content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def canonicalize_path(cwd, path, debug): """Given a path composed by concatenating two or more parts, clean up and canonicalize the path.""" # // => / # foo/bar/../whatever => foo/whatever [done] # foo/bar/./whatever => foo/whatever [done] # /foo/bar => /foo/bar [done] # foo/bar => cwd/foo/bar [done] # <empty_path> => cwd [done] # Since we construct cwd from a node_id now, it always ends in /, # so trim off the last empty string in cwd_parts cwd_parts = cwd.split('/')[:-1] path_parts = path.split('/') new = path_parts if path and path[0] == '/' else cwd_parts + path_parts if debug: print("# canonicalize_path(cwd: '" + cwd \ + "', path: '" + path + "')") print("# cwd_parts: " + str(cwd_parts)) print("# path_parts: " + str(path_parts)) print("# new: '" + str(new) + "'") # Now we will do some canonicalization ... while '..' in new: where = new.index('..') new = new[:where-1] + new[where+1:] if where >= 2 else new[where+1:] while '.' in new: where = new.index('.') new = new[:where] + new[where+1:] if where >= 1 else new[where+1:] # Get rid of trailing slashes while new and new[-1] == "": new = new[:-1] # Get rid of double slashes (an empty string in the middle of new) while '' in new[1:-1]: where = new[1:-1].index('') new = new[:where+1] + new[where+2:] # Make sure it's not empty if new and new[0] != '': new.insert(0, "") new_path = '/'.join(new) if not new_path: new_path = '/' if debug: print("# new: '" + str(new) + "'") print("new_path: '" + new_path + "'") return new_path
f8714f93106dcb3330c2f0df635aae5975f68abf
3,646,500
import click import functools import sys def context_command(func): """ Base options for jobs that can override context variables on the command line. The command receives a *context_overrides* argument, a dict ready to be deep merged in templates contexts. """ @click.option('--context', '-c', 'context_vars', multiple=True, metavar='VAR=VALUE', help='Override context VAR with ' 'VALUE; use --context multiple times to override multiple ' 'variables. Use dots to target a nested variable: ' 'foo.bar=baz') @functools.wraps(func) def wrapper(context_vars, **kwargs): try: context_overrides = parse_context_vars(context_vars) except exceptions.MalformedContextVar as exc: click.secho('Malformed context var in command-line: %s' % exc, fg='red', bold=True) click.secho('') click.secho('Use PATH.TO.VAR=VALUE format.', fg='green') sys.exit(1) return func(context_overrides=context_overrides, **kwargs) return wrapper
b140411121b814a732f6988be77c607811a148c6
3,646,501
def checksum(number): """Calculate the checksum. A valid number should have a checksum of 1.""" check = 0 for n in number: check = (2 * check + int(10 if n == 'X' else n)) % 11 return check
8ada40ca46bc62bbe8f96d69528f2cd88021ad6a
3,646,502
def instanceof(value, type_): """Check if `value` is an instance of `type_`. :param value: an object :param type_: a type """ return isinstance(value, type_)
3de366c64cd2b4fe065f15de10b1e6ac9132468e
3,646,503
def step(y, t, dt): """ RK2 method integration""" n = y.shape[0] buf_f0 = np.zeros((n, ndim+1)) buf_f1 = np.zeros((n, ndim+1)) buf_y1 = np.zeros((n, ndim+1)) buf_f0 = tendencies(y) buf_y1 = y + dt * buf_f0 buf_f1 = tendencies(buf_y1) Y = y + 0.5 * (buf_f0 + buf_f1) * dt return Y
e3c946b37d96ad0083fc5cc7a8d84b2f03ca897b
3,646,504
import torch import gc def sample_deletes(graph_, rgb_img_features, xyz, delete_scores, num_deletes, threshold, gc_neighbor_dist, padding_config, **kwargs): """Sample Deletes. Args: graph_: a torch_geometric.data.Batch instance with attributes: - rgb: a [N x C_app] torch.FloatTensor of rgb features - depth: a [N x 3 x H' x W'] torch.FloatTensor - mask: a [N x 1 x H' x W'] torch.FloatTensor - orig_masks: a [N x H x W] torch.FloatTensor of original masks - crop_indices: a [N, 4] torch.LongTensor. xmin, ymin, xmax, ymax. rgb_img_features: an OrderedDict of image features. Output of gc.extract_rgb_img_features() xyz_img: a [3, H, W] torch.FloatTensor. 3D point cloud from camera frame of reference delete_scores: a [N] torch.FloatTensor with values in [0, 1]. Output of DeleteNetWrapper.delete_scores(). num_deletes: Maximum number of deletes allowed. threshold: Minimum delete score required to consider the delete. gc_neighbor_dist: Distance threshold for connecting nodes in new graph padding_config: a Python dictionary with padding parameters. Returns: boolean of whether merge operation was successful. a torch_geometric.data.Data instance. """ # Sort scores, consider only the ones above a certain threshold sorted_scores, score_indices = torch.sort(delete_scores, descending=True) num_potential_deletes = torch.sum(sorted_scores > threshold) if num_potential_deletes == 0 and torch.all(~graph_.added): # Nothing to delete return False, None score_indices = score_indices[:num_potential_deletes] delete_inds = torch.zeros(graph_.orig_masks.shape[0]).bool() # Sample some masks to delete leftover_delete_scores = delete_scores[score_indices] leftover_delete_indices = score_indices while torch.sum(delete_inds) < num_deletes and leftover_delete_indices.shape[0] > 0: # Sample delete index sample_idx = torch.multinomial(leftover_delete_scores, 1) delete_idx = leftover_delete_indices[sample_idx][0] delete_inds[delete_idx] = True # Get leftover potential deletes temp = torch.ones(leftover_delete_scores.shape[0]).bool() temp[sample_idx] = False leftover_delete_indices = leftover_delete_indices[temp] leftover_delete_scores = leftover_delete_scores[temp] # If the deleting only undoes the potential adds, consider the sampling to be a failure if torch.all(delete_inds == graph_.added): return False, None # Keep the un-deleted masks new_masks = graph_.orig_masks[~delete_inds] # Create new graph new_masks = new_masks[1:] # Get rid of BG mask new_masks = util_.convert_mask_NHW_to_HW(new_masks.float(), start_label=constants.OBJECTS_LABEL) new_graph = gc.construct_segmentation_graph(rgb_img_features, xyz, new_masks, neighbor_dist=gc_neighbor_dist, padding_config=padding_config) return True, new_graph
3a24d3806e3e7aebf5ae6d2c7141149358d21607
3,646,505
def make_char(hex_val): """ Create a unicode character from a hex value :param hex_val: Hex value of the character. :return: Unicode character corresponding to the value. """ try: return unichr(hex_val) except NameError: return chr(hex_val)
edbbad92c56ec74ff28295c46dca4f2976768d0a
3,646,506
def normalize(features): """ Normalizes data using means and stddevs """ means, stddevs = compute_moments(features) normalized = (np.divide(features, 255) - means) / stddevs return normalized
3b4c07bf80e68ec3d6c807a9293aa5b4f4203401
3,646,507
def get_args_from_str(input: str) -> list: """ Get arguments from an input string. Args: input (`str`): The string to process. Returns: A list of arguments. """ return ARG_PARSE_REGEX.findall(input)
50de69e4ee60da31a219842ce09833a92218ea14
3,646,508
import os def get_all_files(repo_root): """Get all files from in this repo.""" output = [] for root, _, files in os.walk(repo_root): for f in files: if f.lower().endswith(tuple(CPP_SUFFIXES + ['.py'])): full_name = os.path.join(root, f)[len(repo_root) + 1:] if not any(n in full_name for n in ALL_FILES_BLACKLISTED_NAMES): output.append(full_name) return output
3a7cfcba087df93be74dd064d92f679cc987b714
3,646,509
from typing import List def simulate(school: List[int], days: int) -> int: """Simulates a school of fish for ``days`` and returns the number of fish.""" school = flatten_school(school) for day in range(1, days + 1): school = simulate_day(school) return sum(school)
efcfbfdde9c3fc941a40028459ddc35db0653296
3,646,510
import torch def SPTU(input_a, input_b, n_channels: int): """Softplus Tanh Unit (SPTU)""" in_act = input_a+input_b t_act = torch.tanh(in_act[:, :n_channels, :]) s_act = torch.nn.functional.softplus(in_act[:, n_channels:, :]) acts = t_act * s_act return acts
a03cc114cf960af750b13cd61db8f4d2e6c064ad
3,646,511
def is_fouling_team_in_penalty(event): """Returns True if fouling team over the limit, else False""" fouls_to_give_prior_to_foul = event.previous_event.fouls_to_give[event.team_id] return fouls_to_give_prior_to_foul == 0
ac1578af1092586a30b8fc9cdb3e5814da1f1544
3,646,512
import re def is_img_id_valid(img_id): """ Checks if img_id is valid. """ t = re.sub(r'[^a-z0-9_:\-\.]', '', img_id, re.IGNORECASE) t = re.sub(r'\.+', '.', t) if img_id != t or img_id.count(':') != 1: return False profile, base_name = img_id.split(':', 1) if not profile or not base_name: return False try: get_profile_configs(profile) except ValueError: return False return True
749a8830d1a932465ca0c9c8c3a18032e2dc357e
3,646,513
import warnings def lmc(wave, tau_v=1, **kwargs): """ Pei 1992 LMC extinction curve. :param wave: The wavelengths at which optical depth estimates are desired. :param tau_v: (default: 1) The optical depth at 5500\AA, used to normalize the attenuation curve. :returns tau: The optical depth at each wavelength. """ if (wave < 1e3).any(): warnings.warn('LMC: extinction extrapolation below 1000AA is poor') mic = wave * 1e-4 aa = [175., 19., 0.023, 0.005, 0.006, 0.020] ll = [0.046, 0.08, 0.22, 9.7, 18., 25.] bb = [90., 5.50, -1.95, -1.95, -1.80, 0.00] nn = [2.0, 4.5, 2.0, 2.0, 2.0, 2.0] abs_ab = mic * 0. norm_v = 0 # hack to go from tau_b to tau_v mic_5500 = 5500 * 1e-4 for i, a in enumerate(aa): norm_v += aa[i] / ((mic_5500 / ll[i])**nn[i] + (ll[i] / mic_5500)**nn[i] + bb[i]) abs_ab += aa[i] / ((mic / ll[i])**nn[i] + (ll[i] / mic)**nn[i] + bb[i]) return tau_v * (abs_ab / norm_v)
04c89605e8ad4188c62b631e173a9c8fe714958a
3,646,514
def minMax(xs): """Calcule le minimum et le maximum d'un tableau de valeur xs (non-vide !)""" min, max = xs[0], xs[0] for x in xs[1:]: if x < min: min = x elif x > max: max = x return min,max
8453b71e5b62592f38f4be84f4366fb02bd0171b
3,646,515
def events(request): """Events""" # Get profile profile = request.user.profile # Get a QuerySet of events for this user events = Event.objects.filter(user=request.user) # Create a new paginator paginator = Paginator(events, profile.entries_per_page) # Make sure page request is an int, default to 1st page try: page = int(request.GET.get('page', '1')) except ValueError: page = 1 # If page request is out of range, deliver last page of results try: events = paginator.page(page) except (EmptyPage, InvalidPage): events = paginator.page(paginator.num_pages) # Render template return render_page( 'thing/events.html', { 'events': events, 'user': request.user }, request, )
3561856af65d2e54eb4f00a13ca85ece4c939b7a
3,646,516
from typing import Tuple from typing import Callable def latent_posterior_factory(x: np.ndarray, y: np.ndarray) -> Tuple[Callable]: """Factory function that yields further functions to compute the log-posterior of the stochastic volatility model given parameters `x`. The factory also constructs functions for the gradient of the log-posterior and the Fisher information metric. Args: x: The stochastic volatilities. y: Observations from the stochastic volatility model. Returns: log_posterior: Function to compute the log-posterior. grad_log_posterior: Function to compute the gradient of the log-posterior. metric: Function to compute the Fisher information metric. grad_metric: Function to compute the gradient of the Fisher information metric. """ T = x.size def _log_posterior(sigma: float, phi: float, beta: float) -> float: """The log-posterior of the stochastic volatility model given the stochastic volatilities. The inference is over the model parameters `sigma`, `phi`, and `beta`. Args: sigma: Parameter of the stochastic volatility model. phi: Parameter of the stochastic volatility model. beta: Parameter of the stochastic volatility model. Returns: lp: The log-posterior of the stochastic volatility model. """ phisq = np.square(phi) ly = spst.norm.logpdf(y, 0.0, beta*np.exp(0.5 * x)).sum() lxo = spst.norm.logpdf(x[0], 0.0, sigma / np.sqrt(1.0 - phisq)) lx = spst.norm.logpdf(x[1:], phi*x[:-1], sigma).sum() lp = ly + lx + lxo + log_prior(sigma, phi, beta) return lp def _grad_log_posterior_helper(gamma, alpha, beta, sigmasq, phi, phisq): dpgamma, dpalpha, dpbeta = grad_log_prior(gamma, alpha, beta) dbeta = (-T / beta + np.sum(np.square(y) / np.exp(x)) / np.power(beta, 3.0) + dpbeta) dgamma = ( -T + np.square(x[0])*(1.0 - phisq) / sigmasq + np.sum(np.square(x[1:] - phi*x[:-1])) / sigmasq + dpgamma) dalpha = ( -phi + phi*np.square(x[0])*(1.0 - phisq) / sigmasq + np.sum(x[:-1] * (x[1:] - phi*x[:-1])) * (1.0 - phisq) / sigmasq + dpalpha) return np.array([dgamma, dalpha, dbeta]) def _metric_helper(gamma, alpha, beta, sigmasq, phi, phisq): # Note that this ordering of the variables differs from that presented # in the Riemannian manifold HMC paper. G = np.array([ # gamma alpha beta [ 2.0*T, 2.0*phi, 0.0], # gamma [2.0*phi, 2.0*phisq + (T - 1.0)*(1.0 - phisq), 0.0], # alpha [ 0.0, 0.0, 2.0 * T / np.square(beta)] # beta ]) # Add in the negative Hessian of the log-prior. H = hess_log_prior(gamma, alpha, beta) G -= H return G def _grad_metric_helper(gamma, alpha, beta, sigmasq, phi, phisq): dGbeta = np.array([ [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, -4.0 * T / np.power(beta, 3.0)] ]) dGgamma = np.zeros((3, 3)) a = 2.0*(1.0 - phisq) b = 2.0*phi*(3.0 - T)*(1.0 - phisq) dGalpha = np.array([ [0.0, a, 0.0], [ a, b, 0.0], [0.0, 0.0, 0.0] ]) dG = np.array([dGgamma, dGalpha, dGbeta]).swapaxes(0, -1) dH = grad_hess_log_prior(gamma, alpha, beta) return dG - dH def _grad_log_posterior(gamma: float, alpha: float, beta: float) -> np.ndarray: """The gradient log-posterior of the stochastic volatility model given the stochastic volatilities with respect to the (transformed) parameters `gamma`, `alpha`, and `beta`. Args: gamma: Transformed parameter `sigma` of the stochastic volatility model. alpha: Transformed parameter `phi` of the stochastic volatility model. beta: Parameter of the stochastic volatility model. Returns: dgamma: The gradient of the log-posterior with respect to the transformed parameter `sigma`. dalpha: The gradient of the log-posterior with respect to the transformed parameter `phi`. dbeta: The gradient of the log-posterior with respect to `beta`. """ sigma = np.exp(gamma) sigmasq = np.square(sigma) phi = np.tanh(alpha) phisq = np.square(phi) return _grad_log_posterior_helper(gamma, alpha, beta, sigmasq, phi, phisq) def _metric(gamma: float, alpha: float, beta: float) -> np.ndarray: """The Fisher information metric of the stochastic volatility model given the stochastic volatilities. Args: gamma: Transformed parameter of the stochastic volatility model. alpha: Transformed parameter of the stochastic volatility model. beta: Parameter of the stochastic volatility model. Returns: G: The Fisher information metric. """ sigma = np.exp(gamma) sigmasq = np.square(sigma) phi = np.tanh(alpha) phisq = np.square(phi) return _metric_helper(gamma, alpha, beta, sigmasq, phi, phisq) def _grad_metric(gamma: float, alpha: float, beta: float) -> np.ndarray: """The gradient of the Fisher information metric of the stochastic volatility model given the stochastic volatilities with respect to the `sigma`, `alpha`, and `beta` parameters of the stochastic volatility model. Args: gamma: Transformed parameter of the stochastic volatility model. alpha: Transformed parameter of the stochastic volatility model. beta: Parameter of the stochastic volatility model. Returns: dG: The gradient of the Fisher information metric. """ sigma = np.exp(gamma) sigmasq = np.square(sigma) phi = np.tanh(alpha) phisq = np.square(phi) return _grad_metric_helper(gamma, alpha, beta, sigmasq, phi, phisq) def grad_log_posterior_and_metric_and_grad_metric(q): gamma, alpha, beta = q sigma = np.exp(gamma) sigmasq = np.square(sigma) phi = np.tanh(alpha) phisq = np.square(phi) glp = _grad_log_posterior_helper(gamma, alpha, beta, sigmasq, phi, phisq) G = _metric_helper(gamma, alpha, beta, sigmasq, phi, phisq) dG = _grad_metric_helper(gamma, alpha, beta, sigmasq, phi, phisq) return glp, G, dG # Convert functions defined for separate arguments to take a vector # concatenation of the parameter. log_posterior = lambda q: _log_posterior(*inverse_transform(q)[0]) grad_log_posterior = lambda q: _grad_log_posterior(q[0], q[1], q[2]) metric = lambda q: _metric(q[0], q[1], q[2]) grad_metric = lambda q: _grad_metric(q[0], q[1], q[2]) return ( log_posterior, grad_log_posterior, metric, grad_metric, grad_log_posterior_and_metric_and_grad_metric)
0fe2ec7a7fab480fbe19a374e71ac3ab5232d8e0
3,646,517
def update_build_configuration_set(id, **kwargs): """ Update a BuildConfigurationSet """ data = update_build_configuration_set_raw(id, **kwargs) if data: return utils.format_json(data)
ee02faf0d683e271747d6e30a3ef8ffd9c271e6c
3,646,518
from typing import Optional def create_app(settings_override: Optional[dict]=None) -> Flask: """ Create a Flask app :param settings_override: any settings to override :return: flask app """ app = Flask(__name__, instance_relative_config=True) app.config.from_object('config.settings') app.config.from_pyfile('settings.py', silent=True) if settings_override: app.config.update(settings_override) configure_logging(app) initialize_extensions(app) db.app = app register_blueprints(app) initialize_jinja2(app) load_models() return app
2a4ee3b8f4f67db1966a678b6059b53aa21ac73f
3,646,519
def compute_prefix_function(pattern): """ Computes the prefix array for KMP. :param pattern: :type pattern: str :return: """ m = len(pattern) prefixes = [0]*(m+1) i = 0 for q in range(2, m + 1): while i > 0 and pattern[i] != pattern[q - 1]: i = prefixes[i] if pattern[i] == pattern[q - 1]: i += 1 prefixes[q] = i return prefixes[1:]
7933cc33eba53247e858ae40b9691d101c7030e6
3,646,520
def binary_indicator(states, actions, rewards, next_states, contexts, termination_epsilon=1e-4, offset=0, epsilon=1e-10, state_indices=None, summarize=False): """Returns 0/1 by checking if next_states and contexts overlap. Args: states: A [batch_size, num_state_dims] Tensor representing a batch of states. actions: A [batch_size, num_action_dims] Tensor representing a batch of actions. rewards: A [batch_size] Tensor representing a batch of rewards. next_states: A [batch_size, num_state_dims] Tensor representing a batch of next states. contexts: A list of [batch_size, num_context_dims] Tensor representing a batch of contexts. termination_epsilon: terminate if dist is less than this quantity. offset: Offset the rewards. epsilon: small offset to ensure non-negative/zero distance. Returns: A new tf.float32 [batch_size] rewards Tensor, and tf.float32 [batch_size] discounts tensor. """ del states, actions # unused args next_states = index_states(next_states, state_indices) dist = tf.reduce_sum(tf.squared_difference(next_states, contexts[0]), -1) dist = tf.sqrt(dist + epsilon) discounts = dist > termination_epsilon rewards = tf.logical_not(discounts) rewards = tf.to_float(rewards) + offset return tf.to_float(rewards), tf.ones_like(tf.to_float(discounts))
68531010c695e4bb8d49d05f5b0ba8799e1e3cf5
3,646,521
import math def sigmoid(num): """ Find the sigmoid of a number. :type number: number :param number: The number to find the sigmoid of :return: The result of the sigmoid :rtype: number >>> sigmoid(1) 0.7310585786300049 """ # Return the calculated value return 1 / (1 + math.exp(-num))
73730a39627317011d5625ab85c146b6bd7793d8
3,646,522
def list_lattices(device_name: str = None, num_qubits: int = None, connection: ForestConnection = None): """ Query the Forest 2.0 server for its knowledge of lattices. Optionally filters by underlying device name and lattice qubit count. :return: A dictionary keyed on lattice names and valued in dictionaries of the form { "device_name": device_name, "qubits": num_qubits } """ if connection and connection.session: session = connection.session else: session = get_session() if connection: url = connection.sync_endpoint + "/lattices" else: config = PyquilConfig() try: url = config.forest_url + "/lattices" except TypeError: raise ValueError("""Encountered an error when querying the Forest 2.0 endpoint. Most likely, you're missing an address for the Forest 2.0 server endpoint. This can be set through the environment variable FOREST_URL or by changing the following lines in the QCS config file: [Rigetti Forest] url = https://rigetti.com/valid/forest/url""") try: response = get_json(session, url, params={"device_name": device_name, "num_qubits": num_qubits}) return response["lattices"] except Exception as e: raise ValueError(""" list_lattices encountered an error when querying the Forest 2.0 endpoint. Some common causes for this error include: * You don't have valid user authentication information. Very likely this is because you haven't yet been invited to try QCS. We plan on making our device information publicly accessible soon, but in the meanwhile, you'll have to use default QVM configurations and to use `list_quantum_computers` with `qpus = False`. * You do have user authentication information, but it is missing or modified. You can find this either in the environment variables FOREST_API_KEY and FOREST_USER_ID or in the config file (stored by default at ~/.qcs_config, but with location settable through the environment variable QCS_CONFIG), which contains the subsection [Rigetti Forest] user_id = your_user_id key = your_api_key * You're missing an address for the Forest 2.0 server endpoint, or the address is invalid. This too can be set through the environment variable FOREST_URL or by changing the following lines in the QCS config file: [Rigetti Forest] url = https://rigetti.com/valid/forest/url For the record, here's the original exception: {} """.format(repr(e)))
a6fb4754f3f76135ed2083441782924f03160994
3,646,523
def inflate_tilegrid( bmp_path=None, target_size=(3, 3), tile_size=None, transparent_index=None, bmp_obj=None, bmp_palette=None, ): """ inflate a TileGrid of ``target_size`` in tiles from a 3x3 spritesheet by duplicating the center rows and columns. :param Optional[str] bmp_path: filepath to the 3x3 spritesheet bitmap file :param Optional[tuple] target_size: desired size in tiles (target_width, target_height) :param Optional[tuple] tile_size: size of the tiles in the 3x3 spritesheet. If None is used it will equally divide the width and height of the Bitmap by 3. :param Optional[Union[tuple, int]] transparent_index: a single index within the palette to make transparent, or a tuple of multiple indexes to make transparent :param Optional[OnDiskBitmap] bmp_obj: Already loaded 3x3 spritesheet in an OnDiskBitmap :param Optional[Palette] bmp_palette: Already loaded spritesheet Palette """ # pylint: disable=too-many-arguments, too-many-locals, too-many-branches if bmp_path is None and (bmp_obj is None and bmp_palette is None): raise AttributeError("Must pass either bmp_path or bmp_obj and bmp_palette") if bmp_path is not None: image, palette = adafruit_imageload.load(bmp_path) else: image = bmp_obj palette = bmp_palette if transparent_index is not None: if isinstance(transparent_index, tuple): for index in transparent_index: palette.make_transparent(index) elif isinstance(transparent_index, int): palette.make_transparent(transparent_index) if tile_size is None: tile_width = image.width // 3 tile_height = image.height // 3 else: tile_width = tile_size[0] tile_height = tile_size[1] target_width = target_size[0] target_height = target_size[1] tile_grid = displayio.TileGrid( image, pixel_shader=palette, height=target_height, width=target_width, tile_width=tile_width, tile_height=tile_height, ) # corners tile_grid[0, 0] = 0 # upper left tile_grid[tile_grid.width - 1, 0] = 2 # upper right tile_grid[0, tile_grid.height - 1] = 6 # lower left tile_grid[tile_grid.width - 1, tile_grid.height - 1] = 8 # lower right for x in range(target_size[0] - 2): tile_grid[x + 1, 0] = 1 tile_grid[x + 1, tile_grid.height - 1] = 7 for y in range(target_size[1] - 2): tile_grid[0, y + 1] = 3 tile_grid[tile_grid.width - 1, y + 1] = 5 for y in range(target_size[1] - 2): for x in range(target_size[0] - 2): tile_grid[x + 1, y + 1] = 4 return tile_grid
b3c67c9aaa38cc77208f6fc7cafe91814a0fdbb4
3,646,524
def get_name_and_version(requirements_line: str) -> tuple[str, ...]: """Get the name a version of a package from a line in the requirement file.""" full_name, version = requirements_line.split(" ", 1)[0].split("==") name_without_extras = full_name.split("[", 1)[0] return name_without_extras, version
424b3c3138ba223610fdfa1cfa6d415b8e31aff3
3,646,525
def _compute_eval_stats(params, batch, model, pad_id): """Computes pre-training task predictions and stats. Args: params: Model state (parameters). batch: Current batch of examples. model: The model itself. Flax separates model state and architecture. pad_id: Token ID representing padding. A mask is used to distinguish padding from actual inputs. Returns: Model predictions and metrics. """ inputs = { "input_ids": batch["input_ids"], "input_mask": (batch["input_ids"] != pad_id).astype(np.int32), "type_ids": batch["type_ids"], "masked_lm_positions": batch["masked_lm_positions"], "masked_lm_labels": batch["masked_lm_ids"], "masked_lm_weights": batch["masked_lm_weights"], "next_sentence_labels": batch["next_sentence_labels"], "deterministic": True } return model.apply({"params": params}, **inputs)
cc7e9b48d6255c8f82ae2bff978c54631d246bda
3,646,526
import locale import itertools def validateTextFile(fileWithPath): """ Test if a file is a plain text file and can be read :param fileWithPath(str): File Path :return: """ try: file = open(fileWithPath, "r", encoding=locale.getpreferredencoding(), errors="strict") # Read only a couple of lines in the file for line in itertools.islice(file, 10): line = line file.readlines() # Close the file handle file.close() # Return the systems preferred encoding return locale.getpreferredencoding() except: validencodings = ["utf-8", "ascii", "utf-16", "utf-32", "iso-8859-1", "latin-1"] for currentEncoding in validencodings: try: file = open(fileWithPath, "r", encoding=currentEncoding, errors="strict") # Read only a couple of lines in the file for line in itertools.islice(file, 10): line = line # Close the file handle file.close() # Return the succeded encoding return currentEncoding except: # Error occured while reading the file, skip to next iteration continue # Error, no encoding was correct return None
22167a4501ca584061f1bddcc7738f00d4390085
3,646,527
from bs4 import BeautifulSoup def get_title(filename="test.html"): """Read the specified file and load it into BeautifulSoup. Return the title tag """ with open(filename, "r") as my_file: file_string = my_file.read() file_soup = BeautifulSoup(file_string, 'html.parser') #find all of the a tags with href attribute title = file_soup.select("title") return title
31c35588bb10132509a0d35b49a9b7eeed902018
3,646,528
import re def is_valid_dump_key(dump_key): """ True if the `dump_key` is in the valid format of "database_name/timestamp.dump" """ regexmatch = re.match( r'^[\w-]+/\d{4}_\d{2}_\d{2}_\d{2}_\d{2}_\d{2}_\d+\.\w+\.dump$', dump_key, ) return regexmatch
66fd7d465f641a96bd8b22e95918a6dcbefef658
3,646,529
import math def GetProfileAtAngle( imdata, xc,yc, angle, radius, width=1 ): """ Returns a 1D profile cut through an image at specified angle, extending to specified radius. Note: this is designed to imitate pvect, so angles are measured CCW from +x axis! This function uses IRAF coordinates (1-based, x = column number) Parameters ---------- imdata : 2D ndarray of float image data array xc : int or float x-coordinate of center to extract profile from (IRAF ordering, 1-based) yc : int or float y-coordinate of center to extract profile from (IRAF ordering, 1-based) angle : float angle measured CCW from +x axis, in degrees radius : int length of profile, in pixels width : int, optional width of profile (perpendicular to profile) in pixels Returns ------- rr,ii : tuple of 1D ndarray of float rr = array of radius values (= 0 at (xc,yc)) ii = data pixel values along profile [= Nan if all pixels for that bin were masked] """ angle_rad = math.radians(angle) x_end = xc + math.cos(angle_rad) * radius y_end = yc + math.sin(angle_rad) * radius x_start = xc - math.cos(angle_rad) * radius y_start = yc - math.sin(angle_rad) * radius rr,ii = ExtractProfile(imdata, x_start,y_start, x_end,y_end, width=width) rr = rr - radius return rr, ii
5c20ae064989251a807690e8f90f7156a6dbe642
3,646,530
import os def create_out_dir_name(params): """ Create output directory name for the experiment based on the current date and time. Args: params (dict): The parameters of the experiment. Returns: str: The path to the output directory. """ current_timestamp = timestamp() out_dir = os.path.join('out', current_timestamp) return out_dir
29700a90c780e9ed7e9f23b10f0fc66d1df03864
3,646,531
def extract_axon_and_myelin_masks_from_image_data(image_data): """ Returns the binary axon and myelin masks from the image data. :param image_data: the image data that contains the 8-bit greyscale data, with over 200 (usually 255 if following the ADS convention) being axons, 100 to 200 (usually 127 if following the ADS convention) being myelin and 0 being background :return axon_mask: the binairy axon mask :return myelin_mask: the binary myelin mask """ image_data_array = np.array(image_data) axon_mask = image_data_array > 200 myelin_mask = (image_data_array > 100) & (image_data_array < 200) axon_mask = axon_mask.astype(np.uint8) myelin_mask = myelin_mask.astype(np.uint8) return axon_mask, myelin_mask
087f80d4c55b7bbba7e60720be26ff3e3ca1648a
3,646,532
def create_mne_array(recording, ch_names=None): """ Populate a full mne raw array object with information. Parameters ---------- lfp_odict : bvmpc.lfp_odict.LfpODict The lfp_odict object to convert to numpy data. ch_names : List of str, Default None Optional. What to name the mne eeg channels, default: region+chan_idx. Returns ------- mne.io.RawArray """ # TODO work with quantities here to avoid magic division to uV raw_data = recording.get_np_signals() / 1000 if ch_names is None: try: ch_names = [ "{}-{}".format(x, y) for x, y in zip( recording.get_signals().get_property("region"), recording.get_signal_channels(as_idx=True), ) ] except BaseException: ch_names = [str(i) for i in range(len(recording.get_signals()))] # Convert LFP data into mne format example_lfp = recording.get_signals()[0] sfreq = example_lfp.get_sampling_rate() ch_types = ["eeg"] * len(recording.get_signals()) info = mne.create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types) raw = mne.io.RawArray(raw_data, info) return raw
f39a3e38174e0b915c55c4cf3ad4692fa38bca64
3,646,533
def expand_advanced(var, vars_, nounset, indirect, environ, var_symbol): """Expand substitution.""" if len(vars_) == 0: raise MissingClosingBrace(var) if vars_[0] == "-": return expand_default( var, vars_[1:], set_=False, nounset=nounset, indirect=indirect, environ=environ, var_symbol=var_symbol, ) if vars_[0] == "=": return expand_default( var, vars_[1:], set_=True, nounset=nounset, indirect=indirect, environ=environ, var_symbol=var_symbol, ) if vars_[0] == "+": return expand_substitute( var, vars_[1:], nounset=nounset, environ=environ, var_symbol=var_symbol ) if vars_[0] == "?": return expand_strict( var, vars_[1:], nounset=nounset, environ=environ, var_symbol=var_symbol ) return expand_offset( var, vars_, nounset=nounset, environ=environ, var_symbol=var_symbol )
1be5d66c18775bca8669d97ccf8ccd439f154ff2
3,646,534
def overlap(n2, lamda_g, gama): """ Calculates the 1/Aeff (M) from the gamma given. The gamma is supposed to be measured at lamda_g (in many cases we assume that is the same as where the dispersion is measured at). """ M = gama / (n2*(2*pi/lamda_g)) return M
00e1d59a6a8e5b908acfa3097cfb9818edaf608f
3,646,535
def fill_none(pre_made_replays_list): """Fill none and reformat some fields in a pre-made replays list. :param pre_made_replays_list: pre-made replays list from ballchasing.com. :return: formatted list. """ for replay in pre_made_replays_list: if replay["region"] is None: replay["region"] = "North America" replay["phase"] = "Qualifier" replay["stage"] = "Tiebreaker" replay["round"] = "Finals" if replay['region'] == 'Main Event': replay['region'] = 'World' elif replay['region'] == 'Europe' and replay['phase'] == 'Tiebreaker': replay["phase"] = "Qualifier" replay["stage"] = "Tiebreaker" if replay["match"] == "EG vs 00": replay["round"] = "Lower Finals" else: replay["round"] = "Upper Finals" return pre_made_replays_list
ee900227a8afcba71e6a00ef475892da4fdc3e3b
3,646,536
def parse_args_from_str(arg_str, arg_defs): # , context=None): """ Args: args_str (str): argument string, optionally comma-separated arg_defs (tuple): list of argument definitions context (dict, optional): When passed, the arguments are parsed for ``$(var_name)`` macros, to lookup values from that dict. Returns: (dict) keyword args Raises: TypeError: if `argument` is of an unexpected type ValueError: if `argument` does not fulfill the optional condition AssertionError: if `parse_args_from_str` was called with a wrong syntax, i.e. `arg_defs` is not well-formed. Examples:: arg_defs = ( ("name", str), ("amount", float), ("options", dict, {}), ) def order(raw_arg_string): kwargs = parse_args_from_str(arg_defs) assert isisnstance(kwargs["name"], str) assert type(kwargs["amount"]) is float assert isisnstance(kwargs["options"], dict) """ check_arg(arg_str, str) check_arg(arg_defs, (list, tuple)) res = {} # Special case: '$name()' should not be interpreted as having one "" arg # if arg_defs defines a default for the first arg if arg_str.strip() == "" and len(arg_defs[0]) == 3: arg_str = str(arg_defs[0][2]) arg_list = [a.strip() for a in arg_str.split(",")] optional_mode = False for arg_def in arg_defs: check_arg(arg_def, (list, tuple)) if len(arg_def) == 2: arg_name, arg_type = arg_def arg_default = NO_DEFAULT if optional_mode: raise AssertionError( "Mandatory arg definition must not follow optional args: `{}`".format( arg_def ) ) elif len(arg_def) == 3: arg_name, arg_type, arg_default = arg_def optional_mode = True else: raise AssertionError("Expected 2- or 3-tuple: {}".format(arg_def)) if arg_type not in (float, int, str): raise AssertionError( "Unsupported argument definition type: {}".format(arg_def) ) try: # Get next arg arg_val = arg_list.pop(0) # Allow quotes is_quoted = (arg_val.startswith('"') and arg_val.endswith('"')) or ( arg_val.startswith("'") and arg_val.endswith("'") ) if is_quoted: # Strip quotes and return as string (don't cast to other types) arg_val = arg_val[1:-1] elif "$(" in arg_val: # The arg seems to be a macro: don't try to cast. pass else: # Raises ValueError: arg_val = arg_type(arg_val) except IndexError: if arg_default is NO_DEFAULT: raise ValueError( "Missing mandatory arg `{}` in '{}'.".format(arg_name, arg_str) ) arg_val = arg_default res[arg_name] = arg_val if arg_list: raise ValueError("Extra args `{}`.".format(", ".join(arg_list))) return res
1c21cf170c360c7b429b1303bd19e1a23ea5cd3c
3,646,537
import torch def model_evaluation( data_loader, ml_model_name, ml_model, smiles_dictionary, max_length_smiles, device_to_use, ): """ Evaluation per batch of a pytorch machine learning model. Parameters ---------- data_loader : torch.utils.data The training data as seen by Pytorch for mini-batches. ml_model_name : str Name of the machine learning model. It can be either "CONV1D", "CONV2D", or "RNN". ml_model : nn.Module Instance of the pytorch machine learning model. smiles_dictionary : dict The dictionary of SMILES characters. max_length_smiles : int The length of the longest SMILES. device_to_use : torch.device The device to use for model instance, "cpu" or "cuda". Returns ------- tuple of dict: Dictionary of the predicted, true output values, respectively, in the data loader, with SMILES as keys. """ ml_model.eval() with torch.no_grad(): all_output_pred = {} all_output_true = {} for _, data in enumerate(data_loader): # SMILES and target smiles, target = data input_true, output_true = data_to_pytorch_format( smiles, target, smiles_dictionary, max_length_smiles, ml_model_name, device_to_use, ) # Prediction output_pred = ml_model(input_true) # Convert to numpy arrays output_pred = output_pred.cpu().detach().numpy() output_true = output_true.cpu().detach().numpy() for smile in smiles: all_output_pred[smile] = output_pred all_output_true[smile] = output_true return (all_output_pred, all_output_true)
8c381eee394e989f8920cc52ad4b94ca4b502741
3,646,538
def reverse_dict2(d): """Reverses direction of dependence dict >>> d = {'a': (1, 2), 'b': (2, 3), 'c':()} >>> reverse_dict(d) # doctest: +SKIP {1: ('a',), 2: ('a', 'b'), 3: ('b',)} :note: dict order are not deterministic. As we iterate on the input dict, it make the output of this function depend on the dict order. So this function output order should be considered as undeterministic. """ result = {} for key in d: for val in d[key]: result[val] = result.get(val, tuple()) + (key, ) return result
2419538a13699015f8fefa156e89cf9b1960e358
3,646,539
import random def Flip(p, y='Y', n='N'): """Returns y with probability p; otherwise n.""" return y if random.random() <= p else n
072e170e3f37508a04f8bdbed22470b178f05ab9
3,646,540
import pylearn2.datasets.avicenna def resolve_avicenna(d): """ .. todo:: WRITEME """ return pylearn2.config.checked_call(pylearn2.datasets.avicenna.Avicenna,d)
b15ef76cee9d71da26b84025d191aab43c95b297
3,646,541
def sub_to_db(sub, add_area=True, area_srid=3005, wkt=True, wkb=False, as_multi=True, to_disk=False, procs=1, engine=None): """ Convert the object to a SQLite database. Returns the |db| module exposing the database ORM and additional SQLAlchemy objects. Note that |procs| greater than one results in the database being written to disk (if the desired database is SQLite). sub (SubOcgDataset) -- The object to convert to the database. add_area=True -- Insert the geometric area. area_srid=3005 -- SRID to use for geometric transformation. wkt=True -- Insert the geomtry's WKT representation. wkb=False -- Insert the geometry's WKB representation. as_multi=True -- Convert geometries to shapely.MultiPolygon. to_disk=False -- Write the database to disk (applicable for SQLite). procs=1 -- Number of processes to use when loading data. engine=None (sqlalchemy.Engine) -- An optional engine to pass overloading the creation of other backends. Useful to use PostGRES instead of SQLite for example. """ if engine is None: use_lock = True else: use_lock = False ## initialize the db db = init_db(engine=engine,to_disk=to_disk,procs=procs) print(' loading geometry...') ## spatial reference for area calculation sr = get_sr(4326) sr2 = get_sr(area_srid) # data = dict([[key,list()] for key in ['gid','wkt','wkb','area_m2']]) # for dd in self.dim_data: # data['gid'].append(int(self.gid[dd])) # geom = self.geometry[dd] # if isinstance(geom,Polygon): # geom = MultiPolygon([geom]) # if wkt: # wkt = str(geom.wkt) # else: # wkt = None # data['wkt'].append(wkt) # if wkb: # wkb = str(geom.wkb) # else: # wkb = None # data['wkb'].append(wkb) # data['area_m2'].append(get_area(geom,sr,sr2)) # self.load_parallel(db.Geometry,data,procs) def f(idx,geometry=sub.geometry,gid=sub.gid,wkt=wkt,wkb=wkb,sr=sr,sr2=sr2,get_area=get_area): geom = geometry[idx] if isinstance(geom,Polygon): geom = MultiPolygon([geom]) if wkt: wkt = str(geom.wkt) else: wkt = None if wkb: wkb = str(geom.wkb) else: wkb = None return(dict(gid=int(gid[idx]), wkt=wkt, wkb=wkb, area_m2=get_area(geom,sr,sr2))) fkwds = dict(geometry=sub.geometry,gid=sub.gid,wkt=wkt,wkb=wkb,sr=sr,sr2=sr2,get_area=get_area) gen = pl.ParallelGenerator(db.Geometry, sub.dim_data, f, fkwds=fkwds, procs=procs, use_lock=use_lock) gen.load() print(' loading time...') ## load the time data data = dict([[key,list()] for key in ['tid','time','day','month','year']]) for dt in sub.dim_time: data['tid'].append(int(sub.tid[dt])) data['time'].append(sub.timevec[dt]) data['day'].append(sub.timevec[dt].day) data['month'].append(sub.timevec[dt].month) data['year'].append(sub.timevec[dt].year) load_parallel(db.Time,data,procs,use_lock=use_lock) print(' loading value...') ## set up parallel loading data data = dict([key,list()] for key in ['gid','level','tid','value']) for dt in sub.dim_time: for dl in sub.dim_level: for dd in sub.dim_data: data['gid'].append(int(sub.gid[dd])) data['level'].append(int(sub.levelvec[dl])) data['tid'].append(int(sub.tid[dt])) data['value'].append(float(sub.value[dt,dl,dd])) load_parallel(db.Value,data,procs,use_lock=use_lock) return(db)
6f3d3763a129a4235c0e5c0e884f7ab62bdfc391
3,646,542
def T_autoignition_methods(CASRN): """Return all methods available to obtain T_autoignition for the desired chemical. Parameters ---------- CASRN : str CASRN, [-] Returns ------- methods : list[str] Methods which can be used to obtain T_autoignition with the given inputs. See Also -------- T_autoignition """ if not _safety_data_loaded: _load_safety_data() return list_available_methods_from_df_dict(Tautoignition_sources, CASRN, 'T_autoignition')
ab194547a1cc7b5eeb2032b1decad366bc4b43c2
3,646,543
import configparser import os def parse_config2(filename=None): """ https://docs.python.org/3.5/library/configparser.html :param filename: filename to parse config :return: config_parse result """ _config = configparser.ConfigParser(allow_no_value=True) if filename: # ConfigParser does not create a file if it doesn't exist, so I will create an empty one. if not os.path.isfile(filename): with open(filename, 'w', encoding='utf-8') as f: print('', file=f) _config.read_file(open(filename, encoding='utf-8')) return _config
cf260f09e4c293915ab226b915aebed6cb98113f
3,646,544
def masa(jd, place): """Returns lunar month and if it is adhika or not. 1 = Chaitra, 2 = Vaisakha, ..., 12 = Phalguna""" ti = tithi(jd, place)[0] critical = sunrise(jd, place)[0] # - tz/24 ? last_new_moon = new_moon(critical, ti, -1) next_new_moon = new_moon(critical, ti, +1) this_solar_month = raasi(last_new_moon) next_solar_month = raasi(next_new_moon) is_leap_month = (this_solar_month == next_solar_month) maasa = this_solar_month + 1 if maasa > 12: maasa = (maasa % 12) return [int(maasa), is_leap_month]
b8b7572f4b5dc597d844683e30c92be618e32c43
3,646,545
from scipy.special import erf def sigma(s): """The probablity a normal variate will be `<s` sigma from the mean. Parameters ---------- s : float The number of sigma from the mean. Returns ------- p : float The probability that a value within +/-s would occur. """ return 0.5 * (erf(s / np.sqrt(2.0)) - erf(-s / np.sqrt(2.0)))
88727617b1cca678613818be8fdb90e114b25438
3,646,546
def addneq_parse_residualline(line: str) -> dict: """ Parse en linje med dagsløsningsresidualer fra en ADDNEQ-fil. Udtræk stationsnavn, samt retning (N/E/U), spredning og derefter et vilkårligt antal døgnresidualer. En serie linjer kan se således ud: GESR N 0.07 0.02 -0.06 GESR E 0.10 -0.00 -0.10 GESR U 0.23 -0.10 0.20 """ params = line.split() return { "STATION NAME": params[0], "DIRECTION": params[1], "STDDEV": float(params[2]), "RES": [float(x) for x in params[3:]], }
6d1556cbd01f3fe4cd66dcad231e41fa6b1b9470
3,646,547
import os def extract_header(file_path): """ Loads the header from a PSG-type file at path 'file_path'. Returns: dictionary of header information """ fname = os.path.split(os.path.abspath(file_path))[-1] _, ext = os.path.splitext(fname) load_func = _EXT_TO_LOADER[ext[1:]] header = load_func(file_path) # Add file location data file_path, file_name = os.path.split(file_path) header['data_dir'] = file_path header["file_name"] = file_name return header
8eaccdd9b8252ea0a9651278895be517d0acc023
3,646,548
def get_xsd_schema(url): """Request the XSD schema from DOV webservices and return it. Parameters ---------- url : str URL of the XSD schema to download. Returns ------- xml : bytes The raw XML data of this XSD schema as bytes. """ response = HookRunner.execute_inject_meta_response(url) if response is None: response = get_remote_url(url) HookRunner.execute_meta_received(url, response) return response
12f5088fea1b9268d75ee90d60b729c8a9577dd0
3,646,549
def get_char_pmi(data): """ 获取 pmi :param data: :return: """ print('get_char_pmi') model = kenlm.LanguageModel('../software/kenlm/test.bin') res = [] for line in data: words = line.strip().split() length = len(words) words.append('\n') i = 0 pmi_out = "" while i < length: p_union = get_proba(model, words[i] + " " + words[i + 1]) p1 = get_proba(model, words[i]) p2 = get_proba(model, words[i + 1]) p = pmi(p_union, p1, p2) # 拆到 char level word = words[i] if len(word) > 0: # 拆到 char level j = 0 char = word[j] pmi_out += char + "@@" pmi_out += "B#" + str(p) + " " j += 1 while j < len(word): pmi_out += word[j] + '@@' pmi_out += 'I#' + str(p) + " " j += 1 i += 1 # last_char = words[i] # p_union = get_proba(model, last_char + " \n") # p1 = get_proba(model, last_char) # p2 = get_proba(model, '\n') # p = pmi(p_union, p1, p2) # pmi_out += last_char + "@@" + 'B#' + str(p) res.append(pmi_out.strip()) return res
2cb28e7671561a52efbbf98431e3c938700f691a
3,646,550
def fahrenheit_to_celsius(fahrenheit): """Convert a Fahrenheit temperature to Celsius.""" return (fahrenheit - 32.0) / 1.8
4aee3dd0b54450fabf7a3a01d340b45a89caeaa3
3,646,551
import random import itertools def sample_blocks(num_layers, num_approx): """Generate approx block permutations by sampling w/o replacement. Leave the first and last blocks as ReLU""" perms = [] for _ in range(1000): perms.append(sorted(random.sample(list(range(0,num_layers)), num_approx))) # Remove duplicates perms.sort() return [p for p,_ in itertools.groupby(perms) if len(p) == num_approx]
b4b75e77b3749bc7766c709d86bf1f694898fc0d
3,646,552
def adjacent_values(vals, q1, q3): """Helper function for violinplot visualisation (courtesy of https://matplotlib.org/gallery/statistics/customized_violin.html#sphx-glr-gallery-statistics-customized-violin-py) """ upper_adjacent_value = q3 + (q3 - q1) * 1.5 upper_adjacent_value = np.clip(upper_adjacent_value, q3, vals[-1]) lower_adjacent_value = q1 - (q3 - q1) * 1.5 lower_adjacent_value = np.clip(lower_adjacent_value, vals[0], q1) return lower_adjacent_value, upper_adjacent_value
a596ed82a1d66213dbdd3f19b29d58b36979c60d
3,646,553
def l2_first_moment(freq, n_trials, weights): """Return the first raw moment of the squared l2-norm of a vector (f-p), where `f` is an MLE estimate of the `p` parameter of the multinomial distribution with `n_trials`.""" return (np.einsum("aiai,ai->", weights, freq) - np.einsum("aiaj,ai,aj->", weights, freq, freq)) / n_trials
bf597aaa57759dc6d4f0ee1f5ed4f99f49ea271b
3,646,554
def sigmoid(x: float, a: float = 1, b: float = 1, shift: float = 0) -> float: """ Sigmoid function represented by b * \frac{1}{1 + e^{-a * (x - shift)}}} Args: x (float): Input x a (float, optional): Rate of inflection. Defaults to 1. b (float, optional): Difference of lowest to highest value. Defaults to 1. shift (float, optional): Horizontal shift. Defaults to 0. Returns: float: sigmoid function at x """ result = b * (1 / (1 + np.exp(-a * (x - shift)))) return result
761497db712619008c1261d2388cea997ae3fff8
3,646,555
def db_credentials(): """Load creds and returns dict of postgres keyword arguments.""" creds = load_json('creds.json') return { 'host': creds['db_host'], 'user': creds['db_username'], 'password': creds['db_password'], 'database': creds['db_database'] }
4248452ffb5a9c05b14449972c1db7a18d906b73
3,646,556
import logging def generate_corpus_output( cfg, docL, tfidfL ): """ Generate a list of OutputRecords where the number of key words is limited to the cfg.corpusKeywordCount highest scoring terms. (i.e. cfg.usePerDocWordCount == False) """ outL = [] # for the cfg.corpusKeyWordCount highest scoring keywords for i,(wordL,tfidf,termNL) in enumerate(tfidfL[0:min(cfg.corpusKeyWordCount,len(tfidfL))]): out_recd = OutputRecord(wordL,tfidf,termNL) logging.info("%i %f %s",i,tfidf,wordL) # for each document for doc in docL: doc.find_sentences_in_doc(out_recd) outL.append(out_recd) return outL
2296d319fd00022df73da9e7d8484adfd5ab16ad
3,646,557
import os def expand(directory: str) -> str: """Apply expanduser and expandvars to directory to expand '~' and env vars.""" temp1 = os.path.expanduser(directory) return os.path.expandvars(temp1)
ffad07715d5425211304e340c084c8f134bbcb22
3,646,558
import sys def gather_ensemble_info(nmme_model): """Gathers ensemble information based on NMME model.""" # Number of ensembles in the forecast (ens_num) # Ensemble start index (ens_start) # Ensemble end index (ens_end) if nmme_model == "CFSv2": ens_num=24 ens_start=1 ens_end=24 elif nmme_model == "GEOSv2": ens_num=10 ens_start=25 ens_end=34 elif nmme_model == "CCM4": ens_num=10 ens_start=35 ens_end=44 elif nmme_model == "GNEMO": ens_num=10 ens_start=45 ens_end=54 elif nmme_model == "CCSM4": ens_num=10 ens_start=55 ens_end=64 elif nmme_model == "GFDL": ens_num=30 ens_start=65 ens_end=94 else: print(f"[ERR] Invalid argument for nmme_model! Received {nmme_model}") sys.exit(1) return ens_num, ens_start, ens_end
56516751dc87415b6a08541eadb02b67a5bc6629
3,646,559
import tqdm def harmonic_fitter(progressions, J_thres=0.01): """ Function that will sequentially fit every progression with a simple harmonic model defined by B and D. The "B" value here actually corresponds to B+C for a near-prolate, or 2B for a prolate top. There are a number of filters applied in order to minimize calculations that won't be meaningful - these parameters may have to be tuned for different test cases. Because the model is not actually quantized, J is represented as a float. To our advantage, this will actually separate real (molecular) progressions from fake news; at least half of the J values must be close to being an integer for us to consider fitting. parameters: --------------- progressions - iterable containing arrays of progressions J_thres - optional argument corresponding to how close a value must be to an integer returns: --------------- pandas dataframe containing the fit results; columns are B, D, fit RMS, and pairs of columns corresponding to the fitted frequency and approximate J value. """ BJ_fit_model = lmfit.models.Model(calc_harmonic_transition) params = BJ_fit_model.make_params() data = list() fit_objs = list() failed = list() for index, progression in tqdm(enumerate(progressions)): # Determine the approximate value of B based on # the differences between observed transitions approx_B = np.average(np.diff(progression)) # Calculate the values of J that are assigned based on B J = (progression / approx_B) / 2.0 # We want at least half of the lines to be close to being integer if len(progression) >= 2: if np.sum(quant_check(J, J_thres)) >= len(progression) / 1.5: # Let B vary a bit params["B"].set(approx_B, min=approx_B * 0.9, max=approx_B * 1.1) # Constrain D to be less than 5 MHz params["D"].set(0.001, min=0.0, max=1.0) fit = BJ_fit_model.fit( data=progression, J=J, params=params, fit_kws={"maxfev": 100} ) # Only include progressions that can be fit successfully if fit.success is True: # Calculate fit RMS rms = np.sqrt(np.average(np.square(fit.residual))) # Only add it to the list of the RMS is # sufficiently low return_dict = dict() return_dict["RMS"] = rms return_dict.update(fit.best_values) # Make columns for frequency and J for i, frequency in enumerate(progression): return_dict[i] = frequency return_dict["J{}".format(i)] = J[i] data.append(return_dict) fit_objs.append(fit) else: failed.append([index, fit.fit_report()]) else: failed.append(index) else: return_dict = dict() return_dict["RMS"] = 0.0 return_dict["B"] = approx_B # reformat the frequencies and approximate J values for i, frequency in enumerate(progression): return_dict[i] = frequency return_dict["J{}".format(i)] = J[i] data.append(return_dict) full_df = pd.DataFrame(data=data) full_df.sort_values(["RMS", "B", "D"], ascending=False, inplace=True) return full_df, fit_objs
55a2c4080938c947501ed830f4236ca8f87608e8
3,646,560
def print_KruskalWallisH(div_calc): """ Compute the Kruskal-Wallis H-test for independent samples. A typical rule is that each group must have at least 5 measurements. """ calc = defaultdict(list) try: for k1, v1 in div_calc.iteritems(): for k2, v2 in v1.iteritems(): calc[k1].append(v2) except: return "Error setting up input arrays for Kruskal-Wallis H-Test. Skipping "\ "significance testing." h, p = stats.kruskal(*calc.values()) print "\nKruskal-Wallis H-test statistic for {} groups: {}".format(str(len(div_calc)), h) print "p-value: {}".format(p)
74579ad2f9ee4336ab33f099982a9419d723774e
3,646,561
import random import string def _random_exptname(): """Generate randome expt name NNNNNNNN_NNNNNN, where N is any number 0..9""" r = ''.join(random.choice(string.digits) for _ in range(8)) r = r + '_' + ''.join(random.choice(string.digits) for _ in range(6)) return r
d9c72ed4bf742adf50e1fdad4f6acb1cc0046167
3,646,562
def remove_store(store_name): """ Deletes the named data store. :param store_name: :return: """ return get_data_engine().remove_store(store_name)
ea8ada276095c2ceb85b339b2a925fa53fd93a1e
3,646,563
from typing import Union from pathlib import Path import subprocess def is_tracked_upstream(folder: Union[str, Path]) -> bool: """ Check if the current checked-out branch is tracked upstream. """ try: command = "git rev-parse --symbolic-full-name --abbrev-ref @{u}" subprocess.run( command.split(), stderr=subprocess.PIPE, stdout=subprocess.PIPE, encoding="utf-8", check=True, cwd=folder, ) return True except subprocess.CalledProcessError as exc: if "HEAD" in exc.stderr: raise OSError("No branch checked out") return False
8c58efe0d0619aaa6517d656ba88f1e29653197a
3,646,564
import random def limit_checkins_per_user(checkins: list, num_checkins_per_user: int, random_seed=1): """ Limit for each user a maximum number of check-ins by randomly select check-ins. Parameters ---------- checkins: list list of check-ins num_checkins_per_user: int max number of check-ins per user, -1 for unlimited random_seed: int a random seed for random check-ins selection Returns ------- list limited check-ins """ if num_checkins_per_user < 0: return checkins # convert check-in list to dict per user checkins_per_user = defaultdict(list) for c in checkins: checkins_per_user[c.user_id].append(c) # randomly select check-ins of users limited_checkins = list() for user_id, v in checkins_per_user.items(): if len(v) <= num_checkins_per_user: # there are not enough check-ins, so get them all limited_checkins.extend(v) else: # there are more check-ins than needed, so randomly choose some of them random.seed(random_seed) limited_checkins.extend(random.sample(v, k=num_checkins_per_user)) return limited_checkins
286760c3630162b78c314f9f8be0943350f47859
3,646,565
import warnings import warnings def getCharacterFilmography(characterID, charIF, charDF, movieIF, movieKF, personIF, personKF, limit=None): """Build a filmography list for the specified characterID.""" try: ifptr = open(charIF, 'rb') except IOError, e: warnings.warn('Unable to access characters information, ' 'please run the characters4local.py script: %s' % e) return None ifptr.seek(4L*characterID) piddata = ifptr.read(4) ifptr.close() if len(piddata) != 4: return None idx = convBin(piddata, 'fulloffset') try: dfptr = open(charDF, 'rb') except IOError, e: warnings.warn('Unable to access characters information, ' 'please run the characters4local.py script: %s' % e) return None dfptr.seek(idx) # Check characterID. chID = dfptr.read(3) if characterID != convBin(chID, 'characterID'): dfptr.close() return None length = convBin(dfptr.read(2), 'longlength') # Skip character name. latin2utf(dfptr.read(length)) nrItems = convBin(dfptr.read(3), 'nrCharacterItems') if limit is not None and nrItems/2 > limit: nrItems = limit*2 filmography = [] for i in xrange(nrItems/2): personID = convBin(dfptr.read(3), 'personID') name = getLabel(personID, personIF, personKF) movieID = convBin(dfptr.read(3), 'movieID') title = getLabel(movieID, movieIF, movieKF) # XXX: notes are not retrieved: they can be found scanning # actors.list and acresses.list, but it will slow down everything. m = Movie(title=title, movieID=movieID, currentRole=name, roleID=personID, roleIsPerson=True, accessSystem='local') filmography.append(m) dfptr.close() return filmography
ddf7f1da3e95441a2da9d3fe2f16065e0a13f634
3,646,566
def sqrt_fixed_full(x, config, is_training=True, causal=True): """Full attention matrix with sqrt decomposition.""" bsize = x.shape[0] query, key, value = attention.get_qkv(x, x, x, hidden_size=config.model_size, num_heads=config.num_heads, bias=config.dense_use_bias) head_dim = config.model_size // config.num_heads assert config.max_seq_len % config.max_seg_len == 0 num_seg = config.max_seq_len // config.max_seg_len cur_query = tf.reshape(query, [-1, num_seg, config.max_seg_len, config.num_heads, head_dim]) with tf.variable_scope('pooling_query'): merged_query = pooling_summary(cur_query, axis=2, local_summary=config.local_summary, keepdims=True) cur_key = tf.reshape(key, cur_query.shape) cur_val = tf.reshape(value, cur_query.shape) span_val = attention.dot_product_attention(merged_query, cur_key, cur_val, is_training=is_training, attn_axis=1, dropatt=config.dropatt) span_val = tf.squeeze(span_val, axis=2) with tf.variable_scope('pooling_key'): span_key = pooling_summary(cur_key, axis=2, local_summary=config.local_summary, keepdims=False) local_logits = tf.einsum('bsqhd,bskhd->bsqhk', cur_query, cur_key) if causal: local_mask = get_causal_mask(cur_query, axis=2, is_strict=False) local_mask = tf.expand_dims(local_mask, axis=-2) local_logits += local_mask prev_logits = tf.einsum('bqhd,bkhd->bqhk', query, span_key) if causal: prev_mask = get_causal_mask(cur_query, axis=1, is_strict=True) prev_mask = tf.repeat(prev_mask, [config.max_seg_len] * num_seg, axis=0) prev_logits += tf.expand_dims(prev_mask, axis=1) joint_logits = tf.concat([tf.reshape(local_logits, [bsize, config.max_seq_len, config.num_heads, -1]), prev_logits], axis=-1) attn_weights = attention.float32_softmax(joint_logits, axis=-1) local_att, prev_att = tf.split(attn_weights, [config.max_seg_len, num_seg], axis=-1) if is_training: local_att = tf.nn.dropout(local_att, rate=config.dropatt) local_att = tf.reshape(local_att, [bsize, num_seg, config.max_seg_len, config.num_heads, config.max_seg_len]) local_merged = tf.einsum('bsqhk,bskhd->bsqhd', local_att, cur_val) prev_merged = tf.einsum('bqhk,bkhd->bqhd', prev_att, span_val) joint_merged = prev_merged + tf.reshape(local_merged, prev_merged.shape) output = ops.trail_dense(joint_merged, config.model_size, begin_axis=-2) return output
3ee88f2adf767c6fb6e0f1c006ff301c45ffc322
3,646,567
def mcf_from_row(row, gene_to_dcid_list): """Generate data mcf from each row of the dataframe""" gene = row['Gene name'] tissue = get_class_name(row['Tissue']) cell = get_class_name(row['Cell type']) expression = EXPRESSION_MAP[row['Level']] reliability = RELIABILITY_MAP[row['Reliability']] if gene not in gene_to_dcid_list: # skip case when there is no gene to dcid mapping return None dcid_list = gene_to_dcid_list[gene] mcf_list = [] for protein_dcid in dcid_list: mcf_list.append( generate_mcf(protein_dcid, tissue, cell, expression, reliability)) return '\n\n'.join(mcf_list)
ee78c68bb89a100fa4e0b972d0907e14dcb6d289
3,646,568
def loads(json_str, target=None): """ Shortcut for instantiating a new :class:`JSONDecoder` and calling the :func:`from_json_str` function. .. seealso:: For more information you can look at the doc of :func:`JSONDecoder.from_json_str`. """ return _decoder.from_json_str(json_str, target)
76eab90dd544d695f55967969d81ef9cccb1c2fd
3,646,569
def discover(discover_system: bool = True) -> Discovery: """ Discover capabilities offered by this extension. """ logger.info("Discovering capabilities from aws-az-failure-chaostoolkit") discovery = initialize_discovery_result( "aws-az-failure-chaostoolkit", __version__, "aws" ) discovery["activities"].extend(__load_exported_activities()) return discovery
ad9b7674f8f8f7cc06ce21dacba2138231b7e69c
3,646,570
def getter_nofancy(a, b, asarray=True, lock=None): """ A simple wrapper around ``getter``. Used to indicate to the optimization passes that the backend doesn't support fancy indexing. """ return getter(a, b, asarray=asarray, lock=lock)
63e355eb3245c8f394c345fb2ebd4e469fcd7500
3,646,571
def xy_to_array_origin(image): """Return view of image transformed from Cartesian to array origin.""" return rgb_transpose(image[:, ::-1])
e2e47f95093e1808cfbe7c2ba28af8c3e5b40307
3,646,572
import csv def read_csv(infile, delimiter=',', encoding='utf-8', named=False): """Reads a csv as a list of lists (unnamed) or a list of named tuples (named) Args: string infile: the file to read in OPTIONAL: string delimiter: the delimiter used (default ',') encoding encoding: the encoding of the file (default 'utf-8') boolean named: if true, loads rows as named tuples (default lists), (default False) Returns list of lists or named tuples""" with open(infile, encoding=encoding) as f: reader = csv.reader(f, delimiter=delimiter) if named: headers = next(reader) # strip spaces and annoying things from headers names = [identifier.replace('-', '_').replace(' ', '_').lower() for identifier in headers] Data = namedtuple("Data", names) named_rows = map(Data._make, reader) return [row for row in named_rows] else: return list(list(row for row in reader))
7318293d884fa80a7d93d8046f66b3801d809f42
3,646,573
def is_ivy_enabled(ctx): """Determine if the ivy compiler should be used to by the ng_module. Args: ctx: skylark rule execution context Returns: Boolean, Whether the ivy compiler should be used. """ # Check the renderer flag to see if Ivy is enabled. # This is intended to support a transition use case for google3 migration. # The `_renderer` attribute will never be set externally, but will always be # set internally as a `string_flag()` with the allowed values of: # "view_engine" or "ivy". if ((hasattr(ctx.attr, "_renderer") and ctx.attr._renderer[BuildSettingInfo].value == "ivy")): return True # This attribute is only defined in google's private ng_module rule and not # available externally. For external users, this is effectively a no-op. if hasattr(ctx.attr, "ivy") and ctx.attr.ivy == True: return True if ctx.var.get("angular_ivy_enabled", None) == "True": return True # Enable Angular targets extracted by Kythe Angular indexer to be compiled with the Ivy compiler architecture. # TODO(ayazhafiz): remove once Ivy has landed as the default in g3. if ctx.var.get("GROK_ELLIPSIS_BUILD", None) != None: return True # Return false to default to ViewEngine compiler return False
57018cd180e3cfb580874249a31731f6762f4900
3,646,574
def get_directions_id(destination): """Get place ID for directions, which is place ID for associated destination, if an event""" if hasattr(destination, 'destination'): # event with a related destination; use it for directions if destination.destination: return destination.destination.id else: # event without a destination return None else: # not an event return destination.id
f7cd182cb5ea344c341bf9bfaa7a4389335ae353
3,646,575
def decode_token(params, token_field=None): """ This function is used to decode the jwt token into the data that was used to generate it Args: session_obj: sqlalchemy obj used to interact with the db params: json data received with request token_field: name of the field that token can be found in Return: resulting data from the token decode process """ try: if not token_field: token = params[TOKEN_FIELD] else: token = params[token_field] # token_use_details = find_token_use(session_obj, token) # check_token_validate_period(session_obj, token_use_details) account_details = jwt.decode(token, _SECRET, algorithms=ALGORITHM) # check_login_access_revoked( # session_obj, account_details, token_use_details # ) # extend_token_validity(session_obj, token_use_details) return account_details except orm_exc.NoResultFound: raise exc.LoggedOutError()
8adac31df7d5659c06f5c4d66fc86ae556531aae
3,646,576
from matplotlib import pyplot import numpy def gas_arrow(ods, r, z, direction=None, snap_to=numpy.pi / 4.0, ax=None, color=None, pad=1.0, **kw): """ Draws an arrow pointing in from the gas valve :param ods: ODS instance :param r: float R position of gas injector (m) :param z: float Z position of gas injector (m) :param direction: float Direction of injection (radians, COCOS should match ods.cocos). None = try to guess. :param snap_to: float Snap direction angle to nearest value. Set snap to pi/4 to snap to 0, pi/4, pi/2, 3pi/4, etc. No in-between. :param ax: axes instance into which to plot (default: gca()) :param color: matplotlib color specification :param pad: float Padding between arrow tip and specified (r,z) """ def pick_direction(): """Guesses the direction for the arrow (from injector toward machine) in case you don't know""" dr = ods['equilibrium']['time_slice'][0]['global_quantities']['magnetic_axis']['r'] - r dz = ods['equilibrium']['time_slice'][0]['global_quantities']['magnetic_axis']['z'] - z theta = numpy.arctan2(dz, -dr) if snap_to > 0: theta = snap_to * round(theta / snap_to) return theta if direction is None: direction = pick_direction() else: direction = cocos_transform(ods.cocos, 11)['BP'] * direction if ax is None: ax = pyplot.gca() shaft_len = 3.5 * (1 + pad) / 2. da = numpy.pi / 10 # Angular half width of the arrow head x0 = numpy.cos(-direction) * pad y0 = numpy.sin(-direction) * pad head_mark = [ (x0, y0), (x0 + numpy.cos(-direction + da), y0 + numpy.sin(-direction + da)), (x0 + numpy.cos(-direction), y0 + numpy.sin(-direction)), (x0 + shaft_len * numpy.cos(-direction), y0 + shaft_len * numpy.sin(-direction)), (x0 + numpy.cos(-direction), y0 + numpy.sin(-direction)), (x0 + numpy.cos(-direction - da), y0 + numpy.sin(-direction - da)), ] kw.pop('marker', None) # Ignore this return ax.plot(r, z, marker=head_mark, color=color, markersize=100 * (pad + shaft_len) / 5, **kw)
04ef7568cf6b6f7e9357fa05ae3996ecf74ab3c1
3,646,577
import sys def get_word_vector(text, model, num): """ :param text: list of words :param model: word2vec model in Gensim format :param num: number of the word to exclude :return: average vector of words in text """ # Creating list of all words in the document which are present in the model excl_word = text[num] words = [w for w in text if w in model and w != excl_word] lexicon = list(set(words)) lw = len(lexicon) if lw < 1: print('Empty lexicon in', text, file=sys.stderr) return np.zeros(model.vector_size) vectors = np.zeros((lw, model.vector_size)) # Creating empty matrix of vectors for words for i in list(range(lw)): # Iterate over words in the text word = lexicon[i] vectors[i, :] = model[word] # Adding word and its vector to matrix semantic_fingerprint = np.sum(vectors, axis=0) # Computing sum of all vectors in the document semantic_fingerprint = np.divide(semantic_fingerprint, lw) # Computing average vector return semantic_fingerprint
586ea6fdd7845ed21322d824b0bc7155345899ed
3,646,578
def find_storage_pool_type(apiclient, storagetype='NetworkFileSystem'): """ @name : find_storage_pool_type @Desc : Returns true if the given storage pool type exists @Input : type : type of the storage pool[NFS, RBD, etc.,] @Output : True : if the type of storage is found False : if the type of storage is not found FAILED In case the cmd failed """ cmd = listStoragePools.listStoragePoolsCmd() cmd_out = apiclient.listStoragePools(cmd) if validateList(cmd_out)[0] != PASS: return FAILED for storage_pool in cmd_out: if storage_pool.type.lower() == storagetype: return True return False
1d3e64185e0361f02a8cc7e2e4316895e22e517e
3,646,579
from typing import Any from typing import cast def parse_year(candidate: Any) -> int: """Parses the given candidate as a year literal. Raises a ValueError when the candidate is not a valid year.""" if candidate is not None and not isinstance(candidate, int): raise TypeError("Argument year is expected to be an int, " "but is {}".format(type(candidate))) return cast(int, candidate)
337cc3be16e1e1246d1d1f02b55665c655fe131f
3,646,580
def dropout2d(tensor: Tensor, p: float = 0.2) -> Tensor: """ Method performs 2D channel-wise dropout with a autograd tensor. :param tensor: (Tensor) Input tensor :param p: (float) Probability that a activation element is set to zero :return: (Tensor) Output tensor """ # Check argument assert 0.0 <= p <= 1.0, 'Parameter p must be in the range of [0, 1].' # Apply dropout mask = (np.random.randint(0, 2, size=tensor.shape[0]) > p).astype(float).reshape(1, -1, 1, 1) output = tensor.data * mask # Check if grad is needed requires_grad = tensor.requires_grad # Add grad function dependencies = [Dependency(tensor, lambda grad: grad * mask)] if requires_grad else None return Tensor(data=output, requires_grad=requires_grad, dependencies=dependencies)
6719fa5a3e55665770faf1034677642d78561f83
3,646,581
def svn_repos_finish_report(*args): """svn_repos_finish_report(void * report_baton, apr_pool_t pool) -> svn_error_t""" return _repos.svn_repos_finish_report(*args)
19b42660beb7fa5995a8c5e6e0cb5df39116ddb5
3,646,582
import array import itertools def problem451(): """ Consider the number 15. There are eight positive numbers less than 15 which are coprime to 15: 1, 2, 4, 7, 8, 11, 13, 14. The modular inverses of these numbers modulo 15 are: 1, 8, 4, 13, 2, 11, 7, 14 because 1*1 mod 15=1 2*8=16 mod 15=1 4*4=16 mod 15=1 7*13=91 mod 15=1 11*11=121 mod 15=1 14*14=196 mod 15=1 Let I(n) be the largest positive number m smaller than n-1 such that the modular inverse of m modulo n equals m itself. So I(15)=11. Also I(100)=51 and I(7)=1. Find ∑I(n) for 3≤n≤2·10^7 """ LIMIT = 20000000 # Build table of smallest prime factors smallestprimefactor = array.array("L", itertools.repeat(0, LIMIT + 1)) end = eulerlib.sqrt(len(smallestprimefactor) - 1) for i in range(2, len(smallestprimefactor)): if smallestprimefactor[i] == 0: smallestprimefactor[i] = i if i <= end: for j in range(i * i, len(smallestprimefactor), i): if smallestprimefactor[j] == 0: smallestprimefactor[j] = i # Returns all the solutions (in ascending order) such that # for each k, 1 <= k < n and k^2 = 1 mod n. def get_solutions(n): if smallestprimefactor[n] == n: # n is prime return (1, n - 1) else: temp = [] p = smallestprimefactor[n] sols = solutions[n // p] for i in range(0, n, n // p): for j in sols: k = i + j if k * k % n == 1: temp.append(k) return tuple(temp) # Process every integer in range solutions = [(), (), (1,)] ans = 0 for i in range(3, LIMIT + 1): sols = get_solutions(i) if i <= LIMIT // 2: solutions.append(sols) ans += sols[-2] # Second-largest solution return ans
efb000a8f367cf13e7aec2117efed092e3d5a5f3
3,646,583
import torch def collate_molgraphs(data): """Batching a list of datapoints for dataloader. Parameters ---------- data : list of 3-tuples or 4-tuples. Each tuple is for a single datapoint, consisting of a SMILES, a DGLGraph, all-task labels and optionally a binary mask indicating the existence of labels. Returns ------- smiles : list List of smiles bg : BatchedDGLGraph Batched DGLGraphs labels : Tensor of dtype float32 and shape (B, T) Batched datapoint labels. B is len(data) and T is the number of total tasks. masks : Tensor of dtype float32 and shape (B, T) Batched datapoint binary mask, indicating the existence of labels. If binary masks are not provided, return a tensor with ones. """ assert len(data[0]) in [3, 4], \ 'Expect the tuple to be of length 3 or 4, got {:d}'.format(len(data[0])) if len(data[0]) == 3: smiles, graphs, labels = map(list, zip(*data)) masks = None else: smiles, graphs, labels, masks = map(list, zip(*data)) bg = dgl.batch(graphs) bg.set_n_initializer(dgl.init.zero_initializer) bg.set_e_initializer(dgl.init.zero_initializer) labels = torch.stack(labels, dim=0) if masks is None: masks = torch.ones(labels.shape) else: masks = torch.stack(masks, dim=0) return smiles, bg, labels, masks
3ff726fca71ab64ec1e2e665babd8f46b027e819
3,646,584
def reshape_practice(x): """ Given an input tensor of shape (24,), return a reshaped tensor y of shape (3, 8) such that y = [ [x[0], x[1], x[2], x[3], x[12], x[13], x[14], x[15]], [x[4], x[5], x[6], x[7], x[16], x[17], x[18], x[19]], [x[8], x[9], x[10], x[11], x[20], x[21], x[22], x[23]], ] You must construct y by performing a sequence of reshaping operations on x (view, t, transpose, permute, contiguous, reshape, etc). The input tensor should not be modified. Input: - x: A tensor of shape (24,) Returns: - y: A reshaped version of x of shape (3, 8) as described above. """ y = None ############################################################################# # TODO: Implement this function # ############################################################################# # Replace "pass" statement with your code y = x.contiguous().view(2, 3 , 4) y = y.transpose(0,1) y = y.contiguous().view(3, -1) ############################################################################# # END OF YOUR CODE # ############################################################################# return y
b7d71df428ca13729d908771b6e5ce14aa5662e2
3,646,585
def recouvrement_view(request, id): """ Fonction Detail """ user = request.user recouvrement = Recouvrement.objects.filter(user=user).get(id=id) context = { 'recouvrement': recouvrement, } template_name = 'pages/recouvrement/recouvrement_view.html' return render(request, template_name, context)
f0e26257a39ef385b9dfaa51bff68b0fec51a263
3,646,586
def getFileServicesNames(fileServices=None, verbose=True): """ Returns the names and description of the fileServices available to the user. :param fileServices: a list of FileService objects (dictionaries), as returned by Files.getFileServices(). If not set, then an extra internal call to Jobs.getFileServices() is made. :param verbose: boolean parameter defining whether warnings will be printed (set to True) or not (set to False). :return: an array of dicts, where each dict has the name and description of a file service available to the user. :raises: Throws an exception if the user is not logged into SciServer (use Authentication.login for that purpose). Throws an exception if the HTTP request to the RACM API returns an error. :example: fileServiceNames = Files.getFileServicesNames(); .. seealso:: Files.getFileServices """ if fileServices is None: fileServices = getFileServices(verbose); fileServiceNames = []; for fileService in fileServices: fileServiceNames.append({"name":fileService.get('name'),"description":fileService.get('description')}) return fileServiceNames
ef476f2c661dadebee8e8a16863ff2f4c286d99e
3,646,587
def username_in_path(username, path_): """Checks if a username is contained in URL""" if username in path_: return True return False
131a8fa102fd0a0f036da81030b005f92ea9aab0
3,646,588
def str_parse_as_utf8(content) -> str: """Returns the provided content decoded as utf-8.""" return content.decode('utf-8')
75b8d5f1f8867c50b08146cc3edc1d0ab630280a
3,646,589
def TypeProviderClient(version): """Return a Type Provider client specially suited for listing types. Listing types requires many API calls, some of which may fail due to bad user configurations which show up as errors that are retryable. We can alleviate some of the latency and usability issues this causes by tuning the client. Args: version: DM API version used for the client. Returns: A Type Provider API client. """ main_client = apis.GetClientInstance('deploymentmanager', version.id) main_client.num_retries = 2 return main_client.typeProviders
2e735b37d01b9a9a0b44d5cf04acd89d2a8d9b90
3,646,590
from typing import Optional from datetime import datetime from typing import List from typing import Dict from typing import Any def create_indicator( pattern: str, pattern_type: str, created_by: Optional[Identity] = None, name: Optional[str] = None, description: Optional[str] = None, valid_from: Optional[datetime] = None, kill_chain_phases: Optional[List[KillChainPhase]] = None, labels: Optional[List[str]] = None, confidence: Optional[int] = None, object_markings: Optional[List[MarkingDefinition]] = None, x_opencti_main_observable_type: Optional[str] = None, x_opencti_score: Optional[int] = None, ) -> STIXIndicator: """Create an indicator.""" custom_properties: Dict[str, Any] = {X_OPENCTI_SCORE: DEFAULT_X_OPENCTI_SCORE} if x_opencti_score is not None: custom_properties[X_OPENCTI_SCORE] = x_opencti_score if x_opencti_main_observable_type is not None: custom_properties[ X_OPENCTI_MAIN_OBSERVABLE_TYPE ] = x_opencti_main_observable_type return STIXIndicator( id=_create_random_identifier("indicator"), created_by_ref=created_by, name=name, description=description, pattern=pattern, pattern_type=pattern_type, valid_from=valid_from, kill_chain_phases=kill_chain_phases, labels=labels, confidence=confidence, object_marking_refs=object_markings, custom_properties=custom_properties, )
421e9d1d060709facb9a8b8d6831b6a45ef479c9
3,646,591
def import_data( path_to_csv: str, response_colname: str, standards_colname: str, header: int = 0, nrows: int = None, skip_rows: int = None, ) -> pd.DataFrame: """Import standard curve data from a csv file. Args: path_to_csv: Refer to pd.read_csv docs. response_colname: Name of column with response data. standards_colname: Name of column with standard concentrations. header: Refer to pd.read_csv(). nrows: Refer to pd.read_csv(). skip_rows: Skips the first n rows when reading data. # kwargs: Additional arguments to parse to pd.read_csv(). Returns: Formatted data as a dataframe. Raises: ValueError: If response_colname or standards_colname not in data.columns """ data = pd.read_csv(path_to_csv, header=header, nrows=nrows) if skip_rows: data = data.iloc[skip_rows:, :] data.dropna(axis=1, how="all", inplace=True) data.dropna(inplace=True) data.rename({response_colname: "response", standards_colname: "standard_concentrations"}, axis=1, inplace=True) try: return data.loc[:, ["standard_concentrations", "response"]] except KeyError: raise ValueError("Check `response_colname` and `standards_colname` values are valid column names.")
fffc650ac7b672e0585b0dc307977c4adf9a0a69
3,646,592
def plus(x: np.ndarray, y: np.ndarray) -> np.ndarray: """ 矩阵相加""" if x.shape == y.shape: return x + y
9d042d90c8d3ca9588c02ddd9ed53ec725785d13
3,646,593
def add_noise(wave, noise, fs, snr, start_time, duration, wave_power): """Add a noise to wave. """ noise_power = np.dot(noise, noise) / noise.shape[0] scale_factor = np.sqrt(10**(-snr/10.0) * wave_power / noise_power) noise = noise * scale_factor offset = int(start_time * fs) add_length = min(wave.shape[0] - offset, int(duration * fs), noise.shape[0]) if add_length > 0: wave[offset: offset + add_length] += noise[0: add_length] return wave
3f8df3098751b081f93b61da16682bdac2bf6a02
3,646,594
def _sort_factors(factors, **args): """Sort low-level factors in increasing 'complexity' order.""" def order_if_multiple_key(factor): f, n = factor return len(f), n, default_sort_key(f) def order_no_multiple_key(f): return len(f), default_sort_key(f) if args.get('multiple', True): return sorted(factors, key=order_if_multiple_key) else: return sorted(factors, key=order_no_multiple_key)
60be823e0f12b0e33d6a9567458cc98d95d1f900
3,646,595
def get_affix(text): """ This method gets the affix information :param str text: Input text. """ return " ".join( [word[-4:] if len(word) >= 4 else word for word in text.split()])
eb0aa68e803ce6c0ae218f4e0e2fd1855936b50f
3,646,596
async def async_setup_entry(hass, config_entry): """Konfigurowanie integracji na podstawie wpisu konfiguracyjnego.""" _LOGGER.info("async_setup_entry " + str(config_entry)) hass.async_create_task( hass.config_entries.async_forward_entry_setup(config_entry, "sensor") ) return True
0bbef08a544cccede0efd18fbbf9a0b7dddfbec9
3,646,597
def analyse_branching(geom,ordering_system,conversionFactor,voxelSize): """ Does a branching analysis on the tree defined by 'geom' Inputs: - geom: A geometry structure consisting of element list, node location and radii/lengths - ordering_system: the ordering system to be used in analysis (e.g. 'strahler', 'horsfield' Returns: Prints to screen a table of branching properties (one per generation, one per order) and overall summary statistics """ elem_cnct = pg_utilities.element_connectivity_1D(geom['nodes'], geom['elems']) orders = evaluate_orders(geom['nodes'], geom['elems']) # Find Results branchGeom = arrange_by_branches(geom, elem_cnct['elem_up'], orders[ordering_system],orders['generation']) [geom, branchGeom] = find_branch_angles(geom, orders, elem_cnct, branchGeom, voxelSize, conversionFactor) major_minor_results=major_minor(geom, elem_cnct['elem_down']) #major/minor child stuff # tabulate data generation_summary_statistics(geom, orders, major_minor_results) summary_statistics(branchGeom, geom, orders, major_minor_results,'strahler') return geom
25c72b51094c59317e167cca6662c5ccfa8805b0
3,646,598
def remove_start(s: str) -> str: """ Clear string from start '-' symbol :param s: :return: """ return s[1:] if s.startswith('-') else s
03504a3094798f6582bcae40233f7215e8d4d780
3,646,599