problem_id
stringlengths 6
6
| user_id
stringlengths 10
10
| time_limit
float64 1k
8k
| memory_limit
float64 262k
1.05M
| problem_description
stringlengths 48
1.55k
| codes
stringlengths 35
98.9k
| status
stringlengths 28
1.7k
| submission_ids
stringlengths 28
1.41k
| memories
stringlengths 13
808
| cpu_times
stringlengths 11
610
| code_sizes
stringlengths 7
505
|
|---|---|---|---|---|---|---|---|---|---|---|
p02713
|
u627143908
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\nimport fractions\n\nk = input()\n\nsum = 0\nfor a in range(k):\n for b in range(k):\n x = fractions.gcd(a+1, b+1)\n for c in range(k):\n y = fractions.gcd(x, c+1)\n sum += y\nprint(sum)\n', 'import math\nk = int(input())\ntotal = 0\nfor a in range(1, k+1):\n for b in range(1, k+1):\n g1 = math.gcd(a, b)\n for c in range(1, k+1):\n g2 = math.gcd(g1, c)\n total += g2\nprint(total)\n\n']
|
['Runtime Error', 'Accepted']
|
['s761161098', 's099491810']
|
[10420.0, 9156.0]
|
[28.0, 1631.0]
|
[226, 222]
|
p02713
|
u627234757
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\n\nK = int(input())\nres = 0\nfor i in range(1, K+1):\n for j in range(1, K+1):\n for k in range(1, K+1):\n tmp = math.gcd(i, j)s\n res += math.gcd(tmp, k)\n\nprint(res)', 'from math import gcd\nn=int(input())\nans=0\nfor i in range(1,n+1):\n for j in range(1,n+1):\n for k in range(1,n+1):\n ans+=gcd(gcd(i,j),k)\nprint(ans)\n']
|
['Runtime Error', 'Accepted']
|
['s815920090', 's068300505']
|
[9024.0, 9172.0]
|
[22.0, 1880.0]
|
[203, 167]
|
p02713
|
u627600101
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math as np\nK=int(input())\ns=0\nd=0\nfor a in range(1,K+1):\n if a%2==0:\n for b in range(2,K+1,2):\n if a>b:\n if a%b==0:\n d=b\n else:\n d=np.gcd(a%b,b)\n if a<b:\n if b%a==0:\n d=a\n else:\n d=np.gcd(b%a,a)\n if a==b:\n d=a\n for c in range(2,K+1,2):\n if c>d:\n if c%d==0:\n s+=d\n else:\n s+=np.gcd(c%d,d)\n if c<d:\n if d%c==0:\n s+=c\n else:\n s+=np.gcd(d%c,c)\n if c==d:\n s+=c\n if a%2==1:\n for b in range(1,K+1,2):\n if a>b:\n if a%b==0:\n d=b\n else:\n d=np.gcd(a%b,b)\n if a<b:\n if b%a==0:\n d=a\n else:\n d=np.gcd(b%a,a)\n if a==b:\n d=a\n for c in range(1,K+1,2):\n if c>d:\n if c%d==0:\n s+=d\n else:\n s+=np.gcd(c%d,d)\n if c<d:\n if d%c==0:\n s+=c\n else:\n s+=np.gcd(d%c,c)\n if c==d:\n s+=c\n if K%2==0:\n s+=K**3-(K//2)**3-(k//2+1)**3\n else:\n s+=K**3-(K//2)**3-(k//2)**3\nprint(s)\n', 'import math as np\nK=int(input())\ns3=0\ns2=0\ns1=0\ns0=0\nfor a in range(1,K-1):\n for b in range(a+1,K):\n d=np.gcd(a,b)\n for c in range(b+1,K+1):\n s0+=np.gcd(c,d)\nfor a in range(1,K):\n for c in range(a+1,K+1):\n s1+=np.gcd(a,c)\nfor a in range(1,K):\n for b in range(a+1,K+1):\n s3+=np.gcd(a,b)\nfor k in range(K+1):\n s2+=k\nprint(s0*6+s1*3+s3*3+s2)\n \n\n ']
|
['Runtime Error', 'Accepted']
|
['s382054315', 's507665411']
|
[9304.0, 9212.0]
|
[21.0, 248.0]
|
[1644, 412]
|
p02713
|
u628285938
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from math import gcd\n\nK = int(input())\nans_list = list()\n"""\ndef gcd(a, b):\n if b==0:\n return a\n else:\n return gcd(b, a % b)\n"""\nfor X in range(1, K+1):\n ans = 0\n for i in range(1, X+1):\n for j in range(1, X+1):\n tmp = gcd(i, j)\n if tmp == 1:\n ans += tmp*X\n else:\n for k in range(1, X+1):\n ans += gcd(tmp, k)\n \n print(X, ans)\n ans_list.append(ans)\n \nprint(ans_list)\n', 'from math import gcd\n\nK = int(input())\n\n\nans = 0\nfor i in range(1, K+1):\n for j in range(1, K+1):\n tmp = gcd(i, j)\n if tmp == 1:\n ans += tmp*K\n else:\n for k in range(1, K+1):\n ans += gcd(tmp, k)\n \n\nprint(ans)']
|
['Wrong Answer', 'Accepted']
|
['s111724151', 's768353213']
|
[9140.0, 9104.0]
|
[2206.0, 504.0]
|
[509, 280]
|
p02713
|
u628707847
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\nfrom functools import reduce\ndef gcd(*numbers):\n return reduce(math.gcd, numbers)\n \nk = int(input())\nsum = 0\nfor a in xrange(1,k+1):\n for b in xrange(1,k+1):\n for c in xrange(1,k+1):\n sum += gcd(a,b,c)\nprint(sum)', 'import math\n\nk = int(input())\na = []\nresult = []\n\nfor i in range(1,k+1):\n for j in range(1,k+1):\n a.append(math.gcd(i,j))\n\nfor i in range(1,k+1):\n result.extend(math.gcd(n,i) for n in a)\n\nprint(sum(result))']
|
['Runtime Error', 'Accepted']
|
['s358141182', 's684250953']
|
[9576.0, 71752.0]
|
[25.0, 1020.0]
|
[251, 219]
|
p02713
|
u630467326
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from math import gcd\n\nk = int(input())\nans = 0\n\nfor i in range(1, k + 1):\n for j in range(1, k + 1):\n for t in range(1, k + 1):\n ans += gcd(gcd(i, j), k)\n\nprint(ans)', 'from math import gcd\n\nk = int(input())\nans = 0\n\nfor i in range(1, k + 1):\n for j in range(1, k + 1):\n ij = gcd(i, j)\n for t in range(1, k + 1):\n ans += gcd(ij, t)\n\nprint(ans)\n']
|
['Wrong Answer', 'Accepted']
|
['s607660553', 's889156625']
|
[9084.0, 8864.0]
|
[1805.0, 1162.0]
|
[174, 187]
|
p02713
|
u631755487
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from fractions import gcd\nimport itertools\nk = int(input())\n\nresult = 0\n\n\nfor i in range(1, k+1):\n result += i\n\n\nfor set in list(itertools.combinations(range(1, k+1), 2)):\n result += (gcd(set[0], set[1]))*6\n\n\nfor set in list(itertools.combinations(range(1, k+1), 3)):\n result += (gcd(gcd(set[0], set[1]), set[2]))*6\n\nprint(result)', 'from fractions import gcd\nk = int(input())\nresult = 0\n\n\nfor i in range(1, k+1):\n for j in range(i, k+1):\n for m in range(j, k+1):\n if i==j==m:\n result += i\n elif i==j or j==m:\n result += gcd(i, m)*3\n else:\n result += gcd(i, gcd(j,m))*6\nprint(result)', 'from fractions import gcd\nimport itertools\nk = int(input())\n\nresult = 0\n\n\nfor i in range(1, k+1):\n result += i\n\n\nfor i in range(1, k+1):\n liste = list(range(1, k+1))\n liste.pop(i-1)\n for j in liste:\n result += (gcd(i, j))*3\n\n\nfor set in list(itertools.combinations(range(1, k+1), 3)):\n result += (gcd(gcd(set[0], set[1]), set[2]))*6\n\nprint(result)\n\n', 'from math import gcd\nimport itertools\nk = int(input())\n \nresult = 0\n \n\nfor i in range(1, k+1):\n result += i\n \n\nfor set in list(itertools.combinations(range(1, k+1), 2)):\n result += (gcd(set[0], set[1]))*6\n \n\nfor set in list(itertools.combinations(range(1, k+1), 3)):\n result += (gcd(gcd(set[0], set[1]), set[2]))*6\n \nprint(result)']
|
['Time Limit Exceeded', 'Time Limit Exceeded', 'Time Limit Exceeded', 'Accepted']
|
['s238378508', 's388818338', 's692790525', 's047246433']
|
[104024.0, 10680.0, 104164.0, 102484.0]
|
[2208.0, 2205.0, 2208.0, 540.0]
|
[433, 364, 465, 433]
|
p02713
|
u635540732
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['def gcd(a, b):\n if b == 0:\n return a\n else:\n return gcd(b, a%b)\nk=int(input())\ncount=0\nfor a in range(k):\n for b in range(k):\n for c in range(k):\n count+=gcd(gcd(a,b),c)\nprint(count)', 'def gcd(a, b):\n if b == 0:\n return a\n else:\n return gcd(b, a%b)\nk=int(input())\ncount=0\ncount+=k*(k+1)//2\nfor i in range(1,k+1):\n for j in range(1,k+1):\n if i!=j:\n count+=3*gcd(i,j)\nfor a in range(1,k+1):\n for b in range(a+1,k+1):\n for c in range(b+1,k+1):\n count+=6*gcd(gcd(a,b),c)\nprint(count)']
|
['Wrong Answer', 'Accepted']
|
['s490490986', 's649373912']
|
[9116.0, 9204.0]
|
[2205.0, 1194.0]
|
[211, 332]
|
p02713
|
u636290142
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from math import gcd\nfrom itertools import permutations\n\nk = int(input())\nans = 0\n\nfor i in range(1, k+1):\n for j in range(i, k+1):\n for l in range(j, k+1):\n dup = len(set([i, j, l]))\n if dup == 1:\n num = 1\n elif dup == 2:\n num = len(list(permutations([i, j, l]))) / 2\n else:\n num = len(list(permutations([i, j, l])))\n ans += gcd(i, gcd(j, l)) * num\n\nprint(ans)\n', 'from math import gcd\nfrom itertools import permutations\n\nk = int(input())\nans = 0\n\nfor i in range(1, k+1):\n for j in range(i, k+1):\n for l in range(j, k+1):\n dup = len(set([i, j, l]))\n if dup == 1:\n num = 1\n elif dup == 2:\n num = len(list(permutations([i, j, l]))) / 2\n else:\n num = len(list(permutations([i, j, l])))\n ans += gcd(i, gcd(j, l)) * num\n\nprint(int(ans))\n']
|
['Wrong Answer', 'Accepted']
|
['s441485460', 's250753208']
|
[9208.0, 9204.0]
|
[1670.0, 1673.0]
|
[472, 477]
|
p02713
|
u637175065
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math,string,itertools,fractions,heapq,collections,re,array,bisect,sys,copy,functools\nimport time,random\n\nsys.setrecursionlimit(10**7)\ninf = 10**20\neps = 1.0 / 10**10\nmod = 10**9+7\nmod2 = 998244353\ndd = [(-1,0),(0,1),(1,0),(0,-1)]\nddn = [(-1,0),(-1,1),(0,1),(1,1),(1,0),(1,-1),(0,-1),(-1,-1)]\n\ndef LI(): return list(map(int, sys.stdin.readline().split()))\ndef LLI(): return [list(map(int, l.split())) for l in sys.stdin.readlines()]\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\ndef pf(s): return print(s, flush=True)\ndef pe(s): return print(str(s), file=sys.stderr)\ndef JA(a, sep): return sep.join(map(str, a))\ndef JAA(a, s, t): return s.join(t.join(map(str, b)) for b in a)\n\n\ndef main():\n k = I()\n r = k * k\n for a in range(2, k+1):\n for b in range(1, k+1):\n g = fractions.gcd(a, b)\n if g == 1:\n r += k\n continue\n for c in range(1, k+1):\n r += fractions.gcd(g, c)\n\n return r\n\n\nprint(main())\n\n\n\n', 'import math,string,itertools,fractions,heapq,collections,re,array,bisect,sys,copy,functools\nimport time,random\n\nsys.setrecursionlimit(10**7)\ninf = 10**20\neps = 1.0 / 10**10\nmod = 10**9+7\nmod2 = 998244353\ndd = [(-1,0),(0,1),(1,0),(0,-1)]\nddn = [(-1,0),(-1,1),(0,1),(1,1),(1,0),(1,-1),(0,-1),(-1,-1)]\n\ndef LI(): return list(map(int, sys.stdin.readline().split()))\ndef LLI(): return [list(map(int, l.split())) for l in sys.stdin.readlines()]\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\ndef pf(s): return print(s, flush=True)\ndef pe(s): return print(str(s), file=sys.stderr)\ndef JA(a, sep): return sep.join(map(str, a))\ndef JAA(a, s, t): return s.join(t.join(map(str, b)) for b in a)\n\n\ndef main():\n k = I()\n r = 0\n for a,b,c in itertools.combinations_with_replacement(range(1,k+1), 3):\n g = fractions.gcd(fractions.gcd(a,b), c)\n if a == b:\n if b == c:\n r += g\n else:\n r += g * 3\n elif b == c:\n r += g * 3\n else:\n r += g * 6\n\n return r\n\n\nprint(main())\n\n\n\n', 'import math,string,itertools,fractions,heapq,collections,re,array,bisect,sys,copy,functools\nimport time,random\n\nsys.setrecursionlimit(10**7)\ninf = 10**20\neps = 1.0 / 10**10\nmod = 10**9+7\nmod2 = 998244353\ndd = [(-1,0),(0,1),(1,0),(0,-1)]\nddn = [(-1,0),(-1,1),(0,1),(1,1),(1,0),(1,-1),(0,-1),(-1,-1)]\n\ndef LI(): return list(map(int, sys.stdin.readline().split()))\ndef LLI(): return [list(map(int, l.split())) for l in sys.stdin.readlines()]\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\ndef pf(s): return print(s, flush=True)\ndef pe(s): return print(str(s), file=sys.stderr)\ndef JA(a, sep): return sep.join(map(str, a))\ndef JAA(a, s, t): return s.join(t.join(map(str, b)) for b in a)\n\n\ndef main():\n k = I()\n r = 0\n for a,b,c in itertools.product(range(1,k+1), repeat=3):\n r += math.gcd(math.gcd(a,b), c)\n\n return r\n\n\nprint(main())\n\n\n\n']
|
['Time Limit Exceeded', 'Time Limit Exceeded', 'Accepted']
|
['s068758629', 's123148848', 's127063836']
|
[11196.0, 11200.0, 10960.0]
|
[2206.0, 2206.0, 1899.0]
|
[1242, 1309, 1094]
|
p02713
|
u637551956
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['#C\nimport math\nl=12\nm=4\nn=8\ndef gcd_great(l,m,n):\n p=math.gcd(l,m)\n q=math.gcd(p,n)\n return q\n\nk=int(input())\ngcd_list=[]\nfor h in range(1,k+1):\n for i in range(1,k+1):\n for j in range(1,k+1):\n gcd_num=gcd_great(h,i,j)\n gcd_list.append(gcd_num)\nsum(gcd_list)', '#C\nimport math\n\ndef gcd_great(l,m,n):\n p=math.gcd(l,m)\n q=math.gcd(p,n)\n return q\n\nk=int(input())\n\n\ngcd_sum=0\nfor i in range(1,k+1):\n for j in range(1,k+1):\n if i!=j:\n g=math.gcd(i,j)\n gcd_sum=gcd_sum+g*3\n\n\nfor a in range(1,k-1):\n for b in range(a+1,k):\n for c in range(b+1,k+1):\n gcd_sum+=gcd_great(a,b,c)*6\ngcd_sum+=int((k+1)*k*(1/2))\n\nprint(gcd_sum)']
|
['Wrong Answer', 'Accepted']
|
['s189375628', 's582572526']
|
[53708.0, 9228.0]
|
[2207.0, 544.0]
|
[299, 491]
|
p02713
|
u640922335
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from math import gdc\nK=int(input())\nans=0 \n\nfor i in range(1,K+1):\n for j in range(1,K+1):\n for l in range(1,K+1):\n ans+= gcd(gcd(l,j),i)\n\nprint(ans)', 'from math import gdc\nK=int(input())\nans=0 \n \nfor i in range(1,K+1):\n for j in range(1,K+1):\n for l in range(1,K+1):\n ans+= gcd(gcd(i,j),l)\n \nprint(ans)', 'from math import gcd\nK=int(input())\nans=0 \n \nfor i in range(1,K+1):\n for j in range(1,K+1):\n for l in range(1,K+1):\n ans+= gcd(gcd(l,j),i)\n \nprint(ans)']
|
['Runtime Error', 'Runtime Error', 'Accepted']
|
['s233189082', 's433375995', 's123709135']
|
[9112.0, 9012.0, 9176.0]
|
[22.0, 19.0, 1980.0]
|
[158, 160, 160]
|
p02713
|
u643679148
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['\n\nfrom math import gcd as g\n\n\nk = int(input())\nans = 0\nfor a in range(1, k+1):\n for b in range(k+1):\n temp = g(a, b)\n for c in range(k+1):\n ans += g(temp, c)\n\n\nprint(ans)\n', '\n\nimport math\nrst = 0\nK = int(input())\nfor i in range(1, K + 1):\n for j in range(1, K + 1):\n tmp = math.gcd(i, j)\n for k in range(1, K + 1):\n rst += math.gcd(k, tmp)\n print(rst)\n', '\n\nfrom math import gcd as g\n\nk = int(input())\nans = 0\nfor a in range(1, k+1):\n for b in range(k+1):\n for c in range(k+1):\n ans += g(g(a, b), c)\n\n\nprint(ans)\n', '\n\nfrom math import gcd as g\n\n\nk = int(input())\nans = 0\nfor a in range(1, k+1):\n for b in range(1, k+1):\n temp = g(a, b)\n for c in range(1, k+1):\n ans += g(temp, c)\n\n\nprint(ans)\n']
|
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
|
['s024981481', 's035366321', 's134692176', 's102562170']
|
[9052.0, 44452.0, 9168.0, 9056.0]
|
[1109.0, 2250.0, 1938.0, 1124.0]
|
[199, 217, 178, 205]
|
p02713
|
u645436608
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['def gcd(a, b):\n while b:\n a, b = b, a % b\n return a\n\n\nK = int(input())\n\nsum_gcd = 0\ncand = itertools.combinations(K, 3))\nfor i in range(1, K + 1):\n for j in range(1, K + 1):\n g=gcd(i, j)\n for k in range(1, K + 1):\n sum_gcd += gcd(g, k)\nprint(sum_gcd)', 'import functools\nimport itertools\n\n\ndef euclid(a, b):\n while b:\n a, b = b, a % b\n return a\n\n\ndef gcd(nums):\n return functools.reduce(euclid, nums)\n\n\nK = int(input())\n\nsum_gcd = 0\ncand = list(itertools.combinations_with_replacement(range(1, K + 1), 3))\nfor nums in cand:\n sum_gcd += gcd(nums)\nprint(sum_gcd)\n', 'def gcd(a, b):\n while b:\n a, b = b, a % b\n return a\n\n\nK = int(input())\n\nsum_gcd = 0\nfor i in range(1, K + 1):\n for j in range(1, K + 1):\n g = gcd(i, j)\n for k in range(1, K + 1):\n sum_gcd += gcd(g, k)\nprint(sum_gcd)']
|
['Runtime Error', 'Wrong Answer', 'Accepted']
|
['s537418996', 's710928185', 's480687842']
|
[9024.0, 106080.0, 9192.0]
|
[19.0, 1051.0, 1857.0]
|
[291, 326, 256]
|
p02713
|
u646412443
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from fractions import gcd\nk = int(input())\nans = 0\nfor a in range(1, k+1):\n for b in range(1, k+1):\n for c in range(1, k+1):\n ans += gcd(gcd(a, b), c)\nprint(ans)\n', 'from math import gcd\nk = int(input())\nans = 0\nfor a in range(1, k+1):\n for b in range(1, k+1):\n d = gcd(a, b)\n for c in range(1, k+1):\n ans += gcd(d, c)\nprint(ans)\n']
|
['Time Limit Exceeded', 'Accepted']
|
['s065830506', 's078207586']
|
[10640.0, 9180.0]
|
[2206.0, 1142.0]
|
[183, 192]
|
p02713
|
u647087591
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\nfrom functools import reduce\nK = int(input())\nsum = 0\nfor a in range(1, K+1):\n for b in range(1, K+1):\n for c in range(1, K+1):\n nums = [a, b, c]\n gcd = reduce(math.gcd, nums)\n print(a, b, c, gcd)\n sum += gcd\nprint(sum)', 'from math import gcd\nK = int(input())\nsum = 0\nfor a in range(1, K+1):\n for b in range(1, K+1):\n p = gcd(a, b)\n for c in range(1, K+1):\n sum += gcd(p, c)\nprint(sum)']
|
['Wrong Answer', 'Accepted']
|
['s755342200', 's155221949']
|
[21108.0, 9184.0]
|
[2234.0, 1099.0]
|
[285, 191]
|
p02713
|
u647679586
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['# P3:\ndef get_gcd(numbers):\n """Helper function to get GCD of list of numbers."""\n import math\n from functools import reduce\n\n if 1 in numbers:\n return 1\n\n # gcd is associative\n return reduce(lambda x, y: math.gcd(x, y), numbers)\n\n\ndef sum_of_gcd_tuples():\n K = int(input())\n total = 0\n for a in range(1, K + 1):\n for b in range(1, K + 1):\n for c in range(1, K + 1):\n total += get_gcd([a, b, c])\n\n print(total)', 'def sum_of_gcd_tuples():\n from math import gcd\n K = int(input())\n total = 0\n\n for a in range(1, K + 1):\n for b in range(1, K + 1):\n for c in range(1, K + 1):\n total += gcd(gcd(a, b), c)\n\n print(total)\n\n\nsum_of_gcd_tuples()']
|
['Wrong Answer', 'Accepted']
|
['s296829662', 's291728323']
|
[9072.0, 9200.0]
|
[22.0, 1283.0]
|
[480, 270]
|
p02713
|
u647796955
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['K=int(sys.stdin.readline().rstrip())\n\ndef gcd(a,b):\n\n if a < b:\n a, b = b, a\n while a % b != 0:\n a, b = b, a % b\n return b\n\ncnt1 = 0\ncnt2 = 0\ncnt3 = 0\nfor n1 in range(K):\n for n2 in range(K):\n temp = gcd(n1+1, n2+1)\n for n3 in range(K):\n cnt3 += gcd(temp, n3+1)\n \n\nans = cnt1 + cnt2 + cnt3\nprint(ans)', 'import sys\n\nK=int(sys.stdin.readline().rstrip())\n \ndef gcd(a,b):\n\n if a < b:\n a, b = b, a\n while a % b != 0:\n a, b = b, a % b\n return b\n\ncnt1 = 0\ncnt2 = 0\ncnt3 = 0\nfor n1 in range(0,K):\n cnt1 += n1+1\n for n2 in range(n1+1, K):\n temp = gcd(n1+1, n2+1)\n cnt2 += temp*6\n for n3 in range(n2+1, K):\n cnt3 += gcd(temp, n3+1)*6\n \n\nans = cnt1 + cnt2 + cnt3\nprint(ans)']
|
['Runtime Error', 'Accepted']
|
['s204428591', 's727131458']
|
[9076.0, 9212.0]
|
[22.0, 362.0]
|
[358, 427]
|
p02713
|
u655048024
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from math import gcd\nk = int(input())\nans = 0\nfor i in range(1,k+1):\n for j in range(1,k+1):\n v = gcd(i,j)\n for m in range(1,k+1):\n ans += math.gcd(v,m)\nprint(ans)', 'import math\nk = int(input())\nans = 0\nfor i in range(1,k+1):\n ans += i\n for j in range(i+1,k+1):\n for m in range(j+1,k+1):\n ans += 3*math.gcd(math.gcd(i,j),m)\nprint(ans)', 'import math\nk = int(input())\nans = 0\nfor i in range(1,k+1):\n ans += i\n for j in range(i+1,k+1):\n for m in range(j+1,k+1):\n ans += 3*math.gcd(math.gcd(i,j),m)\nprint(i)', 'import math\nk = int(input())\nans = 0\nfor i in range(1,k+1):\n ans += i\n for j in range(i+1,k+1):\n for m in range(m+1,k+1):\n ans += 3*math.gcd(math.gcd(i,j),m)\nprint(ans)', 'import math \nk = int(input())\nans = 0\nfor i in range(1,k+1):\n for j in range(1,k+1):\n v = math.gcd(i,j)\n for m in range(1,k+1):\n ans += math.gcd(v,m)\nprint(ans)\n']
|
['Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Accepted']
|
['s251920577', 's774494054', 's775602610', 's979223308', 's801946015']
|
[9132.0, 9184.0, 9176.0, 9124.0, 9180.0]
|
[22.0, 419.0, 442.0, 23.0, 1417.0]
|
[175, 178, 176, 178, 173]
|
p02713
|
u658447090
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from itertools import product\nfrom functools import reduce\n# import math\n\ndef gcd(a, b):\n while b:\n a, b = b, a % b\n return b\n \ndef gcd_three(tup):\n return reduce(lambda a, b: gcd(a, b), tup)\n\n\nK = int(input())\nlst = range(1, K+1)\nSum = 0\n\nfor tup in product(lst, lst, lst):\n Sum += gcd_three(tup)\n \nprint(Sum)', 'from math import gcd\nk=int(input())\nans=0\nfor i in range(1,k+1):\n for j in range(1,k+1):\n ans_=gcd(i,j)\n for l in range(1,k+1):\n ans+=gcd(ans_,l)\nprint(ans)']
|
['Wrong Answer', 'Accepted']
|
['s046375511', 's952412949']
|
[9652.0, 9188.0]
|
[2206.0, 1165.0]
|
[321, 184]
|
p02713
|
u658627575
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\nK = int(input())\n\nsum = 0\nfor i in range(1,K+1):\n\tfor j in range(1,K+1):\n\t\ttemp = math.gcd(i,j)\n\t\tfor m in range(1,K+1):\n\t\t\tsum = sum + math.gcv(temp,m)\n\nprint(sum)', 'import math\nK = int(input())\n\nsum = 0\nfor i in range(1,K+1):\n\tfor j in range(1,K+1):\n\t\ttemp = math.gcd(i,j)\n\t\tfor m in range(1,K+1):\n\t\t\tsum = sum + math.gcd(temp,m)\n\nprint(sum)']
|
['Runtime Error', 'Accepted']
|
['s713023215', 's290579503']
|
[9176.0, 9140.0]
|
[23.0, 1325.0]
|
[176, 176]
|
p02713
|
u658915215
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['#162C\n#Sum of gcd of Tuples (Easy)\n\nimport math\n\nk=int(input())+1\nans=0\nfor a in range(1,k):\n for b in range(1,k):\n g=math.gcd(a,b)\n for c in range(1,k):\n ans+=gcd(g,c)\nprint(ans)', '#162C\n#Sum of gcd of Tuples (Easy)\n\nimport math\n\nk=int(input())+1\nans=0\nfor a in range(1,k):\n for b in range(1,k):\n g=math.gcd(a,b)\n for c in range(1,k):\n ans+=math.gcd(g,c)\nprint(ans)']
|
['Runtime Error', 'Accepted']
|
['s760905481', 's953081344']
|
[9164.0, 9116.0]
|
[30.0, 1319.0]
|
[207, 212]
|
p02713
|
u658987783
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\n\nn=int(input())\n\nsum=0\nfor i in range(1,n):\n for j in range(1,n):\n for k in range(1,n):\n y=[[i,j,k]]\n for h in range(z):\n x=math.gcd(h[0],h[1],h[2])\n sum=sum+x\nprint(sum)', 'import math\n\nn=int(input())\n\nsum=0\nfor i in range(1,n+1):\n for j in range(1,n+1):\n x=math.gcd(i,j)\n for h in range(1,n+1):\n p=math.gcd(x,h)\n sum=sum+p\nprint(sum)']
|
['Runtime Error', 'Accepted']
|
['s859981993', 's909014542']
|
[9204.0, 9188.0]
|
[23.0, 1549.0]
|
[210, 186]
|
p02713
|
u660899380
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['a = input()\na = int(a)\nsum = 0\nfor i in range(1,a+1):\n for j in range(1,a+1):\n for k in range(1,a+1):\n for b in [a:0:-1]:\n if i%b==0 and j%b==0 and k%b==0:\n sum += b\nprint(b)', 'import math\nK = int(input())\nsum = 0\nfor i in range(1, K+1):\n for j in range(i, K+1):\n #2i or 3i\n if (i == j):\n for k in range(i, K+1):\n #print("i"+str(i)+"j"+str(j)+"k"+str(k))\n if ((i == j) and (i == k)):\n sum += math.gcd(i, math.gcd(j, k))\n else:\n sum += (3*math.gcd(i, math.gcd(j, k)))\n #1i\n else:\n for k in range(i+1, K+1):\n #print("i"+str(i)+"j"+str(j)+"k"+str(k))\n sum += (3*math.gcd(i, math.gcd(j, k)))\n \nprint(sum)\n \n \n ']
|
['Runtime Error', 'Accepted']
|
['s563958767', 's414734471']
|
[9052.0, 9200.0]
|
[23.0, 893.0]
|
[199, 521]
|
p02713
|
u662396511
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['k = int(input())\nsum_ans = 0\nfor a in range(1, k+1):\n for b in range(1, k+1):\n gcd_ab = gcd(a, b)\n for c in range(1, k+1):\n gcd_abc = gcd(gcd_ab, c)\n sum_ans += gcd_abc\nprint(sum_ans)', 'import math\n\nk = int(input())\nans = 0\nfor a in range(1, k+1):\n for b in range(1, k+1):\n gcd_ab = math.gcd(a, b)\n for c in range(1, k+1):\n ans += math.gcd(gcd_ab, c)\nprint(ans)']
|
['Runtime Error', 'Accepted']
|
['s006278869', 's041056358']
|
[9132.0, 9116.0]
|
[22.0, 1408.0]
|
[222, 203]
|
p02713
|
u663710122
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from fractions import gcd\n\nK = int(input())\n\nres = 0\nfor a in range(1, K + 1):\n for b in range(1, K + 1):\n for c in range(1, K + 1):\n res += gcd(gcd(a, b), c)\n\nprint(res)', 'from math import gcd\n\nK = int(input())\n\nres = 0\nfor a in range(1, K + 1):\n for b in range(1, K + 1):\n for c in range(1, K + 1):\n res += gcd(gcd(a, b), c)\n\nprint(res)']
|
['Time Limit Exceeded', 'Accepted']
|
['s093148846', 's011460325']
|
[10680.0, 9164.0]
|
[2206.0, 1913.0]
|
[191, 186]
|
p02713
|
u665078057
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\n\nk = int(input())\nans = 0\nlst = []\nfor a in range(2, k+1):\n for b in range(2, k+1):\n lst.append(math.gcd(a, b))\nfor d in lst:\n for c in range(2, k+1):\n ans += math.gcd(c, d)\nappe = 200**3 - 199**3\nans += appe\nprint(ans)', 'import math\n\nk = int(input())\nans = 0\nlst = []\nfor a in range(2, k+1):\n for b in range(2, k+1):\n lst.append(math.gcd(a, b))\nfor d in lst:\n for c in range(2, k+1):\n ans += math.gcd(c, d)\nappe = k**3 - (k-1)**3\nans += appe\nprint(ans)']
|
['Wrong Answer', 'Accepted']
|
['s944275990', 's016653693']
|
[9436.0, 9372.0]
|
[1309.0, 1206.0]
|
[243, 243]
|
p02713
|
u667024514
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\nn = int(input())\nlis = [[0] * n for i in range(n)]\nfor i in range(n):\n for j in range(n):\n lis[i][j] = math.gcd(i+1,j+1)\nans = 0\nfor i in range(n):\n for j in range(n):\n for k in range(n):\n ans += lis[i][lis[k][j]]\nprint(ans)', 'import math\nn = int(input())\nlis = [[0] * n for i in range(n)]\nfor i in range(n):\n for j in range(n):\n lis[i][j] = math.gcd(i+1,j+1)\nans = 0\nfor i in range(n):\n for j in range(n):\n for k in range(n):\n ans += lis[i][lis[k][j]-1]\nprint(ans)\n']
|
['Runtime Error', 'Accepted']
|
['s043567407', 's439747619']
|
[9428.0, 9304.0]
|
[36.0, 1464.0]
|
[249, 252]
|
p02713
|
u671060652
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import itertools\nimport math\nimport fractions\nimport functools\nk = int(input())\n\n\n\nsum = 0\nfor i in range(1,k+1):\n for j in range(1,k+1):\n gcd1 = fractions.gcd(i, j)\n for l in range(1,k+1):\n sum += fractions.gcd(gcd1,l)\n\nprint(sum)', 'import itertools\nimport math\nimport fractions\nimport functools\nk = int(input())\nh_list = []\n \n \nfor i in range(1,k+1):\n for j in range(1,k+1):\n for l in range(1,k+1):\n h_list.append([i,j,l])\n \nsum = 0\nfor i in range(len(h_list)):\n a = fractions.gcd(h_list[i][0], h_list[i][1])\n sum += fractions.gcd(a,h_list[i][2])\n \nprint(sum)', 'import itertools\nimport math\nimport fractions\nimport functools\nk = int(input())\n\n\n\nsum = 0\nfor i in range(1,k+1):\n for j in range(1,k+1):\n gcd1 = math.gcd(i, j)\n for l in range(1,k+1):\n sum += math.gcd(gcd1,l)\n\nprint(sum)']
|
['Time Limit Exceeded', 'Time Limit Exceeded', 'Accepted']
|
['s330439786', 's387720332', 's747847046']
|
[10556.0, 470624.0, 10360.0]
|
[2206.0, 2220.0, 1462.0]
|
[259, 354, 249]
|
p02713
|
u684267998
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\nn = int(input())\nans = 0\nfor i in range(1,n+1):\n for j in range(1,n+1):\n jj = math.gcd(i,j)\n for k in range(1,n+1):\n ans+=math.gcd(jj,k)\nprint(ans)', 'from math import gcd\nn = int(input())\nans = 0\nfor i in range(1,n+1):\n for j in range(1,n+1):\n for k in range(1,n+1):\n ans+=gcd(gcd(i,j),k)\nprint(ans)']
|
['Runtime Error', 'Accepted']
|
['s677282607', 's232982638']
|
[9028.0, 9180.0]
|
[22.0, 1974.0]
|
[185, 170]
|
p02713
|
u684906944
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import numpy as np\nimport math\nfrom functools import reduce\n\n\n# return reduce(math.gcd, numbers)\n\n\n# return reduce(math.gcd, numbers)\n\nk = int(input())\n\nans_array = np.zeros((k, k, k), dtype = np.int)\n\nfor i in range(k):\n for j in range(k):\n for h in range(k):\n ans_array[i, j, h] = math.gcd(math.gcd(i+1, j+1), h+1)\n\n# print(ans_array)\n\nans = np.sum(ans_array)\n\nprint(ans)', 'import numpy as np\nimport math\nfrom functools import reduce\n\ndef gcd(*numbers):\n return reduce(math.gcd, numbers)\n\ndef gcd_list(numbers):\n return reduce(math.gcd, numbers)\n\nk = int(input())\n\nans_array = np.zeros((k, k, k), dtype = np.int)\n\nfor i in range(k):\n for j in range(k):\n for h in range(k):\n if ans_array[i, j, h] == 0:\n m_gcd = gcd(i+1, j+1, h+1)\n ans_array[i, j, h] = m_gcd\n if ans_array[i, h, j] == 0:\n ans_array[i, h, j] = m_gcd\n if ans_array[h, j, i] == 0:\n ans_array[h, j, i] = m_gcd\n\n# print(ans_array)\nans = np.sum(ans_array)\n\nprint(ans)', 'import math\n\nk = int(input())\n\nans = 0\n\nfor i in range(k):\n for j in range(i,k):\n for h in range(j, k):\n if i == j == h:\n ans += math.gcd(math.gcd(i+1, j+1), h+1)\n elif (i != j) and (j != h) and (i != h):\n ans += math.gcd(math.gcd(i+1, j+1), h+1) * 6\n else:\n \tans += math.gcd(math.gcd(i+1, j+1), h+1) * 3\n \nprint(ans)']
|
['Time Limit Exceeded', 'Time Limit Exceeded', 'Accepted']
|
['s361590775', 's864244530', 's183120701']
|
[68600.0, 71104.0, 9208.0]
|
[2207.0, 2207.0, 687.0]
|
[434, 614, 360]
|
p02713
|
u685998974
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from math import gcd\n\nk = int(input())\n\nresult = 0\nfor a in range(1, k + 1):\n if a == 1:\n result += 1\n continue\n for b in range(1, k + 1):\n if b == 1:\n result += 1\n continue\n for c in range(1, k + 1):\n result += gcd(gcd(a, b), c)\n\nprint(result)\n', 'from math import gcd\n\nk = int(input())\n\nresult = 0\nfor a in range(1, k + 1):\n if a == 1:\n result += k ** 2\n continue\n for b in range(1, k + 1):\n if b == 1:\n result += k\n continue\n for c in range(1, k + 1):\n result += gcd(gcd(a, b), c)\n\nprint(result)\n']
|
['Wrong Answer', 'Accepted']
|
['s433225995', 's091922218']
|
[9184.0, 9192.0]
|
[1876.0, 1785.0]
|
[312, 317]
|
p02713
|
u686036872
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\n\nK = int(input())\n\nans = 0\nfor i in range(1, K+1):\n for j in range(1, K+1):\n x = math.gcd(i, j)\n for k in range(1, K+1):\n count += math.gcd(x, k)\n\nprint(ans)', 'from functools import reduce\nfrom fractions import gcd\n\nK = int(input())\nA = []\nfor i in range(2, K+1):\n if K%i == 0:\n A.append(i)\n\nans = 0\nfor a in range(1, K+1):\n for b in range(1, K+1):\n for c in range(1, K+1):\n if a in A and b in A and c in A:\n ans += reduce(gcd, [a, b, c])\n else:\n ans += 1\nprint(ans)', 'import math\n\nK = int(input())\n\nans = 0\nfor i in range(1, K+1):\n for j in range(1, K+1):\n x = math.gcd(i, j)\n for k in range(1, K+1):\n ans += math.gcd(x, k)\n\nprint(ans)']
|
['Runtime Error', 'Wrong Answer', 'Accepted']
|
['s121194006', 's343124694', 's532233267']
|
[9188.0, 10740.0, 9180.0]
|
[21.0, 1905.0, 1279.0]
|
[197, 378, 195]
|
p02713
|
u686230543
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['k = int(input())\n\ncount = [pow(k // max(i, 1), 3, mod) for i in range(k + 1)]\n\nfor i in range(k, 0, -1):\n for j in range(2 * i, k + 1, i):\n count[i] -= count[j]\n\nsum_ = 0\nfor i in range(k + 1):\n sum_ += i * count[i]\n\nprint(sum_)', 'k = int(input())\n\ncount = [pow(k // max(i, 1), 3) for i in range(k + 1)]\n\nfor i in range(k, 0, -1):\n for j in range(2 * i, k + 1, i):\n count[i] -= count[j]\n\nsum_ = 0\nfor i in range(k + 1):\n sum_ += i * count[i]\n\nprint(sum_)']
|
['Runtime Error', 'Accepted']
|
['s807432728', 's984868175']
|
[9204.0, 9196.0]
|
[22.0, 21.0]
|
[233, 228]
|
p02713
|
u686318881
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['k=int(input())\nd=0\nfor a in range(1,k+1) :\n for b in range(1,k+1):\n for c in range(1,k+1):\n d+=gcd(a,b,c)\nprint(d)', 'k=int(input())\nd=0\nfor a in range(1,k+1) :\n for b in range(1,k+1):\n i=gcd(a,b)\n for c in range(1,k+1):\n d+=gcd(i,c)\nprint(d)\n', 'import numpy as np\nk=int(input())\nd=0\nfor a in range(1,k+1) :\n for b in range(1,k+1):\n for c in range(1,k+1):\n d+=gcd(a,b,c)\nprint(d)', 'import math\nd=0\nk=int(input())\nfor a in range(1,k+1) :\n for b in range(1,k+1):\n x=math.gcd(a,b)\n for c in range(1,k+1):\n d+=math.gcd(x,c)\nprint(d)']
|
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
|
['s407694124', 's508765980', 's966565669', 's912631265']
|
[9176.0, 9176.0, 27132.0, 9192.0]
|
[22.0, 21.0, 103.0, 1304.0]
|
[135, 153, 154, 174]
|
p02713
|
u687135117
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\nimport itertools\nGCD_over_150=[4548003,4616104,4718640,4812789,4918561,5003286,5131848,5205481,5299011,5392008,5521384,5610705,5739009,5818390,5930196,6052893,6156139,6239472,6402720,6493681,6623853,6741078,6864016,6953457,7094451,7215016,7359936,7475145,7593865,7689630,7886244,7984165,8130747,8253888,8403448,8523897,8684853,8802826,8949612,9105537,9267595,9376656,9574704,9686065,9827097,9997134,10174780,10290813,10493367,10611772,10813692]\n\nN=int(input())\nif N<150:\n GCD=[]\n GCD1=[]\n for i in range (1,N+1):\n\t GCD.append(i)\n for i in itertools.product(GCD,repeat=3):\n\t\tGCD1.append(math.gcd(math.gcd(i[0],i[1]),i[2]))\n\tprint(sum(GCD1)) \nelse:\n print(GCD_over_150[N-150])', 'import math\nimport itertools\nfrom functools import reduce\nN=int(input())\ndef A(i):\n def gcd(*numbers):\n return reduce(math.gcd, numbers)\n\n GCD=[]\n GCD1=[]\n for i in range (1,N+1):\n GCD.append(i)\n\n for i in itertools.product(GCD,repeat=3):\n \n GCD1.append(gcd(i[0],i[1],i[2]))\n \n return sum(GCD1) \nfor i in range of (150,200)\nprint(A(N))\n', 'import math\nimport itertools\nfrom functools import reduce\nN=int(input())\ndef A(i):\n def gcd(*numbers):\n return reduce(math.gcd, numbers)\n\n GCD=[]\n GCD1=[]\n for i in range (1,N+1):\n GCD.append(i)\n\n for i in itertools.product(GCD,repeat=3):\n \n GCD1.append(gcd(i[0],i[1],i[2]))\n \n return sum(GCD1) \nfor i in range of (150,200)\nprint(A(N))\n', 'import math\nimport itertools\nGCD_over_150=[4548003,4616104,4718640,4812789,4918561,5003286,5131848,5205481,5299011,5392008,5521384,5610705,5739009,5818390,5930196,6052893,6156139,6239472,6402720,6493681,6623853,6741078,6864016,6953457,7094451,7215016,7359936,7475145,7593865,7689630,7886244,7984165,8130747,8253888,8403448,8523897,8684853,8802826,8949612,9105537,9267595,9376656,9574704,9686065,9827097,9997134,10174780,10290813,10493367,10611772,10813692]\n \nN=int(input())\nif N<150:\n\tGCD=[]\n\tGCD1=[]\n\tfor i in range (1,N+1):\n\t\tGCD.append(i)\n\tfor i in itertools.product(GCD,repeat=3):\n\t\tGCD1.append(math.gcd(math.gcd(i[0],i[1]),i[2]))\n\tprint(sum(GCD1)) \nelse:\n print(GCD_over_150[N-150])']
|
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
|
['s457688880', 's711435791', 's737421289', 's036332339']
|
[9080.0, 8912.0, 8952.0, 22620.0]
|
[19.0, 22.0, 21.0, 626.0]
|
[707, 380, 380, 693]
|
p02713
|
u688219499
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['N=int(input())\nS=str(input())\nlist_R=[]\nlist_G=[]\nlist_B=[]\ncount=0\nfor i in range(N):\n if S[i]=="R":\n list_R.append(i)\n if S[i]=="G":\n list_G.append(i)\n if S[i]=="B":\n list_B.append(i)\nfor i in range(N):\n for j in range(N):\n if i+2*j>N-1:\n break\n if S[i]!=S[i+j] and S[i+j]!=S[i+j*2] and S[i+2*j]!=S[i]:\n count=count+1\n\nprint(len(list_B)*len(list_G)*len(list_R)-count)\n \n', 'import math as np\nK=int(input())\nP=0\nfor i in range(1,K+1):\n for j in range(1,K+1):\n l=np.gcd(i,j)\n\n for k in range(1,K+1):\n m=np.gcd(l,k)\n P=m+P\nprint(P)\n']
|
['Runtime Error', 'Accepted']
|
['s084266586', 's972955570']
|
[9240.0, 9152.0]
|
[21.0, 1553.0]
|
[448, 194]
|
p02713
|
u689890477
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\nk = int(input())\nb = 7/2*k*k - 5/2*k + 1\nfor i in range(2,k+1):\n for j in range(2,k+1):\n ij = math.gcd(i,j)\n for m in range(2,k+1):\n if i==k and i == m:\n continue\n b += math.gcd(ij,m)\nprint(int(b))\n ', 'import math\nk = int(input())\nb = 3*k*k - 3*k + 1\nfor i in range(2,k+1):\n for j in range(2,k+1):\n ij = math.gcd(i,j)\n for m in range(2,k+1):\n b += math.gcd(ij,m)\nprint(b)']
|
['Wrong Answer', 'Accepted']
|
['s553489083', 's240778514']
|
[9152.0, 9116.0]
|
[1691.0, 1335.0]
|
[276, 197]
|
p02713
|
u693011732
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math \n\nmysum = 0\nK = int(input())\nfor i in range(1,K+1):\n\tfor j in range(1,K+1):\n\t\tfor k in range(1,K+1):\n\t\t\tmysum += math.gcd(math.gcd(x,y),z)\n\nprint(mysum)', 'from math import gcd \n\nmysum = 0\nK = int(input())\nfor i in range(1,K+1):\n\tfor j in range(1,K+1):\n\t\tfor k in range(1,K+1):\n\t\t\tmysum += gcd(gcd(i,j),k)\n\nprint(mysum)\n']
|
['Runtime Error', 'Accepted']
|
['s499975542', 's121115723']
|
[9164.0, 9132.0]
|
[22.0, 1926.0]
|
[164, 164]
|
p02713
|
u693173434
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from fractions import math\n\nk = int(input())\n\ng =[gcd(math.gcd(i+1, j+1), l+1) for i in range(k) for j in range(k) for l in range(k)]\nprint(sum(g))', 'import math\nk = int(input())\n\nsm=0\nfor i in range(1,k+1):\n for l in range(1,k+1):\n gcdab=math.gcd(i,l)\n for m in range(1,k+1):\n sm+=math.gcd(gcdab,m)\n\nprint(sm)']
|
['Runtime Error', 'Accepted']
|
['s956333906', 's540530074']
|
[10456.0, 9148.0]
|
[31.0, 1344.0]
|
[147, 188]
|
p02713
|
u697101155
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from fractions import *\n\nK = int(input())\n\nans = 0\nfor i in range(1, K+1):\n for j in range(i, K+1):\n for k in range(j, K+1):\n if i == j and j == k and k == i:\n ans += i\n elif i != j and j != k and k != i:\n ans += gcd(gcd(i, j), k) * 6\n else:\n ans += gcd(gcd(i, j), k) * 3\n\nprint(ans)', 'from fractions import *\n\nK = int(input())\n\nans = 0\nfor i in range(1, K+1):\n for j in range(i, K+1):\n for k in range(j, K+1):\n if i == j and j == k and k == i:\n ans += i\n elif i != j and j != k and k != i:\n ans += gcd(gcd(i, j), gcd(j, k)) * 6\n else:\n ans += gcd(gcd(i, j), gcd(j, k)) * 3\n\nprint(ans)', 'from math import *\n\nK = int(input())\n\nans = 0\nfor i in range(1, K+1):\n for j in range(i, K+1):\n for k in range(j, K+1):\n ans += gcd(i, j, k)\n\nprint(ans)', 'from math import *\n\nK = int(input())\n\nans = 0\nfor i in range(1, K+1):\n for j in range(i, K+1):\n tmp = gcd(i, j)\n for k in range(j, K+1):\n ans += gcd(tmp, k)\n\nprint(ans)', 'from fractions import *\n\nK = int(input())\n\nans = 0\nfor i in range(1, K+1):\n for j in range(i, K+1):\n for k in range(j, K+1):\n if i == j and j == k and k == i:\n ans += i\n elif i != j and j != k and k != i:\n ans += gcd(gcd(i, j), k) * 6\n else:\n ans += gcd(gcd(i, j), k) * 3\n\nprint(ans)', 'from math import *\n\nK = int(input())\n\nans = 0\nfor i in range(1, K+1):\n for j in range(1, K+1):\n tmp = gcd(i, j)\n for k in range(1, K+1):\n ans += gcd(tmp, k)\n\nprint(ans)']
|
['Time Limit Exceeded', 'Time Limit Exceeded', 'Runtime Error', 'Wrong Answer', 'Time Limit Exceeded', 'Accepted']
|
['s397110164', 's490623712', 's533843494', 's642287802', 's888716694', 's678285515']
|
[10584.0, 10676.0, 9180.0, 9168.0, 10560.0, 9076.0]
|
[2206.0, 2206.0, 22.0, 231.0, 2206.0, 1179.0]
|
[371, 387, 173, 196, 371, 196]
|
p02713
|
u697386253
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['k = int(input())\n \ndef gcd2(a,b):\n return gcd2(b,a%b)\n\ndef gcd3(a,b,c):\n return gcd2(gcd2(a,b), c)\n\nans = 0\nfor i in range(1,k+1):\n for j in range(i,k+1):\n for m in range(j, k+1):\n if i == j == m:\n ans += gcd3(i,j,m)\n elif i == j or j == m:\n ans += gcd3(i,j,m)*3\n else:\n ans += gcd3(i,j,m)*6\n\nprint(ans)', 'k = int(input())\n \ndef gcd2(a,b):\n if b == 0:\n return a\n return gcd2(b,a%b)\n\ndef gcd3(a,b,c):\n return gcd2(gcd2(a,b), c)\n\nans = 0\nfor a in range(1,k+1):\n for b in range(a,k+1):\n for c in range(b, k+1):\n if a == b == c:\n ans += gcd3(a,b,c)\n elif a == b or b == c:\n ans += gcd3(a,b,c)*3\n else:\n ans += gcd3(a,b,c)*6\n\nprint(ans)']
|
['Runtime Error', 'Accepted']
|
['s113587033', 's155677957']
|
[9244.0, 9196.0]
|
[23.0, 1404.0]
|
[397, 429]
|
p02713
|
u698919163
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['K = int(input())\n\nans = 0\n\nimport math\n\nfor i in range(1,K+1):\n for j in range(i,K+1):\n tmp = math.gcd(i,j)\n for k in range(j,K+1):\n ans += math.gcd(tmp,k)\n\nprint(ans)', 'K = int(input())\n\nans = 0\n\nimport math\n\nfor i in range(1,K+1):\n for j in range(1,K+1):\n tmp = math.gcd(i,j)\n for k in range(1,K+1):\n ans += math.gcd(tmp,k)\n\nprint(ans)']
|
['Wrong Answer', 'Accepted']
|
['s920474213', 's893922952']
|
[9180.0, 9180.0]
|
[261.0, 1401.0]
|
[195, 195]
|
p02713
|
u699547221
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\nimport numpy as np\n \nK = int(float(read())\n \nx = np.arange(1, K + 1)\nnums = np.gcd.outer(np.gcd.outer(x, x), x)\nprint(nums.sum())', 'K = int(input())\n \nx = np.arange(1, K + 1)\nnums = np.gcd.outer(np.gcd.outer(x, x), x)\nprint(nums.sum())', 'k = int(input())\n\nimport math\n\ndef gcd(*numbers):\n return reduce(math.gcd, numbers)\n\nanswer = 0\nfor a in range(1, k+1):\n for b in range(1, k+1):\n for c in range(1, k+1):\n answer += gcd(a,b,c)\n\nprint(answer)', 'import numpy as np\n\nK = int(input())\n \nx = np.arange(1, K + 1)\nnums = np.gcd.outer(np.gcd.outer(x, x), x)\nprint(nums.sum())']
|
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
|
['s121908892', 's194880946', 's270317387', 's899853406']
|
[9020.0, 9164.0, 9180.0, 89528.0]
|
[22.0, 23.0, 23.0, 203.0]
|
[245, 103, 230, 123]
|
p02713
|
u699696451
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['K = int(input())\nans = 0\n\nfor i in range(K):\n i = i + 1\n for k in range(K):\n k = k + 1\n for j in range(K):\n j = j + 1\n \n ans += gcd(gcd(i, k),j)\n j = j + 1\n k = k + 1\n i = i + 1\n \nprint(ans)\n\n\n', 'import math\nfrom functools import reduce\ndef gcd(*numbers):\n return reduce(math.gcd, numbers)\nK = int(input())\nans = 0\n\nfor i in range(K):\n for k in range(i,K):\n for j in range(i, K):\n if i == j == k:\n ans += gcd(i, k, j)\n else:\n if i == j or i == k or j ==k:\n ans += gcd(i, k, j)*3\n else:\n ans += gcd(i, k, j)\n j = j + 1\n k = k + 1\n i = i + 1\n \nprint(ans)\n\n\n', 'K = int(input())\nans = 0\nfrom math import gcd\nfor i in range(1,K+1):\n for k in range(1,K+1):\n for j in range(1,K+1):\n ans += gcd(gcd(i, k),j)\n \nprint(ans)\n\n\n']
|
['Runtime Error', 'Wrong Answer', 'Accepted']
|
['s307430361', 's694341732', 's269544565']
|
[9188.0, 9636.0, 9172.0]
|
[20.0, 40.0, 1934.0]
|
[278, 521, 189]
|
p02713
|
u702786238
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['N = int(input())\n\nh = itertools.combinations_with_replacement(list(range(1,N+1)), 3)\n\nimport math\nfrom functools import reduce\n\ndef gcd(*numbers):\n return reduce(math.gcd, numbers)\n\nans = 0\nfor n1, n2, n3 in h:\n if n1 == n2 == n3:\n ans += gcd(n1,n2,n3)\n else:\n ans += gcd(n1,n2,n3)*3\nprint(ans)', 'N = int(input())\n\nimport itertools\nh = itertools.combinations_with_replacement(list(range(1,N+1)), 3)\n\nimport math\nfrom functools import reduce\n\ndef gcd(*numbers):\n return reduce(math.gcd, numbers)\n\nans = 0\nfor n1, n2, n3 in h:\n #print("{} {} {}".format(n1,n2,n3))\n if n1 == n2 == n3:\n ans += gcd(n1,n2,n3)\n elif n1 == n2 or n1 == n3 or n2 == n3:\n ans += gcd(n1,n2,n3)*3\n else:\n ans += gcd(n1,n2,n3)*6\nprint(ans)\n']
|
['Runtime Error', 'Accepted']
|
['s694112655', 's468494082']
|
[9196.0, 9644.0]
|
[22.0, 896.0]
|
[305, 429]
|
p02713
|
u704658587
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from math import gcd\nK = int(input())\nsum = 0\nfor a in range(K + 1):\n for b in range(K + 1):\n for c in range(K + 1):\n sum += gcd(gcd(a, b), c)\nprint(sum)\n', 'from math import gcd\nK = int(input())\nsum = 0\nfor a in range(1, K + 1):\n for b in range(1, K + 1):\n for c in range(1, K + 1):\n sum += gcd(gcd(a, b), c)\nprint(sum)\n']
|
['Wrong Answer', 'Accepted']
|
['s119962294', 's661194444']
|
[9172.0, 9196.0]
|
[1869.0, 1924.0]
|
[175, 184]
|
p02713
|
u706414019
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\nK = int(input())\ngcd3 = 0\nfor a in range(1,K-1):\n for b in range(a+1,K):\n for c in range(b+1,K+1):\n gcd3 += math.gcd(math.gcd(a,b),c)\ngcd2 = 0\nfor a in range(1,K):\n for b in range(a+1,K+1):\n gcd2 += math.gcd(a,b)\nans = gcd3 * 6 + gcd2 * 3 + K*(K+1)//2\nprint(ans)', 'import math\nK = int(input())\ngcd3 = 0\nfor a in range(1,K-1):\n for b in range(a+1,K):\n for c in range(b+1,K+1):\n gcd3 += math.gcd(math.gcd(a,b),c)\ngcd2 = 0\nfor a in range(1,K):\n for b in range(a+1,K+1):\n gcd2 += math.gcd(a,b)\nans = gcd3 * 6 + gcd2 * 6 + K*(K+1)//2\nprint(ans)\n']
|
['Wrong Answer', 'Accepted']
|
['s965141794', 's899243819']
|
[9180.0, 9192.0]
|
[412.0, 406.0]
|
[305, 306]
|
p02713
|
u706730549
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from fractions import gcd\nN = int(input())\nans = 0\nfor i in range(N+1):\n for k in range(N+1):\n for l in range(N+1):\n ans += gcd(gcd(i,j),k)\n\nprint(ans)\n', 'from math import gcd\nN = int(input())\nans = sum([gcd(gcd(i,j),k) for i in range(N+1) for j in range(N+1) for k in range(N+1)])\nprint(ans)\n', 'from math import gcd\nN = int(input())\nprint(sum([gcd(gcd(i,j),k) for i in range(1,N+1) for j in range(1,N+1) for k in range(1,N+1)]))\n\n']
|
['Runtime Error', 'Wrong Answer', 'Accepted']
|
['s201311827', 's470988870', 's728128059']
|
[10404.0, 72304.0, 71432.0]
|
[31.0, 1357.0, 1359.0]
|
[161, 138, 135]
|
p02713
|
u708019102
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\nans = 0\nN = int(input())\nfor i in range(N):\n for j in range(N):\n for k in range(N):\n ans += math.gcd(i,j,k)\nprint(ans)', 'import math\nans = 0\nN = int(input())\nif N <= 5:\n for i in range(N):\n for j in range(N):\n for k in range(N):\n ans += math.gcd(math.gcd(i+1,j+1),math.gcd(j+1,k+1))\nelse:\n for i in range(N):\n ans += i+1\n for i in range(N-1):\n for j in range(i+1,N):\n ans += 6*math.gcd(i+1,j+1)\n for i in range(N-2):\n for j in range(i+1,N-1):\n for k in range(j+1,N):\n ans += 6*math.gcd(math.gcd(i+1,j+1),math.gcd(j+1,k+1))\nprint(ans)']
|
['Runtime Error', 'Accepted']
|
['s411660262', 's631792964']
|
[9168.0, 9220.0]
|
[22.0, 669.0]
|
[151, 501]
|
p02713
|
u720630462
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\nfrom collections import Counter\n\nK = int(input())\n\nmemo = {frozenset((i, j)): math.gcd(i, j) \n for i in range(1, K+1) for j in range(i, K+1)}\n\ncounter = Counter([memo[frozenset((i, j))] \n for i in range(1, K+1) for j in range(1, K+1)])\n\ntotal = 0\nfor i in range(1, K+1):\n for value, count = counter.items():\n total += memo[frozenset((i, value))] * count\n \nprint(total)', 'import math\nfrom collections import Counter\n\nK = int(input())\n\nmemo = {frozenset((i, j)): math.gcd(i, j) \n for i in range(1, K+1) for j in range(i, K+1)}\n\ncounter = Counter([memo[frozenset((i, j))] \n for i in range(1, K+1) for j in range(1, K+1)])\n\ntotal = 0\nfor i in range(1, K+1):\n for value, count in counter.items():\n total += memo[frozenset((i, value))] * count\n \nprint(total)']
|
['Runtime Error', 'Accepted']
|
['s375936710', 's419495760']
|
[8864.0, 14524.0]
|
[19.0, 63.0]
|
[412, 413]
|
p02713
|
u723711163
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from collections import defaultdict\nimport fractions\n \nK = int(input())\ndp = defaultdict(int)\n \ndef gcd(a,b):\n a,b = sorted([a,b])\n \n k = "".join([ str(x) for x in [a,b]])\n if not dp[k]:\n # dp[k] = F(a,b)\n dp[k] = fractions.gcd(a,b)\n \n return dp[k]\n \ntmp = []\nfor a in range(1, K+1):\n for b in range(1, K+1):\n k = "".join([ str(x) for x in sorted([a,b])])\n \n if not dp[k]:\n dp[k] = gcd(a,b)\n \n tmp.append(dp[k])\n \nres = 0\nfor t in tmp:\n for c in range(1, K+1):\n k = "".join([ str(x) for x in sorted([t,c])])\n \n if not dp[k]:\n dp[k] = gcd(t,c)\n \n res += dp[k]\n \nprint(res)', 'from collections import defaultdict\nimport fractions\n \nK = int(input())\ndp = defaultdict(int)\n \ndef gcd(a,b):\n a,b = sorted([a,b])\n \n k = "".join([ str(x) for x in [a,b]])\n if not dp[k]:\n # dp[k] = F(a,b)\n dp[k] = fractions.gcd(a,b)\n \n return dp[k]\n \ntmp = []\nfor a in range(1, K+1):\n for b in range(1, K+1):\n k = "".join([ str(x) for x in sorted([a,b])])\n \n if not dp[k]:\n dp[k] = gcd(a,b)', 'from math import gcd\n\nK = int(input())\nres = 0\nfor a in range(1, K+1):\n for b in range(1, K+1):\n for c in range(1, K+1):\n res += gcd(gcd(a,b),c)\n\nprint(res)']
|
['Wrong Answer', 'Wrong Answer', 'Accepted']
|
['s442427096', 's897577915', 's781151994']
|
[12668.0, 12176.0, 9168.0]
|
[2206.0, 111.0, 1886.0]
|
[611, 412, 165]
|
p02713
|
u726285999
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['def gcd(a,b):\n if a < b:\n a, b = b, a\n q = a // b\n r = a - q * b\n if r == 0:\n return b\n else:\n return gcd(b,r)\n\nsum = 0\nK = 200\nfor i in range(1,K+1):\n for j in range(1, K+1):\n for k in range(1, K+1):\n sum += gcd(i, gcd(j,k))\nprint(sum)', 'import collections\n\nK = int(input())\n\na = []\nfor i in range(1,K+1):\n for j in range(1, K+1):\n a.append(gcd(i,j))\n \ncol = collections.Counter(a)\n\nsum = 0\nfor k in range(1, K+1):\n for key, value in col.items():\n sum += gcd(k, key) * value\nprint(sum)', 'import collections\n\ndef gcd(a,b):\n if a < b:\n a, b = b, a\n q = a // b\n r = a - q * b\n if r == 0:\n return b\n else:\n return gcd(b,r)\n\nK = int(input())\n\na = []\n\nfor i in range(1,K+1):\n for j in range(1, K+1):\n a.append(gcd(i,j))\n \ncol = collections.Counter(a)\n\nsum = 0\nfor k in range(1, K+1):\n for key, value in col.items():\n sum += gcd(k, key) * value\nprint(sum)']
|
['Time Limit Exceeded', 'Runtime Error', 'Accepted']
|
['s642644053', 's897073387', 's176173227']
|
[8972.0, 9464.0, 9764.0]
|
[2205.0, 23.0, 78.0]
|
[293, 275, 424]
|
p02713
|
u727057618
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
["def main():\n n = int(input())\n s = input()\n res = 0\n r = []\n g = []\n b = []\n for i, c in enumerate(s):\n if c == 'R':\n r.append(i)\n elif c == 'G':\n g.append(i)\n else:\n b.append(i)\n \n cnt = 0\n for i in r:\n for j in g:\n diff = abs(j-i)\n for k in b:\n if abs(i-k) != diff and abs(j-k) != diff and abs(j-k) != abs(i-k):\n cnt += 1\n print(cnt)\n \n\n\nif __name__ == '__main__':\n main()\n\n", "import math\nfrom itertools import combinations\n\ndef main():\n k = int(input())\n res = 0\n memo = [[0 for _ in range(k+1)] for _ in range(k+1)]\n for i ian range(1, k+1):\n for j in range(i, k+1):\n tmp = math.gcd(i,j)\n memo[i][j] = tmp\n memo[j][i] = tmp\n\n for i in range(1, k+1):\n res += i \n\n for c in combinations(range(1,k+1),2):\n ab = memo[c[0], c[1]]\n res += ab * 6\n\n for c in combinations(range(1,k+1), 3):\n ab = memo[c[0], c[1]]\n abc = memo[ab, c[2]]\n res += abc * 6\n print(res)\n\n\nif __name__ == '__main__':\n main()\n", "from math import gcd\nfrom itertools import combinations\n\ndef main():\n k = int(input())\n res = 0\n memo = [[0 for _ in range(k)] for _ in range(k)]\n for i in range(1, k+1):\n for j in range(i, k+1):\n tmp = gcd(i,j)\n memo[i][j] = tmp\n memo[j][i] = tmp\n\n for i in range(1, k+1):\n res += i \n\n for c in combinations(range(1,k+1),2):\n ab = memo[c[0], c[1]]\n res += ab * 6\n\n for c in combinations(range(1,k+1), 3):\n ab = memo[c[0], c[1]]\n abc = memo[ab, c[2]]\n res += abc * 6\n print(res)\n\n\nif __name__ == '__main__':\n main()\n\n", "import math\nfrom itertools import combinations\n\ndef main():\n k = int(input())\n res = 0\n memo = [[0 for _ in range(k)] for _ in range(k)]\n for i ian range(1, k+1):\n for j in range(i, k+1):\n tmp = math.gcd(i,j)\n memo[i][j] = tmp\n memo[j][i] = tmp\n\n for i in range(1, k+1):\n res += i \n\n for c in combinations(range(1,k+1),2):\n ab = memo[c[0], c[1]]\n res += ab * 6\n\n for c in combinations(range(1,k+1), 3):\n ab = memo[c[0], c[1]]\n abc = memo[ab, c[2]]\n res += abc * 6\n print(res)\n\n\nif __name__ == '__main__':\n main()", "import math\nfrom itertools import combinations\n\ndef main():\n k = int(input())\n res = 0\n memo = [[0 for _ in range(k+1)] for _ in range(k+1)]\n for i in range(1, k+1):\n for j in range(i, k+1):\n tmp = math.gcd(i,j)\n memo[i][j] = tmp\n memo[j][i] = tmp\n\n for i in range(1, k+1):\n res += i \n\n for c in combinations(range(1,k+1),2):\n ab = memo[c[0]][c[1]]\n res += ab * 6\n\n for c in combinations(range(1,k+1), 3):\n ab = memo[c[0]][c[1]]\n abc = memo[ab][c[2]]\n res += abc * 6\n print(res)\n\n\nif __name__ == '__main__':\n main()\n\n"]
|
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
|
['s006834526', 's191964678', 's249254543', 's927278165', 's640619657']
|
[9204.0, 8796.0, 9496.0, 8964.0, 9440.0]
|
[23.0, 20.0, 21.0, 20.0, 249.0]
|
[548, 626, 626, 621, 626]
|
p02713
|
u728473456
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['k = int(input())\nimport fractions\nl = []\nans = 0\nfor a in range(1,k+1):\n for b in range(a,k+1):\n for c in range(b,k+1):\n l = [a,b,c]\n d = l[0]\n for i in range(1,3):\n d = fractions.gcd(d,l[i])\n if a != b and b!= c and a!= c:\n ans+= d*6\n elif (a==b and a!=c) or (a==c and a!= b) or (b == c and a!= b):\n ans+= d*3\n else:\n ans+= d\nprint(ans) \n', 'k = int(input())\nimport math\nimport fractions\nans = 0\ne = 0\nd = 0\nfor a in range(1,k+1):\n for b in range(a,k+1):\n e = math.gcd(a,b)\n #e = fractions.gcd(a,b)\n for c in range(b,k+1):\n d = math.gcd(e,c)\n #d = fractions.gcd(e,c)\n if a != b and b!= c and a!= c:\n ans+= d*6\n elif (a==b and a!=c) or (a==c and a!= b) or (b == c and a!= b):\n ans+= d*3\n else:\n ans+= d\nprint(ans)\n']
|
['Time Limit Exceeded', 'Accepted']
|
['s062444371', 's488326146']
|
[10632.0, 10344.0]
|
[2206.0, 441.0]
|
[486, 495]
|
p02713
|
u729133443
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['cdef gcd(a,b):\n if b<a:a,b=b,a\n r=b%a\n return a if r==0else gcd(a,r)\nk=int(input())+1\nprint(sum(gcd(c,gcd(a,b))for a in range(1,k)for b in range(1,k)for c in range(1,k)))', 'from numpy import*;print(sum((f:=gcd.outer)(f(r:=range(1,int(input())+1),r),r)))']
|
['Runtime Error', 'Accepted']
|
['s479861510', 's621349980']
|
[9012.0, 89780.0]
|
[22.0, 212.0]
|
[179, 80]
|
p02713
|
u730449065
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['n = int(input())\ncount = 0\n\ndef gcd(*numbers):\n return reduce(math.gcd, numbers)\n\nfor i in range(1,n+1):\n for j in range(1,n+1):\n for k in range(1,n+1):\n m = gcd(i,j,k)\n count += m\nprint(count) ', '\nimport math\n\nn = int(input())\ncount = 0\n\nfor i in range(1,n+1):\n for j in range(1,n+1):\n t = math.gcd(i,j)\n for k in range(1,n+1):\n m = math.gcd(t,k)\n count += m\nprint(count) ']
|
['Runtime Error', 'Accepted']
|
['s825148636', 's770335299']
|
[9192.0, 9008.0]
|
[22.0, 1618.0]
|
[231, 217]
|
p02713
|
u733465500
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\nK = int(input())\nsum = 0\nfor i in range(1,K+1):\n for j in range(1, K+1):\n for k in range(1, K+1):\n sum =+ math.gcd(k, math.gcd(i, j))\nprint(sum)\n', 'from math import gcd\nK = int(input())\nsum = 0\nfor i in range(1,K+1):\n for j in range(1, K+1):\n for k in range(1, K+1):\n sum += gcd(k, gcd(i, j))\nprint(sum)']
|
['Wrong Answer', 'Accepted']
|
['s653495300', 's350647395']
|
[9116.0, 9136.0]
|
[1993.0, 1815.0]
|
[166, 164]
|
p02713
|
u735975757
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\nk = int(input())\nsum = []\nfor a in range(1,k+1):\n for b in range(1,k+1):\n ab = math.gcd(a,b)\n for c in range(1,k+1):\n sum += math.gcd(ab,c)\nprint(sum)\n ', 'import math\nk = int(input())\nsum = 0\nfor a in range(1,k+1):\n for b in range(1,k+1):\n ab = math.gcd(a,b)\n for c in range(1,k+1):\n sum += math.gcd(ab,c)\nprint(sum)\n \n']
|
['Runtime Error', 'Accepted']
|
['s668841821', 's689131167']
|
[9104.0, 9068.0]
|
[26.0, 1313.0]
|
[177, 177]
|
p02713
|
u737758066
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from fractions import gcd\nk = int(input())\n\nres = 0\nfor a in range(1, k+1):\n for b in range(1, k+1):\n t = gcd(a, b)\n for c in range(1, k+1):\n res += gcd(t, c)\n\nprint(res)\n', 'from math import gcd\nk = int(input())\n\nres = 0\nfor a in range(1, k+1):\n for b in range(1, k+1):\n t = gcd(a, b)\n for c in range(1, k+1):\n res += gcd(t, c)\n\nprint(res)\n']
|
['Time Limit Exceeded', 'Accepted']
|
['s425787911', 's365960043']
|
[10596.0, 9184.0]
|
[2206.0, 1201.0]
|
[199, 194]
|
p02713
|
u744034042
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from math import gcd\nK = int(input())\n \nc = 0\nfor i in range(1,K+1):\n for j in range(1,K+1):\n k = gcd(i,j)\n for l in range(1,K+1):\n a = gcd(k, l)\n c += a\n \nprint(c)', 'from math import gcd\nK = int(input())\n \nc = 0\nfor i in range(1,K+1):\n for j in range(1,K+1):\n k = gcd(i,j)\n for l in range(1,K+1):\n a = gcd(k, l)\n c += a\nprint(c)']
|
['Runtime Error', 'Accepted']
|
['s213825203', 's849723536']
|
[8960.0, 9072.0]
|
[20.0, 1370.0]
|
[201, 201]
|
p02713
|
u746206084
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['n=int(input())\nans=0\nd={}\nif n==1:\n print(1)\nfor a in range(1,n+1):\n for b in range(1,n+1):\n p=math.gcd(a,b)\n if d.get(p)!=None:\n d[p]+=1\n else:\n d[p]=1\nfor c in range(1,n+1):\n for e in range(1,n+1):\n p=math.gcd(c,e)\n ans+=d[e]*p\nprint(ans) ', 'import math\nn=int(input())\nans=0\nd={}\nfor a in range(1,n+1):\n for b in range(1,n+1):\n p=math.gcd(a,b)\n if d.get(p)!=None:\n d[p]+=1\n else:\n d[p]=1\nfor c in range(1,n+1):\n for e in range(1,n+1):\n p=math.gcd(c,e)\n ans+=d[e]*p\nprint(ans) ']
|
['Runtime Error', 'Accepted']
|
['s451692147', 's083417401']
|
[9184.0, 9148.0]
|
[22.0, 46.0]
|
[314, 304]
|
p02713
|
u746627216
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
["import math\n\nK = int(input())\n\nans = 0\n'''\nfor i in range(1,K+1):\n for j in range(1,K+1):\n for l in range(1,K+1):\n ab = math.gcd(i,j)\n abc = math.gcd(ab,l)\n print(i,j,l)\n ans += abc\n'''\n \nfor i in range(1,K+1):\n for j in range(i,K+1):\n for l in range(j,K+1):\n ab = math.gcd(i,j)\n abc = math.gcd(ab,l)\n print(i,j,l)\n if i == j and j == l:\n abc = abc\n #print('abc',abc)\n elif i == j or j == l or i == l:\n abc = 3*abc\n #print('abc',abc)\n elif i != j and i != l and j != l:\n abc = 6*abc\n #print('abc',abc)\n \n ans += abc\n #print(ans,abc)\n\n\nprint(ans)", "import math\n\nK = int(input())\n\nans = 0\n'''\nfor i in range(1,K+1):\n for j in range(1,K+1):\n for l in range(1,K+1):\n ab = math.gcd(i,j)\n abc = math.gcd(ab,l)\n print(i,j,l)\n ans += abc\n'''\n \nfor i in range(1,K+1):\n for j in range(i,K+1):\n for l in range(j,K+1):\n ab = math.gcd(i,j)\n abc = math.gcd(ab,l)\n #print(i,j,l)\n if i == j and j == l:\n abc = abc\n #print('abc',abc)\n elif i == j or j == l or i == l:\n abc = 3*abc\n #print('abc',abc)\n elif i != j and i != l and j != l:\n abc = 6*abc\n #print('abc',abc)\n \n ans += abc\n #print(ans,abc)\n\n\nprint(ans)"]
|
['Wrong Answer', 'Accepted']
|
['s951484868', 's985998542']
|
[16800.0, 9100.0]
|
[1777.0, 927.0]
|
[894, 895]
|
p02713
|
u748241164
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from fractions import gcd\nK = int(input())\n\ndef gcd3(a, b, c):\n x = gcd(a, b)\n y = gcd(x, c)\n return y\n\nans = 0\n#count = 0\nfor i in range(1, K + 1):\n for j in range(i, K + 1):\n for k in range(j, K + 1):\n #count += 1\n #print(count, gcd3(i, j, k))\n x = gcd3(i, j, k)\n if i == j:\n if j == k:\n ans += x\n else:\n ans += 3 * x\n else:\n if i == k:\n ans += 3 * x\n elif j == k:\n ans += 3 * x\n else:\n ans += 6 * x\n \n\nprint(ans) \n', 'from fractions import gcd\nK = int(input())\n\ndef gcd3(a, b, c):\n x = gcd(a, b)\n y = gcd(x, c)\n return y\n\nans = 0\n#count = 0\nfor i in range(1, K + 1):\n for j in range(1, K + 1):\n for k in range(1, K + 1):\n #count += 1\n #print(count, gcd3(i, j, k))\n ans += gcd3(i, j, k)\n\nprint(ans) ', 'import math\nfrom functools import reduce\nK = int(input())\n\ndef gcd(*numbers):\n return reduce(math.gcd, numbers)\n\n\nans = 0\n#count = 0\nfor i in range(1, K + 1):\n for j in range(i, K + 1):\n for k in range(j, K + 1):\n #count += 1\n #print(count, gcd3(i, j, k))\n x = gcd(i, j, k)\n if i == j:\n if j == k:\n ans += x\n else:\n ans += 3 * x\n else:\n if i == k:\n ans += 3 * x\n elif j == k:\n ans += 3 * x\n else:\n ans += 6 * x\n \n\nprint(ans) \n']
|
['Time Limit Exceeded', 'Time Limit Exceeded', 'Accepted']
|
['s049434483', 's769509062', 's674882551']
|
[10644.0, 10672.0, 9628.0]
|
[2205.0, 2206.0, 864.0]
|
[539, 303, 546]
|
p02713
|
u751717561
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['K = int(input())\n\nimport fractions\n\nres = 0\n\n\nfor i in range(1, K+1):\n for j in range(1, K+1):\n for l in range(1, K+1):\n a = list([i, j, l])\n ans = a[0]\n for n in range(1, 3):\n ans = fractions.gcd(ans, a[n])\n res += ans\n\nprint(res)\n', 'import math\n\nK = int(input())\n\nans = 0\n\nfor i in range(1,K+1):\n for j in range(1,K+1):\n t = math.gcd(i, j)\n for k in range(1,K+1):\n ans += math.gcd(t, k)\n\nprint(ans)']
|
['Time Limit Exceeded', 'Accepted']
|
['s038422038', 's548416160']
|
[10592.0, 9180.0]
|
[2205.0, 1424.0]
|
[301, 193]
|
p02713
|
u755801379
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['k=int(input())\nimport math\nans=0\nfor i in range(1,k+1):\n for j in range(1,k+1):\n for l in range(1,k+1):\n \ta=math.gcd(i,j)\n ans+=math.gcd(a,l)\nprint(ans)', 'k=int(input())\nimport math\nans=0\nfor i in range(1,k+1):\n for j in range(1,k+1):\n a=math.gcd(i,j)\n for l in range(1,k+1):\n ans+=math.gcd(a,l)\nprint(ans)']
|
['Runtime Error', 'Accepted']
|
['s449522639', 's579755966']
|
[9024.0, 9176.0]
|
[22.0, 1370.0]
|
[182, 179]
|
p02713
|
u760794812
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from math import gcd\nfrom functools import reduce\nK = int(input())\ndef gcd_List(List):\n return reduce(gcd,List)\nsum = 0\nfor i in range(1,K+1):\n for j in range(1,K+1):\n for k in range(1,K+1):\n if i != j and j != k and k != i:\n sum += gcd_List([i,j,k])\n elif i == j and i != k:\n sum += gcd(i,k)*3\n elif i == k and i != j:\n sum += gcd(i,j)*3\n elif j == k and i != j:\n sum += gcd(i,k)*3\n else:\n sum += i\nprint(sum)\n', 'from math import gcd\nfrom functools import reduce\n#K = int(input())\nK = 200\ndef gcd_List(List):\n return reduce(gcd,List)\nsum = 0\nfor i in range(1,K+1):\n for j in range(1,K+1):\n for k in range(1,K+1):\n sum += gcd_List([i,j,k])\nprint(sum)', 'from math import gcd\nk = int(input())+1\nans = 0\nfor i in range(1,k):\n for j in range(1,k):\n for l in range(1,k):\n ans += gcd(gcd(i,j),l)\nprint(ans)']
|
['Wrong Answer', 'Time Limit Exceeded', 'Accepted']
|
['s564908014', 's977195300', 's254684638']
|
[9644.0, 9412.0, 9104.0]
|
[2205.0, 2206.0, 1901.0]
|
[476, 246, 156]
|
p02713
|
u761062383
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['# import itertools\nimport math\nfrom datetime import datetime\nfrom functools import reduce\n\n\ndef gcd(*numbers):\n print(numbers)\n return reduce(math.gcd, numbers)\n\n\nk = int(input())\nsumV = 0\n# start = datetime.now()\nfor a in range(1, k):\n for b in range(1, k + 1):\n for c in range(2, k + 1):\n sumV += gcd(a, b, c) * 3\nsumV += 1\nsumV += k\n\n# end = datetime.now()\n# print(end - start)\nprint(sumV)\n', 'import unittest\nfrom io import StringIO\nimport sys\nimport itertools\nimport math\n\n\ndef gcd(a, b, c):\n n = 1\n if a == b:\n if b != c:\n n = 3\n else:\n if b != c:\n n = 6\n else:\n n = 3\n return math.gcd(math.gcd(a, b), c) * n\n\n\ndef resolve():\n K = int(input())\n T = [i for i in range(1, K + 1)]\n Tr = itertools.combinations_with_replacement(T, 3)\n sumT = 0\n for a, b, c in Tr:\n sumT += gcd(a, b, c)\n print(sumT)\n\n\nclass TestClass(unittest.TestCase):\n def assertIO(self, input, output):\n stdout, stdin = sys.stdout, sys.stdin\n sys.stdout, sys.stdin = StringIO(), StringIO(input)\n resolve()\n sys.stdout.seek(0)\n out = sys.stdout.read()[:-1]\n sys.stdout, sys.stdin = stdout, stdin\n self.assertEqual(out, output)\n\n def test_入力例_1(self):\n input = """2"""\n output = """9"""\n self.assertIO(input, output)\n\n def test_入力例_2(self):\n input = """200"""\n output = """10813692"""\n self.assertIO(input, output)\n\n def test_add(self):\n input = """195"""\n output = """9997134"""\n self.assertIO(input, output)\n\n\nif __name__ == "__main__":\n # unittest.main()\n resolve()\n']
|
['Wrong Answer', 'Accepted']
|
['s482588642', 's236687485']
|
[31896.0, 16352.0]
|
[2237.0, 531.0]
|
[420, 1275]
|
p02713
|
u762292470
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['def u(a,b):\n if(a<b):\n z = b\n b = a\n a = z\n r = a % b;\n while(r!=0):\n a = b\n b = r\n r = a % b\n return b\n \nl = int(input())\ns = 0\nfor i in range(1,l+1):\n for i2 in range(1,l+1):\n z = u(i,i2)\n for i3 in range(1,l+1):\n z2 = u(z,i3)\n s+=z2\nprint (s)', 'def u(a,b):\n if(a<b):\n z = b\n b = a\n a = z\n r = a % b;\n while(r!=0):\n a = b\n b = r\n r = a % b\n return b\n\nl = int(input())\ns = 0\nfor i in range(1,l+1):\n for i2 in range(1,l+1):\n z = u(i,i2)\n for i3 in range(1,l+1):\n z2 = u(z,i3)\n s+=z2\nprint (s)', 'def u(a,b):\n if(a<b):\n z = b\n b = a\n a = z\n r = a % b\n while(r!=0):\n a = b\n b = r\n r = a % b\n return b\n \nl = int(input())\ns = 0\nfor i in range(1,l+1):\n for i2 in range(1,l+1):\n z = u(i,i2)\n for i3 in range(1,l+1):\n z2 = u(z,i3)\n s+=z2\nprint (s)', 'def u(a,b):\n if(a<b):\n z = b\n b = a\n a = z\n r = a % b\n while(r!=0):\n a = b\n b = r\n r = a % b\n return b\n \nl = int(input())\ns = 0\nfor i in range(1,l+1):\n for i2 in range(1,l+1):\n z = u(i,i2)\n for i3 in range(1,l+1):\n z2 = u(i3,z)\n s+=z2\nprint (s)']
|
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
|
['s173784992', 's395788984', 's494077670', 's973935565']
|
[9016.0, 9016.0, 9212.0, 9144.0]
|
[22.0, 24.0, 24.0, 1963.0]
|
[285, 284, 285, 283]
|
p02713
|
u763548784
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\n\nk = int(input())\nans = 0\n\nfor i in range(1,k+1):\n for j in range(1,k+1):\n a = gcd(i,j)\n for l in range(1,k+1):\n ans += gcd(a,l)\n\nprint(ans)', 'import math\n\nk = int(input())\nans = 0\n\nfor i in range(1,k+1):\n for j in range(1,k+1):\n a = math.gcd(i,j)\n for l in range(1,k+1):\n ans += math.gcd(a,l)\n\nprint(ans)']
|
['Runtime Error', 'Accepted']
|
['s948811470', 's716665043']
|
[9064.0, 9096.0]
|
[24.0, 1384.0]
|
[180, 190]
|
p02713
|
u764215612
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import fractions\nk = int(input())\nans = k**3 - (k-1)**3\nfor a in range(2,k+1):\n for b in range(2,k+1):\n for c in range(2,k+1):\n ans += fractions.gcd(a, fractions.gcd(b, c))\nprint(ans)', 'import fractions\nk = int(input())\nans = 0\nfor a in range(1,k+1):\n for b in range(1,k+1):\n for c in range(1,k+1):\n ans += fractions.gcd(a, fractions.gcd(b, c))\nprint(ans)', 'import fractions\nf=fractions.gcd(a,b)\nk = int(input())\nans = 0\nfor a in range(1,k+1):\n for b in range(1,k+1):\n for c in range(1,k+1):\n ans += fractions.gcd(a, fractions.gcd(b, c))\nprint(ans)', 'import math\nk = int(input())\nans = k**3 - (k-1)**3\nfor a in range(2,k+1):\n for b in range(2,k+1):\n tmp = math.gcd(a,b)\n for c in range(2,k+1):\n ans += math.gcd(tmp, c)\nprint(ans)']
|
['Time Limit Exceeded', 'Time Limit Exceeded', 'Runtime Error', 'Accepted']
|
['s335303606', 's717718088', 's805419400', 's534574232']
|
[10632.0, 10672.0, 10384.0, 9188.0]
|
[2206.0, 2205.0, 30.0, 1423.0]
|
[192, 178, 199, 190]
|
p02713
|
u767664985
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from math import gcd\n\nK = int(input())\n\nif K == 1:\n print(1)\n exit()\n\nans = 3*(K-1)**2\n\nfor a in range(2, K+1):\n for b in range(2, K+1):\n res = gcd(a, b)\n for c in range(2, K+1):\n ans += gcd(res, c)\n\nprint(ans)\n', 'hogehoge', 'from math import gcd\n\nK = int(input())\n\nans = 0\nfor a in range(1, K+1):\n for b in range(1, K+1):\n res = gcd(a, b)\n for c in range(1, K+1):\n ans += gcd(res, c)\n\nprint(ans)\n']
|
['Wrong Answer', 'Runtime Error', 'Accepted']
|
['s023850624', 's429762588', 's061232303']
|
[9184.0, 9136.0, 9172.0]
|
[1159.0, 19.0, 1188.0]
|
[245, 8, 199]
|
p02713
|
u771538568
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\nk=int(input())\ns=0\nfor a in range(1,k+1):\n for b in range(1,k+1):\n for c in range(1,k+1):\n k+=math.gcd(math.gcd(a,b),c)\nprint(k)', 'from math import gcd\nk=int(input())\ns=0\nfor a in range(1,k+1):\n for b in range(1,k+1):\n for c in range(1,k+1):\n s+=gcd(gcd(a,b),c)\nprint(s)']
|
['Wrong Answer', 'Accepted']
|
['s457479217', 's095286641']
|
[9016.0, 9044.0]
|
[2205.0, 1821.0]
|
[161, 160]
|
p02713
|
u777499281
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['K = int(input())\ngcd_sum = 0\nfor a in range(1,K+1):\n a_init = a\n for b in range(1, K+1):\n\tb_init = b\n for c in range(1, K+1):\n a = a_init\n\t b = b_init\t\t\t\t\t\t\n\t m = min(a, b, c)\n\t gcd = 1\n\t for i in range(2, m+1):\n\t if a%i == 0 and b%i == 0 and c%i == 0:\n\t a /= i\n b /= i\n c /= i\n\t\t gcd *= i\n\t gcd_sum += gcd\nprint(gcd_sum)\n', 'K = int(input())\ngcd_sum = 0\nfor a in range(1,K+1):\n a_init = a\n for b in range(1, K+1):\n\tb_init = b\n for c in range(1, K+1):\n a = a_init\n\t b = b_init\t\t\t\t\t\t\n\t m = min(a, b, c)\n\t gcd = 1\n\t for i in range(2, m+1):\n\t if a%i == 0 and b%i == 0 and c%i == 0:\n\t a /= i\n\t\t b /= i\n\t\t c /= i\n\t\t gcd *= i\n\t gcd_sum += gcd\nprint(gcd_sum)', 'def gcd(a, b):\n if a < b:\n a_init = a\n a = b\n b = a_init\n while b != 0:\n r = a % b\n a = b\n b = r\n return a\n\t\nK = int(input())\ncount = 0\ntemp = []\nfor a in range(1, K+1):\n\tfor b in range(1, a):\n\t\ttemp.append(gcd(a, b))\nfor c in range(1, K+1):\n\tfor j in range(len(temp)):\n\t\tcount += gcd(c, temp[j]) * 2\n\tfor k in range(1, K+1):\n\t\tcount += gcd(c, k)\nprint(count)\n']
|
['Runtime Error', 'Runtime Error', 'Accepted']
|
['s468577522', 's796418752', 's403288157']
|
[8928.0, 8948.0, 9304.0]
|
[20.0, 24.0, 1169.0]
|
[364, 351, 381]
|
p02713
|
u779293207
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from math import gcd\nN = int(input())\nc = 0\nfor i in range (N):\n for j in range (N):\n for k in range (N):\n c += gcd(i,gcd(j,k))\nprint(c)', 'from math import gcd\nN = int(input())\nc = 0\nfor i in range (1,N+1):\n for j in range (1,N+1):\n for k in range (1,N+1):\n c += gcd(i,gcd(j,k))\nprint(c)\n']
|
['Wrong Answer', 'Accepted']
|
['s403320191', 's600170905']
|
[9104.0, 9072.0]
|
[1921.0, 1930.0]
|
[145, 158]
|
p02713
|
u784022244
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import fractions\n\n\nfrom functools import reduce\nK=int(input())\n\ndef gcd_list(numbers):\n return reduce(fractions.gcd, numbers)\n\n\ncount=0\nfor i in range(1,K+1):\n for j in range(i,K+1):\n for k in range(j,K+1):\n if i==j and j==k and k==i:\n n=1\n elif i==j or j==k or k==i:\n n=3\n else:\n n=6\n count+=n*gcd_list([i,j,k])\n\nprint(count)', 'import fractions\n\n\nfrom functools import reduce\nK=int(input())\n\ndef gcd_list(numbers):\n return reduce(fractions.gcd, numbers)\n\n\ncount=0\nfor i in range(1,K+1):\n for j in range(i,K+1):\n for k in range(j,K+1):\n if i==j and j==k and k==i:\n n=1\n elif i==j or j==k or k==i:\n n=3\n else:\n n=6\n count+=n*gcd_list([i,j,k])\n\nprint(count)', 'import fractions\n\nfrom functools import reduce\nK=int(input())\n\ndef gcd(*numbers):\n return reduce(fractions.gcd, numbers)\n\n\ncount=0\nfor i in range(1,K+1):\n for j in range(i,K+1):\n for k in range(j,K+1):\n if i==j and j==k and k==i:\n n=1\n elif i==j or j==k or k==i:\n n=3\n else:\n n=6\n count+=n*gcd(i,j,k)\nprint(count)', 'import math\n\nfrom functools import reduce\nK=int(input())\n\ndef gcd_list(numbers):\n return reduce(math.gcd, numbers)\n\n\ncount=0\nfor i in range(1,K+1):\n for j in range(i,K+1):\n for k in range(j,K+1):\n if i==j and j==k and k==i:\n n=1\n elif i==j or j==k or k==i:\n n=3\n else:\n n=6\n count+=n*gcd_list([i,j,k])\n\nprint(count)']
|
['Time Limit Exceeded', 'Time Limit Exceeded', 'Time Limit Exceeded', 'Accepted']
|
['s024438046', 's237499265', 's502018991', 's084672412']
|
[10672.0, 10764.0, 10684.0, 9540.0]
|
[2206.0, 2205.0, 2206.0, 866.0]
|
[372, 372, 361, 361]
|
p02713
|
u785728112
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from math import gcd\nk = int(input())\na = 0\nfor i in range(1,k+1):\n for j in range(1,k+1):\n s = gcd(i,j)\n for l in range(1,k+1):\n m = gcd(s,k)\n a = a + m\nprint(a)', 'from math import gcd\nk=int(input())\nans=0\nfor i in range(1,k+1):\n for j in range(1,k+1):\n ans_=gcd(i,j)\n for l in range(1,k+1):\n ans+=gcd(ans_,l)\nprint(ans)']
|
['Wrong Answer', 'Accepted']
|
['s006689992', 's711129598']
|
[9084.0, 9100.0]
|
[1313.0, 1164.0]
|
[179, 184]
|
p02713
|
u793666115
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['k = int(input())\n\nimport math\nans = sum(list(range(k+1)))\nans1 = 0\nans2 = 0\nfor i in range(1,k+1):\n for j in range(1,k+1):\n ans1 += math.gcd(i,j)\n\nans = ans + ans1*3\n\nfor i in range(1,k+1):\n for j in range(1,i):\n for l in range(1,j):\n ans2 += math.gcd(math.gcd(i,j),l)\n\nans += ans2*6\nprint(ans)\n', 'k = int(input())\n\nimport math\nans = sum(list(range(k+1)))\nans1 = 0\nans2 = 0\nfor i in range(1,k+1):\n for j in range(1,k+1):\n ans1 += math.gcd(i,j)\n\nans = ans + ans1*3\n\nfor i in range(1,K+1):\n for j in range(1,i):\n for l in range(1,l):\n ans2 += math.gcd(math.gcd(i,j),l)\n\nans += ans2*6\nprint(ans)', 'k = int(input())\n\nimport math\nans = 0\nans1 = 0\nans2 = 0\nfor i in range(1,k+1):\n for j in range(1,k+1):\n ans1 += math.gcd(i,j)\n\nans = ans + ans1*3\n\nfor i in range(1,k+1):\n for j in range(1,i):\n for l in range(1,j):\n ans2 += math.gcd(math.gcd(i,j),l)\n\nans += ans2*6\nprint(ans-sum(list(range(k+1)))*2)\n']
|
['Wrong Answer', 'Runtime Error', 'Accepted']
|
['s664159448', 's829159325', 's704866162']
|
[9188.0, 9204.0, 9204.0]
|
[399.0, 28.0, 428.0]
|
[326, 325, 330]
|
p02713
|
u796842765
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['K = int(input())\nresult = 0\nimport fractions\n\nfor a in range(1, K+1):\n for b in range(1, K+1):\n d = fractions.gcd(a, b)\n for c in range(1, K+1):\n result += fractions.gcd(d, c)\n\nprint(result)', 'K = int(input())\nresult = 0\nimport math\n\nfor a in range(1, K+1):\n for b in range(1, K+1):\n d = math.gcd(a, b)\n for c in range(1, K+1):\n result += math.gcd(d, c)\n\nprint(result)']
|
['Time Limit Exceeded', 'Accepted']
|
['s356366703', 's930339206']
|
[10636.0, 9180.0]
|
[2206.0, 1345.0]
|
[218, 203]
|
p02713
|
u798543098
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
["#import fractions\nfrom itertools import permutations, combinations,combinations_with_replacement,product\nimport math\nfrom functools import reduce\n\ndef gcd(*numbers):\n return reduce(math.gcd, numbers)\n\ndef gcd_list(numbers):\n return reduce(math.gcd, numbers)\n \ndef get_unique_list(seq):\n seen = []\n return [x for x in seq if x not in seen and not seen.append(x)]\n\ndef main():\n \n k = int(input())\n lists = []\n \n # for j in range(k):\n # for l in range(k):\n # lists.append((i+1,j+1,l+1))\n for i in range(k):\n lists.append(int(i+1))\n lists.append(int(i+1))\n lists.append(int(i+1))\n \n #for v in combinations_with_replacement(lists,3):\n # print(v)\n lists = list(combinations_with_replacement(lists,3))\n #lists = sorted(set(lists))\n #print(lists)\n \n #print(lists2)\n \n koubai = 0\n for i in lists:\n if len(set(i))==1:\n koubai = koubai + gcd(i[0],i[1],i[2])\n #print(koubai)\n elif len(set(i))==2:\n koubai = koubai + 3*gcd(i[0],i[1],i[2])\n else:\n koubai = koubai + 6*gcd(i[0],i[1],i[2])\n #print(koubai)\n print(koubai)\n \n\n\n\nif __name__ == '__main__':\n main()", "from itertools import permutations, combinations,combinations_with_replacement,product\nimport math\nfrom functools import reduce\n\ndef gcd(*numbers):\n return reduce(math.gcd, numbers)\n\ndef gcd_list(numbers):\n return reduce(math.gcd, numbers)\n \ndef get_unique_list(seq):\n seen = []\n return [x for x in seq if x not in seen and not seen.append(x)]\n\ndef main():\n k = int(input())\n lists = []\n\n for i in range(k):\n lists.append(int(i+1))\n lists.append(int(i+1))\n lists.append(int(i+1))\n\n lists = list(combinations_with_replacement(lists,3))\n\n \n koubai = 0\n for i in lists:\n if len(set(i))==1:\n koubai = koubai + gcd(i[0],i[1],i[2])\n #print(koubai)\n elif len(set(i))==2:\n koubai = koubai + 3*gcd(i[0],i[1],i[2])\n else:\n koubai = koubai + 6*gcd(i[0],i[1],i[2])\n #print(koubai)\n print(koubai)\n \n\n\n\nif __name__ == '__main__':\n main()", "import math\n\ndef main():\n \n k = int(input())\n lists = []\n sum = 0\n for i in range(1,k+1):\n for j in range(1,k+1):\n for l in range(1,k+1):\n #print(i,j,l)\n sum = sum + math.gcd(math.gcd(i,j),l)\n print(sum)\n\nif __name__ == '__main__':\n main()\n"]
|
['Wrong Answer', 'Wrong Answer', 'Accepted']
|
['s272423569', 's373556799', 's844107202']
|
[2016788.0, 2032652.0, 9180.0]
|
[2265.0, 2264.0, 1779.0]
|
[1349, 969, 341]
|
p02713
|
u798557584
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import itertools\nimport fractions\nfrom functools import reduce\n\n\ndef gcd(*numbers):\n return reduce(fractions.gcd, numbers)\n\n\nk = int(input())\nn = []\nfor i in range(1, k+1):\n n.append(i)\nres = 0\nfor v in itertools.product(n, repeat=3):\n res += gcd(v[0], v[1], v[2])\nprint(res)\n', 'from math import gcd\nk = int(input())\nres = 0\nfor a in range(1,k+1):\n for b in range(1,k+1):\n t = gcd(a,b)\n for c in range(1,k+1):\n res += gcd(t,c)\nprint(res)']
|
['Time Limit Exceeded', 'Accepted']
|
['s341637477', 's652397312']
|
[10720.0, 9204.0]
|
[2205.0, 1226.0]
|
[285, 186]
|
p02713
|
u805011545
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\nfrom functools import reduce\nK = int(input())\n\ndef gcd(*numbers):\n return reduce(math.gcd, numbers)\n\nans = 0\nfor a in range(1,K+1):\n for b in range(a,K+1):\n for c in range(1,K+1):\n ans += gcd(gcd(a,b),c)\nprint(ans)', 'import numpy as np\nK = int(input())\nk = np.arange(1,K+1, dtype=np.int64)\nprint(np.gcd.outer(np.gcd.outer(k,k),k).sum())']
|
['Wrong Answer', 'Accepted']
|
['s628244075', 's954144219']
|
[9560.0, 89380.0]
|
[2206.0, 248.0]
|
[236, 119]
|
p02713
|
u807864121
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['def gcd(m, n):\n while n:\n m, n = n, m % n\n return m\n\nK = int(input())\nans = 0\nfor a in range(1, K + 1):\n for b in range(a + 1, K + 1):\n for c in range(b + 1, K + 1):\n _ans = gcd(gcd(a, b), c)\n if a == b and b == c:\n ans += _ans\n elif a == b or b == c:\n ans += 3 * _ans\n else:\n ans += 6 * _ans\nprint(ans)\n', 'def gcd(m, n):\n while n:\n m, n = n, m % n\n return m\n\nK = int(input())\nans = 0\nfor a in range(1, K + 1):\n for b in range(a, K + 1):\n for c in range(b, K + 1):\n _ans = gcd(gcd(a, b), c)\n if a == b and b == c:\n ans += _ans\n elif a == b or b == c:\n ans += 3 * _ans\n else:\n ans += 6 * _ans\nprint(ans)\n']
|
['Wrong Answer', 'Accepted']
|
['s488382255', 's359825460']
|
[9200.0, 9196.0]
|
[850.0, 813.0]
|
[416, 408]
|
p02713
|
u810787773
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\nfrom functools import reduce\n\ndef gcd(*numbers):\n return reduce(math.gcd, numbers)\n\ndef main():\n K = int(input())\n ans = 0\n \n for i in range(1,K+1,1):\n for j in range(1,K+1,1):\n for k in range(1,K+1,1):\n ans += gcd(i,j,k)\n\n return ans\n\nprint(ans)\n', 'import math\n#from functools import reduce\n\n#def gcd(*numbers):\n# return reduce(math.gcd, numbers)\n\ndef main():\n K = int(input())\n ans = 0\n \n for i in range(1,K+1,1):\n for j in range(1,K+1,1):\n for k in range(1,K+1,1):\n ans += math.gcd(i,math.gcd(j,k))\n\n return ans\n\nprint(main())\n']
|
['Runtime Error', 'Accepted']
|
['s782384995', 's879717273']
|
[9512.0, 9172.0]
|
[29.0, 1839.0]
|
[332, 353]
|
p02713
|
u811169796
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['k = int(input())\nsum = 0\nfor a in range(1,k+1):\n for b in range(1,k+1):\n for c in range(1,k+1):\n sum += gcd(a,b,c)\nprint(sum)', 'k = int(input())\nsum = 0\nfor a in range(1,k+1):\n for b in range(1,k+1):\n for c in range(1,k+1):\n sum += gcd(a,gcd(b,c))\nprint(sum)\n', 'k = int(input())\nfrom math import gcd\nsum = 0\nfor a in range(1, k+1):\n for b in range(1, k+1):\n for c in range(1, k+1):\n sum += gcd(a, gcd(b,c))\nprint(sum)\n']
|
['Runtime Error', 'Runtime Error', 'Accepted']
|
['s659696724', 's891290819', 's933249982']
|
[9180.0, 9144.0, 9088.0]
|
[23.0, 20.0, 1974.0]
|
[134, 140, 165]
|
p02713
|
u811817592
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['# -*- coding: utf-8 -*-\nN = int(input())\n\nans = 0\nfor i in range(1, N + 1):\n if i % 3 != 0 and i % 5 != 0:\n ans += i\nprint(ans)', '# -*- coding: utf-8 -*-\nK = int(input())\n \n# lcm & gcd not math library\ndef gcd(a, b):\n while b:\n a, b = b, a % b\n return a\nans = 0\nfor i in range(1, K + 1):\n for j in range(1, K + 1):\n gcd_ij = gcd(i, j)\n for k in range(1, K + 1):\n ans += gcd(gcd_ij, k)\n\nprint(ans)']
|
['Wrong Answer', 'Accepted']
|
['s790647325', 's146088522']
|
[9164.0, 9104.0]
|
[23.0, 1919.0]
|
[137, 307]
|
p02713
|
u813174766
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\nK = int(input())\nres = sum([math.gcd(math.gcd(a, 1), c) for a in range(1,K+1) for b in range(1,K+1) for c in range(1,K+1)])\nprint(res)', 'import math\nK = int(input())\nres = sum([math.gcd(math.gcd(a, b), c) for a in range(1,K+1) for b in range(1,K+1) for c in range(1,K+1)])\nprint(res)\n']
|
['Wrong Answer', 'Accepted']
|
['s231868545', 's557616129']
|
[71496.0, 71500.0]
|
[1340.0, 1683.0]
|
[146, 147]
|
p02713
|
u816587940
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from math import gcd\nfrom numba import jit\n\n@jit\ndef calc(): \n k=int(input())\n ans=0\n for a in range(1,k+1):\n for b in range(1,k+1):\n d=gcd(a,b)\n for c in range(1,k+1):\n ans+=gcd(d,c)\n print(ans)\n', 'k = int(input())\n\ndef gcd(a, b):\n if a < b: a, b = b, a\n c = a % b\n if c == 0: return b\n while c!=0:\n c = a % b\n a = b\n b = c\n return a\n\nans = 0\nfor a in range(1, k+1):\n for b in range(1, k+1):\n t = gcd(a, b)\n if t == 1:\n ans += k\n continue\n for c in range(1, k+1):\n ans += gcd(t, c)\nprint(ans)\n']
|
['Wrong Answer', 'Accepted']
|
['s529095720', 's024246906']
|
[91496.0, 9204.0]
|
[372.0, 957.0]
|
[220, 388]
|
p02713
|
u819593641
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from functools import reduce\nimport fractions\n \ndef gcd(*numbers):\n return reduce(fractions.gcd, numbers)\n \nsum = 0\nK = int(input())\n \nfor i in range(1,K+1):\n for j in range(1,K+1):\n for k in range(1,K+1):\n sum += gcd(i,j,k)\n \nprint(sum)\n', 'from functools import reduce\nimport fractions\n\ndef gcd(*numbers):\n\treturn reduce(fractions.gcd, numbers)\n\nsum = 0\nK = int(input())\n\nfor i in range(K):\n for j in range(K):\n for k in rage(K):\n sum += gcd(i,j,k)\n \nprint(sum)', 'from functools import reduce\nimport functools\nimport fractions\n \n@functools.lru_cache(maxsize=None)\ndef gcd(*numbers):\n return reduce(gcd_, numbers)\n\n@functools.lru_cache(maxsize=None)\ndef gcd_(a, b):\n if (b == 0):\n return a\n return gcd(b, a % b)\n \nsum = 0\nK = int(input())\n \nfor i in range(1,K+1):\n for j in range(i,K+1):\n for k in range(j,K+1):\n if (i == j) & (j == k):\n sum += gcd(i,j,k)\n elif (i == j) & (j != k):\n sum += gcd(i,j,k)*3\n elif (i != j) & (j == k):\n sum += gcd(i,j,k)*3\n elif (i != j) & (j != k):\n sum += gcd(i,j,k)*6\n\nprint(sum)\n']
|
['Time Limit Exceeded', 'Runtime Error', 'Accepted']
|
['s696403517', 's834837211', 's653736325']
|
[10684.0, 10444.0, 143252.0]
|
[2206.0, 29.0, 1632.0]
|
[259, 235, 605]
|
p02713
|
u821180083
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['K = int(input())\n\ndef gcd(a, b):\n if b == 0:\n return a\n return gcd(b, a % b)\n\ns = 0\nfor i in range(1, K + 1):\n\tfor j in range(1, K + 1):\n for k in range(1, K + 1):\n s += gcd(i, gcd(j, k))\n\nprint(s)', 'K = int(input())\n\ndef gcd(a, b):\n if b == 0:\n return a\n return gcd(b, a % b)\n\n\ngcds = [[gcd(i, j) for j in range(K + 1)] for i in range(K + 1)]\n\ns = 0\nfor i in range(1, K + 1):\n for j in range(1, K + 1):\n for k in range(1, K + 1):\n s += gcds[gcds[i][j]][k]\n\nprint(s)\n']
|
['Runtime Error', 'Accepted']
|
['s106781531', 's829639065']
|
[8952.0, 9332.0]
|
[26.0, 1315.0]
|
[214, 281]
|
p02713
|
u825378567
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\ndef main():\n #N,K,C=map(int,input().split())\n #A=list(map(int,input().split()))\n S=input()\n S=int(S)\n ans=0\n for i in range(S+1):\n for j in range(S+1):\n tmp=math.gcd(j,i)\n for k in range(S+1):\n ans+=math.gcd(k,tmp)\n #print()\n print(ans)\n \n\nmain()\n', 'import math\ndef main():\n S=int(input())\n ans=0\n for i in range(1,S+1):\n for j in range(1,S+1):\n tmp=math.gcd(j,i)\n for k in range(1,S+1):\n ans+=math.gcd(k,tmp)\n #print()\n print(ans)\n \n\nmain()\n']
|
['Wrong Answer', 'Accepted']
|
['s775318255', 's495140521']
|
[9176.0, 9176.0]
|
[923.0, 854.0]
|
[330, 254]
|
p02713
|
u827261928
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\nK=int(input())\ns=0\nfor i in range(1,K+1):\n for j in range(1,K+1):\n for k in range(1,K+1):\n s+=math.gcd(math.gcd(i,j),j)\nprint(s) ', 'from math import gcd\nK=int(input())\ns=0\nfor i in range(1,K+1):\n for j in range(1,K+1):\n for k in range(1,K+1):\n s+=gcd(gcd(i,j),k)\nprint(s) ']
|
['Wrong Answer', 'Accepted']
|
['s187962422', 's886688466']
|
[9080.0, 9076.0]
|
[2182.0, 1802.0]
|
[169, 168]
|
p02713
|
u828261239
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\nfrom functools import reduce\nfrom itertools import combinations\n\nn = int(input())\ncnt=0\nfor i in range(1,n+1):\n for j in range(1,n+1):\n if(i==j):\n cnt += i\n else:\n cnt += gcd(i,i,j)*3\n\nprint(cnt)\nif(n>=3):\n my_list = list(range(1,n+1))\n x = combinations(my_list, 3)\n\n\n list_x = list(x)\n for i in list_x:\n cnt+= gcd(i[0],i[1],i[2])\n\nprint(cnt)', 'import math\nfrom functools import reduce\nfrom itertools import combinations\n\nn = int(input())\ncnt=0\nfor i in range(1,n+1):\n for j in range(1,n+1):\n if(i==j):\n cnt += i\n else:\n cnt += gcd(i,i,j)*3\n\nif(n>=3):\n my_list = list(range(1,n+1))\n x = combinations(my_list, 3)\n\n list_x = list(x)\n for i in list_x:\n cnt+= gcd(i[0],i[1],i[2])\n\nprint(cnt)\n', '\nfrom functools import reduce\n\ndef gcd(*numbers):\n return reduce(math.gcd, numbers)\n\nn = int(input())\ncnt=0\nfor i in range(1,n+1):\n for j in range(1,n+1):\n for k in range(1,n+1):\n\n cnt += gcd(i,j,k)\n\nprint(cnt)', 'n = int(input())\ncnt=0\nfor i in range(1,n+1):\n for j in range(1,n+1):\n for k in range(1,n+1):\n\n cnt += gcd(i,j,k)\n\nprint(cnt)', 'import math\n\nn = int(input())\ncnt=0\nfor i in range(1,n+1):\n for j in range(1,n+1):\n t = math.gcd(i,j)\n for k in range(1,n+1):\n cnt += math.gcd(k,t)\n\nprint(cnt)']
|
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
|
['s306311514', 's360639923', 's572759574', 's738549993', 's983359917']
|
[9588.0, 9568.0, 9560.0, 9176.0, 9184.0]
|
[23.0, 28.0, 27.0, 20.0, 1236.0]
|
[412, 401, 234, 146, 188]
|
p02713
|
u828577037
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['k = int(input())\n\ndef extract_gcd(limit):\n ran = range(1, limit + 1)\n for i in ran:\n for j in ran:\n for k in ran:\n yield math.gcd(math.gcd(i, j), k)\ntotal = 0\nfor n in extract_gcd(k):\n total += n\n \nprint(total)', 'from math import gcd\nfrom collections import defaultdict\n\nk = int(input())\n\nmemo = defaultdict(defaultdict)\n\nrg = range(1, k + 1)\nfor i in rg:\n for j in rg:\n memo[i][j] = memo[j][i] = gcd(i, j)\n\nret = 0\nfor i in rg:\n for j in rg:\n tmp = memo[i][j]\n for k in rg:\n res = memo[k][tmp]\n ret += res\n\nprint(ret)']
|
['Runtime Error', 'Accepted']
|
['s133183959', 's938113872']
|
[9184.0, 11100.0]
|
[26.0, 1369.0]
|
[255, 354]
|
p02713
|
u830592648
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from gcd import math\nK=int(input())\nres=0\nfor i in range(1,K):\n for j in range(1,K):\n for k in range(1,K):\n res=res+gcd(gcd(i,j),k)\nprint(res)', 'from gcd import math\nK=int(input())\nres=0\nfor i in range(1,K+1):\n for j in range(1,K+1):\n for k in range(1,K+1):\n res=res+gcd(gcd(i,j),k)\nprint(res)', 'from math import gcd \nK=int(input())\nres=0\nfor i in range(1,K+1):\n for j in range(1,K+1):\n for k in range(1,K+1):\n res += gcd(gcd(i,j),k)\nprint(res)']
|
['Runtime Error', 'Runtime Error', 'Accepted']
|
['s112636800', 's172483815', 's457635111']
|
[9044.0, 9048.0, 9172.0]
|
[23.0, 22.0, 1943.0]
|
[172, 178, 178]
|
p02713
|
u830881690
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\n\nK = int(input())\n\nfor a in range(K):\n for b in range(K):\n for c in range(K):\n gcd = math.gcd(a, b, c)\n \n sum_gcd += gcd\n\nprint(sum_gcd)', 'import math\nK = int(input())\n\nfor a in range(1,K+1):\n for b in range(1,K+1):\n for c in range(1,K+1):\n gcd = math.gcd(math.gcd(a, b), c) \n sum_gcd += gcd\n\nprint(sum_gcd)', 'from math import gcd\nK = int(iniput())\nsum_gcd = [0]*201\nans = 0\n \nfor i in range(1,K+1):\n for j in range(1,K+1):\n sum_gcd[gcd(i,j)] += 1\nfor i in range(1,K+1):\n for k in range(1,K+1):\n ans += sum_gcd[i]*gcd(i,k)\n \nprint(ans)', 'from math import gcd\nK = int(iniput())\nsum_gcd = [0]*201\nans = 0\n\nfor i in range(1,K+1):\n for j in range(1,K+1):\n sum_gcd[gcd(i,j)] += 1\nfor i in range(1,K+1):\n for k in range(1,K+1):\n ans += GCD[i]*gcd(i,k)\n\nprint(ans)', 'from math import gcd\nK = int(input())\nsum_gcd = [0]*201\nans = 0\n \nfor i in range(1,K+1):\n for j in range(1,K+1):\n sum_gcd[gcd(i,j)] += 1\nfor i in range(1,K+1):\n for k in range(1,K+1):\n ans += sum_gcd[i]*gcd(i,k)\n\nprint(ans)']
|
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
|
['s252957949', 's261856054', 's655826431', 's728787330', 's957716944']
|
[9076.0, 9176.0, 9116.0, 9112.0, 9192.0]
|
[22.0, 22.0, 21.0, 22.0, 35.0]
|
[167, 182, 233, 227, 231]
|
p02713
|
u831651889
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from math import gcd\nx=range(int(input()))\ny=0\nfor a in z:\n for b in z:\n for c in z:\n y+=gcd(gcd(a+1,b+1),c+1)\nprint(y)\n', 'from math import gcd\nz=range(1,1+int(input()))\ny=0\nfor a in z:\n for b in z:\n for c in z:\n y+=reduce(gcd,(a,b,c)\nprint(y)\n', 'from math import gcd\nz=range(1,1+int(input()))\ny=0\nfor a in z:\n for b in z:\n for c in z:\n y+=gcd(gcd(a,b),c)\nprint(y)']
|
['Runtime Error', 'Runtime Error', 'Accepted']
|
['s857094638', 's924021467', 's733843506']
|
[9164.0, 9012.0, 9164.0]
|
[19.0, 20.0, 1900.0]
|
[129, 130, 126]
|
p02713
|
u832871520
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import sys\nimport math\n#import fractions\nfrom functools import reduce\nimport itertools\n\n\ndef II(): return int(sys.stdin.readline())\ndef MI(): return map(int, sys.stdin.readline().split())\ndef MI1(): return map(int1, sys.stdin.readline().split())\n\ndef LI(): return list(map(int, sys.stdin.readline().split()))\n\ndef LLI(rows_number): return [LI() for _ in range(rows_number)]\ndef SR(): return sys.stdin.readline().rstrip()\n\nascii_lowercase = \'abcdefghijklmnopqrstuvwxyz\'\nascii_uppercase = \'ABCDEFGHIJKLMNOPQRSTUVWXYZ\'\nascii_uppercase2 = \'ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ\'\n\n\np2D = lambda x: print(*x, sep="\\n")\np2E = lambda x: print(\'\'.join(x))\np2S = lambda x: print(*x, sep=" ")\n\ndef gcd_list(numbers):\n return reduce(math.gcd, numbers)\n\n\nN = II()\nl = []\nfor i in range(1,N+1):\n l.append(i)\nans=0\n\nnum = 3 \nbit_list = list(itertools.product(l, repeat=num))\n\n#for L in bit_list:\n# ans += gcd_list(L)\n\nprint(ans)\n', 'import sys\n#import fractions\nfrom math import gcd\nimport itertools\n\n\ndef II(): return int(sys.stdin.readline())\ndef MI(): return map(int, sys.stdin.readline().split())\ndef MI1(): return map(int1, sys.stdin.readline().split())\n\ndef LI(): return list(map(int, sys.stdin.readline().split()))\n\ndef LLI(rows_number): return [LI() for _ in range(rows_number)]\ndef SR(): return sys.stdin.readline().rstrip()\n\nascii_lowercase = \'abcdefghijklmnopqrstuvwxyz\'\nascii_uppercase = \'ABCDEFGHIJKLMNOPQRSTUVWXYZ\'\nascii_uppercase2 = \'ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ\'\n\n\np2D = lambda x: print(*x, sep="\\n")\np2E = lambda x: print(\'\'.join(x))\np2S = lambda x: print(*x, sep=" ")\n\ndef gcd_list(numbers):\n return reduce(gcd, numbers)\n\ndef euclid(p,q):\n if p%q==0:\n return q\n else:\n return euclid(q,p%q)\n\n\nN = II()\n\nans=0\n\nfor i in range(1, N+1):\n for j in range(1, N+1):\n x = gcd(i,j)\n for k in range(1, N+1):\n ans+=gcd(x,k)\n\n\nprint(ans)\n']
|
['Wrong Answer', 'Accepted']
|
['s811361096', 's875023721']
|
[579620.0, 9252.0]
|
[1019.0, 1167.0]
|
[1197, 1219]
|
p02713
|
u833990553
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['n=int(input())\nN=list(range(1,n+1))\nprint(sum([gcd2(a,b,c) for a,b,c in [[a, b, c] for a in N for b in N for c in N]]))', 'N = int(input())\n \nans = 0\nfor a in range(1, N + 1):\n for b in range(1, N + 1):\n tmp = math.gcd(a, b)\n for c in range(1, N + 1):\n ans += math.gcd(tmp, c)\n \nprint(ans)', 'import math\n\nN = int(input())\n \nans = 0\nfor a in range(1, N + 1):\n for b in range(1, N + 1):\n tmp = math.gcd(a, b)\n for c in range(1, N + 1):\n ans += math.gcd(tmp, c)\nprint(ans)']
|
['Runtime Error', 'Runtime Error', 'Accepted']
|
['s206508301', 's605836541', 's101252427']
|
[512556.0, 9208.0, 9152.0]
|
[2219.0, 24.0, 1415.0]
|
[119, 194, 205]
|
p02713
|
u837340160
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\nfrom functools import reduce\n\ndef gcd(*numbers):\n return reduce(math.gcd, numbers)\n\nK = int(input())\n\nsum1 = 0\nsum2 = 0\nfor i in range(1, K+1):\n for j in range(1, K+1):\n for k in range(1, K+1):\n if i =< j =< k:\n sum1 += gcd(i, j, k)\n if i == j == k:\n sum2 += gcd(i, j, k)\n\nprint(sum1 * 3 - sum2 * 2)\n', 'import math\nfrom functools import reduce\n\ndef gcd(*numbers):\n return reduce(math.gcd, numbers)\n\nK = int(input())\n\nsum1 = 0\nsum2 = 0\nsum3 = 0\nfor i in range(1, K+1):\n for j in range(1, K+1):\n for k in range(1, K+1):\n if i <= j <= k:\n sum1 += gcd(i, j, k)\n if i == j == k:\n sum2 += gcd(i, j, k)\n if (i == j != k) or (j == k != i) or (k == i != j):\n sum3 += gcd(i, j, k)\n\nprint(sum1 * 6 - sum2 * 5 - sum3 * 3)\n']
|
['Runtime Error', 'Accepted']
|
['s583579358', 's768545792']
|
[8976.0, 9520.0]
|
[23.0, 1405.0]
|
[377, 514]
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.