content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def create_attribute(representation_uuid, attribute_name): """create a representation of an attribute of a representation""" try: uuid = get_bus().create_attribute(representation_uuid, attribute_name, public=True) return JsonResponse({'type': 'uuid', 'uuid': uuid}) except Exception as exception: message, status = handle_exception(exception) return JsonResponse({'message': message}, status=status)
f1ddfbc634b459a7e3f179125fd323beb871957d
3,640,200
from typing import Optional import subprocess import warnings def get_current_git_hash(raise_on_error: bool = False) -> Optional[str]: """ Return git hash of the latest commit Parameters ---------- raise_on_error: bool, optional If False (default), will return None, when it fails to obtain commit hash. If True, will raise, when it fails to obtain commit hash. Returns ------- Short hash of the current HEAD or None. """ try: git_hash = subprocess.check_output(['git', 'rev-parse', '--short', 'HEAD']).decode('utf-8').strip() except subprocess.CalledProcessError: if raise_on_error: raise warnings.warn('Probably not in a git repo.') git_hash = None return git_hash
7a17dc7e0574b7f3da91f009714226f855723427
3,640,201
def check_shift(start_time, end_time, final_minute, starting_minute, record): """ Função que verifica o turno da chamada e calcula o valor da ligação :param start_time: :param end_time: :param final_minute: :param starting_minute: :return value: """ nem_start_time = start_time + (starting_minute / 60) nem_end_time = end_time + (final_minute / 60) call_time = (record['end'] - record['start']) // 60 if 6 < nem_start_time < 22: if 6 < nem_end_time < 22: # Portanto a ligação foi completada no periodo diurno value = 0.36 + call_time * 0.09 else: # Portanto a ligação iniciou no periodo diurno e terminou # no periodo noturno hour_max = 22 value = 0.36 + ((hour_max - nem_start_time) * 60) * 0.09 value = value + 0.36 else: if not 6 < nem_end_time < 22: # Portanto a ligação foi completada no periodo noturno value = 0.36 else: # Portanto a ligação iniciou no periodo noturno e terminou # no periodo diurno hour_min = 6 value = 0.36 + ((nem_end_time - hour_min) * 60) * 0.09 value = value + 0.36 return value
666883348347e8408b087ac63acd8608ff589a1c
3,640,202
import hashlib def s3_avatar_represent(user_id, tablename="auth_user", gravatar=False, **attr): """ Represent a User as their profile picture or Gravatar @param tablename: either "auth_user" or "pr_person" depending on which table the 'user_id' refers to @param attr: additional HTML attributes for the IMG(), such as _class """ size = (50, 50) if user_id: db = current.db s3db = current.s3db cache = s3db.cache table = s3db[tablename] email = None image = None if tablename == "auth_user": user = db(table.id == user_id).select(table.email, cache = cache, limitby = (0, 1), ).first() if user: email = user.email.strip().lower() ltable = s3db.pr_person_user itable = s3db.pr_image query = (ltable.user_id == user_id) & \ (ltable.pe_id == itable.pe_id) & \ (itable.profile == True) image = db(query).select(itable.image, limitby = (0, 1), ).first() if image: image = image.image elif tablename == "pr_person": user = db(table.id == user_id).select(table.pe_id, cache = cache, limitby = (0, 1), ).first() if user: ctable = s3db.pr_contact query = (ctable.pe_id == user.pe_id) & \ (ctable.contact_method == "EMAIL") email = db(query).select(ctable.value, cache = cache, limitby = (0, 1), ).first() if email: email = email.value itable = s3db.pr_image query = (itable.pe_id == user.pe_id) & \ (itable.profile == True) image = db(query).select(itable.image, limitby = (0, 1), ).first() if image: image = image.image if image: image = s3db.pr_image_library_represent(image, size=size) size = s3db.pr_image_size(image, size) url = URL(c="default", f="download", args=image) elif gravatar: if email: # If no Image uploaded, try Gravatar, which also provides a nice fallback identicon email_hash = hashlib.md5(email).hexdigest() url = "//www.gravatar.com/avatar/%s?s=50&d=identicon" % email_hash else: url = "//www.gravatar.com/avatar/00000000000000000000000000000000?d=mm" else: url = URL(c="static", f="img", args="blank-user.gif") else: url = URL(c="static", f="img", args="blank-user.gif") if "_class" not in attr: attr["_class"] = "avatar" if "_width" not in attr: attr["_width"] = size[0] if "_height" not in attr: attr["_height"] = size[1] return IMG(_src=url, **attr)
2c537a57a5d20ed8b4329338883f209fa9678fc4
3,640,203
from typing import Dict from typing import List import pathlib import json def json_loader(path_to_json_file: str) -> Dict[str, List[str]]: """Reads a JSON file and converts its content in a dictionary. Parameters ---------- path_to_json_file: str The path to the JSON file. Returns ------- Dict[str, List[str]] A dictionary of source codes with the corresponding lists of instrument symbols of interest for each source. """ with pathlib.Path(path_to_json_file).open('r') as infile: return json.loads(infile.read())
d3f26504078e72e1522981a4d8ca5b60c3b8cf23
3,640,204
def get_region_solution_attribute(data, region_id, attribute, func, intervention): """Extract region solution attribute""" regions = data.get('NEMSPDCaseFile').get('NemSpdOutputs').get('RegionSolution') for i in regions: if (i['@RegionID'] == region_id) and (i['@Intervention'] == intervention): return func(i[attribute]) message = f'Attribute not found: {region_id} {attribute} {intervention}' raise CasefileLookupError(message)
0dc26e54ae5f16f8b3158ec00a5dc0bc58776408
3,640,205
def conv1x1(in_planes: int, out_planes: int) -> nn.Conv2d: """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, bias=True)
2c8fcb8e04084ce35a2ae595b457fdf68fd27723
3,640,206
def make_ratio_map(amap, bmap): """Get the ratio of two PISA 2 style maps (amap/bmap) and return as another PISA 2 style map.""" validate_maps(amap, bmap) with np.errstate(divide='ignore', invalid='ignore'): result = {'ebins': amap['ebins'], 'czbins': amap['czbins'], 'map': amap['map']/bmap['map']} return result
9497ddadd6d983b3094107aceadbdc1e2f1fb0a7
3,640,207
from typing import Collection from typing import Mapping from typing import Sequence import math def _compose_duration( components_tags: Collection[Tags]) -> Mapping[str, Sequence[str]]: """Returns summed duration tags.""" duration_seconds_values = [ component_tags.one_or_none(DURATION_SECONDS) for component_tags in components_tags ] if duration_seconds_values and None not in duration_seconds_values: try: return { DURATION_SECONDS.name: (str(math.fsum(map(float, duration_seconds_values))),), } except ValueError: pass return {}
99bebed06628627211a117c738d89790d11adc1b
3,640,208
def feature_spatial(fslDir, tempDir, aromaDir, melIC): """ This function extracts the spatial feature scores. For each IC it determines the fraction of the mixture modeled thresholded Z-maps respecitvely located within the CSF or at the brain edges, using predefined standardized masks. Parameters --------------------------------------------------------------------------------- fslDir: Full path of the bin-directory of FSL tempDir: Full path of a directory where temporary files can be stored (called 'temp_IC.nii.gz') aromaDir: Full path of the ICA-AROMA directory, containing the mask-files (mask_edge.nii.gz, mask_csf.nii.gz & mask_out.nii.gz) melIC: Full path of the nii.gz file containing mixture-modeled threholded (p>0.5) Z-maps, registered to the MNI152 2mm template Returns --------------------------------------------------------------------------------- edgeFract: Array of the edge fraction feature scores for the components of the melIC file csfFract: Array of the CSF fraction feature scores for the components of the melIC file""" # Get the number of ICs numICs = int(commands.getoutput('%sfslinfo %s | grep dim4 | head -n1 | awk \'{print $2}\'' % (fslDir, melIC) )) # Loop over ICs edgeFract=np.zeros(numICs) csfFract=np.zeros(numICs) for i in range(0,numICs): # Define temporary IC-file tempIC = os.path.join(tempDir,'temp_IC.nii.gz') # Extract IC from the merged melodic_IC_thr2MNI2mm file os.system(' '.join([os.path.join(fslDir,'fslroi'), melIC, tempIC, str(i), '1'])) # Change to absolute Z-values os.system(' '.join([os.path.join(fslDir,'fslmaths'), tempIC, '-abs', tempIC])) # Get sum of Z-values within the total Z-map (calculate via the mean and number of non-zero voxels) totVox = int(commands.getoutput(' '.join([os.path.join(fslDir,'fslstats'), tempIC, '-V | awk \'{print $1}\'']))) if not (totVox == 0): totMean = float(commands.getoutput(' '.join([os.path.join(fslDir,'fslstats'), tempIC, '-M']))) else: print ' - The spatial map of component ' + str(i+1) + ' is empty. Please check!' totMean = 0 totSum = totMean * totVox # Get sum of Z-values of the voxels located within the CSF (calculate via the mean and number of non-zero voxels) csfVox = int(commands.getoutput(' '.join([os.path.join(fslDir,'fslstats'), tempIC, '-k mask_csf.nii.gz', '-V | awk \'{print $1}\'']))) if not (csfVox == 0): csfMean = float(commands.getoutput(' '.join([os.path.join(fslDir,'fslstats'), tempIC, '-k mask_csf.nii.gz', '-M']))) else: csfMean = 0 csfSum = csfMean * csfVox # Get sum of Z-values of the voxels located within the Edge (calculate via the mean and number of non-zero voxels) edgeVox = int(commands.getoutput(' '.join([os.path.join(fslDir,'fslstats'), tempIC, '-k mask_edge.nii.gz', '-V | awk \'{print $1}\'']))) if not (edgeVox == 0): edgeMean = float(commands.getoutput(' '.join([os.path.join(fslDir,'fslstats'), tempIC, '-k mask_edge.nii.gz', '-M']))) else: edgeMean = 0 edgeSum = edgeMean * edgeVox # Get sum of Z-values of the voxels located outside the brain (calculate via the mean and number of non-zero voxels) outVox = int(commands.getoutput(' '.join([os.path.join(fslDir,'fslstats'), tempIC, '-k mask_out.nii.gz', '-V | awk \'{print $1}\'']))) if not (outVox == 0): outMean = float(commands.getoutput(' '.join([os.path.join(fslDir,'fslstats'), tempIC, '-k mask_out.nii.gz', '-M']))) else: outMean = 0 outSum = outMean * outVox # Determine edge and CSF fraction if not (totSum == 0): edgeFract[i] = (outSum + edgeSum)/(totSum - csfSum) csfFract[i] = csfSum / totSum else: edgeFract[i]=0 csfFract[i]=0 # Remove the temporary IC-file os.remove(tempIC) # Return feature scores return edgeFract, csfFract
fb515a61bd81533b3b79f9cd500ad5b77723b527
3,640,209
from datetime import datetime def str_to_date(date_str, fmt=DATE_STR_FMT): """Convert string date to datetime object.""" return datetime.datetime.strptime(date_str, fmt).date()
102f384b479b217259c9bbfe36c8b66909daee50
3,640,210
import time import json def create_elasticsearch_domain(name, account_id, boto_session, lambda_role, cidr): """ Create Elastic Search Domain """ boto_elasticsearch = boto_session.client('es') total_time = 0 resource = "arn:aws:es:ap-southeast-2:{0}:domain/{1}/*".format(account_id, name) access_policy = {"Version": "2012-10-17", "Statement": [ {"Effect": "Allow", "Principal": {"AWS": str(lambda_role)}, "Action": "es:*", "Resource": resource}, {"Effect": "Allow", "Principal": {"AWS": "*"}, "Action": "es:*", "Resource": resource, "Condition": {"IpAddress": {"aws:SourceIp": "{0}".format(cidr)}}} ]} endpoint = None time.sleep(5) try: print('Creating elasticsearch domain: {0}'.format(name)) boto_elasticsearch.create_elasticsearch_domain( DomainName=name, ElasticsearchVersion='2.3', ElasticsearchClusterConfig={ 'InstanceType': 't2.micro.elasticsearch', 'InstanceCount': 1, 'DedicatedMasterEnabled': False, 'ZoneAwarenessEnabled': False }, EBSOptions={ 'EBSEnabled': True, 'VolumeType': 'gp2', 'VolumeSize': 20 } ) time.sleep(10) attempts = 1 while True: print('Trying to apply access policies to elasticsearch domain: {0} (attempt: {1})'.format(name, attempts)) try: boto_elasticsearch.update_elasticsearch_domain_config( DomainName=name, AccessPolicies=json.dumps(access_policy) ) break except Exception as e: attempts += 1 if attempts > 3: print('Failed to apply access policies. Please run this script again with `-a delete -n {0}`' 'and wait approx 20 minutes before trying again'.format(name)) print('Full error was: {0}'.format(e)) exit(1) else: time.sleep(2) except Exception as e: print('Could not create elasticsearch domain: {0}.'.format(name)) print('Error was: {0}'.format(e)) exit(1) while True: try: es_status = boto_elasticsearch.describe_elasticsearch_domain(DomainName=name) processing = es_status['DomainStatus']['Processing'] if not processing: endpoint = es_status['DomainStatus']['Endpoint'] print('Domain: {0} has been created!'.format(name)) break else: print('Domain: {0} is still processing. Waiting for 120 seconds before checking again'.format(name)) time.sleep(120) except Exception: print('Domain: {0} is still processing. Waiting for 120 seconds before checking again'.format(name)) total_time += 120 if total_time > 1800: print('Script has been running for over 30 minutes... This likely means that your elastic search domain' ' has not created successfully. Please check the Elasticsearch Service dashboard in AWS console' ' and delete the domain named {0} if it exists before trying again'.format(name)) exit(1) time.sleep(120) return endpoint
5e33bd1454a2b3d1ce3bc1cc181b44497ce6035a
3,640,211
def get_user(email): """ param: username returns User instance with user data, the MySQL error handle by the try-except senteces """ result = {} connection = _connect_to_db() try: with connection.cursor() as cursor: row_count = 0 e = 'none' # Read a single record sql = f"SELECT `id`,`name`, \ `last_name`, \ `email`, \ `password`, \ `phone_number`, \ `address`, \ `profile_image_url`, \ `city_id`, \ `account_type_id`, \ `lat_location`, \ `long_location`, \ `created_at`, \ `updated_at`, \ `active` FROM users WHERE users.email='{email}'" cursor.execute(sql) result = cursor.fetchone() except Exception as ex: #print(ex.args[1]) e = ex.args[0] finally: connection.close() return result,e
f05a59dc95ade5157d09d26a7d899fd9b19d3526
3,640,212
def index(request): """ A example of Function-based view method: get request: None response: type: html """ return HttpResponse("Hello, world. You're at the polls index.")
1fe400e5f08728eef5834268d219a3f109325114
3,640,213
import requests def make_https_request(logger, url, jobs_manager, download=False, timeout_attempt=0): """ Utility function for making HTTPs requests. """ try: req = requests_retry_session().get(url, timeout=120) req.raise_for_status() except requests.exceptions.ConnectionError as c_err: logger.error("Connection Error while fetching the cert list") logger.error(str(c_err)) jobs_manager.record_job_error() exit(1) except requests.exceptions.HTTPError as h_err: logger.warning("HTTP Error while fetching the cert list") logger.warning(str(h_err)) return None except requests.exceptions.RequestException as err: logger.error("Request exception while fetching the cert list") logger.error(str(err)) jobs_manager.record_job_error() exit(1) except Timeout: if timeout_attempt == 0: logger.warning("Timeout occurred. Attempting again...") result = make_https_request( logger, url, jobs_manager, download, timeout_attempt=1 ) return result else: logger.error("Too many timeouts. Exiting") jobs_manager.record_job_error() exit(1) except Exception as e: logger.error("UNKNOWN ERROR with the HTTP Request: " + str(e)) jobs_manager.record_job_error() exit(1) if req.status_code != 200: logger.error("ERROR: Status code " + str(req.status_code)) return None if download: return req.content return req.text
825d1d79dc44e571fed4437fb1fbebc60bfef669
3,640,214
def info(): """ Displays on the website of the page. @TODO - Add index.html for the site of Ubik. :return: response for each get request on '/'. """ return about_response()
1460d166c2cde36e931803b24fd235c1e100aa0d
3,640,215
def falshsort(): """ Do from here: https://en.wikipedia.org/wiki/Flashsort :return: None """ return None
359dc737a6611ebd6a73dd7761a6ade97b44b7ab
3,640,216
import random def random_word(text, label, label_map, tokenizer, sel_prob): """ Masking some random tokens for Language Model task with probabilities as in the original BERT paper. :param tokens: list of str, tokenized sentence. :param tokenizer: Tokenizer, object used for tokenization (we need it's vocab here) :param label: labels such as ["D","O","O","D"] :param label_map: labels such as [0,1,,0] :param sel_prob: the prob to caluate the loss for each token :return: (list of str, list of int), masked tokens and related labels for LM prediction """ text = text.strip().split(" ") orig_to_map_label = [] orig_to_map_token = [] assert len(text) == len(label_map) assert len(text) == len(label) for i in range(0, len(text)): orig_token = text[i] orig_label = label[i] orig_label_map = label_map[i] tokens = tokenizer.tokenize(orig_token) orig_to_map_token.extend(tokens) prob = random.random() if orig_label == "D": if prob < sel_prob: orig_to_map_label.append(orig_label_map) else: orig_to_map_label.append(-1) else: if prob < sel_prob / 5.0: orig_to_map_label.append(orig_label_map) else: orig_to_map_label.append(-1) for j in range(1, len(tokens)): orig_to_map_label.append(-1) assert len(orig_to_map_label) == len(orig_to_map_token) return orig_to_map_token, orig_to_map_label
46e7ac7d9fd0d82bbfef97a9a88efd0599bbc3b3
3,640,217
def ITERATIVETEST_Error_Of_Input_Parameter_inZSubsample(): """Tests occurrence of an error because of an invalid input value provided at field "inZSubsample".""" Logging.infoHTML( "<b>ToDo: Add more \"TestData\" objects to maximize variations!</b>" ) testDataVariations = { "Invalid_Variation_1" : __getInvalidTestDataVariation1_inZSubsample(), "Invalid_Variation_2" : __getInvalidTestDataVariation2_inZSubsample(), } return ( testDataVariations, testError_inZSubsample )
8de38b2ceaf1312442f170a75f96cec7ec9fdd7b
3,640,218
import numpy def _match_storm_objects(first_prediction_dict, second_prediction_dict, top_match_dir_name): """Matches storm objects between first and second prediction files. F = number of storm objects in first prediction file :param first_prediction_dict: Dictionary returned by `prediction_io.read_ungridded_predictions` for first prediction file. :param second_prediction_dict: Same but for second prediction file. :param top_match_dir_name: See documentation at top of file. :return: first_prediction_dict: Same as input, but containing only storm objects matched with one in the second file. :return: second_prediction_dict: Same as input, but containing only storm objects matched with one in the first file. Both dictionaries have storm objects in the same order. """ first_storm_times_unix_sec = first_prediction_dict[ prediction_io.STORM_TIMES_KEY] first_unique_times_unix_sec = numpy.unique(first_storm_times_unix_sec) first_indices = numpy.array([], dtype=int) second_indices = numpy.array([], dtype=int) for i in range(len(first_unique_times_unix_sec)): this_match_file_name = tracking_io.find_match_file( top_directory_name=top_match_dir_name, valid_time_unix_sec=first_unique_times_unix_sec[i], raise_error_if_missing=True) print('Reading data from: "{0:s}"...'.format(this_match_file_name)) this_match_dict = tracking_io.read_matches(this_match_file_name)[0] these_first_indices, these_second_indices = ( _match_storm_objects_one_time( first_prediction_dict=first_prediction_dict, second_prediction_dict=second_prediction_dict, match_dict=this_match_dict) ) first_indices = numpy.concatenate((first_indices, these_first_indices)) second_indices = numpy.concatenate(( second_indices, these_second_indices )) _, unique_subindices = numpy.unique(first_indices, return_index=True) first_indices = first_indices[unique_subindices] second_indices = second_indices[unique_subindices] _, unique_subindices = numpy.unique(second_indices, return_index=True) first_indices = first_indices[unique_subindices] second_indices = second_indices[unique_subindices] first_prediction_dict = prediction_io.subset_ungridded_predictions( prediction_dict=first_prediction_dict, desired_storm_indices=first_indices) second_prediction_dict = prediction_io.subset_ungridded_predictions( prediction_dict=second_prediction_dict, desired_storm_indices=second_indices) return first_prediction_dict, second_prediction_dict
9c3bc60e99dc3d07cbd661b7187833e26f18d6f7
3,640,219
from typing import Optional from typing import cast def get_default_branch(base_url: str, auth: Optional[AuthBase], ssl_verify: bool = True) -> dict: """Fetch a reference. :param base_url: base Nessie url :param auth: Authentication settings :param ssl_verify: ignore ssl errors if False :return: json Nessie branch """ return cast(dict, _get(base_url + "/trees/tree", auth, ssl_verify=ssl_verify))
e2ac587705c82c95edeb415b79ca15746e9e9b78
3,640,220
import csv def make_source_thesaurus(source_thesaurus=SOURCE_THESAURUS_FILE): """ Get dict mapping country name to `SourceObject` for the country. Parameters ---------- source_thesaurus : str Filepath for the source thesaurus data. Returns ------- Dict of {"Country": SourceObject} pairs. """ with open(source_thesaurus, 'rbU') as f: f.readline() # skip headers csvreader = csv.DictReader(f) source_thesaurus = {} for row in csvreader: source_name = row['Source Name'].decode(UNICODE_ENCODING) source_country = row['Country/Region'].decode(UNICODE_ENCODING) source_url = row['Link/File'].decode(UNICODE_ENCODING) source_priority = row['Prioritization'].decode(UNICODE_ENCODING) # TODO: get year info from other other file (download from Google Drive) source_thesaurus[source_name] = SourceObject(name=source_name, country=source_country, priority=source_priority, url=source_url) return source_thesaurus
43109eb3c9f9dedccae5bf692abebb0d66d09f7f
3,640,221
import re def extract_filter(s): """Extracts a filter from str `s` Parameters ---------- s : str * A str that may or may not have a filter identified by ', that HUMAN VALUE' Returns ------- s : str * str `s` without the parsed_filter included parsed_filter : dict * filter attributes mapped from filter from `s` if any found """ split_filter = re.split(pytan.constants.FILTER_RE, s, re.IGNORECASE) # split_filter = ['Folder Name Search with RegEx Match', ' is:.*'] parsed_filter = {} # if filter parsed out from s if len(split_filter) > 1: # get new s from index 0 s = split_filter[0].strip() # s='Folder Name Search with RegEx Match' # get the filter string from index 1 parsed_filter = split_filter[1].strip() # parsed_filter='is:.*' parsed_filter = map_filter(parsed_filter) if not parsed_filter: err = "Filter {!r} is not a valid filter!".format raise pytan.exceptions.HumanParserError(err(split_filter[1])) dbg = 'parsed new string to {!r} and filters to:\n{}'.format humanlog.debug(dbg(s, jsonify(parsed_filter))) return s, parsed_filter
2a8dad70429fdc6295a44794f0c2ac6f19150f31
3,640,222
from typing import Tuple from typing import Union def sigmoid( x, sigmoid_type: str = "tanh", normalization_range: Tuple[Union[float, int], Union[float, int]] = (0, 1) ): """ A sigmoid function. From Wikipedia (https://en.wikipedia.org/wiki/Sigmoid_function): A sigmoid function is a mathematical function having a characteristic "S"-shaped curve or sigmoid curve. Args: x: The input sigmoid_type: Type of sigmoid function to use [str]. Can be one of: * "tanh" or "logistic" (same thing) * "arctan" * "polynomial" normalization_type: Range in which to normalize the sigmoid, shorthanded here in the documentation as "N". This parameter is given as a two-element tuple (min, max). After normalization: >>> sigmoid(-Inf) == normalization_range[0] >>> sigmoid(Inf) == normalization_range[1] * In the special case of N = (0, 1): >>> sigmoid(-Inf) == 0 >>> sigmoid(Inf) == 1 >>> sigmoid(0) == 0.5 >>> d(sigmoid)/dx at x=0 == 0.5 * In the special case of N = (-1, 1): >>> sigmoid(-Inf) == -1 >>> sigmoid(Inf) == 1 >>> sigmoid(0) == 0 >>> d(sigmoid)/dx at x=0 == 1 Returns: The value of the sigmoid. """ ### Sigmoid equations given here under the (-1, 1) normalization: if sigmoid_type == ("tanh" or "logistic"): # Note: tanh(x) is simply a scaled and shifted version of a logistic curve; after # normalization these functions are identical. s = np.tanh(x) elif sigmoid_type == "arctan": s = 2 / pi * np.arctan(pi / 2 * x) elif sigmoid_type == "polynomial": s = x / (1 + x ** 2) ** 0.5 else: raise ValueError("Bad value of parameter 'type'!") ### Normalize min = normalization_range[0] max = normalization_range[1] s_normalized = s * (max - min) / 2 + (max + min) / 2 return s_normalized
b9d660d20f7e398a2e57ad0b907ab52c4a88cc36
3,640,223
def interp(x, x1, y1, x2, y2): """Find a point along a line""" return ((x2 - x) * y1 + (x - x1) * y2) / (x2 - x1)
3af4575c017a32619a5bb2866a7faea5ff5c760d
3,640,224
def msm_distance_measure_getter(X): """ generate the msm distance measure :param X: dataset to derive parameter ranges from :return: distance measure and parameter range dictionary """ n_dimensions = 1 # todo use other dimensions return { "distance_measure": [cython_wrapper(msm_distance)], "dim_to_use": stats.randint(low=0, high=n_dimensions), "c": [ 0.01, 0.01375, 0.0175, 0.02125, 0.025, 0.02875, 0.0325, 0.03625, 0.04, 0.04375, 0.0475, 0.05125, 0.055, 0.05875, 0.0625, 0.06625, 0.07, 0.07375, 0.0775, 0.08125, 0.085, 0.08875, 0.0925, 0.09625, 0.1, 0.136, 0.172, 0.208, 0.244, 0.28, 0.316, 0.352, 0.388, 0.424, 0.46, 0.496, 0.532, 0.568, 0.604, 0.64, 0.676, 0.712, 0.748, 0.784, 0.82, 0.856, 0.892, 0.928, 0.964, 1, 1.36, 1.72, 2.08, 2.44, 2.8, 3.16, 3.52, 3.88, 4.24, 4.6, 4.96, 5.32, 5.68, 6.04, 6.4, 6.76, 7.12, 7.48, 7.84, 8.2, 8.56, 8.92, 9.28, 9.64, 10, 13.6, 17.2, 20.8, 24.4, 28, 31.6, 35.2, 38.8, 42.4, 46, 49.6, 53.2, 56.8, 60.4, 64, 67.6, 71.2, 74.8, 78.4, 82, 85.6, 89.2, 92.8, 96.4, 100, ], }
1185658474f3a2b9bc17be67c665bdd0a211dce7
3,640,225
def gen_cpmfgp_test_data_from_config_file(config_file_name, raw_func, num_tr_data, num_te_data): """ Generates datasets for CP Multi-fidelity GP fitting. """ # Generate data def _generate_data(_proc_func, _config, _num_data): """ Generates data. """ ZX_proc = sample_from_config_space(_config, _num_data) YY_proc = [_proc_func(z, x) for (z, x) in ZX_proc] ZZ_proc = get_idxs_from_list_of_lists(ZX_proc, 0) XX_proc = get_idxs_from_list_of_lists(ZX_proc, 1) return ZZ_proc, XX_proc, YY_proc, ZX_proc # Get dataset for testing def _get_dataset_for_testing(_proc_func, _config, _num_tr_data, _num_te_data): """ Get dataset for testing. """ ZZ_train, XX_train, YY_train, ZX_train = _generate_data(_proc_func, _config, _num_tr_data) ZZ_test, XX_test, YY_test, ZX_test = _generate_data(_proc_func, _config, _num_te_data) return Namespace(config_file_name=config_file_name, config=config, raw_func=raw_func, ZZ_train=ZZ_train, XX_train=XX_train, YY_train=YY_train, ZX_train=ZX_train, ZZ_test=ZZ_test, XX_test=XX_test, YY_test=YY_test, ZX_test=ZX_test) # Generate the data and return config = load_config_file(config_file_name) proc_func = get_processed_func_from_raw_func_via_config(raw_func, config) return _get_dataset_for_testing(proc_func, config, num_tr_data, num_te_data)
c6efaf34601f5b02153fca3ea0926115d1adb918
3,640,226
def csv_to_postgres(engine, file: str, table_name: str): """ Given a *.csv filepath, create a populated table in a database :param engine: SQLAlchemy connection/engine for the target database :param file: Full filepath of the *.csv file :param table_name: Name of the table to be created :return: """ df = pd.read_csv(file, index_col=False) # print(df.head()) # Postgres columns are case-sensitive; make lowercase df.columns = df.columns.str.lower() df.rename(columns={'unnamed: 0': 'id'}, inplace=True) df.to_sql(con=engine, name=table_name, if_exists='replace', index=False) return None
e8a913a32a3b0f7d9d617fa000f0b232e9824736
3,640,227
def _custom_padd(a, min_power_of_2=1024, min_zero_padd=50, zero_padd_ratio=0.5): """ Private helper to make a zeros-mirror-zeros padd to the next power of two of a. Parameters ---------- arrays : np.ndarray, array to padd. min_power_of_2 : int (default=512), min length (power of two) for the padded array. zero_padd_ratio : float (default=0.5), determine the ratio of the length of zero padds (either for the first or the second zero-padd) w.r.t the array length. min_zero_padd : int (default=50) min zero padd, either for the first or the second zero-padd. Note: ----- Having a signal close to ~200 can make trouble. Results ------- arrays : np.ndarray or list of np.ndarray the unpadded array. p : tuple of int, the applied padd. """ if not np.log2(min_power_of_2).is_integer(): raise ValueError("min_power_of_2 should be a power of two, " "got {0}".format(min_power_of_2)) nextpow2 = int(np.power(2, np.ceil(np.log2(len(a))))) nextpow2 = min_power_of_2 if nextpow2 < min_power_of_2 else nextpow2 diff = nextpow2 - len(a) # define the three possible padding zero_padd_len = int(zero_padd_ratio * len(a)) too_short = zero_padd_len < min_zero_padd zero_padd_len = min_zero_padd if too_short else zero_padd_len p_zeros = (zero_padd_len, zero_padd_len) len_padd_left = int(diff / 2) len_padd_right = int(diff / 2) + (len(a) % 2) p_total = (len_padd_left, len_padd_right) if diff == 0: # [ s ] p_total = 0 return a, p_total elif (0 < diff) and (diff < 2 * zero_padd_len): # [ /zeros | s | zeros/ ] a = padd(a, p_total) return a, p_total elif (2 * zero_padd_len < diff) and (diff < 4 * zero_padd_len): # [ zeros | mirror-signal | s | mirror-signal | zeros ] len_reflect_padd_left = len_padd_left - zero_padd_len len_reflect_padd_right = len_padd_right - zero_padd_len p_reflect = (len_reflect_padd_left, len_reflect_padd_right) # padding a = np.pad(a, p_reflect, mode='reflect') a = padd(a, p_zeros) return a, p_total else: # [ zeros | mirror-signal | zeros | s | zeros | mirror-signal | zeros ] len_reflect_padd_left = len_padd_left - 2 * zero_padd_len len_reflect_padd_right = len_padd_right - 2 * zero_padd_len p_reflect = (len_reflect_padd_left, len_reflect_padd_right) # padding a = padd(a, p_zeros) a = np.pad(a, p_reflect, mode='reflect') a = padd(a, p_zeros) return a, p_total
eb7f9d675113b8f53558d911462209c2f72c3ce3
3,640,228
def encode_multipart_formdata(fields, files): """ Encode multipart data to be used in data import adapted from: http://code.activestate.com/recipes/146306/ :param fields: sequence of (name, value) elements for regular form fields. :param files: sequence of (name, filename, value) elements for data to be uploaded as files :return: (content_type, body) ready for httplib.HTTP instance """ boundary = '-------tHISiSsoMeMulTIFoRMbOUNDaRY---' fls = [] for (key, value) in fields: fls.append('--' + boundary) fls.append('Content-Disposition: form-data; name="%s"' % key) fls.append('') fls.append(value) for (key, filename, value) in files: fls.append('--' + boundary) fls.append('Content-Disposition: form-data; name="%s"; filename="%s"' % (key, filename)) fls.append('Content-Type: %s' % get_content_type(filename)) fls.append('') fls.append(value) fls.append('--' + boundary + '--') fls.append('') output = BytesIO() for content in fls: if isinstance(content, bytes): output.write(content) else: output.write(content.encode()) output.write(b"\r\n") body = output.getvalue() content_type = 'multipart/form-data; boundary=%s' % boundary return content_type, body
17cd1ce08d7aac005a07b77517c4644565083cb8
3,640,229
def is_recording(): """ return current state of recording key macro """ global recording return recording
73f3a28d5d37bdc300768d48a6cc8f2ac81c2cf0
3,640,230
from typing import Union from pathlib import Path from typing import List from typing import Dict from typing import Optional import asyncio def download_image_urls( urls_filename: Union[Path, str], synsets: List[str], max_concurrent: int = 50, rewrite: bool = False ) -> Dict[str, Optional[List[str]]]: """Downloads urls for each synset and saves them in json format in a given path. Args: urls_filename: a path to the file where to save the urls. synsets: a list of synsets for which to download urls. max_concurrent (optional): a maximum number of concurrent requests. rewrite (optional): if True, will download new urls even if file exists. """ print("Downloading image urls.") synsets_to_urls = asyncio.run(_download_image_urls(urls_filename, synsets, max_concurrent, rewrite)) return synsets_to_urls
36bc1e2993cfd01ef9fca91354f970ffb980a919
3,640,231
def generate_new_split(lines1, lines2, rng, cutoff=14937): """Takes lines1 and lines2 and combines, shuffles and split again. Useful for working with random splits of data""" lines = [l for l in lines1] # lines1 may not be a list but rather iterable lines.extend(lines2) perm = rng.permutation(len(lines)) lines = [lines[i] for i in perm] lines1 = lines[:cutoff] lines2 = lines[cutoff:] a1 = confusion_matrix.get_embedding_matrix(lines1, normalize=True) a2 = confusion_matrix.get_embedding_matrix(lines2, normalize=True) return (lines1, a1, lines2, a2)
cac058f44bd5cb729517a1aeb67295a30dac2eb5
3,640,232
import time def train_classification(base_iter, model, dataloader, epoch, criterion, optimizer, cfg, writer=None): """Task of training video classification""" batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() model.train() end = time.time() for step, data in enumerate(dataloader): base_iter = base_iter + 1 train_batch = data[0].cuda() train_label = data[1].cuda() data_time.update(time.time() - end) outputs = model(train_batch) loss = criterion(outputs, train_label) prec1, prec5 = accuracy(outputs.data, train_label, topk=(1, 5)) optimizer.zero_grad() loss.backward() optimizer.step() losses.update(loss.item(), train_label.size(0)) top1.update(prec1.item(), train_label.size(0)) top5.update(prec5.item(), train_label.size(0)) batch_time.update(time.time() - end) end = time.time() if step % cfg.CONFIG.LOG.DISPLAY_FREQ == 0 and cfg.DDP_CONFIG.GPU_WORLD_RANK == 0: print('-------------------------------------------------------') for param in optimizer.param_groups: lr = param['lr'] print('lr: ', lr) print_string = 'Epoch: [{0}][{1}/{2}]'.format( epoch, step + 1, len(dataloader)) print(print_string) print_string = 'data_time: {data_time:.3f}, batch time: {batch_time:.3f}'.format( data_time=data_time.val, batch_time=batch_time.val) print(print_string) print_string = 'loss: {loss:.5f}'.format(loss=losses.avg) print(print_string) print_string = 'Top-1 accuracy: {top1_acc:.2f}%, Top-5 accuracy: {top5_acc:.2f}%'.format( top1_acc=top1.avg, top5_acc=top5.avg) print(print_string) iteration = base_iter writer.add_scalar('train_loss_iteration', losses.avg, iteration) writer.add_scalar('train_top1_acc_iteration', top1.avg, iteration) writer.add_scalar('train_top5_acc_iteration', top5.avg, iteration) writer.add_scalar('train_batch_size_iteration', train_label.size(0), iteration) writer.add_scalar('learning_rate', lr, iteration) return base_iter
8564fe2d520d54c81165adb5025aebb9916ab9b5
3,640,233
import logging def get_top5(prediction): """return top5 index and value of input array""" length = np.prod(prediction.size) pre = np.reshape(prediction, [length]) ind = np.argsort(pre) ind = ind[length - 5 :] value = pre[ind] ind = ind[::-1] value = value[::-1] res_str = "" logging.info("============ top5 ===========") for (i, v) in zip(ind, value): logging.info("{}:{}".format(i, v)) res_str = res_str + "{}:{}".format(i, v) + "\n" return res_str
607ad0b9eee550e1bb389a9a92a76472155bea16
3,640,234
def calculate_parentheses(cases): """Calculate all cases in parameter 'cases' return : case that calculate and it's 24 else return 'No Solutions' Example and Doctest : >>> nums = [5, 5, 9, 5] >>> cases = generate_all_combinations(nums, '+-*/') >>> calculate_parentheses(cases) '( ( 5 + 5 ) + 5 ) + 9 = 24' >>> nums = [13, 2, 13, 13] >>> cases = generate_all_combinations(nums, '+-*/') >>> calculate_parentheses(cases) '2 * ( 13 - ( 13 / 13 ) ) = 24' >>> nums = [1, 1, 2, 7] >>> cases = generate_all_combinations(nums, '+-*/') >>> calculate_parentheses(cases) '( 1 + 2 ) * ( 1 + 7 ) = 24' >>> nums = [200, -120, 10, 3] >>> cases = generate_all_combinations(nums, '+-*/') >>> calculate_parentheses(cases) '( ( -120 + 200 ) * 3 ) / 10 = 24' >>> nums = [1, 1, 1, 9] >>> cases = generate_all_combinations(nums, '+-*/') >>> calculate_parentheses(cases) 'No Solutions' >>> # Check case that can occured 'divided by zero' problem >>> nums = [13, 13, 13, 13] >>> cases = generate_all_combinations(nums, '+-*/') >>> calculate_parentheses(cases) 'No Solutions' """ # Use try except because some combination are error because 'divided by zero' for i in cases: case_to_calculate = i num1 = case_to_calculate[0] operation1 = case_to_calculate[1] num2 = case_to_calculate[2] operation2 = case_to_calculate[3] num3 = case_to_calculate[4] operation3 = case_to_calculate[5] num4 = case_to_calculate[6] # I use different variable name to make you read a program easier # Case 1 : ( ( num1 'operation1' num2 ) 'operation2' num3 ) 'operation3' num4 case1 = f"( ( {num1} {operation1} {num2} ) {operation2} {num3} ) {operation3} {num4} = 24" try : calc1 = calc(num1, operation1, num2) calc1 = calc(calc1, operation2, num3) calc1 = calc(calc1, operation3, num4) except ZeroDivisionError: calc1 = 0 if calc1 == 24: return case1 # Case 2 : ( num1 'operation1' ( num2 'operation2' num3 ) ) 'operation3' num4 case2 = f"( {num1} {operation1} ( {num2} {operation2} {num3} ) ){operation3} {num4} = 24" try : calc2 = calc(num2, operation2, num3) calc2 = calc(num1, operation1, calc2) calc2 = calc(calc2, operation3, num4) except ZeroDivisionError: calc2 = 0 if calc2 == 24: return case2 # Case 3 : ( num1 'operation1' num2 ) 'operation2' ( num3 'operation3' num4 ) case3 = f"( {num1} {operation1} {num2} ) {operation2} ( {num3} {operation3} {num4} ) = 24" try: calc31 = calc(num1, operation1, num2) calc32 = calc(num3, operation3, num4) calc3 = calc(calc31, operation2, calc32) except ZeroDivisionError: calc3 = 0 if calc3 == 24: return case3 # Case 4 : num1 'operation1' ( ( num2 'operation2' num3 ) 'operation3' num4 ) case4 = f"{num1} {operation1} ( ( {num2} {operation2} {num3} ) {operation3} {num4} ) = 24" try: calc4 = calc(num2, operation2, num3) calc4 = calc(calc4, operation3, num4) calc4 = calc(num1, operation1, calc4) except ZeroDivisionError: calc4 = 0 if calc4 == 24: return case4 # Case 5 : num1 'operation1' ( num2 'operation2' ( num3 'operation3' num4 ) ) case5 = f"{num1} {operation1} ( {num2} {operation2} ( {num3} {operation3} {num4} ) ) = 24" try : calc5 = calc(num3, operation3, num4) calc5 = calc(num2, operation2, calc5) calc5 = calc(num1, operation1, calc5) except ZeroDivisionError: calc5 = 0 if calc5 == 24: return case5 return 'No Solutions'
b8d51d677e16ed27c0b46ad0f4fe98751ea9759e
3,640,235
import hashlib import hmac import struct def pbkdf2(hash_algorithm, password, salt, iterations, key_length): """ PBKDF2 from PKCS#5 :param hash_algorithm: The string name of the hash algorithm to use: "sha1", "sha224", "sha256", "sha384", "sha512" :param password: A byte string of the password to use an input to the KDF :param salt: A cryptographic random byte string :param iterations: The numbers of iterations to use when deriving the key :param key_length: The length of the desired key in bytes :raises: ValueError - when any of the parameters contain an invalid value TypeError - when any of the parameters are of the wrong type :return: The derived key as a byte string """ if not isinstance(password, byte_cls): raise TypeError(pretty_message( ''' password must be a byte string, not %s ''', type_name(password) )) if not isinstance(salt, byte_cls): raise TypeError(pretty_message( ''' salt must be a byte string, not %s ''', type_name(salt) )) if not isinstance(iterations, int_types): raise TypeError(pretty_message( ''' iterations must be an integer, not %s ''', type_name(iterations) )) if iterations < 1: raise ValueError('iterations must be greater than 0') if not isinstance(key_length, int_types): raise TypeError(pretty_message( ''' key_length must be an integer, not %s ''', type_name(key_length) )) if key_length < 1: raise ValueError('key_length must be greater than 0') if hash_algorithm not in set(['md5', 'sha1', 'sha224', 'sha256', 'sha384', 'sha512']): raise ValueError(pretty_message( ''' hash_algorithm must be one of "md5", "sha1", "sha224", "sha256", "sha384", "sha512", not %s ''', repr(hash_algorithm) )) ld = { 'md5' : hashlib.md5, 'sha1' : hashlib.sha1, 'sha224': hashlib.sha224, 'sha256': hashlib.sha256, 'sha384': hashlib.sha384, 'sha512': hashlib.sha512, } h = hmac.new(password, digestmod=ld[hash_algorithm]) def prf(data): hm = h.copy() hm.update(data) return bytearray(hm.digest()) key = bytearray() i = 1 while len(key) < key_length: T = U = prf(salt + struct.pack('>i', i)) for _ in range(iterations - 1): U = prf(U) T = bytearray(x ^ y for x, y in zip(T, U)) key += T i += 1 return key[:key_length]
8a3799a2c73b3b3be96f67252f210bc5d114d334
3,640,236
import time def getLocalUtcTimeStamp(): """ Get the universal timestamp for this machine. """ t = time.mktime(time.gmtime()) isDst = time.localtime().tm_isdst return t - isDst * 60 * 60
54eed0893d03f3b6a76de0d36fc3f1ff5b35f64f
3,640,237
def melt_then_pivot_query(df, inspect_result, semiology_term): """ if happy all are the same semiology, after insepction of QUERY_SEMIOLOGY, melt then pivot_table: --- inspect_result is a df Ali Alim-Marvasti July 2019 """ # find all localisation columns present: localisation_labels = anatomical_regions(df) relevant_localisations = [ cols for cols in inspect_result.columns if cols in localisation_labels] # MELT # first determine id_vars: in this case we don't use lateralisation add that too full_id_cols = full_id_vars() + lateralisation_vars() id_vars_present_in_query = [ cols for cols in inspect_result.columns if cols in full_id_cols] inspect_result_melted = inspect_result.melt(id_vars=id_vars_present_in_query, value_vars=relevant_localisations, var_name='melted_variable', value_name='melted_numbers') # replace NaNs with 0s as melting creates many: inspect_result_melted.fillna(value=0, inplace=True) # PIVOT_TABLE inspect_result_melted['pivot_by_column'] = semiology_term pivot_result = inspect_result_melted.pivot_table( index='pivot_by_column', columns='melted_variable', values='melted_numbers', aggfunc='sum') # sort the columns of the pivot_table by ascending value: pivot_result.sort_values(by=semiology_term, axis=1, inplace=True, ascending=False) return pivot_result
97ebd8f30d4b031a6b12412421ad0e4e2458c003
3,640,238
from typing import List from typing import Tuple def maze_solver(maze: List[List[int]]) -> List[Tuple[int, int]]: """ Finds the path that a light ray would take through a maze. :param maze: 2D grid of cells, where 0 = empty cell, -1 = mirror at -45 degrees, 1 = mirror at 45 degrees :return: The coordinates that the light passed, ordered by time """ validate_maze(maze) coordinate = (0, 0) direction = DIRECTION_RIGHT path: List[Tuple[int, int]] = [] while 0 <= coordinate[0] < len(maze) and 0 <= coordinate[1] < len(maze[0]): path.append(coordinate) direction = next_direction(direction, maze[coordinate[0]][coordinate[1]]) coordinate = next_coordinate(coordinate, direction) return path
4ea26e1dec318c9a41babf617d26662d35fe54c1
3,640,239
def looks_like_fasta(test_text): """Determine if text looks like FASTA formatted data. Looks to find at least two lines. The first line MUST start with '>' and the second line must NOT start with '>'. Ignores any starting whitespace. """ text = test_text.strip() return FASTA_START.match(text) is not None
352cde2d0d4de692e0598a96d19107ac04a66f53
3,640,240
import signal def firwin_kaiser_bsf(f_stop1, f_pass1, f_pass2, f_stop2, d_stop, fs=1.0, N_bump=0, status=True): """ Design an FIR bandstop filter using the sinc() kernel and a Kaiser window. The filter order is determined based on f_stop1 Hz, f_pass1 Hz, f_pass2 Hz, f_stop2 Hz, and the desired stopband attenuation d_stop in dB for both stopbands, all relative to a sampling rate of fs Hz. Note: The passband ripple cannot be set independent of the stopband attenuation. Note: The filter order is forced to be even (odd number of taps) so there is a center tap that can be used to form 1 - H_BPF. Mark Wickert October 2016 """ # First design a BPF starting from simple LPF equivalent # The upper and lower stopbands are assumed to have # the same attenuation level. The LPF equivalent critical # frequencies: f_pass = (f_pass2 - f_pass1) / 2 f_stop = (f_stop2 - f_stop1) / 2 # Continue to design equivalent LPF wc = 2 * np.pi * (f_pass + f_stop) / 2 / fs delta_w = 2 * np.pi * (f_stop - f_pass) / fs # Find the filter order M = np.ceil((d_stop - 8) / (2.285 * delta_w)) # Adjust filter order up or down as needed M += N_bump # Make filter order even (odd number of taps) if ((M + 1) / 2.0 - int((M + 1) / 2.0)) == 0: M += 1 N_taps = M + 1 # Obtain the Kaiser window beta = signal.kaiser_beta(d_stop) w_k = signal.kaiser(N_taps, beta) n = np.arange(N_taps) b_k = wc / np.pi * np.sinc(wc / np.pi * (n - M / 2)) * w_k b_k /= np.sum(b_k) # Transform LPF to BPF f0 = (f_pass2 + f_pass1) / 2 w0 = 2 * np.pi * f0 / fs n = np.arange(len(b_k)) b_k_bs = 2 * b_k * np.cos(w0 * (n - M / 2)) # Transform BPF to BSF via 1 - BPF for odd N_taps b_k_bs = -b_k_bs b_k_bs[int(M / 2)] += 1 if status: log.info('Kaiser Win filter taps = %d.' % N_taps) return b_k_bs
d5fccbcb9721707f0653065ad7c27d904cc05b97
3,640,241
from typing import List def extract_text(html_text) -> List[List[str]]: """ :param html_text: :return: """ lines = [i.text.replace("\xa0", "") for i in html_text.find("div", attrs={"class": "contentus"}).findAll("h3")] return [line.split(" ") for line in lines if line]
19dfdd513e48f2662dc51661bfeca4b1155762a3
3,640,242
from typing import Iterable from typing import Tuple from re import X from typing import Mapping from typing import List def multidict(pairs: Iterable[Tuple[X, Y]]) -> Mapping[X, List[Y]]: """Accumulate a multidict from a list of pairs.""" rv = defaultdict(list) for key, value in pairs: rv[key].append(value) return dict(rv)
c94567169a8ea4e3d7fd9a8e5c2a990625181be8
3,640,243
import glob def read_images(pathname): """ Read the images to a list given a path like 'images/cropped/*' :param pathname: file path :return: a list of color images and a list of corresponding file names """ images_path = sorted(glob.glob(pathname)) images = [] names = [] for path in images_path: images.append(cv2.imread(path, cv2.IMREAD_COLOR)) name = path[-10:].split('.')[0] names.append(name) return images, names
9fd4644baa2ca5db204cd7ce442e85bc0d9e3166
3,640,244
import subprocess def cov(path): """ Run a test coverage report. :param path: Test coverage path :return: Subprocess call result """ cmd = "py.test --cov-report term-missing --cov {0}".format(path) return subprocess.call(cmd, shell=True)
521b78f712510b6438ad5bad45c951ddb0e1b623
3,640,245
def visualize_camera_movement(image1, image1_points, image2, image2_points, is_show_img_after_move=False): """ Plot the camera movement between two consecutive image frames :param image1: First image at time stamp t :param image1_points: Feature vector for the first image :param image2: First image at time stamp t + 1 :param image2_points: Feature vectir for the second image :param is_show_img_after_move: Bool variable to plot movement or not """ image1 = image1.copy() image2 = image2.copy() for i in range(0, len(image1_points)): # Coordinates of a point on t frame p1 = (int(image1_points[i][0]), int(image1_points[i][1])) # Coordinates of the same point on t+1 frame p2 = (int(image2_points[i][0]), int(image2_points[i][1])) cv2.circle(image1, p1, 5, (0, 255, 0), 1) cv2.arrowedLine(image1, p1, p2, (0, 255, 0), 1) cv2.circle(image1, p2, 5, (255, 0, 0), 1) if is_show_img_after_move: cv2.circle(image2, p2, 5, (255, 0, 0), 1) if is_show_img_after_move: return image2 else: return image1
5f92bf44885e62ebdc502e8c98ba1466cb8d5279
3,640,246
def get_rgb_masks(data, separate_green=False): """Get the RGGB Bayer pattern for the given data. See `get_rgb_data` for description of data. Args: data (`numpy.array`): An array of data representing an image. separate_green (bool, optional): If the two green channels should be separated, default False. Returns: tuple(np.array, np.array, np.array): A 3-tuple of numpy arrays of `bool` type. """ r_mask = np.ones_like(data).astype(bool) g1_mask = np.ones_like(data).astype(bool) b_mask = np.ones_like(data).astype(bool) if separate_green: g2_mask = np.ones_like(data).astype(bool) else: g2_mask = g1_mask if data.ndim == 2: r_mask[1::2, 0::2] = False g1_mask[1::2, 1::2] = False g2_mask[0::2, 0::2] = False b_mask[0::2, 1::2] = False elif data.ndim == 3: r_mask[..., 1::2, 0::2] = False g1_mask[..., 1::2, 1::2] = False g2_mask[..., 0::2, 0::2] = False b_mask[..., 0::2, 1::2] = False else: raise Exception('Only 2D and 3D data allowed') if separate_green: return np.array([r_mask, g1_mask, g2_mask, b_mask]) else: return np.array([r_mask, g1_mask, b_mask])
cf31103ca4248ccd96fb89181d0e48d5b71201c5
3,640,247
def _parse_ax(*args, **kwargs): """ Parse plotting *args, **kwargs for an AxesSubplot. This allows for axes and colormap to be passed as keyword or position. Returns AxesSubplot, colormap, kwargs with *args removed""" axes = kwargs.pop('axes', None) cmap = kwargs.get('cmap', None) if not axes: indicies = [idx for (idx, arg) in enumerate(args) if isinstance(arg, Subplot)] if len(indicies) < 1: axes = None elif len(indicies) > 1: raise UtilsError("Multiple axes not understood") else: args = list(args) axes = args.pop(indicies[0]) if args and not cmap: if len(args) > 1: raise UtilsError("Please only pass a colormap and/or Axes" " subplot to Canvas plotting") elif len(args) == 1: kwargs['cmap'] = args[0] # If string, replace cmap with true cmap instance (used by show()) if 'cmap' in kwargs: cmap = kwargs['cmap'] if isinstance(cmap, str): if cmap != 'pbinary' and cmap != 'pbinary_r': #special canvas word kwargs['cmap'] = cm.get_cmap(cmap) return axes, kwargs
78658e2cf66fad184c057b9392b918ffb48406be
3,640,248
import google.colab # noqa: F401 import IPython import IPython def _get_context(): """Determine the most specific context that we're in. Implementation from TensorBoard: https://git.io/JvObD. Returns: _CONTEXT_COLAB: If in Colab with an IPython notebook context. _CONTEXT_IPYTHON: If not in Colab, but we are in an IPython notebook context (e.g., from running `jupyter notebook` at the command line). _CONTEXT_NONE: Otherwise (e.g., by running a Python script at the command-line or using the `ipython` interactive shell). """ # In Colab, the `google.colab` module is available, but the shell # returned by `IPython.get_ipython` does not have a `get_trait` # method. try: except ImportError: pass else: if IPython.get_ipython() is not None: # We'll assume that we're in a Colab notebook context. return _CONTEXT_COLAB # In an IPython command line shell or Jupyter notebook, we can # directly query whether we're in a notebook context. try: except ImportError: pass else: ipython = IPython.get_ipython() if ipython is not None and ipython.has_trait("kernel"): return _CONTEXT_IPYTHON # Otherwise, we're not in a known notebook context. return _CONTEXT_NONE
b81205aedbe2222019fa6b7e9dc5fb638536869f
3,640,249
def loadSHSMFCCs(IDs): """ Load all of the 12-dim MFCC features """ IDDict = getSHSIDDict() fin = open("SHSDataset/MFCC/bt_aligned_mfccs_shs.txt") mfccs = {} count = 0 while True: ID = fin.readline().rstrip() if not ID: break ID = IDDict[ID] if count%1000 == 0: print("Loaded mfccs for %i songs..."%count) if not ID in IDs: fin.readline() count += 1 continue x = fin.readline().rstrip() x = x.split(",") if len(x[-1]) == 0: x = x[0:-1] x = np.array([float(a) for a in x]) x = np.reshape(x, (len(x)/12, 12)) mfccs[ID] = x count += 1 fin.close() return mfccs
04d82be79d6e89c5f9b6304be82d049bf6af63f5
3,640,250
def __createTransactionElement(doc,tran): """ Return a DOM element represents the transaction given (tran) """ tranEle = doc.createElement("transaction") symbolEle = __createSimpleNodeWithText(doc, "symbol", tran.symbol) buyEle = __createSimpleNodeWithText(doc, "buy", "true" if tran.buy else "false") quantityEle = __createSimpleNodeWithText(doc, "quantity", str(tran.num_of_shares)) priceEle = __createSimpleNodeWithText(doc, "price", str(tran.price_per_share)) netAmountEle = __createSimpleNodeWithText(doc, "net_amount", str(tran.net_amount)) timeEle = __createSimpleNodeWithText(doc, "time", tran.getTimeStr()) accountTypeEle = __createSimpleNodeWithText(doc, "account_type", str(tran.account_type)) tranEle.appendChild(symbolEle) tranEle.appendChild(buyEle) tranEle.appendChild(quantityEle) tranEle.appendChild(priceEle) tranEle.appendChild(netAmountEle) tranEle.appendChild(timeEle) tranEle.appendChild(accountTypeEle) return tranEle
c09fc6abf4cb9599be23bcf6c91c6cc60330df0a
3,640,251
def received_information(update: Update, context: CallbackContext) -> int: """Store info provided by user and ask for the next category.""" text = update.message.text category = context.user_data['choice'] context.user_data[category] = text.lower() del context.user_data['choice'] update.message.reply_text( "Neat! Just so you know, this is what you already told me:" f"{facts_to_str(context.user_data)}" "You can tell me more, or change your opinion on something.", reply_markup=markup, ) return CHOOSING
e7b93516975a497f6da11383969a14aeb31e6278
3,640,252
def set_payout_amount(): """ define amount of insurance payout NB must match what was defined in contract constructor at deployment """ return 500000e18
30ff7b07cbbe28b3150be2f1f470236875c8d0e3
3,640,253
def process_season_data(*args) -> pd.DataFrame: """ Takes multiple season data frames, cleans each and combines into single dataframe. """ return pd.concat( map( lambda df: basketball_reference.process_df_season_summary( df=df, url_type="season_summary_per_game" ), [*args], ), axis=0, )
9c2d46ba2b491382e91613e0dc0a35b68e4188cf
3,640,254
def build_frame(station_num: int, snapshots_num: int): """Function to build citi_bike Frame. Args: station_num (int): Number of stations. snapshot_num (int): Number of in-memory snapshots. Returns: CitibikeFrame: Frame instance for citi-bike scenario. """ matrices_cls = gen_matrices_node_definition(station_num) class CitibikeFrame(FrameBase): stations = FrameNode(Station, station_num) # for adj frame, we only need 1 node to hold the data matrices = FrameNode(matrices_cls, 1) def __init__(self): super().__init__(enable_snapshot=True, total_snapshot=snapshots_num) return CitibikeFrame()
2fd09885f488a4b42f9a2a4a19dfdd5c10743ef9
3,640,255
def rucklidge(XYZ, t, k=2, a=6.7): """ The Rucklidge Attractor. x0 = (0.1,0,0) """ x, y, z = XYZ x_dt = -k * x + y * (a - z) y_dt = x z_dt = -z + y**2 return x_dt, y_dt, z_dt
9d10aa89fb684a95474d45399ae09a38b507913c
3,640,256
import os def resolve(dirs, *paths): """ Joins `paths` onto each dir in `dirs` using `os.path.join` until one of the join results is found to exist and returns the existent result. :param dirs: A list of dir strings to resolve against :param paths: Path components to join onto each dir in `dirs` :return A path created by calling `os.path.join` on a dir in `dirs` with `*paths`. :raises ValueError: If `dirs` is empty :raises FileNotFoundError: If joining `paths` onto all dirs in `dirs` always resulted in non-existent paths. """ if len(dirs) == 0: raise ValueError("dirs empty: cannot resolve paths against *no* dirs: dirs must contain at least one element") ret = try_resolve(dirs, *paths) if ret is not None: return ret elif len(dirs) == 1: raise FileNotFoundError("{path}: No such file or directory".format(path=os.path.join(dirs[0], *paths))) else: attempted_paths = [os.path.join(d, *paths) for d in dirs] path = os.path.join(*paths) attempt_str = ", ".join(list(map(lambda p: "'" + p + "'", attempted_paths))) raise FileNotFoundError("{path}: could not be found after trying {paths}".format(path=path, paths=attempt_str))
d9f8b8e4049091ab0354b56e283f322ddd3d37e0
3,640,257
def multiext(prefix, *extensions): """Expand a given prefix with multiple extensions (e.g. .txt, .csv, _peaks.bed, ...).""" if any((r"/" in ext or r"\\" in ext) for ext in extensions): raise WorkflowError( r"Extensions for multiext may not contain path delimiters " r"(/,\)." ) return [flag(prefix + ext, "multiext", flag_value=prefix) for ext in extensions]
39bda078a856cb14fc65174ff48be81909b9034a
3,640,258
def sum_range(n, total=0): """Sum the integers from 1 to n. Obviously the same as n(n+1)/2, but this is a test, not a demo. >>> sum_range(1) 1 >>> sum_range(100) 5050 >>> sum_range(100000) 5000050000L """ if not n: return total else: raise TailCall(sum_range, n - 1, n + total)
6126dd1012346a388ddc37c5a8965f3662b8ad7d
3,640,259
import logging import time import pickle def parallel_evaluation_mp(candidates, args): """ Evaluate the candidates in parallel using ``multiprocessing``. This function allows parallel evaluation of candidate solutions. It uses the standard multiprocessing library to accomplish the parallelization. The function assigns the evaluation of each candidate to its own job, all of which are then distributed to the available processing units. Args: candidates: list the candidate solutions args: a dictionary of keyword arguments Returns: Notes: All arguments to the evaluation function must be pickleable. Those that are not will not be sent through the ``args`` variable and will be unavailable to your function. Required keyword arguments in args: - *mp_evaluator* -- actual evaluation function to be used (This function should have the same signature as any other inspyred evaluation function.) Optional keyword arguments in args: - *mp_nprocs* -- number of processors that will be used (default machine cpu count) """ logger = logging.getLogger('optimModels') try: evaluator = args['mp_evaluator'] except KeyError: logger.error('parallel_evaluation_mp requires \'mp_evaluator\' be defined in the keyword arguments list.') raise try: nprocs = args['mp_nprocs'] except KeyError: logger.error('parallel_evaluation_mp requires \'mp_nprocs\' be defined in the keyword arguments list.') raise start = time.time() pickled_args = {} for key in args: try: pickle.dumps(args[key]) pickled_args[key] = args[key] except (TypeError, pickle.PickleError, pickle.PicklingError): logger.debug('unable to pickle args parameter {0} in parallel_evaluation_mp'.format(key)) pass # print("--- %s seconds ---" % (time.time() - start), 'end_pickled') try: pool = MyPool(processes=nprocs) results = [pool.apply_async(evaluator, ([c], pickled_args)) for c in candidates] pool.close() pool.join() except (OSError, RuntimeError) as e: logger.error('failed parallel_evaluation_mp: {0}'.format(str(e))) raise else: end = time.time() print('completed parallel_evaluation_mp in {0} seconds'.format(end - start)) logger.debug('completed parallel_evaluation_mp in {0} seconds'.format(end - start)) # print("--- %s seconds ---" % (time.time() - start), 'end_pop') return [r.get()[0] for r in results]
4562a976306ec8c3684d079b307a4fb1a83d09ab
3,640,260
from tcrsampler.sampler import TCRsampler def _default_tcrsampler_human_beta(default_background = None, default_background_if_missing=None): """ Responsible for providing the default human beta sampler 'britanova_human_beta_t_cb.tsv.sampler.tsv' Returns ------- t : tcrsampler.sampler.TCRsampler """ if default_background is None: default_background = 'britanova_human_beta_t_cb.tsv.sampler.tsv' if default_background_if_missing is None: default_background_if_missing ='britanova_human_beta_t_cb.tsv.sampler.tsv.zip' print(default_background) try: t = TCRsampler(default_background=default_background) except OSError: t = TCRsampler() t.download_background_file(default_background_if_missing) t = TCRsampler(default_background=default_background) return t
15b682b3e14e9496514efaf287b10ae6acb12441
3,640,261
def _dblock_to_raw( mkh5_f, dblock_path, garv_annotations=None, apparatus_yaml=None, ): """convert one mkh5 datablock+header into one mne.RawArray Ingest one mkh5 format data block and return an mne.RawArray populated with enough data and channel information to use mne.viz and the mne.Epochs, mne.Evoked EEG pipeline. Parameters ---------- dblock_path : str HDF5 slash path to an mkh5 data block which an h5py.Dataset garv_annotations: None or dict event_channel: str, channel name with events to annotate start, stop: float relative to time lock event unit: "ms" or "s" apparatus_yaml: str, optional filepath to YAML apparatus file with stream and sensor space info to override native mkh5 hdr["apparatus"] if any. Returns ------- mne.RawArray with channel locations from apparatus_yaml and mkh5 epochs tables JSONified and tucked into the Info["description"] Notes ----- The raw_dblock returned from this can be stacked with mne.concatenate_raws() though MNE behavior is to use first info and just stack the datablocks. epochs metadata is collected and returned per block so the complete record can be tucked into the (one) info object when the dblocks are stacked. The raw.set_eeg_reference(ref_channels=[]) at the end to block subsequent mne's default automatic average rereferencing later in the pipeline (sheesh). """ h5data = mkh5.mkh5(mkh5_f) try: assert dblock_path in h5data.dblock_paths, "please report this bug" hdr, dblock = h5data.get_dblock(dblock_path) except Exception as fail: raise Mkh5DblockPathError(str(fail), mkh5_f, dblock_path) info, montage = _hdr_dblock_to_info_montage(hdr, apparatus_yaml=apparatus_yaml) # mne wants homogenous n_chans x nsamps, so stim, misc ints coerced # to float ... sigh. mne_data = np.ndarray(shape=(len(dblock.dtype.names), len(dblock)), dtype="f8") # slice out and scale mkh5 native uV to mne FIFFV_UNIT_V for jdx, stream in enumerate(dblock.dtype.names): # true by construction unless tampered with assert info["ch_names"][jdx] == stream assert hdr["streams"][stream]["jdx"] == jdx # CRITICAL ... mkh5 EEG are native uV, MNE are V if "dig_chan" in hdr["streams"][stream]["source"]: mne_data[jdx] = dblock[stream] * MKH5_EEG_UNIT else: mne_data[jdx] = dblock[stream] * 1.0 # create the raw object raw_dblock = mne.io.RawArray(mne_data, info, copy="both") raw_dblock.set_montage(montage) # ------------------------------------------------------------ # add an MNE data column for each epochs_table in the mkh5 file # - for each one, slice the timelock events at match_time == 0 # - copy the time-locked event code to the epochs column and # the rest of the epochs tables columns to metadata. epochs_table_names = mkh5.mkh5(mkh5_f).get_epochs_table_names() epochs_table_descr = dict() # returned for mkh5 epoching from MNE Raw log_evcodes, _ = raw_dblock["log_evcodes"] # for checking if len(epochs_table_names) > 0: for etn in epochs_table_names: # fetch the epochs_table and slice for this mkh5 data block print(f"{dblock_path} setting mkh5 epochs table {etn} events and metadata") epochs_table = h5data.get_epochs_table(etn) etn_dblock = ( epochs_table.query("dblock_path == @dblock_path and match_time==0") ).copy() # CRITICAL: The mkh5 epoch table indexes HDF5 data by # dblock_path, dblock_tick (row offset), the row sort # order is undefined. MNE squawks if event array # sample indexes are not monotonically increasing. etn_dblock.sort_values("dblock_ticks", inplace=True) # capture epochs table as data frame for later epochs_table_descr[etn] = etn_dblock # container for the new column of event codes etn_evcodes = np.zeros( (1, len(raw_dblock)), dtype=raw_dblock.get_data()[0].dtype ) # yes, (1, len) b.c. MNE wants chan x time # CRITICAL: copy over log_evcodes at just the epoch event ticks etn_evcodes[0, etn_dblock.dblock_ticks] = etn_dblock.log_evcodes # true by construction of mkh5 except MNE is dtype float assert all( log_evcodes[0, etn_dblock.dblock_ticks] == etn_evcodes[0, etn_dblock.dblock_ticks] ) # clone the log_evcodes to get their MNE info attributes etn_event_channel = raw_dblock.copy().pick(["log_evcodes"]) # rename and hack in the correct scanno, logno in case it matters mne.rename_channels(etn_event_channel.info, {"log_evcodes": etn}) for field in ["scanno", "logno"]: etn_event_channel.info["chs"][0][field] = ( raw_dblock.info["chs"][-1][field] + 1 ) # set the event code data values append the channel and confirm # MNE agrees when asked in its native tongue. etn_event_channel._data = etn_evcodes raw_dblock.add_channels([etn_event_channel]) assert all( raw_dblock["log_evcodes"][0][0, etn_dblock.dblock_ticks] == raw_dblock[etn][0][0, etn_dblock.dblock_ticks] ) # ------------------------------------------------------------ # seed the MNE annotations with the data block path at time == 0 raw_dblock.set_annotations( mne.Annotations(onset=0.0, duration=0.0, description=dblock_path) ) # add log_evocdes garv annotations, if any. validated in _check_api_params if garv_annotations: print(f"annotating garv artifacts {garv_annotations}") bad_garvs = get_garv_bads(raw_dblock, **garv_annotations) raw_dblock.set_annotations(raw_dblock.annotations + bad_garvs) return raw_dblock, epochs_table_descr
cee5823fa1ab4e3cd9be345cf83858bd61a01b51
3,640,262
def _get_positive_mask(positive_selection, cls_softmax, cls_gt): """Gets the positive mask based on the ground truth box classifications Args: positive_selection: positive selection method (e.g. 'corr_cls', 'not_bkg') cls_softmax: prediction classification softmax scores cls_gt: ground truth classification one-hot vector Returns: positive_mask: positive mask """ # Get argmax for predicted class classification_argmax = tf.argmax(cls_softmax, axis=1) # Get the ground truth class indices back from one_hot vector class_indices_gt = tf.argmax(cls_gt, axis=1) # class_indices_gt = tf.Print(class_indices_gt, ['^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^line 88(pplp loss) : class_indices_gt =', class_indices_gt], summarize=1000) # Mask for which predictions are not background not_background_mask = tf.greater(class_indices_gt, 0) # Combine the masks if positive_selection == 'corr_cls': # Which prediction classifications match ground truth correct_classifications_mask = tf.equal( classification_argmax, class_indices_gt) positive_mask = tf.logical_and( correct_classifications_mask, not_background_mask) elif positive_selection == 'not_bkg': positive_mask = not_background_mask else: raise ValueError('Invalid positive selection', positive_selection) return positive_mask
8a8e4317f99f691c038b40d7656656f532eba884
3,640,263
def max_min_index(name_index): """Return maximum and minimum value with country of a column from df.""" country_and_name = df_copy[["country", name_index]] counrties_in_name_index = country_and_name.sort_values(name_index).dropna() min_value = [ list(counrties_in_name_index[name_index])[0], list(counrties_in_name_index["country"])[0], ] max_value = [ list(counrties_in_name_index[name_index])[-1], list(counrties_in_name_index["country"])[-1], ] return max_value, min_value
7bce42a4d05b52b8e6f0a6d91cecf7775a9484a4
3,640,264
def add_bold_line(latex: str, index: int) -> str: """Makes a provided line number bold """ lines = latex.splitlines() cells = lines[index].split("&") lines[index] = r'\bfseries ' + r'& \bfseries '.join(cells) return '\n'.join(lines)
637338ea9ec576c780ccfa0b37d47a670465cdbb
3,640,265
def square(V,resp,weight): """Computes the expansion coefficients with a least squares regression""" if np.any(weight): Vt = V.T v1 = Vt.dot(np.transpose(weight*Vt)) v2 = Vt.dot(np.transpose(weight*resp.T)) coef = np.linalg.solve(v1,v2) else: coef = np.linalg.lstsq(V,resp,rcond=None)[0] return coef
076f580a16c233a087edafb1efd57b9fa194a666
3,640,266
def _unwrap_function(func): """Unwrap decorated functions to allow fetching types from them.""" while hasattr(func, "__wrapped__"): func = func.__wrapped__ return func
8c7a9f5b08dc91b9ae2c8387fbd4860bb554d561
3,640,267
def get_data(exception: bool = True, key_form: str = "data") -> "dict or None": """Função captura os dados de uma rota. A captura é feita caso a rota seja com `JSON` ou `Multipart-form` caso contrario lança um exceção. As imagens são capturadas na função `get_files`. `exception` campo boleano opcional que define se é levantado exceções. O valor por padrão é True. Exceções: `from app.errors.JSONNotFound` - Body vazio. """ data = {} if request.get_json(): data: dict = request.get_json() elif request.form.get(key_form): data: dict = loads(request.form.get(key_form)) if data.get("file"): data.pop("file") return data
15cd4257e7849d4400231d7e5c2a025b16ad7db5
3,640,268
def get_dec_log(uid): """Convenience method to look up inc_log for a uid.""" rv = query_db('select dec_log from user where uid = ?', [uid], one=True) return rv[0] if rv else None
8927ce657cbabfd1e0f4e852e6163702ab5b3841
3,640,269
def removeItem(request): """ Removes item from logged in customers basket. """ if request.method == 'POST': cust = User.objects.get(username=request.user.username) item_id = request.POST["item_id"] item = Item.objects.get(id=item_id) b_item = Basket.objects.get(customer=cust, item=item) if(b_item): b_item.delete() return HttpResponse(None) return HttpResponseBadRequest(None)
80514a322f727478311b7a1b49bd9da8ac7b0d28
3,640,270
def read_file(repo, name): """Read JSON files.""" with open(repo + '/' + name + '.txt') as file: data = [d.rstrip() for d in file.readlines()] file.close() return data
4d91e4c68a4f132dc6ebb41cc51df66bd555107a
3,640,271
def add_end_slash(value: str): """ Added a slash at the end of value """ if type(value) != str: return value return value if value.endswith("/") else value + "/"
bc8f41898c50120ad7ca8b814ff03d19c1c64c27
3,640,272
def shift_fill(a, n, axis=0, fill=0.0, reverse=False): """ shift n spaces backward along axis, filling rest in with 0's. if n is negative, shifts forward. """ shifted = np.roll(a, n, axis=axis) shifted[:n] = fill return shifted
5287eefe7491442e3192069bce4faf975e54344a
3,640,273
from typing import Union def str2bool(v:Union[str, bool]) -> bool: """ finished, checked, converts a "boolean" value possibly in the format of str to bool Parameters ---------- v: str or bool, the "boolean" value Returns ------- b: bool, `v` in the format of bool References ---------- https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse """ if isinstance(v, bool): b = v elif v.lower() in ("yes", "true", "t", "y", "1"): b = True elif v.lower() in ("no", "false", "f", "n", "0"): b = False else: raise ValueError("Boolean value expected.") return b
2f102239ce395ece25022320443ffc6d7183968e
3,640,274
def _none_or_int_or_list(val): """Input conversion - expecting None, int, or a list of ints""" if val is None: return None elif isinstance(val, list): return list(map(int, val)) else: return int(val)
1958c64175a1cd63f8a42044b40b84d7cf8baed2
3,640,275
def hour_of_day(datetime_col): """Returns the hour from a datetime column.""" return datetime_col.dt.hour
18b2f6e16ccbcb488f3863968466fda14f669d8b
3,640,276
def pad_lists(lists, pad_token, seq_lens_idx=[]): """ Pads unordered lists of different lengths to all have the same length (max length) and orders length descendingly Arguments: lists : list of 1d lists with different lengths (list[list[int]]) pad_token : padding value (int) seq_lens_idx : list of sorted indices (list[int]) Returns: ordered_lists (list[list[int]]) : List of padded 1d lists with equal lengths, ordered descendingly from original lengths ordered_seq_lens (list[int]) : List of sequence lengths of corresponding lists (i.e. len(lst)) seq_lens_idx (list[int]) : Order of original indices in descending sequence length """ seq_lens = [len(lst) for lst in lists] max_seq_len = max(seq_lens) ordered_seq_lens = [] ordered_lists = [] if len(seq_lens_idx) == 0: seq_lens_idx = np.flip(np.argsort(seq_lens), axis=0).tolist() # descending indices based on seq_lens for idx in seq_lens_idx: # for every sample in batch ordered_lists.append(lists[idx] + [pad_token] * (max_seq_len - len(lists[idx]))) ordered_seq_lens.append(seq_lens[idx]) return ordered_lists, ordered_seq_lens, seq_lens_idx
76a2a9934dfca478e7db43a93db7e56c181a3b3f
3,640,277
def sum_naturals(n): """Sum the first N natural numbers >>> sum_naturals(5) 15 """ total = 0 k = 1 while k <= n: total += k k += 1 return total
4c59057cd82083d615c72a59f682dd218a657ea0
3,640,278
def _gaussian_log_sf(x, mu, sigma): """Log SF of a normal distribution.""" if not isinstance(x, chainer.Variable): x = chainer.Variable(x) return _log_ndtr(-(x - mu) / sigma)
3f33918bf78fc3ab4064f05d038232df218416f6
3,640,279
def sort_list_files(list_patches, list_masks): """ Sorts a list of patches and masks depending on their id. :param list_patches: List of name of patches in the folder, that we want to sort. :param list_masks: List of name of masks in the folder, that we want to sort. :return: List of sorted lists, respectively of patches and masks. """ return sorted(list_patches, key=lambda x: int(x[1])), sorted(list_masks, key=lambda x: int(x[1]))
91557475bf145862ea88ad9f86cef82135eddd6c
3,640,280
def get_model(name): """ get_model """ if name not in __factory: raise KeyError("unknown model:", name) return __factory[name]
00fff4e3596aec487b16fd1114b7d026d6790568
3,640,281
import configparser def defaults_to_cfg(): """ Creates a blank template cfg with all accepted fields and reasonable default values Returns: config (ConfigParser): configuration object containing defaults """ config = configparser.ConfigParser(allow_no_value=True) config.add_section("General") config.set("General", "prot_file") config.set("General", "lig_file") config.set("General", "min_rad", _option_constraints.get("general_min_rad_dflt")) config.set("General", "max_rad", _option_constraints.get("general_max_rad_dflt")) config.set("General", "constrain_radii", _option_constraints.get("general_constrain_radii")) config.add_section("Specification") config.set("Specification", "mode") config.set("Specification", "coordinates") config.set("Specification", "resid") config.set("Specification", "lig_excl_rad") config.set("Specification", "lig_incl_rad") config.set("Specification", "min_volume", _option_constraints.get("specification_min_volume_dflt")) config.add_section("Partitioning") config.set("Partitioning", "subdivide", _option_constraints.get("partitioning_subdivide_dflt")) config.set("Partitioning", "max_clusters") config.set("Partitioning", "min_subpocket_rad", _option_constraints.get("partitioning_min_subpocket_rad_dflt")) config.set("Partitioning", "max_subpocket_rad", ) config.set("Partitioning", "min_subpocket_surf_rad", ) config.set("Partitioning", "radial_sampling", ) config.set("Partitioning", "inclusion_radius_buffer") config.set("Partitioning", "min_cluster_size") config.add_section("Output") config.set("Output", "project_dir") config.set("Output", "prefix") config.set("Output", "logger_stream_level", "INFO") config.set("Output", "logger_file_level", "DEBUG") config.add_section("PyMOL") config.set("PyMOL", "protein") config.set("PyMOL", "ligand") config.set("PyMOL", "protein_only", "False") config.set("PyMOL", "display_mode", "solid") config.set("PyMOL", "palette") config.set("PyMOL", "alpha", "0.85") return config
f521d0caee3c9f062eb78e7d5c2562030a741aaf
3,640,282
def check_sentence_for_coins(sentence: str) -> str: """Returns the corresponding binance pair if a string contains any words refering to a followed coins Args: sentence (str): the sentence Returns: str: the binance pair if it contains a coins, otherwise returns 'NO_PAIR' """ coin = next((word for word in list(TRACKED_COINS.keys()) if word in sentence.lower()), 'NO_PAIR') if coin != 'NO_PAIR': return TRACKED_COINS[coin] return coin
a9d041ff6c2bcca1c424b059956c33016f93300d
3,640,283
def to24Bit(color8Bit): """The method allows you to convert the 8-bit index created by the color.to8Bit method to 24-bit color value.""" # We ignore first one, so we need to shift palette indexing by one return palette[color8Bit + 1]
b84d2262883a7b3415ae46f174418dc79ef800dc
3,640,284
import shlex import sys import json def read_json_method(data): """ Reformatting Valve key/value format to JSON and returning JSON. """ # default vars parent = [] depth = 0 vdict = {} # init json and add opening bracket vjson = "{" # replace tabs with spaces data.replace("\t", " ") # split into lines data = data.splitlines() # loop through vdf for index, line in enumerate(data): # split line string split = shlex.split(line) count = len(split) # set key vars key = split[0] # error if unexpected word count of current line if count > 2: print( "The line: " + line + " contains an invalid number of words. This must be 1 or 2!" ) sys.exit(1) # parse next line if not last line if index == (len(data) - 1): # set next to false nextkey = False # flag this line as last lastline = True else: # get next line nextline = data[index + 1] nextsplit = shlex.split(nextline) nextkey = nextsplit[0] # flag this line as not last lastline = False # check for object start lines if count == 1 and not key in ["{", "}"]: # add colon to define object line = line + " : " # check for closing bracket and if key == "}" and nextkey != "}" and not lastline: # add colon to define object line = line + "," # check for key value lines if count == 2: # set value var val = split[1] # add colon between key/value line = surround_quotes(key) + " : " + surround_quotes(val) # check for brackets on next line if not nextkey in ["{", "}"]: # add comma to line line = line + "," # add edited line to json dict vjson = vjson + line # add closing bracket vjson = vjson + "}" # parse json to dict try: vdict = json.loads(vjson) except Exception as parse_error: # print json parse error and set dict to false print( "The following error occured while trying to parse the VDF app" + "info returned from steamcmd: the query string: \n > " + str(parse_error) ) vdict = False # set error exit code sys.exit(1) return vdict
f8b266145f44e99c83fd5e0dbe2ccd8e60e4feb2
3,640,285
def make_bag(): """Create a bag.""" return from_sequence( [1, 2], npartitions=2 ).map(allocate_50mb).sum().apply(no_allocate)
8c939dd389ab09811dbbf77aaf479832ab7463d0
3,640,286
def get_testdata_files(pattern="*"): """ Return test data files from dicom3d data root directory """ data_path = join(DATA_ROOT, 'test_files') files = walk_data( base=data_path, pattern=pattern, search_files=True, search_dirs=False) return [filename for filename in files if not filename.endswith('.py')]
9739db355914b288b2fcb29874fcc50d6a2b4487
3,640,287
def safe_text(obj): """Safely turns an object into a textual representation. Calls str(), then on Python 2 decodes the result. """ result = qcore.safe_str(obj) if isinstance(result, bytes): try: result = result.decode("utf-8") except Exception as e: result = "<n/a: .decode() raised %r>" % e return result
4d20d5c42b79b6dbb6f8282d74bfd461ffd1dc75
3,640,288
from typing import List def evaluate_blueprints(blueprint_q: mp.Queue, input_size: List[int]) -> List[BlueprintGenome]: """ Consumes blueprints off the blueprints queue, evaluates them and adds them back to the queue if all of their evaluations have not been completed for the current generation. If all their evaluations have been completed, add them to the completed_blueprints list. :param blueprint_q: A thread safe queue of blueprints :param input_size: The shape of the input to each network :param num_epochs: the number of epochs to train each model for :return: A list of evaluated blueprints """ completed_blueprints: List[BlueprintGenome] = [] print(f'Process {mp.current_process().name} - epochs: {config.epochs_in_evolution}') while blueprint_q.qsize() != 0: blueprint = blueprint_q.get() blueprint = evaluate_blueprint(blueprint, input_size) if blueprint.n_evaluations == config.n_evals_per_bp: completed_blueprints.append(blueprint) else: blueprint_q.put(blueprint) return completed_blueprints
c87d0a37fe32d2af6594564afc44d16adf616737
3,640,289
import tempfile import shlex def run_noble_coder(text, noble_coder): """ Run Noble Coder Args: text: the text to feed into Noble Coder noble_coder: the execution path of Noble Coder Returns: The perturbation agent """ pert_agent = None with tempfile.TemporaryDirectory() as dirname: with open("{}/tmp.txt".format(dirname), "w") as f: f.write(text) command = "java -jar {noble_coder} -terminology NCI_Thesaurus " \ "-input {dirname} -output {dirname}".format(noble_coder=noble_coder, dirname=dirname) proc = Popen(shlex.split(command), stdout=PIPE, stderr=PIPE) out, err = [x.decode("utf-8") for x in proc.communicate()] if proc.returncode != 0 or "[Errno" in err: raise RuntimeError("Noble Coder failed to complete\nstdout: {}\n stderr {}".format(out, err)) data = tablib.Dataset().load(open("{}/RESULTS.tsv".format(dirname)).read()) for row in data: if "Amino Acid" in row[4] and "Pharmacologic Substance" not in row[4]: pert_agent = row[3] break return pert_agent
20bcee89ddda7c8abc108a42621867017a7e4d63
3,640,290
def xor(*args): """True if exactly one of the arguments of the iterable is True. >>> xor(0,1,0,) True >>> xor(1,2,3,) False >>> xor(False, False, False) False >>> xor("kalimera", "kalinuxta") False >>> xor("", "a", "") True >>> xor("", "", "") False """ return sum([bool(i) for i in args]) == 1
86bbe0350dd18a2508120cec9672661e1aa56ce0
3,640,291
from utils import check_dir import coeff from version import __version__ def proc(log_file, thread, circ_file, hisat_bam, rnaser_file, reads, outdir, prefix, anchor, lib_type): """ Build pseudo circular reference index and perform reads re-alignment Extract BSJ and FSJ reads from alignment results Returns ----- str output file name """ circ_dir = '{}/circ'.format(outdir) check_dir(circ_dir) circ_fasta = '{}/circ/{}_index.fa'.format(outdir, prefix) circ_info = load_bed(circ_file) if rnaser_file: LOGGER.info('Loading RNase R results') rnaser_exp, rnaser_stat = update_info(circ_info, rnaser_file) # extract fasta file for reads alignment generate_index(log_file, circ_info, circ_fasta) # hisat2-build index denovo_index = build_index(log_file, thread, circ_fasta, outdir, prefix) LOGGER.debug('De-novo index: {}'.format(denovo_index)) # hisat2 de novo alignment for candidate reads denovo_bam = denovo_alignment(log_file, thread, reads, outdir, prefix) LOGGER.debug('De-novo bam: {}'.format(denovo_bam)) # Find BSJ and FSJ informations cand_bsj = proc_denovo_bam(denovo_bam, thread, circ_info, anchor, lib_type) bsj_reads, fsj_reads = proc_genome_bam(hisat_bam, thread, circ_info, cand_bsj, anchor, circ_dir) total_reads, mapped_reads = bam_stat(hisat_bam) circ_reads = sum([len(bsj_reads[i]) for i in bsj_reads]) * 2 sample_stat = (total_reads, mapped_reads, circ_reads) sample_exp = expression_level(circ_info, bsj_reads, fsj_reads) # circRNA annotation header = [ 'Sample: {}'.format(prefix), 'Total_Reads: {}'.format(total_reads), 'Mapped_Reads: {}'.format(mapped_reads), 'Circular_Reads: {}'.format(circ_reads), ] out_file = '{}/{}.gtf'.format(outdir, prefix) if rnaser_file: tmp_header, circ_exp = coeff.correction(sample_exp, sample_stat, rnaser_exp, rnaser_stat) header += tmp_header else: circ_exp = sample_exp header += ['version: {}'.format(__version__), ] gtf_info = index_annotation(utils.GTF) format_output(circ_info, circ_exp, sample_stat, header, gtf_info, out_file) return out_file
f0cbe9a93cf81a0177895602bc706c08841d30c0
3,640,292
def zjitter(jitter=0.0, radius=5): """ scan jitter is in terms of the fractional pixel difference when moving the laser in the z-direction """ psfsize = np.array([2.0, 1.0, 3.0]) # create a base image of one particle s0 = init.create_single_particle_state(imsize=4*radius, radius=radius, psfargs={'params': psfsize, 'error': 1e-6}) sl = np.s_[s0.pad:-s0.pad,s0.pad:-s0.pad,s0.pad:-s0.pad] # add up a bunch of trajectories finalimage = 0*s0.get_model_image()[sl] position = 0*s0.obj.pos[0] for i in xrange(finalimage.shape[0]): offset = jitter*np.random.randn(3)*np.array([1,0,0]) s0.obj.pos[0] = np.array(s0.image.shape)/2 + offset s0.reset() finalimage[i] = s0.get_model_image()[sl][i] position += s0.obj.pos[0] position /= float(finalimage.shape[0]) # place that into a new image at the expected parameters s = init.create_single_particle_state(imsize=4*radius, sigma=0.05, radius=radius, psfargs={'params': psfsize, 'error': 1e-6}) s.reset() # measure the true inferred parameters return s, finalimage, position
7fae2f750cd80708e7cd881a05d535a00b4ecb38
3,640,293
def append_column(rec, col, name=None, format=None): """ Append a column to the end of a records array. Parameters ---------- rec : recarray Records array. col : array_like Array or similar object which will be converted into the new column. name : str, optional Name of the column. If None col.dtypes.name will be used. format : dtype, optional Data type to convert the new column into before appending. Required if col is not an ndarray. Returns ------- new_rec : recarray New records array with column appended. """ N = len(rec.dtype.descr) return insert_column(rec, N, col, name, format)
f851ef69946937cbb100d424ddb8502b906940bd
3,640,294
import copy def dfa2nfa(dfa): """Copy DFA to an NFA, so remove determinism restriction.""" nfa = copy.deepcopy(dfa) nfa.transitions._deterministic = False nfa.automaton_type = 'Non-Deterministic Finite Automaton' return nfa
eed8e651a51e71599a38288665604add3d8a0a3d
3,640,295
def count_related_m2m(model, field): """Return a Subquery suitable for annotating a m2m field count.""" subquery = Subquery(model.objects.filter(**{"pk": OuterRef("pk")}).order_by().annotate(c=Count(field)).values("c")) return Coalesce(subquery, 0)
e772c8d55a1d9778077eaf9cbebfc51948361e1c
3,640,296
def create_car(sql: Session, car: CarsCreate): """ Create a record of car with its Name & Price """ new_car = Cars( Name=car.Name, Price=car.Price ) sql.add(new_car) sql.commit() sql.refresh(new_car) return new_car
33fda0b653950989bd1b61ae1ee689db05576877
3,640,297
import time def train(train_loader, model, criterion, optimizer, args, epoch): """Train process""" '''Set up configuration''' batch_time = AverageMeter() data_time = AverageMeter() am_loss = AverageMeter() vec_loss = AverageMeter() dis_loss = AverageMeter() ske_loss = AverageMeter() kps_loss = AverageMeter() last = time.time() model.train() bar = Bar('\033[31m Train \033[0m', max=len(train_loader)) '''Start Training''' for i, sample in enumerate(train_loader): data_time.update(time.time() - last) results, targets, loss = one_forward_pass( sample, model, criterion, args, is_training=True ) '''Update the loss after each sample''' am_loss.update( loss[0].item(), targets['batch_size'] ) vec_loss.update( loss[1].item(), targets['batch_size'] ) dis_loss.update( loss[2].item(), targets['batch_size'] ) ske_loss.update( loss[3].item(), targets['batch_size'] ) kps_loss.update( loss[4].item(), targets['batch_size'] ) ''' backward and step ''' optimizer.zero_grad() # loss[1].backward() if epoch < 60: loss[5].backward() else: loss[0].backward() optimizer.step() ''' progress ''' batch_time.update(time.time() - last) last = time.time() bar.suffix = ( '({batch}/{size}) ' 'l: {loss:.5f} | ' 'lV: {lossV:.5f} | ' 'lD: {lossD:.5f} | ' 'lM: {lossM:.5f} | ' 'lK: {lossK:.5f} | ' ).format( batch=i + 1, size=len(train_loader), loss=am_loss.avg, lossV=vec_loss.avg, lossD=dis_loss.avg, lossM=ske_loss.avg, lossK=kps_loss.avg ) bar.next() bar.finish() return am_loss.avg
fb83156f3915f34dd92d4060b62b77644dd65f8b
3,640,298
import os import yaml def fetch_folder_config(path): """Fetch config file of folder. Args: path (str): path to the wanted folder of the config. Returns: dict. the loaded config file. """ config = {} config_path = os.path.join(path, DOC_YML) if os.path.exists(config_path): with open(config_path) as config_file: config = yaml.load(config_file) return config
b78393e8d97147227c0648050f749e48e13a54b5
3,640,299