id
stringlengths 11
11
| created
timestamp[s]date 2026-01-01 00:00:00
2026-01-01 00:00:00
| topic
stringclasses 14
values | task_type
stringclasses 10
values | difficulty
stringclasses 3
values | instruction
stringlengths 189
248
| input
stringclasses 1
value | output
stringclasses 9
values | reasoning_steps
listlengths 0
5
| metadata
dict | hash
stringlengths 40
40
|
|---|---|---|---|---|---|---|---|---|---|---|
train_42300
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: SWE-bench style real-repo evaluation
Difficulty: advanced
Target language: SQL
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"governance",
"cost_latency_tradeoffs",
"ci_integration",
"repo_scale_reasoning"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b5533a7d0f08e59927089cf6bad3b3d41a8ea8d4
|
|
train_42301
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
explain
|
advanced
|
Task: explain
Topic: Governance, provenance, and licensing for code data
Difficulty: advanced
Target language: Go
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"reproducibility",
"governance",
"tests_are_truth",
"security_gates"
],
"moe_experts": [
"performance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1cbdbb46984c0489627834d9b17d0adfefb30900
|
|
train_42302
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
code
|
expert
|
Task: code
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: expert
Target language: SQL
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"tests_are_truth",
"tooling",
"cost_latency_tradeoffs",
"documentation"
],
"moe_experts": [
"governance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1a422a74f9bb27050bbc25b5a36f10b3081db527
|
|
train_42303
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
compare
|
advanced
|
Task: compare
Topic: Model merging, distillation, and continued pretraining
Difficulty: advanced
Target language: C#
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "C#",
"developer_needs": [
"security_gates",
"reproducibility",
"ci_integration",
"cost_latency_tradeoffs"
],
"moe_experts": [
"data_curation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
45d6e0b3ee4641465c2b95a7645f3aa239447aca
|
|
train_42304
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
design
|
expert
|
Task: design
Topic: Secure code generation and policy gates
Difficulty: expert
Target language: JavaScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"repo_scale_reasoning",
"documentation",
"tooling",
"ci_integration"
],
"moe_experts": [
"performance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c0dca8c83554087393cff8093738f04ed09ab5a6
|
|
train_42305
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Model merging, distillation, and continued pretraining
Difficulty: expert
Target language: Rust
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"cost_latency_tradeoffs",
"evaluation_metrics",
"security_gates",
"ci_integration"
],
"moe_experts": [
"coding_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b5cb65f56a3925d4416b6513d4e80d12ef1edf87
|
|
train_42306
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: expert
Target language: Java
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Java",
"developer_needs": [
"ci_integration",
"governance",
"documentation",
"tests_are_truth"
],
"moe_experts": [
"data_curation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
699f7fb3b77e989c6d3fb751243333bc52cff1e9
|
|
train_42307
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
patch_diff
|
advanced
|
Task: patch_diff
Topic: Mixture-of-Experts (MoE) for code
Difficulty: advanced
Target language: C#
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "C#",
"developer_needs": [
"tests_are_truth",
"security_gates",
"reproducibility",
"repo_scale_reasoning"
],
"moe_experts": [
"evaluation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1137d3adce98b56bee53c9205d61849703415b1e
|
|
train_42308
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
compare
|
advanced
|
Task: compare
Topic: Extended context and repo-scale understanding
Difficulty: advanced
Target language: Bash
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"ci_integration",
"tooling",
"documentation",
"cost_latency_tradeoffs"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
23424c81e0d8c4da2c5d6f0c3c0be2f9fc39590e
|
|
train_42309
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Governance, provenance, and licensing for code data
Difficulty: intermediate
Target language: Rust
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"auditability",
"reproducibility",
"security_gates",
"governance"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
30efd5b79bd76b2957ab26639b2147e36badd8ca
|
|
train_42310
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Model merging, distillation, and continued pretraining
Difficulty: intermediate
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Python",
"developer_needs": [
"ci_integration",
"tests_are_truth",
"security_gates",
"governance"
],
"moe_experts": [
"performance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
595f941516057c0ccaba1feaae84cdc6f3f65819
|
|
train_42311
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
design
|
advanced
|
Task: design
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: advanced
Target language: Go
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"reproducibility",
"governance",
"tests_are_truth",
"security_gates"
],
"moe_experts": [
"performance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
37bff38f43bfe58403adce4f8d2a6cda06b7c1e2
|
|
train_42312
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: expert
Target language: Go
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"cost_latency_tradeoffs",
"governance",
"reproducibility",
"security_gates"
],
"moe_experts": [
"performance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
550b03cc5f8c6cbd954d07833013a144794d1f89
|
|
train_42313
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Extended context and repo-scale understanding
Difficulty: intermediate
Target language: Rust
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"evaluation_metrics",
"tooling",
"security_gates",
"ci_integration"
],
"moe_experts": [
"data_curation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a1ad92aae4ef4d7585829795917a4f2ad9b5be9c
|
|
train_42314
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Model merging, distillation, and continued pretraining
Difficulty: intermediate
Target language: C#
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "C#",
"developer_needs": [
"security_gates",
"tooling",
"evaluation_metrics",
"governance"
],
"moe_experts": [
"coding_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
007a13c606ccccf283138adb87385e2852c9abf4
|
|
train_42315
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
review
|
expert
|
Task: review
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: expert
Target language: Rust
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"tests_are_truth",
"evaluation_metrics",
"ci_integration",
"security_gates"
],
"moe_experts": [
"data_curation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
dc85d8b1b9c9b7f872cf250a223bfe5fa03c87b5
|
|
train_42316
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
code
|
intermediate
|
Task: code
Topic: Self-improving agents and feedback loops
Difficulty: intermediate
Target language: C#
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "C#",
"developer_needs": [
"governance",
"repo_scale_reasoning",
"reproducibility",
"tests_are_truth"
],
"moe_experts": [
"coding_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
71a417e10382fb493c8242ba152889f838662a27
|
|
train_42317
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
review
|
intermediate
|
Task: review
Topic: Extended context and repo-scale understanding
Difficulty: intermediate
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "Python",
"developer_needs": [
"repo_scale_reasoning",
"evaluation_metrics",
"tests_are_truth",
"security_gates"
],
"moe_experts": [
"governance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
26b2466e0fcb42028a5c335594a8efc870b62498
|
|
train_42318
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
review
|
intermediate
|
Task: review
Topic: Tool calling, sandboxes, and CI integration
Difficulty: intermediate
Target language: SQL
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"governance",
"tests_are_truth",
"ci_integration",
"repo_scale_reasoning"
],
"moe_experts": [
"coding_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
25e222563278a6732c7a1333c6186cbbb79beb91
|
|
train_42319
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
patch_diff
|
expert
|
Task: patch_diff
Topic: Self-improving agents and feedback loops
Difficulty: expert
Target language: SQL
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"cost_latency_tradeoffs",
"tooling",
"security_gates",
"ci_integration"
],
"moe_experts": [
"governance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
769a7c43a2b3aa59ca3c5155dd915d6bd7c7484d
|
|
train_42320
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: intermediate
Target language: C#
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"cost_latency_tradeoffs",
"security_gates",
"tests_are_truth",
"documentation"
],
"moe_experts": [
"data_curation_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
683efe8824345fef79117a74c1c588e82877e708
|
|
train_42321
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
review
|
expert
|
Task: review
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: expert
Target language: C#
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "C#",
"developer_needs": [
"tooling",
"security_gates",
"auditability",
"governance"
],
"moe_experts": [
"evaluation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
cf943dbedc687a95cd214f7411c0ee3b19404ef1
|
|
train_42322
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
code
|
intermediate
|
Task: code
Topic: Governance, provenance, and licensing for code data
Difficulty: intermediate
Target language: Bash
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"repo_scale_reasoning",
"documentation",
"reproducibility",
"auditability"
],
"moe_experts": [
"security_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
5ac2084e33da878e6007536c59ca18596ef88467
|
|
train_42323
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
compare
|
expert
|
Task: compare
Topic: Self-improving agents and feedback loops
Difficulty: expert
Target language: Rust
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"documentation",
"evaluation_metrics",
"ci_integration",
"repo_scale_reasoning"
],
"moe_experts": [
"data_curation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
6e3b322bdd956cb4ba9f535a243d549355104c6e
|
|
train_42324
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
patch_diff
|
expert
|
Task: patch_diff
Topic: Secure code generation and policy gates
Difficulty: expert
Target language: Go
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "Go",
"developer_needs": [
"ci_integration",
"tests_are_truth",
"evaluation_metrics",
"governance"
],
"moe_experts": [
"agentic_systems_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
54aa2fb0887910f830308a75c9e15f0c77d556a5
|
|
train_42325
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
failure_analysis
|
advanced
|
Task: failure_analysis
Topic: Mixture-of-Experts (MoE) for code
Difficulty: advanced
Target language: Java
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Java",
"developer_needs": [
"evaluation_metrics",
"documentation",
"repo_scale_reasoning",
"tooling"
],
"moe_experts": [
"coding_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
25e0ded74f141cd6cc2d8295766d261ba25aeae7
|
|
train_42326
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
code
|
expert
|
Task: code
Topic: SWE-bench style real-repo evaluation
Difficulty: expert
Target language: TypeScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"security_gates",
"tests_are_truth",
"cost_latency_tradeoffs",
"documentation"
],
"moe_experts": [
"performance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b126a8d0418210478d58df6b8c2add0c0271aae3
|
|
train_42327
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Tool calling, sandboxes, and CI integration
Difficulty: expert
Target language: Python
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"cost_latency_tradeoffs",
"ci_integration",
"tests_are_truth",
"documentation"
],
"moe_experts": [
"governance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
29a841c02be961e67a9f5206ea31a26f20b71000
|
|
train_42328
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
design
|
advanced
|
Task: design
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: advanced
Target language: JavaScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"evaluation_metrics",
"reproducibility",
"security_gates",
"cost_latency_tradeoffs"
],
"moe_experts": [
"evaluation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ee85eabcee6e4074a97bfb4395155cdbb0c57c65
|
|
train_42329
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
review
|
expert
|
Task: review
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: expert
Target language: C#
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "C#",
"developer_needs": [
"cost_latency_tradeoffs",
"tests_are_truth",
"security_gates",
"reproducibility"
],
"moe_experts": [
"agentic_systems_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
cf943dbedc687a95cd214f7411c0ee3b19404ef1
|
|
train_42330
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
agent_loop
|
expert
|
Task: agent_loop
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: expert
Target language: JavaScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"security_gates",
"reproducibility",
"cost_latency_tradeoffs",
"tooling"
],
"moe_experts": [
"coding_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1de4b60f5a3236a66d2f9398ef70ecc9fc7dda06
|
|
train_42331
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
design
|
advanced
|
Task: design
Topic: Extended context and repo-scale understanding
Difficulty: advanced
Target language: Rust
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"repo_scale_reasoning",
"security_gates",
"tooling",
"auditability"
],
"moe_experts": [
"evaluation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f15510cad5c70a5483de72ccb9f780645175b069
|
|
train_42332
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
code
|
intermediate
|
Task: code
Topic: Tool calling, sandboxes, and CI integration
Difficulty: intermediate
Target language: SQL
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"tests_are_truth",
"reproducibility",
"cost_latency_tradeoffs",
"repo_scale_reasoning"
],
"moe_experts": [
"agentic_systems_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
cd9b70c2f7da16c57c5fac38994d27238bc6912c
|
|
train_42333
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
eval
|
advanced
|
Task: eval
Topic: Governance, provenance, and licensing for code data
Difficulty: advanced
Target language: Java
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"auditability",
"tooling",
"governance",
"tests_are_truth"
],
"moe_experts": [
"security_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ff99bad3f45a21f23ff3fe2b7703bf9bd37065c5
|
|
train_42334
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
explain
|
advanced
|
Task: explain
Topic: Governance, provenance, and licensing for code data
Difficulty: advanced
Target language: Python
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Python",
"developer_needs": [
"governance",
"evaluation_metrics",
"reproducibility",
"security_gates"
],
"moe_experts": [
"evaluation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
65763135e703a8562fb4d64b9feefe981515f267
|
|
train_42335
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
design
|
advanced
|
Task: design
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: advanced
Target language: Go
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Go",
"developer_needs": [
"cost_latency_tradeoffs",
"governance",
"repo_scale_reasoning",
"evaluation_metrics"
],
"moe_experts": [
"coding_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d33de789004b348a66d1e8a4070ded90fe841275
|
|
train_42336
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
compare
|
expert
|
Task: compare
Topic: Latency, cost, and reliability optimization
Difficulty: expert
Target language: Go
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"tests_are_truth",
"documentation",
"tooling",
"evaluation_metrics"
],
"moe_experts": [
"security_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ef589e6a9d74704efe6bb12bb6a22c9b1d7cd7a8
|
|
train_42337
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: expert
Target language: Python
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"tests_are_truth",
"repo_scale_reasoning",
"ci_integration",
"governance"
],
"moe_experts": [
"performance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
331b209a41b72f07d40a6bf5bb5abd943ae59b1d
|
|
train_42338
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
design
|
advanced
|
Task: design
Topic: Model merging, distillation, and continued pretraining
Difficulty: advanced
Target language: Go
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Go",
"developer_needs": [
"auditability",
"ci_integration",
"governance",
"security_gates"
],
"moe_experts": [
"performance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a9f4b67b5cf19d3f826b1cdb99bf06cbcf7f15f3
|
|
train_42339
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
failure_analysis
|
advanced
|
Task: failure_analysis
Topic: Latency, cost, and reliability optimization
Difficulty: advanced
Target language: Bash
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"documentation",
"governance",
"security_gates",
"tooling"
],
"moe_experts": [
"evaluation_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
38d20241845ae96d5b33f4e67637915dcaa97079
|
|
train_42340
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
compare
|
advanced
|
Task: compare
Topic: Tool calling, sandboxes, and CI integration
Difficulty: advanced
Target language: Rust
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"reproducibility",
"tooling",
"governance",
"ci_integration"
],
"moe_experts": [
"evaluation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1f914b6966c8707f3de1c85d2ed1d67300f72b07
|
|
train_42341
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Tool calling, sandboxes, and CI integration
Difficulty: intermediate
Target language: TypeScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"governance",
"evaluation_metrics",
"cost_latency_tradeoffs",
"security_gates"
],
"moe_experts": [
"coding_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
80509a0fee1913b055471ba6485ff881e595e739
|
|
train_42342
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
compare
|
expert
|
Task: compare
Topic: Governance, provenance, and licensing for code data
Difficulty: expert
Target language: SQL
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"documentation",
"governance",
"ci_integration",
"security_gates"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
956e8b4b27e4b2f148ff1aaba14d1ce204b05865
|
|
train_42343
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
eval
|
expert
|
Task: eval
Topic: Mixture-of-Experts (MoE) for code
Difficulty: expert
Target language: TypeScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"tests_are_truth",
"governance",
"ci_integration",
"evaluation_metrics"
],
"moe_experts": [
"performance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b095922fbf5166761c30e1ff9c54ff72fbd33e71
|
|
train_42344
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
code
|
intermediate
|
Task: code
Topic: Latency, cost, and reliability optimization
Difficulty: intermediate
Target language: Rust
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"evaluation_metrics",
"tests_are_truth",
"governance",
"repo_scale_reasoning"
],
"moe_experts": [
"agentic_systems_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
2ceee9cf8dc2230f08a93b2142324d5065accc2b
|
|
train_42345
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
explain
|
intermediate
|
Task: explain
Topic: Tool calling, sandboxes, and CI integration
Difficulty: intermediate
Target language: TypeScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"evaluation_metrics",
"tests_are_truth",
"cost_latency_tradeoffs",
"documentation"
],
"moe_experts": [
"security_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
9e587a47e73b001f05ce29bded2cf1b210f4d1b6
|
|
train_42346
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
eval
|
expert
|
Task: eval
Topic: SWE-bench style real-repo evaluation
Difficulty: expert
Target language: Bash
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"tooling",
"auditability",
"security_gates",
"documentation"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d0faca18872110944b64f4b8034d36f4d31642d1
|
|
train_42347
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
code
|
intermediate
|
Task: code
Topic: Tool calling, sandboxes, and CI integration
Difficulty: intermediate
Target language: TypeScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"tooling",
"auditability",
"ci_integration",
"cost_latency_tradeoffs"
],
"moe_experts": [
"agentic_systems_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
aab25c26ad9f6b8e2f9b7b56c460fffc5c584d4e
|
|
train_42348
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
design
|
intermediate
|
Task: design
Topic: Mixture-of-Experts (MoE) for code
Difficulty: intermediate
Target language: TypeScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"cost_latency_tradeoffs",
"governance",
"auditability",
"ci_integration"
],
"moe_experts": [
"coding_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c6fff7e70a55299b7c7ddacc04a1d646eb8038ce
|
|
train_42349
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
explain
|
intermediate
|
Task: explain
Topic: Mixture-of-Experts (MoE) for code
Difficulty: intermediate
Target language: Rust
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"tests_are_truth",
"security_gates",
"evaluation_metrics",
"governance"
],
"moe_experts": [
"coding_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
34c25e5e463d9ba480c71c48a561179c8a13df8c
|
|
train_42350
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
eval
|
intermediate
|
Task: eval
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: intermediate
Target language: Bash
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"auditability",
"security_gates",
"tooling",
"cost_latency_tradeoffs"
],
"moe_experts": [
"performance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
089c152d02c946e67c49f17a19c4f502f5d0523d
|
|
train_42351
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
eval
|
intermediate
|
Task: eval
Topic: Tool calling, sandboxes, and CI integration
Difficulty: intermediate
Target language: C#
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "C#",
"developer_needs": [
"tooling",
"reproducibility",
"evaluation_metrics",
"security_gates"
],
"moe_experts": [
"performance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
be063aec92b2195379ff27910c5a5ec3e950f335
|
|
train_42352
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
patch_diff
|
advanced
|
Task: patch_diff
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: advanced
Target language: Java
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "Java",
"developer_needs": [
"tooling",
"cost_latency_tradeoffs",
"evaluation_metrics",
"tests_are_truth"
],
"moe_experts": [
"security_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d94e9d06d1e322d01c640377f2c6b0b7b84dcfb9
|
|
train_42353
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
code
|
expert
|
Task: code
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: expert
Target language: Go
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Go",
"developer_needs": [
"repo_scale_reasoning",
"governance",
"ci_integration",
"cost_latency_tradeoffs"
],
"moe_experts": [
"security_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
2ab836d846eb99d6909fade875af7911f43c0f85
|
|
train_42354
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Model merging, distillation, and continued pretraining
Difficulty: intermediate
Target language: Go
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "Go",
"developer_needs": [
"evaluation_metrics",
"tooling",
"governance",
"reproducibility"
],
"moe_experts": [
"performance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
4cbfee780d03e5602e3a9410ded5da4806ecf88b
|
|
train_42355
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: intermediate
Target language: TypeScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"cost_latency_tradeoffs",
"security_gates",
"repo_scale_reasoning",
"reproducibility"
],
"moe_experts": [
"agentic_systems_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
61fce0b2cabf47c28c49ff20bcfb05e9e1947c1f
|
|
train_42356
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: intermediate
Target language: Python
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"tests_are_truth",
"evaluation_metrics",
"reproducibility",
"auditability"
],
"moe_experts": [
"agentic_systems_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
325a36381ff3c1e098324e0842501abad4fd8bb2
|
|
train_42357
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
review
|
advanced
|
Task: review
Topic: Governance, provenance, and licensing for code data
Difficulty: advanced
Target language: JavaScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"evaluation_metrics",
"tests_are_truth",
"security_gates",
"governance"
],
"moe_experts": [
"data_curation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
75b728fb9eb9418cb096420b11dca5feed9b0d1a
|
|
train_42358
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
review
|
intermediate
|
Task: review
Topic: Mixture-of-Experts (MoE) for code
Difficulty: intermediate
Target language: Rust
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"documentation",
"ci_integration",
"cost_latency_tradeoffs",
"tooling"
],
"moe_experts": [
"data_curation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1dc6d774140d77e450406da63649ad269bdcf090
|
|
train_42359
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
review
|
intermediate
|
Task: review
Topic: Extended context and repo-scale understanding
Difficulty: intermediate
Target language: C#
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"tooling",
"governance",
"cost_latency_tradeoffs",
"evaluation_metrics"
],
"moe_experts": [
"data_curation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
7cc87ae79683495170804956536e7c5b2752ade5
|
|
train_42360
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Tool calling, sandboxes, and CI integration
Difficulty: intermediate
Target language: SQL
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"cost_latency_tradeoffs",
"tests_are_truth",
"ci_integration",
"auditability"
],
"moe_experts": [
"data_curation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ea53333a2fa92842a6266982b7d57ecd26d913ba
|
|
train_42361
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
patch_diff
|
expert
|
Task: patch_diff
Topic: Secure code generation and policy gates
Difficulty: expert
Target language: JavaScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"repo_scale_reasoning",
"reproducibility",
"governance",
"documentation"
],
"moe_experts": [
"evaluation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
5a4d8531fc9ce51cbb7cc61f8f3b20098d1844e9
|
|
train_42362
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
code
|
intermediate
|
Task: code
Topic: Latency, cost, and reliability optimization
Difficulty: intermediate
Target language: Python
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Scaffold:
```python
def agent_loop(plan, edit, test, issue, max_iters=4):
history = []
p = plan(issue)
for _ in range(max_iters):
patch = edit(issue, p)
ok, report = test(patch)
history.append({"plan": p, "ok": ok})
if ok:
return patch, history
p = p + " | refine"
return patch, history
```
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"evaluation_metrics",
"auditability",
"repo_scale_reasoning",
"ci_integration"
],
"moe_experts": [
"agentic_systems_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
effe54370f24e8a826d6834ecae516ff9488ca80
|
|
train_42363
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Mixture-of-Experts (MoE) for code
Difficulty: intermediate
Target language: JavaScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"evaluation_metrics",
"reproducibility",
"documentation",
"ci_integration"
],
"moe_experts": [
"evaluation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
0d12d6fd6d204a1bb98ac1a89e6e8669edc6b33c
|
|
train_42364
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
compare
|
expert
|
Task: compare
Topic: Tool calling, sandboxes, and CI integration
Difficulty: expert
Target language: TypeScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"reproducibility",
"tooling",
"auditability",
"governance"
],
"moe_experts": [
"governance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b0fa2aba56899e7b3fca9b08fb527e9fdd75594d
|
|
train_42365
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Extended context and repo-scale understanding
Difficulty: expert
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Python",
"developer_needs": [
"tooling",
"cost_latency_tradeoffs",
"auditability",
"repo_scale_reasoning"
],
"moe_experts": [
"security_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
9a549ae98c42843884ce6717af286aef848e4d11
|
|
train_42366
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
design
|
advanced
|
Task: design
Topic: Governance, provenance, and licensing for code data
Difficulty: advanced
Target language: TypeScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"evaluation_metrics",
"security_gates",
"tests_are_truth",
"governance"
],
"moe_experts": [
"coding_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
8d382fdfcc3b084546be8ec49a912524b21edc6b
|
|
train_42367
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: intermediate
Target language: Go
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"auditability",
"cost_latency_tradeoffs",
"security_gates",
"tests_are_truth"
],
"moe_experts": [
"data_curation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c00157a1bd597860754197e31366c3f8e4243c50
|
|
train_42368
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Extended context and repo-scale understanding
Difficulty: intermediate
Target language: TypeScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"documentation",
"repo_scale_reasoning",
"governance",
"reproducibility"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
8943c336f8efefaa9fe9ce4399428a943d99bd14
|
|
train_42369
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
design
|
intermediate
|
Task: design
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: intermediate
Target language: TypeScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"documentation",
"reproducibility",
"ci_integration",
"auditability"
],
"moe_experts": [
"data_curation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
18c76d50b6cb8da07f3551b054a381ce3cea8fbe
|
|
train_42370
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
patch_diff
|
advanced
|
Task: patch_diff
Topic: Self-improving agents and feedback loops
Difficulty: advanced
Target language: Go
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "Go",
"developer_needs": [
"tooling",
"cost_latency_tradeoffs",
"evaluation_metrics",
"reproducibility"
],
"moe_experts": [
"security_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
4a738be0b34d1bcfb8102888bf942ed480e8439a
|
|
train_42371
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
design
|
expert
|
Task: design
Topic: Governance, provenance, and licensing for code data
Difficulty: expert
Target language: JavaScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"reproducibility",
"ci_integration",
"auditability",
"governance"
],
"moe_experts": [
"agentic_systems_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
291ea89d0657822bdc52d2476fc1978c6059750f
|
|
train_42372
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Tool calling, sandboxes, and CI integration
Difficulty: intermediate
Target language: Bash
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"repo_scale_reasoning",
"evaluation_metrics",
"cost_latency_tradeoffs",
"ci_integration"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d3c55836b5e7d8ad6c524a7350b534d6caf67df4
|
|
train_42373
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
eval
|
advanced
|
Task: eval
Topic: Governance, provenance, and licensing for code data
Difficulty: advanced
Target language: Go
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "Go",
"developer_needs": [
"evaluation_metrics",
"ci_integration",
"governance",
"repo_scale_reasoning"
],
"moe_experts": [
"agentic_systems_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a7ea0415d92302841858ec39471a24920d245041
|
|
train_42374
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Extended context and repo-scale understanding
Difficulty: expert
Target language: Rust
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"governance",
"reproducibility",
"auditability",
"evaluation_metrics"
],
"moe_experts": [
"security_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
4a23756356691d1e738cf26e327ce76445227636
|
|
train_42375
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Secure code generation and policy gates
Difficulty: intermediate
Target language: JavaScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"tests_are_truth",
"reproducibility",
"tooling",
"governance"
],
"moe_experts": [
"coding_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
160f14673dd3353ede01c043efadc978c2f625fb
|
|
train_42376
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: advanced
Target language: Bash
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"tests_are_truth",
"ci_integration",
"auditability",
"governance"
],
"moe_experts": [
"coding_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
92a04c10c7a1c2f551b2d118c2ff858e20353af1
|
|
train_42377
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
patch_diff
|
advanced
|
Task: patch_diff
Topic: Latency, cost, and reliability optimization
Difficulty: advanced
Target language: Rust
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"evaluation_metrics",
"auditability",
"security_gates",
"repo_scale_reasoning"
],
"moe_experts": [
"security_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
10f5b24fe4e43d5823abf3f9d7dd1eaadbceffcb
|
|
train_42378
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
design
|
intermediate
|
Task: design
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: intermediate
Target language: TypeScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"ci_integration",
"governance",
"auditability",
"tooling"
],
"moe_experts": [
"evaluation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
90362bf42f24e9e14f11340e69d99f5f48b3e7a5
|
|
train_42379
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
review
|
intermediate
|
Task: review
Topic: Model merging, distillation, and continued pretraining
Difficulty: intermediate
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"cost_latency_tradeoffs",
"governance",
"ci_integration",
"repo_scale_reasoning"
],
"moe_experts": [
"agentic_systems_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
62f34e898772ae3d6b78f21edd3f0d7f0cee888a
|
|
train_42380
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
compare
|
intermediate
|
Task: compare
Topic: Self-improving agents and feedback loops
Difficulty: intermediate
Target language: SQL
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"governance",
"security_gates",
"tests_are_truth",
"ci_integration"
],
"moe_experts": [
"data_curation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
7d7e995764e375ec45d043e84b8ab3ebfaa11649
|
|
train_42381
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: advanced
Target language: Rust
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"ci_integration",
"reproducibility",
"documentation",
"cost_latency_tradeoffs"
],
"moe_experts": [
"data_curation_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
5798d5c5c3ae0b37846ac6df8bf5b987134626a0
|
|
train_42382
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: expert
Target language: Rust
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"ci_integration",
"evaluation_metrics",
"governance",
"cost_latency_tradeoffs"
],
"moe_experts": [
"evaluation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e54a5beb76970b3d40510463e4113336fd172b45
|
|
train_42383
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Latency, cost, and reliability optimization
Difficulty: advanced
Target language: TypeScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"tests_are_truth",
"evaluation_metrics",
"tooling",
"repo_scale_reasoning"
],
"moe_experts": [
"coding_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
82671206827793e1fd765d879f63e1eeb24a2dfc
|
|
train_42384
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
data_pipeline
|
advanced
|
Task: data_pipeline
Topic: Model merging, distillation, and continued pretraining
Difficulty: advanced
Target language: Rust
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"auditability",
"documentation",
"ci_integration",
"security_gates"
],
"moe_experts": [
"performance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
dec590b1fc2b290070e9dd16d45fd8998480f3f9
|
|
train_42385
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
design
|
intermediate
|
Task: design
Topic: Governance, provenance, and licensing for code data
Difficulty: intermediate
Target language: Rust
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"security_gates",
"cost_latency_tradeoffs",
"tooling",
"repo_scale_reasoning"
],
"moe_experts": [
"data_curation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
56b404699850c3af148c0cea2c90818d9f404220
|
|
train_42386
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
compare
|
expert
|
Task: compare
Topic: Model merging, distillation, and continued pretraining
Difficulty: expert
Target language: TypeScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"security_gates",
"reproducibility",
"auditability",
"tooling"
],
"moe_experts": [
"agentic_systems_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
94367700160f03c2022e5755dd63cb3c159f45af
|
|
train_42387
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: intermediate
Target language: Rust
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"evaluation_metrics",
"security_gates",
"auditability",
"tooling"
],
"moe_experts": [
"coding_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
196d9296e0c7efa9f40dac56bc0deb76bbd971eb
|
|
train_42388
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
code
|
expert
|
Task: code
Topic: Tool calling, sandboxes, and CI integration
Difficulty: expert
Target language: JavaScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"governance",
"evaluation_metrics",
"documentation",
"reproducibility"
],
"moe_experts": [
"data_curation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
af4aed4c64f2c1e32bc45061081d643dd87a8b26
|
|
train_42389
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
eval
|
expert
|
Task: eval
Topic: SWE-bench style real-repo evaluation
Difficulty: expert
Target language: Rust
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"tests_are_truth",
"tooling",
"evaluation_metrics",
"ci_integration"
],
"moe_experts": [
"data_curation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
aea24dec06e9bc8c861d65979e256bc7c28c2824
|
|
train_42390
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
eval
|
expert
|
Task: eval
Topic: Secure code generation and policy gates
Difficulty: expert
Target language: Bash
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"evaluation_metrics",
"cost_latency_tradeoffs",
"governance",
"ci_integration"
],
"moe_experts": [
"coding_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
37d88806045aca688c0cdbf064574db3aeed447e
|
|
train_42391
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
review
|
intermediate
|
Task: review
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: intermediate
Target language: Python
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"repo_scale_reasoning",
"evaluation_metrics",
"security_gates",
"cost_latency_tradeoffs"
],
"moe_experts": [
"coding_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
5eb8054f2f1a48daef177a5e2bdc1810924c5501
|
|
train_42392
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
data_pipeline
|
advanced
|
Task: data_pipeline
Topic: Latency, cost, and reliability optimization
Difficulty: advanced
Target language: Python
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Python",
"developer_needs": [
"repo_scale_reasoning",
"ci_integration",
"cost_latency_tradeoffs",
"auditability"
],
"moe_experts": [
"security_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b21ae0aeba9b17fde5cace055dea2b09179c2ddf
|
|
train_42393
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
compare
|
expert
|
Task: compare
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: expert
Target language: Rust
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"repo_scale_reasoning",
"cost_latency_tradeoffs",
"security_gates",
"reproducibility"
],
"moe_experts": [
"agentic_systems_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
8f09b499fa2456b41b7696a21d520caba0d1e363
|
|
train_42394
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Secure code generation and policy gates
Difficulty: expert
Target language: SQL
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"auditability",
"documentation",
"governance",
"security_gates"
],
"moe_experts": [
"evaluation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
726e1ccfb0a59e0722bebe2c03052150043fb12f
|
|
train_42395
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
compare
|
intermediate
|
Task: compare
Topic: Mixture-of-Experts (MoE) for code
Difficulty: intermediate
Target language: SQL
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"auditability",
"reproducibility",
"governance",
"repo_scale_reasoning"
],
"moe_experts": [
"security_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1b3bf32dd7de308b02d33916c00711fb2046644c
|
|
train_42396
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
failure_analysis
|
advanced
|
Task: failure_analysis
Topic: Latency, cost, and reliability optimization
Difficulty: advanced
Target language: Go
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Go",
"developer_needs": [
"governance",
"evaluation_metrics",
"ci_integration",
"auditability"
],
"moe_experts": [
"performance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f39df8ae7f593490ff6bab8e30fd1215f2e5d753
|
|
train_42397
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Secure code generation and policy gates
Difficulty: expert
Target language: Go
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Go",
"developer_needs": [
"auditability",
"reproducibility",
"documentation",
"tooling"
],
"moe_experts": [
"governance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b1cbbaa5de2f0cbcc00af8016c1cd63e98fb5804
|
|
train_42398
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
patch_diff
|
expert
|
Task: patch_diff
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: expert
Target language: Bash
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"security_gates",
"evaluation_metrics",
"repo_scale_reasoning",
"auditability"
],
"moe_experts": [
"performance_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
82165521e798a6c74ba1c6bba49acd35b5b95b2f
|
|
train_42399
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Latency, cost, and reliability optimization
Difficulty: intermediate
Target language: Go
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"documentation",
"security_gates",
"evaluation_metrics",
"auditability"
],
"moe_experts": [
"governance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
979894975c4616152dc814cca69a4df02ebb4c28
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.