blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
57c4c091a2ba52d1de4451b90cf6c0b231aeb8e0
70eb368ea25ad8767e6713ea88936642154f43ae
/workUndone/Suite15/OpenFlight_API/samples/scripts/egswitch1.py
23612a022f3d36c1a2340cad12cd1a3882d46f71
[]
no_license
CatalinaPrisacaru/Di-Java
816cb3428d5026fb63934e14d09c422aa1537b08
1c35b28e0b8c8f3c25afbc7b2c0a7fe8cac96c6b
refs/heads/develop
2021-01-18T02:23:47.759177
2016-04-11T19:55:35
2016-04-11T19:55:35
54,333,823
0
0
null
2016-03-20T18:36:51
2016-03-20T18:36:51
null
UTF-8
Python
false
false
4,400
py
## ## ## Sample file: egswitch1.py ## ## Objectives: ## Manipulate switch node masks ## ## Program functions: ## Add Switch Node Masks ## Get and Set bits in the masks ## ## API functions used: ## mgInitSwitchMask(), mgAddSwitchMask(), ## mgSetSwitchBit(), mgGetSwitchBit(), ## mgGetSwitchMaskCount(), mgGetSwitchMaskNo(), ## mgNewRec(), mgAttach(), ## mgNewDb(), mgWriteDb(), mgCloseDb() ## ## import sys # import OpenFlight API module from mgapilib import * def BuildSwitchMasks (switchRec): # build a set of switch masks, each one that turns on a # single child of the switch node numChildren = mgCountChild (switchRec) # create a set of new masks, each one turns on a # single child of the switch node for i in range (0, numChildren): # create a new mask that will turn on this child switchNo = mgAddSwitchMask (switchRec) # init all bits of this mask to off ok = mgInitSwitchMask (switchRec, switchNo, MG_FALSE) # then turn on the bit corresponding to this child ok = mgSetSwitchBit (switchRec, switchNo, i, MG_TRUE) def PrintSwitchMasks (switchRec): # print the values of each of the bits of each of the # switch masks of the switch node # get number of masks defined for the switch node maskCount = mgGetSwitchMaskCount (switchRec) # get the current switch mask number (info only) ok, curMaskNo = mgGetSwitchMaskNo (switchRec) # get the values for each bit of the mask and print it for maskNo in range (0, maskCount): bitNo = 0 # bitnum represents the bit number mgSendMessage (MMSG_STATUS, "Mask %d :" % (maskNo)) result, onFlag = mgGetSwitchBit (switchRec, maskNo, bitNo) while result: mgSendMessage (MMSG_STATUS, "\tbit %d : %d" % (bitNo, onFlag)) bitNo = bitNo + 1 result, onFlag = mgGetSwitchBit (switchRec, maskNo, bitNo) def REPORT_NODE_CREATED(_node): if _node: print "Creating %s : Ok\n" % (mgGetName(_node)) else: print "Creating %s : Failed\n" % (mgGetName(_node)) def REPORT_NODE_ATTACHED(_ok,_parent,_child): print "Attaching " #_child " to " #_parent " : %s\n", ((_ok)==MG_TRUE) ? "Ok" : "Failed") if _ok == MG_TRUE: print "Attaching %s to %s : Ok\n" % (mgGetName(_child), mgGetName(_parent)) else: print "Attaching %s to %s : Failed\n" % (mgGetName(_child), mgGetName(_parent)) def main (): # check for proper arguments if len(sys.argv) < 2: print "\nUsage: %s <create_db_filename>\n" % (sys.argv[0]) print " Creates database: <create_db_filename>\n" print " Creates switch node with masks\n" print " Get and set bits in the masks\n" print "\n" return # initialize the OpenFlight API # always call mgInit BEFORE any other OpenFlight API calls # mgInit (None, None) # start a new OpenFlight database, overwrite if exists mgSetNewOverwriteFlag (MG_TRUE) print "\nCreating database: %s\n" % (sys.argv[1]) db = mgNewDb (sys.argv[1]) if db == None: msgbuf = mgGetLastError() print msgbuf, "\n" mgExit() return ## Throughout the following, error conditions are checked for ## and (in some cases) reported but processing will continue. ## In your code, you should consider appropriate action upon ## function failures. ## # create group, switch, and 3 object nodes group = mgNewRec (fltGroup) REPORT_NODE_CREATED (group) ok = mgAttach (db, group) REPORT_NODE_ATTACHED (ok, db, group) switchRec = mgNewRec (fltSwitch) REPORT_NODE_CREATED (switchRec) ok = mgAttach (group, switchRec) REPORT_NODE_ATTACHED (ok, group, switchRec) object1 = mgNewRec (fltObject) REPORT_NODE_CREATED (object1) object2 = mgNewRec (fltObject) REPORT_NODE_CREATED (object2) object3 = mgNewRec (fltObject) REPORT_NODE_CREATED (object3) ok = mgAttach (switchRec, object1) REPORT_NODE_ATTACHED (ok, switchRec, object1) ok = mgAttach (switchRec, object2) REPORT_NODE_ATTACHED (ok, switchRec, object2) ok = mgAttach (switchRec, object3) REPORT_NODE_ATTACHED (ok, switchRec, object3) # set up the switch masks BuildSwitchMasks (switchRec) # echo the values of the switch masks PrintSwitchMasks (switchRec) # write and close the database ok = mgWriteDb (db) if ok == MG_FALSE: print "Error writing database\n" ok = mgCloseDb (db) if ok == MG_FALSE: print "Error closing database\n" # always call mgExit() AFTER all OpenFlight API calls mgExit () main()
[ "albisteanu.sebastian@yahoo.com" ]
albisteanu.sebastian@yahoo.com
386961a6d4ad8ba5e91b202f26a4853a3a5e894b
6923f79f1eaaba0ab28b25337ba6cb56be97d32d
/A_Primer_on_Scientific_Programming_with_Python/discalc/discrete_func_vec.py
41d60f2cf924caaec283b0bb8405acdfbc3d5aaa
[]
no_license
burakbayramli/books
9fe7ba0cabf06e113eb125d62fe16d4946f4a4f0
5e9a0e03aa7ddf5e5ddf89943ccc68d94b539e95
refs/heads/master
2023-08-17T05:31:08.885134
2023-08-14T10:05:37
2023-08-14T10:05:37
72,460,321
223
174
null
2022-10-24T12:15:06
2016-10-31T17:24:00
Jupyter Notebook
UTF-8
Python
false
false
421
py
#!/usr/bin/env python def discrete_func(f, a, b, n): x = linspace(a, b, n+1) y = f(x) return x, y from scitools.std import * try: f_formula = sys.argv[1] a = eval(sys.argv[2]) b = eval(sys.argv[3]) n = int(sys.argv[4]) except: print "usage: %s 'f(x)' a b n" % sys.argv[0] sys.exit(1) f = StringFunction(f_formula) f.vectorize(globals()) x, y = discrete_func(f, a, b, n) plot(x, y)
[ "bb@b.om" ]
bb@b.om
d2b74819323cbf09c35bedc8eec0bafbfcd622eb
3551e031a4fb8b3e67f374a457f0fc5f7b56cd24
/Job4/models.py
e541ed1f537fb66a88052ff1e81cfa0c2a7b9528
[]
no_license
klaskan/master-second-experiment
8b8114987d1d09076f3b9bc4af3c4e5a22d668cd
eef8d7a2360e706246c71897254828b113f99b44
refs/heads/master
2022-12-08T13:53:32.575309
2020-08-23T17:54:20
2020-08-23T17:54:20
279,106,850
0
0
null
null
null
null
UTF-8
Python
false
false
1,423
py
from otree.api import ( models, widgets, BaseConstants, BaseSubsession, BaseGroup, BasePlayer, Currency as c, currency_range ) doc = '' class Constants(BaseConstants): name_in_url = 'Job4' players_per_group = None num_rounds = 1 class Subsession(BaseSubsession): pass class Group(BaseGroup): pass class Player(BasePlayer): typeracer = models.LongStringField(blank=True) this_round_point = models.FloatField(initial=0) random_num = models.IntegerField(initial=0) declare = models.FloatField(min=0) fine = models.FloatField(initial=0) not_deklarert = models.FloatField(initial=0) score_after_taxes = models.FloatField() got_audited_score = models.FloatField(initial=0) not_audited_score = models.FloatField() eq1 = models.IntegerField(label='11 - 7 = ') eq2 = models.IntegerField(label='5 * 8 =') eq3 = models.IntegerField(label='45 - 30 = ') eq4 = models.IntegerField(label='44 + 30 ') eq5 = models.IntegerField(label='6 * 6 = ') eq6 = models.IntegerField(label='4 + 17 =') eq7 = models.IntegerField(label='52 - 30 = ') eq8 = models.IntegerField(label='44 - 33 = ') eq9 = models.IntegerField(label='90 - 30 = ') eq10 = models.IntegerField(label='28 - 11 = ') def declare_max(self): return self.this_round_point def posibility(self): import random self.random_num = random.randint(1,100)
[ "klaskan@pop-os.localdomain" ]
klaskan@pop-os.localdomain
3c8918400e5b1ec794124fbc66eb5763ad955796
5421a4f93da3aad9f146cd2e72ddcdb398ddb2ef
/python/190324.py
d5c8b1bd1963f1aa29ac643d32791b93f3042823
[ "Apache-2.0" ]
permissive
entroychang/main
dcccc372fef2ae5e67b551442b67192a6ea97052
1e1f51a4b63adaaaf21f8fda58daec3fc06b8b1e
refs/heads/master
2022-06-04T21:19:28.180978
2019-10-15T13:30:06
2019-10-15T13:30:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
452
py
i, j = map(int,input().split()) #分隔同行輸入 lenth=list()#儲存長度數列 print(i,j) if i>j: i,j=j,i #若i較大 前後交換 for x in range(i,j) :#有限迴圈 data=list()#3n+1數列 #data.append(x) print(x) while x!=1:#算出數列 if x%2==0: x=x/2 data.append(x) else: x=x*3+1 data.append(x) lenth.append(len(data))#將長度加入長度數列 print(max(lenth)) #找最大
[ "trusaidlin@gmail.com" ]
trusaidlin@gmail.com
8dfe69d1359e3056848825729008657f98e5359f
6bb2634bb201139f576b8a6e0f2c4445bcdf9464
/Array/18.BuySellStock.py
89390d40bde60f1e1742d35ab1f04d90b1636690
[]
no_license
mayankmr2-dev/challenge
f3fcab375d6a39f9dddaaa6a9aa3ff08db226fc5
6a6f0b520d3ba4a4b63e2c82776a92a58f45534b
refs/heads/master
2023-07-16T12:02:55.389154
2021-08-29T18:31:33
2021-08-29T18:31:33
266,380,080
2
0
null
null
null
null
UTF-8
Python
false
false
367
py
ar1 = [7, 1, 5, 3, 6, 4] def solution(arr): n = len(arr) left = 0 right = 1 maxP = 0 while right < n: if(arr[right] <= arr[left]): left = right else: diff = arr[right] - arr[left] maxP = max(maxP, diff) right += 1 return maxP if __name__ == '__main__': print(solution(ar1))
[ "mayankmr2@gmail.com" ]
mayankmr2@gmail.com
c07dce52c212b33b85e1d54cd6385992a9fa5fcc
e4f04c827c2402440915619a51dfbf0700688398
/03Flask/falskday01/app7.py
0904b0977e69f37fee0ad24c840d7a45ff146492
[]
no_license
wangxinglong74520/filename
58177cb0d1dfc262713816d175334bbd52ace3b8
3347ab61ed1cf0290c6cc431d9931fb0975a612f
refs/heads/main
2023-03-30T21:55:23.207561
2021-03-22T08:21:40
2021-03-22T08:21:40
349,773,715
1
0
null
null
null
null
UTF-8
Python
false
false
674
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @File : app7.py # @Time : 2021/2/15 15:50 # @Author : Merle # @Site : """ """ from flask import Flask, request, url_for, make_response, render_template import setting app = Flask(__name__) app.config.from_object(setting) @app.route('/show1') def show1(): girls = ['杨幂', '如花', '孙艺珍', '孙尚香', '貂蝉', '林允儿'] users = [ {'user': '战三1', 'passwd': 123121}, {'user': '战三2', 'passwd': 2112123}, {'user': '战三3', 'passwd': 3121233}, ] return render_template('show-7.html', girls=girls,users=users) if __name__ == '__main__': app.run()
[ "1639837640@qq.com" ]
1639837640@qq.com
4822c14902d0d55628fcbe0c7a9f1a9c3c9a7292
dbf7512728bdfa2302ad537112ad49bd736ff87c
/share/qt/clean_mac_info_plist.py
c33db216e1e69f262bfb4cc1f0be8089c1f336cb
[ "MIT" ]
permissive
ohathar/easysend
a6acd4352048ae07895b7fe4f9c816b4682aec31
f5cc8ca750bef627fb0eb73baf2c80e65c2e7d7f
refs/heads/master
2021-01-10T22:29:41.570756
2015-08-02T16:38:51
2015-08-02T16:38:51
39,847,657
0
0
null
null
null
null
UTF-8
Python
false
false
898
py
#!/usr/bin/env python # Jonas Schnelli, 2013 # make sure the Easysend-Qt.app contains the right plist (including the right version) # fix made because of serval bugs in Qt mac deployment (https://bugreports.qt-project.org/browse/QTBUG-21267) from string import Template from datetime import date bitcoinDir = "./"; inFile = bitcoinDir+"/share/qt/Info.plist" outFile = "Easysend-Qt.app/Contents/Info.plist" version = "unknown"; fileForGrabbingVersion = bitcoinDir+"easysend-qt.pro" for line in open(fileForGrabbingVersion): lineArr = line.replace(" ", "").split("="); if lineArr[0].startswith("VERSION"): version = lineArr[1].replace("\n", ""); fIn = open(inFile, "r") fileContent = fIn.read() s = Template(fileContent) newFileContent = s.substitute(VERSION=version,YEAR=date.today().year) fOut = open(outFile, "w"); fOut.write(newFileContent); print "Info.plist fresh created"
[ "zach.mcelroy@gmail.com" ]
zach.mcelroy@gmail.com
40098a3b910d8c207f2b2ab9fcda0e117533f5a6
2f72e60c1b267206ef5723cf8496efb1ee19bb10
/vk_parser.py
4b37dc3384667ca0d914b2e947eafd30a8e84227
[]
no_license
sh1n0b1n0m0n0/vk_parser
d378a2c751827847d2d8caa66f71d9f3fb6ad2c6
0ac83255431ceeb37518213d086f8e8e259ea166
refs/heads/main
2023-04-28T04:41:36.713939
2021-05-23T06:40:54
2021-05-23T06:40:54
317,965,235
0
0
null
2021-05-22T11:17:50
2020-12-02T19:10:54
Jupyter Notebook
UTF-8
Python
false
false
6,527
py
import requests import settings import time from datetime import datetime import csv from urllib.error import HTTPError from webapp.models import Post, Group, Comment, db import sqlite3 def take_groups(group_name): group = [] VK_GROUPS = 'https://api.vk.com/method/groups.getById' response = requests.get(VK_GROUPS, params={ 'access_token': settings.TOKEN, 'v': settings.API_VERSION, 'group_id': group_name}) response.raise_for_status() data = response.json()['response'] group.extend(data) time.sleep(1) for item in group: bd_save_groups(id=item['id'], screen_name=item['screen_name'], name=item['name']) def take_posts(group_name): all_posts = [] count = 100 offset = 0 VK_POSTS = 'https://api.vk.com/method/wall.get' DOMAIN = str(group_name) try: while offset < 100: response = requests.get(VK_POSTS, params={ 'access_token': settings.TOKEN, 'v': settings.API_VERSION, 'domain': DOMAIN, 'count': count, 'offset': offset }) response.raise_for_status() data = response.json()['response']['items'] offset += count all_posts.extend(data) time.sleep(0.5) for post in all_posts: bd_save_posts(group_id=post['from_id'], post_id=post['id'], date=datetime.fromtimestamp(post['date']), text=post['text'], likes=post['likes']['count']) take_comments(group_id=post['from_id'], group_name=DOMAIN, owner_id=post['from_id'], post_id=post['id']) except HTTPError as http_err: print(f'HTTP error occurred: {http_err}') except Exception as err: print(f'Other error occurred: {err}') def take_comments(group_id, group_name, owner_id, post_id): all_comments = [] counts = 1000 # max number of comments offset = 0 VK_COMMENTS = "https://api.vk.com/method/wall.getComments" DOMAIN = group_name try: response = requests.get(VK_COMMENTS, params={ 'access_token': settings.TOKEN, 'v': settings.API_VERSION, 'domain': DOMAIN, 'count': counts, 'offset': offset, 'owner_id': owner_id, 'post_id': post_id }) data = response.json()['response']['items'] all_comments.extend(data) time.sleep(0.5) for comment in all_comments: bd_save_comments(group_id=group_id, post_id=comment['post_id'], owner_id=comment['id'], date=datetime.fromtimestamp(comment['date']), comment_text=comment['text'], likes=comment['thread']['count'], sentiment=0) except HTTPError as http_err: print(f'HTTP error occurred: {http_err}') except Exception as err: print(f'Other error occurred: {err}') def write_to_text(posts): with open('waha.txt', 'a', encoding="utf-8") as file: for text in posts: str_id = str(text["owner_id"]) file.write(f'owner_id = {str_id}\n{text["text"]}\n\n##########################################################\n\n') def write_to_csv(posts): with open('wrongart.csv', 'w', encoding="utf-8") as file: wr = csv.writer(file, dialect='excel') for post in posts: wr.writerows(post['text']) def bd_save_groups(id, screen_name, name): group_exists = Group.query.filter(Group.group_id == id).count() url_exists = Group.query.filter(Group.domain == screen_name).count() group_group = Group(url='https://vk.com/public' + str(id), group_id=-id, domain=screen_name, group_name=name) if not (url_exists and group_exists): try: db.session.add(group_group) db.session.commit() except sqlite3.IntegrityError as int_err: print(f"ooops it is {int_err}") finally: db.session.close() def bd_save_posts(group_id, post_id, date, text, likes): post_exists = Post.query.filter(Post.post_id == post_id).count() group_exists = Post.query.filter(Post.group_id == group_id).count() print("posts and groups exists= ",post_exists, group_exists) post_post = Post(group_id=group_id, post_id=post_id, date=date, text=text, likes=likes) if not (post_exists and group_exists): try: db.session.add(post_post) db.session.commit() except sqlite3.IntegrityError as int_err: print(f"ooops it is {int_err}") finally: db.session.close() def bd_save_comments(group_id, post_id, owner_id, date, comment_text, likes, sentiment): post_exists = Comment.query.filter(Comment.post_id == post_id).count() owner_exists = Comment.query.filter(Comment.owner_id == owner_id).count() print('posts and owners exists=',post_exists, owner_exists) comm_comm = Comment(group_id=group_id, post_id=post_id, owner_id=owner_id, date=date, comment_text=comment_text, likes=likes, sentiment=sentiment) if not (post_exists and owner_exists): try: db.session.add(comm_comm) db.session.commit() except sqlite3.IntegrityError as int_err: print(f"ooops it is {int_err}") finally: db.session.close()
[ "nindzja.t001@gmail.com" ]
nindzja.t001@gmail.com
114f352e57bda54372e23e977fd49df9d4e87a5d
6575f6be2cfc0681b3e1b3613d930aff7ceaf957
/CS372_HW1_code_[20160650].py
7f4f108bb1384de4b8fc09cda67d69b7d521d0f1
[]
no_license
jsch8q/CS372_NLP_with_NLTK
3e08b4108133e4b19d78e17933f75a02f21fa500
7798d5db333c5ba3f734b58d5a00c6b462882adc
refs/heads/master
2023-04-23T13:10:12.041348
2021-05-18T12:30:50
2021-05-18T12:30:50
264,391,005
0
0
null
null
null
null
UTF-8
Python
false
false
6,046
py
import nltk import time from nltk.corpus import reuters from nltk.corpus import wordnet as wn from nltk.corpus import stopwords from nltk.tokenize import word_tokenize now = time.time() # To analyze better we use wordnet Lemmatizer # and the corpus we use is the Reuters corpus wnl = nltk.WordNetLemmatizer() reuter_text = nltk.Text(reuters.words()) def similarity_likelihood(w1, tuple1): # a test function to see if our triple satisfies the standards # the triple is packed as w1, (w2, w3), e.g. 'extol', ('praise', 'highly') w2, w3 = tuple1 # use synsets to get the definition string s1 = wn.synsets(w1) s2 = wn.synsets(w2) s3 = wn.synsets(w3) if wnl.lemmatize(w1) == wnl.lemmatize(w2) or wnl.lemmatize(w1) == wnl.lemmatize(w3): # we want similar phrases, not phrases with essentially same words. return False # get all possible part of speeches each word can have w1_pos = set([sset.pos() for sset in s1]) w2_pos = set([sset.pos() for sset in s2]) w3_pos = set([sset.pos() for sset in s3]) sset_list = [sset1 for sset1 in s1] if set('n') == w1_pos: # we at least want to have a possibility of w1 not being a noun. # we do check this below again, but for early detection we add this step. return False excellence = False # for each synset in synsets... for sset in sset_list: # ...get the part of speech... target_pumsa = sset.pos() # ...and if the synset is not a noun... if not target_pumsa == 'n': #...get the definition string of the synset... defs = sset.definition() #...where if w2 or w3 is in the describing string and might have the same part of speech of w1, while the other one has a possibility of being an adverb if w2 in defs : if len(set(target_pumsa) & w2_pos) > 0 and 'r' in w3_pos: excellence = True elif w3 in defs: if len(set(target_pumsa) & w3_pos) > 0 and 'r' in w2_pos: excellence = True return excellence stopword = stopwords.words() print("precomputing... \nto inform you the progress, the numbers will count up to %1.1f million, twice." %(len(reuter_text) / (10 ** 6))) # we want to find pairs of w1 and (w2, w3) so that there exists two words w_a and w_b such that both strings (w_a + w1 + w_b) and (w_a + w2 + w3 + w_b) exist in the corpus. # so we make a python dictionary of 3-consecutive words and 4-consecutive words, where the key is the first and last word pair and the value of the key is the middle word(s). # further we just discard non-alphabetic tokens and stopwords to improve quality. trigrams = {} for i in range(len(reuter_text) - 2): if (i % 100000 == 0): print(i) w1, w2, w3 = reuter_text[i: i+3] if w2.isalpha() and not w2.lower() in stopword: w1 = w1.lower() w2 = w2.lower() w3 = w3.lower() if (w1, w3) in trigrams: trigrams[(w1, w3)] = trigrams[(w1, w3)] | set([w2]) else : trigrams[(w1, w3)] = set([w2]) quadgrams = {} for i in range(len(reuter_text) - 3): if (i % 100000 == 0): print(i) w1, w2, w3, w4 = reuter_text[i: i+4] #print(w1, w2, w3) if w2.isalpha() and w3.isalpha() and (not w2.lower() in stopword) and (not w3.lower() in stopword) : w1 = w1.lower() w2 = w2.lower() w3 = w3.lower() w4 = w4.lower() if (w1, w4) in trigrams: if (w1, w4) in quadgrams: quadgrams[(w1, w4)] = quadgrams[(w1, w4)] | set([(w2, w3)]) else : quadgrams[(w1, w4)] = set([(w2, w3)]) # from dictionaries made we find for a match; this and the previous step is necessarily finding w1, (w2, w3) pairs with the same context. res_list = [] search_table = dict() inverse_search_table = dict() print("%d keys to test are found, please be patient." %( len(list(quadgrams.keys())) )) # for those matching pairs with the same context we use the test function defined above to see if they are 'synomyms' in the sense of the test function result. for key in list(quadgrams.keys()): tests = [(target, bullet) for target in trigrams[key] for bullet in quadgrams[key]] for test in tests: w1, tuple1 = test # to avoid superfluous overlapping, if w1 or (w2, w3) pair is already in the result list we reject this test case ... if w1 in search_table: break if tuple(sorted(tuple1)) in inverse_search_table: break w2, w3 = sorted(tuple1) # ...and also the case where w2 or w3 is not indisputably an adverb. # This step could be merged with the test function, but as an effort to reduce the running time of this code, checking such is done before calling the test function. if (not set([sset.pos() for sset in wn.synsets(w2)]) == set('r')) and (not set([sset.pos() for sset in wn.synsets(w3)]) == set('r')): break # finally the test function. if similarity_likelihood(w1, tuple1): res_list.append(test) search_table[w1] = tuple1 inverse_search_table[tuple(sorted(tuple1))] = w1 # print out first 50 results of triples fout = open("./CS372_HW1_output_[20160650].csv", 'w') res = res_list[:50] for triple in res : w1, w23 = triple w2, w3 = w23 print(w1 + ',' + w2 + ',' + w3, file = fout) fout.close() # among results we find those words which are "purely" adverbs, and print out the results according to their frequency of appearing in full result list. describing = [w for tup in list(inverse_search_table)\ for w in list(tup)\ if set([sset.pos() for sset in wn.synsets(w)]) == set('r')] fd = nltk.FreqDist(describing) adverbs = [adv for adv, _ in list(fd.most_common())] print("candidates of intensity-modifying verbs : ", adverbs[:min(len(adverbs), 50)]) print("elapsed : %.6f" %(time.time() - now))
[ "jsch@kaist.ac.kr" ]
jsch@kaist.ac.kr
bb36495ae9c725e71057d86118eab52cd0b1cbcb
24eccbb309064d6bb63d776354cb6fb861e3d1c6
/flask_API_intermidiate/5_Storing_Resources_in_SQL_DB/5_14_get_post_put_delete/Code_part/app.py
62e432e8aa3d82cb5e39d00428c7fbbfc1895da5
[]
no_license
shown440/Flask_API_A_to_Z
e74f2e3c48185c04b0b66506fc22759c9d52555d
a8048ff5e46bfdf3f957d0771436dc7dd2fe92ab
refs/heads/master
2022-12-10T02:39:03.268361
2019-12-24T10:40:00
2019-12-24T10:40:00
194,473,971
1
1
null
2022-12-08T05:20:41
2019-06-30T04:16:42
Python
UTF-8
Python
false
false
533
py
from flask import Flask from flask_restful import Api from flask_jwt import JWT from security import authenticate, identity from user import UserRegister from item import Item, ItemList app = Flask(__name__) app.secret_key = "jose" api = Api(app) jwt = JWT(app, authenticate, identity) # /auth api.add_resource(Item, "/item/<string:name>") ### http://127.0.0.1:5000/student/Shifullah api.add_resource(ItemList, "/items/") api.add_resource(UserRegister, "/register/") if __name__ == '__main__': app.debug=True app.run()
[ "ahmed.shifullah@gmail.com" ]
ahmed.shifullah@gmail.com
baebc6c8653d34a3449018406978c98ff7d671d3
9ebd09ff1957596817d00543cc04797fde6ba754
/thresholding/otsu_thresholding.py
b43660f328a970182bd61b749a424a02982f8b05
[]
no_license
levilevi10/SurfaceDefectDetection
987a3dea0c82a8fc7c59a811fe3983d9af6979d1
240ed25da74404b3f785bdd513600a6e4c89942e
refs/heads/master
2023-02-19T07:57:31.914557
2023-02-07T03:32:17
2023-02-07T03:32:17
225,205,812
0
0
null
2019-12-01T18:54:11
2019-12-01T18:09:58
null
UTF-8
Python
false
false
1,042
py
import cv2 as cv import os from pathlib import Path #specify input and output folder input_folder = Path(r'C:\Users\lvinzenz\Documents\Data\Image Recognition\SurfaceDefectDetection\LeoderBachelor\Images_to_use') output_folder = "OtsuThresholding" #get list of all images in folder liste = [] for image in input_folder.iterdir(): if image.name.endswith('.jpg'): liste.append(image.name) #apply thresholding with otsu on each image in folder and safe output to thresholding_folder for i in range(len(liste)): image_path = os.path.join(input_folder, liste[i]) if image_path.endswith(".jpg"): img = cv.imread(image_path, 0) #use kernelsize for medianBlur [1, 3, 5] blur_kernel = 5 median = cv.medianBlur(img, blur_kernel) ret2,th2 = cv.threshold(median,0,255,cv.THRESH_BINARY+cv.THRESH_OTSU) os.chdir(os.path.join(str(input_folder)+"\\"+output_folder)) cv.imwrite(liste[i][0:-4] + "_blur" + str(blur_kernel) + "_"+ "Otsu.jpg", th2)
[ "noreply@github.com" ]
levilevi10.noreply@github.com
2beae9e71e428414fad3d5f3bfdbb38d39016d8b
da4cd8f752a475ddb0298f19e26d1232657a08ff
/tests/llvm/datasets/anghabench_test.py
bb4149dca82082447c76cb489ba9c548846da6cd
[ "MIT" ]
permissive
hughleat/CompilerGym
923e9ec42eae6100e3c474011d421ab408d54d62
6e2ce3ead07250738264db7171f6aef7aa468365
refs/heads/development
2023-08-04T11:34:33.523794
2021-06-28T17:00:38
2021-06-28T17:00:38
381,304,781
0
0
MIT
2021-06-29T09:09:38
2021-06-29T09:09:38
null
UTF-8
Python
false
false
2,238
py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Tests for the AnghaBench dataset.""" import sys from itertools import islice from pathlib import Path import gym import pytest import compiler_gym.envs.llvm # noqa register environments from compiler_gym.envs.llvm import LlvmEnv from compiler_gym.envs.llvm.datasets import AnghaBenchDataset from tests.pytest_plugins.common import skip_on_ci from tests.test_main import main pytest_plugins = ["tests.pytest_plugins.common", "tests.pytest_plugins.llvm"] @pytest.fixture(scope="module") def anghabench_dataset() -> AnghaBenchDataset: env = gym.make("llvm-v0") try: ds = env.datasets["anghabench-v1"] finally: env.close() yield ds def test_anghabench_size(anghabench_dataset: AnghaBenchDataset): if sys.platform == "darwin": assert anghabench_dataset.size == 1041265 else: assert anghabench_dataset.size == 1041333 def test_missing_benchmark_name(anghabench_dataset: AnghaBenchDataset, mocker): # Mock install() so that on CI it doesn't download and unpack the tarfile. mocker.patch.object(anghabench_dataset, "install") with pytest.raises( LookupError, match=r"^No benchmark specified: benchmark://anghabench-v1$" ): anghabench_dataset.benchmark("benchmark://anghabench-v1") anghabench_dataset.install.assert_called_once() with pytest.raises( LookupError, match=r"^No benchmark specified: benchmark://anghabench-v1/$" ): anghabench_dataset.benchmark("benchmark://anghabench-v1/") assert anghabench_dataset.install.call_count == 2 @skip_on_ci @pytest.mark.parametrize("index", range(250)) def test_anghabench_random_select( env: LlvmEnv, anghabench_dataset: AnghaBenchDataset, index: int, tmpwd: Path ): uri = next(islice(anghabench_dataset.benchmark_uris(), index, None)) benchmark = anghabench_dataset.benchmark(uri) env.reset(benchmark=benchmark) assert benchmark.source benchmark.write_sources_to_directory(tmpwd) assert (tmpwd / "function.c").is_file() if __name__ == "__main__": main()
[ "cummins@fb.com" ]
cummins@fb.com
6408b28de6d713e64aff7aa47f8af2fda7bc40e8
3f5f5de7244cb1c9566a6275b9822ebf89b19d51
/course3/assignment2_q2.py
8b93fec95aa3d47fc51390972d9d9e429e54d2b2
[]
no_license
denck007/Algorithms_specialization
03b2989fc2b5b3629544bd5e2060237e94b8d67e
2a9b795d3bbcccd5b1fce83d3ed431ec54d084a7
refs/heads/master
2020-03-30T00:18:42.269510
2019-01-25T02:51:21
2019-01-25T02:51:21
150,515,575
1
0
null
null
null
null
UTF-8
Python
false
false
6,474
py
''' Course 3 Week 2:Greedy Algorithms, Minimum Spanning Trees, and Dynamic Programming Question 2: Clustering large dataset We are given a large dataset with each node having 24 'values'. The values are boolean. We are tasked with finding the number of clusters needed so that the spacing between any 2 nodes in seperate clusters have at least 2 different 'values' The dataset is large and it is advised to no try and measure the distance between all the points. This solution is still not optimal, but it is still pretty quick. Optimial is <20 seconds, this is 450seconds. Most of the time (~70%) is spent creating a string to hash, and an additional 10% is spent creating an extended list object Converting the extended list object to a bit object and bit fiddling would likely get us sub 40 seconds. This solution creates a hash table of the 'locations' of each point as key It then goes through and merges all verticies that have the same location Then it goes through and inverts one bit at a time, and sees if that location is in the hash table If it is then the nodes are merged Then it goes through and inverts all of the other bits one by one, and sees if that value is in the hash table This method could be cleaned up and have recursion added to make it more generic ''' import os import sys sys.path.append("/home/neil/Algorithms_specialization") from helpers.Heap import Heap from helpers.UnionFind import UnionFind import time class list_string(list): ''' extend the list class with the ability to turn it into a string of just the elements Not elegent, but handy ''' def __init__(self,*args): list.__init__(self,*args) self.string = None # allows caching of the result #@profile def stringify(self): if self.string is None: self.string = "" for idx in range(self.__len__()): self.string += str(self.__getitem__(idx)) return self.string def __hash__(self): return hash(self.stringify()) def __copy__(self): self.string = None self.stringify() class HammingCluster(): def __init__(self,fname,testing=False): ''' Load the dataset and convert it to booleans ''' self.fname = fname self.testing = testing self.keys_iter = 0 self.union_iter = 0 self.list_string_iter = 0 with open(fname,'r') as f: data = f.readlines() self.num_nodes = int(data[0].strip().split()[0]) # number of nodes in the graph self.num_dims = int(data[0].strip().split()[1]) # number of dimensions the node has, number of values it has self.unionfind = UnionFind(self.num_nodes) self.data = {} for node,line in enumerate(data[1:]): vals = list_string(line.strip().split()) if vals not in self.data: self.data[vals] = [node] else: self.data[vals].append(node) if testing: fname = fname.replace("input","output") with open(fname,'r') as f: self.correct_solution = int(f.read()) def cluster(self): ''' ''' # look for verticies that are at the same location for key in self.data: self.keys_iter += 1 if len(self.data[key]) != 1: u = self.data[key][0] for s_v in range(1,len(self.data[key])): v= self.data[key][s_v] self.union_iter += 1 self.unionfind.union_if_unique(u,v) for key in self.data: self.keys_iter += 1 u = self.data[key][0] for idx_1 in range(self.num_dims): self.list_string_iter += 1 u_value_new_1 = list_string(key) if u_value_new_1[idx_1] == "0": u_value_new_1[idx_1] = "1" else: u_value_new_1[idx_1] = "0" # check and see if the single bit change exists if u_value_new_1 in self.data: v = self.data[u_value_new_1][0] self.union_iter += 1 self.unionfind.union_if_unique(u,v) for idx_2 in range(idx_1+1,self.num_dims): self.list_string_iter += 1 u_value_new_2 = list_string(u_value_new_1) if u_value_new_2[idx_2] == "0": u_value_new_2[idx_2] = "1" else: u_value_new_2[idx_2] = "0" # see if the 2 bit change is in the data _ = u_value_new_2.stringify() if u_value_new_2 in self.data: v = self.data[u_value_new_2][0] self.union_iter += 1 self.unionfind.union_if_unique(u,v) return self.unionfind.num_groups base_path = "course3/test_assignment2/question2" with open("output.csv",'w') as f: f.write("n,dims,keys,union,list_string\n") for fname in os.listdir(base_path): if "input" not in fname: continue count_end = fname.rfind("_") count_start = fname[:count_end].rfind("_")+1 #if int(fname[count_start:count_end]) > 1024: # continue print("{}".format(fname),end="") start_time = time.time() hc = HammingCluster(os.path.join(base_path,fname),testing=True) num_groups = hc.cluster() if hc.correct_solution != num_groups: print("\n\tExpected {:4} Got {:4} error {:4}".format(hc.correct_solution,num_groups,hc.correct_solution-num_groups)) print("\tElapsed time: {:.1f}sec".format(time.time()-start_time)) print("\tn: {} keys: {} union: {} list_string:{}\n".format(hc.num_nodes,hc.keys_iter,hc.union_iter,hc.list_string_iter)) else: print(" Correct!") with open("output.csv",'a') as f: f.write("{},{},{},{},{}\n".format(hc.num_nodes,hc.num_dims,hc.keys_iter,hc.union_iter,hc.list_string_iter)) base_path = "course3/" fname = "assignment2_q2.txt" print("Starting assignment") start_time = time.time() hc = HammingCluster(os.path.join(base_path,fname),testing=False) num_groups = hc.cluster() print("\tGot {:4}".format(num_groups)) print("\tElapsed time: {:.1f}sec".format(time.time()-start_time))
[ "denck007@umn.edu" ]
denck007@umn.edu
a3f9e4786860ae300ca008d167c2056b7e584589
c744ca4848ac0a6be88124a00bdd54b221a414ba
/lovers/chain.py
6a3519dffa2c5c5ec7331d98ccca86afb7709cc3
[]
no_license
XunylYasna/Murang-Algocom
fb6242b03587c0c343a50f12951239eefd91873d
e88ee8be78d66a34119378b8b52a420d7173a5ca
refs/heads/master
2022-12-12T12:45:42.843631
2020-09-18T18:48:54
2020-09-18T18:48:54
285,238,197
0
0
null
null
null
null
UTF-8
Python
false
false
439
py
def solve(cards): # cards.sort() room = 0 i = 1 while( i < 10): if(cards[i] > 0): room += 1 cards[i] -= 1 if(i == 9): if(cards[0] > 0): room += 1 cards[0] -= 1 i = 0 else: i = 10 i += 1 return room cards = list(map(int,input().strip().split(" "))) print("{}".format(solve(cards)))
[ "lynux_ansay@dlsu.edu.ph" ]
lynux_ansay@dlsu.edu.ph
6c448d6f9ae383fc8a43c8c220302d78428d7576
72915375a374764c3a819e7ed2950fe1d66c069c
/tests/tests_base.py
8bcd59c2188301e4661fdeb63df1afdc5cfb54af
[]
no_license
jespino/pydstorages
e4b3a6a854b17a229fa83d8b3dd5793413d3a672
6bc781606a3071116ff4feff329749225e294493
refs/heads/master
2020-04-06T05:45:36.578928
2013-08-15T09:11:14
2013-08-15T09:11:14
12,011,670
2
0
null
null
null
null
UTF-8
Python
false
false
1,624
py
from __future__ import unicode_literals import os import gzip import tempfile import unittest from pydstorages.base import File from pydstorages.move import file_move_safe from pydstorages.base import ContentFile TEST_TEMP_DIR = os.path.join(os.path.dirname(__file__), 'temp') class StorageTest(unittest.TestCase): pass class ContentFileTest(unittest.TestCase): pass class FileTests(unittest.TestCase): def test_context_manager(self): orig_file = tempfile.TemporaryFile() base_file = File(orig_file) with base_file as f: self.assertIs(base_file, f) self.assertFalse(f.closed) self.assertTrue(f.closed) self.assertTrue(orig_file.closed) def test_file_mode(self): # Should not set mode to None if it is not present. # See #14681, stdlib gzip module crashes if mode is set to None file = File("mode_test.txt", b"content") self.assertFalse(hasattr(file, 'mode')) g = gzip.GzipFile(fileobj=file) class FileMoveSafeTests(unittest.TestCase): def test_file_move_overwrite(self): handle_a, self.file_a = tempfile.mkstemp(dir=TEST_TEMP_DIR) handle_b, self.file_b = tempfile.mkstemp(dir=TEST_TEMP_DIR) # file_move_safe should raise an IOError exception if destination file exists and allow_overwrite is False self.assertRaises(IOError, lambda: file_move_safe(self.file_a, self.file_b, allow_overwrite=False)) # should allow it and continue on if allow_overwrite is True self.assertIsNone(file_move_safe(self.file_a, self.file_b, allow_overwrite=True))
[ "jesus.espino@kaleidos.net" ]
jesus.espino@kaleidos.net
d13b522c261e63500490a1afe42df2608d9be1a9
c243cff9218b72b4171a3fc294607fa830561d08
/7_Shortest_Path/Jongmin/1753.py
5157f40c517c04146fe9bbbbf52a42dae0c70827
[]
no_license
ISANGDEV/Algorithm_Study
31e65cc6916be92d2a56aef1ad18eacb5b04f787
0eec5e3b2321f521e617d7bdc99fca8a4103f0bb
refs/heads/main
2023-07-24T08:18:20.794903
2021-09-01T14:05:54
2021-09-01T14:05:54
347,665,106
0
0
null
2021-09-01T14:03:32
2021-03-14T14:51:24
Python
UTF-8
Python
false
false
684
py
import sys from heapq import heappush,heappop INF=int(1e9) V,E=map(int, input().split()) K=int(input()) graph=[[] for i in range(V+1)] for i in range(E): u,v,w=map(int, sys.stdin.readline().split()) graph[u].append([w,v]) distance = [INF] * (V + 1) heap=[] def dijkstra(start): distance[start]=0 heappush(heap,[0,start]) while heap: c,p=heappop(heap) for point in graph[p]: cc,pp=point cost=cc+c if cost<distance[pp]: distance[pp]=cost heappush(heap,[cost, pp]) dijkstra(K) for i in range(1,V+1): if distance[i]==INF: print("INF") else: print(distance[i])
[ "sdr2936@gmail.com" ]
sdr2936@gmail.com
5b89d17fe310e2282732583cf20e21987579608a
5ab4ed1e8eb7f942db03eb06a56f2dc0fb8056f8
/code/scripts/sandbox/tensorly_mps.py
196f5671e665de4dea34f51d7f8dabf2010d9c85
[ "MIT" ]
permissive
lucgiffon/psm-nets
b4f443ff47f4b423c3494ff944ef0dae68badd9d
dec43c26281febf6e5c8b8f42bfb78098ae7101d
refs/heads/main
2023-05-04T17:56:11.122144
2021-05-28T16:31:34
2021-05-28T16:31:34
337,717,248
1
0
null
null
null
null
UTF-8
Python
false
false
509
py
from tensorly.decomposition import matrix_product_state import numpy as np a = np.random.rand(128, 256) in_mods = [2, 4, 4, 4] out_mods = [4, 4, 4, 4] a_ = np.reshape(a, tuple(in_mods[i]*out_mods[i] for i in range(len(in_mods)))) ranks = [1, 2, 2, 2, 1] l = list() for i in range(len(in_mods)): l.append([out_mods[i] * ranks[i + 1], ranks[i] * in_mods[i]]) res = matrix_product_state(a_, ranks) for idx_core, shape_core in enumerate(l): res[idx_core] = np.reshape(res[idx_core], tuple(shape_core))
[ "luc.giffon@lis-lab.fr" ]
luc.giffon@lis-lab.fr
bbad456f801d79bffb0babaf1ec61ccfa0d8bba4
93dd3e71c147f0647877e0bf22d1d78fdcc2a7d0
/Pictures/testers.py
8905ff629b1acdc9eb72d1a9bd9513d2698306cc
[]
no_license
e-farkas/PodLine
6bea0ce14e2782a7580b721525f130a7cb2e1671
3e345e5908eff5d3f36eda1613243d11d729346f
refs/heads/master
2021-09-07T17:47:05.684459
2018-02-27T03:03:18
2018-02-27T03:03:18
118,840,199
0
1
null
null
null
null
UTF-8
Python
false
false
1,017
py
from PIL import Image import pytesseract import os path = "/usr/local/home/eguerrer/PodLine/Pictures/" firstString = ""; Ofile = open("TITLES.txt", "w") list = os.listdir(path) for im in list: if im.endswith('.png'): image = Image.open(im) text = pytesseract.image_to_string(image, lang = 'eng') title = text.partition("\n\n")[0] filteredText = "".join(i for i in title if ord(i) <128) # if firstString is empty # set firstString to filtered text # and write to text # else if first string is not empty # compare the first String to filtered String # if it is the same then don't write to text # if it is not the same then do write it to the file # assign first String to filtered text firstString = Ofile.readline() for st in Ofile if firstString != filteredText inputPath = os.path.join(path, im) Ofile.write("Next image:" + im) Ofile.write("\n") Ofile.write( "Next slide: " + filteredText) Ofile.write("\n") st = Ofile.readline() Ofile.close()
[ "eguerrer@vm133.sysnet.ucsd.edu" ]
eguerrer@vm133.sysnet.ucsd.edu
8e78cc3767e4278b4921f0823929d60fee07494b
8347bcc0296a6fe5a3559d193830d604ea3b8d18
/music/models.py
8433e518d9c23ec891f10058ddc7f1070b6f0b23
[]
no_license
sajadab/PythonTest
d4e44d35ea2cea32b15abb20d12f7024980b2b4a
910bcf4f6f5b883f5359a611bd5a5b30a311a531
refs/heads/master
2021-09-07T07:00:28.368204
2018-02-19T08:24:00
2018-02-19T08:24:00
115,856,732
0
0
null
null
null
null
UTF-8
Python
false
false
773
py
from django.db import models # from django.core.urlresolvers import reverse class Album(models.Model): artist = models.CharField(max_length=250) album_title = models.CharField(max_length=500) genre = models.CharField(max_length=100) album_logo = models.CharField(max_length=1000) # def get_absolute_url(self): # return reverse('music:detail', kwargs={'pk': self.pk}) def __str__(self): return self.album_title + ' - ' + self.artist class Song(models.Model): album = models.ForeignKey(Album, on_delete=models.CASCADE) file_type = models.CharField(max_length=10) song_title = models.CharField(max_length=250) is_favorite = models.BooleanField(default=False) def __str__(self): return self.song_title
[ "you@example.com" ]
you@example.com
89c304a08474593738cc5b93bd5b8b0255b6c2b5
003d9b0175cf4416114efa4cdbf9ae9d7a623237
/wadl_to_iodocs.py
6b6e111c385b0910da0259a61f4dd76a09cdf260
[]
no_license
brunoroussel/wadl-to-iodocs
49b569aeff5ddf12022c4a5aaed7fb38f1a895bd
e7eeb19fde6c267a97d9ea9e44ff779f5874a750
refs/heads/master
2021-04-12T02:43:37.364528
2012-12-29T01:14:27
2012-12-29T01:14:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,245
py
#!/usr/bin/python from BeautifulSoup import BeautifulSoup import re import simplejson as json import sys def wadl_to_rails_syntax(url): url = re.sub(r'{', r':', url) url = re.sub(r'}', r'', url) return url def params_to_json(params): param_list = [] for param in params: p = { 'Name': param['name'], 'Required': 'Y' if param['required'] == 'true' else 'N', 'Default': '', 'Type': 'string' if param['type'] == 'xsd:string' else param['type'], 'Description': '' } try: p['Description'] = param.doc.text except AttributeError: p['Description'] = '' param_list.append(p) return param_list def method_to_json(method): j = { 'MethodName': method['apigee:displayname'], 'Synopsis': method.doc.text, 'HTTPMethod': method['name'], 'URI': '', 'RequiresOAuth': 'N', 'parameters': [], } params = method.request.findAll('param') p = params_to_json(params) j['parameters'] = p return j if __name__=='__main__': wf = sys.argv[1] jf = sys.argv[2] wadl_file = open('%s' % wf) json_file = open('%s' % jf, 'w+') soup = BeautifulSoup(wadl_file.read()) resources = soup.findAll('resource') groups = {} tags = soup.findAll('apigee:tag', primary='true') for tag in tags: p = tag.text if p not in groups.keys(): groups[p] = [] else: pass for resource in resources: methods = resource.findAll('method') for method in methods: print method['apigee:displayname'] j = method_to_json(method) j['URI'] = wadl_to_rails_syntax(resource['path']) group = method.findAll('apigee:tag', primary='true')[0].text groups[group].append(j) endpoints = [] for key in groups: key_str = '%s related methods' % key endpoints.append({'name': key_str, 'methods': groups[key]}) data = json.dumps({'endpoints': endpoints }, sort_keys=True, indent=4) json_file.write(data)
[ "jbkimelman@gmail.com" ]
jbkimelman@gmail.com
15873693c27a82312804d65b817f5134a1ad17b8
3cddae9abac1a5f89ff56ecac4179c741700f02f
/Dragon/python/dragon/vm/caffe/layers/__init__.py
594afe3640ae152ccec31d8ba31637258e0ec54b
[ "BSD-2-Clause" ]
permissive
divfor/Dragon
03383c6db4bcbe72b76ea1cc27abd5de64a7e847
53d5742dd20f3b345ae5648066bf3a1329ce3ee4
refs/heads/master
2023-05-30T12:18:08.692159
2017-08-09T03:43:30
2017-08-09T03:43:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,086
py
# -------------------------------------------------------- # Caffe for Dragon # Copyright(c) 2017 SeetaTech # Written by Ting Pan # -------------------------------------------------------- from .data import DataLayer, MemoryDataLayer from .vision import ConvolutionLayer, DeconvolutionLayer, PoolingLayer, \ LRNLayer, ROIPoolingLayer, ROIAlignLayer, NNResizeLayer from .neuron import ReLULayer, DropoutLayer, TanhLayer, PowerLayer from .loss import SoftmaxWithLossLayer, SigmoidCrossEntropyLossLayer, \ L2LossLayer, SmoothL1LossLayer from .mpi import MPIBroadcastLayer, MPIGatherLayer from .common import InnerProductLayer, AccuracyLayer, BatchNormLayer, \ BatchRenormLayer, BNLayer, ConcatLayer, \ CropLayer, PythonLayer, AddLayer, \ ReshapeLayer, EltwiseLayer, ScaleLayer, \ SoftmaxLayer, PermuteLayer, FlattenLayer, ConcatLayer, \ NormalizeLayer, InstanceNormLayer, TileLayer, \ ExpandDimsLayer, ProposalLayer, DenseConcatLayer
[ "ting.pan@seetatech.com" ]
ting.pan@seetatech.com
9293bcfd52fa3f687ca1ab4e6d9d2935eab178af
f023936fe61984604da81533ac96d184e5b92a73
/manage.py
9920dbc8244cc2e17bb19655dcdb23fbb8c5f74e
[]
no_license
LousGndiner/django_todo_list
c7c02c228f596269078737a2fcdeb367c6aa6266
25d279aacb98d27fae2ca4bac6bd4a82b9569fa4
refs/heads/master
2022-07-23T05:17:54.958572
2020-05-18T06:13:03
2020-05-18T06:13:03
264,845,371
0
0
null
null
null
null
UTF-8
Python
false
false
631
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'rjagonzales.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
[ "rjagonzales@addu.edu.ph" ]
rjagonzales@addu.edu.ph
a3eaf0af41a96f610e5598fd78c598613b06c0ea
63fed887a6755c371be31e6ba59fcab1c0762c66
/treex/nn/mlp.py
d8a11cfed74a4b2dbbd85f3701f91250520c9bf6
[ "MIT" ]
permissive
rohitkuk/treex
2986d9b7d6e64dd2a18de703154f1e0c081a577a
e4f30d1ce41c0ecb491610e607edd335a8700e37
refs/heads/master
2023-07-21T16:39:07.657968
2021-08-30T19:00:12
2021-08-30T19:00:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,763
py
import typing as tp import jax import jax.numpy as jnp import numpy as np from flax.linen import linear as flax_module from treex import types from treex.module import Module from treex.nn.linear import Linear class MLP(Module): """A Multi-Layer Perceptron (MLP) that applies a sequence of linear layers with a given activation (relu by default), the last layer is linear. """ # pytree layers: tp.List[Linear] # props features: tp.Sequence[int] module: flax_module.Dense def __init__( self, features: tp.Sequence[int], activation: tp.Callable[[jnp.ndarray], jnp.ndarray] = jax.nn.relu, use_bias: bool = True, dtype: tp.Any = jnp.float32, precision: tp.Any = None, kernel_init: tp.Callable[ [flax_module.PRNGKey, flax_module.Shape, flax_module.Dtype], flax_module.Array, ] = flax_module.default_kernel_init, bias_init: tp.Callable[ [flax_module.PRNGKey, flax_module.Shape, flax_module.Dtype], flax_module.Array, ] = flax_module.zeros, ): """ Arguments: features: a sequence of L+1 integers, where L is the number of layers, the first integer is the number of input features and all subsequent integers are the number of output features of the respective layer. activation: the activation function to use. use_bias: whether to add a bias to the output (default: True). dtype: the dtype of the computation (default: float32). precision: numerical precision of the computation see `jax.lax.Precision` for details. kernel_init: initializer function for the weight matrix. bias_init: initializer function for the bias. """ if len(features) < 2: raise ValueError("features must have at least 2 elements") self.features = features self.activation = activation self.layers = [ Linear( features_in=features_in, features_out=features_out, use_bias=use_bias, dtype=dtype, precision=precision, kernel_init=kernel_init, bias_init=bias_init, ) for features_in, features_out in zip(features[:-1], features[1:]) ] def __call__(self, x: np.ndarray) -> jnp.ndarray: """ Applies the MLP to the input. Arguments: x: input array. Returns: The output of the MLP. """ for layer in self.layers[:-1]: x = self.activation(layer(x)) return self.layers[-1](x)
[ "cgarcia.e88@gmail.com" ]
cgarcia.e88@gmail.com
9f24ba2a410dbd012c84bb095afad472d2612f1c
dd26ab5d59139b4db6ac9d7de3244f7ec7a2249e
/notebooks/Users/svyatkin@tunein.com/RedShift Example Upsert Table.py
3bcb6a925112a00845e8ecf3e505d351c16a44a9
[]
no_license
SVyatkin/databricks
e10c9816be8153fa252d30432b89cc6b2eb06165
6b8466e52b313707fb32bff319d38043eccf5d50
refs/heads/master
2022-11-14T19:11:09.571358
2020-07-10T21:31:04
2020-07-10T21:31:04
275,268,193
0
0
null
null
null
null
UTF-8
Python
false
false
4,192
py
# Databricks notebook source # MAGIC %run Shared/PythonUtils # COMMAND ---------- # MAGIC %md ##RedShift Examples how to use different modes for PythonUtils # MAGIC # MAGIC This notebook walks through the process of: # MAGIC # MAGIC 1. How to create/update/append a redshift table # MAGIC 2. How to use different mode: # MAGIC # MAGIC a. default mode "error" create new table. If the table exists it throws an exception. # MAGIC # MAGIC b. mode "overwrite" drops a table and creates new table from dataframe data. # MAGIC # MAGIC c. mode "append" appends rows from dataframe to the table. Side effect duplications rows. # MAGIC # MAGIC 3. Work around how to upsert dataframe to a redshift table # COMMAND ---------- # MAGIC %md ##"ERROR" mode # MAGIC # MAGIC Initial mode to create new table from dataframe # COMMAND ---------- from pyspark.sql import Row # create data frame mesage01 = Row(id=1, description='01 description') mesage02 = Row(id=2, description='02 description') mesage03 = Row(id=3, description='03 description') list = [mesage01, mesage02, mesage03] df = spark.createDataFrame(list) display(df) # COMMAND ---------- # create a table test_upsert # MODE E R R O R # mode = "error" is default # if table is already exist - we have an error: Table <table name> already exists! (SaveMode is set to ErrorIfExists) # and we need to use OVERWRITE mode table_name = "public.test_upsert" write_to_redshift(df, table_name) # COMMAND ---------- # read table query_df = read_from_redshift(query="SELECT * FROM public.test_upsert") display(query_df) # COMMAND ---------- # MAGIC %md ##"OVERWRITE" mode # MAGIC # MAGIC A mode to overwrite redshift table with new data from dataframe # COMMAND ---------- # create a table test_upsert # MODE O V E R W R I T E table_name = "public.test_upsert" mode = "overwrite" write_to_redshift(df, table_name, mode) # COMMAND ---------- # read table query_df = read_from_redshift(query="SELECT * FROM public.test_upsert") display(query_df) # COMMAND ---------- # MAGIC %md ##"APPEND" mode # MAGIC # MAGIC A mode to append dataframe to redshift table # COMMAND ---------- # MODE A P P E N D # create new data frame to append into redshift table mesage01 = Row(id=4, description='04 description') mesage02 = Row(id=5, description='05 description') mesage03 = Row(id=6, description='06 description') list = [mesage01, mesage02, mesage03] df = spark.createDataFrame(list) table_name = "public.test_upsert" mode = "append" write_to_redshift(df, table_name, mode) # COMMAND ---------- # read table query_df = read_from_redshift(query="SELECT * FROM public.test_upsert") display(query_df) # COMMAND ---------- # MAGIC %md ##Upsert work around # MAGIC # MAGIC Create updated dataframe and overwrite a redshift table # COMMAND ---------- # Ubion 2 dataframes before update mesage01 = Row(id=4, description='04 update') mesage02 = Row(id=5, description='05 update') mesage03 = Row(id=6, description='06 update') list = [mesage01, mesage02, mesage03] df = spark.createDataFrame(list) table_name = "public.test_upsert" mode = "append" write_to_redshift(df, table_name, mode) # COMMAND ---------- # read table df1 = read_from_redshift(query="SELECT * FROM public.test_upsert") display(df1) # COMMAND ---------- # MAGIC %md ##Union two data frames and delete duplications # COMMAND ---------- from pyspark.sql import Row # create new dataframe with dups ids from frame 1 mesage01 = Row(id=4, description='04 merge') mesage02 = Row(id=5, description='05 merge') mesage03 = Row(id=6, description='06 merge') mesage04 = Row(id=7, description='07 merge') list = [mesage01, mesage02, mesage03, mesage04] df2 = spark.createDataFrame(list).sort("id") display(df2) # COMMAND ---------- # MAGIC %md ###Union data frames and delete duplications # COMMAND ---------- df = df2.union(df1).dropDuplicates(["id"]).sort("id") display(df) # COMMAND ---------- df = df1.union(df2).dropDuplicates(["id"]).sort("id") display(df) # COMMAND ----------
[ "vyatkinhome@yahoo.com" ]
vyatkinhome@yahoo.com
6f951281db6c2f6132c705c86eb5ea3f511d552c
7b705b92bd4bbb20e69303f41b7f37a5ab270cf9
/Linear Regression/Regress.py
733fd0f5a5bcbf0e2f2cac8c7d96877cab6e1a30
[]
no_license
noahsolomon0518/Data-Science-Projects
c7531a68aa93d74872359e2c63b6736ccf7ed55d
c7b32540eba9eca144fed0d410b87b2790128606
refs/heads/master
2020-12-14T02:47:45.901869
2020-03-08T00:38:23
2020-03-08T00:38:23
234,611,829
0
0
null
null
null
null
UTF-8
Python
false
false
1,254
py
# -*- coding: utf-8 -*- """ Created on Fri Jan 17 14:42:04 2020 @author: noahs """ #import pandas import math import pandas as pd import numpy as np import func class best_Fit: def __init__(self): self.df = 0 self.x = 0 self.Y = 0 self.size = 0 self.avgP = 0 self.slope = 0 self.b = 0 def fit(self,x,Y): self.x = x self.Y = Y self.size = len(x) self.avgP = func.avg_Point(x,Y) def slope_Best(self): n = self.size xy = func.sum_xy(self.x, self.Y) x = func.sum_x(self.x) y = func.sum_y(self.Y) x2 = func.sum_x2(self.x) avgx = self.avgP[0] avgy = self.avgP[1] self.slope = ((-2*xy)+(2*avgx*y)+(2*avgy*x)-(2*n*avgx*avgy))/((4*avgx*x)-(2*n*avgx**2)-(2*x2)) return self.slope def b_Best(self): avgx = self.avgP[0] avgy = self.avgP[1] self.b = (avgy - self.slope*avgx) return self.b def get_b(self): return self.b def get_m(self): return self.slope def get_avgP(self): return self.avgP
[ "noreply@github.com" ]
noahsolomon0518.noreply@github.com
e9081a4231ebda8f5aad0545ac59c82832882a68
b932ddc6d1187a795ef3c2b2af0ef5b186c8463f
/billing/__init__.py
4ff2652b98b36eb5229baffd5c8b02abdaa0f245
[]
no_license
FlashBanistan/drf-property-management
77f7ce487878b08298627e08dbaf5b9599768e73
016fb3e512dafa901de70e0b75ce0a6f6de38933
refs/heads/master
2021-11-16T18:55:48.314808
2020-09-09T03:13:36
2020-09-09T03:13:36
98,379,119
1
0
null
2021-09-22T17:37:36
2017-07-26T04:21:59
Python
UTF-8
Python
false
false
49
py
default_app_config = 'billing.apps.BillingConfig'
[ "FlashBanistan66@gmail.com" ]
FlashBanistan66@gmail.com
3b51022c0793182fd0303ab104e6f38e648b8672
b4324e79e8b54fa016bb7f4dbf89b111d9e01690
/programa.py
2bf409565add643fb28d6118d9f714bb19a68bd0
[]
no_license
Danielconrad2001/GitTrabalho
cbd92f51a51e46bab409844d87de81824412abab
dfc1287c6c8b6e4db8085d980aea6f1113dfb571
refs/heads/main
2023-08-11T13:23:25.485959
2021-09-22T23:21:41
2021-09-22T23:21:41
404,856,504
0
0
null
null
null
null
UTF-8
Python
false
false
14,052
py
import os from usuario import Cadastro carrinho = [] # listas usadas para armazenar informações necessárias para o funcionamento do programa. produtos = [] usuario_atual = [] class Store: def __init__(self): self.i_produtos() self.logo() self.menu_inicial() def i_produtos(self): # função para carregar os produtos que estão registrados no .txt e armazená-los em uma lista. with open('a_produtos.txt', 'r') as arquivo: for l in arquivo: x = l.split(',') x[2] = x[2].replace('\n', '') x[1] = float(x[1].replace('R$ ', '')) produtos.append(x) def menu_inicial(self): # menu inicial, onde possui as primeiras funções do programa. self.linha() print(''' [1] - CADASTRAR [2] - LOGIN [0] - SAIR ''') self.linha() while True: self.opc = input('Digite uma opção: ') if self.opc == '1': Cadastro() elif self.opc == '2': a = self.logar() if a: self.menu_loja(carrinho) elif self.opc == '0': self.exit() else: print('Opção não encontrada.') def menu_loja(self, carrinho): # menu loja, onde temos as principais funções do programa. self.linha() print(''' [1] - VER PRODUTOS [2] - VER CARRINHO [3] - EFETUAR PAGAMENTO [4] - MEUS DADOS [0] - LOGOUT ''') self.linha() while True: opx = input('Digite uma opção: ') if opx == '1': self.ver_produtos(produtos) elif opx == '2': self.ver_carrinho(carrinho, produtos) elif opx == '3': self.opcoes_pagamento() elif opx == '4': self.meus_dados(usuario_atual) elif opx == '0': carrinho.clear() usuario_atual.clear() self.menu_inicial() else: print('Opção não encontrada.') def logo(self): # função que guarda a logo do programa. self.linha() print(f''' __ __ \ \ / / __ _ _ __ ___ _ _ \ V / / _` | | '_ \ / _ \ | '_| \_/ \__,_| | .__/ \___/ |_| |_|''') def linha(self): # função printa uma linha, auxilia na organização do programa. print('=='*33) def exit(self): # função para encerar o funcionamento do programa. exit() def logar(self): # função que solicita as informações para logar no programa. while True: self.cpf = input('Digite seu cpf: ').replace('.', '').replace('-', '') self.senha = input('Digite sua senha: ') if self.verificar_usuario(self.cpf, self.senha): print('Usuario logado com sucesso.') break else: print('Cpf ou senha invalida.') return True def verificar_usuario(self, cpf, senha): # função que verifica as informações solicitadas acima. r_user = [] with open('a_user_register.txt','r') as arquivo: for l in arquivo: r_user.append(l.split(',')) for user in r_user: try: if str(user[3].replace('\n', '')) == str(cpf) and str(user[1].replace('\n', '')) == str(senha): user[4] = user[4].replace('\n', '') usuario_atual.append(user) usuario_atual[0].append(user[4]) return True except IndexError: pass return False def ver_produtos(self, produtos): # função que mostra para o usuário todos os produtos registrados no .txt. self.linha() print('|Cód| |Descrição| |Preço|') self.linha() for produto in produtos: print(f' {produto[0]:<5}{produto[2]:<50}R$ {int(produto[1]):.2f}') self.linha() print(''' [CÓD 1-20] - COLOCAR NO CARRINHO [99] - VER CARRINHO [0] - VOLTAR ''') self.linha() while True: self.op = input('Digite uma opção: ') if self.op.isnumeric(): if 1 <= int(self.op) <= 20 : un = int(input(f'[{self.op}] - QUANTIDADE DE UNIDADES: ')) self.colocar_carrinho(self.op, un, produtos, usuario_atual, carrinho) elif self.op == '99': self.ver_carrinho(carrinho, produtos) elif self.op == '0': self.menu_loja(carrinho) else: print('Opção não encontrada.') else: print('Opção não encontrada.') def colocar_carrinho(self, cod, un, produtos, usuario_atual, carrinho): # função para colocar um produto no carrinho. saldo = float(usuario_atual[0][4]) sum = 0 registro = [] for produto in produtos: if produto[0] == cod: sum += (produto[1] * un) if sum > saldo: print(f'Limite do seu saldo foi ultrapassado.') return False else: print(f'{un} unidades do cód {cod} foram adicionados ao carrinho.') usuario_atual[0][4] = float(usuario_atual[0][4]) - sum existe = 0 for i in carrinho: if i[0] == cod: i[1] += un existe = 1 if existe == 0: registro.append(cod) registro.append(un) carrinho.append(registro) def ver_carrinho(self, carrinho, produtos): # função para mostrar o carrinho do usuário. sum = 0 self.linha() print('|Cód| |Descrição| |un| |Preço|') self.linha() try: for item in carrinho: for produto in produtos: if item[0] == produto[0]: sum += item[1] * produto[1] print(f' {produto[0]:<5}{produto[2]:<47} {item[1]} R$ {produto[1]}') except: pass self.linha() print(f'|Total: {sum:>56.2f}|') self.linha() self.linha() print(''' [1] - REMOVER PRODUTO DO CARRINHO [2] - EFETUAR PAGAMENTO [0] - VOLTAR ''') self.linha() while True: self.opa = input('Digite uma opção: ') if self.opa == '1': self.remover_produto(usuario_atual[0][4], produtos, usuario_atual) elif self.opa == '2': self.opcoes_pagamento() elif self.opa == '0': self.menu_loja(carrinho) else: print('Opção não encontrada.') def opcoes_pagamento(self): # função para mostrar as opções de pagamento ao usuário. self.linha() print(''' [1] - DESCONTAR DO SALDO [2] - PAGAR CONTA [0] - VOLTAR ''') self.linha() while True: self.opr = input('Digite uma opção: ') if self.opr == '1': self.descontar_saldo(usuario_atual[0][3], usuario_atual[0][4], carrinho) elif self.opr == '2': self.pagar_conta(usuario_atual[0][3], carrinho, usuario_atual) elif self.opr == '0': self.menu_loja(carrinho) else: print('Opção não encontrada.') def descontar_saldo(self, cpf, novo_saldo, carrinho): # função que desconta os produtos do carrinho no saldo do usuário, se o mesmo tiver limite disponível. senha = input('Digite sua senha para confirmar o pagamento ou [0] para voltar: ') if senha == '0': self.opcoes_pagamento() else: conf = self.conferir_senha(senha, cpf) if conf: if len(carrinho) != 0: conta = [] with open('a_user_register.txt','r') as arquivo: for linha in arquivo: a = linha.split(',') if len(a) < 5: continue if a[3] == str(cpf): a[4] = str(novo_saldo) + '\n' conta.append(a) with open('a_user_register.txt','w') as arquivo: for c in conta: arquivo.write(str(f'{c[0]},{c[1]},{c[2]},{c[3]},{c[4]}')+'\n') print(f'Sua conta foi descontada, seu novo saldo é R$ {float(novo_saldo):.2f}') carrinho.clear() self.menu_loja(carrinho) else: print('Seu carrinho esta vazio.') else: print('Senha incorreta.') self.descontar_saldo(usuario_atual[0][3], usuario_atual[0][4], carrinho) def pagar_conta(self, cpf, carrinho, usuario_atual): # função que paga todas as dividas do usuario e os itens que o mesmo estiver no carrinho no momento. senha = input('Digite sua senha para confirmar o pagamento ou [0] para voltar: ') if senha == '0': self.opcoes_pagamento() else: conf = self.conferir_senha(senha, cpf) if conf: if len(carrinho) != 0 or usuario_atual[0][4] != '1000': conta = [] with open('a_user_register.txt','r') as arquivo: for linha in arquivo: a = linha.split(',') if len(a) < 5: continue if a[3] == str(cpf): a[4] = str(1000) + '\n' conta.append(a) with open('a_user_register.txt','w') as arquivo: for c in conta: arquivo.write(str(f'{c[0]},{c[1]},{c[2]},{c[3]},{c[4]}')+'\n') print(f'Sua conta foi paga, seu novo saldo é de R$ 1.000,00') usuario_atual[0][4] = '1000' carrinho.clear() self.menu_loja(carrinho) else: print('Seu carrinho esta vazio.') else: print('Senha incorreta.') self.pagar_conta(usuario_atual[0][3], carrinho, usuario_atual) def meus_dados(self, usuario): # função que mostra os dados do usuário logado no momento. self.linha() print() print(f' Nome cadastrado: {usuario[0][0]}') print(f' Email cadastrado: {usuario[0][2]}') print(f' Cpf cadastrado: {self.cpf_formatado(usuario[0][3])}') print(f' Saldo atual: R$ {self.saldo_atual(usuario[0][3]):.2f}') print(f' Saldo com produtos no carrinho: R$ {float(usuario[0][4]):.2f}') print() self.menu_loja(carrinho) def cpf_formatado(self, cpf): # função pega o cpf do usuário logado e coloca ele formatado. cpf_f = '' c = 0 for i in cpf: cpf_f += i c+=1 if c == 3: cpf_f += '.' if c == 6: cpf_f += '.' if c == 9: cpf_f += '-' return cpf_f def remover_produto(self, saldo, produtos, usuario_atual): # função para remover produtos do carrinho. global carrinho novo_carrinho = [] cod = input('Digite o código do produto: ') un = input('Digite a quantidade que deseja remover: ') if len(carrinho) != 0: for prod in carrinho: if int(prod[0]) == int(cod): if int(prod[1]) <= int(un): un = int(prod[1]) else: prod[1] = int(prod[1]) - int(un) novo_carrinho.append(prod) for produto in produtos: if produto[0] == cod: saldo += float(produto[1]) * int(un) else: novo_carrinho.append(prod) usuario_atual[0][4] = saldo carrinho = novo_carrinho.copy() self.ver_carrinho(carrinho, produtos) else: print('Seu carrinho esta vazio.') def conferir_senha(self, senha, cpf): # função que confere a senha do usuario. r_user = [] with open('a_user_register.txt','r') as arquivo: for l in arquivo: r_user.append(l.split(',')) for user in r_user: try: if str(user[3].replace('\n', '')) == str(cpf) and str(user[1].replace('\n', '')) == str(senha): return True except IndexError: pass return False def saldo_atual(self, cpf): # função usada para verificar o saldo atual do usuário. r_user = [] with open('a_user_register.txt','r') as arquivo: for l in arquivo: r_user.append(l.split(',')) for user in r_user: try: if str(user[3].replace('\n', '')) == str(cpf): return float(user[4]) except IndexError: pass
[ "noreply@github.com" ]
Danielconrad2001.noreply@github.com
197074ad5677e7bb1e7ca06693ab8ac749893068
b3f098cc09fae9bdd6f7ad9ae15cad66109a3c07
/listings/migrations/0001_initial.py
165183e634cafcfda2287c7c91afe688bd4637e8
[]
no_license
SurajSankarsingh/btdjango
05aa4673daa2ca52bbd41c772e03fa6060609b0f
1c66330b11e91d5eb5ff0135a0d6726ab22dd030
refs/heads/main
2023-03-12T18:08:42.785246
2021-02-27T19:46:38
2021-02-27T19:46:38
342,003,777
1
0
null
null
null
null
UTF-8
Python
false
false
2,168
py
# Generated by Django 3.1.7 on 2021-02-25 03:46 import datetime from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('realtors', '0001_initial'), ] operations = [ migrations.CreateModel( name='Listing', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=200)), ('address', models.CharField(max_length=200)), ('city', models.CharField(max_length=100)), ('state', models.CharField(max_length=100)), ('zipcode', models.CharField(max_length=20)), ('description', models.TextField(blank=True)), ('price', models.IntegerField()), ('bedrooms', models.IntegerField()), ('bathrooms', models.DecimalField(decimal_places=1, max_digits=2)), ('garage', models.IntegerField(default=0)), ('sqft', models.IntegerField()), ('lot_size', models.DecimalField(decimal_places=1, max_digits=5)), ('photo_main', models.ImageField(upload_to='photos/%Y/%m/%d/')), ('photo_1', models.ImageField(blank=True, upload_to='photos/%Y/%m/%d/')), ('photo_2', models.ImageField(blank=True, upload_to='photos/%Y/%m/%d/')), ('photo_3', models.ImageField(blank=True, upload_to='photos/%Y/%m/%d/')), ('photo_4', models.ImageField(blank=True, upload_to='photos/%Y/%m/%d/')), ('photo_5', models.ImageField(blank=True, upload_to='photos/%Y/%m/%d/')), ('photo_6', models.ImageField(blank=True, upload_to='photos/%Y/%m/%d/')), ('is_published', models.BooleanField(default=True)), ('list_date', models.DateTimeField(blank=True, default=datetime.datetime.now)), ('realtor', models.ForeignKey(on_delete=django.db.models.deletion.DO_NOTHING, to='realtors.realtor')), ], ), ]
[ "suraj.sankarsingh@hotmail.com" ]
suraj.sankarsingh@hotmail.com
cda3a2d491c728ec8fb0de2cf4d437cfc3c35695
a7a68c828b7833a841786b7f9a13a72ad7265a11
/ros/build/catkin_generated/order_packages.py
8d7f8c4b759f36793a3f5976baab81e89fc3a9c5
[]
no_license
gurugithub/Carnd-Project14-Capstone-Programming-a-Real-Self-Driving-Car
857a8df0609f74b8ad4fe7c0ea67c3cc952de125
0cb8a63ee5cf2c14d3133c8352331572a860a6cf
refs/heads/master
2021-09-10T03:55:15.925545
2018-03-20T22:34:13
2018-03-20T22:34:13
126,089,848
0
0
null
null
null
null
UTF-8
Python
false
false
435
py
# generated from catkin/cmake/template/order_packages.context.py.in source_root_dir = "/home/student/catkin_ws/CarND-Capstone/ros/src" whitelisted_packages = "".split(';') if "" != "" else [] blacklisted_packages = "".split(';') if "" != "" else [] underlay_workspaces = "/home/student/catkin_ws/CarND-Capstone/ros/devel;/opt/ros/kinetic".split(';') if "/home/student/catkin_ws/CarND-Capstone/ros/devel;/opt/ros/kinetic" != "" else []
[ "guru.shetti@gmail.com" ]
guru.shetti@gmail.com
2cccff769017cdf02a9225cc06706099f04a61c0
f2e8ba21ff0e82c7b8f47d9c40e0b05ae5a15a27
/backstage/act/act.py
e114a357e15a95f11494a3eefa24775fe2ee2dd2
[]
no_license
MiddleFork/django_backstage
28c55dd668cf65b937a276f776f740fba12fb4b0
47117483851ec3445c18ea5ad23fe65e2df2ac0d
refs/heads/master
2021-01-13T02:05:53.939988
2014-08-31T06:54:31
2014-08-31T06:54:31
14,842,822
1
0
null
null
null
null
UTF-8
Python
false
false
4,962
py
import os import sys import time import requests from backstage.utils import uwsgi_portsniffer from backstage.utils.uwsgi.uwsgi_utils import build_uwsgi # Choose one of the below as the default uwsgi emperor vassal control: from backstage.utils.uwsgi.linker_file_ini import start, stop, restart #from backstage.utils.uwsgi.linker_pg_plugin import start, stop, restart class Act(): def __init__(self, venue, actname): acthome = os.path.join(venue.acts_root, actname) kf = 'backstage-%s-%s.id' % (venue.venue_name, actname) keyfile = os.path.join(acthome, '.LIVE', kf) if not os.path.exists(keyfile): #not a valid act return self.venue = venue self.actname = actname self.name = self.actname self.acthome = acthome self.longname = 'backstage-%s-%s' % (self.venue.name, self.name) self.keyfile = keyfile self.conn = venue.conn self.get_settings() self.uwsgi_config, self.uwsgi_ini = build_uwsgi(self, 'act') inifile = '%s.ini' % self.longname self.uwsgi_file = os.path.join(self.acthome, inifile) self.uwsgi_vassal = os.path.join(self.settings.UWSGI_VASSALS, inifile) #necessary for file-based uwsgi linking self.uwsgi_ip = None self.uwsgi_port = None if not os.path.exists(self.uwsgi_file): with open(self.uwsgi_file, 'w') as f: f.write(self.uwsgi_ini) def start(self): start(self) def stop(self): stop(self) def restart(self): restart(self) def get_settings(self): syspath = sys.path sys.path.insert(0, os.path.join(self.venue.venue_home, 'acts')) settings = None exec('from %s import settings' % self.actname) sys.path = syspath self.settings = settings return def get_uwsgi_log(self): fo = open(self.uwsgifile, 'r') d = fo.readlines() fo.close() logfile = None for line in d: line = line.strip() if line[0:9] == 'daemonize': logfile = line.split('=')[1] return logfile return logfile def get_uwsgi_port(self): """Get the uwsgi port using lsof. Requires that lsof and fuser be suid root""" start_port =self.uwsgi_port timeout = 10 nap = 1 starttime = time.time() elapsed = 0 valid = False while not valid and elapsed < timeout: try: fullport = uwsgi_portsniffer.port_from_lsof(self) new_ip, new_port = fullport.split(':') if new_port <> start_port: self.uwsgi_ip = new_ip self.uwsgi_port = new_port print 'OK %s:%s' % (new_ip,new_port) valid = True except: pass if not valid: time.sleep(nap) elapsed = time.time() - starttime return def connect(self): """ connect to the instance's default database @return: """ from backstage.db.db_utils import connect_default conn = connect_default(self) def sniff_uwsgi_port(self): """sniff the uwsgi port from the log file. inefficient but does not require root access""" ip, port = uwsgi_portsniffer.portsniffer(self.uwsgi_log) if port is None: print "No port. Try self.uwsgi_linker(linkmode='link')" return uwsgi_uri = 'http://%s:%s' % (ip, port) try: h = requests.head(uwsgi_uri) if h.status_code == 200: self.uwsgi_ip = ip self.uwsgi_port = port print str(ip), str(port) else: print 'request for %s resulted in a status code of %s' % (uwsgi_uri, h.status_code) print 'the entire header follows:' print h if h.status_code == 500: s = 'A status code of 500 means that the port is bound OK but that ' s+= 'there is probably a coding error somewhere in the Act ' s+= 'which is causing it to fail to load. ' s+= 'In your browser - and with DEBUG enabled, visit %s and review the error message' % (uwsgi_uri) print s self.uwsgi_ip = None self.uwsgi_port = None except requests.exceptions.ConnectionError: s= 'Failure to load the URI at %s' % (uwsgi_uri) s+= 'Hint: this is probably a stale port.\nTry reloading the Act by touching its .ini file.\n' s+= 'Or, wait a few more seconds and try "(self).get_uwsgi_port() again' print s self.uwsgi_ip = None self.uwsgi_port = None print 'None' return
[ "walker@mfgis.com" ]
walker@mfgis.com
a223dbf4047cf6d6f448ba61f55a6cfadbd7abe1
e44716801694aa856b5fd8ef4aabe31fbd7ecab8
/capabilities/perception/person/person_detection.py
4fd7309198d949ad18d9c58de9212fb982556da6
[]
no_license
joseastorgat/Skills
4b911df0d520fe3ef5727c9a459f3c6b6753b8f2
56fcd3201ea6a7619baf3805990d1f2a00c518cd
refs/heads/master
2021-01-01T19:08:41.839405
2018-10-30T19:34:41
2018-10-30T19:34:41
98,521,695
0
0
null
null
null
null
UTF-8
Python
false
false
5,927
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import qi import rospy from uchile_skills.robot_skill import RobotSkill from geometry_msgs.msg import PoseStamped class PersonDetectionSkill(RobotSkill): """ """ _type = "person_detector" def __init__(self): """ Person Detector Skill """ super(PersonDetectionSkill, self).__init__() self._description = "Person detection skill based in Naoqi Apis" self.ids = [] def setup(self): self.people_perception = self.robot.session.service("ALPeoplePerception") self.memory = self.robot.session.service("ALMemory") self.pd_mem_subs = self.memory.subscriber("PeoplePerception/PeopleDetected") return True def check(self): return True def start(self): try: self.loginfo("[{0}] Detection start ".format(PersonDetectionSkill._type)) self.__subscriber_name = "PersonDetectionSkill_" + str(rospy.Time.now()) self.people_subscriber = self.people_perception.subscribe("PersonDetectionSkill") # subscribe people_perception service # self.subscriber = self.memory.subscriber("PeoplePerception/PeopleList") #subscribe event memory self.__reset_population() self.pd_mem_subs.signal.connect(self.__on_people_detected) #connect callback except Exception as e: self.logerr("[{0}] Detection start failed {1}".format(PersonDetectionSkill._type,e)) print(e) return True def pause(self): try: self.loginfo("[{0}] Detection Pause".format(PersonDetectionSkill._type)) self.people_perception.unsubscribe(self.__subscriber_name) self.pd_mem_subs.signal.disconnect(self.pd_mem_subs) except Exception as e: self.logerr("[{0}] Detection Pause Failed {1} ".format(PersonDetectionSkill._type,e)) return True def shutdown(self): self.pause() return True def person_detection(self): poses = [] for id in self.ids: pose = self._get_person_pose(id) if pose is not None: poses.append(pose) self.loginfo("[{0}] Person detection {1}".format(PersonDetectionSkill._type,poses)) return poses def _get_person_pose(self,id): try: position = self.memory.getData("PeoplePerception/Person/"+str(id)+"/PositionInRobotFrame") print(position) except Exception as e: self.logerr("[{0}] Error getting position from person {1}, {2}".format(PersonDetectionSkill._type, id, e )) return None pose = PoseStamped() pose.header.stamp=rospy.Time.now() pose.header.frame_id = "/maqui" # buscar frame de robot Frame pose.pose.position.x = position[0] pose.pose.position.y = position[1] pose.pose.position.z = position[2] pose.pose.orientation.w = 1 return pose def tshirt_detection(self): label = self.__get_tshirt() total = len(label) color = {'black':0, 'white':0, 'red':0, 'blue':0, 'green':0, 'yellow':0} for c in label: color[c] += 1 self.loginfo("[{0}] T-shirt color detection {1} ".format(PersonDetectionSkill._type,color)) return color, total def tshirt_pose(self): """ ... """ try: poses = self.person_detection() label = self.__get_tshirt() except rospy.ServiceException, e: self.logerr("{0} : Couldn't get people tshirt or poses ".format(PersonDetectionSkill._type)) return None, None self.loginfo("[{0}] Person and color detection".format(PersonDetectionSkill._type)) return poses, label """ Extra Methods for Maqui """ def __on_people_detected(self,value): # [ # [TimeStamp_Seconds, TimeStamp_Microseconds], # [PersonData_1, PersonData_2, ... PersonData_n], # CameraPose_InTorsoFrame, # CameraPose_InRobotFrame, # Camera_Id # ] # PersonData_i = # [ # Id, # DistanceToCamera, # PitchAngleInImage, # YawAngleInImage # ] personData = value[1] self.ids = [] if personData == []: return for person in personData: self.ids.append(person[0]) # self.loginfo("[{0}] Detections : {1}".format(PersonDetectionSkill._type, len(self.ids))) # self.logdebug("[{0}] Detections : {1}".format(PersonDetectionSkill._type, self.ids)) return def __reset_population(self): try: self.people_perception.resetPopulation() except Exception, e: raise e def __get_tshirt(self): label = [] for id in self.ids: tshirt = self.__get_person_tshirt(id) if tshirt is not None: label.append(tshirt.lower()) return label def __get_person_tshirt(self,id): """ """ try: tshirt = self.memory.getData("PeoplePerception/Person/"+str(id)+"/ShirtColor") except Exception as e: self.logwarn("[{0}] Error getting t-shirt color from person {1}, {2}".format(PersonDetectionSkill._type, id, e )) return None return tshirt """ ALPeoplePerception Configuration: ALPeoplePerception::setFastModeEnabled ALPeoplePerception::setGraphicalDisplayEnabled ALPeoplePerception::setMaximumDetectionRange ALPeoplePerception::setMovementDetectionEnabled ALPeoplePerception::setTimeBeforePersonDisappears ALPeoplePerception::setTimeBeforeVisiblePersonDisappears """
[ "jose.n.astorga.tobar@gmail.com" ]
jose.n.astorga.tobar@gmail.com
5fe2ad33fe332438565368d3571bc37962ef4958
0761c57443d2491b00753a6545395f682be27273
/PythonProgramming/4-18/Sales/write_sales.py
696753fc5f951f940f65c2edc8fbf1b4acba6fa4
[]
no_license
MorgFost96/School-Projects
842835f97c025ee97e106540f2e6f03f5fdac563
9c86a4133e7cb587d7ad15af8da962278636db1f
refs/heads/master
2020-09-21T22:19:49.494044
2019-11-30T22:19:56
2019-11-30T22:19:56
224,951,541
0
0
null
null
null
null
UTF-8
Python
false
false
693
py
# Writes he data for the sales onto the hard drive def main(): num_days = int( input( "For how many days do you have sales? " ) ) sales_file = open( "sales.txt", "w" ) for count in range( 1, num_days + 1 ): sales = float( input( "Enter the sales for day #" + str( count ) + ": " ) ) sales_file.write( str( sales ) + "\n" ) sales_file.close() print( "Data written to sales.txt" ) main() ##>>> ##For how many days do you have sales? 5 ##Enter he sales for day #1: 1000 ##Enter he sales for day #2: 2000 ##Enter he sales for day #3: 3000 ##Enter he sales for day #4: 4000 ##Enter he sales for day #5: 5000 ##Data written to sales.txt ##>>>
[ "morgfost96@gmail.com" ]
morgfost96@gmail.com
a538d29d3dea94bfe649f344e8cbfd29e7fc3507
3691f0b571612fd550095af0d7c93f22d5a8061c
/ERP/stock/views.py
2159d924a7a70ddce4f72028a50576cc9e9d821b
[]
no_license
sambapython/db16
29db8c6be5a3628cd3063cc0d8e092ae8ea69d60
98d751ffc7277bb4e28f90b7cb470d667ab47593
refs/heads/master
2021-02-11T22:02:34.251113
2020-03-03T03:43:29
2020-03-03T03:43:29
244,532,780
0
1
null
null
null
null
UTF-8
Python
false
false
131
py
from django.shortcuts import render # Create your views here. def index_view(request): return render(request,"stock/index.html")
[ "sambapython@gmail.com" ]
sambapython@gmail.com
df1c55cf344cb1f86b80deaaa42fe7d770f2fc61
2ab5b2b50ac91ded2e7bfee6fc8a9af8d57738c9
/model/Linear.py
9af0111aaaf357b1d996f8b157f61eb443ff7777
[]
no_license
pokleung5/FYP
9fc0627aa3ee405ad3bbede29b55e440ac19b038
fa08353ed6fb1612a004fc55f8e6edebd5c8c432
refs/heads/master
2022-11-17T22:48:21.944028
2020-07-16T17:49:29
2020-07-16T17:49:29
240,876,071
0
0
null
null
null
null
UTF-8
Python
false
false
2,702
py
import torch from torch import tensor from torch import nn, optim from torch.nn import functional as F import utils def get_Linear_Sequential(dim: list, activation): nL = len(dim) return nn.Sequential( *sum([[ nn.Linear(dim[i], dim[i + 1]), activation() ] for i in range(0, nL - 2, 1)], []), nn.Linear(dim[nL - 2], dim[nL - 1]) ) class Linear(nn.Module): def __init__(self, dim: list, activation=nn.ReLU, final_activation=None): super(Linear, self).__init__() self.encoder = get_Linear_Sequential(dim, activation) if final_activation is not None: self.final_act = final_activation() else: self.final_act = None def encode(self, x): e = self.encoder(x) if self.final_act is not None: e = self.final_act(e) return e def forward(self, x): return self.encode(x) class ReuseLinear(nn.Module): def __init__(self, N, dim: list, n_reuse, preprocess, activation=nn.ReLU, final_activation=None): super(ReuseLinear, self).__init__() self.encoder = get_Linear_Sequential(dim, activation) self.N = N self.n_reuse = n_reuse self.preprocess = preprocess if final_activation is not None: self.final_act = final_activation() else: self.final_act = None def forward(self, x): batch = x.size()[0] dm = x rs = [] for i in range(self.n_reuse): e = self.encoder(dm) rs.append(e) e = e.view(batch, self.N, -1) dm = utils.get_distanceSq_matrix(e) dm = torch.sqrt(dm) dm = self.preprocess(dm) if self.final_act is not None: rs[-1] = self.final_act(e) return rs class StepLinear(nn.Module): def __init__(self, dim_list: list, activation=nn.ReLU, final_activation=None): super(StepLinear, self).__init__() self.encoder = get_Linear_Sequential(dim_list[0], activation=activation) if len(dim_list) > 1: self.nextStep = StepLinear(dim_list[1:], activation, None) else: self.nextStep = None if final_activation is not None: self.final_act = final_activation() else: self.final_act = None def forward(self, x): e = self.encoder(x) rs = [e] if self.nextStep is not None: rs = [e, *self.nextStep(e)] if self.final_act is not None: rs[-1] = self.final_act(rs[-1]) return rs
[ "pokleung5-c@my.cityu.edu.hk" ]
pokleung5-c@my.cityu.edu.hk
badf6102be896eba234714f67183557470b7b46a
001f47164eb0fb5b02aeb89aba5514e95055e305
/mult_server.py
d78995c558616e84bb532bf1bf7b6a3b34d0e16f
[]
no_license
Phantsure/ICMP-Transfer
42f869a549baf2cf46786b1632adee0cd8b9808c
c31f874faa1abec0339a44952051f7f532b97070
refs/heads/master
2021-03-02T17:19:27.634619
2020-03-08T21:10:09
2020-03-08T21:10:09
245,888,229
0
0
null
null
null
null
UTF-8
Python
false
false
1,749
py
# server import socket import select import sys from thread import * # server sockets server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) # checks for sufficient arguments if len(sys.argv) != 3: print "Correct usage: script, IP address, port number" exit() # IP address IP_address = str(sys.argv[1]) # port Port = int(sys.argv[2]) # binding server.bind((IP_address, Port)) # start listening server.listen(100) list_of_clients = [] def clientthread(conn, addr): # sends a message conn.send("Welcome to this chatroom!") while True: try: message = conn.recv(64) if message: # print the message print "<" + addr[0] + "> " + message # Calls broadcast function to send message to all message_to_send = "<" + addr[0] + "> " + message broadcast(message_to_send, conn) else: # if empty message then remove remove(conn) except: continue # broadcast to all clients def broadcast(message, connection): for clients in list_of_clients: if clients!=connection: try: clients.send(message) except: clients.close() # if the link is broken, we remove the client remove(clients) # function to remove def remove(connection): if connection in list_of_clients: list_of_clients.remove(connection) while True: # accept from new client conn, addr = server.accept() # append that client to list list_of_clients.append(conn) # prints the address of the user that just connected print addr[0] + " connected" # creates and individual thread for every user that connects start_new_thread(clientthread,(conn,addr)) conn.close() server.close()
[ "samparksharma2000@gmail.com" ]
samparksharma2000@gmail.com
833540140792b7871cf1ee8d9b5a360c40ea827b
9cb55ee410e574c98d62675d4fcabe475f9e6c5e
/amnesia/modules/search/views/tag.py
1007986750b2043e26541c027e737a19e1793714
[ "BSD-2-Clause" ]
permissive
rayddteam/amnesia
8f45728dc082d649a8b6f0bc799035375ffd710d
8719c607c30bb80e7564bec70bcd624f9ad08f6d
refs/heads/master
2020-07-30T21:53:44.407980
2019-01-16T10:02:36
2019-01-16T10:02:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
797
py
# -*- coding: utf-8 -*- # pylint: disable=E1101 from pyramid.view import view_config from pyramid.httpexceptions import HTTPNotFound from amnesia.modules.tag import Tag from amnesia.modules.search import SearchResource def includeme(config): ''' Pyramid includeme func''' config.scan(__name__) @view_config(context=SearchResource, name='tag', request_method='GET', renderer='amnesia:templates/search/tag.pt') def tag(context, request): tag_id = request.GET.get('id', '').strip() tag_obj = request.dbsession.query(Tag).get(tag_id) if not tag_obj: raise HTTPNotFound() search_query = context.tag_id(tag_obj, limit=500) return { 'results': search_query.query.all(), 'count': search_query.count, 'tag': tag_obj }
[ "julien.cigar@gmail.com" ]
julien.cigar@gmail.com
a2a45358ef74f440bad9aaf20a27643065d2ec7e
e5cb9bd3569a8dde3aa3da35e4e84d556df27cec
/visiobased_object_placement/scripts/image_crop.py
c3da818bb38470223a07e34a54265dd1f5f2f8b0
[ "BSD-3-Clause" ]
permissive
HassanAmr/Visio-based-Object-Placement
6c4789867aa0196f4201bf3367155b2b908b03f3
aab1753a926ee04932d5ef7e857637b4adb81e2e
refs/heads/master
2020-12-02T20:55:08.320080
2017-10-21T08:24:26
2017-10-21T08:24:26
96,228,055
0
0
null
2017-10-21T08:24:27
2017-07-04T14:45:13
C++
UTF-8
Python
false
false
1,409
py
#! /usr/bin/python import rospy import cv2 import numpy as np def crop(image1, image2, threshold=0): """Crops any edges below or equal to threshold Crops blank image to 1x1. Returns cropped image. """ inv_image1 = cv2.bitwise_not(image1) inv_image2 = cv2.bitwise_not(image2) #image = cv2.imread(inputImg) if len(inv_image1.shape) == 3: flatImage1 = np.max(inv_image1, 2) flatImage2 = np.max(inv_image2, 2) else: flatImage1 = inv_image1 flatImage2 = inv_image2 assert len(flatImage1.shape) == 2 rows = np.where(np.max(flatImage1, 0) > threshold)[0] if rows.size: cols = np.where(np.max(flatImage1, 1) > threshold)[0] inv_image1 = inv_image1[cols[0]: cols[-1] + 1, rows[0]: rows[-1] + 1] inv_image2 = inv_image2[cols[0]: cols[-1] + 1, rows[0]: rows[-1] + 1] else: inv_image1 = inv_image1[:1, :1] inv_image2 = inv_image2[:1, :1] return [cv2.bitwise_not(inv_image1),cv2.bitwise_not(inv_image2)] #img = cv2.imread(image) #gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) #_,thresh = cv2.threshold(gray,1,255,cv2.THRESH_BINARY) #contours,hierarchy = cv2.findContours(thresh,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) #cnt = contours[0] #x,y,w,h = cv2.boundingRect(cnt) #crop = img[y:y+h,x:x+w] #return crop #cv2.imwrite('sofwinres.png',crop)
[ "hassan.amr89@gmail.com" ]
hassan.amr89@gmail.com
031e33695e468516f5e4ca9d619595c8d28f61c6
8cea3db36d35285e50583617b655dd2d0de745df
/Chapter_2 Softmax Regression/softmax_regression_train.py
fe4ccea107347ce930ade4e7c5aec94f41ed27b1
[]
no_license
TRcoder/Python-Machine-Learning-Algorithm
08f1166cfc068dec72024790900480bfdace98cb
b7c7348951631faf5dbd6b7919fb6993fa7e8855
refs/heads/master
2021-07-04T22:21:28.641036
2017-09-25T14:46:41
2017-09-25T14:46:41
106,824,521
0
1
null
2017-10-13T12:58:34
2017-10-13T12:58:34
null
UTF-8
Python
false
false
3,013
py
# coding:UTF-8 ''' Date:20160805 @author: zhaozhiyong ''' import numpy as np def load_data(inputfile): '''导入训练数据 input: inputfile(string)训练样本的位置 output: feature_data(mat)特征 label_data(mat)标签 k(int)类别的个数 ''' f = open(inputfile) # 打开文件 feature_data = [] label_data = [] for line in f.readlines(): feature_tmp = [] feature_tmp.append(1) # 偏置项 lines = line.strip().split("\t") for i in xrange(len(lines) - 1): feature_tmp.append(float(lines[i])) label_data.append(int(lines[-1])) feature_data.append(feature_tmp) f.close() # 关闭文件 return np.mat(feature_data), np.mat(label_data).T, len(set(label_data)) def cost(err, label_data): '''计算损失函数值 input: err(mat):exp的值 label_data(mat):标签的值 output: sum_cost / m(float):损失函数的值 ''' m = np.shape(err)[0] sum_cost = 0.0 for i in xrange(m): if err[i, label_data[i, 0]] / np.sum(err[i, :]) > 0: sum_cost -= np.log(err[i, label_data[i, 0]] / np.sum(err[i, :])) else: sum_cost -= 0 return sum_cost / m def gradientAscent(feature_data, label_data, k, maxCycle, alpha): '''利用梯度下降法训练Softmax模型 input: feature_data(mat):特征 label_data(mat):标签 k(int):类别的个数 maxCycle(int):最大的迭代次数 alpha(float):学习率 output: weights(mat):权重 ''' m, n = np.shape(feature_data) weights = np.mat(np.ones((n, k))) # 权重的初始化 i = 0 while i <= maxCycle: err = np.exp(feature_data * weights) if i % 500 == 0: print "\t-----iter: ", i , ", cost: ", cost(err, label_data) rowsum = -err.sum(axis=1) rowsum = rowsum.repeat(k, axis=1) err = err / rowsum for x in range(m): err[x, label_data[x, 0]] += 1 weights = weights + (alpha / m) * feature_data.T * err i += 1 return weights def save_model(file_name, weights): '''保存最终的模型 input: file_name(string):保存的文件名 weights(mat):softmax模型 ''' f_w = open(file_name, "w") m, n = np.shape(weights) for i in xrange(m): w_tmp = [] for j in xrange(n): w_tmp.append(str(weights[i, j])) f_w.write("\t".join(w_tmp) + "\n") f_w.close() if __name__ == "__main__": inputfile = "SoftInput.txt" # 1、导入训练数据 print "---------- 1.load data ------------" feature, label, k = load_data(inputfile) # 2、训练Softmax模型 print "---------- 2.training ------------" weights = gradientAscent(feature, label, k, 5000, 0.2) # 3、保存最终的模型 print "---------- 3.save model ------------" save_model("weights", weights)
[ "noreply@github.com" ]
TRcoder.noreply@github.com
2e18904fb3a4c87432f3c42a317bb3c9f570d35a
e8ff5786d35d84f6f1226b1df95b851d712d08c7
/Clustering/DBSCAN.py
70016b5c0a33edebde06a831c7d96cc2ae6d1cd7
[]
no_license
anitacsp/FFM-MA
eb64471cbe6be158616d9537a03b15dd0db148e1
c71087339f01164cfaf86a693df61d6799e120b5
refs/heads/master
2020-06-04T03:29:22.558654
2019-07-01T09:14:38
2019-07-01T09:14:38
191,856,403
0
0
null
null
null
null
UTF-8
Python
false
false
1,164
py
import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.cluster import DBSCAN from sklearn import metrics from sklearn.preprocessing import StandardScaler from mpl_toolkits.mplot3d import Axes3D dirty = pd.read_csv(r"C:\Users\chias\source\repos\FFM-MA\oil.csv") #data = dirty.loc[:, ['growth', 'inflation', 'return', 'type']] x = StandardScaler().fit_transform(dirty) dbscan = DBSCAN(eps=0.3, min_samples = 2) model = dbscan.fit(x) labels = model.labels_ print(labels) core_samples = np.zeros_like(labels, dtype=bool) core_samples[model.core_sample_indices_] = True num_clusters = len(set(labels)) - (1 if -1 in labels else 0) print(num_clusters) xx, yy, zz, aa, bb = zip(*x) #xx = np.arange(-3,3, 0.25) #yy = np.arange(-3,3, 0.25) #zz = np.arange(-3,3, 0.25) #aa = np.arange(-3,3, 0.25) #bb = np.arange(-3,3, 0.25) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(xx,yy,zz, c=bb, cmap=plt.hot()) plt.show() show() #noNoise = list(labels).count(-1) #print('Est No. of Clusters: %d'% noClusters) #print('Est No. of Noise: %d'% noNoise) #print('Homogeneity: %0.3f'% metrics.homogenity_score(labels_)
[ "anita.chia.2016@sis.smu.edu.sg" ]
anita.chia.2016@sis.smu.edu.sg
d8a0f96c3fa158292c56773b2f724ae258f3408a
04e7f5ae41aa8e068a7d2534b43fd4db94abfee3
/hw8/problemone.py
37672542c21a349489148d4eb0195f8cfb1318be
[]
no_license
MathematicianVogt/Control
f90890610009883bb5a1cfdd5c31a861278307f8
e6cf4dbf6e4a4314ea6602dc4d5f042ca9771f44
refs/heads/master
2021-01-23T06:58:50.807096
2017-03-30T14:05:47
2017-03-30T14:05:47
86,415,016
0
0
null
null
null
null
UTF-8
Python
false
false
2,037
py
import numpy as np import scipy.integrate as integrate import scipy.interpolate as interpolate import pylab as plt import scipy.optimize as op import math def make_cons(parameter_guess): cons=() for i in range(0,len(parameter_guess)): constraint = {'type': 'ineq', 'fun': lambda x: -math.fabs(x[i]) + 1 } cons +=(constraint,) # print cons #cons=({'type': 'ineq', 'fun': lambda parameter_guess: -parameter_guess+ 1 }) return cons def bnds(parameter_guess): bnds=() for i in range(0,len(parameter_guess)): bnds +=((-1.0,1.0),) print bnds return bnds def problem(N,IC): t=np.linspace(0,5,1000) tt=np.linspace(0,5,N+1) parameter_guess = .5*np.ones(len(tt)) res=op.minimize(cost_function, parameter_guess, args=(t,tt,IC), method='SLSQP',bounds=bnds(parameter_guess)) true_param= res.x print res.message print true_param generate_state_and_control(true_param,t,tt,IC) def cost_function(parameter_guess,t,tt,IC): #print parameter_guess f_p = interpolate.interp1d(tt, parameter_guess) sol = integrate.odeint(f, [IC[0],IC[1],0], t, args=(f_p,)) cost_sol = sol[:,2] cost=cost_sol[-1] print 'cost ' + str(cost) return cost def f(y,t,f_p): if t<5.0: dydt=[-y[0] +2*y[1] , y[0] -.2*y[1] + f_p(t), .5*(y[0]**2 + 2*y[1]**2 + 3*f_p(t)**2)] else: dydt=[-y[0] +2*y[1] , y[0] -.2*y[1] + f_p(5), .5*(y[0]**2 + 2*y[1]**2 + 3*f_p(5)**2)] return dydt def generate_state_and_control(parameters,t,tt,IC): f_p = interpolate.interp1d(tt, parameters) sol = integrate.odeint(f, [IC[0],IC[1],0], t, args=(f_p,)) control=f_p(t) position=sol[:,0] velocity=sol[:,1] cost_sol = sol[:,2] cost=cost_sol[-1] print 'cost ' + str(cost) print parameters plt.plot(tt,parameters,label='Control') plt.xlabel('time') plt.ylabel('u') plt.title('Control') plt.show() plt.clf() plt.plot(position,velocity,label='Velocity vs Position') plt.xlabel('Position') plt.ylabel('Velocity') plt.title('Velocity vs Position') plt.show() plt.clf() problem(5,[.1,.1]) problem(5,[3,6]) problem(15,[.1,.1]) problem(15,[3,6])
[ "rvogt@MathVogt.local" ]
rvogt@MathVogt.local
d97856fe130bafdb43da005191add63e0370713e
043b45f72d50dc697e59e341b286e75d4eaf2e6d
/py-ping2.py
c69d0aa069fb313b7f01dded02643b0262cba6a7
[]
no_license
alarmon/self-lab
dcebbd15d610b8c0bb982f4cc9baf89ef05f0967
6aa517b1de995695e57a249343b2cbf818c52e1d
refs/heads/master
2020-07-25T19:07:02.445913
2019-09-14T05:59:21
2019-09-14T05:59:21
208,395,918
0
0
null
null
null
null
UTF-8
Python
false
false
3,628
py
#!/usr/bin/python3.6.4 #!coding:utf-8 __author__ = 'Rosefinch' __date__ = '2018/5/31 22:27' import time import struct import socket import select import sys def chesksum(data): """ 校验 """ n = len(data) m = n % 2 sum = 0 for i in range(0, n - m ,2): sum += (data[i]) + ((data[i+1]) << 8)#传入data以每两个字节(十六进制)通过ord转十进制,第一字节在低位,第二个字节在高位 if m: sum += (data[-1]) #将高于16位与低16位相加 sum = (sum >> 16) + (sum & 0xffff) sum += (sum >> 16) #如果还有高于16位,将继续与低16位相加 answer = ~sum & 0xffff #主机字节序转网络字节序列(参考小端序转大端序) answer = answer >> 8 | (answer << 8 & 0xff00) return answer ''' 连接套接字,并将数据发送到套接字 ''' def raw_socket(dst_addr,imcp_packet): rawsocket = socket.socket(socket.AF_INET,socket.SOCK_RAW,socket.getprotobyname("icmp")) send_request_ping_time = time.time() #send data to the socket rawsocket.sendto(imcp_packet,(dst_addr,80)) return send_request_ping_time,rawsocket,dst_addr ''' request ping ''' def request_ping(data_type,data_code,data_checksum,data_ID,data_Sequence,payload_body): #把字节打包成二进制数据 imcp_packet = struct.pack('>BBHHH32s',data_type,data_code,data_checksum,data_ID,data_Sequence,payload_body) icmp_chesksum = chesksum(imcp_packet)#获取校验和 imcp_packet = struct.pack('>BBHHH32s',data_type,data_code,icmp_chesksum,data_ID,data_Sequence,payload_body) return imcp_packet ''' reply ping ''' def reply_ping(send_request_ping_time,rawsocket,data_Sequence,timeout = 2): while True: started_select = time.time() what_ready = select.select([rawsocket], [], [], timeout) wait_for_time = (time.time() - started_select) if what_ready[0] == []: # Timeout return -1 time_received = time.time() received_packet, addr = rawsocket.recvfrom(1024) icmpHeader = received_packet[20:28] type, code, checksum, packet_id, sequence = struct.unpack( ">BBHHH", icmpHeader ) if type == 0 and sequence == data_Sequence: return time_received - send_request_ping_time timeout = timeout - wait_for_time if timeout <= 0: return -1 ''' 实现 ping 主机/ip ''' def ping(host): data_type = 8 # ICMP Echo Request data_code = 0 # must be zero data_checksum = 0 # "...with value 0 substituted for this field..." data_ID = 0 #Identifier data_Sequence = 1 #Sequence number payload_body = b'abcdefghijklmnopqrstuvwabcdefghi' #data dst_addr = socket.gethostbyname(host)#将主机名转ipv4地址格式,返回以ipv4地址格式的字符串,如果主机名称是ipv4地址,则它将保持不变 print("正在 Ping {0} [{1}] 具有 32 字节的数据:".format(host,dst_addr)) for i in range(0,4): icmp_packet = request_ping(data_type,data_code,data_checksum,data_ID,data_Sequence + i,payload_body) send_request_ping_time,rawsocket,addr = raw_socket(dst_addr,icmp_packet) times = reply_ping(send_request_ping_time,rawsocket,data_Sequence + i) if times > 0: print("来自 {0} 的回复: 字节=32 时间={1}ms".format(addr,int(times*1000))) time.sleep(0.7) else: print("请求超时。") if __name__ == "__main__": if len(sys.argv) < 2: sys.exit('Usage: ping.py <host>') ping(sys.argv[1])
[ "noreply@github.com" ]
alarmon.noreply@github.com
80c91ccaab048f0e281730356e04ec8c4daeea69
2434958662c346163bf50a3912a0109c90b67a11
/myproject/myapp/migrations/0002_auto_20201007_1727.py
a36ec8ea8f515374c1a6c453c1435f02301f2846
[]
no_license
Ankit-Developer143/Internshala-task
08a1435f31bc6508a2a134bc2ccb7c13d9a0f596
ed4b8e7648138448d687f6f228096ed39e0eae3d
refs/heads/master
2023-01-21T12:12:18.567289
2020-11-27T15:32:39
2020-11-27T15:32:39
302,076,259
0
0
null
null
null
null
UTF-8
Python
false
false
420
py
# Generated by Django 3.1.2 on 2020-10-07 11:57 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('myapp', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='data', name='time_date', ), migrations.RemoveField( model_name='data', name='timestamp', ), ]
[ "dante7785@gmail.com" ]
dante7785@gmail.com
04fd5f442d4db88a4a6cdd0e9735bd8dba613b8f
0353ad8e53450d2cacd12b28aa1614a8c5fac2e9
/Rabbit/getstockbasic.py
97b7f679356ec85254aabb664e81ab96d0221c9d
[]
no_license
yjintai/jypython
7e67fd1ecfdc1c30303018d38bcfb3cbbc6c3069
99c1358aa7d1faae378e6ec821428e505816f2fa
refs/heads/master
2022-08-28T19:33:47.786887
2022-08-18T12:11:28
2022-08-18T12:11:28
127,250,992
0
0
null
null
null
null
UTF-8
Python
false
false
2,049
py
#!/usr/bin/python3 # coding:utf-8 # -*- coding: utf-8 -*- import time import datetime import random import tushare import pandas #import pymssql #import sqlalchemy #import mysql.connector import sqlalchemy import pymysql #需修改的参数 stock_list_file = 'd:/stock_list.csv' databasename = 'msstock' sqlenginestr='mysql+pymysql://pyuser:Pyuser18@127.0.0.1/'+databasename+'?charset=utf8mb4' databasename = 'msstock' #tushare token tushare_token='e239683c699765e4e49b43dff2cf7ed7fc232cc49f7992dab1ab7624' #股票列表 def initiate(): #初始化tushare tushare.set_token(tushare_token) engine=sqlalchemy.create_engine(sqlenginestr) return engine def get_stock_basic(engine = sqlenginestr,schema = databasename): print('start to download stock_basic data') pro = tushare.pro_api() df = pro.stock_basic(fields='ts_code,symbol,name,area,industry,fullname,cnspell,market,exchange,curr_type,list_status,list_date,delist_date,is_hs') try: pandas.io.sql.to_sql(frame=df, name='tb_stock_basic', con=engine, schema= schema, if_exists='replace', index=True) except: print('To SQL Database Failed') finally: pass print('download stock_basic data successed!') return 1 def get_trade_cal(engine = sqlenginestr,schema = databasename): print('start to download trade_cal data') date_now = datetime.datetime.now().strftime('%Y%m%d') pro = tushare.pro_api() df = pro.trade_cal(start_date='20200101', end_date=date_now, fields='exchange,cal_date,is_open') try: pandas.io.sql.to_sql(frame=df, name='tb_trade_cal', con=engine, schema= schema, if_exists='replace', index=True) except: print('To SQL Database Failed') finally: pass print('download trade_cal data successed!') return 1 #全量下载所有股票列表数据 if __name__ == '__main__': print('开始') engine = initiate() print('获取列表...') get_stock_basic(engine,databasename) get_trade_cal(engine,databasename) print('结束')
[ "yjintai@126.com" ]
yjintai@126.com
9e187e8ab3e42f22dcbcef7b79682de10f4a0883
85a9ffeccb64f6159adbd164ff98edf4ac315e33
/pysnmp-with-texts/ASCEND-MIBDMTALNET-MIB.py
b58b5f17791c362bb62c7941689041af29abfbcc
[ "Apache-2.0", "LicenseRef-scancode-warranty-disclaimer", "LicenseRef-scancode-proprietary-license", "LicenseRef-scancode-unknown-license-reference" ]
permissive
agustinhenze/mibs.snmplabs.com
5d7d5d4da84424c5f5a1ed2752f5043ae00019fb
1fc5c07860542b89212f4c8ab807057d9a9206c7
refs/heads/master
2020-12-26T12:41:41.132395
2019-08-16T15:51:41
2019-08-16T15:53:57
237,512,469
0
0
Apache-2.0
2020-01-31T20:41:36
2020-01-31T20:41:35
null
UTF-8
Python
false
false
45,583
py
# # PySNMP MIB module ASCEND-MIBDMTALNET-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/ASCEND-MIBDMTALNET-MIB # Produced by pysmi-0.3.4 at Wed May 1 11:27:06 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # configuration, = mibBuilder.importSymbols("ASCEND-MIB", "configuration") OctetString, Integer, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "OctetString", "Integer", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueRangeConstraint, ValueSizeConstraint, ConstraintsUnion, SingleValueConstraint, ConstraintsIntersection = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueRangeConstraint", "ValueSizeConstraint", "ConstraintsUnion", "SingleValueConstraint", "ConstraintsIntersection") ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup") Gauge32, TimeTicks, Counter64, MibIdentifier, ObjectIdentity, Bits, ModuleIdentity, NotificationType, Unsigned32, IpAddress, MibScalar, MibTable, MibTableRow, MibTableColumn, Integer32, iso, Counter32 = mibBuilder.importSymbols("SNMPv2-SMI", "Gauge32", "TimeTicks", "Counter64", "MibIdentifier", "ObjectIdentity", "Bits", "ModuleIdentity", "NotificationType", "Unsigned32", "IpAddress", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Integer32", "iso", "Counter32") DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention") class DisplayString(OctetString): pass mibdmtAlDslNetworkProfile = MibIdentifier((1, 3, 6, 1, 4, 1, 529, 23, 10)) mibdmtAlDslNetworkProfileTable = MibTable((1, 3, 6, 1, 4, 1, 529, 23, 10, 1), ) if mibBuilder.loadTexts: mibdmtAlDslNetworkProfileTable.setStatus('mandatory') if mibBuilder.loadTexts: mibdmtAlDslNetworkProfileTable.setDescription('A list of mibdmtAlDslNetworkProfile profile entries.') mibdmtAlDslNetworkProfileEntry = MibTableRow((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1), ).setIndexNames((0, "ASCEND-MIBDMTALNET-MIB", "dmtAlDslNetworkProfile-Shelf-o"), (0, "ASCEND-MIBDMTALNET-MIB", "dmtAlDslNetworkProfile-Slot-o"), (0, "ASCEND-MIBDMTALNET-MIB", "dmtAlDslNetworkProfile-Item-o")) if mibBuilder.loadTexts: mibdmtAlDslNetworkProfileEntry.setStatus('mandatory') if mibBuilder.loadTexts: mibdmtAlDslNetworkProfileEntry.setDescription('A mibdmtAlDslNetworkProfile entry containing objects that maps to the parameters of mibdmtAlDslNetworkProfile profile.') dmtAlDslNetworkProfile_Shelf_o = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 1), Integer32()).setLabel("dmtAlDslNetworkProfile-Shelf-o").setMaxAccess("readonly") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_Shelf_o.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_Shelf_o.setDescription('') dmtAlDslNetworkProfile_Slot_o = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 2), Integer32()).setLabel("dmtAlDslNetworkProfile-Slot-o").setMaxAccess("readonly") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_Slot_o.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_Slot_o.setDescription('') dmtAlDslNetworkProfile_Item_o = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 3), Integer32()).setLabel("dmtAlDslNetworkProfile-Item-o").setMaxAccess("readonly") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_Item_o.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_Item_o.setDescription('') dmtAlDslNetworkProfile_Name = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 4), DisplayString()).setLabel("dmtAlDslNetworkProfile-Name").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_Name.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_Name.setDescription('For future use. The current design does not use the name field but instead references Cell Based Dmt Adsl lines by the physical address; we may in the future support referencing Cell Based Dmt Adsl lines by name as well as by address. The name consists of a null terminated ascii string supplied by the user; it defaults to the ascii form of the Cell Based Dmt Adsl line physical address.') dmtAlDslNetworkProfile_PhysicalAddress_Shelf = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7, 8, 9, 10))).clone(namedValues=NamedValues(("anyShelf", 1), ("shelf1", 2), ("shelf2", 3), ("shelf3", 4), ("shelf4", 5), ("shelf5", 6), ("shelf6", 7), ("shelf7", 8), ("shelf8", 9), ("shelf9", 10)))).setLabel("dmtAlDslNetworkProfile-PhysicalAddress-Shelf").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_PhysicalAddress_Shelf.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_PhysicalAddress_Shelf.setDescription('The number of the shelf that the addressed physical device resides on.') dmtAlDslNetworkProfile_PhysicalAddress_Slot = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 6), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 55, 56, 57, 58, 49, 50, 42, 53, 54, 45, 46, 51, 59))).clone(namedValues=NamedValues(("anySlot", 1), ("slot1", 2), ("slot2", 3), ("slot3", 4), ("slot4", 5), ("slot5", 6), ("slot6", 7), ("slot7", 8), ("slot8", 9), ("slot9", 10), ("slot10", 11), ("slot11", 12), ("slot12", 13), ("slot13", 14), ("slot14", 15), ("slot15", 16), ("slot16", 17), ("slot17", 18), ("slot18", 19), ("slot19", 20), ("slot20", 21), ("slot21", 22), ("slot22", 23), ("slot23", 24), ("slot24", 25), ("slot25", 26), ("slot26", 27), ("slot27", 28), ("slot28", 29), ("slot29", 30), ("slot30", 31), ("slot31", 32), ("slot32", 33), ("slot33", 34), ("slot34", 35), ("slot35", 36), ("slot36", 37), ("slot37", 38), ("slot38", 39), ("slot39", 40), ("slot40", 41), ("aLim", 55), ("bLim", 56), ("cLim", 57), ("dLim", 58), ("leftController", 49), ("rightController", 50), ("controller", 42), ("firstControlModule", 53), ("secondControlModule", 54), ("trunkModule1", 45), ("trunkModule2", 46), ("controlModule", 51), ("slotPrimary", 59)))).setLabel("dmtAlDslNetworkProfile-PhysicalAddress-Slot").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_PhysicalAddress_Slot.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_PhysicalAddress_Slot.setDescription('The number of the slot that the addressed physical device resides on.') dmtAlDslNetworkProfile_PhysicalAddress_ItemNumber = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 7), Integer32()).setLabel("dmtAlDslNetworkProfile-PhysicalAddress-ItemNumber").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_PhysicalAddress_ItemNumber.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_PhysicalAddress_ItemNumber.setDescription('A number that specifies an addressable entity within the context of shelf and slot.') dmtAlDslNetworkProfile_Enabled = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 8), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("no", 1), ("yes", 2)))).setLabel("dmtAlDslNetworkProfile-Enabled").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_Enabled.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_Enabled.setDescription('TRUE if the line is enabled, otherwise FALSE.') dmtAlDslNetworkProfile_SparingMode = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 63), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("inactive", 1), ("manual", 2), ("automatic", 3)))).setLabel("dmtAlDslNetworkProfile-SparingMode").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_SparingMode.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_SparingMode.setDescription('Port sparing operational mode for this port.') dmtAlDslNetworkProfile_ProfileNumber = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 9), Integer32()).setLabel("dmtAlDslNetworkProfile-ProfileNumber").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_ProfileNumber.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_ProfileNumber.setDescription('For potential backwards compatibility. The current design consists of one line profile numbered 0.') dmtAlDslNetworkProfile_IgnoreLineup = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 73), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("systemDefined", 1), ("no", 2), ("yes", 3)))).setLabel("dmtAlDslNetworkProfile-IgnoreLineup").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_IgnoreLineup.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_IgnoreLineup.setDescription('Ignore line up value for this port.') dmtAlDslNetworkProfile_LineConfig_NailedGroup = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 11), Integer32()).setLabel("dmtAlDslNetworkProfile-LineConfig-NailedGroup").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_NailedGroup.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_NailedGroup.setDescription('A number that identifies the set of lines that makes up a nailed group. 0 means this line is not part of a nailed group.') dmtAlDslNetworkProfile_LineConfig_VpSwitchingVpi = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 55), Integer32()).setLabel("dmtAlDslNetworkProfile-LineConfig-VpSwitchingVpi").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_VpSwitchingVpi.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_VpSwitchingVpi.setDescription('The Vpi to be used for the VP switching. Rest of the VPIs within valid vpi-vci-range will be used for the VC switching. Changes in this range will take effect immediately. THE USER SHOULD BE VERY CAREFUL WHILE CHANGING THIS VALUE BECAUSE ALL CONNECTIONS ON THE LIM WHERE THIS PORT BELONGS WILL BE DROPPED IN ORDER TO MAKE THIS NEW VALUE EFFECTIVE IMMEDIATELY.') dmtAlDslNetworkProfile_LineConfig_RateAdaptModeUp = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 19), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("operator", 1), ("automaticAtStartup", 2), ("dynamic", 3)))).setLabel("dmtAlDslNetworkProfile-LineConfig-RateAdaptModeUp").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_RateAdaptModeUp.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_RateAdaptModeUp.setDescription('The up stream rate adaptive mode of operation. ONLY OPERATOR_CONTROLLED and AUTOMATIC_AT_STARTUP are currently supported. ') dmtAlDslNetworkProfile_LineConfig_RateAdaptModeDown = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 20), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("operator", 1), ("automaticAtStartup", 2), ("dynamic", 3)))).setLabel("dmtAlDslNetworkProfile-LineConfig-RateAdaptModeDown").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_RateAdaptModeDown.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_RateAdaptModeDown.setDescription('The down stream rate adaptive mode of operation. ONLY OPERATOR_CONTROLLED and AUTOMATIC_AT_STARTUP are currently supported. ') dmtAlDslNetworkProfile_LineConfig_RateAdaptRatioUp = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 21), Integer32()).setLabel("dmtAlDslNetworkProfile-LineConfig-RateAdaptRatioUp").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_RateAdaptRatioUp.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_RateAdaptRatioUp.setDescription('The ratio in percent of excess bitrate distribution over the up stream fast and interleaved latencies. 100% - fast path , 0% - interleaved path. Valid ONLY in rate-adapt-mode = AUTOMATIC_AT_STARTUP or DYNAMIC . ') dmtAlDslNetworkProfile_LineConfig_RateAdaptRatioDown = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 22), Integer32()).setLabel("dmtAlDslNetworkProfile-LineConfig-RateAdaptRatioDown").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_RateAdaptRatioDown.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_RateAdaptRatioDown.setDescription('The ratio in percent of excess bitrate distribution over the down stream fast and interleaved latencies. 100% - fast path , 0% - interleaved path. Valid ONLY in rate-adapt-mode = AUTOMATIC_AT_STARTUP or DYNAMIC . ') dmtAlDslNetworkProfile_LineConfig_MaxAggrPowerLevelUp = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 56), Integer32()).setLabel("dmtAlDslNetworkProfile-LineConfig-MaxAggrPowerLevelUp").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_MaxAggrPowerLevelUp.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_MaxAggrPowerLevelUp.setDescription('The maximum aggregate output power in dBm allowed on the line in the up stream direction. Increasing value may result in capacity boosting. ') dmtAlDslNetworkProfile_LineConfig_MaxAggrPowerLevelDown = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 57), Integer32()).setLabel("dmtAlDslNetworkProfile-LineConfig-MaxAggrPowerLevelDown").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_MaxAggrPowerLevelDown.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_MaxAggrPowerLevelDown.setDescription('The maximum aggregate output power in dBm allowed on the line in the down stream direction. Increasing value may result in capacity boosting. ') dmtAlDslNetworkProfile_LineConfig_MaxPowerSpectralDensity = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 25), Integer32()).setLabel("dmtAlDslNetworkProfile-LineConfig-MaxPowerSpectralDensity").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_MaxPowerSpectralDensity.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_MaxPowerSpectralDensity.setDescription('The power spectral density in dBm/Hz allowed on the line. Decreasing the value may reduce capacity. Defined for downstream only. Actual value is negative.') dmtAlDslNetworkProfile_LineConfig_LineCode = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 58), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(3, 2, 4, 5, 6, 7))).clone(namedValues=NamedValues(("autoSelect", 3), ("gLite", 2), ("ansiDmt", 4), ("gDmt", 5), ("legacyMode", 6), ("etsiAnnexB", 7)))).setLabel("dmtAlDslNetworkProfile-LineConfig-LineCode").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_LineCode.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_LineCode.setDescription('The DMT line code is used for the training. NOTE: for the ADSL 12-ports LIM card only (which uses the ALCATEL chipset), setting the line code to ansi-dmt will provide better line rate than auto-select for an ansi-dmt link. Therefore, set the line code to ansi-dmt for an ansi-dmt link to obtain optimal rate.') dmtAlDslNetworkProfile_LineConfig_LineLatencyDown = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 59), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("none", 1), ("fast", 2), ("interleave", 3), ("both", 4)))).setLabel("dmtAlDslNetworkProfile-LineConfig-LineLatencyDown").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_LineLatencyDown.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_LineLatencyDown.setDescription('The DMT line latency to be used for the downstream data transport.') dmtAlDslNetworkProfile_LineConfig_LineLatencyUp = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 60), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("none", 1), ("fast", 2), ("interleave", 3), ("both", 4)))).setLabel("dmtAlDslNetworkProfile-LineConfig-LineLatencyUp").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_LineLatencyUp.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_LineLatencyUp.setDescription('The DMT line latency to be used for the upstream data transport.') dmtAlDslNetworkProfile_LineConfig_TrellisEncoding = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 61), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("no", 1), ("yes", 2)))).setLabel("dmtAlDslNetworkProfile-LineConfig-TrellisEncoding").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_TrellisEncoding.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_TrellisEncoding.setDescription('TRUE if trellis encoding is to be enabled, FALSE otherwise.') dmtAlDslNetworkProfile_LineConfig_GainDefault = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 62), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(2, 1))).clone(namedValues=NamedValues(("n-20Db", 2), ("n-16Db", 1)))).setLabel("dmtAlDslNetworkProfile-LineConfig-GainDefault").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_GainDefault.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_GainDefault.setDescription('The default gain value in db to be used for the AGC.') dmtAlDslNetworkProfile_LineConfig_UpstreamStartBin = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 64), Integer32()).setLabel("dmtAlDslNetworkProfile-LineConfig-UpstreamStartBin").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_UpstreamStartBin.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_UpstreamStartBin.setDescription('The starting upstream frequency bin.') dmtAlDslNetworkProfile_LineConfig_UpstreamEndBin = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 65), Integer32()).setLabel("dmtAlDslNetworkProfile-LineConfig-UpstreamEndBin").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_UpstreamEndBin.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_UpstreamEndBin.setDescription('The ending upstream frequency bin.') dmtAlDslNetworkProfile_LineConfig_DownstreamStartBin = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 66), Integer32()).setLabel("dmtAlDslNetworkProfile-LineConfig-DownstreamStartBin").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_DownstreamStartBin.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_DownstreamStartBin.setDescription('The starting downstream frequency bin.') dmtAlDslNetworkProfile_LineConfig_DownstreamEndBin = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 67), Integer32()).setLabel("dmtAlDslNetworkProfile-LineConfig-DownstreamEndBin").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_DownstreamEndBin.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_DownstreamEndBin.setDescription('The ending downstream frequency bin.') dmtAlDslNetworkProfile_LineConfig_LoopBack = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 69), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("none", 1), ("analog", 2), ("digital", 3)))).setLabel("dmtAlDslNetworkProfile-LineConfig-LoopBack").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_LoopBack.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_LoopBack.setDescription('Configuration of different modem loopbacks.') dmtAlDslNetworkProfile_LineConfig_BitSwapping = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 70), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("no", 1), ("yes", 2)))).setLabel("dmtAlDslNetworkProfile-LineConfig-BitSwapping").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_BitSwapping.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_BitSwapping.setDescription('Controls wether Bit-Swapping is enabled or no. On 12 port DMT card and 48 port G.lite card has not effect.') dmtAlDslNetworkProfile_LineConfig_FbmDbmMode = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 71), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("fbm", 1), ("dbm", 2)))).setLabel("dmtAlDslNetworkProfile-LineConfig-FbmDbmMode").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_FbmDbmMode.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_FbmDbmMode.setDescription('Controls wether the line is in Fixed-Bit-Map or Dual-Bit-Map mode. Only relevant for Annex-C cards.') dmtAlDslNetworkProfile_LineConfig_AlcatelUs413Boost = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 74), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("new", 1), ("old", 2), ("unknown", 3)))).setLabel("dmtAlDslNetworkProfile-LineConfig-AlcatelUs413Boost").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_AlcatelUs413Boost.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_LineConfig_AlcatelUs413Boost.setDescription('Provides an increase in upstream rate in T1.413 mode for 24/48 Port Annex A boards based on the Globespan chip set when connected to an Alcatel CPE. Irrelevant for any other situtation. Use with extreme caution.') dmtAlDslNetworkProfile_FastPathConfig_MinBitrateUp = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 26), Integer32()).setLabel("dmtAlDslNetworkProfile-FastPathConfig-MinBitrateUp").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_FastPathConfig_MinBitrateUp.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_FastPathConfig_MinBitrateUp.setDescription('The up stream minimum requested bitrate, in Kbps. NOT valid in rate-adapt-mode = OPERATOR_CONTROLLED. ') dmtAlDslNetworkProfile_FastPathConfig_MinBitrateDown = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 27), Integer32()).setLabel("dmtAlDslNetworkProfile-FastPathConfig-MinBitrateDown").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_FastPathConfig_MinBitrateDown.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_FastPathConfig_MinBitrateDown.setDescription('The down stream minimum requested bitrate, in Kbps. NOT valid in rate-adapt-mode = OPERATOR_CONTROLLED. ') dmtAlDslNetworkProfile_FastPathConfig_MaxBitrateUp = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 28), Integer32()).setLabel("dmtAlDslNetworkProfile-FastPathConfig-MaxBitrateUp").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_FastPathConfig_MaxBitrateUp.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_FastPathConfig_MaxBitrateUp.setDescription('The up stream maximum requested bitrate, in Kbps. NOT valid in rate-adapt-mode = OPERATOR_CONTROLLED. ') dmtAlDslNetworkProfile_FastPathConfig_MaxBitrateDown = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 29), Integer32()).setLabel("dmtAlDslNetworkProfile-FastPathConfig-MaxBitrateDown").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_FastPathConfig_MaxBitrateDown.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_FastPathConfig_MaxBitrateDown.setDescription('The down stream maximum requested bitrate, in Kbps. NOT valid in rate-adapt-mode = OPERATOR_CONTROLLED. ') dmtAlDslNetworkProfile_FastPathConfig_PlannedBitrateUp = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 30), Integer32()).setLabel("dmtAlDslNetworkProfile-FastPathConfig-PlannedBitrateUp").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_FastPathConfig_PlannedBitrateUp.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_FastPathConfig_PlannedBitrateUp.setDescription('The up stream rate that will be used, in Kbps. ONLY valid in rate-adapt-mode = OPERATOR_CONTROLLED. ') dmtAlDslNetworkProfile_FastPathConfig_PlannedBitrateDown = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 31), Integer32()).setLabel("dmtAlDslNetworkProfile-FastPathConfig-PlannedBitrateDown").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_FastPathConfig_PlannedBitrateDown.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_FastPathConfig_PlannedBitrateDown.setDescription('The down stream rate that will be used, in Kbps. ONLY valid in rate-adapt-mode = OPERATOR_CONTROLLED. ') dmtAlDslNetworkProfile_InterleavePathConfig_MinBitrateUp = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 32), Integer32()).setLabel("dmtAlDslNetworkProfile-InterleavePathConfig-MinBitrateUp").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_InterleavePathConfig_MinBitrateUp.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_InterleavePathConfig_MinBitrateUp.setDescription('The up stream minimum requested bitrate, in Kbps. NOT valid in rate-adapt-mode = OPERATOR_CONTROLLED. ') dmtAlDslNetworkProfile_InterleavePathConfig_MinBitrateDown = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 33), Integer32()).setLabel("dmtAlDslNetworkProfile-InterleavePathConfig-MinBitrateDown").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_InterleavePathConfig_MinBitrateDown.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_InterleavePathConfig_MinBitrateDown.setDescription('The down stream minimum requested bitrate, in Kbps. NOT valid in rate-adapt-mode = OPERATOR_CONTROLLED. ') dmtAlDslNetworkProfile_InterleavePathConfig_MaxBitrateUp = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 34), Integer32()).setLabel("dmtAlDslNetworkProfile-InterleavePathConfig-MaxBitrateUp").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_InterleavePathConfig_MaxBitrateUp.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_InterleavePathConfig_MaxBitrateUp.setDescription('The up stream maximum requested bitrate, in Kbps. NOT valid in rate-adapt-mode = OPERATOR_CONTROLLED. ') dmtAlDslNetworkProfile_InterleavePathConfig_MaxBitrateDown = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 35), Integer32()).setLabel("dmtAlDslNetworkProfile-InterleavePathConfig-MaxBitrateDown").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_InterleavePathConfig_MaxBitrateDown.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_InterleavePathConfig_MaxBitrateDown.setDescription('The down stream maximum requested bitrate, in Kbps. NOT valid in rate-adapt-mode = OPERATOR_CONTROLLED. ') dmtAlDslNetworkProfile_InterleavePathConfig_PlannedBitrateUp = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 36), Integer32()).setLabel("dmtAlDslNetworkProfile-InterleavePathConfig-PlannedBitrateUp").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_InterleavePathConfig_PlannedBitrateUp.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_InterleavePathConfig_PlannedBitrateUp.setDescription('The up stream rate that will be used, in Kbps. ONLY valid in rate-adapt-mode = OPERATOR_CONTROLLED. ') dmtAlDslNetworkProfile_InterleavePathConfig_PlannedBitrateDown = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 37), Integer32()).setLabel("dmtAlDslNetworkProfile-InterleavePathConfig-PlannedBitrateDown").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_InterleavePathConfig_PlannedBitrateDown.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_InterleavePathConfig_PlannedBitrateDown.setDescription('The down stream rate that will be used, in Kbps. ONLY valid in rate-adapt-mode = OPERATOR_CONTROLLED. ') dmtAlDslNetworkProfile_InterleavePathConfig_MaxDelayUp = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 38), Integer32()).setLabel("dmtAlDslNetworkProfile-InterleavePathConfig-MaxDelayUp").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_InterleavePathConfig_MaxDelayUp.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_InterleavePathConfig_MaxDelayUp.setDescription('The maximum allowed up stream interleaver induced delay, in msec. ') dmtAlDslNetworkProfile_InterleavePathConfig_MaxDelayDown = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 39), Integer32()).setLabel("dmtAlDslNetworkProfile-InterleavePathConfig-MaxDelayDown").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_InterleavePathConfig_MaxDelayDown.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_InterleavePathConfig_MaxDelayDown.setDescription('The maximum allowed down stream interleaver induced delay, in msec. ') dmtAlDslNetworkProfile_MarginConfig_TargetNoiseMarginUp = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 40), Integer32()).setLabel("dmtAlDslNetworkProfile-MarginConfig-TargetNoiseMarginUp").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_MarginConfig_TargetNoiseMarginUp.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_MarginConfig_TargetNoiseMarginUp.setDescription('The up stream noise margin in dB that the modem shall achieve relative to BER 10^-7. ') dmtAlDslNetworkProfile_MarginConfig_TargetNoiseMarginDown = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 41), Integer32()).setLabel("dmtAlDslNetworkProfile-MarginConfig-TargetNoiseMarginDown").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_MarginConfig_TargetNoiseMarginDown.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_MarginConfig_TargetNoiseMarginDown.setDescription('The down stream noise margin in dB that the modem shall achieve relative to BER 10^-7. ') dmtAlDslNetworkProfile_MarginConfig_MinNoiseMarginUp = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 42), Integer32()).setLabel("dmtAlDslNetworkProfile-MarginConfig-MinNoiseMarginUp").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_MarginConfig_MinNoiseMarginUp.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_MarginConfig_MinNoiseMarginUp.setDescription('The up stream minimum noise margin in dB that the modem shall tolerate relative to BER 10^-7. If current noise margin falls below this level the ATU shall attempt to increase far-end output power to get margin above this limit, by means of bit swapping. ') dmtAlDslNetworkProfile_MarginConfig_MinNoiseMarginDown = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 43), Integer32()).setLabel("dmtAlDslNetworkProfile-MarginConfig-MinNoiseMarginDown").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_MarginConfig_MinNoiseMarginDown.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_MarginConfig_MinNoiseMarginDown.setDescription('The down stream minimum noise margin in dB that the modem shall tolerate relative to BER 10^-7. If current noise margin falls below this level the ATU shall attempt to increase far-end output power to get margin above this limit, by means of bit swapping. ') dmtAlDslNetworkProfile_MarginConfig_MaxAddNoiseMarginUp = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 44), Integer32()).setLabel("dmtAlDslNetworkProfile-MarginConfig-MaxAddNoiseMarginUp").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_MarginConfig_MaxAddNoiseMarginUp.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_MarginConfig_MaxAddNoiseMarginUp.setDescription('The up stream maximum noise margin in dB on top of the target-noise-margin that the modem shall tolerate relative to BER 10^-7. If current noise margin is above this level the ATU shall attempt to reduce far-end output power to get margin below this limit, by means of bit swapping. ') dmtAlDslNetworkProfile_MarginConfig_MaxAddNoiseMarginDown = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 45), Integer32()).setLabel("dmtAlDslNetworkProfile-MarginConfig-MaxAddNoiseMarginDown").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_MarginConfig_MaxAddNoiseMarginDown.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_MarginConfig_MaxAddNoiseMarginDown.setDescription('The down stream maximum noise margin in dB on top of the target-noise-margin that the modem shall tolerate relative to BER 10^-7. If current noise margin is above this level the ATU shall attempt to reduce far-end output power to get margin below this limit, by means of bit swapping. ') dmtAlDslNetworkProfile_MarginConfig_RaDownshiftMarginUp = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 46), Integer32()).setLabel("dmtAlDslNetworkProfile-MarginConfig-RaDownshiftMarginUp").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_MarginConfig_RaDownshiftMarginUp.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_MarginConfig_RaDownshiftMarginUp.setDescription('Valid ONLY in rate-adapt-mode = DYNAMIC. In dB. If current up stream noise margin is below this parameter for more than ra-downshift-int-up sec, modem shall attemp to rate adapt (bitrate down). ') dmtAlDslNetworkProfile_MarginConfig_RaDownshiftIntUp = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 47), Integer32()).setLabel("dmtAlDslNetworkProfile-MarginConfig-RaDownshiftIntUp").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_MarginConfig_RaDownshiftIntUp.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_MarginConfig_RaDownshiftIntUp.setDescription('Valid ONLY in rate-adapt-mode = DYNAMIC. In seconds. If current up stream noise margin is below ra-downshift-margin-up for more than this, modem shall attemp to rate adapt (bitrate down). ') dmtAlDslNetworkProfile_MarginConfig_RaDownshiftMarginDown = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 48), Integer32()).setLabel("dmtAlDslNetworkProfile-MarginConfig-RaDownshiftMarginDown").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_MarginConfig_RaDownshiftMarginDown.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_MarginConfig_RaDownshiftMarginDown.setDescription('Valid ONLY in rate-adapt-mode = DYNAMIC. In dB. If current down stream noise margin is below this parameter for more than ra-downshift-int-down sec, modem shall attemp to rate adapt (bitrate down). ') dmtAlDslNetworkProfile_MarginConfig_RaDownshiftIntDown = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 49), Integer32()).setLabel("dmtAlDslNetworkProfile-MarginConfig-RaDownshiftIntDown").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_MarginConfig_RaDownshiftIntDown.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_MarginConfig_RaDownshiftIntDown.setDescription('Valid ONLY in rate-adapt-mode = DYNAMIC. In seconds. If current down stream noise margin is below ra-downshift-margin-down for more than this, modem shall attemp to rate adapt (bitrate down). ') dmtAlDslNetworkProfile_MarginConfig_RaUpshiftMarginUp = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 50), Integer32()).setLabel("dmtAlDslNetworkProfile-MarginConfig-RaUpshiftMarginUp").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_MarginConfig_RaUpshiftMarginUp.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_MarginConfig_RaUpshiftMarginUp.setDescription('Valid ONLY in rate-adapt-mode = DYNAMIC. In dB. If current up stream noise margin is above this parameter for more than ra-downshift-int-up sec, modem shall attemp to rate adapt (bitrate up). ') dmtAlDslNetworkProfile_MarginConfig_RaUpshiftIntUp = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 51), Integer32()).setLabel("dmtAlDslNetworkProfile-MarginConfig-RaUpshiftIntUp").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_MarginConfig_RaUpshiftIntUp.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_MarginConfig_RaUpshiftIntUp.setDescription('Valid ONLY in rate-adapt-mode = DYNAMIC. In seconds. If current up stream noise margin is above ra-downshift-margin-up for more than this, modem shall attemp to rate adapt (bitrate up). ') dmtAlDslNetworkProfile_MarginConfig_RaUpshiftMarginDown = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 52), Integer32()).setLabel("dmtAlDslNetworkProfile-MarginConfig-RaUpshiftMarginDown").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_MarginConfig_RaUpshiftMarginDown.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_MarginConfig_RaUpshiftMarginDown.setDescription('Valid ONLY in rate-adapt-mode = DYNAMIC. In dB. If current down stream noise margin is above this parameter for more than ra-downshift-int-down sec, modem shall attemp to rate adapt (bitrate up). ') dmtAlDslNetworkProfile_MarginConfig_RaUpshiftIntDown = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 53), Integer32()).setLabel("dmtAlDslNetworkProfile-MarginConfig-RaUpshiftIntDown").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_MarginConfig_RaUpshiftIntDown.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_MarginConfig_RaUpshiftIntDown.setDescription('Valid ONLY in rate-adapt-mode = DYNAMIC. In seconds. If current down stream noise margin is above ra-downshift-margin-down for more than this, modem shall attemp to rate adapt (bitrate up). ') dmtAlDslNetworkProfile_ThreshProfile = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 72), DisplayString()).setLabel("dmtAlDslNetworkProfile-ThreshProfile").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_ThreshProfile.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_ThreshProfile.setDescription('The name of the DSL-THRESHOLD profile which applies to this ADSL line. ') dmtAlDslNetworkProfile_Action_o = MibScalar((1, 3, 6, 1, 4, 1, 529, 23, 10, 1, 1, 54), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("noAction", 1), ("createProfile", 2), ("deleteProfile", 3)))).setLabel("dmtAlDslNetworkProfile-Action-o").setMaxAccess("readwrite") if mibBuilder.loadTexts: dmtAlDslNetworkProfile_Action_o.setStatus('mandatory') if mibBuilder.loadTexts: dmtAlDslNetworkProfile_Action_o.setDescription('') mibBuilder.exportSymbols("ASCEND-MIBDMTALNET-MIB", dmtAlDslNetworkProfile_PhysicalAddress_Shelf=dmtAlDslNetworkProfile_PhysicalAddress_Shelf, dmtAlDslNetworkProfile_LineConfig_LoopBack=dmtAlDslNetworkProfile_LineConfig_LoopBack, dmtAlDslNetworkProfile_MarginConfig_RaUpshiftMarginUp=dmtAlDslNetworkProfile_MarginConfig_RaUpshiftMarginUp, dmtAlDslNetworkProfile_LineConfig_RateAdaptModeDown=dmtAlDslNetworkProfile_LineConfig_RateAdaptModeDown, DisplayString=DisplayString, dmtAlDslNetworkProfile_MarginConfig_RaUpshiftIntDown=dmtAlDslNetworkProfile_MarginConfig_RaUpshiftIntDown, dmtAlDslNetworkProfile_LineConfig_VpSwitchingVpi=dmtAlDslNetworkProfile_LineConfig_VpSwitchingVpi, mibdmtAlDslNetworkProfileTable=mibdmtAlDslNetworkProfileTable, dmtAlDslNetworkProfile_ProfileNumber=dmtAlDslNetworkProfile_ProfileNumber, dmtAlDslNetworkProfile_LineConfig_FbmDbmMode=dmtAlDslNetworkProfile_LineConfig_FbmDbmMode, dmtAlDslNetworkProfile_InterleavePathConfig_MinBitrateDown=dmtAlDslNetworkProfile_InterleavePathConfig_MinBitrateDown, dmtAlDslNetworkProfile_MarginConfig_MaxAddNoiseMarginDown=dmtAlDslNetworkProfile_MarginConfig_MaxAddNoiseMarginDown, dmtAlDslNetworkProfile_Enabled=dmtAlDslNetworkProfile_Enabled, dmtAlDslNetworkProfile_LineConfig_MaxAggrPowerLevelUp=dmtAlDslNetworkProfile_LineConfig_MaxAggrPowerLevelUp, dmtAlDslNetworkProfile_Shelf_o=dmtAlDslNetworkProfile_Shelf_o, dmtAlDslNetworkProfile_FastPathConfig_MaxBitrateDown=dmtAlDslNetworkProfile_FastPathConfig_MaxBitrateDown, dmtAlDslNetworkProfile_ThreshProfile=dmtAlDslNetworkProfile_ThreshProfile, dmtAlDslNetworkProfile_MarginConfig_RaUpshiftMarginDown=dmtAlDslNetworkProfile_MarginConfig_RaUpshiftMarginDown, dmtAlDslNetworkProfile_PhysicalAddress_Slot=dmtAlDslNetworkProfile_PhysicalAddress_Slot, dmtAlDslNetworkProfile_InterleavePathConfig_MaxDelayUp=dmtAlDslNetworkProfile_InterleavePathConfig_MaxDelayUp, dmtAlDslNetworkProfile_InterleavePathConfig_MaxDelayDown=dmtAlDslNetworkProfile_InterleavePathConfig_MaxDelayDown, dmtAlDslNetworkProfile_MarginConfig_RaDownshiftMarginDown=dmtAlDslNetworkProfile_MarginConfig_RaDownshiftMarginDown, dmtAlDslNetworkProfile_FastPathConfig_MinBitrateDown=dmtAlDslNetworkProfile_FastPathConfig_MinBitrateDown, dmtAlDslNetworkProfile_LineConfig_RateAdaptModeUp=dmtAlDslNetworkProfile_LineConfig_RateAdaptModeUp, mibdmtAlDslNetworkProfile=mibdmtAlDslNetworkProfile, dmtAlDslNetworkProfile_MarginConfig_TargetNoiseMarginUp=dmtAlDslNetworkProfile_MarginConfig_TargetNoiseMarginUp, dmtAlDslNetworkProfile_LineConfig_MaxPowerSpectralDensity=dmtAlDslNetworkProfile_LineConfig_MaxPowerSpectralDensity, dmtAlDslNetworkProfile_LineConfig_GainDefault=dmtAlDslNetworkProfile_LineConfig_GainDefault, dmtAlDslNetworkProfile_MarginConfig_TargetNoiseMarginDown=dmtAlDslNetworkProfile_MarginConfig_TargetNoiseMarginDown, dmtAlDslNetworkProfile_FastPathConfig_PlannedBitrateUp=dmtAlDslNetworkProfile_FastPathConfig_PlannedBitrateUp, dmtAlDslNetworkProfile_FastPathConfig_MinBitrateUp=dmtAlDslNetworkProfile_FastPathConfig_MinBitrateUp, dmtAlDslNetworkProfile_InterleavePathConfig_MaxBitrateDown=dmtAlDslNetworkProfile_InterleavePathConfig_MaxBitrateDown, dmtAlDslNetworkProfile_FastPathConfig_PlannedBitrateDown=dmtAlDslNetworkProfile_FastPathConfig_PlannedBitrateDown, dmtAlDslNetworkProfile_PhysicalAddress_ItemNumber=dmtAlDslNetworkProfile_PhysicalAddress_ItemNumber, dmtAlDslNetworkProfile_LineConfig_LineLatencyUp=dmtAlDslNetworkProfile_LineConfig_LineLatencyUp, dmtAlDslNetworkProfile_IgnoreLineup=dmtAlDslNetworkProfile_IgnoreLineup, dmtAlDslNetworkProfile_InterleavePathConfig_PlannedBitrateUp=dmtAlDslNetworkProfile_InterleavePathConfig_PlannedBitrateUp, dmtAlDslNetworkProfile_LineConfig_DownstreamEndBin=dmtAlDslNetworkProfile_LineConfig_DownstreamEndBin, dmtAlDslNetworkProfile_LineConfig_LineCode=dmtAlDslNetworkProfile_LineConfig_LineCode, dmtAlDslNetworkProfile_MarginConfig_RaUpshiftIntUp=dmtAlDslNetworkProfile_MarginConfig_RaUpshiftIntUp, dmtAlDslNetworkProfile_LineConfig_UpstreamStartBin=dmtAlDslNetworkProfile_LineConfig_UpstreamStartBin, dmtAlDslNetworkProfile_Name=dmtAlDslNetworkProfile_Name, dmtAlDslNetworkProfile_LineConfig_RateAdaptRatioUp=dmtAlDslNetworkProfile_LineConfig_RateAdaptRatioUp, dmtAlDslNetworkProfile_LineConfig_DownstreamStartBin=dmtAlDslNetworkProfile_LineConfig_DownstreamStartBin, dmtAlDslNetworkProfile_Action_o=dmtAlDslNetworkProfile_Action_o, mibdmtAlDslNetworkProfileEntry=mibdmtAlDslNetworkProfileEntry, dmtAlDslNetworkProfile_LineConfig_MaxAggrPowerLevelDown=dmtAlDslNetworkProfile_LineConfig_MaxAggrPowerLevelDown, dmtAlDslNetworkProfile_LineConfig_LineLatencyDown=dmtAlDslNetworkProfile_LineConfig_LineLatencyDown, dmtAlDslNetworkProfile_LineConfig_TrellisEncoding=dmtAlDslNetworkProfile_LineConfig_TrellisEncoding, dmtAlDslNetworkProfile_MarginConfig_MinNoiseMarginDown=dmtAlDslNetworkProfile_MarginConfig_MinNoiseMarginDown, dmtAlDslNetworkProfile_MarginConfig_MaxAddNoiseMarginUp=dmtAlDslNetworkProfile_MarginConfig_MaxAddNoiseMarginUp, dmtAlDslNetworkProfile_LineConfig_RateAdaptRatioDown=dmtAlDslNetworkProfile_LineConfig_RateAdaptRatioDown, dmtAlDslNetworkProfile_Slot_o=dmtAlDslNetworkProfile_Slot_o, dmtAlDslNetworkProfile_Item_o=dmtAlDslNetworkProfile_Item_o, dmtAlDslNetworkProfile_SparingMode=dmtAlDslNetworkProfile_SparingMode, dmtAlDslNetworkProfile_FastPathConfig_MaxBitrateUp=dmtAlDslNetworkProfile_FastPathConfig_MaxBitrateUp, dmtAlDslNetworkProfile_InterleavePathConfig_MinBitrateUp=dmtAlDslNetworkProfile_InterleavePathConfig_MinBitrateUp, dmtAlDslNetworkProfile_InterleavePathConfig_PlannedBitrateDown=dmtAlDslNetworkProfile_InterleavePathConfig_PlannedBitrateDown, dmtAlDslNetworkProfile_LineConfig_BitSwapping=dmtAlDslNetworkProfile_LineConfig_BitSwapping, dmtAlDslNetworkProfile_LineConfig_NailedGroup=dmtAlDslNetworkProfile_LineConfig_NailedGroup, dmtAlDslNetworkProfile_LineConfig_AlcatelUs413Boost=dmtAlDslNetworkProfile_LineConfig_AlcatelUs413Boost, dmtAlDslNetworkProfile_InterleavePathConfig_MaxBitrateUp=dmtAlDslNetworkProfile_InterleavePathConfig_MaxBitrateUp, dmtAlDslNetworkProfile_MarginConfig_MinNoiseMarginUp=dmtAlDslNetworkProfile_MarginConfig_MinNoiseMarginUp, dmtAlDslNetworkProfile_LineConfig_UpstreamEndBin=dmtAlDslNetworkProfile_LineConfig_UpstreamEndBin, dmtAlDslNetworkProfile_MarginConfig_RaDownshiftMarginUp=dmtAlDslNetworkProfile_MarginConfig_RaDownshiftMarginUp, dmtAlDslNetworkProfile_MarginConfig_RaDownshiftIntDown=dmtAlDslNetworkProfile_MarginConfig_RaDownshiftIntDown, dmtAlDslNetworkProfile_MarginConfig_RaDownshiftIntUp=dmtAlDslNetworkProfile_MarginConfig_RaDownshiftIntUp)
[ "dcwangmit01@gmail.com" ]
dcwangmit01@gmail.com
27bbe71fc025cdc5aff8af857e0329fbcf02387a
16badf0376eca37f061ea8f1e871cb0bdb306287
/Collection/Counter object.py
33999b8cde18a4d4a27e1ae6bc160d6724961033
[]
no_license
ShikhaShrivastava/Python-core
4da99f86d926b30f099dc89fe8514bd62543b23d
da48bdd0c7f1446b225262dcec5b999a47ed6a73
refs/heads/master
2023-04-23T23:53:40.815558
2021-05-13T08:55:31
2021-05-13T08:55:31
366,992,135
1
0
null
null
null
null
UTF-8
Python
false
false
712
py
'''_____________Counter Object_________________''' from collections import Counter def counter_object_demo(): lst = ['a', 'b', 'c', 'b', 'a', 'c', 'a', 'c', 'b'] tup = (1, 2, 3, 2, 1, 4, 2, 3, 1, 2, 1, 3, 2) set_ele = {10, 30, 20, 10, 20, 40, 60, 10} dct = {'a': 1, 'b': 5, 'c': 9, 'd': 8} data = 'hey there is whatsapp' toll_lst = Counter(lst) toll_tup = Counter(tup) toll_set = Counter(set_ele) toll_dict1 = Counter(dct) toll_data = Counter(data) toll_dict2 = Counter(a=2, b=3, c=5) print(toll_lst) print(toll_tup) print(toll_set) print(toll_dict1) print(toll_dict2) print(toll_data) if __name__ == "__main__": counter_object_demo()
[ "shikhashrivastava2908@gmail.com" ]
shikhashrivastava2908@gmail.com
21f25fee17256ef3a894bd61ef9e9f30b7553747
644b9d51fa4ebcf64e762a68d5d5c62966aeab9d
/polls/views.py
dffd6166b95a741a3f824d15c3095efd79cefda1
[]
no_license
ekulbyrnes/djangopolls
e54653c453eafc06044d9680f25a484dba6ca2ba
db4c544a3f7d587deaa141da487d417d80f8c8b4
refs/heads/main
2023-04-01T14:42:16.232327
2021-04-07T06:23:50
2021-04-07T06:23:50
343,943,843
0
1
null
2021-04-01T04:14:52
2021-03-02T23:40:04
Python
UTF-8
Python
false
false
3,597
py
from django.http import HttpResponse, HttpResponseRedirect from django.shortcuts import get_object_or_404, render from django.urls import reverse from django.views import generic from django.utils import timezone # Create your views here: from .models import Choice, Question class IndexView(generic.ListView): template_name = 'polls/index.html' context_object_name = 'latest_question_list' def get_queryset(self): """ Return the last five published questions (not including those set to be published in the future).""" return Question.objects.filter( pub_date__lte=timezone.now() ).order_by ('pub_date')[:5] # this is now redundant due to time zone conditions being added above: # return Question.objects.order_by('-pub_date')[:5] class DetailView(generic.DetailView): model = Question template_name = 'polls/detail.html' def get_queryset(self): """ Excludes any questions that aren't published yet """ return Question.objects.filter(pub_date__lte=timezone.now()) class ResultsView(generic.DetailView): model = Question template_name = 'polls/results.html' def vote(request, question_id): question = get_object_or_404(Question, pk=question_id) try: selected_choice = question.choice_set.get(pk=request.POST['choice']) except (KeyError, Choice.DoesNotExist): # Redisplay the question voting form. return render(request, 'polls/detail.html', {'question': question, 'error_message': "You didn't select a choice.", }) else: selected_choice.votes += 1 selected_choice.save() # Always return a HttpResponseRedirect after successfully dealing with POST data. This prevents data from being posted twice inf a user hits the BACK button. return HttpResponseRedirect(reverse('polls:results', args=(question.id,))) # redundant code: return HttpResponse("You're voting on question %s." % question_id) # # Old code before using Django Generic Views (up to pt 4 tutorial)# # # # def index(request): # latest_question_list = Question.objects.order_by('-pub_date')[:5] # context = {'latest_question_list': latest_question_list,} # return render(request, 'polls/index.html', context) # def detail(request, question_id): # question = get_object_or_404(Question, pk=question_id) # return render(request, 'polls/detail.html', {'question': question}) # def results(request, question_id): # question = get_object_or_404(Question, pk=question_id) # return render(request, 'polls/results.html', {'question':question}) # # Redundant code: # #response = "You're looking at the results of question %s." # #return HttpResponse(response % question_id) # def vote(request, question_id): # question = get_object_or_404(Question, pk=question_id) # try: # selected_choice = question.choice_set.get(pk=request.POST['choice']) # except (KeyError, Choice.DoesNotExist): # # Redisplay the question voting form. # return render(request, 'polls/detail.html', {'question': question, 'error_message': "You didn't select a choice.", }) # else: # selected_choice.votes += 1 # selected_choice.save() # # Always return a HttpResponseRedirect after successfully dealing with POST data. This prevents data from being posted twice inf a user hits the BACK button. # return HttpResponseRedirect(reverse('polls:results', args=(question.id,))) # # redundant code: return HttpResponse("You're voting on question %s." % question_id)
[ "luke.e.byrnes@gmail.com" ]
luke.e.byrnes@gmail.com
fbc48eb4b6cec14f4d08c8e39813e251aa04423b
b762bbc972446e75a65c5a3ccb32fedb39fa76da
/DropoutPrediction/results/RandomForest.py
65f4cfc683202d7d4241716910530d876a5fe0c2
[]
no_license
NishanthSV/DropoutPrediction
e6b31c148c9bd4a1226d1be3baf75082e9a694f3
673c79f073080b98800b4667e3d6451d4ef77835
refs/heads/master
2022-12-01T08:30:30.245670
2020-08-14T02:43:56
2020-08-14T02:43:56
260,514,610
0
0
null
null
null
null
UTF-8
Python
false
false
3,115
py
#!/usr/bin/env python # coding: utf-8 # In[12]: # Constants and imports. BASE_NUM = 1 RANDOM_STATE = None CV = 5 TEST_SIZE = 0.2 import os import itertools import pandas as pd import numpy as np get_ipython().run_line_magic('matplotlib', 'inline') import matplotlib.pyplot as plt # In[13]: # Load data. data = pd.read_csv('base_1.csv', sep=';') data.head() # In[14]: import random COURSE = [] for i in range(100): randlist = ['CSE', 'AUTOMOBILE_ENGINEERING', 'APPLIED_SCIENCE', 'BIO_TECHNOLOGY', 'BIOMEDICAL_ENGINEERING','CHEMISTRY','CIVIL_ENGINEERING','ECE','EEE','ENGLISH','FASHION_TECHNOLOGY','HUMANITICS','IT','MATHEMATICS','COMPUTER_APPLICATIONS','MECHANICAL','METALLURIGCAL','PHYSICS','PRODUCTION','ROBOTICS','TEXTILE'] COURSE.append(random.choice(randlist)) # for val in COURSE: # print(val) data["COURSE"] = COURSE # print(data['COURSE']) ATTENDANCE = [] for i in data['LARGE_PERIOD_ABSENT']: ATTENDANCE.append(1-i) data['ATTENDANCE'] = ATTENDANCE data.drop(["COURSE_OF_STUDY","NATIONALITY", "AGE_WHEN_STARTED", "ELEMENTARY_SCHOOL", "SCHOOL", "ELEMENTARY_GRADE_9", "ELEMENTARY_GRADE_1", "ELEMENTARY_GRADE_2", "ELEMENTARY_GRADE_3", "ELEMENTARY_GRADE_4", "ELEMENTARY_GRADE_AVG", "SUPERVISOR_GROUP_SIZE","CLASS_BASED_SCHOOL","SMALL_PERIOD_ON_TIME","SMALL_PERIOD_ABSENT","SMALL_PERIOD_LATE", "SMALL_PERIOD_AVG_ASSIGNMENT_GRADE","LARGE_PERIOD_AVG_ASSIGNMENT_GRADE","CREDITS_LAST_SEMESTER","CLASSES_LAST_SEMESTER","LARGE_PERIOD_ON_TIME","LARGE_PERIOD_LATE","LARGE_PERIOD_ABSENT"], axis = 1, inplace = True) # for col in data.columns: # print(col) data.head() # for val in data.columns: # print(val) data.rename(columns={"LARGE_PERIOD_AVG_GRADE":"CGPA"}) # In[15]: data.fillna(data.mean(), inplace=True) data = data.drop(['COURSE'],axis = 1) # In[16]: # Split train / test from sklearn.model_selection import StratifiedShuffleSplit split = StratifiedShuffleSplit(n_splits=1, test_size=TEST_SIZE, random_state=RANDOM_STATE) for train_index, test_index in split.split(data, data['DROPPED_OUT']): train_set = data.loc[train_index] test_set = data.loc[test_index] # In[17]: X_train = train_set.drop(['DROPPED_OUT'],axis = 1) Y_train = train_set['DROPPED_OUT'] X_test = test_set.drop(['DROPPED_OUT'],axis = 1) Y_test = test_set['DROPPED_OUT'] print(X_train.columns) # In[18]: from sklearn.ensemble import RandomForestClassifier from sklearn import metrics #Create a Gaussian Classifier clf=RandomForestClassifier(n_estimators=200) clf.fit(X_train,Y_train) y_pred = clf.predict(X_test) score = metrics.accuracy_score(Y_test,y_pred) print((score)) # In[20]: from sklearn.metrics import roc_curve , roc_auc_score yscore = clf.predict_proba(X_test)[:,1] false_positive_rate , true_positive_rate , threshold = roc_curve(Y_test,yscore) print("roc_auc_score : ", roc_auc_score(Y_test,yscore)) # In[21]: plt.title('Receiver operating characteristic') plt.plot(false_positive_rate , true_positive_rate) plt.plot([0,1] , ls = "--") plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate') plt.show() # In[ ]: # In[ ]:
[ "noreply@github.com" ]
NishanthSV.noreply@github.com
d21c4684449f82f2bebd1e269e253fd9b98d3764
ddb4d6a3b839e8325e1902181e4c1aa0a3c75935
/coin_flip.py
bb9016b036aaa6092aaf2957ad699c54b6b51766
[]
no_license
baremetals/Automate_Python
8c99ae0ee21fc7c12e7735ce41acd1948addfc93
edae29ea1d15e342b3dde6a59ffc31b1a40ac026
refs/heads/master
2023-01-23T05:41:34.100296
2020-11-27T13:18:18
2020-11-27T13:18:18
311,421,361
0
0
null
null
null
null
UTF-8
Python
false
false
478
py
import random number_of_streaks = 0 results = [] tails = 0 heads = 0 for experimentNumber in range(20): coin_flip = random.randint(0, 1) if (coin_flip == 0): results.append('T') tails += 1 else: results.append('H') heads += 1 if (results[:3] == 'H'): number_of_streaks += 1 # for streak in results: # for streak in results: # if ("H" ): # number_of_streaks += 1 print(results) print(number_of_streaks)
[ "baremetals16@gmail.com" ]
baremetals16@gmail.com
38e97c040afacbcaa11df302fb94cea8de0f4864
72b8752c1a0e8012f0c7c2060632ba34a50059d6
/store/models.py
35f77c70324332f529d62bda7b1eaa4312361958
[]
no_license
yurachistic1/stickingTogether
b3e4c6f3b79fa82c3eef2c58388b7f559a866dc1
aa402305049ef4459477e6ea075ff24f06d4c7a4
refs/heads/master
2023-07-14T05:31:09.154038
2021-08-21T08:22:28
2021-08-21T08:22:28
295,382,899
1
0
null
null
null
null
UTF-8
Python
false
false
1,521
py
from django.db import models def image_directory_path(instance, filename): # file will be uploaded to MEDIA_ROOT/<cause>/<filename> return "{0}/{1}".format(instance.sticker.cause, filename) def image_directory_path2(instance, filename): pass # Create your models here. class Sticker(models.Model): BEIRUTREDCROSS = "BRC" CAUSES_CHOICES = [ (BEIRUTREDCROSS, "Beirut Red Cross"), ] name = models.CharField(max_length=30, unique=True) price = models.FloatField(verbose_name="Price (£)") price_sg = models.FloatField(verbose_name="Price (S$)") description = models.TextField(default="", blank=True) dimensions = models.CharField( verbose_name="Dimensions (A x B cm)", null=True, max_length=10, blank=True ) artist = models.CharField(max_length=30, blank=True, null=True) singapore_stock = models.IntegerField() uk_stock = models.IntegerField() cause = models.CharField(max_length=5, choices=CAUSES_CHOICES) ordering = models.IntegerField( verbose_name="Order of appearance(lowest first)", default=1 ) def __str__(self): return self.name + "-ordering: " + str(self.ordering) class Meta: ordering = ["ordering"] class StickerImage(models.Model): text_description = models.CharField(max_length=100) image = models.ImageField(upload_to=image_directory_path) sticker = models.ForeignKey(Sticker, on_delete=models.CASCADE) def __str__(self): return self.text_description
[ "yurachistic@gmail.com" ]
yurachistic@gmail.com
f4af1c72efe5203acbacf3f5d7b78c40f779dc73
7da1e26fa269f241b42748d76caa72b0095557f5
/solutions_week5/water/read_water.py
60d0a9c11c5754715175ffd0210fc38cf28a51d2
[]
no_license
jensengroup/molstat
b305b15ef83fef9d8781217092cffed98b75636f
5cb9633acbe3717c2db008d14981e13bd6193b74
refs/heads/master
2020-12-24T06:53:56.227817
2018-05-08T08:56:15
2018-05-08T08:56:15
13,613,262
8
3
null
2014-02-15T12:45:05
2013-10-16T08:11:23
TeX
UTF-8
Python
false
false
1,632
py
import matplotlib.pyplot as plt import numpy as np import seaborn # If working with multiple files # you can read loop over the files by creating a array of # filenames dat_files = ['CCSD(t).dat', 'F12.dat', 'B3LYP.dat', 'mp2.dat'] # initialize empty lists energies = [] r_lists = [] # for data-file in file-list for datf in dat_files: # initialize empty list for current # data file dat_energy = [] r_list = [] # open datafile and loop over lines f = open(datf, 'r') for line in f: # split line (string) into a line (list) for every space line = line.split() # Check if line is empty by checking the length of the line list if len(line) < 1: continue # Get the energy and distance # and convert it to float from string energy = float(line[-1]) r = float(line[0]) # append it to energies dat_energy.append(energy) r_list.append(r) dat_energy = np.array(dat_energy) m = dat_energy.min() dat_energy -= m dat_energy *= 627.509 # a.u. to kcal/mol # append energy list to overall energy array energies.append(dat_energy) r_lists.append(r_list) # energies is now a "list of lists" # which we can access as plt.plot(r_lists[0], energies[0], '.-', label='CCSD(T)') plt.plot(r_lists[1], energies[1], '.-', label='F12') plt.plot(r_lists[2], energies[2], '.-', label='B3LYP') plt.plot(r_lists[3], energies[3], '.-', label='MP2') plt.legend(loc='upper right') plt.xlabel('Displacement [$\AA$]') plt.ylabel('Relative energy [kcal/mol]') plt.savefig('energy_water.png')
[ "jimmy@charnley.dk" ]
jimmy@charnley.dk
cbd93ad4a706441984a2725d46c992fd90f68ea3
3a09d5c19b0f3c78615c8306fb8123cf5234f716
/kats/models/nowcasting/nowcastingplus.py
65d3b8ed88a86d453c326a96562c6871413d1b4d
[ "MIT" ]
permissive
vladimirlojanica/Kats
ad384a1fdf3f2e6907a709bf257fbb6400d74f73
9f496f94c4a35b8ef0c37eeb2c73224922888d24
refs/heads/master
2023-09-03T05:09:41.942281
2021-11-11T03:20:12
2021-11-11T03:21:30
380,343,770
0
0
MIT
2021-06-25T20:08:42
2021-06-25T20:08:41
null
UTF-8
Python
false
false
8,765
py
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # pyre-unsafe """NowcastingPlus is a basic model for short-term forecasting. This modules contains class NowcastingParams, which is the class parameter and class NowcastingPlusModel, which is the model. Typical usage example: nr = NowcastingPlusModel(data = data, params = NowcastingParams(step = 10)) nr.feature_extraction() nr.label_extraction() nr.fit() output = nr.predict() """ from __future__ import absolute_import, division, print_function, unicode_literals import logging from typing import Any, List import kats.models.model as m import numpy as np import pandas as pd from kats.consts import Params, TimeSeriesData from kats.models.nowcasting.feature_extraction import LAG, ROC, MA, MOM from kats.models.nowcasting.model_io import ( serialize_for_zippy, deserialize_from_zippy, ) from sklearn import linear_model from sklearn import preprocessing from sklearn.linear_model import LinearRegression def poly(df, n): """ Takes the column x from the dataframe df and takes the value from x to the power n """ poly = pd.Series(df.x ** n, name="poly_" + str(n)) df = df.join(poly) return df class NowcastingParams(Params): """The class for Nowcasting Parameters. Takes parameters for class NowcastingModel. Attributes: step: An integer indicating how many steps ahead we are forecasting. Default is 1. """ def __init__(self, step: int = 1, **kwargs) -> None: super().__init__() self.step = step logging.debug(f"Initialized QuadraticModel with parameters: step:{step}") def validate_params(self): """Raises: NotImplementedError("Subclasses should implement this!").""" logging.warning("Method validate_params() is not implemented.") raise NotImplementedError("Subclasses should implement this!") class NowcastingPlusModel(m.Model): """The class for NowcastingPlus Model. This class performs data processing and short term prediction, for time series based on machine learning methodology. Attributes: TimeSeriesData: Time Series Data Source. NowcastingParams: parameters for Nowcasting. """ def __init__( self, data: TimeSeriesData, params: NowcastingParams, model: Any = None, poly_model: Any = None, feature_names: List[str] = [], poly_feature_names: List[str] = [], scaler: Any = None, label_scaler: Any = None, y_train_season_obj: Any = None, ) -> None: super().__init__(data, params) if not isinstance(self.data.value, pd.Series): msg = "Only support univariate time series, but get {type}.".format( type=type(self.data.value) ) logging.error(msg) raise ValueError(msg) self.df = data.to_dataframe() self.step = params.step self.model = model self.feature_names = feature_names self.poly_model = poly_model self.df_poly = data.to_dataframe() self.poly_feature_names = poly_feature_names self.df_nowcasting = data.to_dataframe() self.scaler = scaler self.label_scaler = label_scaler self.y_train_season_obj = y_train_season_obj def feature_extraction(self) -> None: """ Extracts features for time series data. """ # Add the hour, minute, and x column to the data self.df_poly["hour"] = self.df_poly["time"].apply(lambda y: y.hour) self.df_poly["minute"] = self.df_poly["time"].apply(lambda y: y.minute) self.df_poly["x"] = self.df_poly["hour"] * 60 + self.df_poly["minute"] # Empty list to hold the feature names poly_feature_names = [] # Add the poly columns to the df_poly for degree in [0, 1, 2, 3, 4, 5]: self.df_poly = poly(self.df_poly, degree) poly_feature_names.append("poly_" + str(degree)) # filterout + - inf, nan self.df_poly = self.df_poly[ ~self.df_poly.isin([np.nan, np.inf, -np.inf]).any(1) ] # Save the poly feature name self.poly_feature_names = poly_feature_names feature_names = [] ######################################################################################### train_index_poly = self.df_poly[ ~self.df_poly.isin([np.nan, np.inf, -np.inf]).any(1) ].index X_train_poly, y_train_poly = ( self.df_poly[self.poly_feature_names].loc[train_index_poly], self.df_poly["y"].loc[train_index_poly], ) # Build the Polynomial Regression Model lin_reg = LinearRegression() lin_reg.fit(X_train_poly, y_train_poly) self.poly_model = lin_reg y_train_season = lin_reg.predict(X_train_poly) self.y_train_season_obj = y_train_season ######################################################################################### for n in [10, 15, 20, 25, 30]: self.df = MOM(self.df, n) feature_names.append("MOM_" + str(n)) for n in [10, 15, 20, 25, 30]: self.df = ROC(self.df, n) feature_names.append("ROC_" + str(n)) for n in [1, 2, 3, 4, 5]: self.df = LAG(self.df, n) feature_names.append("LAG_" + str(n)) for n in [10, 20, 30]: self.df = MA(self.df, n) feature_names.append("MA_" + str(n)) self.df = self.df[ ~self.df.isin([np.nan, np.inf, -np.inf]).any(1) ] # filterout + - inf, nan self.feature_names = feature_names def label_extraction(self) -> None: """Extracts labels from time series data.""" self.df["label"] = self.df["y"] ###################### module 1: for offline training ###################### def fit(self) -> None: """Fits model.""" logging.debug( "Call fit() with parameters: " "step:{step}".format(step=self.step) ) n = 1 train_index = self.df[~self.df.isin([np.nan, np.inf, -np.inf]).any(1)].index X_train = self.df[self.feature_names].loc[train_index] std_scaler = preprocessing.StandardScaler() X_train = std_scaler.fit_transform(X_train) self.scaler = std_scaler n = self.step y_train = ( self.df["label"].loc[train_index] - self.y_train_season_obj[train_index] ).diff(-n)[:-n] X_train = X_train[:-n] reg = linear_model.LassoCV() reg.fit(X_train, y_train) self.model = reg def save_model(self) -> bytes: """Saves sklearn model as bytes.""" return serialize_for_zippy(self.model) ###################### module 2: for online prediction ###################### def predict(self, **kwargs): """Predicts the time series in the future. Nowcasting forecasts at the time unit of step ahead. This is in order to keep precision and different from usual algorithms. Returns: A float variable, the forecast at future step. """ logging.debug( "Call predict() with parameters. " "Forecast 1 step only, kwargs:{kwargs}".format(kwargs=kwargs) ) X_test = self.df[-self.step :][self.feature_names] X_test = self.scaler.transform(X_test) y_predict = self.model.predict(X_test) poly_now = self.y_train_season_obj[-1] first_occ = np.where(self.y_train_season_obj == poly_now) polynext = self.y_train_season_obj[first_occ[0][0] + self.step] now = self.df["y"][-self.step :] return (now - poly_now) - y_predict + polynext def predict_polyfit(self, model=None, df=None, **kwargs): poly_now = self.y_train_season_obj[-1] first_occ = np.where(self.y_train_season_obj == poly_now) polynext = self.y_train_season_obj[first_occ[0][0] + self.step] return polynext def load_model(self, model_as_bytes: bytes) -> None: """Loads model_as_str and decodes into the class NowcastingModel. Args: model_as_bytes: a binary variable, indicating whether to read as bytes. """ self.model = deserialize_from_zippy(model_as_bytes) def plot(self): """Raises: NotImplementedError("Subclasses should implement this!")。""" raise NotImplementedError("Subclasses should implement this!") def __str__(self): """Returns the name as Nowcasting,""" return "Nowcasting"
[ "facebook-github-bot@users.noreply.github.com" ]
facebook-github-bot@users.noreply.github.com
c5c56fd2a6c00afab2add942ac211a66fff636d2
bfde6d26e62aa94eebbec96763de40f78f4d4374
/python_scripts/rl/DQNAgent.py
371e937bd45331fed86d0331f4c5006e5e23eae3
[]
no_license
bryonkucharski/robot-catcher
8a15d3951454e7204e4f8989c8d306fcd8f5b11b
41caad5dfddb1ae7604fb82ced2143d8e3e7cc87
refs/heads/master
2021-05-10T14:46:30.152702
2019-11-10T14:18:05
2019-11-10T14:18:05
118,531,219
0
2
null
null
null
null
UTF-8
Python
false
false
4,486
py
''' This class is heavily from https://github.com/keon/deep-q-learning Modified by Bryon Kucharski Summer 2018 ''' import random import numpy as np from collections import deque from keras.initializers import normal, identity from keras.models import model_from_json from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation, Flatten from keras.layers.convolutional import Conv2D, MaxPooling2D from keras.optimizers import SGD , Adam import json import time from keras.callbacks import TensorBoard class DQNAgent: def __init__(self, state_size, action_size, gamma, epsilon, epsilon_min, epsilon_decay, learning_rate, model_type): self.max_memory = 2000 self.state_size = state_size self.action_size = action_size self.memory = deque(maxlen=self.max_memory) self.gamma = gamma#0.95 # discount rate self.epsilon = epsilon # 1.0 # exploration rate self.epsilon_min = epsilon_min# 0.01 self.epsilon_decay = epsilon_decay # 0.995 self.learning_rate = learning_rate # 0.001 #self.tensorboard = TensorBoard(log_dir="logs/{}".format(time())) if model_type == 'DeepMind': self.model = self.DeepMindModel() elif model_type == 'DeepModel': self.model = self.DeepModel() def DeepModel(self): # Neural Net for Deep-Q learning Model model = Sequential() model.add(Dense(20, input_shape=((self.state_size,)), activation='relu')) model.add(Dense(18, activation='relu')) model.add(Dense(10, kernel_initializer='uniform', activation='relu')) model.add(Dense(self.action_size, activation='linear')) model.compile(loss='mse', optimizer=Adam(lr=self.learning_rate)) return model def DeepMindModel(self): model = Sequential() model.add(Conv2D(32, 8, 8, subsample=(4, 4), border_mode='same',input_shape=(80,80,4))) #80*80*4 model.add(Activation('relu')) model.add(Conv2D(64, 4, 4, subsample=(2, 2), border_mode='same')) model.add(Activation('relu')) model.add(Conv2D(64, 3, 3, subsample=(1, 1), border_mode='same')) model.add(Activation('relu')) model.add(Flatten()) model.add(Dense(512)) model.add(Activation('relu')) model.add(Dense(self.action_size)) adam = Adam(lr=1e-6) model.compile(loss='mse',optimizer=adam) return model def remember(self, state, action, reward, next_state, done): self.memory.append((state, action, reward, next_state, done)) if len(self.memory) > self.max_memory: del self.memory[0] def take_action(self, state): if np.random.rand() <= self.epsilon: return random.randrange(self.action_size) act_values = self.model.predict(state) return np.argmax(act_values[0]) # returns action def replay(self, batch_size): minibatch = random.sample(self.memory, batch_size) for state, action, reward, next_state, done in minibatch: target = reward if not done: target = (reward + self.gamma * np.amax(self.model.predict(next_state)[0])) target_f = self.model.predict(state) target_f[0][action] = target #tensorboard = TensorBoard(log_dir='./Graph', histogram_freq=0, write_graph=True, write_images=True) history = self.model.fit(state, target_f, epochs=1, verbose=0) if self.epsilon > self.epsilon_min: self.epsilon *= self.epsilon_decay return history def predict(self, state): act_values = self.model.predict(state) return np.argmax(act_values[0]) # returns action def train(self, X_batch, y_batch): return self.model.train_on_batch(X_batch, y_batch)[0] #may not need the [0] def load(self, name): print("Loading Model") self.model.load_weights(name) def save(self, name): print("Saving Model") self.model.save_weights(name) def memory_length(self): return len(self.memory) def print_model_weights(self): i = 0 for layer in self.model.layers: i +=1 weights = layer.get_weights() # list of numpy arrays print("Layer " + str(i) + ": " + str(weights))
[ "bryonkucharski@gmail.com" ]
bryonkucharski@gmail.com
5e75d0ea121df2f4dcfb81ee93b32ff59299c7cd
f4dfbcc41dcd2a06909a39f4b8b03c42bfe921cf
/users/migrations/0001_initial.py
d947babbe4043be68e9254796ad55b3cb28f9360
[]
no_license
VincentBai-dotcom/twitterReplica
ffc8187f22ff57f453f097023dde82b6c042322c
d131c97e0f335166da1ec0c742b1c61c7af8bc9c
refs/heads/master
2023-08-27T13:05:05.901118
2021-10-23T18:17:38
2021-10-23T18:17:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,228
py
# Generated by Django 3.2.4 on 2021-07-18 19:54 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='MyUser', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('email', models.EmailField(max_length=60, unique=True, verbose_name='email')), ('username', models.CharField(max_length=15, unique=True)), ('date_joined', models.DateTimeField(auto_now_add=True, verbose_name='date joined')), ('last_login', models.DateTimeField(auto_now=True, verbose_name='last login')), ('is_admin', models.BooleanField(default=False)), ('is_active', models.BooleanField(default=True)), ('is_staff', models.BooleanField(default=False)), ('is_superuser', models.BooleanField(default=False)), ], options={ 'abstract': False, }, ), ]
[ "butcheryyy@gmail.com" ]
butcheryyy@gmail.com
8ec4a67b5504ab1b614830a98aea9527a0438e56
f0bfe4be1e0c9b129476587144b8d661b1104f1b
/napari/_qt/dialogs/qt_plugin_dialog.py
2f98b66861d01ad78d0965c8a1c532cbf8172b2d
[ "BSD-3-Clause" ]
permissive
zzalscv2/napari
4e8cf31be709368443c5280dcf791cb08d5aff4f
45cdcc85f17442dcb8eab7f65311ba21467419c8
refs/heads/master
2023-03-29T06:57:32.921552
2021-04-01T16:17:28
2021-04-01T16:17:28
354,060,979
0
0
null
null
null
null
UTF-8
Python
false
false
18,631
py
import os import sys from pathlib import Path from typing import Sequence from napari_plugin_engine.dist import standard_metadata from napari_plugin_engine.exceptions import PluginError from qtpy.QtCore import QEvent, QProcess, QProcessEnvironment, QSize, Qt, Slot from qtpy.QtGui import QFont, QMovie from qtpy.QtWidgets import ( QCheckBox, QDialog, QFrame, QHBoxLayout, QLabel, QLineEdit, QListWidget, QListWidgetItem, QPushButton, QSizePolicy, QSplitter, QTextEdit, QVBoxLayout, QWidget, ) import napari.resources from ...plugins.pypi import ( ProjectInfo, iter_napari_plugin_info, normalized_name, ) from ...utils._appdirs import user_plugin_dir, user_site_packages from ...utils.misc import parse_version, running_as_bundled_app from ...utils.translations import trans from ..qthreading import create_worker from ..widgets.qt_eliding_label import ElidingLabel from ..widgets.qt_plugin_sorter import QtPluginSorter from .qt_plugin_report import QtPluginErrReporter # TODO: add error icon and handle pip install errors # TODO: add queue to handle clicks when already processing class Installer: def __init__(self, output_widget: QTextEdit = None): from ...plugins import plugin_manager # create install process self._output_widget = None self.process = QProcess() self.process.setProgram(sys.executable) self.process.setProcessChannelMode(QProcess.MergedChannels) self.process.readyReadStandardOutput.connect(self._on_stdout_ready) # setup process path env = QProcessEnvironment() combined_paths = os.pathsep.join( [user_site_packages(), env.systemEnvironment().value("PYTHONPATH")] ) env.insert("PYTHONPATH", combined_paths) # use path of parent process env.insert( "PATH", QProcessEnvironment.systemEnvironment().value("PATH") ) self.process.setProcessEnvironment(env) self.process.finished.connect(lambda: plugin_manager.discover()) self.process.finished.connect(lambda: plugin_manager.prune()) self.set_output_widget(output_widget) def set_output_widget(self, output_widget: QTextEdit): if output_widget: self._output_widget = output_widget self.process.setParent(output_widget) def _on_stdout_ready(self): if self._output_widget: text = self.process.readAllStandardOutput().data().decode() self._output_widget.append(text) def install(self, pkg_list: Sequence[str]): cmd = ['-m', 'pip', 'install', '--upgrade'] if running_as_bundled_app() and sys.platform.startswith('linux'): cmd += [ '--no-warn-script-location', '--prefix', user_plugin_dir(), ] self.process.setArguments(cmd + list(pkg_list)) if self._output_widget: self._output_widget.clear() self.process.start() def uninstall(self, pkg_list: Sequence[str]): args = ['-m', 'pip', 'uninstall', '-y'] self.process.setArguments(args + list(pkg_list)) if self._output_widget: self._output_widget.clear() self.process.start() class PluginListItem(QFrame): def __init__( self, package_name: str, version: str = '', url: str = '', summary: str = '', author: str = '', license: str = "UNKNOWN", *, plugin_name: str = None, parent: QWidget = None, enabled: bool = True, ): super().__init__(parent) self.setup_ui() if plugin_name: self.plugin_name.setText(plugin_name) self.package_name.setText(f"{package_name} {version}") self.summary.setText(summary) self.package_author.setText(author) self.action_button.setText(trans._("remove")) self.action_button.setObjectName("remove_button") self.enabled_checkbox.setChecked(enabled) if PluginError.get(plugin_name=plugin_name): def _show_error(): rep = QtPluginErrReporter( parent=self._get_dialog(), initial_plugin=plugin_name ) rep.setWindowFlags(Qt.Sheet) close = QPushButton(trans._("close"), rep) rep.layout.addWidget(close) rep.plugin_combo.hide() close.clicked.connect(rep.close) rep.open() self.error_indicator.clicked.connect(_show_error) self.error_indicator.show() self.summary.setIndent(18) else: self.summary.setIndent(38) else: self.plugin_name.setText(package_name) self.package_name.setText(version) self.summary.setText(summary) self.package_author.setText(author) self.action_button.setText(trans._("install")) self.enabled_checkbox.hide() def _get_dialog(self) -> QDialog: p = self.parent() while not isinstance(p, QDialog) and p.parent(): p = p.parent() return p def setup_ui(self): self.v_lay = QVBoxLayout(self) self.v_lay.setContentsMargins(-1, 8, -1, 8) self.v_lay.setSpacing(0) self.row1 = QHBoxLayout() self.row1.setSpacing(8) self.enabled_checkbox = QCheckBox(self) self.enabled_checkbox.setChecked(True) self.enabled_checkbox.setDisabled(True) self.enabled_checkbox.setToolTip(trans._("enable/disable")) sizePolicy = QSizePolicy(QSizePolicy.Fixed, QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth( self.enabled_checkbox.sizePolicy().hasHeightForWidth() ) self.enabled_checkbox.setSizePolicy(sizePolicy) self.enabled_checkbox.setMinimumSize(QSize(20, 0)) self.enabled_checkbox.setText("") self.row1.addWidget(self.enabled_checkbox) self.plugin_name = QLabel(self) sizePolicy = QSizePolicy(QSizePolicy.Preferred, QSizePolicy.Minimum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth( self.plugin_name.sizePolicy().hasHeightForWidth() ) self.plugin_name.setSizePolicy(sizePolicy) font16 = QFont() font16.setPointSize(16) self.plugin_name.setFont(font16) self.row1.addWidget(self.plugin_name) self.package_name = QLabel(self) self.package_name.setAlignment( Qt.AlignRight | Qt.AlignTrailing | Qt.AlignVCenter ) self.row1.addWidget(self.package_name) self.action_button = QPushButton(self) sizePolicy = QSizePolicy(QSizePolicy.Fixed, QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth( self.action_button.sizePolicy().hasHeightForWidth() ) self.action_button.setSizePolicy(sizePolicy) self.row1.addWidget(self.action_button) self.v_lay.addLayout(self.row1) self.row2 = QHBoxLayout() self.error_indicator = QPushButton() self.error_indicator.setObjectName("warning_icon") self.error_indicator.setCursor(Qt.PointingHandCursor) self.error_indicator.hide() self.row2.addWidget(self.error_indicator) self.row2.setContentsMargins(-1, 4, 0, -1) self.summary = ElidingLabel(parent=self) sizePolicy = QSizePolicy( QSizePolicy.MinimumExpanding, QSizePolicy.Preferred ) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth( self.summary.sizePolicy().hasHeightForWidth() ) self.summary.setSizePolicy(sizePolicy) self.summary.setObjectName("small_text") self.row2.addWidget(self.summary) self.package_author = QLabel(self) sizePolicy = QSizePolicy(QSizePolicy.Preferred, QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth( self.package_author.sizePolicy().hasHeightForWidth() ) self.package_author.setSizePolicy(sizePolicy) self.package_author.setObjectName("small_text") self.row2.addWidget(self.package_author) self.v_lay.addLayout(self.row2) class QPluginList(QListWidget): def __init__(self, parent: QWidget, installer: Installer): super().__init__(parent) self.installer = installer self.setSortingEnabled(True) @Slot(ProjectInfo) def addItem( self, project_info: ProjectInfo, plugin_name=None, enabled=True ): # don't add duplicates if self.findItems(project_info.name, Qt.MatchFixedString): if not plugin_name: return item = QListWidgetItem(project_info.name, parent=self) item.version = project_info.version super().addItem(item) widg = PluginListItem( *project_info, parent=self, plugin_name=plugin_name, enabled=enabled, ) method = getattr( self.installer, 'uninstall' if plugin_name else 'install' ) widg.action_button.clicked.connect(lambda: method([project_info.name])) item.setSizeHint(widg.sizeHint()) self.setItemWidget(item, widg) @Slot(ProjectInfo) def tag_outdated(self, project_info: ProjectInfo): for item in self.findItems(project_info.name, Qt.MatchFixedString): current = item.version latest = project_info.version if parse_version(current) >= parse_version(latest): continue if hasattr(item, 'outdated'): # already tagged it continue item.outdated = True widg = self.itemWidget(item) update_btn = QPushButton( trans._("update (v{latest})").format(latest=latest), widg ) update_btn.setSizePolicy(QSizePolicy.Fixed, QSizePolicy.Fixed) update_btn.clicked.connect( lambda: self.installer.install([item.text()]) ) widg.row1.insertWidget(3, update_btn) class QtPluginDialog(QDialog): def __init__(self, parent=None): super().__init__(parent) self.installer = Installer() self.setup_ui() self.installer.set_output_widget(self.stdout_text) self.installer.process.started.connect(self._on_installer_start) self.installer.process.finished.connect(self._on_installer_done) self.refresh() def _on_installer_start(self): self.show_status_btn.setChecked(True) self.working_indicator.show() self.process_error_indicator.hide() def _on_installer_done(self, exit_code, exit_status): self.working_indicator.hide() if exit_code: self.process_error_indicator.show() else: self.show_status_btn.setChecked(False) self.refresh() self.plugin_sorter.refresh() def refresh(self): self.installed_list.clear() self.available_list.clear() # fetch installed from ...plugins import plugin_manager plugin_manager.discover() # since they might not be loaded yet already_installed = set() for plugin_name, mod_name, distname in plugin_manager.iter_available(): # not showing these in the plugin dialog if plugin_name in ('napari_plugin_engine',): continue if distname: already_installed.add(distname) meta = standard_metadata(distname) else: meta = {} self.installed_list.addItem( ProjectInfo( normalized_name(distname or ''), meta.get('version', ''), meta.get('url', ''), meta.get('summary', ''), meta.get('author', ''), meta.get('license', ''), ), plugin_name=plugin_name, enabled=plugin_name in plugin_manager.plugins, ) # self.v_splitter.setSizes([70 * self.installed_list.count(), 10, 10]) # fetch available plugins self.worker = create_worker(iter_napari_plugin_info) def _handle_yield(project_info): if project_info.name in already_installed: self.installed_list.tag_outdated(project_info) else: self.available_list.addItem(project_info) self.worker.yielded.connect(_handle_yield) self.worker.finished.connect(self.working_indicator.hide) self.worker.finished.connect(self._update_count_in_label) self.worker.start() def setup_ui(self): self.resize(1080, 640) vlay_1 = QVBoxLayout(self) self.h_splitter = QSplitter(self) vlay_1.addWidget(self.h_splitter) self.h_splitter.setOrientation(Qt.Horizontal) self.v_splitter = QSplitter(self.h_splitter) self.v_splitter.setOrientation(Qt.Vertical) self.v_splitter.setMinimumWidth(500) self.plugin_sorter = QtPluginSorter(parent=self.h_splitter) self.plugin_sorter.layout().setContentsMargins(2, 0, 0, 0) self.plugin_sorter.hide() installed = QWidget(self.v_splitter) lay = QVBoxLayout(installed) lay.setContentsMargins(0, 2, 0, 2) lay.addWidget(QLabel(trans._("Installed Plugins"))) self.installed_list = QPluginList(installed, self.installer) lay.addWidget(self.installed_list) uninstalled = QWidget(self.v_splitter) lay = QVBoxLayout(uninstalled) lay.setContentsMargins(0, 2, 0, 2) self.avail_label = QLabel(trans._("Available Plugins")) lay.addWidget(self.avail_label) self.available_list = QPluginList(uninstalled, self.installer) lay.addWidget(self.available_list) self.stdout_text = QTextEdit(self.v_splitter) self.stdout_text.setReadOnly(True) self.stdout_text.setObjectName("pip_install_status") self.stdout_text.hide() buttonBox = QHBoxLayout() self.working_indicator = QLabel(trans._("loading ..."), self) sp = self.working_indicator.sizePolicy() sp.setRetainSizeWhenHidden(True) self.working_indicator.setSizePolicy(sp) self.process_error_indicator = QLabel(self) self.process_error_indicator.setObjectName("error_label") self.process_error_indicator.hide() load_gif = str(Path(napari.resources.__file__).parent / "loading.gif") mov = QMovie(load_gif) mov.setScaledSize(QSize(18, 18)) self.working_indicator.setMovie(mov) mov.start() self.direct_entry_edit = QLineEdit(self) self.direct_entry_edit.installEventFilter(self) self.direct_entry_edit.setPlaceholderText( trans._('install by name/url, or drop file...') ) self.direct_entry_btn = QPushButton(trans._("Install"), self) self.direct_entry_btn.clicked.connect(self._install_packages) self.show_status_btn = QPushButton(trans._("Show Status"), self) self.show_status_btn.setFixedWidth(100) self.show_sorter_btn = QPushButton(trans._("<< Show Sorter"), self) self.close_btn = QPushButton(trans._("Close"), self) self.close_btn.clicked.connect(self.reject) buttonBox.addWidget(self.show_status_btn) buttonBox.addWidget(self.working_indicator) buttonBox.addWidget(self.direct_entry_edit) buttonBox.addWidget(self.direct_entry_btn) buttonBox.addWidget(self.process_error_indicator) buttonBox.addSpacing(60) buttonBox.addWidget(self.show_sorter_btn) buttonBox.addWidget(self.close_btn) buttonBox.setContentsMargins(0, 0, 4, 0) vlay_1.addLayout(buttonBox) self.show_status_btn.setCheckable(True) self.show_status_btn.setChecked(False) self.show_status_btn.toggled.connect(self._toggle_status) self.show_sorter_btn.setCheckable(True) self.show_sorter_btn.setChecked(False) self.show_sorter_btn.toggled.connect(self._toggle_sorter) self.v_splitter.setStretchFactor(1, 2) self.h_splitter.setStretchFactor(0, 2) def _update_count_in_label(self): count = self.available_list.count() self.avail_label.setText( trans._("Available Plugins ({count})").format(count=count) ) def eventFilter(self, watched, event): if event.type() == QEvent.DragEnter: # we need to accept this event explicitly to be able # to receive QDropEvents! event.accept() if event.type() == QEvent.Drop: md = event.mimeData() if md.hasUrls(): files = [url.toLocalFile() for url in md.urls()] self.direct_entry_edit.setText(files[0]) return True return super().eventFilter(watched, event) def _toggle_sorter(self, show): if show: self.show_sorter_btn.setText(trans._(">> Hide Sorter")) self.plugin_sorter.show() else: self.show_sorter_btn.setText(trans._("<< Show Sorter")) self.plugin_sorter.hide() def _toggle_status(self, show): if show: self.show_status_btn.setText(trans._("Hide Status")) self.stdout_text.show() else: self.show_status_btn.setText(trans._("Show Status")) self.stdout_text.hide() def _install_packages(self, packages: Sequence[str] = ()): if not packages: _packages = self.direct_entry_edit.text() if os.path.exists(_packages): packages = [_packages] else: packages = _packages.split() self.direct_entry_edit.clear() if packages: self.installer.install(packages) if __name__ == "__main__": from qtpy.QtWidgets import QApplication app = QApplication([]) w = QtPluginDialog() w.show() app.exec_()
[ "noreply@github.com" ]
zzalscv2.noreply@github.com
6c05c7073fcadf893e77fa9b4e837fe1d19d0d8b
b5c2571948d1e7fd6a21cfe3267cb7de9088cf56
/Bytecode Decompile/inspect.py
be063eb8ef519133f5a0bd1dcfd234259b4c0c72
[]
no_license
C0MPU73R/Toontown-2003-Bytecode
ff32042d4da5894ec3a4fb7da43614df26d25a9d
aa6862f86034f342d5fee9934cd6ed3e83de99f3
refs/heads/master
2023-05-03T11:55:57.959617
2018-12-02T00:05:43
2018-12-02T00:05:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
17,764
py
__author__ = 'Ka-Ping Yee <ping@lfw.org>' __date__ = '1 Jan 2001' import sys, os, types, string, re, dis, imp, tokenize def ismodule(object): return isinstance(object, types.ModuleType) def isclass(object): return isinstance(object, types.ClassType) or hasattr(object, '__bases__') def ismethod(object): return isinstance(object, types.MethodType) def ismethoddescriptor(object): return hasattr(object, '__get__') and not hasattr(object, '__set__') and not ismethod(object) and not isfunction(object) and not isclass(object) def isfunction(object): return isinstance(object, types.FunctionType) def istraceback(object): return isinstance(object, types.TracebackType) def isframe(object): return isinstance(object, types.FrameType) def iscode(object): return isinstance(object, types.CodeType) def isbuiltin(object): return isinstance(object, types.BuiltinFunctionType) def isroutine(object): return isbuiltin(object) or isfunction(object) or ismethod(object) or ismethoddescriptor(object) def getmembers(object, predicate=None): results = [] for key in dir(object): value = getattr(object, key) if not predicate or predicate(value): results.append((key, value)) results.sort() return results def classify_class_attrs(cls): mro = getmro(cls) names = dir(cls) result = [] for name in names: if name in cls.__dict__: obj = cls.__dict__[name] else: obj = getattr(cls, name) homecls = getattr(obj, '__objclass__', None) if homecls is None: for base in mro: if name in base.__dict__: homecls = base break if homecls is not None and name in homecls.__dict__: obj = homecls.__dict__[name] obj_via_getattr = getattr(cls, name) if isinstance(obj, staticmethod): kind = 'static method' else: if isinstance(obj, classmethod): kind = 'class method' else: if isinstance(obj, property): kind = 'property' else: if ismethod(obj_via_getattr) or ismethoddescriptor(obj_via_getattr): kind = 'method' else: kind = 'data' result.append((name, kind, homecls, obj)) return result return def _searchbases(cls, accum): if cls in accum: return accum.append(cls) for base in cls.__bases__: _searchbases(base, accum) def getmro(cls): if hasattr(cls, '__mro__'): return cls.__mro__ else: result = [] _searchbases(cls, result) return tuple(result) def indentsize(line): expline = string.expandtabs(line) return len(expline) - len(string.lstrip(expline)) def getdoc(object): try: doc = object.__doc__ except AttributeError: return None else: if not isinstance(doc, (str, unicode)): return None try: lines = string.split(string.expandtabs(doc), '\n') except UnicodeError: return None else: margin = None for line in lines[1:]: content = len(string.lstrip(line)) if not content: continue indent = len(line) - content if margin is None: margin = indent else: margin = min(margin, indent) if margin is not None: for i in range(1, len(lines)): lines[i] = lines[i][margin:] return string.join(lines, '\n') return def getfile(object): if ismodule(object): if hasattr(object, '__file__'): return object.__file__ raise TypeError, 'arg is a built-in module' if isclass(object): object = sys.modules.get(object.__module__) if hasattr(object, '__file__'): return object.__file__ raise TypeError, 'arg is a built-in class' if ismethod(object): object = object.im_func if isfunction(object): object = object.func_code if istraceback(object): object = object.tb_frame if isframe(object): object = object.f_code if iscode(object): return object.co_filename raise TypeError, 'arg is not a module, class, method, function, traceback, frame, or code object' def getmoduleinfo(path): filename = os.path.basename(path) suffixes = map(lambda (suffix, mode, mtype): (-len(suffix), suffix, mode, mtype), imp.get_suffixes()) suffixes.sort() for neglen, suffix, mode, mtype in suffixes: if filename[neglen:] == suffix: return (filename[:neglen], suffix, mode, mtype) def getmodulename(path): info = getmoduleinfo(path) if info: return info[0] def getsourcefile(object): filename = getfile(object) if string.lower(filename[-4:]) in ['.pyc', '.pyo']: filename = filename[:-4] + '.py' for suffix, mode, kind in imp.get_suffixes(): if 'b' in mode and string.lower(filename[-len(suffix):]) == suffix: return None if os.path.exists(filename): return filename return def getabsfile(object): return os.path.normcase(os.path.abspath(getsourcefile(object) or getfile(object))) modulesbyfile = {} def getmodule(object): if ismodule(object): return object if isclass(object): return sys.modules.get(object.__module__) try: file = getabsfile(object) except TypeError: return None else: if modulesbyfile.has_key(file): return sys.modules[modulesbyfile[file]] for module in sys.modules.values(): if hasattr(module, '__file__'): modulesbyfile[getabsfile(module)] = module.__name__ if modulesbyfile.has_key(file): return sys.modules[modulesbyfile[file]] main = sys.modules['__main__'] if hasattr(main, object.__name__): mainobject = getattr(main, object.__name__) if mainobject is object: return main builtin = sys.modules['__builtin__'] if hasattr(builtin, object.__name__): builtinobject = getattr(builtin, object.__name__) if builtinobject is object: return builtin return def findsource(object): try: file = open(getsourcefile(object)) except (TypeError, IOError): raise IOError, 'could not get source code' else: lines = file.readlines() file.close() if ismodule(object): return (lines, 0) if isclass(object): name = object.__name__ pat = re.compile('^\\s*class\\s*' + name + '\\b') for i in range(len(lines)): if pat.match(lines[i]): return (lines, i) else: raise IOError, 'could not find class definition' if ismethod(object): object = object.im_func if isfunction(object): object = object.func_code if istraceback(object): object = object.tb_frame if isframe(object): object = object.f_code if iscode(object): if not hasattr(object, 'co_firstlineno'): raise IOError, 'could not find function definition' lnum = object.co_firstlineno - 1 pat = re.compile('^\\s*def\\s') while lnum > 0: if pat.match(lines[lnum]): break lnum = lnum - 1 return (lines, lnum) raise IOError, 'could not find code object' def getcomments(object): try: lines, lnum = findsource(object) except IOError: return None else: if ismodule(object): start = 0 if lines and lines[0][:2] == '#!': start = 1 while start < len(lines) and string.strip(lines[start]) in ['', '#']: start = start + 1 if start < len(lines) and lines[start][:1] == '#': comments = [] end = start while end < len(lines) and lines[end][:1] == '#': comments.append(string.expandtabs(lines[end])) end = end + 1 return string.join(comments, '') if lnum > 0: indent = indentsize(lines[lnum]) end = lnum - 1 if end >= 0 and string.lstrip(lines[end])[:1] == '#' and indentsize(lines[end]) == indent: comments = [string.lstrip(string.expandtabs(lines[end]))] if end > 0: end = end - 1 comment = string.lstrip(string.expandtabs(lines[end])) while comment[:1] == '#' and indentsize(lines[end]) == indent: comments[:0] = [ comment] end = end - 1 if end < 0: break comment = string.lstrip(string.expandtabs(lines[end])) while comments and string.strip(comments[0]) == '#': comments[:1] = [] while comments and string.strip(comments[-1]) == '#': comments[(-1):] = [] return string.join(comments, '') return class ListReader: __module__ = __name__ def __init__(self, lines): self.lines = lines self.index = 0 def readline(self): i = self.index if i < len(self.lines): self.index = i + 1 return self.lines[i] else: return '' class EndOfBlock(Exception): __module__ = __name__ class BlockFinder: __module__ = __name__ def __init__(self): self.indent = 0 self.started = 0 self.last = 0 def tokeneater(self, type, token, (srow, scol), (erow, ecol), line): if not self.started: if type == tokenize.NAME: self.started = 1 else: if type == tokenize.NEWLINE: self.last = srow else: if type == tokenize.INDENT: self.indent = self.indent + 1 else: if type == tokenize.DEDENT: self.indent = self.indent - 1 if self.indent == 0: raise EndOfBlock, self.last def getblock(lines): try: tokenize.tokenize(ListReader(lines).readline, BlockFinder().tokeneater) except EndOfBlock, eob: return lines[:eob.args[0]] def getsourcelines(object): lines, lnum = findsource(object) if ismodule(object): return (lines, 0) else: return ( getblock(lines[lnum:]), lnum + 1) def getsource(object): lines, lnum = getsourcelines(object) return string.join(lines, '') def walktree(classes, children, parent): results = [] classes.sort(lambda a, b: cmp(a.__name__, b.__name__)) for c in classes: results.append((c, c.__bases__)) if children.has_key(c): results.append(walktree(children[c], children, c)) return results def getclasstree(classes, unique=0): children = {} roots = [] for c in classes: if c.__bases__: for parent in c.__bases__: if not children.has_key(parent): children[parent] = [] children[parent].append(c) if unique and parent in classes: break else: if c not in roots: roots.append(c) for parent in children.keys(): if parent not in classes: roots.append(parent) return walktree(roots, children, None) return CO_OPTIMIZED, CO_NEWLOCALS, CO_VARARGS, CO_VARKEYWORDS = ( 1, 2, 4, 8) def getargs(co): if not iscode(co): raise TypeError, 'arg is not a code object' code = co.co_code nargs = co.co_argcount names = co.co_varnames args = list(names[:nargs]) step = 0 for i in range(nargs): if args[i][:1] in ['', '.']: stack, remain, count = ([], [], []) while step < len(code): op = ord(code[step]) step = step + 1 if op >= dis.HAVE_ARGUMENT: opname = dis.opname[op] value = ord(code[step]) + ord(code[step + 1]) * 256 step = step + 2 if opname in ['UNPACK_TUPLE', 'UNPACK_SEQUENCE']: remain.append(value) count.append(value) else: if opname == 'STORE_FAST': stack.append(names[value]) remain[-1] = remain[-1] - 1 while remain[-1] == 0: remain.pop() size = count.pop() stack[(-size):] = [stack[-size:]] if not remain: break remain[-1] = remain[-1] - 1 if not remain: break args[i] = stack[0] varargs = None if co.co_flags & CO_VARARGS: varargs = co.co_varnames[nargs] nargs = nargs + 1 varkw = None if co.co_flags & CO_VARKEYWORDS: varkw = co.co_varnames[nargs] return (args, varargs, varkw) return def getargspec(func): if not isfunction(func): raise TypeError, 'arg is not a Python function' args, varargs, varkw = getargs(func.func_code) return ( args, varargs, varkw, func.func_defaults) def getargvalues(frame): args, varargs, varkw = getargs(frame.f_code) return ( args, varargs, varkw, frame.f_locals) def joinseq(seq): if len(seq) == 1: return '(' + seq[0] + ',)' else: return '(' + string.join(seq, ', ') + ')' def strseq(object, convert, join=joinseq): if type(object) in [types.ListType, types.TupleType]: return join(map(lambda o, c=convert, j=join: strseq(o, c, j), object)) else: return convert(object) def formatargspec(args, varargs=None, varkw=None, defaults=None, formatarg=str, formatvarargs=lambda name: '*' + name, formatvarkw=lambda name: '**' + name, formatvalue=lambda value: '=' + repr(value), join=joinseq): specs = [] if defaults: firstdefault = len(args) - len(defaults) for i in range(len(args)): spec = strseq(args[i], formatarg, join) if defaults and i >= firstdefault: spec = spec + formatvalue(defaults[i - firstdefault]) specs.append(spec) if varargs: specs.append(formatvarargs(varargs)) if varkw: specs.append(formatvarkw(varkw)) return '(' + string.join(specs, ', ') + ')' def formatargvalues(args, varargs, varkw, locals, formatarg=str, formatvarargs=lambda name: '*' + name, formatvarkw=lambda name: '**' + name, formatvalue=lambda value: '=' + repr(value), join=joinseq): def convert(name, locals=locals, formatarg=formatarg, formatvalue=formatvalue): return formatarg(name) + formatvalue(locals[name]) specs = [] for i in range(len(args)): specs.append(strseq(args[i], convert, join)) if varargs: specs.append(formatvarargs(varargs) + formatvalue(locals[varargs])) if varkw: specs.append(formatvarkw(varkw) + formatvalue(locals[varkw])) return '(' + string.join(specs, ', ') + ')' def getframeinfo(frame, context=1): if istraceback(frame): frame = frame.tb_frame if not isframe(frame): raise TypeError, 'arg is not a frame or traceback object' filename = getsourcefile(frame) lineno = getlineno(frame) if context > 0: start = lineno - 1 - context // 2 try: lines, lnum = findsource(frame) except IOError: lines = index = None else: start = max(start, 1) start = min(start, len(lines) - context) lines = lines[start:start + context] index = lineno - 1 - start else: lines = index = None return ( filename, lineno, frame.f_code.co_name, lines, index) return def getlineno(frame): lineno = frame.f_lineno code = frame.f_code if hasattr(code, 'co_lnotab'): table = code.co_lnotab lineno = code.co_firstlineno addr = 0 for i in range(0, len(table), 2): addr = addr + ord(table[i]) if addr > frame.f_lasti: break lineno = lineno + ord(table[i + 1]) return lineno def getouterframes(frame, context=1): framelist = [] while frame: framelist.append((frame,) + getframeinfo(frame, context)) frame = frame.f_back return framelist def getinnerframes(tb, context=1): framelist = [] while tb: framelist.append((tb.tb_frame,) + getframeinfo(tb, context)) tb = tb.tb_next return framelist def currentframe(): try: raise 'catch me' except: return sys.exc_traceback.tb_frame.f_back if hasattr(sys, '_getframe'): currentframe = sys._getframe def stack(context=1): return getouterframes(currentframe().f_back, context) def trace(context=1): return getinnerframes(sys.exc_traceback, context)
[ "flamingdog101@gmail.com" ]
flamingdog101@gmail.com
e296418c14e85e3c5c9fb02e21c897c1c445ec6d
83b46306f0ff2f7374e3a1b1edfdd858909c012a
/sft/migrations/0001_initial.py
342fe5e8e60ac9bdfb5be1378f15415c030d9425
[]
no_license
TsukitoIwasaki/ToyoApps
045cd6ae5613756001e46433276592854aa5210b
d3fce9aa725f184391069c30c03e99964bf885c0
refs/heads/master
2022-11-07T05:30:52.491235
2020-06-26T07:48:43
2020-06-26T07:48:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,900
py
# Generated by Django 2.0.4 on 2020-06-03 09:07 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Schedule', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('userId', models.CharField(max_length=255, verbose_name='code')), ('start_time', models.TimeField(blank=True, null=True, verbose_name='startTime')), ('end_time', models.TimeField(blank=True, null=True, verbose_name='endTime')), ('startDate', models.DateField(blank=True, null=True, verbose_name='startDate')), ('comment', models.TextField(blank=True, max_length=5000, null=True, verbose_name='comment')), ('title', models.CharField(blank=True, max_length=255, null=True, verbose_name='title')), ('status', models.IntegerField(blank=True, choices=[(10, '仮登録'), (20, '確定')], default=10, null=True, verbose_name='ステータス')), ], ), migrations.CreateModel( name='Users', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255, verbose_name='名前')), ('user_code', models.CharField(blank=True, max_length=255, null=True, verbose_name='社員コード')), ('employment_status', models.IntegerField(blank=True, choices=[(10, '正社員'), (20, 'パート'), (30, 'アルバイト')], null=True, verbose_name='雇用形態')), ('comment', models.TextField(blank=True, max_length=5000, null=True, verbose_name='comment')), ], ), ]
[ "ktakahashi@toyo-group.co.jp" ]
ktakahashi@toyo-group.co.jp
e470fdcb2ba36e4b85c43eaf7b1a7524a82c12d4
6bb6b01270a11e6e08efaebd841bac9645a2d3e0
/dev/seafile_dev/seafes.py
ff3e15ed1c4355fce84c9cf5563a300e580405ea
[]
no_license
dolevu/seafile-vagrant
44767bfd772ddda3c3106aeaa9260949a1b1bb95
6140e70ab3922061e8f2adb4e2ec3656e14a213e
refs/heads/master
2020-03-29T08:20:18.329597
2017-03-27T08:14:12
2017-03-27T08:14:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
578
py
from fabric.api import task, run, cd def _run_default(command, *a, **kw): """Source /etc/default/seafile-server and run the given command""" command = ". /etc/default/seafile-server; " + command return run(command, *a, **kw) def _index_op(op): with cd('/vagrant/src/seafes'): _run_default('python -m seafes.update_repos --loglevel debug {}'.format(op)) @task def test(*args): with cd('/vagrant/src/seafes'): _run_default('py.test ' + ' '.join(args)) @task def update(): _index_op('update') @task def clear(): _index_op('clear')
[ "linshuai2012@gmail.com" ]
linshuai2012@gmail.com
fad4a73a32f95e0c12039344043f8aa6186ca2d7
4c89545d41c16e33ace5eec50a7b8eb0b11780ee
/BookCommerce/booktime/settings.py
73ff78715e7d1a3833b7b7d1b0f0c81cd7ad9cc0
[]
no_license
envs/DjangoProjects
8782235ad1a0e77d491849ebef6c4e7cc9705537
bd9bf356421d4f4dca9593a79e954b9f15712570
refs/heads/master
2022-12-02T15:46:02.010763
2020-08-19T12:22:55
2020-08-19T12:22:55
248,914,511
0
0
null
null
null
null
UTF-8
Python
false
false
4,044
py
""" Django settings for booktime project. Generated by 'django-admin startproject' using Django 3.0.2. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'fo#f@p&^oy=)&3+q#&4*@#q3btcvb-e6)etb^%zhw8)6xprr^7' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'main.apps.MainConfig', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'booktime.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'booktime.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { # 'default': { # 'ENGINE': 'django.db.backends.postgresql', # 'NAME': 'bookcommerce', # 'USER': 'envs', # 'PASSWORD': 'test123', # 'HOST': '127.0.0.1', # 'PORT': '5432', # } 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/' # This is for Development Environment #STATIC_ROOT = '' # To be specified for Production envrionment # NB: MEDIA_ROOT is the location on the local drive where all the user files will be uploaded # It will also be automatically available for download and their URL prefixed with MEDIA_URL MEDIA_ROOT = os.path.join(BASE_DIR, 'media') MEDIA_URL = '/media/' if not DEBUG: EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend' EMAIL_HOST_USER = "username" EMAIL_HOST = "smtp.domain.com" EMAIL_PORT = 587 EMAIL_USE_TLS = True EMAIL_HOST_PASSWORD = 'password' else: EMAIL_BACKEND = ( "django.core.mail.backends.console.EmailBackend" )
[ "olaonipekun2001@yahoo.com" ]
olaonipekun2001@yahoo.com
e806fa4c23923d883b578cf5c175446980903fae
b13d852ef0a7f847f0c0a39334a7b4e0ff845f85
/apps/track/migrations/0018_comment_datetime.py
c51eb831b9cc965368d128af7a85c0e6bb2167b2
[ "MIT" ]
permissive
martinlehoux/django_bike
357e2a5ea3c6ba8a79df92eeaec214a89a1eb165
05373d2649647fe8ebadb0aad54b9a7ec1900fe7
refs/heads/master
2023-08-21T23:37:25.273766
2021-04-20T13:01:01
2021-04-20T13:01:01
273,638,471
1
0
MIT
2021-09-22T18:00:45
2020-06-20T04:32:38
Python
UTF-8
Python
false
false
429
py
# Generated by Django 3.0.8 on 2020-09-06 19:49 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("track", "0017_auto_20200906_1222"), ] operations = [ migrations.AddField( model_name="comment", name="datetime", field=models.DateTimeField(auto_now_add=True), preserve_default=False, ), ]
[ "noreply@github.com" ]
martinlehoux.noreply@github.com
3364dc89e4b20acc4a05c2118b63545ff7459022
55113ee5779138b22d6404c2b138eeaa77120e3a
/knn.py
bad4366016094d312a8b78ec01be352132a8f46d
[]
no_license
timting/titanic
96e536dec9d2defb77d5657e865b66d6d2dc5da7
c808e08bf5dacf06709a0dde25aea7b7a0300253
refs/heads/master
2021-08-15T16:47:10.893023
2017-11-17T23:59:52
2017-11-17T23:59:52
106,059,252
0
1
null
2017-11-17T23:59:53
2017-10-06T23:46:26
Python
UTF-8
Python
false
false
1,266
py
#!/usr/bin/env python from numpy import * import operator import titanic def distances(data, point): point_matrix = tile(point, (data.shape[0],1)) diffs = point_matrix - data square_diffs = diffs**2 square_distances = square_diffs.sum(axis=1) dist = square_distances**0.5 return dist def nearest_neighbors(data, point, labels, k): d = distances(data, point) distance_indices = d.argsort() votes = {} for i in range(k): label = labels[ distance_indices[i] ] votes[label] = votes.get(label, 0) + 1 sorted_labels = sorted(votes.iteritems(), key=operator.itemgetter(1), reverse=True) return sorted_labels[0][0] def main(): data,labels,_ = titanic.read_data("normalized-train.csv") test,test_labels,_ = titanic.read_data("normalized-test.csv") successes = 0 totals = 0 for i in range(len(test)): point = test[i] knn_label = nearest_neighbors(data, point, labels, 3) # print " want %s, got %s" % (test_labels[i], knn_label) if knn_label == test_labels[i]: successes += 1 totals += 1 print "accuracy: %2.4f %%" % (float(successes) / float(totals) * 100.0) if __name__ == "__main__": main()
[ "alexycodes@gmail.com" ]
alexycodes@gmail.com
b1c863166fcc509a61ec6e7df70babc7d5e2e3e4
cf19882e1326e152238719b5c530ea02cd357062
/Quiz2.py
15e9c2ede25499c559426c083c9ea21c74e7f0f6
[]
no_license
kiryeong/python_basic_study
02ea260f3ea47c0957635c44d1ed66fb736374c1
72658df8cf137da3a6803f2ec98d5794da7b2175
refs/heads/main
2022-12-26T08:43:03.742975
2020-10-09T03:11:35
2020-10-09T03:11:35
302,518,957
0
0
null
null
null
null
UTF-8
Python
false
false
2,377
py
# -*- coding: utf-8 -*- """ Created on Wed Sep 9 22:23:53 2020 @author: SAMSUNG """ sentence = '나는 소년입니다' print(sentence) sentence2 = "파이썬은 쉬워요" print(sentence2) sentence3 = """ 나는 소년이고, 파이썬은 쉬워요 """ print(sentence3) jumin = "990120-1234567" print("성별: " + jumin[7]) print("연: " + jumin[0:2]) #0부터 2직전까지 (0,1) print("월: " + jumin[2:4]) print("일: " + jumin[4:6]) print("생년월일: " + jumin[:6]) #처음부터 6직전까지 print("뒤 7자리: " + jumin[7:]) #7부터 끝까지 print("뒤 7자리 (뒤에부터): " + jumin[-7:]) #맨 뒤에서 7번째부터 끝까지 python = "Python is Amazing" print(python.lower()) #소문자로 print(python.upper()) #대문자로 print(python[0].isupper()) print(len(python)) #길이 print(python.replace("Python", "Java")) #Python을 Java로 바꾼다. index = python.index("n") print(index) index = python.index("n",index + 1) print(index) ''' print(python.find("Java")) #원하는 값이 없을때는 -1 print(python.index("Java")) #원하는 값이 없을때는 오류가 나고 종류됨 print(python.count("n")) #n이 총 몇번 등장하느냐 ''' #방법1 print("나는 %d살입니다." % 20) print("나는 %s을 좋아해요" % "파이썬") # %s는 문자열 print("Apple 은 %c로 시작해요." % "A") # %c는 한 글자 print("나는 %s색과 %s색을 좋아해요." % ("파란", "빨간")) #방법2 print("나는 {}살입니다.".format(20)) print("나는 {}색과 {}색을 좋아해요.".format("파란", "빨간")) print("나는 {0}색과 {1}색을 좋아해요.".format("파란", "빨간")) print("나는 {1}색과 {0}색을 좋아해요.".format("파란", "빨간")) #방법3 print("나는 {age}살이며, {color}색을 좋아해요.".format(age = 20, color = "빨간")) #방법4 age = 20 color = "빨간" print(f"나는 {age}살이며, {color}색을 좋아해요.") print("백문이 불여일견\n백견이 불여일타") #\n줄바꿈 #저는 "나도코딩" 입니다. print("저는 \"나도코딩\"입니다.") #\" 또는 \' : 문장 내에서 따옴표 #\\ : 문장 내에서 \ #\r : 커서를 맨 앞으로 이동 print("Red Apple\rPine") #\b : 백스페이스 (한 글자 삭제) print("Redd\bApple") #\t : 탭 print("Red\tApple")
[ "noreply@github.com" ]
kiryeong.noreply@github.com
0d1437cc6dc02b645e276fa0d6dea694361c7720
ad3a0a338ae77063232cb2113329e0a04cef9f87
/anonymization/REM.py
0e3249904956dbdf95cea2ac8eaffac7719c5988
[]
no_license
CommunityDeception/CommunityDeceptor
646c3ca182cc74456c039a37ad251ea26e876c47
c06a8e909cd74ba8b2ec3d5f65888d7551946c4f
refs/heads/master
2023-02-21T18:09:16.662721
2019-10-27T10:53:26
2019-10-27T10:53:26
199,795,530
1
0
null
2023-02-11T00:22:34
2019-07-31T06:40:29
Python
UTF-8
Python
false
false
7,194
py
import logging.config import sys import time from typing import List from igraph import Graph from igraph.clustering import VertexClustering from settings import master from similarity.jaccard import count_jaccard_index_and_recall_index from utils.counter_pre import count_security_index_by_pre from utils.pre_counter import count_pre_security_index from utils.timer import time_mark logging.config.dictConfig(master.LOGGING_SETTINGS) logger = logging.getLogger('normal') class REMAnonymize(object): def __init__(self, graph, edges_sum, detection_func, func_args, interval, partitions, path, **kwargs): self.__graph: Graph = graph self.__edges_sum = edges_sum self.__detection_func = detection_func self.__func_args: dict = func_args self.__interval = interval self.__partitions: VertexClustering = partitions self.__path = path self.__start_time = time.time() self.__total_edge_set: set = set() self.__partitions_degree: List[int] = list() self.__partitions_volume: List[int] = list() self.__degree_distribute: List[int] = list() self.__sorted_partitions: List[List[int]] = list() self.__partitions_num = 0 self.__available_edges = list() self.__end_time = None def __start(self): logger.info("=" * 60) logger.info("REMAnonymize") logger.info(f'Time : {time_mark(self.__start_time)}') logger.info(f'Graph: {self.__path}') logger.info(f'Info : {self.__graph.vcount()} {self.__graph.ecount()}') logger.info(f'Edges: {self.__edges_sum}') logger.info(f'Func : {self.__detection_func.__name__}') logger.info(f'Args : {self.__func_args}') logger.info(f'Gap : {self.__interval}') logger.info(f'Parts: {len(self.__partitions)}') logger.info("=" * 60) def __quit(self): self.__end_time = time.time() logger.info("=" * 60) logger.info(f'Time : {time_mark(self.__end_time)}') logger.info(f'Total: {(self.__end_time - self.__start_time): 10.4f} s') logger.info("=" * 60) logger.info("\n\n") def __preprocess(self): self.__total_edge_set = set(self.__graph.get_edgelist()) self.__partitions_num = len(self.__partitions) self.__degree_distribute = self.__graph.degree(self.__graph.vs) self.__set_necessary_info() def __set_necessary_info(self): for index, part in enumerate(self.__partitions): subgraph: Graph = self.__partitions.subgraph(index) self.__partitions_degree.append(2 * subgraph.ecount()) self.__partitions_volume.append(sum(self.__graph.degree(part))) self.__sorted_partitions.append(sorted(part, key=lambda x: self.__graph.degree(x))) def __get_available_edges(self): available_edges = list() degree_distribute = self.__degree_distribute for si in range(self.__partitions_num): for ti in range(si, self.__partitions_num): s_order, t_order = self.__sorted_partitions[si], self.__sorted_partitions[ti] u, v = s_order[0], t_order[0] if degree_distribute[u] > degree_distribute[v]: u, v = v, u s_order, t_order = t_order, s_order u_neighbors = set(self.__graph.neighbors(u)) for node in t_order: if node not in u_neighbors: v = node break du, dv = degree_distribute[u], degree_distribute[v] upper_bound = du + dv for i in t_order: if degree_distribute[i] >= dv: edge = (u, v) if u < v else (v, u) available_edges.append(edge) break else: i_neighbors = set(self.__graph.neighbors(i)) for j in s_order: if j not in i_neighbors: break di, dj = degree_distribute[i], degree_distribute[j] if di + dj < upper_bound: edge = (i, j) if i < j else (j, i) if edge not in self.__total_edge_set: available_edges.append(edge) self.__available_edges = available_edges def __choose_edge(self): self.__get_available_edges() partitions = self.__partitions optimal_edge = None edge_partitions = None min_security = sys.maxsize total_degree = 2 * self.__graph.ecount() degree_distribute = self.__degree_distribute membership = partitions.membership pre_count = count_pre_security_index(self.__graph, partitions, self.__partitions_degree, self.__partitions_volume) for edge in self.__available_edges: src_des = (membership[edge[0]], membership[edge[1]]) security_index = count_security_index_by_pre(pre_count, edge, src_des, total_degree + 2, self.__partitions_degree, self.__partitions_volume, degree_distribute) if security_index < min_security: min_security = security_index optimal_edge = edge edge_partitions = src_des self.__graph.add_edge(*optimal_edge) self.__total_edge_set.add(optimal_edge) self.__partitions_volume[edge_partitions[0]] += 1 self.__partitions_volume[edge_partitions[1]] += 1 self.__degree_distribute[optimal_edge[0]] += 1 self.__degree_distribute[optimal_edge[1]] += 1 self.__sorted_partitions[edge_partitions[0]].sort(key=lambda x: self.__graph.degree(x)) self.__sorted_partitions[edge_partitions[1]].sort(key=lambda x: self.__graph.degree(x)) return min_security def __should_count(self, count): return divmod(count, self.__interval)[1] def __anonymize(self): edge_sum = self.__edges_sum pre_partitions = self.__partitions count = 1 while count <= edge_sum: try: security_index = self.__choose_edge() except ValueError: logger.info(f'{count:<5d} Not enough edges to add.') return -1 if not self.__should_count(count): fin_partitions = self.__detection_func(self.__graph, **self.__func_args) jaccard_index, recall_index = count_jaccard_index_and_recall_index(pre_partitions, fin_partitions) modularity = self.__graph.modularity(pre_partitions.membership) NMI = pre_partitions.compare_to(fin_partitions, method="NMI") logger.info(f"{count:<5d} jaccard index: ({jaccard_index:8.7f}), recall index: ({recall_index:8.7f}), " f"security_index: ({security_index:8.7f}), modularity: ({modularity:8.7f}), NMI: ({NMI:8.7f})") count += 1 def run(self): self.__preprocess() self.__start() self.__anonymize() self.__quit()
[ "47921233+CommunityDeception@users.noreply.github.com" ]
47921233+CommunityDeception@users.noreply.github.com
78fad504f2c59435075a0fa7a5d366d4a88286bf
6fd26735b9dfd1d3487c1edfebf9e1e595196168
/2015/06a-lights.py
6896bb9a50622d912542f360a119c0278957a812
[ "BSD-3-Clause" ]
permissive
Kwpolska/adventofcode
bc3b1224b5272aa8f3a5c4bef1d8aebe04dcc677
8e55ef7b31a63a39cc2f08b3f28e15c2e4720303
refs/heads/master
2021-01-10T16:48:38.816447
2019-12-03T20:46:07
2019-12-03T20:46:07
47,507,587
5
0
null
null
null
null
UTF-8
Python
false
false
749
py
#!/usr/bin/python3 import numpy import re import kwpbar R = re.compile('(turn on|toggle|turn off) (\d+),(\d+) through (\d+),(\d+)') a = numpy.zeros((1000, 1000), numpy.bool) kwpbar.pbar(0, 300) with open('06-input.txt') as fh: for nl, l in enumerate(fh, 1): m = R.match(l) action = m.groups()[0] x1, y1, x2, y2 = map(int, m.groups()[1:]) for x in range(x1, x2 + 1): for y in range(y1, y2 + 1): if action == 'turn on': a[x][y] = True elif action == 'turn off': a[x][y] = False elif action == 'toggle': a[x][y] = not a[x][y] kwpbar.pbar(nl, 300) print() print(numpy.count_nonzero(a))
[ "kwpolska@gmail.com" ]
kwpolska@gmail.com
f20f1601f58c5bf295a656d70950e2cd2d417daf
b613ff2da6ce8908198deef22f11b4112b29150a
/user_content/context_processor.py
0db85264811e952b480e9c601720e133a04df5d2
[]
no_license
maddrum/Rady_and_the_Stars
2c0e38b78ecd3aa425cd558a633815de879186c7
835d0fdbb32bd63d0b5f0961d33f54a2e1736494
refs/heads/master
2020-03-14T02:43:22.418681
2018-05-23T21:08:05
2018-05-23T21:08:05
131,249,925
0
0
null
null
null
null
UTF-8
Python
false
false
517
py
from user_content.models import SiteUser def profile_pic_address(request): user_id = request.user.id avatar_address = {} if user_id == None: return avatar_address get_profile_pic = SiteUser.objects.get(user_id=user_id) print("this is") if get_profile_pic.profile_pic != '': avatar_address['address'] = get_profile_pic.profile_pic else: avatar_address['address'] = '/profile_pics/default_avatar.png' print(avatar_address['address']) return avatar_address
[ "maddrum9@gmail.com" ]
maddrum9@gmail.com
84fac0547cade475c71b06d34ed74617d7d87a4f
813f9d4eadd82c6bd2441a26e135d9a16d815b8a
/image_iter.py
ff7fa488cd50e1b722bea675a91d653bd09a1bd0
[]
no_license
NyangUk/Face-Transformer
2082cc590aa7b24966b13dff80535cb243366420
d74725c25cc4c8b06eb8344200bf79395a350c2b
refs/heads/main
2023-07-02T00:53:50.556381
2021-08-12T13:59:46
2021-08-12T13:59:46
394,569,528
0
0
null
null
null
null
UTF-8
Python
false
false
3,074
py
#!/usr/bin/env python # encoding: utf-8 ''' @author: yaoyaozhong @contact: zhongyaoyao@bupt.edu.cn @file: image_iter_yy.py @time: 2020/06/03 @desc: training dataset loader for .rec ''' import torchvision.transforms as transforms import torch.utils.data as data import numpy as np import cv2 import os import torch import mxnet as mx from mxnet import ndarray as nd from mxnet import io from mxnet import recordio import logging import numbers import random logger = logging.getLogger() from IPython import embed class FaceDataset(data.Dataset): def __init__(self, path_imgrec, rand_mirror): self.rand_mirror = rand_mirror assert path_imgrec if path_imgrec: logging.info('loading recordio %s...', path_imgrec) path_imgidx = path_imgrec[0:-4] + ".idx" print(path_imgrec, path_imgidx) self.imgrec = recordio.MXIndexedRecordIO(path_imgidx, path_imgrec, 'r') s = self.imgrec.read_idx(0) header, _ = recordio.unpack(s) if header.flag > 0: print('header0 label', header.label) self.header0 = (int(header.label[0]), int(header.label[1])) # assert(header.flag==1) # self.imgidx = range(1, int(header.label[0])) self.imgidx = [] self.id2range = {} self.seq_identity = range(int(header.label[0]), int(header.label[1])) for identity in self.seq_identity: s = self.imgrec.read_idx(identity) header, _ = recordio.unpack(s) a, b = int(header.label[0]), int(header.label[1]) count = b - a self.id2range[identity] = (a, b) self.imgidx += range(a, b) print('id2range', len(self.id2range)) else: self.imgidx = list(self.imgrec.keys) self.seq = self.imgidx def __getitem__(self, index): idx = self.seq[index] s = self.imgrec.read_idx(idx) header, s = recordio.unpack(s) label = header.label if not isinstance(label, numbers.Number): label = label[0] _data = mx.image.imdecode(s) if self.rand_mirror: _rd = random.randint(0, 1) if _rd == 1: _data = mx.ndarray.flip(data=_data, axis=1) _data = nd.transpose(_data, axes=(2, 0, 1)) _data = _data.asnumpy() img = torch.from_numpy(_data) return img, label def __len__(self): return len(self.seq) if __name__ == '__main__': root = '/raid/Data/faces_webface_112x112/train.rec' embed() dataset = FaceDataset(path_imgrec =root, rand_mirror = False) trainloader = data.DataLoader(dataset, batch_size=32, shuffle=True, num_workers=2, drop_last=False) print(len(dataset)) for data, label in trainloader: print(data.shape, label)
[ "lobgd9150@gmail.com" ]
lobgd9150@gmail.com
f87ac30ee8177d8d46472777d034607729e57115
ef15f6538f14db18ab8161a2a6aacd0d29fbdb7a
/wsgi.py
7f7ff782263880b8199345acd3fe7f846ce3c6db
[ "MIT" ]
permissive
suricats/surirobot-api-services
5f6d8536f62de874db8769144239d7924eb68b27
b23b440649a759d638cbc8644acc4aeb7f118674
refs/heads/dev
2020-03-22T07:15:14.029175
2019-05-22T16:26:08
2019-05-22T16:26:08
139,689,048
0
1
MIT
2019-05-22T16:25:03
2018-07-04T08:00:59
Python
UTF-8
Python
false
false
27
py
from api.server import app
[ "alain.berrier@outlook.com" ]
alain.berrier@outlook.com
01c576eada6417a47049095bda6e06b430144f70
5b3bf81b22f4eb78a1d9e801b2d1d6a48509a236
/leetcode/778.py
86a36e9731e1dc2184d96130dd07e572c914cf36
[]
no_license
okoks9011/problem_solving
42a0843cfdf58846090dff1a2762b6e02362d068
e86d86bb5e3856fcaaa5e20fe19194871d3981ca
refs/heads/master
2023-01-21T19:06:14.143000
2023-01-08T17:45:16
2023-01-08T17:45:16
141,427,667
1
1
null
null
null
null
UTF-8
Python
false
false
1,255
py
class Solution: def bfs(self, grid: List[List[int]], k) -> bool: n = len(grid) ds = [(-1, 0), (0, 1), (1, 0), (0, -1)] visited = [[False] * n for _ in range(n)] visited[0][0] = True cur_q = [(0, 0)] while cur_q: next_q = [] for i, j in cur_q: for di, dj in ds: ni, nj = i + di, j + dj if (not (0 <= ni < n)) or (not (0 <= nj < n)): continue if grid[ni][nj] > k: continue if visited[ni][nj]: continue if ni == nj == (n - 1): return True visited[ni][nj] = True next_q.append((ni, nj)) cur_q = next_q return False def swimInWater(self, grid: List[List[int]]) -> int: n = len(grid) left = grid[0][0] right = n * n - 1 result = -1 while left <= right: mid = left + (right - left) // 2 if self.bfs(grid, mid): result = mid right = mid - 1 else: left = mid + 1 return result
[ "okoks9011@gmail.com" ]
okoks9011@gmail.com
26b561263262ae3cea908b5ad26d60a5289578c4
ffe23a787537b9706c9ec4d5f7f6ada44ca658f5
/venv/Scripts/pilconvert.py
43655490dcc142a3076c5994950ab0333bca10a1
[]
no_license
zhouli01/python_test01
cf966d8d16167f3ab752254d66cef8a94663bbdf
658d69d33b8255d612ff79e1df0ffe734d8971bd
refs/heads/master
2020-03-07T03:15:33.608727
2018-04-21T03:47:06
2018-04-21T03:47:06
127,231,004
0
1
null
null
null
null
UTF-8
Python
false
false
2,376
py
#!d:\test01\venv\scripts\python.exe # # The Python Imaging Library. # $Id$ # # convert image files # # History: # 0.1 96-04-20 fl Created # 0.2 96-10-04 fl Use draft mode when converting images # 0.3 96-12-30 fl Optimize output (PNG, JPEG) # 0.4 97-01-18 fl Made optimize an option (PNG, JPEG) # 0.5 98-12-30 fl Fixed -f option (from Anthony Baxter) # from __future__ import print_function import getopt import string import sys from PIL import Image def usage(): print("PIL Convert 0.5/1998-12-30 -- convert image files") print("Usage: pilconvert [option] infile outfile") print() print("Options:") print() print(" -c <format> convert to format (default is given by extension)") print() print(" -g convert to greyscale") print(" -p convert to palette image (using standard palette)") print(" -r convert to rgb") print() print(" -o optimize output (trade speed for size)") print(" -q <value> set compression quality (0-100, JPEG only)") print() print(" -f list supported file formats") sys.exit(1) if len(sys.argv) == 1: usage() try: opt, argv = getopt.getopt(sys.argv[1:], "c:dfgopq:r") except getopt.error as v: print(v) sys.exit(1) output_format = None convert = None options = {} for o, a in opt: if o == "-f": Image.init() id = sorted(Image.ID) print("Supported formats (* indicates output format):") for i in id: if i in Image.SAVE: print(i+"*", end=' ') else: print(i, end=' ') sys.exit(1) elif o == "-c": output_format = a if o == "-g": convert = "L" elif o == "-p": convert = "P" elif o == "-r": convert = "RGB" elif o == "-o": options["optimize"] = 1 elif o == "-q": options["quality"] = string.atoi(a) if len(argv) != 2: usage() try: im = Image.open(argv[0]) if convert and im.mode != convert: im.draft(convert, im.size) im = im.convert(convert) if output_format: im.save(argv[1], output_format, **options) else: im.save(argv[1], **options) except: print("cannot convert image", end=' ') print("(%s:%s)" % (sys.exc_info()[0], sys.exc_info()[1]))
[ "13717550873@163.com" ]
13717550873@163.com
b0c0ff46322cacf76ad3221323a84d906c19a028
1a428731009d455773451aca158c2e77e10bccb1
/sample_sim/planning/pomcp_rollout_allocation/bezier_curve.py
f39f473ace21fdae00958727dd469c51a090db39
[]
no_license
uscresl/AdaptiveSamplingPOMCP
6f2c3bc6ac18d175eaf27f7cc9e65a46390ff954
c0717a4f07dd33b5d583ea977315eedb9b74f9b6
refs/heads/master
2023-04-02T03:12:23.636049
2021-04-08T23:18:15
2021-04-08T23:18:15
350,460,334
3
1
null
null
null
null
UTF-8
Python
false
false
2,705
py
import numpy as np from scipy.special import comb from sample_sim.planning.pomcp_rollout_allocation.base_rollout_allocator import PrecalculatedBaseRolloutAllocator def bernstein_poly(i, n, t): """ The Bernstein polynomial of n, i as a function of t """ return comb(n, i) * (t ** (n - i)) * (1 - t) ** i def bezier_curve(points, nTimes=1000): """ Given a set of control points, return the bezier curve defined by the control points. points should be a list of lists, or list of tuples such as [ [1,1], [2,3], [4,5], ..[Xn, Yn] ] nTimes is the number of time steps, defaults to 1000 See http://processingjs.nihongoresources.com/bezierinfo/ """ nPoints = len(points) xPoints = np.array([p[0] for p in points]) yPoints = np.array([p[1] for p in points]) t = np.linspace(0.0, 1.0, nTimes) polynomial_array = np.array([bernstein_poly(i, nPoints - 1, t) for i in range(0, nPoints)]) xvals = np.dot(xPoints, polynomial_array) yvals = np.dot(yPoints, polynomial_array) return xvals, yvals class ThreePointBezierCurve(PrecalculatedBaseRolloutAllocator): def __init__(self, max_budget, currently_used_budget, max_rollout, currently_used_rollout, control_point): self.max_budget = max_budget self.currently_used_budget = currently_used_budget self.max_rollout = max_rollout self.currently_used_rollout = currently_used_rollout self.control_point = control_point super().__init__() def allocated_rollouts(self): end_point = [1, 1] start_point = [0, 0] control_point = self.control_point points = np.array([start_point, control_point, end_point]) fraction_of_budget_used = (self.currently_used_budget + 1) / self.max_budget xvals,yvals = bezier_curve(points) xval_idx = None closest_xval_dist = float("inf") for i,xval in enumerate(xvals): dist = abs(fraction_of_budget_used - xval) if dist < closest_xval_dist: xval_idx = i closest_xval_dist = dist fractional_improvment_we_should_be_at = yvals[xval_idx] # This is based on the total overall improvement how much effort should we have spent number_of_rollouts_we_shouldve_used = fractional_improvment_we_should_be_at * self.max_rollout # Subtracts the already spent rollouts from the rollouts we shouldve used number_of_free_rollouts = number_of_rollouts_we_shouldve_used - self.currently_used_rollout assert number_of_free_rollouts > 0 return int(number_of_free_rollouts)
[ "gautams3@users.noreply.github.com" ]
gautams3@users.noreply.github.com
75fcfc95a8816ed00220c22417d87667b7e098c2
79cc112bd3490a72c5f0ef978688b8c6adf22542
/SimplePython/flatten.py
68ee7ab765cc9ebf996dcf9b6f34a49191c63a9d
[]
no_license
patarapolw/SimplePython
40aee78bd3403c20d9007d47455f16f41210651e
1f8af49d3b7672ec9597dda9f45c4aca7ab35d41
refs/heads/master
2020-03-13T23:02:39.219466
2018-12-18T00:33:42
2018-12-18T00:33:42
131,328,043
0
0
null
null
null
null
UTF-8
Python
false
false
1,289
py
from __future__ import print_function import collections import xmltodict import lxml.etree as etree import re def flatten(d, parent_key='', sep='-'): items = [] for k, v in d.items(): new_key = parent_key + sep + k if parent_key else k if isinstance(v, collections.MutableMapping): items.extend(flatten(v, new_key, sep=sep).items()) else: items.append((new_key, v)) return dict(items) def xml2flatDict(xml, sep='-'): i = 0 result = {} allKeys = flatten(xmltodict.parse(xml), sep=sep).keys() for key in allKeys: key = re.sub('{}?[@#][^/]*{}?'.format(sep, sep), '', key) xpath = '/{}'.format('/'.join(key.split(sep))) if '#' in xpath: print(xpath) i += 1 continue if '@' in xpath: print(xpath) i += 1 continue tree = etree.fromstring(xml) values = tree.xpath(xpath) try: if key not in result.keys(): result[key] = [x.text.strip() for x in values] else: result[key] += [x.text.strip() for x in values] except AttributeError: pass if i != 0: print("Missed {} paths".format(i)) return result
[ "patarapolw@gmail.com" ]
patarapolw@gmail.com
d3e43d2268aaab367d295f1cc66d38cdeac8892c
98fc3d1d2fe3fffbe49cd7497b8e4a5183b40029
/lost_found/urls.py
29cd7907123712bb6202c3b67b2d1df50dbe0baf
[ "Apache-2.0" ]
permissive
lleyer/lost-found
5e1b9f34079bf415643aa5ba77bd56f7bdae6164
36f8246f6ae00b7d926d3a28c5a02749359ba168
refs/heads/master
2020-03-31T22:12:10.301979
2018-10-11T14:55:56
2018-10-11T14:55:56
152,609,838
0
0
null
null
null
null
UTF-8
Python
false
false
1,698
py
"""lost_found URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.8/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import include, url from django.contrib import admin #from lost_and_found import views, models from django.conf.urls import * from django.views.generic import RedirectView urlpatterns = patterns('lost_and_found.views', # url(r'^admin/', include(admin.site.urls)), url(r'^$', 'see'), (r'^home/$', 'index'), url(r'^see/$', 'insert'), #url(r'^find/$', 'method_splitter', {'GET': 'some_page_get', 'POST': 'find'}), url(r'^find/$','find'), url(r'^seethings/$', 'see'), #url(r'^contact/$', 'lost_and_found.contact.contact', name='contact'), url(r'^detailed/$', 'detail'), url(r'^ChangeToFound/$','ChangeToFound'), url(r'^Addinfo/$','Addinfo'), url(r'^Login/$','Login'), url(r'^Create_success/$','C_success'), url(r'^Create_fail/$','C_fail'), url(r'^CreateUser/$','CreateUser'), url(r'^mythings/$', 'mythings'), #url(r'^mythings/$', views.mythings), (r'^find/$', RedirectView.as_view(url='/home/')), url(r'^tests/$', 'tests'), ) urlpatterns += patterns('lost_and_found.contact', (r'^contact/$', 'contact'), )
[ "31896557+lleyer@users.noreply.github.com" ]
31896557+lleyer@users.noreply.github.com
f8feea7a777cd867d3ba8a84a3de6dbd99017a2f
5ac978fc54e8d2cd9ecb098fe5e18d376cef9c44
/img_wall.py
dbae8b9cba358be9f8ec36a9cebfb3c4e2c595df
[]
no_license
at68701141/img_wall
4c41a3a4106399c0b6f456bb70b3e102965fc884
e2933ff0ae08861ac50bbb771fd844f5b9068551
refs/heads/master
2020-04-27T02:03:29.845781
2019-03-08T12:28:40
2019-03-08T12:28:40
173,983,024
2
0
null
null
null
null
UTF-8
Python
false
false
2,124
py
from PIL import Image import os,sys import random import argparse def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--mw', default=100, help='照片的长宽', type=int) args = parser.parse_args() return args def main(): args = parse_args() mw = args.mw raw_img = Image.open('./_raw.png') raw_img_1 = raw_img.convert('1') raw_img_1.save("./_deal.jpg") out_width = raw_img_1.size[0] out_height = raw_img_1.size[1] text_img = Image.open("./_deal.jpg") rows = text_img.size[0] + 1 columns = text_img.size[1] + 1 imgs = 0 for y in range(1,columns): for x in range(1,rows): if 0 == text_img.getpixel((x-1,y-1)): imgs += 1 print('need imgs:',imgs) #搜索路径下所有图片 dir_list = os.listdir("./") list_fromImage = [] for i in dir_list: if -1 == i.find('.py'): if -1 == i.find('_raw') and -1 == i.find('_deal') and -1 == i.find('_out'): fromImagetmp = Image.open("./"+i) list_fromImage.append(fromImagetmp) print('total imgs:',len(list_fromImage)) #选一张画布,关键确定画布的大小 toImage = Image.new('RGBA',(out_width*mw,out_height*mw)) for y in range(1,columns): for x in range(1,rows): try: if 255 == text_img.getpixel((x-1,y-1)): pass elif 0 == text_img.getpixel((x-1,y-1)): #选取照片,按照自己想要的样式,依次选取 fromImage = list_fromImage[random.randint(0, len(list_fromImage)-1)].copy() # fromImage = fromImage.rotate(random.randint(0, 360)) #粘贴照片,将照片粘贴到设计的位置上 fromImage = fromImage.resize((mw,mw),Image.ANTIALIAS) toImage.paste(fromImage,((x-1)*mw,(y-1)*mw)) except IOError: pass toImage.save('./_out.png') if __name__ == '__main__': main()
[ "2278481764@qq.com" ]
2278481764@qq.com
a799ecc070436733bb2d7276e5b86ee6ed334c39
01870d5d2dcc96302ca9143ba64e8f871aae5794
/InsertDinnerMenu.py
43410ce2148989ea3b5ddd5d36ff941c82743f01
[]
no_license
isbobby/eusofftelebot
8a6470c6267d7d19713e33560cbef2bc21d0d6cf
1b9cd215c9d0258f68798eec23d7ff9e7ac6b226
refs/heads/master
2022-12-15T15:48:18.669412
2020-05-05T13:48:10
2020-05-05T13:48:10
201,722,435
1
1
null
2022-09-16T18:16:07
2019-08-11T05:35:54
Python
UTF-8
Python
false
false
529
py
import json import sqlalchemy from flask import Blueprint, render_template, url_for, redirect, request, flash from datetime import datetime, timedelta from eusoffweb import db from eusoffweb.models import Dinner,Breakfast,Event main = Blueprint('main', __name__) @main.route("/") @main.route("/home") def home(): # entry = Dinner(date='2020-01-01',main='Main',side='Side',soup='Soup',dessert='Dessert', special="special") # db.session.add(entry) # db.session.commit() return render_template('/index.html')
[ "bobbyclex8@gmail.com" ]
bobbyclex8@gmail.com
bc74953b7cf6838055ecf038a3f0c133024cf95b
d7589054c9dbcccdfee4213fda2df10f249a60a8
/venv/Lib/site-packages/django/contrib/gis/gdal/raster/band.py
c5b092b7b00a8efe670667cf5d06fcf5d195bdeb
[ "BSD-3-Clause" ]
permissive
Ruckaiya/djangoblog
aa3e16ce84f37a70b830a795acf450b04b5c5bca
a76c5d223477d29b391915c3778219a36f9f34ce
refs/heads/master
2020-06-09T00:26:51.396663
2019-06-23T10:47:43
2019-06-23T10:47:43
193,334,047
0
0
null
null
null
null
UTF-8
Python
false
false
8,248
py
from ctypes import byref, c_double, c_int, c_void_p from django.contrib.gis.gdal.error import GDALException from django.contrib.gis.gdal.prototypes import raster as capi from django.contrib.gis.gdal.raster.base import GDALRasterBase from django.contrib.gis.shortcuts import numpy from django.utils.encoding import force_text from .const import ( GDAL_COLOR_TYPES, GDAL_INTEGER_TYPES, GDAL_PIXEL_TYPES, GDAL_TO_CTYPES, ) class GDALBand(GDALRasterBase): """ Wrap a GDAL raster band, needs to be obtained from a GDALRaster object. """ def __init__(self, source, index): self.source = source self._ptr = capi.get_ds_raster_band(source._ptr, index) def _flush(self): """ Call the flush method on the Band's parent raster and force a refresh of the statistics attribute when requested the next time. """ self.source._flush() self._stats_refresh = True @property def description(self): """ Return the description string of the band. """ return force_text(capi.get_band_description(self._ptr)) @property def width(self): """ Width (X axis) in pixels of the band. """ return capi.get_band_xsize(self._ptr) @property def height(self): """ Height (Y axis) in pixels of the band. """ return capi.get_band_ysize(self._ptr) @property def pixel_count(self): """ Return the total number of pixels in this band. """ return self.width * self.height _stats_refresh = False def statistics(self, refresh=False, approximate=False): """ Compute statistics on the pixel values of this band. The return value is a tuple with the following structure: (minimum, maximum, mean, standard deviation). If approximate=True, the statistics may be computed based on overviews or a subset of image tiles. If refresh=True, the statistics will be computed from the data directly, and the cache will be updated where applicable. For empty bands (where all pixel values are nodata), all statistics values are returned as None. For raster formats using Persistent Auxiliary Metadata (PAM) services, the statistics might be cached in an auxiliary file. """ # Prepare array with arguments for capi function smin, smax, smean, sstd = c_double(), c_double(), c_double(), c_double() stats_args = [ self._ptr, c_int(approximate), byref(smin), byref(smax), byref(smean), byref(sstd), c_void_p(), c_void_p(), ] if refresh or self._stats_refresh: func = capi.compute_band_statistics else: # Add additional argument to force computation if there is no # existing PAM file to take the values from. force = True stats_args.insert(2, c_int(force)) func = capi.get_band_statistics # Computation of statistics fails for empty bands. try: func(*stats_args) result = smin.value, smax.value, smean.value, sstd.value except GDALException: result = (None, None, None, None) self._stats_refresh = False return result @property def min(self): """ Return the minimum pixel value for this band. """ return self.statistics()[0] @property def max(self): """ Return the maximum pixel value for this band. """ return self.statistics()[1] @property def mean(self): """ Return the mean of all pixel values of this band. """ return self.statistics()[2] @property def std(self): """ Return the standard deviation of all pixel values of this band. """ return self.statistics()[3] @property def nodata_value(self): """ Return the nodata value for this band, or None if it isn't set. """ # Get value and nodata exists flag nodata_exists = c_int() value = capi.get_band_nodata_value(self._ptr, nodata_exists) if not nodata_exists: value = None # If the pixeltype is an integer, convert to int elif self.datatype() in GDAL_INTEGER_TYPES: value = int(value) return value @nodata_value.setter def nodata_value(self, value): """ Set the nodata value for this band. """ if value is None: if not capi.delete_band_nodata_value: raise ValueError('GDAL >= 2.1 required to delete nodata values.') capi.delete_band_nodata_value(self._ptr) elif not isinstance(value, (int, float)): raise ValueError('Nodata value must be numeric or None.') else: capi.set_band_nodata_value(self._ptr, value) self._flush() def datatype(self, as_string=False): """ Return the GDAL Pixel Datatype for this band. """ dtype = capi.get_band_datatype(self._ptr) if as_string: dtype = GDAL_PIXEL_TYPES[dtype] return dtype def color_interp(self, as_string=False): """Return the GDAL color interpretation for this band.""" color = capi.get_band_color_interp(self._ptr) if as_string: color = GDAL_COLOR_TYPES[color] return color def data(self, data=None, offset=None, size=None, shape=None, as_memoryview=False): """ Read or writes pixel values for this band. Blocks of data can be accessed by specifying the width, height and offset of the desired block. The same specification can be used to update parts of a raster by providing an array of values. Allowed input data types are bytes, memoryview, list, tuple, and array. """ offset = offset or (0, 0) size = size or (self.width - offset[0], self.height - offset[1]) shape = shape or size if any(x <= 0 for x in size): raise ValueError('Offset too big for this raster.') if size[0] > self.width or size[1] > self.height: raise ValueError('Size is larger than raster.') # Create ctypes type array generator ctypes_array = GDAL_TO_CTYPES[self.datatype()] * (shape[0] * shape[1]) if data is None: # Set read mode access_flag = 0 # Prepare empty ctypes array data_array = ctypes_array() else: # Set write mode access_flag = 1 # Instantiate ctypes array holding the input data if isinstance(data, (bytes, memoryview)) or (numpy and isinstance(data, numpy.ndarray)): data_array = ctypes_array.from_buffer_copy(data) else: data_array = ctypes_array(*data) # Access band capi.band_io(self._ptr, access_flag, offset[0], offset[1], size[0], size[1], byref(data_array), shape[0], shape[1], self.datatype(), 0, 0) # Return data as numpy array if possible, otherwise as list if data is None: if as_memoryview: return memoryview(data_array) elif numpy: # reshape() needs a reshape parameter with the height first. return numpy.frombuffer( data_array, dtype=numpy.dtype(data_array) ).reshape(tuple(reversed(size))) else: return list(data_array) else: self._flush() class BandList(list): def __init__(self, source): self.source = source super().__init__() def __iter__(self): for idx in range(1, len(self) + 1): yield GDALBand(self.source, idx) def __len__(self): return capi.get_ds_raster_count(self.source._ptr) def __getitem__(self, index): try: return GDALBand(self.source, index + 1) except GDALException: raise GDALException('Unable to get band index %d' % index)
[ "ruckaiya.awf5@gmail.com" ]
ruckaiya.awf5@gmail.com
1dacce4b787bbdf7a0d9686693f68f0e2e663a54
ae81e1685061552dd34e1af5f71cbd549bd05706
/python/paddle/fluid/contrib/layers/rnn_impl.py
e6a868ada37ab9fb27f973b4bfe648387bb4279f
[ "Apache-2.0" ]
permissive
cryoco/Paddle
3917982f4d27a5be2abee0f45e74812c7d383c03
39ac41f137d685af66078adf2f35d65473978b4a
refs/heads/develop
2021-11-07T18:47:43.406188
2019-09-23T05:04:48
2019-09-23T05:04:48
197,357,973
3
1
Apache-2.0
2021-08-12T06:24:30
2019-07-17T09:25:19
C++
UTF-8
Python
false
false
30,946
py
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle.fluid import layers from paddle.fluid.dygraph import Layer from paddle.fluid.layers.control_flow import StaticRNN __all__ = ['BasicGRUUnit', 'basic_gru', 'BasicLSTMUnit', 'basic_lstm'] class BasicGRUUnit(Layer): """ **** BasicGRUUnit class, using basic operators to build GRU The algorithm can be described as the equations below. .. math:: u_t & = actGate(W_ux xu_{t} + W_uh h_{t-1} + b_u) r_t & = actGate(W_rx xr_{t} + W_rh h_{t-1} + b_r) m_t & = actNode(W_cx xm_t + W_ch dot(r_t, h_{t-1}) + b_m) h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t) Args: name_scope(string) : The name scope used to identify parameters and biases hidden_size (integer): The hidden size used in the Unit. param_attr(ParamAttr|None): The parameter attribute for the learnable weight matrix. Note: If it is set to None or one attribute of ParamAttr, gru_unit will create ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is initialized with Xavier. Default: None. bias_attr (ParamAttr|None): The parameter attribute for the bias of GRU unit. If it is set to None or one attribute of ParamAttr, gru_unit will create ParamAttr as bias_attr. If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None. gate_activation (function|None): The activation function for gates (actGate). Default: 'fluid.layers.sigmoid' activation (function|None): The activation function for cell (actNode). Default: 'fluid.layers.tanh' dtype(string): data type used in this unit Examples: .. code-block:: python import paddle.fluid.layers as layers from paddle.fluid.contrib.layers import BasicGRUUnit input_size = 128 hidden_size = 256 input = layers.data( name = "input", shape = [-1, input_size], dtype='float32') pre_hidden = layers.data( name = "pre_hidden", shape=[-1, hidden_size], dtype='float32') gru_unit = BasicGRUUnit( "gru_unit", hidden_size ) new_hidden = gru_unit( input, pre_hidden ) """ def __init__(self, name_scope, hidden_size, param_attr=None, bias_attr=None, gate_activation=None, activation=None, dtype='float32'): super(BasicGRUUnit, self).__init__(name_scope, dtype) self._name = name_scope self._hiden_size = hidden_size self._param_attr = param_attr self._bias_attr = bias_attr self._gate_activation = gate_activation or layers.sigmoid self._activation = activation or layers.tanh self._dtype = dtype def _build_once(self, input, pre_hidden): self._input_size = input.shape[-1] assert (self._input_size > 0) self._gate_weight = self.create_parameter( attr=self._param_attr, shape=[self._input_size + self._hiden_size, 2 * self._hiden_size], dtype=self._dtype) self._candidate_weight = self.create_parameter( attr=self._param_attr, shape=[self._input_size + self._hiden_size, self._hiden_size], dtype=self._dtype) self._gate_bias = self.create_parameter( self._bias_attr, shape=[2 * self._hiden_size], dtype=self._dtype, is_bias=True) self._candidate_bias = self.create_parameter( self._bias_attr, shape=[self._hiden_size], dtype=self._dtype, is_bias=True) def forward(self, input, pre_hidden): concat_input_hidden = layers.concat([input, pre_hidden], 1) gate_input = layers.matmul(x=concat_input_hidden, y=self._gate_weight) gate_input = layers.elementwise_add(gate_input, self._gate_bias) gate_input = self._gate_activation(gate_input) r, u = layers.split(gate_input, num_or_sections=2, dim=1) r_hidden = r * pre_hidden candidate = layers.matmul( layers.concat([input, pre_hidden], 1), self._candidate_weight) candidate = layers.elementwise_add(candidate, self._candidate_bias) c = self._activation(candidate) new_hidden = u * pre_hidden + (1 - u) * c return new_hidden def basic_gru(input, init_hidden, hidden_size, num_layers=1, sequence_length=None, dropout_prob=0.0, bidirectional=False, batch_first=True, param_attr=None, bias_attr=None, gate_activation=None, activation=None, dtype='float32', name='basic_gru'): """ GRU implementation using basic operator, supports multiple layers and bidirection gru. .. math:: u_t & = actGate(W_ux xu_{t} + W_uh h_{t-1} + b_u) r_t & = actGate(W_rx xr_{t} + W_rh h_{t-1} + b_r) m_t & = actNode(W_cx xm_t + W_ch dot(r_t, h_{t-1}) + b_m) h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t) Args: input (Variable): GRU input tensor, if batch_first = False, shape should be ( seq_len x batch_size x input_size ) if batch_first = True, shape should be ( batch_size x seq_len x hidden_size ) init_hidden(Variable|None): The initial hidden state of the GRU This is a tensor with shape ( num_layers x batch_size x hidden_size) if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size) and can be reshaped to tensor with ( num_layers x 2 x batch_size x hidden_size) to use. If it's None, it will be set to all 0. hidden_size (int): Hidden size of the GRU num_layers (int): The total number of layers of the GRU sequence_length (Variabe|None): A Tensor (shape [batch_size]) stores each real length of each instance, This tensor will be convert to a mask to mask the padding ids If it's None means NO padding ids dropout_prob(float|0.0): Dropout prob, dropout ONLY works after rnn output of earch layers, NOT between time steps bidirectional (bool|False): If it is bidirectional param_attr(ParamAttr|None): The parameter attribute for the learnable weight matrix. Note: If it is set to None or one attribute of ParamAttr, gru_unit will create ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is initialized with Xavier. Default: None. bias_attr (ParamAttr|None): The parameter attribute for the bias of GRU unit. If it is set to None or one attribute of ParamAttr, gru_unit will create ParamAttr as bias_attr. If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None. gate_activation (function|None): The activation function for gates (actGate). Default: 'fluid.layers.sigmoid' activation (function|None): The activation function for cell (actNode). Default: 'fluid.layers.tanh' dtype(string): data type used in this unit name(string): name used to identify parameters and biases Returns: rnn_out(Tensor),last_hidden(Tensor) - rnn_out is result of GRU hidden, with shape (seq_len x batch_size x hidden_size) \ if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2) - last_hidden is the hidden state of the last step of GRU \ shape is ( num_layers x batch_size x hidden_size ) \ if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size), can be reshaped to a tensor with shape( num_layers x 2 x batch_size x hidden_size) Examples: .. code-block:: python import paddle.fluid.layers as layers from paddle.fluid.contrib.layers import basic_gru batch_size = 20 input_size = 128 hidden_size = 256 num_layers = 2 dropout = 0.5 bidirectional = True batch_first = False input = layers.data( name = "input", shape = [-1, batch_size, input_size], dtype='float32') pre_hidden = layers.data( name = "pre_hidden", shape=[-1, hidden_size], dtype='float32') sequence_length = layers.data( name="sequence_length", shape=[-1], dtype='int32') rnn_out, last_hidden = basic_gru( input, pre_hidden, hidden_size, num_layers = num_layers, \ sequence_length = sequence_length, dropout_prob=dropout, bidirectional = bidirectional, \ batch_first = batch_first) """ fw_unit_list = [] for i in range(num_layers): new_name = name + "_layers_" + str(i) fw_unit_list.append( BasicGRUUnit(new_name, hidden_size, param_attr, bias_attr, gate_activation, activation, dtype)) if bidirectional: bw_unit_list = [] for i in range(num_layers): new_name = name + "_reverse_layers_" + str(i) bw_unit_list.append( BasicGRUUnit(new_name, hidden_size, param_attr, bias_attr, gate_activation, activation, dtype)) if batch_first: input = layers.transpose(input, [1, 0, 2]) mask = None if sequence_length: max_seq_len = layers.shape(input)[0] mask = layers.sequence_mask( sequence_length, maxlen=max_seq_len, dtype='float32') mask = layers.transpose(mask, [1, 0]) direc_num = 1 if bidirectional: direc_num = 2 if init_hidden: init_hidden = layers.reshape( init_hidden, shape=[num_layers, direc_num, -1, hidden_size]) def get_single_direction_output(rnn_input, unit_list, mask=None, direc_index=0): rnn = StaticRNN() with rnn.step(): step_input = rnn.step_input(rnn_input) if mask: step_mask = rnn.step_input(mask) for i in range(num_layers): if init_hidden: pre_hidden = rnn.memory(init=init_hidden[i, direc_index]) else: pre_hidden = rnn.memory( batch_ref=rnn_input, shape=[-1, hidden_size], ref_batch_dim_idx=1) new_hidden = unit_list[i](step_input, pre_hidden) if mask: new_hidden = layers.elementwise_mul( new_hidden, step_mask, axis=0) - layers.elementwise_mul( pre_hidden, (step_mask - 1), axis=0) rnn.update_memory(pre_hidden, new_hidden) rnn.step_output(new_hidden) step_input = new_hidden if dropout_prob != None and dropout_prob > 0.0: step_input = layers.dropout( step_input, dropout_prob=dropout_prob, ) rnn.step_output(step_input) rnn_out = rnn() last_hidden_array = [] rnn_output = rnn_out[-1] for i in range(num_layers): last_hidden = rnn_out[i] last_hidden = last_hidden[-1] last_hidden_array.append(last_hidden) last_hidden_output = layers.concat(last_hidden_array, axis=0) last_hidden_output = layers.reshape( last_hidden_output, shape=[num_layers, -1, hidden_size]) return rnn_output, last_hidden_output # seq_len, batch_size, hidden_size fw_rnn_out, fw_last_hidden = get_single_direction_output( input, fw_unit_list, mask, direc_index=0) if bidirectional: bw_input = layers.reverse(input, axis=[0]) bw_mask = None if mask: bw_mask = layers.reverse(mask, axis=[0]) bw_rnn_out, bw_last_hidden = get_single_direction_output( bw_input, bw_unit_list, bw_mask, direc_index=1) bw_rnn_out = layers.reverse(bw_rnn_out, axis=[0]) rnn_out = layers.concat([fw_rnn_out, bw_rnn_out], axis=2) last_hidden = layers.concat([fw_last_hidden, bw_last_hidden], axis=1) last_hidden = layers.reshape( last_hidden, shape=[num_layers * direc_num, -1, hidden_size]) if batch_first: rnn_out = layers.transpose(rnn_out, [1, 0, 2]) return rnn_out, last_hidden else: rnn_out = fw_rnn_out last_hidden = fw_last_hidden if batch_first: rnn_out = fluid.layser.transpose(rnn_out, [1, 0, 2]) return rnn_out, last_hidden def basic_lstm(input, init_hidden, init_cell, hidden_size, num_layers=1, sequence_length=None, dropout_prob=0.0, bidirectional=False, batch_first=True, param_attr=None, bias_attr=None, gate_activation=None, activation=None, forget_bias=1.0, dtype='float32', name='basic_lstm'): """ LSTM implementation using basic operators, supports multiple layers and bidirection LSTM. .. math:: i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + b_i) f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + b_f + forget_bias ) o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + b_o) \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + b_c) c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t} h_t &= o_t \odot tanh(c_t) Args: input (Variable): lstm input tensor, if batch_first = False, shape should be ( seq_len x batch_size x input_size ) if batch_first = True, shape should be ( batch_size x seq_len x hidden_size ) init_hidden(Variable|None): The initial hidden state of the LSTM This is a tensor with shape ( num_layers x batch_size x hidden_size) if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size) and can be reshaped to a tensor with shape ( num_layers x 2 x batch_size x hidden_size) to use. If it's None, it will be set to all 0. init_cell(Variable|None): The initial hidden state of the LSTM This is a tensor with shape ( num_layers x batch_size x hidden_size) if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size) and can be reshaped to a tensor with shape ( num_layers x 2 x batch_size x hidden_size) to use. If it's None, it will be set to all 0. hidden_size (int): Hidden size of the LSTM num_layers (int): The total number of layers of the LSTM sequence_length (Variabe|None): A tensor (shape [batch_size]) stores each real length of each instance, This tensor will be convert to a mask to mask the padding ids If it's None means NO padding ids dropout_prob(float|0.0): Dropout prob, dropout ONLY work after rnn output of earch layers, NOT between time steps bidirectional (bool|False): If it is bidirectional param_attr(ParamAttr|None): The parameter attribute for the learnable weight matrix. Note: If it is set to None or one attribute of ParamAttr, lstm_unit will create ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is initialized with Xavier. Default: None. bias_attr (ParamAttr|None): The parameter attribute for the bias of LSTM unit. If it is set to None or one attribute of ParamAttr, lstm_unit will create ParamAttr as bias_attr. If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None. gate_activation (function|None): The activation function for gates (actGate). Default: 'fluid.layers.sigmoid' activation (function|None): The activation function for cell (actNode). Default: 'fluid.layers.tanh' forget_bias (float|1.0) : Forget bias used to compute the forget gate dtype(string): Data type used in this unit name(string): Name used to identify parameters and biases Returns: rnn_out(Tensor), last_hidden(Tensor), last_cell(Tensor) - rnn_out is the result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \ if is_bidirec set to True, it's shape will be ( seq_len x batch_sze x hidden_size*2) - last_hidden is the hidden state of the last step of LSTM \ with shape ( num_layers x batch_size x hidden_size ) \ if is_bidirec set to True, it's shape will be ( num_layers*2 x batch_size x hidden_size), and can be reshaped to a tensor ( num_layers x 2 x batch_size x hidden_size) to use. - last_cell is the hidden state of the last step of LSTM \ with shape ( num_layers x batch_size x hidden_size ) \ if is_bidirec set to True, it's shape will be ( num_layers*2 x batch_size x hidden_size), and can be reshaped to a tensor ( num_layers x 2 x batch_size x hidden_size) to use. Examples: .. code-block:: python import paddle.fluid.layers as layers from paddle.fluid.contrib.layers import basic_lstm batch_size = 20 input_size = 128 hidden_size = 256 num_layers = 2 dropout = 0.5 bidirectional = True batch_first = False input = layers.data( name = "input", shape = [-1, batch_size, input_size], dtype='float32') pre_hidden = layers.data( name = "pre_hidden", shape=[-1, hidden_size], dtype='float32') pre_cell = layers.data( name = "pre_cell", shape=[-1, hidden_size], dtype='float32') sequence_length = layers.data( name="sequence_length", shape=[-1], dtype='int32') rnn_out, last_hidden, last_cell = basic_lstm( input, pre_hidden, pre_cell, \ hidden_size, num_layers = num_layers, \ sequence_length = sequence_length, dropout_prob=dropout, bidirectional = bidirectional, \ batch_first = batch_first) """ fw_unit_list = [] for i in range(num_layers): new_name = name + "_layers_" + str(i) fw_unit_list.append( BasicLSTMUnit( new_name, hidden_size, param_attr=param_attr, bias_attr=bias_attr, gate_activation=gate_activation, activation=activation, forget_bias=forget_bias, dtype=dtype)) if bidirectional: bw_unit_list = [] for i in range(num_layers): new_name = name + "_reverse_layers_" + str(i) bw_unit_list.append( BasicLSTMUnit( new_name, hidden_size, param_attr=param_attr, bias_attr=bias_attr, gate_activation=gate_activation, activation=activation, forget_bias=forget_bias, dtype=dtype)) if batch_first: input = layers.transpose(input, [1, 0, 2]) mask = None if sequence_length: max_seq_len = layers.shape(input)[0] mask = layers.sequence_mask( sequence_length, maxlen=max_seq_len, dtype='float32') mask = layers.transpose(mask, [1, 0]) direc_num = 1 if bidirectional: direc_num = 2 # convert to [num_layers, 2, batch_size, hidden_size] if init_hidden: init_hidden = layers.reshape( init_hidden, shape=[num_layers, direc_num, -1, hidden_size]) init_cell = layers.reshape( init_cell, shape=[num_layers, direc_num, -1, hidden_size]) # forward direction def get_single_direction_output(rnn_input, unit_list, mask=None, direc_index=0): rnn = StaticRNN() with rnn.step(): step_input = rnn.step_input(rnn_input) if mask: step_mask = rnn.step_input(mask) for i in range(num_layers): if init_hidden: pre_hidden = rnn.memory(init=init_hidden[i, direc_index]) pre_cell = rnn.memory(init=init_cell[i, direc_index]) else: pre_hidden = rnn.memory( batch_ref=rnn_input, shape=[-1, hidden_size]) pre_cell = rnn.memory( batch_ref=rnn_input, shape=[-1, hidden_size]) new_hidden, new_cell = unit_list[i](step_input, pre_hidden, pre_cell) if mask: new_hidden = layers.elementwise_mul( new_hidden, step_mask, axis=0) - layers.elementwise_mul( pre_hidden, (step_mask - 1), axis=0) new_cell = layers.elementwise_mul( new_cell, step_mask, axis=0) - layers.elementwise_mul( pre_cell, (step_mask - 1), axis=0) rnn.update_memory(pre_hidden, new_hidden) rnn.update_memory(pre_cell, new_cell) rnn.step_output(new_hidden) rnn.step_output(new_cell) step_input = new_hidden if dropout_prob != None and dropout_prob > 0.0: step_input = layers.dropout( step_input, dropout_prob=dropout_prob, dropout_implementation='upscale_in_train') rnn.step_output(step_input) rnn_out = rnn() last_hidden_array = [] last_cell_array = [] rnn_output = rnn_out[-1] for i in range(num_layers): last_hidden = rnn_out[i * 2] last_hidden = last_hidden[-1] last_hidden_array.append(last_hidden) last_cell = rnn_out[i * 2 + 1] last_cell = last_cell[-1] last_cell_array.append(last_cell) last_hidden_output = layers.concat(last_hidden_array, axis=0) last_hidden_output = layers.reshape( last_hidden_output, shape=[num_layers, -1, hidden_size]) last_cell_output = layers.concat(last_cell_array, axis=0) last_cell_output = layers.reshape( last_cell_output, shape=[num_layers, -1, hidden_size]) return rnn_output, last_hidden_output, last_cell_output # seq_len, batch_size, hidden_size fw_rnn_out, fw_last_hidden, fw_last_cell = get_single_direction_output( input, fw_unit_list, mask, direc_index=0) if bidirectional: bw_input = layers.reverse(input, axis=[0]) bw_mask = None if mask: bw_mask = layers.reverse(mask, axis=[0]) bw_rnn_out, bw_last_hidden, bw_last_cell = get_single_direction_output( bw_input, bw_unit_list, bw_mask, direc_index=1) bw_rnn_out = layers.reverse(bw_rnn_out, axis=[0]) rnn_out = layers.concat([fw_rnn_out, bw_rnn_out], axis=2) last_hidden = layers.concat([fw_last_hidden, bw_last_hidden], axis=1) last_hidden = layers.reshape( last_hidden, shape=[num_layers * direc_num, -1, hidden_size]) last_cell = layers.concat([fw_last_cell, bw_last_cell], axis=1) last_cell = layers.reshape( last_cell, shape=[num_layers * direc_num, -1, hidden_size]) if batch_first: rnn_out = layers.transpose(rnn_out, [1, 0, 2]) return rnn_out, last_hidden, last_cell else: rnn_out = fw_rnn_out last_hidden = fw_last_hidden last_cell = fw_last_cell if batch_first: rnn_out = layers.transpose(rnn_out, [1, 0, 2]) return rnn_out, last_hidden, last_cell class BasicLSTMUnit(Layer): """ **** BasicLSTMUnit class, Using basic operator to build LSTM The algorithm can be described as the code below. .. math:: i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + b_i) f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + b_f + forget_bias ) o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + b_o) \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + b_c) c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t} h_t &= o_t \odot tanh(c_t) - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix of weights from the input gate to the input) - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector). - sigmoid is the logistic sigmoid function. - $i, f, o$ and $c$ are the input gate, forget gate, output gate, and cell activation vectors, respectively, all of which have the same size as the cell output activation vector $h$. - The :math:`\odot` is the element-wise product of the vectors. - :math:`tanh` is the activation functions. - :math:`\\tilde{c_t}` is also called candidate hidden state, which is computed based on the current input and the previous hidden state. Args: name_scope(string) : The name scope used to identify parameter and bias name hidden_size (integer): The hidden size used in the Unit. param_attr(ParamAttr|None): The parameter attribute for the learnable weight matrix. Note: If it is set to None or one attribute of ParamAttr, lstm_unit will create ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is initialized with Xavier. Default: None. bias_attr (ParamAttr|None): The parameter attribute for the bias of LSTM unit. If it is set to None or one attribute of ParamAttr, lstm_unit will create ParamAttr as bias_attr. If the Initializer of the bias_attr is not set, the bias is initialized as zero. Default: None. gate_activation (function|None): The activation function for gates (actGate). Default: 'fluid.layers.sigmoid' activation (function|None): The activation function for cells (actNode). Default: 'fluid.layers.tanh' forget_bias(float|1.0): forget bias used when computing forget gate dtype(string): data type used in this unit Examples: .. code-block:: python import paddle.fluid.layers as layers from paddle.fluid.contrib.layers import BasicLSTMUnit input_size = 128 hidden_size = 256 input = layers.data( name = "input", shape = [-1, input_size], dtype='float32') pre_hidden = layers.data( name = "pre_hidden", shape=[-1, hidden_size], dtype='float32') pre_cell = layers.data( name = "pre_cell", shape=[-1, hidden_size], dtype='float32') lstm_unit = BasicLSTMUnit( "gru_unit", hidden_size) new_hidden, new_cell = lstm_unit( input, pre_hidden, pre_cell ) """ def __init__(self, name_scope, hidden_size, param_attr=None, bias_attr=None, gate_activation=None, activation=None, forget_bias=1.0, dtype='float32'): super(BasicLSTMUnit, self).__init__(name_scope, dtype) self._name = name_scope self._hiden_size = hidden_size self._param_attr = param_attr self._bias_attr = bias_attr self._gate_activation = gate_activation or layers.sigmoid self._activation = activation or layers.tanh self._forget_bias = layers.fill_constant( [1], dtype=dtype, value=forget_bias) self._forget_bias.stop_gradient = False self._dtype = dtype def _build_once(self, input, pre_hidden, pre_cell): self._input_size = input.shape[-1] assert (self._input_size > 0) self._weight = self.create_parameter( attr=self._param_attr, shape=[self._input_size + self._hiden_size, 4 * self._hiden_size], dtype=self._dtype) self._bias = self.create_parameter( attr=self._bias_attr, shape=[4 * self._hiden_size], dtype=self._dtype, is_bias=True) def forward(self, input, pre_hidden, pre_cell): concat_input_hidden = layers.concat([input, pre_hidden], 1) gate_input = layers.matmul(x=concat_input_hidden, y=self._weight) gate_input = layers.elementwise_add(gate_input, self._bias) i, j, f, o = layers.split(gate_input, num_or_sections=4, dim=-1) new_cell = layers.elementwise_add( layers.elementwise_mul( pre_cell, layers.sigmoid(layers.elementwise_add(f, self._forget_bias))), layers.elementwise_mul(layers.sigmoid(i), layers.tanh(j))) new_hidden = layers.tanh(new_cell) * layers.sigmoid(o) return new_hidden, new_cell
[ "noreply@github.com" ]
cryoco.noreply@github.com
b2a7242000eaaed258617f34c401b0cd616456ec
6bf7149077f539ab599db1f717c93aca82724512
/encapsulation/resturant/food/dessert.py
88c978d97947fac520aeff1a4ad8afede7e62b96
[]
no_license
KalinHar/OOP-Python-SoftUni
8b53e8b734b364878c5372525c4249fdd32f0899
9787eea7ab5101e887ed4aaeb0a8b3b80efcfdd7
refs/heads/master
2023-07-09T08:15:59.765422
2021-08-16T06:01:08
2021-08-16T06:01:19
380,813,294
0
1
null
null
null
null
UTF-8
Python
false
false
278
py
from encapsulation.resturant.food.food import Food class Dessert(Food): def __init__(self, name, price, grams, calories): super().__init__(name, price, grams) self.__calories = calories @property def calories(self): return self.__calories
[ "kalix@abv.bg" ]
kalix@abv.bg
2927ecf4d1d50234c872853d0c93df428cb23a84
68de0dc251ebf950ca698489a5f7a2959282c23f
/pw.py
080c69b933c28bb1f17d3d99a1aa249fda8e1e0d
[ "MIT" ]
permissive
JKakaofanatiker/pw
001f70dd41b236556079b5167b4b2dc5c99c3fc9
3a8d74ae87b1f96c7476254a64d4ddd898bf069b
refs/heads/master
2023-02-17T04:42:47.373681
2021-01-11T16:00:07
2021-01-11T16:00:07
328,191,825
0
0
null
null
null
null
UTF-8
Python
false
false
551
py
import secrets import string from colorama import Fore # needed for color import pyperclip print(Fore.GREEN + "Enter password length:") # tell the user to type the length of the password length = input() # user input length = int(length) chars = string.digits + string.ascii_letters + string.punctuation # possible chars print(Fore.RED + "Here is your password:") # print(''.join(secrets.choice(chars) for _ in range(length))) # prints password password = ''.join(secrets.choice(chars) for _ in range(length)) print(password) pyperclip.copy(password)
[ "noreply@github.com" ]
JKakaofanatiker.noreply@github.com
f852c7fc24ea0e2287c4336eed6a938ebfab3136
410c6696feb4b3c3ccda92d4ff4c1c251f176d86
/code/imu.py
d0afd83a98e7135dec0ecc9462123bee756f1845
[]
no_license
sourabhraghav2/Self_balancing_quadcopter
06a706ee349be6941a80cf6f6a0fd3c963af24f1
99d114d9308a62b8cd346f29871b9984ca41797a
refs/heads/master
2020-05-26T15:05:14.420991
2019-05-23T18:08:05
2019-05-23T18:08:05
188,277,663
0
0
null
null
null
null
UTF-8
Python
false
false
2,617
py
import math deltat =(0.01) #sampling period in seconds (shown as 1 ms) gyroMeasError=float(3.14159265358979* (5.0 / 180.0)) # gyroscope measurement error in /s (shown as 5 deg/s) beta =float(math.sqrt(3.0/ 4.0) * gyroMeasError) SEq_1 = 1.0 SEq_2 = 0.0 SEq_3 = 0.0 SEq_4 = 0.0 # estimated orientation quaternion elements with initial conditions def filterUpdate( w_x, w_y, w_z, a_x, a_y, a_z): global SEq_1,SEq_2,SEq_3,SEq_4 halfSEq_1 = float(0.5 * SEq_1) halfSEq_2 = float(0.5 * SEq_2) halfSEq_3 = float(0.5 * SEq_3) halfSEq_4 = float(0.5 * SEq_4) twoSEq_1 = float(2.0 * SEq_1) twoSEq_2 = float(2.0 * SEq_2) twoSEq_3 = float(2.0 * SEq_3) # Normalise the accelerometer measurement norm = math.sqrt(a_x * a_x + a_y * a_y + a_z * a_z) a_x /= norm a_y /= norm a_z /= norm # Compute the objective function and Jacobian f_1 = twoSEq_2 * SEq_4 - twoSEq_1 * SEq_3 - a_x f_2 = twoSEq_1 * SEq_2 + twoSEq_3 * SEq_4 - a_y f_3 = 1.0 - twoSEq_2 * SEq_2 - twoSEq_3 * SEq_3 - a_z J_11or24 = twoSEq_3 # J_11 negated in matrix multiplication J_12or23 = 2.0 * SEq_4 J_13or22 = twoSEq_1 # J_12 negated in matrix multiplication J_14or21 = twoSEq_2 J_32 = 2.0 * J_14or21 # negated in matrix multiplication J_33 = 2.0 * J_11or24 # negated in matrix multiplication # Compute the gradient (matrix multiplication) SEqHatDot_1 = J_14or21 * f_2 - J_11or24 * f_1 SEqHatDot_2 = J_12or23 * f_1 + J_13or22 * f_2 - J_32 * f_3 SEqHatDot_3 = J_12or23 * f_2 - J_33 * f_3 - J_13or22 * f_1 SEqHatDot_4 = J_14or21 * f_1 + J_11or24 * f_2 # Normalise the gradient norm = math.sqrt(SEqHatDot_1 * SEqHatDot_1 + SEqHatDot_2 * SEqHatDot_2 + SEqHatDot_3 * SEqHatDot_3 + SEqHatDot_4 * SEqHatDot_4) SEqHatDot_1 /= norm SEqHatDot_2 /= norm SEqHatDot_3 /= norm SEqHatDot_4 /= norm # Compute the quaternion derrivative measured by gyroscopes SEqDot_omega_1 = -halfSEq_2 * w_x - halfSEq_3 * w_y - halfSEq_4 * w_z SEqDot_omega_2 = halfSEq_1 * w_x + halfSEq_3 * w_z - halfSEq_4 * w_y SEqDot_omega_3 = halfSEq_1 * w_y - halfSEq_2 * w_z + halfSEq_4 * w_x SEqDot_omega_4 = halfSEq_1 * w_z + halfSEq_2 * w_y - halfSEq_3 * w_x # Compute then integrate the estimated quaternion derrivative SEq_1 += (SEqDot_omega_1 - (beta * SEqHatDot_1)) * deltat SEq_2 += (SEqDot_omega_2 - (beta * SEqHatDot_2)) * deltat SEq_3 += (SEqDot_omega_3 - (beta * SEqHatDot_3)) * deltat SEq_4 += (SEqDot_omega_4 - (beta * SEqHatDot_4)) * deltat # Normalise quaternion norm = math.sqrt(SEq_1 * SEq_1 + SEq_2 * SEq_2 + SEq_3 * SEq_3 + SEq_4 * SEq_4) SEq_1 /= norm SEq_2 /= norm SEq_3 /= norm SEq_4 /= norm return [SEq_1,SEq_2,SEq_3,SEq_4]
[ "sourabhraghav2@gmail.com" ]
sourabhraghav2@gmail.com
6232b159f028a44b8efe990437ef82bf78cad220
e1ee8e7c4e92fef77277cbd0c19079ddd769069e
/docs/runtimes/Python27/Lib/site-packages/pythonwin/pywin/tools/regpy.py
5759468f09b8acb106023a0a62a11319af2e1a68
[]
no_license
van7hu/fanca
3c278f0ea0855eb2f0f7a7394788088e7e1c1ad2
a8864116246bcfe2d517c48831d38e02f107e534
refs/heads/master
2021-01-10T02:04:04.361617
2015-10-18T15:34:34
2015-10-18T15:34:34
43,810,422
8
1
null
null
null
null
UTF-8
Python
false
false
1,885
py
# (sort-of) Registry editor import win32ui import dialog import win32con import commctrl class RegistryControl: def __init__(self, key): self.key = key class RegEditPropertyPage(dialog.PropertyPage): IDC_LISTVIEW = 1000 def GetTemplate(self): "Return the template used to create this dialog" w = 152 # Dialog width h = 122 # Dialog height SS_STD = win32con.WS_CHILD | win32con.WS_VISIBLE FRAMEDLG_STD = win32con.WS_CAPTION | win32con.WS_SYSMENU style = FRAMEDLG_STD | win32con.WS_VISIBLE | win32con.DS_SETFONT | win32con.WS_MINIMIZEBOX template = [[self.caption, (0, 0, w, h), style, None, (8, 'Helv')], ] lvStyle = SS_STD | commctrl.LVS_EDITLABELS | commctrl.LVS_REPORT | commctrl.LVS_AUTOARRANGE | commctrl.LVS_ALIGNLEFT | win32con.WS_BORDER | win32con.WS_TABSTOP template.append(["SysListView32", "", self.IDC_LISTVIEW, (10, 10, 185, 100), lvStyle]) return template class RegistryPage(RegEditPropertyPage): def __init__(self): self.caption="Path" RegEditPropertyPage.__init__(self, self.GetTemplate()) def OnInitDialog(self): self.listview = self.GetDlgItem(self.IDC_LISTVIEW) RegEditPropertyPage.OnInitDialog(self) # Setup the listview columns itemDetails = (commctrl.LVCFMT_LEFT, 100, "App", 0) self.listview.InsertColumn(0, itemDetails) itemDetails = (commctrl.LVCFMT_LEFT, 1024, "Paths", 0) self.listview.InsertColumn(1, itemDetails) index = self.listview.InsertItem(0,"App") self.listview.SetItemText(index, 1, "Path") class RegistrySheet(dialog.PropertySheet): def __init__(self, title): dialog.PropertySheet.__init__(self, title) self.HookMessage(self.OnActivate, win32con.WM_ACTIVATE) def OnActivate(self, msg): print "OnAcivate" def t(): ps=RegistrySheet('Registry Settings') ps.AddPage(RegistryPage()) ps.DoModal() if __name__=='__main__': t()
[ "van7hu@gmail.com" ]
van7hu@gmail.com
5cdb0501fd8c8c30df2605856090ccd991199256
19f2fb3f384c57339e78f85fe21567068cef87a8
/budgetr/migrations/0002_flow_start_date.py
1a53a94cb88c217b364d899252bc67de742bad77
[]
no_license
rrlittle/budgetr_site
bc168812a0e1117311c59044dcdfae9e6c3908ad
10a214ede5f61735f9982500f605fa9fb11cba2f
refs/heads/master
2021-01-20T06:29:26.726011
2017-05-10T22:02:40
2017-05-10T22:02:40
89,885,475
0
0
null
null
null
null
UTF-8
Python
false
false
587
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.6 on 2017-04-30 21:31 from __future__ import unicode_literals import datetime from django.db import migrations, models from django.utils.timezone import utc class Migration(migrations.Migration): dependencies = [ ('budgetr', '0001_initial'), ] operations = [ migrations.AddField( model_name='flow', name='start_date', field=models.DateField(default=datetime.datetime(2017, 4, 30, 21, 31, 17, 475887, tzinfo=utc)), preserve_default=False, ), ]
[ "rrlittle2@gmail.com" ]
rrlittle2@gmail.com
ce51e6a69701a01c52fd2b57c4df7eb531aff74a
622e42704408473c3b2b7ac4d39c5fcd493f40b5
/test/toppra.py
2276e924b5da20ddf3a793437f3417d4eb2e6e4b
[ "MIT" ]
permissive
zzz622848/ruckig
06b97c291b78faf7c11bb85e86d8f16887aa99b9
60a40b32c4b73b78c8d37b06c6afa7cbaff4f0e8
refs/heads/master
2023-07-05T00:38:32.287582
2021-08-30T09:25:53
2021-08-30T09:25:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,480
py
from pathlib import Path from sys import path import time import numpy as np import toppra as ta import toppra.constraint as constraint import toppra.algorithm as algo from plotter import Plotter path.insert(0, str(Path(__file__).parent.absolute().parent / 'build')) from ruckig import InputParameter, Ruckig class SimpleOut: time = None new_position = [] new_velocity = [] new_acceleration = [] def generate_new_problem(i, seed=9): way_pts = np.random.uniform(-2, 2, size=(4, 3)) # way_pts = np.array([ # np.linspace(0.0, 1.0, 20), # np.linspace(0.01, 1.01, 20), # np.linspace(0.02, 1.02, 20) # ]).T way_pts = np.concatenate([[[0, 0, 0]], way_pts, [[1, 1, 1]]]) return ( np.linspace(0, 1, way_pts.shape[0]), way_pts, [1, 1, 1], [2, 2, 2], ) if __name__ == '__main__': np.random.seed(42) ta.setup_logging("INFO") # durations = 0.0 # for i in range(250): # ss, way_pts, vlims, alims = generate_new_problem(i) # # print(way_pts) # path = ta.SplineInterpolator(ss, way_pts) # pc_vel = constraint.JointVelocityConstraint(vlims) # pc_acc = constraint.JointAccelerationConstraint(alims) # instance = algo.TOPPRA([pc_vel, pc_acc], path, parametrizer="ParametrizeConstAccel") # s = time.time() # jnt_traj = instance.compute_trajectory() # e = time.time() # durations += (e - s) * 1000 # # durations += jnt_traj.duration # print(durations/250) ss, way_pts, vlims, alims = generate_new_problem(None) path = ta.SplineInterpolator(ss, way_pts) pc_vel = constraint.JointVelocityConstraint(vlims) pc_acc = constraint.JointAccelerationConstraint(alims) instance = algo.TOPPRA([pc_vel, pc_acc], path, parametrizer="ParametrizeConstAccel") s = time.time() jnt_traj = instance.compute_trajectory() otg = Ruckig(3, 0.01) inp = InputParameter(3) inp.max_jerk = [1000, 1000, 1000] inp.max_acceleration = alims inp.max_velocity = vlims out_list = [] ts_sample = np.linspace(0, jnt_traj.duration, 100) for t in ts_sample: out = SimpleOut() out.time = t out.new_position = jnt_traj(t) out.new_velocity = jnt_traj(t, 1) out.new_acceleration = jnt_traj(t, 2) out_list.append(out) Plotter.plot_trajectory('otg_trajectory_toppra.png', otg, inp, out_list, plot_jerk=False)
[ "lars.berscheid@kit.edu" ]
lars.berscheid@kit.edu
da1a5b8ba1d97d5761d2041d3878d7777f846781
fd36f1935a2c03ab4ec6d061a170bcf62ec4fcd9
/tools/sense_studio/utils.py
d20f57ecdfc7aab7e78fcba130163900dd995e2a
[]
no_license
346644054/FlashFinger
a7a65f2312bf4d826def349a56b8959d4efaa3f3
2cd66a60f2029e3d23434be39f53e6642a01dd07
refs/heads/master
2023-04-28T16:56:26.382632
2021-05-24T05:48:10
2021-05-24T05:48:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,816
py
import json import numpy as np import os from joblib import dump from sklearn.linear_model import LogisticRegression from sense.engine import InferenceEngine from sense.loading import build_backbone_network from sense.loading import get_relevant_weights from sense.loading import ModelConfig from tools import directories from tools.sense_studio.project_utils import get_project_setting SUPPORTED_MODEL_CONFIGURATIONS = [ ModelConfig('StridedInflatedEfficientNet', 'pro', []), ModelConfig('StridedInflatedMobileNetV2', 'pro', []), ModelConfig('StridedInflatedEfficientNet', 'lite', []), ModelConfig('StridedInflatedMobileNetV2', 'lite', []), ] BACKBONE_MODELS = [model_name.combined_model_name for model_name in SUPPORTED_MODEL_CONFIGURATIONS] def load_feature_extractor(project_path): # Load weights model_config, weights = get_relevant_weights(SUPPORTED_MODEL_CONFIGURATIONS) # Setup backbone network backbone_network = build_backbone_network(model_config, weights['backbone']) # Create Inference Engine use_gpu = get_project_setting(project_path, 'use_gpu') inference_engine = InferenceEngine(backbone_network, use_gpu=use_gpu) return inference_engine, model_config def is_image_file(filename): """ Returns `True` if the file has a valid image extension. """ return '.' in filename and filename.rsplit('.', 1)[1] in ('png', 'jpg', 'jpeg', 'gif', 'bmp') def get_class_name_and_tags(form_data): """ Extract 'className', 'tag1' and 'tag2' from the given form data and make sure that the tags are not empty or the same. """ class_name = form_data['className'] tag1 = form_data['tag1'] or f'{class_name}_tag1' tag2 = form_data['tag2'] or f'{class_name}_tag2' if tag2 == tag1: tag1 = f'{tag1}_1' tag2 = f'{tag2}_2' return class_name, tag1, tag2 def train_logreg(path, split, label): """ (Re-)Train a logistic regression model on all annotations that have been submitted so far. """ _, model_config = load_feature_extractor(path) features_dir = directories.get_features_dir(path, split, model_config, label=label) tags_dir = directories.get_tags_dir(path, split, label) logreg_dir = directories.get_logreg_dir(path, model_config, label) logreg_path = os.path.join(logreg_dir, 'logreg.joblib') annotations = os.listdir(tags_dir) if os.path.exists(tags_dir) else None if not annotations: return features = [os.path.join(features_dir, x.replace('.json', '.npy')) for x in annotations] annotations = [os.path.join(tags_dir, x) for x in annotations] x = [] y = [] class_weight = {0: 0.5} for feature in features: feature = np.load(feature) for f in feature: x.append(f.mean(axis=(1, 2))) for annotation in annotations: with open(annotation, 'r') as f: annotation = json.load(f)['time_annotation'] pos1 = np.where(np.array(annotation).astype(int) == 1)[0] if len(pos1) > 0: class_weight.update({1: 2}) for p in pos1: if p + 1 < len(annotation): annotation[p + 1] = 1 pos1 = np.where(np.array(annotation).astype(int) == 2)[0] if len(pos1) > 0: class_weight.update({2: 2}) for p in pos1: if p + 1 < len(annotation): annotation[p + 1] = 2 for a in annotation: y.append(a) x = np.array(x) y = np.array(y) if len(class_weight) > 1: logreg = LogisticRegression(C=0.1, class_weight=class_weight) logreg.fit(x, y) dump(logreg, logreg_path)
[ "QT@users.noreply.github.com" ]
QT@users.noreply.github.com
119622240c9b5ec29a6dece9fae33d21d3223d64
fe934523d8f9b17763baffec09498ed6740b3420
/src/devilry_qualifiesforexam/devilry_qualifiesforexam/tests/statusprintview.py
ff509bf734285db488f1db9a0a17372f592e5351
[]
no_license
tworide/devilry-django
b13017dd3904cef6972993ec889e2b513e4a9b28
af554253ab5896806d88414694f3c7ba5d523d74
refs/heads/master
2021-01-15T20:43:17.985336
2013-07-09T18:55:58
2013-07-09T18:55:58
1,872,453
0
0
null
null
null
null
UTF-8
Python
false
false
1,721
py
from django.test import TestCase from django.core.urlresolvers import reverse from devilry.apps.core.testhelper import TestHelper from devilry_qualifiesforexam.models import Status class TestStatusPrintView(TestCase): def setUp(self): self.testhelper = TestHelper() self.testhelper.create_superuser('superuser') def _get_url(self, status_id): return reverse('devilry_qualifiesforexam_statusprint', kwargs={'status_id': status_id}) def _getas(self, username, status_id): self.client.login(username=username, password='test') return self.client.get(self._get_url(status_id)) def test_status_not_found(self): response = self._getas('superuser', 1) self.assertEqual(response.status_code, 404) def test_status_forbidden(self): self.testhelper.add(nodes='uni', subjects=['sub'], periods=['p1:admin(periodadmin):begins(-3):ends(6)']) status = Status.objects.create( user=self.testhelper.superuser, period=self.testhelper.sub_p1, status=Status.READY) self.testhelper.create_user('nobody') response = self._getas('nobody', status.pk) self.assertEqual(response.status_code, 403) def test_status_not_ready(self): self.testhelper.add(nodes='uni', subjects=['sub'], periods=['p1:admin(periodadmin):begins(-3):ends(6)']) status = Status.objects.create( user=self.testhelper.superuser, period=self.testhelper.sub_p1, status=Status.NOTREADY) response = self._getas('superuser', status.pk) self.assertEqual(response.status_code, 404)
[ "post@espenak.net" ]
post@espenak.net
5e31439f6ef8877bc551eb574e79ba5a5c45772f
8254970811a8aa76ad22aeacec0455fc15b43000
/hello.py
fef48f3af8068de5139a60b33151b177db42be0a
[]
no_license
Daarh/Hello-world
3ffaf8b54ad0366a88048c96d7aef7c6d4b13345
e04fee12f67efe820356108072219db1a8617046
refs/heads/master
2021-01-19T07:40:42.016907
2013-04-07T07:27:45
2013-04-07T07:27:45
1,606,039
0
0
null
null
null
null
UTF-8
Python
false
false
100
py
print ("Hello Git!") print ("This is work?") print ("Yep! I do it, but understand how this work")
[ "satimon@gmail.com" ]
satimon@gmail.com
2775c0868b4c25f04216a4b97a154405231a3abd
34bac3e5b17a8b646ecfc0e784f2e683cde67760
/cpe101/hw5/collisions.py
ab310458a5306fc1bcb93c27fa59b4a566ddc502
[]
no_license
bertair7/schoolprojects
ac37b288ce1a586947e47a5e8511bb49f3cf1fda
5f757738d39c02642cbd89dbec7cd48aed4cd919
refs/heads/master
2020-03-24T22:02:39.053866
2018-07-31T20:40:42
2018-07-31T20:40:42
143,063,473
0
0
null
null
null
null
UTF-8
Python
false
false
1,064
py
import data from vector_math import * def sphere_intersection_point(ray, sphere): A = dot_vector(ray.dir, ray.dir) B = 2 * dot_vector((difference_point(ray.pt, sphere.center)), ray.dir) C = dot_vector((difference_point(ray.pt, sphere.center)), (difference_point(ray.pt, sphere.center))) - sphere.radius ** 2 v = discriminant(A, B, C) if v >= 0: t = (-B - math.sqrt(v)) / (2 * A) t2 = (-B + math.sqrt(v)) / (2 * A) if t >= 0: return translate_point(ray.pt, scale_vector(ray.dir, t)) elif t2 >= 0: return translate_point(ray.pt, scale_vector(ray.dir, t2)) def discriminant(a, b, c): return (b ** 2) - (4 * a * c) def find_intersection_points(sphere_list, ray): E = [] N = [sphere_intersection_point(ray, x) for x in sphere_list] i = 0 for n in N: if n != None: E.append((sphere_list[i], n)) i += 1 else: i += 1 return E def sphere_normal_at_point(sphere, point): vec = vector_from_to(sphere.center, point) return normalize_vector(vec)
[ "rablair@calpoly.edu" ]
rablair@calpoly.edu
25bc2aa94cd161d7305f5cf63cbbae7bb8932c76
ad5d38fce4785037c108186f17eb1c64380355ef
/sddsd/google-cloud-sdk/lib/surface/kuberun/applications/describe.py
2e78f1b2d7338dbfae878c76270492f94624b95e
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0" ]
permissive
saranraju90/multik8s
75864b605a139ddb7947ed4de4ae8466bdd49acb
428576dedef7bb9cd6516e2c1ab2714581e1137c
refs/heads/master
2023-03-03T21:56:14.383571
2021-02-20T14:56:42
2021-02-20T14:56:42
339,665,231
0
0
null
null
null
null
UTF-8
Python
false
false
1,713
py
# -*- coding: utf-8 -*- # # Copyright 2019 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Describe a KubeRun application.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals from googlecloudsdk.calliope import base from googlecloudsdk.command_lib.kuberun import kuberun_command from googlecloudsdk.core import log _DETAILED_HELP = ({ 'EXAMPLES': """ To show all the data about the KubeRun application associated with the current working directory, run: $ {command} """, }) @base.ReleaseTracks(base.ReleaseTrack.ALPHA) class Describe(kuberun_command.KubeRunCommand, base.DescribeCommand): """Describes a KubeRun application.""" detailed_help = _DETAILED_HELP flags = [] @classmethod def Args(cls, parser): super(Describe, cls).Args(parser) def Command(self): return ['applications', 'describe'] def FormatOutput(self, out, args): # TODO(b/170429098): handle this as JSON if not out: return out return out + '\n' # TODO(b/170429098): remove this workaround def Display(self, args, output): log.out.write(output)
[ "saranraju90@gmail.com" ]
saranraju90@gmail.com
a7f29204a83dfb2884b624f10967ca5bc0854d93
0946a8c53c6e625da2f5098cc8fee14126b5fbe5
/ex023.py
ae0e1d3ebf3329a0334782b0952d3909f617dd8e
[]
no_license
humana42/curso_em_video_Python
5566a35b762589c0835bb4396265725fe252613a
0c7a4a593bd118c323f2d27ce35cb0d9899198c2
refs/heads/main
2023-02-01T10:31:30.308634
2020-12-16T12:38:52
2020-12-16T12:38:52
306,768,948
0
0
null
null
null
null
UTF-8
Python
false
false
282
py
n = int(input('Digite um numero: ')) u = n//1 % 10 d = n//10 % 10 c = n//100 % 10 m = n//1000 % 10 print('o numero possui {} unidades'.format(u)) print('o numero possui {} dezena'.format(d)) print('o numero possui {} centena'.format(c)) print('o numero possui {} milhar'.format(m))
[ "noreply@github.com" ]
humana42.noreply@github.com
a79010c3fed37025cd48242acb74512a5d588593
0e55ea6ca2c36e3f9b5c58cb3f44f5aaec75560c
/youtadata/youtadata/app_accounts/views.py
40f612a2561642b8f3ac610124122b28dedc29f2
[]
no_license
amin7mazaheri/youtadata-site
528bbabef4b9a430672194e4e8d71f54f1d6e51d
db770cccdb39a936111f06f9ccb7f9ca7a854e94
refs/heads/master
2022-12-13T08:40:07.533557
2019-09-04T15:07:23
2019-09-04T15:07:23
200,056,433
1
0
null
2022-11-22T03:35:50
2019-08-01T13:31:44
JavaScript
UTF-8
Python
false
false
382
py
from django.shortcuts import render from django.contrib.auth.decorators import login_required from app_accounts.models import RegisteredCourse @login_required def profile(request): # import ipdb ; ipdb.set_trace(); ctx = {} ctx['registered_course'] = [rc.course for rc in request.user.registeredcourse_set.all()] return render(request, 'student-dashbord.html', ctx)
[ "mazaheri7amin@gmail.com" ]
mazaheri7amin@gmail.com
e44c17545c6248e453002fa7fd8fb168fdb50244
7ef3992d882ae700d153f7985a09713cc8bbf260
/nomadgram/notifications/migrations/0012_auto_20190315_0101.py
a4df07540d095e195f9e2f93eda71513bb3ba389
[ "MIT" ]
permissive
kode-soar/nomadgram
68df70445a52a18913aab22e3f03ca6ac8ca94b7
1abb40135a0cf9f7d5d9f7363e5f555ecc940ece
refs/heads/master
2023-01-09T11:36:36.738209
2019-03-28T14:33:07
2019-03-28T14:33:07
171,076,140
0
0
MIT
2023-01-03T18:18:09
2019-02-17T03:04:53
Python
UTF-8
Python
false
false
675
py
# Generated by Django 2.0.13 on 2019-03-14 16:01 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('images', '0004_image_tags'), ('notifications', '0011_auto_20190315_0100'), ] operations = [ migrations.RemoveField( model_name='notification', name='image', ), migrations.AddField( model_name='notification', name='imagess', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.PROTECT, related_name='imagess', to='images.Image'), ), ]
[ "kode.soar@gmail.com" ]
kode.soar@gmail.com
71e26ad654e533b1909884dadced09b8972863a8
bf271b1e6d055a298c37d7f400f1a3c877b58a09
/test.py
3a18e82f72afb811b054333d5bc05518a7edaabe
[]
no_license
SinForest/color_die_trying
68d2386abf040959907492f0afba8748fd78be1b
358a06a86795b26a060e40e6dd8ad37d6ad46b27
refs/heads/master
2020-03-18T00:25:57.203092
2019-03-19T09:21:28
2019-03-19T09:21:28
134,093,731
0
0
null
null
null
null
UTF-8
Python
false
false
4,886
py
#!/usr/bin/env python3 from errors import * from field import Field from game import Game import json import itertools class Tests: def __init__(self): self.field_cases = {} def test_func_err(self, name, func, *args, **kwargs): try: return func(*args, **kwargs) except Exception as e: raise NestedTestError(name, e) def test_assert_equal(self, name, real, should): try: assert real == should, "\n".join(["{} <-r-s-> {}".format( "".join(r),"".join(s)) for r, s in zip(real, should)]) except Exception as e: raise NestedTestError(name, e) def test_should_except(self, func, *args, catch=[], **kwargs): try: func(*args, **kwargs) except Exception as e: if catch and type(catch) == list: return type(e) in catch elif catch: return type(e) == catch else: return True # did except with unspecified exception else: return False # did not except def test_game(self): s = "" try: s = "[init] creating game" g = Game() # players: 2; size: 50 s = "[start] not enough players" assert not g.start() s = "[get_cp] get (no) current player" self.test_should_except(g.get_curr_player, catch=GameError) s = "[play] play when nobody is in" self.test_should_except(g.play, None, catch=GameError) s = "[reg] add first player" g.reg_player("Test Osteron") s = "[start] start game" g.start() s = "[start] start game again" self.test_should_except(g.start, catch=GameError) s = "[reg] add player on started game" self.test_should_except(g.reg_player, catch=GameError) #TODO: has_started x2 except: raise def test_defaults(self): s = "" try: s = "[init] creating 20x20-field" field = Field(20) s = "[play] playing card on (0,0)" field.play_card(0, 0, "r") s = "[fill] playing card on (0,19)" field.play_card(0, 19, "r") s = "[mix] playing card on (19,19)" field.play_card(19, 19, "y") s = "[get] get mixed color on (9,19)" color = field.get_color(9, 19) s = "[check] color should be orange" assert color == "o" s = "[get] get mixed color on (0,9)" color = field.get_color(0, 9) s = "[check] color should be red" assert color == "r" except Exception as e: print("Default Tests failed at:\n" + s) print("Field:\n" + str(field)) raise e def add_case_field(self, before, position, color, after, name=None): if name is None: for i,e in enumerate(sorted([x for x in self.field_cases.keys() if type(x) == int])): if i != e: name = i break while name in self.field_cases.keys(): name = str(name) + "|" self.field_cases[name] = ([list(s) for s in before], tuple(position), color, [list(s) for s in after]) def field_test(self, name): (b, p, c, a) = self.field_cases[name] field = self.test_func_err("Creating Field", Field, field=b) self.test_func_err("Setting Color", field.play_card, *p, c) self.test_assert_equal("Testing equality", field._data, a) def print_passed(self, name, fail, amount): s = "{}/{}".format(amount - fail, amount) if fail else "all" print("{} Tests: {} tests passed.".format(name, s)) def test(self, verbose=True): failed = {} # test default cases: self.test_defaults() # Doesn't continue if this fails! print("Default Tests passed") # test field tests: fail_count = 0 for name in sorted(self.field_cases.keys()): try: self.field_test(name) except NestedTestError as e: fail_count += 1 failed[name] = e self.print_passed("Field", fail_count, len(self.field_cases)) if fail_count > 0: for name, e in failed.items(): print('"{}": '.format(name), e) self.test_game() print("Game Tests passed") def read_field_cases(self, fp="./field_tests.json"): for name, case in json.load(open(fp, 'r')).items(): self.add_case_field(**case, name=name) return self def main(): tests = Tests().read_field_cases() tests.test() if __name__ == '__main__': main()
[ "github@thesinforest.eu" ]
github@thesinforest.eu
d62f327f6d19068f498b05188f56a0b396577377
82fb1aa92d5203770ff065d1389e6bcaf5ed92b3
/scripts/histogram_equalization.py
3fb51a171261225df745b4f6724e1202fbd3b631
[]
no_license
dinabandhu50/opencv_projects
7006bd6d4cacd12f2540a8091030b53cf0d7d9d4
32eeec978dd94713d02d5a3f6cd0cc56583aef85
refs/heads/master
2021-01-08T21:50:03.555643
2020-03-07T03:55:58
2020-03-07T03:55:58
242,151,818
0
0
null
null
null
null
UTF-8
Python
false
false
1,321
py
import cv2 import numpy as np import matplotlib.pyplot as plt # %% img = cv2.imread('./data/image_3.jpg', 0) print(img.shape) # %% def bgr2rgb(img): """ The cv2 reads image in BGR format while plt showes image in RGB format. To overcome this follow: b,g,r = cv2.split(img) img = cv2.merge([r,g,b]) """ if len(img.shape) == 3 and img.shape[2] == 3: b, g, r = cv2.split(img) out = cv2.merge([r, g, b]) else: out = img return out # %% Histogram eqalization hist, bins = np.histogram(img.flatten(), 256, (0, 256)) cdf = hist.cumsum() cdf_normalized = cdf * hist.max()/hist.cumsum().max() # Histogram Equalization equ = cv2.equalizeHist(img) hist_equ, bins_equ = np.histogram(equ.flatten(), 256, (0, 256)) # Contrast Limited Adaptive Histogram Equalization clahe = cv2.createCLAHE(clipLimit=20.0, tileGridSize=(8, 8)) cl1 = clahe.apply(img) hist_cl1, bins_cl1 = np.histogram(cl1.flatten(), 256, (0, 256)) # Horizontal stack of images res = np.hstack((img, equ, cl1)) plt.figure(1) plt.imshow(bgr2rgb(res), cmap='gray') # %% plt.figure(2) plt.plot(hist, color='b', label="hist") plt.plot(hist_equ, color='g', label="hist equalized") plt.plot(hist_cl1, color='r', label="hist CLAHE") plt.plot(cdf_normalized, 'y', label='CDF normalized') plt.legend() plt.show()
[ "beheradinabandhu50@gmail.com" ]
beheradinabandhu50@gmail.com
215f63c56fcb7e4ed600067263c981ea47694774
3388ea58c1fcae5f8d5dfa7e6e22033d3676d866
/messagebox/messagebox/urls.py
4a80041de8eae0aa1307aae4b7f69a87e595b596
[]
no_license
ssmi4th98/django
58763d8f628de2d1391458572d143b2a7e6564e7
db577514398ebf3d8f9f9e24de22c3f4084d9e17
refs/heads/master
2022-12-17T07:31:35.780528
2020-09-14T13:33:07
2020-09-14T13:33:07
295,007,985
0
0
null
null
null
null
UTF-8
Python
false
false
933
py
"""messagebox URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.conf.urls import url # can also use "from django.urls import path" to set paths from main import views as my_views urlpatterns = [ #path('admin/', admin.site.urls), url(r'^admin/', admin.site.urls), url(r'^$',my_views.home,name='home') ]
[ "s.e.smith@accenturefederal.com" ]
s.e.smith@accenturefederal.com
3677902b71b928321cf328fcb9adce33ea2b84a5
1083a3e39e10baad0ab37bb0777b2209ccfbca18
/supercache/engine/memory.py
662336d44c462304b2b5f94e8721da8b5b0d3e73
[ "MIT" ]
permissive
huntfx/supercache
6823cf5ef189b1ee54ca14b14f6c14f9b16830f3
e85ae87e4c2fead6e2a6aa55c0983d249512f34d
refs/heads/master
2023-06-29T18:32:06.106821
2021-08-06T10:02:59
2021-08-06T10:02:59
244,196,609
1
0
null
null
null
null
UTF-8
Python
false
false
7,450
py
import time from collections import defaultdict from .. import exceptions, utils class Memory(object): """Cache directly in memory. This is by far the fastest solution, but the cache cannot be shared outside the current process. This is not completely thread safe, but care has been taken to avoid any errors from stopping the code working. """ FIFO = FirstInFirstOut = 0 FILO = FirstInLastOut = 1 LRU = LeastRecentlyUsed = 2 MRU = MostRecentlyUsed = 3 LFU = LeastFrequentlyUsed = 4 def __init__(self, ttl=None, mode=LRU, count=None, size=None): """Create a new engine. Parameters: mode (int): How to purge the old keys. ttl (int): Time the cache is valid for. Set to None for infinite. count (int): Maximum cache results to store. Set to None or 0 for infinite. size (int): Maximum size of cache in bytes. This is a soft limit, where the memory will be allocated first, and any extra cache purged later. The latest cache item will always be stored. Set to None for infinite. """ self.data = dict( result={}, hits=defaultdict(int), misses=defaultdict(int), size={None: 0}, ttl={}, insert={}, access={} ) self.mode = mode self.ttl = ttl self.count = count self.size = size self._next_ttl = float('inf') def keys(self): """Get the current stored cache keys.""" return list(iter(self)) def __iter__(self): """Iterate through all the keys.""" self._purge() return iter(self.data['result']) def exists(self, key): """Find if cache currently exists for a given key. Any key past its ttl will be removed. """ if key in self.data['result']: if self.expired(key): self.delete(key) return False return True return False def expired(self, key, _current_time=None): """Determine is a key has expired.""" if key not in self.data['ttl']: return False if _current_time is None: _current_time = time.time() try: return self.data['ttl'][key] <= _current_time except KeyError: return True def get(self, key, purge=False): """Get the value belonging to a key. An error will be raised if the cache is expired or doesn't exist. """ if purge: self._purge() if not self.exists(key): raise exceptions.CacheNotFound(key) # If a purge was done, then skip the expiry check if not purge and self.expired(key): raise exceptions.CacheExpired(key) try: self.data['hits'][key] += 1 self.data['access'][key] = time.time() return self.data['result'][key] except KeyError: raise exceptions.CacheExpired(key) def put(self, key, value, ttl=None, purge=True): """Add a new value to cache. This will overwrite any old cache with the same key. """ if ttl is None: ttl = self.ttl self.data['result'][key] = value try: self.data['misses'][key] += 1 except KeyError: self.data['misses'][key] = 1 # Calculate size if self.size is not None: size = utils.getsize(value) self.data['size'][None] += size - self.data['size'].get(key, 0) self.data['size'][key] = size # Set insert/access time current_time = time.time() self.data['insert'][key] = self.data['access'][key] = current_time # Set timeout if ttl is None or ttl <= 0: try: del self.data['ttl'][key] except KeyError: pass else: self.data['ttl'][key] = current_time + ttl self._next_ttl = min(self._next_ttl, self.data['ttl'][key]) # Clean old keys if purge: self._purge(ignore=key) def delete(self, key): """Delete an item of cache. This will not remove the hits or misses. """ if key in self.data['result']: try: del self.data['result'][key] del self.data['insert'][key] del self.data['access'][key] if key in self.data['ttl']: del self.data['ttl'][key] if self.size is not None: self.data['size'][None] -= self.data['size'].pop(key) except KeyError: pass return True return False def hits(self, key): """Return the number of hits on an item of cache.""" return self.data['hits'].get(key, 0) def misses(self, key): """Return the number of misses on an item of cache.""" return self.data['misses'].get(key, 0) def _purge(self, ignore=None): """Remove old cache.""" count = self.count size = self.size purged = 0 # Delete expired if self.data['ttl']: current_time = time.time() if current_time > self._next_ttl: self._next_ttl = float('inf') for key in tuple(self.data['result']): if self.expired(key, _current_time=current_time): self.delete(key) elif key in self.data['ttl']: try: self._next_ttl = min(self._next_ttl, self.data['ttl'][key]) except KeyError: pass # Determine if we can skip if count is not None and len(self.data['result']) < count: count = None if size is not None and self.data['size'][None] < size: size = None if count is None and size is None: return purged # Order the keys if self.mode == self.FirstInFirstOut: order_by = lambda k: self.data['insert'][k] elif self.mode == self.FirstInLastOut: order_by = lambda k: -self.data['insert'][k] elif self.mode == self.LeastRecentlyUsed: order_by = lambda k: self.data['access'][k] elif self.mode == self.MostRecentlyUsed: order_by = lambda k: -self.data['access'][k] elif self.mode == self.LeastFrequentlyUsed: order_by = lambda k: self.data['hits'][k] else: raise NotImplementedError(self.mode) ordered_keys = sorted(self.data['result'], key=order_by, reverse=True) # Remove the cache data if count is not None: for key in ordered_keys[count:]: if key == ignore: continue self.delete(key) purged += 1 if size is not None: total_size = 0 for key in ordered_keys: if key == ignore: continue total_size += self.data['size'][key] if total_size > size: self.delete(key) purged += 1 return purged
[ "peter@huntfx.uk" ]
peter@huntfx.uk
f9fef7293b9342137c66bb53e33f238396d0d3a5
0f30f4b1f10ae5ade009d0ff729aa9ec4849f953
/learning/pmath/add.py
4757f1c4bdf84f86516a5781d68b6a5101737fb1
[]
no_license
pan1394/hello-world
c0e5aa53089ed9d5bdf2158bbcb0ea759b1d7d74
fe6633eb42dcccf136fe7334334921b82e2aa90b
refs/heads/master
2021-01-19T03:59:09.014342
2018-12-10T06:15:42
2018-12-10T06:15:42
60,680,368
0
0
null
2016-06-08T08:23:33
2016-06-08T08:08:55
null
UTF-8
Python
false
false
80
py
def add(a, b): return a + b if __name__ == "__main__": print(add(2,3))
[ "pan1394@126.com" ]
pan1394@126.com
b8ae9efc79a2a5b1389e6e8cfc793a8d2a5c06a4
8514fc79d48f702b14c60310b236a92b767393ff
/server/wsgi.py
750be1ff7d11264c73c3db736b3af1e83d9501d2
[]
no_license
sungsooha/ChimbukoVisualizationII
13c188cddd53413be6534600b2b6137e2c589159
1df77357a73f30b954e75dc080fd96f9e6738898
refs/heads/master
2020-06-28T20:07:04.124297
2019-10-31T15:05:59
2019-10-31T15:05:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
281
py
import os from server import create_app # Create an application instance that web servers can use. We store it as # "application" (the wsgi default) and also the much shorter and convenient # "app". application = app = create_app(os.environ.get('SERVER_CONFIG', 'production'))
[ "sungsooha@visws.csi.bnl.gov" ]
sungsooha@visws.csi.bnl.gov
eaf2eb10fb5b8d84bf77fa6e42a564c33cb05411
af38a64ba0908f6fff36760e8e2c6807991fb2db
/dict.py
2bf1c93afeaba0c33aceda5940afa5bf9e3e23e9
[]
no_license
Vinod096/learn-python
badbeac9a27ee6c22c70a5a057837586cede0849
0017174e3dbeea19ca25aaa348e75b2b8203caef
refs/heads/master
2022-05-26T13:22:07.490484
2022-05-01T10:19:32
2022-05-01T10:19:32
244,166,014
1
0
null
2020-03-04T08:16:14
2020-03-01T14:41:23
Python
UTF-8
Python
false
false
439
py
# Dictionaries # Lists # Tuples # Sets age = [1,2,3,4,5,1,1,1,2,2,2] ages_1 = {"1": 23, "2":33, "3":43, "10":12,"5":4} ages_2 = {1: 23, 2:33, 3:43} print(ages_1["5"]) print(ages_2[2]) #print(days) ages = set((1, 2, 3, 4, 5, 1, 1, 1, 2, 2, 2)) print(ages) for age in ages: print(age) tup = (1,2,3,4,4,2,1) lis = [1,2,3,4,4,2,1] lis[0] = 7 #Mutable # tup[0] = 6 #Immutable print(lis) print(tup) print(set(lis)) print(set(tup))
[ "vinod.raipati@hotmail.com" ]
vinod.raipati@hotmail.com
55b806a9c642a5668201a964324cdf6e28509ea8
56abe97d9da9a71eb497afaf51dffd2158b30e0f
/test/sclusterTest.py
f28a5cd8963090a59fac58a44c78815e2fa5ab05
[ "Apache-2.0" ]
permissive
dice-project/DICE-Anomaly-Detection-Tool
0875ee93e55fbaa7d517aa242e9735e121cffdf4
a5eeacb9e888348adbe97be0c26a500f2f03ec6f
refs/heads/master
2020-05-21T20:31:37.667770
2017-10-02T21:05:55
2017-10-02T21:05:55
64,146,313
4
0
null
null
null
null
UTF-8
Python
false
false
1,082
py
from dmonscikit import dmonscilearncluster import os import pandas as pd dataDir = os.path.join(os.path.dirname(os.path.abspath('')), 'data') modelDir = os.path.join(os.path.dirname(os.path.abspath('')), 'models') data = os.path.join(dataDir, 'Final_Merge.csv') data_df = pd.read_csv(data) print data_df dbscan = dmonscilearncluster.SciCluster(modelDir=modelDir) settings = {'eps': 0.9, 'min_samples': 10, 'metric': 'euclidean', 'algorithm': 'auto', 'leaf_size': 30, 'p': 0.2, 'n_jobs':1} # mname = os.path.join(dataDir, 'sdbscan_test.pkl') mname = 'test' dbscan.sdbscanTrain(settings=settings, mname=mname, data=data_df) # isolationFrst = dmonscilearncluster.SciCluster(modelDir=modelDir) settings2 = {'n_estimators': 100, 'max_samples': 100, 'contamination': 0.01, 'bootstrap': False, 'max_features': 1.0, 'n_jobs': -1, 'random_state': None, 'verbose': 0} # # mname = 'test' # isolationFrst.isolationForest(settings2, mname, data=data_df) print isolationFrst.detect('isoforest', 'test', data_df) print isolationFrst.detect('sdbscan', 'test', data_df)
[ "juhasz_gabriel@yahoo.com" ]
juhasz_gabriel@yahoo.com
9a7bbd3a168fcf5c31668bd1880b909ef7164f5c
5e7b5697c8648d953933d701962093c714dc37ea
/cam/video_record.py
fc0e82fdbccc1cd6aecd6d52f5e3f3ed3562963a
[]
no_license
santsaran1/new_farmland
b02191485779353c5462a46d6aec59fc4e335e5e
f4343c09a6a552eb41361bcb4bcd2e5d26b1286d
refs/heads/master
2020-12-25T11:52:45.097720
2016-04-25T18:22:19
2016-04-25T18:22:19
58,182,380
0
0
null
null
null
null
UTF-8
Python
false
false
126
py
avconv -loglevel quiet -f video4linux2 -r 10 -t 00:00:40 -i /dev/video0 test.avi fswebcam -r 640x480 --jpeg 85 -D 1 shot.jpg
[ "shtl.borganve@gmail.com" ]
shtl.borganve@gmail.com
6abc99b0ea036e849423e18416801494532d591a
e4b35222d08123e551e230f84d4c751df94c4a76
/randomgamever2.py
3e246b916162c67269b4fb7589f7aefb1d1789e2
[]
no_license
Rohithuppalapati/Python-Module-practice
7eb4814cb41e40038e3cfdc6889f859ad07ed9e9
3642ad04d31e1923446a612b7e2536a003d1645d
refs/heads/master
2023-07-06T15:40:47.852959
2021-08-22T15:45:12
2021-08-22T15:45:12
391,865,273
0
0
null
null
null
null
UTF-8
Python
false
false
453
py
from random import randint import sys answer = randint(int(sys.argv[1]), int(sys.argv[2])) while True: try: guess = int(input(f'guess a number {sys.argv[1]}~{sys.argv[2]}: ')) if 0 < guess < 11: if guess == answer: print('you are a genius!') break else: print('hey bozo, I said 1~10') except ValueError: print('please enter a number') continue
[ "rohithuppalapati77@gmail.com" ]
rohithuppalapati77@gmail.com
19936eae1665b6a18075613db82903db8c65342f
95c441c94991931d53e6fce1e93441443517db68
/proyecto009/wsgi.py
a9be1896d61d8b1657374a0ed85fc079dd517c82
[]
no_license
FranciscoVF/proyecto009
05d4e57a908f27ec6e6b7dacae9abd28002c4ef2
f90c2040afbf4d43768ffebafadd1d61780c112d
refs/heads/master
2023-01-23T03:07:48.724455
2020-11-30T05:17:09
2020-11-30T05:17:09
317,118,264
0
0
null
null
null
null
UTF-8
Python
false
false
399
py
""" WSGI config for proyecto009 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'proyecto009.settings') application = get_wsgi_application()
[ "francisco.villarreal16@tectijuana.edu.mx" ]
francisco.villarreal16@tectijuana.edu.mx