|
|
import imageio |
|
|
from einops import rearrange |
|
|
|
|
|
import torchvision |
|
|
import numpy as np |
|
|
from pathlib import Path |
|
|
import argparse |
|
|
import os |
|
|
|
|
|
from models.hunyuan.inference import HunyuanVideoSampler |
|
|
|
|
|
def main(args): |
|
|
print(args) |
|
|
|
|
|
models_root_path = Path(args.model_path) |
|
|
if not models_root_path.exists(): |
|
|
raise ValueError(f"`models_root` not exists: {models_root_path}") |
|
|
|
|
|
|
|
|
save_path = args.output_path |
|
|
os.makedirs(save_path, exist_ok=True) |
|
|
|
|
|
with open(args.prompt_file) as f: |
|
|
prompts = f.readlines() |
|
|
|
|
|
|
|
|
|
|
|
hunyuan_video_sampler = HunyuanVideoSampler.from_pretrained( |
|
|
models_root_path, args=args |
|
|
) |
|
|
|
|
|
|
|
|
args = hunyuan_video_sampler.args |
|
|
|
|
|
for idx, prompt in enumerate(prompts): |
|
|
seed = args.seed |
|
|
outputs = hunyuan_video_sampler.predict( |
|
|
prompt=prompt, |
|
|
height=args.height, |
|
|
width=args.width, |
|
|
video_length=args.num_frames, |
|
|
seed=seed, |
|
|
negative_prompt=args.neg_prompt, |
|
|
infer_steps=args.num_inference_steps, |
|
|
guidance_scale=args.guidance_scale, |
|
|
num_videos_per_prompt=args.num_videos, |
|
|
flow_shift=args.flow_shift, |
|
|
batch_size=args.batch_size, |
|
|
embedded_guidance_scale=args.embedded_cfg_scale, |
|
|
few_step=True |
|
|
) |
|
|
if 'LOCAL_RANK' not in os.environ or int(os.environ['LOCAL_RANK']) == 0: |
|
|
videos = rearrange(outputs["samples"], "b c t h w -> t b c h w") |
|
|
outputs = [] |
|
|
for x in videos: |
|
|
x = torchvision.utils.make_grid(x, nrow=6) |
|
|
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) |
|
|
outputs.append((x * 255).numpy().astype(np.uint8)) |
|
|
os.makedirs(args.output_path, exist_ok=True) |
|
|
imageio.mimsave( |
|
|
os.path.join(args.output_path, f"{idx}.mp4"), outputs, fps=args.fps |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
parser = argparse.ArgumentParser() |
|
|
|
|
|
|
|
|
parser.add_argument("--prompt_file", type=str, default="./assets/prompt.txt", help="prompt file for inference") |
|
|
parser.add_argument("--num_frames", type=int, default=16) |
|
|
parser.add_argument("--height", type=int, default=256) |
|
|
parser.add_argument("--width", type=int, default=256) |
|
|
parser.add_argument("--num_inference_steps", type=int, default=50) |
|
|
parser.add_argument("--model_path", type=str, default="./ckpts") |
|
|
parser.add_argument("--output_path", type=str, default="./outputs/accvideo-5-steps") |
|
|
parser.add_argument("--fps", type=int, default=24) |
|
|
|
|
|
|
|
|
parser.add_argument( |
|
|
"--denoise-type", |
|
|
type=str, |
|
|
default="flow", |
|
|
help="Denoise type for noised inputs.", |
|
|
) |
|
|
parser.add_argument("--seed", type=int, default=None, help="Seed for evaluation.") |
|
|
parser.add_argument( |
|
|
"--neg_prompt", type=str, default=None, help="Negative prompt for sampling." |
|
|
) |
|
|
parser.add_argument( |
|
|
"--guidance_scale", |
|
|
type=float, |
|
|
default=1.0, |
|
|
help="Classifier free guidance scale.", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--embedded_cfg_scale", |
|
|
type=float, |
|
|
default=6.0, |
|
|
help="Embedded classifier free guidance scale.", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--flow_shift", type=int, default=7, help="Flow shift parameter." |
|
|
) |
|
|
parser.add_argument( |
|
|
"--batch_size", type=int, default=1, help="Batch size for inference." |
|
|
) |
|
|
parser.add_argument( |
|
|
"--num_videos", |
|
|
type=int, |
|
|
default=1, |
|
|
help="Number of videos to generate per prompt.", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--load-key", |
|
|
type=str, |
|
|
default="module", |
|
|
help="Key to load the model states. 'module' for the main model, 'ema' for the EMA model.", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--use-cpu-offload", |
|
|
action="store_true", |
|
|
help="Use CPU offload for the model load.", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--dit-weight", |
|
|
type=str, |
|
|
default="data/hunyuan/hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states.pt", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--reproduce", |
|
|
action="store_true", |
|
|
help="Enable reproducibility by setting random seeds and deterministic algorithms.", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--disable-autocast", |
|
|
action="store_true", |
|
|
help="Disable autocast for denoising loop and vae decoding in pipeline sampling.", |
|
|
) |
|
|
|
|
|
|
|
|
parser.add_argument( |
|
|
"--flow-reverse", |
|
|
action="store_true", |
|
|
help="If reverse, learning/sampling from t=1 -> t=0.", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--flow-solver", type=str, default="euler", help="Solver for flow matching." |
|
|
) |
|
|
parser.add_argument( |
|
|
"--use-linear-quadratic-schedule", |
|
|
action="store_true", |
|
|
help="Use linear quadratic schedule for flow matching. Following MovieGen (https://ai.meta.com/static-resource/movie-gen-research-paper)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--linear-schedule-end", |
|
|
type=int, |
|
|
default=25, |
|
|
help="End step for linear quadratic schedule for flow matching.", |
|
|
) |
|
|
|
|
|
|
|
|
parser.add_argument("--model", type=str, default="HYVideo-T/2-cfgdistill") |
|
|
parser.add_argument("--latent-channels", type=int, default=16) |
|
|
parser.add_argument( |
|
|
"--precision", type=str, default="bf16", choices=["fp32", "fp16", "bf16"] |
|
|
) |
|
|
parser.add_argument( |
|
|
"--rope-theta", type=int, default=256, help="Theta used in RoPE." |
|
|
) |
|
|
|
|
|
parser.add_argument("--vae", type=str, default="884-16c-hy") |
|
|
parser.add_argument( |
|
|
"--vae-precision", type=str, default="fp16", choices=["fp32", "fp16", "bf16"] |
|
|
) |
|
|
parser.add_argument("--vae-tiling", action="store_true", default=True) |
|
|
|
|
|
parser.add_argument("--text-encoder", type=str, default="llm") |
|
|
parser.add_argument( |
|
|
"--text-encoder-precision", |
|
|
type=str, |
|
|
default="fp16", |
|
|
choices=["fp32", "fp16", "bf16"], |
|
|
) |
|
|
parser.add_argument("--text-states-dim", type=int, default=4096) |
|
|
parser.add_argument("--text-len", type=int, default=256) |
|
|
parser.add_argument("--tokenizer", type=str, default="llm") |
|
|
parser.add_argument("--prompt-template", type=str, default="dit-llm-encode") |
|
|
parser.add_argument( |
|
|
"--prompt-template-video", type=str, default="dit-llm-encode-video" |
|
|
) |
|
|
parser.add_argument("--hidden-state-skip-layer", type=int, default=2) |
|
|
parser.add_argument("--apply-final-norm", action="store_true") |
|
|
|
|
|
parser.add_argument("--text-encoder-2", type=str, default="clipL") |
|
|
parser.add_argument( |
|
|
"--text-encoder-precision-2", |
|
|
type=str, |
|
|
default="fp16", |
|
|
choices=["fp32", "fp16", "bf16"], |
|
|
) |
|
|
parser.add_argument("--text-states-dim-2", type=int, default=768) |
|
|
parser.add_argument("--tokenizer-2", type=str, default="clipL") |
|
|
parser.add_argument("--text-len-2", type=int, default=77) |
|
|
|
|
|
|
|
|
|
|
|
parser.add_argument( |
|
|
"--ulysses-degree", |
|
|
type=int, |
|
|
default=1, |
|
|
help="Ulysses degree.", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--ring-degree", |
|
|
type=int, |
|
|
default=1, |
|
|
help="Ulysses degree.", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--use-fp8", |
|
|
action="store_true", |
|
|
help="Enable use fp8 for inference acceleration." |
|
|
) |
|
|
|
|
|
args = parser.parse_args() |
|
|
main(args) |
|
|
|