blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
82e56263eeee8167a26929e00f78250969c87ab4
7b12bcdb390c5beaf3fe0bc6a994222fb2c85dd9
/scripts/moon/shotgun/__init__.py
237e0d1187f2b88ecf53c84dafc5dddf8f545ab7
[]
no_license
you4jang/moonlight
803350ddf1174b9c51f7048ed8b8ae5ba12eabeb
758f61b976339f8707b0a1ec3a839ffedbbc2770
refs/heads/master
2023-04-06T17:59:33.824614
2021-04-19T08:38:44
2021-04-19T08:38:44
337,308,424
0
0
null
null
null
null
UTF-8
Python
false
false
1,463
py
# -*- coding: utf-8 -*- import shotgun_api3 # SUPERVISORS_GROUP_ID = 6 # SG_PERMISSION_RULE_SET_MANAGER = {'type': 'PermissionRuleSet', 'id': 7} # SG_PERMISSION_RULE_SET_ARTIST = {'type': 'PermissionRuleSet', 'id': 8} # Groups # SG_GROUP_SUPERVISORS = {'type': 'Group', 'id': 6} # Departments # SG_DEPARTMENT_PD = {'type': 'Department', 'id': 75} # SG_DEPARTMENT_DEGISN = {'type': 'Department', 'id': 74} # SG_DEPARTMENT_MODELING = {'type': 'Department', 'id': 107} # SG_DEPARTMENT_RIGGING = {'type': 'Department', 'id': 41} # SG_DEPARTMENT_ANIMATION = {'type': 'Department', 'id': 42} # SG_DEPARTMENT_LIGHTING = {'type': 'Department', 'id': 140} # SG_DEPARTMENT_FX = {'type': 'Department', 'id': 141} # SG_DEPARTMENT_COMP = {'type': 'Department', 'id': 142} # SG_DEPARTMENT_DIRECTOR = {'type': 'Department', 'id': 143} # SG_DEPARTMENT_STORY = {'type': 'Department', 'id': 144} class Shotgun(shotgun_api3.Shotgun): SHOTGUN_URL = 'https://pinkmoon.shotgunstudio.com' def __init__(self, appname, username=None, password=None, **kwargs): appset = { 'admin_api': { 'name': 'admin_api', 'key': 'npauxuwxbzjdgbramOeqp0iz(', }, } super(Shotgun, self).__init__( self.SHOTGUN_URL, script_name=appset[appname]['name'], api_key=appset[appname]['key'], login=username, password=password, **kwargs )
[ "gmdirect@naver.com" ]
gmdirect@naver.com
2334b622780a949833143ed370cf64dec3daacdc
8d3e70a2d827ae849a3274b6cd75fddb63c7aca1
/src/app/main.py
830c7993448e57ce1e9de30b06a278888a48bc50
[ "MIT" ]
permissive
fabianoa/mlops-deploy-alura
dc6028d796d9da49637f3d47f9d8538cc3498e42
ed76419289293f69bf0261e90cd6808c85f34bd0
refs/heads/master
2023-07-17T06:52:45.796073
2021-08-31T10:12:41
2021-08-31T10:12:41
401,658,590
0
0
null
null
null
null
UTF-8
Python
false
false
1,346
py
from flask import Flask,request,jsonify from flask_basicauth import BasicAuth from textblob import TextBlob import pandas as pd from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split import pickle import os #df = pd.read_csv('casas.csv') #X = df.drop('preco', axis=1) #y = df['preco'] #X_train,X_test,y_train,y_teste = train_test_split(X,y,test_size=0.3, random_state=42) #modelo = LinearRegression() #modelo.fit(X_train,y_train) modelo = pickle.load(open('../../models/modelo.sav','rb')) app = Flask(__name__) app.config['BASIC_AUTH_USERNAME'] =os.environ.get('BASIC_AUTH_USERNAME') app.config['BASIC_AUTH_PASSWORD'] =os.environ.get('BASIC_AUTH_PASSWORD') basic_auth = BasicAuth(app) @app.route('/') def home(): return "Minha primeira API." @app.route('/sentimento/<frase>') @basic_auth.required def sentimento(frase): tb = TextBlob(frase) tb_en = tb.translate(to='en') polaridade = tb_en.sentiment.polarity return "Polaridade: {}".format(polaridade) @app.route('/cotacao/',methods=['POST']) @basic_auth.required def cotacao(): colunas = ['tamanho','ano','garagem'] dados = request.get_json() dados_input = [dados[col] for col in colunas] preco = modelo.predict([dados_input]) return jsonify(preco=preco[0]) app.run(debug=True, host='0.0.0.0')
[ "fabiano.alencar@gmail.com" ]
fabiano.alencar@gmail.com
9f3a6da4bd3f71cca3c96be91ba169f4415dabfe
c5d68f58c9523257a8b41954553f5cff2cd5f487
/Secao_05_Lista_Ex_41e/ex_26.py
5e1ced6cfbac38f24f677470fbda8bfb4d233128
[]
no_license
SouzaCadu/guppe
04bfcde82d4404eb9ec795006c6931ba07dc72b6
1f8a672230c5c27712f522e1e34516591c012453
refs/heads/master
2023-03-13T01:32:51.019871
2021-02-25T17:02:59
2021-02-25T17:02:59
320,908,119
1
0
null
null
null
null
UTF-8
Python
false
false
456
py
""" Dada a quilometragem e quantidade de litros consumidos calcule o consumo em km/l """ print("Para saber a eficiência do carro informe:") km = float(input("A distância em quilômetros:")) l = float(input("A quantidade de litros de gasolina consumidos \n" "por quilômetro percorrido:")) km_l = km / l if km_l < 8.0: print("Venda o carro!") elif 8.0 <= km_l <= 14.0: print("Econômico!") else: print("Super econômico!")
[ "cadu.souza81@gmail.com" ]
cadu.souza81@gmail.com
5e3c688cfd1469d2ae26ef1105ca7e99c9ee3da6
8189c3d355f71db573483fa1e5d181044cf7e892
/face-opencv-project/faceenv/bin/f2py
4347e453fadf17eea092082ca5c89742ee74a56a
[]
no_license
quoc-dev/My-Python
2ae3585ca1aea7a743f60ee5a5fdb2c9ecce38ed
8d1bdb66f013950c75638226255e713faf4ae56d
refs/heads/master
2020-03-17T22:56:02.052950
2018-07-15T15:13:08
2018-07-15T15:13:08
134,024,011
0
0
null
null
null
null
UTF-8
Python
false
false
826
#!/Users/quocnguyenp./QuocDEV/MyPy/My-Python/face-opencv-project/faceenv/bin/python3.6 # See http://cens.ioc.ee/projects/f2py2e/ from __future__ import division, print_function import os import sys for mode in ["g3-numpy", "2e-numeric", "2e-numarray", "2e-numpy"]: try: i = sys.argv.index("--" + mode) del sys.argv[i] break except ValueError: pass os.environ["NO_SCIPY_IMPORT"] = "f2py" if mode == "g3-numpy": sys.stderr.write("G3 f2py support is not implemented, yet.\\n") sys.exit(1) elif mode == "2e-numeric": from f2py2e import main elif mode == "2e-numarray": sys.argv.append("-DNUMARRAY") from f2py2e import main elif mode == "2e-numpy": from numpy.f2py import main else: sys.stderr.write("Unknown mode: " + repr(mode) + "\\n") sys.exit(1) main()
[ "phucquoc.dev@gmail.com" ]
phucquoc.dev@gmail.com
6d30fd2f9ef98ebd534565d6e63baf02aae1ad8d
863c3154ba19251bd37fac8459592dbb9e748829
/jejuRSScrawler.py
acdefdb8dfb9f0c374372c29ddb385bf5875e354
[ "MIT" ]
permissive
LiveCoronaDetector/covid-19-crawler
7e852c1c3c32941c8a726aa0b7a33d5c83e7ac59
dc089f2e1e340ce9a3f7fbef1024db2e38cc6344
refs/heads/master
2022-11-21T05:16:41.041077
2020-07-21T03:39:46
2020-07-21T03:39:46
237,893,675
9
7
null
null
null
null
UTF-8
Python
false
false
1,669
py
""" 제주특별자치도 보건서비스 현황 및 브리핑자료 http://www.jeju.go.kr/wel/healthCare/corona/coronaNotice.htm Author: Eunhak Lee (@return0927) """ import re import requests from bs4 import BeautifulSoup as Soup from bs4.element import Tag from datetime import datetime # Preferences url = "http://www.jeju.go.kr/wel/healthCare/corona/coronaNotice.htm?act=rss" # Model def parse(): req = requests.get(url) soup = Soup(req.text, 'html.parser') title = getattr(soup.find("title"), 'text', 'Empty Title') description = getattr(soup.find('description'), 'text', 'Empty Description') items = [] for elem in soup.findAll("item"): elem_title = getattr(elem.find("title"), 'text', '') # elem_link = getattr(elem.find("link"), 'text', '') -> TODO: soup load 시 item -> link 가 깨지는 이유 밝히기 elem_link = re.findall( r'((http|ftp|https)://([\w_-]+(?:(?:\.[\w_-]+)+))([\w.,@?^=%&:/~+#-]*[\w@?^=%&/~+#-])?)', elem.text)[-1][0] elem_description = getattr(elem.find("description"), 'text', '') elem_author = getattr(elem.find("author"), 'text', '') _bare_date = getattr(elem.find("pubdate"), 'text', '') elem_pubDate = datetime.strptime(_bare_date, "%a, %d %b %Y %H:%M:%S GMT") items.append({ "title": elem_title, "link": elem_link, "description": elem_description, "pubDate": elem_pubDate, "author": elem_author }) return { 'title': title, 'description': description, 'items': items } if __name__ == "__main__": parse()
[ "admin@return0927.xyz" ]
admin@return0927.xyz
5060c8a8f910847c90a31e3b29f64bb357fe38d7
8111d62ccff6137f9770e591299ee01b928099ff
/nadmin/plugins/details.py
b9ebbd94cc68ec117b03982ec1ff99a6b03dc9e0
[ "MIT" ]
permissive
A425/django-nadmin
73cd9a5d0095e0a7b3e1f4b5035acac83bfc9c0a
9ab06192311b22ec654778935ce3e3c5ffd39a00
refs/heads/master
2021-01-24T22:35:54.665401
2015-10-20T05:24:16
2015-10-20T05:24:16
43,421,651
1
0
null
null
null
null
UTF-8
Python
false
false
2,923
py
from django.utils.translation import ugettext as _ from django.core.urlresolvers import reverse, NoReverseMatch from django.db import models from nadmin.sites import site from nadmin.views import BaseAdminPlugin, ListAdminView class DetailsPlugin(BaseAdminPlugin): show_detail_fields = [] show_all_rel_details = True def result_item(self, item, obj, field_name, row): if (self.show_all_rel_details or (field_name in self.show_detail_fields)): rel_obj = None if hasattr(item.field, 'rel') and isinstance(item.field.rel, models.ManyToOneRel): rel_obj = getattr(obj, field_name) elif field_name in self.show_detail_fields: rel_obj = obj if rel_obj: if rel_obj.__class__ in site._registry: try: model_admin = site._registry[rel_obj.__class__] has_view_perm = model_admin(self.admin_view.request).has_view_permission(rel_obj) has_change_perm = model_admin(self.admin_view.request).has_change_permission(rel_obj) except: has_view_perm = self.admin_view.has_model_perm(rel_obj.__class__, 'view') has_change_perm = self.has_model_perm(rel_obj.__class__, 'change') else: has_view_perm = self.admin_view.has_model_perm(rel_obj.__class__, 'view') has_change_perm = self.has_model_perm(rel_obj.__class__, 'change') if rel_obj and has_view_perm: opts = rel_obj._meta try: item_res_uri = reverse( '%s:%s_%s_detail' % (self.admin_site.app_name, opts.app_label, opts.model_name), args=(getattr(rel_obj, opts.pk.attname),)) if item_res_uri: if has_change_perm: edit_url = reverse( '%s:%s_%s_change' % (self.admin_site.app_name, opts.app_label, opts.model_name), args=(getattr(rel_obj, opts.pk.attname),)) else: edit_url = '' item.btns.append('<a data-res-uri="%s" data-edit-uri="%s" class="details-handler" rel="tooltip" title="%s"><i class="fa fa-info-circle"></i></a>' % (item_res_uri, edit_url, _(u'Details of %s') % str(rel_obj))) except NoReverseMatch: pass return item # Media def get_media(self, media): if self.show_all_rel_details or self.show_detail_fields: media = media + self.vendor('nadmin.plugin.details.js', 'nadmin.form.css') return media site.register_plugin(DetailsPlugin, ListAdminView)
[ "liu170045@gmail.com" ]
liu170045@gmail.com
4cca3bbdf60ee174427fb018e22fe9972c04e563
b336674934022040fe8fed3dc88ad06a0edf0014
/To find a leap year.py
0e0b6d6fbb7048180f73c7f48e4d282649addd55
[]
no_license
rajuraj-rgb/Python-projects
7332d8bbfb8853ad8dfb8a1e39a3f1220805f9c7
5cd8b6b553778139ee86ef429ee7abb7c3444606
refs/heads/master
2023-05-29T22:43:47.422943
2021-06-12T17:55:40
2021-06-12T17:55:40
286,728,039
0
0
null
null
null
null
UTF-8
Python
false
false
689
py
def is_leap(year): leap = False if (year % 4) == 0: if (year % 100) == 0: if (year % 400) == 0: return True else: return False else: return True else: return False year = int(input()) print(is_leap(year)) # Created by me def leap_year(year): if year % 4 == 0: return True else: return False if year % 100 == 0: return False else: return True if year % 400 == 0: return True else: return False while(True): year = int(input("Enter a year:\n")) print(leap_year(year))
[ "noreply@github.com" ]
rajuraj-rgb.noreply@github.com
d24f038c49fabcf817d8e83e5985d312402b09ee
f4b60f5e49baf60976987946c20a8ebca4880602
/lib64/python2.7/site-packages/acimodel-1.3_2j-py2.7.egg/cobra/modelimpl/fv/rttoepipforeptoeptask.py
72948c45ecf44d8a43c5c7675999f2c87dff7f63
[]
no_license
cqbomb/qytang_aci
12e508d54d9f774b537c33563762e694783d6ba8
a7fab9d6cda7fadcc995672e55c0ef7e7187696e
refs/heads/master
2022-12-21T13:30:05.240231
2018-12-04T01:46:53
2018-12-04T01:46:53
159,911,666
0
0
null
2022-12-07T23:53:02
2018-12-01T05:17:50
Python
UTF-8
Python
false
false
17,087
py
# coding=UTF-8 # ********************************************************************** # Copyright (c) 2013-2016 Cisco Systems, Inc. All rights reserved # written by zen warriors, do not modify! # ********************************************************************** from cobra.mit.meta import ClassMeta from cobra.mit.meta import StatsClassMeta from cobra.mit.meta import CounterMeta from cobra.mit.meta import PropMeta from cobra.mit.meta import Category from cobra.mit.meta import SourceRelationMeta from cobra.mit.meta import NamedSourceRelationMeta from cobra.mit.meta import TargetRelationMeta from cobra.mit.meta import DeploymentPathMeta, DeploymentCategory from cobra.model.category import MoCategory, PropCategory, CounterCategory from cobra.mit.mo import Mo # ################################################## class RtToEpIpForEpToEpTask(Mo): """ Mo doc not defined in techpub!!! """ meta = ClassMeta("cobra.model.fv.RtToEpIpForEpToEpTask") meta.moClassName = "fvRtToEpIpForEpToEpTask" meta.rnFormat = "fvRtToEpIpForEpToEpTask-%(id)s" meta.category = MoCategory.TASK meta.label = "None" meta.writeAccessMask = 0x1 meta.readAccessMask = 0x1 meta.isDomainable = False meta.isReadOnly = True meta.isConfigurable = False meta.isDeletable = False meta.isContextRoot = False meta.parentClasses.add("cobra.model.action.TopomgrSubj") meta.parentClasses.add("cobra.model.action.ObserverSubj") meta.parentClasses.add("cobra.model.action.VmmmgrSubj") meta.parentClasses.add("cobra.model.action.SnmpdSubj") meta.parentClasses.add("cobra.model.action.ScripthandlerSubj") meta.parentClasses.add("cobra.model.action.ConfelemSubj") meta.parentClasses.add("cobra.model.action.EventmgrSubj") meta.parentClasses.add("cobra.model.action.OspaelemSubj") meta.parentClasses.add("cobra.model.action.VtapSubj") meta.parentClasses.add("cobra.model.action.OshSubj") meta.parentClasses.add("cobra.model.action.DhcpdSubj") meta.parentClasses.add("cobra.model.action.ObserverelemSubj") meta.parentClasses.add("cobra.model.action.DbgrelemSubj") meta.parentClasses.add("cobra.model.action.VleafelemSubj") meta.parentClasses.add("cobra.model.action.NxosmockSubj") meta.parentClasses.add("cobra.model.action.DbgrSubj") meta.parentClasses.add("cobra.model.action.AppliancedirectorSubj") meta.parentClasses.add("cobra.model.action.OpflexpSubj") meta.parentClasses.add("cobra.model.action.BootmgrSubj") meta.parentClasses.add("cobra.model.action.AeSubj") meta.parentClasses.add("cobra.model.action.PolicymgrSubj") meta.parentClasses.add("cobra.model.action.ExtXMLApiSubj") meta.parentClasses.add("cobra.model.action.OpflexelemSubj") meta.parentClasses.add("cobra.model.action.PolicyelemSubj") meta.parentClasses.add("cobra.model.action.IdmgrSubj") meta.superClasses.add("cobra.model.action.RInst") meta.superClasses.add("cobra.model.pol.ComplElem") meta.superClasses.add("cobra.model.task.Inst") meta.superClasses.add("cobra.model.action.Inst") meta.rnPrefixes = [ ('fvRtToEpIpForEpToEpTask-', True), ] prop = PropMeta("str", "childAction", "childAction", 4, PropCategory.CHILD_ACTION) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("deleteAll", "deleteall", 16384) prop._addConstant("deleteNonPresent", "deletenonpresent", 8192) prop._addConstant("ignore", "ignore", 4096) meta.props.add("childAction", prop) prop = PropMeta("str", "data", "data", 52, PropCategory.REGULAR) prop.label = "Data" prop.isImplicit = True prop.isAdmin = True prop.range = [(0, 512)] meta.props.add("data", prop) prop = PropMeta("str", "descr", "descr", 33, PropCategory.REGULAR) prop.label = "Description" prop.isImplicit = True prop.isAdmin = True prop.range = [(0, 128)] prop.regex = ['[a-zA-Z0-9\\!#$%()*,-./:;@ _{|}~?&+]+'] meta.props.add("descr", prop) prop = PropMeta("str", "dn", "dn", 1, PropCategory.DN) prop.label = "None" prop.isDn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("dn", prop) prop = PropMeta("str", "endTs", "endTs", 15575, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "never" prop._addConstant("never", "never", 0) meta.props.add("endTs", prop) prop = PropMeta("str", "fail", "fail", 46, PropCategory.REGULAR) prop.label = "Fail" prop.isImplicit = True prop.isAdmin = True meta.props.add("fail", prop) prop = PropMeta("str", "id", "id", 24129, PropCategory.REGULAR) prop.label = "ID" prop.isConfig = True prop.isAdmin = True prop.isCreateOnly = True prop.isNaming = True prop.defaultValue = 0 prop.defaultValueStr = "none" prop._addConstant("DbgacEpIpForEpToEp", "dbgacepipforeptoep", 2127) prop._addConstant("none", "none", 0) meta.props.add("id", prop) prop = PropMeta("str", "invErrCode", "invErrCode", 49, PropCategory.REGULAR) prop.label = "Remote Error Code" prop.isImplicit = True prop.isAdmin = True prop._addConstant("ERR-FILTER-illegal-format", None, 1140) prop._addConstant("ERR-FSM-no-such-state", None, 1160) prop._addConstant("ERR-HTTP-set-error", None, 1551) prop._addConstant("ERR-HTTPS-set-error", None, 1552) prop._addConstant("ERR-MO-CONFIG-child-object-cant-be-configured", None, 1130) prop._addConstant("ERR-MO-META-no-such-object-class", None, 1122) prop._addConstant("ERR-MO-PROPERTY-no-such-property", None, 1121) prop._addConstant("ERR-MO-PROPERTY-value-out-of-range", None, 1120) prop._addConstant("ERR-MO-access-denied", None, 1170) prop._addConstant("ERR-MO-deletion-rule-violation", None, 1107) prop._addConstant("ERR-MO-duplicate-object", None, 1103) prop._addConstant("ERR-MO-illegal-containment", None, 1106) prop._addConstant("ERR-MO-illegal-creation", None, 1105) prop._addConstant("ERR-MO-illegal-iterator-state", None, 1100) prop._addConstant("ERR-MO-illegal-object-lifecycle-transition", None, 1101) prop._addConstant("ERR-MO-naming-rule-violation", None, 1104) prop._addConstant("ERR-MO-object-not-found", None, 1102) prop._addConstant("ERR-MO-resource-allocation", None, 1150) prop._addConstant("ERR-aaa-config-modify-error", None, 1520) prop._addConstant("ERR-acct-realm-set-error", None, 1513) prop._addConstant("ERR-add-ctrlr", None, 1574) prop._addConstant("ERR-admin-passwd-set", None, 1522) prop._addConstant("ERR-api", None, 1571) prop._addConstant("ERR-auth-issue", None, 1548) prop._addConstant("ERR-auth-realm-set-error", None, 1514) prop._addConstant("ERR-authentication", None, 1534) prop._addConstant("ERR-authorization-required", None, 1535) prop._addConstant("ERR-connect", None, 1572) prop._addConstant("ERR-create-domain", None, 1562) prop._addConstant("ERR-create-keyring", None, 1560) prop._addConstant("ERR-create-role", None, 1526) prop._addConstant("ERR-create-user", None, 1524) prop._addConstant("ERR-delete-domain", None, 1564) prop._addConstant("ERR-delete-role", None, 1528) prop._addConstant("ERR-delete-user", None, 1523) prop._addConstant("ERR-domain-set-error", None, 1561) prop._addConstant("ERR-http-initializing", None, 1549) prop._addConstant("ERR-incompat-ctrlr-version", None, 1568) prop._addConstant("ERR-internal-error", None, 1540) prop._addConstant("ERR-invalid-args", None, 1569) prop._addConstant("ERR-invalid-domain-name", None, 1582) prop._addConstant("ERR-ldap-delete-error", None, 1510) prop._addConstant("ERR-ldap-get-error", None, 1509) prop._addConstant("ERR-ldap-group-modify-error", None, 1518) prop._addConstant("ERR-ldap-group-set-error", None, 1502) prop._addConstant("ERR-ldap-set-error", None, 1511) prop._addConstant("ERR-missing-method", None, 1546) prop._addConstant("ERR-modify-ctrlr-access", None, 1567) prop._addConstant("ERR-modify-ctrlr-dvs-version", None, 1576) prop._addConstant("ERR-modify-ctrlr-rootcont", None, 1575) prop._addConstant("ERR-modify-ctrlr-scope", None, 1573) prop._addConstant("ERR-modify-ctrlr-trig-inventory", None, 1577) prop._addConstant("ERR-modify-domain", None, 1563) prop._addConstant("ERR-modify-domain-encapmode", None, 1581) prop._addConstant("ERR-modify-domain-enfpref", None, 1578) prop._addConstant("ERR-modify-domain-mcastpool", None, 1579) prop._addConstant("ERR-modify-domain-mode", None, 1580) prop._addConstant("ERR-modify-role", None, 1527) prop._addConstant("ERR-modify-user", None, 1525) prop._addConstant("ERR-modify-user-domain", None, 1565) prop._addConstant("ERR-modify-user-role", None, 1532) prop._addConstant("ERR-no-buf", None, 1570) prop._addConstant("ERR-passwd-set-failure", None, 1566) prop._addConstant("ERR-provider-group-modify-error", None, 1519) prop._addConstant("ERR-provider-group-set-error", None, 1512) prop._addConstant("ERR-radius-global-set-error", None, 1505) prop._addConstant("ERR-radius-group-set-error", None, 1501) prop._addConstant("ERR-radius-set-error", None, 1504) prop._addConstant("ERR-request-timeout", None, 1545) prop._addConstant("ERR-role-set-error", None, 1515) prop._addConstant("ERR-secondary-node", None, 1550) prop._addConstant("ERR-service-not-ready", None, 1539) prop._addConstant("ERR-set-password-strength-check", None, 1543) prop._addConstant("ERR-store-pre-login-banner-msg", None, 1521) prop._addConstant("ERR-tacacs-enable-error", None, 1508) prop._addConstant("ERR-tacacs-global-set-error", None, 1507) prop._addConstant("ERR-tacacs-group-set-error", None, 1503) prop._addConstant("ERR-tacacs-set-error", None, 1506) prop._addConstant("ERR-user-account-expired", None, 1536) prop._addConstant("ERR-user-set-error", None, 1517) prop._addConstant("ERR-xml-parse-error", None, 1547) prop._addConstant("communication-error", "communication-error", 1) prop._addConstant("none", "none", 0) meta.props.add("invErrCode", prop) prop = PropMeta("str", "invErrDescr", "invErrDescr", 50, PropCategory.REGULAR) prop.label = "Remote Error Description" prop.isImplicit = True prop.isAdmin = True prop.range = [(0, 128)] prop.regex = ['[a-zA-Z0-9\\!#$%()*,-./:;@ _{|}~?&+]+'] meta.props.add("invErrDescr", prop) prop = PropMeta("str", "invRslt", "invRslt", 48, PropCategory.REGULAR) prop.label = "Remote Result" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "not-applicable" prop._addConstant("capability-not-implemented-failure", "capability-not-implemented-failure", 16384) prop._addConstant("capability-not-implemented-ignore", "capability-not-implemented-ignore", 8192) prop._addConstant("capability-not-supported", "capability-not-supported", 32768) prop._addConstant("capability-unavailable", "capability-unavailable", 65536) prop._addConstant("end-point-failed", "end-point-failed", 32) prop._addConstant("end-point-protocol-error", "end-point-protocol-error", 64) prop._addConstant("end-point-unavailable", "end-point-unavailable", 16) prop._addConstant("extend-timeout", "extend-timeout", 134217728) prop._addConstant("failure", "failure", 1) prop._addConstant("fru-identity-indeterminate", "fru-identity-indeterminate", 4194304) prop._addConstant("fru-info-malformed", "fru-info-malformed", 8388608) prop._addConstant("fru-not-ready", "fru-not-ready", 67108864) prop._addConstant("fru-not-supported", "fru-not-supported", 536870912) prop._addConstant("fru-state-indeterminate", "fru-state-indeterminate", 33554432) prop._addConstant("fw-defect", "fw-defect", 256) prop._addConstant("hw-defect", "hw-defect", 512) prop._addConstant("illegal-fru", "illegal-fru", 16777216) prop._addConstant("intermittent-error", "intermittent-error", 1073741824) prop._addConstant("internal-error", "internal-error", 4) prop._addConstant("not-applicable", "not-applicable", 0) prop._addConstant("resource-capacity-exceeded", "resource-capacity-exceeded", 2048) prop._addConstant("resource-dependency", "resource-dependency", 4096) prop._addConstant("resource-unavailable", "resource-unavailable", 1024) prop._addConstant("service-not-implemented-fail", "service-not-implemented-fail", 262144) prop._addConstant("service-not-implemented-ignore", "service-not-implemented-ignore", 131072) prop._addConstant("service-not-supported", "service-not-supported", 524288) prop._addConstant("service-protocol-error", "service-protocol-error", 2097152) prop._addConstant("service-unavailable", "service-unavailable", 1048576) prop._addConstant("sw-defect", "sw-defect", 128) prop._addConstant("task-reset", "task-reset", 268435456) prop._addConstant("timeout", "timeout", 8) prop._addConstant("unidentified-fail", "unidentified-fail", 2) meta.props.add("invRslt", prop) prop = PropMeta("str", "lcOwn", "lcOwn", 9, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "local" prop._addConstant("implicit", "implicit", 4) prop._addConstant("local", "local", 0) prop._addConstant("policy", "policy", 1) prop._addConstant("replica", "replica", 2) prop._addConstant("resolveOnBehalf", "resolvedonbehalf", 3) meta.props.add("lcOwn", prop) prop = PropMeta("str", "modTs", "modTs", 7, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "never" prop._addConstant("never", "never", 0) meta.props.add("modTs", prop) prop = PropMeta("str", "oDn", "oDn", 51, PropCategory.REGULAR) prop.label = "Subject DN" prop.isImplicit = True prop.isAdmin = True meta.props.add("oDn", prop) prop = PropMeta("str", "operSt", "operSt", 15674, PropCategory.REGULAR) prop.label = "Completion" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "scheduled" prop._addConstant("cancelled", "cancelled", 3) prop._addConstant("completed", "completed", 2) prop._addConstant("crashsuspect", "crash-suspect", 7) prop._addConstant("failed", "failed", 4) prop._addConstant("indeterminate", "indeterminate", 5) prop._addConstant("processing", "processing", 1) prop._addConstant("ready", "ready", 8) prop._addConstant("scheduled", "scheduled", 0) prop._addConstant("suspended", "suspended", 6) meta.props.add("operSt", prop) prop = PropMeta("str", "originMinority", "originMinority", 54, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = False prop.defaultValueStr = "no" prop._addConstant("no", None, False) prop._addConstant("yes", None, True) meta.props.add("originMinority", prop) prop = PropMeta("str", "rn", "rn", 2, PropCategory.RN) prop.label = "None" prop.isRn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("rn", prop) prop = PropMeta("str", "runId", "runId", 45, PropCategory.REGULAR) prop.label = "ID" prop.isImplicit = True prop.isAdmin = True meta.props.add("runId", prop) prop = PropMeta("str", "startTs", "startTs", 36, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "never" prop._addConstant("never", "never", 0) meta.props.add("startTs", prop) prop = PropMeta("str", "status", "status", 3, PropCategory.STATUS) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("created", "created", 2) prop._addConstant("deleted", "deleted", 8) prop._addConstant("modified", "modified", 4) meta.props.add("status", prop) prop = PropMeta("str", "try", "try", 15574, PropCategory.REGULAR) prop.label = "Try" prop.isImplicit = True prop.isAdmin = True meta.props.add("try", prop) prop = PropMeta("str", "ts", "ts", 47, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "never" prop._addConstant("never", "never", 0) meta.props.add("ts", prop) meta.namingProps.append(getattr(meta.props, "id")) def __init__(self, parentMoOrDn, id, markDirty=True, **creationProps): namingVals = [id] Mo.__init__(self, parentMoOrDn, markDirty, *namingVals, **creationProps) # End of package file # ##################################################
[ "collinsctk@qytang.com" ]
collinsctk@qytang.com
22380181ee62e3e0c5ad86e1f55f3efe751586f2
4bc19f4dd098ebedcb6ee78af0ae12cb633671fe
/static/models.py
6b20f6e53773a0c91a0dea611f37cb86192e1a7f
[]
no_license
StanislavKraev/rekvizitka
958ab0e002335613a724fb14a8e4123f49954446
ac1f30e7bb2e987b3b0bda4c2a8feda4d3f5497f
refs/heads/master
2021-01-01T05:44:56.372748
2016-04-27T19:20:26
2016-04-27T19:20:26
57,240,406
0
0
null
null
null
null
UTF-8
Python
false
false
1,978
py
# -*- coding: utf-8 -*- import bson from rek.mongo.models import ObjectManager class StaticPage(object): objects = None def __init__(self, name="", alias="", preview="", content="", enabled=False, _id=None): self.name = name # = models.CharField (max_length=255, unique=True, verbose_name='Название') self.alias = alias #= models.CharField (max_length=255, unique=True, verbose_name='Alias URL') self.preview = preview #= models.TextField (blank=True, verbose_name='Краткое описание (превью)') self.content = content #= models.TextField (verbose_name='Содержимое (полный текст)') self.enabled = enabled #= models.BooleanField (verbose_name='Включить и отображать страницу') self._id = _id def save (self): if not self._id: result = self.objects.collection.insert({ 'name' : self.name, 'alias' : self.alias, 'preview' : self.preview, 'content' : self.content, 'enabled' : self.enabled }) if isinstance(result, bson.ObjectId): self._id = result return result else: raise Exception('Can not add static page') self.objects.collection.update({'_id' : self._id}, { 'name' : self.name, 'alias' : self.alias, 'preview' : self.preview, 'content' : self.content, 'enabled' : self.enabled }) return self._id def delete(self): if not self._id: return self.objects.collection.remove({'_id' : self._id}) StaticPage.objects = ObjectManager(StaticPage, 'static_pages', indexes = [('alias', 1)])
[ "kraevst@yandex.ru" ]
kraevst@yandex.ru
b29bef8a54edc0cb2a105e7d80570805fa5d4ef6
395e64776ee7c435e9c8ccea6c2bf0d987770153
/mayaSDK/maya/app/renderSetup/model/issue.py
89befa2f2c99883385ec3b76ee72ca01b3c505c5
[ "MIT" ]
permissive
FXTD-ODYSSEY/vscode-mayapy
e1ba63021a2559287073ca2ddf90b634f95ba7cb
5766a0bf0a007ca61b8249f7dfb329f1dfcdbfbb
refs/heads/master
2023-03-07T08:01:27.965144
2022-04-02T02:46:31
2022-04-02T02:46:31
208,568,717
29
11
MIT
2023-03-03T06:45:31
2019-09-15T09:10:58
Python
UTF-8
Python
false
false
695
py
class Issue(object): """ Class representing an issue that contains - a description (a short string explaining what's the issue) - a type, mostly used for UI purpose (icon for the issue will be RS_<type>.png) - a callback to resolve the issue (assisted resolve). """ def __eq__(self, o): pass def __hash__(self): pass def __init__(self, description, type="'warning'", resolveCallback='None'): pass def __str__(self): pass def resolve(self): pass __dict__ = None __weakref__ = None description = None type = None
[ "820472580@qq.com" ]
820472580@qq.com
1529ed683976e4891a4de141925cc416e43d3162
1e5f5e4cb512663b5017b9a08b409154678f0bef
/product/forms.py
56fb76d226633d363aa26408be65cf6a1c46ecaa
[]
no_license
dynamodenis/dynamoshop
d2159e9c0271825a85e8a1d6322ca6f11cdb2e4b
6f8f99149cf9594b8f0dd79f49a49c4fa00eaaaa
refs/heads/master
2022-12-29T13:09:49.848510
2020-10-22T07:19:43
2020-10-22T07:19:43
306,121,092
1
0
null
null
null
null
UTF-8
Python
false
false
2,311
py
from django import forms from django_countries.fields import CountryField from django_countries.widgets import CountrySelectWidget PAYMENT_CHOICES = ( ('S', 'Stripe'), ('P', 'PayPal') ) class CheckoutForm(forms.Form): # Shipping Fields shipping_address = forms.CharField(required=False) shipping_address2 = forms.CharField(required=False) shipping_country = CountryField(blank_label='select country').formfield( required = False, widget=CountrySelectWidget(attrs={ 'class':'custom-select d-block w-100 form-control', })) shipping_zip=forms.CharField(required=False) same_billing_address = forms.BooleanField( required=False) set_default_shipping = forms.BooleanField( required=False) use_default_shipping = forms.BooleanField( required=False) # Billing Fields billing_address = forms.CharField(required=False) billing_address2 = forms.CharField(required=False) billing_country = CountryField(blank_label='select country').formfield( required = False, widget=CountrySelectWidget(attrs={ 'class':'custom-select d-block w-100 form-control', })) billing_zip=forms.CharField(required=False) same_shipping_address = forms.BooleanField( required=False) set_default_billing = forms.BooleanField( required=False) use_default_billing = forms.BooleanField( required=False) payment_options = forms.ChoiceField(widget=forms.RadioSelect, choices=PAYMENT_CHOICES) # coupon form class CouponForm(forms.Form): code = forms.CharField(widget = forms.TextInput(attrs={ 'class':'form-control', 'placeholder':'Promo Code', 'aria-label':"Recipient's username", 'aria-describedby':"basic-addon2" })) # Request refunds class RequestRefundForm(forms.Form): ref_code = forms.CharField(widget = forms.TextInput(attrs={ 'class':'form-control' })) message = forms.CharField(widget=forms.Textarea(attrs={ 'class':'md-textarea form-control', 'rows':2 })) email = forms.EmailField(widget = forms.TextInput(attrs={ 'class':'form-control' })) class PaymentForm(forms.Form): stripeToken = forms.CharField(required=False) save = forms.BooleanField(required=False) use_default = forms.BooleanField(required=False)
[ "dmbugua66@gmail.com" ]
dmbugua66@gmail.com
bf94ef910d83505e2e42f417c333a310b9b7bc7b
b6c4b9ff1d9c10f5bc0a0ad657c00c2513ddaafb
/PY4E/gmane/gmane.py
c2c4e65c9aad65bab9ed843f9ec3fe0f6c70ae1d
[]
no_license
wjasonhuang/python_utils
469c88066ff3055e39e3a30a6ec68f85a196b259
025f7257445bd7d97b605dc062d3935b14bf0a19
refs/heads/master
2021-06-18T14:29:32.487568
2021-06-17T03:28:57
2021-06-17T03:28:57
206,687,251
0
0
null
null
null
null
UTF-8
Python
false
false
4,639
py
import re import sqlite3 import ssl import time import urllib.request from datetime import datetime # Not all systems have this so conditionally define parser try: import dateutil.parser as parser except: pass def parsemaildate(md): # See if we have dateutil try: pdate = parser.parse(tdate) test_at = pdate.isoformat() return test_at except: pass # Non-dateutil version - we try our best pieces = md.split() notz = " ".join(pieces[:4]).strip() # Try a bunch of format variations - strptime() is *lame* dnotz = None for form in ['%d %b %Y %H:%M:%S', '%d %b %Y %H:%M:%S', '%d %b %Y %H:%M', '%d %b %Y %H:%M', '%d %b %y %H:%M:%S', '%d %b %y %H:%M:%S', '%d %b %y %H:%M', '%d %b %y %H:%M']: try: dnotz = datetime.strptime(notz, form) break except: continue if dnotz is None: # print 'Bad Date:',md return None iso = dnotz.isoformat() tz = "+0000" try: tz = pieces[4] ival = int(tz) # Only want numeric timezone values if tz == '-0000': tz = '+0000' tzh = tz[:3] tzm = tz[3:] tz = tzh + ":" + tzm except: pass return iso + tz # Ignore SSL certificate errors ctx = ssl.create_default_context() ctx.check_hostname = False ctx.verify_mode = ssl.CERT_NONE conn = sqlite3.connect('content.sqlite') cur = conn.cursor() baseurl = "http://mbox.dr-chuck.net/sakai.devel/" cur.execute('''CREATE TABLE IF NOT EXISTS Messages (id INTEGER UNIQUE, email TEXT, sent_at TEXT, subject TEXT, headers TEXT, body TEXT)''') # Pick up where we left off start = None cur.execute('SELECT max(id) FROM Messages') try: row = cur.fetchone() if row is None: start = 0 else: start = row[0] except: start = 0 if start is None: start = 0 many = 0 count = 0 fail = 0 while True: if (many < 1): conn.commit() sval = input('How many messages:') if (len(sval) < 1): break many = int(sval) start = start + 1 cur.execute('SELECT id FROM Messages WHERE id=?', (start,)) try: row = cur.fetchone() if row is not None: continue except: row = None many = many - 1 url = baseurl + str(start) + '/' + str(start + 1) text = "None" try: # Open with a timeout of 30 seconds document = urllib.request.urlopen(url, None, 30, context=ctx) text = document.read().decode() if document.getcode() != 200: print("Error code=", document.getcode(), url) break except KeyboardInterrupt: print('') print('Program interrupted by user...') break except Exception as e: print("Unable to retrieve or parse page", url) print("Error", e) fail = fail + 1 if fail > 5: break continue print(url, len(text)) count = count + 1 if not text.startswith("From "): print(text) print("Did not find From ") fail = fail + 1 if fail > 5: break continue pos = text.find("\n\n") if pos > 0: hdr = text[:pos] body = text[pos + 2:] else: print(text) print("Could not find break between headers and body") fail = fail + 1 if fail > 5: break continue email = None x = re.findall('\nFrom: .* <(\S+@\S+)>\n', hdr) if len(x) == 1: email = x[0]; email = email.strip().lower() email = email.replace("<", "") else: x = re.findall('\nFrom: (\S+@\S+)\n', hdr) if len(x) == 1: email = x[0]; email = email.strip().lower() email = email.replace("<", "") date = None y = re.findall('\Date: .*, (.*)\n', hdr) if len(y) == 1: tdate = y[0] tdate = tdate[:26] try: sent_at = parsemaildate(tdate) except: print(text) print("Parse fail", tdate) fail = fail + 1 if fail > 5: break continue subject = None z = re.findall('\Subject: (.*)\n', hdr) if len(z) == 1: subject = z[0].strip().lower(); # Reset the fail counter fail = 0 print(" ", email, sent_at, subject) cur.execute('''INSERT OR IGNORE INTO Messages (id, email, sent_at, subject, headers, body) VALUES ( ?, ?, ?, ?, ?, ? )''', (start, email, sent_at, subject, hdr, body)) if count % 50 == 0: conn.commit() if count % 100 == 0: time.sleep(1) conn.commit() cur.close()
[ "wjasonhuang@users.noreply.github.com" ]
wjasonhuang@users.noreply.github.com
b68ebcc7b6694ad09b338b4dd3df248d51b36215
42516b0348936e257d04113c2e632dc72ba58e91
/test_env/test_suit_grouptest/test_suit_grouptest_case02.py
424b547e43f3826b8fb303c0a6bdc2f24797de7d
[]
no_license
wwlwwlqaz/Qualcomm
2c3a225875fba955d771101f3c38ca0420d8f468
a04b717ae437511abae1e7e9e399373c161a7b65
refs/heads/master
2021-01-11T19:01:06.123677
2017-04-05T07:57:21
2017-04-05T07:57:21
79,292,426
1
1
null
null
null
null
UTF-8
Python
false
false
5,243
py
#coding=utf-8 import fs_wrapper import settings.common as SC from qrd_shared.case import * from case_utility import * from logging_wrapper import log_test_case, take_screenshot from test_case_base import TestCaseBase from thrift_gen_qsstservice.GroupTest.constants import * from settings import common import test_suit_ui_message.test_suit_ui_message as uiMessage import test_suit_grouptest as GT expected_group_member = 2 group_name = 'group_sms_send_receive' role_name_A = 'A' role_name_B = 'B' action_read_sms = "read sms" class test_suit_grouptest_case02(TestCaseBase): ''' @see: L{TestCaseBase <TestCaseBase>} ''' TAG = "test_suit_grouptest_case02" def test_case_main(self, case_results): log_test_case(self.TAG, 'start') #(DEVICE_NAME_KEY,SLOT1_PHONE_NUMBER_KEY,ACT_AS_HOST_KEY,ROLE_NAME_KEY,GROUP_NAME_KEY) deviceInformation = dict() GT.deleteOldSerialNumber() deviceName = get_serial_number() deviceInformation[DEVICE_NAME_KEY] = deviceName deviceInformation[ACT_AS_HOST_KEY] = str(common.PUBLIC_ACT_AS_GROUP_TEST_HOST) deviceInformation[GROUP_NAME_KEY] = group_name deviceInformation[ROLE_NAME_KEY] = ' ' deviceInformation[SLOT1_PHONE_NUMBER_KEY] = common.PUBLIC_SLOT1_PHONE_NUMBER log_test_case('deviceInformation', 'end') try: init_group_database() attend_group(deviceInformation) log_test_case('attend_group()', 'end') wait_for_group_members(expected_group_member,group_name,deviceInformation[ACT_AS_HOST_KEY]) log_test_case('wait_for_group_members()', 'end') if(common.PUBLIC_ACT_AS_GROUP_TEST_HOST == True): log_test_case('HOST', 'start') set_role_name(deviceName,role_name_A) set_status(STATUS_READY_VALUE,deviceName) #assign the roles members = get_group_members(group_name) log_test_framework(self.TAG, "get_group_members:" +str(members)) roleArray = [role_name_B] i = 0 for member in members: if(cmp(member[ACT_AS_HOST_KEY],'True')!=0): set_role_name(member[DEVICE_NAME_KEY],roleArray[i]) i+=1 log_test_framework(self.TAG, "assign roles finished") #wait for all members ready wait_for_members_ready(expected_group_member,group_name) log_test_framework(self.TAG, "all members are ready") #send sms to B log_test_case('HOST', 'send sms start') phoneNumberB = get_slot1_number_by_role_name(role_name_B,group_name) log_test_case('slot1 number in phone B',phoneNumberB) content = 'This is group test, send sms' log_test_case('send mms','start') send_mms(phoneNumberB, content) log_test_case('send mms','end') sleep(20) log_test_case('HOST', 'deliver action to B') deliver_action_by_role_name(action_read_sms,group_name) set_status(STATUS_FINISHED_VALUE,deviceName) wait_for_members_finished(expected_group_member,group_name); log_test_case('HOST', 'wait_for_members_finished() finished') resultB = get_test_result_by_role_name(role_name_B,group_name) if( cmp(resultB,RESULT_SUCCESS_VALUE)==0 ): destroy_group(group_name) return True else: destroy_group(group_name) return False else:# here is slave B' code log_test_case('SLAVE', 'start') roleName = wait_for_role_name(deviceName) if(cmp(roleName,role_name_B)==0): set_status(STATUS_READY_VALUE,deviceName) log_test_case('SLAVE', "B is ready") launcher.launch_from_launcher('mms') num1 = uiMessage.get_unread_number() func = lambda:uiMessage.get_unread_number()>num1 if wait_for_fun(func, True, 500000): #read the message phoneNumberA = get_slot1_number_by_role_name(role_name_A,group_name) content = 'This is group test, send sms' log_test_case('Host phoneNumber',phoneNumberA) if uiMessage.msg_exist(phoneNumberA,content) is True: set_test_result(RESULT_SUCCESS_VALUE,deviceName) set_status(STATUS_FINISHED_VALUE,deviceName) set_test_result(RESULT_FAILURE_VALUE,deviceName) set_status(STATUS_FINISHED_VALUE,deviceName) wait_for_group_destroyed(group_name) return False except Exception, tx: set_status(STATUS_FINISHED_VALUE,deviceName) log_test_framework(self.TAG, "exception is "+str(tx)) wait_for_group_destroyed(group_name) return True
[ "c_wwan@qti.qualcomm.com" ]
c_wwan@qti.qualcomm.com
864076061ac7c68a3e7586dad3541c298d749288
62c634097cd25945541c64f8accdc2c6393cfe7d
/NLP_Project/ObjectSegmentation/exp-referit/exp_train_referit_det.py
2bbb8c1345150c383baa8323cae864ac83770a58
[]
no_license
aftaabmd/Object-segmentation-defined-by-Query-expressions
c9c9321d7b5c0d3771ca7cc164be73c75b8fb7d5
5fc3c5d00b1dc2bbb4cff2095a85f494f08271fb
refs/heads/master
2022-11-27T11:25:16.351576
2018-03-08T04:50:55
2018-03-08T04:50:55
124,337,512
1
0
null
null
null
null
UTF-8
Python
false
false
8,135
py
from __future__ import absolute_import, division, print_function import sys import os; os.environ['CUDA_VISIBLE_DEVICES'] = sys.argv[1] import tensorflow as tf import numpy as np from models import text_objseg_model as segmodel from util import data_reader from util import loss # Parameters # Model Params T = 20 N = 50 vocab_size = 8803 embedded_dim = 1000 lstm_dim = 1000 mlp_hidden_dims = 500 # Initialization Params convnet_params = './models/convert_caffemodel/params/vgg_params.npz' mlp_l1_std = 0.05 mlp_l2_std = 0.1 # Training Params positive_loss_multiplier = 1. negative_loss_multiplier = 1. start_learningrate = 0.01 learningrate_decay_step = 10000 learningrate_decay_rate = 0.1 weight_decay = 0.005 momentum = 0.8 max_iter = 25000 fix_convnet = True vgg_dropout = False mlp_dropout = False vgg_learningrate_mult = 1. # Data Params data_folder = './exp-referit/data/train_batch_det/' data_prefix = 'referit_train_det' # Snapshot Params snapshot = 5000 snapshot_file = './exp-referit/tfmodel/referit_fc8_detect_iteration_%d.tfmodel' # The model # Inputs text_seq_batch = tf.placeholder(tf.int32, [T, N]) imagecrop_batch = tf.placeholder(tf.float32, [N, 224, 224, 3]) spatial_batch = tf.placeholder(tf.float32, [N, 8]) label_batch = tf.placeholder(tf.float32, [N, 1]) # Outputs scores = segmodel.text_objseg_region(text_seq_batch, imagecrop_batch, spatial_batch, vocab_size, embedded_dim, lstm_dim, mlp_hidden_dims, vgg_dropout=vgg_dropout, mlp_dropout=mlp_dropout) # Collect trainable variables, regularized variables and learning rates # Only train the fc layers of convnet and keep conv layers fixed if fix_convnet: train_variable_list = [variable for variable in tf.trainable_variables() if not variable.name.startswith('vgg_local/')] else: train_variable_list = [variable for variable in tf.trainable_variables() if not variable.name.startswith('vgg_local/conv')] print('Collecting variables to train:') for variable in train_variable_list: print('\t%s' % variable.name) print('Done.') # Add regularization to weight matrices (excluding bias) regularization_variable_list = [variable for variable in tf.trainable_variables() if (variable in train_variable_list) and (variable.name[-9:-2] == 'weights' or variable.name[-8:-2] == 'Matrix')] print('Collecting variables for regularization:') for variable in regularization_variable_list: print('\t%s' % variable.name) print('Done.') # Collect learning rate for trainable variables variable_learningrate_mult = {variable: (vgg_learningrate_mult if variable.name.startswith('vgg_local') else 1.0) for variable in train_variable_list} print('Variable learning rate multiplication:') for variable in train_variable_list: print('\t%s: %f' % (variable.name, variable_learningrate_mult[variable])) print('Done.') # Loss function and accuracy classification_loss = loss.weighed_logistic_loss(scores, label_batch, positive_loss_multiplier, negative_loss_multiplier) regularization_loss = loss.l2_regularization_loss(regularization_variable_list, weight_decay) total_loss = classification_loss + regularization_loss def compute_accuracy(scores, labels): is_positive = (labels != 0) is_negative = np.logical_not(is_positive) num_all = labels.shape[0] num_positive = np.sum(is_positive) num_negative = num_all - num_positive is_correct = np.logical_xor(scores < 0, is_positive) accuracy_all = np.sum(is_correct) / num_all accuracy_positive = np.sum(is_correct[is_positive]) / num_positive accuracy_negative = np.sum(is_correct[is_negative]) / num_negative return accuracy_all, accuracy_positive, accuracy_negative # Solver global_step = tf.Variable(0, trainable=False) learning_rate = tf.train.exponential_decay(start_learningrate, global_step, learningrate_decay_step, learningrate_decay_rate, staircase=True) solver = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=momentum) # Compute gradients grads_and_variables = solver.compute_gradients(total_loss, variable_list=train_variable_list) # Apply learning rate multiplication to gradients grads_and_variables = [((g if variable_learningrate_mult[v] == 1 else tf.mul(variable_learningrate_mult[v], g)), v) for g, v in grads_and_variables] # Apply gradients train_step = solver.apply_gradients(grads_and_variables, global_step=global_step) # Initialize parameters and load data init_ops = [] # Initialize CNN Parameters convnet_layers = ['conv1_1', 'conv1_2', 'conv2_1', 'conv2_2', 'conv3_1', 'conv3_2', 'conv3_3', 'conv4_1', 'conv4_2', 'conv4_3', 'conv5_1', 'conv5_2', 'conv5_3', 'fc6', 'fc7', 'fc8'] processed_params = np.load(convnet_params) processed_W = processed_params['processed_W'][()] processed_B = processed_params['processed_B'][()] with tf.variable_scope('vgg_local', reuse=True): for l_name in convnet_layers: assign_W = tf.assign(tf.get_variable(l_name + '/weights'), processed_W[l_name]) assign_B = tf.assign(tf.get_variable(l_name + '/biases'), processed_B[l_name]) init_ops += [assign_W, assign_B] # Initialize classifier Parameters with tf.variable_scope('classifier', reuse=True): mlp_l1 = tf.get_variable('mlp_l1/weights') mlp_l2 = tf.get_variable('mlp_l2/weights') init_mlp_l1 = tf.assign(mlp_l1, np.random.normal( 0, mlp_l1_std, mlp_l1.get_shape().as_list()).astype(np.float32)) init_mlp_l2 = tf.assign(mlp_l2, np.random.normal( 0, mlp_l2_std, mlp_l2.get_shape().as_list()).astype(np.float32)) init_ops += [init_mlp_l1, init_mlp_l2] processed_params.close() # Load data reader = data_reader.DataReader(data_folder, data_prefix) snapshot_saver = tf.train.Saver() sess = tf.Session() # Run Initialization operations sess.run(tf.initialize_all_variables()) sess.run(tf.group(*init_ops)) # Optimization loop classification_loss_avg = 0 avg_accuracy_all, avg_accuracy_positive, avg_accuracy_negative = 0, 0, 0 decay = 0.99 # Run optimization for n_iter in range(max_iter): # Read one batch batch = reader.read_batch() text_seq_val = batch['text_seq_batch'] imagecrop_val = batch['imagecrop_batch'].astype(np.float32) - segmodel.vgg_net.channel_mean spatial_batch_val = batch['spatial_batch'] label_val = batch['label_batch'].astype(np.float32) loss_mult_val = label_val * (positive_loss_multiplier - negative_loss_multiplier) + negative_loss_multiplier # Forward and Backward pass scores_val, classification_loss_val, _, learningrate_val = sess.run([scores, classification_loss, train_step, learning_rate], feed_dict={ text_seq_batch : text_seq_val, imagecrop_batch : imagecrop_val, spatial_batch : spatial_batch_val, label_batch : label_val }) classification_loss_avg = decay*classification_loss_avg + (1-decay)*classification_loss_val print('\titer = %d, classification_loss (cur) = %f, classification_loss (avg) = %f, learningrate = %f' % (n_iter, classification_loss_val, classification_loss_avg, learningrate_val)) # Accuracy accuracy_all, accuracy_positive, accuracy_negative = segmodel.compute_accuracy(scores_val, label_val) avg_accuracy_all = decay*avg_accuracy_all + (1-decay)*accuracy_all avg_accuracy_positive = decay*avg_accuracy_positive + (1-decay)*accuracy_positive avg_accuracy_negative = decay*avg_accuracy_negative + (1-decay)*accuracy_negative print('\titer = %d, accuracy (cur) = %f (all), %f (positive), %f (negative)' % (n_iter, accuracy_all, accuracy_positive, accuracy_negative)) print('\titer = %d, accuracy (avg) = %f (all), %f (positive), %f (negative)' % (n_iter, avg_accuracy_all, avg_accuracy_positive, avg_accuracy_negative)) # Save snapshot if (n_iter+1) % snapshot == 0 or (n_iter+1) == max_iter: snapshot_saver.save(sess, snapshot_file % (n_iter+1)) print('snapshot saved to ' + snapshot_file % (n_iter+1)) print('Optimization done.') sess.close()
[ "noreply@github.com" ]
aftaabmd.noreply@github.com
1c9a0eec248e3af6b5145a5db61402cf61abf9ef
cc3fff6abe2d9b33d11cd384b263e1c4f07e5b6c
/dir/dir2/t2.py
ee41f0aa2921ddfc366cbfd39c899af600e8c0fe
[]
no_license
letianccc/latin_httpserver
22afa1e15f542c256a232a933edd974f6f90533c
8f7aad21ba8abffb011d5410bce29c591e9ef990
refs/heads/master
2018-11-11T12:12:32.264360
2018-09-05T00:39:26
2018-09-05T00:39:26
111,545,683
0
0
null
null
null
null
UTF-8
Python
false
false
57
py
a = 'a' print('t2', a) import t1 b = 'b' print('t2', b)
[ "704364447@qq.com" ]
704364447@qq.com
250866828c24d630e5b8d134eec9b042585d819a
716ed7eac59b70cb3ec376f8247b386b50ce9e23
/sktime/forecasting/model_selection/_tune.py
ab0c9de58b4ea2309fe8b6c58d74eb763f9202a8
[ "BSD-3-Clause" ]
permissive
earthinversion/sktime
4f3b657cebe3587958d2a3276b65b38c83a7d8ed
012d11e6b879d29b0a36c7e2e7172355992348f3
refs/heads/main
2023-04-17T04:01:47.841308
2021-04-09T16:58:14
2021-04-09T16:58:14
356,362,984
1
1
BSD-3-Clause
2021-04-09T18:22:00
2021-04-09T18:21:59
null
UTF-8
Python
false
false
17,456
py
#!/usr/bin/env python3 -u # -*- coding: utf-8 -*- # copyright: sktime developers, BSD-3-Clause License (see LICENSE file) __author__ = ["Markus Löning"] __all__ = ["ForecastingGridSearchCV", "ForecastingRandomizedSearchCV"] import pandas as pd from joblib import Parallel from joblib import delayed from sklearn.base import clone from sklearn.model_selection import ParameterGrid from sklearn.model_selection import ParameterSampler from sklearn.model_selection import check_cv from sklearn.model_selection._search import _check_param_grid from sklearn.utils.metaestimators import if_delegate_has_method from sktime.exceptions import NotFittedError from sktime.forecasting.base import BaseForecaster from sktime.forecasting.base._base import DEFAULT_ALPHA from sktime.forecasting.model_evaluation import evaluate from sktime.utils.validation.forecasting import check_scoring from sktime.utils.validation.forecasting import check_y_X class BaseGridSearch(BaseForecaster): def __init__( self, forecaster, cv, strategy="refit", n_jobs=None, pre_dispatch=None, refit=False, scoring=None, verbose=0, ): self.forecaster = forecaster self.cv = cv self.strategy = strategy self.n_jobs = n_jobs self.pre_dispatch = pre_dispatch self.refit = refit self.scoring = scoring self.verbose = verbose super(BaseGridSearch, self).__init__() @if_delegate_has_method(delegate=("best_forecaster_", "forecaster")) def update(self, y, X=None, update_params=False): """Call predict on the forecaster with the best found parameters.""" self.check_is_fitted("update") self.best_forecaster_.update(y, X, update_params=update_params) return self @if_delegate_has_method(delegate=("best_forecaster_", "forecaster")) def update_predict( self, y, cv=None, X=None, update_params=False, return_pred_int=False, alpha=DEFAULT_ALPHA, ): """Call update_predict on the forecaster with the best found parameters. """ self.check_is_fitted("update_predict") return self.best_forecaster_.update_predict( y, cv=cv, X=X, update_params=update_params, return_pred_int=return_pred_int, alpha=alpha, ) @if_delegate_has_method(delegate=("best_forecaster_", "forecaster")) def update_predict_single( self, y, fh=None, X=None, update_params=False, return_pred_int=False, alpha=DEFAULT_ALPHA, ): """Call predict on the forecaster with the best found parameters.""" self.check_is_fitted("update_predict_single") return self.best_forecaster_.update_predict_single( y, fh=fh, X=X, update_params=update_params, return_pred_int=return_pred_int, alpha=alpha, ) @if_delegate_has_method(delegate=("best_forecaster_", "forecaster")) def predict(self, fh=None, X=None, return_pred_int=False, alpha=DEFAULT_ALPHA): """Call predict on the forecaster with the best found parameters.""" self.check_is_fitted("predict") return self.best_forecaster_.predict( fh, X, return_pred_int=return_pred_int, alpha=alpha ) @if_delegate_has_method(delegate=("best_forecaster_", "forecaster")) def compute_pred_int(self, y_pred, alpha=DEFAULT_ALPHA): """Call compute_pred_int on the forecaster with the best found parameters.""" self.check_is_fitted("compute_pred_int") return self.best_forecaster_.compute_pred_int(y_pred, alpha=alpha) @if_delegate_has_method(delegate=("best_forecaster_", "forecaster")) def transform(self, y, X=None): """Call transform on the forecaster with the best found parameters.""" self.check_is_fitted("transform") return self.best_forecaster_.transform(y, X) @if_delegate_has_method(delegate=("best_forecaster_", "forecaster")) def get_fitted_params(self): """Get fitted parameters Returns ------- fitted_params : dict """ self.check_is_fitted("get_fitted_params") return self.best_forecaster_.get_fitted_params() @if_delegate_has_method(delegate=("best_forecaster_", "forecaster")) def inverse_transform(self, y, X=None): """Call inverse_transform on the forecaster with the best found params. Only available if the underlying forecaster implements ``inverse_transform`` and ``refit=True``. Parameters ---------- y : indexable, length n_samples Must fulfill the input assumptions of the underlying forecaster. """ self.check_is_fitted("inverse_transform") return self.best_forecaster_.inverse_transform(y, X) def score(self, y, X=None, fh=None): """Returns the score on the given data, if the forecaster has been refit. This uses the score defined by ``scoring`` where provided, and the ``best_forecaster_.score`` method otherwise. Parameters ---------- y : pandas.Series Target time series to which to compare the forecasts. X : pandas.DataFrame, shape=[n_obs, n_vars], optional (default=None) An optional 2-d dataframe of exogenous variables. Returns ------- score : float """ self.check_is_fitted("score") if self.scoring is None: return self.best_forecaster_.score(y, X=X, fh=fh) else: y_pred = self.best_forecaster_.predict(fh, X=X) return self.scoring(y, y_pred) def _run_search(self, evaluate_candidates): raise NotImplementedError("abstract method") def check_is_fitted(self, method_name=None): """Has `fit` been called? Parameters ---------- method_name : str Name of the calling method. Raises ------ NotFittedError If forecaster has not been fitted yet. """ super(BaseGridSearch, self).check_is_fitted() # We additionally check if the tuned forecaster has been fitted. if method_name is not None: if not self.refit: raise NotFittedError( "This %s instance was initialized " "with refit=False. %s is " "available only after refitting on the " "best parameters. You can refit an forecaster " "manually using the ``best_params_`` " "attribute" % (type(self).__name__, method_name) ) else: self.best_forecaster_.check_is_fitted() def fit(self, y, X=None, fh=None, **fit_params): """Fit to training data. Parameters ---------- y : pd.Series Target time series to which to fit the forecaster. fh : int, list or np.array, optional (default=None) The forecasters horizon with the steps ahead to to predict. X : pd.DataFrame, optional (default=None) Exogenous variables are ignored Returns ------- self : returns an instance of self. """ y, X = check_y_X(y, X) cv = check_cv(self.cv) scoring = check_scoring(self.scoring) scoring_name = f"test_{scoring.name}" parallel = Parallel(n_jobs=self.n_jobs, pre_dispatch=self.pre_dispatch) def _fit_and_score(params): # Clone forecaster. forecaster = clone(self.forecaster) # Set parameters. forecaster.set_params(**params) # Evaluate. out = evaluate( forecaster, cv, y, X, strategy=self.strategy, scoring=scoring, fit_params=fit_params, ) # Filter columns. out = out.filter(items=[scoring_name, "fit_time", "pred_time"], axis=1) # Aggregate results. out = out.mean() out = out.add_prefix("mean_") # Add parameters to output table. out["params"] = params return out def evaluate_candidates(candidate_params): candidate_params = list(candidate_params) if self.verbose > 0: n_candidates = len(candidate_params) n_splits = cv.get_n_splits(y) print( # noqa "Fitting {0} folds for each of {1} candidates," " totalling {2} fits".format( n_splits, n_candidates, n_candidates * n_splits ) ) out = parallel( delayed(_fit_and_score)(params) for params in candidate_params ) if len(out) < 1: raise ValueError( "No fits were performed. " "Was the CV iterator empty? " "Were there no candidates?" ) return out # Run grid-search cross-validation. results = self._run_search(evaluate_candidates) results = pd.DataFrame(results) # Rank results, according to whether greater is better for the given scoring. results[f"rank_{scoring_name}"] = results.loc[:, f"mean_{scoring_name}"].rank( ascending=~scoring.greater_is_better ) self.cv_results_ = results # Select best parameters. self.best_index_ = results.loc[:, f"rank_{scoring_name}"].argmin() self.best_score_ = results.loc[self.best_index_, f"mean_{scoring_name}"] self.best_params_ = results.loc[self.best_index_, "params"] self.best_forecaster_ = clone(self.forecaster).set_params(**self.best_params_) # Refit model with best parameters. if self.refit: self.best_forecaster_.fit(y, X, fh) self._is_fitted = True return self class ForecastingGridSearchCV(BaseGridSearch): """ Performs grid-search cross-validation to find optimal model parameters. The forecaster is fit on the initial window and then temporal cross-validation is used to find the optimal parameter Grid-search cross-validation is performed based on a cross-validation iterator encoding the cross-validation scheme, the parameter grid to search over, and (optionally) the evaluation metric for comparing model performance. As in scikit-learn, tuning works through the common hyper-parameter interface which allows to repeatedly fit and evaluate the same forecaster with different hyper-parameters. Parameters ---------- forecaster : estimator object The estimator should implement the sktime or scikit-learn estimator interface. Either the estimator must contain a "score" function, or a scoring function must be passed. cv : cross-validation generator or an iterable e.g. SlidingWindowSplitter() param_grid : dict or list of dictionaries Model tuning parameters of the forecaster to evaluate scoring: function, optional (default=None) Function to score models for evaluation of optimal parameters n_jobs: int, optional (default=None) Number of jobs to run in parallel. None means 1 unless in a joblib.parallel_backend context. -1 means using all processors. refit: bool, optional (default=True) Refit the forecaster with the best parameters on all the data verbose: int, optional (default=0) pre_dispatch: str, optional (default='2*n_jobs') error_score: numeric value or the str 'raise', optional (default=np.nan) The test score returned when a forecaster fails to be fitted. return_train_score: bool, optional (default=False) Attributes ---------- best_index_ : int best_score_: float Score of the best model best_params_ : dict Best parameter values across the parameter grid best_forecaster_ : estimator Fitted estimator with the best parameters cv_results_ : dict Results from grid search cross validation n_splits_: int Number of splits in the data for cross validation} refit_time_ : float Time (seconds) to refit the best forecaster scorer_ : function Function used to score model """ _required_parameters = ["forecaster", "cv", "param_grid"] def __init__( self, forecaster, cv, param_grid, scoring=None, strategy="refit", n_jobs=None, refit=True, verbose=0, pre_dispatch="2*n_jobs", ): super(ForecastingGridSearchCV, self).__init__( forecaster=forecaster, scoring=scoring, n_jobs=n_jobs, refit=refit, cv=cv, strategy=strategy, verbose=verbose, pre_dispatch=pre_dispatch, ) self.param_grid = param_grid def _run_search(self, evaluate_candidates): """Search all candidates in param_grid""" _check_param_grid(self.param_grid) return evaluate_candidates(ParameterGrid(self.param_grid)) class ForecastingRandomizedSearchCV(BaseGridSearch): """ Performs randomized-search cross-validation to find optimal model parameters. The forecaster is fit on the initial window and then temporal cross-validation is used to find the optimal parameter Randomized cross-validation is performed based on a cross-validation iterator encoding the cross-validation scheme, the parameter distributions to search over, and (optionally) the evaluation metric for comparing model performance. As in scikit-learn, tuning works through the common hyper-parameter interface which allows to repeatedly fit and evaluate the same forecaster with different hyper-parameters. Parameters ---------- forecaster : estimator object The estimator should implement the sktime or scikit-learn estimator interface. Either the estimator must contain a "score" function, or a scoring function must be passed. cv : cross-validation generator or an iterable e.g. SlidingWindowSplitter() param_distributions : dict or list of dicts Dictionary with parameters names (`str`) as keys and distributions or lists of parameters to try. Distributions must provide a ``rvs`` method for sampling (such as those from scipy.stats.distributions). If a list is given, it is sampled uniformly. If a list of dicts is given, first a dict is sampled uniformly, and then a parameter is sampled using that dict as above. n_iter : int, default=10 Number of parameter settings that are sampled. n_iter trades off runtime vs quality of the solution. scoring: function, optional (default=None) Function to score models for evaluation of optimal parameters n_jobs: int, optional (default=None) Number of jobs to run in parallel. None means 1 unless in a joblib.parallel_backend context. -1 means using all processors. refit: bool, optional (default=True) Refit the forecaster with the best parameters on all the data verbose: int, optional (default=0) random_state : int, RandomState instance or None, default=None Pseudo random number generator state used for random uniform sampling from lists of possible values instead of scipy.stats distributions. Pass an int for reproducible output across multiple function calls. pre_dispatch: str, optional (default='2*n_jobs') Attributes ---------- best_index_ : int best_score_: float Score of the best model best_params_ : dict Best parameter values across the parameter grid best_forecaster_ : estimator Fitted estimator with the best parameters cv_results_ : dict Results from grid search cross validation """ _required_parameters = ["forecaster", "cv", "param_distributions"] def __init__( self, forecaster, cv, param_distributions, n_iter=10, scoring=None, strategy="refit", n_jobs=None, refit=True, verbose=0, random_state=None, pre_dispatch="2*n_jobs", ): super(ForecastingRandomizedSearchCV, self).__init__( forecaster=forecaster, scoring=scoring, strategy=strategy, n_jobs=n_jobs, refit=refit, cv=cv, verbose=verbose, pre_dispatch=pre_dispatch, ) self.param_distributions = param_distributions self.n_iter = n_iter self.random_state = random_state def _run_search(self, evaluate_candidates): """Search n_iter candidates from param_distributions""" return evaluate_candidates( ParameterSampler( self.param_distributions, self.n_iter, random_state=self.random_state ) )
[ "noreply@github.com" ]
earthinversion.noreply@github.com
f30b3c1cfff41d927c49ec54afc16c9185ec7195
3282ccae547452b96c4409e6b5a447f34b8fdf64
/SimModel_Python_API/simmodel_swig/Release/SimInternalLoad_Lights_Default.py
9cb959cded414dc66d1ee592c294e6008ab6b58b
[ "MIT" ]
permissive
EnEff-BIM/EnEffBIM-Framework
c8bde8178bb9ed7d5e3e5cdf6d469a009bcb52de
6328d39b498dc4065a60b5cc9370b8c2a9a1cddf
refs/heads/master
2021-01-18T00:16:06.546875
2017-04-18T08:03:40
2017-04-18T08:03:40
28,960,534
3
0
null
2017-04-18T08:03:40
2015-01-08T10:19:18
C++
UTF-8
Python
false
false
11,162
py
# This file was automatically generated by SWIG (http://www.swig.org). # Version 3.0.7 # # Do not make changes to this file unless you know what you are doing--modify # the SWIG interface file instead. from sys import version_info if version_info >= (2, 6, 0): def swig_import_helper(): from os.path import dirname import imp fp = None try: fp, pathname, description = imp.find_module('_SimInternalLoad_Lights_Default', [dirname(__file__)]) except ImportError: import _SimInternalLoad_Lights_Default return _SimInternalLoad_Lights_Default if fp is not None: try: _mod = imp.load_module('_SimInternalLoad_Lights_Default', fp, pathname, description) finally: fp.close() return _mod _SimInternalLoad_Lights_Default = swig_import_helper() del swig_import_helper else: import _SimInternalLoad_Lights_Default del version_info try: _swig_property = property except NameError: pass # Python < 2.2 doesn't have 'property'. def _swig_setattr_nondynamic(self, class_type, name, value, static=1): if (name == "thisown"): return self.this.own(value) if (name == "this"): if type(value).__name__ == 'SwigPyObject': self.__dict__[name] = value return method = class_type.__swig_setmethods__.get(name, None) if method: return method(self, value) if (not static): if _newclass: object.__setattr__(self, name, value) else: self.__dict__[name] = value else: raise AttributeError("You cannot add attributes to %s" % self) def _swig_setattr(self, class_type, name, value): return _swig_setattr_nondynamic(self, class_type, name, value, 0) def _swig_getattr_nondynamic(self, class_type, name, static=1): if (name == "thisown"): return self.this.own() method = class_type.__swig_getmethods__.get(name, None) if method: return method(self) if (not static): return object.__getattr__(self, name) else: raise AttributeError(name) def _swig_getattr(self, class_type, name): return _swig_getattr_nondynamic(self, class_type, name, 0) def _swig_repr(self): try: strthis = "proxy of " + self.this.__repr__() except: strthis = "" return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,) try: _object = object _newclass = 1 except AttributeError: class _object: pass _newclass = 0 try: import weakref weakref_proxy = weakref.proxy except: weakref_proxy = lambda x: x import base import SimInternalLoad_Equipment_Electric class SimInternalLoad_Lights(SimInternalLoad_Equipment_Electric.SimInternalLoad): __swig_setmethods__ = {} for _s in [SimInternalLoad_Equipment_Electric.SimInternalLoad]: __swig_setmethods__.update(getattr(_s, '__swig_setmethods__', {})) __setattr__ = lambda self, name, value: _swig_setattr(self, SimInternalLoad_Lights, name, value) __swig_getmethods__ = {} for _s in [SimInternalLoad_Equipment_Electric.SimInternalLoad]: __swig_getmethods__.update(getattr(_s, '__swig_getmethods__', {})) __getattr__ = lambda self, name: _swig_getattr(self, SimInternalLoad_Lights, name) __repr__ = _swig_repr def SimInternalLoad_Name(self, *args): return _SimInternalLoad_Lights_Default.SimInternalLoad_Lights_SimInternalLoad_Name(self, *args) def SimInternalLoad_ZoneOrZoneListName(self, *args): return _SimInternalLoad_Lights_Default.SimInternalLoad_Lights_SimInternalLoad_ZoneOrZoneListName(self, *args) def SimInternalLoad_FracRadiant(self, *args): return _SimInternalLoad_Lights_Default.SimInternalLoad_Lights_SimInternalLoad_FracRadiant(self, *args) def SimInternalLoad_SchedName(self, *args): return _SimInternalLoad_Lights_Default.SimInternalLoad_Lights_SimInternalLoad_SchedName(self, *args) def SimInternalLoad_DesignLevelCalcMeth(self, *args): return _SimInternalLoad_Lights_Default.SimInternalLoad_Lights_SimInternalLoad_DesignLevelCalcMeth(self, *args) def SimInternalLoad_LightLevel(self, *args): return _SimInternalLoad_Lights_Default.SimInternalLoad_Lights_SimInternalLoad_LightLevel(self, *args) def SimInternalLoad_PowerPerZoneFloorArea(self, *args): return _SimInternalLoad_Lights_Default.SimInternalLoad_Lights_SimInternalLoad_PowerPerZoneFloorArea(self, *args) def SimInternalLoad_PowerPerPerson(self, *args): return _SimInternalLoad_Lights_Default.SimInternalLoad_Lights_SimInternalLoad_PowerPerPerson(self, *args) def SimInternalLoad_RtnAirFrac(self, *args): return _SimInternalLoad_Lights_Default.SimInternalLoad_Lights_SimInternalLoad_RtnAirFrac(self, *args) def SimInternalLoad_FracVisible(self, *args): return _SimInternalLoad_Lights_Default.SimInternalLoad_Lights_SimInternalLoad_FracVisible(self, *args) def SimInternalLoad_FracReplaceable(self, *args): return _SimInternalLoad_Lights_Default.SimInternalLoad_Lights_SimInternalLoad_FracReplaceable(self, *args) def SimInternalLoad_EndUseSubCat(self, *args): return _SimInternalLoad_Lights_Default.SimInternalLoad_Lights_SimInternalLoad_EndUseSubCat(self, *args) def SimInternalLoad_RtnAirFracCalcFromPlenTemp(self, *args): return _SimInternalLoad_Lights_Default.SimInternalLoad_Lights_SimInternalLoad_RtnAirFracCalcFromPlenTemp(self, *args) def SimInternalLoad_RtnAirFracFuncofPlenumTempCoef1(self, *args): return _SimInternalLoad_Lights_Default.SimInternalLoad_Lights_SimInternalLoad_RtnAirFracFuncofPlenumTempCoef1(self, *args) def SimInternalLoad_RtnAirFracFuncofPlenumTempCoef2(self, *args): return _SimInternalLoad_Lights_Default.SimInternalLoad_Lights_SimInternalLoad_RtnAirFracFuncofPlenumTempCoef2(self, *args) def __init__(self, *args): this = _SimInternalLoad_Lights_Default.new_SimInternalLoad_Lights(*args) try: self.this.append(this) except: self.this = this def _clone(self, f=0, c=None): return _SimInternalLoad_Lights_Default.SimInternalLoad_Lights__clone(self, f, c) __swig_destroy__ = _SimInternalLoad_Lights_Default.delete_SimInternalLoad_Lights __del__ = lambda self: None SimInternalLoad_Lights_swigregister = _SimInternalLoad_Lights_Default.SimInternalLoad_Lights_swigregister SimInternalLoad_Lights_swigregister(SimInternalLoad_Lights) class SimInternalLoad_Lights_Default(SimInternalLoad_Lights): __swig_setmethods__ = {} for _s in [SimInternalLoad_Lights]: __swig_setmethods__.update(getattr(_s, '__swig_setmethods__', {})) __setattr__ = lambda self, name, value: _swig_setattr(self, SimInternalLoad_Lights_Default, name, value) __swig_getmethods__ = {} for _s in [SimInternalLoad_Lights]: __swig_getmethods__.update(getattr(_s, '__swig_getmethods__', {})) __getattr__ = lambda self, name: _swig_getattr(self, SimInternalLoad_Lights_Default, name) __repr__ = _swig_repr def __init__(self, *args): this = _SimInternalLoad_Lights_Default.new_SimInternalLoad_Lights_Default(*args) try: self.this.append(this) except: self.this = this def _clone(self, f=0, c=None): return _SimInternalLoad_Lights_Default.SimInternalLoad_Lights_Default__clone(self, f, c) __swig_destroy__ = _SimInternalLoad_Lights_Default.delete_SimInternalLoad_Lights_Default __del__ = lambda self: None SimInternalLoad_Lights_Default_swigregister = _SimInternalLoad_Lights_Default.SimInternalLoad_Lights_Default_swigregister SimInternalLoad_Lights_Default_swigregister(SimInternalLoad_Lights_Default) class SimInternalLoad_Lights_Default_sequence(base.sequence_common): __swig_setmethods__ = {} for _s in [base.sequence_common]: __swig_setmethods__.update(getattr(_s, '__swig_setmethods__', {})) __setattr__ = lambda self, name, value: _swig_setattr(self, SimInternalLoad_Lights_Default_sequence, name, value) __swig_getmethods__ = {} for _s in [base.sequence_common]: __swig_getmethods__.update(getattr(_s, '__swig_getmethods__', {})) __getattr__ = lambda self, name: _swig_getattr(self, SimInternalLoad_Lights_Default_sequence, name) __repr__ = _swig_repr def __init__(self, *args): this = _SimInternalLoad_Lights_Default.new_SimInternalLoad_Lights_Default_sequence(*args) try: self.this.append(this) except: self.this = this def assign(self, n, x): return _SimInternalLoad_Lights_Default.SimInternalLoad_Lights_Default_sequence_assign(self, n, x) def begin(self, *args): return _SimInternalLoad_Lights_Default.SimInternalLoad_Lights_Default_sequence_begin(self, *args) def end(self, *args): return _SimInternalLoad_Lights_Default.SimInternalLoad_Lights_Default_sequence_end(self, *args) def rbegin(self, *args): return _SimInternalLoad_Lights_Default.SimInternalLoad_Lights_Default_sequence_rbegin(self, *args) def rend(self, *args): return _SimInternalLoad_Lights_Default.SimInternalLoad_Lights_Default_sequence_rend(self, *args) def at(self, *args): return _SimInternalLoad_Lights_Default.SimInternalLoad_Lights_Default_sequence_at(self, *args) def front(self, *args): return _SimInternalLoad_Lights_Default.SimInternalLoad_Lights_Default_sequence_front(self, *args) def back(self, *args): return _SimInternalLoad_Lights_Default.SimInternalLoad_Lights_Default_sequence_back(self, *args) def push_back(self, *args): return _SimInternalLoad_Lights_Default.SimInternalLoad_Lights_Default_sequence_push_back(self, *args) def pop_back(self): return _SimInternalLoad_Lights_Default.SimInternalLoad_Lights_Default_sequence_pop_back(self) def detach_back(self, pop=True): return _SimInternalLoad_Lights_Default.SimInternalLoad_Lights_Default_sequence_detach_back(self, pop) def insert(self, *args): return _SimInternalLoad_Lights_Default.SimInternalLoad_Lights_Default_sequence_insert(self, *args) def erase(self, *args): return _SimInternalLoad_Lights_Default.SimInternalLoad_Lights_Default_sequence_erase(self, *args) def detach(self, position, r, erase=True): return _SimInternalLoad_Lights_Default.SimInternalLoad_Lights_Default_sequence_detach(self, position, r, erase) def swap(self, x): return _SimInternalLoad_Lights_Default.SimInternalLoad_Lights_Default_sequence_swap(self, x) __swig_destroy__ = _SimInternalLoad_Lights_Default.delete_SimInternalLoad_Lights_Default_sequence __del__ = lambda self: None SimInternalLoad_Lights_Default_sequence_swigregister = _SimInternalLoad_Lights_Default.SimInternalLoad_Lights_Default_sequence_swigregister SimInternalLoad_Lights_Default_sequence_swigregister(SimInternalLoad_Lights_Default_sequence) # This file is compatible with both classic and new-style classes.
[ "cao@e3d.rwth-aachen.de" ]
cao@e3d.rwth-aachen.de
2dc6a583543b27045a5bd797ae25ea06a0711562
ab0abbf3b68de565a0a5bfb96c094551ec26c9a1
/NLPWebApplication/NLP/temp.py
05d796665f76bd2aa11d42b42a27e0578c667134
[]
no_license
wholemilk2/finance-news-sentiment-analysis
7273467db14c82cbf7df4bda9161a1d3afac0830
3523a2b19cd106f7abbed61f2c1c65a156ea0e8f
refs/heads/master
2020-06-27T13:34:59.319707
2019-07-31T07:35:50
2019-07-31T07:35:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,655
py
# -*- coding: utf-8 -*- """ Spyder Editor This is a temporary script file. """ ## dosyayı okuyup bir değişkene atalım. #Bu değişkenin tipi, karakter dizisi (string) sınıfından (class str) olacak. import pandas as pd data = pd.read_csv(r"h.csv",encoding = "utf-8" ) data = pd.concat([data.strBaslik]) data=data.to_string() print('"data" değişkeninin tipi:', type(data), '\n') print('Haberlerin boşluklar dahil uzunluğu:', len(data), 'karakter.\n\n') # noktalama işaretlerini ve sayıları temizle from string import punctuation, digits converter = str.maketrans('', '', punctuation) data = data.translate(converter) converter = str.maketrans('', '', digits) data = data.translate(converter) #küçük-büyük harf farkı data = data.lower() #Bag of words (her kelimeyi ve bu kelimenin metinde kaç kez geçtiği) words = data.split() print(len(words)) from collections import Counter # Kelime çantasını hazırlamak bir satır countsOfWords = Counter(words) print(type(countsOfWords), '\n') # En sık kullanılan 10 kelimeye # tek bir fonksiyon ile bakabiliyoruz. for word in countsOfWords.most_common(10): print(word) #kök çıkarma (stemming) işini Türkçe için de yaoiyor from snowballstemmer import stemmer kokbul1 = stemmer('turkish') print(kokbul1.stemWords('arttı art'.split())) from sys import path # Python'a indirdiğimiz paketi tanıtalım path.append('/Users/zisanyalcinkaya/turkish-stemmer-python') from TurkishStemmer import TurkishStemmer kokbul2 = TurkishStemmer() print(kokbul2.stem('arttı art'.split())) print('\n\nMetinde "ADEL" kelimesi', countsOfWords['adel'], 'kez geçiyor.')
[ "zisanyalcinkaya@Zisan-MacBook-Pro-5.local" ]
zisanyalcinkaya@Zisan-MacBook-Pro-5.local
1f20f9066dc5a3eadcf02517149e514b676948c8
63e2bed7329c79bf67279f9071194c9cba88a82c
/SevOneApi/python-client/swagger_client/api/policies_api.py
69f1266b039b430644d519fa6d6ec6944b77a7df
[]
no_license
jsthomason/LearningPython
12422b969dbef89578ed326852dd65f65ab77496
2f71223250b6a198f2736bcb1b8681c51aa12c03
refs/heads/master
2021-01-21T01:05:46.208994
2019-06-27T13:40:37
2019-06-27T13:40:37
63,447,703
0
0
null
null
null
null
UTF-8
Python
false
false
18,477
py
# coding: utf-8 """ SevOne API Documentation Supported endpoints by the new RESTful API # noqa: E501 OpenAPI spec version: 2.1.18, Hash: db562e6 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import re # noqa: F401 # python 2 and python 3 compatibility library import six from swagger_client.api_client import ApiClient class PoliciesApi(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. Ref: https://github.com/swagger-api/swagger-codegen """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def get_policies(self, **kwargs): # noqa: E501 """Get all policies # noqa: E501 Endpoint for retrieving all policies that supports pagination # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_policies(async_req=True) >>> result = thread.get() :param async_req bool :param int page: The number of the requested page, defaults to 0 :param int size: The size of the requested page, defaults to 20; limited to a configurable maximum (10000 by default) :param bool include_count: Whether to query for total elements count; defaults to true, set to false for performance boost :param str sort_by: String array of format \"parameter, -parameter, natural\\*parameter, -natural\\*parameter\", where minus is for descending, natural* is for natural sort :param str fields: String array of format \"id,name,objects(id,pluginId)\"; Defines which fields are returned :return: PagerPolicyDto If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.get_policies_with_http_info(**kwargs) # noqa: E501 else: (data) = self.get_policies_with_http_info(**kwargs) # noqa: E501 return data def get_policies_with_http_info(self, **kwargs): # noqa: E501 """Get all policies # noqa: E501 Endpoint for retrieving all policies that supports pagination # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_policies_with_http_info(async_req=True) >>> result = thread.get() :param async_req bool :param int page: The number of the requested page, defaults to 0 :param int size: The size of the requested page, defaults to 20; limited to a configurable maximum (10000 by default) :param bool include_count: Whether to query for total elements count; defaults to true, set to false for performance boost :param str sort_by: String array of format \"parameter, -parameter, natural\\*parameter, -natural\\*parameter\", where minus is for descending, natural* is for natural sort :param str fields: String array of format \"id,name,objects(id,pluginId)\"; Defines which fields are returned :return: PagerPolicyDto If the method is called asynchronously, returns the request thread. """ all_params = ['page', 'size', 'include_count', 'sort_by', 'fields'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_policies" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] if 'page' in params: query_params.append(('page', params['page'])) # noqa: E501 if 'size' in params: query_params.append(('size', params['size'])) # noqa: E501 if 'include_count' in params: query_params.append(('includeCount', params['include_count'])) # noqa: E501 if 'sort_by' in params: query_params.append(('sortBy', params['sort_by'])) # noqa: E501 if 'fields' in params: query_params.append(('fields', params['fields'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/api/v1/policies', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='PagerPolicyDto', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_policies1(self, **kwargs): # noqa: E501 """Get all policies # noqa: E501 Endpoint for retrieving all policies that supports pagination # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_policies1(async_req=True) >>> result = thread.get() :param async_req bool :param int page: The number of the requested page, defaults to 0 :param int size: The size of the requested page, defaults to 20; limited to a configurable maximum (10000 by default) :param bool include_count: Whether to query for total elements count; defaults to true, set to false for performance boost :param str sort_by: String array of format \"parameter, -parameter, natural\\*parameter, -natural\\*parameter\", where minus is for descending, natural* is for natural sort :param str fields: String array of format \"id,name,objects(id,pluginId)\"; Defines which fields are returned :return: PagerPolicyDto If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.get_policies1_with_http_info(**kwargs) # noqa: E501 else: (data) = self.get_policies1_with_http_info(**kwargs) # noqa: E501 return data def get_policies1_with_http_info(self, **kwargs): # noqa: E501 """Get all policies # noqa: E501 Endpoint for retrieving all policies that supports pagination # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_policies1_with_http_info(async_req=True) >>> result = thread.get() :param async_req bool :param int page: The number of the requested page, defaults to 0 :param int size: The size of the requested page, defaults to 20; limited to a configurable maximum (10000 by default) :param bool include_count: Whether to query for total elements count; defaults to true, set to false for performance boost :param str sort_by: String array of format \"parameter, -parameter, natural\\*parameter, -natural\\*parameter\", where minus is for descending, natural* is for natural sort :param str fields: String array of format \"id,name,objects(id,pluginId)\"; Defines which fields are returned :return: PagerPolicyDto If the method is called asynchronously, returns the request thread. """ all_params = ['page', 'size', 'include_count', 'sort_by', 'fields'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_policies1" % key ) params[key] = val del params['kwargs'] collection_formats = {} path_params = {} query_params = [] if 'page' in params: query_params.append(('page', params['page'])) # noqa: E501 if 'size' in params: query_params.append(('size', params['size'])) # noqa: E501 if 'include_count' in params: query_params.append(('includeCount', params['include_count'])) # noqa: E501 if 'sort_by' in params: query_params.append(('sortBy', params['sort_by'])) # noqa: E501 if 'fields' in params: query_params.append(('fields', params['fields'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/api/v2/policies', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='PagerPolicyDto', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_policy(self, id, **kwargs): # noqa: E501 """Get policy by Id # noqa: E501 Gets policy information # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_policy(id, async_req=True) >>> result = thread.get() :param async_req bool :param int id: The id of the requested policy (required) :return: PolicyDto If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.get_policy_with_http_info(id, **kwargs) # noqa: E501 else: (data) = self.get_policy_with_http_info(id, **kwargs) # noqa: E501 return data def get_policy_with_http_info(self, id, **kwargs): # noqa: E501 """Get policy by Id # noqa: E501 Gets policy information # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_policy_with_http_info(id, async_req=True) >>> result = thread.get() :param async_req bool :param int id: The id of the requested policy (required) :return: PolicyDto If the method is called asynchronously, returns the request thread. """ all_params = ['id'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_policy" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params or params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `get_policy`") # noqa: E501 collection_formats = {} path_params = {} if 'id' in params: path_params['id'] = params['id'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/api/v1/policies/{id}', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='PolicyDto', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def get_policy1(self, id, **kwargs): # noqa: E501 """Get policy by Id # noqa: E501 Gets policy information # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_policy1(id, async_req=True) >>> result = thread.get() :param async_req bool :param int id: The id of the requested policy (required) :return: PolicyDto If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.get_policy1_with_http_info(id, **kwargs) # noqa: E501 else: (data) = self.get_policy1_with_http_info(id, **kwargs) # noqa: E501 return data def get_policy1_with_http_info(self, id, **kwargs): # noqa: E501 """Get policy by Id # noqa: E501 Gets policy information # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_policy1_with_http_info(id, async_req=True) >>> result = thread.get() :param async_req bool :param int id: The id of the requested policy (required) :return: PolicyDto If the method is called asynchronously, returns the request thread. """ all_params = ['id'] # noqa: E501 all_params.append('async_req') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_policy1" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'id' is set if ('id' not in params or params['id'] is None): raise ValueError("Missing the required parameter `id` when calling `get_policy1`") # noqa: E501 collection_formats = {} path_params = {} if 'id' in params: path_params['id'] = params['id'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = [] # noqa: E501 return self.api_client.call_api( '/api/v2/policies/{id}', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='PolicyDto', # noqa: E501 auth_settings=auth_settings, async_req=params.get('async_req'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats)
[ "johnsthomason@gmail.com" ]
johnsthomason@gmail.com
96387e22a6b335fe685dfcb6afa0d49458d4f2a1
7869e3cd307e859c91db4f2df13cb11fabadb76f
/sahara/tests/unit/plugins/cdh/test_versionfactory.py
74db0f738c14c3cabbc848247a134b38b6fc8579
[ "Apache-2.0" ]
permissive
jaxonwang/sahara
1c748bb287be95f45d3ec4aaa4d918884a89cad5
d5860557145b99cd92f283639ab034782423ff21
refs/heads/master
2021-01-22T18:24:27.546073
2016-02-03T17:14:23
2016-02-03T17:14:23
45,181,892
1
0
null
2015-10-29T12:32:04
2015-10-29T12:32:03
null
UTF-8
Python
false
false
1,651
py
# Copyright (c) 2015 Mirantis Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from sahara.plugins.cdh import abstractversionhandler as avh from sahara.plugins.cdh import versionfactory as vf from sahara.tests.unit import base class VersionFactoryTestCase(base.SaharaTestCase): def test_get_instance(self): self.assertFalse(vf.VersionFactory.initialized) factory = vf.VersionFactory.get_instance() self.assertIsInstance(factory, vf.VersionFactory) self.assertTrue(vf.VersionFactory.initialized) def test_get_versions(self): factory = vf.VersionFactory.get_instance() versions = factory.get_versions() expected_versions = self.get_support_versions() self.assertEqual(expected_versions, versions) def test_get_version_handler(self): factory = vf.VersionFactory.get_instance() versions = self.get_support_versions() for version in versions: hander = factory.get_version_handler(version) self.assertIsInstance(hander, avh.AbstractVersionHandler) def get_support_versions(self): return ['5', '5.3.0', '5.4.0']
[ "jiexingx.wang@intel.com" ]
jiexingx.wang@intel.com
0b306a81e32ae2b0da4df778e7a8f6624b97cf34
b2b97f4887afb488be9bee70e9ffeea03ec37c5c
/webapp/generate/view.py
00d8a776af255965646908241643f73d99b39495
[]
no_license
suxiaochuan/WebBaoBiao
11415181d50704c0aec67c10af4deaf1bb49b835
9e213beac3597326ead8ccba6c197424e263313c
refs/heads/master
2020-05-07T05:42:31.150342
2019-04-09T09:26:58
2019-04-09T09:26:58
180,281,377
0
0
null
2019-04-09T09:06:41
2019-04-09T03:57:15
Python
UTF-8
Python
false
false
5,210
py
# _*_ coding: utf-8 _*_ from . import _generate from flask import render_template, request, send_from_directory, abort, flash, redirect, send_file from flask_login import login_required, current_user import os import xlrd import xlwt from xlutils.copy import copy from .form import GenerateForm, excels from .. import conn from pypinyin import lazy_pinyin pardir = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) # print(pardir) basedir = os.path.abspath(os.path.dirname(__file__)) # print(basedir) FILE_TO_DOWNLOAD = {'1': '资金期限表', '2': 'G25', '3': 'Q02'} @_generate.route('/') @login_required def generate(): form = GenerateForm() generatelist = request.values.getlist('excels') generatedate = request.values.get('generatedate') if generatelist == []: return render_template('generate.html', form=form) else: filedir = os.path.join(basedir, 'upload') # print(filedir) # print(basedir) generatedate = generatedate.split('-')[0] + '_' + generatedate.split('-')[1] for generatefile in generatelist: filetogenerate_chinese = FILE_TO_DOWNLOAD[generatefile] # call the function to generate filetogenerate print(generatedate) generateFile(filetogenerate_chinese, generatedate) return render_template('generate.html', form=form) def generateFile(filetogenerate_chinese, generatedate): conn.ping(reconnect=True) cursor = conn.cursor() filetogenerate = ''.join(lazy_pinyin(filetogenerate_chinese)) # 创建新表 sql = 'create table if not exists ' + filetogenerate + '_' + generatedate + \ ' select * from ' + filetogenerate + ';' cursor.execute(sql) # 从模板拿需要填写的格子 sql = 'select distinct position, content from ' + filetogenerate + ' where editable=True;' cursor.execute(sql) conn.commit() sqlresult = cursor.fetchall() for i in range(len(sqlresult)): # 获取哪个格子 position = sqlresult[i][0] print(position) userlist = [] userset = {} alertlist = [] # 获取用户和内容 content_list = sqlresult[i][1].lstrip('|').split('|') for content in content_list: userandvalue = content.split(':') if len(userandvalue) == 1: userandvalue = content.split(':') user = ''.join(lazy_pinyin(userandvalue[0])) if len(userandvalue) > 1: value = userandvalue[1] else: value = None if user not in userlist: userlist.append(user) userset[user] = [] userset[user].append((position, value)) positionvaluelist = [] for user in userlist: for i in range(len(userset[user])): position = userset[user][i][0] # value = userset[user][i][0] try: sql = 'select value from ' + user + \ ' where baobiao="' + filetogenerate_chinese + '" and position="' + position + '";' # print(sql) cursor.execute(sql) result = cursor.fetchall() value = result[0][0] positionvaluelist.append(value) if value is None: alertlist.append(user) except: alertlist.append(user) finally: pass positionvalue = sum([x if x is not None else 0 for x in positionvaluelist]) print(alertlist) sql = 'update ' + filetogenerate + '_' + generatedate + ' set content="' + str(positionvalue) + \ '" where position="' + str(position) + '";' print(sql) cursor.execute(sql) conn.commit() # 把带公式计算的格子自动计算 # sql = 'select distinct position, content from ' + filetogenerate + ' where content like "=%";' # cursor.execute(sql) # conn.commit() # sqlresult = cursor.fetchall() # print(sqlresult) ###################### # 生成excel # 计算行数列数 wb = xlrd.open_workbook(pardir + '/api/upload/' + filetogenerate_chinese + '/' + filetogenerate_chinese + '.xlsx') wbnew = copy(wb) sh = wbnew.get_sheet(0) # book = xlwt.Workbook(encoding='utf-8') # sheet1 = book.add_sheet('Sheet1') sql = 'select distinct position, content from ' + filetogenerate + '_' + generatedate + ';' cursor.execute(sql) conn.commit() sqlresult = cursor.fetchall() positionlist = [x[0] for x in sqlresult] contentlist = [x[1] for x in sqlresult] # row = list(set([x[1:] for x in positionlist])) # column = list(set(x[0] for x in positionlist)) for i in range(len(positionlist)): row = int(positionlist[i][1:]) - 1 col = ord(positionlist[i][0]) - ord('A') sh.write(row, col, contentlist[i]) filedir = os.path.join(basedir, filetogenerate_chinese) if not os.path.exists(filedir): os.mkdir(filedir) wbnew.save(filedir + '/' + filetogenerate_chinese + '_' + generatedate + '.xls')
[ "lyfgerrard8@gmail.com" ]
lyfgerrard8@gmail.com
83ccb76308d734373287a43059fad211f3c6071c
db006e9229d47146c47ca264f4f15df22df40d17
/file_1_btc_price_prediction.py
96093d8bcd57fc20fa48103d3a4bc1721e405044
[]
no_license
UiiKyra/CryptocurrencyPrediction
6fad980648f932f96f6b5359c6a1d28416c38419
b31981c1280d51ddf3075b90693c81292be535de
refs/heads/master
2022-09-17T20:16:42.740364
2020-06-04T03:42:40
2020-06-04T03:42:40
269,240,010
1
0
null
null
null
null
UTF-8
Python
false
false
7,618
py
# -*- coding: utf-8 -*- """File_1_BTC_Price_Prediction.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1NGjA41_DZBvOUH_q_o8SrEfCKc_Jha6J """ # The file utilizes Bitcoin price daily data, return predictions and save them along with actual data to csv file # The model to predict daily (24h) Bitcoin close price. # The final prediction model consits of 2 models: # 1. Regression LSTM model which uses only Bitcoin close price data (window size = 10). # 2. Regression LSTM model which uses multivariate data (Bitcoin close price and Fear and Greed Index). # The models are combined using multiple linear regression. # Commented out IPython magic to ensure Python compatibility. # %tensorflow_version 1.x pip install scikit-learn==0.22.2.post1 # Commented out IPython magic to ensure Python compatibility. from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_error from keras.models import Sequential from keras.layers import Dense, Dropout, LSTM from keras.models import load_model import pandas as pd import numpy as np import matplotlib.pyplot as plt import requests from joblib import dump, load import statsmodels.api as sm from sklearn.linear_model import LinearRegression # %matplotlib inline # Specify the datafile which is used as input, for further return of predictions file = r'C:\Users\ketap\Downloads\drive-download-20200322T222027Z-001\BTCUSD_1d_2011-09-13_to_2019-10-23_bitstamp.csv' # # Commented out IPython magic to ensure Python compatibility. # # Connect to Google drive, to upload the data # from google.colab import drive # drive.mount('/content/gdrive') # # %cd /content/gdrive/My\ Drive/Colab\ Notebooks/data # Function for data preprocessing. Returns 4 variables: X1 (for model 1), X2 (dataframe for model 2), y (actual y) and scaler for further use inside the model def preprocess(file_path_name): filename = str(file_path_name) data = pd.read_csv(filename) data['date'] = pd.to_datetime(data['date']) df = data.filter(items=['date', 'close']) df = df.dropna(axis = 0, how ='any') df.index = df.date df.drop('date', axis=1, inplace=True) x = df.values # Normalize the data scaler = MinMaxScaler(feature_range=(0, 1)) scaled = scaler.fit_transform(x) # Data preparation for further use in the LSTM model # X1 is vector of inputs, y is labels (values needed to be predicted) X1 = [] y = [] # History_size if a number of previous time steps to use as input variables history_size = 10 for i in range(history_size, len(scaled)): X1.append(scaled[i - history_size:i, 0]) y.append(scaled[i]) X1, y = np.array(X1), np.array(y) X1 = np.reshape(X1, (X1.shape[0], X1.shape[1], 1)) # Load Fear and Greed Index historical data using API url = 'https://api.alternative.me/fng/' resp = requests.get(url,params={'limit': '2000', 'format': 'csv', 'date_format': 'cn'}) resp_list = [] for line in resp.text.splitlines(): resp_list.append(line) resp_list = resp_list[4:-5] fg_df = pd.DataFrame([sub.split(",") for sub in resp_list]) fg_df.columns = ['Date', 'F&G Index', 'Outcome'] fg_df['Date'] = pd.to_datetime(fg_df['Date']) fg_df = fg_df.set_index('Date') fg_df = fg_df.drop(['Outcome'], axis = 1) fg_df["F&G Index"] = fg_df["F&G Index"].astype(float) fg_df = fg_df.sort_index(ascending=True) # Temporal alignment of F&G Index with Bitcoin price data and combining then into one data frame fg_df_new = fg_df.loc[:df.index.max()] fg_df_new = fg_df_new.join(df, lsuffix='_date1', rsuffix='_date2') fg_df_new = fg_df_new[['close', 'F&G Index']] fg_df_new = fg_df_new.dropna() X2 = fg_df_new return X1, X2, y, scaler # Preprocess the given data X1, X2, y, scaler = preprocess(file) y = scaler.inverse_transform(y) # Function which loads the model and the data, and returns the array of predictions (Model 1) def model(file_path_name, input): lstm_model = load_model(str(file_path_name)) y1_hat = lstm_model.predict(input) y1_hat = scaler.inverse_transform(y1_hat) return y1_hat # Load the Model 1 file and make predictions for X1 y1_hat = model(r'C:\Users\ketap\Downloads\drive-download-20200322T222027Z-001\Bitcoin_LSTM_w10d_final.h5', X1) # Function which loads the model and the data, and returns the array of predictions (Model 2: uses Bitcoin price and Fear&Greed Index) # Lookback period = 1 def additional_model(file_path_name, input): scaled= scaler.fit_transform(input) scaled = pd.DataFrame(scaled) lookback = 1 pred_col = 0 t = scaled.copy() t['id'] = range(1, len(scaled) + 1) t = t.iloc[:-lookback,:] t.set_index('id', inplace=True) pred_value = scaled.copy() pred_value = pred_value.iloc[lookback:, pred_col] pred_value.columns = ["Pred"] pred_value = pd.DataFrame(pred_value) pred_value["id"] = range(1, len(pred_value) + 1) pred_value.set_index('id', inplace=True) final_df = pd.concat([t, pred_value], axis=1) values = final_df.values x = values[:,:-1] x = np.reshape(x, (x.shape[0], x.shape[1], 1)) add_model = load_model(str(file_path_name)) y2_hat = add_model.predict(x) x = x.reshape((x.shape[0], x.shape[1])) y2_hat = np.concatenate((y2_hat, x[:,1:]), axis=1) y2_hat = scaler.inverse_transform(y2_hat) y2_hat = y2_hat[:,0] y2_hat = y2_hat.reshape(-1,1) return y2_hat # Load the Model 2 file and make predictions for X2 y2_hat = additional_model(r'C:\Users\ketap\Downloads\drive-download-20200322T222027Z-001\Bitcoin_and_FG_Index_2.h5', X2) # Function loads Model 3 (simple linear model) weights and makes prediction based on y1_hat (obtained from Model 1) and y2_hat (obtained from Model 2)4 # Returns y3_hat - the improved predictions def combiner(file_path_name, y1_hat, y2_hat): if y1_hat.shape[0] > y2_hat.shape[0]: y1_hat_aligned = y1_hat[-y2_hat.shape[0]:] y2_hat_aligned = y2_hat elif y1_hat.shape[0] < y2_hat.shape[0]: y2_hat_aligned = y2_hat[-y1_hat.shape[0]:] y1_hat_aligned = y1_hat else: y2_hat_aligned = y2_hat y1_hat_aligned = y1_hat model_final = load(str(file_path_name)) y3_hat = model_final.predict(np.concatenate((y1_hat_aligned, y2_hat_aligned), axis=1)) return y3_hat y3_hat = combiner(r'C:\Users\ketap\Downloads\drive-download-20200322T222027Z-001\LinearCombiner3.joblib', y1_hat, y2_hat) y_aligned = y[-y3_hat.shape[0]:] # Plot the graph of actual vs predicted values fig = plt.figure(figsize=[20,12]) ax = fig.add_subplot(111) time_steps = np.arange(1, len(y3_hat) + 1) plt.plot(time_steps, y_aligned, label = 'Actual price') plt.plot(time_steps, y3_hat, label = 'Predicted price') ax.legend() plt.show() # MSE obtained by the LSTM model mse = mean_squared_error(y_aligned, y3_hat) mse # Naive forecast function def persistence_model(x): return x[:-1] y_aligned[1:] # MSE obtained by naive forecast model mse_1 = mean_squared_error(y_aligned[1:], persistence_model(y_aligned)) mse_1 # Create a dataframe containing date, actual close price, F&G index and predicted close price df = X2[-y3_hat.shape[0]:] df.loc[:,'close forecast'] = y3_hat df.reset_index(level=0, inplace=True) df = df.rename(columns={"index": "date"}) # Join the predictions and the original data file, delete missing values and save the result into csv file data = pd.read_csv(file) data['date'] = pd.to_datetime(data['date']) data = data.join(df.drop(columns=['close', 'F&G Index']).set_index('date'), on='date').dropna().reset_index(drop=True) data.to_csv(r'C:\Users\ketap\Downloads\drive-download-20200322T222027Z-001\BTC_data_and_forecast.csv', index=False)
[ "noreply@github.com" ]
UiiKyra.noreply@github.com
8340f9d1f11c1a959adf75a6cde2e575801cc99d
8c5fdc395d365706583065b0b40169a6196c503f
/app/forms.py
8c7f6477d745c97cb95f682429655151ee2598bd
[]
no_license
manasashanubhogue/LibraryApp
2122608a8d383108b9acd8c121ccb6daec426ec3
0142920d2f37f24c2ed6531586c359fbb1ffc10d
refs/heads/main
2023-03-02T17:18:49.983193
2021-02-06T20:33:13
2021-02-06T20:33:13
335,926,812
0
0
null
null
null
null
UTF-8
Python
false
false
480
py
from flask_wtf import FlaskForm from wtforms import StringField, SubmitField from wtforms.validators import InputRequired, Email from app.models import BookRequest from app import ma class BookRequestForm(FlaskForm): title = StringField('Book Title', validators=[InputRequired()]) email = StringField('Email', validators=[InputRequired(), Email()]) submit = SubmitField('Request') class BookRequestSchema(ma.ModelSchema): class Meta: model = BookRequest
[ "m.manasa21@gmail.com" ]
m.manasa21@gmail.com
fb4bb02fa24fcff5afdd1ff8a166d0b16e3efe7e
df5682f7bf97272a62765ff430de84f709893422
/MRE_ALBERT_Xlarge/albert/run_classifier.py
ebb39290a46da9693747d72d1692a53b492f16a4
[ "Apache-2.0" ]
permissive
nikhil-krishna/Improving-Multihead-Selection-Model
88f82bb93810ed1f3685dd0848209c0180cde7a4
087a4784f0643218f24a4dc265043c7eda6dd5ca
refs/heads/main
2023-02-20T06:51:19.981019
2021-01-10T02:40:44
2021-01-10T02:40:44
328,287,525
0
0
null
null
null
null
UTF-8
Python
false
false
22,370
py
# coding=utf-8 # Copyright 2018 The Google AI Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """BERT finetuning on classification tasks.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import os import time from albert import classifier_utils from albert import fine_tuning_utils from albert import modeling import tensorflow.compat.v1 as tf from tensorflow.contrib import cluster_resolver as contrib_cluster_resolver from tensorflow.contrib import tpu as contrib_tpu flags = tf.flags FLAGS = flags.FLAGS ## Required parameters flags.DEFINE_string( "data_dir", None, "The input data dir. Should contain the .tsv files (or other data files) " "for the task.") flags.DEFINE_string( "albert_config_file", None, "The config json file corresponding to the pre-trained ALBERT model. " "This specifies the model architecture.") flags.DEFINE_string("task_name", None, "The name of the task to train.") flags.DEFINE_string( "vocab_file", None, "The vocabulary file that the ALBERT model was trained on.") flags.DEFINE_string("spm_model_file", None, "The model file for sentence piece tokenization.") flags.DEFINE_string( "output_dir", None, "The output directory where the model checkpoints will be written.") flags.DEFINE_string("cached_dir", None, "Path to cached training and dev tfrecord file. " "The file will be generated if not exist.") ## Other parameters flags.DEFINE_string( "init_checkpoint", None, "Initial checkpoint (usually from a pre-trained BERT model).") flags.DEFINE_string( "albert_hub_module_handle", None, "If set, the ALBERT hub module to use.") flags.DEFINE_bool( "do_lower_case", True, "Whether to lower case the input text. Should be True for uncased " "models and False for cased models.") flags.DEFINE_integer( "max_seq_length", 512, "The maximum total input sequence length after WordPiece tokenization. " "Sequences longer than this will be truncated, and sequences shorter " "than this will be padded.") flags.DEFINE_bool("do_train", False, "Whether to run training.") flags.DEFINE_bool("do_eval", False, "Whether to run eval on the dev set.") flags.DEFINE_bool( "do_predict", False, "Whether to run the model in inference mode on the test set.") flags.DEFINE_integer("train_batch_size", 32, "Total batch size for training.") flags.DEFINE_integer("eval_batch_size", 8, "Total batch size for eval.") flags.DEFINE_integer("predict_batch_size", 8, "Total batch size for predict.") flags.DEFINE_float("learning_rate", 5e-5, "The initial learning rate for Adam.") flags.DEFINE_integer("train_step", 1000, "Total number of training steps to perform.") flags.DEFINE_integer( "warmup_step", 0, "number of steps to perform linear learning rate warmup for.") flags.DEFINE_integer("save_checkpoints_steps", 1000, "How often to save the model checkpoint.") flags.DEFINE_integer("keep_checkpoint_max", 5, "How many checkpoints to keep.") flags.DEFINE_integer("iterations_per_loop", 1000, "How many steps to make in each estimator call.") flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.") flags.DEFINE_string("optimizer", "adamw", "Optimizer to use") tf.flags.DEFINE_string( "tpu_name", None, "The Cloud TPU to use for training. This should be either the name " "used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 " "url.") tf.flags.DEFINE_string( "tpu_zone", None, "[Optional] GCE zone where the Cloud TPU is located in. If not " "specified, we will attempt to automatically detect the GCE project from " "metadata.") tf.flags.DEFINE_string( "gcp_project", None, "[Optional] Project name for the Cloud TPU-enabled project. If not " "specified, we will attempt to automatically detect the GCE project from " "metadata.") tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.") flags.DEFINE_integer( "num_tpu_cores", 8, "Only used if `use_tpu` is True. Total number of TPU cores to use.") flags.DEFINE_string( "export_dir", None, "The directory where the exported SavedModel will be stored.") flags.DEFINE_float( "threshold_to_export", float("nan"), "The threshold value that should be used with the exported classifier. " "When specified, the threshold will be attached to the exported " "SavedModel, and served along with the predictions. Please use the " "saved model cli (" "https://www.tensorflow.org/guide/saved_model#details_of_the_savedmodel_command_line_interface" ") to view the output signature of the threshold.") def _serving_input_receiver_fn(): """Creates an input function for serving.""" seq_len = FLAGS.max_seq_length serialized_example = tf.placeholder( dtype=tf.string, shape=[None], name="serialized_example") features = { "input_ids": tf.FixedLenFeature([seq_len], dtype=tf.int64), "input_mask": tf.FixedLenFeature([seq_len], dtype=tf.int64), "segment_ids": tf.FixedLenFeature([seq_len], dtype=tf.int64), } feature_map = tf.parse_example(serialized_example, features=features) feature_map["is_real_example"] = tf.constant(1, dtype=tf.int32) feature_map["label_ids"] = tf.constant(0, dtype=tf.int32) # tf.Example only supports tf.int64, but the TPU only supports tf.int32. # So cast all int64 to int32. for name in feature_map.keys(): t = feature_map[name] if t.dtype == tf.int64: t = tf.to_int32(t) feature_map[name] = t return tf.estimator.export.ServingInputReceiver( features=feature_map, receiver_tensors=serialized_example) def _add_threshold_to_model_fn(model_fn, threshold): """Adds the classifier threshold to the given model_fn.""" def new_model_fn(features, labels, mode, params): spec = model_fn(features, labels, mode, params) threshold_tensor = tf.constant(threshold, dtype=tf.float32) default_serving_export = spec.export_outputs[ tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY] default_serving_export.outputs["threshold"] = threshold_tensor return spec return new_model_fn def main(_): tf.logging.set_verbosity(tf.logging.INFO) processors = { "cola": classifier_utils.ColaProcessor, "mnli": classifier_utils.MnliProcessor, "mismnli": classifier_utils.MisMnliProcessor, "mrpc": classifier_utils.MrpcProcessor, "rte": classifier_utils.RteProcessor, "sst-2": classifier_utils.Sst2Processor, "sts-b": classifier_utils.StsbProcessor, "qqp": classifier_utils.QqpProcessor, "qnli": classifier_utils.QnliProcessor, "wnli": classifier_utils.WnliProcessor, } if not (FLAGS.do_train or FLAGS.do_eval or FLAGS.do_predict or FLAGS.export_dir): raise ValueError( "At least one of `do_train`, `do_eval`, `do_predict' or `export_dir` " "must be True.") if not FLAGS.albert_config_file and not FLAGS.albert_hub_module_handle: raise ValueError("At least one of `--albert_config_file` and " "`--albert_hub_module_handle` must be set") if FLAGS.albert_config_file: albert_config = modeling.AlbertConfig.from_json_file( FLAGS.albert_config_file) if FLAGS.max_seq_length > albert_config.max_position_embeddings: raise ValueError( "Cannot use sequence length %d because the ALBERT model " "was only trained up to sequence length %d" % (FLAGS.max_seq_length, albert_config.max_position_embeddings)) else: albert_config = None # Get the config from TF-Hub. tf.gfile.MakeDirs(FLAGS.output_dir) task_name = FLAGS.task_name.lower() if task_name not in processors: raise ValueError("Task not found: %s" % (task_name)) processor = processors[task_name]( use_spm=True if FLAGS.spm_model_file else False, do_lower_case=FLAGS.do_lower_case) label_list = processor.get_labels() tokenizer = fine_tuning_utils.create_vocab( vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case, spm_model_file=FLAGS.spm_model_file, hub_module=FLAGS.albert_hub_module_handle) tpu_cluster_resolver = None if FLAGS.use_tpu and FLAGS.tpu_name: tpu_cluster_resolver = contrib_cluster_resolver.TPUClusterResolver( FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project) is_per_host = contrib_tpu.InputPipelineConfig.PER_HOST_V2 if FLAGS.do_train: iterations_per_loop = int(min(FLAGS.iterations_per_loop, FLAGS.save_checkpoints_steps)) else: iterations_per_loop = FLAGS.iterations_per_loop run_config = contrib_tpu.RunConfig( cluster=tpu_cluster_resolver, master=FLAGS.master, model_dir=FLAGS.output_dir, save_checkpoints_steps=int(FLAGS.save_checkpoints_steps), keep_checkpoint_max=0, tpu_config=contrib_tpu.TPUConfig( iterations_per_loop=iterations_per_loop, num_shards=FLAGS.num_tpu_cores, per_host_input_for_training=is_per_host)) train_examples = None if FLAGS.do_train: train_examples = processor.get_train_examples(FLAGS.data_dir) model_fn = classifier_utils.model_fn_builder( albert_config=albert_config, num_labels=len(label_list), init_checkpoint=FLAGS.init_checkpoint, learning_rate=FLAGS.learning_rate, num_train_steps=FLAGS.train_step, num_warmup_steps=FLAGS.warmup_step, use_tpu=FLAGS.use_tpu, use_one_hot_embeddings=FLAGS.use_tpu, task_name=task_name, hub_module=FLAGS.albert_hub_module_handle, optimizer=FLAGS.optimizer) if not math.isnan(FLAGS.threshold_to_export): model_fn = _add_threshold_to_model_fn(model_fn, FLAGS.threshold_to_export) # If TPU is not available, this will fall back to normal Estimator on CPU # or GPU. estimator = contrib_tpu.TPUEstimator( use_tpu=FLAGS.use_tpu, model_fn=model_fn, config=run_config, train_batch_size=FLAGS.train_batch_size, eval_batch_size=FLAGS.eval_batch_size, predict_batch_size=FLAGS.predict_batch_size, export_to_tpu=False) # http://yaqs/4707241341091840 if FLAGS.do_train: cached_dir = FLAGS.cached_dir if not cached_dir: cached_dir = FLAGS.output_dir train_file = os.path.join(cached_dir, task_name + "_train.tf_record") if not tf.gfile.Exists(train_file): classifier_utils.file_based_convert_examples_to_features( train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file, task_name) tf.logging.info("***** Running training *****") tf.logging.info(" Num examples = %d", len(train_examples)) tf.logging.info(" Batch size = %d", FLAGS.train_batch_size) tf.logging.info(" Num steps = %d", FLAGS.train_step) train_input_fn = classifier_utils.file_based_input_fn_builder( input_file=train_file, seq_length=FLAGS.max_seq_length, is_training=True, drop_remainder=True, task_name=task_name, use_tpu=FLAGS.use_tpu, bsz=FLAGS.train_batch_size) estimator.train(input_fn=train_input_fn, max_steps=FLAGS.train_step) if FLAGS.do_eval: eval_examples = processor.get_dev_examples(FLAGS.data_dir) num_actual_eval_examples = len(eval_examples) if FLAGS.use_tpu: # TPU requires a fixed batch size for all batches, therefore the number # of examples must be a multiple of the batch size, or else examples # will get dropped. So we pad with fake examples which are ignored # later on. These do NOT count towards the metric (all tf.metrics # support a per-instance weight, and these get a weight of 0.0). while len(eval_examples) % FLAGS.eval_batch_size != 0: eval_examples.append(classifier_utils.PaddingInputExample()) cached_dir = FLAGS.cached_dir if not cached_dir: cached_dir = FLAGS.output_dir eval_file = os.path.join(cached_dir, task_name + "_eval.tf_record") if not tf.gfile.Exists(eval_file): classifier_utils.file_based_convert_examples_to_features( eval_examples, label_list, FLAGS.max_seq_length, tokenizer, eval_file, task_name) tf.logging.info("***** Running evaluation *****") tf.logging.info(" Num examples = %d (%d actual, %d padding)", len(eval_examples), num_actual_eval_examples, len(eval_examples) - num_actual_eval_examples) tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size) # This tells the estimator to run through the entire set. eval_steps = None # However, if running eval on the TPU, you will need to specify the # number of steps. if FLAGS.use_tpu: assert len(eval_examples) % FLAGS.eval_batch_size == 0 eval_steps = int(len(eval_examples) // FLAGS.eval_batch_size) eval_drop_remainder = True if FLAGS.use_tpu else False eval_input_fn = classifier_utils.file_based_input_fn_builder( input_file=eval_file, seq_length=FLAGS.max_seq_length, is_training=False, drop_remainder=eval_drop_remainder, task_name=task_name, use_tpu=FLAGS.use_tpu, bsz=FLAGS.eval_batch_size) best_trial_info_file = os.path.join(FLAGS.output_dir, "best_trial.txt") def _best_trial_info(): """Returns information about which checkpoints have been evaled so far.""" if tf.gfile.Exists(best_trial_info_file): with tf.gfile.GFile(best_trial_info_file, "r") as best_info: global_step, best_metric_global_step, metric_value = ( best_info.read().split(":")) global_step = int(global_step) best_metric_global_step = int(best_metric_global_step) metric_value = float(metric_value) else: metric_value = -1 best_metric_global_step = -1 global_step = -1 tf.logging.info( "Best trial info: Step: %s, Best Value Step: %s, " "Best Value: %s", global_step, best_metric_global_step, metric_value) return global_step, best_metric_global_step, metric_value def _remove_checkpoint(checkpoint_path): for ext in ["meta", "data-00000-of-00001", "index"]: src_ckpt = checkpoint_path + ".{}".format(ext) tf.logging.info("removing {}".format(src_ckpt)) tf.gfile.Remove(src_ckpt) def _find_valid_cands(curr_step): filenames = tf.gfile.ListDirectory(FLAGS.output_dir) candidates = [] for filename in filenames: if filename.endswith(".index"): ckpt_name = filename[:-6] idx = ckpt_name.split("-")[-1] if int(idx) > curr_step: candidates.append(filename) return candidates output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt") if task_name == "sts-b": key_name = "pearson" elif task_name == "cola": key_name = "matthew_corr" else: key_name = "eval_accuracy" global_step, best_perf_global_step, best_perf = _best_trial_info() writer = tf.gfile.GFile(output_eval_file, "w") while global_step < FLAGS.train_step: steps_and_files = {} filenames = tf.gfile.ListDirectory(FLAGS.output_dir) for filename in filenames: if filename.endswith(".index"): ckpt_name = filename[:-6] cur_filename = os.path.join(FLAGS.output_dir, ckpt_name) if cur_filename.split("-")[-1] == "best": continue gstep = int(cur_filename.split("-")[-1]) if gstep not in steps_and_files: tf.logging.info("Add {} to eval list.".format(cur_filename)) steps_and_files[gstep] = cur_filename tf.logging.info("found {} files.".format(len(steps_and_files))) if not steps_and_files: tf.logging.info("found 0 file, global step: {}. Sleeping." .format(global_step)) time.sleep(60) else: for checkpoint in sorted(steps_and_files.items()): step, checkpoint_path = checkpoint if global_step >= step: if (best_perf_global_step != step and len(_find_valid_cands(step)) > 1): _remove_checkpoint(checkpoint_path) continue result = estimator.evaluate( input_fn=eval_input_fn, steps=eval_steps, checkpoint_path=checkpoint_path) global_step = result["global_step"] tf.logging.info("***** Eval results *****") for key in sorted(result.keys()): tf.logging.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) writer.write("best = {}\n".format(best_perf)) if result[key_name] > best_perf: best_perf = result[key_name] best_perf_global_step = global_step elif len(_find_valid_cands(global_step)) > 1: _remove_checkpoint(checkpoint_path) writer.write("=" * 50 + "\n") writer.flush() with tf.gfile.GFile(best_trial_info_file, "w") as best_info: best_info.write("{}:{}:{}".format( global_step, best_perf_global_step, best_perf)) writer.close() for ext in ["meta", "data-00000-of-00001", "index"]: src_ckpt = "model.ckpt-{}.{}".format(best_perf_global_step, ext) tgt_ckpt = "model.ckpt-best.{}".format(ext) tf.logging.info("saving {} to {}".format(src_ckpt, tgt_ckpt)) tf.io.gfile.rename( os.path.join(FLAGS.output_dir, src_ckpt), os.path.join(FLAGS.output_dir, tgt_ckpt), overwrite=True) if FLAGS.do_predict: predict_examples = processor.get_test_examples(FLAGS.data_dir) num_actual_predict_examples = len(predict_examples) if FLAGS.use_tpu: # TPU requires a fixed batch size for all batches, therefore the number # of examples must be a multiple of the batch size, or else examples # will get dropped. So we pad with fake examples which are ignored # later on. while len(predict_examples) % FLAGS.predict_batch_size != 0: predict_examples.append(classifier_utils.PaddingInputExample()) predict_file = os.path.join(FLAGS.output_dir, "predict.tf_record") classifier_utils.file_based_convert_examples_to_features( predict_examples, label_list, FLAGS.max_seq_length, tokenizer, predict_file, task_name) tf.logging.info("***** Running prediction*****") tf.logging.info(" Num examples = %d (%d actual, %d padding)", len(predict_examples), num_actual_predict_examples, len(predict_examples) - num_actual_predict_examples) tf.logging.info(" Batch size = %d", FLAGS.predict_batch_size) predict_drop_remainder = True if FLAGS.use_tpu else False predict_input_fn = classifier_utils.file_based_input_fn_builder( input_file=predict_file, seq_length=FLAGS.max_seq_length, is_training=False, drop_remainder=predict_drop_remainder, task_name=task_name, use_tpu=FLAGS.use_tpu, bsz=FLAGS.predict_batch_size) checkpoint_path = os.path.join(FLAGS.output_dir, "model.ckpt-best") result = estimator.predict( input_fn=predict_input_fn, checkpoint_path=checkpoint_path) output_predict_file = os.path.join(FLAGS.output_dir, "test_results.tsv") output_submit_file = os.path.join(FLAGS.output_dir, "submit_results.tsv") with tf.gfile.GFile(output_predict_file, "w") as pred_writer,\ tf.gfile.GFile(output_submit_file, "w") as sub_writer: sub_writer.write("index" + "\t" + "prediction\n") num_written_lines = 0 tf.logging.info("***** Predict results *****") for (i, (example, prediction)) in\ enumerate(zip(predict_examples, result)): probabilities = prediction["probabilities"] if i >= num_actual_predict_examples: break output_line = "\t".join( str(class_probability) for class_probability in probabilities) + "\n" pred_writer.write(output_line) if task_name != "sts-b": actual_label = label_list[int(prediction["predictions"])] else: actual_label = str(prediction["predictions"]) sub_writer.write(example.guid + "\t" + actual_label + "\n") num_written_lines += 1 assert num_written_lines == num_actual_predict_examples if FLAGS.export_dir: tf.gfile.MakeDirs(FLAGS.export_dir) checkpoint_path = os.path.join(FLAGS.output_dir, "model.ckpt-best") tf.logging.info("Starting to export model.") subfolder = estimator.export_saved_model( export_dir_base=FLAGS.export_dir, serving_input_receiver_fn=_serving_input_receiver_fn, checkpoint_path=checkpoint_path) tf.logging.info("Model exported to %s.", subfolder) if __name__ == "__main__": flags.mark_flag_as_required("data_dir") flags.mark_flag_as_required("task_name") flags.mark_flag_as_required("spm_model_file") flags.mark_flag_as_required("output_dir") tf.app.run()
[ "noreply@github.com" ]
nikhil-krishna.noreply@github.com
cf8cf08e7b21f0e531c165687dd44ac0c4bc71f9
478fc6021f7d26137a33ab1df102d4b518d1dda4
/myenv/bin/gunicorn
eb1bb784fc0549eaba2afbd58d51847aa2896b58
[]
no_license
ItaloPerez2019/GYM_tracker
bd45740d7a34e7238df282ad33533cc3f310e31b
622e7c85ac783ddb6196d44e726b75669e3ed525
refs/heads/master
2022-12-06T17:47:30.021706
2020-01-15T23:07:12
2020-01-15T23:07:12
234,186,109
0
0
null
2022-11-22T02:24:49
2020-01-15T22:28:39
Python
UTF-8
Python
false
false
262
#!/home/italo/Documents/gymDjango/GYM_tracker/myenv/bin/python3 # -*- coding: utf-8 -*- import re import sys from gunicorn.app.wsgiapp import run if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(run())
[ "iperezmba@gmail.com" ]
iperezmba@gmail.com
d344a2055bcf1ac850fa0ceab4a023f8f296b1a2
59a4fb975ab3739a40254f52b6c248215d6925a0
/oopnotes/observer/observer.py
7930209c6d88b73c6faf9f00e5f6f372a020de7c
[]
no_license
MargoSolo/stared-repos-p2
2356d1759dfc0d52b49e9a194bf22fa582418bcb
c88743a89805a3ffe9db4c4865aaab7fc5b03676
refs/heads/master
2023-08-23T21:44:29.686066
2021-09-11T16:32:56
2021-09-11T16:32:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,406
py
class Publisher: def __init__(self): self.observers = [] def add(self, observer): if observer not in self.observers: self.observers.append(observer) else: print(f'Failed to add: {observer}') def remove(self, observer): try: self.observers.remove(observer) except ValueError: print(f'Failed to remove: {observer}') def notify(self): [o.notify(self) for o in self.observers] class DefaultFormatter(Publisher): def __init__(self, name): Publisher.__init__(self) self.name = name self._data = 0 def __str__(self): return f"{type(self).__name__}: '{self.name}' has data = {self._data}" @property def data(self): return self._data @data.setter def data(self, new_value): try: self._data = int(new_value) except ValueError as e: print(f'Error: {e}') else: self.notify() class HexFormatterObs: def notify(self, publisher): value = hex(publisher.data) print(f"{type(self).__name__}: '{publisher.name}' has now hex data = {value}") class BinaryFormatterObs: def notify(self, publisher): value = bin(publisher.data) print(f"{type(self).__name__}: '{publisher.name}' has now bin data = {value}") def main(): df = DefaultFormatter('test1') print(df) print() hf = HexFormatterObs() df.add(hf) df.data = 3 print(df) print() bf = BinaryFormatterObs() df.add(bf) df.data = 21 print(df) if __name__ == '__main__': main()
[ "bryan.guner@gmail.com" ]
bryan.guner@gmail.com
01b6d5021de95d05dfdbea53e5955e31476f4b72
35707b0a7bcd675dac48c42adbcee4c565451a56
/book_project/page_app/admin.py
87cf72db36b2366ab410aeb1ff7fec8a4b2cd053
[ "Apache-2.0" ]
permissive
cs-fullstack-2019-fall/django-models3-cw-b-Deltonjr2
85448dc8d1d8d4734267545ea468276e35b315b0
9cdec76e2fde3c85bee47cbd34da2545e4831e92
refs/heads/master
2020-08-01T05:54:16.920148
2019-09-25T21:10:50
2019-09-25T21:10:50
210,889,428
0
0
null
null
null
null
UTF-8
Python
false
false
130
py
from django.contrib import admin from .models import Book # Register your models here. class Book: admin.site.register (Book)
[ "Demetria.Farewell@yahoo.com" ]
Demetria.Farewell@yahoo.com
fbb9a8da1a975242b6d67efcd8c9ff228d4b47ba
19b71348f25d62d1147cf45eda030788a8b988e4
/Class_OKEX_API.py
7efe8b7c8a6a81e58b3371cbdc4b7ae5b5133d7e
[]
no_license
xiaomeixw/BTC_OKEX
a655648180811f11b8af0a748f5444507ecc1d94
e58743a14d89b642483f40057a3fe23e88de6079
refs/heads/master
2020-03-23T07:18:48.174503
2018-05-23T00:38:47
2018-05-23T00:38:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,437
py
#!/usr/bin/python # -*- coding: utf-8 -*- # encoding: utf-8 """ Created on Thurs Feb 8 2018 @author: Sjymmd E-mail:1005965744@qq.com """ # from OkcoinSpotAPI import * import pandas as pd import time import datetime import warnings import numpy as np from config import apikey,secretkey warnings.filterwarnings("ignore") # okcoinRESTURL = 'www.okex.com' apikey=apikey secretkey=secretkey okcoinSpot = OKCoinSpot(okcoinRESTURL, apikey, secretkey) okcoinfuture = OKCoinFuture(okcoinRESTURL, apikey, secretkey) # class Okex_Api: def __init__(self): self._Kline={'1min':'1min','3min':'3min','5min':'5min','15min':'15min','30min':'30min','1day':'1day','3day':'3day','1week':'1week','1hour':'1hour','2hour':'2hour','4hour':'4hour','6hour':'6hour','12hour':'12hour'} self._Lenth = 24 self._KlineChosen = '4hour' self._Watch_Coin = 'snt' while True: try: self._USDT_CNY = okcoinfuture.exchange_rate()['rate'] break except: print('Get_USDT_Error~6.3') self._USDT_CNY = 6.3 break # time.sleep(60) self._EndLenth = 0 def Input(self): Str = '\n'.join(self._Kline.values()) Input_Kline = input('输入时间区间,选择如下\n %s\n(default 1hour):'%Str) if Input_Kline: self._KlineChosen = self._Kline[Input_Kline] Input_Num = input('输入数量(default 24):') if Input_Num: self._Lenth = Input_Num Input_Coin_Num = input('输入币循环数量(default %s):'%self._CoinLenth) if Input_Coin_Num: self._CoinLenth = Input_Coin_Num Input_Watch_Coin = input('输入紧盯币(default %s):'%self._Watch_Coin) if Input_Watch_Coin: self._Watch_Coin = Input_Watch_Coin def GetCoin(self): global true true = '' global false false = '' while True: try: CoinType = eval(okcoinSpot.userinfo())['info']['funds']['free'] break except: print('GetCoin_Error') continue Coin = [] for (key, value) in CoinType.items(): key = str(key + '_usdt') Coin.append(key) self._CoinLenth = len(Coin) return Coin def GetKline(self,Coin): data = pd.DataFrame(okcoinSpot.getKline(self._Kline[self._KlineChosen], self._Lenth, self._EndLenth, Coin)).iloc[:, ] data = data.iloc[:-1,:] data[5] = data[5].apply(pd.to_numeric) if data.iloc[-1, 5] < 1000: # print('上一小时成交量小于1K不计数') return 0,0,0,0,0,0 else: data = data[data[5]>=1000] data.reset_index(drop=True) Increase = (float(data.iloc[ -1, 4]) - float(data.iloc[0, 1])) / float(data.iloc[0, 1]) * 100 Increase = str('%.2f'%(Increase)+'%') price = float(data.iloc[- 1, 4]) Cny = round(price*self._USDT_CNY,2) Volume = data[5] # Volume = data.iloc[:, 5].apply(pd.to_numeric) Volume_Mean = round(Volume.mean()/1000,2) Volume_Pre = round(Volume.iloc[-1]/1000,2) Volume_Pre_P = int(((Volume.iloc[-1]/Volume.iloc[-2])-1)*100) Volume_Inc = int(((Volume_Pre-Volume_Mean)/Volume_Mean)*100) return Cny,Increase,Volume_Mean,Volume_Pre,Volume_Pre_P,Volume_Inc def GetDataframe(self,DataFrame,Coin): Cny, Increase, Volume_Mean, Volume_Pre, Volume_Pre_P,Volume_Inc = self.GetKline(Coin) Timeshrft = pd.Series({'Coin': Coin, 'Cny': Cny, 'Inc': Increase, 'Volume_Pre_K': Volume_Pre, 'Mean_Volume_K': Volume_Mean, '_VolumeS': Volume_Pre_P,'_VolumeM':Volume_Inc}) DataFrame = DataFrame.append(Timeshrft, ignore_index=True) return DataFrame def GetDataCoin(self,Coin,Clean = False): try: DataFrame = pd.DataFrame(columns=( "Coin", "Cny", "High", "Low", "Inc", "Volume_Pre_K", "Mean_Volume_K", "_VolumeS", "_VolumeM","Highest")) data = pd.DataFrame( okcoinSpot.getKline(self._Kline[self._KlineChosen], self._Lenth, self._EndLenth, Coin)).iloc[:self._Lenth, ] data[5] = data.iloc[:, 5].apply(pd.to_numeric) if Clean: data = data[data[5] >= 1000] data = data.reset_index(drop=True) Increase = (float(data.iloc[0, 4]) - float(data.iloc[0, 1])) / float(data.iloc[0, 1]) * 100 # Increase = str('%.2f' % (Increase) + '%') price = float(data.iloc[0, 4]) Hi_price = float((data.iloc[0, 2])) * self._USDT_CNY Lo_price = float((data.iloc[0, 3])) * self._USDT_CNY Cny = price * self._USDT_CNY Volume = float(data.iloc[0, 5]) Volume_Mean = Volume / 1000 Volume_Pre = Volume / 1000 Volume_Pre_P = 0 Highest = float(max([Cny])) if Volume_Mean == 0: Volume_Inc = 0 else: Volume_Inc = ((Volume_Pre - Volume_Mean) / Volume_Mean) Timeshrft = pd.Series({'Coin': Coin, 'Cny': Cny, 'High': Hi_price, 'Low': Lo_price, 'Inc': Increase, 'Volume_Pre_K': Volume_Pre, 'Mean_Volume_K': Volume_Mean, '_VolumeS': Volume_Pre_P, '_VolumeM': Volume_Inc,'Highest':Highest}) DataFrame = DataFrame.append(Timeshrft, ignore_index=True) for lenth in range(1, len(data)-1): try: Increase = (float(data.iloc[lenth, 4]) - float(data.iloc[0, 1])) / float(data.iloc[0, 1]) * 100 # Increase = str('%.2f' % (Increase) + '%') price = float(data.iloc[lenth, 4]) Hi_price = float((data.iloc[lenth, 2])) * self._USDT_CNY Lo_price = float((data.iloc[lenth, 3])) * self._USDT_CNY Cny = price * self._USDT_CNY Volume = data.iloc[:lenth + 1, 5].apply(pd.to_numeric) Volume_Mean = Volume.mean() / 1000 Volume_Pre = Volume.iloc[lenth] / 1000 Volume_Pre_P = (Volume[lenth] / Volume[lenth - 1]) - 1 Volume_Inc = ((Volume_Pre - Volume_Mean) / Volume_Mean) Highest = float(max(data.iloc[:lenth+1, 4]))*self._USDT_CNY Timeshrft = pd.Series( {'Coin': Coin, 'Cny': Cny, 'High': Hi_price, 'Low': Lo_price, 'Inc': Increase, 'Volume_Pre_K': Volume_Pre, 'Mean_Volume_K': Volume_Mean, '_VolumeS': Volume_Pre_P, '_VolumeM': Volume_Inc,'Highest':Highest}) DataFrame = DataFrame.append(Timeshrft, ignore_index=True) except: break if Clean != True: for x in range(len(DataFrame)): if np.isnan(DataFrame.iloc[x, -3]): DataFrame.iloc[x, -3] = DataFrame.iloc[x - 1, -3] elif np.isinf(DataFrame.iloc[x, -3]): DataFrame.iloc[x, -3] = 1000 if pd.isnull(DataFrame.iloc[x, -2]): DataFrame.iloc[x, -2] = 0 return DataFrame # print(DataFrame) except: time.sleep(5) print('%s error' % Coin) def Run(default = True): Main = Okex_Api() try: Coin = Main.GetCoin() now = datetime.datetime.now() now = now.strftime('%Y-%m-%d %H:%M:%S') print(now) StartTime = time.time() except: time.sleep(5) print('MainGetCoin_Error') if default : Main.Input() else: print('使用默认参数配置') DataFrame = pd.DataFrame(columns=("Coin", "Cny", "Inc", "Volume_Pre_K", "Mean_Volume_K", "_VolumeS", "_VolumeM")) for x in Coin[:int(Main._CoinLenth)]: try: DataFrame = Main.GetDataframe(DataFrame, x) except: # print('%s 读取失败' % x) continue DataFrame['Volume_Cny_K'] =DataFrame['Cny']*DataFrame['Mean_Volume_K'] Mean_Mean_Volume_K = DataFrame['Volume_Cny_K'].mean() DataFrame = DataFrame[DataFrame.Volume_Cny_K >=Mean_Mean_Volume_K] DataFrame = DataFrame[DataFrame._VolumeS >1] DataFrame = DataFrame.sort_values(by='_VolumeS', ascending=False) DataFrame.pop('Volume_Cny_K') DataFrame = DataFrame.iloc[:10, ] Watch_Coin = str(Main._Watch_Coin + '_usdt') DataFrame = Main.GetDataframe(DataFrame, Watch_Coin) DataFrame =DataFrame.drop_duplicates(['Coin']) DataFrame = DataFrame.sort_values(by='_VolumeS', ascending=False) DataFrame=DataFrame.reset_index(drop=True) for x in (DataFrame.index): for columns in (-2,-1): DataFrame.iloc[x, columns] = str('%d' %DataFrame.iloc[x, columns] + '%') if DataFrame.empty: print('没有符合的币种') wechatmsg = '没有符合的币种' else: print(DataFrame) wechatmsg =DataFrame.to_string() now = datetime.datetime.now() now = now.strftime('%Y-%m-%d %H:%M:%S') Wechat.msg(now) Wechat.msg(wechatmsg) EndTime = time.time() print('Using_Time: %d sec'%int(EndTime - StartTime)) if __name__=='__main__': from Class_Wechat import Wechat Wechat = Wechat('Initializing Robot','@@98e2290e631e5dceb8d91aab05775454e78f94640ba3ab2c7e7de23c2840f6b6') def job(): Run(False) from apscheduler.schedulers.blocking import BlockingScheduler sched = BlockingScheduler() while True: sched.add_job(job,'cron', minute = 5) # sched.add_job(job, 'interval', seconds=30) try: sched.start() except: print('定时任务出错') time.sleep(20) continue # print(okcoinSpot.ticker('btc_usdt')['ticker']['last']) # Okex_Api = Okex_Api() # Okex_Api._KlineChosen = '4hour' # data = Okex_Api.GetDataCoin('snt_usdt') # print(data)
[ "1005965744@qq.com" ]
1005965744@qq.com
0529a4a97890fe8ef779719100db7ca91eadb88c
085b9550dfbcd2d82eafa80d2c1699f9ecf50933
/scrapy/bin/scrapy
eb5d678caeeb4233a7ac24ac3b86313a3df742bd
[]
no_license
joelstanner/realpython-book2-client-side-API
f0aaa0e7fe070d5181de85df53f99fddab7aab09
0c98d847ce074b9b08474fbd145eb42fdc0ad56e
refs/heads/master
2020-04-14T14:36:26.377059
2014-07-01T08:56:47
2014-07-01T08:56:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
139
#!/Users/Joel/Documents/python_programs/real_python/book2/RealPython_book2/scrapy/bin/python from scrapy.cmdline import execute execute()
[ "eyftickid@poolbath1.33mail.com" ]
eyftickid@poolbath1.33mail.com
b3de0aab9ec822c86d8438c1bf79250104733ec8
ee0d36aec70912b99fc282f1de9f33431967cbe4
/ray_casting.py
c8ce84988f0e41c35bed389dc9c4587aa8c8a035
[]
no_license
FasePlay/RayCastingPythonBug
645268fe4652c0744c9bf2c6f2cd108d36f00aec
029a4a467390825b3764af6f670fd1ff8d48b32c
refs/heads/master
2022-12-17T00:54:32.234678
2020-09-13T18:50:26
2020-09-13T18:50:26
294,997,097
0
0
null
null
null
null
UTF-8
Python
false
false
2,442
py
import pygame from settings import * from map import world_map # def ray_casting(sc, player_pos, player_angle): # cur_angle = player_angle - HALF_FOV # xo, yo = player_pos # for ray in range(NUM_RAYS): # sin_a = math.sin(cur_angle) # cos_a = math.cos(cur_angle) # for depth in range(MAX_DEPTH): # x = xo + depth * cos_a # y = yo + depth * sin_a # if (x // TILE * TILE, y // TILE * TILE) in world_map: # depth *= math.cos(player_angle - cur_angle) # proj_height = PROJ_COEFF / depth # c = 255 / (1 + depth * depth * 0.00002) # color = (c, c // 2, c // 3) # pygame.draw.rect(sc, color, (ray * SCALE, HALF_HEIGHT - proj_height // 2, SCALE, proj_height)) # break; # # pygame.draw.line(sc, DARKGRAY, player_pos, (x, y), 2) # cur_angle += DELTA_ANGLE def mapping(a, b): return (a // TILE) * TILE, (b // TILE) * TILE def ray_casting(sc, player_pos, player_angle, texture): ox, oy = player_pos xm, ym = mapping(ox, oy) cur_angle = player_angle - HALF_FOV for ray in range(NUM_RAYS): sin_a = math.sin(cur_angle) cos_a = math.cos(cur_angle) #verticals x, dx = (xm + TILE, 1) if cos_a >= 0 else (xm, -1) for i in range(0, WIDTH, TILE): depth_v = (x - ox) / cos_a yv = oy + depth_v * sin_a if mapping(x + dx, yv) in world_map: break x += dx * TILE # horisontals y, dy = (ym + TILE, 1) if sin_a >= 0 else (ym, -1) for i in range(0, HEIGHT, TILE): depth_h = (y - oy) / sin_a xh = ox + depth_h * cos_a if mapping(xh, y + dy) in world_map: break y += dy * TILE #projection depth, offset = (depth_v, yv) if depth_v < depth_h else (depth_h, xh) offset = int(offset) % TILE depth *= math.cos(player_angle - cur_angle) depth = max(depth, 1) proj_height = min(int(PROJ_COEFF / depth), 2 * HEIGHT) wall_column = texture.subsurface(offset * TEXTURE_SCALE, 0, TEXTURE_SCALE, TEXTURE_HEIGHT) wall_column = pygame.transform.scale(wall_column, (SCALE, proj_height)) sc.blit(wall_column, (ray * SCALE, HALF_HEIGHT - proj_height // 2)) cur_angle += DELTA_ANGLE
[ "playfase228@gmail.com" ]
playfase228@gmail.com
d81e74062c20af675813df97d7c16928f0a75878
26e4bea46942b9afa5a00b9cde9a84f2cc58e3c9
/pygame/makinggamewithpygame/slidepuzzle/slidepuzzle3.py
ac2d35918d1f4d75137ff2de51b25753f155e5cb
[]
no_license
MeetLuck/works
46da692138cb9741a913d84eff6822f107510dc7
ab61175bb7e2ed5c5113bf150e0541ae18eb04c4
refs/heads/master
2020-04-12T05:40:25.143075
2017-08-21T17:01:06
2017-08-21T17:01:06
62,373,576
2
1
null
null
null
null
UTF-8
Python
false
false
2,213
py
from Component import * import winsound def main(): pygame.init() surface = pygame.display.set_mode(resolution) pygame.display.set_caption('Slide Puzzle') fpsclock = pygame.time.Clock() mainboard = Board(surface) while True: slideTo = None if mainboard.isSolved(): print 'Solved' winsound.Beep(random.randint(5,20)*50,100) surface.fill(bgcolor) mainboard.drawBoard(surface) checkForQuit() if checkForKeyUp(): slideTo = checkForKeyUp() for e in pygame.event.get(): if e.type == MOUSEBUTTONUP: boardpos = mainboard.converToBoardPos(e.pos[0],e.pos[1]) if boardpos == boardPos(None,None): pass else: # check if the clicked tile was next to the blank spot blank = mainboard.getBlankTile() if boardpos.x == blank.x + 1 and boardpos.y == blank.y: slideTo = left elif boardpos.x == blank.x - 1 and boardpos.y == blank.y: slideTo = right elif boardpos.x == blank.x and boardpos.y == blank.y + 1: slideTo = up elif boardpos.x == blank.x and boardpos.y == blank.y -1: slideTo = down if slideTo: winsound.Beep(1000,10) mainboard.makeMove(slideTo) mainboard.sequence.append(slideTo) # record the slide pygame.display.update() fpsclock.tick(fps) # --------------------------------- helper fuctions ---------------------------- def checkForQuit(): for e in pygame.event.get(QUIT): pygame.quit(); sys.exit() def checkForKeyUp(): slideTo = None for e in pygame.event.get(KEYUP): if e.key == K_ESCAPE: pygame.quit(); sys.exit() elif e.key in (K_LEFT,K_a): slideTo = left elif e.key in (K_RIGHT,K_d): slideTo = right elif e.key in (K_UP,K_w): slideTo = up elif e.key in (K_DOWN,K_s): slideTo = down pygame.event.post(e) return slideTo if __name__ == '__main__': main()
[ "withpig1994@hanmail.net" ]
withpig1994@hanmail.net
f8b91229f9a677c3675abec47966a02723258804
37b478a9da286b65cdf71de02796905aead6c6f0
/twitter.py
5b5e9d3dec1bebe2477f7dabb18b9e7a329214bb
[]
no_license
jeaniewhang/mywork
785e13652f9336558868ac422c0ae645b32d3e3f
1cf8c4812cd31a6a3834e34cbca99f5837c6064c
refs/heads/master
2020-03-24T21:57:01.321551
2018-07-31T19:53:27
2018-07-31T19:53:27
143,058,987
0
0
null
null
null
null
UTF-8
Python
false
false
514
py
import tweepy # Keys and Access Tokens CONSUMER_KEY = 'otMhi9PbrOtx6SxN7hRxu6U1J' CONSUMER_SECRET = 'oIiGNxr9H2DG89qPE5OYUdRrE7uigZrqo6KhKuffIhBHiSZxr1' ACCESS_TOKEN = '1017154796027969536-YLdIxq7kMgHvP72BT9pfWzIXnrBGsp' ACCESS_SECRET = 'Q4RyyMZMHpyfoP3y5M2qfzvXEeUOTT43F8GKgVn1NioGJ' # Authentication auth = tweepy.OAuthHandler(CONSUMER_KEY, CONSUMER_SECRET) auth.set_access_token(ACCESS_TOKEN, ACCESS_SECRET) api = tweepy.API(auth) # Update Status api.update_status("send help sos")
[ "noreply@github.com" ]
jeaniewhang.noreply@github.com
a0cd9489c8746040a371a0a2b32e669e01919a90
6e449028abb5050dc2d39cc7066dfaf752113f1e
/test/systemutil/test_itertools.py
03145b6e8456a4f4782a1f695d06e4dca8aabaaa
[]
no_license
horacn/test_python
3f88fde0b4fe7d839c58f68a063591efaf508189
e62c118f9038d0694007a85bed5e340c9b5a3433
refs/heads/master
2021-09-15T05:54:46.334840
2018-05-27T13:23:12
2018-05-27T13:23:12
127,876,523
0
0
null
null
null
null
UTF-8
Python
false
false
1,760
py
# itertools | 操作迭代对象 import itertools # natuals = itertools.count(1) # for n in natuals: # print(n) # count()会创建一个无限的迭代器,所以上述代码会打印出自然数序列,根本停不下来,只能按Ctrl+C退出 # cycle()会把传入的一个序列无限重复下去 # cs = itertools.cycle('ABC') # 注意字符串也是序列的一种 # for c in cs: # print(c) # repeat()负责把一个元素无限重复下去,不过如果提供第二个参数就可以限定重复次数 ns = itertools.repeat("A", 3) for n in ns: print(n) # 无限序列虽然可以无限迭代下去,但是通常我们会通过takewhile()等函数根据条件判断来截取出一个有限的序列 natuals = itertools.count(1) ns = itertools.takewhile(lambda x: x <= 10, natuals) print(list(ns)) # itertools提供的几个迭代器操作函数更加有用: # # chain() # chain()可以把一组迭代对象串联起来,形成一个更大的迭代器 for c in itertools.chain('ABC', 'XYZ'): print(c) # groupby() for key, group in itertools.groupby('AAABBBCCAAA'): print(key, list(group)) for key ,group in itertools.groupby('AaABbBbCcAaa', lambda c: c.upper()): print(key, list(group)) # 练习 计算圆周率 def pi(N): #直接用count即可,从1开始每项加2 odd=itertools.count(1,2) #用takewhile取出前N项 needed=itertools.takewhile(lambda x:x<2*N,odd) list=[x for x in needed] #分别求和 return (sum(4/x for x in list if x%4==1)+sum(-4/x for x in list if x%4==3)) print(pi(100000)) # 小结 # itertools模块提供的全部是处理迭代功能的函数,它们的返回值不是list,而是Iterator,只有用for循环迭代的时候才真正计算。
[ "1439293823@qq.com" ]
1439293823@qq.com
603482f7e93af7ea9da0940c4cdddbddf5a7a810
589a4d5f9e7222d9f38b92affd27acb06c7c577d
/examples/count_vec.py
4d0d8137893c9d5101ce34c06ae2d910af929565
[ "MIT" ]
permissive
Swayam003/DVC_NLP_Practice
2ba17616673ee65774e983ad90bf0f6d71583f8d
93c9c50502be0c0800b789b3ae60aa31af711218
refs/heads/main
2023-08-24T16:20:43.092705
2021-11-08T16:09:38
2021-11-08T16:09:38
422,960,473
0
0
null
null
null
null
UTF-8
Python
false
false
1,356
py
## REFERENCE https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html from sklearn.feature_extraction.text import CountVectorizer corpus = [ "apple ball cat", "ball cat dog", ] vectorizer = CountVectorizer() X = vectorizer.fit_transform(corpus) print(f"Converting it to distinct vectors: \n {vectorizer.get_feature_names_out()} ") print(f"Converting it to array format: \n {X.toarray()}") """ Terminal Solutions :- Converting it to distinct vectors: ['apple' 'ball' 'cat' 'dog'] Converting it to array format: [[1 1 1 0] [0 1 1 1]] """ max_features = 100 ## no of words you want to consider ngrams = 3 ## pair of words you want to consider #Converting text to bags of words vectorizer2 = CountVectorizer(max_features=max_features, ngram_range=(1, ngrams)) X2 = vectorizer2.fit_transform(corpus) print(f"Bags of Words: \n {vectorizer2.get_feature_names_out()}") print(f"Converting it to array format: \n {X2.toarray()}") """ Terminal Solutions :- Bags of Words: ['apple' 'apple ball' 'apple ball cat' 'ball' 'ball cat' 'ball cat dog' 'cat' 'cat dog' 'dog'] Converting it to array format: [[1 1 1 1 1 0 1 0 0] [0 0 0 1 1 1 1 1 1]] """ """ Another example of words you want to consider :- corpus = [ "Zebra apple ball cat cat", "ball cat dog elephant", "very very unique" ]"""
[ "swayam.roxx@gmail.com" ]
swayam.roxx@gmail.com
6f019df06f5a479239416d6f5a28e2f5aaaf99e2
09d4bd9f455c070c8bb8cac140b094598637ca38
/bin_plot_example.py
d84a759b9cb7718b9f7222a6f65a75aff2b27a0b
[]
no_license
RossHart/astro_codes
2f26c1179d8d5a2917c468df69308a32ab9c633c
d9c5fac26a77f2e58e32f6bc8c16e7a25d92571c
refs/heads/master
2021-01-09T20:22:29.947825
2018-07-02T10:49:05
2018-07-02T10:49:05
59,846,832
0
0
null
null
null
null
UTF-8
Python
false
false
1,430
py
from astropy.table import Table import numpy as np import math import matplotlib.pyplot as plt from scipy.stats import binned_statistic def bin_by_column(column, nbins, fixedcount=True): sorted_indices = np.argsort(column) if fixedcount: bin_edges = np.linspace(0, 1, nbins + 1) bin_edges[-1] += 1 values = np.empty(len(column)) values[sorted_indices] = np.linspace(0, 1, len(column)) bins = np.digitize(values, bins=bin_edges) else: bin_edges = np.linspace(np.min(column),np.max(column), nbins + 1) bin_edges[-1] += 1 values = column bins = np.digitize(values, bins=bin_edges) x, b, n = binned_statistic(values, column, bins=bin_edges) return x, bins def get_fraction_and_error(column_data,bins): bv = np.unique(bins) Nb = len(bv) values = np.zeros((Nb,2)) for n,b in enumerate(bv): col_z = column_data[bins == b] values[n] = [np.mean(col_z),np.std(col_z)/np.sqrt(len(col_z))] values = Table(values,names=('mean','sigma')) return values x = np.linspace(0,100,100) y = x**2 + 10*x*np.random.randn(len(x)) x_plot, bins = bin_by_column(x,10,fixedcount=True) values = get_fraction_and_error(y,bins) _ = plt.plot(x_plot,values['mean']) _ = plt.fill_between(x_plot,values['mean']-values['sigma'],values['mean']+values['sigma'],alpha=0.5) _ = plt.scatter(x,y) plt.show()
[ "ross.hart@nottingham.ac.uk" ]
ross.hart@nottingham.ac.uk
7f6042ee7b7b90ac27e0ba2be20e4ee4f6491b7d
5e4b59b62bc596caedef40640155741cc26db3c6
/日常/766.py
5fab7be3afe7dba2804d21775afb6688e23aa6b3
[]
no_license
kz33/leetcode_daily
5ebca018fdba7ff0b5ee460c26bd99d55c02e2fb
7dd23adccef128802137748e14e5106b6c63c6e0
refs/heads/master
2021-07-15T07:07:31.700699
2020-06-11T08:52:58
2020-06-11T08:52:58
167,475,079
0
0
null
null
null
null
UTF-8
Python
false
false
1,603
py
# 如果一个矩阵的每一方向由左上到右下的对角线上具有相同元素,那么这个矩阵是托普利茨矩阵。 # # 给定一个 M x N 的矩阵,当且仅当它是托普利茨矩阵时返回 True。 # # 示例 1: # # 输入: # matrix = [ # [1,2,3,4], # [5,1,2,3], # [9,5,1,2] # ] # 输出: True # 解释: # 在上述矩阵中, 其对角线为: # "[9]", "[5, 5]", "[1, 1, 1]", "[2, 2, 2]", "[3, 3]", "[4]"。 # 各条对角线上的所有元素均相同, 因此答案是True。 # 示例 2: # # 输入: # matrix = [ # [1,2], # [2,2] # ] # 输出: False # 解释: # 对角线"[1, 2]"上的元素不同。 # 说明: # # matrix 是一个包含整数的二维数组。 # matrix 的行数和列数均在 [1, 20]范围内。 # matrix[i][j] 包含的整数在 [0, 99]范围内。 # 进阶: # # 如果矩阵存储在磁盘上,并且磁盘内存是有限的,因此一次最多只能将一行矩阵加载到内存中,该怎么办? # 如果矩阵太大以至于只能一次将部分行加载到内存中,该怎么办? class Solution(object): def isToeplitzMatrix(self, matrix): """ :type matrix: List[List[int]] :rtype: bool """ l = len(matrix) if l < 2: return True for i in range(l - 1): before = matrix[i][:-1] after = matrix[i + 1][1:] if before != after: return False return True s = Solution() matrix = [ [36,59,71,15,26,82,87], [56,36,59,71,15,26,82], [15,0,36,59,71,15,26] ] a = s.isToeplitzMatrix(matrix) print(a)
[ "zhangjiekun@caicloud.io" ]
zhangjiekun@caicloud.io
40890c9e4989332177063a704eedfea45b0993ad
b0fdc04fab517802ca3277d19099c61211a609f5
/mediablog/migrations/0005_auto_20200626_1249.py
865bea71eb36f614dc089cc5fa83d8689cae614a
[]
no_license
js-tutul/Jsblog
38aff00d9be652a9f83e30ff3058acaf5a04dbed
da001fd7eac1a60e1785669f96cf2dbf73212b33
refs/heads/master
2022-12-12T16:24:38.466319
2020-09-12T17:49:14
2020-09-12T17:49:14
275,648,059
0
1
null
null
null
null
UTF-8
Python
false
false
517
py
# Generated by Django 2.2.7 on 2020-06-26 19:49 from django.conf import settings from django.db import migrations class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('mediablog', '0004_allreact'), ] operations = [ migrations.AlterUniqueTogether( name='reaction', unique_together={('user', 'post')}, ), migrations.DeleteModel( name='Allreact', ), ]
[ "jstutul90.gmail.com" ]
jstutul90.gmail.com
e56a8b3b3612b9d0e057873ce14bdc8b1cfde052
742c4381ba2d6f87e181db77a8c73d042835f381
/experiment_2/src/ml_helpers/.ipynb_checkpoints/make_ml_dataset-checkpoint.py
a2de20cff6a4f200f6d2f0b511b1b3cd9b4ea84c
[]
no_license
unhcr/Jetson
58aff3f1387c62fc6989c4cd0ed6d5fccad0767f
86e63272c700cac5734213d70f893f11e3fa9593
refs/heads/master
2023-05-25T08:28:27.987887
2023-05-17T17:40:56
2023-05-17T17:40:56
111,537,294
21
7
null
2022-12-09T08:21:44
2017-11-21T11:00:16
Jupyter Notebook
UTF-8
Python
false
false
4,822
py
import pandas as pd import numpy as np from dateutil.relativedelta import * import os def make_ml_dataset(df, current_month, lag=3, admin_level='admin1', shifts=[3,4,5,6,12]): ################################ ### Read in the data df = pd.read_csv(f"data/compiled/master_{admin_level}.csv", parse_dates=['date'], index_col=['date', 'region']) if admin_level=='admin1': admin_unit='region' ################################ ### Set up the month lags # Get list of current and future months current_month = pd.to_datetime(current_month) future_months = [ current_month + relativedelta(months=i) for i in range(1, lag+1)] # Insert extra regions and dates for lagged predictions regions = df.index.get_level_values(admin_unit) for d in future_months: for r in regions: df.ix[(d, r), :] = np.nan # df.dropna(subset=['arrivals'], inplace=True) df.sort_index(inplace=True) ################################ ### Create features constant_cols = ['distance_straight', 'shared_border', 'distance_driving_km', 'distance_driving_hr'] #i for i in df.columns if "riverlevel" in i or 'distance' in i or 'shared_border' in i] river_cols = [i for i in df.columns if "river_" in i ] varying_cols = [i for i in df.columns if i not in constant_cols and i not in river_cols] ################################ ### First, add features that don't need to be shifted # Initialize dataframe with constant columns learn_df = df[['arrivals']].copy() # One-hot encode the regions and months learn_df['region_dummies'] = learn_df.index.get_level_values(admin_unit).astype(str) learn_df['month_dummies'] = learn_df.index.get_level_values('date' ).month.astype(str) learn_df = pd.get_dummies(learn_df) # Linear time var learn_df['months_since_2010'] = (learn_df.index.get_level_values('date').to_period('M') - pd.to_datetime('2010-01-01').to_period('M')) ################################ ### Then, add the shift for the target region for n in shifts: shifted_df = df.groupby(level=admin_unit).shift(n) shifted_df.columns = [i + "_lag" + str(n) for i in shifted_df.columns] learn_df = pd.concat([learn_df, shifted_df], axis=1, join='outer') ################################ ### And, add the historical mean values (with a shift of n) for the target region hm= df.unstack(level=admin_unit).rolling(window=12, center=False).mean().stack(dropna=False) hm.columns = [i+f'_hm{lag}' for i in hm.columns] # Shift it backwards hm = hm.groupby(admin_unit).shift(lag) learn_df = pd.concat([learn_df, hm], axis=1, join='outer') ### Shifted values of the data <- for all other regions for n in shifts: shift = df[varying_cols].copy() shift.columns = [i + "_lag" + str(n) for i in shift.columns] shift = shift.unstack(level=admin_unit).shift(n) shift.columns = ['_'.join(col).strip() for col in shift.columns.values] learn_df.reset_index(level=admin_unit, inplace=True) learn_df = pd.concat([learn_df, shift], axis=1, join='outer') learn_df.set_index(admin_unit, inplace=True, append=True) ################################ ### One-hot encode the missing values cols = [i for i in learn_df.columns if i!='arrivals'] for c in cols: if learn_df[c].isna().max()==True: learn_df[f'miss_{c}'] = np.where(learn_df[c].isna(),1,0) #learn_df[c] = learn_df[c].fillna(0) ## Pare down dataset # Since 2011-01-01 start_prmn = pd.to_datetime('2011-01-01') start_df = start_prmn + pd.DateOffset(months=lag) learn_df = learn_df.loc[start_df:] # Remove columns which are completely missing learn_df.dropna(axis=1, how='all', inplace=True) # Remove columns which never vary keep = [c for c in learn_df.columns if len(learn_df[c].unique()) > 1] learn_df = learn_df[keep] # Remove columns which are missing the target variable (arrivals) and are in the past learn_df = learn_df[ (learn_df.arrivals.isna() & (learn_df.index.get_level_values('date') <= current_month))==False ].copy() ## Save learn_df.to_csv(f"ml/input_data/learn_df_{admin_level}_lag{lag}.csv") if not os.path.exists(f"ml/output_data/{admin_level}_lag{lag}/"): os.mkdir(f"ml/output_data/{admin_level}_lag{lag}/") learn_df[['arrivals']].to_csv(f'ml/output_data/{admin_level}_lag{lag}/true.csv') return
[ "khof312@gmail.com" ]
khof312@gmail.com
51fe054e2fe5d69c097f42f7ee838c0455ef17f8
c8616b2e102e87c93b2cfcaa6a226f7bdb1ec2c5
/paho_mqtt_test/mqtt_client_test.py
a435774d3e0bc1baefc40b62452d97f002785048
[]
no_license
noahcroit/MQTT_over_LoRa_pycom
cb73fb0b9a63fc7f5644e3cce7a6044442f5cfbf
1a15a8349764a8347386f871f5cf9413c16400cc
refs/heads/master
2022-03-28T04:13:40.598422
2019-12-17T08:01:46
2019-12-17T08:01:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,942
py
import paho.mqtt.client as mqtt import time ##################################################################################### # MQTT Initialize mqtt_client = mqtt.Client() MQTT_SERVER = "192.168.2.220" MQTT_PORT = 1883 # Callback function after received the mqtt message def on_message(mqttc, obj, msg): print(msg.topic + " " + str(msg.qos) + " " + str(msg.payload)) mqtt_sub_msg = msg.payload.decode('ascii') topic_dict = mqtt_subscribe_decoding(mqtt_sub_msg) print(topic_dict) print("\n") mqtt_client.on_message = on_message # Callback function after subscribed the mqtt topic def sub_callback(mqttc, obj, mid, granted_qos): print("Subscribed: " + str(mid) + " " + str(granted_qos)) mqtt_client.on_subscribe = sub_callback topic = "ICTLab_LoRa/node2" ##################################################################################### def mqtt_subscribe_decoding(mqtt_sub_message): """ This function is used to decode a subscribed message into topic's dictionary which contain all tags of lora device. @argument : mqtt_sub_message (mqtt subscribe message) @return : topic_dict (dictionary of a given subscribed topic) """ topic_dict = {} # Split comma as for each value field in LoRa message # split_comma = [( : ), ( : ), ...] split_comma = mqtt_sub_message.split(",") for i in range(len(split_comma)): try: # Split colon as for dictionary format within LoRa message # split_colon = [key, value] split_colon = split_comma[i].split(":") key = split_colon[0] value = split_colon[1] # Update dictionary of LoRa device topic_dict.update({key:value}) except Exception as e: print(e) return topic_dict mqtt_client.connect(host=MQTT_SERVER, port=MQTT_PORT, keepalive=60) mqtt_client.subscribe(topic=topic, qos=1) mqtt_client.loop_forever()
[ "jazzpiano1004@gmail.com" ]
jazzpiano1004@gmail.com
0af5d606b48acfcaece9af7088f053901fed4b5e
cacb5954c86544c1c8ca9d5054f94afba9e4bc86
/lib/config.py
3c7cd674d07fef0ce86e79cb4f36f44f9c4388d2
[]
no_license
peternara/MCNet-MobileNetv3-CenterNet
122a0fd0d224b0d90b60e7e437208c340a449d60
7b89b82bbbc12952d8bd47872570a47e842e06bc
refs/heads/master
2022-07-04T23:41:41.616275
2020-05-13T09:48:31
2020-05-13T09:48:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,535
py
import numpy as np import os import json current_path = os.path.dirname(__file__) class Config(object): def __init__(self): self._configs = {} # _Detector self._configs["_Detector"] = {} self._Detector = self._configs["_Detector"] self._Detector["max_objs"] = 256 self._Detector["num_class"] = 1 self._Detector["threshold"] = 0.8 self._Detector["down_ration"] = 4 # _DLTrain self._configs["_DLTrain"] = {} self._DLTrain = self._configs["_DLTrain"] self._DLTrain["train_with_multi_gpu"] = True self._DLTrain["hm_weight"] = 1.0 self._DLTrain["wh_weight"] = 0.1 self._DLTrain["off_weight"] = 1.0 self._DLTrain["lr"] = 0.001 self._DLTrain["batch_size"] = 12 self._DLTrain["max_epoch"] = 100 @property def Detector(self): return self._Detector @property def DLTrain(self): return self._DLTrain def update_config(self, new): for key in new: if key == "Detector": for sub_key in new["Detector"]: self._Detector[sub_key] = new["Detector"][sub_key] elif key == "DLTrain": for sub_key in new["DLTrain"]: self._DLTrain[sub_key] = new["DLTrain"][sub_key] system_config = Config() config_file_path = os.path.join(current_path, "config.json") with open(config_file_path, 'r') as f: system_config.update_config(json.load(f))
[ "liuwei79@lenovo.com" ]
liuwei79@lenovo.com
91a5e092403c3b48409a5295164f514cf3a350a4
f5d84b5b3875e2266e14337763da1ba1a7a94b3e
/www/urls.py
98a64776f07f47717f32f76d46f1fb48c721fd8a
[]
no_license
WRuping/python-webapp
ca7896473ec74fe9a4cb9ac8411f57b7bd5b08e1
6ec84c66e828546ede928a1033036ada5717a138
refs/heads/master
2021-01-09T23:38:03.606572
2018-04-09T15:07:27
2018-04-09T15:07:27
73,192,600
0
1
null
2016-11-09T15:25:40
2016-11-08T14:18:03
Python
UTF-8
Python
false
false
9,599
py
#!/usr/bin/env python #_*_ coding: utf-8 _*_ __author__ = 'LYleonard' import os, re, time, base64, hashlib, logging, markdown2 from transwarp.web import get, view, post, ctx, interceptor, seeother, notfound from apis import api,Page, APIError, APIValueError, APIPermissionError, APIResourceNotFoundError from models import User,Blog, Comment from config import configs # @view('test_users.html') # @get('/') # def test_users(): # users = User.find_all() # return dict(users=users) _COOKIE_NAME = 'awesession' _COOKIE_KEY = configs.session.secret def make_signed_cookie(id, password, max_age): # build cookie string by :id-expires-md5 expires = str(int(time.time() + (max_age or 86400))) L = [id, expires, hashlib.md5('%s-%s-%s-%s' % (id, password, expires, _COOKIE_KEY)).hexdigest()] return '-'.join(L) def parse_signed_cookie(cookie_str): try: L = cookie_str.split('-') if len(L) != 3: return None id, expires, md5 = L if int(expires) < time.time(): return None user = User.get(id) if user is None: return None if md5 != hashlib.md5('%s-%s-%s-%s' % (id, user.password, expires, _COOKIE_KEY)).hexdigest(): return None return user except: return None def check_admin(): user = ctx.request.user if user and user.admin: return raise APIPermissionError('No permission.') @interceptor('/') def user_interceptor(next): logging.info('try to bind user from session cookie...') user = None cookie = ctx.request.cookies.get(_COOKIE_NAME) if cookie: logging.info('parse session cookie...') user = parse_signed_cookie(cookie) if user: logging.info('Bind user <%s> to session...' % user.email) ctx.request.user = user return next() @interceptor('/manage/') def manage_interceptor(next): user = ctx.request.user if user and user.admin: return next() raise seeother('/signin') @view('blogs.html') @get('/') def index(): blogs, page = _get_blogs_by_page() for blog in blogs: blog.created_at = time.strftime('%Y-%m-%d %H:%M:%S %W', time.localtime(blog.created_at)) return dict(page=page, blogs=blogs, user=ctx.request.user) @view('blog.html') @get('/blog/:blog_id') def blog(blog_id): blog = Blog.get(blog_id) if blog is None: raise notfound() blog.html_content = markdown2.markdown(blog.content) blog.created_at = time.strftime('%Y-%m-%d %H:%M:%S %W', time.localtime(blog.created_at)) comments = Comment.find_by('where blog_id=? order by created_at desc limit 1000', blog_id) for comment in comments: comment.created_at = time.strftime('%Y-%m-%d %H:%M:%S %W', time.localtime(comment.created_at)) return dict(blog=blog, comments=comments, user=ctx.request.user) @view('signin.html') @get('/signin') def signin(): return dict() @get('/signout') def signout(): ctx.response.delete_cookie(_COOKIE_NAME) raise seeother('/') @api @post('/api/authenticate') def authenticate(): i = ctx.request.input(remember='') email = i.email.strip().lower() password = i.password remember = i.remember user = User.find_first('where email=?', email) if user is None: raise APIError('auth:failed', 'email', 'Invalid email.') elif user.password != password: raise APIError('auth:failed', 'password', 'Invalid password.') # make session cookie: max_age = 604800 if remember=='true' else None cookie = make_signed_cookie(user.id, user.password, max_age) ctx.response.set_cookie(_COOKIE_NAME, cookie, max_age=max_age) user.password = '******' return user _RE_EMAIL = re.compile(r'^[a-z0-9\.\-\_]+\@[a-z0-9\-\_]+(\.[a-z0-9\-\_]+){1,4}$') _RE_MD5 = re.compile(r'^[0-9a-f]{32}$') @api @post('/api/users') def register_user(): i = ctx.request.input(name='', email='', password='') name = i.name.strip() email = i.email.strip().lower() password = i.password if not name: raise APIValueError('name') if not email or not _RE_EMAIL.match(email): raise APIValueError('email') if not password or not _RE_MD5.match(password): raise APIValueError('password') user = User.find_first('where email=?', email) if user: raise APIError('register:failed', 'email', 'Email is already in use.') user = User(name=name, email=email, password=password, image='http://www.gravatar.com/avatar/%s?d=mm&s=120' % hashlib.md5(email).hexdigest()) user.insert() #make session cookie cookie = make_signed_cookie(user.id, user.password, None) ctx.response.set_cookie(_COOKIE_NAME, cookie) return user @view('register.html') @get('/register') def register(): return dict() @view('manage_blog_edit.html') @get('/manage/blogs/create') def manage_blogs_create(): return dict(id=None, action='/api/blogs', redirect='/manage/blogs', user=ctx.request.user) @api @get('/api/blogs/:blog_id') def api_get_blog(blog_id): blog = Blog.get(blog_id) if blog: return blog raise APIResourceNotFoundError('Blog') @api @post('/api/blogs') def api_create_blog(): check_admin() i = ctx.request.input(name='', summary='', content='') name = i.name.strip() summary = i.summary.strip() content = i.content.strip() if not name: raise APIValueError('name', 'name connot be empty.') if not summary: raise APIValueError('summary', 'summary connot be empty.') if not content: raise APIValueError('content', 'content cannot be empty.') user = ctx.request.user blog = Blog(user_id=user.id, user_name=user.name, name=name, summary=summary, content=content) blog.insert() return blog @api @post('/api/blogs/:blog_id') def api_update_blog(blog_id): check_admin() i = ctx.request.input(name='', summary='', content='') name = i.name.strip() summary = i.summary.strip() content = i.content.strip() if not name: raise APIValueError('name', 'name connot be empty.') if not summary: raise APIValueError('summary', 'summary cannot be empty.') if not content: raise APIValueError('content', 'connent connot be empty.') blog = Blog.get(blog_id) if blog is None: raise APIResourceNotFoundError('Blog') blog.name = name blog.summary = summary blog.content = content blog.update() return blog @api @post('/api/blogs/:blog_id/delete') def api_delete_blog(blog_id): check_admin() blog = Blog.get(blog_id) if blog is None: raise APIResourceNotFoundError('Blog') blog.delete() return dict(id=blog_id) @api @post('/api/blogs/:blog_id/comments') def api_create_blog_comment(blog_id): user = ctx.request.user if user is None: raise APIPermissionError('Need signin.') blog = Blog.get(blog_id) if blog is None: raise APIResourceNotFoundError('Blog') content = ctx.request.input(content='').content.strip() if content is None: raise APIValueError('content') c = Comment(blog_id=blog_id, user_id=user.id, user_name=user.name, user_image=user.image, content=content) c.insert() return dict(conten=c) @api @post('/api/comments/:comment_id/delete') def api_delete_commnet(comment_id): check_admin() comment = Comment.get(comment_id) if comment is None: raise APIResourceNotFoundError('Comment') comment.delete() return dict(id=comment_id) @api @get('/api/comments') def api_get_comments(): total = Comment.count_all() page = Page(total, _get_page_index()) comments = Comment.find_by('order by created_at desc limit ?,?', page.offset, page.limit) return dict(comments=comments, page=page) def _get_page_index(): page_index = 1 try: page_index = int(ctx.request.get('page', '1')) except ValueError: pass return page_index def _get_blogs_by_page(): total = Blog.count_all() page = Page(total, _get_page_index()) blogs = Blog.find_by('order by created_at desc limit ?,?', page.offset, page.limit) return blogs, page @api @get('/api/blogs') def api_get_blogs(): format = ctx.request.get('format', '') blogs, page = _get_blogs_by_page() if format == 'html': for blog in blogs: blog.content = markdown2.markdown(blog.content) return dict(blogs=blogs, page=page) @view('manage_blog_list.html') @get('/manage/blogs') def manage_blogs(): return dict(page_index=_get_page_index(), user=ctx.request.user) @api @get('/api/users') def api_get_users(): total = User.count_all() page = Page(total, _get_page_index()) users = User.find_by('order by created_at desc limit ?,?', page.offset, page.limit) for u in users: u.password = '******' return dict(users=users, page=page) @get('/manage/') def manage_index(): raise seeother('/manage/blogs') @view('manage_comment_list.html') @get('/manage/comments') def manage_comments(): return dict(page_index=_get_page_index(), user=ctx.request.user) @view('manage_blog_edit.html') @get('/manage/blogs/edit/:blog_id') def manage_blogs_edit(blog_id): blog = Blog.get(blog_id) if blog is None: raise notfound() return dict(id=blog_id, name=blog.name, summary=blog.summary, content=blog.content, action='/api/blogs/%s' % blog_id, redirect='/manage/blogs', user=ctx.request.user) @view('manage_user_list.html') @get('/manage/users') def manage_users(): return dict(page_index=_get_page_index(), user=ctx.request.user)
[ "aygxywrp@163.com" ]
aygxywrp@163.com
85e370da93086304f9695626f24e7d01e5884395
ee6c8f25f018e536a355054e7ee12415e37c8d52
/decorator/ortalamaHesabi.py
d5eb81a619483707556d4a7eead7840145d75623
[]
no_license
musttafayildirim/PythonAlistirmalar
7107ec4e2cae3c45048ca64ac220023d726a93c3
713d13e2d1533146320b166c04e3042fab8fabe0
refs/heads/master
2020-03-22T01:00:54.491773
2018-07-18T11:22:52
2018-07-18T11:22:52
139,278,093
0
0
null
null
null
null
UTF-8
Python
false
false
704
py
def ekstra(fonk): def wrapper(sayilar): ciftlerToplami = 0 ciftler = 0 teklerToplami = 0 tekler = 0 for sayi in sayilar: if(sayi % 2 == 0 ): ciftler += 1 ciftlerToplami += sayi else: tekler += 1 teklerToplami += sayi print("Teklerin ortalamasi: ",(teklerToplami/tekler)) print("Çiftlerin ortalamasi: ",(ciftlerToplami/ciftler)) fonk(sayilar) return wrapper @ekstra def ortalamaBul(sayilar): toplam = 0 for i in sayilar: toplam += i print("Genel ortalama = ",(toplam/len(sayilar))) ortalamaBul([1,2,3,5,64,86,45])
[ "musttafayildirim@gmail.com" ]
musttafayildirim@gmail.com
f2a1d22895b39efddab6483f44bd354be5426b43
06b1f5883d4625aca67423df0b80a9ab66b5a89c
/test/logging/rotating.py
5a2a1e540caac0c7ad2553fa46bb1978acf36746
[]
no_license
lariat/dqm
91c5cfd9d640d88787b5c4e8a66aa664097d623b
01e140cea3af47456c31b4932d96a0b2839b7a98
refs/heads/master
2020-05-20T04:16:21.850076
2015-11-28T14:37:57
2015-11-28T14:37:57
31,751,978
0
0
null
null
null
null
UTF-8
Python
false
false
772
py
import subprocess import logging from logging.handlers import RotatingFileHandler cmd = ['ls', '-l'] file_name = 'tmp_rotating.log' format = '%(asctime)s %(levelname)s: %(message)s' date_format = '%Y-%m-%d %H:%M:%S' formatter = logging.Formatter( fmt=format, datefmt=date_format ) handler = RotatingFileHandler( filename=file_name, mode='a', maxBytes=50000000, backupCount=10, ) handler.setFormatter(formatter) handler.setLevel(logging.INFO) logger = logging.getLogger('rotating.py') logger.setLevel(logging.INFO) logger.addHandler(handler) proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) while True: line = proc.stdout.readline() if not line: break logger.info(line.rstrip('\n'))
[ "lariatdqm@lariat-gateway00.fnal.gov" ]
lariatdqm@lariat-gateway00.fnal.gov
6ee9e1c0a30a9daab9245b8dcc1cf13d21e33500
61d34c2be1ff7cfe4635cfb0cc6f2d30890b3c67
/collab_smach/src/collab_smach/policy.py
0fc68181de1a649688ba5d3aa78e682125448961
[]
no_license
cpaxton/two_arm_collaboration
869945829afccd9720d39309b92086979f63efcc
662cfaa7eee94dfa4a1c9d7597463f2577f72021
refs/heads/master
2021-01-10T12:41:58.819199
2016-03-09T15:33:47
2016-03-09T15:33:47
53,901,153
2
0
null
null
null
null
UTF-8
Python
false
false
995
py
# Python file for policy-based controllers # These use weighted data from predicator to move around in joint space, and are the basis for our low-level controllers # This includes import rospy import roslib; roslib.load_manifest("collab_smach") import smach import smach_ros import actionlib import tf import numpy as np ''' Dimensions: 7 degrees of freedom = 7 dimensions + gripper open/closed? Variables: distance to collision distance to waypoints/grasp points relative position ''' class PolicyMoveNode(smach.State): def __init__(self, robot): smach.State.__init__(self, outcomes=['success','failure'] def execute(self, userdata): pass ''' We have another node which moves based on a predicate. Performs some move until a predicate is met. ''' class PredicateMoveNode(smach.State): def __init__(self, robot, predicate): smach.State.__init__(self, outcomes=['success','failure'] def execute(self, userdata): pass
[ "cpaxton3@jhu.edu" ]
cpaxton3@jhu.edu
fd13222758e243d11f336d7e4a598937319bf57b
2c3a01e6ec1dea20a23f0c89e8d4d9b84f179355
/networks.py
c54166431838582bdf11cdb9f019a6a2295890c5
[]
no_license
jaeikjeon9919/BayesByHypernet
39af7823200e6934fc5b16286a0597cdc2dc0247
0d2f48afeaac9bf7e6e87bfa76c7968d7a165db8
refs/heads/master
2022-02-27T23:25:36.496305
2019-11-14T10:28:27
2019-11-14T10:28:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
60,728
py
import tensorflow as tf import layers import base_layers import numpy as np import copy def get_bbh_mnist(ops, num_samples=5, sample_output=True, noise_shape=1, layer_wise=False, slice_last_dim=False, force_zero_mean=False, num_slices=1, h_units=(256, 512), aligned_noise=True): x = tf.placeholder(tf.float32, [None, 784]) y = tf.placeholder(tf.int32, [None]) adv_eps = tf.placeholder_with_default(1e-2, []) ops['x'] = x ops['y'] = y ops['adv_eps'] = adv_eps x_inp = tf.reshape(x, [-1, 28, 28, 1]) h_use_bias = True if layer_wise: if slice_last_dim: num_slices = 20 c1 = layers.BBHConvLayer('c1', 1, 20, 5, 'VALID', num_samples=num_samples, num_slices=num_slices, h_noise_shape=noise_shape, h_units=h_units, h_use_bias=h_use_bias, aligned_noise=aligned_noise) if slice_last_dim: num_slices = 50 c2 = layers.BBHConvLayer('c2', 20, 50, 5, 'VALID', num_samples=num_samples, num_slices=num_slices, h_noise_shape=noise_shape, h_units=h_units, h_use_bias=h_use_bias, aligned_noise=aligned_noise) if slice_last_dim: num_slices = 500 fc1 = layers.BBHDenseLayer('fc1', 800, 500, h_units=h_units, num_samples=num_samples, num_slices=num_slices, h_noise_shape=noise_shape, h_use_bias=h_use_bias, aligned_noise=aligned_noise) if slice_last_dim: num_slices = 10 fc2 = layers.BBHDenseLayer('fc2', 500, 10, h_units=h_units, num_samples=num_samples, num_slices=num_slices, h_noise_shape=noise_shape, h_use_bias=h_use_bias, aligned_noise=aligned_noise) else: cond_size = 130 cond = tf.eye(cond_size) weight_shapes = { 'conv1_w': [5, 5, 1, 20], 'conv1_b': [20], 'conv2_w': [5, 5, 20, 50], 'conv2_b': [50], 'fc1_w': [800, 500], 'fc1_b': [500], 'fc2_w': [500, 10], 'fc2_b': [10], } weights = {} z = tf.random_normal((num_samples, noise_shape)) z = tf.stack([tf.concat([ tf.tile(tf.expand_dims(z[s_dim], 0), [cond_size, 1]), cond], 1) for s_dim in range(num_samples)]) # z_stack = [] # for s in range(num_samples): # s_stack = [] # for c in range(cond_size): # s_stack.append(tf.concat([z[s], cond[c]], 0)) # z_stack.append(tf.stack(s_stack)) # [c, -1] # z = tf.stack(z_stack) # [noise, c, -1] tf.add_to_collection('gen_weights_conds', z) z = tf.reshape(z, [num_samples * cond_size, -1]) with tf.variable_scope(base_layers.hypernet_vs): for unit in h_units: z = tf.layers.dense(z, unit, lambda x: tf.maximum(x, 0.1 * x), use_bias=h_use_bias) z = tf.layers.dense(z, 3316, use_bias=h_use_bias) z = tf.reshape(z, [num_samples, cond_size, -1]) tf.add_to_collection('gen_weights_raw', z) # [noise, c, -1] z = tf.reshape(z, [num_samples, -1]) if force_zero_mean: z = z - tf.reduce_mean(z, 0, keepdims=True) tf.add_to_collection('gen_weights', z) tf.add_to_collection('weight_samples', z) idx = 0 for w, shape in weight_shapes.items(): end = idx + np.prod(shape) weights[w] = tf.reshape(z[:, idx:end], [num_samples, ] + shape) idx = end # conv 1 def c1(x, sample=0): x = tf.nn.conv2d(x, weights['conv1_w'][sample], [1, 1, 1, 1], 'VALID', use_cudnn_on_gpu=True) x = x + weights['conv1_b'][sample][sample] return x # conv 2 def c2(x, sample=0): x = tf.nn.conv2d(x, weights['conv2_w'][sample], [1, 1, 1, 1], 'VALID', use_cudnn_on_gpu=True) x = x + weights['conv2_b'][sample][sample] return x def fc1(x, sample=0): x = tf.matmul(x, weights['fc1_w'][sample]) x = x + weights['fc1_b'][sample] return x def fc2(x, sample=0): x = tf.matmul(x, weights['fc2_w'][sample]) x = x + weights['fc2_b'][sample] return x output_ind = [] if sample_output: output = [] for i in range(num_samples): x = c1(x_inp, i) tf.add_to_collection('c1_preact', x) x = tf.nn.relu(x) tf.add_to_collection('c1_act', x) x = tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') x = c2(x, i) tf.add_to_collection('c2_preact', x) x = tf.nn.relu(x) tf.add_to_collection('c2_act', x) x = tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') x = tf.layers.flatten(x) # fc 1 x = fc1(x, i) tf.add_to_collection('fc1_preact', x) x = tf.nn.relu(x) tf.add_to_collection('fc1_act', x) # fc 2 x = fc2(x, i) tf.add_to_collection('fc2_preact', x) output_ind.append(x) x = tf.nn.softmax(x) output.append(x) act_names = ['c1_preact', 'c1_act', 'c2_preact', 'c2_act', 'fc1_preact', 'fc1_act', 'fc2_preact'] for name in act_names: act = tf.stack(tf.get_collection(name)) mu, sig = tf.nn.moments(act, 0) tf.summary.histogram('act/{}_mu'.format(name), mu) tf.summary.histogram('act/{}_sig'.format(name), sig) x = tf.log(tf.add_n(output) / float(num_samples) + 1e-8) else: x = c1(x_inp) x = tf.nn.relu(x) x = tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') x = c2(x) x = tf.nn.relu(x) x = tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') x = tf.layers.flatten(x) # fc 1 x = fc1(x) x = tf.nn.relu(x) # fc 2 x = fc2(x) output_ind.append(x) ops['logits'] = x # build function to hold predictions pred = tf.argmax(ops['logits'], -1, output_type=tf.int32) # create tensor to calculate accuracy of predictions acc = tf.reduce_mean(tf.cast(tf.equal(pred, ops['y']), tf.float32)) ops['acc'] = acc probs = tf.nn.softmax(ops['logits']) ops['probs'] = probs ce = tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits( logits=ops['logits'], labels=ops['y'])) ops['loss'] = ce reg_losses = tf.losses.get_regularization_losses() if len(reg_losses) > 0: ops['loss'] += tf.add_n(reg_losses) loss_grads = tf.gradients(ce, ops['x'])[0] adv_data = ops['x'] + adv_eps * tf.sign(loss_grads) ops['adv_data'] = adv_data return ops def get_cifar_image(ops): x = ops['x'] is_eval = tf.placeholder(tf.bool, []) def distort_input(single_image): # Randomly crop a [height, width] section of the image. distorted_image = tf.image.resize_image_with_crop_or_pad( single_image, 36, 36) distorted_image = tf.random_crop(distorted_image, [24, 24, 3]) # Randomly flip the image horizontally. distorted_image = tf.image.random_flip_left_right(distorted_image) # Because these operations are not commutative, consider randomizing # the order their operation. # NOTE: since per_image_standardization zeros the mean and makes # the stddev unit, this likely has no effect see tensorflow#1458. distorted_image = tf.image.random_brightness( distorted_image, max_delta=63) distorted_image = tf.image.random_contrast( distorted_image, lower=0.2, upper=1.8) # Subtract off the mean and divide by the variance of the pixels. float_image = tf.image.per_image_standardization(distorted_image) # Set the shapes of tensors. float_image.set_shape([24, 24, 3]) return float_image def normalise_input(single_image): # Image processing for evaluation. # Crop the central [height, width] of the image. resized_image = tf.image.resize_image_with_crop_or_pad( single_image, 24, 24) # Subtract off the mean and divide by the variance of the pixels. float_image = tf.image.per_image_standardization(resized_image) # Set the shapes of tensors. float_image.set_shape([24, 24, 3]) return float_image x = tf.cond(is_eval, true_fn=lambda: tf.map_fn(normalise_input, x), false_fn=lambda: tf.map_fn(distort_input, x)) # x = tf.map_fn(normalise_input, x) return x, is_eval def get_bbh_cifar_resnet(ops, num_samples=5, sample_output=True, noise_shape=1, layer_wise=False, slice_last_dim=False, force_zero_mean=False, aligned_noise=True, num_slices=1, h_units=(256, 512)): x = tf.placeholder(tf.float32, [None, 32, 32, 3]) y = tf.placeholder(tf.int32, [None]) adv_eps = tf.placeholder_with_default(1e-2, []) filters = [16, 16, 32, 64] strides = [1, 2, 2, 2] num_units = 5 weight_shapes = {} weight_shapes['conv1'] = { 'w': [3, 3, 3, filters[0]], 'b': [filters[0]], } weight_shapes['last'] = { 'w': [filters[-1], 5], 'b': [5], } old_filter = filters[0] for scale, filter in enumerate(filters[1:]): s = 'scale{}'.format(scale) weight_shapes[s] = {} for res_unit in range(num_units): r = 'unit{}'.format(res_unit) weight_shapes[s][r] = { 'conv1': {'w': [3, 3, old_filter, filter], 'b': [filter]}, 'conv2': {'w': [3, 3, filter, filter], 'b': [filter]}, } old_filter = filter ops['x'] = x ops['y'] = y ops['adv_eps'] = adv_eps x, is_eval = get_cifar_image(ops) ops['is_eval'] = is_eval ops['inp_x'] = x h_use_bias = True print('Building weights for:\n{}'.format(weight_shapes)) all_layers = {} if layer_wise: w_shape = weight_shapes['conv1']['w'] if slice_last_dim: num_slices = w_shape[-1] else: num_slices = 1 all_layers['conv1'] = layers.BBHConvLayer( 'conv1', w_shape[-2], w_shape[-1], w_shape[0], num_samples=num_samples, num_slices=num_slices, h_noise_shape=noise_shape, strides=[1, strides[0], strides[0], 1], h_units=h_units, h_use_bias=h_use_bias, aligned_noise=aligned_noise) for scale, filter in enumerate(filters[1:]): s = 'scale{}'.format(scale) all_layers[s] = {} stride = strides[scale + 1] for res_unit in range(num_units): r = 'unit{}'.format(res_unit) all_layers[s][r] = {} w_shape = weight_shapes[s][r]['conv1']['w'] if slice_last_dim: num_slices = w_shape[-1] else: num_slices = 1 all_layers[s][r]['bn1'] = tf.layers.BatchNormalization() all_layers[s][r]['bn2'] = tf.layers.BatchNormalization() all_layers[s][r]['conv1'] = layers.BBHConvLayer( '{}/{}/conv1'.format(s, r), w_shape[-2], w_shape[-1], w_shape[0], num_samples=num_samples, num_slices=num_slices, h_noise_shape=noise_shape, aligned_noise=aligned_noise, strides=[1, stride, stride, 1], h_units=h_units, h_use_bias=h_use_bias) all_layers[s][r]['conv2'] = layers.BBHConvLayer( '{}/{}/conv2'.format(s, r), w_shape[-1], w_shape[-1], w_shape[0], num_samples=num_samples, num_slices=num_slices, h_noise_shape=noise_shape, aligned_noise=aligned_noise, strides=[1, 1, 1, 1], h_units=h_units, h_use_bias=h_use_bias) stride = 1 w_shape = weight_shapes['last']['w'] if slice_last_dim: num_slices = w_shape[-1] else: num_slices = 1 all_layers['last'] = layers.BBHDenseLayer( 'last', filters[-1], w_shape[-1], num_samples=num_samples, num_slices=num_slices, h_noise_shape=noise_shape, aligned_noise=aligned_noise, h_units=h_units, h_use_bias=h_use_bias) else: cond_size = 231 cond = tf.eye(cond_size) z = tf.random_normal((num_samples, noise_shape)) z = tf.stack([tf.concat([ tf.tile(tf.expand_dims(z[s_dim], 0), [cond_size, 1]), cond], 1) for s_dim in range(num_samples)]) tf.add_to_collection('gen_weights_conds', z) z = tf.reshape(z, [num_samples * cond_size, -1]) with tf.variable_scope(base_layers.hypernet_vs): for unit in h_units: z = tf.layers.dense(z, unit, lambda x: tf.maximum(x, 0.1 * x), use_bias=h_use_bias) z = tf.layers.dense(z, 2003, use_bias=h_use_bias) z = tf.reshape(z, [num_samples, cond_size, -1]) tf.add_to_collection('gen_weights_raw', z) # [noise, c, -1] z = tf.reshape(z, [num_samples, -1]) if force_zero_mean: z = z - tf.reduce_mean(z, 0, keepdims=True) tf.add_to_collection('gen_weights', z) tf.add_to_collection('weight_samples', z) all_weights = {} idx = 0 w_shape = weight_shapes['conv1']['w'] b_shape = weight_shapes['conv1']['b'] all_weights['conv1'] = {} end = idx + np.prod(w_shape) all_weights['conv1']['w'] = tf.reshape( z[:, idx:end], [num_samples, ] + w_shape) idx = end end = idx + np.prod(b_shape) all_weights['conv1']['b'] = tf.reshape( z[:, idx:end], [num_samples, ] + b_shape) def call_layer(x, sample=0): x = tf.nn.conv2d(x, all_weights['conv1']['w'][sample], [1, strides[0], strides[0], 1], 'SAME', use_cudnn_on_gpu=True) x = x + all_weights['conv1']['b'][sample] return x all_layers['conv1'] = call_layer for scale, filter in enumerate(filters[1:]): s = 'scale{}'.format(scale) all_layers[s] = {} all_weights[s] = {} stride = strides[scale + 1] for res_unit in range(num_units): r = 'unit{}'.format(res_unit) all_layers[s][r] = {} all_weights[s][r] = {} all_layers[s][r]['bn1'] = tf.layers.BatchNormalization( virtual_batch_size=1) all_layers[s][r]['bn2'] = tf.layers.BatchNormalization( virtual_batch_size=1) w_shape = weight_shapes[s][r]['conv1']['w'] b_shape = weight_shapes[s][r]['conv1']['b'] all_weights[s][r]['conv1'] = {} end = idx + np.prod(w_shape) all_weights[s][r]['conv1']['w'] = tf.reshape( z[:, idx:end], [num_samples, ] + w_shape) idx = end end = idx + np.prod(b_shape) all_weights[s][r]['conv1']['b'] = tf.reshape( z[:, idx:end], [num_samples, ] + b_shape) def call_layer(s, r, stride, x, sample=0): x = tf.nn.conv2d( x, all_weights[s][r]['conv1']['w'][sample], [1, stride, stride, 1], 'SAME', use_cudnn_on_gpu=True) x = x + all_weights[s][r]['conv1']['b'][sample] return x all_layers[s][r]['conv1'] = call_layer w_shape = weight_shapes[s][r]['conv2']['w'] b_shape = weight_shapes[s][r]['conv2']['b'] all_weights[s][r]['conv2'] = {} end = idx + np.prod(w_shape) all_weights[s][r]['conv2']['w'] = tf.reshape( z[:, idx:end], [num_samples, ] + w_shape) idx = end end = idx + np.prod(b_shape) all_weights[s][r]['conv2']['b'] = tf.reshape( z[:, idx:end], [num_samples, ] + b_shape) def call_layer(s, r, stride, x, sample=0): x = tf.nn.conv2d( x, all_weights[s][r]['conv2']['w'][sample], [1, 1, 1, 1], 'SAME', use_cudnn_on_gpu=True) x = x + all_weights[s][r]['conv2']['b'][sample] return x all_layers[s][r]['conv2'] = call_layer stride = 1 w_shape = weight_shapes['last']['w'] b_shape = weight_shapes['last']['b'] all_weights['last'] = {} end = idx + np.prod(w_shape) all_weights['last']['w'] = tf.reshape( z[:, idx:end], [num_samples, ] + w_shape) idx = end end = idx + np.prod(b_shape) all_weights['last']['b'] = tf.reshape( z[:, idx:end], [num_samples, ] + b_shape) def call_layer(x, sample=0): x = tf.matmul(x, all_weights['last']['w'][sample]) x = x + all_weights['last']['b'][sample] return x all_layers['last'] = call_layer def call_resnet(x, sample=0): def call_res_unit(x, c1, c2, bn1, bn2, strides): in_filters = x.get_shape().as_list()[-1] orig_x = x if np.prod(strides) != 1: orig_x = tf.nn.avg_pool(orig_x, ksize=strides, strides=strides, padding='VALID') with tf.variable_scope('sub_unit0', reuse=tf.AUTO_REUSE): # x = bn1(x, training=tf.logical_not(is_eval)) x = bn1(x, training=True) x = tf.nn.relu(x) x = c1(x, sample) with tf.variable_scope('sub_unit1', reuse=tf.AUTO_REUSE): # x = bn2(x, training=tf.logical_not(is_eval)) x = bn2(x, training=True) x = tf.nn.relu(x) x = c2(x, sample) # Add the residual with tf.variable_scope('sub_unit_add'): # Handle differences in input and output filter sizes out_filters = x.get_shape().as_list()[-1] if in_filters < out_filters: orig_x = tf.pad( tensor=orig_x, paddings=[[0, 0]] * ( len(x.get_shape().as_list()) - 1) + [[int(np.floor((out_filters - in_filters) / 2.)), int(np.ceil((out_filters - in_filters) / 2.))]]) x += orig_x return x x = all_layers['conv1'](x, sample) for scale, filter in enumerate(filters[1:]): s = 'scale{}'.format(scale) stride = strides[scale + 1] for res_unit in range(num_units): r = 'unit{}'.format(res_unit) with tf.variable_scope('unit_{}_{}'.format(scale, res_unit)): if not layer_wise: def c1(x, sample): return all_layers[s][r]['conv1']( s, r, stride, x, sample) def c2(x, sample): return all_layers[s][r]['conv2'](s, r, 1, x, sample) else: c1 = all_layers[s][r]['conv1'] c2 = all_layers[s][r]['conv2'] bn1 = all_layers[s][r]['bn1'] bn2 = all_layers[s][r]['bn2'] x = call_res_unit( x, c1, c2, bn1, bn2, [1, stride, stride, 1]) stride = 1 x = tf.nn.relu(x) x = tf.reduce_mean(x, axis=[1, 2], name='global_avg_pool') x = all_layers['last'](x, sample) return x output_ind = [] if sample_output: output = [] for i in range(num_samples): x = call_resnet(ops['inp_x'], i) x = tf.nn.softmax(x) output.append(x) x = tf.log(tf.add_n(output) / float(num_samples) + 1e-8) else: x = call_resnet(ops['inp_x']) output_ind.append(x) ops['logits'] = x # build function to hold predictions pred = tf.argmax(ops['logits'], -1, output_type=tf.int32) # create tensor to calculate accuracy of predictions acc = tf.reduce_mean(tf.cast(tf.equal(pred, ops['y']), tf.float32)) ops['acc'] = acc probs = tf.nn.softmax(ops['logits']) ops['probs'] = probs ce = tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits( logits=ops['logits'], labels=ops['y'])) ops['loss'] = ce reg_losses = tf.losses.get_regularization_losses() if len(reg_losses) > 0: ops['loss'] += tf.add_n(reg_losses) loss_grads = tf.gradients(ce, ops['inp_x'])[0] adv_data = ops['inp_x'] + adv_eps * tf.sign(loss_grads) ops['adv_data'] = adv_data return ops def get_bbb_mnist(ops, init_var=-15, prior_scale=1., aligned_noise=False): x = tf.placeholder(tf.float32, [None, 784]) y = tf.placeholder(tf.int32, [None]) adv_eps = tf.placeholder_with_default(1e-2, []) ops['x'] = x ops['y'] = y ops['adv_eps'] = adv_eps x_inp = tf.reshape(x, [-1, 28, 28, 1]) c1 = layers.BBBConvLayer('c1', 1, 20, 5, 'VALID', init_var=init_var, prior_scale=prior_scale, aligned_noise=aligned_noise) c2 = layers.BBBConvLayer('c2', 20, 50, 5, 'VALID', init_var=init_var, prior_scale=prior_scale, aligned_noise=aligned_noise) fc1 = layers.BBBDenseLayer('fc1', 800, 500, init_var=init_var, prior_scale=prior_scale, aligned_noise=aligned_noise) fc2 = layers.BBBDenseLayer('fc2', 500, 10, init_var=init_var, prior_scale=prior_scale) x = c1(x_inp) x = tf.nn.relu(x) x = tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') x = c2(x) x = tf.nn.relu(x) x = tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') x = tf.layers.flatten(x) x = fc1(x) x = tf.nn.relu(x) x = fc2(x) ops['logits'] = x # build function to hold predictions pred = tf.argmax(ops['logits'], -1, output_type=tf.int32) # create tensor to calculate accuracy of predictions acc = tf.reduce_mean(tf.cast(tf.equal(pred, ops['y']), tf.float32)) ops['acc'] = acc probs = tf.nn.softmax(ops['logits']) ops['probs'] = probs ce = tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits( logits=ops['logits'], labels=ops['y'])) ops['loss'] = ce reg_losses = tf.losses.get_regularization_losses() if len(reg_losses) > 0: ops['loss'] += tf.add_n(reg_losses) loss_grads = tf.gradients(ce, ops['x'])[0] adv_data = ops['x'] + adv_eps * tf.sign(loss_grads) ops['adv_data'] = adv_data return ops def get_bbb_cifar_resnet(ops, init_var=-30, prior_scale=1.): x = tf.placeholder(tf.float32, [None, 32, 32, 3]) y = tf.placeholder(tf.int32, [None]) adv_eps = tf.placeholder_with_default(1e-2, []) filters = [16, 16, 32, 64] strides = [1, 2, 2, 2] num_units = 5 weight_shapes = {} weight_shapes['conv1'] = { 'w': [3, 3, 3, filters[0]], 'b': [filters[0]], } weight_shapes['last'] = { 'w': [filters[-1], 5], 'b': [5], } old_filter = filters[0] for scale, filter in enumerate(filters[1:]): s = 'scale{}'.format(scale) weight_shapes[s] = {} for res_unit in range(num_units): r = 'unit{}'.format(res_unit) weight_shapes[s][r] = { 'conv1': {'w': [3, 3, old_filter, filter], 'b': [filter]}, 'conv2': {'w': [3, 3, filter, filter], 'b': [filter]}, } old_filter = filter ops['x'] = x ops['y'] = y ops['adv_eps'] = adv_eps x, is_eval = get_cifar_image(ops) ops['is_eval'] = is_eval ops['inp_x'] = x h_use_bias = True print('Building weights for:\n{}'.format(weight_shapes)) all_layers = {} w_shape = weight_shapes['conv1']['w'] all_layers['conv1'] = layers.BBBConvLayer( 'conv1', w_shape[-2], w_shape[-1], w_shape[0], init_var=init_var, prior_scale=prior_scale, strides=[1, strides[0], strides[0], 1],) for scale, filter in enumerate(filters[1:]): s = 'scale{}'.format(scale) all_layers[s] = {} stride = strides[scale + 1] for res_unit in range(num_units): r = 'unit{}'.format(res_unit) all_layers[s][r] = {} w_shape = weight_shapes[s][r]['conv1']['w'] all_layers[s][r]['bn1'] = tf.layers.BatchNormalization( virtual_batch_size=1) all_layers[s][r]['bn2'] = tf.layers.BatchNormalization( virtual_batch_size=1) all_layers[s][r]['conv1'] = layers.BBBConvLayer( '{}/{}/conv1'.format(s, r), w_shape[-2], w_shape[-1], w_shape[0], init_var=init_var, prior_scale=prior_scale, strides=[1, stride, stride, 1]) all_layers[s][r]['conv2'] = layers.BBBConvLayer( '{}/{}/conv2'.format(s, r), w_shape[-1], w_shape[-1], w_shape[0], init_var=init_var, prior_scale=prior_scale, strides=[1, 1, 1, 1]) stride = 1 w_shape = weight_shapes['last']['w'] all_layers['last'] = layers.BBBDenseLayer( 'last', filters[-1], w_shape[-1], init_var=init_var, prior_scale=prior_scale) def call_resnet(x, sample=0): def call_res_unit(x, c1, c2, bn1, bn2, strides): in_filters = x.get_shape().as_list()[-1] orig_x = x if np.prod(strides) != 1: orig_x = tf.nn.avg_pool(orig_x, ksize=strides, strides=strides, padding='VALID') with tf.variable_scope('sub_unit0', reuse=tf.AUTO_REUSE): # x = bn1(x, training=tf.logical_not(is_eval)) x = bn1(x, training=True) x = tf.nn.relu(x) x = c1(x, sample) with tf.variable_scope('sub_unit1', reuse=tf.AUTO_REUSE): # x = bn2(x, training=tf.logical_not(is_eval)) x = bn2(x, training=True) x = tf.nn.relu(x) x = c2(x, sample) # Add the residual with tf.variable_scope('sub_unit_add'): # Handle differences in input and output filter sizes out_filters = x.get_shape().as_list()[-1] if in_filters < out_filters: orig_x = tf.pad( tensor=orig_x, paddings=[[0, 0]] * ( len(x.get_shape().as_list()) - 1) + [[int(np.floor((out_filters - in_filters) / 2.)), int(np.ceil((out_filters - in_filters) / 2.))]]) x += orig_x return x x = all_layers['conv1'](x, sample) for scale, filter in enumerate(filters[1:]): s = 'scale{}'.format(scale) stride = strides[scale + 1] for res_unit in range(num_units): r = 'unit{}'.format(res_unit) with tf.variable_scope('unit_{}_{}'.format(scale, res_unit)): c1 = all_layers[s][r]['conv1'] c2 = all_layers[s][r]['conv2'] bn1 = all_layers[s][r]['bn1'] bn2 = all_layers[s][r]['bn2'] x = call_res_unit( x, c1, c2, bn1, bn2, [1, stride, stride, 1]) stride = 1 x = tf.nn.relu(x) x = tf.reduce_mean(x, axis=[1, 2], name='global_avg_pool') x = all_layers['last'](x, sample) return x output_ind = [] x = call_resnet(ops['inp_x']) output_ind.append(x) ops['logits'] = x # build function to hold predictions pred = tf.argmax(ops['logits'], -1, output_type=tf.int32) # create tensor to calculate accuracy of predictions acc = tf.reduce_mean(tf.cast(tf.equal(pred, ops['y']), tf.float32)) ops['acc'] = acc probs = tf.nn.softmax(ops['logits']) ops['probs'] = probs ce = tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits( logits=ops['logits'], labels=ops['y'])) ops['loss'] = ce reg_losses = tf.losses.get_regularization_losses() if len(reg_losses) > 0: ops['loss'] += tf.add_n(reg_losses) loss_grads = tf.gradients(ce, ops['inp_x'])[0] adv_data = ops['inp_x'] + adv_eps * tf.sign(loss_grads) ops['adv_data'] = adv_data return ops def get_mnf_mnist(ops): x = tf.placeholder(tf.float32, [None, 784]) y = tf.placeholder(tf.int32, [None]) adv_eps = tf.placeholder_with_default(1e-2, []) learn_p = False ops['x'] = x ops['y'] = y ops['adv_eps'] = adv_eps x_inp = tf.reshape(x, [-1, 28, 28, 1]) c1 = layers.MNFConvLayer('c1', 1, 20, 5, 'VALID', thres_var=0.5, learn_p=learn_p) c2 = layers.MNFConvLayer('c2', 20, 50, 5, 'VALID', thres_var=0.5, learn_p=learn_p) fc1 = layers.MNFDenseLayer('fc1', 800, 500, thres_var=0.5, learn_p=learn_p) fc2 = layers.MNFDenseLayer('fc2', 500, 10, thres_var=0.5, learn_p=learn_p) x = c1(x_inp) x = tf.nn.relu(x) x = tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') x = c2(x) x = tf.nn.relu(x) x = tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') x = tf.layers.flatten(x) x = fc1(x) x = tf.nn.relu(x) x = fc2(x) ops['logits'] = x # build function to hold predictions pred = tf.argmax(ops['logits'], -1, output_type=tf.int32) # create tensor to calculate accuracy of predictions acc = tf.reduce_mean(tf.cast(tf.equal(pred, ops['y']), tf.float32)) ops['acc'] = acc probs = tf.nn.softmax(ops['logits']) ops['probs'] = probs ce = tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits( logits=ops['logits'], labels=ops['y'])) ops['loss'] = ce reg_losses = tf.losses.get_regularization_losses() if len(reg_losses) > 0: ops['loss'] += tf.add_n(reg_losses) loss_grads = tf.gradients(ce, ops['x'])[0] adv_data = ops['x'] + adv_eps * tf.sign(loss_grads) ops['adv_data'] = adv_data return ops def get_mnf_cifar_resnet(ops, learn_p=False, thres_var=0.3): x = tf.placeholder(tf.float32, [None, 32, 32, 3]) y = tf.placeholder(tf.int32, [None]) adv_eps = tf.placeholder_with_default(1e-2, []) filters = [16, 16, 32, 64] strides = [1, 2, 2, 2] num_units = 5 weight_shapes = {} weight_shapes['conv1'] = { 'w': [3, 3, 3, filters[0]], 'b': [filters[0]], } weight_shapes['last'] = { 'w': [filters[-1], 5], 'b': [5], } old_filter = filters[0] for scale, filter in enumerate(filters[1:]): s = 'scale{}'.format(scale) weight_shapes[s] = {} for res_unit in range(num_units): r = 'unit{}'.format(res_unit) weight_shapes[s][r] = { 'conv1': {'w': [3, 3, old_filter, filter], 'b': [filter]}, 'conv2': {'w': [3, 3, filter, filter], 'b': [filter]}, } old_filter = filter ops['x'] = x ops['y'] = y ops['adv_eps'] = adv_eps x, is_eval = get_cifar_image(ops) ops['is_eval'] = is_eval ops['inp_x'] = x print('Building weights for:\n{}'.format(weight_shapes)) all_layers = {} w_shape = weight_shapes['conv1']['w'] all_layers['conv1'] = layers.MNFConvLayer( 'conv1', w_shape[-2], w_shape[-1], w_shape[0], learn_p=learn_p, thres_var=thres_var, strides=[1, strides[0], strides[0], 1]) for scale, filter in enumerate(filters[1:]): s = 'scale{}'.format(scale) all_layers[s] = {} stride = strides[scale + 1] for res_unit in range(num_units): r = 'unit{}'.format(res_unit) all_layers[s][r] = {} w_shape = weight_shapes[s][r]['conv1']['w'] all_layers[s][r]['bn1'] = tf.layers.BatchNormalization( virtual_batch_size=1) all_layers[s][r]['bn2'] = tf.layers.BatchNormalization( virtual_batch_size=1) all_layers[s][r]['conv1'] = layers.MNFConvLayer( '{}/{}/conv1'.format(s, r), w_shape[-2], w_shape[-1], w_shape[0], learn_p=learn_p, thres_var=thres_var, strides=[1, stride, stride, 1]) all_layers[s][r]['conv2'] = layers.MNFConvLayer( '{}/{}/conv2'.format(s, r), w_shape[-1], w_shape[-1], w_shape[0], learn_p=learn_p, thres_var=thres_var, strides=[1, 1, 1, 1]) stride = 1 w_shape = weight_shapes['last']['w'] all_layers['last'] = layers.MNFDenseLayer( 'last', filters[-1], w_shape[-1], learn_p=learn_p, thres_var=thres_var) def call_resnet(x, sample=0): def call_res_unit(x, c1, c2, bn1, bn2, strides): in_filters = x.get_shape().as_list()[-1] orig_x = x if np.prod(strides) != 1: orig_x = tf.nn.avg_pool(orig_x, ksize=strides, strides=strides, padding='VALID') with tf.variable_scope('sub_unit0', reuse=tf.AUTO_REUSE): # x = bn1(x, training=tf.logical_not(is_eval)) x = bn1(x, training=True) x = tf.nn.relu(x) x = c1(x) with tf.variable_scope('sub_unit1', reuse=tf.AUTO_REUSE): # x = bn2(x, training=tf.logical_not(is_eval)) x = bn2(x, training=True) x = tf.nn.relu(x) x = c2(x) # Add the residual with tf.variable_scope('sub_unit_add'): # Handle differences in input and output filter sizes out_filters = x.get_shape().as_list()[-1] if in_filters < out_filters: orig_x = tf.pad( tensor=orig_x, paddings=[[0, 0]] * ( len(x.get_shape().as_list()) - 1) + [[int(np.floor((out_filters - in_filters) / 2.)), int(np.ceil((out_filters - in_filters) / 2.))]]) x += orig_x return x x = all_layers['conv1'](x) for scale, filter in enumerate(filters[1:]): s = 'scale{}'.format(scale) stride = strides[scale + 1] for res_unit in range(num_units): r = 'unit{}'.format(res_unit) with tf.variable_scope('unit_{}_{}'.format(scale, res_unit)): c1 = all_layers[s][r]['conv1'] c2 = all_layers[s][r]['conv2'] bn1 = all_layers[s][r]['bn1'] bn2 = all_layers[s][r]['bn2'] x = call_res_unit( x, c1, c2, bn1, bn2, [1, stride, stride, 1]) stride = 1 x = tf.nn.relu(x) x = tf.reduce_mean(x, axis=[1, 2], name='global_avg_pool') x = all_layers['last'](x) return x output_ind = [] x = call_resnet(ops['inp_x']) output_ind.append(x) ops['logits'] = x # build function to hold predictions pred = tf.argmax(ops['logits'], -1, output_type=tf.int32) # create tensor to calculate accuracy of predictions acc = tf.reduce_mean(tf.cast(tf.equal(pred, ops['y']), tf.float32)) ops['acc'] = acc probs = tf.nn.softmax(ops['logits']) ops['probs'] = probs ce = tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits( logits=ops['logits'], labels=ops['y'])) ops['loss'] = ce loss_grads = tf.gradients(ce, ops['inp_x'])[0] adv_data = ops['inp_x'] + adv_eps * tf.sign(loss_grads) ops['adv_data'] = adv_data return ops def get_vanilla_mnist(ops, prior_scale=1.): x = tf.placeholder(tf.float32, [None, 784]) y = tf.placeholder(tf.int32, [None]) adv_eps = tf.placeholder_with_default(1e-2, []) ops['x'] = x ops['y'] = y ops['adv_eps'] = adv_eps x_inp = tf.reshape(x, [-1, 28, 28, 1]) regularizer = tf.contrib.layers.l2_regularizer(scale=1. / prior_scale) x = tf.layers.conv2d(inputs=x_inp, kernel_size=5, filters=20, activation=tf.nn.relu, padding='VALID', kernel_regularizer=regularizer, kernel_initializer=tf.variance_scaling_initializer()) x = tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') x = tf.layers.conv2d(inputs=x, kernel_size=5, filters=50, activation=tf.nn.relu, padding='VALID', kernel_regularizer=regularizer, kernel_initializer=tf.variance_scaling_initializer()) x = tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') x = tf.layers.flatten(x) x = tf.layers.dense(inputs=x, units=500, activation=tf.nn.relu, kernel_regularizer=regularizer, kernel_initializer=tf.variance_scaling_initializer()) x = tf.layers.dense(inputs=x, units=10, kernel_regularizer=regularizer, kernel_initializer=tf.variance_scaling_initializer()) ops['logits'] = x # build function to hold predictions pred = tf.argmax(ops['logits'], -1, output_type=tf.int32) # create tensor to calculate accuracy of predictions acc = tf.reduce_mean(tf.cast(tf.equal(pred, ops['y']), tf.float32)) ops['acc'] = acc probs = tf.nn.softmax(ops['logits']) ops['probs'] = probs ce = tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits( logits=ops['logits'], labels=ops['y'])) ops['loss'] = ce loss_grads = tf.gradients(ce, ops['x'])[0] adv_data = ops['x'] + adv_eps * tf.sign(loss_grads) ops['adv_data'] = adv_data return ops def get_vanilla_cifar_resnet(ops, prior_scale=1.): x = tf.placeholder(tf.float32, [None, 32, 32, 3]) y = tf.placeholder(tf.int32, [None]) adv_eps = tf.placeholder_with_default(1e-2, []) filters = [16, 16, 32, 64] strides = [1, 2, 2, 2] num_units = 5 num_classes = 5 ops['x'] = x ops['y'] = y ops['adv_eps'] = adv_eps x, is_eval = get_cifar_image(ops) ops['is_eval'] = is_eval ops['inp_x'] = x regularizer = tf.contrib.layers.l2_regularizer(scale=1. / prior_scale) def res_unit(x, out_filters, stride=1): strides = [1, stride, stride, 1] in_filters = x.get_shape().as_list()[-1] orig_x = x if np.prod(strides) != 1: orig_x = tf.nn.avg_pool(orig_x, ksize=strides, strides=strides, padding='VALID') with tf.variable_scope('sub_unit0'): x = tf.layers.batch_normalization( x, virtual_batch_size=1, training=True) x = tf.nn.relu(x) x = tf.layers.conv2d( inputs=x, kernel_size=3, filters=out_filters, padding='SAME', kernel_regularizer=regularizer, strides=stride, kernel_initializer=tf.variance_scaling_initializer()) with tf.variable_scope('sub_unit1'): x = tf.layers.batch_normalization( x, virtual_batch_size=1, training=True) x = tf.nn.relu(x) x = tf.layers.conv2d( inputs=x, kernel_size=3, filters=out_filters, padding='SAME', kernel_regularizer=regularizer, kernel_initializer=tf.variance_scaling_initializer()) # Add the residual with tf.variable_scope('sub_unit_add'): # Handle differences in input and output filter sizes if in_filters < out_filters: orig_x = tf.pad( tensor=orig_x, paddings=[[0, 0]] * (len(x.get_shape().as_list()) - 1) + [[ int(np.floor((out_filters - in_filters) / 2.)), int(np.ceil((out_filters - in_filters) / 2.))]]) x += orig_x return x # init_conv x = tf.layers.conv2d( inputs=x, kernel_size=3, filters=filters[0], padding='SAME', kernel_regularizer=regularizer, kernel_initializer=tf.variance_scaling_initializer()) for scale in range(1, len(filters)): with tf.variable_scope('unit_{}_0'.format(scale)): x = res_unit(x, filters[scale], strides[scale]) for unit in range(1, num_units): with tf.variable_scope('unit_{}_{}'.format(scale, unit)): x = res_unit(x, filters[scale]) x = tf.layers.batch_normalization(x, virtual_batch_size=1, training=True) x = tf.nn.relu(x) x = tf.reduce_mean(x, axis=[1, 2], name='global_avg_pool') # logits x = tf.layers.dense(inputs=x, units=num_classes, kernel_regularizer=regularizer, kernel_initializer=tf.variance_scaling_initializer()) ops['logits'] = x # build function to hold predictions pred = tf.argmax(ops['logits'], -1, output_type=tf.int32) # create tensor to calculate accuracy of predictions acc = tf.reduce_mean(tf.cast(tf.equal(pred, ops['y']), tf.float32)) ops['acc'] = acc probs = tf.nn.softmax(ops['logits']) ops['probs'] = probs ce = tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits( logits=ops['logits'], labels=ops['y'])) ops['loss'] = ce loss_grads = tf.gradients(ce, ops['inp_x'])[0] adv_data = ops['inp_x'] + adv_eps * tf.sign(loss_grads) ops['adv_data'] = adv_data return ops def get_dropout_mnist(ops, prior_scale=1., keep_prob=0.5): x = tf.placeholder(tf.float32, [None, 784]) y = tf.placeholder(tf.int32, [None]) adv_eps = tf.placeholder_with_default(1e-2, []) ops['x'] = x ops['y'] = y ops['adv_eps'] = adv_eps x_inp = tf.reshape(x, [-1, 28, 28, 1]) regularizer = tf.contrib.layers.l2_regularizer(scale=1. / prior_scale) x = tf.layers.conv2d(inputs=x_inp, kernel_size=5, filters=20, activation=tf.nn.relu, padding='VALID', kernel_regularizer=regularizer, kernel_initializer=tf.variance_scaling_initializer()) x = tf.nn.dropout(x, keep_prob) x = tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') x = tf.layers.conv2d(inputs=x, kernel_size=5, filters=50, activation=tf.nn.relu, padding='VALID', kernel_regularizer=regularizer, kernel_initializer=tf.variance_scaling_initializer()) x = tf.nn.dropout(x, keep_prob) x = tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') x = tf.layers.flatten(x) x = tf.layers.dense(inputs=x, units=500, activation=tf.nn.relu, kernel_regularizer=regularizer, kernel_initializer=tf.variance_scaling_initializer()) x = tf.nn.dropout(x, keep_prob) x = tf.layers.dense(inputs=x, units=10, kernel_regularizer=regularizer, kernel_initializer=tf.variance_scaling_initializer()) ops['logits'] = x # build function to hold predictions pred = tf.argmax(ops['logits'], -1, output_type=tf.int32) # create tensor to calculate accuracy of predictions acc = tf.reduce_mean(tf.cast(tf.equal(pred, ops['y']), tf.float32)) ops['acc'] = acc probs = tf.nn.softmax(ops['logits']) ops['probs'] = probs ce = tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits( logits=ops['logits'], labels=ops['y'])) ops['loss'] = ce loss_grads = tf.gradients(ce, ops['x'])[0] adv_data = ops['x'] + adv_eps * tf.sign(loss_grads) ops['adv_data'] = adv_data return ops def get_dropout_cifar_resnet(ops, prior_scale=1., keep_prob=0.5): x = tf.placeholder(tf.float32, [None, 32, 32, 3]) y = tf.placeholder(tf.int32, [None]) adv_eps = tf.placeholder_with_default(1e-2, []) filters = [16, 16, 32, 64] strides = [1, 2, 2, 2] num_units = 5 num_classes = 5 ops['x'] = x ops['y'] = y ops['adv_eps'] = adv_eps x, is_eval = get_cifar_image(ops) ops['is_eval'] = is_eval ops['inp_x'] = x regularizer = tf.contrib.layers.l2_regularizer(scale=1. / prior_scale) def res_unit(x, out_filters, stride=1): strides = [1, stride, stride, 1] in_filters = x.get_shape().as_list()[-1] orig_x = x if np.prod(strides) != 1: orig_x = tf.nn.avg_pool(orig_x, ksize=strides, strides=strides, padding='VALID') with tf.variable_scope('sub_unit0'): x = tf.layers.batch_normalization( x, virtual_batch_size=1, training=True) x = tf.nn.relu(x) x = tf.layers.conv2d( inputs=x, kernel_size=3, filters=out_filters, padding='SAME', kernel_regularizer=regularizer, strides=stride, kernel_initializer=tf.variance_scaling_initializer()) with tf.variable_scope('sub_unit1'): x = tf.layers.batch_normalization( x, virtual_batch_size=1, training=True) x = tf.nn.dropout(x, keep_prob) x = tf.nn.relu(x) x = tf.layers.conv2d( inputs=x, kernel_size=3, filters=out_filters, padding='SAME', kernel_regularizer=regularizer, kernel_initializer=tf.variance_scaling_initializer()) # Add the residual with tf.variable_scope('sub_unit_add'): # Handle differences in input and output filter sizes if in_filters < out_filters: orig_x = tf.pad( tensor=orig_x, paddings=[[0, 0]] * (len(x.get_shape().as_list()) - 1) + [[ int(np.floor((out_filters - in_filters) / 2.)), int(np.ceil((out_filters - in_filters) / 2.))]]) x += orig_x return x # init_conv x = tf.layers.conv2d( inputs=x, kernel_size=3, filters=filters[0], padding='SAME', kernel_regularizer=regularizer, kernel_initializer=tf.variance_scaling_initializer()) for scale in range(1, len(filters)): with tf.variable_scope('unit_{}_0'.format(scale)): x = res_unit(x, filters[scale], strides[scale]) for unit in range(1, num_units): with tf.variable_scope('unit_{}_{}'.format(scale, unit)): x = res_unit(x, filters[scale]) x = tf.layers.batch_normalization(x, virtual_batch_size=1, training=True) x = tf.nn.relu(x) x = tf.reduce_mean(x, axis=[1, 2], name='global_avg_pool') # logits x = tf.layers.dense(inputs=x, units=num_classes, kernel_regularizer=regularizer, kernel_initializer=tf.variance_scaling_initializer()) ops['logits'] = x # build function to hold predictions pred = tf.argmax(ops['logits'], -1, output_type=tf.int32) # create tensor to calculate accuracy of predictions acc = tf.reduce_mean(tf.cast(tf.equal(pred, ops['y']), tf.float32)) ops['acc'] = acc probs = tf.nn.softmax(ops['logits']) ops['probs'] = probs ce = tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits( logits=ops['logits'], labels=ops['y'])) ops['loss'] = ce loss_grads = tf.gradients(ce, ops['inp_x'])[0] adv_data = ops['inp_x'] + adv_eps * tf.sign(loss_grads) ops['adv_data'] = adv_data return ops def get_ensemble_mnist(ops): x = tf.placeholder(tf.float32, [None, 784]) y = tf.placeholder(tf.int32, [None]) adv_eps = tf.placeholder_with_default(1e-2, []) ops['x'] = x ops['y'] = y ops['adv_eps'] = adv_eps x_inp = tf.reshape(x, [-1, 28, 28, 1]) adv_alpha = 0.5 # adv_eps = 1e-2 ops['logits'] = [] ops['acc'] = [] ops['probs'] = [] ops['loss'] = [] ops['adv_data'] = [] ops['tot_loss'] = [] for i in range(10): with tf.variable_scope('ens{}'.format(i)): conv1 = tf.layers.Conv2D( kernel_size=5, filters=20, activation=tf.nn.relu, padding='VALID', kernel_initializer=tf.variance_scaling_initializer()) conv2 = tf.layers.Conv2D( kernel_size=5, filters=50, activation=tf.nn.relu, padding='VALID', kernel_initializer=tf.variance_scaling_initializer()) fc1 = tf.layers.Dense( units=500, activation=tf.nn.relu, kernel_initializer=tf.variance_scaling_initializer()) fc2 = tf.layers.Dense( units=10, kernel_initializer=tf.variance_scaling_initializer()) def get_out(h): h = conv1(h) h = tf.nn.max_pool(h, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') h = conv2(h) h = tf.nn.max_pool(h, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') h = tf.layers.flatten(h) h = fc1(h) h = fc2(h) return h logits = get_out(x_inp) ops['logits'].append(logits) # build function to hold predictions pred = tf.argmax(logits, -1, output_type=tf.int32) # create tensor to calculate accuracy of predictions acc = tf.reduce_mean(tf.cast(tf.equal(pred, y), tf.float32)) ops['acc'].append(acc) probs = tf.nn.softmax(logits) ops['probs'].append(probs) loss = tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=y)) ops['loss'].append(loss) loss_grads = tf.gradients(adv_alpha * loss, ops['x'])[0] adv_data = ops['x'] + adv_eps * tf.sign(loss_grads) adv_data = tf.stop_gradient(adv_data) ops['adv_data'].append(adv_data) adv_logits = get_out(tf.reshape(adv_data, [-1, 28, 28, 1])) adv_loss = tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits( logits=adv_logits, labels=y)) tot_loss = adv_alpha * loss + (1 - adv_alpha) * adv_loss ops['tot_loss'].append(tot_loss) return ops def get_ensemble_cifar_resnet(ops): x = tf.placeholder(tf.float32, [None, 32, 32, 3]) y = tf.placeholder(tf.int32, [None]) adv_eps = tf.placeholder_with_default(1e-2, []) filters = [16, 16, 32, 64] strides = [1, 2, 2, 2] num_units = 5 num_classes = 5 num_ensembles = 5 ops['x'] = x ops['y'] = y ops['adv_eps'] = adv_eps x, is_eval = get_cifar_image(ops) ops['is_eval'] = is_eval ops['inp_x'] = x adv_alpha = 0.5 # adv_eps = 1e-2 ops['logits'] = [] ops['acc'] = [] ops['probs'] = [] ops['loss'] = [] ops['adv_data'] = [] ops['tot_loss'] = [] def apply_resunit(x, layer_dict, stride): stride = [1, stride, stride, 1] in_filters = x.get_shape().as_list()[-1] orig_x = x if np.prod(stride) != 1: orig_x = tf.nn.avg_pool(orig_x, ksize=stride, strides=stride, padding='VALID') with tf.variable_scope('sub_unit0'): x = layer_dict['bn1'](x, training=True) x = tf.nn.relu(x) x = layer_dict['conv1'](x) with tf.variable_scope('sub_unit1'): x = layer_dict['bn2'](x, training=True) x = tf.nn.relu(x) x = layer_dict['conv2'](x) out_filters = x.get_shape().as_list()[-1] # Add the residual with tf.variable_scope('sub_unit_add'): # Handle differences in input and output filter sizes if in_filters < out_filters: orig_x = tf.pad( tensor=orig_x, paddings=[[0, 0]] * (len(x.get_shape().as_list()) - 1) + [[ int(np.floor((out_filters - in_filters) / 2.)), int(np.ceil((out_filters - in_filters) / 2.))]]) x += orig_x return x for i in range(num_ensembles): with tf.variable_scope('ens{}'.format(i)): init_conv = tf.layers.Conv2D( kernel_size=3, filters=filters[0], padding='SAME', kernel_initializer=tf.variance_scaling_initializer()) res_units = [] for scale in range(1, len(filters)): with tf.variable_scope('unit_{}_0'.format(scale)): res_dict = { 'bn1': tf.layers.BatchNormalization( virtual_batch_size=1, name='bn1'), 'conv1': tf.layers.Conv2D( kernel_size=3, filters=filters[scale], padding='SAME', strides=strides[scale], name='conv1', kernel_initializer=tf.variance_scaling_initializer()), 'bn2': tf.layers.BatchNormalization( virtual_batch_size=1, name='bn2'), 'conv2': tf.layers.Conv2D( kernel_size=3, filters=filters[scale], padding='SAME', name='conv2', kernel_initializer=tf.variance_scaling_initializer()) } res_units.append(res_dict) for unit in range(1, num_units): with tf.variable_scope('unit_{}_{}'.format(scale, unit)): res_dict = { 'bn1': tf.layers.BatchNormalization( virtual_batch_size=1, name='bn1'), 'conv1': tf.layers.Conv2D( kernel_size=3, filters=filters[scale], padding='SAME', name='conv1', kernel_initializer=tf.variance_scaling_initializer()), 'bn2': tf.layers.BatchNormalization( virtual_batch_size=1, name='bn2'), 'conv2': tf.layers.Conv2D( kernel_size=3, filters=filters[scale], padding='SAME', name='conv2', kernel_initializer=tf.variance_scaling_initializer()) } res_units.append(res_dict) last_bn = tf.layers.BatchNormalization( virtual_batch_size=1, name='last_bn') last = tf.layers.Dense( units=num_classes, kernel_initializer=tf.variance_scaling_initializer()) def get_out(h): h = init_conv(h) i = 0 for scale in range(1, len(filters)): with tf.variable_scope('unit_{}_0'.format(scale)): h = apply_resunit(h, res_units[i], strides[scale]) i += 1 for unit in range(1, num_units): with tf.variable_scope( 'unit_{}_{}'.format(scale, unit)): h = apply_resunit(h, res_units[i], 1) i += 1 h = last_bn(h, training=True) h = tf.nn.relu(h) h = tf.reduce_mean(h, [1, 2]) h = last(h) return h logits = get_out(x) ops['logits'].append(logits) # build function to hold predictions pred = tf.argmax(logits, -1, output_type=tf.int32) # create tensor to calculate accuracy of predictions acc = tf.reduce_mean(tf.cast(tf.equal(pred, y), tf.float32)) ops['acc'].append(acc) probs = tf.nn.softmax(logits) ops['probs'].append(probs) loss = tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=y)) ops['loss'].append(loss) loss_grads = tf.gradients(adv_alpha * loss, ops['inp_x'])[0] adv_data = ops['inp_x'] + adv_eps * tf.sign(loss_grads) adv_data = tf.stop_gradient(adv_data) ops['adv_data'].append(adv_data) adv_logits = get_out(tf.reshape(adv_data, [-1, 24, 24, 3])) adv_loss = tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits( logits=adv_logits, labels=y)) tot_loss = adv_alpha * loss + (1 - adv_alpha) * adv_loss ops['tot_loss'].append(tot_loss) return ops
[ "pawlowski.nick@gmail.com" ]
pawlowski.nick@gmail.com
2920544a3b08538848ac5deea551712b8930c829
bfd30b74333c29a73e033336b618500621416465
/app.py
4837deaa044df49844cd25366e5b7c0b8ac2afed
[]
no_license
thi131190/flaskbook
ca3a8c4e791df9631608d605bac2e8db80da90c6
cf2553ab2085d6feb161e244146f83580af6ca7b
refs/heads/master
2020-09-12T06:09:24.113898
2019-11-18T06:40:23
2019-11-18T06:40:23
222,336,656
0
0
null
null
null
null
UTF-8
Python
false
false
7,025
py
from flask_sqlalchemy import SQLAlchemy from flask import Flask, render_template, request, flash, redirect, url_for from flask_login import UserMixin, LoginManager, login_required, login_user, logout_user, current_user from werkzeug.security import generate_password_hash, check_password_hash app = Flask(__name__) app.config['SECRET_KEY'] = 'thisissecret' app.config['SEND_FILE_MAX_AGE_DEFAULT'] = 0 app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///flaskbook.db' db = SQLAlchemy(app) class User(UserMixin, db.Model): __tablename__ = 'users' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(20), nullable=False, unique=True) email = db.Column(db.String(50), nullable=False, unique=True) password = db.Column(db.String(255), nullable=False) def generate_password(self, password): self.password = generate_password_hash(password) def check_password(self, password): return check_password_hash(self.password, password) class Post(db.Model): __tablename__ = 'posts' id = db.Column(db.Integer, primary_key=True) body = db.Column(db.String, nullable=False) user_id = db.Column(db.Integer, nullable=False) created_at = db.Column(db.DateTime, server_default=db.func.now()) updated_at = db.Column( db.DateTime, server_default=db.func.now(), server_onupdate=db.func.now()) class Comment(db.Model): __tablename__ = 'comments' id = db.Column(db.Integer, primary_key=True) body = db.Column(db.String, nullable=False) user_id = db.Column(db.Integer, nullable=False) post_id = db.Column(db.Integer, nullable=False) created_at = db.Column(db.DateTime, server_default=db.func.now()) updated_at = db.Column( db.DateTime, server_default=db.func.now(), server_onupdate=db.func.now()) db.create_all() login_manager = LoginManager(app) @login_manager.user_loader def load_user(id): return User.query.get(id) login_manager.login_view = 'login' @app.route('/') @login_required def root(): posts = Post.query.all() for post in posts: post.author = User.query.filter_by(id=post.user_id).first() return render_template('views/index.html', posts=posts) @app.route('/register', methods=['POST', 'GET']) def register(): if current_user.is_authenticated: return redirect(url_for('root')) if request.method == 'POST': check_email = User.query.filter_by(email=request.form['email']).first() if check_email: flash('Email already taken', 'warning') return redirect(url_for('register')) new_user = User(name=request.form['name'], email=request.form['email']) new_user.generate_password(request.form['password']) db.session.add(new_user) db.session.commit() login_user(new_user) flash('Successfully create an account and logged in', 'success') return redirect(url_for('root')) return render_template('views/register.html') @app.route('/login', methods=['POST', 'GET']) def login(): if current_user.is_authenticated: return redirect(url_for('root')) if request.method == 'POST': user = User.query.filter_by(email=request.form['email']).first() if not user: flash('Email is not registered', 'warning') return redirect(url_for('register')) if user.check_password(request.form['password']): login_user(user) flash(f'Welcome back {current_user.name} !', 'success') return redirect(url_for('root')) flash('wrong password or email', 'warning') return redirect(url_for('login')) return render_template('views/login.html') @app.route('/logout') @login_required def logout(): logout_user() return redirect(url_for('login')) @app.route('/posts', methods=['POST']) @login_required def create_post(): if request.method == 'POST': new_post = Post(body=request.form['body'], user_id=current_user.id) db.session.add(new_post) db.session.commit() return redirect(url_for('root')) @app.route('/posts/<id>', methods=['POST', 'GET']) def single_post(id): action = request.args.get('action') post = Post.query.get(id) comments = Comment.query.filter_by(post_id=id).all() if not post: flash('Post not found', 'warning') return redirect(url_for('root')) post.author = User.query.get(post.user_id) if request.method == "POST": if post.user_id != current_user.id: flash('not allow to do this', 'danger') return redirect(url_for('root')) if action == 'delete': db.session.delete(post) db.session.commit() return redirect(url_for('root')) elif action == 'update': post.body = request.form['body'] db.session.commit() return redirect(url_for('single_post', id=id)) elif action == 'edit': return render_template('views/single_post.html', post=post, action=action) if not action: action = 'view' for comment in comments: comment.user_name = User.query.get(comment.user_id).name return render_template('views/single_post.html', post=post, action=action, comments=comments) @app.route('/posts/<id>/comments', methods=['POST', 'GET']) def create_comment(id): action = request.args.get('action') post = Post.query.get(id) if not post: flash('Post not found', 'warning') return redirect(url_for('root')) if request.method == "POST": comment = Comment(user_id=current_user.id, post_id=id, body=request.form['body']) db.session.add(comment) db.session.commit() flash('Thanks for your comment', 'success') return redirect(url_for('single_post', id=id, action='view')) @app.route('/posts/<id>/comments/<comment_id>', methods=['POST', 'GET']) def edit_comment(id, comment_id): action = request.args.get('action') comment = Comment.query.get(comment_id) print('ACTION', action) print("Method", request.method) if request.method == 'POST': if comment.user_id != current_user.id: flash('not allow to do this', 'danger') return redirect(url_for('root')) if action == 'update': print("edit comment") comment.body = request.form['body'] db.session.commit() return redirect(url_for('single_post', id=id, action='view')) if action == 'edit': return render_template('views/edit_comment.html', comment=comment, action=action) if action == 'delete': print('deleting...') db.session.delete(comment) db.session.commit() return redirect(url_for('single_post', id=comment.post_id)) return render_template('views/edit_comment.html', comment=comment) if __name__ == "__main__": app.run(debug=True)
[ "thi131190@gmail.com" ]
thi131190@gmail.com
faf55b89db37f61553e87b59a232efca0d366685
a2ab9df14b6206a0c08b8610d1b5dcc283229914
/piko_people_detection/nodes/people_monitor.py
d915479574df2f36d183932fb128212bb2921532
[]
no_license
pirobot/pi-kobuki-git
fa1d20624d709533df80ef610fb9d7d58ce36fd2
b7722b13a1e60f3b4d49e07449a3ce11314eedd2
refs/heads/master
2021-09-10T02:21:45.086523
2018-03-20T17:41:38
2018-03-20T17:41:38
126,058,637
0
1
null
null
null
null
UTF-8
Python
false
false
3,291
py
#!/usr/bin/env python """ people_monitor.py - Version 1.0 2013-11-16 Created for the Pi Robot Project: http://www.pirobot.org Copyright (c) 2013 Patrick Goebel. All rights reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details at: http://www.gnu.org/licenses/gpl.html """ import rospy import thread from cob_people_detection_msgs.msg import * from scipy.spatial.distance import euclidean from math import sqrt class PeopleMonitor(): def __init__(self): rospy.init_node("people_monitor") rate = rospy.Rate(rospy.get_param('~rate', 1.0)) self.mutex = thread.allocate_lock() rospy.Subscriber('people', DetectionArray, self.track_faces) rospy.Subscriber('recognitions', DetectionArray, self.head_or_face) self.people = {} self.unknown = list() while not rospy.is_shutdown(): message = "Known people: " message += str(self.people.keys()) message += " N Unknown: " + str(len(self.unknown)) rospy.loginfo(message) rate.sleep() def head_or_face(self, msg): self.unknown = list() for detection in msg.detections: pose = detection.pose.pose label = detection.label detector = detection.detector for i in range(len(self.unknown)): if self.already_tracking(self.unknown[i]): del self.unknown[i] if label == "UnknownHead": if not self.already_tracking(pose): self.unknown.append(pose) def track_faces(self, msg): self.people = {} for detection in msg.detections: pose = detection.pose.pose label = detection.label detector = detection.detector self.people[label] = pose def already_tracking(self, new_pose): p1 = [new_pose.position.x, new_pose.position.y, new_pose.position.z] for person, pose in self.people.iteritems(): p2 = [pose.position.x, pose.position.y, pose.position.z] distance = euclidean(p1, p2) if distance < 0.05: return True for pose in self.unknown: p2 = [pose.position.x, pose.position.y, pose.position.z] distance = euclidean(p1, p2) if distance < 0.05: return True return False if __name__ == '__main__': try: PeopleMonitor() rospy.spin() except rospy.ROSInterruptException: rospy.loginfo("People monitor node terminated.")
[ "pgoebel@stanford.edu" ]
pgoebel@stanford.edu
2e0013802194373ba713edb929f64b4edfa31ae8
b66450f669095b0ad013ea82cb1ae575b83d74c3
/Technical Questions/027 - Remove Element Array.py
d9014362820117db85074b78a6c1f00254b51644
[]
no_license
aulb/ToAsk
2649a3fad357820e3c8809816967dfb274704735
1e54c76ab9f7772316186db74496735ca1da65ce
refs/heads/master
2021-05-01T20:35:14.062678
2020-02-23T07:44:29
2020-02-23T07:44:29
33,289,737
0
0
null
null
null
null
UTF-8
Python
false
false
573
py
# https://stackoverflow.com/questions/135041/should-you-always-favor-xrange-over-range # In place # Shuffle around doesn't work because you don't exactly know where to shuffle to # def removeElement(nums, val): # for i in range(len(nums) - 1, -1, -1): # # Strategies: # # Iterate backwards # if nums[i] == val: # del nums[i] # return len(nums) # DELETING DOES NOT WORK, NOT O(n) OPERATION def removeElement(nums, val): start = 0 for i in range(len(nums)): if nums[i] != val: nums[i], nums[start] = nums[start], nums[i] start += 1 return nums[:start]
[ "aalbertuntung@gmail.com" ]
aalbertuntung@gmail.com
4a85f74b2fd518ce37380ac7e08131e78f234266
8c4469b3d97d3a6e282c26da3135e0bc3bf3e347
/aggregator/group.py
a8659130a26726c6ca6adf7cfd20294ff9aa74e2
[]
no_license
Ch4ngXu3Feng/seer
4bc9a84c83d1434ca5c776cbbea10a07b07e3a3f
afdd6a994cdf0e766fed6bc6fa275de1011a64c3
refs/heads/master
2020-04-06T22:25:53.494206
2019-01-04T13:49:51
2019-01-04T13:49:51
157,835,871
1
1
null
null
null
null
UTF-8
Python
false
false
682
py
# coding=utf-8 import pandas as pd from core.aggregator import Aggregator class GroupFieldAggregator(Aggregator): def __init__(self, aggregator: Aggregator, key: str, field: str, term: str) -> None: super().__init__(field, term) self.__aggregator: Aggregator = aggregator self.__key: str = key self.__field: str = field self.__term: str = term def method(self, name: str, data: pd.DataFrame) -> None: raise RuntimeError() def aggregate(self, name: str, data: pd.DataFrame) -> None: for name, group in data.groupby(self.__term)[self.__key, self.__field]: self.__aggregator.aggregate(name, group)
[ "changxuefeng.cxf@outlook.com" ]
changxuefeng.cxf@outlook.com
0d5f8aa4289749dc418ab3dfb54737344de7bca6
79d77f1dd01fdf554833dd2b4f6210fbb8c36d45
/src/chapter02/cars.py
6c1c9a2c83b1b31e9bfe9e610646ce77837075b9
[]
no_license
jayashelan/python-workbook
e5b87f9027b38dc53de24edc063eca673800e02d
7c71f2075a351f566e1d66908a6f044f909e5de0
refs/heads/master
2022-12-30T03:27:02.270384
2020-10-07T01:38:27
2020-10-07T01:38:27
290,066,488
0
0
null
null
null
null
UTF-8
Python
false
false
304
py
cars = ['bmw','audi','toyota','subaru'] cars.sort() print(cars) cars.sort(reverse=True) print(cars) print("Here is the original list:") print(cars) print("\nHere is the sorted list:") print(sorted(cars)) print("\nHere is the original list") print(cars) cars.reverse() print(cars) print(len(cars))
[ "jayashelan.boobalakrishnan@gmail.com" ]
jayashelan.boobalakrishnan@gmail.com
f0c7af14ec0f438e016ae178d3f0fb3f738bca99
b144c5142226de4e6254e0044a1ca0fcd4c8bbc6
/ixnetwork_restpy/testplatform/sessions/ixnetwork/topology/pcrequestmatchcriteria.py
e296cbd50daa3fbda7651bb3454ebd6967527e0f
[ "MIT" ]
permissive
iwanb/ixnetwork_restpy
fa8b885ea7a4179048ef2636c37ef7d3f6692e31
c2cb68fee9f2cc2f86660760e9e07bd06c0013c2
refs/heads/master
2021-01-02T17:27:37.096268
2020-02-11T09:28:15
2020-02-11T09:28:15
239,721,780
0
0
NOASSERTION
2020-02-11T09:20:22
2020-02-11T09:20:21
null
UTF-8
Python
false
false
6,041
py
# MIT LICENSE # # Copyright 1997 - 2019 by IXIA Keysight # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from ixnetwork_restpy.base import Base from ixnetwork_restpy.files import Files class PcRequestMatchCriteria(Base): """PCRequest Match Criteria The PcRequestMatchCriteria class encapsulates a required pcRequestMatchCriteria resource which will be retrieved from the server every time the property is accessed. """ __slots__ = () _SDM_NAME = 'pcRequestMatchCriteria' def __init__(self, parent): super(PcRequestMatchCriteria, self).__init__(parent) @property def Active(self): """Activate/Deactivate Configuration. Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('active') @property def Count(self): """Number of elements inside associated multiplier-scaled container object, e.g. number of devices inside a Device Group. Returns: number """ return self._get_attribute('count') @property def DescriptiveName(self): """Longer, more descriptive name for element. It's not guaranteed to be unique like -name-, but may offers more context Returns: str """ return self._get_attribute('descriptiveName') @property def DestIpv4Address(self): """Destination IPv4 Address Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('destIpv4Address') @property def DestIpv6Address(self): """Destination IPv6 Address Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('destIpv6Address') @property def IpVersion(self): """IP Version Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('ipVersion') @property def IroType(self): """Match IRO Option Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('iroType') @property def MatchEndPoints(self): """Indicates Whether response parameters will be matched based on endpoints in the PCReq messaged received from PCC. Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('matchEndPoints') @property def Name(self): """Name of NGPF element, guaranteed to be unique in Scenario Returns: str """ return self._get_attribute('name') @Name.setter def Name(self, value): self._set_attribute('name', value) @property def SrcIpv4Address(self): """Source IPv4 Address Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('srcIpv4Address') @property def SrcIpv6Address(self): """Source IPv6 Address Returns: obj(ixnetwork_restpy.multivalue.Multivalue) """ return self._get_attribute('srcIpv6Address') def update(self, Name=None): """Updates a child instance of pcRequestMatchCriteria on the server. This method has some named parameters with a type: obj (Multivalue). The Multivalue class has documentation that details the possible values for those named parameters. Args: Name (str): Name of NGPF element, guaranteed to be unique in Scenario Raises: ServerError: The server has encountered an uncategorized error condition """ self._update(locals()) def get_device_ids(self, PortNames=None, Active=None, DestIpv4Address=None, DestIpv6Address=None, IpVersion=None, IroType=None, MatchEndPoints=None, SrcIpv4Address=None, SrcIpv6Address=None): """Base class infrastructure that gets a list of pcRequestMatchCriteria device ids encapsulated by this object. Use the optional regex parameters in the method to refine the list of device ids encapsulated by this object. Args: PortNames (str): optional regex of port names Active (str): optional regex of active DestIpv4Address (str): optional regex of destIpv4Address DestIpv6Address (str): optional regex of destIpv6Address IpVersion (str): optional regex of ipVersion IroType (str): optional regex of iroType MatchEndPoints (str): optional regex of matchEndPoints SrcIpv4Address (str): optional regex of srcIpv4Address SrcIpv6Address (str): optional regex of srcIpv6Address Returns: list(int): A list of device ids that meets the regex criteria provided in the method parameters Raises: ServerError: The server has encountered an uncategorized error condition """ return self._get_ngpf_device_ids(locals())
[ "srvc_cm_packages@keysight.com" ]
srvc_cm_packages@keysight.com
c3e6146d0f55c6b931a02a3ba658b48dfe28ae34
7219cc709375174a17364574c80cf670b23e0fd1
/lists/tests/test_views.py
842f95a5576f3152db7c67dcec046ec808fd0b34
[]
no_license
juliatiemi/tdd-project
8853c4fb3f704e8db15dd5f508c04be9d6afc5bc
48ff95341eb3892d65e9f00be97833a341038c1d
refs/heads/master
2021-03-13T15:14:30.255370
2020-10-24T18:34:37
2020-10-24T18:34:37
246,691,183
0
1
null
null
null
null
UTF-8
Python
false
false
4,696
py
from django.test import TestCase from lists.models import Item, List from django.utils.html import escape class ListViewTest(TestCase): def test_uses_list_template(self): my_list = List.objects.create() response = self.client.get(f'/lists/{my_list.id}/') self.assertTemplateUsed(response, 'list.html') def test_displays_only_items_for_that_list(self): correct_list = List.objects.create() Item.objects.create(text='itemey 1', list=correct_list) Item.objects.create(text='itemey 2', list=correct_list) other_list = List.objects.create() Item.objects.create(text='other list item 1', list=other_list) Item.objects.create(text='other list item 2', list=other_list) response = self.client.get(f'/lists/{correct_list.id}/') self.assertContains(response, 'itemey 1') self.assertContains(response, 'itemey 2') self.assertNotContains(response, 'other list item 1') self.assertNotContains(response, 'other list item 2') def test_passes_correct_list_to_template(self): other_list = List.objects.create() correct_list = List.objects.create() response = self.client.get(f'/lists/{correct_list.id}/') self.assertEqual(response.context['list'], correct_list) def test_can_save_a_POST_request_to_an_existing_list(self): other_list = List.objects.create() correct_list = List.objects.create() self.client.post( f'/lists/{correct_list.id}/', data={'item_text': 'A new item for an existing list'} ) self.assertEqual(Item.objects.count(), 1) new_item = Item.objects.first() self.assertEqual(new_item.text, 'A new item for an existing list') self.assertEqual(new_item.list, correct_list) def test_redirects_to_list_view(self): other_list = List.objects.create() correct_list = List.objects.create() response = self.client.post( f'/lists/{correct_list.id}/', data={'item_text': 'A new item for an existing list'} ) self.assertRedirects(response, f'/lists/{correct_list.id}/') def test_validation_errors_end_up_on_lists_page(self): list_ = List.objects.create() response = self.client.post( f'/lists/{list_.id}/', data={'item_text': ''} ) self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'list.html') expected_error = escape("You can't have an empty list item") self.assertContains(response, expected_error) class ListAndItemModelsTest(TestCase): def test_saving_and_retrieving_items(self): my_list = List() my_list.save() first_item = Item() first_item.text = 'O primeiro item' first_item.list = my_list first_item.save() second_item = Item() second_item.text = 'O segundo item' second_item.list = my_list second_item.save() saved_list = List.objects.first() self.assertEqual(saved_list, my_list) saved_items = Item.objects.all() self.assertEqual(saved_items.count(), 2) first_saved_item = saved_items[0] second_saved_item = saved_items[1] self.assertEqual(first_saved_item.text, 'O primeiro item') self.assertEqual(first_saved_item.list, my_list) self.assertEqual(second_saved_item.text, 'O segundo item') self.assertEqual(second_saved_item.list, my_list) class NewListTest(TestCase): def test_can_save_a_POST_request(self): self.client.post('/lists/new', data={'item_text': 'A new list item'}) self.assertEqual(Item.objects.count(), 1) new_item = Item.objects.first() self.assertEqual(new_item.text, 'A new list item') def test_redirects_after_POST(self): response = self.client.post( '/lists/new', data={'item_text': 'A new list item'}) new_list = List.objects.first() self.assertRedirects(response, f'/lists/{new_list.id}/') def test_validation_errors_are_sent_back_to_home_page_template(self): response = self.client.post('/lists/new', data={'item_text': ''}) self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'home.html') expected_error = escape("You can't have an empty list item") self.assertContains(response, expected_error) def test_invalid_list_items_arent_saved(self): self.client.post('/lists/new', data={'item_text': ''}) self.assertEqual(List.objects.count(), 0) self.assertEqual(Item.objects.count(), 0)
[ "julia.tiemi@bagy.com.br" ]
julia.tiemi@bagy.com.br
18beb3d74496e14e2cf7136d77c9932a29d5ef61
460a1a125c9ae05dc0056b3b2369464868b8cee2
/ebook/forms.py
fb5ba232d7a5c5c0a1c8d02b9e250675de63242e
[]
no_license
makyo-old/treebook
8fd7b258ede9e630f6840c64c2fe64aeb3257b89
c60fa421ed286ff722a390ff96b8a09145cd51c8
refs/heads/master
2020-04-21T03:15:03.640954
2010-10-14T04:36:16
2010-10-14T04:36:16
169,279,252
0
0
null
null
null
null
UTF-8
Python
false
false
497
py
from django import forms from ebook.models import * class ChapterForm(forms.ModelForm): body = forms.CharField(widget = forms.Textarea({'rows': 25, 'cols': 78})) class Meta: model = Manifesto exclude = ('owner', 'views', 'stars', 'featured', 'weight', 'ctime') class CommentForm(forms.ModelForm): body = forms.CharField(widget = forms.Textarea({'cols': 78})) class Meta: model = Comment exclude = ('post', 'parent', 'ctime', 'owner', 'published')
[ "mjs@mjs-svc.com" ]
mjs@mjs-svc.com
5c3fb98bb4ef83fd5261cc0490e8816e9d1edbcd
2a86af7298ad3497814cd605c8961d18730d1a05
/emitr/migrations/0008_query_notified.py
4d12554f0649a8a904724687f1e02eccc8dc808a
[]
no_license
mdakibg/SanskarEmitr
edeaec65cbc16e25ba208a18e45e5dc486adcc78
3e6d1d98db10247981ea594aae80ee822528242e
refs/heads/master
2023-02-25T04:20:43.353013
2021-01-28T10:41:04
2021-01-28T10:41:04
319,060,108
0
0
null
null
null
null
UTF-8
Python
false
false
369
py
# Generated by Django 3.1.2 on 2020-11-25 11:36 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('emitr', '0007_query'), ] operations = [ migrations.AddField( model_name='query', name='notified', field=models.IntegerField(default=0), ), ]
[ "mohdakibgour@gmail.com" ]
mohdakibgour@gmail.com
40f070590e60bf8d398a6a5af723c465aed2a574
82b946da326148a3c1c1f687f96c0da165bb2c15
/sdk/python/pulumi_azure_native/containerregistry/v20201101preview/get_import_pipeline.py
50b25e7dbdd67fb56dc51ebfb0be2215a0287835
[ "Apache-2.0", "BSD-3-Clause" ]
permissive
morrell/pulumi-azure-native
3916e978382366607f3df0a669f24cb16293ff5e
cd3ba4b9cb08c5e1df7674c1c71695b80e443f08
refs/heads/master
2023-06-20T19:37:05.414924
2021-07-19T20:57:53
2021-07-19T20:57:53
387,815,163
0
0
Apache-2.0
2021-07-20T14:18:29
2021-07-20T14:18:28
null
UTF-8
Python
false
false
6,696
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs __all__ = [ 'GetImportPipelineResult', 'AwaitableGetImportPipelineResult', 'get_import_pipeline', ] @pulumi.output_type class GetImportPipelineResult: """ An object that represents an import pipeline for a container registry. """ def __init__(__self__, id=None, identity=None, location=None, name=None, options=None, provisioning_state=None, source=None, system_data=None, trigger=None, type=None): if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if identity and not isinstance(identity, dict): raise TypeError("Expected argument 'identity' to be a dict") pulumi.set(__self__, "identity", identity) if location and not isinstance(location, str): raise TypeError("Expected argument 'location' to be a str") pulumi.set(__self__, "location", location) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if options and not isinstance(options, list): raise TypeError("Expected argument 'options' to be a list") pulumi.set(__self__, "options", options) if provisioning_state and not isinstance(provisioning_state, str): raise TypeError("Expected argument 'provisioning_state' to be a str") pulumi.set(__self__, "provisioning_state", provisioning_state) if source and not isinstance(source, dict): raise TypeError("Expected argument 'source' to be a dict") pulumi.set(__self__, "source", source) if system_data and not isinstance(system_data, dict): raise TypeError("Expected argument 'system_data' to be a dict") pulumi.set(__self__, "system_data", system_data) if trigger and not isinstance(trigger, dict): raise TypeError("Expected argument 'trigger' to be a dict") pulumi.set(__self__, "trigger", trigger) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) @property @pulumi.getter def id(self) -> str: """ The resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def identity(self) -> Optional['outputs.IdentityPropertiesResponse']: """ The identity of the import pipeline. """ return pulumi.get(self, "identity") @property @pulumi.getter def location(self) -> Optional[str]: """ The location of the import pipeline. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> str: """ The name of the resource. """ return pulumi.get(self, "name") @property @pulumi.getter def options(self) -> Optional[Sequence[str]]: """ The list of all options configured for the pipeline. """ return pulumi.get(self, "options") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> str: """ The provisioning state of the pipeline at the time the operation was called. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter def source(self) -> 'outputs.ImportPipelineSourcePropertiesResponse': """ The source properties of the import pipeline. """ return pulumi.get(self, "source") @property @pulumi.getter(name="systemData") def system_data(self) -> 'outputs.SystemDataResponse': """ Metadata pertaining to creation and last modification of the resource. """ return pulumi.get(self, "system_data") @property @pulumi.getter def trigger(self) -> Optional['outputs.PipelineTriggerPropertiesResponse']: """ The properties that describe the trigger of the import pipeline. """ return pulumi.get(self, "trigger") @property @pulumi.getter def type(self) -> str: """ The type of the resource. """ return pulumi.get(self, "type") class AwaitableGetImportPipelineResult(GetImportPipelineResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetImportPipelineResult( id=self.id, identity=self.identity, location=self.location, name=self.name, options=self.options, provisioning_state=self.provisioning_state, source=self.source, system_data=self.system_data, trigger=self.trigger, type=self.type) def get_import_pipeline(import_pipeline_name: Optional[str] = None, registry_name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetImportPipelineResult: """ An object that represents an import pipeline for a container registry. :param str import_pipeline_name: The name of the import pipeline. :param str registry_name: The name of the container registry. :param str resource_group_name: The name of the resource group to which the container registry belongs. """ __args__ = dict() __args__['importPipelineName'] = import_pipeline_name __args__['registryName'] = registry_name __args__['resourceGroupName'] = resource_group_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:containerregistry/v20201101preview:getImportPipeline', __args__, opts=opts, typ=GetImportPipelineResult).value return AwaitableGetImportPipelineResult( id=__ret__.id, identity=__ret__.identity, location=__ret__.location, name=__ret__.name, options=__ret__.options, provisioning_state=__ret__.provisioning_state, source=__ret__.source, system_data=__ret__.system_data, trigger=__ret__.trigger, type=__ret__.type)
[ "noreply@github.com" ]
morrell.noreply@github.com
c3540c272c47b4195180a168ca75db6c5b50af69
93ca08c158960f67e81576dfa48a0d110af13f33
/flask_app/sipaccounts/sipaccount.py
9d9748d0629e86ec4eb35e683174bf2d0b67c2c4
[]
no_license
alochym01/freeswitch_flask_gui
be49d869697b67d33c326ea01f3a1ffd75ccc4da
5a28ea256f7cc759f5bbf71230baab514d1b6abf
refs/heads/master
2020-03-09T01:26:24.954737
2018-11-12T15:53:59
2018-11-12T15:53:59
128,514,424
1
4
null
null
null
null
UTF-8
Python
false
false
4,195
py
from flask_app.sipaccounts import sip_account from flask_app.sipaccounts.sipform import SipAccount from flask_app.models.sip_account import SipAcc from flask import render_template, redirect, url_for, flash, request from flask_login import login_required from flask_app import db import redis @sip_account.route('/') @login_required def index(): sipaccs = SipAcc.query.all() return render_template('sipaccs/index.html', sipaccs=sipaccs) @sip_account.route('/create') @login_required def create(): form = SipAccount() return render_template('sipaccs/create.html', form=form) @sip_account.route('/store', methods=['POST']) @login_required def store(): form = SipAccount() if form.validate_on_submit(): sipacc = SipAcc.query.filter_by(username=form.username.data).first() if sipacc: flash('username is already used') return redirect(url_for('sip-account.create')) print(form) # todo should be save as a record in database sip = SipAcc( username=form.username.data, domain=form.domain.data, toll_allow=form.toll_allow.data, context=form.context.data, max_calls=form.max_calls.data, caller_number=form.caller_number.data, outbound_caller_number=form.outbound_caller_number.data, caller_name=form.caller_name.data, outbound_caller_name=form.outbound_caller_name.data ) sip.set_password(form.password.data) db.session.add(sip) db.session.commit() flash('Congratulations, Created successfully!') return redirect(url_for('sip-account.index')) # debug errors of form submit # https://stackoverflow.com/questions/6463035/wtforms-getting-the-errors # for field, errors in form.errors.items(): # print(form[field].label) # print(', '.join(errors)) return redirect(url_for('sip-account.create', form=form)) @sip_account.route('/show/<int:id>') @login_required def show(id): sipacc = SipAcc.query.filter_by(id=id).first() return render_template('sipaccs/show.html', sipacc=sipacc) @sip_account.route('/edit/<int:id>') @login_required def edit(id): form = SipAccount() sipacc = SipAcc.query.filter_by(id=id).first() return render_template('sipaccs/edit.html', sipacc=sipacc, form=form) @sip_account.route('/update/<int:id>', methods=['POST']) @login_required def update(id): form = SipAccount() sipacc = SipAcc.query.filter_by(id=id).first() if form.validate_on_submit(): sipacc.username=form.username.data sipacc.domain=form.domain.data sipacc.toll_allow=form.toll_allow.data sipacc.context=form.context.data sipacc.max_calls=form.max_calls.data sipacc.caller_number=form.caller_number.data sipacc.outbound_caller_number=form.outbound_caller_number.data sipacc.caller_name=form.caller_name.data sipacc.outbound_caller_name=form.outbound_caller_name.data sipacc.set_password(form.password.data) db.session.commit() redis_key = sipacc.username + '_' + sipacc.domain try: r = redis.StrictRedis(host='localhost', port=6379, db=0) r.delete(redis_key) r.connection_pool.disconnect() except: pass flash('Update successfully') return redirect(url_for('sip-account.index')) return render_template('sipaccs/edit.html', sipacc=sipacc, form=form) @sip_account.route('/delete/<int:id>', methods=['GET', 'POST']) @login_required def delete(id): form = SipAccount() sipacc = SipAcc.query.filter_by(id=id).first() if request.method == 'GET': return render_template('sipaccs/delete.html', sipacc=sipacc, form=form) redis_key = sipacc.username + '_' + sipacc.domain try: r = redis.StrictRedis(host='localhost', port=6379, db=0) r.delete(redis_key) r.connection_pool.disconnect() except: pass db.session.delete(sipacc) db.session.commit() flash('Delete successfully') return redirect(url_for('sip-account.index'))
[ "hadn@ubuntu" ]
hadn@ubuntu
54b20d9bc5ec32b30a49e6debd290d9196e93678
97e37192d4a695777c538596086c0be826b721e1
/tools/train.py
458b2151ceb9b534e946cb19704fd2931ea57c23
[ "Apache-2.0" ]
permissive
Sayyam-Jain/vedastr
1b587adc1ff4dc79ab7acc71d7ee08fe600c8933
83511a408b68c264561a30daff5154cd0148bebd
refs/heads/master
2022-12-13T08:06:21.304845
2020-09-10T05:05:50
2020-09-10T05:05:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
961
py
import argparse import os import sys sys.path.insert(0, os.path.join(os.path.dirname(__file__), '../')) from vedastr.runners import TrainRunner from vedastr.utils import Config def parse_args(): parser = argparse.ArgumentParser(description='Train a classification model') parser.add_argument('config', type=str, help='config file path') args = parser.parse_args() return args def main(): args = parse_args() cfg_path = args.config cfg = Config.fromfile(cfg_path) _, fullname = os.path.split(cfg_path) fname, ext = os.path.splitext(fullname) root_workdir = cfg.pop('root_workdir') workdir = os.path.join(root_workdir, fname) os.makedirs(workdir, exist_ok=True) train_cfg = cfg['train'] deploy_cfg = cfg['deploy'] common_cfg = cfg['common'] common_cfg['workdir'] = workdir runner = TrainRunner(train_cfg, deploy_cfg, common_cfg) runner() if __name__ == '__main__': main()
[ "jun.sun@media-smart.cn" ]
jun.sun@media-smart.cn
37d92b233c3353b77e82660ad4e05c02f3447a27
d99f2eff92f90464d04e19448e71d1df4aa7264d
/trafficsim/shedule.py
e73065cb42dc2d152edca59ed322247040373b87
[]
no_license
fprott/trafficSim
23c59a602340488a2734d98399f8b91b56294e67
dbd990b49ebeaa82607504972a8eb9eb387e682c
refs/heads/master
2021-01-20T02:28:21.326582
2017-07-18T17:02:27
2017-07-18T17:02:27
89,411,175
0
3
null
null
null
null
UTF-8
Python
false
false
1,410
py
import numpy class Shedule: def __init__(self,time_step,x_init,v_init,a_init,goals,current_time): #self.__init__() self.time_step=time_step self.x_now=x_init; self.v_now=v_init; self.a_now=a_init; self.gaols=goals; self.nr_cars=len(self.x_now); self.current_time=current_time; self.stop=0; self.goalreached = [0]*self.nr_cars; def nextstep(self,a): self.a_now = a; for i in range(0,self.nr_cars): self.x_now[i]=self.x_now[i]+self.v_now[i]*self.time_step+0.5*self.a_now[i]*self.time_step*self.time_step; self.v_now[i]=self.v_now[i]+self.a_now[i]*self.time_step; self.current_time=self.current_time+self.time_step; def goal_reached(self): for i in range(0, self.nr_cars): if x_now[i] >= self.goals[i]: self.goalreached[i]=1; 'car i has reached goal' def checkcollision(self): 'check for car collisions and set self.stop to 1 in case of collisions' # work in progress #time_step,x_init,v_init,a_init,gaols,current_time #Test sh= Shedule(1,[0,0,0],[0,0,0],[0,0,0],[14,0,20],0) #print (sh.x_now) #sh.nextstep([2,0,4]) #print (sh.x_now) #sh.nextstep([2,0,4]) #print (sh.x_now) #sh.nextstep([2,0,4]) #print (sh.x_now) #sh.nextstep([2,0,4]) #print (sh.x_now) #print(sh.stop) #
[ "balog270891@yahoo.com" ]
balog270891@yahoo.com
eb53ec3ed82d94c6cd342569b0d7e04e9f9f29ae
ba0cbdae81c171bd4be7b12c0594de72bd6d625a
/MyToontown/py2/toontown/coghq/CashbotMintPaintMixer_Action00.pyc.py
24a4404355d7a5da12ca0c6d3fe91af8ae4d0b8b
[]
no_license
sweep41/Toontown-2016
65985f198fa32a832e762fa9c59e59606d6a40a3
7732fb2c27001264e6dd652c057b3dc41f9c8a7d
refs/heads/master
2021-01-23T16:04:45.264205
2017-06-04T02:47:34
2017-06-04T02:47:34
93,279,679
0
0
null
null
null
null
UTF-8
Python
false
false
3,836
py
# 2013.08.22 22:18:18 Pacific Daylight Time # Embedded file name: toontown.coghq.CashbotMintPaintMixer_Action00 from toontown.coghq.SpecImports import * GlobalEntities = {1000: {'type': 'levelMgr', 'name': 'LevelMgr', 'comment': '', 'parentEntId': 0, 'cogLevel': 0, 'farPlaneDistance': 1500, 'modelFilename': 'phase_10/models/cashbotHQ/ZONE10a', 'wantDoors': 1}, 1001: {'type': 'editMgr', 'name': 'EditMgr', 'parentEntId': 0, 'insertEntity': None, 'removeEntity': None, 'requestNewEntity': None, 'requestSave': None}, 0: {'type': 'zone', 'name': 'UberZone', 'comment': '', 'parentEntId': 0, 'scale': 1, 'description': '', 'visibility': []}, 10009: {'type': 'healBarrel', 'name': '<unnamed>', 'comment': '', 'parentEntId': 0, 'pos': Point3(63.9741363525, -10.9343223572, 9.97696113586), 'hpr': Vec3(270.0, 0.0, 0.0), 'scale': Vec3(1.0, 1.0, 1.0), 'rewardPerGrab': 8, 'rewardPerGrabMax': 0}, 10010: {'type': 'healBarrel', 'name': 'copy of <unnamed>', 'comment': '', 'parentEntId': 10009, 'pos': Point3(0.0, 0.0, 4.13999986649), 'hpr': Vec3(349.358764648, 0.0, 0.0), 'scale': Vec3(1.0, 1.0, 1.0), 'rewardPerGrab': 8, 'rewardPerGrabMax': 0}, 10000: {'type': 'nodepath', 'name': 'mixers', 'comment': '', 'parentEntId': 0, 'pos': Point3(-19.2397289276, 0.0, 5.53999996185), 'hpr': Vec3(0.0, 0.0, 0.0), 'scale': Vec3(0.758001744747, 0.758001744747, 0.758001744747)}, 10004: {'type': 'paintMixer', 'name': 'mixer0', 'comment': '', 'parentEntId': 10000, 'pos': Point3(0.0, 10.0, 0.0), 'hpr': Vec3(0.0, 0.0, 0.0), 'scale': Vec3(1.0, 1.0, 1.0), 'floorName': 'PaintMixerFloorCollision', 'modelPath': 'phase_9/models/cogHQ/PaintMixer', 'modelScale': Vec3(1.0, 1.0, 1.0), 'motion': 'easeInOut', 'offset': Point3(20.0, 20.0, 0.0), 'period': 8.0, 'phaseShift': 0.0, 'shaftScale': 1, 'waitPercent': 0.1}, 10005: {'type': 'paintMixer', 'name': 'mixer1', 'comment': '', 'parentEntId': 10000, 'pos': Point3(29.0, 10.0, 0.0), 'hpr': Vec3(0.0, 0.0, 0.0), 'scale': Vec3(1.0, 1.0, 1.0), 'floorName': 'PaintMixerFloorCollision', 'modelPath': 'phase_9/models/cogHQ/PaintMixer', 'modelScale': Vec3(1.0, 1.0, 1.0), 'motion': 'easeInOut', 'offset': Point3(0.0, -20.0, 0.0), 'period': 8.0, 'phaseShift': 0.5, 'shaftScale': 1, 'waitPercent': 0.1}, 10006: {'type': 'paintMixer', 'name': 'mixer2', 'comment': '', 'parentEntId': 10000, 'pos': Point3(58.0, -8.94072246552, 0.0), 'hpr': Vec3(0.0, 0.0, 0.0), 'scale': Vec3(1.0, 1.0, 1.0), 'floorName': 'PaintMixerFloorCollision', 'modelPath': 'phase_9/models/cogHQ/PaintMixer', 'modelScale': Vec3(1.0, 1.0, 1.0), 'motion': 'easeInOut', 'offset': Point3(-20.0, -20.0, 0.0), 'period': 8.0, 'phaseShift': 0.5, 'shaftScale': 1, 'waitPercent': 0.1}} Scenario0 = {} levelSpec = {'globalEntities': GlobalEntities, 'scenarios': [Scenario0]} # okay decompyling C:\Users\Maverick\Documents\Visual Studio 2010\Projects\Unfreezer\py2\toontown\coghq\CashbotMintPaintMixer_Action00.pyc # decompiled 1 files: 1 okay, 0 failed, 0 verify failed # 2013.08.22 22:18:18 Pacific Daylight Time
[ "sweep14@gmail.com" ]
sweep14@gmail.com
4ade516bc779fa57cb78f0ffa70584c99817367e
e257ea927ed059765c0ad308a43c4fb7670f6c28
/source/IDProcessor.py
c50c4e15feb8993974f515373a00865ba637a22f
[]
no_license
parikhshyamal1993/IDScanner
10e6ee75f4b5d0c6d1ece78da67737ee573fe638
b0b199a0c1a63674d14a7bb2215839056c1267e5
refs/heads/master
2023-08-28T03:01:00.055516
2021-10-28T05:00:19
2021-10-28T05:00:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,300
py
import sys , os import cv2 import numpy as np from pytesseract import image_to_string import re class PanCardExtractor(): def __init__(self) -> None: self.kernal = np.ones((2,2),np.uint8) def Identifier(self,data): """ If distance of y between income tax deparment vs pan number is higher than 250 than old variant else New variant for x1[1][1] - x[1][1] >=250: old else: new """ IncomeTaxIdentityList = ["INCOME TAX" ,"TAX","INCOME"] PanCardIdentityList = ["Permanent", "Account" ,"Number"] IncomeLine = 0 PanCard = 0 for i in range(len(data)): for items in IncomeTaxIdentityList: if re.findall(items , data[i][0]): IncomeLine = data[i] break for items in PanCardIdentityList: if re.findall(items , data[i][0]): PanCard = data[i] break if PanCard[1][1] - IncomeLine[1][1] > 250: return 2 else: return 1 def basicTransform(self,img): _, mask = cv2.threshold(img,80,255,cv2.THRESH_BINARY_INV) img = cv2.bitwise_not(mask) return img def panExtract(self,image): panColor = cv2.imread(image) panColor = cv2.resize(panColor,(1200,743)) adjusted = cv2.convertScaleAbs(panColor, alpha=1.5, beta=0) panImage = cv2.imread(image,0) meanImg = panImage.mean() #panImage = panImage / meanImg print("panImage",panImage.shape) panImage = cv2.resize(panImage,(1200,743)) _, mask = cv2.threshold(panImage,90,255,cv2.THRESH_OTSU+cv2.THRESH_BINARY_INV) dst = cv2.dilate(mask,self.kernal,iterations = 1) dst = cv2.bitwise_not(dst) kernel_ = cv2.getStructuringElement(cv2.MORPH_RECT,(31,5)) clossing = cv2.morphologyEx((255-dst),cv2.MORPH_CLOSE,kernel_) contours , hierarchy = cv2.findContours(clossing,cv2.RETR_CCOMP,cv2.CHAIN_APPROX_NONE) allBoxes = [] typeIDList = [] for cnt , high in zip(contours,hierarchy[0]): x,y,w,h = cv2.boundingRect(cnt) if h > 20 and w >30 and x <550: cv2.rectangle(panColor,(x,y),(x+w,y+h),(0,255,100),3) cells = adjusted[y-5:y+h,x:x+w] gray = cv2.cvtColor(cells,cv2.COLOR_BGR2GRAY) data = image_to_string(cells,config='--psm 7') allBoxes.append([data,[x,y,x+w,y+h]]) cv2.imshow("Binary",cv2.resize(panColor,(600,375))) cv2.waitKey(0) cv2.destroyAllWindows() allBoxes.reverse() return allBoxes def run(self,Image): HOCR = self.panExtract(Image) #print("Output:",HOCR) typeId = self.Identifier(HOCR) print("pan type" , typeId) if len(HOCR) >2: if typeId == 2: output = self.ExtractionType2(HOCR) elif typeId == 1: output = self.ExtractionType1(HOCR) #print("Pan EXtract",output) return output else: return " " def ExtractionType2(self,data): output = {} IncomeTaxIdentityList = ["INCOME TAX" ,"TAX","INCOME"] PanCardIdentityList = ["Permanent", "Account" ,"Number"] IncomeLine = 0 PanCard = 0 for i in range(len(data)): #print("items :",i) for items in PanCardIdentityList: if re.findall(items , data[i][0]): PanCard = data[i] output["PAN"] = re.sub(r'[^\w\s]','',re.sub('\n\x0c', '', data[i+1][0])) break for items in IncomeTaxIdentityList: if re.findall(items , data[i][0]): #print("ID name",data[i]) IncomeLine = data[i] #print("Name:",data[i+1]) output["Name"] = re.sub(r'[^\w\s]','',re.sub('\n\x0c', '', data[i+1][0])) #print("Fathers Name",data[i+2]) output["Fathers Name"] = re.sub(r'[^\w\s]','',re.sub('\n\x0c', '', data[i+2][0])) #print("Date ",data[i+3]) output["Date"] = re.sub('\n\x0c', '', data[i+3][0]) break return output def ExtractionType1(self,data): output = {} IncomeTaxIdentityList = ["INCOME TAX" ,"TAX","INCOME"] PanCardIdentityList = ["Permanent", "Account" ,"Number"] DateList = ["Date of Birth","Date","Birth"] IncomeLine = 0 PanCard = 0 for i in range(len(data)): #print("items :",i) for items in PanCardIdentityList: if re.findall(items , data[i][0]): PanCard = re.sub('\n\x0c', '', data[i][0]) output["PAN"] = re.sub(r'[^\w\s]','',re.sub('\n\x0c', '', data[i+1][0])) #print("PAN",data[i][0],data[i+1][0]) #print("Name:",data[i+3]) output["Name"] = re.sub(r'[^\w\s]','', re.sub('\n\x0c', '', data[i+3][0])) #print("Fathers Name",data[i+5]) output["Fathers Name"] = re.sub(r'[^\w\s]','',re.sub('\n\x0c', '', data[i+5][0])) output["Data"] = re.sub('\n\x0c', '', data[i+8][0]) break return output class AadharExtraction(): def __init__(self) -> None: self.kernal = np.ones((2,2),np.uint8) def AadharExtract(self,image): y , x = 1200 , 749 panColor = cv2.imread(image) panColor = cv2.resize(panColor,(y,x)) #adjusted = cv2.convertScaleAbs(panColor, alpha=1.0, beta=0) panImage = cv2.cvtColor(panColor,cv2.COLOR_BGR2GRAY) #panImage = panImage / meanImg print("panImage",panImage.shape) thresh1 = cv2.adaptiveThreshold(panImage, 255, cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY, 199, 10) # cv2.imshow("dst",cv2.resize(thresh1,(600,375))) # cv2.waitKey(0) # cv2.destroyAllWindows() kernel_ = cv2.getStructuringElement(cv2.MORPH_RECT,(23,1)) clossing = cv2.morphologyEx(thresh1,cv2.MORPH_OPEN,kernel_) #clossing[clossing<140] = 0 contours , hierarchy = cv2.findContours(clossing,cv2.RETR_CCOMP,cv2.CHAIN_APPROX_NONE) allBoxes = [] typeIDList = [] for cnt , high in zip(contours,hierarchy[0]): x,y,w,h = cv2.boundingRect(cnt) if h > 20 and w >30 and h <60: cv2.rectangle(panColor,(x,y),(x+w,y+h),(0,255,100),3) cells = panColor[y:y+h,x:x+w] data = image_to_string(cells,config='--psm 7') allBoxes.append([re.sub("\n\x0c","",data),[x,y,x+w,y+h]]) cv2.imshow("Binary",cv2.resize(panColor,(600,375))) cv2.waitKey(0) cv2.destroyAllWindows() allBoxes.reverse() return allBoxes def run(self,image): data = self.AadharExtract(image) output = {} HOCR = {} output["Aadhar number"] = "" IDIdentityList = ["Government of India" ,"Government","India"] GenderIdentityList = ["male", "female" ,"transgender"] DateList = ["Birth","Year","YoB"] FatherList = ["Father"] IncomeLine = 0 PanCard = 0 for i in range(len(data)): print("items :",data[i][0]) for items in IDIdentityList: if re.findall(items.lower() , data[i][0].lower()): output["Name"] = data[i+2][0] HOCR["Name"] = data[i+2][1] #print("Fathers Name",data[i+5]) break for items in GenderIdentityList: if re.findall(items.lower() , data[i][0].lower()): try: gender = data[i][0].split("/")[-1] except: gender = data[i][0] output["gender"] = gender HOCR["gender"] = items #print("Fathers Name",data[i+5]) break for items in DateList: if re.findall(items.lower() , data[i][0].lower()): print("date",data[i][0]) date = "".join([inte for inte in data[i][0].split() if inte.isdigit()]) output["date"] = date HOCR["date"] = data[i][1] #print("Fathers Name",data[i+5]) break if re.sub(" ", "",data[i][0]).isdigit(): print("numbers",data[i][0]) output["Aadhar number"] += data[i][0] return output class PassportExtractor(): def __init__(self) -> None: pass def panExtract(self,): pass class IDextract(): def __init__(self) -> None: pass def Application(self,Image): image = cv2.imread(Image) data = image_to_string(panImage) if __name__ == "__main__": pan = PanCardExtractor() aadhar = AadharExtraction() outPuts = pan.run(sys.argv[1]) print("output :",outPuts)
[ "parikhshyamal1993@gmail.com" ]
parikhshyamal1993@gmail.com
ee14d431bef47b8ff12fcd0f4d706dcb62c076c4
bb5323dc6ac6e3fded6eab25b9a4a4088065b276
/docker/generate_production_ini.py
84c8176b73de6acb39771578c425b81938125cd9
[ "BSD-2-Clause" ]
permissive
anderson-attilio/publication_stats
57f3a6c379ec5442205488727ca0bb29fb6a6b79
49e3839b930da005cc24406f83c068d104a5ac9d
refs/heads/master
2021-01-12T14:32:41.674395
2016-09-12T16:52:37
2016-09-12T16:52:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
715
py
# coding: utf-8 import os from configparser import ConfigParser PROJECT_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) production_template_ini_filepath = os.path.join(PROJECT_PATH + '/production.ini-TEMPLATE') new_production_ini_filepath = os.path.join(PROJECT_PATH + '/production.ini') config = ConfigParser() config.read_file(open(production_template_ini_filepath)) config.set('app:main', 'elasticsearch', os.environ.get('ELASTICSEARCH', '127.0.0.1:9200')) config.set('app:main', 'articlemeta', os.environ.get('ARTICLEMETA', 'articlemeta.scielo.org:11720')) config.set('server:main', 'port', '8000') with open(new_production_ini_filepath, 'w') as configfile: config.write(configfile)
[ "fabiobatalha@gmail.com" ]
fabiobatalha@gmail.com
ba71d321961cc6df103683482bba3c8c3883a4b2
b5904720e5267e242c911a4a0ba1d4be66e0a2f9
/robots/oat_viper_robot/adept_s650_morse/morse/simple_simulation/viper_with_gripper.py
e003bfb8665b07812bbdd10e502282781eb4a321
[ "BSD-2-Clause" ]
permissive
dgerod/robots-in-morse-using-ros
ccd2416a13221decfae50c7e00d855947cf802b9
2fcb057f345d40cb948fa913cf226f17fd19eb9b
refs/heads/master
2021-01-22T05:20:11.366350
2020-08-30T11:24:08
2020-08-30T11:24:08
81,646,502
0
0
null
null
null
null
UTF-8
Python
false
false
1,565
py
from morse_helpers import initialize initialize(__file__) import math from morse_helpers.settings import SimulationLocalSettings from morse_helpers.storage import FileStorage from morse_helpers.adapters import ROSRegister from morse.builder import Clock from morse.builder import Environment, PassiveObject, FakeRobot from simple_simulation.builder.ort_viper_s650 import create_robot def _create_simulation_controller(): # A simulation controller to which attach all extra sensors used # to manage the scene simulation_controller = FakeRobot("simulation_controller") simulation_controller.translate(z=3) # Clock to synchronize ROS with MORSE execution clock = Clock() simulation_controller.append(clock) ROSRegister.add_topic(clock, '/clock') def _prepare_environment(robot): file_storage = FileStorage() table = PassiveObject(file_storage.find('furnitures.blend'), 'basic_desk') table.translate(x=0.25) table.rotate(z=-math.pi / 2) box = PassiveObject(file_storage.find('objects.blend'), 'BlackBox') box.name = 'BlackBox' box.properties(Type='box', Label=box.name, Graspable=True) box.translate(x=0.50, y=0, z=0.75) robot.translate(x=0.0, y=-0.0, z=0.75) env = Environment(file_storage.find("empty_world.blend")) env.set_camera_location([1.0, -1.0, 2.5]) env.show_framerate(True) def start_simulation(): SimulationLocalSettings().show_info() _create_simulation_controller() robot = create_robot() _prepare_environment(robot.base) start_simulation()
[ "dgerod@xyz-lab.org.es" ]
dgerod@xyz-lab.org.es
43156a318809c4d33364e140432059e1ef4c9d8c
27ab47f633d38eaa003fa604f2210dd9ef4a9a1d
/MTG_Card_Identifier/dir_functions.py
5bb94fa129ff9dc3b314247978c4417505f5cede
[ "MIT" ]
permissive
sschatz1997/Card_Identifier
17270c91285d99aa283ec9e72cf72bf830d9b800
82002bbfbd17aa14fdfc48c9f88956f433795cb3
refs/heads/main
2023-02-19T03:30:12.135140
2021-01-20T23:42:17
2021-01-20T23:42:17
331,459,443
0
0
MIT
2021-01-20T23:42:18
2021-01-20T23:25:08
Python
UTF-8
Python
false
false
5,319
py
# dir_functions.py import os import csv import sys import config #from os import path # make sure the file type is acceptable def check_file_type(f1): # good file types for imgs good_file_types = ['jpg','jpeg','png'] file_type = os.path.splitext(f1)[1][1:] if file_type in good_file_types: return True elif os.path.isdir(f1) == True: return "Can not read from sub directories!" else: return ".{} is not acceptable image type!".format(file_type) # function to check if a file exists def check_exists(f1): if os.path.isfile(f1) == True: return True elif os.path.isdir(f1) == True: return "Path returned not file!" else: return False """ check to see wether the script needs to add paths to dir """ def check_target_dir(path1): #, file1): # first check if path is in the dir of the script script_path = os.path.dirname(os.path.realpath(__file__)) # create a test path by adding main and separator tp = config.main_path + path1 if script_path == path1: return script_path elif os.path.isdir(tp) == True: return tp + config.separator else: return path1 + config.separator """ batch dir checker function -- takes in a dir, and list of all file -- loops through the list checks the file -- returns the good ones and tells the user which ones cant be searched for """ def dir_checker(mainP, path1): # turn into a managable path test || maybe add this back later #manageable_path = config.main_path + uploaded_path + config.separator + path1 good_files = [] # a good file list bad_files = [] # bad file list total_files = len(path1) # number of total file bad_files_c = 0 target_path = check_target_dir(mainP) for p in path1: # temp var tv = target_path + p # check if exists if check_exists(tv) == True: # check the file type if check_file_type(tv) == True: good_files.append(tv) else: bad_files.append(tv) bad_files_c += 1 else: bad_files.append(tv) bad_files_c += 1 for b in bad_files: print('File {} can not be checked'.format(b)) return total_files, good_files # just returns a basic csv file def in_csv(file1): data = [] with open(file1, 'r', newline='') as f: r1 = csv.reader(f) for row in r1: data.append(row[-1]) f.close() # delete the first row for the header del data[0] return data # this is for a batch file that contains path links def read_batch_txt_path(file1): # check if file is real #print(os.path.splitext(file1)[1][1:]) #print(os.path.isfile(file1)) if os.path.isfile(file1) == True: file1 = open(file1, 'r') Lines = file1.readlines() good_files = [] bad_files = [] bad_files_c = 0 total_files = len(Lines) for l in Lines: # temp var tv = l.rstrip('\n') if check_exists(tv) == True: # check the file type if check_file_type(tv) == True: good_files.append(tv) else: bad_files.append(tv) bad_files_c += 1 else: bad_files.append(tv) bad_files_c += 1 else: print('File does not exist!') del Lines for b in bad_files: print('File {} can not be checked'.format(b)) return total_files, good_files # this is for a batch file that contains url links def read_batch_txt_url(file1): from functions import check_url # check if link file is real #print(os.path.splitext(file1)[1][1:]) #print(os.path.isfile(file1)) if os.path.isfile(file1) == True: file1 = open(file1, 'r') Lines = file1.readlines() good_files = [] bad_files = [] bad_files_c = 0 total_files = len(Lines) for l in Lines: # temp var tv = l.rstrip('\n') # check if link is good if int(check_url(tv)) == 200: # its gonna check it twice good_files.append(tv) elif int(check_url(tv)) != 200: bad_files.append(tv) bad_files_c += 1 else: print('File does not exist!') del Lines for b in bad_files: print('File {} can not be checked'.format(b)) return total_files, good_files # this is for a batch file that contains path links def read_batch_csv_path(file1): if os.path.isfile(file1) == True: # read in data from csv Lines = in_csv(file1) good_files = [] bad_files = [] bad_files_c = 0 total_files = len(Lines) for l in Lines: # temp var tv = l.rstrip('\n') #print(check_exists(tv)) if check_exists(tv) == True: # check the file type if check_file_type(tv) == True: good_files.append(tv) else: bad_files.append(tv) bad_files_c += 1 else: bad_files.append(tv) bad_files_c += 1 else: print('File does not exist!') del Lines for b in bad_files: print('File {} can not be checked'.format(b)) return total_files, good_files # this is for a batch file that contains url links def read_batch_csv_url(file1): from functions import check_url if os.path.isfile(file1) == True: # read in data from csv Lines = in_csv(file1) good_files = [] bad_files = [] bad_files_c = 0 total_files = len(Lines) for l in Lines: # temp var tv = l.rstrip('\n') # check if link is good if int(check_url(tv)) == 200: # its gonna check it twice good_files.append(tv) elif int(check_url(tv)) != 200: bad_files.append(tv) bad_files_c += 1 else: print('File does not exist!') del Lines for b in bad_files: print('File {} can not be checked'.format(b)) return total_files, good_files
[ "s.schatz1997@gmail.com" ]
s.schatz1997@gmail.com
2f65a4610e95d10f920a9d13cbb6f5c538a57fb6
159d4ae61f4ca91d94e29e769697ff46d11ae4a4
/venv/lib/python3.9/site-packages/pygments/styles/autumn.py
85fd8982a9d5a68b34291612f4711f7f46773562
[ "MIT" ]
permissive
davidycliao/bisCrawler
729db002afe10ae405306b9eed45b782e68eace8
f42281f35b866b52e5860b6a062790ae8147a4a4
refs/heads/main
2023-05-24T00:41:50.224279
2023-01-22T23:17:51
2023-01-22T23:17:51
411,470,732
8
0
MIT
2023-02-09T16:28:24
2021-09-28T23:48:13
Python
UTF-8
Python
false
false
2,120
py
""" pygments.styles.autumn ~~~~~~~~~~~~~~~~~~~~~~ A colorful style, inspired by the terminal highlighting style. :copyright: Copyright 2006-2021 by the Pygments team, see AUTHORS. :license: BSD, see LICENSE for details. """ from pygments.style import Style from pygments.token import Keyword, Name, Comment, String, Error, \ Number, Operator, Generic, Whitespace class AutumnStyle(Style): """ A colorful style, inspired by the terminal highlighting style. """ default_style = "" styles = { Whitespace: '#bbbbbb', Comment: 'italic #aaaaaa', Comment.Preproc: 'noitalic #4c8317', Comment.Special: 'italic #0000aa', Keyword: '#0000aa', Keyword.Type: '#00aaaa', Operator.Word: '#0000aa', Name.Builtin: '#00aaaa', Name.Function: '#00aa00', Name.Class: 'underline #00aa00', Name.Namespace: 'underline #00aaaa', Name.Variable: '#aa0000', Name.Constant: '#aa0000', Name.Entity: 'bold #800', Name.Attribute: '#1e90ff', Name.Tag: 'bold #1e90ff', Name.Decorator: '#888888', String: '#aa5500', String.Symbol: '#0000aa', String.Regex: '#009999', Number: '#009999', Generic.Heading: 'bold #000080', Generic.Subheading: 'bold #800080', Generic.Deleted: '#aa0000', Generic.Inserted: '#00aa00', Generic.Error: '#aa0000', Generic.Emph: 'italic', Generic.Strong: 'bold', Generic.Prompt: '#555555', Generic.Output: '#888888', Generic.Traceback: '#aa0000', Error: '#F00 bg:#FAA' }
[ "davidycliao@gmail.com" ]
davidycliao@gmail.com
61d61023aa1ef3018c9190d8a52786b0dd5580cf
bf5d8cfa2ad9038130671187be3403f5b861d6ab
/cloud_web/sdr/apps.py
196b3822a5617e119112040f6fb4b9aaab7d9cde
[]
no_license
lihao2333/rtlsdr
85b9503dc87770444b931b74c59bb66fdd27718a
c7a53687be01302945a58ab28f6731d3ab514a34
refs/heads/master
2021-05-04T20:32:16.489074
2018-04-08T06:12:44
2018-04-08T06:12:44
119,818,073
1
0
null
null
null
null
UTF-8
Python
false
false
81
py
from django.apps import AppConfig class SdrConfig(AppConfig): name = 'sdr'
[ "lihao3016@gmail.com" ]
lihao3016@gmail.com
9dd347b7212355ba4fa6a90d0497a8e5017cd3a0
ebf572010eaa11039709617c08c3723ebd40cf73
/models/__init__.py
5f267eaa4ae86e75f544dc992c86be506cebe9d5
[]
no_license
daltonjoe/viseducat
341c8516fd20f6edf63e46ac4548f5b6b77d3f30
8b8e335a3c07fcbc4cf6df1c0dde6862a30b99c2
refs/heads/master
2023-03-01T16:22:42.811356
2021-02-07T14:12:28
2021-02-07T14:12:28
326,630,979
0
0
null
null
null
null
UTF-8
Python
false
false
270
py
# -*- coding: utf-8 -*- from . import library from . import media from . import media_unit from . import publisher from . import author from . import media_type from . import media_purchase from . import media_queue from . import media_movement from . import tag
[ "talha_guzel1907@hotmail.com" ]
talha_guzel1907@hotmail.com
2b697ad5a4e9a797fb564afb3d7afdb619c7eb61
6841db425d9b7d3b634b21fa2aeae5720e97b245
/happy.py
4e36172cbc66947f7d9dd3e1c7d6d4e3611de7bb
[]
no_license
aakash003/zemoso
f1335387da6c10c82220e6f9e43f4650fa841cb7
e817b0c03dd8855c24db8624c1e31ef9d2d82a28
refs/heads/master
2021-05-05T19:52:41.989751
2018-02-11T15:30:08
2018-02-11T15:30:08
117,860,820
0
0
null
null
null
null
UTF-8
Python
false
false
36
py
if happy>2: print("hello world")
[ "kumar.aakash10@gmail.com" ]
kumar.aakash10@gmail.com
4ed6dd63e8f31c3e1e031534668ecf36ab9eef8b
09e57dd1374713f06b70d7b37a580130d9bbab0d
/data/p2DJ/New/program/qiskit/simulator/startQiskit318.py
21cd9ab92fda16ef64bd2127105c730612c79e4c
[ "BSD-3-Clause" ]
permissive
UCLA-SEAL/QDiff
ad53650034897abb5941e74539e3aee8edb600ab
d968cbc47fe926b7f88b4adf10490f1edd6f8819
refs/heads/main
2023-08-05T04:52:24.961998
2021-09-19T02:56:16
2021-09-19T02:56:16
405,159,939
2
0
null
null
null
null
UTF-8
Python
false
false
3,278
py
# qubit number=2 # total number=18 import cirq import qiskit from qiskit import IBMQ from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import BasicAer, execute, transpile from pprint import pprint from qiskit.test.mock import FakeVigo from math import log2,floor, sqrt, pi import numpy as np import networkx as nx def build_oracle(n: int, f) -> QuantumCircuit: # implement the oracle O_f^\pm # NOTE: use U1 gate (P gate) with \lambda = 180 ==> CZ gate # or multi_control_Z_gate (issue #127) controls = QuantumRegister(n, "ofc") target = QuantumRegister(1, "oft") oracle = QuantumCircuit(controls, target, name="Of") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) oracle.mct(controls, target[0], None, mode='noancilla') for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() # oracle.draw('mpl', filename='circuit/deutsch-oracle.png') return oracle def make_circuit(n:int,f) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n, "qc") target = QuantumRegister(1, "qt") prog = QuantumCircuit(input_qubit, target) # inverse last one (can be omitted if using O_f^\pm) prog.x(target) # apply H to get superposition for i in range(n): prog.h(input_qubit[i]) prog.h(input_qubit[1]) # number=1 prog.h(input_qubit[1]) # number=6 prog.cz(input_qubit[0],input_qubit[1]) # number=7 prog.h(input_qubit[1]) # number=9 prog.h(input_qubit[1]) # number=8 prog.h(target) prog.barrier() # apply oracle O_f oracle = build_oracle(n, f) prog.append( oracle.to_gate(), [input_qubit[i] for i in range(n)] + [target]) # apply H back (QFT on Z_2^n) for i in range(n): prog.h(input_qubit[i]) prog.barrier() # measure #for i in range(n): # prog.measure(input_qubit[i], classicals[i]) prog.y(input_qubit[1]) # number=2 prog.cx(input_qubit[0],input_qubit[1]) # number=4 prog.y(input_qubit[1]) # number=3 prog.h(input_qubit[0]) # number=15 prog.cz(input_qubit[1],input_qubit[0]) # number=16 prog.h(input_qubit[0]) # number=17 prog.x(input_qubit[0]) # number=13 prog.cx(input_qubit[1],input_qubit[0]) # number=14 prog.x(input_qubit[0]) # number=11 # circuit end return prog if __name__ == '__main__': n = 2 f = lambda rep: rep[-1] # f = lambda rep: "1" if rep[0:2] == "01" or rep[0:2] == "10" else "0" # f = lambda rep: "0" prog = make_circuit(n, f) sample_shot =2800 backend = BasicAer.get_backend('qasm_simulator') circuit1 = transpile(prog,FakeVigo()) circuit1.x(qubit=3) circuit1.x(qubit=3) circuit1.measure_all() prog = circuit1 info = execute(prog, backend=backend, shots=sample_shot).result().get_counts() writefile = open("../data/startQiskit318.csv","w") print(info,file=writefile) print("results end", file=writefile) print(circuit1.depth(),file=writefile) print(circuit1,file=writefile) writefile.close()
[ "wangjiyuan123@yeah.net" ]
wangjiyuan123@yeah.net
37d72fb2b0e493347ee626807598f8ad7459edb9
5942892f1a625370a048bc98d71b105368b8a155
/QandA_app/asgi.py
d89cf73b327877547b7f48e68cd1d6778ad62b37
[]
no_license
Amansingh1202/QandA_app
fa533eb534bff2c519650ea020318ab50874dfee
ab0304304e7d7ac67b6bddbe79bc5b7f15bbcc74
refs/heads/main
2023-02-04T19:49:30.912014
2020-12-18T12:37:51
2020-12-18T12:37:51
303,122,873
0
0
null
null
null
null
UTF-8
Python
false
false
395
py
""" ASGI config for QandA_app project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'QandA_app.settings') application = get_asgi_application()
[ "aks001235@gmail.com" ]
aks001235@gmail.com
d6cdf502d5552bc6727b119278719928dd220fd8
595dea2f5b5fec82415fee50ae524055a7258fef
/intercom/contact.py
1773ca503b9a6536ac05e5a1a3903d1b3fba900d
[ "MIT" ]
permissive
rodolfofiuza/python-intercom
d7dcfc52136a9ae1abf814f3cc812607b9f31e08
2eea2a69e26d71a54ead96ae6e3c03f9ebebc873
refs/heads/master
2021-01-11T19:27:44.571901
2016-01-27T14:46:51
2016-01-27T14:46:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
215
py
# -*- coding: utf-8 -*- from intercom.api_operations.save import Save from intercom.api_operations.find import Find from intercom.traits.api_resource import Resource class Contact(Resource, Save, Find): pass
[ "cesaraugusto@pingobox.com.br" ]
cesaraugusto@pingobox.com.br
9f7aa71948b32baed70813dd38e5623a2815e93c
13ddb146cae9dd14e9a482c2ae98e3cc5900100b
/king_phisher/client/gui_utilities.py
04c241dfbbdb5721fb40e3753c6d0ea65f645f5b
[ "BSD-3-Clause" ]
permissive
alleznei/king-phisher
a8ae4d83b08264f658e265b4d49c2ff96ba31248
6bab024ed81114295d3adbd210194e8e4508e69d
refs/heads/master
2022-12-22T08:00:44.677706
2018-02-20T20:30:34
2018-02-20T20:30:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
30,948
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # # king_phisher/client/gui_utilities.py # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of the project nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # import contextlib import copy import datetime import functools import logging import os import socket import threading from king_phisher import find from king_phisher import utilities from gi.repository import Gdk from gi.repository import Gio from gi.repository import GLib from gi.repository import GObject from gi.repository import Gtk from gi.repository import GtkSource GObject.type_register(GtkSource.View) GOBJECT_PROPERTY_MAP = { 'calendar': None, # delayed definition 'checkbutton': 'active', 'combobox': ( lambda c, v: c.set_active_iter(gtk_list_store_search(c.get_model(), v)), lambda c: c.get_model().get_value(c.get_active_iter() or c.get_model().get_iter_first(), 0) ), 'entry': 'text', 'spinbutton': 'value', 'switch': 'active', 'textview': ( lambda t, v: t.get_buffer().set_text(v), lambda t: t.get_buffer().get_text(t.get_buffer().get_start_iter(), t.get_buffer().get_end_iter(), False) ) } """ The dictionary which maps GObjects to either the names of properties to store text or a tuple which contains a set and get function. If a tuple of two functions is specified the set function will be provided two parameters, the object and the value and the get function will just be provided the object. """ # official python3 work-around per https://docs.python.org/3.0/whatsnew/3.0.html#ordering-comparisons _cmp = lambda i1, i2: (i1 > i2) - (i1 < i2) def which_glade(): """ Locate the glade data file which stores the UI information in a Gtk Builder format. :return: The path to the glade data file. :rtype: str """ return find.data_file(os.environ.get('KING_PHISHER_GLADE_FILE', 'king-phisher-client.ui')) def glib_idle_add_once(function, *args, **kwargs): """ Execute *function* in the main GTK loop using :py:func:`GLib.idle_add` one time. This is useful for threads that need to update GUI data. :param function function: The function to call. :param args: The positional arguments to *function*. :param kwargs: The key word arguments to *function*. :return: The result of the function call. """ @functools.wraps(function) def wrapper(): function(*args, **kwargs) return False return GLib.idle_add(wrapper) def glib_idle_add_wait(function, *args, **kwargs): """ Execute *function* in the main GTK loop using :py:func:`GLib.idle_add` and block until it has completed. This is useful for threads that need to update GUI data. :param function function: The function to call. :param args: The positional arguments to *function*. :param kwargs: The key word arguments to *function*. :return: The result of the function call. """ gsource_completed = threading.Event() results = [] @functools.wraps(function) def wrapper(): results.append(function(*args, **kwargs)) gsource_completed.set() return False GLib.idle_add(wrapper) gsource_completed.wait() return results.pop() def gobject_get_value(gobject, gtype=None): """ Retrieve the value of a GObject widget. Only objects with corresponding entries present in the :py:data:`.GOBJECT_PROPERTY_MAP` can be processed by this function. :param gobject: The object to retrieve the value for. :type gobject: :py:class:`GObject.Object` :param str gtype: An explicit type to treat *gobject* as. :return: The value of *gobject*. :rtype: str """ gtype = (gtype or gobject.__class__.__name__) gtype = gtype.lower() if isinstance(GOBJECT_PROPERTY_MAP[gtype], (list, tuple)): try: value = GOBJECT_PROPERTY_MAP[gtype][1](gobject) except AttributeError: return None else: value = gobject.get_property(GOBJECT_PROPERTY_MAP[gtype]) return value def gobject_set_value(gobject, value, gtype=None): """ Set the value of a GObject widget. Only objects with corresponding entries present in the :py:data:`.GOBJECT_PROPERTY_MAP` can be processed by this function. :param gobject: The object to set the value for. :type gobject: :py:class:`GObject.Object` :param value: The value to set for the object. :param str gtype: An explicit type to treat *gobject* as. """ gtype = (gtype or gobject.__class__.__name__) gtype = gtype.lower() if gtype not in GOBJECT_PROPERTY_MAP: raise ValueError('unsupported gtype: ' + gtype) if isinstance(GOBJECT_PROPERTY_MAP[gtype], (list, tuple)): GOBJECT_PROPERTY_MAP[gtype][0](gobject, value) else: gobject.set_property(GOBJECT_PROPERTY_MAP[gtype], value) @contextlib.contextmanager def gobject_signal_blocked(gobject, signal_name): """ This is a context manager that can be used with the 'with' statement to execute a block of code while *signal_name* is blocked. :param gobject: The object to block the signal on. :type gobject: :py:class:`GObject.Object` :param str signal_name: The name of the signal to block. """ signal_id = GObject.signal_lookup(signal_name, gobject.__class__) handler_id = GObject.signal_handler_find(gobject, GObject.SignalMatchType.ID, signal_id, 0, None, 0, 0) GObject.signal_handler_block(gobject, handler_id) yield GObject.signal_handler_unblock(gobject, handler_id) def gobject_signal_accumulator(test=None): """ Create an accumulator function for use with GObject signals. All return values will be collected and returned in a list. If provided, *test* is a callback that will be called with two arguments, the return value from the handler and the list of accumulated return values. .. code-block:: python stop = test(retval, accumulated) :param test: A callback to test whether additional handler should be executed. """ if test is None: test = lambda retval, accumulated: True def _accumulator(_, accumulated, retval): if accumulated is None: accumulated = [] stop = test(retval, accumulated) accumulated.append(retval) return (stop, accumulated) return _accumulator def gtk_calendar_get_pydate(calendar): """ Get the Python date from a :py:class:`Gtk.Calendar` instance. :param calendar: The calendar to get the date from. :type calendar: :py:class:`Gtk.Calendar` :return: The date as returned by the calendar's :py:meth:`~Gtk.Calendar.get_date` method. :rtype: :py:class:`datetime.date` """ if not isinstance(calendar, Gtk.Calendar): raise ValueError('calendar must be a Gtk.Calendar instance') calendar_day = calendar.get_date() return datetime.date(calendar_day[0], calendar_day[1] + 1, calendar_day[2]) def gtk_calendar_set_pydate(calendar, pydate): """ Set the date on a :py:class:`Gtk.Calendar` instance from a Python :py:class:`datetime.date` object. :param calendar: The calendar to set the date for. :type calendar: :py:class:`Gtk.Calendar` :param pydate: The date to set on the calendar. :type pydate: :py:class:`datetime.date` """ calendar.select_month(pydate.month - 1, pydate.year) calendar.select_day(pydate.day) GOBJECT_PROPERTY_MAP['calendar'] = ( gtk_calendar_set_pydate, gtk_calendar_get_pydate ) def gtk_list_store_search(list_store, value, column=0): """ Search a :py:class:`Gtk.ListStore` for a value and return a :py:class:`Gtk.TreeIter` to the first match. :param list_store: The list store to search. :type list_store: :py:class:`Gtk.ListStore` :param value: The value to search for. :param int column: The column in the row to check. :return: The row on which the value was found. :rtype: :py:class:`Gtk.TreeIter` """ for row in list_store: if row[column] == value: return row.iter return None def gtk_menu_get_item_by_label(menu, label): """ Retrieve a menu item from a menu by it's label. If more than one items share the same label, only the first is returned. :param menu: The menu to search for the item in. :type menu: :py:class:`Gtk.Menu` :param str label: The label to search for in *menu*. :return: The identified menu item if it could be found, otherwise None is returned. :rtype: :py:class:`Gtk.MenuItem` """ for item in menu: if item.get_label() == label: return item def gtk_menu_insert_by_path(menu, menu_path, menu_item): """ Add a new menu item into the existing menu at the path specified in *menu_path*. :param menu: The existing menu to add the new item to. :type menu: :py:class:`Gtk.Menu` :py:class:`Gtk.MenuBar` :param list menu_path: The labels of submenus to traverse to insert the new item. :param menu_item: The new menu item to insert. :type menu_item: :py:class:`Gtk.MenuItem` """ utilities.assert_arg_type(menu, (Gtk.Menu, Gtk.MenuBar), 1) utilities.assert_arg_type(menu_path, list, 2) utilities.assert_arg_type(menu_item, Gtk.MenuItem, 3) while len(menu_path): label = menu_path.pop(0) menu_cursor = gtk_menu_get_item_by_label(menu, label) if menu_cursor is None: raise ValueError('missing node labeled: ' + label) menu = menu_cursor.get_submenu() menu.append(menu_item) def gtk_menu_position(event, *args): """ Create a menu at the given location for an event. This function is meant to be used as the *func* parameter for the :py:meth:`Gtk.Menu.popup` method. The *event* object must be passed in as the first parameter, which can be accomplished using :py:func:`functools.partial`. :param event: The event to retrieve the coordinates for. """ if not hasattr(event, 'get_root_coords'): raise TypeError('event object has no get_root_coords method') coords = event.get_root_coords() return (coords[0], coords[1], True) def gtk_style_context_get_color(sc, color_name, default=None): """ Look up a color by it's name in the :py:class:`Gtk.StyleContext` specified in *sc*, and return it as an :py:class:`Gdk.RGBA` instance if the color is defined. If the color is not found, *default* will be returned. :param sc: The style context to use. :type sc: :py:class:`Gtk.StyleContext` :param str color_name: The name of the color to lookup. :param default: The default color to return if the specified color was not found. :type default: str, :py:class:`Gdk.RGBA` :return: The color as an RGBA instance. :rtype: :py:class:`Gdk.RGBA` """ found, color_rgba = sc.lookup_color(color_name) if found: return color_rgba if isinstance(default, str): color_rgba = Gdk.RGBA() color_rgba.parse(default) return color_rgba elif isinstance(default, Gdk.RGBA): return default return def gtk_sync(): """Wait while all pending GTK events are processed.""" while Gtk.events_pending(): Gtk.main_iteration() def gtk_treesortable_sort_func_numeric(model, iter1, iter2, column_id): """ Sort the model by comparing text numeric values with place holders such as 1,337. This is meant to be set as a sorting function using :py:meth:`Gtk.TreeSortable.set_sort_func`. The user_data parameter must be the column id which contains the numeric values to be sorted. :param model: The model that is being sorted. :type model: :py:class:`Gtk.TreeSortable` :param iter1: The iterator of the first item to compare. :type iter1: :py:class:`Gtk.TreeIter` :param iter2: The iterator of the second item to compare. :type iter2: :py:class:`Gtk.TreeIter` :param column_id: The ID of the column containing numeric values. :return: An integer, -1 if item1 should come before item2, 0 if they are the same and 1 if item1 should come after item2. :rtype: int """ column_id = column_id or 0 item1 = model.get_value(iter1, column_id).replace(',', '') item2 = model.get_value(iter2, column_id).replace(',', '') if item1.isdigit() and item2.isdigit(): return _cmp(int(item1), int(item2)) if item1.isdigit(): return -1 elif item2.isdigit(): return 1 item1 = model.get_value(iter1, column_id) item2 = model.get_value(iter2, column_id) return _cmp(item1, item2) def gtk_treeview_selection_iterate(treeview): """ Iterate over the a treeview's selected rows. :param treeview: The treeview for which to iterate over. :type treeview: :py:class:`Gtk.TreeView` :return: The rows which are selected within the treeview. :rtype: :py:class:`Gtk.TreeIter` """ selection = treeview.get_selection() (model, tree_paths) = selection.get_selected_rows() if not tree_paths: return for tree_path in tree_paths: yield model.get_iter(tree_path) def gtk_treeview_selection_to_clipboard(treeview, columns=0): """ Copy the currently selected values from the specified columns in the treeview to the users clipboard. If no value is selected in the treeview, then the clipboard is left unmodified. If multiple values are selected, they will all be placed in the clipboard on separate lines. :param treeview: The treeview instance to get the selection from. :type treeview: :py:class:`Gtk.TreeView` :param column: The column numbers to retrieve the value for. :type column: int, list, tuple """ treeview_selection = treeview.get_selection() (model, tree_paths) = treeview_selection.get_selected_rows() if not tree_paths: return if isinstance(columns, int): columns = (columns,) tree_iters = map(model.get_iter, tree_paths) selection_lines = [] for ti in tree_iters: values = (model.get_value(ti, column) for column in columns) values = (('' if value is None else str(value)) for value in values) selection_lines.append(' '.join(values).strip()) selection_lines = os.linesep.join(selection_lines) clipboard = Gtk.Clipboard.get(Gdk.SELECTION_CLIPBOARD) clipboard.set_text(selection_lines, -1) def gtk_treeview_get_column_titles(treeview): """ Iterate over a GTK TreeView and return a tuple containing the id and title of each of it's columns. :param treeview: The treeview instance to retrieve columns from. :type treeview: :py:class:`Gtk.TreeView` """ for column_id, column in enumerate(treeview.get_columns()): column_name = column.get_title() yield (column_id, column_name) def gtk_treeview_set_column_titles(treeview, column_titles, column_offset=0, renderers=None): """ Populate the column names of a GTK TreeView and set their sort IDs. :param treeview: The treeview to set column names for. :type treeview: :py:class:`Gtk.TreeView` :param list column_titles: The names of the columns. :param int column_offset: The offset to start setting column names at. :param list renderers: A list containing custom renderers to use for each column. :return: A dict of all the :py:class:`Gtk.TreeViewColumn` objects keyed by their column id. :rtype: dict """ columns = {} for column_id, column_title in enumerate(column_titles, column_offset): renderer = renderers[column_id - column_offset] if renderers else Gtk.CellRendererText() if isinstance(renderer, Gtk.CellRendererToggle): column = Gtk.TreeViewColumn(column_title, renderer, active=column_id) else: column = Gtk.TreeViewColumn(column_title, renderer, text=column_id) column.set_property('reorderable', True) column.set_sort_column_id(column_id) treeview.append_column(column) columns[column_id] = column return columns def gtk_widget_destroy_children(widget): """ Destroy all GTK child objects of *widget*. :param widget: The widget to destroy all the children of. :type widget: :py:class:`Gtk.Widget` """ for child in widget.get_children(): child.destroy() def show_dialog(message_type, message, parent, secondary_text=None, message_buttons=Gtk.ButtonsType.OK, use_markup=False, secondary_use_markup=False): """ Display a dialog and return the response. The response is dependent on the value of *message_buttons*. :param message_type: The GTK message type to display. :type message_type: :py:class:`Gtk.MessageType` :param str message: The text to display in the dialog. :param parent: The parent window that the dialog should belong to. :type parent: :py:class:`Gtk.Window` :param str secondary_text: Optional subtext for the dialog. :param message_buttons: The buttons to display in the dialog box. :type message_buttons: :py:class:`Gtk.ButtonsType` :param bool use_markup: Whether or not to treat the message text as markup. :param bool secondary_use_markup: Whether or not to treat the secondary text as markup. :return: The response of the dialog. :rtype: int """ dialog = Gtk.MessageDialog(parent, Gtk.DialogFlags.DESTROY_WITH_PARENT, message_type, message_buttons) dialog.set_property('text', message) dialog.set_property('use-markup', use_markup) dialog.set_property('secondary-text', secondary_text) dialog.set_property('secondary-use-markup', secondary_use_markup) if secondary_use_markup: signal_label_activate_link = lambda _, uri: utilities.open_uri(uri) for label in dialog.get_message_area().get_children(): if not isinstance(label, Gtk.Label): continue label.connect('activate-link', signal_label_activate_link) dialog.show_all() response = dialog.run() dialog.destroy() return response def show_dialog_error(*args, **kwargs): """Display an error dialog with :py:func:`.show_dialog`.""" return show_dialog(Gtk.MessageType.ERROR, *args, **kwargs) def show_dialog_exc_socket_error(error, parent, title=None): """ Display an error dialog with details regarding a :py:exc:`socket.error` exception that has been raised. :param error: The exception instance that has been raised. :type error: :py:exc:`socket.error` :param parent: The parent window that the dialog should belong to. :type parent: :py:class:`Gtk.Window` :param title: The title of the error dialog that is displayed. """ title = title or 'Connection Error' if isinstance(error, socket.timeout): description = 'The connection to the server timed out.' elif len(error.args) > 1: error_number, error_message = error.args[:2] if error_number == 111: description = 'The server refused the connection.' else: description = "Socket error #{0} ({1}).".format((error_number or 'N/A'), error_message) return show_dialog(Gtk.MessageType.ERROR, title, parent, secondary_text=description) def show_dialog_info(*args, **kwargs): """Display an informational dialog with :py:func:`.show_dialog`.""" return show_dialog(Gtk.MessageType.INFO, *args, **kwargs) def show_dialog_warning(*args, **kwargs): """Display an warning dialog with :py:func:`.show_dialog`.""" return show_dialog(Gtk.MessageType.WARNING, *args, **kwargs) def show_dialog_yes_no(*args, **kwargs): """ Display a dialog which asks a yes or no question with :py:func:`.show_dialog`. :return: True if the response is Yes. :rtype: bool """ kwargs['message_buttons'] = Gtk.ButtonsType.YES_NO return show_dialog(Gtk.MessageType.QUESTION, *args, **kwargs) == Gtk.ResponseType.YES class GladeDependencies(object): """ A class for defining how objects should be loaded from a GTK Builder data file for use with :py:class:`.GladeGObject`. """ __slots__ = ('children', 'top_level', 'name') def __init__(self, children=None, top_level=None, name=None): children = children or () utilities.assert_arg_type(children, tuple, 1) self.children = children """A tuple of string names or :py:class:`.GladeProxy` instances listing the children widgets to load from the parent.""" self.top_level = top_level """A tuple of string names listing additional top level widgets to load such as images.""" self.name = name """The string of the name of the top level parent widget to load.""" def __repr__(self): return "<{0} name='{1}' >".format(self.__class__.__name__, self.name) class GladeProxyDestination(object): """ A class that is used to define how a :py:class:`.GladeProxy` object shall be loaded into a parent :py:class:`.GladeGObject` instance. This includes the information such as what container widget in the parent the proxied widget should be added to and what method should be used. The proxied widget will be added to the parent by calling :py:attr:`~.GladeProxyDestination.method` with the proxied widget as the first argument. """ __slots__ = ('widget', 'method', 'args', 'kwargs') def __init__(self, widget, method, args=None, kwargs=None): utilities.assert_arg_type(widget, str, 1) utilities.assert_arg_type(method, str, 2) self.widget = widget """The name of the parent widget for this proxied child.""" self.method = method """The method of the parent widget that should be called to add the proxied child.""" self.args = args or () """Arguments to append after the proxied child instance when calling :py:attr:`~.GladeProxyDestination.method`.""" self.kwargs = kwargs or {} """Key word arguments to append after the proxied child instance when calling :py:attr:`~.GladeProxyDestination.method`.""" def __repr__(self): return "<{0} widget='{1}' method='{2}' >".format(self.__class__.__name__, self.widget, self.method) class GladeProxy(object): """ A class that can be used to load another top level widget from the GTK builder data file in place of a child. This is useful for reusing small widgets as children in larger ones. """ __slots__ = ('destination',) name = None """The string of the name of the top level widget to load.""" children = () """A tuple of string names or :py:class:`.GladeProxy` instances listing the children widgets to load from the top level.""" def __init__(self, destination): utilities.assert_arg_type(destination, GladeProxyDestination, 1) self.destination = destination """A :py:class:`.GladeProxyDestination` instance describing how this proxied widget should be added to the parent.""" def __repr__(self): return "<{0} name='{1}' destination={2} >".format(self.__class__.__name__, self.name, repr(self.destination)) class GladeGObjectMeta(type): """ A meta class that will update the :py:attr:`.GladeDependencies.name` value in the :py:attr:`.GladeGObject.dependencies` attribute of instances if no value is defined. """ assigned_name = type('assigned_name', (str,), {}) """A type subclassed from str that is used to define names which have been automatically assigned by this class.""" def __init__(cls, *args, **kwargs): dependencies = getattr(cls, 'dependencies', None) if dependencies is not None: dependencies = copy.deepcopy(dependencies) setattr(cls, 'dependencies', dependencies) if isinstance(dependencies.name, (None.__class__, cls.assigned_name)): dependencies.name = cls.assigned_name(cls.__name__) super(GladeGObjectMeta, cls).__init__(*args, **kwargs) # stylized metaclass definition to be Python 2.7 and 3.x compatible class GladeGObject(GladeGObjectMeta('_GladeGObject', (object,), {})): """ A base object to wrap GTK widgets loaded from Glade data files. This provides a number of convenience methods for managing the main widget and child widgets. This class is meant to be subclassed by classes representing objects from the Glade data file. """ dependencies = GladeDependencies() """A :py:class:`.GladeDependencies` instance which defines information for loading the widget from the GTK builder data.""" config_prefix = '' """A prefix to be used for keys when looking up value in the :py:attr:`~.GladeGObject.config`.""" top_gobject = 'gobject' """The name of the attribute to set a reference of the top level GObject to.""" objects_persist = True """Whether objects should be automatically loaded from and saved to the configuration.""" def __init__(self, application): """ :param application: The parent application for this object. :type application: :py:class:`Gtk.Application` """ utilities.assert_arg_type(application, Gtk.Application, arg_pos=1) self.config = application.config """A reference to the King Phisher client configuration.""" self.application = application """The parent :py:class:`Gtk.Application` instance.""" self.logger = logging.getLogger('KingPhisher.Client.' + self.__class__.__name__) builder = Gtk.Builder() self.gtk_builder = builder """A :py:class:`Gtk.Builder` instance used to load Glade data with.""" top_level_dependencies = [gobject.name for gobject in self.dependencies.children if isinstance(gobject, GladeProxy)] top_level_dependencies.append(self.dependencies.name) if self.dependencies.top_level is not None: top_level_dependencies.extend(self.dependencies.top_level) builder.add_objects_from_file(which_glade(), top_level_dependencies) builder.connect_signals(self) gobject = builder.get_object(self.dependencies.name) setattr(self, self.top_gobject, gobject) if isinstance(gobject, Gtk.Window): gobject.set_transient_for(self.application.get_active_window()) self.application.add_reference(self) if isinstance(gobject, Gtk.ApplicationWindow): application.add_window(gobject) if isinstance(gobject, Gtk.Dialog): gobject.set_modal(True) self.gobjects = utilities.FreezableDict() """A :py:class:`~king_phisher.utilities.FreezableDict` which maps gobjects to their unique GTK Builder id.""" self._load_child_dependencies(self.dependencies) self.gobjects.freeze() self._load_child_proxies() if self.objects_persist: self.objects_load_from_config() def _load_child_dependencies(self, dependencies): for child in dependencies.children: if isinstance(child, GladeProxy): self._load_child_dependencies(child) child = child.destination.widget gobject = self.gtk_builder_get(child, parent_name=dependencies.name) # the following five lines ensure that the types match up, this is to enforce clean development gtype = child.split('_', 1)[0] if gobject is None: raise TypeError("gobject {0} could not be found in the glade file".format(child)) elif gobject.__class__.__name__.lower() != gtype: raise TypeError("gobject {0} is of type {1} expected {2}".format(child, gobject.__class__.__name__, gtype)) self.gobjects[child] = gobject def _load_child_proxies(self): for child in self.dependencies.children or []: if not isinstance(child, GladeProxy): continue dest = child.destination method = getattr(self.gobjects[dest.widget], dest.method) if method is None: raise ValueError("gobject {0} does not have method {1}".format(dest.widget, dest.method)) src_widget = self.gtk_builder.get_object(child.name) self.logger.debug("setting proxied widget {0} via {1}.{2}".format(child.name, dest.widget, dest.method)) method(src_widget, *dest.args, **dest.kwargs) def destroy(self): """Destroy the top-level GObject.""" getattr(self, self.top_gobject).destroy() @property def parent(self): return self.application.get_active_window() def get_entry_value(self, entry_name): """ Get the value of the specified entry then remove leading and trailing white space and finally determine if the string is empty, in which case return None. :param str entry_name: The name of the entry to retrieve text from. :return: Either the non-empty string or None. :rtype: None, str """ text = self.gobjects['entry_' + entry_name].get_text() text = text.strip() if not text: return None return text def gtk_builder_get(self, gobject_id, parent_name=None): """ Find the child GObject with name *gobject_id* from the GTK builder. :param str gobject_id: The object name to look for. :param str parent_name: The name of the parent object in the builder data file. :return: The GObject as found by the GTK builder. :rtype: :py:class:`GObject.Object` """ parent_name = parent_name or self.dependencies.name gtkbuilder_id = "{0}.{1}".format(parent_name, gobject_id) self.logger.debug('loading GTK builder object with id: ' + gtkbuilder_id) return self.gtk_builder.get_object(gtkbuilder_id) def objects_load_from_config(self): """ Iterate through :py:attr:`.gobjects` and set the GObject's value from the corresponding value in the :py:attr:`~.GladeGObject.config`. """ for gobject_id, gobject in self.gobjects.items(): if not '_' in gobject_id: continue gtype, config_name = gobject_id.split('_', 1) config_name = self.config_prefix + config_name if not gtype in GOBJECT_PROPERTY_MAP or not config_name in self.config: continue value = self.config[config_name] if value is None: continue if isinstance(GOBJECT_PROPERTY_MAP[gtype], (list, tuple)): GOBJECT_PROPERTY_MAP[gtype][0](gobject, value) else: gobject.set_property(GOBJECT_PROPERTY_MAP[gtype], value) def objects_save_to_config(self): for gobject_id, gobject in self.gobjects.items(): if not '_' in gobject_id: continue gtype, config_name = gobject_id.split('_', 1) config_name = self.config_prefix + config_name if not gtype in GOBJECT_PROPERTY_MAP: continue self.config[config_name] = gobject_get_value(gobject, gtype) class FileMonitor(object): """Monitor a file for changes.""" def __init__(self, path, on_changed): """ :param str path: The path to monitor for changes. :param on_changed: The callback function to be called when changes are detected. :type on_changed: function """ self.logger = logging.getLogger('KingPhisher.Utility.FileMonitor') self.on_changed = on_changed self.path = path self._gfile = Gio.file_new_for_path(path) self._gfile_monitor = self._gfile.monitor(Gio.FileMonitorFlags.NONE, None) self._gfile_monitor.connect('changed', self.cb_changed) self.logger.debug('starting file monitor for: ' + path) def __del__(self): self.stop() def stop(self): """Stop monitoring the file.""" if self._gfile_monitor.is_cancelled(): return self._gfile_monitor.cancel() self.logger.debug('cancelled file monitor for: ' + self.path) def cb_changed(self, gfile_monitor, gfile, gfile_other, gfile_monitor_event): self.logger.debug("file monitor {0} received event: {1}".format(self.path, gfile_monitor_event.value_name)) self.on_changed(self.path, gfile_monitor_event)
[ "zeroSteiner@gmail.com" ]
zeroSteiner@gmail.com
ebfcd58f0192f48997229b64ab5b28a93443be31
9dc45b6f2ba0d94d4b8a3090364d1116fd8f52b1
/src/scripts/show.py
01d6468cefe4fe8f2e8cd22540739aedb2664418
[ "MIT" ]
permissive
mirgee/thesis_project
7c1128b46c224ec1770e89c3290de66e9a280c4d
296f292a84fe4756374d87c81e657ac991766a60
refs/heads/master
2022-04-15T12:22:57.601575
2019-08-22T14:16:15
2019-08-22T14:16:15
146,583,700
0
0
MIT
2020-03-31T03:19:20
2018-08-29T10:26:26
Jupyter Notebook
UTF-8
Python
false
false
86
py
#!python3 import pandas as pd import sys df = pd.read_pickle(sys.argv[1]) print(df)
[ "miroslavkovar@protonmail.com" ]
miroslavkovar@protonmail.com
67a8fd66fd325c2a66c113a5a6683f24d937bcb4
16e0407c03456570274efe40e6f1e076cf6ace75
/Exercise_7/challenge2.py
e1493ed675daae291b233732f844e4faf00426a8
[]
no_license
bocephus51/HomeworkForPython
14715df09775e2beac814c047b040e8e869d6bf9
75a66a1206ff3a6a2fcf7ff479e1a1eef920e898
refs/heads/master
2016-09-06T19:05:45.856421
2015-10-05T16:52:55
2015-10-05T16:52:55
42,896,298
0
0
null
null
null
null
UTF-8
Python
false
false
364
py
import arcpy from arcpy import env env.workspace = "P:/Fall2015/PythonProgramming/Exercise07/Exercise07data" fc = "Results/raods.shp" newfield = "FERRY" fieldtype = "TEXT" fieldname = arcpy.ValidateFieldName(newfield) fieldlist = arcpy.ListFields(fc) fieldnames = [] for field in fieldlist: if field = "FERRY": print "Yes" else: print "No"
[ "brwatk8554@GIS-VLAB-19.ad.uauth.net" ]
brwatk8554@GIS-VLAB-19.ad.uauth.net
8147dd2aea21db389739c6cf9ddecefb25490dea
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02702/s099070229.py
891b8ce46b8b1b1687e1257e2cd8841f2209bbaf
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
295
py
s = list(map(int,input())) s.reverse() t = len(s) mod = 2019 arr = [0] * (t+1) arr[-2] = s[0] for i in range(1,t): arr[t-i-1] = (arr[t-i] + s[i]*pow(10,i,mod)) % mod from collections import Counter arr = Counter(arr) ans = 0 for i in arr: ans += (arr[i] - 1) * arr[i] // 2 print(ans)
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
9fa04e51089fddcda263284ee9108936a4ff2b73
a3895c209fec46d184abe9e690dbfc2848ebbf7b
/src/buildJS.py
609b3d689793238c5ee75c05ad235ac2cca3c128
[]
no_license
drdrang/mechanics
4e639e8d79ee959d150f45576763e63a696a70cd
400dd56286cc2eaf12453acd2f279930d77a0a66
refs/heads/master
2020-08-07T12:12:05.607298
2009-01-22T23:19:18
2009-01-22T23:19:18
112,865
6
1
null
null
null
null
UTF-8
Python
false
false
662
py
#!/usr/bin/python from glob import glob # Get the number of problem solution files. count = len(glob('problem*.md')) # Print out a JavaScript function that will print that number. print '''function problemCount() { document.write(%d); } ''' % count # Get the chapter files. chapters = glob('chapter*.md') # Turn them into an HTML list of links. chapterList = ['<li><a href="%s">Chapter %d</a></li>' % (f.replace('md', 'html'),i+1) for i,f in enumerate(chapters)] chapterListString = '\\n'.join(chapterList) # Print a JavaScript function that will print the chapter list. print '''function chapterList() { document.write('%s'); } ''' % chapterListString
[ "drdrang@gmail.com" ]
drdrang@gmail.com
c1d2064b5559268bb779069c98714fe072aee3e1
beef54fe5731e99c98fb9306b4931cc952e50704
/ephys_stuff.py
fcbc27ab3ea8960382fc88257e520a4828fcbccb
[]
no_license
isalinas4/twoac_performance_summary
1e4ee155cd5ca6dcf752e70a3dc5cd69f57c34f5
6219ab1376a8fd81bd7ee7f642b859f9d0e2c987
refs/heads/main
2023-06-11T12:41:32.147533
2021-07-06T18:29:25
2021-07-06T18:29:25
317,296,286
0
0
null
null
null
null
UTF-8
Python
false
false
8,505
py
''' Ephys Data Report Generator ''' import os, sys import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as mpatches from jaratoolbox import celldatabase from jaratoolbox import settings from jaratoolbox import behavioranalysis from jaratoolbox import spikesanalysis from jaratoolbox import extraplots from jaratoolbox import ephyscore from jaratoolbox import spikesorting # Creating a database of cells - outputs a Pandas dataframe where each row contains information for one neuron inforecFile = os.path.join(settings.INFOREC_PATH,'chad013_inforec.py') celldb = celldatabase.generate_cell_database(inforecFile) sys.exit() # Loading electrophysiological data for all neurons and all sessions for indRow,dbRow in celldb.iterrows(): ''' White noise raster plot -------------------------------------------------------- ''' oneCell = ephyscore.Cell(dbRow) try: ephysData, bdata = oneCell.load('noiseburst') except ValueError as verror: print(verror) continue # Aligning spikes to an event spikeTimes = ephysData['spikeTimes'] eventOnsetTimes = ephysData['events']['stimOn'] timeRange = [-0.3, 0.8] # In seconds (spikeTimesFromEventOnset,trialIndexForEachSpike,indexLimitsEachTrial) = spikesanalysis.eventlocked_spiketimes(spikeTimes, eventOnsetTimes, timeRange) extraplots.raster_plot(spikeTimesFromEventOnset, indexLimitsEachTrial, timeRange) plt.xlabel('Time from event onset [s]') plt.ylabel('Trials') plt.title('Noiseburst') ''' #Frequency tuning raster plot --------------------------------------------------- ''' ephysData, bdata = oneCell.load('tc') spikeTimes = ephysData['spikeTimes'] eventOnsetTimes = ephysData['events']['stimOn'] (spikeTimesFromEventOnsetTuning,trialIndexForEachSpikeTuning,indexLimitsEachTrialTuning) = spikesanalysis.eventlocked_spiketimes(spikeTimes, eventOnsetTimes, timeRange) frequenciesEachTrialTuning = bdata['currentFreq'] numberOfTrialsTuning = len(frequenciesEachTrialTuning) print('Number of trials run for the frequency tuning curve is {}.'.format(numberOfTrialsTuning)) arrayOfFrequenciesTuning = np.unique(bdata['currentFreq']) labelsForYaxis = ['%.0f' % f for f in arrayOfFrequenciesTuning] # Generating a label of the behavior data for the y-axis trialsEachCondTuning = behavioranalysis.find_trials_each_type(frequenciesEachTrialTuning,arrayOfFrequenciesTuning) ax2 = plt.subplot2grid((3, 3), (1, 0), rowspan=2) extraplots.raster_plot(spikeTimesFromEventOnsetTuning,indexLimitsEachTrialTuning,timeRange,trialsEachCondTuning, labels=labelsForYaxis) plt.xlabel('Time from event onset [s]') plt.ylabel('Frequency [Hz]') plt.title('Tuning Curve (# of Trials = {})'.format(numberOfTrialsTuning)) ''' #Standard raster plot ----------------------------------------------------------- ''' ephysData, bdata = oneCell.load('standard') spikeTimes = ephysData['spikeTimes'] eventOnsetTimes = ephysData['events']['stimOn'] if len(eventOnsetTimes)==len(bdata['currentFreq'])+1: print('Removing last trial from standard ephys data.') eventOnsetTimes = eventOnsetTimes[:-1] (spikeTimesFromEventOnsetStandard,trialIndexForEachSpikeStandard,indexLimitsEachTrialStandard) = \ spikesanalysis.eventlocked_spiketimes(spikeTimes, eventOnsetTimes, timeRange) frequenciesEachTrialStandard = bdata['currentFreq'] numberOfTrialsStandard = len(frequenciesEachTrialStandard) print('Number of trials run for the standard sequence is {}.'.format(numberOfTrialsStandard)) arrayOfFrequenciesStandard = np.unique(bdata['currentFreq']) labelsForYaxis = ['%.0f' % f for f in arrayOfFrequenciesStandard] trialsEachCondStandard = behavioranalysis.find_trials_each_type(frequenciesEachTrialStandard,arrayOfFrequenciesStandard) ax3 = plt.subplot2grid((3, 3), (1, 1)) extraplots.raster_plot(spikeTimesFromEventOnsetStandard,indexLimitsEachTrialStandard, timeRange, trialsEachCondStandard, labels=labelsForYaxis) plt.xlabel('Time from event onset [s]') plt.ylabel('Frequency [Hz]') plt.title('Standard Sequence (# of Trials = {})'.format(numberOfTrialsStandard)) ''' #Oddball raster plot ------------------------------------------------------------ ''' ephysData, bdata = oneCell.load('oddball') spikeTimes = ephysData['spikeTimes'] eventOnsetTimes = ephysData['events']['stimOn'] if len(eventOnsetTimes)==len(bdata['currentFreq'])+1: print('Removing last trial from oddball ephys data.') eventOnsetTimes = eventOnsetTimes[:-1] (spikeTimesFromEventOnsetOddball,trialIndexForEachSpikeOddball,indexLimitsEachTrialOddball) = spikesanalysis.eventlocked_spiketimes(spikeTimes, eventOnsetTimes, timeRange) frequenciesEachTrialOddball = bdata['currentFreq'] numberOfTrialsOddball = len(frequenciesEachTrialOddball) print('Number of trials run for the oddball sequence is {}.'.format(numberOfTrialsOddball)) arrayOfFrequenciesOddball = np.unique(bdata['currentFreq']) labelsForYaxis = ['%.0f' % f for f in arrayOfFrequenciesOddball] trialsEachCondOddball = behavioranalysis.find_trials_each_type(frequenciesEachTrialOddball,arrayOfFrequenciesOddball) ax4 = plt.subplot2grid((3, 3), (2, 1)) extraplots.raster_plot(spikeTimesFromEventOnsetOddball,indexLimitsEachTrialOddball,timeRange, trialsEachCondOddball, labels=labelsForYaxis) plt.xlabel('Time from event onset [s]') plt.ylabel('Frequency [Hz]') plt.title('Oddball Sequence (# of Trials = {})'.format(numberOfTrialsOddball)) ''' #Waveform plot ------------------------------------------------------------------ ''' ax5 = plt.subplot2grid((3, 3), (0, 2)) spikesorting.plot_waveforms(ephysData['samples']) ''' #Plotting the overlapped PSTH --------------------------------------------------- ''' # Parameters binWidth = 0.010 timeVec = np.arange(timeRange[0],timeRange[-1],binWidth) smoothWinSizePsth = 5 lwPsth = 2 downsampleFactorPsth = 1 # For standard sequence iletLowFreqStandard = indexLimitsEachTrialStandard[:,trialsEachCondStandard[:,0]] spikeCountMatLowStandard = spikesanalysis.spiketimes_to_spikecounts(spikeTimesFromEventOnsetStandard,iletLowFreqStandard,timeVec) iletHighFreqStandard = indexLimitsEachTrialStandard[:,trialsEachCondStandard[:,1]] spikeCountMatHighStandard = spikesanalysis.spiketimes_to_spikecounts(spikeTimesFromEventOnsetStandard,iletHighFreqStandard,timeVec) # For oddball sequence iletLowFreqOddball = indexLimitsEachTrialOddball[:,trialsEachCondOddball[:,0]] spikeCountMatLowOddball = spikesanalysis.spiketimes_to_spikecounts(spikeTimesFromEventOnsetOddball,iletLowFreqOddball,timeVec) iletHighFreqOddball = indexLimitsEachTrialOddball[:,trialsEachCondOddball[:,1]] spikeCountMatHighOddball = spikesanalysis.spiketimes_to_spikecounts(spikeTimesFromEventOnsetOddball,iletHighFreqOddball,timeVec) ax6 = plt.subplot2grid((3, 3), (1, 2)) extraplots.plot_psth(spikeCountMatLowOddball/binWidth, smoothWinSizePsth,timeVec,trialsEachCond=[],colorEachCond='b',linestyle=None,linewidth=lwPsth,downsamplefactor=downsampleFactorPsth) extraplots.plot_psth(spikeCountMatLowStandard/binWidth, smoothWinSizePsth,timeVec,trialsEachCond=[],colorEachCond='c',linestyle=None,linewidth=lwPsth,downsamplefactor=downsampleFactorPsth) plt.xlabel('Time from event onset [s]') plt.ylabel('Number of spikes') plt.title('Low Frequency Event') # Legend for PSTH oddball_patch = mpatches.Patch(color='b',label='Oddball') standard_patch = mpatches.Patch(color='c',label='Standard') plt.legend(handles=[oddball_patch, standard_patch]) ax7 = plt.subplot2grid((3, 3), (2, 2)) extraplots.plot_psth(spikeCountMatHighOddball/binWidth, smoothWinSizePsth,timeVec,trialsEachCond=[],colorEachCond='b',linestyle=None,linewidth=lwPsth,downsamplefactor=downsampleFactorPsth) extraplots.plot_psth(spikeCountMatHighStandard/binWidth, smoothWinSizePsth,timeVec,trialsEachCond=[],colorEachCond='c',linestyle=None,linewidth=lwPsth,downsamplefactor=downsampleFactorPsth) plt.xlabel('Time from event onset [s]') plt.ylabel('Number of spikes') plt.title('High Frequency Event') plt.legend(handles=[oddball_patch, standard_patch]) ''' #Saving the figure -------------------------------------------------------------- ''' figFormat = 'png' outputDir = '/home/jarauser/beth/' figFilename ='{}_{}_D{}um_T{}_C{}.{}'.format(cellDict['subject'],cellDict['date'],cellDict['depth'],cellDict['tetrode'],cellDict['cluster'],figFormat) figFullpath = os.path.join(outputDir,figFilename) plt.savefig(figFullpath,format=figFormat) plt.gcf().set_size_inches([18,10]) plt.tight_layout() ''' plt.show()
[ "noreply@github.com" ]
isalinas4.noreply@github.com
a6cc35cac625b797547a9a7f2cef8c4cf8cfda6f
53c62e3e6bdd68ed6f7c0f5264e11eaf72a55e3e
/evaluation/count_frequencies.py
dc3b06c0d28f85e884922562314cd8864b1fc368
[]
no_license
lkopocinski/paintball
19d4076ad19d8c4bc3796621df63f26dc0e54f51
266c51693bd867924c48f2bbc3d81497a1b9e6ab
refs/heads/master
2022-04-17T04:01:54.036359
2020-03-23T12:52:54
2020-03-23T12:52:54
191,989,869
0
0
null
null
null
null
UTF-8
Python
false
false
353
py
import sys import pandas as pd def main(): df = pd.read_csv(sys.argv[1], names=['term', 'distance']) df = df[df['distance'] != -1] df = df.groupby('term').min() #df = df.distance.apply(lambda x: round(x, 0)) df = df.distance df = df.value_counts() df = df.sort_index() print df if __name__ == '__main__': main()
[ "lkopocinski@gmail.com" ]
lkopocinski@gmail.com
d3bf39bc2723f376e6b3a751ece562baec160cdb
34b9b39442bde1a3c8fa670ef60bcc84d772a067
/Assignment 3- Deadline 10 Oct 2017/Assignment3_step1_Chen.py
5d5e307459540e779670a078ea9fae69efd75b92
[]
no_license
bnajafi/Scientific_Python_Assignments_POLIMI_EETBS
b398fc2754b843d63cd06d517235c16177a87dcf
8da926e995dcaf02a297c6bb2f3120c49d6d63da
refs/heads/master
2021-05-07T22:36:14.715936
2018-01-16T21:12:33
2018-01-16T21:12:33
107,265,075
38
86
null
2018-01-16T21:12:34
2017-10-17T12:24:04
Python
UTF-8
Python
false
false
1,666
py
#Assignment 3_Step1_Chen Matrial_Library={"OutsideSurfaceWinter":0.030,"WoodBevelLappedSiding_13mm":0.14, "WoodFiberboardSheeting_13mm":0.23,"GlassFiberInsulation_90mm":2.45,"WoodStud_90mm":0.63, "GypsumWallboard_13mm":0.079,"InsideSurfaceAir":0.12} #Making it into through insulation part and through the studs Layers_throughInsulation=["OutsideSurfaceWinter","WoodBevelLappedSiding_13mm", "WoodFiberboardSheeting_13mm","GlassFiberInsulation_90mm", "GypsumWallboard_13mm","InsideSurfaceAir"] Layers_throughStuds=["OutsideSurfaceWinter","WoodBevelLappedSiding_13mm", "WoodFiberboardSheeting_13mm","WoodStud_90mm", "GypsumWallboard_13mm","InsideSurfaceAir"] Layers_Series=[Layers_throughInsulation,Layers_throughStuds] Rtot_Series=[] for series in Layers_Series: Rtot=0 for anylayer in series: Rtot=Rtot+Matrial_Library[anylayer] Rtot_Series.append(Rtot) print "The total unit value in series are " + str(Rtot_Series)+ " m2*degreeC/W" Ratio=float(0.75) #insulation 0.75, while studs 1-ratio Layers_Parallel_Ufactor=[1/Rtot_Series[0]*Ratio,1/Rtot_Series[1]*(1-Ratio)] print "The total unit Ufactor in parallel are: " + str(Layers_Parallel_Ufactor)+" W/m2*degreeC" Utot=Layers_Parallel_Ufactor[0]+Layers_Parallel_Ufactor[1] print "The overall U-factor is: "+ str(Utot)+ " W/m2*degreeC" Rtot=1/Utot print "The overall unit thermal resistance is: "+str(Rtot)+ " m2*degreeC/W" A_wall=0.8*50*2.5 #The perimeter of the building is 50m, the height of the walls is 2.5m,the glazing constitutes 20 percent of the walls Ti=22 To=-2 Q=Utot*A_wall*(Ti-To) print "The rate of heat loss through the walls under design conditions is: "+str(Q) + " W"
[ "behzad najafi" ]
behzad najafi
a4d8d6fe0685a57c271fe4c3507e92d10afb7654
14f58c588cbea113188f7220545164400894e40f
/coding_challenge_be/coding_challenge/modules/auth/exceptions.py
20ea789a37cc491117365e3c8ca06a6948b3e831
[]
no_license
janatii/CodingChallenge
f91bea7bf4176a046ccb2ca3eb37a8f1299ad585
c0d7e80b18a56158297175fd789b271fac82a4c8
refs/heads/master
2020-03-28T19:42:22.469802
2019-04-17T15:07:27
2019-04-17T15:07:27
149,001,727
2
0
null
null
null
null
UTF-8
Python
false
false
896
py
class AuthException(Exception): pass class AuthException(Exception): """Base Exception in PxG Auth""" pass class NoAuthorizationError(AuthException): status_code = 403 def __init__(self, msg): AuthException.__init__(self) self.message = msg def to_dict(self): rv = dict() rv['message'] = self.message return rv class InvalidHeaderError(AuthException): status_code = 403 def __init__(self, msg): AuthException.__init__(self) self.message = msg def to_dict(self): rv = dict() rv['message'] = self.message return rv class InvalidTokenError(AuthException): status_code = 403 def __init__(self, msg): AuthException.__init__(self) self.message = msg def to_dict(self): rv = dict() rv['message'] = self.message return rv
[ "mohammed.janatiidrissi1@usmba.ac.ma" ]
mohammed.janatiidrissi1@usmba.ac.ma
7c36fe2d7a54bc0cf20da4b45ee86c42dcd6bebf
fcbba906a08ef64dd805241446c4dbf4df9829ee
/data/binary_norb.py
24bcd6dbaf96819f59b2275fab80d8cd0f1ff348
[]
no_license
gdesjardins/deep_tempering
7325fa8eca745b5da02203629990424f449b5c73
b51a673ccb16a1f50ea1e1b9707b712ffa3fb934
refs/heads/master
2016-09-05T18:19:40.680063
2013-10-01T14:52:51
2013-10-01T14:52:51
9,759,187
2
0
null
null
null
null
UTF-8
Python
false
false
9,139
py
import numpy import os import time import copy from pylearn2.datasets import dense_design_matrix from pylearn2.datasets import retina from pylearn2.training_algorithms import default from deep_tempering.data import shift from deep_tempering.data.grbm_preproc import GRBMPreprocessor def onehot_encoding(y): one_hot = numpy.zeros((y.shape[0],5),dtype='float32') for i in xrange(y.shape[0]): one_hot[i,y[i]] = 1 return one_hot class BinaryNORB(dense_design_matrix.DenseDesignMatrix): def __init__(self, which_set, one_hot = False): """ :param which_set: one of ['train','test'] """ assert which_set in ['train','test'] self.which_set = which_set # Load data and labels. base = '%s/norb_small/ruslan_binarized' % os.getenv('PYLEARN2_DATA_PATH') fname = '%s/%s_X.npy' % (base, which_set) X = numpy.load(fname) fname = '%s/%s_Y.npy' % (base, which_set) y = numpy.load(fname).astype('int') self.one_hot = one_hot if one_hot: y = onehot_encoding(y) super(BinaryNORB, self).__init__(X = X, y = y) class NumpyLoader(dense_design_matrix.DenseDesignMatrix): def __init__(self, fname): """ :param which_set: one of ['train','test'] """ self.which_set = fname.split('.')[0] # Load data and labels. base = '%s/norb_small/ruslan_binarized' % os.getenv('PYLEARN2_DATA_PATH') fname = '%s/%s' % (base, fname) X = numpy.load(fname) y = numpy.zeros(X.shape[0]) super(NumpyLoader, self).__init__(X = X, y = y) class MyBinaryNORB(dense_design_matrix.DenseDesignMatrix): def __init__(self, which_set, one_hot = False): """ :param which_set: one of ['train','test'] """ assert which_set in ['train','test'] self.which_set = which_set # Load data and labels. base = '%s/norb_small/ruslan_binarized' % os.getenv('PYLEARN2_DATA_PATH') fname = '%s/norb96x96x2_fov8422_grbm_4k_%s_X.npy' % (base, which_set) X = numpy.load(fname) fname = '%s/%s_Y.npy' % (base, which_set) y = numpy.load(fname).astype('int') self.one_hot = one_hot if one_hot: y = onehot_encoding(y) super(MyBinaryNORB, self).__init__(X = X, y = y) class FoveatedPreprocNORB(dense_design_matrix.DenseDesignMatrix): """ This dataset can serve two purposes. When used by itself, it loads up the preprocessed and foveated NORB data, used to train the first layer GRBM (model used to binarize the dataset). When used in conjunction with binary_norb.TrainingAlgorithm, will generate binarized (through a GRBM) shifted version of this foveated NORB dataset. This thus generates a binary representation (online) which can be used with binary RBMs or DBMs. """ def __init__(self, which_set, one_hot = False, seed=1239): """ :param which_set: one of ['train', 'valid', 'test'] :param center: data is in range [0,256], center=True subtracts 127.5. :param multi_target: load extra information as additional labels. """ assert which_set in ['train', 'valid', 'test'] self.which_set = which_set # Load data and labels. base = '%s/norb_small/ruslan_binarized' % os.getenv('PYLEARN2_DATA_PATH') if which_set in ['train', 'valid']: xfname = '%s/norb96x96x2_fov8422_%s_X.npy' % (base, 'train') yfname = '%s/norb96x96x2_fov8422_%s_Y.npy' % (base, 'train') else: xfname = '%s/norb96x96x2_fov8422_%s_X.npy' % (base, which_set) yfname = '%s/norb96x96x2_fov8422_%s_Y.npy' % (base, which_set) X = numpy.load(xfname) y = numpy.load(yfname).astype('int') if which_set in ['train', 'valid']: rng = numpy.random.RandomState(seed) pidx = rng.permutation(len(X)) idx = pidx[:-4300] if which_set == 'train' else pidx[-4300:] X = X[idx] y = y[idx] self.one_hot = one_hot if one_hot: y = onehot_encoding(y) view_converter = retina.RetinaCodingViewConverter((96,96,2), (8,4,2,2)) super(FoveatedPreprocNORB,self).__init__(X = X, y = y, view_converter = view_converter) class PreprocIterator(): """ A basic iterator which fetches the next example in the dataset, and then performs a random shift (as described in the tempered transition paper). """ def __init__(self, iterator, topo_shape, rings, max_shift, seed=129387): """ :param iterator: an iterator which loops over the "raw" (foveated, unjitted, unbinarized) NORB dataset """ self.topo_shape = topo_shape self.rings = rings self.max_shift = max_shift self.rng = numpy.random.RandomState(seed) self.grbm = GRBMPreprocessor() # encapsulate the behavior of a "normal" dataset iterator self.iterator = iterator self._subset_iterator = iterator._subset_iterator def __iter__(self): return self def debug(self, fx): # Unfoveated the current batch fx1 = copy.copy(fx) x1 = retina.decode(fx1, (96,96,2), (8,4,2,2)) # Binarized, Reconstruct then defoveate minibatch fx2 = copy.copy(fx) bfx2 = self.grbm.preproc(fx2) fxhat2 = self.grbm.reconstruct(bfx2) xhat2 = retina.decode(fxhat2, (96,96,2), (8,4,2,2)) # Shift then defoveate minibatch fx3 = copy.copy(fx) sfx3 = shift.shift_batch(fx3, topo_shape = self.topo_shape, rings = self.rings, maxshift = self.max_shift, rng = self.rng) sx3 = retina.decode(sfx3, (96,96,2), (8,4,2,2)) # Shift, binarize, reconstruct, then defoveate minibatch bsfx4 = self.grbm.preproc(sfx3) sfxhat4 = self.grbm.reconstruct(bsfx4) sxhat4 = retina.decode(sfxhat4, (96,96,2), (8,4,2,2)) import pylab as pl import pdb; pdb.set_trace() for i in xrange(len(fx)): pl.subplot(1,4,1); pl.gray(); pl.imshow(x1[i,:,:,0]) pl.subplot(1,4,2); pl.gray(); pl.imshow(sx3[i,:,:,0]) pl.subplot(1,4,3); pl.gray(); pl.imshow(xhat2[i,:,:,0]) pl.subplot(1,4,4); pl.gray(); pl.imshow(sxhat4[i,:,:,0]) pl.show() return bin_fovx def next(self, debug=False): _fovx = self.iterator.next() # make explicit copy of batch data so we don't overwrite the original example ! fovx = copy.copy(_fovx) # Shift then defoveate minibatch shift.shift_batch(fovx, topo_shape = self.topo_shape, rings = self.rings, maxshift = self.max_shift, rng = self.rng) bin_shift_fovx = self.grbm.preproc(fovx) return bin_shift_fovx class TrainingAlgorithm(default.DefaultTrainingAlgorithm): def setup(self, model, dataset): dataset._iterator = PreprocIterator( dataset.iterator( mode='shuffled_sequential', batch_size = model.batch_size), topo_shape = (96,96,2), rings = (8,4,2,2), max_shift = 6) x = dataset._iterator.next() model.init_parameters_from_data(x) super(TrainingAlgorithm, self).setup(model, dataset) if __name__ == '__main__': """ from deep_tempering.data import grbm_preproc grbm = grbm_preproc.GRBMPreprocessor() # binary data extracted from Russ' MATLAB code (batchdata in MATLAB) binrusX1 = binary_norb.BinaryNORB('train') # foveated & other preprocessing's on NORB (fovimg1 and fovimg2 in MATLAB) fovrusX2 = binary_norb.FoveatedPreprocNORB('train') binrusX2 = grbm.encode(fovrusX2.X) # We need to find the random mapping which was used to build "batchdata", so that we can # numpy.sum(x1**2, axis=1)[:,None] + numpy.sum(x2**2, axis=1)[None,:] - 2*numpy.dot(x1, x2.T) """ from deep_tempering.data import grbm_preproc grbm = grbm_preproc.GRBMPreprocessor() # generate a static validation and test set for the callback methods to work with train = FoveatedPreprocNORB('train') binary_train = grbm.preproc(train.X) numpy.save('/data/lisa/data/norb_small/ruslan_binarized/binary_train_GD.npy', binary_train) del train, binary_train # generate a static validation and test set for the callback methods to work with valid = FoveatedPreprocNORB('valid') binary_valid = grbm.preproc(valid.X) numpy.save('/data/lisa/data/norb_small/ruslan_binarized/binary_valid_GD.npy', binary_valid) del valid, binary_valid # generate a static validation and test set for the callback methods to work with test = FoveatedPreprocNORB('test') binary_test = grbm.preproc(test.X) numpy.save('/data/lisa/data/norb_small/ruslan_binarized/binary_test_GD.npy', binary_test) del test, binary_test
[ "guillaume.desjardins@gmail.com" ]
guillaume.desjardins@gmail.com
c1b1470d3c311a14ce3c7720c3bff91c14f7c7cb
92bf1bfccd55ec4acd266cc7eaebecf92ff25e84
/old_version/game/player/field/cells/__init__.py
78e24aa7e87e6f2e40e5dd749b175878e24b4fc2
[]
no_license
SchwIst/sea_battle
9316ce5bcb8e526335d519ce0f99e7832c44b349
66d417db5f791ec2ae0675647ed738de1a01b311
refs/heads/main
2023-05-24T02:53:14.082697
2021-06-13T16:12:36
2021-06-13T16:12:36
369,798,568
0
0
null
null
null
null
UTF-8
Python
false
false
1,180
py
from colorama import Fore, Back from colorama.ansi import AnsiBack, AnsiFore from old_version.game.utils import Display class Cell(Display): foreground: AnsiFore background: AnsiBack text: str def __init__(self, text: str, foreground: AnsiFore, background: AnsiBack): self.text = text self.background = background self.foreground = foreground def __str__(self): return str(self.background) + \ str(self.foreground) + \ self.text + \ Fore.RESET + Back.RESET def __hash__(self) -> int: return ord(self.text) * 31 @staticmethod def from_hash(number: int): return chr(int(number / 31)) def display(self): print(str(self), end='') TYPES: dict[str, Cell] = { "empty": Cell(' ', Fore.WHITE, Back.WHITE), "ship": Cell('@', Fore.BLUE, Back.WHITE), "damaged": Cell('X', Fore.RED, Back.WHITE), "miss": Cell('•', Fore.BLACK, Back.WHITE), # TODO: add use of: "killed": Cell('X', Fore.WHITE, Back.RED), # TODO: add use of: "struck": Cell('0', Fore.YELLOW, Back.RESET), "selected": Cell('S', Fore.BLACK, Back.WHITE) }
[ "juliachirkova@e1.ru" ]
juliachirkova@e1.ru
53eda65123f75cbc0c9b054254adbbc24827819b
ab3d4a18d7798a9644e8d451f672daee43979344
/users/factories.py
6b707f310cd001abadd736ef13308e10c1b8e1b9
[]
no_license
dingusagar/Motty-backend
62ff11af33d9780458bfd589e88d1323f2b4245f
73b67e1b0b08abb0aefd3aec53b29f63e3651ddb
refs/heads/master
2022-12-10T12:21:37.126704
2019-09-01T15:04:43
2019-09-01T15:04:43
201,797,194
0
0
null
2022-11-22T03:35:37
2019-08-11T17:53:17
JavaScript
UTF-8
Python
false
false
423
py
import factory from users.models import User class UserFactory(factory.django.DjangoModelFactory): class Meta: model = User username = factory.Sequence(lambda n: 'username{0}'.format(n)) first_name = factory.Sequence(lambda n: 'firstname{0}'.format(n)) last_name = factory.Sequence(lambda n: 'lastname{0}'.format(n)) email = factory.Sequence(lambda n: 'xyz{0}@company{0}.com'.format(n))
[ "dingusagar@gmail.com" ]
dingusagar@gmail.com
b14a968f1bdab65b69ffcfadaebe88b1686f5764
6c3273f818a80bcd3e191a3b18ff17b4f4ad1795
/app/config.py
2005251d1401583785b7622ad58265f9f8f32496
[]
no_license
Evan-cell/news2
97f4df27ef707e5f9c441f8e9b6a6a3249df4386
420d1c91e70cad75f0f1e04189afa9eae102bb37
refs/heads/master
2023-07-31T22:44:10.309621
2021-09-15T14:02:37
2021-09-15T14:02:37
405,673,120
0
0
null
null
null
null
UTF-8
Python
false
false
539
py
class Config: ''' General configuration parent class ''' NEWS_API_BASE_URL ='https://newsapi.org/v2/top-headlines?country=us&apiKey={}' class ProdConfig(Config): ''' Production configuration child class Args: Config: The parent configuration class with General configuration settings ''' pass class DevConfig(Config): ''' Development configuration child class Args: Config: The parent configuration class with General configuration settings ''' DEBUG = True
[ "60639510+Evan-cell@users.noreply.github.com" ]
60639510+Evan-cell@users.noreply.github.com
d1af5d61788451b164c2775e1b540de2621dfa2a
41948a77843732029a375198509000504e9666c1
/leetcode/dynamic programming/leet_1478.py
6d139753e57b087aa4cbf90aa1b6d2764c22a0f0
[]
no_license
GoogleGu/leetcode
9a3882fe641b67c8494c1598947a4c043802b0dd
8b20a2039f2b1bf2cdb0db3bdc7ab367de3bef9d
refs/heads/master
2023-01-24T14:39:13.791507
2020-12-07T01:58:01
2020-12-07T01:58:01
160,458,177
0
0
null
null
null
null
UTF-8
Python
false
false
1,588
py
class Solution: def minDistance(self, houses: List[int], k: int) -> int: if len(houses)<=k: return 0 houses.sort() n = len(houses) inf = 100*10000+1 # 3-dim dp: # 100 x 100 x 100 # 在前 i 个房子中,放置了 j 个邮筒, 最后一个邮筒的位置是第 l 个房子 answer = [[[inf]*n for _ in range(k)] for _ in range(n)] for i in range(n): for j in range(k): for l in range(j,i+1): if j>=i and l==i: answer[i][j][l] = 0 continue if j==0: # 只有一个邮筒,它放在了第l个房子的位置 answer[i][j][l] = sum([abs(x-houses[l])for x in houses[:i+1]] ) elif l<i: # 最后一个邮筒,并不放在最后一个房子的位置 answer[i][j][l] = answer[l][j][l] + sum([abs(x-houses[l])for x in houses[l+1:i+1]] ) else: # 有多个邮筒,它们放在不同的位置 # 开始检索倒数第二个邮筒所有可能的位置 tt = inf for ll in reversed(range(j-1,l)): t = answer[ll][j-1][ll] + sum([min(abs(x-houses[ll]),abs(x-houses[l]))for x in houses[ll+1:i+1]] ) tt = min(t,tt) answer[i][j][l] = tt xx = answer[n-1][k-1] return min(xx)
[ "gyx152540@gmail.com" ]
gyx152540@gmail.com
3b4fd19274236066279027019933a0da6c067b96
c5dd2424d2f430074c070ec76514559788c4e25e
/python/aws/bin/rst2html4.py
83185c4681019e9c11bf1e429494ae9bdb2db7b4
[]
no_license
hardy-devnix/Code
7f23e1cb71c67d12ebd7b62492cd663dadbc4e0a
9e19101801d20ac96d6aa9b45078878504112760
refs/heads/master
2021-07-04T17:17:56.788589
2018-04-29T19:41:39
2018-04-29T19:41:39
129,791,404
0
1
null
2020-07-25T23:48:18
2018-04-16T18:57:29
Python
UTF-8
Python
false
false
736
py
#!/home/hardy/code/python/aws/bin/python # $Id: rst2html4.py 7994 2016-12-10 17:41:45Z milde $ # Author: David Goodger <goodger@python.org> # Copyright: This module has been placed in the public domain. """ A minimal front end to the Docutils Publisher, producing (X)HTML. The output conforms to XHTML 1.0 transitional and almost to HTML 4.01 transitional (except for closing empty tags). """ try: import locale locale.setlocale(locale.LC_ALL, '') except: pass from docutils.core import publish_cmdline, default_description description = ('Generates (X)HTML documents from standalone reStructuredText ' 'sources. ' + default_description) publish_cmdline(writer_name='html4', description=description)
[ "hardy.devnix@gmail.com" ]
hardy.devnix@gmail.com
0a438569afda9f4a3006043a32bfb60b5ab4827a
3dc3ed0fb0a21e564ba99e12d60df6882741d48b
/gwent/vendor/pygwinc_clone/gwinc/struct.py
2d9c801c1e8e7f6505e3e947f75bf057e75b1f7d
[ "MIT" ]
permissive
xilong/gwent
3afbfaec1fe2dc5909c2f948166ba5287221c0d9
6ee2f7a633c973ea10b450257b1ad4dbd0323738
refs/heads/master
2023-02-25T17:02:55.990422
2021-01-26T15:46:47
2021-01-26T15:46:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,661
py
import os import re import io import yaml import numpy as np from scipy.io import loadmat from scipy.io.matlab.mio5_params import mat_struct # HACK: fix loading number in scientific notation # # https://stackoverflow.com/questions/30458977/yaml-loads-5e-6-as-string-and-not-a-number # # An apparent bug in python-yaml prevents it from regognizing # scientific notation as a float. The following is a modified version # of the parser that recognize scientific notation appropriately. yaml_loader = yaml.SafeLoader yaml_loader.add_implicit_resolver( "tag:yaml.org,2002:float", re.compile( """^(?: [-+]?(?:[0-9][0-9_]*)\\.[0-9_]*(?:[eE][-+]?[0-9]+)? |[-+]?(?:[0-9][0-9_]*)(?:[eE][-+]?[0-9]+) |\\.[0-9_]+(?:[eE][-+][0-9]+)? |[-+]?[0-9][0-9_]*(?::[0-5]?[0-9])+\\.[0-9_]* |[-+]?\\.(?:inf|Inf|INF) |\\.(?:nan|NaN|NAN))$""", re.X, ), list("-+0123456789."), ) def dictlist2recarray(l): def dtype(v): if isinstance(v, int): return float else: return type(v) # get dtypes from first element dict dtypes = [(k, dtype(v)) for k, v in l[0].items()] values = [tuple(el.values()) for el in l] out = np.array(values, dtype=dtypes) return out.view(np.recarray) class Struct(object): """Matlab struct-like object This is a simple implementation of a MATLAB struct-like object that stores values as attributes of a simple class: and allows assigning to attributes recursively, e.g.: >>> s = Struct() >>> s.a = 4 >>> s.b = Struct() >>> s.b.c = 8 Various classmethods allow creating one of these objects from YAML file, a nested dict, or a MATLAB struct object. """ # FIXME: This would be a way to allow setting nested struct # attributes, e.g.: # # >>> s = Struct() # >>> s.a.b.c = 4 # # Usage of __getattr__ like this is dangerous and creates # non-intuitive behavior (i.e. an empty struct is returned when # accessing attributes that don't exist). Is there a way to # accomplish this without that adverse side affect? # # def __getattr__(self, name): # if name not in self.__dict__: # self.__dict__[name] = Struct() # return self.__dict__[name] ########## def __init__(self, **kwargs): """Arguments can pre-fill the structure""" self.__dict__.update(kwargs) def __getitem__(self, key): """Get a (possibly nested) value from the struct.""" if "." in key: k, r = key.split(".", 1) # FIXME: this is inelegant. better done with regexp? if len(k.split("[")) > 1: kl, i = k.split("[") i = int(i.strip("]")) return self.__dict__[kl][i][r] return self.__dict__[k][r] else: return self.__dict__[key] def get(self, key, default): """Get a (possibly nested) value from the struct, or default.""" try: return self[key] except KeyError: return default def __setitem__(self, key, value): if "." in key: k, r = key.split(".", 1) self.__dict__[k][r] = value else: self.__dict__[key] = value def setdefault(self, key, default): return self.__dict__.setdefault(key, default) def items(self): return self.__dict__.items() def keys(self): return self.__dict__.keys() def values(self): return self.__dict__.values() def __contains__(self, key): return key in self.__dict__ def to_dict(self, array=False): """Return nested dictionary representation of Struct. If `array` is True any lists encountered will be turned into numpy arrays, and lists of Structs will be turned into record arrays. This is needed to convert to structure arrays in matlab. """ d = {} for k, v in self.__dict__.items(): if isinstance(v, type(self)): d[k] = v.to_dict(array=array) else: if isinstance(v, list): try: # this should fail if the elements of v are # not Struct # FIXME: need cleaner way to do this v = [i.to_dict(array=array) for i in v] if array: v = dictlist2recarray(v) except AttributeError: if array: v = np.array(v) elif isinstance(v, int): v = float(v) d[k] = v return d def to_yaml(self, path=None): """Return YAML representation of Struct. Write YAML to `path` if specified. """ y = yaml.dump(self.to_dict(), default_flow_style=False) if path: with open(path, "w") as f: f.write(y) else: return y # def __repr__(self): # return self.to_yaml().strip('\n') def __str__(self): return "<GWINC Struct: {}>".format(list(self.__dict__.keys())) def __iter__(self): return iter(self.__dict__) def walk(self): """Iterate over all leaves in the struct tree.""" for k, v in self.__dict__.items(): if isinstance(v, type(self)): for sk, sv in v.walk(): yield k + "." + sk, sv else: try: for i, vv in enumerate(v): for sk, sv in vv.walk(): yield "{}[{}].{}".format(k, i, sk), sv except (AttributeError, TypeError): yield k, v def diff(self, other): """Return tuple of differences between target IFO. Returns list of (key, value, other_value) tuples. Value is None if key not present. """ diffs = [] for k, ov in other.walk(): v = self.get(k, None) if ov != v and ov is not v: diffs.append((k, v, ov)) for k, v in self.walk(): ov = other.get(k, None) if ov is None: diffs.append((k, v, ov)) return diffs def to_txt(self, path=None, fmt="0.6e", delimiter=": ", end=""): """Return text represenation of Struct, one element per line. Struct keys use '.' to indicate hierarchy. The `fmt` keyword controls the formatting of numeric values. MATLAB code can be generated with the following parameters: >>> ifo.to_txt(delimiter=' = ', end=';') Write text to `path` if specified. """ txt = io.StringIO() for k, v in sorted(self.walk()): if isinstance(v, (int, float, complex)): base = fmt elif isinstance(v, (list, np.ndarray)): if isinstance(v, list): v = np.array(v) v = np.array2string( v, separator="", max_line_width=np.Inf, formatter={"all": lambda x: "{:0.6e} ".format(x)}, ) base = "s" else: base = "s" txt.write( u"{key}{delimiter}{value:{base}}{end}\n".format( key=k, value=v, base=base, delimiter=delimiter, end=end, ) ) if path: with open(path, "w") as f: f.write(txt.getvalue()) else: return txt.getvalue() @classmethod def from_dict(cls, d): """Create Struct from nested dict.""" c = cls() for k, v in d.items(): if type(v) == dict: c.__dict__[k] = Struct.from_dict(v) else: try: c.__dict__[k] = list(map(Struct.from_dict, v)) except (AttributeError, TypeError): c.__dict__[k] = v return c @classmethod def from_yaml(cls, y): """Create Struct from YAML string.""" d = yaml.load(y) return cls.from_dict(d) @classmethod def from_matstruct(cls, s): """Create Struct from scipy.io.matlab mat_struct object.""" c = cls() try: s = s["ifo"] except: pass for k, v in s.__dict__.items(): if k in ["_fieldnames"]: # skip these fields pass elif type(v) is mat_struct: c.__dict__[k] = Struct.from_matstruct(v) else: # handle lists of Structs try: c.__dict__[k] = list(map(Struct.from_matstruct, v)) except: c.__dict__[k] = v # try: # c.__dict__[k] = float(v) # except: # c.__dict__[k] = v return c @classmethod def from_file(cls, path): """Load Struct from .yaml or MATLAB .mat file. File type will be determined by extension. """ (root, ext) = os.path.splitext(path) with open(path, "r") as f: if ext in [".yaml", ".yml"]: d = yaml.load(f, Loader=yaml_loader) return cls.from_dict(d) elif ext == ".mat": s = loadmat(f, squeeze_me=True, struct_as_record=False) return cls.from_matstruct(s) else: raise IOError("Unknown file type: {}".format(ext)) def load_struct(path): """Load struct from YAML or MATLAB file. Files may be either .yaml, .mat or .m. For .m files, the file is expected to include either an object or function that corresponds to the basename of the file. The MATLAB engine will be invoked to execute the .m code and extract the resultant IFO data. """ root, ext = os.path.splitext(path) if ext == ".m": from ..gwinc_matlab import Matlab matlab = Matlab() matlab.addpath(os.path.dirname(path)) func_name = os.path.basename(root) matlab.eval("ifo = {};".format(func_name), nargout=0) ifo = matlab.extract("ifo") return Struct.from_matstruct(ifo) else: return Struct.from_file(path) # accepted extension types for struct files STRUCT_EXT = [".yaml", ".yml", ".mat", ".m"]
[ "ark0015@mix.wvu.edu" ]
ark0015@mix.wvu.edu
5cf125533c796901753dd003da453d510a873b6f
985a9181f83171e9df88d9dccfba63c9cc2b8ba7
/tools/codegen/api/unboxing.py
29c2662d10127951412d6e96005d2f860199bf06
[ "BSD-2-Clause", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSL-1.0", "Apache-2.0" ]
permissive
Poet-LiBai/pytorch
3c70caa61d245d67820d8d7773bdba45d67986f4
3e10fe323165a94fed66b1487902e8d394ce3be1
refs/heads/master
2022-05-04T18:25:05.419746
2022-04-21T01:48:46
2022-04-21T01:48:46
230,610,878
0
0
NOASSERTION
2019-12-28T13:03:02
2019-12-28T13:03:01
null
UTF-8
Python
false
false
9,299
py
from typing import List, Tuple from tools.codegen.api import cpp from tools.codegen.api.types import Binding, CType, CppSignatureGroup from tools.codegen.model import ( Argument, NativeFunction, Type, BaseType, OptionalType, ListType, BaseTy, ) # This file generates the code for unboxing wrappers, i.e., the glue logic to unbox a boxed operator and convert the # ivalues from stack to correct arguments to the unboxed kernel, based on corresponding JIT schema. This codegen is # an alternative way to generate unboxing wrappers similar to the existing C++ metaprogramming approach but gets the # job done statically. These generated unboxing wrappers will be useful under the scenario where we need to register # a fixed set of operators known at compile time and thus can save some time in runtime initialization phase. # # Here's an example on how the codegen works: # # - Function Schema (source of truth) # # aten::empty.names(int[] size, *, Dimname[]? names, # ScalarType? dtype=None, Layout? layout=None, # Device? device=None, bool? pin_memory=None, # MemoryFormat? memory_format=None) -> Tensor # - Argument Conversion # Generates C++ code to convert an ivalue (from stack) to its underlying C++ type. # - int[] size # ```cpp # const c10::List<c10::IValue> size_list_in = (std::move(peek(stack, 0, 7))).toList(); # # std::vector<int64_t> size_vec; # for (c10::IValue size_elem: size_list_in) { # int64_t size_base = size_elem.to<int64_t>(); # size_vec.push_back(size_base); # } # at::ArrayRef<int64_t> size_list_out(size_vec); # ~~~~~~~~~~~~~ <-- The converted argument from ivalues in the stack. # Will be passed to unboxed kernel. # ``` # - Dimname[]? names # ```cpp # c10::optional<c10::IValue> names_opt = (std::move(peek(stack, 1, 7))).toOptional<c10::IValue>(); # c10::optional<at::ArrayRef<at::Dimname>> names_opt_out; # if (names_opt.has_value()) { # ~~~~~~~~~~~ <-- Unwrapping optional shell # const c10::IValue names_opt_in = names_opt.value(); # const c10::List<c10::IValue> names_list_in = names_opt_in.toList(); # # std::vector<at::Dimname> names_vec; # for (c10::IValue names_elem: names_list_in) { # ~~~~~~~~~~~~~~~~~~~~~~~~~ <-- Unrolling list, then convert elements one by one. # at::Dimname names_base = names_elem.to<at::Dimname>(); # names_vec.push_back(names_base); # } # at::ArrayRef<at::Dimname> names_list_out(names_vec); # # names_opt_out = c10::optional<at::ArrayRef<at::Dimname>>(names_list_out); # } else { # names_opt_out = c10::optional<at::ArrayRef<at::Dimname>>(); # } # ``` # - ScalarType? dtype (similarly for the rest of the arguments) # ```cpp # c10::optional<c10::IValue> dtype_opt = (std::move(peek(stack, 2, 7))).toOptional<c10::IValue>(); # c10::optional<at::ScalarType> dtype_opt_out; # if (dtype_opt.has_value()) { # const c10::IValue dtype_opt_in = dtype_opt.value(); # at::ScalarType dtype_base = dtype_opt_in.to<at::ScalarType>(); # ~~~~~~~~~~~~~~~~~~~~ <-- For base types, convert ivalue to it # directly using ".to<T>()" API. # dtype_opt_out = c10::optional<at::ScalarType>(dtype_base); # } else { # dtype_opt_out = c10::optional<at::ScalarType>(); # } # ``` # # - Unboxed Kernel Call # ```cpp # auto result_ = torch::empty( # size_list_out, # names_opt_out, # options, # memory_format_opt_out # ); # ``` # # - Push Result Back to Stack # ```cpp # drop(stack, 7); # pack(stack, std::move(result_)); # ``` connector = "\n\t" # Return unboxing function name for a NativeFunction def name(f: NativeFunction) -> str: return f.func.name.unambiguous_name() # Convert all the arguments in a NativeFunction to C++ code def convert_arguments(f: NativeFunction) -> Tuple[List[Binding], List[str]]: # we need the 'self' argument so method needs to be False args = ( CppSignatureGroup.from_native_function(f, method=False) .most_faithful_signature() .arguments() ) code_list = [ f"c10::IValue {args[i].name} = std::move(peek(stack, {i}, {len(args)}));" for i in range(len(args)) ] + [""] binding_list = [] for i, arg in enumerate(args): # expecting only Argument if not isinstance(arg.argument, Argument): raise Exception( f"Unexpected argument type, expecting `Argument` but got {arg}" ) argument: Argument = arg.argument unboxed_name, _, code, decl = argumenttype_ivalue_convert( argument.type, argument.name, mutable=argument.is_write ) code_list.extend(decl) code_list.extend(code) binding_list.append(arg.with_name(unboxed_name)) return binding_list, code_list # Takes in the type, name and mutability corresponding to an argument, and generates a tuple of: # (1) the C++ code necessary to unbox the argument # (2) A Binding corresponding to the newly created unboxed variable, including variable name and its CType def argumenttype_ivalue_convert( t: Type, arg_name: str, *, mutable: bool = False ) -> Tuple[str, CType, List[str], List[str]]: ctype = cpp.argumenttype_type(t=t, mutable=mutable, binds=arg_name).type if isinstance(t, BaseType): out_name = f"{arg_name}_base" code, decl = _gen_code_base_type( arg_name=arg_name, out_name=out_name, ctype=ctype ) elif isinstance(t, OptionalType): out_name = f"{arg_name}_opt_out" code, decl = _gen_code_optional_type( arg_name=arg_name, out_name=out_name, t=t, ctype=ctype ) elif isinstance(t, ListType): out_name = f"{arg_name}_list_out" code, decl = _gen_code_list_type( arg_name=arg_name, out_name=out_name, t=t, ctype=ctype ) else: raise Exception(f"Cannot handle type {t}. arg_name: {arg_name}") return out_name, ctype, code, decl def _gen_code_base_type( arg_name: str, out_name: str, ctype: CType ) -> Tuple[List[str], List[str]]: return [ f"{ctype.cpp_type(strip_ref=True)} {out_name} = {arg_name}.to<{ctype.cpp_type(strip_ref=True)}>();" ], [] def _gen_code_optional_type( arg_name: str, out_name: str, t: OptionalType, ctype: CType ) -> Tuple[List[str], List[str]]: in_name = f"{arg_name}_opt_in" res_name, _, res_code, decl = argumenttype_ivalue_convert(t.elem, in_name) return ( f""" c10::optional<c10::IValue> {arg_name}_opt = {arg_name}.toOptional<c10::IValue>(); {ctype.cpp_type(strip_ref=True)} {out_name}; if ({arg_name}_opt.has_value()) {{ const c10::IValue {in_name} = {arg_name}_opt.value(); {connector.join(res_code)} {out_name} = {ctype.cpp_type(strip_ref=True)}({res_name}); }} else {{ {out_name} = {ctype.cpp_type(strip_ref=True)}(); }} """.split( "\n" ), decl, ) def _gen_code_list_type( arg_name: str, out_name: str, t: ListType, ctype: CType ) -> Tuple[List[str], List[str]]: in_name = f"{arg_name}_list_in" elem_name = f"{arg_name}_elem" code = [f"const c10::List<c10::IValue> {in_name} = {arg_name}.toList();"] res_name, res_ctype, res_code, decl = argumenttype_ivalue_convert(t.elem, elem_name) # handle list type with size, e.g., bool[4] if isinstance(t.elem, BaseType) and t.elem.name == BaseTy.bool and t.size: code.extend( f""" {ctype.cpp_type(strip_ref=True)} {out_name} = as_array<{res_ctype.cpp_type(strip_ref=True)}, {t.size}>({in_name}); """.split( "\n" ) ) # we have to use c10::List for optional element. e.g., Tensor?[] -> c10::List<c10::optional<at::Tensor>> elif isinstance(t.elem, OptionalType): code.extend( f""" {ctype.cpp_type(strip_ref=True)} {out_name}; for (c10::IValue {elem_name}: {in_name}) {{ {connector.join(res_code)} {out_name}.push_back({res_name}); }} """.split( "\n" ) ) else: # use ArrayRef as default. vec_name = arg_name + "_vec" # need to bring vector instantiation out of scope so that ArrayRef has valid data decl.append(f"std::vector<{res_ctype.cpp_type(strip_ref=True)}> {vec_name};") code.extend( f""" for (c10::IValue {elem_name}: {in_name}) {{ {connector.join(res_code)} {vec_name}.push_back({res_name}); }} {ctype.cpp_type(strip_ref=True)} {out_name}({vec_name}); """.split( "\n" ) ) return code, decl
[ "pytorchmergebot@users.noreply.github.com" ]
pytorchmergebot@users.noreply.github.com
18b01c0bfd6fbefe2c9ab0f5e617a471aeea9967
b5295ecd1df0721471d6ee7f6caad8b46a2bfdda
/polls/admin.py
bed08c496b2e313acf2d2cd3d28611945650c427
[]
no_license
wandiao/testdj
5b1b07fcc26b6303e4e0c25c77283e9e681e42f9
37225d8e204d40297256a7aac71ffb33f6608c08
refs/heads/master
2021-05-08T12:16:02.590440
2018-03-03T06:48:04
2018-03-03T06:48:04
119,920,676
0
0
null
null
null
null
UTF-8
Python
false
false
361
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals import inspect from django.contrib import admin import models as app_models # Register your models here. for attr in dir(app_models): model = getattr(app_models, attr) if not inspect.isclass(model): continue try: admin.site.register(model) except: pass
[ "851298395@qq.com" ]
851298395@qq.com
7eff13e47f67cf955c1ffcc0daa1712304c1e977
2c9ba018be94873c42dc20dd0d83993e87109dd7
/src/spaceone/inventory/manager/ecs/vpc_manager.py
0ba3ea3cae8ff97b34fe1a74966aee0092af4ded
[ "Apache-2.0" ]
permissive
stat-kwon/plugin-alibaba-cloud-ecs-inven-collector
14a516b5c04258c2275d0912cc86840532fb6c6c
4529b0a64443814056916b2cd8b928f76228dc9e
refs/heads/master
2023-07-28T10:58:57.197040
2021-09-15T05:34:04
2021-09-15T05:34:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,192
py
from spaceone.core.manager import BaseManager from spaceone.inventory.model.subnet import Subnet from spaceone.inventory.model.vpc import VPC class VPCManager(BaseManager): def __init__(self, params, ecs_connector=None): self.params = params self.ecs_connector = ecs_connector def get_vpc_info(self, vpc_id, subnet_id, vpcs, subnets): """ vpc_data = { "vpc_name": "", "vpc_id": "", "cidr": "", } subnet_data = { "subnet_name": "", "subnet_id": "", "cidr": "" } """ matched_vpc = self.get_matched_vpc(vpc_id, vpcs) matched_subnet = self.get_matched_subnet(subnet_id, subnets) return VPC(matched_vpc, strict=False), Subnet(matched_subnet, strict=False) @staticmethod def get_matched_vpc(vpc_id, vpcs): for vpc in vpcs: if vpc_id == vpc["VpcId"]: return vpc return None @staticmethod def get_matched_subnet(subnet_id, subnets): for subnet in subnets: if subnet_id == subnet["VSwitchId"]: return subnet return None
[ "sunhyebaek99@gmail.com" ]
sunhyebaek99@gmail.com
1384fc9602f827467726f82f961874289e48c4ae
b1d82c0a332c029fd23e3f94e0d7fa23427b3fd4
/meeting/migrations/0007_google_calendar.py
28e0fc6b8c0750f05cfd516a489b0bb357908542
[]
no_license
cyliang/covart-web
4f09b8d1637371f161293c6adb08b08fec293e2c
acb0316187b408106432fc1fb752176fe6c91024
refs/heads/master
2021-01-01T06:34:44.313464
2018-01-15T06:51:48
2018-01-15T06:51:48
97,454,835
6
1
null
null
null
null
UTF-8
Python
false
false
475
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.3 on 2017-12-17 17:36 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('meeting', '0006_no_null_presenthistory'), ] operations = [ migrations.AddField( model_name='meetinghistory', name='gcal_id', field=models.CharField(blank=True, max_length=150), ), ]
[ "r05944012@csie.ntu.edu.tw" ]
r05944012@csie.ntu.edu.tw
b2ad8e4a1a3de787c96d4f94eed380c0a6db8655
e0b52d79f4f37f12223c5c2855b4c1c5453c6006
/app1/app1/settings.py
6aba98b4594d80eb50023e66de39454f7fd5cd9d
[]
no_license
neoice/django-pki-standalone
2e725f4bd9b7aaf0e1c8d7d1f12b4b648f8a1766
7d4c6448f60ec2facc4cfc4f90feca2ae2656099
refs/heads/master
2021-01-16T18:30:10.499879
2013-05-30T05:22:56
2013-05-30T05:22:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,303
py
# Django settings for app1 project. DEBUG = True TEMPLATE_DEBUG = DEBUG ADMINS = ( # ('Your Name', 'your_email@example.com'), ) MANAGERS = ADMINS DATABASES = { 'default': { 'ENGINE': 'django.db.backends.', # Add 'postgresql_psycopg2', 'mysql', 'sqlite3' or 'oracle'. 'NAME': '', # Or path to database file if using sqlite3. # The following settings are not used with sqlite3: 'USER': '', 'PASSWORD': '', 'HOST': '', # Empty for localhost through domain sockets or '127.0.0.1' for localhost through TCP. 'PORT': '', # Set to empty string for default. } } # Hosts/domain names that are valid for this site; required if DEBUG is False # See https://docs.djangoproject.com/en/1.5/ref/settings/#allowed-hosts ALLOWED_HOSTS = [] # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # In a Windows environment this must be set to your system time zone. TIME_ZONE = 'America/Chicago' # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = 'en-us' SITE_ID = 1 # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # If you set this to False, Django will not format dates, numbers and # calendars according to the current locale. USE_L10N = True # If you set this to False, Django will not use timezone-aware datetimes. USE_TZ = True # Absolute filesystem path to the directory that will hold user-uploaded files. # Example: "/var/www/example.com/media/" MEDIA_ROOT = '' # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash. # Examples: "http://example.com/media/", "http://media.example.com/" MEDIA_URL = '' # Absolute path to the directory static files should be collected to. # Don't put anything in this directory yourself; store your static files # in apps' "static/" subdirectories and in STATICFILES_DIRS. # Example: "/var/www/example.com/static/" STATIC_ROOT = '' # URL prefix for static files. # Example: "http://example.com/static/", "http://static.example.com/" STATIC_URL = '/static/' # Additional locations of static files STATICFILES_DIRS = ( # Put strings here, like "/home/html/static" or "C:/www/django/static". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. ) # List of finder classes that know how to find static files in # various locations. STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', # 'django.contrib.staticfiles.finders.DefaultStorageFinder', ) # Make this unique, and don't share it with anybody. SECRET_KEY = '' # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', # 'django.template.loaders.eggs.Loader', ) MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', # Uncomment the next line for simple clickjacking protection: # 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'app1.urls' # Python dotted path to the WSGI application used by Django's runserver. WSGI_APPLICATION = 'app1.wsgi.application' TEMPLATE_DIRS = ( # Put strings here, like "/home/html/django_templates" or "C:/www/django/templates". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. ) INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.staticfiles', # Uncomment the next line to enable the admin: 'django.contrib.admin', 'pki', # Uncomment the next line to enable admin documentation: # 'django.contrib.admindocs', ) # A sample logging configuration. The only tangible logging # performed by this configuration is to send an email to # the site admins on every HTTP 500 error when DEBUG=False. # See http://docs.djangoproject.com/en/dev/topics/logging for # more details on how to customize your logging configuration. LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'filters': { 'require_debug_false': { '()': 'django.utils.log.RequireDebugFalse' } }, 'handlers': { 'mail_admins': { 'level': 'ERROR', 'filters': ['require_debug_false'], 'class': 'django.utils.log.AdminEmailHandler' } }, 'loggers': { 'django.request': { 'handlers': ['mail_admins'], 'level': 'ERROR', 'propagate': True, }, } }
[ "neoice@neoice.net" ]
neoice@neoice.net
9e846d0796e745e22ad77bb07b4f225c3c8152b6
b708503cd67404b632dd58364648d6a927d042b6
/main.py
1cc8f4904b7cf5ed96d36eafbdd82769e917db8c
[]
no_license
muhasensei/simple_neuron_network
3091be4d221055e4ac8b9d5d248dc60b20bb8a33
fad29de7f306044176faf8a19715ab2033b7c946
refs/heads/master
2023-08-01T03:27:37.076867
2021-09-15T17:30:09
2021-09-15T17:30:09
406,865,795
0
0
null
null
null
null
UTF-8
Python
false
false
630
py
import numpy as np def act(x): return 0 if x < 0.5 else 1 def go(car, mambo, handsome): inputs = np.array([car, mambo, handsome]) w11 = [0.1, 0.3, 0]#non-prioritizer w12 = [0.4, -0.5, 1]#prioritizer weight1 = np.array([w11, w12]) weight2 = [-1, 1] hidden_layer_values = np.dot(weight1, inputs) # print(hidden_layer) hidden_layer_outputs = np.array([act(x) for x in hidden_layer_values]) # print(hidden_layer_outputs) res = np.dot(hidden_layer_outputs, weight2) return act(res) decision = go(1, 0, 0) if decision == 1: print('Let`s go') else: print('no, thanks')
[ "zhanmuha01@gmail.com" ]
zhanmuha01@gmail.com
c2afa61ce5c07ddf58ad8a84d653b702b672e0f7
ba498cea94e8bd449663253c013e610c9c8a2b7a
/meiduo_mall/apps/users/urls.py
68731248cc3efcae63df2af6746f9c806cedb77f
[ "MIT" ]
permissive
love20ai/shangchengxiangmu
ba7221eac0f80b026041bc319f16d3ae776db60c
55ab7f5d2daa59a068255037d2c97d6846115542
refs/heads/master
2020-09-07T13:32:37.695474
2019-12-05T08:51:54
2019-12-05T08:51:54
220,796,389
0
0
null
null
null
null
UTF-8
Python
false
false
1,402
py
from django.conf.urls import url from . import views urlpatterns = [ # 1.注册页面 显示 url(r'^register/$', views.RegisterView.as_view()), # 2. 判断用户名是否重复 usernames/(?P<username>[a-zA-Z0-9_-]{5,20})/count/ url(r'^usernames/(?P<username>[a-zA-Z0-9_-]{5,20})/count/$', views.UsernameCountView.as_view()), # 3. 判断手机号 是否 重复 mobiles/(?P<mobile>1[3-9]\d{9})/count/ url(r'^mobiles/(?P<mobile>1[3-9]\d{9})/count/$', views.MobileCountView.as_view()), # 4. 登录显示 url(r'^login/$', views.LoginView.as_view(), name="login"), # 5. 退出 url(r'^logout/$', views.LogoutView.as_view()), # 6. 用户中心 url(r'^info/$', views.UserInfoView.as_view(), name='info'), # 7. 新邮箱 emails/ url(r'^emails/$', views.EmailView.as_view(), name='emails'), # 8.激活邮箱 emails/verification/ url(r'^emails/verification/$', views.VerifyEmailView.as_view()), # 9. 收货地址 address/ url(r'^address/$', views.AddressView.as_view(),name='address'), # 10. 新增 收货地址 addresses/create/ url(r'^addresses/create/$', views.AddressCreateView.as_view()), # 11. 修改密码 password/ url(r'^password/$', views.ChangePwdView.as_view(), name='password'), # 12. 用户浏览记录 browse_histories/ url(r'browse_histories/$', views.UserBrowserView.as_view()), ]
[ "1466481346@qq.com" ]
1466481346@qq.com
5846553d669043dcb6f317c082cb8cf51f6ea4cc
3353938363622ad12547f18cb89a2f5197788e6c
/src/server/cgi-bin/data.py
9245cb585ee55888589994fbe3b0c9ea1af4ec94
[ "Apache-2.0" ]
permissive
dvaumoron/fourreToutPython
e3c2bd05775753bcfb9eef8f0c5b3c47a35566ec
cb5eafb90609201da804edd068a5bd65d58c2168
refs/heads/master
2022-11-27T00:48:15.241766
2022-11-18T15:12:54
2022-11-18T15:12:54
43,980,132
0
0
null
null
null
null
UTF-8
Python
false
false
191
py
import json def load(): with open("data.json") as f: return json.load(f) def dump(d): with open("data.json", mode="w") as f: json.dump(d, f, indent="\t")
[ "dvaumoron@gmail.com" ]
dvaumoron@gmail.com
9caf626c943383f604df60874358c5a5a2be9ead
3d518e7a29fa28e1e5e9eae26af8ad3f13f23693
/analysis/makeFFTPlots.py
c5310f2a0c443c4e6c8418fe50e184e76c7d8104
[ "BSD-3-Clause" ]
permissive
Betterton-Lab/C-GLASS
544f891d088410ce2f825e9938001b67c8e967f3
ae4ddcb33e177746c5191060b1d511d8fd578b7b
refs/heads/master
2023-08-03T08:37:04.352178
2023-07-25T14:26:47
2023-07-25T14:26:47
266,194,665
4
2
BSD-3-Clause
2023-09-14T02:55:34
2020-05-22T19:46:22
Jupyter Notebook
UTF-8
Python
false
false
1,496
py
#!/usr/local/bin/python from matplotlib import pyplot as plt from matplotlib.colors import LogNorm from matplotlib import cm import seaborn as sns import numpy as np import pandas as pd sp = "100" lp = "100" fname = "soft_pf0.2_sp" + sp + "_lp" + lp + "_condensed.density" df = pd.read_csv(fname, delim_whitespace=True, header=None) fig, ax = plt.subplots(1, 2, figsize=(8, 3)) # sns.heatmap(df,cmap=cm.viridis,ax=ax[0]) data = df.replace(0, 1e-10) data = data / data.sum().sum() min_data = data.min().min() if min_data == 0: min_data = 1 max_data = data.max().max() log_norm = LogNorm(vmin=min_data, vmax=max_data) cbar_ticks = [ 10 ** i for i in range( int(np.floor(np.log10(min_data))), 1 + int(np.ceil(np.log10(max_data))) ) ] sns.heatmap( data, norm=log_norm, cmap=cm.viridis, ax=ax[0], cbar_kws={"ticks": cbar_ticks} ) fft_data = np.fft.fftshift(np.fft.fft2(df)) data = np.abs(fft_data) # data=data/data.sum().sum() min_data = data.min().min() if min_data == 0: min_data = 1 max_data = data.max().max() log_norm = LogNorm(vmin=min_data, vmax=max_data) cbar_ticks = [ 10 ** i for i in range( int(np.floor(np.log10(min_data))), 1 + int(np.ceil(np.log10(max_data))) ) ] sns.heatmap( data, norm=log_norm, cmap=cm.viridis, ax=ax[1], cbar_kws={"ticks": cbar_ticks} ) savename = "sp" + sp + "_lp" + lp fig.savefig(savename + ".png", dpi=300) f = open(savename + "_fft_max.txt", "w") f.write(str(np.max(data[data.shape[0] // 2]))) f.close()
[ "jeffreymm@protonmail.com" ]
jeffreymm@protonmail.com
b40115583eb26337ab79c1dee7c1665a8e0bc712
06c354961b87738a3ddcc193ac20e1070ffe481b
/Q-tables/Maze/maze-env-from-github/gym_maze/__init__.py
e629e7bea838b4323216b2e9cc43b87f80b335ed
[]
no_license
nicolasbdls/AI-Gamer
3e6daffd1228fbd9a277fd512b30799b2e8658a0
c87a2776a4eaa1103c6f7a276b9aa9078a4873c0
refs/heads/master
2022-11-02T05:41:03.443491
2020-06-19T17:33:01
2020-06-19T17:33:01
272,419,607
2
0
null
null
null
null
UTF-8
Python
false
false
1,743
py
from gym.envs.registration import register register( id='maze-v0', entry_point='gym_maze.envs:MazeEnvSample5x5', max_episode_steps=2000, ) register( id='maze-sample-5x5-v0', entry_point='gym_maze.envs:MazeEnvSample5x5', max_episode_steps=2000, ) register( id='maze-random-5x5-v0', entry_point='gym_maze.envs:MazeEnvRandom5x5', max_episode_steps=2000, nondeterministic=True, ) register( id='maze-sample-10x10-v0', entry_point='gym_maze.envs:MazeEnvSample10x10', max_episode_steps=10000, ) register( id='maze-random-10x10-v0', entry_point='gym_maze.envs:MazeEnvRandom10x10', max_episode_steps=10000, nondeterministic=True, ) register( id='maze-sample-3x3-v0', entry_point='gym_maze.envs:MazeEnvSample3x3', max_episode_steps=1000, ) register( id='maze-random-3x3-v0', entry_point='gym_maze.envs:MazeEnvRandom3x3', max_episode_steps=1000, nondeterministic=True, ) register( id='maze-sample-100x100-v0', entry_point='gym_maze.envs:MazeEnvSample100x100', max_episode_steps=1000000, ) register( id='maze-random-100x100-v0', entry_point='gym_maze.envs:MazeEnvRandom100x100', max_episode_steps=1000000, nondeterministic=True, ) register( id='maze-random-10x10-plus-v0', entry_point='gym_maze.envs:MazeEnvRandom10x10Plus', max_episode_steps=1000000, nondeterministic=True, ) register( id='maze-random-20x20-plus-v0', entry_point='gym_maze.envs:MazeEnvRandom20x20Plus', max_episode_steps=1000000, nondeterministic=True, ) register( id='maze-random-30x30-plus-v0', entry_point='gym_maze.envs:MazeEnvRandom30x30Plus', max_episode_steps=1000000, nondeterministic=True, )
[ "nicolas.barbierdelaserre@epfl.ch" ]
nicolas.barbierdelaserre@epfl.ch
75884e8b02dd6efacf5ba3732eef7fece123ecec
04e38679813f1ba8d8b9543fc99be2dbac966dbc
/node_cluster.py
1375eca76932086c28069ce78f3e1341e8961db2
[]
no_license
TPNguyen/ACMin
158a4d61fb64d3eefb65af2fd441903472e522ca
6de67739e4649d16fd2def9b03bbf3e3f7e18393
refs/heads/main
2023-05-11T21:30:21.794632
2021-06-05T13:37:50
2021-06-05T13:37:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
14,233
py
######################################################################### # File Name: node_cluster.py # Author: anryyang # mail: anryyang@gmail.com # Created Time: Fri 05 Apr 2019 04:33:10 PM ######################################################################### #!/usr/bin/env/ python from sklearn.cluster import KMeans from sklearn.metrics import f1_score from sklearn.metrics import roc_auc_score from sklearn.metrics import average_precision_score from sklearn import metrics import numpy as np import argparse import os import cPickle as pickle import networkx as nx from scipy.sparse.linalg import svds import scipy.sparse as sp from scipy.sparse import identity from scipy import linalg from scipy import sparse from munkres import Munkres from sklearn import preprocessing from sklearn.decomposition import NMF import heapq from sklearn.cluster import AffinityPropagation from sklearn.metrics.pairwise import cosine_similarity from sklearn.cluster import SpectralClustering from spectral import discretize from scipy.sparse.linalg.eigen.arpack import eigsh as largest_eigsh from scipy.sparse.linalg.eigen.arpack import eigs as largest_eigs from scipy.linalg import qr from scipy.linalg import orth from scipy.sparse.csgraph import laplacian import time import sklearn from sklearn.linear_model import SGDRegressor from scipy.sparse import csc_matrix, csr_matrix from numpy import linalg as LA import operator import random print(sklearn.__version__) def read_cluster(N,file_name): if not file_name or not os.path.exists(file_name): raise Exception("label file not exist!") f = open(file_name, "r") lines = f.readlines() f.close() #N = len(lines) y = np.zeros(N, dtype=int) for line in lines: i, l = line.strip("\n\r").split() i, l = int(i), int(l) y[i] = l return y class clustering_metrics(): def __init__(self, true_label, predict_label): self.true_label = true_label self.pred_label = predict_label def clusteringAcc(self): print(len(self.true_label), len(self.pred_label)) # best mapping between true_label and predict label l1 = list(set(self.true_label)) numclass1 = len(l1) l2 = list(set(self.pred_label)) numclass2 = len(l2) if numclass1 != numclass2: print('Class Not equal!!!!') c1_clusters = {c: set() for c in set(l1)} c2_clusters = {c: set() for c in set(l2)} for i in range(len(self.true_label)): c1 = self.true_label[i] c2 = self.pred_label[i] c1_clusters[c1].add(i) c2_clusters[c2].add(i) c2_c1 = {} for c2 in set(l2): for c1 in set(l1): c2_c1[str(c2)+","+str(c1)]=0 for (c1, s1) in c1_clusters.items(): for (c2, s2) in c2_clusters.items(): num_com_s1s2 = len(s1.intersection(s2)) c2_c1[str(c2)+","+str(c1)]=num_com_s1s2 sorted_x = sorted(c2_c1.items(), key=operator.itemgetter(1), reverse=True) c2_c1_map = {} c1_flag = {c: True for c in set(l1)} c2_flag = {c: True for c in set(l2)} for (k, v) in sorted_x: if len(c2_c1_map.keys())==numclass1: break c2, c1 = k.split(',') c2, c1 = int(c2), int(c1) #print(c2, c1, v) if c1_flag[c1] and c2_flag[c2]: c2_c1_map[c2]=c1 c1_flag[c1] = False c2_flag[c2] = False new_predict = np.zeros(len(self.pred_label)) for i in range(len(l2)): new_predict[i] = c2_c1_map[self.pred_label[i]] else: cost = np.zeros((numclass1, numclass2), dtype=int) for i, c1 in enumerate(l1): mps = [i1 for i1, e1 in enumerate(self.true_label) if e1 == c1] for j, c2 in enumerate(l2): mps_d = [i1 for i1 in mps if self.pred_label[i1] == c2] cost[i][j] = len(mps_d) # match two clustering results by Munkres algorithm m = Munkres() cost = cost.__neg__().tolist() indexes = m.compute(cost) # get the match results new_predict = np.zeros(len(self.pred_label)) for i, c in enumerate(l1): # correponding label in l2: c2 = l2[indexes[i][1]] # ai is the index with label==c2 in the pred_label list ai = [ind for ind, elm in enumerate(self.pred_label) if elm == c2] new_predict[ai] = c acc = metrics.accuracy_score(self.true_label, new_predict) f1_macro = metrics.f1_score(self.true_label, new_predict, average='macro') precision_macro = metrics.precision_score(self.true_label, new_predict, average='macro') recall_macro = metrics.recall_score(self.true_label, new_predict, average='macro') f1_micro = metrics.f1_score(self.true_label, new_predict, average='micro') precision_micro = metrics.precision_score(self.true_label, new_predict, average='micro') recall_micro = metrics.recall_score(self.true_label, new_predict, average='micro') return acc def evaluationClusterModelFromLabel(self): nmi = metrics.normalized_mutual_info_score(self.true_label, self.pred_label) adjscore = metrics.adjusted_rand_score(self.true_label, self.pred_label) acc = self.clusteringAcc() return acc, nmi, adjscore def load_data(args): folder = "./data/" edge_file = folder+args.data+"/edgelist.txt" feature_file = folder+args.data+"/attrs.pkl" label_file = folder+args.data + '/labels.txt' print("loading from "+feature_file) features = pickle.load(open(feature_file)) print("nnz:", features.getnnz()) print(features.shape) n = features.shape[0] print("loading from "+edge_file) graph = nx.read_edgelist(edge_file, create_using=nx.Graph(), nodetype=int) for v in range(n): graph.add_node(v) print("loading from "+label_file) true_clusters = read_cluster(n,label_file) return graph, features, true_clusters def si_eig(P, X, alpha, beta, k, a): t = 500 q, _ = qr(a, mode='economic') XT = X.T xsum = X.dot(XT.sum(axis=1)) xsum[xsum==0]=1 X = X/xsum for i in range(t): z = (1-alpha-beta)*P.dot(q)+ (beta)*X.dot(XT.dot(q)) p = q q, _ = qr(z, mode='economic') if np.linalg.norm(p-q, ord=1)<0.01: print("converged") break return q def base_cluster(graph, X, num_cluster,true_clusters): print("attributed transition matrix constrcution...") adj = nx.adjacency_matrix(graph) P = preprocessing.normalize(adj, norm='l1', axis=1) n = P.shape[0] print(P.shape) start_time = time.time() alpha=0.2 beta=0.35 XX = X.dot(X.T) XX = preprocessing.normalize(XX, norm='l1', axis=1) PP = (1-beta)*P + beta*XX I = identity(n) S = I t = 5 #int(1.0/alpha) for i in range(t): S = (1-alpha)*PP.dot(S)+I S = alpha*S q = np.zeros(shape=(n,num_cluster)) predict_clusters = n*[1] lls = [i for i in range(num_cluster)] for i in range(n): ll = random.choice(lls) predict_clusters[i] = ll M = csc_matrix((np.ones(len(predict_clusters)), (np.arange(0, n), predict_clusters)),shape=(n,num_cluster+1)) M = M.todense() Mss = np.sqrt(M.sum(axis=0)) Mss[Mss==0]=1 q = M*1.0/Mss largest_evc = np.ones(shape = (n,1))*(1.0/np.sqrt(n*1.0)) q = np.hstack([largest_evc,q]) XT = X.T xsum = X.dot(XT.sum(axis=1)) xsum[xsum==0]=1 xsum = csr_matrix(1.0/xsum) X = X.multiply(xsum) print(type(X), X.shape) predict_clusters = np.asarray(predict_clusters,dtype=np.int) print(q.shape) epsilon_f = 0.005 tmax = 200 err = 1 for i in range(tmax): z = S.dot(q) q_prev = q q, _ = qr(z, mode='economic') err = LA.norm(q-q_prev)/LA.norm(q) if err <= epsilon_f: break if i==tmax-1: evecs_large_sparse = q evecs_large_sparse = evecs_large_sparse[:,1:num_cluster+1] kmeans = KMeans(n_clusters=num_cluster, random_state=0, n_jobs=-1, algorithm='full', init='random', n_init=1, max_iter=50).fit(evecs_large_sparse) predict_clusters = kmeans.predict(evecs_large_sparse) time_elapsed = time.time() - start_time print("%f seconds are taken to train"%time_elapsed) return predict_clusters def get_ac(P, X, XT, y, alpha, beta, t): n = X.shape[0] num_cluster = y.max()+1-y.min() if(y.min()>0): y = y-y.min() print(n, len(y), num_cluster) vectors_discrete = csc_matrix((np.ones(len(y)), (np.arange(0, n), y)), shape=(n, num_cluster)).toarray() vectors_f = vectors_discrete vectors_fs = np.sqrt(vectors_f.sum(axis=0)) vectors_fs[vectors_fs==0]=1 vectors_f = vectors_f*1.0/vectors_fs q_prime = vectors_f h = q_prime for tt in range(t): h = (1-alpha)*((1-beta)*P.dot(h)+ (beta)*X.dot(XT.dot(h))) +q_prime h = alpha*h h = q_prime-h conductance_cur = 0 for k in range(num_cluster): conductance_cur = conductance_cur + (q_prime[:,k].T).dot(h[:,k])#[0,0] return conductance_cur/num_cluster def cluster(graph, X, num_cluster,true_clusters, alpha=0.2, beta = 0.35, t=5, tmax=200, ri=False): print("attributed transition matrix constrcution...") adj = nx.adjacency_matrix(graph) P = preprocessing.normalize(adj, norm='l1', axis=1) n = P.shape[0] print(P.shape) epsilon_r = 6*n*np.log(n*1.0)/X.getnnz() print("epsilon_r threshold:", epsilon_r) degrees = dict(graph.degree()) topk_deg_nodes = heapq.nlargest(5*t*num_cluster, degrees, key=degrees.get) PC = P[:,topk_deg_nodes] M = PC for i in range(t-1): M = (1-alpha)*P.dot(M)+PC class_evdsum = M.sum(axis=0).flatten().tolist()[0] newcandidates = np.argpartition(class_evdsum, -num_cluster)[-num_cluster:] M = M[:,newcandidates] labels = np.argmax(M, axis=1).flatten().tolist()[0] labels = np.asarray(labels,dtype=np.int) # random initialization if ri is True: lls = np.unique(labels) for i in range(n): ll = random.choice(lls) labels[i] = ll M = csc_matrix((np.ones(len(labels)), (np.arange(0, M.shape[0]), labels)),shape=(M.shape)) M = M.todense() start_time = time.time() print("eigen decomposition...") Mss = np.sqrt(M.sum(axis=0)) Mss[Mss==0]=1 q = M*1.0/Mss largest_evc = np.ones(shape = (n,1))*(1.0/np.sqrt(n*1.0)) q = np.hstack([largest_evc,q]) XT = X.T xsum = X.dot(XT.sum(axis=1)) xsum[xsum==0]=1 xsum = csr_matrix(1.0/xsum) X = X.multiply(xsum) print(type(X), X.shape) predict_clusters_best=labels iter_best = 0 conductance_best=100 conductance_best_acc = [0]*3 acc_best = [0]*3 acc_best_iter = 0 acc_best_conductance = 0 epsilon_f = 0.005 err = 1 for i in range(tmax): z = (1-beta)*P.dot(q)+ (beta)*X.dot(XT.dot(q)) q_prev = q q, _ = qr(z, mode='economic') err = LA.norm(q-q_prev)/LA.norm(q) if (i+1)%20==0: evecs_large_sparse = q evecs_large_sparse = evecs_large_sparse[:,1:num_cluster+1] predict_clusters, q_prime = discretize(evecs_large_sparse) conductance_cur = 0 h = q_prime for tt in range(1): h = (1-alpha)*((1-beta)*P.dot(h)+ (beta)*X.dot(XT.dot(h))) +q_prime h = alpha*h h = q_prime-h for k in range(num_cluster): conductance_cur = conductance_cur + (q_prime[:,k].T).dot(h[:,k])#[0,0] conductance_cur=conductance_cur/num_cluster if conductance_cur<conductance_best: conductance_best = conductance_cur predict_clusters_best = predict_clusters iter_best = i print(i, err, conductance_cur) if err <= epsilon_f: break if tmax==0: evecs_large_sparse = q evecs_large_sparse = evecs_large_sparse[:,1:num_cluster+1] predict_clusters, q_prime = discretize(evecs_large_sparse) predict_clusters_best = predict_clusters time_elapsed = time.time() - start_time print("%f seconds are taken to train"%time_elapsed) print(np.unique(predict_clusters_best)) print("best iter: %d, best condutance: %f, acc: %f, %f, %f"%(iter_best, conductance_best, conductance_best_acc[0], conductance_best_acc[1], conductance_best_acc[2])) return predict_clusters_best if __name__ == '__main__': parser = argparse.ArgumentParser(description='Process...') parser.add_argument('--data', type=str, help='graph dataset name') parser.add_argument('--k', type=int, default=0, help='the number of clusters') args = parser.parse_args() print("loading data ", args.data) graph, feats, true_clusters = load_data(args) n = feats.shape[0] if args.k>0: num_cluster = args.k else: num_cluster = len(np.unique(true_clusters)) print("k=", num_cluster) alpha = 0.2 beta = 0.35 t = 5 tmax = 200 predict_clusters = cluster(graph, feats, num_cluster, true_clusters, alpha, beta, t, tmax, False) if args.k<=0: cm = clustering_metrics(true_clusters, predict_clusters) print("%f\t%f\t%f"%cm.evaluationClusterModelFromLabel()) print("-------------------------------") K = len(set(predict_clusters)) with open("sc."+args.data+"."+str(K)+".cluster.txt", "w") as fout: for i in range(len(predict_clusters)): fout.write(str(predict_clusters[i])+"\n")
[ "anryyang@gmail.com" ]
anryyang@gmail.com
57c2d5313162d7e0fb6af8774cad77fd69aba20a
efe561ed874450beda6f2ddce40dc44dd9dffa97
/k3s_lcgc/__init__.py
1d95f5bac52cc982529669803d56afaca057abdc
[]
no_license
kahf-sami/k3s_lcgc
e2d55ece08450911b1a9cef53a3c64bfe8945234
c4f8f26a0da094aaba0c9fe8bd492094d38ee77e
refs/heads/master
2021-01-19T23:00:51.425720
2017-05-21T11:44:36
2017-05-21T11:44:36
88,908,937
0
0
null
null
null
null
UTF-8
Python
false
false
48
py
from .topologyProcessor import TopologyProcessor
[ "kahf.sami@gmail.com" ]
kahf.sami@gmail.com
8905e6c7c83c147138c3de73a9df10718c2b5416
387dd4af77f10e741dc00c58a6b607fdcf408839
/src/program_hosts.py
9a4e10680839b7bbe7b47ac6dcb530264359fac7
[]
no_license
Sayantan-Nandy/SnakeMongo
3176ca63bbea265736d813feac8ce88df502821b
139c25b3e64aa54c51a376f01b8c3e8de8d9493d
refs/heads/main
2023-06-08T17:49:04.722467
2021-06-27T05:35:32
2021-06-27T05:35:32
380,526,340
0
0
null
null
null
null
UTF-8
Python
false
false
5,872
py
from infrastructure.switchlang import switch import infrastructure.state as state import services.db_services as svc from dateutil import parser import datetime def run(): print(' ****************** Welcome host **************** ') print() show_commands() while True: action = get_action() with switch(action) as s: s.case('c', create_account) s.case('a', log_into_account) s.case('l', list_cages) s.case('r', register_cage) s.case('u', update_availability) s.case('v', view_bookings) s.case('m', lambda: 'change_mode') s.case(['x', 'bye', 'exit', 'exit()'], exit_app) s.case('?', show_commands) s.case('', lambda: None) s.case('o', logout) s.default(unknown_command) if action: print() if s.result == 'change_mode': return def show_commands(): print('What action would you like to take:') print('[C]reate an account') print('Login to your [a]ccount') print('[L]ist your cages') print('[R]egister a cage') print('[U]pdate cage availability') print('[V]iew your bookings') print('Change [M]ode (guest or host)') print('e[X]it app') print('[?] Help (this info)') print("L[O]gout") print() def create_account(): print(' ****************** REGISTER **************** ') name = input("Enter your name: ") email = input("Enter your email: ").strip().lower() acct_check = svc.check_email_exist(email) if acct_check: #print(acct_check) error_msg("Emails exists") return else: state.active_account = svc.create_account(name,email) success_msg("Account Created") def log_into_account(): print(' ****************** LOGIN **************** ') email = input("Enter email for login: ") acct_check = svc.check_email_exist(email) if acct_check: print("Login Succesful") state.active_account = acct_check else: print("Wrong Email is enterred!!!") def register_cage(): print(' ****************** REGISTER CAGE **************** ') if not state.active_account: print("Login needed to register cage") return name = input("Enter name of cage: ") price = float(input("Enter price of cage: ")) sq_mts = float(input("Enter cage size in square meters: ")) carpet = input("Is it carpeted [y,n]: ").lower().startswith('y') toys = input("Does it have toys [y,n]: ").lower().startswith('y') dang_snakes = input("Is dangerous snakes allowed [y,n]: ").lower().startswith('y') c = svc.create_cage(state.active_account,name,price,sq_mts,carpet,toys,dang_snakes) state.reload_account() # Reload the active account object with the modified data print("Cage is registered for ",{c.id}) def list_cages(supress_header=False): if not supress_header: print(' ****************** Your cages **************** ') if not state.active_account: print("Login needed to list cages") return cages = svc.get_list_cages(state.active_account) for i,c in enumerate(cages): print(i+1,"Cage is ",c.name) for b in c.bookings: print(' * Booking: {}, {} days, booked? {}'.format( b.check_in_date, (b.check_out_date - b.check_in_date).days, 'YES' if b.booked_date is not None else 'no' )) def update_availability(): print(' ****************** Add available date **************** ') if not state.active_account: print("Login needed to update cage availabilty") return list_cages(supress_header=True) cage_number = input("Enter cage number: ") if not cage_number.strip(): error_msg('Cancelled') print() return cage_number = int(cage_number) cages = svc.get_list_cages(state.active_account) selected_cage = cages[cage_number-1] print("Cage selected is: ",selected_cage.name) start_date = parser.parse( input("Enter available date [yyyy-mm-dd]: ") ) days = int(input("How many days is this block of time? ")) svc.add_available_date( selected_cage, start_date, days ) success_msg(f'Date added to cage {selected_cage.name}.') def view_bookings(): print(' ****************** Your bookings **************** ') """ Prints details of all the bookings that have been done for the host. """ if not state.active_account: error_msg("You must log in first to register a cage") return cages = svc.get_list_cages(state.active_account) bookings = [ (c, b) for c in cages for b in c.bookings if b.booked_date is not None # Only take the booking entries with the booking date set as others are not booked ] print("You have {} bookings.".format(len(bookings))) for c, b in bookings: print(' * Cage: {}, booked date: {}, from {} for {} days.'.format( c.name, datetime.date(b.booked_date.year, b.booked_date.month, b.booked_date.day), datetime.date(b.check_in_date.year, b.check_in_date.month, b.check_in_date.day), b.duration_in_days )) def exit_app(): print() print('bye') raise KeyboardInterrupt() def get_action(): text = '> ' if state.active_account: text = f'{state.active_account.name}> ' action = input(text) return action.strip().lower() def logout(): state.active_account=None def unknown_command(): print("Sorry we didn't understand that command.") def success_msg(text): print(text) def error_msg(text): print(text)
[ "sayantannandy2598@gmail.com" ]
sayantannandy2598@gmail.com
658df86a1feb575255d63e56ca2cc25d537a534c
b20942e2ec20f5c31d152cb47490af78e54737f1
/appdaemon/admain.py
6df0de15bec7bee9bc907fbd980c43cd2e4210f8
[ "Apache-2.0" ]
permissive
arraylabs/appdaemon
afaf4a464a4f4ea705f37c296fc78d22aa2d4483
6e6a6cb48dfceebb319507f56ca3dcc68dac456f
refs/heads/dev
2019-07-23T14:11:34.084295
2018-01-30T18:10:01
2018-01-30T18:10:01
111,024,273
6
1
null
2017-11-16T21:27:08
2017-11-16T21:27:08
null
UTF-8
Python
false
false
19,226
py
#!/usr/bin/python3 from pkg_resources import parse_version import sys import traceback import configparser import argparse import logging import os import os.path from logging.handlers import RotatingFileHandler import appdaemon.conf as conf import time import datetime import signal import platform from urllib.parse import urlparse import yaml import asyncio import appdaemon.utils as utils import appdaemon.appdaemon as ad import appdaemon.adapi as api import appdaemon.rundash as appdash # Windows does not have Daemonize package so disallow if platform.system() != "Windows": from daemonize import Daemonize def find_path(name): for path in [os.path.join(os.path.expanduser("~"), ".homeassistant"), os.path.join(os.path.sep, "etc", "appdaemon")]: _file = os.path.join(path, name) if os.path.isfile(_file) or os.path.isdir(_file): return _file return None # noinspection PyBroadException,PyBroadException def run(): tasks = [] loop = asyncio.get_event_loop() # Initialize AppDaemon if conf.apps is True: utils.log(conf.logger, "INFO", "Starting Apps") ad.run_ad(loop, tasks) else: utils.log(conf.logger, "INFO", "Apps are disabled") # Initialize Dashboard/API if conf.dashboard is True: utils.log(conf.logger, "INFO", "Starting dashboard") appdash.run_dash(loop, tasks) else: utils.log(conf.logger, "INFO", "Dashboards are disabled") if conf.api_port is not None: utils.log(conf.logger, "INFO", "Starting API") api.run_api(loop, tasks) else: utils.log(conf.logger, "INFO", "API is disabled") utils.log(conf.logger, "DEBUG", "Start Loop") loop.run_until_complete(asyncio.wait(tasks)) utils.log(conf.logger, "DEBUG", "End Loop") utils.log(conf.logger, "INFO", "AppDeamon Exited") # noinspection PyBroadException def main(): # import appdaemon.stacktracer # appdaemon.stacktracer.trace_start("/tmp/trace.html") # Windows does not support SIGUSR1 or SIGUSR2 if platform.system() != "Windows": signal.signal(signal.SIGUSR1, ad.handle_sig) signal.signal(signal.SIGINT, ad.handle_sig) signal.signal(signal.SIGHUP, ad.handle_sig) # Get command line args parser = argparse.ArgumentParser() parser.add_argument("-c", "--config", help="full path to config directory", type=str, default=None) parser.add_argument("-p", "--pidfile", help="full path to PID File", default="/tmp/hapush.pid") parser.add_argument("-t", "--tick", help="time that a tick in the schedular lasts (seconds)", default=1, type=float) parser.add_argument("-s", "--starttime", help="start time for scheduler <YYYY-MM-DD HH:MM:SS>", type=str) parser.add_argument("-e", "--endtime", help="end time for scheduler <YYYY-MM-DD HH:MM:SS>", type=str, default=None) parser.add_argument("-i", "--interval", help="multiplier for scheduler tick", type=float, default=1) parser.add_argument("-D", "--debug", help="debug level", default="INFO", choices= [ "DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL" ]) parser.add_argument('-v', '--version', action='version', version='%(prog)s ' + conf.__version__) parser.add_argument('--commtype', help="Communication Library to use", default="WEBSOCKETS", choices= [ "SSE", "WEBSOCKETS" ]) parser.add_argument('--profiledash', help=argparse.SUPPRESS, action='store_true') parser.add_argument('--convertcfg', help="Convert existing .cfg file to yaml", action='store_true') # Windows does not have Daemonize package so disallow if platform.system() != "Windows": parser.add_argument("-d", "--daemon", help="run as a background process", action="store_true") args = parser.parse_args() conf.tick = args.tick conf.interval = args.interval conf.loglevel = args.debug conf.profile_dashboard = args.profiledash if args.starttime is not None: conf.now = datetime.datetime.strptime(args.starttime, "%Y-%m-%d %H:%M:%S").timestamp() else: conf.now = datetime.datetime.now().timestamp() if args.endtime is not None: conf.endtime = datetime.datetime.strptime(args.endtime, "%Y-%m-%d %H:%M:%S") if conf.tick != 1 or conf.interval != 1 or args.starttime is not None: conf.realtime = False config_dir = args.config conf.commtype = args.commtype if platform.system() != "Windows": isdaemon = args.daemon else: isdaemon = False if config_dir is None: config_file_conf = find_path("appdaemon.cfg") config_file_yaml = find_path("appdaemon.yaml") else: config_file_conf = os.path.join(config_dir, "appdaemon.cfg") if not os.path.isfile(config_file_conf): config_file_conf = None config_file_yaml = os.path.join(config_dir, "appdaemon.yaml") if not os.path.isfile(config_file_yaml): config_file_yaml = None config = None config_from_yaml = False if config_file_yaml is not None and args.convertcfg is False: # # First locate secrets file # try: secrets_file = os.path.join(os.path.dirname(config_file_yaml), "secrets.yaml") if os.path.isfile(secrets_file): with open(secrets_file, 'r') as yamlfd: secrets_file_contents = yamlfd.read() conf.secrets = yaml.load(secrets_file_contents) yaml.add_constructor('!secret', utils._secret_yaml) config_from_yaml = True conf.config_file = config_file_yaml conf.app_config_file = os.path.join(os.path.dirname(config_file_yaml), "apps.yaml") with open(config_file_yaml, 'r') as yamlfd: config_file_contents = yamlfd.read() config = yaml.load(config_file_contents) except yaml.YAMLError as exc: print("ERROR", "Error loading configuration") if hasattr(exc, 'problem_mark'): if exc.context is not None: print("ERROR", "parser says") print("ERROR", str(exc.problem_mark)) print("ERROR", str(exc.problem) + " " + str(exc.context)) else: print("ERROR", "parser says") print("ERROR", str(exc.problem_mark)) print("ERROR", str(exc.problem)) sys.exit() else: # Read Config File conf.config_file = config_file_conf config = configparser.ConfigParser() config.read_file(open(config_file_conf)) if args.convertcfg is True: yaml_file = os.path.join(os.path.dirname(config_file_conf), "appdaemon.yaml") print("Converting {} to {}".format(config_file_conf, yaml_file)) new_config = {} for section in config: if section != "DEFAULT": if section == "AppDaemon": new_config["AppDaemon"] = {} new_config["HADashboard"] = {} new_config["HASS"] = {} new_section = "" for var in config[section]: if var in ("dash_compile_on_start", "dash_dir", "dash_force_compile", "dash_url", "disable_dash", "dash_password", "dash_ssl_key", "dash_ssl_certificate"): new_section = "HADashboard" elif var in ("ha_key", "ha_url", "timeout"): new_section = "HASS" else: new_section = "AppDaemon" new_config[new_section][var] = config[section][var] else: new_config[section] = {} for var in config[section]: new_config[section][var] = config[section][var] with open(yaml_file, "w") as outfile: yaml.dump(new_config, outfile, default_flow_style=False) sys.exit() conf.config_dir = os.path.dirname(conf.config_file) conf.config = config conf.logfile = config['AppDaemon'].get("logfile") conf.errorfile = config['AppDaemon'].get("errorfile") conf.threads = int(config['AppDaemon'].get('threads')) conf.certpath = config['AppDaemon'].get("cert_path") conf.app_dir = config['AppDaemon'].get("app_dir") conf.latitude = config['AppDaemon'].get("latitude") conf.longitude = config['AppDaemon'].get("longitude") conf.elevation = config['AppDaemon'].get("elevation") conf.time_zone = config['AppDaemon'].get("time_zone") conf.rss_feeds = config['AppDaemon'].get("rss_feeds") conf.rss_update = config['AppDaemon'].get("rss_update") conf.api_key = config['AppDaemon'].get("api_key") conf.api_port = config['AppDaemon'].get("api_port") conf.api_ssl_certificate = config['AppDaemon'].get("api_ssl_certificate") conf.api_ssl_key = config['AppDaemon'].get("api_ssl_key") if config_from_yaml is True: conf.timeout = config['HASS'].get("timeout") conf.ha_url = config['HASS'].get('ha_url') conf.ha_key = config['HASS'].get('ha_key', "") if 'HADashboard' in config: conf.dash_url = config['HADashboard'].get("dash_url") conf.dashboard_dir = config['HADashboard'].get("dash_dir") conf.dash_ssl_certificate = config['HADashboard'].get("dash_ssl_certificate") conf.dash_ssl_key = config['HADashboard'].get("dash_ssl_key") conf.dash_password = config['HADashboard'].get("dash_password") if config['HADashboard'].get("dash_force_compile") == "1": conf.dash_force_compile = True else: conf.dash_force_compile = False if config['HADashboard'].get("dash_compile_on_start") == "1": conf.dash_compile_on_start = True else: conf.dash_compile_on_start = False if "disable_dash" in config['HADashboard'] and config['HADashboard']["disable_dash"] == 1: conf.dashboard = False else: conf.dashboard = True else: conf.timeout = config['AppDaemon'].get("timeout") conf.ha_url = config['AppDaemon'].get('ha_url') conf.ha_key = config['AppDaemon'].get('ha_key', "") conf.dash_url = config['AppDaemon'].get("dash_url") conf.dashboard_dir = config['AppDaemon'].get("dash_dir") conf.dash_ssl_certificate = config['AppDaemon'].get("dash_ssl_certificate") conf.dash_ssl_key = config['AppDaemon'].get("dash_ssl_key") conf.dash_password = config['AppDaemon'].get("dash_password") if config['AppDaemon'].get("dash_force_compile") == "1": conf.dash_force_compile = True else: conf.dash_force_compile = False if config['AppDaemon'].get("dash_compile_on_start") == "1": conf.dash_compile_on_start = True else: conf.dash_compile_on_start = False if "disable_dash" in config['AppDaemon'] and config['AppDaemon']["disable_dash"] == 1: conf.dashboard = False else: conf.dashboard = True if config['AppDaemon'].get("disable_apps") == "1": conf.apps = False else: conf.apps = True if config['AppDaemon'].get("cert_verify", True) == False: conf.certpath = False if conf.dash_url is not None: url = urlparse(conf.dash_url) #if url.scheme != "http": # raise ValueError("Invalid scheme for 'dash_url' - only HTTP is supported") dash_net = url.netloc.split(":") conf.dash_host = dash_net[0] try: conf.dash_port = dash_net[1] except IndexError: conf.dash_port = 80 if conf.dash_host == "": raise ValueError("Invalid host for 'dash_url'") if conf.threads is None: conf.threads = 10 if conf.logfile is None: conf.logfile = "STDOUT" if conf.errorfile is None: conf.errorfile = "STDERR" log_size = config['AppDaemon'].get("log_size", 1000000) log_generations = config['AppDaemon'].get("log_generations", 3) if isdaemon and ( conf.logfile == "STDOUT" or conf.errorfile == "STDERR" or conf.logfile == "STDERR" or conf.errorfile == "STDOUT" ): raise ValueError("STDOUT and STDERR not allowed with -d") # Setup Logging conf.logger = logging.getLogger("log1") numeric_level = getattr(logging, args.debug, None) conf.logger.setLevel(numeric_level) conf.logger.propagate = False # formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s') # Send to file if we are daemonizing, else send to console fh = None if conf.logfile != "STDOUT": fh = RotatingFileHandler(conf.logfile, maxBytes=log_size, backupCount=log_generations) fh.setLevel(numeric_level) # fh.setFormatter(formatter) conf.logger.addHandler(fh) else: # Default for StreamHandler() is sys.stderr ch = logging.StreamHandler(stream=sys.stdout) ch.setLevel(numeric_level) # ch.setFormatter(formatter) conf.logger.addHandler(ch) # Setup compile output conf.error = logging.getLogger("log2") numeric_level = getattr(logging, args.debug, None) conf.error.setLevel(numeric_level) conf.error.propagate = False # formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s') if conf.errorfile != "STDERR": efh = RotatingFileHandler( conf.errorfile, maxBytes=log_size, backupCount=log_generations ) else: efh = logging.StreamHandler() efh.setLevel(numeric_level) # efh.setFormatter(formatter) conf.error.addHandler(efh) # Setup dash output if config['AppDaemon'].get("accessfile") is not None: conf.dash = logging.getLogger("log3") numeric_level = getattr(logging, args.debug, None) conf.dash.setLevel(numeric_level) conf.dash.propagate = False # formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s') efh = RotatingFileHandler( config['AppDaemon'].get("accessfile"), maxBytes=log_size, backupCount=log_generations ) efh.setLevel(numeric_level) # efh.setFormatter(formatter) conf.dash.addHandler(efh) else: conf.dash = conf.logger # Startup message utils.log(conf.logger, "INFO", "AppDaemon Version {} starting".format(conf.__version__)) utils.log(conf.logger, "INFO", "Configuration read from: {}".format(conf.config_file)) if config_from_yaml is True: utils.log(conf.logger, "DEBUG", "AppDaemon Section: {}".format(config.get("AppDaemon"))) utils.log(conf.logger, "DEBUG", "Hass Section: {}".format(config.get("HASS"))) utils.log(conf.logger, "DEBUG", "HADashboard Section: {}".format(config.get("HADashboard"))) # Check with HA to get various info ha_config = None if conf.ha_url is not None: utils.log(conf.logger, "DEBUG", "Calling HA for config with key: {} and url: {}".format(conf.ha_key, conf.ha_url)) while ha_config is None: try: ha_config = utils.get_ha_config() except: utils.log( conf.logger, "WARNING", "Unable to connect to Home Assistant, retrying in 5 seconds") if conf.loglevel == "DEBUG": utils.log(conf.logger, "WARNING", '-' * 60) utils.log(conf.logger, "WARNING", "Unexpected error:") utils.log(conf.logger, "WARNING", '-' * 60) utils.log(conf.logger, "WARNING", traceback.format_exc()) utils.log(conf.logger, "WARNING", '-' * 60) time.sleep(5) utils.log(conf.logger, "DEBUG", "Success") utils.log(conf.logger, "DEBUG", ha_config) conf.version = parse_version(ha_config["version"]) conf.ha_config = ha_config conf.latitude = ha_config["latitude"] conf.longitude = ha_config["longitude"] conf.time_zone = ha_config["time_zone"] if "elevation" in ha_config: conf.elevation = ha_config["elevation"] if "elevation" in config['AppDaemon']: utils.log(conf.logger, "WARNING", "'elevation' directive is deprecated, please remove") else: conf.elevation = config['AppDaemon']["elevation"] # Use the supplied timezone if "time_zone" in config['AppDaemon']: conf.ad_time_zone = config['AppDaemon']['time_zone'] os.environ['TZ'] = config['AppDaemon']['time_zone'] else: os.environ['TZ'] = conf.time_zone # Now we have logging, warn about deprecated directives #if "latitude" in config['AppDaemon']: # utils.log(conf.logger, "WARNING", "'latitude' directive is deprecated, please remove") #if "longitude" in config['AppDaemon']: # utils.log(conf.logger, "WARNING", "'longitude' directive is deprecated, please remove") #if "timezone" in config['AppDaemon']: # utils.log(conf.logger, "WARNING", "'timezone' directive is deprecated, please remove") #if "time_zone" in config['AppDaemon']: # utils.log(conf.logger, "WARNING", "'time_zone' directive is deprecated, please remove") ad.init_sun() # Add appdir and subdirs to path if conf.apps is True: conf.app_config_file_modified = os.path.getmtime(conf.app_config_file) if conf.app_dir is None: if config_dir is None: conf.app_dir = find_path("apps") else: conf.app_dir = os.path.join(config_dir, "apps") for root, subdirs, files in os.walk(conf.app_dir): if root[-11:] != "__pycache__": sys.path.insert(0, root) else: conf.app_config_file_modified = 0 # find dashboard dir if conf.dashboard: if conf.dashboard_dir is None: if config_dir is None: conf.dashboard_dir = find_path("dashboards") else: conf.dashboard_dir = os.path.join(config_dir, "dashboards") # # Setup compile directories # if config_dir is None: conf.compile_dir = find_path("compiled") else: conf.compile_dir = os.path.join(config_dir, "compiled") # Start main loop if isdaemon: keep_fds = [fh.stream.fileno(), efh.stream.fileno()] pid = args.pidfile daemon = Daemonize(app="appdaemon", pid=pid, action=run, keep_fds=keep_fds) daemon.start() while True: time.sleep(1) else: run() if __name__ == "__main__": main()
[ "andrew@acockburn.com" ]
andrew@acockburn.com