content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
|---|---|---|
def _filename_pattern(ext):
"""Returns an re matching native or tfrecord files of format `ext`."""
return r".*\.{}(\.tfrecord)?(\.gz)?".format(ext)
|
6ec5a86dbba2432293451ca7dff0a0d1d5091bf0
| 8,600
|
def assemble_remote_url():
"""
组装目标服务器URL, 即生成 parse.remote_url 的值
:rtype: str
"""
if parse.is_external_domain:
# 请求的是外部域名 (external domains)
scheme = 'https://' if parse.is_https else 'http://'
return urljoin(scheme + parse.remote_domain, parse.remote_path_query)
else:
# 请求的是主域名及可以被当做(alias)主域名的域名
return urljoin(target_scheme + target_domain, parse.remote_path_query)
|
f0e14ddb42636f12f4fafa31af4a87b3f91a4e05
| 8,601
|
def register_blueprints(app):
"""Register Flask blueprints."""
app.register_blueprint(public.views.blueprint)
app.register_blueprint(drawbot.views.blueprint)
app.register_blueprint(user.views.blueprint)
return None
|
936c17a95ddc013ec9f0c6c232a689245fc313d0
| 8,602
|
def write_attribute(xml_elem, elem: str=None, attrib: str=None, txt: str=None):
""" Write new text to a xml attribute.
Elem can be used to refer to a subelement of the current xml_elem
Args:
xml_elem: The current xml element
elem (str): The requested element tag name
attrib (str): The attribute name
txt (str): The new text for the element
Returns:
xml_elem: The modified xml element
"""
if xml_elem is not None:
if elem is not None:
xml_elem = try_get_single_element_from_xml(elem=elem, xml_elem=xml_elem)
if xml_elem is not None:
xml_elem.set(attrib, txt)
return xml_elem
|
d2ee296b6926a71ef2ffaf9fd9d47128f66e8806
| 8,603
|
def _ndarray_feature(x: np.ndarray) -> tf.train.Feature:
"""Create an ndarray feature stored as bytes."""
x_bytes = x.tostring()
feature = tf.train.Feature(bytes_list=tf.train.BytesList(value=[x_bytes]))
return feature
|
03ad22f7d943d24574c92a494c915c28611a8d12
| 8,604
|
import re
def get_img_compliance_level(profile):
""" Try to figure out the IIIF Image API compliance level given the
`profile` value from a info.json.
"""
patt_iiif = re.compile('level([0-2])\.json$')
patt_stan = re.compile('#level([0-2])$')
def get_from_str(s):
m = None
if 'http://iiif.io/api/image/2/' in s:
m = patt_iiif.search(s)
elif 'http://library.stanford.edu/iiif/image-api/' in s:
m = patt_stan.search(s)
if m:
return int(m.group(1))
return -1
lvl = -1
if type(profile) == str:
lvl = get_from_str(profile)
elif type(profile) == list:
for p in [x for x in profile if type(x) == str]:
found = get_from_str(p)
if found != -1:
lvl = found
break
if lvl == -1:
log('Could not find compliance level in info.json.')
return lvl
|
7970a795ea1b79bfea3df0e5a306e2d0286a61de
| 8,605
|
def _extract_protocol_layers(deserialized_data):
"""
Removes unnecessary values from packets dictionaries.
:param deserialized_data: Deserialized data from tshark.
:return: List of filtered packets in dictionary format.
"""
packets_filtered = []
for packet in deserialized_data:
packets_filtered.append(packet["_source"]["layers"])
return packets_filtered
|
3c3a899909c5278b29ffb402ccb4d8dde24fce3a
| 8,606
|
from typing import Optional
from operator import gt
def calculate_affinity(
adata: AnnData,
level: int = 1,
block_key: Optional[str] = 'nsbm',
group_by: Optional[str] = None,
state: Optional = None,
neighbors_key: Optional[str] = 'neighbors',
adjacency: Optional[sparse.spmatrix] = None,
directed: bool = False,
use_weights: bool = False,
obsp: Optional[str] = None,
back_prob: bool = False,
copy: bool = False
) -> Optional[AnnData]:
"""\
Calculate cell affinity given a partition scheme. It can be used for
partitions calculated using schist or for any partition scheme, given
for example by cell annotations.
Parameters
----------
adata:
The AnnData object. Should have been already processed with schist
level:
The level to calculate affinity. This parameter is effective
only for Nested partitions
block_key:
The prefix for partitions. This parameter is ignored if the state
is not gt.NestedBlockState
group_by:
The key for group names used for calculations. Setting this will override
level and block_key. This is effective only for NestedBlockState partitions
state:
Optionally calculate affinities on this state.
neighbors_key
Use neighbors connectivities as adjacency.
If not specified, leiden looks .obsp['connectivities'] for connectivities
(default storage place for pp.neighbors).
If specified, leiden looks
.obsp[.uns[neighbors_key]['connectivities_key']] for connectivities.
adjacency
Sparse adjacency matrix of the graph, defaults to neighbors connectivities.
directed
Whether to treat the graph as directed or undirected.
use_weights
If `True`, edge weights from the graph are used in the computation
(placing more emphasis on stronger edges).
copy:
Return a new object or do everything in place
Returns
-------
Depending on `copy`, returns or updates `adata` with affinity values
in adata.obsm[f'CA_{block_key}_level_{level}']
"""
matrix_key = f'CA_{block_key}_level_{level}' # the default name of the matrix
if group_by:
logg.info(f'Calculating cell affinity to {group_by}')
else:
logg.info(f'Calculating cell affinity to level {level}')
if not state:
# if no state is provided, use the default to retrieve graph
if 'schist' in adata.uns and 'blocks' in adata.uns['schist'][f'{block_key}']:
params = adata.uns['schist'][f'{block_key}']['params']
if 'neighbors_key' in params:
neighbors_key=params['neighbors_key']
if 'use_weights' in params:
use_weights=params['use_weights']
if 'deg_corr' in params:
deg_corr=params['deg_corr']
state = state_from_blocks(adata,
state_key=block_key,
neighbors_key=neighbors_key,
adjacency=adjacency,
directed=directed,
use_weights=use_weights,
deg_corr=deg_corr
)
g = state.g
elif not neighbors_key:
# no state and no adjacency provided, raise an error
raise ValueError("A state or an adjacency matrix should be given"
"Otherwise a graph cannot be computed")
else:
# get the graph from the adjacency
adjacency = _choose_graph(adata, obsp, neighbors_key)
g = get_igraph_from_adjacency(adjacency, directed=directed)
g = g.to_graph_tool()
gt.remove_parallel_edges(g)
state = gt.BlockState(g)
else:
g = state.g
if group_by:
matrix_key = f'CA_{group_by}'
# if groups are given, we generate a new BlockState and work on that
if group_by in adata.obs.columns and adata.obs[group_by].dtype.name == 'category':
partitions = adata.obs[group_by].cat.codes.values
state = gt.BlockState(g, b=partitions)
if back_prob:
ca_matrix = get_cell_back_p(state)
else:
ca_matrix = get_cell_loglikelihood(state, as_prob=True)
else:
raise ValueError(f"{group_by} should be a categorical entry in adata.obs")
else:
# use precomputed blocks and states
if type(state) == gt.NestedBlockState:
if back_prob:
p0 = get_cell_back_p(state, level=0)
else:
p0 = get_cell_loglikelihood(state, level=0, as_prob=True)
group_col = None
if group_by and group_by in adata.obs.columns:
group_col = group_by
else:
g_name = f'{block_key}_level_{level}'
if g_name in adata.obs.columns:
group_col = g_name
if not group_col:
raise ValueError("The provided groups or level/blocks do not exist")
g0 = pd.Categorical(state.project_partition(0, 0).a)
cross_tab = pd.crosstab(g0, adata.obs[group_col], normalize='index')
ca_matrix = (p0 @ cross_tab).values
elif type(state) == gt.PPBlockState:
if back_prob:
ca_matrix = get_cell_back_p(state)
else:
ca_matrix = get_cell_loglikelihood(state, as_prob=True)
matrix_key = 'CA_ppbm'
adata.obsm[matrix_key] = ca_matrix
return adata if copy else None
|
e2eec0e9f45199d6cc1559d71dfbf629dba61621
| 8,607
|
import asyncio
async def scrape_website(client):
"""
:param client: client bot is connected to
:return: only if there's an issue
Type '!scrape' to restart the scraping process.
Note: this function is executed on bot_ready, so
I have to work around not having a convenient
guild object.
r """
debug_channel = utils.get_bot_commands_channel(client)
await debug_channel.send(f"Started web scraping.")
print(f"Web scraper starting...")
# This loop will always run indefinitely.
while True:
# During this web scraping, first check if there was
# any commands issued to force stop this functionality.
if scraper.issued_off:
game_lab_channel = utils.get_game_lab_channel(client)
print(f"Successfully turned off webscraper")
await debug_channel.send(f"Successfully turned off scraper.\n\nPlease go to {game_lab_channel.mention} and verify this action by comparing its edited timestamp.")
scraper.issued_off = False
scraper.is_scraping = False
return
# Secondly, check if the embeds exist.
# It's possible someone may have deleted them mid-process.
if not await validators.validate_pc_availability_embeds(client):
print(f"...web scraping ending prematurely- embeds are missing! (This can be restarted with !scrape)")
await debug_channel.send(f"ERROR: Machine availability panels must first exist in the channel `#{debug_channel}`! You can add these panels by entering `!gamelab` inside the channel, then start auto-updating PC availability with `!scrape`.")
return
scraper.is_scraping = True
pc_statuses = await _get_scraped_pc_availability()
if pc_statuses is None:
print("Game Lab Availability is offline. Unable to get PC statuses. Restart bot with !restart.")
break
print(f"Updating PC availability with the following statuses:\n\t{pc_statuses}")
await update_machine_availability_embed(client, pc_statuses)
print(F"Trying again in 5 seconds")
await asyncio.sleep(5)
return None
|
0a27b9fafd607e0a1816c5a4575209051e32929a
| 8,608
|
def numpy_dtypes_for_minmax(request):
"""
Fixture of numpy dtypes with min and max values used for testing
cummin and cummax
"""
dtype = request.param
min_val = (
np.iinfo(dtype).min if np.dtype(dtype).kind == "i" else np.finfo(dtype).min
)
max_val = (
np.iinfo(dtype).max if np.dtype(dtype).kind == "i" else np.finfo(dtype).max
)
return (dtype, min_val, max_val)
|
d2ad3676549f427c134b38106a93145c54114052
| 8,609
|
def solve(topics):
"""Solve."""
a_words, b_words = get_dicts(topics)
candidates = []
original = []
duplicates = []
for a, b in topics:
# print(a, b)
# print(a_words[a], b_words[b])
if not (a_words[a] == 1 or b_words[b] == 1):
candidates.append((a, b))
else:
original.append((a, b))
a_words_org, b_words_org = get_dicts(original)
while len(candidates) > 0:
l_candidates = []
for a, b in candidates:
if a_words_org[a] >= 1 and b_words_org[b] >= 1:
duplicates.append((a, b))
else:
l_candidates.append((a, b))
candidates = l_candidates[:]
# print(candidates)
return len(candidates)
|
bb78da10ff6bb939bc0de9e0cc51a036c2a0e8b9
| 8,610
|
def get_package_plugin(package_type):
"""
Get a plugin for a specific package
Parameters
----------
package_type: str
The package type to fetch
Returns
-------
InvirtualEnvPlugin:
The invirtualenv plugin for the specific package_type
"""
for plugin in installed_plugins():
if package_type in plugin.package_formats:
return plugin
|
a1d97a6d1c4248f7a1bfeade8e734bcc0af3aceb
| 8,611
|
import ast
from typing import Tuple
from typing import Optional
import sys
def _type_annotation(
node: ast.AST, atok: asttokens.ASTTokens
) -> Tuple[Optional[TypeAnnotation], Optional[Error]]:
"""Parse the type annotation."""
if isinstance(node, ast.Name):
return AtomicTypeAnnotation(identifier=Identifier(node.id), node=node), None
elif isinstance(node, ast.Constant):
if not isinstance(node.value, str):
return (
None,
Error(
node.value,
f"Expected a string literal "
f"if the type annotation is given as a constant, "
f"but got: "
f"{node.value!r} (as {type(node.value)})",
),
)
return AtomicTypeAnnotation(identifier=Identifier(node.value), node=node), None
elif isinstance(node, ast.Subscript):
if not isinstance(node.value, ast.Name):
return (
None,
Error(
node.value,
f"Expected a name to define "
f"a subscripted type annotation,"
f"but got: {atok.get_text(node.value)}",
),
)
# NOTE (mristin, 2022-01-22):
# There were breaking changes between Python 3.8 and 3.9 in ``ast`` module.
# Relevant to this particular piece of parsing logic is the deprecation of
# ``ast.Index`` and ``ast.ExtSlice`` which is replaced with their actual value
# and ``ast.Tuple``, respectively.
#
# Hence we need to switch on Python version and get the underlying slice value
# explicitly.
#
# See deprecation notes just at the end of:
# https://docs.python.org/3/library/ast.html#ast.AST
if isinstance(node.slice, ast.Slice):
return (
None,
Error(
node.slice,
f"Expected an index to define a subscripted type annotation, "
f"but got a slice: {atok.get_text(node.slice)}",
),
)
# noinspection PyUnresolvedReferences
if (sys.version_info < (3, 9) and isinstance(node.slice, ast.ExtSlice)) or (
sys.version_info >= (3, 9)
and isinstance(node.slice, ast.Tuple)
and any(isinstance(elt, ast.Slice) for elt in node.slice.elts)
):
return (
None,
Error(
node.slice,
f"Expected an index to define a subscripted type annotation, "
f"but got an extended slice: {atok.get_text(node.slice)}",
),
)
# NOTE (mristin, 2022-01-22):
# Please see the note about the deprecation of ``ast.Index`` above.
index_node = None # type: Optional[ast.AST]
if sys.version_info < (3, 9):
# noinspection PyUnresolvedReferences
if isinstance(node.slice, ast.Index):
index_node = node.slice.value
else:
return (
None,
Error(
node.slice,
f"Expected an index to define a subscripted type annotation, "
f"but got: {atok.get_text(node.slice)}",
),
)
else:
index_node = node.slice
assert index_node is not None
subscripts = [] # type: List[TypeAnnotation]
if isinstance(index_node, ast.Tuple):
for elt in index_node.elts:
subscript_annotation, error = _type_annotation(node=elt, atok=atok)
if error is not None:
return None, error
assert subscript_annotation is not None
subscripts.append(subscript_annotation)
elif isinstance(index_node, (ast.Name, ast.Subscript, ast.Constant)):
subscript_annotation, error = _type_annotation(node=index_node, atok=atok)
if error is not None:
return None, error
assert subscript_annotation is not None
subscripts.append(subscript_annotation)
else:
return (
None,
Error(
index_node,
f"Expected a tuple, a name, a subscript or a string literal "
f"for a subscripted type annotation, "
f"but got: {atok.get_text(index_node)}",
),
)
return (
SubscriptedTypeAnnotation(
identifier=Identifier(node.value.id),
subscripts=subscripts,
node=node,
),
None,
)
else:
return (
None,
Error(
node,
f"Expected either atomic type annotation (as name or string literal) "
f"or a subscripted one (as a subscript), "
f"but got: {atok.get_text(node)} (as {type(node)})",
),
)
|
cc8955f094da748855985b277f5cb0876c1ac2a3
| 8,612
|
def validate_basic_message(msg):
"""Validate basic messages.
This example just uses basic assertions but you could easily use a schema
library to get more sophisticated validators.
"""
assert msg.type == TYPE
assert "~l10n" in msg
assert "sent_time" in msg
assert "content" in msg
return msg
|
df6b1541adf86a295e6592f26d72ab2109617f6b
| 8,613
|
def _filter_event_queryset(queryset, params, srs=None):
"""
Filter events queryset by params
(e.g. self.request.query_params in EventViewSet)
"""
# Filter by string (case insensitive). This searches from all fields
# which are marked translatable in translation.py
val = params.get('text', None)
if val:
val = val.lower()
# Free string search from all translated fields
fields = EventTranslationOptions.fields
# and these languages
languages = [x[0] for x in settings.LANGUAGES]
qset = Q()
for field in fields:
for lang in languages:
kwarg = {field + '_' + lang + '__icontains': val}
qset |= Q(**kwarg)
queryset = queryset.filter(qset)
val = params.get('last_modified_since', None)
# This should be in format which dateutil.parser recognizes, e.g.
# 2014-10-29T12:00:00Z == 2014-10-29T12:00:00+0000 (UTC time)
# or 2014-10-29T12:00:00+0200 (local time)
if val:
dt = parse_time(val, is_start=False)
queryset = queryset.filter(Q(last_modified_time__gte=dt))
val = params.get('start', None)
if val:
dt = parse_time(val, is_start=True)
queryset = queryset.filter(Q(end_time__gt=dt) | Q(start_time__gte=dt))
val = params.get('end', None)
if val:
dt = parse_time(val, is_start=False)
queryset = queryset.filter(Q(end_time__lt=dt) | Q(start_time__lte=dt))
val = params.get('bbox', None)
if val:
bbox_filter = build_bbox_filter(srs, val, 'position')
places = Place.geo_objects.filter(**bbox_filter)
queryset = queryset.filter(location__in=places)
# Filter by data source, multiple sources separated by comma
val = params.get('data_source', None)
if val:
val = val.split(',')
queryset = queryset.filter(data_source_id__in=val)
# Negative filter by data source, multiple sources separated by comma
val = params.get('data_source!', None)
if val:
val = val.split(',')
queryset = queryset.exclude(data_source_id__in=val)
# Filter by location id, multiple ids separated by comma
val = params.get('location', None)
if val:
val = val.split(',')
queryset = queryset.filter(location_id__in=val)
# Filter by keyword id, multiple ids separated by comma
val = params.get('keyword', None)
if val:
val = val.split(',')
queryset = queryset.filter(keywords__pk__in=val)
# Filter only super or sub events if recurring has value
val = params.get('recurring', None)
if val:
val = val.lower()
if val == 'super':
queryset = queryset.filter(is_recurring_super=True)
elif val == 'sub':
queryset = queryset.filter(is_recurring_super=False)
val = params.get('max_duration', None)
if val:
dur = parse_duration_string(val)
cond = 'end_time - start_time <= %s :: interval'
queryset = queryset.extra(where=[cond], params=[str(dur)])
val = params.get('min_duration', None)
if val:
dur = parse_duration_string(val)
cond = 'end_time - start_time >= %s :: interval'
queryset = queryset.extra(where=[cond], params=[str(dur)])
val = params.get('publisher', None)
if val:
queryset = queryset.filter(publisher__id=val)
return queryset
|
35103268d301239d4c884d50ab5321ebb22ed235
| 8,614
|
import re
def process_user(enrollment, section):
"""Handle getting assignments for a single user
Args:
enrollment (canvasapi.enrollment.Enrollment): Canvas <Enrollment> object
section (canvasapi.section.Section): Canvas <Section> object
Returns:
[list]: formatted list for writing to the CSV
"""
missing = get_user_missing(section, enrollment.user["id"])
login = course.get_user(enrollment.user["id"]).login_id
regex = re.compile("@")
if regex.search(login) is None:
email = f"{login}@elkhart.k12.in.us"
else:
email = login
return [
enrollment.user["sortable_name"],
email,
section.name,
enrollment.last_activity_at,
len(missing),
", ".join(missing),
]
|
88b471433d99c659eabac82a797530def3baf8f2
| 8,615
|
def op(name,
data,
bucket_count=None,
display_name=None,
description=None,
collections=None):
"""Create a histogram summary op.
Arguments:
name: A unique name for the generated summary node.
data: A `Tensor` of any shape. Must be castable to `float64`.
bucket_count: Optional positive `int`. The output will have this
many buckets, except in two edge cases. If there is no data, then
there are no buckets. If there is data but all points have the
same value, then there is one bucket whose left and right
endpoints are the same.
display_name: Optional name for this summary in TensorBoard, as a
constant `str`. Defaults to `name`.
description: Optional long-form description for this summary, as a
constant `str`. Markdown is supported. Defaults to empty.
collections: Optional list of graph collections keys. The new
summary op is added to these collections. Defaults to
`[Graph Keys.SUMMARIES]`.
Returns:
A TensorFlow summary op.
"""
if display_name is None:
display_name = name
summary_metadata = metadata.create_summary_metadata(
display_name=display_name, description=description)
with tf.name_scope(name):
tensor = _buckets(data, bucket_count=bucket_count)
return tf.summary.tensor_summary(name='histogram_summary',
tensor=tensor,
collections=collections,
summary_metadata=summary_metadata)
|
368b5f0af59352e5f283566d9008c413d38692c9
| 8,616
|
def read_as_str(file):
"""
读取文件,并返回读取到的内容
"""
try:
with open(file, 'r') as f:
return f.read()
except IOError:
return ""
|
934bec1e47e0f9af09be7f4d695a8ddf09004f3f
| 8,617
|
def has_xml_header(filepath):
"""
Return True if the first line of the file is <?xml
:param filepath:
:return:
"""
return True
|
21fdbdf36cf08ca18d8a0f0d7f7d2201b243c558
| 8,618
|
def shikaku(givens):
"""Solver for Shikaku minipuzzles."""
sym = grilops.make_number_range_symbol_set(0, SIZE * SIZE - 1)
sg = grilops.SymbolGrid(LATTICE, sym)
rc = grilops.regions.RegionConstrainer(
LATTICE,
solver=sg.solver,
rectangular=True
)
shifter = Shifter(sg.solver)
for p in LATTICE.points:
sg.solver.add(sg.cell_is(p, rc.region_id_grid[p]))
given = givens[p.y][p.x]
if given > 0:
given = shifter.given(p, given)
sg.solver.add(rc.parent_grid[p] == grilops.regions.R)
sg.solver.add(rc.region_size_grid[p] == given)
else:
sg.solver.add(rc.parent_grid[p] != grilops.regions.R)
assert sg.solve()
sg.print()
print()
shifter.print_shifts()
print()
return shifter.eval_binary()
|
e380ce634b342a19ecd466576e8e5d3ff28ccc25
| 8,619
|
import argparse
def parse_arguments(args_to_parse):
"""Parse the command line arguments.
Parameters
----------
args_to_parse: list of str
Arguments to parse (split on whitespaces).
"""
description = "PyTorch implementation of CNN's for Human Activity Recognition"
default_config = get_config_section([CONFIG_FILE], "Preset")
parser = argparse.ArgumentParser(description=description,
formatter_class=FormatterNoDuplicate)
# Learning options
training = parser.add_argument_group('Training specific options')
training.add_argument('-d', '--dataset', help="Path to training data.",
default=default_config['dataset'], choices=DATASETS)
training.add_argument('-b', '--batch-size', type=int,
default=default_config['batch_size'],
help='Batch size for training.')
training.add_argument('--lr', type=float, default=default_config['lr'],
help='Learning rate.')
training.add_argument('-e', '--epochs', type=int,
default=default_config['epochs'],
help='Maximum number of epochs to run for.')
training.add_argument('-s', '--is_standardized', type=bool,
default=default_config['is_standardized'],
help='Whether to standardize the data.')
# Model Options
model = parser.add_argument_group('Model specific options')
model.add_argument('-m', '--model-type',
default=default_config['model'], choices=MODELS,
help='Type of encoder to use.')
# General options
general = parser.add_argument_group('General options')
general.add_argument('-n', '--name', type=str, default=default_config['name'],
help="Name of the model for storing and loading purposes.")
# Evaluation options
evaluation = parser.add_argument_group('Evaluation specific options')
evaluation.add_argument('--is-eval-only', action='store_true',
default=default_config['is_eval_only'],
help='Whether to only evaluate using precomputed model `name`.')
evaluation.add_argument('--no-test', action='store_true',
default=default_config['no_test'],
help="Whether or not to compute the test losses.`")
args = parser.parse_args(args_to_parse)
return args
|
17266dedd3a8086c7382652363a55b5c1067cdc7
| 8,620
|
def invert_qgniw(qh,phi,phih,k,l,f0):
""" Calculate the streamfunction given the potential vorticity.
The algorithm is:
1) Calculate wave potential vorticity
2) Invert for wave, pw, and vortex stremfunctions, pv.
3) Calculate the geostrophic stremfunction, p = pv+pw.
"""
wv2 = k**2 + l**2
wv2i = 1./wv2
wv2i[0,0] = 0
phih = np.fft.fft2(phi)
phix, phiy = np.fft.ifft2(1j*k*phih), np.fft.ifft2(1j*l*phih)
jach = np.fft.fft2((1j*(np.conj(phix)*phiy - np.conj(phiy)*phix)).real)
jach[0,0] = 0
# the wavy PV
phi2 = np.abs(phi)**2
gphi2h = -wv2*np.fft.fft2(phi2)
qwh = 0.5*(0.5*gphi2h + jach)/f0
# invert for psi
pw = np.fft.ifft2((wv2i*qwh)).real
pv = np.fft.ifft2(-(wv2i*qh)).real
p = pv+pw
ph = np.fft.fft2(p)
return ph
|
b90c5f76c2be93d0a45b8c260e7a7228094ff4c0
| 8,621
|
def package_ref_key(package_name, ref):
"""Returns ndb.Key corresponding to particular PackageRef."""
assert is_valid_package_ref(ref), ref
return ndb.Key(PackageRef, ref, parent=package_key(package_name))
|
270b69baa1309bf29a054736ca6f898f23839ee3
| 8,622
|
def conv2d_backprop_input(dout, x_size, weight, stride=1, pad=0):
"""Backpropagation input for conv2d."""
filter_num, _, filter_h, filter_w = weight.shape
dout = dout.transpose(0, 2, 3, 1).reshape(-1, filter_num)
col_w = weight.reshape(filter_num, -1).T
dcol = np.dot(dout, col_w.T)
dx = col2im(dcol, x_size, filter_h, filter_w, stride, pad)
return dx
|
3749398101de25ec4f7b83c8a52754d18d0e8872
| 8,623
|
def get_feeds_from_url(url: str) -> list:
"""
Try to parse the URL and find any RSS feeds in the webpage
Adapted from: https://gist.github.com/alexmill/9bc634240531d81c3abe
"""
logger.info(f"Attempting to find RSS feeds from {url}...")
# If the URL itself is a proper RSS feed, just return it
if is_rss_feed(url):
logger.debug("URL is already a proper RSS feed")
return [url]
html = get_html(url)
possible_feeds = get_feeds_from_links(html) + get_feeds_from_atags(url, html)
return [url for url in set(possible_feeds) if is_rss_feed(url)]
|
0a8b10af257b2acfc4dbf4da886e96118cc5c32f
| 8,624
|
def fine_license_ratio(license_data, fine_data, column_name1=None, column_name2=None,year=None):
"""Get ratio of fines to licenses issued in a given year
Parameters:
-----------
license_data: DataFrame
Any subset of the Professional and Occupational Licensing dataframe
fine_data: DataFrame
Any subset of the Disciplinary Actions dataframe
year: int
Year to use to subset your data
column_name1: Series
Column containing years in license_data dataset
column_name2: Series
Column containing years in fine_data dataset
Returns:
--------
tuple
A tuple with license percentage as the first entry and fine percentage as the second
(year, ratio)
"""
int(year)
str(column_name1)
str(column_name2)
if year not in license_data[column_name1].unique() or year not in fine_data[column_name2].unique():
raise Exception(str(year) + " not a valid year for this dataset" + "\n----------------------------------------")
return "No Data for " + str(year)
else:
license_data = license_data[license_data[column_name1]==year]
fine_data = fine_data[fine_data[column_name2]==year]
try:
license_count = len(license_data)
fine_count = len(fine_data)
fine_percentage = fine_count/license_count * 100
license_percentage = 100 - fine_percentage
return license_percentage, fine_percentage, license_count, fine_count
except ZeroDivisionError:
print("Hmmm...It looks like there is are no licenses yet for the year " + str(year))
|
97dad8c4f5c78b1291016e1cd9fa9c5f8ef20beb
| 8,625
|
def import_obj(obj_path, hard=False):
"""
import_obj imports an object by uri, example::
>>> import_obj("module:main")
<function main at x>
:param obj_path: a string represents the object uri.
:param hard: a boolean value indicates whether to raise an exception on
import failures.
"""
try:
# ``__import__`` of Python 2.x could not resolve unicode, so we need
# to ensure the type of ``module`` and ``obj`` is native str.
module, obj = str(obj_path).rsplit(':', 1)
m = __import__(module, globals(), locals(), [obj], 0)
return getattr(m, obj)
except (ValueError, AttributeError, ImportError):
if hard:
raise
|
fe6bc0cd8fff5c0d5b1ba9fc0e153b2004b09755
| 8,626
|
def Get_Histogram_key(qubitOperator):
"""
Function to obtain histogram key string for Cirq Simulator.
e.g.
PauliWord = QubitOperator('X0 Z2 Y3', 0.5j)
returning: histogram_string = '0,2,3'
Args:
qubitOperator (openfermion.ops._qubit_operator.QubitOperator): QubitOperator
Returns:
histogram_string (str): Returns string corresponding to histogram key (required for Cirq simulator)
"""
qubit_No, PauliStr = zip(*list(*qubitOperator.terms.keys()))
histogram_string = ','.join([str(i) for i in qubit_No])
return histogram_string
|
f574f7b3f6c43de7b3121d4e49240a84a4bcfdfc
| 8,627
|
def get_organizations():
""" Queries API for a list of all basketball organizations registered
with Basketbal Vlaanderen.
:return: list of basketball organizations
:rtype: [Organization]
"""
organizations = []
for organization_data in get_list():
organizations.append(Organization(organization_data))
return list(sorted(organizations, key=lambda o: o.guid))
|
bcf29925465cde99399214cbe44648bbfd136e1b
| 8,628
|
def logout():
"""Logout."""
logout_user()
flash('您已成功登出', 'info')
return redirect(url_for('public.home'))
|
e816d67e4084bad0549d0b932ec806de55cfc41d
| 8,629
|
def get_column_labels():
"""
This function generates a list of column names for the extracted features
that are returned by the get_features function.
"""
# list the names of the extracted features
feature_labels = ["amplitude_envelope",
"root_mean_square_energy",
"zero_crossing_rate",
"band_energy_ratio",
"spectral_centroid",
"spectral_bandwidth",
"spectral_contrast",
"spectral_flatness",
"spectral_rolloff",
"spectral_rolloff_99",
"spectral_rolloff_01"]
# list the names of the used descriptive statistics
measure_suffixes = ["_mean", "_min", "_max", "_std"]
# create a list to append the generated column names to
columns = ["row_index"]
# generate some labels and append them to the list
columns.extend([l+s for l in feature_labels for s in measure_suffixes])
# append labels for the distributed AE
columns.extend(["amplitude_envelope_f1",
"amplitude_envelope_f2",
"amplitude_envelope_f3",
"amplitude_envelope_f4",
"amplitude_envelope_f5"])
# append labels for the distributed RMS
columns.extend(["root_mean_square_energy_f0",
"root_mean_square_energy_f1",
"root_mean_square_energy_f2",
"root_mean_square_energy_f3",
"root_mean_square_energy_f4",
"root_mean_square_energy_f5",
"root_mean_square_energy_f6",
"root_mean_square_energy_f7",
"root_mean_square_energy_f8",
"root_mean_square_energy_f9",
"root_mean_square_energy_f10"])
# append labels for the distributed ZCR
columns.extend(["zero_crossing_rate_f0",
"zero_crossing_rate_f1",
"zero_crossing_rate_f2",
"zero_crossing_rate_f3",
"zero_crossing_rate_f4",
"zero_crossing_rate_f5",
"zero_crossing_rate_f6",
"zero_crossing_rate_f7",
"zero_crossing_rate_f8",
"zero_crossing_rate_f9",
"zero_crossing_rate_f10"])
return columns
|
c140ced9c4344bd7a4029d331d50ebe0750fac0a
| 8,630
|
def corr_finder(X, threshold):
""" For each variable, find the independent variables that are equal to
or more highly correlated than the threshold with the curraent variable
Parameters
----------
X : pandas Dataframe
Contains only independent variables and desired index
threshold: float < 1
Minimum level of correlation to search for
Returns
-------
Dictionary with the key's as independent variavble indices and values as a
list of variables with a correlation greater to or equal than the threshold.
Correlation Matrix
"""
corr_matrix = X.corr(method='kendall') #create the correlation matrix
corr_dic = {}
for row_name, ser in corr_matrix.iterrows(): #search through each row
corr_list = [] #list of variables past/at the threshold
for idx, val in ser.iteritems(): #search through the materials of each row
if (abs(val) > threshold) and (abs(val) != 1): #if the variable correlates past/at the threshold
corr_list.append(idx)
if len(corr_list) > 0:
corr_dic[row_name] = corr_list
return corr_dic, corr_matrix
|
3b32a3eacb721ff09f6b5614c0ada82df814d5fa
| 8,631
|
def magic_file(filename):
""" Returns tuple of (num_of_matches, array_of_matches)
arranged highest confidence match first.
:param filename: path to file
:return: list of possible matches, highest confidence first
"""
head, foot = _file_details(filename)
if not head:
raise ValueError("Input was empty")
try:
info = _identify_all(head, foot, ext_from_filename(filename))
except PureError:
info = []
info.sort(key=lambda x: x[3], reverse=True)
return info
|
3fc625006c5589b14c73fff501d48a523d1bce5b
| 8,632
|
def plot_sentiment(
df: pd.DataFrame, title: str = None, height: int = 300, label_col: str = "label"
) -> Figure:
"""
Plot the predicted sentiment of the sentences.
Args:
df (pd.DataFrame):
Dataframe with the outputs of a sentiment analysis model.
title (str):
Title of the plot.
height (int):
Height of the plot.
label_col (str):
Column name of the sentiment.
Returns:
Figure:
Plotly figure with the percentage of hate speech.
"""
sentiments_count = get_counts(df, label_col=label_col)
labels_order = ["neutro", "positivo", "negativo"]
fig = px.bar(
x=labels_order,
y=[
float(sentiments_count[sentiments_count[label_col] == label].percent)
for label in labels_order
],
title=title,
)
fig.update_traces(
marker_color=["gray", "green", "red"],
hovertemplate="%{y:.1f}%<extra></extra>",
)
fig.update_layout(
xaxis_title="Sentimento",
yaxis_title="Percentagem de frases",
margin=dict(l=0, r=0, b=0, t=0, pad=0),
height=height,
)
return fig
|
bf5f7f65fa4cbee6b0abfc77d1f47b6f175ed8f9
| 8,633
|
def subf(pattern, format, string, count=0, flags=0): # noqa A002
"""Apply `sub` with format style replace."""
is_replace = _is_replace(format)
is_string = isinstance(format, (_util.string_type, _util.binary_type))
if is_replace and not format.use_format:
raise ValueError("Compiled replace is not a format object!")
pattern = compile_search(pattern, flags)
rflags = FORMAT if is_string else 0
return _re.sub(
pattern, (compile_replace(pattern, format, flags=rflags) if is_replace or is_string else format),
string, count, flags
)
|
7ef105eeafb5ab4e6c3405206d850520d3489314
| 8,634
|
def independent_connections(fn):
"""Target must support simultaneous, independent database connections."""
# This is also true of some configurations of UnixODBC and probably win32
# ODBC as well.
return _chain_decorators_on(
fn,
no_support('sqlite', 'Independent connections disabled when '
':memory: connections are used'),
exclude('mssql', '<', (9, 0, 0),
'SQL Server 2005+ is required for independent connections'),
)
|
cf11838e5b32cc2a6c165fda38baf4d680beda4a
| 8,635
|
def Route(template, handler):
"""Make a Route whose placeholders accept only allowable map IDs or labels."""
return webapp2.Route(template.replace('>', r':[\w-]+>'), handler)
|
2ec563ed4db815ee98d050e8e9a672a7a53ca010
| 8,636
|
def values_iterator(dictionary):
"""Add support for python2 or 3 dictionary iterators."""
try:
v = dictionary.itervalues() # python 2
except:
v = dictionary.values() # python 3
return v
|
e4fef48fd1b2a9189d81465fec259efe102c5b75
| 8,637
|
def _standardize_bicluster(bicluster):
"""Standardize a bicluster by subtracting the mean and dividing by standard
deviation.
Ref.:
Pontes, B., Girldez, R., & Aguilar-Ruiz, J. S. (2015). Quality measures
for gene expression biclusters. PloS one, 10(3), e0115497.
Note that UniBic synthetic data was generated with mean 0 and standard
deviation 1, so it is already standardized.
Args:
bicluster (array-like): The bicluster data values.
Returns:
(float): The standardized bicluster.
"""
_bicluster = np.copy(bicluster)
row_std = np.std(_bicluster, axis=0)
row_std[row_std == 0] = 1
row_mean = np.mean(_bicluster, axis=0)
return (_bicluster - row_mean) / row_std
|
371adc72f64bec4039e0fab65e8acb77e37063d8
| 8,638
|
def get_deployment_polarion_id():
"""
Determine the polarion_id of the deployment or upgrade
Returns:
str: polarion_id of the deployment or upgrade
"""
polarion_config = config.REPORTING.get('polarion')
if polarion_config:
if config.UPGRADE.get('upgrade'):
if config.DEPLOYMENT.get('subscription_plan_approval') == 'Manual':
return polarion_config.get('upgrade_manual_id')
else:
return polarion_config.get('upgrade_auto_id')
else:
return polarion_config.get('deployment_id')
|
475689b0adac68fdaf60d77af88f5b6c3e229003
| 8,639
|
import shlex
def parse_command(message) -> ParsedStatusCommand:
"""Parsing command arguments to arguments list"""
LOGGER.debug('Got message: %s', message)
try:
_, target, *args = shlex.split(message)
return ParsedStatusCommand(target, *args)
except ValueError as ex:
raise CommandParsingError('Incorrect `/status` command') from ex
except TypeError as ex:
raise CommandParsingError('Too many arguments for `/status` command') from ex
|
868841d0b218a02f7b59b9e4302d22bd5d6ed57e
| 8,640
|
import io
import traceback
def mail_on_fail(func: callable):
"""Send an email when something fails. Use this as a decorator."""
@wraps(func)
def _wrap(*args, **kwargs):
try:
return func(*args, **kwargs)
except Exception as e:
# Handle recursive error handling.
# This way if a task wrapped in `@mail_on_fail` sends an email, we
# don't sent multiple emails.
if getattr(e, '__email_sent__', False):
raise e
# Get the stack trace
f = io.StringIO()
traceback.print_exc(file=f)
f.seek(0)
# Render the email body
html = render_template(
'mail/error.html',
stack_trace=f.read(),
func_name=getattr(func, '__name__', repr(func))
)
# Send the email
msg = ErrorEmail(html=html)
mail.send(msg)
# Mark as sent
e.__email_sent__ = True
# Raise the error
raise e
return _wrap
|
6672ec78551f26e875002b24ef21f331ab171540
| 8,641
|
def base_conv(num, base):
"""Write a Python program to converting
an Integer to a string in any base"""
_list = []
if num//base == 0:
return str(num%base)
else:
return (base_conv(num//base, base) + str(num%base))
|
9fcc28ccfe8ba80d974cc4012aad456bfb8c9544
| 8,642
|
def handle_log(request):
""" Handle streaming logs to a client """
params = request.match_info
log_dir = py.path.local('data').join(
params['project_slug'],
params['job_slug'],
)
# Handle .log ext for DockCI legacy data
log_path_bare = log_dir.join(params['stage_slug'])
log_path_ext = log_dir.join('%s.log' % params['stage_slug'])
log_path = None
if log_path_bare.check():
log_path = log_path_bare
elif log_path_ext.check():
log_path = log_path_ext
if log_path is None:
return web.Response(status=404)
byte_seek = try_qs_int(request, 'seek')
line_seek = try_qs_int(request, 'seek_lines')
bytes_count = try_qs_int(request, 'count')
lines_count = try_qs_int(request, 'count_lines')
if byte_seek and line_seek:
return web.Response(
body="byte_seek and line_seek are mutually exclusive".encode(),
status=400,
)
if bytes_count and lines_count:
return web.Response(
body="bytes_count and lines_count are mutually exclusive".encode(),
status=400,
)
response = web.StreamResponse(status=200, headers={
'content-type': 'text/plain',
})
yield from response.prepare(request)
with log_path.open('rb') as handle:
if byte_seek is not None:
_seeker_bytes(handle, byte_seek)
if line_seek is not None:
_seeker_lines(handle, line_seek)
if bytes_count is not None:
gen = _reader_bytes(handle, bytes_count)
elif lines_count is not None:
gen = _reader_lines(handle, lines_count)
else:
gen = _reader_bytes(handle)
for data in gen:
response.write(data)
yield from response.drain()
return response
|
4d5b4bd14ff759cd62b72224c0a2d1c99b7dc786
| 8,643
|
def get_scheme(patterns, config):
"""Returns the encoding scheme specified by the given config object
Args:
patterns (list(list)): List of input patterns
config (dict): The config object
"""
assert(type(patterns) == list and len(patterns) > 0)
assert(type(config) == dict)
min_max_values = utils.get_min_max_values(patterns)
pattern_dims = len(patterns[0])
scheme = None
method = config["method"]
if method == "quantize":
bits_per_attr = config["quantize"]["bits_per_attr"]
bits_set_per_attr = config["quantize"]["bits_set_per_attr"]
assert(type(bits_per_attr) == list and len(bits_per_attr) == pattern_dims)
assert(type(bits_set_per_attr) == list and len(bits_set_per_attr) == pattern_dims)
scheme = schemes.QuantizationEncoder(min_max_values, bits_per_attr, bits_set_per_attr)
elif method == "donothing":
bits_set = config["donothing"]["bits_set"]
scheme = schemes.DoNothingEncoder(bits_set)
elif method == "som":
som_path = config["som"]["som_file_path"]
scheme = schemes.SOMEncoder(som_path)
elif method == "baum":
segment_sizes = config["baum"]["segment_sizes"]
scheme = schemes.BaumEncoder(segment_sizes)
else:
raise ValueError("Unrecognized encoding method: " + method)
return scheme
|
de9cc88bed0446854903832fb7bc64c24cc37144
| 8,644
|
def open_signatures_window(*args):
"""
open_signatures_window() -> TWidget *
Open the signatures window ( 'ui_open_builtin' ).
@return: pointer to resulting window
"""
return _ida_kernwin.open_signatures_window(*args)
|
e699df0192755b28d3c1c324c485ca4486cab98e
| 8,645
|
def get_subscription_id(_ctx=ctx):
"""
Gets the subscription ID from either the node or
the provider context
"""
return get_credentials(_ctx=_ctx).subscription_id
|
23af53f6f807e14ad629e60ea79e21e8ed3eeef5
| 8,646
|
def origin_trial_function_call(feature_name, execution_context=None):
"""Returns a function call to determine if an origin trial is enabled."""
return 'RuntimeEnabledFeatures::{feature_name}Enabled({context})'.format(
feature_name=feature_name,
context=execution_context
if execution_context else "execution_context")
|
201dbe8449373dbad0144633350d3e6adbb58b80
| 8,647
|
def get_bit(byteval, index) -> bool:
"""retrieve bit value from byte at provided index"""
return (byteval & (1 << index)) != 0
|
1fe020449ae2ae2513073835db6f75b24e558fdb
| 8,648
|
def upsert_target(data, analyst):
"""
Add/update target information.
:param data: The target information.
:type data: dict
:param analyst: The user adding the target.
:type analyst: str
:returns: dict with keys "success" (boolean) and "message" (str)
"""
if 'email_address' not in data:
return {'success': False,
'message': "No email address to look up"}
target = Target.objects(email_address__iexact=data['email_address']).first()
is_new = False
if not target:
is_new = True
target = Target()
target.email_address = data['email_address']
bucket_list = False
ticket = False
if 'department' in data:
target.department = data['department']
if 'division' in data:
target.division = data['division']
if 'organization_id' in data:
target.organization_id = data['organization_id']
if 'firstname' in data:
target.firstname = data['firstname']
if 'lastname' in data:
target.lastname = data['lastname']
if 'note' in data:
target.note = data['note']
if 'title' in data:
target.title = data['title']
if 'bucket_list' in data:
bucket_list = data.get(form_consts.Common.BUCKET_LIST_VARIABLE_NAME)
if 'ticket' in data:
ticket = data.get(form_consts.Common.TICKET_VARIABLE_NAME)
if bucket_list:
target.add_bucket_list(bucket_list, analyst)
if ticket:
target.add_ticket(ticket, analyst)
try:
target.save(username=analyst)
target.reload()
if is_new:
run_triage(target, analyst)
return {'success': True,
'message': "Target saved successfully",
'id': str(target.id)}
except ValidationError, e:
return {'success': False,
'message': "Target save failed: %s" % e}
|
4baa064c52bbeacdc18323196c1762cabd9607aa
| 8,649
|
import torch
def batch_data(data, batch_size):
"""
data is a dict := {'x': [numpy array], 'y': [numpy array]} (on one client)
returns x, y, which are both numpy array of length: batch_size
"""
data_x = data["x"]
data_y = data["y"]
# randomly shuffle data
np.random.seed(100)
rng_state = np.random.get_state()
np.random.shuffle(data_x)
np.random.set_state(rng_state)
np.random.shuffle(data_y)
# loop through mini-batches
batch_data = list()
for i in range(0, len(data_x), batch_size):
batched_x = data_x[i : i + batch_size]
batched_y = data_y[i : i + batch_size]
batched_x = torch.from_numpy(np.asarray(batched_x)).float()
batched_y = torch.from_numpy(np.asarray(batched_y)).long()
batch_data.append((batched_x, batched_y))
return batch_data
|
58cfde03668dd61e23bdb8b96527ae17176c4872
| 8,650
|
import ast
import sys
def ast_parse_node(node):
"""
:param ast.Node node: an ast node representing an expression of variable
:return ast.Node: an ast node for:
_watchpoints_obj = var
if <var is a local variable>:
# watch(a)
_watchpoints_localvar = "a"
elif <var is a subscript>:
# watch(a[3])
_watchpoints_parent = a
_watchpoints_subscr = 3
elif <var is an attribute>:
# watch(a.b)
_watchpoints_parent = a
_watchpoints_attr = "b"
"""
root = ast.Module(
body=[
ast.Assign(
targets=[
ast.Name(id="_watchpoints_obj", ctx=ast.Store())
],
value=node
)
],
type_ignores=[]
)
if type(node) is ast.Name:
root.body.append(
ast.Assign(
targets=[
ast.Name(id="_watchpoints_localvar", ctx=ast.Store())
],
value=ast.Constant(value=node.id)
)
)
elif type(node) is ast.Subscript:
root.body.append(
ast.Assign(
targets=[
ast.Name(id="_watchpoints_parent", ctx=ast.Store())
],
value=node.value
)
)
if sys.version_info.minor <= 8 and type(node.slice) is ast.Index:
value_node = node.slice.value
elif sys.version_info.minor >= 9 and type(node.slice) is not ast.Slice:
value_node = node.slice
else:
raise ValueError("Slice is not supported!")
root.body.append(
ast.Assign(
targets=[
ast.Name(id="_watchpoints_subscr", ctx=ast.Store())
],
value=value_node
)
)
elif type(node) is ast.Attribute:
root.body.append(
ast.Assign(
targets=[
ast.Name(id="_watchpoints_parent", ctx=ast.Store())
],
value=node.value
)
)
root.body.append(
ast.Assign(
targets=[
ast.Name(id="_watchpoints_attr", ctx=ast.Store())
],
value=ast.Constant(value=node.attr)
)
)
ast.fix_missing_locations(root)
return root
|
22b3b6fed61e18ed6dc742040a365ebca8847fd5
| 8,651
|
def simplify_board_name(board_name: str) -> str:
"""Removes the following from board names:
- `x86-`, e.g. `x86-mario`
- `_he`, e.g. `x86-alex_he`
- `&` - e.g. `falco & falco_II`
- ',' - e.g. `hoho, but substitute a dp to vga chip` (why)
Args:
board_name: the board name to simplify
Returns:
str: a simplified board name
"""
if '&' in board_name:
# Always try to extract the first of two. For the time being,
# only legacy devices have this format and the second element
# is always the 'II' one.
board_name = board_name.split('&')[0].strip()
if ',' in board_name:
# hohoho
board_name = board_name.split(',')[0].strip()
return TO_REMOVE.sub('', board_name.lower())
|
bd6a9756aa6e6725b9727825f52ba544e2e4a97d
| 8,652
|
import argparse
def parse_args():
"""
Parse CLI arguments.
Returns
-------
argparse.Namespace
Parsed arguments
"""
parser = argparse.ArgumentParser(
description="Optimize model for inference")
parser.add_argument("-m", "--model",
dest="model_type",
help="Model type",
choices=["large"],
type=str,
default=None,
required=False)
parser.add_argument("--config",
dest="config_override",
help="Path to model config override file",
type=str,
default=None,
required=False)
parser.add_argument("--frvsr-weights",
help="Path to FRVSR weights",
type=str,
default=None,
required=False)
parser.add_argument("--gan-weights",
help="Path to GAN weights",
type=str,
default=None,
required=False)
parser.add_argument("output",
help="Output",
type=str,
default=None)
args = parser.parse_args()
if args.frvsr_weights is None and args.gan_weights is None:
parser.error("should specify FRVSR or GAN weights")
return args
|
71eb3b1a567cdc7705fd6a2120c1ed23c9e8afd8
| 8,653
|
def delete_news_site(user_id, news_name):
"""
Delete subscription to user list
Params:
- user_id: The user email
- news_name: The name of news provider
Return: void
"""
user_info = get_user_by_email(user_id)
user_info = user_info.to_dict()
list_news = user_info['news_sites']
if list_news.count(news_name) != 0:
list_news.remove(news_name)
else:
# The user is not subscribed to the currently passed news_name
return True
user_info['news_sites'] = list_news
db.collection('users').document(user_id).update(user_info)
|
02f4ea485b2822c1a614e39dae3ef3aa924596b0
| 8,654
|
from datetime import datetime
def get_time_str(dt: datetime.datetime = None, tz_default=LocalTimeZone):
"""
@param dt 为None时,返回当前时间
@param tz_default dt无时区信息时的默认时区
"""
if not dt:
dt = datetime.datetime.now()
dt = convert_zone(dt, tz_default=tz_default)
time_str = dt.isoformat().split('+')[0]
return time_str + 'Z'
|
41f9f1465fe88e35450569995a14dfce6ebc9bc5
| 8,655
|
def plotLikesTablePair( likesTableFNs,
plotFile, nonNormedStats = (),
includeSpecialBins = True,
getio = None ):
"""Visually plot a likes table.
"""
if getio: return dict( depends_on = likesTableFNs,
creates = plotFile,
attrs = dict( piperun_short = True ) )
likesTable = map( LoadLikesTable, likesTableFNs )
hitsLikes = [ IDotData( likesTable[ i ].hitsLikes ) for i in range( 2 ) ]
missLikes = [ IDotData( likesTable[ i ].missLikes ) for i in range( 2 ) ]
regionLikes = [ IDotData( likesTable[ i ].regionLikes ) for i in range( 2 ) ]
pp.figure( figsize = ( 16, 18 ) )
stat_start, stat_end, stat_nbins = LoadBins( likesTable[0].likesBins )
stat_start1, stat_end1, stat_nbins1 = LoadBins( likesTable[1].likesBins )
assert( stat_start == stat_start1 )
assert( stat_end == stat_end1 )
assert( stat_nbins == stat_nbins1 )
assert( hitsLikes[0].headings == hitsLikes[1].headings )
assert( missLikes[0].headings == missLikes[1].headings )
assert( regionLikes[0].headings == regionLikes[1].headings )
regionLine = None
for statNum, stat in enumerate( hitsLikes[0].headings ):
rawStep = 1.0 / len( hitsLikes[0].headings ) * 0.93
rawBottom = rawStep * statNum
rawTop = rawBottom + rawStep
r = ( 0.1, 0.05 + rawBottom, 0.8, rawStep * 0.6 )
dbg( 'r' )
pp.axes( r )
pp.title( stat + ( ' (non-normed)' if stat in nonNormedStats else '' ) )
assert len( hitsLikes[0] ) == len( missLikes[0] ) == stat_nbins[ stat ] + CMSBins.maxSpecialBins
binSize = ( stat_end[stat] - stat_start[stat] ) / stat_nbins[stat]
binStarts = [ stat_start[stat] + binSize * i
for i in range( stat_nbins[ stat ] + ( CMSBins.stat_numSpecialBins[ stat ] if includeSpecialBins else 0 ) ) ]
pp.gca().set_xticks( binStarts )
pp.gca().set_xticklabels( [ '%.2f' % b for b in binStarts[: stat_nbins[stat] ] ] +
( list( DictGet( CMSBins.stat_specialBinNames,
stat, () ) ) if includeSpecialBins else [] ),
rotation = 'vertical' )
# pp.gca().set_xticklabels( map( str, binStarts ) + [ 's%d' % i for i in range( CMSBins.stat_numSpecialBins[ stat ] ) ] )
dbg( 'stat binStarts' )
hitsLine = [ None, None ]
missLine = [ None, None ]
regionLine = [ None, None ]
for i, style in ( ( 0, '-' ), ( 1, ':' ) ):
hitsLine[i], = pp.plot( binStarts , hitsLikes[i][ stat ][:len( binStarts )], 'r' + style )
missLine[i], = pp.plot( binStarts , missLikes[i][ stat ][:len( binStarts )], 'g' + style )
regionLine[i], = pp.plot( binStarts, regionLikes[i][ stat ][:len(binStarts)], 'b' + style )
pp.figlegend( filter( None, ( hitsLine[0], missLine[0], regionLine[0],
hitsLine[1], missLine[1], regionLine[1] ) ),
( 'selected SNPs 1', 'neutral SNPs in neutral regions 1', 'region snps 1',
'selected SNPs 2', 'neutral SNPs in neutral regions 2', 'region snps 2',
),
'upper center' )
pp.savefig( plotFile )
|
6671877a21749747ce45a020d7a87eec86280d8c
| 8,656
|
import os
import math
def get_res_details(f):
""" extracts bmaj, bmin, bpa and coordinate increment"""
cmd = "prthd in=%s 2>/dev/null"%(f)
pcmd = os.popen(cmd)
output = pcmd.read()
output = output.split('\n')
#print(output)
for lin in output:
if 'Beam Size' in lin:
print(lin)
bmaj = float(lin.split()[2])
bmin = float(lin.split()[4])
if 'Position ang' in lin:
print(lin.split())
bpa = float(lin.split()[2])
if lin.startswith("RA"):
inc = math.fabs(float(lin.split()[4]))
return bmaj,bmin,bpa,inc
|
5a95c08f494beffb85b2942e90561837bc82fbd0
| 8,657
|
def del_api_msg():
"""
@api {post} /v1/interfaceapimsg/del InterfaceApiImsg_删除接口信息
@apiName interfaceApiImsgDel
@apiGroup Interface
@apiDescription 删除接口信息
@apiParam {int} apiMsgId 接口信息id
@apiParamExample {json} Request-Example:
{
"apiMsgId": 1,
}
@apiSuccessExample {json} Success-Response:
HTTP/1.1 200 OK
{
"msg": "删除成功",
"status": 1
}
"""
data = request.json
api_msg_id = data.get('apiMsgId')
jsondata = InterfaceApiMsgBusiness.del_api_msg(api_msg_id)
return jsondata
|
fabd5a2fc257219e2568991f9520587d4053c909
| 8,658
|
def find_nearest(array, value):
""" Find nearest value of interest in array (used for frequencies,
no double value issues)
Parameters
----------
array: array
Give the array in which you want to find index of value nearest-by
value: int or float
The value of interest
Return
------
idx: int
Index of value nearest by value of interest
"""
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
return idx
|
e96a87b5b857a8cafbc0c6371b395040dde48e8d
| 8,659
|
import math
def tube_light_generation_by_func(k, b, alpha, beta, wavelength, w = 400, h = 400):
"""Description:
This functio generates a tube light (light beam) with given paratmers, in which,
k and b represent the function y = k*x + b
# TODO:
Test k, b range
Args:
k (int): y = k*x + b
b (int): y = k*x + b
alpha (int): An integer (0,1] denotes the illumination intensity.
beta (int): Annuatation factor. depends on the annuatation function, current beta/distance^2
wavelength (interger): An interger (380, 750) denotes the wavelength of the light.
w (int, optional): Width. Defaults to 400.
h (int, optional): Height. Defaults to 400.
Returns:
tube light: an numpy array with shape (w,h,3)
"""
tube_light = np.zeros((w,h,3))
full_light_end_y = int(math.sqrt(beta) + 0.5)
light_end_y = int(math.sqrt(beta * 20) + 0.5)
c = wavelength_to_rgb(wavelength)
for x in range(w):
for y in range(h):
distance = abs(k*x - y + b) / math.sqrt(1 + k*k)
if distance < 0:
print(distance)
if distance <= full_light_end_y:
tube_light[y,x,0] = c[0] * alpha
tube_light[y,x,1] = c[1] * alpha
tube_light[y,x,2] = c[2] * alpha
elif distance> full_light_end_y and distance <= light_end_y:
attenuation = beta/(distance * distance)
tube_light[y,x,0] = c[0] * alpha * attenuation
tube_light[y,x,1] = c[1] * alpha * attenuation
tube_light[y,x,2] = c[2] * alpha * attenuation
return tube_light
|
c4fe0e817233f7e983e2bc513377e63379e23f93
| 8,660
|
def get_book(isbn):
"""
Retrieve a specific book record by it's ISBN
---------------------------------------------
Endpoints:
GET /books/isbn
GET /books/isbn?act=(borrow|handback)
@QueryParams:
act: (optional) specific action on book
Possible values: borrow, handback
@Response:
200: return book record
"""
try:
book = Book.objects.get(isbn=isbn)
if request.args.get("act") == "borrow":
if book["available"] > 0:
book["available"] -= 1
else:
return "This book is unavailable"
elif request.args.get("act") == "handback":
if book["available"] < book["copies"]:
book["available"] += 1
else:
return "You can't adda new copy"
book.save()
return jsonify(book)
except:
return "We don't carry this book"
|
fd1471234f6c73062569fea0ae489da3dc9af8ac
| 8,661
|
def toint16(i):
""" Convert a number to a hexadecimal string of length 2 """
return f'{i:02x}'
|
3effd2b3f011a962beac19682ad29e930eb0f057
| 8,662
|
def is_phone(text):
"""
验证字符串是否是固定电话
:param text: 需要检查的字符串
:return: 符合返回True,不符合返回False
"""
return check_string(text, '\(?0\d{2,3}[) -]?\d{7,8}$')
|
a90e8d28737b94f02381ed6e959e0a155628eaae
| 8,663
|
def get_loc(frameInfo, bbox_type):
"""Return GeoJSON bbox."""
bbox = np.array(frameInfo.getBBox()).astype(np.float)
print("get_loc bbox: %s" %bbox)
if bbox_type == "refbbox":
bbox = np.array(frameInfo.getReferenceBBox()).astype(np.float)
coords = [
[ bbox[0,1], bbox[0,0] ],
[ bbox[1,1], bbox[1,0] ],
[ bbox[2,1], bbox[2,0] ],
[ bbox[3,1], bbox[3,0] ],
[ bbox[0,1], bbox[0,0] ],
]
print("get_loc coords : [%s]" %coords)
return {
"type": "Polygon",
"coordinates": [coords]
}
|
a95a9eb6ae9e33b5d69451fb1b34e19c7b0be8d3
| 8,664
|
def load_df(input_path, fname, ext):
"""Read chain as Pandas DataFrame"""
fname = os.path.join(input_path, fname + ext)
print 'loading %s' % fname
assert(os.path.isabs(fname))
X = pd.DataFrame.from_csv(fname)
return X
|
be4c0d82bdb8881d3ad555b215469df7e8daaefe
| 8,665
|
from typing import Set
def _load_order_component(comp_name: str, load_order: OrderedSet,
loading: Set) -> OrderedSet:
"""Recursive function to get load order of components.
Async friendly.
"""
component = get_component(comp_name)
# If None it does not exist, error already thrown by get_component.
if component is None:
return OrderedSet()
loading.add(comp_name)
for dependency in getattr(component, 'DEPENDENCIES', []):
# Check not already loaded
if dependency in load_order:
continue
# If we are already loading it, we have a circular dependency.
if dependency in loading:
_LOGGER.error("Circular dependency detected: %s -> %s",
comp_name, dependency)
return OrderedSet()
dep_load_order = _load_order_component(dependency, load_order, loading)
# length == 0 means error loading dependency or children
if not dep_load_order:
_LOGGER.error("Error loading %s dependency: %s",
comp_name, dependency)
return OrderedSet()
load_order.update(dep_load_order)
load_order.add(comp_name)
loading.remove(comp_name)
return load_order
|
c9d2adc8dbcf392e3d904b1e5f9d47f623e5646e
| 8,666
|
def clean_english_str_tf(input_str):
"""Clean English string with tensorflow oprations."""
# pylint: disable=anomalous-backslash-in-string
string = tf.regex_replace(input_str, r"[^A-Za-z0-9(),!?\'\`<>/]", " ")
string = tf.regex_replace(string, "\'s", " \'s")
string = tf.regex_replace(string, "\'ve", " \'ve")
string = tf.regex_replace(string, "n\'t", " n\'t")
string = tf.regex_replace(string, "\'re", " \'re")
string = tf.regex_replace(string, "\'d", " \'d")
string = tf.regex_replace(string, "\'ll", " \'ll")
string = tf.regex_replace(string, ",", " , ")
string = tf.regex_replace(string, "!", " ! ")
string = tf.regex_replace(string, "\(", " ( ")
string = tf.regex_replace(string, "\)", " ) ")
string = tf.regex_replace(string, "\?", " ? ")
string = tf.regex_replace(string, "\s{2,}", " ")
string = tf.string_strip(string)
string = py_x_ops.str_lower(string)
return string
|
6439f708dea8566d5706968811aed7478b1c107c
| 8,667
|
def _square_eqt(x, y, x0, y0, angle):
"""simple equation for a square.
this returns: max(np.dstack([abs(x0 - x), abs(y0 -y)]), 2). this should then be compared to the
"radius" of the square (half the width)
the equation comes from this post:
http://polymathprogrammer.com/2010/03/01/answered-can-you-describe-a-square-with-1-equation/
x, y: either one number or arrays of the same size (as returned by meshgrid)
angle: angle in degrees. should lie in [-45, 45)
"""
x = np.array(x)
y = np.array(y)
vals = np.max(np.dstack([np.abs(x0 - x), np.abs(y0 - y)]), 2)
if x.ndim == 2:
# only rotate the image if x is 2d. in that case, we're returning a rotated image of the
# square. if x is 1d, then we just want the distance to the origin (which we don't rotate)
# -- the "radius" of the square will need to be rotated
vals = ndimage.rotate(vals, angle)
vals = _reshape_rotated_image(vals, x.shape)
return vals.reshape(x.shape)
|
4000bf329399dfc8b842c2a496cdea193dd47fc6
| 8,668
|
def multinomial(x, num_samples=1, replacement=False, name=None):
"""
This OP returns a Tensor filled with random values sampled from a Multinomical
distribution. The input ``x`` is a tensor with probabilities for generating the
random number. Each element in ``x`` should be larger or equal to 0, but not all
0. ``replacement`` indicates whether it is a replaceable sample. If ``replacement``
is True, a category can be sampled more than once.
Args:
x(Tensor): A tensor with probabilities for generating the random number. The data type
should be float32, float64.
num_samples(int, optional): Number of samples, default is 1.
replacement(bool, optional): Whether it is a replaceable sample, default is False.
name(str, optional): The default value is None. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`.
Returns:
Tensor: A Tensor filled with sampled category index after ``num_samples`` times samples.
Examples:
.. code-block:: python
import paddle
paddle.seed(100) # on CPU device
x = paddle.rand([2,4])
print(x)
# [[0.5535528 0.20714243 0.01162981 0.51577556]
# [0.36369765 0.2609165 0.18905126 0.5621971 ]]
paddle.seed(200) # on CPU device
out1 = paddle.multinomial(x, num_samples=5, replacement=True)
print(out1)
# [[3 3 0 0 0]
# [3 3 3 1 0]]
# out2 = paddle.multinomial(x, num_samples=5)
# InvalidArgumentError: When replacement is False, number of samples
# should be less than non-zero categories
paddle.seed(300) # on CPU device
out3 = paddle.multinomial(x, num_samples=3)
print(out3)
# [[3 0 1]
# [3 1 0]]
"""
assert core.is_compiled_with_rocm() == False, (
"multinomial op is not supported on ROCM yet.")
if in_dygraph_mode():
return _C_ops.multinomial(x, 'num_samples', num_samples, 'replacement',
replacement)
check_variable_and_dtype(x, "x", ["float32", "float64"], "multinomial")
helper = LayerHelper("multinomial", **locals())
out = helper.create_variable_for_type_inference(
dtype=convert_np_dtype_to_dtype_('int64'))
helper.append_op(
type='multinomial',
inputs={"X": x},
outputs={'Out': out},
attrs={'num_samples': num_samples,
'replacement': replacement})
out.stop_gradient = True
return out
|
6412cf815aaf8b9175946c501beacb716deb0c5c
| 8,669
|
def run_experiment(
max_epochs,
log=None,
evaluate=True,
projection=True,
save_directory=".",
save_file=None,
save_interval=1,
**configuration,
):
"""Runs the Proof of Constraint experiment with the given configuration
:param max_epochs: number of epochs to run the experiment
:param log: function to use for logging. None supresses logging
:param evaluate: whether to run the evaluator once over the
training data at the end of an epoch
:param projection: whether to run the projection engine once over the
testing data at the end of an epoch
:param save_directory: optional directory to save checkpoints into. Defaults
to the directory that the main script was called from
:param save_file: base filename for checkpointing. If not provided, then no
checkpointing will be performed
:param save_interval: frequency of saving out model checkpoints. Defaults to
every epoch
:param configuration: kwargs for various settings. See default_configuration
for more details
:returns: the configuration dictionary, a tuple of all engines (first will
be the training engine), and a corresponding tuple of all monitors
"""
# Determine the parameters of the analysis
should_log = log is not None
should_checkpoint = save_file is not None
kwargs = default_configuration()
kwargs.update(configuration)
if should_log:
log(kwargs)
# Get the data
train_dl, test_dl = get_data(kwargs)
# Build the model, optimizer, loss, and constraint
model, opt, proj_opt = build_model_and_optimizer(kwargs)
loss, constraint = get_loss_and_constraint(kwargs)
# Setup Monitors and Checkpoints
training_monitor = TrainingMonitor("training")
evaluation_monitor = TrainingMonitor("evaluation") if evaluate else None
projection_monitor = ProjectionMonitor() if projection else None
prediction_logger = PredictionLogger(model)
if should_checkpoint:
checkpointer = ModelAndMonitorCheckpointer(
save_directory,
save_file,
kwargs,
[training_monitor, evaluation_monitor, projection_monitor],
prediction_logger,
save_interval=save_interval,
)
else:
checkpointer = None
# This is the trainer because we provide the optimizer
trainer = create_engine(
model,
loss,
constraint,
opt,
projection=False,
monitor=training_monitor,
regularization_weight=kwargs["regularization_weight"],
error_fn=kwargs["error_fn"],
device=kwargs["device"],
tolerance=kwargs["tolerance"],
max_iterations=kwargs["max_iterations"],
)
# These are not trainers simply because we don't provide the optimizer
if evaluate:
evaluator = create_engine(
model,
loss,
constraint,
optimizer=None,
projection=False,
monitor=evaluation_monitor,
regularization_weight=kwargs["regularization_weight"],
error_fn=kwargs["error_fn"],
device=kwargs["device"],
tolerance=kwargs["tolerance"],
max_iterations=kwargs["max_iterations"],
)
else:
evaluator = None
if projection:
projector = create_engine(
model,
loss,
constraint,
proj_opt,
projection=True,
monitor=projection_monitor,
regularization_weight=kwargs["regularization_weight"],
error_fn=kwargs["error_fn"],
device=kwargs["device"],
tolerance=kwargs["tolerance"],
max_iterations=kwargs["max_iterations"],
)
else:
projector = None
prediction_logger.attach(trainer, projector)
# Ensure evaluation happens once per epoch
@trainer.on(Events.EPOCH_COMPLETED)
def run_evaluation(trainer):
if training_monitor is not None and should_log:
summary = training_monitor.summarize()
log(
f"Epoch[{trainer.state.epoch:05d}] Training Summary - {summary}"
)
if evaluate:
if should_log:
log(
f"Epoch[{trainer.state.epoch:05d}] - Evaluating on training data..."
)
evaluator.run(train_dl)
if evaluation_monitor is not None and should_log:
summary = evaluation_monitor.summarize()
log(
f"Epoch[{trainer.state.epoch:05d}] Evaluation Summary - {summary}"
)
# Handle projection
if projection:
if should_log:
log(f"Epoch[{trainer.state.epoch:05d}] - Projecting...")
projector.run(test_dl, max_epochs=kwargs["max_iterations"])
if projection_monitor is not None and should_log:
summary = projection_monitor.summarize()
log(
f"Epoch[{trainer.state.epoch:05d}] Generalization Summary - {summary}"
)
if should_checkpoint:
checkpointer(trainer)
# Handle projection summary
if projection:
@projector.on(Events.EPOCH_COMPLETED)
def projection_summary(projector):
if projection_monitor is not None and should_log:
summary = projection_monitor.summarize(during_projection=True)
log(
f"Epoch[{trainer.state.epoch:05d}-{projector.state.epoch:05d}] Projection Summary - {summary}"
)
@projector.on(Events.EPOCH_COMPLETED)
def projection_stop(projector):
if projection_monitor is not None:
if projection_monitor.should_stop_projection(
kwargs["tolerance"]
):
projector.terminate()
@projector.on(Events.COMPLETED)
def projection_unterminate(projector):
# Unblock the projector so it can resume later
projector.should_terminate = False
if should_log:
@trainer.on(Events.ITERATION_COMPLETED)
def log_batch_summary(trainer):
log(
"Epoch[{:05d}] - Total loss: {:.5f}, Data Loss: {:.5f}, Constraint Error: {:.5f}".format(
trainer.state.epoch,
trainer.state.total_loss.cpu().item(),
trainer.state.mean_loss.cpu().item(),
trainer.state.constraints_error.cpu().item(),
)
)
trainer.run(train_dl, max_epochs=max_epochs)
# Save final model and monitors
if should_checkpoint:
checkpointer.retrieve_and_save(trainer)
return (
kwargs,
(trainer, evaluator, projector),
(training_monitor, evaluation_monitor, projection_monitor),
)
|
7ebfc72dc3ebe7047e708ffa0903f24de67d8134
| 8,670
|
from typing import List
from typing import Callable
def compose_decorators(decorators: List[Callable]) -> Callable:
"""Compose multiple decorators into one.
Helper function for combining multiple instrumentation decorators into one.
:param list(Callable) decorators: A list of instrumentation decorators to be
combined into a single decorator.
"""
def composed(func: Callable, **dkwargs) -> Callable:
@wraps(func)
def wrapper(*args, **kwargs):
wrapped_func = func
for decorator in decorators:
wrapped_func = decorator(wrapped_func, **dkwargs)
return wrapped_func(*args, **kwargs)
return wrapper
return composed
|
14d8ecbf5af598419906ba9776bb40be6271279f
| 8,671
|
import torch
def xyz_to_polar(sphere_points):
"""
(B,3,N) -> theta, phi (B,2,N), r (B)
x = r*cos(theta)*sin(phi)
y = r*sin(theta)*sin(phi)
z = r*cos(phi)
"""
r = torch.sqrt(torch.sum(sphere_points*sphere_points, dim=1))
theta = torch.atan2(sphere_points[:,1,:], sphere_points[:,0,:])
z = sphere_points[:,2,:]/r
z.clamp_(-1.0+1e-5, 1.0-1e-5)
phi = torch.acos(z)
phi = phi.masked_fill(z==1, 0.0)
r = torch.mean(r, dim=-1)
assert(check_values(phi))
assert(check_values(theta))
return torch.stack([theta,phi], dim=1), r
|
3332240df5230d801800ab3601873d26872326fc
| 8,672
|
def get_cpu_cores():
"""获取每个cpu核的信息
Returns:
统计成功返回是一个元组:
第一个元素是一个列表存放每个cpu核的信息
第二个元素是列表长度, 也就是计算机中cpu核心的总个数
若统计出来为空, 则返回None
"""
cpu_cores = []
with open('/proc/cpuinfo') as f:
for line in f:
info = line.strip()
if info.startswith('model name'):
model_name = info.split(':')[1].strip()
cpu_cores.append(model_name)
if cpu_cores:
return cpu_cores, len(cpu_cores)
return None
|
ad66faac3a956b1922173263415890bc543e0bba
| 8,673
|
from typing import Union
from typing import Tuple
def itk_resample(image: sitk.Image, spacing: Union[float, Tuple[float, float, float]], *,
interpolation: str = "nearest", pad_value: int) -> sitk.Image:
"""
resample sitk image given spacing, pad value and interpolation.
Args:
image: sitk image
spacing: new spacing, either a scalar or a tuple of three scalars.
interpolation: interpolation method, "linear" or "nearest".
pad_value: pad value for out of space pixels.
Returns:
torch.Tensor: affine params in correct shape
"""
if check_scalar(spacing):
spacing: Tuple[float, float, float] = (spacing, spacing, spacing) # noqa
ori_spacing = image.GetSpacing()
ori_size = image.GetSize()
new_size = (round(ori_size[0] * (ori_spacing[0] / spacing[0])),
round(ori_size[1] * (ori_spacing[1] / spacing[1])),
round(ori_size[2] * (ori_spacing[2] / spacing[2])))
interp = {"linear": sitk.sitkLinear, "nearest": sitk.sitkNearestNeighbor, "cosine": sitk.sitkCosineWindowedSinc}[
interpolation]
return sitk.Resample(image, new_size, sitk.Transform(), interp, image.GetOrigin(), spacing, image.GetDirection(),
pad_value, image.GetPixelID())
|
37636c42e3f28c09dc0d3ef511c483eec0d3b3e2
| 8,674
|
def gen_anchor_targets(
anchors,
image,
bboxes,
labels,
num_classes,
negative_overlap=0.4,
positive_overlap=0.5
):
""" Generate anchor targets for bbox detection.
@author: Eli
This is a version of anchor_targets_bbox that takes tensors for images, bboxes, and labels
to play nice with tensorflow.
Args
anchors: np.array of annotations of shape (N, 4) for (x1, y1, x2, y2).
image_group: List of images.
bboxes_group: np.array(n, x1, y1, x2, y2)
labels_grpup: np.array(n)
num_classes: Number of classes to predict.
mask_shape: If the image is padded with zeros, mask_shape can be used to mark the relevant part of the image.
negative_overlap: IoU overlap for negative anchors (all anchors with overlap < negative_overlap are negative).
positive_overlap: IoU overlap or positive anchors (all anchors with overlap > positive_overlap are positive).
Returns
labels_target: batch that contains labels & anchor states (np.array of shape (batch_size, N, num_classes + 1),
where N is the number of anchors for an image and the last column defines the anchor state (-1 for ignore, 0 for bg, 1 for fg).
regression_target: batch that contains bounding-box regression targets for an image & anchor states (np.array of shape (batch_size, N, 4 + 1),
where N is the number of anchors for an image, the first 4 columns define regression targets for (x1, y1, x2, y2) and the
last column defines anchor states (-1 for ignore, 0 for bg, 1 for fg).
"""
regression_target = np.zeros(
(anchors.shape[0], 4 + 1), dtype=np.float32)
labels_target = np.zeros(
(anchors.shape[0], num_classes + 1), dtype=np.float32)
# compute labels and regression targets
if bboxes.shape[0]:
# obtain indices of ground truth annotations with the greatest overlap
positive_indices, ignore_indices, argmax_overlaps_inds = utils.anchors.compute_gt_annotations(
anchors, bboxes, negative_overlap, positive_overlap)
labels_target[ignore_indices, -1] = -1
labels_target[positive_indices, -1] = 1
regression_target[ignore_indices, -1] = -1
regression_target[positive_indices, -1] = 1
# compute target class labels
labels_target[positive_indices, labels
[argmax_overlaps_inds[positive_indices]].astype(int)] = 1
regression_target[:, : -1] = utils.anchors.bbox_transform(
anchors, bboxes[argmax_overlaps_inds, :])
# ignore annotations outside of image
anchors_centers = np.vstack(
[(anchors[:, 0] + anchors[:, 2]) / 2,
(anchors[:, 1] + anchors[:, 3]) / 2]).T
outside_indices = np.logical_or(
anchors_centers[:, 0] >= image.shape[1],
anchors_centers[:, 1] >= image.shape[0])
# -1 means ignore
labels_target[outside_indices, -1] = -1
regression_target[outside_indices, -1] = -1
return regression_target, labels_target
|
6ac0b5602a6d3aa2d1905da09f457ca44193b02c
| 8,675
|
def parameters_to_weights(parameters: Parameters) -> Weights:
"""Convert parameters object to NumPy weights."""
return [bytes_to_ndarray(tensor) for tensor in parameters.tensors]
|
e235fee46ad9ffcc31eea86f2491a9ac305d3ac5
| 8,676
|
from multiprocessing import Pool
def get_iou(data_list, class_num, save_path=None):
"""
Args:
data_list: a list, its elements [gt, output]
class_num: the number of label
"""
ConfM = ConfusionMatrix(class_num)
f = ConfM.generateM
pool = Pool()
m_list = pool.map(f, data_list)
pool.close()
pool.join()
for m in m_list:
ConfM.addM(m)
aveJ, j_list, M = ConfM.jaccard()
# print(j_list)
# print(M)
# print('meanIOU: ' + str(aveJ) + '\n')
if save_path:
with open(save_path, 'w') as f:
f.write('meanIOU: ' + str(aveJ) + '\n')
f.write(str(j_list) + '\n')
f.write(str(M) + '\n')
return aveJ, j_list
|
cce5b270a34700eed592e9a47d0c56a8b43027ff
| 8,677
|
import torch
def hook_modules(module):
""" Temporarily adds the hooks to a `nn.Module` for tracing """
hooks = []
def register_submodule_tracer(module):
def _submodule_pre_tracer(module, input):
log.debug(f'pre tracer in _submodule_pre_tracer in {type(module).__name__}')
lock(True)
def _submodule_tracer(module, inputs, outputs):
log.debug(f'tracer in _submodule_tracer in {type(module).__name__}')
lock(False)
node = TraceNode(module)
add_forward_node(node, inputs, outputs)
module_unique_name = current_graph().module_unique_name_dict[id(module)]
if module_unique_name in current_graph().traced_modules:
log.debug(f"module {module_unique_name} is traced")
return None
related = False
if id(module) in module_constructor_traced:
if id(module) in module_constructor_lines:
related = True
else:
if type(module) in overridable_modules:
related = True
else:
for m in overridable_modules:
if isinstance(module, m):
related = True
break
if related:
hooks.append(module.register_forward_pre_hook(_submodule_pre_tracer))
hooks.append(module.register_forward_hook(_submodule_tracer))
current_graph().traced_modules.append(module_unique_name)
return None
def _model_pre_tracer(module, inputs):
log.debug('pre tracer in _model_pre_tracer')
for i in inputs:
node = TraceNode(TraceFunction("input"))
add_input_node(node, i)
def _model_tracer(module, inputs, outputs):
log.debug('tracer in _model_tracer')
if type(outputs) == torch.Tensor:
node = TraceNode(TraceFunction("output"))
add_output_node(node, outputs)
elif type(outputs) in (list, tuple):
for i in outputs:
if type(i) == torch.Tensor or (type(i) in (list, tuple) and all((type(x) == torch.Tensor for x in i))):
node = TraceNode(TraceFunction("output"))
add_output_node(node, i)
else:
log.warning(
"Only tensors or list, tuple of tensors are supported when nested in a class, dict, list or tuple")
elif type(outputs) == dict:
for k, v in outputs.items():
if type(v) == torch.Tensor or (type(v) in (list, tuple) and all((type(x) == torch.Tensor for x in v))):
node = TraceNode(TraceFunction("output"))
add_output_node(node, v)
else:
log.warning(
"Only tensors or list, tuple of tensors are supported when nested in a class, dict, list or tuple")
else:
log.warning(f'Output type is not supported: {type(outputs).__name__}, try to extract tensors from it')
for k in outputs.__dir__():
v = getattr(outputs, k)
if type(v) == torch.Tensor or (type(v) in (list, tuple) and all((type(x) == torch.Tensor for x in v))):
node = TraceNode(TraceFunction("output"))
add_output_node(node, v)
log.debug('trace: apply register_submodule_tracer')
module.apply(register_submodule_tracer)
log.debug('trace: add hooks')
hooks.append(module.register_forward_pre_hook(_model_pre_tracer))
hooks.append(module.register_forward_hook(_model_tracer))
yield module
for hook in hooks:
hook.remove()
|
1a165b4a49f3179485811eced8b114e0b0a6da8b
| 8,678
|
def bridge_forward_delay(brname):
"""Read a bridge device's forward delay timer.
:returns ``int``:
Bridge forward delay timer.
:raises:
OSError, IOError (ENOENT) if the device doesn't exist.
"""
return int(_get_dev_attr(brname, 'bridge/forward_delay'))
|
ba164ba85f1e1e3c5f82e28f38413cb8ca9e5090
| 8,679
|
def RF(X, y, X_ind, y_ind, is_reg=False):
"""Cross Validation and independent set test for Random Forest model
Arguments:
X (ndarray): Feature data of training and validation set for cross-validation.
m X n matrix, m is the No. of samples, n is the No. of fetures
y (ndarray): Label data of training and validation set for cross-validation.
m-D vector, and m is the No. of samples.
X_ind (ndarray): Feature data of independent test set for independent test.
It has the similar data structure as X.
y_ind (ndarray): Feature data of independent set for for independent test.
It has the similar data structure as y
out (str): The file path for saving the result data.
is_reg (bool, optional): define the model for regression (True) or classification (False) (Default: False)
Returns:
cvs (ndarray): cross-validation results. The shape is (m, ), m is the No. of samples.
inds (ndarray): independent test results. It has similar data structure as cvs.
"""
if is_reg:
folds = KFold(5).split(X)
alg = RandomForestRegressor
else:
folds = StratifiedKFold(5).split(X, y)
alg = RandomForestClassifier
cvs = np.zeros(y.shape)
inds = np.zeros(y_ind.shape)
for i, (trained, valided) in enumerate(folds):
model = alg(n_estimators=500, n_jobs=1)
model.fit(X[trained], y[trained])
if is_reg:
cvs[valided] = model.predict(X[valided])
inds += model.predict(X_ind)
else:
cvs[valided] = model.predict_proba(X[valided])[:, 1]
inds += model.predict_proba(X_ind)[:, 1]
return cvs, inds / 5
|
c8ab9aa7cf6bbe159be172cdea82bc970b896914
| 8,680
|
import struct
def keystring2list(s):
"""convert a string of keys to a list of keys."""
if len(s) == 0:
return []
keys = []
i = 0
while i < len(s):
keylength = struct.unpack(data.MESSAGE_KEY_LENGTH_FORMAT, s[i:i + data.MESSAGE_KEY_LENGTH_SIZE])[0]
i += data.MESSAGE_KEY_LENGTH_SIZE
key = s[i:i + keylength]
keys.append(key)
i += keylength
return keys
|
b580d4062be1f5e99f5264aeb5c0a7e4cb70bbd2
| 8,681
|
def binary_fmt(num, suffix='B'):
"""A binary pretty-printer."""
if num == 0.0:
return '0 %s' % suffix
for unit in ['', 'Ki', 'Mi', 'Gi', 'Ti', 'Pi', 'Ei', 'Zi']:
if abs(num) < 1024.0:
return '%.3g %s%s' % (num, unit, suffix)
num /= 1024.0
return '%.3g %s%s' % (num, 'Yi', suffix)
|
70ae3ee429dd80e8d9cb3a1a3c6eeba09f7ea77a
| 8,682
|
def transformMatrices(
translation = (0,0,0),
center = (0,0,0),
rotation = (0,1,0,0),
scale = (1,1,1),
scaleOrientation = (0,1,0,0),
parentMatrix = None,
):
"""Calculate both forward and backward matrices for these parameters"""
T,T1 = transMatrix( translation )
C,C1 = transMatrix( center )
R,R1 = rotMatrix( rotation )
SO,SO1 = rotMatrix( scaleOrientation )
S,S1 = scaleMatrix( scale )
return (
compressMatrices( parentMatrix, T,C,R,SO,S,SO1,C1 ),
compressMatrices( parentMatrix, C,SO, S1, SO1, R1, C1, T1)
)
|
0d1ae564b0e27000ce1c8d0a3e5aa04ec02fa19f
| 8,683
|
async def get_region(country=None, id=None):
"""
`linode_region` provides details about a specific Linode region.
"""
__args__ = dict()
__args__['country'] = country
__args__['id'] = id
__ret__ = await pulumi.runtime.invoke('linode:index/getRegion:getRegion', __args__)
return GetRegionResult(
country=__ret__.get('country'))
|
09bd2e83496b6a38d477a24e3bc70a72a8bea8a7
| 8,684
|
def entry_type(entry, default):
"""Return the type of and entry"""
if entry.attribute is None:
return default
return entry.attribute.get('entry_type', default)
|
04825e225e86bbb98808d0d18633032c022e4870
| 8,685
|
def build_expression(backend, arrays, expr):
"""Build an expression, based on ``expr`` and initial arrays ``arrays``,
that evaluates using backend ``backend``.
"""
return CONVERT_BACKENDS[backend](arrays, expr)
|
da10481741b2dae18e47a7b203dc548cc6d78a0e
| 8,686
|
import argparse
def build_parser(args):
""" A method to handle argparse.
"""
parser = argparse.ArgumentParser(usage='$ python verdict.py',
description='''Downloads, filters and
re-publishes the Google
sheet.''',
epilog='')
parser.add_argument("-v", "--verbose", dest="verbose", default=False, action="store_true")
return parser.parse_args()
|
e28ee8a0e9ebbb614802f4cb59b7064138a87fa7
| 8,687
|
from mlalchemy.parser import parse_query as mlalchemy_parse_query
from typing import OrderedDict
def parse_query(qd, session, config):
"""Parses the given query dictionary to produce a BaseQuery object."""
defaults = {
"limit": config["default_limit"],
"backref_limit": config["default_backref_limit"],
"backref_depth": config["default_backref_depth"],
"join_depth": config["default_join_depth"],
"exclude": [],
"include": [],
}
qd.setdefault("limit", defaults["limit"])
full_qd = merge_dicts(defaults, qd)
if qd["limit"] in (None, False):
qd.pop("limit")
if isinstance(full_qd["exclude"], str):
full_qd["exclude"] = [full_qd["exclude"]]
full_qd["exclude"] = list(set(full_qd["exclude"] + config["global_exclude"]))
if isinstance(full_qd["include"], str):
full_qd["include"] = [full_qd["include"]]
mlquery = mlalchemy_parse_query(qd)
query = mlquery.to_query(session, session.bind._db.models)
order_by = full_qd.pop("order-by", None)
if order_by:
full_qd["order_by"] = order_by
qd_key_sort = [
"from",
"where",
"order_by",
"offset",
"limit",
"backref_limit",
"backref_depth",
"join_depth",
"exclude",
"include",
]
if full_qd["include"]:
full_qd["join_depth"] = full_qd["backref_depth"] = None
else:
full_qd["join_depth"] = full_qd["join_depth"] or 0
full_qd["backref_depth"] = full_qd["backref_depth"] or 0
query.query_dict = OrderedDict(
sorted(full_qd.items(), key=lambda x: qd_key_sort.index(x[0]))
)
query = query.with_loaded_relations(
full_qd["join_depth"],
full_qd["backref_depth"],
full_qd["exclude"],
full_qd["include"],
)
query = mlquery.apply_filters(query)
query.session.parsed_query = query
return query
|
17001d60365451375939fd902a6720b4d5889a7c
| 8,688
|
from typing import Dict
def get_covid19_us_bears(
url_root=CSV_URL_ROOT,
file_prefix=CSV_FILE_PREFIX,
file_suffix=CSV_FILE_SUFFIX,
encoding=CSV_ENCODING) -> Dict[Dict[Bears]]:
"""Converts USAFACTS confirmed and deaths CSV files to state and county
`Bears` to a dictionary of dictionaries.
Args:
url_root (str): URL prefix for the CSV
file_prefix (str): CSV file prefix
uid_col_label (str): Unique ID column label
encoding (str): CSV encoding
Returns:
Dict[Dict[Bears]]:
::
{'confirmed': {'counties': Bears,
'states': Bears},
'deaths': {'counties': Bears,
'states': Bears}}
"""
covid19 = {'confirmed': {'counties': None, 'states': None},
'deaths': {'counties': None, 'states': None}}
for db_type in ['confirmed', 'deaths']:
covid19[db_type]['counties'] = Usafacts(
from_csv=True,
csv_specs=CsvSpecs(
url=stitch_time_series_csv_url(
db_type=db_type, url_root=url_root, file_prefix=file_prefix,
file_suffix=file_suffix),
uid_col_label=CSV_COL_UID,
encoding=encoding))
for db_type in ['confirmed', 'deaths']:
counties = covid19[db_type]['counties']
covid19[db_type]['states'] = Usafacts(
dataframe=counties2states_df(counties.df, counties.datetime_index))
return covid19
|
2cdc1b3112cde9d589388666484cf17a0f6055af
| 8,689
|
from typing import Optional
from typing import Union
from typing import Tuple
import json
def jsonify_promise(
future_obj: Input[Jsonable],
indent: Input[Optional[Union[int, str]]]=None,
separators: Input[Optional[Tuple[str, str]]]=None
) -> Output[str]:
"""Convert a Promise object to a Promise to jsonify the result of that Promise.
An asyncronous (Promise) version of json.dumps() that operates on Pulumi output
values that have not yet been evaluated. Sorts keys to provide stability of result strings.
The result is another Pulumi output value that when evaluated will generate the
json string associated with future_obj
Args:
future_obj(Input[Jsonable]): A Pulumi Input Jsonable value that is not yet evaluated
Returns:
Output[str] A Pulumi "output" value that will resolve to the json string corresponding to future_obj
"""
def gen_json(
obj: Jsonable,
indent: Optional[Union[int, str]],
separators: Optional[Tuple[str, str]]
) -> str:
return json.dumps(obj, sort_keys=True, indent=indent, separators=separators)
# "pulumi.Output.all(*future_args).apply(lambda args: sync_func(*args))"" is a pattern
# provided by pulumi. It waits until all promises in future_args have been satisfied,
# then invokes sync_func with the realized values of all the future_args as *args. Finally
# it wraps the synchronous function as a promise and returns the new promise as the result.
# this allows you to write synchronous code in pulumi that depends on future values, and
# turn it into asynchronous code
result = Output.all(future_obj, indent, separators).apply(lambda args: gen_json(*args)) # type: ignore[arg-type]
return result
|
bc0769d6897c771c4a04b76ace11b90c13bde844
| 8,690
|
def randnums(start, stop, n_samples):
"""
Helper function to select real samples and generate fake samples
"""
ix = []
for i in range(n_samples):
ix.append(randint(start, stop))
ix = np.array(ix)
return ix
|
da2e06527e56e9a971a904fee176428bef2b536a
| 8,691
|
def shift_1_spectra(spectra, shift):
""" This method find the relative position of the FFT of the two spectras \
in order to later k-linearize.
Args:
:param spectra1: OCT spectra of first mirror.
:type spectra1: list
Return:
:rname: Zspace: - pi to pi linear vector space
:rtype: list
"""
L = len(spectra)
mean = np.max(spectra)
x = np.arange(L)
j = complex(0,1)
shifted_spectra = np.real( hilbert(spectra) * np.exp(j * x * shift ) )
shift_mean = np.max(shifted_spectra)
shifted_spectra = (shifted_spectra / shift_mean) * mean
return shifted_spectra
|
b76616a064da9eefb9199088ffba50950c9f160a
| 8,692
|
import pandas
import types
def hpat_pandas_series_div(self, other, level=None, fill_value=None, axis=0):
"""
Pandas Series method :meth:`pandas.Series.div` and :meth:`pandas.Series.truediv` implementation.
.. only:: developer
Test: python -m sdc.runtests sdc.tests.test_series.TestSeries.test_series_op5
Parameters
----------
self: :class:`pandas.Series`
input arg
other: :obj:`pandas.Series`, :obj:`int` or :obj:`float`
input arg
level: :obj:`int` or name
*unsupported*
fill_value: :obj:`float` or None, default None
*unsupported*
axis: default 0
*unsupported*
Returns
-------
:obj:`pandas.Series`
returns :obj:`pandas.Series` object
"""
_func_name = 'Method div() or truediv().'
if not isinstance(self, SeriesType):
raise TypingError('{} The object must be a pandas.series. Given: {}'.format(_func_name, self))
if level is not None or fill_value is not None or axis != 0:
raise TypingError(
'{} Unsupported parameters. Given level: {}, fill_value: {}, axis: {}'.format(_func_name, level, fill_value,
axis))
if isinstance(other, SeriesType):
def hpat_pandas_series_div_impl(self, other):
"""
Test: python -m sdc.runtests sdc.tests.test_series.TestSeries.test_series_op5
"""
return pandas.Series(self._data / other._data)
return hpat_pandas_series_div_impl
if isinstance(other, types.Integer) or isinstance(other, types.Float):
def hpat_pandas_series_div_number_impl(self, other):
"""
Test: python -m sdc.runtests sdc.tests.test_series.TestSeries.test_series_op5_integer_scalar
Test: python -m sdc.runtests sdc.tests.test_series.TestSeries.test_series_op5_float_scalar
"""
return pandas.Series(self._data / other)
return hpat_pandas_series_div_number_impl
raise TypingError('{} The object must be a pandas.series or scalar. Given other: {}'.format(_func_name, other))
|
25fdfed169738ee0a7d1faabba7b52217736cbe9
| 8,693
|
def alias(self, arg):
"""
set the new alias to magic
*alias alias1 string*
alias1 is added into magic command
"""
if arg == '' or arg.lower() == 'help':
return dbhelp(self, 'alias')
name, fstring = arg.split(" ", 1)
print "new alias: %s <%s>" % (DBPRINT.msg_green(name), fstring)
__alias_table__[name] = fstring
func, params = fstring.split(" ", 1)
def afunc(self, arg):
"""replacing func"""
DBPRINT.print_blue(fstring)
IP.magic("%%%s" % fstring)
IP.expose_magic(name, afunc)
|
aaf4c3d72b740888b2282258b6138c80827e8665
| 8,694
|
def _transform_cat_options(metadata: dict) -> pd.DataFrame:
"""Transform category options metadata into a formatted DataFrame."""
df = pd.DataFrame.from_dict(metadata.get("categoryOptions"))
df = df[["id", "code", "shortName", "name"]]
df.columns = ["co_uid", "co_code", "co_shortname", "co_name"]
return df
|
b1e9ac9ac578c8c0253ee7a0ece58a090d134385
| 8,695
|
def idaview(request, idadb, idadf):
"""
IdaDataFrame fixture to be used for the whole testing session. Open a view
based on idadf fixture.
"""
def fin():
try:
idadb.drop_view("TEST_VIEW_ibmdbpy")
idadb.commit()
except:
pass
request.addfinalizer(fin)
if idadb.exists_view("TEST_VIEW_ibmdbpy"):
idadb.drop_view("TEST_VIEW_ibmdbpy")
idadb._create_view(idadf, "TEST_VIEW_ibmdbpy")
return ibmdbpy.IdaDataFrame(idadb, "TEST_VIEW_ibmdbpy")
|
6540f4e844b8709b4b8338b15aa913e3ed67d4da
| 8,696
|
import sys
import os
def get_openmp_flag(compiler):
"""Returns list of flags for using OpenMP depending on compiler and
platform.
Parameters
----------
compiler : numpy.distutils.compiler
Compiler used when invoking setup.py build
"""
if hasattr(compiler, 'compiler'):
compiler = compiler.compiler[0]
else:
compiler = compiler.__class__.__name__
if sys.platform == "win32" and ('icc' in compiler or 'icl' in compiler):
return ['/Qopenmp']
elif sys.platform == "win32":
return ['/openmp']
elif sys.platform in ("darwin", "linux") and "icc" in compiler:
return ['-qopenmp']
elif sys.platform == "darwin" and 'openmp' in os.getenv('CPPFLAGS', ''):
return ['-openmp']
# Default flag for GCC and clang:
return ['-fopenmp']
|
f8dd4ad0cda24f517746828a6d879abd6d6ced4d
| 8,697
|
def heuristical_lengths(items):
"""
heuristical_lengths tries to deriver the lengths of the content of items.
It always returns a list.
a) If typeof(items) is a string, it'll return [len(items)]
b) If typeof(items) is a dict, it'll return [len(items)]
c) If typeof(items) is either list or tuple, it'll best case try to iterate
over each element and record those lengths and return them all flattened.
If it can't retrieve the lengths yet len(items) > 0, then it will return [len(items)]
d) If items has the '__len__' attribute, it'll return [len(items)]
e) Otherwise if it can't derive the type, it'll return []
"""
if items is None:
return []
elif isinstance(items, str):
return [len(items)]
elif isinstance(items, dict):
return [len(items)]
elif isinstance(items, tuple) or isinstance(items, list):
lengths = []
for item in items:
i_lengths = heuristical_lengths(item)
lengths.extend(i_lengths)
# In the best case, if len(lengths) == 0
# yet len(items) > 0, just use len(items)
if len(lengths) == 0 and len(items) > 0:
lengths = [len(items)]
return lengths
elif hasattr(items, '__len__'):
return [len(items)]
elif hasattr(items, '__iter__'):
lengths = []
itr = iter(items)
for it in itr:
it_lengths = heuristical_lengths(it)
lengths.extend(it_lengths)
return lengths
else:
return []
|
94a0759bcdc2e57431e8524f164a51f2091b6e61
| 8,698
|
import subprocess
def tifpages(file_id, filename, db_cursor):
"""
Check if TIF has multiple pages
"""
p = subprocess.Popen(['identify', '-format', '%n\\n', filename], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
(out, err) = p.communicate()
try:
if int(len(out.split())) == 1:
pages_vals = 0
no_pages = str(int(len(out.split()))) + " page"
else:
pages_vals = 1
no_pages = str(int(len(out.split()))) + " pages"
except Exception as e:
no_pages = "Unknown ({})".format(e)
pages_vals = 1
db_cursor.execute(queries.file_check, {'file_id': file_id, 'file_check': 'tifpages', 'check_results': pages_vals,
'check_info': no_pages})
db_cursor.execute(queries.insert_log, {'project_id': settings.project_id, 'file_id': file_id,
'log_area': 'tifpages',
'log_text': db_cursor.query.decode("utf-8")})
return True
|
f126370866b421b120b56e8b6e84087d617e31c8
| 8,699
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.