content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import random def ports_info(ptfadapter, duthost, setup, tx_dut_ports): """ Return: dut_iface - DUT interface name expected to receive packtes from PTF ptf_tx_port_id - Port ID used by PTF for sending packets from expected PTF interface dst_mac - DUT interface destination MAC address src_mac - PTF interface source MAC address """ data = {} data["dut_iface"] = random.choice(tx_dut_ports.keys()) data["ptf_tx_port_id"] = setup["dut_to_ptf_port_map"][data["dut_iface"]] data["dst_mac"] = get_dut_iface_mac(duthost, data["dut_iface"]) data["src_mac"] = ptfadapter.dataplane.ports[(0, data["ptf_tx_port_id"])].mac() return data
14aef7e68386872a1d960329f2f8bee452aa9e29
3,647,800
def test_text_single_line_of_text(region, projection): """ Place a single line text of text at some x, y location. """ fig = Figure() fig.text( region=region, projection=projection, x=1.2, y=2.4, text="This is a line of text", ) return fig
0e82165a2717fe9279015d3823b717a870b94e05
3,647,801
def safely_get_form(request, domain, instance_id): """Fetches a form and verifies that the user can access it.""" form = get_form_or_404(domain, instance_id) if not can_edit_form_location(domain, request.couch_user, form): raise location_restricted_exception(request) return form
b3ba8da253a6455f5aeb65f828f8c28c826ac2d2
3,647,802
def generate_hazard_rates(n, d, timelines, constant=False, independent=0, n_binary=0, model="aalen"): """ n: the number of instances d: the number of covariates lifelines: the observational times constant: make the coeffients constant (not time dependent) n_binary: the number of binary covariates model: from ["aalen", "cox"] Returns:s hazard rates: (t,n) dataframe, coefficients: (t,d+1) dataframe of coefficients, covarites: (n,d) dataframe """ covariates = generate_covariates(n, d, n_binary=n_binary) if model == "aalen": coefficients = time_varying_coefficients(d + 1, timelines, independent=independent, constant=constant) hazard_rates = np.dot(covariates, coefficients.T) return pd.DataFrame(hazard_rates.T, index=timelines), coefficients, pd.DataFrame(covariates) elif model == "cox": covariates = covariates[:, :-1] coefficients = constant_coefficients(d, timelines, independent) baseline = time_varying_coefficients(1, timelines) hazard_rates = np.exp(np.dot(covariates, coefficients.T)) * baseline[baseline.columns[0]].values coefficients["baseline: " + baseline.columns[0]] = baseline.values return pd.DataFrame(hazard_rates.T, index=timelines), coefficients, pd.DataFrame(covariates) else: raise Exception
9c0da64f5796f57d474822121e1af5ca8ebb25e2
3,647,803
def load_graph(graph_url): """ Function that loads a graph given the URL for a text representation of the graph Returns a dictionary that models a graph """ graph_file = urllib2.urlopen(graph_url) graph_text = graph_file.read() graph_lines = graph_text.split('\n') graph_lines = graph_lines[ : -1] print "Loaded graph with", len(graph_lines), "nodes" answer_graph = {} for line in graph_lines: neighbors = line.split(' ') node = int(neighbors[0]) answer_graph[node] = set([]) for neighbor in neighbors[1 : -1]: answer_graph[node].add(int(neighbor)) return answer_graph
d346fb75f5ff872147a166948af65bb52bab739c
3,647,804
import torch def calculate_regularization_term(means, n_objects, norm): """means: bs, n_instances, n_filters""" bs, n_instances, n_filters = means.size() reg_term = 0.0 for i in range(bs): if n_objects[i]: _mean_sample = means[i, : n_objects[i], :] # n_objects, n_filters _norm = torch.norm(_mean_sample, norm, 1) reg_term += torch.mean(_norm) reg_term = reg_term / bs return reg_term
b6eb43a8915449c7e86d01a08b3ea2e77ae51064
3,647,805
from typing import Union from typing import Sequence def plot_timeseries_histograms( axes: Axes, data: pd.DataFrame, bins: Union[str, int, np.ndarray, Sequence[Union[int, float]]] = "auto", colormap: Colormap = cm.Blues, **plot_kwargs, ) -> Axes: # pragma: no cover """Generate a heat-map-like plot for time-series sample data. The kind of input this function expects can be obtained from an XArray object as follows: .. code: data = az_post_trace.posterior_predictive.Y_t[chain_idx].loc[ {"dt": slice(t1, t2)} ] data = data.to_dataframe().Y_t.unstack(level=0) Parameters ========== axes The Matplotlib axes to use for plotting. data The sample data to be plotted. This should be in "wide" format: i.e. the index should be "time" and the columns should correspond to each sample. bins The `bins` parameter passed to ``np.histogram``. colormap The Matplotlib colormap use to show relative frequencies within bins. plot_kwargs Keywords passed to ``fill_between``. """ index = data.index y_samples = data.values n_t = len(index) # generate histograms and bins list_of_hist, list_of_bins = [], [] for t in range(n_t): # TODO: determine proper range=(np.min(Y_t), np.max(Y_t)) hist, bins_ = np.histogram(y_samples[t], bins=bins, density=True) if np.sum(hist > 0) == 1: hist, bins_ = np.array([1.0]), np.array([bins_[0], bins_[-1]]) list_of_hist.append(hist) list_of_bins.append(bins_) if axes is None: _, (axes) = plt.subplots(nrows=1, ncols=1, sharex=True, figsize=(12, 4)) axes.plot(index, np.mean(y_samples, axis=1), alpha=0.0, drawstyle="steps") for t in range(n_t): mask = index == index[t] hist, bins_ = list_of_hist[t], list_of_bins[t] # normalize bin weights for plotting hist = hist / np.max(hist) * 0.85 if len(hist) > 1 else hist n = len(hist) # construct predictive arrays to plot y_t_ = np.tile(bins_, (n_t, 1)) # include consecutive time points to create grid-ish steps if t > 0: mask = np.logical_or(mask, index == index[t - 1]) for i in range(n): color_val = hist[i] color = colormap(color_val) if color_val else (1, 1, 1, 1) plot_kwargs.setdefault("step", "pre") axes.fill_between( index, y_t_[:, i], y_t_[:, i + 1], where=mask, color=color, **plot_kwargs, ) return axes
5f207097478f73d969e1f85f0aa2bbe5f894f038
3,647,806
def mode(x): """ Find most frequent element in array. Args: x (List or Array) Returns: Input array element type: Most frequent element """ vals, counts = np.unique(x, return_counts=True) return vals[np.argmax(counts)]
b73bf301ca9ebf45f3a6698f8b6d45a5640cb301
3,647,807
def has_path(matrix, path: str) -> bool: """ Given a matrix, make sure there is a path for a given string or not. Parameters ---------- path: str A given path, like "abcd" Returns ------- out: bool Whether the given path can be found in the matrix """ if not path: return True if not matrix[0]: return False rows, cols = len(matrix), len(matrix[0]) visited = [] for i in range(rows): tmp = [] for j in range(cols): tmp.append(False) visited.append(tmp) plen = 0 for row in range(rows): for col in range(cols): hasp = has_path_core(matrix, row, col, rows, cols, path, plen, visited) if hasp: return True return False
bbde72992b762dd73c44c60da675da829255000d
3,647,808
def gensim_processing(data): """ Here we use gensim to define bi-grams and tri-grams which enable us to create a create a dictonary and corpus We then process the data by calling the process_words function from our utils folder """ #build the models first bigram = gensim.models.Phrases(data, min_count=3, threshold=15) #We're lowering the threshold as we've not a lot of data trigram = gensim.models.Phrases(bigram[data], threshold=15) #Then fit them to the data bigram_mod = gensim.models.phrases.Phraser(bigram) trigram_mod = gensim.models.phrases.Phraser(trigram) #We further process the data using spacy and allow Nouns and Adjectives to pass (not verbs or adverbs!) data_processed = lda_utils.process_words(data,nlp, bigram_mod, trigram_mod, allowed_postags=["NOUN","ADJ"]) #We now have a list of words which can be used to train the LDA model return data_processed
67a4d9a90c8ea9809980d9871b769288915fe3cc
3,647,809
import os import re def is_cuda_compatible(lib, cuda_ver, cudnn_ver): """Check compatibility between given library and cudnn/cudart libraries.""" ldd_bin = which('ldd') or '/usr/bin/ldd' ldd_out = run_shell([ldd_bin, lib], True) ldd_out = ldd_out.split(os.linesep) cudnn_pattern = re.compile('.*libcudnn.so\\.?(.*) =>.*$') cuda_pattern = re.compile('.*libcudart.so\\.?(.*) =>.*$') cudnn = None cudart = None cudnn_ok = True # assume no cudnn dependency by default cuda_ok = True # assume no cuda dependency by default for line in ldd_out: if 'libcudnn.so' in line: cudnn = cudnn_pattern.search(line) cudnn_ok = False elif 'libcudart.so' in line: cudart = cuda_pattern.search(line) cuda_ok = False if cudnn and len(cudnn.group(1)): cudnn = convert_version_to_int(cudnn.group(1)) if cudart and len(cudart.group(1)): cudart = convert_version_to_int(cudart.group(1)) if cudnn is not None: cudnn_ok = (cudnn == cudnn_ver) if cudart is not None: cuda_ok = (cudart == cuda_ver) return cudnn_ok and cuda_ok
9d89dacffe7ce865f2cb0702ccc37a57365af594
3,647,810
import os def image_upload_to(instance, filename): """Create the path where to store the files. If the file instance is a Sponsor, the file has to be the logo so it will be uploaded to MEDIA_ROOT/sponsors/<sponsor_name>/logo<ext>. """ logger.debug("Hello!") path = None basename, ext = os.path.splitext(filename) if isinstance(instance, Category): path = os.path.join('categories', instance.slug, 'img{}'.format(ext)) logger.info("Image {filename} saved in {path}".format(path=path, filename=filename)) return path
a82dc1bbdcfdb071ce0c578930e00ada64206673
3,647,811
def _distances(value_domain, distance_metric, n_v): """Distances of the different possible values. Parameters ---------- value_domain : array_like, with shape (V,) Possible values V the units can take. If the level of measurement is not nominal, it must be ordered. distance_metric : callable Callable that return the distance of two given values. n_v : ndarray, with shape (V,) Number of pairable elements for each value. Returns ------- d : ndarray, with shape (V, V) Distance matrix for each value pair. """ return np.array([[distance_metric(v1, v2, i1=i1, i2=i2, n_v=n_v) for i2, v2 in enumerate(value_domain)] for i1, v1 in enumerate(value_domain)])
90c362db28497569a50475d7f6040755b1cfffea
3,647,812
import torch import math def log_mvn_likelihood(mean: torch.FloatTensor, covariance: torch.FloatTensor, observation: torch.FloatTensor) -> torch.FloatTensor: """ all torch primitives all non-diagonal elements of covariance matrix are assumed to be zero """ k = mean.shape[0] variances = covariance.diag() log_likelihood = 0 for i in range(k): log_likelihood += - 0.5 * torch.log(variances[i]) \ - 0.5 * k * math.log(2 * math.pi) \ - 0.5 * ((observation[i] - mean[i])**2 / variances[i]) return log_likelihood
6333ea91ddff9ac685f18954c5b7344846810ec3
3,647,813
def M_Mobs(H0, M_obs): """ Given an observed absolute magnitude, returns absolute magnitude """ return M_obs + 5.*np.log10(H0/100.)
e7f817eaf281f2dd64f33ea4af44cd1cf9da31fa
3,647,814
def generate_proctoring_requirements_email_context(user, course_id): """ Constructs a dictionary for use in proctoring requirements email context Arguments: user: Currently logged-in user course_id: ID of the proctoring-enabled course the user is enrolled in """ course_module = modulestore().get_course(course_id) return { 'user': user, 'course_name': course_module.display_name, 'proctoring_provider': capwords(course_module.proctoring_provider.replace('_', ' ')), 'proctoring_requirements_url': settings.PROCTORING_SETTINGS.get('LINK_URLS', {}).get('faq', ''), 'id_verification_url': IDVerificationService.get_verify_location(), }
fc594882b68b7f1f554fa1681943d49b722ae229
3,647,815
import random def mutate_strings(s): """Return s with a random mutation applied""" mutators = [ delete_random_character, insert_random_character, flip_random_character ] mutator = random.choice(mutators) # print(mutator) return mutator(s)
0ba9dd533da44bc2051a7076b775177f29f4aaa6
3,647,816
def get_one_hot(inputs, num_classes): """Get one hot tensor. Parameters ---------- inputs: 3d numpy array (a x b x 1) Input array. num_classes: integer Number of classes. Returns ------- One hot tensor. 3d numpy array (a x b x n). """ onehots = np.zeros(shape=tuple(list(inputs.shape[:-1]) + [num_classes])) for i in range(inputs.shape[0]): for j in range(inputs.shape[1]): try: onehots[i, j, inputs[i, j, 0]] = 1.0 except IndexError: onehots[i, j, 0] = 1.0 return onehots
2f4a8b3a60a90a8f81579dd5938a1bab91cb5537
3,647,817
def one_hot_encoder(batch_inds, num_categories): """Applies one-hot encoding from jax.nn.""" one_hots = jax.nn.one_hot(batch_inds, num_classes=num_categories) return one_hots
85c15859555ee1bdec64adc627f34cc161c7e66c
3,647,818
def part1(entries: defaultdict) -> int: """part1 solver take the entries and return the part1 solution""" return calculate(entries, 80)
a35a559395f0c53eeac4600aaa28bc04d3e1766f
3,647,819
def ceki_filter(data, bound): """ Check if convergence checks ceki are within bounds""" ceki = data["ceki"].abs() < bound return ceki
09cd53f44241b13cf77eb2299c802ed238580259
3,647,820
def get_middleware(folder, request_name, middlewares=None): """ Gets the middleware for the given folder + request """ middlewares = middlewares or MW if folder: middleware = middlewares[folder.META.folder_name + "_" + request_name] else: middleware = middlewares[request_name] if middleware is None: def default_middleware(run, kwargs, env): return run(kwargs) middleware = default_middleware return middleware
720aafa5a3d0ef265eeaa8fe40a68c7024b0adc3
3,647,821
from typing import Dict import types from typing import List def convert_dm_compatible_observations( observes: Dict, dones: Dict[str, bool], observation_spec: Dict[str, types.OLT], env_done: bool, possible_agents: List, ) -> Dict[str, types.OLT]: """Convert Parallel observation so it's dm_env compatible. Args: observes : observations per agent. dones : dones per agent. observation_spec : env observation spec. env_done : is env done. possible_agents : possible agents in env. Returns: a dm compatible observation. """ observations: Dict[str, types.OLT] = {} for agent in possible_agents: # If we have a valid observation for this agent. if agent in observes: observation = observes[agent] if isinstance(observation, dict) and "action_mask" in observation: legals = observation["action_mask"].astype( observation_spec[agent].legal_actions.dtype ) # Environments like flatland can return tuples for observations if isinstance(observation_spec[agent].observation, tuple): # Assuming tuples all have same type. observation_dtype = observation_spec[agent].observation[0].dtype else: observation_dtype = observation_spec[agent].observation.dtype observation = observation["observation"].astype(observation_dtype) else: # TODO Handle legal actions better for continous envs, # maybe have min and max for each action and clip the # agents actions accordingly legals = np.ones( observation_spec[agent].legal_actions.shape, dtype=observation_spec[agent].legal_actions.dtype, ) # If we have no observation, we need to use the default. else: # Handle tuple observations if isinstance(observation_spec[agent].observation, tuple): observation_spec_list = [] for obs_spec in observation_spec[agent].observation: observation_spec_list.append( np.zeros( obs_spec.shape, dtype=obs_spec.dtype, ) ) observation = tuple(observation_spec_list) # type: ignore else: observation = np.zeros( observation_spec[agent].observation.shape, dtype=observation_spec[agent].observation.dtype, ) legals = np.ones( observation_spec[agent].legal_actions.shape, dtype=observation_spec[agent].legal_actions.dtype, ) if agent in dones: terminal = dones[agent] else: terminal = env_done observations[agent] = types.OLT( observation=observation, legal_actions=legals, terminal=np.asarray([terminal], dtype=np.float32), ) return observations
8dfe814037144e2da74375b0767f5dcde95ae44f
3,647,822
def tf_repeat_2d(a, repeats): """Tensorflow version of np.repeat for 2D""" assert len(a.get_shape()) == 2 a = tf.expand_dims(a, 0) a = tf.tile(a, [repeats, 1, 1]) return a
8337cbef8459a1403fc6a681f89c14d6ae3a00a5
3,647,823
import torch def accuracy(output, target, topk=(1,), output_has_class_ids=False): """Computes the accuracy over the k top predictions for the specified values of k""" if not output_has_class_ids: output = torch.Tensor(output) else: output = torch.LongTensor(output) target = torch.LongTensor(target) with torch.no_grad(): maxk = max(topk) batch_size = output.shape[0] if not output_has_class_ids: _, pred = output.topk(maxk, 1, True, True) pred = pred.t() else: pred = output[:, :maxk].t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res
f702000a64db1bb6f53b7686f1143656f9864e8d
3,647,824
def masked_residual_block(c, k, nonlinearity, init, scope): """ Residual Block for PixelCNN. See https://arxiv.org/abs/1601.06759 """ with tf.variable_scope(scope): n_ch = c.get_shape()[3].value half_ch = n_ch // 2 c1 = nonlinearity(c) c1 = conv(c1, k=1, out_ch=half_ch, stride=False, mask_type='B', init=init, scope='1x1_a') c1 = nonlinearity(c1) c1 = conv(c1, k=k, out_ch=half_ch, stride=False, mask_type='B', init=init, scope='conv') c1 = nonlinearity(c1) c1 = conv(c1, k=1, out_ch=n_ch, stride=False, mask_type='B', init=init, scope='1x1_b') c = c1 + c return c
ffd4bb042affc0250472d50b6b824be66f808878
3,647,825
def calculate_lookup(src_cdf: np.ndarray, ref_cdf: np.ndarray) -> np.ndarray: """ This method creates the lookup table :param array src_cdf: The cdf for the source image :param array ref_cdf: The cdf for the reference image :return: lookup_table: The lookup table :rtype: array """ lookup_table = np.zeros(256) lookup_val = 0 for src_pixel_val in range(len(src_cdf)): for ref_pixel_val in range(len(ref_cdf)): if ref_cdf[ref_pixel_val] >= src_cdf[src_pixel_val]: lookup_val = ref_pixel_val break lookup_table[src_pixel_val] = lookup_val return lookup_table
f1433e6af001ddcda44c740dabfb1ee643cd2260
3,647,826
def measureInTransitAndDiffCentroidForOneImg(prfObj, ccdMod, ccdOut, cube, rin, bbox, rollPhase, flags, hdr=None, plot=False): """Measure image centroid of in-transit and difference images Inputs: ----------- prfObj An object of the class prf.KeplerPrf() ccdMod, ccdOut (int) CCD module and output of image. Needed to create the correct PRF model cube (3d np array) A TPF data cube as returned by dave.fileio.getTargetPixelArrayFromFits() rin (int) Which image to process. rin should be in the range 0..len(cube) bbox [c1, c2, r1, r2]. Define the range of columns (c1..c2) and rows (r1..r2) defined by the image. An exception raised if the following equality not true img.shape = (c2-c1), (r2-r1) rollPhase (1d np array) An array of roll phases for each row of cube. len(rollPhase) == len(cube). Units of this array don't matter, so long as cadences with similar roll angles have similar values of rollPhase flags (1d array) flag values indicating bad cadences. Currently a non-zero value of flags indicates a bad cadence. Optional Inputs: --------------- hdr Fits header object for TPF file. Useful if you want to plot plot (bool) Request plots. Returns: ------------- A two element tuple A 4 element numpy array ic In transit centroid column ir In transit centroid row dc Difference image centroid column dr Difference image centroid row A dictionary containing some diagnostics describing the cadences used then creating the difference image. """ diff, oot, diagnostics = diffimg.constructK2DifferenceImage(cube, rin, \ rollPhase, flags) if np.max(np.fabs(oot)) == 0: return np.array([-1,-1,-1,-1]), diagnostics ootRes = fitPrfCentroidForImage(oot, ccdMod, ccdOut, bbox, prfObj) diffRes = fitPrfCentroidForImage(diff, ccdMod, ccdOut, bbox, prfObj) #Fit the difference image. I don't think this is the right thing to do # snr = diff / np.sqrt(cube[rin]) # snr[ np.isnan(snr) ] = 0 # diffRes = fitPrfCentroidForImage(snr, ccdMod, ccdOut, bbox, prfObj) # print rin, diffRes.x return np.array([ootRes.x[0], ootRes.x[1], diffRes.x[0], diffRes.x[1]]), diagnostics
655477460e5841736f07106d5e6afd666d95f450
3,647,827
def readGlobalFileWithoutCache(fileStore, jobStoreID): """Reads a jobStoreID into a file and returns it, without touching the cache. Works around toil issue #1532. """ f = fileStore.getLocalTempFile() fileStore.jobStore.readFile(jobStoreID, f) return f
8c784e809acdc1a7fb3d8c108f85ce61bd1ad11c
3,647,828
def get_user_granted_assets_direct(user): """Return assets granted of the user directly :param user: Instance of :class: ``User`` :return: {asset1: {system_user1, system_user2}, asset2: {...}} """ assets = {} asset_permissions_direct = user.asset_permissions.all() for asset_permission in asset_permissions_direct: if not asset_permission.is_valid: continue for asset in asset_permission.get_granted_assets(): if not asset.is_active: continue if asset in assets: assets[asset] |= set(asset_permission.system_users.all()) else: setattr(asset, 'inherited', False) assets[asset] = set(asset_permission.system_users.all()) return assets
602bd104835cc85dcf59339c8b4b2e2e2b5f747b
3,647,829
def nullColumns(fileHeaders, allKeys): """ Return a set of column names that don't exist in the file. """ s1 = set(fileHeaders) s2 = set(allKeys) return s2.difference(s1)
17a0bb80414fe88f213399958b217ccf6fb5d1e9
3,647,830
def listable_attachment_tags(obj, joiner=" "): """ Return an html string containing links for each of the attachments for input object. Images will be shown as hover images and other attachments will be shown as paperclip icons. """ items = [] attachments = obj.attachment_set.all() label = mark_safe('<i class="fa fa-paperclip fa-fw" aria-hidden="true"></i>') img_label = mark_safe('<i class="fa fa-photo fa-fw" aria-hidden="true"></i>') for a in attachments: if a.is_image: img = attachment_img(a, klass="listable-image") items.append( '<div class="hover-img"><a href="%s" target="_blank">%s<span>%s</span></a></div>' % (a.attachment.url, img_label, img) ) else: items.append(attachment_link(a, label=label)) return joiner.join(items)
b2fa3fd249469334e42616f0e4392ce16d4076d1
3,647,831
import math def distance_km(lat1, lon1, lat2, lon2): """ return distance between two points in km using haversine http://en.wikipedia.org/wiki/Haversine_formula http://www.platoscave.net/blog/2009/oct/5/calculate-distance-latitude-longitude-python/ Author: Wayne Dyck """ ret_val = 0 radius = 6371 # km lat1 = float(lat1) lon1 = float(lon1) lat2 = float(lat2) lon2 = float(lon2) dlat = math.radians(lat2-lat1) dlon = math.radians(lon2-lon1) a = math.sin(dlat/2) * math.sin(dlat/2) + math.cos(math.radians(lat1)) \ * math.cos(math.radians(lat2)) * math.sin(dlon/2) * math.sin(dlon/2) c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a)) ret_val = radius * c return ret_val
f50d444b5769b1d00045429e3d577ec22f922774
3,647,832
def _flip(r, u): """Negate `r` if `u` is negated, else identity.""" return ~ r if u.negated else r
18ddcf5132867f5646c729bdadcb2c5077df8c03
3,647,833
def get_arguments(): """Defines command-line arguments, and parses them.""" parser = ArgumentParser() # Execution mode parser.add_argument( "--mode", "-m", choices=['train', 'test', 'full'], default='train', help=( "train: performs training and validation; test: tests the model " "found in \"--checkpoint-dir\" with name " "\"--name\" on \"--dataset\"; " "full: combines train and test modes. Default: train" ) ) parser.add_argument( "--resume", action='store_true', help=( "The model found in \"--checkpoint-dir/--name/\" and filename " "\"--name.h5\" is loaded." ) ) parser.add_argument( "--initial-epoch", type=int, default=0, help="Epoch at which to start training. Default: 0" ) parser.add_argument( "--no-pretrained-encoder", dest='pretrained_encoder', action='store_false', help=( "Pretrained encoder weights are not loaded." ) ) parser.add_argument( "--weights-path", type=str, default="./checkpoints/linknet_encoder_weights.h5", help=( "HDF5 file where the weights are stored. This setting is ignored " "if \"--no-pretrained-encoder\" is set. Default: " "/checkpoints/linknet_encoder_weights.h5" ) ) # Hyperparameters parser.add_argument( "--batch-size", "-b", type=int, default=16, help="The batch size. Default: 10" ) parser.add_argument( "--epochs", type=int, default=200, help="Number of training epochs. Default: 300" ) parser.add_argument( "--learning-rate", "-lr", type=float, default=5e-4, help="The learning rate. Default: 5e-4" ) parser.add_argument( "--lr-decay", type=float, default=0.1, help="The learning rate decay factor. Default: 0.1" ) parser.add_argument( "--lr-decay-epochs", type=int, default=200, help=( "The number of epochs before adjusting the learning rate. " "Default: 100" ) ) parser.add_argument( "--dataset-dir", type=str, default="../data/ForDataGenTrainTestVal/", help=( "Path to the root directory of the selected dataset. " "Default: data/CamVid" ) ) # Settings parser.add_argument( "--workers", type=int, default=24, help="Number of subprocesses to use for data loading. Default: 4" ) parser.add_argument( "--verbose", choices=[0, 1, 2], default=1, help=( "Verbosity mode: 0 - silent, 1 - progress bar, 2 - one line per " "epoch. Default: 1" ) ) # Storage settings parser.add_argument( "--name", type=str, default='LinkNet', help="Name given to the model when saving. Default: LinkNet" ) parser.add_argument( "--checkpoint-dir", type=str, default='edge_point', help="The directory where models are saved. Default: checkpoints" ) return parser.parse_args()
5385c75524460ed4968def0ab98fc29112d72434
3,647,834
def twoThreeMove(tri, angle, face_num, perform = True, return_edge = False): """Apply a 2-3 move to a taut triangulation, if possible. If perform = False, returns if the move is possible. If perform = True, modifies tri, returns (tri, angle) for the performed move""" face = tri.triangle(face_num) embed0 = face.embedding(0) tet0 = embed0.simplex() tet_num0 = tet0.index() tet_0_face_num = embed0.face() vertices0 = embed0.vertices() # Maps vertices (0,1,2) of face to the corresponding vertex numbers of tet0 embed1 = face.embedding(1) tet1 = embed1.simplex() tet_num1 = tet1.index() tet_1_face_num = embed1.face() vertices1 = embed1.vertices() # Maps vertices (0,1,2) of face to the corresponding vertex numbers of tet1 if tet0 == tet1: ### Cannot perform a 2-3 move across a self-gluing return False ### taut 2-3 move is valid if the pis are on different edges of face ### this never happens if we start with a veering triangulation. ### for veering, the two-tetrahedron ball is always a continent. for i in range(3): j = (i+1) % 3 k = (i+2) % 3 if angle[tet_num0] == unsorted_vert_pair_to_edge_pair[(vertices0[j], vertices0[k])]: pi_num_0 = i if angle[tet_num1] == unsorted_vert_pair_to_edge_pair[(vertices1[j], vertices1[k])]: pi_num_1 = i if pi_num_0 == pi_num_1: return False if perform == False: return True ### check we do the same as regina... tri2 = regina.Triangulation3(tri) ## make a copy tri2.pachner(tri2.triangle(face_num)) ### We have to implement twoThreeMove ourselves. e.g. we do a 2-3 move to canonical fig 8 knot complement triangulation. ### All of the original tetrahedra are removed. I don't see any way to carry the angle structure through without knowing ### exactly how Ben's implementation works. ## record the tetrahedra and gluings adjacent to tet0 and tet1 tets = [tet0, tet1] vertices = [vertices0, vertices1] # print('2-3 vertices signs') # print([v.sign() for v in vertices]) gluings = [] for i in range(2): tet_gluings = [] for j in range(3): tet_gluings.append( [ tets[i].adjacentTetrahedron(vertices[i][j]), tets[i].adjacentGluing(vertices[i][j])] ) # if tets[i].adjacentTetrahedron(vertices[i][j]) in tets: # print('self gluing') gluings.append(tet_gluings) ### add new tetrahedra new_tets = [] for i in range(3): new_tets.append(tri.newTetrahedron()) ### glue around degree 3 edge for i in range(3): new_tets[i].join(2, new_tets[(i+1)%3], regina.Perm4(0,1,3,2)) ### replace mapping info with corresponding info for the 3 tet. Self gluings will be annoying... ### write verticesi[j] as vij ### tet0 new_tet0 ### _________ _________ ### ,'\ /`. ,'\`. ,'/`. ### ,' \ v03 / `. ,' \ `0' / `. ### ,' \ / `. ,' \ | / `. ### / \ \ / / \ /|\ \|/ /|\ ### /v02\ * /v01\ / | \ * / | \ ### / _\..... | ...../_ \ / | 3\..... | ...../2 | \ ### /_--"" / * \ ""--_\ /2 ,' / * \ `. 3\ ### \`.v12/ / \ \v11,'/ `. \`.| / /|\ \ |,'/ ### \ `./ / \ \,' / ----} \ `./ / | \ \,' / ### \ /`. / v00 \ ,'\ / ,' \|/`. / | \ ,'\|/ ### \ `. / \ ,' / \ `. / | \ ,' / ### \ `---------' / \ * 3 | 2 * / ### \ \ / / \ \ | / / ### \ \ v10 / / new_tet1 \ \ | / / new_tet2 ### \ \ / / \ \ | / / ### \ \ / / \ \|/ / ### \ * / \ * / ### tet1 \...|.../ \...|.../ ### \ | / \`.|.'/ ### \v13/ \ 1 / ### \|/ \|/ ### * * # permutations taking the vertices for a face of the 3-tet ball to the # vertices of the same face for the 2-tet ball # these should be even in order to preserve orientability. # exactly one of vertices[0] and vertices[1] is even, but it seems to depend on the face. # perms = [[regina.Perm4( vertices[0][3], vertices[0][0], vertices[0][1], vertices[0][2] ), ### opposite v00 # regina.Perm4( vertices[0][3], vertices[0][1], vertices[0][2], vertices[0][0] ), ### opposite v01 # regina.Perm4( vertices[0][3], vertices[0][2], vertices[0][0], vertices[0][1] ) ### opposite v02 # ], # [regina.Perm4( vertices[1][0], vertices[1][3], vertices[1][1], vertices[1][2] ), ### opposite v10 # regina.Perm4( vertices[1][1], vertices[1][3], vertices[1][2], vertices[1][0] ), ### opposite v11 # regina.Perm4( vertices[1][2], vertices[1][3], vertices[1][0], vertices[1][1] ) ### opposite v12 # ] # ] perms = [[vertices[0] * regina.Perm4( 3,0,1,2 ), ### opposite v00 vertices[0] * regina.Perm4( 3,1,2,0 ), ### opposite v01 vertices[0] * regina.Perm4( 3,2,0,1 ) ### opposite v02 ], [vertices[1] * regina.Perm4( 0,3,1,2 ), ### opposite v10 vertices[1] * regina.Perm4( 1,3,2,0 ), ### opposite v11 vertices[1] * regina.Perm4( 2,3,0,1 ) ### opposite v12 ] ] flip = perms[0][0].sign() == -1 if flip: #then all of the signs are wrong, switch 0 and 1 on input perms = [[p * regina.Perm4( 1,0,2,3 ) for p in a] for a in perms] # print('2-3 perms signs') # print([[p.sign() for p in a] for a in perms]) for i in range(2): for j in range(3): gluing = gluings[i][j] if gluing != None: if gluing[0] not in tets: ### not a self gluing gluing[1] = gluing[1] * perms[i][j] else: i_other = tets.index( gluing[0] ) otherfacenum = gluing[1][vertices[i][j]] j_other = [vertices[i_other][k] for k in range(4)].index(otherfacenum) assert gluings[i_other][j_other][0] == tets[i] assert gluings[i_other][j_other][1].inverse() == gluings[i][j][1] gluings[i_other][j_other] = None ### only do a self gluing from one side gluing[0] = new_tets[j_other] gluing[1] = perms[i_other][j_other].inverse() * gluing[1] * perms[i][j] ### unglue two tetrahedra tet0.isolate() tet1.isolate() ### remove the tetrahedra tri.removeSimplex(tet0) tri.removeSimplex(tet1) ### make the gluings on the boundary of the new ball for i in range(2): for j in range(3): if gluings[i][j] != None: if flip: new_tets[j].join(i, gluings[i][j][0], gluings[i][j][1]) else: new_tets[j].join(1 - i, gluings[i][j][0], gluings[i][j][1]) assert tri.isIsomorphicTo(tri2) assert tri.isOriented() ### update the angle structure tet_indices = [tet_num0, tet_num1] tet_indices.sort() angle.pop(tet_indices[1]) angle.pop(tet_indices[0]) ## remove from the list in the correct order! new_angle = [None, None, None] new_angle[pi_num_0] = 0 new_angle[pi_num_1] = 0 ### these two tetrahedra have their pi's on the new degree three edge third_index = 3 - (pi_num_0 + pi_num_1) if (pi_num_0 - third_index) % 3 == 1: new_angle[third_index] = 1 else: assert (pi_num_0 - third_index) % 3 == 2 new_angle[third_index] = 2 if flip: new_angle[third_index] = 3 - new_angle[third_index] angle.extend(new_angle) assert is_taut(tri, angle) if not return_edge: return [ tri, angle ] else: return [ tri, angle, new_tets[0].edge(0).index() ]
18abe14b2b8446d39e285f1facda82568b808b60
3,647,835
import csv def obterUFEstadoPorNome(estado): """ Retorna o codigo UF do estado a partir do nome do estado :param estado: Nome do estado :return codigoDoEstado: Código UF do estado """ try: with open("./recursos/estados.csv", newline="") as csvfile: reader = csv.DictReader(csvfile, delimiter=";") for state in reader: if state["Unidade_Federativa"].lower() == estado.strip().lower(): return state["UF"] except Exception as exc: print("[ERROR]{0}".format(exc))
9b136fe8c557e5f75bca235cf66168f92244a4e6
3,647,836
import random def get_random_byte_string(byte_length): """ Use this function to generate random byte string """ byte_list = [] i = 0 while i < byte_length: byte_list.append(chr(random.getrandbits(8))) i = i + 1 # Make into a string byte_string = ''.join(byte_list) return byte_string
0ea923a045beb476501dc3d8983f3fe89efef008
3,647,837
def find_all_indexes(text, pattern): """Return a list of starting indexes of all occurrences of pattern in text, or an empty list if not found. Complexity Analysis: Best case: O(t) Worst Case: O(t) In the best case the pattern is the empty string(''). In that scenario this implementation returns a list of all the index positions present in the text string, using a list comprehension which requires t iterations, where t is the length of the text. One iteration is required for each character in the text string. In the worst case, there are no occurrences of the pattern present in the text. In that scenario this implementation would be most impacted by the worst case scenario of the find_index function, which would be O(t) as well. The find_index function would require iterating through the entire length of the text string to discover there are pattern matches. In the average case, there are occurences of the pattern string in the text string. Since there is no difference between the best and worst case, the complexity of this function asymptotically approaches O(t) as well, on the average case. """ assert isinstance(text, str), 'text is not a string: {}'.format(text) assert isinstance(pattern, str), 'pattern is not a string: {}'.format(text) # edge case: return every index if the pattern is an empty str if len(pattern) == 0: return [i for i in range(len(text))] # otherwise find all indices else: # set indices to an empty list on the first pass indices = list() # now find all the indices return find_next_index(text, pattern, indices)
0101efe77570b5d027928495dc25cb4e02d5c2f5
3,647,838
def is_igb(request): """ Checks the headers for IGB headers. """ if 'HTTP_EVE_TRUSTED' in request.META: return True return False
1e6485614063a9f4eec36407b60154300d38db76
3,647,839
from typing import OrderedDict from re import T def compile_ADAM_train_function(model, gparams, learning_rate=0.001, b1=0.9, b2=0.999, e=1e-8, gamma=1 - 1e-8): """ ADAM update rules Default values are taken from [Kingma2014] References: [Kingma2014] Kingma, Diederik, and Jimmy Ba. "Adam: A Method for Stochastic Optimization." arXiv preprint arXiv:1412.6980 (2014). http://arxiv.org/pdf/1412.6980v4.pdf """ updates = OrderedDict() all_params = model.params all_grads = gparams alpha = learning_rate t = theano.shared(np.float32(1)) b1_t = b1 * gamma ** (t - 1) # (Decay the first moment running average coefficient) for theta_previous, g in zip(all_params, all_grads): m_previous = theano.shared(np.zeros(theta_previous.get_value().shape, dtype=theano.config.floatX)) v_previous = theano.shared(np.zeros(theta_previous.get_value().shape, dtype=theano.config.floatX)) m = b1_t * m_previous + (1 - b1_t) * g # (Update biased first moment estimate) v = b2 * v_previous + (1 - b2) * g ** 2 # (Update biased second raw moment estimate) m_hat = m / (1 - b1 ** t) # (Compute bias-corrected first moment estimate) v_hat = v / (1 - b2 ** t) # (Compute bias-corrected second raw moment estimate) theta = theta_previous - (alpha * m_hat) / (T.sqrt(v_hat) + e) # (Update parameters) # updates.append((m_previous, m)) # updates.append((v_previous, v)) # updates.append((theta_previous, theta) ) updates[m_previous] = m updates[v_previous] = v updates[theta_previous] = theta updates[t] = t + 1. return updates
a60f27c3b314d3adc2ec2f7bb0f8c92875d7625b
3,647,840
import subprocess import os def Runge_Kutta_Fourth_Order(inputs, coordinate_file, temperature, zeta=-1., **keyword_parameters): """ This function determines the gradient of thermal expansion of a strucutre between two temperatures using a forth order Runge-Kutta numerical analysis :param Method: Gradient Isotropic QHA ('GiQ'); Gradient Isotropic QHA w/ Gruneisen Parameter ('GiQg'); Gradient Anisotropic QHA ('GaQ'); :param Coordinate_file: file containing the lattice parameters (and coordinates) :param Program: 'Tinker' for Tinker Molecular Modeling 'Test' for a test run :param Temperature: in Kelvin :param Pressure: in atm :param molecules_in_coord: number of molecules in coordinate file :param Statistical_mechanics: 'Classical' Classical mechanics 'Quantum' Quantum mechanics :param RK4_stepsize: stepsize for runge-kutta 4th order :param keyword_parameters: Parameter_file, LocGrd_Vol_FracStep, LocGrd_LatParam_FracStep, Gruneisen, Wavenumber_Reference, Volume_Reference, Aniso_LocGrad_Type Optional Parameters Parameter_file: program specific file containing force field parameters LocGrd_Vol_FracStep: isotropic volume fractional stepsize for local gradient LocGrd_LatParam_FracStep: anisotropic crystal matrix fractional stepsize for local gradient Gruneisen: Gruneisen parameters found with Setup_Isotropic_Gruneisen Wavenumber_Reference: Reference wavenumbers for Gruneisen parameter Volume_Reference: Reference volume of structure for Wavenumber_Reference Aniso_LocGrad_Type: 73 Hessians to calculate the complete anistropic gradient 25 for d**2G_dhdh only calculating the diagonals and off-diags. of the upper left 3x3 matrix 19 for d**2G_dhdh only calculating the uppder left 3x3 matrix 13 for d**2G_dhdh only calculating the diagonals 7 for d**2G_dhdh only calculating the upper left 3x3 matrix daigonals Crystal_matrix_Reference: """ # Setting up program specific file endings and giving parameter files blank names to avoid errors file_ending = psf.assign_coordinate_file_ending(inputs.program) # Output of numerical analysis NO.start_RK(temperature, inputs.gradient_numerical_step) # Final array for weights on slopes RK_multiply = np.array([1. / 6., 1. / 3., 1. / 3., 1. / 6.]) # Copying the coordinate file to a separate file to work with subprocess.call(['cp', coordinate_file, 'RK4' + file_ending]) if inputs.program == 'QE': print(coordinate_file, 'copying bv file') os.system('cp ' + coordinate_file + 'bv' + ' RK4' + file_ending + 'bv') # Setting the different temperature stepsizes if zeta == -1.: temperature_steps = np.array([0., inputs.gradient_numerical_step / 2., inputs.gradient_numerical_step / 2., inputs.gradient_numerical_step]) zeta_steps = np.zeros(4) else: temperature_steps = np.zeros(4) zeta_steps = np.array([0., inputs.zeta_numerical_step / 2., inputs.zeta_numerical_step / 2., inputs.zeta_numerical_step]) # Setting RK_4 array/matix and general parameters that aren't required for specific methods if (inputs.method == 'GiQ') or (inputs.method == 'GiQg'): # Setting array to save 4 gradients in dV/dT RK_grad = np.zeros(4) elif (inputs.method == 'GaQ') or (inputs.method == 'GaQg'): # Setting array to save 4 gradients for the six different strains d\eta/dT if inputs.anisotropic_type == '1D' and zeta == -1.: RK_grad = np.zeros(6) else: RK_grad = np.zeros((4, 6)) # Calculating the RK gradients for the overall numerical gradient for i in range(4): # Outputting numerical analysis NO.step_RK(i, temperature + temperature_steps[i], inputs.program, 'RK4' + file_ending) print(" + Performing Runge-Kutta step " + str(i + 1)) if (inputs.method == 'GiQ') or (inputs.method == 'GiQg'): # Determining the slope at the current RK step RK_grad[i], wavenumbers_hold, volume_hold, left_minimum = \ Ex.Call_Expansion(inputs, 'local_gradient', 'RK4' + file_ending, Temperature=temperature + temperature_steps[i], LocGrd_dV=keyword_parameters['LocGrd_dV'], Gruneisen=keyword_parameters['Gruneisen'], Wavenumber_Reference=keyword_parameters['Wavenumber_Reference'], Volume_Reference=keyword_parameters['Volume_Reference']) elif (inputs.method == 'GaQ') or (inputs.method == 'GaQg'): if inputs.anisotropic_type != '1D' or zeta != -1.: # Determining the slope at the current RK step RK_grad[i], wavenumbers_hold, left_minimum = \ Ex.Call_Expansion(inputs, 'local_gradient', 'RK4' + file_ending, zeta=zeta + zeta_steps[i], Temperature=temperature + temperature_steps[i], LocGrd_dC=keyword_parameters['LocGrd_dC'], Gruneisen=keyword_parameters['Gruneisen'], Wavenumber_Reference=keyword_parameters['Wavenumber_Reference'], ref_crystal_matrix=keyword_parameters['ref_crystal_matrix']) else: # Determining the slope at the current RK step RK_grad[i], wavenumbers_hold, left_minimum = \ Ex.Call_Expansion(inputs, 'local_gradient', 'RK4' + file_ending, Temperature=temperature + temperature_steps[i], LocGrd_dLambda=keyword_parameters['LocGrd_dLambda'], dC_dLambda=keyword_parameters['dC_dLambda'], Gruneisen=keyword_parameters['Gruneisen'], Wavenumber_Reference=keyword_parameters['Wavenumber_Reference'], ref_crystal_matrix=keyword_parameters['ref_crystal_matrix']) volume_hold = 0. if i == 0: # Saving outputs to be passed to the earlier code (local gradient and wavenumbers of initial strucuture) wavenumbers = 1. * wavenumbers_hold volume = 1. * volume_hold k1 = 1. * RK_grad[0] if left_minimum == True: subprocess.call(['rm', 'RK4' + file_ending]) return np.nan, np.nan, np.nan, np.nan if i != 3: if (inputs.method == 'GiQ') or (inputs.method == 'GiQg'): # For isotropic expansion, determining the volume fraction change of the input strucutre (V_new/V_input) volume_fraction_change = (volume + RK_grad[i] * temperature_steps[i + 1]) / volume # Expanding the crystal to the next step size Ex.Call_Expansion(inputs, 'expand', coordinate_file, volume_fraction_change=volume_fraction_change, output_file='RK4') elif (inputs.method == 'GaQ') or (inputs.method == 'GaQg'): if inputs.anisotropic_type != '1D': # For anisotropic expansion, determining the strain of th input strucutre for the next step RK_crystal_matrix = Ex.array_to_triangle_crystal_matrix(RK_grad[i] * temperature_steps[i + 1]) elif zeta != -1.: RK_crystal_matrix = Ex.array_to_triangle_crystal_matrix(RK_grad[i] * zeta_steps[i]) else: # For anisotropic expansion, determining the strain of th input strucutre for the next step RK_crystal_matrix = Ex.array_to_triangle_crystal_matrix(RK_grad[i] * temperature_steps[i + 1] * keyword_parameters['dC_dLambda']) # Expanding the crystal to the next step size Ex.Call_Expansion(inputs, 'expand', coordinate_file, dcrystal_matrix=RK_crystal_matrix, output_file='RK4') # Multiplying the found gradient by the fraction it will contribute to the overall gradient RK_grad[i] = RK_grad[i] * RK_multiply[i] # Summing all RK gradients for the overall numerical gradient numerical_gradient = np.sum(RK_grad, axis=0) # Removing excess files subprocess.call(['rm', 'RK4' + file_ending]) return numerical_gradient, wavenumbers, volume, k1
72c539637359f9f4eaef06ac13ae8e24c4516f8d
3,647,841
import os def wooqi_conf(): """ Wooqi configuration file read from specific project which is using wooqi Return a dictionary containing all configuration attributes """ config_file_path = '{}/wooqi_conf.cfg'.format(os.getcwd()) if os.path.isfile(config_file_path): config = read_cfg(config_file_path) else: config = None return config
b24dda5d7c9376102af114d6a692c5be721e7866
3,647,842
def linear_svr_pred(X_train, Y_train): """ Train a linear model with Support Vector Regression """ svr_model = LinearSVR(random_state=RANDOM_STATE) svr_model.fit(X_train, Y_train) Y_pred = svr_model.predict(X_train) return Y_pred
336325ec53da4d4008c3219aa737365a40263bdf
3,647,843
import math def area(rad: float = 1.0) -> float: """ return area of a circle >>> area(2.0) 3.141592653589793 >>> area(3.0) 7.0685834705770345 >>> area(4.0) 12.566370614359172 """ return rad * rad * math.pi / 4
702fc4a9fa370804d88d1182f966890bc0634466
3,647,844
import requests import json def check_coverage_running(url, coverage_name): """ Check if Navitia coverage is up and running :param url: Navitia server coverage url :param coverage_name: the name of the coverage to check :return: Whether a Navitia coverage is up and running """ _log.info("checking if %s is up", coverage_name) response = requests.get(url) # Get the status of the coverage as Json json_data = json.loads(response.text) if "regions" not in json_data or "running" not in json_data["regions"][0]['status']: _log.info("%s coverage is down", coverage_name) return False else: _log.info("%s coverage is up", coverage_name) return True
3d3d9b1403c541aa0cdb8867845b21bf387431fb
3,647,845
import random def make_random_board(row_count, col_count, density=0.5): """create a random chess board with given size and density""" board = {} for row_num in range(row_count): for col_num in range(col_count): factor = random.random() / density if factor >= 1: continue index = int(factor * len(ChessPiece.class_list)) board[(row_num, col_num)] = ChessPiece.class_list[index].symbol return board
ea40883989675c99aa70af0b180957aa677233a5
3,647,846
def create_roots(batch_data): """ Create root nodes for use in MCTS simulation. Takes as a parameter a list of tuples, containing data for each game. This data consist of: gametype, state, type of player 1 and type of player 2 """ root_nodes = [] for data in batch_data: game = data[0] state = data[1] player_1 = data[2] player_2 = data[3] player = player_1 if game.player(state) else player_2 root_nodes.append(player.create_root_node(state)) return root_nodes
d07b0781605b01d08c9ef78f30dad9254ade9907
3,647,847
def _parse_crs(crs): """Parse a coordinate reference system from a variety of representations. Parameters ---------- crs : {str, dict, int, CRS} Must be either a rasterio CRS object, a proj-string, rasterio supported dictionary, WKT string, or EPSG integer. Returns ------- rasterio.crs.CRS The parsed CRS. Raises ------ CRSError Raises an error if the input cannot be parsed. """ # # NOTE: This doesn't currently throw an error if the EPSG code is invalid. # parsed = None if isinstance(crs, CRS): parsed = crs elif isinstance(crs, str): try: # proj-string or wkt parsed = CRS.from_string(crs) except CRSError: # wkt parsed = CRS.from_wkt(crs) elif isinstance(crs, dict): parsed = CRS(crs) elif isinstance(crs, int): parsed = CRS.from_epsg(crs) elif isinstance(crs, pyproj.Proj): parsed = CRS.from_proj4(crs.proj4_init) if parsed is None or not parsed.is_valid: raise CRSError('Could not parse CRS: {}'.format(crs)) return parsed
559692b146ec99a9fe5407c8bca340c72dddf0a5
3,647,848
def hs_instance_get_all(context): """Get a list of hyperstash instances.""" return IMPL.hs_instance_get_all(context)
e09991f71e3713eea96956306a1ab4813bfb8b1a
3,647,849
import importlib def import_from_file(module_name: str, filepath: str): """ Imports a module from file. Args: module_name (str): Assigned to the module's __name__ parameter (does not influence how the module is named outside of this function) filepath (str): Path to the .py file Returns: The module """ spec = importlib.util.spec_from_file_location(module_name, filepath) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) return module
89ac082cbc7d3dd5d9158a8cc8eb5ef061c444e6
3,647,850
def plot_chirp(stim_inten, spike_bins, smooth=True, ax=None): """ Plot the response to a chirp stimulus (but could be any repeated stimulus, non-shuffled). The response is plotted with seaborn's lineplot. params: - stim_inten: The whole stimulus intensity - spike_bins: The cell's response to the whole stimulus - smooth: Flag to smooth or not the cell's response - ax: The axis for the plot. If None, a new plot is created return: - The axis of the plot """ if ax is None: fig, ax = plt.subplots() #Getting the number of repeats by convolving a part of the stimulus conv_res = np.convolve(stim_inten[360:600].astype(float), stim_inten.astype(float), mode="full") n_repeats = np.sum(conv_res.max()==conv_res) trace = spike_bins.reshape(n_repeats,-1) len_ = trace.shape[1] df = pd.DataFrame(columns=["timepoint","repeat","signal"]) for i, repeat_am in enumerate(trace): if smooth: repeat_am = np.convolve([.333]*3, repeat_am, mode="same") repeat_df = pd.DataFrame(list(zip(np.linspace(0,len_/60,len_), [str(i)]*len_, repeat_am)), columns=["timepoint","repeat","signal"]) df = df.append(repeat_df, ignore_index=True) g = sns.lineplot(x="timepoint", y="signal", data=df, ax=ax, n_boot=100) #Small n_boot to speed_up plotting # (default n_boot=10000) min_val, max_val = ax.get_ylim() ax.set_ylim(min_val , (max_val-min_val)*6/5) ax.set(xlabel='', ylabel='') ax.imshow([stim_inten.reshape(n_repeats,-1)[0]], aspect='auto', cmap="gray", extent=(0,len_/60,(max_val-min_val)*6/5,max_val)) return ax
75fe6defcb23a2c59e2241c9a68bf753dc6828b7
3,647,851
def _cigar_convert(cigar, chromosome, vci_file, strand='+', position=0): """ PHASE 1 Convert each CIGAR element to new mappings and construct an array on NEW cigar elements For example, depending on the Intervals in the CHAIN file, let's say we have the following CIGAR string: 35M49N65M This could get converted into 35M ==> 4M150D31M 49N ==> -1N (remember, surrounding M's are used to find the length of N which is done on next pass) 65M ==> 65M First pass yields: 35M49N65M => 4M150D31M-1N65M :param cigar: :param chromosome: :param vci_file: :param strand: :param position: :return: """ cigar_new = [] current_pos = position cigar_no = 0 for c in cigar: cigar_no += 1 LOG.debug("Element #{0}, '{1}{2}' specified, location: {3}".format(cigar_no, c[1], CIGAR_N2C[c[0]], current_pos)) increment = c[1] if c[0] == CIGAR_m: new_mappings = vci_file.find_mappings(chromosome, current_pos, current_pos + c[1]) if not new_mappings: LOG.debug("Mappings: None") cigar_new.append(Cigar(CIGAR_S, c[1], 0, 0)) elif len(new_mappings) == 1: LOG.debug("Mappings: Easy: {0}".format(new_mappings[0])) cigar_new.append(Cigar(CIGAR_M, new_mappings[0].to_end - new_mappings[0].to_start, new_mappings[0].to_start, new_mappings[0].to_end)) else: # multiple maps, not so easy last = None for m in new_mappings: LOG.debug("Mappings: Multiple: {0}".format(m)) if not last: last = m if current_pos < m.from_start: # special case of first match not in interval, handle accordingly LOG.debug("Adding 'S', because {0} < {1}".format(current_pos, m.from_start)) cigar_new.append(Cigar(CIGAR_S, m.from_start - current_pos, 0, 0)) else: if m.from_start != last.from_end: LOG.debug("Adding 'M' and 'I', because {0} != {1}".format(m.from_start, last.from_end)) cigar_new.append(Cigar(CIGAR_M, last.to_end - last.to_start, last.to_start, last.to_end)) cigar_new.append(Cigar(CIGAR_I, m.from_start - last.from_end, last.to_start, last.to_end)) elif m.to_start != last.to_end: LOG.debug("Adding 'M' and 'D', because {0} != {1}".format(m.to_start, last.to_end)) cigar_new.append(Cigar(CIGAR_M, last.to_end - last.to_start, last.to_start, last.to_end)) cigar_new.append(Cigar(CIGAR_D, m.to_start - last.to_end, 0, 0)) last = m LOG.debug("Adding 'M'") cigar_new.append(Cigar(CIGAR_M, last.to_end - last.to_start, last.to_start, last.to_end)) elif c[0] == CIGAR_i: LOG.debug("Adding 'I' and 'D'") cigar_new.append(Cigar(CIGAR_I, c[1], 0, 0)) cigar_new.append(Cigar(CIGAR_D, -1, 0, 0)) increment = 0 elif c[0] == CIGAR_d: LOG.debug("Adding 'D'") cigar_new.append(Cigar(CIGAR_D, -1, 0, 0)) elif c[0] == CIGAR_n: LOG.debug("Adding 'N'") cigar_new.append(Cigar(CIGAR_N, -1, 0, 0)) elif c[0] in [CIGAR_s, CIGAR_h]: LOG.debug("Adding '{0}'".format(CIGAR_N2C[c[0]])) cigar_new.append(Cigar(CIGAR_N2C[c[0]], c[1], 0, 0)) else: # other LOG.debug("OTHER CODE '{0}' found, looking at {1} at {2}".format(CIGAR_N2C[c[0]], c, current_pos)) raise exceptions.G2GCigarFormatError("ERROR: Not handling the values in this cigar string: {0}".format(cigar)) #current_pos += c[1] current_pos += increment LOG.debug("Current CIGAR: {0}".format(cigar_new)) return cigar_new
5c7a0ea83d4959d87c03d0cbfe28d5bdbe02b97e
3,647,852
import argparse def get_parser(): """Creates an ArgumentParser object.""" parser = argparse.ArgumentParser( "clinker", description="clinker: Automatic creation of publication-ready" " gene cluster comparison figures.\n\n" "clinker generates gene cluster comparison figures from GenBank files." " It performs pairwise local or global alignments between every sequence" " in every unique pair of clusters and generates interactive, to-scale comparison figures" " using the clustermap.js library.", epilog="Example usage\n-------------\n" "Align clusters, plot results and print scores to screen:\n" " $ clinker files/*.gbk\n\n" "Cameron Gilchrist, 2020", formatter_class=argparse.RawDescriptionHelpFormatter ) parser.add_argument("files", help="Gene cluster GenBank files", nargs="+") alignment = parser.add_argument_group("Alignment options") alignment.add_argument( "-na", "--no_align", help="Do not align clusters", action="store_true", ) alignment.add_argument( "-i", "--identity", help="Minimum alignment sequence identity", type=float, default=0.3 ) alignment.add_argument( "-j", "--jobs", help="Number of alignments to run in parallel (0 to use the number of CPUs)", type=int, default=0, ) output = parser.add_argument_group("Output options") output.add_argument("-s", "--session", help="Path to clinker session") output.add_argument("-ji", "--json_indent", type=int, help="Number of spaces to indent JSON") output.add_argument("-f", "--force", help="Overwrite previous output file", action="store_true") output.add_argument("-o", "--output", help="Save alignments to file") output.add_argument( "-p", "--plot", nargs="?", const=True, default=False, help="Plot cluster alignments using clustermap.js. If a path is given," " clinker will generate a portable HTML file at that path. Otherwise," " the plot will be served dynamically using Python's HTTP server." ) output.add_argument("-dl", "--delimiter", help="Character to delimit output by") output.add_argument("-dc", "--decimals", help="Number of decimal places in output", default=2) output.add_argument( "-hl", "--hide_link_headers", help="Hide alignment column headers", action="store_true", ) output.add_argument( "-ha", "--hide_aln_headers", help="Hide alignment cluster name headers", action="store_true", ) viz = parser.add_argument_group("Visualisation options") viz.add_argument( "-ufo", "--use_file_order", action="store_true", help="Display clusters in order of input files" ) return parser
881c7bc495edd37011c07d5db6ac80c816855f4a
3,647,853
def init_context_processor(app): """定义html模板方法""" @app.context_processor def pjax_processor(): """ pjax处理器 """ def get_template(base, pjax=None): pjax = pjax or 'pjax.html' if 'X-PJAX' in request.headers: return pjax else: return base return dict(pjax=get_template) @app.context_processor def pagination_processor(): """ 分页处理器 """ def pagination(url, pager, template=None, params={}): template = template or 'common/pagination.html' pager._dict['current'] = (pager.offset + pager.limit - 1) // pager.limit pager._dict['total_page'] = (pager.rows_found + pager.limit - 1) // pager.limit prev_offset = pager.offset - 2 * pager.limit pager._dict['prev_offset'] = prev_offset if prev_offset >= 0 else 0 pager._dict['params'] = params pager._dict['url'] = url return Markup(render_template(template, data=pager)) return dict(pagination=pagination) @app.context_processor def column_order_processor(): """ 获取排序字段的css """ def column_order(column, order, active): column = 'sorttable-column-%s' % column if active: order = 'sorttable-sorted-reverse' if order == 'desc' else 'sorttable-sorted' return '%s %s' % (column, order) else: return column return dict(column_order=column_order) @app.context_processor def try_active_processor(): """ 尝试激活导航栏项目 """ def try_active(page_type): if g.page_type == page_type: return 'curr' else: return '' return dict(try_active=try_active) @app.context_processor def if_else_processor(): """ gives t if condition evaluates to True, and f if it evaluates to False """ def if_else(condition, t, f): return t if condition else f return dict(ifelse=if_else) @app.context_processor def present_processor(): u""" present enum to it's name eg: >> present(1, {1: 'Android', 2: 'iOS'} Android >> present(2, {1: 'Android', 2: 'iOS'} iOs """ def present(enum, dict): return dict.get(enum, enum) return dict(present=present) @app.context_processor def hostname_processor(): """ get hostname of url ex: http://ng.d.cn/xianbian2/news/detail_402586_1.html => ng.d.cn """ def hostname(url): return parse.urlparse(url).netloc return dict(hostname=hostname) @app.context_processor def utility_processor(): def permission(per): if g.modules == []: return True if per in g.modules: return True return False return dict(permission=permission) @app.context_processor def utility_processor(): """激活左边栏当前模块样式""" def active_cur_menu(per): if g.uri_path.startswith(per): # if g.uri_path == per: return True return False return dict(active_cur_menu=active_cur_menu)
6b5cf03ec48a1b1324a158388098da5e4884286f
3,647,854
def tiered(backup_tier, R): """Returns a tier aware checker. The returned checker ensures that it's possible to construct a set (of length R) including given set s that will contain exactly one node from the backup tier. `backup_tier` is a list of node ids that count as backups. A typical invocation looks something like: build_copysets(primary_tier + backup_tier, 6, 2, checker=tiered(backup_tier, 6)) """ def _checker(backup_tier, R, copysets, copyset): num_backups = len(copyset.intersection(set(backup_tier))) if len(copyset) < R: return num_backups <= 1 else: return num_backups == 1 return partial(_checker, backup_tier, R)
ecde647738fad88ea806948a0df7bee22a73abfa
3,647,855
def ls_chebyshev( A, b, s_max, s_min, tol = 1e-8, iter_lim = None ): """ Chebyshev iteration for linear least squares problems """ A = aslinearoperator(A) m, n = A.shape d = (s_max*s_max+s_min*s_min)/2.0 c = (s_max*s_max-s_min*s_min)/2.0 theta = (1.0-s_min/s_max)/(1.0+s_min/s_max) # convergence rate itn_est = np.ceil((log(tol)-log(2))/log(theta)) if (iter_lim is None) or (iter_lim < itn_est) : iter_lim = itn_est alpha = 0.0 beta = 0.0 r = b.copy() x = np.zeros( np.int64( n ) ) v = np.zeros( np.int64( n ) ) # print( iter_lim ) for k in range(np.int64(iter_lim)): if k == 0: beta = 0.0 alpha = 1.0/d elif k == 1: beta = -1.0/2.0*(c*c)/(d*d) alpha = 1.0*(d-c*c/(2.0*d)) else: beta = -(c*c)/4.0*(alpha*alpha) alpha = 1.0/(d-(c*c)/4.0*alpha) v = A.rmatvec(r) - beta*v x += alpha*v r -= alpha*A.matvec(v) return x
05e50ac0167d1ed03ae3e9fa6876c94a50db7893
3,647,856
def compute_confusion_matrix(args, df_inference, strata): """From a list of prediction summary (as produced by get_cloud_prediction_summary), compute a confusion matrix.""" y_true = df_inference["vt_" + strata].values y_predicted = df_inference["pred_" + strata].values y_true = np.vectorize(get_closest_class_center_index)(y_true) y_predicted = np.vectorize(get_closest_class_center_index)(y_predicted) cm = confusion_matrix( y_true, y_predicted, labels=range(len(bins_centers)), normalize=args.normalize_cm, ) return cm
0662638c4db5ee9e1d94b1e582d9b0824eefd3ff
3,647,857
def get_metadata(**kwargs): """Metadata Get account metadata Reference: https://iexcloud.io/docs/api/#metadata Data Weighting: ``Free`` .. warning:: This endpoint is only available using IEX Cloud. See :ref:`Migrating` for more information. """ return Metadata(**kwargs).fetch()
9f4b506bdf978f525e26d7f976a0fdc2f483ae0f
3,647,858
import torch def get_resnet50_moco_state_dict() -> dict: """ Get weight of ResNet50 trained with MoCo. Returns: (dict): Parameters and persistent buffers of ResNet50. """ model_path = get_model_root() / "resnet50_moco.pth" if not model_path.exists(): # TODO download this from remote raise RuntimeError( "Please download and put 'resnet50_moco.pth' to models folder" ) # the original weight is actually a checkpoint # https://github.com/bl0/moco # this includes hyperparameters and everything else we wants checkpoint = torch.load(model_path) # we need to drop all prefix from this checkpoint prefix = len("module.") state_dict = {k[prefix:]: v for k, v in checkpoint["model"].items()} return state_dict
953f5e0fb037f9315173345910b8808cb400b9f4
3,647,859
from keystoneclient import service_catalog import json import six import base64 def _validate_client(redis_client, url, tenant, token, env, blacklist_ttl, max_cache_life): """Update the env with the access information for the user :param redis_client: redis.Redis object connected to the redis cache :param url: Keystone Identity URL to authenticate against :param tenant: tenant id of user data to retrieve :param token: auth_token for the tenant_id :param env: environment variable dictionary for the client connection :param blacklist_ttl: time in milliseconds for blacklisting failed tokens :param max_cache_life: time in seconds for the maximum time a cache entry should remain in the cache of valid data :returns: True on success, otherwise False """ def _management_url(*args, **kwargs): return url def patch_management_url(): service_catalog.ServiceCatalog.url_for = _management_url patch_management_url() try: if _is_token_blacklisted(redis_client, token): return False # Try to get the client's access information access_info = _get_access_info(redis_client, url, tenant, token, blacklist_ttl, max_cache_life) if access_info is None: LOG.debug('Unable to get Access info for {0}'.format(tenant)) return False # provided data was valid, insert the information into the environment env['HTTP_X_IDENTITY_STATUS'] = 'Confirmed' env['HTTP_X_USER_ID'] = access_info.user_id env['HTTP_X_USER_NAME'] = access_info.username env['HTTP_X_USER_DOMAIN_ID'] = access_info.user_domain_id env['HTTP_X_USER_DOMAIN_NAME'] = access_info.user_domain_name env['HTTP_X_ROLES'] = ','.join(role for role in access_info.role_names) if access_info.has_service_catalog(): # Convert the service catalog to JSON service_catalog_data = json.dumps( access_info.service_catalog.catalog) # convert service catalog to unicode to try to help # prevent encode/decode errors under python2 if six.PY2: # pragma: no cover u_service_catalog_data = service_catalog_data.decode('utf-8') else: # pragma: no cover u_service_catalog_data = service_catalog_data # Convert the JSON string data to strict UTF-8 utf8_data = u_service_catalog_data.encode( encoding='utf-8', errors='strict') # Store it as Base64 for transport env['HTTP_X_SERVICE_CATALOG'] = base64.b64encode(utf8_data) try: decode_check = base64.b64decode(env['HTTP_X_SERVICE_CATALOG']) except Exception: LOG.debug('Failed to decode the data properly') return False if decode_check != utf8_data: LOG.debug( 'Decode Check: decoded data does not match ' 'encoded data' ) return False # Project Scoped V3 or Tenant Scoped v2 # This can be assumed since we validated using X_PROJECT_ID # and therefore have at least a v2 Tenant Scoped Token if access_info.project_scoped: env['HTTP_X_PROJECT_ID'] = access_info.project_id env['HTTP_X_PROJECT_NAME'] = access_info.project_name # Domain-Scoped V3 if access_info.domain_scoped: env['HTTP_X_DOMAIN_ID'] = access_info.domain_id env['HTTP_X_DOMAIN_NAME'] = access_info.domain_name # Project-Scoped V3 - X_PROJECT_NAME is only unique # within the domain if access_info.project_scoped and ( access_info.domain_scoped): env['HTTP_X_PROJECT_DOMAIN_ID'] = access_info.project_domain_id env['HTTP_X_PROJECT_DOMAIN_NAME'] = access_info.project_domain_name return True except exceptions.RequestEntityTooLarge: LOG.debug('Request entity too large error from authentication server.') raise except Exception as ex: msg = 'Error while trying to authenticate against {0} - {1}'.format( url, str(ex) ) LOG.debug(msg) return False
9041786ecce14bc0af005d320e8ff9db49a07fc7
3,647,860
import os import shutil def _fetch(data_filename: str) -> str: """Fetch a given data file from either the local cache or the repository. This function provides the path location of the data file given its name in the histolab repository. Parameters ---------- data_filename: str Name of the file in the histolab repository. e.g. 'breast/sample1.svs'. Returns ------- resolved_path: str Path of the local file Raises ------ KeyError: If the filename is not known to the histolab distribution. ModuleNotFoundError: If the filename is known to the histolab distribution but pooch is not installed. ConnectionError: If the dataset has not been downloaded yet and histolab is unable to connect to the internet """ resolved_path = os.path.join(data_dir, "..", data_filename) expected_hash = registry[data_filename] # Case 1: # The file may already be in the data_dir. # We may have decided to ship it in the histolab distribution. if _has_hash(resolved_path, expected_hash): # Nothing to be done, file is where it is expected to be return resolved_path # Case 2: # The user is using a cloned version of the github repo, which # contains both the publicly shipped data, and test data. # In this case, the file would be located relative to the # histolab_distribution_dir gh_repository_path = os.path.join(histolab_distribution_dir, data_filename) if _has_hash(gh_repository_path, expected_hash): parent = os.path.dirname(resolved_path) os.makedirs(parent, exist_ok=True) shutil.copy2(gh_repository_path, resolved_path) return resolved_path # Case 3: # Pooch not found. if image_fetcher is None: raise ModuleNotFoundError( "The requested file is part of the histolab distribution, " "but requires the installation of an optional dependency, pooch. " "To install pooch, use your preferred python package manager. " "Follow installation instruction found at " "https://www.fatiando.org/pooch/latest/install.html" ) # Case 4: # Pooch needs to download the data. Let the image fetcher search for # our data. A ConnectionError is raised if no internet connection is # available. try: resolved_path = image_fetcher.fetch(data_filename) except HTTPError as httperror: raise HTTPError(f"{httperror}") except ConnectionError: # pragma: no cover # If we decide in the future to suppress the underlying 'requests' # error, change this to `raise ... from None`. See PEP 3134. raise ConnectionError( "Tried to download a histolab dataset, but no internet " "connection is available." ) return resolved_path
0eadbd2e2c47a9f4ce3b8992c8795d69281a9ee4
3,647,861
import os def subset_and_group_svs(input_dataset, sample_subset, sample_remap, sample_type, ignore_missing_samples, write_subsetted_bed=False): """ Parses raw SV calls from the input file into the desired SV output format for samples in the given subset :param input_dataset: file path for the raw SV calls :param sample_subset: optional list of samples to subset to :param sample_remap: optional mapping of raw sample ids to seqr sample ids :param sample_type: sample type (WES/WGS) :param ignore_missing_samples: whether or not to fail if samples in the subset have no raw data :param write_subsetted_bed: whether or not to write a bed file with only the subsetted samples :return: dictionary of parsed SVs keyed by ID """ parsed_svs_by_name = {} found_samples = set() skipped_samples = set() out_file_path = None if write_subsetted_bed: file_name = 'subset_{}'.format(os.path.basename(input_dataset)) out_file_path = os.path.join(os.path.dirname(input_dataset), file_name) def _parse_row(row, header_indices): sample_id = get_field_val(row, SAMPLE_COL, header_indices, format_kwargs={'sample_type': sample_type}) if sample_remap and sample_id in sample_remap: sample_id = sample_remap[sample_id] if sample_subset is None or sample_id in sample_subset: parse_sv_row(row, parsed_svs_by_name, header_indices, sample_id) found_samples.add(sample_id) return True else: skipped_samples.add(sample_id) return False load_file(input_dataset, _parse_row, out_file_path=out_file_path) logger.info('Found {} sample ids'.format(len(found_samples))) if sample_subset: if len(found_samples) != len(sample_subset): missed_samples = sample_subset - found_samples missing_sample_error = 'Missing the following {} samples:\n{}'.format( len(missed_samples), ', '.join(sorted(missed_samples)) ) if ignore_missing_samples: logger.info(missing_sample_error) else: logger.info('Samples in callset but skipped:\n{}'.format(', '.join(sorted(skipped_samples)))) raise Exception(missing_sample_error) return parsed_svs_by_name
9397afcbbfa93155b4ae197f44c27267e6334aca
3,647,862
def load_data(): """ Carrega os dados do dataset iris :return: dados carregados em uma matriz """ data = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data", header=None) # utiliza somente as duas primeiras classes data = data[:100] # transforma as classes em 0 e 1 data[4] = np.where(data.iloc[:, -1] == 'Iris-setosa', 0, 1) data = np.asmatrix(data, dtype='float64') return data
fe2a1a999406f23676e58f75f1d5999e9f0697e8
3,647,863
import select from datetime import datetime async def activate_clients( *, client_id: int, session: Session = Depends(get_session), ): """ Activate a client using its id as a key. Parameters ---------- client_id : int ID of the client to be activated. session : Session SQL session that is to be used to activate a client. Defaults to creating a dependency on the running SQL model session. """ statement = select(Client).where(Client.id == client_id) client_to_update = session.exec(statement).one() client_to_update.is_active = True client_to_update.updated_at = datetime.now() session.add(client_to_update) session.commit() session.refresh(client_to_update) return client_to_update
bdd679d94fc68d4c4c75f410d1ed3eec193f868b
3,647,864
from sys import stdout def group(spanins, prob_threshold, scope, valid_relation_set, mode): """ for each unary instance that is classified as being in a relation, get the other argument which is also classifier as being in the same relation but different role ner1/2: list of unary instances """ assert scope in ['intra', 'cross'] # Grouping requirement # two could be in the same relation if all of the following requirements are satisified: # 1. both are assigned with pos pred_relation_label # 2. one must be subj and one must be obj # 3. relation must be the same # 4. ner1, ner2, relation exists in the valid_relation_set if scope == 'intra': print("getting sent2entities") sent2entities = get_sent2entities(spanins) rels = [] num_sents = len(sent2entities) for i, sentid in enumerate(sent2entities): stdout.write(f"\rgrouping, {i}/{num_sents}") stdout.flush() rels.extend(group_for_sent(sent2entities[sentid], valid_relation_set, prob_threshold, mode)) print() return rels
d76a02d341be1e836cfba560b11acfcc3f1527b9
3,647,865
def simulate_until_target_substate_or_max_t( _simulate_until_attractor_or_target_substate_or_max_t, initial_state, perturbed_nodes_by_t, predecessor_node_lists, truth_tables): """ Perform simulation to figure whether it reaches target substate. Does not return states of simulations that don't reach target substate. Target substate is not considered as reached until all the perturbations are carried out. Initial state can be considered as reached target substate if no perturbations are present. :param _simulate_until_attractor_or_target_substate_or_max_t: [function] to perform simulation :param initial_state: initial state of the network :param perturbed_nodes_by_t: dict (by time steps) of dicts (by nodes) of node states :param predecessor_node_lists: list of predecessor node lists :param truth_tables: list of dicts (key: tuple of predecessor node states, value: resulting node state) :return: list of states where last state contains target substate, or None if target substate was not reached """ states, *_, target_substate_is_reached, _ = _simulate_until_attractor_or_target_substate_or_max_t( initial_state, perturbed_nodes_by_t, predecessor_node_lists, truth_tables) return states if target_substate_is_reached else None
526ef8085dcbe4bcbc112c3bd4626ec5247e2f97
3,647,866
import requests from bs4 import BeautifulSoup def query_snpedia_online(rsid): """ @param soup: @param rsid: """ rsid = rsid.capitalize() url = "https://bots.snpedia.com/index.php" rsid_url = f"{url}/{rsid}" page = requests.get(rsid_url) soup = BeautifulSoup(page.content, "html.parser") columns, genotypes = parse_snpedia_online(soup, rsid) return columns, genotypes
138b252917b027564826212cfe96abafef3071b3
3,647,867
import os import json import aiohttp async def get_session(client_id: str, client_secret: str) -> AuthToken: """ Use the Authorization Code Grant flow to get a token. This opens a browser tab. """ refresh_token_file = os.path.join(config.config_dir(), '.refresh.token') base_url = 'https://bitbucket.org/site/oauth2' # If we have a refresh token, use that existing_token = None if os.path.isfile(refresh_token_file): with open(refresh_token_file) as f: existing_token = json.load(f) now = arrow.utcnow() if existing_token and arrow.get(existing_token['expires_at']) - now > timedelta(minutes=5): log.info('Found existing token') return existing_token # Otherwise, send the user to the browser flow redirect_uri = 'https://localhost:8888' client = WebApplicationClient(client_id) auth_url = client.prepare_request_uri(f'{base_url}/authorize', redirect_uri=redirect_uri) print(f'Please go to the following link, then copy the redirected URL back here.\n\n\t{auth_url}\n') code = client.parse_request_uri_response(input('URL: '))['code'] token_reqest_params = parse_qs(client.prepare_request_body(code=code, redirect_uri=redirect_uri)) async with aiohttp.ClientSession() as session: resp = await session.post( f'{base_url}/access_token', headers={'Authorization': aiohttp.BasicAuth(client_id, client_secret).encode()}, data=token_reqest_params ) if resp.status != 200: log.error(await resp.text()) raise Exception('Could not authenticate with the Bitbucket API') token: AuthToken = await resp.json() token['expires_at'] = now.shift(seconds=token['expires_in']).format(arrow.FORMAT_RFC3339) with open(refresh_token_file, 'w') as f: json.dump(token, f) return token
e92625219a3c48f805c0e18a172d1e7a75fceca1
3,647,868
def lower(value: str): # Only one argument. """Converts a string into all lowercase""" return value.lower()
59da46b7df5a2afdb106703568635b94174ea57c
3,647,869
import pprint def validate_oidc(): """Demonstrates how an access token is validated""" token = request.headers['Authorization'].split(' ')[1] message = check_oidc_token(token) pprint.pprint(message) return jsonify({ 'success': message['success'] })
d76d510d1b53a10e12ac9a5c085c0650bc8fb965
3,647,870
def merge(a, b, path=None): """From https://stackoverflow.com/a/7205107""" if path is None: path = [] for key in b: if key in a: if isinstance(a[key], dict) and isinstance(b[key], dict): merge(a[key], b[key], path + [str(key)]) elif a[key] == b[key]: pass # same leaf value else: pass # ignore conflicts, left dict wins. else: a[key] = b[key] return a
8f7990f28168fe0e3eaca790baddc0088baedf65
3,647,871
def norm_sq(f,alpha,n,L_mat_long,step): """ This function is the log-likelihood functional with the squared L2 norm of \hat{f_\beta} as the regularization term. """ L_mat=L_mat_long.reshape(n,len(f)) f[f <=0] = 1e-6 val=np.log(np.dot(L_mat,f)) return -sum(val)/n+ alpha*step**2*sum(f**2)
11a2b0fbd296b344b94cd3d5509bb0d4a12ab5fc
3,647,872
def get_applications(device_id: str = None, rpc_channel: InstrumentServer = None): """ 获取手机应用列表 :param device_id: :param rpc_channel: :return: """ if not rpc_channel: _rpc_channel = init(device_id) else: _rpc_channel = rpc_channel application_list = _rpc_channel.call( "com.apple.instruments.server.services.device.applictionListing", "installedApplicationsMatching:registerUpdateToken:", {}, "").parsed if not rpc_channel: _rpc_channel.stop() return application_list
150884e18349003e33011477603e2a6462bd8492
3,647,873
def open_mfdataset(files, use_cftime=True, parallel=True, data_vars='minimal', chunks={'time':1}, coords='minimal', compat='override', drop=None, **kwargs): """optimized function for opening large cf datasets. based on https://github.com/pydata/xarray/issues/1385#issuecomment-561920115 """ def drop_all_coords(ds): return ds.reset_coords(drop=True) ds = xr.open_mfdataset(files, parallel=parallel, decode_times=False, combine='by_coords', preprocess=drop_all_coords, decode_cf=False, chunks=chunks, data_vars=data_vars, coords=coords, compat=compat, **kwargs) return xr.decode_cf(ds, use_cftime=use_cftime)
ef31c732919f6b3cda0c6e5d9114fac7c39f40f7
3,647,874
def wls_sparse(X, y, w=1., calc_cov=False, verbose=False, **kwargs): """ Parameters ---------- X y w calc_cov verbose kwargs Returns ------- """ # The var returned by ln.lsqr is normalized by the variance of the error. To # obtain the correct variance, it needs to be scaled by the variance of the error. if w is None: # gracefully default to unweighted w = 1. w_std = np.asarray(np.sqrt(w)) wy = np.asarray(w_std * y) w_std = np.broadcast_to( np.atleast_2d(np.squeeze(w_std)).T, (X.shape[0], 1)) if not sp.issparse(X): wX = w_std * X else: wX = X.multiply(w_std) # noinspection PyTypeChecker out_sol = ln.lsqr(wX, wy, show=verbose, calc_var=True, **kwargs) p_sol = out_sol[0] # The residual degree of freedom, defined as the number of observations # minus the rank of the regressor matrix. nobs = len(y) npar = X.shape[1] # ==rank degrees_of_freedom_err = nobs - npar # wresid = np.exp(wy) - np.exp(wX.dot(p_sol)) # this option is better. # difference is small wresid = wy - wX.dot(p_sol) # this option is done by statsmodel err_var = np.dot(wresid, wresid) / degrees_of_freedom_err if calc_cov: # assert np.any() arg = wX.T.dot(wX) if sp.issparse(arg): # arg is square of size double: 1 + nt + no; single: 2 : nt # arg_inv = np.linalg.inv(arg.toarray()) arg_inv = np.linalg.lstsq( arg.todense(), np.eye(npar), rcond=None)[0] else: # arg_inv = np.linalg.inv(arg) arg_inv = np.linalg.lstsq( arg, np.eye(npar), rcond=None)[0] # for tall systems pinv (approximate) is recommended above inv # https://vene.ro/blog/inverses-pseudoinverses-numerical-issues-spee # d-symmetry.html # but better to solve with eye # p_cov = np.array(np.linalg.pinv(arg) * err_var) # arg_inv = np.linalg.pinv(arg) # else: # try: # arg_inv = np.linalg.lstsq(arg, np.eye(nobs), rcond=None)[0] # # except MemoryError: # print('Try calc_cov = False and p_cov = np.diag(p_var); ' # 'And neglect the covariances.') # arg_inv = np.linalg.lstsq(arg, np.eye(nobs), rcond=None)[0] p_cov = np.array(arg_inv * err_var) p_var = np.diagonal(p_cov) assert np.all(p_var >= 0), 'Unable to invert the matrix' + str(p_var) return p_sol, p_var, p_cov else: p_var = out_sol[-1] * err_var # normalized covariance return p_sol, p_var
ff0bec6d6cdcee85506514348e8a812926427dee
3,647,875
import os def register_module(): """Registers this module for use.""" def on_module_disable(): tags.Registry.remove_tag_binding(MathTag.binding_name) def on_module_enable(): tags.Registry.add_tag_binding(MathTag.binding_name, MathTag) global_routes = [ (RESOURCES_URI + '/.*', tags.ResourcesHandler), (MATHJAX_URI + '/(fonts/.*)', sites.make_zip_handler(os.path.join( appengine_config.BUNDLE_ROOT, 'lib', 'mathjax-fonts-2.3.0.zip'))), (MATHJAX_URI + '/(.*)', sites.make_zip_handler(os.path.join( appengine_config.BUNDLE_ROOT, 'lib', 'mathjax-2.3.0.zip')))] namespaced_routes = [] global custom_module # pylint: disable=global-statement custom_module = custom_modules.Module( 'Mathematical Formula Display', 'Provides a custom tag to embed mathematical formulas using TeX or MML.' , global_routes, namespaced_routes, notify_module_disabled=on_module_disable, notify_module_enabled=on_module_enable) return custom_module
6cdba610a18d4893b13bdf34a30c2fe7b05ff970
3,647,876
from typing import Tuple def sobel_gradients(source: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """ Computes partial derivations to detect angle gradients. """ grad_x = generic_filter(source, np.matrix([ [1, 0, -1], [2, 0, -2], [1, 0, -1]] )) grad_y = generic_filter(source, np.matrix([ [1, 2, 1], [0, 0, 0], [-1, -2, -1]] )) def normalize_angle(x: float) -> int: x = round(x % 180) if x >= 0 and x <= 22.5: return 0 elif x > 22.5 and x <= 67.5: return 45 elif x > 67.5 and x <= 112.5: return 90 elif x > 112.5 and x <= 157.5: return 135 elif x > 157.5 and x <= 180: return 0 thetas = np.arctan2(grad_y, grad_x) thetas = np.vectorize(normalize_angle)(thetas) grads = np.hypot(grad_y, grad_x) return grads, thetas
19c3e3eec46bee738b1e80dd73c5477f72dcf73c
3,647,877
from typing import Mapping def flat_dict(d, prefix=""): """ Loop through dictionary d Append any key, val pairs to the return list ret Add the prefix to any key param Recurse if encountered value is a nested dictionary. """ if not isinstance(d, Mapping): return d ret = {} for key, val in d.items(): if isinstance(val, Mapping): ret = {**ret, **flat_dict(val, prefix=prefix + str(key) + "_")} else: ret[prefix + str(key)] = val return ret
f0c1f519126dea89c25ee38a9b0dd788c40d2088
3,647,878
import logging def _get_filehandler_with_formatter(logname, formatter=None): """ Return a logging FileHandler for given logname using a given logging formatter :param logname: Name of the file where logs will be stored, ".log" extension will be added :param formatter: An instance of logging.Formatter or None if the default should be used :return: """ handler = logging.FileHandler(logname) if formatter is not None: handler.setFormatter(formatter) return handler
1cc6f83480e691c4c54c359deabd6364da65f320
3,647,879
import torch def gen_data_tensors( df: pd.DataFrame, lag: int = 6, batch_size: int = 32, validation_ratio: float = 0.2 ) -> (DataLoader, DataLoader, TensorDataset, TensorDataset): """ Primary goal: create dataloader object. """ x_train, y_train = generate_supervised(df, lag=lag) # Transform DataFrame to NumpyArray. x_train, y_train = map(lambda x: x.values, (x_train, y_train)) # Generating Validation Set. x_train, x_val, y_train, y_val = train_test_split( x_train, y_train, test_size=validation_ratio, shuffle=True ) # Transform to Tensor x_train, y_train, x_val, y_val = map( torch.tensor, (x_train, y_train, x_val, y_val) ) assert batch_size <= x_train.shape[0] and batch_size <= x_val.shape[0],\ "Batch size cannot be greater than number of training instances." train_ds = TensorDataset(x_train, y_train) train_dl = DataLoader(train_ds, batch_size=batch_size, shuffle=True) val_ds = TensorDataset(x_val, y_val) val_dl = DataLoader(val_ds, batch_size=batch_size, shuffle=True) return train_dl, val_dl, train_ds, val_ds
1451d38bd695163d84784f5a6b9b791c3987d56b
3,647,880
import json def staff_for_site(): """ Used by the Req/Req/Create page - note that this returns Person IDs """ try: site_id = request.args[0] except: result = current.xml.json_message(False, 400, "No Site provided!") else: table = s3db.hrm_human_resource ptable = db.pr_person query = (table.site_id == site_id) & \ (table.deleted == False) & \ (table.status == 1) & \ ((table.end_date == None) | \ (table.end_date > request.utcnow)) & \ (ptable.id == table.person_id) rows = db(query).select(ptable.id, ptable.first_name, ptable.middle_name, ptable.last_name, orderby=ptable.first_name) result = [] append = result.append for row in rows: append({"id" : row.id, "name" : s3_fullname(row) }) result = json.dumps(result) response.headers["Content-Type"] = "application/json" return result
d8890f31ae67abf72cdfbd14dd2af08762131e90
3,647,881
def element_z(sym_or_name): """Convert element symbol or name into a valid element atomic number Z. Args: sym_or_name: string type representing an element symbol or name. Returns: Integer z that is a valid atomic number matching the symbol or name. Raises: ElementZError: if the symbol or name cannot be converted. """ try: return _Z_FROM_SYMBOL[validated_symbol(sym_or_name)] except ElementSymbolError: pass try: return _Z_FROM_NAME[validated_name(sym_or_name)] except ElementNameError: raise ElementZError("Must supply either the element symbol or name")
b79fec9062539f98ad8c96cdc41a52f7e9c67fd9
3,647,882
from typing import Tuple def to_int(s: str) -> Tuple[bool, int]: """Convert a string s to an int, if possible.""" try: n = int(s) return True, n except Exception: return False, 0
27d24b881f5987037f750a1cee022f7b1daa7c33
3,647,883
def simple_computation(maximum_terms:int=None, configuration_of=None): """ Simple 4-operand computations 移除了分数项,因为除法运算会表示为分数 禁用了括号(random_term的expression参数),因为会导致溢出 :return: Problem object """ if not configuration_of: configuration_of = 'simple_computation' func_config = combine_configurations(type_config[configuration_of], global_config) if maximum_terms: func_config['maximum_terms'] = maximum_terms func_config['symbol'] = process_raw_symbol(func_config['symbol']) number_of_terms = randint(2, func_config['maximum_terms']) random_term_kwargs = {'interval':func_config['interval'], 'denominator_interval': func_config['denominator_interval'], 'float_precision': func_config['float_precision'], 'frac': False, 'expression': False, 'symbol': func_config['symbol']} str_question = str(random_term(**random_term_kwargs)) for term_number in range(number_of_terms): # operand term str_question += choice(['+', '-', '*', '/'])+str(random_term(**random_term_kwargs)) answer = sympify(str_question) if func_config['symbol'] else sympify(str_question).round(func_config['float_precision']) question = sympify(str_question, evaluate=False) problem = Problem(question, answer) return problem
0dae4396f74b9a254d0c882c022018c7a69d69cd
3,647,884
def add_torrents_from_folder(path, transmission_url, torrentleech_username, torrentleech_password, torrentleech_rss_key): """Console script for media_server_utils.""" core.add_torrents_from_folder(path, transmission_url, torrentleech_username, torrentleech_password, torrentleech_rss_key) return 0
ac058ff014c76a3af4054076961b52011bc7329c
3,647,885
def cut_graph(G, w): """ Cut a graph down to a given depth Inputs: - G Input graph - w Depth to cut to Output: - cut_G Cut graph """ # Copy the initial graph and get the number of nodes cut_G = G.copy() N = len(G.nodes) # Check all nodes for i in range(N): # If the depth is greater than w, remove the node if nx.shortest_path_length(G, source=0, target=i) > w: cut_G.remove_node(i) return cut_G
314f804d2d42146e1dcfb1f4a5373f92a4fe2f17
3,647,886
def archive_filter_search(articles_qs): """ gets the qs and filters and sends back to the hook for rendering. """ return articles_qs.exclude(updates__article__stage=STAGE_PUBLISHED)
2f5783de98110b9b74cabcf571a5919b409d1479
3,647,887
from typing import List def init_plotscript(config, markets: List, startup_candles: int = 0): """ Initialize objects needed for plotting :return: Dict with candle (OHLCV) data, trades and pairs """ if "pairs" in config: pairs = expand_pairlist(config['pairs'], markets) else: pairs = expand_pairlist(config['exchange']['pair_whitelist'], markets) # Set timerange to use timerange = TimeRange.parse_timerange(config.get('timerange')) data = load_data( datadir=config.get('datadir'), pairs=pairs, timeframe=config['timeframe'], timerange=timerange, startup_candles=startup_candles, data_format=config.get('dataformat_ohlcv', 'json'), ) if startup_candles and data: min_date, max_date = get_timerange(data) logger.info(f"Loading data from {min_date} to {max_date}") timerange.adjust_start_if_necessary(timeframe_to_seconds(config['timeframe']), startup_candles, min_date) no_trades = False filename = config.get('exportfilename') if config.get('no_trades', False): no_trades = True elif config['trade_source'] == 'file': if not filename.is_dir() and not filename.is_file(): logger.warning("Backtest file is missing skipping trades.") no_trades = True try: trades = load_trades( config['trade_source'], db_url=config.get('db_url'), exportfilename=filename, no_trades=no_trades, strategy=config.get('strategy'), ) except ValueError as e: raise OperationalException(e) from e if not trades.empty: trades = trim_dataframe(trades, timerange, 'open_date') return {"ohlcv": data, "trades": trades, "pairs": pairs, "timerange": timerange, }
220118a5d438227932ba9473471d59ff03b44412
3,647,888
from typing import List from typing import Callable def get_one(data: List[LogEntry], filterfun: Callable) -> LogEntry: """Get a single entry and assert that after filtering only a single entry remains.""" filtered = list(filter(filterfun, data)) if len(filtered) != 1: raise ValueError(f"Entries not unique after filtering: {filtered}") return filtered[0]
ece1b0b9c654f85eda89e2fc8736c84b4a2ca9ca
3,647,889
import os def parse_ignorelist(f): # type: (IO[Text]) -> Tuple[Ignorelist, Set[Text]] """ Parse the ignorelist file given by `f`, and return the parsed structure. :returns: a tuple of an Ignorelist and a set of files that are completely skipped by the linter (i.e. have a '*' entry). """ data = defaultdict(lambda:defaultdict(set)) # type: Ignorelist skipped_files = set() # type: Set[Text] for line in f: line = line.strip() if not line or line.startswith("#"): continue parts = [item.strip() for item in line.split(":")] if len(parts) == 2: error_types_s, file_match = parts line_number = None # type: Optional[int] else: error_types_s, file_match, line_number_s = parts line_number = int(line_number_s) error_types = {item.strip() for item in error_types_s.split(",")} file_match = os.path.normcase(file_match) if "*" in error_types: skipped_files.add(file_match) else: for error_type in error_types: data[error_type][file_match].add(line_number) return data, skipped_files
17fb3af2a4cd00e93f89023928493cc2cc2fc33e
3,647,890
from typing import Optional def create(env_name: str, episode_length: int = 1000, action_repeat: int = 1, auto_reset: bool = True, batch_size: Optional[int] = None, **kwargs) -> Env: """Creates an Env with a specified brax system.""" env = _envs[env_name](**kwargs) if episode_length is not None: env = wrappers.EpisodeWrapper(env, episode_length, action_repeat) if batch_size: env = wrappers.VectorWrapper(env, batch_size) if auto_reset: env = wrappers.AutoResetWrapper(env) return env # type: ignore
1d7e8bf147843799f01e7a894b86fce74ca86da7
3,647,891
def from_software_version(software_version): """ Returns the product version dependant limits_constants. This is based on the running software version on the product and can change based on up when you ask a cluster if upgrading. Args: software_version: (str) software version ex "3.1.2.0" or "2.2.7" """ return _get_limits(software_version=software_version)
fc978610a6aa55a956bb849cae107bc134934f55
3,647,892
def _from_parse_feature(parse_feature): """Convert a single feature spec to a ColumnSchema.""" # FixedLenFeature if isinstance(parse_feature, tf.FixedLenFeature): representation = FixedColumnRepresentation(parse_feature.default_value) return ColumnSchema(parse_feature.dtype, parse_feature.shape, representation) # FixedLenSequenceFeature if isinstance(parse_feature, tf.FixedLenSequenceFeature): raise ValueError('DatasetSchema does not support ' 'FixedLenSequenceFeature yet.') # VarLenFeature if isinstance(parse_feature, tf.VarLenFeature): representation = ListColumnRepresentation() return ColumnSchema(parse_feature.dtype, [None], representation) # SparseFeature if isinstance(parse_feature, tf.SparseFeature): index_field = SparseIndexField(name=parse_feature.index_key, is_sorted=parse_feature.already_sorted) representation = SparseColumnRepresentation( value_field_name=parse_feature.value_key, index_fields=[index_field]) return ColumnSchema(parse_feature.dtype, [parse_feature.size], representation) raise ValueError('Cannot interpret feature spec {} with type {}'.format( parse_feature, type(parse_feature)))
9c7034c3b7663a0c49dc69dbf8507f90f4cacf83
3,647,893
import json def conditional_patch_resource( service_account_json, base_url, project_id, cloud_region, dataset_id, fhir_store_id ): """ If a resource is found based on the search criteria specified in the query parameters, updates part of that resource by applying the operations specified in a JSON Patch document. """ url = "{}/projects/{}/locations/{}".format(base_url, project_id, cloud_region) # The search query in this request updates all Observations # if the subject of the Observation is a particular patient. resource_path = "{}/datasets/{}/fhirStores/{}/fhir/Observation".format( url, dataset_id, fhir_store_id ) # Make an authenticated API request session = get_session(service_account_json) headers = {"Content-Type": "application/json-patch+json"} body = json.dumps( [ { "op": "replace", "path": "/valueQuantity/value", # Sets the BPM for all matching Observations to 80. This # is the portion of the request being patched. "value": 80, } ] ) # The search query is passed in as a query string parameter. params = {"identifier": "my-code-system|ABC-12345"} response = session.patch(resource_path, headers=headers, params=params, data=body) response.raise_for_status() print(response.url) resource = response.json() print( "Conditionally patched all Observations with the " "identifier 'my-code-system|ABC-12345' to use a BPM of 80." ) print(json.dumps(resource, indent=2)) return resource
e04eada0184d38c8d0b1ec4620fd5ef1f0bc90d5
3,647,894
def cal_big_F(p, f): """ calculate finite strain big F for linearized form not fully tested :param p: pressure :param f: small f :return: big F """ return p / (3. * f * np.power((1. + 2. * f), 2.5))
2d98b9e525837cd8d6dd17266f92f959743ad8f2
3,647,895
from typing import List def multiply_aug(data_aug: List[str], factor: int) -> List[str]: """ The original idea here was to use to to speed up some vasp calculations for supercells by initializing the entire CHGCAR file. The current code does not deal with transformation of the Augemetation charges after regridding. This is a naive way to multiply the Augmentation data in the CHGCAR, a real working implementation will require analysis of the PAW projection operators. However, even with such an implementation, the speed up will be minimal due to VASP's interal minimization algorithms. Args: data_aug: The original augmentation data from a CHGCAR factor: The multiplication factor (some integer number of times it gets repeated) Returns: List of strings for each line of the Augmentation data. """ res = [] # type: List[str] cur_block = [] # type: List[str] cnt = 0 for ll in data_aug: if "augmentation" in ll: if cur_block: for j in range(factor): cnt += 1 cur_block[ 0 ] = f"augmentation occupancies{cnt:>4}{cur_block[0].split()[-1]:>4}\n" res.extend(cur_block) cur_block = [ll] else: cur_block.append(ll) else: for j in range(factor): cnt += 1 cur_block[ 0 ] = f"augmentation occupancies{cnt:>4}{cur_block[0].split()[-1]:>4}\n" res.extend(cur_block) return res
2baef4c98dbb83f1a08f11e58f3c4cf82ad8ea64
3,647,896
def _parse_instance_chain(chain_str): """ 返回对象链解析出来的实例对象。""" chain = chain_str.split('.') instance_name = chain.pop(0) attr = session['instances'][instance_name] for attr_name in chain: attr = getattr(attr, attr_name) return attr
531b78ee80f3b6437b885ef89b7f285e6cf6a8a5
3,647,897
import math def epochs_lists( draw, start_time=math.inf, max_epochs=5, min_deme_size=FLOAT_EPS, max_deme_size=FLOAT_MAX, ): """ A hypothesis strategy for creating lists of Epochs for a deme. :param float start_time: The start time of the deme. :param int max_epochs: The maximum number of epochs in the list. """ assert max_epochs >= 2 times = draw( st.lists( st.floats( min_value=0, max_value=min(FLOAT_MAX, start_time), exclude_max=True, width=32, ), unique=True, min_size=1, max_size=max_epochs, ) ) times.sort(reverse=True) epochs = [] for i, end_time in enumerate(times): start_size = draw(st.floats(min_value=min_deme_size, max_value=max_deme_size)) if i == 0 and math.isinf(start_time): end_size = start_size else: end_size = draw(st.floats(min_value=min_deme_size, max_value=max_deme_size)) cloning_rate = draw(st.floats(min_value=0, max_value=1)) selfing_rate = draw(st.floats(min_value=0, max_value=prec32(1 - cloning_rate))) epochs.append( dict( end_time=end_time, start_size=start_size, end_size=end_size, cloning_rate=cloning_rate, selfing_rate=selfing_rate, ) ) return epochs
9eebece7ac1dc2f9ad6d13f7368de62a6db9433c
3,647,898
import torch def mlp_layers(nch_input, nch_layers, b_shared=True, bn_momentum=0.1, dropout=0.0): """ [B, Cin, N] -> [B, Cout, N] or [B, Cin] -> [B, Cout] """ layers = [] last = nch_input for i, outp in enumerate(nch_layers): if b_shared: weights = torch.nn.Conv1d(last, outp, 1) else: weights = torch.nn.Linear(last, outp) layers.append(weights) layers.append(torch.nn.BatchNorm1d(outp, momentum=bn_momentum)) layers.append(torch.nn.ReLU()) if b_shared == False and dropout > 0.0: layers.append(torch.nn.Dropout(dropout)) last = outp return layers
8085b99b828fcbadee191d90737d582f7dd9ce73
3,647,899