id
stringlengths
11
11
created
timestamp[s]date
2026-01-01 00:00:00
2026-01-01 00:00:00
topic
stringclasses
14 values
task_type
stringclasses
10 values
difficulty
stringclasses
3 values
instruction
stringlengths
189
248
input
stringclasses
1 value
output
stringclasses
9 values
reasoning_steps
listlengths
0
5
metadata
dict
hash
stringlengths
40
40
train_42000
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
explain
advanced
Task: explain Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: Java Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "repo_scale_reasoning", "tests_are_truth", "evaluation_metrics", "cost_latency_tradeoffs" ], "moe_experts": [ "security_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
87a5263c3f1344c6a407aabe57d92c15c43a8f03
train_42001
2026-01-01T00:00:00
Latency, cost, and reliability optimization
agent_loop
intermediate
Task: agent_loop Topic: Latency, cost, and reliability optimization Difficulty: intermediate Target language: Python Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Python", "developer_needs": [ "governance", "cost_latency_tradeoffs", "evaluation_metrics", "repo_scale_reasoning" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
484f6eaa79e765e4a1f5aa9223744d1f80aaf3e0
train_42002
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
eval
advanced
Task: eval Topic: Model merging, distillation, and continued pretraining Difficulty: advanced Target language: C# Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "C#", "developer_needs": [ "ci_integration", "cost_latency_tradeoffs", "auditability", "reproducibility" ], "moe_experts": [ "evaluation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f214dad4a53352219b203e056a18c2d8f7942e11
train_42003
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
eval
intermediate
Task: eval Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: Go Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "cost_latency_tradeoffs", "evaluation_metrics", "reproducibility", "ci_integration" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
04401ca1cd0baa2f80afffb89fedb824d9fbd529
train_42004
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
patch_diff
intermediate
Task: patch_diff Topic: Reasoning-first coding models and tunable deliberation Difficulty: intermediate Target language: Rust Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "Rust", "developer_needs": [ "evaluation_metrics", "security_gates", "governance", "documentation" ], "moe_experts": [ "evaluation_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
74950df59114b75a8273ddf9b1686cf9e1316486
train_42005
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
code
advanced
Task: code Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: JavaScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "reproducibility", "auditability", "cost_latency_tradeoffs", "documentation" ], "moe_experts": [ "performance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
04e1850e2132a168069571c699f41bd9652058b4
train_42006
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
design
advanced
Task: design Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: Java Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Java", "developer_needs": [ "repo_scale_reasoning", "reproducibility", "tooling", "cost_latency_tradeoffs" ], "moe_experts": [ "evaluation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c98b86a994e1cd7cd8d456f2a936b080732b1c4e
train_42007
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
code
advanced
Task: code Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: JavaScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "auditability", "repo_scale_reasoning", "reproducibility", "tests_are_truth" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
05c64e7683bdf194de1755f987c8ce54d62f345c
train_42008
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
eval
intermediate
Task: eval Topic: Governance, provenance, and licensing for code data Difficulty: intermediate Target language: Bash Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Bash", "developer_needs": [ "security_gates", "evaluation_metrics", "governance", "auditability" ], "moe_experts": [ "governance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
eae855e82252b0268fedf0b80b0a4f3e70dae5f2
train_42009
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
code
advanced
Task: code Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: C# Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "C#", "developer_needs": [ "tests_are_truth", "governance", "evaluation_metrics", "tooling" ], "moe_experts": [ "governance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
befd1a16a0696ec1e2c2957d27c568278b754a0d
train_42010
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
compare
expert
Task: compare Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: C# Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "C#", "developer_needs": [ "tests_are_truth", "auditability", "reproducibility", "governance" ], "moe_experts": [ "security_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
58e60cc0defff9832fe277b7242ff0ccb6728aed
train_42011
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
patch_diff
expert
Task: patch_diff Topic: Reasoning-first coding models and tunable deliberation Difficulty: expert Target language: JavaScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "JavaScript", "developer_needs": [ "tests_are_truth", "ci_integration", "tooling", "documentation" ], "moe_experts": [ "security_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ecd25a74d3e318ff3cdd2312a64d8d123c93fed8
train_42012
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
explain
intermediate
Task: explain Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "documentation", "governance", "ci_integration", "evaluation_metrics" ], "moe_experts": [ "governance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2675ef3bda42d345643a9a797597405cc41ad440
train_42013
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
data_pipeline
advanced
Task: data_pipeline Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: Go Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Go", "developer_needs": [ "security_gates", "reproducibility", "repo_scale_reasoning", "evaluation_metrics" ], "moe_experts": [ "security_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9faf4e3d7876d89b5a829cf5ba31e14e6d88a46b
train_42014
2026-01-01T00:00:00
Extended context and repo-scale understanding
code
intermediate
Task: code Topic: Extended context and repo-scale understanding Difficulty: intermediate Target language: JavaScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "tooling", "governance", "cost_latency_tradeoffs", "ci_integration" ], "moe_experts": [ "evaluation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b03a42f233c2815a065acdb74649cb1b26000954
train_42015
2026-01-01T00:00:00
Self-improving agents and feedback loops
compare
advanced
Task: compare Topic: Self-improving agents and feedback loops Difficulty: advanced Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "documentation", "tooling", "reproducibility", "evaluation_metrics" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7f9583abec7a9b05f63041b628fd4341ff5d940f
train_42016
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
failure_analysis
intermediate
Task: failure_analysis Topic: Reasoning-first coding models and tunable deliberation Difficulty: intermediate Target language: Go Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Go", "developer_needs": [ "documentation", "tooling", "auditability", "repo_scale_reasoning" ], "moe_experts": [ "security_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
09d65e331e02f647b74923a927893382fe191844
train_42017
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
design
advanced
Task: design Topic: Tool calling, sandboxes, and CI integration Difficulty: advanced Target language: Go Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "cost_latency_tradeoffs", "repo_scale_reasoning", "tooling", "security_gates" ], "moe_experts": [ "data_curation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6202d627269b367468269a7b716e38f62e27fdf3
train_42018
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
review
advanced
Task: review Topic: Model merging, distillation, and continued pretraining Difficulty: advanced Target language: Go Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Go", "developer_needs": [ "tooling", "security_gates", "documentation", "reproducibility" ], "moe_experts": [ "evaluation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ec2b7632c5af7653ce0f946a2994e920a78fc038
train_42019
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
data_pipeline
intermediate
Task: data_pipeline Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: TypeScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "TypeScript", "developer_needs": [ "cost_latency_tradeoffs", "security_gates", "evaluation_metrics", "repo_scale_reasoning" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c4a13ab09a9df5f45bf5289e58abdede4e5109ce
train_42020
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
failure_analysis
expert
Task: failure_analysis Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: Go Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Go", "developer_needs": [ "documentation", "security_gates", "cost_latency_tradeoffs", "reproducibility" ], "moe_experts": [ "security_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8d1fb465d0fd1e692a7b53979f3df16b088f131f
train_42021
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
patch_diff
advanced
Task: patch_diff Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "TypeScript", "developer_needs": [ "evaluation_metrics", "auditability", "documentation", "repo_scale_reasoning" ], "moe_experts": [ "security_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1062ca2959dd0e793a24fd4eb8a43f392496262f
train_42022
2026-01-01T00:00:00
Latency, cost, and reliability optimization
compare
expert
Task: compare Topic: Latency, cost, and reliability optimization Difficulty: expert Target language: C# Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "C#", "developer_needs": [ "documentation", "auditability", "security_gates", "tests_are_truth" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
23a6549553e3d1fb8c483fc3ac801cb33797f4fa
train_42023
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
patch_diff
intermediate
Task: patch_diff Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: TypeScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "TypeScript", "developer_needs": [ "governance", "auditability", "documentation", "cost_latency_tradeoffs" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
bb2ff79bf0d5c2b1a0d2db702d8fde183fdae6ed
train_42024
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
code
intermediate
Task: code Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: JavaScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "repo_scale_reasoning", "cost_latency_tradeoffs", "evaluation_metrics", "tests_are_truth" ], "moe_experts": [ "evaluation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
62552cf96d8876928cdd022192f217836da40ea9
train_42025
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
data_pipeline
advanced
Task: data_pipeline Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: TypeScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "tooling", "tests_are_truth", "evaluation_metrics", "reproducibility" ], "moe_experts": [ "data_curation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3ede9b8d2f505f57a28bfb719b9a5baaa70b1c96
train_42026
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
eval
advanced
Task: eval Topic: Model merging, distillation, and continued pretraining Difficulty: advanced Target language: Go Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Go", "developer_needs": [ "tests_are_truth", "tooling", "ci_integration", "reproducibility" ], "moe_experts": [ "performance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
25c3c312d04b5b3c5f9777dcc8da6522020e26cd
train_42027
2026-01-01T00:00:00
Secure code generation and policy gates
failure_analysis
expert
Task: failure_analysis Topic: Secure code generation and policy gates Difficulty: expert Target language: C# Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "cost_latency_tradeoffs", "auditability", "tests_are_truth", "repo_scale_reasoning" ], "moe_experts": [ "governance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
47205dcd54583344d1401cea39ad019c6367a5a1
train_42028
2026-01-01T00:00:00
Self-improving agents and feedback loops
code
expert
Task: code Topic: Self-improving agents and feedback loops Difficulty: expert Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "SQL", "developer_needs": [ "tests_are_truth", "documentation", "cost_latency_tradeoffs", "auditability" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
16ed11c2e575d4920e9ad4011dc04b2afe44817d
train_42029
2026-01-01T00:00:00
Self-improving agents and feedback loops
eval
expert
Task: eval Topic: Self-improving agents and feedback loops Difficulty: expert Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Rust", "developer_needs": [ "tests_are_truth", "reproducibility", "repo_scale_reasoning", "auditability" ], "moe_experts": [ "coding_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a53150fc9fea421c3bef73e76f9adf88d5944ca1
train_42030
2026-01-01T00:00:00
Secure code generation and policy gates
failure_analysis
intermediate
Task: failure_analysis Topic: Secure code generation and policy gates Difficulty: intermediate Target language: C# Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "C#", "developer_needs": [ "tooling", "security_gates", "cost_latency_tradeoffs", "ci_integration" ], "moe_experts": [ "security_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c996019e77cb745c67be7bac2c4ee00f805cfef3
train_42031
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
patch_diff
advanced
Task: patch_diff Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: TypeScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "TypeScript", "developer_needs": [ "reproducibility", "security_gates", "cost_latency_tradeoffs", "documentation" ], "moe_experts": [ "performance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
52c3764075dc36eadd3397ce75c130bad4953019
train_42032
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
explain
expert
Task: explain Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: Bash Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Bash", "developer_needs": [ "evaluation_metrics", "auditability", "documentation", "cost_latency_tradeoffs" ], "moe_experts": [ "evaluation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a9635e598182370cc87840065a4a289773177e48
train_42033
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
design
advanced
Task: design Topic: Governance, provenance, and licensing for code data Difficulty: advanced Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "auditability", "repo_scale_reasoning", "security_gates", "documentation" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
03a7170135032cff36624eeb21981cd1cafc1a7b
train_42034
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
failure_analysis
advanced
Task: failure_analysis Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: Java Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "repo_scale_reasoning", "governance", "reproducibility", "tests_are_truth" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
831307fe7338affff352a194811d29ac9183a032
train_42035
2026-01-01T00:00:00
Extended context and repo-scale understanding
compare
intermediate
Task: compare Topic: Extended context and repo-scale understanding Difficulty: intermediate Target language: Bash Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Bash", "developer_needs": [ "governance", "evaluation_metrics", "tests_are_truth", "auditability" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4a5121faa79310d7b5a58cc758560e493f547227
train_42036
2026-01-01T00:00:00
Secure code generation and policy gates
design
advanced
Task: design Topic: Secure code generation and policy gates Difficulty: advanced Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "TypeScript", "developer_needs": [ "evaluation_metrics", "tooling", "auditability", "governance" ], "moe_experts": [ "performance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
12cc973fae66cbe81dad7a58394e5130673b924f
train_42037
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
eval
expert
Task: eval Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: SQL Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "SQL", "developer_needs": [ "tooling", "documentation", "security_gates", "governance" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a3661cdbc54b7cb017aa0a2812baa0e2f83f1f0f
train_42038
2026-01-01T00:00:00
Latency, cost, and reliability optimization
agent_loop
advanced
Task: agent_loop Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "auditability", "repo_scale_reasoning", "security_gates", "cost_latency_tradeoffs" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4d93c9a556a8809c750426d97d9c05c49730a209
train_42039
2026-01-01T00:00:00
Self-improving agents and feedback loops
design
intermediate
Task: design Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "tooling", "repo_scale_reasoning", "evaluation_metrics", "ci_integration" ], "moe_experts": [ "agentic_systems_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4ee4152892bdf7db648d2e40a249bd884fb10fbc
train_42040
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
eval
expert
Task: eval Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: Python Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "auditability", "ci_integration", "security_gates", "reproducibility" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
06356be88032a7c0cbcd1033438c4efec54b82bf
train_42041
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
failure_analysis
advanced
Task: failure_analysis Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: C# Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "reproducibility", "security_gates", "governance", "tests_are_truth" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2d8229aaa23d817f5a7feccb1c4c83f36b2c64ac
train_42042
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
compare
intermediate
Task: compare Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "TypeScript", "developer_needs": [ "evaluation_metrics", "security_gates", "repo_scale_reasoning", "governance" ], "moe_experts": [ "security_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
cf0991058eef10b482cae76b7ebca2bddeb7d69c
train_42043
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
explain
expert
Task: explain Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "reproducibility", "cost_latency_tradeoffs", "security_gates", "repo_scale_reasoning" ], "moe_experts": [ "data_curation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8fb131c42fff326761891678cc632aa24a7aa5d7
train_42044
2026-01-01T00:00:00
Latency, cost, and reliability optimization
review
advanced
Task: review Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: JavaScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "JavaScript", "developer_needs": [ "reproducibility", "evaluation_metrics", "tooling", "ci_integration" ], "moe_experts": [ "data_curation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ecafb6cd0f25506751884792e634b5fe977aabd6
train_42045
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
eval
expert
Task: eval Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "C#", "developer_needs": [ "repo_scale_reasoning", "ci_integration", "tooling", "evaluation_metrics" ], "moe_experts": [ "coding_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2a2588269447f20bb487a800c808e5f184bdf4a5
train_42046
2026-01-01T00:00:00
Extended context and repo-scale understanding
compare
expert
Task: compare Topic: Extended context and repo-scale understanding Difficulty: expert Target language: JavaScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "JavaScript", "developer_needs": [ "security_gates", "ci_integration", "evaluation_metrics", "governance" ], "moe_experts": [ "evaluation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c6dd67450c48ee6179a3d02ec3b2d1a6964b2862
train_42047
2026-01-01T00:00:00
Extended context and repo-scale understanding
compare
advanced
Task: compare Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: TypeScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "security_gates", "governance", "auditability", "reproducibility" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a20ecf5c3698f3ff6e763cc71ab391f5a03990e5
train_42048
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
compare
advanced
Task: compare Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "auditability", "ci_integration", "cost_latency_tradeoffs", "reproducibility" ], "moe_experts": [ "evaluation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3ce23e54c276bc7aec49fe40f4ae61bc298c9d7f
train_42049
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
code
intermediate
Task: code Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: JavaScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "auditability", "repo_scale_reasoning", "tooling", "reproducibility" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
059b9cb867b8caaea0594431ab041c70a091171f
train_42050
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
eval
expert
Task: eval Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: expert Target language: Java Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Java", "developer_needs": [ "tooling", "documentation", "ci_integration", "security_gates" ], "moe_experts": [ "security_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2a7d117f046270288f416902d4cb333f0f7fe9ea
train_42051
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
compare
intermediate
Task: compare Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: C# Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "C#", "developer_needs": [ "auditability", "reproducibility", "governance", "security_gates" ], "moe_experts": [ "security_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
926ecebd817202758ab453bc860de3b2d31bf007
train_42052
2026-01-01T00:00:00
Secure code generation and policy gates
design
expert
Task: design Topic: Secure code generation and policy gates Difficulty: expert Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "cost_latency_tradeoffs", "governance", "security_gates", "repo_scale_reasoning" ], "moe_experts": [ "data_curation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b5935622e0f812762e75a52b4d273f52e862938a
train_42053
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
compare
expert
Task: compare Topic: Reasoning-first coding models and tunable deliberation Difficulty: expert Target language: C# Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "C#", "developer_needs": [ "repo_scale_reasoning", "security_gates", "documentation", "evaluation_metrics" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b5b4ede8b08424002a7aad29eaf31295d9cbb16b
train_42054
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
code
intermediate
Task: code Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "tooling", "auditability", "evaluation_metrics", "security_gates" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
482e1c978a898ecad89b70adfe5a74b1028979fd
train_42055
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
eval
intermediate
Task: eval Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: JavaScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "JavaScript", "developer_needs": [ "security_gates", "governance", "evaluation_metrics", "repo_scale_reasoning" ], "moe_experts": [ "agentic_systems_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
10bd1554a514ea7b876b18bb892858f57f313e30
train_42056
2026-01-01T00:00:00
Latency, cost, and reliability optimization
compare
intermediate
Task: compare Topic: Latency, cost, and reliability optimization Difficulty: intermediate Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "cost_latency_tradeoffs", "tests_are_truth", "evaluation_metrics", "documentation" ], "moe_experts": [ "evaluation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
65e9e75812d0d84f2130f3668e1a6e2607330951
train_42057
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
explain
advanced
Task: explain Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: Rust Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "ci_integration", "reproducibility", "governance", "cost_latency_tradeoffs" ], "moe_experts": [ "evaluation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f1c6b3fd8ea4b966673e13a5f9dbf45dd8f8f36b
train_42058
2026-01-01T00:00:00
Self-improving agents and feedback loops
agent_loop
expert
Task: agent_loop Topic: Self-improving agents and feedback loops Difficulty: expert Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "tooling", "auditability", "repo_scale_reasoning", "reproducibility" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a19f27e125522fad1fbbc9a648aa169c11da0a44
train_42059
2026-01-01T00:00:00
Self-improving agents and feedback loops
code
advanced
Task: code Topic: Self-improving agents and feedback loops Difficulty: advanced Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Scaffold: ```python def agent_loop(plan, edit, test, issue, max_iters=4): history = [] p = plan(issue) for _ in range(max_iters): patch = edit(issue, p) ok, report = test(patch) history.append({"plan": p, "ok": ok}) if ok: return patch, history p = p + " | refine" return patch, history ```
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "security_gates", "auditability", "evaluation_metrics", "documentation" ], "moe_experts": [ "governance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
84aa9b68e3b9f00f17645fbeb3f0a46594264ada
train_42060
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
explain
expert
Task: explain Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: JavaScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "reproducibility", "tests_are_truth", "governance", "tooling" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
13d5be8ec803db1d5580f03c87de45dd50666949
train_42061
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
review
advanced
Task: review Topic: Governance, provenance, and licensing for code data Difficulty: advanced Target language: JavaScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "JavaScript", "developer_needs": [ "ci_integration", "security_gates", "governance", "repo_scale_reasoning" ], "moe_experts": [ "security_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
399dfa3a2a71292c6ce9ba7be3954762ccd46563
train_42062
2026-01-01T00:00:00
Extended context and repo-scale understanding
eval
intermediate
Task: eval Topic: Extended context and repo-scale understanding Difficulty: intermediate Target language: C# Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "reproducibility", "repo_scale_reasoning", "auditability", "cost_latency_tradeoffs" ], "moe_experts": [ "agentic_systems_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f50accf8b7edc0fd9e507b605ee048bcb3554750
train_42063
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
design
intermediate
Task: design Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: Python Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Python", "developer_needs": [ "evaluation_metrics", "governance", "ci_integration", "tooling" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
02c1ffebfff5c97b1efb71334dad4cb2d5b4d865
train_42064
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
failure_analysis
expert
Task: failure_analysis Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "auditability", "tooling", "reproducibility", "repo_scale_reasoning" ], "moe_experts": [ "security_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ca7011b050cb9f87521f050b3cbf6134c79eb1a3
train_42065
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
failure_analysis
advanced
Task: failure_analysis Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: Rust Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "tests_are_truth", "repo_scale_reasoning", "cost_latency_tradeoffs", "ci_integration" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
70afb55cd8c5d6f984f1e84907c151918c391adb
train_42066
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
agent_loop
intermediate
Task: agent_loop Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: Bash Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Bash", "developer_needs": [ "tooling", "auditability", "security_gates", "tests_are_truth" ], "moe_experts": [ "evaluation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
976d21d3ee75ce7f17c61255223052609f0c4326
train_42067
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
code
intermediate
Task: code Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "auditability", "tooling", "security_gates", "ci_integration" ], "moe_experts": [ "agentic_systems_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2a265d862bb6f00b5e8e0d5208c6087785b0e12f
train_42068
2026-01-01T00:00:00
Secure code generation and policy gates
eval
expert
Task: eval Topic: Secure code generation and policy gates Difficulty: expert Target language: Bash Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Bash", "developer_needs": [ "evaluation_metrics", "documentation", "tooling", "repo_scale_reasoning" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7205a92af873f680a139db18721dbccef1c1bec4
train_42069
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
eval
intermediate
Task: eval Topic: Reasoning-first coding models and tunable deliberation Difficulty: intermediate Target language: Python Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Python", "developer_needs": [ "cost_latency_tradeoffs", "reproducibility", "documentation", "evaluation_metrics" ], "moe_experts": [ "performance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1f4c2ce6f327a8aae1e111a83fca47c5f1cad05f
train_42070
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
compare
advanced
Task: compare Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "security_gates", "repo_scale_reasoning", "auditability", "tests_are_truth" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9f3a73c0e88f5e1b027684e3c5efabc39deecc6c
train_42071
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
data_pipeline
expert
Task: data_pipeline Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: Bash Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Bash", "developer_needs": [ "evaluation_metrics", "governance", "ci_integration", "reproducibility" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b7561eb37ab066de9c543d9f2df9d8b6690d2128
train_42072
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
review
intermediate
Task: review Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "TypeScript", "developer_needs": [ "documentation", "tooling", "governance", "repo_scale_reasoning" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
31d961f4d27ccfed4a2b193f59f2747d1dbe8216
train_42073
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
patch_diff
advanced
Task: patch_diff Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: Bash Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "documentation", "tooling", "evaluation_metrics", "tests_are_truth" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2faef4557781a5c3236709ee6f8a94352f04a0e3
train_42074
2026-01-01T00:00:00
Secure code generation and policy gates
patch_diff
expert
Task: patch_diff Topic: Secure code generation and policy gates Difficulty: expert Target language: Rust Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "reproducibility", "cost_latency_tradeoffs", "documentation", "security_gates" ], "moe_experts": [ "evaluation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6268cc4f1d8cae312b2534aeb426b5dd24bc434e
train_42075
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
review
intermediate
Task: review Topic: Reasoning-first coding models and tunable deliberation Difficulty: intermediate Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "SQL", "developer_needs": [ "tooling", "evaluation_metrics", "reproducibility", "auditability" ], "moe_experts": [ "evaluation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b294b0280e020eea1b90b743814cb1311508a308
train_42076
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
data_pipeline
intermediate
Task: data_pipeline Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: Bash Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Bash", "developer_needs": [ "security_gates", "tests_are_truth", "repo_scale_reasoning", "reproducibility" ], "moe_experts": [ "performance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
dff4180bbf372f40ca4376fff7143fd9e585d38f
train_42077
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
design
advanced
Task: design Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: Python Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Python", "developer_needs": [ "documentation", "reproducibility", "cost_latency_tradeoffs", "evaluation_metrics" ], "moe_experts": [ "security_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e637184ac32bcf5f6f26f6471851f5e6e68191cb
train_42078
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
patch_diff
expert
Task: patch_diff Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "governance", "cost_latency_tradeoffs", "tooling", "evaluation_metrics" ], "moe_experts": [ "agentic_systems_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2304dea39fc90a2d1f1019e48d3501fae3657a16
train_42079
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
compare
advanced
Task: compare Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: Rust Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Rust", "developer_needs": [ "documentation", "security_gates", "repo_scale_reasoning", "tooling" ], "moe_experts": [ "security_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
40309b458e48fd8fccdf045fca3daffae7e2adca
train_42080
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
eval
advanced
Task: eval Topic: Tool calling, sandboxes, and CI integration Difficulty: advanced Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "repo_scale_reasoning", "reproducibility", "auditability", "evaluation_metrics" ], "moe_experts": [ "performance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
dc5b2418575706898dd84aa1a8a55cbf71e47e60
train_42081
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
eval
expert
Task: eval Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: Rust Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Rust", "developer_needs": [ "repo_scale_reasoning", "ci_integration", "documentation", "auditability" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
26e17f2142b2851934bfe0522a5860b12c6843ed
train_42082
2026-01-01T00:00:00
Secure code generation and policy gates
eval
intermediate
Task: eval Topic: Secure code generation and policy gates Difficulty: intermediate Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "reproducibility", "governance", "tests_are_truth", "cost_latency_tradeoffs" ], "moe_experts": [ "security_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3ff3cc96192a9cce66d5ace1103405eb2d8f9c9c
train_42083
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
eval
advanced
Task: eval Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: Java Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "governance", "reproducibility", "auditability", "evaluation_metrics" ], "moe_experts": [ "security_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
67ab2bddf4cc7f0103de16c5242c089505113c5e
train_42084
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
review
advanced
Task: review Topic: Model merging, distillation, and continued pretraining Difficulty: advanced Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Java", "developer_needs": [ "reproducibility", "repo_scale_reasoning", "documentation", "ci_integration" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3cd5b0999f27497962e5e4d23d9682a1e2f84583
train_42085
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
design
intermediate
Task: design Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Python", "developer_needs": [ "reproducibility", "security_gates", "ci_integration", "cost_latency_tradeoffs" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4571f25fefa3e4567e33f99471f07e952732b211
train_42086
2026-01-01T00:00:00
Latency, cost, and reliability optimization
design
advanced
Task: design Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "ci_integration", "auditability", "reproducibility", "tests_are_truth" ], "moe_experts": [ "security_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c29788ad2991b97036f02cde2902e86ea17c096a
train_42087
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
agent_loop
expert
Task: agent_loop Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "SQL", "developer_needs": [ "evaluation_metrics", "tests_are_truth", "auditability", "repo_scale_reasoning" ], "moe_experts": [ "evaluation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7158c0bd4df402b8c8a1b99c5b215f6db20690ff
train_42088
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
data_pipeline
expert
Task: data_pipeline Topic: Reasoning-first coding models and tunable deliberation Difficulty: expert Target language: Java Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Java", "developer_needs": [ "tooling", "governance", "ci_integration", "tests_are_truth" ], "moe_experts": [ "evaluation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
49cfe255142361260891ad0fd9e20dbdec822768
train_42089
2026-01-01T00:00:00
Latency, cost, and reliability optimization
review
intermediate
Task: review Topic: Latency, cost, and reliability optimization Difficulty: intermediate Target language: C# Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "evaluation_metrics", "repo_scale_reasoning", "reproducibility", "cost_latency_tradeoffs" ], "moe_experts": [ "security_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0f2bfb67f1ab8af5fb0de81d22decae5c5cea141
train_42090
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
agent_loop
advanced
Task: agent_loop Topic: Model merging, distillation, and continued pretraining Difficulty: advanced Target language: Go Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Go", "developer_needs": [ "repo_scale_reasoning", "reproducibility", "security_gates", "documentation" ], "moe_experts": [ "security_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ff64a2e1e6a1d66315344ba6daceab31267986bc
train_42091
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
code
advanced
Task: code Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "SQL", "developer_needs": [ "governance", "documentation", "ci_integration", "tests_are_truth" ], "moe_experts": [ "performance_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f6ccc2c4b5b45d517cf121f7ef9be559d67f5be0
train_42092
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
explain
intermediate
Task: explain Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: Bash Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Bash", "developer_needs": [ "cost_latency_tradeoffs", "evaluation_metrics", "tests_are_truth", "ci_integration" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1a8ac2e5a0070e4bf48745edfc9a7ab1b57257de
train_42093
2026-01-01T00:00:00
Latency, cost, and reliability optimization
agent_loop
advanced
Task: agent_loop Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: Java Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "reproducibility", "repo_scale_reasoning", "governance", "tooling" ], "moe_experts": [ "security_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
291c17dc59fd3e9478556fc873527f0e9e09bd76
train_42094
2026-01-01T00:00:00
Secure code generation and policy gates
failure_analysis
intermediate
Task: failure_analysis Topic: Secure code generation and policy gates Difficulty: intermediate Target language: Python Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Python", "developer_needs": [ "auditability", "reproducibility", "tests_are_truth", "repo_scale_reasoning" ], "moe_experts": [ "evaluation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ec59e3840ced6b083b9fd24103d962f3dc6ed617
train_42095
2026-01-01T00:00:00
Secure code generation and policy gates
review
intermediate
Task: review Topic: Secure code generation and policy gates Difficulty: intermediate Target language: Rust Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "cost_latency_tradeoffs", "ci_integration", "reproducibility", "governance" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4f190cd0d9c1359f868e81f1a928c807c1783fbe
train_42096
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
code
intermediate
Task: code Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: JavaScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "tooling", "reproducibility", "security_gates", "governance" ], "moe_experts": [ "performance_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
bfd4e56c9ef653951a9d7c28eb003e931e38b813
train_42097
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
code
advanced
Task: code Topic: Model merging, distillation, and continued pretraining Difficulty: advanced Target language: Python Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Scaffold: ```python def agent_loop(plan, edit, test, issue, max_iters=4): history = [] p = plan(issue) for _ in range(max_iters): patch = edit(issue, p) ok, report = test(patch) history.append({"plan": p, "ok": ok}) if ok: return patch, history p = p + " | refine" return patch, history ```
[]
{ "target_language": "Python", "developer_needs": [ "tests_are_truth", "cost_latency_tradeoffs", "auditability", "reproducibility" ], "moe_experts": [ "evaluation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6baa85b6ad048998c451b208da6f9246f2add6cc
train_42098
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
data_pipeline
advanced
Task: data_pipeline Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: Java Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Java", "developer_needs": [ "tooling", "security_gates", "reproducibility", "tests_are_truth" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
be32227ccdc89d651054825ff9926898f37486d5
train_42099
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
review
advanced
Task: review Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: SQL Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "tests_are_truth", "governance", "cost_latency_tradeoffs", "reproducibility" ], "moe_experts": [ "performance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
504e39daf72f4d22cb281719158652fba766ad7a