blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
13d5ff501856936d48c7481261ed51a44a688cff
faf005f0a01920f38ef9971e21e97d39da19e6ee
/experiments/rgb_pretrainedFlownet_laplace_ep400/params.py
8f9b70e839a9a7db00a14330987eafc9efe8d7a6
[]
no_license
CORaisch/DeepVO-pytorch
8524040042225e4b1c406ef343feeb89ad3db15f
7ac019cc60971dd45840ab1bab38a6e516afb429
refs/heads/master
2020-12-11T11:47:41.568603
2020-08-24T11:11:36
2020-08-24T11:11:36
233,840,415
0
0
null
2020-01-14T12:50:14
2020-01-14T12:50:13
null
UTF-8
Python
false
false
6,743
py
import os class Parameters(): def __init__(self, unpack_to = None): self.n_processors = 4 # Path self.data_dir = '/media/claudio/1AC5-C2D4/Datasets/KITTI/DeepVO-pytorch/' self.image_dir = os.path.join(self.data_dir, 'images/') self.pose_dir = os.path.join(self.data_dir, 'poses_gt/') self.train_video = ['00', '01', '02', '05', '08', '09'] self.valid_video = ['04', '06', '07', '10'] self.partition = None # partition videos in 'train_video' to train / valid dataset #0.8 # Data Preprocessing self.grayscale = False # specifiy if grayscale images should be used for training/testing self.laplace_preprocessing = True # enable laplace preprocessing NOTE instead of normalizing the inputs with mean and std images will be laplace filtered self.resize_mode = 'rescale' # choice: 'crop' 'rescale' None self.img_w = 608 # original size is about 1226 self.img_h = 184 # original size is about 370 # means and std for kitti rgb image sequence [00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10] self.img_means = (-0.15116102640573548, -0.1322411015338543, -0.13887598313286317) self.img_stds = (0.31308950448998596, 0.3176070324487968, 0.3232656266278995) # means and std for kitti grayscale image sequence [00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10] # self.img_means = (-0.14046805191159092, -0.14046805191159092, -0.14046805191159092) # self.img_stds = (0.3128824310845576, 0.3128824310845576, 0.3128824310845576) self.minus_point_5 = True self.seq_len = (5, 7) self.sample_times = 3 # Data info path self.train_data_info_path = 'datainfo/train_df_t{}_v{}_p{}_seq{}x{}_sample{}.pickle'.format(''.join(self.train_video), ''.join(self.valid_video), self.partition, self.seq_len[0], self.seq_len[1], self.sample_times) self.valid_data_info_path = 'datainfo/valid_df_t{}_v{}_p{}_seq{}x{}_sample{}.pickle'.format(''.join(self.train_video), ''.join(self.valid_video), self.partition, self.seq_len[0], self.seq_len[1], self.sample_times) # Model self.rnn_hidden_size = 1000 self.conv_dropout = (0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.5) self.rnn_dropout_out = 0.5 self.rnn_dropout_between = 0 # 0: no dropout self.clip = None self.batch_norm = True # Training self.epochs = 400 self.batch_size = 8 self.pin_mem = True self.optim = {'opt': 'Adagrad', 'lr': 0.0005} # Choice: # {'opt': 'Adagrad', 'lr': 0.001} # {'opt': 'Adam'} # {'opt': 'Cosine', 'T': 100 , 'lr': 0.001} # Pretrain, Resume training # self.pretrained_flownet = None self.pretrained_flownet = 'pretrained/flownets_EPE1.951.pth.tar' # Choice: # None # './pretrained/flownets_bn_EPE2.459.pth.tar' # './pretrained/flownets_EPE1.951.pth.tar' # self.resume = True # resume training self.resume = False self.resume_t_or_v = '.train' self.experiment_name = '/rgb_pretrainedFlownet_laplace_ep400/' self.load_model_path = 'models{}t{}_v{}_im{}x{}_s{}x{}_b{}_rnn{}_{}.model{}'.format(self.experiment_name, ''.join(self.train_video), ''.join(self.valid_video), self.img_h, self.img_w, self.seq_len[0], self.seq_len[1], self.batch_size, self.rnn_hidden_size, '_'.join([k+str(v) for k, v in self.optim.items()]), self.resume_t_or_v) self.load_optimizer_path = 'models{}t{}_v{}_im{}x{}_s{}x{}_b{}_rnn{}_{}.optimizer{}'.format(self.experiment_name, ''.join(self.train_video), ''.join(self.valid_video), self.img_h, self.img_w, self.seq_len[0], self.seq_len[1], self.batch_size, self.rnn_hidden_size, '_'.join([k+str(v) for k, v in self.optim.items()]), self.resume_t_or_v) self.record_path = 'records{}t{}_v{}_im{}x{}_s{}x{}_b{}_rnn{}_{}.txt'.format(self.experiment_name, ''.join(self.train_video), ''.join(self.valid_video), self.img_h, self.img_w, self.seq_len[0], self.seq_len[1], self.batch_size, self.rnn_hidden_size, '_'.join([k+str(v) for k, v in self.optim.items()])) self.save_model_path = 'models{}t{}_v{}_im{}x{}_s{}x{}_b{}_rnn{}_{}.model'.format(self.experiment_name, ''.join(self.train_video), ''.join(self.valid_video), self.img_h, self.img_w, self.seq_len[0], self.seq_len[1], self.batch_size, self.rnn_hidden_size, '_'.join([k+str(v) for k, v in self.optim.items()])) self.save_optimzer_path = 'models{}t{}_v{}_im{}x{}_s{}x{}_b{}_rnn{}_{}.optimizer'.format(self.experiment_name, ''.join(self.train_video), ''.join(self.valid_video), self.img_h, self.img_w, self.seq_len[0], self.seq_len[1], self.batch_size, self.rnn_hidden_size, '_'.join([k+str(v) for k, v in self.optim.items()])) self.results_dir = 'results{}'.format(self.experiment_name) if not os.path.isdir(os.path.dirname(self.record_path)): os.makedirs(os.path.dirname(self.record_path)) if not os.path.isdir(os.path.dirname(self.save_model_path)): os.makedirs(os.path.dirname(self.save_model_path)) if not os.path.isdir(os.path.dirname(self.save_optimzer_path)): os.makedirs(os.path.dirname(self.save_optimzer_path)) if not os.path.isdir(os.path.dirname(self.train_data_info_path)): os.makedirs(os.path.dirname(self.train_data_info_path)) def set_remote_dir(self, remote_dir): if remote_dir: self.data_dir = remote_dir self.image_dir = os.path.join(self.data_dir, 'images/') self.pose_dir = os.path.join(self.data_dir, 'poses_gt/') def set_home_dir(self, home_dir): if home_dir: self.train_data_info_path = os.path.join(home_dir, self.train_data_info_path) self.valid_data_info_path = os.path.join(home_dir, self.valid_data_info_path) if self.pretrained_flownet: self.pretrained_flownet = os.path.join(home_dir, self.pretrained_flownet) self.load_model_path = os.path.join(home_dir, self.load_model_path) self.load_optimizer_path = os.path.join(home_dir, self.load_optimizer_path) self.record_path = os.path.join(home_dir, self.record_path) self.save_model_path = os.path.join(home_dir, self.save_model_path) self.save_optimzer_path = os.path.join(home_dir, self.save_optimzer_path) self.results_dir = os.path.join(home_dir, self.results_dir) def set_resume(self, val): self.resume = val par = Parameters()
[ "claudio.raisch@hotmail.de" ]
claudio.raisch@hotmail.de
94db2d21c6ea193c15fc2e11340acffb4bf510df
f7ded947c1ba3aed5e4f8c32a14d26ca66ad837a
/cogs/games/instances.py
df416d10e0347f715234188f6126cf1174988be9
[]
no_license
Project-Cerebrus/cerebrus-v2
307a5d881d404d76b805f7ffeaa4a35363078d46
214f9dbbf7387f91f5bc6ec32c2bbab954344af4
refs/heads/master
2023-07-02T14:17:42.381524
2021-08-04T05:16:33
2021-08-04T05:16:33
379,460,974
0
0
null
null
null
null
UTF-8
Python
false
false
1,167
py
import discord, random from discord.ext import commands import os import subprocess import asyncio import pickle devs = ['775198018441838642', '750755612505407530', '746904488396324864'] try: duckusers = pickle.load(open("static/duckusers/duckbuck.dat","rb")) except FileNotFoundError: print("run _instance <action> <instance> to start instance module") duckbuck = [] def addduckuser(id): duckbuck.append(id) duckusers.append(id) os.system("rm -rf static/duckbuck.dat") pickle.dump(duckbuck,open("static/duckusers/duckbuck.dat", "wb")) pickle.dump(duckusers,open("static/duckusers/duckbuck.dat", "wb")) return class instances(commands.Cog, name='Instances'): def __init__(self, bot): self.bot = bot @commands.command(aliases=["instance"]) async def instances(self,ctx,action=None,instance=None): if action == "add": if instance != None: if instance == "duckbucks": msg = await ctx.send(f"adding {ctx.author.mention} to duckbucks instance...") addduckuser(ctx.author.id) msg.edit(f"successfully added {ctx.author.mention} to {instance} instance\n type `_dhelp` to get started") def setup(bot): bot.add_cog(instances(bot))
[ "57133270+Eris9@users.noreply.github.com" ]
57133270+Eris9@users.noreply.github.com
4faf8ce733700a649ba464af173b8566c1d2ca73
e670abf195fff3c4e6415775feb456b0cd38f42f
/Exercise.5.3.py
b6046d8cdb920973af1fade5fa32f025e2858095
[]
no_license
jryan0004/pythonBasicProjects
eae0af9429d429b4618b98b8e2dc49899966e9d9
9125baa96bc55bd001cc12a4a980ad3ff7187394
refs/heads/master
2021-08-31T12:07:26.343708
2017-12-21T08:02:38
2017-12-21T08:02:38
114,514,613
0
0
null
null
null
null
UTF-8
Python
false
false
490
py
def is_triangle(x ,y, z): sum=x+z if(sum<y): print('No') sum=y+x if(sum<z): print('No') sum=y+z if(sum<x): print('No') else: print('Yes') def prompts_user(): sideone=input('Please enter side one') sidetwo=input('Please enter side two') sidethree=input('Please enter side three') sideone=int(sideone) sidetwo=int(sidetwo) sidethree=int(sidethree) is_triangle(sideone,sidetwo,sidethree) prompts_user()
[ "jryan0004@gmail.com" ]
jryan0004@gmail.com
0b0ef11edb76922f627a568b5dc906cb5f7935dc
1de2ba9743e8b3f63f46c30bdeb57c65569e47e5
/train.py
abcfa6c7e9c6c1369a3dbb9d613454092104271f
[ "MIT" ]
permissive
ZuchniakK/bw_imagenet
b74a1a5eefe27553d7410c4fafbe8224cfb6c7aa
37d4d90d8e1985f2b0c03e9b00077fef1522464a
refs/heads/main
2023-01-23T16:37:13.672517
2020-11-19T17:21:31
2020-11-19T17:21:31
314,097,620
0
0
null
null
null
null
UTF-8
Python
false
false
3,155
py
import tensorflow as tf import numpy as np from os.path import join import os import sys import json from datasets_generator import BWImageNetDataGenerator from custom_calbacks import BackupAndRestore # DATA_DIRECTORY = '/net/scratch/datasets/AI/imagenet/data' DATA_DIRECTORY = 'data' MODEL_DIRECTORY = 'models' MAX_TRAIN_EPOCH = 1000 EPOCH_PER_DATASET = 0.2 VALIDATION_SPLIT = 0.2 TRAIN_VAL_N_SAMPLES = 1281167 TEST_N_SAMPLES = 50000 def get_bw_model(model_name): model_builder = getattr(tf.keras.applications, model_name) model = model_builder( include_top=True, weights=None, input_tensor=None, input_shape=None, pooling=None, classes=1000) input_shape = model.layers[0]._batch_input_shape print(input_shape) x, y = 0, 1 if input_shape[0] is None: x += 1 y += 1 new_shape = (input_shape[x], input_shape[y], 1) target_size = (input_shape[x], input_shape[y]) model = model_builder( include_top=True, weights=None, input_tensor=None, input_shape=new_shape, pooling=None, classes=1000) print(model.summary()) return model, target_size def train(model_name, batch_size): model, target_size = get_bw_model(model_name) bw_gen = BWImageNetDataGenerator(directory=DATA_DIRECTORY, batch_size=batch_size, target_size=target_size, validation_split=VALIDATION_SPLIT) model_dir = join(MODEL_DIRECTORY, model_name.lower() + '_' + str(batch_size)) if not os.path.exists(model_dir): os.makedirs(model_dir) # backup = tf.keras.callbacks.experimental.BackupAndRestore(join(model_dir, 'backup')) backup = BackupAndRestore(join(model_dir, 'backup')) lr_reducer = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=10, min_lr=0.00005) early_stoping = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=30, restore_best_weights=True) csv_logger = tf.keras.callbacks.CSVLogger(join(model_dir, 'train_log.csv'), append=True) model.compile(loss='categorical_crossentropy', optimizer=tf.keras.optimizers.Adam(learning_rate=0.005), metrics=['accuracy']) model.fit( x=bw_gen.train_flow(), epochs=MAX_TRAIN_EPOCH, callbacks=[backup, lr_reducer, early_stoping, csv_logger], validation_data=bw_gen.val_flow(), steps_per_epoch=int((TRAIN_VAL_N_SAMPLES * (1 - VALIDATION_SPLIT)) / batch_size * EPOCH_PER_DATASET), validation_steps=int((TRAIN_VAL_N_SAMPLES * VALIDATION_SPLIT) / batch_size * EPOCH_PER_DATASET)) result = model.evaluate( x=bw_gen.test_flow(), steps=int(batch_size(TRAIN_VAL_N_SAMPLES * VALIDATION_SPLIT)), return_dict=True) with open(join(model_dir, 'evaluation.txt'), 'w') as file: file.write(json.dumps(result)) # use `json.loads` to do the reverse model.save(model_dir) if __name__ == '__main__': model_name = sys.argv[1] batch_size = int(sys.argv[2]) train(model_name, batch_size=batch_size) # 'ResNet50'
[ "konrad.zuchniak@gmail.com" ]
konrad.zuchniak@gmail.com
8171f232b9307faed6cd6e928dd2c6672bcbc15a
2cd81d13739e7ae6b6e31a4ff96fb27a2f7621b5
/mbfmri/models/__init__.py
4df28220332af09c6d7eaeb24fb5232079fcc30e
[]
no_license
CCS-Lab/project_model_based_fmri
5076afebd6140afe8577127e84c308f6bec2b50d
5b4b5cc301585d614458edf12053d34258512db6
refs/heads/main
2023-07-25T20:52:45.536368
2021-09-09T05:22:51
2021-09-09T05:22:51
289,861,786
2
2
null
null
null
null
UTF-8
Python
false
false
70
py
__all__ = ["tf_cnn","tf_mlp","elasticnet", "mvpa_general", "tf_base"]
[ "cjfwndnsl@snu.ac.kr" ]
cjfwndnsl@snu.ac.kr
df3574704ca6de6c81f9b6c51a22941941257d42
1424812c4f211d3d5e356e8b3889a689162062f3
/arcade/core/11_extra_number.py
22d5506bb65bd3268eccb335015a9603f73e2e72
[]
no_license
nazomeku/codefights
cb7d3c40be0809695ec524a87c88dbebcf5b47bc
b23f6816f9b5b0720feac1c49c31163923e0a554
refs/heads/master
2021-01-22T12:49:35.905165
2017-11-21T19:03:37
2017-11-21T19:03:37
102,357,617
0
0
null
null
null
null
UTF-8
Python
false
false
278
py
"""You're given three integers, a, b and c. It is guaranteed that two of these integers are equal to each other. What is the value of the third integer?""" def extra_number(a, b, c): if a == b: return c elif b == c: return a else: return b
[ "cols.nazo@gmail.com" ]
cols.nazo@gmail.com
74d5a6d33f7179d09e915ed96b207a22933ba675
ad408c6244d3474d7631acbbf38476a16ff80730
/LaonSill/src/log/decodeHotLog.py
c56eca330d01e8124ebcc8d6eb657ffa2fe06e15
[ "Apache-2.0" ]
permissive
alice965/LaonSillv2
e229cc9351bd4befb23a50820108f489125e18e7
826f664d5fd8a8625f2abfb9cd566e4f700c16d1
refs/heads/main
2023-02-16T16:57:06.699971
2020-11-30T06:44:43
2020-11-30T06:44:43
354,684,554
1
0
null
2021-04-05T01:25:49
2021-04-05T01:25:43
null
UTF-8
Python
false
false
5,858
py
#!/usr/bin/env python """decodeHotCode.py: """ import json import sys import os import struct def checkEventProperty(hotCodeDic, hotCode, propertyName): if not propertyName in hotCodeDic[hotCode]: print "ERROR: hotCode %s does not have %s property" % (hotCode, propertyName) exit(-1) # XXX: we only considers Linux 64bit platform. # XXX: python does not support long double format.. typeFmtDic = {\ "UINT8" : "B", "INT8" : "b",\ "UINT16" : "H", "INT16" : "h",\ "UINT32" : "I", "INT32" : "i",\ "UINT64" : "Q", "INT64" : "q",\ "BOOL" : "?", "FLOAT" : "f",\ "DOUBLE" : "d", "LONGDOUBLE" : "d",\ } def getValueSize(typeStr): if typeStr in ["UINT8", "INT8"]: return 1 elif typeStr in ["UINT16", "INT16"]: return 2 elif typeStr in ["UINT32", "INT32"]: return 4 elif typeStr in ["UINT64", "INT64"]: return 8 elif typeStr in ["FLOAT"]: return 4 elif typeStr in ["DOUBLE"]: return 8 elif typeStr in ["LONGDOUBLE"]: return 16 elif typeStr in ["BOOL"]: return 1 return 0 def decodeFile(srcFileName, hotCodeDic): try: srcFile = open(srcFileName, 'rb') eventCount = 0 print '[ decode ' + srcFileName + ' starts ]' print "================================================" while True: chunk = srcFile.read(4) if chunk == '': break codeId = struct.unpack('i', chunk)[0] if codeId == 0: chunk = srcFile.read(4) failCount = struct.unpack('i', chunk)[0] print "================================================" print " - event count=%d" % eventCount print " - fail count=%d" % failCount print "================================================\n" break eventCount = eventCount + 1 hotCode = str(codeId) if hotCode not in hotCodeDic: print 'ERROR: hotcode (%s) is not defined in hotCodeDic' % hotCode exit(-1) paramList = hotCodeDic[hotCode]['ARGS'] paramSize = 0 t = () for param in paramList: arrayString = "" foundNull = False if param in typeFmtDic: paramSize = int(getValueSize(param)) fmt = typeFmtDic[param] elif "CHAR" in param: # XXX: needs error-check arrayCount = int(param.replace(")", "$").replace("(", "$").split("$")[1]) paramSize = arrayCount fmt = '%ds' % paramSize else: print "ERROR: invalid hotCode type(%s) for hotCode(%s)" % (param, hotCode) exit(-1) chunk = srcFile.read(paramSize) if chunk == '': print 'ERROR: data is truncated' exit(-1) # change fmt if there is '\0' middle of chunk if "CHAR" in param: nullOffset = 0 for char in chunk: if char == '\0': fmt = '%ds' % nullOffset foundNull = True break nullOffset = nullOffset + 1 if foundNull == True: t = t + struct.unpack(fmt, chunk[:nullOffset]) else: t = t + struct.unpack(fmt, chunk) print hotCodeDic[hotCode]['FMT'] % t except Exception as e: print str(e) exit(-1) finally: srcFile.close() def printUsage(): print "USAGE: ./decodeHotLog hotCodeDefFilePath hotLogTopDir pid" print "USAGE: ./decodeHotLog hotCodeDefFilePath hotLogTopDir pid tid" exit(0) # (1) parsing argument try: if len(sys.argv) < 4: printUsage() elif len(sys.argv) == 4: defFilePath = sys.argv[1] hotLogDir = sys.argv[2] pid = int(sys.argv[3]) tid = -1 elif len(sys.argv) == 5: defFilePath = sys.argv[1] hotLogDir = sys.argv[2] pid = int(sys.argv[3]) tid = int(sys.argv[4]) else: printUsage() except Exception as e: print str(e) exit(-1) # (2) loading hotCodeDef json file into hotCodeDic try: jsonFile = open(defFilePath, 'r') hotCodeDic = json.load(jsonFile) for hotCode in hotCodeDic: checkEventProperty(hotCodeDic, hotCode, "FMT") checkEventProperty(hotCodeDic, hotCode, "ARGS") except Exception as e: print str(e) exit(-1) finally: jsonFile.close() # (3) search target file(s) # XXX: deep in depth try: targetFilePathList = [] if tid == -1: pidFilePrefixName = 'hot.%d.' % pid pidFilePrefixNameLen = len(pidFilePrefixName) for searchPath, searchDirs, searchFiles in os.walk(hotLogDir): if searchFiles: for searchFile in searchFiles: if pidFilePrefixName == searchFile[:pidFilePrefixNameLen]: targetFilePathList.append(os.path.join(searchPath, searchFile)) else: pidTidFileName = 'hot.%d.%d' % (pid, tid) for searchPath, searchDirs, searchFiles in os.walk(hotLogDir): if searchFiles: for searchFile in searchFiles: if pidTidFileName == searchFile: targetFilePathList.append(os.path.join(searchPath, searchFile)) except Exception as e: print str(e) exit(-1) # (4) decode file(s) for targetFilePath in targetFilePathList: print 'target file : ' + targetFilePath decodeFile(targetFilePath, hotCodeDic)
[ "12prog@naver.com" ]
12prog@naver.com
9e6f6d233693b155fa65d04a75733acc84d9bc0a
24b874d65c92487cf70bbb64d60b8f3979adb6eb
/app/user/views.py
784cf564da7335889f411ce23e952da9db5dfc03
[ "MIT" ]
permissive
JOsorio01/recipe-app-api
7e461ee535cb59ef1f7084e623d80873da4501ed
4ea9f8f178bf4f76c11553b0f328791f847ff91c
refs/heads/main
2021-07-02T19:13:53.064450
2021-05-10T19:17:20
2021-05-10T19:17:20
233,429,653
0
0
MIT
2020-01-12T19:20:22
2020-01-12T17:20:51
Python
UTF-8
Python
false
false
873
py
from rest_framework.authtoken.views import ObtainAuthToken from rest_framework.settings import api_settings from rest_framework import generics, authentication, permissions from user.serializers import UserSerializer, AuthTokenSerializer class CreateUserView(generics.CreateAPIView): """Create a new user in the system""" serializer_class = UserSerializer class CreateTokenView(ObtainAuthToken): """Create a new auth token for user""" serializer_class = AuthTokenSerializer renderer_classes = api_settings.DEFAULT_RENDERER_CLASSES class ManageUserView(generics.RetrieveUpdateAPIView): """Manage the authenticated user""" serializer_class = UserSerializer authentication_classes = (authentication.TokenAuthentication,) permission_classes = (permissions.IsAuthenticated,) def get_object(self): return self.request.user
[ "joseosorio001@outlook.com" ]
joseosorio001@outlook.com
d8d386e51d85e26f35ba5f58f8c383ce5dfd47cc
4fa1af506bca9d3f5b66bad379c49ec8b7f6e3a2
/src/meas_daily_roc.py
530d80ec477254004660a7f50f433e0a86626eb1
[]
no_license
SutronPyto/LinkPython
9e31dc9820fdbf678ac1bf7b62b828b32a184d6d
a7128da73012c0ba5d91133ab551bbadd5e704f2
refs/heads/master
2023-05-13T19:14:27.135039
2023-05-05T18:37:15
2023-05-05T18:37:15
146,764,795
4
4
null
null
null
null
UTF-8
Python
false
false
8,020
py
# Example: Rain during the last 24 hours, Rate of change measurements from sl3 import * @MEASUREMENT def precip_last_24_hours(inval): """ Computes rainfall during the last 24 hours. If called at 5PM today, it tells you how much rain fell since 5PM yesterday. If called at 8:15AM today, gives rain since 8:15AM yesterday. * Reads the current precip accumulation. * Reads the precip accumulation from 24 hours ago. * Computes result based on difference. Must have a measurement setup to log precip accumulation on same schedule as this measurement. It must have a specific label (see below). Here is the required setup (interval may be adjusted):: !M2 Active=On !M2 Label=RAIN ACCU !M2 Meas Type=Precip Accumulation !M2 Accumulation Reset=Off !M2 Meas Interval=00:15:00 !M3 Active=On !M3 Label=RAIN 24h !M3 Meas Type=Manual Entry !M3 Meas Interval=00:15:00 !M3 Use Script=On !M3 Script Function=precip_last_24_hours :param inval: this value is ignored :return: precip during last 24 hours :rtype: float """ # the precip accumulation measurement must have this label: precip_accu_label = "RAIN ACCU" # what index is the precip accumulation measurement? precip_accu_index = meas_as_index(precip_accu_label) # current reading of precip accumulation precip_current = measure(precip_accu_index) # compute previous time based on precip reading's timestamp # routine is made for 24 hours, but any interval could be used time_24_hours_ago = precip_current.time - 24 * 60 * 60 # Read the log, starting with the newest precip reading # and going backwards until we find the oldest reading within the time bounds. # That allows us to produce a result before the first 24 hours pass. oldest_reading = Reading(value=0.0) try: logthing = Log(oldest=time_24_hours_ago, newest=precip_current.time, match=precip_accu_label, pos=LOG_NEWEST) for itero in logthing: oldest_reading = itero except LogAccessError: print('No logged readings found. Normal until recording starts.') return 0.0 rain_24_hour = precip_current.value - oldest_reading.value if rain_24_hour < 0.0: # If the difference is negative, precip accumulation has been reset. # Use the current precip accumulation value as the 24 hour value rain_24_hour = precip_current.value return rain_24_hour def differential_reading(meas_label, period_sec, allow_negative): """ Computes the difference between the most recent reading of the specified measurement, and an older reading of the same measurement. Routine reads the log looking for the older reading. This is a generic version of the precip_last_24_hours routine. :param meas_label: the label of the measurement in question :type meas_label: str :param period_sec: how long ago the old reading was made in seconds :type period_sec: int :param allow_negative: should a negative difference be allowed? set to False for rain accumulation :type allow_negative: bool :return: the difference between the two readings :rtype: float """ # current reading current = measure(meas_as_index(meas_label)) # compute previous time based on current reading and period_sec time_old = current.time - period_sec # Read the log, looking for the measurement starting with the newest # and going backwards until we find the oldest reading within the time bounds. oldest_reading = Reading(value=0.0) try: logthing = Log(oldest=time_old, newest=current.time, match=meas_label, pos=LOG_NEWEST) for itero in logthing: oldest_reading = itero except LogAccessError: print('No logged readings found. Normal until recording starts.') return 0.0 # if both readings are valid, compute the difference if (current.quality == 'G') and (oldest_reading.quality == 'G'): result = current.value - oldest_reading.value if (result < 0.0) and (not allow_negative): # If the difference is negative, the measurement has been reset. print('Negative change not allowed') return current.value else: print('Change computed successfully') return result else: print('Readings were not valid') return 0.0 @MEASUREMENT def precip_last_hour(inval): """ Computes the precipitation during the last hour. Please see precip_last_24_hours. This example uses differential_reading. Another measurement labeled RAIN ACCU must be recording precip accumulation. """ return differential_reading("RAIN ACCU", 3600, False) # 3600 sec = 1 hour. False means no negative readings. def rate_of_change_2meas_setup(meas_index_or_label): """ Computes the change between the current and the previous readings. This script needs to reference another measurement which logs sensor readings. Please note that it takes two measurements to compute rate of change. The first measurement needs to log the sensor values. The second measurement will compute the difference of two sensor values. """ # find the index of the measurement meas_index = meas_as_index(meas_index_or_label) # find out this measurement's interval interval_text = setup_read("M{} Meas Interval".format(meas_index)) interval_sec = sl3_hms_to_seconds(interval_text) meas_label = meas_find_label(meas_index) # Find the difference in two readings. True means allow negative change. change = differential_reading(meas_label, interval_sec, True) return change @MEASUREMENT def roc_m1(inval): """ Computes rate of change for measurement M1. This script must be associated with a measurement other than M1. """ return rate_of_change_2meas_setup(1) """ The variables below are used to compute the rate of change""" roc_valid = False roc_previous = 0.0 @MEASUREMENT def rate_of_change_1meas_setup(inval): """ Computes rate of change for the measurement setup with this script. This never logs the value of the sensor. Instead, it remembers the sensor reading and uses it the next time it computes the rate of change. """ global roc_valid global roc_previous # If we have the previous reading, compute the rate of change. # If not, return zero. if roc_valid: result = inval - roc_previous else: result = 0.0 roc_valid = True # Remember the current value. It gets used next measurement cycle. roc_previous = inval return result def measurement_previous(): """ Gets the previous measurement from the log using the measurement schedule Must be called by an @MEASUREMENT function Make sure to check the quality of the returned reading! :return: previously logged measurement :rtype: Reading """ # find the previous reading of this measurement in the log time_previous = time_scheduled() - 1 # anything older than current reading meas_label = meas_find_label(index()) # find out this measurement's interval to compute time of previous interval_text = setup_read("M{} Meas Interval".format(index())) interval_sec = sl3_hms_to_seconds(interval_text) try: previous_reading = Log( oldest=time_previous - interval_sec, newest=time_previous, match=meas_label).get_newest() print("got one from log") return previous_reading except LogAccessError: # could not find it. create a bad reading print("did not find one") return Reading(time=time_previous, label=meas_label, value=-999.0, quality="B")
[ "adi@sutron.com" ]
adi@sutron.com
a9143811595cdaa7b4a3a7168623fb0ccda77175
859b2f7c2426044c9d049e3cbf94907981fa6d33
/products/migrations/0002_offer.py
79ae44d253e9619baa14f089fd2245885f212a6a
[]
no_license
sjortiz/PyShop
984908c2003b2cba2bf0f74a251c7004c3086c3f
4b9656b39051931be453419bf9e589a70f1235d1
refs/heads/master
2022-04-25T13:30:56.194261
2020-04-01T17:07:39
2020-04-01T17:07:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
619
py
# Generated by Django 2.1 on 2020-03-29 16:14 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('products', '0001_initial'), ] operations = [ migrations.CreateModel( name='Offer', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('code', models.CharField(max_length=255)), ('description', models.CharField(max_length=255)), ('discount', models.FloatField()), ], ), ]
[ "paola.rom.d@gmail.com" ]
paola.rom.d@gmail.com
7e8e9f7f360955e59b325d5aecb3d2f81b94fe51
9b41bd4d829b7b4b5fc7ea2f375089793f34beb0
/lib/googlecloudsdk/core/exceptions.py
5583df4ffd56b139284ece43063e8bfba35a3ac8
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
eyalev/gcloud
20a596f9cbf7873eaea652a0b2ad080678f1598c
421ee63a0a6d90a097e8530d53a6df5b905a0205
refs/heads/master
2020-12-25T14:48:11.142544
2016-06-22T08:43:20
2016-06-22T08:43:20
61,703,392
0
2
null
null
null
null
UTF-8
Python
false
false
3,161
py
# Copyright 2014 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Base exceptions for the Cloud SDK.""" import os from googlecloudsdk.core.util import platforms class _Error(Exception): """A base exception for all Cloud SDK errors. This exception should not be used directly. """ pass class InternalError(_Error): """A base class for all non-recoverable internal errors.""" pass class Error(_Error): """A base exception for all user recoverable errors. Any exception that extends this class will not be printed with a stack trace when running from CLI mode. Instead it will be shows with a message of how the user can correct this problem. All exceptions of this type must have a message for the user. """ def __init__(self, *args, **kwargs): """Initialize a core.Error. Args: *args: positional args for exceptions. **kwargs: keyword args for exceptions, and additional arguments: - exit_code: int, The desired exit code for the CLI. """ super(Error, self).__init__(*args) self.exit_code = kwargs.get('exit_code', 1) class RequiresAdminRightsError(Error): """An exception for when you don't have permission to modify the SDK. This tells the user how to run their command with administrator rights so that they can perform the operation. """ def __init__(self, sdk_root): message = ( 'You cannot perform this action because you do not have permission ' 'to modify the Google Cloud SDK installation directory [{root}].\n\n' .format(root=sdk_root)) if (platforms.OperatingSystem.Current() == platforms.OperatingSystem.WINDOWS): message += ( 'Click the Google Cloud SDK Shell icon and re-run the command in ' 'that window, or re-run the command with elevated privileges by ' 'right-clicking cmd.exe and selecting "Run as Administrator".') else: # Specify the full path because sudo often uses secure_path and won't # respect the user's $PATH settings. gcloud_path = os.path.join(sdk_root, 'bin', 'gcloud') message += ( 'Re-run the command with sudo: sudo {0} ...'.format(gcloud_path)) super(RequiresAdminRightsError, self).__init__(message) class NetworkIssueError(Error): """An error to wrap a general network issue.""" def __init__(self, message): super(NetworkIssueError, self).__init__( '{message}\n' 'This may be due to network connectivity issues. Please check your ' 'network settings, and the status of the service you are trying to ' 'reach.'.format(message=message))
[ "eyalev@gmail.com" ]
eyalev@gmail.com
462f4904a74ccfa7602b49f6f264443431f251d9
42d90670a17eca8d842f91064693d11cbbdf0055
/Day_19/main.py
7337b88bf86a60a0b8ff072daa0b9f673e0d916f
[]
no_license
Smithwill1/100_Days_Of_Python
9b7448ed3a930806f7b32775ab9c2cfb34b6bfa0
1e7323b371fbff14252c1a16537f3b9708e861c1
refs/heads/main
2023-05-07T09:08:27.402304
2021-05-24T13:42:13
2021-05-24T13:42:13
359,936,585
0
0
null
null
null
null
UTF-8
Python
false
false
488
py
from turtle import Turtle, Screen bob = Turtle() screen = Screen() def move_forward(): bob.fd(10) def turn_left(): bob.lt(10) def turn_right(): bob.rt(10) def move_backward(): bob.bk(10) def reset(): bob.clear() bob.reset() screen.listen() screen.onkey(key='w', fun=move_forward) screen.onkey(key='s', fun=move_backward) screen.onkey(key='a', fun=turn_left) screen.onkey(key='d', fun=turn_right) screen.onkey(key='c', fun=reset) screen.exitonclick()
[ "williamssmith526@gmail.com" ]
williamssmith526@gmail.com
05c3b18d77e9010b88570d85d73ed0243daa71e4
d39a237efe0e722482772ca924b35fe08afb495f
/neptune_call.py
1431bd766f5ebefb071e1949b120b2680c9afb96
[]
no_license
rafajak/training_cnn
80374166f45651128d89b9a238fc71ccfead9cc5
2ff6a08cb7b6fd0e029eea322e1ca37f31f84278
refs/heads/master
2020-03-07T09:55:14.016020
2018-03-30T09:04:41
2018-03-30T09:04:41
126,157,531
0
0
null
null
null
null
UTF-8
Python
false
false
704
py
from keras.callbacks import Callback from deepsense import neptune ctx = neptune.Context() class NeptuneCallback(Callback): def __init__(self, x_test, y_test, images_per_epoch=-1): self.epoch_id = 0 self.images_per_epoch = images_per_epoch self.x_test = x_test self.y_test = y_test def on_epoch_end(self, epoch, logs={}): self.epoch_id += 1 ctx.channel_send('Log-loss training', self.epoch_id, logs['loss']) ctx.channel_send('Log-loss validation', self.epoch_id, logs['val_loss']) ctx.channel_send('Accuracy training', self.epoch_id, logs['acc']) ctx.channel_send('Accuracy validation', self.epoch_id, logs['val_acc'])
[ "paulina.knut@pascal01.intra.codilime.com" ]
paulina.knut@pascal01.intra.codilime.com
920c9431ac19add6412fbf5a3cb1b54ba1426ec3
f6bba50fccc6fb0dae2f046193434cfb4b9d32d5
/M-SOLUTIONS/C.py
d6366993e299e934fa4ded2c7800c14cd8bee32f
[]
no_license
seven320/AtCoder
4c26723d20004fe46ce118b882faabc05066841c
45e301e330e817f1ace4be4088d3babe18588170
refs/heads/master
2021-11-22T22:57:32.290504
2021-10-24T09:15:12
2021-10-24T09:15:12
162,827,473
2
0
null
null
null
null
UTF-8
Python
false
false
312
py
# encoding:utf-8 import copy import random import bisect #bisect_left これで二部探索の大小検索が行える import fractions #最小公倍数などはこっち import math import sys mod = 10**9+7 sys.setrecursionlimit(mod) # 再帰回数上限はでdefault1000 N,A,B,C = map(int,input().split())
[ "yosyuaomenw@yahoo.co.jp" ]
yosyuaomenw@yahoo.co.jp
36f32166bf2196d2e242e489ddee2954524f846d
735bd7bde06afa5999a2a76ba0b5a11c70159524
/tensor_network/neural_net/fully_connected.py
0c5136777c57a53588fa4250fedb16fd003f6581
[ "MIT" ]
permissive
prithvinambiar/tensor_network
8f3c25e237153c600dc7c1ee6a7a4c38aea63d14
565cc834c2b7e59769e8fa30adae959f257bf85f
refs/heads/master
2021-01-02T23:08:37.383408
2017-09-10T06:51:28
2017-09-10T06:51:28
99,473,064
0
0
null
null
null
null
UTF-8
Python
false
false
5,260
py
import logging import tempfile import numpy as np import tensorflow as tf def initialize_network(input, arch, is_training): hidden_layer_output = input for output in arch[0:-1]: h2 = tf.contrib.layers.batch_norm(hidden_layer_output, center=True, scale=True, is_training=is_training) hidden_layer_output = tf.contrib.layers.fully_connected(h2, output, activation_fn=tf.nn.relu , weights_regularizer=tf.contrib.layers.l2_regularizer) last_layer_output = tf.contrib.layers.fully_connected(hidden_layer_output, arch[-1], activation_fn=tf.nn.sigmoid , weights_regularizer=tf.contrib.layers.l2_regularizer) return last_layer_output def log_loss(actual_y, predicted_y): return tf.reduce_mean(-tf.reduce_sum( (actual_y * tf.log(predicted_y + 1e-10) + ((1 - actual_y) * tf.log(1 - predicted_y + 1e-10))), axis=[1])) class FullyConnected: def __init__(self, number_of_features, number_of_output, neurons_list): self.session = tf.Session() self.x = tf.placeholder(tf.float32, [None, number_of_features]) self.y = tf.placeholder(tf.float32, [None, number_of_output]) self.is_training = tf.placeholder(tf.bool) self.network = initialize_network(self.x, neurons_list, self.is_training) self.cost_function = log_loss(self.y, self.network) self.global_step = tf.Variable(0, trainable=False) def __del__(self): self.session.close() def __enter__(self): self.session.__enter__() return self def __exit__(self, exec_type, exec_value, exec_tb): self.session.__exit__(exec_type, exec_value, exec_tb) tf.reset_default_graph() def train(self, train_data, validation_data=None, iterations=10000, optimiser=tf.train.GradientDescentOptimizer(learning_rate=0.05), import_prev_model=False, model_save_frequency=0, log_frequency=10, folder=tempfile.gettempdir() + "/tensorflow", reg_lambda=0.0001, batch_size_pct=0.2): (train_input, train_output) = train_data (validation_input, validation_output) = train_data if validation_data is None else validation_data tensorflow_dir = folder log_dir = tensorflow_dir + "/log" model_file = tensorflow_dir + "/model/model_data" logging.info("Logging TensorFlow data to %s " % log_dir) writer = tf.summary.FileWriter(log_dir) writer.add_graph(self.session.graph) with tf.name_scope("train"): update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_ops): train_step = optimiser.minimize(self.cost_function, name="train_step", global_step=self.global_step) saver = tf.train.Saver(max_to_keep=1) if import_prev_model: saver.restore(self.session, model_file) else: self.session.run(tf.global_variables_initializer()) tf.summary.scalar('cost', self.cost_function) merged_summary = tf.summary.merge_all() if len(train_input) * .2 < 1: batch_size = len(train_input) else: batch_size = int(len(train_input) * batch_size_pct) print("Number of rows in train data = ", len(train_input)) print("Number of rows in batch data = ", batch_size) for i in range(iterations): j = i + 1 indices = np.random.choice(range(len(train_input)), size=batch_size, replace=False) batch_input = train_input[indices] batch_output = train_output[indices] if (log_frequency != 0 and j % log_frequency == 0) or j == 1: validation_accuracy = self.cost(validation_input, validation_output) train_accuracy = self.cost(train_input, train_output) cost = self.session.run(self.cost_function, feed_dict={self.x: batch_input, self.y: batch_output, self.is_training: 0}) print("Iterations = %s and Cost = %s and Train accuracy = %s and Validation accuracy = %s" % ( j, cost, train_accuracy, validation_accuracy)) self.session.run(train_step, feed_dict={self.x: batch_input, self.y: batch_output, self.is_training: 1}) if model_save_frequency != 0 and j % model_save_frequency == 0: summary = self.session.run(merged_summary, feed_dict={self.x: train_input, self.y: train_output, self.is_training: 1}) writer.add_summary(summary, j) print("Saving model") saver.save(self.session, model_file) def predict(self, test_input_data): return self.session.run(self.network, feed_dict={self.x: test_input_data, self.is_training: 0}) def cost(self, input_data, output_data): with tf.name_scope("validation"): return self.session.run(self.cost_function, feed_dict={self.y: output_data, self.x: input_data, self.is_training: 0})
[ "prithvinambiar@gmail.com" ]
prithvinambiar@gmail.com
07414b27e5c330d92b6289b40133449889b81b6e
48bcb11f671f983392f57d9a68a6716af54bdfbb
/D3/soundmaking4676.py
90acdfeecb7425e73af88b4fea6898e92fbfc852
[]
no_license
KimYeong-su/sw_expert
49d66f891da4f171b82201b8ad2c950c1e79949c
e5557f6df5dc4aa1ef1aa6a94cab0b58d2f77f58
refs/heads/master
2021-07-13T12:07:51.299710
2021-03-13T12:20:47
2021-03-13T12:20:47
235,712,899
0
0
null
null
null
null
UTF-8
Python
false
false
234
py
T = int(input()) for tc in range(1,T+1): s = input() H = int(input()) place = list(sorted(map(int,input().split()),reverse=True)) for i in place: s = s[:i]+'-'+s[i:] print('#{} {}'.format(tc,s))
[ "suwon0521@naver.com" ]
suwon0521@naver.com
24d1ca99fb8dc86ffac3c88e0b1f4b7184893bae
2ffd6167697a417dfd78de0fe5a188768d93dab6
/ytpomodoroweb/ytpomodoroweb/urls.py
58cc57d16fa8268680c6d732b95e9ae0077dd204
[]
no_license
alikhundmiri/ytpomodoro
ef58904267c515b522cae21d0366cf9201cd4b47
d2234996b9a8cac1450d03a3fa3b402b1d41f605
refs/heads/master
2022-12-05T03:04:08.067489
2019-06-15T14:49:01
2019-06-15T14:49:01
191,381,468
0
0
null
2022-12-03T13:13:10
2019-06-11T13:50:54
JavaScript
UTF-8
Python
false
false
812
py
"""ytpomodoroweb URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), path('', include('core.urls', namespace='core')), ]
[ "salikhundmiri@gmail.com" ]
salikhundmiri@gmail.com
edbec072d7e749e091aeb1a3300e433f4fd278bd
35c1a31e21cf43dc594e5f11f3b67e2fa63bd2a9
/utils/temp.py
221c958b0fd706b74a9cacb5be402470db2da8cf
[]
no_license
smallsharp/mPython
6877cec933e1533c42636fdec4e725e22292a605
4696d592864d8f8c7e7ffcf72ab27ac396236811
refs/heads/master
2022-12-05T13:36:48.894360
2020-08-29T16:01:35
2020-08-29T16:01:35
119,930,200
0
0
null
null
null
null
UTF-8
Python
false
false
35
py
import Form2Json Form2Json.test()
[ "kai.li@baozun.com" ]
kai.li@baozun.com
4c65be3170be56f8abcc246658328d38d1c027df
1b6e7e55935c7ebe51674748a3405e29e666dd97
/agent.py
d39d0231358512913eeccebcde104a3f5376a830
[]
no_license
tanzeyy/DDPG
f13d2d04e06ac99277ebb370a0f2378e30f895cd
de32cfefd1b969616fd828614bc88ccf89e861e3
refs/heads/main
2023-01-06T05:42:10.653556
2020-11-09T13:08:47
2020-11-09T13:08:47
311,338,315
0
0
null
null
null
null
UTF-8
Python
false
false
3,119
py
from copy import deepcopy import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim class DDPGAgent(object): def __init__(self, model, config, device): self.model = model.to(device) self.target_model = deepcopy(self.model).to(device) self.policy_opt = optim.Adam(params=self.model.policy.parameters(), lr=config.policy_lr) self.value_opt = optim.Adam(params=self.model.value.parameters(), lr=config.value_lr) self.gamma = config.gamma self.polyak = config.polyak self.noise = config.noise self.device = device def predict(self, obs): obs = torch.from_numpy(obs).to(self.device) out = self.model.policy(obs) return np.squeeze(out.cpu().detach().numpy()) def learn(self, obs, act, reward, next_obs, terminal): obs = torch.from_numpy(obs).to(self.device) act = torch.from_numpy(act).to(self.device) reward = torch.from_numpy(reward).to(self.device) next_obs = torch.from_numpy(next_obs).to(self.device) terminal = torch.from_numpy(terminal).to(self.device) value_loss = self._learn_value(obs, act, reward, next_obs, terminal) policy_loss = self._learn_policy(obs) self._update_target() return value_loss.cpu().detach().numpy(), \ policy_loss.cpu().detach().numpy() def _learn_value(self, obs, act, reward, next_obs, terminal): # Compute target with torch.no_grad(): next_act = self.target_model.policy(next_obs) next_Q = self.target_model.value(next_obs, next_act) target_Q = reward + self.gamma * (1.0 - terminal.float()) * next_Q # Minimize MSBE Q = self.model.value(obs, act) loss = F.mse_loss(Q, target_Q) self.value_opt.zero_grad() loss.backward() self.value_opt.step() return loss def _learn_policy(self, obs): act = self.model.policy(obs) Q = self.model.value(obs, act) loss = torch.mean(-1.0 * Q) self.policy_opt.zero_grad() loss.backward() self.policy_opt.step() return loss def _update_target(self): # Polyak updating for target_param, param in zip(self.target_model.value.parameters(), self.model.value.parameters()): target_param.data.copy_(self.polyak * target_param.data + (1.0 - self.polyak) * param.data) for target_param, param in zip(self.target_model.policy.parameters(), self.model.policy.parameters()): target_param.data.copy_(self.polyak * target_param.data + (1.0 - self.polyak) * param.data) def save(self, path): torch.save(self.model.state_dict(), path) def load(self, path): self.model.load_state_dict(torch.load(path)) self.target_model = deepcopy(self.model)
[ "tan_ze@outlook.com" ]
tan_ze@outlook.com
25737e432d9c21e059ad74753a8928679d5184e3
03e321ac2f9a1282b1c31e39508f1b21e3d2342d
/day 17 python.py
8595e263c5ed78d20636f6f3e3c3c05045a89f29
[]
no_license
Magendra-ssn/30-day-challenge-python-
2c0d3c58e9963b9d614520f66469040f47592e3e
8ca313aaac503aa6d082230873556d53458c3a61
refs/heads/main
2023-06-30T07:39:12.774076
2021-08-03T08:24:16
2021-08-03T08:24:16
376,813,997
0
0
null
null
null
null
UTF-8
Python
false
false
225
py
import mysql.connector mydb=mysql.connector.connect(host="localhost",user="root",passwd="Magendra6the",database="employee") dbse=mydb.cursor() dbse.execute("SELECT * FROM emp") for i in dbse: print(i) dbse.close()
[ "noreply@github.com" ]
Magendra-ssn.noreply@github.com
734b32bb5662b6675f25830ad27aa18770ea7d46
d115ddc8be0086cf94ec3998a53616bea7b625da
/common/EmailMethod.py
c4bcaf98ff61f1f5efd3c2cc374139c3c351358a
[]
no_license
DaQianJiang/python-request
918d12bf12cd35e84d40d664f73468105787fde8
966b5c4b2d815afa773e98fc2cd93c4290665deb
refs/heads/master
2023-01-03T04:51:44.479230
2020-11-04T14:57:20
2020-11-04T14:57:20
257,204,512
0
0
null
null
null
null
UTF-8
Python
false
false
3,553
py
from common.config_reader import configReader from common.log import Log import smtplib from email.mime.text import MIMEText from email.mime.multipart import MIMEMultipart from email.header import Header import datetime from common.config_reader import ROOT_PATH import os REPORT_FILE = os.path.join(ROOT_PATH,"testReport") class Email(): config_email = configReader().get_email() logger = Log().get_log() def __init__(self): self.smtp_host = self.config_email['stmp_host'] self.smtp_port = self.config_email['stmp_port'] self.smtp_password = self.config_email['stmp_password'] self.smtp_user = self.config_email['mail_user'] self.mail_sender = self.config_email["sender"] self.mail_receivers = self.config_email["receiver"] self.revicer = [] if self.mail_receivers: self.revicer = str(self.mail_receivers).split("/") else: self.logger.info("---邮件接收者为空-----") print(self.mail_receivers) print(self.revicer) self.mail_title = self.config_email["title"] self.mail_content = self.config_email["content"] self.mail_test_user = self.config_email["testuser"] self.mail_on_off = self.config_email["on_off"] self.data = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") self.mail_subject = self.mail_title +" "+self.data #设置总的邮件体对象 self.msg_root = MIMEMultipart("mixed") def set_mail_header(self): self.msg_root["subject"] = Header(self.mail_subject,"utf-8") self.msg_root["From"] = self.mail_sender self.msg_root["To"] = ";".join(self.revicer) def set_mail_content(self): self.content = MIMEText(self.mail_content,"plain","utf-8") self.msg_root.attach(self.content) #添加文件 def set_mail_file(self): if os.path.exists(REPORT_FILE): self.report = os.path.join(REPORT_FILE,"report.html") #self.testlist = os.path.join(ROOT_PATH,"testFile/case/user.xls") self.file = open(self.report,"rb").read() self.att_file = MIMEText(self.file,"base64","utf-8") self.att_file["Content-Type"]= 'application/octet-stream' self.att_file["Content-Disposition"] = 'attachment; filename="report.html"' self.msg_root.attach(self.att_file) else: raise FileNotFoundError("testReport文件未找到") def send_email(self): self.set_mail_header() self.set_mail_content() self.set_mail_file() try: self.smtp_server = smtplib.SMTP_SSL(self.smtp_host,self.smtp_port) except smtplib.SMTPConnectError as e: self.logger.error("服务器链接失败:",e) else: try: self.smtp_server.login(self.smtp_user,self.smtp_password) except smtplib.SMTPAuthenticationError as e: self.logger.error("服务器登陆失败:",e) else: try: self.smtp_server.sendmail(self.mail_sender,self.revicer,self.msg_root.as_string()) self.smtp_server.quit() self.logger.info("----邮件发送成功----") self.logger.info("发件人%s,收件人%s",self.mail_sender,self.revicer) except smtplib.SMTPException as e: self.logger.error("---发送邮件失败---:",e) if __name__ == '__main__': email = Email() email.send_email()
[ "1404482005@qq.com" ]
1404482005@qq.com
3730fe7e084859788829b841d8f659cb3e767ca7
99e32ab1325a303f92457fc6e0615786c4944ef2
/accounts/migrations/0045_admin.py
89f9551bcb1290310266ca8d274723897489610f
[]
no_license
mafohoT/Threeness-Intelect
3936a43ed96ba5cefdcae965e923ccf003bb54b2
df64f02e9774b9e620eec1f0b15c21aa04818bf7
refs/heads/master
2023-08-17T22:46:09.742200
2021-10-20T13:33:27
2021-10-20T13:33:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,285
py
# Generated by Django 3.2.7 on 2021-10-10 07:47 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import phonenumber_field.modelfields class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('accounts', '0044_remove_appointment_user'), ] operations = [ migrations.CreateModel( name='Admin', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('username', models.CharField(max_length=20, null=True)), ('id_number', models.CharField(max_length=13, null=True)), ('phonenumber', phonenumber_field.modelfields.PhoneNumberField(max_length=128, null=True, region=None)), ('name', models.CharField(max_length=200, null=True)), ('employeenumber', models.CharField(max_length=200, null=True, unique=True)), ('appointment_reason', models.CharField(max_length=200, null=True)), ('user', models.OneToOneField(null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
[ "thabo3111@gmail.com" ]
thabo3111@gmail.com
e3232181ab26b3496489c74e74fc52babb6b3a76
7eb7c263634a40b7397727854346f703e2be5a63
/core/estimators/models/omar_cnn.py
3296eb27919aeb8d258fde9727b86ff4d6df584c
[]
no_license
Iqra350/krock2_traversability
7b745d1664d9d14facc0d3fbff324bbaac2c391e
7dd5e03d768fd3218838417ac0f195b25a1b8efa
refs/heads/master
2022-07-17T04:59:35.529123
2019-09-02T14:07:40
2019-09-02T14:07:40
205,813,838
0
0
null
2022-06-21T22:42:16
2019-09-02T08:42:19
Jupyter Notebook
UTF-8
Python
false
false
1,237
py
import torch import torch.nn as nn def conv_block(in_channels, out_channels): return nn.Sequential(nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU()) class OmarCNN(nn.Module): """ From original paper https://arxiv.org/abs/1709.05368 """ def __init__(self): super().__init__() self.encoder = nn.Sequential(conv_block(1, 5), conv_block(5, 5), nn.MaxPool2d(kernel_size=2), conv_block(5, 5)) self.decoder = nn.Sequential(nn.Linear(7605, 128), nn.ReLU(), nn.Dropout(), nn.Linear(128, 2), # nn.Sigmoid() ) def forward(self, x): x = self.encoder(x) x = x.view(x.size(0), -1) x = self.decoder(x) return x
[ "noorsyen@gmail.com" ]
noorsyen@gmail.com
bf1d1240627f1a4c67140e7e6a2fd53532cd3d68
d812e86676c88dd70d0d829cf507de7777502d72
/Django/zqxt_form2/zqxt_form2/urls.py
bc54e18f005ef54dc230520ba7b8f9011af35f4e
[]
no_license
MikeNg2018/PythonCode
020777d3620d1aeb7c03dd90d1452934eee9663f
683a6d3cb529ec2a92adc92c6cd6db6d1604fc3b
refs/heads/master
2021-08-22T08:15:50.083878
2018-07-23T15:05:05
2018-07-23T15:05:05
104,327,895
1
0
null
null
null
null
UTF-8
Python
false
false
859
py
"""zqxt_form2 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from tools import views as tools_views admin.autodiscover() urlpatterns = [ path('', tools_views.index, name='home'), path('admin/', admin.site.urls), ]
[ "mikeng83@gmail.com" ]
mikeng83@gmail.com
071bfee000566985c17e29e87d6d225d8ee2deb3
16e3bda8d377753f14aaa58812fd36d6a7abb7cf
/examples/durations/components/takeslongtime/component.py
961733e9ca60e8085619eb9c25f6904cc2235c68
[ "BSD-2-Clause" ]
permissive
flyingcircusio/batou
942c08debd8a011bc7fe36fc630c6b8552ad9f3e
f87a00acc3ce256014d49bef2eac581e91009275
refs/heads/main
2023-08-31T07:20:17.450557
2023-04-14T12:14:52
2023-04-14T12:14:52
206,573,151
42
28
NOASSERTION
2023-09-12T13:32:40
2019-09-05T13:40:03
Python
UTF-8
Python
false
false
167
py
from time import sleep from batou.component import Component from batou.lib.file import File class Takeslongtime(Component): def verify(self): sleep(2)
[ "ct@flyingcircus.io" ]
ct@flyingcircus.io
f82cf90fe60daaa0440a23c3fff77d3f36ea6f32
21899ea0e94cb58f8ac99b7c731f59e0232839eb
/src/python/T0/WMBS/Oracle/SMNotification/UpdateOfflineFileStatus.py
d3bfae8976ed4a4f7831ef497cd82c240dac52e8
[ "Apache-2.0" ]
permissive
dmwm/T0
a6ee9d61abc05876fc24f8af69fe932a2f542d21
1af91d0b1971b7d45ea7378e754f2218ff9a8474
refs/heads/master
2023-08-16T10:55:27.493160
2023-08-11T09:38:03
2023-08-11T09:38:03
4,423,801
9
54
Apache-2.0
2023-09-14T11:43:30
2012-05-23T18:33:56
Python
UTF-8
Python
false
false
687
py
""" _UpdateOfflineFileStatus_ Oracle implementation of UpdateOfflineFileStatus """ from WMCore.Database.DBFormatter import DBFormatter class UpdateOfflineFileStatus(DBFormatter): def execute(self, binds, conn = None, transaction = False): sql = """UPDATE file_transfer_status_offline SET t0_repacked_time = CURRENT_TIMESTAMP, repacked_retrieve = 1 WHERE p5_fileid = :P5_ID AND t0_repacked_time IS NULL AND repacked_retrieve is NULL """ self.dbi.processData(sql, binds, conn = conn, transaction = transaction) return
[ "Dirk.Hufnagel@cern.ch" ]
Dirk.Hufnagel@cern.ch
37f310a3f5ec60c0871d9232dd93a28a7b4b7d30
af70d6e37c3b95c6a497ecb6b6b54dc56a9aced3
/config.py
638aeaba248783af2a124a63ae24391fac4311bd
[ "Apache-2.0" ]
permissive
TuringKi/Quantize_Project
b4357b9e1946e29318ce90ef72bca2f6aded4454
e3ba6bae8fff7e1981c93ce954a79987feddfe33
refs/heads/master
2021-08-30T20:02:24.938319
2017-12-19T08:04:12
2017-12-19T08:04:12
125,996,907
1
0
null
null
null
null
UTF-8
Python
false
false
5,031
py
#!/usr/bin/python all_para =['Variable', 'Variable_1', 'Variable_2', 'Variable_3', 'Variable_4', 'Variable_5', 'Variable_6', 'Variable_7', 'Variable_8', 'Variable_9', 'Variable_10', 'Variable_11', 'Variable_12', 'Variable_13', 'Variable_14', 'Variable_15', 'Variable_16', 'Variable_17', 'Variable_18', 'Variable_19', 'Variable_20', 'Variable_21', 'Variable_22', 'Variable_23', 'Variable_24', 'Variable_25', 'Variable_26', 'Variable_27', 'Variable_28', 'Variable_29', 'Variable_30', 'Variable_31', 'Variable_32', 'Variable_33', 'Variable_34', 'Variable_35', 'Variable_36', 'Variable_37', 'Variable_38', 'Variable_39'] exc_para =[#'Variable', #'Variable_1', 'Variable_2', 'Variable_3', 'Variable_4', 'Variable_5', 'Variable_6', 'Variable_7', 'Variable_8', 'Variable_9', 'Variable_10', 'Variable_11', 'Variable_12', # 'Variable_13', 'Variable_14', 'Variable_15', 'Variable_16', 'Variable_17', 'Variable_18', 'Variable_19', 'Variable_20', 'Variable_21', 'Variable_22', 'Variable_23', 'Variable_24', 'Variable_25', # 'Variable_26', 'Variable_27', 'Variable_28', 'Variable_29', 'Variable_30', 'Variable_31', 'Variable_32', 'Variable_33', 'Variable_34', 'Variable_35', 'Variable_36', 'Variable_37', 'Variable_38'] # 'Variable_39'] trans_layer = ['Variable_13','Variable_26'] block_1 = [#'Variable_1', 'Variable_2', 'Variable_3', 'Variable_4', 'Variable_5', 'Variable_6', 'Variable_7', 'Variable_8', 'Variable_9', 'Variable_10', 'Variable_11', 'Variable_12',] block_2 = ['Variable_14', 'Variable_15', 'Variable_16', 'Variable_17', 'Variable_18', 'Variable_19', 'Variable_20', 'Variable_21', 'Variable_22', 'Variable_23', 'Variable_24', 'Variable_25',] block_3 = ['Variable_27', 'Variable_28', 'Variable_29', 'Variable_30', 'Variable_31', 'Variable_32', 'Variable_33', 'Variable_34', 'Variable_35', 'Variable_36', 'Variable_37', 'Variable_38'] fc_layer = ['Variable_39'] prune_para = {} for k in all_para: prune_para[k] = 0.75 prune_para['Variable'] = 0.1 prune_para['Variable_1'] = 0.45 prune_para['Variable_3'] = 0.65 prune_para['Variable_5'] = 0.7 prune_para['Variable_6'] = 0.65 prune_para['Variable_13'] = 0.35 prune_para['Variable_26'] =0.5 prune_para['Variable_34'] = 0.85 prune_para['Variable_35'] = 0.9 prune_para['Variable_36'] = 0.95 prune_para['Variable_37'] = 0.95 prune_para['Variable_38'] = 0.95 prune_para['Variable_39'] = 0.9 dns_para =[#'Variable', 'Variable_1', 'Variable_2', 'Variable_3', 'Variable_4', 'Variable_5', 'Variable_6', 'Variable_7', 'Variable_8', 'Variable_9', 'Variable_10', 'Variable_11', 'Variable_12', 'Variable_13', 'Variable_14', 'Variable_15', 'Variable_16', 'Variable_17', 'Variable_18', 'Variable_19', 'Variable_20', 'Variable_21', 'Variable_22', 'Variable_23', 'Variable_24', 'Variable_25', 'Variable_26', 'Variable_27', 'Variable_28', 'Variable_29', 'Variable_30', 'Variable_31', 'Variable_32', 'Variable_33', 'Variable_34', 'Variable_35', 'Variable_36', 'Variable_37', 'Variable_38', 'Variable_39'] crate = {} for k in all_para: crate[k] = 3 crate['Variable'] = 0 crate['Variable_1'] = 1 crate['Variable_13'] = 1 crate['Variable_26'] =1 inqpercen_para = {} for k in all_para: inqpercen_para[k] = 1.0 inq_para = {} for k in all_para: inq_para[k] = 16 #inq_para['Variable'] = 256 #inq_para['Variable_1'] = 128 #inq_para['Variable_13'] = 128 #inq_para['Variable_26'] =128 inqprune_para = {} for k in all_para: inqprune_para[k] = 1-0.75 inqprune_para['Variable'] = 1-0.1 inqprune_para['Variable_1'] = 1-0.45 inqprune_para['Variable_3'] = 1-0.65 inqprune_para['Variable_5'] = 1-0.7 inqprune_para['Variable_6'] = 1-0.65 inqprune_para['Variable_13'] = 1-0.35 inqprune_para['Variable_26'] =1-0.5 inqprune_para['Variable_34'] = 1-0.85 inqprune_para['Variable_35'] = 1-0.9 inqprune_para['Variable_36'] = 1-0.95 inqprune_para['Variable_37'] = 1-0.95 inqprune_para['Variable_38'] = 1-0.95 inqprune_para['Variable_39'] = 1-0.9 kmeans_para = {} for k in all_para: kmeans_para[k] = 64 len_dict = {'Variable': 432, 'Variable_1': 1728, 'Variable_10': 13392, 'Variable_11': 14688, 'Variable_12': 15984, 'Variable_13': 25600, 'Variable_14': 17280, 'Variable_15': 18576, 'Variable_16': 19872, 'Variable_17': 21168, 'Variable_18': 22464, 'Variable_19': 23760, 'Variable_2': 3024, 'Variable_20': 25056, 'Variable_21': 26352, 'Variable_22': 27648, 'Variable_23': 28944, 'Variable_24': 30240, 'Variable_25': 31536, 'Variable_26': 92416, 'Variable_27': 32832, 'Variable_28': 34128, 'Variable_29': 35424, 'Variable_3': 4320, 'Variable_30': 36720, 'Variable_31': 38016, 'Variable_32': 39312, 'Variable_33': 40608, 'Variable_34': 41904, 'Variable_35': 43200, 'Variable_36': 44496, 'Variable_37': 45792, 'Variable_38': 47088, 'Variable_39': 4480, 'Variable_4': 5616, 'Variable_5': 6912, 'Variable_6': 8208, 'Variable_7': 9504, 'Variable_8': 10800, 'Variable_9': 12096}
[ "noreply@github.com" ]
TuringKi.noreply@github.com
5517b266df69423eb51103ed7b51cea7cdb833ec
df8eeeb91a0dce2eb27911a61b40041da0ea55a3
/honda_janken/4_pygame.py
ba530b20dc2a57a7884f471ac55a738d21010d16
[]
no_license
dannyso16/Play-IT
89e8c60a3069ac6e678c8f9849a58d6cb9e38a79
14efa295e12ba208313beb655f57fb1ae8051a49
refs/heads/master
2020-06-23T21:38:28.183648
2020-02-26T05:03:37
2020-02-26T05:03:37
198,760,296
0
0
null
null
null
null
UTF-8
Python
false
false
462
py
import pygame from pygame.locals import * import sys pygame.init() screen = pygame.display.set_mode((1200, 700)) image = pygame.image.load('assets/honda_paper.jpg') def main(): while True: screen.fill((0,0,0)) for event in pygame.event.get(): if event.type == QUIT: pygame.quit() exit() screen.blit(image, (0, 0)) pygame.display.update() if __name__ == '__main__': main()
[ "osatoshi.11@gmail.com" ]
osatoshi.11@gmail.com
9167dd129fd4984452144aa2a908ee2f67d171e1
1267670526be8a4669b0e724e2e0ebcd20c85a15
/users/apps.py
97315a96a3e7a750bb82d4b564b77f2967f63791
[ "MIT" ]
permissive
DPsalmist/Damios-Blog
46ba2bf2294d821e6656f7232170f389ca55c6b7
af711fc9ad8e581df166beb6c61c5514a14310f2
refs/heads/main
2023-05-06T08:24:39.208531
2021-05-24T02:40:30
2021-05-24T02:40:30
340,534,096
0
0
MIT
2021-02-20T02:35:05
2021-02-20T01:39:05
JavaScript
UTF-8
Python
false
false
133
py
from django.apps import AppConfig class UsersConfig(AppConfig): name = 'users' def ready(self): import users.signals
[ "sdamilare420@gmail.com" ]
sdamilare420@gmail.com
f18610e3ece9eeea21f5e15acef6c46718b270c4
87415616ce962e5ae09ce2afea14e821631232fb
/meeting_point/response.py
fd036fe9d55095ca8c80d993e42eee690e427de2
[]
no_license
proabhishek/meeting_point
33bbf715c965dc6c9ff406e46f8689784668912f
6f8166ef09b229e35fe966a249c675fd19895e4e
refs/heads/master
2022-05-11T08:09:54.802826
2021-06-23T16:52:16
2021-06-23T16:52:16
204,439,826
0
1
null
2022-04-22T22:13:59
2019-08-26T09:16:25
Python
UTF-8
Python
false
false
1,851
py
import traceback from rest_framework.views import exception_handler from rest_framework.response import Response def meeting_exception_handler(exc, context): response = exception_handler(exc, context) try: data = response.data message = "" for key, value in data.items(): message += "%s: %s. " % (key, value) except: message = "" if response is not None: response.data = { 'success': False, 'error': message, 'message': message, 'data': {} } return response def api_response(func): def wrapper(*args, **kwargs): try: res = func(*args, **kwargs) if res['success']: return Response({ 'data': res.get('data', {}), 'success': True, 'message': res.get('message', 'success'), 'error': res.get('error', ''), 'statusCode': res.get('statusCode', 200) }, status=res.get('status', 200)) else: return Response({ 'data': res.get('data', {}), 'success': False, 'message': res.get('message', ''), 'error': res.get('error', ''), 'statusCode': res.get('statusCode', 400) }, status=res.get('status', 400)) except Exception as e: return Response({ 'data': {}, 'success': False, 'error': "Something wrong. Please try again after sometime.\nDev Hint(hidden in production): %s" % str(e), 'exception': str(e), 'traceback': traceback.format_exc(), 'statusCode': 500 }, status=500) return wrapper
[ "theabhishek.srm@gmail.com" ]
theabhishek.srm@gmail.com
defb13f9aa31c99e117b8eacc4b05d56d393dc48
bf79252a8cbd297f3f8392f0a9c57eda61f336cc
/3 Triangle.py
b81a05e5efb8e8c70a7e7e3948c5afc7a7424144
[]
no_license
besteffects/Python_tutorials
5af8df8d6458d37f9d2f12e4b40b0cff2d07442b
cb7a525d70b87446a68e32ecb42bc56e3639d532
refs/heads/master
2020-05-07T05:50:46.458059
2019-05-28T02:57:24
2019-05-28T02:57:24
180,289,270
2
0
null
null
null
null
UTF-8
Python
false
false
3,041
py
Python 3.4.3 (v3.4.3:9b73f1c3e601, Feb 24 2015, 22:44:40) [MSC v.1600 64 bit (AMD64)] on win32 Type "copyright", "credits" or "license()" for more information. >>> def f(x) SyntaxError: invalid syntax >>> def f(x): return x**2 >>> f(3) 9 >>> result = f(3) >>> result 9 >>> def area(base, height): return base*height/2 >>> area(3,4) 6.0 >>> area (10,7.45) 37.25 >>> ================================ RESTART ================================ >>> area(4,4) Traceback (most recent call last): File "<pyshell#11>", line 1, in <module> area(4,4) NameError: name 'area' is not defined >>> ================================ RESTART ================================ >>> >>> area(10,2) 10.0 >>> perimeter(3,4,5) Traceback (most recent call last): File "<pyshell#13>", line 1, in <module> perimeter(3,4,5) NameError: name 'perimeter' is not defined >>> ================================ RESTART ================================ >>> >>> perimeter(3,4,5) 12 >>> help(round) Help on built-in function round in module builtins: round(...) round(number[, ndigits]) -> number Round a number to a given precision in decimal digits (default 0 digits). This returns an int when called with one argument, otherwise the same type as the number. ndigits may be negative. >>> round(45,8) 45 >>> round() Traceback (most recent call last): File "<pyshell#17>", line 1, in <module> round() TypeError: Required argument 'number' (pos 1) not found >>> round(45.345,2) 45.34 >>> round(45) 45 >>> round(45.345,2,5) Traceback (most recent call last): File "<pyshell#20>", line 1, in <module> round(45.345,2,5) TypeError: round() takes at most 2 arguments (3 given) >>> round() Traceback (most recent call last): File "<pyshell#21>", line 1, in <module> round() TypeError: Required argument 'number' (pos 1) not found >>> help(id) Help on built-in function id in module builtins: id(...) id(object) -> integer Return the identity of an object. This is guaranteed to be unique among simultaneously existing objects. (Hint: it's the object's memory address.) >>> x=8/4 >>> x 2.0 >>> x=12//3 >>> x 4 >>> x=3 >>> y=5 >>> x=y >>> x 5 >>> x=3 >>> y=5 >>> x=y >>> y 5 >>> 8=x SyntaxError: can't assign to literal >>> round(45.342) 45 >>> def bigger(x): return x**x bigger(12) SyntaxError: invalid syntax >>> >>> bigger(12) Traceback (most recent call last): File "<pyshell#41>", line 1, in <module> bigger(12) NameError: name 'bigger' is not defined >>> ================================ RESTART ================================ >>> def bigger(x): return x**x >>> bigger(12) 8916100448256 >>> HELP(ID) Traceback (most recent call last): File "<pyshell#46>", line 1, in <module> HELP(ID) NameError: name 'HELP' is not defined >>> help(id) Help on built-in function id in module builtins: id(...) id(object) -> integer Return the identity of an object. This is guaranteed to be unique among simultaneously existing objects. (Hint: it's the object's memory address.) >>>
[ "besteffects@gmail.com" ]
besteffects@gmail.com
5c12dac608c49d1b596a81739abc27e3105323b7
ae93357b563cf602b207df92bce4cacaeb690534
/thisAndThat/387b.py
22bd1cc8a1a0850da802a59c1164dba3eafe4561
[ "MIT" ]
permissive
SnowOnion/CodeForcesLee
aed472769e6b1449f60b561d31d6150cdd027042
c2e964432ce9c2f6ca0c9038934c10f1bf1268b3
refs/heads/master
2020-04-06T06:58:25.082842
2016-06-21T14:00:00
2016-06-21T14:00:00
16,841,153
0
0
null
null
null
null
UTF-8
Python
false
false
386
py
# @status AC n,m=map(int,raw_input().split(' ')) a=map(int,raw_input().split(' ')) b=map(int,raw_input().split(' ')) # a.reverse() # b.reverse() aptr,bptr=len(a)-1,len(b)-1 comeup=0 while True: if aptr<0: # end break elif bptr<0: # not enough aptr-=1 comeup+=1 elif a[aptr]>b[bptr]: # can't satisfy aptr-=1 comeup+=1 else: # normal aptr-=1 bptr-=1 print comeup
[ "snowonionlee@gmail.com" ]
snowonionlee@gmail.com
33f29496027b2d49f9264bab1239e924a9f86347
a29c5402b81fe3026408755f793636ed389d6316
/tests/test_utils.py
2b7f181cb6e3219533d64c7cd92a2e978d15fd32
[ "MIT" ]
permissive
Originator2019/requestz
66f90b1ec38d89f77c2a5e60e8f385501ca37417
6ec81e4bf520ade2ed6537f24dc0a395b3af754b
refs/heads/master
2023-03-15T15:08:08.525057
2020-11-23T12:19:05
2020-11-23T12:19:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
679
py
import pytest from requestz.utils import double_split, parse_cookies, params_check def test_double_split(): line = 'BAIDUID=1874C759F48209DB07521C82EF9B6A77:FG=1; expires=Thu, 31-Dec-37 23:55:55 GMT; max-age=2147483647; path=/; domain=.baidu.com' result = double_split(line, ';', '=') print(dict(result)) def test_parse_cookies(): line = 'BAIDUID=7F9E96B69ECAA4758C3981749DDCFBC2:FG=1; expires=Thu, 31-Dec-37 23:55:55 GMT; max-age=2147483647; path=/; domain=.baidu.com' result = parse_cookies(line) print(result) def test_check_type(): @params_check(a=int) def func(a): print(a) with pytest.raises(TypeError): func('1')
[ "hanzhichao@secoo.com" ]
hanzhichao@secoo.com
26e7e3cf9621bfefc6acced6c9d8091d231ec685
a30588adcdaca87777142556e428e354b651de8c
/lib/config.py
8d04fd35e030189b042b4a989451e453544a85d9
[ "MIT" ]
permissive
ardegra/ardegra
8abde2aa4e13b51553e6a8ff10aa1e769346fc06
96b7840faa41d43fd5c20e0a26f4cd7cf58f3aa7
refs/heads/master
2022-12-10T17:32:17.520324
2018-02-14T03:26:34
2018-02-14T03:26:34
120,867,420
0
0
MIT
2022-06-28T14:37:23
2018-02-09T06:36:02
Python
UTF-8
Python
false
false
349
py
class Config: PRODUCTION = {"BASE_EXTRACT_API": "http://159.65.9.37:8000", "DATABASE_ADDRESS": "35.198.212.145:27017"} DEVELOPMENT = {"BASE_EXTRACT_API": "http://13.250.161.228:8000", "DATABASE_ADDRESS": "35.198.212.145:27017"} STAGE = PRODUCTION BASE_EXTRACT_API = STAGE["BASE_EXTRACT_API"] DATABASE_ADDRESS = STAGE["DATABASE_ADDRESS"]
[ "frans@zannete.com" ]
frans@zannete.com
afe785822353007a0e383a753e0a33698f083809
402d45a429fae0649bcbf82858e891cb3032da68
/migrations/versions/9b5b92f1c540_tasks.py
c9461593abe1f15847daabfd207d3ef7110fa65c
[]
no_license
awei82/microblog
548f2dae0709d3fce976a8ee9f8e8cab4e5ebdeb
b7b7c09563ae5b079c5acf7101c02b192d27d308
refs/heads/main
2023-02-12T12:14:10.585844
2021-01-11T22:03:49
2021-01-11T22:03:49
318,905,127
0
0
null
2020-12-23T03:36:37
2020-12-05T22:49:56
Python
UTF-8
Python
false
false
1,110
py
"""tasks Revision ID: 9b5b92f1c540 Revises: ddd5814a8c2f Create Date: 2020-12-13 19:47:11.847133 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '9b5b92f1c540' down_revision = 'ddd5814a8c2f' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('task', sa.Column('id', sa.String(length=36), nullable=False), sa.Column('name', sa.String(length=128), nullable=True), sa.Column('description', sa.String(length=128), nullable=True), sa.Column('user_id', sa.Integer(), nullable=True), sa.Column('complete', sa.Boolean(), nullable=True), sa.ForeignKeyConstraint(['user_id'], ['user.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_task_name'), 'task', ['name'], unique=False) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f('ix_task_name'), table_name='task') op.drop_table('task') # ### end Alembic commands ###
[ "awei34@gatech.edu" ]
awei34@gatech.edu
27286200eb7bf4c3f812531f1265ffac62c024fd
17d5736896e79d4b8a11ed8d8ecddd6ede56b2a6
/day_30_PrimesNumberCount.py
444f0850b3aa82b07ef8dbe663d71ddb940aa701
[]
no_license
parulsharma-121/CodingQuestions
e733e5b24c30f137593267d8464721a83df3f241
9c3a99501878edd22052505b8bda9863e5855fd7
refs/heads/master
2021-04-23T19:19:13.651753
2020-10-22T16:30:29
2020-10-22T16:30:29
249,979,493
5
0
null
null
null
null
UTF-8
Python
false
false
541
py
''' Count the number of prime numbers less than a non-negative number, n. Example: Input: 10 Output: 4 Explanation: There are 4 prime numbers less than 10, they are 2, 3, 5, 7. ''' def countPrimes(n): if(n<=2):return 0 primes = [True]*(n) primes[0]=False primes[1]=False count = 0 for i in range(2,n): if(primes[i]==True): count +=1 j=2 while((j*i)<n): primes[j*i]=False j +=1 return count n = 10 print(countPrimes(n))
[ "contactparulsharma11@gmail.com" ]
contactparulsharma11@gmail.com
ec05d34177c32d090ae98a11348615565109dae7
c72ecc8414497d5e0711886737088de7f5ec4021
/Computer-Science/Lens_Slice.py
eb43afe21e72127937afb40af80832e375e5bd88
[]
no_license
gjholman/Codecademy
bf3557e6c64be5f3eb4b53ed2ffbcc8b1961ee3d
1f424ac39040c56bacab5a3925dc8926477b3342
refs/heads/master
2020-04-05T09:33:44.991984
2019-05-06T19:52:43
2019-05-06T19:52:43
156,763,252
0
0
null
null
null
null
UTF-8
Python
false
false
427
py
toppings = ['pepperoni', 'pineapple', 'cheese', 'sausage', 'olives', 'anchovies', 'mushrooms'] prices = [2, 6, 1, 3, 2, 7, 2] pizzas = list(zip(prices, toppings)) num_pizzas = len(toppings) print('We sell %s different kinds of pizzas' % num_pizzas) pizzas.sort() cheapest_pizza = pizzas[0] priciest_pizzas = pizzas[-1] three_cheapest = pizzas[:3] num_two_dollar_slices = prices.count(2) print(num_two_dollar_slices)
[ "gholman@wpi.edu" ]
gholman@wpi.edu
0fc8150de357aa26ebfde427639c7a4f5377e2b0
eea7d5b8b745c4865a32f1f14f2d0e80f7d1a1f0
/fetch-pmid-date_year.py
e101c0ae0d252debdad7b682f25a59b598642496
[ "Unlicense" ]
permissive
asadrazaa1/emails-extraction
c404372bc10115b082c578e40707878faa4bd04c
bb2b7b9f4caa9f62a81e6d9588c1c652d074dfde
refs/heads/master
2022-12-10T19:04:42.146796
2020-08-28T12:55:03
2020-08-28T12:55:03
291,040,979
0
0
null
null
null
null
UTF-8
Python
false
false
4,347
py
import psycopg2 import sys from nltk.tokenize import sent_tokenize import re import csv try: #connecting with database connection = psycopg2.connect(user="database-user", password="database-password", host="host-ip-address", port="5432", database="data-base-name") #using divide rule method to access data between some range starting_pmid = 21 intermediate_pmid = 100000 maximum_pmid = 32078260 base_url = 'https://pubmed.ncbi.nlm.nih.gov/' while (1): if(intermediate_pmid<maximum_pmid): with connection.cursor() as cursor: #query to extract specific data from database temp_query = """select a.pmid, a.forename, a.lastname, a.affiliation, b.date_year from pm2o.author a inner join pm2o.studies b on a.pmid = b.pmid where a.affiliation is not null and a.pmid between '{}' and '{}';""".format(starting_pmid, intermediate_pmid ) cursor.execute(temp_query) temp_data = cursor.fetchall() print("Fetched data from db ...") print(str(starting_pmid) + " - " + str(intermediate_pmid)) #making csv files with open('pmid [%s - %s].csv' % (starting_pmid, intermediate_pmid), mode='w') as csv_file: #creating header for csv file fieldnames = ['pmid', 'forename', 'lastname', 'email', 'date_year', 'urls'] writer = csv.DictWriter(csv_file, fieldnames=fieldnames) writer.writeheader() for data in temp_data: #using regex on data[3] column i.e original data match = re.findall(r'[\w\.-]+@[\w\.-]+', str(data[3])) if len(match) != 0: #csv write operation writer.writerow({'pmid': data[0], 'forename': data[1], 'lastname': data[2], 'email':match[0], 'date_year': data[4],'urls': base_url + str(data[0])}) print("For loop ended ...") print("Data written into file ...") starting_pmid = intermediate_pmid + 1 intermediate_pmid = 100000 + intermediate_pmid else: print("Entering base case") with connection.cursor() as cursor: #query to extract specific data from database temp_query = """select a.pmid, a.forename, a.lastname, a.affiliation, b.date_year from pm2o.author a inner join pm2o.studies b on a.pmid = b.pmid where a.affiliation is not null and a.pmid between '{}' and '{}';""".format(starting_pmid, maximum_pmid ) cursor.execute(temp_query) temp_data = cursor.fetchall() print("Fetched data from db ...") print(str(starting_pmid) + " - " + str(maximum_pmid)) #making csv file with open('pmid [%s - %s].csv' % (starting_pmid, maximum_pmid), mode='w') as csv_file: #creating header for csv file fieldnames = ['pmid', 'forename', 'lastname', 'email', 'date_year', 'urls'] writer = csv.DictWriter(csv_file, fieldnames=fieldnames) writer.writeheader() for data in temp_data: #using regex on data[3] column i.e original data match = re.findall(r'[\w\.-]+@[\w\.-]+', str(data[3])) if len(match) != 0: #csv write operation writer.writerow({'pmid': data[0], 'forename': data[1], 'lastname': data[2], 'email':match[0], 'date_year': data[4],'urls': base_url + str(data[0])}) print("For loop ended ...") print("Data written into file ...") break #94357012, total rows #51556076, null affiliation #42800936, not null affiliation #21, minimum pmid #32078260, maximum pmid # print(len(temp_data)) sys.exit('Script completed') except (Exception, psycopg2.Error) as error: print("connection error: ", error) sys.exit('Script failed') sys.exit(0)
[ "noreply@github.com" ]
asadrazaa1.noreply@github.com
69ee3f8346b35e78155451d2a3a4225518fd34a0
40a20dee8c96ce4d3a8f351e33763c30f9dc3bd3
/apps/projects/migrations/0002_auto_20151205_2101.py
f6960971c3372875ce92ec9ac094efd2bcbc7d3a
[ "Apache-2.0" ]
permissive
theSoloBrewer/Project_Management
236553a4bbce46ea2c6928e02f09d5772f296f40
20db0abc400568da593bdea075b414dfde89f564
refs/heads/master
2020-05-25T14:20:06.311620
2016-10-06T09:53:05
2016-10-06T09:53:05
61,943,746
0
0
null
null
null
null
UTF-8
Python
false
false
682
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('projects', '0001_initial'), ] operations = [ migrations.AddField( model_name='project', name='lat', field=models.DecimalField(default=34.397, max_digits=8, decimal_places=3), preserve_default=False, ), migrations.AddField( model_name='project', name='lng', field=models.DecimalField(default=150.644, max_digits=8, decimal_places=3), preserve_default=False, ), ]
[ "computerzombie@msn.com" ]
computerzombie@msn.com
8e1f86b970140ffd868c55fa1c235d8495f21f60
d5401d70cd380adf0f57553d5873ea7bf4b1f943
/bpproject/education/urls.py
50c3189a3384b2c883f030ebf843624e21fb5f0d
[]
no_license
Nima-Niroumand/bpproject
854b1192456f795bc87e736541b2256964d0f5e1
06489c29345674a734c35b4060b3d34074c8d1d0
refs/heads/main
2023-03-21T12:00:30.794387
2021-03-07T17:53:20
2021-03-07T17:53:20
344,255,737
0
0
null
2021-03-07T17:53:20
2021-03-03T20:31:12
Python
UTF-8
Python
false
false
1,477
py
from django.conf.urls import url,include from django.urls import path from education.views import dashboard, exerciseIndex ,exerciseUpload,VideoUpload,videoIndex,downloadExerciseFiles,sendExercise,videoPlay from education.views import submitExerciseIndex,sendExercise,downloadSubmitedExerciseFiles,accessdenied urlpatterns = [ url(r"^dashboard/", dashboard, name="dashboard"), url(r"^accounts/", include("django.contrib.auth.urls")), url(r"^exercise/index/",exerciseIndex,name="exerciseIndex"), url(r"^exercise/upload/",exerciseUpload,name="exerciseUpload"), url(r"^video/index/", videoIndex, name="videoIndex"), url(r"^video/index", videoIndex, name="videoIndex"), url(r"^video/upload/",VideoUpload,name="VideoUpload"), path("exercise/download/exerciseFiles/<str:path>", downloadExerciseFiles, name="downloadExerciseFiles"), path("video/play/<int:id>", videoPlay, name="videoPlay"), path("submitExercise/index/",submitExerciseIndex,name="submitExerciseIndex"), path("submitExercise/sendExercise/<int:ExeId>",sendExercise,name="sendExercise"), path("submitExercise/sendExercise/<int:ExeId>/",sendExercise,name="sendExercise"), path("submitExercise/download/exerciseFiles/<str:path>", downloadExerciseFiles, name="downloadExerciseFiles"), path("error", accessdenied, name="accessdenied"), path("/", dashboard, name="dashboard"), path("" ,dashboard, name="dashboard"), path( " ",dashboard, name="dashboard"), ]
[ "nimaniroumand80@gmail.com" ]
nimaniroumand80@gmail.com
1a1372d2a403d52f3d6ef2b3ffc42325961a89fe
609b6c5f1e5663055e3df96e75b58e7a7ad87e4f
/finddjangofiles.py
99b51e04ec353994f116dfbf5019c64fd56ed553
[]
no_license
rroyales/testing
a4028fe4b9ba6dafb8f1681a905d1f6fae9465b8
a011510c375cffefb08c0a0542967e8f4f9a4e14
refs/heads/master
2016-09-06T21:42:53.859393
2013-12-08T04:57:13
2013-12-08T04:57:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
75
py
import sys sys.path = sys.path[1:] import django print(django.__path__)
[ "rroyales@gmail.com" ]
rroyales@gmail.com
ac78fc59ed4c8357d5b5b442db111b99b0a4b56c
7df9872f1975f8a7b9f61b511c30b789b5462ebf
/examples/signal.py
7a1a8bb381a9c572a0f75038603dcec16e01d7cf
[ "Apache-2.0" ]
permissive
rtyler/graphy
02bab359b51e58657bcc7b793e329dda1fe6f591
b0a83588217fc15ffc728fa33de880a7e6658058
refs/heads/master
2020-04-06T03:42:19.531845
2009-06-26T22:35:13
2009-06-26T22:35:13
567,805
1
1
null
null
null
null
UTF-8
Python
false
false
1,383
py
#!/usr/bin/python2.4 # # Copyright 2008 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from graphy.backends import google_chart_api from graphy import bar_chart left_channel = [] right_channel = [] for i in xrange(0, 360, 3): left_channel.append(100.0 * math.sin(math.radians(i))) right_channel.append(100.0 * math.sin(math.radians(i + 30))) chart = google_chart_api.BarChart() chart.AddBars(left_channel, color='0000ff') chart.AddBars(right_channel, color='ff8040') chart.display.enhanced_encoding = True print '<html><head><title>Audio Signal</title></head><body>' print '<h1>Separate</h1>' chart.stacked = False chart.style = bar_chart.BarChartStyle(None, 0, 1) print chart.display.Img(640, 120) print '<h1>Joined</h1>' chart.stacked = True chart.style = bar_chart.BarChartStyle(None, 1) print chart.display.Img(640, 120) print '</body></html>'
[ "zovirl@zovirl.com@30582518-8026-11dd-8d1c-71c7e1663bfb" ]
zovirl@zovirl.com@30582518-8026-11dd-8d1c-71c7e1663bfb
c7a18bf956c7f59fd07ed23f4cdcbf46870edcb1
6e0972dba67d369041894d9f59d22fa463528ff9
/orders/migrations/0016_auto_20200525_1610.py
dd927d61cad845c944d760b00dc57bc4f995331c
[]
no_license
tonywh/cs50w-project3
5d0efb4579d5dc6f30c3813322a52e3fb47d585b
7c5bf4df9a80658501091cbc18836a5870c26dc1
refs/heads/master
2023-05-27T23:42:38.764391
2020-06-10T06:54:06
2020-06-10T06:54:06
265,222,097
0
0
null
2021-06-10T22:56:57
2020-05-19T10:56:56
Python
UTF-8
Python
false
false
709
py
# Generated by Django 2.0.3 on 2020-05-25 16:10 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('orders', '0015_auto_20200525_1428'), ] operations = [ migrations.AlterField( model_name='pizza', name='description', field=models.TextField(max_length=1024), ), migrations.AlterField( model_name='product', name='description', field=models.TextField(max_length=1024), ), migrations.AlterField( model_name='sub', name='description', field=models.TextField(max_length=1024), ), ]
[ "tony.whittam@gmail.com" ]
tony.whittam@gmail.com
a0366ed314803e1af96ec9306d27d26d291e8153
c0eee87cbd58162315b4f51a2d64e45bb76401d2
/locations/spiders/chargepoint.py
24a9e1ebeca6e4a05e272fc8f5e3c230f232de88
[ "MIT", "CC0-1.0" ]
permissive
gmavian/alltheplaces
bdcbcbb851c8891c76fabce349cb7e071c2f3768
0fdd61e084a764dedf483a7074265956a38a3303
refs/heads/master
2023-08-03T19:46:17.734124
2023-07-31T12:36:38
2023-07-31T12:36:38
162,633,873
0
0
NOASSERTION
2018-12-20T21:37:18
2018-12-20T21:37:17
null
UTF-8
Python
false
false
6,642
py
import json import random import urllib.parse import scrapy from locations.categories import Categories, apply_category from locations.items import Feature class ChargePointSpider(scrapy.Spider): name = "chargepoint" item_attributes = {"brand": "ChargePoint", "brand_wikidata": "Q5176149"} def start_requests(self): bounds = (-180.0, -90.0, 180.0, 90.0) query = { "map_data": { "screen_width": 1024, "screen_height": 1024, "sw_lon": bounds[0], "sw_lat": bounds[1], "ne_lon": bounds[2], "ne_lat": bounds[3], "filter": { "connector_l1": False, "connector_l2": False, "is_bmw_dc_program": False, "is_nctc_program": False, "connector_chademo": False, "connector_combo": False, "connector_tesla": False, "price_free": False, "status_available": False, "network_chargepoint": True, "network_blink": False, "network_semacharge": False, "network_evgo": False, "connector_l2_nema_1450": False, "connector_l2_tesla": False, }, } } yield scrapy.http.JsonRequest( url="https://mc.chargepoint.com/map-prod/get?" + urllib.parse.quote(json.dumps(query).encode("utf8")), method="GET", ) def parse(self, response): response_data = response.json()["map_data"] for summary in response_data.get("summaries"): port_count = summary.get("port_count", {}).get("total", 0) if port_count < 100: # If there's a small-ish number of ports in this summary bounding box # then request station list for the bbox # If there's a single station here, the bounding box will have zero area # around the point, and the API doesn't like that. So we make it a little # bigger manually. if summary["ne_lon"] - summary["sw_lon"] < 0.001: summary["ne_lon"] += 0.01 summary["sw_lon"] -= 0.01 if summary["ne_lat"] - summary["sw_lat"] < 0.001: summary["ne_lat"] += 0.01 summary["sw_lat"] -= 0.01 query = { "station_list": { "screen_width": 1024, "screen_height": 1024, "sw_lon": summary["sw_lon"], "sw_lat": summary["sw_lat"], "ne_lon": summary["ne_lon"], "ne_lat": summary["ne_lat"], "page_size": 100, "page_offset": "", "filter": { "connector_l1": False, "connector_l2": False, "is_bmw_dc_program": False, "is_nctc_program": False, "connector_chademo": False, "connector_combo": False, "connector_tesla": False, "price_free": False, "status_available": False, "network_chargepoint": True, "network_blink": False, "network_semacharge": False, "network_evgo": False, "connector_l2_nema_1450": False, "connector_l2_tesla": False, }, } } yield scrapy.http.JsonRequest( url="https://mc.chargepoint.com/map-prod/get?" + urllib.parse.quote(json.dumps(query).encode("utf8")), method="GET", callback=self.parse_station_list, ) else: # Otherwise make another map data request for the summary bounding box, simulating zooming in query = { "map_data": { "screen_width": 1024, "screen_height": 1024, "sw_lon": summary["sw_lon"], "sw_lat": summary["sw_lat"], "ne_lon": summary["ne_lon"], "ne_lat": summary["ne_lat"], "filter": { "connector_l1": False, "connector_l2": False, "is_bmw_dc_program": False, "is_nctc_program": False, "connector_chademo": False, "connector_combo": False, "connector_tesla": False, "price_free": False, "status_available": False, "network_chargepoint": True, "network_blink": False, "network_semacharge": False, "network_evgo": False, "connector_l2_nema_1450": False, "connector_l2_tesla": False, }, } } yield scrapy.http.JsonRequest( url="https://mc.chargepoint.com/map-prod/get?" + urllib.parse.quote(json.dumps(query).encode("utf8")), method="GET", ) def parse_station_list(self, response): station_list = response.json()["station_list"] for summary in station_list.get("summaries"): properties = { "ref": summary["device_id"], "lat": summary["lat"], "lon": summary["lon"], "name": " ".join(summary.get("station_name", [])) or None, "city": summary.get("address", {}).get("city"), "state": summary.get("address", {}).get("state_name"), "street_address": summary.get("address", {}).get("address1"), } apply_category(Categories.CHARGING_STATION, properties) properties["extras"]["capacity"] = summary["port_count"]["total"] yield Feature(**properties)
[ "noreply@github.com" ]
gmavian.noreply@github.com
475328963d8e76328bb904c7636e6d0593e4cc1b
38258a7dd9acbfb7adf72983015de68a948a4826
/CodeUp/C_6066.py
f3668e5168ba85e8a1894b1865365b3f8f4bb72f
[]
no_license
kangsm0903/Algorithm
13a7fe5729039a1d0ce91a574c4755a8a92fb02b
7d713d1c9e2e4dc30141d4f409ac1430a357065b
refs/heads/master
2022-10-04T00:33:49.247977
2022-09-26T12:51:16
2022-09-26T12:51:16
219,265,010
5
1
null
null
null
null
UTF-8
Python
false
false
171
py
a = list(map(int, input().split(" "))) for i in range(0,3): if a[i]%2 == 0: a[i] = "even" else: a[i] = "odd" for i in range(0,3): print(a[i])
[ "kangsm0903@naver.com" ]
kangsm0903@naver.com
ef822a1e255fb2074b792181339c6da6256c78c3
f29293ba53d454d3c436db317f6b4e3fa11cbfd0
/arrangør/views.py
3ddb31c41be4ae8b54b62d014ef8f525eae4478e
[]
no_license
alfredronning/oldProject
375f3979da0aa8cdb5eaebd4ad268901eea3c0b9
9b099cdd3a5e4091242c7905588b8c5260970284
refs/heads/master
2021-01-22T07:32:06.735812
2017-02-13T12:29:06
2017-02-13T12:29:06
81,822,493
0
0
null
null
null
null
UTF-8
Python
false
false
2,618
py
from django.shortcuts import render, redirect from django.views import generic from band_booking.models import Concert, Technical_needs from bookingsjef.actions.concert_overview_term import get_current_term # Create your views here. class ConcertsView(generic.ListView): """ Generates a view for the query set of the current term """ template_name = 'arrangør/concert_overview.html' context_object_name = 'concerts' def get_queryset(self): """ :return: The concerts of the current term """ start_term, end_term = get_current_term() concerts = Concert.objects.filter(date__range=[start_term, end_term]) return concerts def overview_concert(request, id): """ :param request: The HTTP request :param id: The id of the concert :return: An overview page for the given concert, if the user has the required permissions. Else a redirect. Returns an overview page for the concert of the given ID. If there is no concert with this ID or the user does not have the necessary requirements to view the page the user will be redirected to the concert_overview page. """ def build_equipment(concert): """ Finds the amount of equipment needed for all the bands of the concert, especially it combines the requirements with the same names such that it is easier for the user to read through the list """ equipment = {} for band in concert.bands.all(): # Find equipment needed by the given band band_equipment = Technical_needs.objects.filter(band=band) for current_equipment in band_equipment: # Combine the needs of similar equipment for different bands if current_equipment.equipment_name in equipment: equipment[current_equipment.equipment_name] += current_equipment.amount else: equipment[current_equipment.equipment_name] = current_equipment.amount return equipment # Try to find a concert with the given ID try: concert = Concert.objects.get(pk=id) except Concert.DoesNotExist: return redirect('arrangør:concerts') # Check if user is allowed to view the given concert if not request.user.is_superuser and not request.user.has_perm('band_booking.can_see_concert_information') and request.user != concert.organizer: return redirect('arrangør:concerts') # Render the page return render(request, 'arrangør/concert.html', {'concert': concert, 'equipment': build_equipment(concert)})
[ "alfredronning@gmail.com" ]
alfredronning@gmail.com
477aca3a366ff7509d6341c4a3179e7feb47d413
a15c69fdbf4a3aab6ab816bb99f3161676b7569b
/src/srm/598/ErasingCharacters.py
ab60cd3e72b08ac4eb98ce3a32dba4cf1b14367f
[]
no_license
prstcsnpr/Algorithm
08bf5df5741af3e1b43830bf896e281a45a6ab94
4eeab0c3fdc3f488e7cf7b3554f82fb4c63899ad
refs/heads/master
2016-09-05T10:48:20.599794
2013-12-11T07:36:58
2013-12-11T07:36:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
994
py
import unittest class ErasingCharacters(object): def simulate(self, s): while True: result = s for i in range(len(s) - 1): if s[i] == s[i + 1]: result = s[0:i] + s[i+2:] if result == s: return result else: s = result class ErasingCharactersTestCase(unittest.TestCase): def setUp(self): self.ec = ErasingCharacters() def test_0(self): self.assertEqual(self.ec.simulate('cieeilll'), 'cl') def test_1(self): self.assertEqual(self.ec.simulate('topcoder'), 'topcoder') def test_2(self): self.assertEqual(self.ec.simulate('abcdefghijklmnopqrstuvwxyyxwvutsrqponmlkjihgfedcba'), '') def test_3(self): self.assertEqual(self.ec.simulate('bacaabaccbaaccabbcabbacabcbba'), 'bacbaca') def test_4(self): self.assertEqual(self.ec.simulate('eel'), 'l') if __name__ == '__main__': unittest.main()
[ "prstcsnpr@10.2.78.74" ]
prstcsnpr@10.2.78.74
6dc284c465d8262adfc99feaf1ce573a82accab7
126901616c8339139f4f880b9b0101e3505977e1
/backend/quickmed/models.py
b1c1bb4d872b91f90dd43b7e0e77f96129cecd34
[]
no_license
LordGhostX/QuickMed
51a8d27237b52a165161244620f5ea75eb28fa57
c5525a9804201f8c427d60caf27a040d9b225512
refs/heads/master
2023-05-25T00:04:25.998587
2022-12-02T17:31:54
2022-12-02T17:31:54
210,404,014
9
1
null
2023-05-22T23:15:22
2019-09-23T16:36:13
HTML
UTF-8
Python
false
false
836
py
from django.db import models from datetime import datetime from django.contrib.auth.models import User # Create your models here. class UserProfile(models.Model): user = models.OneToOneField(User, related_name="profile", on_delete=models.CASCADE) hospital_name = models.TextField(max_length=100) hospital_address = models.TextField(max_length=100) hospital_phone = models.TextField(max_length=100) def __str__(self): return self.user.username NULL_AND_BLANK = {'null': True, 'blank': True} class Result(models.Model): creator = models.ForeignKey(User, **NULL_AND_BLANK, on_delete=models.CASCADE) test_type = models.CharField(max_length=100) test_results = models.CharField(max_length=100) created_at = models.DateTimeField(auto_now_add=True) notes = models.TextField(max_length= 500)
[ "chukslord1@gmail.com" ]
chukslord1@gmail.com
d30a87df7fb6fd525296fcf61ab27d40f79a5e80
3ac57e01e61e4216afeae6006c515eb02ecdcb76
/euler3.py
435da7947753f2e34db631f4386ae6371b982f0b
[]
no_license
akaruihoshi/project-euler
6ca4e8ef888110bf89c504d5a35e331e2f8bf8cf
f89cedca8a148f5f8cd4ec161e50c28edf1a5678
refs/heads/master
2022-08-21T18:38:36.580433
2020-05-22T09:59:50
2020-05-22T09:59:50
266,076,704
0
0
null
null
null
null
UTF-8
Python
false
false
556
py
a = 600851475143 x = 2 y = 2 while x <= a: is_prime = True # untuk nyari tau apakah dia prime apa ga if x > 3: x1 = x ** 0.5 if x1 % 1 > 0: x1 = int(x1) + 1 while y <= x1 and is_prime: z = x / y if z % 1 == 0: is_prime = False y = y + 1 y = 2 # untuk tau apakah bisa dibagi sama angka tersebut while is_prime: # print(a) if a % x == 0: a = a / x else: is_prime = False x = x + 1 print(x-1)
[ "akarui.hoshi.6282742@gmail.com" ]
akarui.hoshi.6282742@gmail.com
ec24655e98ab05b42d1d54bedcb848c2fc90f07e
f2ec1298c00d813c7e973cac22184ea8f54eb60c
/MxShop/apps/trade/models.py
6b6549cbd73a281f4648faa11b75915f61274de1
[]
no_license
llf-1996/mx_drf
fcfaa028630eeb02be91af5e30fb2a200037400c
f4878c0d9857e7af7277d10cc32da5d9c522de0c
refs/heads/master
2020-06-05T06:51:49.629343
2019-06-17T13:20:29
2019-06-17T13:20:29
192,350,339
0
0
null
null
null
null
UTF-8
Python
false
false
2,760
py
from datetime import datetime from django.db import models from django.contrib.auth import get_user_model from goods.models import Goods User = get_user_model() # Create your models here. class ShoppingCart(models.Model): """ 购物车 """ user = models.ForeignKey(User, verbose_name=u"用户") goods = models.ForeignKey(Goods, verbose_name=u"商品") nums = models.IntegerField(default=0, verbose_name="购买数量") add_time = models.DateTimeField(default=datetime.now, verbose_name=u"添加时间") class Meta: verbose_name = '购物车' verbose_name_plural = verbose_name unique_together = ("user", "goods") def __str__(self): return "%s(%d)".format(self.goods.name, self.nums) class OrderInfo(models.Model): """ 订单 """ ORDER_STATUS = ( ("TRADE_SUCCESS", "成功"), ("TRADE_CLOSED", "超时关闭"), ("WAIT_BUYER_PAY", "交易创建"), ("TRADE_FINISHED", "交易结束"), ("paying", "待支付"), ) user = models.ForeignKey(User, verbose_name="用户") order_sn = models.CharField(max_length=30, null=True, blank=True, unique=True, verbose_name="订单号") trade_no = models.CharField(max_length=100, unique=True, null=True, blank=True, verbose_name=u"交易号") pay_status = models.CharField(choices=ORDER_STATUS, default="paying", max_length=30, verbose_name="订单状态") post_script = models.CharField(max_length=200, verbose_name="订单留言") order_mount = models.FloatField(default=0.0, verbose_name="订单金额") pay_time = models.DateTimeField(null=True, blank=True, verbose_name="支付时间") # 用户信息 address = models.CharField(max_length=100, default="", verbose_name="收货地址") signer_name = models.CharField(max_length=20, default="", verbose_name="签收人") singer_mobile = models.CharField(max_length=11, verbose_name="联系电话") add_time = models.DateTimeField(default=datetime.now, verbose_name="添加时间") class Meta: verbose_name = u"订单" verbose_name_plural = verbose_name def __str__(self): return str(self.order_sn) class OrderGoods(models.Model): """ 订单的商品详情 """ order = models.ForeignKey(OrderInfo, verbose_name="订单信息", related_name="goods") goods = models.ForeignKey(Goods, verbose_name="商品") goods_num = models.IntegerField(default=0, verbose_name="商品数量") add_time = models.DateTimeField(default=datetime.now, verbose_name="添加时间") class Meta: verbose_name = "订单商品" verbose_name_plural = verbose_name def __str__(self): return str(self.order.order_sn)
[ "2367746876@qq.com" ]
2367746876@qq.com
100da862027b8d2642d223ead728c151f3d438ab
84864f862dec9171e958920f2c8e7c920fcef056
/Undergraduate Thesis/NumericalSimulation/nzg.py
c1af37dc8752932e7fda2248be4c291a108fc3e9
[]
no_license
Orcuslc/Learning
7704950f8c09232dadbbde81ed82ddc0ca65172d
ffa856febd85235d17358178f1e288ffae7856cb
refs/heads/master
2020-03-26T11:59:54.093395
2018-05-29T04:19:36
2018-05-29T04:19:36
47,269,920
4
2
null
null
null
null
UTF-8
Python
false
false
2,234
py
import random as rd import math import numpy as np from matplotlib import pyplot as plt def walk_astep(memory, q, step = 1): u = rd.random() if u <= q: memory.append(step) else: memory.append(-1*step) def random_choice(k, alpha): u = rd.random() # if alpha == 1.0: # return math.ceil(alpha*k) # if k <= 2: # if alpha == 1.0: # return math.ceil(u*k) # return math.ceil(math.log((alpha**k-1)*u+1, alpha)) # else: # if alpha == 1.0: # return math.ceil(u*2)+(k-3) # return math.ceil(math.log((alpha**2-1)*u+1, alpha))+(k-3) # return math.ceil(u*k) return math.ceil(u-alpha/(alpha+alpha**2))+(k-1) def walk(n, p, q, alpha): memory = [0] for i in range(1, n+1): if i == 1: walk_astep(memory, q, 1) elif i == 2: walk_astep(memory, q, memory[1]) else: mem = random_choice(i-1, alpha) # print(mem) walk_astep(memory, p, memory[mem]) return np.cumsum(memory) if __name__ == '__main__': # memory = walk(1000000, 1/3, 2/3, 1)theoreticaltheoretical num = 1000 n = 10000 count = 0 p = 2/3 q = 2/3 alpha = 2 # for p in [2/3]: # for q in [2/3]: # count += 1 # plt.figure(count) # sub = 0 # # for alpha in [1, 1.25, 1.5, 1.75, 2]: # for alpha in [1]: # memory = np.zeros(n+1) # sub += 1 # for i in range(num): # # print(i) # memory += walk(n, p, q, alpha) # # print(len(memory)) # memory /= num # # memory = memory[np.where(memory > 0)] # # plt.subplot(510+sub) # plt.plot(np.log(np.array(range(1, len(memory)))), np.log(memory[1:])) # # for p in [1/3]: # # for q in [1/3, 2/3]: # # count += 1 # # plt.figure(count) # # for alpha in [1, 1.25, 1.5, 1.75, 2]: # # memory = walk(n, p, q, alpha) # # plt.plot(np.array(range(1, n+1)), memory[1:]) memory = np.zeros(n+1) for i in range(num): # print(i) memory += walk(n, 2/3, 2/3, alpha = 1) # print(len(memory)) memory /= num # fig = plt.figure() plt.plot(np.log(range(1, n+1)), np.log(memory[1:]), 'b') plt.xlabel('log(t)') plt.ylabel(r'$log(\langle X_t \rangle)$') # fig.suptitle(r'$\langle X_t \rangle$'+'和'+'t的关系', fontproperties='SimHei', fontsize = 40) # # plt.plot(range(1, n+1), memory[1:]) plt.grid(True) plt.show()
[ "orcuslc@hotmail.com" ]
orcuslc@hotmail.com
b8f080d2a6d43c4add9608c655522e1b65e86fe4
7020f68875af3f94b309c12bfe45d6c3520a7b3a
/Week3.py
c09cc3a6e0d67b2696c31673d661e6b204fa0e0f
[]
no_license
mgrddsj/MEMS-OpenCV-Heroku
a6326617ba373673dd82e5e0f09f7c2c157b6744
209d61bba568cb7d214c081d5f372f07c9efb655
refs/heads/main
2023-04-25T07:29:37.471350
2021-05-21T07:14:48
2021-05-21T07:14:48
359,997,557
0
0
null
null
null
null
UTF-8
Python
false
false
5,516
py
import cv2 import streamlit as st import numpy as np import glob def main(): st.markdown("**Note:** Images are compressed for web viewing.") st.markdown("Display and process results may be different from original images.") st.markdown("However, the images are still quite large, you may need a fast Internet to open this page.") st.markdown("图片已针对网页浏览压缩,图片的显示和处理可能与原图有偏差。") st.markdown("但图片仍然较大,加载可能会比较缓慢。如果加载不出来,请确保您可以访问国际互联网。") st.sidebar.write("Variable control panel\n变量控制台") st.markdown("***") st.markdown("This is a web app that renders the images real-time, tweak the values in the variable control panel to see the changes.") st.markdown("For phone users, you can see the control panel by clicking the arrow on the top left of the page.") st.markdown("这是一个实时渲染图片网页应用,您可以更改变量控制台中的数值来查看变化。") st.markdown("手机用户可以通过点击页面左上方的箭头按钮来打开变量控制台。") st.markdown("***") file_list = sorted(glob.glob("img/*")) file_path = st.sidebar.selectbox("Image:", file_list, index=8) original_img = cv2.imread(file_path) original_img = cv2.cvtColor(original_img, cv2.COLOR_BGR2RGB) st.image(original_img, use_column_width=True, caption="Original image 原图") image = cv2.imread(file_path, 0) # Read as grayscale image st.image(image, use_column_width=True, caption="Grayscale image 灰度图") # 最大滤波处理 kernel = np.ones((3, 3), np.uint8) dilate_iteration = st.sidebar.slider( "Dilate iteration 最大滤波(膨涨)次数", min_value=1, max_value=50, value=1) dilate = cv2.dilate(image, kernel, iterations=dilate_iteration) st.image(dilate, use_column_width=True, clamp=True, caption="Dilated image 最大滤波处理") # 最小滤波处理 kernel = np.ones((3, 3), np.uint8) # iteration的值越高,模糊程度(腐蚀程度)就越高 呈正相关关系且只能是整数 erosion_iteration = st.sidebar.slider( "Erosion iteration 最小滤波(腐蚀)次数", min_value=1, max_value=50, value=1) erosion = cv2.erode(dilate, kernel, iterations=erosion_iteration) st.image(erosion, use_column_width=True, clamp=True, caption="Eroded image 最小滤波处理") # 阈值处理 threshhold_value = st.sidebar.slider( "Threshold 阈值", min_value=50, max_value=255, value=100) ret, thresh = cv2.threshold(erosion, threshhold_value, 255, cv2.THRESH_BINARY) thresh = thresh.astype(np.float64) st.image(thresh, use_column_width=True, clamp=True, caption="Threshold processed image 阈值处理") # 轮廓 thresh = thresh.astype(np.uint8) img = cv2.Canny(thresh, 100, 200) st.image(img, use_column_width=True, clamp=True, caption="Contour 轮廓") # 霍夫变换 st.sidebar.write("Hough Line Transform (HLT) 霍夫变换") blank2 = np.zeros(img.shape, np.uint8) blank2 = cv2.cvtColor(blank2, cv2.COLOR_GRAY2BGR) houghRho = st.sidebar.slider("HLT rho (step size) 霍夫变换 rho 值(搜索步长)", min_value=1, max_value=10, value=1) houghThreshhold = st.sidebar.slider( "HLT threshold 霍夫变换阈值", min_value=1, max_value=1000, value=100) houghMinLineLength = st.sidebar.slider( "HLT min. length 霍夫最短线段长度", min_value=1, max_value=500, value=10) houghMaxLineGap = st.sidebar.slider("HLT max line gap 霍夫最长间隙", min_value=1, max_value=200, value=100) lines = cv2.HoughLinesP(img, houghRho, np.pi/180, houghThreshhold, minLineLength=houghMinLineLength, maxLineGap=houghMaxLineGap) for line in lines: x1, y1, x2, y2 = line[0] cv2.line(blank2, (x1, y1), (x2, y2), (0, 255, 0), 2) st.image(blank2, use_column_width=True, clamp=True, caption="Hough line transform (line detection) 霍夫变换(直线检测)") st.text("lines detected: {}".format(len(lines))) # Harris 角点检测 st.write("**Harris Corner Detection 角点检测**") with st.echo(): corners = cv2.cornerHarris(img, blockSize=5, ksize=5, k=0.04) harris_img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) harris_img[corners > 0.1*corners.max()] = [0, 255, 0] st.image(harris_img, use_column_width=True, clamp=True, caption="Harris Corner detection 角点检测") st.text("Corners detected: {}".format(len(corners))) st.write("The detected corners are drawn in green, you may need to zoom in to see them.") st.write("检测到的角点已用绿色像素标出,您可能需要放大来看见它们。") # Shi-Tomasi 角点检测 st.write("**Shi-Tomasi Corner Detection 角点检测**") with st.echo(): corners_s = cv2.goodFeaturesToTrack( img, maxCorners=100, qualityLevel=0.01, minDistance=0) corners_s = np.int0(corners_s) shitomasi_img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for i in corners_s: x, y = i.ravel() cv2.circle(shitomasi_img, (x, y), 5, (0, 255, 0), -1) st.image(shitomasi_img, use_column_width=True, clamp=True, caption="Shi-Tomasi Corner detection 角点检测") st.text("Corners detected: {}".format(len(corners_s))) if __name__ == "__main__": main()
[ "Jesse_Xu@live.com" ]
Jesse_Xu@live.com
67d07065a2938033112c73776b10b9ebf83e424d
bdda1ad015be505352a197d4d1066b13826a7a32
/core/migrations/0001_initial.py
e5fcef9501fd67ee8dedd31b6300c2d330b9d49c
[]
no_license
dowoncha/basa-test
8700428ea1ec14aa1e3c6f64beadda8b6ba4eab3
433477ccc7ab595f5db247792175cc5b88e368cf
refs/heads/master
2020-12-02T08:14:18.470664
2017-07-10T15:15:17
2017-07-10T15:15:17
96,791,646
0
0
null
null
null
null
UTF-8
Python
false
false
1,618
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.7 on 2017-07-10 11:15 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Artist', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=200)), ('description', models.TextField()), ], ), migrations.CreateModel( name='Location', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('city', models.CharField(max_length=200)), ('country', models.CharField(max_length=200)), ], ), migrations.CreateModel( name='Tag', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ], ), migrations.AddField( model_name='artist', name='location', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='core.Location'), ), migrations.AddField( model_name='artist', name='tags', field=models.ManyToManyField(to='core.Tag'), ), ]
[ "dowoncha@live.unc.edu" ]
dowoncha@live.unc.edu
b35488ea9f9a8ede3e0dd6a8dfbdd9d30d443b5f
19d58444437e2af0f143b77516702b5c2f5e3f61
/twin_pixels.py
5228cd496513b1632561da7192d46ddf57cd40f5
[]
no_license
simozmp/jes_exercises
8a8bf6cbecd426720b54a6ed179d807335c02f23
c95901171283ed64dcbc76b31fa2233b8a049830
refs/heads/master
2020-06-14T19:01:27.754651
2016-04-15T13:22:47
2016-04-15T13:22:47
54,203,050
0
0
null
null
null
null
UTF-8
Python
false
false
3,402
py
def areTwins(pix1, pix2) : # @param pix1: Pixel; # @param pix2: Pixel; # @return boolean; Two pixels are twin when the sum of the pix1 # components is equal to the sum of the pix2 components return getRed(pix1)+getGreen(pix1)+getBlue(pix1) == getRed(pix2)+getGreen(pix2)+getBlue(pix2) def haveTwinForEachPix(pic1, pic2) : # @param pic1: Picture; First picture # @param pic2: Picture; Second picture # @return boolean; The function is intended to see if each # of the pixel's colors in the first picture # has a respective twin in the second one for pix1 in getAllPixels(pic1) : # scans each pixel of the first picture hasTwin = false # flag for pix1 (true when the pix1 pixel has a twin in the second picture) for pix2 in getAllPixels(pic2) : # scans each pixel of the second picture if areTwins(pix1,pix2) : # tests if the two colors are twins, in that case: hasTwin = true # - keep track of the found twin break # - break the pix2 cycle if not hasTwin : # if pix1 doesn't have any twin in the second picture ... return false # ... result is false return true ## WITH DEBUG MESSAGES ## def haveTwinForEachPix(pic1, pic2) : ## # @param pic1: Picture; ## # @param pic2: Picture; ## ## for pix1 in getAllPixels(pic1) : ## # DEBUG # print "-----Pix1:" + String(getRed(pix1)+getGreen(pix1)+getBlue(pix1)) ## ## check = false ## ## for pix2 in getAllPixels(pic2) : ## # DEBUG # print "--Pix2:" + String(getRed(pix2)+getGreen(pix2)+getBlue(pix2)) ## ## if areTwins(pix1,pix2) : ## # DEBUG # print "-- twins!" ## check = true ## break ## ## if not check : ## # DEBUG # print "false!!!!" ## return false ## ## return true # # I used the two following functions to build test pictures # def makeFirstPic() : pic = makeEmptyPicture(3,3,white) setColor(getPixelAt(pic,0,0), makeColor(1,2,3)) # r+g+b = 6 setColor(getPixelAt(pic,1,0), makeColor(2,2,3)) # r+g+b = 7 setColor(getPixelAt(pic,2,0), makeColor(3,2,3)) # r+g+b = 8 setColor(getPixelAt(pic,0,1), makeColor(4,2,3)) # r+g+b = 9 setColor(getPixelAt(pic,1,1), makeColor(5,2,3)) # r+g+b = 10 setColor(getPixelAt(pic,2,1), makeColor(6,2,3)) # r+g+b = 11 setColor(getPixelAt(pic,0,2), makeColor(7,2,3)) # r+g+b = 12 setColor(getPixelAt(pic,1,2), makeColor(8,2,3)) # r+g+b = 13 setColor(getPixelAt(pic,2,2), makeColor(9,2,3)) # r+g+b = 14 return pic def makeSecondPic() : pic = makeEmptyPicture(3,3,white) setColor(getPixelAt(pic,0,0), makeColor(1,2,3)) # r+g+b = 6 setColor(getPixelAt(pic,1,0), makeColor(2,2,3)) # r+g+b = 7 setColor(getPixelAt(pic,2,0), makeColor(0,2,3)) # r+g+b = 5 setColor(getPixelAt(pic,0,1), makeColor(4,2,3)) # r+g+b = 9 setColor(getPixelAt(pic,1,1), makeColor(5,2,3)) # r+g+b = 10 setColor(getPixelAt(pic,2,1), makeColor(6,2,3)) # r+g+b = 11 setColor(getPixelAt(pic,0,2), makeColor(7,2,3)) # r+g+b = 12 setColor(getPixelAt(pic,1,2), makeColor(8,2,3)) # r+g+b = 13 setColor(getPixelAt(pic,2,2), makeColor(9,2,3)) # r+g+b = 14 return pic
[ "simo.zmp96@gmail.com" ]
simo.zmp96@gmail.com
138f1eaf70bab179317bf09a3c49884ad2530e08
772a82205af92d2f2d2b490ac6bc23fdb7456124
/algorithm/luogu/P1540.py
8486a00f271d8dde0f15acdb3de6cc5abafe6eae
[]
no_license
atashi/LLL
4f777b3a06c6ed38eab4323d2072dbbec22eee92
857b8c7fccfe8216da59228c1cf3675444855673
refs/heads/master
2021-05-17T10:11:28.946779
2019-11-25T15:56:14
2019-11-25T15:56:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
411
py
m, n = [int(i) for i in input().split()] nums = [int(i) for i in input().split()] d = dict() buffer = [] i = 0 count = 0 for num in nums: if num not in d: d[num] = True count += 1 if len(buffer) < m: buffer.append(num) else: i = i % m tmp = buffer[i] buffer[i] = num del d[tmp] i += 1 print(count)
[ "rebornwwp@gmail.com" ]
rebornwwp@gmail.com
5a819e9002a72dec33dd8777b6a34b3a92f4947c
67e55f481808fa307add29e2ad348492deef78a1
/03_Code_Forces/05_WordCapitalization.py
4eafedc495f12c35499542165902895447547ef1
[]
no_license
jpallavi23/Smart-Interviews
1dea8d28e6a7152205f2b680a2511824c74465df
91f0ff5414af02a49e1a75ef923cd5497e0e4bb8
refs/heads/master
2023-02-05T15:37:05.364713
2020-12-31T13:27:29
2020-12-31T13:27:29
310,283,727
5
0
null
null
null
null
UTF-8
Python
false
false
541
py
''' Capitalization is writing a word with its first letter as a capital letter. Your task is to capitalize the given word. Note, that during capitalization all the letters except the first one remains unchanged. Input A single line contains a non-empty word. This word consists of lowercase and uppercase English letters. The length of the word will not exceed 103. Output Output the given word after capitalization. Examples Input ApPLe Output ApPLe Input konjac Output Konjac ''' word = input() print(*[word[0].upper() + word[1:]])
[ "pallavijampala112722@gmail.com" ]
pallavijampala112722@gmail.com
152639cc794a953f8943c70b86d1bfec8a78cb17
76d6f6f5e37521827b3d2a6a36bc137103075039
/module1-3/randomSearch.py
0a4b30d332245175d7dcb867492575b923c701e2
[]
no_license
honghuCode/cs231n-2
380988b54b54308abd35579dfef5e2f7d7f35784
1d5d7a6300f844cb96d5b483474edfd876dea9b0
refs/heads/master
2021-01-20T06:11:56.053810
2017-01-17T13:02:01
2017-01-17T13:02:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
627
py
#coding=utf-8 import numpy as np import loss import load_full_CIFAR10 as load X_train, Y_train, X_test, Y_test = load.load_CIFAR10('cifar-10-batches-py/') X_train = X_train.T; #增加一行,处理偏置值 bias = np.ones((1, X_train.shape[1])) X_train = np.vstack((X_train, bias)) bestloss = float('inf') #初始化为最大值 for num in xrange(1000): W = np.random.randn(10, 3073)*0.000001 lossValue = loss.L(X_train, Y_train, W); print bestloss if lossValue < bestloss: bestloss = lossValue; bestW = W #print 'in attempt %d the loss was %f, best %f' %(num, lossValue, bestloss)
[ "897241687@qq.com" ]
897241687@qq.com
443d3474dda27cf501fe2763686bfdd2ee103c84
e15d63ccde04e7458bff5af1bdad63a5c699b489
/example/Transformer_vision/face/deep_vit/deepvit.py
02c77d650ad0aaa6b6f222c09be856f10291b8a1
[ "WTFPL" ]
permissive
ddddwee1/TorchSUL
775b6a2b1e4ab7aac25a3f0411de83affc257af5
6c7cd41b14fc8b746983e8b981d1ba4d08370ca2
refs/heads/master
2023-08-21T15:21:24.131718
2023-08-18T09:37:56
2023-08-18T09:37:56
227,628,298
13
1
null
null
null
null
UTF-8
Python
false
false
4,510
py
import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange, repeat from einops.layers.torch import Rearrange class Residual(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, x, **kwargs): return self.fn(x, **kwargs) + x class PreNorm(nn.Module): def __init__(self, dim, fn): super().__init__() self.norm = nn.LayerNorm(dim) self.fn = fn def forward(self, x, **kwargs): return self.fn(self.norm(x), **kwargs) class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout = 0.): super().__init__() self.net = nn.Sequential( nn.Linear(dim, hidden_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): super().__init__() inner_dim = dim_head * heads self.heads = heads self.scale = dim_head ** -0.5 self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.reattn_weights = nn.Parameter(torch.randn(heads, heads)) self.reattn_norm = nn.Sequential( Rearrange('b h i j -> b i j h'), nn.LayerNorm(heads), Rearrange('b i j h -> b h i j') ) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) def forward(self, x): b, n, _, h = *x.shape, self.heads qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv) # attention dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale attn = dots.softmax(dim=-1) # re-attention attn = einsum('b h i j, h g -> b g i j', attn, self.reattn_weights) attn = self.reattn_norm(attn) # aggregate and out out = einsum('b h i j, b h j d -> b h i d', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') out = self.to_out(out) return out class Transformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Residual(PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout))), Residual(PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))) ])) def forward(self, x): for attn, ff in self.layers: x = attn(x) x = ff(x) return x class DeepViT(nn.Module): def __init__(self, *, image_size, patch_size, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.): super().__init__() assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.' num_patches = (image_size // patch_size) ** 2 patch_dim = channels * patch_size ** 2 assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)' self.to_patch_embedding = nn.Sequential( Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size), nn.Linear(patch_dim, dim), ) self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) self.dropout = nn.Dropout(emb_dropout) self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout) self.pool = pool # self.to_latent = nn.Identity() # self.mlp_head = nn.Sequential( # nn.LayerNorm(dim), # nn.Linear(dim, num_classes) # ) def forward(self, img): x = self.to_patch_embedding(img) b, n, _ = x.shape cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b) x = torch.cat((cls_tokens, x), dim=1) x += self.pos_embedding[:, :(n + 1)] x = self.dropout(x) x = self.transformer(x) x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0] # x = self.to_latent(x) # return self.mlp_head(x) return x
[ "cy960823@outlook.com" ]
cy960823@outlook.com
384216efe4438e75898ed7a6bb898d34f478d199
01a58a01045687b0e01f4119eab42c3af364d62f
/node_modules/better-sqlite3/build/config.gypi
971e9379328fcfcd68e62991d2aba24464230e8f
[ "MIT" ]
permissive
Flawani/zrobiehosting
ed280422ef55bc7a1ae788097fe44c92822b3c28
9613db4e2eeadb005e456d9c67a75bcf40dc6534
refs/heads/master
2020-12-04T20:00:05.859360
2020-01-05T08:15:44
2020-01-05T08:15:44
231,887,653
0
0
null
null
null
null
UTF-8
Python
false
false
5,613
gypi
# Do not edit. File was generated by node-gyp's "configure" step { "target_defaults": { "cflags": [], "default_configuration": "Release", "defines": [], "include_dirs": [], "libraries": [] }, "variables": { "asan": 0, "build_v8_with_gn": "false", "coverage": "false", "debug_nghttp2": "false", "enable_lto": "false", "enable_pgo_generate": "false", "enable_pgo_use": "false", "force_dynamic_crt": 0, "host_arch": "x64", "icu_data_in": "..\\..\\deps/icu-small\\source/data/in\\icudt64l.dat", "icu_endianness": "l", "icu_gyp_path": "tools/icu/icu-generic.gyp", "icu_locales": "en,root", "icu_path": "deps/icu-small", "icu_small": "true", "icu_ver_major": "64", "nasm_version": "2.14", "node_byteorder": "little", "node_debug_lib": "false", "node_enable_d8": "false", "node_enable_v8_vtunejit": "false", "node_install_npm": "true", "node_module_version": 64, "node_no_browser_globals": "false", "node_prefix": "/usr/local", "node_release_urlbase": "https://nodejs.org/download/release/", "node_shared": "false", "node_shared_cares": "false", "node_shared_http_parser": "false", "node_shared_libuv": "false", "node_shared_nghttp2": "false", "node_shared_openssl": "false", "node_shared_zlib": "false", "node_tag": "", "node_target_type": "executable", "node_use_bundled_v8": "true", "node_use_dtrace": "false", "node_use_etw": "true", "node_use_large_pages": "false", "node_use_openssl": "true", "node_use_pch": "false", "node_use_perfctr": "true", "node_use_v8_platform": "true", "node_with_ltcg": "true", "node_without_node_options": "false", "openssl_fips": "", "openssl_no_asm": 0, "shlib_suffix": "so.64", "target_arch": "x64", "v8_enable_gdbjit": 0, "v8_enable_i18n_support": 1, "v8_enable_inspector": 1, "v8_no_strict_aliasing": 1, "v8_optimized_debug": 0, "v8_promise_internal_field_count": 1, "v8_random_seed": 0, "v8_trace_maps": 0, "v8_typed_array_max_size_in_heap": 0, "v8_use_snapshot": "true", "want_separate_host_toolset": 0, "nodedir": "C:\\Users\\Jakub2\\.node-gyp\\10.16.3", "standalone_static_library": 1, "access": "", "allow_same_version": "", "also": "", "always_auth": "", "audit": "true", "audit_level": "low", "auth_type": "legacy", "before": "", "bin_links": "true", "browser": "", "ca": "", "cache": "C:\\Users\\Jakub2\\AppData\\Roaming\\npm-cache", "cache_lock_retries": "10", "cache_lock_stale": "60000", "cache_lock_wait": "10000", "cache_max": "Infinity", "cache_min": "10", "cert": "", "cidr": "", "color": "true", "commit_hooks": "true", "depth": "Infinity", "description": "true", "dev": "", "dry_run": "", "editor": "notepad.exe", "engine_strict": "", "fetch_retries": "2", "fetch_retry_factor": "10", "fetch_retry_maxtimeout": "60000", "fetch_retry_mintimeout": "10000", "force": "", "git": "git", "git_tag_version": "true", "global": "", "globalconfig": "C:\\Users\\Jakub2\\AppData\\Roaming\\npm\\etc\\npmrc", "globalignorefile": "C:\\Users\\Jakub2\\AppData\\Roaming\\npm\\etc\\npmignore", "global_style": "", "group": "", "ham_it_up": "", "heading": "npm", "https_proxy": "", "if_present": "", "ignore_prepublish": "", "ignore_scripts": "", "init_author_email": "", "init_author_name": "", "init_author_url": "", "init_license": "ISC", "init_module": "C:\\Users\\Jakub2\\.npm-init.js", "init_version": "1.0.0", "json": "", "key": "", "legacy_bundling": "", "link": "", "local_address": "", "logs_max": "10", "long": "", "maxsockets": "50", "message": "%s", "metrics_registry": "https://registry.npmjs.org/", "node_gyp": "C:\\Program Files\\nodejs\\node_modules\\npm\\node_modules\\node-gyp\\bin\\node-gyp.js", "node_options": "", "node_version": "10.16.3", "noproxy": "", "offline": "", "onload_script": "", "only": "", "optional": "true", "otp": "", "package_lock": "true", "package_lock_only": "", "parseable": "", "prefer_offline": "", "prefer_online": "", "prefix": "C:\\Users\\Jakub2\\AppData\\Roaming\\npm", "preid": "", "production": "", "progress": "true", "read_only": "", "rebuild_bundle": "true", "registry": "https://registry.npmjs.org/", "rollback": "true", "save": "true", "save_bundle": "", "save_dev": "", "save_exact": "", "save_optional": "", "save_prefix": "^", "save_prod": "", "scope": "", "scripts_prepend_node_path": "warn-only", "script_shell": "", "searchexclude": "", "searchlimit": "20", "searchopts": "", "searchstaleness": "900", "send_metrics": "", "shell": "C:\\WINDOWS\\system32\\cmd.exe", "shrinkwrap": "true", "sign_git_commit": "", "sign_git_tag": "", "sso_poll_frequency": "500", "sso_type": "oauth", "strict_ssl": "true", "tag": "latest", "tag_version_prefix": "v", "timing": "", "tmp": "C:\\Users\\Jakub2\\AppData\\Local\\Temp", "umask": "0000", "unicode": "", "unsafe_perm": "true", "update_notifier": "true", "usage": "", "user": "", "userconfig": "C:\\Users\\Jakub2\\.npmrc", "user_agent": "npm/6.9.0 node/v10.16.3 win32 x64", "version": "", "versions": "", "viewer": "browser" } }
[ "46850608+Flawani@users.noreply.github.com" ]
46850608+Flawani@users.noreply.github.com
cf9ef7169a33bdadee7fd2ebbce7fd0ea9facd71
fb17d7a0754af8037f93382ffa90fb5374ba467e
/maboss/webx/test01.py
dc178e4c1d744bb60a3e764743dd0519daab850a
[ "MIT" ]
permissive
mabotech/maboss.py
becfd68c05c70ea214ce381d2d3b0e89fac8bb24
30c919d09c0a290772dde2f913c51843f0f88e26
refs/heads/master
2016-09-10T10:53:00.910707
2014-07-05T12:18:20
2014-07-05T12:18:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,526
py
# -*- coding: utf-8 -*- import os import logging import logging.handlers import logging.config #import profile import time from time import strftime, localtime from datetime import datetime from Cheetah.Template import Template from mabolab.core.base import Base from flask.config import Config settings = Config("" ) settings.from_pyfile( 'C:/MTP/mabotech/maboss1.2/maboss/configuration/central_config.py') settings['APP_NAME'] = "mabozen" base = Base( settings) db = base.get_db("oracle") from models.label.workstation_printer import WorkstationPrinter def create(): workstation = 'workstation' printer_name = 'printer_name' ip_address = '192.168.100.106' spool_address = 'spool_address' template_path = 'template_path' try: wsp = WorkstationPrinter(workstation, printer_name, ip_address, spool_address, template_path, 'MT') db.session.add(wsp) db.session.commit() status = wsp.id except Exception, e: db.session.rollback() status = "error" raise(Exception(e.message)) return status def query(id): wsp = db.session.query(WorkstationPrinter).filter_by(id=id).first() wsp.ip_address='192.168.1.21' wsp.lastupdateon = datetime.now() db.session.add(wsp) db.session.commit() print dir(db.session) return wsp if __name__ == '__main__': #s = create() s = query(5) print s
[ "aidear@163.com" ]
aidear@163.com
9ce2baaeaa600af666164ded7fd55f0b40b30555
191863e86029b0e5866bf810ec7bf209fce88b6f
/sagemaker-lineage/visualizer.py
0412248090f8a4fc4a26fc394cf295e3d18a7fcf
[ "Apache-2.0" ]
permissive
EmilyWebber/amazon-sagemaker-examples
237efa2211a5d26854ece7da2356d627d4f5f225
fb5a8ba5298bb7879ee9b8c10cb0842ac078b84b
refs/heads/main
2022-04-06T10:29:56.728806
2022-04-05T14:54:25
2022-04-05T14:54:25
331,713,808
3
3
Apache-2.0
2021-01-21T18:13:20
2021-01-21T18:13:19
null
UTF-8
Python
false
false
2,017
py
from pyvis.network import Network import os class Visualizer: def __init__(self): self.directory = "generated" if not os.path.exists(self.directory): os.makedirs(self.directory) def render(self, query_lineage_response, scenario_name): net = self.get_network() for vertex in query_lineage_response["Vertices"]: arn = vertex["Arn"] if "Type" in vertex: label = vertex["Type"] else: label = None lineage_type = vertex["LineageType"] name = self.get_name(arn) title = self.get_title(arn, label, lineage_type) net.add_node(vertex["Arn"], label=name, title=title, shape="ellipse") for edge in query_lineage_response["Edges"]: source = edge["SourceArn"] dest = edge["DestinationArn"] net.add_edge(dest, source) return net.show(f"{self.directory}/{scenario_name}.html") def get_title(self, arn, label, lineage_type): return f"Arn: {arn}\nType: {label}\nLineage Type: {lineage_type}" def get_name(self, arn): name = arn.split("/")[1] return name def get_network(self): net = Network(height="400px", width="800px", directed=True, notebook=True) net.set_options( """ var options = { "nodes": { "borderWidth": 3, "shadow": { "enabled": true }, "shapeProperties": { "borderRadius": 3 }, "size": 11, "shape": "circle" }, "edges": { "arrows": { "to": { "enabled": true } }, "color": { "inherit": true }, "smooth": false }, "layout": { "hierarchical": { "enabled": true, "direction": "LR", "sortMethod": "directed" } }, "physics": { "hierarchicalRepulsion": { "centralGravity": 0 }, "minVelocity": 0.75, "solver": "hierarchicalRepulsion" } } """ ) return net
[ "jeniya.tabassum@gmail.com" ]
jeniya.tabassum@gmail.com
c00f4e57fb45e35989e16e53a973497b38a0758e
d264958440e5963b9794d60f1b4c6f68584d4b9d
/test_calculator.py
e1cc546fe9ae9c873ce49b40cc3d01da9cc74f23
[]
no_license
rongzhen-chen/CalculatorLibrary
bc4780427dae2e579b99eb418587160ea568b12e
2ddaedbf41ce01bac50d7d4eb19f24bbf9e026ed
refs/heads/main
2023-01-22T22:00:46.467272
2020-11-23T10:45:52
2020-11-23T10:45:52
315,268,321
0
0
null
null
null
null
UTF-8
Python
false
false
323
py
""" Unit tests for the calculator library """ import calculator class TestCalculator: def test_addition(self): assert 4 == calculator.add(2, 2) def test_subtraction(self): assert 2 == calculator.subtract(4, 2) def test_multiplication(self): assert 100 == calculator.multiply(10, 10)
[ "rongzhen.chen@ericsson.com" ]
rongzhen.chen@ericsson.com
8950e2714021112a21c867cc6a8e8eef361a97e4
00cacf1a24b33e622c90ebd37d3f8e7ce291c7ba
/code/gen_fewrel_dataset_roberta_task_finetune_HEADandTAIL_updateRep_bottomANDtop_classifier_batch_AllLabel.py
f4e745f7c1d247f2935354111671dd5a0e391d76
[]
no_license
riyadhctg/CSS-LM
a1e94001713e7014e9eeceea186e87ce18fa5f3e
fbe6b974847f54307ee921f897e8e6e7a650326e
refs/heads/main
2023-07-05T14:16:30.244804
2021-08-13T04:02:37
2021-08-13T04:02:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
53,095
py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """BERT finetuning runner.""" from __future__ import absolute_import, division, print_function, unicode_literals import argparse import logging import os import random from io import open import json import time from torch.autograd import Variable import numpy as np import torch from torch.utils.data import DataLoader, Dataset, RandomSampler from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm, trange from transformers import RobertaTokenizer, RobertaForMaskedLM, RobertaForSequenceClassification #from transformers.modeling_roberta import RobertaForMaskedLMDomainTask from transformers.modeling_roberta_updateRep import RobertaForMaskedLMDomainTask from transformers.optimization import AdamW, get_linear_schedule_with_warmup logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO) logger = logging.getLogger(__name__) def return_Classifier(weight, bias, dim_in, dim_out): classifier = torch.nn.Linear(dim_in, dim_out , bias=True) ### classifier.weight.data = weight.to("cpu") classifier.bias.data = bias.to("cpu") ''' device="cuda" classifier.weight.data = weight.to(device) classifier.bias.data = bias.to(device) ''' ### classifier.requires_grad=False return classifier def in_Domain_Task_Data_binary(data_dir_indomain, tokenizer, max_seq_length): ###Open with open(data_dir_indomain+"train.json") as file: data = json.load(file) ###Preprocess num_label_list = list() label_sentence_dict = dict() for line in data: #line["sentence"] #line["aspect"] #line["sentiment"] num_label_list.append(line["label"]) try: label_sentence_dict[line["label"]].append([line["sentence"]]) except: label_sentence_dict[line["label"]] = [line["sentence"]] num_label = sorted(list(set(num_label_list))) label_map = {label : i for i , label in enumerate(num_label)} ###Create data: 1 choosed data along with the rest of 7 class data all_cur_tensors = list() for line in data: #line["sentence"] #line["aspect"] #line["sentiment"] sentence = line["sentence"] label = line["label"] sentence_out = [(random.choice(label_sentence_dict[label_out])[0], label_out) for label_out in num_label if label_out!=label] all_sentence = [(sentence, label)] + sentence_out #1st sentence is choosed all_input_ids = list() all_input_mask = list() all_segment_ids = list() all_lm_labels_ids = list() all_is_next = list() all_tail_idxs = list() all_sentence_labels = list() for id, sentence_label in enumerate(all_sentence): #tokens_a = tokenizer.tokenize(sentence_label[0]) tokens_a = tokenizer.tokenize(sentence_label[0]) ''' if "</s>" in tokens_a: print("Have more than 1 </s>") for i in range(len(tokens_a)): if tokens_a[i] == "</s>": tokens_a[i] = "s" ''' # tokenize cur_example = InputExample(guid=id, tokens_a=tokens_a, tokens_b=None, is_next=0) # transform sample to features cur_features = convert_example_to_features(cur_example, max_seq_length, tokenizer) all_input_ids.append(torch.tensor(cur_features.input_ids)) all_input_ids_org.append(torch.tensor(cur_features.input_ids_org)) all_input_mask.append(torch.tensor(cur_features.input_mask)) all_segment_ids.append(torch.tensor(cur_features.segment_ids)) all_lm_labels_ids.append(torch.tensor(cur_features.lm_label_ids)) all_is_next.append(torch.tensor(0)) all_tail_idxs.append(torch.tensor(cur_features.tail_idxs)) all_sentence_labels.append(torch.tensor(label_map[sentence_label[1]])) cur_tensors = (torch.stack(all_input_ids), torch.stack(all_input_ids_org), torch.stack(all_input_mask), torch.stack(all_segment_ids), torch.stack(all_lm_labels_ids), torch.stack(all_is_next), torch.stack(all_tail_idxs), torch.stack(all_sentence_labels)) all_cur_tensors.append(cur_tensors) return all_cur_tensors def in_Domain_Task_Data_mutiple(data_dir_indomain, tokenizer, max_seq_length): ###Open with open(data_dir_indomain+"train.json") as file: data = json.load(file) ###Preprocess num_label_list = list() label_sentence_dict = dict() num_sentiment_label_list = list() sentiment_label_dict = dict() for line in data: #line["sentence"] #line["aspect"] #line["sentiment"] num_sentiment_label_list.append(line["label"]) num_label_list.append(line["label"]) num_label = sorted(list(set(num_label_list))) label_map = {label : i for i , label in enumerate(num_label)} num_sentiment_label = sorted(list(set(num_sentiment_label_list))) sentiment_label_map = {label : i for i , label in enumerate(num_sentiment_label)} print("=======") print("label_map:") print(label_map) print("=======") print("=======") print("sentiment_label_map:") print(sentiment_label_map) print("=======") ###Create data: 1 choosed data along with the rest of 7 class data cur_tensors_list = list() #print(list(label_map.values())) candidate_label_list = list(label_map.values()) candidate_sentiment_label_list = list(sentiment_label_map.values()) all_type_sentence = [0]*len(candidate_label_list) all_type_sentiment_sentence = [0]*len(candidate_sentiment_label_list) for line in data: #line["sentence"] #line["aspect"] sentiment = line["label"] sentence = line["tokens"] label = line["label"] tokens_a = tokenizer.tokenize(sentence) #input_ids = tokenizer.encode(sentence, add_special_tokens=False) # tokenize cur_example = InputExample(guid=id, tokens_a=tokens_a, tokens_b=None, is_next=0) # transform sample to features cur_features = convert_example_to_features(cur_example, max_seq_length, tokenizer) cur_tensors = (torch.tensor(cur_features.input_ids), torch.tensor(cur_features.input_ids_org), torch.tensor(cur_features.input_mask), torch.tensor(cur_features.segment_ids), torch.tensor(cur_features.lm_label_ids), torch.tensor(0), torch.tensor(cur_features.tail_idxs), torch.tensor(label_map[label]), torch.tensor(sentiment_label_map[sentiment])) cur_tensors_list.append(cur_tensors) ### if label_map[label] in candidate_label_list: all_type_sentence[label_map[label]]=cur_tensors candidate_label_list.remove(label_map[label]) if sentiment_label_map[sentiment] in candidate_sentiment_label_list: all_type_sentiment_sentence[sentiment_label_map[sentiment]]=cur_tensors candidate_sentiment_label_list.remove(sentiment_label_map[sentiment]) ### return all_type_sentiment_sentence, cur_tensors_list def load_outdomain(data_dir_outdomain, tokenizer, max_seq_length): ###Open doc_line = list() with open(data_dir_outdomain+"train.txt") as file: #data = json.load(file) for i,line in enumerate(file): doc_line.append(line) ###Preprocess cur_tensors_list=list() for i, line in enumerate(doc_line): tokens_a = tokenizer.tokenize(line) # tokenize cur_example = InputExample(guid=id, tokens_a=tokens_a, tokens_b=None, is_next=0) # transform sample to features cur_features = convert_example_to_features(cur_example, max_seq_length, tokenizer) cur_tensors = (torch.tensor(cur_features.input_ids), torch.tensor(cur_features.input_ids_org), torch.tensor(cur_features.input_mask), torch.tensor(cur_features.segment_ids), torch.tensor(cur_features.lm_label_ids), torch.tensor(0), torch.tensor(cur_features.tail_idxs), torch.tensor(0), torch.tensor(0)) cur_tensors_list.append(cur_tensors) return cur_tensors_list def in_Domain_Task_Data_binary(data_dir_indomain, tokenizer, max_seq_length): ###Open with open(data_dir_indomain+"train.json") as file: data = json.load(file) ###Preprocess num_label_list = list() label_sentence_dict = dict() for line in data: #line["sentence"] #line["aspect"] #line["sentiment"] num_label_list.append(line["label"]) try: label_sentence_dict[line["label"]].append([line["sentence"]]) except: label_sentence_dict[line["label"]] = [line["sentence"]] num_label = sorted(list(set(num_label_list))) label_map = {label : i for i , label in enumerate(num_label)} ###Create data: 1 choosed data along with the rest of 7 class data all_cur_tensors = list() for line in data: #line["sentence"] #line["aspect"] #line["sentiment"] sentence = line["sentence"] label = line["aspect"] sentence_out = [(random.choice(label_sentence_dict[label_out])[0], label_out) for label_out in num_label if label_out!=label] all_sentence = [(sentence, label)] + sentence_out #1st sentence is choosed all_input_ids = list() all_input_mask = list() all_segment_ids = list() all_lm_labels_ids = list() all_is_next = list() all_tail_idxs = list() all_sentence_labels = list() for id, sentence_label in enumerate(all_sentence): #tokens_a = tokenizer.tokenize(sentence_label[0]) tokens_a = tokenizer.tokenize(sentence_label[0]) ''' if "</s>" in tokens_a: print("Have more than 1 </s>") for i in range(len(tokens_a)): if tokens_a[i] == "</s>": tokens_a[i] = "s" ''' # tokenize cur_example = InputExample(guid=id, tokens_a=tokens_a, tokens_b=None, is_next=0) # transform sample to features cur_features = convert_example_to_features(cur_example, max_seq_length, tokenizer) all_input_ids.append(torch.tensor(cur_features.input_ids)) all_input_ids_org.append(torch.tensor(cur_features.input_ids_org)) all_input_mask.append(torch.tensor(cur_features.input_mask)) all_segment_ids.append(torch.tensor(cur_features.segment_ids)) all_lm_labels_ids.append(torch.tensor(cur_features.lm_label_ids)) all_is_next.append(torch.tensor(0)) all_tail_idxs.append(torch.tensor(cur_features.tail_idxs)) all_sentence_labels.append(torch.tensor(label_map[sentence_label[1]])) cur_tensors = (torch.stack(all_input_ids), torch.stack(all_input_ids_org), torch.stack(all_input_mask), torch.stack(all_segment_ids), torch.stack(all_lm_labels_ids), torch.stack(all_is_next), torch.stack(all_tail_idxs), torch.stack(all_sentence_labels)) all_cur_tensors.append(cur_tensors) return all_cur_tensors def AugmentationData_Domain(top_k, tokenizer, max_seq_length): #top_k_shape = top_k.indices.shape #ids = top_k.indices.reshape(top_k_shape[0]*top_k_shape[1]).tolist() top_k_shape = top_k["indices"].shape ids = top_k["indices"].reshape(top_k_shape[0]*top_k_shape[1]).tolist() all_input_ids = list() all_input_ids_org = list() all_input_mask = list() all_segment_ids = list() all_lm_labels_ids = list() all_is_next = list() all_tail_idxs = list() for id, i in enumerate(ids): t1 = data[str(i)]['sentence'] #tokens_a = tokenizer.tokenize(t1) tokens_a = tokenizer.tokenize(t1) ''' if "</s>" in tokens_a: print("Have more than 1 </s>") #tokens_a[tokens_a.index("<s>")] = "s" for i in range(len(tokens_a)): if tokens_a[i] == "</s>": tokens_a[i] = "s" ''' # tokenize cur_example = InputExample(guid=id, tokens_a=tokens_a, tokens_b=None, is_next=0) # transform sample to features cur_features = convert_example_to_features(cur_example, max_seq_length, tokenizer) all_input_ids.append(torch.tensor(cur_features.input_ids)) all_input_ids_org.append(torch.tensor(cur_features.input_ids_org)) all_input_mask.append(torch.tensor(cur_features.input_mask)) all_segment_ids.append(torch.tensor(cur_features.segment_ids)) all_lm_labels_ids.append(torch.tensor(cur_features.lm_label_ids)) all_is_next.append(torch.tensor(0)) all_tail_idxs.append(torch.tensor(cur_features.tail_idxs)) cur_tensors = (torch.stack(all_input_ids), torch.stack(all_input_ids_org), torch.stack(all_input_mask), torch.stack(all_segment_ids), torch.stack(all_lm_labels_ids), torch.stack(all_is_next), torch.stack(all_tail_idxs)) return cur_tensors def AugmentationData_Task(top_k, tokenizer, max_seq_length, add_org=None): top_k_shape = top_k["indices"].shape sentence_ids = top_k["indices"] all_input_ids = list() all_input_ids_org = list() all_input_mask = list() all_segment_ids = list() all_lm_labels_ids = list() all_is_next = list() all_tail_idxs = list() all_sentence_labels = list() all_sentiment_labels = list() add_org = tuple(t.to('cpu') for t in add_org) #input_ids_, input_ids_org_, input_mask_, segment_ids_, lm_label_ids_, is_next_, tail_idxs_, sentence_label_ = add_org input_ids_, input_ids_org_, input_mask_, segment_ids_, lm_label_ids_, is_next_, tail_idxs_, sentence_label_, sentiment_label_ = add_org for id_1, sent in enumerate(sentence_ids): for id_2, sent_id in enumerate(sent): t1 = data[str(int(sent_id))]['sentence'] tokens_a = tokenizer.tokenize(t1) # tokenize cur_example = InputExample(guid=id, tokens_a=tokens_a, tokens_b=None, is_next=0) # transform sample to features cur_features = convert_example_to_features(cur_example, max_seq_length, tokenizer) all_input_ids.append(torch.tensor(cur_features.input_ids)) all_input_ids_org.append(torch.tensor(cur_features.input_ids_org)) all_input_mask.append(torch.tensor(cur_features.input_mask)) all_segment_ids.append(torch.tensor(cur_features.segment_ids)) all_lm_labels_ids.append(torch.tensor(cur_features.lm_label_ids)) all_is_next.append(torch.tensor(0)) all_tail_idxs.append(torch.tensor(cur_features.tail_idxs)) all_sentence_labels.append(torch.tensor(sentence_label_[id_1])) all_sentiment_labels.append(torch.tensor(sentiment_label_[id_1])) all_input_ids.append(input_ids_[id_1]) all_input_ids_org.append(input_ids_org_[id_1]) all_input_mask.append(input_mask_[id_1]) all_segment_ids.append(segment_ids_[id_1]) all_lm_labels_ids.append(lm_label_ids_[id_1]) all_is_next.append(is_next_[id_1]) all_tail_idxs.append(tail_idxs_[id_1]) all_sentence_labels.append(sentence_label_[id_1]) all_sentiment_labels.append(sentiment_label_[id_1]) cur_tensors = (torch.stack(all_input_ids), torch.stack(all_input_ids_org), torch.stack(all_input_mask), torch.stack(all_segment_ids), torch.stack(all_lm_labels_ids), torch.stack(all_is_next), torch.stack(all_tail_idxs), torch.stack(all_sentence_labels), torch.stack(all_sentiment_labels) ) return cur_tensors def AugmentationData_Task_pos_and_neg(top_k=None, tokenizer=None, max_seq_length=None, add_org=None, in_task_rep=None): input_ids_, input_ids_org_, input_mask_, segment_ids_, lm_label_ids_, is_next_, tail_idxs_, sentence_label_, sentiment_label_ = add_org all_sentence_binary_label = list() all_in_task_rep_comb = list() for id_1, num in enumerate(sentence_label_): sentence_label_int = (sentence_label_==num).to(torch.long) in_task_rep_append = in_task_rep[id_1].unsqueeze(0).expand(in_task_rep.shape[0],-1) in_task_rep_comb = torch.cat((in_task_rep_append,in_task_rep),-1) all_sentence_binary_label.append(sentence_label_int) all_in_task_rep_comb.append(in_task_rep_comb) all_sentence_binary_label = torch.stack(all_sentence_binary_label) all_in_task_rep_comb = torch.stack(all_in_task_rep_comb) cur_tensors = (all_in_task_rep_comb, all_sentence_binary_label) return cur_tensors class Dataset_noNext(Dataset): def __init__(self, corpus_path, tokenizer, seq_len, encoding="utf-8", corpus_lines=None, on_memory=True): self.vocab_size = tokenizer.vocab_size self.tokenizer = tokenizer self.seq_len = seq_len self.on_memory = on_memory self.corpus_lines = corpus_lines # number of non-empty lines in input corpus self.corpus_path = corpus_path self.encoding = encoding self.current_doc = 0 # to avoid random sentence from same doc # for loading samples directly from file self.sample_counter = 0 # used to keep track of full epochs on file self.line_buffer = None # keep second sentence of a pair in memory and use as first sentence in next pair # for loading samples in memory self.current_random_doc = 0 self.num_docs = 0 self.sample_to_doc = [] # map sample index to doc and line # load samples into memory if on_memory: self.all_docs = [] doc = [] self.corpus_lines = 0 with open(corpus_path, "r", encoding=encoding) as f: for line in tqdm(f, desc="Loading Dataset", total=corpus_lines): line = line.strip() if line == "": self.all_docs.append(doc) doc = [] #remove last added sample because there won't be a subsequent line anymore in the doc self.sample_to_doc.pop() else: #store as one sample sample = {"doc_id": len(self.all_docs), "line": len(doc)} self.sample_to_doc.append(sample) doc.append(line) self.corpus_lines = self.corpus_lines + 1 # if last row in file is not empty if self.all_docs[-1] != doc: self.all_docs.append(doc) self.sample_to_doc.pop() self.num_docs = len(self.all_docs) # load samples later lazily from disk else: if self.corpus_lines is None: with open(corpus_path, "r", encoding=encoding) as f: self.corpus_lines = 0 for line in tqdm(f, desc="Loading Dataset", total=corpus_lines): ''' if line.strip() == "": self.num_docs += 1 else: ''' if line.strip() == "": continue self.corpus_lines += 1 # if doc does not end with empty line if line.strip() != "": self.num_docs += 1 self.file = open(corpus_path, "r", encoding=encoding) self.random_file = open(corpus_path, "r", encoding=encoding) def __len__(self): # last line of doc won't be used, because there's no "nextSentence". Additionally, we start counting at 0. #print(self.corpus_lines) #print(self.num_docs) #return self.corpus_lines - self.num_docs - 1 return self.corpus_lines - self.num_docs def __getitem__(self, item): cur_id = self.sample_counter self.sample_counter += 1 if not self.on_memory: # after one epoch we start again from beginning of file if cur_id != 0 and (cur_id % len(self) == 0): self.file.close() self.file = open(self.corpus_path, "r", encoding=self.encoding) #t1, t2, is_next_label = self.random_sent(item) t1, is_next_label = self.random_sent(item) if is_next_label == None: is_next_label = 0 #tokens_a = self.tokenizer.tokenize(t1) tokens_a = self.tokenizer.tokenize(t1) #tokens_b = self.tokenizer.tokenize(t2) # tokenize cur_example = InputExample(guid=cur_id, tokens_a=tokens_a, tokens_b=None, is_next=is_next_label) # transform sample to features cur_features = convert_example_to_features(cur_example, self.seq_len, self.tokenizer) cur_tensors = (torch.tensor(cur_features.input_ids), torch.tensor(cur_features.input_ids_org), torch.tensor(cur_features.input_mask), torch.tensor(cur_features.segment_ids), torch.tensor(cur_features.lm_label_ids), torch.tensor(0), torch.tensor(cur_features.tail_idxs), torch.tensor(0), torch.tensor(0)) ''' cur_tensors = (torch.tensor(cur_features.input_ids), torch.tensor(cur_features.input_ids_org), torch.tensor(cur_features.input_mask), torch.tensor(cur_features.segment_ids), torch.tensor(cur_features.lm_label_ids), torch.tensor(cur_features.is_next), torch.tensor(cur_features.tail_idxs)) ''' return cur_tensors def random_sent(self, index): """ Get one sample from corpus consisting of two sentences. With prob. 50% these are two subsequent sentences from one doc. With 50% the second sentence will be a random one from another doc. :param index: int, index of sample. :return: (str, str, int), sentence 1, sentence 2, isNextSentence Label """ t1, t2 = self.get_corpus_line(index) return t1, None def get_corpus_line(self, item): """ Get one sample from corpus consisting of a pair of two subsequent lines from the same doc. :param item: int, index of sample. :return: (str, str), two subsequent sentences from corpus """ t1 = "" t2 = "" assert item < self.corpus_lines if self.on_memory: sample = self.sample_to_doc[item] t1 = self.all_docs[sample["doc_id"]][sample["line"]] # used later to avoid random nextSentence from same doc self.current_doc = sample["doc_id"] return t1, t2 #return t1 else: if self.line_buffer is None: # read first non-empty line of file while t1 == "" : t1 = next(self.file).strip() else: # use t2 from previous iteration as new t1 t1 = self.line_buffer # skip empty rows that are used for separating documents and keep track of current doc id while t1 == "": t1 = next(self.file).strip() self.current_doc = self.current_doc+1 self.line_buffer = next(self.file).strip() assert t1 != "" return t1, t2 def get_random_line(self): """ Get random line from another document for nextSentence task. :return: str, content of one line """ # Similar to original tf repo: This outer loop should rarely go for more than one iteration for large # corpora. However, just to be careful, we try to make sure that # the random document is not the same as the document we're processing. for _ in range(10): if self.on_memory: rand_doc_idx = random.randint(0, len(self.all_docs)-1) rand_doc = self.all_docs[rand_doc_idx] line = rand_doc[random.randrange(len(rand_doc))] else: rand_index = random.randint(1, self.corpus_lines if self.corpus_lines < 1000 else 1000) #pick random line for _ in range(rand_index): line = self.get_next_line() #check if our picked random line is really from another doc like we want it to be if self.current_random_doc != self.current_doc: break return line def get_next_line(self): """ Gets next line of random_file and starts over when reaching end of file""" try: line = next(self.random_file).strip() #keep track of which document we are currently looking at to later avoid having the same doc as t1 if line == "": self.current_random_doc = self.current_random_doc + 1 line = next(self.random_file).strip() except StopIteration: self.random_file.close() self.random_file = open(self.corpus_path, "r", encoding=self.encoding) line = next(self.random_file).strip() return line class InputExample(object): """A single training/test example for the language model.""" def __init__(self, guid, tokens_a, tokens_b=None, is_next=None, lm_labels=None): """Constructs a InputExample. Args: guid: Unique id for the example. tokens_a: string. The untokenized text of the first sequence. For single sequence tasks, only this sequence must be specified. tokens_b: (Optional) string. The untokenized text of the second sequence. Only must be specified for sequence pair tasks. label: (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples. """ self.guid = guid self.tokens_a = tokens_a self.tokens_b = tokens_b self.is_next = is_next # nextSentence self.lm_labels = lm_labels # masked words for language model class InputFeatures(object): """A single set of features of data.""" def __init__(self, input_ids, input_ids_org, input_mask, segment_ids, is_next, lm_label_ids, tail_idxs): self.input_ids = input_ids self.input_ids_org = input_ids_org self.input_mask = input_mask self.segment_ids = segment_ids self.is_next = is_next self.lm_label_ids = lm_label_ids self.tail_idxs = tail_idxs def random_word(tokens, tokenizer): """ Masking some random tokens for Language Model task with probabilities as in the original BERT paper. :param tokens: list of str, tokenized sentence. :param tokenizer: Tokenizer, object used for tokenization (we need it's vocab here) :return: (list of str, list of int), masked tokens and related labels for LM prediction """ output_label = [] for i, token in enumerate(tokens): prob = random.random() # mask token with 15% probability if prob < 0.15: prob /= 0.15 #candidate_id = random.randint(0,tokenizer.vocab_size) #print(tokenizer.convert_ids_to_tokens(candidate_id)) # 80% randomly change token to mask token if prob < 0.8: #tokens[i] = "[MASK]" tokens[i] = "<mask>" # 10% randomly change token to random token elif prob < 0.9: #tokens[i] = random.choice(list(tokenizer.vocab.items()))[0] #tokens[i] = tokenizer.convert_ids_to_tokens(candidate_id) candidate_id = random.randint(0,tokenizer.vocab_size) w = tokenizer.convert_ids_to_tokens(candidate_id) ''' if tokens[i] == None: candidate_id = 100 w = tokenizer.convert_ids_to_tokens(candidate_id) ''' tokens[i] = w # -> rest 10% randomly keep current token # append current token to output (we will predict these later) try: #output_label.append(tokenizer.vocab[token]) w = tokenizer.convert_tokens_to_ids(token) if w!= None: output_label.append(w) else: print("Have no this tokens in ids") exit() except KeyError: # For unknown words (should not occur with BPE vocab) #output_label.append(tokenizer.vocab["<unk>"]) w = tokenizer.convert_tokens_to_ids("<unk>") output_label.append(w) logger.warning("Cannot find token '{}' in vocab. Using <unk> insetad".format(token)) else: # no masking token (will be ignored by loss function later) output_label.append(-1) return tokens, output_label def convert_example_to_features(example, max_seq_length, tokenizer): #now tokens_a is input_ids tokens_a = example.tokens_a tokens_b = example.tokens_b # Modifies `tokens_a` and `tokens_b` in place so that the total # length is less than the specified length. # Account for [CLS], [SEP], [SEP] with "- 3" #_truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 2) #print(tokens_a) tokens_a_org = tokens_a.copy() tokens_a, t1_label = random_word(tokens_a, tokenizer) lm_label_ids = ([-1] + t1_label + [-1]) # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambigiously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens = [] tokens_org = [] segment_ids = [] tokens.append("<s>") tokens_org.append("<s>") segment_ids.append(0) for i, token in enumerate(tokens_a): if token!="</s>": tokens.append(tokens_a[i]) tokens_org.append(tokens_a_org[i]) segment_ids.append(0) else: tokens.append("s") tokens_org.append("s") segment_ids.append(0) tokens.append("</s>") tokens_org.append("</s>") segment_ids.append(0) #tokens.append("[SEP]") #segment_ids.append(1) #input_ids = tokenizer.convert_tokens_to_ids(tokens) input_ids = tokenizer.encode(tokens, add_special_tokens=False) input_ids_org = tokenizer.encode(tokens_org, add_special_tokens=False) tail_idxs = len(input_ids)+1 #print(input_ids) input_ids = [w if w!=None else 0 for w in input_ids] input_ids_org = [w if w!=None else 0 for w in input_ids_org] #print(input_ids) #exit() # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. pad_id = tokenizer.convert_tokens_to_ids("<pad>") #<pad>:1 while len(input_ids) < max_seq_length: input_ids.append(pad_id) input_ids_org.append(pad_id) input_mask.append(0) segment_ids.append(0) lm_label_ids.append(-1) assert len(input_ids) == max_seq_length assert len(input_ids_org) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length assert len(lm_label_ids) == max_seq_length features = InputFeatures(input_ids=input_ids, input_ids_org = input_ids_org, input_mask=input_mask, segment_ids=segment_ids, lm_label_ids=lm_label_ids, is_next=example.is_next, tail_idxs=tail_idxs) return features def main(): parser = argparse.ArgumentParser() ## Required parameters parser.add_argument("--data_dir_indomain", default=None, type=str, required=True, help="The input train corpus.(In Domain)") parser.add_argument("--data_dir_outdomain", default=None, type=str, required=True, help="The input train corpus.(Out Domain)") parser.add_argument("--pretrain_model", default=None, type=str, required=True, help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.") parser.add_argument("--output_dir", default=None, type=str, required=True, help="The output directory where the model checkpoints will be written.") parser.add_argument("--augment_times", default=None, type=int, required=True, help="Default batch_size/augment_times to save model") ## Other parameters parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.") parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.") parser.add_argument("--learning_rate", default=3e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument("--warmup_proportion", default=0.1, type=float, help="Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10%% of training.") parser.add_argument("--no_cuda", action='store_true', help="Whether not to use CUDA when available") parser.add_argument("--on_memory", action='store_true', help="Whether to load train samples into memory or use disk") parser.add_argument("--do_lower_case", action='store_true', help="Whether to lower case the input text. True for uncased models, False for cased models.") parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumualte before performing a backward/update pass.") parser.add_argument('--fp16', action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument('--loss_scale', type = float, default = 0, help = "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" "0 (default value): dynamic loss scaling.\n" "Positive power of 2: static loss scaling value.\n") #### parser.add_argument("--num_labels_task", default=None, type=int, required=True, help="num_labels_task") parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument('--fp16_opt_level', type=str, default='O1', help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html") parser.add_argument("--task", default=None, type=int, required=True, help="Choose Task") parser.add_argument("--K", default=None, type=int, required=True, help="K size") #### args = parser.parse_args() if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") n_gpu = torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) n_gpu = 1 # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.distributed.init_process_group(backend='nccl') logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format( device, n_gpu, bool(args.local_rank != -1), args.fp16)) if args.gradient_accumulation_steps < 1: raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format( args.gradient_accumulation_steps)) args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if n_gpu > 0: torch.cuda.manual_seed_all(args.seed) os.makedirs(args.output_dir, exist_ok=True) #tokenizer = RobertaTokenizer.from_pretrained(args.pretrain_model, do_lower_case=args.do_lower_case) tokenizer = RobertaTokenizer.from_pretrained(args.pretrain_model) # Prepare model model = RobertaForMaskedLMDomainTask.from_pretrained(args.pretrain_model, output_hidden_states=True, return_dict=True, num_labels=args.num_labels_task) model.to(device) if n_gpu > 1: model = torch.nn.DataParallel(model) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True) ###Generate Docs### docs_head = list() docs_tail = list() if True: print("Loading Train Dataset", args.data_dir_outdomain) train_dataset = Dataset_noNext(args.data_dir_outdomain, tokenizer, seq_len=args.max_seq_length, corpus_lines=None, on_memory=args.on_memory) #train_dataset = load_outdomain(args.data_dir_outdomain, tokenizer, args.max_seq_length) logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Batch size = %d", args.train_batch_size) #logger.info(" Num steps = %d", num_train_optimization_steps) if args.local_rank == -1: train_sampler = RandomSampler(train_dataset) else: train_sampler = DistributedSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) model.eval() #result = 0 counter_domain = 0 counter_task = 0 id_doc = dict() id_doc_tensor = list() rest_head = list() rest_tail = list() rest_input = list() for step, batch_ in enumerate(tqdm(train_dataloader, desc="Iteration")): #print(step) ###Normal mode batch_ = tuple(t.to(device) for t in batch_) input_ids_, input_ids_org_, input_mask_, segment_ids_, lm_label_ids_, is_next_, tail_idxs_, sentence_label_, sentiment_label_ = batch_ #Generate query representation with torch.no_grad(): in_domain_rep, in_task_rep = model(input_ids_org=input_ids_org_, tail_idxs=tail_idxs_, attention_mask=input_mask_, func="in_domain_task_rep") ### in_domain_rep = in_domain_rep.to("cpu") in_task_rep = in_domain_rep.to("cpu") ### ##### ##### if step==0: docs_tail.append(in_domain_rep) docs_head.append(in_task_rep) id_doc_tensor.append(input_ids_org_) else: if docs_tail[-1].shape[0] == in_domain_rep.shape[0]: docs_tail.append(in_domain_rep) docs_head.append(in_task_rep) id_doc_tensor.append(input_ids_org_) else: rest_tail = in_domain_rep rest_head = in_task_rep rest_input = input_ids_org_ counter_domain += int(in_domain_rep.shape[0]) counter_task += int(in_task_rep.shape[0]) if counter_domain!=counter_task: print("Error") exit() ''' docs_tail = torch.stack(docs_tail).unsqueeze(1) docs_head = torch.stack(docs_head).unsqueeze(1) ''' ### docs_tail = torch.stack(docs_tail) docs_tail = docs_tail.reshape(docs_tail.shape[0]*docs_tail.shape[1],1,docs_tail.shape[-1]) try: rest_tail = rest_tail.reshape(rest_tail.shape[0],1,rest_tail.shape[-1]) docs_tail = torch.cat([docs_tail,rest_tail],0) except: pass docs_head = torch.stack(docs_head) docs_head = docs_head.reshape(docs_head.shape[0]*docs_head.shape[1],1,docs_head.shape[-1]) try: rest_head = rest_head.reshape(rest_head.shape[0],1,rest_head.shape[-1]) docs_head = torch.cat([docs_head,rest_head],0) except: pass id_doc_tensor = torch.stack(id_doc_tensor) id_doc_tensor = id_doc_tensor.reshape(id_doc_tensor.shape[0]*id_doc_tensor.shape[1],id_doc_tensor.shape[-1]) try: rest_input = rest_input.reshape(rest_input.shape[0],rest_input.shape[-1]) id_doc_tensor = torch.cat([id_doc_tensor,rest_input],0) except: pass ### print(docs_head.shape) print(docs_tail.shape) print(id_doc_tensor.shape) #exit() ### docs_tail = docs_tail.to("cpu") docs_head = docs_head.to("cpu") id_doc_tensor = id_doc_tensor.to("cpu") ''' docs_tail = docs_tail.to(device) docs_head = docs_head.to(device) id_doc_tensor = id_doc_tensor.to(device) ''' ### ###Retrive: Caculate || p_n and bottom_n### ### total_score = torch.zeros([args.train_batch_size,docs_head.shape[0]]).to("cpu") ''' total_score = torch.zeros([args.train_batch_size,docs_head.shape[0]]).to(device) ''' ### if True: print("Loading Train Dataset", args.data_dir_indomain) #train_dataset = load_outdomain(args.data_dir_indomain, tokenizer, args.max_seq_length) all_type_sentence, train_dataset = in_Domain_Task_Data_mutiple(args.data_dir_indomain, tokenizer, args.max_seq_length) logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Batch size = %d", args.train_batch_size) #logger.info(" Num steps = %d", num_train_optimization_steps) if args.local_rank == -1: train_sampler = RandomSampler(train_dataset) else: train_sampler = DistributedSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) model.eval() if int(args.K) > int(docs_head.shape[0]): k = int(docs_head.shape[0]) else: k = int(int(args.K)/2) ######### #####load_classifier ######### with torch.no_grad(): task_binary_classifier_weight, task_binary_classifier_bias = model(func="return_task_binary_classifier") task_binary_classifier_weight = task_binary_classifier_weight[:int(task_binary_classifier_weight.shape[0]/n_gpu)][:] task_binary_classifier_bias = task_binary_classifier_bias[:int(task_binary_classifier_bias.shape[0]/n_gpu)][:] task_binary_classifier = return_Classifier(task_binary_classifier_weight, task_binary_classifier_bias, 768*2, 2) domain_binary_classifier_weight, domain_binary_classifier_bias = model(func="return_domain_binary_classifier") domain_binary_classifier_weight = domain_binary_classifier_weight[:int(domain_binary_classifier_weight.shape[0]/n_gpu)][:] domain_binary_classifier_bias = domain_binary_classifier_bias[:int(domain_binary_classifier_bias.shape[0]/n_gpu)][:] domain_binary_classifier = return_Classifier(domain_binary_classifier_weight, domain_binary_classifier_bias, 768, 2) ######## ###load_alltype_sentence ######## for step, batch_ in enumerate(tqdm(train_dataloader, desc="Iteration")): ###Normal mode batch_ = tuple(t.to(device) for t in batch_) input_ids_, input_ids_org_, input_mask_, segment_ids_, lm_label_ids_, is_next_, tail_idxs_, sentence_label_, sentiment_label_ = batch_ with torch.no_grad(): #Generate query representation in_domain_rep, in_task_rep = model(input_ids_org=input_ids_org_, tail_idxs=tail_idxs_, attention_mask=input_mask_, func="in_domain_task_rep") ##Load classifier weight # Search id from Docs and ranking via (Domain/Task) ### query_domain = in_domain_rep.float().to("cpu") query_domain = query_domain.unsqueeze(1) query_task = in_task_rep.float().to("cpu") query_task = query_task.unsqueeze(1) ''' query_domain = in_domain_rep.float().to(device) query_domain = query_domain.unsqueeze(1) query_task = in_task_rep.float().to(device) query_task = query_task.unsqueeze(1) ''' ### query_domain = query_domain.expand(-1, docs_tail.shape[0], -1) query_task = query_task.expand(-1, docs_head.shape[0], -1) ################# ################# LeakyReLU = torch.nn.LeakyReLU() domain_binary_logit = LeakyReLU(domain_binary_classifier(docs_tail)) domain_binary_logit = domain_binary_logit[:,:,1] - domain_binary_logit[:,:,0] domain_binary_logit = domain_binary_logit.squeeze(1).unsqueeze(0).expand(sentiment_label_.shape[0], -1) task_binary_logit = LeakyReLU(task_binary_classifier(torch.cat([query_task, docs_head[:,0,:].unsqueeze(0).expand(sentiment_label_.shape[0], -1, -1)], dim=2))) task_binary_logit = task_binary_logit[:,:,1] - task_binary_logit[:,:,0] results = domain_binary_logit + task_binary_logit if total_score.shape[0] == results.shape[0]: total_score += results else: total_score = torch.cat([total_score,results],0) print(total_score.shape) ######## ######## #sum all batch tensor total_score = total_score.sum(dim=0) #print(total_score.shape) #Ranking bottom_k = torch.topk(total_score, k, dim=0, largest=False, sorted=False) bottom_k = {"values":bottom_k.values, "indices":bottom_k.indices} top_k = torch.topk(total_score, k, dim=0, largest=True, sorted=False) top_k = {"values":top_k.values, "indices":top_k.indices} #print(bottom_k["indices"].shape) #print(top_k["indices"].shape) choosed_docs = torch.cat([top_k["indices"],bottom_k["indices"]],0) #print(choosed_docs.shape) #select 1.tensor 2.text from foc_head,doc_tail all_data_dict = dict() head_hidd_list = list() tail_hidd_list = list() #print(len(id_doc)) for id, index in enumerate(choosed_docs): #all_data_dict[id] = {"sentence":id_doc[int(index)]} all_data_dict[id] = {"sentence":tokenizer.decode(id_doc_tensor[index]).replace("<pad>","").replace("<s>","").replace("</s>","")} head_hidd_list.append(docs_head[index]) tail_hidd_list.append(docs_tail[index]) ############################################ ############################################ with open(args.output_dir+'train.json', 'w') as outfile: json.dump(all_data_dict, outfile) head_hidd_tensor = torch.stack(head_hidd_list) tail_hidd_tensor = torch.stack(tail_hidd_list) torch.save(head_hidd_tensor, args.output_dir+'train_head.pt') torch.save(tail_hidd_tensor, args.output_dir+'train_tail.pt') def _truncate_seq_pair(tokens_a, tokens_b, max_length): """Truncates a sequence pair in place to the maximum length.""" # This is a simple heuristic which will always truncate the longer sequence # one token at a time. This makes more sense than truncating an equal percent # of tokens from each, since if one sequence is very short then each token # that's truncated likely contains more information than a longer sequence. while True: #total_length = len(tokens_a) + len(tokens_b) total_length = len(tokens_a) if total_length <= max_length: break else: tokens_a.pop() def accuracy(out, labels): outputs = np.argmax(out, axis=1) return np.sum(outputs == labels) if __name__ == "__main__": main()
[ "ky200120000@gmail.com" ]
ky200120000@gmail.com
3b6213786afb95e6f2aa8ff988d8ea7dc07ba8f8
31a766fcae3779b05796534c354286083502f74a
/python/onshape_client/models/bt_list_response_bt_friend_info.py
e0809604caadf4e9e7624dfd6fe9b747d952e44d
[]
no_license
nychang/onshape-clients
5ea21e73a05948f5e232d4851eb8ae8a6b8c75c8
9c97baae57f80e3922726443584e4cc50b99623f
refs/heads/master
2020-05-06T20:35:28.212953
2019-04-05T20:38:19
2019-04-05T20:38:19
180,243,972
0
0
null
2019-04-08T22:43:59
2019-04-08T22:43:59
null
UTF-8
Python
false
false
5,031
py
# coding: utf-8 """ Onshape REST API The Onshape REST API consumed by all clients. # noqa: E501 OpenAPI spec version: 1.96 Contact: api-support@onshape.zendesk.com Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six class BTListResponseBTFriendInfo(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'href': 'str', 'next': 'str', 'items': 'list[BTFriendInfo]', 'previous': 'str' } attribute_map = { 'href': 'href', 'next': 'next', 'items': 'items', 'previous': 'previous' } def __init__(self, href=None, next=None, items=None, previous=None): # noqa: E501 """BTListResponseBTFriendInfo - a model defined in OpenAPI""" # noqa: E501 self._href = None self._next = None self._items = None self._previous = None self.discriminator = None if href is not None: self.href = href if next is not None: self.next = next if items is not None: self.items = items if previous is not None: self.previous = previous @property def href(self): """Gets the href of this BTListResponseBTFriendInfo. # noqa: E501 :return: The href of this BTListResponseBTFriendInfo. # noqa: E501 :rtype: str """ return self._href @href.setter def href(self, href): """Sets the href of this BTListResponseBTFriendInfo. :param href: The href of this BTListResponseBTFriendInfo. # noqa: E501 :type: str """ self._href = href @property def next(self): """Gets the next of this BTListResponseBTFriendInfo. # noqa: E501 :return: The next of this BTListResponseBTFriendInfo. # noqa: E501 :rtype: str """ return self._next @next.setter def next(self, next): """Sets the next of this BTListResponseBTFriendInfo. :param next: The next of this BTListResponseBTFriendInfo. # noqa: E501 :type: str """ self._next = next @property def items(self): """Gets the items of this BTListResponseBTFriendInfo. # noqa: E501 :return: The items of this BTListResponseBTFriendInfo. # noqa: E501 :rtype: list[BTFriendInfo] """ return self._items @items.setter def items(self, items): """Sets the items of this BTListResponseBTFriendInfo. :param items: The items of this BTListResponseBTFriendInfo. # noqa: E501 :type: list[BTFriendInfo] """ self._items = items @property def previous(self): """Gets the previous of this BTListResponseBTFriendInfo. # noqa: E501 :return: The previous of this BTListResponseBTFriendInfo. # noqa: E501 :rtype: str """ return self._previous @previous.setter def previous(self, previous): """Sets the previous of this BTListResponseBTFriendInfo. :param previous: The previous of this BTListResponseBTFriendInfo. # noqa: E501 :type: str """ self._previous = previous def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, BTListResponseBTFriendInfo): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
[ "ethan.keller@gmail.com" ]
ethan.keller@gmail.com
e80f2bcf6fc43eef822956011db151363d24a1e0
e749e94163a0e20c551875583baef4e02e72de5e
/StackOverflow/APIM-4/38243194-buggy/feeding.py
f3aea1f0d550f61c41001e815987fd3d72de076e
[]
no_license
tritims/TensorFlow-Program-Bugs
3445200179f4b7f5cc4ac1c6f076468ec19e51bb
158ba0a23e0cb74e73dbab08571b05fc36848f2a
refs/heads/master
2022-07-08T16:33:38.511696
2020-05-20T14:20:47
2020-05-20T14:20:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,214
py
import tensorflow as tf import numpy as np import time assert tf.__version__ == "1.8.0" np.random.seed(20180130) tf.set_random_seed(20180130) batch_size = 32 max_steps = 1000 def inference(x): x_ = tf.layers.flatten(x) W = tf.Variable(tf.truncated_normal([33 * 33, 21 * 21])) tf.summary.histogram("W", W) B = tf.Variable(tf.truncated_normal([21 * 21])) tf.summary.histogram("B", B) logits = tf.matmul(x_, W) + B tf.summary.histogram("logits", logits) return logits def train(losses, global_step): return tf.train.AdamOptimizer().minimize(loss=losses, global_step=global_step) def loss(logits, _labels): labels = tf.layers.flatten(_labels) losses = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=labels, name="losses") tf.summary.histogram("losses", losses) return tf.reduce_mean(losses) with tf.Graph().as_default(): global_step = tf.Variable(0, trainable=False) images = tf.placeholder(tf.float32, shape=[batch_size, 33, 33, 1]) labels = tf.placeholder(tf.float32, shape=[batch_size, 21, 21, 1]) logits = inference(images) losses = loss(logits, labels) train_op = train(losses, global_step) saver = tf.train.Saver(tf.all_variables()) summary_op = tf.summary.merge_all() init = tf.initialize_all_variables() sess = tf.Session() sess.run(init) summary_writer = tf.summary.FileWriter("./train", sess.graph) for step in range(max_steps): start_time = time.time() data_batch, label_batch = np.random.normal(0, 1, [batch_size, 33, 33, 1]), np.random.uniform(0, 1, [batch_size, 21, 21, 1]) _, loss_value = sess.run([train_op, losses], feed_dict={images: data_batch, labels: label_batch}) print("step %d: " % step, loss_value) summary_str = sess.run(summary_op) duration = time.time() - start_time
[ "zyhzyhzyh@pku.edu.cn" ]
zyhzyhzyh@pku.edu.cn
1782d05bf163995315dd1e189c464c57d5604142
eb2668b93899637f04e4c93e01063d0c8175ccde
/Irises_classification/iris_Random_Forest_GridSearch.py
76b1663e6c8020409fbc240a39e89b3110bcb459
[]
no_license
D-Katt/AI-Machine-Learning
aad1fe1c8f3f901cb7829919d1b69a106f0ddfab
1868c92366dccabf8c86c559eee640645b51bb51
refs/heads/master
2021-12-19T21:59:04.403188
2021-12-07T13:07:46
2021-12-07T13:07:46
235,104,866
3
2
null
null
null
null
UTF-8
Python
false
false
2,227
py
# Пример классификации объектов 'iris dataset' с использованием модели Random Forest. # Инструмент GridSearchCV используется для настройки гиперпараметра - кол-ва деревье. from sklearn.datasets import load_iris from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV data = load_iris() # Загружаем датасет X = data.data # Извлекаем входные данные (размеры) y = data.target # Извлекаем итоговые значения (наименования видов) # Делим данные на учебные и тестовые: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) # Содаем модель Random Forest: rf = RandomForestClassifier() # Задаем список значений для настройки параметра "количество деревьев": param_grid = {'n_estimators': [20, 30, 40, 50, 60, 70]} # Передаем GridSearchCV оцениваемую модель, список значений параметра # для выбора лучшего и критерий оценки: grid = GridSearchCV(rf, param_grid, scoring='accuracy') # Передаем учебные данные: grid.fit(X_train, y_train) print('Максимальная точность прогноза на тестовой выборке:', grid.best_score_) print('\nПараметры лучшей модели:', grid.best_estimator_) y_pred = grid.predict(X_test) # Прогноз на тестовой выборке # 'grid' хранит параметры лучшей модели. # Список для расшифровки числовых обозначений видов растений: iris_types = ['Iris-Setosa', 'Iris-Versicolour', 'Iris-Virginica'] print('\nПримеры прогноза:') for i in range(len(y_pred)): print(f'\tПрогноз: {iris_types[y_pred[i]]}. Фактическое значение: {iris_types[y_test[i]]}')
[ "noreply@github.com" ]
D-Katt.noreply@github.com
3fae8319caaf596170050255b0cbf87a2d51e369
2094596506d1a930fa736946fb8959b60273872c
/rango/migrations/0005_userprofile.py
fc6137ad733293947e459305fcb5c277c2506b19
[]
no_license
KaijiaDong/rango
b93af24a1c8cc8ec8797b84de63c706ba0f54eb7
1ed77612fe10f883dc879319768563cfcf8d287d
refs/heads/master
2021-01-11T16:08:32.852551
2017-02-13T22:26:46
2017-02-13T22:26:46
80,016,427
0
0
null
null
null
null
UTF-8
Python
false
false
923
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.10 on 2017-02-12 22:47 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('rango', '0004_auto_20170126_1545'), ] operations = [ migrations.CreateModel( name='UserProfile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('website', models.URLField(blank=True)), ('picture', models.ImageField(blank=True, upload_to='profile_images')), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
[ "Kevin@glaroam2-130-133.wireless.gla.ac.uk" ]
Kevin@glaroam2-130-133.wireless.gla.ac.uk
71afaf605a6f9dd78f457fb4df7c3d357a80ad76
7cbdd8c4268ad6168ce4cd838c3fd96a269f2e5d
/pong_no_walls_CPSC386.py
d916b240cc33d6f46695f613fc7980b1b02e707a
[]
no_license
jakobpatino/CPSC386_pong_no_walls
5b20a8c8e2b128c3255c7a554464b1bb57edb3cc
75d5c36eddfd90d9bbedd3d54867a2e6f61e1bc1
refs/heads/master
2022-02-21T16:11:06.134964
2019-09-17T19:46:44
2019-09-17T19:46:44
208,929,565
0
0
null
null
null
null
UTF-8
Python
false
false
15,210
py
import pygame import sys import random from pygame.locals import* pygame.init() mainClock = pygame.time.Clock() # set up window WINDOWWIDTH = 800 WINDOWHEIGHT = 550 windowSurface = pygame.display.set_mode((WINDOWWIDTH, WINDOWHEIGHT), 0, 32) pygame.display.set_caption('Pong No Walls') # set colors and text font WHITE = (225, 225, 225) BLACK = (0, 0, 0) GREEN = (0, 128, 0) basicFont = pygame.font.SysFont(None, 60) # add sound files ball_bounce = pygame.mixer.Sound('audio/ball_bounce.wav') round_win = pygame.mixer.Sound('audio/round_win.wav') round_lose = pygame.mixer.Sound('audio/round_lose.wav') match_win = pygame.mixer.Sound('audio/match_win.wav') match_lose = pygame.mixer.Sound('audio/match_lose.wav') win = pygame.mixer.Sound('audio/victory.wav') loss = pygame.mixer.Sound('audio/loss.wav') # add player paddles and their images player_right = pygame.Rect(750, 200, 38, 120) player_paddle_right = pygame.image.load('images/paddle_player.jpg') player_paddle_right_fit = pygame.transform.scale(player_paddle_right, (38, 120)) player_top = pygame.Rect(600, 12, 120, 38) player_paddle_top = pygame.image.load('images/paddle_player_top.jpg') player_paddle_top_fit = pygame.transform.scale(player_paddle_top, (120, 38)) player_bottom = pygame.Rect(600, 500, 120, 38) player_paddle_bottom = pygame.image.load('images/paddle_player_bottom.jpg') player_paddle_bottom_fit = pygame.transform.scale(player_paddle_bottom, (120, 38)) # add ai paddles and their images ai_left = pygame.Rect(12, 200, 38, 120) ai_paddle_left = pygame.image.load('images/paddle_ai.jpg') ai_paddle_left_fit = pygame.transform.scale(ai_paddle_left, (38, 120)) ai_top = pygame.Rect(80, 12, 120, 38) ai_paddle_top = pygame.image.load('images/paddle_ai_top.jpg') ai_paddle_top_fit = pygame.transform.scale(ai_paddle_top, (120, 38)) ai_bottom = pygame.Rect(80, 500, 120, 38) ai_paddle_bottom = pygame.image.load('images/paddle_ai_bottom.jpg') ai_paddle_bottom_fit = pygame.transform.scale(ai_paddle_bottom, (120, 38)) # set up player movement variables moveLeft = False moveRight = False moveUp = False moveDown = False # set paddle speeds PLAYERSPEED = 7 AISPEED = 3 # set up initial ball stats ball_dir = ['up_right', 'up_left', 'down_right', 'down_left'] curr_dir = ball_dir[random.randrange(0, 4)] curr_speed = random.randrange(4, 9) curr_y = random.randrange(100, 450) curr_x = 400 # function that changes the direction of ball movement when it bounces on a left or right surface def bounce_side(direction): if direction == 'up_right': return 'up_left' elif direction == 'up_left': return 'up_right' elif direction == 'down_right': return 'down_left' elif direction == 'down_left': return 'down_right' else: return direction # function that changes the direction of ball movement when it bounces on a left or right surface def bounce_bottom(direction): if direction == 'up_right': return 'down_right' elif direction == 'up_left': return 'down_left' else: return direction # function that changes the direction of ball movement when it bounces on a bottom surface def bounce_top(direction): if direction == 'down_right': return 'up_right' elif direction == 'down_left': return 'up_left' else: return direction # set initial scores round_score_ai = 0 round_score_player = 0 match_score_ai = 0 match_score_player = 0 victory = False ai_win = False player_win = False # run game loop while not victory: # set up keyboard actions for event in pygame.event.get(): if event.type == QUIT: pygame.quit() sys.exit() if event.type == KEYDOWN: # change the keyboard variables if event.key == K_LEFT: moveRight = False moveLeft = True if event.key == K_RIGHT: moveLeft = False moveRight = True if event.key == K_UP: moveDown = False moveUp = True if event.key == K_DOWN: moveUp = False moveDown = True if event.type == KEYUP: if event.key == K_ESCAPE: pygame.quit() sys.exit() if event.key == K_LEFT: moveLeft = False if event.key == K_RIGHT: moveRight = False if event.key == K_UP: moveUp = False if event.key == K_DOWN: moveDown = False # paint background windowSurface.fill(BLACK) # set the text to read the current score round_score_ai_text = basicFont.render(str(round_score_ai), True, WHITE) round_score_player_text = basicFont.render(str(round_score_player), True, WHITE) # place the score on the screen if round_score_ai < 10: windowSurface.blit(round_score_ai_text, (350, 50)) else: windowSurface.blit(round_score_ai_text, (335, 50)) if round_score_player < 10: windowSurface.blit(round_score_player_text, (430, 50)) else: windowSurface.blit(round_score_player_text, (415, 50)) # paint match points on the screen; fill in circles when point scored if match_score_ai < 1: pygame.draw.circle(windowSurface, WHITE, (380, 100), 5, 1) else: pygame.draw.circle(windowSurface, WHITE, (380, 100), 5) if match_score_ai < 2: pygame.draw.circle(windowSurface, WHITE, (360, 100), 5, 1) else: pygame.draw.circle(windowSurface, WHITE, (360, 100), 5) if match_score_ai < 3: pygame.draw.circle(windowSurface, WHITE, (340, 100), 5, 1) else: pygame.draw.circle(windowSurface, WHITE, (340, 100), 5) if match_score_player < 1: pygame.draw.circle(windowSurface, WHITE, (420, 100), 5, 1) else: pygame.draw.circle(windowSurface, WHITE, (420, 100), 5) if match_score_player < 2: pygame.draw.circle(windowSurface, WHITE, (440, 100), 5, 1) else: pygame.draw.circle(windowSurface, WHITE, (440, 100), 5) if match_score_player < 3: pygame.draw.circle(windowSurface, WHITE, (460, 100), 5, 1) else: pygame.draw.circle(windowSurface, WHITE, (460, 100), 5) # put the paddles on the screen windowSurface.blit(player_paddle_right_fit, player_right) windowSurface.blit(player_paddle_top_fit, player_top) windowSurface.blit(player_paddle_bottom_fit, player_bottom) windowSurface.blit(ai_paddle_left_fit, ai_left) windowSurface.blit(ai_paddle_top_fit, ai_top) windowSurface.blit(ai_paddle_bottom_fit, ai_bottom) # paint the net on screen for i in range(27): pygame.draw.rect(windowSurface, WHITE, (397, (20 * i) + 10, 6, 10)) # gives a match point and plays win/lose sound; creates new ball stats if round_score_ai > 11 and round_score_ai >= round_score_player + 2: if match_score_ai == 0: match_score_ai = 1 round_score_ai = 0 round_score_player = 0 match_lose.play() elif match_score_ai == 1: match_score_ai = 2 round_score_ai = 0 round_score_player = 0 match_lose.play() elif match_score_ai == 2: ai_win = True victory = True loss.play() curr_dir = ball_dir[random.randrange(0, 4)] curr_speed = random.randrange(4, 9) curr_y = random.randrange(100, 450) curr_x = 400 if round_score_player > 11 and round_score_player >= round_score_ai + 2: if match_score_player == 0: match_score_player = 1 round_score_ai = 0 round_score_player = 0 match_win.play() elif match_score_player == 1: match_score_player = 2 round_score_ai = 0 round_score_player = 0 match_win.play() elif match_score_player == 2: player_win = True victory = True win.play() curr_dir = ball_dir[random.randrange(0, 4)] curr_speed = random.randrange(4, 9) curr_y = random.randrange(100, 450) curr_x = 400 # gives round points and plays round win/loss sounds if (curr_x > 400 and curr_y > 558) or curr_x > 808 or (curr_x > 400 and curr_y < -8): round_score_ai += 1 curr_dir = ball_dir[random.randrange(0, 4)] curr_speed = random.randrange(4, 9) curr_y = random.randrange(100, 450) curr_x = 400 if not (round_score_ai > 11 and round_score_ai >= round_score_player + 2): round_lose.play() if (curr_x <= 400 and curr_y > 558) or curr_x < -8 or (curr_x <= 400 and curr_y < -8): round_score_player += 1 curr_dir = ball_dir[random.randrange(0, 4)] curr_speed = random.randrange(4, 9) curr_y = random.randrange(100, 450) curr_x = 400 if not (round_score_player > 11 and round_score_player >= round_score_ai + 2): round_win.play() # moves ball based on current direction if curr_dir == 'up_right': curr_y -= curr_speed curr_x += curr_speed if curr_dir == 'up_left': curr_y -= curr_speed curr_x -= curr_speed if curr_dir == 'down_right': curr_y += curr_speed curr_x += curr_speed if curr_dir == 'down_left': curr_y += curr_speed curr_x -= curr_speed # draws ball at current position ball = pygame.draw.circle(windowSurface, WHITE, (curr_x, curr_y), 8) # bounces ball if it collides with paddles and plays bounce sound if curr_dir == 'up_right' or curr_dir == 'down_right': if (ball.colliderect(player_right) and curr_x <= player_right.left) or \ (ball.colliderect(player_top) and curr_x <= player_top.left) or \ (ball.colliderect(player_bottom) and curr_x <= player_bottom.left) or \ (ball.colliderect(ai_top) and curr_x <= ai_top.left) or \ (ball.colliderect(ai_bottom) and curr_x <= ai_bottom.left): curr_dir = bounce_side(curr_dir) ball_bounce.play() if curr_dir == 'up_left' or curr_dir == 'down_left': if (ball.colliderect(ai_left) and curr_x >= ai_left.right) or \ (ball.colliderect(ai_top) and curr_x >= ai_top.right) or \ (ball.colliderect(ai_bottom) and curr_x >= ai_bottom.right) or \ (ball.colliderect(player_top) and curr_x >= player_top.right) or \ (ball.colliderect(player_bottom) and curr_x >= player_bottom.right): curr_dir = bounce_side(curr_dir) ball_bounce.play() if curr_dir == 'up_left' or curr_dir == 'up_right': if (ball.colliderect(player_top) and curr_y >= player_top.bottom) or \ (ball.colliderect(player_right) and curr_y >= player_right.bottom) or \ (ball.colliderect(ai_top) and curr_y >= ai_top.bottom) or \ (ball.colliderect(ai_left) and curr_y >= ai_left.bottom): curr_dir = bounce_bottom(curr_dir) ball_bounce.play() if curr_dir == 'down_left' or curr_dir == 'down_right': if (ball.colliderect(player_bottom) and curr_y <= player_bottom.top) or \ (ball.colliderect(player_right) and curr_y <= player_right.top) or \ (ball.colliderect(ai_bottom) and curr_y <= ai_bottom.top) or \ (ball.colliderect(ai_left) and curr_y <= ai_left.top): curr_dir = bounce_top(curr_dir) ball_bounce.play() # sets up player movement if moveUp and player_right.top > 13\ and not player_right.colliderect(player_top): player_right.top -= PLAYERSPEED if moveDown and player_right.bottom < 537\ and not player_right.colliderect(player_bottom): player_right.bottom += PLAYERSPEED if moveLeft and player_top.left > 400 and player_bottom.left > 400 \ and not player_top.colliderect(ai_top) and not player_bottom.colliderect(ai_bottom): player_top.left -= PLAYERSPEED player_bottom.left -= PLAYERSPEED if moveRight and player_top.right < WINDOWWIDTH and player_bottom.right < (WINDOWWIDTH - 13)\ and not player_top.colliderect(player_right) and not player_bottom.colliderect(player_right): player_top.right += PLAYERSPEED player_bottom.right += PLAYERSPEED # sets up ai movement that tracks ball if curr_y > (ai_left.top + 60) and ai_left.bottom < (WINDOWHEIGHT - 13) \ and not ai_left.colliderect(ai_bottom): ai_left.top += AISPEED if curr_y < (ai_left.top + 60) and ai_left.top > 12 \ and not ai_left.colliderect(ai_top): ai_left.top -= AISPEED if curr_x < (ai_top.right - 60) and ai_top.left > 0 and ai_bottom.left > 12 \ and not ai_top.colliderect(ai_left) and not ai_bottom.colliderect(ai_left): ai_top.left -= AISPEED ai_bottom.left -= AISPEED if curr_x > (ai_top.right - 60) and ai_top.right < 400 and ai_bottom.right < 400 \ and not ai_top.colliderect(player_top) and not ai_bottom.colliderect(player_bottom): ai_top.right += AISPEED ai_bottom.right += AISPEED # draw window onto screen pygame.display.update() mainClock.tick(40) # sets up play again while victory: # set background color windowSurface.fill(BLACK) # reset defaults moveLeft = False moveRight = False moveUp = False moveDown = False player_right.top = 200 player_right.left = 750 player_top.top = 12 player_top.left = 600 player_bottom.top = 500 player_bottom.left = 600 ai_left.top = 200 ai_bottom.left = 12 ai_top.top = 12 ai_top.left = 80 ai_bottom.top = 500 ai_bottom.left = 80 curr_dir = ball_dir[random.randrange(0, 4)] curr_speed = random.randrange(4, 9) curr_y = random.randrange(100, 450) curr_x = 400 round_score_ai = 0 round_score_player = 0 match_score_ai = 0 match_score_player = 0 # display 'play again' prompt and winner if ai_win: play_again = basicFont.render('AI Wins! Play Again? (y/n)', True, WHITE) windowSurface.blit(play_again, (140, 225)) if player_win: play_again2 = basicFont.render('Player Wins! Play Again? (y/n)', True, WHITE) windowSurface.blit(play_again2, (95, 225)) # sets up keyboard functions for event in pygame.event.get(): if event.type == QUIT: pygame.quit() sys.exit() if event.type == KEYUP: if event.key == K_ESCAPE or event.key == K_n: pygame.quit() sys.exit() if event.key == K_y: ai_win = False player_win = False victory = False # draw window onto screen pygame.display.update() mainClock.tick(40)
[ "jakobpatino@csu.fullerton.edu" ]
jakobpatino@csu.fullerton.edu
907b8197e25d556bb14e30c9fdde457f9cc9d5a0
83abb7f62d8e071bd6c6ad59dad26ccb8912fafe
/final_project/machinetranslation/tests.py
9f7a62e4681335efb98143d48bcd62b8852b04b7
[ "Apache-2.0" ]
permissive
Miczu80/xzceb-flask_eng_fr
9e7a393716d4ebc97994baa14892e5917afda829
f7052e9c3c4b3c30e79afd6649cf335640dff3a1
refs/heads/master
2023-08-18T07:38:19.466379
2021-10-13T13:33:41
2021-10-13T13:33:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
670
py
import unittest from translator import english_to_french, french_to_english class TestE2F(unittest.TestCase): def test1(self): self.assertEqual(english_to_french('Hello'),'Bonjour') self.assertEqual(english_to_french('Foot'),'Pied') #self.assertEqual(english_to_french(''),'') #self.assertEqual(english_to_french(0),0) class TestF2E(unittest.TestCase): def test2(self): self.assertEqual(french_to_english('Bonjour'),'Hello') self.assertEqual(french_to_english('Pied'),'Foot') #self.assertEqual(french_to_english(''),'') #self.assertEqual(french_to_english(0),0) unittest.main()
[ "zupa.cebulowa@gmail.com" ]
zupa.cebulowa@gmail.com
840a00c6cac4c9bf3dbc754935420be3c726f029
7a88b6a2fde31076a7fb9d61cb0f5b1837478d3e
/core/views.py
b5aa0511106b7aa99bb84238cc636612fb622afa
[]
no_license
0xmostafaa/portfolio
ebd3a65d3fe40ee60448b0ec5a2c490166ee6d57
30f09829a5df3e32955253fdd7b36b794d8db499
refs/heads/main
2023-03-20T16:49:43.380548
2021-03-17T16:04:13
2021-03-17T16:04:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
124
py
from django.shortcuts import render # Create your views here. def home(request): return render(request, 'core/base.html')
[ "67633637+mostafa218@users.noreply.github.com" ]
67633637+mostafa218@users.noreply.github.com
1a4c466e2dff4100a4f385c1e970f92e9d7b95c4
72f4cd2c48b2007e6ceb4fde5781a9f641d4f624
/delete_oparation_list.py
1c8ec5b8b698e411e0ba3d904cfc6e1a946c77d3
[]
no_license
haidarontor/python
8710391d03d5b449da21ab0b7c1976644994a5cc
2fe55a372b8712adf367278b69f45f79f8151b88
refs/heads/master
2021-08-08T21:41:07.772959
2017-11-11T09:56:44
2017-11-11T09:56:44
110,284,529
0
0
null
null
null
null
UTF-8
Python
false
false
231
py
list_1=['physics','Chemistry','biology',1990,2000,2001] name=['DAHAKA','COMILLA','RAJSHAHI'] name1=['barisal'] print list_1 del list_1[4] print "after deleting value at index 1:" print list_1 print name + name1 print name1*4
[ "haidarontor@gmail.com" ]
haidarontor@gmail.com
874c5926d6d5481c64f223a05795ff06ed9e3ea5
1059bb7b11f424ebeaaf2ee3e8cddf99133b1989
/ssbn_neuron_model/test_ssbn.py
e0a41825d2a21c0778f2e029dd66fa1edaefd772
[]
no_license
jyotikab/stn_gpe_ssbn
2357b11d70e972030df656b0ff0a13b46a3155e0
1324ce2538e8042f6770b2353fdff1db60df0f6a
refs/heads/master
2021-07-17T13:29:14.364571
2020-11-02T14:35:40
2020-11-02T14:35:40
223,620,440
6
0
null
null
null
null
UTF-8
Python
false
false
2,181
py
#To test the SSBN neuron model import numpy as np import nest import pylab as pl labelsize = 14. ticksize = 14. tsim = 500000. # Custom chosen colors col_lis = [np.array([63.,25.,255.])/255., np.array([204.,99.,20.])/255.,np.array([178.,120.,76.])/255., np.array([200.,0.,0.])/255.,np.array([153.,88.,61.])/255., np.array([204.,187.,20.])/255.] # Range of input for the FI curve amp_arr = np.arange(5000.,10000.,1000.) sup_fr_lis =[] fig = pl.figure(1,(8,5)) ax1 = fig.add_subplot(111) # Range of burst lengths (1 to 5) for kk,jj in enumerate(np.arange(5.)): fr_lis = [] seed = np.random.randint(0,9999999,1) print seed for ii in amp_arr: nest.ResetKernel() nest.SetKernelStatus({'resolution':0.1,'grng_seed':seed[0]}) # Setting a new random seed each time # Poisson generator with rate as amp_arr dc_gen = nest.Create("poisson_generator",params = {'rate':ii}) # Create ssbn neuron aa = nest.Create("ssbn",params = {'spb':jj+1}) sd = nest.Create('spike_detector') # Connect ssbn to spike detector nest.Connect(aa,sd) # Poisson generator to ssbn nest.Connect(dc_gen,aa) # Simulate nest.Simulate(tsim) # Read spikes spikes = nest.GetStatus(sd,'events')[0] num_spikes = len(spikes['senders']) print num_spikes # Calculate rate f_rate = (num_spikes*1000)/tsim fr_lis.append(f_rate) # Plot FI ax1.plot(amp_arr, fr_lis,lw = 5., alpha = 0.7, color = col_lis[kk], label = str(jj+1)) pl.legend(loc = 'best', prop = {'size':10.}) #pl.xlim(300,500) ax1.set_ylim(0,40) ax1.set_ylabel("Firing rate (Hz)",size = labelsize) ax1.set_xticks(amp_arr[::2]) ax1.set_yticks(np.arange(0,40,10)) for tl in ax1.get_xticklabels(): tl.set_fontsize(ticksize) ax1.xaxis.get_major_formatter().set_powerlimits((0,1)) ax1.set_xlabel("Poisson rate (Hz)",fontsize = labelsize) ax1.text(6.2e4,40,'B',fontsize = labelsize + 3, style = 'normal') for tl in ax1.get_yticklabels(): tl.set_fontsize(ticksize) ax1.spines['top'].set_visible(False) ax1.spines['right'].set_visible(False) ax1.tick_params(axis = 'both', which = 'both',top = 'off', right = 'off') pl.savefig("FIs_psdb.png") pl.show()
[ "jyotika.bahuguna@gmail.com" ]
jyotika.bahuguna@gmail.com
89a605e60342463909ff57250928f34f0fa44704
9f7a1399e3577f402034eed4a88cf03af2a85445
/student/views/student.py
9cf3f48275acb6fd0a389e88174a87692f95eea4
[]
no_license
mohamedellakany/profs-studs
192784263e6dcadfb32942fa6678fae9dec74e18
25259c7fdba4be90a37f24b325b24cc67c4daa8a
refs/heads/main
2023-06-17T21:57:03.992413
2021-07-21T03:38:27
2021-07-21T03:38:27
387,981,123
0
0
null
null
null
null
UTF-8
Python
false
false
784
py
from django.shortcuts import redirect, render from django.views.generic import TemplateView from django.db.models import Count from student.models import Quiz class SignUpView(TemplateView): template_name = 'registration/signup.html' def home(request): if request.user.is_authenticated: if request.user.is_teacher: return redirect('teachers:quiz_change_list') elif request.user.is_student: return redirect('students:quiz_list') else: return redirect('admin:index') return render(request,'student/quiz_list.html',{ 'quizzes':Quiz.objects.annotate(questions_count=Count('questions')) \ .filter(questions_count__gt=0)}) class AboutView(TemplateView): template_name = 'student/about.html'
[ "mohamed.ellaqany@gmail.com" ]
mohamed.ellaqany@gmail.com
945492db9a3d84385065953cc931392b9f7472df
8a27b48ebabb381f6e495cc7a1c35634136e10ad
/RC4.py
5acbb6ff18f9b9f1387dbff8931f1b4752834051
[]
no_license
camilacarwalho/cryptography-data-securityClass
131db63b9cfd2d5e18c06b3662dbf33c9dc734eb
786555fc84979654a3bf4e99f42718e8a40f1820
refs/heads/master
2020-05-25T05:38:22.797552
2019-05-27T02:14:37
2019-05-27T02:14:37
187,652,489
0
0
null
null
null
null
UTF-8
Python
false
false
2,364
py
import numpy as np # biblioteca Python para realizar cálculos em Arrays def KSA(key): #função que cria a lista S com valores de 0 a 255 tam_key = len(key) S = list(range(256)) j = 0 for i in range(256): j = (j + S[i] + key[ i % tam_key]) % 256 S[i], S[j] = S[j], S[i] return S def PRGA(S, n): #função que gera keystream i = 0 j = 0 key = [] while n > 0: n -= 1 # i = (i + 1) % 256 j = (j + S[i]) % 256 S[i], S[j] = S[j], S[i] K = S[(S[i] + S[j]) % 256] key.append(K) return key def criandoArray(s): #função que transforma s em array return [ord(c) for c in s] def deArrayParaString(array): #função que retorna o array como string text = "" for c in range(len(array)): text += array[c] return text def cifrar(message, keystream): #função de cifragem message = np.array([ord(c) for c in message]) cipher = keystream ^ message print("\nResult: ", cipher) return cipher def iniciarKeystream(key, message): #função que us a keystream gerada em PRGA e converte em array S = KSA(key) keystream = np.array(PRGA(S, len(message))) print("\nKEYSTREAM: ", keystream) return keystream def decrypt(cipher, keystream): #função que pega a keystream gerada e decifra para o texto original decrypterUni = keystream ^ cipher decrypter = [chr(c) for c in decrypterUni] return deArrayParaString(decrypter) def rc4(key, plaintext): #função que serve como controlador para o algoritmo rc4 keyArray = criandoArray(key) keystream = iniciarKeystream(keyArray, plaintext) cipher = cifrar(plaintext, keystream) cipherHex = (cipher.astype(np.uint8).data.hex()) print("\nHEX: ", cipherHex) decifrar = "" while decifrar != key: option = input("\nDeseja descriptografar? [s/n]") if option == 's': decifrar = input("\nChave:") print("\nResultado:", decrypt(cipher, keystream)) exit() elif option == 'n': print('------------FIM------------') exit() else: print("Inválido!") def main(): while True: print('------------RC4------------') key = input("Chave:") plaintext = input("Texto:") rc4(key, plaintext) main()
[ "camilacarwalho3@gmail.com" ]
camilacarwalho3@gmail.com
baffe740816552364ec2133b592c44a87646c925
bd45db89d88c6e78f9c5a1c36b3b0a05da437adf
/testrun.py
629d30b6bed0ffc1cb7b925b6732ee808d0632f8
[]
no_license
williamqin123/mandelbrot
90d8991b7c8d0bce2c3524352da204dde6d10b69
4a46b09b1fbee9d9b61f80adf5c0053fd80430ce
refs/heads/master
2022-12-21T21:00:24.839964
2020-09-10T23:41:30
2020-09-10T23:41:30
294,546,525
0
0
null
null
null
null
UTF-8
Python
false
false
337
py
import timeit, random def factored(): x = random.random() y = random.random() return (pow(x, 1 / 3) + (x - 1)**3 + 1) / 2 def expanded(): x = random.random() y = random.random() return (pow(x, 1 / 3) + x**3 - 3 * x**2 + 3 * x) / 2 print(timeit.timeit(factored, number=1000000)) print(timeit.timeit(expanded, number=1000000))
[ "williamqin@Williams-MacBook-Pro.local" ]
williamqin@Williams-MacBook-Pro.local
576bf9ca98955f15a9691b7a2aa05f7ea2cdbe8a
b212decbc0c5850cc462bf0cd6695c33863de521
/mainApp/models.py
aa3e1d9fc6ddb6b231e03ece0c24500921216fb7
[]
no_license
YusakuNo1/RumorBoard-Django
17bd7337db0a83d71ec05fcc149c9ce4fdb7e7df
0cdbd2a4ef1b3defa511d9bc8e7d1288a4a112bb
refs/heads/master
2021-01-25T12:02:19.064347
2014-03-16T14:00:01
2014-03-16T14:00:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,477
py
from django.db import models from django.contrib.auth.models import User, AbstractBaseUser, PermissionsMixin, BaseUserManager from django_boto.s3.storage import S3Storage import config import rumorboard.settings as settings s3 = S3Storage(bucket_name='babylyricsus') class UserProfileManager(BaseUserManager): def create_user(self, email, password=None): if not email: raise ValueError('Users must have an email address') user = self.model( email = UserProfileManager.normalize_email(email), ) user.set_password(password) user.save(using=self._db) return user def create_superuser(self, email, password): user = self.create_user(email, password=password, ) user.is_admin = True user.save(using=self._db) return user class UserProfile(AbstractBaseUser, PermissionsMixin, models.Model): email = models.EmailField( verbose_name='email address', max_length=config.EMAIL_FIELD_LENGTH, unique=True, db_index=True, ) first_name = models.CharField(max_length=config.NAME_FIELD_LENGTH, blank=True) last_name = models.CharField(max_length=config.NAME_FIELD_LENGTH, blank=True) profileImage = models.ImageField(storage=s3, upload_to = settings.AWS_S3_FOLDER + '/profile/', default=None, null=True, blank=True) description = models.CharField(max_length=config.USER_DESCRIPTION_LENGTH, default='', blank=True) is_active = models.BooleanField(default=True) is_admin = models.BooleanField(default=False) objects = UserProfileManager() USERNAME_FIELD = 'email' REQUIRED_FIELDS = [] def get_full_name(self): # The user is identified by their email address return self.email def get_short_name(self): # The user is identified by their email address return self.email def __unicode__(self): return self.email def has_perm(self, perm, obj=None): "Does the user have a specific permission?" # Simplest possible answer: Yes, always return True def has_module_perms(self, app_label): "Does the user have permissions to view the app `app_label`?" # Simplest possible answer: Yes, always return True @property def is_staff(self): "Is the user a member of staff?" # Simplest possible answer: All admins are staff return self.is_admin class Rumor(models.Model): created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) owner = models.ForeignKey(settings.AUTH_USER_MODEL) title = models.CharField(max_length=config.TITLE_LENGTH, null=True, blank=True) content = models.CharField(max_length=config.CONTENT_LENGTH) contentImage = models.ImageField(storage=s3, upload_to = settings.AWS_S3_FOLDER + '/rumor/', default=None, null=True, blank=True) anonymous = models.BooleanField(default=True) thumbsUpUser = models.ManyToManyField(UserProfile, related_name='thumbsUpUser', blank=True) thumbsDownUser = models.ManyToManyField(UserProfile, related_name='thumbsDownUser', blank=True) def __unicode__(self): return self.title if (self.title is not None and len(self.title) > 0) else self.content class RumorComment(models.Model): created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) owner = models.ForeignKey(settings.AUTH_USER_MODEL) rumor = models.ForeignKey(Rumor) content = models.CharField(max_length=config.CONTENT_LENGTH, null=True, blank=True) #rating = models.IntegerField(default=config.RumorCommentRating.NoRating) def __unicode__(self): return self.content #class RumorPoll(models.Model): # rumor = models.OneToOneField(Rumor) # # def __unicode__(self): # return self.rumor.title if (self.rumor.title is not None and len(self.rumor.title) > 0) else self.rumor.content class RumorPollColumn(models.Model): created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) rumor = models.ForeignKey(Rumor) name = models.CharField(max_length=config.TITLE_LENGTH) columnIndex = models.IntegerField() rumorPollUser = models.ManyToManyField(UserProfile, related_name='rumorPollUser', blank=True) def __unicode__(self): return self.rumor.title + ': ' + self.name
[ "YusakuNo1@hotmail.com" ]
YusakuNo1@hotmail.com
5e997385319a3c9eb565450d2b53be851a281dbf
570d3e7d3fd90e7173bc82ae6daf59a144d8c5e0
/Exe10.py
bbffffcf637d3e4273b922df37f03bb4755e1e5a
[]
no_license
mateusascacibas/Python-Collections
97a61cae737ec8e37603e879c09ce41db4b85aa8
d88cc66f7d16bb9f32d3578f76ef14fca4c8bf05
refs/heads/main
2023-03-02T05:37:59.179868
2021-02-10T17:05:36
2021-02-10T17:05:36
337,793,409
0
0
null
null
null
null
UTF-8
Python
false
false
164
py
vet = list(range(15)) cont = 0 while cont < 15: vet[cont] = float(input("Digite um valor: ")) cont = 1 + cont media = (sum(vet)) / 15 print(media)
[ "noreply@github.com" ]
mateusascacibas.noreply@github.com
f54902e671cb0a84b84727de899d0b0cac79c611
1916d9c93e9c656a2d7f085001c8de46a7fc6f7b
/.svn/pristine/47/47b27eb4c4965e0c8076ec4b1ebcc2f47c3a76ae.svn-base
5d62d53cc0741e620ca2cbcae2e15d78bca06498
[ "Apache-2.0" ]
permissive
starryhwj/MobilePhone
ad09de82fd5037c9a9c01bfa054805b4e2e41e84
211c1367e193c4e2b4833afae56367fdf9ac1a53
refs/heads/master
2022-11-30T03:21:22.288819
2020-01-10T10:23:01
2020-01-10T10:23:01
233,017,246
0
0
null
null
null
null
UTF-8
Python
false
false
1,211
# Generated by Django 2.1.14 on 2019-11-16 12:08 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('Web', '0027_auto_20191116_1107'), ] operations = [ migrations.CreateModel( name='MaintenanceNumberMissionKeyword', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('Name', models.TextField(max_length=150, verbose_name='视频分类名')), ('Owner', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, verbose_name='拥有者')), ], ), migrations.RemoveField( model_name='maintenancenumbermission', name='VideoClassifications', ), migrations.AddField( model_name='maintenancenumbermission', name='KeywordClassifications', field=models.ManyToManyField(to='Web.MaintenanceNumberMissionKeyword'), ), ]
[ "241964143@qq.com" ]
241964143@qq.com
6408af203bb56ea22931d42dab44069ede4d8c10
e88410fa2ab8415598eda8779895f5568bd0ea84
/function2.py
d662cae12e1a3f4e855f569d5a8181f3865a28c0
[]
no_license
songjingmin/No2.test
2369e6718a33d422faf7ff75782869652e049bda
5b957aeaa765ed16b116f0a3c7e9521def12ce09
refs/heads/master
2020-03-18T15:56:49.965938
2018-06-04T17:28:57
2018-06-04T17:28:57
134,938,874
0
1
null
null
null
null
UTF-8
Python
false
false
424
py
def printMax(a,b): if a > b : print("a,'is maximum'") else: print("b,'is maximum'") printMax(3,4) x = 5 y = 7 printMax(x,y) def func(x): print ("'x is', x") x = 2 print ("'Changed local x to', x") x = 50 func(x) print ("'x is still', x") #使用global语句 def func(): global x print ("'x is', x") x = 2 print ("'Changed local x to', x") x = 50 func() print ("'Value of x is', x")
[ "475949283@qq.com" ]
475949283@qq.com
bbcae70c304dfb85edd4bb595009b81eca55269c
1580b76258d67c3343f218e4c1c2bcc8dfa1954f
/application/register_form.py
339b96e0e1837fcd76e3255283ace176ab419564
[]
no_license
MeresaG/Learning-Management-System
6d41dfe8a489af7ad0e6c10366a22927af982622
d228afac3b4082a77366b20bfd77937a7c30d409
refs/heads/master
2021-05-23T14:55:46.223365
2020-04-05T22:00:38
2020-04-05T22:00:38
253,348,604
0
0
null
null
null
null
UTF-8
Python
false
false
1,026
py
from flask_wtf import FlaskForm from wtforms import StringField, PasswordField, HiddenField, SubmitField from wtforms.validators import ValidationError, DataRequired, Email, EqualTo from application.user_model import User class RegistrationForm(FlaskForm): username = StringField('Username', validators=[DataRequired()]) email = StringField('Email', validators=[DataRequired(), Email()]) password = PasswordField('Password', validators=[DataRequired()]) password2 = PasswordField( 'Repeat Password', validators=[DataRequired(), EqualTo('password')]) submit = SubmitField('Register') def validate_username(self, username): user = User.query.filter_by(username=username.data).first() if user is not None: raise ValidationError('Please use a different username.') def validate_email(self, email): user = User.query.filter_by(email=email.data).first() if user is not None: raise ValidationError('Please use a different email address.')
[ "mera@wenam.fritz.box" ]
mera@wenam.fritz.box
805cf0dffaf8c4f48b31a1c03c15ac893f37b03a
97f026d0508b9f3e9cf82e4e4f5bb4c94222517e
/saleor/graphql/channel/tests/test_channel_availability.py
dd7d3ec4c686ceb51e28dd6de468d26bd85dea36
[ "CC-BY-4.0", "BSD-3-Clause" ]
permissive
ibutiti/saleor
caa8e1ae61ce053dd166ebc11b43ec32e0115518
fffe9a54c01aa07131102474dcb1519e0b59da74
refs/heads/master
2022-01-06T14:37:14.912046
2021-05-18T10:24:01
2021-05-18T10:24:01
111,393,664
0
0
BSD-3-Clause
2019-07-05T20:24:06
2017-11-20T10:09:41
TypeScript
UTF-8
Python
false
false
3,459
py
import graphene from ....channel.error_codes import ChannelErrorCode from ...tests.utils import get_graphql_content CHANNEL_ACTIVATE_MUTATION = """ mutation ActivateChannel($id: ID!) { channelActivate(id: $id){ channel { id name isActive } errors{ field code message } } } """ def test_channel_activate_mutation( permission_manage_channels, staff_api_client, channel_USD ): # given channel_USD.is_active = False channel_USD.save() channel_id = graphene.Node.to_global_id("Channel", channel_USD.id) variables = {"id": channel_id} # when response = staff_api_client.post_graphql( CHANNEL_ACTIVATE_MUTATION, variables=variables, permissions=(permission_manage_channels,), ) content = get_graphql_content(response) # then data = content["data"]["channelActivate"] assert not data["errors"] assert data["channel"]["name"] == channel_USD.name assert data["channel"]["isActive"] is True def test_channel_activate_mutation_on_activated_channel( permission_manage_channels, staff_api_client, channel_USD ): # given channel_id = graphene.Node.to_global_id("Channel", channel_USD.id) variables = {"id": channel_id} # when response = staff_api_client.post_graphql( CHANNEL_ACTIVATE_MUTATION, variables=variables, permissions=(permission_manage_channels,), ) content = get_graphql_content(response) # then data = content["data"]["channelActivate"] assert data["errors"][0]["field"] == "id" assert data["errors"][0]["code"] == ChannelErrorCode.INVALID.name CHANNEL_DEACTIVATE_MUTATION = """ mutation DeactivateChannel($id: ID!) { channelDeactivate(id: $id){ channel { id name isActive } errors{ field code message } } } """ def test_channel_deactivate_mutation( permission_manage_channels, staff_api_client, channel_USD ): # given channel_id = graphene.Node.to_global_id("Channel", channel_USD.id) variables = {"id": channel_id} # when response = staff_api_client.post_graphql( CHANNEL_DEACTIVATE_MUTATION, variables=variables, permissions=(permission_manage_channels,), ) content = get_graphql_content(response) # then data = content["data"]["channelDeactivate"] assert not data["errors"] assert data["channel"]["name"] == channel_USD.name assert data["channel"]["isActive"] is False def test_channel_deactivate_mutation_on_deactivated_channel( permission_manage_channels, staff_api_client, channel_USD ): # given channel_USD.is_active = False channel_USD.save() channel_id = graphene.Node.to_global_id("Channel", channel_USD.id) variables = {"id": channel_id} # when response = staff_api_client.post_graphql( CHANNEL_DEACTIVATE_MUTATION, variables=variables, permissions=(permission_manage_channels,), ) content = get_graphql_content(response) # then data = content["data"]["channelDeactivate"] assert data["errors"][0]["field"] == "id" assert data["errors"][0]["code"] == ChannelErrorCode.INVALID.name
[ "noreply@github.com" ]
ibutiti.noreply@github.com
78d1fa5c5462ddf22271eca10fa662e2300d17e3
8c9a69e4fcf4b4e3706ae74fa018f2c91c763328
/web scrapping projects/flipkart.py
7af13de29cd42bfadcb0634921194a60c3336a57
[]
no_license
scottwedge/python-programs
cf77c65b3e7f326d9a8f56d07873006355e45556
105369d554e449b3dbad0a720590175f78137f13
refs/heads/master
2022-04-26T03:57:34.770147
2020-04-22T17:55:02
2020-04-22T17:55:02
257,976,440
0
0
null
2020-04-22T17:45:57
2020-04-22T17:45:57
null
UTF-8
Python
false
false
798
py
import bs4 import requests from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer page_url="https://www.flipkart.com/google-pixel-3a-just-black-64-gb/product-reviews/itmfgk4jfgstaack?pid=MOBFFGFP7UHHJUZU&page=" analyzer=SentimentIntensityAnalyzer() pros=0 cons=0 for i in range(1,2): page= requests.get(page_url+str(i)) # print(page_url+str(i)) soup = bs4.BeautifulSoup(page.content,'lxml') scor = soup.select(".bhgxx2 ._390CkK .qwjRop div div") for review in scor: # print(review.getText()) senti=analyzer.polarity_scores(review.getText()) if(senti["neg"]>senti["pos"]): cons+=1 elif(senti["neg"]<senti["pos"]): pros+=1 print("total positive comments are {} and negative comments are{}".format(pros,cons))
[ "davesarath@gmail.com" ]
davesarath@gmail.com
5dcdcc372d61a6b94c3766d3bfd238c0d5d1be3f
7df24fb0c87c85afc3e524cd7330f12cc25c1e49
/Python HackerRank Problem Solution/Math/TriangleQuest2.py
e70b1704e377590cc993c0c65130222ff59f5f5c
[]
no_license
Jay28497/Problem-solution-for-Python
94d3a87a2643b4fce8ce62fe44a8f3fed920ca55
71930c0f78e0f9b2b5bf4b00c54505167703f11a
refs/heads/main
2023-02-05T04:17:09.188785
2020-12-22T09:17:35
2020-12-22T09:17:35
308,985,811
1
0
null
null
null
null
UTF-8
Python
false
false
68
py
for i in range(1, int(input()) + 1): print((10 ** i // 9) ** 2)
[ "jaykanjariya28@gmail.com" ]
jaykanjariya28@gmail.com
b954dadb11467f6ea3ca8136aa3763c885548741
921def078f93fe46b880b44a3fb3fcf4890e5d92
/odin/libs/regions_of_interest/shapes_manager.py
2f0d186e848a581a23fca58fb31265f55f523a98
[ "MIT" ]
permissive
lucalianas/odin
6979aab06658c75bd0b98d8148da3e8695838bd2
bdd598801b8d3dec94e621d914c812e6c466221e
refs/heads/master
2021-06-03T13:11:03.513907
2020-09-17T09:13:50
2020-09-17T09:13:50
98,536,675
0
0
null
null
null
null
UTF-8
Python
false
false
7,712
py
try: import simplejson as json except ImportError: import json # Copyright (c) 2019, CRS4 # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of # the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. from errors import InvalidPolygonError from random import randint from requests import codes as rc from shapely.geometry import Polygon, Point, MultiPolygon from shapely.affinity import scale import numpy as np import cv2 class Shape(object): def __init__(self, segments): self.polygon = Polygon(segments) def get_bounds(self): bounds = self.polygon.bounds try: return { 'x_min': bounds[0], 'y_min': bounds[1], 'x_max': bounds[2], 'y_max': bounds[3] } except IndexError: raise InvalidPolygonError() def get_coordinates(self, scale_level=0): if scale_level != 0: polygon = self._rescale_polygon(scale_level) else: polygon = self.polygon return list(polygon.exterior.coords) def get_area(self, scale_level=0): if scale_level != 0: polygon = self._rescale_polygon(scale_level) else: polygon = self.polygon return polygon.area def get_length(self, scale_level=0): if scale_level != 0: polygon = self._rescale_polygon(scale_level) else: polygon = self.polygon polygon_path = np.array(polygon.exterior.coords[:]) _, radius = cv2.minEnclosingCircle(polygon_path.astype(int)) return radius*2 def get_bounding_box(self, x_min=None, y_min=None, x_max=None, y_max=None): p1, p2, p3, p4 = self.get_bounding_box_points(x_min, y_min, x_max, y_max) return self._box_to_polygon({ 'up_left': p1, 'up_right': p2, 'down_right': p3, 'down_left': p4 }) def get_bounding_box_points(self, x_min=None, y_min=None, x_max=None, y_max=None): bounds = self.get_bounds() xm = x_min if not x_min is None else bounds['x_min'] xM = x_max if not x_max is None else bounds['x_max'] ym = y_min if not y_min is None else bounds['y_min'] yM = y_max if not y_max is None else bounds['y_max'] return [(xm, ym), (xM, ym), (xM, yM), (xm, yM)] def get_random_point(self): bounds = self.get_bounds() point = Point( randint(int(bounds['x_min']), int(bounds['x_max'])), randint(int(bounds['y_min']), int(bounds['y_max'])) ) while not self.polygon.contains(point): point = Point( randint(int(bounds['x_min']), int(bounds['x_max'])), randint(int(bounds['y_min']), int(bounds['y_max'])) ) return point def get_random_points(self, points_count): points = [self.get_random_point() for _ in xrange(points_count)] return points def _box_to_polygon(self, box): return Polygon([box['down_left'], box['down_right'], box['up_right'], box['up_left']]) def _rescale_polygon(self, scale_level): scaling = pow(2, scale_level) return scale(self.polygon, xfact=scaling, yfact=scaling, origin=(0, 0)) def get_intersection_mask(self, box, scale_level=0, tolerance=0): if scale_level != 0: polygon = self._rescale_polygon(scale_level) else: polygon = self.polygon if tolerance > 0: polygon = polygon.simplify(tolerance, preserve_topology=False) box_polygon = self._box_to_polygon(box) box_height = int(box['down_left'][1] - box['up_left'][1]) box_width = int(box['down_right'][0] - box['down_left'][0]) if not polygon.intersects(box_polygon): return np.zeros((box_width, box_height), dtype=np.uint8) else: if polygon.contains(box_polygon): return np.ones((box_width, box_height), dtype=np.uint8) else: mask = np.zeros((box_width, box_height), dtype=np.uint8) intersection = polygon.intersection(box_polygon) if type(intersection) is MultiPolygon: intersection_paths = list(intersection) else: intersection_paths = [intersection] for path in intersection_paths: ipath = path.exterior.coords[:] ipath = [(int(x - box['up_left'][0]), int(y - box['up_left'][1])) for x, y in ipath] cv2.fillPoly(mask, np.array([ipath,]), 1) return mask def get_full_mask(self, scale_level=0, tolerance=0): if scale_level != 0: polygon = self._rescale_polygon(scale_level) scale_factor = pow(2, scale_level) else: polygon = self.polygon scale_factor = 1 if tolerance > 0: polygon = polygon.simplify(tolerance, preserve_topology=False) bounds = self.get_bounds() box_height = int((bounds['y_max']-bounds['y_min'])*scale_factor) box_width = int((bounds['x_max']-bounds['x_min'])*scale_factor) mask = np.zeros((box_height, box_width), dtype=np.uint8) polygon_path = polygon.exterior.coords[:] polygon_path = [(int(x - bounds['x_min']*scale_factor), int(y - bounds['y_min']*scale_factor)) for x, y in polygon_path] cv2.fillPoly(mask, np.array([polygon_path, ]), 1) return mask def get_difference_mask(self, box, scale_level=0, tolerance=0): return 1 - self.get_intersection_mask(box, scale_level, tolerance) class ShapesManager(object): def __init__(self, promort_client): self.promort_client = promort_client def _get_roi(self, slide_id, roi_type, roi_id): # the second 's' character related to the 'roi_type' parameter is needed because the URL required # the plural form of the ROI type (slices, cores, focus_regions) url = 'api/odin/rois/%s/%ss/%s/' % (slide_id, roi_type, roi_id) response = self.promort_client.get(url) if response.status_code == rc.OK: roi_segments = json.loads(response.json()['roi_json'])['segments'] return Shape([(seg['point']['x'], seg['point']['y']) for seg in roi_segments]) else: return None def get_slice(self, slide_id, roi_id): return self._get_roi(slide_id, 'slice', roi_id) def get_core(self, slide_id, roi_id): return self._get_roi(slide_id, 'core', roi_id) def get_focus_region(self, slide_id, roi_id): return self._get_roi(slide_id, 'focus_region', roi_id)
[ "luca.lianas@crs4.it" ]
luca.lianas@crs4.it
6610c928d2235ba827735a632582cc6693081bcc
2d3a0ae30adfccabc2eddefe217ab4fca5541f91
/training/loss/losses.py
f540c693e87b2116ec853c516f3e91e3e4857361
[]
no_license
zabulskyy/PropaGANda
11083b3e0d92fccf70d871bed6d9769cdea968b5
d8c6398640207f911ef41e7a9591af6d21f2ef88
refs/heads/master
2020-04-04T12:18:34.178513
2019-05-20T10:45:28
2019-05-20T10:45:28
155,921,937
1
0
null
2019-04-28T06:23:48
2018-11-02T21:10:57
Python
UTF-8
Python
false
false
253
py
import torch.nn as nn def get_loss(loss_config): loss_name = loss_config["name"] if loss_name == "cross_entropy": loss = nn.CrossEntropyLoss() else: raise ValueError("Loss [%s] not recognized." % loss_name) return loss
[ "v.borsuk2000@gmail.com" ]
v.borsuk2000@gmail.com
23d3d9f9b503b373c1bee5486725554b265d7ef1
c40337ca035167e610d6599af236b2c6b1ba1fbb
/app/src/domain/color/repository.py
6bc9c91748056b0135bc5097a824e97022f29f25
[]
no_license
oksanaperekipska/staff-planning
a7f45af7dacadbdc59ee84b6d6e6b649bb23cbdf
898d866ce93b7023452c05c1a9e0abb18b764bb0
refs/heads/master
2023-03-23T09:30:37.772993
2021-03-24T21:38:55
2021-03-24T21:38:55
351,229,672
0
0
null
null
null
null
UTF-8
Python
false
false
835
py
from typing import Optional from config.database import db from config.logs import get_module_logger from domain.color.model import Color log = get_module_logger(__name__) class ColorRepository: @staticmethod def find_one_by_id(id: int) -> Optional[Color]: log.debug("Looking for color with id=%s", id) row = db.one("SELECT * FROM color WHERE id=%(id)s", id=id) return Color.construct(**row._asdict()) if row else None @staticmethod def find_all(offset: int = 0, limit: int = 20) -> list[Color]: log.debug("Looking for all color, limit=%s", limit) rows = db.all("SELECT * FROM color ORDER BY id OFFSET %(offset)s LIMIT %(limit)s", offset=offset, limit=limit) return [Color.construct(**row._asdict()) for row in rows]
[ "o.perekipska@idev-hub.com" ]
o.perekipska@idev-hub.com
a6a3f6888aa3295fa1701139c9bee2c015a0ec05
7ce58197aa5d86e78af9c5fccfec68754d18141e
/Practical1/program3.py
73c51d6b81025fae1736f3aa17915070e78a0599
[]
no_license
k08puntambekar/IMCC_Python
5187b0c0adeebd0d5caca7fbba21f30e9b10ed8b
815f0b8fd182826e6acb33710416fcbadb4ce5d4
refs/heads/master
2023-04-06T18:41:41.688360
2021-04-07T09:45:58
2021-04-07T09:45:58
355,428,674
0
0
null
null
null
null
UTF-8
Python
false
false
254
py
def remove_duplicate(duplicate): new_list = [] for num in duplicate: if num not in new_list: new_list.append(num) return new_list MyList = [10, 10, 30, 30, 20, 60, 70, 70, 40, 55, 45, 45] print(remove_duplicate(MyList))
[ "k08puntambekar@gmail.com" ]
k08puntambekar@gmail.com
b3dc3a61e408b6e946b355b7049076e61aa384e3
7f7bf9a5827d1441f18f568fc75ed5bf0159ca6c
/12_Yandex_Final_Tasks/A/A.py
1d1a21e461e557099825af74a0350107317450a7
[]
no_license
KorsakovPV/yandex_contest
08bcff4eaf38d46a8348ac3abbb5f496857fe8e4
f67917ef710f5b138142b11ec4e6e4678b23e408
refs/heads/master
2023-01-06T13:04:07.955570
2020-10-24T20:22:41
2020-10-24T20:22:41
290,097,693
0
0
null
null
null
null
UTF-8
Python
false
false
5,408
py
""" A. Калькулятор Задание связано с обратной польской нотацией. Она используется для парсинга арифметических выражений. По сравнению с другим приемом, применяемым для данной задачи — использованием дерева операций, она является более компактной, так как в ней не используются скобки. Еще её иногда называют обратной польской записью или постфиксной нотацией. В постфиксной нотации операнды расположены перед знаками операций. Пример 1: 3 4 + будет равно 7, и означает 3 + 4 Пример 2: 10 2 4 * - будет равно 2, и означает 10 - 2 * 4 Разберем последний пример подробнее: Знак * стоит сразу после чисел 2 и 4, значит к ним нужно применить операцию, которую этот знак обозначает, то есть перемножить эти два числа. В результате получим 8 После этого выражение приобретет вид: 10 8 - Операцию минус нужно применить к двум идущим перед ней числам, то есть 10 и 8. В итоге получаем 2. Рассмотрим алгоритм более подробно. Для его реализации будем использовать стек. Для вычисления значения выражения, записанного в обратной польской нотации, нужно считывать выражение слева направо и придерживаться следующих шагов: 1. Обработка входного символа: - Если на вход подан операнд, он помещается на вершину стека. - Если на вход подан знак операции, она выполняется над требуемым количеством значений из стека, взятых в порядке добавления. Результат выполненной операции помещается на вершину стека. 2. Если входной набор символов обработан не полностью, перейти к шагу 1. 3. После полной обработки входного набора символов результат вычисления выражения находится в вершине стека. Формат ввода В единственной строке дано выражение, записанное в обратной польской нотации. Числа и арифметические операции отделены друг от друга пробелами. На вход могут подаваться операции: +, -, *, / и числа, по модулю не превосходящие 10000. Гарантируется, что значение промежуточных выражений в тестовых данных по модулю не больше 50000. Формат вывода Единственное число - значение выражения. Пример 1 Ввод Вывод 2 1 + 3 * 9 Пример 2 Ввод Вывод 7 2 + 4 * 2 + 38 Примечания Операция деления целочисленная. То есть, например, 12 5 / будет 2. Решение должно быть реализовано с использованием структуры данных стек. """ class Stack: def __init__(self): self.operands = [] self.d = {'+': self.addition, '-': self.subtraction, '*': self.multiplication, '/': self.division} def is_empty(self): return self.operands == [] def push(self, operand): self.operands.append(operand) def pop(self): if not self.is_empty(): return self.operands.pop() def addition(self, operand1, operand2): return operand2 + operand1 def subtraction(self, operand1, operand2): return operand2 - operand1 def multiplication(self, operand1, operand2): return operand2 * operand1 def division(self, operand1, operand2): return operand2 // operand1 def calc(input_file): stack = Stack() for i in input_file: if i in stack.d.keys(): operand1 = stack.pop() operand2 = stack.pop() stack.push(stack.d[i](operand1, operand2)) else: stack.push(int(i)) return stack.pop() def main(input_file): f = open(input_file) input_file = f.read().rstrip().split() f.close() return str(calc(input_file)) + '\n' if __name__ == '__main__': print(main('input.txt') + '\n') f = open('output.txt', 'w') f.write(main('input.txt')) f.close() assert main('input1.txt') == '9' + '\n', "input1.txt error" assert main('input2.txt') == '38' + '\n', "input2.txt error"
[ "pavelkpv@gmail.com" ]
pavelkpv@gmail.com
cfb882d319a71f29c43aa1e99601b8492dacfa4a
087448bda3808703ecd21c0a4dfa00ea144b4cb3
/finder.py
6577086b2e40deade1e524a6f8b6ea7c8703527d
[ "0BSD" ]
permissive
jcooper-korg/talon_user
bc61e546f8606a98731d6cdd87dde563b8501cbc
ef086f9890448f7d633a4f02b36a18de853581a8
refs/heads/master
2020-03-19T03:54:37.562042
2018-10-29T17:57:35
2018-10-29T17:57:35
135,774,042
1
0
null
null
null
null
UTF-8
Python
false
false
394
py
# Talon voice commands for interacting with the Finder # John S. Cooper jcooper@korgrd.com from talon.voice import Key, Context ctx = Context('Finder', bundle='com.apple.finder') ctx.keymap({ 'duplicate': Key('cmd-d'), 'collapse': Key('cmd-left'), 'expand': Key('cmd-right'), 'open': Key('cmd-down'), 'trash it': Key('cmd-backspace'), 'show package contents': Key('cmd-alt-o'), })
[ "jcooper@korgrd.com" ]
jcooper@korgrd.com
6385cfcb8dcddb74d43b164af28a8e95dc918c8a
d5d0851e14e9c6d09774d6bf522ab3f05f1f1133
/keyboardAgents.py
c3cf14bdf5265105fde1e254b2fac8031b097e01
[]
no_license
ttaallll/PacmanAI
81a4cdbcc8fbe6baac574208944335cf11cbcc0f
3f6bc5019c492c4553b40807281edf866cbe820c
refs/heads/master
2021-01-17T14:32:23.608891
2015-04-12T12:35:20
2015-04-12T12:35:20
32,480,570
1
0
null
null
null
null
UTF-8
Python
false
false
2,680
py
# keyboardAgents.py # ----------------- # Licensing Information: Please do not distribute or publish solutions to this # project. You are free to use and extend these projects for educational # purposes. The Pacman AI projects were developed at UC Berkeley, primarily by # John DeNero (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu). # For more info, see http://inst.eecs.berkeley.edu/~cs188/sp09/pacman.html from game import Agent from game import Directions import random class KeyboardAgent(Agent): """ An agent controlled by the keyboard. """ # NOTE: Arrow keys also work. WEST_KEY = 'a' EAST_KEY = 'd' NORTH_KEY = 'w' SOUTH_KEY = 's' STOP_KEY = 'q' def __init__( self, index = 0 ): self.lastMove = Directions.STOP self.index = index self.keys = [] def getAction( self, state): from graphicsUtils import keys_waiting from graphicsUtils import keys_pressed keys = list(keys_waiting()) + list(keys_pressed()) if keys != []: self.keys = keys legal = state.getLegalActions(self.index) move = self.getMove(legal) if move == Directions.STOP: # Try to move in the same direction as before if self.lastMove in legal: move = self.lastMove if (self.STOP_KEY in self.keys) and Directions.STOP in legal: move = Directions.STOP if move not in legal: move = random.choice(legal) self.lastMove = move return move def getMove(self, legal): move = Directions.STOP if (self.WEST_KEY in self.keys or 'Left' in self.keys) and Directions.WEST in legal: move = Directions.WEST if (self.EAST_KEY in self.keys or 'Right' in self.keys) and Directions.EAST in legal: move = Directions.EAST if (self.NORTH_KEY in self.keys or 'Up' in self.keys) and Directions.NORTH in legal: move = Directions.NORTH if (self.SOUTH_KEY in self.keys or 'Down' in self.keys) and Directions.SOUTH in legal: move = Directions.SOUTH return move class KeyboardAgent2(KeyboardAgent): """ A second agent controlled by the keyboard. """ # NOTE: Arrow keys also work. WEST_KEY = 'j' EAST_KEY = "l" NORTH_KEY = 'i' SOUTH_KEY = 'k' STOP_KEY = 'u' def getMove(self, legal): move = Directions.STOP if (self.WEST_KEY in self.keys) and Directions.WEST in legal: move = Directions.WEST if (self.EAST_KEY in self.keys) and Directions.EAST in legal: move = Directions.EAST if (self.NORTH_KEY in self.keys) and Directions.NORTH in legal: move = Directions.NORTH if (self.SOUTH_KEY in self.keys) and Directions.SOUTH in legal: move = Directions.SOUTH return move
[ "tal.pais@cmycasa.com" ]
tal.pais@cmycasa.com
5409baa66c3f61c28ab42b5fecacd06084bc0fb5
6612dd1c2836de492c0ca8a0f0f602683b2dbb89
/app.py
530378d495d6eaaa3637ee94e78cc2afc82d40ab
[]
no_license
anupam1525/movies-rest-api
8764da85c705805e9a14a113f5570f4ef5d115ed
6b3404bdeadba5904a8bd5868248576f8eda7aec
refs/heads/master
2020-12-31T10:52:07.547766
2020-02-07T19:51:53
2020-02-07T19:51:53
239,009,769
0
0
null
null
null
null
UTF-8
Python
false
false
3,095
py
#Import necessary packages from flask import Flask from flask_restful import Resource, reqparse, Api #Instantiate a flask object app = Flask(__name__) #Instantiate Api object api = Api(app) #Setting the location for the sqlite database app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///base.db' #Adding the configurations for the database app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False app.config['PROPAGATE_EXCEPTIONS'] = True #Import necessary classes from base.py from base import Movies, db #Link the app object to the Movies database db.init_app(app) app.app_context().push() #Create the databases db.create_all() #Creating a class to create get, post, put & delete methods class Movies_List(Resource): #Instantiating a parser object to hold data from message payload parser = reqparse.RequestParser() parser.add_argument('director', type=str, required=False, help='Director of the movie') parser.add_argument('genre', type=str, required=False, help='Genre of the movie') parser.add_argument('collection', type=int, required=True, help='Gross collection of the movie') #Creating the get method def get(self, movie): item = Movies.find_by_title(movie) if item: return item.json() return {'Message': 'Movie is not found'} #Creating the post method def post(self, movie): if Movies.find_by_title(movie): return {' Message': 'Movie with the title {} already exists'.format(movie)} args = Movies_List.parser.parse_args() item = Movies(movie, args['director'], args['genre'], args['collection']) item.save_to() return item.json() #Creating the put method def put(self, movie): args = Movies_List.parser.parse_args() item = Movies.find_by_title(movie) if item: item.collection = args['collection'] item.save_to() return {'Movie': item.json()} item = Movies(movie, args['director'], args['genre'], args['collection']) item.save_to() return item.json() #Creating the delete method def delete(self, movie): item = Movies.find_by_title(movie) if item: item.delete_() return {'Message': '{} has been deleted from records'.format(movie)} return {'Message': '{} is already not on the list'.format()} #Creating a class to get all the movies from the database. class All_Movies(Resource): #Defining the get method def get(self): return {'Movies': list(map(lambda x: x.json(), Movies.query.all()))} #Adding the URIs to the api api.add_resource(All_Movies, '/') api.add_resource(Movies_List, '/<string:movie>') if __name__=='__main__': #Run the applications app.run()
[ "anupam1525@gmail.com" ]
anupam1525@gmail.com
69d0ac1ed32f14223ede581eaa3b883621e15804
86686a684b8bfcdf8566bcef9a24e96cc8b647ef
/falcon/Queueing.py
d2df7bd979503114c774b7c36da6158b22862ecd
[]
no_license
yutapok/webapi-falcon
56ec5ad35032e80bc9dcffd7827ae628f84e7b5b
18680d17a2907649cfb0420ffab52ca94caf26f0
refs/heads/master
2020-03-18T17:08:08.828433
2018-06-02T16:44:09
2018-06-02T16:44:09
135,008,355
0
0
null
null
null
null
UTF-8
Python
false
false
293
py
import redis def set_redis_cli(host='localhost', port=6379): return redis.Redis(host, port) def enqueue(self, key, value): #key_enq = key if key else self.key pass def dequeue(redis_cli): if not isinstance(redis_cli, redis.Redis): raise return redis_cli.lpop
[ "root@localhost.localdomain" ]
root@localhost.localdomain
0841d5b8dac5b5a3f0775607832af7009dd05f68
b8586515ca8d4106dfe07fc9cc16342c90a44cc1
/055-napa-county/final-results/parse_napa.py
0c51a67c3df1123bb2ca1ff4f12511bd042ab46e
[ "MIT" ]
permissive
mjtonetti/california-2016-election-precinct-maps
775929b88a9d09877f91b622f39e70cc6750c7fe
39e9a6e797aca1b5b5f5129294807dfadb5a795d
refs/heads/master
2020-05-31T21:15:54.434542
2017-01-10T00:51:26
2017-01-10T00:51:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,719
py
import sys import os import re import csv, time # import pandas as pd import numpy as np from subprocess import call fips = '055' # file and header outfile = open(sys.argv[1][:-4]+'.csv','w') outfile.write('pct16,candidate,total\n') # loop through docs for prop in range(53,68): call(['pdftotext','-layout',str(prop)+'.pdf']) pages = [] currentPage = '' pageNo = 0 with open(str(prop)+'.pdf'.replace('pdf','txt')) as file: # extract every other page (because of write in candidates) raw = file.read() pages = raw.split(' ') # loop through pages prop = '' for page in pages: # # look for candidate versus write in page # pagetype = '' # if 'HILLARY CLINTON' in page: # # print 'MAIN CANDIDATE PAGE' # pagetype = 'main' # elif 'MCMULLIN' in page: # # print 'write-in page' # pagetype = 'writein' # elif 'KAMALA' in page: # pagetype = 'senate' # elif 'Yes' in page: # pagetype = 'prop' # else: # pagetype = "null" lines = page.split('\n') for line in lines: if 'PROPOSITION' in line: pindex = line.index('PROPOSITION') propnum = line[pindex+12:pindex+14] if line[:6].isdigit(): precinct = line[:6] pct = precinct line = line.replace(',','') numbers = [int(s) for s in line.split() if s.isdigit()] print numbers yesvotes = str(numbers[-2]) novotes = str(numbers[-1]) outfile.write(fips+'-'+pct+',prop'+propnum+'_yes,'+yesvotes+'\n') outfile.write(fips+'-'+pct+',prop'+propnum+'_no,'+novotes+'\n') # # look for proposition # if 'PROPOSITION' in line: # prop = 'prop' + line[12:14] # # look for precinct number, which is five # precinct = line[:7].strip() # if precinct.isdigit(): # # for when that first bit is a number # print precinct # lineindex = lines.index(line) # totalline = lines[lineindex+4].replace(',','') # numbers = [int(s) for s in totalline.split() if s.isdigit()] # print numbers # if pagetype == 'main': # outfile.write('029-'+precinct+',pres_clinton,'+str(numbers[1])+'\n') # outfile.write('029-'+precinct+',pres_trump,'+str(numbers[3])+'\n') # outfile.write('029-'+precinct+',pres_johnson,'+str(numbers[4])+'\n') # outfile.write('029-'+precinct+',pres_stein,'+str(numbers[0])+'\n') # outfile.write('029-'+precinct+',pres_lariva,'+str(numbers[2])+'\n') # elif pagetype == 'writein': # outfile.write('029-'+precinct+',pres_other,'+str(numbers[0])+'\n') # elif pagetype == 'senate': # outfile.write('029-'+precinct+',ussenate_harris,'+str(numbers[1])+'\n') # outfile.write('029-'+precinct+',ussenate_sanchez,'+str(numbers[0])+'\n') # elif pagetype == 'prop': # outfile.write('029-'+precinct+','+prop+'_yes,'+str(numbers[0])+'\n') # outfile.write('029-'+precinct+','+prop+'_no,'+str(numbers[1])+'\n') # # print lines[lineindex+4] outfile.close()
[ "gaufre@gmail.com" ]
gaufre@gmail.com
cd4bd2b824b89824cd76acfc8ca6380ffffce24d
96597359ecac8f99805fcb923663d3bd4bdf5582
/coaevnmt/modules/inference.py
2f69c8f8670aa2ec772936a5ab9c10aa010df562
[]
no_license
Rgerritse/AEVNMT-Co-training
a5a3c981ac770786d137e9d21dc36de20573be79
87dc88d227f3e68dc974abf28cd4cc90ae9603ef
refs/heads/master
2020-04-28T22:02:12.784008
2019-11-18T13:51:02
2019-11-18T13:51:02
175,603,538
0
0
null
2019-05-04T10:17:01
2019-03-14T10:53:31
Python
UTF-8
Python
false
false
2,273
py
import torch import torch.nn as nn import torch.nn.functional as F from .utils import rnn_creation_fn from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence class InferenceModel(nn.Module): def __init__(self, config): super(InferenceModel, self).__init__() rnn_fn = rnn_creation_fn(config["rnn_type"]) self.rnn = rnn_fn(config["hidden_size"], config["hidden_size"], batch_first=True, bidirectional=True) self.config = config if config["z_inference_mode"] == "max_hid": self.aff_u_hid = nn.Linear(4 * config["hidden_size"], config["hidden_size"]) self.aff_u_out = nn.Linear(config["hidden_size"], config["latent_size"]) self.aff_s_hid = nn.Linear(4 * config["hidden_size"], config["hidden_size"]) self.aff_s_out = nn.Linear(config["hidden_size"], config["latent_size"]) else: self.aff_u_hid = nn.Linear(2 * config["hidden_size"], config["hidden_size"]) self.aff_u_out = nn.Linear(config["hidden_size"], config["latent_size"]) self.aff_s_hid = nn.Linear(2 * config["hidden_size"], config["hidden_size"]) self.aff_s_out = nn.Linear(config["hidden_size"], config["latent_size"]) def forward(self, x, x_mask, x_len): packed_seq = pack_padded_sequence(x, x_len, batch_first=True, enforce_sorted=False) output, hidden = self.rnn(packed_seq) output, _ = pad_packed_sequence(output, batch_first=True) if self.config["z_inference_mode"] == "max_hid": if self.config["rnn_type"] == "lstm": hidden = hidden[0] layers = [hidden[layer_num] for layer_num in range(hidden.size(0))] hidden_combined = torch.cat(layers, dim=-1) masked_output = output * x_mask.squeeze(1).unsqueeze(-1).type_as(output) max_output = torch.max(masked_output, 1)[0] final_output = torch.cat([max_output, hidden_combined], 1) else: final_output = torch.sum(output * x_mask.squeeze(1).unsqueeze(-1).type_as(output), 1) loc = self.aff_u_out(F.relu(self.aff_u_hid(final_output))) scale = F.softplus(self.aff_s_out(F.relu(self.aff_s_hid(final_output)))) return loc, scale
[ "rgerritse95@gmail.com" ]
rgerritse95@gmail.com
aba74070a91d99c3c734d1af057d0cbbd5ec02b9
6923f05fbb133dbb5b631062a501af66d911d25b
/pageSpeedTest/testWebsite.py
8e01c23c31b17fd8712cd49a9fdcd0dae46cd50f
[ "Apache-2.0" ]
permissive
appleseed-web/pyStagingTests
05797735451489500b8294f50a4e5b9d0cc2175c
950522dbff54ff15bea61227cae15dcade6f25d1
refs/heads/master
2021-01-23T05:57:12.751414
2017-03-27T14:40:16
2017-03-27T14:40:16
86,327,487
0
0
null
null
null
null
UTF-8
Python
false
false
727
py
import sys import json import urllib.parse import requests valid = True url=sys.argv[1] apiKey="AIzaSyA-ZkVp0wt8eBgLFTU22uKxfgmFCHsfx5A" vurl='https://www.googleapis.com/pagespeedonline/v2/runPagespeed?url='+ urllib.parse.quote_plus(url) +'&filter_third_party_resources=true&locale=it_IT&screenshot=false&key=' + apiKey response = requests.get(vurl) x=json.loads(response.text) print(); print(); print(); print('--------------------------------------') print('--------------------------------------') print(' |||' + url + '|||'); print('--------------------------------------') print('--------------------------------------') print(); print(x['ruleGroups']) print(); print(); print(); exit("pagespeedtest url " + url )
[ "d.bizzi@appleseed-mail.it" ]
d.bizzi@appleseed-mail.it
5181041ef92804133ec031421b7012d0546037f2
02424d7618cefccafcefc166946b868f6c9b16f3
/create_data.py
c964bb009befa9a57bf266b0799aef383ac831b3
[]
no_license
Andryyyha/SSU-BigData-ETL
70cb38982a5fced79ed8b4cd4810e5490701623f
abc873567f849dcec097d490dce7988b6929508d
refs/heads/master
2021-03-18T16:33:26.085105
2020-04-14T11:19:26
2020-04-14T11:19:26
247,081,653
1
0
null
2020-04-13T10:55:57
2020-03-13T13:47:51
Scala
UTF-8
Python
false
false
1,916
py
import argparse import csv import os from oauth2client import client from google.cloud import pubsub_v1 def parse(): parser = argparse.ArgumentParser() parser.add_argument('--project_id', help='project name', dest='project_id', default='ssu-bigdata-etl') parser.add_argument('--path_to_data', help='path to csv file', dest='path_to_data', default='./stations.csv') parser.add_argument('--repeats', help='how repeats to publish the same file', dest='repeats', default=3, type=int) parser.add_argument('--topic_name', help='pub/sub topic name', dest='topic_name', default='stations') parser.add_argument('--path_to_creds', help='path to JSON with credentials', dest='creds', default='/Users/andryyyha/SSU-BigData-ETL-3b758a590d47.json') return parser.parse_args() def create_client(): return pubsub_v1.PublisherClient() def publish_data(path_to_data, topic_name, repeats, client): for i in range(1, repeats): firstline = True with open(path_to_data) as data: print("Publishing data iteration {}".format(i)) reader = csv.reader(data) for line in reader: if firstline: firstline = False continue line[1] = '"' + line[1] + '"' line[2] = '"' + line[2] + '"' # print(len(line)) encoded_line = ','.join(line).encode('utf-8') print(encoded_line, '\n') future = client.publish(topic_name, encoded_line) print(future.result()) def main(): args = parse() print(args) project_id = args.project_id path_to_data = args.path_to_data repeats = args.repeats name = args.topic_name topic_name = 'projects/{}/topics/{}'.format(project_id, name) creds = args.creds os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = creds client = create_client() publish_data(path_to_data, topic_name, repeats, client) if __name__ == "__main__": main()
[ "adrianvalir@gmail.com" ]
adrianvalir@gmail.com
d616ad3674ce8ea3c008c0b0b5ecf98f4046c2b6
f1ba365d7de711cfe766f43931b4a049e90f08b7
/hw14.py
3ad0d2ff3cda76b9790055b601fc629fbbf5dd40
[]
no_license
LevBaranov/pylearn
97115136e27c31d91d7d0cd2a9b5b28c6cf67df1
f35dc5995e8b10590892d8309c7f2f4ae824487b
refs/heads/master
2022-05-29T12:17:44.488384
2020-05-02T12:34:09
2020-05-02T12:34:09
256,698,725
0
0
null
null
null
null
UTF-8
Python
false
false
1,567
py
class Integer(int): 'Измененный int, чтобы 2+2 =5' def __add__(self, arg): return super().__add__(arg) + 1 class List(list): 'Измененный list, что больше 10 элементов нельзя положить' def __init__(self, arg): if len(arg) <= 10: return super().__init__(arg) def append(self, arg): if (self.__len__() + 1) <= 10: return super().append(arg) def extend(self, arg): if (self.__len__() + len(arg)) <= 10: return super().extend(arg) def insert(self, position, arg): if (self.__len__() + 1) <= 10: return super().insert(position, arg) class UniqueList(list): 'Лист с уникальными элементами, чтобы вел себя как множество' def __init__(self, arg): for a in arg: if self.count(arg) == 0: self.append(a) def append(self, arg): if self.count(arg) == 0: return super().append(arg) def extend(self, arg): for a in arg: print(self.count(a)) if self.count(a) == 0: self.append(a) return self def insert(self, position, arg): if self.count(arg) == 0: return super().insert(position, arg) if __name__ == '__main__': l = UniqueList([3, 4, 3, 5]) print(l) l.append(4) print(l) l.extend([14, 35, 5]) print(l) l.insert(4, 4) print(l)
[ "lev.l.baranov@gmail.com" ]
lev.l.baranov@gmail.com
e2302c898e5a72d5eebbc82ec1dcc0b067e59dca
f3950ce26f75c9c352f781d59b9ab4d97deb14ac
/SCIE2100_Practical5/sequence.py
c6ca6092020915eb5a7e0c0c03a1e17043c927b4
[]
no_license
danielzhangau/Bioinformatics
74646673f2da93165121d69c7a15e8cfe302bb76
0bad61936856c2aa6e6b9416a971e22496ed0c1a
refs/heads/main
2023-06-04T14:41:48.740998
2021-06-07T08:22:56
2021-06-07T08:22:56
349,257,930
0
0
null
null
null
null
UTF-8
Python
false
false
55,107
py
""" Module *** sequence *** This module depends on the following modules sym -- defines an alphabet prob -- defines structures to hold probabilities (prob also depends on sym) This module incorporates classes for Sequence -- names and defines a sequence of symbols; computes various transformations and pairwise alignments Alignment -- defines a multiple sequence alignment; computes stats for use in substitution matrices SubstMatrix -- substitution matrix class to support alignment methods Regexp -- defines patterns as regular expressions for textual pattern matching in sequences PWM -- defines a weight matrix that can score any site in actual sequences Incorporates methods for loading and saving files relevant to the above (e.g. FASTA, ALN, substitution matrices) and methods for retrieving relevant data from web services This code has been adapted to Python 3.5 in 2017 This code has gone through many updates and has benefited from kind contributions of course participants. Please keep suggestions coming! Email: m.boden@uq.edu.au """ import string, sys, re, math, os, array import numpy #from webservice import * from sym import * from prob import * # Sequence ------------------**** class Sequence(object): """ A biological sequence. Stores the sequence itself (as a compact array), the alphabet (i.e., type of sequence it is), and optionally a name and further information. """ sequence = None # The array of symbols that make up the sequence alphabet = None # The alphabet from which symbols come name = None # The name (identifier) of a sequence info = None # Other information (free text; e.g. annotations) length = None # The number of symbols that the sequence is composed of gappy = None # True if the sequence has "gaps", i.e. positions that represent deletions relative another sequence def __init__(self, sequence, alphabet = None, name = '', info = '', gappy = False): """ Create a sequence with the sequence data. Specifying the alphabet, name and other information about the sequence are all optional. The sequence data is immutable (stored as a string). Example: >>> myseq = Sequence('MVSAKKVPAIAMSFGVSF') will create a sequence with no name, and assign one of the predefined alphabets on the basis of what symbols were used. >>> myseq.alphabet.symbols will output the standard protein alphabet: ['A', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'V', 'W', 'Y'] """ self.sequence = sequence # Assign an alphabet # If no alphabet is provided, attempts to identify the alphabet from sequence self.alphabet = None if not alphabet is None: for sym in self.sequence: if not sym in alphabet and (sym != '-' or not gappy): # error check: bail out raise RuntimeError('Invalid symbol: %c in sequence %s' % (sym, name)) self.alphabet = alphabet else: for alphaName in preferredOrder: alpha = predefAlphabets[alphaName] valid = True for sym in self.sequence: if not sym in alpha and (sym != '-' or not gappy): valid = False break if valid: self.alphabet = alpha break if self.alphabet is None: raise RuntimeError('Could not identify alphabet from sequence: %s' % name) # Store other information self.name = name self.info = info self.length = len(self.sequence) self.gappy = gappy def __len__(self): """ Defines what the "len" operator returns for an instance of Sequence, e.g. >>> seq = Sequence('ACGGTAGGA', DNA_Alphabet) >>> print (len(seq)) 9 """ return len(self.sequence) def __str__(self): """ Defines what should be printed when the print statement is used on a Sequence instance """ str = self.name + ': ' for sym in self: str += sym return str def __iter__(self): """ Defines how a Sequence should be "iterated", i.e. what its elements are, e.g. >>> seq = Sequence('AGGAT', DNA_Alphabet) >>> for sym in seq: print (sym) will print A, G, G, A, T (each on a separate row) """ tsyms = tuple(self.sequence) return tsyms.__iter__() def __contains__(self, item): """ Defines what is returned when the "in" operator is used on a Sequence, e.g. >>> seq = Sequence('ACGGTAGGA', DNA_Alphabet) >>> print ('T' in seq) True which is equivalent to >>> print (seq.__contains__('T')) True >>> print ('X' in seq) False """ for sym in self.sequence: if sym == item: return True return False def __getitem__(self, ndx): """ Retrieve a specified index (or a "slice" of indices) of the sequence data. Calling self.__getitem__(3) is equivalent to self[3] """ if type(ndx) is slice: return ''.join(self.sequence[ndx]) else: return self.sequence[ndx] def writeFasta(self): """ Write one sequence in FASTA format to a string and return it. """ fasta = '>' + self.name + ' ' + self.info + '\n' data = ''.join(self.sequence) nlines = int(math.ceil((len(self.sequence) - 1) / 60 + 1)) for i in range(nlines): lineofseq = ''.join(data[i*60 : (i+1)*60]) + '\n' fasta += lineofseq return fasta def count(self, findme = None): """ Get the number of occurrences of specified symbol findme OR if findme = None, return a dictionary of counts of all symbols in alphabet """ if findme != None: cnt = 0 for sym in self.sequence: if findme == sym: cnt = cnt + 1 return cnt else: symbolCounts = {} for symbol in self.alphabet: symbolCounts[symbol] = self.count(symbol) return symbolCounts def find(self, findme): """ Find the position of the specified symbol or sub-sequence """ return ''.join(self.sequence).find(findme) """ Below are some useful methods for loading data from strings and files. Recognize the FASTA format (nothing fancy). """ def readFasta(string, alphabet = None, ignore = False, gappy = False): """ Read the given string as FASTA formatted data and return the list of sequences contained within it. If alphabet is specified, use it, if None (default) then guess it. If ignore is False, errors cause the method to fail. If ignore is True, errors will disregard sequence. If gappy is False (default), sequence cannot contain gaps, if True gaps are accepted and included in the resulting sequences.""" seqlist = [] # list of sequences contained in the string seqname = None # name of *current* sequence seqinfo = None seqdata = [] # sequence data for *current* sequence for line in string.splitlines(): # read every line if len(line) == 0: # ignore empty lines continue if line[0] == '>': # start of new sequence if seqname: # check if we've got one current try: current = Sequence(seqdata, alphabet, seqname, seqinfo, gappy) seqlist.append(current) except RuntimeError as errmsg: if not ignore: raise RuntimeError(errmsg) # now collect data about the new sequence seqinfo = line[1:].split() # skip first char if len(seqinfo) > 0: try: parsed = parseDefline(seqinfo[0]) seqname = parsed[0] seqinfo = line[1:] except IndexError as errmsg: if not ignore: raise RuntimeError(errmsg) else: seqname = '' seqinfo = '' seqdata = [] else: # we assume this is (more) data for current cleanline = line.split() for thisline in cleanline: seqdata.extend(tuple(thisline.strip('*'))) # we're done reading the file, but the last sequence remains if seqname: try: lastseq = Sequence(seqdata, alphabet, seqname, seqinfo, gappy) seqlist.append(lastseq) except RuntimeError as errmsg: if not ignore: raise RuntimeError(errmsg) return seqlist def parseDefline(string): """ Parse the FASTA defline (see http://en.wikipedia.org/wiki/FASTA_format) GenBank, EMBL, etc gi|gi-number|gb|accession|locus SWISS-PROT, TrEMBL sp|accession|name ... Return a tuple with [0] primary search key, e.g. UniProt accession, Genbank GI [1] secondary search key, e.g. UniProt name, Genbank accession [2] source, e.g. 'sp' (SwissProt/UniProt), 'tr' (TrEMBL), 'gb' (Genbank) """ if len(string) == 0: return ('', '', '', '') s = string.split()[0] if re.match("^sp\|[A-Z][A-Z0-9]{5}\|\S+", s): arg = s.split('|'); return (arg[1], arg[2], arg[0], '') elif re.match("^tr\|[A-Z][A-Z0-9]{5}\|\S+", s): arg = s.split('|'); return (arg[1], arg[2], arg[0], '') elif re.match("^gi\|[0-9]*\|\S+\|\S+", s): arg = s.split('|'); return (arg[1], arg[3], arg[0], arg[2]) elif re.match("gb\|\S+\|\S+", s): arg = s.split('|'); return (arg[1], arg[2], arg[0], '') elif re.match("emb\|\S+\|\S+", s): arg = s.split('|'); return (arg[1], arg[2], arg[0], '') elif re.match("^refseq\|\S+\|\S+", s): arg = s.split('|'); return (arg[1], arg[2], arg[0], '') else: return (s, '', '', '') def readFastaFile(filename, alphabet = None, ignore = False, gappy = False): """ Read the given FASTA formatted file and return the list of sequences contained within it. Note that if alphabet is NOT specified, it will take a separate guess for each sequence. If ignore is False, errors cause the method to fail. If ignore is True, errors will disregard sequence. If gappy is False (default), sequence cannot contain gaps, if True gaps are accepted and included in the resulting sequences.""" fh = open(filename) seqlist = [] batch = '' # a batch of rows including one or more complete FASTA entries rowcnt = 0 for row in fh: row = row.strip() if len(row) > 0: if row.startswith('>') and rowcnt > 0: more = readFasta(batch, alphabet, ignore, gappy) if len(more) > 0: seqlist.extend(more) batch = '' rowcnt = 0 batch += row + '\n' rowcnt += 1 if len(batch) > 0: more = readFasta(batch, alphabet, ignore, gappy) if len(more) > 0: seqlist.extend(more) fh.close() return seqlist def writeFastaFile(filename, seqs): """ Write the specified sequences to a FASTA file. """ fh = open(filename, 'w') for seq in seqs: fh.write(seq.writeFasta()) fh.close() def getMarkov(seqs, order = 0): """ Retrieve the Markov stats for a set of sequences. """ myseqs = seqs if seqs is Sequence: myseqs = list([seqs]) myalpha = None for seq in myseqs: if myalpha == None: myalpha = seq.alphabet else: if seq.alphabet != myalpha: raise RuntimeError('Sequence ' + seq.name + ' uses an invalid alphabet ') jp = Joint([myalpha for _ in range(order + 1)]) for seq in myseqs: for i in range(len(seq) - order): sub = seq[i:i + order + 1] jp.observe(sub) return jp def getCount(seqs, findme = None): if findme != None: cnt = 0 for seq in seqs: cnt += seq.count(findme) return cnt else: if len(seqs) > 0: alpha = seqs[0].alphabet patcnt = {} for a in alpha: patcnt[a] = getCount(seqs, a) return patcnt # Alignment ------------------ class Alignment(): """ A sequence alignment class. Stores two or more sequences of equal length where one symbol is gap '-' Example usage: >>> seqs = [Sequence('THIS-LI-NE-', Protein_Alphabet, gappy = True), Sequence('--ISALIGNED', Protein_Alphabet, gappy = True)] >>> print (Alignment(seqs)) THIS-LI-NE- --ISALIGNED """ alignlen = None seqs = None alphabet = None def __init__(self, seqs): self.alignlen = -1 self.seqs = seqs self.alphabet = None for s in seqs: if self.alignlen == -1: self.alignlen = len(s) elif self.alignlen != len(s): raise RuntimeError("Alignment invalid: different lengths") if self.alphabet != None and self.alphabet != s.alphabet: raise RuntimeError("Alignment invalid: different alphabets") self.alphabet = s.alphabet def getnamelen(self): namelen = 0 for seq in self.seqs: namelen = max(len(seq.name), namelen) return namelen def __len__(self): """ Defines what the "len" operator returns for an instance of Alignment, e.g. >>> seqs = [Sequence('THIS-LI-NE', Protein_Alphabet, gappy = True), Sequence('--ISALIGNED', Protein_Alphabet, gappy = True)] >>> aln = Alignment(seqs) >>> print(len(aln)) 2 """ return len(self.seqs) def getSize(self): """ Returns the size of an alignment in terms of number of columns """ return self.alignlen def __str__(self): string = '' namelen = self.getnamelen() for seq in self.seqs: string += seq.name.ljust(namelen+1) for sym in seq: string += sym string += '\n' return string def __getitem__(self, ndx): return self.seqs[ndx] def writeClustal(self, filename = None): """ Write the alignment to a string or file using the Clustal file format. """ symbolsPerLine = 60 maxNameLength = self.getnamelen() + 1 string = '' wholeRows = self.alignlen / symbolsPerLine for i in range(wholeRows): for j in range(len(self.seqs)): string += self.seqs[j].name.ljust(maxNameLength) + ' ' string += self.seqs[j][i*symbolsPerLine:(i+1)*symbolsPerLine] + '\n' string += '\n' # Possible last row lastRowLength = self.alignlen - wholeRows*symbolsPerLine if lastRowLength > 0: for j in range(len(self.seqs)): if maxNameLength > 0: string += self.seqs[j].name.ljust(maxNameLength) + ' ' string += self.seqs[j][-lastRowLength:] + '\n' if filename != None: fh = open(filename, 'w') fh.write('CLUSTAL W (1.83) multiple sequence alignment\n\n\n') # fake header so that clustal believes it fh.write(string) fh.close() return return string def getProfile(self, pseudo = 0.0, countGaps = True): """ Determine the probability matrix from the alignment, assuming that each position is independent of all others. """ p = IndepJoint([self.alphabet for _ in range(self.alignlen)], pseudo) for seq in self.seqs: p.observe(seq, 1, countGaps = countGaps) return p def getConsensus(self): """ Construct a consensus sequence. """ syms = [] for col in range(self.alignlen): d = Distrib(self.alphabet) for seq in self.seqs: if seq[col] in self.alphabet: d.observe(seq[col]) syms.append(d.getmax()) return Sequence(syms) def getConsensusForColumn(self, colidx): symcnt = {} for seq in self.seqs: mysym = seq[colidx] try: symcnt[mysym] += 1 except: symcnt[mysym] = 1 consensus = None maxcnt = 0 for mysym in symcnt: if symcnt[mysym] > maxcnt: maxcnt = symcnt[mysym] consensus = mysym return consensus def displayConsensus(self, theta1 = 0.2, theta2 = 0.05, lowercase = True): """ Display a table with rows for each alignment column, showing column index, entropy, number of gaps, and symbols in order of decreasing probability. theta1 is the threshold for displaying symbols in upper case, theta2 is the threshold for showing symbols at all, and in lower case. """ print(("Alignment of %d sequences, with %d columns" % (len(self.seqs), self.alignlen))) print(("Column\tEntropy\tGaps\tProb\tConserv\tSymbols (Up>=%.2f;Low>=%.2f)\n" % (theta1, theta2))) for col in range(self.alignlen): d = Distrib(self.alphabet) gaps = 0 for seq in self.seqs: if seq[col] in self.alphabet: d.observe(seq[col]) else: gaps += 1 print(((col + 1), "\t%5.3f" % d.entropy(), "\t%4d\t" % gaps,)) symprobs = d.getProbsort() (_, maxprob) = symprobs[0] if maxprob >= theta1: print(("%d\tTRUE\t" % int(maxprob * 100),)) else: print(("%d\t\t" % int(maxprob * 100),)) for (sym, prob) in symprobs: if prob >= theta1: print((sym, "%d%%" % int(prob * 100),)) elif prob >= theta2 and lowercase: print((sym.lower(), "%d%%" % int(prob * 100),)) elif prob >= theta2: print((sym, "%d%%" % int(prob * 100),)) print() def saveConsensus(self, myseq, filename, theta1 = 0.2, theta2 = 0.05, lowercase = True, compact = False): """ Display a table with rows for each alignment column, showing column index, entropy, number of gaps, and symbols in order of decreasing probability. theta1 is the threshold for displaying symbols in upper case, theta2 is the threshold for showing symbols at all, and in lower case. """ filename = ''.join(e for e in filename if e.isalnum() or e == '_' or e == '.') f = open(filename, 'w') f.write("Alignment of %d sequences, with %d columns\n" % (len(self.seqs), self.alignlen)) if compact: f.write("Column\tConserv\tVariab\tAll (Up>=%.2f;Low>=%.2f)\n" % (theta1, theta2)) else: f.write("Column\tProb\tConserv\tSymbols (Up>=%.2f;Low>=%.2f)\n" % (theta1, theta2)) countrow = 0 for col in range(self.alignlen): countrow += 1 if myseq[col] == '-': continue alist = list(self.alphabet) alist.append('-') gapalphabet = Alphabet(alist) d_gap = Distrib(gapalphabet) d_nogap = Distrib(self.alphabet) for seq in self.seqs: if seq[col] in gapalphabet: d_gap.observe(seq[col]) if seq[col] in self.alphabet: d_nogap.observe(seq[col]) f.write("%d\t" % (col + 1)) symprobs_nogap = d_nogap.getProbsort() symprobs_gap = d_gap.getProbsort() (maxsym, maxprob) = symprobs_nogap[0] if compact: if maxprob >= theta1: f.write("%c\t" % maxsym) else: f.write("\t") for (sym, prob) in symprobs_gap: if prob >= theta2 and lowercase: f.write("%c" % sym.lower()) elif prob >= theta2: f.write("%c" % sym) f.write("\t") else: if maxprob >= theta1: f.write("%d\t" % int(maxprob * 100)) else: f.write("%d\t\t" % int(maxprob * 100)) for (sym, prob) in symprobs_gap: if prob >= theta1: f.write("%c %d%% " % (sym, int(prob * 100))) elif prob >= theta2 and lowercase: f.write("%c %d%% " % (sym.lower(), int(prob * 100))) elif prob >= theta2: f.write("%c %d%% " % (sym, int(prob * 100))) f.write('\n') f.close() def calcBackground(self): """ Count the proportion of each amino acid's occurrence in the alignment, and return as a probability distribution. """ p = Distrib(self.alphabet) for seq in self.seqs: for sym in seq: if sym in self.alphabet: # ignore "gaps" p.observe(sym) return p def calcSubstMatrix(self, background = None): """ Return a substitutionMatrix whose fg are based on this un-gapped multiple sequence alignment. Scores are given in half-bits. """ # Get a list of the amino acids aminoAcids = self.alphabet.symbols columns = self.alignlen # Length of sequences in alignment numSeqs = len(self.seqs) # Number of sequences in alignment seqPairs = (numSeqs* (numSeqs - 1) ) / 2 # Number of pairs of sequences in ungapped alignment aaPairs = seqPairs * columns # Number of pairs of amino acids in ungapped alignment # For each pair of amino acids, calculate the proportion of all aligned # amino acids in this alignment which are made up of that pair # (i.e., q[ab] = fab / aaPairs, where fab is the number of times # a and b are aligned in this alignment) # See page 122 in Understanding Bioinformatics. q = {} for i in range( len(aminoAcids) ): a = aminoAcids[i] for j in range(i, len(aminoAcids)): b = aminoAcids[j] # Count the number of times each pair of amino acids is aligned fab = 0 for column in range(columns): # Count number of each amino acid in each column col = [seq[column] for seq in self.seqs] if a == b: # Number of ways of pairing up n occurrences of amino # acid a is n*(n-1)/2 cnt = col.count(a) fab += cnt * (cnt-1)/2 else: # Number of ways of pairing up n & m occurrences of # amino acids a & b is n*m fab += col.count(a)*col.count(b) # Calculate proportion of all aligned pairs of amino acids q[a+b] = q[b+a] = float(fab) / aaPairs if q[a+b] == 0: # This is so we don't end up doing log(0) q[a+b] = q[b+a] = 0.001 # Background frequency calculation if required p = background or self.calcBackground() # Calculate log-odds ratio for each pair of amino acids s = SubstMatrix(self.alphabet) for a in aminoAcids: for b in aminoAcids: # Calculate random chance probabilitity (eab) if a == b: eab = p[a]**2 else: eab = 2*p[a]*p[b] if eab == 0: eab = 0.001 # Calculate final score to be set in the substitution matrix odds = q[a+b] / eab sab = math.log(odds, 2) # log_2 transform sab = sab * 2 # units in half bits s.set(a, b, int(round(sab))) return s def calcDistances(self, measure, a=1.0): """ Calculate the evolutionary distance between all pairs of sequences in this alignment, using the given measure. Measure can be one of 'fractional', 'poisson', 'gamma', 'jc' or 'k2p'. If 'gamma' or 'k2p' is given, then the parameter a must also be specified (or else it will use the default value of 1.0). Definitions of each distance metric are found in Zvelebil and Baum p268-276. These are mostly intended for DNA, but adapted for protein (as below). Note however that there are alternative distance matrices for proteins (p276). """ measure = measure.lower() if not measure in ['fractional', 'poisson', 'gamma', 'jc', 'k2p']: raise RuntimeError('Unsupported evolutionary distance measure: %s' % measure) a = float(a) if len(self.alphabet) == 4: oneless = 3 alphalen = 4 elif len(self.alphabet) == 20: oneless = 19 alphalen = 20 else: raise RuntimeError('Invalid sequence alphabet: %s' % str(self.alphabet)) distmat = numpy.zeros((len(self.seqs), len(self.seqs))) # Loop through each pair of sequences for i in range(len(self.seqs)): for j in range(i + 1, len(self.seqs)): seqA = self.seqs[i] seqB = self.seqs[j] # Calculate the fractional distance (p) first # The two sequences of interest are in seqA and seqB L = 0 D = 0 for k in range(self.alignlen): # For every non-gapped column, put to L # For every non-gapped column where the sequences are # different, put to D if seqA[k] != '-' and seqB[k] != '-': L += 1 if seqA[k] != seqB[k]: D += 1 p = float(D)/L # Now calculate the specified measure based on p if measure == 'fractional': dist = p elif measure == 'poisson': dist = -math.log(1-p) elif measure == 'jc': dist = -(float(oneless)/alphalen)*math.log(1 - (float(alphalen)/oneless)*p) elif measure == 'k2p': dist = (float(oneless)/alphalen)*a*((1 - (float(alphalen)/oneless)*p)**(-1/a) - 1) else: # measure == 'gamma' dist = a*((1-p)**(-1/a) - 1) distmat[i, j] = distmat[j, i] = dist return distmat def writeHTML(self, filename = None): """ Generate HTML that displays the alignment in color. Requires that the alphabet is annotated with the label 'html-color' (see Sequence.annotateSym) and that each symbol maps to a text string naming the color, e.g. 'blue' """ html = '''<html><head><meta content="text/html; charset=ISO-8859-1" http-equiv="Content-Type">\n<title>Sequence Alignment</title>\n</head><body><pre>\n''' maxNameLength = self.getnamelen() html += ''.ljust(maxNameLength) + ' ' for i in range(self.alignlen - 1): if (i+1) % 10 == 0: html += str(i/10+1)[0] else: html += ' ' html += '%s\n' % (self.alignlen) if self.alignlen > 10: html += ''.ljust(maxNameLength) + ' ' for i in range(self.alignlen - 1): if (i+1) % 10 == 0: index = len(str(i/10 + 1).split('.')[0]) html += str(i / 10 + 1).split('.')[0][(index * -1) + 1 ] if (len(str(i / 10 + 1).split('.')[0]) > 1) else '0' else: html += ' ' html += '\n' if self.alignlen > 100: html += ''.ljust(maxNameLength) + ' ' for i in range(self.alignlen - 1): if (i+1) % 10 == 0 and i >= 99: index = len(str(i/10 + 1).split('.')[0]) html += str(i / 10 + 1).split('.')[0][-1] if (len(str(i / 10 + 1).split('.')[0]) >2) else '0' else: html += ' ' html += '\n' if self.alignlen > 1000: html += ''.ljust(maxNameLength) + ' ' for i in range(self.alignlen - 1): if (i+1) % 10 == 0: html += '0' if (len(str(i / 10 + 1).split('.')[0]) > 2) else ' ' else: html += ' ' html += '\n' for seq in self.seqs: html += seq.name.ljust(maxNameLength) + ' ' for sym in seq: color = self.alphabet.getAnnotation('html-color', sym) if not color: color = 'white' html += '<font style="BACKGROUND-COLOR: %s">%s</font>' % (color, sym) html += '\n' html += '</pre></body></html>' if filename: fh = open(filename, 'w') fh.write(html) fh.close() return html def saveConsensus(aln, theta1 = 0.99, theta2 = 0.01, countgaps = False, consensus = True, filename = None): """ Display a table with rows for each alignment column, showing column index, entropy, number of gaps, and symbols in order of decreasing probability. theta1 is the percent threshold for consensus (when achieved, all other symbols are ignored) theta2 is the percent threshold for inclusion (symbols below are ignored). countgaps, if true, count gaps (default false). consensus, if true, always print the consensus symbol. filename is name of file to save the output to (default stdout).""" if filename == None: f = sys.stdout else: filename = ''.join(e for e in filename if e.isalnum() or e == '_' or e == '.') f = open(filename, 'w') if consensus: f.write("Alignment of %d sequences, with %d columns\n" % (len(aln.seqs), aln.alignlen)) f.write("Consensus>=%.2f;Inclusion>=%.2f)\n" % (theta1, theta2)) for col in range(aln.alignlen): # collect probabilities for column, with or without gap myalpha = aln.alphabet if countgaps: alist = list(aln.alphabet) alist.append('-') myalpha = Alphabet(alist) d = Distrib(myalpha) for seq in aln.seqs: if seq[col] in myalpha: d.observe(seq[col]) symprobs = d.getProbsort() # the symbols sorted by probability ninclusions = 0 for (s, p) in symprobs: if p >= theta2: ninclusions += 1 else: break if consensus or ninclusions > 1: f.write("%d " % (col + 1)) (maxs, maxp) = symprobs[0] # if maxp >= theta1 or consensus: # f.write("%c" % maxs) for (s, p) in symprobs[1:]: if p >= theta2: f.write("%c" % s) f.write("; ") f.write('\n') f.close() def alignGlobal(seqA, seqB, substMatrix, gap = -1): """ Align seqA with seqB using the Needleman-Wunsch (global) algorithm. subsMatrix is the substitution matrix to use and gap is the linear gap penalty to use. """ lenA, lenB = len(seqA), len(seqB) # Create the scoring matrix (S) S = numpy.zeros((lenA + 1, lenB + 1)) # Fill the first row and column of S with multiples of the gap penalty for i in range(lenA + 1): S[i, 0] = i * gap for j in range(lenB + 1): S[0, j] = j * gap # Calculate the optimum score at each location in the matrix S # (where the score represents the best possible score for an alignment # that ends at sequence indices i and j, for A and B, resp.) for i in range(1, lenA + 1): for j in range(1, lenB + 1): match = S[i-1, j-1] + substMatrix.get(seqA[i-1], seqB[j-1]) delete = S[i-1, j ] + gap insert = S[i , j-1] + gap S[i, j] = max([match, delete, insert]) # Traceback the optimal alignment alignA = '' # a string for sequence A when aligned (e.g. 'THIS-LI-NE-', initially empty). alignB = '' # a string for sequence B when aligned (e.g. '--ISALIGNED', initially empty). # Start at the end (bottom-right corner of S) i = lenA j = lenB # Stop when we hit the beginning of at least one sequence while i > 0 and j > 0: if S[i, j] == S[i-1, j] + gap: # Got here by a gap in sequence B (go up) alignA = seqA[i-1] + alignA alignB = '-' + alignB i -= 1 elif S[i, j] == S[i, j-1] + gap: # Got here by a gap in sequence A (go left) alignA = '-' + alignA alignB = seqB[j-1] + alignB j -= 1 else: # Got here by aligning the bases (go diagonally) alignA = seqA[i-1] + alignA alignB = seqB[j-1] + alignB i -= 1 j -= 1 # Fill in the rest of the alignment if it begins with gaps # (i.e., traceback all the way to S[0, 0]) while i > 0: # Go up alignA = seqA[i-1] + alignA alignB = '-' + alignB i -= 1 while j > 0: # Go left alignA = '-' + alignA alignB = seqB[j-1] + alignB j -= 1 return Alignment([Sequence(alignA, seqA.alphabet, seqA.name, gappy = True), Sequence(alignB, seqB.alphabet, seqB.name, gappy = True)]) def alignLocal(seqA, seqB, substMatrix, gap = -1): """ Align seqA with seqB using the Smith-Waterman (local) algorithm. subsMatrix is the substitution matrix to use and gap is the linear gap penalty to use. """ lenA, lenB = len(seqA), len(seqB) # Create the scoring matrix (S) S = numpy.zeros((lenA + 1, lenB + 1)) # Fill the first row and column of S with multiples of the gap penalty for i in range(lenA + 1): S[i, 0] = 0 # Local: init 0 for j in range(lenB + 1): S[0, j] = 0 # Local: init 0 # Calculate the optimum score at each location in the matrix S # (where the score represents the best possible score for an alignment # that ends at sequence indices i and j, for A and B, resp.) for i in range(1, lenA + 1): for j in range(1, lenB + 1): match = S[i-1, j-1] + substMatrix.get(seqA[i-1], seqB[j-1]) delete = S[i-1, j ] + gap insert = S[i , j-1] + gap S[i, j] = max([match, delete, insert, 0]) # Local: add option that we re-start alignment from "0" # Trace back the optimal alignment alignA = '' alignB = '' # Local: start at the cell which has the highest score; find it i = 0 j = 0 for ii in range(1, lenA + 1): for jj in range(1, lenB + 1): if S[ii, jj] > S[i, j]: i = ii j = jj # Stop when we hit the end of a sequence # Local: also stop when we hit a score 0 while i > 0 and j > 0 and S[i, j] > 0: if S[i, j] == S[i-1, j] + gap: # Got here by a gap in sequence B (go up) alignA = seqA[i-1] + alignA alignB = '-' + alignB i -= 1 elif S[i, j] == S[i, j-1] + gap: # Got here by a gap in sequence A (go left) alignA = "-" + alignA alignB = seqB[j-1] + alignB j -= 1 else: # Got here by aligning the bases (go diagonally) alignA = seqA[i-1] + alignA alignB = seqB[j-1] + alignB i -= 1 j -= 1 return Alignment([Sequence(alignA, seqA.alphabet, seqA.name, gappy = True), Sequence(alignB, seqB.alphabet, seqB.name, gappy = True)]) def tripletAlignGlobal(seqA, seqB, seqC, subsMatrix, gap = -1): """ Triplet-wise align this sequence with sequences seqB and seqC, using the Needleman-Wunsch (global) algorithm. subsMatrix is the substitution matrix to use and gap is the linear gap penalty to use. """ lenA, lenB, lenC = [s.length for s in [seqA, seqB, seqC]] # Create the 3D scoring matrix traceback = numpy.zeros((lenA+1, lenB+1, lenC+1)) # Fill the first row (in each dimension) with multiples of the gap penalty S = numpy.zeros((lenA+1, lenB+1, lenC+1)) for i in range(lenA+1): S[i,0,0] = i * gap for j in range(lenB+1): S[0,j,0] = j * gap for k in range(lenC+1): S[0,0,k] = k * gap # Calculate the optimum __getitem__ at each location in the matrix for i in range(1, lenA+1): for j in range(1, lenB+1): for k in range(1, lenC+1): # Scored using sum-of-pairs matchABC = S[i-1, j-1, k-1] + subsMatrix.get(seqA[i-1], seqB[j-1]) \ + subsMatrix.get(seqA[i-1], seqC[k-1]) \ + subsMatrix.get(seqB[j-1], seqC[k-1]) matchAB = S[i-1, j-1, k] + 2*gap + subsMatrix.get(seqA[i-1], seqB[j-1]) matchBC = S[i, j-1, k-1] + 2*gap + subsMatrix.get(seqB[j-1], seqC[k-1]) matchAC = S[i-1, j, k-1] + 2*gap + subsMatrix.get(seqA[i-1], seqC[k-1]) gapAB = S[i, j, k-1] + 3*gap gapBC = S[i-1, j, k] + 3*gap gapAC = S[i, j-1, k] + 3*gap # Use maximum of the 7 options for this location S[i, j, k] = max([matchABC, matchAB, matchBC, matchAC, gapAB, gapBC, gapAC]) # Remember which one was max., for the traceback if S[i, j, k] == matchABC: traceback[i, j, k] = 0 #"matchABC" elif S[i, j, k] == matchBC: traceback[i, j, k] = 1 #"matchBC" elif S[i, j, k] == matchAC: traceback[i, j, k] = 2 #"matchAC" elif S[i, j, k] == matchAB: traceback[i, j, k] = 3 #"matchAB" elif S[i, j, k] == gapAB: traceback[i, j, k] = 4 #"gapAB" elif S[i, j, k] == gapBC: traceback[i, j, k] = 5 #"gapBC" elif S[i, j, k] == gapAC: traceback[i, j, k] = 6 #"gapAC" # Traceback the optimal alignment alignA = "" alignB = "" alignC = "" # Start at the end i = lenA j = lenB k = lenC # Stop when we hit the end of all but one sequence while (i>0 and j>0) or (j>0 and k>0) or (i>0 and k>0): if traceback[i, j, k] == 0: #"matchABC": alignA = seqA[i-1] + alignA alignB = seqB[j-1] + alignB alignC = seqC[k-1] + alignC i -= 1 j -= 1 k -= 1 elif traceback[i, j, k] == 3: #"matchAB": alignA = seqA[i-1] + alignA alignB = seqB[j-1] + alignB alignC = "-" + alignC i -= 1 j -= 1 elif traceback[i, j, k] == 2: #"matchAC": alignA = seqA[i-1] + alignA alignB = "-" + alignB alignC = seqC[k-1] + alignC i -= 1 k -= 1 elif traceback[i, j, k] == 1: #"matchBC": alignA = "-" + alignA alignB = seqB[j-1] + alignB alignC = seqC[k-1] + alignC j -= 1 k -= 1 elif traceback[i, j, k] == 4: #"gapAB": alignA = "-" + alignA alignB = "-" + alignB alignC = seqC[k-1] + alignC k -= 1 elif traceback[i, j, k] == 6: #"gapAC": alignA = "-" + alignA alignB = seqB[j-1] + alignB alignC = "-" + alignC j -= 1 elif traceback[i, j, k] == 5: #"gapBC": alignA = seqA[i-1] + alignA alignB = "-" + alignB alignC = "-" + alignC i -= 1 # Fill in the rest of the alignment if it begins with gaps # (i.e., traceback all the way to S[0, 0, 0]) while i > 0: alignA = seqA[i-1] + alignA alignB = "-" + alignB alignC = "-" + alignC i -= 1 while j > 0: alignA = "-" + alignA alignB = seqB[j-1] + alignB alignC = "-" + alignC j -= 1 while k > 0: alignA = "-" + alignA alignB = "-" + alignB alignC = seqC[k-1] + alignC k -= 1 return Alignment([Sequence(alignA, seqA.alphabet, seqA.name, gappy = True), Sequence(alignB, seqB.alphabet, seqB.name, gappy = True), Sequence(alignC, seqC.alphabet, seqC.name, gappy = True)]) def readClustal(string, alphabet): """ Read a ClustalW2 alignment in the given string and return as an Alignment object. """ seqs = {} # sequence data for line in string.splitlines(): if line.startswith('CLUSTAL') or line.startswith('STOCKHOLM') \ or line.startswith('#'): continue if len(line.strip()) == 0: continue if line[0] == ' ' or '*' in line or ':' in line: continue sections = line.split() name, seqstr = sections[0:2] index = name.find('/') if index >= 0: name = name[0:index] if name in seqs: seqs[name] += seqstr else: seqs[name] = seqstr sequences = [] for name, seqstr in list(seqs.items()): sequences.append(Sequence(seqstr, alphabet, name, gappy = True)) return Alignment(sequences) def readClustalFile(filename, alphabet): """ Read a ClustalW2 alignment file and return an Alignment object containing the alignment. """ fh = open(filename) data = fh.read() fh.close() aln = readClustal(data, alphabet) return aln # Substitution Matrix ------------------ class SubstMatrix(): scoremat = None alphabet = None def __init__(self, alphabet): self.alphabet = alphabet self.scoremat = {} def setScores(self, scoremat): """ Set all scores in one go. scoremat is a (sym1, sym2)-keyed dictionary of scores. """ self.scoremat = scoremat def _getkey(self, sym1, sym2): """ Construct canonical (unordered) key for two symbols """ if sym1 <= sym2: return tuple([sym1, sym2]) else: return tuple([sym2, sym1]) def set(self, sym1, sym2, score): """ Add a score to the substitution matrix """ self.scoremat[self._getkey(sym1, sym2)] = score def get(self, sym1, sym2): return self.scoremat[self._getkey(sym1, sym2)] def __str__(self): symbols = self.alphabet.symbols # what symbols are in the alphabet i = len(symbols) string = '' for a in symbols: string += a + ' ' for b in symbols[:len(symbols)-i+1]: score = self.scoremat[self._getkey(a, b)] if score != None: string += str(score).rjust(3) + ' ' else: string += "?".rjust(3) + ' ' string += '\n' i -= 1 string += ' ' + ' '.join(self.alphabet.symbols) return string def writeFile(self, filename): """ Write this substitution matrix to the given file. """ fh = open(filename, 'w') file = '' for key in self.scoremat: file += ''.join(key) + ': ' + str(self.scoremat[key]) + '\n' fh.write(file) fh.close() def readSubstMatrix(filename, alphabet): """ Read in the substitution matrix stored in the given file. """ mat = SubstMatrix(alphabet) fh = open(filename, 'r') data = fh.read() fh.close() lines = data.splitlines() for line in lines: if len(line.strip()) == 0: continue symbols, score = line.split(':') score = int(score) mat.set(symbols[0], symbols[1], score) return mat #import os #os.chdir('/Users/mikael/workspace/binf/data/') # set to the directory where you keep your files #BLOSUM62 = readSubstMatrix('blosum62.matrix', Protein_Alphabet) # Motifs ------------------- class Regexp(object): """ A class that defines a sequence pattern in terms of a given regular expression, with . indicating any symbol and square brackets indicating a selection. See standard regexp definitions for more. """ def __init__(self, pattern): """ Create a new consensus sequence with the given pattern. """ try: self.pattern = pattern self.regex = re.compile(pattern) except: raise RuntimeError('invalid consensus sequence given: %s' % pattern) def __str__(self): return self.pattern def search(self, sequence): """ Find matches to the motif in the specified sequence. Returns a list of triples, of the form (position, matched string, score). Note that the score is always 1.0 because a consensus sequence either matches or doesn't. """ if not type(sequence) is Sequence: sequence = Sequence(sequence) sequenceString = sequence[:] results = [] for match in self.regex.finditer(sequenceString): results.append((match.start(), match.group(), 1.0)) return results class PWM(object): """ A position weight matrix. """ def __init__(self, foreground, background = None, start = 0, end = None, pseudo = 0.0): """ Create a new PWM from the given probability matrix/ces. foreground: can be either an Alignment, a list of Distrib's or an instance of IndepJoint. background: must be a Distrib instance or None (in which case a uniform background will be used) Specify only a section of the matrix to use with start and end. """ if isinstance(foreground, Alignment): #If the foreground variable is type Alignment foreground = foreground.getProfile(pseudo = pseudo) #Returns IndepJoint if isinstance(foreground, IndepJoint): #If the foreground variable is type IndepJoint foreground = foreground.store #Otherwise, foreground must be list of Distrib's self.start = start self.end = end or len(foreground) self.length = self.end - self.start self.alphabet = foreground[self.start].alpha if False in [ col.alpha == self.alphabet for col in foreground[self.start + 1 : self.end] ]: raise RuntimeError("All positions need to be based on the same alphabet") self.symbols = self.alphabet.symbols # Set foreground probabilities from given alignment self.m = numpy.zeros((len(self.symbols), self.length)) #Matrix is populated in loops below (see additional comment) self.fg = foreground[self.start:self.end] self.bg = background or Distrib(self.alphabet, 1.0) # specified background or uniform if not self.alphabet == self.bg.alpha: raise RuntimeError("Background needs to use the same alphabet as the foreground") p = self.bg.prob() for i in range(self.length): q = self.fg[i].prob() for j in range(len(self.alphabet)): self.m[j][i] = self.logme(q[j], p[j]) #Exercise 1b - this is where the key calculation occurs def __len__(self): return self.length def getRC(self, swap = [('A', 'T'), ('C', 'G')] ): """ Get the reverse complement of the current PWM. Use for DNA sequences with default params. """ new_fg = self.fg[::-1] # backwards for s in swap: new_fg = [d.swapxcopy(s[0], s[1]) for d in new_fg] return PWM(new_fg, self.bg) MIN_VALUE = 0.00000000001 def logme(self, fg, bg): if fg > self.MIN_VALUE and bg > self.MIN_VALUE: ratio = fg / bg return math.log(ratio) # if not, one of fg and bg is practically zero if fg > self.MIN_VALUE: # bg is zero return math.log(fg / self.MIN_VALUE) else: # fg is zero return math.log(self.MIN_VALUE) def getMatrix(self): return self.m def __str__(self): str = '' for j in range(len(self.alphabet)): str += "%s\t%s\n" % (self.alphabet[j], ' '.join("%+6.2f" % (y) for y in self.m[j])) return str def display(self, format = 'COLUMN'): if format == 'COLUMN': print((" \t%s" % (' '.join(" %5d" % (i + 1) for i in range(self.length))))) for j in range(len(self.alphabet)): print(("%s\t%s" % (self.alphabet[j], ' '.join("%+6.2f" % (y) for y in self.m[j])))) elif format == 'JASPAR': for j in range(len(self.alphabet)): print(("%s\t[%s]" % (self.alphabet[j], ' '.join("%+6.2f" % (y) for y in self.m[j])))) def search(self, sequence, lowerBound=0): """ Find matches to the motif in a specified sequence. Returns a list of results as triples: (position, matched string, score). The optional argument lowerBound specifies a lower bound on reported scores. """ results = [] for i in range(len(sequence)-self.length+1): subseq = sequence[i:i + self.length] ndxseq = [ self.alphabet.index(sym) for sym in subseq ] score = 0.0 for w in range(len(ndxseq)): score += self.m[ ndxseq[w] ][ w ] if score > lowerBound: results.append((i, subseq, score)) return results def maxscore(self, sequence): """ Find matches to the motif in a specified sequence. Returns the maximum score found in the sequence and its index as a tuple: (maxscore, maxindex) """ maxscore = None maxindex = None for i in range(len(sequence)-self.length+1): subseq = sequence[i:i + self.length] ndxseq = [ self.alphabet.index(sym) for sym in subseq ] score = 0.0 for w in range(len(ndxseq)): score += self.m[ ndxseq[w] ][ w ] if maxscore == None: maxscore = score maxindex = i elif maxscore < score: maxscore = score maxindex = i return (maxscore, maxindex) # Web Service Functions ------------------- def getSequence(id, database = 'uniprotkb', start=None, end=None): """ Get the sequence identified by the given ID from the given database (e.g. 'uniprotkb', 'refseqn' or 'refseqp'), and return it as a Sequence object. An error is caused if the sequence ID is not found. If start and end are given, then only that section of the sequence is returned. Note: more flexible search options are supported by using webservice.fetch directly.""" MAX_TRY = 5 for i in range(MAX_TRY): try: fastaData = fetch(id, database) seq = readFasta(fastaData)[0] break except: from time import sleep print(('Failed on {i}th try for id {id}'.format(i=i, id=id))) sleep(0.1) try: return Sequence(seq[start:end], seq.alphabet, seq.name, seq.info) except: raise RuntimeError('An error occurred while retrieving the specified sequence: %s (maybe the ID doesn\'t exist)' % id) def searchSequences(query, database='uniprot'): """ Search for sequences matching the given query in the given database (must be 'uniprot'), and return a list of sequence IDs. """ ids = search(query, limit = None) return ids def runClustal(sequences, method='slow'): """ Run a ClustalOmega alignment of the given list of Sequence objects. Return an Alignment object. Method should be one of 'fast' or 'slow'. """ alpha = None for seq in sequences: if alpha == None: alpha = seq.alphabet elif alpha != seq.alphabet: raise RuntimeError("Invalid alphabet: " + str(seq.alphabet) + ". Not compatible with " + str(alpha)) serviceName = 'clustalo' resultType = 'aln-clustal' fastaSeqs = ''.join([seq.writeFasta() for seq in sequences]) params = {'alignment': method.lower(), 'sequence': fastaSeqs} service = EBI(serviceName) result = service.submit(params, resultType) alignment = readClustal(result, alpha) return alignment def createTree(alignment, type): """ Run a ClustalW 2 phylogeny tree creation of either a 'Neighbour-joining' or 'UPGMA' type tree from the given multiple sequence Alignment object. """ if not type in ['Neighbour-joining', 'UPGMA']: raise RuntimeError('type must be either \'Neighbour-joining\' or \'UPGMA\'.') serviceName = 'clustalw2_phylogeny' resultType = 'tree' output = 'dist' clustalAln = alignment.writeClustal() params = {'tree': output, 'sequence': clustalAln, 'clustering': type, 'tossgaps': 'true'} service = EBI(serviceName) tree = service.submit(params, resultType) return tree def runBLAST(sequence, program='blastp', database='uniprotkb', exp='1e-1'): """ Run a BLAST search of nucleotide mouse databases using the given sequence as a query. Return a list of matched sequence IDs, in descending order of similarity to query sequence. program: either blastn (nucleotide) or blastp (protein) database: many available, e.g. uniprotkb, pdb (protein); em_rel, nrnl1 (EMBL nucleotide, non-redundant resp) (for protein see http://www.ebi.ac.uk/Tools/sss/ncbiblast/help/index-protein.html#database) (for nucleotide see http://www.ebi.ac.uk/Tools/sss/ncbiblast/help/index-nucleotide.html#database) exp: E-value threshold (select only hits that have a better E-value than this) """ if sequence.alphabet == predefAlphabets['DNA']: stype = 'dna' elif sequence.alphabet == predefAlphabets['RNA']: stype = 'rna' else: stype = 'protein' serviceName = 'ncbiblast' resultTypes = ['ids', 'out'] # request fastaSeq = sequence.writeFasta() databases = [database] params = {'program': program, 'database': databases, 'sequence': fastaSeq, 'stype': stype, 'exp': exp} service = EBI(serviceName) idsData, output = service.submit(params, resultTypes) ids=[] for id in idsData.splitlines(): if len(id) > 0: ids.append(id.split(':')[1]) return ids
[ "740807262@qq.com" ]
740807262@qq.com
7c4ab82bd2bfc79be5fa29cf52330c7658613239
ef077253f652a7b2863a8f57a55b27ef9b630510
/optimize2points.py
520df8395d0062ce4f1a3eb091725c246eeb2a70
[]
no_license
PatrickC05/cmimc-2021
2386ef84fa20bee006966fe7f80f586b97a1a262
e8cc7c5e22f1885e123390f9f90a7a0d885ff167
refs/heads/main
2023-03-04T02:30:19.835142
2021-02-07T22:23:08
2021-02-07T22:23:08
334,438,443
0
0
null
null
null
null
UTF-8
Python
false
false
2,278
py
from ast import literal_eval import numpy as np INCR = 1 # edit to the name of the input file print(INCR) f = open('circlecovers4.txt', 'r') n = int(f.readline()) points = [f.readline() for _ in range(n)] m = int(f.readline()) radii = [int(f.readline()) for _ in range(m)] centers = [] # replace from here to line 18 with your own logic # points is a list of tuples of the points, and radii is a list of radii points = [i.strip().split(' ') for i in points] points = [(int(i[0]), int(i[1])) for i in points] radii = np.array([int(i) for i in radii]) radii_indices = np.argsort(radii)[::-1] radii = radii[radii_indices] inverse = np.empty_like(radii_indices) inverse[radii_indices] = np.arange(radii_indices.size) def inCircle(center,coords,r): return np.linalg.norm(np.array(coords)-np.array(center)) <= r active_points = points.copy() def getCenters(point,r): r2 = r**2 yield point for i in np.arange(1,r+INCR,INCR): yield i+point[0],point[1] yield point[0]-i,point[1] yield point[0],point[1]+i yield point[0],point[1]-i for x in np.arange(1,r+INCR,INCR): for y in np.arange(x,r+INCR,INCR): if x**2 + y**2 < r2: yield x+point[0],y+point[1] yield point[0]-x,y+point[1] yield point[0]+x,point[1]-y yield point[0]-x,point[1]-y if x!=y: yield y+point[0],x+point[1] yield point[0]-y,x+point[1] yield point[0]+y,point[1]-x yield point[0]-y,point[1]-x for r in radii: c_points = {} for p in active_points: for c in getCenters(p,r): try: c_points[c] +=1 except KeyError: c_points[c] = 1 best_center = max(c_points, key=lambda k: c_points[k]) # print(c_points) new_points = [p for p in active_points if not inCircle(best_center,p,r)] active_points = new_points.copy() centers.append(best_center) print(best_center) print(n-len(active_points)) # change to whatever you want your output file to be called out = open('output24.txt', 'w') for t in np.array(centers)[inverse]: out.write(str(t[0]) + ' '+ str(t[1])) out.write("\n") out.close()
[ "53089989+PatrickC05@users.noreply.github.com" ]
53089989+PatrickC05@users.noreply.github.com
09bfcb8ce09e40bfd8fbf0812963f0eb4959c722
35f9ba79f017ad056235a7a33d6220c6ab5c88b5
/pylytics/conf/project_template/dimension/store/transform.py
bee025b370bf694c62b5f05c3c68df55146b3754
[ "Apache-2.0" ]
permissive
onefinestay/pylytics
1672f79bebe66919548c9f2c3eb447ff7a24107e
b6e77e5d9931244efa6120409a4b97cc73efa4c9
refs/heads/master
2021-06-08T21:25:06.120510
2016-07-14T16:13:50
2016-07-14T16:13:50
9,165,356
5
4
NOASSERTION
2021-03-19T21:47:17
2013-04-02T08:04:43
Python
UTF-8
Python
false
false
163
py
# Define your expansions here. def convert_str_to_int(data): """ An example expansion. """ data['employees'] = int(data['employees']) return data
[ "townsend51@gmail.com" ]
townsend51@gmail.com