blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
45b6569b1aa2ab1993894fd21d96ac72bd8ae4e6
7060e97de0a303508004bf07daecbdf104668758
/blogappreview/settings.py
02d01dbcabfcef603854ad616386e4c677b72fd8
[]
no_license
adamgrossman/legacy-blog-app
9963d0ee0e61c84d980c20e64380c2a6cbcb772d
3671d1d16de2899a10284e02d77d71323206e2e2
refs/heads/master
2021-01-21T05:01:27.428179
2014-09-23T21:49:17
2014-09-23T21:49:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,130
py
""" Django settings for blogappreview project. For more information on this file, see https://docs.djangoproject.com/en/1.7/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.7/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(__file__)) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.7/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'ymu0=j(kfo_*@2@%5^6_^^+zq!c+#ib$j(o*i@azngq@9&513^' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True TEMPLATE_DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'blogappreview.urls' WSGI_APPLICATION = 'blogappreview.wsgi.application' # Database # https://docs.djangoproject.com/en/1.7/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/1.7/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.7/howto/static-files/ STATIC_URL = '/static/' try: from local_settings import * except ImportError: pass
[ "adam.grossman08@me.com" ]
adam.grossman08@me.com
4e8e2af6420a58bf95043e9fce852658ac6f319e
4c453d73abb05f151e3a7f2220920c42b9b8dfdd
/a_star.py
1cbff4e0b873412c11d42cea5e5d7f06936291eb
[ "MIT" ]
permissive
MlHsieh/Pathfinding
ef632426106076a69e181ed60636129ce458456b
3f1818595b54f6805fbba528d7a72ed87995f08a
refs/heads/master
2021-01-13T22:56:27.039031
2020-02-23T14:16:26
2020-02-23T14:16:26
242,520,842
0
0
null
null
null
null
UTF-8
Python
false
false
6,993
py
"" A* path finding with pygamezero Find the shortest path from top-left corner to bottom-right corner. Obstacles are generated randomly each time. Author: ML Hsieh 2020-2-23 """ # pylint: disable=missing-module-docstring, invalid-name, missing-function-docstring import random import math import typing import heapq import pygame class Node: """Hold information of a node. """ def __init__( self, walkable: bool, grid_postion: typing.List[int], position: typing.List[float], size: int ): self.walkable = walkable self.col = grid_postion[0] self.row = grid_postion[1] self.position = position self.size = size self.gcost = 0 self.hcost = 0 self.parent = None # Previous node on the path def draw(self, screen, color=pygame.Color(255, 255, 255)): """ Draw itself onto screen.""" pygame.draw.rect( screen, color, (self.position[0], self.position[1], self.size, self.size) ) def fcost(self): """ total movement required from start node to target node""" return self.gcost + self.hcost def dist(self, other: 'Node'): """ Calculate the distance between self and other. Since diagonal path is not allowed, the distance is dx + dy. """ return abs(self.row - other.row) + abs(self.col - other.col) def __lt__(self, other: 'Node'): """ Return self < other This function is called when using heap queue algorithms """ return (self.fcost() < other.fcost() or (self.fcost() == other.fcost() and self.hcost < other.hcost ) ) class Grid: """ Hold information of all the nodes. Nodes are stored in a 1 dimensional list. """ def __init__(self, cols, rows, grid_size=55, line_width=3): self.nodes = [] self.grid_size = grid_size self.line_width = line_width self.cols = cols self.rows = rows self.screen_w = ((self.grid_size+self.line_width) * self.cols + self.line_width) self.screen_h = ((self.grid_size+self.line_width) * self.rows + self.line_width) self.create_grid() self.generate_obstacles() def create_grid(self): for x in range(0, self.cols): for y in range(0, self.rows): self.nodes.append( Node(True, [x, y], [ self.line_width*(x+1) + self.grid_size*x, self.line_width*(y+1) + self.grid_size*y ], self.grid_size) ) def generate_obstacles(self): for _ in range(math.floor(self.cols*self.rows/1.5)): self.nodes[ random.randint(2, self.cols*self.rows-3) ].walkable = False def find_neighbors(self, node: Node): """Find neighbor of node. (no diagonal) """ index = node.col*self.rows + node.row neighbors_index = [index+self.rows, index-self.rows] # if node.row != 0: # neighbors_index.append(index-1) # if node.row != self.rows-1: # neighbors_index.append(index+1) if node.row != 0: neighbors_index.extend( [index-self.rows-1, index-1, index+self.rows-1] ) if node.row != self.rows-1: neighbors_index.extend( [index-self.rows+1, index+1, index+self.rows+1] ) neighbors = [] for i in neighbors_index: if 0 <= i < self.rows*self.cols: neighbors.append(self.nodes[i]) return neighbors def draw(self, screen: pygame.display): """ Draw all the nodes. """ for n in self.nodes: if n.walkable: n.draw(screen) else: n.draw(screen, (0, 0, 0)) class AStarPathFinding: """ A* pathfinding algorithm Start from top left corner to bottom right corner. Obstacles are generated randomly. """ def __init__(self): self.grid = Grid(100, 50, 10, 1) self.start = self.grid.nodes[0] self.target = self.grid.nodes[self.grid.cols*self.grid.rows-1] self.open = [self.start] # Nodes to be evaluated self.close = set() # Nodes already evaluated self.path_found = False def update(self): if self.open and not self.path_found: # Start from node in open with the lowest fcost current_node = heapq.heappop(self.open) self.close.add(current_node) # Path found if current_node == self.target: self.path_found = True return # Update neighbors neighbors = self.grid.find_neighbors(current_node) for n in neighbors: if n not in self.close and n.walkable: new_gcost = current_node.gcost + n.dist(current_node) if n not in self.open or new_gcost < n.gcost: n.gcost = new_gcost n.hcost = n.dist(self.target) n.parent = current_node if n not in self.open: heapq.heappush(self.open, n) def draw(self, screen: pygame.display): if not self.path_found: for n in self.open: n.draw(screen, pygame.Color(0, 200, 0)) for n in self.close: n.draw(screen, pygame.Color(200, 0, 0)) self.start.draw(screen, pygame.Color(0, 150, 200)) self.target.draw(screen, pygame.Color(0, 150, 200)) else: # Draw the path n = self.target while n.parent is not None: n.draw(screen, pygame.Color(0, 150, 200)) n = n.parent def main(): path = AStarPathFinding() # Initialize pygame.init() screen = pygame.display.set_mode((path.grid.screen_w, path.grid.screen_h)) screen.fill(pygame.Color(80, 80, 80)) path.grid.draw(screen) # Start the event loop run = True while run: key = pygame.key.get_pressed() for event in pygame.event.get(): if event.type == pygame.QUIT: run = False elif (event.type == pygame.KEYDOWN and event.key == pygame.K_F4 and (key[pygame.K_LALT] or key[pygame.K_RALT]) ): run = False path.draw(screen) path.update() pygame.display.update() pygame.quit() if __name__ == "__main__": main()
[ "noreply@github.com" ]
MlHsieh.noreply@github.com
77702e3b0454d2ed113e6af1b53fc1a48a813af7
1bc287996993413650476d2ec7b096dc959b5903
/venv/Lib/site-packages/apiclient/model.py
4ad88a88803cb5381871d8b373b14e153aa984a5
[]
no_license
jorgejmt94/TFG
6ea6bce7cf6ae53200f3d3e42e0f1f04c2557fae
2e7d8eaf512d47049181909b20743683712902c2
refs/heads/master
2022-12-28T18:53:03.810829
2020-10-08T16:32:26
2020-10-08T16:32:26
143,515,791
1
0
null
null
null
null
UTF-8
Python
false
false
11,809
py
#!/usr/bin/python2.4 # # Copyright (C) 2010 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Model objects for requests and responses. Each API may support one or more serializations, such as JSON, Atom, etc. The model classes are responsible for converting between the wire format and the Python object representation. """ __author__ = 'jcgregorio@google.com (Joe Gregorio)' import logging import urllib.request, urllib.parse, urllib.error from apiclient import __version__ from .errors import HttpError from oauth2client.anyjson import simplejson import collections dump_request_response = False def _abstract(): raise NotImplementedError('You need to override this function') class Model(object): """Model base class. All Model classes should implement this interface. The Model serializes and de-serializes between a wire format such as JSON and a Python object representation. """ def request(self, headers, path_params, query_params, body_value): """Updates outgoing requests with a serialized body. Args: headers: dict, request headers path_params: dict, parameters that appear in the request path query_params: dict, parameters that appear in the query body_value: object, the request body as a Python object, which must be serializable. Returns: A tuple of (headers, path_params, query, body) headers: dict, request headers path_params: dict, parameters that appear in the request path query: string, query part of the request URI body: string, the body serialized in the desired wire format. """ _abstract() def response(self, resp, content): """Convert the response wire format into a Python object. Args: resp: httplib2.Response, the HTTP response headers and status content: string, the body of the HTTP response Returns: The body de-serialized as a Python object. Raises: apiclient.errors.HttpError if a non 2xx response is received. """ _abstract() class BaseModel(Model): """Base model class. Subclasses should provide implementations for the "serialize" and "deserialize" methods, as well as values for the following class attributes. Attributes: accept: The value to use for the HTTP Accept header. content_type: The value to use for the HTTP Content-type header. no_content_response: The value to return when deserializing a 204 "No Content" response. alt_param: The value to supply as the "alt" query parameter for requests. """ accept = None content_type = None no_content_response = None alt_param = None def _log_request(self, headers, path_params, query, body): """Logs debugging information about the request if requested.""" if dump_request_response: logging.info('--request-start--') logging.info('-headers-start-') for h, v in headers.items(): logging.info('%s: %s', h, v) logging.info('-headers-end-') logging.info('-path-parameters-start-') for h, v in path_params.items(): logging.info('%s: %s', h, v) logging.info('-path-parameters-end-') logging.info('body: %s', body) logging.info('query: %s', query) logging.info('--request-end--') def request(self, headers, path_params, query_params, body_value): """Updates outgoing requests with a serialized body. Args: headers: dict, request headers path_params: dict, parameters that appear in the request path query_params: dict, parameters that appear in the query body_value: object, the request body as a Python object, which must be serializable by simplejson. Returns: A tuple of (headers, path_params, query, body) headers: dict, request headers path_params: dict, parameters that appear in the request path query: string, query part of the request URI body: string, the body serialized as JSON """ query = self._build_query(query_params) headers['accept'] = self.accept headers['accept-encoding'] = 'gzip, deflate' if 'user-agent' in headers: headers['user-agent'] += ' ' else: headers['user-agent'] = '' headers['user-agent'] += 'google-api-python-client/%s (gzip)' % __version__ if body_value is not None: headers['content-type'] = self.content_type body_value = self.serialize(body_value) self._log_request(headers, path_params, query, body_value) return (headers, path_params, query, body_value) def _build_query(self, params): """Builds a query string. Args: params: dict, the query parameters Returns: The query parameters properly encoded into an HTTP URI query string. """ if self.alt_param is not None: params.update({'alt': self.alt_param}) astuples = [] for key, value in params.items(): if type(value) == type([]): for x in value: x = x.encode('utf-8') astuples.append((key, x)) else: if getattr(value, 'encode', False) and isinstance(value.encode, collections.Callable): value = value.encode('utf-8') astuples.append((key, value)) return '?' + urllib.parse.urlencode(astuples) def _log_response(self, resp, content): """Logs debugging information about the response if requested.""" if dump_request_response: logging.info('--response-start--') for h, v in resp.items(): logging.info('%s: %s', h, v) if content: logging.info(content) logging.info('--response-end--') def response(self, resp, content): """Convert the response wire format into a Python object. Args: resp: httplib2.Response, the HTTP response headers and status content: string, the body of the HTTP response Returns: The body de-serialized as a Python object. Raises: apiclient.errors.HttpError if a non 2xx response is received. """ self._log_response(resp, content) # Error handling is TBD, for example, do we retry # for some operation/error combinations? if resp.status < 300: if resp.status == 204: # A 204: No Content response should be treated differently # to all the other success states return self.no_content_response return self.deserialize(content) else: logging.debug('Content from bad request was: %s' % content) raise HttpError(resp, content) def serialize(self, body_value): """Perform the actual Python object serialization. Args: body_value: object, the request body as a Python object. Returns: string, the body in serialized form. """ _abstract() def deserialize(self, content): """Perform the actual deserialization from response string to Python object. Args: content: string, the body of the HTTP response Returns: The body de-serialized as a Python object. """ _abstract() class JsonModel(BaseModel): """Model class for JSON. Serializes and de-serializes between JSON and the Python object representation of HTTP request and response bodies. """ accept = 'application/json' content_type = 'application/json' alt_param = 'json' def __init__(self, data_wrapper=False): """Construct a JsonModel. Args: data_wrapper: boolean, wrap requests and responses in a data wrapper """ self._data_wrapper = data_wrapper def serialize(self, body_value): if (isinstance(body_value, dict) and 'data' not in body_value and self._data_wrapper): body_value = {'data': body_value} return simplejson.dumps(body_value) def deserialize(self, content): if type(content) is bytes: content = content.decode('utf-8') body = simplejson.loads(content) if self._data_wrapper and isinstance(body, dict) and 'data' in body: body = body['data'] return body @property def no_content_response(self): return {} class RawModel(JsonModel): """Model class for requests that don't return JSON. Serializes and de-serializes between JSON and the Python object representation of HTTP request, and returns the raw bytes of the response body. """ accept = '*/*' content_type = 'application/json' alt_param = None def deserialize(self, content): return content @property def no_content_response(self): return '' class MediaModel(JsonModel): """Model class for requests that return Media. Serializes and de-serializes between JSON and the Python object representation of HTTP request, and returns the raw bytes of the response body. """ accept = '*/*' content_type = 'application/json' alt_param = 'media' def deserialize(self, content): return content @property def no_content_response(self): return '' class ProtocolBufferModel(BaseModel): """Model class for protocol buffers. Serializes and de-serializes the binary protocol buffer sent in the HTTP request and response bodies. """ accept = 'application/x-protobuf' content_type = 'application/x-protobuf' alt_param = 'proto' def __init__(self, protocol_buffer): """Constructs a ProtocolBufferModel. The serialzed protocol buffer returned in an HTTP response will be de-serialized using the given protocol buffer class. Args: protocol_buffer: The protocol buffer class used to de-serialize a response from the API. """ self._protocol_buffer = protocol_buffer def serialize(self, body_value): return body_value.SerializeToString() def deserialize(self, content): return self._protocol_buffer.FromString(content) @property def no_content_response(self): return self._protocol_buffer() def makepatch(original, modified): """Create a patch object. Some methods support PATCH, an efficient way to send updates to a resource. This method allows the easy construction of patch bodies by looking at the differences between a resource before and after it was modified. Args: original: object, the original deserialized resource modified: object, the modified deserialized resource Returns: An object that contains only the changes from original to modified, in a form suitable to pass to a PATCH method. Example usage: item = service.activities().get(postid=postid, userid=userid).execute() original = copy.deepcopy(item) item['object']['content'] = 'This is updated.' service.activities.patch(postid=postid, userid=userid, body=makepatch(original, item)).execute() """ patch = {} for key, original_value in original.items(): modified_value = modified.get(key, None) if modified_value is None: # Use None to signal that the element is deleted patch[key] = None elif original_value != modified_value: if type(original_value) == type({}): # Recursively descend objects patch[key] = makepatch(original_value, modified_value) else: # In the case of simple types or arrays we just replace patch[key] = modified_value else: # Don't add anything to patch if there's no change pass for key in modified: if key not in original: patch[key] = modified[key] return patch
[ "jorge@MacBook-Pro-de-Jorge.local" ]
jorge@MacBook-Pro-de-Jorge.local
4999ade213d9555e0697b7004de81a99a9d815b3
ec7c1e8b6fd1c397d072a05702221ba198a12f3b
/mysite/laser/migrations/0005_auto_20170418_1524.py
053ca170596cc2635b405118c995c4f72d40f5e7
[]
no_license
profanat/laser
3c4d197d012c178be1ed1b2ad780b65ad68288c2
5b207f60caf7dd4610c2fb3dd25d399463d3a808
refs/heads/master
2021-01-19T23:44:14.995911
2017-04-30T10:46:10
2017-04-30T10:46:10
89,022,705
0
0
null
null
null
null
UTF-8
Python
false
false
1,314
py
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2017-04-18 13:24 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('laser', '0004_item_image'), ] operations = [ migrations.CreateModel( name='SubCategory', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=200, verbose_name='Название')), ('category', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='laser.Category')), ], options={ 'verbose_name': 'Подкатегория', 'verbose_name_plural': 'Подкатегории', 'ordering': ['name'], }, ), migrations.RemoveField( model_name='item', name='category', ), migrations.AddField( model_name='item', name='subcategory', field=models.ForeignKey(default=1, on_delete=django.db.models.deletion.CASCADE, to='laser.SubCategory'), preserve_default=False, ), ]
[ "profanat@mail.ru" ]
profanat@mail.ru
07e17c5553d0087fa7eb1cd218f0ce579fa6d45b
89b297e3ffb43ecbb508fd01cf28b89817cd869b
/c103.py
7f447ef1daf34e463dbd3c56b79fe26cdc43df21
[]
no_license
DhyeyPatel779/C103
0eeff9a104243272c75eba06d959eea8e608c22a
d4afa720ada23121a9fcfb1ca0c023ac9cb72590
refs/heads/main
2023-08-24T23:36:39.754111
2021-10-14T07:43:26
2021-10-14T07:43:26
417,035,714
0
0
null
null
null
null
UTF-8
Python
false
false
193
py
import pandas as pd import plotly.express as px df = pd.read_csv('line_chart.csv') fig = px.line(df,x="Year", y="Per capita income", color="Country", title="Per Capita Income") fig.show()
[ "noreply@github.com" ]
DhyeyPatel779.noreply@github.com
5051561594eab17e7933f5df6df726631b2282fd
9f9031218c411443a4bb9ada6e5af333cf4fa083
/azuresearch/indexes/scoring_profile.py
8ec8b0698fe9d0d111206c542f8cfeeb63c9c5b1
[]
no_license
aloosley/python-azure-search
ba51c19b2387ea35706ea9a6e7eca8227cf3402f
ce605528a2bbcdc7a3f08fca1e5c39129ab726d9
refs/heads/master
2020-05-01T19:21:13.115786
2019-01-13T13:06:33
2019-01-13T13:06:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,780
py
import json import warnings from azuresearch.azure_search_object import AzureSearchObject class ScoringProfile(AzureSearchObject): ''' A scoring profile for an index. See this link for more information: taken from https://docs.microsoft.com/en-us/rest/api/searchservice/add-scoring-profiles-to-a-search-index ''' def __init__(self, name, text=None, functions=None,**kwargs): super().__init__(**kwargs) if functions is None: functions = [] self.name = name self.text = text self.functions = functions def __repr__(self): return "<{classname}: {name}>".format( classname=self.__name__, name=self.name ) def to_dict(self): return_dict = { "name": self.name, "text": self.text.to_dict(), "functions": [func.to_dict() for func in self.functions] } # add additional user generated params return_dict.update(self.params) # make all params camelCase (to be sent correctly to Azure Search return_dict = self.to_camel_case_dict(return_dict) # Remove None values return_dict = self.remove_empty_values(return_dict) return return_dict @classmethod def load(cls, data): if type(data) is str: data = json.loads(data) if type(data) is not dict: raise Exception("Failed to parse input as Dict") if 'text' in data: data['text'] = ScoringProfileText.load(data['text']) if 'functions' in data: data['functions'] = [ScoringProfileFunction.load(spf) for spf in data['functions']] data = cls.to_snake_case_dict(data) return cls(**data) class ScoringProfileText(AzureSearchObject): ''' A text value for a scoring profile. Holds the weights of different fields. See this link for more information: https://docs.microsoft.com/en-us/rest/api/searchservice/add-scoring-profiles-to-a-search-index @:param weights: a list of field name : weight value pairs ''' def __init__(self, weights, **kwargs): super().__init__(**kwargs) self.weights = weights def to_dict(self): return_dict = { "weights": self.weights } # add additional user generated params return_dict.update(self.params) # make all params camelCase (to be sent correctly to Azure Search return_dict = self.to_camel_case_dict(return_dict) # Remove None values return_dict = self.remove_empty_values(return_dict) return return_dict @classmethod def load(cls, data): if type(data) is str: data = json.loads(data) if type(data) is not dict: raise Exception("Failed to parse input as Dict") data = cls.to_snake_case_dict(data) return cls(**data) class ScoringProfileFunction(AzureSearchObject): ''' A function to perform for scoring. See this link for more information: https://docs.microsoft.com/en-us/rest/api/searchservice/add-scoring-profiles-to-a-search-index#bkmk_indexref ''' def __init__(self, type, field_name=None, boost=None, interpolation=None, magnitude=None, freshness=None, distance=None, tag=None, **kwargs): super().__init__(**kwargs) self.type = type self.field_name = field_name self.boost = boost self.interpolation = interpolation self.magnitude = magnitude self.freshness = freshness self.distance = distance self.tag = tag self._validate_interpolation() def to_dict(self): return_dict = { "type": self.type, "boost": self.boost, "fieldName": self.field_name, "interpolation": self.interpolation, "magnitude": self.magnitude, "freshness": self.freshness, "distance": self.distance, "tag": self.tag, } # add additional user generated params return_dict.update(self.params) # make all params camelCase (to be sent correctly to Azure Search return_dict = self.to_camel_case_dict(return_dict) # Remove None values return_dict = self.remove_empty_values(return_dict) return return_dict def _validate_interpolation(self): if self.interpolation and self.interpolation not in interpolations: warnings.warn("{interpolation} not in list of supported interpolations: {interpolations}".format( interpolation=self.interpolation, interpolations=interpolations)) function_types = { "magnitude", "freshness", "distance", "tag" } interpolations = { "constant", "linear", "quadratic", "logarithmic" } # ``` https://docs.microsoft.com/en-us/rest/api/searchservice/add-scoring-profiles-to-a-search-index#bkmk_template # "magnitude": { # "boostingRangeStart": # , # "boostingRangeEnd": # , # "constantBoostBeyondRange": true | false(default) # } # # // (- or -) # # "freshness": { # "boostingDuration": "..."(value representing timespan over which boosting occurs) # } # # // (- or -) # # "distance": { # "referencePointParameter": "...", (parameter to be passed in queries to use as reference location) # "boostingDistance": # (the distance in kilometers from the reference location where the boosting range ends) # } # # // (- or -) # # "tag": { # "tagsParameter": "..."(parameter to be passed in queries to specify a list of tags to compare against target field) # }
[ "omri.mendels@microsoft.com" ]
omri.mendels@microsoft.com
93103d6e41113db9ca4a00e8b344e771a27edaac
6fb95c1523ecd84a47cf351fd8c84d20c697d5c7
/hash.py
ab811578718de98ac6d5c60bfb5d8d2f77bf9771
[]
no_license
Shiva454527/hash
5da4c3dbb9587561fe4e1cccc27d1fd1cec627d2
936e65946b6088eb13beca58041e41be3a711ab7
refs/heads/main
2023-03-15T00:21:17.514193
2021-03-08T07:48:25
2021-03-08T07:48:25
345,556,371
0
0
null
null
null
null
UTF-8
Python
false
false
1,174
py
import hashlib print("") print(" ---------------Hash convert-------------v1.0") print("") print("") print("<============================================>") print(" Created by shiva") print("<============================================>") print("") print("") print("Available Options:\n1.MD5\n2.SHA512\n3.SHA256\n4.Select All\n5.Exit") while True: choice = int(input('Select An Option: ')) if choice == 5: exit() else: string = input('Enter String To Hash: ') def md5(string): hash_object = hashlib.md5(string.encode()) print("MD5: " + hash_object.hexdigest() + "\n") def sha512(string): hash_object = hashlib.sha512(string.encode()) print("SHA512: " + hash_object.hexdigest() + "\n") def sha256(string): hash_object = hashlib.sha256(string.encode()) print("SHA256: " + hash_object.hexdigest() + "\n") if choice == 1: md5(string) elif choice == 2: sha512(string) elif choice == 3: sha256(string) elif choice == 4: md5(string) sha512(string) sha256(string) else: print("Invalid Option!") exit() print("") print(" Thank you for downloading.")
[ "noreply@github.com" ]
Shiva454527.noreply@github.com
72a91011ab0adb33cd3a50f2659fe2abe2c936f8
16d26279f2b1e995352529bf8bc54d08d4b3c7a4
/Shut down.py
08fd9657b1242cb47d23226e01f2d69c5bbf305c
[]
no_license
surajmishra57/Shut-down
7e0583c8c5d993c6e475d00c6ecc374930922a04
a9c6214369628ee76c8293589f00b326b870d4af
refs/heads/master
2020-06-08T08:15:45.830846
2019-06-22T05:21:29
2019-06-22T05:21:29
193,194,645
0
0
null
null
null
null
UTF-8
Python
false
false
5,046
py
from tkinter import * from tkinter.ttk import Combobox import os from tkinter import messagebox from tkinter.font import Font def Cancel(): root.destroy() def Clear(): combo.set("Select") hour.set('H') Hour.set('H') mint.set('M') Mint.set('M') sec.set('S') Sec.set('S') def final(): chack=["H",'0','1','2','3','4','5','6','7','8','9'] chackm=["M",'0','1','2','3','4','5','6','7','8','9'] chacks=["S",'0','1','2','3','4','5','6','7','8','9'] Action=combo.get() h=hour.get() H=Hour.get() m=mint.get() M=Mint.get() s=sec.get() S=Sec.get() print(type(H)) if Action not in ("Shut down","Restart","Logout"): messagebox.showerror("Error","Select Options first") return 0 if h not in chack: messagebox.showerror("Error","Invalid hour") return 0 if H not in chack: messagebox.showerror("Error","Invalid hour") return 0 if m not in chackm: messagebox.showerror("Error","Invalid minute") return 0 if M not in chackm: messagebox.showerror("Error","Invalid minute") return 0 if s not in chacks: messagebox.showerror("Error","Invalid second") return 0 if S not in chacks: messagebox.showerror("Error","Invalid second") return 0 if h=='H': h='0' if H=='H': H='0' if m=='M': m='0' if M=='M': M='0' if s=='S': s='0' if S=='S': S='0' Ghanta=(h+H) Minate=(m+M) Seconde=(s+S) HOUR=int(Ghanta) MIN=int(Minate) SEC=int(Seconde) if HOUR ==0 and MIN==0 and SEC==0: if Action=='Shut down': result=messagebox.askquestion("SHOW INFO","System will shut down Immediate") if result=='yes': os.system("shutdown -s -t 00") root.destroy() if Action=='Restart': result=messagebox.askquestion("SHOW INFO","System will Restart Immediate") if result=='yes': os.system("shutdown -r -t 00") root.destroy() if Action=='Logout': result=messagebox.askquestion("SHOW INFO","System will LogOut Immediate") if result=='yes': os.system("shutdown -l -t 00") root.destroy() TIME=HOUR*60 TIME=TIME+MIN Timesec=TIME*60 Timesec=Timesec+SEC if Action=="Shut down": command="shutdown -s -t " Shut=command+str(Timesec) result=messagebox.askquestion("TIME SET","System will down in %d Hour %d Min %d Sec"%(HOUR,MIN,SEC)) if result=='yes': os.system(Shut) root.destroy() if Action=="Restart": commande="shutdown -r -t " SRestart=commande+str(Timesec) result=messagebox.askquestion("TIME SET","System will Restart in %d Hour %d Min %d Sec"%(HOUR,MIN,SEC)) if result=='yes': os.system(SRestart) root.destroy() if Action=="Logout": comm="shutdown -l -t " Lock=comm+str(Timesec) result=messagebox.askquestion("TIME SET","System will LogOut in %d Hour %d Min %d Sec"%(HOUR,MIN,SEC)) if result=='yes': os.system(Lock) root.destroy() root=Tk() root.title("Computer Timer") root.geometry("600x600+350+50") fontsize=3 frm=Frame(root,width=600,height=800,bg="lightblue") canvas=Canvas(frm,width=300,height=190,bg="black") canv=Canvas(frm,width=300,height=15,bg="white") can=Canvas(frm,width=300,height=15,bg="black") computer=Label(canv,text="COMPUTER",font=fontsize,bg="white") computer.place(x=110,y=0) canvas.place(x=150,y=50) canv.place(x=150,y=240) can.place(x=150,y=270) h=Label(frm,text="HOUR",font=fontsize,bg="lightblue") h.place(x=210,y=390) m=Label(frm,text="MINUTE",font=fontsize,bg="lightblue") m.place(x=280,y=390) s=Label(frm,text="SECOND",font=fontsize,bg="lightblue") s.place(x=360,y=390) V=["Shut down","Restart","Logout"] combo=Combobox(frm,values=V,width=20) combo.set("Select") combo.place(x=230,y=350) H=list(range(0,10)) hour=Combobox(frm,values=H,width=2) hour.place(x=200,y=410) hour.set("H") Hour=Combobox(frm,values=H,width=2) Hour.place(x=235,y=410) Hour.set("H") mint=Combobox(frm,values=H,width=2) mint.set("M") Mint=Combobox(frm,values=H,width=2) Mint.set("M") mint.place(x=280,y=410) Mint.place(x=315,y=410) sec=Combobox(frm,values=H,width=2) sec.set("S") Sec=Combobox(frm,values=H,width=2) Sec.set("S") sec.place(x=360,y=410) Sec.place(x=395,y=410) button=Button(frm,text=" Done ",bg="gray",command=final) button.place(x=290,y=510) clearbutton=Button(frm,text=" Clear ",bg="gray",command=Clear) clearbutton.place(x=200,y=510) Cancelbutton=Button(frm,text=" Cancel ",bg="gray",command=Cancel) Cancelbutton.place(x=380,y=510) frm.pack() root.mainloop()
[ "noreply@github.com" ]
surajmishra57.noreply@github.com
916739e2b47fd6b0bdc3b3d4a294774d7c172611
9f7631c2d987a33a9b7f2c2da38bf9369eac92bd
/test_segmentor.py
2c96cbdc374287eac5fa659ce15d39692caa3742
[ "MIT" ]
permissive
Leo-xxx/kissing-detector
2a605837991bfc8c1dafcf38fb2cd758271592c2
df44f229c4f5160a792c4a6dc6d98d6817910df0
refs/heads/master
2020-06-02T18:56:18.249555
2019-06-12T12:57:00
2019-06-12T12:57:00
191,274,160
0
0
null
2019-06-11T01:52:17
2019-06-11T01:52:16
null
UTF-8
Python
false
false
641
py
import unittest from segmentor import Segmentor class TestSegmentor(unittest.TestCase): def test_segmentor(self): tests = [ ([1, 1, 0, 1, 0, 0, 1, 0, 1], [[0, 1, 2, 3]]), ([1, 1, 0, 1, 1, 0, 1, 0, 1], [[0, 1, 2, 3, 4, 5, 6]]), ([1, 1, 0, 1, 1, 0, 1, 1, 1], [list(range(0, 8 + 1))]), ([1, 1, 1, 0, 1], [[0, 1, 2, 3, 4]]), ([0, 0, 0, 0, 0], []), ([1] * 7 + [0] * 3, [list(range(7))]) ] min_frames = 4 threshold = 0.7 for ex, exp in tests: self.assertEqual(exp, Segmentor._segmentor(ex, min_frames, threshold))
[ "arziai@gmail.com" ]
arziai@gmail.com
6ddebb5147754b838b6cdfe50c7b3136c205898e
bd47e29dd98a30da16fab7541e2fa486779571c9
/AIAssignment/PA1_MT18099_Kshitij_Srivastava/Question 2/printGrid.py
fa3f0d133e2fb2ad5147cb659cbb4878fd6c1c29
[]
no_license
kshitijsriv/Artificial-Intelligence-Fall-2018
35a96381c7a109164de5b861a5ef81400abb34b3
f14656a40e830eaf59122082162fe887eba3e8a9
refs/heads/master
2023-05-03T07:07:20.164863
2021-05-18T20:22:00
2021-05-18T20:22:00
368,656,677
0
0
null
null
null
null
UTF-8
Python
false
false
142
py
def prnt(grid, n): for i in list(range(n)): for j in list(range(n)): print(grid[(i * n) + j], end=' ') print()
[ "kshitij18099@iiitd.ac.in" ]
kshitij18099@iiitd.ac.in
7004e91d73dfb7ae5323ceb1a1e9816b5ac70c53
1ea1ffa610838c6161f5dcaab6fbfe6341aaa902
/BB_MesoWest/MesoWest_STNinfo.py
16182f7f04f86a093c3954ad74e64f3709fbe9c6
[]
no_license
johnhorel/pyBKB_v2
7611e1562e130abad911f02dc9d6b34966a6eaa3
6e04bea50666dfc34ec4b6035729bd2d4c807b12
refs/heads/master
2020-12-30T15:09:34.573208
2017-05-12T18:02:01
2017-05-12T18:02:01
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,322
py
# Brian Blaylock # Version 2.0 update # 8 November 2016 (Trump vs. Clinton Presidential Election) """ Get basic metadata for a list of station IDs """ import json import urllib2 from get_token import my_token # returns my personal token import numpy as np # Get your own key and token from here: https://mesowest.org/api/signup/ token = my_token() def get_station_info(stationIDs): """ Get the metadata info for a list of stations and return it as a dictionary. Input: stationIDs : list of station IDs as a string ['UKBKB', 'KSLC', 'WBB'] Output: A dictionary of the data you are looking for: - Latitude - Longitude - Station Name - Elevation - URL """ # Check that the input is a list of stations. if type(stationIDs) != list: return "List of stations is required! s = ['KSLC', 'WBB', 'MTMET']" else: # Convert stationID list to a string deliminated by a comma stations = ','.join(stationIDs) # The API request URL URL = 'http://api.mesowest.net/v2/stations/metadata?&token=' + token \ + '&stid=' + stations try: # Open URL, read the content, and convert JSON to python readable form. f = urllib2.urlopen(URL) data = f.read() data = json.loads(data) stnid = np.array([]) name = np.array([]) lat = np.array([]) lon = np.array([]) time_zone = np.array([]) for i in data['STATION']: name = np.append(name, str(i['NAME'])) stnid = np.append(stnid, str(i['STID'])) lat = np.append(lat, float(i['LATITUDE'])) lon = np.append(lon, float(i['LONGITUDE'])) time_zone = np.append(time_zone, str(i['TIMEZONE'])) data_dict = {'URL': URL, 'NAME': name, 'STNID': stnid, 'LAT': lat, 'LON': lon, 'TIME_ZONE': time_zone } return data_dict except: print 'errors loading:', URL #--- Example -----------------------------------------------------------------# if __name__ == "__main__": STATION = ['kslc', 'ukbkb', 'klax', 'kims', 'kjfk'] A = get_station_info(STATION)
[ "blaylockbk@gmail.com" ]
blaylockbk@gmail.com
b9aaef4ba11145f2ffbea561b6705b86c14b215a
13cd6c2d28c3df0daa0a90f856275197410973f4
/balance.py
33e763e2abe4aa551ef4e8f2be4400e56211b26c
[]
no_license
ccnsd/balance
095501048cec3b50cdc9901ec92052b87ef024e3
52ae8cd33698c3db1abcf802692be6254b05987c
refs/heads/master
2020-04-05T10:37:32.988955
2018-12-09T08:12:01
2018-12-09T08:12:01
156,804,928
1
0
null
null
null
null
UTF-8
Python
false
false
7,137
py
import numpy as np import networkx as nx import random class TriangularBalance: def __init__(self, size, initialRatio, AgeExponent, noiseType): # Size of the networ self.Size = size # Caclulate the number of triangles connected to one link self.TrianglesOnLink = self.LinkTriangles() # Calculate the number of all triangles in the fully connected network self.Triangles = self.TriangleCount() # The portion of friendly link self.InitRatio = initialRatio # The age factor self.AgeExponent = AgeExponent # The type of noise in memory self.NoiseType = noiseType # This will initialize the network based on given parameters self.NetworkInitiator() # region Initial Functions # Count all the triangles in network def TriangleCount(self): numinator = (self.Size) * (self.Size - 1) * (self.Size - 2) denominator = 6 return(numinator/denominator) # Count the triangles connected to a link def LinkTriangles(self): trianglesOnLink = self.Size - 2 return(trianglesOnLink) # This function initializes the network at the begining of the run def NetworkInitiator(self): # Generate a matrix with random elements between 0 and 1 tempMatrix = np.random.rand(self.Size, self.Size) # Change elements smaller than friendship ratio to -1 (Will be changed to 1 soon) tempMatrix[tempMatrix < self.InitRatio] = -1 # Change elements greater than friendship ratio to 1 (Will be changed to -1 soon) tempMatrix[tempMatrix >= self.InitRatio] = 1 # The Created marix is not symmetric (and does not reperesnt a Graph) so we symmetrize it by this trick # Another point is that we change the sign of links here as we promised earlier adjMatrix = np.tril(-tempMatrix, -1) + np.tril(-tempMatrix, -1).T # Put this matrix to the class InitialNetwork and Network self.InitialNetwork = adjMatrix # To save the initial state we store the network in another variable self.Network = self.InitialNetwork # Birth matrix self.BirthTime = np.zeros((self.Size, self.Size)) # Time of system self.SystemTime = 1 # Calculate the Energy of our network self.Energy = self.NetworkEnergy() # This function calculates the total energy of the netwrok def NetworkEnergy(self): # Calculate the sum of product of all two pairs on each link netLen2Path = np.matmul(self.Network, self.Network) # Calculate the energy of all triangles on each link # (not exactly energy it needs a multiply by -1 to be energy) energyMat = np.multiply(self.Network, netLen2Path) # Every link is counted 2 times unnormalTotalEnergy = np.sum(energyMat) / 2 # Every triangle is counted 3 times unnormalTotalEnergy = unnormalTotalEnergy / 3 # We want energy to be between -1 to +1 totalEnergy = float(-unnormalTotalEnergy) / self.Triangles return(totalEnergy) # endregion # region Dynamics # Calculation of the attribution of one link in the total energy of the network def LinkEnergy(self, adjTuple): # Get the link's sign linkSign = self.Network[adjTuple] # Adjacent links linkRow = self.Network[adjTuple[0]] linkCol = self.Network[adjTuple[1]] # The energy of triangles on the link linkEng = float(-1.0 * np.inner(linkRow, linkCol) * linkSign) / self.Triangles return(linkEng) def LinkEnergyCheck(self, linkEnergy, linkSign): # This part is for manipulating E=0 case randomSign = random.sample((1, -1), 1) addedEnergy = randomSign[0] / (2 * self.Triangles) tempEnergy = linkEnergy + addedEnergy # ************************************** # link's new sign and energy change tempSign = - np.sign(tempEnergy) * linkSign delta = abs(tempSign - linkSign) * linkEnergy # ********************************* return([delta, tempSign]) def LinkBaseDynamics(self): # choose a random link link = tuple(random.sample(range(0, self.Size-1), 2)) # get the sign linkSign = self.Network[link] # link energy linkEnergy = self.LinkEnergy(link) # check if it will change engStat = self.LinkEnergyCheck(linkEnergy, linkSign) # how much the sign should change signChange = linkSign - engStat[1] # change system's energy and link's sign self.Energy -= engStat[0] self.Network[link] -= signChange self.Network[link[1]][link[0]] -= signChange def BaseDynamics(self): # dynamics time length itterateLength = self.Size ** self.ItterateExp TimeLine = np.zeros((itterateLength,2)) for Time in range(itterateLength): TimeLine[Time,0] = self.Network.mean() TimeLine[Time,1] = self.Energy self.LinkBaseDynamics() return(TimeLine) def LinkAgeCheck(self, Age): # chack if link's age accepts the change agePass = int(random.random() < float(Age) ** (self.AgeExponent - 1)) return agePass def LinkAgedDynamics(self, Time): # choose a random link link = tuple(random.sample(range(0, self.Size-1), 2)) # get the sign linkSign = self.Network[link] # link energy linkEnergy = self.LinkEnergy(link) # get the age of link linkAge = Time - self.BirthTime[link] # check if it will change due to energy engStat = self.LinkEnergyCheck(linkEnergy, linkSign) # check if the age permits the change ageStat = self.LinkAgeCheck(linkAge) # how much the enegy changes enrgChanged = engStat[0] * ageStat # how the sign changes signChange = linkSign - engStat[1] # is the change happens? acceptStat = signChange * ageStat # apply the changes self.Energy -= enrgChanged self.Network[link] -= acceptStat self.Network[link[1]][link[0]] -= acceptStat self.BirthTime[link] += acceptStat * linkAge / 2 self.BirthTime[link[1]][link[0]]+= acceptStat * linkAge / 2 def AgedDynamics(self): # print("Aged Dynamics") # dynamics time length itterateLength = self.Size ** self.ItterateExp TimeLine = np.zeros((itterateLength,2)) for Time in range(itterateLength): TimeLine[Time,0] = self.Network.mean() TimeLine[Time,1] = self.Energy self.LinkAgedDynamics(Time + 1) return(TimeLine) def TriadDynamics(self, itterateExp): self.ItterateExp = itterateExp # check if system has age or not aged = 0 < self.AgeExponent < 1 self.TimeLine = self.AgedDynamics() if aged else self.BaseDynamics() # endregion
[ "mhoseinhs@gmail.com" ]
mhoseinhs@gmail.com
ba5cdbf4af013697934cd32d9a81f63202ca1ec1
9bade1e19d1fe61324e1b0d0d0b2fb650b618b70
/ch2/tasks_proj/tests/unit/test_task.py
b003f7eeda9e2f47e9d8065d06ab459a9aac6a8a
[]
no_license
Vermee81/practicePytest
6d998064c7892495cb11630cd70ecdeafc7ced04
df85e800f3d57f98017c6ab2bf7c176d605469e7
refs/heads/master
2021-06-16T05:26:10.885007
2019-06-11T12:59:02
2019-06-11T12:59:02
191,372,066
0
0
null
2021-04-20T18:19:24
2019-06-11T12:58:14
Python
UTF-8
Python
false
false
996
py
from tasks import Task def test_asdict(): """_asdict() should return a dictionary.""" t_task = Task('do something', 'Okken', True, 21) t_dict = t_task._asdict() expected = {'summary': 'do something', 'owner': 'Okken', 'done': True, 'id': 21} assert t_dict == expected def test_replace(): """_replace() should change passed in fields""" t_before = Task('do something', 'Taro', False, 22) t_after= t_before._replace(summary='replaced summary', done = True) t_expected = Task('replaced summary', 'Taro', True, 22) assert t_after == t_expected def test_defaults(): """Using no parameters should invoke defaults.""" t1 = Task() t2 = Task(None, None, False, None) assert t1 == t2 def test_member_access(): """Check .field functionality of named tuple.""" t = Task('buy milk', 'Hanako', False) assert t.summary == 'buy milk' assert t.owner == 'Hanako' assert t.done == False
[ "hrksb5029@gmail.com" ]
hrksb5029@gmail.com
9673ba1b310997112ef86dc58e7a09bede97e40e
f0d713996eb095bcdc701f3fab0a8110b8541cbb
/oQ99uE4iPNbEnf9QZ_8.py
98e927384c07bf13e06fc0c934083fe3ce3dac4c
[]
no_license
daniel-reich/turbo-robot
feda6c0523bb83ab8954b6d06302bfec5b16ebdf
a7a25c63097674c0a81675eed7e6b763785f1c41
refs/heads/main
2023-03-26T01:55:14.210264
2021-03-23T16:08:01
2021-03-23T16:08:01
350,773,815
0
0
null
null
null
null
UTF-8
Python
false
false
872
py
""" Given a known number of unique items, how many ways could we arrange them in a row? Create a function that takes an integer `n` and returns the number of digits of the number of possible permutations for `n` unique items. For instance, 5 unique items could be arranged in 120 unique ways. 120 has 3 digits, hence the integer `3` is returned. ### Examples no_perms_digits(0) ➞ 1 no_perms_digits(1) ➞ 1 no_perms_digits(5) ➞ 3 no_perms_digits(8) ➞ 5 ### Notes This challenge requires some understanding of combinatorics. """ import sys sys.setrecursionlimit(10**6) ​ def no_perms_digits(num, i=0, total=1): if i == num: if total // 10 == 0: return 1 else: return 1 + no_perms_digits(num, i, total // 10) else: return no_perms_digits(num, i + 1, total * (i + 1))
[ "daniel.reich@danielreichs-MacBook-Pro.local" ]
daniel.reich@danielreichs-MacBook-Pro.local
0a3fc9f2dc890b6e2efaa610973cc13c5a947a43
b5ae0120287b7b6dcd26e65f4292ba81a29f1a1f
/basicwebapp/wsgi.py
fdafd5ef5f6f01a30de1dadab33001f70dbf31ce
[]
no_license
rnvarma/basicwebapp
d96a074a3afa6d95d35b04e06c627416db8aa36c
1f52c7d377e1e36acd6a75846a2d77a8a8252e13
refs/heads/master
2021-01-10T05:17:01.842320
2015-11-09T22:51:14
2015-11-09T22:51:14
45,871,545
0
0
null
null
null
null
UTF-8
Python
false
false
399
py
""" WSGI config for basicwebapp project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.8/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "basicwebapp.settings") application = get_wsgi_application()
[ "rohan@prompthire.com" ]
rohan@prompthire.com
501738ec710801e81d9ab4e1f7ef15ccbeea5e65
12e04c219d6911d06a048c913f8d8d6c00dad857
/chendian/member/forms.py
d494a75608722225651d47661ad908497bd17ee9
[ "MIT" ]
permissive
mozillazg/chendian-plus
928e98beb77f351e08b25a5ba9671ad648dac4b5
893c62b4b855879006d4cb378faeb9d1c6635923
refs/heads/master
2023-09-04T09:58:58.112022
2017-04-04T09:44:28
2017-04-04T09:44:28
31,481,576
0
2
null
null
null
null
UTF-8
Python
false
false
434
py
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import absolute_import, print_function, unicode_literals from django import forms from django.contrib.auth.forms import AuthenticationForm class LoginForm(AuthenticationForm): error_messages = { 'invalid_login': '用户名或密码错误!', 'no_cookies': '您的浏览器没有启用 Cookies!', 'inactive': '此账户未激活!', }
[ "opensource.mozillazg@gmail.com" ]
opensource.mozillazg@gmail.com
ebea53bffcd6e69af4d785a1455f144ba9b50975
e9aeb4d00fe6758a51d9982c3e1af1e456a9e244
/funcion.py
119144c450d8e1880a6bc8dbbd98c49b30da90ad
[]
no_license
PacoBocanegra/myproject
ae365ca3aaa37699355eed1bd5ae950a241e74d0
976a70987c87003ba36ecec11894e37d4725c8ac
refs/heads/master
2020-04-07T03:14:20.866838
2019-04-10T10:28:02
2019-04-10T10:28:02
158,008,209
0
1
null
null
null
null
UTF-8
Python
false
false
168
py
def contador(unaLista): unDict = {} for valores in unaLista: if valores not in unDict.keys(): unDict[valores] = 1 else: unDict[valores] += 1 return unDict
[ "noreply@github.com" ]
PacoBocanegra.noreply@github.com
496ed58b9cc4cf8030a102eaf9e3214dbf825d58
b7395bf3c8e209a8b2f0ace1b7e763ed76cd0b25
/HSE/smith_waterman/smith_waterman.py
f06680fd29cdc7f0c54c197dcf0544a0042c410d
[]
no_license
antosiv/study_progs
9f7ceb28f33211211bfe43f9af21cf68e745e338
9ec3fb4313f28b662635c8693e0f435d6b75187b
refs/heads/master
2022-12-08T18:04:56.410185
2021-07-27T13:31:57
2021-07-27T14:31:04
133,510,616
0
0
null
2022-11-23T22:27:38
2018-05-15T12:07:34
Jupyter Notebook
UTF-8
Python
false
false
7,166
py
import numpy as np import argparse import os class Node: def __init__(self, value): self.diag = None self.up = None self.left = None self.value = value def build_alignment_tree(seq1, seq2, similar_score=1, gap_penalty=1, mismatch_penalty=1): assert isinstance(seq1, str) and isinstance(seq2, str), 'Sequences are not strings' score_matrix = np.zeros((len(seq1) + 1, len(seq2) + 1)) for i in range(1, len(seq1) + 1): for j in range(1, len(seq2) + 1): if seq1[i - 1] == seq2[j - 1]: current_similarity = similar_score else: current_similarity = mismatch_penalty * -1 score_matrix[i, j] = max( score_matrix[i - 1, j - 1] + current_similarity, score_matrix[i - 1, j] - gap_penalty, score_matrix[i, j - 1] - gap_penalty, 0 ) start_position = tuple( np.unravel_index( np.argmax(score_matrix), shape=score_matrix.shape ) ) root = Node(start_position) current_positions = [root] while len(current_positions) > 0: next_positions = list() for node in current_positions: if seq1[node.value[0] - 1] == seq2[node.value[1] - 1]: current_similarity = similar_score else: current_similarity = mismatch_penalty * -1 for step_score, coordinates, direction in \ (current_similarity, (node.value[0] - 1, node.value[1] - 1), 'diag'), \ (-1 * gap_penalty, (node.value[0] - 1, node.value[1]), 'up'), \ (-1 * gap_penalty, (node.value[0], node.value[1] - 1), 'left'): if coordinates[0] > 0 and \ coordinates[1] > 0 and \ score_matrix[coordinates[0], coordinates[1]] > 0 and \ score_matrix[coordinates[0], coordinates[1]] + step_score == \ score_matrix[node.value[0], node.value[1]]: setattr(node, direction, Node(value=coordinates)) next_positions.append(getattr(node, direction)) current_positions = next_positions return root, score_matrix def extract_alignments_recursive(root, final_paths, prefix=None): if prefix is None: prefix = list() prefix.append(root.value) for direction in root.left, root.up, root.diag: leaf = True if direction is not None: leaf = False extract_alignments_recursive(direction, final_paths, prefix.copy()) if leaf: final_paths.append(prefix) def extract_alignments_from_root(root): result = list() extract_alignments_recursive(root, result) return result def alignment_path_to_seqs(alignment_path, seq1, seq2): result = [[], []] for i in range(len(alignment_path) - 1): if alignment_path[i] == (alignment_path[i + 1][0] + 1, alignment_path[i + 1][1] + 1): result[0].append(seq1[alignment_path[i][0] - 1]) result[1].append(seq2[alignment_path[i][1] - 1]) elif alignment_path[i] == (alignment_path[i + 1][0] + 1, alignment_path[i + 1][1]): result[0].append(seq1[alignment_path[i][0] - 1]) result[1].append('-') elif alignment_path[i] == (alignment_path[i + 1][0], alignment_path[i + 1][1] + 1): result[0].append('-') result[1].append(seq2[alignment_path[i][1] - 1]) else: raise ValueError('Invalid alignment path: {p}'.format(p=alignment_path)) result[0].append(seq1[alignment_path[-1][0] - 1]) result[1].append(seq2[alignment_path[-1][1] - 1]) return result def align(seq1, seq2, similar_score=1, gap_penalty=1, mismatch_penalty=1, print_info=True): alignment_tree_root, score_matrix = build_alignment_tree( seq1, seq2, similar_score=similar_score, gap_penalty=gap_penalty, mismatch_penalty=mismatch_penalty ) alignments_coordinates = extract_alignments_from_root(alignment_tree_root) alignments = [alignment_path_to_seqs(item, seq1, seq2) for item in alignments_coordinates] if print_info: print('Sequence 1:', seq1) print('Sequence 2:', seq2) row_names = ' ' + seq1 print( 'Score matrix:', '\t\t' + '\t'.join(seq2), *(row_names[i] + '\t' + '\t'.join(map(str, score_matrix[i, :])) for i in range(score_matrix.shape[0])), sep='\n' ) print('Best alignment score: {s}'.format(s=np.max(score_matrix))) for alignment_path, alignment in zip(alignments_coordinates, alignments): print('\nAlignment:', ''.join(alignment[0][::-1]), ''.join(alignment[1][::-1]), sep='\n') path_matrix = np.full(score_matrix.shape, ' ', dtype='U') for i in range(len(alignment_path) - 1): if alignment_path[i] == (alignment_path[i + 1][0] + 1, alignment_path[i + 1][1] + 1): path_matrix[alignment_path[i][0], alignment_path[i][1]] = '\\' elif alignment_path[i] == (alignment_path[i + 1][0] + 1, alignment_path[i + 1][1]): path_matrix[alignment_path[i][0], alignment_path[i][1]] = '|' elif alignment_path[i] == (alignment_path[i + 1][0], alignment_path[i + 1][1] + 1): path_matrix[alignment_path[i][0], alignment_path[i][1]] = '-' path_matrix[alignment_path[-1][0], alignment_path[-1][1]] = '\\' print('Alignment path:') print( ' | | ' + ' | '.join(seq2) + ' |', *(' | '.join((row_names[i], *path_matrix[i, :])) + ' |' for i in range(path_matrix.shape[0])), sep='\n' + '---' + '----' * (path_matrix.shape[1]) + '\n' ) return alignments def main(args): seqs = [args.seq1, args.seq2] for i, attribute in zip(range(2), ('seq1', 'seq2')): if os.path.exists(getattr(args, attribute)): with open(getattr(args, attribute)) as input_d: seqs[i] = input_d.read() return align( seq1=seqs[0], seq2=seqs[1], gap_penalty=args.gap_penalty, mismatch_penalty=args.mismatch_penalty, similar_score=args.similar_score ) if __name__ == '__main__': examples = """Examples: python3 smith_waterman.py --seq1 AAAA --seq2 AAAA python3 smith_waterman.py --seq1 file.txt --seq2 AAAA """ parser = argparse.ArgumentParser( description='Smith-Waterman algorithm implementation', epilog=examples, formatter_class=argparse.RawDescriptionHelpFormatter ) parser.add_argument('--seq1', required=True, help='path to .txt file with sequence or sequence string') parser.add_argument('--seq2', required=True, help='path to .txt file with sequence or sequence string') parser.add_argument('--similar_score', default=1, required=False) parser.add_argument('--gap_penalty', default=1, required=False) parser.add_argument('--mismatch_penalty', default=1, required=False) main(parser.parse_args())
[ "anton6722@gmail.com" ]
anton6722@gmail.com
794e7f2d349b256ab00c025b5646697ca1a79a20
bc2aaafbd154c3b116b393881213747979238c9f
/coding_challenge.py
6cd92649b448fadd45100c18b31383326f11e935
[]
no_license
victor-gesit/udemy-python-bootcamp
787570f9f243809dddfbf490438d8422cd4c01a3
4c47dcdf35c6c69b3f7c647f9a50676d9a2c7401
refs/heads/master
2020-03-26T14:53:50.765381
2018-08-16T16:04:52
2018-08-16T16:04:52
145,010,652
0
0
null
null
null
null
UTF-8
Python
false
false
645
py
import re def adds_to_ten(a_string): for number in range(0, len(a_string)): letter = a_string[number] try: number = int(letter) except: print(a_string[number:number+3:1], number, a_string[number-1], letter*3) print(a_string[number:number+3:1] == letter*3 and a_string[number+4] != letter and a_string[number-1] != letter) def find_3_letters_between(a_string): for number in range(0, len(a_string) - 4): letter = a_string[number] matches = a_string[number:number+3:1] == letter*3 and a_string[number+4] == letter and a_string[number-1] != letter print(matches) find_3_letters_between('ababaaab')
[ "victoridongesit@gmail.com" ]
victoridongesit@gmail.com
c1cbaa23a1aaaec6e5a3843f37f57011a4402b8d
7213ae1a7a1677d17d11cdc2827221ee8ced4f9c
/Baek_jun/2292.py
b67d534f18b44bf42ff155713c5c97013813a389
[]
no_license
eat-toast/Algorithm
c532fbdc9e8faa2205dd0a7ab333a8c98f7c16e2
f82c6fdc763c434ca2cc3bf86ee8378503d019f1
refs/heads/master
2021-10-24T23:52:38.482506
2019-03-30T08:28:07
2019-03-30T08:28:07
112,037,874
0
0
null
null
null
null
UTF-8
Python
false
false
280
py
N = int( input() ) step = 1 old_num = 1 if N == 1: print(1) else: while(1): max_num = 6*step + old_num if old_num < N <= max_num: print(step+1) break else: step += 1 old_num = max_num
[ "noreply@github.com" ]
eat-toast.noreply@github.com
d078d98ab762bb1d1a429ab405b5e969885c2172
8bcf7c1ed213d5a296d592a420b3d678f01ff716
/stack_and_queue/ANARC09A.py
b6aaf653865fde7ac201ca8d253c099faf4230a2
[]
no_license
cskanani/codechef_prepare
237b65455c2294c4a96d72cfa4cdecb8734b48ee
36075328b0f52dc6237a96a4094358128327dc0b
refs/heads/master
2020-12-03T14:11:04.963970
2020-03-05T17:29:23
2020-03-05T17:29:23
231,349,403
2
0
null
null
null
null
UTF-8
Python
false
false
623
py
parantheses_string = input().strip() ans_number = 0 while '-' not in parantheses_string: ans_number += 1 operations_required = 0 bracket_count = 0 # to simmulate stack for i in range(len(parantheses_string)): if parantheses_string[i] == '{': bracket_count += 1 elif bracket_count > 0 and parantheses_string[i] == '}': bracket_count -= 1 elif parantheses_string[i] == '}': operations_required += 1 bracket_count = 1 print('{}. {}'.format(ans_number, operations_required + bracket_count//2)) parantheses_string = input().strip()
[ "kananichandresh@gmail.com" ]
kananichandresh@gmail.com
6a463bc00a35e2a6151c42ca825513e6973d82ad
b653971414c2c8b144d2fcb63b214cd82523c4d0
/hdf5_getters.py
e92d561ca0873048680c1d52a02c820673422174
[ "MIT" ]
permissive
shirleycohen/MillionSong
b37a35a51fa997a8a118581605376f9dc389c72d
d5a31fe6bd32999555efc47226093f6bc7e09199
refs/heads/master
2021-01-18T04:12:53.666761
2017-03-23T19:49:07
2017-03-23T19:49:07
85,751,728
0
0
null
2017-03-21T20:47:51
2017-03-21T20:47:51
null
UTF-8
Python
false
false
22,184
py
""" Thierry Bertin-Mahieux (2010) Columbia University tb2332@columbia.edu This code contains a set of getters functions to access the fields from an HDF5 song file (regular file with one song or aggregate / summary file with many songs) This is part of the Million Song Dataset project from LabROSA (Columbia University) and The Echo Nest. Copyright 2010, Thierry Bertin-Mahieux This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ import tables def open_h5_file_read(h5filename): """ Open an existing H5 in read mode. Same function as in hdf5_utils, here so we avoid one import """ return tables.openFile(h5filename, mode='r') def get_num_songs(h5): """ Return the number of songs contained in this h5 file, i.e. the number of rows for all basic informations like name, artist, ... """ return h5.root.metadata.songs.nrows def get_artist_familiarity(h5,songidx=0): """ Get artist familiarity from a HDF5 song file, by default the first song in it """ return h5.root.metadata.songs.cols.artist_familiarity[songidx] def get_artist_hotttnesss(h5,songidx=0): """ Get artist hotttnesss from a HDF5 song file, by default the first song in it """ return h5.root.metadata.songs.cols.artist_hotttnesss[songidx] def get_artist_id(h5,songidx=0): """ Get artist id from a HDF5 song file, by default the first song in it """ return h5.root.metadata.songs.cols.artist_id[songidx] def get_artist_mbid(h5,songidx=0): """ Get artist musibrainz id from a HDF5 song file, by default the first song in it """ return h5.root.metadata.songs.cols.artist_mbid[songidx] def get_artist_playmeid(h5,songidx=0): """ Get artist playme id from a HDF5 song file, by default the first song in it """ return h5.root.metadata.songs.cols.artist_playmeid[songidx] def get_artist_7digitalid(h5,songidx=0): """ Get artist 7digital id from a HDF5 song file, by default the first song in it """ return h5.root.metadata.songs.cols.artist_7digitalid[songidx] def get_artist_latitude(h5,songidx=0): """ Get artist latitude from a HDF5 song file, by default the first song in it """ return h5.root.metadata.songs.cols.artist_latitude[songidx] def get_artist_longitude(h5,songidx=0): """ Get artist longitude from a HDF5 song file, by default the first song in it """ return h5.root.metadata.songs.cols.artist_longitude[songidx] def get_artist_location(h5,songidx=0): """ Get artist location from a HDF5 song file, by default the first song in it """ return h5.root.metadata.songs.cols.artist_location[songidx] def get_artist_name(h5,songidx=0): """ Get artist name from a HDF5 song file, by default the first song in it """ return h5.root.metadata.songs.cols.artist_name[songidx] def get_release(h5,songidx=0): """ Get release from a HDF5 song file, by default the first song in it """ return h5.root.metadata.songs.cols.release[songidx] def get_release_7digitalid(h5,songidx=0): """ Get release 7digital id from a HDF5 song file, by default the first song in it """ return h5.root.metadata.songs.cols.release_7digitalid[songidx] def get_song_id(h5,songidx=0): """ Get song id from a HDF5 song file, by default the first song in it """ return h5.root.metadata.songs.cols.song_id[songidx] def get_song_hotttnesss(h5,songidx=0): """ Get song hotttnesss from a HDF5 song file, by default the first song in it """ return h5.root.metadata.songs.cols.song_hotttnesss[songidx] def get_title(h5,songidx=0): """ Get title from a HDF5 song file, by default the first song in it """ return h5.root.metadata.songs.cols.title[songidx] def get_track_7digitalid(h5,songidx=0): """ Get track 7digital id from a HDF5 song file, by default the first song in it """ return h5.root.metadata.songs.cols.track_7digitalid[songidx] def get_similar_artists(h5,songidx=0): """ Get similar artists array. Takes care of the proper indexing if we are in aggregate file. By default, return the array for the first song in the h5 file. To get a regular numpy ndarray, cast the result to: numpy.array( ) """ if h5.root.metadata.songs.nrows == songidx + 1: return h5.root.metadata.similar_artists[h5.root.metadata.songs.cols.idx_similar_artists[songidx]:] return h5.root.metadata.similar_artists[h5.root.metadata.songs.cols.idx_similar_artists[songidx]: h5.root.metadata.songs.cols.idx_similar_artists[songidx+1]] def get_artist_terms(h5,songidx=0): """ Get artist terms array. Takes care of the proper indexing if we are in aggregate file. By default, return the array for the first song in the h5 file. To get a regular numpy ndarray, cast the result to: numpy.array( ) """ if h5.root.metadata.songs.nrows == songidx + 1: return h5.root.metadata.artist_terms[h5.root.metadata.songs.cols.idx_artist_terms[songidx]:] return h5.root.metadata.artist_terms[h5.root.metadata.songs.cols.idx_artist_terms[songidx]: h5.root.metadata.songs.cols.idx_artist_terms[songidx+1]] def get_artist_terms_freq(h5,songidx=0): """ Get artist terms array frequencies. Takes care of the proper indexing if we are in aggregate file. By default, return the array for the first song in the h5 file. To get a regular numpy ndarray, cast the result to: numpy.array( ) """ if h5.root.metadata.songs.nrows == songidx + 1: return h5.root.metadata.artist_terms_freq[h5.root.metadata.songs.cols.idx_artist_terms[songidx]:] return h5.root.metadata.artist_terms_freq[h5.root.metadata.songs.cols.idx_artist_terms[songidx]: h5.root.metadata.songs.cols.idx_artist_terms[songidx+1]] def get_artist_terms_weight(h5,songidx=0): """ Get artist terms array frequencies. Takes care of the proper indexing if we are in aggregate file. By default, return the array for the first song in the h5 file. To get a regular numpy ndarray, cast the result to: numpy.array( ) """ if h5.root.metadata.songs.nrows == songidx + 1: return h5.root.metadata.artist_terms_weight[h5.root.metadata.songs.cols.idx_artist_terms[songidx]:] return h5.root.metadata.artist_terms_weight[h5.root.metadata.songs.cols.idx_artist_terms[songidx]: h5.root.metadata.songs.cols.idx_artist_terms[songidx+1]] def get_analysis_sample_rate(h5,songidx=0): """ Get analysis sample rate from a HDF5 song file, by default the first song in it """ return h5.root.analysis.songs.cols.analysis_sample_rate[songidx] def get_audio_md5(h5,songidx=0): """ Get audio MD5 from a HDF5 song file, by default the first song in it """ return h5.root.analysis.songs.cols.audio_md5[songidx] def get_danceability(h5,songidx=0): """ Get danceability from a HDF5 song file, by default the first song in it """ return h5.root.analysis.songs.cols.danceability[songidx] def get_duration(h5,songidx=0): """ Get duration from a HDF5 song file, by default the first song in it """ return h5.root.analysis.songs.cols.duration[songidx] def get_end_of_fade_in(h5,songidx=0): """ Get end of fade in from a HDF5 song file, by default the first song in it """ return h5.root.analysis.songs.cols.end_of_fade_in[songidx] def get_energy(h5,songidx=0): """ Get energy from a HDF5 song file, by default the first song in it """ return h5.root.analysis.songs.cols.energy[songidx] def get_key(h5,songidx=0): """ Get key from a HDF5 song file, by default the first song in it """ return h5.root.analysis.songs.cols.key[songidx] def get_key_confidence(h5,songidx=0): """ Get key confidence from a HDF5 song file, by default the first song in it """ return h5.root.analysis.songs.cols.key_confidence[songidx] def get_loudness(h5,songidx=0): """ Get loudness from a HDF5 song file, by default the first song in it """ return h5.root.analysis.songs.cols.loudness[songidx] def get_mode(h5,songidx=0): """ Get mode from a HDF5 song file, by default the first song in it """ return h5.root.analysis.songs.cols.mode[songidx] def get_mode_confidence(h5,songidx=0): """ Get mode confidence from a HDF5 song file, by default the first song in it """ return h5.root.analysis.songs.cols.mode_confidence[songidx] def get_start_of_fade_out(h5,songidx=0): """ Get start of fade out from a HDF5 song file, by default the first song in it """ return h5.root.analysis.songs.cols.start_of_fade_out[songidx] def get_tempo(h5,songidx=0): """ Get tempo from a HDF5 song file, by default the first song in it """ return h5.root.analysis.songs.cols.tempo[songidx] def get_time_signature(h5,songidx=0): """ Get signature from a HDF5 song file, by default the first song in it """ return h5.root.analysis.songs.cols.time_signature[songidx] def get_time_signature_confidence(h5,songidx=0): """ Get signature confidence from a HDF5 song file, by default the first song in it """ return h5.root.analysis.songs.cols.time_signature_confidence[songidx] def get_track_id(h5,songidx=0): """ Get track id from a HDF5 song file, by default the first song in it """ return h5.root.analysis.songs.cols.track_id[songidx] def get_segments_start(h5,songidx=0): """ Get segments start array. Takes care of the proper indexing if we are in aggregate file. By default, return the array for the first song in the h5 file. To get a regular numpy ndarray, cast the result to: numpy.array( ) """ if h5.root.analysis.songs.nrows == songidx + 1: return h5.root.analysis.segments_start[h5.root.analysis.songs.cols.idx_segments_start[songidx]:] return h5.root.analysis.segments_start[h5.root.analysis.songs.cols.idx_segments_start[songidx]: h5.root.analysis.songs.cols.idx_segments_start[songidx+1]] def get_segments_confidence(h5,songidx=0): """ Get segments confidence array. Takes care of the proper indexing if we are in aggregate file. By default, return the array for the first song in the h5 file. To get a regular numpy ndarray, cast the result to: numpy.array( ) """ if h5.root.analysis.songs.nrows == songidx + 1: return h5.root.analysis.segments_confidence[h5.root.analysis.songs.cols.idx_segments_confidence[songidx]:] return h5.root.analysis.segments_confidence[h5.root.analysis.songs.cols.idx_segments_confidence[songidx]: h5.root.analysis.songs.cols.idx_segments_confidence[songidx+1]] def get_segments_pitches(h5,songidx=0): """ Get segments pitches array. Takes care of the proper indexing if we are in aggregate file. By default, return the array for the first song in the h5 file. To get a regular numpy ndarray, cast the result to: numpy.array( ) """ if h5.root.analysis.songs.nrows == songidx + 1: return h5.root.analysis.segments_pitches[h5.root.analysis.songs.cols.idx_segments_pitches[songidx]:,:] return h5.root.analysis.segments_pitches[h5.root.analysis.songs.cols.idx_segments_pitches[songidx]: h5.root.analysis.songs.cols.idx_segments_pitches[songidx+1],:] def get_segments_timbre(h5,songidx=0): """ Get segments timbre array. Takes care of the proper indexing if we are in aggregate file. By default, return the array for the first song in the h5 file. To get a regular numpy ndarray, cast the result to: numpy.array( ) """ if h5.root.analysis.songs.nrows == songidx + 1: return h5.root.analysis.segments_timbre[h5.root.analysis.songs.cols.idx_segments_timbre[songidx]:,:] return h5.root.analysis.segments_timbre[h5.root.analysis.songs.cols.idx_segments_timbre[songidx]: h5.root.analysis.songs.cols.idx_segments_timbre[songidx+1],:] def get_segments_loudness_max(h5,songidx=0): """ Get segments loudness max array. Takes care of the proper indexing if we are in aggregate file. By default, return the array for the first song in the h5 file. To get a regular numpy ndarray, cast the result to: numpy.array( ) """ if h5.root.analysis.songs.nrows == songidx + 1: return h5.root.analysis.segments_loudness_max[h5.root.analysis.songs.cols.idx_segments_loudness_max[songidx]:] return h5.root.analysis.segments_loudness_max[h5.root.analysis.songs.cols.idx_segments_loudness_max[songidx]: h5.root.analysis.songs.cols.idx_segments_loudness_max[songidx+1]] def get_segments_loudness_max_time(h5,songidx=0): """ Get segments loudness max time array. Takes care of the proper indexing if we are in aggregate file. By default, return the array for the first song in the h5 file. To get a regular numpy ndarray, cast the result to: numpy.array( ) """ if h5.root.analysis.songs.nrows == songidx + 1: return h5.root.analysis.segments_loudness_max_time[h5.root.analysis.songs.cols.idx_segments_loudness_max_time[songidx]:] return h5.root.analysis.segments_loudness_max_time[h5.root.analysis.songs.cols.idx_segments_loudness_max_time[songidx]: h5.root.analysis.songs.cols.idx_segments_loudness_max_time[songidx+1]] def get_segments_loudness_start(h5,songidx=0): """ Get segments loudness start array. Takes care of the proper indexing if we are in aggregate file. By default, return the array for the first song in the h5 file. To get a regular numpy ndarray, cast the result to: numpy.array( ) """ if h5.root.analysis.songs.nrows == songidx + 1: return h5.root.analysis.segments_loudness_start[h5.root.analysis.songs.cols.idx_segments_loudness_start[songidx]:] return h5.root.analysis.segments_loudness_start[h5.root.analysis.songs.cols.idx_segments_loudness_start[songidx]: h5.root.analysis.songs.cols.idx_segments_loudness_start[songidx+1]] def get_sections_start(h5,songidx=0): """ Get sections start array. Takes care of the proper indexing if we are in aggregate file. By default, return the array for the first song in the h5 file. To get a regular numpy ndarray, cast the result to: numpy.array( ) """ if h5.root.analysis.songs.nrows == songidx + 1: return h5.root.analysis.sections_start[h5.root.analysis.songs.cols.idx_sections_start[songidx]:] return h5.root.analysis.sections_start[h5.root.analysis.songs.cols.idx_sections_start[songidx]: h5.root.analysis.songs.cols.idx_sections_start[songidx+1]] def get_sections_confidence(h5,songidx=0): """ Get sections confidence array. Takes care of the proper indexing if we are in aggregate file. By default, return the array for the first song in the h5 file. To get a regular numpy ndarray, cast the result to: numpy.array( ) """ if h5.root.analysis.songs.nrows == songidx + 1: return h5.root.analysis.sections_confidence[h5.root.analysis.songs.cols.idx_sections_confidence[songidx]:] return h5.root.analysis.sections_confidence[h5.root.analysis.songs.cols.idx_sections_confidence[songidx]: h5.root.analysis.songs.cols.idx_sections_confidence[songidx+1]] def get_beats_start(h5,songidx=0): """ Get beats start array. Takes care of the proper indexing if we are in aggregate file. By default, return the array for the first song in the h5 file. To get a regular numpy ndarray, cast the result to: numpy.array( ) """ if h5.root.analysis.songs.nrows == songidx + 1: return h5.root.analysis.beats_start[h5.root.analysis.songs.cols.idx_beats_start[songidx]:] return h5.root.analysis.beats_start[h5.root.analysis.songs.cols.idx_beats_start[songidx]: h5.root.analysis.songs.cols.idx_beats_start[songidx+1]] def get_beats_confidence(h5,songidx=0): """ Get beats confidence array. Takes care of the proper indexing if we are in aggregate file. By default, return the array for the first song in the h5 file. To get a regular numpy ndarray, cast the result to: numpy.array( ) """ if h5.root.analysis.songs.nrows == songidx + 1: return h5.root.analysis.beats_confidence[h5.root.analysis.songs.cols.idx_beats_confidence[songidx]:] return h5.root.analysis.beats_confidence[h5.root.analysis.songs.cols.idx_beats_confidence[songidx]: h5.root.analysis.songs.cols.idx_beats_confidence[songidx+1]] def get_bars_start(h5,songidx=0): """ Get bars start array. Takes care of the proper indexing if we are in aggregate file. By default, return the array for the first song in the h5 file. To get a regular numpy ndarray, cast the result to: numpy.array( ) """ if h5.root.analysis.songs.nrows == songidx + 1: return h5.root.analysis.bars_start[h5.root.analysis.songs.cols.idx_bars_start[songidx]:] return h5.root.analysis.bars_start[h5.root.analysis.songs.cols.idx_bars_start[songidx]: h5.root.analysis.songs.cols.idx_bars_start[songidx+1]] def get_bars_confidence(h5,songidx=0): """ Get bars start array. Takes care of the proper indexing if we are in aggregate file. By default, return the array for the first song in the h5 file. To get a regular numpy ndarray, cast the result to: numpy.array( ) """ if h5.root.analysis.songs.nrows == songidx + 1: return h5.root.analysis.bars_confidence[h5.root.analysis.songs.cols.idx_bars_confidence[songidx]:] return h5.root.analysis.bars_confidence[h5.root.analysis.songs.cols.idx_bars_confidence[songidx]: h5.root.analysis.songs.cols.idx_bars_confidence[songidx+1]] def get_tatums_start(h5,songidx=0): """ Get tatums start array. Takes care of the proper indexing if we are in aggregate file. By default, return the array for the first song in the h5 file. To get a regular numpy ndarray, cast the result to: numpy.array( ) """ if h5.root.analysis.songs.nrows == songidx + 1: return h5.root.analysis.tatums_start[h5.root.analysis.songs.cols.idx_tatums_start[songidx]:] return h5.root.analysis.tatums_start[h5.root.analysis.songs.cols.idx_tatums_start[songidx]: h5.root.analysis.songs.cols.idx_tatums_start[songidx+1]] def get_tatums_confidence(h5,songidx=0): """ Get tatums confidence array. Takes care of the proper indexing if we are in aggregate file. By default, return the array for the first song in the h5 file. To get a regular numpy ndarray, cast the result to: numpy.array( ) """ if h5.root.analysis.songs.nrows == songidx + 1: return h5.root.analysis.tatums_confidence[h5.root.analysis.songs.cols.idx_tatums_confidence[songidx]:] return h5.root.analysis.tatums_confidence[h5.root.analysis.songs.cols.idx_tatums_confidence[songidx]: h5.root.analysis.songs.cols.idx_tatums_confidence[songidx+1]] def get_artist_mbtags(h5,songidx=0): """ Get artist musicbrainz tag array. Takes care of the proper indexing if we are in aggregate file. By default, return the array for the first song in the h5 file. To get a regular numpy ndarray, cast the result to: numpy.array( ) """ if h5.root.musicbrainz.songs.nrows == songidx + 1: return h5.root.musicbrainz.artist_mbtags[h5.root.musicbrainz.songs.cols.idx_artist_mbtags[songidx]:] return h5.root.musicbrainz.artist_mbtags[h5.root.metadata.songs.cols.idx_artist_mbtags[songidx]: h5.root.metadata.songs.cols.idx_artist_mbtags[songidx+1]] def get_artist_mbtags_count(h5,songidx=0): """ Get artist musicbrainz tag count array. Takes care of the proper indexing if we are in aggregate file. By default, return the array for the first song in the h5 file. To get a regular numpy ndarray, cast the result to: numpy.array( ) """ if h5.root.musicbrainz.songs.nrows == songidx + 1: return h5.root.musicbrainz.artist_mbtags_count[h5.root.musicbrainz.songs.cols.idx_artist_mbtags[songidx]:] return h5.root.musicbrainz.artist_mbtags_count[h5.root.metadata.songs.cols.idx_artist_mbtags[songidx]: h5.root.metadata.songs.cols.idx_artist_mbtags[songidx+1]] def get_year(h5,songidx=0): """ Get release year from a HDF5 song file, by default the first song in it """ return h5.root.musicbrainz.songs.cols.year[songidx]
[ "jeff.kibler@infobright.com" ]
jeff.kibler@infobright.com
cdf4fc4eac8ac721c4cb6dccc000e71414fb2392
d659810b24ebc6ae29a4d7fbb3b82294c860633a
/aliyun-python-sdk-edas/aliyunsdkedas/request/v20170801/GetServiceDetailRequest.py
0274809385003cccbff6ca1a9c5f43b64d78a821
[ "Apache-2.0" ]
permissive
leafcoder/aliyun-openapi-python-sdk
3dd874e620715173b6ccf7c34646d5cb8268da45
26b441ab37a5cda804de475fd5284bab699443f1
refs/heads/master
2023-07-31T23:22:35.642837
2021-09-17T07:49:51
2021-09-17T07:49:51
407,727,896
0
0
NOASSERTION
2021-09-18T01:56:10
2021-09-18T01:56:09
null
UTF-8
Python
false
false
3,259
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RoaRequest from aliyunsdkedas.endpoint import endpoint_data class GetServiceDetailRequest(RoaRequest): def __init__(self): RoaRequest.__init__(self, 'Edas', '2017-08-01', 'GetServiceDetail','Edas') self.set_uri_pattern('/pop/sp/api/mseForOam/getServiceDetail') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_registryType(self): return self.get_query_params().get('registryType') def set_registryType(self,registryType): self.add_query_param('registryType',registryType) def get_serviceType(self): return self.get_query_params().get('serviceType') def set_serviceType(self,serviceType): self.add_query_param('serviceType',serviceType) def get_origin(self): return self.get_query_params().get('origin') def set_origin(self,origin): self.add_query_param('origin',origin) def get_appId(self): return self.get_query_params().get('appId') def set_appId(self,appId): self.add_query_param('appId',appId) def get_ip(self): return self.get_query_params().get('ip') def set_ip(self,ip): self.add_query_param('ip',ip) def get_namespace(self): return self.get_query_params().get('namespace') def set_namespace(self,namespace): self.add_query_param('namespace',namespace) def get_serviceVersion(self): return self.get_query_params().get('serviceVersion') def set_serviceVersion(self,serviceVersion): self.add_query_param('serviceVersion',serviceVersion) def get_serviceName(self): return self.get_query_params().get('serviceName') def set_serviceName(self,serviceName): self.add_query_param('serviceName',serviceName) def get_source(self): return self.get_query_params().get('source') def set_source(self,source): self.add_query_param('source',source) def get_region(self): return self.get_query_params().get('region') def set_region(self,region): self.add_query_param('region',region) def get_serviceId(self): return self.get_query_params().get('serviceId') def set_serviceId(self,serviceId): self.add_query_param('serviceId',serviceId) def get_group(self): return self.get_query_params().get('group') def set_group(self,group): self.add_query_param('group',group)
[ "sdk-team@alibabacloud.com" ]
sdk-team@alibabacloud.com
d97a89429ebe411ef2de2f263cc53f3eb6aa6988
5dec96a4833bea52d5105a77f45022f2c3c3157a
/QUICK_START/NODE_DEEPLABV3SEG_CUSTER/src/script/squeezeseg/nets/utils/__init__.py
2aee7f84a672a2e05885f81f414f00fb090af095
[ "BSD-3-Clause", "MIT" ]
permissive
jtpils/DINK
ebb3259d0fb8da0db46f670659bbb98c5b34c317
5f6b3eaba279126f79ae6607f965311002d7451c
refs/heads/master
2020-04-28T23:47:42.726499
2019-03-14T15:10:32
2019-03-14T15:10:32
175,669,731
1
0
BSD-3-Clause
2019-03-14T17:32:06
2019-03-14T17:32:06
null
UTF-8
Python
false
false
1,661
py
# BSD 3-Clause License # # Copyright (c) 2019, FPAI # Copyright (c) 2019, SeriouslyHAO # Copyright (c) 2019, xcj2019 # Copyright (c) 2019, Leonfirst # # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
[ "2281504330@qq.com" ]
2281504330@qq.com
ad19fd452e4db1b70a3909df02d3983f5143594a
8fab832545c32c4c9bbdd9d2656b0e7999e1ba95
/python/inky/phat/calendar-phat.py.save
1d2108a89fe905198d278a00531fd1bf55bd768c
[]
no_license
krishnamarwaha/Raspberry-PI
1d96c5f5a9279f8210f566509d1d352f47dc775a
cc429335ef3fa6fb87b6f7ab0453283887ac9a04
refs/heads/master
2021-07-09T19:24:37.589325
2020-12-20T19:06:18
2020-12-20T19:06:18
221,528,517
1
0
null
null
null
null
UTF-8
Python
false
false
5,723
save
#!/usr/bin/env python # -*- coding: utf-8 -*- import datetime import calendar import argparse from PIL import Image, ImageDraw from inky import InkyWHAT print("""Inky pHAT: Calendar Draws a calendar for the current month to your Inky pHAT. This example uses a sprite sheet of numbers and month names which are composited over the background in a couple of different ways. """) # Command line arguments to set display type and colour parser = argparse.ArgumentParser() parser.add_argument('--colour', '-c', type=str, required=True, choices=["red", "black", "yellow"], help="ePaper display colour") args = parser.parse_args() colour = args.colour # Set up the display inky_display = InkyPHAT(colour) inky_display.set_border(inky_display.BLACK) # inky_display.set_rotation(180) def create_mask(source, mask=(inky_display.WHITE, inky_display.BLACK, inky_display.RED)): """Create a transparency mask. Takes a paletized source image and converts it into a mask permitting all the colours supported by Inky pHAT (0, 1, 2) or an optional list of allowed colours. :param mask: Optional list of Inky pHAT colours to allow. """ mask_image = Image.new("1", source.size) w, h = source.size for x in range(w): for y in range(h): p = source.getpixel((x, y)) if p in mask: mask_image.putpixel((x, y), 255) return mask_image def print_digit(position, digit, colour): """Print a single digit using the sprite sheet. Each number is grabbed from the masked sprite sheet, and then used as a mask to paste the desired colour onto Inky pHATs image buffer. """ o_x, o_y = position num_margin = 2 num_width = 6 num_height = 7 s_y = 11 s_x = num_margin + (digit * (num_width + num_margin)) sprite = text_mask.crop((s_x, s_y, s_x + num_width, s_y + num_height)) img.paste(colour, (o_x, o_y), sprite) def print_number(position, number, colour): """Print a number using the sprite sheet.""" for digit in str(number): print_digit(position, int(digit), colour) position = (position[0] + 8, position[1]) # Load our sprite sheet and prepare a mask text = Image.open("resources/calendar.png") text_mask = create_mask(text, [inky_display.WHITE]) # Note: The mask determines which pixels from our sprite sheet we want # to actually use when calling img.paste(). # See: http://pillow.readthedocs.io/en/3.1.x/reference/Image.html?highlight=paste#PIL.Image.Image.paste # Load our backdrop image img = Image.open("resources/empty-backdrop.png") draw = ImageDraw.Draw(img) # Grab the current date, and prepare our calendar cal = calendar.Calendar() now = datetime.datetime.now() dates = cal.monthdatescalendar(now.year, now.month) col_w = 20 col_h = 13 cols = 7 rows = len(dates) + 1 cal_w = 1 + ((col_w + 1) * cols) cal_h = 1 + ((col_h + 1) * rows) cal_x = inky_display.WIDTH - cal_w - 2 cal_y = 2 # Paint out a black rectangle onto which we'll draw our canvas draw.rectangle((cal_x, cal_y, cal_x + cal_w - 1, cal_y + cal_h - 1), fill=inky_display.BLACK, outline=inky_display.WHITE) # The starting position of the months in our spritesheet months_x = 2 months_y = 20 # Number of months per row months_cols = 3 # The width/height of each month in our spritesheet month_w = 23 month_h = 9 # Figure out where the month is in the spritesheet month_col = (now.month - 1) % months_cols month_row = (now.month - 1) // months_cols # Convert that location to usable X/Y coordinates month_x = months_x + (month_col * month_w) month_y = months_y + (month_row * month_h) crop_region = (month_x, month_y, month_x + month_w, month_y + month_h) month = text.crop(crop_region) month_mask = text_mask.crop(crop_region) monthyear_x = 28 # Paste in the month name we grabbed from our sprite sheet img.paste(inky_display.WHITE, (monthyear_x, cal_y + 4), month_mask) # Print the year right below the month print_number((monthyear_x, cal_y + 5 + col_h), now.year, inky_display.WHITE) # Draw the vertical lines which separate the columns # and also draw the day names into the table header for x in range(cols): # Figure out the left edge of the column o_x = (col_w + 1) * x o_x += cal_x crop_x = 2 + (16 * x) # Crop the relevant day name from our text image crop_region = ((crop_x, 0, crop_x + 16, 9)) day_mask = text_mask.crop(crop_region) img.paste(inky_display.WHITE, (o_x + 4, cal_y + 2), day_mask) # Offset to the right side of the column and draw the vertical line o_x += col_w + 1 draw.line((o_x, cal_y, o_x, cal_h)) # Draw the horizontal lines which separate the rows for y in range(rows): o_y = (col_h + 1) * y o_y += cal_y + col_h + 1 draw.line((cal_x, o_y, cal_w + cal_x - 1, o_y)) # Step through each week for row, week in enumerate(dates): y = (col_h + 1) * (row + 1) y += cal_y + 1 # And each day in the week for col, day in enumerate(week): x = (col_w + 1) * col x += cal_x + 1 # Draw in the day name. # If it's the current day, invert the calendar background and text if (day.day, day.month) == (now.day, now.month): draw.rectangle((x, y, x + col_w - 1, y + col_h - 1), fill=inky_display.WHITE) print_number((x + 3, y + 3), day.day, inky_display.BLACK) # If it's any other day, paint in as white if it's in the current month # and red if it's in the previous or next month else: print_number((x + 3, y + 3), day.day, inky_display.WHITE if day.month == now.month else inky_display.RED) # Display the completed calendar on Inky pHAT inky_display.set_image(img) inky_display.show()
[ "krishna.marwaha@outlook.com" ]
krishna.marwaha@outlook.com
f28de4409a49b4958ed94421be319b08d13fc589
bd14c979335112b7718b0feda18ebf0e3b40fe5c
/first_trial/c_travelling.py
7702d96dadc01c04581f9ca99310328b19e3c015
[]
no_license
ababa831/atcoder_beginners
22c57b15333d110126d1b1afadc0ff5e8784fc4f
1a30882ce7f20f312045d5dc7bfaa5688cc8a88e
refs/heads/master
2023-03-07T15:47:19.750682
2020-03-04T19:53:45
2020-03-04T19:53:45
143,360,607
1
1
null
null
null
null
UTF-8
Python
false
false
1,370
py
# I coudn't reach an answer at first. # Keypoints: # Look for conditions which constrain search range! # 1. There are no paths for t_i < x_i + y_i (e.g. t=4, x=100, y=100) # 2. There are no paths for t_i % 2 != (x_i + y_i) % 2 (e.g. t=4, x=1, y=0) # Because you can only reach the point by either odd or even trials (if you want to rearrive the same point, you sould take 2*i times) import random n = int(input()) txy_list = list(map(int, [input().split() for _ in range(n)])) loc = [0, 0] n_check = 0 checkpoint = -1 start = 0 # select one from 4 paths def add_x(x, y): x += 1 return [x, y] def add_y(x, y): y += 1 return [x, y] def sub_x(x, y): x -= 1 return [x, y] def sub_y(x, y): y -= 1 return [x, y] for i in range(n): for j in range(start, i): path = random.randrange(1,5) if path == 1: loc = add_x(loc[0], loc[1]) if path == 2: loc = add_y(loc[0], loc[1]) if path == 3: loc = sub_x(loc[0], loc[1]) if path == 4: loc = sub_y(loc[0], loc[1]) if loc == txy_list[i][1:]: n_check += 1 #Gave up at this point. # A sapmle answer n = int(input()) for i in range(n): t, x, y = map(int, input().split()) if x + y > t or (x + y) % 2 != t % 2: print('No') exit() print("Yes")
[ "flvonlineconverter@gmail.com" ]
flvonlineconverter@gmail.com
b1f306e2edac18026c53ab1ebe97885c109fcb53
1480955b11c30691f56865bf827b7f89168da523
/book/knapsack.py
ecd31fecf868cda6dc21e99bfb6837b1663c9477
[]
no_license
zoo200/atcoder
f604bff3301dfd7fd0fba916fc71f9d11eeb3871
db9f15e5294ff034e25358d53cc2266bc95686e9
refs/heads/master
2020-11-25T19:31:42.312537
2020-07-25T15:38:31
2020-07-25T15:38:31
228,813,286
0
0
null
null
null
null
UTF-8
Python
false
false
1,417
py
from collections import defaultdict n,w = map(int,input().split()) items = defaultdict(dict) c = [[0] * (w +1) for _ in range(n+1) ] g = [[0] * (w +1) for _ in range(n+1) ] for i in range(1,n+1): a,b = map(int,input().split()) items[i]['v'] = a items[i]['w'] = b for i in range(w+1): c[0][i] = 0 g[0][i] = 1 for i in range(1,n+1): c[i][0] = 0 for i in range(1,n+1): for j in range(1,w+1): c[i][j] = c[i-1][j] g[i][w] = 0 if(items[i]['w'] > j): continue # 一つ前のアイテムまでが入ってるナップザックに今のアイテム重量が入ったときのナップザックの価値 now_v = items[i]['v'] + c[i-1][j- items[i]['w']] # 入れないより入れたほうが価値が高い if( now_v > c[i-1][j]): c[i][j] = now_v g[i][j] = 1 # 最大価値 max_v = c[n][w] print(max_v) [print(i) for i in c] [print(i) for i in g] # どれを選べば最大価値か逆順でたどっていく p = [] ww = w for i in range(n,0,-1): if(g[i][ww] == 1): p.append(i) ww -= items[i]['w'] print(p) # p.416 # in # 4 5 # 4 2 # 5 2 # 2 1 # 8 3 # out # 13 # [0, 0, 0, 0, 0, 0] # [0, 0, 4, 4, 4, 4] # [0, 0, 5, 5, 9, 9] # [0, 2, 5, 7, 9, 11] # [0, 2, 5, 8, 10, 13] # [1, 1, 1, 1, 1, 1] # [0, 0, 1, 1, 1, 1] # [0, 0, 1, 1, 1, 1] # [0, 1, 0, 1, 0, 1] # [0, 0, 0, 1, 1, 1] # [4, 2]
[ "noreply@github.com" ]
zoo200.noreply@github.com
aa3908605e7f5276c6faa8a19ddda181df2fe430
18a185cc757d9aa3d690f174ca0841e1d90157b3
/scripts/lib/calculate_reference_plot_llhs.py
931bb3231c6b987e9c3f2e128770397eb4330b2b
[ "MIT" ]
permissive
fiedl/hole-ice-study
b2e213747af914fedadd76cb94e7042389183f41
9811a29c65fb22e314efd65e0309c83772928d7f
refs/heads/master
2023-04-13T21:05:06.897901
2022-09-13T12:08:14
2022-09-13T12:08:14
118,835,798
6
2
NOASSERTION
2023-03-16T23:10:07
2018-01-24T23:35:15
null
UTF-8
Python
false
false
747
py
#!/usr/bin/env python # Calculate log likelihood (LLH) for reference angular acceptance curve vs. simulation. # https://github.com/fiedl/hole-ice-study/issues/12 # Usage: ./calculate_reference_plot_llhs.py ~/hole-ice-study/results/parameter_scan # This will calculate the LLH for each run within the given data directory # and append the "llh" to the "options.json" files within. import cli import options import reference_curve_llh print "Calculating reference-curve LLHs" for data_dir in cli.data_dirs(): print " " + data_dir opts = options.read(data_dir) if "llh" in opts: llh = opts["llh"] else: llh = reference_curve_llh.calculate(data_dir) options.append(data_dir, {"llh": llh}) print " LLH = " + str(llh)
[ "github@fiedlschuster.de" ]
github@fiedlschuster.de
19e07b20e6e2919522eb238a49df393a79596a9c
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02936/s644824648.py
1cee97e5f35d7e758af2c7ed362e708613fbb89b
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
540
py
import sys sys.setrecursionlimit(10 ** 6) def input(): return sys.stdin.readline()[:-1] def dfs(v,prev = -1): for u in graph[v]: if u == prev: continue point[u] += point[v] dfs(u,v) N, Q = list(map(int,input().split())) graph = [[] for _ in range(N)] point = [0]*N for i in range(N-1): a,b = list(map(int,input().split())) graph[a-1].append(b-1) graph[b-1].append(a-1) for i in range(Q): p,x = list(map(int,input().split())) p -= 1 point[p] += x dfs(0) print(*point)
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
4f6e2604717222728344a10eea3c90f2e8dd5604
797bd52c384b9ce5fcac4add937982fec266af8f
/object_classification.py
238e75428e545141b2e559af68279e18204afbbc
[]
no_license
anki08/staff
11b9e8c45c65c2de76e4a2406b4c7c9f26ba1797
d2ca5c8bea1f3e1e82ce3a7f408d06c9d469d200
refs/heads/main
2023-03-24T14:40:08.019544
2021-03-10T16:48:10
2021-03-10T16:48:10
346,416,818
1
0
null
null
null
null
UTF-8
Python
false
false
657
py
import torch import torchvision from PIL import Image import json class_idx = json.load(open("imagenet_class_index.json")) I = Image.open('dog.jpg') print(I) model = torchvision.models.resnext101_32x8d(pretrained=True, progress=False) transform = torchvision.transforms.Compose([ torchvision.transforms.Scale(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) model.eval() p = model(transform(I)[None])[0] print(model) # print(p) print( ' , '.join([class_idx[str(int(i))][1] for i in p.argsort(descending=True)[:5]]) )
[ "noreply@github.com" ]
anki08.noreply@github.com
68faa4a34463e8c87df6fa1a967b58e7fc27082b
0472e717b8b2739a1eee20d49026f87031f1f72d
/v2/model/source.py
ddff5219b2f39d781469a0e5555dc673543fdab5
[]
no_license
nightarcherbr/uplayer
f11dd47c1da7655005c3051df7be706e75a6feca
3d67275676111a0fdf0b4874129c6ba824022f4f
refs/heads/master
2021-01-12T17:08:38.407182
2016-10-24T10:47:36
2016-10-24T10:47:36
71,516,128
1
0
null
null
null
null
UTF-8
Python
false
false
2,635
py
import model; class BaseSource(): def load(self): raise model.ModelException('Not implemented'); class FileSource(BaseSource): """ Faz a leitura do JSON em um arquivo """ def __init__( self, source, parameters = None ): self.source = source; self.parameters = parameters; def load(self): import json; try: with open(self.source, 'r+') as fp: try: data = json.load(fp); return data; except ValueError: raise model.InvalidResponseException( 'Invalid JSON' ); except FileNotFoundError: raise model.FileNotFoundException('File not found'); class HTTPSource(BaseSource): """ Faz a leitura do JSON de uma URL """ def __init__( self, source, parameters = None, method="POST" ): self.source = source; self.parameters = parameters; self.method = method; def load(self): import urllib.request; import urllib.error; import json; try: req = urllib.request.Request(self.source, self.parameters); with urllib.request.urlopen(req) as fp: try: info = (fp.read().decode('utf-8')) data = json.loads(info); return data; except ValueError: raise model.InvalidResponseException('Invalid JSON'); except urllib.error.HTTPError as e: raise model.NetworkException('404 - URL not found'); except urllib.error.URLError: raise model.NetworkException('404 - Server not found'); class ProxySource(BaseSource): """ Repassa o comando de load para outro Source """ def __init__(self, Source): self.Source = Source; def load(self): try: return self.Source.load(); except model.SourceException as e: raise e; except Exception as e: raise model.SourceException( str(e) ); class TimeCacheSource(ProxySource): """ Mantem o cache da ultima requisição válida por x segundos """ def __init__(self, Source, cachetime=60): super().__init__(Source); self.time = 0; self.cache = None; self.cachetime = cachetime; def load(self, force = False): import time; tm = time.time(); if( self.cache is None or ( tm > (self.time+self.cachetime) ) or force == True ): self.cache = super().load(); self.time = tm; return self.cache;
[ "fabio@docker" ]
fabio@docker
8934f8bae88b16771f2a9c6978607699ce1d5c3d
b500119f19bf221b6cffdedf4d74e0ddebeff503
/dropdown2.py
a706333e18160d55ed4e47b45bb7fa2394b3b2e1
[]
no_license
Threesies/ELO
07bd58f3d3e0fdea76c3799e0ed17fc42c08ba28
32664b503e257fca5ef68ee2e2a9239fbb8d683b
refs/heads/master
2020-03-30T06:31:39.259992
2018-10-20T16:30:37
2018-10-20T16:30:37
150,867,750
0
0
null
null
null
null
UTF-8
Python
false
false
9,557
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Oct 11 15:17:27 2018 @author: acelentano """ import tkinter as tk from tkinter import * import tkinter.messagebox import pandas as pd import numpy as np import os from time import gmtime, strftime root = tk.Tk() text = tk.Text(root) title = "RTB" root.title(title) export = "ThreesiesLog" os.chdir('/Users/acelentano/pong/ELO') champs = pd.read_csv('ThreesiesLog.csv') current_rating = pd.read_csv('Threesies_Elo_Ratings') current_rating.columns = ['Name', 'Rating'] current_rating.set_index('Name', inplace = True) global dictionary dictionary = current_rating.to_dict() championships = pd.read_csv('Championships.csv') championships.set_index('Names', inplace= True) # ============================================================================= # Functions # ============================================================================= def SubmitEntry(): submit = tk.messagebox.askquestion("Submit Entry", "Submit Game?") if submit == "yes": player1 = e1.get() player2 = e2.get() gamewinner = e3.get() if e4.get() == 'Select Champion': global champs currentrow = pd.DataFrame([[player1,player2,gamewinner, strftime("%m-%d-%Y %H:%M", \ gmtime())]],columns=['Left Side Player','Right Side Player',\ 'Winner','Time']) champs = pd.concat([champs,currentrow],axis=0, ignore_index=True, sort=True) champs.to_csv('ThreesiesLog.csv', index=False) else: add_championship(e4.get()) championships.to_csv('Championships.csv') currentrow = pd.DataFrame([[player1,player2,gamewinner,strftime("%m-%d-%Y %H:%M", \ gmtime())]],columns=['Left Side Player','Right Side Player',\ 'Winner','Time']) champs = pd.concat([champs,currentrow],axis=0, ignore_index=True, sort=True) champs.to_csv('ThreesiesLog.csv', index=False) print_new(root) e1.set(choices[0]) e2.set(choices[0]) e3.set(choices[0]) e4.set(champions[0]) def add_championship(y): num = championships.loc[y] newnum = num + 1 championships.at[y] = newnum return championships def QuitEntry(): quittask = tk.messagebox.showinfo("End Tournament", "Submit Championship?") if quittask == "ok": root.destroy() def loser(row): if row['Right Side Player'] == row['Winner']: return row['Left Side Player'] else: return row['Right Side Player'] def expected_result(elo_a, elo_b): elo_width = 400 expect_a = 1.0/(1+10**((elo_b - elo_a)/elo_width)) return expect_a def update_elo(winner_elo, loser_elo): k_factor = 64 expected_win = expected_result(winner_elo, loser_elo) change_in_elo = k_factor * (1-expected_win) winner_elo += change_in_elo loser_elo -= change_in_elo return round(winner_elo, 2), round(loser_elo, 2)\ def player_matchup(player1, player2): global winner_matrix player2wins = winner_matrix[player1][player2] player1wins = winner_matrix[player2][player1] total = player1wins + player2wins player1_perc = round((player1wins/total)*100, 2) player2_perc = round((100 - player1_perc), 2) return player1_perc, player2_perc #print('Percentage wins for ' + str(player1) + ': ' + str(player1_perc)+'%') #print('Percentage wins for ' + str(player2) + ': ' + str(player2_perc)+'%') def win_perc(): for player in championships.index: wins = champs.Winner.value_counts()[player] loss = champs.Loser.value_counts()[player] percentage = (wins/(wins+loss))*100 championships.at[player, "Win Percentage"] = percentage championships.to_csv('Championships.csv') return championships def update_text(root): printout = '' printout2='' matchup = '' if e1.get() != "Select Player": printout += (e1.get() + " " + str( (Ratings['Rating'][e1.get()]))) if e2.get() != "Select Player": printout2 += (e2.get() + " " + str( (Ratings['Rating'][e2.get()]))) matchup += str((player_matchup(e1.get(), e2.get()))) text.delete('1.0', 'end') text.insert('1.0', printout + '\n') text.insert('1.0', printout2 + '\n') text.insert('1.0', matchup + '\n') text.tag_configure("center", justify='center') text.tag_add("center", 1.0, "end") def print_new(root): champs['Loser'] = champs.apply(loser,axis=1) Winner = list(champs['Winner']) Loser = list(champs['Loser']) update_win =[] update_loss = [] for i in range(len(Winner)): Win = Winner[i] Lose = Loser[i] updated_score = update_elo(dictionary['Rating'][Win], dictionary['Rating'][Lose]) dictionary['Rating'][Win], dictionary['Rating'][Lose] = updated_score update_win.append(updated_score[0]) update_loss.append(updated_score[1]) Ratings = pd.DataFrame.from_dict(dictionary) new = '' if e3.get() != "Select Player": new += (e3.get() + " new rating: " + str( (Ratings['Rating'][e3.get()]))) text.insert('1.0', new + '\n') # ============================================================================= # Rating Preprocessing # ============================================================================= #Add Loser champs['Loser'] = champs.apply(loser,axis=1) #Create list of Winners and Losers Winner = list(champs['Winner']) Loser = list(champs['Loser']) #Blank List to fill DataFrame later update_win =[] update_loss = [] # ============================================================================= # Create new ELO Rating # ============================================================================= for i in range(len(Winner)): Win = Winner[i] Lose = Loser[i] updated_score = update_elo(dictionary['Rating'][Win], dictionary['Rating'][Lose]) dictionary['Rating'][Win], dictionary['Rating'][Lose] = updated_score update_win.append(updated_score[0]) update_loss.append(updated_score[1]) # ============================================================================= # Add to DataFrame # ============================================================================= champs['Winner ELO Update'] = update_win champs['Loser ELO Update'] = update_loss # ============================================================================= # Player matchup percentages # ============================================================================= #average number of wins on left side of table #np.where(champs['Winner'] == champs['Left Side Player'],1,0).mean() win_perc() winner_matrix = pd.crosstab(champs['Winner'],champs['Loser']) Ratings = pd.DataFrame.from_dict(dictionary) # ============================================================================= # Create menus # ============================================================================= e1 = tk.StringVar(root) e2 = tk.StringVar(root) e3 = tk.StringVar(root) e4 = tk.StringVar(root) choices = ['Select Player', 'Carts','Ali','MP','SunChow','PPJ', 'Fonz', 'Alex', \ 'D$', 'M1', 'M2', 'Spidey', 'MH', 'Jodie', 'Chris', 'RonRon', 'Peter', 'SeaBass', 'juju'] champions = ['Select Champion', 'Carts','Ali','MP','SunChow','PPJ', 'Fonz', 'Alex', \ 'D$', 'M1', 'M2', 'Spidey', 'MH', 'Jodie', 'Chris', 'RonRon', 'Peter', 'SeaBass', 'juju'] e1.set(choices[0]) entry1 = tk.OptionMenu(root, e1, *choices, command = update_text) entry1.grid(row=1, column=0, sticky='e') entry1.config(width=10) e2.set(choices[0]) entry2 = tk.OptionMenu(root, e2, *choices, command = update_text) entry2.grid(row=1, column=2, sticky='e') entry2.config(width=10) e3.set(choices[0]) entry3 = tk.OptionMenu(root, e3, *choices) entry3.grid(row=3, column=1, sticky='nsew') entry3.config(width=10) e4.set(champions[0]) entry4 = tk.OptionMenu(root, e4, *champions) entry4.grid(row=4, column=1, sticky='nsew') entry4.config(width=10) submit = tk.Button(root, fg="blue", bg="green", text = "Submit Game", width = 20, command = SubmitEntry, activebackground="yellow") submit.config(width=20) Quit = tk.Button(root, fg="blue", bg="green", text="End Tournament", width=20, command=QuitEntry, activebackground="yellow") Quit.config(width=20) # ============================================================================= # Dropdown Button formatting # ============================================================================= firstname = tk.Label(text="Left Side Player", fg="green") secondname = tk.Label(text="Right Side Player", fg="green") winner = tk.Label(text="WINNER", fg="blue") Champion = tk.Label(text="Champion!", fg="blue") firstname.grid(row=0, column=0,sticky='e') secondname.grid(row=0, column=2, sticky='e') winner.grid(row=2, column=1, sticky='nsew') submit.grid(row=5, column=1, sticky='nsew') Quit.grid(row=7, column=1, sticky='nsew') root.grid_rowconfigure(4, minsize=20) root.grid_columnconfigure(1, minsize = 10) text.tag_configure("center", justify='center') text.tag_add("center", 1.0, "end") text.grid(row = 8, column = 1, sticky = 'nsew') root.mainloop() # ============================================================================= # Delete crap # ============================================================================= del i, update_loss, update_win, updated_score, Winner, Lose, current_rating, Win del E, N, S, TclVersion, TkVersion, W, X, Y, export, title, wantobjects del winner_matrix, dictionary, choices, Loser, champions
[ "celentano_ali@bah.com" ]
celentano_ali@bah.com
9c279d65479f9af05c8270845fd5db4027c1e978
4057adee68fdd294896893ba904d2d7dc89eec2c
/setup.py
9a9781b69a7e8c3668b0e698abdd6635be7b0efe
[]
no_license
kindlychung/PopupBubble
9819b24c1b4683fb7d0d338de4cb9d6ad6bd8908
45943d70f1113c2e5988380561ec33a966cfa9db
refs/heads/master
2020-05-21T11:34:53.300144
2014-11-12T18:31:13
2014-11-12T18:31:13
26,549,443
1
1
null
null
null
null
UTF-8
Python
false
false
581
py
from distutils.core import setup import platform, os sysname = platform.system() if sysname == "Windows": binpath = os.getenv("SystemRoot") else: binpath = r"/usr/local/bin" setup( name = "PopupBubble", packages = ["PopupBubble"], version = "0.0.4", data_files = [(binpath, ["scripts/pop_bubble.py"])], description = "Cross-platform desktop notification using Qt", author = "Kaiyin Zhong", author_email = "kindlychung@gmail.com", url = "https://github.com/kindlychung/PopupBubble", keywords = ["notification", "cross-platform"] )
[ "kindlychung@gmail.com" ]
kindlychung@gmail.com
9ac436c999320a0d5baf824db317806e7afeac41
530d8af2100c88690e09731fb950a02f33e6e4e0
/blog/migrations/0003_auto_20180818_2054.py
e4f33d23ea905284782c215ad82a717e511a6100
[]
no_license
gkLeo/userSystem-Django
940acf12f264e986ad8ac5e7d3b8aaa0a5a7b1c6
82e3cf45d94bb4b3d65da94a32bc18cebb6b1709
refs/heads/master
2022-04-29T18:12:57.164887
2018-08-22T07:49:41
2018-08-22T07:49:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
658
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.10 on 2018-08-18 12:54 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('blog', '0002_auto_20180818_1641'), ] operations = [ migrations.RemoveField( model_name='comment', name='title', ), migrations.AlterField( model_name='comment', name='parent_comment', field=models.ForeignKey(default=None, on_delete=django.db.models.deletion.CASCADE, to='blog.Comment'), ), ]
[ "geek_leo@outlook.com" ]
geek_leo@outlook.com
ec19430ba5d5df43b88d4f9b77763a84416ac3eb
99af81d1da4545ab7d83f3c744c8494bf917ee9d
/push_feedstock_changes
1763e16bef8000ba18ab84869efd98bb81888b8d
[]
no_license
msarahan/conda_recipe_tools
ea32e921b412c1eb686c3a193021062f0333249a
9ff81cbd745af66d62d4555ff7e5fc2367a35603
refs/heads/master
2020-03-19T10:06:18.108036
2018-10-31T22:30:27
2018-10-31T22:30:27
136,343,451
0
0
null
2018-06-06T14:49:21
2018-06-06T14:49:20
null
UTF-8
Python
false
false
5,850
#! /usr/bin/env python # push feedstock changes to AnacondaRecipes git organization # requires Python 3.5+ import argparse import logging import os import subprocess import sys from subprocess import PIPE from conda_build.api import render LOG_FORMAT = '%(asctime)s - %(levelname)s : %(message)s' class GitRepo(object): def __init__(self, path): self._path = path def _git(self, git_args, check=True): args = ['git', '-C', self._path] + git_args logging.debug('command: ' + ' '.join(args)) complete = subprocess.run(args, stdout=PIPE, stderr=PIPE) logging.debug('returncode: ' + str(complete.returncode)) logging.debug('stdout: ' + complete.stdout.decode('utf-8')) logging.debug('stderr: ' + complete.stderr.decode('utf-8')) if check: complete.check_returncode() return complete def checkout(self, branch='master'): return self._git(['checkout', branch]) def fetch(self, remote='origin'): return self._git(['fetch', remote]) def reset_hard(self, remote='origin', branch='master'): return self._git(['reset', '--hard', '%s/%s' % (remote, branch)]) def rebase(self, remote, branch='master', check=True): return self._git(['rebase', '%s/%s' % (remote, branch)], check) def rebase_abort(self, check=True): self._git(['rebase', '--abort'], check) def push(self, remote='origin', local_branch='master', remote_branch='master', force=False, check=True): refspec = '{src}:{dst}'.format(src=local_branch, dst=remote_branch) if force: return self._git(['push', '--force', remote, refspec], check) return self._git(['push', remote, refspec], check) def branch(self, branch_name): return self._git(['checkout', '-b', branch_name]) def branch_delete(self, branch_name): return self._git(['branch', '-D', branch_name]) def ls_files_modified(self): out = self._git(['ls-files', '-m']) return out.stdout.decode('utf-8').split() class FeedStock(GitRepo): def __init__(self, path, feedstock_name=None): super(FeedStock, self).__init__(path) if feedstock_name is None: feedstock_name = os.path.basename(path) self._feedstock_name = feedstock_name def add_remote(self, org, remote_name=None, check=True): url = 'https://github.com/%s/%s' % (org, self._feedstock_name) if remote_name is None: remote_name = org self._git(['remote', 'add', remote_name, url], check=check) def push_feedstock(feedstock_path): """ Push git changes to a feedstock to AnacondaRecipes returns True on success, False when the push failed """ feedstock = FeedStock(feedstock_path) complete = feedstock.push(check=False) if complete.returncode: # push failed b/c it is not a fast-forward logging.info('standard push failed, creating archive branch') # create temp branch of origin/master temp_branch = 'temp_origin_master' feedstock.branch(temp_branch) # git checkout -b temp_origin_master feedstock.fetch() # git fetch origin feedstock.reset_hard() # git reset --hard origin/master # render the recipe to find the version recipe_dir = os.path.join(feedstock_path, 'recipe') recipes = render(recipe_dir, finalize=False) metadata, download, needs_reparse = recipes[0] version = metadata.version() # push to archive branch archive_branch = 'archive_{version}'.format(version=version) logging.info('push origin/master to ' + archive_branch) # git push origin master:archive_version feedstock.push(remote_branch=archive_branch, local_branch='HEAD') # force push master branch feedstock.checkout() # git checkout master feedstock.push(force=True) # git push --force origin master:master # git branch -D temp_origin_master feedstock.branch_delete(temp_branch) logging.info('force push succeeded') return True def main(): parser = argparse.ArgumentParser( description='Push feedstock git changes to AnacondaRecipes.') parser.add_argument( 'feedstock_dir', nargs='*', help='one or more feedstock directories to push') parser.add_argument( '--file', '-f', type=str, help='file with feedstock directories to push') parser.add_argument( '--base_dir', default='.', type=str, help='feedstock base directory, default is current directory') parser.add_argument( '--log', default='info', help='log level; debug, info, warning, error, critical') args = parser.parse_args() # set up logging log_numeric_level = getattr(logging, args.log.upper(), None) if not isinstance(log_numeric_level, int): raise ValueError('Invalid log level: %s' % args.log) logging.basicConfig(level=log_numeric_level, format=LOG_FORMAT) # detemine feedstock directories to sync if args.file is not None: # skip comments (#) and blank lines is_valid = lambda x: not x.startswith('#') and len(x.strip()) with open(args.file) as f: feedstock_dirs = [l.strip() for l in f if is_valid(l)] else: feedstock_dirs = args.feedstock_dir # sync recipes for feedstock_dir in feedstock_dirs: if feedstock_dir.endswith('/'): feedstock_dir = feedstock_dir[:-1] logging.info('pushing: ' + feedstock_dir) feedstock_path = os.path.join(args.base_dir, feedstock_dir) if not push_feedstock(feedstock_path): logging.warning('push failed: ' + feedstock_dir) return 0 if __name__ == "__main__": sys.exit(main())
[ "jjhelmus@gmail.com" ]
jjhelmus@gmail.com
ace3c17769f70ffc745907457172f979761025b3
a03cdb676a7db91c09d5b051585af8c1fbdcee66
/venv/bin/pip
fdd43619020cbfe9bfbe0730b4ed7ae9dbc6ca25
[]
no_license
d11m4/movies
fb1f4cbe7141cc4643a0ab2797595b432ece664f
4df606564b565c72930f0a3213e3955f925d4987
refs/heads/master
2023-02-13T05:54:54.029461
2020-04-23T20:03:55
2020-04-23T20:03:55
258,317,203
0
0
null
2021-01-06T01:08:32
2020-04-23T20:02:46
Python
UTF-8
Python
false
false
388
#!/Users/dmitry/nikmovies/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'pip==19.0.3','console_scripts','pip' __requires__ = 'pip==19.0.3' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('pip==19.0.3', 'console_scripts', 'pip')() )
[ "d11m4@yandex.ru" ]
d11m4@yandex.ru
757c511b89810d2b035d2c74957e10869842c3dd
755271e401d9dd06866d134f314e7865c06f2bcc
/lib/kml_parser.py
91838350b9c4b44e9f4ea313d547519315386211
[]
no_license
Galli1598333/LoRaWAN-Application
31b00d769d7d5b85e53bbf10b3709c31ddcf30f0
ac299da43656f79a8111586acfed1a04662547de
refs/heads/master
2023-06-12T01:06:55.774495
2021-06-29T16:19:26
2021-06-29T16:19:26
301,663,145
0
0
null
null
null
null
UTF-8
Python
false
false
1,328
py
import xml.etree.ElementTree as ET class KmlParser: def __init__(self, merged_fpath): self.merged_fpath = merged_fpath def merge_files(self, count_fpath, track_fpath): with open(count_fpath, 'r') as file: count = file.read() with open(track_fpath, 'r') as file: track = file.read().replace("</gx:Track>", count + "</gx:Track>") with open(self.merged_fpath, 'w') as file: file.write(track) return def __parse(self, root): result_map = {} for child in root[0][1][0][-1][0][0]: result_map[int(child.text)] = {'when': '', 'coord': []} ids = list(result_map.keys()) i = 0 for child in root[0][1][0]: if child.text is not None: data = child.text.split(' ') if 'when' in child.tag: result_map[ids[i]]['when'] = data[0] elif 'coord' in child.tag: result_map[ids[i]]['coord'] = data i = i + 1 return result_map def parse_string(self, kml_track): root = ET.fromstring(kml_track) return self.__parse(root) def parse_merged(self): tree = ET.parse(self.merged_fpath) root = tree.getroot() return self.__parse(root)
[ "noreply@github.com" ]
Galli1598333.noreply@github.com
244ed0d2ccb9439a9c3b907c35305cf549eccb03
ccb0fa72852a29c38e0d83427318ef95225697bf
/benchmarks/utils/training.py
c886bf9b8130fc948318ee2c196ebc3a9df4f043
[ "Apache-2.0" ]
permissive
crispitagorico/GPSig
62d3f4f3a078e753a98641670bb8088c0df960bb
c93155f83c11b05b9850b24481c6584ef5206a49
refs/heads/master
2023-02-26T06:05:45.353637
2021-01-30T08:02:04
2021-01-30T08:02:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,155
py
import sys import os sys.path.append('..') import numpy as np import tensorflow as tf tf.logging.set_verbosity(tf.logging.ERROR) import gpflow as gp import gpsig import keras from keras import backend as K def fit_nn_with_gp_layer(X_train, y_train, var_list, x_tens, y_tens, loss, sess, minibatch_size=50, max_epochs=1000, val_scores=None, lower_is_better=True, patience=None, history=None, w_tens=None, W_train=None): assert (w_tens is None) == (W_train is None) opt = keras.optimizers.Adam(clipvalue=5.) param_updates = opt.get_updates(loss, var_list) num_train = X_train.shape[0] num_batches_per_epoch = int(np.ceil(float(num_train) / minibatch_size)) train_phase = True if w_tens is None: train_batch = K.function(inputs=[K.learning_phase(), x_tens, y_tens], outputs=[loss], updates=param_updates) else: train_batch = K.function(inputs=[K.learning_phase(), x_tens, y_tens, w_tens], outputs=[loss], updates=param_updates) if history is None: history = {} start_epoch = 0 if val_scores is not None: best_score = np.inf if lower_is_better else -np.inf num_epochs_since_best = 0 else: prev_epochs = [k for k in history.keys() if isinstance(k, int)] start_epoch = np.max(prev_epochs) + 1 if len(prev_epochs) > 0 else 0 if val_scores is not None: params_saved = [] for var in var_list: params_saved.append(sess.run(var)) history['best'] = {} history['epoch'] = start_epoch for i, scorer in enumerate(val_scores): _score = scorer() history['best']['val_{}'.format(i)] = _score history['best']['params'] = params_saved best_score = _score num_epochs_since_best = 0 for epoch in range(start_epoch, max_epochs + start_epoch): if patience is not None and num_epochs_since_best > patience: break inds = np.random.permutation(X_train.shape[0]) l_avg = 0. for t in range(num_batches_per_epoch): X_batch = X_train[inds[t*minibatch_size:np.minimum(num_train, (t+1)*minibatch_size)]] y_batch = y_train[inds[t*minibatch_size:np.minimum(num_train, (t+1)*minibatch_size)], None] if w_tens is None: l = train_batch([train_phase, X_batch, y_batch, None])[0] else: W_batch = W_train[inds[t*minibatch_size:np.minimum(num_train, (t+1)*minibatch_size)]] l = train_batch([train_phase, X_batch, y_batch, W_batch])[0] print('\rEpoch: {0:04d}/{1:04d} | Batch {2:2d}/{3:2d} | ELBO: {4:.3f}'.format(epoch+1, max_epochs + start_epoch, t+1, num_batches_per_epoch, -l), end='') l_avg += l l_avg /= float(num_batches_per_epoch) print('\rEpoch: {0:04d}/{1:04d} | Batch {2:2d}/{2:2d} | ELBO: {3:.3f} '.format(epoch+1, max_epochs + start_epoch, num_batches_per_epoch, -l_avg), end='') history[epoch] = {} history[epoch]['elbo'] = -l_avg if val_scores is not None: for i, scorer in enumerate(val_scores): _score = scorer() history[epoch]['val_{}'.format(i)] = _score print('| Val.{}.: {:.3f} '.format(i, _score), end='') if lower_is_better and _score <= best_score or not lower_is_better and _score >= best_score: best_score = _score num_epochs_since_best = 0 params_saved = [] for var in var_list: params_saved.append(sess.run(var)) history['best'] = {} history['epoch'] = epoch for key, val in history[epoch].items(): history['best'][key] = val history['best']['params'] = params_saved print('| New best...', end='') else: num_epochs_since_best += 1 print() return history
[ "" ]
9e72e6d0888bf2204d471dd9e5d05a180ce11fa0
795340baeeed8aab921ec02f7226248b35256edf
/query_view/views.py
ff792aea286aebf5c3d1a585faf07358f5a4ddd6
[ "MIT" ]
permissive
enricobarzetti/django-query-view
3646970571cf3c4bad97fb2fb7104cbe63855a45
79c6247c076d037c3c401d05773f64e5e237f3a2
refs/heads/master
2023-02-16T01:00:24.562879
2021-01-17T04:03:07
2021-01-17T04:03:07
324,231,699
0
0
null
null
null
null
UTF-8
Python
false
false
390
py
from django_filters.views import FilterView from taggit.models import Tag class QueryView(FilterView): url_name = None template_name = 'query_view/query.html' def get_context_data(self, *args, **kwargs): context = super().get_context_data(*args, **kwargs) context['tags'] = Tag.objects.all() context['url_name'] = self.url_name return context
[ "enricobarzetti@gmail.com" ]
enricobarzetti@gmail.com
bbde3cd10bf1a8966da6f099488bf23ab78d6311
15c1975e8862f6765e44feb756fdab06f6714525
/PDU/devel/test_argparse.py
8b1f6f0555d1aaa7280fa18e962eaeee084df320
[]
no_license
TianlaiProject/tldev
2876571c77b75cac1a2a69e9922a25398f989788
d62416ae4ceed07b7c55b6d5b99b3cbdbd75fb71
refs/heads/master
2020-04-03T19:23:05.834689
2019-08-22T09:03:53
2019-08-22T09:03:53
155,521,451
0
0
null
null
null
null
UTF-8
Python
false
false
396
py
import argparse parser = argparse.ArgumentParser() parser.add_argument('-a', '--aa') parser.add_argument('-b', '--bb', nargs = '?', const = 10, default = 123) parser.add_argument('-c', '--cc', ) op = parser.parse_args() try: print 'aa = ', op.aa except: print 'aa error' try: print 'bb =', op.bb except: print 'bb error' try: print 'cc =', op.cc except: print 'cc error'
[ "astrofanlee@gmail.com" ]
astrofanlee@gmail.com
ff37fca6d36c96f787bcda7ec42d605301f532d9
413940b4b461e9bb549c08a0ca21f3893583723f
/Tarea de Investigación/Lista.py
ae30f2124612ead01dfcd5277317d9c3d950910f
[]
no_license
MARILEONV/Tarea-de-Investigaci-n
d6da1a3ec6020b67f3007881bf7bf4747103a33f
232f5757e28af74bd168fc99d785c129332d07bf
refs/heads/main
2023-06-28T14:20:29.892082
2021-08-05T01:06:55
2021-08-05T01:06:55
391,653,980
0
0
null
null
null
null
UTF-8
Python
false
false
3,264
py
from Numero import * class Lista(Intermedio): def __init__(self,lista): self.lista= lista def presentarLista(self): n = int(input("Cuantos elementos quiere agregar a la lista: ")) for i in range(n): lis = input("Ingrese valor {}: ".format(i)) self.lista.append(lis) return self.lista def buscarLista(self,valor): p= self.lista.index(valor) return "El valor [{}] se encuentra en la posicion {}" .format(valor,p) def listaFactorial(self): lis = [] for i in self.lista: fact = super().factorial(i) lis.append(fact) return "La lista de los factoriales es: {}".format(lis) def listaPrimo(self): lis = [] for i in self.lista: aux = super().primo(i) if aux: lis.append(i) return "La lista de los primos es: {}".format(lis) def listaNotas(self,listaNotasDiccionario): list = [] datos=int(input("Cuantos alumnos va a ingresar: ")) for alu in range(datos): aux = [] alumno= input("Ingrese el nombre del alumno {}: ".format(alu)) notas= int(input("¿Cuantas notas va a ingresar por el estudiante {}?: ".format(alumno))) for nota in range(notas): no= round(float(input("Nota {}: ".format(nota))),2) aux.append(no) listaNotasDiccionario = {"Nombre": alumno, "Notas":aux} list.append(listaNotasDiccionario) return "La lista de los cliente son: {}".format(list) def insertarLista(self,posicion,valor): self.lista.insert(posicion,valor) return "La nueva lista es: {}".format(self.lista) def eliminarLista(self,valor): try: while True: self.lista.remove(valor) except: pass return "La lista queda: {}".format(self.lista) def retornaValorLista(self,posicion): if posicion<len(self.lista): c= self.lista.pop(posicion) print("El valor eliminado es: {}".format(c.split())) else: print("La posicion {} no se encuentra en la lista".format(posicion)) return "La nueva lista queda: {}".format(self.lista) def copiarTuplaLista(self,tupla): n= int(input("Cuantos elementos quiere agregar: ")) for i in range(n): lis=input("Ingrese valor: ") self.lista.append(lis) tupla= tuple(self.lista) lista= list(tupla) print(tupla) return "Copiamos la tupla en una lista y quedó: {}".format(lista) def vueltoLista(self,listaClientesDiccionario): list = [] datos=int(input("Cuantos clientes va a ingresar: ")) for cup in range(datos): "nombre{}".format(cup) cliente= input("Ingrese el nombre del cliente: ") cupo= float(input("¿Cuánto es el vuelto del cliente {}?: ".format(cliente))) listaClientesDiccionario = {"Nombre":cliente,"Vuelto":cupo} list.append(listaClientesDiccionario) return "La lista de los cliente son: {}".format(list)
[ "noreply@github.com" ]
MARILEONV.noreply@github.com
2d845424b61f091dfef56a43fb628330980dd4d7
fbe6090cfd86f07acefae39e885d0a7c3574c942
/post/views.py
fc036b6d4bc821d88284c85f01f2781eefd28205
[]
no_license
andralandrizzy/todos
77a4677eea379985487c93c11618966962e590b4
f44ad05d6b775414798ca7c1c895aff5eacfd10c
refs/heads/main
2023-01-03T04:51:25.363851
2020-10-22T04:40:59
2020-10-22T04:40:59
306,193,858
0
0
null
null
null
null
UTF-8
Python
false
false
539
py
from django.shortcuts import render from django.http import HttpResponse from . models import * from . forms import * # Create your views here. def index(request): if request.method == 'POST': title = request.POST['title'] description = request.POST['description'] task = Task(title=title, description=description) task.save() tasks = Task.objects.order_by('-created') form = TaskForm() context = { 'tasks':tasks, } return render(request, 'post/tasks.html', context)
[ "drip_dev_drizzy@pop-os.localdomain" ]
drip_dev_drizzy@pop-os.localdomain
fe4089d3a3e8b1f7b727787135b1b49cbd154b9f
1767232aba61ea15703df6589355f9bae64e22bb
/train.py
51aaf2f61392dd89c59c86a0758b0d90ce676e1c
[ "MIT" ]
permissive
ChinaYi/asrf_with_asformer
73fc1a4019fc4db5b7452767be17e5f8d5611726
16a5dba6eeb7220c9dd30b64613972883dcb83ca
refs/heads/main
2023-08-23T05:58:33.541399
2021-10-28T13:04:45
2021-10-28T13:04:45
416,367,698
14
1
null
null
null
null
UTF-8
Python
false
false
9,260
py
import argparse import os import random import pandas as pd import torch from torch.utils.data import DataLoader from torchvision.transforms import Compose from libs import models from libs.checkpoint import resume, save_checkpoint from libs.class_id_map import get_n_classes from libs.class_weight import get_class_weight, get_pos_weight from libs.config import get_config from libs.dataset import ActionSegmentationDataset, collate_fn from libs.helper import train, validate from libs.loss_fn import ActionSegmentationLoss, BoundaryRegressionLoss from libs.optimizer import get_optimizer from libs.transformer import TempDownSamp, ToTensor def get_arguments() -> argparse.Namespace: """ parse all the arguments from command line inteface return a list of parsed arguments """ parser = argparse.ArgumentParser( description="train a network for action recognition" ) parser.add_argument("config", type=str, help="path of a config file") parser.add_argument( "--seed", type=int, default=0, help="a number used to initialize a pseudorandom number generator.", ) parser.add_argument( "--resume", action="store_true", help="Add --resume option if you start training from checkpoint.", ) return parser.parse_args() def main() -> None: # argparser args = get_arguments() # configuration config = get_config(args.config) result_path = os.path.dirname(args.config) seed = args.seed random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.deterministic = True # cpu or cuda device = "cuda" if torch.cuda.is_available() else "cpu" if device == "cuda": torch.backends.cudnn.benchmark = True # Dataloader # Temporal downsampling is applied to only videos in 50Salads downsamp_rate = 2 if config.dataset == "50salads" else 1 train_data = ActionSegmentationDataset( config.dataset, transform=Compose([ToTensor(), TempDownSamp(downsamp_rate)]), mode="trainval" if not config.param_search else "training", split=config.split, dataset_dir=config.dataset_dir, csv_dir=config.csv_dir, ) train_loader = DataLoader( train_data, batch_size=config.batch_size, shuffle=True, num_workers=config.num_workers, drop_last=True if config.batch_size > 1 else False, collate_fn=collate_fn, ) # if you do validation to determine hyperparams if config.param_search: val_data = ActionSegmentationDataset( config.dataset, transform=Compose([ToTensor(), TempDownSamp(downsamp_rate)]), mode="validation", split=config.split, dataset_dir=config.dataset_dir, csv_dir=config.csv_dir, ) val_loader = DataLoader( val_data, batch_size=1, shuffle=False, num_workers=config.num_workers, collate_fn=collate_fn, ) # load model print("---------- Loading Model ----------") n_classes = get_n_classes(config.dataset, dataset_dir=config.dataset_dir) model = models.ActionSegmentRefinementFramework( in_channel=config.in_channel, n_features=config.n_features, n_classes=n_classes, n_stages=config.n_stages, n_layers=config.n_layers, n_stages_asb=config.n_stages_asb, n_stages_brb=config.n_stages_brb, ) # send the model to cuda/cpu model.to(device) optimizer = get_optimizer( config.optimizer, model, config.learning_rate, momentum=config.momentum, dampening=config.dampening, weight_decay=config.weight_decay, nesterov=config.nesterov, ) # resume if you want columns = ["epoch", "lr", "train_loss"] # if you do validation to determine hyperparams if config.param_search: columns += ["val_loss", "cls_acc", "edit"] columns += [ "segment f1s@{}".format(config.iou_thresholds[i]) for i in range(len(config.iou_thresholds)) ] columns += ["bound_acc", "precision", "recall", "bound_f1s"] begin_epoch = 0 best_loss = float("inf") log = pd.DataFrame(columns=columns) best_edit = -999. if args.resume: if os.path.exists(os.path.join(result_path, "checkpoint.pth")): checkpoint = resume(result_path, model, optimizer) begin_epoch, model, optimizer, best_loss = checkpoint log = pd.read_csv(os.path.join(result_path, "log.csv")) print("training will start from {} epoch".format(begin_epoch)) else: print("there is no checkpoint at the result folder") # criterion for loss if config.class_weight: class_weight = get_class_weight( config.dataset, split=config.split, dataset_dir=config.dataset_dir, csv_dir=config.csv_dir, mode="training" if config.param_search else "trainval", ) class_weight = class_weight.to(device) else: class_weight = None criterion_cls = ActionSegmentationLoss( ce=config.ce, focal=config.focal, tmse=config.tmse, gstmse=config.gstmse, weight=class_weight, ignore_index=255, ce_weight=config.ce_weight, focal_weight=config.focal_weight, tmse_weight=config.tmse_weight, gstmse_weight=config.gstmse, ) pos_weight = get_pos_weight( dataset=config.dataset, split=config.split, csv_dir=config.csv_dir, mode="training" if config.param_search else "trainval", ).to(device) criterion_bound = BoundaryRegressionLoss(pos_weight=pos_weight) # train and validate model print("---------- Start training ----------") for epoch in range(begin_epoch, config.max_epoch): # training train_loss = train( train_loader, model, criterion_cls, criterion_bound, config.lambda_b, optimizer, epoch, device, ) # if you do validation to determine hyperparams if config.param_search: ( val_loss, cls_acc, edit_score, segment_f1s, bound_acc, precision, recall, bound_f1s, ) = validate( val_loader, model, criterion_cls, criterion_bound, config.lambda_b, device, config.dataset, config.dataset_dir, config.iou_thresholds, config.boundary_th, config.tolerance, ) # save a model if top1 acc is higher than ever if best_loss > val_loss: best_loss = val_loss torch.save( model.state_dict(), os.path.join(result_path, "best_loss_model.prm"), ) # save checkpoint every epoch save_checkpoint(result_path, epoch, model, optimizer, best_loss) # write logs to dataframe and csv file tmp = [epoch, optimizer.param_groups[0]["lr"], train_loss] # if you do validation to determine hyperparams if config.param_search: tmp += [ val_loss, cls_acc, edit_score, ] tmp += segment_f1s tmp += [ bound_acc, precision, recall, bound_f1s, ] tmp_df = pd.Series(tmp, index=log.columns) log = log.append(tmp_df, ignore_index=True) log.to_csv(os.path.join(result_path, "log.csv"), index=False) if config.param_search: # if you do validation to determine hyperparams print( "epoch: {}\tlr: {:.4f}\ttrain loss: {:.4f}\tval loss: {:.4f}\tval_acc: {:.4f}\tedit: {:.4f}".format( epoch, optimizer.param_groups[0]["lr"], train_loss, val_loss, cls_acc, edit_score, ) ) if edit_score > best_edit: best_edit = edit_score torch.save(model.state_dict(), os.path.join(result_path, 'best_val_edit.prm')) else: print( "epoch: {}\tlr: {:.4f}\ttrain loss: {:.4f}".format( epoch, optimizer.param_groups[0]["lr"], train_loss ) ) if (epoch + 1) % 10 == 0: torch.save(model.state_dict(), os.path.join(result_path, "model_{}.prm".format(epoch+1))) # delete checkpoint os.remove(os.path.join(result_path, "checkpoint.pth")) # save models torch.save(model.state_dict(), os.path.join(result_path, "final_model.prm")) print("Done!") if __name__ == "__main__": main()
[ "noreply@github.com" ]
ChinaYi.noreply@github.com
227083a6426424a55be3c286049966f07d5526b7
904a5d68bd9ce20f46031b1b30690daa6f101f77
/scorelib-import.py
55a87e7c9e1e1fd8e7caa1a8084f4d1591522e5c
[]
no_license
lubcik/PV248
21d42796e29410391b0b06d149c39cbce81268ae
2cb11e5315b2ea1c8b4b4413116f88bc9c888dd4
refs/heads/master
2021-05-05T01:05:46.029546
2018-01-29T20:54:23
2018-01-29T20:54:23
119,612,407
0
0
null
null
null
null
UTF-8
Python
false
false
2,383
py
import re # regular expressions import sqlite3 # This is a base class for objects that represent database items. It implements # the store() method in terms of fetch_id and do_store, which need to be # implemented in every derived class (see Person below for an example). class DBItem: def __init__( self, conn ): self.id = None self.cursor = conn.cursor() def store( self ): self.fetch_id() if ( self.id is None ): self.do_store() self.cursor.execute( "select last_insert_rowid()" ) self.id = self.cursor.fetchone()[ 0 ] # Example of a class which represents a single row of a single database table. # This is a very simple example, since it does not contain any references to # other objects. class Person( DBItem ): def __init__( self, conn, string ): super().__init__( conn ) self.born = self.died = None self.name = re.sub( '\([0-9/+-]+\)', '', string ).strip() m = re.search( "([0-9]+)--([0-9]+)", string ) if not m is None: self.born = int( m.group( 1 ) ) self.died = int( m.group( 2 ) ) def fetch_id( self ): self.cursor.execute( "select id from person where name = ?", (self.name,) ) res = self.cursor.fetchone() if not res is None: # TODO born/died update should be done inside this if self.id = res[ 0 ] self.cursor.execute( "update person set born = ?, died = ? where id = ?", ( self.born, self.died, self.id)) def do_store( self ): print ("storing '%s'" % self.name) # NB. Part of the exercise was adding the born/died columns to the below query. self.cursor.execute( "insert into person (name, born, died) values (?, ?, ?)", ( self.name, self.born, self.died ) ) # Process a single line of input. def process( k, v ): if k == 'Composer' or k == 'Editor': for c in v.split(';'): p = Person( conn, c.strip() ) p.store() # Database initialisation: sqlite3 scorelib.dat ".read scorelib.sql" conn = sqlite3.connect( 'scorelib.dat' ) rx = re.compile( r"(.*): (.*)" ) for line in open( 'scorelib.txt', 'r', encoding='utf-8' ): m = rx.match( line ) if m is None: continue process( m.group( 1 ), m.group( 2 ) ) conn.commit()
[ "lubica.kramarekova@kiwi.com" ]
lubica.kramarekova@kiwi.com
e743b9ad9f620a3fdcf330cd029aede1dbd35801
64c7445ed33d43c4d56f96c1916d55bf63a80ce6
/allelic_dist.py
4c573b7fb0ebda38fcafcf14307193229df65068
[]
no_license
dorbarker/mist-tools
d28dba2d2705ae1cf6854717ca6b982672ea9a8e
b18929b489f204b3b4411ad9d9d1d88ed48db1ce
refs/heads/master
2020-06-12T18:06:00.718335
2015-01-09T18:16:17
2015-01-09T18:16:17
28,106,694
0
0
null
null
null
null
UTF-8
Python
false
false
2,717
py
import argparse import csv import mistutils def arguments(): parser = argparse.ArgumentParser() parser.add_argument('-j', '--jsons', nargs='+', required=True, help='Path(s) to JSONs') parser.add_argument('-t', '--tests', required=True, help="MIST test name") parser.add_argument('-o', '--out', required=True, help='Matrix outpath') return parser.parse_args() def hamming_distance(strain1, strain2): """ Finds the Hamming Distance between two strains based on allele differences. """ h_dist = 0 order = strain1.keys() for item in order: if strain1[item] != strain2[item]: h_dist += 1 return h_dist def prepare_dist_matrix_csv(mat): """Perpares distance matrix dict as a 2D array.""" order = mat.keys() prepped_mat = [] row = ['genomes'] row.extend(order) prepped_mat.append(row) for strain1 in order: row = [strain1] for strain2 in order: row.append(mat[strain1][strain2]) prepped_mat.append(row) return prepped_mat def write_dist_matrix_csv(outpath, mat): """Writes distance matrix to CSV.""" prepped_mat = prepare_dist_matrix_csv(mat) with open(outpath, 'w') as f: out = csv.writer(f) for row in prepped_mat: out.writerow(row) def build_matrix(strains_calls): """Constructs Hamming Distance matrix.""" dist_mat = {} for strain1 in strains_calls: dist_mat[strain1] = {} for strain2 in strains_calls: h_dist = hamming_distance(strains_calls[strain1], strains_calls[strain2]) dist_mat[strain1][strain2] = h_dist return dist_mat def parse_json(genes, test): """Returns dict of allele matches.""" d = {} for gene in genes: if genes[gene]["BlastResults"] is None or genes[gene]["IsContigTruncation"]: d[gene] = "NA" print("Beware! {} is missing {}. This is treated as a valid 'allele' in the matrix.".format(genes[gene]["StrainName"], gene)) else: d[gene] = genes[gene]["AlleleMatch"] return d def process(args): strains_calls = {} jsons = mistutils.get_jsons(args.jsons) for j in jsons: data = mistutils.load_json(j) for test in args.tests: for strain, genes in mistutils.loop_json_genomes(data, test): strains_calls[strain] = parse_json(genes, test) mat = build_matrix(strains_calls) write_dist_matrix_csv(args.out, mat) def main(): args = arguments() process(args) if __name__ == '__main__': main()
[ "dor.barker@gmail.com" ]
dor.barker@gmail.com
295e21ae589f0e72622d30ceb5f1fdd2443680b9
e6c1ce30389e87986e9db8fad7a3351e8fdb1259
/budget/migrations/0002_remove_customer_profile_pic.py
810105431dfc7cbe49f3161ed2f13c64f1641a68
[]
no_license
Prabu-N/monthly-expenses-app
ed6652c8955d0654d2778f9ef3377ba274109080
2de193d2dcb0978a92aa03cd7e13c89846facd6a
refs/heads/master
2022-12-27T09:02:50.254939
2020-10-06T05:59:49
2020-10-06T05:59:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
323
py
# Generated by Django 3.0.7 on 2020-09-12 09:20 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('budget', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='customer', name='profile_pic', ), ]
[ "prabu6964@gmail.com" ]
prabu6964@gmail.com
61d41b77446a8bf350c21e4782b2e2bce3f5ad6a
4fcd166f2d6a9a31daed609feff8c7e37b3e359b
/librfid/FIFO.py
585810db1e73dd0ac5d82fc47148fadf64949d32
[]
no_license
fchorney/rfid_daemon
6bba2106d38489037b0666a1f07802d8c2ebe312
739119e48c6ed69820486668c33a0bd835b1a631
refs/heads/master
2021-06-14T14:34:25.211859
2017-02-03T18:34:18
2017-02-03T18:34:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
634
py
# -*- coding: UTF-8 -*- from os import mkfifo, stat from os.path import exists from stat import S_ISFIFO def isfifo(path): if exists(path): return S_ISFIFO(stat(path).st_mode) return False def openfifo(path, mode): if not isfifo(path): mkfifo(path) return open(path, mode) class FIFO(): def __init__(self, path='fifo'): self.path = path def write(self, text): fifo = openfifo(self.path, 'w') fifo.write(text) fifo.close() def read(self): fifo = openfifo(self.path, 'rb') text = fifo.read() fifo.close() return text
[ "github@djsbx.com" ]
github@djsbx.com
b05c63535ada6a48faeb8b3038fc4d314df9e2a0
f891bda5635da422a2c76edbcb1af0061aa12574
/rest/migrations/0002_auto_20210314_1159.py
ba6e398bf6c9d3cb86518665d0bc887f01a8dc4f
[]
no_license
darkydash/olimpiada_ya_prof_task2_pi
60edc4c51297303a80d0b9386ec68c196054c06d
287f3f38b12dcc0beed39468f1a5feffb248a1ed
refs/heads/master
2023-03-18T23:02:35.523806
2021-03-14T09:19:42
2021-03-14T09:19:42
347,589,745
0
0
null
null
null
null
UTF-8
Python
false
false
413
py
# Generated by Django 2.2.13 on 2021-03-14 08:59 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('rest', '0001_initial'), ] operations = [ migrations.AlterField( model_name='notes', name='title', field=models.CharField(blank=True, max_length=255, null=True), ), ]
[ "darkydashie@gmail.com" ]
darkydashie@gmail.com
16c4b2fcf10ed1d8ed1bbe25f5cb06e02759fa77
1107d86d52dd5cdb1cb6dd1625ac5676ba66b540
/server/models.py
bd1d9054a4e66dd13c99164f19ee03fc905fbb0d
[]
no_license
anirudh1200/flask_react_jwt_auth
98238df3c43d16f356c9ab5c03b6ef9269ef8d7e
0430570f5a3abbd9d9e0addd4d27e5586e55d2f6
refs/heads/master
2020-06-21T07:16:26.191991
2019-06-11T15:23:23
2019-06-11T15:23:23
197,379,701
0
0
null
null
null
null
UTF-8
Python
false
false
277
py
from flask_sqlalchemy import SQLAlchemy db = SQLAlchemy() class User(db.Model): id = db.Column(db.Integer, primary_key=True) firstName = db.Column(db.String(50)) lastName = db.Column(db.String(50)) username = db.Column(db.String(50)) password = db.Column(db.String(100))
[ "anirudh.b.123@gmail.com" ]
anirudh.b.123@gmail.com
74db1e67a767be1ccd50a8e60cbe29e1b58c56e9
bf30258c306c27ae7851fe5a701e311df7ba7293
/chatproject/routing.py
8da9fc78d866f9a68200f131a1d17dcc0ee49346
[]
no_license
soomin-jeong/chat-app
499076c57c3f4bc6fbd1b7db2a0353d89aababd4
6cdb3958ebdd48c7635f373c4e0e5f6dd02fb232
refs/heads/master
2020-06-30T08:18:57.635161
2019-08-06T08:47:42
2019-08-06T08:47:42
200,775,977
0
0
null
null
null
null
UTF-8
Python
false
false
240
py
from channels import include application = [ # To set up the websocket routing include("chat_app.routing.routing_websocket", path=r"^/socket/"), # For chat join, leave, and send include("chat_app.routing.routing_chat"), ]
[ "smjeong@ogqcorp.com" ]
smjeong@ogqcorp.com
f8245119fd7270f578f5d81fd88be98f949dea5a
83ac04c3ef23c06b497cb6d8913cee34645b818d
/UNIT 1/W1_Lecture 3.py
54783520f6ed219c61521fbf9627a9aa95877c40
[]
no_license
markjluo/MITx_6.00.2x
adc29297148144426de053e2e8f49c98fa8af113
b5c8ba805cfaaee8e2847d68751fe9a95b6dc0e2
refs/heads/master
2020-05-27T00:29:32.746081
2019-05-28T21:55:11
2019-05-28T21:55:11
188,425,039
0
0
null
null
null
null
UTF-8
Python
false
false
3,558
py
class Node(object): def __init__(self, name): """Assume name is a string""" self.name = name def getName(self): return self.name def __str__(self): return self.name class Edge(object): def __init__(self, src, dest): """Assumes src(Source) and dest(Destination) are nodes""" self.src = src self.dest = dest def getSource(self): return self.src def getDest(self): return self.dest def __str__(self): return self.src.getName() + '->'+ self.dest.getName() class Digraph(object): """edges is a dict mapping each node to a list of its children""" def __init__(self): self.edges = {} def addNode(self, node): if node in self.edges: raise ValueError('Duplicate node') else: self.edges[node] = [] def addEdge(self, edge): src = edge.getSource() dest = edge.getDest() if not (src in self.edges and dest in self.edges): raise ValueError('Node not in graph') self.edges[src].append(dest) def childrenof(self, node): return self.edges[node] def hasNode(self, node): return node in self.edges def getNode(self, name): for n in self.edges: if n.getName() == name: return n raise NameError(name) def __str__(self): result = '' for src in self.edges: for dest in self.edges[src]: result = result + src.getName() + '->' + dest.getName() + '\n' return result[:-1] # Omit final newline class Graph(Digraph): def addEdge(self, edge): Digraph.addEdge(self, edge) rev = Edge(edge.getDest(), edge.getSource()) Digraph.addEdge(self, rev) def buildCityGraph(graphtype): g = graphtype() for name in ('Boston', 'Providence', 'New York', 'Chicago', 'Denver', 'Phoenix', 'Los Angeles'): #Create 7 nodes g.addNode(Node(name)) g.addEdge(Edge(g.getNode('Boston'), g.getNode('Providence'))) g.addEdge(Edge(g.getNode('Boston'), g.getNode('New York'))) g.addEdge(Edge(g.getNode('Providence'), g.getNode('Boston'))) g.addEdge(Edge(g.getNode('Providence'), g.getNode('New York'))) g.addEdge(Edge(g.getNode('New York'), g.getNode('Chicago'))) g.addEdge(Edge(g.getNode('Chicago'), g.getNode('Denver'))) g.addEdge(Edge(g.getNode('Denver'), g.getNode('Phoenix'))) g.addEdge(Edge(g.getNode('Denver'), g.getNode('New York'))) g.addEdge(Edge(g.getNode('Chicago'), g.getNode('Phoenix'))) g.addEdge(Edge(g.getNode('Los Angeles'), g.getNode('Boston'))) return g def DFS(graph, start, end, path, shortest, toPrint = False): path = path + [start] if start == end: return path for node in graph.childrenOf(start): if node not in path: # avoid cycles if shortest == None or len(path) < len(shortest): newPath = DFS(graph, node, end, path, shortest, toPrint) if newPath != None: shortest = newPath return shortest def shortestPath(graph, start, end): return DFS(graph, start, end, [], None, toPrint) def testSP(source, destination): g = buildGraph() sp = shortestPath(g, g.getNode(source), g.getNode(destination)) if sp != None: print('Shortest path from', source, 'to', destination, 'is', printPath(sp)) else: print('There is no path from', source, 'to', destination) buildCityGraph(Digraph) a = Node('abc') print(str(a))
[ "mark.j.luo@gmail.com" ]
mark.j.luo@gmail.com
e5356c009de0a60d2476a1ab574e460d8f281c61
40426dffc4024327a28511bb1178f5d07a9eacdb
/natas/natas5.py
0c1c58f1055d1ec5496332b8b6eca7d7e353eccc
[]
no_license
dr01dz/overthewire
52e3eac3d437bf30848738496b844ac5b6b645e0
e822a9a327dba0734ea6ec202c2cb22cfceb02cf
refs/heads/master
2021-05-18T07:16:59.847040
2020-03-30T01:55:29
2020-03-30T01:55:29
251,175,935
0
0
null
null
null
null
UTF-8
Python
false
false
381
py
import requests import re username = "natas5" password = "iX6IOfmpN7AYOQGPwtn3fXpbaJVJcHfq" url = f"http://{username}.natas.labs.overthewire.org/" session = requests.Session() response = session.get(url, auth=(username, password), cookies={'loggedin': '1'}) content = response.text flag = re.findall(r"The password for natas6 is (.*)<", content)[0] print(flag)
[ "dr01dz@pm.me" ]
dr01dz@pm.me
5458a59d2c1a1fc92e3d4f82b705bf473f5f329c
f3335c28c0eec1587f81c492289e83ca96fb066a
/integrationtests/TestYouTubeUserScraper.py
d264e51c26815fd41b79fa280c49e4d134caad3b
[]
no_license
souzaonofre/youtube-xbmc-plugin
1e373f05d7df5262cca0fa55f445a5c5aa56b901
80330ea03eadd72027dc5c1184f8df9c4f6d7a06
refs/heads/master
2021-01-18T10:37:58.637182
2015-04-11T17:42:36
2015-04-11T17:42:36
null
0
0
null
null
null
null
UTF-8
Python
false
false
826
py
import BaseTestCase import nose import sys class TestYouTubeUserScraper(BaseTestCase.BaseTestCase): def test_plugin_should_scrape_liked_videos_list_correctly(self): sys.modules["__main__"].settings.load_strings("./resources/basic-login-settings-logged-in.xml") sys.modules["__main__"].settings.setSetting("cookies_saved", "false") self.navigation.listMenu({"scraper": "liked_videos", 'login': 'true', "path": "/root/liked_videos"}) self.assert_directory_count_greater_than_or_equals(10) self.assert_directory_count_less_than_or_equals(51) self.assert_directory_is_a_video_list() self.assert_directory_contains_almost_only_unique_video_items() self.assert_directory_items_should_have_external_thumbnails() if __name__ == "__main__": nose.runmodule()
[ "commander.john.crichton@gmail.com" ]
commander.john.crichton@gmail.com
e224aba3ce164996f1d8fa2ecae19ad56194e37c
e50e73e3d18bd297eda0561421e5f5b44e47fde8
/ops.py
f58171f9239858581a8f6a789289992744f156e2
[]
no_license
JabariHolder/squad-tensorflow
57d1251eeb6dd2ee5922e5e27fec7ace748201f7
14ef5bb3b1119aa071f2324930e7f9e488ef212d
refs/heads/master
2020-03-24T19:37:50.991101
2018-06-13T05:58:16
2018-06-13T05:58:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,710
py
import tensorflow as tf import os from tensorflow.contrib.rnn.python.ops.rnn_cell import AttentionCellWrapper from tensorflow.contrib.tensorboard.plugins import projector def dropout(x, keep_prob): return tf.nn.dropout(x, keep_prob) def lstm_cell(cell_dim, layer_num, keep_prob): with tf.variable_scope('LSTM_Cell') as scope: def get_cell(cd, kp): cell = tf.contrib.rnn.BasicLSTMCell( cd, forget_bias=1.0, activation=tf.tanh, state_is_tuple=True) cell = tf.contrib.rnn.DropoutWrapper(cell, output_keep_prob=kp) return cell stacked_rnn = tf.contrib.rnn.MultiRNNCell([get_cell(cell_dim, keep_prob) for _ in range(layer_num)]) return stacked_rnn def gru_cell(cell_dim, layer_num, keep_prob): with tf.variable_scope('GRU_Cell') as scope: cell = tf.contrib.rnn.GRUCell(cell_dim) cell = tf.contrib.rnn.DropoutWrapper(cell, output_keep_prob=keep_prob) return tf.contrib.rnn.MultiRNNCell([cell] * layer_num) def rnn_reshape(inputs, input_dim, max_time_step): with tf.variable_scope('Reshape') as scope: inputs_tr = tf.transpose(inputs, [1, 0, 2]) inputs_tr_reshape = tf.reshape(inputs_tr, [-1, input_dim]) inputs_tr_reshape_split = tf.split(axis=0, num_or_size_splits=max_time_step, value=inputs_tr_reshape) return inputs_tr_reshape_split def rnn_model(inputs, input_len, max_time_step, cell, params, gather_last=False): dim_rnn_cell = params['dim_rnn_cell'] with tf.variable_scope('RNN') as scope: outputs, state = tf.contrib.rnn.static_rnn(cell, inputs, sequence_length=input_len, dtype=tf.float32, scope=scope) outputs = tf.transpose(tf.stack(outputs), [1, 0, 2]) if gather_last: indices = tf.concat(axis=1, values=[tf.expand_dims(tf.range(0, tf.shape(input_len)[0]), 1), tf.expand_dims(input_len-1, 1)]) gathered_outputs = tf.gather_nd(outputs, indices) else: gathered_outputs = outputs return gathered_outputs def bi_rnn_model(inputs, input_len, fw_cell, bw_cell, fw_init_state=None, bw_init_state=None): with tf.variable_scope('Bi-RNN') as scope: outputs, state = tf.nn.bidirectional_dynamic_rnn( fw_cell, bw_cell, inputs, sequence_length=input_len, initial_state_fw=fw_init_state, initial_state_bw=bw_init_state, dtype=tf.float32, scope=scope) outputs = tf.concat(axis=2, values=[outputs[0], outputs[1]]) return outputs, state def embedding_lookup(inputs, voca_size, embedding_dim, initializer=None, trainable=True, draw=False, visual_dir=None, config=None, reuse=False, scope='Embedding'): with tf.variable_scope(scope, reuse=reuse) as scope: if initializer is not None: embedding_table = tf.get_variable("embed", initializer=initializer, trainable=trainable, dtype=tf.float32) else: embedding_table = tf.get_variable("embed", [voca_size, embedding_dim], dtype=tf.float32, trainable=trainable) inputs_embed = tf.nn.embedding_lookup(embedding_table, inputs) # print(inputs_embed) if draw: embedding = config.embeddings.add() embedding.tensor_name = embedding_table.name embedding.metadata_path = os.path.join(visual_dir, '%s_metadata.tsv'%scope.name) return inputs_embed, projector else: return inputs_embed def mask_by_index(batch_size, input_len, max_time_step): with tf.variable_scope('Masking') as scope: input_index = tf.range(0, batch_size) * max_time_step + (input_len - 1) lengths_transposed = tf.expand_dims(input_index, 1) lengths_tiled = tf.tile(lengths_transposed, [1, max_time_step]) mask_range = tf.range(0, max_time_step) range_row = tf.expand_dims(mask_range, 0) range_tiled = tf.tile(range_row, [batch_size, 1]) mask = tf.less_equal(range_tiled, lengths_tiled) weight = tf.select(mask, tf.ones([batch_size, max_time_step]), tf.zeros([batch_size, max_time_step])) weight = tf.reshape(weight, [-1]) return weight def linear(inputs, output_dim, dropout_rate=1.0, regularize_rate=0, activation=None, scope='Linear'): with tf.variable_scope(scope) as scope: input_dim = inputs.get_shape().as_list()[-1] inputs = tf.reshape(inputs, [-1, input_dim]) weights = tf.get_variable('Weights', [input_dim, output_dim], initializer=tf.random_normal_initializer()) variable_summaries(weights, scope.name + '/Weights') biases = tf.get_variable('Biases', [output_dim], initializer=tf.constant_initializer(0.0)) variable_summaries(biases, scope.name + '/Biases') if activation is None: return dropout((tf.matmul(inputs, weights) + biases), dropout_rate) else: return dropout(activation(tf.matmul(inputs, weights) + biases), dropout_rate) def variable_summaries(var, name): """Attach a lot of summaries to a Tensor.""" with tf.name_scope('summaries'): mean = tf.reduce_mean(var) tf.summary.scalar('mean/' + name, mean) with tf.name_scope('stddev'): stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) tf.summary.scalar('stddev/' + name, stddev) tf.summary.scalar('max/' + name, tf.reduce_max(var)) tf.summary.scalar('min/' + name, tf.reduce_min(var)) tf.summary.histogram(name, var)
[ "jinhyuk_lee@korea.ac.kr" ]
jinhyuk_lee@korea.ac.kr
368cd162c2321582941fb96c9ef02d7aa65f8a41
3e7b9373afd1dc4ec30f0afd12f38b607a823747
/simple-sklearn-demo/test14/balanceTest.py
d52f7283569994b2c5f2d1ad9490cc3d0c8becb5
[ "MIT" ]
permissive
GlintW/Intern.MT
767512a42ba4f450d8b2b24fecf8595294d6fe7c
29538b083f29720bfdda7565eaca89292f7e3723
refs/heads/master
2020-06-09T10:40:43.720827
2019-07-05T03:36:21
2019-07-05T03:36:21
193,424,380
2
1
MIT
2019-07-05T07:04:31
2019-06-24T03:01:31
Jupyter Notebook
UTF-8
Python
false
false
4,389
py
""" 以癌症判断为例, 假设原本的样本有100个, 真实的正确标记是99个癌症, 1个正常, 将癌症视作正例的话, 假设不进行任何科学预测, 而是直接把100个都胡乱猜测为正例, 则: 精确率为 99% 召回率为 100% F1-score为 2 * 0.99 * 1 / (0.99 + 1) = 1.98 / 1.99 = 0.99497487437185929648241206030151 在这种情况下, 因为样本不够均衡, 精确率/召回率/F1-score都无法用来判断真实的模型能力, 会认为胡乱猜测的结果预测很准确. TPR True Positive Rate 真正例比率 TP / (TP + FN) 所有真实为1的样本中, 预测也为1的比率(其实就是召回率) FPR False Positive Rate 伪正例比率 FP / (FP + TN) 所有真实为0的样本中, 预测为1的比率 以FPR为横坐标, TPR为纵坐标, 构造平面直角坐标系. 绘制每一个点的FPR和TPR, 得到的曲线被称作ROC(Receiver Operating Characteristic)曲线 ROC曲线和横纵坐标围成的面积, 被称作AUC(Area Under the Curve)指标, AUC也就是预测正样本大于预测负样本的比率 如果在某一点上, 若TPR == FPR, 该点的斜率为1, 则斜线正好是与横纵轴夹角都为45°的斜线, 该情况可视作是无论真实类别为0或1, 预测成1的概率都相等, 也就是random guess 该情况下, ROC曲线也就是random guess线与横纵坐标围成的面积是直角三角形, 面积为0.5 若TPR > FPR, 则斜线陡峭, 该情况下, 若所有真实为1的样本预测为1, 且所有真实为0的样本中, 都不预测为1, 则斜线变成Y轴, AUC值达到最大, 即面积为正方形, 面积为1 若TPR < FPR, 则斜线平缓 该情况下, AUC小于0.5, 可以反向使用模型. 最终可以认为, AUC的范围是在0.5~1之间, 越接近1越好. 以上面的极端情况为例(假设原本的样本有100个, 真实的正确标记是99个癌症, 1个正常), 此时的TPR为召回率 100%, 此时的FPR为(真实为0的样本数1中, 预测为1的样本数1) 1 / 1 = 100% 此时的ROC曲线为random guess, AUC为0.5, 可以看出其实是胡乱猜测的. """ import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report from sklearn.metrics import roc_auc_score def balance_test(): df = pd.read_csv(r"./breast-cancer-wisconsin_data.csv", names=["Sample code number", "Clump Thickness", "Uniformity of Cell Size", "Uniformity of Cell Shape", "Marginal Adhesion", "Single Epithelial Cell Size", "Bare Nuclei", "Bland Chromatin", "Normal Nucleoli", "Mitoses", "Class"]) df = df.replace(to_replace="?", value=np.nan) # 删除空值 df.dropna(inplace=True) # 检查是否包含空值 df.isnull().any() # 分出data和target data = df.iloc[:, :-1] target = df["Class"] # 拆分 data_train, data_test, target_train, target_test = train_test_split(data, target) # 标准化 sd_scaler = StandardScaler() data_train = sd_scaler.fit_transform(data_train) data_test = sd_scaler.transform(data_test) # 线性回归 lr = LogisticRegression() lr.fit(data_train, target_train) # 权重系数 print(lr.coef_) # 偏置 print(lr.intercept_) # 模型评估 target_predict = lr.predict(data_test) print(target_predict == target_test) print(lr.score(data_test, target_test)) # 精确率 召回率 F1-score # labels 指target结果的范围, target_names 指target结果的名称 report = classification_report(target_test, target_predict, labels=[2, 4], target_names=["良性", "恶性"]) # 结果中的support表示数量 print(report) # y_true参数必须c处理成取值为0或1的正反例 # 该例子中将患癌症作为正例1 target_predict_positive = np.where(target_predict == 4, 1, 0) auc = roc_auc_score(target_predict_positive, target_predict) print("auc指标为") print(auc) return None if __name__ == '__main__': balance_test()
[ "crackedcd@qq.com" ]
crackedcd@qq.com
7234b46068e6c69c07d561b4565db25d1df52a21
5c38f7b1c479345ae02b9805458335b5f07acda5
/2. Useful methods/2_lesson2_step8.py
20533e59e843ca5f4c37ef8fa24578f28ece3926
[]
no_license
BenjaminPetrik/stepik-auto-tests-course
b3a667b34593220f4b73681d51466c812dc48919
ae40d40a1833e728afc660896d7ef62289c7a37e
refs/heads/master
2022-11-07T06:28:00.135119
2020-06-23T13:58:22
2020-06-23T13:58:22
272,705,087
1
0
null
null
null
null
UTF-8
Python
false
false
862
py
import os, time from selenium import webdriver from selenium.webdriver.common.by import By try: browser = webdriver.Chrome() browser.get("http://suninjuly.github.io/file_input.html") elements = browser.find_elements(By.CSS_SELECTOR, "[type='text']") a = 1 for element in elements: element.send_keys('test' + str(a)) a+=1 file = browser.find_element(By.ID, "file") current_dir = os.path.abspath(os.path.dirname(__file__)) # получаем путь к директории текущего исполняемого файла file_path = os.path.join(current_dir, '2_lesson2_step8.txt') # добавляем к этому пути имя файла file.send_keys(file_path) button = browser.find_element(By.CSS_SELECTOR, ".btn") button.click() finally: time.sleep(10) browser.quit()
[ "veniaminproductengine@lindenlab.com" ]
veniaminproductengine@lindenlab.com
a1c051123e8faa5112afbc7549b0e7b355131a1a
19ba3e5edfd76fb1801ff8e290ed87e6e4a3500e
/select_huge_glyphs.py
0a8157138e07a05fb459d9fec68d1564cacab9a7
[]
no_license
thundernixon/robofont-scaling-scripts
b0785d0dd93687e77a02e02716841be6b39c87ef
4a510c2e0bad5ef144d12b5e95c4321181f60cca
refs/heads/master
2021-08-23T21:23:37.288458
2017-12-06T16:18:01
2017-12-06T16:18:01
113,058,351
0
0
null
null
null
null
UTF-8
Python
false
false
287
py
f = CurrentFont() sel = [] for g in f: for contour in g: for seg in contour: for point in seg: if point.y > f.info.ascender + 200: if g.name not in sel: sel.append(g.name) print sel f.selection = sel
[ "swr410@gmail.com" ]
swr410@gmail.com
38781e7b0e37c1a1936673f0ab5b178c0fbbc6f6
3b074226ba22a9438cfcb960b9aade03d2293394
/.c9/metadata/environment/addWebAccounts/cart/context.py
842496ca315773dfb440d42bf691cbee3491aaa6
[]
no_license
MACmidiDEV/e-comm
6e5b376c15acf3dd8b757cc441b3da8b91986b57
923963d9fae8d22a877844649bad72b784c0b5cc
refs/heads/master
2022-11-25T14:49:05.131637
2020-07-03T01:56:12
2020-07-03T01:56:12
224,777,076
0
1
null
2022-03-12T00:06:16
2019-11-29T04:31:54
Python
UTF-8
Python
false
false
8,650
py
{"changed":true,"filter":false,"title":"context.py","tooltip":"/addWebAccounts/cart/context.py","value":"","undoManager":{"mark":0,"position":23,"stack":[[{"start":{"row":0,"column":0},"end":{"row":21,"column":85},"action":"insert","lines":["from django.shortcuts import get_object_or_404","from products.models import Product","","","def cart_contents(request):"," \"\"\""," Ensures that the cart contents are available when rendering"," every page"," \"\"\""," cart = request.session.get('cart', {})",""," cart_items = []"," total = 0"," product_count = 0"," "," for id, quantity in cart.items():"," product = get_object_or_404(Product, pk=id)"," total += quantity * product.price"," product_count += quantity"," cart_items.append({'id': id, 'quantity': quantity, 'product': product})"," "," return {'cart_items': cart_items, 'total': total, 'product_count': product_count}"],"id":1}],[{"start":{"row":3,"column":0},"end":{"row":3,"column":1},"action":"insert","lines":["#"],"id":2}],[{"start":{"row":3,"column":1},"end":{"row":3,"column":2},"action":"insert","lines":[" "],"id":3},{"start":{"row":3,"column":2},"end":{"row":3,"column":3},"action":"insert","lines":["t"]},{"start":{"row":3,"column":3},"end":{"row":3,"column":4},"action":"insert","lines":["e"]},{"start":{"row":3,"column":4},"end":{"row":3,"column":5},"action":"insert","lines":["m"]}],[{"start":{"row":3,"column":5},"end":{"row":3,"column":6},"action":"insert","lines":["p"],"id":4},{"start":{"row":3,"column":6},"end":{"row":3,"column":7},"action":"insert","lines":["e"]},{"start":{"row":3,"column":7},"end":{"row":3,"column":8},"action":"insert","lines":["r"]},{"start":{"row":3,"column":8},"end":{"row":3,"column":9},"action":"insert","lines":["y"]}],[{"start":{"row":3,"column":9},"end":{"row":3,"column":10},"action":"insert","lines":[" "],"id":5},{"start":{"row":3,"column":10},"end":{"row":3,"column":11},"action":"insert","lines":["s"]},{"start":{"row":3,"column":11},"end":{"row":3,"column":12},"action":"insert","lines":["t"]},{"start":{"row":3,"column":12},"end":{"row":3,"column":13},"action":"insert","lines":["o"]}],[{"start":{"row":3,"column":13},"end":{"row":3,"column":14},"action":"insert","lines":["r"],"id":6},{"start":{"row":3,"column":14},"end":{"row":3,"column":15},"action":"insert","lines":["a"]},{"start":{"row":3,"column":15},"end":{"row":3,"column":16},"action":"insert","lines":["g"]},{"start":{"row":3,"column":16},"end":{"row":3,"column":17},"action":"insert","lines":["e"]}],[{"start":{"row":3,"column":17},"end":{"row":3,"column":18},"action":"insert","lines":[" "],"id":7}],[{"start":{"row":3,"column":17},"end":{"row":3,"column":18},"action":"remove","lines":[" "],"id":8},{"start":{"row":3,"column":16},"end":{"row":3,"column":17},"action":"remove","lines":["e"]},{"start":{"row":3,"column":15},"end":{"row":3,"column":16},"action":"remove","lines":["g"]},{"start":{"row":3,"column":14},"end":{"row":3,"column":15},"action":"remove","lines":["a"]},{"start":{"row":3,"column":13},"end":{"row":3,"column":14},"action":"remove","lines":["r"]},{"start":{"row":3,"column":12},"end":{"row":3,"column":13},"action":"remove","lines":["o"]},{"start":{"row":3,"column":11},"end":{"row":3,"column":12},"action":"remove","lines":["t"]},{"start":{"row":3,"column":10},"end":{"row":3,"column":11},"action":"remove","lines":["s"]},{"start":{"row":3,"column":9},"end":{"row":3,"column":10},"action":"remove","lines":[" "]},{"start":{"row":3,"column":8},"end":{"row":3,"column":9},"action":"remove","lines":["y"]},{"start":{"row":3,"column":7},"end":{"row":3,"column":8},"action":"remove","lines":["r"]},{"start":{"row":3,"column":6},"end":{"row":3,"column":7},"action":"remove","lines":["e"]}],[{"start":{"row":3,"column":6},"end":{"row":3,"column":7},"action":"insert","lines":["a"],"id":9},{"start":{"row":3,"column":7},"end":{"row":3,"column":8},"action":"insert","lines":["r"]},{"start":{"row":3,"column":8},"end":{"row":3,"column":9},"action":"insert","lines":["y"]}],[{"start":{"row":3,"column":9},"end":{"row":3,"column":10},"action":"insert","lines":[" "],"id":10},{"start":{"row":3,"column":10},"end":{"row":3,"column":11},"action":"insert","lines":["s"]},{"start":{"row":3,"column":11},"end":{"row":3,"column":12},"action":"insert","lines":["t"]},{"start":{"row":3,"column":12},"end":{"row":3,"column":13},"action":"insert","lines":["o"]},{"start":{"row":3,"column":13},"end":{"row":3,"column":14},"action":"insert","lines":["r"]},{"start":{"row":3,"column":14},"end":{"row":3,"column":15},"action":"insert","lines":["a"]},{"start":{"row":3,"column":15},"end":{"row":3,"column":16},"action":"insert","lines":["g"]}],[{"start":{"row":3,"column":16},"end":{"row":3,"column":17},"action":"insert","lines":["e"],"id":11}],[{"start":{"row":3,"column":17},"end":{"row":3,"column":18},"action":"insert","lines":[" "],"id":12}],[{"start":{"row":3,"column":2},"end":{"row":3,"column":3},"action":"insert","lines":["s"],"id":13},{"start":{"row":3,"column":3},"end":{"row":3,"column":4},"action":"insert","lines":["t"]},{"start":{"row":3,"column":4},"end":{"row":3,"column":5},"action":"insert","lines":["o"]},{"start":{"row":3,"column":5},"end":{"row":3,"column":6},"action":"insert","lines":["r"]},{"start":{"row":3,"column":6},"end":{"row":3,"column":7},"action":"insert","lines":["e"]}],[{"start":{"row":3,"column":7},"end":{"row":3,"column":8},"action":"insert","lines":["s"],"id":14}],[{"start":{"row":3,"column":8},"end":{"row":3,"column":9},"action":"insert","lines":[" "],"id":15}],[{"start":{"row":3,"column":9},"end":{"row":3,"column":10},"action":"insert","lines":["i"],"id":16},{"start":{"row":3,"column":10},"end":{"row":3,"column":11},"action":"insert","lines":["n"]}],[{"start":{"row":3,"column":11},"end":{"row":3,"column":12},"action":"insert","lines":[" "],"id":17}],[{"start":{"row":3,"column":28},"end":{"row":3,"column":29},"action":"insert","lines":["a"],"id":18},{"start":{"row":3,"column":29},"end":{"row":3,"column":30},"action":"insert","lines":["l"]},{"start":{"row":3,"column":30},"end":{"row":3,"column":31},"action":"insert","lines":["l"]}],[{"start":{"row":3,"column":31},"end":{"row":3,"column":32},"action":"insert","lines":[" "],"id":19},{"start":{"row":3,"column":32},"end":{"row":3,"column":33},"action":"insert","lines":["c"]},{"start":{"row":3,"column":33},"end":{"row":3,"column":34},"action":"insert","lines":["a"]},{"start":{"row":3,"column":34},"end":{"row":3,"column":35},"action":"insert","lines":["r"]},{"start":{"row":3,"column":35},"end":{"row":3,"column":36},"action":"insert","lines":["t"]},{"start":{"row":3,"column":36},"end":{"row":3,"column":37},"action":"insert","lines":["s"]}],[{"start":{"row":3,"column":36},"end":{"row":3,"column":37},"action":"remove","lines":["s"],"id":20},{"start":{"row":3,"column":35},"end":{"row":3,"column":36},"action":"remove","lines":["t"]},{"start":{"row":3,"column":34},"end":{"row":3,"column":35},"action":"remove","lines":["r"]},{"start":{"row":3,"column":33},"end":{"row":3,"column":34},"action":"remove","lines":["a"]},{"start":{"row":3,"column":32},"end":{"row":3,"column":33},"action":"remove","lines":["c"]}],[{"start":{"row":3,"column":32},"end":{"row":3,"column":33},"action":"insert","lines":["i"],"id":21},{"start":{"row":3,"column":33},"end":{"row":3,"column":34},"action":"insert","lines":["t"]},{"start":{"row":3,"column":34},"end":{"row":3,"column":35},"action":"insert","lines":["e"]},{"start":{"row":3,"column":35},"end":{"row":3,"column":36},"action":"insert","lines":["m"]},{"start":{"row":3,"column":36},"end":{"row":3,"column":37},"action":"insert","lines":["s"]}],[{"start":{"row":3,"column":37},"end":{"row":3,"column":38},"action":"insert","lines":[" "],"id":22},{"start":{"row":3,"column":38},"end":{"row":3,"column":39},"action":"insert","lines":["i"]},{"start":{"row":3,"column":39},"end":{"row":3,"column":40},"action":"insert","lines":["n"]}],[{"start":{"row":3,"column":40},"end":{"row":3,"column":41},"action":"insert","lines":[" "],"id":23},{"start":{"row":3,"column":41},"end":{"row":3,"column":42},"action":"insert","lines":["c"]},{"start":{"row":3,"column":42},"end":{"row":3,"column":43},"action":"insert","lines":["a"]},{"start":{"row":3,"column":43},"end":{"row":3,"column":44},"action":"insert","lines":["r"]}],[{"start":{"row":3,"column":44},"end":{"row":3,"column":45},"action":"insert","lines":["t"],"id":24}]]},"ace":{"folds":[],"scrolltop":0,"scrollleft":0,"selection":{"start":{"row":3,"column":45},"end":{"row":3,"column":45},"isBackwards":false},"options":{"guessTabSize":true,"useWrapMode":false,"wrapToView":true},"firstLineState":0},"timestamp":1574977459388}
[ "mcamacho1990@icloud.com" ]
mcamacho1990@icloud.com
1c5b3e260feb0abf34d105b4ab31197434afe5f3
3b6930a9196fe14312065238dfa65e45c3782210
/Python Web Django/Python Django/project1/board/urls.py
f41f592be312240ad03af23567c9ea05c2ec435e
[]
no_license
KIMJINMINININN/Python
22d73487290d29f1c3f4c95b52e4c45917ca17ac
25db3f492203bccd61b57a59e59359e2ab4ae0e6
refs/heads/master
2020-08-10T11:10:18.698661
2020-01-16T07:48:49
2020-01-16T07:48:49
214,330,314
0
0
null
null
null
null
UTF-8
Python
false
false
443
py
from django.urls import path from . import views # 현재 패키지에서 views 모듈을 가져옴 urlpatterns = [ path('index', views.index, name='index'), path('list', views.list, name='list'), path('write', views.write, name='write'), path('edit', views.edit, name='edit'), path('content', views.content, name='content'), path('delete', views.delete, name='delete'), path('home', views.home, name='home') ]
[ "kjm9596@gmail.com" ]
kjm9596@gmail.com
650b1cddafdcf3bf377bbce779edd5211ecc1465
425b40227fc001db71b6e1ca1605f89fe397be7b
/reviews/models.py
19afd8e395b2e74984af10649d99d4736d3ed9e1
[]
no_license
WilsonKinyua/django-jwt-authentication
46c4fc33822e268d960d8209ca8ae41e29a2fdb1
d9cde71e19fd395d6b3a63a54b71ed1c8a90e587
refs/heads/main
2023-08-30T14:26:37.467549
2021-11-11T18:18:15
2021-11-11T18:18:15
427,054,678
0
0
null
null
null
null
UTF-8
Python
false
false
2,021
py
from django.db import models from django.contrib.auth.models import User class Company(models.Model): name = models.CharField(max_length=255) url = models.TextField() def __str__(self): return self.name class ProductSize(models.Model): name = models.CharField(max_length=255) def __str__(self): return self.name class Category(models.Model): name = models.CharField(max_length=255) def __str__(self): return self.name class Product(models.Model): name = models.CharField(max_length=255) content = models.TextField() category = models.ManyToManyField(Category, related_name='products') created = models.DateField(auto_now_add=True) updated = models.DateField(auto_now=True) class Meta: ordering = ['-created'] def __str__(self): return self.name class ProductSite(models.Model): name = models.CharField(max_length=255) product = models.ForeignKey(Product, on_delete=models.CASCADE, related_name='sites', related_query_name='site') company = models.ForeignKey(Company, on_delete=models.CASCADE, related_name='sites', related_query_name='site') productsize = models.ForeignKey(ProductSize, on_delete=models.CASCADE, related_name='sites', related_query_name='site') price = models.DecimalField(max_digits=9, decimal_places=2) url = models.TextField() created = models.DateField(auto_now_add=True) updated = models.DateField(auto_now=True) def __str__(self): return self.name class Comment(models.Model): title = models.CharField(max_length=255) content = models.TextField() product = models.ForeignKey(Product, on_delete=models.CASCADE, related_name='comments', related_query_name='comment') user = models.ForeignKey(User, on_delete=models.CASCADE, related_name='comments', related_query_name='comment') created = models.DateField(auto_now_add=True) updated = models.DateField(auto_now=True) def __str__(self): return self.title
[ "wilsonkinyuam@gmail.com" ]
wilsonkinyuam@gmail.com
33b61bf2932f4411bf9ef228e7bde07fef9b852b
9face6b1854d76ed54cc8655de4b4af3a644b08a
/tt/lm/lm_interface.py
eb3cf88c5c07747109daecd037c0d53f422c2ab8
[]
no_license
oshindow/Transformer-Transducer
3b20597de3ed5e503130167df8b846fc62e0124d
aad37a26c4513fb0f2759e1c29c8cae77355bf6d
refs/heads/master
2023-03-15T18:22:29.659790
2021-03-11T11:14:02
2021-03-11T11:14:02
267,882,594
16
7
null
null
null
null
UTF-8
Python
false
false
2,571
py
"""Language model interface.""" import argparse from tt.interface.scorer_interface import ScorerInterface from tt.dynamic_import import dynamic_import from tt.fill_missing_args import fill_missing_args class LMInterface(ScorerInterface): """LM Interface for ESPnet model implementation.""" @staticmethod def add_arguments(parser): """Add arguments to command line argument parser.""" return parser @classmethod def build(cls, n_vocab: int, **kwargs): """Initialize this class with python-level args. Args: idim (int): The number of vocabulary. Returns: LMinterface: A new instance of LMInterface. """ # local import to avoid cyclic import in lm_train from espnet.bin.lm_train import get_parser def wrap(parser): return get_parser(parser, required=False) args = argparse.Namespace(**kwargs) args = fill_missing_args(args, wrap) args = fill_missing_args(args, cls.add_arguments) return cls(n_vocab, args) def forward(self, x, t): """Compute LM loss value from buffer sequences. Args: x (torch.Tensor): Input ids. (batch, len) t (torch.Tensor): Target ids. (batch, len) Returns: tuple[torch.Tensor, torch.Tensor, torch.Tensor]: Tuple of loss to backward (scalar), negative log-likelihood of t: -log p(t) (scalar) and the number of elements in x (scalar) Notes: The last two return values are used in perplexity: p(t)^{-n} = exp(-log p(t) / n) """ raise NotImplementedError("forward method is not implemented") predefined_lms = { "pytorch": { "default": "espnet.nets.pytorch_backend.lm.default:DefaultRNNLM", "seq_rnn": "espnet.nets.pytorch_backend.lm.seq_rnn:SequentialRNNLM", "transformer": "espnet.nets.pytorch_backend.lm.transformer:TransformerLM", }, "chainer": {"default": "espnet.lm.chainer_backend.lm:DefaultRNNLM"}, } def dynamic_import_lm(module, backend): """Import LM class dynamically. Args: module (str): module_name:class_name or alias in `predefined_lms` backend (str): NN backend. e.g., pytorch, chainer Returns: type: LM class """ model_class = dynamic_import(module, predefined_lms.get(backend, dict())) assert issubclass( model_class, LMInterface ), f"{module} does not implement LMInterface" return model_class
[ "walston874848612@163.com" ]
walston874848612@163.com
4d93c3ab89f7bf0f9692c97824d0989cfbb687fc
6f54ce52f08806075f0445e7dd206baae96ebdca
/PoweredBy/languages/pt-pt.py
80a971191b36d62890865c8f3723871283037ee6
[ "BSD-3-Clause" ]
permissive
ykanggit/web2py-appliances
a93d318a214aa5b3e5cd6b47b642f2c12addba46
5ca7a04d5403f04aad9e90e99e10dbc05a08a50a
refs/heads/master
2022-05-06T08:55:11.089350
2022-04-14T19:25:02
2022-04-14T19:25:02
49,680,074
0
0
null
2016-01-14T22:41:45
2016-01-14T22:41:45
null
UTF-8
Python
false
false
4,186
py
# coding: utf8 { '"update" is an optional expression like "field1=\'newvalue\'". You cannot update or delete the results of a JOIN': '"update" is an optional expression like "field1=\'newvalue\'". You cannot update or delete the results of a JOIN', '%Y-%m-%d': '%Y-%m-%d', '%Y-%m-%d %H:%M:%S': '%Y-%m-%d %H:%M:%S', '%s rows deleted': '%s linhas eliminadas', '%s rows updated': '%s linhas actualizadas', 'About': 'About', 'Available databases and tables': 'Available databases and tables', 'Cannot be empty': 'Cannot be empty', 'Check to delete': 'Check to delete', 'Client IP': 'Client IP', 'Controller': 'Controller', 'Copyright': 'Copyright', 'Created By': 'Created By', 'Created On': 'Created On', 'Current request': 'Current request', 'Current response': 'Current response', 'Current session': 'Current session', 'DB Model': 'DB Model', 'Database': 'Database', 'Delete:': 'Delete:', 'Description': 'Description', 'Edit': 'Edit', 'Edit This App': 'Edit This App', 'Edit current record': 'Edit current record', 'Email': 'Email', 'Featured': 'Featured', 'First Name': 'First Name', 'Group ID': 'Group ID', 'Hello World': 'Olá Mundo', 'Import/Export': 'Import/Export', 'Index': 'Index', 'Internal State': 'Internal State', 'Invalid Query': 'Consulta Inválida', 'Invalid email': 'Invalid email', 'Last Name': 'Last Name', 'Layout': 'Layout', 'Logged in': 'Logged in', 'Login': 'Login', 'Main Menu': 'Main Menu', 'Menu Model': 'Menu Model', 'Modified By': 'Modified By', 'Modified On': 'Modified On', 'Name': 'Name', 'New Record': 'New Record', 'No databases in this application': 'No databases in this application', 'Object or table name': 'Object or table name', 'Origin': 'Origin', 'Password': 'Password', 'Powered by': 'Powered by', 'Query:': 'Query:', 'Record ID': 'Record ID', 'Role': 'Role', 'Rows in table': 'Rows in table', 'Rows selected': 'Rows selected', 'Screenshot': 'Screenshot', 'Site Create': 'Site Create', 'Stylesheet': 'Stylesheet', 'Sure you want to delete this object?': 'Tem a certeza que deseja eliminar este objecto?', 'Table name': 'Table name', 'The "query" is a condition like "db.table1.field1==\'value\'". Something like "db.table1.field1==db.table2.field2" results in a SQL JOIN.': 'The "query" is a condition like "db.table1.field1==\'value\'". Something like "db.table1.field1==db.table2.field2" results in a SQL JOIN.', 'Timestamp': 'Timestamp', 'Update:': 'Update:', 'Url': 'Url', 'Use (...)&(...) for AND, (...)|(...) for OR, and ~(...) for NOT to build more complex queries.': 'Use (...)&(...) for AND, (...)|(...) for OR, and ~(...) for NOT to build more complex queries.', 'User %(id)s Logged-in': 'User %(id)s Logged-in', 'User ID': 'User ID', 'Username': 'Username', 'View': 'View', 'Welcome': 'Welcome', 'Welcome %s': 'Welcome %s', 'Welcome to Gluonization': 'Bem vindo ao Web2py', 'Welcome to web2py': 'Welcome to web2py', 'appadmin is disabled because insecure channel': 'appadmin is disabled because insecure channel', 'cache': 'cache', 'change password': 'change password', 'click here for online examples': 'Clique aqui para exemplos online', 'click here for the administrative interface': 'Clique aqui para o painel administrativo', 'customize me!': 'customize me!', 'data uploaded': 'informação enviada', 'database': 'database', 'database %s select': 'database %s select', 'db': 'bd', 'design': 'design', 'done!': 'concluído!', 'edit profile': 'edit profile', 'enter an integer between %(min)g and %(max)g': 'enter an integer between %(min)g and %(max)g', 'export as csv file': 'export as csv file', 'forgot username?': 'forgot username?', 'insert new': 'insert new', 'insert new %s': 'insert new %s', 'invalid request': 'Pedido Inválido', 'login': 'login', 'logout': 'logout', 'new record inserted': 'novo registo inserido', 'next 100 rows': 'next 100 rows', 'or import from csv file': 'or import from csv file', 'previous 100 rows': 'previous 100 rows', 'profile': 'profile', 'record': 'record', 'record does not exist': 'registo inexistente', 'record id': 'record id', 'register': 'register', 'selected': 'selected', 'state': 'estado', 'table': 'table', 'unable to parse csv file': 'não foi possível carregar ficheiro csv', }
[ "massimodipierro@Massimos-MacBook-Air.local" ]
massimodipierro@Massimos-MacBook-Air.local
ad258023d7e6c5bee3653c2eab16b6bb7b1e268b
0dc2d21387fc245d9ef6cc59ca89b5e45e2f242a
/TranscodeVideos.py
b66e98502ca47041583636a272af641f36dc948c
[]
no_license
lambdan/video_bla
b49b0580919927e2e77cb60a9f51d59b290c2d45
985a688b087270b2ae61e7cefab0bbea4e168293
refs/heads/master
2020-05-21T23:52:09.313204
2018-01-06T17:19:35
2018-01-06T17:19:35
58,374,192
1
0
null
null
null
null
UTF-8
Python
false
false
5,600
py
# TranscodeVideos.py - transcode a bunch of videos and move or remove the originals # (I used it for converting all my various .AVI files to x264 & AAC .MP4 files) # https://github.com/lambdan/video_bla/blob/master/TranscodeVideos.py import os import subprocess import sys import shutil import random import time # Configuration ################## pathstxt = 'winpaths.txt' # path to txt file with all absolute paths to the avi files (or mpg etc). # you can use `ls -d -1 $PWD/**/*.avi` to get a list of fullpaths to avi files donetxt = 'done.txt' # txt file with files we have done mode = "move" # 'move' or 'remove' original files movepath = './delete/' # originals will be moved here, end with a / !!! # you should also change the transcode command in the transcode function below to suit your needs # ################################ def transcode(inputfile, outputfile): print "\nTranscoding " + inputfile try: # transcode command subprocess.call(['ruby', os.path.abspath("C:/Ruby22-x64/bin/transcode-video"), '--audio-width', 'all=surround', '--no-log', '--small', '--mp4', inputfile, '--output', outputfile]) except: error("Transcode failed",inputfile) def verify(inputfile, outputfile): # verifies transcodes by comparing duration of original video and new video print "\nVerifying... ", try: originalLength = int(subprocess.check_output(['mediainfo', '--Inform=General;%Duration%', inputfile])) except: # original file probably contained an illegal character error("Illegal char or not good path",inputfile) addToDone(inputfile) return False # if the new output is corrupt, mediainfo wont return a length try: newLength = int(subprocess.check_output(['mediainfo', '--Inform=General;%Duration%', outputfile])) except: # corrupt newLength = 0 diffLength = abs(originalLength - newLength) if diffLength > 5000: # 5 seconds in difference print "bad" return False else: print "ok!" return True def moveOriginal(inputfile): # moves or removes original files if mode == "move": filename = os.path.basename(inputfile) dest = movepath + filename if os.path.isfile(dest): # maybe file with identical name already exists i = 0 while os.path.isfile(dest): # increase i until the new filename doesnt exist name, ext = os.path.splitext(filename) dest = movepath + name + "_" + str(i) + ext #suffix with _i i += 1 print "\nMoving original file...", shutil.move(inputfile, os.path.abspath(dest)) print " ok!" elif mode == "remove" or "delete": print "\nRemoving original file...", os.remove(inputfile) print " ok!" else: print "Unsupported mode: " + mode sys.exit(1) def addToDone(path): # adds the original files path to a txt so we can keep track of which we have done with open(donetxt, "a") as myfile: myfile.write(path) print "\nAdded to " + donetxt def error(reason, path): # writes out error messages to a txt if not os.path.isfile('errors.txt'): # create file if not exist open('errors.txt', 'w').close() with open('errors.txt', "a") as myfile: myfile.write("These files have been skipped. You need to do these manually.\n\n") with open('errors.txt', "a") as myfile: myfile.write(reason + ": " + path + "\n") print "\nERROR: " + reason + ": " + path # make sure we have all files we need to run if not os.path.isfile(pathstxt): print 'Textfile "' + pathstxt + '" with paths to files to be processed not found. Please create one.' raw_input("Press the <ENTER> key to continue...") sys.exit(1) if not os.path.isfile(donetxt): print 'Creating ' + donetxt open(donetxt, 'w').close() if not os.path.isdir(movepath): print 'Creating ' + movepath + ' folder' os.makedirs(movepath) x = 0 # this will be how many we have done num_lines = sum(1 for line in open(pathstxt)) # count how many lines (files) we have to do with open(pathstxt) as f: for filepath in f: x += 1 # check if we have already done this file donefiles = open(donetxt, 'r') donelist = donefiles.readlines() donefiles.close() found = False for line in donelist: if filepath in line: found = True #print "Already done: " + filepath[:-1] continue # we have not transcoded this video if found == False: if os.name == "nt": # set title of cmd window in windows to show how many files we've done os.system("title (" + str(x) + "/" + str(num_lines) + ") Converting: " + filepath[:-1]) #TODO: do the same in unix # set up input and output filepaths inputfile = r"" + os.path.abspath(filepath[:-1]) + "" outputfile = r"" + os.path.abspath(filepath[:-4] + 'mp4') + "" transcode(inputfile, outputfile) if verify(inputfile, outputfile): # good transcode on the first try, all good moveOriginal(inputfile) addToDone(filepath) else: # length differs by more than 5 seconds, or output is corrupt try: os.remove(outputfile) except: # file doesnt exist or original file had illegal character continue print "\nLength differs by more than 5 seconds, trying to make a new transcode" transcode(inputfile, outputfile) if verify(inputfile, outputfile): # succeeded now moveOriginal(inputfile) addToDone(filepath) else: os.remove(outputfile) error("Length kept on differing", filepath) addToDone(filepath) # give user some time to stop me print "\nSleeping 3 seconds" print "Hit CTRL C now to stop script" time.sleep(3)
[ "noreply@github.com" ]
lambdan.noreply@github.com
344d8580155be95612f6e0637afcc43da9de33d3
a85b6f4b704cde9b6a7fbee55c171e49970b8eb8
/Module2/m2l2s6.py
079778fdc9001f083c4129f84afb675fa949f26f
[]
no_license
mamboosjka/stepik-auto-tests-course
690fb5aee3d3a4c8afa9ef0e5e72dba3125f4b1a
dfc8c31428ba33169f1494cab97f467f3ad0492a
refs/heads/main
2023-04-08T03:49:42.124582
2021-04-08T11:05:53
2021-04-08T11:05:53
355,862,515
0
0
null
null
null
null
UTF-8
Python
false
false
985
py
import time import math from selenium import webdriver def calc(x): return str(math.log(abs(12*math.sin(int(x))))) link = "http://suninjuly.github.io/execute_script.html" browser = webdriver.Chrome() try: browser.get(link) x = int(browser.find_element_by_id("input_value").text) res = calc(x) answer = browser.find_element_by_id("answer") answer.send_keys(str(res)) cb = browser.find_element_by_css_selector('input[type="checkbox"]') browser.execute_script('return arguments[0].scrollIntoView(true);', cb) cb.click() rb = browser.find_element_by_css_selector('input[type="radio"][name="ruler"][value="robots"]') browser.execute_script('return arguments[0].scrollIntoView(true);', rb) rb.click() submit_btn = browser.find_element_by_css_selector('button.btn[type="submit"]') browser.execute_script('return arguments[0].scrollIntoView(true);', submit_btn) submit_btn.click() finally: time.sleep(10) browser.quit()
[ "mamboosjka@gmail.com" ]
mamboosjka@gmail.com
dd6541d9d8ff9ab4794e02ad2543b073688d076c
68c9a6e674a19b3e09909dcd92edea2ee0fdbfbe
/ichwiwiko/testboard/sorts/quicksort.py
1d7da340da69278f470e6cac8110594f2bfa1bad
[]
no_license
gomsang/AlgorithmTraining
b5446beb34ceeb8baa0c3448ec2165faf48a5a90
d4307e809953aa4a71796a179bb8e8867fc5327b
refs/heads/master
2023-03-16T11:16:35.204193
2022-10-20T11:35:15
2022-10-20T11:35:15
235,547,601
0
0
null
null
null
null
UTF-8
Python
false
false
663
py
array = [5, 7, 9, 0, 3, 1, 6, 2, 4, 8] def quick_sort(array, start, end): if start >= end: return pivot = start left = start + 1 right = end while left <= right: while left <= end and array[left] <= array[pivot]: left += 1 while right > start and array[right] >= array[pivot]: right -= 1 if left > right: array[right], array[pivot] = array[pivot], array[right] else: array[left], array[right] = array[right], array[left] quick_sort(array, start, right - 1) quick_sort(array, right + 1, end) quick_sort(array, 0, len(array) - 1) print(array)
[ "gyeongrok.kim@gomsang.com" ]
gyeongrok.kim@gomsang.com
09309d271545275a88c3de88371ac5663368f43a
61d7f7dec12990c93f9fef622004adba9365cd6f
/mac/shop/views.py
e876fa9df8a2844ac61b6c6c8fdbbfe03567e157
[]
no_license
dheeraj-iitk/E-commerce
647cedff7281cd57eb4507593c07c6544ccb0bab
7981671934e6514e7ecad24ba17527085394c3ed
refs/heads/master
2022-12-01T20:55:46.273180
2020-08-09T07:50:51
2020-08-09T07:50:51
286,191,863
0
0
null
null
null
null
UTF-8
Python
false
false
4,490
py
from django.shortcuts import render from django.http import HttpResponse from .models import Product,Contact,Order,OrderUpdate from math import ceil import json # Create your views here. def index(request): # products = Product.objects.all() # print(products) # n = len(products) # nSlides = n//4 + ceil((n/4)-(n//4)) allProds = [] catprods = Product.objects.values('category', 'id') cats = {item['category'] for item in catprods} for cat in cats: prod = Product.objects.filter(category=cat) n = len(prod) nSlides = n // 4 + ceil((n / 4) - (n // 4)) allProds.append([prod, range(1, nSlides), nSlides]) # params = {'no_of_slides':nSlides, 'range': range(1,nSlides),'product': products} # allProds = [[products, range(1, nSlides), nSlides], # [products, range(1, nSlides), nSlides]] params = {'allProds':allProds} return render(request, 'index.html', params) def about(request): return render(request,'about.html') def searchmatch(query,item): if query in item.category.lower() or query in item.product_name.lower() or query in item.desc.lower(): return True else: return False def search(request): query=request.GET.get('search') allProds = [] catprods = Product.objects.values('category', 'id') cats = {item['category'] for item in catprods} for cat in cats: prodtemp = Product.objects.filter(category=cat) prod=[item for item in prodtemp if searchmatch(query,item) ] print(prod) n = len(prod) nSlides = n // 4 + ceil((n / 4) - (n // 4)) if len(prod) != 0: allProds.append([prod, range(1, nSlides), nSlides]) params = {'allProds': allProds, "msg": ""} if len(allProds) == 0 or len(query)==0: params = {'msg': "Please make sure to enter relevant search query"} return render(request,'search.html',params) def prodview(request,myid): #this is django default id product=Product.objects.filter(id=myid) print(product) params={'product':product} return render(request,'prodview.html',params) def checkout(request): if request.method=="POST": items_json = request.POST.get('itemsJson', '') amount = request.POST.get('amount', '') name = request.POST.get('name', '') email = request.POST.get('email', '') address = request.POST.get('address1', '') + " " + request.POST.get('address2', '') city = request.POST.get('city', '') state = request.POST.get('state', '') zip_code = request.POST.get('zip_code', '') phone = request.POST.get('phone', '') order = Order(items_json=items_json, name=name, email=email, address=address, city=city, state=state, zip_code=zip_code, phone=phone,amount=amount) order.save() update=OrderUpdate(order_id=order.order_id,update_desc="Your item is placed") update.save() thank = True id = order.order_id return render(request, 'checkout.html', {'thank':thank, 'id': id}) return render(request,'checkout.html') def tracker(request): if request.method=="POST": orderId = request.POST.get('orderId', '') email = request.POST.get('email', '') try: order = Order.objects.filter(order_id=orderId, email=email) print(order) if len(order)>0: update = OrderUpdate.objects.filter(order_id=orderId) updates = [] for item in update: updates.append({'text': item.update_desc, 'time': item.timestamp}) response = json.dumps({"status":"success", "updates": updates, "itemsJson": order[0].items_json}, default=str) return HttpResponse(response) else: return HttpResponse('{"status":"noitem"}') except Exception as e: return HttpResponse('{"status":"error"}') return render(request, 'tracker.html') def contact(request): thank=False if(request.method=='POST'): name2=request.POST.get('name','') email2=request.POST.get('email','') phone2=request.POST.get('phone','') desc2=request.POST.get('desc','') print(name2,email2,phone2,desc2) contact=Contact(name=name2,email=email2,phone=phone2,desc=desc2) contact.save() thank=True return render(request,'contact.html',{'Thank':thank})
[ "adheeraj" ]
adheeraj
aa4e25862d208c3ca7a5087ea05eb8aa0943adab
fd928e7226d629fbc75c51c88a7523ecc9b0ec6e
/src/test/mylist.py
42cdb538aeff19f4f153e958f2e891733b6cd726
[]
no_license
z-mac/MyFirstWork
eb20a0d1cf3184f23ab5d913eaf02c615d97253d
62ff219e7a572c4f63cee0fadddaf2020e586dac
refs/heads/master
2021-04-27T07:21:40.261998
2018-02-25T02:11:42
2018-02-25T02:11:42
122,630,689
0
0
null
null
null
null
UTF-8
Python
false
false
795
py
''' Created on 2018年2月23日 @author: Administrator ''' from builtins import repr class MyList(object): def __init__(self, start = []): self.data = [] for x in start: self.data.append(x) def __add__(self, other): return MyList(self.data + other) def __mul__(self, time): return MyList(self.data * time) def __getitem__(self, offset): return self.data[offset] def __len__(self): return len(self.data) def __getslice__(self, low, high): return MyList(self.data[low, high]) def append(self, node): self.data.append(node) def __getattr__(self, name): return getattr(self.data, name) def __repr__(self): return repr(self.data)
[ "zhudg06@163.com" ]
zhudg06@163.com
8558affeb8a8ca35f2353bd99f82f3e24fbb62b4
13bf5804662ade86f3ba2801d436374134638ada
/filt_func_lam_git.py
907f796776f2ed43e946650f94d4ba3cf1116ca5
[]
no_license
Timothy-L-Baron/accum_filt_func_lamb
20cb50e99c30093e2f40709cc5c8353a6484dc25
f36fd9904b7211e88124495348f567cee24b0ad8
refs/heads/master
2020-12-10T03:58:05.474125
2020-01-13T02:36:25
2020-01-13T02:36:25
233,495,744
0
0
null
null
null
null
UTF-8
Python
false
false
448
py
#Your choice of function or lambda expression l1 = ['left', 'up', 'front'] l2 = ['right', 'down', 'back'] """def length_tester(x1, x2): if x1 > 3 and x2 > 3: return True else: return False filter(lambda x1: x1 > 3, l1) filter(lambda x2: x2 > 3, l2) opposites = [lambda x1, x2: length_tester, zip(l1,l2)] print(opposites)""" opposites = list(filter(lambda x: (len(x[0]) > 3 and len(x[1]) > 3), zip(l1, l2)))
[ "noreply@github.com" ]
Timothy-L-Baron.noreply@github.com
15c2b5e4fd096ba9e34456682e877ad061103472
ccb29eb93e59bebbeacc76cd5de1b83d2963019e
/cache/.mako.tmp/comments_helper.tmpl.py
266dfe7096456f039860c344e67139308da3be9d
[]
no_license
Henrilin28/blog_nikola
0bedc654f134d06e9caabc745a43cf366a6ae193
14e2cc08c4f17543d41e79c1cc3ca961ed81dc82
refs/heads/master
2021-01-01T04:50:25.487948
2016-05-22T02:53:45
2016-05-22T02:53:45
59,391,866
0
0
null
null
null
null
UTF-8
Python
false
false
10,164
py
# -*- coding:utf-8 -*- from mako import runtime, filters, cache UNDEFINED = runtime.UNDEFINED STOP_RENDERING = runtime.STOP_RENDERING __M_dict_builtin = dict __M_locals_builtin = locals _magic_number = 10 _modified_time = 1463885624.645596 _enable_loop = True _template_filename = '/Users/Henrilin28/.pyenv/versions/Nikola/lib/python3.5/site-packages/nikola/data/themes/base/templates/comments_helper.tmpl' _template_uri = 'comments_helper.tmpl' _source_encoding = 'utf-8' _exports = ['comment_link_script', 'comment_form', 'comment_link'] def _mako_get_namespace(context, name): try: return context.namespaces[(__name__, name)] except KeyError: _mako_generate_namespaces(context) return context.namespaces[(__name__, name)] def _mako_generate_namespaces(context): ns = runtime.TemplateNamespace('muut', context._clean_inheritance_tokens(), templateuri='comments_helper_muut.tmpl', callables=None, calling_uri=_template_uri) context.namespaces[(__name__, 'muut')] = ns ns = runtime.TemplateNamespace('livefyre', context._clean_inheritance_tokens(), templateuri='comments_helper_livefyre.tmpl', callables=None, calling_uri=_template_uri) context.namespaces[(__name__, 'livefyre')] = ns ns = runtime.TemplateNamespace('intensedebate', context._clean_inheritance_tokens(), templateuri='comments_helper_intensedebate.tmpl', callables=None, calling_uri=_template_uri) context.namespaces[(__name__, 'intensedebate')] = ns ns = runtime.TemplateNamespace('isso', context._clean_inheritance_tokens(), templateuri='comments_helper_isso.tmpl', callables=None, calling_uri=_template_uri) context.namespaces[(__name__, 'isso')] = ns ns = runtime.TemplateNamespace('facebook', context._clean_inheritance_tokens(), templateuri='comments_helper_facebook.tmpl', callables=None, calling_uri=_template_uri) context.namespaces[(__name__, 'facebook')] = ns ns = runtime.TemplateNamespace('googleplus', context._clean_inheritance_tokens(), templateuri='comments_helper_googleplus.tmpl', callables=None, calling_uri=_template_uri) context.namespaces[(__name__, 'googleplus')] = ns ns = runtime.TemplateNamespace('disqus', context._clean_inheritance_tokens(), templateuri='comments_helper_disqus.tmpl', callables=None, calling_uri=_template_uri) context.namespaces[(__name__, 'disqus')] = ns def render_body(context,**pageargs): __M_caller = context.caller_stack._push_frame() try: __M_locals = __M_dict_builtin(pageargs=pageargs) __M_writer = context.writer() __M_writer('\n') __M_writer('\n') __M_writer('\n') __M_writer('\n') __M_writer('\n') __M_writer('\n') __M_writer('\n') __M_writer('\n\n') __M_writer('\n\n') __M_writer('\n\n') __M_writer('\n') return '' finally: context.caller_stack._pop_frame() def render_comment_link_script(context): __M_caller = context.caller_stack._push_frame() try: comment_system = context.get('comment_system', UNDEFINED) intensedebate = _mako_get_namespace(context, 'intensedebate') googleplus = _mako_get_namespace(context, 'googleplus') disqus = _mako_get_namespace(context, 'disqus') muut = _mako_get_namespace(context, 'muut') livefyre = _mako_get_namespace(context, 'livefyre') isso = _mako_get_namespace(context, 'isso') facebook = _mako_get_namespace(context, 'facebook') __M_writer = context.writer() __M_writer('\n') if comment_system == 'disqus': __M_writer(' ') __M_writer(str(disqus.comment_link_script())) __M_writer('\n') elif comment_system == 'livefyre': __M_writer(' ') __M_writer(str(livefyre.comment_link_script())) __M_writer('\n') elif comment_system == 'intensedebate': __M_writer(' ') __M_writer(str(intensedebate.comment_link_script())) __M_writer('\n') elif comment_system == 'muut': __M_writer(' ') __M_writer(str(muut.comment_link_script())) __M_writer('\n') elif comment_system == 'googleplus': __M_writer(' ') __M_writer(str(googleplus.comment_link_script())) __M_writer('\n') elif comment_system == 'facebook': __M_writer(' ') __M_writer(str(facebook.comment_link_script())) __M_writer('\n') elif comment_system == 'isso': __M_writer(' ') __M_writer(str(isso.comment_link_script())) __M_writer('\n') return '' finally: context.caller_stack._pop_frame() def render_comment_form(context,url,title,identifier): __M_caller = context.caller_stack._push_frame() try: comment_system = context.get('comment_system', UNDEFINED) intensedebate = _mako_get_namespace(context, 'intensedebate') googleplus = _mako_get_namespace(context, 'googleplus') disqus = _mako_get_namespace(context, 'disqus') muut = _mako_get_namespace(context, 'muut') livefyre = _mako_get_namespace(context, 'livefyre') isso = _mako_get_namespace(context, 'isso') facebook = _mako_get_namespace(context, 'facebook') __M_writer = context.writer() __M_writer('\n') if comment_system == 'disqus': __M_writer(' ') __M_writer(str(disqus.comment_form(url, title, identifier))) __M_writer('\n') elif comment_system == 'livefyre': __M_writer(' ') __M_writer(str(livefyre.comment_form(url, title, identifier))) __M_writer('\n') elif comment_system == 'intensedebate': __M_writer(' ') __M_writer(str(intensedebate.comment_form(url, title, identifier))) __M_writer('\n') elif comment_system == 'muut': __M_writer(' ') __M_writer(str(muut.comment_form(url, title, identifier))) __M_writer('\n') elif comment_system == 'googleplus': __M_writer(' ') __M_writer(str(googleplus.comment_form(url, title, identifier))) __M_writer('\n') elif comment_system == 'facebook': __M_writer(' ') __M_writer(str(facebook.comment_form(url, title, identifier))) __M_writer('\n') elif comment_system == 'isso': __M_writer(' ') __M_writer(str(isso.comment_form(url, title, identifier))) __M_writer('\n') return '' finally: context.caller_stack._pop_frame() def render_comment_link(context,link,identifier): __M_caller = context.caller_stack._push_frame() try: comment_system = context.get('comment_system', UNDEFINED) intensedebate = _mako_get_namespace(context, 'intensedebate') googleplus = _mako_get_namespace(context, 'googleplus') disqus = _mako_get_namespace(context, 'disqus') muut = _mako_get_namespace(context, 'muut') livefyre = _mako_get_namespace(context, 'livefyre') isso = _mako_get_namespace(context, 'isso') facebook = _mako_get_namespace(context, 'facebook') __M_writer = context.writer() __M_writer('\n') if comment_system == 'disqus': __M_writer(' ') __M_writer(str(disqus.comment_link(link, identifier))) __M_writer('\n') elif comment_system == 'livefyre': __M_writer(' ') __M_writer(str(livefyre.comment_link(link, identifier))) __M_writer('\n') elif comment_system == 'intensedebate': __M_writer(' ') __M_writer(str(intensedebate.comment_link(link, identifier))) __M_writer('\n') elif comment_system == 'muut': __M_writer(' ') __M_writer(str(muut.comment_link(link, identifier))) __M_writer('\n') elif comment_system == 'googleplus': __M_writer(' ') __M_writer(str(googleplus.comment_link(link, identifier))) __M_writer('\n') elif comment_system == 'facebook': __M_writer(' ') __M_writer(str(facebook.comment_link(link, identifier))) __M_writer('\n') elif comment_system == 'isso': __M_writer(' ') __M_writer(str(isso.comment_link(link, identifier))) __M_writer('\n') return '' finally: context.caller_stack._pop_frame() """ __M_BEGIN_METADATA {"filename": "/Users/Henrilin28/.pyenv/versions/Nikola/lib/python3.5/site-packages/nikola/data/themes/base/templates/comments_helper.tmpl", "line_map": {"23": 6, "26": 4, "29": 5, "32": 9, "35": 8, "38": 7, "41": 3, "44": 0, "49": 2, "50": 3, "51": 4, "52": 5, "53": 6, "54": 7, "55": 8, "56": 9, "57": 27, "58": 45, "59": 63, "65": 47, "77": 47, "78": 48, "79": 49, "80": 49, "81": 49, "82": 50, "83": 51, "84": 51, "85": 51, "86": 52, "87": 53, "88": 53, "89": 53, "90": 54, "91": 55, "92": 55, "93": 55, "94": 56, "95": 57, "96": 57, "97": 57, "98": 58, "99": 59, "100": 59, "101": 59, "102": 60, "103": 61, "104": 61, "105": 61, "111": 11, "123": 11, "124": 12, "125": 13, "126": 13, "127": 13, "128": 14, "129": 15, "130": 15, "131": 15, "132": 16, "133": 17, "134": 17, "135": 17, "136": 18, "137": 19, "138": 19, "139": 19, "140": 20, "141": 21, "142": 21, "143": 21, "144": 22, "145": 23, "146": 23, "147": 23, "148": 24, "149": 25, "150": 25, "151": 25, "157": 29, "169": 29, "170": 30, "171": 31, "172": 31, "173": 31, "174": 32, "175": 33, "176": 33, "177": 33, "178": 34, "179": 35, "180": 35, "181": 35, "182": 36, "183": 37, "184": 37, "185": 37, "186": 38, "187": 39, "188": 39, "189": 39, "190": 40, "191": 41, "192": 41, "193": 41, "194": 42, "195": 43, "196": 43, "197": 43, "203": 197}, "uri": "comments_helper.tmpl", "source_encoding": "utf-8"} __M_END_METADATA """
[ "imhenry@me.com" ]
imhenry@me.com
7000a4849970f918ef076d96b36b84c8793c749d
0e0a51274af5ebee7972bf3aaaf913ca3ef9c339
/lab5prog.py
98e80636fa143477d0b293dbe67b8d3b074f17aa
[]
no_license
abhirungta15/abhishek
f2eee351fdf33951866cd2849a619e411954e9c9
aaf39a7835656d11fe5d31425465d93cacbb8d48
refs/heads/master
2020-07-01T14:12:02.841423
2019-11-21T07:17:49
2019-11-21T07:17:49
201,193,150
0
0
null
null
null
null
UTF-8
Python
false
false
1,375
py
class callDetails: def __init__(self,c,r,d,t): self.cal = c self.rec = r self.dur = d self.typ = t def disp(self): print("\nCaller: ",self.cal) print("Reciever: ",self.rec) print("Duration: ",self.dur) print("Type: ",self.typ) class Util: def __init__(self): self.list_of_call_objects = [] self.count = 0 self.count1 = 0 self.count2 = 0 def parse_customer(self,list_of_call_string): for i in list_of_call_string: x = i.split(",") for j in x: if j == "STD": self.count+= 1 elif j == "ISD": self.count1+= 1 elif j == "Local": self.count2+= 1 o = callDetails(*x) self.list_of_call_objects.append(o) def disp(self): for i in self.list_of_call_objects: i.disp() print("\nSTD: ",self.count) print("ISD: ",self.count1) print("Local: ",self.count2) call = '9123848912,12385612934,23,STD' call2 = '2395713534,29435812359,12,Local' call3 = '123854295,105949324,18,ISD' call4 = '134845,34953460,19,ISD' list_of_call_string = [call, call2, call3, call4] util = Util() util.parse_customer(list_of_call_string) util.disp()
[ "noreply@github.com" ]
abhirungta15.noreply@github.com
09b35917c3d630de765d4c01397568171fea5663
a14ec6e367e6a471bfc74c066fb958ef585bc269
/2021/25/a.py
4071853842bf6b9a62759256250857218792d9f3
[]
no_license
jimhendy/AoC
90641814ed431f46a8500ff0f022c6c957567563
a1727f88bc2e6f739d65902dce188377966b3fb4
refs/heads/master
2023-09-02T14:48:39.860352
2023-08-28T08:09:19
2023-08-28T08:09:19
225,152,422
0
0
null
null
null
null
UTF-8
Python
false
false
1,423
py
import os def step(east, south, width, height): next_east = set() next_south = set() for current in east: dest = ( (current[0] + 1, current[1]) if current[0] < width - 1 else (0, current[1]) ) if dest not in east and dest not in south: next_east.add(dest) else: next_east.add(current) for current in south: dest = ( (current[0], current[1] + 1) if current[1] < height - 1 else (current[0], 0) ) if dest not in next_east and dest not in south: next_south.add(dest) else: next_south.add(current) return next_east, next_south def run(inputs): east = set() south = set() for i, line in enumerate(inputs.split(os.linesep)): for j, char in enumerate(line): if char == ">": east.add((j, i)) elif char == "v": south.add((j, i)) elif char != ".": msg = f"Unexpected map character: {char}" raise RuntimeError(msg) width = j + 1 height = i + 1 n_steps = 0 while True: next_east, next_south = step(east, south, width, height) n_steps += 1 if len(next_east | east) == len(east) and len(next_south | south) == len(south): return n_steps else: east, south = next_east, next_south
[ "jimhendy88@gmail.com" ]
jimhendy88@gmail.com
6f0364bb09295c95f320d0a1705d65ce785226a2
d568222a97c64b6a98365188b45abda2a3a1a21a
/app/core/tests/test_admin.py
5caf249936c3414f6e54e62b76e79e63ef994f44
[ "MIT" ]
permissive
nguyenlinh171/recipe-app-api
454b5f6889371bfb5997fcf43e5cb442ba718c98
339feb3df6aed6d424a19ca0748a49cd6ed173be
refs/heads/master
2022-12-18T18:21:11.310735
2020-09-12T22:37:53
2020-09-12T22:37:53
279,976,158
0
0
null
null
null
null
UTF-8
Python
false
false
3,119
py
from django.test import TestCase, Client """Additionally import the test client which allows us to make test requests to our application in our unit tests""" from django.contrib.auth import get_user_model from django.urls import reverse """reverse is a helper function which allows us to create url for our admin page""" class AdminSiteTests(TestCase): def setUp(self): """"Setup function is run before every test is run, sometimes there are setups that need to be run before every test in our test case class Setup consists of creating test client. We're gonna add a new user that we can use to test, make sure the user is logged into our client, create a regular user that is not authenticated or that we can use to list in our admin page""" self.client = Client() """Set to self a Client variable, accessed to other tests""" self.admin_user = get_user_model().objects.create_superuser( email='nguyenlinh171@gmail.com', password='password123' ) self.client.force_login(self.admin_user) """Log the admin user to the Client. Use the Client helper function that allows you to log a user in with the Django authentication""" self.user = get_user_model().objects.create_user( email='lihn.n@yahoo.com', password='test123', name='Test user full name' ) """Make changes to the admin.py file to make sure it supports our custom user model using email instead of username""" def test_users_listed(self): """Test 1: Test that users are listed on user page""" url = reverse('admin:core_user_changelist') """Generate a URL for our list user page. This url is defined in the Django admin documentation listed in the resources. Reverse function helps to update all changes at once""" res = self.client.get(url) """response = use our test client to perform a http test on the url""" self.assertContains(res, self.user.name) self.assertContains(res, self.user.email) """The contains assertion checks our response contains certain items it also check that the http response is http200""" def test_user_change_page(self): """Test 2: Test that the user edit page works, w/ status code = http200""" url = reverse('admin:core_user_change', args=[self.user.id]) """the reverse function will create an url like this /admin/core/user/user.id, args = arguments, anything passing to args will be assigned to the url""" res = self.client.get(url) self.assertEqual(res.status_code, 200) def test_create_user_page(self): """Test 3: Test that the create user page works""" url = reverse('admin:core_user_add') """admin:core_user_add is the standard url, no need args /admin/core/user/add""" res = self.client.get(url) self.assertEqual(res.status_code, 200)
[ "54919030+nguyenlinh171@users.noreply.github.com" ]
54919030+nguyenlinh171@users.noreply.github.com
8431d0865f52e94db4a1aa801d6483375ecccee0
ff05d487fa7a79e3045c139421ce9031b2aa7360
/effdet/evaluator.py
8a7222c1ea527e4546e0f47650c00a22faf68442
[ "Apache-2.0" ]
permissive
phager90/efficientdet-pytorch
eb92e6d5d4eb6c367d23081ce6abd0b2d1fa0cf2
bbd84c0e7ec2a23c6ae7447c437789524ba141dd
refs/heads/master
2023-07-17T13:33:25.835335
2021-08-30T18:23:37
2021-08-30T18:23:37
291,003,268
0
0
Apache-2.0
2020-08-28T09:14:34
2020-08-28T09:14:34
null
UTF-8
Python
false
false
3,130
py
import torch import torch.distributed as dist import abc import json from .distributed import synchronize, is_main_process, all_gather_container from pycocotools.cocoeval import COCOeval class Evaluator: def __init__(self): pass @abc.abstractmethod def add_predictions(self, output, target): pass @abc.abstractmethod def evaluate(self): pass class COCOEvaluator(Evaluator): def __init__(self, coco_api, distributed=False): super().__init__() self.coco_api = coco_api self.distributed = distributed self.distributed_device = None self.img_ids = [] self.predictions = [] def reset(self): self.img_ids = [] self.predictions = [] def add_predictions(self, detections, target): if self.distributed: if self.distributed_device is None: # cache for use later to broadcast end metric self.distributed_device = detections.device synchronize() detections = all_gather_container(detections) #target = all_gather_container(target) sample_ids = all_gather_container(target['img_id']) if not is_main_process(): return else: sample_ids = target['img_id'] detections = detections.cpu() sample_ids = sample_ids.cpu() for index, sample in enumerate(detections): image_id = int(sample_ids[index]) for det in sample: score = float(det[4]) if score < .001: # stop when below this threshold, scores in descending order break coco_det = dict( image_id=image_id, bbox=det[0:4].tolist(), score=score, category_id=int(det[5])) self.img_ids.append(image_id) self.predictions.append(coco_det) def evaluate(self): if not self.distributed or dist.get_rank() == 0: assert len(self.predictions) json.dump(self.predictions, open('./temp.json', 'w'), indent=4) results = self.coco_api.loadRes('./temp.json') coco_eval = COCOeval(self.coco_api, results, 'bbox') coco_eval.params.imgIds = self.img_ids # score only ids we've used coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() metric = coco_eval.stats[0] # mAP 0.5-0.95 if self.distributed: dist.broadcast(torch.tensor(metric, device=self.distributed_device), 0) else: metric = torch.tensor(0, device=self.distributed_device) dist.broadcast(metric, 0) metric = metric.item() self.reset() return metric class FastMapEvalluator(Evaluator): def __init__(self, distributed=False): super().__init__() self.distributed = distributed self.predictions = [] def add_predictions(self, output, target): pass def evaluate(self): pass
[ "rwightman@gmail.com" ]
rwightman@gmail.com
062ed619a2a9785ee7c7bb6df7787b25c9ac2d5d
7c955fedadad8428f2dfe377e419784e89dc34cf
/lab2del1/Lab-2-del-1-grupp-27 1/incremental.py
58a8f9901c9478e0a6e14358bfabc7c271488edc
[]
no_license
magdulator/d0012e
b5551708a27739375128bc7940bd5e1bf3a3f8f7
a6b8c27ed0a100f936a5a3f7121a3e9a383fd943
refs/heads/main
2023-01-31T22:47:46.779795
2020-12-15T11:59:55
2020-12-15T11:59:55
311,751,840
0
0
null
null
null
null
UTF-8
Python
false
false
859
py
import random import math def generateList(maxNum, length): randomList = [] for i in range(0, length): n = random.randint(0,maxNum) randomList.append(n) return randomList def incrementalAlgo(randomList): print(randomList) minList = [math.inf]*3 if len(randomList) < 3: return "List too small" for i in range(len(randomList)): current = randomList[i] if(current < minList[0]): minList = [current, minList[0], minList[1]] elif(current < minList[1]): minList = [minList[0], current, minList[1]] elif(current < minList[2]): minList[2] = current print (minList) def main(): random = generateList(20, 10) incrementalAlgo(random) main() # W(3) = 3 # W(n) = 3(n-3) = 3n - 9, n>3 # 3n -9 = O(n)
[ "marcus99.ma@gmail.com" ]
marcus99.ma@gmail.com
c2c159837beaa43638ecdef24b0aa89e5d32595c
b4c405599e7ece55cd65647b2d08ec434890c0cc
/ValidAnagram0242.py
8423a294f21d9d23424e34cd46db0fca5269c3cf
[]
no_license
Naveen1789/leetcode
0f5742c26ea74af3bfaaf95c2302471816fb3e7b
59facf3c3806db0405de957850b1266a3fd39f7c
refs/heads/master
2020-04-26T20:59:12.843796
2019-07-08T07:30:50
2019-07-08T07:30:50
173,828,509
0
0
null
2019-07-08T07:30:51
2019-03-04T22:02:47
Python
UTF-8
Python
false
false
198
py
class Solution(object): def isAnagram(self, s, t): """ :type s: str :type t: str :rtype: bool """ return ''.join(sorted(s)) == ''.join(sorted(t))
[ "nnarayan@groupon.com" ]
nnarayan@groupon.com
d68cade990aa93e0622fa323fa783729d6f2b902
3134101271dda48daab261d8719303a00212bb89
/nlu/sklearn_Classification/train.py
ab8086246ff589d165ad0e5ac93060e11b2ed07e
[]
no_license
ykklin/KBQA-for-Diagnosis
e944f71264b7bd90c16776d6ec0a7f230fe381f9
8847ef445beb1000b1905b8fea57114ef8d56597
refs/heads/main
2023-05-28T07:20:20.836969
2021-06-07T05:39:58
2021-06-07T05:39:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,214
py
# -*- coding:utf-8 -*- import os import pickle import random import numpy as np from sklearn import svm from sklearn.linear_model import LogisticRegression from sklearn.ensemble import GradientBoostingClassifier from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.metrics import f1_score from sklearn.metrics import classification_report, confusion_matrix from sklearn.model_selection import train_test_split seed = 222 random.seed(seed) np.random.seed(seed) def load_data(data_path): X,y = [],[] with open(data_path,'r',encoding='utf8') as f: for line in f.readlines(): text,label = line.strip().split(',') text = ' '.join(list(text.lower())) X.append(text) y.append(label) index = np.arange(len(X)) np.random.shuffle(index) X = [X[i] for i in index] y = [y[i] for i in index] return X,y def run(data_path,model_save_path): X,y = load_data(data_path) label_set = sorted(list(set(y))) label2id = {label:idx for idx,label in enumerate(label_set)} id2label = {idx:label for label,idx in label2id.items()} y = [label2id[i] for i in y] label_names = sorted(label2id.items(), key = lambda kv:kv[1], reverse=False) target_names = [i[0] for i in label_names] labels = [i[1] for i in label_names] train_X, text_X, train_y, text_y = train_test_split(X, y, test_size=0.15, random_state=42) vec = TfidfVectorizer(ngram_range=(1,3),min_df=0, max_df=0.9,analyzer='char',use_idf=1,smooth_idf=1, sublinear_tf=1) train_X = vec.fit_transform(train_X) text_X = vec.transform(text_X) # svc_clf = svm.LinearSVC(tol=0.00001, C=6.0, multi_class='ovr',class_weight='balanced',random_state=122, max_iter=1500) # -------------LR-------------- LR = LogisticRegression(C=8, dual=False,n_jobs=4,max_iter=400,multi_class='ovr',random_state=122) LR.fit(train_X, train_y) pred = LR.predict(text_X) print(classification_report(text_y, pred,target_names=target_names)) print(confusion_matrix(text_y, pred,labels=labels)) # -------------gbdt-------------- gbdt = GradientBoostingClassifier(n_estimators=450, learning_rate=0.01,max_depth=8, random_state=24) gbdt.fit(train_X, train_y) pred = gbdt.predict(text_X) print(classification_report(text_y, pred,target_names=target_names)) print(confusion_matrix(text_y, pred,labels=labels)) # -------------融合-------------- pred_prob1 = LR.predict_proba(text_X) pred_prob2 = gbdt.predict_proba(text_X) pred = np.argmax((pred_prob1+pred_prob2)/2, axis=1) print(classification_report(text_y, pred,target_names=target_names)) print(confusion_matrix(text_y, pred,labels=labels)) pickle.dump(id2label,open(os.path.join(model_save_path,'id2label.pkl'),'wb')) pickle.dump(vec,open(os.path.join(model_save_path,'vec.pkl'),'wb')) pickle.dump(LR,open(os.path.join(model_save_path,'LR.pkl'),'wb')) pickle.dump(gbdt,open(os.path.join(model_save_path,'gbdt.pkl'),'wb')) if __name__ == '__main__': run("./data/intent_recog_data.txt", "./model_file/")
[ "350625640@qq.com" ]
350625640@qq.com
1a0fb8aa0fa8b64a69ac5a8040510b607facc284
f9128baa55e0b638567a8c1af17149a0278bdd68
/video/video.py
8a4391538a34f5efc626f0d3003a377eaebd9911
[]
no_license
super1peng/spider
5d3be575f2d8faf3d7d09d5a2ee2e250c0a7d9d9
d437f880927a5ec5172904698252f818190c227b
refs/heads/master
2021-01-01T19:37:40.269731
2019-03-24T05:06:07
2019-03-24T05:06:07
98,631,916
1
1
null
null
null
null
UTF-8
Python
false
false
1,521
py
#coding:utf-8 ''' 抓取最新的电影排行榜榜单 url:http://dianying.2345.com/top/ 使用 requests --bs4 线路 python 版本:2.7 OS: Mac os ''' import requests import bs4 import sys reload(sys) sys.setdefaultencoding('utf-8') def get_html(url): try: r = requests.get(url, timeout = 30) r.raise_for_status() r.encoding = 'gbk' return r.text except: return "Something Wrong !" def get_content(url): html = get_html(url) soup = bs4.BeautifulSoup(html, 'lxml') #找到电影排行榜的 ul 列表 movies_list = soup.find('ul', class_='picList clearfix') movies = movies_list.find_all('li') for top in movies: #找到图片链接 img_url = top.find('img')['src'] name = top.find('span', class_='sTit').a.text # 异常处理,防止没有上映时间的出现 try: time = top.find('span', class_='sIntro').text except: time = "暂无上映时间" #用bs4库迭代找出 “pACtor”的所有子孙节点,即每一位演员解决了名字分割问题 actors = top.find('p', class_='pActor') actor = '' for act in actors.contents: actor = actor + act.string + ' ' #找到影片简介 intro = top.find('p', class_='pTxt pIntroShow').text print("片名:{}\t{}\n{}\n{} \n \n ".format(name,time,actor,intro) ) #图片下载: with open('/Users/lxp/spider/video/img/' + name +'.png','wb+') as f: f.write(requests.get(img_url).content) def main(): url = 'http://dianying.2345.com/top/' get_content(url) if __name__=="__main__": main()
[ "lxp@lxpdeMacBook-Pro.local" ]
lxp@lxpdeMacBook-Pro.local
cc4d76ca0b6ccea81ce0a0572fb374e11948d47b
220a35d689724475130a1e746d126cdf83561a82
/__init__.py
dc356837fd09d394c539e2b10e533164935217d2
[]
no_license
argeweb/plugin-shop-point
5525e2fbb7c76c2a0be500956023fae555192634
21aa0cc62e2eb5c98000a3181221107a5b937b17
refs/heads/master
2021-01-24T18:26:18.297526
2017-12-31T00:02:39
2017-12-31T00:02:39
84,439,777
0
0
null
null
null
null
UTF-8
Python
false
false
5,906
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # Created with YooLiang Technology (侑良科技). # Author: Qi-Liang Wen (温啓良) # Web: http://www.yooliang.com/ # Date: 2017/2/24. import time from argeweb import ViewDatastore from argeweb.core.events import on from .models.user_shop_point_model import UserShopPointModel from .models.user_shop_point_order_model import UserShopPointOrderModel from .models.user_shop_point_history_model import UserShopPointHistoryModel from .models.user_shop_point_product_model import UserShopPointProductModel @on('after_user_delete') def after_user_delete(controller, key, *args, **kwargs): data_list = UserShopPointModel.query(UserShopPointModel.user==key).fetch() for data in data_list: data_list_2 = UserShopPointHistoryModel.query(UserShopPointHistoryModel.shop_point_target==data.key).fetch() for data_2 in data_list_2: data_2.delete() data.delete() @on('buy_user_shop_point') def buy_user_shop_point(controller, user, point_product_name, payment_type, callback_uri='', *args, **kwargs): if payment_type.name == 'user_shop_point': return None product = UserShopPointProductModel.get_by_name(point_product_name) if product is None or user is None: return None order = UserShopPointOrderModel.gen_order(product=product, payment_type=payment_type) controller.fire( event_name='create_payment', title=u'購買 %s' % order.product_title, detail=u'支付訂單 %s 使用 %s ' % (order.order_no, payment_type.title), amount=order.need_pay_amount, source=order, source_params={'order_no': order.order_no, 'callback_uri': callback_uri, 'point': product.point}, source_callback_uri='user_shop_point:user_shop_point:after_pay_buy_point', payment_type=payment_type, user=user, status='pending_payment', ) return controller.payment_record @on('after_order_checkout') def after_order_checkout(controller, order_list, user, *args, **kwargs): session = controller.session shopping_cash = 0.0 if 'shop_point_use' in session: shopping_cash = session['shop_point_use'] controller.logging.info(shopping_cash) total_amount_for_all_order = 0.0 for order in order_list: total_amount_for_all_order = total_amount_for_all_order + order.total_amount user_point_item = UserShopPointModel.get_or_create(order.user.get()) ds = shopping_cash n = 0 from models.config_model import ConfigModel config = ConfigModel.get_config() for order in order_list: n += 1 p = order.total_amount / total_amount_for_all_order s = shopping_cash * p // 1.0 if s > 0 and ds - s >= 0: ds = ds - s if len(order_list) == n and ds >= 0: s = s + ds controller.logging.info(s) order.add_discount(u'購物金折抵', s) order.total_discount_amount = s order.currency_total_discount_amount = s user_point_item.decrease_point( order.total_discount_amount, u'由訂單 %s 扣除' % order.order_no, order.order_no, order.total_amount) user_point_item.put() order.need_pay_amount = float(order.total_amount) - float(order.total_discount_amount) if config.give_time == u'after_order_checkout': user_point_item.increase_point( order.total_amount * config.available_point / 100.0, u'由訂單 %s 增加' % order.order_no, order.order_no, order.total_amount ) user_point_item.put() session['shop_point_use'] = 0.0 return @on('after_order_close') def after_order_close(controller, *args, **kwargs): # 訂單完成後 order = None if 'order' in kwargs: order = kwargs['order'] if order is None: return user_point_item = UserShopPointModel.get_or_create(order.user.get()) from models.config_model import ConfigModel config = ConfigModel.get_config() if config.give_time == u'after_order_close': user_point_item.increase_point( order.total_amount * config.available_point / 100.0, u'由訂單(完成) %s 增加' % order.order_no, order.order_no, order.total_amount ) user_point_item.put() ViewDatastore.register('shop_point', UserShopPointModel.get_or_create) ViewDatastore.register('shop_point_history', UserShopPointHistoryModel.all_enable) ViewDatastore.register('shop_point_product', UserShopPointProductModel.all_enable) plugins_helper = { 'title': u'購物金', 'desc': u'擴展網站的購物金功能,用於購買後的贈送點數', 'controllers': { 'user_shop_point': { 'group': u'購物金', 'actions': [ {'action': 'list', 'name': u'購物金管理'}, {'action': 'edit', 'name': u'編輯購物金'}, {'action': 'view', 'name': u'檢視購物金'}, {'action': 'delete', 'name': u'刪除購物金'}, {'action': 'plugins_check', 'name': u'啟用停用模組'}, ] }, 'user_shop_point_product': { 'group': u'購物金產品', 'actions': [ {'action': 'add', 'name': u'新增購物金產品'}, {'action': 'list', 'name': u'購物金產品管理'}, {'action': 'edit', 'name': u'編輯購物金產品'}, {'action': 'view', 'name': u'檢視購物金產品'}, {'action': 'delete', 'name': u'刪除購物金產品'}, ] }, 'config': { 'group': u'購物金設定', 'actions': [ {'action': 'config', 'name': u'購物金設定'}, ] } } }
[ "cwen0708@gmail.com" ]
cwen0708@gmail.com
253a1628bdd94f6cf6ccc6232414e9be938ae8f8
afd7207ec79198ed8b515c66a4ff951692fc5756
/Backend/classbase/apps.py
fa9aeea553b29740f8fad006f1087cfc90cc50a0
[]
no_license
mdarifulislamroni21/Backend-project
469e58ee1c8395a56f45434efc238eccd2adea77
4a999c7cb520c811fb0a051015822944f5d8479d
refs/heads/master
2023-06-24T19:55:57.562157
2021-07-23T08:39:37
2021-07-23T08:39:37
388,731,430
0
0
null
null
null
null
UTF-8
Python
false
false
150
py
from django.apps import AppConfig class ClassbaseConfig(AppConfig): default_auto_field = 'django.db.models.BigAutoField' name = 'classbase'
[ "mdarifulislamroni21@gmail.com" ]
mdarifulislamroni21@gmail.com
c64849e80bea851fe7f4e51272613346a3637d16
8e924c9309c6a6e18df9c20b7fba7bad3158365c
/ad_os_homework1/server.py
4c56bfa6d1821cc30eb494e3d8b961379e1c9034
[]
no_license
LumingSun/Homeworks
e6fb96654caa21120e81f211b5268dbdf10e12b5
767a51ad91940ad80dd99debad70240bc3ef303a
refs/heads/master
2020-08-30T16:03:54.142283
2019-10-30T02:38:16
2019-10-30T02:38:16
218,428,308
1
0
null
null
null
null
UTF-8
Python
false
false
1,958
py
from socket import * def judge(player_1, player_2): if(player_1 == player_2): return 0 elif(player_1== 'J'and player_2== 'B'): return 1 elif(player_1== 'C' and player_2 == 'J'): return 1 elif(player_1== 'B' and player_2 == 'C'): return 1 else: return 2 def server(): HOST = '' PORT = 10521 ADDR = (HOST, PORT) server_socket = socket(AF_INET, SOCK_STREAM) #调用socket构造函数,AF_UNIX(Unix域,用于同一台机器上的进程间通讯), # 也可以是AF_INET(对于IPV4协议的TCP和 UDP)套接字类型stream server_socket.bind(ADDR) #将socket绑定到指定地址 server_socket.listen(2) #最大连接数1 print( 'Waiting for connecting ......') tcpclientsocket, addr = server_socket.accept() #客户请求连接时,方法建立连接并返回服务器。 accept进入waiting状态#topclientsocket是新的socket对象,服务器与其通信 print('Connected by play1', addr) info = '1' tcpclientsocket.send(info.encode()) tcpclientsocket_2, addr_2 = server_socket.accept() print('Connected by play2', addr_2) info = '2' tcpclientsocket.send(info.encode()) tcpclientsocket_2.send(info.encode()) #ready play_1 = tcpclientsocket.recv(1024).decode() play_2 = tcpclientsocket_2.recv(1024).decode() print(play_1,play_2) judgement = judge(play_1,play_2) if(judgement == 0): info = '平局' tcpclientsocket.send(info.encode()) tcpclientsocket_2.send(info.encode()) elif(judgement == 1): tcpclientsocket.send("Win!".encode()) tcpclientsocket_2.send("Lose out".encode()) else: tcpclientsocket.send("Lose out".encode()) tcpclientsocket_2.send("Win!".encode()) server_socket.close() while True: server()
[ "sunluming@ruc.edu.cn" ]
sunluming@ruc.edu.cn
582c3f6652991b01a81065cd669ecf1d36a67de6
a8cea6f25cadd904a13d83115d1500806f1d9e0d
/utils.py
418ecff098adfb3b5bf6ed06d8aa683edae5b383
[]
no_license
VladRim/learnbot
c93fa10e58a902454a374d033288f9cf050a01e0
30181a42e50662d793d442acd9348bf6ce969af4
refs/heads/master
2023-02-16T11:49:44.534805
2022-12-08T14:47:54
2022-12-08T14:47:54
240,859,359
0
0
null
2023-02-07T23:14:50
2020-02-16T08:49:17
Python
UTF-8
Python
false
false
872
py
from random import choice from telegram import ReplyKeyboardMarkup, KeyboardButton from emoji import emojize import settings def get_user_emo(user_data): if 'emo' in user_data: return user_data['emo'] else: user_data['emo'] = emojize(choice(settings.USER_EMOJI), use_aliases=True) return user_data['emo'] def get_keyboard(): contact_button = KeyboardButton('Прислать контакты', request_contact=True) location_button = KeyboardButton('Прислать координаты', request_location=True) my_keyboard = ReplyKeyboardMarkup([['Прислать котика', 'Сменить аватарку'], [contact_button, location_button] ], resize_keyboard=True ) return my_keyboard
[ "vlad_rym@mail.ru" ]
vlad_rym@mail.ru
2bc469b0e94182a6576d4291fb741e8d0a1aab08
19d313ce232eb91c625cb55ba38849440e2c8d94
/web/test_demo.py
4afe0a1dcf865097b10c3b37872ec30c7833a8d2
[]
no_license
xyqiang/pydemo
57d9d6ee0a6ad181818c1abfa39fc003e093fab5
74776ca4bbf4a7e621b27874797d392708c68273
refs/heads/master
2022-12-04T23:41:27.932696
2020-08-27T15:51:17
2020-08-27T15:51:17
288,662,394
0
0
null
null
null
null
UTF-8
Python
false
false
991
py
from time import sleep from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.support import expected_conditions from selenium.webdriver.support.wait import WebDriverWait class TestBaidu(): def setup(self): self.driver = webdriver.Chrome() self.driver.maximize_window() #窗口最大化 # self.driver.implicitly_wait(3) #隐式等待 def teardown(self): self.driver.quit() def test_demo(self): self.driver.get("https://www.baidu.com") # sleep(1) #显示等待 self.driver.find_element_by_id("kw").click() # sleep(1) def wait(x): # return self.driver.find_element_by_id("su") # return False WebDriverWait(self.driver,10).until(expected_conditions.element_to_be_clickable(By.ID,("su"))) self.driver.find_element_by_id("kw").send_keys("python") # sleep(1) self.driver.find_element_by_id("su").click()
[ "xuyanqiangak@gmail.com" ]
xuyanqiangak@gmail.com
a1ccebc348e9f5fcadcd168ada5d25f7b5eac74c
f1b1f58e3186d75641c4368ce85fd296eabf34d1
/checkall.py
b119a4b3546f6cd3a9b569a3723c9b21cc9fb8e2
[]
no_license
NCMohit/FingerPrintDB
fe6940cfc8b32948e59575cdce2d670302e326f4
0893a8038c54c9fb502ebdacc9ff19e7ba8720f1
refs/heads/master
2020-05-31T23:06:18.717820
2019-06-12T15:08:56
2019-06-12T15:08:56
190,532,770
0
0
null
null
null
null
UTF-8
Python
false
false
194
py
#script to check all buyers and users import requests response = requests.post('http://127.0.0.1:5000/checkall', json="Cowbunga") #Change server IP if response.ok: print(response.json())
[ "noreply@github.com" ]
NCMohit.noreply@github.com
ef15b221bdbd47dcbd54d248ca66b5df938b3512
37784d6cc1236061c5a20acff860ce23880d72a0
/RemoveCharacters.py
411399e833a9d453ac92dddac258344b04578341
[]
no_license
ayyelle/CodeEval-Solutions
847f1aaa60d3529c07222a24de9e7caca21041dc
9ed426b4168af289629b65983bde8ff7490eb045
refs/heads/master
2021-05-04T10:59:22.820731
2017-02-05T09:17:36
2017-02-05T09:17:36
47,165,549
0
0
null
null
null
null
UTF-8
Python
false
false
463
py
# I solved the Remove Characters challenge on @codeeval. http://www.codeeval.com/browse/13 import sys test_cases = open(sys.argv[1], 'r') for test in test_cases: splitArray = test.split(","); word = splitArray[0].strip(); takeway = splitArray[1].strip(); for letter in takeway: for otherLetter in word: if (otherLetter == letter): word= word.replace(otherLetter,""); print(word); test_cases.close()
[ "awyleong@interchange.ubc.ca" ]
awyleong@interchange.ubc.ca
ed58c2f7d2768861e44c0d6759b99b24c66bbbcb
14d2e54652c884bbb7ce8ad00abe17af8305eb89
/basespider/htmldownloader.py
a297b5dc4eb168e72d8939f4ec76c30b9eacdd5e
[]
no_license
oujx28/Spider_study
1a4d49283867cfd1756d21bfbded863e954375c4
68495ffcc7d90a1833c11307104d1b368ed3b8b6
refs/heads/master
2021-09-06T06:34:38.475200
2018-02-03T08:21:06
2018-02-03T08:21:06
118,708,906
0
0
null
null
null
null
UTF-8
Python
false
false
451
py
# coding:utf-8 import requests class HtmlDownLoader(object): def download(self, url): if url is None: return None user_agent = 'Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:59.0) Gecko/20100101 Firefox/59.0' headers = {'User-Agent': user_agent} r = requests.get(url=url, headers=headers) if r.status_code == 200: r.encoding = 'utf-8' return r.text return None
[ "oujx28@163.com" ]
oujx28@163.com
03aad048fd326465dacdba68767b5185be0599e9
0a89c26b9ca935f184b4d204c49131878337b27e
/popular-movies.py
d391031d6a2379497d054c77466424a0d88c1f94
[]
no_license
ajcse1/Movie-Recommendation-System
4d464cbaf405faa9dfdb80dc6347b1fcbd3927a5
05d4658ed4d570ac9945412b8fa6ae1f8cd42190
refs/heads/master
2021-01-11T15:19:22.616987
2017-01-29T06:17:09
2017-01-29T06:17:09
80,331,667
2
0
null
null
null
null
UTF-8
Python
false
false
471
py
from pyspark import SparkConf, SparkContext conf = SparkConf().setMaster("local").setAppName("PopularMovies") sc = SparkContext(conf = conf) lines = sc.textFile("file:///SparkCourse/ml-100k/u.data") movies = lines.map(lambda x: (int(x.split()[1]), 1)) movieCounts = movies.reduceByKey(lambda x, y: x + y) flipped = movieCounts.map( lambda (x, y) : (y, x) ) sortedMovies = flipped.sortByKey() results = sortedMovies.collect() for result in results: print result
[ "ajcse1@gmail.com" ]
ajcse1@gmail.com
8f2f936f6beaf453053dadd039d75bb75430f225
c0792645c156cb9e20a1aa2b28c565150358bc6e
/apps/inmueble/serializers.py
d9166f0f6f0260446d36b4092b9aaf89ad6ba48b
[]
no_license
clioo/Praver
b22fd92886e0399845adb4366663cae6a7d7853b
523f0d78e0a2039a5bae3e539c93e2c2415a0840
refs/heads/master
2020-03-11T12:38:54.272392
2018-06-28T18:24:21
2018-06-28T18:24:21
130,003,043
1
0
null
null
null
null
UTF-8
Python
false
false
2,115
py
from rest_framework import serializers from apps.inmueble.models import Inmueble,ImagenesInmbueble,Localidades from django.contrib.auth.models import User from apps.usuarios.models import Profile class InmuebleSerializer(serializers.ModelSerializer): imagenes = serializers.SerializerMethodField('obtenerImagenes') descripciones = serializers.SerializerMethodField('obtenerDescripciones') datosVendedor = serializers.SerializerMethodField('obtenerDatosVendedor') class Meta: model = Inmueble fields = '__all__' def obtenerImagenes(self,inmueble): imagenes = ImagenesInmbueble.objects.filter(inmueble=inmueble) serializer = ImagenesInmbuebleSerializer(imagenes,many=True,context=self.context) if serializer.data: return serializer.data return None def obtenerDescripciones(self, inmueble): localidad = Localidades.objects.filter(id=inmueble.colonia) serializer = DescripcionLocalidades(localidad,many=True,context=self.context) return serializer.data def obtenerDatosVendedor(self,inmueble): perfil = Profile.objects.filter(user=inmueble.user.id) serializer = ProfileSerializer(perfil,many=True,context=self.context) return serializer.data class ImagenesInmbuebleSerializer(serializers.ModelSerializer): class Meta: model = ImagenesInmbueble fields = '__all__' class LocalidadesSerializer(serializers.ModelSerializer): class Meta: model = Localidades fields = '__all__' class DescripcionLocalidades(serializers.Serializer): d_ciudad = serializers.CharField(max_length=30) d_asenta = serializers.CharField(max_length=30) D_mnpio = serializers.CharField(max_length=30) d_estado = serializers.CharField(max_length=30) class ProfileSerializer(serializers.ModelSerializer): email = serializers.SerializerMethodField('obtenerEmail') class Meta: model = Profile fields= '__all__' def obtenerEmail(request,user): usuario = User.objects.get(id=user.user.id) return usuario.email
[ "jesus_acosta1996@hotmail.com" ]
jesus_acosta1996@hotmail.com
4fb36500fa15632ac15b7957bf643f29310c6c60
f6dbab4737f462d1126420fe28581c4584f8777b
/onsetDetectionFunctions.py
eca272ed03261f2141e385e563aa77c42318ba38
[]
no_license
bradgowland/BirdEmporium
77570bad94f128143f3bf1d20132781fd713cc76
830df0e9dc20b25f652f67f7d6df3373397c84ae
refs/heads/master
2021-05-08T11:31:33.204777
2018-01-22T19:57:22
2018-01-22T19:57:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,321
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Dec 11 23:36:03 2017 @author: DavidVanDusen """ import numpy as np from basicFunctions import bufferSig,getSpectrogram from scipy.stats.mstats import gmean from scipy.signal import medfilt, butter, filtfilt def plotSpectrogram(array,win_size,hop_size,fs): #Read in file lenInTime = len(array)/fs #Length of spectrogram window specLen = int(1+(win_size/2)) #Sample overlap overlap = win_size - hop_size #Break the signal into frames buf=bufferSig(array, win_size,overlap) #Take the fft of every frame buf = np.fft.fft(buf,win_size,0) #Cut them down to size buf = np.abs(buf[0:specLen,:]) buf = 20*np.log10(buf, where=True) F = np.linspace(0,fs/2,specLen) T = np.linspace(0,lenInTime,buf.shape[1]) return buf,F,T def localEnergy(array,win_size,hop_size,fs): overlap = win_size - hop_size buf = bufferSig(array,win_size,overlap) localEnergies = np.zeros(buf.shape[1]) for i in range(0,buf.shape[1]): localEnergies[i] = np.sum(np.square(buf[:,i])) for i in range(0,len(localEnergies)): if localEnergies[i] > 0: localEnergies[i] = np.log10(localEnergies[i]) # localEnergies = np.log10(localEnergies, where=trueSpot) localEnergies = np.diff(localEnergies) localEnergies = np.append(np.mean(localEnergies),localEnergies) localEnergies = localEnergies-np.min(localEnergies) localEnergies = localEnergies/np.max(localEnergies) le_fs = fs/hop_size return localEnergies, le_fs def spectralFlux(array,win_size,hop_size,fs): spec,F,T = getSpectrogram(array,win_size,hop_size,fs) specFlux = np.diff(spec) specFlux = 0.5*(specFlux+np.abs(specFlux)) specFluxVals = np.sum(specFlux,axis=0) specFluxVals = specFluxVals/specFluxVals.shape[0] sf_fs = fs/hop_size return specFluxVals,sf_fs def findPeaks(signal): signal = np.diff(signal) #Returns indices of zero cross in diff np.append([0],signal) diffZC = np.where((np.diff(np.sign(signal))))[0] diffZC+=1 #Only find upper peaks diffZC = -1 * diffZC diffZC = (diffZC + np.abs(diffZC))/2 return diffZC def noveltyLPF(nov, fs, w_c): w_c = 2*w_c/fs [b, a] = butter(3,w_c,btype='low') filtered_le = filtfilt(b,a,nov) return filtered_le def createThreshold(array,filtLen): threshold = medfilt(array, filtLen) return threshold def spectralFlatness(spec): numerator = gmean(spec,axis=0) denom = np.mean(spec,axis=0) output = numerator/denom return output def threshPeaks(le,thresh): le_diff = np.diff(le) #Returns indices of zero cross in diff le_diff = np.append(0,le_diff) #signal = np.sign(signal) diffZC = np.diff(np.sign(le_diff)) #Only find upper peaks diffZC = -1 * diffZC diffZC = (diffZC + np.abs(diffZC))/2 output = np.where(diffZC) output = np.asarray(output) + 1 # output = np.asarray(output) values = le[output[:]] threshAtPeaks = thresh[output[:]] peak_diff = values-threshAtPeaks threshAtPeaks = peak_diff + np.abs(peak_diff) properPeaks = np.where(threshAtPeaks) peaks = values[properPeaks[:]] times = output[properPeaks[:]] return peaks, times
[ "vandusen5000@gmail.com" ]
vandusen5000@gmail.com
80216700b3417c217422132d2a882e988c1c97f7
db849509c78603e2b4820b6e27f0ffaa648b8e5a
/catkin_mapping_ws/build/turtlebot/turtlebot_bringup/catkin_generated/pkg.develspace.context.pc.py
8c35d2d54212acd7fbb209eab051e21a6e12bd84
[]
no_license
AnkushKansal/GridBasedFASTSLAM
684550f9cea1e9c885fa1cceaea7721941ee8d47
94c472c4d8145d154dd2a69c6ee6188197037d9c
refs/heads/main
2023-04-16T17:44:40.219283
2021-04-13T18:18:33
2021-04-13T18:18:33
357,618,850
0
0
null
null
null
null
UTF-8
Python
false
false
390
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "".split(';') if "" != "" else [] PROJECT_CATKIN_DEPENDS = "".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "turtlebot_bringup" PROJECT_SPACE_DIR = "/home/workspace/catkin_mapping_ws/devel" PROJECT_VERSION = "2.4.2"
[ "ankush.kansal19@gmail.com" ]
ankush.kansal19@gmail.com
0d6d4e41a52a8b721e2cf46ea08845715b6135d5
2a394194f77dfd600913a811868df9e644a999fa
/meiduo_mall/meiduo_mall/apps/carts/utils.py
8d62d6c1b479bb67b00d3f6a76a60e3e5fc616e4
[]
no_license
18882028307/meiduo_project
01a66053e6c74457377e6f34ff9c17ed251b32a3
2814979eb1f5280ad5d37a5f7188506894d7c8c8
refs/heads/master
2020-08-16T00:35:04.745494
2019-11-01T10:27:33
2019-11-01T10:27:33
215,431,413
0
0
null
null
null
null
UTF-8
Python
false
false
1,698
py
import base64 import pickle from django_redis import get_redis_connection def merge_cart_cookie_to_redis(request, user, response): """ 合并购物车,cookie保存到redis中 :return: """ # 从cookie中取出购物车数据 cart_str = request.COOKIES.get('cart') if not cart_str: return response cookie_cart = pickle.loads(base64.b64decode(cart_str.encode())) # { # sku_id: { # # 数量 # "count": xxx, # # 是否勾选 # "selected": True # }, # sku_id: { # "count": xxx, # "selected": False # }, # } # 从redis中取出购物车数据 redis_conn = get_redis_connection('cart') cart_redis = redis_conn.hgetall('cart_%s' % user.id) # 把redis取出的字典的键值对数据类型 转换为int cart = {} for sku_id, count in cart_redis.items(): cart[int(sku_id)] = int(count) # { # sku_id: count, # sku_id: count # } selected_sku_id_list = [] for sku_id, selected_count_dict in cookie_cart.items(): # 如果redis购物车中原有商品数据,数量覆盖,如果没有,新添记录 cart[sku_id] = selected_count_dict['count'] # 处理勾选状态, if selected_count_dict['selected']: selected_sku_id_list.append(sku_id) # 将cookie的购物车合并到redis中 pl = redis_conn.pipeline() pl.hmset('cart_%s' % user.id, cart) pl.sadd('cart_selected_%s' % user.id, *selected_sku_id_list) pl.execute() # 清除cookie中的购物车数据 response.delete_cookie('cart') return response
[ "710363437@qq.com" ]
710363437@qq.com
2d16a9054e22480fa489ec2ed89ab54a86f8c85c
60aeff792a1cd3a476a34ca333b8bab2715d787d
/simple_audio_recognition/generate_streaming_test_wav.py
a2ed95edc054a3922f2883ebb287aafb7396e697
[]
no_license
ziippy/tensorflow-speech-recognition-challenge
9e377b17657cbce9f3d5326e860d12bf0b326e07
3304b44c5ae1c7af5f161af6fbd3ba64699974c3
refs/heads/master
2023-01-24T08:46:36.466238
2020-12-04T03:31:43
2020-12-04T03:31:43
112,940,339
1
0
null
2017-12-04T14:34:15
2017-12-03T15:39:37
Python
UTF-8
Python
false
false
10,932
py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""Saves out a .wav file with synthesized conversational data and labels. The best way to estimate the real-world performance of an audio recognition model is by running it against a continuous stream of data, the way that it would be used in an application. Training evaluations are only run against discrete individual samples, so the results aren't as realistic. To make it easy to run evaluations against audio streams, this script uses samples from the testing partition of the data set, mixes them in at random positions together with background noise, and saves out the result as one long audio file. Here's an example of generating a test file: bazel run tensorflow/examples/speech_commands:generate_streaming_test_wav -- \ --data_dir=/tmp/my_wavs --background_dir=/tmp/my_backgrounds \ --background_volume=0.1 --test_duration_seconds=600 \ --output_audio_file=/tmp/streaming_test.wav \ --output_labels_file=/tmp/streaming_test_labels.txt Once you've created a streaming audio file, you can then use the test_streaming_accuracy tool to calculate accuracy metrics for a model. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import math import sys import numpy as np import tensorflow as tf import input_data import models FLAGS = None def mix_in_audio_sample(track_data, track_offset, sample_data, sample_offset, clip_duration, sample_volume, ramp_in, ramp_out): """Mixes the sample data into the main track at the specified offset. Args: track_data: Numpy array holding main audio data. Modified in-place. track_offset: Where to mix the sample into the main track. sample_data: Numpy array of audio data to mix into the main track. sample_offset: Where to start in the audio sample. clip_duration: How long the sample segment is. sample_volume: Loudness to mix the sample in at. ramp_in: Length in samples of volume increase stage. ramp_out: Length in samples of volume decrease stage. """ ramp_out_index = clip_duration - ramp_out track_end = min(track_offset + clip_duration, track_data.shape[0]) track_end = min(track_end, track_offset + (sample_data.shape[0] - sample_offset)) sample_range = track_end - track_offset for i in range(sample_range): if i < ramp_in: envelope_scale = i / ramp_in elif i > ramp_out_index: envelope_scale = (clip_duration - i) / ramp_out else: envelope_scale = 1 sample_input = sample_data[sample_offset + i] track_data[track_offset + i] += sample_input * envelope_scale * sample_volume def main(_): words_list = input_data.prepare_words_list(FLAGS.wanted_words.split(',')) model_settings = models.prepare_model_settings( len(words_list), FLAGS.sample_rate, FLAGS.clip_duration_ms, FLAGS.window_size_ms, FLAGS.window_stride_ms, FLAGS.dct_coefficient_count) audio_processor = input_data.AudioProcessor( '', FLAGS.data_dir, FLAGS.silence_percentage, 10, FLAGS.wanted_words.split(','), FLAGS.validation_percentage, FLAGS.testing_percentage, model_settings) output_audio_sample_count = FLAGS.sample_rate * FLAGS.test_duration_seconds output_audio = np.zeros((output_audio_sample_count,), dtype=np.float32) # Set up background audio. background_crossover_ms = 500 background_segment_duration_ms = ( FLAGS.clip_duration_ms + background_crossover_ms) background_segment_duration_samples = int( (background_segment_duration_ms * FLAGS.sample_rate) / 1000) background_segment_stride_samples = int( (FLAGS.clip_duration_ms * FLAGS.sample_rate) / 1000) background_ramp_samples = int( ((background_crossover_ms / 2) * FLAGS.sample_rate) / 1000) # Mix the background audio into the main track. how_many_backgrounds = int( math.ceil(output_audio_sample_count / background_segment_stride_samples)) for i in range(how_many_backgrounds): output_offset = int(i * background_segment_stride_samples) background_index = np.random.randint(len(audio_processor.background_data)) background_samples = audio_processor.background_data[background_index] background_offset = np.random.randint( 0, len(background_samples) - model_settings['desired_samples']) background_volume = np.random.uniform(0, FLAGS.background_volume) mix_in_audio_sample(output_audio, output_offset, background_samples, background_offset, background_segment_duration_samples, background_volume, background_ramp_samples, background_ramp_samples) # Mix the words into the main track, noting their labels and positions. output_labels = [] word_stride_ms = FLAGS.clip_duration_ms + FLAGS.word_gap_ms word_stride_samples = int((word_stride_ms * FLAGS.sample_rate) / 1000) clip_duration_samples = int( (FLAGS.clip_duration_ms * FLAGS.sample_rate) / 1000) word_gap_samples = int((FLAGS.word_gap_ms * FLAGS.sample_rate) / 1000) how_many_words = int( math.floor(output_audio_sample_count / word_stride_samples)) all_test_data, all_test_labels = audio_processor.get_unprocessed_data( -1, model_settings, 'testing') for i in range(how_many_words): output_offset = ( int(i * word_stride_samples) + np.random.randint(word_gap_samples)) output_offset_ms = (output_offset * 1000) / FLAGS.sample_rate is_unknown = np.random.randint(100) < FLAGS.unknown_percentage if is_unknown: wanted_label = input_data.UNKNOWN_WORD_LABEL else: wanted_label = words_list[2 + np.random.randint(len(words_list) - 2)] test_data_start = np.random.randint(len(all_test_data)) found_sample_data = None index_lookup = np.arange(len(all_test_data), dtype=np.int32) np.random.shuffle(index_lookup) for test_data_offset in range(len(all_test_data)): test_data_index = index_lookup[( test_data_start + test_data_offset) % len(all_test_data)] current_label = all_test_labels[test_data_index] if current_label == wanted_label: found_sample_data = all_test_data[test_data_index] break mix_in_audio_sample(output_audio, output_offset, found_sample_data, 0, clip_duration_samples, 1.0, 500, 500) output_labels.append({'label': wanted_label, 'time': output_offset_ms}) input_data.save_wav_file(FLAGS.output_audio_file, output_audio, FLAGS.sample_rate) tf.logging.info('Saved streaming test wav to %s', FLAGS.output_audio_file) with open(FLAGS.output_labels_file, 'w') as f: for output_label in output_labels: f.write('%s, %f\n' % (output_label['label'], output_label['time'])) tf.logging.info('Saved streaming test labels to %s', FLAGS.output_labels_file) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--data_url', type=str, # pylint: disable=line-too-long default='http://download.tensorflow.org/data/speech_commands_v0.01.tar.gz', # pylint: enable=line-too-long help='Location of speech training data') parser.add_argument( '--data_dir', type=str, default='/tmp/speech_dataset', help="""\ Where to download the speech training data to. """) parser.add_argument( '--background_dir', type=str, default='', help="""\ Path to a directory of .wav files to mix in as background noise during training. """) parser.add_argument( '--background_volume', type=float, default=0.1, help="""\ How loud the background noise should be, between 0 and 1. """) parser.add_argument( '--background_frequency', type=float, default=0.8, help="""\ How many of the training samples have background noise mixed in. """) parser.add_argument( '--silence_percentage', type=float, default=10.0, help="""\ How much of the training data should be silence. """) parser.add_argument( '--testing_percentage', type=int, default=10, help='What percentage of wavs to use as a test set.') parser.add_argument( '--validation_percentage', type=int, default=10, help='What percentage of wavs to use as a validation set.') parser.add_argument( '--sample_rate', type=int, default=16000, help='Expected sample rate of the wavs.',) parser.add_argument( '--clip_duration_ms', type=int, default=1000, help='Expected duration in milliseconds of the wavs.',) parser.add_argument( '--window_size_ms', type=float, default=30.0, help='How long each spectrogram timeslice is',) parser.add_argument( '--window_stride_ms', type=float, default=10.0, help='How long the stride is between spectrogram timeslices',) parser.add_argument( '--dct_coefficient_count', type=int, default=40, help='How many bins to use for the MFCC fingerprint',) parser.add_argument( '--wanted_words', type=str, default='yes,no,up,down,left,right,on,off,stop,go', help='Words to use (others will be added to an unknown label)',) parser.add_argument( '--output_audio_file', type=str, default='/tmp/speech_commands_train/streaming_test.wav', help='File to save the generated test audio to.') parser.add_argument( '--output_labels_file', type=str, default='/tmp/speech_commands_train/streaming_test_labels.txt', help='File to save the generated test labels to.') parser.add_argument( '--test_duration_seconds', type=int, default=600, help='How long the generated test audio file should be.',) parser.add_argument( '--word_gap_ms', type=int, default=2000, help='How long the average gap should be between words.',) parser.add_argument( '--unknown_percentage', type=int, default=30, help='What percentage of words should be unknown.') FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
[ "ziippy@naver.com" ]
ziippy@naver.com
123cd95d903ac9a0e5514b4f4aea512078990c6b
b697e6ba57ae5b70c81762ee9c7b76158d998d4b
/functional_tests/test_my_lists.py
658a09345200c9e1274a913ce2ff5c3946ff0404
[]
no_license
jhagege/book_example
419b64acbf7d1ef57bbff7a05290fbadedbb39f5
4eb88bf822715b031538a72cc08ea6bb54f7c695
refs/heads/master
2023-05-31T11:26:18.542916
2019-08-12T21:15:32
2019-08-12T21:15:32
198,066,799
0
0
null
2021-06-10T21:44:46
2019-07-21T14:30:11
JavaScript
UTF-8
Python
false
false
2,816
py
from django.conf import settings from django.contrib.auth import BACKEND_SESSION_KEY, SESSION_KEY, get_user_model from django.contrib.sessions.backends.db import SessionStore from functional_tests.management.commands.create_session import create_pre_authenticated_session from functional_tests.server_tools import create_session_on_server from .base import FunctionalTest User = get_user_model() class MyListsTest(FunctionalTest): def create_pre_authenticated_session(self, email): if self.staging_server: session_key = create_session_on_server(self.staging_server, email) else: session_key = create_pre_authenticated_session(email) ## to set a cookie we need to first visit the domain. ## 404 pages load the quickest! self.browser.get(self.live_server_url + "/404_no_such_url/") self.browser.add_cookie(dict( name=settings.SESSION_COOKIE_NAME, value=session_key, path='/', )) def test_logged_in_users_lists_are_saved_as_my_lists(self): # Edith is a logged-in user self.create_pre_authenticated_session('edith@example.com') # She goes to the home page and starts a list self.browser.get(self.live_server_url) self.add_list_item('Reticulate splines') self.add_list_item('Immanentize eschaton') first_list_url = self.browser.current_url # She notices a "My lists" link, for the first time. self.browser.find_element_by_link_text('My lists').click() # She sees that her list is in there, named according to its # first list item self.wait_for( lambda: self.browser.find_element_by_link_text('Reticulate splines') ) self.browser.find_element_by_link_text('Reticulate splines').click() self.wait_for( lambda: self.assertEqual(self.browser.current_url, first_list_url) ) # She decides to start another list, just to see self.browser.get(self.live_server_url) self.add_list_item('Click cows') second_list_url = self.browser.current_url # Under "my lists", her new list appears self.browser.find_element_by_link_text('My lists').click() self.wait_for( lambda: self.browser.find_element_by_link_text('Click cows') ) self.browser.find_element_by_link_text('Click cows').click() self.wait_for( lambda: self.assertEqual(self.browser.current_url, second_list_url) ) # She logs out. The "My lists" option disappears self.browser.find_element_by_link_text('Log out').click() self.wait_for(lambda: self.assertEqual( self.browser.find_elements_by_link_text('My lists'), [] ))
[ "joachim.hagege@alibaba-inc.com" ]
joachim.hagege@alibaba-inc.com
a57730a7979dc3c57c74c59a29356e7e916dbdc5
50948d4cb10dcb1cc9bc0355918478fb2841322a
/azure-mgmt-network/azure/mgmt/network/v2018_07_01/models/ipsec_policy_py3.py
ada123aa21f28ec5aeaf0746d0048305d73420cc
[ "MIT" ]
permissive
xiafu-msft/azure-sdk-for-python
de9cd680b39962702b629a8e94726bb4ab261594
4d9560cfd519ee60667f3cc2f5295a58c18625db
refs/heads/master
2023-08-12T20:36:24.284497
2019-05-22T00:55:16
2019-05-22T00:55:16
187,986,993
1
0
MIT
2020-10-02T01:17:02
2019-05-22T07:33:46
Python
UTF-8
Python
false
false
4,388
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class IpsecPolicy(Model): """An IPSec Policy configuration for a virtual network gateway connection. All required parameters must be populated in order to send to Azure. :param sa_life_time_seconds: Required. The IPSec Security Association (also called Quick Mode or Phase 2 SA) lifetime in seconds for a site to site VPN tunnel. :type sa_life_time_seconds: int :param sa_data_size_kilobytes: Required. The IPSec Security Association (also called Quick Mode or Phase 2 SA) payload size in KB for a site to site VPN tunnel. :type sa_data_size_kilobytes: int :param ipsec_encryption: Required. The IPSec encryption algorithm (IKE phase 1). Possible values include: 'None', 'DES', 'DES3', 'AES128', 'AES192', 'AES256', 'GCMAES128', 'GCMAES192', 'GCMAES256' :type ipsec_encryption: str or ~azure.mgmt.network.v2018_07_01.models.IpsecEncryption :param ipsec_integrity: Required. The IPSec integrity algorithm (IKE phase 1). Possible values include: 'MD5', 'SHA1', 'SHA256', 'GCMAES128', 'GCMAES192', 'GCMAES256' :type ipsec_integrity: str or ~azure.mgmt.network.v2018_07_01.models.IpsecIntegrity :param ike_encryption: Required. The IKE encryption algorithm (IKE phase 2). Possible values include: 'DES', 'DES3', 'AES128', 'AES192', 'AES256', 'GCMAES256', 'GCMAES128' :type ike_encryption: str or ~azure.mgmt.network.v2018_07_01.models.IkeEncryption :param ike_integrity: Required. The IKE integrity algorithm (IKE phase 2). Possible values include: 'MD5', 'SHA1', 'SHA256', 'SHA384', 'GCMAES256', 'GCMAES128' :type ike_integrity: str or ~azure.mgmt.network.v2018_07_01.models.IkeIntegrity :param dh_group: Required. The DH Groups used in IKE Phase 1 for initial SA. Possible values include: 'None', 'DHGroup1', 'DHGroup2', 'DHGroup14', 'DHGroup2048', 'ECP256', 'ECP384', 'DHGroup24' :type dh_group: str or ~azure.mgmt.network.v2018_07_01.models.DhGroup :param pfs_group: Required. The Pfs Groups used in IKE Phase 2 for new child SA. Possible values include: 'None', 'PFS1', 'PFS2', 'PFS2048', 'ECP256', 'ECP384', 'PFS24', 'PFS14', 'PFSMM' :type pfs_group: str or ~azure.mgmt.network.v2018_07_01.models.PfsGroup """ _validation = { 'sa_life_time_seconds': {'required': True}, 'sa_data_size_kilobytes': {'required': True}, 'ipsec_encryption': {'required': True}, 'ipsec_integrity': {'required': True}, 'ike_encryption': {'required': True}, 'ike_integrity': {'required': True}, 'dh_group': {'required': True}, 'pfs_group': {'required': True}, } _attribute_map = { 'sa_life_time_seconds': {'key': 'saLifeTimeSeconds', 'type': 'int'}, 'sa_data_size_kilobytes': {'key': 'saDataSizeKilobytes', 'type': 'int'}, 'ipsec_encryption': {'key': 'ipsecEncryption', 'type': 'str'}, 'ipsec_integrity': {'key': 'ipsecIntegrity', 'type': 'str'}, 'ike_encryption': {'key': 'ikeEncryption', 'type': 'str'}, 'ike_integrity': {'key': 'ikeIntegrity', 'type': 'str'}, 'dh_group': {'key': 'dhGroup', 'type': 'str'}, 'pfs_group': {'key': 'pfsGroup', 'type': 'str'}, } def __init__(self, *, sa_life_time_seconds: int, sa_data_size_kilobytes: int, ipsec_encryption, ipsec_integrity, ike_encryption, ike_integrity, dh_group, pfs_group, **kwargs) -> None: super(IpsecPolicy, self).__init__(**kwargs) self.sa_life_time_seconds = sa_life_time_seconds self.sa_data_size_kilobytes = sa_data_size_kilobytes self.ipsec_encryption = ipsec_encryption self.ipsec_integrity = ipsec_integrity self.ike_encryption = ike_encryption self.ike_integrity = ike_integrity self.dh_group = dh_group self.pfs_group = pfs_group
[ "lmazuel@microsoft.com" ]
lmazuel@microsoft.com
701c49eedae3939ba4f75ef2a8241253462a7a1d
f816ab1b508ebcc6f858e3fd15377bf7bdb97e5e
/kolstatapp/views/ajax.py
d9b7442ad746e492f379272640e8b80867cc5672
[]
no_license
xneby/kolstat
4219da46cc1a5784b97ed50fb69572d292686a8e
877ffcf5a0c25f0e7c87ad16617a66c7cec2a19b
refs/heads/master
2020-05-02T12:35:13.096115
2013-05-27T18:29:32
2013-05-27T18:29:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
854
py
import json from kolstatapp.models import Station, UserFavouriteStation as UFS from kolstatapp.decorators import ajax from kolstatapp.exceptions import BadRequest @ajax def ajax_station(request): for field in ('query','type'): if field not in request.GET: raise BadRequest() name = request.GET['query'] type = request.GET['type'] if len(name) < 3 and not (name.isdigit() and type == 'kurs90'): return [] if type=='name': return [st.name for st in Station.objects.filter(name__startswith = name)] if type=='kurs90': try: return [Station.objects.get(kurs90ID = int(name)).name] except Station.DoesNotExist: return [] return [] @ajax def ajax_favourites(request): if not request.user.is_authenticated(): return dict() return { pic.name: st.get_pretty_name() for pic, st in request.user.get_profile().get_favourites() }
[ "karol.farbis@gmail.com" ]
karol.farbis@gmail.com
205855857c122e67c0d6e0db7df6b9f1e94ec102
fdbfb2d7302fee1388a8facc2938d1e4259f1615
/tensorLayerTest/tensorlayer/rl/test1.py
98ec6a789b17cfc895fd55d210d6b6686f6d63ef
[]
no_license
kflyddn/tusharetest
e261c498f06897e6914c20681941b60f05cc0107
a05919a5b41288f97a0b73bb5cec97400daa959b
refs/heads/master
2020-05-07T14:53:05.957456
2018-06-26T15:58:20
2018-06-26T15:58:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
25,567
py
#! /usr/bin/python # -*- coding: utf-8 -*- """Example of Synced sequence input and output. This is a reimpmentation of the TensorFlow official PTB example in : tensorflow/models/rnn/ptb The batch_size can be seem as how many concurrent computations.\n As the following example shows, the first batch learn the sequence information by using 0 to 9.\n The second batch learn the sequence information by using 10 to 19.\n So it ignores the information from 9 to 10 !\n If only if we set the batch_size = 1, it will consider all information from 0 to 20.\n The meaning of batch_size here is not the same with the MNIST example. In MNIST example, batch_size reflects how many examples we consider in each iteration, while in PTB example, batch_size is how many concurrent processes (segments) for speed up computation. Some Information will be ignored if batch_size > 1, however, if your dataset is "long" enough (a text corpus usually has billions words), the ignored information would not effect the final result. In PTB tutorial, we setted batch_size = 20, so we cut the dataset into 20 segments. At the begining of each epoch, we initialize (reset) the 20 RNN states for 20 segments, then go through 20 segments separately. The training data will be generated as follow:\n >>> train_data = [i for i in range(20)] >>> for batch in tl.iterate.ptb_iterator(train_data, batch_size=2, num_steps=3): >>> x, y = batch >>> print(x, '\n',y) ... [[ 0 1 2] <---x 1st subset/ iteration ... [10 11 12]] ... [[ 1 2 3] <---y ... [11 12 13]] ... ... [[ 3 4 5] <--- 1st batch input 2nd subset/ iteration ... [13 14 15]] <--- 2nd batch input ... [[ 4 5 6] <--- 1st batch target ... [14 15 16]] <--- 2nd batch target ... ... [[ 6 7 8] 3rd subset/ iteration ... [16 17 18]] ... [[ 7 8 9] ... [17 18 19]] Hao Dong: This example can also be considered as pre-training of the word embedding matrix. About RNN ---------- $ Karpathy Blog : http://karpathy.github.io/2015/05/21/rnn-effectiveness/ More TensorFlow official RNN examples can be found here --------------------------------------------------------- $ RNN for PTB : https://www.tensorflow.org/versions/master/tutorials/recurrent/index.html#recurrent-neural-networks $ Seq2seq : https://www.tensorflow.org/versions/master/tutorials/seq2seq/index.html#sequence-to-sequence-models $ translation : tensorflow/models/rnn/translate tensorflow (0.9.0) Example / benchmark for building a PTB LSTM model. Trains the model described in: (Zaremba, et. al.) Recurrent Neural Network Regularization http://arxiv.org/abs/1409.2329 There are 3 supported model configurations: =========================================== | config | epochs | train | valid | test =========================================== | small | 13 | 37.99 | 121.39 | 115.91 | medium | 39 | 48.45 | 86.16 | 82.07 | large | 55 | 37.87 | 82.62 | 78.29 The exact results may vary depending on the random initialization. The hyperparameters used in the model: - init_scale - the initial scale of the weights - learning_rate - the initial value of the learning rate - max_grad_norm - the maximum permissible norm of the gradient - num_layers - the number of LSTM layers - num_steps - the number of unrolled steps of LSTM - hidden_size - the number of LSTM units - max_epoch - the number of epochs trained with the initial learning rate - max_max_epoch - the total number of epochs for training - keep_prob - the probability of keeping weights in the dropout layer - lr_decay - the decay of the learning rate for each epoch after "max_epoch" - batch_size - the batch size The data required for this example is in the data/ dir of the PTB dataset from Tomas Mikolov's webpage: $ wget http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz $ tar xvf simple-examples.tgz A) use the zero_state function on the cell object B) for an rnn, all time steps share weights. We use one matrix to keep all gate weights. Split by column into 4 parts to get the 4 gate weight matrices. """ import time import numpy as np import tensorflow as tf import tensorlayer as tl flags = tf.flags flags.DEFINE_string("model", "small", "A type of model. Possible options are: small, medium, large.") FLAGS = flags.FLAGS def main(_): """ The core of the model consists of an LSTM cell that processes one word at a time and computes probabilities of the possible continuations of the sentence. The memory state of the network is initialized with a vector of zeros and gets updated after reading each word. Also, for computational reasons, we will process data in mini-batches of size batch_size. """ if FLAGS.model == "small": init_scale = 0.1 learning_rate = 1.0 max_grad_norm = 5 num_steps = 20 hidden_size = 200 max_epoch = 4 max_max_epoch = 13 keep_prob = 1.0 lr_decay = 0.5 batch_size = 20 vocab_size = 10000 elif FLAGS.model == "medium": init_scale = 0.05 learning_rate = 1.0 max_grad_norm = 5 # num_layers = 2 num_steps = 35 hidden_size = 650 max_epoch = 6 max_max_epoch = 39 keep_prob = 0.5 lr_decay = 0.8 batch_size = 20 vocab_size = 10000 elif FLAGS.model == "large": init_scale = 0.04 learning_rate = 1.0 max_grad_norm = 10 # num_layers = 2 num_steps = 35 hidden_size = 1500 max_epoch = 14 max_max_epoch = 55 keep_prob = 0.35 lr_decay = 1 / 1.15 batch_size = 20 vocab_size = 10000 else: raise ValueError("Invalid model: %s", FLAGS.model) # Load PTB dataset train_data, valid_data, test_data, vocab_size = tl.files.load_ptb_dataset() # train_data = train_data[0:int(100000/5)] # for fast testing print('len(train_data) {}'.format(len(train_data))) # 929589 a list of int print('len(valid_data) {}'.format(len(valid_data))) # 73760 a list of int print('len(test_data) {}'.format(len(test_data))) # 82430 a list of int print('vocab_size {}'.format(vocab_size)) # 10000 sess = tf.InteractiveSession() # One int represents one word, the meaning of batch_size here is not the # same with MNIST example, it is the number of concurrent processes for # computational reasons. # Training and Validation input_data = tf.placeholder(tf.int32, [batch_size, num_steps]) targets = tf.placeholder(tf.int32, [batch_size, num_steps]) # Testing (Evaluation) input_data_test = tf.placeholder(tf.int32, [1, 1]) targets_test = tf.placeholder(tf.int32, [1, 1]) def inference(x, is_training, num_steps, reuse=None): """If reuse is True, the inferences use the existing parameters, then different inferences share the same parameters. Note : - For DynamicRNNLayer, you can set dropout and the number of RNN layer internally. """ print("\nnum_steps : %d, is_training : %s, reuse : %s" % (num_steps, is_training, reuse)) initializer = tf.random_uniform_initializer(-init_scale, init_scale) with tf.variable_scope("model", reuse=reuse): network = tl.layers.EmbeddingInputlayer(inputs=x, vocabulary_size=vocab_size, embedding_size=hidden_size, E_init=initializer, name='embedding') network = tl.layers.DropoutLayer(network, keep=keep_prob, is_fix=True, is_train=is_training, name='drop1') network = tl.layers.RNNLayer( network, cell_fn=tf.contrib.rnn.BasicLSTMCell, #tf.nn.rnn_cell.BasicLSTMCell, cell_init_args={ 'forget_bias': 0.0, 'state_is_tuple': True }, n_hidden=hidden_size, initializer=initializer, n_steps=num_steps, return_last=False, name='basic_lstm1') lstm1 = network network = tl.layers.DropoutLayer(network, keep=keep_prob, is_fix=True, is_train=is_training, name='drop2') network = tl.layers.RNNLayer( network, cell_fn=tf.contrib.rnn.BasicLSTMCell, #tf.nn.rnn_cell.BasicLSTMCell, cell_init_args={ 'forget_bias': 0.0, 'state_is_tuple': True }, n_hidden=hidden_size, initializer=initializer, n_steps=num_steps, return_last=False, return_seq_2d=True, name='basic_lstm2') lstm2 = network # Alternatively, if return_seq_2d=False, in the above RNN layer, # you can reshape the outputs as follow: # network = tl.layers.ReshapeLayer(network, # shape=[-1, int(network.outputs._shape[-1])], name='reshape') network = tl.layers.DropoutLayer(network, keep=keep_prob, is_fix=True, is_train=is_training, name='drop3') network = tl.layers.DenseLayer(network, n_units=vocab_size, W_init=initializer, b_init=initializer, act=tf.identity, name='output') return network, lstm1, lstm2 # Inference for Training network, lstm1, lstm2 = inference(input_data, is_training=True, num_steps=num_steps, reuse=None) # Inference for Validating network_val, lstm1_val, lstm2_val = inference(input_data, is_training=False, num_steps=num_steps, reuse=True) # Inference for Testing (Evaluation) network_test, lstm1_test, lstm2_test = inference(input_data_test, is_training=False, num_steps=1, reuse=True) # sess.run(tf.initialize_all_variables()) tl.layers.initialize_global_variables(sess) def loss_fn(outputs, targets, batch_size): # See tl.cost.cross_entropy_seq() # Returns the cost function of Cross-entropy of two sequences, implement # softmax internally. # outputs : 2D tensor [batch_size*num_steps, n_units of output layer] # targets : 2D tensor [batch_size, num_steps], need to be reshaped. # batch_size : RNN batch_size, number of concurrent processes. # n_examples = batch_size * num_steps # so # cost is the averaged cost of each mini-batch (concurrent process). loss = tf.contrib.legacy_seq2seq.sequence_loss_by_example( # loss = tf.nn.seq2seq.sequence_loss_by_example( # TF0.12 [outputs], [tf.reshape(targets, [-1])], [tf.ones_like(tf.reshape(targets, [-1]), dtype=tf.float32)]) # [tf.ones([batch_size * num_steps])]) cost = tf.reduce_sum(loss) / batch_size return cost # Cost for Training cost = loss_fn(network.outputs, targets, batch_size) # Cost for Validating cost_val = loss_fn(network_val.outputs, targets, batch_size) # Cost for Testing (Evaluation) cost_test = loss_fn(network_test.outputs, targets_test, 1) # Truncated Backpropagation for training with tf.variable_scope('learning_rate'): lr = tf.Variable(0.0, trainable=False) tvars = tf.trainable_variables() grads, _ = tf.clip_by_global_norm(tf.gradients(cost, tvars), max_grad_norm) optimizer = tf.train.GradientDescentOptimizer(lr) train_op = optimizer.apply_gradients(zip(grads, tvars)) # sess.run(tf.initialize_all_variables()) tl.layers.initialize_global_variables(sess) network.print_params() network.print_layers() tl.layers.print_all_variables() print("\nStart learning a language model by using PTB dataset") for i in range(max_max_epoch): # decreases the initial learning rate after several # epoachs (defined by ``max_epoch``), by multipling a ``lr_decay``. new_lr_decay = lr_decay**max(i - max_epoch, 0.0) sess.run(tf.assign(lr, learning_rate * new_lr_decay)) # Training print("Epoch: %d/%d Learning rate: %.3f" % (i + 1, max_max_epoch, sess.run(lr))) epoch_size = ((len(train_data) // batch_size) - 1) // num_steps start_time = time.time() costs = 0.0 iters = 0 # reset all states at the begining of every epoch state1 = tl.layers.initialize_rnn_state(lstm1.initial_state) state2 = tl.layers.initialize_rnn_state(lstm2.initial_state) for step, (x, y) in enumerate(tl.iterate.ptb_iterator(train_data, batch_size, num_steps)): feed_dict = { input_data: x, targets: y, lstm1.initial_state.c: state1[0], lstm1.initial_state.h: state1[1], lstm2.initial_state.c: state2[0], lstm2.initial_state.h: state2[1], } # For training, enable dropout feed_dict.update(network.all_drop) _cost, state1_c, state1_h, state2_c, state2_h, _ = \ sess.run([cost, lstm1.final_state.c, lstm1.final_state.h, lstm2.final_state.c, lstm2.final_state.h, train_op], feed_dict=feed_dict ) state1 = (state1_c, state1_h) state2 = (state2_c, state2_h) costs += _cost iters += num_steps if step % (epoch_size // 10) == 10: print("%.3f perplexity: %.3f speed: %.0f wps" % (step * 1.0 / epoch_size, np.exp(costs / iters), iters * batch_size / (time.time() - start_time))) train_perplexity = np.exp(costs / iters) print("Epoch: %d/%d Train Perplexity: %.3f" % (i + 1, max_max_epoch, train_perplexity)) # Validation start_time = time.time() costs = 0.0 iters = 0 # reset all states at the begining of every epoch state1 = tl.layers.initialize_rnn_state(lstm1_val.initial_state) state2 = tl.layers.initialize_rnn_state(lstm2_val.initial_state) for step, (x, y) in enumerate(tl.iterate.ptb_iterator(valid_data, batch_size, num_steps)): feed_dict = { input_data: x, targets: y, lstm1_val.initial_state.c: state1[0], lstm1_val.initial_state.h: state1[1], lstm2_val.initial_state.c: state2[0], lstm2_val.initial_state.h: state2[1], } _cost, state1_c, state1_h, state2_c, state2_h, _ = \ sess.run([cost_val, lstm1_val.final_state.c, lstm1_val.final_state.h, lstm2_val.final_state.c, lstm2_val.final_state.h, tf.no_op()], feed_dict=feed_dict ) state1 = (state1_c, state1_h) state2 = (state2_c, state2_h) costs += _cost iters += num_steps valid_perplexity = np.exp(costs / iters) print("Epoch: %d/%d Valid Perplexity: %.3f" % (i + 1, max_max_epoch, valid_perplexity)) print("Evaluation") # Testing # go through the test set step by step, it will take a while. start_time = time.time() costs = 0.0 iters = 0 # reset all states at the begining state1 = tl.layers.initialize_rnn_state(lstm1_test.initial_state) state2 = tl.layers.initialize_rnn_state(lstm2_test.initial_state) for step, (x, y) in enumerate(tl.iterate.ptb_iterator(test_data, batch_size=1, num_steps=1)): feed_dict = { input_data_test: x, targets_test: y, lstm1_test.initial_state.c: state1[0], lstm1_test.initial_state.h: state1[1], lstm2_test.initial_state.c: state2[0], lstm2_test.initial_state.h: state2[1], } _cost, state1_c, state1_h, state2_c, state2_h = \ sess.run([cost_test, lstm1_test.final_state.c, lstm1_test.final_state.h, lstm2_test.final_state.c, lstm2_test.final_state.h, ], feed_dict=feed_dict ) state1 = (state1_c, state1_h) state2 = (state2_c, state2_h) costs += _cost iters += 1 test_perplexity = np.exp(costs / iters) print("Test Perplexity: %.3f took %.2fs" % (test_perplexity, time.time() - start_time)) print( "More example: Text generation using Trump's speech data: https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_generate_text.py -- def main_lstm_generate_text():" ) if __name__ == "__main__": tf.app.run() ## log of SmallConfig # Start learning a language model by using PTB dataset # Epoch: 1 Learning rate: 1.000 # 0.004 perplexity: 5512.735 speed: 4555 wps # 0.104 perplexity: 841.289 speed: 8823 wps # 0.204 perplexity: 626.273 speed: 9292 wps # 0.304 perplexity: 505.628 speed: 9472 wps # 0.404 perplexity: 435.580 speed: 9551 wps # 0.504 perplexity: 390.108 speed: 9555 wps # 0.604 perplexity: 351.379 speed: 9546 wps # 0.703 perplexity: 324.846 speed: 9579 wps # 0.803 perplexity: 303.824 speed: 9574 wps # 0.903 perplexity: 284.468 speed: 9551 wps # Epoch: 1 Train Perplexity: 269.981 # Epoch: 1 Valid Perplexity: 178.561 # Epoch: 2 Learning rate: 1.000 # 0.004 perplexity: 211.632 speed: 7697 wps # 0.104 perplexity: 151.509 speed: 9488 wps # 0.204 perplexity: 158.947 speed: 9674 wps # 0.304 perplexity: 153.963 speed: 9806 wps # 0.404 perplexity: 150.938 speed: 9817 wps # 0.504 perplexity: 148.413 speed: 9824 wps # 0.604 perplexity: 143.763 speed: 9765 wps # 0.703 perplexity: 141.616 speed: 9731 wps # 0.803 perplexity: 139.618 speed: 9781 wps # 0.903 perplexity: 135.880 speed: 9735 wps # Epoch: 2 Train Perplexity: 133.771 # Epoch: 2 Valid Perplexity: 142.595 # Epoch: 3 Learning rate: 1.000 # 0.004 perplexity: 146.902 speed: 8345 wps # 0.104 perplexity: 105.647 speed: 9572 wps # 0.204 perplexity: 114.261 speed: 9585 wps # 0.304 perplexity: 111.237 speed: 9586 wps # 0.404 perplexity: 110.181 speed: 9605 wps # 0.504 perplexity: 109.383 speed: 9601 wps # 0.604 perplexity: 106.722 speed: 9635 wps # 0.703 perplexity: 106.075 speed: 9597 wps # 0.803 perplexity: 105.481 speed: 9624 wps # 0.903 perplexity: 103.262 speed: 9618 wps # Epoch: 3 Train Perplexity: 102.272 # Epoch: 3 Valid Perplexity: 131.884 # Epoch: 4 Learning rate: 1.000 # 0.004 perplexity: 118.127 speed: 7867 wps # 0.104 perplexity: 85.530 speed: 9330 wps # 0.204 perplexity: 93.559 speed: 9399 wps # 0.304 perplexity: 91.141 speed: 9386 wps # 0.404 perplexity: 90.668 speed: 9462 wps # 0.504 perplexity: 90.366 speed: 9516 wps # 0.604 perplexity: 88.479 speed: 9477 wps # 0.703 perplexity: 88.275 speed: 9533 wps # 0.803 perplexity: 88.091 speed: 9560 wps # 0.903 perplexity: 86.430 speed: 9516 wps # Epoch: 4 Train Perplexity: 85.839 # Epoch: 4 Valid Perplexity: 128.408 # Epoch: 5 Learning rate: 1.000 # 0.004 perplexity: 100.077 speed: 7682 wps # 0.104 perplexity: 73.856 speed: 9197 wps # 0.204 perplexity: 81.242 speed: 9266 wps # 0.304 perplexity: 79.315 speed: 9375 wps # 0.404 perplexity: 79.009 speed: 9439 wps # 0.504 perplexity: 78.874 speed: 9377 wps # 0.604 perplexity: 77.430 speed: 9436 wps # 0.703 perplexity: 77.415 speed: 9417 wps # 0.803 perplexity: 77.424 speed: 9407 wps # 0.903 perplexity: 76.083 speed: 9407 wps # Epoch: 5 Train Perplexity: 75.719 # Epoch: 5 Valid Perplexity: 127.057 # Epoch: 6 Learning rate: 0.500 # 0.004 perplexity: 87.561 speed: 7130 wps # 0.104 perplexity: 64.202 speed: 9753 wps # 0.204 perplexity: 69.518 speed: 9537 wps # 0.304 perplexity: 66.868 speed: 9647 wps # 0.404 perplexity: 65.766 speed: 9538 wps # 0.504 perplexity: 64.967 speed: 9537 wps # 0.604 perplexity: 63.090 speed: 9565 wps # 0.703 perplexity: 62.415 speed: 9544 wps # 0.803 perplexity: 61.751 speed: 9504 wps # 0.903 perplexity: 60.027 speed: 9482 wps # Epoch: 6 Train Perplexity: 59.127 # Epoch: 6 Valid Perplexity: 120.339 # Epoch: 7 Learning rate: 0.250 # 0.004 perplexity: 72.069 speed: 7683 wps # 0.104 perplexity: 53.331 speed: 9526 wps # 0.204 perplexity: 57.897 speed: 9572 wps # 0.304 perplexity: 55.557 speed: 9491 wps # 0.404 perplexity: 54.597 speed: 9483 wps # 0.504 perplexity: 53.817 speed: 9471 wps # 0.604 perplexity: 52.147 speed: 9511 wps # 0.703 perplexity: 51.473 speed: 9497 wps # 0.803 perplexity: 50.788 speed: 9521 wps # 0.903 perplexity: 49.203 speed: 9515 wps # Epoch: 7 Train Perplexity: 48.303 # Epoch: 7 Valid Perplexity: 120.782 # Epoch: 8 Learning rate: 0.125 # 0.004 perplexity: 63.503 speed: 8425 wps # 0.104 perplexity: 47.324 speed: 9433 wps # 0.204 perplexity: 51.525 speed: 9653 wps # 0.304 perplexity: 49.405 speed: 9520 wps # 0.404 perplexity: 48.532 speed: 9487 wps # 0.504 perplexity: 47.800 speed: 9610 wps # 0.604 perplexity: 46.282 speed: 9554 wps # 0.703 perplexity: 45.637 speed: 9536 wps # 0.803 perplexity: 44.972 speed: 9493 wps # 0.903 perplexity: 43.506 speed: 9496 wps # Epoch: 8 Train Perplexity: 42.653 # Epoch: 8 Valid Perplexity: 122.119 # Epoch: 9 Learning rate: 0.062 # 0.004 perplexity: 59.375 speed: 7158 wps # 0.104 perplexity: 44.223 speed: 9275 wps # 0.204 perplexity: 48.269 speed: 9459 wps # 0.304 perplexity: 46.273 speed: 9564 wps # 0.404 perplexity: 45.450 speed: 9604 wps # 0.504 perplexity: 44.749 speed: 9604 wps # 0.604 perplexity: 43.308 speed: 9619 wps # 0.703 perplexity: 42.685 speed: 9647 wps # 0.803 perplexity: 42.022 speed: 9673 wps # 0.903 perplexity: 40.616 speed: 9678 wps # Epoch: 9 Train Perplexity: 39.792 # Epoch: 9 Valid Perplexity: 123.170 # Epoch: 10 Learning rate: 0.031 # 0.004 perplexity: 57.333 speed: 7183 wps # 0.104 perplexity: 42.631 speed: 9592 wps # 0.204 perplexity: 46.580 speed: 9518 wps # 0.304 perplexity: 44.625 speed: 9569 wps # 0.404 perplexity: 43.832 speed: 9576 wps # 0.504 perplexity: 43.153 speed: 9571 wps # 0.604 perplexity: 41.761 speed: 9557 wps # 0.703 perplexity: 41.159 speed: 9524 wps # 0.803 perplexity: 40.494 speed: 9527 wps # 0.903 perplexity: 39.111 speed: 9558 wps # Epoch: 10 Train Perplexity: 38.298 # Epoch: 10 Valid Perplexity: 123.658 # Epoch: 11 Learning rate: 0.016 # 0.004 perplexity: 56.238 speed: 7190 wps # 0.104 perplexity: 41.771 speed: 9171 wps # 0.204 perplexity: 45.656 speed: 9415 wps # 0.304 perplexity: 43.719 speed: 9472 wps # 0.404 perplexity: 42.941 speed: 9483 wps # 0.504 perplexity: 42.269 speed: 9494 wps # 0.604 perplexity: 40.903 speed: 9530 wps # 0.703 perplexity: 40.314 speed: 9545 wps # 0.803 perplexity: 39.654 speed: 9580 wps # 0.903 perplexity: 38.287 speed: 9597 wps # Epoch: 11 Train Perplexity: 37.477 # Epoch: 11 Valid Perplexity: 123.523 # Epoch: 12 Learning rate: 0.008 # 0.004 perplexity: 55.552 speed: 7317 wps # 0.104 perplexity: 41.267 speed: 9234 wps # 0.204 perplexity: 45.119 speed: 9461 wps # 0.304 perplexity: 43.204 speed: 9519 wps # 0.404 perplexity: 42.441 speed: 9453 wps # 0.504 perplexity: 41.773 speed: 9536 wps # 0.604 perplexity: 40.423 speed: 9555 wps # 0.703 perplexity: 39.836 speed: 9576 wps # 0.803 perplexity: 39.181 speed: 9579 wps # 0.903 perplexity: 37.827 speed: 9554 wps # Epoch: 12 Train Perplexity: 37.020 # Epoch: 12 Valid Perplexity: 123.192 # Epoch: 13 Learning rate: 0.004 # 0.004 perplexity: 55.124 speed: 8234 wps # 0.104 perplexity: 40.970 speed: 9391 wps # 0.204 perplexity: 44.804 speed: 9525 wps # 0.304 perplexity: 42.912 speed: 9512 wps # 0.404 perplexity: 42.162 speed: 9536 wps # 0.504 perplexity: 41.500 speed: 9630 wps # 0.604 perplexity: 40.159 speed: 9591 wps # 0.703 perplexity: 39.574 speed: 9575 wps # 0.803 perplexity: 38.921 speed: 9613 wps # 0.903 perplexity: 37.575 speed: 9629 wps # Epoch: 13 Train Perplexity: 36.771 # Epoch: 13 Valid Perplexity: 122.917 # Evaluation # Test Perplexity: 116.723 took 124.06s ## MediumConfig # Epoch: 1 Learning rate: 1.000 # 0.008 perplexity: 5173.547 speed: 6469 wps # 0.107 perplexity: 1219.527 speed: 6453 wps # 0.206 perplexity: 866.163 speed: 6441 wps # 0.306 perplexity: 695.163 speed: 6428 wps # 0.405 perplexity: 598.464 speed: 6420 wps # 0.505 perplexity: 531.875 speed: 6422 wps # 0.604 perplexity: 477.079 speed: 6425 wps # 0.704 perplexity: 438.297 speed: 6428 wps # 0.803 perplexity: 407.928 speed: 6425 wps # 0.903 perplexity: 381.264 speed: 6429 wps # Epoch: 1 Train Perplexity: 360.795 # Epoch: 1 Valid Perplexity: 208.854 # ... # Epoch: 39 Learning rate: 0.001 # 0.008 perplexity: 56.618 speed: 6357 wps # 0.107 perplexity: 43.375 speed: 6341 wps # 0.206 perplexity: 47.873 speed: 6336 wps # 0.306 perplexity: 46.408 speed: 6337 wps # 0.405 perplexity: 46.327 speed: 6337 wps # 0.505 perplexity: 46.115 speed: 6335 wps # 0.604 perplexity: 45.323 speed: 6336 wps # 0.704 perplexity: 45.286 speed: 6337 wps # 0.803 perplexity: 45.174 speed: 6336 wps # 0.903 perplexity: 44.334 speed: 6336 wps # Epoch: 39 Train Perplexity: 44.021 # Epoch: 39 Valid Perplexity: 87.516 # Evaluation # Test Perplexity: 83.858 took 167.58s
[ "78732833@qq.com" ]
78732833@qq.com
f270f1f9f205464eecc6286116d5f393e29b632c
846dc93416153ef6707e3d8b22fa9ade3e9712d8
/Eclipse/GroundIDB.py
74e814c9e23451feeef49f989b8a941e19400a26
[]
no_license
ehmoni/Datalog-Weighted-Repairs
b0103753f6ba09fffd74c48e32297d85143ce03b
1bfecd62946574f6704966d2260fc40db3b7754e
refs/heads/master
2022-02-25T19:54:20.270689
2019-11-10T01:54:41
2019-11-10T01:54:41
205,717,284
1
0
null
null
null
null
UTF-8
Python
false
false
679
py
RuleRecord = {} RuleRecord["G_01"] = "(admDrugT(Date, PrescribedBy, Drug, Patient, Age) & personSpec(PrescribedBy, Specialist) & drugType(Drug, DrType)" def GroundIDB(di): ditk = di[-6:-2] print(ditk) body = RuleRecord[ditk] return 0 # def GroundIDB(di): # ditk = di[di.find("G_"):di.find("G_")+4] # dit = di[-6:-2] # print(di.find("G_")) # print(dit) # body = RuleRecord[ditk] # print(body) 0 s1 = """+bills("14-Keb-18", "Pediatrician", "Restricted", "G_23", 50)""" s2 = """-bills("28-Mar-18", "Cardiologist", "GeneralSale", val, "G_01")""" s = [s1,s2] GroundIDB(s2)
[ "noreply@github.com" ]
ehmoni.noreply@github.com
33759813fc74e64798832ff55f2d4bd596a0903c
1aa404dc254e64962a67833fe3060045bcd17fd0
/Study/project_study/readExcel.py
fa8e28f5dff0ecc6ba9e54d70433440a77e45f63
[]
no_license
guohuahua2012/samples
f1c9d0f988b0309902c3ba94bd1d09d8ba1de5fe
18c1744c4077f2a5bb1567aec66839aff3b7f48d
refs/heads/master
2020-05-19T12:21:57.961943
2020-04-11T13:04:14
2020-04-11T13:04:14
185,012,350
0
0
null
null
null
null
UTF-8
Python
false
false
904
py
# -*- coding: utf-8 -*- import xlrd class ReadExecl(): def readExcel(self, filename, sheetname): cls = [] try: data = xlrd.open_workbook(filename) table = data.sheet_by_name(sheetname) keys = table.row_values(0) nrows = table.nrows ncols = table.ncols for i in range(nrows): datas = {} if i == 0: continue values = table.row_values(i) for j in range(ncols): datas[keys[j]] = values[j] cls.append(datas) return cls except FileNotFoundError: print("文件不存在", filename) if __name__ == '__main__': xls_file = r'E:/samples/Flask/testFile/case/test01.xlsx' xls_sheet = 'Sheet1' res = ReadExecl().readExcel(xls_file, xls_sheet) print(res)
[ "guohuahua2012" ]
guohuahua2012
8e79a3aab8b3e2af24d86803a70b2057cade5424
3be13eaad65b202ffe4ac333ed48dfd5432db547
/single qubit/QL/environment.py
bf57f591ed749eda99574ee567629ccdef2fc356
[ "MIT" ]
permissive
tuliplan/RL_state_preparation
5b68310d0957972c1e86df9ef3cfcf78edecf8d2
e2904edb43a55061d77915098633a5c6211d91a3
refs/heads/master
2022-02-18T12:03:07.139584
2019-09-06T03:15:57
2019-09-06T03:15:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,868
py
import math import cmath import numpy as np from scipy.linalg import expm sx = 1/2 * np.mat([[0, 1],[ 1, 0]], dtype=complex) sy = 1/2 * np.mat([[0, -1j],[1j, 0]], dtype=complex) sz = 1/2 * np.mat([[1, 0],[0, -1]], dtype=complex) def hamiltonian(j): J = 4 H = (j) * J * sz + sx return H psi_target = np.mat([[1],[0]], dtype=complex) psi_0 = np.mat([[0],[1]], dtype=complex) dt = np.pi/20 Dtheta = np.pi/30 Dphi = np.pi/30 def phase2(z): ''' return phase angle in [0, 2pi] ''' phase = cmath.phase(z) if phase < 0: phase += 2*math.pi return phase def state_to_lattice_point(state): ''' Note: phi = 0 or 2pi are the same return the list [theta_i, phi_i] ''' if state[0,0] == 0: ## Special case 1: [0, 1] theta, phi = math.pi, 0 else: conj = state[0,0].conj() state_reg = state * (conj/abs(conj)) # print(state_reg[0,0].real) if (state_reg[0,0].real)>= 1: # Unitary should preserve norm theta, phi = 0, 0 else: # print(state_reg[0,0].imag) # this should be 0 theta = 2 * math.acos(state_reg[0,0].real) # state_reg[1,0]/sin(theta/2) = cos(pi) + i sin(pi) if theta == 0: ## Special case 2: [1, 0] phi = 0 else: phi = phase2(state_reg[1,0]/math.sin(theta/2)) #force the phase of the first elements to be 0. theta_i = round(theta/Dtheta) phi_i = round(phi/Dphi) if phi_i == round(2*math.pi/Dphi): phi_i = 0 return [theta_i, phi_i] # class Maze(object): # for Python 2 class Maze: # qubit in the Bloch Maze def __init__(self): self.action_space = ['0', '1'] self.n_actions = len(self.action_space) self._build_maze() def _build_maze(self): self.state = psi_0 def reset(self): self.state = psi_0 self.counter = 0 # print(dt) return state_to_lattice_point(self.state) def step(self, action): if action == 0: U = expm(-(1j) * hamiltonian(0) * dt) elif action == 1: U = expm(-(1j) * hamiltonian(1) * dt) self.state = U.dot(self.state) self.counter += 1 s_ = self.state fidelity = (abs(s_.conj().T.dot(psi_target)[0,0]))**2 error = 1-fidelity if error < 10e-3: reward = 5000 done = True s_lattice = 'terminal' else: #reward = -1*(error>=0.5) + 10*(error<0.5) + 100*(error<0.1) reward = 10*(error<0.5) + 100*(error<0.1) done = (self.counter >= np.pi/dt) s_lattice = state_to_lattice_point(s_) return s_lattice, reward, done, fidelity
[ "noreply@github.com" ]
tuliplan.noreply@github.com
06f9786c2bd88a921be9c2d98ed62b4f8689be8d
aeebc330434929fdec92d0fc3108406faacdbd05
/Python/progate/python_study_3/page9/script.py
2cba02a4424fde1a3ba5a0a2ac1734ba74fd0650
[]
no_license
T-o-s-s-h-y/Learning
740ed0ef70792c62e553794f8b4c01be8f8490c7
da5c224fb9c1aba726749a2adfa89867dd7e8721
refs/heads/master
2023-03-19T20:42:40.284533
2022-12-26T05:43:41
2022-12-26T05:43:41
189,822,954
0
0
null
2023-03-17T06:08:27
2019-06-02T08:33:55
Ruby
UTF-8
Python
false
false
741
py
def validate(hand): if hand < 0 or hand > 2: return False # elseを消してインデントを直してください return True def print_hand(hand, name='ゲスト'): hands = ['グー', 'チョキ', 'パー'] print(name + 'は' + hands[hand] + 'を出しました') print('じゃんけんをはじめます') player_name = input('名前を入力してください:') print('何を出しますか?(0: グー, 1: チョキ, 2: パー)') player_hand = int(input('数字で入力してください:')) if validate(player_hand): if player_name == '': print_hand(player_hand) else: print_hand(player_hand, player_name) else: print('正しい数値を入力してください')
[ "51285386+T-o-s-s-h-y@users.noreply.github.com" ]
51285386+T-o-s-s-h-y@users.noreply.github.com
05d05de778ec97436a6174507188d1383adac08e
7f1325de95175e24eb989081110c169fbcabb777
/roomai/texas/TexasHoldemEnv.py
66c5fb5ca1d0c13a1530d6e2bd7bc1e2cf196d5d
[ "MIT" ]
permissive
jichao6758/RoomAI
3bd268f5cc8734f7c4bb09d5014f61ee8d68954e
18a3efa0d608c80f2cf8bf9fe743b5911cce9f6b
refs/heads/master
2020-12-02T09:58:40.171871
2018-04-22T07:39:45
2018-04-22T07:39:45
96,668,863
0
0
null
2017-07-09T07:40:38
2017-07-09T07:40:38
null
UTF-8
Python
false
false
31,226
py
#!/bin/python #coding:utf-8 import random import copy import roomai.common import roomai import logging from roomai.common import Info from roomai.texas.TexasHoldemUtil import * from roomai.texas.TexasHoldemAction import * from roomai.texas.TexasHoldemInfo import * from functools import cmp_to_key class TexasHoldemEnv(roomai.common.AbstractEnv): ''' The TexasHoldem game environment ''' @classmethod def __check_initialization_configuration__(cls, env): if len(env.__params__["chips"]) != env.__params__["num_players"]: raise ValueError("len(env.chips)%d != env.num_players%d" % (len(env.chips), env.num_players)) if env.__params__["num_players"] > 6: raise ValueError("The maximum of the number of players is 6. Now, the number of players = %d" % (env.num_players)) return True #@override def init(self, params = dict()): ''' Initialize the TexasHoldem game environment with the initialization params.\n The initialization is a dict with some options\n 1) allcards: the order of all poker cards appearing\n 2) record_history: whether to record all history states. if you need call the backward function, please set it to True. default False\n 3) num_players: how many players are in the game, default 3\n 4) dealer_id: the player id of the dealer, default random\n 5) chips: the initialization chips, default [1000,1000,...]\n 6) big_blind_bet: the number of chips for the big blind bet, default 10\n An example of the initialization param is {"num_players":2,"record_history":True} :param params: the initialization params :return: infos, public_state, person_states, private_state ''' self.logger = roomai.get_logger() if "num_players" in params: self.__params__["num_players"] = params["num_players"] else: self.__params__["num_players"] = 3 if "dealer_id" in params: self.__params__["dealer_id"] = params["dealer_id"] else: self.__params__["dealer_id"] = int(random.random() * self.__params__["num_players"]) if "chips" in params: self.__params__["chips"] = params["chips"] else: self.__params__["chips"] = [1000 for i in range(self.__params__["num_players"])] if "big_blind_bet" in params: self.__params__["big_blind_bet"] = params["big_blind_bet"] else: self.__params__["big_blind_bet"] = 10 if "allcards" in params: self.__params__["allcards"] = [c.__deepcopy__() for c in params["allcards"]] else: self.__params__["allcards"] = list(roomai.common.AllPokerCards_Without_King.values()) random.shuffle(self.__params__["allcards"]) if "record_history" in params: self.__params__["record_history"] = params["record_history"] else: self.__params__["record_history"] = False self.__check_initialization_configuration__(self) ## public info small = (self.__params__["dealer_id"] + 1) % self.__params__["num_players"] big = (self.__params__["dealer_id"] + 2) % self.__params__["num_players"] self.public_state = TexasHoldemPublicState() pu = self.public_state pu.__num_players__ = self.__params__["num_players"] pu.__dealer_id__ = self.__params__["dealer_id"] pu.__big_blind_bet__ = self.__params__["big_blind_bet"] pu.__raise_account__ = self.__params__["big_blind_bet"] pu.__is_fold__ = [False for i in range(self.__params__["num_players"])] pu.__num_fold__ = 0 pu.__is_allin__ = [False for i in range(self.__params__["num_players"])] pu.__num_allin__ = 0 pu.__is_needed_to_action__ = [True for i in range(self.__params__["num_players"])] pu.__num_needed_to_action__ = pu.num_players pu.__bets__ = [0 for i in range(self.__params__["num_players"])] pu.__chips__ = self.__params__["chips"] pu.__stage__ = StageSpace.firstStage pu.__turn__ = (big+1)%pu.num_players pu.__public_cards__ = [] pu.__previous_id__ = None pu.__previous_action__ = None if pu.chips[big] > self.__params__["big_blind_bet"]: pu.__chips__[big] -= self.__params__["big_blind_bet"] pu.__bets__[big] += self.__params__["big_blind_bet"] else: pu.__bets__[big] = pu.chips[big] pu.__chips__[big] = 0 pu.__is_allin__[big] = True pu.__num_allin__ += 1 pu.__max_bet_sofar__ = pu.bets[big] pu.__raise_account__ = self.__params__["big_blind_bet"] if pu.chips[small] > self.__params__["big_blind_bet"] / 2: pu.__chips__[small] -= self.__params__["big_blind_bet"] /2 pu.__bets__[small] += self.__params__["big_blind_bet"] /2 else: pu.__bets__[small] = pu.chips[small] pu.__chips__[small] = 0 pu.__is_allin__[small] = True pu.__num_allin__ += 1 pu.__is_terminal__ = False pu.__scores__ = [0 for i in range(self.__params__["num_players"])] # private info self.private_state = TexasHoldemPrivateState() pr = self.private_state pr.__keep_cards__ = self.__params__["allcards"][self.__params__["num_players"]*2:self.__params__["num_players"]*2+5] ## person info self.person_states = [TexasHoldemPersonState() for i in range(self.__params__["num_players"])] pes = self.person_states for i in range(self.__params__["num_players"]): pes[i].__id__ = i pes[i].__hand_cards__ = self.__params__["allcards"][i*2:(i+1)*2] pes[pu.turn].__available_actions__ = self.available_actions(pu, pes[pu.turn]) self.__gen_history__() infos = self.__gen_infos__() if self.logger.level <= logging.DEBUG: self.logger.debug("TexasHoldemEnv.init: num_players = %d, dealer_id = %d, chip = %d, big_blind_bet = %d"%(\ pu.num_players,\ pu.dealer_id,\ pu.chips[0],\ pu.big_blind_bet )) return infos, pu, pes, pr ## we need ensure the action is valid #@Overide def forward(self, action): ''' The TexasHoldem game environments steps with the action taken by the current player :param action: The action taken by the current player :return: infos, public_state, person_states, private_state ''' pu = self.public_state pe = self.person_states pr = self.private_state if not self.is_action_valid(action, pu, pe[pu.turn]): self.logger.critical("action=%s is invalid" % (action.key)) raise ValueError("action=%s is invalid" % (action.key)) if action.option == TexasHoldemAction.Fold: self.__action_fold__(action) elif action.option == TexasHoldemAction.Check: self.__action_check__(action) elif action.option == TexasHoldemAction.Call: self.__action_call__(action) elif action.option == TexasHoldemAction.Raise: self.__action_raise__(action) elif action.option == TexasHoldemAction.AllIn: self.__action_allin__(action) else: raise Exception("action.option(%s) not in [Fold, Check, Call, Raise, AllIn]"%(action.option)) pu.__previous_id__ = pu.turn pu.__previous_action__ = action pu.__is_terminal__ = False pu.__scores__ = [0 for i in range(self.__params__["num_players"])] # computing_score if TexasHoldemEnv.__is_compute_scores__(self.public_state): ## need showdown pu.__public_cards__ = pr.keep_cards[0:5] pu.__is_terminal__ = True pu.__scores__ = self.__compute_scores__() pe[pu.previous_id].__available_actions__ = dict() # enter into the next stage elif TexasHoldemEnv.__is_nextround__(self.public_state): add_cards = [] if pu.stage == StageSpace.firstStage: add_cards = pr.keep_cards[0:3] if pu.stage == StageSpace.secondStage: add_cards = [pr.keep_cards[3]] if pu.stage == StageSpace.thirdStage: add_cards = [pr.keep_cards[4]] pu.__public_cards__.extend(add_cards) pu.__stage__ = pu.stage + 1 pu.__num_needed_to_action__ = 0 pu.__is_needed_to_action__ = [False for i in range(pu.num_players)] for i in range(pu.num_players): if pu.__is_fold__[i] != True and pu.__is_allin__[i] != True: pu.__is_needed_to_action__[i] = True pu.__num_needed_to_action__ += 1 pu.__turn__ = pu.dealer_id pu.__turn__ = self.__next_player__(pu) pe[self.public_state.previous_id].__available_actions__ = dict() pe[self.public_state.turn].__available_actions__ = self.available_actions(self.public_state, self.person_states[self.public_state.turn]) ##normal else: pu.__turn__ = self.__next_player__(pu) self.person_states[self.public_state.previous_id].__available_actions__ = dict() self.person_states[self.public_state.turn].__available_actions__ = self.available_actions(self.public_state, self.person_states[self.public_state.turn]) if self.logger.level <= logging.DEBUG: self.logger.debug("TexasHoldemEnv.forward: num_fold+num_allin = %d+%d = %d, action = %s, stage = %d"%(\ self.public_state.num_fold,\ self.public_state.num_allin,\ self.public_state.num_fold + self.public_state.num_allin,\ action.key,\ self.public_state.stage\ )) self.__gen_history__() infos = self.__gen_infos__() return infos, self.public_state, self.person_states, self.private_state #override @classmethod def compete(cls, env, players): ''' Use the game environment to hold a compete for the players :param env: The game environment :param players: The players :return: scores for the players ''' total_scores = [0 for i in range(len(players))] total_count = 1000 for count in range(total_count): chips = [(1000 + int(random.random() * 200)) for i in range(len(players))] num_players = len(players) dealer_id = int(random.random() * len(players)) big_blind_bet = 50 infos, public, persons, private = env.init({"chips":chips, "num_players":num_players, "dealer_id":dealer_id, "big_blind_bet":big_blind_bet}) for i in range(len(players)): players[i].receive_info(infos[i]) while public.is_terminal == False: turn = public.turn action = players[turn].take_action() #print len(infos[turn].person_state.available_actions),action.key(),turn infos, public, persons, private = env.forward(action) for i in range(len(players)): players[i].receive_info(infos[i]) for i in range(len(players)): players[i].receive_info(infos[i]) total_scores[i] += public.scores[i] if (count + 1)%500 == 0: tmp_scores = [0 for i in range(len(total_scores))] for i in range(len(total_scores)): tmp_scores[i] = total_scores[i] / (count+1) roomai.get_logger().info("TexasHoldem completes %d competitions, scores=%s"%(count+1, ",".join([str(i) for i in tmp_scores]))) for i in range(len(total_scores)): total_scores[i] /= 1.0 * total_count return total_scores def __compute_scores__(self): pu = self.public_state pes = self.person_states pr = self.private_state ## compute score before showdown, the winner takes all if pu.num_players == pu.num_fold + 1: scores = [0 for i in range(pu.num_players)] for i in range(pu.num_players): if pu.is_fold[i] == False: scores[i] = sum(pu.bets) break ## compute score after showdown else: scores = [0 for i in range(pu.num_players)] playerid_pattern_bets = [] #for not_quit players for i in range(pu.num_players): if pu.is_fold[i] == True: continue hand_pattern_cards = self.__cards2pattern_cards__(pes[i].hand_cards, pr.keep_cards) playerid_pattern_bets.append((i,hand_pattern_cards,pu.bets[i])) for playerid_pattern_bet in playerid_pattern_bets: if len(playerid_pattern_bet[1][1]) < 5: i = 0 playerid_pattern_bets.sort(key=lambda x:self.compute_rank_pattern_cards(x[1])) pot_line = 0 previous = None tmp_playerid_pattern_bets = [] for i in range(len(playerid_pattern_bets)-1,-1,-1): if previous == None: tmp_playerid_pattern_bets.append(playerid_pattern_bets[i]) previous = playerid_pattern_bets[i] elif self.__compare_patterns_cards__(playerid_pattern_bets[i][1], previous[1]) == 0: tmp_playerid_pattern_bets.append(playerid_pattern_bets[i]) previous = playerid_pattern_bets[i] else: tmp_playerid_pattern_bets.sort(key = lambda x:x[2]) for k in range(len(tmp_playerid_pattern_bets)): num1 = len(tmp_playerid_pattern_bets) - k sum1 = 0 max_win_score = pu.bets[tmp_playerid_pattern_bets[k][0]] for p in range(pu.num_players): sum1 += min(max(0, pu.bets[p] - pot_line), max_win_score) for p in range(k, len(tmp_playerid_pattern_bets)): scores[tmp_playerid_pattern_bets[p][0]] += sum1 / num1 scores[pu.dealer_id] += sum1 % num1 if pot_line <= max_win_score: pot_line = max_win_score tmp_playerid_pattern_bets = [] tmp_playerid_pattern_bets.append(playerid_pattern_bets[i]) previous = playerid_pattern_bets[i] if len(tmp_playerid_pattern_bets) > 0: tmp_playerid_pattern_bets.sort(key = lambda x:x[2]) for i in range(len(tmp_playerid_pattern_bets)): num1 = len(tmp_playerid_pattern_bets) - i sum1 = 0 max_win_score = pu.bets[tmp_playerid_pattern_bets[i][0]] for p in range(pu.num_players): sum1 += min(max(0, pu.bets[p] - pot_line), max_win_score) for p in range(i, len(tmp_playerid_pattern_bets)): scores[tmp_playerid_pattern_bets[p][0]] += sum1 / num1 scores[pu.dealer_id] += sum1 % num1 if pot_line <= max_win_score: pot_line = max_win_score for p in range(pu.num_players): pu.__chips__[p] += scores[p] scores[p] -= pu.bets[p] for p in range(pu.num_players): scores[p] /= pu.big_blind_bet * 1.0 return scores def __action_fold__(self, action): pu = self.public_state pu.__is_fold__[pu.turn] = True pu.__num_fold__ += 1 pu.__is_needed_to_action__[pu.turn] = False pu.__num_needed_to_action__ -= 1 def __action_check__(self, action): pu = self.public_state pu.__is_needed_to_action__[pu.turn] = False pu.__num_needed_to_action__ -= 1 def __action_call__(self, action): pu = self.public_state pu.__chips__[pu.turn] -= action.price pu.__bets__[pu.turn] += action.price pu.__is_needed_to_action__[pu.turn] = False pu.__num_needed_to_action__ -= 1 def __action_raise__(self, action): pu = self.public_state pu.__raise_account__ = action.price + pu.bets[pu.turn] - pu.max_bet_sofar pu.__chips__[pu.turn] -= action.price pu.__bets__[pu.turn] += action.price pu.__max_bet_sofar__ = pu.bets[pu.turn] pu.__is_needed_to_action__[pu.turn] = False pu.__num_needed_to_action__ -= 1 p = (pu.turn + 1)%pu.num_players while p != pu.turn: if pu.is_allin[p] == False and pu.is_fold[p] == False and pu.is_needed_to_action[p] == False: pu.__num_needed_to_action__ += 1 pu.__is_needed_to_action__[p] = True p = (p + 1) % pu.num_players def __action_allin__(self, action): pu = self.public_state pu.__is_allin__[pu.turn] = True pu.__num_allin__ += 1 pu.__bets__[pu.turn] += action.price pu.__chips__[pu.turn] = 0 pu.__is_needed_to_action__[pu.turn] = False pu.__num_needed_to_action__ -= 1 if pu.bets[pu.turn] > pu.max_bet_sofar: pu.__max_bet_sofar__ = pu.bets[pu.turn] p = (pu.turn + 1) % pu.num_players while p != pu.turn: if pu.is_allin[p] == False and pu.is_fold[p] == False and pu.is_needed_to_action[p] == False: pu.__num_needed_to_action__ += 1 pu.__is_needed_to_action__[p] = True p = (p + 1) % pu.num_players pu.__max_bet_sofar__ = pu.bets[pu.turn] #####################################Utils Function ############################## @classmethod def __next_player__(self, pu): i = pu.turn if pu.num_needed_to_action == 0: return -1 p = (i+1)%pu.num_players while pu.is_needed_to_action[p] == False: p = (p+1)%pu.num_players return p @classmethod def __is_compute_scores__(self, pu): ''' :return: A boolean variable indicates whether is it time to compute scores ''' if pu.num_players == pu.num_fold + 1: return True # below need showdown if pu.num_players <= pu.num_fold + pu.num_allin +1 and pu.num_needed_to_action == 0: return True if pu.stage == StageSpace.fourthStage and self.__is_nextround__(pu): return True return False @classmethod def __is_nextround__(self, public_state): ''' :return: A boolean variable indicates whether is it time to enter the next stage ''' return public_state.num_needed_to_action == 0 @classmethod def __cards2pattern_cards__(cls, hand_cards, remaining_cards): key = cmp_to_key(roomai.common.PokerCard.compare) pointrank2cards = dict() for c in hand_cards + remaining_cards: if c.point_rank in pointrank2cards: pointrank2cards[c.point_rank].append(c) else: pointrank2cards[c.point_rank] = [c] for p in pointrank2cards: pointrank2cards[p].sort(key = key) suitrank2cards = dict() for c in hand_cards + remaining_cards: if c.suit_rank in suitrank2cards: suitrank2cards[c.suit_rank].append(c) else: suitrank2cards[c.suit_rank] = [c] for s in suitrank2cards: suitrank2cards[s].sort(key=key) num2point = [[], [], [], [], []] for p in pointrank2cards: num = len(pointrank2cards[p]) num2point[num].append(p) for i in range(5): num2point[num].sort() sorted_point = [] for p in pointrank2cards: sorted_point.append(p) sorted_point.sort() ##straight_samesuit for s in suitrank2cards: if len(suitrank2cards[s]) >= 5: numStraight = 1 for i in range(len(suitrank2cards[s]) - 2, -1, -1): if suitrank2cards[s][i].point_rank == suitrank2cards[s][i + 1].point_rank - 1: numStraight += 1 else: numStraight = 1 if numStraight == 5: pattern = AllCardsPattern["Straight_SameSuit"] return (pattern,suitrank2cards[s][i:i + 5]) ##4_1 if len(num2point[4]) > 0: p4 = num2point[4][0] p1 = -1 for i in range(len(sorted_point) - 1, -1, -1): if sorted_point[i] != p4: p1 = sorted_point[i] break pattern = AllCardsPattern["4_1"] cards = pointrank2cards[p4][0:4] cards.append(pointrank2cards[p1][0]) return (pattern,cards) ##3_2 if len(num2point[3]) >= 1: pattern = AllCardsPattern["3_2"] if len(num2point[3]) == 2: p3 = num2point[3][1] cards = pointrank2cards[p3][0:3] p2 = num2point[3][0] cards.append(pointrank2cards[p2][0]) cards.append(pointrank2cards[p2][1]) return (pattern,cards) if len(num2point[2]) >= 1: p3 = num2point[3][0] cards = pointrank2cards[p3][0:3] p2 = num2point[2][len(num2point[2]) - 1] cards.append(pointrank2cards[p2][0]) cards.append(pointrank2cards[p2][1]) return (pattern,cards) ##SameSuit for s in suitrank2cards: if len(suitrank2cards[s]) >= 5: pattern = AllCardsPattern["SameSuit"] len1 = len(suitrank2cards[s]) cards = suitrank2cards[s][len1 - 5:len1] return (pattern,cards) ##Straight_DiffSuit numStraight = 1 for idx in range(len(sorted_point) - 2, -1, -1): if sorted_point[idx] + 1 == sorted_point[idx]: numStraight += 1 else: numStraight = 1 if numStraight == 5: pattern = AllCardsPattern["Straight_DiffSuit"] cards = [] for p in range(idx, idx + 5): point = sorted_point[p] cards.append(pointrank2cards[point][0]) return (pattern,cards) ##3_1_1 if len(num2point[3]) == 1: pattern = AllCardsPattern["3_1_1"] p3 = num2point[3][0] cards = pointrank2cards[p3][0:3] num = 0 for i in range(len(sorted_point) - 1, -1, -1): p = sorted_point[i] if p != p3: cards.append(pointrank2cards[p][0]) num += 1 if num == 2: break return (pattern,cards) ##2_2_1 if len(num2point[2]) >= 2: pattern = AllCardsPattern["2_2_1"] p21 = num2point[2][len(num2point[2]) - 1] cards = [] for c in pointrank2cards[p21]: cards.append(c) p22 = num2point[2][len(num2point[2]) - 2] for c in pointrank2cards[p22]: cards.append(c) flag = False for i in range(len(sorted_point) - 1, -1, -1): p = sorted_point[i] if p != p21 and p != p22: c = pointrank2cards[p][0] cards.append(c) flag = True if flag == True: break; return (pattern,cards) ##2_1_1_1 if len(num2point[2]) == 1: pattern = AllCardsPattern["2_1_1_1"] p2 = num2point[2][0] cards = pointrank2cards[p2][0:2] num = 0 for p in range(len(sorted_point) - 1, -1, -1): p1 = sorted_point[p] if p1 != p2: cards.append(pointrank2cards[p1][0]) if num == 3: break return (pattern,cards) ##1_1_1_1_1 pattern = AllCardsPattern["1_1_1_1_1"] count = 0 cards = [] for i in range(len(sorted_point) - 1, -1, -1): p = sorted_point[i] for c in pointrank2cards[p]: cards.append(c) count += 1 if count == 5: break if count == 5: break return (pattern,cards) @classmethod def __compare_handcards__(cls, hand_card0, hand_card1, keep_cards): pattern0 = TexasHoldemEnv.__cards2pattern_cards__(hand_card0, keep_cards) pattern1 = TexasHoldemEnv.__cards2pattern_cards__(hand_card1, keep_cards) diff = cls.__compare_patterns_cards__(pattern0, pattern1) return diff @classmethod def compute_rank_pattern_cards(cls, pattern_cards): rank = pattern_cards[0][5] * 1000 for i in range(5): rank *= 1000 rank += pattern_cards[1][i].point_rank return rank @classmethod def __compare_patterns_cards__(cls, p1, p2): return cls.compute_rank_pattern_cards(p1) - cls.compute_rank_pattern_cards(p2) @classmethod def available_actions(cls, public_state, person_state): ''' Generate all valid actions given the public state and the person state :param public_state: :param person_state: :return: all valid actions ''' pu = public_state pe = person_state turn = pu.turn key_actions = dict() if pu.turn != pe.id: return dict() if pu.is_allin[turn] == True or pu.is_fold[turn] == True: return dict() if pu.chips[turn] == 0: return dict() ## for fold action = TexasHoldemAction.lookup(TexasHoldemAction.Fold + "_0") #if cls.is_action_valid(action,public_state, person_state): key_actions[action.key] = action ## for check if pu.bets[turn] == pu.max_bet_sofar: action = TexasHoldemAction.lookup(TexasHoldemAction.Check + "_0") #if cls.is_action_valid(action, public_state, person_state): key_actions[action.key] = action ## for call if pu.bets[turn] != pu.max_bet_sofar and pu.chips[turn] > pu.max_bet_sofar - pu.bets[turn]: action = TexasHoldemAction.lookup(TexasHoldemAction.Call + "_%d" % (pu.max_bet_sofar - pu.bets[turn])) #if cls.is_action_valid(action, public_state, person_state): key_actions[action.key] = action ## for raise #if pu.bets[turn] != pu.max_bet_sofar and \ if pu.chips[turn] > pu.max_bet_sofar - pu.bets[turn] + pu.raise_account: num = int((pu.chips[turn] - (pu.max_bet_sofar - pu.bets[turn])) / pu.raise_account) for i in range(1, num + 1): price = pu.max_bet_sofar - pu.bets[turn] + pu.raise_account * i if price == pu.chips[pu.turn]: continue action = TexasHoldemAction.lookup(TexasHoldemAction.Raise + "_%d" % (price)) #if cls.is_action_valid(action, public_state, person_state): key_actions[action.key] = action ## for all in action = TexasHoldemAction.lookup(TexasHoldemAction.AllIn + "_%d" % (pu.chips[turn])) #if cls.is_action_valid(action, public_state, person_state): key_actions[action.key] = action return key_actions @classmethod def is_action_valid(cls, action, public_state, person_state): """ Args: action: public_state: person_state: Returns: """ ''' pu = public_state if (not isinstance(public_state, TexasHoldemPublicState)) or (not isinstance(action, TexasHoldemAction)): return False if pu.is_allin[pu.turn] == True or pu.is_fold[pu.turn] == True: return False if pu.chips[pu.turn] == 0: return False if action.option == TexasHoldemAction.Fold: return True elif action.option == TexasHoldemAction.Check: if pu.bets[pu.turn] == pu.max_bet_sofar: return True else: return False elif action.option == TexasHoldemAction.Call: if action.price == pu.max_bet_sofar - pu.bets[pu.turn]: return True else: return False elif action.option == TexasHoldemAction.Raise: raise_account = action.price - (pu.max_bet_sofar - pu.bets[pu.turn]) if raise_account == 0: return False if raise_account % pu.raise_account == 0: return True else: return False elif action.option == TexasHoldemAction.AllIn: if action.price == pu.chips[pu.turn]: return True else: return False else: raise Exception("Invalid action.option" + action.option) ''' return action.key in person_state.available_actions
[ "jichao6758@sina.com" ]
jichao6758@sina.com