id
stringlengths 11
11
| created
timestamp[s]date 2026-01-01 00:00:00
2026-01-01 00:00:00
| topic
stringclasses 14
values | task_type
stringclasses 10
values | difficulty
stringclasses 3
values | instruction
stringlengths 189
248
| input
stringclasses 1
value | output
stringclasses 9
values | reasoning_steps
listlengths 0
5
| metadata
dict | hash
stringlengths 40
40
|
|---|---|---|---|---|---|---|---|---|---|---|
train_10200
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
compare
|
advanced
|
Task: compare
Topic: Model merging, distillation, and continued pretraining
Difficulty: advanced
Target language: Go
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "Go",
"developer_needs": [
"auditability",
"security_gates",
"reproducibility",
"tooling"
],
"moe_experts": [
"agentic_systems_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f40ec088360c166ad563471e64a0b36010762652
|
|
train_10201
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Governance, provenance, and licensing for code data
Difficulty: intermediate
Target language: Java
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"tooling",
"tests_are_truth",
"cost_latency_tradeoffs",
"repo_scale_reasoning"
],
"moe_experts": [
"performance_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
7206e8255ed0eef9d5fb437b3b4dc055660f97d0
|
|
train_10202
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
eval
|
expert
|
Task: eval
Topic: Tool calling, sandboxes, and CI integration
Difficulty: expert
Target language: Rust
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"tests_are_truth",
"governance",
"security_gates",
"auditability"
],
"moe_experts": [
"agentic_systems_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
62113b148bfd47dbb5144c460f7226f605590ce9
|
|
train_10203
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
compare
|
intermediate
|
Task: compare
Topic: Model merging, distillation, and continued pretraining
Difficulty: intermediate
Target language: Python
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"evaluation_metrics",
"repo_scale_reasoning",
"tooling",
"auditability"
],
"moe_experts": [
"governance_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b140fadabf18a775ee912fd2b223db1f4e9fd9ad
|
|
train_10204
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: SWE-bench style real-repo evaluation
Difficulty: advanced
Target language: Go
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Go",
"developer_needs": [
"tooling",
"security_gates",
"governance",
"ci_integration"
],
"moe_experts": [
"coding_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
5579a58420df7528f8653ec53ae14f897f93d9bd
|
|
train_10205
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
compare
|
advanced
|
Task: compare
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: advanced
Target language: JavaScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"documentation",
"security_gates",
"ci_integration",
"repo_scale_reasoning"
],
"moe_experts": [
"governance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a5601366bfdf46bdd7c9fbca11c8e4200aba0616
|
|
train_10206
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Governance, provenance, and licensing for code data
Difficulty: expert
Target language: Python
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"tooling",
"documentation",
"security_gates",
"governance"
],
"moe_experts": [
"evaluation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
67a3aeae2d23e5a757de9891185de750cbed8298
|
|
train_10207
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
code
|
advanced
|
Task: code
Topic: Self-improving agents and feedback loops
Difficulty: advanced
Target language: Bash
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"repo_scale_reasoning",
"governance",
"tests_are_truth",
"reproducibility"
],
"moe_experts": [
"performance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1fc3ff6875a64b61d8b90a4cf0abc8e28e2ad921
|
|
train_10208
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
agent_loop
|
expert
|
Task: agent_loop
Topic: Mixture-of-Experts (MoE) for code
Difficulty: expert
Target language: Rust
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"repo_scale_reasoning",
"evaluation_metrics",
"reproducibility",
"tests_are_truth"
],
"moe_experts": [
"agentic_systems_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
5829cf09bdec4953b035b8a7ca8dbda4a8b3147f
|
|
train_10209
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
code
|
intermediate
|
Task: code
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: intermediate
Target language: TypeScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"auditability",
"evaluation_metrics",
"cost_latency_tradeoffs",
"tests_are_truth"
],
"moe_experts": [
"security_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c49a66533eebf43e07c941c80f60a4d788eb2283
|
|
train_10210
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
agent_loop
|
expert
|
Task: agent_loop
Topic: Model merging, distillation, and continued pretraining
Difficulty: expert
Target language: Python
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Python",
"developer_needs": [
"auditability",
"tooling",
"ci_integration",
"documentation"
],
"moe_experts": [
"evaluation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
8cdb002cd3066c3ae0d86b9fa6c5b7048b77134c
|
|
train_10211
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: intermediate
Target language: SQL
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"cost_latency_tradeoffs",
"reproducibility",
"security_gates",
"tests_are_truth"
],
"moe_experts": [
"data_curation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a48587aa0cdcb84dedb6fa049796e73e23290cc0
|
|
train_10212
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
code
|
intermediate
|
Task: code
Topic: Latency, cost, and reliability optimization
Difficulty: intermediate
Target language: C#
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"tooling",
"evaluation_metrics",
"auditability",
"cost_latency_tradeoffs"
],
"moe_experts": [
"evaluation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
72753a954306959d054cf9885bc04924fd6b7f0b
|
|
train_10213
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
review
|
advanced
|
Task: review
Topic: Governance, provenance, and licensing for code data
Difficulty: advanced
Target language: Go
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"security_gates",
"reproducibility",
"tooling",
"cost_latency_tradeoffs"
],
"moe_experts": [
"governance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c3c2dd4ed8e0e3f961c5a0edfda2e19e2710acc2
|
|
train_10214
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Self-improving agents and feedback loops
Difficulty: intermediate
Target language: Java
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"governance",
"tooling",
"tests_are_truth",
"evaluation_metrics"
],
"moe_experts": [
"agentic_systems_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a44d2c6fb3f9cbf6ddd7254e156bd0ad4ba760f0
|
|
train_10215
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
design
|
intermediate
|
Task: design
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: intermediate
Target language: TypeScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"reproducibility",
"auditability",
"documentation",
"security_gates"
],
"moe_experts": [
"security_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
802431164c1859b38eb8b1c9ae1723545a2c638e
|
|
train_10216
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
patch_diff
|
advanced
|
Task: patch_diff
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: advanced
Target language: SQL
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"cost_latency_tradeoffs",
"reproducibility",
"tooling",
"tests_are_truth"
],
"moe_experts": [
"data_curation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
517cd278b78b0e8dc12bd08826ba16625f20c64c
|
|
train_10217
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
code
|
intermediate
|
Task: code
Topic: Tool calling, sandboxes, and CI integration
Difficulty: intermediate
Target language: Go
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"tests_are_truth",
"governance",
"security_gates",
"repo_scale_reasoning"
],
"moe_experts": [
"coding_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
3f962232e2a76e250c576a1fdd9c72bd72337550
|
|
train_10218
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
explain
|
intermediate
|
Task: explain
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: intermediate
Target language: Rust
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"reproducibility",
"cost_latency_tradeoffs",
"tooling",
"ci_integration"
],
"moe_experts": [
"agentic_systems_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
82e439d40dc456f31622f2636417540277e72e37
|
|
train_10219
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
explain
|
intermediate
|
Task: explain
Topic: Tool calling, sandboxes, and CI integration
Difficulty: intermediate
Target language: Go
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"security_gates",
"ci_integration",
"auditability",
"documentation"
],
"moe_experts": [
"security_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
9d3b6c1d9a468552f70beae90976c4a4b688472a
|
|
train_10220
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Model merging, distillation, and continued pretraining
Difficulty: intermediate
Target language: C#
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "C#",
"developer_needs": [
"repo_scale_reasoning",
"tooling",
"auditability",
"governance"
],
"moe_experts": [
"coding_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
8337b77ae9590b62d50dd3b6384d766a580678e8
|
|
train_10221
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: intermediate
Target language: Python
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "Python",
"developer_needs": [
"tooling",
"governance",
"evaluation_metrics",
"reproducibility"
],
"moe_experts": [
"coding_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
5c1ab62da948ee9fca5605948939add24b2dd7f3
|
|
train_10222
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
design
|
expert
|
Task: design
Topic: Secure code generation and policy gates
Difficulty: expert
Target language: Bash
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"governance",
"repo_scale_reasoning",
"evaluation_metrics",
"security_gates"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e295c5c8b42bc5ad707ad35b817c35ddbfc34c39
|
|
train_10223
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Secure code generation and policy gates
Difficulty: intermediate
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "Python",
"developer_needs": [
"documentation",
"tests_are_truth",
"security_gates",
"reproducibility"
],
"moe_experts": [
"performance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c89ef98053ca1870638f0c2286a3a08a373d9799
|
|
train_10224
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
data_pipeline
|
advanced
|
Task: data_pipeline
Topic: Secure code generation and policy gates
Difficulty: advanced
Target language: Bash
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"ci_integration",
"cost_latency_tradeoffs",
"evaluation_metrics",
"tooling"
],
"moe_experts": [
"governance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
0643683fafb87f11298457b5b759bd870ef0aff7
|
|
train_10225
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
eval
|
advanced
|
Task: eval
Topic: Tool calling, sandboxes, and CI integration
Difficulty: advanced
Target language: Java
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "Java",
"developer_needs": [
"ci_integration",
"repo_scale_reasoning",
"tooling",
"security_gates"
],
"moe_experts": [
"performance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b1ac6c0b89c36400037259c7168245f7358c4a79
|
|
train_10226
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
code
|
expert
|
Task: code
Topic: Extended context and repo-scale understanding
Difficulty: expert
Target language: Rust
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"documentation",
"repo_scale_reasoning",
"auditability",
"security_gates"
],
"moe_experts": [
"agentic_systems_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f70c41d07eec8e1edb6056755a47540d43ee2173
|
|
train_10227
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: SWE-bench style real-repo evaluation
Difficulty: expert
Target language: Rust
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"security_gates",
"governance",
"documentation",
"repo_scale_reasoning"
],
"moe_experts": [
"security_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
cadf8d561cfb96e0c9e37e8c82f492aeaa996dd8
|
|
train_10228
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
code
|
expert
|
Task: code
Topic: Latency, cost, and reliability optimization
Difficulty: expert
Target language: C#
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"tests_are_truth",
"reproducibility",
"security_gates",
"governance"
],
"moe_experts": [
"coding_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
8ebc897824efa75147612af6472b0b63e0bfefdb
|
|
train_10229
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: intermediate
Target language: Go
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Go",
"developer_needs": [
"tooling",
"auditability",
"ci_integration",
"repo_scale_reasoning"
],
"moe_experts": [
"coding_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
465b7b5cb317a9b0d62c6655785dc2d48eee57a0
|
|
train_10230
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
compare
|
expert
|
Task: compare
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: expert
Target language: TypeScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"evaluation_metrics",
"security_gates",
"governance",
"repo_scale_reasoning"
],
"moe_experts": [
"coding_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
7ae359be7b8fa6c9ad5f25e9d18a1e3fd308339d
|
|
train_10231
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
compare
|
expert
|
Task: compare
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: expert
Target language: JavaScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"documentation",
"ci_integration",
"auditability",
"evaluation_metrics"
],
"moe_experts": [
"coding_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
81348d8259fcea6fb92100f39f2eaed115d36073
|
|
train_10232
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
design
|
expert
|
Task: design
Topic: Latency, cost, and reliability optimization
Difficulty: expert
Target language: Java
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"ci_integration",
"security_gates",
"governance",
"repo_scale_reasoning"
],
"moe_experts": [
"governance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
53edc0a0ad26b76d214e62aebee09506b34ece6a
|
|
train_10233
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Secure code generation and policy gates
Difficulty: intermediate
Target language: C#
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"tests_are_truth",
"ci_integration",
"governance",
"reproducibility"
],
"moe_experts": [
"evaluation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
6f4eb0e5d60f2e925a968d9eb25d7efa11405984
|
|
train_10234
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
compare
|
intermediate
|
Task: compare
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: intermediate
Target language: C#
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "C#",
"developer_needs": [
"repo_scale_reasoning",
"evaluation_metrics",
"governance",
"tooling"
],
"moe_experts": [
"performance_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
22db0466a047c9d5e2fc31931c25d4816a439fb8
|
|
train_10235
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
code
|
expert
|
Task: code
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: expert
Target language: Python
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Scaffold:
```python
def agent_loop(plan, edit, test, issue, max_iters=4):
history = []
p = plan(issue)
for _ in range(max_iters):
patch = edit(issue, p)
ok, report = test(patch)
history.append({"plan": p, "ok": ok})
if ok:
return patch, history
p = p + " | refine"
return patch, history
```
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"repo_scale_reasoning",
"tooling",
"tests_are_truth",
"documentation"
],
"moe_experts": [
"security_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
886675c682ecfe80ed597f704f9e80411571f1b4
|
|
train_10236
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
code
|
intermediate
|
Task: code
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: intermediate
Target language: C#
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"ci_integration",
"cost_latency_tradeoffs",
"auditability",
"documentation"
],
"moe_experts": [
"evaluation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
857cef925db9829958eb6b1baf9b376bab4f7485
|
|
train_10237
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
code
|
intermediate
|
Task: code
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: intermediate
Target language: TypeScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"ci_integration",
"security_gates",
"cost_latency_tradeoffs",
"auditability"
],
"moe_experts": [
"governance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
40174e19687055e4c49c9afbdc75b726d1c69e71
|
|
train_10238
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
review
|
expert
|
Task: review
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: expert
Target language: Python
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"tests_are_truth",
"cost_latency_tradeoffs",
"tooling",
"security_gates"
],
"moe_experts": [
"agentic_systems_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
9fa2f40deb01d7090b7aef7d99315b5fdadf20bf
|
|
train_10239
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: advanced
Target language: Python
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"auditability",
"reproducibility",
"tests_are_truth",
"repo_scale_reasoning"
],
"moe_experts": [
"agentic_systems_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
0c515e0b14d151b1070ed8cdd2aa35d82b2429ae
|
|
train_10240
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
agent_loop
|
expert
|
Task: agent_loop
Topic: Self-improving agents and feedback loops
Difficulty: expert
Target language: C#
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "C#",
"developer_needs": [
"cost_latency_tradeoffs",
"evaluation_metrics",
"documentation",
"security_gates"
],
"moe_experts": [
"data_curation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ae6da4d97f658ee5023e3acc7e141da7db53d51e
|
|
train_10241
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: intermediate
Target language: Rust
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"cost_latency_tradeoffs",
"tooling",
"governance",
"ci_integration"
],
"moe_experts": [
"security_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a4e436ec2c70ae32be0b26c7d1c675857e26aa34
|
|
train_10242
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
review
|
advanced
|
Task: review
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: advanced
Target language: Go
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"evaluation_metrics",
"ci_integration",
"tests_are_truth",
"governance"
],
"moe_experts": [
"agentic_systems_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
0f2560a2f23b0e7cd7c6c423ad44048366d070cb
|
|
train_10243
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
design
|
intermediate
|
Task: design
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: intermediate
Target language: Rust
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"cost_latency_tradeoffs",
"tests_are_truth",
"governance",
"evaluation_metrics"
],
"moe_experts": [
"evaluation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f6c5d00ef1aee2a9f395458cbaa522af2a832de6
|
|
train_10244
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
design
|
intermediate
|
Task: design
Topic: Governance, provenance, and licensing for code data
Difficulty: intermediate
Target language: Java
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"tooling",
"tests_are_truth",
"ci_integration",
"governance"
],
"moe_experts": [
"evaluation_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1955b5e5a515980e453051eb8daa3c9d0c79b8d9
|
|
train_10245
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: advanced
Target language: SQL
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"governance",
"ci_integration",
"auditability",
"documentation"
],
"moe_experts": [
"performance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c7891b5a1bde164d1461e01dd514ae814d76aabf
|
|
train_10246
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Latency, cost, and reliability optimization
Difficulty: intermediate
Target language: Rust
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"repo_scale_reasoning",
"auditability",
"tooling",
"cost_latency_tradeoffs"
],
"moe_experts": [
"evaluation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1031c6575a124bdd56816d0ee214f9761dce694f
|
|
train_10247
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
code
|
intermediate
|
Task: code
Topic: Secure code generation and policy gates
Difficulty: intermediate
Target language: Bash
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"tests_are_truth",
"cost_latency_tradeoffs",
"auditability",
"evaluation_metrics"
],
"moe_experts": [
"security_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
0ae7350ec9773fd5575e5eb4d7d13c9618431eba
|
|
train_10248
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
data_pipeline
|
advanced
|
Task: data_pipeline
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: advanced
Target language: JavaScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"repo_scale_reasoning",
"tests_are_truth",
"reproducibility",
"governance"
],
"moe_experts": [
"coding_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
7ab962e53e8b610e2e1aea9b0ce82f98884a06c0
|
|
train_10249
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
agent_loop
|
expert
|
Task: agent_loop
Topic: Governance, provenance, and licensing for code data
Difficulty: expert
Target language: C#
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"governance",
"security_gates",
"tooling",
"repo_scale_reasoning"
],
"moe_experts": [
"security_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
5be1ab91785502645fff2276da2106983721d24f
|
|
train_10250
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
patch_diff
|
advanced
|
Task: patch_diff
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: advanced
Target language: Rust
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"tooling",
"auditability",
"cost_latency_tradeoffs",
"repo_scale_reasoning"
],
"moe_experts": [
"security_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
4a8402a01f9acf78cef5d6a825136611bd83145e
|
|
train_10251
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
review
|
advanced
|
Task: review
Topic: Mixture-of-Experts (MoE) for code
Difficulty: advanced
Target language: Bash
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"reproducibility",
"evaluation_metrics",
"documentation",
"governance"
],
"moe_experts": [
"coding_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c9abe9b2c9d8536616eca68615c78da1335e08bc
|
|
train_10252
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
patch_diff
|
advanced
|
Task: patch_diff
Topic: Secure code generation and policy gates
Difficulty: advanced
Target language: C#
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"ci_integration",
"tooling",
"auditability",
"security_gates"
],
"moe_experts": [
"coding_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
37e4e32d5e9ffb16143f34c28e778a3bdaab6957
|
|
train_10253
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Self-improving agents and feedback loops
Difficulty: expert
Target language: TypeScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"governance",
"ci_integration",
"reproducibility",
"documentation"
],
"moe_experts": [
"governance_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c257eca5d519042d0b3e83633f442edc47c43a03
|
|
train_10254
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
agent_loop
|
expert
|
Task: agent_loop
Topic: Secure code generation and policy gates
Difficulty: expert
Target language: TypeScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"tooling",
"evaluation_metrics",
"ci_integration",
"auditability"
],
"moe_experts": [
"performance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
534c4f79562f554b90ad3e3e094b733664fa003e
|
|
train_10255
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
design
|
expert
|
Task: design
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: expert
Target language: SQL
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"evaluation_metrics",
"documentation",
"governance",
"security_gates"
],
"moe_experts": [
"security_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
3eb58e7a2706a1e2993bef092f05399255ade3a4
|
|
train_10256
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Tool calling, sandboxes, and CI integration
Difficulty: intermediate
Target language: Java
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"cost_latency_tradeoffs",
"tooling",
"governance",
"evaluation_metrics"
],
"moe_experts": [
"agentic_systems_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c0daa611fe62243d8d2daf4693d282d048282bd1
|
|
train_10257
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
data_pipeline
|
advanced
|
Task: data_pipeline
Topic: Extended context and repo-scale understanding
Difficulty: advanced
Target language: Rust
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"cost_latency_tradeoffs",
"security_gates",
"tests_are_truth",
"evaluation_metrics"
],
"moe_experts": [
"security_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
93968e44e5c5bb64444ab797f4732c085d5f95cb
|
|
train_10258
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
explain
|
expert
|
Task: explain
Topic: Extended context and repo-scale understanding
Difficulty: expert
Target language: Java
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"documentation",
"governance",
"cost_latency_tradeoffs",
"tests_are_truth"
],
"moe_experts": [
"security_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
0760ff22af4c5981abcfb93c05c3624979c45a99
|
|
train_10259
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: SWE-bench style real-repo evaluation
Difficulty: advanced
Target language: TypeScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"reproducibility",
"tooling",
"evaluation_metrics",
"auditability"
],
"moe_experts": [
"evaluation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d420a7b05128d81da5dfa248ac6dcfae0bf7a308
|
|
train_10260
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
patch_diff
|
advanced
|
Task: patch_diff
Topic: Tool calling, sandboxes, and CI integration
Difficulty: advanced
Target language: C#
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"ci_integration",
"tests_are_truth",
"repo_scale_reasoning",
"tooling"
],
"moe_experts": [
"coding_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e28c0d2cb2b5cb07b0be46c2b6d3d0f1ace66a17
|
|
train_10261
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
compare
|
intermediate
|
Task: compare
Topic: Secure code generation and policy gates
Difficulty: intermediate
Target language: Go
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"tooling",
"ci_integration",
"auditability",
"cost_latency_tradeoffs"
],
"moe_experts": [
"evaluation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
09f5c6c684ee62d779313411de6d54faaa9673e9
|
|
train_10262
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
eval
|
intermediate
|
Task: eval
Topic: Self-improving agents and feedback loops
Difficulty: intermediate
Target language: TypeScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"reproducibility",
"evaluation_metrics",
"auditability",
"security_gates"
],
"moe_experts": [
"coding_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
5d9fb73fa331f34a8f5d55720b8dc708e1e0f1f8
|
|
train_10263
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: SWE-bench style real-repo evaluation
Difficulty: intermediate
Target language: JavaScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"cost_latency_tradeoffs",
"auditability",
"security_gates",
"ci_integration"
],
"moe_experts": [
"evaluation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
6094463eeb47d3c31322131329d51b7930cb6df9
|
|
train_10264
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
failure_analysis
|
advanced
|
Task: failure_analysis
Topic: Extended context and repo-scale understanding
Difficulty: advanced
Target language: TypeScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"reproducibility",
"documentation",
"security_gates",
"repo_scale_reasoning"
],
"moe_experts": [
"evaluation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
56fcde3a4f7beefcc217b71797baf8fd18a74e78
|
|
train_10265
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
review
|
expert
|
Task: review
Topic: Mixture-of-Experts (MoE) for code
Difficulty: expert
Target language: Python
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "Python",
"developer_needs": [
"governance",
"security_gates",
"cost_latency_tradeoffs",
"tooling"
],
"moe_experts": [
"data_curation_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
8f2b21d7c76b2fabe84796f813239ed68a07d175
|
|
train_10266
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
patch_diff
|
advanced
|
Task: patch_diff
Topic: Tool calling, sandboxes, and CI integration
Difficulty: advanced
Target language: JavaScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"tooling",
"governance",
"reproducibility",
"evaluation_metrics"
],
"moe_experts": [
"governance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
3e0d40ba43a63a679c266a09fc752e92e2b13aa2
|
|
train_10267
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
agent_loop
|
expert
|
Task: agent_loop
Topic: Secure code generation and policy gates
Difficulty: expert
Target language: Go
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"reproducibility",
"tests_are_truth",
"ci_integration",
"repo_scale_reasoning"
],
"moe_experts": [
"evaluation_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a29cdc51376d39f02b6cd5c15c2d1244ea5e4917
|
|
train_10268
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
compare
|
intermediate
|
Task: compare
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: intermediate
Target language: C#
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"tooling",
"ci_integration",
"cost_latency_tradeoffs",
"governance"
],
"moe_experts": [
"governance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f09855e96b8ffe66ccb61bc6be1da9e033be731e
|
|
train_10269
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
failure_analysis
|
advanced
|
Task: failure_analysis
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: advanced
Target language: Python
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Python",
"developer_needs": [
"auditability",
"tooling",
"repo_scale_reasoning",
"documentation"
],
"moe_experts": [
"security_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
9d9938db535c0f9db711f5046514a96ff2ca3141
|
|
train_10270
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
code
|
expert
|
Task: code
Topic: SWE-bench style real-repo evaluation
Difficulty: expert
Target language: JavaScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"documentation",
"ci_integration",
"tooling",
"evaluation_metrics"
],
"moe_experts": [
"governance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
25d5186c72aefc35f08425caa413f1c41b2678e0
|
|
train_10271
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
explain
|
intermediate
|
Task: explain
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: intermediate
Target language: Rust
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"tests_are_truth",
"security_gates",
"repo_scale_reasoning",
"ci_integration"
],
"moe_experts": [
"data_curation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
82e439d40dc456f31622f2636417540277e72e37
|
|
train_10272
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: intermediate
Target language: C#
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"documentation",
"auditability",
"tests_are_truth",
"governance"
],
"moe_experts": [
"evaluation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
9c535316cc2d413424192ae85ac3b1f0bb51ca93
|
|
train_10273
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
design
|
advanced
|
Task: design
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: advanced
Target language: Go
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"ci_integration",
"evaluation_metrics",
"reproducibility",
"tests_are_truth"
],
"moe_experts": [
"security_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
36ccb46ef56c2b946b910677b43cf890c54d6444
|
|
train_10274
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
compare
|
expert
|
Task: compare
Topic: Secure code generation and policy gates
Difficulty: expert
Target language: Python
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "Python",
"developer_needs": [
"ci_integration",
"reproducibility",
"cost_latency_tradeoffs",
"documentation"
],
"moe_experts": [
"coding_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
46a12ed24b3d068ea01a4b2575307dbc4e0bee26
|
|
train_10275
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: advanced
Target language: JavaScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"security_gates",
"auditability",
"cost_latency_tradeoffs",
"documentation"
],
"moe_experts": [
"agentic_systems_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ac8b06856b6646d55b0727d8fe570fac48cf3fbe
|
|
train_10276
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: advanced
Target language: SQL
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"evaluation_metrics",
"tests_are_truth",
"cost_latency_tradeoffs",
"security_gates"
],
"moe_experts": [
"performance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c614863007daaf5c65480572a7c47e0a733a163b
|
|
train_10277
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Governance, provenance, and licensing for code data
Difficulty: expert
Target language: Java
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"reproducibility",
"repo_scale_reasoning",
"tooling",
"auditability"
],
"moe_experts": [
"coding_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
493bc07c6a1053420e551c8693b99a0bdd0d7f60
|
|
train_10278
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
code
|
expert
|
Task: code
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: expert
Target language: Bash
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"security_gates",
"evaluation_metrics",
"repo_scale_reasoning",
"governance"
],
"moe_experts": [
"governance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b9834ae8bebf41646f3d3c912d5a804d3bbfd49f
|
|
train_10279
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
explain
|
expert
|
Task: explain
Topic: Self-improving agents and feedback loops
Difficulty: expert
Target language: Go
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Go",
"developer_needs": [
"auditability",
"security_gates",
"reproducibility",
"cost_latency_tradeoffs"
],
"moe_experts": [
"evaluation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e5e845325cdb4f1650c50e213790630a2b8ca6c5
|
|
train_10280
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
review
|
advanced
|
Task: review
Topic: Extended context and repo-scale understanding
Difficulty: advanced
Target language: Bash
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"evaluation_metrics",
"ci_integration",
"tests_are_truth",
"auditability"
],
"moe_experts": [
"coding_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
af9b7a7f3a45e896b966af5b370bd690f7150b26
|
|
train_10281
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
explain
|
expert
|
Task: explain
Topic: Mixture-of-Experts (MoE) for code
Difficulty: expert
Target language: TypeScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"ci_integration",
"reproducibility",
"tests_are_truth",
"security_gates"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
4c5bf6a351139aa6aa673fc582159a972a4eced0
|
|
train_10282
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
patch_diff
|
expert
|
Task: patch_diff
Topic: Extended context and repo-scale understanding
Difficulty: expert
Target language: Bash
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"governance",
"tooling",
"security_gates",
"auditability"
],
"moe_experts": [
"agentic_systems_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
6bdf63a7fbc37c86d1cd6e3d45ec1c09fe541418
|
|
train_10283
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: intermediate
Target language: Rust
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"reproducibility",
"documentation",
"evaluation_metrics",
"ci_integration"
],
"moe_experts": [
"governance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b263f3ba68d074f5ab8294be197d1e5ca833f901
|
|
train_10284
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
explain
|
expert
|
Task: explain
Topic: Tool calling, sandboxes, and CI integration
Difficulty: expert
Target language: SQL
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"repo_scale_reasoning",
"reproducibility",
"governance",
"cost_latency_tradeoffs"
],
"moe_experts": [
"agentic_systems_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
3707eaf7d2814f3d8599dac4512f88c8ea00c4ec
|
|
train_10285
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
explain
|
advanced
|
Task: explain
Topic: Mixture-of-Experts (MoE) for code
Difficulty: advanced
Target language: SQL
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"reproducibility",
"tooling",
"ci_integration",
"governance"
],
"moe_experts": [
"security_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
75c8e4f075fbfa174887f3620a5e2a113bc5ef03
|
|
train_10286
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
data_pipeline
|
advanced
|
Task: data_pipeline
Topic: SWE-bench style real-repo evaluation
Difficulty: advanced
Target language: TypeScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"security_gates",
"tooling",
"governance",
"tests_are_truth"
],
"moe_experts": [
"data_curation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
4fe84af7ea9439cddb6bbb89ce5ceca49c84ee84
|
|
train_10287
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
design
|
intermediate
|
Task: design
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: intermediate
Target language: Java
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Java",
"developer_needs": [
"auditability",
"tests_are_truth",
"repo_scale_reasoning",
"governance"
],
"moe_experts": [
"coding_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e68a0da6665682b104a06fdfb380eaea0dcfa6da
|
|
train_10288
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
explain
|
expert
|
Task: explain
Topic: Self-improving agents and feedback loops
Difficulty: expert
Target language: SQL
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"security_gates",
"tests_are_truth",
"cost_latency_tradeoffs",
"reproducibility"
],
"moe_experts": [
"data_curation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f8cf16fee1c7daa8e4e724a990d1befd072985c7
|
|
train_10289
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
review
|
advanced
|
Task: review
Topic: Self-improving agents and feedback loops
Difficulty: advanced
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "Python",
"developer_needs": [
"reproducibility",
"repo_scale_reasoning",
"security_gates",
"tooling"
],
"moe_experts": [
"coding_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f019442274a0cd5a6ca2e9ac4c1c54d80f410830
|
|
train_10290
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Model merging, distillation, and continued pretraining
Difficulty: expert
Target language: TypeScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"ci_integration",
"cost_latency_tradeoffs",
"documentation",
"tests_are_truth"
],
"moe_experts": [
"agentic_systems_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
2e623565fa2c242f77608b8d6126369f039c5fd8
|
|
train_10291
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
review
|
intermediate
|
Task: review
Topic: Tool calling, sandboxes, and CI integration
Difficulty: intermediate
Target language: Java
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"governance",
"reproducibility",
"tooling",
"documentation"
],
"moe_experts": [
"governance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
fe08846cb4ecd65e43a9a5c6b8bf2f46e9748a6a
|
|
train_10292
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: expert
Target language: TypeScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"tooling",
"reproducibility",
"repo_scale_reasoning",
"ci_integration"
],
"moe_experts": [
"governance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
99c7cda5a5365d8d6358967b7eb372d11b87bb93
|
|
train_10293
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
eval
|
intermediate
|
Task: eval
Topic: Governance, provenance, and licensing for code data
Difficulty: intermediate
Target language: Python
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"documentation",
"governance",
"reproducibility",
"tests_are_truth"
],
"moe_experts": [
"data_curation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
6e75c766bf558f0480d839d3e0bf66da585a5025
|
|
train_10294
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
review
|
intermediate
|
Task: review
Topic: Model merging, distillation, and continued pretraining
Difficulty: intermediate
Target language: Python
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"cost_latency_tradeoffs",
"repo_scale_reasoning",
"evaluation_metrics",
"tooling"
],
"moe_experts": [
"performance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
5d86d6979aecb8931222d7623d956f461c45358f
|
|
train_10295
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
compare
|
expert
|
Task: compare
Topic: Tool calling, sandboxes, and CI integration
Difficulty: expert
Target language: C#
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "C#",
"developer_needs": [
"tests_are_truth",
"evaluation_metrics",
"repo_scale_reasoning",
"auditability"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
863ff1b0deec664405e3806b051eff71521388ca
|
|
train_10296
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: SWE-bench style real-repo evaluation
Difficulty: intermediate
Target language: TypeScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"reproducibility",
"governance",
"evaluation_metrics",
"cost_latency_tradeoffs"
],
"moe_experts": [
"security_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
3ff3dab800d024e06185106ef4182841ce96a138
|
|
train_10297
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Latency, cost, and reliability optimization
Difficulty: intermediate
Target language: SQL
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"ci_integration",
"auditability",
"repo_scale_reasoning",
"documentation"
],
"moe_experts": [
"agentic_systems_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
962c12729106230186956fdac8d1b1251525ac28
|
|
train_10298
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
compare
|
expert
|
Task: compare
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: expert
Target language: Rust
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"tooling",
"auditability",
"security_gates",
"cost_latency_tradeoffs"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
df52108b142d67fa025de349cb6a28a6f9b84526
|
|
train_10299
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Secure code generation and policy gates
Difficulty: intermediate
Target language: Go
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Go",
"developer_needs": [
"documentation",
"governance",
"tests_are_truth",
"tooling"
],
"moe_experts": [
"security_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
24c0518c02487d34cbf33710e50841655eaf05aa
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.