content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import subprocess def get_rpm_package_list(): """ Gets all installed packages in the system """ pkgstr = subprocess.check_output(['rpm', '-qa', '--queryformat', '%{NAME}\n']) return pkgstr.splitlines()
3ffddefe7e3859f4bc76ae5581b89338c376e03f
3,649,000
def validate_ints(*args): """ validates that inputs are ints only """ for value in args: if not isinstance(value, int): return False return True
e56ebf78e072731188b2c8282289d307fcfaabdf
3,649,001
def smooth_l1_loss(y_true, y_pred): """ Computes the smooth-L1 loss. Parameters ---------- y_true : tensor Ground-truth targets of any shape. y_pred : tensor Estimates of same shape as y_true. Returns ------- loss : tensor The loss, sumed over all elements from the last dim of y_true, i.e., same shape as y_true without the last dim. """ y_pred = tf.convert_to_tensor(y_pred) y_true = tf.convert_to_tensor(y_true, dtype=y_pred.dtype) diff = tf.math.abs(y_true - y_pred) less_than_one = tf.cast(tf.math.less(diff, 1.0), y_pred.dtype) # smooth l1 loss, loss.shape == y_true.shape loss = (less_than_one * 0.5 * diff**2) + (1 - less_than_one) * (diff - 0.5) # sum over all elements in the last dim loss = tf.math.reduce_sum(loss, axis=-1) return loss
dcf18b7d14feecdbc8b6637ccc3d35ff1880f9d2
3,649,002
def get_class_occurrences(layer_types): """ Takes in a numpy.ndarray of size (nb_points, 10) describing for each point of the track the types of clouds identified at each of the 10 heights times counting the number of times 8 type of clouds was spotted vertically. and returns occrrences (binary) as the label of the present/absent of cloud The height and cloud type information is then lost. """ layer_types = np.array(layer_types) total = 0 occurrences = np.zeros((layer_types.shape[0], 1)) for occ, labels in zip(occurrences, layer_types): for l in labels: # keep only cloud types (no 0 or -9) if l > 0: total += 1 if total > 0: occ = 1 return occurrences
20c611089a50751e6a6b1d0ebaedc02474b04443
3,649,003
def parse_duration(datestring): """ Parses an ISO 8601 durations into a float value containing seconds. The following duration formats are supported: -PnnW duration in weeks -PnnYnnMnnDTnnHnnMnnS complete duration specification Years and month are not supported, values must be zero! """ if not isinstance(datestring, str): raise TypeError("Expecting a string %r" % datestring) match = ISO8601_PERIOD_REGEX.match(datestring) if not match: raise ValueError("Unable to parse duration string %r" % datestring) groups = match.groupdict() for key, val in groups.items(): if key not in ('separator', 'sign'): if val is None: groups[key] = "0n" # print groups[key] if key in ('years', 'months'): groups[key] = Decimal(groups[key][:-1].replace(',', '.')) else: # these values are passed into a timedelta object, # which works with floats. groups[key] = float(groups[key][:-1].replace(',', '.')) if groups["years"] != 0 or groups["months"] != 0: raise ValueError("Unable to parse duration string %r (Non zero year or month)" % datestring) else: ret = timedelta(days=groups["days"], hours=groups["hours"], minutes=groups["minutes"], seconds=groups["seconds"], weeks=groups["weeks"]) if groups["sign"] == '-': ret = timedelta(0) - ret return ret.total_seconds()
4fce243684fd2305198ae49693327a110f781a1d
3,649,004
import math from functools import reduce import operator from typing import Counter def knn(position, data_set, labels, k): """ k-近邻算法 :param position: 待分类点 :param data_set: 数据样本 :param labels: 标签集合 :param k: 取值 :return: 所属标签 """ distance_list = [] for index, item in enumerate(data_set): distance_list.append(( labels[index], math.sqrt(reduce(operator.add, [(v - position[i]) ** 2 for i, v in enumerate(item)])) )) distance_list = sorted(distance_list, key=lambda x: x, reverse=True) result = Counter([val[0] for val in distance_list[:k]]) result_labels = sorted(result.items(), lambda x, y: cmp(x[1], y[1]), reverse=True) return result_labels[0][0]
137f87c6a63fbafd3140694386dfd418108ad5b9
3,649,005
def _cals(raw): """Helper to deal with the .cals->._cals attribute change.""" try: return raw._cals except AttributeError: return raw.cals
a08273a559b780022c04fe5d5d60a71c600fd481
3,649,006
def irnn_data_iterator(X, y, batch_size, math_engine): """Slices numpy arrays into batches and wraps them in blobs""" def make_blob(data, math_engine): """Wraps numpy data into neoml blob""" shape = data.shape if len(shape) == 2: # data # Wrap 2-D array into blob of (BatchWidth, Channels) shape return neoml.Blob.asblob(math_engine, data, (1, shape[0], 1, 1, 1, 1, shape[1])) elif len(shape) == 1: # dense labels # Wrap 1-D array into blob of (BatchWidth,) shape return neoml.Blob.asblob(math_engine, data, (1, shape[0], 1, 1, 1, 1, 1)) else: assert(False) start = 0 data_size = y.shape[0] while start < data_size: yield (make_blob(X[start : start+batch_size], math_engine), make_blob(y[start : start+batch_size], math_engine)) start += batch_size
5a6b6726d3d0f78929b2551b8720bfbbb39471eb
3,649,007
def naive_forecast(series, steps_ahead=3, freq='D', series_name='naive'): """ Function fits data into the last available observation value. INPUT: :param series: pandas Series of data, :param steps_ahead: number of steps into the future to predict, default is 3, :param freq: (str) representation of a time frequency, :param series_name: str OUTPUT: :return: series with extrapolated values equal to the last observation. """ obs = [series.iloc[-1] for _ in range(steps_ahead)] future = set_future_series(forecasted_values=obs, series_name=series_name, last_date=series.index[-1], steps_ahead=steps_ahead, frequency=freq) return future
1b64edb39ab986d2e850ec5329fb2ed8ae5cd136
3,649,008
import os async def delete_original_path(request): """ After the processing of the whole data source, this api can be used to delete the original zip correspoding to a particular username """ username = request.args.get("username") if not username: raise APIBadRequest("Username for this datasource is required") res = await get_status(request.app.config[DATASOURCE_NAME]["tables"]["status_table"], username) result = list(res) logger.debug(result[0].get("username")) if not result: raise APIBadRequest(f"No status present for {DATASOURCE_NAME} for username {username}") result = result[0] logger.debug(result) path_to_be_deleted = result.get("original_path") logger.warning(f"Path to be deleted is {path_to_be_deleted}") try: os.remove(path_to_be_deleted) logger.success(f"{path_to_be_deleted} is deleted now") except Exception as e: return response.json( { 'error': False, 'success': True, "message": f"Original path at {path_to_be_deleted} couldnt be delete because of {e.__str__()}", "data": None }) return response.json( { 'error': False, 'success': True, "message": f"Original path at {path_to_be_deleted} is deleted", "data": None })
d92379c3fa1f58656a059029fb6555fce298ccbc
3,649,009
def demonstration(): """ This will render a template that displays all of the form objects if it's a Get request. If the use is attempting to Post then this view will push the data to the database. """ #this parts a little hard to understand. flask-wtforms does an implicit #call each time you create a form object. It attempts to see if there's a #request.form object in this session and if there is it adds the data from #the request to the form object. registration_form = RegistrationForm() #Before we attempt to validate our form data we have to set our select #field choices. This is just something you need to do if you're going to #use WTForms, even if it seems silly. populate_form_choices(registration_form) #This means that if we're not sending a post request then this if statement #will always fail. So then we just move on to render the template normally. if flask.request.method == 'POST' and registration_form.validate(): #If we're making a post request and we passed all the validators then #create a registered user model and push that model to the database. print("DEBUGGGGG") registered_user = RegisteredUser( first_name=registration_form.data['first_name_field'], last_name=registration_form.data['last_name_field'], address_line_one=registration_form.data['address_line_one_field'], address_line_two=registration_form.data['address_line_two_field'], city=registration_form.data['city_field'], state_id=registration_form.data['state_select_field'], country_id=registration_form.data['country_select_field'],) db.session.add(registered_user) db.session.commit() print("DEBUGGGGGENDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD") flask.flash("This data was saved to the database!") return flask.redirect(flask.url_for( 'user_detail',user_id=registered_user.registered_id)) return flask.render_template( template_name_or_list='registration.html', registration_form=registration_form,)
17e798069d40bf5644b0ca0b4ffbd9ecea53aafd
3,649,010
def show_current_task(): """ 显示当前任务正在运行的任务 :return: """ try: current_user_name = session["user_name"] current_user = RedisService.get_user(current_user_name) current_task = TaskService.get_working_tasks(user_id=current_user.id)[0] if current_task: hook_rule = RedisService.get_task(current_task.id)["hook_rule"] unscaned_url_num = UrlService.count(where=(Url.task_id == current_task.id, Url.status != TaskStatus.DONE)) scaned_url_num = UrlService.count(where=(Url.task_id == current_task.id, Url.status == TaskStatus.DONE)) total_url_num = unscaned_url_num + scaned_url_num if current_task.task_status in [TaskStatus.KILLED, TaskStatus.DONE]: percent = 100 else: percent = 0 if total_url_num == 0 else (scaned_url_num / total_url_num) * 100 response_data = jsonify(status=200, message="查询成功", data={'receiver_emails': current_task.receivers_email, 'task_name': current_task.task_name, 'create_time': current_task.created_time.strftime("%Y-%m-%d %H:%M"), 'percent': percent, 'unscaned_url_num': unscaned_url_num, 'scaned_url_num': scaned_url_num, 'total_url_num': total_url_num, 'hook_rule': hook_rule, 'task_id': current_task.id, "task_access_key": current_task.access_key, 'task_status': current_task.task_status, 'user_name': current_user_name}) return response_data except Exception as e: if isinstance(e, IndexError): return jsonify(status=400, message="获取失败", data={"extra_info": "后台无正在运行任务,请登录后台并创建任务"}) logger.exception("show_current_task rasie error") return jsonify(status=500, message="获取失败", data={"extra_info": "未知异常,可以联系管理员到后台查看"})
09e0077232343e46db606b9a3642bfb5d6b17a69
3,649,011
from rsc.service.ImageService import ImageService def access_image(access_code:str): """ 下载图像 post header : { Content-Type: application/json, access_token: access_token from vans-token-manager client_id: client_id from vans-token-manager conf. create by developers. } :return: """ try: # 获取图片 service = ImageService() image_data, mime = service.get_image(access_code) data = json_res_success({"image":image_data, "mime":mime}) return render_json(data) except Exception as e: return E400(str(e))
d1ac9efd9e4ba7c7fb9f63d2f0d188e09367fee9
3,649,012
def workaround_issue_20(handler): """ Workaround for https://github.com/pytest-dev/pytest-services/issues/20, disabling installation of a broken handler. """ return hasattr(handler, 'socket')
20d688aedad9e771362d97ad9cac391e7dbfac32
3,649,013
def item_count(sequences, sequence_column_name): """ input:Dataframe sequences """ item_max_id = sequences[sequence_column_name].map(max).max() return int(item_max_id)
9bcb64ff3389ef34ed297bca4f55b4de66ac5966
3,649,014
def bare_stft(x: Tensor, padded_window: Tensor, hop_size: int) -> Tensor: """Compute STFT of real 1D signal. This function does not handle padding of x, and the window tensor. This function assumes fft_size = window_size. Args: x: [..., n_sample] padded_window: [fft_size], a window padded to fft_size. hop_size: Also referred to as the frame shift. Returns: n_frame: see frame_signal definition. X: [..., n_frame, fft_size], where n_frame = n_sample // hop_size """ fft_size = len(padded_window) # Squash x's batch_sizes batch_size = x.shape[:-1] n_sample = x.size(-1) squashed_x = x.reshape(-1, 1, n_sample) # shape: [prod(batch_size), 1, n_sample] framed_squashed_x = frame_signal(squashed_x, fft_size, hop_size) # shape: [prod(batch_size), fft_size, n_frame] windowed_framed_squashed_x = \ framed_squashed_x * padded_window.unsqueeze(-1) squashed_X = fft( windowed_framed_squashed_x.transpose(-1, -2), dim=-1 ) # shape: [prod(batch_size), n_frame, fft_size] X = squashed_X.reshape(*batch_size, *(squashed_X.shape[1:])) # shape: [*batch_size, n_frame, fft_size] return X
ccefbdc55478de91640a322735dd02f87a185578
3,649,015
def IsDragResultOk(*args, **kwargs): """IsDragResultOk(int res) -> bool""" return _misc_.IsDragResultOk(*args, **kwargs)
87e4c1968b3e5d7adbdc4cfb393481fca647beba
3,649,016
import os def set_config(args): """ get config from file and reset the config by super parameter """ configs = 'configs' cfg = getattr(__import__(configs, fromlist=[args.config_file]), args.config_file) config = cfg.res50_config() config['data_url'] = DATA_PATH config['log_dir'] = OUTPUT_PATH config['model_dir'] = OUTPUT_PATH config['ckpt_dir'] = OUTPUT_PATH # set param from parse config['iterations_per_loop'] = int(args.iterations_per_loop) config['max_train_steps'] = int(args.max_train_steps) config['debug'] = args.debug config['eval'] = args.eval config['model_dir'] = args.model_dir config['batch_size'] = args.batch_size config['global_batch_size'] = config['batch_size'] * config['rank_size'] config['num_classes'] = args.num_classes config['num_epochs'] = args.num_epochs config['learning_rate_maximum'] = args.learning_rate_maximum config['restore_path'] = os.path.join(DATA_PATH, "ckpt", input_args.restore_path) print("iterations_per_loop :%d" % (config['iterations_per_loop'])) print("max_train_steps :%d" % (config['max_train_steps'])) print("debug :%s" % (config['debug'])) print("eval :%s" % (config['eval'])) print("model_dir :%s" % (config['model_dir'])) print("batch_size :%d" % (config['batch_size'])) if config['num_epochs']: print("num_epochs :%d" % (config['num_epochs'])) print("learning_rate_maximum :%f" % (config['learning_rate_maximum'])) print("num_classes :%d" % (config['num_classes'])) print("restore_path :%s" % (config['restore_path'])) return config
22ac7d7c0562a5098a8e32fa4b27c9a756471f68
3,649,017
from xls2xlsx import XLS2XLSX import os def excel_convert_xls_to_xlsx(xls_file_path='',xlsx_file_path=''): """ Converts given XLS file to XLSX """ try: # Checking the path and then converting it to xlsx file if os.path.exists(xls_file_path): # converting xls to xlsx x2x = XLS2XLSX(xls_file_path) x2x.to_xlsx(xlsx_file_path) return True except ValueError: print("Input is not supported, could not convert string to float. Please check the inputs, and try again.") text_to_speech("Input is not supported, could not convert string to float. Please check the inputs, and try again.", show=False) except PermissionError: print("Please close the excel file, and try again.") text_to_speech("Please close the excel file, and try again.", show=False) except op.utils.exceptions.InvalidFileException: print("We currently support only : xlsx,.xlsm,.xltx,.xltm files. Please try again with one of those file formats.") text_to_speech("we currently support only : .xlsx,.xlsm,.xltx,.xltm files. Please try again with one of those file formats.", show=False) except Exception as e: errMsg = f"Error in converting file to xlsx format : {str(e)}" return errMsg
0718c5039cc19fa54d7320698d9d1f81106ff788
3,649,018
import os def load_model(fn=None): """Load the stored model. """ if fn is None: fn = os.path.dirname(os.path.abspath(__file__)) + \ "/../models/model_default.h5" return keras.models.load_model(fn)
267e0bbc082948bc6b47d593aa28248646f4c61f
3,649,019
def element_wise(counter_method): """This is a decorator function allowing multi-process/thread input. Note that this decorator should always follow the decorator 'tag_maker'. """ def _make_iterator(*args): """Make a compound iterator from a process iterator and a thread one. Note that 'Application' case should not execute this function.""" monitor_level = args[1] arg_pid = args[2] if hasattr(arg_pid, '__iter__'): pid_itr = (i for i in xrange(arg_pid[0], arg_pid[1])) else: pid_itr = (arg_pid,) if monitor_level == 'Thread': arg_tid = args[3] if hasattr(arg_tid, '__iter__'): tid_itr = (i for i in xrange(arg_tid[0], arg_tid[1])) else: tid_itr = (arg_tid,) if monitor_level == 'Process': return_itr = pid_itr elif monitor_level == 'Thread': return_itr = (pid_itr, tid_itr) return return_itr @wraps(counter_method) def _element_wise(*args): """Distribute multi-process/thread input""" if args[1] == 'Thread': pid_itr, tid_itr = _make_iterator(*args) retval = [counter_method(args[0], args[1], pid, tid) for pid, tid in product(pid_itr, tid_itr)] return np.array(retval) elif args[1] == 'Process': pid_itr = _make_iterator(*args) retval = [counter_method(args[0], args[1], pid) for pid in pid_itr] return np.array(retval) elif args[1] == 'Application': return np.array(counter_method(*args)) else: print 'Unknown monitor level' return _element_wise
44c00b9a40b7dba53dcfaac52bc866341a924d01
3,649,020
import requests def get_datacite_dates(prefix): """Get sumbitted date for DataCite DOIs with specific prefix""" doi_dates = {} doi_urls = {} url = ( "https://api.datacite.org/dois?query=prefix:" + prefix + "&page[cursor]=1&page[size]=500" ) next_link = url meta = requests.get(next_link).json()["meta"] for j in progressbar(range(meta["totalPages"])): r = requests.get(next_link) data = r.json() for doi in data["data"]: date = doi["attributes"]["registered"].split("T")[0] doi_dates[doi["id"]] = date doi_urls[doi["id"]] = doi["attributes"]["url"] if "next" in data["links"]: next_link = data["links"]["next"] else: next_link = None return doi_dates, doi_urls
2b75cdfbb7c5f7085ab95f22ec601fbccdac07ea
3,649,021
def rate_answer(): """ **Rates an already given answer** **Args:** * json: * {"insight" : String with the name of the Insight * "paper_id" : String with the paper_id which is in our case the completet link to the paper * "upvote" : Boolean if the answer was upvoted(= true) or downvoted (= false) * "answer" : String with the Answer} **Returns:** * json: * {'status': 'success'} """ response_object = {'status': 'success'} #fetch data from request post_data = request.get_json() in_insight_name = post_data.get('insight') in_paper_id = post_data.get('paper_id') in_paper_id = url_checker(in_paper_id) in_upvote = post_data.get('upvote') in_answer = post_data.get('answer') #query 'information' inf = Information.query.filter(Information.paper_id == in_paper_id).filter(Information.insight_name==str(in_insight_name)).first() #query 'answers' ans = Answers.query.filter(Answers.information_id==inf.information_id).all() #upvote correct answer if (in_upvote): for a in ans: if (a.answer==in_answer): a.answer_upvotes = a.answer_upvotes + 1 a.answer_score = a.answer_score + 1 #downvote correct answer else : for a in ans: if (a.answer==in_answer): a.answer_downvotes = a.answer_downvotes + 2 a.answer_score = a.answer_score - 2 db.session.commit() return jsonify(response_object)
5efc00e015d2127f91462348050f2d445530690d
3,649,022
def get_ip(): """ Query the ipify service (https://www.ipify.org) to retrieve this machine's public IP address. :rtype: string :returns: The public IP address of this machine as a string. :raises: ConnectionError if the request couldn't reach the ipify service, or ServiceError if there was a problem getting the IP address from ipify's service. """ try: resp = _get_ip_resp() except RequestException: raise ConnectionError("The request failed because it wasn't able to reach the ipify service. This is most likely due to a networking error of some sort.") if resp.status_code != 200: raise ServiceError('Received an invalid status code from ipify:' + str(resp.status_code) + '. The service might be experiencing issues.') return resp.text
d560c90986cc99be3ad07c0099743821104e514a
3,649,023
import ast def update_plot(p1, p2, arrow, txt, ax, fig, reset_points, line): """ Given a line with an agent's move and the current plot, update the plot based on the agent's move. """ l = line.strip() if 'Agent score' in l: txt.remove() txt = plt.text(2, 33, 'Agent Score: {0:.2f}'.format(float(l.split()[2])), fontsize=8) reset_points = True else: p = ast.literal_eval(l[l.find('('):]) if 'actually at point' in l: p1 = Circle(p, radius=0.2, facecolor='yellow') ax.add_patch(p1) elif 'actually attempting to reach point' in l: p2 = Circle(p, radius=0.2, facecolor='green') ax.add_patch(p2) elif 'now at point' in l: arrow = YAArrow(fig, p2.center, p1.center, width=0.1, headwidth=0.5, facecolor='red') ax.add_patch(arrow) elif 'Resetting agent to point' in l: p2 = Circle(p, radius=1, facecolor='green') ax.add_patch(p2) arrow = YAArrow(fig, p2.center, p1.center, width=0.25, headwidth=1, facecolor='red') ax.add_patch(arrow) return p1, p2, arrow, txt, ax, fig, reset_points
579b4f218fc17eae9b8595e916571e24eba27cb5
3,649,024
import csv def upload_file_view(request): """Upload file page and retrieve headers""" data = {} global ROW_COUNT if request.method == "GET": return render(request, "pages/upload-file.html", data) try: if request.FILES: csv_file = request.FILES['csv_file'] request.session['csv'] = str(csv_file) if not csv_file.name.endswith('.csv'): messages.error(request, 'File is not CSV type') return redirect('upload-file') decoded_file = csv_file.read().decode('utf-8').splitlines() reader = csv.DictReader(decoded_file) data['fieldnames'] = reader.fieldnames data['filename'] = csv_file.name fs = FileSystemStorage() fs.save(csv_file.name, csv_file) file = FilesStatus.objects.create( user=request.user, file_name=csv_file.name, ) ROW_COUNT = sum(1 for row in reader) request.session['file_status'] = file.id else: messages.error(request, 'No file was selected.') return redirect('upload-file') except IOError: return messages.error(request, 'Could not read file') return render(request, 'pages/upload-file.html', data)
62d76c398aee02a61a3dd8dd7ac1251367786c9c
3,649,025
from typing import Optional def get_user_by_login_identifier(user_login_identifier) -> Optional[UserSchema]: """Get a user by their login identifier. :param str user_login_identifier: The user's login identifier, either their \ ``email`` or ``display_name`` are valid inputs :return: The discovered user if they exist :rtype: Optional[UserSchema] """ user = get_user_by_email(user_email=user_login_identifier) if not user: return get_user_by_display_name(user_display_name=user_login_identifier) return user
821ba79ed56ec9b918dbec60af91e9b472cdb689
3,649,026
def decode_fixed64(buf, pos): """Decode a single 64 bit fixed-size value""" return decode_struct(_fixed64_fmt, buf, pos)
298df6d28f77132bac6d9924b9628af5efa940b5
3,649,027
def from_xfr(xfr, zone_factory=Zone, relativize=True): """Convert the output of a zone transfer generator into a zone object. @param xfr: The xfr generator @type xfr: generator of dns.message.Message objects @param relativize: should names be relativized? The default is True. It is essential that the relativize setting matches the one specified to dns.query.xfr(). @type relativize: bool @raises dns.zone.NoSOA: No SOA RR was found at the zone origin @raises dns.zone.NoNS: No NS RRset was found at the zone origin @rtype: dns.zone.Zone object """ z = None for r in xfr: if z is None: if relativize: origin = r.origin else: origin = r.answer[0].name rdclass = r.answer[0].rdclass z = zone_factory(origin, rdclass, relativize=relativize) for rrset in r.answer: znode = z.nodes.get(rrset.name) if not znode: znode = z.node_factory() z.nodes[rrset.name] = znode zrds = znode.find_rdataset(rrset.rdclass, rrset.rdtype, rrset.covers, True) zrds.update_ttl(rrset.ttl) for rd in rrset: rd.choose_relativity(z.origin, relativize) zrds.add(rd) z.check_origin() return z
cc3aa11a8ff3dff6cf0609c3527daa193602b522
3,649,028
from datetime import datetime def compare_sql_datetime_with_string(filter_on, date_string): """Filter an SQL query by a date or range of dates Returns an SQLAlchemy `BinaryExpression` that can be used in a call to `filter`. `filter_on` should be an SQLAlchemy column expression that has a date or datetime value. `date_string` is a string that includes date(s) in format `YYYY-MM-DD` and a range operator such as `>` or `<=`. In full: ====================== ======================================== Query Description ====================== ======================================== YYYY-MM-DD Matches dates on day >YYYY-MM-DD Matches dates after day >=YYYY-MM-DD Matches dates on or after day <YYYY-MM-DD Matches dates before day <=YYYY-MM-DD Matches dates on or before day YYYY-MM-DD..YYYY-MM-DD Matches dates between days (inclusively) ====================== ======================================== Examples: >>> from app.models.main import AuditEvent >>> # Equivalent to AuditEvent.created_at >= datetime.date(2012, 1, 1) >>> compare_sql_datetime_with_string(AuditEvent.created_at, ">=2012-01-01") <sqlalchemy.sql.elements.BinaryExpression object ...> >>> # Equivalent to AuditEvent.created_at.between(datetime.date(2010, 1, 1), datetime.date(2019-01-31)) >>> AuditEvent.query.filter( compare_sql_datetime_with_string(AuditEvent.created_at, "2010-01-01..2019-01-31")) <app.models.main.AuditEvent.query_class object ...> """ filter_test = None def parse_date(s): return datetime.datetime.strptime(s, DATE_FORMAT) if date_string.startswith(">="): date = parse_date(date_string[2:]) filter_test = (filter_on >= date) elif date_string.startswith(">"): date = parse_date(date_string[1:]) filter_test = (filter_on > date) elif date_string.startswith("<="): date = parse_date(date_string[2:]) filter_test = (filter_on <= date) elif date_string.startswith("<"): date = parse_date(date_string[1:]) filter_test = (filter_on < date) elif ".." in date_string: args = date_string.partition("..") from_ = parse_date(args[0]) to_ = parse_date(args[2]) filter_test = filter_on.between(from_, to_) else: date = parse_date(date_string) filter_test = filter_on.between(date, date + datetime.timedelta(days=1)) return filter_test
2938872ffdd3e30c2d364ae30e3a93fa560e55ef
3,649,029
def get_users(): """get_users() -> Fetch all users in the database""" connect() # Connect cursor.execute("SELECT * FROM users") # Select all users item = cursor.fetchall() users = [] for user in item: users.append(format_user(user)) # Format the users disconnect() return users
e294406af8abbd0fa813beeadcd8b01552e4d206
3,649,030
def get_decoder_self_attention_bias(length): """Calculate bias for decoder that maintains model's autoregressive property. Creates a tensor that masks out locations that correspond to illegal connections, so prediction at position i cannot draw information from future positions. Args: length: int length of sequences in batch. Returns: float tensor of shape [1, 1, length, length] """ with tf.name_scope("decoder_self_attention_bias"): valid_locs = tf.linalg.band_part(tf.ones([length, length]), -1, 0) valid_locs = tf.reshape(valid_locs, [1, 1, length, length]) decoder_bias = _NEG_INF * (1.0 - valid_locs) return decoder_bias
a5de0984715cbc07c16c0ab5a5dc24edb7ca7602
3,649,031
from typing import Union from typing import Tuple import torch import math from re import X def rollout_discrete( x_grid: Tensor, idx: Union[int, Tensor], model: Model, best_f: Union[float, Tensor], bounds: Tensor, quadrature: Union[str, Tuple] = "qmc", horizon: int = 4, num_y_samples: int = 10, ): """ continuous domain rollout, expectation estimated using (quasi) Monte Carlo or Gaussian-Hermite quadrature EI_rollout(x) = E_y[ max(y-y0,0) + EI_rollout(x'| x, y) ], where x'=argmax EI(x' | x, y) define f(y) = max(y-y0,0) + EI_rollout(x'|x,y) then EI_rollout(x) = \int w(y) f(y) dy where the weight function w(y) is a Gaussian density function N(mu, sigma^2) We can estimate this integral using quasi Monte Carlo samples from w(y) or use Gauss-Hermite quadrature, as in Lam et al. (2016): such a integration can be transformed into the standard Gaussian-Hermite quadrature formulation EI_rollout(x) = 1/sqrt(pi) \int exp(-t^2) f(sqrt(2)*sigma*t+mu) dt, where t = (y-mu)/sqrt(2)/sigma We first generate Gauss-Hermite quadrature sample locations t_i and weights w_i using numpy.polynomial.hermite.hermgauss then estimate the expectation by EI_rollout(x) \approx 1/sqrt(pi) \sum_i w_i f(sqrt(2)*sigma*t_i +mu) :param x: a single point :param model: the GP model :param best_f: current best observed value :param bounds: bounds of the domain, shape (2, d) :param base_acquisition: :param quadrature: Monte Carlo or Quasi Monte Carlo :param horizon: rollout horizon :param num_y_samples: number of (quasi) Monte Carlo samples for estimating the integral :return: """ if horizon == 1: acq_func = ExpectedImprovement(model=model, best_f=best_f) return acq_func(x).item() x = x_grid[idx] # compute posterior posterior = model.posterior(x) if isinstance(quadrature, str) and quadrature == "qmc": # quasi Monte Carlo with torch.no_grad(): sampler = SobolQMCNormalSampler(num_samples=num_y_samples) samples = sampler(posterior).squeeze().numpy() weights = torch.ones(num_y_samples) / num_y_samples elif isinstance(quadrature, Tuple): mu = posterior.mean.item() sigma = torch.sqrt(posterior.variance).item() samples, weights = np.polynomial.hermite.hermgauss(num_y_samples) samples = np.sqrt(2.0) * sigma * samples + mu weights /= np.sqrt(math.pi) improvement_of_samples = np.zeros(num_y_samples) for i in range(num_y_samples): y_sample = samples[i] one_step_improvement = max(y_sample - best_f, 0) fake_model: Model = deepcopy(model) x0 = model.train_inputs[0] y0 = model.train_targets train_x = torch.cat([x0, x.unsqueeze(0)], -2) train_y = torch.cat([y0, Tensor([y_sample])]) fake_model.reinitialize(train_X=train_x, train_Y=train_y) best_f_new = max(best_f, y_sample) # maximization problem acq_func = ExpectedImprovement(model=fake_model, best_f=best_f_new) ei_values = acq_func(X) idx = torch.argmax(ei_values) future_reward = rollout( x_grid, idx, model=fake_model, best_f=best_f_new, bounds=bounds, quadrature=quadrature, horizon=horizon - 1, num_y_samples=num_y_samples, ) improvement_of_samples[i] = one_step_improvement + future_reward return improvement_of_samples.dot(weights)
c400e0042a4ec236030d7e5d19615441b4cc0456
3,649,032
import itertools import torch def get_accumulative_accuracies(test_loaders, taskcla, result_file, network_cls='resnet32'): """ Confusion matrix with progressively more classes considered """ iter_model = iter_task_models(network_cls, taskcla, result_file) accuracies = np.zeros((len(taskcla), len(taskcla))) classes_so_far = 0. for task_model, model in enumerate(iter_model): for task_eval in range(0, task_model+1): full_test_loader = itertools.chain.from_iterable(test_loaders[:task_eval+1]) with torch.no_grad(): totals = 0. correct = 0. logits_mask = np.arange(sum([taskcla[i][1] for i in range(0, task_eval+1)])) for inputs, targets in full_test_loader: inputs = inputs.to(device) targets = targets.to(device) outputs = torch.cat(model(inputs), dim=1) outputs = outputs[:, logits_mask] preds = outputs.argmax(dim=1) correct += (preds == targets).double().sum() totals += len(targets) accuracies[task_model, task_eval] = correct/totals return accuracies
3b10f89b80318c3bb2776af3d336c2b87d2a623e
3,649,033
import copy def readout_oper(config): """get the layer to process the feature asnd the cls token """ class Drop(object): """drop class just drop the cls token """ def __init__(self, config): if 'ViT' in config.MODEL.ENCODER.TYPE: self.token_num = 1 elif 'DeiT' in config.MODEL.ENCODER.TYPE: self.token_num = 2 self.feature_size = (config.DATA.CROP_SIZE[0] // config.MODEL.TRANS.PATCH_SIZE, config.DATA.CROP_SIZE[1] // config.MODEL.TRANS.PATCH_SIZE) def __call__(self, x): x = x[:, self.token_num:] x = x.transpose((0, 2, 1)) x = x.reshape((x.shape[0], x.shape[1], self.feature_size[0], self.feature_size[1])) return x class Add(object): """add class add the cls token """ def __init__(self, config): if 'ViT' in config.MODEL.ENCODER.TYPE: self.token_num = 1 elif 'DeiT' in config.MODEL.ENCODER.TYPE: self.token_num = 2 self.feature_size = (config.DATA.CROP_SIZE[0] // config.MODEL.TRANS.PATCH_SIZE, config.DATA.CROP_SIZE[1] // config.MODEL.TRANS.PATCH_SIZE) def __call__(self, x): token = x[:, :self.token_num] token = paddle.sum(token, axis=1).unsqueeze(1) x = x[:, self.token_num:] x = x + token x = x.transpose((0, 2, 1)) x = x.reshape((x.shape[0], x.shape[1], self.feature_size[0], self.feature_size[1])) return x class Proj(nn.Layer): """porject class use a linear layer to confuse the feature and the cls token """ def __init__(self, config): super(Proj, self).__init__() if 'ViT' in config.MODEL.ENCODER.TYPE: self.token_num = 1 elif 'DeiT' in config.MODEL.ENCODER.TYPE: self.token_num = 2 self.feature_size = (config.DATA.CROP_SIZE[0] // config.MODEL.TRANS.PATCH_SIZE, config.DATA.CROP_SIZE[1] // config.MODEL.TRANS.PATCH_SIZE) self.proj = nn.Sequential( nn.Linear(2 * config.MODEL.TRANS.HIDDEN_SIZE, config.MODEL.TRANS.HIDDEN_SIZE), nn.GELU() ) def forward(self, x): token = x[:, :self.token_num] token = paddle.sum(token, axis=1).unsqueeze(1) x = x[:, self.token_num:] token = token.expand_as(x) x = paddle.concat([x, token], axis=-1) x = self.proj(x) x = x.transpose((0, 2, 1)) x = x.reshape((x.shape[0], x.shape[1], self.feature_size[0], self.feature_size[1])) return x if config.MODEL.DPT.READOUT_PROCESS == 'drop': return [copy.deepcopy(Drop(config)) for _ in range(4)] if config.MODEL.DPT.READOUT_PROCESS == 'add': return [copy.deepcopy(Add(config)) for _ in range(4)] if config.MODEL.DPT.READOUT_PROCESS =='project': return nn.LayerList([copy.deepcopy(Proj(config)) for _ in range(4)]) return None
36d682851e24535b7b000ae1b343bb90ca2077d6
3,649,034
import json def stream_n_messages(request, n): """Stream n JSON messages""" n = int(n) response = get_dict(request, 'url', 'args', 'headers', 'origin') n = min(n, 100) def generate_stream(): for i in range(n): response['id'] = i yield json.dumps(response, default=json_dumps_default) + '\n' return Response(generate_stream(), headers={ "Content-Type": "application/json", })
ea8ec1dd939cc43baa3367696f44956b2aafa780
3,649,035
def read_covid(): """Read parsed covid table""" return pd.read_csv(_COVID_FILE, parse_dates=["date"])
fd99256808be1772106260b1da47850de0584adb
3,649,036
import sys import os def install_pip(python=sys.executable, *, info=None, downloaddir=None, env=None, upgrade=True, **kwargs ): """Install pip on the given Python executable.""" if not python: python = getattr(info, 'executable', None) or sys.executable # python -m ensurepip args = ['-m', 'ensurepip', '-v'] # --verbose if upgrade: args.append('-U') # --upgrade res = _utils.run_python(*args, python=python, **kwargs) ec, _, _ = res if ec == 0 and is_pip_installed(python, env=env): return res ############################## # Fall back to get-pip.py. if not downloaddir: downloaddir = '.' os.makedirs(downloaddir, exist_ok=True) # download get-pip.py filename = os.path.join(downloaddir, 'get-pip.py') if not os.path.exists(filename): print("Download %s into %s" % (GET_PIP_URL, filename)) _utils.download(GET_PIP_URL, filename) # python get-pip.py argv = [python, '-u', filename] version = get_best_pip_version(info or python) if version: argv.append(version) res = _utils.run_cmd(argv, env=env) ec, _, _ = res if ec != 0: # get-pip.py was maybe not properly downloaded: remove it to # download it again next time os.unlink(filename) return res
2c010be3baba35883ce1bb3003c8e6b184506845
3,649,037
def define_network(*addr): """gives all network related data or host addresses if requested addr = tuple of arguments netaddr/mask[nb of requested hosts] """ if len(addr) == 2: # provides list of host-addresses for this subnet # we do this by calling the generator host_g host_g = addr[0].hosts() return [next(host_g).exploded for i in range(addr[1])] else: netdef = [(' Network Address:', addr[0].network_address.exploded), (' Broadcast Address:', addr[0].broadcast_address.exploded), (' Valid Hosts:', 2 ** (32 - addr[0].prefixlen)-2), (' Wildcard Mask:', addr[0].hostmask.exploded), (' Mask bits:', addr[0].prefixlen), ] return [(' '+addr[0].network_address.exploded+'/32', '')] \ if addr[0].prefixlen == 32 else netdef
905cf702fda005645c608b9dadb84f3659d991c1
3,649,038
from typing import List def init_anim() -> List: """Initialize the animation.""" return []
121fff8b4102c2961449d970307e762bd983bdbe
3,649,039
def keep_digits(txt: str) -> str: """Discard from ``txt`` all non-numeric characters.""" return "".join(filter(str.isdigit, txt))
34387003ea03651dd2582b3c49f1095c5589167b
3,649,040
import re def camel_case_split(identifier): """Split camelCase function names to tokens. Args: identifier (str): Identifier to split Returns: (list): lower case split tokens. ex: ['camel', 'case'] """ matches = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)', identifier) return [m.group(0) for m in matches]
f212bbe5cc33cb31bea023f726abf60a1491b7df
3,649,041
from typing import Any def _ensure_meadowrun_sqs_access_policy(iam_client: Any) -> str: """ Creates a policy that gives permission to read/write SQS queues for use with grid_task_queue.py """ # https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.create_policy ignore_boto3_error_code( lambda: iam_client.create_policy( PolicyName=_MEADOWRUN_SQS_ACCESS_POLICY_NAME, PolicyDocument=_MEADOWRUN_SQS_ACCESS_POLICY_DOCUMENT, ), "EntityAlreadyExists", ) return ( f"arn:aws:iam::{_get_account_number()}:policy/" f"{_MEADOWRUN_SQS_ACCESS_POLICY_NAME}" )
6bafad83dcf0ed82eac626ad36b9d73416757f37
3,649,042
def get_subset(dframe, strata, subsetno): """This function extracts a subset of the data""" df_subset = pd.DataFrame(columns=list(dframe)) #initialize df_real = dframe.dropna() #get rid of nans edges = np.linspace(0, 1, strata+1) #edges of data strata for i in range(0, strata): df_temp = df_real[(df_real['gender diversity score'] > edges[i]) & (df_real['gender diversity score'] < edges[i+1])] temp_ind = np.round(np.linspace(0, len(df_temp)-1, subsetno/strata)) df_subset = pd.concat([df_subset, df_temp.sort_values(by=['gender diversity score']). iloc[temp_ind, :].reset_index(drop=True)], ignore_index=True) return df_subset
c1657cbce23bb222f68bc5b7efe3fe54dfcc26bd
3,649,043
import logging def create_logger(name: str) -> logging.Logger: """Create logger, adding the common handler.""" if name is None: raise TypeError("name is None") logger = logging.getLogger(name) # Should be unique logger.addHandler(_LOGGING_HANDLER) return logger
c4c888345586718f8b476368ef118656d9650469
3,649,044
def say_hello(): """ Say hello """ return utils.jsonify_success({ 'message': 'Hello {}! You are logged in.'.format(current_user.email) })
52c0f572c0bd521a3ab12f1781d39c37130a78d3
3,649,045
def relu(x): """The rectifier activation function. Only activates if argument x is positive. Args: x (ndarray): weighted sum of inputs """ # np.clip(x, 0, np.finfo(x.dtype).max, out=x) # return x return np.where(x >= 0, x, 0)
61b7a4ce252c72dd69251a8783c572c8128a01c5
3,649,046
def k_shortest_paths(G, source, target, k=1, weight='weight'): """Returns the k-shortest paths from source to target in a weighted graph flux_graph. Parameters ---------- flux_graph : NetworkX graph source : node Starting node target : node Ending node k : integer, optional (default=1) The number of shortest paths to find weight: string, optional (default='weight') Edge data key corresponding to the edge weight Returns ------- lengths, paths : lists Returns a tuple with two lists. The first list stores the length of each k-shortest path. The second list stores each k-shortest path. Raises ------ NetworkXNoPath If no path exists between source and target. Examples -------- >>> flux_graph=nx.complete_graph(5) >>> print(k_shortest_paths(flux_graph, 0, 4, 4)) ([1, 2, 2, 2], [[0, 4], [0, 1, 4], [0, 2, 4], [0, 3, 4]]) Notes ------ Edge weight attributes must be numerical and non-negative. Distances are calculated as sums of weighted edges traversed. """ if source == target: return ([0], [[source]]) length, path = nx.single_source_dijkstra(G, source, target, weight=weight) if target not in length: raise nx.NetworkXNoPath("node %s not reachable from %s" % (source, target)) lengths = [length[target]] paths = [path[target]] c = count() B = [] G_original = G.copy() for i in range(1, k): for j in range(len(paths[-1]) - 1): spur_node = paths[-1][j] root_path = paths[-1][:j + 1] edges_removed = [] for c_path in paths: if len(c_path) > j and root_path == c_path[:j + 1]: u = c_path[j] v = c_path[j + 1] if G.has_edge(u, v): edge_attr = G.edge[u][v] G.remove_edge(u, v) edges_removed.append((u, v, edge_attr)) for n in range(len(root_path) - 1): node = root_path[n] # out-edges for u, v, edge_attr in G.edges_iter(node, data=True): G.remove_edge(u, v) edges_removed.append((u, v, edge_attr)) if G.is_directed(): # in-edges for u, v, edge_attr in G.in_edges_iter(node, data=True): G.remove_edge(u, v) edges_removed.append((u, v, edge_attr)) spur_path_length, spur_path = nx.single_source_dijkstra(G, spur_node, target, weight=weight) if target in spur_path and spur_path[target]: total_path = root_path[:-1] + spur_path[target] total_path_length = get_path_length(G_original, root_path, weight) + spur_path_length[target] heappush(B, (total_path_length, next(c), total_path)) for e in edges_removed: u, v, edge_attr = e G.add_edge(u, v, edge_attr) if B: (l, _, p) = heappop(B) lengths.append(l) paths.append(p) else: break return (lengths, paths)
68918c78b1f33c07cd3494286a00b1c020256b56
3,649,047
def allowed_file(filename): """ Check the image extension Currently, only support jpg, jpeg and png """ return '.' in filename and \ filename.rsplit('.', 1)[1] in ALLOWED_EXTENSIONS
635f89b33c9150b5d7b68415bb85bb8c1d644d1f
3,649,048
from sys import maxsize def __best_tour(previous: int, prices: np.ndarray, excess: float, best_solution: set, visited: np.ndarray) -> int: """ Ищем в лучшем туре """ search = __search(best_solution, previous) node, alpha = -1, maxsize for edge in search: temp = edge[0] if edge[0] != previous else edge[1] if not visited[temp] and prices[temp] < alpha < excess: node, alpha = temp, prices[temp] return node if node != -1 else -1
9e6ebc1b19c15e31edb4cd1421599c3ed6b9fb90
3,649,049
def classical_gaussian_kernel(k, sigma): """ A function to generate a classical Gaussian kernel :param k: The size of the kernel, an integer :param sigma: variance of the gaussian distribution :return: A Gaussian kernel, a numpy array of shape (k,k) """ w = np.linspace(-(k - 1) / 2, (k - 1) / 2, k) x, y = np.meshgrid(w, w) kernel = 0.5*np.exp(-0.5*(x**2 + y**2)/(sigma**2))/(np.pi*sigma**2) return kernel
e1a94134e465f72a7d49e8bb950eb7a8ba97ac54
3,649,050
def collection_to_csv(collection): """ Upload collection value to CSV file :param collection: Collection :return: None """ print("collection_to_csv") final_df = pd.DataFrame() try: dict4json = [] n_documents = 0 for document in collection.get(): result_dict = document.to_dict() dict4json.append(result_dict) n_documents += 1 for result in dict4json: lst = result["result"] df = pd.DataFrame(lst) df = df.reindex(sorted(df.columns), axis=1) final_df = pd.concat([final_df, df]) except Exception as e: print(e) return pd.DataFrame() finally: return final_df
5d62e0fe1eebb190be47a05d822b8714d396125f
3,649,051
import six def validate_hatch(s): """ Validate a hatch pattern. A hatch pattern string can have any sequence of the following characters: ``\\ / | - + * . x o O``. """ if not isinstance(s, six.text_type): raise ValueError("Hatch pattern must be a string") unique_chars = set(s) unknown = (unique_chars - set(['\\', '/', '|', '-', '+', '*', '.', 'x', 'o', 'O'])) if unknown: raise ValueError("Unknown hatch symbol(s): %s" % list(unknown)) return s
4ddf056dab2681759a462005effc4ae5488a4461
3,649,052
from azure.cli.core.commands.client_factory import get_mgmt_service_client from azure.cli.core.profiles import ResourceType def iot_hub_service_factory(cli_ctx, *_): """ Factory for importing deps and getting service client resources. Args: cli_ctx (knack.cli.CLI): CLI context. *_ : all other args ignored. Returns: iot_hub_resource (IotHubClient.iot_hub_resource): operational resource for working with IoT Hub. """ return get_mgmt_service_client(cli_ctx, ResourceType.MGMT_IOTHUB).iot_hub_resource
a38ae4a7fedaf8dcbaccba0873e4f519cb51af17
3,649,053
def filter_example(config, example, mode="train"): """ Whether filter a given example according to configure. :param config: config contains parameters for filtering example :param example: an example instance :param mode: "train" or "test", they differs in filter restrictions :return: boolean """ if mode == "train": return (len(example["ans_sent_tokens"]) > config.sent_limit or len(example["ques_tokens"]) > config.ques_limit or (example["y2_in_sent"] - example["y1_in_sent"]) > config.ans_limit) elif mode == "test": return (len(example["ans_sent_tokens"]) > config.sent_limit or len(example["ques_tokens"]) > config.ques_limit) else: print("mode must be train or test")
9c49990fe36c0a82d0a99a62fe810a19cd5a8749
3,649,054
def _dict_flatten(data): """Return flattened dict of input dict <data>. After https://codereview.stackexchange.com/revisions/21035/3 Parameters ---------- data : dict Input dict to flatten Returns ------- fdata : dict Flattened dict. """ def expand(key, value): """Expand list.""" if isinstance(value, dict): return [(key+'>'+k, v) for k, v in _dict_flatten(value).items()] else: return [(key, value)] return dict([item for k, v in data.items() for item in expand(k, v)])
a1db4a552ced44efa45fe4f86fbfe04871463356
3,649,055
def merkleroot(elements): """ Args: elements (List[str]): List of hashes that make the merkletree. Returns: str: The root element of the merkle tree. """ return Merkletree(elements).merkleroot
cd5d1e530fda62f9b92a51a03f5fd2cbbe6a9e62
3,649,056
def category_start(update, context): """Separate function for category selection to filter the options with inline keyboard.""" update.message.reply_text( "Choose a Group", reply_markup=create_category_inline(trx_categories.keys(), "group_sel"), ) return CATEGORY_REPLY_CHOOSE_TRX_OPTS
cfc299d8b81785d8418bfb4c280cf88e4137448b
3,649,057
import argparse import functools import sys import collections import csv def betatest(): """Main Function Definition""" # Parse arguments parser = argparse.ArgumentParser() parser.add_argument('--host',\ required=True,\ help="site hostname") parser.add_argument('--outputfile',\ '-o',\ required=True,\ help="write results to this file") parser.add_argument('--ntests',\ '-n',\ default=1,\ type=int,\ help="# of requests per path") parser.add_argument('--timeout',\ '-t',\ default=30,\ type=float,\ help="timeout (seconds)") parser.add_argument('--delay',\ '-d',\ default=0,\ type=float,\ help="wait between requests (ms)") parser.add_argument('--processes',\ '-p',\ default=32,\ type=int,\ help="# of parallel processes") parser.add_argument('--addresses',\ '-a',\ nargs='+',\ help="addresses to use instead of DNS") args = parser.parse_args() # Request the urls in parallel pool = Pool(args.processes) try: results = pool.map(functools.partial(process_request,\ timeout=args.timeout,\ delay=args.delay), generate_requests(paths=PATHS,\ host=args.host,\ addresses=args.addresses,\ tests_per_path=args.ntests)) except KeyboardInterrupt: pool.terminate() sys.exit(1) # Group results by everything, and count groupby = collections.defaultdict(lambda: [0, 0.0, None]) for result, elapsed in results: groupby[result][0] += 1 groupby[result][1] += elapsed # Apply some heuristics to analyze each result for result, info in sorted(groupby.iteritems()): info[2] = analyze_result(result) # Write the results as csv to our destination fil with open(args.outputfile, 'wb') as file_pointer: writer = csv.writer(file_pointer, quoting=csv.QUOTE_ALL) for result, (count, elapsed, outcome) in sorted(groupby.iteritems()): row = list(result) row.append(count) row.append(elapsed / count) row.append(outcome) writer.writerow(row) return "beta test completed"
f5c211571aa4e4f63d07ff9b237b4697817e346e
3,649,058
def create_player(mode, race, char_name): """ Create the player's character """ # Evil if mode == 2: if race == 1: player = character.Goblin(char_name, 1, app) elif race == 2: player = character.Orc(char_name, 1, app) elif race == 3: player = character.Uruk(char_name, 1, app) else: player = character.Wizard(char_name, 1, app) # Good else: if race == 1: player = character.Human(char_name, 1, app) elif race == 2: player = character.Wizard(char_name, 1, app) elif race == 3: player = character.Warrior(char_name, 1, app) """elif race == 4: player = character.Hobbit(char_name, 1, app) elif race == 6: player = character.Bishop(char_name, 1, app) else: player = character.Wizard(char_name, 1, app)""" return player
30e143f0cca1053d6e10df0c438065747611e4af
3,649,059
def _get_item(i, j, block): """ Returns a single item from the block. Coords must be in block space. """ return block[i, j]
45a12ecb3959a75ad8f026616242ba64174441fc
3,649,060
def calculate_potentials_python(volume, mass, volume_material_mass, mass_material_mass): """ Easy to read python function which calculates potentials using two Python loops Still uses NumPy for the rote math. """ potentials = np.zeros(len(volume), dtype=np.float32) for volume_i, volume_coord in enumerate(volume): for mass_coord in mass: potentials[volume_i] += (G * volume_material_mass * mass_material_mass) / np.sqrt( np.square(volume_coord - mass_coord).sum()) return potentials
73395d31bb470ac96b0c05a140fe6e77f56e2d88
3,649,061
def rect2sphericalcoord3D( v: list[Number, Number, Number] ) -> list[float, float, float]: """Does a 3D coordinate transform from rectangular to spherical coordinate system p = The length of the hypotenuse or the magnitude of the vector theta = is the angle between the positive x-axis and p (azimuth) phi = is the angle between the positive z-axis and p (colatitude) Args: vspherecoord: [p, theta, phi] spherical coordinates Returns: [p: float, theta: float, phi: float] """ p = vmag(v) return [p, atan(v[1] / v[0]), acos(v[2] / p)]
8be197341e576465af389f8e20aea25a59fc3d1e
3,649,062
def GetAssignmentByKeyName(key_name): """Gets the assignment with the specified key name.""" return Assignment.get_by_key_name(key_name)
a14b9a2033bb995d53219568278d298f305861d7
3,649,063
def fit_integer_type(n, is_signed=True): """Determine the minimal space needed to store integers of maximal value n """ if is_signed: m = 1 types = [np.int8, np.int16, np.int32, np.int64] else: m = 0 types = [np.uint8, np.uint16, np.uint32, np.uint64] if n < 2 ** (8 - m): return types[0] elif n < 2 ** (16 - m): return types[1] elif n < 2 ** (32 - m): return types[2] elif n < 2 ** (64 - m): return types[3] else: raise ValueError('Values are too big to be represented by 64 bits \ integers!')
bd9ebd447893509b1144a32bac9f9757988b4a60
3,649,064
def admin_userforms_order_by_field(user_id): """ Set User's forms order_by preference """ if not g.is_admin: return jsonify("Forbidden"), 403 data = request.get_json(silent=True) if not 'order_by_field_name' in data: return jsonify("Not Acceptable"), 406 field_names = [ field['name'] for field in default_admin_userforms_field_index ] if not data['order_by_field_name'] in field_names: return jsonify("Not Acceptable"), 406 g.current_user.admin['userforms']['order_by'] = data['order_by_field_name'] flag_modified(g.current_user, 'admin') g.current_user.save() return jsonify( {'order_by_field_name': g.current_user.admin['userforms']['order_by']} ), 200
4d92dc6f9d562a91509ec2b03aff75c4bc376ead
3,649,065
def check_all_rows(A): """ Check if all rows in 2-dimensional matrix don't have more than one queen """ for row_inx in range(len(A)): # compute sum of row row_inx if sum(A[row_inx]) > 1: return False return True
e39f4ca3e401c02b13c5b55ed4389a7e6deceb40
3,649,066
from vtk.util.numpy_support import vtk_to_numpy, numpy_to_vtk def extract_largest_connected_region(vtk_im, label_id): """ Extrac the largest connected region of a vtk image Args: vtk_im: vtk image label_id: id of the label Return: new_im: processed vtk image """ fltr = vtk.vtkImageConnectivityFilter() fltr.SetScalarRange(label_id, label_id) fltr.SetExtractionModeToLargestRegion() fltr.SetInputData(vtk_im) fltr.Update() new_im = fltr.GetOutput() py_im = vtk_to_numpy(vtk_im.GetPointData().GetScalars()) py_mask = vtk_to_numpy(new_im.GetPointData().GetScalars()) mask = np.logical_and(py_im==label_id, py_mask==0) py_im[mask] = 0 vtk_im.GetPointData().SetScalars(numpy_to_vtk(py_im)) return vtk_im
c9510da15b4d3cade331aa3b9b3625af5706e417
3,649,067
import subprocess import sys def _run_cli_cmd(cmd_list): """Run a shell command and return the error code. :param cmd_list: A list of strings that make up the command to execute. """ try: return subprocess.call(cmd_list) except Exception as e: print(str(e)) sys.exit(1)
473d28ec5469ff195b716edfe32723e2379303f3
3,649,068
def group_set_array_data_ptr(d): """ call view%set_external_data_ptr hide c_loc call and add target attribute """ # XXX - should this check the type/shape of value against the view? # typename - part of function name # nd - number of dimensions # f_type - fortran type # shape - :,:, to match nd if d['rank'] == 0: extents_decl = 'extents(1)' extents_asgn = 'extents(1) = 1_SIDRE_IndexType' else: extents_decl = 'extents(%d)' % d['rank'] extents_asgn = 'extents = shape(value, kind=SIDRE_IndexType)' return """ ! Generated by genfsidresplicer.py ! This function does nothing if view name does not exist in group. subroutine group_set_array_data_ptr_{typename}{nd}(grp, name, value) use iso_c_binding implicit none class(SidreGroup), intent(IN) :: grp character(len=*), intent(IN) :: name {f_type}, target, intent(IN) :: value{shape} integer(C_INT) :: lname type(SIDRE_SHROUD_view_capsule) view ! integer(SIDRE_IndexType) :: {extents_decl} ! integer(C_INT), parameter :: type = {sidre_type} type(C_PTR) addr, viewptr lname = len_trim(name) ! {extents_asgn} viewptr = c_group_get_view_from_name_bufferify(grp%cxxmem, name, lname, view) if (c_associated(view%addr)) then #ifdef USE_C_LOC_WITH_ASSUMED_SHAPE addr = c_loc(value) #else call SIDRE_C_LOC(value{lower_bound}, addr) #endif call c_view_set_external_data_ptr_only(view, addr) ! call c_view_apply_type_shape(rv%cxxmem, type, {rank}, extents) endif end subroutine group_set_array_data_ptr_{typename}{nd}""".format( extents_decl=extents_decl, extents_asgn=extents_asgn, **d)
36a18ca9099edf24d37386103f111bde7753ed46
3,649,069
from typing import cast def releaseTagName(version: Version) -> str: """ Compute the name of the release tag for the given version. """ return cast(str, version.public())
9f8e350a42e2b50657a87e89e592ae340ba3ee96
3,649,070
import time def get_calibrated_values(timeout=10): """Return an instance of CalibratedValues containing the 6 spectral bands.""" t_start = time.time() while _as7262.CONTROL.get_data_ready() == 0 and (time.time() - t_start) <= timeout: pass with _as7262.CALIBRATED_DATA as DATA: return CalibratedValues(DATA.get_r(), DATA.get_o(), DATA.get_y(), DATA.get_g(), DATA.get_b(), DATA.get_v())
69e5921b3e487ab3f3c3abbae8a2b237eb75b033
3,649,071
def customizable_admin(cls): """ Returns a customizable admin class """ class CustomSearchableAdmin(BaseAdmin): form = customizable_form(cls) def __init__(self, *args, **kwargs): super(CustomSearchableAdmin, self).__init__(*args, **kwargs) # add the custom fields to the fieldsets (if present) # @see customizable_form and ContentTypeCustomField if self.fieldsets: if isinstance(self.fieldsets, tuple): self.fieldsets = list(self.fieldsets) fieldset = ContentTypeCustomField.get_fieldset_for_model(self.form._meta.model) if fieldset: self.fieldsets.append(fieldset) def get_form(self, request, obj=None, **kwargs): ## modify visualization for certain users #if not request.user.is_superuser: # self.exclude.append('field_to_hide') # self.inlines.remove(UserInline) # pass form = super(CustomSearchableAdmin, self).get_form(request, obj, **kwargs) return form def get_changelist(self, request, **kwargs): return CustomChangeList def queryset(self, request): qs = super(CustomSearchableAdmin, self).queryset(request) #qs = qs.filter(Q(is_staff=True) | Q(is_superuser=True)) return qs def has_change_permission(self, request, obj=None): has_permission = super(CustomSearchableAdmin, self).has_change_permission(request, obj) #if obj is not None and not request.user.is_superuser and request.user.id != obj.user.id: return has_permission return CustomSearchableAdmin
dc6ced817b78b7cbf31cbf788d28fcff421d6b02
3,649,072
def restoreIm(transformeddata, pca, origshape, datamean, datastd): """Given a PCA object and transformeddata that consists of projections onto the PCs, return images by using the PCA's inverse transform and reshaping to the provided origshape.""" if transformeddata.shape[0] < transformeddata.shape[1]: transformeddata = np.transpose(transformeddata) data = pca.inverse_transform(transformeddata) # restore the shape and scale of the data before plotting data = data*datastd data = data + datamean data = np.transpose(data) return data.reshape(origshape)
ce8713648b166f7ce35bb47df33a6b99e2de8687
3,649,073
import random import sys def ga_multi(gene_info, ga_info): """Main loop which sets DEAP objects and calls a multi objective EA algorithm. Parameters ------- gene_info, GeneInfo class See respective class documentation. ga_info, GAInfo class See respective class documentation. Returns ------- pop, DEAP object stats, DEAP object hof, DEAP object See post_run function for examples of how to interpret results. """ random.seed(ga_info.seed) creator.create("Fitness", base.Fitness, weights=(1.0, )) creator.create("Individual", set, fitness=creator.Fitness) toolbox = base.Toolbox() toolbox.register("indices", indiv_builder, gene_info) toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.indices) toolbox.register("population", tools.initRepeat, list, toolbox.individual) toolbox.register("evaluate", single_eval, gene_info) if len(gene_info.obj_list) < 2: print('Attempted to start multi objective GA with single objective.', file=sys.stderr) if ga_info.cross_meth == 'ops': toolbox.register("mate", cx_OPS, gene_info) elif ga_info.cross_meth == 'sdb': toolbox.register("mate", cx_SDB, gene_info) else: raise AttributeError('Invalid crossover string specified') toolbox.register("mutate", mut_flipper, gene_info) toolbox.register("select", tools.selTournament, tournsize=ga_info.nk) pop = toolbox.population(n=ga_info.pop) hof = tools.HallOfFame(1) # Empty, as SoR objects are special stats = tools.Statistics() eaSoR(ga_info, gene_info, pop, toolbox, ga_info.cxpb, ga_info.mutpb, ga_info.gen, stats, halloffame=hof) return pop, stats, hof
60bd65e90800cfa855b061d0cf5f431e1cac944e
3,649,074
def sample(population, k=None): """Behaves like random.sample, but if k is omitted, it default to randint(1, len(population)), so that a non-empty sample is returned.""" population = list(population) if k is None: k = randint(1, len(population)) return random_sample(population, k)
46f7f3365c4574ed9cb09b54f25e30ff23fb3b8d
3,649,075
def dense_to_one_hot(array, class_num, dtype_, axis=-1): """ this function offer a method to change the numpy array to one hot like base on axis as we know array dims_size in axis should be 1 keep_shape :param array: a numpy array, data type should be int :param class_num: one hot class number :param dtype_: numpy data type declaration :param axis: broadcast dim :return: ' algorithm: base on axis: base_point(the local of the dim we want to one hot) we transpose the array to [...., base_point] and than we make a zeros array [array_element_amount, class_num] make an array np.arange(num_labels) * class_num for support the offset which means the step to make sure the array.flat location which set to 1(dtype_) ' """ array_shape = array.shape assert array_shape[axis] == 1, DenseToOneHotLogger.error(Fore.RED + 'dim {0} should be size: 1'.format(axis)) if array.max() >= class_num: raise ValueError('class_num(a) should bigger than the max of array(b), ' 'but a vs. b = {0} vs.{1}'.format(class_num, array.max())) base_point = axis % len(array_shape) transpose_axes = [] back_transpose_axes = [] DenseToOneHotLogger.debug("start generate transpose_axes and back_transpose_axes") if base_point == len(array_shape): pass elif base_point == 0: transpose_axes += list(range(1, len(array_shape))) transpose_axes.append(0) back_transpose_axes += [len(array_shape) - 1] + list(range(1, len(array_shape))) pass else: f_start = 0 f_end = base_point b_start = base_point + 1 b_end = len(array_shape) - 1 transpose_axes += list(range(f_start, f_end)) transpose_axes += list(range(b_start, b_end)) transpose_axes.append(base_point) back_transpose_axes += list(range(f_start, base_point)) back_transpose_axes += [len(array_shape) - 1] back_transpose_axes += list(range(base_point, len(array_shape) - 2)) DenseToOneHotLogger.debug('transpose') np.transpose(array, transpose_axes) shape = list(array.shape) shape[-1] = class_num num_labels = 1 for i in list(np.transpose(array).shape)[0:]: num_labels *= i pass index_offset = np.arange(num_labels) * class_num label_one_hot = np.zeros(shape, dtype=dtype_) label_one_hot.flat[index_offset + array.ravel()] = 1 DenseToOneHotLogger.debug("re transpose") np.transpose(label_one_hot, back_transpose_axes) return label_one_hot pass
a045fefd6d397de9aa1e7a25f7788ab10bcf7c94
3,649,076
def add_momentum_ta(df, high, low, close, volume, fillna=False): """Add trend technical analysis features to dataframe. Args: df (pandas.core.frame.DataFrame): Dataframe base. high (str): Name of 'high' column. low (str): Name of 'low' column. close (str): Name of 'close' column. fillna(bool): if True, fill nan values. Returns: pandas.core.frame.DataFrame: Dataframe with new features. """ df['momentum1'] = rsi(df[close], n=14, fillna=fillna) df['momentum2'] = money_flow_index(df[high], df[low], df[close], df[volume], n=14, fillna=fillna) df['momentum3'] = tsi(df[close], r=25, s=13, fillna=fillna) return df
76239057526272874c34eb4250f642745dfc9990
3,649,077
def get_experiment_type(filename): """ Get the experiment type from the filename. The filename is assumed to be in the form of: '<reliability>_<durability>_<history kind>_<topic>_<timestamp>' :param filename: The filename to get the type. :return: A string where the timesptamp is taken out from the filename. """ file_type = '' filename = filename.split('/')[-1] elements = filename.split('_') for i in range(0, len(elements) - 3): file_type += '{}_'.format(elements[i]) file_type = file_type[:-1] return file_type
e1853a95d034b8f9e36ca65f6f5d200cbf4b86dc
3,649,078
from typing import Any def async_check_significant_change( hass: HomeAssistant, old_state: str, old_attrs: dict, new_state: str, new_attrs: dict, **kwargs: Any, ) -> bool | None: """Test if state significantly changed.""" if old_state != new_state: return True if old_attrs.get(ATTR_EFFECT) != new_attrs.get(ATTR_EFFECT): return True old_color = old_attrs.get(ATTR_HS_COLOR) new_color = new_attrs.get(ATTR_HS_COLOR) if old_color and new_color: # Range 0..360 if check_absolute_change(old_color[0], new_color[0], 5): return True # Range 0..100 if check_absolute_change(old_color[1], new_color[1], 3): return True if check_absolute_change( old_attrs.get(ATTR_BRIGHTNESS), new_attrs.get(ATTR_BRIGHTNESS), 3 ): return True if check_absolute_change( # Default range 153..500 old_attrs.get(ATTR_COLOR_TEMP), new_attrs.get(ATTR_COLOR_TEMP), 5, ): return True if check_absolute_change( # Range 0..255 old_attrs.get(ATTR_WHITE_VALUE), new_attrs.get(ATTR_WHITE_VALUE), 5, ): return True return False
2a3f91923f187a601b80a28aa750060dc0760e65
3,649,079
import warnings def array2string(a, max_line_width=None, precision=None, suppress_small=None, separator=' ', prefix="", style=np._NoValue, formatter=None, threshold=None, edgeitems=None, sign=None): """ Return a string representation of an array. Parameters ---------- a : ndarray Input array. max_line_width : int, optional The maximum number of columns the string should span. Newline characters splits the string appropriately after array elements. precision : int, optional Floating point precision. Default is the current printing precision (usually 8), which can be altered using `set_printoptions`. suppress_small : bool, optional Represent very small numbers as zero. A number is "very small" if it is smaller than the current printing precision. separator : str, optional Inserted between elements. prefix : str, optional An array is typically printed as:: 'prefix(' + array2string(a) + ')' The length of the prefix string is used to align the output correctly. style : _NoValue, optional Has no effect, do not use. .. deprecated:: 1.14.0 formatter : dict of callables, optional If not None, the keys should indicate the type(s) that the respective formatting function applies to. Callables should return a string. Types that are not specified (by their corresponding keys) are handled by the default formatters. Individual types for which a formatter can be set are:: - 'bool' - 'int' - 'timedelta' : a `numpy.timedelta64` - 'datetime' : a `numpy.datetime64` - 'float' - 'longfloat' : 128-bit floats - 'complexfloat' - 'longcomplexfloat' : composed of two 128-bit floats - 'numpystr' : types `numpy.string_` and `numpy.unicode_` - 'str' : all other strings Other keys that can be used to set a group of types at once are:: - 'all' : sets all types - 'int_kind' : sets 'int' - 'float_kind' : sets 'float' and 'longfloat' - 'complex_kind' : sets 'complexfloat' and 'longcomplexfloat' - 'str_kind' : sets 'str' and 'numpystr' threshold : int, optional Total number of array elements which trigger summarization rather than full repr. edgeitems : int, optional Number of array items in summary at beginning and end of each dimension. sign : string, either '-', '+', ' ' or 'legacy', optional Controls printing of the sign of floating-point types. If '+', always print the sign of positive values. If ' ', always prints a space (whitespace character) in the sign position of positive values. If '-', omit the sign character of positive values. If 'legacy', print a space for positive values except in 0d arrays. Returns ------- array_str : str String representation of the array. Raises ------ TypeError if a callable in `formatter` does not return a string. See Also -------- array_str, array_repr, set_printoptions, get_printoptions Notes ----- If a formatter is specified for a certain type, the `precision` keyword is ignored for that type. This is a very flexible function; `array_repr` and `array_str` are using `array2string` internally so keywords with the same name should work identically in all three functions. Examples -------- >>> x = np.array([1e-16,1,2,3]) >>> print(np.array2string(x, precision=2, separator=',', ... suppress_small=True)) [ 0., 1., 2., 3.] >>> x = np.arange(3.) >>> np.array2string(x, formatter={'float_kind':lambda x: "%.2f" % x}) '[0.00 1.00 2.00]' >>> x = np.arange(3) >>> np.array2string(x, formatter={'int':lambda x: hex(x)}) '[0x0L 0x1L 0x2L]' """ # Deprecation 05-16-2017 v1.14 if style is not np._NoValue: warnings.warn("'style' argument is deprecated and no longer functional", DeprecationWarning, stacklevel=3) overrides = _make_options_dict(precision, threshold, edgeitems, max_line_width, suppress_small, None, None, sign, formatter) options = _format_options.copy() options.update(overrides) if a.size == 0: # treat as a null array if any of shape elements == 0 lst = "[]" else: lst = _array2string(a, options, separator, prefix) return lst
ab40c565d058a6836fbc9778ae0d8ceb5c3d6a99
3,649,080
def registered_types(): """ list of registered types """ return list(Registry.types.get_all().keys())
50ed8fd4d586d660e2dc48e01e9cd462b346f47e
3,649,081
from typing import Dict def is_retain_bg_files(config: Dict[str, ConfigVO] = None) -> bool: """ 在拉取新的壁纸前,是否保留旧的壁纸 """ key = const.Key.Task.RETAIN_BGS.value vo = config.get(key) if config else dao.get_config(key) return vo and vo.value
69fd845479c0afbc6d6b215d0680d7f6a9c35096
3,649,082
import pytz def getAwareTime(tt): """ Generates timezone aware timestamp from timezone unaware timestamp PARAMETERS ------------ :param tt: datatime timezome unaware timestamp RETURNS ------------ :return: datatime timezone aware timestamp """ timezone = pytz.timezone("Europe/Amsterdam") return (timezone.localize(tt))
1b286c92c7f5d8f0ff48d77296489fbd358c14ce
3,649,083
def xdfs(request, tmpdir, vol_name, dos_format): """return (xdf_file, xdf_size_spec, vol_name) for various disks""" size = request.param if size == "880K": file_name = tmpdir / "disk.adf" size = "" else: file_name = tmpdir / "disk-" + size + ".hdf" size = "size=" + size return XDFSpec(str(file_name), size, vol_name, dos_format)
0a9878ffe020ba1438844e000be5b9e4a8b2825a
3,649,084
def nfvi_get_networks(paging, callback): """ Get a list of networks """ cmd_id = _network_plugin.invoke_plugin('get_networks', paging, callback=callback) return cmd_id
432bd6a69e25cc7a80aa77b2a58fe99b0947b9a0
3,649,085
def get_fasta(uniprot_id): """Get the protein sequence for a UniProt ID as a string. Args: uniprot_id: Valid UniProt ID Returns: str: String of the protein (amino acid) sequence """ # Silencing the "Will be moved to Biokit" message with ssbio.utils.suppress_stdout(): return bsup.get_fasta_sequence(uniprot_id)
295a5bd30d3e0feaf99ecab7fa975c67f8b06248
3,649,086
def split_path(path, minsegs=1, maxsegs=None, rest_with_last=False): """ Validate and split the given HTTP request path. **Examples**:: ['a'] = split_path('/a') ['a', None] = split_path('/a', 1, 2) ['a', 'c'] = split_path('/a/c', 1, 2) ['a', 'c', 'o/r'] = split_path('/a/c/o/r', 1, 3, True) :param path: HTTP Request path to be split :param minsegs: Minimum number of segments to be extracted :param maxsegs: Maximum number of segments to be extracted :param rest_with_last: If True, trailing data will be returned as part of last segment. If False, and there is trailing data, raises ValueError. :returns: list of segments with a length of maxsegs (non-existant segments will return as None) :raises: ValueError if given an invalid path """ if not maxsegs: maxsegs = minsegs if minsegs > maxsegs: raise ValueError('minsegs > maxsegs: %d > %d' % (minsegs, maxsegs)) if rest_with_last: segs = path.split('/', maxsegs) minsegs += 1 maxsegs += 1 count = len(segs) if (segs[0] or count < minsegs or count > maxsegs or '' in segs[1:minsegs]): raise ValueError('Invalid path: %s' % quote(path)) else: minsegs += 1 maxsegs += 1 segs = path.split('/', maxsegs) count = len(segs) if (segs[0] or count < minsegs or count > maxsegs + 1 or '' in segs[1:minsegs] or (count == maxsegs + 1 and segs[maxsegs])): raise ValueError('Invalid path: %s' % quote(path)) segs = segs[1:maxsegs] segs.extend([None] * (maxsegs - 1 - len(segs))) return segs
d3824ebd63b784dadaf0a97e75049f79d1077ded
3,649,087
def get_purchases_formset(n_forms=0): """ Helper method that returns a Django formset for a dynamic amount of Purchases. Initially `n_forms` empty forms are shown. """ return modelformset_factory(Purchase, fields=('amount', 'fruit'), extra=n_forms)
b49ec71aef56eabb1781039af947ff510242925a
3,649,088
async def git_pull(): """ Pulls any changes down from github and returns the result of the command. _> changed: str """ cmd = Popen(["git", "pull"], stdout=PIPE) out, _ = cmd.communicate() out = out.decode() return out
ed32677a22b0f75c23af618f18833b5fc46bb3dc
3,649,089
def inverse_word_map(word_map): """ Create an inverse word mapping. :param word_map: word mapping """ return {v: k for k, v in word_map.items()}
4048a21ea1c75791a92d57ee0a440a6c9d31b6b9
3,649,090
def get_coalition_wins_sql_string_for_state(coalition_id,state_id): """ :type party_id: integer """ str = """ select lr.candidate_id, c.fullname as winning_candidate, lr.constituency_id, cons.name as constituency, lr.party_id, lr.max_votes, (lr.max_votes-sr.votes) as lead, sr.candidate_id, loosing_candidate.fullname as runner_up, loosing_party.name as runner_up_party, sr.party_id, winning_party.name, ltw.party_id from latest_results lr inner join latest_runners_up as sr on sr.constituency_id = lr.constituency_id inner join candidate c on c.id = lr.candidate_id inner join constituency cons on cons.id = lr.constituency_id inner join party winning_party on lr.party_id = winning_party.id inner join party loosing_party on loosing_party.id = sr.party_id inner join candidate loosing_candidate on loosing_candidate.id = sr.candidate_id inner join last_time_winners ltw on ltw.constituency_id = lr.constituency_id where winning_party.coalition_id = %s and cons.state_id = %s and lr.status = 'DECLARED' order by lead DESC""" % (coalition_id,state_id) return str;
76fb0704779e20e8a53ca80dc17c969f1e455d20
3,649,091
import numpy def computeAPLSF(data): """ Compute the LSF kernel for each chip """ index = 2047 ## define lsf range and pixel centers xlsf = numpy.linspace(-7.,7.,43) xcenter = numpy.arange(0,4096) ## compute LSF profiles for each chip as a function of pixel raw_out2_a = raw(xlsf,xcenter,data.lsfcoeff[0]) raw_out2_b = raw(xlsf,xcenter,data.lsfcoeff[1]) raw_out2_c = raw(xlsf,xcenter,data.lsfcoeff[2]) ## normalize raw_out2_a_norm = raw_out2_a/numpy.tile(numpy.sum(raw_out2_a,axis=1),(len(xlsf),1)).T raw_out2_b_norm = raw_out2_b/numpy.tile(numpy.sum(raw_out2_b,axis=1),(len(xlsf),1)).T raw_out2_c_norm = raw_out2_c/numpy.tile(numpy.sum(raw_out2_c,axis=1),(len(xlsf),1)).T return numpy.array([raw_out2_a_norm[index],raw_out2_b_norm[index],raw_out2_c_norm[index]])
5cd46d9feec10dd0a4eff1a5fe44e241bfeed539
3,649,092
def login(): """Log in a registered user by adding the user id to the session.""" if request.method == "POST": username = request.form["username"] password = request.form["password"] error = None user = User.query.filter_by(name=username).first() if user is None: error = "Incorrect username." elif not user.check_password(password): error = "Incorrect password." if error is None: db.session.clear() db.session["user_id"] = user["id"] return redirect(url_for("mainpage")) flash(error) return render_template("auth/login.html")
067b202e81d947589c0fe2262372856084b28e35
3,649,093
def _timedeltaformat(value, include_ms=False): """Formats a timedelta in a sane way. Ignores sub-second precision by default. """ if not value: return NON_BREAKING_HYPHEN + NON_BREAKING_HYPHEN total_seconds = value.total_seconds() suffix = '' if include_ms: ms = int(round(total_seconds-int(total_seconds), 3) * 1000) if ms: suffix = '.%03d' % ms hours, remainder = divmod(int(round(total_seconds)), 3600) minutes, seconds = divmod(remainder, 60) if hours: return '%d:%02d:%02d%s' % (hours, minutes, seconds, suffix) # Always prefix minutes, even if 0, otherwise this looks weird. Revisit this # decision if bikeshedding is desired. return '%d:%02d%s' % (minutes, seconds, suffix)
5c40caa1bd2e005746a44b1767eb4c3ed29b1603
3,649,094
def get_viame_src(url): """ Get image src from via.me API. """ END_POINT = 'http://via.me/api/v1/posts/' tmp = url.split('/') viame_id = tmp[-1][1:] address = END_POINT + viame_id result = httpget(address)['response']['post'] return result['thumb_300_url']
52b23fb64b30c97ef70b683e0176f88f8730e5c9
3,649,095
def Geom_BSplineCurve_MaxDegree(*args): """ * Returns the value of the maximum degree of the normalized B-spline basis functions in this package. :rtype: int """ return _Geom.Geom_BSplineCurve_MaxDegree(*args)
32729754ca89ce719b81f28fbf3f3c5ea5eb70eb
3,649,096
import torch def iou_score(pred_cls, true_cls, nclass, drop=(), mask=None): """ compute the intersection-over-union score both inputs should be categorical (as opposed to one-hot) """ assert pred_cls.shape == true_cls.shape, 'Shape of predictions should match GT' if mask is not None: assert mask.dim() == true_cls.dim(), \ 'Mask should have the same dimensions as inputs' intersect_ = torch.zeros(nclass - len(drop), device=pred_cls.get_device()) union_ = torch.zeros(nclass - len(drop), device=pred_cls.get_device()) idx = 0 for i in range(nclass): if i not in drop: intersect = (pred_cls == i).byte() + (true_cls == i).byte() if mask is not None: intersect *= mask.byte() intersect = intersect.eq(2).sum() union = (pred_cls == i).byte() + (true_cls == i).byte() if mask is not None: union *= mask.byte() union = union.ge(1).sum() intersect_[idx] = intersect union_[idx] = union idx += 1 return intersect_, union_
d38871f339b2126d418a7fca53fbfd874e263aa2
3,649,097
def check_args(source_path, args): """Checks lengths of supplied args match or raise an error. Lists can have only one element where they are automatically extended. Args: source_path(list(str)): List of source_paths supplied to turbiniactl. args(list(list)): List of args (i.e. name, source, partitions, etc) and their values supplied to turbiniactl. Raises: TurbiniaException: If length of args don't match. Returns: list(str): List of arg or None """ ret = list() if not args[0]: args[0] = source_path for arg in args: if not arg: arg = [None] if len(arg) > 1 and len(arg) != len(source_path): raise TurbiniaException( 'Number of passed in args ({0:d}) must equal to one or ' 'number of source_paths/disks ({1:d}).'.format( len(arg), len(source_path))) if len(arg) == 1: arg = [arg[0] for _ in source_path] ret.append(arg) return ret
23d50e875ac908b0ee3afd4521b1a2660843ffc6
3,649,098
from datetime import datetime import calendar import warnings import requests import zipfile def futures_dce_position_rank(date: str = "20160104") -> pd.DataFrame: """ 大连商品交易日每日持仓排名-具体合约 http://www.dce.com.cn/dalianshangpin/xqsj/tjsj26/rtj/rcjccpm/index.html :param date: 指定交易日; e.g., "20200511" :type date: str :return: 指定日期的持仓排名数据 :rtype: pandas.DataFrame """ date = cons.convert_date(date) if date is not None else datetime.date.today() if date.strftime('%Y%m%d') not in calendar: warnings.warn('%s非交易日' % date.strftime('%Y%m%d')) return {} url = "http://www.dce.com.cn/publicweb/quotesdata/exportMemberDealPosiQuotesBatchData.html" headers = { "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8", "Cache-Control": "no-cache", "Connection": "keep-alive", "Content-Length": "160", "Content-Type": "application/x-www-form-urlencoded", "Host": "www.dce.com.cn", "Origin": "http://www.dce.com.cn", "Pragma": "no-cache", "Referer": "http://www.dce.com.cn/publicweb/quotesdata/memberDealPosiQuotes.html", "Upgrade-Insecure-Requests": "1", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36", } payload = { "memberDealPosiQuotes.variety": "a", "memberDealPosiQuotes.trade_type": "0", "contract.contract_id": "a2009", "contract.variety_id": "a", "year": date.year, "month": date.month - 1, "day": date.day, "batchExportFlag": "batch", } r = requests.post(url, payload, headers=headers) big_dict = dict() with zipfile.ZipFile(BytesIO(r.content), "r") as z: for i in z.namelist(): file_name = i.encode('cp437').decode('GBK') try: data = pd.read_table(z.open(i), header=None, sep="\t").iloc[:-6] if len(data) < 12: # 处理没有活跃合约的情况 big_dict[file_name.split("_")[1]] = pd.DataFrame() continue start_list = data[data.iloc[:, 0].str.find("名次") == 0].index.tolist() data = data.iloc[start_list[0]:, data.columns[data.iloc[start_list[0], :].notnull()]] data.reset_index(inplace=True, drop=True) start_list = data[data.iloc[:, 0].str.find("名次") == 0].index.tolist() end_list = data[data.iloc[:, 0].str.find("总计") == 0].index.tolist() part_one = data[start_list[0]: end_list[0]].iloc[1:, :] part_two = data[start_list[1]: end_list[1]].iloc[1:, :] part_three = data[start_list[2]: end_list[2]].iloc[1:, :] temp_df = pd.concat([part_one.reset_index(drop=True), part_two.reset_index(drop=True), part_three.reset_index(drop=True)], axis=1, ignore_index=True) temp_df.columns = ["名次", "会员简称", "成交量", "增减", "名次", "会员简称", "持买单量", "增减", "名次", "会员简称", "持卖单量", "增减"] temp_df["rank"] = range(1, len(temp_df) + 1) del temp_df["名次"] temp_df.columns = ["vol_party_name", "vol", "vol_chg", "long_party_name", "long_open_interest", "long_open_interest_chg", "short_party_name", "short_open_interest", "short_open_interest_chg", "rank"] temp_df["symbol"] = file_name.split("_")[1] temp_df["variety"] = file_name.split("_")[1][:-4].upper() temp_df = temp_df[["long_open_interest", "long_open_interest_chg", "long_party_name", "rank", "short_open_interest", "short_open_interest_chg", "short_party_name", "vol", "vol_chg", "vol_party_name", "symbol", "variety"]] big_dict[file_name.split("_")[1]] = temp_df except UnicodeDecodeError as e: try: data = pd.read_table(z.open(i), header=None, sep="\\s+", encoding="gb2312", skiprows=3) except: data = pd.read_table(z.open(i), header=None, sep="\\s+", encoding="gb2312", skiprows=4) start_list = data[data.iloc[:, 0].str.find("名次") == 0].index.tolist() end_list = data[data.iloc[:, 0].str.find("总计") == 0].index.tolist() part_one = data[start_list[0]: end_list[0]].iloc[1:, :] part_two = data[start_list[1]: end_list[1]].iloc[1:, :] part_three = data[start_list[2]: end_list[2]].iloc[1:, :] temp_df = pd.concat([part_one.reset_index(drop=True), part_two.reset_index(drop=True), part_three.reset_index(drop=True)], axis=1, ignore_index=True) temp_df.columns = ["名次", "会员简称", "成交量", "增减", "名次", "会员简称", "持买单量", "增减", "名次", "会员简称", "持卖单量", "增减"] temp_df["rank"] = range(1, len(temp_df) + 1) del temp_df["名次"] temp_df.columns = ["vol_party_name", "vol", "vol_chg", "long_party_name", "long_open_interest", "long_open_interest_chg", "short_party_name", "short_open_interest", "short_open_interest_chg", "rank"] temp_df["symbol"] = file_name.split("_")[1] temp_df["variety"] = file_name.split("_")[1][:-4].upper() temp_df = temp_df[["long_open_interest", "long_open_interest_chg", "long_party_name", "rank", "short_open_interest", "short_open_interest_chg", "short_party_name", "vol", "vol_chg", "vol_party_name", "symbol", "variety"]] big_dict[file_name.split("_")[1]] = temp_df return big_dict
3c4fa81a2fef317210be915f437c0885f5fcbbbd
3,649,099