id
stringlengths
11
11
created
timestamp[s]date
2026-01-01 00:00:00
2026-01-01 00:00:00
topic
stringclasses
14 values
task_type
stringclasses
10 values
difficulty
stringclasses
3 values
instruction
stringlengths
189
248
input
stringclasses
1 value
output
stringclasses
9 values
reasoning_steps
listlengths
0
5
metadata
dict
hash
stringlengths
40
40
train_06800
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
code
advanced
Task: code Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "tests_are_truth", "documentation", "tooling", "cost_latency_tradeoffs" ], "moe_experts": [ "agentic_systems_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e721f0bf7688ebcd332d68652ef1c89db1010353
train_06801
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
agent_loop
intermediate
Task: agent_loop Topic: Reasoning-first coding models and tunable deliberation Difficulty: intermediate Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "auditability", "tooling", "cost_latency_tradeoffs", "evaluation_metrics" ], "moe_experts": [ "data_curation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4f0b486ce2ff684874510623818d54dd1feb75cf
train_06802
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
review
expert
Task: review Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: expert Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "ci_integration", "security_gates", "governance", "repo_scale_reasoning" ], "moe_experts": [ "evaluation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
40440e7e3963e3af07546674ca8aa4799a5dedb3
train_06803
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
code
expert
Task: code Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: expert Target language: Java Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "cost_latency_tradeoffs", "ci_integration", "repo_scale_reasoning", "tooling" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
53ff00aa2ad098c4adf4cf1107399b6b70e7e7fc
train_06804
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
agent_loop
expert
Task: agent_loop Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "reproducibility", "security_gates", "auditability", "documentation" ], "moe_experts": [ "coding_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
220523dabdfc3fca58a4ef150887034a6a42506e
train_06805
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
code
expert
Task: code Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "tooling", "documentation", "repo_scale_reasoning", "tests_are_truth" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
fa60b8205d1046cc8ea28b40da21aa3e9a647792
train_06806
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
design
intermediate
Task: design Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "security_gates", "tooling", "evaluation_metrics", "governance" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7250651ac0676079cb424d8e9cd19535bd1b2fc2
train_06807
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
design
advanced
Task: design Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Java", "developer_needs": [ "documentation", "governance", "repo_scale_reasoning", "tooling" ], "moe_experts": [ "security_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
72fdf8e759821717794bdc272f53d5e828f641d5
train_06808
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
agent_loop
expert
Task: agent_loop Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "governance", "cost_latency_tradeoffs", "auditability", "security_gates" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4bf30987a0da1d737b1a306ae57a510e3303c3d6
train_06809
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
code
expert
Task: code Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: expert Target language: SQL Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "auditability", "evaluation_metrics", "cost_latency_tradeoffs", "repo_scale_reasoning" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
75badb5e7d0b5bf6bf9296f17f0aebb2c7bae333
train_06810
2026-01-01T00:00:00
Extended context and repo-scale understanding
failure_analysis
expert
Task: failure_analysis Topic: Extended context and repo-scale understanding Difficulty: expert Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "documentation", "cost_latency_tradeoffs", "tooling", "governance" ], "moe_experts": [ "performance_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6af1ab25b117bfcd75ca1997b0390ecbd62b46a5
train_06811
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
failure_analysis
advanced
Task: failure_analysis Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: Rust Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Rust", "developer_needs": [ "governance", "tests_are_truth", "ci_integration", "repo_scale_reasoning" ], "moe_experts": [ "data_curation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c749f9e47e25a1796ccf12e42e5c155a5f3daa0b
train_06812
2026-01-01T00:00:00
Latency, cost, and reliability optimization
compare
expert
Task: compare Topic: Latency, cost, and reliability optimization Difficulty: expert Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Python", "developer_needs": [ "documentation", "reproducibility", "tooling", "auditability" ], "moe_experts": [ "security_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c9d676d22ddb713671adbc32d299dc6ff319205a
train_06813
2026-01-01T00:00:00
Secure code generation and policy gates
code
intermediate
Task: code Topic: Secure code generation and policy gates Difficulty: intermediate Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "evaluation_metrics", "auditability", "ci_integration", "documentation" ], "moe_experts": [ "evaluation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d881b93b9c6bdf00bb58eb39918ecc368f4c8b95
train_06814
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
agent_loop
expert
Task: agent_loop Topic: Reasoning-first coding models and tunable deliberation Difficulty: expert Target language: SQL Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "tooling", "evaluation_metrics", "ci_integration", "repo_scale_reasoning" ], "moe_experts": [ "security_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a1acf084cffc6f02e45768e819b9a04640188336
train_06815
2026-01-01T00:00:00
Self-improving agents and feedback loops
design
intermediate
Task: design Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: JavaScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "tooling", "auditability", "security_gates", "repo_scale_reasoning" ], "moe_experts": [ "evaluation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9cffca0f7e75c59824856f4aa2725a5df41ad8ba
train_06816
2026-01-01T00:00:00
Extended context and repo-scale understanding
agent_loop
advanced
Task: agent_loop Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: Python Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Python", "developer_needs": [ "evaluation_metrics", "tests_are_truth", "documentation", "tooling" ], "moe_experts": [ "security_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a0cc5001e8c400b021936e2ae4d16aa5f64819c6
train_06817
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
code
intermediate
Task: code Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: C# Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "C#", "developer_needs": [ "cost_latency_tradeoffs", "ci_integration", "auditability", "evaluation_metrics" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9330186d3aa86af46b95c560567a63b531c7625d
train_06818
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
explain
advanced
Task: explain Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: C# Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "governance", "cost_latency_tradeoffs", "tooling", "ci_integration" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
cc76bfd73d0798278e1b76b4f593706f6fc64103
train_06819
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
compare
advanced
Task: compare Topic: Governance, provenance, and licensing for code data Difficulty: advanced Target language: Python Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Python", "developer_needs": [ "governance", "ci_integration", "cost_latency_tradeoffs", "documentation" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
df28adc39b7d1c62300e3366b326cf7bfce09f3a
train_06820
2026-01-01T00:00:00
Self-improving agents and feedback loops
failure_analysis
intermediate
Task: failure_analysis Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: Python Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Python", "developer_needs": [ "security_gates", "tests_are_truth", "documentation", "governance" ], "moe_experts": [ "performance_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
08ccc37c9abad4ba5dff485e28d1f0e7d4b37716
train_06821
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
code
intermediate
Task: code Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: TypeScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "governance", "documentation", "cost_latency_tradeoffs", "security_gates" ], "moe_experts": [ "evaluation_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
455c9e01cec4ee6d408fb456874437484cbc0ee5
train_06822
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
compare
intermediate
Task: compare Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: Rust Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Rust", "developer_needs": [ "documentation", "governance", "evaluation_metrics", "auditability" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1a63cdd152c163f5905a8258f3889e176889332a
train_06823
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
agent_loop
expert
Task: agent_loop Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: expert Target language: SQL Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "reproducibility", "tests_are_truth", "tooling", "evaluation_metrics" ], "moe_experts": [ "evaluation_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a3b8f4eb0aee6de5be894fd9771d041cd9375cda
train_06824
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
compare
advanced
Task: compare Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Python", "developer_needs": [ "governance", "tests_are_truth", "documentation", "auditability" ], "moe_experts": [ "governance_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a7f536c8d99c8891b546a248bfe540e96af8a8e4
train_06825
2026-01-01T00:00:00
Extended context and repo-scale understanding
code
advanced
Task: code Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: Rust Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "documentation", "governance", "evaluation_metrics", "auditability" ], "moe_experts": [ "governance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
455e34e0adfb8e116bdceb4e1bfac8b7c490a801
train_06826
2026-01-01T00:00:00
Self-improving agents and feedback loops
eval
expert
Task: eval Topic: Self-improving agents and feedback loops Difficulty: expert Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Rust", "developer_needs": [ "ci_integration", "reproducibility", "tooling", "governance" ], "moe_experts": [ "security_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e44e8e5280e067d801d7126035271cad15d0afbf
train_06827
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
eval
expert
Task: eval Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: JavaScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "JavaScript", "developer_needs": [ "reproducibility", "evaluation_metrics", "tests_are_truth", "auditability" ], "moe_experts": [ "security_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
eb781d69c15aa4a33a903a45df7c8214ea2efb15
train_06828
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
code
intermediate
Task: code Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "TypeScript", "developer_needs": [ "repo_scale_reasoning", "documentation", "reproducibility", "evaluation_metrics" ], "moe_experts": [ "agentic_systems_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0978f0bef8473adab6a2636fbc719148bad6b960
train_06829
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
design
intermediate
Task: design Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: Bash Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "auditability", "evaluation_metrics", "reproducibility", "security_gates" ], "moe_experts": [ "coding_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
da10425d620a49696ec7d819a2997591ff1083ff
train_06830
2026-01-01T00:00:00
Secure code generation and policy gates
design
intermediate
Task: design Topic: Secure code generation and policy gates Difficulty: intermediate Target language: Java Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Java", "developer_needs": [ "evaluation_metrics", "tests_are_truth", "tooling", "governance" ], "moe_experts": [ "data_curation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2f2489f3784291151dfb2738b7b5f409a51a05b7
train_06831
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
failure_analysis
expert
Task: failure_analysis Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: JavaScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "JavaScript", "developer_needs": [ "evaluation_metrics", "tests_are_truth", "security_gates", "documentation" ], "moe_experts": [ "security_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
dfff49e23efdbb601e6d5146b152ad05b989d84a
train_06832
2026-01-01T00:00:00
Latency, cost, and reliability optimization
eval
advanced
Task: eval Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "C#", "developer_needs": [ "repo_scale_reasoning", "cost_latency_tradeoffs", "security_gates", "ci_integration" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7f82b4a683ebbf15b09cf8d20104c4b7d55c9646
train_06833
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
code
advanced
Task: code Topic: Tool calling, sandboxes, and CI integration Difficulty: advanced Target language: Python Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Scaffold: ```python def agent_loop(plan, edit, test, issue, max_iters=4): history = [] p = plan(issue) for _ in range(max_iters): patch = edit(issue, p) ok, report = test(patch) history.append({"plan": p, "ok": ok}) if ok: return patch, history p = p + " | refine" return patch, history ```
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "documentation", "ci_integration", "tooling", "security_gates" ], "moe_experts": [ "governance_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
5452a28d34c917b7e1f47604f897a8e16ff5b114
train_06834
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
agent_loop
expert
Task: agent_loop Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: SQL Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "SQL", "developer_needs": [ "security_gates", "governance", "documentation", "evaluation_metrics" ], "moe_experts": [ "data_curation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
518c73c3e1f23c2a9df99e7dc2924cc2eedf25bf
train_06835
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
agent_loop
intermediate
Task: agent_loop Topic: Governance, provenance, and licensing for code data Difficulty: intermediate Target language: Go Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Go", "developer_needs": [ "cost_latency_tradeoffs", "repo_scale_reasoning", "evaluation_metrics", "ci_integration" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
22c9eb2ad44997a3807cdf0da1904bdd4e7b63a8
train_06836
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
patch_diff
intermediate
Task: patch_diff Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: JavaScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "governance", "tests_are_truth", "cost_latency_tradeoffs", "repo_scale_reasoning" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0605fbc7b313934d6261e15211f12d063afc70b3
train_06837
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
agent_loop
advanced
Task: agent_loop Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: Python Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Python", "developer_needs": [ "cost_latency_tradeoffs", "auditability", "repo_scale_reasoning", "evaluation_metrics" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f04e0f6205d42a2dac1103baf7451939fbd45877
train_06838
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
code
intermediate
Task: code Topic: Reasoning-first coding models and tunable deliberation Difficulty: intermediate Target language: Java Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Java", "developer_needs": [ "evaluation_metrics", "cost_latency_tradeoffs", "repo_scale_reasoning", "governance" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d4c493f93a3dfcf26928835f77523507c09c5591
train_06839
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
failure_analysis
advanced
Task: failure_analysis Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: C# Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "C#", "developer_needs": [ "governance", "security_gates", "ci_integration", "tooling" ], "moe_experts": [ "evaluation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e3c5e4fa45b2de53e101a0c95c53cde891554125
train_06840
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
explain
advanced
Task: explain Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: Rust Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "tooling", "cost_latency_tradeoffs", "repo_scale_reasoning", "auditability" ], "moe_experts": [ "evaluation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
adaacdb406c7b90253e4d477ebdd7eceac219de3
train_06841
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
review
intermediate
Task: review Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: SQL Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "SQL", "developer_needs": [ "security_gates", "repo_scale_reasoning", "auditability", "tooling" ], "moe_experts": [ "security_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
25e222563278a6732c7a1333c6186cbbb79beb91
train_06842
2026-01-01T00:00:00
Extended context and repo-scale understanding
data_pipeline
advanced
Task: data_pipeline Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: Python Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "reproducibility", "tooling", "ci_integration", "documentation" ], "moe_experts": [ "security_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c0238ec9c795d82925ef8bcfca5442d5d9ac437a
train_06843
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
failure_analysis
advanced
Task: failure_analysis Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "auditability", "ci_integration", "reproducibility", "documentation" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1753ad5d5602be652ee03386292828a85c7b19cd
train_06844
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
review
intermediate
Task: review Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "cost_latency_tradeoffs", "evaluation_metrics", "governance", "repo_scale_reasoning" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
42ca21e67b76fb6d442af95ce756ad1f33bed0c8
train_06845
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
code
advanced
Task: code Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: TypeScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "TypeScript", "developer_needs": [ "cost_latency_tradeoffs", "governance", "repo_scale_reasoning", "reproducibility" ], "moe_experts": [ "security_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
59d974c5117a9486a7345296f7759fc19a6c32ed
train_06846
2026-01-01T00:00:00
Secure code generation and policy gates
design
intermediate
Task: design Topic: Secure code generation and policy gates Difficulty: intermediate Target language: Python Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Python", "developer_needs": [ "governance", "security_gates", "repo_scale_reasoning", "tests_are_truth" ], "moe_experts": [ "evaluation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b018c33f75a78bd3bd9b5d7431807e3af652643c
train_06847
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
compare
expert
Task: compare Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: Go Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Go", "developer_needs": [ "governance", "evaluation_metrics", "auditability", "cost_latency_tradeoffs" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
159fb99836f89d07a168101208a9e89acfa08830
train_06848
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
failure_analysis
intermediate
Task: failure_analysis Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: JavaScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "JavaScript", "developer_needs": [ "cost_latency_tradeoffs", "tooling", "tests_are_truth", "ci_integration" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
917a3c6c12f967dcd1848b24055095a16e5ad604
train_06849
2026-01-01T00:00:00
Secure code generation and policy gates
code
intermediate
Task: code Topic: Secure code generation and policy gates Difficulty: intermediate Target language: Java Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Java", "developer_needs": [ "documentation", "security_gates", "ci_integration", "tests_are_truth" ], "moe_experts": [ "coding_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
14aae19b17f3bfcf4abb7c6002f2888f3d1bc3ac
train_06850
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
design
intermediate
Task: design Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: C# Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "C#", "developer_needs": [ "documentation", "tests_are_truth", "repo_scale_reasoning", "security_gates" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8c4a2580477b0deba99031eca3a243c8a2b3900e
train_06851
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
code
advanced
Task: code Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: Python Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Scaffold: ```python def agent_loop(plan, edit, test, issue, max_iters=4): history = [] p = plan(issue) for _ in range(max_iters): patch = edit(issue, p) ok, report = test(patch) history.append({"plan": p, "ok": ok}) if ok: return patch, history p = p + " | refine" return patch, history ```
[]
{ "target_language": "Python", "developer_needs": [ "cost_latency_tradeoffs", "reproducibility", "evaluation_metrics", "repo_scale_reasoning" ], "moe_experts": [ "agentic_systems_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6ecda87ed2bb168dc4a494406239b6bc7477d48a
train_06852
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
data_pipeline
advanced
Task: data_pipeline Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: Rust Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "tooling", "tests_are_truth", "ci_integration", "security_gates" ], "moe_experts": [ "evaluation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4add19cc7345adb5edf6479175af44ce7ee71def
train_06853
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
review
intermediate
Task: review Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "repo_scale_reasoning", "documentation", "evaluation_metrics", "ci_integration" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0ed7fadb6e2ef2e72b00db96ff46729ac9c6cf3a
train_06854
2026-01-01T00:00:00
Secure code generation and policy gates
data_pipeline
advanced
Task: data_pipeline Topic: Secure code generation and policy gates Difficulty: advanced Target language: Java Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Java", "developer_needs": [ "tooling", "repo_scale_reasoning", "reproducibility", "evaluation_metrics" ], "moe_experts": [ "agentic_systems_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
25d0216257188cd008ede9994e27b39a148f566f
train_06855
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
compare
expert
Task: compare Topic: Reasoning-first coding models and tunable deliberation Difficulty: expert Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Rust", "developer_needs": [ "documentation", "repo_scale_reasoning", "ci_integration", "tests_are_truth" ], "moe_experts": [ "agentic_systems_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
eb506d9fed3cfda6180e6439700552033a9e29b6
train_06856
2026-01-01T00:00:00
Secure code generation and policy gates
agent_loop
expert
Task: agent_loop Topic: Secure code generation and policy gates Difficulty: expert Target language: Bash Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "repo_scale_reasoning", "tooling", "auditability", "cost_latency_tradeoffs" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
5786aa924dd6990ed04d65ca66b5520511b64dfe
train_06857
2026-01-01T00:00:00
Extended context and repo-scale understanding
compare
intermediate
Task: compare Topic: Extended context and repo-scale understanding Difficulty: intermediate Target language: Bash Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "auditability", "tooling", "tests_are_truth", "reproducibility" ], "moe_experts": [ "governance_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
729ffe325d594f0e62abd7a5aa47737ea800aec3
train_06858
2026-01-01T00:00:00
Secure code generation and policy gates
code
intermediate
Task: code Topic: Secure code generation and policy gates Difficulty: intermediate Target language: Bash Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "governance", "tooling", "auditability", "repo_scale_reasoning" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a22a9a7eb4bcdfe8f5de5b8f9e435cf151975ad0
train_06859
2026-01-01T00:00:00
Latency, cost, and reliability optimization
compare
intermediate
Task: compare Topic: Latency, cost, and reliability optimization Difficulty: intermediate Target language: Go Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "security_gates", "tests_are_truth", "documentation", "evaluation_metrics" ], "moe_experts": [ "performance_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
50d83363fb252a9b0f39fb7ecb04b01b61529efa
train_06860
2026-01-01T00:00:00
Latency, cost, and reliability optimization
agent_loop
advanced
Task: agent_loop Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: Rust Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "repo_scale_reasoning", "evaluation_metrics", "tooling", "cost_latency_tradeoffs" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b49208bc61a8c5f7085ab5118fcbadce4c085be7
train_06861
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
eval
expert
Task: eval Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: SQL Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "SQL", "developer_needs": [ "repo_scale_reasoning", "tooling", "reproducibility", "documentation" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b8bf0c7e33e75f50f5f53ca58357d1e7141cf898
train_06862
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
agent_loop
expert
Task: agent_loop Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: JavaScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "governance", "documentation", "auditability", "security_gates" ], "moe_experts": [ "governance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
74a929bbcc53b8ffba75e05c074ec4d56f65bc10
train_06863
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
eval
advanced
Task: eval Topic: Governance, provenance, and licensing for code data Difficulty: advanced Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "cost_latency_tradeoffs", "documentation", "repo_scale_reasoning", "ci_integration" ], "moe_experts": [ "security_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1111f5e2abdcad816d06c7da042d0b855ae01cc1
train_06864
2026-01-01T00:00:00
Secure code generation and policy gates
data_pipeline
expert
Task: data_pipeline Topic: Secure code generation and policy gates Difficulty: expert Target language: SQL Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "SQL", "developer_needs": [ "tooling", "documentation", "cost_latency_tradeoffs", "reproducibility" ], "moe_experts": [ "evaluation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d60e7b9aedff94b2a7cf5afe3bb58e2f5c6ae9b2
train_06865
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
explain
expert
Task: explain Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: JavaScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "documentation", "auditability", "tests_are_truth", "cost_latency_tradeoffs" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f28d9679ccdcc9902ee4de64760c0a792dc1a02f
train_06866
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
code
advanced
Task: code Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: Go Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "documentation", "tests_are_truth", "tooling", "security_gates" ], "moe_experts": [ "governance_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
94b13a16538b57baf55c0634176a9013dc5edbfe
train_06867
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
failure_analysis
advanced
Task: failure_analysis Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: SQL Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "SQL", "developer_needs": [ "governance", "repo_scale_reasoning", "tooling", "auditability" ], "moe_experts": [ "data_curation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6e693d19ff6b1bf9e3f09c810ab2a1c55c4c86bf
train_06868
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
agent_loop
intermediate
Task: agent_loop Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "tests_are_truth", "auditability", "tooling", "security_gates" ], "moe_experts": [ "security_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
abb3da8d765df5f6b947c70baef2d7bdae47f205
train_06869
2026-01-01T00:00:00
Self-improving agents and feedback loops
code
intermediate
Task: code Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "repo_scale_reasoning", "tests_are_truth", "ci_integration", "cost_latency_tradeoffs" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d34ad907b4e3a460d29ad26e1b72d1c0e3ed7b79
train_06870
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
eval
expert
Task: eval Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "auditability", "governance", "cost_latency_tradeoffs", "tests_are_truth" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
31ff956b84aadafdd7caaa8b50126910f9b55031
train_06871
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
agent_loop
intermediate
Task: agent_loop Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: Go Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "documentation", "tests_are_truth", "cost_latency_tradeoffs", "reproducibility" ], "moe_experts": [ "evaluation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
bdd371b34768ec58ccd17bb0b09f123972ec0fb0
train_06872
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
patch_diff
intermediate
Task: patch_diff Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: Go Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "governance", "auditability", "tooling", "repo_scale_reasoning" ], "moe_experts": [ "evaluation_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
494a02624d179f9c3da3852a5817131860892f44
train_06873
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
failure_analysis
intermediate
Task: failure_analysis Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: TypeScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "TypeScript", "developer_needs": [ "cost_latency_tradeoffs", "auditability", "ci_integration", "evaluation_metrics" ], "moe_experts": [ "security_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
df84a920525517e34858a39906ee28f8004216b5
train_06874
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
explain
advanced
Task: explain Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: Bash Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "documentation", "ci_integration", "reproducibility", "evaluation_metrics" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c7f3fe1a1785fe935856c2b7e8483c8a727df1be
train_06875
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
review
expert
Task: review Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: Bash Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Bash", "developer_needs": [ "ci_integration", "tests_are_truth", "tooling", "governance" ], "moe_experts": [ "evaluation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
704fb6215c894c356c1abe7f0e41fa54b7d1f336
train_06876
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
failure_analysis
advanced
Task: failure_analysis Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Rust", "developer_needs": [ "tests_are_truth", "reproducibility", "cost_latency_tradeoffs", "tooling" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9450d2673993e9a2bad8ea87538ecb7feb041cc5
train_06877
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
explain
intermediate
Task: explain Topic: Reasoning-first coding models and tunable deliberation Difficulty: intermediate Target language: SQL Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "SQL", "developer_needs": [ "evaluation_metrics", "auditability", "reproducibility", "tests_are_truth" ], "moe_experts": [ "evaluation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c2a76788effe340e2217b7e443fc236d88857fc4
train_06878
2026-01-01T00:00:00
Latency, cost, and reliability optimization
code
intermediate
Task: code Topic: Latency, cost, and reliability optimization Difficulty: intermediate Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "governance", "evaluation_metrics", "cost_latency_tradeoffs", "reproducibility" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
93ce79aa2e12257f4f442a7338cae3d50644e309
train_06879
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
code
expert
Task: code Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: Rust Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "cost_latency_tradeoffs", "ci_integration", "documentation", "reproducibility" ], "moe_experts": [ "performance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
bd7c6b8e7f811fc8b739efd3dacc93fd5f2a66cc
train_06880
2026-01-01T00:00:00
Secure code generation and policy gates
patch_diff
advanced
Task: patch_diff Topic: Secure code generation and policy gates Difficulty: advanced Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "repo_scale_reasoning", "security_gates", "reproducibility", "tests_are_truth" ], "moe_experts": [ "governance_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0cb2bde07e51651362a0d8358f68e1d505292deb
train_06881
2026-01-01T00:00:00
Secure code generation and policy gates
review
intermediate
Task: review Topic: Secure code generation and policy gates Difficulty: intermediate Target language: TypeScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "TypeScript", "developer_needs": [ "repo_scale_reasoning", "evaluation_metrics", "tooling", "ci_integration" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3a6b83fac7e9ad52a4d97a6f53f082ec7301c9c8
train_06882
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
failure_analysis
intermediate
Task: failure_analysis Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: Bash Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "governance", "auditability", "cost_latency_tradeoffs", "tests_are_truth" ], "moe_experts": [ "coding_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
230073e1ba3353e8b2a8eeec3a0a26be6bb8bba3
train_06883
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
explain
intermediate
Task: explain Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: Rust Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "governance", "ci_integration", "tests_are_truth", "tooling" ], "moe_experts": [ "coding_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
34c25e5e463d9ba480c71c48a561179c8a13df8c
train_06884
2026-01-01T00:00:00
Latency, cost, and reliability optimization
explain
intermediate
Task: explain Topic: Latency, cost, and reliability optimization Difficulty: intermediate Target language: Java Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Java", "developer_needs": [ "security_gates", "repo_scale_reasoning", "ci_integration", "evaluation_metrics" ], "moe_experts": [ "security_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e18904e3eb400b0732a00256ea923b3e88a030c7
train_06885
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
compare
advanced
Task: compare Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: Go Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "tooling", "reproducibility", "security_gates", "auditability" ], "moe_experts": [ "agentic_systems_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2c96a5b682e237e36eae507d04ecc855468cc63e
train_06886
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
failure_analysis
intermediate
Task: failure_analysis Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Java", "developer_needs": [ "documentation", "reproducibility", "ci_integration", "tests_are_truth" ], "moe_experts": [ "data_curation_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7a217d3ce7a745b3533dbd96177d19595f86334b
train_06887
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
data_pipeline
expert
Task: data_pipeline Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "reproducibility", "evaluation_metrics", "governance", "tooling" ], "moe_experts": [ "governance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ffcb273c07aa4ad72844e2568031445c8841f8f2
train_06888
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
compare
expert
Task: compare Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: Java Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Java", "developer_needs": [ "security_gates", "tests_are_truth", "cost_latency_tradeoffs", "ci_integration" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d611e720bdaff08a927f2ebaf22cbefd79f57674
train_06889
2026-01-01T00:00:00
Self-improving agents and feedback loops
eval
intermediate
Task: eval Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: C# Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "C#", "developer_needs": [ "cost_latency_tradeoffs", "evaluation_metrics", "documentation", "ci_integration" ], "moe_experts": [ "performance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
288f29b1bd60e76339565134f7bd1c98f03ed2b2
train_06890
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
explain
intermediate
Task: explain Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: Bash Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Bash", "developer_needs": [ "evaluation_metrics", "tests_are_truth", "ci_integration", "documentation" ], "moe_experts": [ "coding_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f856e4bc5a75a2c32a7dd000ef986a08e6ddacaa
train_06891
2026-01-01T00:00:00
Extended context and repo-scale understanding
compare
expert
Task: compare Topic: Extended context and repo-scale understanding Difficulty: expert Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "TypeScript", "developer_needs": [ "repo_scale_reasoning", "tests_are_truth", "documentation", "governance" ], "moe_experts": [ "data_curation_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3a30c68670573a427d378f931b6077612d468ddc
train_06892
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
patch_diff
advanced
Task: patch_diff Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: TypeScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "repo_scale_reasoning", "security_gates", "governance", "tests_are_truth" ], "moe_experts": [ "data_curation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
50db3145f7bed8175a3004d859cae6a9e74a9902
train_06893
2026-01-01T00:00:00
Latency, cost, and reliability optimization
agent_loop
advanced
Task: agent_loop Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: Java Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "security_gates", "documentation", "ci_integration", "repo_scale_reasoning" ], "moe_experts": [ "security_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
eae9cd0d1801f5867fda163511603f1287338d46
train_06894
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
data_pipeline
advanced
Task: data_pipeline Topic: Model merging, distillation, and continued pretraining Difficulty: advanced Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "documentation", "reproducibility", "cost_latency_tradeoffs", "ci_integration" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
13512fa131180ac60930360cdb4a1e7cf4483b42
train_06895
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
code
advanced
Task: code Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: Python Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Scaffold: ```python def agent_loop(plan, edit, test, issue, max_iters=4): history = [] p = plan(issue) for _ in range(max_iters): patch = edit(issue, p) ok, report = test(patch) history.append({"plan": p, "ok": ok}) if ok: return patch, history p = p + " | refine" return patch, history ```
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "governance", "reproducibility", "tests_are_truth", "cost_latency_tradeoffs" ], "moe_experts": [ "evaluation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9cd87228170de57c5f25893b4f7cafedebcd6514
train_06896
2026-01-01T00:00:00
Latency, cost, and reliability optimization
compare
expert
Task: compare Topic: Latency, cost, and reliability optimization Difficulty: expert Target language: Bash Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Bash", "developer_needs": [ "cost_latency_tradeoffs", "documentation", "ci_integration", "security_gates" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
41da74e3dac5f6cd1d7d59afb72b8ed8a95d7016
train_06897
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
explain
expert
Task: explain Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: Bash Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "reproducibility", "governance", "auditability", "evaluation_metrics" ], "moe_experts": [ "governance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c0413a264900a05a879c131a72f642c359451d5f
train_06898
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
design
intermediate
Task: design Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: SQL Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "SQL", "developer_needs": [ "auditability", "governance", "cost_latency_tradeoffs", "repo_scale_reasoning" ], "moe_experts": [ "performance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d9ed7923b0b85011101e00a376d029e220f19d2d
train_06899
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
explain
expert
Task: explain Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: JavaScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "ci_integration", "evaluation_metrics", "auditability", "governance" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4ec5d26aadb0539b2ba3f3304158315418d2ccf4