problem_id
stringlengths 6
6
| user_id
stringlengths 10
10
| time_limit
float64 1k
8k
| memory_limit
float64 262k
1.05M
| problem_description
stringlengths 48
1.55k
| codes
stringlengths 35
98.9k
| status
stringlengths 28
1.7k
| submission_ids
stringlengths 28
1.41k
| memories
stringlengths 13
808
| cpu_times
stringlengths 11
610
| code_sizes
stringlengths 7
505
|
|---|---|---|---|---|---|---|---|---|---|---|
p02712
|
u937396845
| 2,000
| 1,048,576
|
Let us define the **FizzBuzz sequence** a_1,a_2,... as follows: * If both 3 and 5 divides i, a_i=\mbox{FizzBuzz}. * If the above does not hold but 3 divides i, a_i=\mbox{Fizz}. * If none of the above holds but 5 divides i, a_i=\mbox{Buzz}. * If none of the above holds, a_i=i. Find the sum of all numbers among the first N terms of the FizzBuzz sequence.
|
['a=int(input())\nans = 0\nfor i in range(a+1)\nif a%3 != 0 and a%5 !=0:\n ans += i\nprint(ans)\n \n \n', 'n=int(input())\nans = 0\nfor i in range(n+1):\n\tif a%3 != 0 and a%5 !=0:\n \t\tans += i\nprint(ans)\n \n \n', 'a=int(input())\nans = 0\nwhile i <= a+1\nif a%3 != 0 and a%5 !=0:\n ans += i\nprint(ans)\n \n ', 'n=int(input())\nans = 0\nfor i in range(n+1):\n\tif i%3 != 0 and i%5 !=0:\n \t\tans += i\nprint(ans)\n \n \n']
|
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
|
['s023185113', 's123172125', 's805271809', 's691536904']
|
[8924.0, 9120.0, 8840.0, 8972.0]
|
[22.0, 25.0, 23.0, 164.0]
|
[96, 100, 90, 100]
|
p02712
|
u938224478
| 2,000
| 1,048,576
|
Let us define the **FizzBuzz sequence** a_1,a_2,... as follows: * If both 3 and 5 divides i, a_i=\mbox{FizzBuzz}. * If the above does not hold but 3 divides i, a_i=\mbox{Fizz}. * If none of the above holds but 5 divides i, a_i=\mbox{Buzz}. * If none of the above holds, a_i=i. Find the sum of all numbers among the first N terms of the FizzBuzz sequence.
|
["for number in range(1, 30 + 1):\n if (number % 3 == 0) and (number % 5 == 0):\n print('FizzBuzz')\n elif number % 3 == 0:\n print('Fizz')\n elif number % 5 == 0:\n print('Buzz')\n else:\n print(str(number))\n\n", "for i in range(1, N + 1):\n if (i % 3 == 0) and (i % 5 == 0):\n print('FizzBuzz')\n elif i % 3 == 0:\n print('Fizz')\n elif i % 5 == 0:\n print('Buzz')\n else:\n print(str(number))\n\n", 'N = int(input())\ntotal = 0\n \nfor i in range(1, N+1):\n if i % 3 != 0 and i % 5 != 0:\n total += i\n \nprint(total)']
|
['Wrong Answer', 'Runtime Error', 'Accepted']
|
['s252990210', 's634945464', 's417782661']
|
[9024.0, 9092.0, 9136.0]
|
[28.0, 24.0, 156.0]
|
[240, 214, 120]
|
p02712
|
u938718404
| 2,000
| 1,048,576
|
Let us define the **FizzBuzz sequence** a_1,a_2,... as follows: * If both 3 and 5 divides i, a_i=\mbox{FizzBuzz}. * If the above does not hold but 3 divides i, a_i=\mbox{Fizz}. * If none of the above holds but 5 divides i, a_i=\mbox{Buzz}. * If none of the above holds, a_i=i. Find the sum of all numbers among the first N terms of the FizzBuzz sequence.
|
['n=int(input())\nli=[]\nfor i in range(1,n+1):\n if not i%3==0 or i%5==0:\n li.append(i)\n else:\n li=li\nprint(sum(li))', 'n=int(input())\nli=[]\ni=0\nwhile i<=n:\n if i%3!=0 and i%5!=0:\n li.append(i)\n i+=1\n continue\n else:\n i+=1\n continue\nelse:\n print(sum(li))']
|
['Wrong Answer', 'Accepted']
|
['s024621611', 's845033850']
|
[37868.0, 30124.0]
|
[182.0, 217.0]
|
[132, 178]
|
p02712
|
u939949527
| 2,000
| 1,048,576
|
Let us define the **FizzBuzz sequence** a_1,a_2,... as follows: * If both 3 and 5 divides i, a_i=\mbox{FizzBuzz}. * If the above does not hold but 3 divides i, a_i=\mbox{Fizz}. * If none of the above holds but 5 divides i, a_i=\mbox{Buzz}. * If none of the above holds, a_i=i. Find the sum of all numbers among the first N terms of the FizzBuzz sequence.
|
[' = int(input())\nl = [i for i in range(1, n+1)]\nnl = []\n \nfor a in l:\n if a%15 != 0 or a%5 != 0 or a%3 != 0:\n \tnl.append(a)\nprint(sum(nl))\n ', '\nn = int(input())\nl = [i for i in range(1, n+1)\nnl = []\n \nfor a in l:\n if a%15 != 0 or a%5 != 0 or a%3 != 0:\n \tnl.append(a)\nprint(sum(nl))\n ', 'n = int(input())\nl = [i for i in range(1, n+1)]\nnl = []\n \nfor a in l:\n if a%15 != 0 or a%5 != 0 or a%3 != 0:\n \tnl.append(a)\nprint(sum(nl))\n ', 'n = int(input())\nl = [i for i in range(1, n + 1)]\nnl = []\n\nfor a in l:\n if (a % 5 != 0) and (a % 3 != 0):\n nl.append(a)\n\nprint(sum(nl))\n']
|
['Runtime Error', 'Runtime Error', 'Wrong Answer', 'Accepted']
|
['s070799112', 's764936255', 's815303334', 's644390698']
|
[8940.0, 9004.0, 55664.0, 52376.0]
|
[19.0, 24.0, 210.0, 223.0]
|
[151, 152, 152, 146]
|
p02712
|
u942356554
| 2,000
| 1,048,576
|
Let us define the **FizzBuzz sequence** a_1,a_2,... as follows: * If both 3 and 5 divides i, a_i=\mbox{FizzBuzz}. * If the above does not hold but 3 divides i, a_i=\mbox{Fizz}. * If none of the above holds but 5 divides i, a_i=\mbox{Buzz}. * If none of the above holds, a_i=i. Find the sum of all numbers among the first N terms of the FizzBuzz sequence.
|
['s=int(input())\nlist=[]\nh=0\nfor i in range(1,s):\n if i%3!=0 or i%5!=0:\n list.append(i)\nfor j in list:\n h=h+j\nprint(h)', 's=int(input())\nlist1=[]\nh=0\nfor i in range(1,s+1):\n if i%3!=0 and i%5!=0:\n list1.append(i)\nfor j in list1:\n h=h+j\nprint(h)']
|
['Wrong Answer', 'Accepted']
|
['s362670158', 's871370955']
|
[45908.0, 29980.0]
|
[262.0, 210.0]
|
[129, 135]
|
p02712
|
u944886577
| 2,000
| 1,048,576
|
Let us define the **FizzBuzz sequence** a_1,a_2,... as follows: * If both 3 and 5 divides i, a_i=\mbox{FizzBuzz}. * If the above does not hold but 3 divides i, a_i=\mbox{Fizz}. * If none of the above holds but 5 divides i, a_i=\mbox{Buzz}. * If none of the above holds, a_i=i. Find the sum of all numbers among the first N terms of the FizzBuzz sequence.
|
['n=int(input())\nsum=0\nfor i in range(1,n+1)\n if i%3!=0 and i%5!=0:\n sum+=i\nprint(sum)', 'n=int(input())\nsum=0\nfor i in range(1,n)\n if i%3!=0 and i%5!=0:\n sum+=i\nprint(sum)', 'n=int(input())\nsum=0\nfor i in range(1,n+1):\n if i%3!=0 and i%5!=0:\n sum+=i\nprint(sum)']
|
['Runtime Error', 'Runtime Error', 'Accepted']
|
['s187525164', 's248479495', 's727223705']
|
[8920.0, 9028.0, 9068.0]
|
[23.0, 27.0, 158.0]
|
[87, 85, 88]
|
p02712
|
u949234226
| 2,000
| 1,048,576
|
Let us define the **FizzBuzz sequence** a_1,a_2,... as follows: * If both 3 and 5 divides i, a_i=\mbox{FizzBuzz}. * If the above does not hold but 3 divides i, a_i=\mbox{Fizz}. * If none of the above holds but 5 divides i, a_i=\mbox{Buzz}. * If none of the above holds, a_i=i. Find the sum of all numbers among the first N terms of the FizzBuzz sequence.
|
['\nN = int(input())\n\nj = 0\nfor i in range(1, N):\n print(i)\n if i % 15 == 0:\n \n pass\n elif i % 3 == 0:\n \n pass\n elif i % 5 == 0:\n \n pass\n else:\n j = j + i\n\nprint(j)\n', '\nN = int(input())\n\nj = 0\nfor i in range(1, N+1):\n print(i)\n if i % 15 == 0:\n \n pass\n elif i % 3 == 0:\n \n pass\n elif i % 5 == 0:\n \n pass\n else:\n j = j + i\n\nprint(j)\n', '\nN = int(input())\n\nj = 0\nfor i in range(1, N+1):\n if i % 15 == 0:\n \n pass\n elif i % 3 == 0:\n \n pass\n elif i % 5 == 0:\n \n pass\n else:\n j = j + i\n\nprint(j)\n\n']
|
['Wrong Answer', 'Wrong Answer', 'Accepted']
|
['s044844165', 's784306577', 's188301447']
|
[9748.0, 9800.0, 9164.0]
|
[464.0, 491.0, 177.0]
|
[276, 278, 268]
|
p02712
|
u949831615
| 2,000
| 1,048,576
|
Let us define the **FizzBuzz sequence** a_1,a_2,... as follows: * If both 3 and 5 divides i, a_i=\mbox{FizzBuzz}. * If the above does not hold but 3 divides i, a_i=\mbox{Fizz}. * If none of the above holds but 5 divides i, a_i=\mbox{Buzz}. * If none of the above holds, a_i=i. Find the sum of all numbers among the first N terms of the FizzBuzz sequence.
|
['n = int(input())\nn3 = n // 3\nn5 = n // 5\nn15 = n // 15\n\nprint(n*(n+1)/2 + 3*n3*(n3+1)/2 + 5*n5*(n5+1)/2 - 15*n15*(n15+1)/2)', 'n = int(input())\nn3 = n // 3\nn5 = n // 5\nn15 = n // 15\n\nprint(n*(n+1)/2 - 3*n3*(n3+1)/2 - 5*n5*(n5+1)/2 + 15*n15*(n15+1)/2)', 'n = int(input())\n\nn3 = n // 3\nn5 = n // 5\nn15 = n // 15\n\nprint(n*(n + 1)//2 - 3*n3*(n3 + 1)//2 - 5*n5*(n5 + 1)//2 + 15*n15*(n15 + 1)//2)']
|
['Wrong Answer', 'Wrong Answer', 'Accepted']
|
['s155421019', 's784013461', 's693139601']
|
[8996.0, 9168.0, 9124.0]
|
[24.0, 22.0, 23.0]
|
[123, 123, 136]
|
p02712
|
u953274507
| 2,000
| 1,048,576
|
Let us define the **FizzBuzz sequence** a_1,a_2,... as follows: * If both 3 and 5 divides i, a_i=\mbox{FizzBuzz}. * If the above does not hold but 3 divides i, a_i=\mbox{Fizz}. * If none of the above holds but 5 divides i, a_i=\mbox{Buzz}. * If none of the above holds, a_i=i. Find the sum of all numbers among the first N terms of the FizzBuzz sequence.
|
['\nimport math\n\n\ntext = 0\ncount = 0\n\n\nn = int(input())\n\n\nwhile count < n:\n if (count % 3 != 0) or (count % 5 != 0):\n text = text + count\n count += 1\n\n\nprint(text)\n', '\ntext = 0\ncount = 0\n\n\nn = int(input())\n\n\nwhile count < n:\n count += 1\n if (count % 3 != 0) and (count % 5 != 0):\n text = text + count\n\n\nprint(text)\n']
|
['Wrong Answer', 'Accepted']
|
['s736058140', 's743505265']
|
[9164.0, 9160.0]
|
[210.0, 206.0]
|
[257, 213]
|
p02712
|
u957872856
| 2,000
| 1,048,576
|
Let us define the **FizzBuzz sequence** a_1,a_2,... as follows: * If both 3 and 5 divides i, a_i=\mbox{FizzBuzz}. * If the above does not hold but 3 divides i, a_i=\mbox{Fizz}. * If none of the above holds but 5 divides i, a_i=\mbox{Buzz}. * If none of the above holds, a_i=i. Find the sum of all numbers among the first N terms of the FizzBuzz sequence.
|
['N = int(input())\ntotal = 0\nfor i in range(1, N+1):\n if i%3 and i%5:\n continue\n elif i%3:\n continue\n elif i%5:\n continue\n else:\n total += i\nprint(total)', 'N = int(input())\ntotal = 0\nfor i in range(1, N+1):\n if i%3==0 and i%5==0:\n continue\n elif i%3==0:\n continue\n elif i%5==0:\n continue\n else:\n total += i\nprint(total)\n']
|
['Wrong Answer', 'Accepted']
|
['s170197748', 's449528115']
|
[9176.0, 9100.0]
|
[133.0, 188.0]
|
[167, 180]
|
p02712
|
u960570220
| 2,000
| 1,048,576
|
Let us define the **FizzBuzz sequence** a_1,a_2,... as follows: * If both 3 and 5 divides i, a_i=\mbox{FizzBuzz}. * If the above does not hold but 3 divides i, a_i=\mbox{Fizz}. * If none of the above holds but 5 divides i, a_i=\mbox{Buzz}. * If none of the above holds, a_i=i. Find the sum of all numbers among the first N terms of the FizzBuzz sequence.
|
['n = int(input())\nsum = 0\nfor i in range(1 , n + 1 ):\n if (i % 3 != 0) and (i % 5 != 0):\n sum += 1\n\nprint(sum)', 'n = int(input())\nsum = 0\n\nif(1 <= n <= 10 ** 6):\n\n for i in range(1 , n + 1 ):\n if (i % 3 == 0) and (i % 5 == 0):\n n = "FizzBuzz"\n elif (i % 3 == 0):\n n = "Fizz"\n elif (i % 5 == 0):\n n = "ZBuzz"\n else:\n sum += 1\n\nprint(sum)', 'n = int(input())\nsum = 0\nfor i in range(1 , n + 1 ):\n if (i % 3 == 0) and (i % 5 == 0):\n n = "FizzBuzz"\n if (i % 3 == 0):\n n = "Fizz"\n if (i % 5 == 0):\n n = "ZBuzz"\n\nprint(sum)', 'n = int(input())\nsum = 0\nfor i in range(1 , n + 1 ):\n if (i % 3 == 0) and (i % 5 == 0):\n n = "FizzBuzz"\n elif (i % 3 == 0):\n n = "Fizz"\n elif (i % 5 == 0):\n n = "ZBuzz"\n else:\n sum += 1\n\nprint(sum)', 'n = int(input())\nlist = []\n\nfor i in range(1, n + 1):\n if i % 3 and i % 5 == 0:\n print("FizzBuzz")\n elif i % 3 == 0:\n print("Fizz")\n elif i % 5 == 0:\n print("Buzz")\n else:\n print(list.append(i))\nprint(sum(list))', 'n = int(input())\nsum = 0\nfor i in range(1 , n + 1 ):\n if (i % 3 == 0) and (i % 5 == 0):\n n = "FizzBuzz"\n if (i % 3 == 0):\n n = "Fizz"\n if (i % 5 == 0):\n n = "ZBuzz"\n\nprint(sum)', 'n = int(input())\nsum = 0\n\nif(1 <= N <= 10 ** 6):\n\n for i in range(1 , n + 1 ):\n if (i % 3 == 0) and (i % 5 == 0):\n n = "FizzBuzz"\n elif (i % 3 == 0):\n n = "Fizz"\n elif (i % 5 == 0):\n n = "ZBuzz"\n else:\n sum += 1\n\nprint(sum)', 'n = int(input())\nsum = 0\n\nif(1 <= n <= 10 ** 6):\n\n for i in range(1 , n + 1 ):\n if (i % 3 == 0) and (i % 5 == 0):\n n = "FizzBuzz"\n elif (i % 3 == 0):\n n = "Fizz"\n elif (i % 5 == 0):\n n = "ZBuzz"\n else:\n sum += 1\n\nprint(sum)', 'N = int(input())\nlist = []\n\nfor i in range(1, N + 1):\n if i % 3 == 0 and i % 5 == 0:\n print("FizzBuzz")\n elif i % 3 == 0:\n print("Fizz")\n elif i % 5 == 0:\n print("Buzz")\n else:\n print(list.append(i))\nprint(sum(list))', 'N = int(input())\nlist = []\n\nfor i in range(1, N + 1):\n if i % 3 == 0 and i % 5 == 0:\n "FizzBuzz"\n elif i % 3 == 0:\n "Fizz"\n elif i % 5 == 0:\n "Buzz"\n else:\n list.append(i)\nprint(sum(list))']
|
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Accepted']
|
['s047531318', 's257532599', 's287641244', 's303069959', 's334270686', 's395993414', 's399275556', 's429704279', 's887290305', 's832844897']
|
[9152.0, 9188.0, 9196.0, 9168.0, 29852.0, 9148.0, 9172.0, 9172.0, 30136.0, 29988.0]
|
[152.0, 209.0, 209.0, 209.0, 468.0, 210.0, 27.0, 203.0, 462.0, 216.0]
|
[119, 263, 206, 237, 251, 206, 263, 263, 256, 228]
|
p02712
|
u962175226
| 2,000
| 1,048,576
|
Let us define the **FizzBuzz sequence** a_1,a_2,... as follows: * If both 3 and 5 divides i, a_i=\mbox{FizzBuzz}. * If the above does not hold but 3 divides i, a_i=\mbox{Fizz}. * If none of the above holds but 5 divides i, a_i=\mbox{Buzz}. * If none of the above holds, a_i=i. Find the sum of all numbers among the first N terms of the FizzBuzz sequence.
|
['N= int(input())\nsum = 0\nfor i in range(1, N):\n if (i % 3 != 0 and i % 5 != 0 ):\n sum = + i\nprint(sum)\n', 'N= int(input())\n\nsum = 0\nfor i in range(1, N):\n if (i % 3 != 0 and i % 5 != 0 and i % 15 != 0):\n sum = sum + i\n print(sum)', 'N= int(input())\nsum = 0\nfor i in range(1, N+1):\n if (i % 3 != 0 and i % 5 != 0 ):\n sum = + i\nprint(sum)', 'N= int(input())\nsum = 0\nfor i in range(1, N+1):\n if (i % 3 != 0 and i % 5 != 0 ):\n sum =sum + i\nprint(sum)\n']
|
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
|
['s012530706', 's664826325', 's787968297', 's025661389']
|
[9092.0, 9256.0, 9168.0, 9164.0]
|
[139.0, 362.0, 137.0, 158.0]
|
[112, 139, 113, 117]
|
p02712
|
u962423738
| 2,000
| 1,048,576
|
Let us define the **FizzBuzz sequence** a_1,a_2,... as follows: * If both 3 and 5 divides i, a_i=\mbox{FizzBuzz}. * If the above does not hold but 3 divides i, a_i=\mbox{Fizz}. * If none of the above holds but 5 divides i, a_i=\mbox{Buzz}. * If none of the above holds, a_i=i. Find the sum of all numbers among the first N terms of the FizzBuzz sequence.
|
['n=int(input())\n\nans=0\n\nfor i in range(1,n+1):\n\tif i%3!=0 and i%5!=0\n\t\tans+=i\n \nprint(ans)', 'n=int(input())\n \nans=0\n \nfor i in range(1,n+1):\n\tif i%3!=0 and i%5!=0:\n\t\tans+=i\n \nprint(ans)']
|
['Runtime Error', 'Accepted']
|
['s476111975', 's550632540']
|
[8988.0, 9108.0]
|
[26.0, 174.0]
|
[94, 97]
|
p02712
|
u966207392
| 2,000
| 1,048,576
|
Let us define the **FizzBuzz sequence** a_1,a_2,... as follows: * If both 3 and 5 divides i, a_i=\mbox{FizzBuzz}. * If the above does not hold but 3 divides i, a_i=\mbox{Fizz}. * If none of the above holds but 5 divides i, a_i=\mbox{Buzz}. * If none of the above holds, a_i=i. Find the sum of all numbers among the first N terms of the FizzBuzz sequence.
|
['N = int(input())\nA = []\nfor i in range(N+1):\n if i+1 % 3 != 0 and i+1 % 5 != 0:\n A.append(i)\nprint(sum(A))\n', 'N = int(input())\nA = []\nfor i in range(N+1):\n if i+1 % 3 != 0 and i+1 % 5 != 0\n A.append(i)\nprint(sum(A))', 'N = int(input())\nA = []\nfor i in range(N+1):\n if i % 3 != 0 and i % 5 != 0:\n A.append(i)\nprint(sum(A))\n']
|
['Wrong Answer', 'Runtime Error', 'Accepted']
|
['s409628733', 's538922345', 's192126198']
|
[48424.0, 8912.0, 29804.0]
|
[254.0, 23.0, 181.0]
|
[117, 115, 113]
|
p02712
|
u966891144
| 2,000
| 1,048,576
|
Let us define the **FizzBuzz sequence** a_1,a_2,... as follows: * If both 3 and 5 divides i, a_i=\mbox{FizzBuzz}. * If the above does not hold but 3 divides i, a_i=\mbox{Fizz}. * If none of the above holds but 5 divides i, a_i=\mbox{Buzz}. * If none of the above holds, a_i=i. Find the sum of all numbers among the first N terms of the FizzBuzz sequence.
|
['N = int(input())\nans = 0\nfor i in range(1, N):\n if i % 3 == 0 or i % 5 == 0:\n ans += i\nprint(ans)', 'N = int(input())\nans = 0\nfor i in range(1, N+1):\n if not i % 3 == 0 and not i % 5 == 0:\n ans += i\nprint(ans)']
|
['Wrong Answer', 'Accepted']
|
['s881430015', 's629184649']
|
[9168.0, 9120.0]
|
[150.0, 154.0]
|
[101, 112]
|
p02712
|
u967484343
| 2,000
| 1,048,576
|
Let us define the **FizzBuzz sequence** a_1,a_2,... as follows: * If both 3 and 5 divides i, a_i=\mbox{FizzBuzz}. * If the above does not hold but 3 divides i, a_i=\mbox{Fizz}. * If none of the above holds but 5 divides i, a_i=\mbox{Buzz}. * If none of the above holds, a_i=i. Find the sum of all numbers among the first N terms of the FizzBuzz sequence.
|
['N = int(input())\nans = 0\nfor i in range(N):\n if i % 3 != 0 or i % 5 != 0:\n ans += i\nprint(ans)', 'N = int(input())\nans = 0\nfor i in range(N):\n if i+1 % 3 != 0 and i+1 % 5 != 0:\n ans += i+1\nprint(ans)', 'N = int(input())\nans = 0\nfor i in range(N):\n j = i + 1\n if j % 3 != 0 and j % 5 != 0:\n ans += j\nprint(ans)']
|
['Wrong Answer', 'Wrong Answer', 'Accepted']
|
['s367160688', 's369622507', 's359034590']
|
[9096.0, 9096.0, 9056.0]
|
[164.0, 227.0, 211.0]
|
[98, 105, 111]
|
p02712
|
u968167998
| 2,000
| 1,048,576
|
Let us define the **FizzBuzz sequence** a_1,a_2,... as follows: * If both 3 and 5 divides i, a_i=\mbox{FizzBuzz}. * If the above does not hold but 3 divides i, a_i=\mbox{Fizz}. * If none of the above holds but 5 divides i, a_i=\mbox{Buzz}. * If none of the above holds, a_i=i. Find the sum of all numbers among the first N terms of the FizzBuzz sequence.
|
['n = int(input())\n\ndef f(num):\n return num*(num+1)/2\n\nn1 = int(n/3)\nn2 = int(n/5)\nn3 = int(n/15)\n\nsm = f(n)- 3*f(n1)-5*f(n2) + 15*f(n3)\n# f(n)- 3*f(int(n/3))\n\nprint(sm)', 'n = int(input())\n\ndef f(num):\n return num*(num+1)/2\n\nn1 = int(n/3)\nn2 = int(n/5)\nn3 = int(n/15)\n\nsm = f(n)- 3*f(n1)-5*f(n2) + 15*f(n3)\n# f(n)- 3*f(int(n/3))\n\nprint(int(sm))']
|
['Wrong Answer', 'Accepted']
|
['s219188490', 's652362325']
|
[9080.0, 9180.0]
|
[21.0, 19.0]
|
[168, 173]
|
p02712
|
u969601826
| 2,000
| 1,048,576
|
Let us define the **FizzBuzz sequence** a_1,a_2,... as follows: * If both 3 and 5 divides i, a_i=\mbox{FizzBuzz}. * If the above does not hold but 3 divides i, a_i=\mbox{Fizz}. * If none of the above holds but 5 divides i, a_i=\mbox{Buzz}. * If none of the above holds, a_i=i. Find the sum of all numbers among the first N terms of the FizzBuzz sequence.
|
['n=int(input())\nre=0\nfor i in range(1,n+1):\n if (i%3!=0) and (i%5!=0)\n re+=i\nprint(re)', 'n=int(input())\nre=0\nfor i in range(1,n+1):\n if (i%3!=0) and (i%5!=0):\n re+=i\nprint(re)']
|
['Runtime Error', 'Accepted']
|
['s675638273', 's596798520']
|
[8956.0, 9108.0]
|
[20.0, 159.0]
|
[86, 87]
|
p02712
|
u971124021
| 2,000
| 1,048,576
|
Let us define the **FizzBuzz sequence** a_1,a_2,... as follows: * If both 3 and 5 divides i, a_i=\mbox{FizzBuzz}. * If the above does not hold but 3 divides i, a_i=\mbox{Fizz}. * If none of the above holds but 5 divides i, a_i=\mbox{Buzz}. * If none of the above holds, a_i=i. Find the sum of all numbers among the first N terms of the FizzBuzz sequence.
|
['n = int(input())\nm = 100000\nans = 0\ncnt3 = 0\ncnt5 = 0\nfor i in range(n):\n if i%3 == 0:\n cnt3 += i//3\n elif i%5 == 0:\n cnt5 += i//5\n\nif n%2 == 0:\n S = (n+1)*n//2\nelse:\n S = (n+1)*n//2 + (n+1)//2\n\nprint(S - cnt3*3 - cnt5*5)\n', 'n = int(input())\n\nans = 0\nfor i in range(1,n+1):\n if i%3 != 0 and i%5 != 0:\n ans += i\n\nprint(ans)\n']
|
['Wrong Answer', 'Accepted']
|
['s225893322', 's175388158']
|
[9124.0, 9076.0]
|
[162.0, 163.0]
|
[232, 102]
|
p02712
|
u975719989
| 2,000
| 1,048,576
|
Let us define the **FizzBuzz sequence** a_1,a_2,... as follows: * If both 3 and 5 divides i, a_i=\mbox{FizzBuzz}. * If the above does not hold but 3 divides i, a_i=\mbox{Fizz}. * If none of the above holds but 5 divides i, a_i=\mbox{Buzz}. * If none of the above holds, a_i=i. Find the sum of all numbers among the first N terms of the FizzBuzz sequence.
|
['n = int(input())\nlong sum = 0\nfor i in range(1, n):\n if i % 3 == 0 and i % 5 == 0:\n pass\n elif i % 3 == 0:\n pass\n elif i % 5 == 0:\n pass\n else:\n sum+= i\nprint(sum)', 'n = int(input())\nsum = 0\nfor i in range(1, n + 1):\n if i % 3 != 0 and i % 5 != 0:\n sum += i\nprint(sum)']
|
['Runtime Error', 'Accepted']
|
['s280121850', 's428268121']
|
[9000.0, 9168.0]
|
[22.0, 155.0]
|
[203, 112]
|
p02712
|
u987326700
| 2,000
| 1,048,576
|
Let us define the **FizzBuzz sequence** a_1,a_2,... as follows: * If both 3 and 5 divides i, a_i=\mbox{FizzBuzz}. * If the above does not hold but 3 divides i, a_i=\mbox{Fizz}. * If none of the above holds but 5 divides i, a_i=\mbox{Buzz}. * If none of the above holds, a_i=i. Find the sum of all numbers among the first N terms of the FizzBuzz sequence.
|
['n = int(input())\nfizzbuzz = [i for i in range(n+1) if i%5!=0 and i%3!=0]\nprint(sum(fizzbuss))', 'n = int(input())\nfizzbuzz = [i for i in range(n+1) if i%5!=0 and i%3!=0]\nprint(sum(fizzbuzz))']
|
['Runtime Error', 'Accepted']
|
['s192535410', 's102127112']
|
[30008.0, 29848.0]
|
[119.0, 121.0]
|
[93, 93]
|
p02712
|
u988191897
| 2,000
| 1,048,576
|
Let us define the **FizzBuzz sequence** a_1,a_2,... as follows: * If both 3 and 5 divides i, a_i=\mbox{FizzBuzz}. * If the above does not hold but 3 divides i, a_i=\mbox{Fizz}. * If none of the above holds but 5 divides i, a_i=\mbox{Buzz}. * If none of the above holds, a_i=i. Find the sum of all numbers among the first N terms of the FizzBuzz sequence.
|
['N = int(input())\n\nT = 0\nif N == 1:\n\tprint(1)\nelif N == 2:\n\tprint(3)\nelse:\n\tfor i in range(N):\n\t\tif i % 3 != 0 and i % 5 != 0:\n\t\t\tT += i\n\t\tprint(T)', 'N = int(input())\nT = 0\nfor i in range(N+1):\n\tif i % 15 == 0:\n\t\tT += 0\n\telif i % 3 == 0:\n\t\tT += 0\n\telif i % 5 == 0:\n\t\tT += 0\n\telse:\n\t\tT += i\nprint(T)']
|
['Wrong Answer', 'Accepted']
|
['s616400456', 's600480472']
|
[14772.0, 9184.0]
|
[492.0, 210.0]
|
[146, 148]
|
p02712
|
u989089752
| 2,000
| 1,048,576
|
Let us define the **FizzBuzz sequence** a_1,a_2,... as follows: * If both 3 and 5 divides i, a_i=\mbox{FizzBuzz}. * If the above does not hold but 3 divides i, a_i=\mbox{Fizz}. * If none of the above holds but 5 divides i, a_i=\mbox{Buzz}. * If none of the above holds, a_i=i. Find the sum of all numbers among the first N terms of the FizzBuzz sequence.
|
['n = int(input())\ns = []\nfor i in range(n):\n if not i%3==0 and i%5==0:\n s.append(i)\nprint(sum(s))\n \n \n', 'n = int(input())\ns = []\nfor i in range(n):\n if not i%3 and i%5==0:\n s.append(i)\nprint(sum(s))\n \n \n', 'n = int(input())\nans = 0\nfor i in range(n+1):\n if i%3!=0 and i%5!=0:\n ans = ans + i\nprint(ans)\n \n \n']
|
['Wrong Answer', 'Wrong Answer', 'Accepted']
|
['s506596273', 's889368432', 's986833309']
|
[14016.0, 11624.0, 9084.0]
|
[133.0, 109.0, 158.0]
|
[114, 111, 112]
|
p02712
|
u994527877
| 2,000
| 1,048,576
|
Let us define the **FizzBuzz sequence** a_1,a_2,... as follows: * If both 3 and 5 divides i, a_i=\mbox{FizzBuzz}. * If the above does not hold but 3 divides i, a_i=\mbox{Fizz}. * If none of the above holds but 5 divides i, a_i=\mbox{Buzz}. * If none of the above holds, a_i=i. Find the sum of all numbers among the first N terms of the FizzBuzz sequence.
|
['n = int(input())\nsum = 0\nfor i in range(1,n+1):\n if i % 3 == 0 or i % 5 == 0:\n continue\n else: \n sum += i', 'n = int(input())\nsum = 0\nfor i in range(1,n+1):\n if i % 3 == 0 or i % 5 == 0:\n continue\n else: \n sum += i\nprint(sum)']
|
['Wrong Answer', 'Accepted']
|
['s161239568', 's301246458']
|
[9160.0, 9168.0]
|
[153.0, 151.0]
|
[113, 124]
|
p02712
|
u994935583
| 2,000
| 1,048,576
|
Let us define the **FizzBuzz sequence** a_1,a_2,... as follows: * If both 3 and 5 divides i, a_i=\mbox{FizzBuzz}. * If the above does not hold but 3 divides i, a_i=\mbox{Fizz}. * If none of the above holds but 5 divides i, a_i=\mbox{Buzz}. * If none of the above holds, a_i=i. Find the sum of all numbers among the first N terms of the FizzBuzz sequence.
|
['N = 31\nN_list = [1,3,3,7,7,7,14,22,22,22,33,33,46,60,60]\nN_add15 = [1,2,2,3,3,3,4,5,5,5,6,6,7,8,8]\n\n\nnum_15 = N // 15\n\nn_list = N_list[N%15-1] + 15 * N_add15[N%15-1] * (num_15)\n\nif(N < 16):\n ans = N_list[N-1]\nelse:\n ans = num_15 * num_15 * 60 + n_list\n\nprint(ans)', 'N = int(input())\n\nN_list = [1,3,3,7,7,7,14,22,22,22,33,33,46,60,60]\nN_add15 = [1,2,2,3,3,3,4,5,5,5,6,6,7,8,8]\n\n\nnum_15 = N // 15\n\nn_list = N_list[N%15-1] + 15 * N_add15[N%15-1] * (num_15)\n\nif(N < 16):\n ans = N_list[N-1]\nelse:\n ans = num_15 * num_15 * 60 + n_list\n\nprint(ans)\n']
|
['Wrong Answer', 'Accepted']
|
['s509644720', 's926172455']
|
[9076.0, 9208.0]
|
[23.0, 22.0]
|
[269, 281]
|
p02712
|
u997036872
| 2,000
| 1,048,576
|
Let us define the **FizzBuzz sequence** a_1,a_2,... as follows: * If both 3 and 5 divides i, a_i=\mbox{FizzBuzz}. * If the above does not hold but 3 divides i, a_i=\mbox{Fizz}. * If none of the above holds but 5 divides i, a_i=\mbox{Buzz}. * If none of the above holds, a_i=i. Find the sum of all numbers among the first N terms of the FizzBuzz sequence.
|
['a = input()\nlists = [i+1 for i in range(a)]\nfor t in lists:\n if t % 5 == 0:\n lists.remove(t)\n elif t % 3 ==0:\n lists.remove(t)\n \nprint(sum(lists))', 'a = int(input())\nlists = [i+1 for i in range(a)]\nfor t in lists:\n if t % 5 == 0:\n lists.remove(t)\n elif t % 3 ==0:\n lists.remove(t)\n \nprint(sum(lists))', 'a = int(input())\nlists = [i+1 for i in range(a) if (i+1)%5!=0 and (i+1)%3!=0]\n\nprint(sum(lists))']
|
['Runtime Error', 'Wrong Answer', 'Accepted']
|
['s079589828', 's470650533', 's550774379']
|
[8912.0, 48656.0, 30020.0]
|
[22.0, 2207.0, 164.0]
|
[157, 162, 96]
|
p02712
|
u997389162
| 2,000
| 1,048,576
|
Let us define the **FizzBuzz sequence** a_1,a_2,... as follows: * If both 3 and 5 divides i, a_i=\mbox{FizzBuzz}. * If the above does not hold but 3 divides i, a_i=\mbox{Fizz}. * If none of the above holds but 5 divides i, a_i=\mbox{Buzz}. * If none of the above holds, a_i=i. Find the sum of all numbers among the first N terms of the FizzBuzz sequence.
|
['ans = 0\nfor i in range(1,int(input())+1):\n if i%15 == 0:\n ans += 8\n elif i%3==0 or i%5 == 0:\n ans += 4\n else:\n ans += i\n \nprint(ans)', 'ans = 0\nfor i in range(1,int(input())+1):\n if i%3 != 0 and i%5!= 0:\n ans+= i\n \n \nprint(ans)']
|
['Wrong Answer', 'Accepted']
|
['s320543545', 's747098698']
|
[9108.0, 9080.0]
|
[218.0, 160.0]
|
[169, 111]
|
p02712
|
u999750647
| 2,000
| 1,048,576
|
Let us define the **FizzBuzz sequence** a_1,a_2,... as follows: * If both 3 and 5 divides i, a_i=\mbox{FizzBuzz}. * If the above does not hold but 3 divides i, a_i=\mbox{Fizz}. * If none of the above holds but 5 divides i, a_i=\mbox{Buzz}. * If none of the above holds, a_i=i. Find the sum of all numbers among the first N terms of the FizzBuzz sequence.
|
['n = int(input())\nans = 0\nfor i in range(n):\n if i%3 != 0 or i%5 != 0:\n ans += i\nprint(ans)', 'n = int(input())\nans = 0\nfor i in range(n+1):\n if i%3 != 0 and i%5 != 0:\n ans += i\nprint(ans)']
|
['Wrong Answer', 'Accepted']
|
['s192397260', 's431409995']
|
[9164.0, 9048.0]
|
[162.0, 157.0]
|
[100, 103]
|
p02713
|
u000349418
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['n = int(input())\ni = 1\nj = 1\nk = 1\nans = 0\nwhile i < n+1:\n j = 1\n while j < n+1:\n k = 1\n p = gcd(i,j)\n while k < n+1:\n if (p-1)*(k-1) == 0:\n ans += 1\n else:\n ans += gcd(k,p)\n k += 1\n j += 1\n i += 1\nprint(ans)', 'def gcd(x,y):\n if y == 0:\n return x\n else:\n return gcd(y,x%y)\n\nG = []\ni,j = 1,1\nwhile i < 201:\n j = 1\n g0 = []\n while j < 201:\n g0.append(gcd(i,j))\n j += 1\n g0 = tuple(g0)\n G.append(g0)\n i += 1\nn = int(input())\ni = 1\nj = 1\nk = 1\nans = 0\nwhile i < n+1:\n j = 1\n while j < n+1:\n k = 1\n p = G[i-1][j-1]\n while k < n+1:\n ans += G[k-1][p-1]\n k += 1\n j += 1\n i += 1\nprint(ans)']
|
['Runtime Error', 'Accepted']
|
['s574236716', 's549729014']
|
[9196.0, 9540.0]
|
[19.0, 1845.0]
|
[308, 480]
|
p02713
|
u002459665
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['K = int(input())\n\nfrom fractions import gcd\n\n\nd = {}\nd2 = {}\n\ndef f(x, y, z):\n s = gcd(x, y)\n t = gcd(s, z)\n return t\n\nans = 0\nfor i in range(1, K+1):\n for j in range(i, K+1):\n for k in range(j, K+1):\n if i == j == k:\n ans += f(i, j, k)\n elif i == j or j == k:\n ans += 3 * f(i, j, k)\n else:\n ans += 6 * f(i, j, k)\n\nprint(ans)', 'K = int(input())\n\n# from fractions import gcd\nfrom math import gcd\n\n\n\n# return r\n\nans = 0\nfor i in range(1, K+1):\n for j in range(1, K+1):\n for k in range(1, K+1):\n # ans += f(i, j, k)\n ans += gcd(gcd(i, j), k)\n\nprint(ans)']
|
['Time Limit Exceeded', 'Accepted']
|
['s108034236', 's946872032']
|
[10576.0, 9172.0]
|
[2206.0, 1815.0]
|
[440, 302]
|
p02713
|
u004482945
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['a = int(input())\nfrom math import gcd\nb = 0\nfor i in range(1, n + 1):\n for j in range(1, n + 1):\n for k in range(1, n + 1):\n b += gcd(gcd(i, j), k)\n \nprint(b)', 'a = int(input())\nfrom math import gcd\nb = 0\nfor i in range(1, a + 1):\n for j in range(1, a + 1):\n for k in range(1, a + 1):\n b += gcd(gcd(i, j), k)\n \nprint(b)']
|
['Runtime Error', 'Accepted']
|
['s341905559', 's724420129']
|
[9112.0, 9104.0]
|
[23.0, 1763.0]
|
[172, 172]
|
p02713
|
u006880673
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from functools import reduce\nfrom math import gcd\n\n\nk = int(input())\nl = range(1, k+1)\ns = 0\n\nfor a in l:\n for b in l:\n for c in l:\n l = [a, b, c]\n g = reduce(gcd, l)\n s += g\n \nprint(s)', 'from math import gcd\n\nk = int(input())\nrange(1, k+1)\n\nl1 = range(1, k+1)\ndef loop(s):\n for a in l1:\n for b in l1:\n for c in l1:\n l2 = (a, b, c)\n g1 = gcd(a,b)\n g2 = gcd(g1, c)\n s += g2\n return s\n\nprint(loop(0))']
|
['Wrong Answer', 'Accepted']
|
['s780967762', 's719873965']
|
[9628.0, 9196.0]
|
[24.0, 1651.0]
|
[239, 294]
|
p02713
|
u009885900
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
[' import math\n\nK = int(input())\ngcd_map = [[[0] * K for i in range(K)] for j in range(K)]\n\nans = 0\n\nfor a in range(1, K+1):\n\tfor b in range(1, K+1):\n\t\tfor c in range(1, K+1):\n\t\t\t\tif gcd_map[a-1][b-1][c-1] == 0:\n\t\t\t\t\tgcd = math.gcd(math.gcd(a,b), c)\n\t\t\t\t\tgcd_map[a-1][b-1][c-1] = gcd\n\t\t\t\t\tgcd_map[a-1][c-1][b-1] = gcd\n\t\t\t\t\tgcd_map[b-1][a-1][c-1] = gcd\n\t\t\t\t\tgcd_map[b-1][c-1][a-1] = gcd\n\t\t\t\t\tgcd_map[c-1][a-1][b-1] = gcd\n\t\t\t\t\tgcd_map[c-1][b-1][a-1] = gcd\n\t\t\t\t\tans += gcd\n\t\t\t\telse:\n\t\t\t\t\tans += gcd_map[a-1][b-1][c-1]\n\nprint(ans)', 'import math\n \nK = int(input())\n \nans = 0\n \nfor a in range(1, K+1):\n\tfor b in range(1, K+1):\n\t\ttmp = math.gcd(a,b)\n\t\tfor c in range(1, K+1):\n\t\t\tans += math.gcd(tmp,c)\n \nprint(ans)']
|
['Runtime Error', 'Accepted']
|
['s744868602', 's866339025']
|
[9028.0, 9184.0]
|
[22.0, 1387.0]
|
[524, 178]
|
p02713
|
u010870870
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\n\nN = int(input())\nsum = 0\n\nfor i in range(N):\n for j in range(N):\n for k in range(N):\n g = math.gcd(i,j)\n sum += math.gcd(g,k)\n\nprint(sum)', 'import math\n\nN = int(input())\nsum = 0\n\nfor i in range(N):\n for j in range(N):\n g = math.gcd(i+1,j+1)\n for k in range(N):\n sum += math.gcd(g,k+1)\n\nprint(sum)\n']
|
['Wrong Answer', 'Accepted']
|
['s874431025', 's180756175']
|
[9112.0, 9168.0]
|
[2205.0, 1380.0]
|
[182, 185]
|
p02713
|
u012064151
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\nfrom functools import reduce\n\n\ndic = {}\nans = 0\nn = int(input())\nfor i in range(n):\n for j in range(n):\n for k in range(n):\n key=(i+1)*(j+1)*(k+1)\n if key in dic:\n ans = ans+dic[key]\n else:\n val = gcd(gcd(i+1, j+1), k+1)\n dic[key] = val\n ans = ans + val\nprint(ans)', 'from math import gcd\nk = int(input())+1\nans = 0\nfor i in range(1,k):\n for j in range(1,k):\n for l in range(1,k):\n ans+=gcd(gcd(i,j),l)\nprint(ans)']
|
['Runtime Error', 'Accepted']
|
['s906318394', 's365227796']
|
[9576.0, 9180.0]
|
[25.0, 1951.0]
|
[379, 166]
|
p02713
|
u013629972
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['K = int(input())\n\nans = 0\nfor a in range(1, K+1):\n for b in range(1, K+1):\n for c in range(1, K+1):\n ans += math.gcd(math.gcd(a,b),c)\nprint(ans)\nexit()\n', 'import math, string, itertools, fractions, heapq, collections, re, array, bisect, sys, random, time, copy, functools\nsys.setrecursionlimit(10**7)\nfrom queue import PriorityQueue\nfrom fractions import gcd\ninf = 10 ** 20\neps = 1.0 / 10**10\nmod = 10**9+7\ndd = [(-1, 0), (0, 1), (1, 0), (0, -1)]\nddn = [(-1, 0), (-1, 1), (0, 1), (1, 1), (1, 0), (1, -1), (0, -1), (-1, -1)]\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef _I(): return int(sys.stdin.readline())\ndef _F(): return float(sys.stdin.readline())\ndef _pf(s): return print(s, flush=True)\ndef gcd(*numbers):\n return functools.reduce(math.gcd, numbers)\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n divisors.sort(reverse=True)\n return divisors\n\nK = _I()\n\nans = 0\n\nfor i in range(1, K+1):\n for j in range(1, K+1):\n for k in range(1, K+1):\n ans += math.gcd(math.gcd(i,j),k)\nprint(ans)\nexit()\n', 'import math, string, itertools, fractions, heapq, collections, re, array, bisect, sys, random, time, copy, functools\nsys.setrecursionlimit(10**7)\nfrom queue import PriorityQueue\nfrom fractions import gcd\ninf = 10 ** 20\neps = 1.0 / 10**10\nmod = 10**9+7\ndd = [(-1, 0), (0, 1), (1, 0), (0, -1)]\nddn = [(-1, 0), (-1, 1), (0, 1), (1, 1), (1, 0), (1, -1), (0, -1), (-1, -1)]\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef _I(): return int(sys.stdin.readline())\ndef _F(): return float(sys.stdin.readline())\ndef _pf(s): return print(s, flush=True)\ndef gcd(*numbers):\n return functools.reduce(math.gcd, numbers)\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n divisors.sort(reverse=True)\n return divisors\n\nK = _I()\n\nans = 0\n\nfor i in range(1, K+1):\n for j in range(1, K+1):\n for k in range(1, K+1):\n ans += gcd(gcd(i,j),k)\nprint(ans)\nexit()\n', 'import math, string, itertools, fractions, heapq, collections, re, array, bisect, sys, random, time, copy, functools\nsys.setrecursionlimit(10**7)\nfrom queue import PriorityQueue\nfrom fractions import gcd\ninf = 10 ** 20\neps = 1.0 / 10**10\nmod = 10**9+7\ndd = [(-1, 0), (0, 1), (1, 0), (0, -1)]\nddn = [(-1, 0), (-1, 1), (0, 1), (1, 1), (1, 0), (1, -1), (0, -1), (-1, -1)]\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef _I(): return int(sys.stdin.readline())\ndef _F(): return float(sys.stdin.readline())\ndef _pf(s): return print(s, flush=True)\ndef gcd(*numbers):\n return functools.reduce(math.gcd, numbers)\ndef make_divisors(n):\n divisors = []\n for i in range(1, int(n**0.5)+1):\n if n % i == 0:\n divisors.append(i)\n if i != n // i:\n divisors.append(n//i)\n\n divisors.sort(reverse=True)\n return divisors\n\nK = _I()\n\nans = 0\n\nfor i in range(1, K+1):\n for j in range(1, K+1):\n for k in range(1, K+1):\n ans += gcd(i,j,k)\nprint(ans)\nexit()\n', 'import math, string, itertools, fractions, heapq, collections, re, array, bisect, sys, random, time, copy, functools\nsys.setrecursionlimit(10**7)\nfrom queue import PriorityQueue\nfrom fractions import gcd\ninf = 10 ** 20\neps = 1.0 / 10**10\nmod = 10**9+7\ndd = [(-1, 0), (0, 1), (1, 0), (0, -1)]\nddn = [(-1, 0), (-1, 1), (0, 1), (1, 1), (1, 0), (1, -1), (0, -1), (-1, -1)]\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef _I(): return int(sys.stdin.readline())\ndef _F(): return float(sys.stdin.readline())\ndef _pf(s): return print(s, flush=True)\n\n# return functools.reduce(math.gcd, numbers)\n\n\n\n\n\n\n\n\n\n\n\nK = _I()\n\nans = 0\nfor i in range(1, K+1):\n for j in range(1, K+1):\n for k in range(1, K+1):\n ans += math.gcd(math.gcd(i,j),k)\nprint(ans)\nexit()\n', 'import math, string, itertools, fractions, heapq, collections, re, array, bisect, sys, random, time, copy, functools\nsys.setrecursionlimit(10**7)\nfrom queue import PriorityQueue\nfrom fractions import gcd\ninf = 10 ** 20\neps = 1.0 / 10**10\nmod = 10**9+7\ndd = [(-1, 0), (0, 1), (1, 0), (0, -1)]\nddn = [(-1, 0), (-1, 1), (0, 1), (1, 1), (1, 0), (1, -1), (0, -1), (-1, -1)]\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef _I(): return int(sys.stdin.readline())\ndef _F(): return float(sys.stdin.readline())\ndef _pf(s): return print(s, flush=True)\n\n# return functools.reduce(math.gcd, numbers)\n\n\n\n\n\n\n\n\n\n\n\nK = _I()\n\nans = 0\nfor a in range(1, K+1):\n for b in range(1, K+1):\n for c in range(1, K+1):\n ans += math.gcd(math.gcd(a,b),c)\nprint(ans)\nexit()\n', 'from math import gcd\nK = int(input())\n\nans = 0\nfor a in range(1, K+1):\n for b in range(1, K+1):\n for c in range(1, K+1):\n ans += gcd(gcd(a,b),c)\nprint(ans)\nexit()\n']
|
['Runtime Error', 'Time Limit Exceeded', 'Time Limit Exceeded', 'Time Limit Exceeded', 'Time Limit Exceeded', 'Time Limit Exceeded', 'Accepted']
|
['s113364761', 's161735517', 's220041757', 's369001651', 's479228029', 's818438712', 's104240757']
|
[9104.0, 11204.0, 11220.0, 11236.0, 11228.0, 11160.0, 9164.0]
|
[22.0, 2206.0, 2206.0, 2206.0, 2206.0, 2206.0, 1894.0]
|
[173, 1225, 1215, 1210, 1257, 1257, 184]
|
p02713
|
u016901717
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['k=int(input())\nimport math\n\nfor p in range(1,k+1):\n for q in range(1,k+1):\n for r in range(1,k+1):\n ans=p\n ans = math.gcd(ans, q)\n ans = math.gcd(ans, r)\n sum_g+=ans\n ans=0\nprint(sum_g)\n', 'k=int(input())\nimport fractions\nsum_g=0\nfor p in range(1,k+1):\n for q in range(1,k+1):\n for r in range(1,k+1):\n ans=p\n ans = fractions.gcd(ans, q)\n ans = fractions.gcd(ans, r)\n sum_g+=ans\n ans=0\nprint(sum_g)', 'k=int(input())\nimport fractions\n\nfor p in range(1,k+1):\n for q in range(1,k+1):\n for r in range(1,k+1):\n ans=p\n ans = fractions.gcd(ans, q)\n ans = fractions.gcd(ans, r)\n sum_g+=ans\n ans=0\nprint(sum_g)\n', 'k=int(input())\nimport fractions\nimport itertools\nsum_g=0\nl=list(itertools.product([i for i in range(1,k+1)], repeat=3))\nfor p,q,r in l:\n ans=p\n ans = fractions.gcd(ans, q)\n ans = fractions.gcd(ans, r)\n sum_g+=ans\n ans=0\nprint(sum_g)\n', 'import math\n\nK=int(input())\nsum=0\n\n\nfor i in range(1,K+1):\n for j in range(1,K+1):\n a=math.gcd(i,j)\n for k in range(1,K+1):\n b=math.gcd(a, k)\n sum = sum + b\n\nprint(sum)\n']
|
['Runtime Error', 'Time Limit Exceeded', 'Runtime Error', 'Time Limit Exceeded', 'Accepted']
|
['s130024691', 's404611789', 's571087982', 's635370508', 's590633140']
|
[9124.0, 10620.0, 10640.0, 580788.0, 9176.0]
|
[23.0, 2206.0, 32.0, 2223.0, 1513.0]
|
[251, 272, 266, 248, 208]
|
p02713
|
u017415492
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import fractions\nk=int(input())\nans=0\nfor i in range(1,k+1):\n for j in range(1,k+1):\n for l in range(1,k+1):\n a=fractions.gcd(i,j)\n a=fractions.gcd(a,l)\n ans+=a\nprint(ans)', 'import math\nk=int(input())\nans=0\nfor i in range(1,k+1):\n for j in range(1,k+1):\n b=math.gcd(i,j)\n for l in range(1,k+1):\n a=math.gcd(b,l)\n ans+=a\nprint(ans)']
|
['Time Limit Exceeded', 'Accepted']
|
['s157852698', 's606818392']
|
[10640.0, 9120.0]
|
[2206.0, 1586.0]
|
[190, 173]
|
p02713
|
u021916304
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\nk = int(input())\nans = 0\n\nfor i in range(1,k+1):\n\tfor j in range(1,k+1):\n \tfor k in range(1,k+1):\n \tans += math.gcd(i,math.gcd(j,k))\nprint(ans)\n', 'import math\nk = int(input())\nans = 0\n\nfor i in range(1,k+1):\n\tfor j in range(1,k+1):\n \tfor n in range(1,k+1):\n \tans += math.gcd(i,math.gcd(j,n))\nprint(ans)\n', 'import math\nk = int(input())\nans = 0\n\nfor i in range(1,k+1):\n\tfor j in range(i+1,k+1):\n \tfor k in range(j+1,k+1):\n \tans += math.gcd(i,math.gcd(j,k))\nprint(ans)', "import math\nk = int(input())\nans = 0\nif k < 3:\n for i in range(1,k+1):\n for j in range(1,k+1):\n for n in range(1,k+1):\n ans += math.gcd(i,math.gcd(j,n))\nelse: \n #i*j\n for n in range(1,k+1):\n for i in range(1,k+1):\n ans += math.gcd(n,i)\n for j in range(i+1,k+1): \n ans += 2*(math.gcd(math.gcd(i,j),n))\n\n '''\n for i in range(1,k+1):\n for j in range(i+1,k+1):\n for k in range(j+1,k+1):\n ans += math.gcd(i,math.gcd(j,k))\n '''\nprint(ans)"]
|
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
|
['s898934285', 's909329376', 's954210072', 's802360497']
|
[8988.0, 8964.0, 8956.0, 9240.0]
|
[21.0, 24.0, 21.0, 1237.0]
|
[170, 170, 173, 587]
|
p02713
|
u026862065
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\n\nk = int(input())\nsum = 0\nfor i in range(1, k):\n for j in range(1, k):\n for m in range(1, k):\n sum += math.gcd(math.gcd(i, j), m)\nprint(sum)\n\n', 'import math\n\nk = int(input())\nsum = 0\nfor i in range(1, k):\n for j in range(1, k):\n for m in range(1, k):\n sum += math.gcd(math.gcd(i, j), m)\nprint(sum)', 'from math import gcd\n\nk = int(input())\nsum = 0\nfor i in range(1, k + 1):\n for j in range(1, k + 1):\n for m in range(1, k + 1):\n sum += gcd(gcd(i, j), m)\nprint(sum)']
|
['Wrong Answer', 'Wrong Answer', 'Accepted']
|
['s282788454', 's987103810', 's005925067']
|
[9164.0, 9072.0, 9180.0]
|
[2205.0, 2205.0, 1837.0]
|
[175, 173, 184]
|
p02713
|
u031115006
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\nfrom functools import reduce\nK=int(input())\ni=1\nr=0\nfor i in range(K+1):\n j=1\n for j in range(K+1):\n k=1\n for k in range(K+1):\n if(i==1 or j==1 or k==1):\n r+=1\n elif(i==j and j==k):\n r+=i\n else:\n r+=math.gcd(i, math.gcd(j, k))\n k+=1\n j+=1\n i+=1\nprint(r)', 'import math\n\nK=int(input())\nr=0\n\nfor i in range(1,K+1):\n for j in range(1,K+1):\n a=math.gcd(i,j)\n for k in range(K+1):\n b=math.gcd(a,k)\n r+=b\nprint(r)', 'mport math\nfrom functools import reduce\n\ndef gcd(*numbers):\n return reduce(math.gcd, numbers)\n\nK=int(input())\n\ni=1\nj=1\nk=1\nr=0\nlist=[2,3,5,7,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199]\n\nwhile(i<K+1):\n j=1\n f=0\n if(i in list == True):\n f=1\n while(j<K+1):\n k=1\n g=0\n if(j in list == True):\n g=1\n while(k<K+1):\n h=0\n if(k in list == True):\n h=1\n if(i==1 or j==1 or k==1):\n r+=1\n elif(f==1 and g==1 and h==1):\n if(i==j and j==k):\n r+=i\n else:\n r+=1\n else:\n r+=gcd(i, j, k)\n k+=1\n j+=1\n i+=1\n\nprint(r)\n', 'import math\n\nK=int(input())\nr=0\n\nfor i in range(1,K+1):\n for j in range(1,K+1):\n a=math.gcd(i,j)\n for k in range(1,K+1):\n b=math.gcd(a,k)\n r+=b\nprint(r)']
|
['Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Accepted']
|
['s428907738', 's548342649', 's981493167', 's518201817']
|
[9512.0, 9176.0, 9012.0, 9180.0]
|
[2205.0, 1666.0, 23.0, 1611.0]
|
[318, 167, 712, 169]
|
p02713
|
u035445296
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from fractions import gcd\nfrom functools import reduce\nk = int(input())\ndef GCD(*numbers):\n return reduce(gcd, numbers)\nans = 0 \nfor i in range(1, k+1):\n for j in range(1, k+1):\n for l in range(1, k+1):\n ans += GCD(i, j ,l)\nprint(ans)', 'from math import gcd\nans = 0\nk = int(input())\nfor i in range(1, k+1):\n for j in range(1, k+1):\n GCD = gcd(i, j)\n for l in range(1, k+1):\n ans += gcd(GCD, l)\nprint(ans)']
|
['Time Limit Exceeded', 'Accepted']
|
['s379155846', 's026113965']
|
[10700.0, 9112.0]
|
[2206.0, 1155.0]
|
[246, 179]
|
p02713
|
u038408819
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\ndef multi_gcd(a):\n ans = a[0]\n for i in range(1, len(a)):\n ans = fractions.gcd(ans, a[i])\n #print(ans)\n return ans\nK = int(input())\nsum_ = 0\nfor i in range(1, K + 1):\n for j in range(1, K + 1):\n for k in range(1, K + 1):\n sum_ += multi_gcd([i, j, k])\nprint(sum_)', 'import math\nk = int(input())\nans = 0\nfor i in range(1, k + 1):\n for j in range(1, j + 1):\n gcd1 = math.gcd(i, j)\n for l in range(1, l + 1):\n gcd2 = math.gcd(gcd1, l)\n ans += gcd2\nprint(ans)', 'import math\nk = int(input())\nans = 0\nfor i in range(1, k + 1):\n for j in range(1, k + 1):\n gcd1 = math.gcd(i, j)\n for l in range(1, k + 1):\n gcd2 = math.gcd(gcd1, l)\n ans += gcd2\nprint(ans)']
|
['Runtime Error', 'Runtime Error', 'Accepted']
|
['s193209293', 's693780528', 's158337730']
|
[9204.0, 9188.0, 9124.0]
|
[23.0, 21.0, 1516.0]
|
[314, 228, 228]
|
p02713
|
u038887660
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\ncount=0\nfor p in range(1,k+1):\n for q in range(1,k+1):\n for r in range(1,k+1):\n count+=math.gcd(math.gcd(p,q), r)\n \nprint(count)', 'import math\nk = int(input())\ncount=0\nfor p in range(1,k+1):\n for q in range(p,k+1):\n for r in range(q,k+1):\n if p == q == r:\n count+=math.gcd(math.gcd(p,q), r)\n elif p == q:\n count+=math.gcd(math.gcd(p,q), r)*3\n elif q == r:\n count+=math.gcd(math.gcd(p,q), r)*3\n elif p == r:\n count+=math.gcd(math.gcd(p,q), r)*3\n else:\n count+=math.gcd(math.gcd(p,q), r)*6\nprint(count)']
|
['Runtime Error', 'Accepted']
|
['s524510965', 's670767437']
|
[9052.0, 9208.0]
|
[22.0, 660.0]
|
[172, 509]
|
p02713
|
u042497514
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from fractions import gcd\nimport math\nK = int(input())\nSum = 0\nfor i in range(K):\n for j in range(K):\n for k in range(K):\n x = math.gcd(i + 1, j + 1)\n y = math.gcd(i + 1, k + 1)\n Sum = Sum + math.gcd(x, y)\nprint(Sum)', 'import math\nK = int(input())\nSum = 0\nfor i in range(K):\n for j in range(i + 1):\n x = math.gcd(i + 1, j + 1)\n for k in range(j + 1):\n y = math.gcd(j + 1, k + 1)\n if (i == j) and (i == k):\n Sum = Sum + math.gcd(x, y)\n elif (i == j) or (i == k) or (j == k):\n Sum = Sum + 3 * math.gcd(x, y)\n else:\n Sum = Sum + 6 * math.gcd(x, y)\nprint(Sum)']
|
['Time Limit Exceeded', 'Accepted']
|
['s130517091', 's481558347']
|
[10392.0, 9200.0]
|
[2205.0, 664.0]
|
[235, 384]
|
p02713
|
u042558137
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\n\nK = int(input()) + 1\nd = 0\n\nfor i in range(1, K):\n for j in range(1, K):\n for k in range(1, K):\n d = gcd(i, j, k) + d\nprint(d)', 'from math import gcd\n\nK = int(input()) + 1\nd = 0\n\nfor i in range(1, K):\n for j in range(1, K):\n for k in range(1, K):\n d = gcd(gcd(i, j), k) + d\nprint(d)']
|
['Runtime Error', 'Accepted']
|
['s468605833', 's881523833']
|
[9148.0, 9168.0]
|
[22.0, 1834.0]
|
[160, 174]
|
p02713
|
u046158516
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\nK=200\nans=0\nfor a in range(1,K+1):\n for b in range(1,K+1):\n for c in range(1,K+1):\n tempgcd=math.gcd(a,b)\n ans=ans+math.gcd(tempgcd,c)\nprint(ans)', 'import math\nK=200\nans=0\nfor a in range(1,K+1):\n for b in range(a,K+1):\n for c in range(b,K+1):\n tempgcd=math.gcd(a,b)\n if a==b or b==c or a==c:\n if a==b and b==c:\n ans=ans+math.gcd(tempgcd,c)\n else:\n ans=ans+3*math.gcd(tempgcd,c)\n else:\n ans=ans+6*math.gcd(tempgcd,c)\n \nprint(ans)', 'import math\nK=int(input())\nans=0\nfor a in range(1,K+1):\n for b in range(a,K+1):\n for c in range(b,K+1):\n tempgcd=math.gcd(a,b)\n if a==b or b==c or a==c:\n if a==b and b==c:\n ans=ans+math.gcd(tempgcd,c)\n else:\n ans=ans+3*math.gcd(tempgcd,c)\n else:\n ans=ans+6*math.gcd(tempgcd,c)\n \nprint(ans)\n']
|
['Time Limit Exceeded', 'Wrong Answer', 'Accepted']
|
['s690429077', 's972425940', 's618760642']
|
[8948.0, 9072.0, 9200.0]
|
[2205.0, 635.0, 610.0]
|
[189, 403, 413]
|
p02713
|
u047023156
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import sys\nfrom fractions import gcd\ninput = sys.stdin.readline\n\nK = int(input())\nans = 0\nfor i in range(1, K+1):\n for j in range(1, K+1):\n for k in range(1, K+1):\n ans += gcd(gcd(i, j), k)\n\nprint(ans)\n', 'import sys\nfrom math import gcd\ninput = sys.stdin.readline\n\nK = int(input())\nans = 0\nfor i in range(1, K+1):\n for j in range(1, K+1):\n for k in range(1, K+1):\n ans += gcd(gcd(i, j), k)\n\nprint(ans)\n']
|
['Time Limit Exceeded', 'Accepted']
|
['s454717255', 's206134892']
|
[10652.0, 9176.0]
|
[2206.0, 1886.0]
|
[223, 218]
|
p02713
|
u047719604
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from fractions import gcd\nk = int(input())\nsum = 0\nfor a in range(1,k+1):\n for b in range(1,k+1):\n for c in range(1,k+1):\n sum += gcd(gcd(a,b),c)\nprint(sum) ', 'from fractions import gcd\nk = int(input())\nsum = 0\nfor a in range(1,k+1):\n for b in range(1,k+1):\n for c in range(1,k+1):\n sum += gcd(gcd(a,b),c)\nprint(sum) \n ', 'from math import gcd\nk = int(input())\nsum = 0\nlst = []\nfor a in range(1,k+1):\n for b in range(1,k+1):\n g = gcd(a,b)\n lst.append(g)\nfor c in range(1,k+1):\n for i in range(len(lst)):\n sum += gcd(lst[i],c) \nprint(sum) ']
|
['Time Limit Exceeded', 'Time Limit Exceeded', 'Accepted']
|
['s220333693', 's463013016', 's176117318']
|
[10472.0, 10548.0, 9224.0]
|
[2206.0, 2206.0, 1433.0]
|
[171, 182, 245]
|
p02713
|
u050641473
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\n\nK = int(input())\nans = 0\n\nfor i in range(1,K+1):\n for j in range(1,K+1):\n ab = math.gcd(a, b)\n for k in range(1,K+1):\n ans += math.gcd(ab, c)\n\nprint(ans)', 'import math\n\nK = int(input())\nans = 0\n\nfor i in range(1,K+1):\n for j in range(1,K+1):\n ij = math.gcd(i, j)\n for k in range(1,K+1):\n ans += math.gcd(ij, k)\n\nprint(ans)']
|
['Runtime Error', 'Accepted']
|
['s949538301', 's877930093']
|
[9188.0, 9076.0]
|
[25.0, 1317.0]
|
[178, 178]
|
p02713
|
u051928503
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import fractinons\nK=int(input())\nans=0\nfor a in range(1,K+1):\n\tfor b in range(1,K+1):\n\t\tfor c in range(1,K+1):\n\t\t\tans+=fractions.gcd(fractions.gcd(a,b),c)\nprint(ans)', 'import math\nK=int(input())\nans=0\nfor a in range(1,K+1):\n\tfor b in range(a,K+1):\n\t\tfor c in range(b,K+1):\n\t\t\tA=math.gcd(math.gcd(a,b),c)\n\t\t\tif a==b and b==c:\n\t\t\t\tans+=A\n\t\t\telif a==b or b==c:\n\t\t\t\tans+=(A*3)\n\t\t\telse:\n\t\t\t\tans+=(A*6)\nprint(ans)\n\n']
|
['Runtime Error', 'Accepted']
|
['s156532925', 's033788355']
|
[9108.0, 9132.0]
|
[25.0, 571.0]
|
[165, 241]
|
p02713
|
u054729397
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from math import gcd\n\nK=int(input())+1\nsum=0\n\nfor i in range(1,K):\n for j in range(1,K):\n for k in range(1,K):\n sum+=gcd(gcd(1,j),k) \nprint(sum)', 'from math import gcd\n\nK=int(input())+1\nsum=0\n\nfor i in range(1,K):\n for j in range(1,K):\n for k in range(1,K):\n sum+=gcd(gcd(i,j),k) \nprint(sum)']
|
['Wrong Answer', 'Accepted']
|
['s198552006', 's091668805']
|
[9168.0, 9176.0]
|
[1492.0, 1851.0]
|
[157, 157]
|
p02713
|
u057993957
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['k = int(input())\n\nfrom functools import reduce\ndef gcd_list(numbers):\n return reduce(math.gcd, numbers)\n\ntotal = 0\nfor i in range(1, k+1):\n for j in range(i, k+1):\n for k in range(j, k+1):\n if i == j and j == k and i == k:\n x = 1\n elif i != j and i != k and j != k:\n x = 6\n else:\n x = 3\n \n total += x * gcd_list([i, j, k])\nprint(total)', 'from itertools import combinations\nimport math\nfrom functools import reduce\n\ndef gcd_list(numbers):\n return reduce(math.gcd, numbers)\n\nn = int(input())\n\ntotal = 0\nfor i in range(1, n+1):\n for j in range(i, n+1):\n for k in range(j, n+1):\n if i == j and j == k and i == k:\n x = 1\n elif i != j and j != k and i != k:\n x = 6\n else:\n x = 3\n \n total += x * gcd_list([i, j, k])\n \nprint(total)']
|
['Runtime Error', 'Accepted']
|
['s800859618', 's001147410']
|
[9508.0, 9596.0]
|
[24.0, 911.0]
|
[388, 506]
|
p02713
|
u062484507
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\nimport sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\n\nk = int(read())\nans = 0\nfor a in range(1, n+1):\n for b in range(1, n + 1):\n n = math.gcd(a, b)\n for c in range(1, n+1):\n ans += math.gcd(n, c)\nprint(ans)', 'import math\nimport sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\n\nk = int(read())\nans = 0\nfor a in range(1, k + 1):\n for b in range(1, k + 1):\n n = math.gcd(a, b)\n for c in range(1, k + 1):\n ans += math.gcd(n, c)\nprint(ans)']
|
['Runtime Error', 'Accepted']
|
['s196333548', 's848698630']
|
[9204.0, 9164.0]
|
[23.0, 1567.0]
|
[310, 314]
|
p02713
|
u062808720
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\n\nK = int(input())\n\nsum = 0\nfor a in range(1, K+1) :\n for b in range(1 , K+1) :\n tmp = math.gcd(a, b)\n for c in range(1 , K+1) :\n sum = sum + math.gcd(a, tmp)\n\nprint(sum)\n', 'import math\n\nK = int(input())\n\nsum = 0\nfor a in range(1, K+1) :\n for b in range(1 , K+1) :\n tmp = math.gcd(a, b)\n for c in range(1 , K+1) :\n sum = sum + math.gcd(tmp, c)\n\nprint(sum)\n']
|
['Wrong Answer', 'Accepted']
|
['s560290546', 's831601282']
|
[9076.0, 9176.0]
|
[1215.0, 1389.0]
|
[210, 210]
|
p02713
|
u067694718
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from math import gcd\nk = int(input())\nsum = 0\nfor a in range(1, k):\n for b in range(1, k):\n tmp = gcd(a,b)\n for c in range(1, k):\n sum += gcd(tmp, c)\nprint(sum)', 'from math import gcd\nk = int(input())\nsum = 0\nfor a in range(1, k+1):\n for b in range(1, k+1):\n tmp = gcd(a,b)\n for c in range(1, k+1):\n sum += gcd(tmp, c)\nprint(sum)\n']
|
['Wrong Answer', 'Accepted']
|
['s050163938', 's822918573']
|
[9176.0, 9172.0]
|
[1180.0, 1149.0]
|
[172, 179]
|
p02713
|
u068844030
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from math import gcd\nk = int(input())\nans = 0\nfor a in range(1, k + 1):\n for b in range(1, k + 1):\n for c in range(1, k + 1):\n ans = gcd(gcd(a,b),c)\nprint(ans)\n', 'from math import gcd\nk = int(input())\nans = 0\nfor a in range(1, k + 1):\n for b in range(1, k + 1):\n for c in range(1, k + 1):\n ans += gcd(gcd(a,b),c)\nprint(ans)\n']
|
['Wrong Answer', 'Accepted']
|
['s765195511', 's000133790']
|
[9156.0, 9084.0]
|
[1709.0, 1918.0]
|
[181, 182]
|
p02713
|
u072717685
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
["def main():\n k = int(input())\n r = 0\n for ia in range(1, k + 1):\n for ib in range(1, k + 1):\n for ic in range(1, k + 1):\n t1 = gcd(ib, ic)\n r += gcd(t1,ia)\n print(r)\n\nif __name__ == '__main__':\n main()", "import sys\nread = sys.stdin.read\nreadlines = sys.stdin.readlines\ndef main():\n n = int(input())\n s = input()\n\n rr = [i for i, c in enumerate(s) if c == 'R']\n g = [i for i, c in enumerate(s) if c == 'G']\n b = [i for i, c in enumerate(s) if c == 'B']\n\n r = len(rr) * len(g) * len(b)\n for rre in rr:\n for ge in g:\n for be in b:\n r -= rre * 2 == ge + be\n r -= ge * 2 == rre + be\n r -= be * 2 == ge + rre\n print(r)\n\nif __name__ == '__main__':\n main()\n", "import sys\nread = sys.stdin.read\nreadlines = sys.stdin.readlines\nimport numpy as np\ndef main():\n k = int(input())\n\n k2 = np.arange(1, k+1)\n k2gcd = np.gcd.outer(k2, np.gcd.outer(k2, k2))\n print(k2gcd.sum())\n\nif __name__ == '__main__':\n main()"]
|
['Runtime Error', 'Runtime Error', 'Accepted']
|
['s057405794', 's711053557', 's273421285']
|
[9204.0, 9004.0, 89564.0]
|
[22.0, 25.0, 304.0]
|
[264, 535, 257]
|
p02713
|
u077003677
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
["import sys\nimport os\nimport fractions\nimport itertools\n\ndef file_input():\n f = open('Beginner_Contest_162/input.txt', 'r')\n sys.stdin = f\n\ndef main():\n #file_input()\n K=int(input())\n # map(int, input().split())\n sum=0\n\n combi_l = itertools.combinations_with_replacement(range(1,K+1),3)\n # print(combi_l)\n\n for combi in combi_l:\n # print(combi)\n if combi[0]==combi[1]==combi[2]:\n sum+=fractions.gcd(fractions.gcd(combi[0],combi[1]),combi[2])\n elif combi[0]==combi[1] or combi[1]==combi[2] or combi[2]==combi[0]:\n sum+=3*fractions.gcd(fractions.gcd(combi[0],combi[1]),combi[2])\n else:\n sum+=6*fractions.gcd(fractions.gcd(combi[0],combi[1]),combi[2])\n\n # for a in range(1,K+1):\n # for b in range(1,K+1):\n # tmp=fractions.gcd(a,b)\n # for c in range(1,K+1):\n # sum+=fractions.gcd(tmp,c)\n\n print(sum)\n\nif __name__ == '__main__':\n main()\n", "import sys\nimport os\nimport fractions\n\ndef file_input():\n f = open('Beginner_Contest_162/input.txt', 'r')\n sys.stdin = f\n\ndef main():\n #file_input()\n K=int(input())\n # map(int, input().split())\n sum=0\n\n for a in range(1,K+1):\n for b in range(1,K+1):\n tmp=fractions.gcd(a,b)\n for c in range(1,K+1):\n sum+=fractions.gcd(tmp,c)\n\n print(sum)\n\nif __name__ == '__main__':\n main()\n", "import sys\nimport os\nimport itertools\n\ndef file_input():\n f = open('Beginner_Contest_162/input.txt', 'r')\n sys.stdin = f\n\ndef gcd(a,b):\n if b==0: return a\n else: return gcd(b,a%b)\n\ndef main():\n #file_input()\n K=int(input())\n # map(int, input().split())\n sum=0\n\n combi_l = itertools.combinations_with_replacement(range(1,K+1),3)\n # print(combi_l)\n\n for combi in combi_l:\n # print(combi)\n if combi[0]==combi[1]==combi[2]:\n sum+=gcd(gcd(combi[0],combi[1]),combi[2])\n elif combi[0]==combi[1] or combi[1]==combi[2] or combi[2]==combi[0]:\n sum+=3*gcd(gcd(combi[0],combi[1]),combi[2])\n else:\n sum+=6*gcd(gcd(combi[0],combi[1]),combi[2])\n\n # for a in range(1,K+1):\n # for b in range(1,K+1):\n # tmp=fractions.gcd(a,b)\n # for c in range(1,K+1):\n # sum+=fractions.gcd(tmp,c)\n\n print(sum)\n\nif __name__ == '__main__':\n main()\n"]
|
['Time Limit Exceeded', 'Time Limit Exceeded', 'Accepted']
|
['s328526023', 's740898813', 's654395526']
|
[10724.0, 10568.0, 9240.0]
|
[2206.0, 2206.0, 1427.0]
|
[972, 445, 960]
|
p02713
|
u077229945
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['k = int(input())\ntotal = 0\n\nfor a in range(1, k + 1):\n for b in range(1, k + 1):\n if gcd(a, b) == 1:\n total += 1 * k\n continue\n else:\n for c in range(1, k + 1):\n total += gcd(a, b, c)\nprint(total)', 'import math\nfrom functools import reduce\n\nk = int(input())\ntotal = 0\n\ndef gcd(*numbers):\n numbers = numbers\n return reduce(math.gcd, numbers)\n\nfor a in range(1, k + 1):\n for b in range(1, k + 1):\n if gcd(a, b) == 1:\n total += 1 * k\n continue\n else:\n for c in range(1, k + 1):\n total += gcd(a, b, c)\nprint(total)']
|
['Runtime Error', 'Accepted']
|
['s811477482', 's542133069']
|
[9192.0, 9632.0]
|
[25.0, 1438.0]
|
[261, 382]
|
p02713
|
u078816252
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\nN = int(input())\nans = (1+N)*N/2\nfor i in range(1,N+1):\n for j in range(1,i):\n ans += math.gcd(i,j)*3\nfor i in range(!,N+1):\n for j in range(1,i):\n if i== j:\n break\n for k in range(1,j):\n if i == k or j == k:\n break\n else:\n ans += math.gcd(i,j,k)*6\nprint(ans)', 'import math\nN = int(input())\nans = (1+N)*N/2\nfor i in range(1,N+1):\n for j in range(1,i):\n ans += math.gcd(i,j)*6\nfor i in range(1,N+1):\n for j in range(1,i):\n if i== j:\n break\n for k in range(1,j):\n if i == k or j == k:\n break\n else:\n ans += math.gcd(k,math.gcd(i,j))*6\nprint(int(ans))']
|
['Runtime Error', 'Accepted']
|
['s476146296', 's171003064']
|
[8964.0, 9204.0]
|
[23.0, 511.0]
|
[311, 326]
|
p02713
|
u080364835
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\n\nans = 0\nans += 0.5*k*(k+1)\n# print(ans)\n\nfor a in range(1, k):\n for b in range(a+1,k+1):\n n = math.gcd(a, b)\n ans += n*6\n # print(a, b, n)\n\nfor i in range(1, k-1):\n for j in range(i+1, k):\n for k in range(j+1, k+1):\n d = math.gcd(i, j)\n ans += math.gcd(d, k)*6\n # print(i, j, k)\n\n #\n #\n # for c in range(b+1, k+1):\n # ans += math.gcd(n, c)*3\n # print(a, b, c)\n\nprint(int(ans))', 'k = int(input())\n\nimport math\n\nans = 0\nans += 0.5*k*(k+1)\n# print(ans)\n\nfor a in range(1, k):\n for b in range(a+1,k+1):\n n = math.gcd(a, b)\n ans += n*6\n for c in range(b+1, k+1):\n if c != b:\n ans += math.gcd(n, c)*6\n\n\n# for j in range(i+1, k):\n# for k in range(j+1, k+1):\n# d = math.gcd(i, j)\n# ans += math.gcd(d, k)*6\n\nprint(int(ans))']
|
['Runtime Error', 'Accepted']
|
['s676145025', 's019329931']
|
[9136.0, 9192.0]
|
[24.0, 388.0]
|
[495, 446]
|
p02713
|
u083960235
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
["import sys, re, os\nfrom collections import deque, defaultdict, Counter\nfrom math import gcd, ceil, sqrt, hypot, factorial, pi, sin, cos, radians\nfrom itertools import permutations, combinations, product, accumulate\nfrom operator import itemgetter, mul\nfrom copy import deepcopy\nfrom string import ascii_lowercase, ascii_uppercase, digits\nfrom fractions import gcd\n \ndef input(): return sys.stdin.readline().strip()\ndef INT(): return int(input())\ndef MAP(): return map(int, input().split())\ndef S_MAP(): return map(str, input().split())\ndef LIST(): return list(map(int, input().split()))\ndef S_LIST(): return list(map(str, input().split()))\n \nsys.setrecursionlimit(10 ** 9)\nINF = float('inf')\nmod = 10 ** 9 + 7\nc = 0\nK = INT()\nans = 0\n \nfor i in range(1, K + 1):\n for j in range(1, K + 1):\n a = gcd(i, j)\n for k in range(1, K + 1):\n b = gcd(a, k)\n ans += b\nprint(ans) \n ", "import sys, re, os\nfrom collections import deque, defaultdict, Counter\nfrom math import gcd, ceil, sqrt, hypot, factorial, pi, sin, cos, radians\nfrom itertools import permutations, combinations, product, accumulate\nfrom operator import itemgetter, mul\nfrom copy import deepcopy\nfrom string import ascii_lowercase, ascii_uppercase, digits\n# from fractions import gcd\n \ndef input(): return sys.stdin.readline().strip()\ndef INT(): return int(input())\ndef MAP(): return map(int, input().split())\ndef S_MAP(): return map(str, input().split())\ndef LIST(): return list(map(int, input().split()))\ndef S_LIST(): return list(map(str, input().split()))\n \nsys.setrecursionlimit(10 ** 9)\nINF = float('inf')\nmod = 10 ** 9 + 7\nc = 0\nK = INT()\nans = 0\n \nfor i in range(1, K + 1):\n for j in range(1, K + 1):\n a = gcd(i, j)\n for k in range(1, K + 1):\n b = gcd(a, k)\n ans += b\nprint(ans) \n "]
|
['Time Limit Exceeded', 'Accepted']
|
['s964234914', 's521681695']
|
[10796.0, 10044.0]
|
[2206.0, 1386.0]
|
[919, 921]
|
p02713
|
u085329544
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from math import gcd\n\nk = int(input())\nans = 0\n\nfor a in range(k+1):\n for b in range(k+1):\n for c in range(k+1):\n ans += gcd(gcd(a,b),c)\n\nprint(ans)', 'from math import gcd\n\nk = int(input())\nans = 0\n\nfor a in range(1,k+1):\n for b in range(1,k+1):\n for c in range(1,k+1):\n ans += gcd(gcd(a,b),c)\n\nprint(ans)']
|
['Wrong Answer', 'Accepted']
|
['s476082613', 's781002529']
|
[9164.0, 9184.0]
|
[1912.0, 1922.0]
|
[157, 163]
|
p02713
|
u088115428
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from fractions import gcd\nn = int(input())\ng = 0\nfor i in range (1, n+1):\n for j in range (1, n+1):\n for k in range (1, n+1):\n g += gcd(gcd(i,j),k)\nprint(g)\n\n', 'import functools\nfrom fractions import gcd\nn = int(input())\n@functools.lru_cache(None)\ndef main(n):\n g=0\n for i in range (1, n+1):\n for j in range (1, n+1):\n for k in range (1, n+1):\n g += gcd(gcd(i,j),k)\n return (g)\nprint(main(n))', 'from fractions import gcd\nn = int(input())\ngcdf = 0\nfor i in range (1, n+1):\n for j in range (1, n+1):\n for k in range (1, n+1):\n gcdf = gcdf + gcd(i,gcd(j,k))\n \nprint(gcdf)', 'from fractions import gcd\nn = int(input())\ngcdf = 0\nfor i in range (1, n+1):\n for j in range (1, n+1):\n for k in range (1, n+1):\n gcdf += gcd(gcd(i,j),k)\n \nprint(gcdf)', 'from fractions import gcd\nn = int(input())\nans = 0\nfor i in range (1, n+1):\n for j in range (1, n+1):\n gcd1 = gcd(i,j)\n \n for k in range (1, n+1):\n \n gcdf = gcd(gcd1,k)\n ans = ans+gcdf\nprint(ans)', 'import functools\nfrom math import gcd\nn = int(input())\n@functools.lru_cache(None)\ndef main(n):\n g=0\n for i in range (1, n+1):\n for j in range (1, n+1):\n for k in range (1, n+1):\n g += gcd(gcd(i,j),k)\n return (g)\nprint(main(n))']
|
['Time Limit Exceeded', 'Time Limit Exceeded', 'Time Limit Exceeded', 'Time Limit Exceeded', 'Time Limit Exceeded', 'Accepted']
|
['s202830508', 's281034844', 's551241544', 's791996203', 's824275954', 's976315697']
|
[10596.0, 10740.0, 10680.0, 10652.0, 10588.0, 9572.0]
|
[2205.0, 2205.0, 2205.0, 2206.0, 2206.0, 1347.0]
|
[168, 250, 188, 182, 221, 245]
|
p02713
|
u089504174
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['k=int(input())\nimport fractions\nx=0\nc=0\nd=0\nfor i in range(1,k+1):\n for j in range(i,k+1):\n for k in range(j,k+1):\n d=fractions.gcd(i,j)\n c=fractions.gcd(d,k)\n if i!=j and j!=k and k!=i:\n x+=6*c\n elif (i!=j and j==k) or (j!=k and k==i) or (k!=i and i==j):\n x+=3*c\n else:\n x+=c\nprint(x)', 'k=int(input())\nimport fractions\nx=0\nc=0\nd=0\nfor i in range(1,k+1):\n for j in range(i,k+1):\n for k in range(j,k+1):\n d=fractions.gcd(i,j)\n c=fractions.gcd(d,k)\n if i!=j and j!=k:\n x+=6*c\n elif i==j==k:\n x+=c\n else:\n x+=3*c\nprint(x)', 'k=int(input())\nimport fractions\nx=0\nc=0\nd=0\nfor i in range(1,k+1):\n for j in range(i,k+1):\n for k in range(j,k+1):\n d=fractions.gcd(i,j)\n c=fractions.gcd(d,k)\n if i!=j and j!=k:\n x+=6*c\n elif (i!=j and j==k) or (k!=i and i==j):\n x+=3*c\n else:\n x+=c\nprint(x)', 'k=int(input())\nimport math\nx=0\nc=0\nd=0\nfor i in range(1,k+1):\n for j in range(i,k+1):\n for k in range(j,k+1):\n d=math.gcd(i,j)\n c=math.gcd(d,k)\n if i!=j and j!=k:\n x+=6*c\n elif (i!=j and j==k) or (k!=i and i==j):\n x+=3*c\n else:\n x+=c\nprint(x)']
|
['Time Limit Exceeded', 'Time Limit Exceeded', 'Time Limit Exceeded', 'Accepted']
|
['s005874216', 's689415628', 's975553125', 's483126448']
|
[10572.0, 10540.0, 10680.0, 9204.0]
|
[2206.0, 2206.0, 2206.0, 550.0]
|
[335, 280, 307, 292]
|
p02713
|
u090406054
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from math import gcd\nk=int(input())\ncnt=0\nfor i in range(k):\n for p in range(k):\n for q in range(k):\n cnt+=gcd(i,p,q)\n \nprint(cnt)\n ', 'from math import gcd\nk=int(input())\ncnt=0\nfor i in range(1,k+1):\n for p in range(1,k+1):\n for q in range(1,k+1):\n gcd1=gcd(i,p)\n \n cnt+=gcd(gcd1,q)\n\n \nprint(cnt)\n \n\n']
|
['Runtime Error', 'Accepted']
|
['s328833976', 's415123919']
|
[9044.0, 9152.0]
|
[25.0, 1998.0]
|
[147, 190]
|
p02713
|
u090972687
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from fractions import gcd\n\nk = int(input())\n\nresult = 0\n\nfor a in range(1, k+1):\n for b in range(1, k+1):\n for c in range(1, k+1):\n n = gcd(a, b)\n m = gcd(n, c)\n result += n\n\nprint(result)', 'import fractions\nfrom functools import reduce\n\ndef gcd(*numbers):\n return reduce(fractions.gcd, numbers)\n\nk = int(input())\n\nresult = 0\n\nfor a in range(1, k+1):\n for b in range(1, k+1):\n for c in range(1, k+1):\n result += gcd(a, b, c)\n\nprint(result)', 'import math\nimport itertools\n\nk = int(input())\nresult = 0\n\nfor a in range(1, k+1):\n for b in range(a+1, k+1):\n for c in range(b+1, k+1):\n r = math.gcd(math.gcd(a, b), c)\n r *= 6\n result += r\n\nfor a in range(1, k+1):\n for b in range(a+1, k+1):\n r = math.gcd(a, b)\n r *= 6\n result += r\n \nfor a in range(1, k+1):\n result += a\n\nprint(result)']
|
['Wrong Answer', 'Time Limit Exceeded', 'Accepted']
|
['s185399922', 's972087515', 's823363835']
|
[10680.0, 10684.0, 9220.0]
|
[2206.0, 2206.0, 526.0]
|
[207, 260, 370]
|
p02713
|
u091307273
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['k = int(input())\n\ngcache = { }\ns = 0\n\nfor a in range(1, k+1):\n for b in range(1, k+1):\n tup = (min(a, b), max(a, b))\n if tup not in gcache:\n gc = math.gcd(tup[0], tup[1])\n gcache[tup] = gc\n gc = gcache[tup]\n for c in range(1, k+1):\n tup = (min(c, gc), max(c, gc))\n if tup not in gcache:\n gc = math.gcd(tup[0], tup[1])\n gcache[tup] = gc\n gc = gcache[tup]\n s += gc\n\nprint(s)\n', 'k = int(input())\n\nfrom math import gcd\n\ns = 0\nfor a in range(1, k+1):\n for b in range(1, k+1):\n g = gcd(a, b)\n for c in range(1, k+1):\n s += gcd(g, c)\n\nprint(s)\n']
|
['Runtime Error', 'Accepted']
|
['s236256492', 's982627561']
|
[9064.0, 9140.0]
|
[26.0, 1099.0]
|
[430, 173]
|
p02713
|
u094191970
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from fractions import gcd\n \nk=int(input())\n \nans=0\nfor i in range(1,k+1):\n for j in range(1,k+1):\n for l in range(1, k+1):\n ans+=gcd(gcd(i,j),l)\n \nprint(ans)', 'from math import gcd\n\nk=int(input())\n\nans=0\nfor i in range(1,k+1):\n for j in range(1,k+1):\n for l in range(1,k+1):\n ans+=gcd(gcd(i,j),l)\n\nprint(ans)']
|
['Time Limit Exceeded', 'Accepted']
|
['s791772970', 's399207536']
|
[10620.0, 9180.0]
|
[2206.0, 1836.0]
|
[166, 157]
|
p02713
|
u101680358
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import fractions\n\nK = int(input())\n\nans = 0\na=[]\nfor i in range(1,K+1):\n\tfor j in range(1, K+1):\n\t\ttmp = fractions.gcd(i,j)\n\t\tfor k in range(1, K+1):\n\t\t\tans+=fractions.gcd(tmp,k)\n\nprint(ans)', 'import math\nK = int(input())\n\nans = 0\na=[]\nfor i in range(1,K+1):\n\tfor j in range(1, K+1):\n\t\ttmp = math.gcd(i,j)\n\t\tfor k in range(1, K+1):\n\t\t\tans+=math.gcd(tmp,k)\n\nprint(ans)']
|
['Time Limit Exceeded', 'Accepted']
|
['s301582854', 's107404489']
|
[10528.0, 9148.0]
|
[2206.0, 1333.0]
|
[190, 174]
|
p02713
|
u102223485
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['# coding: utf-8\nimport math\nfrom functools import reduce\n\nK = int(input())\ntmp = []\n\nc = 0\nfor i in range(K):\n for j in range(K):\n tmp.append(math.gcd(i + 1, j + 1))\n c = c + 1\n\ntmp2 = []\nfor k in tmp:\n for m in range(K):\n tmp2.append(math.gcd(k, m+1))\n\nprint("sum:",sum(tmp2))', '# coding: utf-8\nimport math\nfrom functools import reduce\n\nK = int(input())\ntmp = []\n\nc = 0\nfor i in range(K):\n for j in range(K):\n tmp.append(math.gcd(i + 1, j + 1))\n c = c + 1\n\ntmp2 = []\nfor k in tmp:\n for m in range(K):\n tmp2.append(math.gcd(k, m+1))\n\nprint(sum(tmp2))']
|
['Wrong Answer', 'Accepted']
|
['s495601092', 's925681248']
|
[72024.0, 72028.0]
|
[1579.0, 1597.0]
|
[304, 297]
|
p02713
|
u102461423
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\nimport numpy as np\n\nK = int(read())\n\nx = np.arange(1, K + 1)\nnums = np.gcd.outer(x, x, x)\nprint(nums.sum())\n', 'import sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\nimport numpy as np\n\nK = int(read())\n\nx = np.arange(1, K + 1)\nnums = np.gcd.outer(np.gcd.outer(x, x), x)\nprint(nums.sum())\n']
|
['Runtime Error', 'Accepted']
|
['s259138247', 's420806892']
|
[27112.0, 89332.0]
|
[102.0, 209.0]
|
[224, 238]
|
p02713
|
u103208639
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from math import gcd\nk=200\nans=0\nfor i in range(1,k+1):\n for j in range(i,k+1):\n for k in range(j,k+1):\n s=len(set([i,j,k]))\n if s==1:\n p=1\n elif s==2:\n p=3\n elif s==3:\n p=6\n tmp=gcd(i,j)\n tmp= p*gcd(tmp,k)\n ans+=tmp\nprint(ans)', 'from math import gcd\nk=int(input())\nans=0\nfor i in range(1,k+1):\n for j in range(i,k+1):\n for k in range(j,k+1):\n s=len(set([i,j,k]))\n if s==1:\n p=1\n elif s==2:\n p=3\n elif s==3:\n p=6\n tmp=gcd(i,j)\n tmp= p*gcd(tmp,k)\n ans+=tmp\nprint(ans)']
|
['Wrong Answer', 'Accepted']
|
['s589381403', 's282085108']
|
[9140.0, 9236.0]
|
[1025.0, 964.0]
|
[359, 368]
|
p02713
|
u104005543
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['n = int(input())\nans = 0\n\ndef gcd(x, y):\n if x / y == 0: return y\n return gcd(y, x % y)\n\nfor i in range(1, n + 1):\n for j in range(1, n + 1):\n for k in range(1, n + 1):\n ans += gcd(gcd(i, j), k)\nprint(ans)', 'import math\nn=int(input())\nans=0\nfor i in range(1,n+1):\n for j in range(1,n+1):\n for k in range(1,n+1):\n ans+=gcd(gcd(i,j),k)\nprint(ans)', 'from math import gcd\nn = int(input())\nans = 0\nfor i in range(1, n + 1):\n for j in range(1,n+1):\n for k in range(1, n + 1):\n ans += gcd(gcd(i, j), k)\nprint(ans)']
|
['Runtime Error', 'Runtime Error', 'Accepted']
|
['s428271955', 's888230858', 's364336400']
|
[9192.0, 9180.0, 9172.0]
|
[24.0, 25.0, 1851.0]
|
[232, 157, 180]
|
p02713
|
u104931745
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\n\nk = int(imput())\nn = 0\n\nfor i in range(1,k+1)\n for j in range(1,k+1)\n a=math.gcd(i,j)\n for l in range(1,k+1)\n b=math.gcd(a,l)\n n += b\n\nprint(n)', 'import math\n\nk = int(input())\nn = 0\n\nfor i in range(1,k+1):\n for j in range(1,k+1):\n a = math.gcd(i,j)\n for l in range(1,k+1):\n b = math.gcd(a,l)\n n += b\n\nprint(n)']
|
['Runtime Error', 'Accepted']
|
['s250185442', 's522909181']
|
[8996.0, 9160.0]
|
[23.0, 1575.0]
|
[195, 202]
|
p02713
|
u105290050
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['k=int(input())\nl=list(range(1, k+1))\nimport itertools\nimport math\nfrom functools import reduce\ndef gcd(*numbers):\n return reduce(math.gcd, numbers)\nans=0\nfor v in itertools.combinations_with_replacement(l, 3):\n ans+=gcd(*v)\nprint(ans)', 'k=int(input())\nl=list(range(1, k+1))\nimport itertools\nimport math\nfrom functools import reduce\ndef gcd(*numbers):\n return reduce(math.gcd, numbers)\nans=0\nfor v in itertools.combinations_with_replacement(l, 3):\n if v[0]==v[1]==v[2]:\n ans+=gcd(*v)\n elif v[0]==v[1]:\n ans+=gcd(*v)*3\n elif v[1]==v[2]:\n ans+=gcd(*v)*3\n elif v[0]==v[2]:\n ans+=gcd(*v)*3\n else:\n ans+=gcd(*v)*6\nprint(ans)']
|
['Wrong Answer', 'Accepted']
|
['s331828348', 's652073454']
|
[9544.0, 9488.0]
|
[590.0, 1079.0]
|
[236, 402]
|
p02713
|
u112007848
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\n#import itertools\nnum = (int)(input())\ntotal = 0\n\n\n#print(total)\nfor i in range(2, num + 1):\n for j in range(2, num + 1):\n for k in range(2, num + 1):\n total += math.gcd(math.gcd(i, j), k)\nprint(total)', 'import math\nnum = (int)(input())\ntotal = 0\n\nfor i in range(1, num + 1):\n for j in range(1, num + 1):\n sub = math.gcd(i, j)\n for k in range(1, num + 1):\n total += math.gcd(sub, k)\nprint(total)']
|
['Wrong Answer', 'Accepted']
|
['s697803351', 's685472926']
|
[9044.0, 9184.0]
|
[2205.0, 1392.0]
|
[370, 203]
|
p02713
|
u112266373
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import itertools as it\nimport fractions\n\nK = int(input())\n\ngcd_list = []\nfor i, j, k in it.product(range(1, K+1), range(1, K+1), range(1, K+1)):\n gcd_ = fractions.gcd(fractions.gcd(i, j), k)\n gcd_list.append(gcd_)\nprint(sum(gcd_list))\n', 'import itertools as it\nimport math\n\nK = int(input())\n\nitr = range(1, K+1)\ngcd_ = sum([math.gcd(math.gcd(i, j), k)\n for i, j, k in it.product(itr, itr, itr)])\nprint(gcd_)\n']
|
['Time Limit Exceeded', 'Accepted']
|
['s599116804', 's813655750']
|
[20652.0, 71720.0]
|
[2206.0, 1821.0]
|
[241, 181]
|
p02713
|
u114366889
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import fractions\nK = int(input())\nans = 0\nfor i in range(1,K+1):\n for j in range(1,K+1):\n ab = fractions.gcd(i,j)\n if ab == 0:\n continue\n for k in range(1,K+1):\n ans += fractions.gcd(ab,k)\n\nprint(ans)', 'from math import gcd\nK = int(input())\nans = 0\nfor i in range(1,K+1):\n for j in range(1,K+1):\n ab = gcd(i,j)\n if ab == 0:\n continue\n for k in range(1,K+1):\n ans += gcd(ab,k)\n\nprint(ans)']
|
['Time Limit Exceeded', 'Accepted']
|
['s732265692', 's388491704']
|
[10644.0, 9184.0]
|
[2206.0, 1089.0]
|
[246, 230]
|
p02713
|
u115877451
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\nfrom functools import reduce\n\n\ndef gcd_list(numbers):\n return reduce(math.gcd, numbers)\n\nn=int(input())\nl1=range(1,n+1)\nl2=range(1,n+1)\nl3=range(1,n+1)\n\ncount=0\n\nfor i in l1:\n for j in l2:\n te=gcd(i,j)\n for k in l3:\n count+=(te,k)\n\nprint(count)', 'import math\nfrom functools import reduce\n\n\ndef gcd_list(numbers):\n return reduce(math.gcd, numbers)\n\nn=int(input())\nl1=range(1,n+1)\nl2=range(1,n+1)\nl3=range(1,n+1)\n\ncount=0\n\nfor i in l1:\n for j in l2:\n te=math.gcd(i,j)\n for k in l3:\n count+=math.gcd(te,k)\n\nprint(count)']
|
['Runtime Error', 'Accepted']
|
['s236187553', 's550424439']
|
[9580.0, 9580.0]
|
[26.0, 1562.0]
|
[287, 300]
|
p02713
|
u118995404
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from Math import gcd\n\nK = int(input())\n\nresult = 0\nfor a in range(1, K + 1):\n for b in range(1, K + 1):\n for c in range(1, K + 1):\n result += gcd(c, gcd(a, b))\n \nprint(result)', 'from math import gcd\n \nK = int(input())\n \nresult = 0\nfor a in range(1, K + 1):\n for b in range(1, K + 1):\n for c in range(1, K + 1):\n result += gcd(c, gcd(a, b))\n \nprint(result)']
|
['Runtime Error', 'Accepted']
|
['s598029269', 's582691100']
|
[9008.0, 9104.0]
|
[23.0, 1747.0]
|
[189, 191]
|
p02713
|
u119655368
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['n = int(input())\nans = 0\nfor i in range(1,n + 1):\n for j in range(1, n + 1):\n f = fractions.gcd(i, j)\n for k in range(1, n + 1):\n ans += fractions.gcd(f, k)\nprint(ans)', 'import fractions\nn = int(input())\nans = 0\nfor i in range(1,n + 1):\n for j in range(1, n + 1):\n f = fractions.gcd(i, j)\n for k in range(1, n + 1):\n ans += fractions.gcd(f, k)\nprint(ans)', 'from math import gcd\nn = int(input())\nans = 0\nfor i in range(1,n + 1):\n for j in range(1, n + 1):\n f = gcd(i, j)\n for k in range(1, n + 1):\n ans += gcd(f, k)\nprint(ans)']
|
['Runtime Error', 'Time Limit Exceeded', 'Accepted']
|
['s572664949', 's699364572', 's330813160']
|
[9200.0, 10676.0, 9176.0]
|
[26.0, 2206.0, 1120.0]
|
[195, 212, 196]
|
p02713
|
u119982001
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['N = int(input())\nN = N+1\nsum = 0\n\nimport math\n\ndef gcd(*numbers):\n return reduce(math.gcd, numbers)\n\nfor i in range(1, N):\n for j in range(1, N):\n for k in range(1, N):\n sum += (gcd(gcd(i, j), k)\n\nprint( sum )\n', 'N = int(input())\nN = N+1\nsum = 0\n\nimport math\n\ndef gcd(*numbers):\n return reduce(math.gcd, numbers)\n\nfor i in range(1, N):\n for j in range(1, N):\n for k in range(1, N):\n sum += gcd(gcd(i, j), k)\n\nprint( sum )\n', 'from math import gcd as gcd\n\nK = int(input())\n\nans = 0\n\nfor i in range(1, K+1):\n for j in range(1, K+1):\n for k in range(1, K+1):\n ans += gcd(gcd(j, k), i)\n\nprint(ans)\n']
|
['Runtime Error', 'Runtime Error', 'Accepted']
|
['s228834141', 's796498530', 's181228849']
|
[9048.0, 9180.0, 9100.0]
|
[21.0, 20.0, 2000.0]
|
[234, 233, 189]
|
p02713
|
u121192152
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from math import gcd\nK = int(input())\n\nans = 0\n\nfor i in range(K):\n for j in range(K):\n t = gcd(i, j)\n for k in range(K):\n ans += gcd(t, k)\n\nprint(ans)\n', 'from math import gcd\nK = int(input())\n\nans = 0\n\nfor i in range(1, K+1):\n for j in range(1, K+1):\n t = gcd(i, j)\n for k in range(1, K+1):\n ans += gcd(t, k)\n\nprint(ans)\n']
|
['Wrong Answer', 'Accepted']
|
['s790608063', 's902534399']
|
[9192.0, 9168.0]
|
[1124.0, 1298.0]
|
[180, 195]
|
p02713
|
u122994151
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\n \nK = input()\n \nfor i in range(1, K+1):\n\tfor j in range(1,K+1):\n \t\tfor k in range(1,K+1):\n \t\tans += math.gcd(math.gcd(i,j), k)\n \nprint(ans)', 'import math\nans = 0\nK = int(input())\n \nfor i in range(1, K+1):\n\tfor j in range(1,K+1):\n \t\tfor k in range(1,K+1):\n ans = ans + math.gcd(math.gcd(i,j), k)\n \nprint(ans)', 'from math import gcd\nans = 0\nK = int(input())\n \nfor i in range(1, K+1):\n\tfor j in range(1,K+1):\n \t\tfor k in range(1,K+1):\n \t\tans = ans + gcd(gcd(i,j), k)\n \nprint(ans)', 'import math\n \nans = 0\nK = int(input())\n \nfor i in range(1, K+1):\n\tfor j in range(1,K+1):\n \t\tfor k in range(1,K+1):\n \t\tans += math.gcd(math.gcd(i,j), k)\n \nprint(ans)', 'import math\n \nK = int(input())\n \nfor i in range(1, K+1):\n\tfor j in range(1,K+1):\n \t\tfor k in range(1,K+1):\n \t\tans += math.gcd(math.gcd(i,j), k)\n \nprint(ans)', 'import math\nans = 0\nK = int(input())\n \nfor i in range(1, K+1):\n\tfor j in range(1,K+1):\n \t\tfor k in range(1,K+1):\n \t\tans = ans + math.gcd(math.gcd(i,j), k)\n \nprint(ans)', 'from math import gcd\nans = 0\nK = int(input())\n \nfor i in range(1, K+1):\n for j in range(1,K+1):\n for k in range(1,K+1):\n ans = ans + gcd(gcd(i,j), k)\n \nprint(ans)']
|
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
|
['s336081442', 's595229139', 's606852942', 's615766759', 's925909551', 's975268523', 's577716875']
|
[9020.0, 8960.0, 9032.0, 9028.0, 9024.0, 8940.0, 9180.0]
|
[23.0, 23.0, 22.0, 19.0, 23.0, 21.0, 1907.0]
|
[160, 180, 175, 173, 165, 176, 176]
|
p02713
|
u123745130
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['n=int(input())\n# a,b,c=map(int,input().split())\ncnt=0\ndef gcd(a,b):\n if a==0: return b\n else: return gcd(b%a,a)\n# print(gcd(a,b))\n\ndef gcd_3(a,b,c):\n if gcd(a,b)==0: return c\n else: return gcd(c % gcd(a,b),gcd(a,b))\n\nfor i in range(1,n+1):\n for j in range ( 1 , n + 1 ):\n for k in range ( 1 , n + 1 ):\n # cnt+=gcd_3(i,j,k)\n cnt+=1\n\n\nprint(cnt)', 'def main():\n from math import gcd\n\n K = int(input())\n\n result = 0\n for a in range(1, K + 1):\n for b in range(1, K + 1):\n t = gcd(a, b)\n for c in range(1, K + 1):\n result += gcd(t, c)\n print(result)', 'def main():\n from math import gcd\n\n K = int(input())\n\n result = 0\n for a in range(1, K + 1):\n for b in range(1, K + 1):\n t = gcd(a, b)\n for c in range(1, K + 1):\n result += gcd(t, c)\n print(result)\n\n\nmain()']
|
['Wrong Answer', 'Wrong Answer', 'Accepted']
|
['s189372620', 's332048705', 's043423379']
|
[9112.0, 9052.0, 9120.0]
|
[617.0, 20.0, 676.0]
|
[387, 256, 265]
|
p02713
|
u124498235
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['n = int(input())\nimport math\nfrom fractions import gcd\ns = 0\nfor i in range(1,n+1):\n\tfor j in range(1,n+1):\n\t\tfor k in range(1,n+1):\n\t\t\ts += math.gcd(math.gcd(i,j),k)\nprint (s)', 'from math import gcd\nn = int(input())\ns = 0\nfor i in range(1,n+1):\n\tfor j in range(1,n+1):\n\t\tx = gcd(i,j)\n\t\tfor k in range(1,n+1):\n\t\t\ts += gcd(x,k)\nprint (s)']
|
['Time Limit Exceeded', 'Accepted']
|
['s340616774', 's575113461']
|
[10424.0, 9184.0]
|
[2206.0, 1169.0]
|
[176, 157]
|
p02713
|
u125799132
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['[N, K] = [int(i) for i in input().split()]\nprint(min(N%K, -N%K))', 'import math\nK = int(input())\nans = 0\n\nfor a in range(1, K+1):\n for b in range(a, K+1):\n for c in range(b, K+1):\n s = math.gcd(a, b)\n t = math.gcd(s, c)\n if a == c:\n ans += t\n elif (a == b or b == c) and a != c:\n ans += 3*t\n else:\n ans += 6*t\nprint(ans)']
|
['Runtime Error', 'Accepted']
|
['s328757820', 's159753032']
|
[9016.0, 9192.0]
|
[27.0, 637.0]
|
[64, 362]
|
p02713
|
u129898499
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\nfrom functools import reduce\n\ndef gcd(*numbers):\n return reduce(math.gcd, numbers)\n \nK = int(input())\ncount = 0\nfor i in range(1,K+1):\n for j in range(i+1,K+1):\n for k in range(j+1,K+1):\n count += 6*(gcd(i,j,k))\n \nfor i in range(1,K+1):\n for j in range(i+1,K+1):\n count += 3*(gcd(i,j))\n\nfor i in range(1,K+1):\n count += i\n \nprint(count)', 'import math\nfrom functools import reduce\n\ndef gcd(*numbers):\n return reduce(math.gcd, numbers)\n \nK = int(input())\ncount = 0\nfor i in range(1,K-1):\n for j in range(i+1,K):\n for k in range(j+1,K+1):\n count += 6*(gcd(i,j,k))\n \nfor i in range(1,K):\n for j in range(i+1,K+1):\n count += 6*(gcd(i,j))\n\nfor i in range(1,K+1):\n count += i\n \nprint(count)']
|
['Wrong Answer', 'Accepted']
|
['s313043527', 's348062831']
|
[9584.0, 9640.0]
|
[658.0, 637.0]
|
[376, 372]
|
p02713
|
u130900604
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from math import gcd\nk=map(int,input())\nr=range(1,k+1)\nans=0\nfor i in r:\n for j in r:\n for k in r:\n ans+=gcd(k,gcd(i,j))\nprint(ans)\n\n', '# coding: utf-8\n# Your code here!\n\ndef MI():return map(int,input().split())\ndef LI():return list(MI())\n\nn=int(input())\n\nimport math\nfrom collections import Counter\n\n\n # return reduce(math.gcd, numbers)\n\nans=0\nt=[]\nfor i in range(1,n+1):\n for j in range(1,n+1):\n t.append(math.gcd(i,j))\n \nc=Counter(t).items()\n\nfor (i,j) in c:\n for k in range(1,n+1):\n ans+=math.gcd(i,k)*j\n # p\\rint(c)\nprint(ans)']
|
['Runtime Error', 'Accepted']
|
['s266719398', 's037955621']
|
[9112.0, 9776.0]
|
[24.0, 43.0]
|
[180, 452]
|
p02713
|
u131411061
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from fractions import gcd\n\nK = int(input())\n\nres = 0\nfor i in range(1,K+1):\n for j in range(1,K+1):\n for k in range(1,K+1):\n res += gcd(gcd(i,j),k)\nprint(res)\n', 'from fractions import gcd\n\nK = int(input())\n\ntmp = 0\nres = 0\nfor i in range(1,K+1):\n for j in range(1,K+1):\n print(i,j)\n for k in range(1,K+1):\n res += gcd(gcd(i,j),k)\nprint(res)', 'from fractions import gcd\n\nK = int(input())\n\nres = 0\ntmp = 0\nd = []\nfor i in range(1,K+1):\n for j in range(1,K+1):\n for k in range(1,K+1):\n if i == j and j == k:\n res += i\n elif i == j:\n res += gcd(i,k)\n elif i == k:\n res += gcd(j,k)\n elif j == k:\n res += gcd(i,j)\n else:\n res += gcd(gcd(i,j),k)\nprint(res)', 'from math import gcd\n\nK = int(input())\n\nres = 0\nfor i in range(1,K+1):\n for j in range(1,K+1):\n tmp = gcd(i,j)\n for k in range(1,K+1):\n res += gcd(tmp,k)\nprint(res)']
|
['Time Limit Exceeded', 'Wrong Answer', 'Time Limit Exceeded', 'Accepted']
|
['s382953018', 's851800521', 's886780600', 's795792451']
|
[10648.0, 10732.0, 10672.0, 9180.0]
|
[2205.0, 2206.0, 2206.0, 1243.0]
|
[180, 206, 446, 192]
|
p02713
|
u135116520
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math \nfrom itertools import product\nfrom functools import reduce\ndef gcd(*numbers):\n return reduce(math.gcd,numbers)\nK=int(input())\nA=[]\nas=range(1,K+1)\nbs=range(1,K+1)\ncs=range(1,K+1)\nfor a,b,c in product(as,bs,cs):\n s=gcd(a,b,c)\n A.append(s)\nprint(sum(A))\n \n \n A.append(s)\nprint(sum(A))', 'import math \nfrom functools import reduce\ndef gcd(*numbers):\n return reduce(math.gcd,numbers)\nK=int(input())\nA=[]\nfor i in range(K):\n for j in range(K):\n for k in range(K):\n s=gcd(i,j,k)\n A.append(s)\nprint(sum(A))', 'import math \nK=int(input())\nA=[]\nfor i in range(K):\n for j in range(K):\n for k in range(K):\n s=gcd(i,j,k)\n A.append(s)\nprint(sum(A)\n', 'import math\nK=int(input())\nans=0\nfor a in range(1,K+1):\n for b in range(1,K+1):\n ans_=math.gcd(a,b)\n for c in range(1,K+1):\n ans+=math.gcd(ans_,c)\nprint(ans)']
|
['Runtime Error', 'Wrong Answer', 'Runtime Error', 'Accepted']
|
['s219757556', 's355112735', 's521362629', 's257563503']
|
[8960.0, 46860.0, 8992.0, 9120.0]
|
[21.0, 2206.0, 22.0, 1387.0]
|
[307, 228, 146, 169]
|
p02713
|
u135961419
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\n\nk = int(input())\nsum = 0\n\nfor a in range(k):\n for b in range(k):\n for c in range(k):\n sum += math.gcd(a, math.gcd(b, c))\n \nprint(sum)', 'import math\n \nk = int(input())\nsum = 0\n \nfor a in range(k - 2):\n for b in range(a + 1, k - 1):\n for c in range(b + 1, k):\n sum += 6 * math.gcd(a + 1, math.gcd(b + 1, c + 1))\n \nfor a in range(k - 1):\n for b in range(a + 1, k):\n sum += 3 * math.gcd(a + 1, b + 1)\n \nsum += k * (k + 1) // 2\n \nprint(sum)', 'import math\n \nk = int(input())\nsum = 0\n \nfor a in range(k - 2):\n for b in range(a + 1, k - 1):\n for c in range(b + 1, k):\n sum += 6 * math.gcd(a + 1, math.gcd(b + 1, c + 1))\n \nfor a in range(k - 1):\n for b in range(a + 1, k):\n sum += 6 * math.gcd(a + 1, b + 1)\n \nsum += k * (k + 1) // 2\n \nprint(sum)']
|
['Wrong Answer', 'Wrong Answer', 'Accepted']
|
['s449281177', 's544013153', 's380417918']
|
[9176.0, 9204.0, 9204.0]
|
[2205.0, 478.0, 459.0]
|
[160, 325, 325]
|
p02713
|
u136451021
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\n\nK = int(sys.stdin.readline())\nans = 0\n\nfor i in range(1, K+1):\n for j in range(1, K+1):\n for k in range(1, K+1):\n math_gcd_jk = math.gcd(j, k)\n math_gcd_ijk = math.gcd(math_gcd_jk, i)\n ans = ans + math_gcd_ijk\n\nprint(ans)', 'import math\nK = int(input())\nans = 0\n\n#i<j<k\nfor i in range(1, K-1):\n for j in range(i+1, K):\n for k in range(j+1, K+1):\n gcd_ij_1 = math.gcd(i, j)\n gcd_ijk_1 = math.gcd(gcd_ij_1, k)\n ans += gcd_ijk_1 * 6\n\nfor l in range(1, K):\n for m in range(l+1, K+1):\n gcd_lm_1 = math.gcd(l,m)\n ans += gcd_lm_1 * 6\n\nfor n in range(1, K+1):\n ans += n\n\nprint(ans)\n']
|
['Runtime Error', 'Accepted']
|
['s836831486', 's003505735']
|
[9120.0, 9208.0]
|
[22.0, 488.0]
|
[277, 412]
|
p02713
|
u140191608
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from fractions import gcd\nN = int(input())\n\nll = [i for i in range(1,N+1)] \nans = 0\n\ndef aaa(a):\n d = gcd(a[0],a[1])\n return gcd(d,a[2])\n\nlll = []\nfor i in ll:\n for j in ll:\n for k in ll:\n lll.append((i ,j, k))\n\nfor ii in lll:\n ans += aaa(ii)\nprint(ans)', 'from fractions import gcd\nN = int(input())\n\nll = [i for i in range(1,N+1)] \nans = 0\n\ndef aaa(a):\n d = gcd(a[0],a[1])\n return gcd(d,a[2])\n\nlll = []\nfor i in ll:\n for j in ll:\n for k in ll:\n lll.append((i ,j, k))\n\nfor ii in lll:\n ans += aaa(ii)\nprint(ans)', 'from fractions import gcd\nN = int(input())\n\nll = [i for i in range(1,N+1)] \nans = 0\n\nfor i in ll:\n for j in ll:\n s = gcd(i,j)\n for k in ll:\n ans += gcd(s,k)\nprint(ans)', 'K = int(input())\nans = 0\nfrom math import gcd\nfor i in range(1,K+1):\n for k in range(1,K+1):\n for j in range(1,K+1):\n ans += gcd(gcd(i, k),j)\n \nprint(ans)']
|
['Time Limit Exceeded', 'Time Limit Exceeded', 'Time Limit Exceeded', 'Accepted']
|
['s441501799', 's625742665', 's918369727', 's033426011']
|
[580804.0, 580724.0, 10668.0, 9056.0]
|
[2222.0, 2227.0, 2206.0, 1857.0]
|
[285, 285, 197, 186]
|
p02713
|
u141574039
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import fractions\nx=0\nK=int(input())\nfor i in range(1,K+1):\n for j in range(1,K+1):\n for h in range(1,K+1):\n if i==j and j==h:\n x=x+i\n elif i==j or j==h:\n x=x+fractions.gcd(i,h)\n else:\n x=x+fractions.gcd(i,fractions.gcd(j,h))\nprint(x)', 'import math\nx=0;y=0\nK=int(input())\nfor i in range(1,K+1):\n for j in range(1,K+1):\n y=math.gcd(i,j)\n for h in range(1,K+1):\n x=x+math.gcd(y,h)\nprint(x)']
|
['Time Limit Exceeded', 'Accepted']
|
['s213833344', 's838360472']
|
[10608.0, 9136.0]
|
[2205.0, 1342.0]
|
[273, 162]
|
p02713
|
u143322814
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['def main():\n n = input()\n print(\'Yes\') if \'7\' in n else print(\'No\')\n\nif __name__ == "__main__":\n main()', 'import math\n \ndef main():\n n = int(input())\n ans = 0\n for i in range(1,n+1):\n for j in range(1,n+1):\n tmp = math.gcd(i,j)\n for k in range(1,n+1):\n ans += math.gcd(tmp,k)\n \n print(ans)\n \nif __name__ == "__main__":\n main()']
|
['Wrong Answer', 'Accepted']
|
['s889705113', 's824554781']
|
[9056.0, 9192.0]
|
[21.0, 886.0]
|
[112, 279]
|
p02713
|
u145600939
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['from math import gcd\nk = int(input())\nans = 0\nfor a in range(1,k+1):\n for b in range(a,k+1):\n ab = gcd(a,b)\n for c in range(c,k+1):\n g = gcd(ab,c)\n if a == b == c:\n ans += g\n elif a!=b!=c!=a:\n ans += g*6\n else:\n ans += g*3\nprint(ans)\n', 'import sys\nstdin = sys.stdin\nni = lambda: int(ns())\nna = lambda: list(map(int, stdin.readline().split()))\nnn = lambda: list(stdin.readline().split())\nns = lambda: stdin.readline().rstrip()\n\nimport math\n\nk = ni()\nans = 0\n\nfor i in range(1,k+1):\n for j in range(1,k+1):\n a = math.gcd(i,j)\n for p in range(1,k+1):\n ans += math.gcd(a,p)\n\nprint(ans)\n']
|
['Runtime Error', 'Accepted']
|
['s449137441', 's651226397']
|
[9196.0, 9116.0]
|
[20.0, 1386.0]
|
[282, 373]
|
p02713
|
u146057001
| 2,000
| 1,048,576
|
Find \displaystyle{\sum_{a=1}^{K}\sum_{b=1}^{K}\sum_{c=1}^{K} \gcd(a,b,c)}. Here \gcd(a,b,c) denotes the greatest common divisor of a, b, and c.
|
['import math\nk = int(input())\nans = 0\n\nfor a in range(k):\n for b in range(k):\n d = math.gcd(a + 1, b + 1)\n for c in range(k):\n ans += math(d, c + 1)\n\nprint(ans)\n', 'import math\nk = int(input())\nans = 0\n\nfor a in range(k):\n for b in range(k):\n d = math.gcd(a + 1, b + 1)\n for c in range(k):\n ans += math.gcd(d, c + 1)\n\nprint(ans)\n']
|
['Runtime Error', 'Accepted']
|
['s321209057', 's552770882']
|
[9112.0, 9056.0]
|
[21.0, 1464.0]
|
[188, 192]
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.