import imageio from einops import rearrange import torchvision import numpy as np from pathlib import Path import argparse import os from models.hunyuan.inference import HunyuanVideoSampler def main(args): print(args) models_root_path = Path(args.model_path) if not models_root_path.exists(): raise ValueError(f"`models_root` not exists: {models_root_path}") # Create save folder to save the samples save_path = args.output_path os.makedirs(save_path, exist_ok=True) with open(args.prompt_file) as f: prompts = f.readlines() # Load models hunyuan_video_sampler = HunyuanVideoSampler.from_pretrained( models_root_path, args=args ) # Get the updated args args = hunyuan_video_sampler.args for idx, prompt in enumerate(prompts): seed = args.seed outputs = hunyuan_video_sampler.predict( prompt=prompt, height=args.height, width=args.width, video_length=args.num_frames, seed=seed, negative_prompt=args.neg_prompt, infer_steps=args.num_inference_steps, guidance_scale=args.guidance_scale, num_videos_per_prompt=args.num_videos, flow_shift=args.flow_shift, batch_size=args.batch_size, embedded_guidance_scale=args.embedded_cfg_scale, few_step=True ) if 'LOCAL_RANK' not in os.environ or int(os.environ['LOCAL_RANK']) == 0: videos = rearrange(outputs["samples"], "b c t h w -> t b c h w") outputs = [] for x in videos: x = torchvision.utils.make_grid(x, nrow=6) x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) outputs.append((x * 255).numpy().astype(np.uint8)) os.makedirs(args.output_path, exist_ok=True) imageio.mimsave( os.path.join(args.output_path, f"{idx}.mp4"), outputs, fps=args.fps ) if __name__ == "__main__": parser = argparse.ArgumentParser() # Basic parameters parser.add_argument("--prompt_file", type=str, default="./assets/prompt.txt", help="prompt file for inference") parser.add_argument("--num_frames", type=int, default=16) parser.add_argument("--height", type=int, default=256) parser.add_argument("--width", type=int, default=256) parser.add_argument("--num_inference_steps", type=int, default=50) parser.add_argument("--model_path", type=str, default="./ckpts") parser.add_argument("--output_path", type=str, default="./outputs/accvideo-5-steps") parser.add_argument("--fps", type=int, default=24) # Additional parameters parser.add_argument( "--denoise-type", type=str, default="flow", help="Denoise type for noised inputs.", ) parser.add_argument("--seed", type=int, default=None, help="Seed for evaluation.") parser.add_argument( "--neg_prompt", type=str, default=None, help="Negative prompt for sampling." ) parser.add_argument( "--guidance_scale", type=float, default=1.0, help="Classifier free guidance scale.", ) parser.add_argument( "--embedded_cfg_scale", type=float, default=6.0, help="Embedded classifier free guidance scale.", ) parser.add_argument( "--flow_shift", type=int, default=7, help="Flow shift parameter." ) parser.add_argument( "--batch_size", type=int, default=1, help="Batch size for inference." ) parser.add_argument( "--num_videos", type=int, default=1, help="Number of videos to generate per prompt.", ) parser.add_argument( "--load-key", type=str, default="module", help="Key to load the model states. 'module' for the main model, 'ema' for the EMA model.", ) parser.add_argument( "--use-cpu-offload", action="store_true", help="Use CPU offload for the model load.", ) parser.add_argument( "--dit-weight", type=str, default="data/hunyuan/hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states.pt", ) parser.add_argument( "--reproduce", action="store_true", help="Enable reproducibility by setting random seeds and deterministic algorithms.", ) parser.add_argument( "--disable-autocast", action="store_true", help="Disable autocast for denoising loop and vae decoding in pipeline sampling.", ) # Flow Matching parser.add_argument( "--flow-reverse", action="store_true", help="If reverse, learning/sampling from t=1 -> t=0.", ) parser.add_argument( "--flow-solver", type=str, default="euler", help="Solver for flow matching." ) parser.add_argument( "--use-linear-quadratic-schedule", action="store_true", help="Use linear quadratic schedule for flow matching. Following MovieGen (https://ai.meta.com/static-resource/movie-gen-research-paper)", ) parser.add_argument( "--linear-schedule-end", type=int, default=25, help="End step for linear quadratic schedule for flow matching.", ) # Model parameters parser.add_argument("--model", type=str, default="HYVideo-T/2-cfgdistill") parser.add_argument("--latent-channels", type=int, default=16) parser.add_argument( "--precision", type=str, default="bf16", choices=["fp32", "fp16", "bf16"] ) parser.add_argument( "--rope-theta", type=int, default=256, help="Theta used in RoPE." ) parser.add_argument("--vae", type=str, default="884-16c-hy") parser.add_argument( "--vae-precision", type=str, default="fp16", choices=["fp32", "fp16", "bf16"] ) parser.add_argument("--vae-tiling", action="store_true", default=True) parser.add_argument("--text-encoder", type=str, default="llm") parser.add_argument( "--text-encoder-precision", type=str, default="fp16", choices=["fp32", "fp16", "bf16"], ) parser.add_argument("--text-states-dim", type=int, default=4096) parser.add_argument("--text-len", type=int, default=256) parser.add_argument("--tokenizer", type=str, default="llm") parser.add_argument("--prompt-template", type=str, default="dit-llm-encode") parser.add_argument( "--prompt-template-video", type=str, default="dit-llm-encode-video" ) parser.add_argument("--hidden-state-skip-layer", type=int, default=2) parser.add_argument("--apply-final-norm", action="store_true") parser.add_argument("--text-encoder-2", type=str, default="clipL") parser.add_argument( "--text-encoder-precision-2", type=str, default="fp16", choices=["fp32", "fp16", "bf16"], ) parser.add_argument("--text-states-dim-2", type=int, default=768) parser.add_argument("--tokenizer-2", type=str, default="clipL") parser.add_argument("--text-len-2", type=int, default=77) # ======================== Model loads ======================== parser.add_argument( "--ulysses-degree", type=int, default=1, help="Ulysses degree.", ) parser.add_argument( "--ring-degree", type=int, default=1, help="Ulysses degree.", ) parser.add_argument( "--use-fp8", action="store_true", help="Enable use fp8 for inference acceleration." ) args = parser.parse_args() main(args)