blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
eacbce1209788203c69e54775e0146e947dbb0b2
88b73a0ed9367f3a56db47e6d16089ae57c21744
/myblogsite/blog/feeds.py
7047ed4cf428d04b05beef9b7e4d8315f73d7046
[]
no_license
Sholamide/django-blog-app
4635093f65eaae11634466452981d0218de0a046
7ce9b6faf6178da5f304aeee34bfb2b54aa4b998
refs/heads/master
2023-03-01T11:22:26.296854
2021-02-15T15:41:14
2021-02-15T15:41:14
334,110,921
0
0
null
2021-02-10T16:06:19
2021-01-29T10:27:12
Python
UTF-8
Python
false
false
522
py
from django.contrib.syndication.views import Feed from django.template.defaultfilters import truncatewords from django.urls import reverse_lazy from .models import Post class LatestPostsFeed(Feed): title = 'My blog' link = reverse_lazy('blog:post_list') description = 'New posts of my blog.' def items(self): return Post.published.all()[:5] def item_title(self, item): return item.title def item_description(self, item): return truncatewords(item.body, 30)
[ "soluade101@gmail.com" ]
soluade101@gmail.com
fbca74d02065c0ad6ae13ca3c9a6556c2d1050f2
f86f4f39e1e63bf2103faaad3b738074aa5ad214
/prml/nn/__init__.py
cf746ac7bb0d1e83a3c9e6bf760e6a86f5386383
[]
no_license
zgcgreat/PRML-1
a918ec670fd756086cde860e408f81f980bb9a8d
77056922f23176065b056d5ca136a43971831969
refs/heads/master
2021-07-03T09:58:06.843226
2017-09-24T04:26:27
2017-09-24T04:26:27
105,968,426
0
1
null
2017-10-06T04:50:26
2017-10-06T04:50:26
null
UTF-8
Python
false
false
563
py
from prml.nn.function import ( convolve2d, dropout, log_softmax, max_pooling2d, relu, sigmoid_cross_entropy, sigmoid, softmax_cross_entropy, softmax, softplus, tanh, weight_decay ) from prml.nn import optimizer from prml.nn.network import Network __all__ = [ "convolve2d", "dropout", "log_softmax", "max_pooling2d", "relu", "sigmoid_cross_entropy", "sigmoid", "softmax_cross_entropy", "softmax", "softplus", "tanh", "weight_decay", "optimizer", "Network" ]
[ "r0735nj5058@icloud.com" ]
r0735nj5058@icloud.com
4687eb2c354a559fd6bbc8b620b8fc1f267e95c6
74c0aa4829fc57538ff3477eee8ecf2cf77ef9e1
/serverSetup.py
3225e65ba9974eb2da44496b1cce9e2c61c59048
[]
no_license
diobat/KillYourFriends
42e2f9783a6b158b7872d6aa343b9b8bb309f36c
3b816ac642d1d979648902b23de72acbf2615b9f
refs/heads/master
2020-03-27T22:41:20.013675
2018-12-02T11:45:03
2018-12-02T11:45:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
952
py
import socketserver as ss class MyTCPHandler(ss.BaseRequestHandler): """ The RequestHandler class for our server. It is instantiated once per connection to the server, and must override the handle() method to implement communication to the client. """ def handle(self): # self.request is the TCP socket connected to the client self.data = self.request.recv(1024).strip() print("%s wrote:" % self.client_address[0]) print(self.data) # just send back the same data, but upper-cased self.request.send(self.data) #self.shutdown() self.request.close() if __name__ == "__main__": HOST, PORT = "192.168.0.106", 9999 # Create the server, binding to localhost on port 9999 server = ss.TCPServer((HOST, PORT), MyTCPHandler) # Activate the server; this will keep running until you # interrupt the program with Ctrl-C server.serve_forever()
[ "diogobatista@ua.pt" ]
diogobatista@ua.pt
22b6f77efdeb0185dd0e87192dbd47ca2af677f2
2d4b531b9b04ceae6c4e0312463836ae4a7654cd
/scripts/parse_clips.py
53e87037c61c5bf93b054b174b47849445a9e548
[]
no_license
intheory/web-app
e843ea066f7acc1be3377849e16cfe54df9b3acb
7680e3db1c1a1cbbbb7e1a9b8290ce4bf9cc49bb
refs/heads/master
2021-01-24T06:36:08.703649
2012-11-09T19:26:32
2012-11-09T19:26:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,214
py
''' Created on 19 Sep 2012 @author: george This module parses a txt file containing info about the hazard perception clips. ''' import os from mongoengine import connect env = "ITENV" in os.environ and os.environ["ITENV"] or "dev" if env=="prod": parentdir = os.path.dirname(os.path.dirname(os.path.abspath("/www/virtualenv/intheory/src/app/model/content.py"))) connect("intheory_dev") else: parentdir = os.path.dirname(os.path.dirname(os.path.abspath("/home/george/intheoryenv/intheory/src/app/model/content.py"))) connect("intheory_dev") os.sys.path.insert(0,parentdir) from model.content import HazardPerceptionClip, HazardPoint HazardPerceptionClip.drop_collection() try: file_path = os.path.expanduser("~/" + os.path.join("intheorydata", "content")) f = open(file_path+"/clips.txt", "r") while 1: base_dir = f.readline().strip() if len(base_dir) ==0: break # EOF clip = HazardPerceptionClip() clip.base_dir = base_dir clip.clip_name = f.readline().strip() clip.solution_clip_name = f.readline().strip() hp = HazardPoint() hp.start = int(f.readline().strip()) hp.end = int(f.readline().strip()) clip.hazards.append(hp) clip.save() f.close() except Exception, e: print e
[ "basketballcy@gmail.com" ]
basketballcy@gmail.com
55a4acdebc8d83005e9cc93dfef6fdaace57ff60
f6990693f6f8ac5c59cf7f2589f91ca53412ce74
/jenkins/urls.py
280f0ad9c3d934b892745aac3f98da2746890a41
[]
no_license
daba0007/python-jenkins
3677ba2f176fe6d51fd408898c6342f2127ae689
fc5e93af96d77cde05b1559a45a75dee70ef8da8
refs/heads/master
2020-09-12T13:57:52.558410
2019-11-19T06:19:58
2019-11-19T06:19:58
222,446,458
0
0
null
null
null
null
UTF-8
Python
false
false
597
py
#!/usr/bin/env python # -*- coding: utf-8 -*- from django.conf.urls import url from . import views urlpatterns = [ url(r'^getversion', views.getVersion, name='getversion'), url(r'^getjoblist', views.getJobList, name='getjobList'), url(r'^getconfig', views.getConfig, name='getconfig'), url(r'^getjobstatus', views.getJobStatus, name='getjobStatus'), url(r'^getbuildconsole', views.getBuildConsole, name='getbuildconsole'), url(r'^getdownstream', views.getDownstream, name='getdownstream'), url(r'^getupstream', views.getUpstream, name='getupstream') ]
[ "yld060631@163.com" ]
yld060631@163.com
adb9a20f66c9656c23a420ee47e037f7a80d95f9
1fad3905860f078d076cac8ebd09fe1f619b77bd
/week01/assignment2/assignment2/spiders/maoyan.py
7fa4182967aa19db9011605207d862cb2aa0fa73
[]
no_license
Farinosa/Python001-class01
7f832dfef1df7cf5a11b0909c7fb787789b94a99
0496e470246046cfa1d70aaeafbf3074a430d143
refs/heads/master
2022-12-07T06:04:16.303644
2020-09-05T17:25:36
2020-09-05T17:25:36
273,857,131
0
0
null
2020-06-21T07:36:06
2020-06-21T07:36:05
null
UTF-8
Python
false
false
1,264
py
# -*- coding: utf-8 -*- import scrapy from scrapy.selector import Selector from assignment2.items import Assignment2Item class MaoyanSpider(scrapy.Spider): name = 'maoyan' allowed_domains = ['maoyan.com'] start_urls = ['https://maoyan.com/films?showType=3'] def parse(self, response): pipline_items = [] # select each movie movies = Selector(response=response).xpath('//div[@class="movie-item film-channel"]') for movie in movies[:10]: movie_infos = movie.xpath('.//div[contains(@class,"movie-hover-title")]') movie_title_selector = movie_infos[0].xpath('./@title') movie_title = movie_title_selector.extract_first() movie_type_selector = movie_infos[1].xpath('./text()') movie_type = movie_type_selector.extract()[1].strip() release_date_selector = movie_infos[3].xpath('./text()') release_date = release_date_selector.extract()[1].strip() # init new item for each movie item = Assignment2Item() item['movie_title'] = movie_title item['movie_type'] = movie_type item['release_date'] = release_date pipline_items.append(item) return pipline_items
[ "you@example.com575813104@qq.com" ]
you@example.com575813104@qq.com
f6b460e2c17819c23b9ebca29e14420995355f2c
7a187cf8e86a0b72b864a189747891cf1cd5c0d5
/Final Project/report_email.py
eb5420ac58ad82a2afeb06ba3604745f0f9c4b97
[]
no_license
Kirkkm/Google-Projects
743ca31bdc79b465e282be28147ae194245fda1e
268a68a80a23809d696fe966ea40274fec710c05
refs/heads/master
2022-11-15T08:18:36.482279
2020-06-30T19:21:29
2020-06-30T19:21:29
265,541,067
1
0
null
null
null
null
UTF-8
Python
false
false
2,522
py
#!/usr/bin/env python3 import os from datetime import date import requests from . import run, reports, emails ''' Create another script named report_email.py to process supplier fruit description data from supplier-data/descriptions directory. Use the following command to create report_email.py. Import all the necessary libraries(os, datetime and reports) that will be used to process the text data from the supplier-data/descriptions directory into the format below: name: Apple weight: 500 lbs [blank line] name: Avocado weight: 200 lbs [blank line] ... Once you have completed this, call the main method which will process the data and call the generate_report method from the reports module ''' def main(): # setting the PDF's file location of where it is going to live report_attachment = "/tmp/processed.pdf" # setting up the Report's Title today = date.today() report_title = "Processed Update on " + str(today) + "\n\n" # this list will store all of the pdf parts in a specified order to be built later report_body = [] # calls a method in run.py script to read the fruit data from the .txt files and turn it into JSON format # if this method does not work then need to look at creating a REST GET request fruit_data = run.read_data() # iterates through the 2 dimensional dictionary to post each fruits data and image for key, value in fruit_data.items(): report_body_name = value['name'] + "\n" report_body_weight = value['weight'] + "\n\n" report_body.append(report_body_name, report_body_weight) # method's parameters: generate_report(self,attachment, title, paragraph) # method to generate the pdf doc reports.generate_report(report_attachment, report_title, report_body) # method's parameters: generate_email(self, email_from, email_to, subject_line, body, attachment) # method to generate the email that will be sent out email_from = "automation@example.com" email_to = "username@example.com" email_subject = "Upload Completed - Online Fruit Store" email_body = "All fruits are uploaded to our website successfully. A detailed list is attached to this email" email = emails.generate_email(email_from, email_to, email_subject, email_body, report_attachment) # method's parameters: generate_email(self, email_from, email_to, subject_line, body, attachment) # method to send the generated email emails.send_email(email) if __name__ == "__main__": main()
[ "matthewkk7@gmail.com" ]
matthewkk7@gmail.com
c1a520252df4ebe42fe9f87657a7ec6d33bf15ad
15f66dc29c176891fe213f54469f8aa8e9b11172
/Emulation/autonetkit/plugins/graph_product.py
a3b571edc02c7c6a37d9a2d28cf3fce85fc36fce
[]
no_license
wilko77/STRIP
24a707909d66d19f84ec8760798da45d50070e4d
6dc3867da249b4d7ea89286740f3eab5a3b8ee17
refs/heads/master
2020-05-20T04:00:57.051119
2013-10-01T06:24:57
2013-10-01T06:24:57
11,779,552
1
0
null
null
null
null
UTF-8
Python
false
false
5,566
py
import networkx as nx import autonetkit.ank_utils as ank_utils import autonetkit.ank as ank import os import pprint import autonetkit.log as log import autonetkit.load.graphml def expand(G_in): """ Expands out graph products. G is the source "backbone" graph. H_x is the "PoP template" graphs """ graph_unwrapped = ank_utils.unwrap_graph(G_in) G = graph_unwrapped.copy() ank.set_node_default(G_in, G_in) template_names = set(node.pop_template for node in G_in) template_names.discard("None") template_names.discard(None) if not len(template_names): log.debug("No PoP templates set") return # no templates set # Load these templates templates = {} for template in template_names: template_filename = os.path.join("pop_templates", "%s.graphml" % template) try: pop_graph = autonetkit.load.graphml.load_graphml(template_filename) #TODO: pass in properties eg edge type = physical except Exception, e: log.warning("Unable to load pop template %s: %s" % (template, e)) return pop_graph = pop_graph.to_undirected() # Undirected for now TODO: document this templates[template] = pop_graph # construct new graph G_out = nx.Graph() #TODO: what about bidirectional graphs? G_out.add_nodes_from(expand_nodes(G, templates)) G_out.add_edges_from(intra_pop_links(G, templates)) G_out.add_edges_from(inter_pop_links(G, templates)) for s, t in G_out.edges(): G_out[s][t]['type'] = 'physical' # ensure copied across # Update properties based on co-ordinates for node in G_out: u, v = node template = G.node[u]['pop_template'] u_properties = dict(G.node[u]) v_properties = dict(templates[template].node[v]) # create copy to append with x = float(u_properties.get('x')) + float(v_properties.get('x')) y = float(u_properties.get('y')) + float(v_properties.get('y')) asn = u_properties['asn'] u_properties.update(v_properties) u_properties['x'] = x u_properties['y'] = y u_properties['label'] = "%s_%s" % (v, u) u_properties['id'] = "%s_%s" % (v, u) u_properties['pop'] = u u_properties['asn'] = asn # restore, don't inherit from pop del u_properties['pop_template'] G_out.node[node] = u_properties nx.relabel_nodes(G_out, dict( ((u, v), "%s_%s" % (v, u)) for (u, v) in G_out), copy = False) #TODO: set edge_ids for s, t in G_out.edges(): G_out[s][t]['edge_id'] = "%s_%s" % (s, t) G_in._replace_graph(G_out) return #TODO: use "interpop" instead of "rooted" def expand_nodes(G, templates): # TODO: work out how to retain node attributes return [ (u,v) for u in G for v in templates[G.node[u]['pop_template']] ] def intra_pop_links(G, templates): return [ ((u,v1), (u,v2)) for u in G for (v1, v2) in templates[G.node[u]['pop_template']].edges() ] def inter_pop_links(G, templates, default_operator='cartesian'): #TODO:: list any edges without operator marked on them # for brevity, Hx refers to templatex edges = [] cartesian_operators = set(["cartesian", "strong"]) tensor_operators = set(["tensor", "strong"]) for (u1, u2) in G.edges(): try: operator = G[u1][u2]['operator'] except KeyError: operator = default_operator if operator == "None": # from Graphml operator = default_operator H1 = templates[G.node[u1]['pop_template']] H2 = templates[G.node[u2]['pop_template']] # Node lists - if 'root' set then only use root nodes N1 = [n for n, d in H1.nodes(data=True) if 'interpop' in d and d['interpop']] if not len(N1): N1 = [n for n in H1] # no nodes marked interpop N2 = [n for n, d in H2.nodes(data=True) if 'interpop' in d and d['interpop']] if not len(N2): N2 = [n for n in H2] # no nodes marked interpop log.debug("Adding edges for (%s,%s) with operator %s" % (u1, u2, operator)) log.debug("H nodes for u1 %s: %s" % ( G.node[u1]['pop_template'], ", ".join(str(N1)))) log.debug("H nodes for u2 %s: %s" % ( G.node[u2]['pop_template'], ", ".join(str(N2)))) # 'root' not set #TODO: fold rooted back into special case of cartesian - just do the same for now if operator == 'rooted': product_edges = [((u1, v1), (u2, v2)) for v1 in N1 for v2 in N2 if H1.node[v1].get("interpop") == H2.node[v2].get("interpop") == True ] log.debug("Rooted product edges for (%s,%s): %s" % (u1, u2, product_edges)) edges += product_edges if operator == 'lexical': product_edges = [((u1, v1), (u2, v2)) for v1 in N1 for v2 in N2] log.debug("Lexical product edges for (%s,%s): %s" % (u1, u2, product_edges)) edges += product_edges if operator in cartesian_operators: product_edges = [((u1, v1), (u2, v2)) for v1 in N1 for v2 in N2 if v1 == v2] log.debug("Cartesian product edges for (%s,%s): %s" % (u1, u2, product_edges)) edges += product_edges if operator in tensor_operators: product_edges = [((u1, v1), (u2, v2)) for v1 in N1 for v2 in N2 if H1.has_edge(v1, v2) or H2.has_edge(v1,v2)] log.debug("Tensor product edges for (%s,%s): %s" % (u1, u2, product_edges)) edges += product_edges return edges #TODO: What about edge ids?
[ "wilko.henecka@adelaide.edu.au" ]
wilko.henecka@adelaide.edu.au
ca8251ca6103bd7ac332fc537961d3390d96ef1a
5ec4098d7d11ceb9b37feeb340e7815683864b19
/Timetable/server/backend/core/core_utils.py
4e0d591224d29f3339737eb8e04b130dcc25f6ba
[]
no_license
sunyangkobe/Timetable
dfed21f717c0a93838c4c8f6bf86e9d743068122
79aac0ce48b9514cc1fa2b885f1c18cce87d85c8
refs/heads/master
2021-01-02T22:37:53.836555
2013-12-13T19:04:04
2013-12-13T19:04:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
375
py
__author__ = 'mimighostipad' from django.core.cache import cache AVATAR_PRE = "avatar_" DEFAULT_AVATAR = "avatar_default" def get_user_avatar_key(user): return AVATAR_PRE + str(user.id) def get_user_avatar(user): avatar_key = get_user_avatar_key(user) if cache.has_key(avatar_key): return cache.get(avatar_key) return cache.get(DEFAULT_AVATAR)
[ "yksun@cs.cmu.edu" ]
yksun@cs.cmu.edu
a0a9f050439356ae3ab9c7b58a7ae193821ced2e
e3ca1ff203bd7a6d73dec1461999217ad2f34e85
/sana/api/.svn/text-base/widgets.py.svn-base
e9b8076203ff07926ba307893d05fdd1b6cbcf49
[ "BSD-3-Clause" ]
permissive
satvikdhandhania/vit-11
1f8b2796f14e56c9a36d5c39d852c1ff344c42d7
e599f2b82a9194658c67bbd5c7e45f3b50d016da
refs/heads/master
2021-01-25T04:02:15.875370
2014-04-24T10:46:18
2014-04-24T10:46:18
19,178,144
1
0
null
null
null
null
UTF-8
Python
false
false
3,837
'''Provides fields for api forms @author: Sana Dev Team Created on Jun 10, 2011 ''' from django.forms.widgets import Input, MultiWidget, TextInput, PasswordInput, mark_safe, force_unicode, flatatt class JSONInput(Input): input_type = 'hidden' is_hidden = True class BinaryWidget(MultiWidget): ''' Provides multi binary upload meta data with a dispatch ''' def __init__(self, attrs=None): widgets = (TextInput(), TextInput(), TextInput(), TextInput() ) super(BinaryWidget, self).__init__(widgets, attrs=attrs) def decompress(self, value): ''' Returns the 'uid', 'client, 'size', 'content_type' ''' if value: return [value.uid, value.client, value.answer] return [None, None, None ] class ObservationWidget(MultiWidget): ''' Provides multi binary upload meta data with a dispatch ''' def __init__(self, attrs=None): widget = (TextInput(), TextInput(), TextInput() ) super(ObservationWidget, self).__init__(widget, attrs=attrs) def decompress(self, value): ''' Returns the 'uid', 'client', 'dispatch', and 'binaries' attributes as a list ''' if value: return [value.concept, value.question, value.answer] return [None, None, None ] class EncounterWidget(MultiWidget): ''' Provides multi binary upload meta data with a dispatch ''' def __init__(self, attrs=None): widget = (TextInput(), TextInput(), TextInput() ) super(EncounterWidget, self).__init__(widget, attrs=attrs) def decompress(self, value): ''' Returns the 'title', 'author', 'observations' ''' if value: return [value.title, value.author, value.observations] return [None, None, None ] class DispatchWidget(MultiWidget): ''' Represents the data sent with an api request from a client ''' def __init__(self, attrs=None): widgets = (TextInput(attrs=attrs), TextInput(attrs=attrs), TextInput(attrs=attrs)) super(DispatchWidget, self).__init__(widgets, attrs) def decompress(self, value): ''' Returns the 'uid', 'client', and 'dispatch' attributes as a list ''' if value: return [value.uid, value.client, value.dispatch] return [None, None, None, None] def render(self, name, value, attrs=None): if value is None: value = [] final_attrs = self.build_attrs(attrs, type=self.input_type, name=name) if value != '': # Only add the 'value' attribute if a value is non-empty. final_attrs['value'] = force_unicode(self._format_value(value)) return mark_safe(u'<input%s />' % flatatt(final_attrs)) class LoginWidget(MultiWidget): ''' Username and password widget ''' def __init__(self, attrs=None): widgets = (TextInput(attrs=attrs), PasswordInput(attrs=attrs)) super(DispatchWidget, self).__init__(widgets, attrs) def decompress(self, value): """ Returns a list of decompressed values for the given compressed value. The given value can be assumed to be valid, but not necessarily non-empty. """ if value: return [value.username, value.password] return [None, None] def render(self, name, value, attrs=None): if value is None: value = [] final_attrs = self.build_attrs(attrs, type=self.input_type, name=name) if value != '': # Only add the 'value' attribute if a value is non-empty. final_attrs['value'] = force_unicode(self._format_value(value)) return mark_safe(u'<input%s />' % flatatt(final_attrs))
[ "akshaydixi@gmail.com" ]
akshaydixi@gmail.com
7910786e5c47a2f6784773af358697d67ebb761f
b30ec73f10f204c3fb7059c311283c43238275eb
/ss411/users/tests/test_models.py
ad365f91ba55cda427544104f90e4239c010c55b
[ "MIT" ]
permissive
mbronstein/ss411
f8a5829db01eff90399da9acdd59264bc2f39db9
e901423e1fd16d4c414039083c6c7bc99b7e35ad
refs/heads/master
2023-03-24T08:47:44.344457
2021-03-03T22:13:34
2021-03-03T22:13:34
338,348,101
0
0
null
null
null
null
UTF-8
Python
false
false
198
py
import pytest from ss411.users.models import User pytestmark = pytest.mark.django_db def test_user_get_absolute_url(user: User): assert user.get_absolute_url() == f"/users/{user.username}/"
[ "mark@bronsteinlaw.com" ]
mark@bronsteinlaw.com
f3fee73504086589689015b432b61e3df713ce4c
cd72dbaf5ba1e250df76982e97830306cdb934de
/assignment1/assignment3.py
14b24b10e1c5d8f88b0600e8915a7c5ace93a0c8
[]
no_license
Vinith69/collegeInternship
2dd8516bd73c76ac36de5f6ef30618b9d351ffa6
6f8beabd1b21d1d0632c5d7962c7d824e1fb89dc
refs/heads/master
2023-08-16T11:58:29.756082
2021-10-14T03:20:11
2021-10-14T03:20:11
416,967,982
0
0
null
null
null
null
UTF-8
Python
false
false
238
py
n = int(input("Enter the size of array\n")) if 1 < n < 11: arr = map(int, input().split()) arr = list(set(list(arr))) ar = len(arr) arr = sorted(arr) print(arr[ar-2]) else: print("n size must be between 2 and 10")
[ "ramarock09@gmail.com" ]
ramarock09@gmail.com
076a8187acddfb020c167468b814387208f56679
3a5c94dce25e38fc083619a2a0bf8a657b9afb8c
/vol_108/p10812.py
4c216f0874b42850ec067aa54142d74c4d6452df
[]
no_license
tkoz0/problems-online-judge
a322e296fb14fdf4ca616352ead28895465879e9
3372c6fe75556a9dd3e6eb8b06ae65058290ab31
refs/heads/master
2022-07-23T01:20:57.380524
2022-07-10T07:15:56
2022-07-10T07:15:56
157,949,283
0
0
null
null
null
null
UTF-8
Python
false
false
273
py
n = int(input()) for z in range(n): s, d = map(int,input().split()) if (s+d)%2 != 0: print('impossible'); continue small = s//2 large = small + s%2 small -= d//2 large += d//2 if small < 0: print('impossible'); continue print(large,small)
[ "you@example.com" ]
you@example.com
a8ca534232ac3e410b79c33d06e4dd2514b31e5a
f9d564f1aa83eca45872dab7fbaa26dd48210d08
/huaweicloud-sdk-roma/huaweicloudsdkroma/v2/model/update_special_throttling_configuration_v2_response.py
aa4225211245441353468dcae8e63dd285571101
[ "Apache-2.0" ]
permissive
huaweicloud/huaweicloud-sdk-python-v3
cde6d849ce5b1de05ac5ebfd6153f27803837d84
f69344c1dadb79067746ddf9bfde4bddc18d5ecf
refs/heads/master
2023-09-01T19:29:43.013318
2023-08-31T08:28:59
2023-08-31T08:28:59
262,207,814
103
44
NOASSERTION
2023-06-22T14:50:48
2020-05-08T02:28:43
Python
UTF-8
Python
false
false
11,116
py
# coding: utf-8 import six from huaweicloudsdkcore.sdk_response import SdkResponse from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class UpdateSpecialThrottlingConfigurationV2Response(SdkResponse): """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'id': 'str', 'call_limits': 'int', 'apply_time': 'datetime', 'app_name': 'str', 'app_id': 'str', 'object_id': 'str', 'object_type': 'str', 'object_name': 'str', 'throttle_id': 'str' } attribute_map = { 'id': 'id', 'call_limits': 'call_limits', 'apply_time': 'apply_time', 'app_name': 'app_name', 'app_id': 'app_id', 'object_id': 'object_id', 'object_type': 'object_type', 'object_name': 'object_name', 'throttle_id': 'throttle_id' } def __init__(self, id=None, call_limits=None, apply_time=None, app_name=None, app_id=None, object_id=None, object_type=None, object_name=None, throttle_id=None): """UpdateSpecialThrottlingConfigurationV2Response The model defined in huaweicloud sdk :param id: 特殊配置的编号 :type id: str :param call_limits: 特殊对象在流控时间内能够访问API的最大次数限制 :type call_limits: int :param apply_time: 设置时间 :type apply_time: datetime :param app_name: 作用的APP名称 :type app_name: str :param app_id: 作用的APP编号 :type app_id: str :param object_id: 特殊对象的身份标识 :type object_id: str :param object_type: 特殊对象类型:APP、USER :type object_type: str :param object_name: [作用的APP或租户的名称](tag:hws;hws_hk;hcs;fcs;g42;)[作用的APP或租户ID](tag:Site) :type object_name: str :param throttle_id: 流控策略编号 :type throttle_id: str """ super(UpdateSpecialThrottlingConfigurationV2Response, self).__init__() self._id = None self._call_limits = None self._apply_time = None self._app_name = None self._app_id = None self._object_id = None self._object_type = None self._object_name = None self._throttle_id = None self.discriminator = None if id is not None: self.id = id if call_limits is not None: self.call_limits = call_limits if apply_time is not None: self.apply_time = apply_time if app_name is not None: self.app_name = app_name if app_id is not None: self.app_id = app_id if object_id is not None: self.object_id = object_id if object_type is not None: self.object_type = object_type if object_name is not None: self.object_name = object_name if throttle_id is not None: self.throttle_id = throttle_id @property def id(self): """Gets the id of this UpdateSpecialThrottlingConfigurationV2Response. 特殊配置的编号 :return: The id of this UpdateSpecialThrottlingConfigurationV2Response. :rtype: str """ return self._id @id.setter def id(self, id): """Sets the id of this UpdateSpecialThrottlingConfigurationV2Response. 特殊配置的编号 :param id: The id of this UpdateSpecialThrottlingConfigurationV2Response. :type id: str """ self._id = id @property def call_limits(self): """Gets the call_limits of this UpdateSpecialThrottlingConfigurationV2Response. 特殊对象在流控时间内能够访问API的最大次数限制 :return: The call_limits of this UpdateSpecialThrottlingConfigurationV2Response. :rtype: int """ return self._call_limits @call_limits.setter def call_limits(self, call_limits): """Sets the call_limits of this UpdateSpecialThrottlingConfigurationV2Response. 特殊对象在流控时间内能够访问API的最大次数限制 :param call_limits: The call_limits of this UpdateSpecialThrottlingConfigurationV2Response. :type call_limits: int """ self._call_limits = call_limits @property def apply_time(self): """Gets the apply_time of this UpdateSpecialThrottlingConfigurationV2Response. 设置时间 :return: The apply_time of this UpdateSpecialThrottlingConfigurationV2Response. :rtype: datetime """ return self._apply_time @apply_time.setter def apply_time(self, apply_time): """Sets the apply_time of this UpdateSpecialThrottlingConfigurationV2Response. 设置时间 :param apply_time: The apply_time of this UpdateSpecialThrottlingConfigurationV2Response. :type apply_time: datetime """ self._apply_time = apply_time @property def app_name(self): """Gets the app_name of this UpdateSpecialThrottlingConfigurationV2Response. 作用的APP名称 :return: The app_name of this UpdateSpecialThrottlingConfigurationV2Response. :rtype: str """ return self._app_name @app_name.setter def app_name(self, app_name): """Sets the app_name of this UpdateSpecialThrottlingConfigurationV2Response. 作用的APP名称 :param app_name: The app_name of this UpdateSpecialThrottlingConfigurationV2Response. :type app_name: str """ self._app_name = app_name @property def app_id(self): """Gets the app_id of this UpdateSpecialThrottlingConfigurationV2Response. 作用的APP编号 :return: The app_id of this UpdateSpecialThrottlingConfigurationV2Response. :rtype: str """ return self._app_id @app_id.setter def app_id(self, app_id): """Sets the app_id of this UpdateSpecialThrottlingConfigurationV2Response. 作用的APP编号 :param app_id: The app_id of this UpdateSpecialThrottlingConfigurationV2Response. :type app_id: str """ self._app_id = app_id @property def object_id(self): """Gets the object_id of this UpdateSpecialThrottlingConfigurationV2Response. 特殊对象的身份标识 :return: The object_id of this UpdateSpecialThrottlingConfigurationV2Response. :rtype: str """ return self._object_id @object_id.setter def object_id(self, object_id): """Sets the object_id of this UpdateSpecialThrottlingConfigurationV2Response. 特殊对象的身份标识 :param object_id: The object_id of this UpdateSpecialThrottlingConfigurationV2Response. :type object_id: str """ self._object_id = object_id @property def object_type(self): """Gets the object_type of this UpdateSpecialThrottlingConfigurationV2Response. 特殊对象类型:APP、USER :return: The object_type of this UpdateSpecialThrottlingConfigurationV2Response. :rtype: str """ return self._object_type @object_type.setter def object_type(self, object_type): """Sets the object_type of this UpdateSpecialThrottlingConfigurationV2Response. 特殊对象类型:APP、USER :param object_type: The object_type of this UpdateSpecialThrottlingConfigurationV2Response. :type object_type: str """ self._object_type = object_type @property def object_name(self): """Gets the object_name of this UpdateSpecialThrottlingConfigurationV2Response. [作用的APP或租户的名称](tag:hws;hws_hk;hcs;fcs;g42;)[作用的APP或租户ID](tag:Site) :return: The object_name of this UpdateSpecialThrottlingConfigurationV2Response. :rtype: str """ return self._object_name @object_name.setter def object_name(self, object_name): """Sets the object_name of this UpdateSpecialThrottlingConfigurationV2Response. [作用的APP或租户的名称](tag:hws;hws_hk;hcs;fcs;g42;)[作用的APP或租户ID](tag:Site) :param object_name: The object_name of this UpdateSpecialThrottlingConfigurationV2Response. :type object_name: str """ self._object_name = object_name @property def throttle_id(self): """Gets the throttle_id of this UpdateSpecialThrottlingConfigurationV2Response. 流控策略编号 :return: The throttle_id of this UpdateSpecialThrottlingConfigurationV2Response. :rtype: str """ return self._throttle_id @throttle_id.setter def throttle_id(self, throttle_id): """Sets the throttle_id of this UpdateSpecialThrottlingConfigurationV2Response. 流控策略编号 :param throttle_id: The throttle_id of this UpdateSpecialThrottlingConfigurationV2Response. :type throttle_id: str """ self._throttle_id = throttle_id def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, UpdateSpecialThrottlingConfigurationV2Response): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
[ "hwcloudsdk@huawei.com" ]
hwcloudsdk@huawei.com
c6c5efb226333f27660bf83ad7d0642ec32736b3
69233f51c2beb492f273940756e19f41ece7f793
/nemo_text_processing/inverse_text_normalization/en/taggers/tokenize_and_classify.py
731e677d8ec9173657a53146d25485f205f82c08
[ "Apache-2.0" ]
permissive
skgusrb12/NeMo
1e42f9a2799805ac0cc3b4fd14b1f199c26aed7d
dfb5bf5b741fdf3a2cad68f373cd42c74c600681
refs/heads/main
2023-06-28T17:09:39.975386
2021-08-02T17:49:54
2021-08-02T17:49:54
392,194,106
1
0
Apache-2.0
2021-08-03T04:55:53
2021-08-03T04:55:53
null
UTF-8
Python
false
false
4,261
py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # Copyright 2015 and onwards Google, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo_text_processing.inverse_text_normalization.en.taggers.cardinal import CardinalFst from nemo_text_processing.inverse_text_normalization.en.taggers.date import DateFst from nemo_text_processing.inverse_text_normalization.en.taggers.decimal import DecimalFst from nemo_text_processing.inverse_text_normalization.en.taggers.electronic import ElectronicFst from nemo_text_processing.inverse_text_normalization.en.taggers.measure import MeasureFst from nemo_text_processing.inverse_text_normalization.en.taggers.money import MoneyFst from nemo_text_processing.inverse_text_normalization.en.taggers.ordinal import OrdinalFst from nemo_text_processing.inverse_text_normalization.en.taggers.punctuation import PunctuationFst from nemo_text_processing.inverse_text_normalization.en.taggers.telephone import TelephoneFst from nemo_text_processing.inverse_text_normalization.en.taggers.time import TimeFst from nemo_text_processing.inverse_text_normalization.en.taggers.whitelist import WhiteListFst from nemo_text_processing.inverse_text_normalization.en.taggers.word import WordFst from nemo_text_processing.text_normalization.en.graph_utils import GraphFst, delete_extra_space, delete_space try: import pynini from pynini.lib import pynutil PYNINI_AVAILABLE = True except (ModuleNotFoundError, ImportError): PYNINI_AVAILABLE = False class ClassifyFst(GraphFst): """ Final class that composes all other classification grammars. This class can process an entire sentence, that is lower cased. For deployment, this grammar will be compiled and exported to OpenFst Finate State Archiv (FAR) File. More details to deployment at NeMo/tools/text_processing_deployment. """ def __init__(self): super().__init__(name="tokenize_and_classify", kind="classify") cardinal = CardinalFst() cardinal_graph = cardinal.fst ordinal = OrdinalFst(cardinal) ordinal_graph = ordinal.fst decimal = DecimalFst(cardinal) decimal_graph = decimal.fst measure_graph = MeasureFst(cardinal=cardinal, decimal=decimal).fst date_graph = DateFst(ordinal=ordinal).fst word_graph = WordFst().fst time_graph = TimeFst().fst money_graph = MoneyFst(cardinal=cardinal, decimal=decimal).fst whitelist_graph = WhiteListFst().fst punct_graph = PunctuationFst().fst electronic_graph = ElectronicFst().fst telephone_graph = TelephoneFst().fst classify = ( pynutil.add_weight(whitelist_graph, 1.01) | pynutil.add_weight(time_graph, 1.1) | pynutil.add_weight(date_graph, 1.09) | pynutil.add_weight(decimal_graph, 1.1) | pynutil.add_weight(measure_graph, 1.1) | pynutil.add_weight(cardinal_graph, 1.1) | pynutil.add_weight(ordinal_graph, 1.1) | pynutil.add_weight(money_graph, 1.1) | pynutil.add_weight(telephone_graph, 1.1) | pynutil.add_weight(electronic_graph, 1.1) | pynutil.add_weight(word_graph, 100) ) punct = pynutil.insert("tokens { ") + pynutil.add_weight(punct_graph, weight=1.1) + pynutil.insert(" }") token = pynutil.insert("tokens { ") + classify + pynutil.insert(" }") token_plus_punct = ( pynini.closure(punct + pynutil.insert(" ")) + token + pynini.closure(pynutil.insert(" ") + punct) ) graph = token_plus_punct + pynini.closure(delete_extra_space + token_plus_punct) graph = delete_space + graph + delete_space self.fst = graph.optimize()
[ "noreply@github.com" ]
skgusrb12.noreply@github.com
2d757dfd5eb6b67f27916ee25bab7c274cc3e173
4cf5298b6670ed306033e10e7417a66dbc89953c
/jtheakst.py
f5b3f5dd9e86f3745cb744aed02b3d5bd8533a86
[]
no_license
chiefspace/python_thinkful
c72331bfa10a26d85d098151785c5d3ab6d6f11e
c181d33f9447b6d21df6d340e13ee481884eb2bf
refs/heads/master
2020-12-24T06:57:21.475202
2016-06-30T13:50:33
2016-06-30T13:50:33
61,953,550
0
1
null
2016-06-30T13:48:18
2016-06-25T17:14:28
Python
UTF-8
Python
false
false
344
py
phone_book = { "Sarah Hughes": "01234 567890", "Tim Taylor": "02345 678901", "Sam Smith": "03456 789012" } for key,val in phone_book.items(): print("{} = {}".format(key, val)) lookUp = "Jamie Theakston" try: phone_book[lookUp] except KeyError: print "Aparently, {} has an unlisted phone number".format(lookUp)
[ "ben@chiefspace.com" ]
ben@chiefspace.com
3f889a3d9bfda4ea7f2372059485132b8d91da03
1a0bc226dfa6adfe4782c4dde3363ed4e8192540
/external_scripts/rank_metrics.py
e6620c41858c216f45054cad621b9e4f90937807
[]
no_license
alexandervansomeren/msc_thesis
5decc0f4be9d47ff4f3146da9a078e8b16636692
49e7a853ebb678648607817d095e5ff280c4f79b
refs/heads/master
2021-09-16T00:04:04.308141
2018-06-13T11:18:53
2018-06-13T11:18:53
105,005,948
1
0
null
null
null
null
UTF-8
Python
false
false
6,205
py
"""Information Retrieval metrics Useful Resources: http://www.cs.utexas.edu/~mooney/ir-course/slides/Evaluation.ppt http://www.nii.ac.jp/TechReports/05-014E.pdf http://www.stanford.edu/class/cs276/handouts/EvaluationNew-handout-6-per.pdf http://hal.archives-ouvertes.fr/docs/00/72/67/60/PDF/07-busa-fekete.pdf Learning to Rank for Information Retrieval (Tie-Yan Liu) """ import numpy as np def mean_reciprocal_rank(rs): """Score is reciprocal of the rank of the first relevant item First element is 'rank 1'. Relevance is binary (nonzero is relevant). Example from http://en.wikipedia.org/wiki/Mean_reciprocal_rank >>> rs = [[0, 0, 1], [0, 1, 0], [1, 0, 0]] >>> mean_reciprocal_rank(rs) 0.61111111111111105 >>> rs = np.array([[0, 0, 0], [0, 1, 0], [1, 0, 0]]) >>> mean_reciprocal_rank(rs) 0.5 >>> rs = [[0, 0, 0, 1], [1, 0, 0], [1, 0, 0]] >>> mean_reciprocal_rank(rs) 0.75 Args: rs: Iterator of relevance scores (list or numpy) in rank order (first element is the first item) Returns: Mean reciprocal rank """ rs = (np.asarray(r).nonzero()[0] for r in rs) return np.mean([1. / (r[0] + 1) if r.size else 0. for r in rs]) def r_precision(r): """Score is precision after all relevant documents have been retrieved Relevance is binary (nonzero is relevant). >>> r = [0, 0, 1] >>> r_precision(r) 0.33333333333333331 >>> r = [0, 1, 0] >>> r_precision(r) 0.5 >>> r = [1, 0, 0] >>> r_precision(r) 1.0 Args: r: Relevance scores (list or numpy) in rank order (first element is the first item) Returns: R Precision """ r = np.asarray(r) != 0 z = r.nonzero()[0] if not z.size: return 0. return np.mean(r[:z[-1] + 1]) def precision_at_k(r, k): """Score is precision @ k Relevance is binary (nonzero is relevant). >>> r = [0, 0, 1] >>> precision_at_k(r, 1) 0.0 >>> precision_at_k(r, 2) 0.0 >>> precision_at_k(r, 3) 0.33333333333333331 >>> precision_at_k(r, 4) Traceback (most recent call last): File "<stdin>", line 1, in ? ValueError: Relevance score length < k Args: r: Relevance scores (list or numpy) in rank order (first element is the first item) Returns: Precision @ k Raises: ValueError: len(r) must be >= k """ assert k >= 1 r = np.asarray(r)[:k] != 0 if r.size != k: raise ValueError('Relevance score length < k') return np.mean(r) def average_precision(r): """Score is average precision (area under PR curve) Relevance is binary (nonzero is relevant). >>> r = [1, 1, 0, 1, 0, 1, 0, 0, 0, 1] >>> delta_r = 1. / sum(r) >>> sum([sum(r[:x + 1]) / (x + 1.) * delta_r for x, y in enumerate(r) if y]) 0.7833333333333333 >>> average_precision(r) 0.78333333333333333 Args: r: Relevance scores (list or numpy) in rank order (first element is the first item) Returns: Average precision """ r = np.asarray(r) != 0 out = [precision_at_k(r, k + 1) for k in range(r.size) if r[k]] if not out: return 0. return np.mean(out) def mean_average_precision(rs): """Score is mean average precision Relevance is binary (nonzero is relevant). >>> rs = [[1, 1, 0, 1, 0, 1, 0, 0, 0, 1]] >>> mean_average_precision(rs) 0.78333333333333333 >>> rs = [[1, 1, 0, 1, 0, 1, 0, 0, 0, 1], [0]] >>> mean_average_precision(rs) 0.39166666666666666 Args: rs: Iterator of relevance scores (list or numpy) in rank order (first element is the first item) Returns: Mean average precision """ return np.mean([average_precision(r) for r in rs]) def dcg_at_k(r, k, method=0): """Score is discounted cumulative gain (dcg) Relevance is positive real values. Can use binary as the previous methods. Example from http://www.stanford.edu/class/cs276/handouts/EvaluationNew-handout-6-per.pdf >>> r = [3, 2, 3, 0, 0, 1, 2, 2, 3, 0] >>> dcg_at_k(r, 1) 3.0 >>> dcg_at_k(r, 1, method=1) 3.0 >>> dcg_at_k(r, 2) 5.0 >>> dcg_at_k(r, 2, method=1) 4.2618595071429155 >>> dcg_at_k(r, 10) 9.6051177391888114 >>> dcg_at_k(r, 11) 9.6051177391888114 Args: r: Relevance scores (list or numpy) in rank order (first element is the first item) k: Number of results to consider method: If 0 then weights are [1.0, 1.0, 0.6309, 0.5, 0.4307, ...] If 1 then weights are [1.0, 0.6309, 0.5, 0.4307, ...] Returns: Discounted cumulative gain """ r = np.asfarray(r)[:k] if r.size: if method == 0: return r[0] + np.sum(r[1:] / np.log2(np.arange(2, r.size + 1))) elif method == 1: return np.sum(r / np.log2(np.arange(2, r.size + 2))) else: raise ValueError('method must be 0 or 1.') return 0. def ndcg_at_k(r, k, method=0): """Score is normalized discounted cumulative gain (ndcg) Relevance is positive real values. Can use binary as the previous methods. Example from http://www.stanford.edu/class/cs276/handouts/EvaluationNew-handout-6-per.pdf >>> r = [3, 2, 3, 0, 0, 1, 2, 2, 3, 0] >>> ndcg_at_k(r, 1) 1.0 >>> r = [2, 1, 2, 0] >>> ndcg_at_k(r, 4) 0.9203032077642922 >>> ndcg_at_k(r, 4, method=1) 0.96519546960144276 >>> ndcg_at_k([0], 1) 0.0 >>> ndcg_at_k([1], 2) 1.0 Args: r: Relevance scores (list or numpy) in rank order (first element is the first item) k: Number of results to consider method: If 0 then weights are [1.0, 1.0, 0.6309, 0.5, 0.4307, ...] If 1 then weights are [1.0, 0.6309, 0.5, 0.4307, ...] Returns: Normalized discounted cumulative gain """ dcg_max = dcg_at_k(sorted(r, reverse=True), k, method) if not dcg_max: return 0. return dcg_at_k(r, k, method) / dcg_max if __name__ == "__main__": import doctest doctest.testmod()
[ "alexander.vansomeren@gmail.com" ]
alexander.vansomeren@gmail.com
982461cebcec680105d00ab0e89423333960302d
f415db347e2f3c92143439e382c28df61442de97
/beginner level/between even.py
0735b1cb6c338352404ef2e68d5ceccd534780a1
[]
no_license
Maniramez/python-codes
dadd8d2272ae3c616892800ee551f4733a2b0ca4
6d866913b147cc0cd146f2da859e498a83acec2e
refs/heads/master
2021-09-13T12:56:40.769191
2018-04-30T04:48:04
2018-04-30T04:48:04
125,207,665
0
2
null
null
null
null
UTF-8
Python
false
false
114
py
a=int(input("enter the value")) b=int(input("enter the value")) for i in range(a,b+1): if(i%2==0): print(i)
[ "noreply@github.com" ]
Maniramez.noreply@github.com
760e5020cf69a86dafd45f9e8860eef44dcca520
3d1da50b7eff3bd38e2e398a63ed39a5d429cce9
/python-ai/python高级/06闭包装饰器_/15_类中call方法的使用.py
5325baaf4f635cddc88925ddf9da401e659f7557
[]
no_license
wusanpi825117918/study
b10b3a646a66ff4f95daa98f8498d3ba78644bd2
ffdd358b95ed7b79a9cc11d46db9112a8664666d
refs/heads/master
2023-02-07T07:04:06.216477
2023-01-28T06:13:56
2023-01-28T06:13:56
224,645,256
0
0
null
null
null
null
UTF-8
Python
false
false
151
py
# 定义一个类,实现__call__方法 class Check(object): def __call__(self, *args, **kwargs): print("我是call方法") c = Check() c()
[ "noreply@github.com" ]
wusanpi825117918.noreply@github.com
f49ded29cbccc54c00c519ff5fd9283004c5cf81
c477588f2d0e924ee2a6d56b0784668a186ca340
/gtypes/gmessage_pass.py
cea41290fee4bacb11d4076cd3153dfedd041668
[]
no_license
becharrens/MCProjectionTool
de09678d6ac8f7e3a610a541e8077b67e93ea21b
e1e64cf3b43f4c6ab6158d8724c4a94e2af21d6e
refs/heads/master
2023-03-05T17:57:35.424828
2020-09-29T13:27:14
2020-09-29T13:27:14
299,571,751
0
0
null
null
null
null
UTF-8
Python
false
false
1,652
py
from typing import Set, Dict import gtypes from gtypes.gaction import GAction from gtypes.gtype import GType from ltypes.ltype import LType from ltypes.lmessage_pass import LMessagePass class GMessagePass(GType): def __init__(self, action: GAction, cont: GType) -> None: super().__init__() self.action = action self.cont = cont def project(self, roles: Set[str]) -> Dict[str, LType]: projections = self.cont.project(roles) for role in roles: local_action = self.action.project(role) if local_action is not None: projections[role] = LMessagePass(local_action, projections[role]) return projections def first_actions(self, tvars: Set[str]) -> Set[GAction]: return {self.action} def set_rec_gtype(self, tvar: str, gtype: GType) -> None: self.cont.set_rec_gtype(tvar, gtype) def hash(self, tvars: Set[str]) -> int: return ( self.action.__hash__() * gtypes.PRIME + self.cont.hash(tvars) ) % gtypes.HASH_SIZE def to_string(self, indent: str) -> str: return f"{indent}{self.action};\n{self.cont.to_string(indent)}" def normalise(self): self.cont: GType = self.cont.normalise() return self def has_rec_var(self, tvar: str) -> bool: return self.cont.has_rec_var(tvar) def __str__(self) -> str: return self.to_string("") def __eq__(self, o: object) -> bool: if not isinstance(o, GMessagePass): return False return self.__hash__() == o.__hash__() def __hash__(self) -> int: return self.hash(set())
[ "bes.seb.98@gmail.com" ]
bes.seb.98@gmail.com
6a6a056b69d8c1b0e499fe7b3da15e21acf1f8d9
e2045ea965ce2024c80d4d697384b1b5fddc27c8
/chess/chess.py
80a86801b51eea0e3231b08ed52222399ebd2c0a
[]
no_license
AI-Factor-y/Games
c1e307b96017ae45a65b90cc200b40c206192387
7b7fcb92373ba2d25f228f340125f0643d36fb7e
refs/heads/main
2023-05-01T03:01:15.231519
2021-05-18T14:31:02
2021-05-18T14:31:02
368,551,074
0
0
null
null
null
null
UTF-8
Python
false
false
55,327
py
import pygame from copy import deepcopy from network import Network pygame.init() menu=pygame.image.load("entrance.jpg") globe=pygame.image.load("globe.png") disp_width=900 disp_height=750 STAT_FONT = pygame.font.SysFont("comicsans",50) stat_font = pygame.font.SysFont("comicsans",70) stat_font2=pygame.font.SysFont("comicsans",100) width_bet_sq=88 #global colors white=(240,240,240) black=(0,0,0) blue=(0,0,255) brown=(213,125,58) red=(255,0,0) gameDisplay=pygame.display.set_mode((disp_width,disp_height)) tile_black=pygame.image.load("background.jpg") #pieces of white b_bishop=pygame.image.load("blackBishop.png") b_king=pygame.image.load("blackKing.png") b_queen=pygame.image.load("blackQueen.png") b_pawn=pygame.image.load("blackPawn.png") b_rook=pygame.image.load("blackRook.png") b_knight=pygame.image.load("blackKnight.png") #pieces of black w_bishop=pygame.image.load("whiteBishop.png") w_king=pygame.image.load("whiteKing.png") w_queen=pygame.image.load("whiteQueen.png") w_pawn=pygame.image.load("whitePawn.png") w_rook=pygame.image.load("whiteRook.png") w_knight=pygame.image.load("whiteKnight.png") back=pygame.image.load("back.jpeg") frame=pygame.image.load("frame.png") tile_white=pygame.image.load("tile.jpeg") class board: def __init__(self): self.board_x=185 self.board_y=23 self.board_width=704 self.board_height=704 self.color=white def draw_board(self): back2=pygame.transform.scale(back,(900,750)) gameDisplay.blit(back2,(0,0,900,750)) frame2=pygame.transform.scale(frame,(self.board_height+110,self.board_width+70)) gameDisplay.blit(frame2,(self.board_x-40,self.board_y-40,self.board_height+110,self.board_width+70)) # pygame.draw.rect(gameDisplay,white,(self.board_x,self.board_y,self.board_height,self.board_width)) self.draw_checks() def draw_checks(self): color_alternate=1 # this is 700 pixel long 704/8=88 pixels for each square check_width=88 check_height=88 start_check_x=self.board_x start_check_y=self.board_y for vert in range(8): for hori in range(8): if color_alternate==1: check_color=white else: check_color=black inc_x=check_width*hori inc_y=check_height*vert if check_color==white: pygame.draw.rect(gameDisplay,check_color,(start_check_x+inc_x,start_check_y+inc_y,check_width,check_height)) elif check_color==black: tile_black2=pygame.transform.scale(tile_black,(88,88)) gameDisplay.blit(tile_black2,(start_check_x+inc_x,start_check_y+inc_y,check_width,check_height)) color_alternate*=-1 color_alternate*=-1 chess_board=[[-2,-3,-4,-5,-6,-4,-3,-2], [-1,-1,-1,-1,-1,-1,-1,-1], [0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0], [1,1,1,1,1,1,1,1], [2,3,4,5,6,4,3,2]] def conv_to_arr(pos): return ((pos[0]-185)//88,(pos[1]-23)//88) def conv_to_pixel(pos): return ((185+pos[0]*88),(23+pos[1]*88)) def draw_rect(x,y,w,h,t,col): col=col pygame.draw.line(gameDisplay,col,(x,y),(x+w,y),t) pygame.draw.line(gameDisplay,col,(x+w,y),(x+w,y+h),t) pygame.draw.line(gameDisplay,col,(x+w,y+h),(x,y+h),t) pygame.draw.line(gameDisplay,col,(x,y+h),(x,y),t) def select_peice(): global chess_board,current_pos,turns pos=pygame.mouse.get_pos() arr_pos=conv_to_arr(pos) pos=conv_to_pixel(arr_pos) # print(arr_pos) if arr_pos[0]>=0 and arr_pos[0]<8 and arr_pos[1]>=0 and arr_pos[1]<8: if turns==1: if pygame.mouse.get_pressed()[0] and (chess_board[arr_pos[1]][arr_pos[0]] >0): draw_rect(pos[0],pos[1],width_bet_sq,width_bet_sq,4,(246,169,27)) current_pos=pos if turns==-1: if pygame.mouse.get_pressed()[0] and (chess_board[arr_pos[1]][arr_pos[0]] <0): draw_rect(pos[0],pos[1],width_bet_sq,width_bet_sq,4,(246,169,27)) current_pos=pos def mark_current_pos(): global current_pos draw_rect(current_pos[0],current_pos[1],width_bet_sq,width_bet_sq,4,(0,0,255)) def draw_peices(): global chess_board #actually internally the array id flipped by row and column rememebr to reflip the array while d for i in range(8): for j in range(8): check_pos=chess_board[i][j] if check_pos==1: pixel_pos=conv_to_pixel((j,i)) w_pawn2=pygame.transform.scale(w_pawn,(88,88)) gameDisplay.blit(w_pawn2,(pixel_pos[0],pixel_pos[1],88,88)) # pygame.draw.circle(gameDisplay,piece_color,(pixel_pos[0]+44,pixel_pos[1]+44),10) if check_pos==2: pixel_pos=conv_to_pixel((j,i)) w_rook2=pygame.transform.scale(w_rook,(88,88)) gameDisplay.blit(w_rook2,(pixel_pos[0],pixel_pos[1],88,88)) # pygame.draw.circle(gameDisplay,piece_color,(pixel_pos[0]+44,pixel_pos[1]+44),10) if check_pos==3: pixel_pos=conv_to_pixel((j,i)) w_knight2=pygame.transform.scale(w_knight,(88,88)) gameDisplay.blit(w_knight2,(pixel_pos[0],pixel_pos[1],88,88)) # pygame.draw.circle(gameDisplay,piece_color,(pixel_pos[0]+44,pixel_pos[1]+44),10) if check_pos==4: pixel_pos=conv_to_pixel((j,i)) w_bishop2=pygame.transform.scale(w_bishop,(88,88)) gameDisplay.blit(w_bishop2,(pixel_pos[0],pixel_pos[1],88,88)) # pygame.draw.circle(gameDisplay,piece_color,(pixel_pos[0]+44,pixel_pos[1]+44),10) if check_pos==5: pixel_pos=conv_to_pixel((j,i)) w_queen2=pygame.transform.scale(w_queen,(88,88)) gameDisplay.blit(w_queen2,(pixel_pos[0],pixel_pos[1],88,88)) # pygame.draw.circle(gameDisplay,piece_color,(pixel_pos[0]+44,pixel_pos[1]+44),10) if check_pos==6: pixel_pos=conv_to_pixel((j,i)) w_king2=pygame.transform.scale(w_king,(88,88)) gameDisplay.blit(w_king2,(pixel_pos[0],pixel_pos[1],88,88)) # pygame.draw.circle(gameDisplay,piece_color,(pixel_pos[0]+44,pixel_pos[1]+44),10) if check_pos==-1: pixel_pos=conv_to_pixel((j,i)) b_pawn2=pygame.transform.scale(b_pawn,(88,88)) gameDisplay.blit(b_pawn2,(pixel_pos[0],pixel_pos[1],88,88)) # pygame.draw.circle(gameDisplay,piece_color,(pixel_pos[0]+44,pixel_pos[1]+44),10) if check_pos==-2: pixel_pos=conv_to_pixel((j,i)) b_rook2=pygame.transform.scale(b_rook,(88,88)) gameDisplay.blit(b_rook2,(pixel_pos[0],pixel_pos[1],88,88)) # pygame.draw.circle(gameDisplay,piece_color,(pixel_pos[0]+44,pixel_pos[1]+44),10) if check_pos==-3: pixel_pos=conv_to_pixel((j,i)) b_knight2=pygame.transform.scale(b_knight,(88,88)) gameDisplay.blit(b_knight2,(pixel_pos[0],pixel_pos[1],88,88)) # pygame.draw.circle(gameDisplay,piece_color,(pixel_pos[0]+44,pixel_pos[1]+44),10) if check_pos==-4: pixel_pos=conv_to_pixel((j,i)) b_bishop2=pygame.transform.scale(b_bishop,(88,88)) gameDisplay.blit(b_bishop2,(pixel_pos[0],pixel_pos[1],88,88)) # pygame.draw.circle(gameDisplay,piece_color,(pixel_pos[0]+44,pixel_pos[1]+44),10) if check_pos==-5: pixel_pos=conv_to_pixel((j,i)) b_queen2=pygame.transform.scale(b_queen,(88,88)) gameDisplay.blit(b_queen2,(pixel_pos[0],pixel_pos[1],88,88)) # pygame.draw.circle(gameDisplay,piece_color,(pixel_pos[0]+44,pixel_pos[1]+44),10) if check_pos==-6: pixel_pos=conv_to_pixel((j,i)) b_king2=pygame.transform.scale(b_king,(88,88)) gameDisplay.blit(b_king2,(pixel_pos[0],pixel_pos[1],88,88)) #showing moves def pawn(use_curr_pos,p): global current_pos,chess_board if use_curr_pos==True: pos=conv_to_arr(current_pos) else: pos=p # print(pos) avble_slots=[] kill_slots=[] try: if chess_board[pos[1]][pos[0]]>0: # print(pos) if pos[1]==6: if chess_board[pos[1]-1][pos[0]]==0: avble_slots.append((pos[1]-1,pos[0])) if chess_board[pos[1]-2][pos[0]]==0: avble_slots.append((pos[1]-2,pos[0])) if pos[0]-1>=0: if chess_board[pos[1]-1][pos[0]-1]<0: kill_slots.append((pos[1]-1,pos[0]-1)) if pos[0]+1<=7: if chess_board[pos[1]-1][pos[0]+1]<0: kill_slots.append((pos[1]-1,pos[0]+1)) if chess_board[pos[1]-1][pos[0]]==0: # print((pos[1]-1,pos[0])) avble_slots.append((pos[1]-1,pos[0])) if chess_board[pos[1]][pos[0]]<0: if pos[1]==1: if chess_board[pos[1]+1][pos[0]]==0: avble_slots.append((pos[1]+1,pos[0])) if chess_board[pos[1]+2][pos[0]]==0: avble_slots.append((pos[1]+2,pos[0])) if pos[0]+1<=7: if chess_board[pos[1]+1][pos[0]+1]>0: kill_slots.append((pos[1]+1,pos[0]+1)) if pos[0]-1>=0: if chess_board[pos[1]+1][pos[0]-1]>0: kill_slots.append((pos[1]+1,pos[0]-1)) if chess_board[pos[1]+1][pos[0]]==0: avble_slots.append((pos[1]+1,pos[0])) except: pass return avble_slots,kill_slots def rook(use_curr_pos,p): global current_pos,chess_board if use_curr_pos==True: pos=conv_to_arr(current_pos) else: pos=p # print(pos) avble_slots=[] kill_slots=[] if chess_board[pos[1]][pos[0]]>0: xl=1 while (pos[0]-xl)>-1: # print(pos[0]-xl) if chess_board[pos[1]][pos[0]-xl]<0: kill_slots.append((pos[1],pos[0]-xl)) break if chess_board[pos[1]][pos[0]-xl]==0: avble_slots.append((pos[1],pos[0]-xl)) else: break xl+=1 xl=1 while pos[0]+xl<8: # print(pos[0]+xl) if chess_board[pos[1]][pos[0]+xl]<0: kill_slots.append((pos[1],pos[0]+xl)) break if chess_board[pos[1]][pos[0]+xl]==0: avble_slots.append((pos[1],pos[0]+xl)) else: break xl+=1 yl=1 while pos[1]-yl>-1: # print(pos[0]-yl) if chess_board[pos[1]-yl][pos[0]]<0: kill_slots.append((pos[1]-yl,pos[0])) break if chess_board[pos[1]-yl][pos[0]]==0: avble_slots.append((pos[1]-yl,pos[0])) else: break yl+=1 yl=1 while pos[1]+yl<8: # print(pos[0]+yl) if chess_board[pos[1]+yl][pos[0]]<0: kill_slots.append((pos[1]+yl,pos[0])) break if chess_board[pos[1]+yl][pos[0]]==0: avble_slots.append((pos[1]+yl,pos[0])) else: break yl+=1 else: xl=1 while (pos[0]-xl)>-1: # print(pos[0]-xl) if chess_board[pos[1]][pos[0]-xl]>0: kill_slots.append((pos[1],pos[0]-xl)) break if chess_board[pos[1]][pos[0]-xl]==0: avble_slots.append((pos[1],pos[0]-xl)) else: break xl+=1 xl=1 while pos[0]+xl<8: # print(pos[0]+xl) if chess_board[pos[1]][pos[0]+xl]>0: kill_slots.append((pos[1],pos[0]+xl)) break if chess_board[pos[1]][pos[0]+xl]==0: avble_slots.append((pos[1],pos[0]+xl)) else: break xl+=1 yl=1 while pos[1]-yl>-1: # print(pos[0]-yl) if chess_board[pos[1]-yl][pos[0]]>0: kill_slots.append((pos[1]-yl,pos[0])) break if chess_board[pos[1]-yl][pos[0]]==0: avble_slots.append((pos[1]-yl,pos[0])) else: break yl+=1 yl=1 while pos[1]+yl<8: # print(pos[0]+yl) if chess_board[pos[1]+yl][pos[0]]>0: kill_slots.append((pos[1]+yl,pos[0])) break if chess_board[pos[1]+yl][pos[0]]==0: avble_slots.append((pos[1]+yl,pos[0])) else: break yl+=1 return avble_slots,kill_slots def knight(use_curr_pos,p): global current_pos,chess_board if use_curr_pos==True: pos=conv_to_arr(current_pos) else: pos=p # print(pos) avble_slots=[] kill_slots=[] #case 1 2 hori right 1 vert , up if chess_board[pos[1]][pos[0]]>0: if pos[1]+1<=7 and pos[0]+2<=7: if chess_board[pos[1]+1][pos[0]+2]==0: avble_slots.append((pos[1]+1,pos[0]+2)) if chess_board[pos[1]+1][pos[0]+2]<0: kill_slots.append((pos[1]+1,pos[0]+2)) #case 2 2hori right 1 vert down if pos[1]-1>=0 and pos[0]+2<=7: if chess_board[pos[1]-1][pos[0]+2]==0: avble_slots.append((pos[1]-1,pos[0]+2)) if chess_board[pos[1]-1][pos[0]+2]<0: kill_slots.append((pos[1]-1,pos[0]+2)) # case 3 2 hori left 1 vert up if pos[1]+1<=7 and pos[0]-2>=0: if chess_board[pos[1]+1][pos[0]-2]==0: avble_slots.append((pos[1]+1,pos[0]-2)) if chess_board[pos[1]+1][pos[0]-2]<0: kill_slots.append((pos[1]+1,pos[0]-2)) #case 4 2 hori left 1 vert down if pos[1]-1>=0 and pos[0]-2>=0: if chess_board[pos[1]-1][pos[0]-2]==0: avble_slots.append((pos[1]-1,pos[0]-2)) if chess_board[pos[1]-1][pos[0]-2]<0: kill_slots.append((pos[1]-1,pos[0]-2)) #case 5 2 vert up 1 hori right if pos[1]+2<=7 and pos[0]+1<=7: if chess_board[pos[1]+2][pos[0]+1]==0: avble_slots.append((pos[1]+2,pos[0]+1)) if chess_board[pos[1]+2][pos[0]+1]<0: kill_slots.append((pos[1]+2,pos[0]+1)) #case 6 2 vert up 1 hori left if pos[1]+2<=7 and pos[0]-1>=0: if chess_board[pos[1]+2][pos[0]-1]==0: avble_slots.append((pos[1]+2,pos[0]-1)) if chess_board[pos[1]+2][pos[0]-1]<0: kill_slots.append((pos[1]+2,pos[0]-1)) #case 7 2 vert down 1 hori right if pos[1]-2>=0 and pos[0]+1<=7: if chess_board[pos[1]-2][pos[0]+1]==0: avble_slots.append((pos[1]-2,pos[0]+1)) if chess_board[pos[1]-2][pos[0]+1]<0: kill_slots.append((pos[1]-2,pos[0]+1)) #case 8 2 vert down 1 hori left if pos[1]-2>=0 and pos[0]-1>=0: if chess_board[pos[1]-2][pos[0]-1]==0: avble_slots.append((pos[1]-2,pos[0]-1)) if chess_board[pos[1]-2][pos[0]-1]<0: kill_slots.append((pos[1]-2,pos[0]-1)) else: if pos[1]+1<=7 and pos[0]+2<=7: if chess_board[pos[1]+1][pos[0]+2]==0: avble_slots.append((pos[1]+1,pos[0]+2)) if chess_board[pos[1]+1][pos[0]+2]>0: kill_slots.append((pos[1]+1,pos[0]+2)) #case 2 2hori right 1 vert down if pos[1]-1>=0 and pos[0]+2<=7: if chess_board[pos[1]-1][pos[0]+2]==0: avble_slots.append((pos[1]-1,pos[0]+2)) if chess_board[pos[1]-1][pos[0]+2]>0: kill_slots.append((pos[1]-1,pos[0]+2)) # case 3 2 hori left 1 vert up if pos[1]+1<=7 and pos[0]-2>=0: if chess_board[pos[1]+1][pos[0]-2]==0: avble_slots.append((pos[1]+1,pos[0]-2)) if chess_board[pos[1]+1][pos[0]-2]>0: kill_slots.append((pos[1]+1,pos[0]-2)) #case 4 2 hori left 1 vert down if pos[1]-1>=0 and pos[0]-2>=0: if chess_board[pos[1]-1][pos[0]-2]==0: avble_slots.append((pos[1]-1,pos[0]-2)) if chess_board[pos[1]-1][pos[0]-2]>0: kill_slots.append((pos[1]-1,pos[0]-2)) #case 5 2 vert up 1 hori right if pos[1]+2<=7 and pos[0]+1<=7: if chess_board[pos[1]+2][pos[0]+1]==0: avble_slots.append((pos[1]+2,pos[0]+1)) if chess_board[pos[1]+2][pos[0]+1]>0: kill_slots.append((pos[1]+2,pos[0]+1)) #case 6 2 vert up 1 hori left if pos[1]+2<=7 and pos[0]-1>=0: if chess_board[pos[1]+2][pos[0]-1]==0: avble_slots.append((pos[1]+2,pos[0]-1)) if chess_board[pos[1]+2][pos[0]-1]>0: kill_slots.append((pos[1]+2,pos[0]-1)) #case 7 2 vert down 1 hori right if pos[1]-2>=0 and pos[0]+1<=7: if chess_board[pos[1]-2][pos[0]+1]==0: avble_slots.append((pos[1]-2,pos[0]+1)) if chess_board[pos[1]-2][pos[0]+1]>0: kill_slots.append((pos[1]-2,pos[0]+1)) #case 8 2 vert down 1 hori left if pos[1]-2>=0 and pos[0]-1>=0: if chess_board[pos[1]-2][pos[0]-1]==0: avble_slots.append((pos[1]-2,pos[0]-1)) if chess_board[pos[1]-2][pos[0]-1]>0: kill_slots.append((pos[1]-2,pos[0]-1)) return avble_slots,kill_slots def bishop(use_curr_pos,p): global current_pos,chess_board if use_curr_pos==True: pos=conv_to_arr(current_pos) else: pos=p # print(pos) avble_slots=[] kill_slots=[] if chess_board[pos[1]][pos[0]]>0: xl=1 while (pos[0]-xl)>-1 and (pos[1]-xl)>-1: # print(pos[0]-xl) if chess_board[pos[1]-xl][pos[0]-xl]<0: kill_slots.append((pos[1]-xl,pos[0]-xl)) break if chess_board[pos[1]-xl][pos[0]-xl]==0: avble_slots.append((pos[1]-xl,pos[0]-xl)) else: break xl+=1 xl=1 while (pos[0]+xl<8) and (pos[1]+xl<8): # print(pos[0]+xl) if chess_board[pos[1]+xl][pos[0]+xl]<0: kill_slots.append((pos[1]+xl,pos[0]+xl)) break if chess_board[pos[1]+xl][pos[0]+xl]==0: avble_slots.append((pos[1]+xl,pos[0]+xl)) else: break xl+=1 xl=1 yl=1 while (pos[1]-yl>-1) and (pos[0]+yl<8): # print(pos[0]-yl) if chess_board[pos[1]-yl][pos[0]+yl]<0: kill_slots.append((pos[1]-yl,pos[0]+yl)) break if chess_board[pos[1]-yl][pos[0]+yl]==0: avble_slots.append((pos[1]-yl,pos[0]+yl)) else: break yl+=1 yl=1 while (pos[1]+yl<8) and (pos[0]-yl>-1): # print(pos[0]+yl) if chess_board[pos[1]+yl][pos[0]-yl]<0: kill_slots.append((pos[1]+yl,pos[0]-yl)) break if chess_board[pos[1]+yl][pos[0]-yl]==0: avble_slots.append((pos[1]+yl,pos[0]-yl)) else: break yl+=1 else: xl=1 while (pos[0]-xl)>-1 and (pos[1]-xl)>-1: # print(pos[0]-xl) if chess_board[pos[1]-xl][pos[0]-xl]>0: kill_slots.append((pos[1]-xl,pos[0]-xl)) break if chess_board[pos[1]-xl][pos[0]-xl]==0: avble_slots.append((pos[1]-xl,pos[0]-xl)) else: break xl+=1 xl=1 while (pos[0]+xl<8) and (pos[1]+xl<8): # print(pos[0]+xl) if chess_board[pos[1]+xl][pos[0]+xl]>0: kill_slots.append((pos[1]+xl,pos[0]+xl)) break if chess_board[pos[1]+xl][pos[0]+xl]==0: avble_slots.append((pos[1]+xl,pos[0]+xl)) else: break xl+=1 xl=1 yl=1 while (pos[1]-yl>-1) and (pos[0]+yl<8): # print(pos[0]-yl) if chess_board[pos[1]-yl][pos[0]+yl]>0: kill_slots.append((pos[1]-yl,pos[0]+yl)) break if chess_board[pos[1]-yl][pos[0]+yl]==0: avble_slots.append((pos[1]-yl,pos[0]+yl)) else: break yl+=1 yl=1 while (pos[1]+yl<8) and (pos[0]-yl>-1): # print(pos[0]+yl) if chess_board[pos[1]+yl][pos[0]-yl]>0: kill_slots.append((pos[1]+yl,pos[0]-yl)) break if chess_board[pos[1]+yl][pos[0]-yl]==0: avble_slots.append((pos[1]+yl,pos[0]-yl)) else: break yl+=1 return avble_slots,kill_slots def queen(use_curr_pos,p): global current_pos,chess_board if use_curr_pos==True: pos=conv_to_arr(current_pos) else: pos=p # print(pos) avble_slots=[] kill_slots=[] if chess_board[pos[1]][pos[0]]>0: xl=1 while (pos[0]-xl)>-1: # print(pos[0]-xl) if chess_board[pos[1]][pos[0]-xl]<0: kill_slots.append((pos[1],pos[0]-xl)) break if chess_board[pos[1]][pos[0]-xl]==0: avble_slots.append((pos[1],pos[0]-xl)) else: break xl+=1 xl=1 while pos[0]+xl<8: # print(pos[0]+xl) if chess_board[pos[1]][pos[0]+xl]<0: kill_slots.append((pos[1],pos[0]+xl)) break if chess_board[pos[1]][pos[0]+xl]==0: avble_slots.append((pos[1],pos[0]+xl)) else: break xl+=1 yl=1 while pos[1]-yl>-1: # print(pos[0]-yl) if chess_board[pos[1]-yl][pos[0]]<0: kill_slots.append((pos[1]-yl,pos[0])) break if chess_board[pos[1]-yl][pos[0]]==0: avble_slots.append((pos[1]-yl,pos[0])) else: break yl+=1 yl=1 while pos[1]+yl<8: # print(pos[0]+yl) if chess_board[pos[1]+yl][pos[0]]<0: kill_slots.append((pos[1]+yl,pos[0])) break if chess_board[pos[1]+yl][pos[0]]==0: avble_slots.append((pos[1]+yl,pos[0])) else: break yl+=1 else: xl=1 while (pos[0]-xl)>-1: # print(pos[0]-xl) if chess_board[pos[1]][pos[0]-xl]>0: kill_slots.append((pos[1],pos[0]-xl)) break if chess_board[pos[1]][pos[0]-xl]==0: avble_slots.append((pos[1],pos[0]-xl)) else: break xl+=1 xl=1 while pos[0]+xl<8: # print(pos[0]+xl) if chess_board[pos[1]][pos[0]+xl]>0: kill_slots.append((pos[1],pos[0]+xl)) break if chess_board[pos[1]][pos[0]+xl]==0: avble_slots.append((pos[1],pos[0]+xl)) else: break xl+=1 yl=1 while pos[1]-yl>-1: # print(pos[0]-yl) if chess_board[pos[1]-yl][pos[0]]>0: kill_slots.append((pos[1]-yl,pos[0])) break if chess_board[pos[1]-yl][pos[0]]==0: avble_slots.append((pos[1]-yl,pos[0])) else: break yl+=1 yl=1 while pos[1]+yl<8: # print(pos[0]+yl) if chess_board[pos[1]+yl][pos[0]]>0: kill_slots.append((pos[1]+yl,pos[0])) break if chess_board[pos[1]+yl][pos[0]]==0: avble_slots.append((pos[1]+yl,pos[0])) else: break yl+=1 if chess_board[pos[1]][pos[0]]>0: xl=1 while (pos[0]-xl)>-1 and (pos[1]-xl)>-1: # print(pos[0]-xl) if chess_board[pos[1]-xl][pos[0]-xl]<0: kill_slots.append((pos[1]-xl,pos[0]-xl)) break if chess_board[pos[1]-xl][pos[0]-xl]==0: avble_slots.append((pos[1]-xl,pos[0]-xl)) else: break xl+=1 xl=1 while (pos[0]+xl<8) and (pos[1]+xl<8): # print(pos[0]+xl) if chess_board[pos[1]+xl][pos[0]+xl]<0: kill_slots.append((pos[1]+xl,pos[0]+xl)) break if chess_board[pos[1]+xl][pos[0]+xl]==0: avble_slots.append((pos[1]+xl,pos[0]+xl)) else: break xl+=1 yl=1 while (pos[1]-yl>-1) and (pos[0]+yl<8): # print(pos[0]-yl) if chess_board[pos[1]-yl][pos[0]+yl]<0: kill_slots.append((pos[1]-yl,pos[0]+yl)) break if chess_board[pos[1]-yl][pos[0]+yl]==0: avble_slots.append((pos[1]-yl,pos[0]+yl)) else: break yl+=1 yl=1 while (pos[1]+yl<8) and (pos[0]-yl>-1): # print(pos[0]+yl) if chess_board[pos[1]+yl][pos[0]-yl]<0: kill_slots.append((pos[1]+yl,pos[0]-yl)) break if chess_board[pos[1]+yl][pos[0]-yl]==0: avble_slots.append((pos[1]+yl,pos[0]-yl)) else: break yl+=1 else: xl=1 while (pos[0]-xl)>-1 and (pos[1]-xl)>-1: # print(pos[0]-xl) if chess_board[pos[1]-xl][pos[0]-xl]>0: kill_slots.append((pos[1]-xl,pos[0]-xl)) break if chess_board[pos[1]-xl][pos[0]-xl]==0: avble_slots.append((pos[1]-xl,pos[0]-xl)) else: break xl+=1 xl=1 while (pos[0]+xl<8) and (pos[1]+xl<8): # print(pos[0]+xl) if chess_board[pos[1]+xl][pos[0]+xl]>0: kill_slots.append((pos[1]+xl,pos[0]+xl)) break if chess_board[pos[1]+xl][pos[0]+xl]==0: avble_slots.append((pos[1]+xl,pos[0]+xl)) else: break xl+=1 yl=1 while (pos[1]-yl>-1) and (pos[0]+yl<8): # print(pos[0]-yl) if chess_board[pos[1]-yl][pos[0]+yl]>0: kill_slots.append((pos[1]-yl,pos[0]+yl)) break if chess_board[pos[1]-yl][pos[0]+yl]==0: avble_slots.append((pos[1]-yl,pos[0]+yl)) else: break yl+=1 yl=1 while (pos[1]+yl<8) and (pos[0]-yl>-1): # print(pos[0]+yl) if chess_board[pos[1]+yl][pos[0]-yl]>0: kill_slots.append((pos[1]+yl,pos[0]-yl)) break if chess_board[pos[1]+yl][pos[0]-yl]==0: avble_slots.append((pos[1]+yl,pos[0]-yl)) else: break yl+=1 return avble_slots,kill_slots def king(use_curr_pos,p): global current_pos,chess_board if use_curr_pos==True: pos=conv_to_arr(current_pos) else: pos=p # print(pos) avble_slots=[] kill_slots=[] if chess_board[pos[1]][pos[0]]>0: if pos[1]-1>=0: if chess_board[pos[1]-1][pos[0]]<0: kill_slots.append((pos[1]-1,pos[0])) if chess_board[pos[1]-1][pos[0]]==0: avble_slots.append((pos[1]-1,pos[0])) if pos[1]+1<8: if chess_board[pos[1]+1][pos[0]]<0: kill_slots.append((pos[1]+1,pos[0])) if chess_board[pos[1]+1][pos[0]]==0: avble_slots.append((pos[1]+1,pos[0])) if pos[0]-1>=0: if chess_board[pos[1]][pos[0]-1]<0: kill_slots.append((pos[1],pos[0]-1)) if chess_board[pos[1]][pos[0]-1]==0: avble_slots.append((pos[1],pos[0]-1)) if pos[0]+1<8: if chess_board[pos[1]][pos[0]+1]<0: kill_slots.append((pos[1],pos[0]+1)) if chess_board[pos[1]][pos[0]+1]==0: avble_slots.append((pos[1],pos[0]+1)) if pos[1]-1>=0 and pos[0]-1>=0: if chess_board[pos[1]-1][pos[0]-1]<0: kill_slots.append((pos[1]-1,pos[0]-1)) if chess_board[pos[1]-1][pos[0]-1]==0: avble_slots.append((pos[1]-1,pos[0]-1)) if pos[1]-1>=0 and pos[0]+1<8: if chess_board[pos[1]-1][pos[0]+1]<0: kill_slots.append((pos[1]-1,pos[0]+1)) if chess_board[pos[1]-1][pos[0]+1]==0: avble_slots.append((pos[1]-1,pos[0]+1)) if pos[1]+1<8 and pos[1]-1>=0: if chess_board[pos[1]+1][pos[0]-1]<0: kill_slots.append((pos[1]+1,pos[0]-1)) if chess_board[pos[1]+1][pos[0]-1]==0: avble_slots.append((pos[1]+1,pos[0]-1)) if pos[1]+1<8 and pos[0]+1>=0: if chess_board[pos[1]+1][pos[0]+1]<0: kill_slots.append((pos[1]+1,pos[0]+1)) if chess_board[pos[1]+1][pos[0]+1]==0: avble_slots.append((pos[1]+1,pos[0]+1)) else: if pos[1]-1>=0: if chess_board[pos[1]-1][pos[0]]>0: kill_slots.append((pos[1]-1,pos[0])) if chess_board[pos[1]-1][pos[0]]==0: avble_slots.append((pos[1]-1,pos[0])) if pos[1]+1<8: if chess_board[pos[1]+1][pos[0]]>0: kill_slots.append((pos[1]+1,pos[0])) if chess_board[pos[1]+1][pos[0]]==0: avble_slots.append((pos[1]+1,pos[0])) if pos[0]-1>=0: if chess_board[pos[1]][pos[0]-1]>0: kill_slots.append((pos[1],pos[0]-1)) if chess_board[pos[1]][pos[0]-1]==0: avble_slots.append((pos[1],pos[0]-1)) if pos[0]+1<8: if chess_board[pos[1]][pos[0]+1]>0: kill_slots.append((pos[1],pos[0]+1)) if chess_board[pos[1]][pos[0]+1]==0: avble_slots.append((pos[1],pos[0]+1)) if pos[1]-1>=0 and pos[0]-1>=0: if chess_board[pos[1]-1][pos[0]-1]>0: kill_slots.append((pos[1]-1,pos[0]-1)) if chess_board[pos[1]-1][pos[0]-1]==0: avble_slots.append((pos[1]-1,pos[0]-1)) if pos[1]-1>=0 and pos[0]+1<8: if chess_board[pos[1]-1][pos[0]+1]>0: kill_slots.append((pos[1]-1,pos[0]+1)) if chess_board[pos[1]-1][pos[0]+1]==0: avble_slots.append((pos[1]-1,pos[0]+1)) if pos[1]+1<8 and pos[0]-1>=0: if chess_board[pos[1]+1][pos[0]-1]>0: kill_slots.append((pos[1]+1,pos[0]-1)) if chess_board[pos[1]+1][pos[0]-1]==0: avble_slots.append((pos[1]+1,pos[0]-1)) if pos[1]+1<8 and pos[0]+1<8: if chess_board[pos[1]+1][pos[0]+1]>0: kill_slots.append((pos[1]+1,pos[0]+1)) if chess_board[pos[1]+1][pos[0]+1]==0: avble_slots.append((pos[1]+1,pos[0]+1)) return avble_slots,kill_slots def determine_check_1(): global current_pos,chess_board # print(pos) for i in range(8): for j in range(8): if chess_board[i][j]==6: pos=(j,i) avble_slots=[] kill_slots=[] if chess_board[pos[1]][pos[0]]>0: xl=1 while (pos[0]-xl)>-1: # print(pos[0]-xl) if chess_board[pos[1]][pos[0]-xl]<0: kill_slots.append((pos[1],pos[0]-xl)) break if chess_board[pos[1]][pos[0]-xl]==0: avble_slots.append((pos[1],pos[0]-xl)) else: break xl+=1 xl=1 while pos[0]+xl<8: # print(pos[0]+xl) if chess_board[pos[1]][pos[0]+xl]<0: kill_slots.append((pos[1],pos[0]+xl)) break if chess_board[pos[1]][pos[0]+xl]==0: avble_slots.append((pos[1],pos[0]+xl)) else: break xl+=1 yl=1 while pos[1]-yl>-1: # print(pos[0]-yl) if chess_board[pos[1]-yl][pos[0]]<0: kill_slots.append((pos[1]-yl,pos[0])) break if chess_board[pos[1]-yl][pos[0]]==0: avble_slots.append((pos[1]-yl,pos[0])) else: break yl+=1 yl=1 while pos[1]+yl<8: # print(pos[0]+yl) if chess_board[pos[1]+yl][pos[0]]<0: kill_slots.append((pos[1]+yl,pos[0])) break if chess_board[pos[1]+yl][pos[0]]==0: avble_slots.append((pos[1]+yl,pos[0])) else: break yl+=1 if chess_board[pos[1]][pos[0]]>0: xl=1 while (pos[0]-xl)>-1 and (pos[1]-xl)>-1: # print(pos[0]-xl) if chess_board[pos[1]-xl][pos[0]-xl]<0: kill_slots.append((pos[1]-xl,pos[0]-xl)) break if chess_board[pos[1]-xl][pos[0]-xl]==0: avble_slots.append((pos[1]-xl,pos[0]-xl)) else: break xl+=1 xl=1 while (pos[0]+xl<8) and (pos[1]+xl<8): # print(pos[0]+xl) if chess_board[pos[1]+xl][pos[0]+xl]<0: kill_slots.append((pos[1]+xl,pos[0]+xl)) break if chess_board[pos[1]+xl][pos[0]+xl]==0: avble_slots.append((pos[1]+xl,pos[0]+xl)) else: break xl+=1 yl=1 while (pos[1]-yl>-1) and (pos[0]+yl<8): # print(pos[0]-yl) if chess_board[pos[1]-yl][pos[0]+yl]<0: kill_slots.append((pos[1]-yl,pos[0]+yl)) break if chess_board[pos[1]-yl][pos[0]+yl]==0: avble_slots.append((pos[1]-yl,pos[0]+yl)) else: break yl+=1 yl=1 while (pos[1]+yl<8) and (pos[0]-yl>-1): # print(pos[0]+yl) # print("hoooo") if chess_board[pos[1]+yl][pos[0]-yl]<0: kill_slots.append((pos[1]+yl,pos[0]-yl)) break if chess_board[pos[1]+yl][pos[0]-yl]==0: avble_slots.append((pos[1]+yl,pos[0]-yl)) else: break yl+=1 #case 1 2 hori right 1 vert , up if chess_board[pos[1]][pos[0]]>0: if pos[1]+1<=7 and pos[0]+2<=7: if chess_board[pos[1]+1][pos[0]+2]==0: avble_slots.append((pos[1]+1,pos[0]+2)) if chess_board[pos[1]+1][pos[0]+2]<0: kill_slots.append((pos[1]+1,pos[0]+2)) #case 2 2hori right 1 vert down if pos[1]-1>=0 and pos[0]+2<=7: if chess_board[pos[1]-1][pos[0]+2]==0: avble_slots.append((pos[1]-1,pos[0]+2)) if chess_board[pos[1]-1][pos[0]+2]<0: kill_slots.append((pos[1]-1,pos[0]+2)) # case 3 2 hori left 1 vert up if pos[1]+1<=7 and pos[0]-2>=0: if chess_board[pos[1]+1][pos[0]-2]==0: avble_slots.append((pos[1]+1,pos[0]-2)) if chess_board[pos[1]+1][pos[0]-2]<0: kill_slots.append((pos[1]+1,pos[0]-2)) #case 4 2 hori left 1 vert down if pos[1]-1>=0 and pos[0]-2>=0: if chess_board[pos[1]-1][pos[0]-2]==0: avble_slots.append((pos[1]-1,pos[0]-2)) if chess_board[pos[1]-1][pos[0]-2]<0: kill_slots.append((pos[1]-1,pos[0]-2)) #case 5 2 vert up 1 hori right if pos[1]+2<=7 and pos[0]+1<=7: if chess_board[pos[1]+2][pos[0]+1]==0: avble_slots.append((pos[1]+2,pos[0]+1)) if chess_board[pos[1]+2][pos[0]+1]<0: kill_slots.append((pos[1]+2,pos[0]+1)) #case 6 2 vert up 1 hori left if pos[1]+2<=7 and pos[0]-1>=0: if chess_board[pos[1]+2][pos[0]-1]==0: avble_slots.append((pos[1]+2,pos[0]-1)) if chess_board[pos[1]+2][pos[0]-1]<0: kill_slots.append((pos[1]+2,pos[0]-1)) #case 7 2 vert down 1 hori right if pos[1]-2>=0 and pos[0]+1<=7: if chess_board[pos[1]-2][pos[0]+1]==0: avble_slots.append((pos[1]-2,pos[0]+1)) if chess_board[pos[1]-2][pos[0]+1]<0: kill_slots.append((pos[1]-2,pos[0]+1)) #case 8 2 vert down 1 hori left if pos[1]-2>=0 and pos[0]-1>=0: if chess_board[pos[1]-2][pos[0]-1]==0: avble_slots.append((pos[1]-2,pos[0]-1)) if chess_board[pos[1]-2][pos[0]-1]<0: kill_slots.append((pos[1]-2,pos[0]-1)) check=False check_available_slot=[] check_kill_slot=[] # print(kill_slots) for pieces in kill_slots: if chess_board[pieces[0]][pieces[1]]==-1: check_kill_slot+=pawn(False,(pieces[1],pieces[0]))[1] if chess_board[pieces[0]][pieces[1]]==-2: check_kill_slot+=rook(False,(pieces[1],pieces[0]))[1] if chess_board[pieces[0]][pieces[1]]==-3: check_kill_slot+=knight(False,(pieces[1],pieces[0]))[1] if chess_board[pieces[0]][pieces[1]]==-4: check_kill_slot+=bishop(False,(pieces[1],pieces[0]))[1] if chess_board[pieces[0]][pieces[1]]==-5: # print("hooo)") check_kill_slot+=queen(False,(pieces[1],pieces[0]))[1] if chess_board[pieces[0]][pieces[1]]==-6: check_kill_slot+=king(False,(pieces[1],pieces[0]))[1] # print(check_kill_slot) # print(pos) for kill in check_kill_slot: if kill==(pos[1],pos[0]): check=True return check def determine_check_2(): global current_pos,chess_board # print(pos) for i in range(8): for j in range(8): if chess_board[i][j]==-6: pos=(j,i) avble_slots=[] kill_slots=[] xl=1 while (pos[0]-xl)>-1: # print(pos[0]-xl) if chess_board[pos[1]][pos[0]-xl]>0: kill_slots.append((pos[1],pos[0]-xl)) break if chess_board[pos[1]][pos[0]-xl]==0: avble_slots.append((pos[1],pos[0]-xl)) else: break xl+=1 xl=1 while pos[0]+xl<8: # print(pos[0]+xl) if chess_board[pos[1]][pos[0]+xl]>0: kill_slots.append((pos[1],pos[0]+xl)) break if chess_board[pos[1]][pos[0]+xl]==0: avble_slots.append((pos[1],pos[0]+xl)) else: break xl+=1 yl=1 while pos[1]-yl>-1: # print(pos[0]-yl) if chess_board[pos[1]-yl][pos[0]]>0: kill_slots.append((pos[1]-yl,pos[0])) break if chess_board[pos[1]-yl][pos[0]]==0: avble_slots.append((pos[1]-yl,pos[0])) else: break yl+=1 yl=1 while pos[1]+yl<8: # print(pos[0]+yl) if chess_board[pos[1]+yl][pos[0]]>0: # print("bbbbbbbbbbbbbad") kill_slots.append((pos[1]+yl,pos[0])) break if chess_board[pos[1]+yl][pos[0]]==0: avble_slots.append((pos[1]+yl,pos[0])) else: break yl+=1 xl=1 while (pos[0]-xl)>-1 and (pos[1]-xl)>-1: # print(pos[0]-xl) if chess_board[pos[1]-xl][pos[0]-xl]>0: kill_slots.append((pos[1]-xl,pos[0]-xl)) break if chess_board[pos[1]-xl][pos[0]-xl]==0: avble_slots.append((pos[1]-xl,pos[0]-xl)) else: break xl+=1 xl=1 while (pos[0]+xl<8) and (pos[1]+xl<8): # print(pos[0]+xl) if chess_board[pos[1]+xl][pos[0]+xl]>0: kill_slots.append((pos[1]+xl,pos[0]+xl)) break if chess_board[pos[1]+xl][pos[0]+xl]==0: avble_slots.append((pos[1]+xl,pos[0]+xl)) else: break xl+=1 yl=1 while (pos[1]-yl>-1) and (pos[0]+yl<8): # print(pos[0]-yl) if chess_board[pos[1]-yl][pos[0]+yl]>0: kill_slots.append((pos[1]-yl,pos[0]+yl)) break if chess_board[pos[1]-yl][pos[0]+yl]==0: avble_slots.append((pos[1]-yl,pos[0]+yl)) else: break yl+=1 yl=1 while (pos[1]+yl<8) and (pos[0]-yl>-1): # print(pos[0]+yl) if chess_board[pos[1]+yl][pos[0]-yl]>0: kill_slots.append((pos[1]+yl,pos[0]-yl)) break if chess_board[pos[1]+yl][pos[0]-yl]==0: avble_slots.append((pos[1]+yl,pos[0]-yl)) else: break yl+=1 if pos[1]+1<=7 and pos[0]+2<=7: if chess_board[pos[1]+1][pos[0]+2]==0: avble_slots.append((pos[1]+1,pos[0]+2)) if chess_board[pos[1]+1][pos[0]+2]>0: kill_slots.append((pos[1]+1,pos[0]+2)) #case 2 2hori right 1 vert down if pos[1]-1>=0 and pos[0]+2<=7: if chess_board[pos[1]-1][pos[0]+2]==0: avble_slots.append((pos[1]-1,pos[0]+2)) if chess_board[pos[1]-1][pos[0]+2]>0: kill_slots.append((pos[1]-1,pos[0]+2)) # case 3 2 hori left 1 vert up if pos[1]+1<=7 and pos[0]-2>=0: if chess_board[pos[1]+1][pos[0]-2]==0: avble_slots.append((pos[1]+1,pos[0]-2)) if chess_board[pos[1]+1][pos[0]-2]>0: kill_slots.append((pos[1]+1,pos[0]-2)) #case 4 2 hori left 1 vert down if pos[1]-1>=0 and pos[0]-2>=0: if chess_board[pos[1]-1][pos[0]-2]==0: avble_slots.append((pos[1]-1,pos[0]-2)) if chess_board[pos[1]-1][pos[0]-2]>0: kill_slots.append((pos[1]-1,pos[0]-2)) #case 5 2 vert up 1 hori right if pos[1]+2<=7 and pos[0]+1<=7: if chess_board[pos[1]+2][pos[0]+1]==0: avble_slots.append((pos[1]+2,pos[0]+1)) if chess_board[pos[1]+2][pos[0]+1]>0: kill_slots.append((pos[1]+2,pos[0]+1)) #case 6 2 vert up 1 hori left if pos[1]+2<=7 and pos[0]-1>=0: if chess_board[pos[1]+2][pos[0]-1]==0: avble_slots.append((pos[1]+2,pos[0]-1)) if chess_board[pos[1]+2][pos[0]-1]>0: kill_slots.append((pos[1]+2,pos[0]-1)) #case 7 2 vert down 1 hori right if pos[1]-2>=0 and pos[0]+1<=7: if chess_board[pos[1]-2][pos[0]+1]==0: avble_slots.append((pos[1]-2,pos[0]+1)) if chess_board[pos[1]-2][pos[0]+1]>0: kill_slots.append((pos[1]-2,pos[0]+1)) #case 8 2 vert down 1 hori left if pos[1]-2>=0 and pos[0]-1>=0: if chess_board[pos[1]-2][pos[0]-1]==0: avble_slots.append((pos[1]-2,pos[0]-1)) if chess_board[pos[1]-2][pos[0]-1]>0: kill_slots.append((pos[1]-2,pos[0]-1)) check=False check_available_slot=[] check_kill_slot=[] # print(kill_slots) for pieces in kill_slots: if chess_board[pieces[0]][pieces[1]]==1: check_kill_slot+=pawn(False,(pieces[1],pieces[0]))[1] if chess_board[pieces[0]][pieces[1]]==2: check_kill_slot+=rook(False,(pieces[1],pieces[0]))[1] if chess_board[pieces[0]][pieces[1]]==3: check_kill_slot+=knight(False,(pieces[1],pieces[0]))[1] if chess_board[pieces[0]][pieces[1]]==4: check_kill_slot+=bishop(False,(pieces[1],pieces[0]))[1] if chess_board[pieces[0]][pieces[1]]==5: check_kill_slot+=queen(False,(pieces[1],pieces[0]))[1] if chess_board[pieces[0]][pieces[1]]==6: check_kill_slot+=king(False,(pieces[1],pieces[0]))[1] # print(check_kill_slot) for kill in check_kill_slot: if kill==(pos[1],pos[0]): check=True return check def check_for_checkmates_2(): global chess_board checking_pieces=[] checkmate=True for i in range(8): for j in range(8): if chess_board[i][j]<0: checking_pieces.append((j,i)) temp_arr=deepcopy(chess_board) # print(turns) for pos in checking_pieces: if chess_board[pos[1]][pos[0]]==-1: available_slot,kill_slot=pawn(False,pos) if chess_board[pos[1]][pos[0]]==-2: available_slot,kill_slot=rook(False,pos) if chess_board[pos[1]][pos[0]]==-3: available_slot,kill_slot=knight(False,pos) if chess_board[pos[1]][pos[0]]==-4: available_slot,kill_slot=bishop(False,pos) if chess_board[pos[1]][pos[0]]==-5: available_slot,kill_slot=queen(False,pos) if chess_board[pos[1]][pos[0]]==-6: available_slot,kill_slot=king(False,pos) for slot in available_slot: king_found=False chess_board=deepcopy(temp_arr) move_iterator(pos,slot) for i in range(8): for j in range(8): if chess_board[i][j]==-6: king_found=True if king_found==False: chess_board=deepcopy(temp_arr) # for i in range(8): # print(chess_board[i]) if determine_check_2()==False: checkmate=False break if determine_check_2()==False: break for slot in kill_slot: king_found=False chess_board=deepcopy(temp_arr) move_iterator(pos,slot) # for i in range(8): # print(chess_board[i]) # print(slot) for i in range(8): for j in range(8): if chess_board[i][j]==-6: king_found=True if king_found==False: chess_board=deepcopy(temp_arr) if determine_check_2()==False: checkmate=False break if determine_check_2()==False: break chess_board=temp_arr return checkmate def check_for_checkmates_1(): global chess_board checking_pieces=[] checkmate=True for i in range(8): for j in range(8): if chess_board[i][j]>0: checking_pieces.append((j,i)) # print(chess_board) temp_arr=deepcopy(chess_board) # print(turns) for pos in checking_pieces: if chess_board[pos[1]][pos[0]]==1: available_slot,kill_slot=pawn(False,pos) if chess_board[pos[1]][pos[0]]==2: available_slot,kill_slot=rook(False,pos) if chess_board[pos[1]][pos[0]]==3: available_slot,kill_slot=knight(False,pos) if chess_board[pos[1]][pos[0]]==4: available_slot,kill_slot=bishop(False,pos) if chess_board[pos[1]][pos[0]]==5: available_slot,kill_slot=queen(False,pos) if chess_board[pos[1]][pos[0]]==6: available_slot,kill_slot=king(False,pos) for slot in available_slot: king_found=False move_iterator(pos,slot) for i in range(8): for j in range(8): if chess_board[i][j]==6: king_found=True if king_found==False: chess_board=deepcopy(temp_arr) if determine_check_1()==False: checkmate=False break chess_board=temp_arr for slot in kill_slot: king_found=False move_iterator(pos,slot) # for i in range(8): # print(chess_board[i]) # print(slot) for i in range(8): for j in range(8): if chess_board[i][j]==6: king_found=True if king_found==False: chess_board=deepcopy(temp_arr) if determine_check_1()==False: checkmate=False break chess_board=temp_arr chess_board=temp_arr return checkmate def move_iterator(pos,slot): global chess_board #worked fine at 0 1 trying 1 0 to fix bugs chess_board[slot[0]][slot[1]]=chess_board[pos[1]][pos[0]] chess_board[pos[1]][pos[0]]=0 def move_peice(avble_slots,kill_slots): global current_pos,chess_board,killed_pieces,turns global posit,cur_pos pos=pygame.mouse.get_pos() pos=conv_to_arr(pos) cur_pos_conv=conv_to_arr(current_pos) selected_slot=(-1,-1) # print("================") # print(pos) # print(cur_pos_conv) # print(avble_slots) # print("+++++++++++++++++++") # for i in range(8): # print(chess_board[i]) if pygame.mouse.get_pressed()[0]: for slot in avble_slots: if (pos[1],pos[0])==slot: selected_slot=pos posit=pos cur_pos=cur_pos_conv chess_board[pos[1]][pos[0]]=chess_board[cur_pos_conv[1]][cur_pos_conv[0]] chess_board[cur_pos_conv[1]][cur_pos_conv[0]]=0 turns*=-1 break for slot in kill_slots: if (pos[1],pos[0])==slot: selected_slot=pos posit=pos cur_pos=cur_pos_conv killed_pieces.append(chess_board[pos[1]][pos[0]]) chess_board[pos[1]][pos[0]]=chess_board[cur_pos_conv[1]][cur_pos_conv[0]] chess_board[cur_pos_conv[1]][cur_pos_conv[0]]=0 turns*=-1 break return selected_slot def show_possible_moves(): global current_pos,chess_board,turns,check2,check1,checked_pos,update_check_pos pos=conv_to_arr(current_pos) available_slot=[] kill_slot=[] # 1 stands for white turn and -1 stands for blacks turn if chess_board[pos[1]][pos[0]]==1*turns: available_slot,kill_slot=pawn(True,(0,0)) if chess_board[pos[1]][pos[0]]==2*turns: available_slot,kill_slot=rook(True,(0,0)) if chess_board[pos[1]][pos[0]]==3*turns: available_slot,kill_slot=knight(True,(0,0)) if chess_board[pos[1]][pos[0]]==4*turns: available_slot,kill_slot=bishop(True,(0,0)) if chess_board[pos[1]][pos[0]]==5*turns: available_slot,kill_slot=queen(True,(0,0)) if chess_board[pos[1]][pos[0]]==6*turns: available_slot,kill_slot=king(True,(0,0)) for slot in available_slot: pixel_pos=conv_to_pixel((slot[1],slot[0])) draw_rect(pixel_pos[0],pixel_pos[1],88,88,5,(0,255,0)) # pygame.draw.circle(gameDisplay,(239,216,69),(pixel_pos[0]+44,pixel_pos[1]+44),10) for slot in kill_slot: pixel_pos=conv_to_pixel((slot[1],slot[0])) draw_rect(pixel_pos[0],pixel_pos[1],88,88,5,(255,0,0)) # pygame.draw.circle(gameDisplay,(0,255,0),(pixel_pos[0]+44,pixel_pos[1]+44),20) #checking conditions temp_chess_board=deepcopy(chess_board) # temp_chess_board=deepcopy(chess_board) # if check1==True or check2==True: # chess_board=temp_chess_board selected_pos=move_peice(available_slot,kill_slot) # print(turns) # if check2==True or check1==True: # selected_pos=checked_pos if determine_check_1(): # pass print("check 1") text = STAT_FONT.render("CHECK",3, (255,0,0)) gameDisplay.blit(text, (5,600)) test=deepcopy(chess_board) result1=check_for_checkmates_1() if result1==True: print("black wins CHECKMATE") pygame.draw.rect(gameDisplay,(255,255,255),(230,350,620,60)) text2 = stat_font.render("black wins CHECKMATE",3, (0,0,0)) gameDisplay.blit(text2, (250,350)) # exit() chess_board=test if turns==-1: chess_board=temp_chess_board turns*=-1 if determine_check_2(): # pass print("check 2") text = STAT_FONT.render("CHECK",3, (255,0,0)) gameDisplay.blit(text, (5,100)) test=deepcopy(chess_board) result2=check_for_checkmates_2() if result2==True: print("player 1 wins CHECKMATE") pygame.draw.rect(gameDisplay,(255,255,255),(230,350,620,60)) text2 = stat_font.render("white wins CHECKMATE",3, (0,0,0)) gameDisplay.blit(text2, (250,350)) # exit() chess_board=test if turns==1: chess_board=temp_chess_board turns*=-1 def checkpos(pos,x,y,w,h): if pos[0]>=x and pos[0]<=x+w: if pos[1]>=y and pos[1]<=y+h: if pygame.mouse.get_pressed()[0]: return True else: return False def P_Moves(board,color): possiblemoves=[] checking_pieces=[] for i in range(8): for j in range(8): if color==-1: if board[i][j]<0: checking_pieces.append((j,i)) if color==1: if board[i][j]>0: checking_pieces.append((j,i)) for pos in checking_pieces: if board[pos[1]][pos[0]]==1*color: available_slot,kill_slot=pawn(False,pos) if board[pos[1]][pos[0]]==2*color: available_slot,kill_slot=rook(False,pos) if board[pos[1]][pos[0]]==3*color: available_slot,kill_slot=knight(False,pos) if board[pos[1]][pos[0]]==4*color: available_slot,kill_slot=bishop(False,pos) if board[pos[1]][pos[0]]==5*color: available_slot,kill_slot=queen(False,pos) if board[pos[1]][pos[0]]==6*color: available_slot,kill_slot=king(False,pos) possiblemoves.append(((pos[1],pos[0]),available_slot+kill_slot)) return possiblemoves def move_maker(board,mover): move=mover[1] idd=mover[0] board[move[0]][move[1]]=board[idd[0]][idd[1]] board[idd[0]][idd[1]]=0 return board def minimaxR(depth,board,isMaximizing): possibleMoves=P_Moves(board,-1) bestmove=-9999 bestFinalMove=((1,3),(3,3)) for element in possibleMoves: idd =element[0] moves=element[1] # print("*"*50) # print(moves) # print("*"*50) for move in moves: b_board=deepcopy(board) t_board=move_maker(b_board,(idd,move)) # for i in range(8): # print(t_board[i]) value=max(bestmove,minimax(depth-1,t_board,-10000,10000,not isMaximizing)) if value>bestmove: # print("best move :",bestmove) bestmove=value bestFinalMove=(idd,move) return bestFinalMove def minimax(depth,board,alpha,beta,isMaximizing): if depth==0: return -evaluation(board) if isMaximizing: breaking=False possibleMoves=P_Moves(board,-1) bestmove=-9999 for element in possibleMoves: idd=element[0] moves=element[1] for move in moves: t_board=move_maker(board,(idd,move)) bestmove=max(bestmove,minimax(depth-1,t_board,alpha,beta,not isMaximizing)) alpha=max(alpha,bestmove) if beta<=alpha: breaking=True return bestmove if breaking: break return bestmove else: possibleMoves=P_Moves(board,1) bestmove=9999 breaking=False for element in possibleMoves: idd=element[0] moves=element[1] for move in moves: t_board=move_maker(board,(idd,move)) bestmove=min(bestmove,minimax(depth-1,t_board,alpha,beta,not isMaximizing)) beta=min(beta,bestmove) if(beta<=alpha): breaking=True return bestmove if breaking: break return bestmove def evaluation(board): evaluate=0 for i in range(8): for j in range(8): if board[i][j]<0: evaluate+=getpiece_val(abs(board[i][j])) elif board[i][j]>0: evaluate-=getpiece_val(abs(board[i][j])) # print(evaluate) return evaluate def getpiece_val(piece): value=0 if piece==1: value=10 #10 elif piece==2: value=50 #50 elif piece==3: value=30 # 30 elif piece==4: value=30 #30 elif piece==5: value=90#90 elif piece==6: value=900#900 return value def hover(pos,x,y,w,h): if pos[0]>=x and pos[0]<=x+w: if pos[1]>=y and pos[1]<=y+h: return True else: return False def front_logo(): t=0 for t in range(150): menu1=pygame.transform.scale(menu,(900,750)) gameDisplay.blit(menu1,(0,0,900,750)) text = stat_font2.render("Chess 360",3, (255,255,255)) globe1=pygame.transform.scale(globe,(200,200)) gameDisplay.blit(globe1,(430,340,200,200)) gameDisplay.blit(text, (200,425)) pygame.display.update() for event in pygame.event.get(): if event.type==pygame.QUIT: # run=False exit() def main_menu(): global choice enter=True col1=(255,255,255) col2=(255,255,255) col3=(255,255,255) while enter: menu1=pygame.transform.scale(menu,(900,750)) gameDisplay.blit(menu1,(0,0,900,750)) text = stat_font.render("Chess 360",3, (255,255,255)) gameDisplay.blit(text, (350,125)) for event in pygame.event.get(): if event.type==pygame.QUIT: run=False # exit() if event.type==pygame.KEYDOWN: if event.key==pygame.K_b: enter=False p=pygame.mouse.get_pos() box1=pygame.transform.scale(frame,(740,105)) gameDisplay.blit(box1,(130,282,740,105)) pygame.draw.rect(gameDisplay,col1,(200,300,600,75)) text = STAT_FONT.render("pvp offline",3, (0,0,0)) gameDisplay.blit(text, (360,325)) # box2=pygame.transform.scale(frame,(740,105)) gameDisplay.blit(box1,(130,410,740,105)) pygame.draw.rect(gameDisplay,col2,(200,425,600,75)) text = STAT_FONT.render("pvp online",3, (0,0,0)) gameDisplay.blit(text, (360,450)) gameDisplay.blit(box1,(130,534,740,105)) pygame.draw.rect(gameDisplay,col3,(200,550,600,75)) text = STAT_FONT.render("play against computer",3, (0,0,0)) gameDisplay.blit(text, (360,575)) if hover(p,200,300,600,75): col1=(230,230,230) else: col1=(255,255,255) if hover(p,200,425,600,75): col2=(230,230,230) else: col2=(255,255,255) if hover(p,200,550,600,75): col3=(230,230,230) else: col3=(255,255,255) if checkpos(p,200,300,600,75): choice=1 enter=False if checkpos(p,200,425,600,75): choice=2 enter=False if checkpos(p,200,550,600,75): choice=3 enter=False pygame.display.update() if __name__=="__main__": #185,23 # 704-42,23 choice=-1 pygame.display.set_caption("chess 360") checked_pos=0 update_check_pos=False gameloop=True front_logo() while gameloop: main_menu() n=Network() current_pos=(185,639) check1=False check2=False posit=(0,0) cur_pos=(0,0) killed_pieces=[] turns=1 run=True b=board() while run: if choice==1: gameDisplay.fill(brown) for event in pygame.event.get(): if event.type==pygame.QUIT: run=False # exit() b.draw_board() text3 = STAT_FONT.render("TURN",3, (255,255,255)) gameDisplay.blit(text3, (10,350)) if turns==1: text4 = STAT_FONT.render("white's",3, (255,255,255)) gameDisplay.blit(text4, (12,300)) else: text4 = STAT_FONT.render("black's",3, (255,255,255)) gameDisplay.blit(text4, (12,300)) select_peice() mark_current_pos() draw_peices() show_possible_moves() pygame.display.update() if choice==3: gameDisplay.fill(brown) b.draw_board() text3 = STAT_FONT.render("TURN",3, (255,255,255)) gameDisplay.blit(text3, (10,350)) if turns==1: text4 = STAT_FONT.render("white's",3, (255,255,255)) gameDisplay.blit(text4, (12,300)) else: text4 = STAT_FONT.render("black's",3, (255,255,255)) gameDisplay.blit(text4, (12,300)) for event in pygame.event.get(): if event.type==pygame.QUIT: run=False # exit() if turns==-1 : # chess_board[2][3]=-1 chess_board_copy=deepcopy(chess_board) move=minimaxR(3,chess_board,True) # print(move) chess_board=move_maker(chess_board,move) # for i in range(8): # print(chess_board[i]) if determine_check_1(): # pass print("check 1") text = STAT_FONT.render("CHECK",3, (255,0,0)) gameDisplay.blit(text, (5,600)) chess_board=chess_board_copy test=deepcopy(chess_board) result1=check_for_checkmates_1() if result1==True: print("player 2 wins CHECKMATE") print("black wins CHECKMATE") pygame.draw.rect(gameDisplay,(255,255,255),(230,350,620,60)) text2 = stat_font.render("black wins CHECKMATE",3, (0,0,0)) gameDisplay.blit(text2, (250,350)) # exit() chess_board=test if turns==-1: chess_board=test turns*=-1 if determine_check_2(): # pass print("check 2") chess_board=chess_board_copy test=deepcopy(chess_board) result2=check_for_checkmates_2() if result2==True: print("player 1 wins CHECKMATE") print("player 1 wins CHECKMATE") pygame.draw.rect(gameDisplay,(255,255,255),(230,350,620,60)) text2 = stat_font.render("white wins CHECKMATE",3, (0,0,0)) gameDisplay.blit(text2, (250,350)) # exit() chess_board=test if turns==1: chess_board=test turns*=-1 if turns==-1: turns=1 b.draw_board() select_peice() mark_current_pos() if turns==1: show_possible_moves() draw_peices() pygame.display.update() if choice==2: try: gameDisplay.fill(brown) # num+=1 for event in pygame.event.get(): if event.type==pygame.QUIT: run=False # exit() b.draw_board() # if turns==1: select_peice() mark_current_pos() # chess_board_recvd=n.send(chess_board) # for i in range(8): # print(chess_board_recvd) draw_peices() # pos_arr=n.send([(-1,-1),(-1,-1)]) if turns==1: show_possible_moves() pos_arr=n.send([posit,cur_pos]) if turns==-1: pos_arr=n.send([(-1,-1),(-1,-1)]) print(pos_arr) pos=pos_arr[0] cur_pos_conv=pos_arr[1] chess_board[pos[1]][pos[0]]=chess_board[cur_pos_conv[1]][cur_pos_conv[0]] chess_board[cur_pos_conv[1]][cur_pos_conv[0]]=0 turns*=-1 chess_board[0][0]=-2 pygame.display.update() except: text2 = stat_font.render("waiting for other player..",3, (255,0,0)) gameDisplay.blit(text2, (250,350)) pygame.display.update() for event in pygame.event.get(): if event.type==pygame.KEYDOWN: if event.key==pygame.K_e: exit() for event in pygame.event.get(): if event.type==pygame.KEYDOWN: if event.key==pygame.K_e: exit()
[ "noreply@github.com" ]
AI-Factor-y.noreply@github.com
3622120dddd6b2f0521775b7eeaec59ce961df1b
efd3aa99a1669ef547a1625fd62e881d2281acfb
/Energy.py
31bdd135104066868f19753397f775b54ef3661a
[]
no_license
MaxLu0428/TensorNetworkPartitionFn
9b2e803d530027557c2724d22fb09e3a99d9c8f2
531955c6dac60a3a24e43de5cacb189c51425b2e
refs/heads/master
2023-03-11T23:37:53.064128
2021-02-25T07:17:23
2021-02-25T07:17:23
305,578,756
0
0
null
null
null
null
UTF-8
Python
false
false
3,308
py
# -*- coding: utf-8 -*- """ Created on Thu Mar 26 13:38:42 2020 @author: chingyuhuang """ import numpy as np from math import pi from scipy import linalg import time, itertools import matplotlib.pyplot as plt import HOTRG_two import pandas as pd from pathlib import Path def SAVE_dATA( Cdata,RG_step,Dcut,name): dataframe = pd.DataFrame( Cdata ) dataframe.index=['i={}'.format(num_steps) for num_steps in range((2**RG_step)*2) ] dataframe.columns = [ a1 for a1 in range( (2**RG_step)*2) ] dataframe = dataframe.stack() dataframe = dataframe.unstack(0) dataframe.index.name="Dcut="+str(Dcut) dataframe.to_csv(name ) #================================================# trgstep = 2 N = 2 dcut = 16 FILE = 'Ising_square_'+ 'RG'+str(trgstep) step= 50 deltT = (2.0/step) T_list = [ 1.0 +deltT*i for i in range(0,step+1) ] dir_path = Path(FILE) if not dir_path.exists(): dir_path.mkdir() . for T in T_list: Cij_list = dict(); for i in range( (2**trgstep)*2): Cj_list = np.zeros(2**trgstep*2) # for j in range((2**trgstep)*2): for j in range(i,(2**trgstep)*2): DT, IDT = HOTRG_two.Ising_square(T) To = DT; Ti = IDT; si = i ; sj = j; Pi = Ti ; To0 = To if i==0 and j==0: Ti = To Pi = To for ii in range(trgstep): Lsi,si = divmod(si,2) Lsj,sj = divmod(sj,2) # ## update along y-direction To1,UU,UUT,N1 = HOTRG_two.updat_pure2( To0,To0,'y',dcut) To1 /= N1 if Lsi==0 and Lsj==0: T0,T1,T2,T3 = HOTRG_two.DetT (si,sj,To0,Ti,Pi) else: T0,T1,T2,T3 = HOTRG_two.DetT (si,sj,To0,Ti,To0) iTL,_,_,_ = HOTRG_two.updat_pure2( T0, T3,'y',dcut) iTL = iTL / N1 iTR,_,_,_ = HOTRG_two.updat_pure2( T1, T2,'y',dcut) iTR = iTR / N1 if Lsi==0 and Lsj==0: P0 =To0; P1 = To0; P2 = To0; P3= To0 else: P0,P1,P2,P3 = HOTRG_two.DetP (si,sj,To0,Pi) iPL,_,_,_ = HOTRG_two.updat_pure2( P0, P3,'y',dcut) iPL = iPL / N1 iPR,_,_,_ = HOTRG_two.updat_pure2( P1, P2,'y',dcut) iPR = iPR / N1 si = Lsi; sj = Lsj; ## update along x-direction To2,UU,UUT,N1 = HOTRG_two.updat_pure2( To1,To1,'x',dcut) To2 /= N1 Tij,_,_,_ = HOTRG_two.updat_pure2( iTL, iTR,'x',dcut) Tij = Tij / N1 Pij,_,_,_ = HOTRG_two.updat_pure2( iPL, iPR,'x',dcut) Pij = Pij / N1 To0 =To2 Ti = Tij Pi = Pij T0,T1,T2,T3 = HOTRG_two.DetTLIST (si,sj,To0,Ti,Pi) if i==0 and j==0: T0 =Ti; T1=To0; T2=To0; T3=To0 Norm = HOTRG_two.merge_four( [To0,To0,To0,To0] ) Cij = HOTRG_two.merge_four( [T0, T1, T2, T3])/Norm Cj_list[j] = Cij Cij_list[i] = Cj_list; SAVE_dATA( Cij_list, trgstep,dcut,FILE+'/Cij_T'+str(format( T, '.3f'))+'_D'+str(dcut)+'.csv' )
[ "maxlu0428@gmail.com" ]
maxlu0428@gmail.com
264641448c559a31731c347e5aa9462dc5ccb1f9
14f413371efe349646b737167c26c66ddb2fa898
/answer/views.py
88b40d6647fa0eb73d190827d5154963d5b9c07e
[]
no_license
pabissonnier/project8__purbeurre
bace2341a76dc1281d25dce59d9e23f8fec4e252
f59f57d78b04075ac7fa9c104cd88fb2278e8820
refs/heads/master
2022-12-15T19:10:22.821407
2019-12-05T18:15:52
2019-12-05T18:15:52
186,840,027
0
1
null
2022-12-08T01:47:21
2019-05-15T14:09:45
CSS
UTF-8
Python
false
false
6,596
py
# -*- coding: utf-8 -*- from django.shortcuts import render, get_object_or_404, redirect from django.core.exceptions import MultipleObjectsReturned from django.core.paginator import Paginator from .models import Product def index(request): return render(request, 'answer/index.html') def search(request): query = request.GET.get('query') global message if not query: products_all_list = Product.objects.all().order_by('name') paginator = Paginator(products_all_list, 9) page = request.GET.get('page') products_all = paginator.get_page(page) title = "Résultats pour la recherche : '%s'" % query context = { 'products': products_all, 'title': title, 'query': query, } return render(request, 'answer/search.html', context) else: products_list = Product.objects.filter(name__icontains=query).order_by('name') paginator = Paginator(products_list, 9) page = request.GET.get('page') products = paginator.get_page(page) if not products_list.exists(): message = "Aucun produit trouvé" title = "Résultats pour la recherche : '%s'" % query context = { 'products': products, 'title': title, 'query': query } return render(request, 'answer/search.html', context) def app(request): query = request.GET.get('app-query') products_datas = Product() if not query: products_list = Product.objects.all().order_by('name') paginator = Paginator(products_list, 9) page = request.GET.get('page') products_all = paginator.get_page(page) title = "Aucun produit n'a été renseigné, choisissez dans la liste de produits ou recherchez un produit" context = { 'title': title, 'products': products_all, 'query': query, } return render(request, 'answer/list.html', context) else: try: products = Product.objects.filter(name__iexact=query) if not products.exists(): space = ' ' if space in query: products_ratio_list = Product.find_similar_name(products_datas, query) products = Product.objects.filter(name__in=products_ratio_list).order_by('name') paginator = Paginator(products, 9) page = request.GET.get('page') products_all = paginator.get_page(page) title = "Aucun produit pour : '%s', choisissez un produit dans la liste ci-dessous" % query context = { 'title': title, 'products': products_all, 'query': query, } return render(request, 'answer/list.html', context) else: products = Product.objects.filter(name__icontains=query).order_by('name') paginator = Paginator(products, 9) page = request.GET.get('page') products_all = paginator.get_page(page) title = "Plusieurs produits contiennent : '%s', choisissez un produit dans la liste ci-dessous" % query context = { 'title': title, 'products': products_all, 'query': query, } return render(request, 'answer/list.html', context) product_name, product_picture, product_nutriscore, product_category, product_link, product_id = \ Product.product_chosen(products_datas, query) better_nutriscore = Product.get_better_nutriscore(products_datas, product_nutriscore) best_ratio_list = Product.get_same_names(products_datas, product_name, product_category) better_products = Product.extract_products_for_replace(products_datas, better_nutriscore, product_category, best_ratio_list, product_link) title = "Voici de meilleurs produits pour remplacer : '%s'" % query if not better_products: title = "Désolé, nous n'avons pas de meilleurs produits pour remplacer : '%s'" % query context = { 'title': title, 'better_products': better_products, 'query': query, } return render(request, 'answer/results.html', context) except MultipleObjectsReturned: products = Product.multiple_product_name(products_datas, query) title = "Plusieurs produits pour : '%s', choisissez un produit dans la liste ci-dessous" % query context = { 'title': title, 'products': products, 'query': query, } return render(request, 'answer/simlist.html', context) def app_sim(request): query = request.GET.get('app-query-sim') products_datas = Product() product = Product.objects.get(id=query) better_nutriscore = Product.get_better_nutriscore(products_datas, product.nutriscore) best_ratio_list = Product.get_same_names(products_datas, product.name, product.category) better_products = Product.extract_products_for_replace(products_datas, better_nutriscore, product.category, best_ratio_list, product.link) title = "Voici de meilleurs produits pour remplacer : '%s'" % product.name if not better_products: title = "Désolé, nous n'avons pas de meilleurs produits pour remplacer : '%s'" % product.name context = { 'title': title, 'better_products': better_products, 'query': query, } return render(request, 'answer/results.html', context) def detail(request, product_id): """ Display details for the product clicked""" products_datas = Product() product = get_object_or_404(Product, pk=product_id) is_bio = Product.bio_or_not(products_datas, product) context = { 'name': product.name, 'picture': product.picture, 'nutriscore': product.nutriscore, 'ingredients': product.ingredients, 'shops': product.shops, 'link': product.link, 'labels' : product.labels, 'product': product, 'is_bio': is_bio } return render(request, 'answer/detail.html', context)
[ "pabissonnier@gmail.com" ]
pabissonnier@gmail.com
b7a956e9d522c03754567cfb5a37b9907762ee17
fce517b931838629ecdf1f61de763eaa208409ec
/category/models.py
9972266c3276ed893d76489f4a88563f6495284c
[]
no_license
bird50/rs_cat
19abec386815d3b0b0511f17260049a63f5dbd02
5adb4d49f3a6a9a4870305d3717183980c860c1c
refs/heads/master
2022-11-14T16:42:28.853472
2020-07-07T23:54:33
2020-07-07T23:54:33
277,946,338
0
0
null
null
null
null
UTF-8
Python
false
false
3,081
py
from django.db import models ''' [datacat] - name (ชื่อข้อมูล) - link (ลิ๊งค์ของแหล่งข้อมูล) - agency (หน่วยงานเจ้าของข้อมูล) - agency_provided_data (หน่วยงานที่ให้ข้อมูล) - keyword (หัวเรื่องหรือคําสําคัญ ที่ใช้สําหรับอ้างอิงในการค้นหาข้อมูล) - description (รายละเอียดของข้อมูล) - Time_period (ช่วงเวลาของข้อมูล) - source (อธิบายแหล่งที่มา) - type_of_data (รูปแบบการเก็บข้อมูล) - date_recived (วันที่ได้รับข้อมูล) - reference_doc (เอกสารอ้างอิงประกอบ) - related_subject (เรื่องที่เกี่ยวข้อง) - access_policy (ระเบียบในการเข้าถึงข้อมูล) - data_licensing (ระเบียบในการใช้ข้อมูล) - tags (แท็ก) ''' class Datacat(models.Model): class Type_of_data(models.TextChoices): CSV = 'CSV', _('CSV') TEXT = 'TXT', _('Text file') EXCEL = 'XLS', _('Excel file,xlsx,xls,xl*') SHP = 'SHP', _('ESRI Shape file') ETC = 'ETC', _('Other formats') UNKNOWN = 'UNK', _('Unknown format') ## Data licences ## ref https://www.cessda.eu/Training/Training-Resources/Library/Data-Management-Expert-Guide/6.-Archive-Publish/Publishing-with-CESSDA-archives/Licensing-your-data class Access_policy(models.TextChoices): CC0 = 'CC0', _('copy และ แจกจ่าย(Y) ,อางอง ผรบผดชอบเดม(N) , ใชเชงพาณชยได(Y) ,อนญาตใหปรบปรงได(Y) ,แกไขไลเซนสได(Y)') CC_BY = 'CC_BY', _('copy และ แจกจ่าย(Y) ,อางอง ผรบผดชอบเดม(Y) , ใชเชงพาณชยได(Y) ,อนญาตใหปรบปรงได(Y) ,แกไขไลเซนสได(Y)') name = models.CharField(max_length=255) link = models.URLField(blank=True) agency = models.ForeignKey(Agency, blank=True, null=True) agency_provided_data = models.ForeignKey(Agency, blank=True, null=True) keyword = models.CharField(max_length=255, blank=True) description = models.TextField(blank=True) Time_period = models.TextField(blank=True) source = models.TextField(blank=True) type_of_data = models.CharField( max_length=3, choices=Type_of_data.choices, default=Type_of_data.UNKNOWN ) date_recived = models.DateTimeField() reference_doc = models.TextField() related_subject = models.TextField() access_policy = models.TextField() created = models.DateTimeField(auto_now_add=True) # Create your models here.
[ "siratis.w@gmail.com" ]
siratis.w@gmail.com
c88a0f750789bbd73b0cdbec3214fd73b3684bf5
07f814b6b165825bab75f01b30113547f9dfc8ca
/src/074. Digit factorial chains/074.py
7a76248279038db2be6bed273644bca548f01ed8
[ "MIT" ]
permissive
yuhao600/project-euler
d1800ceba53c0bc66947e0b373ba42d3e3c372b2
201fc68aa9cca63b751036bb61623c12939dcac4
refs/heads/master
2021-01-18T23:17:33.956922
2020-12-22T08:19:26
2020-12-22T08:19:26
27,674,349
15
3
null
null
null
null
UTF-8
Python
false
false
395
py
factorial = [1] for d in range(1, 10): factorial.append(factorial[-1] * d) def digit_fact(n): return sum([factorial[int(d)] for d in str(n)]) counter = 0 for n in range(10 ** 6): m = n sequence = set() while True: sequence.add(m) m = digit_fact(m) if m in sequence: break if len(sequence) == 60: counter += 1 print(counter)
[ "yuhao10@baidu.com" ]
yuhao10@baidu.com
73c3b2c1b683f77bbfe7516ef0d32e2e5c86737d
24f97e9bd7eddca0ddcc174bedb012257c483921
/module/gr-round/python/deci.py
b537bfcc3411b538b3c1905022674eefc84b3dc9
[]
no_license
13717630148/graduation-project
8afb90b8aa7fc1544cc144522105869456e36372
743cda2b956e71e8d0323baf0b3aba9a347105be
refs/heads/master
2020-08-09T13:32:54.563870
2018-04-17T07:34:48
2018-04-17T07:34:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,429
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright 2018 <+YOU OR YOUR COMPANY+>. # # This is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # This software is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this software; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # import numpy from gnuradio import gr class deci(gr.decim_block): """ docstring for block deci """ def __init__(self, deci=2000): gr.decim_block.__init__(self, name="deci", in_sig=[numpy.float32], out_sig=[numpy.float32], decim=deci) self.decim = deci def work(self, input_items, output_items): in0 = input_items[0] out = output_items[0] # <+signal processing here+> print(len(in0)) for i in range(0,len(in0)/self.decim): out[i] = in0[i*self.decim] #out[:] = in0 return len(output_items[0])
[ "464271301@qq.com" ]
464271301@qq.com
c263f0cb8caa0efb7c52441a920dbdc751510535
f525e83095eff72a2452495aae4d800ffe5a553b
/main.py
72cc15b9b9fcfbbd84208dce47b6cbe2b51a68b1
[ "Apache-2.0" ]
permissive
maysrp/daolao
942b518eb86433f956b00b2f0962ffc0bec17ccc
42c9d5acb85e39f878f9f4a97cb2a7afeb2421e2
refs/heads/main
2023-02-17T10:17:18.949634
2021-01-14T14:32:52
2021-01-14T14:32:52
329,247,918
1
0
null
null
null
null
UTF-8
Python
false
false
590
py
from cnfont import chinese,pixel,image,anime1,anime2,anime3,flx,anime0 import max7219 from machine import Pin, SPI import time spi = SPI(1, baudrate=4000000, polarity=1, phase=0, sck=Pin(4), mosi=Pin(2)) ss = Pin(5, Pin.OUT) display = max7219.Matrix8x8(spi, ss, 16) l1="大佬让我过去吧" l2="祝您身体健康" l3="财源广进" # flx(l1,display) # flx(l2) # flx(l3) # time.sleep(2) anime0("爱一直在",display) # anime1("下次一定",display) # anime2("一键三连",display) # anime3("拒绝白嫖",display) image("b.json",display)
[ "noreply@github.com" ]
maysrp.noreply@github.com
97572804913cc220df3cf3925bd1a06df91f8c6e
385554a930b259412b3e843d5936a12b2bb35bd5
/quest2.3.py
67061739c87f5818d6b039722865e1d2b376ad39
[]
no_license
prajwalacharya016/CrackingCodingInterviewSolutions
ea60d2c125434ffc657143d0c22e64c81ecc9c1f
ca6e1a35220b83e799d8e81a7e96e3276dad19ab
refs/heads/master
2020-12-30T16:41:35.029676
2017-05-17T20:10:52
2017-05-17T20:10:52
91,015,518
0
0
null
null
null
null
UTF-8
Python
false
false
512
py
from linkedlist import LinkedList, Node def deleteNode(l2,data): head=l2.first n=None while head: if head.data == data: n = head break else: head=head.get_next() if n is None or n.get_next() is None: return False nextd = n.get_next() n.data = nextd.get_data() n.set_next(nextd.get_next()) return True l2 = LinkedList() l2.insert(1) l2.insert(2) l2.insert(3) l2.insert(5) l2.insert(7) deleteNode(l2,7) l2.printlist()
[ "callmeprajwal@gmail.com" ]
callmeprajwal@gmail.com
02a898bb283bd23b227d789c20e524113a8a8126
beba988ee3440ee0549b23f8dfc8c11d1452b3c0
/login/views.py
9f2939d4f0fbabb2ae28e783dc5479d023b58eaf
[]
no_license
pdf2e/Tektiles
c4c91f910466acf9e539d32e0e6ba62c2a71df7c
a25dd385757ce8f463c590863a5363dd8fb0fbae
refs/heads/master
2020-12-11T02:03:08.003218
2014-04-14T18:04:26
2014-04-14T18:04:26
17,325,359
1
0
null
null
null
null
UTF-8
Python
false
false
1,133
py
from django.template import RequestContext from django.shortcuts import render_to_response from login.forms import PersonForm def add_user(request): # Get the context from the request. context = RequestContext(request) # A HTTP POST? if request.method == 'POST': form = PersonForm(request.POST) # Have we been provided with a valid form? if form.is_valid(): # the user to the database form.save(commit=True) # Now call the index() view. # The user will be shown the homepage. return registration(request) else: # The supplied form contained errors - just print them to the terminal. print form.errors else: # If the request was not a POST, display the form to enter details. form = PersonForm() # Bad form (or form details), no form supplied... # Render the form with error messages (if any). return render_to_response('login/../templates/registration.html', {'form': form}, context) def registration(request): return render_to_response('registration.html')
[ "angelotodaro92@gmail.com" ]
angelotodaro92@gmail.com
b2586349d2cf431fa0748ebd0657102088fb88cf
1d96db84225301d972f07cad95c2a13f4fbafa84
/python/my_PyFeyn/feynman_diagram_lfv_charm/gen_diagrams.py
c622629912d615fbabe66878c68815279854cad8
[]
no_license
mattbellis/matts-work-environment
9eb9b25040dd8fb4a444819b01a80c2d5342b150
41988f3c310f497223445f16e2537e8d1a3f71bc
refs/heads/master
2023-08-23T09:02:37.193619
2023-08-09T05:36:32
2023-08-09T05:36:32
32,194,439
0
0
null
null
null
null
UTF-8
Python
false
false
156
py
#!/usr/bin/env python from diagrams import * tag = "_blk_bkg" for i in range(0,4): name = "fd_lfv_c_quark_%s_%d" % (tag,i) fd_lfv_c_quark(name,i)
[ "matthew.bellis@gmail.com" ]
matthew.bellis@gmail.com
3d2911a8f45cd81863e800a596cc087613d79b6b
039d8f2beb0991e2f1a4b3580b33250ae04440d1
/RPi/rpi_led.py
88c8eddb546b780f76b32c626ee19a3bb8edf57f
[]
no_license
a1ali/smartstreetlight
ff91eef204e16e582d3bac4ce4fe0923b062a1f9
e6a8c5b737f82d45bf3cd92ec38c6283bfa7c0d7
refs/heads/master
2023-02-20T05:11:27.711806
2021-01-26T22:09:22
2021-01-26T22:09:22
293,435,170
0
0
null
null
null
null
UTF-8
Python
false
false
1,810
py
import RPi.GPIO as GPIO import time from AWSIoTPythonSDK.MQTTLib import AWSIoTMQTTClient import json import pigpio led = 18 GPIO.setwarnings(False) GPIO.setmode(GPIO.BCM) #GPIO.setup(PIR, GPIO.IN) GPIO.setup(led, GPIO.OUT) #led = GPIO.PWM(LED, 500) #led.start(1) pi = pigpio.pi() pi.set_mode(led, pigpio.OUTPUT) pi.set_PWM_frequency(led, 8000) pi.set_PWM_dutycycle(led, 1) def helloworld(self, params, packet): print(json.loads(packet.payload)) mypayload = json.loads(packet.payload) if mypayload['rpi_motion'] == 'true': raise_brightness() elif mypayload['rpi_motion'] == 'false': lower_brightness() myMQTTClient = AWSIoTMQTTClient("rpi2") #tandom key can be anything # For TLS mutual authentication myMQTTClient.configureEndpoint("a2fj01nuikd9c7-ats.iot.us-east-2.amazonaws.com", 8883) #Provide your AWS IoT Core endpoint (Example: "abcdef12345-ats.iot.us-east-1.amazonaws.com") myMQTTClient.configureCredentials("root-ca.pem.txt", "private.pem.key", "certificate.pem.crt") #Set path for Root CA and provisioning claim credentials myMQTTClient.configureOfflinePublishQueueing(-1) myMQTTClient.configureDrainingFrequency(2) myMQTTClient.configureConnectDisconnectTimeout(10) myMQTTClient.configureMQTTOperationTimeout(5) print('Initiating Iot Core Topic') myMQTTClient.connect() print('connecting') myMQTTClient.subscribe('home/motion', 1, helloworld) print('subscribing') def raise_brightness(): for dc in range(0, 256, 1): pi.set_PWM_dutycycle(led, dc) time.sleep(0.01) #time.sleep(10) def lower_brightness(): for dc in range(255, 0, -1): pi.set_PWM_dutycycle(led, dc) time.sleep(0.01) try: while True: time.sleep(100) except KeyboardInterrupt: GPIO.cleanup()
[ "noreply@github.com" ]
a1ali.noreply@github.com
e6e44ed46fd2a04ce3ee66aa3b01fd54f6275b00
f525b7beb6d15d6e0ede93d4efdbe8918074f19c
/venv/game_settings.py
0e759cbe0da464b1c4afc0ff221d96bc6975a7c9
[]
no_license
MarcLiander/CPSC-386-02-Pong
5543a1ede459fd037d834bbbafd2c40df0919181
640d101d4c1bd49d841e0c0db972af8d2b7f6079
refs/heads/master
2020-04-13T04:33:56.856359
2018-12-29T07:15:52
2018-12-29T07:15:52
162,965,510
0
0
null
null
null
null
UTF-8
Python
false
false
350
py
class Settings(): def __init__(self): self.screen_width = 1200 self.screen_height = 800 self.bg_color = (50, 50, 50) self.item_color = (230, 230, 230) self.paddle_short = 20 self.paddle_long = 150 self.ball_speedup = 1.05 self.ball_size = 16 self.ball_touch_edge = False
[ "digizaku@gmail.com" ]
digizaku@gmail.com
96db2632d69d94830bd67115dadcaeb6e2e707c7
9cd8801c3ed2206bf731986a628f33a3577e10dd
/assignment1/cs231n/classifiers/neural_net.py
640b81e9abfb3f355b9c90edfc8f725b011063b7
[]
no_license
mfouda/CS231n
d82d47756070d721e342a28a67fc2c3cb4f45c8b
37e3252d69a84be7d94c452dce4f787f00c5dec9
refs/heads/master
2021-01-19T13:15:16.573273
2017-02-16T06:13:30
2017-02-16T06:13:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
11,287
py
import numpy as np import matplotlib.pyplot as plt class TwoLayerNet(object): """ A two-layer fully-connected neural network. The net has an input dimension of N, a hidden layer dimension of H, and performs classification over C classes. We train the network with a softmax loss function and L2 regularization on the weight matrices. The network uses a ReLU nonlinearity after the first fully connected layer. In other words, the network has the following architecture: input - fully connected layer - ReLU - fully connected layer - softmax The outputs of the second fully-connected layer are the scores for each class. """ def __init__(self, input_size, hidden_size, output_size, std=1e-4): """ Initialize the model. Weights are initialized to small random values and biases are initialized to zero. Weights and biases are stored in the variable self.params, which is a dictionary with the following keys: W1: First layer weights; has shape (D, H) b1: First layer biases; has shape (H,) W2: Second layer weights; has shape (H, C) b2: Second layer biases; has shape (C,) Inputs: - input_size: The dimension D of the input data. - hidden_size: The number of neurons H in the hidden layer. - output_size: The number of classes C. """ self.params = {} self.params['W1'] = std * np.random.randn(input_size, hidden_size) self.params['b1'] = np.zeros(hidden_size) self.params['W2'] = std * np.random.randn(hidden_size, output_size) self.params['b2'] = np.zeros(output_size) def loss(self, X, y=None, reg=0.0): """ Compute the loss and gradients for a two layer fully connected neural network. Inputs: - X: Input data of shape (N, D). Each X[i] is a training sample. - y: Vector of training labels. y[i] is the label for X[i], and each y[i] is an integer in the range 0 <= y[i] < C. This parameter is optional; if it is not passed then we only return scores, and if it is passed then we instead return the loss and gradients. - reg: Regularization strength. Returns: If y is None, return a matrix scores of shape (N, C) where scores[i, c] is the score for class c on input X[i]. If y is not None, instead return a tuple of: - loss: Loss (data loss and regularization loss) for this batch of training samples. - grads: Dictionary mapping parameter names to gradients of those parameters with respect to the loss function; has the same keys as self.params. """ # Unpack variables from the params dictionary W1, b1 = self.params['W1'], self.params['b1'] W2, b2 = self.params['W2'], self.params['b2'] N, D = X.shape H = W1.shape[1] # Compute the forward pass scores = None ############################################################################# # TODO: Perform the forward pass, computing the class scores for the input. # # Store the result in the scores variable, which should be an array of # # shape (N, C). # ############################################################################# z1 = X.dot(W1) + b1 a1 = np.maximum(np.zeros((N, H)), z1) z2 = a1.dot(W2) + b2 scores = z2 ############################################################################# # END OF YOUR CODE # ############################################################################# # If the targets are not given then jump out, we're done if y is None: return scores # Compute the loss loss = None ############################################################################# # TODO: Finish the forward pass, and compute the loss. This should include # # both the data loss and L2 regularization for W1 and W2. Store the result # # in the variable loss, which should be a scalar. Use the Softmax # # classifier loss. So that your results match ours, multiply the # # regularization loss by 0.5 # ############################################################################# row_max = np.max(z2, axis=1).reshape(N, 1) z2 = z2 - row_max correct_scores = -z2[range(N), y] row_sum = np.log(np.sum(np.exp(z2), axis=1)) loss = np.sum(correct_scores + row_sum) loss /= N loss = loss + 0.5 * reg * (np.sum(W1 * W1) + np.sum(W2 * W2)) ############################################################################# # END OF YOUR CODE # ############################################################################# # Backward pass: compute gradients grads = {} ############################################################################# # TODO: Compute the backward pass, computing the derivatives of the weights # # and biases. Store the results in the grads dictionary. For example, # # grads['W1'] should store the gradient on W1, and be a matrix of same size # ############################################################################# exp_z2 = np.exp(z2) prob = exp_z2 / np.sum(exp_z2, axis=1, keepdims=True) d2 = prob d2[range(N), y] -= 1 d2 /= N d1 = np.dot(d2, W2.T) d1[z1 <= 0] = 0 dW2 = np.dot(a1.T, d2) + reg*W2 dW1 = np.dot(X.T, d1) + reg*W1 db2 = np.sum(d2, axis=0, keepdims=True) db1 = np.sum(d1, axis=0, keepdims=True) grads['W1'] = dW1 grads['W2'] = dW2 grads['b1'] = db1 grads['b2'] = db2 ############################################################################# # END OF YOUR CODE # ############################################################################# return loss, grads def train(self, X, y, X_val, y_val, learning_rate=1e-3, learning_rate_decay=0.95, reg=1e-5, num_iters=100, batch_size=200, verbose=False): """ Train this neural network using stochastic gradient descent. Inputs: - X: A numpy array of shape (N, D) giving training data. - y: A numpy array f shape (N,) giving training labels; y[i] = c means that X[i] has label c, where 0 <= c < C. - X_val: A numpy array of shape (N_val, D) giving validation data. - y_val: A numpy array of shape (N_val,) giving validation labels. - learning_rate: Scalar giving learning rate for optimization. - learning_rate_decay: Scalar giving factor used to decay the learning rate after each epoch. - reg: Scalar giving regularization strength. - num_iters: Number of steps to take when optimizing. - batch_size: Number of training examples to use per step. - verbose: boolean; if true print progress during optimization. """ num_train = X.shape[0] iterations_per_epoch = max(num_train / batch_size, 1) # Use SGD to optimize the parameters in self.model loss_history = [] train_acc_history = [] val_acc_history = [] for it in xrange(num_iters): r_idxs = np.random.choice(num_train, batch_size, replace=True) ######################################################################### # TODO: Create a random minibatch of training data and labels, storing # # them in X_batch and y_batch respectively. # ######################################################################### X_batch = X[r_idxs, :] y_batch = y[r_idxs] ######################################################################### # END OF YOUR CODE # ######################################################################### # Compute loss and gradients using the current minibatch loss, grads = self.loss(X_batch, y=y_batch, reg=reg) loss_history.append(loss) ######################################################################### # TODO: Use the gradients in the grads dictionary to update the # # parameters of the network (stored in the dictionary self.params) # # using stochastic gradient descent. You'll need to use the gradients # # stored in the grads dictionary defined above. # ######################################################################### self.params['W1'] = self.params['W1'] - learning_rate * grads['W1'] self.params['W2'] = self.params['W2'] - learning_rate * grads['W2'] self.params['b1'] = self.params['b1'] - learning_rate * grads['b1'] self.params['b2'] = self.params['b2'] - learning_rate * grads['b2'] ######################################################################### # END OF YOUR CODE # ######################################################################### if verbose and it % 100 == 0: print 'iteration %d / %d: loss %f' % (it, num_iters, loss) # Every epoch, check train and val accuracy and decay learning rate. if it % iterations_per_epoch == 0: # Check accuracy train_acc = (self.predict(X_batch) == y_batch).mean() val_acc = (self.predict(X_val) == y_val).mean() train_acc_history.append(train_acc) val_acc_history.append(val_acc) # Decay learning rate learning_rate *= learning_rate_decay return { 'loss_history': loss_history, 'train_acc_history': train_acc_history, 'val_acc_history': val_acc_history, } def predict(self, X): """ Use the trained weights of this two-layer network to predict labels for data points. For each data point we predict scores for each of the C classes, and assign each data point to the class with the highest score. Inputs: - X: A numpy array of shape (N, D) giving N D-dimensional data points to classify. Returns: - y_pred: A numpy array of shape (N,) giving predicted labels for each of the elements of X. For all i, y_pred[i] = c means that X[i] is predicted to have class c, where 0 <= c < C. """ num_test = X.shape[0] y_pred = None H = self.params['W1'].shape[1] W1, W2, b1, b2 = self.params['W1'], self.params['W2'], self.params['b1'], self.params['b2'] ########################################################################### # TODO: Implement this function; it should be VERY simple! # ########################################################################### z1 = X.dot(W1) + b1 a1 = np.maximum(np.zeros((num_test, H)), z1) z2 = a1.dot(W2) + b2 row_max = np.max(z2, axis=1).reshape(num_test, 1) z2 = z2 - row_max exp_z2 = np.exp(z2) prob = exp_z2 / np.sum(exp_z2, axis=1, keepdims=True) y_pred = np.argmax(prob, axis=1) ########################################################################### # END OF YOUR CODE # ########################################################################### return y_pred
[ "gspat27@gmail.com" ]
gspat27@gmail.com
65ad5ba93a0830380d7d18ea1f7bc82e2d821bf9
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2526/60593/257150.py
58ca4c9267f800e30bf8438b260eda4e11fca89f
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
295
py
sa=input().replace('[','') sb=input().replace('[','') sb=sb.replace(']','') b=list(sb.split(',')) sa=sa.replace(']','') a=list(sa.split(',')) ans=[] for i in a: if(i!='null' and i!=''): ans.append(i) for i in b: if(i!='null'and i!=''): ans.append(i) ans.sort() print(ans)
[ "1069583789@qq.com" ]
1069583789@qq.com
8c79106855988b0ea3d04868c80e1f5dfc736257
29225f283c3c0cccf87ecc839ff0d369864e8ae3
/Quiz/p4.py
94d308c1ab1397ce7afeb6149d47aaadafdb6ada
[]
no_license
Darmaiad/mit-602-computational-thinking
275059cb6aaab3dd31e9ca6c6de593fe936f9bbd
591a01583f1057d09d61de1f76f1d2040ada0978
refs/heads/master
2020-09-09T02:07:25.547970
2019-12-22T09:54:11
2019-12-22T09:54:11
221,312,480
0
0
null
null
null
null
UTF-8
Python
false
false
609
py
def max_contig_sum(L): """ L, a list of integers, at least one positive Returns the maximum sum of a contiguous subsequence in L """ maxSum = -999999999 currentSum = 0 for l in L: currentSum += l if (maxSum < currentSum): maxSum = currentSum if currentSum < 0: currentSum = 0 return maxSum # in the list [3, 4, -1, 5, -4], the maximum sum is 3+4-1+5 = 11 print(max_contig_sum([3, 4, -1, 5, -4])) # in the list [3, 4, -8, 15, -1, 2], the maximum sum is 15-1+2 = 16 print(max_contig_sum([3, 4, -8, 15, -1, 2]))
[ "geo.filippakis@gmail.com" ]
geo.filippakis@gmail.com
6063fa9c544db5cf55f7ae1fa2e3d530b67afdd6
7e842bd81a28869ebbcc989f60df7b64f83be531
/Easy/Chevaux_de_course.py
6cb45ddaad5fbd643ca7d9688b49ea86ba572b2b
[ "MIT" ]
permissive
Alumet/Codingame
06a39b5b8a5139bc38fc9db03dca65a66e54d447
5cb2f779bb7107864283744f7bbac260f4641af6
refs/heads/master
2021-01-13T00:50:22.607406
2017-11-28T19:02:09
2017-11-28T19:02:09
55,340,918
0
0
null
null
null
null
UTF-8
Python
false
false
284
py
''' Author Alumet 2015 https://github.com/Alumet/Codingame ''' n = int(input()) power=[] for i in range(n): pi = int(input()) power.append(pi) power.sort() best=abs(power[1]-power[0]) for i in range(n-1): best = min( best, abs(power[i]-power[i+1])) print (best)
[ "Alumet@users.noreply.github.com" ]
Alumet@users.noreply.github.com
f1cd1bef9505f22695630dcfe93ee310ffded7c1
fc3c1a6f9b4fb171b191f931a2bc26106058b897
/python/p149.py
617382ae2a10ff315286f42cd4810cab13a0706b
[ "LicenseRef-scancode-warranty-disclaimer" ]
no_license
MvdB/Project-Euler-solutions
ff425f63f1b9fbb34de38037f8fbdc25c39b8f04
57b6d6ac7a6562ec3d76b83f74faf0d5d9e990cc
refs/heads/master
2021-01-16T19:48:24.907038
2016-02-26T19:53:56
2016-02-26T19:53:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,750
py
# # Solution to Project Euler problem 149 # by Project Nayuki # # https://www.nayuki.io/page/project-euler-solutions # https://github.com/nayuki/Project-Euler-solutions # def compute(): SIZE = 2000 # Generate the pseudorandom sequence according to the lagged Fibonacci generator randseq = [] for i in range(SIZE**2): k = i + 1 if k <= 55: randseq.append((100003 - 200003*k + 300007*k*k*k) % 1000000 - 500000) else: randseq.append((randseq[-24] + randseq[-55]) % 1000000 - 500000) # Reshape the sequence into into a 2D array grid = [randseq[i * SIZE : (i + 1) * SIZE] for i in range(SIZE)] # For the sequence of numbers in the grid at positions (x, y), (x+dx, y+dy), (x+2*dx, y+2*dy), ... until the # last in-bounds indices, this function returns the maximum sum among all possible substrings of this sequence. def get_max_substring_sum(x, y, dx, dy): result = 0 current = 0 while 0 <= x < SIZE and 0 <= y < SIZE: current = max(current + grid[y][x], 0) # Reset the running sum if it goes negative result = max(current, result) # Keep track of the best seen running sum x += dx y += dy return result # Scan along all line directions and positions maximum = 0 for i in range(SIZE): maximum = max(maximum, get_max_substring_sum(0, i, +1, 0), # Horizontal from left edge get_max_substring_sum(i, 0, 0, +1), # Vertical from top edge get_max_substring_sum(0, i, +1, +1), # Diagonal from left edge get_max_substring_sum(i, 0, +1, +1), # Diagonal from top edge get_max_substring_sum(i, 0, -1, +1), # Anti-diagonal from top edge get_max_substring_sum(SIZE - 1, i, -1, +1)) # Anti-diagonal from right edge return str(maximum) if __name__ == "__main__": print(compute())
[ "nayuki@eigenstate.org" ]
nayuki@eigenstate.org
be15189d73c5ffd5055c724d0a430d4b2da75912
5a8dd4591bfe79df8d7d7ade144ca40f4f88d1ab
/alive-speed/alive/scheduler/urls.py
cccde518f66003b21e0909486b838b56d2d1642a
[]
no_license
liudaihua/test_study
822e7891d024eaf60fdd6763d624353dfe2ef6a4
932fd634c02779a8171d64764b3f3611df831473
refs/heads/master
2020-06-19T02:53:10.671279
2019-07-12T08:26:12
2019-07-12T08:26:12
196,529,250
0
0
null
null
null
null
UTF-8
Python
false
false
345
py
from django.urls import path from . import views urlpatterns = [ path('blocking', views.blocking, name='blocking'), path('background', views.background, name='background'), path('async_with_block', views.async_with_block, name='async_with_block'), path('async_no_block', views.async_no_block, name='async_no_block'), ]
[ "noreply@github.com" ]
liudaihua.noreply@github.com
296182028cf9ce3ce55c1ef80a55e7111f7d8a8f
8e24e8bba2dd476f9fe612226d24891ef81429b7
/geeksforgeeks/algorithm/hard_algo/6_11.py
7d522d31b34bcdff5ab37adea8e334f1a2a51be6
[]
no_license
qmnguyenw/python_py4e
fb56c6dc91c49149031a11ca52c9037dc80d5dcf
84f37412bd43a3b357a17df9ff8811eba16bba6e
refs/heads/master
2023-06-01T07:58:13.996965
2021-06-15T08:39:26
2021-06-15T08:39:26
349,059,725
1
1
null
null
null
null
UTF-8
Python
false
false
10,993
py
Find the longest subsequence of an array having LCM at most K Given an array **arr[]** of **N** elements and a positive integer **K**. The task is to find the longest sub-sequence in the array having LCM (Least Common Multiple) at most **K**. Print the LCM and the length of the sub-sequence, following the indexes (starting from 0) of the elements of the obtained sub- sequence. Print **-1** if it is not possible to do so. **Examples:** > **Input:** arr[] = {2, 3, 4, 5}, K = 14 > **Output:** > LCM = 12, Length = 3 > Indexes = 0 1 2 > > **Input:** arr[] = {12, 33, 14, 52}, K = 4 > **Output:** -1 ## Recommended: Please try your approach on **__{IDE}__** first, before moving on to the solution. **Approach:** Find all the unique elements of the array and their respective frequencies. Now the highest LCM that you are supposed to get is **K**. Suppose you have a number **X** such that **1 ≤ X ≤ K** , obtain all the unique numbers from the array whom **X** is a multiple of and add their frequencies to **numCount** of **X**. The answer will be the number with highest **numCount** , let it be your LCM. Now, to obtain the indexes of the numbers of the sub-sequence, start traversing the array from the beginning and print the index **i** if **LCM % arr[i] = 0**. Below is the implementation of the above approach: ## C++ __ __ __ __ __ __ __ // C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to find the longest subsequence // having LCM less than or equal to K void findSubsequence(int* arr, int n, int k) { // Map to store unique elements // and their frequencies map<int, int> M; // Update the frequencies for (int i = 0; i < n; ++i) ++M[arr[i]]; // Array to store the count of numbers whom // 1 <= X <= K is a multiple of int* numCount = new int[k + 1]; for (int i = 0; i <= k; ++i) numCount[i] = 0; // Check every unique element for (auto p : M) { if (p.first <= k) { // Find all its multiples <= K for (int i = 1;; ++i) { if (p.first * i > k) break; // Store its frequency numCount[p.first * i] += p.second; } } else break; } int lcm = 0, length = 0; // Obtain the number having maximum count for (int i = 1; i <= k; ++i) { if (numCount[i] > length) { length = numCount[i]; lcm = i; } } // Condition to check if answer // doesn't exist if (lcm == 0) cout << -1 << endl; else { // Print the answer cout << "LCM = " << lcm << ", Length = " << length << endl; cout << "Indexes = "; for (int i = 0; i < n; ++i) if (lcm % arr[i] == 0) cout << i << " "; } } // Driver code int main() { int k = 14; int arr[] = { 2, 3, 4, 5 }; int n = sizeof(arr) / sizeof(arr[0]); findSubsequence(arr, n, k); return 0; } --- __ __ ## Java __ __ __ __ __ __ __ // Java implementation of the approach import java.util.*; class GFG { // Function to find the longest subsequence // having LCM less than or equal to K static void findSubsequence(int []arr, int n, int k) { // Map to store unique elements // and their frequencies HashMap<Integer, Integer> M = new HashMap<Integer,Integer>(); // Update the frequencies for (int i = 0; i < n; ++i) { if(M.containsKey(arr[i])) M.put(arr[i], M.get(arr[i])+1); else M.put(arr[i], 1); } // Array to store the count of numbers whom // 1 <= X <= K is a multiple of int [] numCount = new int[k + 1]; for (int i = 0; i <= k; ++i) numCount[i] = 0; Iterator<HashMap.Entry<Integer, Integer>> itr = M.entrySet().iterator(); // Check every unique element while(itr.hasNext()) { HashMap.Entry<Integer, Integer> entry = itr.next(); if (entry.getKey() <= k) { // Find all its multiples <= K for (int i = 1;; ++i) { if (entry.getKey() * i > k) break; // Store its frequency numCount[entry.getKey() * i] += entry.getValue(); } } else break; } int lcm = 0, length = 0; // Obtain the number having maximum count for (int i = 1; i <= k; ++i) { if (numCount[i] > length) { length = numCount[i]; lcm = i; } } // Condition to check if answer // doesn't exist if (lcm == 0) System.out.println(-1); else { // Print the answer System.out.println("LCM = " + lcm + " Length = " + length ); System.out.print( "Indexes = "); for (int i = 0; i < n; ++i) if (lcm % arr[i] == 0) System.out.print(i + " "); } } // Driver code public static void main (String[] args) { int k = 14; int arr[] = { 2, 3, 4, 5 }; int n = arr.length; findSubsequence(arr, n, k); } } // This code is contributed by ihritik --- __ __ ## Python3 __ __ __ __ __ __ __ # Python3 implementation of the approach from collections import defaultdict # Function to find the longest subsequence # having LCM less than or equal to K def findSubsequence(arr, n, k): # Map to store unique elements # and their frequencies M = defaultdict(lambda:0) # Update the frequencies for i in range(0, n): M[arr[i]] += 1 # Array to store the count of numbers # whom 1 <= X <= K is a multiple of numCount = [0] * (k + 1) # Check every unique element for p in M: if p <= k: # Find all its multiples <= K i = 1 while p * i <= k: # Store its frequency numCount[p * i] += M[p] i += 1 else: break lcm, length = 0, 0 # Obtain the number having maximum count for i in range(1, k + 1): if numCount[i] > length: length = numCount[i] lcm = i # Condition to check if answer doesn't exist if lcm == 0: print(-1) else: # Print the answer print("LCM = {0}, Length = {1}".format(lcm, length)) print("Indexes = ", end = "") for i in range(0, n): if lcm % arr[i] == 0: print(i, end = " ") # Driver code if __name__ == "__main__": k = 14 arr = [2, 3, 4, 5] n = len(arr) findSubsequence(arr, n, k) # This code is contributed by Rituraj Jain --- __ __ ## C# __ __ __ __ __ __ __ // C# implementation of the approach using System; using System.Collections.Generic; class GFG { // Function to find the longest subsequence // having LCM less than or equal to K static void findSubsequence(int []arr, int n, int k) { // Map to store unique elements // and their frequencies Dictionary<int, int> M = new Dictionary<int, int>(); // Update the frequencies for (int i = 0; i < n; ++i) { if(M.ContainsKey(arr[i])) M[arr[i]]++; else M[arr[i]] = 1; } // Array to store the count of numbers whom // 1 <= X <= K is a multiple of int [] numCount = new int[k + 1]; for (int i = 0; i <= k; ++i) numCount[i] = 0; Dictionary<int, int>.KeyCollection keyColl = M.Keys; // Check every unique element foreach(int key in keyColl) { if ( key <= k) { // Find all its multiples <= K for (int i = 1;; ++i) { if (key * i > k) break; // Store its frequency numCount[key * i] += M[key]; } } else break; } int lcm = 0, length = 0; // Obtain the number having maximum count for (int i = 1; i <= k; ++i) { if (numCount[i] > length) { length = numCount[i]; lcm = i; } } // Condition to check if answer // doesn't exist if (lcm == 0) Console.WriteLine(-1); else { // Print the answer Console.WriteLine("LCM = " + lcm + " Length = " + length ); Console.Write( "Indexes = "); for (int i = 0; i < n; ++i) if (lcm % arr[i] == 0) Console.Write(i + " "); } } // Driver code public static void Main () { int k = 14; int []arr = { 2, 3, 4, 5 }; int n = arr.Length; findSubsequence(arr, n, k); } } // This code is contributed by ihritik --- __ __ ## PHP __ __ __ __ __ __ __ <?php // PHP implementation of the approach // Function to find the longest subsequence // having LCM less than or equal to K function findSubsequence($arr, $n, $k) { // Map to store unique elements // and their frequencies $M = array(); for($i = 0; $i < $n; $i++) $M[$arr[$i]] = 0 ; // Update the frequencies for ($i = 0; $i < $n; ++$i) ++$M[$arr[$i]]; // Array to store the count of numbers // whom 1 <= X <= K is a multiple of $numCount = array(); for ($i = 0; $i <= $k; ++$i) $numCount[$i] = 0; // Check every unique element foreach($M as $key => $value) { if ($key <= $k) { // Find all its multiples <= K for ($i = 1;; ++$i) { if ($key * $i > $k) break; // Store its frequency $numCount[$key * $i] += $value; } } else break; } $lcm = 0; $length = 0; // Obtain the number having // maximum count for ($i = 1; $i <= $k; ++$i) { if ($numCount[$i] > $length) { $length = $numCount[$i]; $lcm = $i; } } // Condition to check if answer // doesn't exist if ($lcm == 0) echo -1 << "\n"; else { // Print the answer echo "LCM = ", $lcm, ", Length = ", $length, "\n"; echo "Indexes = "; for ($i = 0; $i < $n; ++$i) if ($lcm % $arr[$i] == 0) echo $i, " "; } } // Driver code $k = 14; $arr = array( 2, 3, 4, 5 ); $n = count($arr); findSubsequence($arr, $n, $k); // This code is contributed by Ryuga ?> --- __ __ **Output:** LCM = 12, Length = 3 Indexes = 0 1 2 Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready. To complete your preparation from learning a language to DS Algo and many more, please refer **Complete Interview Preparation Course** **.** My Personal Notes _arrow_drop_up_ Save
[ "qmnguyenw@gmail.com" ]
qmnguyenw@gmail.com
b8f94e051f25e62ea1ad122dd583ece74db54721
acb8e84e3b9c987fcab341f799f41d5a5ec4d587
/langs/7/r--.py
8991aaddf2c0f342dcddb879f1d827ed3f50ea3a
[]
no_license
G4te-Keep3r/HowdyHackers
46bfad63eafe5ac515da363e1c75fa6f4b9bca32
fb6d391aaecb60ab5c4650d4ae2ddd599fd85db2
refs/heads/master
2020-08-01T12:08:10.782018
2016-11-13T20:45:50
2016-11-13T20:45:50
73,624,224
0
1
null
null
null
null
UTF-8
Python
false
false
486
py
import sys def printFunction(lineRemaining): if lineRemaining[0] == '"' and lineRemaining[-1] == '"': if len(lineRemaining) > 2: #data to print lineRemaining = lineRemaining[1:-1] print ' '.join(lineRemaining) else: print def main(fileName): with open(fileName) as f: for line in f: data = line.split() if data[0] == 'r--': printFunction(data[1:]) else: print 'ERROR' return if __name__ == '__main__': main(sys.argv[1])
[ "juliettaylorswift@gmail.com" ]
juliettaylorswift@gmail.com
1510aedb16c9dbb1d1655296c75c68faa736a48d
ebfc05a0e3c771aebe4045f9bb945926e3fbeaf5
/demo/admin.py
2b8e9727a99fb3f2bb962c17361a4533366d09ca
[]
no_license
nurgalix/Books
d26dc5e2fd272e891fe1b82d95ac2a2cce9263fc
ab85de0752249a1fb1ebb1f3307d215c7802a2e4
refs/heads/master
2020-11-27T11:30:09.840435
2019-12-21T12:03:10
2019-12-21T12:03:10
229,421,459
0
0
null
null
null
null
UTF-8
Python
false
false
341
py
from django.contrib import admin from .models import Book, BookNumber, Character, Author @admin.register(Book) class BookAdmin(admin.ModelAdmin): list_display = ['title', 'price'] list_filter = ['published'] search_fields = ['title'] admin.site.register(BookNumber) admin.site.register(Character) admin.site.register(Author)
[ "nurali.nurgali@gmail.com" ]
nurali.nurgali@gmail.com
4f1f5c574cdad49cfca516d1a275383a77f66f53
7b4d8fb23036711f24dd264a0ffe36418d19316f
/training/ride/ride.py
278c0c358d98341e098d452d905f5d10d1e3048b
[]
no_license
warmar/USACO-Problems
51a56d0a4aa7d8788482140ab17fc8a1c3464473
2c6b38283397531b27e7ecbd743f6c4de83cbfc0
refs/heads/master
2021-08-31T21:04:36.492962
2017-12-22T22:51:03
2017-12-22T22:51:03
115,082,081
0
0
null
null
null
null
UTF-8
Python
false
false
564
py
""" ID: warwick2 LANG: PYTHON2 TASK: ride """ fin = open ('ride.in', 'r') fout = open ('ride.out', 'w') name,group=fin.read().split('\n')[:-1] letters='abcdefghijklmnopqrstuvwxyz' dic = {} for i, letter in zip(range(len(letters)), letters): dic[letter] = i+1 name_product = 1 for letter in name: name_product *= dic[letter.lower()] name_mod = name_product % 47 group_product = 1 for letter in group: group_product *= dic[letter.lower()] group_mod = group_product % 47 if name_mod == group_mod: fout.write('GO\n') else: fout.write('STAY\n') fout.close()
[ "lifelessmango@gmail.com" ]
lifelessmango@gmail.com
42de44b094f3783113cee47b78a3c41af6da842c
6809e06e21895e3366b37b0dff6c0521a093c909
/Labs/Lab1/problem1.py
cc3942b447f4311f7e2580dc6b5b20c49480ca60
[]
no_license
arcPenguinj/CS5001-Intensive-Foundations-of-CS
1820b3d919fd96239d2e04bc0c000ff9e36cadd3
b9281f5f959e0268b75baa2c2b1262712da3780f
refs/heads/main
2023-08-15T04:11:08.968276
2021-10-18T02:54:46
2021-10-18T02:54:46
418,321,674
0
0
null
null
null
null
UTF-8
Python
false
false
400
py
def main (): total_amount = float (input ("what is the total amount of your bill?")) people = int (input ("how many people will split the bill?")) tip = float (input ("the percentage everyone willing to tip?")) amount = (total_amount / people) * tip + (total_amount / people) print ("the number is:" + str(amount)) #.... if __name__ == "__main__": main()
[ "noreply@github.com" ]
arcPenguinj.noreply@github.com
22acb203173e23deb4efa6558b9c41228c38119f
7da0a001437ed2785da82cb6dbd2c459b7085295
/python_textmining/0413118_3.py
00d84bf0b38c68035cc4757be277bfcc86d2591d
[]
no_license
d86518/Python-Machine-Learning
dbd29dab948652f96bbae33f3120a0df67f282c8
02ee74e5228bba0cfb4b77204dea5f97b66de9e0
refs/heads/master
2021-10-10T00:34:47.602813
2019-01-05T04:39:45
2019-01-05T04:39:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,889
py
from nltk.tokenize import word_tokenize import nltk from collections import Counter import string from nltk.stem.snowball import SnowballStemmer stemmer = SnowballStemmer('english') from nltk.corpus import stopwords nltk.download('stopwords') stopword_list = stopwords.words('english') from nltk.stem import WordNetLemmatizer wordnet_lemmatizer = WordNetLemmatizer() def remove_punc(tokens): clean_tokens=[] for tok in tokens: if tok not in string.punctuation: if tok!="''" and tok!='``' and tok!= "'s": clean_tokens.append(tok) return clean_tokens def remove_stopwords(tokens): tokens_clean=[] for tok in tokens: if tok not in stopword_list: tokens_clean.append(tok) return tokens_clean #unnecessary def lowercase(tokens): tokens_lower = [] for tok in tokens: tokens_lower.append(tok.lower()) return tokens_lower def lemmatize(token): for p in ['v','n','a','r','s']: l = wordnet_lemmatizer.lemmatize(token,pos=p) if l!=token: return l return token f=open("corpus.txt",'r') lines=f.read() tokens = word_tokenize(lines) ##token original token = word_tokenize(lines) tokens = remove_stopwords(remove_punc(tokens)) #各單字數量 word_count = Counter(tokens) #Counting Collocations with dist window_size = 9 word_pair_counts = Counter() word_pair_dist_counts = Counter() tokens = nltk.pos_tag(tokens) #mutual_information import math def mutual_information(w1_w2_prob, w1_prob, w2_prob): return math.log2(w1_w2_prob / (w1_prob * w2_prob)) ## N/N MI for i in range(len(tokens)-1): for dist in range(1,window_size): if i+dist<len(tokens): if tokens[i][1]=='NN': w1 = tokens[i][0] if tokens[i+dist][1]=='NN': w2 = tokens[i+dist][0] word_pair_dist_counts[(w1,w2,dist)]+=1 word_pair_counts[(w1,w2)]+=1 print("--------N / N --------") for (w1,w2),c in word_pair_counts.most_common(40): w1_prob = Counter(token)[w1]/len(token) w2_prob = Counter(token)[w2]/len(token) w1_w2_prob = c mutual = mutual_information(w1_w2_prob, w1_prob, w2_prob) print("%s\t%s\t%s" % (w1,w2,mutual)) word_pair_counts = Counter() word_pair_dist_counts = Counter() ## N/N MI for i in range(len(tokens)-1): for dist in range(1,window_size): if i+dist<len(tokens): if tokens[i][1]=='NNP': w1 = tokens[i][0] if tokens[i+dist][1]=='NN': w2 = tokens[i+dist][0] word_pair_dist_counts[(w1,w2,dist)]+=1 word_pair_counts[(w1,w2)]+=1 print("--------NNP / N --------") for (w1,w2),c in word_pair_counts.most_common(40): w1_prob = Counter(token)[w1]/len(token) w2_prob = Counter(token)[w2]/len(token) w1_w2_prob = c mutual = mutual_information(w1_w2_prob, w1_prob, w2_prob) print("%s\t%s\t%s" % (w1,w2,mutual)) word_pair_counts = Counter() word_pair_dist_counts = Counter() ## N/N MI for i in range(len(tokens)-1): for dist in range(1,window_size): if i+dist<len(tokens): if tokens[i][1]=='JJ': w1 = tokens[i][0] if tokens[i+dist][1]=='NN': w2 = tokens[i+dist][0] word_pair_dist_counts[(w1,w2,dist)]+=1 word_pair_counts[(w1,w2)]+=1 print("-------- J / N --------") for (w1,w2),c in word_pair_counts.most_common(40): w1_prob = Counter(token)[w1]/len(token) w2_prob = Counter(token)[w2]/len(token) w1_w2_prob = c mutual = mutual_information(w1_w2_prob, w1_prob, w2_prob) print("%s\t%s\t%s" % (w1,w2,mutual))
[ "noreply@github.com" ]
d86518.noreply@github.com
0532268807bfa568f5591eacc7e1455a6d0c6bdd
39d7337092314bd014ccb33062c37db4e329052d
/ex17.py
d6bc2489fd545cc0fde32e2a4c66c57e5508c461
[]
no_license
JingGH/Hello-Python3
bf34adde15cc13f171f80e2e66e3ea49b6d990b8
9b9b93b1dcfddca19cd452e3abf05236e077aac8
refs/heads/master
2020-04-27T17:51:13.169607
2019-03-14T14:12:25
2019-03-14T14:12:25
174,533,835
0
0
null
2019-03-08T12:48:41
2019-03-08T12:26:52
null
UTF-8
Python
false
false
2,004
py
<<<<<<< HEAD from sys import argv from os.path import exists # tips:文件编码应该为utf-8 # echo "This is a test file." > test.txt 在win下不可用 script, from_file, to_file = argv print(f"Copying from {from_file} to {to_file}") # we could do these two on one line, how? # indata = open(from_file).read() in_file = open(from_file) print(">>>>in_file = ", repr(in_file)) indata = in_file.read() # 打印indata字符数 print(f"The input file is {len(indata)} bytes long") # exists判断文件和文件夹是否存在 print(f"Does the output file exist? {exists(to_file)}") print("Ready, hit RETURN to continue, CTRL-C to abort.") input() # 以写模式 打开copied.txt # w代表写模式打开文件 # r代表读模式打开文件 # wr代表读写模式打开文件 # w+代表读写模式打开文件 # r+代表读写模式打开文件 # a+代表读写模式打开文件 out_file = open(to_file, 'w') out_file.write(indata) print("Alright, all done.") out_file.close() ======= from sys import argv from os.path import exists # tips:文件编码应该为utf-8 # echo "This is a test file." > test.txt 在win下不可用 script, from_file, to_file = argv print(f"Copying from {from_file} to {to_file}") # we could do these two on one line, how? # indata = open(from_file).read() in_file = open(from_file) indata = in_file.read() # 打印indata字符数 print(f"The input file is {len(indata)} bytes long") # exists判断文件和文件夹是否存在 print(f"Does the output file exist? {exists(to_file)}") print("Ready, hit RETURN to continue, CTRL-C to abort.") input() # 以写模式 打开copied.txt # w代表写模式打开文件 # r代表读模式打开文件 # wr代表读写模式打开文件 # w+代表读写模式打开文件 # r+代表读写模式打开文件 # a+代表读写模式打开文件 out_file = open(to_file, 'w') out_file.write(indata) print("Alright, all done.") out_file.close() >>>>>>> 4041cac322ac87664772dfca932f459134bcc71e in_file.close()
[ "zhangjing@njfu.edu.cn" ]
zhangjing@njfu.edu.cn
760a735560b67a2e77ef1be059169f0c3485441b
2af4732248c3e8513537bf379a02abf9980ce0ee
/test/tools/myrequests.py
acb64aaf2741f5373fd5aac8bc87120f2214d532
[]
no_license
weizhimeng/biyesheji
2fd18346288d339e4106e3e2b57bdadcd80d1e11
1126eea12a239d0e4f586f5316a8d5cbb1e399f4
refs/heads/master
2021-07-11T00:50:45.798562
2020-08-14T10:45:25
2020-08-14T10:45:25
180,568,991
1
0
null
null
null
null
UTF-8
Python
false
false
1,968
py
# -*- coding: utf-8 -*- import sys sys.path.insert(0, '.') import urllib3 from tools.user_agent import UserAgent import requests import lxml.html etree = lxml.html.etree ua = UserAgent() Headers = { 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8', 'Accept-Encoding': 'gzip, deflate, br', 'User-Agent': ua.random(), 'Connection': 'keep-alive', 'Upgrade-Insecure-Requests': '1' } urllib3.disable_warnings() class myrequests(): def get(self, url, params=None, **kwargs): """Send a GET request :param url: URL for get :param params: (optional) Dictionary, list of tuples or bytes to send :param kwargs: Optional arguments tha ``requests`` takes :return: Response """ kwargs.setdefault('timeout', 15) kwargs.setdefault('verify', False) kwargs.setdefault('headers', Headers) kwargs.setdefault('allow_redirects', True) with requests.Session() as session: response = session.get(url, params=params, **kwargs) response.xpath = etree.HTML(response.text).xpath return response def post(self, url, data=None, json=None, **kwargs): """Send a POST request :param url: URL for post :param data: (optional) Dictionary, list of tuples, bytes, or file-like to send :param json: (optional) json data to send :param kwargs: Optional arguments tha ``requests`` takes :return: Response """ kwargs.setdefault('timeout', 15) kwargs.setdefault('verify', False) kwargs.setdefault('headers', Headers) kwargs.setdefault('allow_redirects', True) with requests.Session() as session: response = session.post(url, data=data, json=json, **kwargs) response.xpath = etree.HTML(response.text).xpath return response _requests = myrequests()
[ "noreply@github.com" ]
weizhimeng.noreply@github.com
180b782b318217a45b288ec1bf6b7ce903cc0ff7
c92b71615106f7e85ca30d5f55d10222b86164f3
/old/archive_images.py
457f07bc51af48bea7dfa303eaedff065499e81c
[ "MIT" ]
permissive
damienallen/growcam
dce071c52c21ea905aca9846f1e2bff839bc20e2
81565090a50b755fec059be511e2f197f057b7d4
refs/heads/master
2018-12-20T18:22:06.113935
2018-09-22T18:52:24
2018-09-22T18:52:24
55,100,278
0
0
null
null
null
null
UTF-8
Python
false
false
1,236
py
import os import logging from shutil import move # set up logging logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) # create logging file handler handler = logging.FileHandler('growcam_archive.log') handler.setLevel(logging.INFO) # set logging format formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) # add handler to logger logger.addHandler(handler) # set windows dropbox directory and get file list tmp_dir = 'U:\\Dropbox\\Make\\Growcam\\tmp\\' archive_dir = 'Y:\\Growcam\\' logger.debug('Temp directory: %s', tmp_dir) logger.debug('Archive directory: %s', archive_dir) image_files = os.listdir(tmp_dir) logger.debug('%s image(s) found in temp directory.', len(image_files)) if not image_files: logger.info('No new images found.') # move files if they exist else: logger.info('Moving %s image(s) to archive.', len(image_files)) for i in image_files: try: move(tmp_dir + i, archive_dir + i) logger.debug('Moved %s sucessfully.', i) except: logger.error('Unexpected error', exc_info=True) logger.debug('Archiving completed.')
[ "contact@dallen.co" ]
contact@dallen.co
af06b7653f12b422e7151eb5b49d2339f48d2cef
b7fe2fc9a037a97c2064d99e73d949b8e7741287
/week1/lab06_beautifulsoup4.py
bbb1206c9cf4b8c1e0d65241172e072dec3ec0d7
[]
no_license
andrewintw/learning-python-web-crawler
f56f988e6046e65c580325df0e43a6d998ca0e14
6ab7b08d6b62349ae65e37b4ff123795ff311556
refs/heads/main
2023-06-30T11:50:30.429013
2021-08-01T15:51:40
2021-08-01T15:51:40
390,589,066
0
0
null
null
null
null
UTF-8
Python
false
false
1,068
py
import bs4 import cloudscraper import time url = 'https://www.mobile01.com/forumtopic.php?c=37&s=56' scraper = cloudscraper.create_scraper() found = False while not found: response = scraper.get(url) soup = bs4.BeautifulSoup(response.text, 'lxml') tr_lines = soup.select('div.l-listTable__tbody div.l-listTable__tr') if len(tr_lines) == 30: found = True else: print('.') time.sleep(5) continue for row in tr_lines: print('===============================') #print(row) link_a = row.select_one('a') #print(link_a['href'], link_a.text) url = link_a['href'] title = link_a.text publish_set = row.select_one('.l-listTable__td.l-listTable__td--time') publish_username = publish_set.select_one('a').text publish_time = publish_set.select_one('.o-fNotes').text publish_count = row.select_one('.o-fMini').text print(url, title, publish_username, publish_time, publish_count)
[ "andrew.lin@browan.com" ]
andrew.lin@browan.com
8783a72dddde63b8fc84ec012474bba9cd508d65
7e3358791ccfa5f2f49fbe550ee0e06ce0dd067f
/list-comprehension.py
f21a9be9a9ac165927544c30d26ac1181ad453a9
[]
no_license
Sasmita-Coder/HackerRank
af83c182e5a946d130eeb7d9bbd237510a52e2a4
2481baa17a6761210a6d2388eca67dc8185c3bf2
refs/heads/main
2023-06-02T10:17:07.772988
2021-06-21T16:42:20
2021-06-21T16:42:20
378,996,066
0
0
null
null
null
null
UTF-8
Python
false
false
250
py
if __name__ == '__main__': x = int(raw_input()) y = int(raw_input()) z = int(raw_input()) n = int(raw_input()) ans = [[i,j,k] for i in range(x + 1) for j in range(y + 1) for k in range(z + 1) if i + j + k != n] print ans
[ "noreply@github.com" ]
Sasmita-Coder.noreply@github.com
93b908eaf2d6182a8abaa2dc58a07a235f7a0dc2
08352d51ff1904a963b4e7f1ef598ae6c3854634
/datasets/samplers.py
42161bccb6f8ae04227ba403a7cc7476009da648
[]
no_license
HELL-TO-HEAVEN/prcv2019-mvb-renet
ec9cd69d8ef02eb354363362fcba023403c01850
6911c89980fb0bdeb516b93a502fc201860363c0
refs/heads/master
2022-02-24T22:53:46.759942
2019-11-05T08:31:09
2019-11-05T08:31:09
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,066
py
from __future__ import absolute_import from torch.utils.data.sampler import Sampler from collections import defaultdict import numpy as np import torch import random class RandomIdentitySampler(Sampler): def __init__(self, data_source, num_instances=4): self.data_source = data_source self.num_instances = num_instances self.index_dic = defaultdict(list) for index, (_, bagid, _, ) in enumerate(data_source): self.index_dic[bagid].append(index) self.bagids = list(self.index_dic.keys()) self.num_identities = len(self.bagids) def __iter__(self): indices = torch.randperm(self.num_identities) ret = [] for i in indices: bagid = self.bagids[i] t = self.index_dic[bagid] replace = False if len(t) >= self.num_instances else True t = np.random.choice(t, size=self.num_instances, replace=replace) ret.extend(t) return iter(ret) def __len__(self): return self.num_identities * self.num_instances
[ "wuh199512@gmail.com" ]
wuh199512@gmail.com
3767aeadb5576307bff507246af46f7f149d214b
458b1133df5b38a017f3a690a624a54f0f43fda7
/PaperExperiments/XHExp210/parameters.py
0e79814e843c3bfd43606772163f13a544dbf5b7
[ "MIT" ]
permissive
stefan-c-kremer/TE_World2
9c7eca30ee6200d371183c5ba32b3345a4cc04ee
8e1fae218af8a1eabae776deecac62192c22e0ca
refs/heads/master
2020-12-18T14:31:00.639003
2020-02-04T15:55:49
2020-02-04T15:55:49
235,413,951
0
0
null
null
null
null
UTF-8
Python
false
false
3,709
py
# parameters.py """ Exp 210 - {'Initial_genes': '500', 'Host_mutation_rate': '0.03', 'TE_progeny': '0.15, 0, 0.55, 1, 0.30, 2', 'TE_Insertion_Distribution': 'Triangle( pmax=0, pzero=3.0/3.0 )', 'Carrying_capacity': '300', 'TE_excision_rate': '0.1', 'Junk_BP': '14', 'Gene_Insertion_Distribution': 'Triangle( pzero=1.0/3.0, pmax=1 )', 'mutation_effect': '0.01', 'TE_death_rate': '0.005'} """ from TEUtil import *; # note that "#" indicates a comment # set the following to True if you want messages printed to the screen # while the program runs - search for these keywords in TESim.py to see # what each one prints out output = { "SPLAT": False, "SPLAT FITNESS": False, "INITIALIZATION": False, "GENERATION": True, "HOST EXTINCTION": True, "TE EXTINCTION": True, "TRIAL NO": True, "GENE INIT": False, "TE INIT": False, }; TE_Insertion_Distribution = Triangle( pmax=0, pzero=3.0/3.0 ); Gene_Insertion_Distribution = Triangle( pzero=1.0/3.0, pmax=1 ); # Triangle( pmax, pzero ) generates values between pmax and pzero with # a triangular probability distribution, where pmax is the point of highest # probability, and pzero is the point of lowest probability # - you can change the orientation of the triangle by reversing the values # of pmax and pzero # Flat() generates values between 0 and 1 with uniform probability Gene_length = 1000; # use 1000? TE_length = 1000; # use 1000? TE_death_rate = 0.005; TE_excision_rate = 0.1; # set this to zero for retro transposons # for retro transposons this is the probability of the given number of progeny # for dna transposons this is the probability of the given number of progeny # ___PLUS___ the original re-inserting TE_progeny = ProbabilityTable( 0.15, 0, 0.55, 1, 0.30, 2 ); Initial_genes = 500; Append_gene = True; # True: when the intialization routine tries to place # a gene inside another gene, it instead appends it # at the end of the original gene (use this with small # amounts of Junk_BP). # False: when the intialization routine tries to place # a gene inside another gene, try to place it somewhere # else again (don't use theis option with samll amounts # of Junk_BP). Initial_TEs = 1; MILLION = 1000000; Junk_BP = 14 * MILLION; Host_start_fitness = 1.0; Host_mutation_rate = 0.03; Host_mutation = ProbabilityTable( 0.40, lambda fit: 0.0, 0.30, lambda fit: fit - random.random()*0.01, 0.15, lambda fit: fit, 0.15, lambda fit: fit + random.random()*0.01 ); # what happens when a TA hits a gene Insertion_effect = ProbabilityTable(0.30, lambda fit: 0.0, 0.20, lambda fit: fit - random.random()*0.01, 0.30, lambda fit: fit, 0.20, lambda fit: fit + random.random()*0.01 ); Carrying_capacity = 300; Host_reproduction_rate = 1; # how many offspring each host has Host_survival_rate = lambda propfit: min( Carrying_capacity * propfit, 0.95 ); # propfit = proportion of fitness owned by this individual Maximum_generations = 1500; Terminate_no_TEs = True; # end simulation if there are no TEs left # seed = 0; seed = None; # if seed = None, the random number generator's initial state is # set "randomly" save_frequency = 50; # Frequency with with which to save state of experiment saved = None; # if saved = None then we start a new simulation from scratch # if saves = string, then we open that file and resume a simulation
[ "stefan@kremer.ca" ]
stefan@kremer.ca
33c52dc3df5d875d5aad941584e61dbcefb846f6
70730512e2643833e546e68761ee6cd3d7b95e1d
/01-python基础/code/day15/demo02.py
43e4cf71d1e4e010b2fcfc16cee26cf9c9d9203e
[]
no_license
Yuchen1995-0315/review
7f0b0403aea2da62566642c6797a98a0485811d1
502859fe11686cc59d2a6d5cc77193469997fe6a
refs/heads/master
2020-08-26T23:16:33.193952
2019-10-24T00:30:32
2019-10-24T00:30:32
217,177,822
0
0
null
null
null
null
UTF-8
Python
false
false
1,465
py
""" 异常处理 练习:exercise03 练习:信息管理系统 练习:购物车 shopping__oo.py """ def div_apple(apple_count): """ 分苹果 """ person_count = int(input("请输入人数:")) # ValueError result = apple_count / person_count # ZeroDivisionError print("每人%d个苹果" % result) # 处理目的:让异常(错误)流程 转换为 正常流程 """ 1. 统一处理所有异常 try: # 可能出错的代码 div_apple(10) # except Exception:# 可以拦截所有错误(异常) except: print("程序出错啦") print("后续逻辑") """ """ 2. 分门别类的处理各种异常(官方更建议) try: # 可能出错的代码 div_apple(10) except ValueError: print("输入的不是整数,所以错误啦.") except ZeroDivisionError: print("输入的是零,所以错误啦.") print("后续逻辑") """ """ 可以处理错误执行逻辑,也可以处理没出错的执行逻辑 try: # 可能出错的代码 div_apple(10) except ValueError: print("输入的不是整数,所以错误啦.") except ZeroDivisionError: print("输入的是零,所以错误啦.") else: print("没出错执行的逻辑") print("后续逻辑") """ try: # 可能出错的代码 div_apple(10) finally: # 如果出错了,虽然我解决不了,但有个事我必须做. print("管你错不错呢,一定做!") print("后续逻辑")
[ "2456830920@qq.com" ]
2456830920@qq.com
e924375359f54ede1522b3ccc187df226dc396db
41e28669a7ec08778ebb8b80222bd3643515f03b
/src/patternfly/patternfly.py
af4e20eb47c486bee4f322a448a6ac2c1e412c63
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
Rintsi/django-patternfly
92a94d0fc180c420a62c4643ea5231f3ce07dd29
78a443524c08452c58548641d003da3520b19b2f
refs/heads/master
2023-03-01T22:19:33.306125
2021-01-18T22:39:30
2021-01-18T22:39:30
330,493,588
0
1
null
null
null
null
UTF-8
Python
false
false
3,679
py
from importlib import import_module from django.conf import settings PATTERNFLY_DEFAULTS = { "css_url": { "href": "https://unpkg.com/@patternfly/patternfly@4.70.2/patternfly.min.css", "integrity": "sha512-bWjWdYITpRYUxiU5mbATJFGaSyto6l6uH4PM5NBxampYLIcLgZX14nk5h/GE6dchDNsB+VAPyMojw4YCtX9qow==", "crossorigin": "anonymous", }, "css_additions_url": { "href": "https://unpkg.com/@patternfly/patternfly@4.70.2/patternfly-addons.css", "integrity": "sha512-/ro7O/bI1XeUpeB7asSaO9HPv6WBcYRptbvXfgRSoEZXR7aUiy28I7fPRm6gYrlujT6sHO3tDr+rKPuqswAgpA==", "crossorigin": "anonymous", }, "javascript_url": { "url": "https://cdnjs.cloudflare.com/ajax/libs/patternfly/4.0.0-rc.1/js/patternfly.min.js", "integrity": "sha512-6EtzFp0bsGbfrLipEVta4ZaVZioYzJPZidyoGUO3EGy0cI7n7CSKhfJJIvDFWl0ma5p6rT4FdGULk3SYpYgmyQ==", "crossorigin": "anonymous", }, "theme_url": None, "jquery_url": { "url": "https://cdnjs.cloudflare.com/ajax/libs/jquery/3.5.1/jquery.min.js", "integrity": "sha512-bLT0Qm9VnAYZDflyKcBaQ2gg0hSYNQrJ8RilYldYQ1FxQYoCLtUjuuRuZo+fjqhx/qtq/1itJ0C2ejDxltZVFg==", "crossorigin": "anonymous", }, "jquery_slim_url": { "url": "https://cdnjs.cloudflare.com/ajax/libs/jquery/3.5.1/jquery.slim.min.js", "integrity": "sha512-/DXTXr6nQodMUiq+IUJYCt2PPOUjrHJ9wFrqpJ3XkgPNOZVfMok7cRw6CSxyCQxXn6ozlESsSh1/sMCTF1rL/g==", "crossorigin": "anonymous", }, "javascript_in_head": False, "include_jquery": False, "use_i18n": False } def get_patternfly_setting(name, default=None): """Read a setting.""" # Start with a copy of default settings PATTERNFLY = PATTERNFLY_DEFAULTS.copy() # Override with user settings from settings.py PATTERNFLY.update(getattr(settings, "PATTERNFLY", {})) # Update use_i18n PATTERNFLY["use_i18n"] = i18n_enabled() return PATTERNFLY.get(name, default) def jquery_url(): """Return the full url to jQuery library file to use.""" return get_patternfly_setting("jquery_url") def jquery_slim_url(): """Return the full url to slim jQuery library file to use.""" return get_patternfly_setting("jquery_slim_url") def include_jquery(): """ Return whether to include jquery. Setting could be False, True|'full', or 'slim' """ return get_patternfly_setting("include_jquery") def javascript_url(): """Return the full url to the Bootstrap JavaScript file.""" return get_patternfly_setting("javascript_url") def css_url(): """Return the full url to the Bootstrap CSS file.""" return get_patternfly_setting("css_url") def css_additions_url(): """Return the full url to the Bootstrap CSS file.""" return get_patternfly_setting("css_additions_url") def theme_url(): """Return the full url to the theme CSS file.""" return get_patternfly_setting("theme_url") def i18n_enabled(): """Return the projects i18n setting.""" return getattr(settings, "USE_I18N", False) def get_renderer(renderers, **kwargs): layout = kwargs.get("layout", "") path = renderers.get(layout, renderers["default"]) mod, cls = path.rsplit(".", 1) return getattr(import_module(mod), cls) def get_formset_renderer(**kwargs): renderers = get_patternfly_setting("formset_renderers") return get_renderer(renderers, **kwargs) def get_form_renderer(**kwargs): renderers = get_patternfly_setting("form_renderers") return get_renderer(renderers, **kwargs) def get_field_renderer(**kwargs): renderers = get_patternfly_setting("field_renderers") return get_renderer(renderers, **kwargs)
[ "rintsi@gmail.com" ]
rintsi@gmail.com
886fd6cf3fc2b0ef118a75dda6970d19a4dbe368
a5ba631dddaf2912c309601f8fbdd3c5b494fe20
/src/azure-cli-core/tests/test_application.py
2142b0515bc0f65955d650493cf8b880a7437891
[ "MIT" ]
permissive
saurabsa/azure-cli-old
37471020cd2af9a53e949e739643299f71037565
f77477a98c9aa9cb55daf5b0d2f410d1455a9225
refs/heads/master
2023-01-09T04:00:15.642883
2018-04-23T21:40:04
2018-04-23T21:40:04
130,759,501
0
0
NOASSERTION
2022-12-27T14:59:06
2018-04-23T21:33:34
Python
UTF-8
Python
false
false
4,302
py
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- import unittest import os import tempfile from six import StringIO from azure.cli.core.application import Application, Configuration, IterateAction from azure.cli.core.commands import CliCommand from azure.cli.core._util import CLIError class TestApplication(unittest.TestCase): @classmethod def setUpClass(cls): pass @classmethod def tearDownClass(cls): pass def setUp(self): self.io = StringIO() def tearDown(self): self.io.close() def test_application_register_and_call_handlers(self): handler_called = [False] def handler(**kwargs): kwargs['args'][0] = True def other_handler(**kwargs): # pylint: disable=unused-variable self.assertEqual(kwargs['args'], 'secret sauce') config = Configuration([]) app = Application(config) app.raise_event('was_handler_called', args=handler_called) self.assertFalse(handler_called[0], "Raising event with no handlers registered somehow failed...") app.register('was_handler_called', handler) self.assertFalse(handler_called[0]) # Registered handler won't get called if event with different name # is raised... app.raise_event('other_handler_called', args=handler_called) self.assertFalse(handler_called[0], 'Wrong handler called!') app.raise_event('was_handler_called', args=handler_called) self.assertTrue(handler_called[0], "Handler didn't get called") app.raise_event('other_handler_called', args='secret sauce') def test_list_value_parameter(self): hellos = [] def handler(args): hellos.append(args) command = CliCommand('test command', handler) command.add_argument('hello', '--hello', nargs='+', action=IterateAction) command.add_argument('something', '--something') cmd_table = {'test command': command} argv = 'az test command --hello world sir --something else'.split() config = Configuration(argv) config.get_command_table = lambda: cmd_table application = Application(config) application.execute(argv[1:]) self.assertEqual(2, len(hellos)) self.assertEqual(hellos[0]['hello'], 'world') self.assertEqual(hellos[0]['something'], 'else') self.assertEqual(hellos[1]['hello'], 'sir') self.assertEqual(hellos[1]['something'], 'else') def test_expand_file_prefixed_files(self): f = tempfile.NamedTemporaryFile(delete=False) f.close() f_with_bom = tempfile.NamedTemporaryFile(delete=False) f_with_bom.close() with open(f.name, 'w+') as stream: stream.write('foo') from codecs import open as codecs_open with codecs_open(f_with_bom.name, encoding='utf-8-sig', mode='w+') as stream: stream.write('foo') cases = [ [['bar=baz'], ['bar=baz']], [['bar', 'baz'], ['bar', 'baz']], [['bar=@{}'.format(f.name)], ['bar=foo']], [['bar=@{}'.format(f_with_bom.name)], ['bar=foo']], [['bar', '@{}'.format(f.name)], ['bar', 'foo']], [['bar', f.name], ['bar', f.name]], [['bar=name@company.com'], ['bar=name@company.com']], [['bar', 'name@company.com'], ['bar', 'name@company.com']], [['bar=mymongo=@connectionstring'], ['bar=mymongo=@connectionstring']] ] for test_case in cases: try: args = Application._expand_file_prefixed_files(test_case[0]) # pylint: disable=protected-access self.assertEqual(args, test_case[1], 'Failed for: {}'.format(test_case[0])) except CLIError as ex: self.fail('Unexpected error for {} ({}): {}'.format(test_case[0], args, ex)) os.remove(f.name) if __name__ == '__main__': unittest.main()
[ "saurabsa@microsoft.com" ]
saurabsa@microsoft.com
a24c64d98cd1aa2290e0a7b928ec7b1c9d502a24
03477749a8cb7aea88ab3f75a0a458c4cf647e72
/AC-agents/keras/actor.py
6a8cd3784b9238b844f617c4274916e9b6586a44
[]
no_license
amirloe/DRL_ASS3
ebc434e7fcccf140daff1d59d68b218d3a93b23b
7a5254a945b11af3e3a6ad28b087efd6dc933e9c
refs/heads/master
2023-02-16T10:12:18.351105
2021-01-14T15:38:01
2021-01-14T15:38:01
324,605,320
0
0
null
null
null
null
UTF-8
Python
false
false
1,740
py
import tensorflow as tf from keras.models import Model from keras.layers import Dense, Concatenate, Input weights_initializer = tf.initializers.GlorotUniform() class Actor: def __init__(self, state_size, action_size, name='actor'): self.state_size = state_size self.action_size = action_size inputs = Input(self.state_size) # 5-Hidden Layers X = Dense(256, input_shape=(self.state_size,), activation="relu", kernel_initializer=weights_initializer, name='h1')(inputs) X = Dense(160, activation="relu", kernel_initializer=weights_initializer, name='h2')(X) X = Dense(128, activation="relu", kernel_initializer=weights_initializer, name='h3')(X) X = Dense(64, activation="relu", kernel_initializer=weights_initializer, name='h4')(X) X = Dense(64, activation="relu", kernel_initializer=weights_initializer, name='h5')(X) # Output layer output = Dense(self.action_size, activation=None, kernel_initializer=weights_initializer, name='output')(X) self.model = Model(inputs=inputs, outputs=output, name='actor_model') def predict(self, state): return self.model(state) def train(self, state, td_error, action_one_hot, actor_lr): with tf.GradientTape() as tape: optimizer = tf.optimizers.Adam(learning_rate=actor_lr) output = self.predict(state) neg_log_prob = tf.compat.v1.nn.softmax_cross_entropy_with_logits_v2(logits=output, labels=action_one_hot) loss = tf.reduce_mean(neg_log_prob * td_error) grads = tape.gradient(loss, self.model.trainable_variables) optimizer.apply_gradients(zip(grads, self.model.trainable_variables))
[ "amirloe@post.bgu.ac.il" ]
amirloe@post.bgu.ac.il
e0e3e669df1e49aed4df29deef8a61af3e197166
3551107a3fdc643d96382b24b03f9b5628218431
/chocolate/search/cmaes.py
79fb445191346a2439c2b4f626dd4d63eb2911c1
[ "BSD-3-Clause" ]
permissive
lccostajr/chocolate
3c62a6f9fedd879c7a40d90a02849a37721064c4
a4a310b4d96bb4afcdf99ce482c12481d209fbc6
refs/heads/master
2021-01-01T04:52:58.625918
2017-07-14T18:50:30
2017-07-14T18:50:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
18,511
py
from itertools import groupby from operator import itemgetter import numpy from ..base import SearchAlgorithm class CMAES(SearchAlgorithm): """Covariance Matrix Adaptation Evolution Strategy minimization method. A CMA-ES strategy that combines the :math:`(1 + \\lambda)` paradigm [Igel2007]_, the mixed integer modification [Hansen2011]_, active covariance update [Arnold2010]_ and covariance update for constrained optimization [Arnold2012]_. It generates a single new point per iteration and adds a random step mutation to dimensions that undergoes a too small modification. Even if it includes the mixed integer modification, CMA-ES does not handle well dimensions without variance and thus it should be used with care on search spaces with conditional dimensions. Args: connection: A database connection object. space: The search space to explore. crossvalidation: A cross-validation object that handles experiment repetition. clear_db: If set to :data:`True` and a conflict arise between the provided space and the space in the database, completely clear the database and set the space to the provided one. **params: Additional parameters to pass to the strategy as described in the following table, along with default values. +----------------+---------------------------+----------------------------+ | Parameter | Default value | Details | +================+===========================+============================+ | ``d`` | ``1 + ndim / 2`` | Damping for step-size. | +----------------+---------------------------+----------------------------+ | ``ptarg`` | ``1 / 3`` | Taget success rate. | +----------------+---------------------------+----------------------------+ | ``cp`` | ``ptarg / (2 + ptarg)`` | Step size learning rate. | +----------------+---------------------------+----------------------------+ | ``cc`` | ``2 / (ndim + 2)`` | Cumulation time horizon. | +----------------+---------------------------+----------------------------+ | ``ccovp`` | ``2 / (ndim**2 + 6)`` | Covariance matrix positive | | | | learning rate. | +----------------+---------------------------+----------------------------+ | ``ccovn`` | ``0.4 / (ndim**1.6 + 1)`` | Covariance matrix negative | | | | learning rate. | +----------------+---------------------------+----------------------------+ | ``beta`` | ``0.1 / (ndim + 2)`` | Covariance matrix | | | | constraint learning rate. | +----------------+---------------------------+----------------------------+ | ``pthresh`` | ``0.44`` | Threshold success rate. | +----------------+---------------------------+----------------------------+ .. [Igel2007] Igel, Hansen, Roth. Covariance matrix adaptation for multi-objective optimization. 2007 .. [Arnold2010] Arnold and Hansen. Active covariance matrix adaptation for the (1 + 1)-CMA-ES. 2010. .. [Hansen2011] Hansen. A CMA-ES for Mixed-Integer Nonlinear Optimization. Research Report] RR-7751, INRIA. 2011 .. [Arnold2012] Arnold and Hansen. A (1 + 1)-CMA-ES for Constrained Optimisation. 2012 """ def __init__(self, connection, space, crossvalidation=None, clear_db=False, **params): super(CMAES, self).__init__(connection, space, crossvalidation, clear_db) self.random_state = numpy.random.RandomState() self.params = params def _next(self, token=None): """Retrieve the next point to evaluate based on available data in the database. Each time :meth:`next` is called, the algorithm will reinitialize it-self based on the data in the database. Returns: A tuple containing a unique token and a fully qualified parameter set. """ self._init() # Check what is available in that database results = {r["_chocolate_id"]: r for r in self.conn.all_results()} ancestors, ancestors_ids = self._load_ancestors(results) bootstrap = self._load_bootstrap(results, ancestors_ids) # Rank-mu update on individuals created from another algorithm self._bootstrap(bootstrap) # _bootstrab sets the parent if enough candidates are available (>= 4) # If the parent is still None and ancestors are available # set the parent to the first evaluated candidate if any if self.parent is None and len(ancestors) > 0: self.parent = next((a for a in ancestors if a["loss"] is not None), None) # Generate the next point token = token or {} token.update({"_chocolate_id": self.conn.count_results()}) # If the parent is still None, no information available if self.parent is None: # out = numpy.ones(self.dim) / 2.0 out = self.random_state.rand(self.dim) # Signify the first point to others using loss set to None # Transform to dict with parameter names # entry = {str(k): v for k, v in zip(self.space.names(), out)} entry = self.space(out, transform=False) # entry["_loss"] = None entry.update(token) self.conn.insert_result(entry) # Add the step to the complementary table # Transform to dict with parameter names # entry = {str(k): v for k, v in zip(self.space.names(), out)} entry = self.space(out, transform=False) entry.update(_ancestor_id=-1, _invalid=0, _search_algo="cmaes", **token) self.conn.insert_complementary(entry) # return the true parameter set return token, self.space(out) else: # Simulate the CMA-ES update for each ancestor. for key, group in groupby(ancestors[1:], key=itemgetter("ancestor_id")): # If the loss for this entry is not yet availabe, don't include it group = list(group) self.lambda_ = len(group) self._configure() # Adjust constants that depends on lambda self._update_internals(group) invalid = 1 while invalid > 0: # Generate a single candidate at a time self.lambda_ = 1 self._configure() # The ancestor id is the last candidate that participated in the # covariance matrix update ancestor_id = next( (a["chocolate_id"] for a in reversed(bootstrap + ancestors) if a["loss"] is not None or a[ "invalid"] > 0), None) assert ancestor_id is not None, "Invalid ancestor id" out, y = self._generate() # Encode constraint violation invalid = sum(2 ** (2 * i) for i, xi in enumerate(out) if xi < 0) invalid += sum(2 ** (2 * i + 1) for i, xi in enumerate(out) if xi >= 1) # Add the step to the complementary table # Transform to dict with parameter names # entry = {str(k): v for k, v in zip(self.space.names(), y)} entry = self.space(y, transform=False) entry.update(_ancestor_id=ancestor_id, _invalid=invalid, _search_algo="cmaes", **token) self.conn.insert_complementary(entry) # Signify next point to others using loss set to None # Transform to dict with parameter names # entry = {str(k): v for k, v in zip(self.space.names(), out)} entry = self.space(out, transform=False) # entry["_loss"] = None entry.update(token) self.conn.insert_result(entry) # return the true parameter set return token, self.space(out) def _init(self): self.parent = None self.sigma = 0.2 self.dim = len(self.space) self.C = numpy.identity(self.dim) self.A = numpy.linalg.cholesky(self.C) self.pc = numpy.zeros(self.dim) # Covariance matrix adaptation self.cc = self.params.get("cc", 2.0 / (self.dim + 2.0)) self.ccovp = self.params.get("ccovp", 2.0 / (self.dim ** 2 + 6.0)) self.ccovn = self.params.get("ccovn", 0.4 / (self.dim ** 1.6 + 1.0)) self.beta = self.params.get("beta", 0.1 / (self.dim + 2.0)) self.pthresh = self.params.get("pthresh", 0.44) # Active covariance update for unsucessful candidates self.ancestors = list() # Constraint vectors for covariance adaptation # We work in the unit box [0, 1) self.constraints = numpy.zeros((self.dim * 2, self.dim)) self.S_int = numpy.zeros(self.dim) for i, s in enumerate(self.space.steps()): if s is not None: self.S_int[i] = s self.i_I_R = numpy.flatnonzero(2 * self.sigma * numpy.diag(self.C) ** 0.5 < self.S_int) self.update_count = 0 def _configure(self): self.d = self.params.get("d", 1.0 + self.dim / (2.0 * self.lambda_)) self.ptarg = self.params.get("ptarg", 1.0 / (5 + numpy.sqrt(self.lambda_) / 2.0)) self.cp = self.params.get("cp", self.ptarg * self.lambda_ / (2 + self.ptarg * self.lambda_)) if self.update_count == 0: self.psucc = self.ptarg def _load_ancestors(self, results): # Get a list of the actual ancestor and the complementary information # on that ancestor ancestors = list() ancestors_ids = set() for c in sorted(self.conn.all_complementary(), key=itemgetter("_chocolate_id")): candidate = dict() candidate["step"] = numpy.array([c[str(k)] for k in self.space.names()]) candidate["chocolate_id"] = c["_chocolate_id"] candidate["ancestor_id"] = c["_ancestor_id"] candidate["invalid"] = c["_invalid"] candidate["loss"] = None if c["_invalid"] == 0: candidate["X"] = numpy.array([results[c["_chocolate_id"]][str(k)] for k in self.space.names()]) candidate["loss"] = results[c["_chocolate_id"]]["_loss"] ancestors.append(candidate) ancestors_ids.add(candidate["chocolate_id"]) return ancestors, ancestors_ids def _load_bootstrap(self, results, ancestors_ids): # Find individuals produced by another algorithm bootstrap = list() for _, c in sorted(results.items()): # Skip those included in ancestors if c["_chocolate_id"] in ancestors_ids: continue candidate = dict() # The initial distribution is assumed uniform and centred on 0.5^n candidate["step"] = numpy.array([c[str(k)] - 0.5 for k in self.space.names()]) candidate["X"] = numpy.array([results[c["_chocolate_id"]][str(k)] for k in self.space.names()]) candidate["chocolate_id"] = c["_chocolate_id"] candidate["ancestor_id"] = -1 # Compute constraint violation candidate["invalid"] = sum(2 ** (2 * i) for i, xi in enumerate(candidate["X"]) if xi < 0) candidate["invalid"] += sum(2 ** (2 * i + 1) for i, xi in enumerate(candidate["X"]) if xi >= 1) candidate["loss"] = None if candidate["invalid"] == 0: candidate["loss"] = c["_loss"] bootstrap.append(candidate) return bootstrap def _bootstrap(self, candidates): # Active covariance update for invalid individuals self._process_invalids(candidates) # Remove invalids and not evaluated candidates = [c for c in candidates if c["invalid"] == 0 and c["loss"] is not None] # Rank-mu update for covariance matrix if len(candidates) >= 4: mu = int(len(candidates) / 2) # superlinear weights (the usual default) weights = numpy.log(mu + 0.5) - numpy.log(numpy.arange(1, mu + 1)) weights /= sum(weights) c1 = 2 / len(candidates[0]) ** 2 cmu = mu / len(candidates[0]) ** 2 candidates.sort(key=itemgetter("loss")) c_array = numpy.array([c["step"] for c in candidates[:mu]]) cw = numpy.sum(weights * c_array.T, axis=1) self.pc = (1 - self.cc) * self.pc + numpy.sqrt(1 - (1 - self.cc) ** 2) * numpy.sqrt(mu) * cw self.C = (1 - c1 - cmu) * self.C + c1 * numpy.outer(self.pc, self.pc) + cmu * numpy.dot(weights * c_array.T, c_array) self.parent = candidates[0] def _update_internals(self, candidates): assert self.parent is not None, "No parent for CMA-ES internal update" assert "loss" in self.parent, "Parent has no loss in CMA-ES internal update" assert self.parent["loss"] is not None, "Invalid loss for CMA-ES parent" # Active covariance update for invalid individuals self._process_invalids(candidates) # Remove invalids and not evaluated candidates = [s for s in candidates if s["invalid"] == 0 and s["loss"] is not None] if len(candidates) == 0: # Empty group, abort return # Is the new point better than the parent? candidates.sort(key=itemgetter("loss")) lambda_succ = sum(s["loss"] <= self.parent["loss"] for s in candidates) p_succ = float(lambda_succ) / self.lambda_ self.psucc = (1 - self.cp) * self.psucc + self.cp * p_succ # On success update the matrices C, A == B*D and evolution path if candidates[0]["loss"] <= self.parent["loss"]: self.parent = candidates[0].copy() if self.psucc < self.pthresh: self.pc = (1 - self.cc) * self.pc + numpy.sqrt(self.cc * (2 - self.cc)) * candidates[0]["step"] self.C = (1 - self.ccovp) * self.C + self.ccovp * numpy.outer(self.pc, self.pc) else: self.pc = (1 - self.cc) * self.pc self.C = (1 - self.ccovp) * self.C + self.ccovp * (numpy.outer(self.pc, self.pc) + self.cc * (2 - self.cc) * self.C) self.A = numpy.linalg.cholesky(self.C) elif len(self.ancestors) >= 5 and candidates[0]["loss"] > sorted(s["loss"] for s in self.ancestors)[-1]: # Active negative covariance update z = numpy.dot(numpy.linalg.inv(self.A), candidates[0]["step"]) n_z2 = numpy.linalg.norm(z) ** 2 if 1 - self.ccovn * n_z2 / (1 + self.ccovn) < 0.5: ccovn = 1 / (2 * numpy.linalg.norm(z) ** 2 - 1) else: ccovn = self.ccovn self.A = numpy.sqrt(1 + ccovn) * self.A + numpy.sqrt(1 + ccovn) / n_z2 * ( numpy.sqrt(1 - ccovn * n_z2 / (1 + ccovn)) - 1) * numpy.dot(self.A, numpy.outer(z, z)) self.C = numpy.dot(self.A, self.A.T) # Yup we still have an update o C # Keep a list of ancestors sorted by order of appearance self.ancestors.insert(0, candidates[0]) if len(self.ancestors) > 5: self.ancestors.pop(-1) # Update the step size self.sigma = self.sigma * numpy.exp(1.0 / self.d * (self.psucc - self.ptarg) / (1 - self.ptarg)) # Update the dimensions where integer mutation is needed self.i_I_R = numpy.flatnonzero(2 * self.sigma * numpy.diag(self.C) ** 0.5 < self.S_int) self.update_count += 1 def _process_invalids(self, candidates): # Process all invalid individuals for s in candidates: if s["invalid"] > 0: sum_vw = 0 invalid_count = 0 inv_A = numpy.linalg.inv(self.A) _, invalids = bin(s["invalid"]).split("b") for j, b in enumerate(reversed(invalids)): if b == "1": self.constraints[j, :] = (1 - self.cc) * self.constraints[j, :] + self.cc * s["step"] w = numpy.dot(inv_A, self.constraints[j, :]) sum_vw += numpy.outer(self.constraints[j, :], w) / numpy.inner(w, w) invalid_count += 1 # Update A and make changes in C since in next updates we use C self.A = self.A - (self.beta / invalid_count) * sum_vw self.C = numpy.dot(self.A, self.A.T) def _generate(self): n_I_R = self.i_I_R.shape[0] R_int = numpy.zeros(self.dim) # Mixed integer CMA-ES is developped for (mu/mu , lambda) # We have a (1 + 1) setting, the integer will be probabilistic. # The integer mutation is lambda / 2 if all dimensions are integers or # min(lambda / 2 - 1, lambda / 10 + n_I_R + 1), minus 1 accounts for # the last new candidate getting its integer mutation from the last best # solution. if n_I_R == self.dim: p = 0.5 else: p = min(0.5, 0.1 + n_I_R / self.dim) if n_I_R > 0 and self.random_state.rand() < p: Rp = numpy.zeros(self.dim) Rpp = numpy.zeros(self.dim) # Ri' has exactly one of its components set to one. # The Ri' are dependent in that the number of mutations for each coordinate # differs at most by one. j = self.random_state.choice(self.i_I_R) Rp[j] = 1 Rpp[j] = self.random_state.geometric(p=0.7 ** (1.0 / n_I_R)) - 1 I_pm1 = (-1) ** self.random_state.randint(0, 2, self.dim) R_int = I_pm1 * (Rp + Rpp) y = numpy.dot(self.random_state.standard_normal(self.dim), self.A.T) arz = self.parent["X"] + self.sigma * y + self.S_int * R_int return arz, y
[ "f.derainville@gmail.com" ]
f.derainville@gmail.com
eaeeca02077d219d98821fcaf5dbc7bbde70203d
01e29cbbb3eba58e255b9bdaa2d17f800a50073e
/2 Discrete time signals/DiscreteTimeSignals.py
34e35faa9b3ac918cfb703f7fbf80c0cb7a136a8
[ "MIT" ]
permissive
Alja9/Plot-Signal-Processing-with-Python
ecef89018bf911c3a83e4d3da67c31165dce6e83
71021f06a6dd66a1234d6ed8f8b2ccbc5a04fc93
refs/heads/master
2021-01-02T09:54:29.495502
2020-02-13T13:30:29
2020-02-13T13:30:29
239,566,054
0
0
null
null
null
null
UTF-8
Python
false
false
577
py
import numpy as np from matplotlib import pyplot as plt n = np.arange(-1,6) xN = np.array([0,1,2,3,4,5,0]) xN_1 = n+1 xN_11 = [None] * len(n) x=0 for l in xN: if xN_1[x] == 0: xN_11[x] = 1 elif xN_1[x] == 1: xN_11[x] = 2 elif xN_1[x] == 2: xN_11[x] = 3 elif xN_1[x] == 3: xN_11[x] = 4 elif xN_1[x] == 4: xN_11[x] = 5 else: xN_11[x] = 0 x+=1 plt.xlabel('n') plt.ylabel('x[n+1]') plt.title('Discrete Time Signals') plt.stem(n,xN_11) plt.show()
[ "sayaalja12@gmail.com" ]
sayaalja12@gmail.com
15a52973aad29181b12f44a258c04283d53544fd
d8a766d00c6cdc78ae62204d61c1ff32d4c76914
/menu.py
d4acc49f049bd8e946649c8ef85102e0e0f9f090
[]
no_license
Dosache/RepositorioPython006
759ece3f85178b25591f986f729ce6fd5eb30866
65b9df982c24c288369095001d3d16cff49b04b7
refs/heads/main
2022-12-19T07:04:23.304199
2020-10-03T02:50:13
2020-10-03T02:50:13
300,626,009
0
0
null
null
null
null
UTF-8
Python
false
false
1,717
py
import os #menu def Numeros(n): posi = 0 nega = 0 cero = 0 for i in range(1,n+1): numeritos = int(input("Ingrese un numero: ")) if (numeritos>0): print("El numero es postivo") print("") posi = posi+1 if (numeritos<0): print("El numero es negativo") print("") nega = nega+1 if (numeritos==0): print("El numero es igual a 0") print("") cero= cero+1 print("La cantidad de numeros positivos es de: ", posi) print("La cantidad de numeros negativos es de: ", nega) print("La cantidad de numeros iguales a 0 es de: ", cero) print("") pause = input("Digite cualquier tecla para continuar: ") def Personas(n): totaledad = 0 prom = 0 for i in range (n): print("") nom = input("Ingrese nombre: ") edad = int(input("Ingrese edad: ")) totaledad = totaledad+edad prom = round((totaledad/n),1) print("") print("El promedio de edades de las personas ingresadas es de: ",prom) pause = input("Digite cualquier tecla para continuar: ") seguir = True n = 0 while (seguir): os.system('cls') print("Menu: ") print("") print("1. Numeros") print("2. Datos Personales") print("3. Finalizar") print("") op = int(input("Digite opcion 1, 2 o 3: ")) if(op==1): os.system('cls') n = int(input("Ingrese una cantidad de numeros: ")) Numeros(n) if(op==2): os.system('cls') n = int(input("Ingrese una cantidad de personas: ")) Personas(n) if(op==3): print("Programa finalizado!") break
[ "riquelme.sc9@gmail.com" ]
riquelme.sc9@gmail.com
2469304eb23d9a67d2c373e555ac6e69712e742c
96a0b0f1a8300418519164c51a54ce5dc12b5003
/node_modules/mongoose/node_modules/mongodb/node_modules/kerberos/build/config.gypi
f66b3084e2cfd137457da1f2d887b02b37d2e394
[ "Apache-2.0", "MIT" ]
permissive
benhalverson/angularWorkshop
8da075a6c9fd4929d9af18e861b29e3637f0d97d
75adefd56563bd2b80ce28d46778aabd422e2bef
refs/heads/master
2021-01-10T19:56:46.406716
2015-02-05T00:05:36
2015-02-05T00:05:36
30,328,385
0
1
null
2019-04-25T05:56:18
2015-02-05T00:06:11
JavaScript
UTF-8
Python
false
false
3,161
gypi
# Do not edit. File was generated by node-gyp's "configure" step { "target_defaults": { "cflags": [], "default_configuration": "Release", "defines": [], "include_dirs": [], "libraries": [] }, "variables": { "clang": 1, "host_arch": "x64", "node_install_npm": "true", "node_prefix": "/Users/ben/.nvm/v0.10.30", "node_shared_cares": "false", "node_shared_http_parser": "false", "node_shared_libuv": "false", "node_shared_openssl": "false", "node_shared_v8": "false", "node_shared_zlib": "false", "node_tag": "", "node_unsafe_optimizations": 0, "node_use_dtrace": "true", "node_use_etw": "false", "node_use_openssl": "true", "node_use_perfctr": "false", "python": "/usr/bin/python", "target_arch": "x64", "v8_enable_gdbjit": 0, "v8_no_strict_aliasing": 1, "v8_use_snapshot": "true", "want_separate_host_toolset": 0, "nodedir": "/Users/ben/.node-gyp/0.10.30", "copy_dev_lib": "true", "standalone_static_library": 1, "save_dev": "", "browser": "", "viewer": "man", "rollback": "true", "usage": "", "globalignorefile": "/Users/ben/.nvm/v0.10.30/etc/npmignore", "init_author_url": "", "shell": "/bin/bash", "parseable": "", "shrinkwrap": "true", "init_license": "ISC", "cache_max": "Infinity", "init_author_email": "", "sign_git_tag": "", "cert": "", "git_tag_version": "true", "local_address": "", "long": "", "fetch_retries": "2", "npat": "", "registry": "https://registry.npmjs.org/", "key": "", "message": "%s", "versions": "", "globalconfig": "/Users/ben/.nvm/v0.10.30/etc/npmrc", "always_auth": "", "spin": "true", "cache_lock_retries": "10", "cafile": "", "heading": "npm", "fetch_retry_mintimeout": "10000", "proprietary_attribs": "true", "json": "", "description": "true", "engine_strict": "", "https_proxy": "", "init_module": "/Users/ben/.npm-init.js", "userconfig": "/Users/ben/.npmrc", "node_version": "0.10.30", "user": "501", "save": "true", "editor": "vi", "tag": "latest", "global": "", "optional": "true", "bin_links": "true", "force": "", "searchopts": "", "depth": "Infinity", "rebuild_bundle": "true", "searchsort": "name", "unicode": "true", "fetch_retry_maxtimeout": "60000", "ca": "", "save_prefix": "^", "strict_ssl": "true", "dev": "", "fetch_retry_factor": "10", "group": "20", "save_exact": "", "cache_lock_stale": "60000", "version": "", "cache_min": "10", "cache": "/Users/ben/.npm", "searchexclude": "", "color": "true", "save_optional": "", "user_agent": "npm/2.1.16 node/v0.10.30 darwin x64", "ignore_scripts": "", "cache_lock_wait": "10000", "production": "", "save_bundle": "", "init_version": "1.0.0", "umask": "18", "git": "git", "init_author_name": "", "scope": "", "onload_script": "", "tmp": "/tmp", "unsafe_perm": "", "link": "", "prefix": "/Users/ben/.nvm/v0.10.30" } }
[ "benhalverson33@gmail.com" ]
benhalverson33@gmail.com
c856e9daf7af421e56d6286c9e05ae9ec6b2e402
66893940013495796c9f371e52e287305bcaeb47
/olympus-app/olympus/settings.py
94bb05fa898cc66e6d1e25746e8784963dbde347
[]
no_license
marselester/django-prometheus-via-statsd
b17bcd82dbb0ab8db24c4f86867e851a657ff255
f625d204c334d72afcac1ed88a482c0976f0bee9
refs/heads/master
2021-06-23T03:17:44.359342
2017-06-23T04:29:03
2017-06-23T04:29:03
93,476,076
1
1
null
2020-12-02T01:45:24
2017-06-06T04:27:11
Python
UTF-8
Python
false
false
2,382
py
import os BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) SECRET_KEY = 'swordfish' DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'olympus.apps.hello.apps.HelloConfig', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'olympus.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'olympus.wsgi.application' # Database DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) STATIC_URL = '/static/' # Third-party libraries # statsd_exporter daemon listens to UDP at localhost:8125. # It exports StatsD-style metrics as Prometheus metrics at localhost:9102. STATSD_HOST = 'localhost' STATSD_PORT = 8125
[ "marselester@ya.ru" ]
marselester@ya.ru
0c8895e935685ca264dd4d56859d0679fa753124
e164dfb3591162fae383b0519bb19e958f7ffec3
/AdventofCode/pythonDay1.py
151182a8eed13ad79ced7db21e9cba0b397b2ba8
[]
no_license
JordanBradshaw/Coding_Challenges
47eedb405213603c0b927e6d3fd4bb3cdc07417f
6ec1fb4f4b15e7f109550163dd2022a2385d35bc
refs/heads/main
2023-02-05T01:50:13.591734
2020-12-26T00:43:27
2020-12-26T00:43:27
320,424,075
0
0
null
null
null
null
UTF-8
Python
false
false
362
py
# PART 1 fileOpen = open('Day1/inputDay1.txt', 'r') listInt = [int(i) for i in fileOpen.readlines()] twoValuesMult = [x * y for x in listInt for y in listInt if x + y == 2020] print((set(twoValuesMult)).pop()) # PART 2 threeValuesMult = [ x * y * z for x in listInt for y in listInt for z in listInt if x + y + z == 2020] print((set(threeValuesMult)).pop())
[ "jordanbradshaw27@aol.com" ]
jordanbradshaw27@aol.com
65f216806b2947135f7235854a38bc036cdb3264
bb5fd3b4af87c51267bff02dd5b895569956cea8
/bin/git-change-date
9da45a89073ca66ed2384f535ff7309293d8a3a4
[]
no_license
amigrave/toothbrush
5151708ee6fc9d61e976d5847c0b5fceffb59448
8198d7988ebaa312295844047d51d88c7d859333
refs/heads/master
2021-09-29T23:00:39.407958
2020-06-15T13:23:30
2020-06-15T13:23:30
104,474,725
2
1
null
null
null
null
UTF-8
Python
false
false
1,281
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function import argparse import subprocess import sys parser = argparse.ArgumentParser() parser.add_argument("commit", help="The commit to edit") args = parser.parse_args() commit = args.commit try: date = subprocess.check_output(['git', 'show', '-s', '--format=%ci', commit]) except subprocess.CalledProcessError: sys.exit("Could not get date of commit %s" % commit) args = ['--nocancel', '--inputbox', 'New date', '7', '40', date.strip()] p = None for prog in ('whiptail', 'dialog'): try: p = subprocess.Popen([prog] + args, stderr=subprocess.PIPE) break except Exception: continue if p is None: sys.exit("Could not execute whiptail or dialog") newdate = p.communicate()[1].strip() if not newdate or date.strip() == newdate: print("Nothing to do.") sys.exit() gitcmd = ['git', 'filter-branch', '-f', '--env-filter', """ if test $GIT_COMMIT = "{commit}"; then export GIT_COMMITTER_DATE="{newdate}"; export GIT_AUTHOR_DATE="{newdate}"; fi""".format(**locals()), '%s~1..HEAD' % commit] # subprocess.call(['git', 'stash', 'save']) subprocess.call(gitcmd) # subprocess.call(['git', 'stash', 'pop'])
[ "agr@amigrave.com" ]
agr@amigrave.com
99f6d5092ae5f13632a74eea5f0df8c0d96a43a3
a09aeddddcadd2adc795e49890ad45a118a02dc4
/src/data_loader.py
9891834132daedac435a5e84eef8c8a44873dc53
[]
no_license
Zumbalamambo/Solar-Panels-Detection
7607fa774bf7d9b81e1116a105503ac4fe613963
5f6df0b743ce7915d1075ebe12c5f790eec35f03
refs/heads/master
2020-04-12T15:54:11.913732
2018-05-30T20:15:21
2018-05-30T20:15:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
8,365
py
import torch.utils.data as data from PIL import Image import os import os.path #from tifffile import imread from scipy.misc import imread, imresize import torchvision.transforms as transforms import torch import numpy as np import cv2 import random import tifffile as tiff IMG_EXTENSIONS = [ '.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', ] def is_image_file(filename): return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) def make_dataset(dir, dir_output,text_file): images = [] print(text_file) with open(text_file, 'r') as f: for line in f: line = line[:-1] #print(line) split_lines = line.split(",") path1 = '{0}{1}'.format(dir, split_lines[0]) path2 = '{0}{1}'.format(dir_output, split_lines[1]) item = (path1,path2) images.append(item) random.shuffle(images) if len(images)>2000: return images[:2000] else: return images[:900] def make_dataset_from_big_image(dir_subimages, filename): """ This function does the following: 1) crops big images into subimages of 256x256, 2) saves subimages in dir_subimages 3) creates the images_csv list with the path of the subimages Input: ----- dir_subimages: path to save images filename: path+filename of the big image Output: ------ images_csv: list of the subimages paths """ image = imread(filename) img_id = os.path.splitext(os.path.basename(filename))[0] height, width = image.shape[:2] n_rows, n_cols = height//256, width//256 images_csv= [] for i in range(n_rows): for j in range(n_cols): cropped = image[i*256:(i*256)+256, j*256:(j*256)+256, :] cropped_id = img_id + '_'+str(i)+'_'+str(j) + '.tif' # save image tiff.imsave(os.path.join(dir_subimages, cropped_id), cropped) # write in csv file image path images_csv.append(os.path.join(dir_subimages, cropped_id)) if n_cols*256 < width: cropped = image[i*256:(i*256)+256, width-256:width,:] cropped_id = img_id + '_'+str(i)+'_'+str(j+1)+'.tif' # save image tiff.imsave(os.path.join(dir_subimages, cropped_id), cropped) # write in csv file image path images_csv.append(os.path.join(dir_subimages, cropped_id)) if n_rows*256 < height: for j in range(n_cols): cropped = image[height-256:height, j*256:(j*256)+256, :] cropped_id = img_id + '_'+str(i+1)+'_'+str(j)+'.tif' # save image tiff.imsave(os.path.join(dir_subimages, cropped_id), cropped) # write in csv file image path images_csv.append(os.path.join(dir_subimages, cropped_id)) if n_cols*256 < width: cropped = image[height-256:height, width-256:width,:] cropped_id = img_id + '_'+str(i+1)+'_'+str(j+1)+'.tif' # save image tiff.imsave(os.path.join(dir_subimages, cropped_id), cropped) # write in csv file image path images_csv.append(os.path.join(dir_subimages, cropped_id)) if len(images_csv)%5 > 0: for i in range(5-(len(images_csv)%5)): images_csv.append(images_csv[-1]) return images_csv def reconstruct_image(dir_subimages, filename): """ Input: ----- dir_subimages: path of the subimages filename: path+filename of the big original image Output: ------ reconstructed image """ original_image = tiff.imread(filename) height, width = original_image.shape[:2] n_rows, n_cols = height//256, width//256 #subimages = [os.path.splitext(os.path.basename(x))[0] for x in glob(os.path.join(dir_subimages, '*.png'))] img_id = os.path.splitext(os.path.basename(filename))[0] img_rows = [] for i in range(n_rows): for j in range(n_cols): img = tiff.imread(os.path.join(dir_subimages, img_id+'_'+str(i)+'_'+str(j)+'.png')) if (j == 0): img_row = img else: img_row = np.concatenate([img_row, img], axis = 2) if n_cols*256 < width: img = tiff.imread(os.path.join(dir_subimages, img_id+'_'+str(i)+'_'+str(j+1)+'.png')) img = img[:,:,-width%256:] img_row = np.concatenate([img_row, img], axis = 2) img_rows.append(img_row) if n_rows*256 < height: for j in range(n_cols): img = tiff.imread(os.path.join(dir_subimages, img_id+'_'+str(i+1)+'_'+str(j)+'.png')) img = img[:,-height%256:,:] if (j == 0): img_row = img else: img_row = np.concatenate([img_row, img], axis = 2) if n_cols*256 < width: img = tiff.imread(os.path.join(dir_subimages, img_id+'_'+str(i+1)+'_'+str(j+1)+'.png')) img = img[:,-height%256:,-width%256:] img_row = np.concatenate([img_row, img], axis = 2) img_rows.append(img_row) reconstruction = np.concatenate(img_rows, axis=1) return reconstruction def default_loader(path): return imread(path) #return(Image.open(path)) class ImagerLoader(data.Dataset): def __init__(self, root, root_output,text_file,transform=None, target_transform=None, loader=default_loader, crop=False, normalize = False, size_cropped = 512): imgs = make_dataset(root, root_output,text_file) self.root = root self.imgs = imgs self.transform = transform self.target_transform = transform self.loader = loader self.crop = crop self.normalize = normalize self.size_cropped = size_cropped def __getitem__(self, index): path, path_output = self.imgs[index] img = self.loader(path)#.astype(int) image has dimension height x width x n_channels output = self.loader(path_output)#.astype(int) #img = imresize(img, (512, 512)) #output = imresize(output, (512, 512)) img = img.astype('int16') output = output.astype('int16') # if we want to crop the image at the centre if self.crop: h,w,channels = img.shape img = img[(h//2-self.size_cropped//2):(h//2+self.size_cropped//2), (w//2-self.size_cropped//2):(w//2+self.size_cropped//2),:] h,w = output.shape output = output[h//2-self.size_cropped//2:h//2+self.size_cropped//2, w//2-self.size_cropped//2:w//2+self.size_cropped//2] img = np.transpose(img, (2,0,1)) # if we want to normalize the images to [-1,1] if self.normalize: img = img.astype(float) img = (img-128)/128 img = torch.FloatTensor(img) else: img = torch.ShortTensor(img) # if self.transform is not None: # img = self.transform(img) # if self.target_transform is not None: # output = self.target_transform(output) img = img.float() img_id = os.path.basename(path).split('.')[0] return img_id, img, torch.ShortTensor(output).long() def __len__(self): return len(self.imgs) class ImageLoaderPredictionBigImage(data.Dataset): def __init__(self, dir_subimages, filename, normalize = False, loader=default_loader): imgs = make_dataset_from_big_image(dir_subimages, filename) self.imgs = imgs self.dir_subimages = dir_subimages self.filename = filename self.loader = loader self.normalize = normalize def __getitem__(self, index): path = self.imgs[index] img = self.loader(path) img = img.astype('int16') img = np.transpose(img, (2,0,1)) if self.normalize: img = img.astype(float) img = (img-128)/128. img = torch.FloatTensor(img) img_id = os.path.basename(path).split('.')[0] return img_id, img def __len__(self): return len(self.imgs)
[ "marcsv87@gmail.com" ]
marcsv87@gmail.com
a1e578e8f76920f85451a52014e38448708f5fb3
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_227/ch54_2020_03_25_12_43_46_843222.py
c6cc1e0e1175dc441e85e676ecb8da1c00a6319b
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
161
py
def calcula_fibonacci(n): F=[0]*n F[0] = 1 F[1] = 1 i = 1 while i <= n: F[i + 1] = F [i] + F[i - 1] i += 1 return F
[ "you@example.com" ]
you@example.com
404b2029b028e71a7c90ae5fc5060501e472fbdf
43fd4a6edc07d8021c83e3a382ec5fda9f4d3e18
/tests/test_repo.py
0a99533af77704b7094dc8dd5880ea2029037917
[ "Apache-2.0" ]
permissive
pombredanne/dvc
7aabefb700eed5793024e12e41132e9de3dc63f7
402eb2da0122932c0a8cd04cd1a9b88f6a0bc432
refs/heads/master
2020-05-01T00:21:59.674072
2019-03-22T13:50:30
2019-03-22T13:50:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,656
py
from tests.basic_env import TestDvc from dvc.scm.git import GitTree from dvc.repo.tree import WorkingTree class TestCollect(TestDvc): def setUp(self): super(TestCollect, self).setUp() self.dvc.add(self.FOO) self.dvc.run( deps=[self.FOO], outs=[self.BAR], cmd="python code.py {} {}".format(self.FOO, self.BAR), ) self.dvc.scm.add([".gitignore", self.FOO + ".dvc", self.BAR + ".dvc"]) self.dvc.scm.commit("foo.dvc and bar.dvc") self.dvc.scm.checkout("new_branch", True) self.dvc.run( deps=[self.BAR], outs=["buzz"], cmd="python code.py {} {}".format(self.BAR, "buzz"), ) self.dvc.scm.add([".gitignore", "buzz.dvc"]) self.dvc.scm.commit("add buzz") self.dvc.scm.checkout("master") def _check(self, branch, target, with_deps, expected): if branch: self.dvc.tree = GitTree(self.dvc.scm.git, branch) else: self.dvc.tree = WorkingTree() result = self.dvc.collect(target + ".dvc", with_deps=with_deps) self.assertEqual( [[j.rel_path for j in i.outs] for i in result], expected ) return result def test(self): self._check("", self.BAR, True, [[self.FOO], [self.BAR]]) self._check("master", self.BAR, True, [[self.FOO], [self.BAR]]) self._check( "new_branch", "buzz", True, [[self.FOO], [self.BAR], ["buzz"]] ) result = self._check("new_branch", "buzz", False, [["buzz"]]) self.assertEqual([i.rel_path for i in result[0].deps], ["bar"])
[ "andrew@ei-grad.ru" ]
andrew@ei-grad.ru
a1fbbc3fc04cd57ed0d79382528d4efe0b8c50b4
a27295e174a341f7f9b792dbf8bd8abb7679c380
/backend/articles/article.py
fb00612507bc67e25781193fff7c11370564f266
[ "MIT" ]
permissive
alilou01/NeuralOPS
02c6b798d2f4dae90f3eaa6972b829dd1fda06fa
f5ea5768a7e0940cb978a7822dd53c3ab63d47b3
refs/heads/master
2020-06-16T18:28:43.761584
2019-07-06T13:56:54
2019-07-06T13:56:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,656
py
import pickle import torch class Article: def __init__(self, arti): self.source = arti["source"] self.author = arti["author"] self.content = arti["content"] self.description = arti["description"] self.title = arti["title"] self.urlToImage = arti["urlToImage"] self.tranformed = {} self.fake="" self.category="" self.objectivity="" self.extract() def describe(self): print("SOURCE : "+str(self.source)) print("AUTHOR : "+str(self.source)) print("CONTENT PREVIEW : "+str(self.content[:20])) def extract(self): from postagging.transform import transform_to_pos count_vectorizer = pickle.load(open("../../training/models/countvectorizer-category.pickle", "rb")) transformer = pickle.load(open("../../training/models/tfidf-category.pickle", "rb")) model = pickle.load(open("../../training/models/model-category.pickle", "rb")) #print("Content : "+str(self.content)) try: counts = count_vectorizer.transform([self.content]) except: counts = count_vectorizer.transform([self.title]) tfidf = transformer.transform(counts) self.category = model.predict(tfidf) try: self.tranformed = transform_to_pos(self.content) except: self.tranformed = transform_to_pos(self.title) grilli = [] for i in self.tranformed: grilli.append(self.tranformed[i]) import numpy as np gril_np = np.asarray(grilli) gril_torch = torch.tensor(gril_np) device = torch.device('cpu') gril_mid =gril_torch.to(device=device, dtype=torch.float32).type(torch.FloatTensor) model2 = pickle.load(open("../../training/models/model-objectivity.pickle", "rb")) model2.eval() with torch.no_grad(): self.objectivity = torch.round(model2(gril_mid)) model3 = pickle.load(open("../../training/models/model-fakenews.pickle", "rb")) count_vectorizer2 = pickle.load(open("../../training/models/countvectorizer-fake.pickle", "rb")) transformer2 = pickle.load(open("../../training/models/tfidf-fake.pickle", "rb")) try: counts2 = count_vectorizer2.transform([self.content]) except: counts2 = count_vectorizer2.transform([self.title]) tfidf2 = transformer2.transform(counts2) f = model3.predict(tfidf2) if "1" in str(f[0]): self.fake = "Fake" else: self.fake = "Not Fake"
[ "raysamram@gmail.com" ]
raysamram@gmail.com
fb4173a546d903ee4250a1fb91774ef47ad3ab53
88292515f30df6662d55a992ec1837614287b9bd
/Lab4_6/posts/models.py
8a15a4a3a54afe94447fcb2ec119b8000612d8fd
[]
no_license
JakubPikus/aplikacje-internetowe-22164-185ic
becb73cc4bff3fab0eee0f776a0cee84ba2f219e
2951739a74e3da7e8055afc096cdfee65d89fef8
refs/heads/master
2023-02-22T05:46:41.460594
2021-01-24T04:16:53
2021-01-24T04:16:53
315,351,818
0
0
null
null
null
null
UTF-8
Python
false
false
449
py
from django.db import models from django.contrib.auth.models import User class Post(models.Model): author = models.ForeignKey(User, on_delete=models.CASCADE) title = models.CharField(max_length=50) body = models.TextField() created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) class Meta: verbose_name_plural = "Moje posty" def __str__(self): return self.title
[ "kub943@gmail.com" ]
kub943@gmail.com
7377a597b212b5e80263e4d76d6b5e4f66101ac7
6463cc6418eae02bb1436d04dff1dfd4f69b85c6
/Chapter 5/favorite_fruit.py
ae16d5866f48361e68f8267e30f2e460caf6d2af
[]
no_license
danielgaylord/PythonCrashCourse
f0d69ec133973fdc08897c4e0533833d58c7aa9a
8ce5b5862a90c138036f9772d73db0feda5f982c
refs/heads/master
2021-01-17T12:57:11.545532
2016-06-22T02:15:30
2016-06-22T02:15:30
59,448,072
0
0
null
null
null
null
UTF-8
Python
false
false
405
py
favorite_fruits = ["strawberry", "pear", "pineapple"] if "banana" in favorite_fruits: print("You really like bananas!") if "apple" in favorite_fruits: print("You really like apples!") if "grape" in favorite_fruits: print("You really like grapes!") if "pear" in favorite_fruits: print("You really like pears!") if "strawberry" in favorite_fruits: print("You really like strawberries!")
[ "danielgaylord@gmail.com" ]
danielgaylord@gmail.com
c6a39643969e44e9b0aa6fa2005d17e2633d91f6
0f7b1937b16239778529c094fdd08b7b93dfb1cf
/retrace/ddrawretrace.py
4f2ff944144f53710e46f764b17deba2174b404d
[ "MIT" ]
permissive
laanwj/apitrace-kms
707cb13cc08827a6e4279329ddf44aed47376abe
96b39d84accfca01897490ff975362c0931b220b
refs/heads/master
2021-01-12T15:51:35.328219
2016-11-24T16:12:58
2016-11-24T16:27:15
71,892,145
3
0
null
null
null
null
UTF-8
Python
false
false
5,543
py
########################################################################## # # Copyright 2011 Jose Fonseca # All Rights Reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # ##########################################################################/ """D3D retracer generator.""" import sys from dllretrace import DllRetracer as Retracer from specs.stdapi import API from specs.d3d import ddraw, HWND from specs.ddraw import DDCREATE_LPGUID class D3DRetracer(Retracer): def retraceApi(self, api): print '// Swizzling mapping for lock addresses' print 'static std::map<void *, void *> _maps;' print # TODO: Keep a table of windows print 'static HWND g_hWnd;' print Retracer.retraceApi(self, api) def invokeInterfaceMethod(self, interface, method): # keep track of the last used device for state dumping if interface.name in ('IDirect3DDevice7',): if method.name == 'Release': print r' if (call.ret->toUInt() == 0) {' print r' d3d7Dumper.unbindDevice(_this);' print r' }' else: print r' d3d7Dumper.bindDevice(_this);' # create windows as neccessary hWndArg = method.getArgByType(HWND) if hWndArg is not None: # FIXME: Try to guess the window size (e.g., from IDirectDrawSurface7::Blt) print r' if (!g_hWnd) {' print r' g_hWnd = d3dretrace::createWindow(512, 512);' print r' }' print r' %s = g_hWnd;' % hWndArg.name if method.name == 'Lock': # Reset _DONOTWAIT flags. Otherwise they may fail, and we have no # way to cope with it (other than retry). mapFlagsArg = method.getArgByName('dwFlags') if mapFlagsArg is not None: print r' dwFlags &= DDLOCK_DONOTWAIT;' print r' dwFlags |= DDLOCK_WAIT;' Retracer.invokeInterfaceMethod(self, interface, method) if method.name == 'CreateDevice': print r' if (FAILED(_result)) {' print r' exit(1);' print r' }' # notify frame has been completed # process events after presents if interface.name == 'IDirectDrawSurface7' and method.name == 'Blt': print r' DDSCAPS2 ddsCaps;' print r' if (SUCCEEDED(_this->GetCaps(&ddsCaps)) &&' print r' (ddsCaps.dwCaps & DDSCAPS_PRIMARYSURFACE)) {' print r' retrace::frameComplete(call);' print r' d3dretrace::processEvents();' print r' }' if method.name == 'Lock': print ' VOID *_pbData = NULL;' print ' size_t _MappedSize = 0;' # FIXME: determine the mapping size #print ' _getMapInfo(_this, %s, _pbData, _MappedSize);' % ', '.join(method.argNames()[:-1]) print ' if (_MappedSize) {' print ' _maps[_this] = _pbData;' # TODO: check pitches match print ' } else {' print ' return;' print ' }' if method.name == 'Unlock': print ' VOID *_pbData = 0;' print ' _pbData = _maps[_this];' print ' if (_pbData) {' print ' retrace::delRegionByPointer(_pbData);' print ' _maps[_this] = 0;' print ' }' def extractArg(self, function, arg, arg_type, lvalue, rvalue): # Handle DDCREATE_* flags if arg.type is DDCREATE_LPGUID: print ' if (%s.toArray()) {' % rvalue Retracer.extractArg(self, function, arg, arg_type, lvalue, rvalue) print ' } else {' print ' %s = static_cast<%s>(%s.toPointer());' % (lvalue, arg_type, rvalue) print ' }' return Retracer.extractArg(self, function, arg, arg_type, lvalue, rvalue) def main(): print r'#include <string.h>' print print r'#include <iostream>' print print r'#include "d3dretrace.hpp"' print api = API() print r'#include "d3dimports.hpp"' api.addModule(ddraw) print print '''static d3dretrace::D3DDumper<IDirect3DDevice7> d3d7Dumper;''' print retracer = D3DRetracer() retracer.table_name = 'd3dretrace::ddraw_callbacks' retracer.retraceApi(api) if __name__ == '__main__': main()
[ "jfonseca@vmware.com" ]
jfonseca@vmware.com
de1485dac110b950249be801a4a06ab687b134c4
fc00b177802c49cf04dc6a8e430093bc14ae9b53
/venv/Lib/site-packages/git/test/test_git.py
060a4c3c16583ef845e9d97e6eff59b0007e2f53
[]
permissive
artisakov/vigilant-journey
9c8264d36da5745374a0d08b0b0288a70f978a11
4fed9026071a64489d26422ba7cd1a9b9cb05e16
refs/heads/master
2022-11-16T03:10:06.418221
2020-07-16T07:33:06
2020-07-16T07:33:06
238,490,887
0
1
MIT
2020-03-01T10:12:22
2020-02-05T16:03:07
HTML
UTF-8
Python
false
false
10,926
py
# -*- coding: utf-8 -*- # test_git.py # Copyright (C) 2008, 2009 Michael Trier (mtrier@gmail.com) and contributors # # This module is part of GitPython and is released under # the BSD License: http://www.opensource.org/licenses/bsd-license.php import os import subprocess import sys from tempfile import TemporaryFile from unittest import mock from git import ( Git, refresh, GitCommandError, GitCommandNotFound, Repo, cmd ) from git.compat import is_darwin from git.test.lib import ( TestBase, fixture_path ) from git.test.lib import with_rw_directory from git.util import finalize_process import os.path as osp from git.compat import is_win class TestGit(TestBase): @classmethod def setUpClass(cls): super(TestGit, cls).setUpClass() cls.git = Git(cls.rorepo.working_dir) def tearDown(self): import gc gc.collect() @mock.patch.object(Git, 'execute') def test_call_process_calls_execute(self, git): git.return_value = '' self.git.version() self.assertTrue(git.called) self.assertEqual(git.call_args, ((['git', 'version'],), {})) def test_call_unpack_args_unicode(self): args = Git._Git__unpack_args(u'Unicode€™') mangled_value = 'Unicode\u20ac\u2122' self.assertEqual(args, [mangled_value]) def test_call_unpack_args(self): args = Git._Git__unpack_args(['git', 'log', '--', u'Unicode€™']) mangled_value = 'Unicode\u20ac\u2122' self.assertEqual(args, ['git', 'log', '--', mangled_value]) def test_it_raises_errors(self): self.assertRaises(GitCommandError, self.git.this_does_not_exist) def test_it_transforms_kwargs_into_git_command_arguments(self): self.assertEqual(["-s"], self.git.transform_kwargs(**{'s': True})) self.assertEqual(["-s", "5"], self.git.transform_kwargs(**{'s': 5})) self.assertEqual([], self.git.transform_kwargs(**{'s': None})) self.assertEqual(["--max-count"], self.git.transform_kwargs(**{'max_count': True})) self.assertEqual(["--max-count=5"], self.git.transform_kwargs(**{'max_count': 5})) self.assertEqual(["--max-count=0"], self.git.transform_kwargs(**{'max_count': 0})) self.assertEqual([], self.git.transform_kwargs(**{'max_count': None})) # Multiple args are supported by using lists/tuples self.assertEqual(["-L", "1-3", "-L", "12-18"], self.git.transform_kwargs(**{'L': ('1-3', '12-18')})) self.assertEqual(["-C", "-C"], self.git.transform_kwargs(**{'C': [True, True, None, False]})) # order is undefined res = self.git.transform_kwargs(**{'s': True, 't': True}) self.assertEqual({'-s', '-t'}, set(res)) def test_it_executes_git_to_shell_and_returns_result(self): self.assertRegex(self.git.execute(["git", "version"]), r'^git version [\d\.]{2}.*$') def test_it_accepts_stdin(self): filename = fixture_path("cat_file_blob") with open(filename, 'r') as fh: self.assertEqual("70c379b63ffa0795fdbfbc128e5a2818397b7ef8", self.git.hash_object(istream=fh, stdin=True)) @mock.patch.object(Git, 'execute') def test_it_ignores_false_kwargs(self, git): # this_should_not_be_ignored=False implies it *should* be ignored self.git.version(pass_this_kwarg=False) self.assertTrue("pass_this_kwarg" not in git.call_args[1]) def test_it_raises_proper_exception_with_output_stream(self): tmp_file = TemporaryFile() self.assertRaises(GitCommandError, self.git.checkout, 'non-existent-branch', output_stream=tmp_file) def test_it_accepts_environment_variables(self): filename = fixture_path("ls_tree_empty") with open(filename, 'r') as fh: tree = self.git.mktree(istream=fh) env = { 'GIT_AUTHOR_NAME': 'Author Name', 'GIT_AUTHOR_EMAIL': 'author@example.com', 'GIT_AUTHOR_DATE': '1400000000+0000', 'GIT_COMMITTER_NAME': 'Committer Name', 'GIT_COMMITTER_EMAIL': 'committer@example.com', 'GIT_COMMITTER_DATE': '1500000000+0000', } commit = self.git.commit_tree(tree, m='message', env=env) self.assertEqual(commit, '4cfd6b0314682d5a58f80be39850bad1640e9241') def test_persistent_cat_file_command(self): # read header only hexsha = "b2339455342180c7cc1e9bba3e9f181f7baa5167" g = self.git.cat_file( batch_check=True, istream=subprocess.PIPE, as_process=True ) g.stdin.write(b"b2339455342180c7cc1e9bba3e9f181f7baa5167\n") g.stdin.flush() obj_info = g.stdout.readline() # read header + data g = self.git.cat_file( batch=True, istream=subprocess.PIPE, as_process=True ) g.stdin.write(b"b2339455342180c7cc1e9bba3e9f181f7baa5167\n") g.stdin.flush() obj_info_two = g.stdout.readline() self.assertEqual(obj_info, obj_info_two) # read data - have to read it in one large chunk size = int(obj_info.split()[2]) g.stdout.read(size) g.stdout.read(1) # now we should be able to read a new object g.stdin.write(b"b2339455342180c7cc1e9bba3e9f181f7baa5167\n") g.stdin.flush() self.assertEqual(g.stdout.readline(), obj_info) # same can be achieved using the respective command functions hexsha, typename, size = self.git.get_object_header(hexsha) hexsha, typename_two, size_two, _ = self.git.get_object_data(hexsha) self.assertEqual(typename, typename_two) self.assertEqual(size, size_two) def test_version(self): v = self.git.version_info self.assertIsInstance(v, tuple) for n in v: self.assertIsInstance(n, int) # END verify number types def test_cmd_override(self): prev_cmd = self.git.GIT_PYTHON_GIT_EXECUTABLE exc = GitCommandNotFound try: # set it to something that doens't exist, assure it raises type(self.git).GIT_PYTHON_GIT_EXECUTABLE = osp.join( "some", "path", "which", "doesn't", "exist", "gitbinary") self.assertRaises(exc, self.git.version) finally: type(self.git).GIT_PYTHON_GIT_EXECUTABLE = prev_cmd # END undo adjustment def test_refresh(self): # test a bad git path refresh self.assertRaises(GitCommandNotFound, refresh, "yada") # test a good path refresh which_cmd = "where" if is_win else "which" path = os.popen("{0} git".format(which_cmd)).read().strip().split('\n')[0] refresh(path) def test_options_are_passed_to_git(self): # This work because any command after git --version is ignored git_version = self.git(version=True).NoOp() git_command_version = self.git.version() self.assertEqual(git_version, git_command_version) def test_persistent_options(self): git_command_version = self.git.version() # analog to test_options_are_passed_to_git self.git.set_persistent_git_options(version=True) git_version = self.git.NoOp() self.assertEqual(git_version, git_command_version) # subsequent calls keep this option: git_version_2 = self.git.NoOp() self.assertEqual(git_version_2, git_command_version) # reset to empty: self.git.set_persistent_git_options() self.assertRaises(GitCommandError, self.git.NoOp) def test_single_char_git_options_are_passed_to_git(self): input_value = 'TestValue' output_value = self.git(c='user.name=%s' % input_value).config('--get', 'user.name') self.assertEqual(input_value, output_value) def test_change_to_transform_kwargs_does_not_break_command_options(self): self.git.log(n=1) def test_insert_after_kwarg_raises(self): # This isn't a complete add command, which doesn't matter here self.assertRaises(ValueError, self.git.remote, 'add', insert_kwargs_after='foo') def test_env_vars_passed_to_git(self): editor = 'non_existent_editor' with mock.patch.dict('os.environ', {'GIT_EDITOR': editor}): # @UndefinedVariable self.assertEqual(self.git.var("GIT_EDITOR"), editor) @with_rw_directory def test_environment(self, rw_dir): # sanity check self.assertEqual(self.git.environment(), {}) # make sure the context manager works and cleans up after itself with self.git.custom_environment(PWD='/tmp'): self.assertEqual(self.git.environment(), {'PWD': '/tmp'}) self.assertEqual(self.git.environment(), {}) old_env = self.git.update_environment(VARKEY='VARVALUE') # The returned dict can be used to revert the change, hence why it has # an entry with value 'None'. self.assertEqual(old_env, {'VARKEY': None}) self.assertEqual(self.git.environment(), {'VARKEY': 'VARVALUE'}) new_env = self.git.update_environment(**old_env) self.assertEqual(new_env, {'VARKEY': 'VARVALUE'}) self.assertEqual(self.git.environment(), {}) path = osp.join(rw_dir, 'failing-script.sh') with open(path, 'wt') as stream: stream.write("#!/usr/bin/env sh\n" "echo FOO\n") os.chmod(path, 0o777) rw_repo = Repo.init(osp.join(rw_dir, 'repo')) remote = rw_repo.create_remote('ssh-origin', "ssh://git@server/foo") with rw_repo.git.custom_environment(GIT_SSH=path): try: remote.fetch() except GitCommandError as err: if sys.version_info[0] < 3 and is_darwin: self.assertIn('ssh-orig', str(err)) self.assertEqual(err.status, 128) else: self.assertIn('FOO', str(err)) def test_handle_process_output(self): from git.cmd import handle_process_output line_count = 5002 count = [None, 0, 0] def counter_stdout(line): count[1] += 1 def counter_stderr(line): count[2] += 1 cmdline = [sys.executable, fixture_path('cat_file.py'), str(fixture_path('issue-301_stderr'))] proc = subprocess.Popen(cmdline, stdin=None, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=False, creationflags=cmd.PROC_CREATIONFLAGS, ) handle_process_output(proc, counter_stdout, counter_stderr, finalize_process) self.assertEqual(count[1], line_count) self.assertEqual(count[2], line_count)
[ "60698561+artisakov@users.noreply.github.com" ]
60698561+artisakov@users.noreply.github.com
d3b93125a8b6cff22b783911d384af6ebc4e2a4e
60dab7cc9f0f0304acd2069c804752d1679386fd
/datatank_py/DTTriangularMesh2D.py
44735768d069f1a57f1cc76d2cbde456bcd0648b
[ "BSD-3-Clause" ]
permissive
amaxwell/datatank_py
d459578d395e7a08329c722801dcebe8cc1c871f
69404b23e456b23db8ef2e59b484283f40dbb9ec
refs/heads/master
2021-06-24T09:10:27.365004
2020-12-19T23:35:14
2020-12-19T23:35:14
17,044,589
2
0
null
null
null
null
UTF-8
Python
false
false
8,707
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # This software is under a BSD license. See LICENSE.txt for details. import numpy as np class DTTriangularMesh2D(object): """2D triangular mesh object.""" dt_type = ("2D Triangular Mesh",) """Type strings allowed by DataTank""" def __init__(self, grid, values): """ :param grid: :class:`datatank_py.DTTriangularGrid2D.DTTriangularGrid2D` instance :param values: vector or list of values in nodal order """ super(DTTriangularMesh2D, self).__init__() values = np.squeeze(values) assert grid.number_of_points() == len(values) self._grid = grid self._values = values def __dt_type__(self): return "2D Triangular Mesh" def grid(self): """:returns: a :class:`datatank_py.DTTriangularGrid2D.DTTriangularGrid2D` instance""" return self._grid def bounding_box(self): """:returns: a :class:`datatank_py.DTRegion2D.DTRegion2D` instance""" return self._grid.bounding_box() def write_with_shared_grid(self, datafile, name, grid_name, time, time_index): """Allows saving a single grid and sharing it amongst different time values of a variable. :param datafile: a :class:`datatank_py.DTDataFile.DTDataFile` open for writing :param name: the mesh variable's name :param grid_name: the grid name to be shared (will not be visible in DataTank) :param time: the time value for this step (DataTank's ``t`` variable) :param time_index: the corresponding integer index of this time step This is an advanced technique, but it can give a significant space savings in a data file. It's not widely implemented, since it's not clear yet if this is the best API, but the following example shows how it's used:: #!/usr/bin/env python import numpy as np from datatank_py.DTDataFile import DTDataFile from datatank_py.DTTriangularGrid2D import DTTriangularGrid2D from datatank_py.DTTriangularMesh2D import DTTriangularMesh2D # files that exist in the current directory grid_filename = "grid.txt" # this is a time-varying list of depths at each node depth_filename = "depths.txt" # function that returns a DTTriangularGrid2D grid = parse_grid_from_path(grid_filename) # this can be any string; the user won't see it shared_grid_name = grid_filename with DTDataFile("Output.dtbin", truncate=True) as dtf: # a bunch of this is related to parsing the textfile with open(depth_filename, "rU") as asciivalues: # here we have some state variables, but the time ones are relevant passed_header = False accumulated_values = [] # this is a time extracted from the file (a floating point value) timeval = None # this is the zero-based index of the timeval time_index = 0 # this is the initial value of the timeval variable base_timeval = None for lineidx, line in enumerate(asciivalues): line = line.strip() if line.startswith("TS"): # If we've already seen a timeval, a "TS" marker means that we're starting # another block of depth values so we're going to save the previous # timestep to disk. if timeval is not None: assert passed_header is True # save the t0 if we haven't already done so if base_timeval is None: base_timeval = timeval # create a DTTriangularMesh2D as usual, with grid and values # note that a 32-bit float will save significant space over # a double, if you can live with the reduced precision. mesh = DTTriangularMesh2D(grid, np.array(accumulated_values, dtype=np.float32)) # This is the floating point time value that will be used for # DataTank's time slider. Here I'm using hours. dttime_hours = (timeval - base_timeval) / 3600. # Now, save it off. The variable in the file will be visible as "Depth", # and write_with_shared_grid() will take care of saving the grid for the # first time and then saving the name on subsequent time steps. # # The dttime_hours variable is our slider time, and time_index is passed # so that write_with_shared_grid() can create the correct variable name, # i.e., "Depth_0, Depth_1, Depth_2, … Depth_N" for successive time steps. # mesh.write_with_shared_grid(dtf, "Depth", shared_grid_name, dttime_hours, time_index) # # This code shows what write_with_shared_grid() is really doing in our specific # example: # # dtf.write(mesh, "Depth_%d" % (time_index), time=(timeval - base_timeval)) # dtf.write_anonymous(shared_grid_name, "Depth_%d" % (time_index)) # dtf.write_anonymous(np.array(accumulated_values).astype(np.float32), "Depth_%d_V" % (time_index)) # dtf.write_anonymous(np.array((timeval - base_timeval,)), "Depth_%d_time" % (time_index)) time_index += 1 # update our state variables and continue parsing the file ts, zero, time_str = line.split() timeval = float(time_str) # this will be the start of a new vector of depth values accumulated_values = [] passed_header = True elif passed_header and not line.startswith("ENDDS"): # here we're just saving off an individual depth value for a node accumulated_values.append(float(line)) else: print "Ignored: %s" % (line) """ if grid_name not in datafile: datafile.write_anonymous(self._grid, grid_name) datafile.write_anonymous(self.__dt_type__(), "Seq_" + name) varname = "%s_%d" % (name, time_index) datafile.write_anonymous(grid_name, varname) datafile.write_anonymous(self._values, varname + "_V") datafile.write_anonymous(np.array((time,)), varname + "_time") def __str__(self): return self.__dt_type__() + ":\n grid = " + str(self._grid) def __dt_write__(self, datafile, name): datafile.write_anonymous(self._values, name + "_V") datafile.write_anonymous(self._grid, name) @classmethod def from_data_file(self, datafile, name): name = datafile.resolve_name(name) values = datafile[name + "_V"] grid = datafile[name] assert values != None, "DTTriangularMesh2D: no such variable %s in %s" % (name + "_V", datafile.path()) assert grid != None, "DTTriangularMesh2D: no such variable %s in %s" % (name, datafile) return DTStructuredMesh2D(grid, values)
[ "amaxwell@mac.com" ]
amaxwell@mac.com
a6155ef023589c254e65453a1624e089ee5200d3
5d614198b61ab7e4287c17db1c13ab1c7745dc94
/Classes.py
fd0f8bedd5d5decda61185aae4b564ee5d5b5de7
[]
no_license
cesarak2/EM624_assignments
1bb31971fdd07465c20d832272f88fd824704e59
7f84e872364ff8aaafe3daf687913e8d3c366bed
refs/heads/master
2021-09-07T19:33:42.808252
2018-02-27T23:27:53
2018-02-27T23:27:53
119,113,851
0
0
null
null
null
null
UTF-8
Python
false
false
914
py
class Student(object): """ Description of the class Methods: name: str represents the name of the student Attributes: .... """ def __init__(self, name, course): self.__name = name self._course = course self.__age = None def print_my_name(self): """ This function prints the name of the student :return: None """ print self.__name def what_is_my_age(self, age): """ :param age: :return: """ print "Student " + str(self.__name) + " has the age of " + str(age) + "" def set_my_age(self, age): """ :param age: :return: """ self.__age = age print "Updated the age..." def get_my_age(self): """ :return: """ return self.__age # design patterns # I am X bootstrap
[ "cesarak2+github@gmail.com" ]
cesarak2+github@gmail.com
c52088881bbfb8044d419632a30838c99d52f2b4
7fd5c148da0549124acbc98b2166066244c0813a
/testing/test_parm_yaml.py
3a3310319e8690c4f4af76a35e0d2866ec91ac26
[]
no_license
FPP-1454737567/FPP-homework
b1ff33233509423cee2fe040b453562f61122353
ad89a5c1575afb0ecd89ccf188df91ec6a1b41bd
refs/heads/main
2023-03-10T23:01:20.763549
2021-02-28T08:37:07
2021-02-28T08:37:07
320,301,749
0
0
null
null
null
null
UTF-8
Python
false
false
517
py
# @Time : 2020/12/13 # @Author : FPP import pytest import yaml def get_datas(): with open("data.yml") as f: datas = yaml.safe_load(f) print(datas) add_datas = datas["datas"] add_ids = datas["myid"] return [add_datas, add_ids] def add_function(a, b): return a + b @pytest.mark.parametrize("a,b,expected", get_datas()[0], ids=get_datas()[1]) def test_add(a, b, expected): assert add_function(a, b) == expected
[ "1454737567@qq.com" ]
1454737567@qq.com
fc592a2a675b1f77409e611c942ec11c431e62ba
849e95a72f4f380d6b31573a0a13e9eccd288838
/legal-api/src/legal_api/models/party_role.py
ead552b83329bfbcb0478b9f16c94e55b44cfa10
[ "Apache-2.0" ]
permissive
bcgov/lear
d9b27e2b44ba607ca13878357a62a0623d54ddee
d90f11a7b14411b02c07fe97d2c1fc31cd4a9b32
refs/heads/main
2023-09-01T11:26:11.058427
2023-08-31T20:25:24
2023-08-31T20:25:24
168,396,249
13
117
Apache-2.0
2023-09-14T20:52:02
2019-01-30T18:49:09
Python
UTF-8
Python
false
false
6,487
py
# Copyright © 2019 Province of British Columbia # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This module holds data for party roles in a business.""" from __future__ import annotations from datetime import datetime from enum import Enum from sqlalchemy import Date, cast, or_ from .db import db # noqa: I001 from .party import Party # noqa: I001,F401,I003 pylint: disable=unused-import; needed by the SQLAlchemy rel class PartyRole(db.Model): """Class that manages data for party roles related to a business.""" class RoleTypes(Enum): """Render an Enum of the role types.""" APPLICANT = 'applicant' COMPLETING_PARTY = 'completing_party' CUSTODIAN = 'custodian' DIRECTOR = 'director' INCORPORATOR = 'incorporator' LIQUIDATOR = 'liquidator' PROPRIETOR = 'proprietor' PARTNER = 'partner' __versioned__ = {} __tablename__ = 'party_roles' id = db.Column(db.Integer, primary_key=True) role = db.Column('role', db.String(30), default=RoleTypes.DIRECTOR) appointment_date = db.Column('appointment_date', db.DateTime(timezone=True)) cessation_date = db.Column('cessation_date', db.DateTime(timezone=True)) business_id = db.Column('business_id', db.Integer, db.ForeignKey('businesses.id')) filing_id = db.Column('filing_id', db.Integer, db.ForeignKey('filings.id')) party_id = db.Column('party_id', db.Integer, db.ForeignKey('parties.id')) # relationships party = db.relationship('Party') def save(self): """Save the object to the database immediately.""" db.session.add(self) db.session.commit() @property def json(self) -> dict: """Return the party member as a json object.""" party = { **self.party.json, 'appointmentDate': datetime.date(self.appointment_date).isoformat(), 'cessationDate': datetime.date(self.cessation_date).isoformat() if self.cessation_date else None, 'role': self.role } return party @classmethod def find_by_internal_id(cls, internal_id: int) -> PartyRole: """Return a party role by the internal id.""" party_role = None if internal_id: party_role = cls.query.filter_by(id=internal_id).one_or_none() return party_role @classmethod def find_party_by_name(cls, business_id: int, first_name: str, # pylint: disable=too-many-arguments; one too many last_name: str, middle_initial: str, org_name: str) -> Party: """Return a Party connected to the given business_id by the given name.""" party_roles = cls.query.filter_by(business_id=business_id).all() party = None # the given name to find search_name = '' if org_name: search_name = org_name elif middle_initial: search_name = ' '.join((first_name.strip(), middle_initial.strip(), last_name.strip())) else: search_name = ' '.join((first_name.strip(), last_name.strip())) for role in party_roles: # the name of the party for each role name = role.party.name if name and name.strip().upper() == search_name.strip().upper(): party = role.party break return party @staticmethod def get_parties_by_role(business_id: int, role: str) -> list: """Return all people/oraganizations with the given role for this business (ceased + current).""" members = db.session.query(PartyRole). \ filter(PartyRole.business_id == business_id). \ filter(PartyRole.role == role). \ all() return members @staticmethod def get_active_directors(business_id: int, end_date: datetime) -> list: """Return the active directors as of given date.""" directors = db.session.query(PartyRole). \ filter(PartyRole.business_id == business_id). \ filter(PartyRole.role == PartyRole.RoleTypes.DIRECTOR.value). \ filter(cast(PartyRole.appointment_date, Date) <= end_date). \ filter(or_(PartyRole.cessation_date.is_(None), cast(PartyRole.cessation_date, Date) > end_date)). \ all() return directors @staticmethod def get_party_roles(business_id: int, end_date: datetime, role: str = None) -> list: """Return the parties that match the filter conditions.""" party_roles = db.session.query(PartyRole). \ filter(PartyRole.business_id == business_id). \ filter(cast(PartyRole.appointment_date, Date) <= end_date). \ filter(or_(PartyRole.cessation_date.is_(None), cast(PartyRole.cessation_date, Date) > end_date)) if role is not None: party_roles = party_roles.filter(PartyRole.role == role.lower()) party_roles = party_roles.all() return party_roles @staticmethod def get_party_roles_by_party_id(business_id: int, party_id: int) -> list: """Return the parties that match the filter conditions.""" party_roles = db.session.query(PartyRole). \ filter(PartyRole.business_id == business_id). \ filter(PartyRole.party_id == party_id). \ all() return party_roles @staticmethod def get_party_roles_by_filing(filing_id: int, end_date: datetime, role: str = None) -> list: """Return the parties that match the filter conditions.""" party_roles = db.session.query(PartyRole). \ filter(PartyRole.filing_id == filing_id). \ filter(cast(PartyRole.appointment_date, Date) <= end_date). \ filter(or_(PartyRole.cessation_date.is_(None), cast(PartyRole.cessation_date, Date) > end_date)) if role is not None: party_roles = party_roles.filter(PartyRole.role == role.lower()) party_roles = party_roles.all() return party_roles
[ "noreply@github.com" ]
bcgov.noreply@github.com
7b1116460997af5e119696e3f90fb8615fd4e3de
4cbf3ab1162509a5322dc9c31838e6db81e8ea3a
/koordinat/admin.py
0bb9c6cfef7fdcd333b4b742500f1a9215e06a07
[]
no_license
RyanDritama/bridge-crack-monitoring
425a27fed2345cdb2715a4a4dd7c061fb1208ff7
e9edfd17e505e255199ab0de03b251ec7585af30
refs/heads/main
2023-06-29T01:47:32.160256
2021-07-28T11:06:10
2021-07-28T11:06:10
390,318,070
3
0
null
null
null
null
UTF-8
Python
false
false
125
py
from django.contrib import admin from .models import Koordinat admin.site.register(Koordinat) # Register your models here.
[ "noreply@github.com" ]
RyanDritama.noreply@github.com
473dd365fb3ca3dd368745e5d30fe6e70bbc1266
7c763618a2b37cbff09f5b61e2d14e70abae60d8
/stack_balanced_parenthesis.py
3a9bfd8a8062f078dc6a442e1a85698e1cd0bcc6
[]
no_license
shubhamg14/DataStructures-Algorithms
5f669db5a0b5459634885d3759bc44b28a49736d
7c54277d9cd5b4aef9ace91e4c77fe9bd135c142
refs/heads/master
2020-05-24T18:22:47.241861
2019-05-18T21:54:49
2019-05-18T21:54:49
187,408,732
0
0
null
null
null
null
UTF-8
Python
false
false
913
py
from stack import Stack def is_match(p1, p2): if p1 == "(" and p2 == ")": return True if p1 == "{" and p2 == "}": return True if p1 == "[" and p2 == "]": return True else: return False def is_parenthesis_balanced(paren_string): s = Stack() is_balanced = True index = 0 while index < len(paren_string) and is_balanced: parenthesis = paren_string[index] if parenthesis in '({[': s.push(parenthesis) else: if s.is_empty(): is_balanced = False else: top_element = s.pop() if not is_match(top_element, parenthesis): is_balanced = False index += 1 if s.is_empty() and is_balanced: return True else: return False print (is_parenthesis_balanced('{()}'))
[ "noreply@github.com" ]
shubhamg14.noreply@github.com
3e95fdd18d9acec82483b21c2815e10ae2e465dd
2e86a37cfa3f882b3dd93433bc2cc86e569bc7a6
/web_app/recommendation/recommender.py
b4afdec245b94eef0b52ea4aab8b4cdc7ee9efd7
[]
no_license
peterle93/Recommendations-with-IBM
8a2f2d890b25f0a308e43ca24702312c3aa2f043
2f0758e20097eed8fb5dceb58b197e81072592d7
refs/heads/main
2023-03-26T13:51:44.730291
2021-03-14T03:53:35
2021-03-14T03:53:35
322,931,043
0
0
null
null
null
null
UTF-8
Python
false
false
2,881
py
import pandas as pd import numpy as np # web app use plotly , so remove : import matplotlib.pyplot as plt from recommendation.data_clean import Data_Clean from recommendation.rbrecommender import RBRecommender from recommendation.ucfrecommender import UCFRecommender from recommendation.mfrecommender import MFRecommender from recommendation.cbrecommender import CBRecommender class Recommender(): ''' Class: User Based Collaborative Filtering Recommendations ''' def __init__(self, interact_pth='data/user-item-interactions.csv', articles_pth='data/articles_community.csv',top_n=10): self.top_n = top_n dc=Data_Clean(interact_pth, articles_pth) self.ucfr=UCFRecommender(dc.interacts_clean) self.rbr=RBRecommender(dc.interacts_clean) self.cbr=CBRecommender(dc.articles_clean,dc.interacts_clean) self.mfr=MFRecommender(dc.articles_clean,dc.interacts_clean) self.user_with_few_articles = self.ucfr.user_item.index[self.ucfr.user_item.sum(axis=1)<3].values def recommend_articles(self, user_id, top_n=10): ''' Description: Acording to users type: new user: RBRecommender old user and articles : UCFRecommender/MFRecommender user reading few articles: CBRecommender Args: user_id Return: Recs: list of recommendations ''' if top_n != 10: self.top_n = top_n if user_id in self.cbr.users: if user_id in self.user_with_few_articles: recs=self.cbr.make_content_recs(user_id, self.top_n) if len(recs) == 0: recs=self.rbr.get_top_articles() else: _, recs=self.ucfr.user_advance_recs(user_id, self.top_n) else: recs=self.rbr.get_top_articles() return recs def mf_calculate_error(self): return self.mfr.calculate_error() ''' # Web server use ploly to draw curve, so comment out the following. def draw_curve(self): latent_factors_num,test_accuracy,train_accuracy =self.mfr.calculate_error() self.mfr.draw_curve(latent_factors_num,test_accuracy,train_accuracy) ''' if __name__ == '__main__': rec=Recommender() # Quick spot check just use it to test your functions # normal users rec_names =rec.recommend_articles(20) print("The top 10 recommendations for user 20 are the following article names:") print(rec_names) # user with few articles. rec_names =rec.recommend_articles(141) print("The top 10 recommendations for user 2 are the following article names:") print(rec_names) # new user id 6000 rec_names =rec.recommend_articles(6000) print("The top 10 recommendations for new user 6000 are the following article names:") print(rec_names) #rec.draw_curve()
[ "le.peter1993@gmail.com" ]
le.peter1993@gmail.com
65a977859bc72062caed63bb6ea59ebeb4f24d3c
d02c7b6097573d469d4fc42dffbcb43f72b193fa
/examples/counter/urls.py
83c9e566e14b7e7ce65e180d3a47b6ded1a3a02c
[]
no_license
wmatyskiewicz/django-serverpush
5febeedee6ca6834c6cfb487432bb8e9cdd2357c
51c67df5a4b7157b801d1d53aa63bdf16382a8e1
refs/heads/master
2020-07-01T15:39:30.183320
2014-04-17T07:44:13
2014-04-17T07:44:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
134
py
from django.conf.urls.defaults import patterns, include, url urlpatterns = patterns('', url(r'^$', 'counter.demoapp.views.list'), )
[ "ziga@hamsworld.net" ]
ziga@hamsworld.net
22e2585734491967052aa67dc5f1eb1ebb10b18f
92d19be0e7825a8ec99a876530fa943cd3b3739c
/telegram_flask_bot.py
c295f1992cb069fd274b43aa67f78def85f1fca6
[ "MIT" ]
permissive
bondgeodima/first
36e11c0d9eb7739270549812b4a9e00520094dde
5fb772cbffd065a1ee17135c369c2878b28122dd
refs/heads/master
2021-07-17T01:44:03.909795
2021-04-01T08:47:04
2021-04-01T08:47:04
68,470,987
0
0
null
null
null
null
UTF-8
Python
false
false
764
py
from flask import Flask, request import requests app = Flask(__name__) def send_message(chat_id, text): method = "sendMessage" token = "1383386139:AAGWeMlF9BW26ZwUwnVuk2pQm6nOvUADxyw" url = f"https://api.telegram.org/bot{token}/{method}" data = {"chat_id": chat_id, "text": text} requests.post(url, data=data) @app.route("/", methods=["GET", "POST"]) def receive_update(): if request.method == "POST": print(request.json) chat_id = request.json["message"]["chat"]["id"] m_text = request.json["message"]["text"] # send_message(chat_id, "pong") send_message(chat_id, m_text) return {"ok": True} if __name__ == '__main__': #app.run() app.run(host='127.0.0.1', port=5000, debug=True, )
[ "bondgeodima@gmail.com" ]
bondgeodima@gmail.com
961970383721ee8e81d947897598f984e6316067
eb4b2609a0ce2f74569a3691a5ec2f1dcb8112ba
/demo/simple_app.py
00c6a17ac90931fdfc07852dc5d0f38c9aa4bdc3
[ "MIT" ]
permissive
ra2003/Calendarium
15ca05ff142bffbbefe82a8c015f904b60210a05
4c7fa27ed70851dc607ee293c84179e9356b8e2f
refs/heads/master
2022-02-14T14:15:44.882525
2019-08-28T08:46:58
2019-08-28T08:46:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,378
py
#!/usr/bin/python3 import tkinter as tk from tkinter import ttk from tkinter import messagebox from calendarium import Calendarium class Main(ttk.Frame): def __init__(self, parent): super().__init__() self.parent = parent self.text = tk.StringVar() self.init_ui() def init_ui(self): self.pack(fill=tk.BOTH, expand=1) f = ttk.Frame() self.start_date = Calendarium(self,"Start Date") self.end_date = Calendarium(self,"End Date") self.start_date.get_calendarium(f,) self.end_date.get_calendarium(f,) w = ttk.Frame() ttk.Button(w, text="Print Date", command=self.on_callback).pack() ttk.Button(w, text="Set Today", command=self.on_reset).pack() ttk.Button(w, text="Compare", command=self.on_compare).pack() ttk.Button(w, text="Close", command=self.on_close).pack() f.pack(side=tk.LEFT, fill=tk.BOTH, expand=1) w.pack(side=tk.RIGHT, fill=tk.BOTH, expand=1) def on_open(self): pass #self.start_date.set_today() #self.end_date.set_today() def on_callback(self,): if self.start_date.get_date(self)==False:return if self.end_date.get_date(self)==False: return else: msg = "{0}: {1}\n{2}: {3}".format(self.start_date.name,self.start_date.get_date(self), self.end_date.name,self.end_date.get_date(self)) messagebox.showinfo(self.parent.title(), msg, parent=self) def on_reset(self): self.start_date.set_today() self.end_date.set_today() def on_compare(self): if self.start_date.get_date(self)==False: return else: d1 = self.start_date.get_date(self) if self.end_date.get_date(self)==False: return else: d2 = self.end_date.get_date(self) if d1 > d2: msg = "{0} is greater than {1} :".format(self.start_date.name,self.end_date.name) elif d1 < d2: msg = "{0} is less than {1} :".format(self.start_date.name,self.end_date.name) else: msg = "{0} is equal than {1} :".format(self.start_date.name,self.end_date.name) messagebox.showinfo(self.parent.title(), msg, parent=self) def on_close(self): self.parent.on_exit() class App(tk.Tk): """Start here""" def __init__(self): super().__init__() self.protocol("WM_DELETE_WINDOW", self.on_exit) self.set_title() self.set_style() frame = Main(self,) frame.pack(fill=tk.BOTH, expand=1) frame.on_open() def set_style(self): self.style = ttk.Style() #('winnative', 'clam', 'alt', 'default', 'classic', 'vista', 'xpnative') self.style.theme_use("clam") def set_title(self): s = "{0}".format('My App') self.title(s) def on_exit(self): """Close all""" if messagebox.askokcancel(self.title(), "Do you want to quit?", parent=self): self.destroy() if __name__ == '__main__': app = App() app.mainloop()
[ "noreply@github.com" ]
ra2003.noreply@github.com
2db38cfeec04bd93ee0dff2f0a9c4a1cf5e1c111
255e19ddc1bcde0d3d4fe70e01cec9bb724979c9
/dockerized-gists/a1312d211c110ff3855d/snippet.py
f27dd11226e4e07b0fa62f88066af4631a465cb1
[ "MIT" ]
permissive
gistable/gistable
26c1e909928ec463026811f69b61619b62f14721
665d39a2bd82543d5196555f0801ef8fd4a3ee48
refs/heads/master
2023-02-17T21:33:55.558398
2023-02-11T18:20:10
2023-02-11T18:20:10
119,861,038
76
19
null
2020-07-26T03:14:55
2018-02-01T16:19:24
Python
UTF-8
Python
false
false
5,920
py
#!/usr/bin/env python2 """ Automate your browser via telnet. Requirements: * Firefox * MozRepl add-on (https://addons.mozilla.org/en-US/firefox/addon/mozrepl/) - activate the add-on (under Tools -> MozRepl, "Start" and "Activate on startup") Documentation of gBrowser: * https://developer.mozilla.org/en-US/docs/XUL/tabbrowser (reference) * https://developer.mozilla.org/en-US/docs/Code_snippets/Tabbed_browser (code snippets) # from jpl2 import firefox as ff written by Jabba Laci https://github.com/jabbalaci """ from __future__ import (absolute_import, division, print_function, unicode_literals) import json import re import socket import sys import telnetlib import time class Mozrepl(object): """ based on https://github.com/bard/mozrepl/wiki/Pyrepl """ HOST = 'localhost' PORT = 4242 prompt = [r'repl\d*> '] # list of regular expressions def __init__(self, ip=HOST, port=PORT): self.ip = ip self.port = port def __enter__(self): self.tn = telnetlib.Telnet(self.ip, self.port) self.tn.expect(Mozrepl.prompt) return self def __exit__(self, type, value, traceback): self.tn.close() del self.tn def cmd(self, command): """ Execute the command and fetch its result. """ self.tn.write(command.encode() + b"\n") return self.tn.expect(Mozrepl.prompt) def get_text_result(self, command, sep=''): """ Execute the command and fetch its result as text. """ lines = self.cmd(command)[2].decode("utf8").split("\n") if re.search(Mozrepl.prompt[0].strip(), lines[-1]): lines = lines[:-1] return sep.join(lines) @classmethod def is_installed(cls): """ Test if MozRepl is installed. We simply try to connect to localhost:4242 where MozRepl should be listening. """ try: with Mozrepl() as mr: pass return True except socket.error: return False ############################################################################# def open_url_in_curr_tab(url): """ Open a URL in the *current* tab. """ with Mozrepl() as mr: cmd = "content.location.href = '{url}'".format(url=url) mr.cmd(cmd) def get_curr_tab_url(): """ URL of the current tab. """ with Mozrepl() as mr: result = mr.cmd("content.location.href") return result[2].split()[0].replace('"', '') def open_new_empty_tab(): """ Open a new empty tab and put the focus on it. """ with Mozrepl() as mr: mr.cmd('gBrowser.addTab()') mr.cmd('length = gBrowser.tabContainer.childNodes.length') mr.cmd('gBrowser.selectedTab = gBrowser.tabContainer.childNodes[length-1]') def put_focus_on_tab(n): """ Put the focus on the selected tab. """ if not (0 <= n < get_number_of_tabs()): print("Warning! Incorrect tab number!") return # else with Mozrepl() as mr: mr.cmd('gBrowser.selectedTab = gBrowser.tabContainer.childNodes[{n}]'.format(n=n)) def open_url_in_new_tab(url): """ Open the given URL in a new tab. webbrowser.open_new_tab puts the focus on Firefox. This one doesn't. """ open_new_empty_tab() open_url_in_curr_tab(url) def get_curr_tab_html(): """ HTML source of the current tab. If the current page is big, don't use this method on it, it'll take much time. """ with Mozrepl() as mr: result = mr.cmd('content.document.body.innerHTML') html = result[2].decode("utf8").split('\n') if html[0].strip() == '"': html = html[1:] if re.search(Mozrepl.prompt[0], html[-1]): html = html[:-1] if html[-1].strip() == '"': html = html[:-1] return ''.join(html) def close_curr_tab(): """ Close the current tab. """ with Mozrepl() as mr: mr.cmd('gBrowser.removeCurrentTab()') def get_number_of_tabs(): """ Number of tabs in the browser. """ with Mozrepl() as mr: result = mr.get_text_result('gBrowser.tabContainer.childNodes.length') return int(result) def get_curr_tab_title(): """ Title of the page in the current tab. """ with Mozrepl() as mr: result = mr.get_text_result('document.title') return result def get_tab_list(): cmd = \ """ String.prototype.format = function() { var formatted = this; for(arg in arguments) { formatted = formatted.replace("{" + arg + "}", arguments[arg]); } return formatted; }; var all_tabs = gBrowser.mTabContainer.childNodes; var tab_list = []; for (var i = 0; i < all_tabs.length; ++i ) { var tab = gBrowser.getBrowserForTab(all_tabs[i]).contentDocument; if(tab.location != "about:blank") tab_list.push({"url":tab.location, "title":tab.title}); } for (var i=0; i<tab_list.length; ++i) { var title = tab_list[i].title; title = title.replace(/"/g, "'"); var item = '{"index": {0}, "title": "{1}", "url": "{2}"}'.format(i, title, tab_list[i].url); repl.print(item); } """ with Mozrepl() as mr: result = mr.get_text_result(cmd, sep='\n') li = [] for e in result.split('\n'): li.append(json.loads(e)) return li ############################################################################# if __name__ == "__main__": if not Mozrepl.is_installed(): print('Cannot connect to {host}:{port}'.format(host=Mozrepl.HOST, port=Mozrepl.PORT)) print('Make sure that the MozRepl Firefox add-on is installed and activated.') sys.exit(1) else: li = ["nsfw", "legs", "pantyhose"] for e in li: open_url_in_new_tab("http://www.reddit.com/r/{}".format(e))
[ "gistshub@gmail.com" ]
gistshub@gmail.com
7a4051effcd4d7d715a73c0ff50a3b60c05a5460
5993170b5a055ce60f207af8e95414909379561c
/frontend/view/config.py
27463473aac1dde0e70b96d271d9a908d23b516f
[]
no_license
vyakunin/zakupki
29b1879be79e23a0616d802103fdb85891e2fcd0
396614e2fb8c22f934a2aab12ea878378c979b22
refs/heads/master
2020-04-06T11:54:21.298112
2012-04-28T10:34:56
2012-04-28T10:34:56
32,123,985
1
0
null
null
null
null
UTF-8
Python
false
false
327
py
#!/usr/bin/python2.5 # encoding: utf-8 """ config.py Copyright (c) Sergey Babenko and Vladimir Yakunin 2011. All rights reserved. """ class Config(object): # TODO: invent a better way to deal with this. # Probably we may store it in DataStore actuality_date = "29 ноября 2011" start_date = "1 января 2007"
[ "mc.vertix@gmail.com" ]
mc.vertix@gmail.com
13e51cf7b1950166defe7ad6a138d5944de27cba
6a94ad9e53d81e09894e7a9c7c27edc1b6ff8123
/reverseflow/generator.py
fbb2d65bb0481cf2a514294473b02f40ccd9a74c
[]
no_license
zenna/reverseflow
c59ed2470dae743202acc2a3a2af0db60d157d5a
7a9f2961fb59e608d0f0cae4f8b10e83cc36a20d
refs/heads/master
2021-05-04T06:20:41.426689
2016-10-13T17:31:58
2016-10-13T17:31:58
66,391,115
0
1
null
null
null
null
UTF-8
Python
false
false
3,347
py
"""Generate random tensorflow graphs""" from rf.util import * import tensorflow as tf import numpy as np import random import pdb class Choice: def __init__(self, transform, prob, **kwargs): assert prob > 0 self.transform = transform self.prob = prob self.kwargs = kwargs ## Predicates ## ========== def check_empty(g): return g.get_operations() == [] def two_equiv_tensors(tensor_groups): """Get two tensors with same shape and dtype""" for group in tensor_groups.values(): if len(group) > 1: return True return False ## Transforms ## ========== def create_var(g, dtype, shape): tf.placeholder(dtype=dtype, shape=shape) return False def create_const(g, const_gen): tf.constant(const_gen()) return False def apply_op(g, op, args): op(*args) return False def stop_signal(g): return True ## suggestions ## =========== def create_vars(g): n = num_ph(g) if n == 0: return [Choice(create_var, 1.0, dtype=tf.float32, shape=(128,128))] else: return [Choice(create_var, 1.0, dtype=tf.float32, shape=(128,128)), Choice(create_const, 0.5, const_gen=lambda: np.random.rand(10, 10))] def maybe_stop(g): if len(all_tensors_namescope(g, 'fwd_g')) > 10.0: return [Choice(stop_signal, 1.0)] else: return [] def apply_elem_op(g): tensors = all_tensors_namescope(g, 'fwd_g') valid_tensors = [] for t in tensors: if in_namescope(t, "fwd_g") and (t.op.type == "placeholder" or t.op.type == "Identity"): valid_tensors.append(t) elif in_namescope(t, "random_graph"): valid_tensors.append(t) pdb.set_trace() tensor_groups = group_equiv_tensors(valid_tensors) if two_equiv_tensors(tensor_groups): ops = [tf.add, tf.sub, tf.mul] for v in tensor_groups.values(): print("V is", len(v)) if len(v) > 1: a, b = np.random.choice(v, (2,), replace=False) op = np.random.choice(ops) return [Choice(apply_op, 2.0, op=op, args=(a, b))] assert False else: return [] def gen_graph(g, suggestions, max_iterations=1000): """ Generate a tensorlow graph g :: tf.Graph - graph to append to, if None creates new graph """ np.random.seed(0) random.seed(0) print("Generating Graph") with g.as_default(): with g.name_scope("random_graph"): for i in range(max_iterations): # pdb.set_trace() choices = [] for suggest in suggestions: choices = choices + suggest(g) weights = [c.prob for c in choices] print(weights) probs = weights / np.sum(weights) curr_choice = np.random.choice(choices, p=probs) print(i," ", curr_choice.prob) stop_now = curr_choice.transform(g, **curr_choice.kwargs) if stop_now: print("Caught stop signal, stopping") break print(summary(g)) detailed_summary(g) return g # g = tf.Graph() # gen_graph(g, [create_vars, maybe_stop, apply_elem_op]) # print(summary(g)) # writer = tf.train.SummaryWriter('/home/zenna/repos/inverse/log', g)
[ "zennatavares@gmail.com" ]
zennatavares@gmail.com
08f678546969bfacb9cf47a6133749b69d114030
47c3a25497269cfe4fde41bb01856acb6566d280
/book_management/models.py
faf7f7111a6733f350fc9165c5171c64f306f4f9
[]
no_license
sreekanth-kc/Books-inventory-System
d6bf847bd33828593513e46d833e7493ea7ae23f
45501ef4a8c9ba67c326e43af965210d38eae1cd
refs/heads/master
2022-07-30T05:22:08.011554
2020-05-19T15:58:36
2020-05-19T15:58:36
265,243,456
0
0
null
null
null
null
UTF-8
Python
false
false
1,170
py
import uuid from django.contrib.auth.models import AbstractUser from django.db import models from rest_framework.authtoken.models import Token from Books_Inventory import settings from django.db.models.signals import post_save from django.dispatch import receiver class AppUser(AbstractUser, models.Model): """ Model class for manage user details. """ id = models.UUIDField(primary_key=True, default=uuid.uuid4, editable=False) email = models.EmailField(unique=True) password = models.CharField(max_length=100) class Meta: db_table = 'user' @receiver(post_save, sender=settings.AUTH_USER_MODEL) def create_auth_token(sender, instance=None, created=False, **kwargs): if created: Token.objects.create(user=instance) class Book(models.Model): """ Model class for manage book details. """ book_id = models.CharField(primary_key=True, max_length=100, editable=False) book_name = models.CharField(max_length=100, blank=False) author_name = models.CharField(max_length=100, blank=False) book_count = models.IntegerField(editable=True) class Meta: db_table = 'book_details'
[ "sreekanthc@qburst.com" ]
sreekanthc@qburst.com
e047f38b9cc1f44a36290382d061ca90d7d3df9c
c546730456a2b72865bbb93764be89602f370d8e
/oceans/synop.py
17e92dd4a2422081c002d57092bc11658f991d17
[ "BSD-3-Clause" ]
permissive
anhlpham/python-oceans
164b46afe21f5240a71a7515884b315f8b597704
591e85d1e6421337f031ea65ddf152f2e3e71486
refs/heads/master
2022-04-03T12:52:17.574913
2020-02-12T20:30:07
2020-02-12T20:30:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,880
py
import numpy as np def scaloa(xc, yc, x, y, t=None, corrlen=None, err=None, zc=None): """ Scalar objective analysis. Interpolates t(x, y) into tp(xc, yc) Assumes spatial correlation function to be isotropic and Gaussian in the form of: C = (1 - err) * np.exp(-d**2 / corrlen**2) where: d : Radial distance from the observations. Parameters ---------- corrlen : float Correlation length. err : float Random error variance (epsilon in the papers). Return ------ tp : array Gridded observations. ep : array Normalized mean error. Examples -------- See https://ocefpaf.github.io/python4oceanographers/blog/2014/10/27/OI/ Notes ----- The funcion `scaloa` assumes that the user knows `err` and `corrlen` or that these parameters where chosen arbitrary. The usual guess are the first baroclinic Rossby radius for `corrlen` and 0.1 e 0.2 to the sampling error. """ n = len(x) x, y = np.reshape(x, (1, n)), np.reshape(y, (1, n)) # Squared distance matrix between the observations. d2 = (np.tile(x, (n, 1)).T - np.tile(x, (n, 1))) ** 2 + ( np.tile(y, (n, 1)).T - np.tile(y, (n, 1)) ) ** 2 nv = len(xc) xc, yc = np.reshape(xc, (1, nv)), np.reshape(yc, (1, nv)) # Squared distance between the observations and the grid points. dc2 = (np.tile(xc, (n, 1)).T - np.tile(x, (nv, 1))) ** 2 + ( np.tile(yc, (n, 1)).T - np.tile(y, (nv, 1)) ) ** 2 # Correlation matrix between stations (A) and cross correlation (stations # and grid points (C)). A = (1 - err) * np.exp(-d2 / corrlen ** 2) C = (1 - err) * np.exp(-dc2 / corrlen ** 2) if 0: # NOTE: If the parameter zc is used (`scaloa2.m`) A = (1 - d2 / zc ** 2) * np.exp(-d2 / corrlen ** 2) C = (1 - dc2 / zc ** 2) * np.exp(-dc2 / corrlen ** 2) # Add the diagonal matrix associated with the sampling error. We use the # diagonal because the error is assumed to be random. This means it just # correlates with itself at the same place. A = A + err * np.eye(len(A)) # Gauss-Markov to get the weights that minimize the variance (OI). tp = None if t: t = np.reshape(t, (n, 1)) tp = np.dot(C, np.linalg.solve(A, t)) if 0: # NOTE: `scaloa2.m` mD = np.sum(np.linalg.solve(A, t)) / np.sum( np.sum(np.linalg.inv(A)) ) t = t - mD tp = C * (np.linalg.solve(A, t)) tp = tp + mD * np.ones(tp.shape) if not t: print("Computing just the interpolation errors.") # noqa # Normalized mean error. Taking the squared root you can get the # interpolation error in percentage. ep = 1 - np.sum(C.T * np.linalg.solve(A, C.T), axis=0) / (1 - err) return tp, ep
[ "ocefpaf@gmail.com" ]
ocefpaf@gmail.com
42a8c0b06bee2d39d2f246bb2c072f3cf3f1dbc7
3a42b62133900d84ebd71bcde6115d3e3c003d18
/test_cg.py
dd7f0547bb436950976e83a5c70c69620da41540
[]
no_license
4Lisandr/cgmc
0d7bc479a4bff98fadd1f47e4e49b7efa4370a36
641dfb9a2b672f75d321ff1c13980c1567237040
refs/heads/master
2023-08-24T11:50:15.366286
2021-10-11T10:00:21
2021-10-11T10:00:21
407,466,774
0
0
null
null
null
null
UTF-8
Python
false
false
461
py
import pandas as pd import requests coingecko = "https://www.coingecko.com/en" r = requests.get(coingecko) fields = ["Coin", "Price", "Mkt Cap", "1h","24h","7d"] table = pd.read_html(r.text)[0][fields] #left symbol only table["Coin"] = table ["Coin"].apply(lambda x: x.split(" ")[2]) for s in fields[1], fields[2]: table[s] = table [s].apply(lambda x: x.replace(",","").replace("$","")) print(table) name ="TopCMC_test.csv" table.to_csv(name, index=False)
[ "sumy.ua@gmail.com" ]
sumy.ua@gmail.com
c68f272bb4279ab85f248f79876c827125fbf5f3
6d6a79cfb3cc7e9db5bd84c92ce815da52ddae58
/PX4Flow_I2C.py
4d62529657ba71b224023a6cee203b5fae59b704
[]
no_license
kyle-kelly/PX4Flow_python
d4d86e1be8a41789cf0b41e2a07aa547d3a0a382
9765144dbddbcbfbdc5573fa2cc180c8ceca7163
refs/heads/master
2021-01-25T06:24:43.794343
2017-10-21T17:45:10
2017-10-21T17:45:10
93,566,120
2
0
null
null
null
null
UTF-8
Python
false
false
7,236
py
import smbus import time class PX4Flow_I2C(object): """ Class to hold I2C frame data from PX4Flow typedef struct i2c_frame { uint16_t frame_count;// counts created I2C frames [#frames] int16_t pixel_flow_x_sum;// latest x flow measurement in pixels*10 [pixels] int16_t pixel_flow_y_sum;// latest y flow measurement in pixels*10 [pixels] int16_t flow_comp_m_x;// x velocity*1000 [meters/sec] int16_t flow_comp_m_y;// y velocity*1000 [meters/sec] int16_t qual;// Optical flow quality / confidence [0: bad, 255: maximum quality] int16_t gyro_x_rate; // latest gyro x rate [rad/sec] int16_t gyro_y_rate; // latest gyro y rate [rad/sec] int16_t gyro_z_rate; // latest gyro z rate [rad/sec] uint8_t gyro_range; // gyro range [0 .. 7] equals [50 deg/sec .. 2000 deg/sec] uint8_t sonar_timestamp;// time since last sonar update [milliseconds] int16_t ground_distance;// Ground distance in meters*1000 [meters]. Positive value: distance known. Negative value: Unknown distance } i2c_frame; typedef struct i2c_integral_frame { uint16_t frame_count_since_last_readout;//number of flow measurements since last I2C readout [#frames] int16_t pixel_flow_x_integral;//accumulated flow in radians*10000 around x axis since last I2C readout [rad*10000] int16_t pixel_flow_y_integral;//accumulated flow in radians*10000 around y axis since last I2C readout [rad*10000] int16_t gyro_x_rate_integral;//accumulated gyro x rates in radians*10000 since last I2C readout [rad*10000] int16_t gyro_y_rate_integral;//accumulated gyro y rates in radians*10000 since last I2C readout [rad*10000] int16_t gyro_z_rate_integral;//accumulated gyro z rates in radians*10000 since last I2C readout [rad*10000] uint32_t integration_timespan;//accumulation timespan in microseconds since last I2C readout [microseconds] uint32_t sonar_timestamp;// time since last sonar update [microseconds] int16_t ground_distance;// Ground distance in meters*1000 [meters*1000] int16_t gyro_temperature;// Temperature * 100 in centi-degrees Celsius [degcelsius*100] uint8_t quality;// averaged quality of accumulated flow values [0:bad quality;255: max quality] } __attribute__((packed)) i2c_integral_frame; """ def __init__(self, bus, address): self.name = "PX4Flow" self.bus = bus self.address = address """Initialize with negative values""" #I2C frame values self.frame_count = -1 #counts created I2C frames [#frames] self.pixel_flow_x_sum = -1 #latest x flow measurement in pixels*10 [pixels] self.pixel_flow_y_sum = -1 #latest y flow measurement in pixels*10 [pixels] self.flow_comp_m_x = -1 #x velocity*1000 [meters/sec] self.flow_comp_m_y = -1 #y velocity*1000 [meters/sec] self.qual = -1 #Optical flow quality / confidence [0: bad, 255: maximum quality] self.gyro_x_rate = -1 #latest gyro x rate [rad/sec] self.gyro_y_rate = -1 #latest gyro y rate [rad/sec] self.gyro_z_rate = -1 #latest gyro z rate [rad/sec] self.gyro_range = -1 #gyro range [0 .. 7] equals [50 deg/sec .. 2000 deg/sec] self.sonar_timestamp = -1 #time since last sonar update [milliseconds] self.ground_distance = -1 #Ground distance in meters*1000 [meters]. Positive value: distance known. Negative value: Unknown distance #Integral I2C frame values self.frame_count_since_last_readout = -1 #number of flow measurements since last I2C readout [#frames] self.pixel_flow_x_integral = -1 #accumulated flow in radians*10000 around x axis since last I2C readout [rad*10000] self.pixel_flow_y_integral = -1 #accumulated flow in radians*10000 around y axis since last I2C readout [rad*10000] self.gyro_x_rate_integral = -1 #accumulated gyro x rates in radians*10000 since last I2C readout [rad*10000] self.gyro_y_rate_integral = -1 #accumulated gyro y rates in radians*10000 since last I2C readout [rad*10000] self.gyro_z_rate_integral = -1 #accumulated gyro z rates in radians*10000 since last I2C readout [rad*10000] self.integration_timespan = -1 #accumulation timespan in microseconds since last I2C readout [microseconds] self.sonar_timestamp = -1 # time since last sonar update [microseconds] self.ground_distance = -1 # Ground distance in meters*1000 [meters*1000] self.gyro_temperature = -1 # Temperature * 100 in centi-degrees Celsius [degcelsius*100] self.quality = -1 # averaged quality of accumulated flow values [0:bad quality;255: max quality] def update(self): """Send 0x0 to PX4FLOW module and receive back 22 bytes of data in registers 0x00-0x15""" self.bus.write_byte(self.address, 0x0) i2c_frame = self.bus.read_i2c_block_data(self.address, 0x00, 22) self.frame_count = i2c_frame[0] | (i2c_frame[1] << 8) self.pixel_flow_x_sum = self.twos_comp(i2c_frame[2] | (i2c_frame[3] << 8), 16) self.pixel_flow_y_sum = self.twos_comp(i2c_frame[4] | (i2c_frame[5] << 8), 16) self.flow_comp_m_x = self.twos_comp(i2c_frame[6] | (i2c_frame[7] << 8), 16) self.flow_comp_m_y = self.twos_comp(i2c_frame[8] | (i2c_frame[9] << 8), 16) self.qual = self.twos_comp(i2c_frame[10] | (i2c_frame[11] << 8), 16) self.gyro_x_rate = self.twos_comp(i2c_frame[12] | (i2c_frame[13] << 8), 16) self.gyro_y_rate = self.twos_comp(i2c_frame[14] | (i2c_frame[15] << 8), 16) self.gyro_z_rate = self.twos_comp(i2c_frame[16] | (i2c_frame[17] << 8), 16) self.gyro_range = i2c_frame[18] self.sonar_timestamp = i2c_frame[19] self.ground_distance = self.twos_comp(i2c_frame[20] | (i2c_frame[21] << 8), 16) def integral_update(self): """Send 0x16 to PX4FLOW module and receive back 25 bytes of data in registers 0x16-0x2E""" self.bus.write_byte(self.address, 0x16) i2c_integral_frame = self.bus.read_i2c_block_data(self.address, 0x16, 25) self.frame_count_since_last_readout = i2c_integral_frame[0] | (i2c_integral_frame[1] << 8) self.pixel_flow_x_integral = self.twos_comp(i2c_integral_frame[2] | (i2c_integral_frame[3] << 8), 16) self.pixel_flow_y_integral = self.twos_comp(i2c_integral_frame[4] | (i2c_integral_frame[5] << 8), 16) self.gyro_x_rate_integral = self.twos_comp(i2c_integral_frame[6] | (i2c_integral_frame[7] << 8), 16) self.gyro_y_rate_integral = self.twos_comp(i2c_integral_frame[8] | (i2c_integral_frame[9] << 8), 16) self.gyro_z_rate_integral = self.twos_comp(i2c_integral_frame[10] | (i2c_integral_frame[11] << 8), 16) self.integration_timespan = i2c_integral_frame[12] | (i2c_integral_frame[13] << 8) | (i2c_integral_frame[14] << 16) | (i2c_integral_frame[15] << 24) self.sonar_timestamp = i2c_integral_frame[16] | (i2c_integral_frame[17] << 8) | (i2c_integral_frame[18] << 16) | (i2c_integral_frame[19] << 24) self.ground_distance = self.twos_comp(i2c_integral_frame[20] | (i2c_integral_frame[21] << 8), 16) self.gyro_temperature = self.twos_comp(i2c_integral_frame[22] | (i2c_integral_frame[23] << 8), 16) self.quality = i2c_integral_frame[24] def twos_comp(self, val, bits): """compute the 2's complement of int value val""" if (val & (1 << (bits - 1))) != 0: # if sign bit is set e.g., 8bit: 128-255 val = val - (1 << bits) # compute negative value return val # return positive value as is
[ "kkelly.667@gmail.com" ]
kkelly.667@gmail.com
7571dcccdfd3671f28bc3e9a8266832a0a5b8be7
e17d214b24d2e648ee5c0f888c7679b3a75a9c99
/madlib.py
91cf6af14f2dcb412f6ba2e04fafd2fa25634dde
[]
no_license
AngelDelunadev/python-101
012b7f0e0ec001411b067721363f6edba5ceebbd
78971790a5d071602b0a0bc8ea63e084ca0da046
refs/heads/main
2023-02-11T04:58:35.314751
2021-01-13T16:26:29
2021-01-13T16:26:29
329,095,531
0
0
null
null
null
null
UTF-8
Python
false
false
250
py
print("Please fill in the blanks below: ") print("__(name)___'s favorite subject in school is __(subject)___.") name = input("What is the name? ") subject= input("what is the subject? ") print("%s's favorite subject in school is %s."%(name, subject))
[ "angelluna2016@gmail.com" ]
angelluna2016@gmail.com
157b38ddeaad12bf914205f92359e1d4d0b674be
12c02706f25294e975e1864e8488513d192e69ec
/Códigos_2/sistema-masa-resorte(1).py
54a10abc339188b00cc0299bc87060002b1dc096
[]
no_license
Dishonestink/Dishonestink
b2dc6e6757f7c8edb6a24351dd967bc6e7f0b9b2
61a13d076c31a0b9d5f1bdd629a90d248728a242
refs/heads/main
2023-07-19T06:41:10.011884
2021-09-22T01:22:50
2021-09-22T01:22:50
367,212,672
0
0
null
null
null
null
UTF-8
Python
false
false
3,115
py
# -*- coding: utf-8 -*- """ Created on Sat Oct 24 18:15:30 2020 @author: Admin """ import numpy as np import matplotlib.pyplot as plt m1 = 1.0 m2 = 0.5 m3 = 2.0 k1 = 500.0 k2 = 100.0 k3 = 200.0 k4 = 1000.0 b1 = 1.0 b2 = 3.0 def funciones(t,x,i): #x --> [x1,v1,x2,v2,x3,v3] x1 = x[0] v1 = x[1] x2 = x[2] v2 = x[3] x3 = x[4] v3 = x[5] if(i==0): f = v1 elif(i==1): f = (-k1*x1+k2*(x2-x1)+b1*(v2-v1))/m1 elif(i==2): f = v2 elif(i==3): f = (-k2*(x2-x1)-b1*(v2-v1)+k3*(x3-x2)+b2*(v3-v2))/m2 elif(i==4): f = v3 elif(i==5): f = (-k3*(x3-x2)-b2*(v3-v2)-k4*x3)/m3 return f def rk4(fi_in,n,dt,t): k1 = np.zeros(n) k2 = np.zeros(n) k3 = np.zeros(n) k4 = np.zeros(n) fi_out = np.zeros(n) for i in range(n): k1[i] = funciones(t,fi_in,i) for i in range(n): k2[i] = funciones(t+0.5*dt,fi_in+0.5*k1*dt,i) for i in range(n): k3[i] = funciones(t+0.5*dt,fi_in+0.5*k2*dt,i) for i in range(n): k4[i] = funciones(t+dt,fi_in+k3*dt,i) for i in range(n): fi_out[i] = fi_in[i] + (k1[i]+2.0*k2[i]+2.0*k3[i]+k4[i])*dt/6.0 return fi_out A = np.array([[0,1,0,0,0,0], [-(k1+k2)/m1,-b1/m1,k2/m1,b1/m1,0,0], [0,0,0,1,0,0], [k2/m2,b1/m2,-(k2+k3)/m2,-(b1+b2)/m2,k3/m2,b2/m2], [0,0,0,0,0,1], [0,0,k3/m3,b2/m3,-(k3+k4)/m3,-b2/m3]]) eigen_val,eigen_vec = np.linalg.eig(A) #condiciones iniciales x1_0 = 0.1 v1_0 = 0.0 x2_0 = 0.0 v2_0 = 0.0 x3_0 = 0.0 v3_0 = 0.0 B = [x1_0,v1_0,x2_0,v2_0,x3_0,v3_0] minv = np.linalg.inv(eigen_vec) C = minv@B dt = 0.05 tf = 5.0 #Tiempo de simulación it = int(tf/dt) t = np.zeros(it+1) x = np.zeros((it+1,6)) x_rk4 = np.zeros((it+1,6)) err = np.zeros((it+1,6)) #x --> [x1,v1,x2,v2,x3,v3] x[0,:] = [x1_0,v1_0,x2_0,v2_0,x3_0,v3_0] x_rk4[0,:] = [x1_0,v1_0,x2_0,v2_0,x3_0,v3_0] for i in range(1,it+1): t[i] = t[i-1] + dt for k in range(6): for j in range(6): alpha = np.real(eigen_val[j]) beta = np.imag(eigen_val[j]) a = np.real(C[j]*eigen_vec[k,j]) b = np.imag(C[j]*eigen_vec[k,j]) x[i,k] = x[i,k] + np.exp(alpha*t[i])*(a*np.cos(beta*t[i])-b*np.sin(beta*t[i])) x_rk4[i,:] = rk4(x_rk4[i-1,:],6,dt,t[i-1]) ac = np.zeros(it+1) for i in range(1,it+1): ac[i] = x[i,1]/t[i] print(ac) print(len(ac)) err = abs(x-x_rk4) # plt.plot(t,x[:,0],"-b",label="x1_analítica") # plt.plot(t,x[:,2],"-g",label="x2_analítica") # plt.plot(t,x[:,4],"-y",label="x3_analítica") # plt.legend(loc="upper right") # plt.xlabel('Tiempo(s)') # plt.ylabel('Posición de las masas (m)') # plt.grid() plt.plot(t,x[:,0],"-k",label="x1_analítica") plt.plot(t,x_rk4[:,0],"--k",label="x1_rk4") plt.legend(loc="upper right") plt.xlabel('Tiempo(s)') plt.ylabel('Posición de las masas (m)') plt.grid() # plt.plot(t,err[:,0],"-k",label="Error en x1") # plt.legend(loc="upper right") # plt.xlabel('Tiempo(s)') # plt.ylabel('Error absoluto (m)') # plt.grid()
[ "dishonestink.2001@gmail.com" ]
dishonestink.2001@gmail.com
cc3a3e754f397f503bf522f5399f45aa1f67c86a
c31d37f23786328e0124d1d92a1abb58b3a23e68
/Writeafunction.py
254d7677ff438689df3d5b96ec8a1e2309f50746
[]
no_license
Santiago78op/hackerrank
6cfdbdb04e49ddcc8eb6fa72327d4ede4bf49523
4040d9012cc340bc7c3e4e67b46153e910a5222e
refs/heads/main
2023-02-27T17:03:26.889350
2021-02-06T19:08:55
2021-02-06T19:08:55
336,616,034
0
0
null
null
null
null
UTF-8
Python
false
false
133
py
def is_leap(year): leap = False if not year % 4 and (year % 100 or not year % 400): leap = True return leap
[ "2993696170101@ingenieria.usac.edu.gt" ]
2993696170101@ingenieria.usac.edu.gt
7754a204926e6e907b58c9854ddc2a349a3796cf
196babffc00795575104960f98f64f614911b72f
/기능개발.py
2a8ae32fb344a8aaa12cce78ff48325cf14fd04b
[]
no_license
do-park/programmers
9c4ff5289eb5c42aaba9ff33612dfd32eded4baa
054603f5a551e4e3d3f4b48d6b04a094b70c0661
refs/heads/master
2022-06-12T03:12:07.154184
2022-06-10T05:22:32
2022-06-10T05:22:32
250,500,372
0
0
null
null
null
null
UTF-8
Python
false
false
729
py
# 코딩테스트 연습 > 스택/큐 > 기능개발 from collections import deque from math import ceil def solution(progresses, speeds): completes = deque() for progress, speed in zip(progresses, speeds): completes.append(ceil((100 - progress) / speed)) print(completes) answer = [] deploy, count = completes.popleft(), 1 while completes: complete = completes.popleft() if complete <= deploy: count += 1 else: answer.append(count) deploy, count = complete, 1 answer.append(count) return answer print(solution([93, 30, 55], [1, 30, 5])) # [2, 1] print(solution([95, 90, 99, 99, 80, 99], [1, 1, 1, 1, 1, 1])) # [1, 3, 2]
[ "dohee.pa@gmail.com" ]
dohee.pa@gmail.com
1092e202125466531c8ebdc1e3aa56b0901d94e6
f5c6015c3c57b4b8bed95b4f55fc8233c5a5697a
/Django - Kelas Terbuka/07-Menggunakan_URL_pada_App/Django_Project/blog/urls.py
46c57dfbdada47135aa2505dd3ed9445716d4857
[]
no_license
rasyidev/learn_django3
0f8c072dbc7ebd2b92b2fb56de47a564aff163d3
b12041b560eaf4012bb358667ffd26cf6784469a
refs/heads/main
2023-03-15T17:07:20.081457
2021-03-02T06:03:29
2021-03-02T06:03:29
335,824,399
0
0
null
null
null
null
UTF-8
Python
false
false
123
py
from django.urls import path from . import views urlpatterns = [ path('', views.index), path('recent/', views.recent) ]
[ "habib.rasyid11@gmail.com" ]
habib.rasyid11@gmail.com
b0c8ebe0e54a04e4890f8d2c85dcc7fe6fc82bc5
fdf51c5834c0f9d854018be9cfc280030ceb52b0
/weather/weather/items.py
a4c45cba68b9c4d037ee454ab4da7914bb0568bd
[]
no_license
gangyu0716/spider_project
70987f1353ae55633fbc7d2c68c79d315f1db9d2
ec475d9def7dcd31c13496c14ca479f2ecf97bf9
refs/heads/master
2021-04-15T06:06:58.742717
2019-07-29T08:05:41
2019-07-29T08:05:48
126,314,799
4
0
null
null
null
null
UTF-8
Python
false
false
444
py
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # http://doc.scrapy.org/en/latest/topics/items.html import scrapy class WeatherItem(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() date = scrapy.Field() week = scrapy.Field() img = scrapy.Field() temperature = scrapy.Field() weather = scrapy.Field() wind = scrapy.Field()
[ "yu_gang@apowertec.com" ]
yu_gang@apowertec.com
f25e867061cc00a6a48dd776f96286d0422ddb92
79bef927639937a2ae611293497e981a04d54f9f
/huicong/middlewares/useragent_middlewares.py
307fbab0213d1cbc36a4dea2244ae7999edf6e3f
[]
no_license
msean/crawl_huicong_web
aeb2f63bec11322beaad4b54b46731e1ac754497
4c9e1444cb46c013b61230a19c7619b23358188d
refs/heads/master
2020-04-17T16:54:05.782398
2019-01-22T13:17:40
2019-01-22T13:17:40
166,760,815
0
0
null
null
null
null
UTF-8
Python
false
false
2,794
py
import logging import random from scrapy.downloadermiddlewares.useragent import UserAgentMiddleware class RotateUserAgentMiddleware(UserAgentMiddleware): def __init__(self, user_agent=''): self.user_agent = user_agent super().__init__(user_agent) def process_request(self, request, spider): ua = random.choice(self.user_agent_list) if ua: logging.info('Current UserAgent: '+ua) request.headers.setdefault('User-Agent', ua) user_agent_list = [ "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 " "(KHTML, like Gecko) Chrome/22.0.1207.1 Safari/537.1", "Mozilla/5.0 (X11; CrOS i686 2268.111.0) AppleWebKit/536.11 " "(KHTML, like Gecko) Chrome/20.0.1132.57 Safari/536.11", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.6 " "(KHTML, like Gecko) Chrome/20.0.1092.0 Safari/536.6", "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.6 " "(KHTML, like Gecko) Chrome/20.0.1090.0 Safari/536.6", "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.1 " "(KHTML, like Gecko) Chrome/19.77.34.5 Safari/537.1", "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/536.5 " "(KHTML, like Gecko) Chrome/19.0.1084.9 Safari/536.5", "Mozilla/5.0 (Windows NT 6.0) AppleWebKit/536.5 " "(KHTML, like Gecko) Chrome/19.0.1084.36 Safari/536.5", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 " "(KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3", "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/536.3 " "(KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_0) AppleWebKit/536.3 " "(KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3", "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 " "(KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 " "(KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3", "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 " "(KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 " "(KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3", "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/536.3 " "(KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3", "Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 " "(KHTML, like Gecko) Chrome/19.0.1061.0 Safari/536.3", "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/535.24 " "(KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24", "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/535.24 " "(KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24" ]
[ "m_wuhua@126.com" ]
m_wuhua@126.com
581791cfa265823f721e7727a7ce6c5d779656a8
853d4cec42071b76a80be38c58ffe0fbf9b9dc34
/venv/Lib/site-packages/networkx/algorithms/community/community_utils.py
4c372fa31ead346c902fa49f657b2843459e478d
[]
no_license
msainTesting/TwitterAnalysis
5e1646dbf40badf887a86e125ef30a9edaa622a4
b1204346508ba3e3922a52380ead5a8f7079726b
refs/heads/main
2023-08-28T08:29:28.924620
2021-11-04T12:36:30
2021-11-04T12:36:30
424,242,582
0
0
null
null
null
null
UTF-8
Python
false
false
894
py
"""Helper functions for community-finding algorithms.""" __all__ = ["is_partition"] def is_partition(G, communities): """Returns *True* if `communities` is a partition of the nodes of `G`. A partition of a universe set is a family of pairwise disjoint sets whose union is the entire universe set. Parameters ---------- G : NetworkX graph. communities : list or iterable of sets of nodes If not a list, the iterable is converted internally to a list. If it is an iterator it is exhausted. """ # Alternate implementation: # return all(sum(1 if v in c else 0 for c in communities) == 1 for v in G) if not isinstance(communities, list): communities = list(communities) nodes = {n for c in communities for n in c if n in G} return len(G) == len(nodes) == sum(len(c) for c in communities)
[ "msaineti@icloud.com" ]
msaineti@icloud.com
de2051f36005099f0b51e74c2c08c7a8aa6f698a
41960a07a8118cf99236972c1e94a36ef00c55c9
/progress_analyzer/migrations/0007_auto_20180213_1614.py
11fd9a49ab46bc723d77d247abb129f88cad53f2
[ "MIT" ]
permissive
wahello/jvb
7288f3fc8099dbbdfa5cdac86b251d4d739f4dca
c87fdf49ae040668323d1a034aa407cfe23c4a1d
refs/heads/bug/aa_ranges/chart2
2022-11-29T12:58:37.561674
2019-06-17T10:50:17
2019-06-17T10:50:17
211,479,327
0
1
MIT
2022-11-19T02:54:15
2019-09-28T09:52:28
null
UTF-8
Python
false
false
423
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.2 on 2018-02-13 16:14 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('progress_analyzer', '0006_auto_20180213_1109'), ] operations = [ migrations.RenameModel( old_name='OtherStats', new_name='OtherStatsCumulative', ), ]
[ "atulk@s7inc.co" ]
atulk@s7inc.co
36ff95f7833f6cd320ebdc4632a2b862b6c5d5a2
83e5ceee5aeed92ce1c1c14e21197744ca96a96e
/Name.py
d9c0293a7a9c9d29cad368b06d13e0795857f463
[]
no_license
SanjanaManjegowda/PythonAssignments
3899aa76263e34c86e7b2ddcd8e481469b093310
d33fc0d117294d0d96d2bac097099ff1f9b2a70c
refs/heads/master
2020-08-11T16:02:43.995737
2019-12-04T16:57:46
2019-12-04T16:57:46
214,592,272
0
0
null
null
null
null
UTF-8
Python
false
false
59
py
name=input("Enter Your Name") print("Hello" ,name, "!!!")
[ "noreply@github.com" ]
SanjanaManjegowda.noreply@github.com
eab86eb956920bb3b12c74729b6008b7268c2fc5
c001bd1576c064eef69eef172d99594377bcc7eb
/lambda_pumpkin.py
74f99c74a44487cb79e5a1b1d1cc64c44bd31f31
[]
no_license
nfultz/pumpkin
88d4d06b866b4366ab5e33b3d1c8276f8220fca6
65c4a16a6830da4701803c101173e274d47e38e0
refs/heads/master
2021-06-29T20:53:07.531771
2020-07-14T22:03:28
2020-07-14T22:03:28
84,591,865
7
2
null
2017-10-06T22:09:55
2017-03-10T19:02:48
Shell
UTF-8
Python
false
false
442
py
import boto3 def lambda_handler(event, context): instanceID = event['instanceID'] instanceType = event['instanceType'] ec2 = boto3.resource('ec2') instance = ec2.Instance(instanceID) instance.stop() instance.wait_until_stopped() instance.modify_attribute(InstanceType={"Value":instanceType}) instance.start() instance.wait_until_running() return instance.public_dns_name
[ "nfultz@gmail.com" ]
nfultz@gmail.com
4239b540f62907401da42ff6044c087742f0f322
f52ddcafb4a33c2cbf9ee49505cae3c84c0c1f3c
/setup.py
ae2fe0d2a55d50cd98212e2719d5928a32e8a9a6
[]
no_license
kalyanchatterjee/image_flip
dd693fce04bfb2c11beb4f85a5dd48b22f37050d
aeb1d34f8bfd4225b8d37ce26e1c1e6ad6e2829d
refs/heads/master
2020-06-12T02:03:45.792115
2019-06-27T20:56:42
2019-06-27T20:56:42
194,160,437
0
0
null
null
null
null
UTF-8
Python
false
false
302
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Jun 27 14:07:53 2019 @author: kalyan.chatterjee """ import sys try: from PIL import Image except ImportError: sys.exit("""You need the Pillow module! Install it by running "pip install Pillow" """)
[ "Kalyan.Chatterjee@cantire.com" ]
Kalyan.Chatterjee@cantire.com
acd444692cb0f73b17cb72f114939466ca2ca538
deab03581c41836901ebaa7a5c72b2e21ec6be86
/algos/sorts.py
eb6781723abb637622655e8fe075edfddc6fff38
[]
no_license
alvinburgos/contest-stuff
bf352061419d0695d7f322e4aa9574e48900d655
01cf26d66a07fab61540614e43284c549605e02e
refs/heads/master
2016-08-04T07:55:00.583083
2014-12-08T18:40:38
2014-12-08T18:40:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
761
py
import random def insertsort(a, i, j): for x in xrange(i+1, j): tmp = a[x] while x > i and tmp < a[x-1]: a[x] = a[x-1] x -= 1 a[x] = tmp def merge(a, i, m, j): l = [] k1 = i k2 = m while k1 < m and k2 < j: if a[k1] < a[k2]: l.append(a[k1]) k1 += 1 else: l.append(a[k2]) k2 += 1 while k1 < m: l.append(a[k1]) k1 += 1 while k2 < j: l.append(a[k2]) k2 += 1 for x in xrange(i, j): a[x] = l[x-i] def mergesort(a, i, j): if j - i <= 10: insertsort(a, i, j) else: m = (i+j)/2 mergesort(a, i, m) mergesort(a, m, j) merge(a, i, m, j)
[ "ajmburgospp@gmail.com" ]
ajmburgospp@gmail.com