content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def _get_blobs(im, rois): """Convert an image and RoIs within that image into network inputs.""" blobs = {'data' : None, 'rois' : None} blobs['data'], im_scale_factors = _get_image_blob(im) if not cfg.TEST.HAS_RPN: blobs['rois'] = _get_rois_blob(rois, im_scale_factors) #print ('lll: ', blobs['rois']) return blobs, im_scale_factors
d4adb2e049a86fe1a42aab6dea52b55aabeeb0d2
3,648,500
def string_limiter(text, limit): """ Reduces the number of words in the string to length provided. Arguments: text -- The string to reduce the length of limit -- The number of characters that are allowed in the string """ for i in range(len(text)): if i >= limit and text[i] == " ": break return text[:i]
1ae70d2115be72ec628f38b2c623064607f534ef
3,648,501
def in_ellipse(xy_list,width,height,angle=0,xy=[0,0]): """ Find data points inside an ellipse and return index list Parameters: xy_list: Points needs to be deteced. width: Width of the ellipse height: Height of the ellipse angle: anti-clockwise rotation angle in degrees xy: the origin of the ellipse """ if isinstance(xy_list,list): xy_list = np.array(xy_list) if not isinstance(xy_list,np.ndarray): raise Exception(f"Unrecoginzed data type: {type(xy_list)}, \ should be list or np.ndarray") new_xy_list = xy_list.copy() new_xy_list = new_xy_list - xy #------------ define coordinate conversion matrix---------- theta = angle/180*np.pi # degree to radians con_mat = np.zeros((2,2)) con_mat[:,0] = [np.cos(theta),np.sin(theta)] con_mat[:,1] = [np.sin(theta),-np.cos(theta)] tmp = np.matmul(con_mat,new_xy_list.T) con_xy_list = tmp.T #------------ check one by one ---------------------------- idxs = [] for i,[x,y] in enumerate(con_xy_list): if ((x/(width/2))**2+(y/(height/2))**2) < 1: idxs.append(i) return idxs
6540520caa6eef12871847f80d3ed42279b0c1a0
3,648,502
import logging def get_real_images(dataset, num_examples, split=None, failure_on_insufficient_examples=True): """Get num_examples images from the given dataset/split. Args: dataset: `ImageDataset` object. num_examples: Number of images to read. split: Split of the dataset to use. If None will use the default split for eval defined by the dataset. failure_on_insufficient_examples: If True raise an exception if the dataset/split does not images. Otherwise will log to error and return fewer images. Returns: 4-D NumPy array with images with values in [0, 256]. Raises: ValueError: If the dataset/split does not of the number of requested number requested images and `failure_on_insufficient_examples` is True. """ logging.info("Start loading real data.") with tf.Graph().as_default(): ds = dataset.eval_input_fn(split=split) # Get real images from the dataset. In the case of a 1-channel # dataset (like MNIST) convert it to 3 channels. next_batch = ds.make_one_shot_iterator().get_next()[0] shape = [num_examples] + next_batch.shape.as_list() is_single_channel = shape[-1] == 1 if is_single_channel: shape[-1] = 3 real_images = np.empty(shape, dtype=np.float32) with tf.Session() as sess: for i in range(num_examples): try: b = sess.run(next_batch) b *= 255.0 if is_single_channel: b = np.tile(b, [1, 1, 3]) real_images[i] = b except tf.errors.OutOfRangeError: logging.error("Reached the end of dataset. Read: %d samples.", i) real_images = real_images[:i] break if real_images.shape[0] != num_examples: if failure_on_insufficient_examples: raise DatasetOutOfRangeError("Not enough examples in the dataset %s: %d / %d" % (dataset, real_images.shape[0], num_examples)) else: logging.error("Not enough examples in the dataset %s: %d / %d", dataset, real_images.shape[0], num_examples) logging.info("Done loading real data.") return real_images
0f9be93076b8d94b3285a1f5badb8952788e2a82
3,648,503
from typing import Callable from typing import Any import websockets async def call(fn: Callable, *args, **kwargs) -> Any: """ Submit function `fn` for remote execution with arguments `args` and `kwargs` """ async with websockets.connect(WS_SERVER_URI) as websocket: task = serialize((fn, args, kwargs)) await websocket.send(task) message = await websocket.recv() results = deserialize(message) if isinstance(results, TaskExecutionError): raise results return results
073090186e4a325eb32b44fb44c1628c6842c398
3,648,504
import numpy def wrap_array_func(func): """ Returns a version of the function func() that works even when func() is given a NumPy array that contains numbers with uncertainties. func() is supposed to return a NumPy array. This wrapper is similar to uncertainties.wrap(), except that it handles an array argument instead of float arguments. func -- version that takes and returns a single NumPy array. """ @uncertainties.set_doc("""\ Version of %s(...) that works even when its first argument is a NumPy array that contains numbers with uncertainties. Warning: elements of the first argument array that are not AffineScalarFunc objects must not depend on uncertainties.Variable objects in any way. Otherwise, the dependence of the result in uncertainties.Variable objects will be incorrect. Original documentation: %s""" % (func.__name__, func.__doc__)) def wrapped_func(arr, *args): # Nominal value: arr_nominal_value = nominal_values(arr) func_nominal_value = func(arr_nominal_value, *args) # The algorithm consists in numerically calculating the derivatives # of func: # Variables on which the array depends are collected: variables = set() for element in arr.flat: # floats, etc. might be present if isinstance(element, uncertainties.AffineScalarFunc): variables |= set(element.derivatives.iterkeys()) # If the matrix has no variables, then the function value can be # directly returned: if not variables: return func_nominal_value # Calculation of the derivatives of each element with respect # to the variables. Each element must be independent of the # others. The derivatives have the same shape as the output # array (which might differ from the shape of the input array, # in the case of the pseudo-inverse). derivatives = numpy.vectorize(lambda _: {})(func_nominal_value) for var in variables: # A basic assumption of this package is that the user # guarantees that uncertainties cover a zone where # evaluated functions are linear enough. Thus, numerical # estimates of the derivative should be good over the # standard deviation interval. This is true for the # common case of a non-zero standard deviation of var. If # the standard deviation of var is zero, then var has no # impact on the uncertainty of the function func being # calculated: an incorrect derivative has no impact. One # scenario can give incorrect results, however, but it # should be extremely uncommon: the user defines a # variable x with 0 standard deviation, sets y = func(x) # through this routine, changes the standard deviation of # x, and prints y; in this case, the uncertainty on y # might be incorrect, because this program had no idea of # the scale on which func() is linear, when it calculated # the numerical derivative. # The standard deviation might be numerically too small # for the evaluation of the derivative, though: we set the # minimum variable shift. shift_var = max(var._std_dev/1e5, 1e-8*abs(var._nominal_value)) # An exceptional case is that of var being exactly zero. # In this case, an arbitrary shift is used for the # numerical calculation of the derivative. The resulting # derivative value might be quite incorrect, but this does # not matter as long as the uncertainty of var remains 0, # since it is, in this case, a constant. if not shift_var: shift_var = 1e-8 # Shift of all the elements of arr when var changes by shift_var: shift_arr = array_derivative(arr, var)*shift_var # Origin value of array arr when var is shifted by shift_var: shifted_arr_values = arr_nominal_value + shift_arr func_shifted = func(shifted_arr_values, *args) numerical_deriv = (func_shifted-func_nominal_value)/shift_var # Update of the list of variables and associated # derivatives, for each element: for (derivative_dict, derivative_value) in ( zip(derivatives.flat, numerical_deriv.flat)): if derivative_value: derivative_dict[var] = derivative_value # numbers with uncertainties are build from the result: return numpy.vectorize(uncertainties.AffineScalarFunc)( func_nominal_value, derivatives) # It is easier to work with wrapped_func, which represents a # wrapped version of 'func', when it bears the same name as # 'func' (the name is used by repr(wrapped_func)). wrapped_func.__name__ = func.__name__ return wrapped_func
7cbd33599b62df096db3ce84968cc13f24512fc0
3,648,505
def checkCrash(player, upperPipes, lowerPipes): """returns True if player collides with base or pipes.""" pi = player['index'] player['w'] = fImages['player'][0].get_width() player['h'] = fImages['player'][0].get_height() # if player crashes into ground if player['y'] + player['h'] >= nBaseY - 1: return [True, True] else: playerRect = pygame.Rect(player['x'], player['y'], player['w'], player['h']) pipeW = fImages['pipe'][0].get_width() pipeH = fImages['pipe'][0].get_height() for uPipe in upperPipes: # pipe rect uPipeRect = pygame.Rect(uPipe['x'], uPipe['y'], pipeW, pipeH) # player and pipe hitmasks pHitMask = fHitMask['player'][pi] uHitmask = fHitMask['pipe'][0] # if bird collided with pipe uCollide = pixelCollision(playerRect, uPipeRect, pHitMask, uHitmask) if uCollide: # for fury mode we want to break the pipe so we # must return which pipe is colliding (lower or upper) if bFuryMode: return [True, False, True, uPipe] # normal mode return [True, False] for lPipe in lowerPipes: # pipe rect lPipeRect = pygame.Rect(lPipe['x'], lPipe['y'], pipeW, pipeH) # player and pipe hitmasks pHitMask = fHitMask['player'][pi] lHitmask = fHitMask['pipe'][0] # if bird collided with pipe lCollide = pixelCollision(playerRect, lPipeRect, pHitMask, lHitmask) if lCollide: # for fury mode we want to break the pipe so we # must return which pipe is colliding (lower or upper) if bFuryMode: return [True, False, False, lPipe] # normal mode return [True, False] return [False, False]
e638f0ae40610fc0c4097998e8fa3df0dc6a5d56
3,648,506
import os def alter_subprocess_kwargs_by_platform(**kwargs): """ Given a dict, populate kwargs to create a generally useful default setup for running subprocess processes on different platforms. For example, `close_fds` is set on posix and creation of a new console window is disabled on Windows. This function will alter the given kwargs and return the modified dict. """ kwargs.setdefault('close_fds', os.name == 'posix') if os.name == 'nt': CONSOLE_CREATION_FLAGS = 0 # Default value # See: https://msdn.microsoft.com/en-us/library/windows/desktop/ms684863%28v=vs.85%29.aspx CREATE_NO_WINDOW = 0x08000000 # We "or" them together CONSOLE_CREATION_FLAGS |= CREATE_NO_WINDOW kwargs.setdefault('creationflags', CONSOLE_CREATION_FLAGS) return kwargs
93ada5c681c535b45fc5c321ab4b27b49587a106
3,648,507
def convert_gwp(context, qty, to): """Helper for :meth:`convert_unit` to perform GWP conversions.""" # Remove a leading 'gwp_' to produce the metric name metric = context.split('gwp_')[1] if context else context # Extract the species from *qty* and *to*, allowing supported aliases species_from, units_from = extract_species(qty[1]) species_to, units_to = extract_species(to) try: # Convert using a (magnitude, unit) tuple with only units, and explicit # input and output units result = iam_units.convert_gwp(metric, (qty[0], units_from), species_from, species_to) except (AttributeError, ValueError): # Missing *metric*, or *species_to* contains invalid units. pyam # promises UndefinedUnitError in these cases. Use a subclass (above) to # add a usage hint. raise UndefinedUnitError(species_to) from None except pint.DimensionalityError: # Provide an exception with the user's inputs raise pint.DimensionalityError(qty[1], to) from None # Other exceptions are not caught and will pass up through convert_unit() if units_to: # Also convert the units result = result.to(units_to) else: # *to* was only a species name. Provide units based on input and the # output species name. to = iam_units.format_mass(result, species_to, spec=':~') return result, to
23d47e3b93f1ed694fbb5187433af5c8caa72dc8
3,648,508
from AppKit import NSSearchPathForDirectoriesInDomains import sys import os def appdataPath(appname): """ Returns the generic location for storing application data in a cross platform way. :return <str> """ # determine Mac OS appdata location if sys.platform == 'darwin': # credit: MHL try: # NSApplicationSupportDirectory = 14 # NSUserDomainMask = 1 # True for expanding the tilde into a fully qualified path basepath = NSSearchPathForDirectoriesInDomains(14, 1, True) return os.path.join(basepath[0], appname) except (ImportError, AttributeError, IndexError): basepath = os.path.expanduser("~/Library/Application Support") return os.path.join(basepath, appname) # determine Windows OS appdata location elif sys.platform == 'win32': return os.path.join(os.environ.get('APPDATA'), appname) # determine Linux OS appdata location else: return os.path.expanduser(os.path.join('~', '.' + appname))
d4d26890ca1fa607cbb09bd4838e3513d19c6af9
3,648,509
import random def getAction(board, policy, action_set): """ return action for policy, chooses max from classifier output """ # if policy doesn't exist yet, choose action randomly, else get from policy model if policy == None: valid_actions = [i for i in action_set if i[0] > -1] if len(valid_actions) == 0: return (-1,-1,0) rand_i = random.randint(0, len(valid_actions)-1) # du_policy = [-12.63, 6.60, -9.22,-19.77,-13.08,-10.49,-1.61, -24.04] # action = nextInitialMove(du_policy, board) action = valid_actions[rand_i] else: piece = [0]*7 # one hot encode piece piece[board.currentShape.shape -1] = 1 tot_features = np.append(board.getFeatures(), [piece]) action_scores = policy.predict([tot_features]) best_scores = np.argwhere(action_scores == np.amax(action_scores)).flatten().tolist() max_score = np.random.choice(best_scores) action = action_set[max_score] return action
fddb9160f0571dfaf50f945c05d5dbb176465180
3,648,510
def f_assert_must_between(value_list, args): """ 检测列表中的元素是否为数字或浮点数且在args的范围内 :param value_list: 待检测列表 :param args: 范围列表 :return: 异常或原值 example: :value_list [2, 2, 3] :args [1,3] :value_list ['-2', '-3', 3] :args ['-5',3] """ assert len(args) == 2 for value in value_list: if not (str(value).count('.') <= 1 and str(value).replace('.', '').lstrip('-').isdigit() and float(args[0]) <= float(value) <= float(args[1])): raise FeatureProcessError('%s f_assert_must_between %s Error' % (value_list, args)) return value_list
6e082f3df39509f0823862497249a06080bd7649
3,648,511
from scipy.stats import zscore from scipy.ndimage import label def annotate_muscle_zscore(raw, threshold=4, ch_type=None, min_length_good=0.1, filter_freq=(110, 140), n_jobs=1, verbose=None): """Create annotations for segments that likely contain muscle artifacts. Detects data segments containing activity in the frequency range given by ``filter_freq`` whose envelope magnitude exceeds the specified z-score threshold, when summed across channels and divided by ``sqrt(n_channels)``. False-positive transient peaks are prevented by low-pass filtering the resulting z-score time series at 4 Hz. Only operates on a single channel type, if ``ch_type`` is ``None`` it will select the first type in the list ``mag``, ``grad``, ``eeg``. See :footcite:`Muthukumaraswamy2013` for background on choosing ``filter_freq`` and ``threshold``. Parameters ---------- raw : instance of Raw Data to estimate segments with muscle artifacts. threshold : float The threshold in z-scores for marking segments as containing muscle activity artifacts. ch_type : 'mag' | 'grad' | 'eeg' | None The type of sensors to use. If ``None`` it will take the first type in ``mag``, ``grad``, ``eeg``. min_length_good : float | None The shortest allowed duration of "good data" (in seconds) between adjacent annotations; shorter segments will be incorporated into the surrounding annotations.``None`` is equivalent to ``0``. Default is ``0.1``. filter_freq : array-like, shape (2,) The lower and upper frequencies of the band-pass filter. Default is ``(110, 140)``. %(n_jobs)s %(verbose)s Returns ------- annot : mne.Annotations Periods with muscle artifacts annotated as BAD_muscle. scores_muscle : array Z-score values averaged across channels for each sample. References ---------- .. footbibliography:: """ raw_copy = raw.copy() if ch_type is None: raw_ch_type = raw_copy.get_channel_types() if 'mag' in raw_ch_type: ch_type = 'mag' elif 'grad' in raw_ch_type: ch_type = 'grad' elif 'eeg' in raw_ch_type: ch_type = 'eeg' else: raise ValueError('No M/EEG channel types found, please specify a' ' ch_type or provide M/EEG sensor data') logger.info('Using %s sensors for muscle artifact detection' % (ch_type)) if ch_type in ('mag', 'grad'): raw_copy.pick_types(meg=ch_type, ref_meg=False) else: ch_type = {'meg': False, ch_type: True} raw_copy.pick_types(**ch_type) raw_copy.filter(filter_freq[0], filter_freq[1], fir_design='firwin', pad="reflect_limited", n_jobs=n_jobs) raw_copy.apply_hilbert(envelope=True, n_jobs=n_jobs) data = raw_copy.get_data(reject_by_annotation="NaN") nan_mask = ~np.isnan(data[0]) sfreq = raw_copy.info['sfreq'] art_scores = zscore(data[:, nan_mask], axis=1) art_scores = art_scores.sum(axis=0) / np.sqrt(art_scores.shape[0]) art_scores = filter_data(art_scores, sfreq, None, 4) scores_muscle = np.zeros(data.shape[1]) scores_muscle[nan_mask] = art_scores art_mask = scores_muscle > threshold # return muscle scores with NaNs scores_muscle[~nan_mask] = np.nan # remove artifact free periods shorter than min_length_good min_length_good = 0 if min_length_good is None else min_length_good min_samps = min_length_good * sfreq comps, num_comps = label(art_mask == 0) for com in range(1, num_comps + 1): l_idx = np.nonzero(comps == com)[0] if len(l_idx) < min_samps: art_mask[l_idx] = True annot = _annotations_from_mask(raw_copy.times, art_mask, 'BAD_muscle', orig_time=raw.info['meas_date']) _adjust_onset_meas_date(annot, raw) return annot, scores_muscle
a09b2b9098c7dfc48b29548691e3c6c524a6b6bf
3,648,512
def circ_dist2(a, b): """Angle between two angles """ phi = np.e**(1j*a) / np.e**(1j*b) ang_dist = np.arctan2(phi.imag, phi.real) return ang_dist
db60caace70f23c656c4e97b94145a246c6b2995
3,648,513
def hinge_loss(positive_scores, negative_scores, margin=1.0): """ Pairwise hinge loss [1]: loss(p, n) = \sum_i [\gamma - p_i + n_i]_+ [1] http://yann.lecun.com/exdb/publis/pdf/lecun-06.pdf :param positive_scores: (N,) Tensor containing scores of positive examples. :param negative_scores: (N,) Tensor containing scores of negative examples. :param margin: Margin. :return: Loss value. """ hinge_losses = tf.nn.relu(margin - positive_scores + negative_scores) loss = tf.reduce_sum(hinge_losses) return loss
daa698f012c30c8f99ba1ce08cbb73226251e3c1
3,648,514
def build(req): """Builder for this format. Args: req: flask request Returns: Json containing the creative data """ errors = [] v = {} tdir = "/tmp/" + f.get_tmp_file_name() index = get_html() ext = f.get_ext(req.files["videofile"].filename) if ext != "mp4": return {"errors": ["Only mp4 files allowed"]} f.save_file(req.files["videofile"], tdir + "/video.mp4") v["backgroundColor"] = f.get_param("background_color") v["autoclose"] = str(f.get_int_param("autoclose")) return {"errors": errors, "dir": tdir, "index": index, "vars": v}
33ad1e003533407626cd3ccdd52e7f6c414e6470
3,648,515
def search(query, data, metric='euclidean', verbose=True): """ do search, return ranked list according to distance metric: hamming/euclidean query: one query per row dat: one data point per row """ #calc dist of query and each data point if metric not in ['euclidean', 'hamming']: print 'metric must be one of (euclidean, hamming)' sys.exit(0) #b=time.clock() dist=scipy.spatial.distance.cdist(query,data,metric) sorted_idx=np.argsort(dist,axis=1) #e=time.clock() if verbose: #calc avg dist to nearest 200 neighbors nearpoints=sorted_idx[:,0:200] d=[np.mean(dist[i][nearpoints[i]]) for i in range(nearpoints.shape[0])] sys.stdout.write('%.4f, '% np.mean(d)) #print 'search time %.4f' % (e-b) return sorted_idx
576471dfbe1dc0a2ae80235faf36d42d4b3a7f8a
3,648,516
def create_circle_widget(canvas: Canvas, x: int, y: int, color: str, circle_size: int): """create a centered circle on cell (x, y)""" # in the canvas the 1st axis is horizontal and the 2nd is vertical # we want the opposite so we flip x and y for the canvas # to create an ellipsis, we give (x0, y0) and (x1, y1) that define the containing rectangle pad = (CELL_SIZE - circle_size) / 2 i0 = 5 + y * CELL_SIZE + pad + 1 j0 = 5 + x * CELL_SIZE + pad + 1 i1 = 5 + (y + 1) * CELL_SIZE - pad j1 = 5 + (x + 1) * CELL_SIZE - pad return canvas.create_oval(i0, j0, i1, j1, fill=color, outline="")
b048b7d9c262c40a93cfef489468ad709a1e3883
3,648,517
def _format_program_counter_relative(state): """Program Counter Relative""" program_counter = state.program_counter operand = state.current_operand if operand & 0x80 == 0x00: near_addr = (program_counter + operand) & 0xFFFF else: near_addr = (program_counter - (0x100 - operand)) & 0xFFFF return '${:04X}'.format(near_addr)
74f13e9230a6c116413b373b92e36bd884a906e7
3,648,518
def compile_program( program: PyTEAL, mode: Mode = Mode.Application, version: int = 5 ) -> bytes: """Compiles a PyTEAL smart contract program to the TEAL binary code. Parameters ---------- program A function which generates a PyTEAL expression, representing an Algorand program. mode The mode with which to compile the supplied PyTEAL program. version The version with which to compile the supplied PyTEAL program. Returns ------- bytes The TEAL compiled binary code. """ source = compileTeal(program(), mode=mode, version=version) return _compile_source(source)
50e9b4263a0622dfbe427c741ddfba2ff4007089
3,648,519
def fetch_url(url): """ Fetches a URL and returns contents - use opener to support HTTPS. """ # Fetch and parse logger.debug(u'Fetching %s', url) # Use urllib2 directly for enabled SSL support (LXML doesn't by default) timeout = 30 try: opener = urllib2.urlopen(url, None, timeout) # Fetch HTTP data in one batch, as handling the 'file-like' object to # lxml results in thread-locking behaviour. htmldata = opener.read() except urllib2.URLError, urllib2.HTTPError: # These type of errors are non-fatal - but *should* be logged. logger.exception(u'HTTP Error for %s, returning emtpy string.', url ) return None return htmldata
d6603fda5917423cb99c619810c8161a7c2885a1
3,648,520
def predict(yolo_outputs, image_shape, anchors, class_names, obj_threshold, nms_threshold, max_boxes = 1000): """ Process the results of the Yolo inference to retrieve the detected bounding boxes, the corresponding class label, and the confidence score associated. The threshold value 'obj_threshold' serves to discard low confidence predictions. The 'nms_threshold' value is used to discard duplicate boxes for a same object (IoU metric). """ # Init anchor_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]] total_boxes = [] total_box_scores = [] input_shape = tf.shape(yolo_outputs[0])[1 : 3] * 32 # Process output tensors for i in range(len(yolo_outputs)): # Get bboxes and associated scores detected_boxes, box_scores = boxes_and_scores(yolo_outputs[i], anchors[anchor_mask[i]], len(class_names), input_shape, image_shape) # Append bboxes and level of confidence to list total_boxes.append(detected_boxes) total_box_scores.append(box_scores) # Concatenate results total_boxes = tf.concat(total_boxes, axis=0) total_box_scores = tf.concat(total_box_scores, axis=0) #print('------------------------------------') #print('Boxe scores', box_scores) # Mask to filter out low confidence detections mask = box_scores >= obj_threshold # Set boxes limit max_boxes_tensor = tf.constant(max_boxes, dtype = tf.int32) boxes_ = [] scores_ = [] classes_ = [] items_ = [] for c in range(len(class_names)): # Get boxes labels class_boxes = tf.boolean_mask(total_boxes, mask[:, c]) # Get associated score class_box_scores = tf.boolean_mask(total_box_scores[:, c], mask[:, c]) # Concatenate label and score item = [class_boxes, class_box_scores] # Filter out duplicates when multiple boxes are predicted for a same object nms_index = tf.image.non_max_suppression(class_boxes, class_box_scores, max_boxes_tensor, iou_threshold = nms_threshold) # Remove the duplicates from the list of classes and scores class_boxes = tf.gather(class_boxes, nms_index) class_box_scores = tf.gather(class_box_scores, nms_index) # Multiply score by class type classes = tf.ones_like(class_box_scores, 'int32') * c # Append results to lists boxes_.append(class_boxes) scores_.append(class_box_scores) classes_.append(classes) # Concatenate results boxes_ = tf.concat(boxes_, axis = 0) scores_ = tf.concat(scores_, axis = 0) classes_ = tf.concat(classes_, axis = 0) return boxes_, scores_, classes_
df90a5baed671e316e03c0a621ce1740efc7a833
3,648,521
import json def get_event_details(entry, workday_user, demisto_user, days_before_hire_to_sync, days_before_hire_to_enable_ad, deactivation_date_field, display_name_to_user_profile, email_to_user_profile, employee_id_to_user_profile, source_priority): """ This function detects the event type and creates a dictionary which holds the event details. If the event should not be created, None is returned. Args: entry: The employee's report entry. workday_user: Workday user in XSOAR format. demisto_user: The user profile in XSOAR. deactivation_date_field: Deactivation date field - "lastdayofwork" or "terminationdate". days_before_hire_to_sync: Number of days before hire date to sync hires, -1 if should sync instantly. days_before_hire_to_enable_ad: Number of days before hire date to enable Active Directory account, -1 if should sync instantly. display_name_to_user_profile: A dictionary that maps display names to user profile indicators in XSOAR. email_to_user_profile: A dictionary that maps email addresses to user profile indicators in XSOAR. employee_id_to_user_profile: A dictionary that maps employee ids to user profile indicators in XSOAR. source_priority: The source priority number. Returns: event: The event details. """ user_email = workday_user.get(EMAIL_ADDRESS_FIELD) changed_fields = get_profile_changed_fields_str(demisto_user, workday_user) demisto.debug(f'{changed_fields=}') # type: ignore if not has_reached_threshold_date(days_before_hire_to_sync, workday_user) \ or new_hire_email_already_taken(workday_user, demisto_user, email_to_user_profile) \ or is_report_missing_required_user_data(workday_user) \ or not is_valid_source_of_truth(demisto_user, source_priority) \ or is_event_processed(demisto_user): return None if is_new_hire_event(demisto_user, workday_user, deactivation_date_field): event_type = NEW_HIRE_EVENT_TYPE event_details = 'The user has been hired.' elif is_ad_activation_event(demisto_user, workday_user, days_before_hire_to_enable_ad): event_type = ACTIVATE_AD_EVENT_TYPE event_details = 'Active Directory user account was enabled.' elif is_ad_deactivation_event(demisto_user, workday_user, days_before_hire_to_enable_ad, source_priority): event_type = DEACTIVATE_AD_EVENT_TYPE event_details = 'Active Directory user account was disabled due to hire date postponement.' elif is_rehire_event(demisto_user, workday_user, changed_fields): event_type = REHIRE_USER_EVENT_TYPE event_details = 'The user has been rehired.' elif is_termination_event(workday_user, demisto_user, deactivation_date_field): event_type = TERMINATE_USER_EVENT_TYPE event_details = 'The user has been terminated.' elif is_update_event(workday_user, changed_fields): event_type = UPDATE_USER_EVENT_TYPE event_details = f'The user has been updated:\n{changed_fields}' workday_user[OLD_USER_DATA_FIELD] = demisto_user if demisto_user.get(SOURCE_PRIORITY_FIELD) != source_priority: workday_user[CONVERSION_HIRE_FIELD] = True event_details = f'A conversion hire was detected:\n{changed_fields}' else: demisto.debug(f'Could not detect changes in report for user with email address {user_email} - skipping.') return None if is_tufe_user(demisto_user) and event_type != REHIRE_USER_EVENT_TYPE: return None if is_display_name_already_taken(demisto_user, workday_user, display_name_to_user_profile) \ and event_type in [NEW_HIRE_EVENT_TYPE, REHIRE_USER_EVENT_TYPE, UPDATE_USER_EVENT_TYPE]: event_details = f'Detected an "{event_type}" event, but display name already exists. Please review.' if changed_fields: event_details += f'\n{changed_fields}' event_type = DEFAULT_INCIDENT_TYPE entry[USER_PROFILE_INC_FIELD] = workday_user return { 'name': user_email, 'rawJSON': json.dumps(entry), 'type': event_type, 'details': event_details }
dd8095f81a0df7db9196accbcdef2f72ef92a39f
3,648,522
def ae_model(inputs, train=True, norm=True, **kwargs): """ AlexNet model definition as defined in the paper: https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf You will need to EDIT this function. Please put your AlexNet implementation here. Note: 1.) inputs['images'] is a [BATCH_SIZE x HEIGHT x WIDTH x CHANNELS] array coming from the data provider. 2.) You will need to return 'output' which is a dictionary where - output['pred'] is set to the output of your model - output['conv1'] is set to the output of the conv1 layer - output['conv1_kernel'] is set to conv1 kernels - output['conv2'] is set to the output of the conv2 layer - output['conv2_kernel'] is set to conv2 kernels - and so on... The output dictionary should include the following keys for AlexNet: ['conv1', 'conv2', 'conv3', 'conv4', 'conv5', 'pool1', 'pool2', 'pool5', 'fc6', 'fc7', 'fc8'] as well as the respective ['*_kernel'] keys for the kernels 3.) Set your variable scopes to the name of the respective layers, e.g. with tf.variable_scope('conv1'): outputs['conv1'] = ... outputs['pool1'] = ... and with tf.variable_scope('fc6'): outputs['fc6'] = ... and so on. 4.) Use tf.get_variable() to create variables, while setting name='weights' for each kernel, and name='bias' for each bias for all conv and fc layers. For the pool layers name='pool'. These steps are necessary to correctly load the pretrained alexnet model from the database for the second part of the assignment. """ # propagate input targets outputs = inputs # dropout = .5 if train else None input_to_network = inputs['images'] outputs['input'] = input_to_network with tf.variable_scope('conv'): outputs['relu'], outputs['conv_kernel'] = get_conv(input_to_network,[7,7,3,64],16) with tf.variable_scope('deconv'): outputs['deconv'] = get_deconv(outputs['relu'],[12,12,3,64],12,input_to_network.shape) # shape = input_to_network.get_shape().as_list() # stride = 16 # hidden_size = 2 # deconv_size = 12 # ### YOUR CODE HERE # outputs['input'] = input_to_network # conv_layer = K.layers.Conv2D(64,7,strides=(stride,stride), # padding='same', # kernel_initializer='glorot_normal') # outputs['conv_kernel'] = conv_layer # outputs['conv'] = conv_layer(input_to_network) # outputs['relu'] = K.layers.Activation('relu')(outputs['conv']) # outputs['deconv'] = K.layers.Conv2DTranspose(3,deconv_size, # deconv_size,padding='valid', # kernel_initializer='glorot_normal')(outputs['relu']) ### END OF YOUR CODE for k in ['deconv']: assert k in outputs, '%s was not found in outputs' % k return outputs, {}
659908f6fbfb401941984668634382c6d30a8124
3,648,523
def filter_by_country(data, country=DEFAULT_COUNTRY): """ Filter provided data by country (defaults to Czechia). data: pandas.DataFrame country: str """ # Filter data by COUNTRY return data[data[COLUMN_FILTER] == country]
bbf9eacd74a6032f1298cd7313d5c8233ec4a8ec
3,648,524
import requests import os def get_instance_id() -> str: """Returns the AWS instance id where this is running or "local".""" global INSTANCE_ID if INSTANCE_ID is None: if get_env_variable("RUNNING_IN_CLOUD") == "True": @retry(stop_max_attempt_number=3) def retrieve_instance_id(): return requests.get(os.path.join(METADATA_URL, "instance-id")).text INSTANCE_ID = retrieve_instance_id() else: INSTANCE_ID = "local" return INSTANCE_ID
a73c49e114dac360151a8b571eadea13c8cb35a6
3,648,525
def scans_from_csvs(*inps, names=None): """ Read from csvs. :param inps: file names of the csvs :param names: names of the Scans :return: list of Scans """ ns, temp_vals, heat_flow_vals = read_csvs(inps) names = ns if names is None else names return [Scan(*vals) for vals in zip(temp_vals, heat_flow_vals, names)]
6acddf330e10793dab6b76ec6a1edb1d2fd0660d
3,648,526
def part_b(puzzle_input): """ Calculate the answer for part_b. Args: puzzle_input (list): Formatted as the provided input from the website. Returns: string: The answer for part_b. """ return str(collect_letters(puzzle_input)[1])
b82597c610e8a7d03ea68ddad392385636b0e2f3
3,648,527
def data_encoder(data): """ Encode all categorical values in the dataframe into numeric values. @param data: the original dataframe @return data: the same dataframe with all categorical variables encoded """ le = preprocessing.LabelEncoder() cols = data.columns numcols = data._get_numeric_data().columns catecols = list(set(cols) - set(numcols)) le = preprocessing.LabelEncoder() data[catecols] = data[catecols].astype(str).apply(le.fit_transform) return data
2a2177891e1930311661f6549dbd33f329704fec
3,648,528
def _search_settings(method_settings_keys, settings): """ We maintain a dictionary of dimensionality reduction methods in dim_settings_keys where each key (method) stores another dictionary (md) holding that method's settings (parameters). The keys of md are component ids and the values are parameter names that will be passed to dim_reduce. For example, dim_settings_keys['dim-PCA'] holds a dictionary dim_pca_settings_keys = { 'dim-PCA-n-components': 'n_components', 'dim-PCA-whiten': 'whiten', 'dim-PCA-solver': 'svd_solver', 'dim-PCA-random-state': 'random_state' } where the keys (dim-PCA-key) is the widget id and the value is the parameter name to pass to sklearn's PCA. Parameters __________ method_settings_keys: dict Dicionary holding setting id's and parameter names. settings: tuple of list of dicts of ... Holds all children in the method-settings elements. This is a mixture of lists, tuples, and dicts. We recursively search this element to find the children with id's as determined by dim_pca_settings_keys[dim_method]. By doing this we avoid having to write new Input elements into our callbacks every time we add a new setting. All that needs to be done is add the setting's id into the settings_keys dict and it will be parsed automatically. """ kwargs = {} for key in method_settings_keys: child = next(_recur_search(settings, key)) # if there exists a component with 'key' as its 'id' # then child should never be None. 'value' may be missing # if not manually specified when constructing the widget. if child is None or 'value' not in child: raise InternalError("'value' key not found in child.") kwargs[method_settings_keys[key]] = child['value'] return kwargs
20a8a0e24df1dc572dfbe541f1439bc6245f6170
3,648,529
def svn_opt_resolve_revisions(*args): """ svn_opt_resolve_revisions(svn_opt_revision_t peg_rev, svn_opt_revision_t op_rev, svn_boolean_t is_url, svn_boolean_t notice_local_mods, apr_pool_t pool) -> svn_error_t """ return _core.svn_opt_resolve_revisions(*args)
5f011401c4afc044f0fa877407f7c7a3da56f576
3,648,530
from typing import Union from pathlib import Path from typing import Any def write_midi( path: Union[str, Path], music: "Music", backend: str = "mido", **kwargs: Any ): """Write a Music object to a MIDI file. Parameters ---------- path : str or Path Path to write the MIDI file. music : :class:`muspy.Music` Music object to write. backend: {'mido', 'pretty_midi'} Backend to use. Defaults to 'mido'. """ if backend == "mido": return write_midi_mido(path, music, **kwargs) if backend == "pretty_midi": return write_midi_pretty_midi(path, music) raise ValueError("`backend` must by one of 'mido' and 'pretty_midi'.")
963e5aafffbc348df17861b615c2e839c170adce
3,648,531
import string from re import VERBOSE def find_star_column(file, column_type, header_length) : """ For an input .STAR file, search through the header and find the column numbers assigned to a given column_type (e.g. 'rlnMicrographName', ...) """ with open(file, 'r') as f : line_num = 0 for line in f : line_num += 1 # extract column number for micrograph name if column_type in line : for i in line.split()[1]: if i in string.digits : column_num = int(i) # search header and no further to find setup values if line_num >= header_length : if VERBOSE: # print("Read though header (%s lines total)" % header_length) print("Column value for %s is %d" % (column_type, column_num)) return column_num
832a63d2084b6f007c0b58fbafbe037d0a81ab38
3,648,532
def recalculate_bb(df, customization_dict, image_dir): """After resizing images, bb coordinates are recalculated. Args: df (Dataframe): A df for image info. customization_dict (dict): Resize dict. image_dir (list): Image path list Returns: Dataframe: Updated dataframe. """ img = cv2.imread(image_dir[0]) h, w, _ = img.shape new_width = customization_dict['width'] new_height = customization_dict['height'] w_ratio = new_width/w h_ratio = new_height/h df['x_min'] = df['x_min']*w_ratio df['x_max'] = df['x_max']*w_ratio df['y_min'] = df['y_min']*h_ratio df['y_max'] = df['y_max']*h_ratio df.x_min = df.x_min.astype("int16") df.x_max = df.x_max.astype("int16") df.y_min = df.y_min.astype("int16") df.y_max = df.y_max.astype("int16") return df
412149195898e492405fe58aef2d8c8ce360cef7
3,648,533
def free_port(): """Returns a free port on this host """ return get_free_port()
94765cdb1a6e502c9ad650956754b3eda7f1b060
3,648,534
def justify_to_box( boxstart: float, boxsize: float, itemsize: float, just: float = 0.0) -> float: """ Justifies, similarly, but within a box. """ return boxstart + (boxsize - itemsize) * just
a644d5a7a6ff88009e66ffa35498d9720b24222c
3,648,535
import time def newton(oracle, x_0, tolerance=1e-5, max_iter=100, line_search_options=None, trace=False, display=False): """ Newton's optimization method. Parameters ---------- oracle : BaseSmoothOracle-descendant object Oracle with .func(), .grad() and .hess() methods implemented for computing function value, its gradient and Hessian respectively. If the Hessian returned by the oracle is not positive-definite method stops with message="newton_direction_error" x_0 : np.array Starting point for optimization algorithm tolerance : float Epsilon value for stopping criterion. max_iter : int Maximum number of iterations. line_search_options : dict, LineSearchTool or None Dictionary with line search options. See LineSearchTool class for details. trace : bool If True, the progress information is appended into history dictionary during training. Otherwise None is returned instead of history. display : bool If True, debug information is displayed during optimization. Returns ------- x_star : np.array The point found by the optimization procedure message : string 'success' or the description of error: - 'iterations_exceeded': if after max_iter iterations of the method x_k still doesn't satisfy the stopping criterion. - 'newton_direction_error': in case of failure of solving linear system with Hessian matrix (e.g. non-invertible matrix). - 'computational_error': in case of getting Infinity or None value during the computations. history : dictionary of lists or None Dictionary containing the progress information or None if trace=False. Dictionary has to be organized as follows: - history['time'] : list of floats, containing time passed from the start of the method - history['func'] : list of function values f(x_k) on every step of the algorithm - history['grad_norm'] : list of values Euclidian norms ||g(x_k)|| of the gradient on every step of the algorithm - history['x'] : list of np.arrays, containing the trajectory of the algorithm. ONLY STORE IF x.size <= 2 Example: -------- >> oracle = QuadraticOracle(np.eye(5), np.arange(5)) >> x_opt, message, history = newton(oracle, np.zeros(5), line_search_options={'method': 'Constant', 'c': 1.0}) >> print('Found optimal point: {}'.format(x_opt)) Found optimal point: [ 0. 1. 2. 3. 4.] """ if tolerance <= 0.: tolerance = 1e-32 history = defaultdict(list) if trace else None line_search_tool = get_line_search_tool(line_search_options) x = np.copy(x_0) start_time = time.time() grad_norm_0 = np.linalg.norm(oracle.grad(x)) def get_alpha(x, d): if line_search_tool.is_correct(oracle, x, d, 1.): return 1. return line_search_tool.line_search(oracle, x, d) def has_nans(*args): for arg in args: if np.isnan(arg).any() or np.isinf(arg).any(): return True return False for _ in range(max_iter): func = oracle.func(x) grad = oracle.grad(x) hess = oracle.hess(x) grad_norm = np.linalg.norm(grad) if has_nans(func, grad, hess): return x, 'computational_error', history if grad_norm ** 2 <= tolerance * (grad_norm_0 ** 2): _log_if_needed(display, 'Gradient descent done, x =', x, 'f(x) =', func) _fill_history_if_needed(history, func, grad_norm, x, start_time) return x, 'success', history # could be saddle point, and we can try to use solve_saddle implemented above try: c, low = cho_factor(hess) if has_nans(c, low): return x, 'computational_error', history d = cho_solve((c, low), -grad) except: _log_if_needed(display, 'Failure of solving linear system with Hessian matrix') return x, 'newton_direction_error', history alpha = get_alpha(x, d) if alpha is None: return x, 'computational_error', history _fill_history_if_needed(history, func, grad_norm, x, start_time) x = x + alpha * d _fill_history_if_needed(history, oracle.func(x), np.linalg.norm(oracle.grad(x)), x, start_time) return do_check_result(oracle, x, tolerance, grad_norm_0, history, display)
5ecf60c7e26e4bf4c965203ea9dddc5f22104225
3,648,536
import time def generate_hostname(domain, hostname): """If hostname defined, returns FQDN. If not, returns FQDN with base32 timestamp. """ # Take time.time() - float, then: # - remove period # - truncate to 17 digits # - if it happen that last digits are 0 (and will not be displayed, so # string is shorter - pad it with 0. # # The result ensures that timestamp is 17 char length and is increasing. timestamp = str(time.time()).replace('.', '')[:17].ljust(17, '0') b32time = aws.int2str(number=int(timestamp), base=32) if hostname[-1] == '-': hostname = '{}{}'.format(hostname, '{time}') return '{}.{}'.format(hostname.format(time=b32time), domain)
54d85cea2b2aa69cc2864b0974852530453d63ca
3,648,537
def symmetrize(M): """Return symmetrized version of square upper/lower triangular matrix.""" return M + M.T - np.diag(M.diagonal())
a2f1311aa96d91d5c4992ad21018b07ac5954d1c
3,648,538
import sys def process_checksums_get(storage_share, hash_type, url): """Run StorageShare get_object_checksum() method to get checksum of file/object. Run StorageShare get_object_checksum() method to get the requested type of checksum for file/object whose URL is given. The client also needs to sp If the StorageShare does not support the method, the client will get an error message and the process will exit. Arguments: storage_share -- dynafed_storagestats StorageShare object. hash_type -- string that indicates the type of has requested. url -- string containing url to the desired file/object. Returns: String containing checksum or 'None'. """ try: _checksum = storage_share.get_object_checksum(hash_type, url) except dynafed_storagestats.exceptions.ChecksumWarningMissingChecksum as WARN: _logger.warning("[%s]%s", storage_share.id, WARN.debug) return None except AttributeError as ERR: _logger.error( "[%s]Checksum GET operation not supported for %s. %s", storage_share.id, storage_share.storageprotocol, ERR ) print( "[ERROR][%s]Checksum GET operation not supported %s. %s" % ( storage_share.id, storage_share.storageprotocol, ERR ), file=sys.stderr ) sys.exit(1) else: return _checksum
addd04d54348958b5c06b377a796fa12a30bd3cd
3,648,539
def prep_public_water_supply_fraction() -> pd.DataFrame: """calculates public water supply deliveries for the commercial and industrial sectors individually as a ratio to the sum of public water supply deliveries to residential end users and thermoelectric cooling. Used in calculation of public water supply demand to commercial and industrial sectors. :return: DataFrame of public water supply ratios for commercial and industrial sector. """ # read in data df = prep_water_use_1995(variables=['FIPS', 'State', 'PS-DelDO', 'PS-DelPT', 'PS-DelCO', 'PS-DelIN']) df_loc = prep_water_use_2015() # prepared list of 2015 counties with FIPS codes # calculate ratio of commercial pws to sum of domestic and thermoelectric cooling pws df['com_pws_fraction'] = np.where((df['PS-DelDO'] + df['PS-DelPT'] <= 0), np.nan, (df['PS-DelCO'] / (df['PS-DelDO'] + df['PS-DelPT']))) # calculate ratio of industrial pws to sum of domestic and thermoelectric cooling pws df["ind_pws_fraction"] = np.where(((df['PS-DelDO'] + df['PS-DelPT']) <= 0), np.nan, df['PS-DelIN'] / (df['PS-DelDO'] + df['PS-DelPT'])) # reduce dataframe df = df[['FIPS', 'State', 'com_pws_fraction', 'ind_pws_fraction']] # fill counties with 0 commercial or industrial public water supply ratios with state averages df_mean = df.groupby('State', as_index=False).mean() rename_list = df_mean.columns[1:].to_list() for col in rename_list: new_name = f"{col}_state" df_mean = df_mean.rename(columns={col: new_name}) df_mean_all = pd.merge(df, df_mean, how='left', on=['State']) # replace counties with consumption fractions of zero with the state average to replace missing data rep_list = df.columns[2:].to_list() for col in rep_list: mean_name = f"{col}_state" df_mean_all[col].fillna(df_mean_all[mean_name], inplace=True) # reduce dataframe to required output df_output = df_mean_all[['FIPS', 'State', 'com_pws_fraction', 'ind_pws_fraction']] # merge with full list of counties from 2015 water data df_output = pd.merge(df_loc, df_output, how='left', on=['FIPS', 'State']) return df_output
bb759cfa25add08b0faf0d9232448698d0ae8d53
3,648,540
def set_matchq_in_constraint(a, cons_index): """ Takes care of the case, when a pattern matching has to be done inside a constraint. """ lst = [] res = '' if isinstance(a, list): if a[0] == 'MatchQ': s = a optional = get_default_values(s, {}) r = generate_sympy_from_parsed(s, replace_Int=True) r, free_symbols = add_wildcards(r, optional=optional) free_symbols = sorted(set(free_symbols)) # remove common symbols r = sympify(r, locals={"Or": Function("Or"), "And": Function("And"), "Not":Function("Not")}) pattern = r.args[1].args[0] cons = r.args[1].args[1] pattern = rubi_printer(pattern, sympy_integers=True) pattern = setWC(pattern) res = ' def _cons_f_{}({}):\n return {}\n'.format(cons_index, ', '.join(free_symbols), cons) res += ' _cons_{} = CustomConstraint(_cons_f_{})\n'.format(cons_index, cons_index) res += ' pat = Pattern(UtilityOperator({}, x), _cons_{})\n'.format(pattern, cons_index) res += ' result_matchq = is_match(UtilityOperator({}, x), pat)'.format(r.args[0]) return "result_matchq", res else: for i in a: if isinstance(i, list): r = set_matchq_in_constraint(i, cons_index) lst.append(r[0]) res = r[1] else: lst.append(i) return lst, res
c40f15f500736102f4abf17169715387c2f1b91b
3,648,541
def istype(klass, object): """Return whether an object is a member of a given class.""" try: raise object except klass: return 1 except: return 0
bceb83914a9a346c59d90984730dddb808bf0e78
3,648,542
from typing import Mapping from typing import Any def _embed_from_mapping(mapping: Mapping[str, Any], ref: str) -> mapry.Embed: """ Parse the embed from the mapping. All the fields are parsed except the properties, which are parsed in a separate step. :param mapping: to be parsed :param ref: reference to the embeddable structure in the mapry schema :return: embeddable structure without the properties """ return mapry.Embed( name=mapping['name'], description=mapping['description'], ref=ref)
10d3894aa33d41efd47f03335c6e90547ee26e6c
3,648,543
import pdb def generate_csv_from_pnl(pnl_file_name): """在.pnl文件的源路径下新生成一个.csv文件. 拷贝自export_to_csv函数. pnl_file_name需包含路径. """ pnlc = alib.read_pnl_from_file(pnl_file_name) pnl = pnlc[1] if pnl is None: print('pnl文件{}不存在!'.format(pnl_file_name)) pdb.set_trace() csv_file_name = pnl_file_name[:-4] + '.csv' outf = open(csv_file_name, 'w') outf.write(alib.pnl_columns + '\n') f = ','.join(['%g'] * 14) + ',%d,%d,%d' for d in pnl: outf.write((f + '\n') % d) outf.close() return csv_file_name
ceed6ce7d31fe6cb738252b7458c2f404c01135c
3,648,544
def parse_number(text, allow_to_fail): """ Convert to integer, throw if fails :param text: Number as text (decimal, hex or binary) :return: Integer value """ try: if text in defines: return parse_number(defines.get(text), allow_to_fail) return to_number(text) except ValueError: if allow_to_fail: return 0 else: raise ASMSyntaxError(f'Invalid number format: {text}')
90906b56e8a88fcde9f66defeed48cf12371d375
3,648,545
import importlib def pick_vis_func(options: EasyDict): """Pick the function to visualize one batch. :param options: :return: """ importlib.invalidate_caches() vis_func = getattr( import_module("utils.vis.{}".format(options.vis.name[0])), "{}".format(options.vis.name[1]) ) return vis_func
4d65f00075c984e5407af09d3680f2195be640bb
3,648,546
import numpy def scale_quadrature(quad_func, order, lower, upper, **kwargs): """ Scale quadrature rule designed for unit interval to an arbitrary interval. Args: quad_func (Callable): Function that creates quadrature abscissas and weights on the unit interval. order (int): The quadrature order passed to the quadrature function. lower (float): The new lower limit for the quadrature function. upper (float): The new upper limit for the quadrature function. kwargs (Any): Extra keyword arguments passed to `quad_func`. Returns: Same as ``quad_func(order, **kwargs)`` except scaled to a new interval. Examples: >>> def my_quad(order): ... return (numpy.linspace(0, 1, order+1)[numpy.newaxis], ... 1./numpy.full(order+1, order+2)) >>> my_quad(2) (array([[0. , 0.5, 1. ]]), array([0.25, 0.25, 0.25])) >>> scale_quadrature(my_quad, 2, lower=0, upper=2) (array([[0., 1., 2.]]), array([0.5, 0.5, 0.5])) >>> scale_quadrature(my_quad, 2, lower=-0.5, upper=0.5) (array([[-0.5, 0. , 0.5]]), array([0.25, 0.25, 0.25])) """ abscissas, weights = quad_func(order=order, **kwargs) assert numpy.all(abscissas >= 0) and numpy.all(abscissas <= 1) assert numpy.sum(weights) <= 1+1e-10 assert numpy.sum(weights > 0) weights = weights*(upper-lower) abscissas = (abscissas.T*(upper-lower)+lower).T return abscissas, weights
f3854cee12a482bc9c92fe2809a0388dddb422e0
3,648,547
def ask_for_region(self): """ask user for region to select (2-step process)""" selection = ["BACK"] choices = [] while "BACK" in selection: response = questionary.select( "Select area by (you can go back and combine these choices):", choices=["continents", "regions", "countries"], ).ask() selection_items = getattr(self, response) if response == "regions": choices = ( [Choice(r) for r in selection_items if "EU" in r] + [Separator()] + [Choice(r) for r in selection_items if "EU" not in r] ) else: choices = [Choice(r) for r in selection_items.keys()] # preselect previous choices for choice in choices: if choice.value in selection: choice.checked = True current_selection = questionary.checkbox("Please select", choices=choices).ask() selection = selection + current_selection if "BACK" not in current_selection: selection = clean_results(selection) print(f"Selection: {clean_results(selection)}") selection = list(set(clean_results(selection))) return self._extract_countries(selection)
dd7ea9ca33ca8348fba0d36c5661b6fd30c96090
3,648,548
import array def peakAlign(refw,w): """ Difference between the maximum peak positions of the signals. This function returns the difference, in samples, between the peaks position of the signals. If the reference signal has various peaks, the one chosen is the peak which is closer to the middle of the signal, and if the other signal has more than one peak also, the chosen is the one closer to the reference peak signal. The first signal introduced is the reference signal. Parameters ---------- refw: array-like the input reference signal. w: array-like the input signal. Returns ------- al: int the difference between the two events position Example ------- >>> peakAlign([5,7,3,20,13,5,7],[5,1,8,4,3,10,3]) 1 See also: maxAlign(), minAlign(), peakNegAlign(), infMaxAlign(), infMinAlign() """ p_mw = array ( peaks(array(refw),min(refw)) ) p_w = array ( peaks(array(w),min(w)) ) if (len(p_mw)>1): min_al = argmin(abs( (len(refw)/2) - p_mw)) #to choose the peak closer to the middle of the signal p_mw=p_mw[min_al] if (list(p_w) == [] ): p_w = p_mw elif (len(p_w)>1): min_al = argmin(abs(p_w - p_mw)) #to choose the peak closer to the peak of the reference signal p_w=p_w[min_al] return int(array(p_mw-p_w))
a7497e828008281318dff25b5547e0ab4f8e9a35
3,648,549
def get_games(by_category, n_games): """ This function imports the dataframe of most popular games and returns a list of game names with the length of 'n_games' selected by 'by_category'. Valid options for 'by_category': rank, num_user_ratings """ df = pd.read_csv('../data/popular_games_with_image_url.csv', index_col = 0) if by_category == 'rank': ascending = True elif by_category == 'num_user_ratings': ascending = False df = df.sort_values(by_category, ascending = ascending) df = df.head(n_games) game_list = [] image_list = [] for row in df.iterrows(): #game_name = row[1]['name'] + ' (' + str(row[1]['year_published']) + ')' game_name = row[1]['name'] game_list.append(game_name) image_url = row[1]['image_url'] image_list.append(image_url) return game_list, image_list
2702d6b072ba9ac49565c9ee768d65c431441724
3,648,550
def diurnalPDF( t, amplitude=0.5, phase=pi8 ): """ "t" must be specified in gps seconds we convert the time in gps seconds into the number of seconds after the most recent 00:00:00 UTC return (1 + amplitude*sin(2*pi*t/day - phase))/day """ if amplitude > 1: raise ValueError("amplitude cannot be larger than 1") t = gps2relativeUTC(t) return (1 + amplitude*np.sin(twopi*t/day - phase))/day
6bf755851d2bf2582ca98c1bcbe67aa7dc4e0a2f
3,648,551
def imap_workers(workers, size=2, exception_handler=None): """Concurrently converts a generator object of Workers to a generator of Responses. :param workers: a generator of worker objects. :param size: Specifies the number of workers to make at a time. default is 2 :param exception_handler: Callback function, called when exception occured. Params: Worker, Exception """ pool = Pool(size) def start(r): return r.start() for worker in pool.imap_unordered(start, workers): if worker.response is not None: yield worker.response elif exception_handler: exception_handler(worker, worker.exception) pool.join()
c4ab81770b40238025055394bf43ca0dc99dd506
3,648,552
import time def output_time(time_this:float=None,end:str=" | ")->float: """输入unix时间戳,按格式输出时间。默认为当前时间""" if not time_this: time_this=time.time()-TIMEZONE print(time.strftime('%Y-%m-%d %H:%M:%S',time.gmtime(time_this)),end=end) # return time_this
ba17400306af7142a91bd5b62941c52fc59dbf1a
3,648,553
def blend_color(color1, color2, blend_ratio): """ Blend two colors together given the blend_ration :param color1: pygame.Color :param color2: pygame.Color :param blend_ratio: float between 0.0 and 1.0 :return: pygame.Color """ r = color1.r + (color2.r - color1.r) * blend_ratio g = color1.g + (color2.g - color1.g) * blend_ratio b = color1.b + (color2.b - color1.b) * blend_ratio a = color1.a + (color2.a - color1.a) * blend_ratio return pygame.Color(int(r), int(g), int(b), int(a))
0bb7fa1570472e60bd93a98f6da3a515ca9dd500
3,648,554
import os def load_flickr25k_dataset(tag='sky', path="data", n_threads=50, printable=False): """Returns a list of images by a given tag from Flick25k dataset, it will download Flickr25k from `the official website <http://press.liacs.nl/mirflickr/mirdownload.html>`_ at the first time you use it. Parameters ------------ tag : string or None If you want to get images with tag, use string like 'dog', 'red', see `Flickr Search <https://www.flickr.com/search/>`_. If you want to get all images, set to ``None``. path : string The path that the data is downloaded to, defaults is ``data/flickr25k/``. n_threads : int, number of thread to read image. printable : bool, print infomation when reading images, default is ``False``. Examples ----------- - Get images with tag of sky >>> images = tl.files.load_flickr25k_dataset(tag='sky') - Get all images >>> images = tl.files.load_flickr25k_dataset(tag=None, n_threads=100, printable=True) """ path = os.path.join(path, 'flickr25k') filename = 'mirflickr25k.zip' url = 'http://press.liacs.nl/mirflickr/mirflickr25k/' ## download dataset if folder_exists(path+"/mirflickr") is False: print("[*] Flickr25k is nonexistent in {}".format(path)) maybe_download_and_extract(filename, path, url, extract=True) del_file(path+'/'+filename) ## return images by the given tag. # 1. image path list folder_imgs = path+"/mirflickr" path_imgs = load_file_list(path=folder_imgs, regx='\\.jpg', printable=False) path_imgs.sort(key=natural_keys) # print(path_imgs[0:10]) # 2. tag path list folder_tags = path+"/mirflickr/meta/tags" path_tags = load_file_list(path=folder_tags, regx='\\.txt', printable=False) path_tags.sort(key=natural_keys) # print(path_tags[0:10]) # 3. select images if tag is None: print("[Flickr25k] reading all images") else: print("[Flickr25k] reading images with tag: {}".format(tag)) images_list = [] for idx in range(0, len(path_tags)): tags = read_file(folder_tags+'/'+path_tags[idx]).split('\n') # print(idx+1, tags) if tag is None or tag in tags: images_list.append(path_imgs[idx]) images = visualize.read_images(images_list, folder_imgs, n_threads=n_threads, printable=printable) return images
b2d449a9d234aeb3d0d80bd1508ebcb55d57e6cd
3,648,555
def solve_a_star(start_id: str, end_id: str, nodes, edges): """ Get the shortest distance between two nodes using Dijkstra's algorithm. :param start_id: ID of the start node :param end_id: ID of the end node :return: Shortest distance between start and end node """ solution_t_start = perf_counter() solution = [] associations = {start_id: None} closed = set() # Nodes that have been resolved fringe = [] # Min-heap that holds nodes to check (aka. fringe) start_y, start_x = nodes[start_id] end_y, end_x = nodes[end_id] start_node = (0 + calc_distance(start_y, start_x, end_y, end_x), 0, start_id) heappush(fringe, start_node) while len(fringe) > 0: c_node = heappop(fringe) c_f, c_distance, c_id = c_node c_y, c_x = nodes[c_id] if c_id == end_id: return c_distance, solution, perf_counter() - solution_t_start, associations_to_path(associations, c_id, nodes) if c_id not in closed: closed.add(c_id) for child_id, c_to_child_distance in edges[c_id]: if child_id not in closed: # Add to solution path if child_id not in associations: associations[child_id] = c_id child_distance = c_distance + c_to_child_distance # Cost function child_y, child_x = nodes[child_id] child_node = ( child_distance + calc_distance(child_y, child_x, end_y, end_x), child_distance, child_id) heappush(fringe, child_node) solution.append(((c_y, c_x), (child_y, child_x))) return None
467257c15c7a99d217d75b69876b2f64ecd0b58e
3,648,556
def get_dhcp_relay_statistics(dut, interface="", family="ipv4", cli_type="", skip_error_check=True): """ API to get DHCP relay statistics Author Chaitanya Vella (chaitanya-vella.kumar@broadcom.com) :param dut: :type dut: :param interface: :type interface: """ cli_type = st.get_ui_type(dut, cli_type=cli_type) if cli_type in ['click', 'klish']: ip_val = "ip" if family == "ipv4" else "ipv6" if interface: command = "show {} dhcp-relay statistics {}".format(ip_val, interface) else: command = "show {} dhcp-relay statistics".format(ip_val) return st.show(dut, command, type=cli_type, skip_error_check=skip_error_check) elif cli_type in ['rest-patch', 'rest-put']: return _get_rest_dhcp_relay_statistics(dut, interface=interface, family=family) else: st.error("Unsupported CLI_TYPE: {}".format(cli_type)) return False
0784cd367d638124458d9e0fb808b45bcc239a84
3,648,557
def _runcmd(cmd, proc): """Run a command""" cmdstr = proc.template(cmd, **proc.envs).render(dict(proc=proc, args=proc.args)) logger.info('Running command from pyppl_runcmd ...', proc=proc.id) logger.debug(' ' + cmdstr, proc=proc.id) cmd = cmdy.bash(c=cmdstr, _raise=False).iter for line in cmd: logger.cmdout(line, proc=proc.id) cmd.wait() if cmd.rc == 0: return True for line in cmd.stderr.splitlines(): logger.cmderr(line, proc=proc.id) return False
f7271954e94b45ba46cb7d32535b29f7946cbde0
3,648,558
def check_rule_for_Azure_ML(rule): """Check if the ports required for Azure Machine Learning are open""" required_ports = ['29876', '29877'] if check_source_address_prefix(rule.source_address_prefix) is False: return False if check_protocol(rule.protocol) is False: return False if check_direction(rule.direction) is False: return False if check_provisioning_state(rule.provisioning_state) is False: return False if rule.destination_port_range is not None: if check_ports_in_destination_port_ranges( required_ports, [rule.destination_port_range]) is False: return False else: if check_ports_in_destination_port_ranges( required_ports, rule.destination_port_ranges) is False: return False return True
fb6067d484a3698b2d10d297e3419510d1d8c4e9
3,648,559
import re def text_cleanup(text: str) -> str: """ A simple text cleanup function that strips all new line characters and substitutes consecutive white space characters by a single one. :param text: Input text to be cleaned. :return: The cleaned version of the text """ text.replace('\n', '') return re.sub(r'\s{2,}', ' ', text)
84b9752f261f94164e2e83b944a2c12cee2ae5d8
3,648,560
from re import T def geocode(): """ Call a Geocoder service """ if "location" in request.vars: location = request.vars.location else: session.error = T("Need to specify a location to search for.") redirect(URL(r=request, f="index")) if "service" in request.vars: service = request.vars.service else: # @ToDo: service=all should be default service = "google" if service == "google": return s3base.GoogleGeocoder(location, db).get_kml() if service == "yahoo": return s3base.YahooGeocoder(location, db).get_xml()
0ddc7380b3ff3ccfba5f9cf3fbcc489a92dd1ba0
3,648,561
def create_overide_pandas_func( cls, func, verbose, silent, full_signature, copy_ok, calculate_memory ): """ Create overridden pandas method dynamically with additional logging using DataFrameLogger Note: if we extracting _overide_pandas_method outside we need to implement decorator like here https://stackoverflow.com/questions/10176226/how-do-i-pass-extra-arguments-to-a-python-decorator :param cls: pandas class for which the method should be overriden :param func: pandas method name to be overridden :param silent: Whether additional the statistics get printed :param full_signature: adding additional information to function signature :param copy_ok: whether the dataframe is allowed to be copied to calculate more informative metadata logs :return: the same function with additional logging capabilities """ def _run_method_and_calc_stats( fn, fn_args, fn_kwargs, input_df, full_signature, silent, verbose, copy_ok, calculate_memory, ): if copy_ok: # If we're ok to make copies, copy the input_df so that we can compare against the output of inplace methods try: # Will hit infinite recursion if we use the patched copy method so use the original original_input_df = getattr( input_df, settings.ORIGINAL_METHOD_PREFIX + "copy" )(deep=True) except AttributeError: original_input_df = input_df.copy(deep=True) output_df, execution_stats = get_execution_stats( cls, fn, input_df, fn_args, fn_kwargs, calculate_memory ) if output_df is None: # The operation was strictly in place so we just call the dataframe the output_df as well output_df = input_df if copy_ok: # If this isn't true and the method was strictly inplace, input_df and output_df will just # point to the same object input_df = original_input_df step_stats = StepStats( execution_stats, cls, fn, fn_args, fn_kwargs, full_signature, input_df, output_df, ) step_stats.log_stats_if_needed(silent, verbose, copy_ok) if isinstance(output_df, pd.DataFrame) or isinstance(output_df, pd.Series): step_stats.persist_execution_stats() return output_df def _overide_pandas_method(fn): if cls == pd.DataFrame: register_method_wrapper = pf.register_dataframe_method elif cls == pd.Series: register_method_wrapper = pf.register_series_method @register_method_wrapper @wraps(fn) def wrapped(*args, **fn_kwargs): input_df, fn_args = args[0], args[1:] output_df = _run_method_and_calc_stats( fn, fn_args, fn_kwargs, input_df, full_signature, silent, verbose, copy_ok, calculate_memory, ) return output_df return wrapped return exec(f"@_overide_pandas_method\ndef {func}(df, *args, **kwargs): pass")
db2bf7cb5d5395aeb700ca14211690750f056a91
3,648,562
def orthogonalize(U, eps=1e-15): """ Orthogonalizes the matrix U (d x n) using Gram-Schmidt Orthogonalization. If the columns of U are linearly dependent with rank(U) = r, the last n-r columns will be 0. Args: U (numpy.array): A d x n matrix with columns that need to be orthogonalized. eps (float): Threshold value below which numbers are regarded as 0 (default=1e-15). Returns: (numpy.array): A d x n orthogonal matrix. If the input matrix U's cols were not linearly independent, then the last n-r cols are zeros. Examples: ```python >>> import numpy as np >>> import gram_schmidt as gs >>> gs.orthogonalize(np.array([[10., 3.], [7., 8.]])) array([[ 0.81923192, -0.57346234], [ 0.57346234, 0.81923192]]) >>> gs.orthogonalize(np.array([[10., 3., 4., 8.], [7., 8., 6., 1.]])) array([[ 0.81923192 -0.57346234 0. 0. ] [ 0.57346234 0.81923192 0. 0. ]]) ``` """ n = len(U[0]) # numpy can readily reference rows using indices, but referencing full rows is a little # dirty. So, work with transpose(U) V = U.T for i in range(n): prev_basis = V[0:i] # orthonormal basis before V[i] coeff_vec = np.dot(prev_basis, V[i].T) # each entry is np.dot(V[j], V[i]) for all j < i # subtract projections of V[i] onto already determined basis V[0:i] V[i] -= np.dot(coeff_vec, prev_basis).T if la.norm(V[i]) < eps: V[i][V[i] < eps] = 0. # set the small entries to 0 else: V[i] /= la.norm(V[i]) return V.T
5807c0e5c7ee663391123076c8784cfb7e445760
3,648,563
import os def get_files_under_dir(directory, ext='', case_sensitive=False): """ Perform recursive search in directory to match files with one of the extensions provided :param directory: path to directory you want to perform search in. :param ext: list of extensions of simple extension for files to match :param case_sensitive: is case of filename takes into consideration :return: list of files that matched query """ if isinstance(ext, (list, tuple)): allowed_exensions = ext else: allowed_exensions = [ext] if not case_sensitive: allowed_exensions = map(str.lower, allowed_exensions) result = [] for root, dirs, files in os.walk(directory): for filename in files: check_filename = filename if case_sensitive else filename.lower() if any(map(check_filename.endswith, allowed_exensions)): result.append(filename) return result
3ba3428d88c164fce850a29419b6eab46aa8b646
3,648,564
def boolean(func): """ Sets 'boolean' attribute (this attribute is used by list_display). """ func.boolean=True return func
9bbf731d72e53aa9814caacaa30446207af036bd
3,648,565
def load_output_template_configs(items): """Return list of output template configs from *items*.""" templates = [] for item in items: template = OutputTemplateConfig( id=item["id"], pattern_path=item.get("pattern-path", ""), pattern_base=item.get("pattern-base", ""), append_username_to_name=item.get("append-username-to-name", False), append_colorspace_to_name=item.get("append-colorspace-to-name", False), append_passname_to_name=item.get("append-passname-to-name", False), append_passname_to_subfolder=item.get("append-passname-to-subfolder", False), ) templates.append(template) return tuple(templates)
028502662906230bf2619fa105caa1d525ff8e75
3,648,566
def read_keyword_arguments_section(docstring: Docstring, start_index: int) -> tuple[DocstringSection | None, int]: """ Parse a "Keyword Arguments" section. Arguments: docstring: The docstring to parse start_index: The line number to start at. Returns: A tuple containing a `Section` (or `None`) and the index at which to continue parsing. """ arguments, index = read_arguments(docstring, start_index) if arguments: return DocstringSection(DocstringSectionKind.keyword_arguments, arguments), index warn(docstring, index, f"Empty keyword arguments section at line {start_index}") return None, index
9c789fd4b08d2f3d9e99d4db568ab710e4765c91
3,648,567
from typing import Mapping from typing import Iterable def is_builtin(x, drop_callables=True): """Check if an object belongs to the Python standard library. Parameters ---------- drop_callables: bool If True, we won't consider callables (classes/functions) to be builtin. Classes have class `type` and functions have class `builtin_function_or_method`, both of which are builtins - however, this is often not what we mean when we want to know if something is built in. Note: knowing the class alone is not enough to determine if the objects it creates are built-in; this may depend on the kwargs passed to its constructor. This will NOT check if a class was defined in the standard library. Returns ------- bool: True if the object is built-in. If the object is list-like, each item will be checked as well the container. If the object is dict-like, each key AND value will be checked (you can always pass in d.keys() or d.values() for more limited checking). Again, the container itself will be checked as well. """ def _builtin(x, drop_callables): if callable(x) and drop_callables: return False return x.__class__.__module__ == 'builtins' builtin = partial(_builtin, drop_callables=drop_callables) # Check mapping before iterable because mappings are iterable. if isinstance(x, Mapping): return builtin(x) and all(builtin(o) for o in flatten(x.items())) elif isinstance(x, Iterable): return builtin(x) and all(builtin(o) for o in flatten(x)) return builtin(x)
d84fbd770e048172d8c59315fbe24d58046f77b8
3,648,568
import yaml def random_pair_selection(config_path, data_size=100, save_log="random_sents"): """ randomly choose from parallel data, and save to the save_logs :param config_path: :param data_size: :param save_log: :return: random selected pairs """ np.random.seed(32767) with open(config_path.strip()) as f: configs = yaml.load(f) data_configs = configs["data_configs"] with open(data_configs["train_data"][0], "r") as src, \ open(data_configs["train_data"][1], "r") as trg, \ open(save_log+".src", "w") as out_src, open(save_log+".trg", "w") as out_trg: counter=0 return_src=[] return_trg=[] for sent_s, sent_t in zip(src,trg): if np.random.uniform()<0.2 and counter<data_size: counter += 1 out_src.write(sent_s) out_trg.write(sent_t) return_src+=[sent_s.strip()] return_trg+=[sent_t.strip()] return return_src, return_trg
417b59bae49fe8aa0566f20f8ff371c7760e1a8a
3,648,569
from sys import version def test_deployable(): """ Check that 1) no untracked files are hanging out, 2) no staged but uncommitted updates are outstanding, 3) no unstaged, uncommitted changes are outstanding, 4) the most recent git tag matches HEAD, and 5) the most recent git tag matches the current version. """ pytest.dbgfunc() staged, changed, untracked = tbx.git_status() assert untracked == [], "You have untracked files" assert changed == [], "You have unstaged updates" assert staged == [], "You have updates staged but not committed" if tbx.git_current_branch() != 'master': return True last_tag = tbx.git_last_tag() msg = "Version ({}) does not match tag ({})".format(version._v, last_tag) assert version._v == last_tag, msg assert tbx.git_hash() == tbx.git_hash(last_tag), "Tag != HEAD"
32d8f0a49bbd212b6e0123a34d8844dd622b1ba6
3,648,570
from typing import OrderedDict from typing import Counter def profile_nominal(pairs, **options): """Return stats for the nominal field Arguments: :param pairs: list with pairs (row, value) :return: dictionary with stats """ result = OrderedDict() values = [r[1] for r in pairs] c = Counter(values) result['top'], result['freq'] = c.most_common(1)[0] categories = list(c) categories.sort() result['categories'] = categories result['categories_num'] = len(categories) return result
00ef211e8f665a02f152e764c409668481c748cc
3,648,571
from typing import List def class_definitions(cursor: Cursor) -> List[Cursor]: """ extracts all class definitions in the file pointed by cursor. (typical mocks.h) Args: cursor: cursor of parsing result of target source code by libclang Returns: a list of cursor, each pointing to a class definition. """ cursors = cursors_in_same_file(cursor) class_cursors = [] for descendant in cursors: # check if descendant is pointing to a class declaration block. if descendant.kind != CursorKind.CLASS_DECL: continue if not descendant.is_definition(): continue # check if this class is directly enclosed by a namespace. if descendant.semantic_parent.kind != CursorKind.NAMESPACE: continue class_cursors.append(descendant) return class_cursors
c2831b787905b02865890aa2680c37b97ec2e0a8
3,648,572
import os def visualize_dataset(dataset_directory=None, mesh_filename_path=None): """ This method loads the mesh file from dataset directory and helps us to visualize it Parameters: dataset_directory (str): root dataset directory mesh_filename_path (str): mesh file name to process Returns: mesh (trimesh object) """ try: if dataset_directory is not None and mesh_filename_path is not None: mesh = trimesh.load(os.path.join(dataset_directory, mesh_filename_path)) return mesh except Exception: print('Caught Exception while reading meshfile', exc_info=True)
53a91f923fd231fb467dfc970c91d7400c085035
3,648,573
def service_list_by_category_view(request, category): """Shows services for a chosen category. If url doesn't link to existing category, return user to categories list""" template_name = 'services/service-list-by-category.html' if request.method == "POST": contact_form = ContactForm(request.POST) if contact_form.is_valid(): contact_form.save() return redirect(reverse('accounts:profile')) else: if request.user.is_authenticated: initial_data = { "user": request.user, "name": request.user.first_name + " " + request.user.last_name, "email": request.user.email } form = ContactForm( request.POST or None, initial=initial_data) else: form = ContactForm() try: obj = ServiceCategory.objects.get(name=category) queryset = Service.objects.filter(category=obj.pk) context = { "obj": obj, "queryset": queryset, "form": form, } except ServiceCategory.DoesNotExist: messages.error(request, 'No category named <em>' + category + '</em>.') return redirect("services:services_list") return render(request, template_name=template_name, context=context)
dcbed59c8b6876b7072eb82b27f6b10e829c2daa
3,648,574
def check_columns(board: list): """ Check column-wise compliance of the board for uniqueness (buildings of unique height) and visibility (top-bottom and vice versa). Same as for horizontal cases, but aggregated in one function for vertical case, i.e. columns. >>> check_columns(['***21**', '412453*', '423145*', '*543215', '*35214*', '*41532*', '*2*1***']) True >>> check_columns(['***21**', '412453*', '423145*', '*543215', '*35214*', '*41232*', '*2*1***']) False >>> check_columns(['***21**', '412553*', '423145*', '*543215', '*35214*', '*41532*', '*2*1***']) False """ transformed_board = [] l = len(board) for idx1 in range(l): line = [] for idx2 in range(l): line.append(board[idx2][idx1]) line = ''.join(line) transformed_board.append(line) if not check_horizontal_visibility(transformed_board): return False return True
26ea379a165b90eadcf89640f00857e9e95146c7
3,648,575
def get_git_tree(pkg, g, top_prd): """ :return: """ global pkg_tree global pkg_id global pkg_list global pkg_matrix pkg_tree = Tree() pkg_id = 0 pkg_list = dict() # pkg_list['root'] = [] if pkg == '': return None if pkg in Config.CACHED_GIT_REPOS: pkg_content = Config.CACHED_GIT_REPOS[pkg] print("^", end="", flush=True) else: pkg_content = get_gitpkg_content(pkg, g) if pkg_content: # first node in the tree if pkg in pkg_matrix.keys(): if top_prd not in pkg_matrix[pkg]: pkg_matrix[pkg].append(top_prd) else: pkg_matrix[pkg] = [top_prd] pkg_content.key = str(pkg_id) + "." +pkg_content.name pkg_content.component_id = top_prd.id pkg_content.component_name = top_prd.name # print(pkg_content.key, pkg_content.pkey, pkg_content.name, pkg_content.ups_table, ">>>>>>", end="", flush=True) pkg_tree.create_node(pkg_content.key, pkg_content.key, data=pkg_content) if pkg not in Config.CACHED_GIT_REPOS.keys(): Config.CACHED_GIT_REPOS[pkg] = pkg_content print("+", end="", flush=True) for child in pkg_content.ups_table: walk_git_tree(child, g, pkg_content.key, top_prd) else: return {'tree': None, 'deps': None} # print(pkg_tree) return {'tree': pkg_tree, 'deps': pkg_list}
05434882a476c8506804918cb44624c7734bf405
3,648,576
import requests def get_requests_session(): """Return an empty requests session, use the function to reuse HTTP connections""" session = requests.session() session.mount("http://", request_adapter) session.mount("https://", request_adapter) session.verify = bkauth_settings.REQUESTS_VERIFY session.cert = bkauth_settings.REQUESTS_CERT return session
e5921b12d29718e9ef1f503f902fed02a7c7e82f
3,648,577
def edit_role_description(rid, description, analyst): """ Edit the description of a role. :param rid: The ObjectId of the role to alter. :type rid: str :param description: The new description for the Role. :type description: str :param analyst: The user making the change. :type analyst: str """ description = description.strip() Role.objects(id=rid, name__ne=settings.ADMIN_ROLE).update_one(set__description=description) return {'success': True}
f857755766da1f8f5be0e3dc255ed34aa7ed3ed3
3,648,578
def have_questions(pair, config, info=None): """ Return True iff both images are annotated with questions. """ qas = info["qas"] c1id = pair[0] if qas[c1id]['qas'] == []: return False c2id = pair[1] if qas[c2id]['qas'] == []: return False return True
45a5f4babcc17ad5573008ca31773d51334144cd
3,648,579
def get_dist_genomic(genomic_data,var_or_gene): """Get the distribution associated to genomic data for its characteristics Parameters: genomic_data (dict): with UDN ID as key and list with dictionaries as value, dict contaning characteristics of the considered genomic data var_or_gene (str): "Var" if variants, "Gen" otherwise Returns: gene_effects (collec.Counter): distribution of characteristics for selected genomic data """ gene_list=[] for patient in genomic_data: for i in range(len(genomic_data[patient])): if var_or_gene=="Var": if "effect" in list(genomic_data[patient][i].keys()) and "gene" in list(genomic_data[patient][i].keys()): gene_list.append([genomic_data[patient][i]["gene"],genomic_data[patient][i]["effect"]]) else: gene_list.append([genomic_data[patient][i]["gene"],"NA"]) elif var_or_gene=="Gen": if "status" in list(genomic_data[patient][i].keys()) and "gene" in list(genomic_data[patient][i].keys()): gene_list.append([genomic_data[patient][i]["gene"],genomic_data[patient][i]["status"]]) else: gene_list.append([genomic_data[patient][i]["gene"],"NA"]) else: print("var_or_gene must be Var or Gen") gene_effects=collec.Counter(np.array(gene_list)[:,1]) return gene_effects
ada0b7ecd57ace9799102e97bc9173d888c23565
3,648,580
def get_gmb_dataset_train(max_sentence_len): """ Returns the train portion of the gmb data-set. See TRAIN_TEST_SPLIT param for split ratio. :param max_sentence_len: :return: """ tokenized_padded_tag2idx, tokenized_padded_sentences, sentences = get_gmb_dataset(max_sentence_len) return tokenized_padded_tag2idx[:int(len(tokenized_padded_tag2idx)*TRAIN_TEST_SPLIT)], \ tokenized_padded_sentences[:int(len(tokenized_padded_sentences)*TRAIN_TEST_SPLIT)], \ sentences[:int(len(sentences)*TRAIN_TEST_SPLIT)]
762800a0b986c74037e79dc1db92d5b2f6cd2e50
3,648,581
def is_answer_reliable(location_id, land_usage, expansion): """ Before submitting to DB, we judge if an answer reliable and set the location done if: 1. The user passes the gold standard test 2. Another user passes the gold standard test, and submitted the same answer as it. Parameters ---------- location_id : int ID of the location. land_usage : int User's answer of judging if the land is a farm or has buildings. (check the answer table in model.py for the meaning of the values) expansion : int User's answer of judging the construction is expanded. (check the answer table in model.py for the meaning of the values) Return ------ bool Result of the checking. True : Matches another good answer candiate. False : No other good answer candidates exist or match. """ # If another user passed the gold standard quality test, and submitted an answer to the same location. good_answer_candidates = Answer.query.filter_by(gold_standard_status=1, location_id=location_id, land_usage=land_usage, expansion=expansion).all() # If the good answer candidate doesn't exist if len(good_answer_candidates) == 0: return False else: return True
3aa510d68115ef519ec2a1318102d302aae81382
3,648,582
import numpy def _polyfit_coeffs(spec,specerr,scatter,labelA,return_cov=False): """For a given scatter, return the best-fit coefficients""" Y= spec/(specerr**2.+scatter**2.) ATY= numpy.dot(labelA.T,Y) CiA= labelA*numpy.tile(1./(specerr**2.+scatter**2.),(labelA.shape[1],1)).T ATCiA= numpy.dot(labelA.T,CiA) ATCiAinv= linalg.inv(ATCiA) if return_cov: return (numpy.dot(ATCiAinv,ATY),ATCiAinv) else: return numpy.dot(ATCiAinv,ATY)
9398fa2072625eb66ea8df2f79008577fe6aaabe
3,648,583
import os from pathlib import Path def get_repo_dir(): """Get repository root directory""" root_dir = './' if os.path.isdir(Path(__file__).parent.parent / 'src'): root_dir = f"{str((Path(__file__).parent.parent).resolve())}/" elif os.path.isdir('../src'): root_dir = '../' elif os.path.isdir('./src'): root_dir = './' else: log.warning('ROOT FOLDER NOT FOUND.') return root_dir
efa688b3458ab282a427506578cbabfc2d329c1f
3,648,584
def colorize(data, colors, display_ranges): """Example: colors = 'white', (0, 1, 0), 'red', 'magenta', 'cyan' display_ranges = np.array([ [100, 3000], [700, 5000], [600, 3000], [600, 4000], [600, 3000], ]) rgb = fig4.colorize(data, colors, display_ranges) plt.imshow(rgb) """ color_map = np.array([to_rgba(c)[:3] for c in colors]) dr = display_ranges[..., None, None] normed = (data - dr[:, 0]) / (dr[:, 1] - dr[:, 0] ) # there's probably a nicer way to do this rgb = (color_map.T[..., None, None] * normed[None, ...]).sum(axis=1) return rgb.clip(min=0, max=1).transpose([1, 2, 0])
efb6ff9c0573da4a11cbfdbf55acaccbb69de216
3,648,585
import itertools def multi_mdf(S, all_drGs, constraints, ratio_constraints=None, net_rxns=[], all_directions=False, x_max=0.01, x_min=0.000001, T=298.15, R=8.31e-3): """Run MDF optimization for all condition combinations ARGUMENTS S : pandas.DataFrame Pandas DataFrame that corresponds to the stoichiometric matrix. Column names are reaction IDs and row indices are compound names. all_drGs : pandas.DataFrame Pandas DataFrame with reaction IDs in the first column, condition identifier strings in the intermediate columns, and reaction standard Gibbs energies in float format in the last column. constraints : pandas.DataFrame Pandas DataFrame with a compound ID column (string), a lower concentration bound column (float) and an upper concentration bound colunn (float). ratio_constraints : pandas.DataFrame, optional Pandas DataFrame with two compound ID columns (string), a lower limit concentration ratio column (float), an upper limit concentration ratio column (float) and the concentration ratio range step number (int). The third column is interpreted as the fixed ratio when the fourth column contains a None value. The last column indicates the type of spacing to use for ratio ranges (linear or logarithmic). net_rxns : list of strings List with strings referring to the background network reactions for network-embedded MDF analysis (NEM). The reactions should be in S. all_directions : bool, optional Set to True to calculate MDF for all possible reaction direction combinations. Not recommended for sets of reactions >20. x_max : float Maximum default metabolite concentration (M). x_min : float Minimum default metabolite concentration (M). T : float Temperature (K). R : float Universal gas constant (kJ/(mol*K)). RETURNS mdf_table : pandas.DataFrame A Pandas DataFrame containing all MDF results for a single pathway. Each row corresponds to one individual MDF optimization, with the parameters described in the columns: v0 ... : string Condition identifiers as supplied in all_drGs. drG_std(rxn_id) : float The standard reaction Gibbs energy for the reaction 'rxn_id'. [cpd_id_num]/[cpd_id_den] ... : float Ratio of concentration between compounds 'cpd_id_num' and 'cpd_id_den'. dir(rxn_id) ... : int The direction used for the reaction 'rxn_id'. The order is the same as the columns in S. [cpd_id] ... : float Optimized concentration for compound 'cpd_id' (M). drG_opt(rxn_id) : float The optimized reaction Gibbs energy for reaction 'rxn_id' (kJ/mol). success : int Indicates optimization success (1) or failure (0). MDF : float The Max-min Driving Force determined through linear optimization (kJ/mol). """ # All drGs # -> All ratio combinations # -> All directions # Number of reactions n_rxn = S.shape[1] # List the condition identifiers conditions = list(all_drGs.columns[1:-1]) # Create column labels for output DataFrame if ratio_constraints is not None: ratio_labels = [ 'ratio_' + ratio_constraints.iloc[row,:]['cpd_id_num'] + \ '_' + ratio_constraints.iloc[row,:]['cpd_id_den'] \ for row in range(ratio_constraints.shape[0]) ] else: ratio_labels = [] column_labels = [ *conditions, *['drGstd_' + rxn_id for rxn_id in list(S.columns)], *ratio_labels, *['dir_' + rxn_id for rxn_id in list(S.columns)], *['c_' + cpd_id for cpd_id in list(S.index)], *['drGopt_' + rxn_id for rxn_id in list(S.columns)], 'success', 'MDF' ] # Also create labels for sorting (conditions, ratios and directions) sort_labels = [ *conditions, *ratio_labels, *['dir_' + rxn_id for rxn_id in list(S.columns)] ] # Iterator preparation def prep_iter(): # Set up conditions iterator if len(conditions): cond_iter = all_drGs[conditions].drop_duplicates().iterrows() else: cond_iter = [None] # Set up directions iterator if not all_directions: dir_iter = [[1.0]*n_rxn] else: dir_iter = itertools.product([1.0,-1.0], repeat=n_rxn) # Set up ratios iterator if ratio_constraints is not None: rats_iter = ratio_iter(ratio_constraints) else: rats_iter = [None] # Set up fixed concentration range constraints iterator cons_iter = con_iter(constraints) return itertools.product(cond_iter, dir_iter, rats_iter, cons_iter) # Set up output DataFrame mdf_table = pd.DataFrame(columns = column_labels) # Determine number of rows that will be produced M = 0 for i in prep_iter(): M += 1 # Iterate over all combinations of conditions, directions and ratios n = 0 for params in prep_iter(): n += 1 progress = float(n / M * 100) sWrite("\rPerforming MDF optimization... %0.1f%%" % progress) # Extract specific condition, direction and ratio constraints if params[0] is not None: condition = pd.DataFrame(params[0][1]).T else: condition = None direction = params[1] rats = params[2] constraints_mod = params[3] # Obtain specific standard reaction Gibbs energies with correct sign if condition is not None: drGs = pd.merge(condition, all_drGs) else: drGs = all_drGs drGs.is_copy = False drGs.loc[:,['drG']] = drGs['drG'] * direction # Modify direction (sign) of reactions in the stoichiometric matrix S_mod = S * direction # Set up MDF inputs c = mdf_c(S_mod) A = mdf_A(S_mod, net_rxns) b = mdf_b(S_mod, drGs, constraints_mod, x_max, x_min, T, R) # Use equality (ratio) constraints if they were specified if rats is not None: A_eq = mdf_A_eq(S_mod, rats) b_eq = mdf_b_eq(rats) # If the ratio constraints have been filtered out, set to None if not A_eq.size or not b_eq.size: A_eq = None b_eq = None else: A_eq = None b_eq = None # Perform MDF mdf_result = mdf(c, A, b, A_eq, b_eq) # Prepare conditions list if condition is not None: conditions_list = list(condition.iloc[0,:]) else: conditions_list = [] # Prepare ratios list if rats is not None: rats_list = list(rats.ratio) else: rats_list = [] # Format results row mdf_row = [ *conditions_list, *[float(drGs[drGs.rxn_id == rxn_id]['drG']) for rxn_id in S_mod.columns], *rats_list, *direction, ] if mdf_result.success: mdf_row.extend([ *np.exp(mdf_result.x[:-1]), # Concentrations *calc_drGs(S_mod, drGs, mdf_result.x[:-1]), # Reaction Gibbs energies 1.0, # Success mdf_result.x[-1]*R*T # MDF value ]) else: mdf_row.extend([ *[np.nan]*S_mod.shape[0], # Concentrations *[np.nan]*S_mod.shape[1], # Reaction Gibbs energies 0.0, # Failure np.nan # No MDF value ]) # Append row to expected result mdf_table = mdf_table.append(pd.DataFrame([mdf_row], columns = column_labels)) return mdf_table.sort_values(sort_labels)
3496105b764bc72b1c52ee28d419617798ad72cc
3,648,586
def nufft_adjoint(input, coord, oshape=None, oversamp=1.25, width=4.0, n=128): """Adjoint non-uniform Fast Fourier Transform. Args: input (array): Input Fourier domain array. coord (array): coordinate array of shape (..., ndim). ndim determines the number of dimension to apply nufft adjoint. oshape (tuple of ints): output shape. oversamp (float): oversampling factor. width (float): interpolation kernel full-width in terms of oversampled grid. n (int): number of sampling points of interpolation kernel. Returns: array: Transformed array. See Also: :func:`sigpy.nufft.nufft` """ device = backend.get_device(input) xp = device.xp ndim = coord.shape[-1] beta = np.pi * (((width / oversamp) * (oversamp - 0.5))**2 - 0.8)**0.5 if oshape is None: oshape = list(input.shape[:-coord.ndim + 1]) + estimate_shape(coord) else: oshape = list(oshape) with device: coord = _scale_coord(backend.to_device(coord, device), oshape, oversamp) kernel = backend.to_device( _kb(np.arange(n, dtype=coord.dtype) / n, width, beta, coord.dtype), device) os_shape = oshape[:-ndim] + [_get_ugly_number(oversamp * i) for i in oshape[-ndim:]] output = interp.gridding(input, os_shape, width, kernel, coord) for a in range(-ndim, 0): i = oshape[a] os_i = os_shape[a] idx = xp.arange(i, dtype=input.dtype) os_shape[a] = i # Swap axes output = output.swapaxes(a, -1) os_shape[a], os_shape[-1] = os_shape[-1], os_shape[a] # Oversampled IFFT output = ifft(output, axes=[-1], norm=None) output *= os_i / i**0.5 output = util.resize(output, os_shape) # Calculate apodization apod = (beta**2 - (np.pi * width * (idx - i // 2) / os_i)**2)**0.5 apod /= xp.sinh(apod) # Apodize output *= apod # Swap back output = output.swapaxes(a, -1) os_shape[a], os_shape[-1] = os_shape[-1], os_shape[a] return output
d3d03ebe3d905cb647fab7d801592e148023709e
3,648,587
def get_bustools_version(): """Get the provided Bustools version. This function parses the help text by executing the included Bustools binary. :return: tuple of major, minor, patch versions :rtype: tuple """ p = run_executable([get_bustools_binary_path()], quiet=True, returncode=1) match = VERSION_PARSER.match(p.stdout.read()) return tuple(int(ver) for ver in match.groups()) if match else None
7de14349b9349352c3532fbcc0be58be0f9756c7
3,648,588
import nose import sys def main(): """ Args: none Returns: exit code Usage: python -m rununittest """ # Can use unittest or nose; nose here, which allows --with-coverage. return nose.run(argv=[sys.argv[0], "-s", "--with-coverage", "rununittest"])
6eaaf5ebfbe9536364669f186d1c84a5fc31be05
3,648,589
def request_from_url(url): """Parses a gopher URL and returns the corresponding Request instance.""" pu = urlparse(url, scheme='gopher', allow_fragments=False) t = '1' s = '' if len(pu.path) > 2: t = pu.path[1] s = pu.path[2:] if len(pu.query) > 0: s = s + '?' + pu.query p = '70' if pu.port: p = str(pu.port) return Request(t, pu.hostname, p, s)
aff334f8358edcae028b65fa1b4cf5727638eaad
3,648,590
import os def getJsonPath(name, moduleFile): """ 获取JSON配置文件的路径: 1. 优先从当前工作目录查找JSON文件 2. 若无法找到则前往模块所在目录查找 """ currentFolder = os.getcwd() currentJsonPath = os.path.join(currentFolder, name) if os.path.isfile(currentJsonPath): return currentJsonPath else: moduleFolder = os.path.abspath(os.path.dirname(moduleFile)) moduleJsonPath = os.path.join(moduleFolder, '.', name) return moduleJsonPath
5f0dca485794dead91ecce70b4040809886186c3
3,648,591
def enable_pause_data_button(n, interval_disabled): """ Enable the play button when data has been loaded and data *is* currently streaming """ if n and n[0] < 1: return True if interval_disabled: return True return False
4257a2deb9b8be87fe64a54129ae869623c323e8
3,648,592
import scipy def dProj(z, dist, input_unit='deg', unit='Mpc'): """ Projected distance, physical or angular, depending on the input units (if input_unit is physical, returns angular, and vice-versa). The units can be 'cm', 'ly' or 'Mpc' (default units='Mpc'). """ if input_unit in ('deg', 'arcmin', 'arcsec'): Da = dA(z, unit=unit) else: Da = dA(z, unit=input_unit) # from angular to physical if input_unit == 'deg': dist = Da * scipy.pi * dist / 180 elif input_unit == 'arcmin': dist = Da * scipy.pi * dist / (180 * 60) elif input_unit == 'arcsec': dist = Da * scipy.pi * dist / (180 * 3600) # from physical to angular if unit == 'deg': dist = dist * 180 / (scipy.pi * Da) elif unit == 'arcmin': dist = dist * 180 * 60 / (scipy.pi * Da) elif unit == 'arcsec': dist = dist * 180 * 3600 / (scipy.pi * Da) return dist
13610816dfb94a92d6890d351312661b04e8604f
3,648,593
def savgoldiff(x, dt, params=None, options={}, dxdt_truth=None, tvgamma=1e-2, padding='auto', optimization_method='Nelder-Mead', optimization_options={'maxiter': 10}, metric='rmse'): """ Optimize the parameters for pynumdiff.linear_model.savgoldiff See pynumdiff.optimize.__optimize__ and pynumdiff.linear_model.savgoldiff for detailed documentation. """ # initial condition if params is None: orders = [2, 3, 5, 7, 9, 11, 13] window_sizes = [3, 10, 30, 50, 90, 130, 200, 300] smoothing_wins = [3, 10, 30, 50, 90, 130, 200, 300] params = [] for order in orders: for window_size in window_sizes: for smoothing_win in smoothing_wins: params.append([order, window_size, smoothing_win]) # param types and bounds params_types = [int, int, int] params_low = [1, 3, 3] params_high = [12, 1e3, 1e3] # optimize func = pynumdiff.linear_model.savgoldiff args = [func, x, dt, params_types, params_low, params_high, options, dxdt_truth, tvgamma, padding, metric] opt_params, opt_val = __optimize__(params, args, optimization_method=optimization_method, optimization_options=optimization_options) return opt_params, opt_val
cb6da1a5fe3810ea1f481450667e548a9f64dae2
3,648,594
import base64 def credentials(scope="module"): """ Note that these credentials match those mentioned in test.htpasswd """ h = Headers() h.add('Authorization', 'Basic ' + base64.b64encode("username:password")) return h
4f0b1c17da546bfa655a96cfe5bcf74719dff55d
3,648,595
import sys def _score_match(matchinfo: bytes, form, query) -> float: """ Score how well the matches form matches the query 0.5: half of the terms match (using normalized forms) 1: all terms match (using normalized forms) 2: all terms are identical 3: all terms are identical, including case """ try: if form == query: return 3 if form.lower() == query.lower(): return 2 # Decode matchinfo blob according to https://www.sqlite.org/fts3.html#matchinfo offset = 0 num_cols = int.from_bytes(matchinfo[offset : offset + 4], sys.byteorder) offset += 4 tokens = int.from_bytes(matchinfo[offset : offset + 4], sys.byteorder) offset += num_cols * 4 matched_tokens = int.from_bytes(matchinfo[offset : offset + 4], sys.byteorder) # print(matchinfo, form, query, matched_tokens, tokens) return matched_tokens / tokens except Exception as e: print(e) raise
ef8c223b6c972f7b43fe46788ac894c5454e3f18
3,648,596
def _set_bias(clf, X, Y, recall, fpos, tneg): """Choose a bias for a classifier such that the classification rule clf.decision_function(X) - bias >= 0 has a recall of at least `recall`, and (if possible) a false positive rate of at most `fpos` Paramters --------- clf : Classifier classifier to use X : array-like [M-examples x N-dimension] feature vectors Y : array [M-exmaples] Binary classification recall : float Minimum fractional recall fpos : float Desired Maximum fractional false positive rate tneg : int Total number of negative examples (including previously-filtered examples) """ df = clf.decision_function(X).ravel() r = _recall_bias(df[Y == 1], recall) f = _fpos_bias(df[Y == 1], fpos, tneg) return min(r, f)
bbc903752d9abc93f723830e5c6c51459d18d0a5
3,648,597
from typing import Type from typing import Dict from typing import Any def get_additional_params(model_klass: Type['Model']) -> Dict[str, Any]: """ By default, we dont need additional params to FB API requests. But in some instances (i.e. fetching Comments), adding parameters makes fetching data simpler """ assert issubclass(model_klass, abstractcrudobject.AbstractCrudObject) return _default_additional_params.get(model_klass, {})
1b4c934a06870a8ae1f2f999bab94fb286ee6126
3,648,598
def thread_loop(run): """decorator to make the function run in a loop if it is a thread""" def fct(self, *args, **kwargs): if self.use_thread: while True: run(*args, **kwargs) else: run(*args, **kwargs) return fct
a68eee708bc0a1fe0a3da01e68ec84b6a43d9210
3,648,599