id
stringlengths 11
11
| created
timestamp[s]date 2026-01-01 00:00:00
2026-01-01 00:00:00
| topic
stringclasses 14
values | task_type
stringclasses 10
values | difficulty
stringclasses 3
values | instruction
stringlengths 189
248
| input
stringclasses 1
value | output
stringclasses 9
values | reasoning_steps
listlengths 0
5
| metadata
dict | hash
stringlengths 40
40
|
|---|---|---|---|---|---|---|---|---|---|---|
train_09500
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Model merging, distillation, and continued pretraining
Difficulty: expert
Target language: Go
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Go",
"developer_needs": [
"governance",
"repo_scale_reasoning",
"cost_latency_tradeoffs",
"ci_integration"
],
"moe_experts": [
"coding_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e5d11d10c0ed386ef4c8a90628e9d055720bd1ba
|
|
train_09501
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
design
|
intermediate
|
Task: design
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: intermediate
Target language: TypeScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"tooling",
"repo_scale_reasoning",
"tests_are_truth",
"documentation"
],
"moe_experts": [
"security_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
3cc55b2e5733b23e35113d0f543f2529516fb5e9
|
|
train_09502
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
review
|
expert
|
Task: review
Topic: Self-improving agents and feedback loops
Difficulty: expert
Target language: JavaScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"governance",
"reproducibility",
"documentation",
"security_gates"
],
"moe_experts": [
"coding_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e5a603856d7f150fe9b26254f87b2e8bd463d751
|
|
train_09503
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Latency, cost, and reliability optimization
Difficulty: intermediate
Target language: C#
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "C#",
"developer_needs": [
"tooling",
"tests_are_truth",
"auditability",
"evaluation_metrics"
],
"moe_experts": [
"governance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
eeee30a4107fdd59b87d30308198ca13eabbc339
|
|
train_09504
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
agent_loop
|
expert
|
Task: agent_loop
Topic: Mixture-of-Experts (MoE) for code
Difficulty: expert
Target language: Bash
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"repo_scale_reasoning",
"tooling",
"evaluation_metrics",
"cost_latency_tradeoffs"
],
"moe_experts": [
"performance_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
655bbaf7814764a207a4d68d9d1bbc6795a31859
|
|
train_09505
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
explain
|
expert
|
Task: explain
Topic: Extended context and repo-scale understanding
Difficulty: expert
Target language: Bash
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"repo_scale_reasoning",
"governance",
"security_gates",
"documentation"
],
"moe_experts": [
"coding_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e1b85779bee02c4ffc486c99bb3aff571ac6a946
|
|
train_09506
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Tool calling, sandboxes, and CI integration
Difficulty: intermediate
Target language: SQL
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"governance",
"auditability",
"ci_integration",
"cost_latency_tradeoffs"
],
"moe_experts": [
"coding_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
703b7326a8a6f5476eff3825fc0eccbe6279725c
|
|
train_09507
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: expert
Target language: SQL
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"documentation",
"evaluation_metrics",
"cost_latency_tradeoffs",
"security_gates"
],
"moe_experts": [
"data_curation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
37a9d0f22d7879b19d020d1c430f9e5b1c46dc0e
|
|
train_09508
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
review
|
expert
|
Task: review
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: expert
Target language: Rust
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"evaluation_metrics",
"tooling",
"documentation",
"governance"
],
"moe_experts": [
"data_curation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e23d570cdcbdde1d5cf580fc74e7dd0fe68986a2
|
|
train_09509
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Mixture-of-Experts (MoE) for code
Difficulty: intermediate
Target language: SQL
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"repo_scale_reasoning",
"governance",
"ci_integration",
"documentation"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b0170cb245c2e86099f7a3757bc141f4ac3a8ea4
|
|
train_09510
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
explain
|
intermediate
|
Task: explain
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: intermediate
Target language: Rust
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"ci_integration",
"documentation",
"tests_are_truth",
"tooling"
],
"moe_experts": [
"performance_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
2b6463910e3a799b6745dfa626ef4580d8a64df4
|
|
train_09511
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Governance, provenance, and licensing for code data
Difficulty: expert
Target language: JavaScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"tooling",
"reproducibility",
"tests_are_truth",
"repo_scale_reasoning"
],
"moe_experts": [
"security_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c4ef79b5b420626c37f8a020915993a9d3af648c
|
|
train_09512
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
agent_loop
|
expert
|
Task: agent_loop
Topic: Latency, cost, and reliability optimization
Difficulty: expert
Target language: Rust
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"auditability",
"governance",
"evaluation_metrics",
"tests_are_truth"
],
"moe_experts": [
"agentic_systems_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
2b30cd29a83d697669e6019dfd4bf79ab5871731
|
|
train_09513
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Tool calling, sandboxes, and CI integration
Difficulty: intermediate
Target language: SQL
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"documentation",
"reproducibility",
"evaluation_metrics",
"auditability"
],
"moe_experts": [
"coding_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
af7ce911cd079db4d68cefe4a9f5207366dd6b4f
|
|
train_09514
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: SWE-bench style real-repo evaluation
Difficulty: expert
Target language: Bash
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"evaluation_metrics",
"auditability",
"tests_are_truth",
"security_gates"
],
"moe_experts": [
"governance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
2fbedffb48c8fbac7b40b795b86a60cde94b7c5b
|
|
train_09515
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
patch_diff
|
advanced
|
Task: patch_diff
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: advanced
Target language: Bash
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"evaluation_metrics",
"repo_scale_reasoning",
"ci_integration",
"governance"
],
"moe_experts": [
"security_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
7bbdd9dd2d43f45d646cdd431b2d24af8eddbf8f
|
|
train_09516
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
review
|
expert
|
Task: review
Topic: Latency, cost, and reliability optimization
Difficulty: expert
Target language: C#
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "C#",
"developer_needs": [
"auditability",
"documentation",
"repo_scale_reasoning",
"governance"
],
"moe_experts": [
"coding_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
5860918d116d86dd0acc121c9a16973feee9baee
|
|
train_09517
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
review
|
expert
|
Task: review
Topic: Extended context and repo-scale understanding
Difficulty: expert
Target language: Rust
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"tests_are_truth",
"auditability",
"cost_latency_tradeoffs",
"repo_scale_reasoning"
],
"moe_experts": [
"performance_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b0d601de506267d35e2e1a6088ae1d5ff2babb6f
|
|
train_09518
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
review
|
intermediate
|
Task: review
Topic: Governance, provenance, and licensing for code data
Difficulty: intermediate
Target language: Go
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "Go",
"developer_needs": [
"auditability",
"security_gates",
"governance",
"repo_scale_reasoning"
],
"moe_experts": [
"coding_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1794351da31fbbbc3ae356fedc6d9991b6622631
|
|
train_09519
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: SWE-bench style real-repo evaluation
Difficulty: intermediate
Target language: TypeScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"auditability",
"tests_are_truth",
"repo_scale_reasoning",
"security_gates"
],
"moe_experts": [
"data_curation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
3125d830fc2079ea4a3ca2e565e863bfbd2d14f9
|
|
train_09520
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
explain
|
expert
|
Task: explain
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: expert
Target language: Java
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"cost_latency_tradeoffs",
"tooling",
"repo_scale_reasoning",
"governance"
],
"moe_experts": [
"evaluation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c0ef9f68c4d9e3af182d86665f8e55fb6e666083
|
|
train_09521
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
explain
|
intermediate
|
Task: explain
Topic: Model merging, distillation, and continued pretraining
Difficulty: intermediate
Target language: SQL
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"tooling",
"documentation",
"repo_scale_reasoning",
"reproducibility"
],
"moe_experts": [
"data_curation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d5e3668e02ea243df5d9214fbe4d782fcd6064f2
|
|
train_09522
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
design
|
intermediate
|
Task: design
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: intermediate
Target language: C#
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "C#",
"developer_needs": [
"ci_integration",
"tests_are_truth",
"security_gates",
"reproducibility"
],
"moe_experts": [
"governance_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
660d798ec16b0b7c3eff4d04e9458821532884f0
|
|
train_09523
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
design
|
intermediate
|
Task: design
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: intermediate
Target language: Bash
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"security_gates",
"evaluation_metrics",
"auditability",
"governance"
],
"moe_experts": [
"evaluation_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
da10425d620a49696ec7d819a2997591ff1083ff
|
|
train_09524
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
code
|
intermediate
|
Task: code
Topic: Tool calling, sandboxes, and CI integration
Difficulty: intermediate
Target language: C#
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"documentation",
"tooling",
"cost_latency_tradeoffs",
"tests_are_truth"
],
"moe_experts": [
"coding_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1de4eb99959a5ee92c6ee32c2388dfe388f62a39
|
|
train_09525
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
compare
|
advanced
|
Task: compare
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: advanced
Target language: Go
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "Go",
"developer_needs": [
"reproducibility",
"security_gates",
"tests_are_truth",
"evaluation_metrics"
],
"moe_experts": [
"evaluation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
9db6ddff0fe041263ad850dfbee2689d8bd59258
|
|
train_09526
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: intermediate
Target language: Bash
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"tooling",
"security_gates",
"tests_are_truth",
"cost_latency_tradeoffs"
],
"moe_experts": [
"evaluation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
284ab27e7f3883f53170f1c6d3d4753a46afca58
|
|
train_09527
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
compare
|
expert
|
Task: compare
Topic: Model merging, distillation, and continued pretraining
Difficulty: expert
Target language: SQL
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"tests_are_truth",
"security_gates",
"evaluation_metrics",
"governance"
],
"moe_experts": [
"coding_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c7cce51c0cd9263102dd47f8d749ff0bd280f423
|
|
train_09528
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Extended context and repo-scale understanding
Difficulty: intermediate
Target language: TypeScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"reproducibility",
"evaluation_metrics",
"security_gates",
"governance"
],
"moe_experts": [
"performance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
53ccc119b3cde2e71cc00feaec48cb91d8d870c2
|
|
train_09529
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
failure_analysis
|
advanced
|
Task: failure_analysis
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: advanced
Target language: Rust
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"auditability",
"tooling",
"security_gates",
"cost_latency_tradeoffs"
],
"moe_experts": [
"performance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
47f449d69efd9bc6035542d4e8409ae976cbc8a5
|
|
train_09530
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
eval
|
intermediate
|
Task: eval
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: intermediate
Target language: Java
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"ci_integration",
"security_gates",
"tooling",
"repo_scale_reasoning"
],
"moe_experts": [
"agentic_systems_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
91fca7fcd65862f564358b697d7d5234d0631ae9
|
|
train_09531
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: expert
Target language: Go
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"ci_integration",
"auditability",
"cost_latency_tradeoffs",
"documentation"
],
"moe_experts": [
"evaluation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
2bdb6d7c83ce1770b0608cbd5d3bc3e2b3f55f6d
|
|
train_09532
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
failure_analysis
|
advanced
|
Task: failure_analysis
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: advanced
Target language: Python
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"documentation",
"reproducibility",
"security_gates",
"governance"
],
"moe_experts": [
"performance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c9fb5d3d49de36e0fe85384c135d3eb041c10a37
|
|
train_09533
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
code
|
intermediate
|
Task: code
Topic: Governance, provenance, and licensing for code data
Difficulty: intermediate
Target language: JavaScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"governance",
"auditability",
"repo_scale_reasoning",
"tests_are_truth"
],
"moe_experts": [
"governance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
01585e00502632f99e20f3637cd8b0bee76f566b
|
|
train_09534
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
explain
|
advanced
|
Task: explain
Topic: SWE-bench style real-repo evaluation
Difficulty: advanced
Target language: TypeScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"evaluation_metrics",
"security_gates",
"tooling",
"governance"
],
"moe_experts": [
"security_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
fcdad25a14898069728c1a07b299d9ec1a57de72
|
|
train_09535
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Governance, provenance, and licensing for code data
Difficulty: advanced
Target language: Java
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"repo_scale_reasoning",
"documentation",
"reproducibility",
"auditability"
],
"moe_experts": [
"coding_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
88cf237660f1d91d3a420d4445a9585d894fc50b
|
|
train_09536
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: advanced
Target language: Rust
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"repo_scale_reasoning",
"documentation",
"tests_are_truth",
"governance"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b3ddff665f1d5bcaa3940172518c0e636bd5bc27
|
|
train_09537
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
code
|
intermediate
|
Task: code
Topic: Extended context and repo-scale understanding
Difficulty: intermediate
Target language: C#
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"security_gates",
"governance",
"tests_are_truth",
"tooling"
],
"moe_experts": [
"data_curation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f11136efff252704374d1467638a3530f52fffb1
|
|
train_09538
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
review
|
advanced
|
Task: review
Topic: Self-improving agents and feedback loops
Difficulty: advanced
Target language: Rust
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"tooling",
"evaluation_metrics",
"ci_integration",
"governance"
],
"moe_experts": [
"security_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
7379cc947adacf57c0fdabf1c31945d031dfff35
|
|
train_09539
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
code
|
expert
|
Task: code
Topic: Self-improving agents and feedback loops
Difficulty: expert
Target language: SQL
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"cost_latency_tradeoffs",
"security_gates",
"tests_are_truth",
"reproducibility"
],
"moe_experts": [
"agentic_systems_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
16ed11c2e575d4920e9ad4011dc04b2afe44817d
|
|
train_09540
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
code
|
intermediate
|
Task: code
Topic: Extended context and repo-scale understanding
Difficulty: intermediate
Target language: Python
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Scaffold:
```python
def agent_loop(plan, edit, test, issue, max_iters=4):
history = []
p = plan(issue)
for _ in range(max_iters):
patch = edit(issue, p)
ok, report = test(patch)
history.append({"plan": p, "ok": ok})
if ok:
return patch, history
p = p + " | refine"
return patch, history
```
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"cost_latency_tradeoffs",
"auditability",
"governance",
"tooling"
],
"moe_experts": [
"data_curation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
7606cf7bb103a4abad41ad28d6b6ec1d6b58a3cd
|
|
train_09541
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
eval
|
intermediate
|
Task: eval
Topic: Latency, cost, and reliability optimization
Difficulty: intermediate
Target language: C#
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "C#",
"developer_needs": [
"cost_latency_tradeoffs",
"ci_integration",
"auditability",
"repo_scale_reasoning"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1bf5b72b8ece6dbb38c13cf171e23c6a212ae4fe
|
|
train_09542
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
eval
|
expert
|
Task: eval
Topic: Tool calling, sandboxes, and CI integration
Difficulty: expert
Target language: Go
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "Go",
"developer_needs": [
"auditability",
"tooling",
"evaluation_metrics",
"security_gates"
],
"moe_experts": [
"evaluation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e072a054694442bbcad0516c3751bfb67841499d
|
|
train_09543
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
patch_diff
|
expert
|
Task: patch_diff
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: expert
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"cost_latency_tradeoffs",
"tooling",
"governance",
"auditability"
],
"moe_experts": [
"data_curation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
29aa54dfafe4d0da87f525119d3fa0954f8ea5b6
|
|
train_09544
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
code
|
expert
|
Task: code
Topic: Self-improving agents and feedback loops
Difficulty: expert
Target language: SQL
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"evaluation_metrics",
"governance",
"ci_integration",
"cost_latency_tradeoffs"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
16ed11c2e575d4920e9ad4011dc04b2afe44817d
|
|
train_09545
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
code
|
expert
|
Task: code
Topic: Latency, cost, and reliability optimization
Difficulty: expert
Target language: Python
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Scaffold:
```python
def agent_loop(plan, edit, test, issue, max_iters=4):
history = []
p = plan(issue)
for _ in range(max_iters):
patch = edit(issue, p)
ok, report = test(patch)
history.append({"plan": p, "ok": ok})
if ok:
return patch, history
p = p + " | refine"
return patch, history
```
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"governance",
"cost_latency_tradeoffs",
"repo_scale_reasoning",
"tooling"
],
"moe_experts": [
"performance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a7fb868abfc8bbf4eb5afd9ab12bdcc048dc7aa4
|
|
train_09546
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
compare
|
advanced
|
Task: compare
Topic: Tool calling, sandboxes, and CI integration
Difficulty: advanced
Target language: Java
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "Java",
"developer_needs": [
"tests_are_truth",
"auditability",
"repo_scale_reasoning",
"tooling"
],
"moe_experts": [
"performance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c4bf4127b3fbdd58db970dbcd2c191737212f713
|
|
train_09547
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Self-improving agents and feedback loops
Difficulty: intermediate
Target language: C#
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "C#",
"developer_needs": [
"cost_latency_tradeoffs",
"reproducibility",
"documentation",
"governance"
],
"moe_experts": [
"evaluation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
353bd4ca3e1bbe9f6f22af846bd16b5487b7ff21
|
|
train_09548
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
failure_analysis
|
advanced
|
Task: failure_analysis
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: advanced
Target language: Java
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"security_gates",
"tests_are_truth",
"governance",
"tooling"
],
"moe_experts": [
"data_curation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
82e2c922152706ec553df092e302ed8ee3c6b578
|
|
train_09549
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
explain
|
expert
|
Task: explain
Topic: Model merging, distillation, and continued pretraining
Difficulty: expert
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Python",
"developer_needs": [
"security_gates",
"evaluation_metrics",
"documentation",
"repo_scale_reasoning"
],
"moe_experts": [
"security_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c6cbcb1a60806d0d3d4ca7a9829e38ad04b3c41e
|
|
train_09550
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Secure code generation and policy gates
Difficulty: advanced
Target language: Java
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"evaluation_metrics",
"reproducibility",
"ci_integration",
"security_gates"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
6638157c33d110eb7241af4d01f8931af5385146
|
|
train_09551
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
explain
|
advanced
|
Task: explain
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: advanced
Target language: Rust
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"evaluation_metrics",
"cost_latency_tradeoffs",
"ci_integration",
"tests_are_truth"
],
"moe_experts": [
"coding_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a2c5a8d80215fce9c7b4ac485731799539a561e3
|
|
train_09552
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
compare
|
intermediate
|
Task: compare
Topic: Model merging, distillation, and continued pretraining
Difficulty: intermediate
Target language: Java
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "Java",
"developer_needs": [
"security_gates",
"tests_are_truth",
"reproducibility",
"documentation"
],
"moe_experts": [
"coding_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1c013929b2e4e8de67358df326887fdca7f45d4f
|
|
train_09553
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
explain
|
expert
|
Task: explain
Topic: Extended context and repo-scale understanding
Difficulty: expert
Target language: Rust
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"documentation",
"security_gates",
"evaluation_metrics",
"cost_latency_tradeoffs"
],
"moe_experts": [
"agentic_systems_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
6ef41f2ce9da4a95da6f24ea02c94ac6f3178df2
|
|
train_09554
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
eval
|
advanced
|
Task: eval
Topic: Self-improving agents and feedback loops
Difficulty: advanced
Target language: Go
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"documentation",
"security_gates",
"ci_integration",
"tooling"
],
"moe_experts": [
"agentic_systems_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
90d653779a6f97353aeeb0edc6c294b4424a59b4
|
|
train_09555
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
eval
|
intermediate
|
Task: eval
Topic: SWE-bench style real-repo evaluation
Difficulty: intermediate
Target language: SQL
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"governance",
"ci_integration",
"security_gates",
"auditability"
],
"moe_experts": [
"evaluation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
50e25a64e109256307f21529b8c93581e636f603
|
|
train_09556
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
review
|
intermediate
|
Task: review
Topic: Tool calling, sandboxes, and CI integration
Difficulty: intermediate
Target language: Python
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"documentation",
"auditability",
"reproducibility",
"tests_are_truth"
],
"moe_experts": [
"evaluation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
938652c27ed3074b2fcd514ba569152a5ef5b169
|
|
train_09557
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
patch_diff
|
advanced
|
Task: patch_diff
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: advanced
Target language: JavaScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"tests_are_truth",
"ci_integration",
"cost_latency_tradeoffs",
"tooling"
],
"moe_experts": [
"data_curation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
cfae7e09df4e92acf2f6c1b6e1a034ad7514fc25
|
|
train_09558
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
code
|
advanced
|
Task: code
Topic: Model merging, distillation, and continued pretraining
Difficulty: advanced
Target language: TypeScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"documentation",
"auditability",
"repo_scale_reasoning",
"governance"
],
"moe_experts": [
"performance_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
8cefa485bb2d5f68501c1fc7830bc66a0f88d628
|
|
train_09559
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
explain
|
expert
|
Task: explain
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: expert
Target language: Go
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Go",
"developer_needs": [
"documentation",
"tooling",
"tests_are_truth",
"auditability"
],
"moe_experts": [
"coding_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
6f0778e8793622f3e565cad2a7caf1770a1fef7d
|
|
train_09560
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
explain
|
intermediate
|
Task: explain
Topic: Extended context and repo-scale understanding
Difficulty: intermediate
Target language: Python
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Python",
"developer_needs": [
"security_gates",
"evaluation_metrics",
"documentation",
"reproducibility"
],
"moe_experts": [
"data_curation_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
5b304abf5822694d96f454fd48d7fc490e64ec98
|
|
train_09561
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
explain
|
expert
|
Task: explain
Topic: SWE-bench style real-repo evaluation
Difficulty: expert
Target language: SQL
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"cost_latency_tradeoffs",
"ci_integration",
"auditability",
"governance"
],
"moe_experts": [
"performance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
0e83bc591be444b6eaac14bcf44fb00423aff461
|
|
train_09562
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Latency, cost, and reliability optimization
Difficulty: advanced
Target language: Go
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"ci_integration",
"reproducibility",
"tooling",
"security_gates"
],
"moe_experts": [
"data_curation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
db190b7a948bc71442d4d17d77c95a9f3d1ded66
|
|
train_09563
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Mixture-of-Experts (MoE) for code
Difficulty: intermediate
Target language: Java
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Java",
"developer_needs": [
"reproducibility",
"evaluation_metrics",
"tests_are_truth",
"tooling"
],
"moe_experts": [
"evaluation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a18377aa252fd9b10874009b0dfb8dad207ece41
|
|
train_09564
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
eval
|
advanced
|
Task: eval
Topic: SWE-bench style real-repo evaluation
Difficulty: advanced
Target language: JavaScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"tests_are_truth",
"evaluation_metrics",
"documentation",
"auditability"
],
"moe_experts": [
"coding_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
bdde795cb3e429e038fe7c246f5e3ab6c5d59b8c
|
|
train_09565
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
compare
|
advanced
|
Task: compare
Topic: Model merging, distillation, and continued pretraining
Difficulty: advanced
Target language: Rust
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"ci_integration",
"tests_are_truth",
"evaluation_metrics",
"reproducibility"
],
"moe_experts": [
"coding_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
73516b8d55aa000e9fbb3564471a5cb992f508e9
|
|
train_09566
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: intermediate
Target language: TypeScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"documentation",
"ci_integration",
"cost_latency_tradeoffs",
"evaluation_metrics"
],
"moe_experts": [
"evaluation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e1d5f0a2fc5a7bd7874ff886af44a45df41543a3
|
|
train_09567
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
explain
|
advanced
|
Task: explain
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: advanced
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Python",
"developer_needs": [
"cost_latency_tradeoffs",
"evaluation_metrics",
"governance",
"tooling"
],
"moe_experts": [
"performance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e57f64ee70d090ba96ab1d1d250663814c95e32f
|
|
train_09568
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
data_pipeline
|
advanced
|
Task: data_pipeline
Topic: Extended context and repo-scale understanding
Difficulty: advanced
Target language: C#
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"reproducibility",
"cost_latency_tradeoffs",
"documentation",
"ci_integration"
],
"moe_experts": [
"coding_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ca50b7352d18fc5cb6eb519a3b0601249894b5cb
|
|
train_09569
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
code
|
advanced
|
Task: code
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: advanced
Target language: TypeScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"repo_scale_reasoning",
"evaluation_metrics",
"reproducibility",
"tooling"
],
"moe_experts": [
"data_curation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
5747f260949da0d92a0b4ce8e7e392e3c7150008
|
|
train_09570
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
design
|
advanced
|
Task: design
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: advanced
Target language: Rust
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"governance",
"tooling",
"repo_scale_reasoning",
"cost_latency_tradeoffs"
],
"moe_experts": [
"security_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
644c54572d966ca15c29a903d92f4ef527d9ef13
|
|
train_09571
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: intermediate
Target language: Bash
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"ci_integration",
"repo_scale_reasoning",
"cost_latency_tradeoffs",
"security_gates"
],
"moe_experts": [
"coding_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
284ab27e7f3883f53170f1c6d3d4753a46afca58
|
|
train_09572
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: intermediate
Target language: Rust
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"ci_integration",
"documentation",
"cost_latency_tradeoffs",
"security_gates"
],
"moe_experts": [
"agentic_systems_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b611c34d7509f23f6e68ad8548ad5b9c159da334
|
|
train_09573
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
explain
|
intermediate
|
Task: explain
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: intermediate
Target language: Bash
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"governance",
"auditability",
"ci_integration",
"evaluation_metrics"
],
"moe_experts": [
"coding_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
fca39fd0a686fab314141c833e52540ea04b59bf
|
|
train_09574
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
design
|
advanced
|
Task: design
Topic: Governance, provenance, and licensing for code data
Difficulty: advanced
Target language: TypeScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"auditability",
"evaluation_metrics",
"tooling",
"ci_integration"
],
"moe_experts": [
"security_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1e271e8bde7a29751d501a82d6a09953c0e5f529
|
|
train_09575
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
compare
|
expert
|
Task: compare
Topic: Latency, cost, and reliability optimization
Difficulty: expert
Target language: Go
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "Go",
"developer_needs": [
"reproducibility",
"ci_integration",
"tests_are_truth",
"cost_latency_tradeoffs"
],
"moe_experts": [
"security_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
382ae6cd76eb3909cbdf378b3f7290962986704a
|
|
train_09576
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
review
|
intermediate
|
Task: review
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: intermediate
Target language: TypeScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"governance",
"cost_latency_tradeoffs",
"auditability",
"tooling"
],
"moe_experts": [
"performance_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
05df00fbfacd78471bb09be97fc93d49556956db
|
|
train_09577
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
data_pipeline
|
advanced
|
Task: data_pipeline
Topic: Governance, provenance, and licensing for code data
Difficulty: advanced
Target language: SQL
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"tooling",
"auditability",
"cost_latency_tradeoffs",
"tests_are_truth"
],
"moe_experts": [
"security_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1c75cf6fd47a14fe223c6d895da8fd7607a1639f
|
|
train_09578
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
patch_diff
|
expert
|
Task: patch_diff
Topic: Model merging, distillation, and continued pretraining
Difficulty: expert
Target language: JavaScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"ci_integration",
"cost_latency_tradeoffs",
"tests_are_truth",
"auditability"
],
"moe_experts": [
"evaluation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d88a335e02c0d5af42440a578b90e48024f646e8
|
|
train_09579
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
explain
|
advanced
|
Task: explain
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: advanced
Target language: Bash
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"evaluation_metrics",
"tooling",
"documentation",
"reproducibility"
],
"moe_experts": [
"evaluation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
499a9c207db59c5d920a6954b543967e3d6531f3
|
|
train_09580
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
eval
|
advanced
|
Task: eval
Topic: Model merging, distillation, and continued pretraining
Difficulty: advanced
Target language: SQL
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"ci_integration",
"evaluation_metrics",
"reproducibility",
"documentation"
],
"moe_experts": [
"agentic_systems_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f63f270b2218f2a8760c10d9f35b04511ee1c016
|
|
train_09581
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
code
|
advanced
|
Task: code
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: advanced
Target language: Java
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Java",
"developer_needs": [
"security_gates",
"governance",
"documentation",
"auditability"
],
"moe_experts": [
"performance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a4f826c99e851c51112aa8ae83d81b0c5cd695c0
|
|
train_09582
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: advanced
Target language: Bash
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"governance",
"documentation",
"auditability",
"ci_integration"
],
"moe_experts": [
"data_curation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
535e1430a648b7e7e42bbc7c1eb057f66e0b8d54
|
|
train_09583
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: expert
Target language: Bash
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"tests_are_truth",
"cost_latency_tradeoffs",
"auditability",
"documentation"
],
"moe_experts": [
"evaluation_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
8b36e88c83bc5ad71ccb6d41a83cf5d143d2a0a1
|
|
train_09584
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
explain
|
advanced
|
Task: explain
Topic: Model merging, distillation, and continued pretraining
Difficulty: advanced
Target language: JavaScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"cost_latency_tradeoffs",
"ci_integration",
"evaluation_metrics",
"auditability"
],
"moe_experts": [
"evaluation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
8d4cdb322d76eb3bf8d65cceda4b87c6ebdf9b5a
|
|
train_09585
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
eval
|
expert
|
Task: eval
Topic: Model merging, distillation, and continued pretraining
Difficulty: expert
Target language: Rust
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"cost_latency_tradeoffs",
"reproducibility",
"evaluation_metrics",
"repo_scale_reasoning"
],
"moe_experts": [
"evaluation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
2d96e0077262d9197793f5c7e262a70a6aa2b390
|
|
train_09586
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: expert
Target language: C#
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "C#",
"developer_needs": [
"tooling",
"reproducibility",
"security_gates",
"ci_integration"
],
"moe_experts": [
"evaluation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
7fc0357265032fa6155d1933ef7eecc8a73858df
|
|
train_09587
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
agent_loop
|
expert
|
Task: agent_loop
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: expert
Target language: Python
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"reproducibility",
"tooling",
"cost_latency_tradeoffs",
"repo_scale_reasoning"
],
"moe_experts": [
"coding_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
4d991c6ea4bcd056bc06335b7264f4f87465d1e6
|
|
train_09588
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
review
|
intermediate
|
Task: review
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: intermediate
Target language: Rust
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"ci_integration",
"auditability",
"cost_latency_tradeoffs",
"governance"
],
"moe_experts": [
"agentic_systems_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
fe9523f8281f043fe9c56172ab706ef3850ed93a
|
|
train_09589
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
failure_analysis
|
advanced
|
Task: failure_analysis
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: advanced
Target language: JavaScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"security_gates",
"tooling",
"tests_are_truth",
"evaluation_metrics"
],
"moe_experts": [
"security_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1f3f9253c1294fc84792549d601021af01ef1893
|
|
train_09590
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
eval
|
intermediate
|
Task: eval
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: intermediate
Target language: Rust
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"governance",
"auditability",
"documentation",
"repo_scale_reasoning"
],
"moe_experts": [
"coding_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
2b524e32a82ec690a976b3fa7769e13cad45fd4d
|
|
train_09591
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Model merging, distillation, and continued pretraining
Difficulty: intermediate
Target language: Bash
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"cost_latency_tradeoffs",
"auditability",
"reproducibility",
"governance"
],
"moe_experts": [
"security_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f79f13bd0c3e0d25178890930fad9df6251b33c3
|
|
train_09592
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
code
|
expert
|
Task: code
Topic: Mixture-of-Experts (MoE) for code
Difficulty: expert
Target language: Java
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"security_gates",
"evaluation_metrics",
"cost_latency_tradeoffs",
"documentation"
],
"moe_experts": [
"performance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a2537134fcdd164ac33c038ea896758ae1ddec66
|
|
train_09593
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
design
|
expert
|
Task: design
Topic: Self-improving agents and feedback loops
Difficulty: expert
Target language: Rust
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"auditability",
"security_gates",
"ci_integration",
"reproducibility"
],
"moe_experts": [
"governance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
91ced98a839a976238dda1fa807ccbbce637e6c9
|
|
train_09594
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
code
|
expert
|
Task: code
Topic: Latency, cost, and reliability optimization
Difficulty: expert
Target language: Bash
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"auditability",
"ci_integration",
"evaluation_metrics",
"tooling"
],
"moe_experts": [
"data_curation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f12e288c8a4e4eb9a57690527f7f1fe993fba301
|
|
train_09595
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
compare
|
advanced
|
Task: compare
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: advanced
Target language: JavaScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"ci_integration",
"cost_latency_tradeoffs",
"tooling",
"repo_scale_reasoning"
],
"moe_experts": [
"governance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
cda31a7e6b142bf286fc9840472132f69931f7ac
|
|
train_09596
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
code
|
advanced
|
Task: code
Topic: Latency, cost, and reliability optimization
Difficulty: advanced
Target language: Rust
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"auditability",
"repo_scale_reasoning",
"cost_latency_tradeoffs",
"tests_are_truth"
],
"moe_experts": [
"security_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a3aa2069eb178b66d0c560e72fdbeb274edd7c17
|
|
train_09597
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
data_pipeline
|
advanced
|
Task: data_pipeline
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: advanced
Target language: Python
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Python",
"developer_needs": [
"reproducibility",
"tooling",
"cost_latency_tradeoffs",
"evaluation_metrics"
],
"moe_experts": [
"security_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d64c37c649623f50ab92a59fb5c64b6549cc7ddc
|
|
train_09598
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
compare
|
intermediate
|
Task: compare
Topic: Secure code generation and policy gates
Difficulty: intermediate
Target language: Java
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "Java",
"developer_needs": [
"evaluation_metrics",
"documentation",
"auditability",
"tests_are_truth"
],
"moe_experts": [
"security_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
97924175fb9c86b1602e1b375602f6ac7e4931c4
|
|
train_09599
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
code
|
advanced
|
Task: code
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: advanced
Target language: Bash
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"tooling",
"repo_scale_reasoning",
"security_gates",
"cost_latency_tradeoffs"
],
"moe_experts": [
"security_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
efffdf72eeb3797829989110e06236b57af95a7b
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.