content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def spawn_shell(shell_cmd): """Spawn a shell process with the provided command line. Returns the Pexpect object.""" return pexpect.spawn(shell_cmd[0], shell_cmd[1:], env=build_shell_env())
07de3ae221b427baddb0b47f1d52e3eae91035e7
3,646,200
from collections import OrderedDict import sep from grizli import utils import tqdm def analyze_image(data, err, seg, tab, athresh=3., robust=False, allow_recenter=False, prefix='', suffix='', grow=1, subtract_background=False, include_empty=False, pad=0, dilate=0, make_image_cols=True): """ SEP/SExtractor analysis on arbitrary image Parameters ---------- data : array Image array err : array RMS error array seg : array Segmentation array tab : `~astropy.table.Table` Table output from `sep.extract` where `id` corresponds to segments in `seg`. Requires at least columns of ``id, xmin, xmax, ymin, ymax`` and ``x, y, flag`` if want to use `robust` estimators athresh : float Analysis threshold prefix, suffix : str Prefix and suffix to add to output table column names Returns ------- tab : `~astropy.table.Table` Table with columns ``id, x, y, x2, y2, xy, a, b, theta`` ``flux, background, peak, xpeak, ypeak, npix`` """ yp, xp = np.indices(data.shape) - 0.5*(grow == 2) # Output data new = OrderedDict() idcol = choose_column(tab, ['id','number']) ids = tab[idcol] new[idcol] = tab[idcol] for k in ['x','y','x2','y2','xy','a','b','theta','peak','flux','background']: if k in tab.colnames: new[k] = tab[k].copy() else: new[k] = np.zeros(len(tab), dtype=np.float32) for k in ['xpeak','ypeak','npix','flag']: if k in tab.colnames: new[k] = tab[k].copy() else: new[k] = np.zeros(len(tab), dtype=int) for id_i in tqdm(ids): ix = np.where(tab[idcol] == id_i)[0][0] xmin = tab['xmin'][ix]-1-pad ymin = tab['ymin'][ix]-1-pad slx = slice(xmin, tab['xmax'][ix]+pad+2) sly = slice(ymin, tab['ymax'][ix]+pad+2) seg_sl = seg[sly, slx] == id_i if include_empty: seg_sl |= seg[sly, slx] == 0 if dilate > 0: seg_sl = nd.binary_dilation(seg_sl, iterations=dilate) if seg_sl.sum() == 0: new['flag'][ix] |= 1 continue if grow > 1: sh = seg_sl.shape seg_gr = np.zeros((sh[0]*grow, sh[1]*grow), dtype=bool) for i in range(grow): for j in range(grow): seg_gr[i::grow, j::grow] |= seg_sl seg_sl = seg_gr xmin = xmin*grow ymin = ymin*grow slx = slice(xmin, (tab['xmax'][ix]+2+pad)*grow) sly = slice(ymin, (tab['ymax'][ix]+2+pad)*grow) if subtract_background: if subtract_background == 2: # Linear model x = xp[sly, slx] - xmin y = yp[sly, slx] - ymin A = np.array([x[~seg_sl]*0.+1, x[~seg_sl], y[~seg_sl]]) b = data[sly,slx][~seg_sl] lsq = np.linalg.lstsq(A.T, b) back_level = lsq[0][0] A = np.array([x[seg_sl]*0.+1, x[seg_sl], y[seg_sl]]).T back_xy = A.dot(lsq[0]) else: # Median back_level = np.median(data[sly, slx][~seg_sl]) back_xy = back_level else: back_level = 0. back_xy = back_level dval = data[sly, slx][seg_sl] - back_xy ival = err[sly, slx][seg_sl] rv = dval.sum() imax = np.argmax(dval) peak = dval[imax] x = xp[sly, slx][seg_sl] - xmin y = yp[sly, slx][seg_sl] - ymin xpeak = x[imax] + xmin ypeak = y[imax] + ymin thresh_sl = (dval > athresh*ival) & (ival >= 0) new['npix'][ix] = thresh_sl.sum() new['background'][ix] = back_level if new['npix'][ix] == 0: new['flag'][ix] |= 2 new['x'][ix] = np.nan new['y'][ix] = np.nan new['xpeak'][ix] = xpeak new['ypeak'][ix] = ypeak new['peak'][ix] = peak new['flux'][ix] = rv new['x2'][ix] = np.nan new['y2'][ix] = np.nan new['xy'] = np.nan new['a'][ix] = np.nan new['b'][ix] = np.nan new['theta'][ix] = np.nan continue cval = dval[thresh_sl] rv = cval.sum() x = x[thresh_sl] y = y[thresh_sl] mx = (x*cval).sum() my = (y*cval).sum() mx2 = (x*x*cval).sum() my2 = (y*y*cval).sum() mxy = (x*y*cval).sum() xm = mx/rv ym = my/rv xm2 = mx2/rv - xm**2 ym2 = my2/rv - ym**2 xym = mxy/rv - xm*ym if robust: if 'flag' in tab.colnames: flag = tab['flag'][ix] & sep.OBJ_MERGED else: flag = False if flag | (robust > 1): if allow_recenter: xn = xm yn = ym else: xn = tab['x'][ix]-xmin yn = tab['y'][ix]-ymin xm2 = mx2 / rv + xn*xn - 2*xm*xn ym2 = my2 / rv + yn*yn - 2*ym*yn xym = mxy / rv + xn*yn - xm*yn - xn*ym xm = xn ym = yn temp2 = xm2*ym2-xym*xym if temp2 < 0.00694: xm2 += 0.0833333 ym2 += 0.0833333 temp2 = xm2*ym2-xym*xym; temp = xm2 - ym2 if np.abs(temp) > 0: theta = np.clip(np.arctan2(2.0*xym, temp)/2., -np.pi/2.+1.e-5, np.pi/2.-1.e-5) else: theta = np.pi/4 temp = np.sqrt(0.25*temp*temp+xym*xym); pmy2 = pmx2 = 0.5*(xm2+ym2); pmx2 += temp pmy2 -= temp amaj = np.sqrt(pmx2) amin = np.sqrt(pmy2) new['x'][ix] = xm+xmin new['y'][ix] = ym+ymin new['xpeak'][ix] = xpeak new['ypeak'][ix] = ypeak new['peak'][ix] = peak new['flux'][ix] = rv new['x2'][ix] = xm2 new['y2'][ix] = ym2 new['xy'] = xym new['a'][ix] = amaj new['b'][ix] = amin new['theta'][ix] = theta new['flag'] |= ((~np.isfinite(new['a'])) | (new['a'] <= 0))*4 new['flag'] |= ((~np.isfinite(new['b'])) | (new['b'] <= 0))*8 newt = utils.GTable() for k in new: newt[f'{prefix}{k}{suffix}'] = new[k] if make_image_cols: newt['a_image'] = newt['a'] newt['b_image'] = newt['b'] newt['theta_image'] = newt['theta'] newt['x_image'] = newt['x']+1 newt['y_image'] = newt['y']+1 return newt
b90920ac00a995fde90c43b07cae45a752786c15
3,646,201
import re import random import time import requests import os def qr(tag): """ called by an AJAX request for cipherwallet QR code this action is typically invoked by your web page containing the form, thru the code in cipherwallet.js, to obtain the image with the QR code to display it will return the image itself, with an 'image/png' content type, so you can use the URL to this page as a 'src=...' attribute for the <img> tag """ # default timeout values, do not modify because they must stay in sync with the API DEFAULT_TTL = { OP_SIGNUP: 120, OP_LOGIN: 60, OP_CHECKOUT: 300, OP_REGISTRATION: 30, } # create an unique session identifier, 8 random characters, and postfix it with the QR code tag # the qr code tag is useful to distinguish multiple QR codes on the same page if re.compile("[a-zA-Z0-9.:_-]+").match(tag) is None: raise CipherwalletError(400, "Bad request") cw_session = "".join(random.choice(ALPHABET) for _ in range(8)) + "-" + tag # get the user data request template; templates for each type of request are pre-formatted # and stored in the constants file, in the qr_requests variable try: rq_def = qr_requests[tag] except Exception: raise CipherwalletError(501, "Not implemented") # set the time-to-live of the cipherwallet session in the temporary storage cw_session_ttl = rq_def.get('qr_ttl', DEFAULT_TTL[rq_def['operation']]) if tmp_datastore.cw_session_data(cw_session, 'qr_expires', 1 + cw_session_ttl + int(time.time())) is None: raise CipherwalletError(500, "Internal server error") # for registration QR code requests, we also save the current user ID in the short term storage if rq_def['operation'] == OP_REGISTRATION: uid = hooks.get_user_id_for_current_session() # you MUST implement this function in hooks.py if uid is None: raise CipherwalletError(401, "Unauthorized") else: tmp_datastore.cw_session_data(cw_session, 'user_id', uid); # prepare request to the API method = "POST"; resource = "/{0}/{1}.png".format(tag, cw_session) request_params = {} if rq_def.get('qr_ttl'): request_params['ttl'] = rq_def['qr_ttl'] if rq_def.get('callback_url'): request_params['push_url'] = rq_def['callback_url'] if rq_def['operation'] not in [ OP_LOGIN, OP_REGISTRATION, ]: display = rq_def.get('display') if hasattr(display, '__call__'): request_params['display'] = display() elif type(display) == type(""): request_params['display'] = rq_def['display'] # should do the same thing for the service params # create CQR headers and the query string api_rq_headers = cqr.auth( CUSTOMER_ID, API_SECRET, method, resource, request_params or "", H_METHOD ) # some extra headers we need api_rq_headers['Content-Type'] = "application/x-www-form-urlencoded"; #api_rq_headers['Content-Length'] = len(request_params); # get the QR image from the API and send it right back to the browser api_rp = requests.post(API_URL + resource, headers=api_rq_headers, data=request_params) content = api_rp.content if api_rp.status_code == 200 \ else open(os.path.dirname(os.path.realpath(__file__)) + "/1x1.png").read() return content, cw_session
ed70f32df3a06fd6dc890a1ba324783f273c8e38
3,646,202
def get_experiment_table(faultgroup, faultname, tablename): """ Get anny table from a faultgroup """ node = faultgroup._f_get_child(faultname) table = node._f_get_child(tablename) return pd.DataFrame(table.read())
16c78e6925d3da227402e2e17e00bac38ff72ab7
3,646,203
def kjunSeedList(baseSeed, n): """ generates n seeds Due to the way it generates the seed, do not use i that is too large.. """ assert n <= 100000 rs = ra.RandomState(baseSeed); randVals = rs.randint(np.iinfo(np.uint32).max+1, size=n); return randVals;
6d98adfba2917ede64d0572c21d6fe1041327241
3,646,204
import PIL def filter_sharpen(image): """Apply a sharpening filter kernel to the image. This is the same as using PIL's ``PIL.ImageFilter.SHARPEN`` kernel. Added in 0.4.0. **Supported dtypes**: * ``uint8``: yes; fully tested * ``uint16``: no * ``uint32``: no * ``uint64``: no * ``int8``: no * ``int16``: no * ``int32``: no * ``int64``: no * ``float16``: no * ``float32``: no * ``float64``: no * ``float128``: no * ``bool``: no Parameters ---------- image : ndarray The image to modify. Returns ------- ndarray Sharpened image. """ return _filter_by_kernel(image, PIL.ImageFilter.SHARPEN)
28b83153dc8931430e22f63f889cf195f01f80da
3,646,205
async def zha_client(hass, config_entry, zha_gateway, hass_ws_client): """Test zha switch platform.""" # load the ZHA API async_load_api(hass) # create zigpy device await async_init_zigpy_device( hass, [general.OnOff.cluster_id, general.Basic.cluster_id], [], None, zha_gateway, ) await async_init_zigpy_device( hass, [general.OnOff.cluster_id, general.Basic.cluster_id, general.Groups.cluster_id], [], zigpy.profiles.zha.DeviceType.ON_OFF_LIGHT, zha_gateway, manufacturer="FakeGroupManufacturer", model="FakeGroupModel", ieee="01:2d:6f:00:0a:90:69:e8", ) # load up switch domain await hass.config_entries.async_forward_entry_setup(config_entry, DOMAIN) await hass.async_block_till_done() await hass.config_entries.async_forward_entry_setup(config_entry, light_domain) await hass.async_block_till_done() return await hass_ws_client(hass)
ba659195dc2e3d8d3510c25edcf4850a740483c1
3,646,206
import random def summary_selector(summary_models=None): """ Will create a function that take as input a dict of summaries : {'T5': [str] summary_generated_by_T5, ..., 'KW': [str] summary_generted_by_KW} and randomly return a summary that has been generated by one of the summary_model in summary_model if summary_models is none, will not use summaru :param summary_models: list of str(SummarizerModel) :return: function [dict] -> [str] """ if summary_models is None or len(summary_models) == 0 or \ (len(summary_models) == 1 and summary_models[0] == ""): return lambda x: "" summary_model = random.choice(summary_models) return lambda summaries_dict: summaries_dict[summary_model]
b8a2336546324d39ff87ff5b59f4f1174e5dd54c
3,646,207
import collections from datetime import datetime def handle_collectd(root_dir): """Generate figure for each plugin for each hoster.""" result = collections.defaultdict(lambda: collections.defaultdict(dict)) for host in natsorted(root_dir.iterdir()): for plugin in natsorted(host.iterdir()): stats_list = natsorted( [fname for fname in plugin.iterdir() if fname.suffix == ".rrd"] ) title = plugin.name result[host.name][plugin.name] = { "daily": rrd2svg( stats_list, f"{title} - by day", start_time=datetime.datetime.now() - datetime.timedelta(days=1), ), "monthly": rrd2svg( stats_list, f"{title} - by month", start_time=datetime.datetime.now() - datetime.timedelta(weeks=4), ), } if len(result[host.name]) > 20: break return result
48eb4f2ad5976d51fbe1904219e90620aea1a82c
3,646,208
def create_policy_case_enforcement(repository_id, blocking, enabled, organization=None, project=None, detect=None): """Create case enforcement policy. """ organization, project = resolve_instance_and_project( detect=detect, organization=organization, project=project) policy_client = get_policy_client(organization) configuration = create_configuration_object(repository_id, None, blocking, enabled, '40e92b44-2fe1-4dd6-b3d8-74a9c21d0c6e', ['enforceConsistentCase'], ['true']) return policy_client.create_policy_configuration(configuration=configuration, project=project)
60864cd51472029991a4bb783a39007ea42e4b58
3,646,209
def svn_fs_new(*args): """svn_fs_new(apr_hash_t fs_config, apr_pool_t pool) -> svn_fs_t""" return apply(_fs.svn_fs_new, args)
6ade0887b16e522d47d70c974ccecf8f8bec1403
3,646,210
import os def cam_pred(prefix, data_dir): """ """ groundtruth_dict = read(os.path.join('../data/contrast_dataset', 'groundtruth.txt')) cam = CAM(model=load_pretrained_model(prefix, 'resnet')) if data_dir == '../data/split_contrast_dataset': normalize = transforms.Normalize(mean=[0.7432, 0.661, 0.6283], std=[0.0344, 0.0364, 0.0413]) print('load custom-defined skin dataset successfully!!!') else: raise ValueError('') preprocess = transforms.Compose([ transforms.ToTensor(), normalize, ]) pred_results = [] y_true = [] idx = 0 for phase in ['train', 'val']: path = os.path.join(data_dir, phase) for name in os.listdir(path): if 'lesion' not in name: continue abs_path = os.path.join(path, name) img_pil = Image.open(abs_path) img_tensor = preprocess(img_pil).unsqueeze(0) heatmap = cam(img_tensor) idx += 1 if idx % 50 == 0: print('[%d/%d]' % (idx, len(os.listdir(path)))) heatmap = np.float32(heatmap) / 255 pred_results.extend(heatmap.reshape(-1)) y_true.extend(get_true(groundtruth_dict, name).reshape(-1).tolist()) print(idx) return pred_results, y_true
262cd00733047d2f61fff2fe440b6e81548ed533
3,646,211
def least_similar(sen, voting_dict): """ Find senator with voting record least similar, excluding the senator passed :param sen: senator last name :param voting_dict: dictionary of voting record by last name :return: senator last name with least similar record, in case of a tie chooses first alphabetically >>> voting_dict = create_voting_dict(list(open('voting_record_dump109.txt'))) >>> least_similar('Mikulski', voting_dict) 'Inhofe' >>> least_similar('Santorum', voting_dict) # 2.12.5 'Feingold' """ return specifier_similar(sen, voting_dict, '<')['sen']
8bcc8cde75e9ce060f852c0e7e03756d279491f0
3,646,212
import logging def _send_req(wait_sec, url, req_gen, retry_result_code=None): """ Helper function to send requests and retry when the endpoint is not ready. Args: wait_sec: int, max time to wait and retry in seconds. url: str, url to send the request, used only for logging. req_gen: lambda, no parameter function to generate requests.Request for the function to send to the endpoint. retry_result_code: int (optional), status code to match or retry the request. Returns: requests.Response """ def retry_on_error(e): return isinstance(e, (SSLError, ReqConnectionError)) # generates function to see if the request needs to be retried. # if param `code` is None, will not retry and directly pass back the response. # Otherwise will retry if status code is not matched. def retry_on_result_func(code): if code is None: return lambda _: False return lambda resp: not resp or resp.status_code != code @retry(stop_max_delay=wait_sec * 1000, wait_fixed=10 * 1000, retry_on_exception=retry_on_error, retry_on_result=retry_on_result_func(retry_result_code)) def _send(url, req_gen): resp = None logging.info("sending request to %s", url) try: resp = req_gen() except Exception as e: logging.warning("%s: request with error: %s", url, e) raise e return resp return _send(url, req_gen)
d6856bf241f857f3acd8768fd71d058d4c94baaa
3,646,213
def load_file(path, types = None): """ load file in path if file format in types list ---- :param path: file path :param code: file type list, if None, load all files, or not load the files in the list, such as ['txt', 'xlsx'] :return: a list is [path, data] """ ext = path.split(".")[-1] if types != None: if ext not in types: # filter this file return None if ext == "txt": return [path, __load_txt(path)] else: print("pyftools: format", ext, "not support!") return None
dab404cf2399e3b87d23babb1a09be2b94c3d924
3,646,214
import numpy def get_dense_labels_map(values, idx_dtype='uint32'): """ convert unique values into dense int labels [0..n_uniques] :param array values: (n,) dtype array :param dtype? idx_dtype: (default: 'uint32') :returns: tuple( labels2values: (n_uniques,) dtype array, values2labels: HashMap(dtype->int), ) """ # get unique values unique_values = unique(values) # build labels from 0 to n_uniques labels = numpy.arange(unique_values.shape[0], dtype=idx_dtype) # build small hashmap with just the unique items values2labels = Hashmap(unique_values, labels) return unique_values, values2labels
cd9f2884e26fa22785e24598f0f485d2931427d8
3,646,215
def delete_debug_file_from_orchestrator( self, filename: str, ) -> bool: """Delete debug file from Orchestrator .. list-table:: :header-rows: 1 * - Swagger Section - Method - Endpoint * - debugFiles - POST - /debugFiles/delete :param filename: Name of debug file to delete from Orchestrator :type filename: str :return: Returns True/False based on successful call :rtype: bool """ data = {"fileName": filename} return self._post( "/debugFiles/delete", data=data, return_type="bool", )
3357fc26e48771a716445b38c1fcc5c592c39cf9
3,646,216
from typing import Match def _replace_fun_unescape(m: Match[str]) -> str: """ Decode single hex/unicode escapes found in regex matches. Supports single hex/unicode escapes of the form ``'\\xYY'``, ``'\\uYYYY'``, and ``'\\UYYYYYYYY'`` where Y is a hex digit. Only decodes if there is an odd number of backslashes. .. versionadded:: 0.2 Parameters ---------- m : regex match Returns ------- c : str The unescaped character. """ slsh = b'\\'.decode('ascii') s = m.group(0) count = s.count(slsh) if count % 2 == 0: return s else: c = chr(int(s[(count + 1):], base=16)) return slsh * (count - 1) + c
3fdb275e3c15697e5302a6576b4d7149016299c0
3,646,217
def predict_next_location(game_data, ship_name): """ Predict the next location of a space ship. Parameters ---------- game_data: data of the game (dic). ship_name: name of the spaceship to predicte the next location (str). facing: facing of the ship (tuple) Return ------ predicted_location : predicte location of the spaceship (tuple(int, int)). Version ------- Specification: Nicolas Van Bossuyt (v1. 19/03/17). Implementation: Nicolas Van Bossuyt (v1. 19/03/17). Bayron Mahy (v2. 22/03/17). """ ship_location = game_data['ships'][ship_name]['location'] ship_facing = game_data['ships'][ship_name]['facing'] ship_speed = game_data['ships'][ship_name]['speed'] return next_location(ship_location, ship_facing, ship_speed, game_data['board_size'])
996b58e0ac8d8754a49020e0e5df830fa472be99
3,646,218
from pathlib import Path import os def get_absolute_filename(user_inputted_filename: str) -> Path: """Clean up user inputted filename path, wraps os.path.abspath, returns Path object""" filename_location = Path(os.path.abspath(user_inputted_filename)) return filename_location
d8d704f4adcaa443658789c6d178b3ddb05552d0
3,646,219
def check_answer(guess, a_follower, b_follower): """Chcek if the user guessed the correct option""" if a_follower > b_follower: return guess == "a" else: return guess == "b"
acd1e78026f89dd1482f4471916472d35edf68a7
3,646,220
import argparse def command_line_arg_parser(): """ Command line argument parser. Encrypts by default. Decrypts when --decrypt flag is passed in. """ parser = argparse.ArgumentParser(description='Parses input args') parser.add_argument('input_file', type=str, help='Path to input file location') parser.add_argument('output_file', type=str, default='./output_data', help='Path to output file location') parser.add_argument('key_file', type=str, help='Path to public or private key file') parser.add_argument('--decrypt', dest='decrypt', action='store_true', help='Private key file (for decryption)') return parser
c1e9305e2967368fb36ad8fcdbb654ef04f8d3bf
3,646,221
def respond(variables, Body=None, Html=None, **kwd): """ Does the grunt work of cooking up a MailResponse that's based on a template. The only difference from the lamson.mail.MailResponse class and this (apart from variables passed to a template) are that instead of giving actual Body or Html parameters with contents, you give the name of a template to render. The kwd variables are the remaining keyword arguments to MailResponse of From/To/Subject. For example, to render a template for the body and a .html for the Html attachment, and to indicate the From/To/Subject do this: msg = view.respond(locals(), Body='template.txt', Html='template.html', From='test@test.com', To='receiver@test.com', Subject='Test body from "%(dude)s".') In this case you're using locals() to gather the variables needed for the 'template.txt' and 'template.html' templates. Each template is setup to be a text/plain or text/html attachment. The From/To/Subject are setup as needed. Finally, the locals() are also available as simple Python keyword templates in the From/To/Subject so you can pass in variables to modify those when needed (as in the %(dude)s in Subject). """ assert Body or Html, "You need to give either the Body or Html template of the mail." for key in kwd: kwd[key] = kwd[key] % variables msg = mail.MailResponse(**kwd) if Body: msg.Body = render(variables, Body) if Html: msg.Html = render(variables, Html) return msg
214513edf420dc629603cc98d1728dec8c81aee9
3,646,222
from typing import Dict def canonical_for_code_system(jcs: Dict) -> str: """get the canonical URL for a code system entry from the art decor json. Prefer FHIR URIs over the generic OID URI. Args: jcs (Dict): the dictionary describing the code system Returns: str: the canonical URL """ if "canonicalUriR4" in jcs: return jcs["canonicalUriR4"] else: return jcs["canonicalUri"]
f111a4cb65fa75799e799f0b088180ef94b71cc8
3,646,223
def correspdesc_source(data): """ extract @source from TEI elements <correspDesc> """ correspdesc_data = correspdesc(data) try: return [cd.attrib["source"].replace("#", "") for cd in correspdesc_data] except KeyError: pass try: return [cd.attrib[ns_cs("source")].replace("#", "") for cd in correspdesc_data] except KeyError: pass return []
18a2fe1d0daf0f383c8b8295105ad0027b626f31
3,646,224
def leaders(Z, T): """ (L, M) = leaders(Z, T): For each flat cluster j of the k flat clusters represented in the n-sized flat cluster assignment vector T, this function finds the lowest cluster node i in the linkage tree Z such that: * leaf descendents belong only to flat cluster j (i.e. T[p]==j for all p in S(i) where S(i) is the set of leaf ids of leaf nodes descendent with cluster node i) * there does not exist a leaf that is not descendent with i that also belongs to cluster j (i.e. T[q]!=j for all q not in S(i)). If this condition is violated, T is not a valid cluster assignment vector, and an exception will be thrown. Two k-sized numpy vectors are returned, L and M. L[j]=i is the linkage cluster node id that is the leader of flat cluster with id M[j]. If i < n, i corresponds to an original observation, otherwise it corresponds to a non-singleton cluster. """ Z = np.asarray(Z) T = np.asarray(T) if type(T) != _array_type or T.dtype != np.int: raise TypeError('T must be a one-dimensional numpy array of integers.') is_valid_linkage(Z, throw=True, name='Z') if len(T) != Z.shape[0] + 1: raise ValueError('Mismatch: len(T)!=Z.shape[0] + 1.') Cl = np.unique(T) kk = len(Cl) L = np.zeros((kk,), dtype=np.int32) M = np.zeros((kk,), dtype=np.int32) n = Z.shape[0] + 1 [Z, T] = _copy_arrays_if_base_present([Z, T]) s = _cluster_wrap.leaders_wrap(Z, T, L, M, int(kk), int(n)) if s >= 0: raise ValueError('T is not a valid assignment vector. Error found when examining linkage node %d (< 2n-1).' % s) return (L, M)
7b72b33b87e454138c144a791612d7af8422b0a6
3,646,225
from typing import List def create_unique_views(rows: list, fields: List[str]): """Create views for each class objects, default id should be a whole row""" views = {} for r in rows: values = [r[cname] for cname in fields] if any(isinstance(x, list) for x in values): if all(isinstance(x, list) for x in values) and len({len(x) for x in values}) == 1: # all its value is in a list for j in range(len(values[0])): key = ",".join(str(values[i][j]) for i in range(len(values))) views[key] = [values[i][j] for i in range(len(values))] else: # assert False key = ",".join((str(x) for x in values)) views[key] = values else: key = ",".join((str(x) for x in values)) views[key] = values views = [{cname: r[i] for i, cname in enumerate(fields)} for r in views.values()] return views
24b311c8b013f742e69e7067c1f1bafe0044c940
3,646,226
from typing import List import torch def check_shape_function(invocations: List[Invocation]): """Decorator that automatically tests a shape function. The shape function, which is expected to be named systematically with `〇` instead of `.`, is tested against the corresponding op in `torch.ops.*` function using the given invocations. """ def decorator(f): # `torch.ops.*` functions are overloaded already, so we don't need # to pass in the overload name. ns, unqual = f.__name__.split("〇")[:2] op = getattr(getattr(torch.ops, ns), unqual) for invocation in invocations: shape_fn_error, op_error = None, None try: result_shapes = _normalize_multiple_results_to_list(f( *invocation.to_shape_function_args(), **invocation.kwargs)) except Exception as e: shape_fn_error = f"{e}" try: golden_results = _normalize_multiple_results_to_list(op( *invocation.to_real_op_args(), **invocation.kwargs)) except Exception as e: op_error = f"{e}" def report(error_message: str): raise ValueError(f"For shape function {f.__name__!r} with invocation {invocation}: {error_message}") # Check for error behavior. if invocation.is_expected_to_raise_exception(): if shape_fn_error is None and op_error is None: report(f"Expected to raise an exception, but neither shape function nor op raised an exception") if shape_fn_error is None: report(f"Op raised error {op_error!r}, but shape function did not.") if op_error is None: report(f"Shape function raised error {shape_fn_error!r}, but op did not.") else: if shape_fn_error is not None and op_error is not None: report(f"Both shape function and op raised errors, but were not expected to. Shape function raised error {shape_fn_error!r} and op raised error {op_error!r}.") if shape_fn_error is not None: report(f"Shape function raised error {shape_fn_error!r} but op did not raise any error.") if op_error is not None: report(f"Op raised error {op_error!r} but shape function did not raise any error.") if shape_fn_error is not None or op_error is not None: # If both raised errors, then that is good -- the shape function # and the real op should agree on the erroneous cases. # The exact error message might differ though. if shape_fn_error is not None and op_error is not None: continue # Check for matching results. if len(result_shapes) != len(golden_results): report(f"Expected {len(golden_results)} result shapes, got {len(result_shapes)}") for result_shape, golden_result in zip(result_shapes, golden_results): for dimension_size, golden_dimension_size in zip(result_shape, golden_result.shape): if dimension_size != golden_dimension_size: report(f"Expected result shape {golden_result.shape}, got {result_shape}") return f return decorator
be237f2209f1e2007b53a1ecbe0c277bf2b37fe7
3,646,227
def _prepare_images(ghi, clearsky, daytime, interval): """Prepare data as images. Performs pre-processing steps on `ghi` and `clearsky` before returning images for use in the shadow detection algorithm. Parameters ---------- ghi : Series Measured GHI. [W/m^2] clearsky : Series Expected clearsky GHI. [W/m^2] daytime : Series Boolean series with True for daytime and False for night. interval : int Time between data points in `ghi`. [minutes] Returns ------- ghi_image : np.ndarray Image form of `ghi` clearsky_image : np.ndarray Image form of `clearsky` clouds_image : np.ndarray Image of the cloudy periods in `ghi` image_times : pandas.DatetimeIndex Index for the data included in the returned images. Leading and trailing days with incomplete data are not included in the image, these times are needed to build a Series from the image later on. """ # Fill missing times by interpolation. Missing data at the # beginning or end of the series is not filled in, and will be # excluded from the images used for shadow detection. image_width = 1440 // interval ghi = ghi.interpolate(limit_area='inside') # drop incomplete days. ghi = ghi[ghi.resample('D').transform('count') == image_width] image_times = ghi.index ghi_image = _to_image(ghi.to_numpy(), image_width) scaled_ghi = (ghi * 1000) / np.max(_smooth(ghi_image)) scaled_clearsky = (clearsky * 1000) / clearsky.max() scaled_clearsky = scaled_clearsky.reindex_like(scaled_ghi) daytime = daytime.reindex_like(scaled_ghi) # Detect clouds. window_size = 50 // interval clouds = _detect_clouds(scaled_ghi, scaled_clearsky, window_size) cloud_mask = _to_image(clouds.to_numpy(), image_width) # Interpolate across days (i.e. along columns) to remove clouds # replace clouds with nans # # This could probably be done directly with scipy.interpolate.inter1d, # but the easiest approach is to turn the image into a dataframe and # interpolate along the columns. cloudless_image = ghi_image.copy() cloudless_image[cloud_mask] = np.nan clouds_image = ghi_image.copy() clouds_image[~cloud_mask] = np.nan ghi_image = pd.DataFrame(cloudless_image).interpolate( axis=0, limit_direction='both' ).to_numpy() # set night to nan ghi_image[~_to_image(daytime.to_numpy(), image_width)] = np.nan return ( ghi_image, _to_image(scaled_clearsky.to_numpy(), image_width), clouds_image, image_times )
9433cce0ccb9dae5e5b364fce42f8ed391adf239
3,646,228
import numpy def interleaved_code(modes: int) -> BinaryCode: """ Linear code that reorders orbitals from even-odd to up-then-down. In up-then-down convention, one can append two instances of the same code 'c' in order to have two symmetric subcodes that are symmetric for spin-up and -down modes: ' c + c '. In even-odd, one can concatenate with the interleaved_code to have the same result:' interleaved_code * (c + c)'. This code changes the order of modes from (0, 1 , 2, ... , modes-1 ) to (0, modes/2, 1 modes/2+1, ... , modes-1, modes/2 - 1). n_qubits = n_modes. Args: modes (int): number of modes, must be even Returns (BinaryCode): code that interleaves orbitals """ if modes % 2 == 1: raise ValueError('number of modes must be even') else: mtx = numpy.zeros((modes, modes), dtype=int) for index in numpy.arange(modes // 2, dtype=int): mtx[index, 2 * index] = 1 mtx[modes // 2 + index, 2 * index + 1] = 1 return BinaryCode(mtx, linearize_decoder(mtx.transpose()))
e9b178165c8fe1e33d880dee056a3e397fa90bce
3,646,229
from sklearn.neighbors import NearestNeighbors def nearest_neighbors(data, args): """ 最近邻 """ nbrs = NearestNeighbors(**args) nbrs.fit(data) # 计算测试数据对应的最近邻下标和距离 # distances, indices = nbrs.kneighbors(test_data) return nbrs
d91014d082f7a15a26e453d32272381b7578c9de
3,646,230
def gradient(v, surf): """ :param v: vector of x, y, z coordinates :param phase: which implicit surface is being used to approximate the structure of this phase :return: The gradient vector (which is normal to the surface at x) """ x = v[0] y = v[1] z = v[2] if surf == 'Ia3d' or surf == 'gyroid' or surf == 'ia3d': a = np.cos(x)*np.cos(y) - np.sin(x)*np.sin(z) b = -np.sin(y)*np.sin(x) + np.cos(y)*np.cos(z) c = -np.sin(y)*np.sin(z) + np.cos(z)*np.cos(x) elif surf == 'Pn3m' or surf == 'pn3m': a = np.cos(x)*np.sin(y)*np.sin(z) + np.cos(x)*np.cos(y)*np.cos(z) - np.sin(x)*np.sin(y)*np.cos(z) - np.sin(x)*np.cos(y)*np.sin(z) b = np.sin(x)*np.cos(y)*np.sin(z) - np.sin(x)*np.sin(y)*np.cos(z) + np.cos(x)*np.cos(y)*np.cos(z) - np.cos(x)*np.sin(y)*np.sin(z) c = np.sin(x)*np.sin(y)*np.cos(z) - np.sin(x)*np.cos(y)*np.sin(z) - np.cos(x)*np.sin(y)*np.sin(z) + np.cos(x)*np.cos(y)*np.cos(z) elif surf == 'sphere': a = 2*x b = 2*y c = 2*z return np.array([a, b, c])
2105c491f122508531816d15146801b0dd1c9b75
3,646,231
def authenticated_client(client, user): """ """ client.post( '/login', data={'username': user.username, 'password': 'secret'}, follow_redirects=True, ) return client
5f96ef56179848f7d348ffda67fc08cfccb080ed
3,646,232
def viterbi(obs, states, start_p, trans_p, emit_p): """ 請參考李航書中的算法10.5(維特比算法) HMM共有五個參數,分別是觀察值集合(句子本身, obs), 狀態值集合(all_states, 即trans_p.keys()), 初始機率(start_p),狀態轉移機率矩陣(trans_p),發射機率矩陣(emit_p) 此處的states是為char_state_tab_P, 這是一個用來查詢漢字可能狀態的字典 此處沿用李航書中的符號,令T=len(obs),令N=len(trans_p.keys()) """ """ 維特比算法第1步:初始化 """ #V:李航書中的delta,在時刻t狀態為i的所有路徑中之機率最大值 V = [{}] # tabular #李航書中的Psi,T乘N維的矩陣 #表示在時刻t狀態為i的所有單個路徑(i_1, i_2, ..., i_t-1, i)中概率最大的路徑的第t-1個結點 mem_path = [{}] #共256種狀態,所謂"狀態"是:"分詞標籤(BMES)及詞性(v, n, nr, d, ...)的組合" all_states = trans_p.keys() #obs[0]表示句子的第一個字 #states.get(obs[0], all_states)表示該字可能是由哪些狀態發射出來的 for y in states.get(obs[0], all_states): # init #在時間點0,狀態y的log機率為: #一開始在y的log機率加上在狀態y發射obs[0]觀察值的log機率 V[0][y] = start_p[y] + emit_p[y].get(obs[0], MIN_FLOAT) #時間點0在狀態y,則前一個時間點會在哪個狀態 mem_path[0][y] = '' """ 維特比算法第2步:遞推 """ #obs: 觀察值序列 for t in xrange(1, len(obs)): V.append({}) mem_path.append({}) #prev_states = get_top_states(V[t-1]) #mem_path[t - 1].keys(): 前一個時間點在什麼狀態,這裡以x代表 #只有在len(trans_p[x])>0(即x有可能轉移到其它狀態)的情況下,prev_states才保留x prev_states = [ x for x in mem_path[t - 1].keys() if len(trans_p[x]) > 0] #前一個狀態是x(prev_states中的各狀態),那麼現在可能在什麼狀態(y) prev_states_expect_next = set( (y for x in prev_states for y in trans_p[x].keys())) #set(states.get(obs[t], all_states)):句子的第t個字可能在什麼狀態 #prev_states_expect_next:由前一個字推斷,當前的字可能在什麼狀態 #obs_states:以上兩者的交集 obs_states = set( states.get(obs[t], all_states)) & prev_states_expect_next #如果交集為空,則依次選取prev_states_expect_next或all_states if not obs_states: obs_states = prev_states_expect_next if prev_states_expect_next else all_states for y in obs_states: #李航書中的公式10.45 #y0表示前一個時間點的狀態 #max的參數是一個list of tuple: [(機率1,狀態1),(機率2,狀態2),...] #V[t - 1][y0]:時刻t-1在狀態y0的機率對數 #trans_p[y0].get(y, MIN_INF):由狀態y0轉移到y的機率對數 #emit_p[y].get(obs[t], MIN_FLOAT):在狀態y發射出觀測值obs[t]的機率對數 #三項之和表示在時刻t由狀態y0到達狀態y的路徑的機率對數 prob, state = max((V[t - 1][y0] + trans_p[y0].get(y, MIN_INF) + emit_p[y].get(obs[t], MIN_FLOAT), y0) for y0 in prev_states) #挑選機率最大者將之記錄於V及mem_path V[t][y] = prob #時刻t在狀態y,則時刻t-1最有可能在state這個狀態 mem_path[t][y] = state """ 維特比算法第3步:終止 """ #mem_path[-1].keys():最後一個時間點可能在哪些狀態 #V[-1][y]:最後一個時間點在狀態y的機率 #把mem_path[-1]及V[-1]打包成一個list of tuple last = [(V[-1][y], y) for y in mem_path[-1].keys()] # if len(last)==0: # print obs #最後一個時間點最有可能在狀態state,其機率為prob #在jieba/finalseg/__init__.py的viterbi函數中有限制句子末字的分詞標籤需為E或S #這裡怎麼沒做這個限制? prob, state = max(last) """ 維特比算法第4步:最優路徑回溯 """ route = [None] * len(obs) i = len(obs) - 1 while i >= 0: route[i] = state #時間點i在狀態state,則前一個時間點最有可能在狀態mem_path[i][state] state = mem_path[i][state] i -= 1 return (prob, route)
42f3037042114c0b4e56053ac6dfc6bd77423d39
3,646,233
def add_merge_variants_arguments(parser): """ Add arguments to a parser for sub-command "stitch" :param parser: argeparse object :return: """ parser.add_argument( "-vp", "--vcf_pepper", type=str, required=True, help="Path to VCF file from PEPPER SNP." ) parser.add_argument( "-vd", "--vcf_deepvariant", type=str, required=True, help="Path to VCF file from DeepVariant." ) parser.add_argument( "-o", "--output_dir", type=str, required=True, help="Path to output directory." ) return parser
5fd6bc936ba1d17ea86a49499e1f6b816fb0a389
3,646,234
import graph_scheduler import types def set_time_scale_alias(name: str, target: TimeScale): """Sets an alias named **name** of TimeScale **target** Args: name (str): name of the alias target (TimeScale): TimeScale that **name** will refer to """ name_aliased_time_scales = list(filter( lambda e: _time_scale_aliases[e] == name, _time_scale_aliases )) if len(name_aliased_time_scales) > 0: raise ValueError(f"'{name}' is already aliased to {name_aliased_time_scales[0]}") try: target = getattr(TimeScale, target) except TypeError: pass except AttributeError as e: raise ValueError(f'Invalid TimeScale {target}') from e _time_scale_aliases[target] = name setattr(TimeScale, name, target) def getter(self): return getattr(self, _time_scale_to_attr_str(target)) def setter(self, value): setattr(self, _time_scale_to_attr_str(target), value) prop = property(getter).setter(setter) setattr(Time, name.lower(), prop) setattr(SimpleTime, name.lower(), prop) # alias name in style of a class name new_class_segment_name = _time_scale_to_class_str(name) for cls_name, cls in graph_scheduler.__dict__.copy().items(): # make aliases of conditions that contain a TimeScale name (e.g. AtEnvironmentStateUpdate) target_class_segment_name = _time_scale_to_class_str(target) if isinstance(cls, (type, types.ModuleType)): if isinstance(cls, types.ModuleType): try: if _alias_docs_warning_str not in cls.__doc__: cls.__doc__ = f'{_alias_docs_warning_str}{cls.__doc__}' except TypeError: pass _multi_substitute_docstring( cls, { target.name: name, target_class_segment_name: new_class_segment_name, } ) if target_class_segment_name in cls_name: new_cls_name = cls_name.replace( target_class_segment_name, new_class_segment_name ) setattr(graph_scheduler.condition, new_cls_name, cls) setattr(graph_scheduler, new_cls_name, cls) graph_scheduler.condition.__all__.append(new_cls_name) graph_scheduler.__all__.append(new_cls_name)
889f2b70735a11ce8330e58b7294d3d115334d5f
3,646,235
def find_bounding_boxes(img): """ Find bounding boxes for blobs in the picture :param img - numpy array 1xWxH, values 0 to 1 :return: bounding boxes of blobs [x0, y0, x1, y1] """ img = util.torch_to_cv(img) img = np.round(img) img = img.astype(np.uint8) contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # params copied from tutorial bounding_boxes = [] for c in contours: x, y, w, h = cv2.boundingRect(c) bounding_boxes.append([x, y, x + w, y + h]) return bounding_boxes
7b7de4d163b18b099721c39b69721e477c473c16
3,646,236
from typing import Optional from datetime import datetime def resolve_day(day: str, next_week: Optional[bool] = False) -> int: """Resolves day to index value.""" week = ['monday', 'tuesday', 'wednesday', 'thursday', 'friday', 'saturday', 'sunday'] today = datetime.now() today_idx = date.weekday(today) day_idx = week.index(day) temp_list = list(islice(cycle(week), today_idx, 2 * today_idx + day_idx)) if next_week: return len(temp_list) - 1 else: return temp_list.index(day)
d09aba564f0293ac8b92699427199998bf7e869f
3,646,237
def write_image(image, path, bit_depth='float32', method='OpenImageIO', **kwargs): """ Writes given image at given path using given method. Parameters ---------- image : array_like Image data. path : unicode Image path. bit_depth : unicode, optional **{'float32', 'uint8', 'uint16', 'float16'}**, Bit depth to write the image at, for the *Imageio* method, the image data is converted with :func:`colour.io.convert_bit_depth` definition prior to writing the image. method : unicode, optional **{'OpenImageIO', 'Imageio'}**, Write method, i.e. the image library used for writing images. Other Parameters ---------------- attributes : array_like, optional {:func:`colour.io.write_image_OpenImageIO`}, An array of :class:`colour.io.ImageAttribute_Specification` class instances used to set attributes of the image. Returns ------- bool Definition success. Notes ----- - If the given method is *OpenImageIO* but the library is not available writing will be performed by *Imageio*. - If the given method is *Imageio*, ``kwargs`` is passed directly to the wrapped definition. Examples -------- Basic image writing: >>> import os >>> import colour >>> path = os.path.join(colour.__path__[0], 'io', 'tests', 'resources', ... 'CMS_Test_Pattern.exr') >>> image = read_image(path) # doctest: +SKIP >>> path = os.path.join(colour.__path__[0], 'io', 'tests', 'resources', ... 'CMSTestPattern.tif') >>> write_image(image, path) # doctest: +SKIP True Advanced image writing while setting attributes using *OpenImageIO*: >>> compression = ImageAttribute_Specification('Compression', 'none') >>> write_image(image, path, bit_depth='uint8', attributes=[compression]) ... # doctest: +SKIP True """ method = validate_method(method, WRITE_IMAGE_METHODS) if method == 'openimageio': # pragma: no cover if not is_openimageio_installed(): usage_warning( '"OpenImageIO" related API features are not available, ' 'switching to "Imageio"!') method = 'Imageio' function = WRITE_IMAGE_METHODS[method] if method == 'openimageio': # pragma: no cover kwargs = filter_kwargs(function, **kwargs) return function(image, path, bit_depth, **kwargs)
754bfa4ffbc14fd7f8123c2cab754d0f3814ed05
3,646,238
import logging def get_gsheet_data(): """ Get's all of the data in the specified Google Sheet. """ # Get Credentials from JSON logging.info('Attempting to read values to Google Sheet.') creds = ServiceAccountCredentials.from_json_keyfile_name('TrackCompounds-1306f02bc0b1.json', SCOPES) logging.info('Authorizing Google API credentials.') service = build('sheets', 'v4', credentials=creds) # Call the Sheets API sheet = service.spreadsheets() result = sheet.values().get(spreadsheetId=SPREADSHEET_ID, range=READ_RANGE).execute() data = result.get('values') # Turn data into a DataFrame df = pd.DataFrame(data[1:], columns=data[0]) logging.info('Successfully read G-Sheet data into a DataFrame.') return df
872671a1bc9b17fec5e6db3fb4a7172567da4eff
3,646,239
def name_tensor(keras_tensor, name): """ Add a layer with this ``name`` that does nothing. Usefull to mark a tensor. """ return Activation('linear', name=name)(keras_tensor)
9ac83e8974efa2e48ab14d150a5da47ac7c23fb5
3,646,240
import operator def pluck(ind, seqs, default=no_default): """ plucks an element or several elements from each item in a sequence. ``pluck`` maps ``itertoolz.get`` over a sequence and returns one or more elements of each item in the sequence. This is equivalent to running `map(curried.get(ind), seqs)` ``ind`` can be either a single string/index or a sequence of strings/indices. ``seqs`` should be sequence containing sequences or dicts. e.g. >>> data = [{'id': 1, 'name': 'Cheese'}, {'id': 2, 'name': 'Pies'}] >>> list(pluck('name', data)) ['Cheese', 'Pies'] >>> list(pluck([0, 1], [[1, 2, 3], [4, 5, 7]])) [(1, 2), (4, 5)] See Also: get map """ if default is no_default: if isinstance(ind, list): return map(operator.itemgetter(*ind), seqs) return map(operator.itemgetter(ind), seqs) elif isinstance(ind, list): return (tuple(_get(item, seq, default) for item in ind) for seq in seqs) return (_get(ind, seq, default) for seq in seqs)
9bb31f94115eec0ba231c3c2bf9c067a52efca52
3,646,241
def shape_metrics(model): """"" Calculates three different shape metrics of the current graph of the model. Shape metrics: 1. Density 2. Variance of nodal degree 3. Centrality The calculations are mainly based on the degree statistics of the current graph For more information one is referred to the article 'Geographical influences of an emerging network of gang rivalries' (Rachel A. Hegemann et al., 2011) Input: model = Model object Output: Tuple containing the three shape metrics in the order described above. """ # Determine total degree, average degree, max degree and density graph degrees = [degree[1] for degree in model.gr.degree] total_degree = sum(degrees) ave_degree = total_degree / model.config.total_gangs max_degree = max(degrees) graph_density = nx.density(model.gr) # Determine variance of nodal degree and centrality variance_degree, centrality = 0, 0 for degree in degrees: variance_degree += ((degree - ave_degree) * (degree - ave_degree)) centrality += max_degree - degree # Normailize variance of nodal degree and centrality variance_degree /= model.config.total_gangs centrality /= ((model.config.total_gangs - 1) * (model.config.total_gangs - 2)) # Returns a tuple containging the three statistics return graph_density, variance_degree, centrality
003e72145ade222a7ec995eae77f6028527e8ba9
3,646,242
def calculate_actual_sensitivity_to_removal(jac, weights, moments_cov, params_cov): """calculate the actual sensitivity to removal. The sensitivity measure is calculated for each parameter wrt each moment. It answers the following question: How much precision would be lost if the kth moment was excluded from the estimation if "weights" is used as weighting matrix? Args: sensitivity_to_bias (np.ndarray or pandas.DataFrame): See ``calculate_sensitivity_to_bias`` for details. weights (np.ndarray or pandas.DataFrame): The weighting matrix used for msm estimation. moments_cov (numpy.ndarray or pandas.DataFrame): The covariance matrix of the empirical moments. params_cov (numpy.ndarray or pandas.DataFrame): The covariance matrix of the parameter estimates. Returns: np.ndarray or pd.DataFrame: Sensitivity measure with shape (n_params, n_moments) """ m4 = [] _jac, _weights, _moments_cov, _params_cov, names = process_pandas_arguments( jac=jac, weights=weights, moments_cov=moments_cov, params_cov=params_cov ) for k in range(len(_weights)): weight_tilde_k = np.copy(_weights) weight_tilde_k[k, :] = 0 weight_tilde_k[:, k] = 0 sigma_tilde_k = cov_robust(_jac, weight_tilde_k, _moments_cov) m4k = sigma_tilde_k - _params_cov m4k = m4k.diagonal() m4.append(m4k) m4 = np.array(m4).T params_variances = np.diagonal(_params_cov) e4 = m4 / params_variances.reshape(-1, 1) if names: e4 = pd.DataFrame(e4, index=names.get("params"), columns=names.get("moments")) return e4
30f51ecc2c53126b6e46f5301bef857d104381cf
3,646,243
def escape_html(text: str) -> str: """Replaces all angle brackets with HTML entities.""" return text.replace('<', '&lt;').replace('>', '&gt;')
f853bcb3a69b8c87eb3d4bcea5bbca66376c7db4
3,646,244
import random def pptest(n): """ Simple implementation of Miller-Rabin test for determining probable primehood. """ bases = [random.randrange(2,50000) for _ in range(90)] # if any of the primes is a factor, we're done if n<=1: return 0 for b in bases: if n%b==0: return 0 tests,s = 0,0 m = n-1 # turning (n-1) into (2**s) * m while not m&1: # while m is even m >>= 1 s += 1 for b in bases: tests += 1 isprob = algP(m,s,b,n) if not isprob: break if isprob: return (1-(1./(4**tests))) else: return 0
3a74cfebb6b14659a34ab0b6c761efd16d2736fa
3,646,245
def schedule_conv2d_NCHWc(outs): """Schedule for conv2d_NCHW[x]c Parameters ---------- outs : Array of Tensor The computation graph description of conv2d_NCHWc in the format of an array of tensors. The number of filter, i.e., the output channel. Returns ------- sch : Schedule The computation schedule for the op. """ return _default_schedule(outs, False)
a24cb4f6e1dd3d8891bc82df75f53c8afe709727
3,646,246
def calc_E_E_hs_d_t(W_dash_k_d_t, W_dash_s_d_t, W_dash_w_d_t, W_dash_b1_d_t, W_dash_ba1_d_t, W_dash_b2_d_t, theta_ex_d_Ave_d, L_dashdash_ba2_d_t): """1時間当たりの給湯機の消費電力量 (1) Args: W_dash_k_d_t(ndarray): 1時間当たりの台所水栓における節湯補正給湯量 (L/h) W_dash_s_d_t(ndarray): 1時間当たりの浴室シャワー水栓における節湯補正給湯量 (L/h) W_dash_w_d_t(ndarray): 1時間当たりの洗面水栓における節湯補正給湯量 (L/h) W_dash_b1_d_t(ndarray): 1時間当たりの浴槽水栓湯はり時における節湯補正給湯量 (L/h) W_dash_ba1_d_t(ndarray): 1時間当たりの浴槽水栓さし湯時における節湯補正給湯量 (L/h) W_dash_b2_d_t(ndarray): 1時間当たりの浴槽追焚時における節湯補正給湯量 (L/h) theta_ex_d_Ave_d: 日平均外気温度 (℃) L_dashdash_ba2_d_t(ndarray): 1時間当たりの浴槽追焚時における太陽熱補正給湯熱負荷 (MJ/h) Returns: ndarray: 1時間当たりの給湯機の消費電力量 (kWh/h) """ # 待機時及び水栓給湯時の補機による消費電力量 (2) E_E_hs_aux1_d_t = get_E_E_hs_aux1_d_t(W_dash_k_d_t, W_dash_s_d_t, W_dash_w_d_t, W_dash_b1_d_t, W_dash_ba1_d_t, theta_ex_d_Ave_d) # 湯はり時の補機による消費電力量 (3) E_E_hs_aux2_d_t = calc_E_E_hs_aux2_d_t(W_dash_b2_d_t) # 保温時の補機による消費電力量 (4) E_E_hs_aux3_d_t = calc_E_E_hs_aux3_d_t(L_dashdash_ba2_d_t) # 1日当たりの給湯機の消費電力量 (1) E_E_hs_d_t = E_E_hs_aux1_d_t + E_E_hs_aux2_d_t + E_E_hs_aux3_d_t return E_E_hs_d_t
00cf40b221d2a24081d9c362fb5e8474057ddb93
3,646,247
import functools def keras_quantile_loss(q): """Return keras loss for quantile `q`.""" func = functools.partial(_tilted_loss_scalar, q) func.__name__ = f'qunatile loss, q={q}' return func
173a9410c2994bd02e5845a85cc2050489ce2d12
3,646,248
from typing import Dict import os import json def _load_template_file() -> Dict: """ Read and validate the registration definition template file, located in the same directory as this source file Returns ------- Dict Contents of the registration definition template file JSON, converted to a Python dictionary """ src_path: str = f"{SCRIPT_PATH}/{TEMPLATE_FILENAME}" if not os.path.exists(src_path): print("Error: Cannot find registration definition template file") with open(src_path) as registration_definition_template_file: try: data = registration_definition_template_file.read() except: print("Error: Cannot read registration definition template file") return None # Reconstruct the dict object readin = json.loads(data) if type(readin) != dict: print("Error: Corrupted registration definition template file") return None return readin
db3d3d8af9d78e8949dfb7428e45cf926346b7d0
3,646,249
from typing import Mapping from typing import Union def _reactions_table(reaction: reaction_pb2.Reaction, dataset_id: str) -> Mapping[str, Union[str, bytes, None]]: """Adds a Reaction to the 'reactions' table. Args: reaction: Reaction proto. dataset_id: Dataset ID. Returns: Dict mapping string column names to values. """ values = { "dataset_id": dataset_id, "reaction_id": reaction.reaction_id, "serialized": reaction.SerializeToString().hex(), } try: reaction_smiles = message_helpers.get_reaction_smiles(reaction, generate_if_missing=True) # Control for REACTION_CXSMILES. values["reaction_smiles"] = reaction_smiles.split()[0] except ValueError: values["reaction_smiles"] = None if reaction.provenance.doi: values["doi"] = reaction.provenance.doi else: values["doi"] = None return values
b09df06a13d1f1d42ab22da1c6bcc00c48c2e81d
3,646,250
from typing import List from typing import Dict from typing import Any import time import json def get_incidents_for_alert(**kwargs) -> list: """ Return List of incidents for alert. :param kwargs: Contains all required arguments. :return: Incident List for alert. """ incidents: List[Dict[str, Any]] = [] headers = { 'X-FeApi-Token': kwargs['client'].get_api_token(), 'Accept': CONTENT_TYPE_JSON } params = { 'start_time': time.strftime(API_SUPPORT_DATE_FORMAT, time.localtime(kwargs['start_time'])), 'duration': '48_hours' } if kwargs['malware_type']: params['malware_type'] = kwargs['malware_type'] # http call resp = kwargs['client'].http_request(method="GET", url_suffix=URL_SUFFIX['GET_ALERTS'], params=params, headers=headers) total_records = resp.get('alertsCount', 0) if total_records > 0: if kwargs['replace_alert_url']: replace_alert_url_key_domain_to_instance_url(resp.get('alert', []), kwargs['instance_url']) count = kwargs['fetch_count'] for alert in resp.get('alert', []): # set incident context_alert = remove_empty_entities(alert) context_alert['incidentType'] = ALERT_INCIDENT_TYPE if count >= kwargs['fetch_limit']: break occurred_date = dateparser.parse(context_alert.get('occurred', '')) assert occurred_date is not None incident = { 'name': context_alert.get('name', ''), 'occurred': occurred_date.strftime( DATE_FORMAT_WITH_MICROSECOND), 'rawJSON': json.dumps(context_alert) } if not kwargs['is_test'] and alert.get('uuid', '') and kwargs['fetch_artifacts']: set_attachment_file(client=kwargs['client'], incident=incident, uuid=alert.get('uuid', ''), headers=headers) remove_nulls_from_dictionary(incident) incidents.append(incident) count += 1 return incidents
48d2519d5e5aa25d6b0fc6a6e2c959489e861e1c
3,646,251
def pbar(*args, **kwargs): """ Progress bar. This function is an alias of :func:`dh.thirdparty.tqdm.tqdm()`. """ return dh.thirdparty.tqdm.tqdm(*args, **kwargs)
3de7101becc015e402aa067c676104f34679e549
3,646,252
import torch def calc_driver_mask(n_nodes, driver_nodes: set, device='cpu', dtype=torch.float): """ Calculates a binary vector mask over graph nodes with unit value on the drive indeces. :param n_nodes: numeber of driver nodes in graph :param driver_nodes: driver node indeces. :param device: the device of the `torch.Tensor` :param dtype: the data type of the `torch.Tensor` :return: the driver mask vector. """ driver_mask = torch.zeros(n_nodes, device=device, dtype=dtype) driver_mask[list(driver_nodes)] = 1 return driver_mask
2d2a08a86629ece190062f68dd25fc450d0fd84e
3,646,253
from typing import List def all_fermions(fields: List[Field]) -> bool: """Checks if all fields are fermions.""" boolean = True for f in fields: boolean = boolean and f.is_fermion return boolean
eb54d5ad5b3667e67634b06d2943e2d14c8a0c61
3,646,254
def open_file(name): """ Return an open file object. """ return open(name, 'r')
8921ee51e31ac6c64d9d9094cedf57502a2aa436
3,646,255
import math def _bit_length(n): """Return the number of bits necessary to store the number in binary.""" try: return n.bit_length() except AttributeError: # pragma: no cover (Python 2.6 only) return int(math.log(n, 2)) + 1
bea6cb359c7b5454bdbb1a6c29396689035592d7
3,646,256
def read_dwd_percentile_old(filename): """ Read data from .txt file into Iris cube :param str filename: file to process :returns: cube """ # use header to hard code the final array shapes longitudes = np.arange(-179.5, 180.5, 1.) latitudes = np.arange(89.5, -90.5, -1.) data = np.ma.zeros((latitudes.shape[0], longitudes.shape[0])) # read in the dat indata = np.genfromtxt(filename, dtype=(float)) this_lat = [] tl = 0 # process each row, append until have complete latitude band for row in indata: this_lat += [row] if len(this_lat) == longitudes.shape[0]: # copy into final array and reset data[tl, :] = this_lat tl += 1 this_lat = [] # mask the missing values data = np.ma.masked_where(data <= -999.000, data) cube = utils.make_iris_cube_2d(data, latitudes, longitudes, "R90p", "%") return cube
4d8366606c4e00eb43aa2c6a50a735617c7ca242
3,646,257
import base64 def media_post(): """API call to store new media on the BiBli""" data = request.get_json() fname = "%s/%s" % (MUSIC_DIR, data["name"]) with open(fname, "wb") as file: file.write(base64.decodestring(data["b64"])) audiofile = MP3(fname) track = {"file": data["name"], "title": "", "artist": "?"} tags = audiofile.tags if tags: track["artist"] = tags["artist"][0] if "artist" in tags else "?" track["title"] = tags["title"][0] if "title" in tags else None if audiofile.info: seconds = int(audiofile.info.length) minutes = seconds / 60 seconds = seconds % 60 track["duration"] = "%s:%02d" % (minutes, seconds) # make sure there's a title if not track["title"]: track["title"] = fname.replace(".mp3", "") return jsonify({"music": track})
ff2aa7df2cdc6ea9bf3d657c7bb675e824639107
3,646,258
from pathlib import Path def obtain_stores_path(options, ensure_existence=True) -> Path: """ Gets the store path if present in options or asks the user to input it if not present between parsed_args. :param options: the parsed arguments :param ensure_existence: whether abort if the path does not exist :return: the store path """ path = Path(get_option_or_default(options, Options.STORE_PATH, DEFAULT_SECRETS_PATH)) if ensure_existence and not path.exists(): abort(f"Error: path does not exist ({path})") return path
8bb3ff96cdc57f85058ad7cd3c96552462b8de9f
3,646,259
import os import fnmatch import pickle def extract_res_from_files(exp_dir_base): """Takes a directory (or directories) and searches recursively for subdirs that have a test train and settings file (meaning a complete experiment was conducted). Returns: A list of dictionaries where each element in the list is an experiment and the dictionary has the following form: data_dict = {"train_df": df1, "test_df":df2, "settings":settings, "path": path} """ if isinstance(exp_dir_base, str): exp_dirs = [exp_dir_base] elif isinstance(exp_dir_base, list): exp_dirs = exp_dir_base else: raise ValueError("exp_dir_base must be a string or a list") TEST = "test.csv" TRAIN = "train.csv" SETTINGS = "settings.txt" results = [] for exp_dir_base in exp_dirs: for path, subdirs, files in os.walk(exp_dir_base): test, train, settings = None, None, None for name in files: if fnmatch(name, TEST): test = os.path.join(path, name) elif fnmatch(name, TRAIN): train = os.path.join(path, name) elif fnmatch(name, SETTINGS): settings = os.path.join(path, name) if settings and not test and not train: test, train = [], [] for name in files: if fnmatch(name, "*test.csv"): test.append(os.path.join(path, name)) elif fnmatch(name, "*train.csv"): train.append(os.path.join(path, name)) if test and train and settings: if isinstance(test, list): dftest = [] for fp in test: dftest.append(pd.read_csv(fp)) dftrain = [] for fp in train: dftrain.append(pd.read_csv(fp)) else: dftest = pd.read_csv(test) dftrain = pd.read_csv(train) with open(settings, "rb") as f: settings = pickle.load(f) model_data = get_model_specific_data(settings, path) DA_data, mean_DF, last_df = get_DA_info(path, "mse_DA") data_dict = {"train_df": dftrain, "test_df":dftest, "test_DA_df_final": last_df, "DA_mean_DF": mean_DF, "settings":settings, "path": path, "model_data": model_data,} results.append(data_dict) print("{} experiments conducted".format(len(results))) sort_res = sorted(results, key = lambda x: x['path']) return sort_res
167124abb8d4ab22abe4237cc6ccbf691b6eab90
3,646,260
def compute_roc(distrib_noise, distrib_signal): """compute ROC given the two distribributions assuming the distributions are the output of np.histogram example: dist_l, _ = np.histogram(acts_l, bins=n_bins, range=histrange) dist_r, _ = np.histogram(acts_r, bins=n_bins, range=histrange) tprs, fprs = compute_roc(dist_l, dist_r) Parameters ---------- distrib_noise : 1d array the noise distribution distrib_signal : 1d array the noise+signal distribution Returns ------- 1d array, 1d array the roc curve: true positive rate, and false positive rate """ # assert len(distrib_noise) == len(distrib_signal) # assert np.sum(distrib_noise) == np.sum(distrib_signal) n_pts = len(distrib_noise) tpr, fpr = np.zeros(n_pts), np.zeros(n_pts) # slide the decision boundary from left to right for b in range(n_pts): fn, tp = np.sum(distrib_signal[:b]), np.sum(distrib_signal[b:]) tn, fp = np.sum(distrib_noise[:b]), np.sum(distrib_noise[b:]) # calculate TP rate and FP rate tpr[b] = tp / (tp + fn) fpr[b] = fp / (tn + fp) return tpr, fpr
d9a970435fd7b0dc79cfb4eca24a6e6779ce9300
3,646,261
def zoom(clip, screensize, show_full_height=False): """Zooms preferably image clip for clip duration a little To make slideshow more movable Parameters --------- clip ImageClip on which to work with duration screensize Wanted (width, height) tuple show_full_height Should this image be shown in full height. This is usefull when 4:3 images are shown in 16:9 video and need to be shown in full. Otherwise they are shown in full width and top and bottom is cut off. Returns ------ VideoClip in desired size """ #We need to resize high imageč differently if clip.h > clip.w or show_full_height: clip_resized = (clip.fx(resize, width=screensize[0]*2) .fx(resize, lambda t : 1+0.02*t) .set_position(('center', 'center')) ) clip_composited = CompositeVideoClip([clip_resized]) \ .fx(resize, height=screensize[1]) else: clip_resized = (clip.fx(resize, height=screensize[1]*2) .fx(resize, lambda t : 1+0.02*t) .set_position(('center', 'center')) ) clip_composited = CompositeVideoClip([clip_resized]) \ .fx(resize, width=screensize[0]) vid = CompositeVideoClip([clip_composited.set_position(('center', 'center'))], size=screensize) return vid
668ef2b598432fc18510a5a69b73e400eec42b17
3,646,262
import typing def create( host_address: str, topics: typing.Sequence[str]) -> Subscriber: """ Create a subscriber. :param host_address: The server notify_server address :param topics: The topics to subscribe to. :return: A Subscriber instance. """ return Subscriber(create_subscriber(host_address, topics))
40221a3be496528115afdc2eda063a006e08aadd
3,646,263
def solution(n): """ Return the product of a,b,c which are Pythagorean Triplet that satisfies the following: 1. a < b < c 2. a**2 + b**2 = c**2 3. a + b + c = 1000 >>> solution(1000) 31875000 """ product = -1 d = 0 for a in range(1, n // 3): """Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c """ b = (n * n - 2 * a * n) // (2 * n - 2 * a) c = n - a - b if c * c == (a * a + b * b): d = a * b * c if d >= product: product = d return product
a0bf0f0bde50f536f6c91f2b52571be38e494cea
3,646,264
import sys def python2_binary(): """Tries to find a python 2 executable.""" # Using [0] instead of .major here to support Python 2.6. if sys.version_info[0] == 2: return sys.executable or "python" else: return "python2"
054870972e68aa5b9e8609d93b8a82ad5e95d634
3,646,265
def with_metaclass(meta, *bases): """A Python 2/3 compatible way of declaring a metaclass. Taken from `Jinja 2 <https://github.com/mitsuhiko/jinja2/blob/master/jinja2 /_compat.py>`_ via `python-future <http://python-future.org>`_. License: BSD. Use it like this:: class MyClass(with_metaclass(MyMetaClass, BaseClass)): pass """ class _Metaclass(meta): """Inner class""" __call__ = type.__call__ __init__ = type.__init__ def __new__(cls, name, this_bases, attrs): if this_bases is None: return type.__new__(cls, name, (), attrs) return meta(name, bases, attrs) return _Metaclass(str('temporary_class'), None, {})
0fe8e95fe29821e4cda8b66ff54ddd1b73e51243
3,646,266
def energy(particles): """total kinetic energy up to a constant multiplier""" return np.sum([particle.size ** 2 * np.linalg.norm(particle.speed) ** 2 for particle in particles])
29cae5c46d053f6fa558ba7a839d8b647c86d236
3,646,267
def post_adaptation_non_linear_response_compression_matrix(P_2, a, b): """ Returns the post adaptation non linear response compression matrix. Parameters ---------- P_2 : numeric or array_like Point :math:`P_2`. a : numeric or array_like Opponent colour dimension :math:`a`. b : numeric or array_like Opponent colour dimension :math:`b`. Returns ------- ndarray Points :math:`P`. Examples -------- >>> P_2 = 24.2372054671 >>> a = -0.000624112068243 >>> b = -0.000506270106773 >>> post_adaptation_non_linear_response_compression_matrix(P_2, a, b) ... # doctest: +ELLIPSIS array([ 7.9463202..., 7.9471152..., 7.9489959...]) """ P_2 = as_float_array(P_2) a = as_float_array(a) b = as_float_array(b) R_a = (460 * P_2 + 451 * a + 288 * b) / 1403 G_a = (460 * P_2 - 891 * a - 261 * b) / 1403 B_a = (460 * P_2 - 220 * a - 6300 * b) / 1403 RGB_a = tstack([R_a, G_a, B_a]) return RGB_a
6b7f8bcc62142e99c63c0e7a9b073e25f3c36e8c
3,646,268
def forward(network, x): """ 入力信号を出力に変換する関数 Args: network: ネットワークのDict x: Inputの配列 Returns: 出力信号 """ w1, w2, w3 = network['W1'], network['W2'], network['W3'] b1, b2, b3 = network['B1'], network['B2'], network['B3'] # 1層目 a1 = np.dot(x, w1) + b1 z1 = sigmoid(a1) # 2層目 a2 = np.dot(z1, w2) + b2 z2 = sigmoid(a2) # 3層目 a3 = np.dot(z2, w3) + b3 y = identity(a3) return y
93c79a049e4c45f31a502aa81f840e48ff41d229
3,646,269
from typing import List def join_with_and(words: List[str]) -> str: """Joins list of strings with "and" between the last two.""" if len(words) > 2: return ", ".join(words[:-1]) + ", and " + words[-1] elif len(words) == 2: return " and ".join(words) elif len(words) == 1: return words[0] else: return ""
ecb2c1fa060657f2ea4173c4382a81c9b42beeb9
3,646,270
from nipype.interfaces.base import Bunch def condition_generator(single_sub_data, params_name, duration = 2): """Build a bunch to show the relationship between each onset and parameter Build a bunch for make a design matrix for next analysis. This bunch is for describing the relationship between each onset and parameter. Args: single_sub_data: A pandas DataFrame which contains data for one subject. It must contains the information about run, onsets, and parameters. params_name: A list of names of parameters which you want to analysis. The order of the names will be inherited to the design matrix next. duration: The duration of a TR. Returns: subject_info: A list of bunch type which can be resolve by SpecifySPMModel interface in nipype. """ run_num = set(single_sub_data.run) subject_info = [] for i in run_num: tmp_table = single_sub_data[single_sub_data.run == i] tmp_onset = tmp_table.onset.values.tolist() pmod_names = [] pmod_params = [] pmod_poly = [] for param in params_name: pmod_params.append(tmp_table[param].values.tolist()) pmod_names.append(param) pmod_poly.append(1) tmp_Bunch = Bunch(conditions=["trial_onset_run"+str(i)], onsets=[tmp_onset], durations=[[duration]], pmod=[Bunch(name = pmod_names, poly = pmod_poly, param = pmod_params)]) subject_info.append(tmp_Bunch) return subject_info
6a4743043a49b6a1703c3b42840256a58e07f3bd
3,646,271
from typing import Dict from typing import Iterable from pathlib import Path def create_pkg( meta: Dict, fpaths: Iterable[_res_t], basepath: _path_t = "", infer=True ): """Create a datapackage from metadata and resources. If ``resources`` point to files that exist, their schema are inferred and added to the package. If ``basepath`` is a non empty string, it is treated as the parent directory, and all resource file paths are checked relative to it. Parameters ---------- meta : Dict A dictionary with package metadata. fpaths : Iterable[Union[str, Path, Dict]] An iterator over different resources. Resources are paths to files, relative to ``basepath``. basepath : str (default: empty string) Directory where the package files are located infer : bool (default: True) Whether to infer resource schema Returns ------- Package A datapackage with inferred schema for all the package resources """ # for an interesting discussion on type hints with unions, see: # https://stackoverflow.com/q/60235477/289784 # TODO: filter out and handle non-tabular (custom) data existing = glom(meta.get("resources", []), Iter("path").map(Path).all()) basepath = basepath if basepath else getattr(meta, "basepath", basepath) pkg = Package(resolve_licenses(meta), basepath=str(basepath)) def keep(res: _path_t) -> bool: if Path(res) in existing: return False full_path = Path(basepath) / res if not full_path.exists(): logger.warning(f"{full_path}: skipped, doesn't exist") return False return True for res in fpaths: spec = res if isinstance(res, dict) else {"path": res} if not keep(spec["path"]): continue # NOTE: noop when Resource _res = resource_(spec, basepath=basepath, infer=infer) pkg.add_resource(_res) return _ensure_posix(pkg)
a668e4f1eacbf14d39165f9dbd4af1b283078ef1
3,646,272
from typing import Callable from typing import Any def one_hot( encoding_size: int, mapping_fn: Callable[[Any], int] = None, dtype="bool" ) -> DatasetTransformFn: """Transform data into a one-hot encoded label. Arguments: encoding_size {int} -- The size of the encoding mapping_fn {Callable[[Any], int]} -- A function transforming the input data to an integer label. If not specified, labels are automatically inferred from the data. Returns: DatasetTransformFn -- A function to be passed to the Dataset.transform() """ mem, maxcount = {}, -1 def auto_label(x: Any) -> int: nonlocal mem, maxcount, encoding_size h = hash(str(x)) if not h in mem.keys(): maxcount += 1 if maxcount >= encoding_size: raise ValueError( "More unique labels found than were specified by the encoding size ({} given)".format( encoding_size ) ) mem[h] = maxcount return mem[h] label_fn = mapping_fn or auto_label def encode(x): nonlocal encoding_size, dtype, label_fn o = np.zeros(encoding_size, dtype=dtype) o[label_fn(x)] = True return o return _dataset_element_transforming(fn=encode)
48758666885969c10b5e6ef46f2d392cd06800a2
3,646,273
def is_url_relative(url): """ True if a URL is relative, False otherwise. """ return url[0] == "/" and url[1] != "/"
91e1cb756a4554973e53fd1f607515577bc63294
3,646,274
def distance_matrix(lats, lons): """Compute distance matrix using great-circle distance formula https://en.wikipedia.org/wiki/Great-circle_distance#Formulae Parameters ---------- lats : array Latitudes lons : array Longitudes Returns ------- dists : matrix Entry `(i, j)` shows the great-circle distance between point `i` and `j`, i.e. distance between `(lats[i], lons[i])` and `(lats[j], lons[j])`. """ R = 6372795.477598 lats = np.array(lats) lons = np.array(lons) assert len(lats) == len(lons), "lats and lons should be of the same size" assert not any(np.isnan(lats)), "nan in lats" assert not any(np.isnan(lons)), "nan in lons" # convert degree to radian lats = lats * np.pi / 180.0 lons = lons * np.pi / 180.0 sins = np.sin(lats) sin_matrix = sins.reshape(-1, 1) @ sins.reshape(1, -1) coss = np.cos(lats) cos_matrix = coss.reshape(-1, 1) @ coss.reshape(1, -1) lons_matrix = lons * np.ones((len(lons), len(lons))) lons_diff = lons_matrix - lons_matrix.T lons_diff = np.cos(lons_diff) # TODO: make this function more efficient dists = R * np.arccos(sin_matrix + cos_matrix * lons_diff) dists[np.isnan(dists)] = 0 return dists
a322306d13f2e15b60a61eb1fcff95c71f005d07
3,646,275
def _split_link_ends(link_ends): """ Examples -------- >>> from landlab.grid.unstructured.links import _split_link_ends >>> _split_link_ends(((0, 1, 2), (3, 4, 5))) (array([0, 1, 2]), array([3, 4, 5])) >>> _split_link_ends([(0, 3), (1, 4), (2, 5)]) (array([0, 1, 2]), array([3, 4, 5])) >>> _split_link_ends((0, 3)) (array([0]), array([3])) """ links = np.array(list(link_ends), ndmin=2, dtype=np.int) if len(links) != 2: links = links.transpose() if links.size == 0: return (np.array([], dtype=np.int), np.array([], dtype=np.int)) else: return links[0], links[1]
3aee58b5e4e928d45a33026c0b9e554c859d0d6f
3,646,276
from heapq import heappop, heappush def dijkstra(vertex_count: int, source: int, edges): """Uses Dijkstra's algorithm to find the shortest path in a graph. Args: vertex_count: The number of vertices. source : Vertex number (0-indexed). edges : List of (cost, edge) (0-indexed). Returns: costs : List of the shortest distance. parents: List of parent vertices. Landau notation: O(|Edges|log|Vertices|). See: https://atcoder.jp/contests/abc191/submissions/19964078 https://atcoder.jp/contests/abc191/submissions/19966232 """ hq = [(0, source)] # weight, vertex number (0-indexed) costs = [float("inf") for _ in range(vertex_count)] costs[source] = 0 pending = -1 parents = [pending for _ in range(vertex_count)] while hq: cost, vertex = heappop(hq) if cost > costs[vertex]: continue for weight, edge in edges[vertex]: new_cost = cost + weight if new_cost < costs[edge]: costs[edge] = new_cost parents[edge] = vertex heappush(hq, (new_cost, edge)) return costs, parents
d33f8dc28bf07154ffd7582a5bdd7161e195f331
3,646,277
import os import secrets def save_picture(form_picture): """ function for saving the path to the profile picture """ app = create_app(config_name=os.getenv('APP_SETTINGS')) # random hex to be usedin storing the file name to avoid clashes random_hex = secrets.token_hex(8) # split method for splitting the filename from the file extension _, pic_ext = os.path.split(form_picture.filename) # pic_fn = picture filename which is a concatanation of the filename(hex name) and file extension pic_fn = random_hex + pic_ext # path to picture from the root to the profile_pics folder pic_path = os.path.join(app.root_path, 'static/profile_pics', pic_fn) output_size = (512, 512) img = Image.open(form_picture) img.thumbnail(output_size) img.save(pic_path) # save the picture path to the file system return pic_fn
5c725a06508d4d4316b85305ae37f30d80a90d28
3,646,278
def plot_labels(labels, lattice=None, coords_are_cartesian=False, ax=None, **kwargs): """ Adds labels to a matplotlib Axes Args: labels: dict containing the label as a key and the coordinates as value. lattice: Lattice object used to convert from reciprocal to Cartesian coordinates coords_are_cartesian: Set to True if you are providing. coordinates in Cartesian coordinates. Defaults to False. Requires lattice if False. ax: matplotlib :class:`Axes` or None if a new figure should be created. kwargs: kwargs passed to the matplotlib function 'text'. Color defaults to blue and size to 25. Returns: matplotlib figure and matplotlib ax """ ax, fig, plt = get_ax3d_fig_plt(ax) if "color" not in kwargs: kwargs["color"] = "b" if "size" not in kwargs: kwargs["size"] = 25 for k, coords in labels.items(): label = k if k.startswith("\\") or k.find("_") != -1: label = "$" + k + "$" off = 0.01 if coords_are_cartesian: coords = np.array(coords) else: if lattice is None: raise ValueError("coords_are_cartesian False requires the lattice") coords = lattice.get_cartesian_coords(coords) ax.text(*(coords + off), s=label, **kwargs) return fig, ax
b0172061e043fcaef38d2503be67333862da3acf
3,646,279
def contains(poly0, poly1): """ Does poly0 contain poly1? As an initial implementation, returns True if any vertex of poly1 is within poly0. """ # check for bounding box overlap bb0 = (min(p[0] for p in poly0), min(p[1] for p in poly0), max(p[0] for p in poly0), max(p[1] for p in poly0)) bb1 = (min(p[0] for p in poly1), min(p[1] for p in poly1), max(p[0] for p in poly1), max(p[1] for p in poly1)) if ((bb0[0] > bb1[2]) or (bb0[2] < bb1[0]) or (bb0[1] > bb1[3]) or (bb0[3] < bb1[1])): return False # check each vertex def _isleft(p, p0, p1): return ((p1[0]-p0[0])*(p[1]-p0[1]) - (p[0]-p0[0])*(p1[1]-p0[1])) > 0 for p in poly1: wn = 0 for i in range(len(poly0)-1): p0 = poly0[i] p1 = poly0[i+1] if p0[1] <= p[1] < p1[1]: # upward crossing if _isleft(p, p0, p1): wn += 1 elif p0[1] >= p[1] > p1[1]: if not _isleft(p, p0, p1): wn -= 1 if wn != 0: return True return False
26ea4bd17a55ed05afa049a9aaab5237f0965674
3,646,280
import os import json def get_ids_in_annotations(scene, frame, quality): """ Returns a set of all ids found in annotations. """ annotations_path = os.path.join(scene, '%sPose3d_stage1' % quality, 'body3DScene_%s.json' % frame) if not os.path.exists(annotations_path): return set() with open(annotations_path, 'r') as f: annots = json.load(f) return set([b['id'] for b in annots['bodies']])
9e754af7ec397e9a36151b7f49f69d2de6ca0128
3,646,281
def new_halberd(game_state): """ A composite component representing a Sword item. """ c = Composite() set_item_components(c, game_state) set_melee_weapon_component(c) c.set_child(Description("Halberd", "A long stick with a with an axe-head at one end." "It's a useful weapon when you want to keep danger at bay.")) c.set_child(GraphicChar(None, colors.GRAY, icon.HALBERD)) c.set_child(DataPoint(DataTypes.WEIGHT, 8)) c.set_child(accuracy_item_stat(10)) c.set_child(damage_item_stat(1, 5)) c.set_child(CritChanceBonusEffect(0.1)) c.set_child(crit_multiplier_item_stat(2)) c.set_child(DefenciveAttackEffect(0.75)) c.set_child(OffenciveAttackEffect(0.20)) return c
1e6ccdce08a5e4e26c6dc8d09db38ef4b6d7b2f0
3,646,282
from typing import List def get_regional_services(service_list: List[AWSService] = None) -> List[AWSService]: """List all services which are tied to specific regions.""" services = service_list or get_services() return [s for s in services if s.is_regional]
d856acfc24430102ccb72a76eedbc47ace842894
3,646,283
import os import errno def _ReapUntilProcessExits(monitored_pid): """Reap processes until |monitored_pid| exits, then return its exit status. This will also reap any other processes ready to be reaped immediately after |monitored_pid| is reaped. """ pid_status = None options = 0 while True: try: (pid, status, _) = os.wait3(options) # Capture status of monitored_pid so we can return it. if pid == monitored_pid: pid_status = status # Switch to nohang so we can churn through the zombies w/out getting # stuck on live orphaned processes. options = os.WNOHANG # There may be some more child processes still running, but none of them # have exited/finished. Don't wait for those as we'll throw an error in # the caller. if pid_status is not None and pid == 0 and status == 0: break except OSError as e: if e.errno == errno.ECHILD: break elif e.errno != errno.EINTR: raise return pid_status
ef540cc60634fe13ddc58b434f7fabe01109ddda
3,646,284
def f_setup_config(v_config_filename): """This function read the configuration file""" df_conf_file = pd.read_csv(v_config_filename, delimiter="|", header=0) api_key = df_conf_file[df_conf_file.CONFIG_VAR == 'API_KEY']['VALUE'].values[0] data_dir = df_conf_file[df_conf_file.CONFIG_VAR == 'DATA_DIR']['VALUE'].values[0] json_log_dir = df_conf_file[df_conf_file.CONFIG_VAR == 'JSON_DIR']['VALUE'].values[0] gcs_bucket = df_conf_file[df_conf_file.CONFIG_VAR == 'GCP_BUCKET']['VALUE'].values[0] # gcs_service_account_key = df_conf_file[df_conf_file.CONFIG_VAR == 'GCP_SERVICE_ACOUNT_KEY']['VALUE'].values[0] # aws_key = df_conf_file[df_conf_file.CONFIG_VAR == 'AWS_ACCESS_KEY']['VALUE'].values[0] # aws_secret_key = df_conf_file[df_conf_file.CONFIG_VAR == 'AWS_SECRET_ASSES_KEY']['VALUE'].values[0] aws_s3 = df_conf_file[df_conf_file.CONFIG_VAR == 'AWS_S3_BUCKET']['VALUE'].values[0] export_csv = df_conf_file[df_conf_file.CONFIG_VAR == 'EXPORT_CSV']['VALUE'].values[0] cleanup_days = df_conf_file[df_conf_file.CONFIG_VAR == 'CLEANUP_DAYS']['VALUE'].values[0] # return api_key, gcs_bucket, gcs_service_account_key, aws_key, aws_secret_key, \ # aws_s3, data_dir, json_log_dir, export_csv, cleanup_days return api_key, gcs_bucket, aws_s3, data_dir, json_log_dir, export_csv, cleanup_days
b2e9a8e822a2c582549055184cc8096f174fdb3b
3,646,285
def choose_username(email): """ Chooses a unique username for the provided user. Sets the username to the email parameter umodified if possible, otherwise adds a numerical suffix to the email. """ def get_suffix(number): return "" if number == 1 else "_"+str(number).zfill(3) user_model = get_user_model() num = 1 while user_model.objects.filter(username=email+get_suffix(num)).exists(): num += 1 return email + get_suffix(num)
594c060df6df5c89c7c08a2e3979960866cc5688
3,646,286
def lms2rgb(image): """ Convert an array of pixels from the LMS colorspace to the RGB colorspace. This function assumes that each pixel in an array of LMS values. :param image: An np.ndarray containing the image data :return: An np.ndarray containing the transformed image data """ return np.clip(apply_matrix_to_image(lms_matrix_inverse, image), 0.0, 1.0)
736d7101a4c4256725fd4f09c6a453c418c1ae81
3,646,287
def __apply_to_property_set (f, property_set): """ Transform property_set by applying f to each component property. """ properties = feature.split (property_set) return '/'.join (f (properties))
5091065f90b602a775c24eca9e2ab3bc6861e0c8
3,646,288
from typing import Dict import tarfile import os def _zip_index(job_context: Dict) -> Dict: """Zips the index directory into a single .tar.gz file. This makes uploading and retrieving the index easier since it will only be a single file along with compressing the size of the file during storage. """ temp_post_path = job_context["gtf_file"].get_temp_post_path(job_context["job_dir_prefix"]) try: with tarfile.open(temp_post_path, "w:gz") as tar: tar.add(job_context["output_dir"], arcname=os.path.basename(job_context["output_dir"])) except: logger.exception("Exception caught while zipping index directory %s", temp_post_path, processor_job=job_context["job_id"], batch=job_context["batches"][0].id) job_context["gtf_file"].remove_temp_directory(job_context["job_dir_prefix"]) failure_template = "Exception caught while zipping index directory {}" job_context["job"].failure_reason = failure_template.format(temp_post_path) job_context["success"] = False return job_context job_context["files_to_upload"] = [job_context["gtf_file"]] job_context["success"] = True return job_context
675061fe65c97ddabb159cd4d960c8cdafca27a3
3,646,289
def _return_feature_statistics(feature_number: int, feature_value: float, names: list): """ Arguments: feature_number (int) -- number of the feature feature_value (float) -- value of the feature (used to compute color) names (list) -- list of feature names Returns: """ percentile_score = int( stats.percentileofscore(TRAIN_DATA.T[feature_number], feature_value) ) color = matplotlib.colors.to_hex(MAPPABLE.to_rgba(percentile_score)) # ToDo: Maybe not only return the category but also the color which we used in the article return percentile_score, color, feature_cat_dict[names[feature_number]]
9cc678c1180e6533bd803b00388db84d085030b3
3,646,290
def calc_eta_FC(Q_load_W, Q_design_W, phi_threshold, approach_call): """ Efficiency for operation of a SOFC (based on LHV of NG) including all auxiliary losses Valid for Q_load in range of 1-10 [kW_el] Modeled after: - **Approach A (NREL Approach)**: http://energy.gov/eere/fuelcells/distributedstationary-fuel-cell-systems and NREL : p.5 of [M. Zolot et al., 2004]_ - **Approach B (Empiric Approach)**: [Iain Staffell]_ :type Q_load_W : float :param Q_load_W: Load at each time step :type Q_design_W : float :param Q_design_W: Design Load of FC :type phi_threshold : float :param phi_threshold: where Maximum Efficiency is reached, used for Approach A :type approach_call : string :param appraoch_call: choose "A" or "B": A = NREL-Approach, B = Empiric Approach :rtype eta_el : float :returns eta_el: electric efficiency of FC (Lower Heating Value), in abs. numbers :rtype Q_fuel : float :returns Q_fuel: Heat demand from fuel (in Watt) ..[M. Zolot et al., 2004] M. Zolot et al., Analysis of Fuel Cell Hybridization and Implications for Energy Storage Devices, NREL, 4th International Advanced Automotive Battery. http://www.nrel.gov/vehiclesandfuels/energystorage/pdfs/36169.pdf ..[Iain Staffell, 2009] Iain Staffell, For Domestic Heat and Power: Are They Worth It?, PhD Thesis, Birmingham: University of Birmingham. http://etheses.bham.ac.uk/641/1/Staffell10PhD.pdf """ phi = 0.0 ## Approach A - NREL Approach if approach_call == "A": phi = float(Q_load_W) / float(Q_design_W) eta_max = 0.425 # from energy.gov if phi >= phi_threshold: # from NREL-Shape eta_el = eta_max - ((1 / 6.0 * eta_max) / (1.0 - phi_threshold)) * abs(phi - phi_threshold) if phi < phi_threshold: if phi <= 118 / 520.0 * phi_threshold: eta_el = eta_max * 2 / 3 * (phi / (phi_threshold * 118 / 520.0)) if phi < 0.5 * phi_threshold and phi >= 118 / 520.0 * phi_threshold: eta_el = eta_max * 2 / 3.0 + \ eta_max * 0.25 * (phi - phi_threshold * 118 / 520.0) / (phi_threshold * (0.5 - 118 / 520.0)) if phi > 0.5 * phi_threshold and phi < phi_threshold: eta_el = eta_max * (2 / 3.0 + 0.25) + \ 1 / 12.0 * eta_max * (phi - phi_threshold * 0.5) / (phi_threshold * (1 - 0.5)) eta_therm_max = 0.45 # constant, after energy.gov if phi < phi_threshold: eta_therm = 0.5 * eta_therm_max * (phi / phi_threshold) else: eta_therm = 0.5 * eta_therm_max * (1 + eta_therm_max * ((phi - phi_threshold) / (1 - phi_threshold))) ## Approach B - Empiric Approach if approach_call == "B": if Q_design_W > 0: phi = float(Q_load_W) / float(Q_design_W) else: phi = 0 eta_el_max = 0.39 eta_therm_max = 0.58 # * 1.11 as this source gives eff. of HHV eta_el_score = -0.220 + 5.277 * phi - 9.127 * phi ** 2 + 7.172 * phi ** 3 - 2.103 * phi ** 4 eta_therm_score = 0.9 - 0.07 * phi + 0.17 * phi ** 2 eta_el = eta_el_max * eta_el_score eta_therm = eta_therm_max * eta_therm_score if phi < 0.2: eta_el = 0 return eta_el, eta_therm
0cd14d976d773dc34d7ea96e80db4267e33aac1f
3,646,291
from typing import Tuple def erdos_renyi( num_genes: int, prob_conn: float, spec_rad: float = 0.8 ) -> Tuple[np.ndarray, float]: """Initialize an Erdos Renyi network as in Sun–Taylor–Bollt 2015. If the spectral radius is positive, the matrix is normalized to a spectral radius of spec_rad and the scale shows the normalization. If the spectral radius is zero, the returned matrix will have entries of 0, 1, and -1, and the scale is set to zero. Args: num_genes: Number of genes/nodes. prob_conn: Probability of connection. spec_rad: The desired spectral radius. Returns: Adjacency matrix and its scale. """ signed_edges = erdos_renyi_ternary(num_genes, prob_conn) return scale_by_spec_rad(signed_edges, spec_rad)
87e29376ec79ea9198bb3c668fdc31fc61216a26
3,646,292
import _ctypes def IMG_LoadTextureTyped_RW(renderer, src, freesrc, type): """Loads an image file from a file object to a texture as a specific format. This function allows you to explicitly specify the format type of the image to load. The different possible format strings are listed in the documentation for :func:`IMG_LoadTyped_RW`. See :func:`IMG_LoadTexture` for more information. Args: renderer (:obj:`SDL_Renderer`): The SDL rendering context with which to create the texture. src (:obj:`SDL_RWops`): The file object from which to load the image. freesrc (int): If non-zero, the input file object will be closed and freed after it has been read. type (bytes): A bytestring indicating the image format with which the file object should be loaded. Returns: POINTER(:obj:`SDL_Texture`): A pointer to the new texture containing the image, or a null pointer if there was an error. """ return _ctypes["IMG_LoadTextureTyped_RW"](renderer, src, freesrc, type)
ef9f963e71b7419ec790bd3fdb06eb470d30972b
3,646,293
def soft_l1(z: np.ndarray, f_scale): """ rho(z) = 2 * ((1 + z)**0.5 - 1) The smooth approximation of l1 (absolute value) loss. Usually a good choice for robust least squares. :param z: z = f(x)**2 :param f_scale: rho_(f**2) = C**2 * rho(f**2 / C**2), where C is f_scale :return: """ loss = np.empty((3, z.shape[0]), dtype=np.float64) c2 = f_scale * f_scale ic2 = 1.0 / c2 z = ic2 * z sqrt_1pz = np.sqrt(z + 1) loss[0, :] = c2 * 2 * (sqrt_1pz - 1) loss[1, :] = 1 / sqrt_1pz loss[2, :] = -ic2 * 0.5 * np.power(loss[1, :], 3) return loss
95813cd59c99ab94e6b4693237dc85f5b7d31b14
3,646,294
def calculate_hit_box_points_detailed(image: Image, hit_box_detail: float = 4.5): """ Given an image, this returns points that make up a hit box around it. Attempts to trim out transparent pixels. :param Image image: Image get hit box from. :param int hit_box_detail: How detailed to make the hit box. There's a trade-off in number of points vs. accuracy. :Returns: List of points """ def sample_func(sample_point): """ Method used to sample image. """ if sample_point[0] < 0 \ or sample_point[1] < 0 \ or sample_point[0] >= image.width \ or sample_point[1] >= image.height: return 0 point_tuple = sample_point[0], sample_point[1] color = image.getpixel(point_tuple) if color[3] > 0: return 255 else: return 0 # Do a quick check if it is a full tile p1 = 0, 0 p2 = 0, image.height - 1 p3 = image.width - 1, image.height - 1 p4 = image.width - 1, 0 if sample_func(p1) and sample_func(p2) and sample_func(p3) and sample_func(p4): # Do a quick check if it is a full tile p1 = (-image.width / 2, -image.height / 2) p2 = (image.width / 2, -image.height / 2) p3 = (image.width / 2, image.height / 2) p4 = (-image.width / 2, image.height / 2) return p1, p2, p3, p4 # Get the bounding box logo_bb = pymunk.BB(-1, -1, image.width, image.height) # Set of lines that trace the image line_set = pymunk.autogeometry.PolylineSet() # How often to sample? downres = 1 horizontal_samples = int(image.width / downres) vertical_samples = int(image.height / downres) # Run the trace # Get back one or more sets of lines covering stuff. line_sets = pymunk.autogeometry.march_soft( logo_bb, horizontal_samples, vertical_samples, 99, sample_func) if len(line_sets) == 0: return [] selected_line_set = line_sets[0] selected_range = None if len(line_set) > 1: # We have more than one line set. Try and find one that covers most of # the sprite. for line in line_set: min_x = None min_y = None max_x = None max_y = None for point in line: if min_x is None or point.x < min_x: min_x = point.x if max_x is None or point.x > max_x: max_x = point.x if min_y is None or point.y < min_y: min_y = point.y if max_y is None or point.y > max_y: max_y = point.y if min_x is None or max_x is None or min_y is None or max_y is None: raise ValueError("No points in bounding box.") my_range = max_x - min_x + max_y + min_y if selected_range is None or my_range > selected_range: selected_range = my_range selected_line_set = line # Reduce number of vertices # original_points = len(selected_line_set) selected_line_set = pymunk.autogeometry.simplify_curves(selected_line_set, hit_box_detail) # downsampled_points = len(selected_line_set) # Convert to normal points, offset fo 0,0 is center, flip the y hh = image.height / 2 hw = image.width / 2 points = [] for vec2 in selected_line_set: point = round(vec2.x - hw), round(image.height - (vec2.y - hh) - image.height) points.append(point) if len(points) > 1 and points[0] == points[-1]: points.pop() # print(f"{sprite.texture.name} Line-sets={len(line_set)}, Original points={original_points}, Downsampled points={downsampled_points}") return points
dd74e18fac1fe96728837ce8af62c38461592baa
3,646,295
async def open_local_endpoint( host="0.0.0.0", port=0, *, queue_size=None, **kwargs ): """Open and return a local datagram endpoint. An optional queue size argument can be provided. Extra keyword arguments are forwarded to `loop.create_datagram_endpoint`. """ return await open_datagram_endpoint( host, port, remote=False, endpoint_factory=lambda: LocalEndpoint(queue_size), **kwargs )
a3b03408bbe35972b0588912a0628df2be9cddc5
3,646,296
from typing import Union def parse_bool(value: Union[str, bool]) -> bool: """Parse a string value into a boolean. Uses the sets ``CONSIDERED_TRUE`` and ``CONSIDERED_FALSE`` to determine the boolean value of the string. Args: value (Union[str, bool]): the string to parse (is converted to lowercase and stripped of surrounding whitespace) Raises: ValueError: if the string cannot reliably be determined true or false Returns: bool: the parsed result """ if value is True or value is False: return value val = value.strip().lower() if val in CONSIDERED_TRUE: return True if val in CONSIDERED_FALSE: return False raise ValueError(f"Value {value} is not compatible with boolean!")
86bb61b82eb71627f3563584779f3a17ea1bc8b7
3,646,297
from datetime import datetime import traceback import requests def send_rocketchat_notification(text: str, exc_info: Exception) -> dict: """ Sends message with specified text to configured Rocketchat channel. We don't want this method to raise any exceptions, as we don't want to unintentionally break any kind of error management flow. (We only use rocket chat notification when something goes wrong). If you want to know if this method worked or not, you'll have to inspect the response. """ full_message = f"{datetime.now(tz=timezone.utc).isoformat()}\n{text}\n\ {config.get('HOSTNAME')}: {exc_info}\n\ {traceback.format_exception(etype=type(exc_info),value=exc_info,tb=exc_info.__traceback__)}" result = None try: response = requests.post( config.get('ROCKET_URL_POST_MESSAGE'), headers={ 'X-Auth-Token': config.get('ROCKET_AUTH_TOKEN'), 'X-User-Id': config.get('ROCKET_USER_ID'), 'Content-Type': 'application/json' }, json={ 'channel': config.get('ROCKET_CHANNEL'), 'text': full_message } ) result = response.json() except Exception as exception: # pylint: disable=broad-except # not doing exc_info=exception - as this causes a lot of noise, and we're more interested # in the main code! logger.error('failed to send rocket chat notification %s', exception) return result
c466621cfd8ead8f6773bc1c461fb779c0374937
3,646,298
def get_number_of_forms_all_domains_in_couch(): """ Return number of non-error, non-log forms total across all domains specifically as stored in couch. (Can't rewrite to pull from ES or SQL; this function is used as a point of comparison between row counts in other stores.) """ all_forms = ( XFormInstance.get_db().view('couchforms/by_xmlns').one() or {'value': 0} )['value'] device_logs = ( XFormInstance.get_db().view('couchforms/by_xmlns', key=DEVICE_LOG_XMLNS).one() or {'value': 0} )['value'] return all_forms - device_logs
a30f5e6410dc3b91c3a962169fad20e2a8d4a8fb
3,646,299