content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def moon_illumination(phase: float) -> float: """Calculate the percentage of the moon that is illuminated. Currently this value increases approximately linearly in time from new moon to full, and then linearly back down until the next new moon. Args: phase: float The phase angle of the Moon, in degrees. Returns: illumination: flaot The percentage of the Moon that is illuminated. """ return 100 * (1 - np.abs(phase - 180) / 180)
c40a3a6cb4de6da1fd64a188c99892afe3d385d7
3,645,700
def convex_hull_mask_iou(points_uv, im_shape, gt_hull_mask): """Computes masks by calculating a convex hull from points. Creates two masks (if possible), one for the estimated foreground pixels and one for the estimated background pixels. Args: points_uv: (2, N) Points in u, v coordinates im_shape: image shape [image_height, im_width] gt_hull_mask: mask created by calculating convex hull Returns: best_iou: best mask iou calculated from the calculated hull masks and the ground truth hull mask """ im_height, im_width = im_shape # Segment the points into background and foreground if len(set(points_uv[0])) > 1: thresh = filters.threshold_li(points_uv[0]) pred_seg_1 = points_uv[0] > thresh pred_seg_2 = points_uv[0] < thresh segs = [pred_seg_1, pred_seg_2] else: # There is only one unique point so a threshold cannot be made segs = [np.full(points_uv[0].shape, True, dtype=bool)] mask_list = [] # Loop over both segments since it is uncertain which segment is foreground or background for seg in segs: # Obtain the coordinates of the pixels pred_u = np.int32(points_uv[0][seg]) pred_v = np.int32(points_uv[1][seg]) # Remove duplicate coordinates by forming a set coords = set(zip(pred_u, pred_v)) # Convex hull calculation requires a numpy array coords = np.array(list(coords)) # Need at least 3 points to create convex hull if len(coords) < 3: continue # Points must not lie along a single line in order to create convex hull elif any(np.all(coords == coords[0, :], axis=0)): continue else: hull = ConvexHull(coords) img = Image.new('L', (im_width, im_height), 0) vertices = list(zip(coords[hull.vertices, 0], coords[hull.vertices, 1])) ImageDraw.Draw(img).polygon(vertices, outline=1, fill=1) mask = np.array(img) mask_list.append(mask) best_iou = 0 for mask in mask_list: iou = evaluation.mask_iou(mask, gt_hull_mask) if iou > best_iou: best_iou = iou return best_iou
09cb5cf8f7721a7430ab3825e0e6ddbbb0966be6
3,645,701
def run(text, base_dir, debug_filename, symbols = set()): """Rudimentary resolver for the following preprocessor commands: // #include <some-file> (no check for cyclic includes!) // #ifdef | #if <symbol> // <contents> // [ #elif // <alt-contents> ]* // [ #else // <alt-contents> ] // #endif """ out = [] stack = [] lines = text.split('\n') l_iter = iter(zip(range(1, len(lines)+1),lines)) push_line = None nline = -1 def error(msg): raise Exception(msg + ' @ ' + debug_filename + ':' + str(nline)) while True: try: nline, line = push_line or next(l_iter) push_line = None except StopIteration: break match = line_re.match(line) if match: skip_branch = False cmd = match.group(1) if cmd == 'include': name = match.group(2).strip('<>"\'') fpath = os.path.join(base_dir, name) print 'handling js #include: ' + fpath with open( fpath, 'rt' ) as inp: out.append(run(inp.read(), os.path.split(fpath)[1], name, symbols)) elif cmd in ['if', 'ifdef', 'ifndef']: val = eval_conditional(match.group(2), symbols) if cmd == 'ifndef': val = not val print('eval: ' + cmd + ' ' + match.group(2) + ' as ' + str(val)) skip_branch = not val stack.append(val) elif cmd in ['else', 'elif']: if not stack: error('syntax error, unexpected ' + cmd) # has been handled before? if stack[-1]: skip_branch = True elif cmd != 'elif' or eval_conditional(match.group(2), symbols): stack[-1] = True else: skip_branch = True elif cmd == 'endif': if not stack: error('syntax error, unexpected endif') continue stack.pop() else: error('define/ifdef/endif/else currently ignored') if skip_branch: # skip everything up to the next elif/else/endif at the same nesting level nesting = 1 while True: try: nline, line = next(l_iter) match = line_re.match(line) if match: done = False cmd = match.group(1) if cmd in ['if', 'ifdef']: nesting += 1 elif cmd == 'endif': nesting -= 1 if nesting == 0: done = True if cmd in ['else', 'elif'] and nesting == 1: done = True if done: push_line = nline, line break except StopIteration: error('syntax error, unexpected EOF') return else: out.append(line) return '\n'.join(out)
de2e06f7cdf93e80eca05b6fef0dd0cab55175e3
3,645,702
from typing import Callable from typing import Awaitable import inspect def load_callback(module: ModuleType, event: Event) -> Callable[..., Awaitable[None]]: """ Load the callback function from the handler module """ callback = getattr(module, "handler") if not inspect.iscoroutinefunction(callback): raise TypeError( f"expected 'coroutine function' for 'handler', got {type(callback).__name__!r}" ) signature = inspect.signature(callback) params = dict(signature.parameters) # Construct the model from the callback for manual events if isinstance(event, ManualEvent): expect_returns(signature, None, Response, allow_unannotated=True) event.model = build_model_from_params(params) # Ensure the signature is passed the same parameters as the event sends elif isinstance(event, AutomatedEvent): expect_returns(signature, None, allow_unannotated=True) # Get the model parameters model_signature = inspect.signature(event.input_validator) model_params = dict(model_signature.parameters) validate_automated_signature(params, model_params) return callback
e961adaae0c7f4ad5abe228ef677b3b61288d531
3,645,703
import os import ast def read_config_key(fname='', existing_dict=None, delim=None): """ Read a configuration key. """ # Check file existence if os.path.isfile(fname) is False: logger.error("I tried to read key "+fname+" but it does not exist.") return(existing_dict) logger.info("Reading: "+fname) # Expected Format expected_words = 3 expected_format = "config_type config_name params_as_dict" # Open File infile = open(fname, 'r') # Initialize the dictionary if existing_dict is None: out_dict = {} else: out_dict = existing_dict # Loop over the lines lines_read = 0 while True: line = infile.readline() if len(line) == 0: break if skip_line(line, expected_words=expected_words, delim=delim, expected_format=expected_format): continue this_type, this_value, this_params = parse_one_line(line, delim=delim) # Check if the type of entry is new if (this_type in out_dict.keys()) == False: out_dict[this_type] = {} # Initialize a configuration on the first entry - configs can have several lines if (this_value not in out_dict[this_type].keys()): out_dict[this_type][this_value] = {} # Parse the parameters as a literal try: this_params_dict = ast.literal_eval(this_params) except: logger.error("Could not parse parameters as a dictionary. Line is: ") logger.error(line) continue # Now read in parameters. To do this, define templates for # expected fields and data types for each type of # configuration. Check to match these. if this_type == "array_tag": expected_params = { 'timebin':'0s', } if this_type == "interf_config": expected_params = { 'array_tags':[], 'res_min_arcsec':0.0, 'res_max_arcsec':0.0, 'res_min_pc':0.0, 'res_max_pc':0.0, 'res_step_factor':1.0, 'res_list':[], 'clean_scales_arcsec':[] } if this_type == "feather_config": expected_params = { 'interf_config':'', 'res_min_arcsec':0.0, 'res_max_arcsec':0.0, 'res_step_factor':1.0, 'res_min_pc':0.0, 'res_max_pc':0.0, 'res_list':[] } if this_type == "line_product": expected_params = { 'line_tag':'', 'channel_kms':0.0, 'statwt_edge_kms':50.0, 'fitorder':0, 'combinespw':False, 'lines_to_flag':[], } if this_type == "cont_product": expected_params = { 'freq_ranges_ghz':[], 'channel_ghz':0.0, 'lines_to_flag':[] } # Check configs for expected name and data type for this_key in this_params_dict.keys(): if this_key not in expected_params.keys(): logger.error('Got an unexpected parameter key. Line is:') logger.error(line) continue if type(this_params_dict[this_key]) != type(expected_params[this_key]): logger.error('Got an unexpected parameter type for parameter '+str(this_key)+'. Line is:') logger.error(line) continue if this_key in out_dict[this_type][this_value].keys(): logger.debug("Got a repeat parameter definition for "+this_type+" "+this_value) logger.debug("Parameter "+this_key+" repeats. Using the latest value.") out_dict[this_type][this_value][this_key] = this_params_dict[this_key] lines_read += 1 infile.close() logger.info("Read "+str(lines_read)+" lines into a configuration definition dictionary.") return(out_dict)
87fa9ea607c34fd31b6a53224a8f8c2c5673e1f9
3,645,704
def molmer_sorensen(theta, N=None, targets=[0, 1]): """ Quantum object of a Mølmer–Sørensen gate. Parameters ---------- theta: float The duration of the interaction pulse. N: int Number of qubits in the system. target: int The indices of the target qubits. Returns ------- molmer_sorensen_gate: :class:`qutip.Qobj` Quantum object representation of the Mølmer–Sørensen gate. """ if targets != [0, 1] and N is None: N = 2 if N is not None: return expand_operator(molmer_sorensen(theta), N, targets=targets) return Qobj( [ [np.cos(theta/2.), 0, 0, -1.j*np.sin(theta/2.)], [0, np.cos(theta/2.), -1.j*np.sin(theta/2.), 0], [0, -1.j*np.sin(theta/2.), np.cos(theta/2.), 0], [-1.j*np.sin(theta/2.), 0, 0, np.cos(theta/2.)] ], dims=[[2, 2], [2, 2]])
8b5e7bc221c4f785bd8747a5b04d4a9299ebeefc
3,645,705
import math def get_pixel_dist(pixel, red, green, blue): """ Returns the color distance between pixel and mean RGB value Input: pixel (Pixel): pixel with RGB values to be compared red (int): average red value across all images green (int): average green value across all images blue (int): average blue value across all images Returns: dist (int): color distance between red, green, and blue pixel values """ color_distance = math.sqrt((pixel.red - red)**2 + (pixel.green - green)**2 + (pixel.blue - blue)**2) return color_distance
9ad0a30090e735daac4c7d470ea40e7d4dc0010f
3,645,706
def structure_pmu(array: np.ndarray) -> np.ndarray: """Helper function to convert 4 column array into structured array representing 4-momenta of particles. Parameters ---------- array : numpy ndarray of floats, with shape (num particles, 4) The 4-momenta of the particles, arranged in columns. Columns must be in order (x, y, z, e). See also -------- structure_pmu_components : structured array from seperate 1d arrays of momentum components. Notes ----- As the data-type of the input needs to be recast, the output is a copy of the original data, not a view on it. Therefore it uses additional memory, so later changes to the original will not affect the returned array, and vice versa. """ if array.dtype != _types.pmu: struc_array = array.astype(_types.pmu[0][1]) struc_array = struc_array.view(dtype=_types.pmu, type=np.ndarray) struc_pmu = struc_array.copy().squeeze() else: struc_pmu = array return struc_pmu
519173b131d4120f940022b567faef018be2f2ed
3,645,707
import os def _log_from_checkpoint(args): """Infer logging directory from checkpoint file.""" int_dir, checkpoint_name = os.path.split(args.checkpoint) logdir = os.path.dirname(int_dir) checkpoint_num = int(checkpoint_name.split('_')[1]) _log_args(logdir, args, modified_iter=checkpoint_num) return logdir, checkpoint_num
d5198c276dce969f9245db520f30ee2d8bd42363
3,645,708
def url_query_parameter(url, parameter, default=None, keep_blank_values=0): """Return the value of a url parameter, given the url and parameter name General case: >>> import w3lib.url >>> w3lib.url.url_query_parameter("product.html?id=200&foo=bar", "id") '200' >>> Return a default value if the parameter is not found: >>> w3lib.url.url_query_parameter("product.html?id=200&foo=bar", "notthere", "mydefault") 'mydefault' >>> Returns None if `keep_blank_values` not set or 0 (default): >>> w3lib.url.url_query_parameter("product.html?id=", "id") >>> Returns an empty string if `keep_blank_values` set to 1: >>> w3lib.url.url_query_parameter("product.html?id=", "id", keep_blank_values=1) '' >>> """ queryparams = parse_qs( urlsplit(str(url))[3], keep_blank_values=keep_blank_values ) return queryparams.get(parameter, [default])[0]
d2ed39b6d6054baa9f8be90dfe1e1c8a06e47746
3,645,709
def read_ground_stations_extended(filename_ground_stations_extended): """ Reads ground stations from the input file. :param filename_ground_stations_extended: Filename of ground stations basic (typically /path/to/ground_stations.txt) :return: List of ground stations """ ground_stations_extended = [] gid = 0 with open(filename_ground_stations_extended, 'r') as f: for line in f: split = line.split(',') if len(split) != 8: raise ValueError("Extended ground station file has 8 columns: " + line) if int(split[0]) != gid: raise ValueError("Ground station id must increment each line") ground_station_basic = { "gid": gid, "name": split[1], "latitude_degrees_str": split[2], "longitude_degrees_str": split[3], "elevation_m_float": float(split[4]), "cartesian_x": float(split[5]), "cartesian_y": float(split[6]), "cartesian_z": float(split[7]), } ground_stations_extended.append(ground_station_basic) gid += 1 return ground_stations_extended
2492dc8d5c55f124696aafbec11d74e609c3f397
3,645,710
import os import configparser import ssl import smtplib def send_email(destination, code): """ Send the validation email. """ if 'CLOUD' not in os.environ: # If the application is running locally, use config.ini anf if not, set environment variables config = configparser.ConfigParser() config.read_file(open('config.ini')) # Sender email and account password sender = config['SENDER']['from'] password = config['SENDER_PASSWORD']['psw'] else: sender = os.environ['SENDER'] password = os.environ['SENDER_PASSWORD'] ret = False try: text = "Code: {}".format(code) message = """\ From: %s To: %s Subject: %s %s """ % (sender, destination, 'Agnes', text) # TODO Improve the email format. Let it more Readable # Log in to server using secure context and send email context = ssl.create_default_context() with smtplib.SMTP_SSL("smtp.gmail.com", 465, context=context) as server: server.login(sender, password) server.sendmail(sender, destination, message) logger.debug('Sending email to {}'.format(destination)) ret = True except Exception as e: logger.exception(e, exc_info=False) finally: return ret
e60c16137088b1ed1670628c59148c68d6cb49d5
3,645,711
import uuid def shortPrescID(): """Create R2 (short format) Prescription ID Build the prescription ID and add the required checkdigit. Checkdigit is selected from the PRESCRIPTION_CHECKDIGIT_VALUES constant """ _PRESC_CHECKDIGIT_VALUES = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ+' hexString = str(uuid.uuid1()).replace('-', '').upper() prescriptionID = hexString[:6] + '-Z' + hexString[6:11] + '-' + hexString[12:17] prscID = prescriptionID.replace('-', '') prscIDLength = len(prscID) runningTotal = 0 for stringPosition in range(prscIDLength): runningTotal = runningTotal + int(prscID[stringPosition], 36) * (2 ** (prscIDLength - stringPosition)) checkValue = (38 - runningTotal % 37) % 37 checkValue = _PRESC_CHECKDIGIT_VALUES[checkValue] prescriptionID += checkValue return prescriptionID
db491d3fe299adfbcd6f202eb46bc4669f829613
3,645,712
def rmse(predictions, verbose=True): """Compute RMSE (Root Mean Squared Error). .. math:: \\text{RMSE} = \\sqrt{\\frac{1}{|\\hat{R}|} \\sum_{\\hat{r}_{ui} \in \\hat{R}}(r_{ui} - \\hat{r}_{ui})^2}. Args: predictions (:obj:`list` of :obj:`Prediction\ <surprise.prediction_algorithms.predictions.Prediction>`): A list of predictions, as returned by the :meth:`test() <surprise.prediction_algorithms.algo_base.AlgoBase.test>` method. verbose: If True, will print computed value. Default is ``True``. Returns: The Root Mean Squared Error of predictions. Raises: ValueError: When ``predictions`` is empty. """ if not predictions: raise ValueError('Prediction list is empty.') mse = np.mean([float((true_r - est)**2) for (_, _, true_r, est, _) in predictions]) rmse_ = np.sqrt(mse) if verbose: print('RMSE: {0:1.4f}'.format(rmse_)) return rmse_
2898f98fba50d71ef20e66b9654e1d539531f17b
3,645,713
import ast def get_module_docstring(path): """get a .py file docstring, without actually executing the file""" with open(path) as f: return ast.get_docstring(ast.parse(f.read()))
e253372bfb6f65907a5461332d14c414c2370c66
3,645,714
def get_authenticate_kwargs(oauth_credentials=None, http_=None): """Returns a dictionary with keyword arguments for use with discovery Prioritizes oauth_credentials or a http client provided by the user If none provided, falls back to default credentials provided by google's command line utilities. If that also fails, tries using httplib2.Http() Used by `gcs.GCSClient` and `bigquery.BigQueryClient` to initiate the API Client """ if oauth_credentials: authenticate_kwargs = { "credentials": oauth_credentials } elif http_: authenticate_kwargs = { "http": http_ } else: # neither http_ or credentials provided try: # try default credentials oauth_credentials = oauth2client.client.GoogleCredentials.get_application_default() authenticate_kwargs = { "credentials": oauth_credentials } except oauth2client.client.GoogleCredentials.ApplicationDefaultCredentialsError: # try http using httplib2 authenticate_kwargs = { "http": httplib2.Http() } return authenticate_kwargs
da3cef34a51fe1bc74cb8ce221e9610160f0f176
3,645,715
from re import T def get_transforms(size=128, mobilenet=False): """ Gets all the torchvision transforms we will be applying to the dataset. """ # These are the transformations that we will do to our dataset # For X transforms, let's do some of the usual suspects and convert to tensor. # Don't forget to normalize to [0.0, 1.0], FP32 # and don't forget to resize to the same size every time. x_transforms = [ T.Resize((size, size)), T.RandomApply([ T.RandomAffine(degrees=20, translate=(0.1, 0.1)), T.RandomHorizontalFlip(p=0.5), T.RandomRotation(degrees=(-30, 30)), T.RandomVerticalFlip(p=0.5), ], p=0.5), T.ColorJitter(brightness=0.5), T.ToTensor(), # Converts to FP32 [0.0, 1.0], Tensor type ] # Pretrained MobileNetV2 requires normalizing like this: if mobilenet: x_transforms.append(T.Normalize(mean=MOBILENET_MEAN, std=MOBILENET_STD)) # For Y transforms, we need to make sure that we do the same thing to the ground truth, # since we are trying to recreate the image. y_transforms = [ T.Resize((size, size), interpolation=Image.NEAREST), # Make sure we don't corrupt the labels T.RandomApply([ T.RandomAffine(degrees=20, translate=(0.1, 0.1)), T.RandomHorizontalFlip(p=0.5), T.RandomRotation(degrees=(-30, 30)), T.RandomVerticalFlip(p=0.5), ], p=0.5), ] return x_transforms, y_transforms
ddacbf265ba12ac259ec35ef57798688a3e36f02
3,645,716
def transform(f, a, b, c, d): """ Transform a given function linearly. If f(t) is the original function, and a, b, c, and d are the parameters in order, then the return value is the function F(t) = af(cx + d) + b """ return lambda x: a * f(c * x + d) + b
a47b3f4f3dc1e3ed5ddb6155bcd67b8297c298ed
3,645,717
def delete_rules(request): """ Deletes the rules with the given primary key. """ if request.method == 'POST': rules_id = strip_tags(request.POST['post_id']) post = HouseRules.objects.get(pk=rules_id) post.filepath.delete() # Delete actual file post.delete() return redirect('archive-rules')
e6be9d39dfe07d17fdb18634b422262917fbe6eb
3,645,718
def display_word(word, secret_word, word_to_guess): """Function to edit the word to display and the word to guess (word to display is the test word with its colored letter and the word to guess is the word with spaces in it, for each missing letter). Args: word (str): the input word secret_word (str): the secret word that the user have to find word_to_guess (str): the word with spaces for each missing letter Returns: str: the word to guess, to update it at each try """ word_to_display = "" indexes = [] # We need to do the dictio at each input because we need to edit it for # each test word. It will be needed to not display several yellow letter # when there should be only one. dictio = letters_dict(secret_word) # For each letter in the word for letter_index in range(len(word)): word_letter = word[letter_index] # If the letter is the same at the same place in the secret_word if word_letter==secret_word[letter_index]: # Colors the letter in green word_to_display += colored(word_letter, "green") # Adds the index to a list indexes.append(letter_index) dictio[word_letter] -= 1 # If the letter is not the same at the same place in the secret word # but is in the word anyway elif word_letter in secret_word: if dictio[word_letter]>0: # Colors the letter in yellow and substract 1 to the dictionary # of letters, if it's not 0 word_to_display += colored(word_letter, "yellow") dictio[word_letter] -= 1 else: # If there's 0 for the letter in the dictionary, it's because we # already encountered them all, so we don't color it word_to_display += word_letter else: word_to_display += word_letter # Transforms the word to guess as a list, within each letter is one element word_to_guess_list = list(word_to_guess) for index in range(len(secret_word)): if index in indexes: # If the user have found a letter, replaces the space (_) by it word_to_guess_list[index] = secret_word[index] # Reforms the word word_to_guess = "".join(word_to_guess_list) return word_to_display, word_to_guess
e55ef943d5e3d837ca1698ba1e2e65d9062b16f0
3,645,719
def get_config_cache(course_pk: 'int') -> dict: """Cacheからコンフィグを取得する.存在しない場合,新たにキャッシュを生成して格納後,コンフィグを返す.""" cache_key = f"course-config-{course_pk}" cached_config = cache.get(cache_key, None) if cached_config is None: config = Config.objects.filter(course_id=course_pk).first() cached_config = set_config_from_instance(config) return cached_config
a155ce5354d8ec00eab0da42c919ac15eac43bb4
3,645,720
import logging def log_command(func): """ Logging decorator for logging bot commands and info """ def log_command(*args, **kwargs): slack, command, event = args user = slack.user_info(event["user"]) log_line = 'USER: %s | CHANNEL ID: %s | COMMAND: %s | TEXT: %s' command_info = log_line % (user["user"]["name"], event["channel"], command, event["text"]) logging.info(command_info) command = func(*args, **kwargs) return command return log_command
8ab4f36ff6c01a3799061f532d0c25ec04d725e8
3,645,721
import os def expand_home_folder(path): """Checks if path starts with ~ and expands it to the actual home folder.""" if path.startswith("~"): return os.environ.get('HOME') + path[1:] return path
3746859cc16b77dcfd02c675db81bfe4a195a85f
3,645,722
import copy def calc_stats(scores_summ, curr_lines, curr_idx, CI=0.95, ext_test=None, stats="mean", shuffle=False): """ calc_stats(scores_summ, curr_lines, curr_idx) Calculates statistics on scores from runs with specific analysis criteria and records them in the summary scores dataframe. Required args: - scores_summ (pd DataFrame): DataFrame containing scores summary - curr_lines (pd DataFrame) : DataFrame lines corresponding to specific analysis criteria - curr_idx (int) : Current row in the scores summary DataFrame Optional args: - CI (num) : Confidence interval around which to collect percentile values default: 0.95 - extra_test (str): Name of extra test set, if any (None if none) default: None - stats (str) : stats to take, i.e., "mean" or "median" default: "mean" - shuffle (bool) : If True, data is for shuffled, and will be averaged across runs before taking stats default: False Returns: - scores_summ (pd DataFrame): Updated DataFrame containing scores, as well as epoch_n, runs_total, runs_nan summaries """ scores_summ = copy.deepcopy(scores_summ) # score labels to perform statistics on sc_labs = ["epoch_n"] + logreg_util.get_sc_labs( True, ext_test_name=ext_test) # avoids accidental nuisance dropping by pandas curr_lines["epoch_n"] = curr_lines["epoch_n"].astype(float) if shuffle: # group runs and take mean or median across scores_summ.loc[curr_idx, "mouse_n"] = -1 keep_lines = \ [col for col in curr_lines.columns if col in sc_labs] + ["run_n"] grped_lines = curr_lines[keep_lines].groupby("run_n", as_index=False) if stats == "mean": curr_lines = grped_lines.mean() # automatically skips NaNs elif stats == "median": curr_lines = grped_lines.median() # automatically skips NaNs else: gen_util.accepted_values_error("stats", stats, ["mean", "median"]) # calculate n_runs (without nans and with) scores_summ.loc[curr_idx, "runs_total"] = len(curr_lines) scores_summ.loc[curr_idx, "runs_nan"] = curr_lines["epoch_n"].isna().sum() # percentiles to record ps, p_names = math_util.get_percentiles(CI) for sc_lab in sc_labs: if sc_lab in curr_lines.keys(): cols = [] vals = [] data = curr_lines[sc_lab].astype(float) for stat in ["mean", "median"]: cols.extend([stat]) vals.extend( [math_util.mean_med(data, stats=stat, nanpol="omit")]) for error in ["std", "sem"]: cols.extend([error]) vals.extend([math_util.error_stat( data, stats="mean", error=error, nanpol="omit")]) # get 25th and 75th quartiles cols.extend(["q25", "q75"]) vals.extend(math_util.error_stat( data, stats="median", error="std", nanpol="omit")) # get other percentiles (for CI) cols.extend(p_names) vals.extend(math_util.error_stat( data, stats="median", error="std", nanpol="omit", qu=ps)) # get MAD cols.extend(["mad"]) vals.extend([math_util.error_stat( data, stats="median", error="sem", nanpol="omit")]) # plug in values cols = [f"{sc_lab}_{name}" for name in cols] gen_util.set_df_vals(scores_summ, curr_idx, cols, vals) return scores_summ
ddaa5b5a2c70c25488f572ad894f7aa0bedc7189
3,645,723
def report_date_time() -> str: """Return the report date requested as query parameter.""" report_date_string = dict(bottle.request.query).get("report_date") return str(report_date_string).replace("Z", "+00:00") if report_date_string else iso_timestamp()
391db86e523c55f88c40c1bc8b9fb1ed6f3d97ff
3,645,724
def assign_colour_label_data(catl): """ Assign colour label to data Parameters ---------- catl: pandas Dataframe Data catalog Returns --------- catl: pandas Dataframe Data catalog with colour label assigned as new column """ logmstar_arr = catl.logmstar.values u_r_arr = catl.modelu_rcorr.values colour_label_arr = np.empty(len(catl), dtype='str') for idx, value in enumerate(logmstar_arr): # Divisions taken from Moffett et al. 2015 equation 1 if value <= 9.1: if u_r_arr[idx] > 1.457: colour_label = 'R' else: colour_label = 'B' if value > 9.1 and value < 10.1: divider = 0.24 * value - 0.7 if u_r_arr[idx] > divider: colour_label = 'R' else: colour_label = 'B' if value >= 10.1: if u_r_arr[idx] > 1.7: colour_label = 'R' else: colour_label = 'B' colour_label_arr[idx] = colour_label catl['colour_label'] = colour_label_arr return catl
4f56cc4d4ac1ae722deffb92d63d5867a885fb0e
3,645,725
def get_policy(arn): """Get info about a policy.""" client = get_client("iam") response = client.get_policy(PolicyArn=arn) return response
c56d79bfd8cf744bbe010ad0d5dfbaeaa3d59e76
3,645,726
import os def get_file_xml(filename): """ :param filename: the filename, without the .xml suffix, in the tests/xml directory :return: returns the specified file's xml """ file = os.path.join(XML_DIR, filename + '.xml') with open(file, 'r') as f: xml = f.read() return xml
c08ef33bc12faa6b7194e1e7bac304e9f350bb09
3,645,727
def _write_roadways(roadway_feature_class, condition): """Writes roadway feature class to STAMINA syntax Arguments: roads_feature_class {String} -- Path to feature class condition {String} -- Existing, NoBuild, or Build. Determines fields to use from geospatial template Returns: [string] -- [roadways] """ roadway_count = len([row for row in shapefile.Reader(roadway_feature_class)]) with shapefile.Reader(roadway_feature_class) as roadways: roadway_string = "2,{}\n".format(roadway_count) flds = validate_roadway_field(condition) for row in roadways.shapeRecords(): road = row.record["road_name"] speed = row.record["speed"] auto = round(row.record[flds[0]], 0) medium = round(row.record[flds[1]], 0) heavy = round(row.record[flds[2]], 0) roadway_string += "{}\n".format(road) roadway_string += "CARS {} {}\n".format(auto, speed) roadway_string += "MT {} {}\n".format(medium, speed) roadway_string += "HT {} {}\n".format(heavy, speed) roadway_string += _write_roadway_points(row.shape) roadway_string += roadway_separator() return roadway_string
0c82db17f3632a2c7023a6437a3f7e8221e667ba
3,645,728
from .tf import TF_BACKEND from .torch import TORCH_BACKEND from .jax import JAX_BACKEND from .math.backend import BACKENDS def detect_backends() -> tuple: """ Registers all available backends and returns them. This includes only backends for which the minimal requirements are fulfilled. Returns: `tuple` of `phi.math.backend.Backend` """ try: except ImportError: pass try: except ImportError: pass try: except ImportError: pass return tuple(BACKENDS)
4d7fb7c80e8a931a614549539b9e157223602d31
3,645,729
import random def mix_audio(word_path=None, bg_path=None, word_vol=1.0, bg_vol=1.0, sample_time=1.0, sample_rate=16000): """ Read in a wav file and background noise file. Resample and adjust volume as necessary. """ # If no word file is given, just return random background noise if word_path == None: waveform = [0] * int(sample_time * sample_rate) fs = sample_rate else: # Open wav file, resample, mix to mono waveform, fs = librosa.load(word_path, sr=sample_rate, mono=True) # Pad 0s on the end if not long enough if len(waveform) < sample_time * sample_rate: waveform = np.append(waveform, np.zeros(int((sample_time * sample_rate) - len(waveform)))) # Truncate if too long waveform = waveform[:int(sample_time * sample_rate)] # If no background noise is given, just return the waveform if bg_path == None: return waveform # Open background noise file bg_waveform, fs = librosa.load(bg_path, sr=fs) # Pick a random starting point in background file max_end = len(bg_waveform) - int(sample_time * sample_rate) start_point = random.randint(0, max_end) end_point = start_point + int(sample_time * sample_rate) # Mix the two sound samples (and multiply by volume) waveform = [0.5 * word_vol * i for i in waveform] + \ (0.5 * bg_vol * bg_waveform[start_point:end_point]) return waveform
fba93e1f0d13bab4b9a30fe2d849fa3b1cf99927
3,645,730
def analytical_pulse_width(ekev): """ Estimate analytical_pulse_width (FWHM) from radiation energy (assumes symmetrical beam) :param ekev: radiation energy [keV] :return sig: Radiation pulse width (FWHM) [m] """ sig = np.log((7.4e03/ekev))*6 return sig/1e6
c56f861d1a83147ff425de7760416e870e1a69d4
3,645,731
def progress_timeout(progress_bar): """ Update the progress of the timer on a timeout tick. Parameters ---------- progress_bar : ProgressBar The UI progress bar object Returns ------- bool True if continuing timer, False if done. """ global time_remaining, time_total time_remaining -= 1 new_val = 1 - (time_remaining / time_total) if new_val >= 1: progress_bar.pb.set_text("Coffee extraction done.") play_endsound() return False progress_bar.pb.set_fraction(new_val) progress_bar.pb.set_text("{0:.1f} % Brewed ({1:01d}:{2:02d} Remaining)" .format(new_val * 100, time_remaining / 60, time_remaining % 60)) return True
1b7e4976a5d96b2ede671c413ff0a7702603c6d8
3,645,732
def socket_file(module_name): """ Get the absolute path to the socket file for the named module. """ module_name = realname(module_name) return join(sockets_directory(), module_name + '.sock')
df92c1a23374296d96c6419f32cdffd55b6564cf
3,645,733
def postBuild(id: str): """Register a new build. Args: id: Identifier of Repository for which build is to be registered. Returns: build_id: Identifier of Build created. """ return register_builds( id, request.headers["X-Project-Access-Token"], request.json )
13b8aed703e9e5cf2191baaf98583374021fb494
3,645,734
import json def submit(g_nocaptcha_response_value, secret_key, remoteip): """ Submits a reCAPTCHA request for verification. Returns RecaptchaResponse for the request recaptcha_response_field -- The value of recaptcha_response_field from the form secret_key -- your reCAPTCHA private key remoteip -- the user's ip address """ if not (g_nocaptcha_response_value and len(g_nocaptcha_response_value)): return RecaptchaResponse( is_valid=False, error_codes=['incorrect-captcha-sol'] ) params = urlencode({ 'secret': want_bytes(secret_key), 'remoteip': want_bytes(remoteip), 'response': want_bytes(g_nocaptcha_response_value), }) if not PY2: params = params.encode('utf-8') req = Request( url=VERIFY_URL, data=params, headers={ 'Content-type': 'application/x-www-form-urlencoded', 'User-agent': 'noReCAPTCHA Python' } ) httpresp = urlopen(req) try: res = force_text(httpresp.read()) return_values = json.loads(res) except (ValueError, TypeError): return RecaptchaResponse( is_valid=False, error_codes=['json-read-issue'] ) except: return RecaptchaResponse( is_valid=False, error_codes=['unknown-network-issue'] ) finally: httpresp.close() return_code = return_values.get("success", False) error_codes = return_values.get('error-codes', []) logger.debug("%s - %s" % (return_code, error_codes)) if return_code is True: return RecaptchaResponse(is_valid=True) else: return RecaptchaResponse(is_valid=False, error_codes=error_codes)
5dd56bd898862af8323a049e73e5cc3a9b983b26
3,645,735
def boundary(shape, n_size, n): """ Shape boundaries & their neighborhoods @param shape 2D_bool_numpy_array: True if pixel in shape @return {index: neighborhood} index: 2D_int_tuple = index of neighborhood center in shape neighborhood: 2D_bool_numpy_array of size n_size Boundaries are shape pixels inside the shape having 1 or more 4-neighbors outside the shape. """ return {i: shape[n(i)] for i in np.ndindex(shape.shape) if is_boundary_pixel(shape,i,n_size)}
619050d3dfff50ccea204538a4cabcd7ef2190ab
3,645,736
def centered_mols(self, labels, return_trans=False): """ Return the molecules translated at the origin with a corresponding cell Parameters ---------- labels : int or list of ints The labels of the atoms to select print_centro : bool Print the translation vector which was detected as -centroid Returns ------- mol : Mol object The selected molecules with their centroid at the origin mod_cell : Mol object The new confined cell corresponding to the now translated molecules """ mol, mod_cell = self.complete_mol(labels) centro = mol.centroid() mol.translate(-centro) mod_cell.translate(-centro) mod_cell = mod_cell.confined() if return_trans: return mol, mod_cell, -centro else: return mol, mod_cell
858fd2b43f0ac9eaca3db94108f9bec0dbf305c7
3,645,737
import torch def binary_accuracy(output: torch.Tensor, target: torch.Tensor) -> float: """Computes the accuracy for binary classification""" with torch.no_grad(): batch_size = target.size(0) pred = (output >= 0.5).float().t().view(-1) correct = pred.eq(target.view(-1)).float().sum() correct.mul_(100.0 / batch_size) return correct
306d7d0e85a617b8b4508f2dfbbbac1f5fb67bc5
3,645,738
def prepare_config(config): """ Prepares a dictionary to be stored as a json. Converts all numpy arrays to regular arrays Args: config: The config with numpy arrays Returns: The numpy free config """ c = {} for key, value in config.items(): if isinstance(value, np.ndarray): value = value.tolist() c[key] = value return c
4ad31fc20fab7e3f7a7de9f50b0431d8000df029
3,645,739
import json def load_config(path='config.json'): """ Loads configruation from config.json file. Returns station mac address, interval, and units for data request """ # Open config JSON with open(path) as f: # Load JSON file to dictionary config = json.load(f) # Return mac address, interval, and units return (config['station_max_address'], int(config['interval']), config['units'])
5522f023ed3293149613dcc2dc007e34d50f3fa8
3,645,740
import torch def log_px_z(pred_logits, outcome): """ Returns Bernoulli log probability. :param pred_logits: logits for outcome 1 :param outcome: datapoint :return: log Bernoulli probability of outcome given logits in pred_logits """ pred = pred_logits.view(pred_logits.size(0), -1) y = outcome.view(outcome.size(0), -1) return -torch.sum(torch.max(pred, torch.tensor(0., device=pred.device)) - pred * y + torch.log(1 + torch.exp(-torch.abs(pred))), 1)
6369d893cc9bfe5c3f642f819511798d01ae3ae9
3,645,741
def _sort_rows(matrix, num_rows): """Sort matrix rows by the last column. Args: matrix: a matrix of values (row,col). num_rows: (int) number of sorted rows to return from the matrix. Returns: Tensor (num_rows, col) of the sorted matrix top K rows. """ tmatrix = tf.transpose(a=matrix, perm=[1, 0]) sorted_tmatrix = tf.nn.top_k(tmatrix, num_rows)[0] return tf.transpose(a=sorted_tmatrix, perm=[1, 0])
e9e8fcb6275915e8a42798411c0712eb34bbbfe4
3,645,742
import functools def partial_at(func, indices, *args): """Partial function application for arguments at given indices.""" @functools.wraps(func) def wrapper(*fargs, **fkwargs): nargs = len(args) + len(fargs) iargs = iter(args) ifargs = iter(fargs) posargs = (next((ifargs, iargs)[i in indices]) for i in range(nargs)) # posargs = list( posargs ) # print( 'posargs', posargs ) return func(*posargs, **fkwargs) return wrapper
1b45e0bd8baea869d80c6b5963c6063f6b8fbdd4
3,645,743
import importlib def try_load_module(module_name): """ Import a module by name, print the version info and file name. Return None on failure. """ try: mod = importlib.import_module(module_name) print green("%s %s:" % (module_name, mod.__version__)), mod.__file__ return mod except ImportError: print yellow("Could not find nltk") return None
527c2fb3dbbb3ef8ee5800f492a727a2d565892d
3,645,744
def project_image(request, uid): """ GET request : return project image PUT request : change project image """ project = Project.objects.filter(uid=uid).first() imgpath = project.image.path if project.image else get_thumbnail() if request.method == "PUT": file_object = request.data.get("file") imgpath = change_image(obj=project, file_object=file_object) data = open(imgpath, "rb") .read() return HttpResponse(content=data, content_type="image/jpeg")
f05db1026f41ab15eece1068fe182e0673e798e3
3,645,745
from typing import Optional def validate(prefix: str, identifier: str) -> Optional[bool]: """Validate the identifier against the prefix's pattern, if it exists. :param prefix: The prefix in the CURIE :param identifier: The identifier in the CURIE :return: Whether this identifier passes validation, after normalization >>> validate("chebi", "1234") True >>> validate("chebi", "CHEBI:12345") True >>> validate("chebi", "CHEBI:ABCD") False """ resource = get_resource(prefix) if resource is None: return None return resource.validate_identifier(identifier)
bbdc0eef34a03670963354d0cdf6e414eaa2aa8d
3,645,746
import torch def laplacian_positional_encoding(g, pos_enc_dim): """ Graph positional encoding v/ Laplacian eigenvectors """ # Laplacian A = g.adjacency_matrix_scipy(return_edge_ids=False).astype(float) N = sp.diags(dgl.backend.asnumpy(g.in_degrees()).clip(1) ** -0.5, dtype=float) L = sp.eye(g.number_of_nodes()) - N * A * N # Eigenvectors with scipy #EigVal, EigVec = sp.linalg.eigs(L, k=pos_enc_dim+1, which='SR') EigVal, EigVec = sp.linalg.eigs(L, k=pos_enc_dim+1, which='SR', tol=1e-2) EigVec = EigVec[:, EigVal.argsort()] # increasing order out = torch.from_numpy(EigVec[:,1:pos_enc_dim+1]).float() return out
69b09e69f37fc870fa36510ef05172f35bfc0093
3,645,747
async def replace_chain(): """ replaces the current chain with the most recent and longest chain """ blockchain.replace_chain() blockchain.is_chain_valid(chain=blockchain.chain) return{'message': 'chain has been updated and is valid', 'longest chain': blockchain.chain}
3ef0797ca582dbd2cb7ab47b09c847a4380215d5
3,645,748
import copy def ucb(bufferx, objective_weights, regression_models, param_space, scalarization_method, objective_limits, iteration_number, model_type, classification_model=None, number_of_cpus=0): """ Multi-objective ucb acquisition function as detailed in https://arxiv.org/abs/1805.12168. The mean and variance of the predictions are computed as defined by Hutter et al.: https://arxiv.org/pdf/1211.0906.pdf :param bufferx: a list of tuples containing the points to predict and scalarize. :param objective_weights: a list containing the weights for each objective. :param regression_models: the surrogate models used to evaluate points. :param param_space: a space object containing the search space. :param scalarization_method: a string indicating which scalarization method to use. :param evaluations_per_optimization_iteration: how many configurations to return. :param objective_limits: a dictionary with estimated minimum and maximum values for each objective. :param iteration_number: an integer for the current iteration number, used to compute the beta :param classification_model: the surrogate model used to evaluate feasibility constraints :param number_of_cpus: an integer for the number of cpus to be used in parallel. :return: a list of scalarized values for each point in bufferx. """ beta = np.sqrt(0.125*np.log(2*iteration_number + 1)) augmentation_constant = 0.05 prediction_means = {} prediction_variances = {} number_of_predictions = len(bufferx) tmp_objective_limits = copy.deepcopy(objective_limits) prediction_means, prediction_variances = models.compute_model_mean_and_uncertainty(bufferx, regression_models, model_type, param_space, var=True) if classification_model != None: classification_prediction_results = models.model_probabilities(bufferx, classification_model, param_space) feasible_parameter = param_space.get_feasible_parameter()[0] true_value_index = classification_model[feasible_parameter].classes_.tolist().index(True) feasibility_indicator = classification_prediction_results[feasible_parameter][:,true_value_index] else: feasibility_indicator = [1]*number_of_predictions # if no classification model is used, then all points are feasible # Compute scalarization if (scalarization_method == "linear"): scalarized_predictions = np.zeros(number_of_predictions) beta_factor = 0 for objective in regression_models: scalarized_predictions += objective_weights[objective]*prediction_means[objective] beta_factor += objective_weights[objective]*prediction_variances[objective] scalarized_predictions -= beta*np.sqrt(beta_factor) scalarized_predictions = scalarized_predictions*feasibility_indicator # The paper does not propose this, I applied their methodology to the original tchebyshev to get the approach below # Important: since this was not proposed in the paper, their proofs and bounds for the modified_tchebyshev may not be valid here. elif(scalarization_method == "tchebyshev"): scalarized_predictions = np.zeros(number_of_predictions) total_values = np.zeros(number_of_predictions) for objective in regression_models: scalarized_values = objective_weights[objective] * np.absolute(prediction_means[objective] - beta*np.sqrt(prediction_variances[objective])) total_values += scalarized_values scalarized_predictions = np.maximum(scalarized_values, scalarized_predictions) scalarized_predictions += augmentation_constant*total_values scalarized_predictions = scalarized_predictions*feasibility_indicator elif(scalarization_method == "modified_tchebyshev"): scalarized_predictions = np.full((number_of_predictions), float("inf")) reciprocated_weights = reciprocate_weights(objective_weights) for objective in regression_models: scalarized_value = reciprocated_weights[objective] * (prediction_means[objective] - beta*np.sqrt(prediction_variances[objective])) scalarized_predictions = np.minimum(scalarized_value, scalarized_predictions) scalarized_predictions = scalarized_predictions*feasibility_indicator scalarized_predictions = -scalarized_predictions # We will minimize later, but we want to maximize instead, so we invert the sign else: print("Error: unrecognized scalarization method:", scalarization_method) raise SystemExit return scalarized_predictions, tmp_objective_limits
4ec8615d979fb9c3ee7539cd5e161ee920bc1c3a
3,645,749
def np_array_to_binary_vector(np_arr): """ Converts a NumPy array to the RDKit ExplicitBitVector type. """ binary_vector = DataStructs.ExplicitBitVect(len(np_arr)) binary_vector.SetBitsFromList(np.where(np_arr)[0].tolist()) return binary_vector
c1865c47cd1abb71fbb3d3ce1b9a9cc75e87f70a
3,645,750
def augment_features(data, feature_augmentation): """ Augment features for a given data matrix. :param data: Data matrix. :param feature_augmentation: Function applied to augment the features. :return: Augmented data matrix. """ if data is not None and feature_augmentation is not None: if isinstance(feature_augmentation, list): for augmentation_function in feature_augmentation: data = augmentation_function(data) else: data = feature_augmentation(data) return data
687a7ff2a4b61131f5d95e1f7d6eb77d75bd6f06
3,645,751
def _get_data_from_empty_list(source, fields='*', first_row=0, count=-1, schema=None): """ Helper function for _get_data that handles empty lists. """ fields = get_field_list(fields, schema) return {'cols': _get_cols(fields, schema), 'rows': []}, 0
bd1c219ed2ef738cf403b984cccc4aa4cd96aa2f
3,645,752
def copy_keys_except(dic, *keys): """Return a copy of the dict without the specified items. """ ret = dic.copy() for key in keys: try: del ret[key] except KeyError: pass return ret
b1e57db9dbacbc2a7c502c36082f40598a0f4b90
3,645,753
import random import math def get_params(img, scale, ratio): """Get parameters for ``crop`` for a random sized crop. Args: img (PIL Image): Image to be cropped. scale (tuple): range of size of the origin size cropped ratio (tuple): range of aspect ratio of the origin aspect ratio cropped Returns: tuple: params (i, j, h, w) to be passed to ``crop`` for a random sized crop. """ area = img.size[0] * img.size[1] for attempt in range(10): target_area = random.uniform(*scale) * area log_ratio = (math.log(ratio[0]), math.log(ratio[1])) aspect_ratio = math.exp(random.uniform(*log_ratio)) w = int(round(math.sqrt(target_area * aspect_ratio))) h = int(round(math.sqrt(target_area / aspect_ratio))) if w <= img.size[0] and h <= img.size[1]: i = random.randint(0, img.size[1] - h) j = random.randint(0, img.size[0] - w) return i, j, h, w # Fallback to central crop in_ratio = img.size[0] / img.size[1] if in_ratio < min(ratio): w = img.size[0] h = int(round(w / min(ratio))) elif in_ratio > max(ratio): h = img.size[1] w = int(round(h * max(ratio))) else: # whole image w = img.size[0] h = img.size[1] i = (img.size[1] - h) // 2 j = (img.size[0] - w) // 2 return i, j, h, w
80838328fc9383731e1a853c8dc572228d1a4567
3,645,754
from typing import Any async def start_time() -> Any: """ Returns the contest start time. """ return schemas.Timestamp(timestamp=settings.EVENT_START_TIME)
5613f6d8928c1d1ca49677e829617769a3e6f8c3
3,645,755
def reshape(v, shape): """Implement `reshape`.""" return np.reshape(v, shape)
249e17a4b503b3434c5ec0d3e14bef1208321e92
3,645,756
def generate_html_from_module(module): """ Extracts a module documentations from a module object into a HTML string uses a pre-written builtins list in order to exclude built in functions :param module: Module object type to extract documentation from :return: String representation of an HTML file """ html_content = f"<html><head><title>{module.__name__} Doc</title></head><body><h1>Module {module.__name__}:</h1>" html_content += f"Function {module.__doc__}" for function in module.__dict__: if callable(getattr(module, function)): html_content += f"<h2>Function {function}:</h2>" html_content += f"{getattr(module, function).__doc__}" html_content += f"<h3>Annotations:</h3>" for annotation in getattr(module, function).__annotations__.keys(): html_content += f"{annotation} <br>" html_content += "</body></html>" return html_content
3e59931f3716dd3c50dfdda3ba17807b62f04c14
3,645,757
def _phi(r, order): """Coordinate-wise nonlinearity used to define the order of the interpolation. See https://en.wikipedia.org/wiki/Polyharmonic_spline for the definition. Args: r: input op order: interpolation order Returns: phi_k evaluated coordinate-wise on r, for k = r """ # using EPSILON prevents log(0), sqrt0), etc. # sqrt(0) is well-defined, but its gradient is not with tf.name_scope("phi"): if order == 1: r = tf.maximum(r, EPSILON) r = tf.sqrt(r) return r elif order == 2: return 0.5 * r * tf.math.log(tf.maximum(r, EPSILON)) elif order == 4: return 0.5 * tf.square(r) * tf.math.log(tf.maximum(r, EPSILON)) elif order % 2 == 0: r = tf.maximum(r, EPSILON) return 0.5 * tf.pow(r, 0.5 * order) * tf.math.log(r) else: r = tf.maximum(r, EPSILON) return tf.pow(r, 0.5 * order)
b2270f17260e90b995c60b4bc0fb65f49be9c514
3,645,758
def updated_topology_description(topology_description, server_description): """Return an updated copy of a TopologyDescription. :Parameters: - `topology_description`: the current TopologyDescription - `server_description`: a new ServerDescription that resulted from a hello call Called after attempting (successfully or not) to call hello on the server at server_description.address. Does not modify topology_description. """ address = server_description.address # These values will be updated, if necessary, to form the new # TopologyDescription. topology_type = topology_description.topology_type set_name = topology_description.replica_set_name max_set_version = topology_description.max_set_version max_election_id = topology_description.max_election_id server_type = server_description.server_type # Don't mutate the original dict of server descriptions; copy it. sds = topology_description.server_descriptions() # Replace this server's description with the new one. sds[address] = server_description if topology_type == TOPOLOGY_TYPE.Single: # Set server type to Unknown if replica set name does not match. if (set_name is not None and set_name != server_description.replica_set_name): error = ConfigurationError( "client is configured to connect to a replica set named " "'%s' but this node belongs to a set named '%s'" % ( set_name, server_description.replica_set_name)) sds[address] = server_description.to_unknown(error=error) # Single type never changes. return TopologyDescription( TOPOLOGY_TYPE.Single, sds, set_name, max_set_version, max_election_id, topology_description._topology_settings) if topology_type == TOPOLOGY_TYPE.Unknown: if server_type in (SERVER_TYPE.Standalone, SERVER_TYPE.LoadBalancer): if len(topology_description._topology_settings.seeds) == 1: topology_type = TOPOLOGY_TYPE.Single else: # Remove standalone from Topology when given multiple seeds. sds.pop(address) elif server_type not in (SERVER_TYPE.Unknown, SERVER_TYPE.RSGhost): topology_type = _SERVER_TYPE_TO_TOPOLOGY_TYPE[server_type] if topology_type == TOPOLOGY_TYPE.Sharded: if server_type not in (SERVER_TYPE.Mongos, SERVER_TYPE.Unknown): sds.pop(address) elif topology_type == TOPOLOGY_TYPE.ReplicaSetNoPrimary: if server_type in (SERVER_TYPE.Standalone, SERVER_TYPE.Mongos): sds.pop(address) elif server_type == SERVER_TYPE.RSPrimary: (topology_type, set_name, max_set_version, max_election_id) = _update_rs_from_primary(sds, set_name, server_description, max_set_version, max_election_id) elif server_type in ( SERVER_TYPE.RSSecondary, SERVER_TYPE.RSArbiter, SERVER_TYPE.RSOther): topology_type, set_name = _update_rs_no_primary_from_member( sds, set_name, server_description) elif topology_type == TOPOLOGY_TYPE.ReplicaSetWithPrimary: if server_type in (SERVER_TYPE.Standalone, SERVER_TYPE.Mongos): sds.pop(address) topology_type = _check_has_primary(sds) elif server_type == SERVER_TYPE.RSPrimary: (topology_type, set_name, max_set_version, max_election_id) = _update_rs_from_primary(sds, set_name, server_description, max_set_version, max_election_id) elif server_type in ( SERVER_TYPE.RSSecondary, SERVER_TYPE.RSArbiter, SERVER_TYPE.RSOther): topology_type = _update_rs_with_primary_from_member( sds, set_name, server_description) else: # Server type is Unknown or RSGhost: did we just lose the primary? topology_type = _check_has_primary(sds) # Return updated copy. return TopologyDescription(topology_type, sds, set_name, max_set_version, max_election_id, topology_description._topology_settings)
3fe6f527c8fdb177f608d5130c0ce239aef84c20
3,645,759
import os def get_absolute_filepath(filepath: str) -> str: """Returns absolute filepath of the file/folder from the given `filepath` (along with the extension, if any)""" absolute_filepath = os.path.realpath(path=filepath) return absolute_filepath
be8ac0f55ed6fb039a746e0868bbd5ec2b8274ae
3,645,760
import numpy def target_mask(image, path, num_grid_corners): """ Arguments: image: grayscale image of shape (N, M) path: pathlib.Path object for the image Returns: Boolean mask of shape (N, M), which is True for pixels that we think are on the calibration target. """ ret, corners = get_cached_corners( image_path=path, gray=image, num_grid_corners=num_grid_corners ) if ret: # Take the hull to get the outer 2D shape hull = ConvexHull(corners.squeeze()) points2d = hull.points[hull.vertices] # Scale the points outward slightly scale = 1.3 center = numpy.average(points2d, axis=0) for i in range(len(points2d)): points2d[i] = center + scale * (points2d[i] - center) # Clip to edges, note corners are (axis1, axis0) points2d[:, 0] = numpy.clip(points2d[:, 0], 0, image.shape[1] - 1) points2d[:, 1] = numpy.clip(points2d[:, 1], 0, image.shape[0] - 1) # Make a boolean mask mask = numpy.zeros(image.shape[:2], dtype=numpy.int32) # import ipdb; ipdb.set_trace() mask = cv2.fillPoly( mask, [points2d.reshape((-1, 1, 2)).astype(numpy.int32)], color=1.0 ) mask = mask.astype(bool) else: mask = numpy.ones(image.shape[:2], dtype=bool) return mask
369a37b1cc5a49761413bac0a9b48a275bb76e59
3,645,761
from pathlib import Path def read_data(spec: dict) -> (dict, DataFrame): """Creates Pandas DataFrame by reading file at path. Appropriate read_* pandas method will be called based on the extension of the input file specified.""" path = spec['input']['file'] ext = Path(path).suffix kwargs = build_kwargs_read(spec, ext) return spec, read_funcs[ext](path, **kwargs)
22e18a0702261c23e322fe03687864d694ecba98
3,645,762
import textwrap def bunk_choose(bot, update, user_data): """Removes keyboardMarkup sent in previous handler. Stores the response (for Lectures/Practicals message sent in previous handler) in a ``user_data`` dictionary with the key `"stype"`. ``user_data`` is a user relative dictionary which holds data between different handlers/functions in a ConversationHandler. Selects the appropriate table (Lecture or Practical) based on ``stype`` value. Checks if records exist in the table for a user and sends a warning message or proceeds to list names of all subjects in the table. Passes control to :py:func:`bunk_input` :param bot: Telegram Bot object :type bot: telegram.bot.Bot :param update: Telegram Update object :type update: telegram.update.Update :param user_data: User data dictionary :type user_data: dict :return: ConversationHandler.END if no records else INPUT :rtype: int """ user_data['type'] = update.message.text chat_id = update.message.chat_id stype = user_data['type'] reply_markup = ReplyKeyboardRemove() reply_text = "{}\nChoose `Cancel` to exit.".format(stype) bot.sendMessage(chat_id=chat_id, text=reply_text, reply_markup=reply_markup, parse_mode='markdown') if stype == "Lectures": subject_data = Lecture.query.filter(Lecture.chatID == chat_id).all() else: subject_data = Practical.query.filter(Practical.chatID == chat_id).all() if not subject_data: #If list is empty messageContent = textwrap.dedent(""" No records found! Please use /attendance to pull your attendance from the website first. """) bot.sendMessage(chat_id=chat_id, text=messageContent) return ConversationHandler.END messageContent = "" for digit, subject in enumerate(subject_data): subject_name = subject.name messageContent += "{digit}. {subject_name}\n".format(digit=digit+1, subject_name=subject_name) keyboard = build_menu(subject_data, 3, footer_buttons='Cancel') reply_markup = ReplyKeyboardMarkup(keyboard) user_data['reply_markup'] = reply_markup bot.sendMessage(chat_id=chat_id, text=messageContent, reply_markup=reply_markup) return INPUT
11d1249ec1953cc38be80470a21ba95b694c1ed5
3,645,763
import os def schema_instance(): """JSONSchema schema instance.""" schema_instance = JsonSchema( schema=LOADED_SCHEMA_DATA, filename="dns.yml", root=os.path.join(FIXTURES_DIR, "schema", "schemas"), ) return schema_instance
7c9b2453e9db531d38fcfe5852a3df49d6839cfa
3,645,764
def module_of(obj): """Return the Module given object is contained within. """ if isinstance(obj, Module): return obj elif isinstance(obj, (Function, Class)): return obj.module elif isinstance(obj, Method): return module_of(obj.klass) elif isinstance(obj, TestCase): return module_of(obj.parent) else: raise TypeError("Don't know how to find the module of %r" % obj)
02c69c72d46e8448f7cdf41e18582508b431e4e7
3,645,765
def day(date, atmos=atmos): """ Returns a dataframe of daily aggregated data Parameters ------- date: str Format yyyy/mm/dd """ path = f"{get_day_folder_path(date)}{date.replace('/','')}_daily_agg.csv.gz" return load_agg(path, atmos)
84f56d078b0aec9605a261ed26656d4771e0eb11
3,645,766
async def find_deck_position(hcapi: OT3API, mount: OT3Mount) -> float: """ Find the true position of the deck in this mount's frame of reference. The deck nominal position in deck coordinates is 0 (that's part of the definition of deck coordinates) but if we have not yet calibrated a particular tool on a particular mount, then the z deck coordinate that will cause a collision is not 0. This routine finds that value. """ z_offset_settings = hcapi.config.calibration.z_offset await hcapi.home_z() here = await hcapi.gantry_position(mount) z_prep_point = Point(*z_offset_settings.point) above_point = z_prep_point._replace(z=here.z) await hcapi.move_to(mount, above_point) deck_z = await hcapi.capacitive_probe( mount, OT3Axis.by_mount(mount), z_prep_point.z, z_offset_settings.pass_settings ) LOG.info(f"autocalibration: found deck at {deck_z}") await hcapi.move_to(mount, z_prep_point + Point(0, 0, CAL_TRANSIT_HEIGHT)) return deck_z
f75c3d066c367853036adc1de138755a2a1ee29b
3,645,767
import os import glob import json def load_measure_defs(measure_ids=None): """Load measure definitions from JSON files. Since the lpzomnibus measure depends on other LP measures having already been calculated, it is important that the measures are returned in alphabetical order. (This is a bit of a hack...) """ measures = [] errors = [] glob_path = os.path.join(settings.MEASURE_DEFINITIONS_PATH, "*.json") for path in sorted(glob.glob(glob_path)): measure_id = os.path.basename(path).split(".")[0] with open(path) as f: try: measure_def = json.load(f) except ValueError as e: # Add the measure_id to the exception errors.append("* {}: {}".format(measure_id, e.args[0])) continue if measure_ids is None: if "skip" in measure_def: continue else: if measure_id not in measure_ids: continue measure_def["id"] = measure_id measures.append(measure_def) if errors: raise ValueError("Problems parsing JSON:\n" + "\n".join(errors)) return measures
4ff5eefceff2b5357c3b4c81f9de61148cff1745
3,645,768
import logging import os def setup_logger(name, warninglevel=logging.WARNING, logfilepath=path_to_log, logformat='%(asctime)s %(levelname)s - %(name)-6s - %(message)s'): """Basic setup function to create a standard logging config. Default output is to file in /tmp/dir.""" logfile=os.path.join(logfilepath,'magpy.log') # Check file permission/existance if not os.path.isfile(logfile): pass else: if os.access(logfile, os.W_OK): pass else: for count in range (1,100): logfile=os.path.join(logfilepath,'magpy{:02}.log'.format(count)) value = os.access(logfile, os.W_OK) if value or not os.path.isfile(logfile): count = 100 break try: logging.basicConfig(filename=logfile, filemode='w', format=logformat, level=logging.INFO) except: logging.basicConfig(format=logformat, level=logging.INFO) logger = logging.getLogger(name) # Define a Handler which writes "setLevel" messages or higher to the sys.stderr console = logging.StreamHandler() console.setLevel(warninglevel) logger.addHandler(console) return logger
87a00b5f0fd57e79e60cbf0847f86e35274aa9be
3,645,769
import random def create_symbol_id(path_to_db: str) -> str: """ When creating a new symbol, need to ensure that ID is not already used in the Physics Derivation Graph Args: path_to_db: filename of the SQL database containing a JSON entry that returns a nested dictionary Returns: proposed_symbol_id Raises: >>> create_symbol_id("pdg.db") """ # trace_id = str(random.randint(1000000, 9999999)) # logger.info("[trace start " + trace_id + "]") dat = clib.read_db(path_to_db) symbol_ids_in_use = list(dat["symbols"].keys()) found_valid_id = False loop_count = 0 while not found_valid_id: loop_count += 1 proposed_symbol_id = str(random.randint(1000, 9999)) # 4 digits if proposed_symbol_id not in symbol_ids_in_use: found_valid_id = True if loop_count > 100000: logger.error("too many; this seems unlikely") raise Exception("this seems unlikely") # logger.info("[trace end " + trace_id + "]") return proposed_symbol_id
1394f7f348abd43ee1cbb4fed8119fda39341028
3,645,770
import re def get_file_name(content_disposition: str, ) -> str: """Content-Disposition has the filename between the `"`. get it. Args: content_disposition: the content disposition from download header Returns: the file name """ if match := re.search(r'"(.*?)"', content_disposition): file_name = match.group(1) else: file_name = demisto.uniqueFile() return file_name
f81c8ee80d341bf62b970565c062db348324905f
3,645,771
def get_object(node): """ Parse rebaron AtomTrailers node into Python object (taken from ongoing conversion object) Works for object and local scope """ if len(node) > 1 and (node[0].value == 'self' or node[0].value == 'self_next'): var_t = super_getattr(convert_obj, str(node)) else: # get the SOURCE function (where call is going on) from datamodel def_parent = node.parent while not isinstance(def_parent, DefNode): def_parent = def_parent.parent source_func_name = f'self.{def_parent.name}' source_func_obj = super_getattr(convert_obj, str(source_func_name)) func_locals = source_func_obj.get_local_types() class Struct: def __init__(self, **entries): self.__dict__.update(entries) struct = Struct(**func_locals) var_t = super_getattr(struct, str(node), is_local=True) return var_t
9b09dfaae08768e1544e676e93bcf5ce718c67d5
3,645,772
def read_label_from_txt(label_path): """Read label from txt file.""" text = np.fromfile(label_path) bounding_box = [] with open(label_path, "r") as f: labels = f.read().split("\n") for label in labels: if not label: continue label = label.split(" ") if (label[0] == "DontCare"): continue if label[0] == ("Car" or "Van"): # or "Truck" bounding_box.append(label[8:15]) if bounding_box: data = np.array(bounding_box, dtype=np.float32) return data[:, 3:6], data[:, :3], data[:, 6] else: return None, None, None
dd6158af3531ec003b57c4fa47282957c3cb72ea
3,645,773
from typing import Union def _load_recipe(module, baked: bool = False) -> Union[BakedRecipe, Recipe]: # load entry-point DAG """Load Queenbee plugin from Python package. Usually you should not be using this function directly. Use ``load`` function instead. args: module: Python module object for a Queenbee Recipe. returns: Recipe - A Queenbee recipe. It will be a baked recipe if baked is set to True. """ qb_info = module.__pollination__ package_name = module.__name__ main_dag_entry = qb_info.get('entry_point', None) assert main_dag_entry, \ f'{package_name} __pollination__ info is missing the enetry_point key.' main_dag = main_dag_entry() # get metadata metadata = _get_meta_data(module, 'recipe') _dependencies = main_dag._dependencies # create a queenbee Recipe object # load dags qb_dag = main_dag.queenbee qb_dag.name = 'main' dags = [qb_dag] + [dag.queenbee for dag in _dependencies['dag']] # add dependencies repo = _init_repo() plugins = [ Dependency( kind=DependencyKind.plugin, name=plugin['name'], tag=plugin['tag'], source=repo.as_uri() ) for plugin in _dependencies['plugin'] ] recipes = [ Dependency( kind=DependencyKind.recipe, name=recipe['name'], tag=recipe['tag'], source=repo.as_uri() ) for recipe in _dependencies['recipe'] ] recipe = Recipe(metadata=metadata, dependencies=plugins + recipes, flow=dags) if baked: package_recipe_dependencies(recipe) rf = RepositoryReference( name='pollination-dsl', path='file:///' + repo.as_posix() ) config = Config(repositories=[rf]) recipe = BakedRecipe.from_recipe(recipe=recipe, config=config) return recipe
d0c400a234a777438418c4eb605723ea67509077
3,645,774
def compute_coeffs(shape, Aref, alfa): """Computes the lift and drag coefficients of the given shape at the given angle of attack using the given reference area""" alfa_vect = np.array([-np.sin(alfa),0,-np.cos(alfa)]) Fvect = np.array([0,0,0]) #Force coefficient vector for panel in shape: panel.alfa = np.arcsin(np.dot(alfa_vect,-panel.N)/ \ (np.linalg.norm(alfa_vect)*np.linalg.norm(panel.N))) panel_Cpvect = (panel.A/Aref) * (2*np.sin(panel.alfa)**2) * (-panel.N/np.linalg.norm(panel.N)) Fvect = Fvect + panel_Cpvect CN = -Fvect[0]#np.dot(Fvect,np.array([-1,0,0])) CA = -Fvect[2]#np.dot(Fvect,np.array([0,0,-1])) CL = CN * np.cos(alfa) - CA * np.sin(alfa) CD = CA * np.cos(alfa) + CN * np.sin(alfa) #return CA, CN return CL, CD
48cd922a460c56961cf2ebc2a3ecfc121622fe26
3,645,775
def draw_pitch(axis, rotate=False): """ Plots the lines of a soccer pitch using matplotlib. Arguments --------- axis : matplotlib.axes._subplots.AxesSubplot - matplotlib axis object on which to plot shot freeze frame rotate : bool - if set to True, pitch is horizontal, default to False Returns ------- None """ line_width = 4 alpha = 0.5 r = 10 line_coords = [[[0, 0], [0, 120]], [[0, 80], [120, 120]], [[80, 80], [120, 0]], [[0, 80], [0, 0]], [[0, 80], [60, 60]], [[18, 18], [0, 18]], [[18, 62], [18, 18]], [[62, 62], [0, 18]], [[30, 30], [0, 6]], [[30, 50], [6, 6]], [[50, 50], [0, 6]], [[18, 18], [120, 102]], [[18, 62], [102, 102]], [[62, 62], [102, 120]], [[30, 30], [120, 114]], [[30, 50], [114, 114]], [[50, 50], [120, 114]]] if not rotate: for lines in line_coords: axis.plot(lines[0], lines[1], color='grey', linewidth=line_width, alpha=alpha) theta1 = np.linspace(0, 2*np.pi, 100) theta2 = np.linspace(0.65, 2.47, 100) theta3 = np.linspace(3.8, 5.6, 100) x1 = r*np.cos(theta1) + 40 x2 = r*np.sin(theta1) + 60 x3 = r*np.cos(theta2) + 40 x4 = r*np.sin(theta2) + 12 x5 = r*np.cos(theta3) + 40 x6 = r*np.sin(theta3) + 108 axis.plot(x1, x2, color='grey', linewidth=line_width, alpha=alpha) axis.plot(x3, x4, color='grey', linewidth=line_width, alpha=alpha) axis.plot(x5, x6, color='grey', linewidth=line_width, alpha=alpha) else: for lines in line_coords: axis.plot([-(lines[1][0]-40) + 80, -(lines[1][1]-40) + 80], [lines[0][0], lines[0][1]], color='grey', linewidth=line_width, alpha=alpha) theta1 = np.linspace(0, 2*np.pi, 100) theta2 = np.linspace(5.4, 7.2, 100) theta3 = np.linspace(2.2, 4, 100) x1 = r*np.cos(theta1) + 60 x2 = r*np.sin(theta1) + 40 x3 = r*np.cos(theta2) + 12 x4 = r*np.sin(theta2) + 40 x5 = r*np.cos(theta3) + 108 x6 = r*np.sin(theta3) + 40 axis.plot(x1, x2, color='grey', linewidth=line_width, alpha=alpha) axis.plot(x3, x4, color='grey', linewidth=line_width, alpha=alpha) axis.plot(x5, x6, color='grey', linewidth=line_width, alpha=alpha) return axis
24a5b0de75ed70f6ce37afab8e04cf03afaa4651
3,645,776
import click def file(filename, searchspec=None, searchtype=None, list_images=False, sort_by=None, fields=None): """Examine images from a local file.""" if not list_images: if searchtype is None or searchspec is None: raise click.BadParameter( 'SEARCHTYPE and SEARCHSPEC must be specified when not listing ' 'images') try: images = sources.read_images_file(filename) except Exception as e: abort(e) if list_images: return _list_images(images) _process_images(searchtype, images, searchspec, sort_by, fields)
6162ac7553f04225a6cad0fe262f2cc97dad39a2
3,645,777
def clip_to_norm(array, clip): """Clips the examples of a 2-dimensional array to a given maximum norm. Parameters ---------- array : np.ndarray Array to be clipped. After clipping, all examples have a 2-norm of at most `clip`. clip : float Norm at which to clip each example Returns ------- array : np.ndarray The clipped array. """ if not isinstance(array, np.ndarray): raise TypeError(f"Input array must be a numpy array, got {type(array)}.") if array.ndim != 2: raise ValueError(f"input array must be 2-dimensional, got {array.ndim} dimensions.") if not isinstance(clip, Real): raise TypeError(f"Clip value must be numeric, got {type(clip)}.") if clip <= 0: raise ValueError(f"Clip value must be strictly positive, got {clip}.") norms = np.linalg.norm(array, axis=1) / clip norms[norms < 1] = 1 return array / norms[:, np.newaxis]
e7dca2cf9f129736ebc5f7909cb4fed41a4c7996
3,645,778
def getlineno(frame): """Get the line number from a frame object, allowing for optimization.""" # FrameType.f_lineno is now a descriptor that grovels co_lnotab return frame.f_lineno
b8c8d6fb3ebb8784d10250a42526b31e185e9b7a
3,645,779
def _batch_sum(F, loss, batch_axis): """Return sum on the specified batch axis, not keeping the axis""" if is_np_array(): axes = list(range(loss.ndim)) del axes[batch_axis] return F.np.sum(loss, axis=axes) else: return F.sum(loss, axis=batch_axis, exclude=True)
71bad3e21c1905e81b0e40b5be08ebc0426e1ca7
3,645,780
def tree_cons(a, tree: Pytree) -> Pytree: """ Prepend ``a`` in all tuples of the given tree. """ return jax.tree_map( lambda x: _OpaqueSequence((a,) + tuple(x)), tree, is_leaf=lambda x: isinstance(x, tuple), )
1d82ca0a7b49d8e803fe8771f4f6b697826f5e27
3,645,781
from datetime import datetime def add(moment: datetime) -> datetime: """Add one gigasecond to a given date and time.""" return moment + GIGASECOND
87e009e408088d6c91ceb409408608947c0b9fd3
3,645,782
import os def get_test_hooks(test_files, cfg, tracer=None): """Returns a list of test hooks from a given list of test modules.""" results = [] dirs = set(map(os.path.dirname, test_files)) for dir in list(dirs): if os.path.basename(dir) == 'ftests': dirs.add(os.path.join(os.path.dirname(dir), 'tests')) dirs = list(dirs) dirs.sort() for dir in dirs: filename = os.path.join(dir, 'checks.py') if os.path.exists(filename): module = import_module(filename, cfg, tracer=tracer) if tracer is not None: hooks = tracer.runfunc(module.test_hooks) else: hooks = module.test_hooks() results.extend(hooks) return results
eafe4a15a9410b600813588280ef48188b16738c
3,645,783
def convert_to_short_log(log_level, message): """Convert a log message to its shorter format. :param log_level: enum - 'LogLevel.<level>' e.g. 'LogLevel.Error' :param message: str - log message :return: enum - 'LogLevelInt.<value>` e.g. 'LogLevelInt.5' """ return f'{LogLevelInt[log_level.name].value}:{message}'
0d4c20ac4ec809dbb58494ef928586c95da88fbb
3,645,784
import zipfile import io import pathlib import warnings def load_map(path, callback=None, meta_override=None): """Load a set of zipped csv AFM workshop data If you are recording quantitative force-maps (i.e. multiple curves on an x-y-grid) with AFM workshop setups, then you might have realized that you get *multiple* .csv files (one file per indentation) instead of *one* file that contains all the data (as you might be accustomed to from other manufacturers). Since afmformats expects one file per measurement, it would not be straight forward to obtain a properly enumerated quantitative imaging group. This function offers a workaround - it loads a zip archive created from the the .csv files. The files are structured like this:: Force-Distance Curve File Format: 3 Date: Wednesday, August 1, 2018 Time: 1:07:47 PM Mode: Mapping Point: 16 X, um: 27.250000 Y, um: 27.250000 Extend Z-Sense(nm),Extend T-B(V),Retract Z-Sense(nm),Retract T-B(V) 13777.9288,0.6875,14167.9288,1.0917 13778.9288,0.6874,14166.9288,1.0722 13779.9288,0.6876,14165.9288,1.0693 13780.9288,0.6877,14164.9288,1.0824 13781.9288,0.6875,14163.9288,1.0989 ... Please make sure that the ``Point`` is enumerated from 1 onwards (and matches the alphanumerical order of the files in the archive) and that ``Mode`` is ``Mapping``. The ``X`` and ``Y`` coordinates can be used by e.g. PyJibe to display QMap data on a grid. Parameters ---------- path: str or pathlib.Path path to zip file containing AFM workshop .csv files callback: callable function for progress tracking; must accept a float in [0, 1] as an argument. meta_override: dict if specified, contains key-value pairs of metadata that are used when loading the files (see :data:`afmformats.meta.META_FIELDS`) """ datasets = [] with zipfile.ZipFile(path) as arc: names = sorted(arc.namelist()) for ii, name in enumerate(names): with arc.open(name, "r") as fd: tfd = io.TextIOWrapper(fd, encoding="utf-8") dd = load_csv( tfd, # recurse into callback with None as default callback=lambda x: callback((ii + x) / len(names)) if callback is not None else None, meta_override=meta_override, mode="mapping") dd[0]["metadata"]["path"] = pathlib.Path(path) cur_enum = dd[0]["metadata"]["enum"] if cur_enum != ii + 1: warnings.warn("Dataset 'Point' enumeration mismatch for " f"'{name}' in '{path}' (expected {ii + 1}, " f"got {cur_enum})!", AFMWorkshopFormatWarning) datasets += dd # Populate missing grid metadata xvals = list(set([ad["metadata"]["position x"] for ad in datasets])) yvals = list(set([ad["metadata"]["position y"] for ad in datasets])) mdgrid = { "grid center x": np.mean(xvals), "grid center y": np.mean(yvals), "grid shape x": len(xvals), "grid shape y": len(yvals), # grid size in um includes boundaries of pixels "grid size x": np.ptp(xvals)*(1 + 1/(len(xvals)-1)), "grid size y": np.ptp(yvals)*(1 + 1/(len(yvals)-1)), } # Update with new metadata (note that grid index x/y is populated via # MetaData._autocomplete_grid_metadata) [ad["metadata"].update(mdgrid) for ad in datasets] return datasets
bdf98f10a5decfc9a4dbd4b9cc90c75c7c95e76d
3,645,785
def format_len(x): """ >>> format_len('abc') 3 >>> format_len(('(', ('(', 'def', ')'), 'yz', ')')) 11 """ if not isinstance(x, (list, tuple)): return len(x) if len(x) > 3: sep_len = 2 * (len(x) - 3) else: sep_len = 0 return sum(map(format_len, x)) + sep_len
723afb58bfed0cfb7fbd25a12b86b257bf8b40df
3,645,786
import os import platform def build_user_agent(): """Build the charmcraft's user agent.""" if any(key.startswith(prefix) for prefix in TESTING_ENV_PREFIXES for key in os.environ.keys()): testing = " (testing) " else: testing = " " os_platform = "{0.system}/{0.release} ({0.machine})".format(utils.get_os_platform()) return "charmcraft/{}{}{} python/{}".format( __version__, testing, os_platform, platform.python_version() )
dcb036451388a900eb9f3d684167652247c720b4
3,645,787
def set_doi_ark(page_number, records_per_page, sort_on, doi_ark_value): """ Retrieve all metadata records for admin view. Retrieval is done via POST because we must pass a session id so that the user is authenticated. Access control is done here. A user can modify only their own records because their session_id sent with the request. """ username = _authenticate_admin_from_session(request) #pageNumber is 0 based index. Need first page to start at 0 for math for setting arrayLowerBound and arrayUpperBound. try: if username: if request.method == 'POST': #need to do input sanitization on all these values! Separating variables so outside does not have direct access to #database query. sort_by = validate_admin_sort_by(sort_on) record_list = Metadata.objects(__raw__={'published':'pending'}).order_by(sort_by) arrayLowerBound = int(page_number) * int(records_per_page) arrayUpperBound = int(page_number) * int(records_per_page) + int(records_per_page) #Only return array elements between indicies. Don't want to return all possible values #and overload browser with too much data. This is a version of 'pagination.' return jsonify(dict(results=record_list[arrayLowerBound:arrayUpperBound], num_entries=(len(record_list)/int(records_per_page)))) else: return Response('Bad or missing session id.', status=401) except: return Response('Bad request for records', 400)
2b718232463a632dc07f73c1e6e5c3299ff57f18
3,645,788
from datetime import datetime import argparse def check_datetime(value): """ Check and convert "value" to a datetime object. Value can have multiple formats, according to the argparse.ArgumentParser doc (defined in :func:`parse_cmd_args`) Args: value (str): The input value Returns: datetime.datetime: the input value converted to a datetime object Raises: argparse.ArgumentTypeError """ # Case "now" if value == 'now': return datetime.datetime.now() # Case "+hh" and "-hh" if value.startswith('+') or value.startswith('-'): if not value[1:].isdigit(): raise argparse.ArgumentTypeError('"%s": format admitted "[+|-]nn" (e.g +24)' % value) hours = int(value) return datetime.datetime.now() + datetime.timedelta(0, hours * 3600) # Case "%y/%m/%d-%H:%M" try: return datetime.datetime.strptime(value, '%y/%m/%d-%H:%M') except ValueError: pass # Case "%y/%m/%d" try: return datetime.datetime.strptime(value, '%y/%m/%d') except ValueError: pass raise argparse.ArgumentTypeError( '"%s": not a valid format (admitted: "now", "[+|-]hh" (e.g. "+24" or "-4") or "yy/mm/dd[-HH:MM]")' % value)
7b85a85478f79f6e8ebb2a8663fd8d4860f16d18
3,645,789
def empiriline(x,p,L): """ Use the line L (which is an EmissionLine object) as a template. The line is shifted, then interpolated, then rescaled, and allowed to float. """ xnew = x - p[1] yout = sp.zeros(len(xnew)) m = (xnew >= L.wv.min())*(xnew <= L.wv.max() ) ynew,znew = L.interp(xnew[m]) yout[m] = p[0]*ynew + p[2] return yout
a0199a4623e834524711d0e78787d409da29d3ef
3,645,790
def _get_z_slice_fn(z, data_dir): """Get array slice map to be applied to z dimension Args: z: String or 1-based index selector for z indexes constructed as any of the following: - "best": Indicates that z slices should be inferred based on focal quality - "all": Indicates that a slice for all z-planes should be used - str or int: A single value will be interpreted as a single index - tuple: A 2-item or 3-item tuple forming the slice (start, stop[, step]); stop is inclusive - list: A list of integers will be used as is data_dir: Data directory necessary to infer 'best' z planes Returns: A function with signature (region_index, tile_x, tile_y) -> slice_for_array where slice_for_array will either be a slice instance or a list of z-indexes (Note: all indexes are 0-based) """ if not z: raise ValueError('Z slice cannot be defined as empty value (given = {})'.format(z)) # Look for keyword strings if isinstance(z, str) and z == 'best': map = function_data.get_best_focus_coord_map(data_dir) return lambda ri, tx, ty: [map[(ri, tx, ty)]] if isinstance(z, str) and z == 'all': return lambda ri, tx, ty: slice(None) # Parse argument as 1-based index list and then convert to 0-based zi = cli.resolve_index_list_arg(z, zero_based=True) return lambda ri, tx, ty: zi
1982258bb98205fe4552de4db8b4e049e09af4bf
3,645,791
def bar_data_wrapper(func): """Standardizes column names for any bar data""" def wrapper(*args, **kwargs): assert Ticker(args[0]) res: pd.DataFrame = func(*args, **kwargs) return res.rename(columns=COL_NAMES).iterrows() return wrapper
4cfa9614ec430ba53ac3e86dc68c6a84ee3cfbee
3,645,792
import torch def rgb_to_grayscale( image: Tensor, rgb_weights: list[float] = [0.299, 0.587, 0.114] ) -> Tensor: """Convert an RGB image to grayscale version of image. Image data is assumed to be in the range of [0.0, 1.0]. Args: image (Tensor[B, 3, H, W]): RGB image to be converted to grayscale. rgb_weights (list[float]): Weights that will be applied on each channel (RGB). Sum of the weights should add up to one. Returns: grayscale (Tensor[B, 1, H, W]): Grayscale version of the image. """ rgb_weights = torch.FloatTensor(rgb_weights) if not isinstance(rgb_weights, Tensor): raise TypeError(f"`rgb_weights` must be a `Tensor`. " f"But got: {type(rgb_weights)}.") if rgb_weights.shape[-1] != 3: raise ValueError(f"`rgb_weights` must have a shape of [*, 3]. " f"But got: {rgb_weights.shape}.") r = image[..., 0:1, :, :] g = image[..., 1:2, :, :] b = image[..., 2:3, :, :] if not torch.is_floating_point(image) and (image.dtype != rgb_weights.dtype): raise ValueError(f"`image` and `rgb_weights` must have the same dtype. " f"But got: {image.dtype} and {rgb_weights.dtype}.") w_r, w_g, w_b = rgb_weights.to(image).unbind() return w_r * r + w_g * g + w_b * b
d135a92e7189a745b2d9658b2b60a91c238fdbf8
3,645,793
from typing import Dict from typing import Union from datetime import datetime import logging def parse(msg: str) -> Dict[str, Union[str, int, float, bool, datetime]]: """Parse message from the feed output by dump1090 on port 30003 A dict is returned withAn SBS-1 message has the following attributes: messageType : string transmissionType : sbs1.TransmissionType sessionID : int aircraftID : int icao24 : string flightID : int generatedDate : datetime loggedDate : datetime callsign : string altitude : int groundSpeed : int track : int lat : float lon : float verticalRate : int squawk : int alert : bool emergency : bool spi : bool onGround : bool None is returned if the message was not valid A field not present in the parsed message will be set to None. For a description of the attributes, please see github.com/wiseman/node-sbs1 """ if msg is None: return None sbs1 = {} parts = msg.lstrip().rstrip().split(',') try: # logging.debug("%s %s %s" % (parts[1], parts[4], ",".join(parts[10:]))) sbs1["messageType"] = __parseString(parts, 0) if sbs1["messageType"] != "MSG": return None sbs1["transmissionType"] = __parseInt(parts, 1) sbs1["sessionID"] = __parseString(parts, 2) sbs1["aircraftID"] = __parseString(parts, 3) sbs1["icao24"] = __parseString(parts, 4) sbs1["flightID"] = __parseString(parts, 5) sbs1["generatedDate"] = __parseDateTime(parts, 6, 7) sbs1["loggedDate"] = __parseDateTime(parts, 8, 9) sbs1["callsign"] = __parseString(parts, 10) if sbs1["callsign"]: sbs1["callsign"] = sbs1["callsign"].rstrip() sbs1["altitude"] = __parseInt(parts, 11) sbs1["groundSpeed"] = __parseFloat(parts, 12) sbs1["track"] = __parseFloat(parts, 13) sbs1["lat"] = __parseFloat(parts, 14) sbs1["lon"] = __parseFloat(parts, 15) sbs1["verticalRate"] = __parseInt(parts, 16) sbs1["squawk"] = __parseInt(parts, 17) sbs1["alert"] = __parseBool(parts, 18) sbs1["emergency"] = __parseBool(parts, 19) sbs1["spi"] = __parseBool(parts, 20) sbs1["onGround"] = __parseBool(parts, 21) except IndexError as e: logging.error("Failed to init sbs1 message from '%s'" % (msg), exc_info=True) return None return sbs1
9fd7d3b15eb08ebf11d77ac98a3ed215c9409cdd
3,645,794
def _aware_to_agnostic(fr: NDFrame) -> NDFrame: """Recalculate values in tz-aware series or dataframe, to get a tz-agnostic one. (i.e., A to B).""" if not fr.index.tz: raise ValueError("``fr`` must be tz-aware.") idx_out = _idx_after_conversion(fr, None) # Convert daily or longer. if stamps.freq_shortest(idx_out.freq, "D") == "D": # One-to-one correspondence between the timestamps in input and ouput frames. # --> Simply replace the index. return fr.set_axis(idx_out) # Convert hourly or shorter. # There are timestamps in the output that do not exist in the input. In that case, # repeat the value of the previous hour. partly = fr.tz_localize(None) partly = partly[~partly.index.duplicated()] # remove duplicates def value(ts): # Take value of prev hour if current time not found in the input. try: return partly.loc[ts] except KeyError: return partly.loc[ts - pd.Timedelta(hours=1)] return fr.__class__([value(ts) for ts in idx_out], index=idx_out)
c97b190828d5364033336b2dcc48d352aafe1132
3,645,795
import math def cumulative_prob_to_value(prob, hp): """Convert a value from [0, 1] to a hyperparameter value.""" if isinstance(hp, Fixed): return hp.value elif isinstance(hp, Boolean): return bool(prob >= 0.5) elif isinstance(hp, Choice): ele_prob = 1 / len(hp.values) index = math.floor(prob / ele_prob) # Can happen when `prob` is very close to 1. if index == len(hp.values): index = index - 1 return hp.values[index] elif isinstance(hp, (Int, Float)): sampling = hp.sampling or 'linear' if sampling == 'linear': value = prob * (hp.max_value - hp.min_value) + hp.min_value elif sampling == 'log': value = hp.min_value * math.pow(hp.max_value / hp.min_value, prob) elif sampling == 'reverse_log': value = (hp.max_value + hp.min_value - hp.min_value * math.pow(hp.max_value / hp.min_value, 1 - prob)) else: raise ValueError('Unrecognized sampling value: {}'.format(sampling)) if hp.step is not None: values = np.arange(hp.min_value, hp.max_value + 1e-7, step=hp.step) closest_index = np.abs(values - value).argmin() value = values[closest_index] if isinstance(hp, Int): return int(value) return value else: raise ValueError('Unrecognized HyperParameter type: {}'.format(hp))
d66e69f4cb580f8d3ce3004c082239717fd2854a
3,645,796
import podpac import podpac.datalib # May not be imported by default import inspect def get_ui_node_spec(module=None, category="default"): """ Returns a dictionary describing the specifications for each Node in a module. Parameters ----------- module: module The Python module for which the ui specs should be summarized. Only the top-level classes will be included in the spec. (i.e. no recursive search through submodules) category: str, optional Default is "default". Top-level category name for the group of Nodes. Returns -------- dict Dictionary of {category: {Node1: spec_1, Node2: spec2, ...}} describing the specs for each Node. """ spec = {} def get_ui_spec(cls): filter = [] spec = {"help": cls.__doc__, "module": cls.__module__ + "." + cls.__name__, "attrs": {}} for attr in dir(cls): if attr in filter: continue attrt = getattr(cls, attr) if not isinstance(attrt, tl.TraitType): continue if "attr" not in attrt.metadata: continue type_ = attrt.__class__.__name__ type_extra = str(attrt) if type_ == "Union": type_ = [t.__class__.__name__ for t in attrt.trait_types] type_extra = "Union" elif type_ == "Instance": type_ = attrt.klass.__name__ type_extra = attrt.klass default_val = attrt.default() if not isinstance(type_extra, str): type_extra = str(type_extra) try: if np.isnan(default_val): default_val = 'nan' except: pass if default_val == tl.Undefined: default_val = None spec["attrs"][attr] = { "type": type_, "type_str": type_extra, # May remove this if not needed "values": getattr(attrt, "values", None), "default": default_val, "help": attrt.help, } spec.update(getattr(cls, "_ui_spec", {})) return spec if module is None: modcat = zip( [podpac.data, podpac.algorithm, podpac.compositor, podpac.datalib], ["data", "algorithms", "compositors", "datalib"], ) for mod, cat in modcat: spec.update(get_ui_node_spec(mod, cat)) return spec spec[category] = {} for obj in dir(module): ob = getattr(module, obj) if not inspect.isclass(ob): continue if not issubclass(ob, podpac.Node): continue spec[category][obj] = get_ui_spec(ob) return spec
17978a9ebb50696990f601f449a0539bcf67c3dd
3,645,797
def parse_branch_name(branch_name): """Split up a branch name of the form 'ocm-X.Y[-mce-M.N]. :param branch_name: A branch name. If of the form [remote/]ocm-X.Y[-mce-M.N] we will parse it as noted below; otherwise the first return will be False. :return parsed (bool): True if the branch_name was parseable; False otherwise. :return remote (str): If parsed and the branch_name contained a remote/ prefix, it is returned here; otherwise this is the empty string. :return prefix (str): Two-digit semver prefix of the bundle to be generated. If the branch name is of the form [remote/]ocm-X.Y, this will be X.Y; if of the form [remote/]ocm-X.Y-mce-M.N it will be M.N. If not parseable, it will be the empty string. :return channel (str): The name of the channel in which we'll include the bundle. If the branch name is of the form [remote/]ocm-X.Y, this will be ocm-X.Y; if of the form [remote/]ocm-X.Y-mce-M.N it will be mce-M.N. If not parseable, it will be the empty string. """ m = MCE_BRANCH_RE.match(branch_name) if m: return True, m.group(1), m.group(2), m.group(3) m = OCM_BRANCH_RE.match(branch_name) if m: return True, m.group(1), m.group(3), m.group(2) return False, '', '', ''
2cb53aef0754c815dd61d4a1b640e12db64fbf83
3,645,798
import itertools def symmetric_padding( arr, width): """ Pad an array using symmetric values. This is equivalent to `np.pad(mode='symmetric')`, but should be faster. Also, the `width` parameter is interpreted in a more general way. Args: arr (np.ndarray): The input array. width (int|float|Iterable[int|float]): Size of the padding to use. This is used with `flyingcircus.base.multi_scale_to_int()`. The shape of the array is used for the scales. Returns: result (np.ndarray): The padded array. Examples: >>> arr = arange_nd((2, 3)) + 1 >>> print(arr) [[1 2 3] [4 5 6]] >>> new_arr = symmetric_padding(arr, (1, 2)) >>> print(new_arr) [[2 1 1 2 3 3 2] [2 1 1 2 3 3 2] [5 4 4 5 6 6 5] [5 4 4 5 6 6 5]] >>> new_arr = symmetric_padding(arr, ((0, 1), 2)) >>> print(new_arr) [[2 1 1 2 3 3 2] [5 4 4 5 6 6 5] [5 4 4 5 6 6 5]] >>> new_arr = symmetric_padding(arr, ((1, 0), 2)) >>> print(new_arr) [[2 1 1 2 3 3 2] [2 1 1 2 3 3 2] [5 4 4 5 6 6 5]] >>> new_arr = symmetric_padding(arr, ((0, 1.0),)) >>> print(new_arr) [[1 2 3 3 2 1] [4 5 6 6 5 4] [4 5 6 6 5 4] [1 2 3 3 2 1]] >>> arr = arange_nd((5, 7, 11)) + 1 >>> np.all(symmetric_padding(arr, 17) == np.pad(arr, 17, 'symmetric')) True """ width = fc.base.multi_scale_to_int(width, arr.shape) if any(any(size for size in sizes) for sizes in width): shape = tuple( low + dim + up for dim, (low, up) in zip(arr.shape, width)) result = np.zeros(shape, dtype=arr.dtype) target_slices = tuple( tuple( slice( max((i - (1 if low % dim else 0)) * dim + low % dim, 0), min((i + 1 - (1 if low % dim else 0)) * dim + low % dim, low + dim + up)) for i in range( fc.base.div_ceil(low, dim) + fc.base.div_ceil(up, dim) + 1)) for dim, (low, up) in zip(arr.shape, width)) len_target_slices = tuple(len(items) for items in target_slices) parities = tuple( fc.base.div_ceil(low, dim) % 2 for dim, (low, up) in zip(arr.shape, width)) for i, target_slicing in enumerate(itertools.product(*target_slices)): ij = np.unravel_index(i, len_target_slices) source_slicing = [] for idx, target_slice, parity, dim in \ zip(ij, target_slicing, parities, arr.shape): step = 1 if idx % 2 == parity else -1 start = stop = None span = target_slice.stop - target_slice.start if span != dim: if target_slice.start == 0: start = \ (dim - span) if idx % 2 == parity else (span - 1) else: stop = \ span if idx % 2 == parity else (dim - span - 1) source_slicing.append(slice(start, stop, step)) source_slicing = tuple(source_slicing) result[target_slicing] = arr[source_slicing] else: result = arr return result
dd91b4f3641332ecfffa734584fd87293c7169ee
3,645,799