance(s, str) def ispython3bytestr(s): return False def isbytearray(s): return isinstance(s, bytearray) def bytetoint(b): return ord(b) def bytetostr(b): return b def strtobyte(b): return b import Queue Queue = Queue.Queue else: def items(d): return list(d.items()) def iteritems(d): return d.items() next = next range = range long = int basestring = str unicode = str bytearray2 = bytes unichr = chr bytestr = bytes def tobytestr(s): return bytes(s, "ascii") def isbytestr(s): return isinstance(s, bytes) def ispython3bytestr(s): return isinstance(s, bytes) def isbytearray(s): return isinstance(s, bytearray) def bytetoint(b): return b def bytetostr(b): return str(b, encoding="ascii") def strtobyte(s): return bytes(s, encoding="ascii") import queue Queue = queue.Queue if hasattr(inspect, "getattr_static"): def hasattr2(obj, attr): return bool(inspect.getattr_static(obj, attr, False)) else: hasattr2 = hasattr class CompatThread(Thread): """Compatibility Thread class. Allows Python 2 Thread class to accept daemon kwarg in init. """ def __init__(self, *args, **kwargs): daemon = None try: daemon = kwargs.pop("daemon") except KeyError: pass super(CompatThread, self).__init__(*args, **kwargs) if daemon: self.daemon = daemon
fouzelddin/py4j
py4j-python/src/py4j/compat.py
Python
bsd-3-clause
2,249
# encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'ImportedFile' db.create_table('projects_importedfile', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('project', self.gf('django.db.models.fields.related.ForeignKey')(related_name='imported_files', to=orm['projects.Project'])), ('name', self.gf('django.db.models.fields.CharField')(max_length=255)), ('slug', self.gf('django.db.models.fields.SlugField')(max_length=50, db_index=True)), ('path', self.gf('django.db.models.fields.CharField')(max_length=255)), ('content', self.gf('django.db.models.fields.TextField')()), )) db.send_create_signal('projects', ['ImportedFile']) def backwards(self, orm): # Deleting model 'ImportedFile' db.delete_table('projects_importedfile') models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'projects.file': { 'Meta': {'ordering': "('denormalized_path',)", 'object_name': 'File'}, 'content': ('django.db.models.fields.TextField', [], {}), 'denormalized_path': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'heading': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'ordering': ('django.db.models.fields.PositiveSmallIntegerField', [], {'default': '1'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'children'", 'null': 'True', 'to': "orm['projects.File']"}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'files'", 'to': "orm['projects.Project']"}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '50', 'db_index': 'True'}), 'status': ('django.db.models.fields.PositiveSmallIntegerField', [], {'default': '1'}) }, 'projects.filerevision': { 'Meta': {'ordering': "('-revision_number',)", 'object_name': 'FileRevision'}, 'comment': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'created_date': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'diff': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'file': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'revisions'", 'to': "orm['projects.File']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_reverted': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'revision_number': ('django.db.models.fields.IntegerField', [], {}) }, 'projects.importedfile': { 'Meta': {'object_name': 'ImportedFile'}, 'content': ('django.db.models.fields.TextField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'path': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'project': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'imported_files'", 'to': "orm['projects.Project']"}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '50', 'db_index': 'True'}) }, 'projects.project': { 'Meta': {'ordering': "('-modified_date', 'name')", 'object_name': 'Project'}, 'copyright': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'docs_directory': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'extensions': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '255'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified_date': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'path': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'project_url': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}), 'pub_date': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'repo': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'repo_type': ('django.db.models.fields.CharField', [], {'default': "'git'", 'max_length': '10'}), 'skip': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '50', 'db_index': 'True'}), 'status': ('django.db.models.fields.PositiveSmallIntegerField', [], {'default': '1'}), 'suffix': ('django.db.models.fields.CharField', [], {'default': "'.rst'", 'max_length': '10'}), 'theme': ('django.db.models.fields.CharField', [], {'default': "'default'", 'max_length': '20'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'projects'", 'to': "orm['auth.User']"}), 'version': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'whitelisted': ('django.db.models.fields.BooleanField', [], {'default': 'False'}) } } complete_apps = ['projects']
KamranMackey/readthedocs.org
readthedocs/projects/migrations/0006_add_imported_file.py
Python
mit
8,964
# Copyright 2011 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo.config import cfg import webob from nova.api.openstack.compute import image_metadata from nova.openstack.common import jsonutils from nova import test from nova.tests.api.openstack import fakes CONF = cfg.CONF class ImageMetaDataTest(test.TestCase): def setUp(self): super(ImageMetaDataTest, self).setUp() fakes.stub_out_glance(self.stubs) self.controller = image_metadata.Controller() def test_index(self): req = fakes.HTTPRequest.blank('/v2/fake/images/123/metadata') res_dict = self.controller.index(req, '123') expected = {'metadata': {'key1': 'value1'}} self.assertEqual(res_dict, expected) def test_show(self): req = fakes.HTTPRequest.blank('/v2/fake/images/123/metadata/key1') res_dict = self.controller.show(req, '123', 'key1') self.assertIn('meta', res_dict) self.assertEqual(len(res_dict['meta']), 1) self.assertEqual('value1', res_dict['meta']['key1']) def test_show_not_found(self): req = fakes.HTTPRequest.blank('/v2/fake/images/123/metadata/key9') self.assertRaises(webob.exc.HTTPNotFound, self.controller.show, req, '123', 'key9') def test_show_image_not_found(self): req = fakes.HTTPRequest.blank('/v2/fake/images/100/metadata/key1') self.assertRaises(webob.exc.HTTPNotFound, self.controller.show, req, '100', 'key9') def test_create(self): req = fakes.HTTPRequest.blank('/v2/fake/images/123/metadata') req.method = 'POST' body = {"metadata": {"key7": "value7"}} req.body = jsonutils.dumps(body) req.headers["content-type"] = "application/json" res = self.controller.create(req, '123', body) expected_output = {'metadata': {'key1': 'value1', 'key7': 'value7'}} self.assertEqual(expected_output, res) def test_create_image_not_found(self): req = fakes.HTTPRequest.blank('/v2/fake/images/100/metadata') req.method = 'POST' body = {"metadata": {"key7": "value7"}} req.body = jsonutils.dumps(body) req.headers["content-type"] = "application/json" self.assertRaises(webob.exc.HTTPNotFound, self.controller.create, req, '100', body) def test_update_all(self): req = fakes.HTTPRequest.blank('/v2/fake/images/123/metadata') req.method = 'PUT' body = {"metadata": {"key9": "value9"}} req.body = jsonutils.dumps(body) req.headers["content-type"] = "application/json" res = self.controller.update_all(req, '123', body) expected_output = {'metadata': {'key9': 'value9'}} self.assertEqual(expected_output, res) def test_update_all_image_not_found(self): req = fakes.HTTPRequest.blank('/v2/fake/images/100/metadata') req.method = 'PUT' body = {"metadata": {"key9": "value9"}} req.body = jsonutils.dumps(body) req.headers["content-type"] = "application/json" self.assertRaises(webob.exc.HTTPNotFound, self.controller.update_all, req, '100', body) def test_update_item(self): req = fakes.HTTPRequest.blank('/v2/fake/images/123/metadata/key1') req.method = 'PUT' body = {"meta": {"key1": "zz"}} req.body = jsonutils.dumps(body) req.headers["content-type"] = "application/json" res = self.controller.update(req, '123', 'key1', body) expected_output = {'meta': {'key1': 'zz'}} self.assertEqual(res, expected_output) def test_update_item_image_not_found(self): req = fakes.HTTPRequest.blank('/v2/fake/images/100/metadata/key1') req.method = 'PUT' body = {"meta": {"key1": "zz"}} req.body = jsonutils.dumps(body) req.headers["content-type"] = "application/json" self.assertRaises(webob.exc.HTTPNotFound, self.controller.update, req, '100', 'key1', body) def test_update_item_bad_body(self): req = fakes.HTTPRequest.blank('/v2/fake/images/123/metadata/key1') req.method = 'PUT' body = {"key1": "zz"} req.body = '' req.headers["content-type"] = "application/json" self.assertRaises(webob.exc.HTTPBadRequest, self.controller.update, req, '123', 'key1', body) def test_update_item_too_many_keys(self): req = fakes.HTTPRequest.blank('/v2/fake/images/123/metadata/key1') req.method = 'PUT' overload = {} for num in range(CONF.quota_metadata_items + 1): overload['key%s' % num] = 'value%s' % num body = {'meta': overload} req.body = jsonutils.dumps(body) req.headers["content-type"] = "application/json" self.assertRaises(webob.exc.HTTPBadRequest, self.controller.update, req, '123', 'key1', body) def test_update_item_body_uri_mismatch(self): req = fakes.HTTPRequest.blank('/v2/fake/images/123/metadata/bad') req.method = 'PUT' body = {"meta": {"key1": "value1"}} req.body = jsonutils.dumps(body) req.headers["content-type"] = "application/json" self.assertRaises(webob.exc.HTTPBadRequest, self.controller.update, req, '123', 'bad', body) def test_delete(self): req = fakes.HTTPRequest.blank('/v2/fake/images/123/metadata/key1') req.method = 'DELETE' res = self.controller.delete(req, '123', 'key1') self.assertIsNone(res) def test_delete_not_found(self): req = fakes.HTTPRequest.blank('/v2/fake/images/123/metadata/blah') req.method = 'DELETE' self.assertRaises(webob.exc.HTTPNotFound, self.controller.delete, req, '123', 'blah') def test_delete_image_not_found(self): req = fakes.HTTPRequest.blank('/v2/fake/images/100/metadata/key1') req.method = 'DELETE' self.assertRaises(webob.exc.HTTPNotFound, self.controller.delete, req, '100', 'key1') def test_too_many_metadata_items_on_create(self): data = {"metadata": {}} for num in range(CONF.quota_metadata_items + 1): data['metadata']['key%i' % num] = "blah" req = fakes.HTTPRequest.blank('/v2/fake/images/123/metadata') req.method = 'POST' req.body = jsonutils.dumps(data) req.headers["content-type"] = "application/json" self.assertRaises(webob.exc.HTTPRequestEntityTooLarge, self.controller.create, req, '123', data) self.assertRaises(webob.exc.HTTPRequestEntityTooLarge, self.controller.create, req, '123', data) def test_too_many_metadata_items_on_put(self): self.flags(quota_metadata_items=1) req = fakes.HTTPRequest.blank('/v2/fake/images/123/metadata/blah') req.method = 'PUT' body = {"meta": {"blah": "blah"}} req.body = jsonutils.dumps(body) req.headers["content-type"] = "application/json" self.assertRaises(webob.exc.HTTPRequestEntityTooLarge, self.controller.update, req, '123', 'blah', body) def test_image_not_authorized_update(self): image_id = 131 # see nova.tests.api.openstack.fakes:_make_image_fixtures req = fakes.HTTPRequest.blank('/v2/fake/images/%s/metadata/key1' % image_id) req.method = 'PUT' body = {"meta": {"key1": "value1"}} req.body = jsonutils.dumps(body) req.headers["content-type"] = "application/json" self.assertRaises(webob.exc.HTTPForbidden, self.controller.update, req, image_id, 'key1', body) def test_image_not_authorized_update_all(self): image_id = 131 # see nova.tests.api.openstack.fakes:_make_image_fixtures req = fakes.HTTPRequest.blank('/v2/fake/images/%s/metadata/key1' % image_id) req.method = 'PUT' body = {"meta": {"key1": "value1"}} req.body = jsonutils.dumps(body) req.headers["content-type"] = "application/json" self.assertRaises(webob.exc.HTTPForbidden, self.controller.update_all, req, image_id, body) def test_image_not_authorized_create(self): image_id = 131 # see nova.tests.api.openstack.fakes:_make_image_fixtures req = fakes.HTTPRequest.blank('/v2/fake/images/%s/metadata/key1' % image_id) req.method = 'POST' body = {"meta": {"key1": "value1"}} req.body = jsonutils.dumps(body) req.headers["content-type"] = "application/json" self.assertRaises(webob.exc.HTTPForbidden, self.controller.create, req, image_id, body)
eharney/nova
nova/tests/api/openstack/compute/test_image_metadata.py
Python
apache-2.0
9,569
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=not-callable # pylint: disable=redefined-builtin """Layers can merge several input tensors into a single output tensor. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.keras.python.keras import backend as K from tensorflow.contrib.keras.python.keras.engine.topology import Layer from tensorflow.python.framework import tensor_shape class _Merge(Layer): """Generic merge layer for elementwise merge functions. Used to implement `Sum`, `Average`, etc. Arguments: **kwargs: standard layer keyword arguments. """ def __init__(self, **kwargs): super(_Merge, self).__init__(**kwargs) self.supports_masking = True def _merge_function(self, inputs): raise NotImplementedError def _compute_elemwise_op_output_shape(self, shape1, shape2): """Computes the shape of the resultant of an elementwise operation. Arguments: shape1: tuple or None. Shape of the first tensor shape2: tuple or None. Shape of the second tensor Returns: expected output shape when an element-wise operation is carried out on 2 tensors with shapes shape1 and shape2. tuple or None. Raises: ValueError: if shape1 and shape2 are not compatible for element-wise operations. """ if None in [shape1, shape2]: return None elif len(shape1) < len(shape2): return self._compute_elemwise_op_output_shape(shape2, shape1) elif not shape2: return shape1 output_shape = list(shape1[:-len(shape2)]) for i, j in zip(shape1[-len(shape2):], shape2): if i is None or j is None: output_shape.append(None) elif i == 1: output_shape.append(j) elif j == 1: output_shape.append(i) else: if i != j: raise ValueError('Operands could not be broadcast ' 'together with shapes ' + str(shape1) + ' ' + str(shape2)) output_shape.append(i) return tuple(output_shape) def build(self, input_shape): # Used purely for shape validation. if not isinstance(input_shape, list): raise ValueError('A merge layer should be called ' 'on a list of inputs.') if len(input_shape) < 2: raise ValueError('A merge layer should be called ' 'on a list of at least 2 inputs. ' 'Got ' + str(len(input_shape)) + ' inputs.') input_shape = [tensor_shape.TensorShape(s).as_list() for s in input_shape] batch_sizes = [s[0] for s in input_shape if s is not None] batch_sizes = set(batch_sizes) batch_sizes -= set([None]) if len(batch_sizes) > 1: raise ValueError('Can not merge tensors with different ' 'batch sizes. Got tensors with shapes : ' + str(input_shape)) if input_shape[0] is None: output_shape = None else: output_shape = input_shape[0][1:] for i in range(1, len(input_shape)): if input_shape[i] is None: shape = None else: shape = input_shape[i][1:] output_shape = self._compute_elemwise_op_output_shape(output_shape, shape) # If the inputs have different ranks, we have to reshape them # to make them broadcastable. if None not in input_shape and len(set(map(len, input_shape))) == 1: self._reshape_required = False else: self._reshape_required = True self.built = True def call(self, inputs): if self._reshape_required: reshaped_inputs = [] input_ndims = list(map(K.ndim, inputs)) if None not in input_ndims: # If ranks of all inputs are available, # we simply expand each of them at axis=1 # until all of them have the same rank. max_ndim = max(input_ndims) for x in inputs: x_ndim = K.ndim(x) for _ in range(max_ndim - x_ndim): x = K.expand_dims(x, 1) reshaped_inputs.append(x) return self._merge_function(reshaped_inputs) else: # Transpose all inputs so that batch size is the last dimension. # (batch_size, dim1, dim2, ... ) -> (dim1, dim2, ... , batch_size) transposed = False for x in inputs: x_ndim = K.ndim(x) if x_ndim is None: x_shape = K.shape(x) batch_size = x_shape[0] new_shape = K.concatenate([x_shape[1:], K.expand_dims(batch_size)]) x_transposed = K.reshape(x, K.stack([batch_size, K.prod(x_shape[1:])])) x_transposed = K.permute_dimensions(x_transposed, (1, 0)) x_transposed = K.reshape(x_transposed, new_shape) reshaped_inputs.append(x_transposed) transposed = True elif x_ndim > 1: dims = list(range(1, x_ndim)) + [0] reshaped_inputs.append(K.permute_dimensions(x, dims)) transposed = True else: # We don't transpose inputs if they are 1D vectors or scalars. reshaped_inputs.append(x) y = self._merge_function(reshaped_inputs) y_ndim = K.ndim(y) if transposed: # If inputs have been transposed, we have to transpose the output too. if y_ndim is None: y_shape = K.shape(y) y_ndim = K.shape(y_shape)[0] batch_size = y_shape[y_ndim - 1] new_shape = K.concatenate( [K.expand_dims(batch_size), y_shape[:y_ndim - 1]]) y = K.reshape(y, (-1, batch_size)) y = K.permute_dimensions(y, (1, 0)) y = K.reshape(y, new_shape) elif y_ndim > 1: dims = [y_ndim - 1] + list(range(y_ndim - 1)) y = K.permute_dimensions(y, dims) return y else: return self._merge_function(inputs) def compute_output_shape(self, input_shape): if input_shape[0] is None: output_shape = None else: output_shape = input_shape[0][1:] for i in range(1, len(input_shape)): if input_shape[i] is None: shape = None else: shape = input_shape[i][1:] output_shape = self._compute_elemwise_op_output_shape(output_shape, shape) batch_sizes = [s[0] for s in input_shape if s is not None] batch_sizes = set(batch_sizes) batch_sizes -= set([None]) if len(batch_sizes) == 1: output_shape = (list(batch_sizes)[0],) + output_shape else: output_shape = (None,) + output_shape return output_shape def compute_mask(self, inputs, mask=None): if mask is None: return None if not isinstance(mask, list): raise ValueError('`mask` should be a list.') if not isinstance(inputs, list): raise ValueError('`inputs` should be a list.') if len(mask) != len(inputs): raise ValueError('The lists `inputs` and `mask` ' 'should have the same length.') if all([m is None for m in mask]): return None masks = [K.expand_dims(m, 0) for m in mask if m is not None] return K.all(K.concatenate(masks, axis=0), axis=0, keepdims=False) class Add(_Merge): """Layer that adds a list of inputs. It takes as input a list of tensors, all of the same shape, and returns a single tensor (also of the same shape). """ def _merge_function(self, inputs): output = inputs[0] for i in range(1, len(inputs)): output += inputs[i] return output class Multiply(_Merge): """Layer that multiplies (element-wise) a list of inputs. It takes as input a list of tensors, all of the same shape, and returns a single tensor (also of the same shape). """ def _merge_function(self, inputs): output = inputs[0] for i in range(1, len(inputs)): output *= inputs[i] return output class Average(_Merge): """Layer that averages a list of inputs. It takes as input a list of tensors, all of the same shape, and returns a single tensor (also of the same shape). """ def _merge_function(self, inputs): output = inputs[0] for i in range(1, len(inputs)): output += inputs[i] return output / len(inputs) class Maximum(_Merge): """Layer that computes the maximum (element-wise) a list of inputs. It takes as input a list of tensors, all of the same shape, and returns a single tensor (also of the same shape). """ def _merge_function(self, inputs): output = inputs[0] for i in range(1, len(inputs)): output = K.maximum(output, inputs[i]) return output class Concatenate(_Merge): """Layer that concatenates a list of inputs. It takes as input a list of tensors, all of the same shape expect for the concatenation axis, and returns a single tensor, the concatenation of all inputs. Arguments: axis: Axis along which to concatenate. **kwargs: standard layer keyword arguments. """ def __init__(self, axis=-1, **kwargs): super(Concatenate, self).__init__(**kwargs) self.axis = axis self.supports_masking = True def build(self, input_shape): # Used purely for shape validation. if not isinstance(input_shape, list): raise ValueError('`Concatenate` layer should be called ' 'on a list of inputs') if all([shape is None for shape in input_shape]): return reduced_inputs_shapes = [ tensor_shape.TensorShape(shape).as_list() for shape in input_shape ] shape_set = set() for i in range(len(reduced_inputs_shapes)): del reduced_inputs_shapes[i][self.axis] shape_set.add(tuple(reduced_inputs_shapes[i])) if len(shape_set) > 1: raise ValueError('`Concatenate` layer requires ' 'inputs with matching shapes ' 'except for the concat axis. ' 'Got inputs shapes: %s' % (input_shape)) self.built = True def call(self, inputs): if not isinstance(inputs, list): raise ValueError('A `Concatenate` layer should be called ' 'on a list of inputs.') return K.concatenate(inputs, axis=self.axis) def _compute_output_shape(self, input_shape): if not isinstance(input_shape, list): raise ValueError('A `Concatenate` layer should be called ' 'on a list of inputs.') input_shapes = input_shape output_shape = tensor_shape.TensorShape(input_shapes[0]).as_list() for shape in input_shapes[1:]: shape = tensor_shape.TensorShape(shape).as_list() if output_shape[self.axis] is None or shape[self.axis] is None: output_shape[self.axis] = None break output_shape[self.axis] += shape[self.axis] return tensor_shape.TensorShape(output_shape) def compute_mask(self, inputs, mask=None): if mask is None: return None if not isinstance(mask, list): raise ValueError('`mask` should be a list.') if not isinstance(inputs, list): raise ValueError('`inputs` should be a list.') if len(mask) != len(inputs): raise ValueError('The lists `inputs` and `mask` ' 'should have the same length.') if all([m is None for m in mask]): return None # Make a list of masks while making sure # the dimensionality of each mask # is the same as the corresponding input. masks = [] for input_i, mask_i in zip(inputs, mask): if mask_i is None: # Input is unmasked. Append all 1s to masks, # but cast it to bool first masks.append(K.cast(K.ones_like(input_i), 'bool')) elif K.ndim(mask_i) < K.ndim(input_i): # Mask is smaller than the input, expand it masks.append(K.expand_dims(mask_i)) else: masks.append(mask_i) concatenated = K.concatenate(masks, axis=self.axis) return K.all(concatenated, axis=-1, keepdims=False) def get_config(self): config = { 'axis': self.axis, } base_config = super(Concatenate, self).get_config() return dict(list(base_config.items()) + list(config.items())) class Dot(_Merge): """Layer that computes a dot product between samples in two tensors. E.g. if applied to two tensors `a` and `b` of shape `(batch_size, n)`, the output will be a tensor of shape `(batch_size, 1)` where each entry `i` will be the dot product between `a[i]` and `b[i]`. Arguments: axes: Integer or tuple of integers, axis or axes along which to take the dot product. normalize: Whether to L2-normalize samples along the dot product axis before taking the dot product. If set to True, then the output of the dot product is the cosine proximity between the two samples. **kwargs: Standard layer keyword arguments. """ def __init__(self, axes, normalize=False, **kwargs): super(Dot, self).__init__(**kwargs) if not isinstance(axes, int): if not isinstance(axes, (list, tuple)): raise TypeError('Invalid type for `axes` - ' 'should be a list or an int.') if len(axes) != 2: raise ValueError('Invalid format for `axes` - ' 'should contain two elements.') if not isinstance(axes[0], int) or not isinstance(axes[1], int): raise ValueError('Invalid format for `axes` - ' 'list elements should be "int".') self.axes = axes self.normalize = normalize self.supports_masking = True def build(self, input_shape): # Used purely for shape validation. if not isinstance(input_shape, list) or len(input_shape) != 2: raise ValueError('A `Dot` layer should be called ' 'on a list of 2 inputs.') shape1 = tensor_shape.TensorShape(input_shape[0]).as_list() shape2 = tensor_shape.TensorShape(input_shape[1]).as_list() if shape1 is None or shape2 is None: return if isinstance(self.axes, int): if self.axes < 0: axes = [self.axes % len(shape1), self.axes % len(shape2)] else: axes = [self.axes] * 2 else: axes = self.axes if shape1[axes[0]] != shape2[axes[1]]: raise ValueError('Dimension incompatibility ' '%s != %s. ' % (shape1[axes[0]], shape2[axes[1]]) + 'Layer shapes: %s, %s' % (shape1, shape2)) self.built = True def call(self, inputs): x1 = inputs[0] x2 = inputs[1] if isinstance(self.axes, int): if self.axes < 0: axes = [self.axes % K.ndim(x1), self.axes % K.ndim(x2)] else: axes = [self.axes] * 2 else: axes = [] for i in range(len(self.axes)): if self.axes[i] < 0: axes.append(self.axes[i] % K.ndim(inputs[i])) else: axes.append(self.axes[i]) if self.normalize: x1 = K.l2_normalize(x1, axis=axes[0]) x2 = K.l2_normalize(x2, axis=axes[1]) output = K.batch_dot(x1, x2, axes) return output def _compute_output_shape(self, input_shape): if not isinstance(input_shape, list) or len(input_shape) != 2: raise ValueError('A `Dot` layer should be called ' 'on a list of 2 inputs.') shape1 = tensor_shape.TensorShape(input_shape[0]).as_list() shape2 = tensor_shape.TensorShape(input_shape[1]).as_list() if isinstance(self.axes, int): if self.axes < 0: axes = [self.axes % len(shape1), self.axes % len(shape2)] else: axes = [self.axes] * 2 else: axes = self.axes shape1.pop(axes[0]) shape2.pop(axes[1]) shape2.pop(0) output_shape = shape1 + shape2 if len(output_shape) == 1: output_shape += [1] return tensor_shape.TensorShape(output_shape) def compute_mask(self, inputs, mask=None): return None def get_config(self): config = { 'axes': self.axes, 'normalize': self.normalize, } base_config = super(Dot, self).get_config() return dict(list(base_config.items()) + list(config.items())) def add(inputs, **kwargs): """Functional interface to the `Add` layer. Arguments: inputs: A list of input tensors (at least 2). **kwargs: Standard layer keyword arguments. Returns: A tensor, the sum of the inputs. """ return Add(**kwargs)(inputs) def multiply(inputs, **kwargs): """Functional interface to the `Multiply` layer. Arguments: inputs: A list of input tensors (at least 2). **kwargs: Standard layer keyword arguments. Returns: A tensor, the element-wise product of the inputs. """ return Multiply(**kwargs)(inputs) def average(inputs, **kwargs): """Functional interface to the `Average` layer. Arguments: inputs: A list of input tensors (at least 2). **kwargs: Standard layer keyword arguments. Returns: A tensor, the average of the inputs. """ return Average(**kwargs)(inputs) def maximum(inputs, **kwargs): """Functional interface to the `Maximum` layer. Arguments: inputs: A list of input tensors (at least 2). **kwargs: Standard layer keyword arguments. Returns: A tensor, the element-wise maximum of the inputs. """ return Maximum(**kwargs)(inputs) def concatenate(inputs, axis=-1, **kwargs): """Functional interface to the `Concatenate` layer. Arguments: inputs: A list of input tensors (at least 2). axis: Concatenation axis. **kwargs: Standard layer keyword arguments. Returns: A tensor, the concatenation of the inputs alongside axis `axis`. """ return Concatenate(axis=axis, **kwargs)(inputs) def dot(inputs, axes, normalize=False, **kwargs): """Functional interface to the `Dot` layer. Arguments: inputs: A list of input tensors (at least 2). axes: Integer or tuple of integers, axis or axes along which to take the dot product. normalize: Whether to L2-normalize samples along the dot product axis before taking the dot product. If set to True, then the output of the dot product is the cosine proximity between the two samples. **kwargs: Standard layer keyword arguments. Returns: A tensor, the dot product of the samples from the inputs. """ return Dot(axes=axes, normalize=normalize, **kwargs)(inputs)
unnikrishnankgs/va
venv/lib/python3.5/site-packages/tensorflow/contrib/keras/python/keras/layers/merge.py
Python
bsd-2-clause
18,999
"""AXScript Client Framework This module provides a core framework for an ActiveX Scripting client. Derived classes actually implement the AX Client itself, including the scoping rules, etc. There are classes defined for the engine itself, and for ScriptItems """ import sys from win32com.axscript import axscript import win32com.server.util import win32com.client.connect # Need simple connection point support import win32api, winerror import pythoncom import types import re def RemoveCR(text): # No longer just "RemoveCR" - should be renamed to # FixNewlines, or something. Idea is to fix arbitary newlines into # something Python can compile... return re.sub('(\r\n)|\r|(\n\r)','\n',text) SCRIPTTEXT_FORCEEXECUTION = -2147483648 # 0x80000000 SCRIPTTEXT_ISEXPRESSION = 0x00000020 SCRIPTTEXT_ISPERSISTENT = 0x00000040 from win32com.server.exception import Exception, IsCOMServerException import error # ax.client.error state_map = { axscript.SCRIPTSTATE_UNINITIALIZED: "SCRIPTSTATE_UNINITIALIZED", axscript.SCRIPTSTATE_INITIALIZED: "SCRIPTSTATE_INITIALIZED", axscript.SCRIPTSTATE_STARTED: "SCRIPTSTATE_STARTED", axscript.SCRIPTSTATE_CONNECTED: "SCRIPTSTATE_CONNECTED", axscript.SCRIPTSTATE_DISCONNECTED: "SCRIPTSTATE_DISCONNECTED", axscript.SCRIPTSTATE_CLOSED: "SCRIPTSTATE_CLOSED", } def profile(fn, *args): import profile prof = profile.Profile() try: # roll on 1.6 :-) # return prof.runcall(fn, *args) return apply(prof.runcall, (fn,) + args) finally: import pstats # Damn - really want to send this to Excel! # width, list = pstats.Stats(prof).strip_dirs().get_print_list([]) pstats.Stats(prof).strip_dirs().sort_stats("time").print_stats() class SafeOutput: softspace=1 def __init__(self, redir=None): if redir is None: redir = sys.stdout self.redir=redir def write(self,message): try: self.redir.write(message) except: win32api.OutputDebugString(message.encode('mbcs')) def flush(self): pass def close(self): pass # Make sure we have a valid sys.stdout/stderr, otherwise out # print and trace statements may raise an exception def MakeValidSysOuts(): if not isinstance(sys.stdout, SafeOutput): sys.stdout = sys.stderr = SafeOutput() # and for the sake of working around something I can't understand... # prevent keyboard interrupts from killing IIS import signal def noOp(a,b): # it would be nice to get to the bottom of this, so a warning to # the debug console can't hurt. print "WARNING: Ignoring keyboard interrupt from ActiveScripting engine" # If someone else has already redirected, then assume they know what they are doing! if signal.getsignal(signal.SIGINT) == signal.default_int_handler: try: signal.signal(signal.SIGINT, noOp) except ValueError: # Not the main thread - can't do much. pass def trace(*args): """A function used instead of "print" for debugging output. """ for arg in args: print arg, print def RaiseAssert(scode, desc): """A debugging function that raises an exception considered an "Assertion". """ print "**************** ASSERTION FAILED *******************" print desc raise Exception(scode, desc) class AXScriptCodeBlock: """An object which represents a chunk of code in an AX Script """ def __init__(self, name, codeText, sourceContextCookie, startLineNumber, flags): self.name = name self.codeText = codeText self.codeObject = None self.sourceContextCookie = sourceContextCookie self.startLineNumber = startLineNumber self.flags = flags self.beenExecuted = 0 def GetFileName(self): # Gets the "file name" for Python - uses <...> so Python doesnt think # it is a real file. return "<%s>" % self.name def GetDisplayName(self): return self.name def GetLineNo(self, no): pos = -1 for i in range(no-1): pos = self.codeText.find('\n', pos+1) if pos==-1: pos=len(self.codeText) epos = self.codeText.find('\n', pos+1) if epos==-1: epos=len(self.codeText) return self.codeText[pos+1:epos].strip() class Event: """A single event for a ActiveX named object. """ def __init__(self): self.name = "<None>" def __repr__(self): return "<%s at %d: %s>" % (self.__class__.__name__, id(self), self.name) def Reset(self): pass def Close(self): pass def Build(self, typeinfo, funcdesc): self.dispid = funcdesc[0] self.name = typeinfo.GetNames(self.dispid)[0] # print "Event.Build() - Event Name is ", self.name class EventSink: """A set of events against an item. Note this is a COM client for connection points. """ _public_methods_ = [] def __init__(self, myItem, coDispatch): self.events = {} self.connection = None self.coDispatch = coDispatch self.myScriptItem = myItem self.myInvokeMethod = myItem.GetEngine().ProcessScriptItemEvent self.iid = None def Reset(self): self.Disconnect() def Close(self): self.iid = None self.myScriptItem = None self.myInvokeMethod = None self.coDispatch = None for event in self.events.values(): event.Reset() self.events = {} self.Disconnect() # COM Connection point methods. def _query_interface_(self, iid): if iid==self.iid: return win32com.server.util.wrap(self) def _invoke_(self, dispid, lcid, wFlags, args): try: event = self.events[dispid] except: raise Exception(scode=winerror.DISP_E_MEMBERNOTFOUND) #print "Invoke for ", event, "on", self.myScriptItem, " - calling", self.myInvokeMethod return self.myInvokeMethod(self.myScriptItem, event, lcid, wFlags, args) def GetSourceTypeInfo(self, typeinfo): """Gets the typeinfo for the Source Events for the passed typeinfo""" attr = typeinfo.GetTypeAttr() cFuncs = attr[6] typeKind = attr[5] if typeKind not in [pythoncom.TKIND_COCLASS, pythoncom.TKIND_INTERFACE]: RaiseAssert(winerror.E_UNEXPECTED, "The typeKind of the object is unexpected") cImplType = attr[8] for i in xrange(cImplType): # Look for the [source, default] interface on the coclass # that isn't marked as restricted. flags = typeinfo.GetImplTypeFlags(i) flagsNeeded = pythoncom.IMPLTYPEFLAG_FDEFAULT | pythoncom.IMPLTYPEFLAG_FSOURCE if (flags & ( flagsNeeded | pythoncom.IMPLTYPEFLAG_FRESTRICTED))==(flagsNeeded): # Get the handle to the implemented interface. href = typeinfo.GetRefTypeOfImplType(i) return typeinfo.GetRefTypeInfo(href) def BuildEvents(self): # See if it is an extender object. try: mainTypeInfo = self.coDispatch.QueryInterface(axscript.IID_IProvideMultipleClassInfo) isMulti = 1 numTypeInfos = mainTypeInfo.GetMultiTypeInfoCount() except pythoncom.com_error: isMulti = 0 numTypeInfos = 1 try: mainTypeInfo = self.coDispatch.QueryInterface(pythoncom.IID_IProvideClassInfo) except pythoncom.com_error: numTypeInfos = 0 # Create an event handler for the item. for item in xrange(numTypeInfos): if isMulti: typeinfo, flags = mainTypeInfo.GetInfoOfIndex(item, axscript.MULTICLASSINFO_GETTYPEINFO) else: typeinfo = mainTypeInfo.GetClassInfo() sourceType = self.GetSourceTypeInfo(typeinfo) cFuncs = 0 if sourceType: attr = sourceType.GetTypeAttr() self.iid = attr[0] cFuncs = attr[6] for i in xrange(cFuncs): funcdesc = sourceType.GetFuncDesc(i) event = Event() event.Build(sourceType, funcdesc) self.events[event.dispid] = event def Connect(self): if self.connection is not None or self.iid is None: return # trace("Connect for sink item", self.myScriptItem.name, "with IID",str(self.iid)) self.connection = win32com.client.connect.SimpleConnection(self.coDispatch, self, self.iid) def Disconnect(self): if self.connection: try: self.connection.Disconnect() except pythoncom.com_error: pass # Ignore disconnection errors. self.connection = None class ScriptItem: """An item (or subitem) that is exposed to the ActiveX script """ def __init__(self, parentItem, name, dispatch, flags): self.parentItem = parentItem self.dispatch = dispatch self.name = name self.flags = flags self.eventSink = None self.subItems = {} self.createdConnections = 0 self.isRegistered = 0 # trace("Creating ScriptItem", name, "of parent", parentItem,"with dispatch", dispatch) def __repr__(self): flagsDesc="" if self.flags is not None and self.flags & axscript.SCRIPTITEM_GLOBALMEMBERS: flagsDesc = "/Global" return "<%s at %d: %s%s>" % (self.__class__.__name__, id(self), self.name,flagsDesc) def _dump_(self, level): flagDescs = [] if self.flags is not None and self.flags & axscript.SCRIPTITEM_GLOBALMEMBERS: flagDescs.append("GLOBAL!") if self.flags is None or self.flags & axscript.SCRIPTITEM_ISVISIBLE == 0: flagDescs.append("NOT VISIBLE") if self.flags is not None and self.flags & axscript.SCRIPTITEM_ISSOURCE: flagDescs.append("EVENT SINK") if self.flags is not None and self.flags & axscript.SCRIPTITEM_CODEONLY: flagDescs.append("CODE ONLY") print " " * level, "Name=", self.name, ", flags=", "/".join(flagDescs), self for subItem in self.subItems.values(): subItem._dump_(level+1) def Reset(self): self.Disconnect() if self.eventSink: self.eventSink.Reset() self.isRegistered = 0 for subItem in self.subItems.values(): subItem.Reset() def Close(self): self.Reset() self.dispatch = None self.parentItem = None if self.eventSink: self.eventSink.Close() self.eventSink = None for subItem in self.subItems.values(): subItem.Close() self.subItems = [] self.createdConnections = 0 def Register(self): if self.isRegistered: return # Get the type info to use to build this item. # if not self.dispatch: # id = self.parentItem.dispatch.GetIDsOfNames(self.name) # print "DispID of me is", id # result = self.parentItem.dispatch.Invoke(id, 0, pythoncom.DISPATCH_PROPERTYGET,1) # if type(result)==pythoncom.TypeIIDs[pythoncom.IID_IDispatch]: # self.dispatch = result # else: # print "*** No dispatch" # return # print "**** Made dispatch" self.isRegistered = 1 # Register the sub-items. for item in self.subItems.values(): if not item.isRegistered: item.Register() def IsGlobal(self): return self.flags & axscript.SCRIPTITEM_GLOBALMEMBERS def IsVisible(self): return (self.flags & (axscript.SCRIPTITEM_ISVISIBLE | axscript.SCRIPTITEM_ISSOURCE)) != 0 def GetEngine(self): item = self while item.parentItem.__class__==self.__class__: item = item.parentItem return item.parentItem def _GetFullItemName(self): ret = self.name if self.parentItem: try: ret = self.parentItem._GetFullItemName() + "." + ret except AttributeError: pass return ret def GetSubItemClass(self): return self.__class__ def GetSubItem(self, name): return self.subItems[name.lower()] def GetCreateSubItem(self, parentItem, name, dispatch, flags): keyName = name.lower() try: rc = self.subItems[keyName] # No changes allowed to existing flags. if not rc.flags is None and not flags is None and rc.flags != flags: raise Exception(scode=winerror.E_INVALIDARG) # Existing item must not have a dispatch. if not rc.dispatch is None and not dispatch is None: raise Exception(scode=winerror.E_INVALIDARG) rc.flags = flags # Setup the real flags. rc.dispatch = dispatch except KeyError: rc = self.subItems[keyName] = self.GetSubItemClass()(parentItem, name, dispatch, flags) return rc # if self.dispatch is None: # RaiseAssert(winerror.E_UNEXPECTED, "??") def CreateConnections(self): # Create (but do not connect to) the connection points. if self.createdConnections: return self.createdConnections = 1 # Nothing to do unless this is an event source # This flags means self, _and_ children, are connectable. if self.flags & axscript.SCRIPTITEM_ISSOURCE: self.BuildEvents() self.FindBuildSubItemEvents() def Connect(self): # Connect to the already created connection points. if self.eventSink: self.eventSink.Connect() for subItem in self.subItems.values(): subItem.Connect() def Disconnect(self): # Disconnect from the connection points. if self.eventSink: self.eventSink.Disconnect() for subItem in self.subItems.values(): subItem.Disconnect() def BuildEvents(self): if self.eventSink is not None or self.dispatch is None: RaiseAssert(winerror.E_UNEXPECTED, "Item already has built events, or no dispatch available?") # trace("BuildEvents for named item", self._GetFullItemName()) self.eventSink = EventSink(self, self.dispatch) self.eventSink.BuildEvents() def FindBuildSubItemEvents(self): # Called during connection to event source. Seeks out and connects to # all children. As per the AX spec, this is not recursive # (ie, children sub-items are not seeked) try: multiTypeInfo = self.dispatch.QueryInterface(axscript.IID_IProvideMultipleClassInfo) numTypeInfos = multiTypeInfo.GetMultiTypeInfoCount() except pythoncom.com_error: return for item in xrange(numTypeInfos): typeinfo, flags = multiTypeInfo.GetInfoOfIndex(item, axscript.MULTICLASSINFO_GETTYPEINFO) defaultType = self.GetDefaultSourceTypeInfo(typeinfo) index = 0 while 1: try: fdesc = defaultType.GetFuncDesc(index) except pythoncom.com_error: break # No more funcs index = index + 1 dispid = fdesc[0] funckind = fdesc[3] invkind = fdesc[4] elemdesc = fdesc[8] funcflags = fdesc[9] try: isSubObject = not (funcflags & pythoncom.FUNCFLAG_FRESTRICTED) and \ funckind == pythoncom.FUNC_DISPATCH and \ invkind == pythoncom.INVOKE_PROPERTYGET and \ elemdesc[0][0] == pythoncom.VT_PTR and \ elemdesc[0][1][0] == pythoncom.VT_USERDEFINED except: isSubObject = 0 if isSubObject: try: # We found a sub-object. names = typeinfo.GetNames(dispid); result = self.dispatch.Invoke(dispid, 0x0, pythoncom.DISPATCH_PROPERTYGET, 1) # IE has an interesting problem - there are lots of synonyms for the same object. Eg # in a simple form, "window.top", "window.window", "window.parent", "window.self" # all refer to the same object. Our event implementation code does not differentiate # eg, "window_onload" will fire for *all* objects named "window". Thus, # "window" and "window.window" will fire the same event handler :( # One option would be to check if the sub-object is indeed the # parent object - however, this would stop "top_onload" from firing, # as no event handler for "top" would work. # I think we simply need to connect to a *single* event handler. # As use in IE is deprecated, I am not solving this now. if type(result)==pythoncom.TypeIIDs[pythoncom.IID_IDispatch]: name = names[0] subObj = self.GetCreateSubItem(self, name, result, axscript.SCRIPTITEM_ISVISIBLE) #print "subobj", name, "flags are", subObj.flags, "mydisp=", self.dispatch, "result disp=", result, "compare=", self.dispatch==result subObj.BuildEvents() subObj.Register() except pythoncom.com_error: pass def GetDefaultSourceTypeInfo(self, typeinfo): """Gets the typeinfo for the Default Dispatch for the passed typeinfo""" attr = typeinfo.GetTypeAttr() cFuncs = attr[6] typeKind = attr[5] if typeKind not in [pythoncom.TKIND_COCLASS, pythoncom.TKIND_INTERFACE]: RaiseAssert(winerror.E_UNEXPECTED, "The typeKind of the object is unexpected") cImplType = attr[8] for i in xrange(cImplType): # Look for the [source, default] interface on the coclass # that isn't marked as restricted. flags = typeinfo.GetImplTypeFlags(i) if (flags & ( pythoncom.IMPLTYPEFLAG_FDEFAULT | pythoncom.IMPLTYPEFLAG_FSOURCE | pythoncom.IMPLTYPEFLAG_FRESTRICTED))==pythoncom.IMPLTYPEFLAG_FDEFAULT: # Get the handle to the implemented interface. href = typeinfo.GetRefTypeOfImplType(i) defTypeInfo = typeinfo.GetRefTypeInfo(href) attr = defTypeInfo.GetTypeAttr() typeKind = attr[5] typeFlags = attr[11] if typeKind == pythoncom.TKIND_INTERFACE and typeFlags & pythoncom.TYPEFLAG_FDUAL: # Get corresponding Disp interface # -1 is a special value which does this for us. href = typeinfo.GetRefTypeOfImplType(-1) return defTypeInfo.GetRefTypeInfo(href) else: return defTypeInfo IActiveScriptMethods = [ "SetScriptSite", "GetScriptSite", "SetScriptState", "GetScriptState", "Close", "AddNamedItem", "AddTypeLib", "GetScriptDispatch", "GetCurrentScriptThreadID", "GetScriptThreadID", "GetScriptThreadState", "InterruptScriptThread", "Clone" ] IActiveScriptParseMethods = [ "InitNew", "AddScriptlet", "ParseScriptText" ] IObjectSafetyMethods = [ "GetInterfaceSafetyOptions", "SetInterfaceSafetyOptions"] # ActiveScriptParseProcedure is a new interface with IIS4/IE4. IActiveScriptParseProcedureMethods = ['ParseProcedureText'] class COMScript: """An ActiveX Scripting engine base class. This class implements the required COM interfaces for ActiveX scripting. """ _public_methods_ = IActiveScriptMethods + IActiveScriptParseMethods + IObjectSafetyMethods + IActiveScriptParseProcedureMethods _com_interfaces_ = [axscript.IID_IActiveScript, axscript.IID_IActiveScriptParse, axscript.IID_IObjectSafety] #, axscript.IID_IActiveScriptParseProcedure] def __init__(self): # Make sure we can print/trace wihout an exception! MakeValidSysOuts() # trace("AXScriptEngine object created", self) self.baseThreadId = -1 self.debugManager = None self.threadState = axscript.SCRIPTTHREADSTATE_NOTINSCRIPT self.scriptState = axscript.SCRIPTSTATE_UNINITIALIZED self.scriptSite = None self.safetyOptions = 0 self.lcid = 0 self.subItems = {} self.scriptCodeBlocks = {} def _query_interface_(self, iid): if self.debugManager: return self.debugManager._query_interface_for_debugger_(iid) # trace("ScriptEngine QI - unknown IID", iid) return 0 # IActiveScriptParse def InitNew(self): if self.scriptSite is not None: self.SetScriptState(axscript.SCRIPTSTATE_INITIALIZED) def AddScriptlet(self, defaultName, code, itemName, subItemName, eventName, delimiter, sourceContextCookie, startLineNumber): # trace ("AddScriptlet", defaultName, code, itemName, subItemName, eventName, delimiter, sourceContextCookie, startLineNumber) self.DoAddScriptlet(defaultName, code, itemName, subItemName, eventName, delimiter,sourceContextCookie, startLineNumber) def ParseScriptText(self, code, itemName, context, delimiter, sourceContextCookie, startLineNumber, flags, bWantResult): # trace ("ParseScriptText", code[:20],"...", itemName, context, delimiter, sourceContextCookie, startLineNumber, flags, bWantResult) if bWantResult or self.scriptState == axscript.SCRIPTSTATE_STARTED \ or self.scriptState == axscript.SCRIPTSTATE_CONNECTED \ or self.scriptState == axscript.SCRIPTSTATE_DISCONNECTED : flags = flags | SCRIPTTEXT_FORCEEXECUTION else: flags = flags & (~SCRIPTTEXT_FORCEEXECUTION) if flags & SCRIPTTEXT_FORCEEXECUTION: # About to execute the code. self.RegisterNewNamedItems() return self.DoParseScriptText(code, sourceContextCookie, startLineNumber, bWantResult, flags) # # IActiveScriptParseProcedure def ParseProcedureText( self, code, formalParams, procName, itemName, unkContext, delimiter, contextCookie, startingLineNumber, flags): trace("ParseProcedureText", code, formalParams, procName, itemName, unkContext, delimiter, contextCookie, startingLineNumber, flags) # NOTE - this is never called, as we have disabled this interface. # Problem is, once enabled all even code comes via here, rather than AddScriptlet. # However, the "procName" is always an empty string - ie, itemName is the object whose event we are handling, # but no idea what the specific event is!? # Problem is disabling this block is that AddScriptlet is _not_ passed # <SCRIPT for="whatever" event="onClick" language="Python"> # (but even for those blocks, the "onClick" information is still missing!?!?!?) # self.DoAddScriptlet(None, code, itemName, subItemName, eventName, delimiter,sourceContextCookie, startLineNumber) return None # # IActiveScript def SetScriptSite(self, site): # We should still work with an existing site (or so MSXML believes :) self.scriptSite = site if self.debugManager is not None: self.debugManager.Close() import traceback try: import win32com.axdebug.axdebug # see if the core exists. import debug self.debugManager = debug.DebugManager(self) except pythoncom.com_error: # COM errors will occur if the debugger interface has never been # seen on the target system trace("Debugging interfaces not available - debugging is disabled..") self.debugManager = None except ImportError: trace("Debugging extensions (axdebug) module does not exist - debugging is disabled..") self.debugManager = None except: traceback.print_exc() trace("*** Debugger Manager could not initialize - %s: %s" % (sys.exc_info()[0],sys.exc_info()[1])) self.debugManager = None try: self.lcid = site.GetLCID() except pythoncom.com_error: self.lcid = win32api.GetUserDefaultLCID() self.Reset() def GetScriptSite(self, iid): if self.scriptSite is None: raise Exception(scode=winerror.S_FALSE) return self.scriptSite.QueryInterface(iid) def SetScriptState(self, state): #print "SetScriptState with %s - currentstate = %s" % (state_map.get(state),state_map.get(self.scriptState)) if state == self.scriptState: return # If closed, allow no other state transitions if self.scriptState==axscript.SCRIPTSTATE_CLOSED: raise Exception(scode=winerror.E_INVALIDARG) if state==axscript.SCRIPTSTATE_INITIALIZED: # Re-initialize - shutdown then reset. if self.scriptState in [axscript.SCRIPTSTATE_CONNECTED, axscript.SCRIPTSTATE_STARTED]: self.Stop() elif state==axscript.SCRIPTSTATE_STARTED: if self.scriptState == axscript.SCRIPTSTATE_CONNECTED: self.Disconnect() if self.scriptState == axscript.SCRIPTSTATE_DISCONNECTED: self.Reset() self.Run() self.ChangeScriptState(axscript.SCRIPTSTATE_STARTED) elif state==axscript.SCRIPTSTATE_CONNECTED: if self.scriptState in [axscript.SCRIPTSTATE_UNINITIALIZED,axscript.SCRIPTSTATE_INITIALIZED]: self.ChangeScriptState(axscript.SCRIPTSTATE_STARTED) # report transition through started self.Run() if self.scriptState == axscript.SCRIPTSTATE_STARTED: self.Connect() self.ChangeScriptState(state) elif state==axscript.SCRIPTSTATE_DISCONNECTED: if self.scriptState == axscript.SCRIPTSTATE_CONNECTED: self.Disconnect() elif state==axscript.SCRIPTSTATE_CLOSED: self.Close() elif state==axscript.SCRIPTSTATE_UNINITIALIZED: if self.scriptState == axscript.SCRIPTSTATE_STARTED: self.Stop() if self.scriptState == axscript.SCRIPTSTATE_CONNECTED: self.Disconnect() if self.scriptState == axscript.SCRIPTSTATE_DISCONNECTED: self.Reset() self.ChangeScriptState(state) else: raise Exception(scode=winerror.E_INVALIDARG) def GetScriptState(self): return self.scriptState def Close(self): # trace("Close") if self.scriptState in [axscript.SCRIPTSTATE_CONNECTED, axscript.SCRIPTSTATE_DISCONNECTED]: self.Stop() if self.scriptState in [axscript.SCRIPTSTATE_CONNECTED, axscript.SCRIPTSTATE_DISCONNECTED, axscript.SCRIPTSTATE_INITIALIZED, axscript.SCRIPTSTATE_STARTED]: pass # engine.close?? if self.scriptState in [axscript.SCRIPTSTATE_UNINITIALIZED, axscript.SCRIPTSTATE_CONNECTED, axscript.SCRIPTSTATE_DISCONNECTED, axscript.SCRIPTSTATE_INITIALIZED, axscript.SCRIPTSTATE_STARTED]: self.ChangeScriptState(axscript.SCRIPTSTATE_CLOSED) # Completely reset all named items (including persistent) for item in self.subItems.values(): item.Close() self.subItems = {} self.baseThreadId = -1 if self.debugManager: self.debugManager.Close() self.debugManager = None self.scriptSite = None self.scriptCodeBlocks = {} self.persistLoaded = 0 def AddNamedItem(self, name, flags): if self.scriptSite is None: raise Exception(scode=winerror.E_INVALIDARG) try: unknown = self.scriptSite.GetItemInfo(name, axscript.SCRIPTINFO_IUNKNOWN)[0] dispatch = unknown.QueryInterface(pythoncom.IID_IDispatch) except pythoncom.com_error: raise Exception(scode=winerror.E_NOINTERFACE, desc="Object has no dispatch interface available.") newItem = self.subItems[name] = self.GetNamedItemClass()(self, name, dispatch, flags) if newItem.IsGlobal(): newItem.CreateConnections() def GetScriptDispatch(self, name): # Base classes should override. raise Exception(scode=winerror.E_NOTIMPL) def GetCurrentScriptThreadID(self): return self.baseThreadId def GetScriptThreadID(self, win32ThreadId): if self.baseThreadId == -1: raise Exception(scode=winerror.E_UNEXPECTED) if self.baseThreadId != win32ThreadId: raise Exception(scode=winerror.E_INVALIDARG) return self.baseThreadId def GetScriptThreadState(self, scriptThreadId): if self.baseThreadId == -1: raise Exception(scode=winerror.E_UNEXPECTED) if scriptThreadId != self.baseThreadId: raise Exception(scode=winerror.E_INVALIDARG) return self.threadState def AddTypeLib(self, uuid, major, minor, flags): # Get the win32com gencache to register this library. from win32com.client import gencache gencache.EnsureModule(uuid, self.lcid, major, minor, bForDemand = 1) # This is never called by the C++ framework - it does magic. # See PyGActiveScript.cpp #def InterruptScriptThread(self, stidThread, exc_info, flags): # raise Exception("Not Implemented", scode=winerror.E_NOTIMPL) def Clone(self): raise Exception("Not Implemented", scode=winerror.E_NOTIMPL) # # IObjectSafety # Note that IE seems to insist we say we support all the flags, even tho # we dont accept them all. If unknown flags come in, they are ignored, and never # reflected in GetInterfaceSafetyOptions and the QIs obviously fail, but still IE # allows our engine to initialize. def SetInterfaceSafetyOptions(self, iid, optionsMask, enabledOptions): # trace ("SetInterfaceSafetyOptions", iid, optionsMask, enabledOptions) if optionsMask & enabledOptions == 0: return # See comments above. # if (optionsMask & enabledOptions & \ # ~(axscript.INTERFACESAFE_FOR_UNTRUSTED_DATA | axscript.INTERFACESAFE_FOR_UNTRUSTED_CALLER)): # # request for options we don't understand # RaiseAssert(scode=winerror.E_FAIL, desc="Unknown safety options") if iid in [pythoncom.IID_IPersist, pythoncom.IID_IPersistStream, pythoncom.IID_IPersistStreamInit, axscript.IID_IActiveScript, axscript.IID_IActiveScriptParse]: supported = self._GetSupportedInterfaceSafetyOptions() self.safetyOptions = supported & optionsMask & enabledOptions else: raise Exception(scode=winerror.E_NOINTERFACE) def _GetSupportedInterfaceSafetyOptions(self): return 0 def GetInterfaceSafetyOptions(self, iid): if iid in [pythoncom.IID_IPersist, pythoncom.IID_IPersistStream, pythoncom.IID_IPersistStreamInit, axscript.IID_IActiveScript, axscript.IID_IActiveScriptParse]: supported = self._GetSupportedInterfaceSafetyOptions() return supported, self.safetyOptions else: raise Exception(scode=winerror.E_NOINTERFACE) # # Other helpers. def ExecutePendingScripts(self): self.RegisterNewNamedItems() self.DoExecutePendingScripts() def ProcessScriptItemEvent(self, item, event, lcid, wFlags, args): # trace("ProcessScriptItemEvent", item, event, lcid, wFlags, args) self.RegisterNewNamedItems() return self.DoProcessScriptItemEvent(item, event, lcid, wFlags, args) def _DumpNamedItems_(self): for item in self.subItems.values(): item._dump_(0) def ResetNamedItems(self): # Due to the way we work, we re-create persistent ones. si = self.subItems.items() self.subItems = {} for name, item in si: item.Close() if item.flags & axscript.SCRIPTITEM_ISPERSISTENT: self.AddNamedItem(item.name, item.flags) def GetCurrentSafetyOptions(self): return self.safetyOptions def ProcessNewNamedItemsConnections(self): # Process all sub-items. for item in self.subItems.values(): if not item.createdConnections: # Fast-track! item.CreateConnections() def RegisterNewNamedItems(self): # Register all sub-items. for item in self.subItems.values(): if not item.isRegistered: # Fast-track! self.RegisterNamedItem(item) def RegisterNamedItem(self, item): item.Register() def CheckConnectedOrDisconnected(self): if self.scriptState in [axscript.SCRIPTSTATE_CONNECTED, axscript.SCRIPTSTATE_DISCONNECTED]: return RaiseAssert(winerror.E_UNEXPECTED, "Not connected or disconnected - %d" % self.scriptState) def Connect(self): self.ProcessNewNamedItemsConnections() self.RegisterNewNamedItems() self.ConnectEventHandlers() def Run(self): # trace("AXScript running...") if self.scriptState != axscript.SCRIPTSTATE_INITIALIZED and self.scriptState != axscript.SCRIPTSTATE_STARTED: raise Exception(scode=winerror.E_UNEXPECTED) # self._DumpNamedItems_() self.ExecutePendingScripts() self.DoRun() def Stop(self): # Stop all executing scripts, and disconnect. if self.scriptState == axscript.SCRIPTSTATE_CONNECTED: self.Disconnect() # Reset back to initialized. self.Reset() def Disconnect(self): self.CheckConnectedOrDisconnected() try: self.DisconnectEventHandlers() except pythoncom.com_error: # Ignore errors when disconnecting. pass self.ChangeScriptState(axscript.SCRIPTSTATE_DISCONNECTED) def ConnectEventHandlers(self): # trace ("Connecting to event handlers") for item in self.subItems.values(): item.Connect() self.ChangeScriptState(axscript.SCRIPTSTATE_CONNECTED); def DisconnectEventHandlers(self): # trace ("Disconnecting from event handlers") for item in self.subItems.values(): item.Disconnect() def Reset(self): # Keeping persistent engine state, reset back an initialized state self.ResetNamedItems() self.ChangeScriptState(axscript.SCRIPTSTATE_INITIALIZED) def ChangeScriptState(self, state): #print " ChangeScriptState with %s - currentstate = %s" % (state_map.get(state),state_map.get(self.scriptState)) self.DisableInterrupts() try: self.scriptState = state try: if self.scriptSite: self.scriptSite.OnStateChange(state) except pythoncom.com_error, (hr, desc, exc, arg): pass # Ignore all errors here - E_NOTIMPL likely from scriptlets. finally: self.EnableInterrupts() # This stack frame is debugged - therefore we do as little as possible in it. def _ApplyInScriptedSection(self, fn, args): if self.debugManager: self.debugManager.OnEnterScript() if self.debugManager.adb.appDebugger: return self.debugManager.adb.runcall(fn, *args) else: return apply(fn, args) else: return apply(fn, args) def ApplyInScriptedSection(self, codeBlock, fn, args): self.BeginScriptedSection() try: try: # print "ApplyInSS", codeBlock, fn, args return self._ApplyInScriptedSection(fn, args) finally: if self.debugManager: self.debugManager.OnLeaveScript() self.EndScriptedSection() except: self.HandleException(codeBlock) # This stack frame is debugged - therefore we do as little as possible in it. def _CompileInScriptedSection(self, code, name, type): if self.debugManager: self.debugManager.OnEnterScript() return compile(code, name, type) def CompileInScriptedSection(self, codeBlock, type, realCode = None): if codeBlock.codeObject is not None: # already compiled return 1 if realCode is None: code = codeBlock.codeText else: code = realCode name = codeBlock.GetFileName() self.BeginScriptedSection() try: try: codeObject = self._CompileInScriptedSection(RemoveCR(code), name, type) codeBlock.codeObject = codeObject return 1 finally: if self.debugManager: self.debugManager.OnLeaveScript() self.EndScriptedSection() except: self.HandleException(codeBlock) # This stack frame is debugged - therefore we do as little as possible in it. def _ExecInScriptedSection(self, codeObject, globals, locals = None): if self.debugManager: self.debugManager.OnEnterScript() if self.debugManager.adb.appDebugger: return self.debugManager.adb.run(codeObject, globals, locals) else: exec codeObject in globals, locals else: exec codeObject in globals, locals def ExecInScriptedSection(self, codeBlock, globals, locals = None): if locals is None: locals = globals assert not codeBlock.beenExecuted, "This code block should not have been executed" codeBlock.beenExecuted = 1 self.BeginScriptedSection() try: try: self._ExecInScriptedSection(codeBlock.codeObject, globals, locals) finally: if self.debugManager: self.debugManager.OnLeaveScript() self.EndScriptedSection() except: self.HandleException(codeBlock) def _EvalInScriptedSection(self, codeBlock, globals, locals = None): if self.debugManager: self.debugManager.OnEnterScript() if self.debugManager.adb.appDebugger: return self.debugManager.adb.runeval(codeBlock, globals, locals) else: return eval(codeBlock, globals, locals) else: return eval(codeBlock, globals, locals) def EvalInScriptedSection(self, codeBlock, globals, locals = None): if locals is None: locals = globals assert not codeBlock.beenExecuted, "This code block should not have been executed" codeBlock.beenExecuted = 1 self.BeginScriptedSection() try: try: return self._EvalInScriptedSection(codeBlock.codeObject, globals, locals) finally: if self.debugManager: self.debugManager.OnLeaveScript() self.EndScriptedSection() except: self.HandleException(codeBlock) def HandleException(self, codeBlock): # NOTE - Never returns - raises a ComException exc_type, exc_value, exc_traceback = sys.exc_info() # If a SERVER exception, re-raise it. If a client side COM error, it is # likely to have originated from the script code itself, and therefore # needs to be reported like any other exception. if IsCOMServerException(exc_type): # Ensure the traceback doesnt cause a cycle. exc_traceback = None raise # It could be an error by another script. if issubclass(pythoncom.com_error, exc_type) and exc_value[0]==axscript.SCRIPT_E_REPORTED: # Ensure the traceback doesnt cause a cycle. exc_traceback = None raise Exception(scode=exc_value[0]) exception = error.AXScriptException(self, \ codeBlock, exc_type, exc_value, exc_traceback) # Ensure the traceback doesnt cause a cycle. exc_traceback = None result_exception = error.ProcessAXScriptException(self.scriptSite, self.debugManager, exception) if result_exception is not None: try: self.scriptSite.OnScriptTerminate(None, result_exception) except pythoncom.com_error: pass # Ignore errors telling engine we stopped. # reset ourselves to 'connected' so further events continue to fire. self.SetScriptState(axscript.SCRIPTSTATE_CONNECTED) raise result_exception # I think that in some cases this should just return - but the code # that could return None above is disabled, so it never happens. RaiseAssert(winerror.E_UNEXPECTED, "Don't have an exception to raise to the caller!") def BeginScriptedSection(self): if self.scriptSite is None: raise Exception(E_UNEXPECTED) self.scriptSite.OnEnterScript() def EndScriptedSection(self): if self.scriptSite is None: raise Exception(E_UNEXPECTED) self.scriptSite.OnLeaveScript() def DisableInterrupts(self): pass def EnableInterrupts(self): pass def GetNamedItem(self, name): try: return self.subItems[name] except KeyError: raise Exception(scode=winerror.E_INVALIDARG) def GetNamedItemClass(self): return ScriptItem def _AddScriptCodeBlock(self, codeBlock): self.scriptCodeBlocks[codeBlock.GetFileName()] = codeBlock if self.debugManager: self.debugManager.AddScriptBlock(codeBlock) if __name__=='__main__': print "This is a framework class - please use pyscript.py etc" def dumptypeinfo(typeinfo): return attr = typeinfo.GetTypeAttr() # Loop over all methods print "Methods" for j in xrange(attr[6]): fdesc = list(typeinfo.GetFuncDesc(j)) id = fdesc[0] try: names = typeinfo.GetNames(id) except pythoncom.ole_error: names = None doc = typeinfo.GetDocumentation(id) print " ", names, "has attr", fdesc # Loop over all variables (ie, properties) print "Variables" for j in xrange(attr[7]): fdesc = list(typeinfo.GetVarDesc(j)) names = typeinfo.GetNames(id) print " ", names, "has attr", fdesc
leighpauls/k2cro4
third_party/python_26/Lib/site-packages/win32comext/axscript/client/framework.py
Python
bsd-3-clause
36,696
# -*- coding: utf-8 -*- # Copyright (c) 2021 Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type import pytest from ansible.module_utils.common.arg_spec import ArgumentSpecValidator, ValidationResult from ansible.module_utils.errors import AnsibleValidationErrorMultiple from ansible.module_utils.six import PY2 # Each item is id, argument_spec, parameters, expected, unsupported parameters, error test string INVALID_SPECS = [ ( 'invalid-list', {'packages': {'type': 'list'}}, {'packages': {'key': 'value'}}, {'packages': {'key': 'value'}}, set(), "unable to convert to list: <class 'dict'> cannot be converted to a list", ), ( 'invalid-dict', {'users': {'type': 'dict'}}, {'users': ['one', 'two']}, {'users': ['one', 'two']}, set(), "unable to convert to dict: <class 'list'> cannot be converted to a dict", ), ( 'invalid-bool', {'bool': {'type': 'bool'}}, {'bool': {'k': 'v'}}, {'bool': {'k': 'v'}}, set(), "unable to convert to bool: <class 'dict'> cannot be converted to a bool", ), ( 'invalid-float', {'float': {'type': 'float'}}, {'float': 'hello'}, {'float': 'hello'}, set(), "unable to convert to float: <class 'str'> cannot be converted to a float", ), ( 'invalid-bytes', {'bytes': {'type': 'bytes'}}, {'bytes': 'one'}, {'bytes': 'one'}, set(), "unable to convert to bytes: <class 'str'> cannot be converted to a Byte value", ), ( 'invalid-bits', {'bits': {'type': 'bits'}}, {'bits': 'one'}, {'bits': 'one'}, set(), "unable to convert to bits: <class 'str'> cannot be converted to a Bit value", ), ( 'invalid-jsonargs', {'some_json': {'type': 'jsonarg'}}, {'some_json': set()}, {'some_json': set()}, set(), "unable to convert to jsonarg: <class 'set'> cannot be converted to a json string", ), ( 'invalid-parameter', {'name': {}}, { 'badparam': '', 'another': '', }, { 'name': None, 'badparam': '', 'another': '', }, set(('another', 'badparam')), "another, badparam. Supported parameters include: name.", ), ( 'invalid-elements', {'numbers': {'type': 'list', 'elements': 'int'}}, {'numbers': [55, 33, 34, {'key': 'value'}]}, {'numbers': [55, 33, 34]}, set(), "Elements value for option 'numbers' is of type <class 'dict'> and we were unable to convert to int: <class 'dict'> cannot be converted to an int" ), ( 'required', {'req': {'required': True}}, {}, {'req': None}, set(), "missing required arguments: req" ) ] @pytest.mark.parametrize( ('arg_spec', 'parameters', 'expected', 'unsupported', 'error'), (i[1:] for i in INVALID_SPECS), ids=[i[0] for i in INVALID_SPECS] ) def test_invalid_spec(arg_spec, parameters, expected, unsupported, error): v = ArgumentSpecValidator(arg_spec) result = v.validate(parameters) with pytest.raises(AnsibleValidationErrorMultiple) as exc_info: raise result.errors if PY2: error = error.replace('class', 'type') assert isinstance(result, ValidationResult) assert error in exc_info.value.msg assert error in result.error_messages[0] assert result.unsupported_parameters == unsupported assert result.validated_parameters == expected
privateip/ansible
test/units/module_utils/common/arg_spec/test_validate_invalid.py
Python
gpl-3.0
3,830
# Copyright 2011 Shinichiro Hamaji. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials # provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY Shinichiro Hamaji ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL Shinichiro Hamaji OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF # USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT # OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF # SUCH DAMAGE. import gdb import os import re import sys def bt(demangle=True): # Find the newest frame. frame = gdb.selected_frame() while True: next = frame.newer() if not next: break frame = next if demangle: pipe = os.popen('c++filt', 'w') else: pipe = sys.stdout i = 0 while frame: s = gdb.execute('p dumpSymbol((void*)0x%x)' % frame.pc(), to_string=True) m = re.match(r'.*"(.*)"$', s) if m: pipe.write("#%-2d %s\n" % (i, m.group(1))) else: sal = frame.find_sal() lineno = '' if sal.symtab: lineno = 'at %s:%d' % (sal.symtab, sal.line) else: soname = gdb.solib_name(frame.pc()) if soname: lineno = 'from %s' % (soname) framename = frame.name() if not framename: framename = '??' pipe.write("#%-2d 0x%016x in %s () %s\n" % (i, frame.pc(), framename, lineno)) frame = frame.older() i += 1 pipe.close()
lebauce/darling
tools/gdb_maloader.py
Python
gpl-3.0
2,497
# -*- coding: utf-8 -*- ############################################################################## # # Odoo, an open source suite of business apps # This module copyright (C) 2014-2015 Therp BV (<http://therp.nl>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## { "name": "Reset a chart of accounts", "summary": ("Delete the accounting setup from an otherwise reusable " "database"), "version": "1.0", "author": "Therp BV,Odoo Community Association (OCA)", "category": 'Accounting & Finance', "depends": [ 'account', ], 'license': 'AGPL-3' }
amoya-dx/account-financial-tools
account_reset_chart/__openerp__.py
Python
agpl-3.0
1,329
import os from django.contrib.auth import authenticate from django.contrib.auth.tests.utils import skipIfCustomUser from django.contrib.auth.models import User, Permission from django.contrib.contenttypes.models import ContentType from django.contrib.auth.context_processors import PermWrapper, PermLookupDict from django.db.models import Q from django.test import TestCase, override_settings from django.utils._os import upath class MockUser(object): def has_module_perms(self, perm): if perm == 'mockapp': return True return False def has_perm(self, perm): if perm == 'mockapp.someperm': return True return False class PermWrapperTests(TestCase): """ Test some details of the PermWrapper implementation. """ class EQLimiterObject(object): """ This object makes sure __eq__ will not be called endlessly. """ def __init__(self): self.eq_calls = 0 def __eq__(self, other): if self.eq_calls > 0: return True self.eq_calls += 1 return False def test_permwrapper_in(self): """ Test that 'something' in PermWrapper works as expected. """ perms = PermWrapper(MockUser()) # Works for modules and full permissions. self.assertTrue('mockapp' in perms) self.assertFalse('nonexisting' in perms) self.assertTrue('mockapp.someperm' in perms) self.assertFalse('mockapp.nonexisting' in perms) def test_permlookupdict_in(self): """ No endless loops if accessed with 'in' - refs #18979. """ pldict = PermLookupDict(MockUser(), 'mockapp') with self.assertRaises(TypeError): self.EQLimiterObject() in pldict @skipIfCustomUser @override_settings( TEMPLATE_LOADERS=('django.template.loaders.filesystem.Loader',), TEMPLATE_DIRS=( os.path.join(os.path.dirname(upath(__file__)), 'templates'), ), ROOT_URLCONF='django.contrib.auth.tests.urls', USE_TZ=False, # required for loading the fixture PASSWORD_HASHERS=('django.contrib.auth.hashers.SHA1PasswordHasher',), ) class AuthContextProcessorTests(TestCase): """ Tests for the ``django.contrib.auth.context_processors.auth`` processor """ fixtures = ['context-processors-users.xml'] @override_settings( MIDDLEWARE_CLASSES=( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', ), TEMPLATE_CONTEXT_PROCESSORS=( 'django.contrib.auth.context_processors.auth', ), ) def test_session_not_accessed(self): """ Tests that the session is not accessed simply by including the auth context processor """ response = self.client.get('/auth_processor_no_attr_access/') self.assertContains(response, "Session not accessed") @override_settings( MIDDLEWARE_CLASSES=( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', ), TEMPLATE_CONTEXT_PROCESSORS=( 'django.contrib.auth.context_processors.auth', ), ) def test_session_is_accessed(self): """ Tests that the session is accessed if the auth context processor is used and relevant attributes accessed. """ response = self.client.get('/auth_processor_attr_access/') self.assertContains(response, "Session accessed") def test_perms_attrs(self): u = User.objects.create_user(username='normal', password='secret') u.user_permissions.add( Permission.objects.get( content_type=ContentType.objects.get_for_model(Permission), codename='add_permission')) self.client.login(username='normal', password='secret') response = self.client.get('/auth_processor_perms/') self.assertContains(response, "Has auth permissions") self.assertContains(response, "Has auth.add_permission permissions") self.assertNotContains(response, "nonexisting") def test_perm_in_perms_attrs(self): u = User.objects.create_user(username='normal', password='secret') u.user_permissions.add( Permission.objects.get( content_type=ContentType.objects.get_for_model(Permission), codename='add_permission')) self.client.login(username='normal', password='secret') response = self.client.get('/auth_processor_perm_in_perms/') self.assertContains(response, "Has auth permissions") self.assertContains(response, "Has auth.add_permission permissions") self.assertNotContains(response, "nonexisting") def test_message_attrs(self): self.client.login(username='super', password='secret') response = self.client.get('/auth_processor_messages/') self.assertContains(response, "Message 1") def test_user_attrs(self): """ Test that the lazy objects returned behave just like the wrapped objects. """ # These are 'functional' level tests for common use cases. Direct # testing of the implementation (SimpleLazyObject) is in the 'utils' # tests. self.client.login(username='super', password='secret') user = authenticate(username='super', password='secret') response = self.client.get('/auth_processor_user/') self.assertContains(response, "unicode: super") self.assertContains(response, "id: 100") self.assertContains(response, "username: super") # bug #12037 is tested by the {% url %} in the template: self.assertContains(response, "url: /userpage/super/") # See if this object can be used for queries where a Q() comparing # a user can be used with another Q() (in an AND or OR fashion). # This simulates what a template tag might do with the user from the # context. Note that we don't need to execute a query, just build it. # # The failure case (bug #12049) on Python 2.4 with a LazyObject-wrapped # User is a fatal TypeError: "function() takes at least 2 arguments # (0 given)" deep inside deepcopy(). # # Python 2.5 and 2.6 succeeded, but logged internally caught exception # spew: # # Exception RuntimeError: 'maximum recursion depth exceeded while # calling a Python object' in <type 'exceptions.AttributeError'> # ignored" Q(user=response.context['user']) & Q(someflag=True) # Tests for user equality. This is hard because User defines # equality in a non-duck-typing way # See bug #12060 self.assertEqual(response.context['user'], user) self.assertEqual(user, response.context['user'])
simbha/mAngE-Gin
lib/django/contrib/auth/tests/test_context_processors.py
Python
mit
7,020
#!/usr/bin/python # Copyright: (c) 2018, Pluribus Networks # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = """ --- module: pn_port_cos_bw author: "Pluribus Networks (@rajaspachipulusu17)" version_added: "2.8" short_description: CLI command to modify port-cos-bw description: - This module can be used to update bw settings for CoS queues. options: pn_cliswitch: description: - Target switch to run the CLI on. required: False type: str state: description: - State the action to perform. Use C(update) to modify the port-cos-bw. required: True type: str choices: ['update'] pn_max_bw_limit: description: - Maximum b/w in percentage. required: False type: str pn_cos: description: - CoS priority. required: False type: str pn_port: description: - physical port number. required: False type: str pn_weight: description: - Scheduling weight (1 to 127) after b/w guarantee met. required: False type: str choices: ['priority', 'no-priority'] pn_min_bw_guarantee: description: - Minimum b/w in precentage. required: False type: str """ EXAMPLES = """ - name: port cos bw modify pn_port_cos_bw: pn_cliswitch: "sw01" state: "update" pn_port: "1" pn_cos: "0" pn_min_bw_guarantee: "60" - name: port cos bw modify pn_port_cos_bw: pn_cliswitch: "sw01" state: "update" pn_port: "all" pn_cos: "0" pn_weight: "priority" """ RETURN = """ command: description: the CLI command run on the target node. returned: always type: str stdout: description: set of responses from the port-cos-bw command. returned: always type: list stderr: description: set of error responses from the port-cos-bw command. returned: on error type: list changed: description: indicates whether the CLI caused changes on the target. returned: always type: bool """ from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.network.netvisor.pn_nvos import pn_cli, run_cli def main(): """ This section is for arguments parsing """ state_map = dict( update='port-cos-bw-modify' ) module = AnsibleModule( argument_spec=dict( pn_cliswitch=dict(required=False, type='str'), state=dict(required=True, type='str', choices=state_map.keys()), pn_max_bw_limit=dict(required=False, type='str'), pn_cos=dict(required=False, type='str'), pn_port=dict(required=False, type='str'), pn_weight=dict(required=False, type='str', choices=['priority', 'no-priority']), pn_min_bw_guarantee=dict(required=False, type='str'), ), required_if=( ['state', 'update', ['pn_cos', 'pn_port']], ), required_one_of=[['pn_max_bw_limit', 'pn_min_bw_guarantee', 'pn_weight']], ) # Accessing the arguments cliswitch = module.params['pn_cliswitch'] state = module.params['state'] max_bw_limit = module.params['pn_max_bw_limit'] cos = module.params['pn_cos'] port = module.params['pn_port'] weight = module.params['pn_weight'] min_bw_guarantee = module.params['pn_min_bw_guarantee'] command = state_map[state] # Building the CLI command string cli = pn_cli(module, cliswitch) if command == 'port-cos-bw-modify': cli += ' %s ' % command if max_bw_limit: cli += ' max-bw-limit ' + max_bw_limit if cos: cli += ' cos ' + cos if port: cli += ' port ' + port if weight: cli += ' weight ' + weight if min_bw_guarantee: cli += ' min-bw-guarantee ' + min_bw_guarantee run_cli(module, cli, state_map) if __name__ == '__main__': main()
alxgu/ansible
lib/ansible/modules/network/netvisor/pn_port_cos_bw.py
Python
gpl-3.0
4,163
# Copyright (C) 2014 Andrey Antukh <niwi@niwi.be> # Copyright (C) 2014 Jesús Espino <jespinog@gmail.com> # Copyright (C) 2014 David Barragán <bameda@dbarragan.com> # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from django.db import transaction from django.db import connection from taiga.projects import models def update_projects_order_in_bulk(bulk_data:list, field:str, user): """ Update the order of user projects in the user membership. `bulk_data` should be a list of tuples with the following format: [(<project id>, {<field>: <value>, ...}), ...] """ membership_ids = [] new_order_values = [] for membership_data in bulk_data: project_id = membership_data["project_id"] membership = user.memberships.get(project_id=project_id) membership_ids.append(membership.id) new_order_values.append({field: membership_data["order"]}) from taiga.base.utils import db db.update_in_bulk_with_ids(membership_ids, new_order_values, model=models.Membership) @transaction.atomic def bulk_update_userstory_status_order(project, user, data): cursor = connection.cursor() sql = """ prepare bulk_update_order as update projects_userstorystatus set "order" = $1 where projects_userstorystatus.id = $2 and projects_userstorystatus.project_id = $3; """ cursor.execute(sql) for id, order in data: cursor.execute("EXECUTE bulk_update_order (%s, %s, %s);", (order, id, project.id)) cursor.execute("DEALLOCATE bulk_update_order") cursor.close() @transaction.atomic def bulk_update_points_order(project, user, data): cursor = connection.cursor() sql = """ prepare bulk_update_order as update projects_points set "order" = $1 where projects_points.id = $2 and projects_points.project_id = $3; """ cursor.execute(sql) for id, order in data: cursor.execute("EXECUTE bulk_update_order (%s, %s, %s);", (order, id, project.id)) cursor.execute("DEALLOCATE bulk_update_order") cursor.close() @transaction.atomic def bulk_update_task_status_order(project, user, data): cursor = connection.cursor() sql = """ prepare bulk_update_order as update projects_taskstatus set "order" = $1 where projects_taskstatus.id = $2 and projects_taskstatus.project_id = $3; """ cursor.execute(sql) for id, order in data: cursor.execute("EXECUTE bulk_update_order (%s, %s, %s);", (order, id, project.id)) cursor.execute("DEALLOCATE bulk_update_order") cursor.close() @transaction.atomic def bulk_update_issue_status_order(project, user, data): cursor = connection.cursor() sql = """ prepare bulk_update_order as update projects_issuestatus set "order" = $1 where projects_issuestatus.id = $2 and projects_issuestatus.project_id = $3; """ cursor.execute(sql) for id, order in data: cursor.execute("EXECUTE bulk_update_order (%s, %s, %s);", (order, id, project.id)) cursor.execute("DEALLOCATE bulk_update_order") cursor.close() @transaction.atomic def bulk_update_issue_type_order(project, user, data): cursor = connection.cursor() sql = """ prepare bulk_update_order as update projects_issuetype set "order" = $1 where projects_issuetype.id = $2 and projects_issuetype.project_id = $3; """ cursor.execute(sql) for id, order in data: cursor.execute("EXECUTE bulk_update_order (%s, %s, %s);", (order, id, project.id)) cursor.execute("DEALLOCATE bulk_update_order") cursor.close() @transaction.atomic def bulk_update_priority_order(project, user, data): cursor = connection.cursor() sql = """ prepare bulk_update_order as update projects_priority set "order" = $1 where projects_priority.id = $2 and projects_priority.project_id = $3; """ cursor.execute(sql) for id, order in data: cursor.execute("EXECUTE bulk_update_order (%s, %s, %s);", (order, id, project.id)) cursor.execute("DEALLOCATE bulk_update_order") cursor.close() @transaction.atomic def bulk_update_severity_order(project, user, data): cursor = connection.cursor() sql = """ prepare bulk_update_order as update projects_severity set "order" = $1 where projects_severity.id = $2 and projects_severity.project_id = $3; """ cursor.execute(sql) for id, order in data: cursor.execute("EXECUTE bulk_update_order (%s, %s, %s);", (order, id, project.id)) cursor.execute("DEALLOCATE bulk_update_order") cursor.close()
WALR/taiga-back
taiga/projects/services/bulk_update_order.py
Python
agpl-3.0
5,428
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from airflow.contrib.hooks.gcs_hook import GoogleCloudStorageHook from airflow.models import BaseOperator from airflow.utils.decorators import apply_defaults class FileToGoogleCloudStorageOperator(BaseOperator): """ Uploads a file to Google Cloud Storage :param src: Path to the local file :type src: string :param dst: Destination path within the specified bucket :type dst: string :param bucket: The bucket to upload to :type bucket: string :param google_cloud_storage_conn_id: The Airflow connection ID to upload with :type google_cloud_storage_conn_id: string :param mime_type: The mime-type string :type mime_type: string :param delegate_to: The account to impersonate, if any :type delegate_to: string """ template_fields = ('src', 'dst', 'bucket') @apply_defaults def __init__(self, src, dst, bucket, google_cloud_storage_conn_id='google_cloud_storage_default', mime_type='application/octet-stream', delegate_to=None, *args, **kwargs): super(FileToGoogleCloudStorageOperator, self).__init__(*args, **kwargs) self.src = src self.dst = dst self.bucket = bucket self.google_cloud_storage_conn_id = google_cloud_storage_conn_id self.mime_type = mime_type self.delegate_to = delegate_to def execute(self, context): """ Uploads the file to Google cloud storage """ hook = GoogleCloudStorageHook( google_cloud_storage_conn_id=self.google_cloud_storage_conn_id, delegate_to=self.delegate_to) hook.upload( bucket=self.bucket, object=self.dst, mime_type=self.mime_type, filename=self.src)
MetrodataTeam/incubator-airflow
airflow/contrib/operators/file_to_gcs.py
Python
apache-2.0
2,453
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from profile_creators import cookie_profile_extender from profile_creators import history_profile_extender from profile_creators import profile_extender class LargeProfileExtender(profile_extender.ProfileExtender): """This class creates a large profile by performing a large number of url navigations.""" def Run(self): extender = history_profile_extender.HistoryProfileExtender( self.finder_options) extender.Run() extender = cookie_profile_extender.CookieProfileExtender( self.finder_options) extender.Run()
guorendong/iridium-browser-ubuntu
tools/perf/profile_creators/large_profile_extender.py
Python
bsd-3-clause
713
# -*- coding: utf-8 -*- # Generated by Django 1.11.4 on 2017-09-08 09:18 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone import tinymce.models class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('comment', tinymce.models.HTMLField(blank=True)), ('created_at', models.DateTimeField(default=django.utils.timezone.now)), ], ), migrations.CreateModel( name='Subject', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('description', tinymce.models.HTMLField()), ], ), migrations.CreateModel( name='Thread', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('created_at', models.DateTimeField(default=django.utils.timezone.now)), ('Subject', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='threads', to='threads.Subject')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='threads', to=settings.AUTH_USER_MODEL)), ], ), migrations.AddField( model_name='post', name='thread', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='posts', to='threads.Thread'), ), migrations.AddField( model_name='post', name='user', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='posts', to=settings.AUTH_USER_MODEL), ), ]
GunnerJnr/_CodeInstitute
Stream-3/Full-Stack-Development/20.Deployment/4.Populating-our-database/we_are_social/threads/migrations/0001_initial.py
Python
mit
2,276
from __future__ import unicode_literals import copy import sys from functools import update_wrapper from django.utils.six.moves import zip import django.db.models.manager # Imported to register signal handler. from django.conf import settings from django.core.exceptions import (ObjectDoesNotExist, MultipleObjectsReturned, FieldError, ValidationError, NON_FIELD_ERRORS) from django.core import validators from django.db.models.fields import AutoField, FieldDoesNotExist from django.db.models.fields.related import (ManyToOneRel, OneToOneField, add_lazy_relation) from django.db import (router, transaction, DatabaseError, DEFAULT_DB_ALIAS) from django.db.models.query import Q from django.db.models.query_utils import DeferredAttribute, deferred_class_factory from django.db.models.deletion import Collector from django.db.models.options import Options from django.db.models import signals from django.db.models.loading import register_models, get_model from django.utils.translation import ugettext_lazy as _ from django.utils.functional import curry from django.utils.encoding import force_str, force_text from django.utils import six from django.utils.text import get_text_list, capfirst def subclass_exception(name, parents, module, attached_to=None): """ Create exception subclass. Used by ModelBase below. If 'attached_to' is supplied, the exception will be created in a way that allows it to be pickled, assuming the returned exception class will be added as an attribute to the 'attached_to' class. """ class_dict = {'__module__': module} if attached_to is not None: def __reduce__(self): # Exceptions are special - they've got state that isn't # in self.__dict__. We assume it is all in self.args. return (unpickle_inner_exception, (attached_to, name), self.args) def __setstate__(self, args): self.args = args class_dict['__reduce__'] = __reduce__ class_dict['__setstate__'] = __setstate__ return type(name, parents, class_dict) class ModelBase(type): """ Metaclass for all models. """ def __new__(cls, name, bases, attrs): super_new = super(ModelBase, cls).__new__ # six.with_metaclass() inserts an extra class called 'NewBase' in the # inheritance tree: Model -> NewBase -> object. But the initialization # should be executed only once for a given model class. # attrs will never be empty for classes declared in the standard way # (ie. with the `class` keyword). This is quite robust. if name == 'NewBase' and attrs == {}: return super_new(cls, name, bases, attrs) # Also ensure initialization is only performed for subclasses of Model # (excluding Model class itself). parents = [b for b in bases if isinstance(b, ModelBase) and not (b.__name__ == 'NewBase' and b.__mro__ == (b, object))] if not parents: return super_new(cls, name, bases, attrs) # Create the class. module = attrs.pop('__module__') new_class = super_new(cls, name, bases, {'__module__': module}) attr_meta = attrs.pop('Meta', None) abstract = getattr(attr_meta, 'abstract', False) if not attr_meta: meta = getattr(new_class, 'Meta', None) else: meta = attr_meta base_meta = getattr(new_class, '_meta', None) if getattr(meta, 'app_label', None) is None: # Figure out the app_label by looking one level up. # For 'django.contrib.sites.models', this would be 'sites'. model_module = sys.modules[new_class.__module__] kwargs = {"app_label": model_module.__name__.split('.')[-2]} else: kwargs = {} new_class.add_to_class('_meta', Options(meta, **kwargs)) if not abstract: new_class.add_to_class('DoesNotExist', subclass_exception(str('DoesNotExist'), tuple(x.DoesNotExist for x in parents if hasattr(x, '_meta') and not x._meta.abstract) or (ObjectDoesNotExist,), module, attached_to=new_class)) new_class.add_to_class('MultipleObjectsReturned', subclass_exception(str('MultipleObjectsReturned'), tuple(x.MultipleObjectsReturned for x in parents if hasattr(x, '_meta') and not x._meta.abstract) or (MultipleObjectsReturned,), module, attached_to=new_class)) if base_meta and not base_meta.abstract: # Non-abstract child classes inherit some attributes from their # non-abstract parent (unless an ABC comes before it in the # method resolution order). if not hasattr(meta, 'ordering'): new_class._meta.ordering = base_meta.ordering if not hasattr(meta, 'get_latest_by'): new_class._meta.get_latest_by = base_meta.get_latest_by is_proxy = new_class._meta.proxy # If the model is a proxy, ensure that the base class # hasn't been swapped out. if is_proxy and base_meta and base_meta.swapped: raise TypeError("%s cannot proxy the swapped model '%s'." % (name, base_meta.swapped)) if getattr(new_class, '_default_manager', None): if not is_proxy: # Multi-table inheritance doesn't inherit default manager from # parents. new_class._default_manager = None new_class._base_manager = None else: # Proxy classes do inherit parent's default manager, if none is # set explicitly. new_class._default_manager = new_class._default_manager._copy_to_model(new_class) new_class._base_manager = new_class._base_manager._copy_to_model(new_class) # Bail out early if we have already created this class. m = get_model(new_class._meta.app_label, name, seed_cache=False, only_installed=False) if m is not None: return m # Add all attributes to the class. for obj_name, obj in attrs.items(): new_class.add_to_class(obj_name, obj) # All the fields of any type declared on this model new_fields = new_class._meta.local_fields + \ new_class._meta.local_many_to_many + \ new_class._meta.virtual_fields field_names = set([f.name for f in new_fields]) # Basic setup for proxy models. if is_proxy: base = None for parent in [cls for cls in parents if hasattr(cls, '_meta')]: if parent._meta.abstract: if parent._meta.fields: raise TypeError("Abstract base class containing model fields not permitted for proxy model '%s'." % name) else: continue if base is not None: raise TypeError("Proxy model '%s' has more than one non-abstract model base class." % name) else: base = parent if base is None: raise TypeError("Proxy model '%s' has no non-abstract model base class." % name) if (new_class._meta.local_fields or new_class._meta.local_many_to_many): raise FieldError("Proxy model '%s' contains model fields." % name) new_class._meta.setup_proxy(base) new_class._meta.concrete_model = base._meta.concrete_model else: new_class._meta.concrete_model = new_class # Do the appropriate setup for any model parents. o2o_map = dict([(f.rel.to, f) for f in new_class._meta.local_fields if isinstance(f, OneToOneField)]) for base in parents: original_base = base if not hasattr(base, '_meta'): # Things without _meta aren't functional models, so they're # uninteresting parents. continue parent_fields = base._meta.local_fields + base._meta.local_many_to_many # Check for clashes between locally declared fields and those # on the base classes (we cannot handle shadowed fields at the # moment). for field in parent_fields: if field.name in field_names: raise FieldError('Local field %r in class %r clashes ' 'with field of similar name from ' 'base class %r' % (field.name, name, base.__name__)) if not base._meta.abstract: # Concrete classes... base = base._meta.concrete_model if base in o2o_map: field = o2o_map[base] elif not is_proxy: attr_name = '%s_ptr' % base._meta.module_name field = OneToOneField(base, name=attr_name, auto_created=True, parent_link=True) new_class.add_to_class(attr_name, field) else: field = None new_class._meta.parents[base] = field else: # .. and abstract ones. for field in parent_fields: new_class.add_to_class(field.name, copy.deepcopy(field)) # Pass any non-abstract parent classes onto child. new_class._meta.parents.update(base._meta.parents) # Inherit managers from the abstract base classes. new_class.copy_managers(base._meta.abstract_managers) # Proxy models inherit the non-abstract managers from their base, # unless they have redefined any of them. if is_proxy: new_class.copy_managers(original_base._meta.concrete_managers) # Inherit virtual fields (like GenericForeignKey) from the parent # class for field in base._meta.virtual_fields: if base._meta.abstract and field.name in field_names: raise FieldError('Local field %r in class %r clashes '\ 'with field of similar name from '\ 'abstract base class %r' % \ (field.name, name, base.__name__)) new_class.add_to_class(field.name, copy.deepcopy(field)) if abstract: # Abstract base models can't be instantiated and don't appear in # the list of models for an app. We do the final setup for them a # little differently from normal models. attr_meta.abstract = False new_class.Meta = attr_meta return new_class new_class._prepare() register_models(new_class._meta.app_label, new_class) # Because of the way imports happen (recursively), we may or may not be # the first time this model tries to register with the framework. There # should only be one class for each model, so we always return the # registered version. return get_model(new_class._meta.app_label, name, seed_cache=False, only_installed=False) def copy_managers(cls, base_managers): # This is in-place sorting of an Options attribute, but that's fine. base_managers.sort() for _, mgr_name, manager in base_managers: val = getattr(cls, mgr_name, None) if not val or val is manager: new_manager = manager._copy_to_model(cls) cls.add_to_class(mgr_name, new_manager) def add_to_class(cls, name, value): if hasattr(value, 'contribute_to_class'): value.contribute_to_class(cls, name) else: setattr(cls, name, value) def _prepare(cls): """ Creates some methods once self._meta has been populated. """ opts = cls._meta opts._prepare(cls) if opts.order_with_respect_to: cls.get_next_in_order = curry(cls._get_next_or_previous_in_order, is_next=True) cls.get_previous_in_order = curry(cls._get_next_or_previous_in_order, is_next=False) # defer creating accessors on the foreign class until we are # certain it has been created def make_foreign_order_accessors(field, model, cls): setattr( field.rel.to, 'get_%s_order' % cls.__name__.lower(), curry(method_get_order, cls) ) setattr( field.rel.to, 'set_%s_order' % cls.__name__.lower(), curry(method_set_order, cls) ) add_lazy_relation( cls, opts.order_with_respect_to, opts.order_with_respect_to.rel.to, make_foreign_order_accessors ) # Give the class a docstring -- its definition. if cls.__doc__ is None: cls.__doc__ = "%s(%s)" % (cls.__name__, ", ".join([f.attname for f in opts.fields])) if hasattr(cls, 'get_absolute_url'): cls.get_absolute_url = update_wrapper(curry(get_absolute_url, opts, cls.get_absolute_url), cls.get_absolute_url) signals.class_prepared.send(sender=cls) class ModelState(object): """ A class for storing instance state """ def __init__(self, db=None): self.db = db # If true, uniqueness validation checks will consider this a new, as-yet-unsaved object. # Necessary for correct validation of new instances of objects with explicit (non-auto) PKs. # This impacts validation only; it has no effect on the actual save. self.adding = True class Model(six.with_metaclass(ModelBase)): _deferred = False def __init__(self, *args, **kwargs): signals.pre_init.send(sender=self.__class__, args=args, kwargs=kwargs) # Set up the storage for instance state self._state = ModelState() # There is a rather weird disparity here; if kwargs, it's set, then args # overrides it. It should be one or the other; don't duplicate the work # The reason for the kwargs check is that standard iterator passes in by # args, and instantiation for iteration is 33% faster. args_len = len(args) if args_len > len(self._meta.fields): # Daft, but matches old exception sans the err msg. raise IndexError("Number of args exceeds number of fields") fields_iter = iter(self._meta.fields) if not kwargs: # The ordering of the zip calls matter - zip throws StopIteration # when an iter throws it. So if the first iter throws it, the second # is *not* consumed. We rely on this, so don't change the order # without changing the logic. for val, field in zip(args, fields_iter): setattr(self, field.attname, val) else: # Slower, kwargs-ready version. for val, field in zip(args, fields_iter): setattr(self, field.attname, val) kwargs.pop(field.name, None) # Maintain compatibility with existing calls. if isinstance(field.rel, ManyToOneRel): kwargs.pop(field.attname, None) # Now we're left with the unprocessed fields that *must* come from # keywords, or default. for field in fields_iter: is_related_object = False # This slightly odd construct is so that we can access any # data-descriptor object (DeferredAttribute) without triggering its # __get__ method. if (field.attname not in kwargs and isinstance(self.__class__.__dict__.get(field.attname), DeferredAttribute)): # This field will be populated on request. continue if kwargs: if isinstance(field.rel, ManyToOneRel): try: # Assume object instance was passed in. rel_obj = kwargs.pop(field.name) is_related_object = True except KeyError: try: # Object instance wasn't passed in -- must be an ID. val = kwargs.pop(field.attname) except KeyError: val = field.get_default() else: # Object instance was passed in. Special case: You can # pass in "None" for related objects if it's allowed. if rel_obj is None and field.null: val = None else: try: val = kwargs.pop(field.attname) except KeyError: # This is done with an exception rather than the # default argument on pop because we don't want # get_default() to be evaluated, and then not used. # Refs #12057. val = field.get_default() else: val = field.get_default() if is_related_object: # If we are passed a related instance, set it using the # field.name instead of field.attname (e.g. "user" instead of # "user_id") so that the object gets properly cached (and type # checked) by the RelatedObjectDescriptor. setattr(self, field.name, rel_obj) else: setattr(self, field.attname, val) if kwargs: for prop in list(kwargs): try: if isinstance(getattr(self.__class__, prop), property): setattr(self, prop, kwargs.pop(prop)) except AttributeError: pass if kwargs: raise TypeError("'%s' is an invalid keyword argument for this function" % list(kwargs)[0]) super(Model, self).__init__() signals.post_init.send(sender=self.__class__, instance=self) def __repr__(self): try: u = six.text_type(self) except (UnicodeEncodeError, UnicodeDecodeError): u = '[Bad Unicode data]' return force_str('<%s: %s>' % (self.__class__.__name__, u)) def __str__(self): if not six.PY3 and hasattr(self, '__unicode__'): if type(self).__unicode__ == Model.__str__: klass_name = type(self).__name__ raise RuntimeError("%s.__unicode__ is aliased to __str__. Did" " you apply @python_2_unicode_compatible" " without defining __str__?" % klass_name) return force_text(self).encode('utf-8') return '%s object' % self.__class__.__name__ def __eq__(self, other): return isinstance(other, self.__class__) and self._get_pk_val() == other._get_pk_val() def __ne__(self, other): return not self.__eq__(other) def __hash__(self): return hash(self._get_pk_val()) def __reduce__(self): """ Provides pickling support. Normally, this just dispatches to Python's standard handling. However, for models with deferred field loading, we need to do things manually, as they're dynamically created classes and only module-level classes can be pickled by the default path. """ if not self._deferred: return super(Model, self).__reduce__() data = self.__dict__ defers = [] for field in self._meta.fields: if isinstance(self.__class__.__dict__.get(field.attname), DeferredAttribute): defers.append(field.attname) model = self._meta.proxy_for_model return (model_unpickle, (model, defers), data) def _get_pk_val(self, meta=None): if not meta: meta = self._meta return getattr(self, meta.pk.attname) def _set_pk_val(self, value): return setattr(self, self._meta.pk.attname, value) pk = property(_get_pk_val, _set_pk_val) def serializable_value(self, field_name): """ Returns the value of the field name for this instance. If the field is a foreign key, returns the id value, instead of the object. If there's no Field object with this name on the model, the model attribute's value is returned directly. Used to serialize a field's value (in the serializer, or form output, for example). Normally, you would just access the attribute directly and not use this method. """ try: field = self._meta.get_field_by_name(field_name)[0] except FieldDoesNotExist: return getattr(self, field_name) return getattr(self, field.attname) def save(self, force_insert=False, force_update=False, using=None, update_fields=None): """ Saves the current instance. Override this in a subclass if you want to control the saving process. The 'force_insert' and 'force_update' parameters can be used to insist that the "save" must be an SQL insert or update (or equivalent for non-SQL backends), respectively. Normally, they should not be set. """ using = using or router.db_for_write(self.__class__, instance=self) if force_insert and (force_update or update_fields): raise ValueError("Cannot force both insert and updating in model saving.") if update_fields is not None: # If update_fields is empty, skip the save. We do also check for # no-op saves later on for inheritance cases. This bailout is # still needed for skipping signal sending. if len(update_fields) == 0: return update_fields = frozenset(update_fields) field_names = set() for field in self._meta.fields: if not field.primary_key: field_names.add(field.name) if field.name != field.attname: field_names.add(field.attname) non_model_fields = update_fields.difference(field_names) if non_model_fields: raise ValueError("The following fields do not exist in this " "model or are m2m fields: %s" % ', '.join(non_model_fields)) # If saving to the same database, and this model is deferred, then # automatically do a "update_fields" save on the loaded fields. elif not force_insert and self._deferred and using == self._state.db: field_names = set() for field in self._meta.fields: if not field.primary_key and not hasattr(field, 'through'): field_names.add(field.attname) deferred_fields = [ f.attname for f in self._meta.fields if f.attname not in self.__dict__ and isinstance(self.__class__.__dict__[f.attname], DeferredAttribute)] loaded_fields = field_names.difference(deferred_fields) if loaded_fields: update_fields = frozenset(loaded_fields) self.save_base(using=using, force_insert=force_insert, force_update=force_update, update_fields=update_fields) save.alters_data = True def save_base(self, raw=False, cls=None, origin=None, force_insert=False, force_update=False, using=None, update_fields=None): """ Does the heavy-lifting involved in saving. Subclasses shouldn't need to override this method. It's separate from save() in order to hide the need for overrides of save() to pass around internal-only parameters ('raw', 'cls', and 'origin'). """ using = using or router.db_for_write(self.__class__, instance=self) assert not (force_insert and (force_update or update_fields)) assert update_fields is None or len(update_fields) > 0 if cls is None: cls = self.__class__ meta = cls._meta if not meta.proxy: origin = cls else: meta = cls._meta if origin and not meta.auto_created: signals.pre_save.send(sender=origin, instance=self, raw=raw, using=using, update_fields=update_fields) # If we are in a raw save, save the object exactly as presented. # That means that we don't try to be smart about saving attributes # that might have come from the parent class - we just save the # attributes we have been given to the class we have been given. # We also go through this process to defer the save of proxy objects # to their actual underlying model. if not raw or meta.proxy: if meta.proxy: org = cls else: org = None for parent, field in meta.parents.items(): # At this point, parent's primary key field may be unknown # (for example, from administration form which doesn't fill # this field). If so, fill it. if field and getattr(self, parent._meta.pk.attname) is None and getattr(self, field.attname) is not None: setattr(self, parent._meta.pk.attname, getattr(self, field.attname)) self.save_base(cls=parent, origin=org, using=using, update_fields=update_fields) if field: setattr(self, field.attname, self._get_pk_val(parent._meta)) # Since we didn't have an instance of the parent handy, we # set attname directly, bypassing the descriptor. # Invalidate the related object cache, in case it's been # accidentally populated. A fresh instance will be # re-built from the database if necessary. cache_name = field.get_cache_name() if hasattr(self, cache_name): delattr(self, cache_name) if meta.proxy: return if not meta.proxy: non_pks = [f for f in meta.local_fields if not f.primary_key] if update_fields: non_pks = [f for f in non_pks if f.name in update_fields or f.attname in update_fields] # First, try an UPDATE. If that doesn't update anything, do an INSERT. pk_val = self._get_pk_val(meta) pk_set = pk_val is not None record_exists = True manager = cls._base_manager if pk_set: # Determine if we should do an update (pk already exists, forced update, # no force_insert) if ((force_update or update_fields) or (not force_insert and manager.using(using).filter(pk=pk_val).exists())): if force_update or non_pks: values = [(f, None, (raw and getattr(self, f.attname) or f.pre_save(self, False))) for f in non_pks] if values: rows = manager.using(using).filter(pk=pk_val)._update(values) if force_update and not rows: raise DatabaseError("Forced update did not affect any rows.") if update_fields and not rows: raise DatabaseError("Save with update_fields did not affect any rows.") else: record_exists = False if not pk_set or not record_exists: if meta.order_with_respect_to: # If this is a model with an order_with_respect_to # autopopulate the _order field field = meta.order_with_respect_to order_value = manager.using(using).filter(**{field.name: getattr(self, field.attname)}).count() self._order = order_value fields = meta.local_fields if not pk_set: if force_update or update_fields: raise ValueError("Cannot force an update in save() with no primary key.") fields = [f for f in fields if not isinstance(f, AutoField)] record_exists = False update_pk = bool(meta.has_auto_field and not pk_set) result = manager._insert([self], fields=fields, return_id=update_pk, using=using, raw=raw) if update_pk: setattr(self, meta.pk.attname, result) transaction.commit_unless_managed(using=using) # Store the database on which the object was saved self._state.db = using # Once saved, this is no longer a to-be-added instance. self._state.adding = False # Signal that the save is complete if origin and not meta.auto_created: signals.post_save.send(sender=origin, instance=self, created=(not record_exists), update_fields=update_fields, raw=raw, using=using) save_base.alters_data = True def delete(self, using=None): using = using or router.db_for_write(self.__class__, instance=self) assert self._get_pk_val() is not None, "%s object can't be deleted because its %s attribute is set to None." % (self._meta.object_name, self._meta.pk.attname) collector = Collector(using=using) collector.collect([self]) collector.delete() delete.alters_data = True def _get_FIELD_display(self, field): value = getattr(self, field.attname) return force_text(dict(field.flatchoices).get(value, value), strings_only=True) def _get_next_or_previous_by_FIELD(self, field, is_next, **kwargs): if not self.pk: raise ValueError("get_next/get_previous cannot be used on unsaved objects.") op = is_next and 'gt' or 'lt' order = not is_next and '-' or '' param = force_text(getattr(self, field.attname)) q = Q(**{'%s__%s' % (field.name, op): param}) q = q | Q(**{field.name: param, 'pk__%s' % op: self.pk}) qs = self.__class__._default_manager.using(self._state.db).filter(**kwargs).filter(q).order_by('%s%s' % (order, field.name), '%spk' % order) try: return qs[0] except IndexError: raise self.DoesNotExist("%s matching query does not exist." % self.__class__._meta.object_name) def _get_next_or_previous_in_order(self, is_next): cachename = "__%s_order_cache" % is_next if not hasattr(self, cachename): op = is_next and 'gt' or 'lt' order = not is_next and '-_order' or '_order' order_field = self._meta.order_with_respect_to obj = self._default_manager.filter(**{ order_field.name: getattr(self, order_field.attname) }).filter(**{ '_order__%s' % op: self._default_manager.values('_order').filter(**{ self._meta.pk.name: self.pk }) }).order_by(order)[:1].get() setattr(self, cachename, obj) return getattr(self, cachename) def prepare_database_save(self, unused): return self.pk def clean(self): """ Hook for doing any extra model-wide validation after clean() has been called on every field by self.clean_fields. Any ValidationError raised by this method will not be associated with a particular field; it will have a special-case association with the field defined by NON_FIELD_ERRORS. """ pass def validate_unique(self, exclude=None): """ Checks unique constraints on the model and raises ``ValidationError`` if any failed. """ unique_checks, date_checks = self._get_unique_checks(exclude=exclude) errors = self._perform_unique_checks(unique_checks) date_errors = self._perform_date_checks(date_checks) for k, v in date_errors.items(): errors.setdefault(k, []).extend(v) if errors: raise ValidationError(errors) def _get_unique_checks(self, exclude=None): """ Gather a list of checks to perform. Since validate_unique could be called from a ModelForm, some fields may have been excluded; we can't perform a unique check on a model that is missing fields involved in that check. Fields that did not validate should also be excluded, but they need to be passed in via the exclude argument. """ if exclude is None: exclude = [] unique_checks = [] unique_togethers = [(self.__class__, self._meta.unique_together)] for parent_class in self._meta.parents.keys(): if parent_class._meta.unique_together: unique_togethers.append((parent_class, parent_class._meta.unique_together)) for model_class, unique_together in unique_togethers: for check in unique_together: for name in check: # If this is an excluded field, don't add this check. if name in exclude: break else: unique_checks.append((model_class, tuple(check))) # These are checks for the unique_for_<date/year/month>. date_checks = [] # Gather a list of checks for fields declared as unique and add them to # the list of checks. fields_with_class = [(self.__class__, self._meta.local_fields)] for parent_class in self._meta.parents.keys(): fields_with_class.append((parent_class, parent_class._meta.local_fields)) for model_class, fields in fields_with_class: for f in fields: name = f.name if name in exclude: continue if f.unique: unique_checks.append((model_class, (name,))) if f.unique_for_date and f.unique_for_date not in exclude: date_checks.append((model_class, 'date', name, f.unique_for_date)) if f.unique_for_year and f.unique_for_year not in exclude: date_checks.append((model_class, 'year', name, f.unique_for_year)) if f.unique_for_month and f.unique_for_month not in exclude: date_checks.append((model_class, 'month', name, f.unique_for_month)) return unique_checks, date_checks def _perform_unique_checks(self, unique_checks): errors = {} for model_class, unique_check in unique_checks: # Try to look up an existing object with the same values as this # object's values for all the unique field. lookup_kwargs = {} for field_name in unique_check: f = self._meta.get_field(field_name) lookup_value = getattr(self, f.attname) if lookup_value is None: # no value, skip the lookup continue if f.primary_key and not self._state.adding: # no need to check for unique primary key when editing continue lookup_kwargs[str(field_name)] = lookup_value # some fields were skipped, no reason to do the check if len(unique_check) != len(lookup_kwargs): continue qs = model_class._default_manager.filter(**lookup_kwargs) # Exclude the current object from the query if we are editing an # instance (as opposed to creating a new one) # Note that we need to use the pk as defined by model_class, not # self.pk. These can be different fields because model inheritance # allows single model to have effectively multiple primary keys. # Refs #17615. model_class_pk = self._get_pk_val(model_class._meta) if not self._state.adding and model_class_pk is not None: qs = qs.exclude(pk=model_class_pk) if qs.exists(): if len(unique_check) == 1: key = unique_check[0] else: key = NON_FIELD_ERRORS errors.setdefault(key, []).append(self.unique_error_message(model_class, unique_check)) return errors def _perform_date_checks(self, date_checks): errors = {} for model_class, lookup_type, field, unique_for in date_checks: lookup_kwargs = {} # there's a ticket to add a date lookup, we can remove this special # case if that makes it's way in date = getattr(self, unique_for) if date is None: continue if lookup_type == 'date': lookup_kwargs['%s__day' % unique_for] = date.day lookup_kwargs['%s__month' % unique_for] = date.month lookup_kwargs['%s__year' % unique_for] = date.year else: lookup_kwargs['%s__%s' % (unique_for, lookup_type)] = getattr(date, lookup_type) lookup_kwargs[field] = getattr(self, field) qs = model_class._default_manager.filter(**lookup_kwargs) # Exclude the current object from the query if we are editing an # instance (as opposed to creating a new one) if not self._state.adding and self.pk is not None: qs = qs.exclude(pk=self.pk) if qs.exists(): errors.setdefault(field, []).append( self.date_error_message(lookup_type, field, unique_for) ) return errors def date_error_message(self, lookup_type, field, unique_for): opts = self._meta return _("%(field_name)s must be unique for %(date_field)s %(lookup)s.") % { 'field_name': six.text_type(capfirst(opts.get_field(field).verbose_name)), 'date_field': six.text_type(capfirst(opts.get_field(unique_for).verbose_name)), 'lookup': lookup_type, } def unique_error_message(self, model_class, unique_check): opts = model_class._meta model_name = capfirst(opts.verbose_name) # A unique field if len(unique_check) == 1: field_name = unique_check[0] field = opts.get_field(field_name) field_label = capfirst(field.verbose_name) # Insert the error into the error dict, very sneaky return field.error_messages['unique'] % { 'model_name': six.text_type(model_name), 'field_label': six.text_type(field_label) } # unique_together else: field_labels = [capfirst(opts.get_field(f).verbose_name) for f in unique_check] field_labels = get_text_list(field_labels, _('and')) return _("%(model_name)s with this %(field_label)s already exists.") % { 'model_name': six.text_type(model_name), 'field_label': six.text_type(field_labels) } def full_clean(self, exclude=None): """ Calls clean_fields, clean, and validate_unique, on the model, and raises a ``ValidationError`` for any errors that occured. """ errors = {} if exclude is None: exclude = [] try: self.clean_fields(exclude=exclude) except ValidationError as e: errors = e.update_error_dict(errors) # Form.clean() is run even if other validation fails, so do the # same with Model.clean() for consistency. try: self.clean() except ValidationError as e: errors = e.update_error_dict(errors) # Run unique checks, but only for fields that passed validation. for name in errors.keys(): if name != NON_FIELD_ERRORS and name not in exclude: exclude.append(name) try: self.validate_unique(exclude=exclude) except ValidationError as e: errors = e.update_error_dict(errors) if errors: raise ValidationError(errors) def clean_fields(self, exclude=None): """ Cleans all fields and raises a ValidationError containing message_dict of all validation errors if any occur. """ if exclude is None: exclude = [] errors = {} for f in self._meta.fields: if f.name in exclude: continue # Skip validation for empty fields with blank=True. The developer # is responsible for making sure they have a valid value. raw_value = getattr(self, f.attname) if f.blank and raw_value in validators.EMPTY_VALUES: continue try: setattr(self, f.attname, f.clean(raw_value, self)) except ValidationError as e: errors[f.name] = e.messages if errors: raise ValidationError(errors) ############################################ # HELPER FUNCTIONS (CURRIED MODEL METHODS) # ############################################ # ORDERING METHODS ######################### def method_set_order(ordered_obj, self, id_list, using=None): if using is None: using = DEFAULT_DB_ALIAS rel_val = getattr(self, ordered_obj._meta.order_with_respect_to.rel.field_name) order_name = ordered_obj._meta.order_with_respect_to.name # FIXME: It would be nice if there was an "update many" version of update # for situations like this. for i, j in enumerate(id_list): ordered_obj.objects.filter(**{'pk': j, order_name: rel_val}).update(_order=i) transaction.commit_unless_managed(using=using) def method_get_order(ordered_obj, self): rel_val = getattr(self, ordered_obj._meta.order_with_respect_to.rel.field_name) order_name = ordered_obj._meta.order_with_respect_to.name pk_name = ordered_obj._meta.pk.name return [r[pk_name] for r in ordered_obj.objects.filter(**{order_name: rel_val}).values(pk_name)] ############################################## # HELPER FUNCTIONS (CURRIED MODEL FUNCTIONS) # ############################################## def get_absolute_url(opts, func, self, *args, **kwargs): return settings.ABSOLUTE_URL_OVERRIDES.get('%s.%s' % (opts.app_label, opts.module_name), func)(self, *args, **kwargs) ######## # MISC # ######## class Empty(object): pass def model_unpickle(model, attrs): """ Used to unpickle Model subclasses with deferred fields. """ cls = deferred_class_factory(model, attrs) return cls.__new__(cls) model_unpickle.__safe_for_unpickle__ = True def unpickle_inner_exception(klass, exception_name): # Get the exception class from the class it is attached to: exception = getattr(klass, exception_name) return exception.__new__(exception)
havard024/prego
venv/lib/python2.7/site-packages/django/db/models/base.py
Python
mit
44,041
#!/usr/bin/env python import vtk from vtk.test import Testing from vtk.util.misc import vtkGetDataRoot VTK_DATA_ROOT = vtkGetDataRoot() # Create the RenderWindow, Renderer and both Actors # ren1 = vtk.vtkRenderer() renWin = vtk.vtkRenderWindow() renWin.AddRenderer(ren1) iren = vtk.vtkRenderWindowInteractor() iren.SetRenderWindow(renWin) # create the piplinee, ball and spikes sphere = vtk.vtkSphereSource() sphere.SetThetaResolution(7) sphere.SetPhiResolution(7) sphereMapper = vtk.vtkPolyDataMapper() sphereMapper.SetInputConnection(sphere.GetOutputPort()) sphereActor = vtk.vtkActor() sphereActor.SetMapper(sphereMapper) sphereActor2 = vtk.vtkActor() sphereActor2.SetMapper(sphereMapper) cone = vtk.vtkConeSource() cone.SetResolution(5) glyph = vtk.vtkGlyph3D() glyph.SetInputConnection(sphere.GetOutputPort()) glyph.SetSourceConnection(cone.GetOutputPort()) glyph.SetVectorModeToUseNormal() glyph.SetScaleModeToScaleByVector() glyph.SetScaleFactor(0.25) spikeMapper = vtk.vtkPolyDataMapper() spikeMapper.SetInputConnection(glyph.GetOutputPort()) spikeActor = vtk.vtkActor() spikeActor.SetMapper(spikeMapper) spikeActor2 = vtk.vtkActor() spikeActor2.SetMapper(spikeMapper) # set the actors position and scale spikeActor.SetPosition(0,0.7,0) sphereActor.SetPosition(0,0.7,0) spikeActor2.SetPosition(0,-1,-10) sphereActor2.SetPosition(0,-1,-10) spikeActor2.SetScale(1.5,1.5,1.5) sphereActor2.SetScale(1.5,1.5,1.5) ren1.AddActor(sphereActor) ren1.AddActor(spikeActor) ren1.AddActor(sphereActor2) ren1.AddActor(spikeActor2) ren1.SetBackground(0.1,0.2,0.4) renWin.SetSize(200,200) # do the first render and then zoom in a little renWin.Render() ren1.GetActiveCamera().SetFocalPoint(0,0,0) ren1.GetActiveCamera().Zoom(1.8) ren1.GetActiveCamera().SetFocalDisk(0.05) renWin.SetFDFrames(11) renWin.Render() iren.Initialize() #renWin SetFileName CamBlur.tcl.ppm #renWin SaveImageAsPPM # prevent the tk window from showing up then start the event loop # --- end of script --
HopeFOAM/HopeFOAM
ThirdParty-0.1/ParaView-5.0.1/VTK/Rendering/Core/Testing/Python/CamBlur.py
Python
gpl-3.0
1,969
# -*- coding: utf-8 -*- from . import test_convert from . import test_env
ddico/odoo
odoo/addons/test_convert/tests/__init__.py
Python
agpl-3.0
74
""" This module contains a set of functions for vectorized string operations and methods. .. note:: The `chararray` class exists for backwards compatibility with Numarray, it is not recommended for new development. Starting from numpy 1.4, if one needs arrays of strings, it is recommended to use arrays of `dtype` `object_`, `string_` or `unicode_`, and use the free functions in the `numpy.char` module for fast vectorized string operations. Some methods will only be available if the corresponding string method is available in your version of Python. The preferred alias for `defchararray` is `numpy.char`. """ from __future__ import division, absolute_import, print_function import sys from .numerictypes import string_, unicode_, integer, object_, bool_, character from .numeric import ndarray, compare_chararrays from .numeric import array as narray from numpy.core.multiarray import _vec_string from numpy.compat import asbytes, long import numpy __all__ = [ 'chararray', 'equal', 'not_equal', 'greater_equal', 'less_equal', 'greater', 'less', 'str_len', 'add', 'multiply', 'mod', 'capitalize', 'center', 'count', 'decode', 'encode', 'endswith', 'expandtabs', 'find', 'index', 'isalnum', 'isalpha', 'isdigit', 'islower', 'isspace', 'istitle', 'isupper', 'join', 'ljust', 'lower', 'lstrip', 'partition', 'replace', 'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip', 'split', 'splitlines', 'startswith', 'strip', 'swapcase', 'title', 'translate', 'upper', 'zfill', 'isnumeric', 'isdecimal', 'array', 'asarray' ] _globalvar = 0 if sys.version_info[0] >= 3: _unicode = str _bytes = bytes else: _unicode = unicode _bytes = str _len = len def _use_unicode(*args): """ Helper function for determining the output type of some string operations. For an operation on two ndarrays, if at least one is unicode, the result should be unicode. """ for x in args: if (isinstance(x, _unicode) or issubclass(numpy.asarray(x).dtype.type, unicode_)): return unicode_ return string_ def _to_string_or_unicode_array(result): """ Helper function to cast a result back into a string or unicode array if an object array must be used as an intermediary. """ return numpy.asarray(result.tolist()) def _clean_args(*args): """ Helper function for delegating arguments to Python string functions. Many of the Python string operations that have optional arguments do not use 'None' to indicate a default value. In these cases, we need to remove all `None` arguments, and those following them. """ newargs = [] for chk in args: if chk is None: break newargs.append(chk) return newargs def _get_num_chars(a): """ Helper function that returns the number of characters per field in a string or unicode array. This is to abstract out the fact that for a unicode array this is itemsize / 4. """ if issubclass(a.dtype.type, unicode_): return a.itemsize // 4 return a.itemsize def equal(x1, x2): """ Return (x1 == x2) element-wise. Unlike `numpy.equal`, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters ---------- x1, x2 : array_like of str or unicode Input arrays of the same shape. Returns ------- out : ndarray or bool Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- not_equal, greater_equal, less_equal, greater, less """ return compare_chararrays(x1, x2, '==', True) def not_equal(x1, x2): """ Return (x1 != x2) element-wise. Unlike `numpy.not_equal`, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters ---------- x1, x2 : array_like of str or unicode Input arrays of the same shape. Returns ------- out : ndarray or bool Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- equal, greater_equal, less_equal, greater, less """ return compare_chararrays(x1, x2, '!=', True) def greater_equal(x1, x2): """ Return (x1 >= x2) element-wise. Unlike `numpy.greater_equal`, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters ---------- x1, x2 : array_like of str or unicode Input arrays of the same shape. Returns ------- out : ndarray or bool Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- equal, not_equal, less_equal, greater, less """ return compare_chararrays(x1, x2, '>=', True) def less_equal(x1, x2): """ Return (x1 <= x2) element-wise. Unlike `numpy.less_equal`, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters ---------- x1, x2 : array_like of str or unicode Input arrays of the same shape. Returns ------- out : ndarray or bool Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- equal, not_equal, greater_equal, greater, less """ return compare_chararrays(x1, x2, '<=', True) def greater(x1, x2): """ Return (x1 > x2) element-wise. Unlike `numpy.greater`, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters ---------- x1, x2 : array_like of str or unicode Input arrays of the same shape. Returns ------- out : ndarray or bool Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- equal, not_equal, greater_equal, less_equal, less """ return compare_chararrays(x1, x2, '>', True) def less(x1, x2): """ Return (x1 < x2) element-wise. Unlike `numpy.greater`, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters ---------- x1, x2 : array_like of str or unicode Input arrays of the same shape. Returns ------- out : ndarray or bool Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- equal, not_equal, greater_equal, less_equal, greater """ return compare_chararrays(x1, x2, '<', True) def str_len(a): """ Return len(a) element-wise. Parameters ---------- a : array_like of str or unicode Returns ------- out : ndarray Output array of integers See also -------- __builtin__.len """ return _vec_string(a, integer, '__len__') def add(x1, x2): """ Return element-wise string concatenation for two arrays of str or unicode. Arrays `x1` and `x2` must have the same shape. Parameters ---------- x1 : array_like of str or unicode Input array. x2 : array_like of str or unicode Input array. Returns ------- add : ndarray Output array of `string_` or `unicode_`, depending on input types of the same shape as `x1` and `x2`. """ arr1 = numpy.asarray(x1) arr2 = numpy.asarray(x2) out_size = _get_num_chars(arr1) + _get_num_chars(arr2) dtype = _use_unicode(arr1, arr2) return _vec_string(arr1, (dtype, out_size), '__add__', (arr2,)) def multiply(a, i): """ Return (a * i), that is string multiple concatenation, element-wise. Values in `i` of less than 0 are treated as 0 (which yields an empty string). Parameters ---------- a : array_like of str or unicode i : array_like of ints Returns ------- out : ndarray Output array of str or unicode, depending on input types """ a_arr = numpy.asarray(a) i_arr = numpy.asarray(i) if not issubclass(i_arr.dtype.type, integer): raise ValueError("Can only multiply by integers") out_size = _get_num_chars(a_arr) * max(long(i_arr.max()), 0) return _vec_string( a_arr, (a_arr.dtype.type, out_size), '__mul__', (i_arr,)) def mod(a, values): """ Return (a % i), that is pre-Python 2.6 string formatting (iterpolation), element-wise for a pair of array_likes of str or unicode. Parameters ---------- a : array_like of str or unicode values : array_like of values These values will be element-wise interpolated into the string. Returns ------- out : ndarray Output array of str or unicode, depending on input types See also -------- str.__mod__ """ return _to_string_or_unicode_array( _vec_string(a, object_, '__mod__', (values,))) def capitalize(a): """ Return a copy of `a` with only the first character of each element capitalized. Calls `str.capitalize` element-wise. For 8-bit strings, this method is locale-dependent. Parameters ---------- a : array_like of str or unicode Input array of strings to capitalize. Returns ------- out : ndarray Output array of str or unicode, depending on input types See also -------- str.capitalize Examples -------- >>> c = np.array(['a1b2','1b2a','b2a1','2a1b'],'S4'); c array(['a1b2', '1b2a', 'b2a1', '2a1b'], dtype='|S4') >>> np.char.capitalize(c) array(['A1b2', '1b2a', 'B2a1', '2a1b'], dtype='|S4') """ a_arr = numpy.asarray(a) return _vec_string(a_arr, a_arr.dtype, 'capitalize') def center(a, width, fillchar=' '): """ Return a copy of `a` with its elements centered in a string of length `width`. Calls `str.center` element-wise. Parameters ---------- a : array_like of str or unicode width : int The length of the resulting strings fillchar : str or unicode, optional The padding character to use (default is space). Returns ------- out : ndarray Output array of str or unicode, depending on input types See also -------- str.center """ a_arr = numpy.asarray(a) width_arr = numpy.asarray(width) size = long(numpy.max(width_arr.flat)) if numpy.issubdtype(a_arr.dtype, numpy.string_): fillchar = asbytes(fillchar) return _vec_string( a_arr, (a_arr.dtype.type, size), 'center', (width_arr, fillchar)) def count(a, sub, start=0, end=None): """ Returns an array with the number of non-overlapping occurrences of substring `sub` in the range [`start`, `end`]. Calls `str.count` element-wise. Parameters ---------- a : array_like of str or unicode sub : str or unicode The substring to search for. start, end : int, optional Optional arguments `start` and `end` are interpreted as slice notation to specify the range in which to count. Returns ------- out : ndarray Output array of ints. See also -------- str.count Examples -------- >>> c = np.array(['aAaAaA', ' aA ', 'abBABba']) >>> c array(['aAaAaA', ' aA ', 'abBABba'], dtype='|S7') >>> np.char.count(c, 'A') array([3, 1, 1]) >>> np.char.count(c, 'aA') array([3, 1, 0]) >>> np.char.count(c, 'A', start=1, end=4) array([2, 1, 1]) >>> np.char.count(c, 'A', start=1, end=3) array([1, 0, 0]) """ return _vec_string(a, integer, 'count', [sub, start] + _clean_args(end)) def decode(a, encoding=None, errors=None): """ Calls `str.decode` element-wise. The set of available codecs comes from the Python standard library, and may be extended at runtime. For more information, see the :mod:`codecs` module. Parameters ---------- a : array_like of str or unicode encoding : str, optional The name of an encoding errors : str, optional Specifies how to handle encoding errors Returns ------- out : ndarray See also -------- str.decode Notes ----- The type of the result will depend on the encoding specified. Examples -------- >>> c = np.array(['aAaAaA', ' aA ', 'abBABba']) >>> c array(['aAaAaA', ' aA ', 'abBABba'], dtype='|S7') >>> np.char.encode(c, encoding='cp037') array(['\\x81\\xc1\\x81\\xc1\\x81\\xc1', '@@\\x81\\xc1@@', '\\x81\\x82\\xc2\\xc1\\xc2\\x82\\x81'], dtype='|S7') """ return _to_string_or_unicode_array( _vec_string(a, object_, 'decode', _clean_args(encoding, errors))) def encode(a, encoding=None, errors=None): """ Calls `str.encode` element-wise. The set of available codecs comes from the Python standard library, and may be extended at runtime. For more information, see the codecs module. Parameters ---------- a : array_like of str or unicode encoding : str, optional The name of an encoding errors : str, optional Specifies how to handle encoding errors Returns ------- out : ndarray See also -------- str.encode Notes ----- The type of the result will depend on the encoding specified. """ return _to_string_or_unicode_array( _vec_string(a, object_, 'encode', _clean_args(encoding, errors))) def endswith(a, suffix, start=0, end=None): """ Returns a boolean array which is `True` where the string element in `a` ends with `suffix`, otherwise `False`. Calls `str.endswith` element-wise. Parameters ---------- a : array_like of str or unicode suffix : str start, end : int, optional With optional `start`, test beginning at that position. With optional `end`, stop comparing at that position. Returns ------- out : ndarray Outputs an array of bools. See also -------- str.endswith Examples -------- >>> s = np.array(['foo', 'bar']) >>> s[0] = 'foo' >>> s[1] = 'bar' >>> s array(['foo', 'bar'], dtype='|S3') >>> np.char.endswith(s, 'ar') array([False, True], dtype=bool) >>> np.char.endswith(s, 'a', start=1, end=2) array([False, True], dtype=bool) """ return _vec_string( a, bool_, 'endswith', [suffix, start] + _clean_args(end)) def expandtabs(a, tabsize=8): """ Return a copy of each string element where all tab characters are replaced by one or more spaces. Calls `str.expandtabs` element-wise. Return a copy of each string element where all tab characters are replaced by one or more spaces, depending on the current column and the given `tabsize`. The column number is reset to zero after each newline occurring in the string. This doesn't understand other non-printing characters or escape sequences. Parameters ---------- a : array_like of str or unicode Input array tabsize : int, optional Replace tabs with `tabsize` number of spaces. If not given defaults to 8 spaces. Returns ------- out : ndarray Output array of str or unicode, depending on input type See also -------- str.expandtabs """ return _to_string_or_unicode_array( _vec_string(a, object_, 'expandtabs', (tabsize,))) def find(a, sub, start=0, end=None): """ For each element, return the lowest index in the string where substring `sub` is found. Calls `str.find` element-wise. For each element, return the lowest index in the string where substring `sub` is found, such that `sub` is contained in the range [`start`, `end`]. Parameters ---------- a : array_like of str or unicode sub : str or unicode start, end : int, optional Optional arguments `start` and `end` are interpreted as in slice notation. Returns ------- out : ndarray or int Output array of ints. Returns -1 if `sub` is not found. See also -------- str.find """ return _vec_string( a, integer, 'find', [sub, start] + _clean_args(end)) def index(a, sub, start=0, end=None): """ Like `find`, but raises `ValueError` when the substring is not found. Calls `str.index` element-wise. Parameters ---------- a : array_like of str or unicode sub : str or unicode start, end : int, optional Returns ------- out : ndarray Output array of ints. Returns -1 if `sub` is not found. See also -------- find, str.find """ return _vec_string( a, integer, 'index', [sub, start] + _clean_args(end)) def isalnum(a): """ Returns true for each element if all characters in the string are alphanumeric and there is at least one character, false otherwise. Calls `str.isalnum` element-wise. For 8-bit strings, this method is locale-dependent. Parameters ---------- a : array_like of str or unicode Returns ------- out : ndarray Output array of str or unicode, depending on input type See also -------- str.isalnum """ return _vec_string(a, bool_, 'isalnum') def isalpha(a): """ Returns true for each element if all characters in the string are alphabetic and there is at least one character, false otherwise. Calls `str.isalpha` element-wise. For 8-bit strings, this method is locale-dependent. Parameters ---------- a : array_like of str or unicode Returns ------- out : ndarray Output array of bools See also -------- str.isalpha """ return _vec_string(a, bool_, 'isalpha') def isdigit(a): """ Returns true for each element if all characters in the string are digits and there is at least one character, false otherwise. Calls `str.isdigit` element-wise. For 8-bit strings, this method is locale-dependent. Parameters ---------- a : array_like of str or unicode Returns ------- out : ndarray Output array of bools See also -------- str.isdigit """ return _vec_string(a, bool_, 'isdigit') def islower(a): """ Returns true for each element if all cased characters in the string are lowercase and there is at least one cased character, false otherwise. Calls `str.islower` element-wise. For 8-bit strings, this method is locale-dependent. Parameters ---------- a : array_like of str or unicode Returns ------- out : ndarray Output array of bools See also -------- str.islower """ return _vec_string(a, bool_, 'islower') def isspace(a): """ Returns true for each element if there are only whitespace characters in the string and there is at least one character, false otherwise. Calls `str.isspace` element-wise. For 8-bit strings, this method is locale-dependent. Parameters ---------- a : array_like of str or unicode Returns ------- out : ndarray Output array of bools See also -------- str.isspace """ return _vec_string(a, bool_, 'isspace') def istitle(a): """ Returns true for each element if the element is a titlecased string and there is at least one character, false otherwise. Call `str.istitle` element-wise. For 8-bit strings, this method is locale-dependent. Parameters ---------- a : array_like of str or unicode Returns ------- out : ndarray Output array of bools See also -------- str.istitle """ return _vec_string(a, bool_, 'istitle') def isupper(a): """ Returns true for each element if all cased characters in the string are uppercase and there is at least one character, false otherwise. Call `str.isupper` element-wise. For 8-bit strings, this method is locale-dependent. Parameters ---------- a : array_like of str or unicode Returns ------- out : ndarray Output array of bools See also -------- str.isupper """ return _vec_string(a, bool_, 'isupper') def join(sep, seq): """ Return a string which is the concatenation of the strings in the sequence `seq`. Calls `str.join` element-wise. Parameters ---------- sep : array_like of str or unicode seq : array_like of str or unicode Returns ------- out : ndarray Output array of str or unicode, depending on input types See also -------- str.join """ return _to_string_or_unicode_array( _vec_string(sep, object_, 'join', (seq,))) def ljust(a, width, fillchar=' '): """ Return an array with the elements of `a` left-justified in a string of length `width`. Calls `str.ljust` element-wise. Parameters ---------- a : array_like of str or unicode width : int The length of the resulting strings fillchar : str or unicode, optional The character to use for padding Returns ------- out : ndarray Output array of str or unicode, depending on input type See also -------- str.ljust """ a_arr = numpy.asarray(a) width_arr = numpy.asarray(width) size = long(numpy.max(width_arr.flat)) if numpy.issubdtype(a_arr.dtype, numpy.string_): fillchar = asbytes(fillchar) return _vec_string( a_arr, (a_arr.dtype.type, size), 'ljust', (width_arr, fillchar)) def lower(a): """ Return an array with the elements converted to lowercase. Call `str.lower` element-wise. For 8-bit strings, this method is locale-dependent. Parameters ---------- a : array_like, {str, unicode} Input array. Returns ------- out : ndarray, {str, unicode} Output array of str or unicode, depending on input type See also -------- str.lower Examples -------- >>> c = np.array(['A1B C', '1BCA', 'BCA1']); c array(['A1B C', '1BCA', 'BCA1'], dtype='|S5') >>> np.char.lower(c) array(['a1b c', '1bca', 'bca1'], dtype='|S5') """ a_arr = numpy.asarray(a) return _vec_string(a_arr, a_arr.dtype, 'lower') def lstrip(a, chars=None): """ For each element in `a`, return a copy with the leading characters removed. Calls `str.lstrip` element-wise. Parameters ---------- a : array-like, {str, unicode} Input array. chars : {str, unicode}, optional The `chars` argument is a string specifying the set of characters to be removed. If omitted or None, the `chars` argument defaults to removing whitespace. The `chars` argument is not a prefix; rather, all combinations of its values are stripped. Returns ------- out : ndarray, {str, unicode} Output array of str or unicode, depending on input type See also -------- str.lstrip Examples -------- >>> c = np.array(['aAaAaA', ' aA ', 'abBABba']) >>> c array(['aAaAaA', ' aA ', 'abBABba'], dtype='|S7') The 'a' variable is unstripped from c[1] because whitespace leading. >>> np.char.lstrip(c, 'a') array(['AaAaA', ' aA ', 'bBABba'], dtype='|S7') >>> np.char.lstrip(c, 'A') # leaves c unchanged array(['aAaAaA', ' aA ', 'abBABba'], dtype='|S7') >>> (np.char.lstrip(c, ' ') == np.char.lstrip(c, '')).all() ... # XXX: is this a regression? this line now returns False ... # np.char.lstrip(c,'') does not modify c at all. True >>> (np.char.lstrip(c, ' ') == np.char.lstrip(c, None)).all() True """ a_arr = numpy.asarray(a) return _vec_string(a_arr, a_arr.dtype, 'lstrip', (chars,)) def partition(a, sep): """ Partition each element in `a` around `sep`. Calls `str.partition` element-wise. For each element in `a`, split the element as the first occurrence of `sep`, and return 3 strings containing the part before the separator, the separator itself, and the part after the separator. If the separator is not found, return 3 strings containing the string itself, followed by two empty strings. Parameters ---------- a : array_like, {str, unicode} Input array sep : {str, unicode} Separator to split each string element in `a`. Returns ------- out : ndarray, {str, unicode} Output array of str or unicode, depending on input type. The output array will have an extra dimension with 3 elements per input element. See also -------- str.partition """ return _to_string_or_unicode_array( _vec_string(a, object_, 'partition', (sep,))) def replace(a, old, new, count=None): """ For each element in `a`, return a copy of the string with all occurrences of substring `old` replaced by `new`. Calls `str.replace` element-wise. Parameters ---------- a : array-like of str or unicode old, new : str or unicode count : int, optional If the optional argument `count` is given, only the first `count` occurrences are replaced. Returns ------- out : ndarray Output array of str or unicode, depending on input type See also -------- str.replace """ return _to_string_or_unicode_array( _vec_string( a, object_, 'replace', [old, new] + _clean_args(count))) def rfind(a, sub, start=0, end=None): """ For each element in `a`, return the highest index in the string where substring `sub` is found, such that `sub` is contained within [`start`, `end`]. Calls `str.rfind` element-wise. Parameters ---------- a : array-like of str or unicode sub : str or unicode start, end : int, optional Optional arguments `start` and `end` are interpreted as in slice notation. Returns ------- out : ndarray Output array of ints. Return -1 on failure. See also -------- str.rfind """ return _vec_string( a, integer, 'rfind', [sub, start] + _clean_args(end)) def rindex(a, sub, start=0, end=None): """ Like `rfind`, but raises `ValueError` when the substring `sub` is not found. Calls `str.rindex` element-wise. Parameters ---------- a : array-like of str or unicode sub : str or unicode start, end : int, optional Returns ------- out : ndarray Output array of ints. See also -------- rfind, str.rindex """ return _vec_string( a, integer, 'rindex', [sub, start] + _clean_args(end)) def rjust(a, width, fillchar=' '): """ Return an array with the elements of `a` right-justified in a string of length `width`. Calls `str.rjust` element-wise. Parameters ---------- a : array_like of str or unicode width : int The length of the resulting strings fillchar : str or unicode, optional The character to use for padding Returns ------- out : ndarray Output array of str or unicode, depending on input type See also -------- str.rjust """ a_arr = numpy.asarray(a) width_arr = numpy.asarray(width) size = long(numpy.max(width_arr.flat)) if numpy.issubdtype(a_arr.dtype, numpy.string_): fillchar = asbytes(fillchar) return _vec_string( a_arr, (a_arr.dtype.type, size), 'rjust', (width_arr, fillchar)) def rpartition(a, sep): """ Partition (split) each element around the right-most separator. Calls `str.rpartition` element-wise. For each element in `a`, split the element as the last occurrence of `sep`, and return 3 strings containing the part before the separator, the separator itself, and the part after the separator. If the separator is not found, return 3 strings containing the string itself, followed by two empty strings. Parameters ---------- a : array_like of str or unicode Input array sep : str or unicode Right-most separator to split each element in array. Returns ------- out : ndarray Output array of string or unicode, depending on input type. The output array will have an extra dimension with 3 elements per input element. See also -------- str.rpartition """ return _to_string_or_unicode_array( _vec_string(a, object_, 'rpartition', (sep,))) def rsplit(a, sep=None, maxsplit=None): """ For each element in `a`, return a list of the words in the string, using `sep` as the delimiter string. Calls `str.rsplit` element-wise. Except for splitting from the right, `rsplit` behaves like `split`. Parameters ---------- a : array_like of str or unicode sep : str or unicode, optional If `sep` is not specified or `None`, any whitespace string is a separator. maxsplit : int, optional If `maxsplit` is given, at most `maxsplit` splits are done, the rightmost ones. Returns ------- out : ndarray Array of list objects See also -------- str.rsplit, split """ # This will return an array of lists of different sizes, so we # leave it as an object array return _vec_string( a, object_, 'rsplit', [sep] + _clean_args(maxsplit)) def rstrip(a, chars=None): """ For each element in `a`, return a copy with the trailing characters removed. Calls `str.rstrip` element-wise. Parameters ---------- a : array-like of str or unicode chars : str or unicode, optional The `chars` argument is a string specifying the set of characters to be removed. If omitted or None, the `chars` argument defaults to removing whitespace. The `chars` argument is not a suffix; rather, all combinations of its values are stripped. Returns ------- out : ndarray Output array of str or unicode, depending on input type See also -------- str.rstrip Examples -------- >>> c = np.array(['aAaAaA', 'abBABba'], dtype='S7'); c array(['aAaAaA', 'abBABba'], dtype='|S7') >>> np.char.rstrip(c, 'a') array(['aAaAaA', 'abBABb'], dtype='|S7') >>> np.char.rstrip(c, 'A') array(['aAaAa', 'abBABba'], dtype='|S7') """ a_arr = numpy.asarray(a) return _vec_string(a_arr, a_arr.dtype, 'rstrip', (chars,)) def split(a, sep=None, maxsplit=None): """ For each element in `a`, return a list of the words in the string, using `sep` as the delimiter string. Calls `str.split` element-wise. Parameters ---------- a : array_like of str or unicode sep : str or unicode, optional If `sep` is not specified or `None`, any whitespace string is a separator. maxsplit : int, optional If `maxsplit` is given, at most `maxsplit` splits are done. Returns ------- out : ndarray Array of list objects See also -------- str.split, rsplit """ # This will return an array of lists of different sizes, so we # leave it as an object array return _vec_string( a, object_, 'split', [sep] + _clean_args(maxsplit)) def splitlines(a, keepends=None): """ For each element in `a`, return a list of the lines in the element, breaking at line boundaries. Calls `str.splitlines` element-wise. Parameters ---------- a : array_like of str or unicode keepends : bool, optional Line breaks are not included in the resulting list unless keepends is given and true. Returns ------- out : ndarray Array of list objects See also -------- str.splitlines """ return _vec_string( a, object_, 'splitlines', _clean_args(keepends)) def startswith(a, prefix, start=0, end=None): """ Returns a boolean array which is `True` where the string element in `a` starts with `prefix`, otherwise `False`. Calls `str.startswith` element-wise. Parameters ---------- a : array_like of str or unicode prefix : str start, end : int, optional With optional `start`, test beginning at that position. With optional `end`, stop comparing at that position. Returns ------- out : ndarray Array of booleans See also -------- str.startswith """ return _vec_string( a, bool_, 'startswith', [prefix, start] + _clean_args(end)) def strip(a, chars=None): """ For each element in `a`, return a copy with the leading and trailing characters removed. Calls `str.strip` element-wise. Parameters ---------- a : array-like of str or unicode chars : str or unicode, optional The `chars` argument is a string specifying the set of characters to be removed. If omitted or None, the `chars` argument defaults to removing whitespace. The `chars` argument is not a prefix or suffix; rather, all combinations of its values are stripped. Returns ------- out : ndarray Output array of str or unicode, depending on input type See also -------- str.strip Examples -------- >>> c = np.array(['aAaAaA', ' aA ', 'abBABba']) >>> c array(['aAaAaA', ' aA ', 'abBABba'], dtype='|S7') >>> np.char.strip(c) array(['aAaAaA', 'aA', 'abBABba'], dtype='|S7') >>> np.char.strip(c, 'a') # 'a' unstripped from c[1] because whitespace leads array(['AaAaA', ' aA ', 'bBABb'], dtype='|S7') >>> np.char.strip(c, 'A') # 'A' unstripped from c[1] because (unprinted) ws trails array(['aAaAa', ' aA ', 'abBABba'], dtype='|S7') """ a_arr = numpy.asarray(a) return _vec_string(a_arr, a_arr.dtype, 'strip', _clean_args(chars)) def swapcase(a): """ Return element-wise a copy of the string with uppercase characters converted to lowercase and vice versa. Calls `str.swapcase` element-wise. For 8-bit strings, this method is locale-dependent. Parameters ---------- a : array_like, {str, unicode} Input array. Returns ------- out : ndarray, {str, unicode} Output array of str or unicode, depending on input type See also -------- str.swapcase Examples -------- >>> c=np.array(['a1B c','1b Ca','b Ca1','cA1b'],'S5'); c array(['a1B c', '1b Ca', 'b Ca1', 'cA1b'], dtype='|S5') >>> np.char.swapcase(c) array(['A1b C', '1B cA', 'B cA1', 'Ca1B'], dtype='|S5') """ a_arr = numpy.asarray(a) return _vec_string(a_arr, a_arr.dtype, 'swapcase') def title(a): """ Return element-wise title cased version of string or unicode. Title case words start with uppercase characters, all remaining cased characters are lowercase. Calls `str.title` element-wise. For 8-bit strings, this method is locale-dependent. Parameters ---------- a : array_like, {str, unicode} Input array. Returns ------- out : ndarray Output array of str or unicode, depending on input type See also -------- str.title Examples -------- >>> c=np.array(['a1b c','1b ca','b ca1','ca1b'],'S5'); c array(['a1b c', '1b ca', 'b ca1', 'ca1b'], dtype='|S5') >>> np.char.title(c) array(['A1B C', '1B Ca', 'B Ca1', 'Ca1B'], dtype='|S5') """ a_arr = numpy.asarray(a) return _vec_string(a_arr, a_arr.dtype, 'title') def translate(a, table, deletechars=None): """ For each element in `a`, return a copy of the string where all characters occurring in the optional argument `deletechars` are removed, and the remaining characters have been mapped through the given translation table. Calls `str.translate` element-wise. Parameters ---------- a : array-like of str or unicode table : str of length 256 deletechars : str Returns ------- out : ndarray Output array of str or unicode, depending on input type See also -------- str.translate """ a_arr = numpy.asarray(a) if issubclass(a_arr.dtype.type, unicode_): return _vec_string( a_arr, a_arr.dtype, 'translate', (table,)) else: return _vec_string( a_arr, a_arr.dtype, 'translate', [table] + _clean_args(deletechars)) def upper(a): """ Return an array with the elements converted to uppercase. Calls `str.upper` element-wise. For 8-bit strings, this method is locale-dependent. Parameters ---------- a : array_like, {str, unicode} Input array. Returns ------- out : ndarray, {str, unicode} Output array of str or unicode, depending on input type See also -------- str.upper Examples -------- >>> c = np.array(['a1b c', '1bca', 'bca1']); c array(['a1b c', '1bca', 'bca1'], dtype='|S5') >>> np.char.upper(c) array(['A1B C', '1BCA', 'BCA1'], dtype='|S5') """ a_arr = numpy.asarray(a) return _vec_string(a_arr, a_arr.dtype, 'upper') def zfill(a, width): """ Return the numeric string left-filled with zeros Calls `str.zfill` element-wise. Parameters ---------- a : array_like, {str, unicode} Input array. width : int Width of string to left-fill elements in `a`. Returns ------- out : ndarray, {str, unicode} Output array of str or unicode, depending on input type See also -------- str.zfill """ a_arr = numpy.asarray(a) width_arr = numpy.asarray(width) size = long(numpy.max(width_arr.flat)) return _vec_string( a_arr, (a_arr.dtype.type, size), 'zfill', (width_arr,)) def isnumeric(a): """ For each element, return True if there are only numeric characters in the element. Calls `unicode.isnumeric` element-wise. Numeric characters include digit characters, and all characters that have the Unicode numeric value property, e.g. ``U+2155, VULGAR FRACTION ONE FIFTH``. Parameters ---------- a : array_like, unicode Input array. Returns ------- out : ndarray, bool Array of booleans of same shape as `a`. See also -------- unicode.isnumeric """ if _use_unicode(a) != unicode_: raise TypeError("isnumeric is only available for Unicode strings and arrays") return _vec_string(a, bool_, 'isnumeric') def isdecimal(a): """ For each element, return True if there are only decimal characters in the element. Calls `unicode.isdecimal` element-wise. Decimal characters include digit characters, and all characters that that can be used to form decimal-radix numbers, e.g. ``U+0660, ARABIC-INDIC DIGIT ZERO``. Parameters ---------- a : array_like, unicode Input array. Returns ------- out : ndarray, bool Array of booleans identical in shape to `a`. See also -------- unicode.isdecimal """ if _use_unicode(a) != unicode_: raise TypeError("isnumeric is only available for Unicode strings and arrays") return _vec_string(a, bool_, 'isdecimal') class chararray(ndarray): """ chararray(shape, itemsize=1, unicode=False, buffer=None, offset=0, strides=None, order=None) Provides a convenient view on arrays of string and unicode values. .. note:: The `chararray` class exists for backwards compatibility with Numarray, it is not recommended for new development. Starting from numpy 1.4, if one needs arrays of strings, it is recommended to use arrays of `dtype` `object_`, `string_` or `unicode_`, and use the free functions in the `numpy.char` module for fast vectorized string operations. Versus a regular NumPy array of type `str` or `unicode`, this class adds the following functionality: 1) values automatically have whitespace removed from the end when indexed 2) comparison operators automatically remove whitespace from the end when comparing values 3) vectorized string operations are provided as methods (e.g. `.endswith`) and infix operators (e.g. ``"+", "*", "%"``) chararrays should be created using `numpy.char.array` or `numpy.char.asarray`, rather than this constructor directly. This constructor creates the array, using `buffer` (with `offset` and `strides`) if it is not ``None``. If `buffer` is ``None``, then constructs a new array with `strides` in "C order", unless both ``len(shape) >= 2`` and ``order='Fortran'``, in which case `strides` is in "Fortran order". Methods ------- astype argsort copy count decode dump dumps encode endswith expandtabs fill find flatten getfield index isalnum isalpha isdecimal isdigit islower isnumeric isspace istitle isupper item join ljust lower lstrip nonzero put ravel repeat replace reshape resize rfind rindex rjust rsplit rstrip searchsorted setfield setflags sort split splitlines squeeze startswith strip swapaxes swapcase take title tofile tolist tostring translate transpose upper view zfill Parameters ---------- shape : tuple Shape of the array. itemsize : int, optional Length of each array element, in number of characters. Default is 1. unicode : bool, optional Are the array elements of type unicode (True) or string (False). Default is False. buffer : int, optional Memory address of the start of the array data. Default is None, in which case a new array is created. offset : int, optional Fixed stride displacement from the beginning of an axis? Default is 0. Needs to be >=0. strides : array_like of ints, optional Strides for the array (see `ndarray.strides` for full description). Default is None. order : {'C', 'F'}, optional The order in which the array data is stored in memory: 'C' -> "row major" order (the default), 'F' -> "column major" (Fortran) order. Examples -------- >>> charar = np.chararray((3, 3)) >>> charar[:] = 'a' >>> charar chararray([['a', 'a', 'a'], ['a', 'a', 'a'], ['a', 'a', 'a']], dtype='|S1') >>> charar = np.chararray(charar.shape, itemsize=5) >>> charar[:] = 'abc' >>> charar chararray([['abc', 'abc', 'abc'], ['abc', 'abc', 'abc'], ['abc', 'abc', 'abc']], dtype='|S5') """ def __new__(subtype, shape, itemsize=1, unicode=False, buffer=None, offset=0, strides=None, order='C'): global _globalvar if unicode: dtype = unicode_ else: dtype = string_ # force itemsize to be a Python long, since using NumPy integer # types results in itemsize.itemsize being used as the size of # strings in the new array. itemsize = long(itemsize) if sys.version_info[0] >= 3 and isinstance(buffer, _unicode): # On Py3, unicode objects do not have the buffer interface filler = buffer buffer = None else: filler = None _globalvar = 1 if buffer is None: self = ndarray.__new__(subtype, shape, (dtype, itemsize), order=order) else: self = ndarray.__new__(subtype, shape, (dtype, itemsize), buffer=buffer, offset=offset, strides=strides, order=order) if filler is not None: self[...] = filler _globalvar = 0 return self def __array_finalize__(self, obj): # The b is a special case because it is used for reconstructing. if not _globalvar and self.dtype.char not in 'SUbc': raise ValueError("Can only create a chararray from string data.") def __getitem__(self, obj): val = ndarray.__getitem__(self, obj) if isinstance(val, character): temp = val.rstrip() if _len(temp) == 0: val = '' else: val = temp return val # IMPLEMENTATION NOTE: Most of the methods of this class are # direct delegations to the free functions in this module. # However, those that return an array of strings should instead # return a chararray, so some extra wrapping is required. def __eq__(self, other): """ Return (self == other) element-wise. See also -------- equal """ return equal(self, other) def __ne__(self, other): """ Return (self != other) element-wise. See also -------- not_equal """ return not_equal(self, other) def __ge__(self, other): """ Return (self >= other) element-wise. See also -------- greater_equal """ return greater_equal(self, other) def __le__(self, other): """ Return (self <= other) element-wise. See also -------- less_equal """ return less_equal(self, other) def __gt__(self, other): """ Return (self > other) element-wise. See also -------- greater """ return greater(self, other) def __lt__(self, other): """ Return (self < other) element-wise. See also -------- less """ return less(self, other) def __add__(self, other): """ Return (self + other), that is string concatenation, element-wise for a pair of array_likes of str or unicode. See also -------- add """ return asarray(add(self, other)) def __radd__(self, other): """ Return (other + self), that is string concatenation, element-wise for a pair of array_likes of `string_` or `unicode_`. See also -------- add """ return asarray(add(numpy.asarray(other), self)) def __mul__(self, i): """ Return (self * i), that is string multiple concatenation, element-wise. See also -------- multiply """ return asarray(multiply(self, i)) def __rmul__(self, i): """ Return (self * i), that is string multiple concatenation, element-wise. See also -------- multiply """ return asarray(multiply(self, i)) def __mod__(self, i): """ Return (self % i), that is pre-Python 2.6 string formatting (iterpolation), element-wise for a pair of array_likes of `string_` or `unicode_`. See also -------- mod """ return asarray(mod(self, i)) def __rmod__(self, other): return NotImplemented def argsort(self, axis=-1, kind='quicksort', order=None): """ Return the indices that sort the array lexicographically. For full documentation see `numpy.argsort`, for which this method is in fact merely a "thin wrapper." Examples -------- >>> c = np.array(['a1b c', '1b ca', 'b ca1', 'Ca1b'], 'S5') >>> c = c.view(np.chararray); c chararray(['a1b c', '1b ca', 'b ca1', 'Ca1b'], dtype='|S5') >>> c[c.argsort()] chararray(['1b ca', 'Ca1b', 'a1b c', 'b ca1'], dtype='|S5') """ return self.__array__().argsort(axis, kind, order) argsort.__doc__ = ndarray.argsort.__doc__ def capitalize(self): """ Return a copy of `self` with only the first character of each element capitalized. See also -------- char.capitalize """ return asarray(capitalize(self)) def center(self, width, fillchar=' '): """ Return a copy of `self` with its elements centered in a string of length `width`. See also -------- center """ return asarray(center(self, width, fillchar)) def count(self, sub, start=0, end=None): """ Returns an array with the number of non-overlapping occurrences of substring `sub` in the range [`start`, `end`]. See also -------- char.count """ return count(self, sub, start, end) def decode(self, encoding=None, errors=None): """ Calls `str.decode` element-wise. See also -------- char.decode """ return decode(self, encoding, errors) def encode(self, encoding=None, errors=None): """ Calls `str.encode` element-wise. See also -------- char.encode """ return encode(self, encoding, errors) def endswith(self, suffix, start=0, end=None): """ Returns a boolean array which is `True` where the string element in `self` ends with `suffix`, otherwise `False`. See also -------- char.endswith """ return endswith(self, suffix, start, end) def expandtabs(self, tabsize=8): """ Return a copy of each string element where all tab characters are replaced by one or more spaces. See also -------- char.expandtabs """ return asarray(expandtabs(self, tabsize)) def find(self, sub, start=0, end=None): """ For each element, return the lowest index in the string where substring `sub` is found. See also -------- char.find """ return find(self, sub, start, end) def index(self, sub, start=0, end=None): """ Like `find`, but raises `ValueError` when the substring is not found. See also -------- char.index """ return index(self, sub, start, end) def isalnum(self): """ Returns true for each element if all characters in the string are alphanumeric and there is at least one character, false otherwise. See also -------- char.isalnum """ return isalnum(self) def isalpha(self): """ Returns true for each element if all characters in the string are alphabetic and there is at least one character, false otherwise. See also -------- char.isalpha """ return isalpha(self) def isdigit(self): """ Returns true for each element if all characters in the string are digits and there is at least one character, false otherwise. See also -------- char.isdigit """ return isdigit(self) def islower(self): """ Returns true for each element if all cased characters in the string are lowercase and there is at least one cased character, false otherwise. See also -------- char.islower """ return islower(self) def isspace(self): """ Returns true for each element if there are only whitespace characters in the string and there is at least one character, false otherwise. See also -------- char.isspace """ return isspace(self) def istitle(self): """ Returns true for each element if the element is a titlecased string and there is at least one character, false otherwise. See also -------- char.istitle """ return istitle(self) def isupper(self): """ Returns true for each element if all cased characters in the string are uppercase and there is at least one character, false otherwise. See also -------- char.isupper """ return isupper(self) def join(self, seq): """ Return a string which is the concatenation of the strings in the sequence `seq`. See also -------- char.join """ return join(self, seq) def ljust(self, width, fillchar=' '): """ Return an array with the elements of `self` left-justified in a string of length `width`. See also -------- char.ljust """ return asarray(ljust(self, width, fillchar)) def lower(self): """ Return an array with the elements of `self` converted to lowercase. See also -------- char.lower """ return asarray(lower(self)) def lstrip(self, chars=None): """ For each element in `self`, return a copy with the leading characters removed. See also -------- char.lstrip """ return asarray(lstrip(self, chars)) def partition(self, sep): """ Partition each element in `self` around `sep`. See also -------- partition """ return asarray(partition(self, sep)) def replace(self, old, new, count=None): """ For each element in `self`, return a copy of the string with all occurrences of substring `old` replaced by `new`. See also -------- char.replace """ return asarray(replace(self, old, new, count)) def rfind(self, sub, start=0, end=None): """ For each element in `self`, return the highest index in the string where substring `sub` is found, such that `sub` is contained within [`start`, `end`]. See also -------- char.rfind """ return rfind(self, sub, start, end) def rindex(self, sub, start=0, end=None): """ Like `rfind`, but raises `ValueError` when the substring `sub` is not found. See also -------- char.rindex """ return rindex(self, sub, start, end) def rjust(self, width, fillchar=' '): """ Return an array with the elements of `self` right-justified in a string of length `width`. See also -------- char.rjust """ return asarray(rjust(self, width, fillchar)) def rpartition(self, sep): """ Partition each element in `self` around `sep`. See also -------- rpartition """ return asarray(rpartition(self, sep)) def rsplit(self, sep=None, maxsplit=None): """ For each element in `self`, return a list of the words in the string, using `sep` as the delimiter string. See also -------- char.rsplit """ return rsplit(self, sep, maxsplit) def rstrip(self, chars=None): """ For each element in `self`, return a copy with the trailing characters removed. See also -------- char.rstrip """ return asarray(rstrip(self, chars)) def split(self, sep=None, maxsplit=None): """ For each element in `self`, return a list of the words in the string, using `sep` as the delimiter string. See also -------- char.split """ return split(self, sep, maxsplit) def splitlines(self, keepends=None): """ For each element in `self`, return a list of the lines in the element, breaking at line boundaries. See also -------- char.splitlines """ return splitlines(self, keepends) def startswith(self, prefix, start=0, end=None): """ Returns a boolean array which is `True` where the string element in `self` starts with `prefix`, otherwise `False`. See also -------- char.startswith """ return startswith(self, prefix, start, end) def strip(self, chars=None): """ For each element in `self`, return a copy with the leading and trailing characters removed. See also -------- char.strip """ return asarray(strip(self, chars)) def swapcase(self): """ For each element in `self`, return a copy of the string with uppercase characters converted to lowercase and vice versa. See also -------- char.swapcase """ return asarray(swapcase(self)) def title(self): """ For each element in `self`, return a titlecased version of the string: words start with uppercase characters, all remaining cased characters are lowercase. See also -------- char.title """ return asarray(title(self)) def translate(self, table, deletechars=None): """ For each element in `self`, return a copy of the string where all characters occurring in the optional argument `deletechars` are removed, and the remaining characters have been mapped through the given translation table. See also -------- char.translate """ return asarray(translate(self, table, deletechars)) def upper(self): """ Return an array with the elements of `self` converted to uppercase. See also -------- char.upper """ return asarray(upper(self)) def zfill(self, width): """ Return the numeric string left-filled with zeros in a string of length `width`. See also -------- char.zfill """ return asarray(zfill(self, width)) def isnumeric(self): """ For each element in `self`, return True if there are only numeric characters in the element. See also -------- char.isnumeric """ return isnumeric(self) def isdecimal(self): """ For each element in `self`, return True if there are only decimal characters in the element. See also -------- char.isdecimal """ return isdecimal(self) def array(obj, itemsize=None, copy=True, unicode=None, order=None): """ Create a `chararray`. .. note:: This class is provided for numarray backward-compatibility. New code (not concerned with numarray compatibility) should use arrays of type `string_` or `unicode_` and use the free functions in :mod:`numpy.char <numpy.core.defchararray>` for fast vectorized string operations instead. Versus a regular NumPy array of type `str` or `unicode`, this class adds the following functionality: 1) values automatically have whitespace removed from the end when indexed 2) comparison operators automatically remove whitespace from the end when comparing values 3) vectorized string operations are provided as methods (e.g. `str.endswith`) and infix operators (e.g. ``+, *, %``) Parameters ---------- obj : array of str or unicode-like itemsize : int, optional `itemsize` is the number of characters per scalar in the resulting array. If `itemsize` is None, and `obj` is an object array or a Python list, the `itemsize` will be automatically determined. If `itemsize` is provided and `obj` is of type str or unicode, then the `obj` string will be chunked into `itemsize` pieces. copy : bool, optional If true (default), then the object is copied. Otherwise, a copy will only be made if __array__ returns a copy, if obj is a nested sequence, or if a copy is needed to satisfy any of the other requirements (`itemsize`, unicode, `order`, etc.). unicode : bool, optional When true, the resulting `chararray` can contain Unicode characters, when false only 8-bit characters. If unicode is `None` and `obj` is one of the following: - a `chararray`, - an ndarray of type `str` or `unicode` - a Python str or unicode object, then the unicode setting of the output array will be automatically determined. order : {'C', 'F', 'A'}, optional Specify the order of the array. If order is 'C' (default), then the array will be in C-contiguous order (last-index varies the fastest). If order is 'F', then the returned array will be in Fortran-contiguous order (first-index varies the fastest). If order is 'A', then the returned array may be in any order (either C-, Fortran-contiguous, or even discontiguous). """ if isinstance(obj, (_bytes, _unicode)): if unicode is None: if isinstance(obj, _unicode): unicode = True else: unicode = False if itemsize is None: itemsize = _len(obj) shape = _len(obj) // itemsize if unicode: if sys.maxunicode == 0xffff: # On a narrow Python build, the buffer for Unicode # strings is UCS2, which doesn't match the buffer for # NumPy Unicode types, which is ALWAYS UCS4. # Therefore, we need to convert the buffer. On Python # 2.6 and later, we can use the utf_32 codec. Earlier # versions don't have that codec, so we convert to a # numerical array that matches the input buffer, and # then use NumPy to convert it to UCS4. All of this # should happen in native endianness. obj = obj.encode('utf_32') else: obj = _unicode(obj) else: # Let the default Unicode -> string encoding (if any) take # precedence. obj = _bytes(obj) return chararray(shape, itemsize=itemsize, unicode=unicode, buffer=obj, order=order) if isinstance(obj, (list, tuple)): obj = numpy.asarray(obj) if isinstance(obj, ndarray) and issubclass(obj.dtype.type, character): # If we just have a vanilla chararray, create a chararray # view around it. if not isinstance(obj, chararray): obj = obj.view(chararray) if itemsize is None: itemsize = obj.itemsize # itemsize is in 8-bit chars, so for Unicode, we need # to divide by the size of a single Unicode character, # which for NumPy is always 4 if issubclass(obj.dtype.type, unicode_): itemsize //= 4 if unicode is None: if issubclass(obj.dtype.type, unicode_): unicode = True else: unicode = False if unicode: dtype = unicode_ else: dtype = string_ if order is not None: obj = numpy.asarray(obj, order=order) if (copy or (itemsize != obj.itemsize) or (not unicode and isinstance(obj, unicode_)) or (unicode and isinstance(obj, string_))): obj = obj.astype((dtype, long(itemsize))) return obj if isinstance(obj, ndarray) and issubclass(obj.dtype.type, object): if itemsize is None: # Since no itemsize was specified, convert the input array to # a list so the ndarray constructor will automatically # determine the itemsize for us. obj = obj.tolist() # Fall through to the default case if unicode: dtype = unicode_ else: dtype = string_ if itemsize is None: val = narray(obj, dtype=dtype, order=order, subok=True) else: val = narray(obj, dtype=(dtype, itemsize), order=order, subok=True) return val.view(chararray) def asarray(obj, itemsize=None, unicode=None, order=None): """ Convert the input to a `chararray`, copying the data only if necessary. Versus a regular NumPy array of type `str` or `unicode`, this class adds the following functionality: 1) values automatically have whitespace removed from the end when indexed 2) comparison operators automatically remove whitespace from the end when comparing values 3) vectorized string operations are provided as methods (e.g. `str.endswith`) and infix operators (e.g. ``+``, ``*``,``%``) Parameters ---------- obj : array of str or unicode-like itemsize : int, optional `itemsize` is the number of characters per scalar in the resulting array. If `itemsize` is None, and `obj` is an object array or a Python list, the `itemsize` will be automatically determined. If `itemsize` is provided and `obj` is of type str or unicode, then the `obj` string will be chunked into `itemsize` pieces. unicode : bool, optional When true, the resulting `chararray` can contain Unicode characters, when false only 8-bit characters. If unicode is `None` and `obj` is one of the following: - a `chararray`, - an ndarray of type `str` or 'unicode` - a Python str or unicode object, then the unicode setting of the output array will be automatically determined. order : {'C', 'F'}, optional Specify the order of the array. If order is 'C' (default), then the array will be in C-contiguous order (last-index varies the fastest). If order is 'F', then the returned array will be in Fortran-contiguous order (first-index varies the fastest). """ return array(obj, itemsize, copy=False, unicode=unicode, order=order)
mbayon/TFG-MachineLearning
venv/lib/python3.6/site-packages/numpy/core/defchararray.py
Python
mit
67,393
# -*- coding: utf-8 -*- # Copyright 2016 OpenSynergy Indonesia # License AGPL-3.0 or later (http://www.gnu.org/licenses/agpl). from . import models
akretion/stock-logistics-workflow
stock_picking_manual_procurement_group/__init__.py
Python
agpl-3.0
149
# Copyright 2012 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Classes supporting configuration property editor and REST operations.""" __author__ = 'Pavel Simakov (psimakov@google.com)' import cgi import urllib from controllers import sites from controllers.utils import BaseRESTHandler from controllers.utils import XsrfTokenManager from models import config from models import courses from models import models from models import roles from models import transforms from modules.oeditor import oeditor from google.appengine.api import users from google.appengine.ext import db # This is a template because the value type is not yet known. SCHEMA_JSON_TEMPLATE = """ { "id": "Configuration Property", "type": "object", "description": "Configuration Property Override", "properties": { "name" : {"type": "string"}, "value": {"optional": true, "type": "%s"}, "is_draft": {"type": "boolean"} } } """ # This is a template because the doc_string is not yet known. SCHEMA_ANNOTATIONS_TEMPLATE = [ (['title'], 'Configuration Property Override'), (['properties', 'name', '_inputex'], { 'label': 'Name', '_type': 'uneditable'}), oeditor.create_bool_select_annotation( ['properties', 'is_draft'], 'Status', 'Pending', 'Active', description='<strong>Active</strong>: This value is active and ' 'overrides all other defaults.<br/><strong>Pending</strong>: This ' 'value is not active yet, and the default settings still apply.')] class ConfigPropertyRights(object): """Manages view/edit rights for configuration properties.""" @classmethod def can_view(cls): return cls.can_edit() @classmethod def can_edit(cls): return roles.Roles.is_super_admin() @classmethod def can_delete(cls): return cls.can_edit() @classmethod def can_add(cls): return cls.can_edit() class ConfigPropertyEditor(object): """An editor for any configuration property.""" # Map of configuration property type into inputex type. type_map = {str: 'string', int: 'integer', bool: 'boolean'} @classmethod def get_schema_annotations(cls, config_property): """Gets editor specific schema annotations.""" doc_string = '%s Default: \'%s\'.' % ( config_property.doc_string, config_property.default_value) item_dict = [] + SCHEMA_ANNOTATIONS_TEMPLATE item_dict.append(( ['properties', 'value', '_inputex'], { 'label': 'Value', '_type': '%s' % cls.get_value_type( config_property), 'description': doc_string})) return item_dict @classmethod def get_value_type(cls, config_property): """Gets an editor specific type for the property.""" value_type = cls.type_map[config_property.value_type] if not value_type: raise Exception('Unknown type: %s', config_property.value_type) if config_property.value_type == str and config_property.multiline: return 'text' return value_type @classmethod def get_schema_json(cls, config_property): """Gets JSON schema for configuration property.""" return SCHEMA_JSON_TEMPLATE % cls.get_value_type(config_property) def get_add_course(self): """Handles 'add_course' action and renders new course entry editor.""" exit_url = '/admin?action=courses' rest_url = CoursesItemRESTHandler.URI template_values = {} template_values[ 'page_title'] = 'Course Builder - Add Course' template_values['main_content'] = oeditor.ObjectEditor.get_html_for( self, CoursesItemRESTHandler.SCHEMA_JSON, CoursesItemRESTHandler.SCHEMA_ANNOTATIONS_DICT, None, rest_url, exit_url, auto_return=True, save_button_caption='Add New Course') self.render_page(template_values) def get_config_edit(self): """Handles 'edit' property action.""" key = self.request.get('name') if not key: self.redirect('/admin?action=settings') item = config.Registry.registered[key] if not item: self.redirect('/admin?action=settings') template_values = {} template_values[ 'page_title'] = 'Course Builder - Edit Settings' exit_url = '/admin?action=settings#%s' % cgi.escape(key) rest_url = '/rest/config/item' delete_url = '/admin?%s' % urllib.urlencode({ 'action': 'config_reset', 'name': key, 'xsrf_token': cgi.escape(self.create_xsrf_token('config_reset'))}) template_values['main_content'] = oeditor.ObjectEditor.get_html_for( self, ConfigPropertyEditor.get_schema_json(item), ConfigPropertyEditor.get_schema_annotations(item), key, rest_url, exit_url, delete_url=delete_url) self.render_page(template_values) def post_config_override(self): """Handles 'override' property action.""" name = self.request.get('name') # Find item in registry. item = None if name and name in config.Registry.registered.keys(): item = config.Registry.registered[name] if not item: self.redirect('/admin?action=settings') # Add new entity if does not exist. try: entity = config.ConfigPropertyEntity.get_by_key_name(name) except db.BadKeyError: entity = None if not entity: entity = config.ConfigPropertyEntity(key_name=name) entity.value = str(item.value) entity.is_draft = True entity.put() models.EventEntity.record( 'override-property', users.get_current_user(), transforms.dumps({ 'name': name, 'value': str(entity.value)})) self.redirect('/admin?%s' % urllib.urlencode( {'action': 'config_edit', 'name': name})) def post_config_reset(self): """Handles 'reset' property action.""" name = self.request.get('name') # Find item in registry. item = None if name and name in config.Registry.registered.keys(): item = config.Registry.registered[name] if not item: self.redirect('/admin?action=settings') # Delete if exists. try: entity = config.ConfigPropertyEntity.get_by_key_name(name) if entity: old_value = entity.value entity.delete() models.EventEntity.record( 'delete-property', users.get_current_user(), transforms.dumps({ 'name': name, 'value': str(old_value)})) except db.BadKeyError: pass self.redirect('/admin?action=settings') class CoursesItemRESTHandler(BaseRESTHandler): """Provides REST API for course entries.""" URI = '/rest/courses/item' SCHEMA_JSON = """ { "id": "Course Entry", "type": "object", "description": "Course Entry", "properties": { "name": {"type": "string"}, "title": {"type": "string"}, "admin_email": {"type": "string"} } } """ SCHEMA_DICT = transforms.loads(SCHEMA_JSON) SCHEMA_ANNOTATIONS_DICT = [ (['title'], 'New Course Entry'), (['properties', 'name', '_inputex'], {'label': 'Unique Name'}), (['properties', 'title', '_inputex'], {'label': 'Course Title'}), (['properties', 'admin_email', '_inputex'], { 'label': 'Course Admin Email'})] def get(self): """Handles HTTP GET verb.""" if not ConfigPropertyRights.can_view(): transforms.send_json_response( self, 401, 'Access denied.') return transforms.send_json_response( self, 200, 'Success.', payload_dict={ 'name': 'new_course', 'title': 'My New Course', 'admin_email': self.get_user().email()}, xsrf_token=XsrfTokenManager.create_xsrf_token( 'add-course-put')) def put(self): """Handles HTTP PUT verb.""" request = transforms.loads(self.request.get('request')) if not self.assert_xsrf_token_or_fail( request, 'add-course-put', {}): return if not ConfigPropertyRights.can_edit(): transforms.send_json_response( self, 401, 'Access denied.') return payload = request.get('payload') json_object = transforms.loads(payload) name = json_object.get('name') title = json_object.get('title') admin_email = json_object.get('admin_email') # Add the new course entry. errors = [] entry = sites.add_new_course_entry(name, title, admin_email, errors) if not entry: errors.append('Error adding a new course entry.') if errors: transforms.send_json_response(self, 412, '\n'.join(errors)) return # We can't expect our new configuration being immediately available due # to datastore queries consistency limitations. So we will instantiate # our new course here and not use the normal sites.get_all_courses(). app_context = sites.get_all_courses(entry)[0] # Update course with a new title and admin email. new_course = courses.Course(None, app_context=app_context) if not new_course.init_new_course_settings(title, admin_email): transforms.send_json_response( self, 412, 'Added new course entry, but failed to update title and/or ' 'admin email. The course.yaml file already exists and must be ' 'updated manually.') return transforms.send_json_response( self, 200, 'Added.', {'entry': entry}) class ConfigPropertyItemRESTHandler(BaseRESTHandler): """Provides REST API for a configuration property.""" def get(self): """Handles REST GET verb and returns an object as JSON payload.""" key = self.request.get('key') if not ConfigPropertyRights.can_view(): transforms.send_json_response( self, 401, 'Access denied.', {'key': key}) return item = None if key and key in config.Registry.registered.keys(): item = config.Registry.registered[key] if not item: self.redirect('/admin?action=settings') try: entity = config.ConfigPropertyEntity.get_by_key_name(key) except db.BadKeyError: entity = None if not entity: transforms.send_json_response( self, 404, 'Object not found.', {'key': key}) else: entity_dict = {'name': key, 'is_draft': entity.is_draft} entity_dict['value'] = transforms.string_to_value( entity.value, item.value_type) json_payload = transforms.dict_to_json( entity_dict, transforms.loads( ConfigPropertyEditor.get_schema_json(item))) transforms.send_json_response( self, 200, 'Success.', payload_dict=json_payload, xsrf_token=XsrfTokenManager.create_xsrf_token( 'config-property-put')) def put(self): """Handles REST PUT verb with JSON payload.""" request = transforms.loads(self.request.get('request')) key = request.get('key') if not self.assert_xsrf_token_or_fail( request, 'config-property-put', {'key': key}): return if not ConfigPropertyRights.can_edit(): transforms.send_json_response( self, 401, 'Access denied.', {'key': key}) return item = None if key and key in config.Registry.registered.keys(): item = config.Registry.registered[key] if not item: self.redirect('/admin?action=settings') try: entity = config.ConfigPropertyEntity.get_by_key_name(key) except db.BadKeyError: transforms.send_json_response( self, 404, 'Object not found.', {'key': key}) return payload = request.get('payload') json_object = transforms.loads(payload) new_value = item.value_type(json_object['value']) # Validate the value. errors = [] if item.validator: item.validator(new_value, errors) if errors: transforms.send_json_response(self, 412, '\n'.join(errors)) return # Update entity. old_value = entity.value entity.value = str(new_value) entity.is_draft = json_object['is_draft'] entity.put() models.EventEntity.record( 'put-property', users.get_current_user(), transforms.dumps({ 'name': key, 'before': str(old_value), 'after': str(entity.value)})) transforms.send_json_response(self, 200, 'Saved.')
haoyuchen1992/CourseBuilder
modules/admin/config.py
Python
apache-2.0
13,933
### main - create and run lexer from stdin if __name__ == '__main__' : import sys import antlr import rewrite_l ### create lexer - shall read from stdin L = rewrite_l.Lexer() try: L.mSTART(1); token = L.getTokenObject() except antlr.TokenStreamException, e: print "error: exception caught while lexing: " ### end of main
scottstephens/boo
lib/antlr-2.7.5/examples/python/lexRewrite/rewrite.py
Python
bsd-3-clause
355
# (c) 2013-2014, Michael DeHaan <michael.dehaan@gmail.com> # (c) 2015 Toshio Kuratomi <tkuratomi@ansible.com> # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # Make coding more python3-ish from __future__ import (absolute_import, division, print_function) __metaclass__ = type # from python and deps from six.moves import StringIO import json import os import shlex # from Ansible from ansible import __version__ from ansible import constants as C from ansible.errors import AnsibleError from ansible.parsing.utils.jsonify import jsonify from ansible.utils.unicode import to_bytes REPLACER = "#<<INCLUDE_ANSIBLE_MODULE_COMMON>>" REPLACER_ARGS = "\"<<INCLUDE_ANSIBLE_MODULE_ARGS>>\"" REPLACER_COMPLEX = "\"<<INCLUDE_ANSIBLE_MODULE_COMPLEX_ARGS>>\"" REPLACER_WINDOWS = "# POWERSHELL_COMMON" REPLACER_WINARGS = "<<INCLUDE_ANSIBLE_MODULE_WINDOWS_ARGS>>" REPLACER_JSONARGS = "<<INCLUDE_ANSIBLE_MODULE_JSON_ARGS>>" REPLACER_VERSION = "\"<<ANSIBLE_VERSION>>\"" # We could end up writing out parameters with unicode characters so we need to # specify an encoding for the python source file ENCODING_STRING = '# -*- coding: utf-8 -*-' # we've moved the module_common relative to the snippets, so fix the path _SNIPPET_PATH = os.path.join(os.path.dirname(__file__), '..', 'module_utils') # ****************************************************************************** def _slurp(path): if not os.path.exists(path): raise AnsibleError("imported module support code does not exist at %s" % path) fd = open(path) data = fd.read() fd.close() return data def _find_snippet_imports(module_data, module_path, strip_comments): """ Given the source of the module, convert it to a Jinja2 template to insert module code and return whether it's a new or old style module. """ module_style = 'old' if REPLACER in module_data: module_style = 'new' elif REPLACER_WINDOWS in module_data: module_style = 'new' elif REPLACER_JSONARGS in module_data: module_style = 'new' elif 'from ansible.module_utils.' in module_data: module_style = 'new' elif 'WANT_JSON' in module_data: module_style = 'non_native_want_json' output = StringIO() lines = module_data.split('\n') snippet_names = [] for line in lines: if REPLACER in line: output.write(_slurp(os.path.join(_SNIPPET_PATH, "basic.py"))) snippet_names.append('basic') if REPLACER_WINDOWS in line: ps_data = _slurp(os.path.join(_SNIPPET_PATH, "powershell.ps1")) output.write(ps_data) snippet_names.append('powershell') elif line.startswith('from ansible.module_utils.'): tokens=line.split(".") import_error = False if len(tokens) != 3: import_error = True if " import *" not in line: import_error = True if import_error: raise AnsibleError("error importing module in %s, expecting format like 'from ansible.module_utils.basic import *'" % module_path) snippet_name = tokens[2].split()[0] snippet_names.append(snippet_name) output.write(_slurp(os.path.join(_SNIPPET_PATH, snippet_name + ".py"))) else: if strip_comments and line.startswith("#") or line == '': pass output.write(line) output.write("\n") if not module_path.endswith(".ps1"): # Unixy modules if len(snippet_names) > 0 and not 'basic' in snippet_names: raise AnsibleError("missing required import in %s: from ansible.module_utils.basic import *" % module_path) else: # Windows modules if len(snippet_names) > 0 and not 'powershell' in snippet_names: raise AnsibleError("missing required import in %s: # POWERSHELL_COMMON" % module_path) return (output.getvalue(), module_style) # ****************************************************************************** def modify_module(module_path, module_args, task_vars=dict(), strip_comments=False): """ Used to insert chunks of code into modules before transfer rather than doing regular python imports. This allows for more efficient transfer in a non-bootstrapping scenario by not moving extra files over the wire and also takes care of embedding arguments in the transferred modules. This version is done in such a way that local imports can still be used in the module code, so IDEs don't have to be aware of what is going on. Example: from ansible.module_utils.basic import * ... will result in the insertion of basic.py into the module from the module_utils/ directory in the source tree. All modules are required to import at least basic, though there will also be other snippets. For powershell, there's equivalent conventions like this: # POWERSHELL_COMMON which results in the inclusion of the common code from powershell.ps1 """ ### TODO: Optimization ideas if this code is actually a source of slowness: # * Fix comment stripping: Currently doesn't preserve shebangs and encoding info (but we unconditionally add encoding info) # * Use pyminifier if installed # * comment stripping/pyminifier needs to have config setting to turn it # off for debugging purposes (goes along with keep remote but should be # separate otherwise users wouldn't be able to get info on what the # minifier output) # * Only split into lines and recombine into strings once # * Cache the modified module? If only the args are different and we do # that as the last step we could cache sll the work up to that point. with open(module_path) as f: # read in the module source module_data = f.read() (module_data, module_style) = _find_snippet_imports(module_data, module_path, strip_comments) module_args_json = json.dumps(module_args).encode('utf-8') python_repred_args = repr(module_args_json) # these strings should be part of the 'basic' snippet which is required to be included module_data = module_data.replace(REPLACER_VERSION, repr(__version__)) module_data = module_data.replace(REPLACER_COMPLEX, python_repred_args) module_data = module_data.replace(REPLACER_WINARGS, module_args_json) module_data = module_data.replace(REPLACER_JSONARGS, module_args_json) if module_style == 'new': facility = C.DEFAULT_SYSLOG_FACILITY if 'ansible_syslog_facility' in task_vars: facility = task_vars['ansible_syslog_facility'] module_data = module_data.replace('syslog.LOG_USER', "syslog.%s" % facility) lines = module_data.split(b"\n", 1) shebang = None if lines[0].startswith(b"#!"): shebang = lines[0].strip() args = shlex.split(str(shebang[2:])) interpreter = args[0] interpreter_config = 'ansible_%s_interpreter' % os.path.basename(interpreter) if interpreter_config in task_vars: interpreter = to_bytes(task_vars[interpreter_config], errors='strict') lines[0] = shebang = b"#!{0} {1}".format(interpreter, b" ".join(args[1:])) if os.path.basename(interpreter).startswith('python'): lines.insert(1, ENCODING_STRING) else: # No shebang, assume a binary module? pass module_data = b"\n".join(lines) return (module_data, module_style, shebang)
attakei/ansible
lib/ansible/executor/module_common.py
Python
gpl-3.0
8,252
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Finds revisions from the Thunderbird migration that don't have based_on set correctly, and are still relavent, and fixes that. Run this script like `./manage.py runscript fix_tb_basedon`. """ import sys from traceback import print_exc from django.db.models import Q from kitsune.wiki.models import Document, Revision def run(): try: run_() except Exception: print_exc() raise class Progress(): def __init__(self, total): self.current = 0 self.total = total def tick(self, incr=1): self.current += incr self.draw() def draw(self): self._wr('{0.current} / {0.total}\r'.format(self)) def _wr(self, s): sys.stdout.write(s) sys.stdout.flush() def run_(): to_process = list(Document.objects.filter( ~Q(parent=None), current_revision__based_on=None, products__slug='thunderbird')) if len(to_process) == 0: print 'Nothing to do.' prog = Progress(len(to_process)) for doc in to_process: prog.tick() oldest_parent_rev = (Revision.objects.filter(document=doc.parent) .order_by('id')[0]) # It has localizations, clearly it should be localizable. if not doc.parent.is_localizable: doc.parent.is_localizable = True doc.parent.save() doc.current_revision.based_on = oldest_parent_rev doc.current_revision.save()
feer56/Kitsune1
scripts/fix_tb_basedon.py
Python
bsd-3-clause
1,520
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright: (c) 2016, IBM Corp # Author(s): Andreas Nafpliotis <nafpliot@de.ibm.com> # # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = { 'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community' } DOCUMENTATION = ''' --- module: vmware_local_user_manager short_description: Manage local users on an ESXi host description: - Manage local users on an ESXi host version_added: "2.2" author: - Andreas Nafpliotis (@nafpliot-ibm) notes: - Tested on ESXi 6.0 - Be sure that the ESXi user used for login, has the appropriate rights to create / delete / edit users requirements: - "python >= 2.6" - PyVmomi installed options: local_user_name: description: - The local user name to be changed. required: True local_user_password: description: - The password to be set. required: False local_user_description: description: - Description for the user. required: False state: description: - Indicate desired state of the user. If the user already exists when C(state=present), the user info is updated choices: ['present', 'absent'] default: present extends_documentation_fragment: vmware.documentation ''' EXAMPLES = ''' # Example vmware_local_user_manager command from Ansible Playbooks - name: Add local user to ESXi local_action: module: vmware_local_user_manager hostname: esxi_hostname username: root password: vmware local_user_name: foo ''' RETURN = '''# ''' try: from pyVmomi import vim, vmodl except ImportError: pass from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.vmware import PyVmomi, vmware_argument_spec class VMwareLocalUserManager(PyVmomi): def __init__(self, module): super(VMwareLocalUserManager, self).__init__(module) self.local_user_name = self.module.params['local_user_name'] self.local_user_password = self.module.params['local_user_password'] self.local_user_description = self.module.params['local_user_description'] self.state = self.module.params['state'] if self.is_vcenter(): self.module.fail_json(msg="Failed to get local account manager settings " "from ESXi server: %s" % self.module.params['hostname'], details="It seems that %s is a vCenter server instead of an " "ESXi server" % self.module.params['hostname']) def process_state(self): try: local_account_manager_states = { 'absent': { 'present': self.state_remove_user, 'absent': self.state_exit_unchanged, }, 'present': { 'present': self.state_update_user, 'absent': self.state_create_user, } } local_account_manager_states[self.state][self.check_local_user_manager_state()]() except vmodl.RuntimeFault as runtime_fault: self.module.fail_json(msg=runtime_fault.msg) except vmodl.MethodFault as method_fault: self.module.fail_json(msg=method_fault.msg) except Exception as e: self.module.fail_json(msg=str(e)) def check_local_user_manager_state(self): user_account = self.find_user_account() if not user_account: return 'absent' else: return 'present' def find_user_account(self): searchStr = self.local_user_name exactMatch = True findUsers = True findGroups = False user_account = self.content.userDirectory.RetrieveUserGroups(None, searchStr, None, None, exactMatch, findUsers, findGroups) return user_account def create_account_spec(self): account_spec = vim.host.LocalAccountManager.AccountSpecification() account_spec.id = self.local_user_name account_spec.password = self.local_user_password account_spec.description = self.local_user_description return account_spec def state_create_user(self): account_spec = self.create_account_spec() try: self.content.accountManager.CreateUser(account_spec) self.module.exit_json(changed=True) except vmodl.RuntimeFault as runtime_fault: self.module.fail_json(msg=runtime_fault.msg) except vmodl.MethodFault as method_fault: self.module.fail_json(msg=method_fault.msg) def state_update_user(self): account_spec = self.create_account_spec() try: self.content.accountManager.UpdateUser(account_spec) self.module.exit_json(changed=True) except vmodl.RuntimeFault as runtime_fault: self.module.fail_json(msg=runtime_fault.msg) except vmodl.MethodFault as method_fault: self.module.fail_json(msg=method_fault.msg) def state_remove_user(self): try: self.content.accountManager.RemoveUser(self.local_user_name) self.module.exit_json(changed=True) except vmodl.RuntimeFault as runtime_fault: self.module.fail_json(msg=runtime_fault.msg) except vmodl.MethodFault as method_fault: self.module.fail_json(msg=method_fault.msg) def state_exit_unchanged(self): self.module.exit_json(changed=False) def main(): argument_spec = vmware_argument_spec() argument_spec.update(dict(local_user_name=dict(required=True, type='str'), local_user_password=dict(type='str', no_log=True), local_user_description=dict(type='str'), state=dict(default='present', choices=['present', 'absent'], type='str'))) module = AnsibleModule(argument_spec=argument_spec, supports_check_mode=False) vmware_local_user_manager = VMwareLocalUserManager(module) vmware_local_user_manager.process_state() if __name__ == '__main__': main()
hryamzik/ansible
lib/ansible/modules/cloud/vmware/vmware_local_user_manager.py
Python
gpl-3.0
6,371
#!/usr/bin/env python2.7 from __future__ import print_function import struct import sys import numpy class Analyzer: """ The binary format is time since the beginning of the measurement : double unknown and irrelevant field : double momentary consumption calculated for the current time segment : double """ def __init__(self): self.duration = 0.0 self.consumption = [] self.mean = 0.0 self.std = 0.0 self.avg = 0.0 self.averages = [] def read_file(self, file_path): binary = bytearray() with open(file_path, "r") as f: binary = bytearray(f.read()) for i in range(0, len(binary) - 24, 24): res = struct.unpack(">ddd", binary[i:i+24]) current_duration = res[0] if not current_duration > self.duration: print("Unexpected elapsed time value, lower than the previous one.") exit(2) # this should never happen because the file is written sequentially current_consumption = res[2] self.averages.append(current_consumption / (current_duration - self.duration)) self.duration = current_duration self.consumption.append(current_consumption) self.calculate_stats() def calculate_stats(self): self.mean = numpy.mean(self.averages) self.std = numpy.std(self.averages) self.avg = sum(self.consumption) / self.duration if __name__ == "__main__": for file_path in sys.argv[1:]: analyzer = Analyzer() analyzer.read_file(file_path) print("{}\n\tavg: {}\n\tmean: {}\n\tstd: {}".format(file_path, analyzer.avg, analyzer.mean, analyzer.std))
rokuz/omim
tools/python/InstrumentsTraceParser.py
Python
apache-2.0
1,746
""" mbed SDK Copyright (c) 2011-2013 ARM Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from __future__ import print_function from shutil import copy from .host_test_plugins import HostTestPluginBase from time import sleep class HostTestPluginCopyMethod_Mbed(HostTestPluginBase): def generic_mbed_copy(self, image_path, destination_disk): """ Generic mbed copy method for "mbed enabled" devices. It uses standard python shuitl function to copy image_file (target specific binary) to device's disk. """ result = True if not destination_disk.endswith('/') and not destination_disk.endswith('\\'): destination_disk += '/' try: copy(image_path, destination_disk) except Exception as e: self.print_plugin_error("shutil.copy('%s', '%s')"% (image_path, destination_disk)) self.print_plugin_error("Error: %s"% str(e)) result = False return result # Plugin interface name = 'HostTestPluginCopyMethod_Mbed' type = 'CopyMethod' stable = True capabilities = ['shutil', 'default'] required_parameters = ['image_path', 'destination_disk', 'program_cycle_s'] def setup(self, *args, **kwargs): """ Configure plugin, this function should be called before plugin execute() method is used. """ return True def execute(self, capability, *args, **kwargs): """ Executes capability by name. Each capability may directly just call some command line program or execute building pythonic function """ result = False if self.check_parameters(capability, *args, **kwargs) is True: # Capability 'default' is a dummy capability if capability == 'shutil': image_path = kwargs['image_path'] destination_disk = kwargs['destination_disk'] program_cycle_s = kwargs['program_cycle_s'] # Wait for mount point to be ready self.check_mount_point_ready(destination_disk) # Blocking result = self.generic_mbed_copy(image_path, destination_disk) # Allow mbed to cycle sleep(program_cycle_s) return result def load_plugin(): """ Returns plugin available in this module """ return HostTestPluginCopyMethod_Mbed()
c1728p9/mbed-os
tools/host_tests/host_tests_plugins/module_copy_mbed.py
Python
apache-2.0
2,899
# Copyright 2008-2015 Nokia Solutions and Networks # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time from java.awt import GridLayout from java.awt.event import WindowAdapter from javax.swing import JLabel, JOptionPane, JPanel, JPasswordField, JTextField from javax.swing.JOptionPane import PLAIN_MESSAGE, UNINITIALIZED_VALUE, \ YES_NO_OPTION, OK_CANCEL_OPTION, OK_OPTION, DEFAULT_OPTION class _SwingDialog(object): def __init__(self, pane): self._pane = pane def show(self): self._show_dialog(self._pane) return self._get_value(self._pane) def _show_dialog(self, pane): dialog = pane.createDialog(None, 'Robot Framework') dialog.setModal(False) dialog.setAlwaysOnTop(True) dialog.addWindowFocusListener(pane.focus_listener) dialog.show() while dialog.isShowing(): time.sleep(0.2) dialog.dispose() def _get_value(self, pane): value = pane.getInputValue() return value if value != UNINITIALIZED_VALUE else None class MessageDialog(_SwingDialog): def __init__(self, message): pane = WrappedOptionPane(message, PLAIN_MESSAGE, DEFAULT_OPTION) _SwingDialog.__init__(self, pane) class InputDialog(_SwingDialog): def __init__(self, message, default, hidden=False): self._input_field = JPasswordField() if hidden else JTextField() self._input_field.setText(default) self._input_field.selectAll() panel = JPanel(layout=GridLayout(2, 1)) panel.add(JLabel(message)) panel.add(self._input_field) pane = WrappedOptionPane(panel, PLAIN_MESSAGE, OK_CANCEL_OPTION) pane.set_focus_listener(self._input_field) _SwingDialog.__init__(self, pane) def _get_value(self, pane): if pane.getValue() != OK_OPTION: return None return self._input_field.getText() class SelectionDialog(_SwingDialog): def __init__(self, message, options): pane = WrappedOptionPane(message, PLAIN_MESSAGE, OK_CANCEL_OPTION) pane.setWantsInput(True) pane.setSelectionValues(options) _SwingDialog.__init__(self, pane) class PassFailDialog(_SwingDialog): def __init__(self, message): pane = WrappedOptionPane(message, PLAIN_MESSAGE, YES_NO_OPTION, None, ['PASS', 'FAIL'], 'PASS') _SwingDialog.__init__(self, pane) def _get_value(self, pane): return pane.getValue() == 'PASS' class WrappedOptionPane(JOptionPane): focus_listener = None def getMaxCharactersPerLineCount(self): return 120 def set_focus_listener(self, component): self.focus_listener = WindowFocusListener(component) class WindowFocusListener(WindowAdapter): def __init__(self, component): self.component = component def windowGainedFocus(self, event): self.component.requestFocusInWindow()
caio2k/RIDE
src/robotide/lib/robot/libraries/dialogs_jy.py
Python
apache-2.0
3,458
#!/usr/bin/env python # -*- coding: utf-8 -*- # # This is very different to AboutModules in Ruby Koans # Our AboutMultipleInheritance class is a little more comparable # from runner.koan import * # # Package hierarchy of Python Koans project: # # contemplate_koans.py # koans/ # __init__.py # about_asserts.py # about_attribute_access.py # about_class_attributes.py # about_classes.py # ... # a_package_folder/ # __init__.py # a_module.py class AboutPackages(Koan): def test_subfolders_can_form_part_of_a_module_package(self): # Import ./a_package_folder/a_module.py from .a_package_folder.a_module import Duck duck = Duck() self.assertEqual(__, duck.name) def test_subfolders_become_modules_if_they_have_an_init_module(self): # Import ./a_package_folder/__init__.py from .a_package_folder import an_attribute self.assertEqual(__, an_attribute) # ------------------------------------------------------------------ def test_use_absolute_imports_to_import_upper_level_modules(self): # Import /contemplate_koans.py import contemplate_koans self.assertEqual(__, contemplate_koans.__name__) # contemplate_koans.py is the root module in this package because its # the first python module called in koans. # # If contemplate_koan.py was based in a_package_folder that would be # the root folder, which would make reaching the koans folder # almost impossible. So always leave the starting python script in # a folder which can reach everything else. def test_import_a_module_in_a_subfolder_folder_using_an_absolute_path(self): # Import contemplate_koans.py/koans/a_package_folder/a_module.py from koans.a_package_folder.a_module import Duck self.assertEqual(__, Duck.__module__)
tokyo-jesus/university
src/python/koans/python3/koans/about_packages.py
Python
unlicense
1,909
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test for checking stats accumulator related ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.boosted_trees.lib.learner.batch import ordinal_split_handler from tensorflow.contrib.boosted_trees.proto import learner_pb2 from tensorflow.contrib.boosted_trees.proto import split_info_pb2 from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import resources from tensorflow.python.platform import googletest def get_empty_tensors(gradient_shape, hessian_shape): empty_hess_shape = [1] + hessian_shape.as_list() empty_grad_shape = [1] + gradient_shape.as_list() empty_gradients = constant_op.constant( [], dtype=dtypes.float32, shape=empty_grad_shape) empty_hessians = constant_op.constant( [], dtype=dtypes.float32, shape=empty_hess_shape) return empty_gradients, empty_hessians class DenseSplitHandlerTest(test_util.TensorFlowTestCase): def testGenerateFeatureSplitCandidates(self): with self.test_session() as sess: # The data looks like the following: # Example | Gradients | Partition | Dense Quantile | # i0 | (0.2, 0.12) | 0 | 1 | # i1 | (-0.5, 0.07) | 0 | 1 | # i2 | (1.2, 0.2) | 0 | 0 | # i3 | (4.0, 0.13) | 1 | 1 | dense_column = array_ops.constant([0.52, 0.52, 0.3, 0.52]) gradients = array_ops.constant([0.2, -0.5, 1.2, 4.0]) hessians = array_ops.constant([0.12, 0.07, 0.2, 0.13]) partition_ids = array_ops.constant([0, 0, 0, 1], dtype=dtypes.int32) class_id = -1 gradient_shape = tensor_shape.scalar() hessian_shape = tensor_shape.scalar() split_handler = ordinal_split_handler.DenseSplitHandler( l1_regularization=0.1, l2_regularization=1, tree_complexity_regularization=0, min_node_weight=0, epsilon=0.001, num_quantiles=10, feature_column_group_id=0, dense_float_column=dense_column, init_stamp_token=0, gradient_shape=gradient_shape, hessian_shape=hessian_shape, multiclass_strategy=learner_pb2.LearnerConfig.TREE_PER_CLASS) resources.initialize_resources(resources.shared_resources()).run() empty_gradients, empty_hessians = get_empty_tensors( gradient_shape, hessian_shape) example_weights = array_ops.ones([4, 1], dtypes.float32) update_1 = split_handler.update_stats_sync( 0, partition_ids, gradients, hessians, empty_gradients, empty_hessians, example_weights, is_active=array_ops.constant([True, True])) with ops.control_dependencies([update_1]): are_splits_ready = split_handler.make_splits(0, 1, class_id)[0] with ops.control_dependencies([are_splits_ready]): update_2 = split_handler.update_stats_sync( 1, partition_ids, gradients, hessians, empty_gradients, empty_hessians, example_weights, is_active=array_ops.constant([True, True])) with ops.control_dependencies([update_2]): are_splits_ready2, partitions, gains, splits = ( split_handler.make_splits(1, 2, class_id)) are_splits_ready, are_splits_ready2, partitions, gains, splits = ( sess.run([ are_splits_ready, are_splits_ready2, partitions, gains, splits ])) # During the first iteration, inequality split handlers are not going to # have any splits. Make sure that we return not_ready in that case. self.assertFalse(are_splits_ready) self.assertTrue(are_splits_ready2) self.assertAllEqual([0, 1], partitions) # Check the split on partition 0. # -(1.2 - 0.1) / (0.2 + 1) expected_left_weight = -0.91666 # expected_left_weight * -(1.2 - 0.1) expected_left_gain = 1.0083333333333331 # (-0.5 + 0.2 + 0.1) / (0.19 + 1) expected_right_weight = 0.1680672 # expected_right_weight * -(-0.5 + 0.2 + 0.1)) expected_right_gain = 0.033613445378151252 # (0.2 + -0.5 + 1.2 - 0.1) ** 2 / (0.12 + 0.07 + 0.2 + 1) expected_bias_gain = 0.46043165467625885 split_info = split_info_pb2.SplitInfo() split_info.ParseFromString(splits[0]) left_child = split_info.left_child.vector right_child = split_info.right_child.vector split_node = split_info.split_node.dense_float_binary_split self.assertAllClose( expected_left_gain + expected_right_gain - expected_bias_gain, gains[0], 0.00001) self.assertAllClose([expected_left_weight], left_child.value, 0.00001) self.assertAllClose([expected_right_weight], right_child.value, 0.00001) self.assertEqual(0, split_node.feature_column) self.assertAllClose(0.3, split_node.threshold, 0.00001) # Check the split on partition 1. # (-4 + 0.1) / (0.13 + 1) expected_left_weight = -3.4513274336283186 # (-4 + 0.1) ** 2 / (0.13 + 1) expected_left_gain = 13.460176991150442 expected_right_weight = 0 expected_right_gain = 0 # (-4 + 0.1) ** 2 / (0.13 + 1) expected_bias_gain = 13.460176991150442 # Verify candidate for partition 1, there's only one active bucket here # so zero gain is expected. split_info = split_info_pb2.SplitInfo() split_info.ParseFromString(splits[1]) left_child = split_info.left_child.vector right_child = split_info.right_child.vector split_node = split_info.split_node.dense_float_binary_split self.assertAllClose(0.0, gains[1], 0.00001) self.assertAllClose([expected_left_weight], left_child.value, 0.00001) self.assertAllClose([expected_right_weight], right_child.value, 0.00001) self.assertEqual(0, split_node.feature_column) self.assertAllClose(0.52, split_node.threshold, 0.00001) def testGenerateFeatureSplitCandidatesMulticlassFullHessian(self): with self.test_session() as sess: dense_column = array_ops.constant([0.52, 0.52, 0.3, 0.52]) # Batch size is 4, 2 gradients per each instance. gradients = array_ops.constant( [[0.2, 0.1], [-0.5, 0.2], [1.2, 3.4], [4.0, -3.5]], shape=[4, 2]) # 2x2 matrix for each instance hessian_0 = [[0.12, 0.02], [0.3, 0.11]] hessian_1 = [[0.07, -0.2], [-0.5, 0.2]] hessian_2 = [[0.2, -0.23], [-0.8, 0.9]] hessian_3 = [[0.13, -0.3], [-1.5, 2.2]] hessians = array_ops.constant( [hessian_0, hessian_1, hessian_2, hessian_3]) partition_ids = array_ops.constant([0, 0, 0, 1], dtype=dtypes.int32) class_id = -1 gradient_shape = tensor_shape.TensorShape([2]) hessian_shape = tensor_shape.TensorShape([2, 2]) split_handler = ordinal_split_handler.DenseSplitHandler( l1_regularization=0, l2_regularization=1, tree_complexity_regularization=0, min_node_weight=0, epsilon=0.001, num_quantiles=3, feature_column_group_id=0, dense_float_column=dense_column, init_stamp_token=0, gradient_shape=gradient_shape, hessian_shape=hessian_shape, multiclass_strategy=learner_pb2.LearnerConfig.FULL_HESSIAN) resources.initialize_resources(resources.shared_resources()).run() empty_gradients, empty_hessians = get_empty_tensors( gradient_shape, hessian_shape) example_weights = array_ops.ones([4, 1], dtypes.float32) update_1 = split_handler.update_stats_sync( 0, partition_ids, gradients, hessians, empty_gradients, empty_hessians, example_weights, is_active=array_ops.constant([True, True])) with ops.control_dependencies([update_1]): are_splits_ready = split_handler.make_splits(0, 1, class_id)[0] with ops.control_dependencies([are_splits_ready]): update_2 = split_handler.update_stats_sync( 1, partition_ids, gradients, hessians, empty_gradients, empty_hessians, example_weights, is_active=array_ops.constant([True, True])) with ops.control_dependencies([update_2]): are_splits_ready2, partitions, gains, splits = ( split_handler.make_splits(1, 2, class_id)) are_splits_ready, are_splits_ready2, partitions, gains, splits = ( sess.run([ are_splits_ready, are_splits_ready2, partitions, gains, splits ])) # During the first iteration, inequality split handlers are not going to # have any splits. Make sure that we return not_ready in that case. self.assertFalse(are_splits_ready) self.assertTrue(are_splits_ready2) split_info = split_info_pb2.SplitInfo() split_info.ParseFromString(splits[0]) left_child = split_info.left_child.vector right_child = split_info.right_child.vector split_node = split_info.split_node.dense_float_binary_split # Each leaf has 2 element vector. self.assertEqual(2, len(left_child.value)) self.assertEqual(2, len(right_child.value)) self.assertEqual(0, split_node.feature_column) self.assertAllClose(0.3, split_node.threshold, 1e-6) def testGenerateFeatureSplitCandidatesMulticlassDiagonalHessian(self): with self.test_session() as sess: dense_column = array_ops.constant([0.52, 0.52, 0.3, 0.52]) # Batch size is 4, 2 gradients per each instance. gradients = array_ops.constant( [[0.2, 0.1], [-0.5, 0.2], [1.2, 3.4], [4.0, -3.5]], shape=[4, 2]) # Each hessian is a diagonal of a full hessian matrix. hessian_0 = [0.12, 0.11] hessian_1 = [0.07, 0.2] hessian_2 = [0.2, 0.9] hessian_3 = [0.13, 2.2] hessians = array_ops.constant( [hessian_0, hessian_1, hessian_2, hessian_3]) partition_ids = array_ops.constant([0, 0, 0, 1], dtype=dtypes.int32) class_id = -1 gradient_shape = tensor_shape.TensorShape([2]) hessian_shape = tensor_shape.TensorShape([2]) split_handler = ordinal_split_handler.DenseSplitHandler( l1_regularization=0, l2_regularization=1, tree_complexity_regularization=0, min_node_weight=0, epsilon=0.001, num_quantiles=3, feature_column_group_id=0, dense_float_column=dense_column, init_stamp_token=0, gradient_shape=gradient_shape, hessian_shape=hessian_shape, multiclass_strategy=learner_pb2.LearnerConfig.DIAGONAL_HESSIAN) resources.initialize_resources(resources.shared_resources()).run() empty_gradients, empty_hessians = get_empty_tensors( gradient_shape, hessian_shape) example_weights = array_ops.ones([4, 1], dtypes.float32) update_1 = split_handler.update_stats_sync( 0, partition_ids, gradients, hessians, empty_gradients, empty_hessians, example_weights, is_active=array_ops.constant([True, True])) with ops.control_dependencies([update_1]): are_splits_ready = split_handler.make_splits(0, 1, class_id)[0] with ops.control_dependencies([are_splits_ready]): update_2 = split_handler.update_stats_sync( 1, partition_ids, gradients, hessians, empty_gradients, empty_hessians, example_weights, is_active=array_ops.constant([True, True])) with ops.control_dependencies([update_2]): are_splits_ready2, partitions, gains, splits = ( split_handler.make_splits(1, 2, class_id)) are_splits_ready, are_splits_ready2, partitions, gains, splits = ( sess.run([ are_splits_ready, are_splits_ready2, partitions, gains, splits ])) # During the first iteration, inequality split handlers are not going to # have any splits. Make sure that we return not_ready in that case. self.assertFalse(are_splits_ready) self.assertTrue(are_splits_ready2) split_info = split_info_pb2.SplitInfo() split_info.ParseFromString(splits[0]) left_child = split_info.left_child.vector right_child = split_info.right_child.vector split_node = split_info.split_node.dense_float_binary_split # Each leaf has 2 element vector. self.assertEqual(2, len(left_child.value)) self.assertEqual(2, len(right_child.value)) self.assertEqual(0, split_node.feature_column) self.assertAllClose(0.3, split_node.threshold, 1e-6) def testGenerateFeatureSplitCandidatesInactive(self): with self.test_session() as sess: # The data looks like the following: # Example | Gradients | Partition | Dense Quantile | # i0 | (0.2, 0.12) | 0 | 1 | # i1 | (-0.5, 0.07) | 0 | 1 | # i2 | (1.2, 0.2) | 0 | 0 | # i3 | (4.0, 0.13) | 1 | 1 | dense_column = array_ops.constant([0.52, 0.52, 0.3, 0.52]) gradients = array_ops.constant([0.2, -0.5, 1.2, 4.0]) hessians = array_ops.constant([0.12, 0.07, 0.2, 0.13]) partition_ids = array_ops.constant([0, 0, 0, 1], dtype=dtypes.int32) gradient_shape = tensor_shape.scalar() hessian_shape = tensor_shape.scalar() class_id = -1 split_handler = ordinal_split_handler.DenseSplitHandler( l1_regularization=0.1, l2_regularization=1, tree_complexity_regularization=0, min_node_weight=0, epsilon=0.001, num_quantiles=10, feature_column_group_id=0, dense_float_column=dense_column, init_stamp_token=0, gradient_shape=gradient_shape, hessian_shape=hessian_shape, multiclass_strategy=learner_pb2.LearnerConfig.TREE_PER_CLASS) resources.initialize_resources(resources.shared_resources()).run() empty_gradients, empty_hessians = get_empty_tensors( gradient_shape, hessian_shape) example_weights = array_ops.ones([4, 1], dtypes.float32) update_1 = split_handler.update_stats_sync( 0, partition_ids, gradients, hessians, empty_gradients, empty_hessians, example_weights, is_active=array_ops.constant([True, False])) with ops.control_dependencies([update_1]): are_splits_ready = split_handler.make_splits(0, 1, class_id)[0] with ops.control_dependencies([are_splits_ready]): update_2 = split_handler.update_stats_sync( 1, partition_ids, gradients, hessians, empty_gradients, empty_hessians, example_weights, is_active=array_ops.constant([False, True])) with ops.control_dependencies([update_2]): are_splits_ready2, partitions, gains, splits = ( split_handler.make_splits(1, 2, class_id)) are_splits_ready, are_splits_ready2, partitions, gains, splits = ( sess.run([ are_splits_ready, are_splits_ready2, partitions, gains, splits ])) # During the first iteration, inequality split handlers are not going to # have any splits. Make sure that we return not_ready in that case. self.assertFalse(are_splits_ready) self.assertTrue(are_splits_ready2) # The handler was inactive, so it shouldn't return any splits. self.assertEqual(len(partitions), 0) self.assertEqual(len(gains), 0) self.assertEqual(len(splits), 0) def testGenerateFeatureSplitCandidatesWithTreeComplexity(self): with self.test_session() as sess: # The data looks like the following: # Example | Gradients | Partition | Dense Quantile | # i0 | (0.2, 0.12) | 0 | 1 | # i1 | (-0.5, 0.07) | 0 | 1 | # i2 | (1.2, 0.2) | 0 | 0 | # i3 | (4.0, 0.13) | 1 | 1 | dense_column = array_ops.constant([0.52, 0.52, 0.3, 0.52]) gradients = array_ops.constant([0.2, -0.5, 1.2, 4.0]) hessians = array_ops.constant([0.12, 0.07, 0.2, 0.13]) partition_ids = array_ops.constant([0, 0, 0, 1], dtype=dtypes.int32) gradient_shape = tensor_shape.scalar() hessian_shape = tensor_shape.scalar() class_id = -1 split_handler = ordinal_split_handler.DenseSplitHandler( l1_regularization=0.1, l2_regularization=1, tree_complexity_regularization=0.5, min_node_weight=0, epsilon=0.001, num_quantiles=10, feature_column_group_id=0, dense_float_column=dense_column, init_stamp_token=0, gradient_shape=gradient_shape, hessian_shape=hessian_shape, multiclass_strategy=learner_pb2.LearnerConfig.TREE_PER_CLASS) resources.initialize_resources(resources.shared_resources()).run() empty_gradients, empty_hessians = get_empty_tensors( gradient_shape, hessian_shape) example_weights = array_ops.ones([4, 1], dtypes.float32) update_1 = split_handler.update_stats_sync( 0, partition_ids, gradients, hessians, empty_gradients, empty_hessians, example_weights, is_active=array_ops.constant([True, True])) with ops.control_dependencies([update_1]): are_splits_ready = split_handler.make_splits(0, 1, class_id)[0] with ops.control_dependencies([are_splits_ready]): update_2 = split_handler.update_stats_sync( 1, partition_ids, gradients, hessians, empty_gradients, empty_hessians, example_weights, is_active=array_ops.constant([True, True])) with ops.control_dependencies([update_2]): are_splits_ready2, partitions, gains, splits = ( split_handler.make_splits(1, 2, class_id)) are_splits_ready, are_splits_ready2, partitions, gains, splits = ( sess.run([ are_splits_ready, are_splits_ready2, partitions, gains, splits ])) # During the first iteration, inequality split handlers are not going to # have any splits. Make sure that we return not_ready in that case. self.assertFalse(are_splits_ready) self.assertTrue(are_splits_ready2) self.assertAllEqual([0, 1], partitions) # Check the split on partition 0. # -(1.2 - 0.1) / (0.2 + 1) expected_left_weight = -0.91666 # expected_left_weight * -(1.2 - 0.1) expected_left_gain = 1.0083333333333331 # (-0.5 + 0.2 + 0.1) / (0.19 + 1) expected_right_weight = 0.1680672 # expected_right_weight * -(-0.5 + 0.2 + 0.1)) expected_right_gain = 0.033613445378151252 # (0.2 + -0.5 + 1.2 - 0.1) ** 2 / (0.12 + 0.07 + 0.2 + 1) expected_bias_gain = 0.46043165467625885 split_info = split_info_pb2.SplitInfo() split_info.ParseFromString(splits[0]) left_child = split_info.left_child.vector right_child = split_info.right_child.vector split_node = split_info.split_node.dense_float_binary_split # Make sure the gain is subtracted by the tree complexity regularization. self.assertAllClose( expected_left_gain + expected_right_gain - expected_bias_gain - 0.5, gains[0], 0.00001) self.assertAllClose([expected_left_weight], left_child.value, 0.00001) self.assertAllClose([expected_right_weight], right_child.value, 0.00001) self.assertEqual(0, split_node.feature_column) self.assertAllClose(0.3, split_node.threshold, 0.00001) # Check the split on partition 1. # (-4 + 0.1) / (0.13 + 1) expected_left_weight = -3.4513274336283186 # (-4 + 0.1) ** 2 / (0.13 + 1) expected_left_gain = 13.460176991150442 expected_right_weight = 0 expected_right_gain = 0 # (-4 + 0.1) ** 2 / (0.13 + 1) expected_bias_gain = 13.460176991150442 # Verify candidate for partition 1, there's only one active bucket here # so -0.5 gain is expected (because of tree complexity. split_info = split_info_pb2.SplitInfo() split_info.ParseFromString(splits[1]) left_child = split_info.left_child.vector right_child = split_info.right_child.vector split_node = split_info.split_node.dense_float_binary_split self.assertAllClose(-0.5, gains[1], 0.00001) self.assertAllClose([expected_left_weight], left_child.value, 0.00001) self.assertAllClose([expected_right_weight], right_child.value, 0.00001) self.assertEqual(0, split_node.feature_column) self.assertAllClose(0.52, split_node.threshold, 0.00001) def testGenerateFeatureSplitCandidatesWithMinNodeWeight(self): with self.test_session() as sess: # The data looks like the following: # Example | Gradients | Partition | Dense Quantile | # i0 | (0.2, 0.12) | 0 | 1 | # i1 | (-0.5, 0.07) | 0 | 1 | # i2 | (1.2, 0.2) | 0 | 0 | # i3 | (4.0, 2.0) | 1 | 1 | dense_column = array_ops.constant([0.52, 0.52, 0.3, 0.52]) gradients = array_ops.constant([0.2, -0.5, 1.2, 4.0]) hessians = array_ops.constant([0.12, 0.07, 0.2, 2]) partition_ids = array_ops.constant([0, 0, 0, 1], dtype=dtypes.int32) gradient_shape = tensor_shape.scalar() hessian_shape = tensor_shape.scalar() class_id = -1 split_handler = ordinal_split_handler.DenseSplitHandler( l1_regularization=0.1, l2_regularization=1, tree_complexity_regularization=0.5, min_node_weight=1.5, epsilon=0.001, num_quantiles=10, feature_column_group_id=0, dense_float_column=dense_column, init_stamp_token=0, gradient_shape=gradient_shape, hessian_shape=hessian_shape, multiclass_strategy=learner_pb2.LearnerConfig.TREE_PER_CLASS) resources.initialize_resources(resources.shared_resources()).run() empty_gradients, empty_hessians = get_empty_tensors( gradient_shape, hessian_shape) example_weights = array_ops.ones([4, 1], dtypes.float32) update_1 = split_handler.update_stats_sync( 0, partition_ids, gradients, hessians, empty_gradients, empty_hessians, example_weights, is_active=array_ops.constant([True, True])) with ops.control_dependencies([update_1]): are_splits_ready = split_handler.make_splits(0, 1, class_id)[0] with ops.control_dependencies([are_splits_ready]): update_2 = split_handler.update_stats_sync( 1, partition_ids, gradients, hessians, empty_gradients, empty_hessians, example_weights, is_active=array_ops.constant([True, True])) with ops.control_dependencies([update_2]): are_splits_ready2, partitions, gains, splits = ( split_handler.make_splits(1, 2, class_id)) are_splits_ready, are_splits_ready2, partitions, gains, splits = ( sess.run([ are_splits_ready, are_splits_ready2, partitions, gains, splits ])) # During the first iteration, inequality split handlers are not going to # have any splits. Make sure that we return not_ready in that case. self.assertFalse(are_splits_ready) self.assertTrue(are_splits_ready2) self.assertAllEqual([0, 1], partitions) # Check the gain on partition 0 to be -0.5. split_info = split_info_pb2.SplitInfo() split_info.ParseFromString(splits[0]) left_child = split_info.left_child.vector right_child = split_info.right_child.vector split_node = split_info.split_node.dense_float_binary_split # Make sure the gain is subtracted by the tree complexity regularization. self.assertAllClose(-0.5, gains[0], 0.00001) self.assertEqual(0, split_node.feature_column) # Check the split on partition 1. # (-4 + 0.1) / (2 + 1) expected_left_weight = -1.3 expected_right_weight = 0 # Verify candidate for partition 1, there's only one active bucket here # so -0.5 gain is expected (because of tree complexity. split_info = split_info_pb2.SplitInfo() split_info.ParseFromString(splits[1]) left_child = split_info.left_child.vector right_child = split_info.right_child.vector split_node = split_info.split_node.dense_float_binary_split self.assertAllClose(-0.5, gains[1], 0.00001) self.assertAllClose([expected_left_weight], left_child.value, 0.00001) self.assertAllClose([expected_right_weight], right_child.value, 0.00001) self.assertEqual(0, split_node.feature_column) self.assertAllClose(0.52, split_node.threshold, 0.00001) class SparseSplitHandlerTest(test_util.TensorFlowTestCase): def testGenerateFeatureSplitCandidates(self): with self.test_session() as sess: # The data looks like the following: # Example | Gradients | Partition | Sparse Quantile | # i0 | (0.2, 0.12) | 0 | 1 | # i1 | (-0.5, 0.07) | 0 | N/A | # i2 | (1.2, 0.2) | 0 | 0 | # i3 | (4.0, 0.13) | 1 | 1 | gradients = array_ops.constant([0.2, -0.5, 1.2, 4.0]) hessians = array_ops.constant([0.12, 0.07, 0.2, 0.13]) example_partitions = array_ops.constant([0, 0, 0, 1], dtype=dtypes.int32) indices = array_ops.constant([[0, 0], [2, 0], [3, 0]], dtype=dtypes.int64) values = array_ops.constant([0.52, 0.3, 0.52]) sparse_column = sparse_tensor.SparseTensor(indices, values, [4, 1]) gradient_shape = tensor_shape.scalar() hessian_shape = tensor_shape.scalar() class_id = -1 split_handler = ordinal_split_handler.SparseSplitHandler( l1_regularization=0, l2_regularization=2, tree_complexity_regularization=0, min_node_weight=0, epsilon=0.01, num_quantiles=2, feature_column_group_id=0, sparse_float_column=sparse_column, init_stamp_token=0, gradient_shape=gradient_shape, hessian_shape=hessian_shape, multiclass_strategy=learner_pb2.LearnerConfig.TREE_PER_CLASS) resources.initialize_resources(resources.shared_resources()).run() empty_gradients, empty_hessians = get_empty_tensors( gradient_shape, hessian_shape) example_weights = array_ops.ones([4, 1], dtypes.float32) update_1 = split_handler.update_stats_sync( 0, example_partitions, gradients, hessians, empty_gradients, empty_hessians, example_weights, is_active=array_ops.constant([True, True])) with ops.control_dependencies([update_1]): are_splits_ready = split_handler.make_splits(0, 1, class_id)[0] with ops.control_dependencies([are_splits_ready]): update_2 = split_handler.update_stats_sync( 1, example_partitions, gradients, hessians, empty_gradients, empty_hessians, example_weights, is_active=array_ops.constant([True, True])) with ops.control_dependencies([update_2]): are_splits_ready2, partitions, gains, splits = ( split_handler.make_splits(1, 2, class_id)) are_splits_ready, are_splits_ready2, partitions, gains, splits = ( sess.run([ are_splits_ready, are_splits_ready2, partitions, gains, splits ])) # During the first iteration, inequality split handlers are not going to # have any splits. Make sure that we return not_ready in that case. self.assertFalse(are_splits_ready) self.assertTrue(are_splits_ready2) self.assertAllEqual([0, 1], partitions) # Check the split on partition 0. # -(0.2 + 1.2) / (0.12 + 0.2 + 2) expected_left_weight = -0.603448275862069 # (0.2 + 1.2) ** 2 / (0.12 + 0.2 + 2) expected_left_gain = 0.8448275862068965 # 0.5 / (0.07 + 2) expected_right_weight = 0.24154589371980678 # 0.5 ** 2 / (0.07 + 2) expected_right_gain = 0.12077294685990339 # (0.2 + 1.2 - 0.5) ** 2 / (0.12 + 0.2 + 0.07 + 2) expected_bias_gain = 0.3389121338912133 split_info = split_info_pb2.SplitInfo() split_info.ParseFromString(splits[0]) left_child = split_info.left_child.vector right_child = split_info.right_child.vector split_node = split_info.split_node.sparse_float_binary_split_default_right self.assertAllClose( expected_left_gain + expected_right_gain - expected_bias_gain, gains[0]) self.assertAllClose([expected_left_weight], left_child.value) self.assertAllClose([expected_right_weight], right_child.value) self.assertEqual(0, split_node.split.feature_column) self.assertAllClose(0.52, split_node.split.threshold) # Check the split on partition 1. expected_left_weight = -1.8779342723004695 expected_right_weight = 0 # Verify candidate for partition 1, there's only one active bucket here # so zero gain is expected. split_info.ParseFromString(splits[1]) left_child = split_info.left_child.vector right_child = split_info.right_child.vector split_node = split_info.split_node.sparse_float_binary_split_default_left self.assertAllClose(0.0, gains[1]) self.assertAllClose([expected_left_weight], left_child.value) self.assertAllClose([expected_right_weight], right_child.value) self.assertEqual(0, split_node.split.feature_column) self.assertAllClose(0.52, split_node.split.threshold) def testGenerateFeatureSplitCandidatesMulticlassFullHessian(self): with self.test_session() as sess: # Batch is 4, 2 classes gradients = array_ops.constant( [[0.2, 1.4], [-0.5, 0.1], [1.2, 3], [4.0, -3]]) # 2x2 matrix for each instance hessian_0 = [[0.12, 0.02], [0.3, 0.11]] hessian_1 = [[0.07, -0.2], [-0.5, 0.2]] hessian_2 = [[0.2, -0.23], [-0.8, 0.9]] hessian_3 = [[0.13, -0.3], [-1.5, 2.2]] hessians = array_ops.constant( [hessian_0, hessian_1, hessian_2, hessian_3]) example_partitions = array_ops.constant([0, 0, 0, 1], dtype=dtypes.int32) indices = array_ops.constant([[0, 0], [2, 0], [3, 0]], dtype=dtypes.int64) values = array_ops.constant([0.52, 0.3, 0.52]) sparse_column = sparse_tensor.SparseTensor(indices, values, [4, 1]) gradient_shape = tensor_shape.TensorShape([2]) hessian_shape = tensor_shape.TensorShape([2, 2]) class_id = -1 split_handler = ordinal_split_handler.SparseSplitHandler( l1_regularization=0, l2_regularization=2, tree_complexity_regularization=0, min_node_weight=0, epsilon=0.01, num_quantiles=2, feature_column_group_id=0, sparse_float_column=sparse_column, init_stamp_token=0, gradient_shape=gradient_shape, hessian_shape=hessian_shape, multiclass_strategy=learner_pb2.LearnerConfig.FULL_HESSIAN) resources.initialize_resources(resources.shared_resources()).run() empty_gradients, empty_hessians = get_empty_tensors( gradient_shape, hessian_shape) example_weights = array_ops.ones([4, 1], dtypes.float32) update_1 = split_handler.update_stats_sync( 0, example_partitions, gradients, hessians, empty_gradients, empty_hessians, example_weights, is_active=array_ops.constant([True, True])) with ops.control_dependencies([update_1]): are_splits_ready = split_handler.make_splits(0, 1, class_id)[0] with ops.control_dependencies([are_splits_ready]): update_2 = split_handler.update_stats_sync( 1, example_partitions, gradients, hessians, empty_gradients, empty_hessians, example_weights, is_active=array_ops.constant([True, True])) with ops.control_dependencies([update_2]): are_splits_ready2, partitions, gains, splits = ( split_handler.make_splits(1, 2, class_id)) are_splits_ready, are_splits_ready2, partitions, gains, splits = ( sess.run([ are_splits_ready, are_splits_ready2, partitions, gains, splits ])) self.assertFalse(are_splits_ready) self.assertTrue(are_splits_ready2) split_info = split_info_pb2.SplitInfo() split_info.ParseFromString(splits[0]) left_child = split_info.left_child.vector right_child = split_info.right_child.vector split_node = split_info.split_node.sparse_float_binary_split_default_right # Each leaf has 2 element vector. self.assertEqual(2, len(left_child.value)) self.assertEqual(2, len(right_child.value)) self.assertEqual(0, split_node.split.feature_column) self.assertAllClose(0.52, split_node.split.threshold) split_info.ParseFromString(splits[1]) left_child = split_info.left_child.vector right_child = split_info.right_child.vector split_node = split_info.split_node.sparse_float_binary_split_default_left self.assertEqual(2, len(left_child.value)) self.assertEqual(0, split_node.split.feature_column) self.assertAllClose(0.52, split_node.split.threshold) def testGenerateFeatureSplitCandidatesMulticlassDiagonalHessian(self): with self.test_session() as sess: # Batch is 4, 2 classes gradients = array_ops.constant( [[0.2, 1.4], [-0.5, 0.1], [1.2, 3], [4.0, -3]]) # Each hessian is a diagonal from a full hessian matrix. hessian_0 = [0.12, 0.11] hessian_1 = [0.07, 0.2] hessian_2 = [0.2, 0.9] hessian_3 = [0.13, 2.2] hessians = array_ops.constant( [hessian_0, hessian_1, hessian_2, hessian_3]) example_partitions = array_ops.constant([0, 0, 0, 1], dtype=dtypes.int32) indices = array_ops.constant([[0, 0], [2, 0], [3, 0]], dtype=dtypes.int64) values = array_ops.constant([0.52, 0.3, 0.52]) sparse_column = sparse_tensor.SparseTensor(indices, values, [4, 1]) gradient_shape = tensor_shape.TensorShape([2]) hessian_shape = tensor_shape.TensorShape([2]) class_id = -1 split_handler = ordinal_split_handler.SparseSplitHandler( l1_regularization=0, l2_regularization=2, tree_complexity_regularization=0, min_node_weight=0, epsilon=0.01, num_quantiles=2, feature_column_group_id=0, sparse_float_column=sparse_column, init_stamp_token=0, gradient_shape=gradient_shape, hessian_shape=hessian_shape, multiclass_strategy=learner_pb2.LearnerConfig.DIAGONAL_HESSIAN) resources.initialize_resources(resources.shared_resources()).run() empty_gradients, empty_hessians = get_empty_tensors( gradient_shape, hessian_shape) example_weights = array_ops.ones([4, 1], dtypes.float32) update_1 = split_handler.update_stats_sync( 0, example_partitions, gradients, hessians, empty_gradients, empty_hessians, example_weights, is_active=array_ops.constant([True, True])) with ops.control_dependencies([update_1]): are_splits_ready = split_handler.make_splits(0, 1, class_id)[0] with ops.control_dependencies([are_splits_ready]): update_2 = split_handler.update_stats_sync( 1, example_partitions, gradients, hessians, empty_gradients, empty_hessians, example_weights, is_active=array_ops.constant([True, True])) with ops.control_dependencies([update_2]): are_splits_ready2, partitions, gains, splits = ( split_handler.make_splits(1, 2, class_id)) are_splits_ready, are_splits_ready2, partitions, gains, splits = ( sess.run([ are_splits_ready, are_splits_ready2, partitions, gains, splits ])) self.assertFalse(are_splits_ready) self.assertTrue(are_splits_ready2) split_info = split_info_pb2.SplitInfo() split_info.ParseFromString(splits[0]) left_child = split_info.left_child.vector right_child = split_info.right_child.vector split_node = split_info.split_node.sparse_float_binary_split_default_right # Each leaf has 2 element vector. self.assertEqual(2, len(left_child.value)) self.assertEqual(2, len(right_child.value)) self.assertEqual(0, split_node.split.feature_column) self.assertAllClose(0.52, split_node.split.threshold) split_info.ParseFromString(splits[1]) left_child = split_info.left_child.vector right_child = split_info.right_child.vector split_node = split_info.split_node.sparse_float_binary_split_default_left self.assertEqual(2, len(left_child.value)) self.assertEqual(0, split_node.split.feature_column) self.assertAllClose(0.52, split_node.split.threshold) def testGenerateFeatureSplitCandidatesInactive(self): with self.test_session() as sess: # The data looks like the following: # Example | Gradients | Partition | Sparse Quantile | # i0 | (0.2, 0.12) | 0 | 1 | # i1 | (-0.5, 0.07) | 0 | N/A | # i2 | (1.2, 0.2) | 0 | 0 | # i3 | (4.0, 0.13) | 1 | 1 | gradients = array_ops.constant([0.2, -0.5, 1.2, 4.0]) hessians = array_ops.constant([0.12, 0.07, 0.2, 0.13]) example_partitions = array_ops.constant([0, 0, 0, 1], dtype=dtypes.int32) indices = array_ops.constant([[0, 0], [2, 0], [3, 0]], dtype=dtypes.int64) values = array_ops.constant([0.52, 0.3, 0.52]) sparse_column = sparse_tensor.SparseTensor(indices, values, [4, 1]) gradient_shape = tensor_shape.scalar() hessian_shape = tensor_shape.scalar() class_id = -1 split_handler = ordinal_split_handler.SparseSplitHandler( l1_regularization=0, l2_regularization=2, tree_complexity_regularization=0, min_node_weight=0, epsilon=0.01, num_quantiles=2, feature_column_group_id=0, gradient_shape=gradient_shape, hessian_shape=hessian_shape, sparse_float_column=sparse_column, init_stamp_token=0, multiclass_strategy=learner_pb2.LearnerConfig.TREE_PER_CLASS) resources.initialize_resources(resources.shared_resources()).run() empty_gradients, empty_hessians = get_empty_tensors( gradient_shape, hessian_shape) example_weights = array_ops.ones([4, 1], dtypes.float32) update_1 = split_handler.update_stats_sync( 0, example_partitions, gradients, hessians, empty_gradients, empty_hessians, example_weights, is_active=array_ops.constant([True, False])) with ops.control_dependencies([update_1]): are_splits_ready = split_handler.make_splits(0, 1, class_id)[0] with ops.control_dependencies([are_splits_ready]): update_2 = split_handler.update_stats_sync( 1, example_partitions, gradients, hessians, empty_gradients, empty_hessians, example_weights, is_active=array_ops.constant([False, True])) with ops.control_dependencies([update_2]): are_splits_ready2, partitions, gains, splits = ( split_handler.make_splits(1, 2, class_id)) are_splits_ready, are_splits_ready2, partitions, gains, splits = ( sess.run([ are_splits_ready, are_splits_ready2, partitions, gains, splits ])) # During the first iteration, inequality split handlers are not going to # have any splits. Make sure that we return not_ready in that case. self.assertFalse(are_splits_ready) self.assertTrue(are_splits_ready2) # The handler was inactive so it shouldn't any splits. self.assertEqual(len(partitions), 0) self.assertEqual(len(gains), 0) self.assertEqual(len(splits), 0) def testEmpty(self): with self.test_session() as sess: indices = array_ops.constant([], dtype=dtypes.int64, shape=[0, 2]) # No values in this feature column in this mini-batch. values = array_ops.constant([], dtype=dtypes.float32) sparse_column = sparse_tensor.SparseTensor(indices, values, [4, 1]) gradient_shape = tensor_shape.scalar() hessian_shape = tensor_shape.scalar() class_id = -1 split_handler = ordinal_split_handler.SparseSplitHandler( l1_regularization=0, l2_regularization=2, tree_complexity_regularization=0, min_node_weight=0, epsilon=0.01, num_quantiles=2, feature_column_group_id=0, sparse_float_column=sparse_column, init_stamp_token=0, gradient_shape=gradient_shape, hessian_shape=hessian_shape, multiclass_strategy=learner_pb2.LearnerConfig.TREE_PER_CLASS) resources.initialize_resources(resources.shared_resources()).run() gradients = array_ops.constant([0.2, -0.5, 1.2, 4.0]) hessians = array_ops.constant([0.12, 0.07, 0.2, 0.13]) partition_ids = array_ops.constant([0, 0, 0, 1], dtype=dtypes.int32) empty_gradients, empty_hessians = get_empty_tensors( gradient_shape, hessian_shape) example_weights = array_ops.ones([4, 1], dtypes.float32) update_1 = split_handler.update_stats_sync( 0, partition_ids, gradients, hessians, empty_gradients, empty_hessians, example_weights, is_active=array_ops.constant([True, True])) with ops.control_dependencies([update_1]): are_splits_ready = split_handler.make_splits(0, 1, class_id)[0] with ops.control_dependencies([are_splits_ready]): update_2 = split_handler.update_stats_sync( 1, partition_ids, gradients, hessians, empty_gradients, empty_hessians, example_weights, is_active=array_ops.constant([True, True])) with ops.control_dependencies([update_2]): are_splits_ready2, partitions, gains, splits = ( split_handler.make_splits(1, 2, class_id)) are_splits_ready, are_splits_ready2, partitions, gains, splits = ( sess.run([ are_splits_ready, are_splits_ready2, partitions, gains, splits ])) self.assertFalse(are_splits_ready) self.assertTrue(are_splits_ready2) self.assertEqual(len(partitions), 0) self.assertEqual(len(gains), 0) self.assertEqual(len(splits), 0) if __name__ == "__main__": googletest.main()
xuleiboy1234/autoTitle
tensorflow/tensorflow/contrib/boosted_trees/lib/learner/batch/ordinal_split_handler_test.py
Python
mit
44,613
#!/usr/bin/python # Copyright (c) 2014 Hewlett-Packard Development Company, L.P. # # This module is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This software is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this software. If not, see <http://www.gnu.org/licenses/>. ANSIBLE_METADATA = {'metadata_version': '1.0', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: os_server_facts short_description: Retrieve facts about one or more compute instances author: Monty version_added: "2.0" description: - Retrieve facts about server instances from OpenStack. notes: - This module creates a new top-level C(openstack_servers) fact, which contains a list of servers. requirements: - "python >= 2.6" - "shade" options: server: description: - restrict results to servers with names or UUID matching this glob expression (e.g., C<web*>). required: false default: None detailed: description: - when true, return additional detail about servers at the expense of additional API calls. required: false default: false availability_zone: description: - Ignored. Present for backwards compatibility required: false extends_documentation_fragment: openstack ''' EXAMPLES = ''' # Gather facts about all servers named C<web*>: - os_server_facts: cloud: rax-dfw server: web* - debug: var: openstack_servers ''' import fnmatch try: import shade from shade import meta HAS_SHADE = True except ImportError: HAS_SHADE = False def main(): argument_spec = openstack_full_argument_spec( server=dict(required=False), detailed=dict(required=False, type='bool'), ) module_kwargs = openstack_module_kwargs() module = AnsibleModule(argument_spec, **module_kwargs) if not HAS_SHADE: module.fail_json(msg='shade is required for this module') try: cloud = shade.openstack_cloud(**module.params) openstack_servers = cloud.list_servers( detailed=module.params['detailed']) if module.params['server']: # filter servers by name pattern = module.params['server'] openstack_servers = [server for server in openstack_servers if fnmatch.fnmatch(server['name'], pattern) or fnmatch.fnmatch(server['id'], pattern)] module.exit_json(changed=False, ansible_facts=dict( openstack_servers=openstack_servers)) except shade.OpenStackCloudException as e: module.fail_json(msg=str(e)) # this is magic, see lib/ansible/module_common.py from ansible.module_utils.basic import * from ansible.module_utils.openstack import * if __name__ == '__main__': main()
Tatsh-ansible/ansible
lib/ansible/modules/cloud/openstack/os_server_facts.py
Python
gpl-3.0
3,271
# Copyright 2013, Big Switch Networks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import re from django.core.urlresolvers import reverse from django.core.urlresolvers import reverse_lazy from django.utils.translation import ugettext_lazy as _ from horizon import exceptions from horizon import forms from horizon import messages from horizon import tabs from horizon.utils import memoized from horizon import workflows from openstack_dashboard import api from openstack_dashboard.dashboards.project.firewalls \ import forms as fw_forms from openstack_dashboard.dashboards.project.firewalls \ import tabs as fw_tabs from openstack_dashboard.dashboards.project.firewalls \ import workflows as fw_workflows AddRouterToFirewall = fw_forms.AddRouterToFirewall InsertRuleToPolicy = fw_forms.InsertRuleToPolicy RemoveRouterFromFirewall = fw_forms.RemoveRouterFromFirewall RemoveRuleFromPolicy = fw_forms.RemoveRuleFromPolicy UpdateFirewall = fw_forms.UpdateFirewall UpdatePolicy = fw_forms.UpdatePolicy UpdateRule = fw_forms.UpdateRule FirewallDetailsTabs = fw_tabs.FirewallDetailsTabs FirewallTabs = fw_tabs.FirewallTabs PolicyDetailsTabs = fw_tabs.PolicyDetailsTabs RuleDetailsTabs = fw_tabs.RuleDetailsTabs AddFirewall = fw_workflows.AddFirewall AddPolicy = fw_workflows.AddPolicy AddRule = fw_workflows.AddRule class IndexView(tabs.TabView): tab_group_class = (FirewallTabs) template_name = 'project/firewalls/details_tabs.html' page_title = _("Firewalls") def post(self, request, *args, **kwargs): obj_ids = request.POST.getlist('object_ids') action = request.POST['action'] obj_type = re.search('.delete([a-z]+)', action).group(1) if not obj_ids: obj_ids.append(re.search('([0-9a-z-]+)$', action).group(1)) if obj_type == 'rule': for obj_id in obj_ids: try: api.fwaas.rule_delete(request, obj_id) messages.success(request, _('Deleted rule %s') % obj_id) except Exception as e: exceptions.handle(request, _('Unable to delete rule. %s') % e) if obj_type == 'policy': for obj_id in obj_ids: try: api.fwaas.policy_delete(request, obj_id) messages.success(request, _('Deleted policy %s') % obj_id) except Exception as e: exceptions.handle(request, _('Unable to delete policy. %s') % e) if obj_type == 'firewall': for obj_id in obj_ids: try: api.fwaas.firewall_delete(request, obj_id) messages.success(request, _('Deleted firewall %s') % obj_id) except Exception as e: exceptions.handle(request, _('Unable to delete firewall. %s') % e) return self.get(request, *args, **kwargs) class AddRuleView(workflows.WorkflowView): workflow_class = AddRule template_name = "project/firewalls/addrule.html" page_title = _("Add New Rule") class AddPolicyView(workflows.WorkflowView): workflow_class = AddPolicy template_name = "project/firewalls/addpolicy.html" page_title = _("Add New Policy") class AddFirewallView(workflows.WorkflowView): workflow_class = AddFirewall template_name = "project/firewalls/addfirewall.html" page_title = _("Add New Firewall") def get_workflow(self): if api.neutron.is_extension_supported(self.request, 'fwaasrouterinsertion'): AddFirewall.register(fw_workflows.SelectRoutersStep) workflow = super(AddFirewallView, self).get_workflow() return workflow class FireWallDetailTabs(tabs.TabView): template_name = 'project/firewalls/details_tabs.html' class RuleDetailsView(FireWallDetailTabs): tab_group_class = (RuleDetailsTabs) page_title = _("Firewall Rule Details") class PolicyDetailsView(FireWallDetailTabs): tab_group_class = (PolicyDetailsTabs) page_title = _("Firewall Policy Details") class FirewallDetailsView(FireWallDetailTabs): tab_group_class = (FirewallDetailsTabs) page_title = _("Firewall Details") class UpdateRuleView(forms.ModalFormView): form_class = UpdateRule form_id = "update_rule_form" template_name = "project/firewalls/updaterule.html" context_object_name = 'rule' modal_header = _("Edit Rule") submit_label = _("Save Changes") submit_url = "horizon:project:firewalls:updaterule" success_url = reverse_lazy("horizon:project:firewalls:index") page_title = _("Edit Rule {{ name }}") def get_context_data(self, **kwargs): context = super(UpdateRuleView, self).get_context_data(**kwargs) context['rule_id'] = self.kwargs['rule_id'] args = (self.kwargs['rule_id'],) context['submit_url'] = reverse(self.submit_url, args=args) obj = self._get_object() if obj: context['name'] = obj.name_or_id return context @memoized.memoized_method def _get_object(self, *args, **kwargs): rule_id = self.kwargs['rule_id'] try: rule = api.fwaas.rule_get(self.request, rule_id) return rule except Exception: redirect = self.success_url msg = _('Unable to retrieve rule details.') exceptions.handle(self.request, msg, redirect=redirect) def get_initial(self): rule = self._get_object() initial = rule.get_dict() protocol = initial['protocol'] initial['protocol'] = protocol.upper() if protocol else 'ANY' initial['action'] = initial['action'].upper() return initial class UpdatePolicyView(forms.ModalFormView): form_class = UpdatePolicy form_id = "update_policy_form" template_name = "project/firewalls/updatepolicy.html" context_object_name = 'policy' modal_header = _("Edit Policy") submit_label = _("Save Changes") submit_url = "horizon:project:firewalls:updatepolicy" success_url = reverse_lazy("horizon:project:firewalls:index") page_title = _("Edit Policy {{ name }}") def get_context_data(self, **kwargs): context = super(UpdatePolicyView, self).get_context_data(**kwargs) context["policy_id"] = self.kwargs['policy_id'] args = (self.kwargs['policy_id'],) context['submit_url'] = reverse(self.submit_url, args=args) obj = self._get_object() if obj: context['name'] = obj.name_or_id return context @memoized.memoized_method def _get_object(self, *args, **kwargs): policy_id = self.kwargs['policy_id'] try: policy = api.fwaas.policy_get(self.request, policy_id) return policy except Exception: redirect = self.success_url msg = _('Unable to retrieve policy details.') exceptions.handle(self.request, msg, redirect=redirect) def get_initial(self): policy = self._get_object() initial = policy.get_dict() return initial class UpdateFirewallView(forms.ModalFormView): form_class = UpdateFirewall form_id = "update_firewall_form" template_name = "project/firewalls/updatefirewall.html" context_object_name = 'firewall' modal_header = _("Edit Firewall") submit_label = _("Save Changes") submit_url = "horizon:project:firewalls:updatefirewall" success_url = reverse_lazy("horizon:project:firewalls:index") page_title = _("Edit Firewall {{ name }}") def get_context_data(self, **kwargs): context = super(UpdateFirewallView, self).get_context_data(**kwargs) context["firewall_id"] = self.kwargs['firewall_id'] args = (self.kwargs['firewall_id'],) context['submit_url'] = reverse(self.submit_url, args=args) obj = self._get_object() if obj: context['name'] = obj.name return context @memoized.memoized_method def _get_object(self, *args, **kwargs): firewall_id = self.kwargs['firewall_id'] try: firewall = api.fwaas.firewall_get(self.request, firewall_id) return firewall except Exception: redirect = self.success_url msg = _('Unable to retrieve firewall details.') exceptions.handle(self.request, msg, redirect=redirect) def get_initial(self): firewall = self._get_object() initial = firewall.get_dict() return initial class InsertRuleToPolicyView(forms.ModalFormView): form_class = InsertRuleToPolicy form_id = "update_policy_form" modal_header = _("Insert Rule into Policy") template_name = "project/firewalls/insert_rule_to_policy.html" context_object_name = 'policy' submit_url = "horizon:project:firewalls:insertrule" submit_label = _("Save Changes") success_url = reverse_lazy("horizon:project:firewalls:index") page_title = _("Insert Rule to Policy") def get_context_data(self, **kwargs): context = super(InsertRuleToPolicyView, self).get_context_data(**kwargs) context["policy_id"] = self.kwargs['policy_id'] args = (self.kwargs['policy_id'],) context['submit_url'] = reverse(self.submit_url, args=args) obj = self._get_object() if obj: context['name'] = obj.name_or_id return context @memoized.memoized_method def _get_object(self, *args, **kwargs): policy_id = self.kwargs['policy_id'] try: policy = api.fwaas.policy_get(self.request, policy_id) return policy except Exception: redirect = self.success_url msg = _('Unable to retrieve policy details.') exceptions.handle(self.request, msg, redirect=redirect) def get_initial(self): policy = self._get_object() initial = policy.get_dict() initial['policy_id'] = initial['id'] return initial class RemoveRuleFromPolicyView(forms.ModalFormView): form_class = RemoveRuleFromPolicy form_id = "update_policy_form" modal_header = _("Remove Rule from Policy") template_name = "project/firewalls/remove_rule_from_policy.html" context_object_name = 'policy' submit_label = _("Save Changes") submit_url = "horizon:project:firewalls:removerule" success_url = reverse_lazy("horizon:project:firewalls:index") page_title = _("Remove Rule from Policy") def get_context_data(self, **kwargs): context = super(RemoveRuleFromPolicyView, self).get_context_data(**kwargs) context["policy_id"] = self.kwargs['policy_id'] args = (self.kwargs['policy_id'],) context['submit_url'] = reverse(self.submit_url, args=args) obj = self._get_object() if obj: context['name'] = obj.name_or_id return context @memoized.memoized_method def _get_object(self, *args, **kwargs): policy_id = self.kwargs['policy_id'] try: policy = api.fwaas.policy_get(self.request, policy_id) return policy except Exception: redirect = self.success_url msg = _('Unable to retrieve policy details.') exceptions.handle(self.request, msg, redirect=redirect) def get_initial(self): policy = self._get_object() initial = policy.get_dict() initial['policy_id'] = initial['id'] return initial class RouterCommonView(forms.ModalFormView): form_id = "update_firewall_form" context_object_name = 'firewall' submit_label = _("Save Changes") success_url = reverse_lazy("horizon:project:firewalls:index") def get_context_data(self, **kwargs): context = super(RouterCommonView, self).get_context_data(**kwargs) context["firewall_id"] = self.kwargs['firewall_id'] args = (self.kwargs['firewall_id'],) context['submit_url'] = reverse(self.submit_url, args=args) obj = self._get_object() if obj: context['name'] = obj.name_or_id return context @memoized.memoized_method def _get_object(self, *args, **kwargs): firewall_id = self.kwargs['firewall_id'] try: firewall = api.fwaas.firewall_get(self.request, firewall_id) return firewall except Exception: redirect = self.success_url msg = _('Unable to retrieve firewall details.') exceptions.handle(self.request, msg, redirect=redirect) def get_initial(self): firewall = self._get_object() initial = firewall.get_dict() return initial class AddRouterToFirewallView(RouterCommonView): form_class = AddRouterToFirewall modal_header = _("Add Router to Firewall") template_name = "project/firewalls/add_router_to_firewall.html" submit_url = "horizon:project:firewalls:addrouter" page_title = _("Add Router to Firewall") class RemoveRouterFromFirewallView(RouterCommonView): form_class = RemoveRouterFromFirewall modal_header = _("Remove Router from Firewall") template_name = "project/firewalls/remove_router_from_firewall.html" submit_url = "horizon:project:firewalls:removerouter" page_title = _("Remove Router from Firewall")
newrocknj/horizon
openstack_dashboard/dashboards/project/firewalls/views.py
Python
apache-2.0
14,127
# Copyright (c) 2013, Web Notes Technologies Pvt. Ltd. and Contributors # License: GNU General Public License v3. See license.txt test_records = [[{"doctype":"Designation", "designation_name":"_Test Designation"}]]
saurabh6790/test-med-app
hr/doctype/designation/test_designation.py
Python
agpl-3.0
215
# Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
tartavull/google-cloud-python
trace/tests/__init__.py
Python
apache-2.0
575
"""Utilities to evaluate models with respect to a variable """ # Author: Alexander Fabisch <afabisch@informatik.uni-bremen.de> # # License: BSD 3 clause import warnings import numpy as np from .base import is_classifier, clone from .cross_validation import check_cv from .externals.joblib import Parallel, delayed from .cross_validation import _safe_split, _score, _fit_and_score from .metrics.scorer import check_scoring from .utils import indexable from .utils.fixes import astype warnings.warn("This module has been deprecated in favor of the " "model_selection module into which all the functions are moved." " This module will be removed in 0.20", DeprecationWarning) __all__ = ['learning_curve', 'validation_curve'] def learning_curve(estimator, X, y, train_sizes=np.linspace(0.1, 1.0, 5), cv=None, scoring=None, exploit_incremental_learning=False, n_jobs=1, pre_dispatch="all", verbose=0): """Learning curve. Determines cross-validated training and test scores for different training set sizes. A cross-validation generator splits the whole dataset k times in training and test data. Subsets of the training set with varying sizes will be used to train the estimator and a score for each training subset size and the test set will be computed. Afterwards, the scores will be averaged over all k runs for each training subset size. Read more in the :ref:`User Guide <learning_curves>`. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods An object of that type which is cloned for each validation. X : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples) or (n_samples, n_features), optional Target relative to X for classification or regression; None for unsupervised learning. train_sizes : array-like, shape (n_ticks,), dtype float or int Relative or absolute numbers of training examples that will be used to generate the learning curve. If the dtype is float, it is regarded as a fraction of the maximum size of the training set (that is determined by the selected validation method), i.e. it has to be within (0, 1]. Otherwise it is interpreted as absolute sizes of the training sets. Note that for classification the number of samples usually have to be big enough to contain at least one sample from each class. (default: np.linspace(0.1, 1.0, 5)) cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`StratifiedKFold` used. In all other cases, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. exploit_incremental_learning : boolean, optional, default: False If the estimator supports incremental learning, this will be used to speed up fitting for different training set sizes. n_jobs : integer, optional Number of jobs to run in parallel (default 1). pre_dispatch : integer or string, optional Number of predispatched jobs for parallel execution (default is all). The option can reduce the allocated memory. The string can be an expression like '2*n_jobs'. verbose : integer, optional Controls the verbosity: the higher, the more messages. Returns ------- train_sizes_abs : array, shape = (n_unique_ticks,), dtype int Numbers of training examples that has been used to generate the learning curve. Note that the number of ticks might be less than n_ticks because duplicate entries will be removed. train_scores : array, shape (n_ticks, n_cv_folds) Scores on training sets. test_scores : array, shape (n_ticks, n_cv_folds) Scores on test set. Notes ----- See :ref:`examples/model_selection/plot_learning_curve.py <example_model_selection_plot_learning_curve.py>` """ if exploit_incremental_learning and not hasattr(estimator, "partial_fit"): raise ValueError("An estimator must support the partial_fit interface " "to exploit incremental learning") X, y = indexable(X, y) # Make a list since we will be iterating multiple times over the folds cv = list(check_cv(cv, X, y, classifier=is_classifier(estimator))) scorer = check_scoring(estimator, scoring=scoring) # HACK as long as boolean indices are allowed in cv generators if cv[0][0].dtype == bool: new_cv = [] for i in range(len(cv)): new_cv.append((np.nonzero(cv[i][0])[0], np.nonzero(cv[i][1])[0])) cv = new_cv n_max_training_samples = len(cv[0][0]) # Because the lengths of folds can be significantly different, it is # not guaranteed that we use all of the available training data when we # use the first 'n_max_training_samples' samples. train_sizes_abs = _translate_train_sizes(train_sizes, n_max_training_samples) n_unique_ticks = train_sizes_abs.shape[0] if verbose > 0: print("[learning_curve] Training set sizes: " + str(train_sizes_abs)) parallel = Parallel(n_jobs=n_jobs, pre_dispatch=pre_dispatch, verbose=verbose) if exploit_incremental_learning: classes = np.unique(y) if is_classifier(estimator) else None out = parallel(delayed(_incremental_fit_estimator)( clone(estimator), X, y, classes, train, test, train_sizes_abs, scorer, verbose) for train, test in cv) else: out = parallel(delayed(_fit_and_score)( clone(estimator), X, y, scorer, train[:n_train_samples], test, verbose, parameters=None, fit_params=None, return_train_score=True) for train, test in cv for n_train_samples in train_sizes_abs) out = np.array(out)[:, :2] n_cv_folds = out.shape[0] // n_unique_ticks out = out.reshape(n_cv_folds, n_unique_ticks, 2) out = np.asarray(out).transpose((2, 1, 0)) return train_sizes_abs, out[0], out[1] def _translate_train_sizes(train_sizes, n_max_training_samples): """Determine absolute sizes of training subsets and validate 'train_sizes'. Examples: _translate_train_sizes([0.5, 1.0], 10) -> [5, 10] _translate_train_sizes([5, 10], 10) -> [5, 10] Parameters ---------- train_sizes : array-like, shape (n_ticks,), dtype float or int Numbers of training examples that will be used to generate the learning curve. If the dtype is float, it is regarded as a fraction of 'n_max_training_samples', i.e. it has to be within (0, 1]. n_max_training_samples : int Maximum number of training samples (upper bound of 'train_sizes'). Returns ------- train_sizes_abs : array, shape (n_unique_ticks,), dtype int Numbers of training examples that will be used to generate the learning curve. Note that the number of ticks might be less than n_ticks because duplicate entries will be removed. """ train_sizes_abs = np.asarray(train_sizes) n_ticks = train_sizes_abs.shape[0] n_min_required_samples = np.min(train_sizes_abs) n_max_required_samples = np.max(train_sizes_abs) if np.issubdtype(train_sizes_abs.dtype, np.float): if n_min_required_samples <= 0.0 or n_max_required_samples > 1.0: raise ValueError("train_sizes has been interpreted as fractions " "of the maximum number of training samples and " "must be within (0, 1], but is within [%f, %f]." % (n_min_required_samples, n_max_required_samples)) train_sizes_abs = astype(train_sizes_abs * n_max_training_samples, dtype=np.int, copy=False) train_sizes_abs = np.clip(train_sizes_abs, 1, n_max_training_samples) else: if (n_min_required_samples <= 0 or n_max_required_samples > n_max_training_samples): raise ValueError("train_sizes has been interpreted as absolute " "numbers of training samples and must be within " "(0, %d], but is within [%d, %d]." % (n_max_training_samples, n_min_required_samples, n_max_required_samples)) train_sizes_abs = np.unique(train_sizes_abs) if n_ticks > train_sizes_abs.shape[0]: warnings.warn("Removed duplicate entries from 'train_sizes'. Number " "of ticks will be less than than the size of " "'train_sizes' %d instead of %d)." % (train_sizes_abs.shape[0], n_ticks), RuntimeWarning) return train_sizes_abs def _incremental_fit_estimator(estimator, X, y, classes, train, test, train_sizes, scorer, verbose): """Train estimator on training subsets incrementally and compute scores.""" train_scores, test_scores = [], [] partitions = zip(train_sizes, np.split(train, train_sizes)[:-1]) for n_train_samples, partial_train in partitions: train_subset = train[:n_train_samples] X_train, y_train = _safe_split(estimator, X, y, train_subset) X_partial_train, y_partial_train = _safe_split(estimator, X, y, partial_train) X_test, y_test = _safe_split(estimator, X, y, test, train_subset) if y_partial_train is None: estimator.partial_fit(X_partial_train, classes=classes) else: estimator.partial_fit(X_partial_train, y_partial_train, classes=classes) train_scores.append(_score(estimator, X_train, y_train, scorer)) test_scores.append(_score(estimator, X_test, y_test, scorer)) return np.array((train_scores, test_scores)).T def validation_curve(estimator, X, y, param_name, param_range, cv=None, scoring=None, n_jobs=1, pre_dispatch="all", verbose=0): """Validation curve. Determine training and test scores for varying parameter values. Compute scores for an estimator with different values of a specified parameter. This is similar to grid search with one parameter. However, this will also compute training scores and is merely a utility for plotting the results. Read more in the :ref:`User Guide <validation_curve>`. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods An object of that type which is cloned for each validation. X : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples) or (n_samples, n_features), optional Target relative to X for classification or regression; None for unsupervised learning. param_name : string Name of the parameter that will be varied. param_range : array-like, shape (n_values,) The values of the parameter that will be evaluated. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`StratifiedKFold` used. In all other cases, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. n_jobs : integer, optional Number of jobs to run in parallel (default 1). pre_dispatch : integer or string, optional Number of predispatched jobs for parallel execution (default is all). The option can reduce the allocated memory. The string can be an expression like '2*n_jobs'. verbose : integer, optional Controls the verbosity: the higher, the more messages. Returns ------- train_scores : array, shape (n_ticks, n_cv_folds) Scores on training sets. test_scores : array, shape (n_ticks, n_cv_folds) Scores on test set. Notes ----- See :ref:`examples/model_selection/plot_validation_curve.py <example_model_selection_plot_validation_curve.py>` """ X, y = indexable(X, y) cv = check_cv(cv, X, y, classifier=is_classifier(estimator)) scorer = check_scoring(estimator, scoring=scoring) parallel = Parallel(n_jobs=n_jobs, pre_dispatch=pre_dispatch, verbose=verbose) out = parallel(delayed(_fit_and_score)( estimator, X, y, scorer, train, test, verbose, parameters={param_name: v}, fit_params=None, return_train_score=True) for train, test in cv for v in param_range) out = np.asarray(out)[:, :2] n_params = len(param_range) n_cv_folds = out.shape[0] // n_params out = out.reshape(n_cv_folds, n_params, 2).transpose((2, 1, 0)) return out[0], out[1]
vermouthmjl/scikit-learn
sklearn/learning_curve.py
Python
bsd-3-clause
14,601
#!/usr/bin/python # # This is a free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This Ansible library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this library. If not, see <http://www.gnu.org/licenses/>. ANSIBLE_METADATA = {'metadata_version': '1.0', 'status': ['stableinterface'], 'supported_by': 'curated'} DOCUMENTATION = ''' --- module: ec2_vpc_subnet short_description: Manage subnets in AWS virtual private clouds description: - Manage subnets in AWS virtual private clouds version_added: "2.0" author: Robert Estelle (@erydo) options: az: description: - "The availability zone for the subnet. Only required when state=present." required: false default: null cidr: description: - "The CIDR block for the subnet. E.g. 192.0.2.0/24. Only required when state=present." required: false default: null tags: description: - "A dict of tags to apply to the subnet. Any tags currently applied to the subnet and not present here will be removed." required: false default: null aliases: [ 'resource_tags' ] state: description: - "Create or remove the subnet" required: false default: present choices: [ 'present', 'absent' ] vpc_id: description: - "VPC ID of the VPC in which to create the subnet." required: false default: null extends_documentation_fragment: - aws - ec2 ''' EXAMPLES = ''' # Note: These examples do not set authentication details, see the AWS Guide for details. - name: Create subnet for database servers ec2_vpc_subnet: state: present vpc_id: vpc-123456 cidr: 10.0.1.16/28 resource_tags: Name: Database Subnet register: database_subnet - name: Remove subnet for database servers ec2_vpc_subnet: state: absent vpc_id: vpc-123456 cidr: 10.0.1.16/28 ''' import time try: import boto.ec2 import boto.vpc from boto.exception import EC2ResponseError HAS_BOTO = True except ImportError: HAS_BOTO = False if __name__ != '__main__': raise from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.ec2 import AnsibleAWSError, connect_to_aws, ec2_argument_spec, get_aws_connection_info class AnsibleVPCSubnetException(Exception): pass class AnsibleVPCSubnetCreationException(AnsibleVPCSubnetException): pass class AnsibleVPCSubnetDeletionException(AnsibleVPCSubnetException): pass class AnsibleTagCreationException(AnsibleVPCSubnetException): pass def get_subnet_info(subnet): subnet_info = {'id': subnet.id, 'availability_zone': subnet.availability_zone, 'available_ip_address_count': subnet.available_ip_address_count, 'cidr_block': subnet.cidr_block, 'default_for_az': subnet.defaultForAz, 'map_public_ip_on_launch': subnet.mapPublicIpOnLaunch, 'state': subnet.state, 'tags': subnet.tags, 'vpc_id': subnet.vpc_id } return subnet_info def subnet_exists(vpc_conn, subnet_id): filters = {'subnet-id': subnet_id} subnet = vpc_conn.get_all_subnets(filters=filters) if subnet and subnet[0].state == "available": return subnet[0] else: return False def create_subnet(vpc_conn, vpc_id, cidr, az, check_mode): try: new_subnet = vpc_conn.create_subnet(vpc_id, cidr, az, dry_run=check_mode) # Sometimes AWS takes its time to create a subnet and so using # new subnets's id to do things like create tags results in # exception. boto doesn't seem to refresh 'state' of the newly # created subnet, i.e.: it's always 'pending'. subnet = False while subnet is False: subnet = subnet_exists(vpc_conn, new_subnet.id) time.sleep(0.1) except EC2ResponseError as e: if e.error_code == "DryRunOperation": subnet = None elif e.error_code == "InvalidSubnet.Conflict": raise AnsibleVPCSubnetCreationException("%s: the CIDR %s conflicts with another subnet with the VPC ID %s." % (e.error_code, cidr, vpc_id)) else: raise AnsibleVPCSubnetCreationException( 'Unable to create subnet {0}, error: {1}'.format(cidr, e)) return subnet def get_resource_tags(vpc_conn, resource_id): return dict((t.name, t.value) for t in vpc_conn.get_all_tags(filters={'resource-id': resource_id})) def ensure_tags(vpc_conn, resource_id, tags, add_only, check_mode): try: cur_tags = get_resource_tags(vpc_conn, resource_id) if cur_tags == tags: return {'changed': False, 'tags': cur_tags} to_delete = dict((k, cur_tags[k]) for k in cur_tags if k not in tags) if to_delete and not add_only: vpc_conn.delete_tags(resource_id, to_delete, dry_run=check_mode) to_add = dict((k, tags[k]) for k in tags if k not in cur_tags or cur_tags[k] != tags[k]) if to_add: vpc_conn.create_tags(resource_id, to_add, dry_run=check_mode) latest_tags = get_resource_tags(vpc_conn, resource_id) return {'changed': True, 'tags': latest_tags} except EC2ResponseError as e: raise AnsibleTagCreationException( 'Unable to update tags for {0}, error: {1}'.format(resource_id, e)) def get_matching_subnet(vpc_conn, vpc_id, cidr): subnets = vpc_conn.get_all_subnets(filters={'vpc_id': vpc_id}) return next((s for s in subnets if s.cidr_block == cidr), None) def ensure_subnet_present(vpc_conn, vpc_id, cidr, az, tags, check_mode): subnet = get_matching_subnet(vpc_conn, vpc_id, cidr) changed = False if subnet is None: subnet = create_subnet(vpc_conn, vpc_id, cidr, az, check_mode) changed = True # Subnet will be None when check_mode is true if subnet is None: return { 'changed': changed, 'subnet': {} } if tags != subnet.tags: ensure_tags(vpc_conn, subnet.id, tags, False, check_mode) subnet.tags = tags changed = True subnet_info = get_subnet_info(subnet) return { 'changed': changed, 'subnet': subnet_info } def ensure_subnet_absent(vpc_conn, vpc_id, cidr, check_mode): subnet = get_matching_subnet(vpc_conn, vpc_id, cidr) if subnet is None: return {'changed': False} try: vpc_conn.delete_subnet(subnet.id, dry_run=check_mode) return {'changed': True} except EC2ResponseError as e: raise AnsibleVPCSubnetDeletionException( 'Unable to delete subnet {0}, error: {1}' .format(subnet.cidr_block, e)) def main(): argument_spec = ec2_argument_spec() argument_spec.update( dict( az=dict(default=None, required=False), cidr=dict(default=None, required=True), state=dict(default='present', choices=['present', 'absent']), tags=dict(default={}, required=False, type='dict', aliases=['resource_tags']), vpc_id=dict(default=None, required=True) ) ) module = AnsibleModule(argument_spec=argument_spec, supports_check_mode=True) if not HAS_BOTO: module.fail_json(msg='boto is required for this module') region, ec2_url, aws_connect_params = get_aws_connection_info(module) if region: try: connection = connect_to_aws(boto.vpc, region, **aws_connect_params) except (boto.exception.NoAuthHandlerFound, AnsibleAWSError) as e: module.fail_json(msg=str(e)) else: module.fail_json(msg="region must be specified") vpc_id = module.params.get('vpc_id') tags = module.params.get('tags') cidr = module.params.get('cidr') az = module.params.get('az') state = module.params.get('state') try: if state == 'present': result = ensure_subnet_present(connection, vpc_id, cidr, az, tags, check_mode=module.check_mode) elif state == 'absent': result = ensure_subnet_absent(connection, vpc_id, cidr, check_mode=module.check_mode) except AnsibleVPCSubnetException as e: module.fail_json(msg=str(e)) module.exit_json(**result) if __name__ == '__main__': main()
andreaso/ansible
lib/ansible/modules/cloud/amazon/ec2_vpc_subnet.py
Python
gpl-3.0
8,929
#!/usr/bin/env python2 ''' EC2 external inventory script ================================= Generates inventory that Ansible can understand by making API request to AWS EC2 using the Boto library. NOTE: This script assumes Ansible is being executed where the environment variables needed for Boto have already been set: export AWS_ACCESS_KEY_ID='AK123' export AWS_SECRET_ACCESS_KEY='abc123' This script also assumes there is an ec2.ini file alongside it. To specify a different path to ec2.ini, define the EC2_INI_PATH environment variable: export EC2_INI_PATH=/path/to/my_ec2.ini If you're using eucalyptus you need to set the above variables and you need to define: export EC2_URL=http://hostname_of_your_cc:port/services/Eucalyptus If you're using boto profiles (requires boto>=2.24.0) you can choose a profile using the --boto-profile command line argument (e.g. ec2.py --boto-profile prod) or using the AWS_PROFILE variable: AWS_PROFILE=prod ansible-playbook -i ec2.py myplaybook.yml For more details, see: http://docs.pythonboto.org/en/latest/boto_config_tut.html When run against a specific host, this script returns the following variables: - ec2_ami_launch_index - ec2_architecture - ec2_association - ec2_attachTime - ec2_attachment - ec2_attachmentId - ec2_client_token - ec2_deleteOnTermination - ec2_description - ec2_deviceIndex - ec2_dns_name - ec2_eventsSet - ec2_group_name - ec2_hypervisor - ec2_id - ec2_image_id - ec2_instanceState - ec2_instance_type - ec2_ipOwnerId - ec2_ip_address - ec2_item - ec2_kernel - ec2_key_name - ec2_launch_time - ec2_monitored - ec2_monitoring - ec2_networkInterfaceId - ec2_ownerId - ec2_persistent - ec2_placement - ec2_platform - ec2_previous_state - ec2_private_dns_name - ec2_private_ip_address - ec2_publicIp - ec2_public_dns_name - ec2_ramdisk - ec2_reason - ec2_region - ec2_requester_id - ec2_root_device_name - ec2_root_device_type - ec2_security_group_ids - ec2_security_group_names - ec2_shutdown_state - ec2_sourceDestCheck - ec2_spot_instance_request_id - ec2_state - ec2_state_code - ec2_state_reason - ec2_status - ec2_subnet_id - ec2_tenancy - ec2_virtualization_type - ec2_vpc_id These variables are pulled out of a boto.ec2.instance object. There is a lack of consistency with variable spellings (camelCase and underscores) since this just loops through all variables the object exposes. It is preferred to use the ones with underscores when multiple exist. In addition, if an instance has AWS Tags associated with it, each tag is a new variable named: - ec2_tag_[Key] = [Value] Security groups are comma-separated in 'ec2_security_group_ids' and 'ec2_security_group_names'. ''' # (c) 2012, Peter Sankauskas # # This file is part of Ansible, # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. ###################################################################### import sys import os import argparse import re from time import time import boto from boto import ec2 from boto import rds from boto import elasticache from boto import route53 import six from six.moves import configparser from collections import defaultdict try: import json except ImportError: import simplejson as json class Ec2Inventory(object): def _empty_inventory(self): return {"_meta" : {"hostvars" : {}}} def __init__(self): ''' Main execution path ''' # Inventory grouped by instance IDs, tags, security groups, regions, # and availability zones self.inventory = self._empty_inventory() # Index of hostname (address) to instance ID self.index = {} # Boto profile to use (if any) self.boto_profile = None # Read settings and parse CLI arguments self.parse_cli_args() self.read_settings() # Make sure that profile_name is not passed at all if not set # as pre 2.24 boto will fall over otherwise if self.boto_profile: if not hasattr(boto.ec2.EC2Connection, 'profile_name'): self.fail_with_error("boto version must be >= 2.24 to use profile") # Cache if self.args.refresh_cache: self.do_api_calls_update_cache() elif not self.is_cache_valid(): self.do_api_calls_update_cache() # Data to print if self.args.host: data_to_print = self.get_host_info() elif self.args.list: # Display list of instances for inventory if self.inventory == self._empty_inventory(): data_to_print = self.get_inventory_from_cache() else: data_to_print = self.json_format_dict(self.inventory, True) print(data_to_print) def is_cache_valid(self): ''' Determines if the cache files have expired, or if it is still valid ''' if os.path.isfile(self.cache_path_cache): mod_time = os.path.getmtime(self.cache_path_cache) current_time = time() if (mod_time + self.cache_max_age) > current_time: if os.path.isfile(self.cache_path_index): return True return False def read_settings(self): ''' Reads the settings from the ec2.ini file ''' if six.PY3: config = configparser.ConfigParser() else: config = configparser.SafeConfigParser() ec2_default_ini_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'ec2.ini') ec2_ini_path = os.path.expanduser(os.path.expandvars(os.environ.get('EC2_INI_PATH', ec2_default_ini_path))) config.read(ec2_ini_path) # is eucalyptus? self.eucalyptus_host = None self.eucalyptus = False if config.has_option('ec2', 'eucalyptus'): self.eucalyptus = config.getboolean('ec2', 'eucalyptus') if self.eucalyptus and config.has_option('ec2', 'eucalyptus_host'): self.eucalyptus_host = config.get('ec2', 'eucalyptus_host') # Regions self.regions = [] configRegions = config.get('ec2', 'regions') configRegions_exclude = config.get('ec2', 'regions_exclude') if (configRegions == 'all'): if self.eucalyptus_host: self.regions.append(boto.connect_euca(host=self.eucalyptus_host).region.name) else: for regionInfo in ec2.regions(): if regionInfo.name not in configRegions_exclude: self.regions.append(regionInfo.name) else: self.regions = configRegions.split(",") # Destination addresses self.destination_variable = config.get('ec2', 'destination_variable') self.vpc_destination_variable = config.get('ec2', 'vpc_destination_variable') if config.has_option('ec2', 'destination_format') and \ config.has_option('ec2', 'destination_format_tags'): self.destination_format = config.get('ec2', 'destination_format') self.destination_format_tags = config.get('ec2', 'destination_format_tags').split(',') else: self.destination_format = None self.destination_format_tags = None # Route53 self.route53_enabled = config.getboolean('ec2', 'route53') self.route53_excluded_zones = [] if config.has_option('ec2', 'route53_excluded_zones'): self.route53_excluded_zones.extend( config.get('ec2', 'route53_excluded_zones', '').split(',')) # Include RDS instances? self.rds_enabled = True if config.has_option('ec2', 'rds'): self.rds_enabled = config.getboolean('ec2', 'rds') # Include ElastiCache instances? self.elasticache_enabled = True if config.has_option('ec2', 'elasticache'): self.elasticache_enabled = config.getboolean('ec2', 'elasticache') # Return all EC2 instances? if config.has_option('ec2', 'all_instances'): self.all_instances = config.getboolean('ec2', 'all_instances') else: self.all_instances = False # Instance states to be gathered in inventory. Default is 'running'. # Setting 'all_instances' to 'yes' overrides this option. ec2_valid_instance_states = [ 'pending', 'running', 'shutting-down', 'terminated', 'stopping', 'stopped' ] self.ec2_instance_states = [] if self.all_instances: self.ec2_instance_states = ec2_valid_instance_states elif config.has_option('ec2', 'instance_states'): for instance_state in config.get('ec2', 'instance_states').split(','): instance_state = instance_state.strip() if instance_state not in ec2_valid_instance_states: continue self.ec2_instance_states.append(instance_state) else: self.ec2_instance_states = ['running'] # Return all RDS instances? (if RDS is enabled) if config.has_option('ec2', 'all_rds_instances') and self.rds_enabled: self.all_rds_instances = config.getboolean('ec2', 'all_rds_instances') else: self.all_rds_instances = False # Return all ElastiCache replication groups? (if ElastiCache is enabled) if config.has_option('ec2', 'all_elasticache_replication_groups') and self.elasticache_enabled: self.all_elasticache_replication_groups = config.getboolean('ec2', 'all_elasticache_replication_groups') else: self.all_elasticache_replication_groups = False # Return all ElastiCache clusters? (if ElastiCache is enabled) if config.has_option('ec2', 'all_elasticache_clusters') and self.elasticache_enabled: self.all_elasticache_clusters = config.getboolean('ec2', 'all_elasticache_clusters') else: self.all_elasticache_clusters = False # Return all ElastiCache nodes? (if ElastiCache is enabled) if config.has_option('ec2', 'all_elasticache_nodes') and self.elasticache_enabled: self.all_elasticache_nodes = config.getboolean('ec2', 'all_elasticache_nodes') else: self.all_elasticache_nodes = False # boto configuration profile (prefer CLI argument) self.boto_profile = self.args.boto_profile if config.has_option('ec2', 'boto_profile') and not self.boto_profile: self.boto_profile = config.get('ec2', 'boto_profile') # Cache related cache_dir = os.path.expanduser(config.get('ec2', 'cache_path')) if self.boto_profile: cache_dir = os.path.join(cache_dir, 'profile_' + self.boto_profile) if not os.path.exists(cache_dir): os.makedirs(cache_dir) self.cache_path_cache = cache_dir + "/ansible-ec2.cache" self.cache_path_index = cache_dir + "/ansible-ec2.index" self.cache_max_age = config.getint('ec2', 'cache_max_age') # Configure nested groups instead of flat namespace. if config.has_option('ec2', 'nested_groups'): self.nested_groups = config.getboolean('ec2', 'nested_groups') else: self.nested_groups = False # Replace dash or not in group names if config.has_option('ec2', 'replace_dash_in_groups'): self.replace_dash_in_groups = config.getboolean('ec2', 'replace_dash_in_groups') else: self.replace_dash_in_groups = True # Configure which groups should be created. group_by_options = [ 'group_by_instance_id', 'group_by_region', 'group_by_availability_zone', 'group_by_ami_id', 'group_by_instance_type', 'group_by_key_pair', 'group_by_vpc_id', 'group_by_security_group', 'group_by_tag_keys', 'group_by_tag_none', 'group_by_route53_names', 'group_by_rds_engine', 'group_by_rds_parameter_group', 'group_by_elasticache_engine', 'group_by_elasticache_cluster', 'group_by_elasticache_parameter_group', 'group_by_elasticache_replication_group', ] for option in group_by_options: if config.has_option('ec2', option): setattr(self, option, config.getboolean('ec2', option)) else: setattr(self, option, True) # Do we need to just include hosts that match a pattern? try: pattern_include = config.get('ec2', 'pattern_include') if pattern_include and len(pattern_include) > 0: self.pattern_include = re.compile(pattern_include) else: self.pattern_include = None except configparser.NoOptionError: self.pattern_include = None # Do we need to exclude hosts that match a pattern? try: pattern_exclude = config.get('ec2', 'pattern_exclude'); if pattern_exclude and len(pattern_exclude) > 0: self.pattern_exclude = re.compile(pattern_exclude) else: self.pattern_exclude = None except configparser.NoOptionError: self.pattern_exclude = None # Instance filters (see boto and EC2 API docs). Ignore invalid filters. self.ec2_instance_filters = defaultdict(list) if config.has_option('ec2', 'instance_filters'): for instance_filter in config.get('ec2', 'instance_filters', '').split(','): instance_filter = instance_filter.strip() if not instance_filter or '=' not in instance_filter: continue filter_key, filter_value = [x.strip() for x in instance_filter.split('=', 1)] if not filter_key: continue self.ec2_instance_filters[filter_key].append(filter_value) def parse_cli_args(self): ''' Command line argument processing ''' parser = argparse.ArgumentParser(description='Produce an Ansible Inventory file based on EC2') parser.add_argument('--list', action='store_true', default=True, help='List instances (default: True)') parser.add_argument('--host', action='store', help='Get all the variables about a specific instance') parser.add_argument('--refresh-cache', action='store_true', default=False, help='Force refresh of cache by making API requests to EC2 (default: False - use cache files)') parser.add_argument('--boto-profile', action='store', help='Use boto profile for connections to EC2') self.args = parser.parse_args() def do_api_calls_update_cache(self): ''' Do API calls to each region, and save data in cache files ''' if self.route53_enabled: self.get_route53_records() for region in self.regions: self.get_instances_by_region(region) if self.rds_enabled: self.get_rds_instances_by_region(region) if self.elasticache_enabled: self.get_elasticache_clusters_by_region(region) self.get_elasticache_replication_groups_by_region(region) self.write_to_cache(self.inventory, self.cache_path_cache) self.write_to_cache(self.index, self.cache_path_index) def connect(self, region): ''' create connection to api server''' if self.eucalyptus: conn = boto.connect_euca(host=self.eucalyptus_host) conn.APIVersion = '2010-08-31' else: conn = self.connect_to_aws(ec2, region) return conn def boto_fix_security_token_in_profile(self, connect_args): ''' monkey patch for boto issue boto/boto#2100 ''' profile = 'profile ' + self.boto_profile if boto.config.has_option(profile, 'aws_security_token'): connect_args['security_token'] = boto.config.get(profile, 'aws_security_token') return connect_args def connect_to_aws(self, module, region): connect_args = {} # only pass the profile name if it's set (as it is not supported by older boto versions) if self.boto_profile: connect_args['profile_name'] = self.boto_profile self.boto_fix_security_token_in_profile(connect_args) conn = module.connect_to_region(region, **connect_args) # connect_to_region will fail "silently" by returning None if the region name is wrong or not supported if conn is None: self.fail_with_error("region name: %s likely not supported, or AWS is down. connection to region failed." % region) return conn def get_instances_by_region(self, region): ''' Makes an AWS EC2 API call to the list of instances in a particular region ''' try: conn = self.connect(region) reservations = [] if self.ec2_instance_filters: for filter_key, filter_values in self.ec2_instance_filters.items(): reservations.extend(conn.get_all_instances(filters = { filter_key : filter_values })) else: reservations = conn.get_all_instances() for reservation in reservations: for instance in reservation.instances: self.add_instance(instance, region) except boto.exception.BotoServerError as e: if e.error_code == 'AuthFailure': error = self.get_auth_error_message() else: backend = 'Eucalyptus' if self.eucalyptus else 'AWS' error = "Error connecting to %s backend.\n%s" % (backend, e.message) self.fail_with_error(error, 'getting EC2 instances') def get_rds_instances_by_region(self, region): ''' Makes an AWS API call to the list of RDS instances in a particular region ''' try: conn = self.connect_to_aws(rds, region) if conn: instances = conn.get_all_dbinstances() for instance in instances: self.add_rds_instance(instance, region) except boto.exception.BotoServerError as e: error = e.reason if e.error_code == 'AuthFailure': error = self.get_auth_error_message() if not e.reason == "Forbidden": error = "Looks like AWS RDS is down:\n%s" % e.message self.fail_with_error(error, 'getting RDS instances') def get_elasticache_clusters_by_region(self, region): ''' Makes an AWS API call to the list of ElastiCache clusters (with nodes' info) in a particular region.''' # ElastiCache boto module doesn't provide a get_all_intances method, # that's why we need to call describe directly (it would be called by # the shorthand method anyway...) try: conn = elasticache.connect_to_region(region) if conn: # show_cache_node_info = True # because we also want nodes' information response = conn.describe_cache_clusters(None, None, None, True) except boto.exception.BotoServerError as e: error = e.reason if e.error_code == 'AuthFailure': error = self.get_auth_error_message() if not e.reason == "Forbidden": error = "Looks like AWS ElastiCache is down:\n%s" % e.message self.fail_with_error(error, 'getting ElastiCache clusters') try: # Boto also doesn't provide wrapper classes to CacheClusters or # CacheNodes. Because of that wo can't make use of the get_list # method in the AWSQueryConnection. Let's do the work manually clusters = response['DescribeCacheClustersResponse']['DescribeCacheClustersResult']['CacheClusters'] except KeyError as e: error = "ElastiCache query to AWS failed (unexpected format)." self.fail_with_error(error, 'getting ElastiCache clusters') for cluster in clusters: self.add_elasticache_cluster(cluster, region) def get_elasticache_replication_groups_by_region(self, region): ''' Makes an AWS API call to the list of ElastiCache replication groups in a particular region.''' # ElastiCache boto module doesn't provide a get_all_intances method, # that's why we need to call describe directly (it would be called by # the shorthand method anyway...) try: conn = elasticache.connect_to_region(region) if conn: response = conn.describe_replication_groups() except boto.exception.BotoServerError as e: error = e.reason if e.error_code == 'AuthFailure': error = self.get_auth_error_message() if not e.reason == "Forbidden": error = "Looks like AWS ElastiCache [Replication Groups] is down:\n%s" % e.message self.fail_with_error(error, 'getting ElastiCache clusters') try: # Boto also doesn't provide wrapper classes to ReplicationGroups # Because of that wo can't make use of the get_list method in the # AWSQueryConnection. Let's do the work manually replication_groups = response['DescribeReplicationGroupsResponse']['DescribeReplicationGroupsResult']['ReplicationGroups'] except KeyError as e: error = "ElastiCache [Replication Groups] query to AWS failed (unexpected format)." self.fail_with_error(error, 'getting ElastiCache clusters') for replication_group in replication_groups: self.add_elasticache_replication_group(replication_group, region) def get_auth_error_message(self): ''' create an informative error message if there is an issue authenticating''' errors = ["Authentication error retrieving ec2 inventory."] if None in [os.environ.get('AWS_ACCESS_KEY_ID'), os.environ.get('AWS_SECRET_ACCESS_KEY')]: errors.append(' - No AWS_ACCESS_KEY_ID or AWS_SECRET_ACCESS_KEY environment vars found') else: errors.append(' - AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment vars found but may not be correct') boto_paths = ['/etc/boto.cfg', '~/.boto', '~/.aws/credentials'] boto_config_found = list(p for p in boto_paths if os.path.isfile(os.path.expanduser(p))) if len(boto_config_found) > 0: errors.append(" - Boto configs found at '%s', but the credentials contained may not be correct" % ', '.join(boto_config_found)) else: errors.append(" - No Boto config found at any expected location '%s'" % ', '.join(boto_paths)) return '\n'.join(errors) def fail_with_error(self, err_msg, err_operation=None): '''log an error to std err for ansible-playbook to consume and exit''' if err_operation: err_msg = 'ERROR: "{err_msg}", while: {err_operation}'.format( err_msg=err_msg, err_operation=err_operation) sys.stderr.write(err_msg) sys.exit(1) def get_instance(self, region, instance_id): conn = self.connect(region) reservations = conn.get_all_instances([instance_id]) for reservation in reservations: for instance in reservation.instances: return instance def add_instance(self, instance, region): ''' Adds an instance to the inventory and index, as long as it is addressable ''' # Only return instances with desired instance states if instance.state not in self.ec2_instance_states: return # Select the best destination address if self.destination_format and self.destination_format_tags: dest = self.destination_format.format(*[ getattr(instance, 'tags').get(tag, 'nil') for tag in self.destination_format_tags ]) elif instance.subnet_id: dest = getattr(instance, self.vpc_destination_variable, None) if dest is None: dest = getattr(instance, 'tags').get(self.vpc_destination_variable, None) else: dest = getattr(instance, self.destination_variable, None) if dest is None: dest = getattr(instance, 'tags').get(self.destination_variable, None) if not dest: # Skip instances we cannot address (e.g. private VPC subnet) return # if we only want to include hosts that match a pattern, skip those that don't if self.pattern_include and not self.pattern_include.match(dest): return # if we need to exclude hosts that match a pattern, skip those if self.pattern_exclude and self.pattern_exclude.match(dest): return # Add to index self.index[dest] = [region, instance.id] # Inventory: Group by instance ID (always a group of 1) if self.group_by_instance_id: self.inventory[instance.id] = [dest] if self.nested_groups: self.push_group(self.inventory, 'instances', instance.id) # Inventory: Group by region if self.group_by_region: self.push(self.inventory, region, dest) if self.nested_groups: self.push_group(self.inventory, 'regions', region) # Inventory: Group by availability zone if self.group_by_availability_zone: self.push(self.inventory, instance.placement, dest) if self.nested_groups: if self.group_by_region: self.push_group(self.inventory, region, instance.placement) self.push_group(self.inventory, 'zones', instance.placement) # Inventory: Group by Amazon Machine Image (AMI) ID if self.group_by_ami_id: ami_id = self.to_safe(instance.image_id) self.push(self.inventory, ami_id, dest) if self.nested_groups: self.push_group(self.inventory, 'images', ami_id) # Inventory: Group by instance type if self.group_by_instance_type: type_name = self.to_safe('type_' + instance.instance_type) self.push(self.inventory, type_name, dest) if self.nested_groups: self.push_group(self.inventory, 'types', type_name) # Inventory: Group by key pair if self.group_by_key_pair and instance.key_name: key_name = self.to_safe('key_' + instance.key_name) self.push(self.inventory, key_name, dest) if self.nested_groups: self.push_group(self.inventory, 'keys', key_name) # Inventory: Group by VPC if self.group_by_vpc_id and instance.vpc_id: vpc_id_name = self.to_safe('vpc_id_' + instance.vpc_id) self.push(self.inventory, vpc_id_name, dest) if self.nested_groups: self.push_group(self.inventory, 'vpcs', vpc_id_name) # Inventory: Group by security group if self.group_by_security_group: try: for group in instance.groups: key = self.to_safe("security_group_" + group.name) self.push(self.inventory, key, dest) if self.nested_groups: self.push_group(self.inventory, 'security_groups', key) except AttributeError: self.fail_with_error('\n'.join(['Package boto seems a bit older.', 'Please upgrade boto >= 2.3.0.'])) # Inventory: Group by tag keys if self.group_by_tag_keys: for k, v in instance.tags.items(): if v: key = self.to_safe("tag_" + k + "=" + v) else: key = self.to_safe("tag_" + k) self.push(self.inventory, key, dest) if self.nested_groups: self.push_group(self.inventory, 'tags', self.to_safe("tag_" + k)) if v: self.push_group(self.inventory, self.to_safe("tag_" + k), key) # Inventory: Group by Route53 domain names if enabled if self.route53_enabled and self.group_by_route53_names: route53_names = self.get_instance_route53_names(instance) for name in route53_names: self.push(self.inventory, name, dest) if self.nested_groups: self.push_group(self.inventory, 'route53', name) # Global Tag: instances without tags if self.group_by_tag_none and len(instance.tags) == 0: self.push(self.inventory, 'tag_none', dest) if self.nested_groups: self.push_group(self.inventory, 'tags', 'tag_none') # Global Tag: tag all EC2 instances self.push(self.inventory, 'ec2', dest) self.inventory["_meta"]["hostvars"][dest] = self.get_host_info_dict_from_instance(instance) def add_rds_instance(self, instance, region): ''' Adds an RDS instance to the inventory and index, as long as it is addressable ''' # Only want available instances unless all_rds_instances is True if not self.all_rds_instances and instance.status != 'available': return # Select the best destination address dest = instance.endpoint[0] if not dest: # Skip instances we cannot address (e.g. private VPC subnet) return # Add to index self.index[dest] = [region, instance.id] # Inventory: Group by instance ID (always a group of 1) if self.group_by_instance_id: self.inventory[instance.id] = [dest] if self.nested_groups: self.push_group(self.inventory, 'instances', instance.id) # Inventory: Group by region if self.group_by_region: self.push(self.inventory, region, dest) if self.nested_groups: self.push_group(self.inventory, 'regions', region) # Inventory: Group by availability zone if self.group_by_availability_zone: self.push(self.inventory, instance.availability_zone, dest) if self.nested_groups: if self.group_by_region: self.push_group(self.inventory, region, instance.availability_zone) self.push_group(self.inventory, 'zones', instance.availability_zone) # Inventory: Group by instance type if self.group_by_instance_type: type_name = self.to_safe('type_' + instance.instance_class) self.push(self.inventory, type_name, dest) if self.nested_groups: self.push_group(self.inventory, 'types', type_name) # Inventory: Group by VPC if self.group_by_vpc_id and instance.subnet_group and instance.subnet_group.vpc_id: vpc_id_name = self.to_safe('vpc_id_' + instance.subnet_group.vpc_id) self.push(self.inventory, vpc_id_name, dest) if self.nested_groups: self.push_group(self.inventory, 'vpcs', vpc_id_name) # Inventory: Group by security group if self.group_by_security_group: try: if instance.security_group: key = self.to_safe("security_group_" + instance.security_group.name) self.push(self.inventory, key, dest) if self.nested_groups: self.push_group(self.inventory, 'security_groups', key) except AttributeError: self.fail_with_error('\n'.join(['Package boto seems a bit older.', 'Please upgrade boto >= 2.3.0.'])) # Inventory: Group by engine if self.group_by_rds_engine: self.push(self.inventory, self.to_safe("rds_" + instance.engine), dest) if self.nested_groups: self.push_group(self.inventory, 'rds_engines', self.to_safe("rds_" + instance.engine)) # Inventory: Group by parameter group if self.group_by_rds_parameter_group: self.push(self.inventory, self.to_safe("rds_parameter_group_" + instance.parameter_group.name), dest) if self.nested_groups: self.push_group(self.inventory, 'rds_parameter_groups', self.to_safe("rds_parameter_group_" + instance.parameter_group.name)) # Global Tag: all RDS instances self.push(self.inventory, 'rds', dest) self.inventory["_meta"]["hostvars"][dest] = self.get_host_info_dict_from_instance(instance) def add_elasticache_cluster(self, cluster, region): ''' Adds an ElastiCache cluster to the inventory and index, as long as it's nodes are addressable ''' # Only want available clusters unless all_elasticache_clusters is True if not self.all_elasticache_clusters and cluster['CacheClusterStatus'] != 'available': return # Select the best destination address if 'ConfigurationEndpoint' in cluster and cluster['ConfigurationEndpoint']: # Memcached cluster dest = cluster['ConfigurationEndpoint']['Address'] is_redis = False else: # Redis sigle node cluster # Because all Redis clusters are single nodes, we'll merge the # info from the cluster with info about the node dest = cluster['CacheNodes'][0]['Endpoint']['Address'] is_redis = True if not dest: # Skip clusters we cannot address (e.g. private VPC subnet) return # Add to index self.index[dest] = [region, cluster['CacheClusterId']] # Inventory: Group by instance ID (always a group of 1) if self.group_by_instance_id: self.inventory[cluster['CacheClusterId']] = [dest] if self.nested_groups: self.push_group(self.inventory, 'instances', cluster['CacheClusterId']) # Inventory: Group by region if self.group_by_region and not is_redis: self.push(self.inventory, region, dest) if self.nested_groups: self.push_group(self.inventory, 'regions', region) # Inventory: Group by availability zone if self.group_by_availability_zone and not is_redis: self.push(self.inventory, cluster['PreferredAvailabilityZone'], dest) if self.nested_groups: if self.group_by_region: self.push_group(self.inventory, region, cluster['PreferredAvailabilityZone']) self.push_group(self.inventory, 'zones', cluster['PreferredAvailabilityZone']) # Inventory: Group by node type if self.group_by_instance_type and not is_redis: type_name = self.to_safe('type_' + cluster['CacheNodeType']) self.push(self.inventory, type_name, dest) if self.nested_groups: self.push_group(self.inventory, 'types', type_name) # Inventory: Group by VPC (information not available in the current # AWS API version for ElastiCache) # Inventory: Group by security group if self.group_by_security_group and not is_redis: # Check for the existence of the 'SecurityGroups' key and also if # this key has some value. When the cluster is not placed in a SG # the query can return None here and cause an error. if 'SecurityGroups' in cluster and cluster['SecurityGroups'] is not None: for security_group in cluster['SecurityGroups']: key = self.to_safe("security_group_" + security_group['SecurityGroupId']) self.push(self.inventory, key, dest) if self.nested_groups: self.push_group(self.inventory, 'security_groups', key) # Inventory: Group by engine if self.group_by_elasticache_engine and not is_redis: self.push(self.inventory, self.to_safe("elasticache_" + cluster['Engine']), dest) if self.nested_groups: self.push_group(self.inventory, 'elasticache_engines', self.to_safe(cluster['Engine'])) # Inventory: Group by parameter group if self.group_by_elasticache_parameter_group: self.push(self.inventory, self.to_safe("elasticache_parameter_group_" + cluster['CacheParameterGroup']['CacheParameterGroupName']), dest) if self.nested_groups: self.push_group(self.inventory, 'elasticache_parameter_groups', self.to_safe(cluster['CacheParameterGroup']['CacheParameterGroupName'])) # Inventory: Group by replication group if self.group_by_elasticache_replication_group and 'ReplicationGroupId' in cluster and cluster['ReplicationGroupId']: self.push(self.inventory, self.to_safe("elasticache_replication_group_" + cluster['ReplicationGroupId']), dest) if self.nested_groups: self.push_group(self.inventory, 'elasticache_replication_groups', self.to_safe(cluster['ReplicationGroupId'])) # Global Tag: all ElastiCache clusters self.push(self.inventory, 'elasticache_clusters', cluster['CacheClusterId']) host_info = self.get_host_info_dict_from_describe_dict(cluster) self.inventory["_meta"]["hostvars"][dest] = host_info # Add the nodes for node in cluster['CacheNodes']: self.add_elasticache_node(node, cluster, region) def add_elasticache_node(self, node, cluster, region): ''' Adds an ElastiCache node to the inventory and index, as long as it is addressable ''' # Only want available nodes unless all_elasticache_nodes is True if not self.all_elasticache_nodes and node['CacheNodeStatus'] != 'available': return # Select the best destination address dest = node['Endpoint']['Address'] if not dest: # Skip nodes we cannot address (e.g. private VPC subnet) return node_id = self.to_safe(cluster['CacheClusterId'] + '_' + node['CacheNodeId']) # Add to index self.index[dest] = [region, node_id] # Inventory: Group by node ID (always a group of 1) if self.group_by_instance_id: self.inventory[node_id] = [dest] if self.nested_groups: self.push_group(self.inventory, 'instances', node_id) # Inventory: Group by region if self.group_by_region: self.push(self.inventory, region, dest) if self.nested_groups: self.push_group(self.inventory, 'regions', region) # Inventory: Group by availability zone if self.group_by_availability_zone: self.push(self.inventory, cluster['PreferredAvailabilityZone'], dest) if self.nested_groups: if self.group_by_region: self.push_group(self.inventory, region, cluster['PreferredAvailabilityZone']) self.push_group(self.inventory, 'zones', cluster['PreferredAvailabilityZone']) # Inventory: Group by node type if self.group_by_instance_type: type_name = self.to_safe('type_' + cluster['CacheNodeType']) self.push(self.inventory, type_name, dest) if self.nested_groups: self.push_group(self.inventory, 'types', type_name) # Inventory: Group by VPC (information not available in the current # AWS API version for ElastiCache) # Inventory: Group by security group if self.group_by_security_group: # Check for the existence of the 'SecurityGroups' key and also if # this key has some value. When the cluster is not placed in a SG # the query can return None here and cause an error. if 'SecurityGroups' in cluster and cluster['SecurityGroups'] is not None: for security_group in cluster['SecurityGroups']: key = self.to_safe("security_group_" + security_group['SecurityGroupId']) self.push(self.inventory, key, dest) if self.nested_groups: self.push_group(self.inventory, 'security_groups', key) # Inventory: Group by engine if self.group_by_elasticache_engine: self.push(self.inventory, self.to_safe("elasticache_" + cluster['Engine']), dest) if self.nested_groups: self.push_group(self.inventory, 'elasticache_engines', self.to_safe("elasticache_" + cluster['Engine'])) # Inventory: Group by parameter group (done at cluster level) # Inventory: Group by replication group (done at cluster level) # Inventory: Group by ElastiCache Cluster if self.group_by_elasticache_cluster: self.push(self.inventory, self.to_safe("elasticache_cluster_" + cluster['CacheClusterId']), dest) # Global Tag: all ElastiCache nodes self.push(self.inventory, 'elasticache_nodes', dest) host_info = self.get_host_info_dict_from_describe_dict(node) if dest in self.inventory["_meta"]["hostvars"]: self.inventory["_meta"]["hostvars"][dest].update(host_info) else: self.inventory["_meta"]["hostvars"][dest] = host_info def add_elasticache_replication_group(self, replication_group, region): ''' Adds an ElastiCache replication group to the inventory and index ''' # Only want available clusters unless all_elasticache_replication_groups is True if not self.all_elasticache_replication_groups and replication_group['Status'] != 'available': return # Select the best destination address (PrimaryEndpoint) dest = replication_group['NodeGroups'][0]['PrimaryEndpoint']['Address'] if not dest: # Skip clusters we cannot address (e.g. private VPC subnet) return # Add to index self.index[dest] = [region, replication_group['ReplicationGroupId']] # Inventory: Group by ID (always a group of 1) if self.group_by_instance_id: self.inventory[replication_group['ReplicationGroupId']] = [dest] if self.nested_groups: self.push_group(self.inventory, 'instances', replication_group['ReplicationGroupId']) # Inventory: Group by region if self.group_by_region: self.push(self.inventory, region, dest) if self.nested_groups: self.push_group(self.inventory, 'regions', region) # Inventory: Group by availability zone (doesn't apply to replication groups) # Inventory: Group by node type (doesn't apply to replication groups) # Inventory: Group by VPC (information not available in the current # AWS API version for replication groups # Inventory: Group by security group (doesn't apply to replication groups) # Check this value in cluster level # Inventory: Group by engine (replication groups are always Redis) if self.group_by_elasticache_engine: self.push(self.inventory, 'elasticache_redis', dest) if self.nested_groups: self.push_group(self.inventory, 'elasticache_engines', 'redis') # Global Tag: all ElastiCache clusters self.push(self.inventory, 'elasticache_replication_groups', replication_group['ReplicationGroupId']) host_info = self.get_host_info_dict_from_describe_dict(replication_group) self.inventory["_meta"]["hostvars"][dest] = host_info def get_route53_records(self): ''' Get and store the map of resource records to domain names that point to them. ''' r53_conn = route53.Route53Connection() all_zones = r53_conn.get_zones() route53_zones = [ zone for zone in all_zones if zone.name[:-1] not in self.route53_excluded_zones ] self.route53_records = {} for zone in route53_zones: rrsets = r53_conn.get_all_rrsets(zone.id) for record_set in rrsets: record_name = record_set.name if record_name.endswith('.'): record_name = record_name[:-1] for resource in record_set.resource_records: self.route53_records.setdefault(resource, set()) self.route53_records[resource].add(record_name) def get_instance_route53_names(self, instance): ''' Check if an instance is referenced in the records we have from Route53. If it is, return the list of domain names pointing to said instance. If nothing points to it, return an empty list. ''' instance_attributes = [ 'public_dns_name', 'private_dns_name', 'ip_address', 'private_ip_address' ] name_list = set() for attrib in instance_attributes: try: value = getattr(instance, attrib) except AttributeError: continue if value in self.route53_records: name_list.update(self.route53_records[value]) return list(name_list) def get_host_info_dict_from_instance(self, instance): instance_vars = {} for key in vars(instance): value = getattr(instance, key) key = self.to_safe('ec2_' + key) # Handle complex types # state/previous_state changed to properties in boto in https://github.com/boto/boto/commit/a23c379837f698212252720d2af8dec0325c9518 if key == 'ec2__state': instance_vars['ec2_state'] = instance.state or '' instance_vars['ec2_state_code'] = instance.state_code elif key == 'ec2__previous_state': instance_vars['ec2_previous_state'] = instance.previous_state or '' instance_vars['ec2_previous_state_code'] = instance.previous_state_code elif type(value) in [int, bool]: instance_vars[key] = value elif isinstance(value, six.string_types): instance_vars[key] = value.strip() elif type(value) == type(None): instance_vars[key] = '' elif key == 'ec2_region': instance_vars[key] = value.name elif key == 'ec2__placement': instance_vars['ec2_placement'] = value.zone elif key == 'ec2_tags': for k, v in value.items(): key = self.to_safe('ec2_tag_' + k) instance_vars[key] = v elif key == 'ec2_groups': group_ids = [] group_names = [] for group in value: group_ids.append(group.id) group_names.append(group.name) instance_vars["ec2_security_group_ids"] = ','.join([str(i) for i in group_ids]) instance_vars["ec2_security_group_names"] = ','.join([str(i) for i in group_names]) else: pass # TODO Product codes if someone finds them useful #print key #print type(value) #print value return instance_vars def get_host_info_dict_from_describe_dict(self, describe_dict): ''' Parses the dictionary returned by the API call into a flat list of parameters. This method should be used only when 'describe' is used directly because Boto doesn't provide specific classes. ''' # I really don't agree with prefixing everything with 'ec2' # because EC2, RDS and ElastiCache are different services. # I'm just following the pattern used until now to not break any # compatibility. host_info = {} for key in describe_dict: value = describe_dict[key] key = self.to_safe('ec2_' + self.uncammelize(key)) # Handle complex types # Target: Memcached Cache Clusters if key == 'ec2_configuration_endpoint' and value: host_info['ec2_configuration_endpoint_address'] = value['Address'] host_info['ec2_configuration_endpoint_port'] = value['Port'] # Target: Cache Nodes and Redis Cache Clusters (single node) if key == 'ec2_endpoint' and value: host_info['ec2_endpoint_address'] = value['Address'] host_info['ec2_endpoint_port'] = value['Port'] # Target: Redis Replication Groups if key == 'ec2_node_groups' and value: host_info['ec2_endpoint_address'] = value[0]['PrimaryEndpoint']['Address'] host_info['ec2_endpoint_port'] = value[0]['PrimaryEndpoint']['Port'] replica_count = 0 for node in value[0]['NodeGroupMembers']: if node['CurrentRole'] == 'primary': host_info['ec2_primary_cluster_address'] = node['ReadEndpoint']['Address'] host_info['ec2_primary_cluster_port'] = node['ReadEndpoint']['Port'] host_info['ec2_primary_cluster_id'] = node['CacheClusterId'] elif node['CurrentRole'] == 'replica': host_info['ec2_replica_cluster_address_'+ str(replica_count)] = node['ReadEndpoint']['Address'] host_info['ec2_replica_cluster_port_'+ str(replica_count)] = node['ReadEndpoint']['Port'] host_info['ec2_replica_cluster_id_'+ str(replica_count)] = node['CacheClusterId'] replica_count += 1 # Target: Redis Replication Groups if key == 'ec2_member_clusters' and value: host_info['ec2_member_clusters'] = ','.join([str(i) for i in value]) # Target: All Cache Clusters elif key == 'ec2_cache_parameter_group': host_info["ec2_cache_node_ids_to_reboot"] = ','.join([str(i) for i in value['CacheNodeIdsToReboot']]) host_info['ec2_cache_parameter_group_name'] = value['CacheParameterGroupName'] host_info['ec2_cache_parameter_apply_status'] = value['ParameterApplyStatus'] # Target: Almost everything elif key == 'ec2_security_groups': # Skip if SecurityGroups is None # (it is possible to have the key defined but no value in it). if value is not None: sg_ids = [] for sg in value: sg_ids.append(sg['SecurityGroupId']) host_info["ec2_security_group_ids"] = ','.join([str(i) for i in sg_ids]) # Target: Everything # Preserve booleans and integers elif type(value) in [int, bool]: host_info[key] = value # Target: Everything # Sanitize string values elif isinstance(value, six.string_types): host_info[key] = value.strip() # Target: Everything # Replace None by an empty string elif type(value) == type(None): host_info[key] = '' else: # Remove non-processed complex types pass return host_info def get_host_info(self): ''' Get variables about a specific host ''' if len(self.index) == 0: # Need to load index from cache self.load_index_from_cache() if not self.args.host in self.index: # try updating the cache self.do_api_calls_update_cache() if not self.args.host in self.index: # host might not exist anymore return self.json_format_dict({}, True) (region, instance_id) = self.index[self.args.host] instance = self.get_instance(region, instance_id) return self.json_format_dict(self.get_host_info_dict_from_instance(instance), True) def push(self, my_dict, key, element): ''' Push an element onto an array that may not have been defined in the dict ''' group_info = my_dict.setdefault(key, []) if isinstance(group_info, dict): host_list = group_info.setdefault('hosts', []) host_list.append(element) else: group_info.append(element) def push_group(self, my_dict, key, element): ''' Push a group as a child of another group. ''' parent_group = my_dict.setdefault(key, {}) if not isinstance(parent_group, dict): parent_group = my_dict[key] = {'hosts': parent_group} child_groups = parent_group.setdefault('children', []) if element not in child_groups: child_groups.append(element) def get_inventory_from_cache(self): ''' Reads the inventory from the cache file and returns it as a JSON object ''' cache = open(self.cache_path_cache, 'r') json_inventory = cache.read() return json_inventory def load_index_from_cache(self): ''' Reads the index from the cache file sets self.index ''' cache = open(self.cache_path_index, 'r') json_index = cache.read() self.index = json.loads(json_index) def write_to_cache(self, data, filename): ''' Writes data in JSON format to a file ''' json_data = self.json_format_dict(data, True) cache = open(filename, 'w') cache.write(json_data) cache.close() def uncammelize(self, key): temp = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', key) return re.sub('([a-z0-9])([A-Z])', r'\1_\2', temp).lower() def to_safe(self, word): ''' Converts 'bad' characters in a string to underscores so they can be used as Ansible groups ''' regex = "[^A-Za-z0-9\_" if not self.replace_dash_in_groups: regex += "\-" return re.sub(regex + "]", "_", word) def json_format_dict(self, data, pretty=False): ''' Converts a dict to a JSON object and dumps it as a formatted string ''' if pretty: return json.dumps(data, sort_keys=True, indent=2) else: return json.dumps(data) # Run the script Ec2Inventory()
appuio/ansible-role-openshift-zabbix-monitoring
vendor/openshift-tools/ansible/inventory/aws/ec2.py
Python
apache-2.0
55,406
# # Copyright (C) 2012-2014 The Paparazzi Team # # This file is part of Paparazzi. # # Paparazzi is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # # Paparazzi is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with paparazzi; see the file COPYING. If not, see # <http://www.gnu.org/licenses/>. # from __future__ import print_function import socket import telnetlib import sys from ftplib import FTP import ftplib # Check if IP is valid def is_ip(address): try: socket.inet_aton(address) ip = True except socket.error: ip = False return ip # Helper function def split_into_path_and_file(name): if name.count('/') <= 0: return ["./", name] return name.rsplit('/', 1) # Execute a command def execute_command(tn, command): tn.write(command + '\n') return tn.read_until('# ')[len(command) + 2:-4] # Check the version def check_version(tn, directory): return execute_command(tn, 'cat ' + directory + '/version.txt') # Check what currently is running on the drone def check_running(tn): ps_aux = execute_command(tn, 'ps') running = "" if 'program.elf' in ps_aux: running += ' Native (program.elf),' if 'dragon-prog' in ps_aux: running += ' Native (dragon-prog),' if 'ap.elf' in ps_aux: running += ' Paparazzi (ap.elf),' if 'gst-launch' in ps_aux: running += ' GStreamer (gst-launch)' return running[1:] # Check the filesystem def check_filesystem(tn): return execute_command(tn, 'df -h') # Reboot the drone def reboot(tn): execute_command(tn, 'reboot') # Upload ftp and catch memory-full error def uploadfile(ftp, filename, content): try: ftp.storbinary("STOR " + filename, content) except ftplib.error_temp: print("FTP UPLOAD ERROR: Uploading FAILED: Probably your ARDrone memory is full.") sys.exit() except: print("FTP UPLOAD ERROR: Maybe your ARDrone memory is full?", sys.exc_info()[0]) sys.exit() # Connect with telnet and ftp, wait until login def connect(host): try: tn = telnetlib.Telnet(host, timeout=3) ftp = FTP(host) ftp.login() tn.read_until('# ') return tn, ftp except: print('Could not connect to Parrot UAV (host: ' + host + ')') exit(2) # Close the telnet and ftp def disconnect(tn, ftp): tn.close() ftp.close()
LodewijkSikkel/paparazzi
sw/tools/parrot/parrot_utils.py
Python
gpl-2.0
2,820