content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def get_publishers(): """ Fetch and return all registered publishers.""" url = current_app.config['DATABASE'] with psycopg2.connect(url) as conn: with conn.cursor() as cur: cur.execute("SELECT * FROM userrole WHERE is_publisher = %s ORDER BY reg_date DESC;", ('true',)) res = cur.fetchall() return res
ed6f95ea576e97f6c38074803d447de4db9b8d40
3,652,300
import curses def acs_map(): """call after curses.initscr""" # can this mapping be obtained from curses? return { ord(b'l'): curses.ACS_ULCORNER, ord(b'm'): curses.ACS_LLCORNER, ord(b'k'): curses.ACS_URCORNER, ord(b'j'): curses.ACS_LRCORNER, ord(b't'): curses.ACS_LTEE, ord(b'u'): curses.ACS_RTEE, ord(b'v'): curses.ACS_BTEE, ord(b'w'): curses.ACS_TTEE, ord(b'q'): curses.ACS_HLINE, ord(b'x'): curses.ACS_VLINE, ord(b'n'): curses.ACS_PLUS, ord(b'o'): curses.ACS_S1, ord(b's'): curses.ACS_S9, ord(b'`'): curses.ACS_DIAMOND, ord(b'a'): curses.ACS_CKBOARD, ord(b'f'): curses.ACS_DEGREE, ord(b'g'): curses.ACS_PLMINUS, ord(b'~'): curses.ACS_BULLET, ord(b','): curses.ACS_LARROW, ord(b'+'): curses.ACS_RARROW, ord(b'.'): curses.ACS_DARROW, ord(b'-'): curses.ACS_UARROW, ord(b'h'): curses.ACS_BOARD, ord(b'i'): curses.ACS_LANTERN, ord(b'p'): curses.ACS_S3, ord(b'r'): curses.ACS_S7, ord(b'y'): curses.ACS_LEQUAL, ord(b'z'): curses.ACS_GEQUAL, ord(b'{'): curses.ACS_PI, ord(b'|'): curses.ACS_NEQUAL, ord(b'}'): curses.ACS_STERLING, }
2121ab5dd650019ae7462d2ab34cf436966cffe9
3,652,301
def get_polymorphic_ancestors_models(ChildModel): """ ENG: Inheritance chain that inherited from the PolymorphicModel include self model. RUS: Наследуется от PolymorphicModel, включая self. """ ancestors = [] for Model in ChildModel.mro(): if isinstance(Model, PolymorphicModelBase): if not Model._meta.abstract: ancestors.append(Model) return reversed(ancestors)
aa7129dd81009e72d9fe86787a2d4516dcca3b29
3,652,302
def plot_load_vs_fractional_freq_shift(all_data,ax=None): """ Plot fractional frequency shift as a function of load temperature for all resonators """ if ax is None: fig,ax = plt.subplots(figsize=(8,8)) for name, group in all_data.groupby('resonator_index'): ax.plot(group.sweep_primary_load_temperature,group.fractional_delta_f_0,'.') ax.grid() ax.set_ylim(-2e-4,1e-5) ax.set_ylabel('Fractional Frequency Shift') ax.set_xlabel('Load Temperature (K)') return fig
24f5bdbee5a904fb72d27986634244f380202a34
3,652,303
def encode_dist_anchor_free_np(gt_ctr, gt_offset, anchor_ctr, anchor_offset=None): """ 3DSSD anchor-free encoder :param: gt_ctr: [bs, points_num, 3] gt_offset: [bs, points_num, 3] anchor_ctr: [bs, points_num, 3] anchor_offset: [bs, points_num, 3] :return: encoded_ctr: [bs, points_num, 3] encoded_offset: [bs, points_num, 3] """ target_ctr_half = gt_offset / 2. # translate to center padding_half_height = target_ctr_half[:, :, 1] padding_zeros = np.zeros_like(padding_half_height) padding_translate = np.stack([padding_zeros, padding_half_height, padding_zeros], axis=-1) # [bs, points_num, 3] encoded_ctr = gt_ctr - padding_translate # to object center encoded_ctr = encoded_ctr - anchor_ctr return encoded_ctr, target_ctr_half
96f3fa686a4b89dac35a4a4725831f550a62107b
3,652,304
def BCrand(h, hu, t, side, mean_h, amplitude, period, phase): """ Conditions aux limites du modele direct, avec plus de paramètres""" if side == 'L': h[0] = mean_h + amplitude * np.sin((t * (2 * np.pi) / period) + phase) hu[0] = 0.0 elif side == 'R': h[-1] = h[-2] hu[-1] = hu[-2] * 0.0 return [h] + [hu]
7113fd81a375bbabc2ac8e1bf4e5c6706d3198c6
3,652,305
from bs4 import BeautifulSoup from matplotlib import pyplot as mpl_pyplot def pyplot( figure=None, scale: float = 0.8, clear: bool = True, aspect_ratio: typing.Union[list, tuple] = None ) -> str: """ :param figure: :param scale: :param clear: :param aspect_ratio: :return: """ environ.abort_thread() try: except Exception: mpl_pyplot = None if not figure: figure = mpl_pyplot.gcf() if aspect_ratio: figure.set_size_inches( aspect_ratio[0], aspect_ratio[1] ) else: figure.set_size_inches(12, 8) buffer = io.StringIO() figure.savefig( buffer, format='svg', dpi=300 ) buffer.seek(0) svg_data = buffer.read() if clear: figure.clear() soup = BeautifulSoup(svg_data, 'html.parser') svg_tag = soup.find_all('svg')[0] svg_tag['width'] = '100%' svg_tag['height'] = '100%' classes = svg_tag.get('class', '').strip().split(' ') classes.append('cd-pylab-svg') svg_tag['class'] = '\n'.join(classes) styles = [ s for s in svg_tag.get('style', '').split(';') if len(s.strip()) > 1 ] styles.append('max-height:{}vh;'.format(int(100.0 * scale))) svg_tag['style'] = ';'.join(styles) return '<div class="cd-pylab-plot">{}</div>'.format(soup.prettify())
04375ad36cefc83a332c3d183b3a97b5f149518a
3,652,306
import itertools def simplify(graph): """ helper that simplifies the xy to mere node ids.""" d = {} cnt = itertools.count(1) c2 = [] for s, e, dst in graph.edges(): if s not in d: d[s] = next(cnt) if e not in d: d[e] = next(cnt) c2.append((d[s], d[e], dst)) g = Graph(from_list=c2) return g
3ec7950922c5e49bad68f19666eb0381247d8f8f
3,652,307
from typing import Collection def _get_class_for(type): """Returns a :type:`class` corresponding to :param:`type`. Used for getting a class from object type in JSON response. Usually, to instantiate the Python object from response, this function is called in the form of ``_get_class_for(data['object']).from_data(data)``. :type type: str :rtype: class """ return { 'account': Account, 'balance': Balance, 'bank_account': BankAccount, 'capability': Capability, 'card': Card, 'chain': Chain, 'charge': Charge, 'customer': Customer, 'dispute': Dispute, 'document': Document, 'event': Event, 'forex': Forex, 'link': Link, 'list': Collection, 'occurrence': Occurrence, 'receipt': Receipt, 'recipient': Recipient, 'refund': Refund, 'schedule': Schedule, 'search': Search, 'source': Source, 'token': Token, 'transfer': Transfer, 'transaction': Transaction, }.get(type)
d122fe4dabd8a0486b0ed441b064f5c3d08c6b9b
3,652,308
import requests def _query_jupyterhub_api(method, api_path, post_data=None): """Query Jupyterhub api Detects Jupyterhub environment variables and makes a call to the Hub API Parameters ---------- method : string HTTP method, e.g. GET or POST api_path : string relative path, for example /users/ post_data : dict JSON arguments for the API call Returns ------- response : dict JSON response converted to dictionary """ hub_api_url = get_jupyterhub_api_url() user = get_jupyterhub_user() auth_header = get_jupyterhub_authorization() api_path = api_path.format(authenticated_user=user) req = requests.request( url=hub_api_url + api_path, method=method, headers=auth_header, json=post_data, ) if not req.ok: raise JupyterhubApiError("JupyterhubAPI returned a status code of: " + str(req.status_code) + " for api_path: " + api_path) return req.json()
22ba33ae53908aabae44bf591f9f3f1efcd97219
3,652,309
def PoolingOutputShape(input_shape, pool_size=(2, 2), strides=None, padding='VALID'): """Helper: compute the output shape for the pooling layer.""" dims = (1,) + pool_size + (1,) # NHWC spatial_strides = strides or (1,) * len(pool_size) strides = (1,) + spatial_strides + (1,) pads = convolution.PadtypeToPads(input_shape, dims, strides, padding) operand_padded = onp.add(input_shape, onp.add(*zip(*pads))) t = onp.floor_divide(onp.subtract(operand_padded, dims), strides) + 1 return tuple(t)
185b97b308b8c15aa7fab2701ad40e1ee8241248
3,652,310
from pathlib import Path from typing import List import json import this import jsonschema def parse_config_file(config_file_path: Path) -> List[TabEntry]: """ Parse the json config file, validate and convert to object structure """ app_config = None Logger().info(f"Loading file '{config_file_path}'...") if not config_file_path.is_file(): Logger().error(f"Config file '{config_file_path}' does not exist.") return [] with open(str(config_file_path)) as fp: try: app_config = json.load(fp) with open(this.base_path / "assets" / "config_schema.json") as schema_file: json_schema = json.load(schema_file) jsonschema.validate(instance=app_config, schema=json_schema) except BaseException as error: Logger().error(f"Config file:\n{str(error)}") return [] # build the object model and update tabs = [] for tab in app_config.get("tabs"): tab_entry = TabEntry(tab.get("name")) for app in tab.get("apps"): # TODO: not very robust, but enough for small changes update_app_info(app) app_entry = AppEntry(app, config_file_path) tab_entry.add_app_entry(app_entry) tabs.append(tab_entry) # auto Update version to next version: app_config["version"] = json_schema.get("properties").get("version").get("enum")[-1] # write it back with updates with open(str(config_file_path), "w") as config_file: json.dump(app_config, config_file, indent=4) return tabs
8ce41d517eed17539b19f6caddb6dc8b2ce50cee
3,652,311
def create_app(): """ 工厂函数 """ app = Flask(__name__) register_blueprint(app) # register_plugin(app) register_filter(app) register_logger() return app
06ad3e8c07fd823b0f8ec5f4a18d49a0a430fa93
3,652,312
def passwordbox(**kwargs): """ This wrapper is for making a dialog for changing your password. It will return the old password, the new password, and a confirmation. The remaining keywords are passed on to the autobox class. """ additional_fields = kwargs.get("additional_fields") and kwargs.pop("additional_fields") or [] title = kwargs.get("title_string", "Change your password") header = kwargs.get("header_string") and kwargs.pop("header_string") or "Change your password" default_fields = [ {"type" : "label", "label" : "First type your old password"}, {"name" : "old_password", "type" : "hidden_text", "label" : "Old Password: "}, {"type" : "label", "label": "Now enter your new password twice"}, {"name" : "new_password", "type" : "hidden_text", "label" : "New Password: "}, {"name" : "confirm_password", "type" : "hidden_text", "label" : "Confirm Password: "} ] fields = default_fields + additional_fields return autobox(fields = fields, title_string = title, header_string = header, **kwargs)
ff38d854a8d7303bbf58654e220c0b24b3ede105
3,652,313
def unravel_hpx_index(idx, npix): """Convert flattened global map index to an index tuple. Parameters ---------- idx : `~numpy.ndarray` Flat index. npix : `~numpy.ndarray` Number of pixels in each band. Returns ------- idx : tuple of `~numpy.ndarray` Index array for each dimension of the map. """ if npix.size == 1: return tuple([idx]) dpix = np.zeros(npix.size, dtype="i") dpix[1:] = np.cumsum(npix.flat[:-1]) bidx = np.searchsorted(np.cumsum(npix.flat), idx + 1) pix = idx - dpix[bidx] return tuple([pix] + list(np.unravel_index(bidx, npix.shape)))
c7fa097ffeae3219d59526ed76d62383277d317b
3,652,314
import os import sqlite3 import csv def map2sqldb(map_path, column_names, sep='\t'): """Determine the mean and 2std of the length distribution of a group """ table_name = os.path.basename(map_path).rsplit('.', 1)[0] sqldb_name = table_name + '.sqlite3db' sqldb_path = os.path.join(os.path.dirname(map_path), sqldb_name) conn = sqlite3.connect(sqldb_path) # @UndefinedVariable c = conn.cursor() # If table already exist, return the connector and the table_name SQL = ''' SELECT count(*) FROM sqlite_master WHERE name == \"{}\" '''.format(table_name) c.execute(SQL) exists_flag = False if c.fetchone()[0] == 1: c.fetchall() #get rid of the remainder exists_flag=True if exists_flag: return c, table_name # Create table SQL = ''' create table if not exists {0} ({1}); '''.format(table_name, '\"' + '\" text,\"'.join([str(n).lower() for n in column_names]) + '\" text') c.execute(SQL) c.close() # Fill table SQL = ''' insert into {0} values ({1}) '''.format(table_name, ' ,'.join(['?']*len(column_names))) with open(map_path, 'r') as map_file: csv.field_size_limit(2147483647) csv_reader = csv.reader(map_file, delimiter=sep, quoting=csv.QUOTE_NONE) with sqlite3.connect(sqldb_path) as conn: # @UndefinedVariable c = conn.cursor() c.executemany(SQL, csv_reader) return c, table_name
656db3aa8797231ba09f6ddd08d00c0308be9285
3,652,315
def parse_revdep(value): """Value should be an atom, packages with deps intersecting that match.""" try: targetatom = atom.atom(value) except atom.MalformedAtom as e: raise argparser.error(e) val_restrict = values.FlatteningRestriction( atom.atom, values.AnyMatch(values.FunctionRestriction(targetatom.intersects))) return packages.OrRestriction(*list( packages.PackageRestriction(dep, val_restrict) for dep in ('bdepend', 'depend', 'rdepend', 'pdepend')))
eb2118af7644fac15fa4ebedba6684d20ab18d47
3,652,316
def is_context_word(model, word_a, word_b): """Calculates probability that both words appear in context with each other by executing forward pass of model. Args: model (Mode): keras model word_a (int): index of first word word_b (int): index of second word """ # define inputs input_a = np.zeros((1,)) input_b = np.zeros((1,)) input_a[0,] = word_a input_b[0,] = word_b # compute forward pass of model prediction = model.predict_on_batch([input_a, input_b]) # retrieve value from tf tensor prediction = prediction.numpy()[0][0] return prediction
a7b0642cfc97b21e53f8b42eaddbed69689a0f1d
3,652,317
import pathlib def map_and_save_gene_ids(hit_genes_location, all_detectable_genes_location=''): """ Maps gene names/identifiers into internal database identifiers (neo4j ids) and saves them :param hit_genes_location: genes in the set we would like to analyse :param all_detectable_genes_location: genes in the set that can be detected (background) :return: list of internal db ids for hits, list of internal db ids for background """ standardized_hits = [] # [primary_set] standardized_secondary_hits = [] # [secondary_set=None] if type(hit_genes_location) == str or isinstance(hit_genes_location, pathlib.PurePath): # log.info('codepath 1') standardized_hits = [cast_external_refs_to_internal_ids(hit_genes_location)] standardized_secondary_hits = [None] if type(hit_genes_location) == tuple: # log.info('codepath 2') standardized_hits = [cast_external_refs_to_internal_ids(hit_genes_location[0])] standardized_secondary_hits = [cast_external_refs_to_internal_ids(hit_genes_location[1])] if type(hit_genes_location) == list: # log.info('codepath 3') for sub_hit_genes_location in hit_genes_location: # log.info('codepath 3.0') if type(sub_hit_genes_location) == str or isinstance(sub_hit_genes_location, pathlib.PurePath): # log.info('codepath 3.1') standardized_hits += [cast_external_refs_to_internal_ids(sub_hit_genes_location)] standardized_secondary_hits += [None] if type(sub_hit_genes_location) == tuple: # log.info('codepath 3.2') standardized_hits += [cast_external_refs_to_internal_ids(sub_hit_genes_location[0])] standardized_secondary_hits += [cast_external_refs_to_internal_ids(sub_hit_genes_location[1])] log.debug('standardized primary hits:\n\t%s' % standardized_hits) log.debug('standardized secondary_hits:\n\t%s' % standardized_secondary_hits) dump_object(Dumps.analysis_set_bulbs_ids, (standardized_hits, standardized_secondary_hits)) if all_detectable_genes_location: background_set = cast_external_refs_to_internal_ids(all_detectable_genes_location) # print(background_set) primary_set = [y for x in standardized_hits for y in x] # flattens the mapped ids list # print(primary_set) formatted_secondary_hits = [_l if _l is not None else [] for _l in standardized_secondary_hits] sec_set = [y for x in formatted_secondary_hits for y in x] re_primary_set = set() for _id in primary_set: if type(_id) == str or type(_id) == int: re_primary_set.add(_id) else: re_primary_set.add(_id[0]) primary_set = re_primary_set re_secondary_set = set() for _id in sec_set: if type(_id) == str or type(_id) == int: re_secondary_set.add(_id) else: re_secondary_set.add(_id[0]) sec_set = re_primary_set if type(background_set[0]) == str or type(background_set[0]) == int: # unweighted background_set = list(set(background_set).union(primary_set).union(sec_set)) else: bck_set = {_id[0] for _id in background_set} bck_set = list(bck_set) if not primary_set.issubset(bck_set): log.info('Nodes ids %s are missing in background set and are added with weight 0' % (primary_set - bck_set)) background_set += [(_id, 0) for _id in (primary_set - bck_set)] if not sec_set.issubset(bck_set): log.info('Secondary set nodes ids %s are missing in background set and are added ' 'with weight 0' % (sec_set - bck_set)) background_set += [(_id, 0) for _id in (sec_set - bck_set)] else: background_set = [] dump_object(Dumps.background_set_bulbs_ids, background_set) return standardized_hits, standardized_secondary_hits, background_set
db29322d61b12cf7a3d266b831b553305327bed3
3,652,318
def next_method(): """next, for: Get one item of an iterators.""" class _Iterator: def __init__(self): self._stop = False def __next__(self): if self._stop: raise StopIteration() self._stop = True return "drums" return next(_Iterator())
85cdd08a65ae66c2869ba2067db81ff37f40d0b8
3,652,319
import json def get_ingress_deployment( serve_dag_root_node: DAGNode, pipeline_input_node: PipelineInputNode ) -> Deployment: """Return an Ingress deployment to handle user HTTP inputs. Args: serve_dag_root_node (DAGNode): Transformed as serve DAG's root. User inputs are translated to serve_dag_root_node.execute(). pipeline_input_node (DAGNode): Singleton PipelineInputNode instance that contains input preprocessor info. Returns: ingress (Deployment): Generated pipeline ingress deployment to serve user HTTP requests. """ serve_dag_root_json = json.dumps(serve_dag_root_node, cls=DAGNodeEncoder) preprocessor_import_path = pipeline_input_node.get_preprocessor_import_path() serve_dag_root_deployment = serve.deployment(Ingress).options( name=DEFAULT_INGRESS_DEPLOYMENT_NAME, init_args=( serve_dag_root_json, preprocessor_import_path, ), ) return serve_dag_root_deployment
33f7ca9218e59af168fccdd8e0d0392964febaf2
3,652,320
def get_project_settings(project): """Gets project's settings. Return value example: [{ "attribute" : "Brightness", "value" : 10, ...},...] :param project: project name or metadata :type project: str or dict :return: project settings :rtype: list of dicts """ if not isinstance(project, dict): project = get_project_metadata_bare(project) team_id, project_id = project["team_id"], project["id"] params = { "team_id": team_id, } response = _api.send_request( req_type='GET', path=f'/project/{project_id}/settings', params=params ) if not response.ok: raise SABaseException( response.status_code, "Couldn't get project settings " + response.text ) res = response.json() for val in res: if val['attribute'] == 'ImageQuality': if val['value'] == 60: val['value'] = 'compressed' elif val['value'] == 100: val['value'] = 'original' else: raise SABaseException(0, "NA ImageQuality value") return res
298d00eedff7c70ae8745e47f2eff48642988c7b
3,652,321
def guard(M, test): """Monadic guard. What it does:: return M.pure(Unit) if test else M.empty() https://en.wikibooks.org/wiki/Haskell/Alternative_and_MonadPlus#guard """ return M.pure(Unit) if test else M.empty()
9184310fcebec10ca1cc7cdb25e36831b327cbb0
3,652,322
def get_git_hash() -> str: """Get the git hash.""" rv = _run("git", "rev-parse", "HEAD") if rv is None: return "UNHASHED" return rv
978eca015aeb534e500dbbc5e9ab7aad5b487865
3,652,323
def primary_style(): """ a blue green style """ return color_mapping( 'bg:#449adf #ffffff', 'bg:#002685 #ffffff', '#cd1e10', '#007e3a', '#fe79d1', '#4cde77', '#763931', '#64d13e', '#7e77d2', 'bg:#000000 #ffffff', )
aecbe4cccb18763cf961ba08d6d9c04188080989
3,652,324
def decrypt_files(rsa_key): """ Decrypt all encrypted files on host machine `Required` :param str rsa_key: RSA private key in PEM format """ try: if not isinstance(rsa_key, Crypto.PublicKey.RSA.RsaKey): rsa_key = Crypto.PublicKey.RSA.importKey(rsa_key) if not rsa_key.has_private(): return "Error: RSA key cannot decrypt" globals()['threads']['iter_files'] = _iter_files(rsa_key) globals()['threads']['decrypt_files'] = _threader() return "Decrypting files" except Exception as e: util.log("{} error: {}".format(decrypt_files.__name__, str(e)))
ccc5d253b5ab7a7851195751a798ba4e18fef983
3,652,325
def _bivariate_uc_uc( lhs,rhs, z, dz_dl, # (dz_re_dl_re, dz_re_dl_im, dz_im_dl_re, dz_im_dl_im) dz_dr # (dz_re_dr_re, dz_re_dr_im, dz_im_dr_re, dz_im_dr_im) ): """ Create an uncertain complex number as a bivariate function This is a utility method for implementing mathematical functions of uncertain complex numbers. The parameters 'lhs' and 'rhs' are the UncertainComplex arguments to the function, 'z' is the complex value of the function and 'dz_dl' and 'dz_dr' are the Jacobian matrices of the function value z with respect to the real and imaginary components of the function's left and right arguments. Parameters ---------- lhs, rhs : :class:`UncertainComplex` z : complex dz_dl, dz_dr : 4-element sequence of float Returns ------- :class:`UncertainComplex` """ lhs_r = lhs.real lhs_i = lhs.imag rhs_r = rhs.real rhs_i = rhs.imag u_lhs_real, u_lhs_imag = vector.merge_weighted_vectors_twice( lhs_r._u_components,(dz_dl[0],dz_dl[2]), lhs_i._u_components,(dz_dl[1],dz_dl[3]) ) u_rhs_real, u_rhs_imag = vector.merge_weighted_vectors_twice( rhs_r._u_components,(dz_dr[0],dz_dr[2]), rhs_i._u_components,(dz_dr[1],dz_dr[3]) ) d_lhs_real, d_lhs_imag = vector.merge_weighted_vectors_twice( lhs_r._d_components,(dz_dl[0],dz_dl[2]), lhs_i._d_components,(dz_dl[1],dz_dl[3]) ) d_rhs_real, d_rhs_imag = vector.merge_weighted_vectors_twice( rhs_r._d_components,(dz_dr[0],dz_dr[2]), rhs_i._d_components,(dz_dr[1],dz_dr[3]) ) i_lhs_real, i_lhs_imag = vector.merge_weighted_vectors_twice( lhs_r._i_components,(dz_dl[0],dz_dl[2]), lhs_i._i_components,(dz_dl[1],dz_dl[3]) ) i_rhs_real, i_rhs_imag = vector.merge_weighted_vectors_twice( rhs_r._i_components,(dz_dr[0],dz_dr[2]), rhs_i._i_components,(dz_dr[1],dz_dr[3]) ) return UncertainComplex( UncertainReal( z.real, vector.merge_vectors( u_lhs_real, u_rhs_real ), vector.merge_vectors( d_lhs_real, d_rhs_real ), vector.merge_vectors( i_lhs_real, i_rhs_real ) ), UncertainReal( z.imag, vector.merge_vectors( u_lhs_imag,u_rhs_imag ), vector.merge_vectors( d_lhs_imag,d_rhs_imag ), vector.merge_vectors( i_lhs_imag, i_rhs_imag ) ) )
f3b2c778cd1152910c951e893861f0c900978a4e
3,652,326
def smoothing_filter(time_in, val_in, time_out=None, relabel=None, params=None): """ @brief Smoothing filter with relabeling and resampling features. @details It supports evenly sampled multidimensional input signal. Relabeling can be used to infer the value of samples at time steps before and after the explicitly provided samples. As a reminder, relabeling is a generalization of periodicity. @param[in] time_in Time steps of the input signal (1D numpy array) @param[in] val_in Sampled values of the input signal (2D numpy array: row = sample, column = time) @param[in] time_out Time steps of the output signal (1D numpy array) @param[in] relabel Relabeling matrix (identity for periodic signals) Optional: Disable if omitted @param[in] params Parameters of the filter. Dictionary with keys: 'mixing_ratio_1': Relative time at the begining of the signal during the output signal corresponds to a linear mixing over time of the filtered and original signal. (only used if relabel is omitted) 'mixing_ratio_2': Relative time at the end of the signal during the output signal corresponds to a linear mixing over time of the filtered and original signal. (only used if relabel is omitted) 'smoothness'[0]: Smoothing factor to filter the begining of the signal (only used if relabel is omitted) 'smoothness'[1]: Smoothing factor to filter the end of the signal (only used if relabel is omitted) 'smoothness'[2]: Smoothing factor to filter the middle part of the signal @return Filtered signal (2D numpy array: row = sample, column = time) """ if time_out is None: time_out = time_in if params is None: params = dict() params['mixing_ratio_1'] = 0.12 params['mixing_ratio_2'] = 0.04 params['smoothness'] = [0.0,0.0,0.0] params['smoothness'][0] = 5e-3 params['smoothness'][1] = 5e-3 params['smoothness'][2] = 3e-3 if relabel is None: mix_fit = [None,None,None] mix_fit[0] = lambda t: 0.5*(1+np.sin(1/params['mixing_ratio_1']*((t-time_in[0])/(time_in[-1]-time_in[0]))*np.pi-np.pi/2)) mix_fit[1] = lambda t: 0.5*(1+np.sin(1/params['mixing_ratio_2']*((t-(1-params['mixing_ratio_2'])*time_in[-1])/(time_in[-1]-time_in[0]))*np.pi+np.pi/2)) mix_fit[2] = lambda t: 1 val_fit = [] for jj in range(val_in.shape[0]): val_fit_jj = [] for kk in range(len(params['smoothness'])): val_fit_jj.append(UnivariateSpline(time_in, val_in[jj], s=params['smoothness'][kk])) val_fit.append(val_fit_jj) time_out_mixing = [None, None, None] time_out_mixing_ind = [None, None, None] time_out_mixing_ind[0] = time_out < time_out[-1]*params['mixing_ratio_1'] time_out_mixing[0] = time_out[time_out_mixing_ind[0]] time_out_mixing_ind[1] = time_out > time_out[-1]*(1-params['mixing_ratio_2']) time_out_mixing[1] = time_out[time_out_mixing_ind[1]] time_out_mixing_ind[2] = np.logical_and(np.logical_not(time_out_mixing_ind[0]), np.logical_not(time_out_mixing_ind[1])) time_out_mixing[2] = time_out[time_out_mixing_ind[2]] val_out = np.zeros((val_in.shape[0],len(time_out))) for jj in range(val_in.shape[0]): for kk in range(len(time_out_mixing)): val_out[jj,time_out_mixing_ind[kk]] = \ (1 - mix_fit[kk](time_out_mixing[kk])) * val_fit[jj][kk](time_out_mixing[kk]) + \ mix_fit[kk](time_out_mixing[kk]) * val_fit[jj][-1](time_out_mixing[kk]) else: time_tmp = np.concatenate([time_in[:-1]-time_in[-1],time_in,time_in[1:]+time_in[-1]]) val_in_tmp = np.concatenate([relabel.dot(val_in[:,:-1]),val_in,relabel.dot(val_in[:,1:])], axis=1) val_out = np.zeros((val_in.shape[0],len(time_out))) for jj in range(val_in_tmp.shape[0]): f = UnivariateSpline(time_tmp, val_in_tmp[jj], s=params['smoothness'][-1]) val_out[jj] = f(time_out) return val_out
7af0f6925d255c0445c7b5dfdfb330f4058f8afc
3,652,327
def get_selector_qty(*args): """get_selector_qty() -> int""" return _idaapi.get_selector_qty(*args)
82ea62d3220893456358c42b0ec931e5c2cf9053
3,652,328
from typing import Optional from typing import Dict from typing import Any import requests def get( host: str, path: str, params: Optional[Dict[str, Any]] = None, headers: Optional[Dict[str, str]] = None, authenticated: bool = True, stream: bool = False, ) -> requests.Response: """ Send a GET request to the remote API. """ return do_request( "GET", host, path, params=params, headers=headers, authenticated=authenticated, stream=stream, )
7f0188ad2d678c0edef5d4fce623a5faee5c13db
3,652,329
def inner_xml(xml_text): """ Get the inner xml of an element. >>> inner_xml('<div>This is some <i><b>really</b> silly</i> text!</div>') u'This is some <i><b>really</b> silly</i> text!' """ return unicode(INNER_XML_RE.match(xml_text).groupdict()['body'])
dcba13de5a75d4b9956c2a27f02a289212d9789e
3,652,330
def store_tags(): """Routing: Stores the (updated) tag data for the image.""" data = { "id": request.form.get("id"), "tag": request.form.get('tags'), "SHOWN": 0 } loader.store(data) next_image = loader.next_data() if next_image is None: return redirect("/finished") target = "/" if next_image: target = f"/?image_id={next_image['id']}" return redirect(location=target)
ec433586e7ad60d2b85ac8ff2ccc209f4c00a110
3,652,331
def getAssets(public_key: str) -> list: """ Get all the balances an account has. """ balances = server.accounts().account_id(public_key).call()['balances'] balances_to_return = [ {"asset_code": elem.get("asset_code"), "issuer": elem.get("asset_issuer"), "balance": elem.get("balance")} for elem in balances ] balances_to_return[-1]["asset_code"] = "XLM" return balances_to_return
71c1b89edd79f0dc4092b909c2d7f505b35d5391
3,652,332
def parse_pattern(format_string, env, wrapper=lambda x, y: y): """ Parse the format_string and return prepared data according to the env. Pick each field found in the format_string from the env(ironment), apply the wrapper on each data and return a mapping between field-to-replace and values for each. """ formatter = Formatter() fields = [x[1] for x in formatter.parse(format_string) if x[1] is not None] prepared_env = {} # Create a prepared environment with only used fields, all as list: for field in fields: # Search for a movie attribute for each alternative field separated # by a pipe sign: for field_alt in (x.strip() for x in field.split('|')): # Handle default values (enclosed by quotes): if field_alt[0] in '\'"' and field_alt[-1] in '\'"': field_values = field_alt[1:-1] else: field_values = env.get(field_alt) if field_values is not None: break else: field_values = [] if not isinstance(field_values, list): field_values = [field_values] prepared_env[field] = wrapper(field_alt, field_values) return prepared_env
fdd5057929ed06f5ee984019e967df45d683fb75
3,652,333
def u1_series_summation(xarg, a, kmax): """ 5.3.2 ROUTINE - U1 Series Summation PLATE 5-10 (p32) :param xarg: :param a: :param kmax: :return: u1 """ du1 = 0.25*xarg u1 = du1 f7 = -a*du1**2 k = 3 while k < kmax: du1 = f7*du1 / (k*(k-1)) u1old = u1 u1 = u1+du1 if u1 == u1old: break k = k+2 return u1
e54cb5f68dd5ecba5dd7f540ac645ff8d70ae0e3
3,652,334
def mask_iou(masks_a, masks_b, iscrowd=False): """ Computes the pariwise mask IoU between two sets of masks of size [a, h, w] and [b, h, w]. The output is of size [a, b]. Wait I thought this was "box_utils", why am I putting this in here? """ masks_a = masks_a.view(masks_a.size(0), -1) masks_b = masks_b.view(masks_b.size(0), -1) matmul = nn.MatMul() intersection = matmul(masks_a, masks_b.T) mask_iou_sum = P.ReduceSum() expand_dims = P.ExpandDims() area_a = expand_dims(mask_iou_sum(masks_a, 1), 1) area_b = expand_dims(mask_iou_sum(masks_b, 1), 0) return intersection / (area_a + area_b - intersection) if not iscrowd else intersection / area_a
585bb48b3b8460660739acd102d8a0f5e1716078
3,652,335
import torch def normalized_grid_coords(height, width, aspect=True, device="cuda"): """Return the normalized [-1, 1] grid coordinates given height and width. Args: height (int) : height of the grid. width (int) : width of the grid. aspect (bool) : if True, use the aspect ratio to scale the coordinates, in which case the coords will not be normalzied to [-1, 1]. (Default: True) device : the device the tensors will be created on. """ aspect_ratio = width/height if aspect else 1.0 window_x = torch.linspace(-1, 1, steps=width, device=device) * aspect_ratio window_y = torch.linspace(1, -1, steps=height, device=device) coord = torch.stack(torch.meshgrid(window_x, window_y, indexing='ij')).permute(2,1,0) return coord
7ddd1c5eda2e28116e40fa99f6cd794d9dfd48cc
3,652,336
from typing import Optional from pathlib import Path from typing import Iterable from typing import List from typing import Any import ray import traceback def ray_map(task: Task, *item_lists: Iterable[List[Any]], log_dir: Optional[Path] = None) -> List[Any]: """ Initialize ray, align item lists and map each item of a list of arguments to a callable and executes in parallel. :param task: callable to be run :param item_lists: items to be parallelized :param log_dir: directory to store worker logs :return: list of outputs """ try: results = _ray_map_items(task, *item_lists, log_dir=log_dir) return results except (RayTaskError, Exception) as exc: ray.shutdown() traceback.print_exc() raise RuntimeError(exc)
a033bb1f2d84b7a37bffd4db4643ed5c2291b3ba
3,652,337
def consensus_kmeans(data=None, k=0, linkage='average', nensemble=100, kmin=None, kmax=None): """Perform clustering based on an ensemble of k-means partitions. Parameters ---------- data : array An m by n array of m data samples in an n-dimensional space. k : int, optional Number of clusters to extract; if 0 uses the life-time criterion. linkage : str, optional Linkage criterion for final partition extraction; one of 'average', 'centroid', 'complete', 'median', 'single', 'ward', or 'weighted'. nensemble : int, optional Number of partitions in the ensemble. kmin : int, optional Minimum k for the k-means partitions; defaults to :math:`\\sqrt{m}/2`. kmax : int, optional Maximum k for the k-means partitions; defaults to :math:`\\sqrt{m}`. Returns ------- clusters : dict Dictionary with the sample indices (rows from 'data') for each found cluster; outliers have key -1; clusters are assigned integer keys starting at 0. """ # check inputs if data is None: raise TypeError("Please specify input data.") N = len(data) if kmin is None: kmin = int(round(np.sqrt(N) / 2.)) if kmax is None: kmax = int(round(np.sqrt(N))) # initialization grid grid = { 'k': np.random.random_integers(low=kmin, high=kmax, size=nensemble) } # run consensus clusters, = consensus(data=data, k=k, linkage=linkage, fcn=kmeans, grid=grid) return utils.ReturnTuple((clusters,), ('clusters',))
25ee74ac24883a4981db98c730c9010d13866840
3,652,338
def to_cftime(date, calendar="gregorian"): """Convert datetime object to cftime object. Parameters ---------- date : datetime object Datetime object. calendar : str Calendar of the cftime object. Returns ------- cftime : cftime object Cftime ojbect. """ if type(date) == dt.date: date = dt.datetime.combine(date, dt.time()) elif isinstance(date, cfdt.datetime): # do nothing return date return cfdt.datetime( date.year, date.month, date.day, date.hour, date.minute, date.second, date.microsecond, calendar=calendar, )
cfd968e1fd74f105ef7b44ce6700d646d4470910
3,652,339
def poly_to_mask(mask_shape, vertices): """Converts a polygon to a boolean mask with `True` for points lying inside the shape. Uses the bounding box of the vertices to reduce computation time. Parameters ---------- mask_shape : np.ndarray | tuple 1x2 array of shape of mask to be generated. vertices : np.ndarray Nx2 array of the vertices of the polygon. Returns ------- mask : np.ndarray Boolean array with `True` for points inside the polygon """ return polygon2mask(mask_shape, vertices)
13dec3d1057cff4823fa989e268f5103756bc263
3,652,340
def get_nn_edges( basis_vectors, extent, site_offsets, pbc, distance_atol, order, ): """For :code:`order == k`, generates all edges between up to :math:`k`-nearest neighbor sites (measured by their Euclidean distance). Edges are colored by length with colors between 0 and `order - 1` in order of increasing length.""" positions, ids = create_padded_sites( basis_vectors, extent, site_offsets, pbc, order ) naive_edges_by_order = get_naive_edges( positions, order * np.linalg.norm(basis_vectors, axis=1).max() + distance_atol, order, ) colored_edges = [] for k, naive_edges in enumerate(naive_edges_by_order): true_edges = set() for node1, node2 in naive_edges: # switch to real node indices node1 = ids[node1] node2 = ids[node2] if node1 == node2: raise RuntimeError( f"Lattice contains self-referential edge {(node1, node2)} of order {k}" ) elif node1 > node2: node1, node2 = node2, node1 true_edges.add((node1, node2)) for edge in true_edges: colored_edges.append((*edge, k)) return colored_edges
dfc55a3696c18769bbe3d4b15f068afbc763b6bf
3,652,341
from datetime import datetime import pytz import dateutil def expand(vevent, default_tz, href=''): """ :param vevent: vevent to be expanded :type vevent: icalendar.cal.Event :param default_tz: the default timezone used when we (icalendar) don't understand the embedded timezone :type default_tz: pytz.timezone :param href: the href of the vevent, used for more informative logging :type href: str :returns: list of start and end (date)times of the expanded event :rtyped list(tuple(datetime, datetime)) """ # we do this now and than never care about the "real" end time again if 'DURATION' in vevent: duration = vevent['DURATION'].dt else: duration = vevent['DTEND'].dt - vevent['DTSTART'].dt # dateutil.rrule converts everything to datetime allday = not isinstance(vevent['DTSTART'].dt, datetime) # icalendar did not understand the defined timezone if (not allday and 'TZID' in vevent['DTSTART'].params and vevent['DTSTART'].dt.tzinfo is None): vevent['DTSTART'].dt = default_tz.localize(vevent['DTSTART'].dt) if 'RRULE' not in vevent.keys(): return [(vevent['DTSTART'].dt, vevent['DTSTART'].dt + duration)] events_tz = None if getattr(vevent['DTSTART'].dt, 'tzinfo', False): events_tz = vevent['DTSTART'].dt.tzinfo vevent['DTSTART'].dt = vevent['DTSTART'].dt.astimezone(pytz.UTC) rrulestr = vevent['RRULE'].to_ical() rrule = dateutil.rrule.rrulestr(rrulestr, dtstart=vevent['DTSTART'].dt) if not set(['UNTIL', 'COUNT']).intersection(vevent['RRULE'].keys()): # rrule really doesn't like to calculate all recurrences until # eternity, so we only do it 15years into the future dtstart = vevent['DTSTART'].dt if isinstance(dtstart, date): dtstart = datetime(*list(dtstart.timetuple())[:-3]) rrule._until = dtstart + timedelta(days=15 * 365) if ((not getattr(rrule._until, 'tzinfo', True)) and (getattr(vevent['DTSTART'].dt, 'tzinfo', False))): rrule._until = vevent['DTSTART'].dt.tzinfo \ .localize(rrule._until) logger.debug('calculating recurrence dates for {0}, ' 'this might take some time.'.format(href)) dtstartl = list(rrule) if len(dtstartl) == 0: raise UnsupportedRecursion if events_tz is not None: dtstartl = [start.astimezone(events_tz) for start in dtstartl] elif allday: dtstartl = [start.date() for start in dtstartl] dtstartend = [(start, start + duration) for start in dtstartl] return dtstartend
4d158051b95befed575f1243fd905d545c0cdabb
3,652,342
def setup_transition_list(): """ Creates and returns a list of Transition() objects to represent state transitions for a biased random walk, in which the rate of downward motion is greater than the rate in the other three directions. Parameters ---------- (none) Returns ------- xn_list : list of Transition objects List of objects that encode information about the link-state transitions. Notes ----- State 0 represents fluid and state 1 represents a particle (such as a sediment grain or dissolved heavy particle). The states and transitions are as follows: Pair state Transition to Process Rate ========== ============= ======= ==== 0 (0-0) (none) - - 1 (0-1) 2 (1-0) left motion 1.0 2 (1-0) 1 (0-1) right motion 1.0 3 (1-1) (none) - - 4 (0/0) (none) - - 5 (0/1) 6 (1/0) down motion 1.1 6 (1/0) 5 (0/1) up motion 0.9 7 (1/1) (none) - - """ xn_list = [] xn_list.append( Transition((0,1,0), (1,0,0), 1., 'left motion') ) xn_list.append( Transition((1,0,0), (0,1,0), 1., 'right motion') ) xn_list.append( Transition((0,1,1), (1,0,1), 1.1, 'down motion') ) xn_list.append( Transition((1,0,1), (0,1,1), 0.9, 'up motion') ) if _DEBUG: print() print('setup_transition_list(): list has',len(xn_list),'transitions:') for t in xn_list: print(' From state',t.from_state,'to state',t.to_state,'at rate',t.rate,'called',t.name) return xn_list
d820502beefc6065f1d5624dc0c0749fc65a0ae9
3,652,343
import math def unit_vector(data, axis=None, out=None): """Return ndarray normalized by length, i.e. eucledian norm, along axis. >>> v0 = numpy.random.random(3) >>> v1 = unit_vector(v0) >>> numpy.allclose(v1, v0 / numpy.linalg.norm(v0)) True >>> v0 = numpy.random.rand(5, 4, 3) >>> v1 = unit_vector(v0, axis=-1) >>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=2)), 2) >>> numpy.allclose(v1, v2) True >>> v1 = unit_vector(v0, axis=1) >>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=1)), 1) >>> numpy.allclose(v1, v2) True >>> v1 = numpy.empty((5, 4, 3), dtype=numpy.float64) >>> unit_vector(v0, axis=1, out=v1) >>> numpy.allclose(v1, v2) True >>> list(unit_vector([])) [] >>> list(unit_vector([1.0])) [1.0] see: https://github.com/ros/geometry/blob/hydro-devel/tf/src/tf/transformations.py """ if out is None: data = np.array(data, dtype=np.float64, copy=True) if data.ndim == 1: data /= math.sqrt(np.dot(data, data)) return data else: if out is not data: out[:] = np.array(data, copy=False) data = out length = np.atleast_1d(np.sum(data*data, axis)) np.sqrt(length, length) if axis is not None: length = np.expand_dims(length, axis) data /= length if out is None: return data
eb29e86d33ff576f290ea11aa6e2e6180a04d56e
3,652,344
import torch def negative_f1_score(probs, labels): """ Computes the f1 score between output and labels for k classes. args: probs (tensor) (size, k) labels (tensor) (size, 1) """ probs = torch.nn.functional.softmax(probs, dim=1) probs = probs.numpy() labels = labels.numpy() pred = np.argmax(probs, axis=1) return skl.f1_score(labels, pred, pos_label=0)
bd308d70934ed5ada0868f454b07c0f554384f32
3,652,345
import requests def search_usb_devices_facets(): """Facet USB Devices""" data = {"terms": {"fields": ["status"]}} usb_url = USB_DEVICES_FACETS.format(HOSTNAME, ORG_KEY) return requests.post(usb_url, json=data, headers=HEADERS)
d4f09b8374fe2461ac5e7c121822287bf8e80494
3,652,346
import struct def pack4(v): """ Takes a 32 bit integer and returns a 4 byte string representing the number in little endian. """ assert 0 <= v <= 0xffffffff # The < is for little endian, the I is for a 4 byte unsigned int. # See https://docs.python.org/2/library/struct.html for more info. return struct.pack('<I', v)
bbaeb0026624a7ec30ec379466ef11398f93d573
3,652,347
def index(): """ """ category = Category.get_categories() pitch = Pitch.get_all_pitches() title = "Welcome to Pitch Hub" return render_template('index.html', title = title, category = category, pitch =pitch)
6758964bf9a304d62d9048e9b9248cee39d04742
3,652,348
def maximum_sum_increasing_subsequence(numbers, size): """ Given an array of n positive integers. Write a program to find the sum of maximum sum subsequence of the given array such that the integers in the subsequence are sorted in increasing order. """ results = [numbers[i] for i in range(size)] for i in range(1, size): for j in range(i): if numbers[i] > numbers[j] and results[i] < results[j] + numbers[i]: results[i] = results[j] + numbers[i] return max(results)
a684ead4dcd9acbf8c796f5d24a3bf826fb5ad9d
3,652,349
def lstsqb(a, b): """ Return least-squares solution to a = bx. Similar to MATLAB / operator for rectangular matrices. If b is invertible then the solution is la.solve(a, b).T """ return la.lstsq(b.T, a.T, rcond=None)[0].T
4b046896ce29b79e9edcb434b1a01c652654867c
3,652,350
def multivariateGaussian(X, mu, sigma2): """ 多元高斯分布 :param X: :param mu: :param sigma2: :return: """ k = len(mu) if sigma2.shape[0] > 1: sigma2 = np.diag(sigma2) X = X - mu argu = (2 * np.pi) ** (-k / 2) * np.linalg.det(sigma2) ** (-0.5) p = argu * np.exp(-0.5 * np.sum(np.dot(X, np.linalg.inv(sigma2)) * X, axis=1)) return p
67a466318c473eef2749bf23e26d45de1149c5dc
3,652,351
from datetime import datetime def get_day(input): """ Convert input to a datetime object and extract the Day part """ if isinstance(input, str): input = parse_iso(input) if isinstance(input, (datetime.date, datetime.datetime)): return input.day return None
8a18e1832b85faf0612667ce3431176301502523
3,652,352
def read_ds(tier, pos_source=None): """ Like read_pt above, given a DS tier, return the DepTree object :param tier: :type tier: RGTier """ # First, assert that the type we're looking at is correct. assert tier.type == DS_TIER_TYPE # --1) Root the tree. root = DepTree.root() # --2) We will build up a list of edges, then attach the edges to the tree. edges = [] # --2b) Retrieve the POS tier, if it exists, in advance. pos_tier = tier.igt.get_pos_tags(tier.attributes.get(DS_DEP_ATTRIBUTE), tag_method=pos_source) for item in tier: dep = item.attributes.get(DS_DEP_ATTRIBUTE) head = item.attributes.get(DS_HEAD_ATTRIBUTE) # Get the POS tag if it exists pos = None if pos_tier: pos_item = pos_tier.find(alignment=dep) if pos_item: pos = pos_item.value() # Get the word value... dep_w = tier.igt.find(id=dep) dep_t = Terminal(dep_w.value(), dep_w.index) if head is not None: head_w = tier.igt.find(id=head) head_t = Terminal(head_w.value(), head_w.index) else: head_t = Terminal('ROOT', 0) e = DepEdge(head=head_t, dep=dep_t, type=item.value(), pos=pos) edges.append(e) dt = build_dep_edges(edges) return dt
797503380a3ff697440da8cd5d409b5c89384f4f
3,652,353
def get_local_ontology_from_file(ontology_file): """ return ontology class from a local OWL file """ return ow.get_ontology("file://" + ontology_file).load()
c022aac464c4afdbc088455a5edf8a4d91bc5586
3,652,354
import urllib def get_wolframalpha_imagetag(searchterm): """ Used to get the first image tag from the Wolfram Alpha API. The return value is a dictionary with keys that can go directly into html. Takes in: searchterm: the term to search with in the Wolfram Alpha API """ base_url = 'http://api.wolframalpha.com/v2/query?' app_id = credentials['wolframkey'] # api key url_params = {'input': searchterm, 'appid': app_id} headers = {'User-Agent': None} data = urllib.urlencode(url_params) req = urllib2.Request(base_url, data, headers) xml = urllib2.urlopen(req).read() tree = ET.fromstring(xml) for e in tree.findall('pod'): for item in [ef for ef in list(e) if ef.tag == 'subpod']: for it in [i for i in list(item) if i.tag == 'img']: if it.tag == 'img': if float(it.attrib['width']) > 50 and float(it.attrib['height']) > 50: return it.attrib['src']
958e09d6498b1f1d98de72fe9089e45e48988f20
3,652,355
def get_synset_definitions(word): """Return all possible definitions for synsets in a word synset ring. :param word (str): The word to lookup. :rtype definitions (list): The synset definitions list. """ definitions = [] synsets = get_word_synsets(word) for _synset in synsets: definitions.append(_synset.definition().split()) return definitions
70d522777cd413902157df6c0d96bdf378d7cf69
3,652,356
import json def getResourceDefUsingSession(url, session, resourceName, sensitiveOptions=False): """ get the resource definition - given a resource name (and catalog url) catalog url should stop at port (e.g. not have ldmadmin, ldmcatalog etc... or have v2 anywhere since we are using v1 api's returns rc=200 (valid) & other rc's from the get resourceDef (json) """ print( "getting resource for catalog:-" + url + " resource=" + resourceName ) apiURL = url + "/access/1/catalog/resources/" + resourceName if sensitiveOptions: apiURL += "?sensitiveOptions=true" # print("\turl=" + apiURL) header = {"Accept": "application/json"} tResp = session.get(apiURL, params={}, headers=header, ) print("\tresponse=" + str(tResp.status_code)) if tResp.status_code == 200: # valid - return the jsom return tResp.status_code, json.loads(tResp.text) else: # not valid return tResp.status_code, None
883a393018b068b8f15a8c0ea5ac6969c1a386b6
3,652,357
def _merge_sse(sum1, sum2): """Merge the partial SSE.""" sum_count = sum1 + sum2 return sum_count
0aae96262cfb56c6052fdbe5bbd92437d37b1f76
3,652,358
def earliest_deadline_first(evs, iface): """ Sort EVs by departure time in increasing order. Args: evs (List[EV]): List of EVs to be sorted. iface (Interface): Interface object. (not used in this case) Returns: List[EV]: List of EVs sorted by departure time in increasing order. """ return sorted(evs, key=lambda x: x.departure)
f1a57586b9993d890ddda6c309dafbea4ae16554
3,652,359
import re def auto_load(filename): """Load any supported raw battery cycler file to the correct Datapath automatically. Matches raw file patterns to the correct datapath and returns the datapath object. Example: auto_load("2017-05-09_test-TC-contact_CH33.csv") >>> <ArbinDatapath object> auto_load("PreDiag_000287_000128short.092") >>> <MaccorDatapath object> Args: filename (str, Pathlike): string corresponding to battery cycler file filename. Returns: (beep.structure.base.BEEPDatapath): The datapath child class corresponding to this file. """ if re.match(ARBIN_CONFIG["file_pattern"], filename) or re.match(FastCharge_CONFIG["file_pattern"], filename): return ArbinDatapath.from_file(filename) elif re.match(MACCOR_CONFIG["file_pattern"], filename) or re.match(xTesladiag_CONFIG["file_pattern"], filename): return MaccorDatapath.from_file(filename) elif re.match(INDIGO_CONFIG["file_pattern"], filename): return IndigoDatapath.from_file(filename) elif re.match(BIOLOGIC_CONFIG["file_pattern"], filename): return BiologicDatapath.from_file(filename) elif re.match(NEWARE_CONFIG["file_pattern"], filename): return NewareDatapath.from_file(filename) else: raise ValueError("{} does not match any known file pattern".format(filename))
6b3ccf40296f62c15ea005cfe5e87e397d8e9f88
3,652,360
def print_param_list(param_list, result, decimal_place=2, unit=''): """ Return a result string with parameter data appended. The input `param_list` is a list of a tuple (param_value, param_name), where `param_value` is a float and `param_name` is a string. If `param_value` is None, it writes 'N/A'. """ for param_value, param_name in param_list: result += '<tr>' result += r' <td class = "key"><span>{0}</span></td>'.format(param_name) result += r' <td class="equals">=</td>' if param_value is None: result += r' <td class="value">N/A</td>' else: param_value = '%.*f' % (decimal_place, param_value) result += r' <td class="value"><script type="math/tex">{0} \ \mathrm{{ {1!s} }}</script></td>'.format( param_value, unit) result += '</tr>\n' return result
f92fd926eaf312e625058c394c42e9909cac7a43
3,652,361
def get_veh_id(gb_data): """ Mapping function for vehicle id """ veh_ref = gb_data['Vehicle_Reference'] acc_id = get_acc_id_from_data(gb_data) veh_id = common.get_gb_veh_id(acc_id, int(veh_ref)) return veh_id
de3a8f99a099737cedb00534ad21bc7dd1a900c5
3,652,362
def linreg_qr_gramschmidt_unencrypted(clientMap, coordinator, encryLv=3, colTrunc=False): """ Compute vertical federated linear regression using QR. QR decomposition is computed by means of Numpy/Scipy builtin algorithm and Gram-Schmidt method. Parameters ---------- clientMap : List The list of qrClient objects. clientInfos : List The list of machine information of the corresponding qrClient objects. encryLv : int The least number of columns the feature matrix of a single client should have to protect its privacy. colTrunc : bool Do the column pivoting and truncation or not. Returns ------- numpy.array The computed weights of all the clients. The weights corresponding to the constant term is at the last position. """ preprocessing_wo_constaint(clientMap, coordinator.machine_info_client, encryLv, colTrunc) compute_qr_gramschmidt_unencrypted(clientMap, coordinator.machine_info_client) apply_q_unencrypted(clientMap, coordinator.machine_info_client) weights = apply_back_solve_wo_constraint(clientMap, coordinator.machine_info_client) return weights
59fee17cff911a22c4e6cfc6daf13ce7559d32a7
3,652,363
def has_soa_perm(user_level, obj, ctnr, action): """ Permissions for SOAs SOAs are global, related to domains and reverse domains """ return { 'cyder_admin': True, #? 'ctnr_admin': action == 'view', 'user': action == 'view', 'guest': action == 'view', }.get(user_level, False)
6b32c9f3411d9341d9692c46e84a7506d649f36d
3,652,364
import os def parse_test(project, path): """Compares the dynamic graph to the parsed one.""" inputs, outputs, built_by, graph = parse_graph(project.graph) fuzzed = sorted([f for f in inputs - outputs if project.filter_in(f)]) count = len(fuzzed) root = project.buildPath G = defaultdict(list) with open(path, 'r') as f: for line in f.readlines(): src, deps = line.strip().split(':') src = os.path.normpath(os.path.join(root, src)) for dep in (w.strip() for w in deps.split(', ')): G[os.path.normpath(os.path.join(root, dep))].append(src) def traverse_graph(node, viz): if node in viz: return viz for next in G[node]: viz.add(node) traverse_graph(next, viz) return viz for idx, input in zip(range(count), fuzzed): print('[{0}/{1}] {2}:'.format(idx + 1, count, input)) expected = graph.find_deps(input) & outputs actual = traverse_graph(input, set()) if actual != expected: for f in sorted(actual): if f not in expected: print(' +', f) for f in sorted(expected): if f not in actual: print(' -', f)
0f55d8123c1984faccef9b41e9807cc82d17492b
3,652,365
from typing import Any from typing import Dict import os import base64 def upload_artifact(args: Any, file_path: str, org_id: Any = None) -> Dict[str, Any]: """ Upload artifact using Pyxis API Args: args (Any): CLI arguments file_path (str): Path to a artifact file org_id (Any): organization ID - optional Returns: Dict[str, Any]: Pyxis response """ upload_url = urljoin( args.pyxis_url, f"v1/projects/certification/id/{args.cert_project_id}/artifacts" ) file_name = os.path.basename(file_path) file_size = os.path.getsize(file_path) with open(file_path, "rb") as artifact: content = artifact.read() base64_content = base64.b64encode(content).decode("utf8") mime = magic.from_file(file_path, mime=True) artifact_payload = { "content": base64_content, "certification_hash": args.certification_hash, "content_type": mime, "filename": file_name, "file_size": file_size, "operator_package_name": args.operator_package_name, "version": args.operator_version, } if org_id: artifact_payload["org_id"] = org_id return pyxis.post(upload_url, artifact_payload)
c6f2dfc94581028ccff0d2d3a86008a18b3816aa
3,652,366
def check_skyscrapers(input_path: str) -> bool: """ Main function to check the status of skyscraper game board. Return True if the board status is compliant with the rules, False otherwise. """ board = read_input(input_path) return check_not_finished_board(board) and check_uniqueness_in_rows(board) and \ check_horizontal_visibility(board) and check_columns(board)
a4a2c77049bad429e548c749ef3e34ef27081de4
3,652,367
from typing import Optional async def get_station(station: avwx.Station, token: Optional[Token]) -> dict: """Log and returns station data as dict""" await app.station.add(station.lookup_code, "station") return await station_data_for(station, token=token) or {}
659bf56ff274ccd460dfdf240d6f4776fb7586a6
3,652,368
def add_check_numerics_ops(): """Connect a `check_numerics` to every floating point tensor. `check_numerics` operations themselves are added for each `half`, `float`, or `double` tensor in the graph. For all ops in the graph, the `check_numerics` op for all of its (`half`, `float`, or `double`) inputs is guaranteed to run before the `check_numerics` op on any of its outputs. Note: This API is not compatible with the use of `tf.cond` or `tf.while_loop`, and will raise a `ValueError` if you attempt to call it in such a graph. Returns: A `group` op depending on all `check_numerics` ops added. Raises: ValueError: If the graph contains any numeric operations in a control flow structure. RuntimeError: If called with eager execution enabled. @compatibility(eager) Not compatible with eager execution. To check for `Inf`s and `NaN`s under eager execution, call tfe.seterr(inf_or_nan='raise') once before executing the checked operations. @enc_compatibility """ if context.executing_eagerly(): raise RuntimeError( "add_check_numerics_ops() is not compatible with eager execution. " "To check for Inf's and NaN's under eager execution, call " "tfe.seterr(inf_or_nan='raise') once before executing the " "checked operations.") check_op = [] # This code relies on the ordering of ops in get_operations(). # The producer of a tensor always comes before that tensor's consumer in # this list. This is true because get_operations() returns ops in the order # added, and an op can only be added after its inputs are added. for op in ops.get_default_graph().get_operations(): for output in op.outputs: if output.dtype in [dtypes.float16, dtypes.float32, dtypes.float64]: if op._get_control_flow_context() is not None: # pylint: disable=protected-access raise ValueError("`tf.add_check_numerics_ops() is not compatible " "with TensorFlow control flow operations such as " "`tf.cond()` or `tf.while_loop()`.") message = op.name + ":" + str(output.value_index) with ops.control_dependencies(check_op): check_op = [array_ops.check_numerics(output, message=message)] return control_flow_ops.group(*check_op)
8a5026ff07a0cfce7f0acac58641996cef76fb2e
3,652,369
def get_text(part): """Gmailの本文をdecode""" if not part['filename'] and \ part['body']['size'] > 0 and \ 'data' in part['body'].keys(): content_type = header(part['headers'], 'Content-Type') encode_type = header(part['headers'], 'Content-Transfer-Encoding') data = decode_data(content_type, encode_type, part['filename'], part['body']['data']) if data["data_type"]=="text": return data['data'] return ''
2d32b30539c39dc89cb3680e2d21e14eb9ce24c4
3,652,370
import dataclasses def run(ex: "interactivity.Execution"): """Specify the target function(s) and/or layer(s) to target.""" selection: "definitions.Selection" = ex.shell.selection is_exact = ex.args.get("exact", False) functions = ex.args.get("functions", False) layers = ex.args.get("layers", False) both = not functions and not layers names = _get_names(ex) if both and names == ["*"]: status = "ALL" message = "Selection has been cleared. All items are now selected." ex.shell.selection = dataclasses.replace( selection, function_needles=["*"], layer_needles=["*"], bundle_all=True, ) elif is_exact: status = "EXACT" message = "Exact selection has been applied." ex.shell.selection = _update_exact_selection( names=names, functions=functions, layers=layers, selection=selection, ) else: status = "MATCH" message = "Matching items have been selected." ex.shell.selection = _update_fuzzy_selection( names=names, functions=functions, layers=layers, selection=selection, ) targets = ex.shell.context.get_selected_targets(ex.shell.selection) return ex.finalize( status=status, message=message, echo=True, info={ "functions": _to_names(targets.function_targets), "layers": _to_names(targets.layer_targets), }, )
9389ada1c657b1f2794650e9b2b2d9a40039b64f
3,652,371
def get_mixture_mse_accuracy(output_dim, num_mixes): """Construct an MSE accuracy function for the MDN layer that takes one sample and compares to the true value.""" # Construct a loss function with the right number of mixtures and outputs def mse_func(y_true, y_pred): # Reshape inputs in case this is used in a TimeDistribued layer y_pred = tf.reshape(y_pred, [-1, (2 * num_mixes * output_dim) + num_mixes], name='reshape_ypreds') y_true = tf.reshape(y_true, [-1, output_dim], name='reshape_ytrue') out_mu, out_sigma, out_pi = tf.split(y_pred, num_or_size_splits=[num_mixes * output_dim, num_mixes * output_dim, num_mixes], axis=1, name='mdn_coef_split') cat = tfd.Categorical(logits=out_pi) component_splits = [output_dim] * num_mixes mus = tf.split(out_mu, num_or_size_splits=component_splits, axis=1) sigs = tf.split(out_sigma, num_or_size_splits=component_splits, axis=1) coll = [tfd.MultivariateNormalDiag(loc=loc, scale_diag=scale) for loc, scale in zip(mus, sigs)] mixture = tfd.Mixture(cat=cat, components=coll) samp = mixture.sample() mse = tf.reduce_mean(tf.square(samp - y_true), axis=-1) # Todo: temperature adjustment for sampling functon. return mse # Actually return the loss_func with tf.name_scope('MDNLayer'): return mse_func
ac37233f14afb7aa13b8afc74e04d3d8adc89ff5
3,652,372
def ByName(breakdown_metric_name): """Return a BreakdownMetric class by name.""" breakdown_mapping = { 'distance': ByDistance, 'num_points': ByNumPoints, 'rotation': ByRotation, 'difficulty': ByDifficulty } if breakdown_metric_name not in breakdown_mapping: raise ValueError('Invalid breakdown name: %s, valid names are %s' % (breakdown_metric_name, list(breakdown_mapping.keys()))) return breakdown_mapping[breakdown_metric_name]
06a1a44f8453375cfc83729339062948829d950c
3,652,373
def deserialize_structure(serialized_structure, dtype=np.int32): """Converts a string to a structure. Args: serialized_structure: A structure produced by `serialize_structure`. dtype: The data type of the output numpy array. Returns: A numpy array with `dtype`. """ return np.asarray( [token for token in serialized_structure.split(domains.SEP_TOKEN)], dtype=dtype)
ec8f3d096f3eedea4343576f7b204da15ae73ca6
3,652,374
from typing import List def get_all_text_elements(dataset_name: str) -> List[TextElement]: """ get all the text elements of the given dataset :param dataset_name: """ return data_access.get_all_text_elements(dataset_name=dataset_name)
fa4c2e0bff9818f1026095b5b6b774b09652b989
3,652,375
def form_x(form_file,*args): """ same as above, except assumes all tags in the form are number, and uses the additional arguments in *args to fill out those tag values. :param form_file: file which we use for replacements :param *args: optional arguments which contain the form entries for the file in question, by number. """ form_dict = {} count = 0 for arg in args: count += 1 form_dict[str(count)] = str(arg) return form(form_file,form_dict)
e2d45e71ff18ce626a89d9a097389fc27b34fa82
3,652,376
import click def init(): """Manage IAM users.""" formatter = cli.make_formatter('aws_user') @click.group() def user(): """Manage IAM users.""" pass @user.command() @click.option('--create', is_flag=True, default=False, help='Create if it does not exist') @click.option('--path', default='/', help='Path for user name.') @click.option('--inline-policy', type=cli.LIST, required=False, help='Inline user policy name:file') @click.option('--attached-policy', type=cli.LIST, required=False, help='global:PolicyName or local:PolicyName') @click.option('--attached-policy', type=cli.LIST, required=False, help='global:PolicyName or local:PolicyName') @click.argument('user-name', required=True, callback=aws_cli.sanitize_user_name) @cli.admin.ON_EXCEPTIONS def configure(create, path, inline_policy, attached_policy, user_name): """Create/configure/get IAM user.""" iam_conn = awscontext.GLOBAL.iam try: user = iamclient.get_user(iam_conn, user_name) except exc.NotFoundError: if not create: raise user = None if not user: user = iamclient.create_user(iam_conn, user_name, path) if inline_policy: _set_user_policy(iam_conn, user_name, inline_policy) if attached_policy: _set_attached_policy(iam_conn, user_name, attached_policy) user['UserPolicies'] = iamclient.list_user_policies(iam_conn, user_name) user['AttachedPolicies'] = iamclient.list_attached_user_policies( iam_conn, user_name) cli.out(formatter(user)) @user.command(name='list') @cli.admin.ON_EXCEPTIONS @click.option('--path', default='/', help='Path for user name.') def list_users(path): """List IAM users. """ iam_conn = awscontext.GLOBAL.iam users = iamclient.list_users(iam_conn, path) cli.out(formatter(users)) @user.command() @click.option('--force', is_flag=True, default=False, help='Delete user, even is user has policies attached.') @click.argument('user-name') @cli.admin.ON_EXCEPTIONS def delete(force, user_name): """Delete IAM user.""" iam_conn = awscontext.GLOBAL.iam if force: user_policies = iamclient.list_user_policies(iam_conn, user_name) for policy in user_policies: _LOGGER.info('deleting inline policy: %s', policy) iamclient.delete_user_policy(iam_conn, user_name, policy) attached_pols = iamclient.list_attached_user_policies(iam_conn, user_name) for policy in attached_pols: _LOGGER.info('detaching policy: %s', policy['PolicyArn']) iamclient.detach_user_policy(iam_conn, user_name, policy['PolicyArn']) groups = iamclient.list_groups_for_user(iam_conn, user_name) for group in groups: _LOGGER.info('removing user from group: %s', group) iamclient.remove_user_from_group(iam_conn, user_name, group) try: iamclient.delete_user(iam_conn=iam_conn, user_name=user_name) except iam_conn.exceptions.DeleteConflictException: raise click.UsageError('User [%s] has inline or attached ' 'policies, or is a member of one or ' 'more group, use --force to force ' 'delete.' % user_name) del configure del list_users del delete return user
b237e6ba7c10aafa1a499944f1553eaceed0fb2a
3,652,377
def fix_units(dims): """Fill in missing units.""" default = [d.get("units") for d in dims][-1] for dim in dims: dim["units"] = dim.get("units", default) return dims
d3a47ad84e1b4e44bedebb1e5739778df975a6fe
3,652,378
def annotate_movement(raw, pos, rotation_velocity_limit=None, translation_velocity_limit=None, mean_distance_limit=None, use_dev_head_trans='average'): """Detect segments with movement. Detects segments periods further from rotation_velocity_limit, translation_velocity_limit and mean_distance_limit. It returns an annotation with the bad segments. Parameters ---------- raw : instance of Raw Data to compute head position. pos : array, shape (N, 10) The position and quaternion parameters from cHPI fitting. Obtained with `mne.chpi` functions. rotation_velocity_limit : float Head rotation velocity limit in radians per second. translation_velocity_limit : float Head translation velocity limit in radians per second. mean_distance_limit : float Head position limit from mean recording in meters. use_dev_head_trans : 'average' (default) | 'info' Identify the device to head transform used to define the fixed HPI locations for computing moving distances. If ``average`` the average device to head transform is computed using ``compute_average_dev_head_t``. If ``info``, ``raw.info['dev_head_t']`` is used. Returns ------- annot : mne.Annotations Periods with head motion. hpi_disp : array Head position over time with respect to the mean head pos. See Also -------- compute_average_dev_head_t """ sfreq = raw.info['sfreq'] hp_ts = pos[:, 0].copy() - raw.first_time dt = np.diff(hp_ts) hp_ts = np.concatenate([hp_ts, [hp_ts[-1] + 1. / sfreq]]) orig_time = raw.info['meas_date'] annot = Annotations([], [], [], orig_time=orig_time) # Annotate based on rotational velocity t_tot = raw.times[-1] if rotation_velocity_limit is not None: assert rotation_velocity_limit > 0 # Rotational velocity (radians / sec) r = _angle_between_quats(pos[:-1, 1:4], pos[1:, 1:4]) r /= dt bad_mask = (r >= np.deg2rad(rotation_velocity_limit)) onsets, offsets = _mask_to_onsets_offsets(bad_mask) onsets, offsets = hp_ts[onsets], hp_ts[offsets] bad_pct = 100 * (offsets - onsets).sum() / t_tot logger.info(u'Omitting %5.1f%% (%3d segments): ' u'ω >= %5.1f°/s (max: %0.1f°/s)' % (bad_pct, len(onsets), rotation_velocity_limit, np.rad2deg(r.max()))) annot += _annotations_from_mask( hp_ts, bad_mask, 'BAD_mov_rotat_vel', orig_time=orig_time) # Annotate based on translational velocity limit if translation_velocity_limit is not None: assert translation_velocity_limit > 0 v = np.linalg.norm(np.diff(pos[:, 4:7], axis=0), axis=-1) v /= dt bad_mask = (v >= translation_velocity_limit) onsets, offsets = _mask_to_onsets_offsets(bad_mask) onsets, offsets = hp_ts[onsets], hp_ts[offsets] bad_pct = 100 * (offsets - onsets).sum() / t_tot logger.info(u'Omitting %5.1f%% (%3d segments): ' u'v >= %5.4fm/s (max: %5.4fm/s)' % (bad_pct, len(onsets), translation_velocity_limit, v.max())) annot += _annotations_from_mask( hp_ts, bad_mask, 'BAD_mov_trans_vel', orig_time=orig_time) # Annotate based on displacement from mean head position disp = [] if mean_distance_limit is not None: assert mean_distance_limit > 0 # compute dev to head transform for fixed points use_dev_head_trans = use_dev_head_trans.lower() if use_dev_head_trans not in ['average', 'info']: raise ValueError('use_dev_head_trans must be either' + ' \'average\' or \'info\': got \'%s\'' % (use_dev_head_trans,)) if use_dev_head_trans == 'average': fixed_dev_head_t = compute_average_dev_head_t(raw, pos) elif use_dev_head_trans == 'info': fixed_dev_head_t = raw.info['dev_head_t'] # Get static head pos from file, used to convert quat to cartesian chpi_pos = sorted([d for d in raw.info['hpi_results'][-1] ['dig_points']], key=lambda x: x['ident']) chpi_pos = np.array([d['r'] for d in chpi_pos]) # Get head pos changes during recording chpi_pos_mov = np.array([apply_trans(_quat_to_affine(quat), chpi_pos) for quat in pos[:, 1:7]]) # get fixed position chpi_pos_fix = apply_trans(fixed_dev_head_t, chpi_pos) # get movement displacement from mean pos hpi_disp = chpi_pos_mov - np.tile(chpi_pos_fix, (pos.shape[0], 1, 1)) # get positions above threshold distance disp = np.sqrt((hpi_disp ** 2).sum(axis=2)) bad_mask = np.any(disp > mean_distance_limit, axis=1) onsets, offsets = _mask_to_onsets_offsets(bad_mask) onsets, offsets = hp_ts[onsets], hp_ts[offsets] bad_pct = 100 * (offsets - onsets).sum() / t_tot logger.info(u'Omitting %5.1f%% (%3d segments): ' u'disp >= %5.4fm (max: %5.4fm)' % (bad_pct, len(onsets), mean_distance_limit, disp.max())) annot += _annotations_from_mask( hp_ts, bad_mask, 'BAD_mov_dist', orig_time=orig_time) _adjust_onset_meas_date(annot, raw) return annot, disp
f89e48281cb70da6aa27b7dde737a8a587024f08
3,652,379
from typing import Any def run_in_executor( func: F, executor: ThreadPoolExecutor = None, args: Any = (), kwargs: Any = MappingProxyType({}), ) -> Future: """将耗时函数加入到线程池 .""" loop = get_event_loop() # noinspection PyTypeChecker return loop.run_in_executor( # type: ignore executor, context_partial(func, *args, **kwargs), )
dfa40f30e359d785e3582f48910d3936659bd2fa
3,652,380
def find_entry_with_minimal_scale_at_prime(self, p): """ Finds the entry of the quadratic form with minimal scale at the prime p, preferring diagonal entries in case of a tie. (I.e. If we write the quadratic form as a symmetric matrix M, then this entry M[i,j] has the minimal valuation at the prime p.) Note: This answer is independent of the kind of matrix (Gram or Hessian) associated to the form. INPUT: `p` -- a prime number > 0 OUTPUT: a pair of integers >= 0 EXAMPLES:: sage: Q = QuadraticForm(ZZ, 2, [6, 2, 20]); Q Quadratic form in 2 variables over Integer Ring with coefficients: [ 6 2 ] [ * 20 ] sage: Q.find_entry_with_minimal_scale_at_prime(2) (0, 1) sage: Q.find_entry_with_minimal_scale_at_prime(3) (1, 1) sage: Q.find_entry_with_minimal_scale_at_prime(5) (0, 0) """ n = self.dim() min_val = Infinity ij_index = None val_2 = valuation(2, p) for d in range(n): ## d = difference j-i for e in range(n - d): ## e is the length of the diagonal with value d. ## Compute the valuation of the entry if d == 0: tmp_val = valuation(self[e, e+d], p) else: tmp_val = valuation(self[e, e+d], p) - val_2 ## Check if it's any smaller than what we have if tmp_val < min_val: ij_index = (e,e+d) min_val = tmp_val ## Return the result return ij_index
737a6dd1c3a1f416f4e22b79440b7731a5048fe0
3,652,381
import awkward._v2._connect.pyarrow def from_arrow(array, highlevel=True, behavior=None): """ Args: array (`pyarrow.Array`, `pyarrow.ChunkedArray`, `pyarrow.RecordBatch`, or `pyarrow.Table`): Apache Arrow array to convert into an Awkward Array. highlevel (bool): If True, return an #ak.Array; otherwise, return a low-level #ak.layout.Content subclass. behavior (None or dict): Custom #ak.behavior for the output array, if high-level. """ out = awkward._v2._connect.pyarrow.handle_arrow(array, pass_empty_field=True) return ak._v2._util.wrap(out, behavior, highlevel)
a3c0cea2f2f3763f8997978e2963654cc08ed4e1
3,652,382
def _basis_search(equiv_lib, source_basis, target_basis, heuristic): """Search for a set of transformations from source_basis to target_basis. Args: equiv_lib (EquivalenceLibrary): Source of valid translations source_basis (Set[Tuple[gate_name: str, gate_num_qubits: int]]): Starting basis. target_basis (Set[gate_name: str]): Target basis. heuristic (Callable[[source_basis, target_basis], int]): distance heuristic. Returns: Optional[List[Tuple[gate, equiv_params, equiv_circuit]]]: List of (gate, equiv_params, equiv_circuit) tuples tuples which, if applied in order will map from source_basis to target_basis. Returns None if no path was found. """ source_basis = frozenset(source_basis) target_basis = frozenset(target_basis) open_set = set() # Bases found but not yet inspected. closed_set = set() # Bases found and inspected. # Priority queue for inspection order of open_set. Contains Tuple[priority, count, basis] open_heap = [] # Map from bases in closed_set to predecessor with lowest cost_from_source. # Values are Tuple[prev_basis, gate_name, params, circuit]. came_from = {} basis_count = iter_count() # Used to break ties in priority. open_set.add(source_basis) heappush(open_heap, (0, next(basis_count), source_basis)) # Map from basis to lowest found cost from source. cost_from_source = defaultdict(lambda: np.inf) cost_from_source[source_basis] = 0 # Map from basis to cost_from_source + heuristic. est_total_cost = defaultdict(lambda: np.inf) est_total_cost[source_basis] = heuristic(source_basis, target_basis) logger.debug('Begining basis search from %s to %s.', source_basis, target_basis) while open_set: _, _, current_basis = heappop(open_heap) if current_basis in closed_set: # When we close a node, we don't remove it from the heap, # so skip here. continue if {gate_name for gate_name, gate_num_qubits in current_basis}.issubset(target_basis): # Found target basis. Construct transform path. rtn = [] last_basis = current_basis while last_basis != source_basis: prev_basis, gate_name, gate_num_qubits, params, equiv = came_from[last_basis] rtn.append((gate_name, gate_num_qubits, params, equiv)) last_basis = prev_basis rtn.reverse() logger.debug('Transformation path:') for gate_name, gate_num_qubits, params, equiv in rtn: logger.debug('%s/%s => %s\n%s', gate_name, gate_num_qubits, params, equiv) return rtn logger.debug('Inspecting basis %s.', current_basis) open_set.remove(current_basis) closed_set.add(current_basis) for gate_name, gate_num_qubits in current_basis: equivs = equiv_lib._get_equivalences((gate_name, gate_num_qubits)) basis_remain = current_basis - {(gate_name, gate_num_qubits)} neighbors = [ (frozenset(basis_remain | {(inst.name, inst.num_qubits) for inst, qargs, cargs in equiv.data}), params, equiv) for params, equiv in equivs] # Weight total path length of transformation weakly. tentative_cost_from_source = cost_from_source[current_basis] + 1e-3 for neighbor, params, equiv in neighbors: if neighbor in closed_set: continue if tentative_cost_from_source >= cost_from_source[neighbor]: continue open_set.add(neighbor) came_from[neighbor] = (current_basis, gate_name, gate_num_qubits, params, equiv) cost_from_source[neighbor] = tentative_cost_from_source est_total_cost[neighbor] = tentative_cost_from_source \ + heuristic(neighbor, target_basis) heappush(open_heap, (est_total_cost[neighbor], next(basis_count), neighbor)) return None
2911b93f4ea36875c6d5e675028aedcd8caf3929
3,652,383
def Get_EstimatedRedshifts( scenario={} ): """ obtain estimated source redshifts written to npy file """ return np.genfromtxt( FilenameEstimatedRedshift( scenario ), dtype=None, delimiter=',', names=True, encoding='UTF-8')
0696cfee6783c093b8cf4b7c9703fec18e9799a4
3,652,384
def get_national_museums(db_connection, export_to_csv, export_path): """ Get national museum data from DB """ df = pd.read_sql('select * from optourism.state_national_museum_visits', con=db_connection) if export_to_csv: df.to_csv(f"{export_path}_nationalmuseums_raw.csv", index=False) return df
d34b9ff8f7f95025f932078e8d6e8b179bcff27e
3,652,385
from re import A def hrm_configure_pr_group_membership(): """ Configures the labels and CRUD Strings of pr_group_membership """ T = current.T s3db = current.s3db settings = current.deployment_settings request = current.request function = request.function table = s3db.pr_group_membership if settings.get_hrm_teams() == "Team": table.group_id.label = T("Team Name") table.group_head.label = T("Team Leader") if function == "group": current.response.s3.crud_strings["pr_group_membership"] = Storage( title_create = T("Add Member"), title_display = T("Membership Details"), title_list = T("Team Members"), title_update = T("Edit Membership"), title_search = T("Search Members"), subtitle_create = T("Add New Team Member"), label_list_button = T("List Members"), label_create_button = T("Add Team Member"), label_delete_button = T("Delete Membership"), msg_record_created = T("Team Member added"), msg_record_modified = T("Membership updated"), msg_record_deleted = T("Membership deleted"), msg_list_empty = T("No Members currently registered")) else: table.group_head.label = T("Group Leader") phone_label = settings.get_ui_label_mobile_phone() site_label = settings.get_org_site_label() if function == "group": db = current.db ptable = db.pr_person controller = request.controller def hrm_person_represent(id, row=None): if row: id = row.id elif id: row = db(ptable.id == id).select(ptable.first_name, limitby=(0, 1) ).first() else: return current.messages["NONE"] return A(row.first_name, _href=URL(c=controller, f="person", args=id)) table.person_id.represent = hrm_person_represent list_fields = ["id", (T("First Name"), "person_id"), "person_id$middle_name", "person_id$last_name", "group_head", (T("Email"), "person_id$email.value"), (phone_label, "person_id$phone.value"), (current.messages.ORGANISATION, "person_id$human_resource.organisation_id"), (site_label, "person_id$human_resource.site_id"), ] orderby = "pr_person.first_name" else: list_fields = ["id", "group_id", "group_head", "group_id$description", ] orderby = table.group_id s3db.configure("pr_group_membership", list_fields=list_fields, orderby=orderby)
f5ec66e00063bf8101505de8b1b8a767227b6bbd
3,652,386
import torch def inverse_sphere_distances(batch, dist, labels, anchor_label): """ Function to utilise the distances of batch samples to compute their probability of occurence, and using the inverse to sample actual negatives to the resp. anchor. Args: batch: torch.Tensor(), batch for which the sampling probabilities w.r.t to the anchor are computed. Used only to extract the shape. dist: torch.Tensor(), computed distances between anchor to all batch samples. labels: np.ndarray, labels for each sample for which distances were computed in dist. anchor_label: float, anchor label Returns: distance_matrix, clamped to ensure no zero values are passed. """ bs,dim = len(dist),batch.shape[-1] #negated log-distribution of distances of unit sphere in dimension <dim> log_q_d_inv = ((2.0 - float(dim)) * torch.log(dist) - (float(dim-3) / 2) * torch.log(1.0 - 0.25 * (dist.pow(2)))) #Set sampling probabilities of positives to zero log_q_d_inv[np.where(labels==anchor_label)[0]] = 0 q_d_inv = torch.exp(log_q_d_inv - torch.max(log_q_d_inv)) # - max(log) for stability #Set sampling probabilities of positives to zero q_d_inv[np.where(labels==anchor_label)[0]] = 0 ### NOTE: Cutting of values with high distances made the results slightly worse. # q_d_inv[np.where(dist>upper_cutoff)[0]] = 0 #Normalize inverted distance for probability distr. q_d_inv = q_d_inv/q_d_inv.sum() return q_d_inv.detach().cpu().numpy()
9bcb7f56f08fd850f6a9fa70175e1f83df603705
3,652,387
def get_recording(sleeps=False): """Get list of recorded steps. :param sleeps: set False to exclude recording sleeps """ # TODO. atm will always use CLICK # TODO. Add examples global recording # pylint: disable=W0602 output = [] top = None action_name = "Click" for item in recording: if sleeps and item["type"] == "sleep": output.append(f"Sleep {item['value']}s") if ( item["type"] == "locator" and not top or "top" in item.keys() and item["top"] != top ): output.append( f"Control Window {item['top']} # Handle: {item['top_handle']}" ) top = item["top"] if item["type"] == "locator": output.append(f"{action_name} {item['locator']}") result = "\n".join(output) header = ( f"\n{'-'*80}" "\nCOPY & PASTE BELOW CODE INTO *** Tasks *** or *** Keywords ***" f"\n{'-'*80}\n\n" ) footer = f"\n\n{'-'*80}" return f"{header}{result}{footer}"
11ea9e01fc6af731d444b743ea7e56deefff02d4
3,652,388
from functools import reduce def wrap_onspace(text, width): """ A word-wrap function that preserves existing line breaks and most spaces in the text. Expects that existing line breaks are posix newlines (\n). """ return reduce(lambda line, word, width=width: '%s%s%s' % (line, ' \n'[(len(line[line.rfind('\n')+1:]) + len(word.split('\n', 1)[0]) >= width)], word), text.split(' '))
13387fa67dcff2b0329463dfe1ab7d6721255afc
3,652,389
def xsd_simple_type_factory(elem, schema, parent): """ Factory function for XSD simple types. Parses the xs:simpleType element and its child component, that can be a restriction, a list or an union. Annotations are linked to simple type instance, omitting the inner annotation if both are given. """ annotation = None try: child = elem[0] except IndexError: return schema.maps.types[XSD_ANY_SIMPLE_TYPE] else: if child.tag == XSD_ANNOTATION: annotation = XsdAnnotation(elem[0], schema, child) try: child = elem[1] except IndexError: schema.parse_error("(restriction | list | union) expected", elem) return schema.maps.types[XSD_ANY_SIMPLE_TYPE] if child.tag == XSD_RESTRICTION: xsd_type = schema.BUILDERS.restriction_class(child, schema, parent) elif child.tag == XSD_LIST: xsd_type = XsdList(child, schema, parent) elif child.tag == XSD_UNION: xsd_type = schema.BUILDERS.union_class(child, schema, parent) else: schema.parse_error("(restriction | list | union) expected", elem) return schema.maps.types[XSD_ANY_SIMPLE_TYPE] if annotation is not None: xsd_type.annotation = annotation try: xsd_type.name = get_qname(schema.target_namespace, elem.attrib['name']) except KeyError: if parent is None: schema.parse_error("missing attribute 'name' in a global simpleType", elem) xsd_type.name = 'nameless_%s' % str(id(xsd_type)) else: if parent is not None: schema.parse_error("attribute 'name' not allowed for a local simpleType", elem) xsd_type.name = None if 'final' in elem.attrib: try: xsd_type._final = get_xsd_derivation_attribute(elem, 'final') except ValueError as err: xsd_type.parse_error(err, elem) return xsd_type
27ab47787923fadef6364828e2cc7604b006d76d
3,652,390
def amen_solve(A, f, x0, eps, kickrank=4, nswp=20, local_prec='n', local_iters=2, local_restart=40, trunc_norm=1, max_full_size=50, verb=1): """ Approximate linear system solution in the tensor-train (TT) format using Alternating minimal energy (AMEN approach) :References: Sergey Dolgov, Dmitry. Savostyanov Paper 1: http://arxiv.org/abs/1301.6068 Paper 2: http://arxiv.org/abs/1304.1222 :param A: Matrix in the TT-format :type A: matrix :param f: Right-hand side in the TT-format :type f: tensor :param x0: TT-tensor of initial guess. :type x0: tensor :param eps: Accuracy. :type eps: float :Example: >>> import tt >>> import tt.amen #Needed, not imported automatically >>> a = tt.qlaplace_dd([8, 8, 8]) #3D-Laplacian >>> rhs = tt.ones(2, 3 * 8) #Right-hand side of all ones >>> x = tt.amen.amen_solve(a, rhs, rhs, 1e-8) amen_solve: swp=1, max_dx= 9.766E-01, max_res= 3.269E+00, max_rank=5 amen_solve: swp=2, max_dx= 4.293E-01, max_res= 8.335E+00, max_rank=9 amen_solve: swp=3, max_dx= 1.135E-01, max_res= 5.341E+00, max_rank=13 amen_solve: swp=4, max_dx= 9.032E-03, max_res= 5.908E-01, max_rank=17 amen_solve: swp=5, max_dx= 9.500E-04, max_res= 7.636E-02, max_rank=21 amen_solve: swp=6, max_dx= 4.002E-05, max_res= 5.573E-03, max_rank=25 amen_solve: swp=7, max_dx= 4.949E-06, max_res= 8.418E-04, max_rank=29 amen_solve: swp=8, max_dx= 9.618E-07, max_res= 2.599E-04, max_rank=33 amen_solve: swp=9, max_dx= 2.792E-07, max_res= 6.336E-05, max_rank=37 amen_solve: swp=10, max_dx= 4.730E-08, max_res= 1.663E-05, max_rank=41 amen_solve: swp=11, max_dx= 1.508E-08, max_res= 5.463E-06, max_rank=45 amen_solve: swp=12, max_dx= 3.771E-09, max_res= 1.847E-06, max_rank=49 amen_solve: swp=13, max_dx= 7.797E-10, max_res= 6.203E-07, max_rank=53 amen_solve: swp=14, max_dx= 1.747E-10, max_res= 2.058E-07, max_rank=57 amen_solve: swp=15, max_dx= 8.150E-11, max_res= 8.555E-08, max_rank=61 amen_solve: swp=16, max_dx= 2.399E-11, max_res= 4.215E-08, max_rank=65 amen_solve: swp=17, max_dx= 7.871E-12, max_res= 1.341E-08, max_rank=69 amen_solve: swp=18, max_dx= 3.053E-12, max_res= 6.982E-09, max_rank=73 >>> print (tt.matvec(a, x) - rhs).norm() / rhs.norm() 5.5152374305127345e-09 """ m = A.m.copy() rx0 = x0.r.copy() psx0 = x0.ps.copy() if A.is_complex or f.is_complex: amen_f90.amen_f90.ztt_amen_wrapper(f.d, A.n, m, A.tt.r, A.tt.ps, A.tt.core, f.r, f.ps, f.core, rx0, psx0, x0.core, eps, kickrank, nswp, local_iters, local_restart, trunc_norm, max_full_size, verb, local_prec) else: if x0.is_complex: x0 = x0.real() rx0 = x0.r.copy() psx0 = x0.ps.copy() amen_f90.amen_f90.dtt_amen_wrapper(f.d, A.n, m, A.tt.r, A.tt.ps, A.tt.core, f.r, f.ps, f.core, rx0, psx0, x0.core, eps, kickrank, nswp, local_iters, local_restart, trunc_norm, max_full_size, verb, local_prec) x = tt.tensor() x.d = f.d x.n = m.copy() x.r = rx0 if A.is_complex or f.is_complex: x.core = amen_f90.amen_f90.zcore.copy() else: x.core = amen_f90.amen_f90.core.copy() amen_f90.amen_f90.deallocate_result() x.get_ps() return x
15b35bedd6e07f867ae1bae54992f8988b1b56cb
3,652,391
def get_vss(ts, tau_p): """ Compute candidates of VS for specified task tau_p """ if tau_p == None: return [] C, T, D = extract(ts) R = rta(C, T) _VS = _get_vs(C, T, R, task_name_to_index(ts, tau_p)) _VS.sort() VS = [] vs = Server(0, 0, None) # ignore duplicates for s in _VS: if vs.C == s[0] and vs.T == s[1]: continue vs = Server(s[0], s[1], tau_p) VS.append(vs) return VS
a6b0abc26d32d8e62e4026ee59a6491a02dd6a32
3,652,392
from typing import Iterable from typing import Dict from typing import Hashable from typing import List def groupby( entities: Iterable["DXFEntity"], dxfattrib: str = "", key: "KeyFunc" = None ) -> Dict[Hashable, List["DXFEntity"]]: """ Groups a sequence of DXF entities by a DXF attribute like ``'layer'``, returns a dict with `dxfattrib` values as key and a list of entities matching this `dxfattrib`. A `key` function can be used to combine some DXF attributes (e.g. layer and color) and should return a hashable data type like a tuple of strings, integers or floats, `key` function example:: def group_key(entity: DXFEntity): return entity.dxf.layer, entity.dxf.color For not suitable DXF entities return ``None`` to exclude this entity, in this case it's not required, because :func:`groupby` catches :class:`DXFAttributeError` exceptions to exclude entities, which do not provide layer and/or color attributes, automatically. Result dict for `dxfattrib` = ``'layer'`` may look like this:: { '0': [ ... list of entities ], 'ExampleLayer1': [ ... ], 'ExampleLayer2': [ ... ], ... } Result dict for `key` = `group_key`, which returns a ``(layer, color)`` tuple, may look like this:: { ('0', 1): [ ... list of entities ], ('0', 3): [ ... ], ('0', 7): [ ... ], ('ExampleLayer1', 1): [ ... ], ('ExampleLayer1', 2): [ ... ], ('ExampleLayer1', 5): [ ... ], ('ExampleLayer2', 7): [ ... ], ... } All entity containers (modelspace, paperspace layouts and blocks) and the :class:`~ezdxf.query.EntityQuery` object have a dedicated :meth:`groupby` method. Args: entities: sequence of DXF entities to group by a DXF attribute or a `key` function dxfattrib: grouping DXF attribute like ``'layer'`` key: key function, which accepts a :class:`DXFEntity` as argument and returns a hashable grouping key or ``None`` to ignore this entity """ if all((dxfattrib, key)): raise DXFValueError( "Specify a dxfattrib or a key function, but not both." ) if dxfattrib != "": key = lambda entity: entity.dxf.get_default(dxfattrib) if key is None: raise DXFValueError( "no valid argument found, specify a dxfattrib or a key function, " "but not both." ) result: Dict[Hashable, List["DXFEntity"]] = dict() for dxf_entity in entities: if not dxf_entity.is_alive: continue try: group_key = key(dxf_entity) except DXFAttributeError: # ignore DXF entities, which do not support all query attributes continue if group_key is not None: group = result.setdefault(group_key, []) group.append(dxf_entity) return result
0eecfc2263c1f5716615cb4add6bc092edbb2b8b
3,652,393
def train_test_split(data_filepath, num_train=10, num_test=10): """Split a dataset into training and test sets.""" df = pd.read_csv(data_filepath, sep=',', header=None) data = df.values train = data[:2*num_train, :] test = data[2*num_train:2*(num_train+num_test), :] ind = np.argsort(train[:,-1]) X_train = train[ind][:,:-1] y_train = train[ind][:,-1] ind = np.argsort(test[:,-1]) X_test = test[ind][:,:-1] y_test = test[ind][:,-1] return X_train, y_train, X_test, y_test
650979e62667ade3f88d89f2058bedf8675a5ae5
3,652,394
import requests def get_filings(app: Flask = None): """Get a filing with filing_id.""" r = requests.get(f'{app.config["LEGAL_URL"]}/internal/filings') if not r or r.status_code != 200: app.logger.error(f'Failed to collect filings from legal-api. {r} {r.json()} {r.status_code}') raise Exception return r.json()
4b2ba1a3d15918fe5d7b706a20006d0c85818176
3,652,395
def _uno_struct__setattr__(self, name, value): """Sets attribute on UNO struct. Referenced from the pyuno shared library. """ return setattr(self.__dict__["value"], name, value)
6b66213e33bb8b882407ff33bcca177701fb98cd
3,652,396
import io import warnings import os def load_imgs_from_tree(data_dir, img_sub_folder=None, fovs=None, channels=None, dtype="int16", variable_sizes=False): """Takes a set of imgs from a directory structure and loads them into an xarray. Args: data_dir (str): directory containing folders of images img_sub_folder (str): optional name of image sub-folder within each fov fovs (list): optional list of folders to load imgs from. Default loads all folders channels (list): optional list of imgs to load, otherwise loads all imgs dtype (str/type): dtype of array which will be used to store values variable_sizes (bool): if true, will pad loaded images with zeros to fit into array Returns: xarray.DataArray: xarray with shape [fovs, x_dim, y_dim, tifs] """ iou.validate_paths(data_dir, data_prefix=False) if fovs is None: # get all fovs fovs = iou.list_folders(data_dir) fovs.sort() if len(fovs) == 0: raise ValueError(f"No fovs found in directory, {data_dir}") if img_sub_folder is None: # no img_sub_folder, change to empty string to read directly from base folder img_sub_folder = "" # get imgs from first fov if no img names supplied if channels is None: channels = iou.list_files( path_join(data_dir, fovs[0], img_sub_folder), substrs=['.tif', '.jpg', '.png'] ) # if taking all channels from directory, sort them alphabetically channels.sort() # otherwise, fill channel names with correct file extension elif not all([img.endswith(("tif", "tiff", "jpg", "png")) for img in channels]): # need this to reorder channels back because list_files may mess up the ordering channels_no_delim = [img.split('.')[0] for img in channels] all_channels = iou.list_files( path_join(data_dir, fovs[0], img_sub_folder), substrs=channels_no_delim, exact_match=True ) # get the corresponding indices found in channels_no_delim channels_indices = [channels_no_delim.index(chan.split('.')[0]) for chan in all_channels] # reorder back to original channels = [chan for _, chan in sorted(zip(channels_indices, all_channels))] if len(channels) == 0: raise ValueError("No images found in designated folder") test_img = io.imread( path_join(data_dir, fovs[0], img_sub_folder, channels[0], get_filehandle=True) ) # check to make sure that float dtype was supplied if image data is float data_dtype = test_img.dtype if np.issubdtype(data_dtype, np.floating): if not np.issubdtype(dtype, np.floating): warnings.warn(f"The supplied non-float dtype {dtype} was overwritten to {data_dtype}, " f"because the loaded images are floats") dtype = data_dtype if variable_sizes: img_data = np.zeros((len(fovs), 1024, 1024, len(channels)), dtype=dtype) else: img_data = np.zeros((len(fovs), test_img.shape[0], test_img.shape[1], len(channels)), dtype=dtype) for fov in range(len(fovs)): for img in range(len(channels)): if variable_sizes: temp_img = io.imread( path_join(data_dir, fovs[fov], img_sub_folder, channels[img], get_filehandle=True) ) img_data[fov, :temp_img.shape[0], :temp_img.shape[1], img] = temp_img else: img_data[fov, :, :, img] = io.imread(path_join(data_dir, fovs[fov], img_sub_folder, channels[img], get_filehandle=True)) # check to make sure that dtype wasn't too small for range of data if np.min(img_data) < 0: raise ValueError("Integer overflow from loading TIF image, try a larger dtype") if variable_sizes: row_coords, col_coords = range(1024), range(1024) else: row_coords, col_coords = range(test_img.shape[0]), range(test_img.shape[1]) # remove .tif or .tiff from image name img_names = [os.path.splitext(img)[0] for img in channels] img_xr = xr.DataArray(img_data, coords=[fovs, row_coords, col_coords, img_names], dims=["fovs", "rows", "cols", "channels"]) return img_xr
d92aad79e78ad2ce1c1fdd944d8e2c4049ddca4d
3,652,397
from datetime import datetime def register(): """Registers the user.""" if g.user: return redirect(url_for('user_home')) error = None if request.method == 'POST': if not request.form['username']: error = 'You have to enter a username' elif not request.form['email'] or '@' not in request.form['email']: error = 'You have to enter a valid email address' elif not request.form['password']: error = 'You have to enter a password' elif request.form['password'] != request.form['password2']: error = 'The two passwords do not match' elif get_uid(request.form['username']) is not None: error = 'The username is already taken' else: db = get_db() db.execute('''insert into user ( username, email, pw_hash, day, inc_log, dec_log, phase) values (?, ?, ?, 1, ?, ?, 1)''', [request.form['username'], request.form['email'], generate_password_hash(request.form['password']), datetime.datetime.utcnow(), datetime.datetime.utcnow()]) db.commit() flash('You were successfully registered and can login now') return redirect(url_for('login')) return render_template('register.html', error=error)
572ee30c9f4981f6d526f115178ba8988e2b93c1
3,652,398
def test_single_while_2(): """ Feature: JIT Fallback Description: Test fallback with control flow. Expectation: No exception. """ @ms_function def control_flow_while(): x = Tensor(7).astype("int32") y = Tensor(0).astype("int32") while x >= y: y += x return y res = control_flow_while() assert res == 14
8334819ee7d4ea24085e2a2f1ab3d18fb732c8cc
3,652,399