id
stringlengths
11
11
created
timestamp[s]date
2026-01-01 00:00:00
2026-01-01 00:00:00
topic
stringclasses
14 values
task_type
stringclasses
10 values
difficulty
stringclasses
3 values
instruction
stringlengths
189
248
input
stringclasses
1 value
output
stringclasses
9 values
reasoning_steps
listlengths
0
5
metadata
dict
hash
stringlengths
40
40
train_41500
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
patch_diff
expert
Task: patch_diff Topic: Reasoning-first coding models and tunable deliberation Difficulty: expert Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "tooling", "evaluation_metrics", "documentation", "auditability" ], "moe_experts": [ "evaluation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c6dc37432139cb39cff0aa6509da32c2512616b1
train_41501
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
design
advanced
Task: design Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: Bash Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Bash", "developer_needs": [ "repo_scale_reasoning", "tests_are_truth", "evaluation_metrics", "ci_integration" ], "moe_experts": [ "governance_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
31b70315c7753574af5243747a0196d0182d4470
train_41502
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
eval
expert
Task: eval Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: Python Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "documentation", "reproducibility", "tooling", "security_gates" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d76e3f1ac7130f736644d3167e4480e464ae39f7
train_41503
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
design
advanced
Task: design Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "ci_integration", "cost_latency_tradeoffs", "auditability", "tests_are_truth" ], "moe_experts": [ "governance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
5f3f38110ba0c93d0c87c4077992dea8ea847db3
train_41504
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
compare
intermediate
Task: compare Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: Go Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Go", "developer_needs": [ "evaluation_metrics", "tests_are_truth", "repo_scale_reasoning", "tooling" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
50d9d6b73fc8734a2fc93f68c85363fd65ed8fab
train_41505
2026-01-01T00:00:00
Secure code generation and policy gates
review
expert
Task: review Topic: Secure code generation and policy gates Difficulty: expert Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Java", "developer_needs": [ "governance", "reproducibility", "cost_latency_tradeoffs", "tooling" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4d4f078496234fc9fc4b58a491b705c623e66e9c
train_41506
2026-01-01T00:00:00
Secure code generation and policy gates
failure_analysis
intermediate
Task: failure_analysis Topic: Secure code generation and policy gates Difficulty: intermediate Target language: C# Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "C#", "developer_needs": [ "reproducibility", "tooling", "governance", "cost_latency_tradeoffs" ], "moe_experts": [ "security_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
80d4574d5555eec06d07e0a9c9ce0dedbbb8c1cb
train_41507
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
code
intermediate
Task: code Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: Go Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Go", "developer_needs": [ "repo_scale_reasoning", "security_gates", "auditability", "documentation" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ec5294ca12bf0af24429a0d3d79aff45d0494923
train_41508
2026-01-01T00:00:00
Extended context and repo-scale understanding
review
intermediate
Task: review Topic: Extended context and repo-scale understanding Difficulty: intermediate Target language: Python Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Python", "developer_needs": [ "security_gates", "evaluation_metrics", "tooling", "repo_scale_reasoning" ], "moe_experts": [ "evaluation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4b3b39d29d50323687f31cdd02ba47dc558580b9
train_41509
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
data_pipeline
expert
Task: data_pipeline Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: C# Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "C#", "developer_needs": [ "cost_latency_tradeoffs", "repo_scale_reasoning", "tests_are_truth", "documentation" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a1ffbcfccd994f02dcddb55ea478fa91bf310587
train_41510
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
eval
advanced
Task: eval Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "reproducibility", "tests_are_truth", "governance", "ci_integration" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0a531ddb5932470d5925dc6cbdb809fb3b208199
train_41511
2026-01-01T00:00:00
Extended context and repo-scale understanding
explain
advanced
Task: explain Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "cost_latency_tradeoffs", "evaluation_metrics", "repo_scale_reasoning", "documentation" ], "moe_experts": [ "agentic_systems_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6d8ead2c234b5cdcde3512e42cdf0e93b9c32cb5
train_41512
2026-01-01T00:00:00
Self-improving agents and feedback loops
data_pipeline
intermediate
Task: data_pipeline Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: JavaScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "ci_integration", "tests_are_truth", "security_gates", "documentation" ], "moe_experts": [ "agentic_systems_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
99347eb5719ed3678b5ba6ad5eb0fc72a788229b
train_41513
2026-01-01T00:00:00
Latency, cost, and reliability optimization
data_pipeline
expert
Task: data_pipeline Topic: Latency, cost, and reliability optimization Difficulty: expert Target language: JavaScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "JavaScript", "developer_needs": [ "tests_are_truth", "evaluation_metrics", "auditability", "reproducibility" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
62a583cd38b9ec94dd8c30f52c386a27578d2d2f
train_41514
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
data_pipeline
intermediate
Task: data_pipeline Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: Go Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "cost_latency_tradeoffs", "documentation", "reproducibility", "auditability" ], "moe_experts": [ "security_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9a4a5048ca10e7709d6df5853b33ca894d2130cc
train_41515
2026-01-01T00:00:00
Secure code generation and policy gates
review
expert
Task: review Topic: Secure code generation and policy gates Difficulty: expert Target language: Go Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Go", "developer_needs": [ "security_gates", "ci_integration", "governance", "auditability" ], "moe_experts": [ "evaluation_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b4f06195267de0e693aa1b37df2f4c8f771b0c4e
train_41516
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
compare
advanced
Task: compare Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: Java Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Java", "developer_needs": [ "tooling", "repo_scale_reasoning", "cost_latency_tradeoffs", "governance" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7ab99d6e8aee23ca792b710ae0c1e6aade107724
train_41517
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
compare
expert
Task: compare Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: C# Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "tests_are_truth", "auditability", "tooling", "security_gates" ], "moe_experts": [ "governance_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
863ff1b0deec664405e3806b051eff71521388ca
train_41518
2026-01-01T00:00:00
Self-improving agents and feedback loops
data_pipeline
intermediate
Task: data_pipeline Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "TypeScript", "developer_needs": [ "ci_integration", "security_gates", "governance", "documentation" ], "moe_experts": [ "coding_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4379adf174aaa657dc98fcf734d986dccdef72da
train_41519
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
patch_diff
expert
Task: patch_diff Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: Java Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "Java", "developer_needs": [ "documentation", "tooling", "cost_latency_tradeoffs", "tests_are_truth" ], "moe_experts": [ "security_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e2cbc2a69a373fca0387a2cab3e4bc89e140a9d1
train_41520
2026-01-01T00:00:00
Secure code generation and policy gates
design
intermediate
Task: design Topic: Secure code generation and policy gates Difficulty: intermediate Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Bash", "developer_needs": [ "security_gates", "governance", "tests_are_truth", "ci_integration" ], "moe_experts": [ "evaluation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1b0152fc867cb73ce7f0a370c4069462bcf7cbc2
train_41521
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
explain
advanced
Task: explain Topic: Governance, provenance, and licensing for code data Difficulty: advanced Target language: Java Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Java", "developer_needs": [ "cost_latency_tradeoffs", "ci_integration", "repo_scale_reasoning", "reproducibility" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
38a9ffea607cb3c280d66be7452dd5208cd44e6b
train_41522
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
agent_loop
intermediate
Task: agent_loop Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: JavaScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "JavaScript", "developer_needs": [ "reproducibility", "tests_are_truth", "repo_scale_reasoning", "cost_latency_tradeoffs" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a04a7f98a48041058c832c15d72428f43f88ae9c
train_41523
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
design
intermediate
Task: design Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: JavaScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "security_gates", "auditability", "repo_scale_reasoning", "ci_integration" ], "moe_experts": [ "evaluation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
838847b678bb9a097cb4ad91188e85d54e4f730b
train_41524
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
review
expert
Task: review Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: expert Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Python", "developer_needs": [ "governance", "ci_integration", "auditability", "security_gates" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
da803d32c852c30efac8f73783c446a5e0ef409a
train_41525
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
review
intermediate
Task: review Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: JavaScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "cost_latency_tradeoffs", "documentation", "governance", "security_gates" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4dc2ff91481d76d165df2956108f88bf3bbad8f7
train_41526
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
agent_loop
intermediate
Task: agent_loop Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: Go Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Go", "developer_needs": [ "auditability", "repo_scale_reasoning", "documentation", "tests_are_truth" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
056936413eb9083ed2df7f65eff0cd5be0b25a83
train_41527
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
design
expert
Task: design Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: JavaScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "auditability", "evaluation_metrics", "governance", "tests_are_truth" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b58cd45a1eee01bbc8a02d8f46094bb59d6ec3d4
train_41528
2026-01-01T00:00:00
Secure code generation and policy gates
eval
expert
Task: eval Topic: Secure code generation and policy gates Difficulty: expert Target language: TypeScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "tests_are_truth", "ci_integration", "auditability", "evaluation_metrics" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1e881a405a0217a7857e191e4894622ce1ee6073
train_41529
2026-01-01T00:00:00
Extended context and repo-scale understanding
compare
expert
Task: compare Topic: Extended context and repo-scale understanding Difficulty: expert Target language: Rust Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "documentation", "security_gates", "tooling", "auditability" ], "moe_experts": [ "data_curation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0008fabc5a6c94e38caf77c3fbbfe5fa13768973
train_41530
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
code
intermediate
Task: code Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "documentation", "cost_latency_tradeoffs", "security_gates", "tests_are_truth" ], "moe_experts": [ "security_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
73b19ce1ffce8c3614733c81aff21642a174dc01
train_41531
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
eval
advanced
Task: eval Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: JavaScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "tests_are_truth", "documentation", "repo_scale_reasoning", "auditability" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
94439c961881e439c441ebc404d771802c00e760
train_41532
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
data_pipeline
advanced
Task: data_pipeline Topic: Tool calling, sandboxes, and CI integration Difficulty: advanced Target language: Rust Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Rust", "developer_needs": [ "reproducibility", "governance", "documentation", "cost_latency_tradeoffs" ], "moe_experts": [ "data_curation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e17ae1c9bc7116b3d77dbdab3e994aa7ea939d79
train_41533
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
explain
intermediate
Task: explain Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: C# Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "evaluation_metrics", "governance", "ci_integration", "cost_latency_tradeoffs" ], "moe_experts": [ "security_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
08683bcffa9c3403019a09918c60dfc920577b45
train_41534
2026-01-01T00:00:00
Extended context and repo-scale understanding
review
expert
Task: review Topic: Extended context and repo-scale understanding Difficulty: expert Target language: Bash Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Bash", "developer_needs": [ "tests_are_truth", "governance", "cost_latency_tradeoffs", "security_gates" ], "moe_experts": [ "governance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4c556ede5704a3468639f4a6023b0a3dfb2544fb
train_41535
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
eval
intermediate
Task: eval Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: Java Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Java", "developer_needs": [ "governance", "security_gates", "repo_scale_reasoning", "evaluation_metrics" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
de8b87756832be47d89ca31867bfe4bc7130b44f
train_41536
2026-01-01T00:00:00
Latency, cost, and reliability optimization
agent_loop
expert
Task: agent_loop Topic: Latency, cost, and reliability optimization Difficulty: expert Target language: SQL Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "SQL", "developer_needs": [ "security_gates", "cost_latency_tradeoffs", "ci_integration", "auditability" ], "moe_experts": [ "performance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
bd092b753e1edf209bf24f0828d317ff522d7cd5
train_41537
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
compare
expert
Task: compare Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Java", "developer_needs": [ "cost_latency_tradeoffs", "governance", "tests_are_truth", "ci_integration" ], "moe_experts": [ "performance_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2244b7fc5aed68b657d1ca6609ae268224497054
train_41538
2026-01-01T00:00:00
Latency, cost, and reliability optimization
data_pipeline
advanced
Task: data_pipeline Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: Go Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Go", "developer_needs": [ "cost_latency_tradeoffs", "documentation", "auditability", "evaluation_metrics" ], "moe_experts": [ "agentic_systems_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e1b3716a1357a90fbb88f24a811bb16ecd76d07c
train_41539
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
compare
advanced
Task: compare Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "reproducibility", "documentation", "repo_scale_reasoning", "tooling" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
512b8bd43a126e6758ac4c47fa6e67bc70f25eec
train_41540
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
eval
intermediate
Task: eval Topic: Reasoning-first coding models and tunable deliberation Difficulty: intermediate Target language: Bash Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Bash", "developer_needs": [ "ci_integration", "documentation", "reproducibility", "tests_are_truth" ], "moe_experts": [ "evaluation_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f9d1f12351022ee3430648f7497f3a90757c3c78
train_41541
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
patch_diff
intermediate
Task: patch_diff Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: SQL Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "cost_latency_tradeoffs", "repo_scale_reasoning", "security_gates", "governance" ], "moe_experts": [ "agentic_systems_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d4a3c88187e7ddd2dc9c6c7d2dd2bf901b1ed39b
train_41542
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
eval
advanced
Task: eval Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "SQL", "developer_needs": [ "security_gates", "governance", "cost_latency_tradeoffs", "auditability" ], "moe_experts": [ "performance_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b8c346b5bbd029a4d526e0b5d5150bc88b637a1b
train_41543
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
compare
intermediate
Task: compare Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: Rust Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Rust", "developer_needs": [ "tests_are_truth", "security_gates", "ci_integration", "reproducibility" ], "moe_experts": [ "security_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
04f7b268cca04654060580bbc1ed6dd1416ec10b
train_41544
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
review
expert
Task: review Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: Rust Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Rust", "developer_needs": [ "documentation", "tests_are_truth", "security_gates", "cost_latency_tradeoffs" ], "moe_experts": [ "data_curation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0b38b3b6cdbe03e8e61264579e70b88d08d02831
train_41545
2026-01-01T00:00:00
Extended context and repo-scale understanding
explain
expert
Task: explain Topic: Extended context and repo-scale understanding Difficulty: expert Target language: C# Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "C#", "developer_needs": [ "security_gates", "auditability", "documentation", "tooling" ], "moe_experts": [ "agentic_systems_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a14a3086f259b1680cd23ec701bec26d1c36d74c
train_41546
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
code
advanced
Task: code Topic: Governance, provenance, and licensing for code data Difficulty: advanced Target language: C# Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "C#", "developer_needs": [ "cost_latency_tradeoffs", "governance", "security_gates", "repo_scale_reasoning" ], "moe_experts": [ "evaluation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
88e3ac67cfd1ff77097905a53a8160ae379d9bd2
train_41547
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
review
expert
Task: review Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: Rust Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Rust", "developer_needs": [ "evaluation_metrics", "documentation", "ci_integration", "security_gates" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f40db5a87779abe48be3c4a4676c91482da32f90
train_41548
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
review
expert
Task: review Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: SQL Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "SQL", "developer_needs": [ "tests_are_truth", "evaluation_metrics", "repo_scale_reasoning", "documentation" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
bc558c485b17f3d29045302ca0d5ebd254598b0f
train_41549
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
design
advanced
Task: design Topic: Model merging, distillation, and continued pretraining Difficulty: advanced Target language: Python Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Python", "developer_needs": [ "ci_integration", "repo_scale_reasoning", "cost_latency_tradeoffs", "documentation" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c34e1a6e07a2d3889323af8914f0a3d6df78ae3a
train_41550
2026-01-01T00:00:00
Extended context and repo-scale understanding
explain
intermediate
Task: explain Topic: Extended context and repo-scale understanding Difficulty: intermediate Target language: C# Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "C#", "developer_needs": [ "ci_integration", "evaluation_metrics", "documentation", "security_gates" ], "moe_experts": [ "governance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
47470b708c1f169a6f55a5b91cd3beac7f6488c0
train_41551
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
eval
expert
Task: eval Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: SQL Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "SQL", "developer_needs": [ "reproducibility", "documentation", "cost_latency_tradeoffs", "security_gates" ], "moe_experts": [ "governance_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b8bf0c7e33e75f50f5f53ca58357d1e7141cf898
train_41552
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
patch_diff
intermediate
Task: patch_diff Topic: Governance, provenance, and licensing for code data Difficulty: intermediate Target language: C# Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "C#", "developer_needs": [ "tooling", "evaluation_metrics", "ci_integration", "repo_scale_reasoning" ], "moe_experts": [ "agentic_systems_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
594e94c7cb3ead7f93d01bc504037e0d6aec6d82
train_41553
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
failure_analysis
advanced
Task: failure_analysis Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: Rust Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Rust", "developer_needs": [ "reproducibility", "tests_are_truth", "security_gates", "ci_integration" ], "moe_experts": [ "evaluation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d15d8a9a2ff116bcc21e082f3a7e6beb7035c655
train_41554
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
compare
intermediate
Task: compare Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Rust", "developer_needs": [ "ci_integration", "documentation", "governance", "evaluation_metrics" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d69c69e1da7edee86d64e6738b4f853ff9be0355
train_41555
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
agent_loop
advanced
Task: agent_loop Topic: Governance, provenance, and licensing for code data Difficulty: advanced Target language: C# Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "documentation", "evaluation_metrics", "reproducibility", "repo_scale_reasoning" ], "moe_experts": [ "data_curation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8d0b9077c3fd72656327bab0f8dd2c7f45a9c9ea
train_41556
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
review
advanced
Task: review Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "SQL", "developer_needs": [ "auditability", "evaluation_metrics", "repo_scale_reasoning", "governance" ], "moe_experts": [ "governance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a568f36437004accdafea557d5ac63698cb836ea
train_41557
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
eval
expert
Task: eval Topic: Reasoning-first coding models and tunable deliberation Difficulty: expert Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "tests_are_truth", "ci_integration", "auditability", "security_gates" ], "moe_experts": [ "performance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ff2c967f8def0c9f196dbc1073a1ccf7f249ca0c
train_41558
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
patch_diff
expert
Task: patch_diff Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: expert Target language: Java Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "Java", "developer_needs": [ "cost_latency_tradeoffs", "governance", "repo_scale_reasoning", "documentation" ], "moe_experts": [ "security_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8d2bdab8259e529aa28276704601e47f9a31c65c
train_41559
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
design
advanced
Task: design Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: Go Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Go", "developer_needs": [ "repo_scale_reasoning", "security_gates", "governance", "tooling" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a6ec48c4c10b8be47d6165e45830487e607dce36
train_41560
2026-01-01T00:00:00
Secure code generation and policy gates
eval
intermediate
Task: eval Topic: Secure code generation and policy gates Difficulty: intermediate Target language: JavaScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "JavaScript", "developer_needs": [ "reproducibility", "auditability", "cost_latency_tradeoffs", "documentation" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
372a594efe0dc214730492ffe4a5caf6828c19d3
train_41561
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
code
expert
Task: code Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: expert Target language: Python Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Scaffold: ```python def agent_loop(plan, edit, test, issue, max_iters=4): history = [] p = plan(issue) for _ in range(max_iters): patch = edit(issue, p) ok, report = test(patch) history.append({"plan": p, "ok": ok}) if ok: return patch, history p = p + " | refine" return patch, history ```
[]
{ "target_language": "Python", "developer_needs": [ "auditability", "governance", "documentation", "security_gates" ], "moe_experts": [ "performance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a7ba571297cc2c6a5eff1191042c16d14d116d70
train_41562
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
review
intermediate
Task: review Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: TypeScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "TypeScript", "developer_needs": [ "cost_latency_tradeoffs", "auditability", "repo_scale_reasoning", "security_gates" ], "moe_experts": [ "data_curation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
22d8023af9ff7ad1656ec76a6132525aaa286534
train_41563
2026-01-01T00:00:00
Self-improving agents and feedback loops
patch_diff
expert
Task: patch_diff Topic: Self-improving agents and feedback loops Difficulty: expert Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "security_gates", "cost_latency_tradeoffs", "tests_are_truth", "documentation" ], "moe_experts": [ "performance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b9673243d155f98246d1e91e3cbdd2580a4542b1
train_41564
2026-01-01T00:00:00
Latency, cost, and reliability optimization
design
advanced
Task: design Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "security_gates", "repo_scale_reasoning", "cost_latency_tradeoffs", "evaluation_metrics" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d3364ee5b15c2ce6160c1044cdbe94c5d9dce62c
train_41565
2026-01-01T00:00:00
Extended context and repo-scale understanding
review
intermediate
Task: review Topic: Extended context and repo-scale understanding Difficulty: intermediate Target language: Go Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Go", "developer_needs": [ "tooling", "evaluation_metrics", "governance", "ci_integration" ], "moe_experts": [ "performance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c78ed3e7b3a03f7b82098c69b6133764c4068f68
train_41566
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
explain
intermediate
Task: explain Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "TypeScript", "developer_needs": [ "auditability", "tooling", "tests_are_truth", "security_gates" ], "moe_experts": [ "governance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
aab50aa8c1634ddcfc47aa69591c970b142b137c
train_41567
2026-01-01T00:00:00
Secure code generation and policy gates
design
advanced
Task: design Topic: Secure code generation and policy gates Difficulty: advanced Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "documentation", "reproducibility", "tooling", "ci_integration" ], "moe_experts": [ "coding_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
98afd21e4da187e5eba8ecf280279a403274d38a
train_41568
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
compare
intermediate
Task: compare Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: Rust Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Rust", "developer_needs": [ "governance", "cost_latency_tradeoffs", "repo_scale_reasoning", "evaluation_metrics" ], "moe_experts": [ "data_curation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1a63cdd152c163f5905a8258f3889e176889332a
train_41569
2026-01-01T00:00:00
Self-improving agents and feedback loops
compare
intermediate
Task: compare Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "documentation", "tests_are_truth", "repo_scale_reasoning", "ci_integration" ], "moe_experts": [ "data_curation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
23fffffc542533e3a6dab0c103a5d2571c2fd05b
train_41570
2026-01-01T00:00:00
Self-improving agents and feedback loops
review
advanced
Task: review Topic: Self-improving agents and feedback loops Difficulty: advanced Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "SQL", "developer_needs": [ "security_gates", "evaluation_metrics", "tests_are_truth", "ci_integration" ], "moe_experts": [ "coding_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6a881723bdc47aa242a457e8178417968829525c
train_41571
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
code
expert
Task: code Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: Java Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "governance", "security_gates", "reproducibility", "tooling" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2e2a7ea1afa4d8c98912d4ad1d1412683fb046c0
train_41572
2026-01-01T00:00:00
Self-improving agents and feedback loops
review
advanced
Task: review Topic: Self-improving agents and feedback loops Difficulty: advanced Target language: C# Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "C#", "developer_needs": [ "ci_integration", "auditability", "tests_are_truth", "tooling" ], "moe_experts": [ "agentic_systems_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8c6c0b0fe8e0e5d78e2c133414c6a528a4a836e0
train_41573
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
code
expert
Task: code Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: Go Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Go", "developer_needs": [ "repo_scale_reasoning", "evaluation_metrics", "security_gates", "tooling" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
790527641a9564b932c048e9e01ecb03044f4bbc
train_41574
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
review
intermediate
Task: review Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "TypeScript", "developer_needs": [ "governance", "tooling", "security_gates", "auditability" ], "moe_experts": [ "data_curation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
fadc3664022d793f1eadeeb576780fdc1c420948
train_41575
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
agent_loop
intermediate
Task: agent_loop Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: Python Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "tooling", "cost_latency_tradeoffs", "security_gates", "ci_integration" ], "moe_experts": [ "performance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ac3116deb6e86abee1d50218eb0c3cf629d4ebf4
train_41576
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
eval
expert
Task: eval Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "security_gates", "ci_integration", "cost_latency_tradeoffs", "governance" ], "moe_experts": [ "data_curation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1c490b159f2183c00e9f987c8fe3f2604887f419
train_41577
2026-01-01T00:00:00
Self-improving agents and feedback loops
patch_diff
advanced
Task: patch_diff Topic: Self-improving agents and feedback loops Difficulty: advanced Target language: Go Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "tests_are_truth", "ci_integration", "security_gates", "reproducibility" ], "moe_experts": [ "evaluation_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
864310f43972cc6ffaa280f132e2844b9c045495
train_41578
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
eval
intermediate
Task: eval Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: Rust Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Rust", "developer_needs": [ "evaluation_metrics", "security_gates", "tests_are_truth", "governance" ], "moe_experts": [ "data_curation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e34003a28d0f2eab6d7875e1e142b04849bbfee6
train_41579
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
data_pipeline
intermediate
Task: data_pipeline Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: JavaScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "tooling", "governance", "evaluation_metrics", "security_gates" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
eaf6e755064f20d4dc09848a149eb28ad28107b5
train_41580
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
agent_loop
intermediate
Task: agent_loop Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: Bash Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Bash", "developer_needs": [ "tests_are_truth", "reproducibility", "ci_integration", "governance" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e678393b446d6979b1dce6f3a05f7051f5db3cb6
train_41581
2026-01-01T00:00:00
Extended context and repo-scale understanding
agent_loop
expert
Task: agent_loop Topic: Extended context and repo-scale understanding Difficulty: expert Target language: Bash Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "reproducibility", "cost_latency_tradeoffs", "auditability", "governance" ], "moe_experts": [ "evaluation_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2596f136332ab9e4198ce64b24020a62f0ae0e1b
train_41582
2026-01-01T00:00:00
Self-improving agents and feedback loops
code
intermediate
Task: code Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "ci_integration", "documentation", "cost_latency_tradeoffs", "evaluation_metrics" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
09e180990e810438b6d8334559c7d5af2e5ee754
train_41583
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
compare
intermediate
Task: compare Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "TypeScript", "developer_needs": [ "cost_latency_tradeoffs", "security_gates", "reproducibility", "repo_scale_reasoning" ], "moe_experts": [ "data_curation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
215b0a8e0393adbbda41529b4f09ce711862686a
train_41584
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
explain
advanced
Task: explain Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: Go Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Go", "developer_needs": [ "repo_scale_reasoning", "documentation", "cost_latency_tradeoffs", "tooling" ], "moe_experts": [ "data_curation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0c37f55bc85f289155c534c080c71b501c503e91
train_41585
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
design
advanced
Task: design Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "reproducibility", "evaluation_metrics", "tooling", "documentation" ], "moe_experts": [ "evaluation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e8c1bfbdaac774e3fb8555297ddcf4c41b4ee92a
train_41586
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
eval
advanced
Task: eval Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "reproducibility", "repo_scale_reasoning", "security_gates", "ci_integration" ], "moe_experts": [ "security_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
23b1cde87f904d69228457f797401a2f41682302
train_41587
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
compare
advanced
Task: compare Topic: Governance, provenance, and licensing for code data Difficulty: advanced Target language: JavaScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "reproducibility", "security_gates", "governance", "tests_are_truth" ], "moe_experts": [ "evaluation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6145902264e1cb78066bf27e0b1a5ed7242be178
train_41588
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
compare
intermediate
Task: compare Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: SQL Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "SQL", "developer_needs": [ "tooling", "ci_integration", "documentation", "security_gates" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c072e4dab116010a007e1e167f62f3685d0649e5
train_41589
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
explain
intermediate
Task: explain Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: Java Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "auditability", "cost_latency_tradeoffs", "governance", "security_gates" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
476fbb7344bd3f8340746c6623eeeaba176fc9c4
train_41590
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
eval
intermediate
Task: eval Topic: Governance, provenance, and licensing for code data Difficulty: intermediate Target language: C# Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "C#", "developer_needs": [ "tooling", "security_gates", "reproducibility", "evaluation_metrics" ], "moe_experts": [ "performance_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8f85ab7e42b34059b912dc73abf93ee798022090
train_41591
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
review
intermediate
Task: review Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "TypeScript", "developer_needs": [ "cost_latency_tradeoffs", "reproducibility", "tooling", "tests_are_truth" ], "moe_experts": [ "security_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7f88163b1b1896ae680c25d6b88d185697d6e045
train_41592
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
design
intermediate
Task: design Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: Java Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Java", "developer_needs": [ "evaluation_metrics", "auditability", "tests_are_truth", "documentation" ], "moe_experts": [ "data_curation_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
aa7259912dd82d7114cf421d0c6c296e040f51b3
train_41593
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
data_pipeline
expert
Task: data_pipeline Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: expert Target language: Java Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Java", "developer_needs": [ "security_gates", "repo_scale_reasoning", "auditability", "tests_are_truth" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
26d0c1fb237345bf49fd358c40541f602b3ae7a7
train_41594
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
design
expert
Task: design Topic: Reasoning-first coding models and tunable deliberation Difficulty: expert Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Bash", "developer_needs": [ "repo_scale_reasoning", "security_gates", "documentation", "tests_are_truth" ], "moe_experts": [ "security_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1e4698825efc44227769e2b7f2b24185b58d04fd
train_41595
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
agent_loop
advanced
Task: agent_loop Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: SQL Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "SQL", "developer_needs": [ "evaluation_metrics", "documentation", "tooling", "reproducibility" ], "moe_experts": [ "security_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a7fc4e3507842ea946fc8f763cc31aaee0fa5c88
train_41596
2026-01-01T00:00:00
Extended context and repo-scale understanding
compare
intermediate
Task: compare Topic: Extended context and repo-scale understanding Difficulty: intermediate Target language: SQL Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "reproducibility", "tooling", "governance", "documentation" ], "moe_experts": [ "governance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8f6f69f13c30168adcc9740a41c1fe69250fad3b
train_41597
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
eval
advanced
Task: eval Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "auditability", "tests_are_truth", "governance", "tooling" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0748da530f25c1bd70021467f74f19070e520e17
train_41598
2026-01-01T00:00:00
Secure code generation and policy gates
explain
expert
Task: explain Topic: Secure code generation and policy gates Difficulty: expert Target language: SQL Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "SQL", "developer_needs": [ "cost_latency_tradeoffs", "evaluation_metrics", "ci_integration", "repo_scale_reasoning" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2cc2294bb74bb1bc444f2e15288ac92bd9c26a70
train_41599
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
review
expert
Task: review Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: Rust Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "tests_are_truth", "ci_integration", "evaluation_metrics", "reproducibility" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c678188630228e2a0096570432ff8a0519012ec4