id
stringlengths
11
11
created
timestamp[s]date
2026-01-01 00:00:00
2026-01-01 00:00:00
topic
stringclasses
14 values
task_type
stringclasses
10 values
difficulty
stringclasses
3 values
instruction
stringlengths
189
248
input
stringclasses
1 value
output
stringclasses
9 values
reasoning_steps
listlengths
0
5
metadata
dict
hash
stringlengths
40
40
train_43000
2026-01-01T00:00:00
Secure code generation and policy gates
code
advanced
Task: code Topic: Secure code generation and policy gates Difficulty: advanced Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "TypeScript", "developer_needs": [ "security_gates", "tests_are_truth", "evaluation_metrics", "reproducibility" ], "moe_experts": [ "evaluation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
07f821c8e4a7cbb74a79a34b02cc9ed67eacdbe7
train_43001
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
patch_diff
advanced
Task: patch_diff Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: Go Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "Go", "developer_needs": [ "ci_integration", "tooling", "security_gates", "evaluation_metrics" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a92237c860070833392ab58aabfbdcdb10891578
train_43002
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
explain
intermediate
Task: explain Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "C#", "developer_needs": [ "tooling", "documentation", "evaluation_metrics", "governance" ], "moe_experts": [ "performance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a40cb459224ae5640510babf1701ab8fda9c7841
train_43003
2026-01-01T00:00:00
Extended context and repo-scale understanding
patch_diff
expert
Task: patch_diff Topic: Extended context and repo-scale understanding Difficulty: expert Target language: Java Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "repo_scale_reasoning", "tooling", "tests_are_truth", "reproducibility" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6ede2f21e135c847c3718a1120440138d7b9c9fd
train_43004
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
compare
expert
Task: compare Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: C# Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "C#", "developer_needs": [ "repo_scale_reasoning", "ci_integration", "reproducibility", "documentation" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c702830f27a0f4b564406364989b9fb9e201ae83
train_43005
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
patch_diff
intermediate
Task: patch_diff Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: JavaScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "JavaScript", "developer_needs": [ "governance", "tests_are_truth", "security_gates", "reproducibility" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
641df3573b0ccddfdb8f29c2285e28af48dfba5a
train_43006
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
design
expert
Task: design Topic: Reasoning-first coding models and tunable deliberation Difficulty: expert Target language: Bash Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "security_gates", "cost_latency_tradeoffs", "governance", "evaluation_metrics" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
af47f786a2f62667f44778f51b47dcba61559ae0
train_43007
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
data_pipeline
advanced
Task: data_pipeline Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Rust", "developer_needs": [ "tooling", "evaluation_metrics", "tests_are_truth", "ci_integration" ], "moe_experts": [ "performance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4ad02c4fc05ed72fbd52672717cce316db8fc96f
train_43008
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
failure_analysis
intermediate
Task: failure_analysis Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Java", "developer_needs": [ "evaluation_metrics", "reproducibility", "governance", "tests_are_truth" ], "moe_experts": [ "evaluation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c5d0435432a99685a44bc8fce37180ba7f456a71
train_43009
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
failure_analysis
intermediate
Task: failure_analysis Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: Bash Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Bash", "developer_needs": [ "documentation", "tooling", "evaluation_metrics", "security_gates" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
273810dda51ab2122b3bc7b12c8835c0066c22a0
train_43010
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
agent_loop
advanced
Task: agent_loop Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: C# Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "C#", "developer_needs": [ "security_gates", "auditability", "reproducibility", "tests_are_truth" ], "moe_experts": [ "evaluation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c0cf8dbba184c70066ddb781bbb700aee5d18610
train_43011
2026-01-01T00:00:00
Self-improving agents and feedback loops
failure_analysis
intermediate
Task: failure_analysis Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: SQL Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "SQL", "developer_needs": [ "documentation", "auditability", "governance", "reproducibility" ], "moe_experts": [ "evaluation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d574fcf1251e8e2a71fed5111c23239c0ac60aaa
train_43012
2026-01-01T00:00:00
Extended context and repo-scale understanding
explain
expert
Task: explain Topic: Extended context and repo-scale understanding Difficulty: expert Target language: Bash Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Bash", "developer_needs": [ "repo_scale_reasoning", "documentation", "auditability", "governance" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
14ca084878430fdf87c27d3e97c9cf37249dd173
train_43013
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
failure_analysis
intermediate
Task: failure_analysis Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "JavaScript", "developer_needs": [ "auditability", "ci_integration", "cost_latency_tradeoffs", "reproducibility" ], "moe_experts": [ "coding_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e1786aa9b99a8a2e5c65405e47f50da8ec5a4310
train_43014
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
patch_diff
advanced
Task: patch_diff Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: Rust Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "tests_are_truth", "documentation", "evaluation_metrics", "security_gates" ], "moe_experts": [ "governance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
75adbc8e78274a5f19ff95fad2d764dd7834cc1d
train_43015
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
eval
expert
Task: eval Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: expert Target language: Bash Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Bash", "developer_needs": [ "reproducibility", "auditability", "tests_are_truth", "cost_latency_tradeoffs" ], "moe_experts": [ "evaluation_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8deae43905bd3e9d2a1d4b216c5fef0b751b562f
train_43016
2026-01-01T00:00:00
Extended context and repo-scale understanding
patch_diff
advanced
Task: patch_diff Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "SQL", "developer_needs": [ "evaluation_metrics", "documentation", "tooling", "repo_scale_reasoning" ], "moe_experts": [ "performance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d69ec9441d573bb42e577274e6b7f66fac9f5dc5
train_43017
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
patch_diff
expert
Task: patch_diff Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: Python Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "tooling", "auditability", "cost_latency_tradeoffs", "reproducibility" ], "moe_experts": [ "coding_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9565440dbd6c245750596a137a40ebde11e6a617
train_43018
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
failure_analysis
intermediate
Task: failure_analysis Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: Python Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Python", "developer_needs": [ "reproducibility", "ci_integration", "auditability", "repo_scale_reasoning" ], "moe_experts": [ "security_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
257fc64b241e73c7b8b750f32b3793433b57d08a
train_43019
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
eval
advanced
Task: eval Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: Go Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Go", "developer_needs": [ "tests_are_truth", "governance", "documentation", "ci_integration" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
64c0e3f32ee5f33337ff452cb10d3fadc6d0ef6f
train_43020
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
data_pipeline
advanced
Task: data_pipeline Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: TypeScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "tests_are_truth", "auditability", "documentation", "ci_integration" ], "moe_experts": [ "data_curation_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
5c1bf2a1e6f0be7e7300cc962c9d19c31c07d358
train_43021
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
code
intermediate
Task: code Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "TypeScript", "developer_needs": [ "security_gates", "ci_integration", "reproducibility", "governance" ], "moe_experts": [ "evaluation_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
71417bf1d95ba28ce3bb3106d3fbd119b7aa45c9
train_43022
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
agent_loop
intermediate
Task: agent_loop Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Java", "developer_needs": [ "evaluation_metrics", "reproducibility", "cost_latency_tradeoffs", "repo_scale_reasoning" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9e11a9309c3ca2575499f87a7931989ed28f2946
train_43023
2026-01-01T00:00:00
Secure code generation and policy gates
review
advanced
Task: review Topic: Secure code generation and policy gates Difficulty: advanced Target language: Bash Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Bash", "developer_needs": [ "security_gates", "tooling", "governance", "reproducibility" ], "moe_experts": [ "security_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d6bf647af8b637ec37b15a701e1c97a4d8c09a15
train_43024
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
explain
intermediate
Task: explain Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: C# Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "C#", "developer_needs": [ "auditability", "tests_are_truth", "evaluation_metrics", "reproducibility" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
5245c44820611622330bfc2f59f24381ee16791b
train_43025
2026-01-01T00:00:00
Latency, cost, and reliability optimization
agent_loop
intermediate
Task: agent_loop Topic: Latency, cost, and reliability optimization Difficulty: intermediate Target language: SQL Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "SQL", "developer_needs": [ "reproducibility", "cost_latency_tradeoffs", "security_gates", "auditability" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
002caf4ea726e6423c5bace628d7a93a89a69321
train_43026
2026-01-01T00:00:00
Self-improving agents and feedback loops
eval
intermediate
Task: eval Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: Bash Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Bash", "developer_needs": [ "security_gates", "cost_latency_tradeoffs", "auditability", "documentation" ], "moe_experts": [ "agentic_systems_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9ff3b4b79e5febfc0c6dcd37724c6f017350534b
train_43027
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
data_pipeline
advanced
Task: data_pipeline Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: Java Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "tests_are_truth", "cost_latency_tradeoffs", "tooling", "security_gates" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b539e6f38883ab91d86f725984ab5e83aaf4dd7d
train_43028
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
agent_loop
intermediate
Task: agent_loop Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: Java Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "governance", "evaluation_metrics", "security_gates", "cost_latency_tradeoffs" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1908c7c21f0021f41e6294f919c6aefad7c10095
train_43029
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
data_pipeline
expert
Task: data_pipeline Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: SQL Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "security_gates", "evaluation_metrics", "repo_scale_reasoning", "governance" ], "moe_experts": [ "data_curation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a48b88a0b02911058e605dc453945aa3885395de
train_43030
2026-01-01T00:00:00
Secure code generation and policy gates
compare
intermediate
Task: compare Topic: Secure code generation and policy gates Difficulty: intermediate Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "repo_scale_reasoning", "ci_integration", "reproducibility", "cost_latency_tradeoffs" ], "moe_experts": [ "performance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0717bbab8d779be708723acbad2e7ce1bdc87327
train_43031
2026-01-01T00:00:00
Secure code generation and policy gates
agent_loop
intermediate
Task: agent_loop Topic: Secure code generation and policy gates Difficulty: intermediate Target language: JavaScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "JavaScript", "developer_needs": [ "documentation", "tooling", "security_gates", "evaluation_metrics" ], "moe_experts": [ "agentic_systems_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
160f14673dd3353ede01c043efadc978c2f625fb
train_43032
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
code
advanced
Task: code Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "evaluation_metrics", "documentation", "auditability", "security_gates" ], "moe_experts": [ "coding_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1d6304a6f536583ab57b342a59cf5a2f2feac519
train_43033
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
failure_analysis
intermediate
Task: failure_analysis Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: TypeScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "auditability", "evaluation_metrics", "governance", "cost_latency_tradeoffs" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
149ea5e4261614034930ef1aa6c98e0ee41f25bd
train_43034
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
failure_analysis
intermediate
Task: failure_analysis Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: Bash Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Bash", "developer_needs": [ "reproducibility", "evaluation_metrics", "auditability", "tests_are_truth" ], "moe_experts": [ "agentic_systems_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
abaf6989344bb05faa478e8deb962e21101f4ef3
train_43035
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
data_pipeline
intermediate
Task: data_pipeline Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: Bash Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Bash", "developer_needs": [ "ci_integration", "evaluation_metrics", "reproducibility", "repo_scale_reasoning" ], "moe_experts": [ "security_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
cf745f55acbaa29f2753731e4d03e7a4d13a9b53
train_43036
2026-01-01T00:00:00
Latency, cost, and reliability optimization
failure_analysis
advanced
Task: failure_analysis Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: Bash Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Bash", "developer_needs": [ "security_gates", "evaluation_metrics", "repo_scale_reasoning", "tooling" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c43f008023ac5502f461ab1c70821ecbf5eca79a
train_43037
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
patch_diff
advanced
Task: patch_diff Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "auditability", "security_gates", "evaluation_metrics", "cost_latency_tradeoffs" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
bca70ad3e009fad7bac664144322f060d5561bd7
train_43038
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
agent_loop
advanced
Task: agent_loop Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: Go Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Go", "developer_needs": [ "tests_are_truth", "ci_integration", "evaluation_metrics", "governance" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
476eabee9df0d55d0e00f8fb049219293bf15f80
train_43039
2026-01-01T00:00:00
Secure code generation and policy gates
design
advanced
Task: design Topic: Secure code generation and policy gates Difficulty: advanced Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Python", "developer_needs": [ "ci_integration", "evaluation_metrics", "documentation", "governance" ], "moe_experts": [ "security_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0979455f08781096c180d5cb055105c9922aecfb
train_43040
2026-01-01T00:00:00
Self-improving agents and feedback loops
data_pipeline
expert
Task: data_pipeline Topic: Self-improving agents and feedback loops Difficulty: expert Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "C#", "developer_needs": [ "cost_latency_tradeoffs", "repo_scale_reasoning", "governance", "documentation" ], "moe_experts": [ "evaluation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
33420a14480fc4eb9620274c188c36dc1d4d536c
train_43041
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
design
advanced
Task: design Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "governance", "cost_latency_tradeoffs", "security_gates", "repo_scale_reasoning" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
5f73596c29bf88e946d2cd87fd926462cf3d5c21
train_43042
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
compare
expert
Task: compare Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: Java Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Java", "developer_needs": [ "cost_latency_tradeoffs", "security_gates", "repo_scale_reasoning", "tooling" ], "moe_experts": [ "coding_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ed4f8ae03e72439d302ece9a9da0252c7ec58a25
train_43043
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
failure_analysis
advanced
Task: failure_analysis Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: SQL Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "SQL", "developer_needs": [ "reproducibility", "auditability", "governance", "ci_integration" ], "moe_experts": [ "evaluation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1e85b8008fb78fa3ba0bd6a5431bcc5b6027c08a
train_43044
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
patch_diff
intermediate
Task: patch_diff Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "tooling", "auditability", "ci_integration", "repo_scale_reasoning" ], "moe_experts": [ "performance_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
eb26d8741fe77855ad6427dd0ab8a004fb6bc195
train_43045
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
design
advanced
Task: design Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: SQL Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "SQL", "developer_needs": [ "ci_integration", "governance", "auditability", "reproducibility" ], "moe_experts": [ "security_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
fe98195c38de21b4bb6ac8d3992402c530c65b39
train_43046
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
failure_analysis
advanced
Task: failure_analysis Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "TypeScript", "developer_needs": [ "auditability", "cost_latency_tradeoffs", "evaluation_metrics", "security_gates" ], "moe_experts": [ "security_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
511bb8241930aeb214d399bd67edceb5e2330d15
train_43047
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
eval
expert
Task: eval Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "TypeScript", "developer_needs": [ "cost_latency_tradeoffs", "reproducibility", "governance", "documentation" ], "moe_experts": [ "agentic_systems_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
375627ae41815fc4fc3ac3e7cdee117698899079
train_43048
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
compare
advanced
Task: compare Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: Java Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "governance", "reproducibility", "evaluation_metrics", "documentation" ], "moe_experts": [ "evaluation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9cf546a5b0dab84c0c31f809fe1fcf48e28aa63d
train_43049
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
data_pipeline
intermediate
Task: data_pipeline Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: SQL Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "auditability", "documentation", "ci_integration", "security_gates" ], "moe_experts": [ "security_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
5671f80633f13db5401223bd74652b73bbedcf61
train_43050
2026-01-01T00:00:00
Extended context and repo-scale understanding
compare
expert
Task: compare Topic: Extended context and repo-scale understanding Difficulty: expert Target language: C# Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "C#", "developer_needs": [ "reproducibility", "cost_latency_tradeoffs", "governance", "security_gates" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f9c43397811f277df0c933b5b50c4742de3191fb
train_43051
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
compare
intermediate
Task: compare Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: Rust Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "repo_scale_reasoning", "security_gates", "documentation", "reproducibility" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
88ec570038f1f7e84d56e0cdab7b3dd3ef6e8642
train_43052
2026-01-01T00:00:00
Self-improving agents and feedback loops
review
intermediate
Task: review Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: SQL Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "repo_scale_reasoning", "auditability", "evaluation_metrics", "tests_are_truth" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
07b9c501e82548571c53a2ce8eafa22f6e042866
train_43053
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
eval
advanced
Task: eval Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: Java Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "governance", "evaluation_metrics", "security_gates", "reproducibility" ], "moe_experts": [ "evaluation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a8a23a4050ee782d8a3539acfcf807d94fb7820e
train_43054
2026-01-01T00:00:00
Self-improving agents and feedback loops
agent_loop
intermediate
Task: agent_loop Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Bash", "developer_needs": [ "tooling", "security_gates", "tests_are_truth", "auditability" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e4b98d32a3a8e8ce589d56167cb247a9e846afe6
train_43055
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
eval
expert
Task: eval Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "TypeScript", "developer_needs": [ "security_gates", "ci_integration", "repo_scale_reasoning", "reproducibility" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6998a19a2ea7c54fb040966bd9c7b8b55ae0f0e5
train_43056
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
compare
expert
Task: compare Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "SQL", "developer_needs": [ "tests_are_truth", "reproducibility", "ci_integration", "cost_latency_tradeoffs" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e265113e0a53e4f981d00086becbb875e4b2a91e
train_43057
2026-01-01T00:00:00
Self-improving agents and feedback loops
eval
expert
Task: eval Topic: Self-improving agents and feedback loops Difficulty: expert Target language: SQL Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "SQL", "developer_needs": [ "tooling", "governance", "cost_latency_tradeoffs", "auditability" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9c3479788d4f730f354d28388301f1c8c064d3af
train_43058
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
explain
expert
Task: explain Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: Python Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Python", "developer_needs": [ "reproducibility", "security_gates", "tooling", "ci_integration" ], "moe_experts": [ "performance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b876897f400405725a89340583144868ab226752
train_43059
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
agent_loop
advanced
Task: agent_loop Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Java", "developer_needs": [ "tests_are_truth", "governance", "ci_integration", "cost_latency_tradeoffs" ], "moe_experts": [ "governance_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2fe14a714e2d923a836e9836a95e9713ca2caa4b
train_43060
2026-01-01T00:00:00
Secure code generation and policy gates
code
expert
Task: code Topic: Secure code generation and policy gates Difficulty: expert Target language: JavaScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "tests_are_truth", "security_gates", "cost_latency_tradeoffs", "auditability" ], "moe_experts": [ "coding_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9aa0a74fa914ba427822771ee0034af459d5dc7c
train_43061
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
data_pipeline
advanced
Task: data_pipeline Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Rust", "developer_needs": [ "tooling", "security_gates", "auditability", "repo_scale_reasoning" ], "moe_experts": [ "evaluation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
5dcc50792e3b7e70543ab287ca8999d1161b89d3
train_43062
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
data_pipeline
advanced
Task: data_pipeline Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: C# Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "tooling", "reproducibility", "tests_are_truth", "auditability" ], "moe_experts": [ "coding_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8994642a323e119c8f57c8eb9f6e3c6e66b5a97a
train_43063
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
compare
expert
Task: compare Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: Python Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Python", "developer_needs": [ "ci_integration", "repo_scale_reasoning", "tests_are_truth", "tooling" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
676ba9f4b843ce6f5ac44c3eb8e00104e55ea5af
train_43064
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
patch_diff
advanced
Task: patch_diff Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: Bash Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "Bash", "developer_needs": [ "documentation", "tooling", "security_gates", "tests_are_truth" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b298aff8d924f5d39b0cbab0b416ceb56e933b37
train_43065
2026-01-01T00:00:00
Self-improving agents and feedback loops
patch_diff
advanced
Task: patch_diff Topic: Self-improving agents and feedback loops Difficulty: advanced Target language: Rust Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "Rust", "developer_needs": [ "reproducibility", "governance", "tooling", "tests_are_truth" ], "moe_experts": [ "data_curation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e1b96ac5d600da89cafa50689473a73944bcb186
train_43066
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
patch_diff
advanced
Task: patch_diff Topic: Model merging, distillation, and continued pretraining Difficulty: advanced Target language: Java Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "governance", "security_gates", "cost_latency_tradeoffs", "tooling" ], "moe_experts": [ "coding_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
cd660703052e00afb303b89aafdccc5550e57fe3
train_43067
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
agent_loop
expert
Task: agent_loop Topic: Reasoning-first coding models and tunable deliberation Difficulty: expert Target language: TypeScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "TypeScript", "developer_needs": [ "documentation", "tests_are_truth", "tooling", "cost_latency_tradeoffs" ], "moe_experts": [ "performance_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
5fad0c49208ccd198b9f40944244476bcfb6c44a
train_43068
2026-01-01T00:00:00
Self-improving agents and feedback loops
failure_analysis
advanced
Task: failure_analysis Topic: Self-improving agents and feedback loops Difficulty: advanced Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Python", "developer_needs": [ "documentation", "tooling", "security_gates", "auditability" ], "moe_experts": [ "security_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f555c4e34807e78316cc6eac2ec78d88d3c9ecc5
train_43069
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
agent_loop
expert
Task: agent_loop Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: expert Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "TypeScript", "developer_needs": [ "repo_scale_reasoning", "reproducibility", "security_gates", "auditability" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
966c0fec35b08f38b3e77521bf27f25c99563719
train_43070
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
compare
advanced
Task: compare Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: Bash Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "governance", "evaluation_metrics", "documentation", "cost_latency_tradeoffs" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
cc75b5c142e122b6056eda39f7a1675eb27c9bde
train_43071
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
agent_loop
advanced
Task: agent_loop Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: Rust Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Rust", "developer_needs": [ "cost_latency_tradeoffs", "security_gates", "tests_are_truth", "reproducibility" ], "moe_experts": [ "data_curation_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a5f986eb4dcd9240b574df50af57f7c829e9f5fd
train_43072
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
compare
intermediate
Task: compare Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: Rust Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "documentation", "security_gates", "reproducibility", "tooling" ], "moe_experts": [ "data_curation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
88ec570038f1f7e84d56e0cdab7b3dd3ef6e8642
train_43073
2026-01-01T00:00:00
Secure code generation and policy gates
failure_analysis
intermediate
Task: failure_analysis Topic: Secure code generation and policy gates Difficulty: intermediate Target language: TypeScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "TypeScript", "developer_needs": [ "documentation", "repo_scale_reasoning", "evaluation_metrics", "security_gates" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
98cc578131a7971f85edc852e3d6d0d3c9937da4
train_43074
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
review
expert
Task: review Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: SQL Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "SQL", "developer_needs": [ "governance", "evaluation_metrics", "documentation", "ci_integration" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c21ac80968d04d45684403df130cb160b32d2179
train_43075
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
patch_diff
expert
Task: patch_diff Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: expert Target language: Python Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "Python", "developer_needs": [ "reproducibility", "governance", "repo_scale_reasoning", "tests_are_truth" ], "moe_experts": [ "governance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
40e96bcbb2497bf8f24899fce3d2026deab70817
train_43076
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
patch_diff
intermediate
Task: patch_diff Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: Go Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "Go", "developer_needs": [ "governance", "evaluation_metrics", "tests_are_truth", "reproducibility" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1e9a1e3f27f977d2c8c69b4de815bc30a84c3b46
train_43077
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
code
intermediate
Task: code Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: Bash Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "governance", "auditability", "cost_latency_tradeoffs", "reproducibility" ], "moe_experts": [ "security_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1a502b6ab819d22d969b5f581a2e449ca60a4402
train_43078
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
explain
expert
Task: explain Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: Java Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Java", "developer_needs": [ "evaluation_metrics", "ci_integration", "security_gates", "governance" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4bbc41f0da1d7d7a4d6867babeee4a8db05b57ef
train_43079
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
data_pipeline
advanced
Task: data_pipeline Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: TypeScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "TypeScript", "developer_needs": [ "governance", "security_gates", "auditability", "repo_scale_reasoning" ], "moe_experts": [ "performance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0962e4cd11a2af01aa14162ce958bf3a779ae81f
train_43080
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
eval
intermediate
Task: eval Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "C#", "developer_needs": [ "ci_integration", "reproducibility", "tests_are_truth", "documentation" ], "moe_experts": [ "security_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3502d4c9de766d393ff4a309207ba372a19de305
train_43081
2026-01-01T00:00:00
Secure code generation and policy gates
explain
advanced
Task: explain Topic: Secure code generation and policy gates Difficulty: advanced Target language: Python Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Python", "developer_needs": [ "ci_integration", "evaluation_metrics", "cost_latency_tradeoffs", "governance" ], "moe_experts": [ "evaluation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0e3b935c76640d6457feec55f9b2e01669870379
train_43082
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
code
expert
Task: code Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: expert Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "tooling", "ci_integration", "evaluation_metrics", "repo_scale_reasoning" ], "moe_experts": [ "evaluation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
58c35bc22bbec02faaa6edfed7282be7a161baac
train_43083
2026-01-01T00:00:00
Secure code generation and policy gates
code
advanced
Task: code Topic: Secure code generation and policy gates Difficulty: advanced Target language: JavaScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "documentation", "repo_scale_reasoning", "auditability", "tooling" ], "moe_experts": [ "coding_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
288bb1b86c4cb1b7c6e0b8c39103b2309fbd6385
train_43084
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
failure_analysis
intermediate
Task: failure_analysis Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: Java Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Java", "developer_needs": [ "auditability", "ci_integration", "governance", "repo_scale_reasoning" ], "moe_experts": [ "performance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a18377aa252fd9b10874009b0dfb8dad207ece41
train_43085
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
code
intermediate
Task: code Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: Bash Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Bash", "developer_needs": [ "cost_latency_tradeoffs", "documentation", "governance", "tests_are_truth" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a4b3257b50cfcdf01d31797d0748262ca5a22913
train_43086
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
design
advanced
Task: design Topic: Model merging, distillation, and continued pretraining Difficulty: advanced Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "reproducibility", "cost_latency_tradeoffs", "evaluation_metrics", "repo_scale_reasoning" ], "moe_experts": [ "data_curation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
651ff55b58cdea360fe77409ea0a3d04ab450eab
train_43087
2026-01-01T00:00:00
Latency, cost, and reliability optimization
eval
expert
Task: eval Topic: Latency, cost, and reliability optimization Difficulty: expert Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "TypeScript", "developer_needs": [ "auditability", "ci_integration", "tests_are_truth", "documentation" ], "moe_experts": [ "data_curation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8f75193d1bd21d4419b6995d38305967e60240c5
train_43088
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
explain
expert
Task: explain Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: Bash Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Bash", "developer_needs": [ "cost_latency_tradeoffs", "ci_integration", "reproducibility", "documentation" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d9e355a5a9600c4b053f02fdb0070426237b5652
train_43089
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
design
expert
Task: design Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "documentation", "repo_scale_reasoning", "cost_latency_tradeoffs", "auditability" ], "moe_experts": [ "performance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
36a41c92140584c703a57cbbd55be3b6d7db3e24
train_43090
2026-01-01T00:00:00
Latency, cost, and reliability optimization
review
intermediate
Task: review Topic: Latency, cost, and reliability optimization Difficulty: intermediate Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Rust", "developer_needs": [ "repo_scale_reasoning", "documentation", "tooling", "evaluation_metrics" ], "moe_experts": [ "coding_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d4086f4c5614e350325dd53a62802a26c3a5a75e
train_43091
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
patch_diff
expert
Task: patch_diff Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: TypeScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "documentation", "tests_are_truth", "ci_integration", "security_gates" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
55949926a17e901f712b595e8cca73b91722f6e4
train_43092
2026-01-01T00:00:00
Self-improving agents and feedback loops
review
intermediate
Task: review Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: TypeScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "documentation", "tests_are_truth", "auditability", "reproducibility" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
385a393b69d55cd1d57e32576a1635abce39d6b4
train_43093
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
code
expert
Task: code Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: Python Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Scaffold: ```python def agent_loop(plan, edit, test, issue, max_iters=4): history = [] p = plan(issue) for _ in range(max_iters): patch = edit(issue, p) ok, report = test(patch) history.append({"plan": p, "ok": ok}) if ok: return patch, history p = p + " | refine" return patch, history ```
[]
{ "target_language": "Python", "developer_needs": [ "reproducibility", "auditability", "governance", "tooling" ], "moe_experts": [ "governance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1be08020ea60e1bf21bc98044e89e1ad2d8f7939
train_43094
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
compare
expert
Task: compare Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: Python Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Python", "developer_needs": [ "governance", "auditability", "documentation", "tooling" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
77d686e2b208c7f3289d2b734fc5bd81f1fe0d44
train_43095
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
eval
advanced
Task: eval Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: Go Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "governance", "reproducibility", "cost_latency_tradeoffs", "auditability" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
daf7eab2e33aefc9b451752d59a94f267bd19347
train_43096
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
compare
advanced
Task: compare Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: Rust Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Rust", "developer_needs": [ "ci_integration", "cost_latency_tradeoffs", "tests_are_truth", "evaluation_metrics" ], "moe_experts": [ "security_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
16d7cc0aab968b3845ac692a7c25177462e86afd
train_43097
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
explain
advanced
Task: explain Topic: Governance, provenance, and licensing for code data Difficulty: advanced Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "ci_integration", "evaluation_metrics", "cost_latency_tradeoffs", "repo_scale_reasoning" ], "moe_experts": [ "performance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1aa8fe4c1f39f8a7a0827e65b5a3a501d975e896
train_43098
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
eval
expert
Task: eval Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: Python Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Python", "developer_needs": [ "tests_are_truth", "documentation", "governance", "reproducibility" ], "moe_experts": [ "evaluation_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
cf283fe0a5fb3fd359f956adcc79cb04072d23f6
train_43099
2026-01-01T00:00:00
Secure code generation and policy gates
patch_diff
expert
Task: patch_diff Topic: Secure code generation and policy gates Difficulty: expert Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "SQL", "developer_needs": [ "tooling", "documentation", "security_gates", "tests_are_truth" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
688786229379a1b00bccc773e9de581a96846db7