blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
160e6f9e2f4622e1af2cb9e5ff9252cf7e29d002
efc90aad821f8994d2c05082fab5ba67f355f699
/volkscv/analyzer/statistics/processor/box_processor.py
6e1cb1f7fddc5cb00b2f24484e68903cb8d39e17
[ "Apache-2.0" ]
permissive
ChaseMonsterAway/volkscv
d1cdcbaaf1ca17076cb991862b29459c1adb2813
aa7e898cc29e3e5f26363e56bf56f4c56574bbd8
refs/heads/master
2023-03-10T02:54:50.269361
2021-02-24T02:34:53
2021-02-24T02:34:53
285,753,693
10
0
Apache-2.0
2021-02-24T02:34:54
2020-08-07T06:20:03
Python
UTF-8
Python
false
false
7,904
py
import matplotlib.pyplot as plt import numpy as np from .base import BaseProcessor from ..plotter import OneDimPlotter, TwoDimPlotter, SubPlotter, Compose, cdf_pdf class BoxProcessor(BaseProcessor): """ Process the information related to box, get several statistical distribution. Args: data (dict): Data to be processed. Example: >>> import numpy as np >>> data = dict( >>> bboxes=np.array([np.array([[0, 0, 10, 10], [15, 30, 40, 60]]), >>> np.array([[10, 15, 20, 20]]),]), >>> labels = np.array([np.array([0, 1]), np.array([1])]), >>> ) >>> self = BoxProcessor(data) >>> self.default_plot() >>> # export >>> self.export('./result', save_mode='folder') """ def __init__(self, data): super(BoxProcessor, self).__init__(data) self.processor = ['hw', 'scale', 'ratio', 'ratio_log2', 'hw_per_class'] self._sections = [[0, 1e8]] self._box_h, self._box_w = self._extract_box() self._box_per_class = self._box_of_each_class() self.box_per_class = None self.box_h, self.box_w = None, None self._text = 'all' if not self._box_h: self.processor = [] def _extract_box(self): """ Extract the box height and width in input data.""" box_h = [] box_w = [] if self.data.get('bboxes', None) is not None: for boxs in self.data['bboxes']: for box in boxs: h, w = box[2:] - box[:2] box_h.append(h) box_w.append(w) else: print("Keys in data doesn't contain 'labels'.") return box_h, box_w def _box_of_each_class(self): """ Divide the height and width of box into different groups based on their class. Returns: _box_per_class (dict): dict(category: [[h1, h2...], [w1, w2...]]) """ if self.data.get('labels', None) is None: print("Keys in data doesn't contain 'labels'.") return None if not self._box_h: return None label = self.data['labels'] tmp_label = [] for l in label: tmp_label += list(l) if 'categories' in self.data and self.data['categories'] is not None: categories = list(range(len(self.data['categories']))) else: categories = list(set(tmp_label)) self._class = categories box_per_class = {categories[tl]: [[], []] for tl in set(tmp_label)} for cl, ch, cw in zip(tmp_label, self._box_h, self._box_w): box_per_class[categories[cl]][0].append(ch) box_per_class[categories[cl]][1].append(cw) return box_per_class @property def specified_class(self): return self._class @specified_class.setter def specified_class(self, v): if not isinstance(v, (list, tuple)): v = [v] for v_ in v: assert isinstance(v_, int), "Use int value to specify class." self._class = v h, w = [], [] for sc in self.specified_class: h += self._box_per_class[sc][0] w += self._box_per_class[sc][1] self.box_per_class = {sc: self._box_per_class[sc] for sc in v} self.box_h, self.box_w = h, w self._text = str(v) @property def sections(self): """ The section of box scale (sqrt(box_w*box_h)).""" return self._sections @sections.setter def sections(self, v): assert isinstance(v, (list, tuple)) assert isinstance(v[0], (int, float)) v = [0] + v + [1e8] self._sections = [[v[idx], v[idx + 1]] for idx in range(len(v) - 1)] @property def hw_per_class(self): """Height and width distribution of each class.""" if self._box_per_class is None: return None if self.box_per_class is not None: unique_class = self.box_per_class else: unique_class = self._box_per_class cols = int(np.ceil(np.sqrt(len(unique_class)))) return SubPlotter(unique_class, 'box hw distribution of class %s' % self._text, 'two', plt.scatter, cols, cols, axis_label=['height', 'width'], marker='.', alpha=0.1) @property def hw(self): """ Height and width distribution of box. """ h, w = self._box_h, self._box_w if self.box_h: h, w = self.box_h, self.box_w return TwoDimPlotter([h, w], "distribution of box's hw (class %s)" % self._text, plt.scatter, axis_label=['height', 'width'], marker='.', alpha=0.1) @property def scale(self): """ Scale (sqrt(w*h)) distribution.""" h, w = self._box_h, self._box_w if self.box_h: h, w = self.box_h, self.box_w sqrt_scale = np.sqrt(np.array(w) * np.array(h)) return OneDimPlotter(list(sqrt_scale), 'sqrt(wh) of box (class %s)' % self._text, cdf_pdf, axis_label=['scale:sqrt(wh)', 'normalized numbers'], bins=20) def section_scale(self, srange=(0, 32, 96, 640)): """ Scale (sqrt(w*H)) distribution in different sections.""" # TODO sections = [[srange[idx], srange[idx + 1]] for idx in range(len(srange) - 1)] print('The sections are %s' % sections) sqrt_scale = np.sqrt(np.array(self._box_w) * np.array(self._box_h)) return OneDimPlotter(sqrt_scale, 'box nums in different section' % sections, cdf_pdf, axis_label=['scale:sqrt(wh)', 'normalized numbers'], bins=srange) @property def ratio(self): """ Ratio (height/width) distribution.""" assert min(self._box_w) > 0 h, w = self._box_h, self._box_w if self.box_h: h, w = self.box_h, self.box_w section_hw = {i: [[], []] for i in range(len(self.sections))} for h_, w_ in zip(h, w): for idx, section in enumerate(self.sections): if section[0] <= np.sqrt(h_ * w_) < section[1]: section_hw[idx][0].append(h_) section_hw[idx][1].append(w_) legends = [] plotters = [] for key, value in section_hw.items(): hw_ratios = np.array(value[0]) / np.array(value[1]) legends.append(self.sections[key]) plotters.append(OneDimPlotter(list(hw_ratios), 'h w ratio of box (class %s) in section %s' % (self.sections[key], self._text), cdf_pdf, axis_label=['h/w ratio', 'normalized numbers'], bins=20)) return Compose(plotters, text='Box ratio of class %s' % self._text, legend=legends) @property def ratio_log2(self): """ Ratio (log2(height/width)) distribution.""" assert min(self._box_w) > 0 h, w = self._box_h, self._box_w if self.box_h: h, w = self.box_h, self.box_w h_w_ratio = np.array(h) / np.array(w) log2_ratio = np.log2(h_w_ratio) return OneDimPlotter(list(log2_ratio), 'h/w ratio(log2) of box (class %s)' % self._text, cdf_pdf, axis_label=['log2(h/w)', 'normalized numbers'], bins=20)
[ "jun.sun@media-smart.cn" ]
jun.sun@media-smart.cn
dc6bc1e49da835ba067f04ecc87cc1a6ea910278
d5b4ac45bb59287fd86bbaa454a97982f159f90a
/DB7.py
864ebbd67afd21b252e08a0bc059056efff34cd5
[]
no_license
21368236/1
b7d43a4d6b48033e483d61e9bc7dee6e5eecdc45
6f72422d6565bfbd503e36a5ffc4e0590115acc8
refs/heads/master
2022-08-24T22:43:05.169200
2022-08-14T21:32:59
2022-08-14T21:32:59
152,224,029
0
0
null
2018-10-18T15:11:26
2018-10-09T09:26:07
Python
UTF-8
Python
false
false
32
py
s= ("7") int (s) print (s/7)
[ "noreply@github.com" ]
21368236.noreply@github.com
c0750ef184ed5e43af364a74a3f17262aca88d07
96cfaaa771c2d83fc0729d8c65c4d4707235531a
/RecoHcal/HcalProm/test/runHcalTemplate.py
56f7ce258be40e5eeb4134a4662b388ce4da6b3f
[]
no_license
khotilov/cmssw
a22a160023c7ce0e4d59d15ef1f1532d7227a586
7636f72278ee0796d0203ac113b492b39da33528
refs/heads/master
2021-01-15T18:51:30.061124
2013-04-20T17:18:07
2013-04-20T17:18:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,117
py
import FWCore.ParameterSet.Config as cms process = cms.Process("HCALTemplate") process.load("MagneticField.Engine.uniformMagneticField_cfi") # process.load("Configuration.StandardSequences.FrontierConditions_GlobalTag_cff") process.load("L1Trigger.Configuration.L1Config_cff") process.load("L1TriggerConfig.L1GtConfigProducers.Luminosity.lumi1x1032.L1Menu_CRUZET200805_gr7_muon_cff") process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(100) ) process.source = cms.Source("PoolSource", dropMetaData = cms.untracked.bool(True), fileNames = cms.untracked.vstring( '/store/data/Commissioning08/BarrelMuon/RECO/CRUZET4_v1/000/058/600/1A31FC6D-4A71-DD11-80AF-000423D60FF6.root' ) ) process.l1 = cms.EDFilter("L1GTFilter", trigger = cms.string('L1_SingleMu3'), dumpTriggerTable = cms.untracked.bool (True) ) process.hcalTemplate = cms.EDAnalyzer ("HcalTemplate") process.TFileService = cms.Service("TFileService", fileName = cms.string('histHcalTemplate.root') ) process.p1 = cms.Path(process.hcalTemplate) process.UniformMagneticFieldESProducer.ZFieldInTesla = 0.001
[ "sha1-cf070837f75a2e740f971de86d9d2e3a75a81342@cern.ch" ]
sha1-cf070837f75a2e740f971de86d9d2e3a75a81342@cern.ch
1ab90d2920fccca9c25b7d34341889016c5a1931
9224be8b75cd55325dfa69772a2734e6c81e6b5b
/audio/sig/fbanks.py
29c840455a9960ac00e9b3f28039a66170ccb26a
[]
no_license
RaphaelOlivier/audio-smoothing
28bc4a7a36364ee8ca0f32680c48c3449a44c907
092ab54ae181cbf86787ad64de276f19be9dbf70
refs/heads/master
2022-11-29T14:20:32.726104
2020-06-30T17:30:09
2020-06-30T17:30:09
275,976,535
0
0
null
null
null
null
UTF-8
Python
false
false
13,886
py
"""FilterBANKS for audio analysis and synthesis.""" import math import numpy as np from numpy.fft import rfft, fft from scipy.fftpack import dct from .auditory import hz2mel, mel2hz from .auditory import erb_space, erb_filters, erb_fbank, erb_freqz from .window import hamming from .temporal import convdn, conv class Filterbank(object): """An abstract class of filterbanks. All types of filterbanks should subclass this class and implement: * __len__(): number of filterbanks * __getitem__(i): i-th filter object * freqz(i): frequency response of i-th filter * filter(sig, i): filter signal `sig` by i-th filter """ def __len__(self): """Return the number of frequency channels.""" raise NotImplementedError def __getitem__(self, k): """Obtain k-th filter from the filterbank.""" raise NotImplementedError def freqz(self, k): """Frequency response of the k-th filter.""" raise NotImplementedError def filter(self, sig, k): """Filter a signal through k-th filter.""" raise NotImplementedError class LinFreq(Filterbank): """The linear-frequency filterbank. This class is implemented using the STFT bandpass filter view. """ def __init__(self, wind, nchan=None): """Create a bank of bandpass filters using prototype lowpass window. Parameters ---------- wind : array_like A window function. """ self.nchan = (nchan if nchan is not None else len(wind)) self.wind = wind self.nsym = (len(wind)-1) / 2. # window point of symmetry self.filts = np.zeros((self.nchan, len(wind)), dtype=np.complex_) for k in range(self.nchan): # make bandpass filters wk = 2*np.pi*k / self.nchan self.filts[k] = wind * np.exp(1j*wk*np.arange(len(wind))) def __len__(self): """Return number of filters.""" return self.nchan def __getitem__(self, k): """Return k-th channel FIR filter coefficients.""" return self.filts[k] def freqz(self, k, nfft=None): """Return frequency response of k-th channel filter.""" if nfft is None: nfft = max(1024, int(2**np.ceil(np.log2(len(self.wind)))) ) # at least show 1024 frequency points ww = 2*np.pi * np.arange(nfft)/nfft hh = fft(self.filts[k], n=nfft) return ww, hh def filter(self, sig, k): """Filter signal by k-th filter.""" demod = np.exp(-1j*(2*np.pi*k/self.nchan)*np.arange(len(sig))) return np.convolve(sig, self.filts[k])[:len(sig)] * demod class MelFreq(Filterbank): """The Mel-frequency filterbank.""" def __init__(self, sr, nfft, nchan, flower=0., fupper=.5, unity=False): """Construct a Mel filterbank. Parameters ---------- sr : int or float Sampling rate nfft : int DFT size nchan : int Number of filters in filterbank flower : int or float <0.> Lowest center-frequency in filterbank. Could either be in terms of Hz or 2*pi. Default to 0. (DC). fupper : int or float <.5> Higest center-frequency in filterbank. Could either by in terms of Hz or 2*pi. Default to .5 (Nyquist). """ self.nfft = nfft self.nchan = nchan # Find frequency (Hz) endpoints if flower > 1: # assume in Hz hzl = flower else: # assume in normalized frequency hzl = flower * sr if fupper > 1: hzh = fupper else: hzh = fupper * sr # Calculate mel-frequency endpoints mfl = hz2mel(hzl) mfh = hz2mel(hzh) # Calculate mel frequency range `mfrng` # Calculate mel frequency increment between adjacent channels `mfinc` mfrng = mfh - mfl mfinc = mfrng * 1. / (nchan+1) mfc = mfl + mfinc * np.arange(1, nchan+1) # mel center frequencies # Calculate the DFT bins for [fl[0], fc[0], fc[P-1], fh[P-1] # p+1 markers for p channels dflim = mel2hz( mfl + mfinc*np.array([0, 1, nchan, nchan+1])) / sr * nfft dfl = int(dflim[0])+1 # lowest DFT bin required dfh = min(nfft//2, int(dflim[-1])-1) # highest DFT bin required # Map all useful DFT bins to mel-frequency centers mfc = (hz2mel(sr * np.arange(dfl, dfh+1) * 1. / nfft)-mfl) / mfinc if mfc[0] < 0: mfc = mfc[1:] dfl += 1 if mfc[-1] >= nchan+1: mfc = mfc[:-1] dfh -= 1 mfc_fl = np.floor(mfc) mfc_ml = mfc - mfc_fl # multiplier for upper filter df2 = np.argmax(mfc_fl > 0) df3 = len(mfc_fl) - np.argmax(mfc_fl[::-1] < nchan) df4 = len(mfc_fl) row = np.concatenate((mfc_fl[:df3], mfc_fl[df2:df4]-1)) col = np.concatenate((range(df3), range(df2, df4))) val = np.concatenate((mfc_ml[:df3], 1-mfc_ml[df2:df4])) # Finally, cache values for each filter self.filts = [] self.wgts = np.zeros((nfft//2+1, nchan)) for ii in range(self.nchan): idx = row == ii if unity: dftbin, dftwgt = col[idx]+dfl, val[idx]/sum(val[idx]) else: dftbin, dftwgt = col[idx]+dfl, val[idx] self.filts.append((dftbin, dftwgt)) self.wgts[dftbin, ii] = dftwgt def __len__(self): """Return the number of frequency channels.""" return self.nchan def __getitem__(self, k): """Obtain k-th filter from the filterbank.""" return self.filts[k] def freqz(self, k): """Frequency response of the k-th filter.""" ww = np.arange(self.nfft//2+1)/self.nfft*2 hh = np.zeros(self.nfft//2+1) dfb, val = self.filts[k] hh[dfb] = val return ww, hh def filter(self, sig, k): """Filter a signal through k-th filter.""" dfb, val = self.filts[k] dft_sig = rfft(sig, self.nfft) return val.dot(dft_sig[dfb]) def melspec(self, powerspec): """Return the mel spectrum of a signal.""" return powerspec @ self.wgts def mfcc(self, powerspec): """Return mel-frequency cepstral coefficients (MFCC).""" return dct(np.log(self.melspec(powerspec)), norm='ortho') class Gammatone(Filterbank): """The Gammatone filterbank.""" def __init__(self, sr, num_chan, center_frequencies=None): """Instantiate a Gammatone filterbank. Parameters ---------- sr: int Sampling rate. num_chan: int Number of frequency channels. center_frequencies: iterable, optional Center frequencies of each filter. There are 3 options: 1. (Default) None. This sets f_lower to 100Hz, f_upper to Nyquist frequency, and assume equal spacing on linear frequency scale for other frequencies. 2. Tuple of (`freqlower`, `frequpper`). This takes user-defined lower and upper bounds, and assume equal spacing on linear scale for other frequencies. 3. Iterable of center frequencies. This allows every center frequency to be defined by user. """ super(Gammatone, self).__init__() self.sr = sr self.num_chan = num_chan if center_frequencies is None: self.cf = erb_space(num_chan, 100., sr/2) elif len(center_frequencies) == num_chan: self.cf = center_frequencies else: assert len(center_frequencies) == 2,\ "Fail to interpret center frequencies!" self.cf = erb_space(num_chan, *center_frequencies) self.filters = [] for ii, cf in enumerate(self.cf): # construct filter coefficients A0, A11, A12, A13, A14, A2, B0, B1, B2, gain = erb_filters(sr, cf) self.filters.append((A0, A11, A12, A13, A14, A2, B0, B1, B2, gain)) def __len__(self): """Return number of channels.""" return self.num_chan def __getitem__(self, k): """Get filter coefficients of k-th channel.""" return self.filters[k] def freqz(self, k, nfft=1024, powernorm=False): """Compute k-th channel's frequency reponse. Parameters ---------- k: int ERB frequency channel. nfft: int, None Number of linear frequency points. powernorm: bool, False Normalize power to unity if True. """ ww, hh = erb_freqz(*self.filters[k], nfft) if powernorm: hh /= sum(hh.real**2 + hh.imag**2) return ww, hh def filter(self, sig, k, cascade=False): """Filter signal with k-th channel.""" return erb_fbank(sig, *self.filters[k], cascade=cascade) def gammawgt(self, nfft, powernorm=False, squared=True): """Return the Gammatone weighting function for STFT. Parameters ---------- nfft: int Number of DFT points. powernorm: bool, False Normalize power of Gammatone weighting function to unity. squared: bool, True Apply squared Gammtone weighting. """ wts = np.empty((nfft//2+1, self.num_chan)) for k in range(self.num_chan): wts[:, k] = np.abs(self.freqz(k, nfft, powernorm)[1][:nfft//2+1]) if squared: wts = wts**2 return wts class ConstantQ(Filterbank): """Direct implementation of Judith Brown's Constant Q transform (CQT).""" def __init__(self, sr, fmin, bins_per_octave=12, fmax=None, nchan=None, zphase=True): """Instantiate a constant Q transform class. Parameters ---------- sr: int or float Sampling rate. fmin: int or float Lowest center frequency of the filterbank. Note that all other center frequencies are derived from this. bins_per_octave: int Number of bins per octave (double frequency). Default to 12, which corresponds to one semitone. fmax: int or float Highest center frequency of the filterbank. Default to None, which assumes Nyquist. If `nchan` is set, `fmax` will be ignored. nchan: int Total number of frequency bins. Default to None, which is determined from other parameters. If set, `fmax` will be adjusted accordingly. zphase: bool Center each window at time 0 rather than (Nk-1)//2. This is helpful for mitigating the effect of group delay at low frequencies. Default to yes. """ assert fmin >= 100, "Small center frequencies are not supported." if nchan: # re-calculate fmax self.nchan = nchan fmax = fmin * 2**(nchan / bins_per_octave) assert fmax <= sr/2,\ "fmax exceeds Nyquist! Consider reducing nchan or fmin." assert nchan == math.ceil(bins_per_octave*np.log2(fmax/fmin)) else: fmax = fmax if fmax else sr/2 self.nchan = math.ceil(bins_per_octave * np.log2(fmax/fmin)) self.sr = sr self.qfactor = 1 / (2**(1/bins_per_octave) - 1) self.cfs = fmin * 2**(np.arange(self.nchan)/bins_per_octave) # fcs self.zphase = zphase self.filts = [] for ii, k in enumerate(range(self.nchan)): # make bandpass filters cf = self.cfs[ii] wk = 2*np.pi*cf / sr wsize = math.ceil(self.qfactor*sr/cf) if zphase and (wsize % 2 == 0): # force odd-size window for 0phase wsize += 1 if zphase: mod = np.exp(1j*wk*np.arange(-(wsize-1)//2, (wsize-1)//2 + 1)) else: mod = np.exp(1j*wk*np.arange(wsize)) wind = hamming(wsize) self.filts.append(wind/wind.sum() * mod) def __len__(self): """Return number of filters.""" return self.nchan def __getitem__(self, k): """Return k-th channel FIR filter coefficients.""" return self.filts[k] def freqz(self, k, nfft=None): """Return frequency response of k-th channel filter.""" if nfft is None: nfft = max(1024, int(2**np.ceil(np.log2(len(self.filts[k])))) ) # at least show 1024 frequency points ww = 2*np.pi * np.arange(nfft)/nfft hh = fft(self.filts[k], n=nfft) return ww, hh def filter(self, sig, k, fr=None, zphase=True): """Filter signal by k-th filter.""" wk = 2*np.pi*self.cfs[k] / self.sr decimate = int(self.sr/fr) if fr else None if decimate: demod = np.exp(-1j*wk*np.arange(0, len(sig), decimate)) return convdn(sig, self.filts[k], decimate, zphase=zphase)[:len(demod)] * demod else: demod = np.exp(-1j*wk*np.arange(len(sig))) return conv(sig, self.filts[k], zphase=zphase)[:len(sig)] * demod def cqt(self, sig, fr): """Return the constant Q transform of the signal. Parameters ---------- sig: array_like Signal to be processed. fr: int Frame rate (or SR / hopsize in seconds) in Hz. """ decimate = int(self.sr/fr) # consistent with filter definition out = np.empty((self.nchan, math.ceil(len(sig)/decimate)), dtype='complex_') for kk in range(self.nchan): out[kk] = self.filter(sig, kk, fr=fr) return out.T
[ "raphael.franck.olivier@gmail.com" ]
raphael.franck.olivier@gmail.com
b50026269bbbba85f9812f1668b0b260550a19d7
b9072925512750284c663f1b22059f94e5ccf289
/3-deploy_web_static.py
3c52cf865b22f5732832b6e23c8f12144faeea26
[]
no_license
mmanumos/AirBnB_clone_v2
dad72f8a3bdf672c509dff96b57eb20954d20cbf
473730369dd6cfee1fecfea95f8885cfc62973d1
refs/heads/master
2022-04-25T13:47:26.538922
2020-04-27T06:50:40
2020-04-27T06:50:40
255,198,068
0
0
null
2020-04-13T00:45:52
2020-04-13T00:45:52
null
UTF-8
Python
false
false
1,494
py
#!/usr/bin/python3 # Fabric script to deploy web_static to server from fabric.api import * import os from time import strftime as ti env.user = 'ubuntu' env.hosts = ['34.73.242.80', '54.209.158.161'] def do_pack(): """Fabric script to compress files in web_static""" local("mkdir -p versions") ver = ti("%Y%m%d%H%M%S") arc = local("tar -cvzf versions/web_static_{}.tgz web_static".format(ver)) if arc.failed: return False else: return ("versions/web_static_{}.tgz".format(ver)) def do_deploy(archive_path): """Fabric script to deploy web_static to servers""" if os.path.exists(archive_path): new_path = archive_path[9:] de_path = '/data/web_static/releases/{}/'.format(new_path)[0:-4] put(archive_path, '/tmp/') run('mkdir -p {}'.format(de_path)) run('tar -xzf /tmp/{} -C {}'.format(new_path, de_path)) run('rm /tmp/{}'.format(new_path)) run('mv {}/web_static/* {}'.format(de_path, de_path)) run('rm -rf {}/web_static'.format(de_path)) run('rm -rf /data/web_static/current') run('ln -s {} /data/web_static/current'.format(de_path)) print('New version deployed successfully!') return True return False def deploy(): """Created and distributes an archinve to two web servers""" archive_path = do_pack() if archive_path is False: return False return do_deploy(archive_path) if __name__ == "__main__": deploy()
[ "mosqueramanuel5@gmail.com" ]
mosqueramanuel5@gmail.com
3f800cd02f80ce00ee6facfa70dab1e68fbb75ec
ea35f4925caeaa398df4f6f5245765e994ee62f7
/BruteForceModel/main.py
f05c74e397f51b174f178b803670126388384c65
[]
no_license
jhubar/PI
5c19368dfaf5d095d08e5bdb7c7a6cfca9376b5e
2b2a0d75520e1af5408d42ea3ee10a22b3989045
refs/heads/master
2023-03-25T18:13:03.353705
2021-03-23T10:40:35
2021-03-23T10:40:35
297,372,085
0
0
null
null
null
null
UTF-8
Python
false
false
2,182
py
import numpy as np import pandas as pd import matplotlib.pyplot as plt from SEIR import SEIR import tools if __name__ == "__main__": # Create a model model = SEIR() # Import the dataset model.import_dataset() # Find an optimal value for initial state #init_I = tools.initial_infected_estimator(model.dataset) #model.fit() predictions = model.predict(duration=model.dataset.shape[0]) print(model.get_parameters()) uncumul = [] uncumul.append(predictions[0][7]) for j in range(1, predictions.shape[0]): uncumul.append(predictions[j][7] - predictions[j - 1][7]) # Plot: time = model.dataset[:, 0] # Adapt test + with sensit and testing rate for j in range(0, len(time)): uncumul[j] = uncumul[j] * model.s * model.t # Plot cumul positive plt.scatter(time, model.dataset[:, 1], c='blue', label='test+') plt.plot(time, uncumul, c='blue', label='test+') # Plot hospit plt.scatter(time, model.dataset[:, 3], c='red', label='hospit pred') plt.plot(time, predictions[:, 4], c='red', label='pred hopit') plt.legend() plt.show() # Plot critical plt.scatter(time, model.dataset[:, 5], c='green', label='critical data') plt.plot(time, predictions[:, 5], c='green', label='critical pred') plt.scatter(time, model.dataset[:, 6], c='black', label='fatalities data') plt.plot(time, predictions[:, 6], c='black', label='fatalities pred') plt.legend() plt.show() # Smoothing test: unsmooth_data = model.dataset # Import a smoothed dataset: model.smoothing = True model.import_dataset() smooth_data = model.dataset # plot the data plt.scatter(smooth_data[:, 0], smooth_data[:, 1], color='blue', label='smoothed testing data') plt.scatter(smooth_data[:, 0], unsmooth_data[:, 1], color='green', label='unsmoothed testing data') plt.legend() plt.show() # Print initial data: for i in range(0, 15): print('Time: {} - smoothed: {} - original: {}'.format(i, smooth_data[i][1], unsmooth_data[i][1])) # Check best initial number of infected: tools.initial_infected_estimator(smooth_data)
[ "francoislievens@outlook.com" ]
francoislievens@outlook.com
768579ce9651f223ea9ba98f96756513ebf95d7b
606d2d0ceb97eaa0cd442d125613ebd220621acd
/src/pythonDemo/dev_debug.py
af1fce439c4f921e2ce3e661f80c71d70db14dd4
[]
no_license
cisin-python/Django-Demo
fba10a57a2ea6073e4308961312e2f94d780b492
fc995cfdad85da502b7f19444dc931c983193cd5
refs/heads/master
2021-01-22T11:55:02.299136
2015-01-16T14:46:53
2015-01-16T14:46:53
24,186,888
0
0
null
null
null
null
UTF-8
Python
false
false
1,039
py
# # Settings for development with Debug Toolbar enabled # # # # To use this settings run the manage.py commands as the following: # # # # python manage.py COMMAND --settings=medtrics.settings.dev_debug # # # INSTALLED_APPS += ( # 'debug_toolbar', # ) # MIDDLEWARE_CLASSES += ( # 'debug_toolbar.middleware.DebugToolbarMiddleware', # ) # DEBUG_TOOLBAR_PANELS = ( # 'debug_toolbar.panels.versions.VersionsPanel', # 'debug_toolbar.panels.timer.TimerPanel', # 'debug_toolbar.panels.settings.SettingsPanel', # 'debug_toolbar.panels.headers.HeadersPanel', # 'debug_toolbar.panels.request.RequestPanel', # 'debug_toolbar.panels.sql.SQLPanel', # 'debug_toolbar.panels.staticfiles.StaticFilesPanel', # 'debug_toolbar.panels.templates.TemplatesPanel', # 'debug_toolbar.panels.cache.CachePanel', # 'debug_toolbar.panels.signals.SignalsPanel', # 'debug_toolbar.panels.logging.LoggingPanel', # 'debug_toolbar.panels.redirects.RedirectsPanel', # ) # DEBUG_TOOLBAR_PATCH_SETTINGS = False
[ "cis@machin101" ]
cis@machin101
397ff88a6fe7cdbd3ea47529ac39003f0d88056e
2b76a1307bd35d3e7de180cca4977dce382d7ddc
/python/Recrusive/S93.py
fbd070deb2166a2807469cf11f3e772daa0dddaf
[]
no_license
liqiushui/leetcode
c2966135a5bb98f1d651db536144c4ed77ec63fe
be47d32fb11b9dcb8ab7368a4294461b5819c7b1
refs/heads/master
2020-04-09T07:10:59.202835
2018-12-27T11:27:33
2018-12-27T11:27:33
160,144,021
0
0
null
null
null
null
UTF-8
Python
false
false
1,060
py
class Solution: def restoreIpAddresses(self, s): """ :type s: str :rtype: List[str] """ if not s: return [] ret = [] self.helper(s, 0, [], ret) return ret def helper(self, s, pos, temp, result): limit = 4 if len(temp) == limit and pos == len(s): result.append(".".join(list(temp))) return if len(temp) >= limit: return i = pos x = 0 while i + x < (len(s) + 1) and x <= 3: t = s[i:i + x] if self.isValid(t) and len(temp) < 4: temp.append(t) self.helper(s, pos + x, temp, result) temp.pop() x += 1 def isValid(self, s): if len(s) >= 1 and len(s) <= 3: if len(s) > 1 and s[0] == '0': return False n = int(s) return n >= 0 and n <= 255 return False if __name__ == "__main__": s = Solution() print(s.restoreIpAddresses("010010"))
[ "xidianli@qq.com" ]
xidianli@qq.com
2472db8ca01f6ac1c6f038ef9d9fc2e3edd5edf4
2374d6d17259f481fe0412ec4176b0811eba075f
/scripts_indentation/add_InterpolatedImage.py
0bd658adb92048fe560af26b10c4f5f846640611
[ "MIT" ]
permissive
chakra34/Optimizer
29cecca3898ac42e47c435442870d1905fe0a47a
6302e0f4357cab08e75c53db3b5527660607a7e1
refs/heads/master
2020-04-21T13:39:24.209230
2019-09-27T23:47:58
2019-09-27T23:47:58
169,606,357
2
2
MIT
2019-09-27T23:47:59
2019-02-07T16:50:15
Python
UTF-8
Python
false
false
5,064
py
#!/usr/bin/env python import numpy as np import scipy import damask import os,sys,string from subprocess import call from optparse import OptionParser from scipy.interpolate import griddata scriptID = string.replace('$Id: add_InterpolatedImage.py 247 2016-03-22 21:45:34Z chakra34 $','\n','\\n') scriptName = os.path.splitext(scriptID.split()[1])[0] parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """ Converts point cloud data to Regular grid and gives the resulting image. if pix_size is 1 and size = 3.0 X 3.0 then dimension is 4 X 4. """, version = scriptID) parser.add_option('-c','--coords', dest = 'coords', type = 'string', metavar = 'string', help = 'column label of point coordinate vector') parser.add_option('-d','--displacement', dest = 'disp', type = 'string', metavar = 'string', help = 'column label of displacement vector') parser.add_option('--grid', dest = 'grid', type = 'int', nargs = 2, metavar = 'int int', help = 'interpolation grid') parser.add_option('--size', dest = 'size', type = 'float', nargs = 2, metavar = 'float float', help = 'interpolation size') parser.add_option('--center', dest = 'center', type = 'float', nargs = 2, metavar = 'float float', help = 'coordinates of interpolation patch center') parser.add_option('-p','--pixelsize', dest = 'pix_size', type = 'string', metavar = 'string', help = 'pixel size [20.0e-6/255]') (options,filenames) = parser.parse_args() #---------------------------------------- sanity checks ------------------------------------------------ if options.pix_size: options.pix_size = float(eval(options.pix_size)) if options.grid: options.size = tuple(options.pix_size * (x - 1) for x in options.grid) elif options.size: options.grid = tuple(round(x/options.pix_size + 1) for x in options.size) options.size = tuple(options.pix_size * (x - 1) for x in options.grid) else: parser.error("Either dimension or size has to be specified if pixel size is given.") else: if options.size and options.grid: options.pix_size = options.size/options.grid else: parser.error("Both dimension and size has to be specified if pixel size is not given.") # --------------------------------------- loop over input files ------------------------------------------- if filenames == []: filenames = [None] for name in filenames: out_file = "out_"+os.path.basename(name) try: table = damask.ASCIItable(name = name, outname = out_file, buffered = False) except: continue damask.util.report(scriptName,name) # ------------------------------------------ read header and data ------------------------------------------ table.head_read() table.data_readArray([options.coords,options.disp]) table.data = 1e-6*table.data if len(table.data[0]) != 6: continue #-------------------------------------------- process and store output --------------------------------------- table.data[:,:3] += table.data[:,3:6] # add displacement to coordinates if not options.center: options.center = 0.5*(table.data[:,:2].max(axis=0)+table.data[:,:2].min(axis=0)) # l = np.array((table.data[:,positions[0]],table.data[:,positions[1]])).T # hull = scipy.spatial.Delaunay(l).convex_hull # finding the convex hull to find the center of the point cloud data # ps = set() # for x,y in hull: # ps.add(x) # ps.add(y) # ps = np.array(list(ps)) # if options.center == None : # options.center = points[ps].mean(axis=0) grid_x, grid_y = np.meshgrid(np.linspace(options.center[0] - 0.5 * options.size[0], options.center[0] + 0.5 * options.size[0], num=options.grid[0]), np.linspace(options.center[1] - 0.5 * options.size[1], options.center[1] + 0.5 * options.size[1], num=options.grid[1])) grid = np.vstack((grid_x.flatten(),grid_y.flatten())).T interpolation = griddata(table.data[:,:2], table.data[:,2], grid , fill_value = 0.0,method='linear') table.data = np.vstack((grid_x.flatten().T, grid_y.flatten().T, interpolation.T)).T #--------------------------------------------------- output header info -------------------------------------- table.labels_clear() table.labels_append(['{}_gridInterpolation'.format(1+i) for i in xrange(3)]) table.info_clear() table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:])) table.head_write() table.data_writeArray() table.close()
[ "chakra34@egr.msu.edu" ]
chakra34@egr.msu.edu
c4b26ee0fa67ac238d809d3ad4f4c64c3dbd38fd
836bbf6ad60fc6bb53b4306be0148b24dac9afe7
/hw2/train_pg_f18.py
a27cd6f876ae1bad4afe0c66aa59467882e0becf
[ "MIT" ]
permissive
jperl/rl-homework
4517349aa58861dbadf8f31c6dd5fe37f5947537
6a5be151994cb8043686c563b777719f9338f314
refs/heads/master
2020-03-27T13:06:30.507241
2018-10-22T20:48:47
2018-10-22T20:49:24
146,590,585
5
0
null
null
null
null
UTF-8
Python
false
false
32,645
py
""" Original code from John Schulman for CS294 Deep Reinforcement Learning Spring 2017 Adapted for CS294-112 Fall 2017 by Abhishek Gupta and Joshua Achiam Adapted for CS294-112 Fall 2018 by Michael Chang and Soroush Nasiriany """ import numpy as np import tensorflow as tf import gym import logz import os import time import inspect from multiprocessing import Process #============================================================================================# # Utilities #============================================================================================# #========================================================================================# # ----------PROBLEM 2---------- #========================================================================================# def build_mlp(input_placeholder, output_size, scope, n_layers, size, activation=tf.tanh, output_activation=None): """ Builds a feedforward neural network arguments: input_placeholder: placeholder variable for the state (batch_size, input_size) output_size: size of the output layer scope: variable scope of the network n_layers: number of hidden layers size: dimension of the hidden layer activation: activation of the hidden layers output_activation: activation of the ouput layers returns: output placeholder of the network (the result of a forward pass) Hint: use tf.layers.dense """ x = input_placeholder with tf.variable_scope(scope): for _ in range(n_layers): x = tf.layers.dense(x, units=size, activation=activation) output = tf.layers.dense(x, units=output_size, activation=output_activation) return output def pathlength(path): return len(path["reward"]) def setup_logger(logdir, locals_): # Configure output directory for logging logz.configure_output_dir(logdir) # Log experimental parameters args = inspect.getargspec(train_PG)[0] params = {k: locals_[k] if k in locals_ else None for k in args} logz.save_params(params) #============================================================================================# # Policy Gradient #============================================================================================# class Agent(object): def __init__(self, computation_graph_args, sample_trajectory_args, estimate_return_args): super(Agent, self).__init__() self.ob_dim = computation_graph_args['ob_dim'] self.ac_dim = computation_graph_args['ac_dim'] self.discrete = computation_graph_args['discrete'] self.size = computation_graph_args['size'] self.n_layers = computation_graph_args['n_layers'] self.learning_rate = computation_graph_args['learning_rate'] self.animate = sample_trajectory_args['animate'] self.max_path_length = sample_trajectory_args['max_path_length'] self.min_timesteps_per_batch = sample_trajectory_args['min_timesteps_per_batch'] self.gamma = estimate_return_args['gamma'] self.reward_to_go = estimate_return_args['reward_to_go'] self.nn_baseline = estimate_return_args['nn_baseline'] self.normalize_advantages = estimate_return_args['normalize_advantages'] def init_tf_sess(self): tf_config = tf.ConfigProto(inter_op_parallelism_threads=1, intra_op_parallelism_threads=1) tf_config.gpu_options.allow_growth = True # JON CHANGED TO FIX ISSUE self.sess = tf.Session(config=tf_config) self.sess.__enter__() # equivalent to `with self.sess:` tf.global_variables_initializer().run() #pylint: disable=E1101 #========================================================================================# # ----------PROBLEM 2---------- #========================================================================================# def define_placeholders(self): """ Placeholders for batch batch observations / actions / advantages in policy gradient loss function. See Agent.build_computation_graph for notation returns: sy_ob_no: placeholder for observations sy_ac_na: placeholder for actions sy_adv_n: placeholder for advantages """ sy_ob_no = tf.placeholder(shape=[None, self.ob_dim], name="ob", dtype=tf.float32) if self.discrete: sy_ac_na = tf.placeholder(shape=[None], name="ac", dtype=tf.int32) else: sy_ac_na = tf.placeholder(shape=[None, self.ac_dim], name="ac", dtype=tf.float32) sy_adv_n = tf.placeholder(shape=[None], name="adv", dtype=tf.float32) return sy_ob_no, sy_ac_na, sy_adv_n #========================================================================================# # ----------PROBLEM 2---------- #========================================================================================# def policy_forward_pass(self, sy_ob_no): """ Constructs the symbolic operation for the policy network outputs, which are the parameters of the policy distribution p(a|s) arguments: sy_ob_no: (batch_size, self.ob_dim) returns: the parameters of the policy. if discrete, the parameters are the logits of a categorical distribution over the actions sy_logits_na: (batch_size, self.ac_dim) if continuous, the parameters are a tuple (mean, log_std) of a Gaussian distribution over actions. log_std should just be a trainable variable, not a network output. sy_mean: (batch_size, self.ac_dim) sy_logstd: (self.ac_dim,) Hint: use the 'build_mlp' function to output the logits (in the discrete case) and the mean (in the continuous case). Pass in self.n_layers for the 'n_layers' argument, and pass in self.size for the 'size' argument. """ if self.discrete: sy_logits_na = build_mlp(sy_ob_no, self.ac_dim, "discrete_policy", self.n_layers, self.size) return sy_logits_na else: sy_mean = build_mlp(sy_ob_no, self.ac_dim, "continuous_policy_mean", self.n_layers, self.size) sy_logstd = tf.Variable(np.zeros(self.ac_dim), dtype=tf.float32, name="continuous_policy_std") return (sy_mean, sy_logstd) #========================================================================================# # ----------PROBLEM 2---------- #========================================================================================# def sample_action(self, policy_parameters): """ Constructs a symbolic operation for stochastically sampling from the policy distribution arguments: policy_parameters if discrete: logits of a categorical distribution over actions sy_logits_na: (batch_size, self.ac_dim) if continuous: (mean, log_std) of a Gaussian distribution over actions sy_mean: (batch_size, self.ac_dim) sy_logstd: (self.ac_dim,) returns: sy_sampled_ac: if discrete: (batch_size,) if continuous: (batch_size, self.ac_dim) Hint: for the continuous case, use the reparameterization trick: The output from a Gaussian distribution with mean 'mu' and std 'sigma' is mu + sigma * z, z ~ N(0, I) This reduces the problem to just sampling z. (Hint: use tf.random_normal!) """ if self.discrete: sy_logits_na = policy_parameters sy_sampled_ac = tf.multinomial(sy_logits_na, 1) sy_sampled_ac = sy_sampled_ac[:,0] # (batch_size, 1) -> (batch_size,) else: sy_mean, sy_logstd = policy_parameters batch_size = tf.shape(sy_mean)[0] z = tf.random_normal((batch_size, self.ac_dim)) sy_std = tf.exp(sy_logstd) sy_sampled_ac = sy_mean + sy_std * z return sy_sampled_ac #========================================================================================# # ----------PROBLEM 2---------- #========================================================================================# def get_log_prob(self, policy_parameters, sy_ac_na): """ Constructs a symbolic operation for computing the log probability of a set of actions that were actually taken according to the policy arguments: policy_parameters if discrete: logits of a categorical distribution over actions sy_logits_na: (batch_size, self.ac_dim) if continuous: (mean, log_std) of a Gaussian distribution over actions sy_mean: (batch_size, self.ac_dim) sy_logstd: (self.ac_dim,) sy_ac_na: if discrete: (batch_size,) if continuous: (batch_size, self.ac_dim) returns: sy_logprob_n: (batch_size) Hint: For the discrete case, use the log probability under a categorical distribution. For the continuous case, use the log probability under a multivariate gaussian. """ # SEE https://youtu.be/XGmd3wcyDg8?list=PLkFD6_40KJIxJMR-j5A1mkxK26gh_qg37&t=4137 if self.discrete: # use cross entropy loss to maximize the log probability for a categorical distribution sy_logits_na = policy_parameters labels = tf.one_hot(sy_ac_na, self.ac_dim) sy_logprob_n = tf.nn.softmax_cross_entropy_with_logits_v2(labels=labels, logits=sy_logits_na) else: # use mean squared error to maximize the log probability for a gaussian sy_mean, sy_logstd = policy_parameters # calculate the z-score of the sampled actions under the policy sy_z = (sy_ac_na - sy_mean) / tf.exp(sy_logstd) # express the loss as a negative-likilihood, so when we minimize it # it will maximize the likilihood by pushing z towards 0, the mean of the distribution # ex. z=10, loss=50 --> z=1, loss=0.5 --> z=0, loss=0 sy_logprob_n = 0.5 * tf.reduce_mean(tf.square(sy_z), axis=1) return sy_logprob_n def build_computation_graph(self): """ Notes on notation: Symbolic variables have the prefix sy_, to distinguish them from the numerical values that are computed later in the function Prefixes and suffixes: ob - observation ac - action _no - this tensor should have shape (batch self.size /n/, observation dim) _na - this tensor should have shape (batch self.size /n/, action dim) _n - this tensor should have shape (batch self.size /n/) Note: batch self.size /n/ is defined at runtime, and until then, the shape for that axis is None ---------------------------------------------------------------------------------- loss: a function of self.sy_logprob_n and self.sy_adv_n that we will differentiate to get the policy gradient. """ self.sy_ob_no, self.sy_ac_na, self.sy_adv_n = self.define_placeholders() # The policy takes in an observation and produces a distribution over the action space self.policy_parameters = self.policy_forward_pass(self.sy_ob_no) # We can sample actions from this action distribution. # This will be called in Agent.sample_trajectory() where we generate a rollout. self.sy_sampled_ac = self.sample_action(self.policy_parameters) # We can also compute the logprob of the actions that were actually taken by the policy # This is used in the loss function. self.sy_logprob_n = self.get_log_prob(self.policy_parameters, self.sy_ac_na) #========================================================================================# # ----------PROBLEM 2---------- # Loss Function and Training Operation #========================================================================================# weighted_negative_likelihoods = tf.multiply(self.sy_logprob_n, self.sy_adv_n) # the negative likelihoods are the correct sign because # as we do gradient descent we will increase their likelihood proportional to the advantage loss = tf.reduce_mean(weighted_negative_likelihoods) self.update_op = tf.train.AdamOptimizer(self.learning_rate).minimize(loss) #========================================================================================# # ----------PROBLEM 6---------- # Optional Baseline # # Define placeholders for targets, a loss function and an update op for fitting a # neural network baseline. These will be used to fit the neural network baseline. #========================================================================================# if self.nn_baseline: self.baseline_prediction = tf.squeeze(build_mlp( self.sy_ob_no, 1, "nn_baseline", n_layers=self.n_layers, size=self.size)) self.sy_target_n = tf.placeholder(shape=[None], name="target", dtype=tf.float32) baseline_loss = tf.losses.mean_squared_error(labels=self.sy_target_n, predictions=self.baseline_prediction) self.baseline_update_op = tf.train.AdamOptimizer(self.learning_rate).minimize(baseline_loss) def sample_trajectories(self, itr, env): # Collect paths until we have enough timesteps timesteps_this_batch = 0 paths = [] while True: animate_this_episode=(len(paths)==0 and (itr % 10 == 0) and self.animate) path = self.sample_trajectory(env, animate_this_episode) paths.append(path) timesteps_this_batch += pathlength(path) if timesteps_this_batch > self.min_timesteps_per_batch: break return paths, timesteps_this_batch def sample_trajectory(self, env, animate_this_episode): ob = env.reset() obs, acs, rewards = [], [], [] steps = 0 while True: if animate_this_episode: env.render() time.sleep(0.1) obs.append(ob) #====================================================================================# # ----------PROBLEM 3---------- #====================================================================================# ac = self.sess.run(self.sy_sampled_ac, { self.sy_ob_no: np.expand_dims(ob, axis=0) }) ac = ac[0] acs.append(ac) ob, rew, done, _ = env.step(ac) rewards.append(rew) steps += 1 if done or steps > self.max_path_length: break path = {"observation" : np.array(obs, dtype=np.float32), "reward" : np.array(rewards, dtype=np.float32), "action" : np.array(acs, dtype=np.float32)} return path #====================================================================================# # ----------PROBLEM 3---------- #====================================================================================# def sum_of_rewards(self, re_n): """ Monte Carlo estimation of the Q function. let sum_of_path_lengths be the sum of the lengths of the paths sampled from Agent.sample_trajectories let num_paths be the number of paths sampled from Agent.sample_trajectories arguments: re_n: length: num_paths. Each element in re_n is a numpy array containing the rewards for the particular path returns: q_n: shape: (sum_of_path_lengths). A single vector for the estimated q values whose length is the sum of the lengths of the paths ---------------------------------------------------------------------------------- Your code should construct numpy arrays for Q-values which will be used to compute advantages (which will in turn be fed to the placeholder you defined in Agent.define_placeholders). Recall that the expression for the policy gradient PG is PG = E_{tau} [sum_{t=0}^T grad log pi(a_t|s_t) * (Q_t - b_t )] where tau=(s_0, a_0, ...) is a trajectory, Q_t is the Q-value at time t, Q^{pi}(s_t, a_t), and b_t is a baseline which may depend on s_t. You will write code for two cases, controlled by the flag 'reward_to_go': Case 1: trajectory-based PG (reward_to_go = False) Instead of Q^{pi}(s_t, a_t), we use the total discounted reward summed over entire trajectory (regardless of which time step the Q-value should be for). For this case, the policy gradient estimator is E_{tau} [sum_{t=0}^T grad log pi(a_t|s_t) * Ret(tau)] where Ret(tau) = sum_{t'=0}^T gamma^t' r_{t'}. Thus, you should compute Q_t = Ret(tau) Case 2: reward-to-go PG (reward_to_go = True) Here, you estimate Q^{pi}(s_t, a_t) by the discounted sum of rewards starting from time step t. Thus, you should compute Q_t = sum_{t'=t}^T gamma^(t'-t) * r_{t'} Store the Q-values for all timesteps and all trajectories in a variable 'q_n', like the 'ob_no' and 'ac_na' above. """ q_n = [] if self.reward_to_go: for re_path in re_n: # per path calculate the estimated rewards for the trajectory path_est = [] # per time step in the path calculate the reward to go for i, re in enumerate(re_path): # ex. len(5) - 0 = 5 reward_to_go_len = len(re_path) - i gamma = np.power(self.gamma, np.arange(reward_to_go_len)) re_to_go = np.sum(gamma * re_path[i:]) path_est.append(re_to_go) # append the path's array of estimated returns q_n.append(np.array(path_est)) else: for re_path in re_n: tprime_minus_one = np.arange(len(re_path)) gamma = np.power(self.gamma, tprime_minus_one) re_discount = re_path * gamma # all rewards are the same, so duplicate the sum per timestep path_est = np.sum(re_discount) * np.ones_like(re_path) # append the path's array of estimated returns q_n.append(path_est) q_n = np.concatenate(q_n) return q_n def compute_advantage(self, ob_no, q_n): """ Computes advantages by (possibly) subtracting a baseline from the estimated Q values let sum_of_path_lengths be the sum of the lengths of the paths sampled from Agent.sample_trajectories let num_paths be the number of paths sampled from Agent.sample_trajectories arguments: ob_no: shape: (sum_of_path_lengths, ob_dim) q_n: shape: (sum_of_path_lengths). A single vector for the estimated q values whose length is the sum of the lengths of the paths returns: adv_n: shape: (sum_of_path_lengths). A single vector for the estimated advantages whose length is the sum of the lengths of the paths """ #====================================================================================# # ----------PROBLEM 6---------- # Computing Baselines #====================================================================================# if self.nn_baseline: # If nn_baseline is True, use your neural network to predict reward-to-go # at each timestep for each trajectory, and save the result in a variable 'b_n' # like 'ob_no', 'ac_na', and 'q_n'. # # Hint #bl1: rescale the output from the nn_baseline to match the statistics # (mean and std) of the current batch of Q-values. (Goes with Hint # #bl2 in Agent.update_parameters. b_n = self.sess.run(self.baseline_prediction, { self.sy_ob_no: ob_no }) # the target network is predicting normalized targets # so we can rescale them to match q-values mean & std b_n = b_n * q_n.std() + q_n.mean() adv_n = q_n - b_n else: adv_n = q_n.copy() return adv_n def estimate_return(self, ob_no, re_n): """ Estimates the returns over a set of trajectories. let sum_of_path_lengths be the sum of the lengths of the paths sampled from Agent.sample_trajectories let num_paths be the number of paths sampled from Agent.sample_trajectories arguments: ob_no: shape: (sum_of_path_lengths, ob_dim) re_n: length: num_paths. Each element in re_n is a numpy array containing the rewards for the particular path returns: q_n: shape: (sum_of_path_lengths). A single vector for the estimated q values whose length is the sum of the lengths of the paths adv_n: shape: (sum_of_path_lengths). A single vector for the estimated advantages whose length is the sum of the lengths of the paths """ q_n = self.sum_of_rewards(re_n) adv_n = self.compute_advantage(ob_no, q_n) #====================================================================================# # ----------PROBLEM 3---------- # Advantage Normalization #====================================================================================# if self.normalize_advantages: # On the next line, implement a trick which is known empirically to reduce variance # in policy gradient methods: normalize adv_n to have mean zero and std=1. adv_n = (adv_n - np.mean(adv_n)) / np.std(adv_n) return q_n, adv_n def update_parameters(self, ob_no, ac_na, q_n, adv_n): """ Update the parameters of the policy and (possibly) the neural network baseline, which is trained to approximate the value function. arguments: ob_no: shape: (sum_of_path_lengths, ob_dim) ac_na: shape: (sum_of_path_lengths). q_n: shape: (sum_of_path_lengths). A single vector for the estimated q values whose length is the sum of the lengths of the paths adv_n: shape: (sum_of_path_lengths). A single vector for the estimated advantages whose length is the sum of the lengths of the paths returns: nothing """ #====================================================================================# # ----------PROBLEM 6---------- # Optimizing Neural Network Baseline #====================================================================================# if self.nn_baseline: # If a neural network baseline is used, set up the targets and the inputs for the # baseline. # # Fit it to the current batch in order to use for the next iteration. Use the # baseline_update_op you defined earlier. # # Hint #bl2: Instead of trying to target raw Q-values directly, rescale the # targets to have mean zero and std=1. (Goes with Hint #bl1 in # Agent.compute_advantage.) target_n = (q_n - q_n.mean()) / q_n.std() self.sess.run(self.baseline_update_op, { self.sy_ob_no: ob_no, self.sy_target_n: target_n }) #====================================================================================# # ----------PROBLEM 3---------- # Performing the Policy Update #====================================================================================# # Call the update operation necessary to perform the policy gradient update based on # the current batch of rollouts. # # For debug purposes, you may wish to save the value of the loss function before # and after an update, and then log them below. self.sess.run(self.update_op, { self.sy_ob_no: ob_no, self.sy_ac_na: ac_na, self.sy_adv_n: adv_n }) def train_PG( exp_name, env_name, n_iter, gamma, min_timesteps_per_batch, max_path_length, learning_rate, reward_to_go, animate, logdir, normalize_advantages, nn_baseline, seed, n_layers, size): start = time.time() #========================================================================================# # Set Up Logger #========================================================================================# setup_logger(logdir, locals()) #========================================================================================# # Set Up Env #========================================================================================# # Make the gym environment env = gym.make(env_name) # Set random seeds tf.set_random_seed(seed) np.random.seed(seed) env.seed(seed) # Maximum length for episodes max_path_length = max_path_length or env.spec.max_episode_steps # Is this env continuous, or self.discrete? discrete = isinstance(env.action_space, gym.spaces.Discrete) # Observation and action sizes ob_dim = env.observation_space.shape[0] ac_dim = env.action_space.n if discrete else env.action_space.shape[0] #========================================================================================# # Initialize Agent #========================================================================================# computation_graph_args = { 'n_layers': n_layers, 'ob_dim': ob_dim, 'ac_dim': ac_dim, 'discrete': discrete, 'size': size, 'learning_rate': learning_rate, } sample_trajectory_args = { 'animate': animate, 'max_path_length': max_path_length, 'min_timesteps_per_batch': min_timesteps_per_batch, } estimate_return_args = { 'gamma': gamma, 'reward_to_go': reward_to_go, 'nn_baseline': nn_baseline, 'normalize_advantages': normalize_advantages, } agent = Agent(computation_graph_args, sample_trajectory_args, estimate_return_args) # build computation graph agent.build_computation_graph() # tensorflow: config, session, variable initialization agent.init_tf_sess() #========================================================================================# # Training Loop #========================================================================================# total_timesteps = 0 for itr in range(n_iter): print("********** Iteration %i ************"%itr) paths, timesteps_this_batch = agent.sample_trajectories(itr, env) total_timesteps += timesteps_this_batch # Build arrays for observation, action for the policy gradient update by concatenating # across paths ob_no = np.concatenate([path["observation"] for path in paths]) ac_na = np.concatenate([path["action"] for path in paths]) re_n = [path["reward"] for path in paths] q_n, adv_n = agent.estimate_return(ob_no, re_n) agent.update_parameters(ob_no, ac_na, q_n, adv_n) # Log diagnostics returns = [path["reward"].sum() for path in paths] ep_lengths = [pathlength(path) for path in paths] logz.log_tabular("Time", time.time() - start) logz.log_tabular("Iteration", itr) logz.log_tabular("AverageReturn", np.mean(returns)) logz.log_tabular("StdReturn", np.std(returns)) logz.log_tabular("MaxReturn", np.max(returns)) logz.log_tabular("MinReturn", np.min(returns)) logz.log_tabular("EpLenMean", np.mean(ep_lengths)) logz.log_tabular("EpLenStd", np.std(ep_lengths)) logz.log_tabular("TimestepsThisBatch", timesteps_this_batch) logz.log_tabular("TimestepsSoFar", total_timesteps) logz.dump_tabular() logz.pickle_tf_vars() def main(): import argparse parser = argparse.ArgumentParser() parser.add_argument('env_name', type=str) parser.add_argument('--exp_name', type=str, default='vpg') parser.add_argument('--render', action='store_true') parser.add_argument('--discount', type=float, default=1.0) parser.add_argument('--n_iter', '-n', type=int, default=100) parser.add_argument('--batch_size', '-b', type=int, default=1000) parser.add_argument('--ep_len', '-ep', type=float, default=-1.) parser.add_argument('--learning_rate', '-lr', type=float, default=5e-3) parser.add_argument('--reward_to_go', '-rtg', action='store_true') parser.add_argument('--dont_normalize_advantages', '-dna', action='store_true') parser.add_argument('--nn_baseline', '-bl', action='store_true') parser.add_argument('--seed', type=int, default=1) parser.add_argument('--n_experiments', '-e', type=int, default=1) parser.add_argument('--n_layers', '-l', type=int, default=2) parser.add_argument('--size', '-s', type=int, default=64) args = parser.parse_args() if not(os.path.exists('data')): os.makedirs('data') logdir = args.exp_name + '_' + args.env_name + '_' + time.strftime("%d-%m-%Y_%H-%M-%S") logdir = os.path.join('data', logdir) if not(os.path.exists(logdir)): os.makedirs(logdir) max_path_length = args.ep_len if args.ep_len > 0 else None processes = [] for e in range(args.n_experiments): seed = args.seed + 10*e print('Running experiment with seed %d'%seed) def train_func(): train_PG( exp_name=args.exp_name, env_name=args.env_name, n_iter=args.n_iter, gamma=args.discount, min_timesteps_per_batch=args.batch_size, max_path_length=max_path_length, learning_rate=args.learning_rate, reward_to_go=args.reward_to_go, animate=args.render, logdir=os.path.join(logdir,'%d'%seed), normalize_advantages=not(args.dont_normalize_advantages), nn_baseline=args.nn_baseline, seed=seed, n_layers=args.n_layers, size=args.size ) # # Awkward hacky process runs, because Tensorflow does not like # # repeatedly calling train_PG in the same thread. p = Process(target=train_func, args=tuple()) p.start() processes.append(p) # if you comment in the line below, then the loop will block # until this process finishes # p.join() for p in processes: p.join() if __name__ == "__main__": main()
[ "perl.jonathan@gmail.com" ]
perl.jonathan@gmail.com
cb1255443d464075c4a0a21807a42108d40cac93
bc9b637285f1302386f9812eb41e71759148a442
/AnalysisScripts/py/cv67.py
5dde412e14bef9bd5bca3e761dc37b5bb6ba5bf1
[]
no_license
regkwee/LHC-Collimation
744aa431c60345aedfc0bc001bbe106a3104d3e2
22e87527c0acd724ee7e99f12d681af60c5ebfaa
refs/heads/master
2021-10-02T20:15:14.767031
2018-11-30T12:37:02
2018-11-30T12:37:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,470
py
#!/usr/bin/python # # reweights by pressure profile # Sept 16 # # R Kwee, 2016 # # --------------------------------------------------------------------------------- import ROOT, sys, glob, os, math, helpers from ROOT import * # get function to read the data if 14 columns are present from cv32 import getdata14c from helpers import makeTGraph, mylabel, wwwpath # -------------------------------------------------------------------------------- def cv67(): # -------------------------------------------------------------------------------- # density profile is given in the following format: # densities per molecule as function of s-coordinate # x,y,z, cx, cy, cz as function of (different s-coordinate) # merge densities with coordinates # note, that the source routine needs fluka units, ie *cm*! # -------------------------------------------------------------------------------- energy = "4 TeV" bgfile = '/afs/cern.ch/work/r/rkwee/HL-LHC/beam-gas-sixtrack/pressure_profiles_2012/LSS1_B1_Fill2736_Final.csv' bgfile = "/Users/rkwee/Documents/RHUL/work/data/4TeV/LSS1_B1_Fill2736_Final.csv" beamintensity = 2e14 energy = " 3.5 TeV " bgfile = "/Users/rkwee/Documents/RHUL/work/HL-LHC/runs/TCT/LSS1_B1_fill_2028-sync_rad_and_ecloud.csv" beamintensity = 1.66e14 # https://acc-stats.web.cern.ch/acc-stats/#lhc/fill-details 2028 debug = 0 data = getdata14c(bgfile) print 'data keys are',data.keys() nb_s = len(data['s']) print 'number of s values', nb_s # atomic densities rho_C, rho_H, rho_O = [0 for i in range(nb_s)],[0 for i in range(nb_s)],[0 for i in range(nb_s)] s = [-9999 for i in range(nb_s)] cf = 1. #for i in [1, 100, 300,500]: for i in range(1,nb_s): # get the data, convert to cm3 try: if debug: print 'i = ', i print "data['rho_H2'][i]", data['rho_H2'][i] print "data['rho_CH4'][i]", data['rho_CH4'][i] print "data['rho_CO'][i]", data['rho_CO'][i] print "data['rho_CO2'][i]", data['rho_CO2'][i] rho_H2 = cf * float(data['rho_H2'][i]) rho_CH4 = cf * float(data['rho_CH4'][i]) rho_CO = cf * float(data['rho_CO'][i]) rho_CO2 = cf * float(data['rho_CO2'][i]) # compute atomic rhos and translate nitrogen equivalent density rho_H[i] = 2.0*rho_H2 rho_H[i] += 4.0*rho_CH4 rho_C[i] = 1.0*rho_CH4 rho_C[i] += 1.0*rho_CO rho_C[i] += 1.0*rho_CO2 rho_O[i] = 1.0*rho_CO rho_O[i] += 2.0*rho_CO2 s[i] = float(data['s'][i]) except ValueError: continue # -- # calculate the scaled number # unscaled inf hname, nbins, xmin, xmax = 'muons', 523, 22.5, 550 hist = TH1F(hname, hname, nbins, xmin, xmax) hist.Sumw2() hist.GetXaxis().SetTitle('s [m]') datafile = '/afs/cern.ch/project/lhc_mib/valBG4TeV/ir1_BG_bs_4TeV_20MeV_b1_nprim5925000_67' datafile = '/Users/rkwee/Documents/RHUL/work/HL-LHC/runs/TCT/ir1_BG_bs_4TeV_20MeV_b1_nprim5925000_67' datafile = "/Users/rkwee/Documents/RHUL/work/HL-LHC/runs/TCT/beam_gas_3.5TeV_IR1_to_arc_20MeV_100M_nprim7660649_66" bbgFile = datafile + ".root" rfile = TFile.Open(bbgFile, "READ") hists = [] cnt = 0 mt = rfile.Get('particle') particleTypes = [10, 11] hname = 'muons_flatpressure' hist_flat = hist.Clone(hname) hist_pint = hist.Clone("pint") hist_e100 = hist.Clone("e100") hist_e100p = hist.Clone("e100p") cuts = "(particle == 10 || particle == 11) && energy_ke > 100.0" var = 'z_interact * 0.01' print "INFO: applying", cuts, "to", var, "in", "e100" mt.Project("e100", var, cuts) cuts = "(particle == 10 || particle == 11) && energy_ke > 0.02" print "INFO: applying", cuts, "to", var, "in", hname mt.Project(hname, var, cuts) sigma_N = 286.e-31 sigma_N_4TeV = 289.e-31 Trev = 2*math.pi/112450 # create histogram with same axis for pint pint_tot_atomic = calc_pint_tot(rho_C, rho_H, rho_O) # N2Eq_tot = [ float(data['CO_N2Eq'][i]) + float(data['CO2_N2Eq'][i]) + float(data['CH4_N2Eq'][i]) + float(data['H2_N2Eq'][i]) for i in range(1,len(data['s'])) ] # pint_tot = [sigma_N*j/Trev for j in range(len(N2Eq_tot))] rho_tot = [ float(data['rho_CO'][i]) + float(data['rho_CO2'][i]) + float(data['rho_CH4'][i]) + float(data['rho_H2'][i]) for i in range(1,len(data['s'])) ] pint_tot = [sigma_N*rho/Trev for rho in rho_tot] pint_incomingbeam = {} for i,sPos in enumerate(s): spos = float(sPos) if spos < 0.: z = -spos pint_incomingbeam[z] = pint_tot[i] zbin = hist_pint.FindBin(z) hist_pint.SetBinContent(zbin, pint_incomingbeam[z]) # first value is for arc arcvalue = pint_tot[1] startarc = 260. startarcBin = hist_pint.FindBin(startarc) for i in range(startarcBin, nbins-1): hist_pint.SetBinContent(i,arcvalue) nprim = float(bbgFile.split('nprim')[-1].split('_')[0]) Trev = 2*math.pi/112450 kT = 1.38e-23*300 # compute normalisation fct for each bin for i in range(1,nbins+1): m = hist_flat.GetBinContent(i) scale = beamintensity * hist_pint.GetBinContent(i) hist.SetBinContent(i,scale * m) hist_e100p.SetBinContent(i, scale * hist_e100.GetBinContent(i)) if i<11: print "pint in bin", i, "is", hist_pint.GetBinContent(i) print "pint * beamintensity is", scale print "pint * beamintensity * m is", scale*m cv = TCanvas( 'cv', 'cv', 2100, 900) cv.SetGridy(1) cv.SetGridx(1) x1, y1, x2, y2 = 0.7, 0.65, 0.9, 0.88 mlegend = TLegend( x1, y1, x2, y2) mlegend.SetFillColor(0) mlegend.SetFillStyle(0) mlegend.SetLineColor(0) mlegend.SetTextSize(0.035) mlegend.SetShadowColor(0) mlegend.SetBorderSize(0) ytitle = "particles/m/BG int." YurMin, YurMax = 2e2, 9e6 hist.GetYaxis().SetRangeUser(YurMin,YurMax) XurMin,XurMax = 0.,545. hist.GetXaxis().SetRangeUser(XurMin,XurMax) hist_flat.SetLineColor(kRed) hist_flat.GetYaxis().SetTitle(ytitle) hist.GetYaxis().SetTitle(ytitle) hist_e100p.SetFillColor(kRed-3) hist_e100p.SetLineColor(kRed-3) # hist_flat.Draw("hist") hist.Draw("hist") hist_e100p.Draw("histsame") #hist_pint.GetXaxis().SetRangeUser(1.e-13,2.5e-11) #hist_pint.Draw("l") lg, lm = "#mu^{#pm}", 'l' mlegend.AddEntry(hist_flat, lg, lm) lg, lm = "#mu^{#pm} E > 100 GeV", 'f' mlegend.AddEntry(hist_e100p, lg, lm) gPad.SetLogy(1) gPad.RedrawAxis() lab = mylabel(42) # lab.DrawLatex(0.45, 0.9, energy+'beam-gas' ) lab.DrawLatex(0.4, 0.82, energy ) #mlegend.Draw() pname = wwwpath + 'TCT/beamgas/pressure_profiles_2012/muonrates.pdf' pname = "/Users/rkwee/Documents/RHUL/work/HL-LHC/LHC-Collimation/Documentation/ATS/HLHaloBackgroundNote/figures/4TeV/reweighted/muonrates.pdf" pname = "/Users/rkwee/Documents/RHUL/work/HL-LHC/LHC-Collimation/Documentation/ATS/HLHaloBackgroundNote/figures/4TeV/reweighted/muonrates2011.pdf" # pname = "/Users/rkwee/Documents/RHUL/work/HL-LHC/LHC-Collimation/Documentation/ATS/HLHaloBackgroundNote/figures/4TeV/reweighted/pint2011.pdf" print('Saving file as ' + pname ) cv.Print(pname)
[ "Regina.Kwee@cern.ch" ]
Regina.Kwee@cern.ch
2843a54ecf8ef912bbe42609b777510055fc7424
07065baf1ba995691ffbd19afd90eacbcb81f84c
/Liquid/images/generate_HTML_image_links.py
52a8793332b05cfa3cbdc9e9a694d6b8dcbb4d70
[]
no_license
theloracle/laurel-code-foo
71e2a1d25728e3be0ad681f85706968b0cd0bac4
9857bff6ef8b40149d2f9d60f56d248bf4eb06da
refs/heads/master
2021-01-19T14:07:47.629223
2012-04-30T09:17:50
2012-04-30T09:17:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
426
py
while 1: color = raw_input("Color?: ") end = int(raw_input("# of imgs?: ")) for x in range(1, end +1): print '<li>Bot'+str(x)+'</li>' print '<a href="images/'+color+str(x)+'.jpg" rel="lightbox['+color+']"title="Bot'+str(x)+'">' print '<img src="images/'+color+str(x)+'.jpg" rel="lightbox" height=50% width= 50%/></a>' y = raw_input("Done?: ") if y == "y": break
[ "eibachla@gmail.com" ]
eibachla@gmail.com
a70f7d20f7d65f7a4532b40577899f7f0a8771dc
d23d974fefa2ff0058b849a6584a0dc24458fd00
/src/gym-snake/gym_snake/core/new_world.py
9a797522e85a16c1df53b9afbd1bc41d9a03bae8
[ "MIT" ]
permissive
jdubkim/Self-play-on-Multi-Snakes-Environment
fa672e5b5e2e88487d9426fffaf1a5a33c464867
8e72c66110a007d6bf0ca2ff68fc0a845f3b3a42
refs/heads/master
2020-03-22T02:45:22.167284
2020-01-12T13:55:54
2020-01-12T13:55:54
139,391,281
2
0
null
null
null
null
UTF-8
Python
false
false
8,180
py
import random from copy import copy import numpy as np class Snake: def __init__(self, snake_id, start_pos, direction, start_length=3): self.snake_id = snake_id self.start_pos = start_pos self.start_length = start_length self.snake_length = start_length self.alive = True self.hunger = 0 self.snake_body = [start_pos] self.direction = direction current_pos = start_pos #for i in range(1, start_length): # current_pos = tuple(np.subtract(current_pos, self.direction)) # self.snake_body.append(current_pos) # print("snake body is ", self.snake_body) def step(self, action): if len(self.snake_body) == 0: return 0 head = self.snake_body[0] new_head = head print("action is ", action) if action == 1 and self.direction != (-1, 0): self.direction = (1, 0) elif action == 2 and self.direction != (0, -1): self.direction = (0, 1) elif action == 3 and self.direction != (1, 0): self.direction = (-1, 0) elif action == 4 and self.direction != (0, 1): self.direction = (0, -1) if self.direction != (0, 0): new_head = (head[0] + self.direction[0], head[1] + self.direction[1]) else: print("direction is 0, 0") return new_head class World: REWARD = {'dead': -1, 'move': 0, 'eat': 1} DIRECTIONS = [(-1, 0), (0, 1), (1, 0), (0, -1)] FOOD = 255 def __init__(self, size, n_snakes, n_fruits, seed, is_competitive=False): self.size = size self.dim = size[0] # or size[1] self.world = np.zeros(size) self.np_rand = seed self.is_competitive = is_competitive self.snakes = [] self.dead_snakes = [] self.fruits = [] self.time_step = 0 # Initialise snakes for i in range(n_snakes): self.register_snake(i) # Initialise fruits for i in range(n_fruits): self.fruits.append(self.get_safe_cell()) def register_snake(self, snake_id): pos = self.get_rand_cell() # while not pos in self.get_available_pos(): # pos = (random.randint(snake_size, self.size[0] - snake_size), # random.randint(snake_size, self.size[1] - snake_size)) # direction = self.DIRECTIONS[random.randrange(4)] new_snake = Snake(snake_id, pos, (0, 0)) self.snakes.append(new_snake) return new_snake def move_snakes(self, actions): reward = 0.0 done = False # snake == self.snakes[i] for i, snake in enumerate(self.snakes): new_snake_head = snake.step(actions[i]) if i == 0: # for main agent reward = self.get_status_fruit(snake, new_snake_head) else: self.get_status_fruit(snake, new_snake_head) for i, snake in enumerate(self.snakes): snake.alive = self.get_status_alive(snake) if not snake.alive: if not snake in self.dead_snakes: self.dead_snakes.append(snake) if i == 0: done = snake.alive return reward, done def get_status_alive(self, snake): if len(snake.snake_body) == 0: return False head = snake.snake_body[0] if (max(head) > self.dim - 1) or (min(head) < 0): snake.snake_body = [] return False other_snakes = copy(self.snakes) other_snakes.remove(snake) for (s_idx, o_snake) in enumerate(other_snakes): if head in o_snake.snake_body: snake.snake_body = [] print("in other snakes") return False if head in snake.snake_body[1:]: return False return True def get_status_fruit(self, snake, new_snake_head): if new_snake_head == 0: return 0 reward = 0.0 eaten_fruits = [] for i, fruit in enumerate(self.fruits): if new_snake_head == fruit: eaten_fruits.append(i) reward += 1.0 snake.snake_length += 2 if len(snake.snake_body) >= snake.snake_length: snake.snake_body.pop() # print("new snake head is ", new_snake_head) snake.snake_body.insert(0, new_snake_head) for new_fruit_index in eaten_fruits: self.fruits[new_fruit_index] = self.get_safe_cell() return reward def get_obs_for_snake(self, idx): view_dim = self.dim + 2 obs = np.full((view_dim, view_dim, 3), 0, dtype='uint8') for fruit in self.fruits: self.render_fruit(obs, fruit) for i, snake in enumerate(self.snakes): if i == idx: color = Color.get_snake_color(0) else: color = Color.get_snake_color(1) self.render_snake(obs, self.snakes[i], color) for i in range(view_dim): color = Color.get_color('wall') obs[i][0] = color obs[i][self.dim + 1] = color obs[0][i] = color obs[self.dim + 1][i] = color return obs def get_obs_world(self): view_dim = self.dim + 2 obs = np.full((view_dim, view_dim, 3), 0, dtype='uint8') for fruit in self.fruits: self.render_fruit(obs, fruit) for i, snake in enumerate(self.snakes): color = Color.get_snake_color(i) self.render_snake(obs, snake, color) for i in range(view_dim): color = Color.get_color('wall') obs[i][0] = color obs[i][self.dim + 1] = color obs[0][i] = color obs[self.dim + 1][i] = color return obs def get_multi_snake_obs(self): total_obs = [] for i, snake in enumerate(self.snakes): total_obs.append(self.get_obs_for_snake(i)) total_obs = np.concatenate(total_obs, axis=2) return total_obs #t = np.concatenate((self.get_obs_for_snake(0), self.get_obs_for_snake(1)), axis=2) #return t # concatenate two arrays (12 * 12 * 3) convert it to (12 * 12 * 9) def render_snake(self, obs, snake, color): if len(snake.snake_body) == 0 or not snake.alive: return head = snake.snake_body[0] for body in snake.snake_body: obs[body[0] + 1][body[1] + 1] = color[0] obs[head[0] + 1][head[1] + 1] = color[1] def render_fruit(self, obs, fruit): obs[fruit[0] + 1][fruit[1] + 1] = Color.get_color('fruit') def get_rand_cell(self): return self.np_rand.randint(self.dim), self.np_rand.randint(self.dim) def get_safe_cell(self): available_pos = list(range(self.dim * self.dim)) for snake in self.snakes: if len(snake.snake_body) > 0: used_cells = list(map(lambda x: x[1] * self.dim + x[0], snake.snake_body)) available_pos = np.setdiff1d(available_pos, used_cells) x = 0 if len(available_pos) > 0: x = available_pos[self.np_rand.randint(len(available_pos))] return x % self.dim, x // self.dim def get_available_pos(self): available_pos = set([(i, j) for i in range(self.size[0]) for j in range(self.size[1])]) for snake in self.snakes: available_pos = available_pos - set(snake.snake_body) return available_pos class Color: def get_color(key): colors = {'fruit': [255, 0, 0], 'wall': [255, 255, 255], 'empty': [0, 0, 0] } return colors[key] def get_snake_color(idx): p_colors = {0: [[0, 204, 0], [191, 242, 191]], # Green 1: [[0, 51, 204], [128, 154, 230]], # Blue 2: [[204, 0, 119], [230, 128, 188]], # Magenta 3: [[119, 0, 204], [188, 128, 230]], # Violet } return p_colors[idx]
[ "jeewoo1998@gmail.com" ]
jeewoo1998@gmail.com
3cf83f944276bc5b5775acc12ffc5cb5e1939a77
a9e47206ab3434212595f11c5ddb5250876093e1
/mapping_server/urls.py
c10573b1eec31defc4129dc78d9a7f6659ea63ae
[]
no_license
aweb-pj/mapping-server2
5a760fcf5928bad1187500dffd250cd031b8724c
b400ad135debc13087026b9008a77163701b5c39
refs/heads/master
2020-03-29T00:59:41.096620
2017-06-22T17:09:25
2017-06-22T17:09:25
94,637,799
0
1
null
null
null
null
UTF-8
Python
false
false
826
py
"""mapping_server URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import include,url from django.contrib import admin urlpatterns = [ url(r'^mapping/', include('action.urls')), url(r'^admin/', admin.site.urls), ]
[ "913575864@qq.com" ]
913575864@qq.com
bc181da1b46971b964437590de20297cc7848837
e21e962ed98a5a8c6c1fc0d7d6885e33c5a77469
/Voting_ganache/node_modules/ganache-cli/node_modules/ganache-core/node_modules/web3-providers-ws/node_modules/websocket/build/config.gypi
468391b5890aa15c28091ed3af9e80421d6421eb
[ "Apache-2.0", "MIT" ]
permissive
perrywang123/FinalProject
4624d2ea26aa5bc038046d3cea5b096560ca75bf
f7934bcc48dda509b7d9e750d0626b43a29dfc30
refs/heads/master
2020-04-14T04:46:55.598766
2018-12-31T07:02:31
2018-12-31T07:02:31
163,645,139
0
0
null
null
null
null
UTF-8
Python
false
false
4,966
gypi
# Do not edit. File was generated by node-gyp's "configure" step { "target_defaults": { "cflags": [], "default_configuration": "Release", "defines": [], "include_dirs": [], "libraries": [] }, "variables": { "asan": 0, "coverage": "false", "debug_devtools": "node", "debug_http2": "false", "debug_nghttp2": "false", "force_dynamic_crt": 0, "host_arch": "x64", "icu_gyp_path": "tools/icu/icu-system.gyp", "icu_small": "false", "llvm_version": 0, "node_byteorder": "little", "node_enable_d8": "false", "node_enable_v8_vtunejit": "false", "node_install_npm": "false", "node_module_version": 57, "node_no_browser_globals": "false", "node_prefix": "/usr", "node_release_urlbase": "", "node_shared": "false", "node_shared_cares": "true", "node_shared_http_parser": "true", "node_shared_libuv": "true", "node_shared_nghttp2": "true", "node_shared_openssl": "true", "node_shared_zlib": "true", "node_tag": "", "node_target_type": "executable", "node_use_bundled_v8": "true", "node_use_dtrace": "false", "node_use_etw": "false", "node_use_lttng": "false", "node_use_openssl": "true", "node_use_perfctr": "false", "node_use_v8_platform": "true", "node_without_node_options": "false", "openssl_fips": "", "openssl_no_asm": 0, "shlib_suffix": "so.57", "target_arch": "x64", "uv_parent_path": "/deps/uv/", "uv_use_dtrace": "false", "v8_enable_gdbjit": 0, "v8_enable_i18n_support": 1, "v8_enable_inspector": 1, "v8_no_strict_aliasing": 1, "v8_optimized_debug": 0, "v8_promise_internal_field_count": 1, "v8_random_seed": 0, "v8_trace_maps": 0, "v8_use_snapshot": "false", "want_separate_host_toolset": 0, "nodedir": "/home/wpy/.node-gyp/8.11.4", "standalone_static_library": 1, "cache_lock_stale": "60000", "ham_it_up": "", "legacy_bundling": "", "sign_git_tag": "", "user_agent": "npm/6.4.1 node/v8.11.4 linux x64", "always_auth": "", "bin_links": "true", "key": "", "allow_same_version": "", "description": "true", "fetch_retries": "2", "heading": "npm", "if_present": "", "init_version": "1.0.0", "user": "", "prefer_online": "", "noproxy": "", "force": "", "only": "", "read_only": "", "cache_min": "10", "init_license": "ISC", "editor": "vi", "rollback": "true", "tag_version_prefix": "v", "cache_max": "Infinity", "timing": "", "userconfig": "/home/wpy/.npmrc", "engine_strict": "", "init_author_name": "", "init_author_url": "", "preid": "", "tmp": "/tmp", "depth": "Infinity", "package_lock_only": "", "save_dev": "", "usage": "", "metrics_registry": "https://registry.npm.taobao.org/", "otp": "", "package_lock": "true", "progress": "true", "https_proxy": "", "save_prod": "", "audit": "true", "cidr": "", "onload_script": "", "sso_type": "oauth", "rebuild_bundle": "true", "save_bundle": "", "shell": "/bin/bash", "prefix": "/usr/local", "dry_run": "", "scope": "", "registry": "https://registry.npm.taobao.org/", "browser": "", "cache_lock_wait": "10000", "ignore_prepublish": "", "save_optional": "", "searchopts": "", "versions": "", "cache": "/home/wpy/.npm", "send_metrics": "", "global_style": "", "ignore_scripts": "", "version": "", "local_address": "", "viewer": "man", "node_gyp": "/usr/local/lib/node_modules/npm/node_modules/node-gyp/bin/node-gyp.js", "audit_level": "low", "prefer_offline": "", "color": "true", "sign_git_commit": "", "fetch_retry_mintimeout": "10000", "maxsockets": "50", "offline": "", "sso_poll_frequency": "500", "umask": "0022", "fetch_retry_maxtimeout": "60000", "logs_max": "10", "message": "%s", "ca": "", "cert": "", "global": "", "link": "", "access": "", "also": "", "save": "true", "unicode": "true", "long": "", "production": "", "searchlimit": "20", "unsafe_perm": "true", "update_notifier": "true", "auth_type": "legacy", "node_version": "8.11.4", "tag": "latest", "git_tag_version": "true", "commit_hooks": "true", "script_shell": "", "shrinkwrap": "true", "fetch_retry_factor": "10", "save_exact": "", "strict_ssl": "true", "globalconfig": "/etc/npmrc", "dev": "", "init_module": "/home/wpy/.npm-init.js", "parseable": "", "globalignorefile": "/etc/npmignore", "cache_lock_retries": "10", "searchstaleness": "900", "node_options": "", "save_prefix": "^", "scripts_prepend_node_path": "warn-only", "group": "1000", "init_author_email": "", "searchexclude": "", "git": "git", "optional": "true", "json": "" } }
[ "1731611872@qq.com" ]
1731611872@qq.com
60316d664a4795400d93a8c1d5c0da68d691e61a
9483919096697dd198aa76c63e4292515874b247
/Basic5_Nested_Loops/1380_10826077(AC).py
af0751d5def5b6d425e4dfc2c897dc76c7eaa42b
[]
no_license
ankiwoong/Code_UP
0811c7b9a2ce4c8e5a8dc2b33dfffcdccfca31aa
09cade40d9f42a915294adf39c9a2b9d3e4cae80
refs/heads/master
2020-12-01T15:49:16.615354
2020-04-10T01:49:08
2020-04-10T01:49:08
230,687,855
0
0
null
null
null
null
UTF-8
Python
false
false
197
py
import io, sys sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf8') k = int(input()) for i in range(1, 7): for j in range(1, 7): if i +j == k: print(i, j)
[ "ankiwoong@gmail.com" ]
ankiwoong@gmail.com
5a3006c51a82a94c798fc606ce974ff6a94620fc
5fa9efa61eb1fb53c3507bcb1fff3522bb40837f
/app.py
4b45076ddc11c4ac7061a84bfef1de4f37c333d3
[]
no_license
abuarbaz/Kubernetes
964cd93aab53fd96dee46395f0328b77022056f4
08e6763abd103a71c0146f7f97d0ddff2853fa54
refs/heads/main
2023-03-08T09:24:11.272969
2021-02-19T15:27:22
2021-02-19T15:27:22
340,408,244
0
0
null
null
null
null
UTF-8
Python
false
false
1,752
py
#!/usr/bin/env python3 from bottle import run, get, post, response from prometheus_client import Counter, generate_latest, CollectorRegistry import os import redis rcon = redis.StrictRedis( host=os.getenv("REDIS_HOST", default="localhost"), port=os.getenv("REDIS_PORT", default=6379), password=os.getenv("REDIS_PASSWORD", default=""), socket_connect_timeout=5, socket_timeout=5, ) registry = CollectorRegistry() c = Counter('http_requests_total', 'HTTP requests total', ['method', 'endpoint'], registry=registry) @get('/info/liveness') def liveness(): c.labels('GET', '/info/liveness').inc() return "healthy" @get('/info/readiness') def readiness(): c.labels('GET', '/info/readiness').inc() try: rcon.ping() except redis.exceptions.RedisError: response.status = 503 body = "not ready" else: body = "ready" return body @post('/increment') def increment(): c.labels('POST', '/increment').inc() try: rcon.incr("test-key", 1) except redis.exceptions.RedisError: response.status = 500 body = "Failed to increment redis key" else: response.status = 200 body = "ok" return body @get('/getkey') def getkey(): c.labels('GET', '/getkey').inc() try: value = rcon.get("test-key") or "0" except redis.exceptions.RedisError: response.status = 500 body = "Failed to get value of a key" else: response.status = 200 body = value return body @get('/info/metrics') def getmetrics(): return generate_latest(registry) if __name__ == "__main__": run( host=os.getenv("HOST", default="0.0.0.0"), port=os.getenv("PORT", default="8080"), )
[ "arbazmohammed17@gmail.com" ]
arbazmohammed17@gmail.com
59a96f4dc9ceea0df78b9b607a5ffb2d71df4e00
02e092a20950f1108e526950435708f653628bd5
/flaskr/apps/auth/view_auth.py
608e900ad05422ce07fa0ee8127f9345115bb4e7
[]
no_license
chin-saya/flask-sample
7031beacf5cd21f366db17dd01d6a279e0d5ec15
f6ba3db731cd9598f8a8df5487f91a37ba81e2a5
refs/heads/master
2020-03-25T13:49:02.518296
2019-01-02T03:39:15
2019-01-02T03:39:15
143,844,293
0
0
null
null
null
null
UTF-8
Python
false
false
2,368
py
#!/usr/bin/env python # _*_ coding:utf-8 _*_ from . import auth from exts import db from models import User from flask import flash, redirect, render_template, request, url_for from flask_login import login_user, logout_user from utils.common import is_safe_url from werkzeug.exceptions import abort @auth.route('/register/', methods=('GET', 'POST')) def register(): if request.method == 'POST': username = request.form.get("username") password = request.form.get("password") error = None if not username: error = 'Username is required.' elif not password: error = 'Password is required.' elif User.query.filter(User.username == username).first() is not None: error = 'User {} is already registered.'.format(username) if error is None: user = User(username=username, password=password) db.session.add(user) db.session.commit() return redirect(url_for('auth.login')) flash(error) return render_template('auth/register.html') @auth.route('/login/', methods=('GET', 'POST')) def login(): if request.method == 'POST': username = request.form.get("username") password = request.form.get("password") next = request.args.get("next") error = None user = User.query.filter(User.username == username).first() # 登录验证失败 if user is None: error = 'Incorrect username.' elif not user.verify_password(password): error = 'Incorrect password.' # 登录验证成功 if error is None: login_user(user) # 验证next防止重定向攻击 if not is_safe_url(next): abort(400) return redirect(next or url_for('blog.index')) flash(error) return render_template('auth/login.html') # before_request只能应用到属于蓝本的请求上 # 若要在蓝本中使用针对程序全局请求的钩子,使用before_app_request # @auth.before_app_request # def load_logged_in_user(): # user_id = session.get('user_id') # # if user_id is None: # g.user = None # else: # g.user = User.query.get(user_id) @auth.route('/logout/') def logout(): logout_user() return redirect(url_for('blog.index'))
[ "chenhaiwen@cecgw.cn" ]
chenhaiwen@cecgw.cn
b1f3e07beb6a1adce6360ecb5ecd3b15ccd21135
ab19c316ba8995aebf5c0d6c861a65e3853cef34
/assignment4/ex38.py
12ae60c0ab1f6860bb7492b5dc14e4ffcf053ceb
[]
no_license
joshuascodes/afs505_u1
0466721fe7300e2b48cc638900296a5be4bdc8c8
2a2dd2ac6c3471ff49df501cfa5c9b87b6b880f4
refs/heads/master
2020-12-15T17:20:33.017506
2020-07-07T21:02:35
2020-07-07T21:02:35
234,392,663
0
0
null
null
null
null
UTF-8
Python
false
false
580
py
ten_things = "apples oranges crows telephone light sugar" print("wait there are not 10 things in that list, lets fix that") stuff = ten_things.split(' ') more_stuff = ["day", "night", "song", "frisbee", "corn", "banana", "girl", "boy"] while len(stuff) != 10: next_one = more_stuff.pop() print("adding: ", next_one) stuff.append(next_one) print(f"There are {len(stuff)} items now") print("there we go: ", stuff) print("lets do some things with stuff.") print(stuff[1]) print(stuff[-1]) print(stuff.pop()) print('#'.join(stuff[3:5]))
[ "noreply@github.com" ]
joshuascodes.noreply@github.com
0ed4160351434c43539ae0ed376abcfc88ea6a88
f0dcf51ca12abf81e92f70d4bb61267ee1934a2c
/herramienta/migrations/0001_initial.py
1a39426c9b42dc1e976a225a303b2a83287696d9
[]
no_license
leo452/Final_ConectaTE_group4
de779c2d39854966b164875ded26fcd49ffdc3db
92f520d7a660e10ed5bc89732cc29663efd0e011
refs/heads/master
2020-03-18T13:19:16.570147
2018-05-21T03:28:52
2018-05-21T03:28:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,462
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.11 on 2018-03-25 14:40 from __future__ import unicode_literals import cuser.fields from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django_model_changes.changes class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Categoria', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('nombre', models.CharField(max_length=100)), ('descripcion', models.CharField(blank=True, max_length=100, null=True)), ], options={ 'verbose_name': 'Categoria', 'verbose_name_plural': 'Categorias', }, ), migrations.CreateModel( name='Herramienta', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('nombre', models.CharField(max_length=100)), ('descripcion', models.CharField(blank=True, max_length=1000, null=True)), ('informacion', models.CharField(blank=True, max_length=1000, null=True)), ('usos', models.CharField(blank=True, max_length=1000, null=True)), ('enlaces', models.CharField(blank=True, max_length=1000, null=True)), ('documentacion', models.CharField(blank=True, max_length=1000, null=True)), ('estado', models.IntegerField(choices=[(0, 'Borrador'), (1, 'Revisi\xf3n'), (2, 'Publica')], default=0)), ('licencia', models.CharField(blank=True, max_length=1000, null=True)), ('descarga_url', models.CharField(blank=True, max_length=1000, null=True)), ('creacion', models.DateField(auto_now_add=True)), ('owner', cuser.fields.CurrentUserField(editable=False, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='created_mymodels', to=settings.AUTH_USER_MODEL)), ('tipo', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='herramienta.Categoria')), ], options={ 'verbose_name': 'Herramienta', 'verbose_name_plural': 'Herramientas', }, bases=(django_model_changes.changes.ChangesMixin, models.Model), ), migrations.CreateModel( name='HerramientaEdicion', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('nombre', models.CharField(blank=True, max_length=100, null=True)), ('descripcion', models.CharField(blank=True, max_length=1000, null=True)), ('informacion', models.CharField(blank=True, max_length=1000, null=True)), ('usos', models.CharField(blank=True, max_length=1000, null=True)), ('enlaces', models.CharField(blank=True, max_length=1000, null=True)), ('documentacion', models.CharField(blank=True, max_length=1000, null=True)), ('licencia', models.CharField(blank=True, max_length=1000, null=True)), ('descarga_url', models.CharField(blank=True, max_length=1000, null=True)), ('creacion', models.DateField(auto_now_add=True)), ('observacion', models.CharField(blank=True, max_length=1000, null=True, verbose_name='Observacion')), ('herramienta', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='herramienta.Herramienta')), ], options={ 'verbose_name': 'Edicion de herramienta', 'verbose_name_plural': 'Ediciones de herramienta', }, bases=(django_model_changes.changes.ChangesMixin, models.Model), ), migrations.CreateModel( name='Revision', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('nombre', models.CharField(max_length=100)), ('descripcion', models.CharField(blank=True, max_length=500, null=True)), ], options={ 'verbose_name': 'Revision', 'verbose_name_plural': 'Revisiones', }, ), migrations.AddField( model_name='herramientaedicion', name='revision', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='herramienta.Revision', verbose_name='Estado de revision'), ), migrations.AddField( model_name='herramientaedicion', name='tipo', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='herramienta.Categoria'), ), migrations.AddField( model_name='herramientaedicion', name='usuarioHerramienta', field=cuser.fields.CurrentUserField(editable=False, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='created_edit_model', to=settings.AUTH_USER_MODEL), ), ]
[ "tj.marrugo10@uniandes.edu.co" ]
tj.marrugo10@uniandes.edu.co
a198846c54320a116d40ab861e75c935e1bb7b70
d6b7981e76a6559c256ad48ffd74b6109c87fedd
/1/1.2/1.2.b.py
08d077ceafaec5beae899a579a946265efbdefbf
[]
no_license
outtrip-kpsv/brainskills
ea5e88d8f231fd441835a8ebcf4e1875d15d5e31
b329cc2a1012d8285cda1e0d7fc952f2e95db08e
refs/heads/master
2022-12-31T19:31:36.434763
2020-10-15T19:52:39
2020-10-15T19:52:39
285,710,485
0
0
null
null
null
null
UTF-8
Python
false
false
131
py
def sign(x): if x > 0: return 1 elif x < 0: return -1 else: return 0 print(sign(int(input())))
[ "kpsv.igor@gmail.com" ]
kpsv.igor@gmail.com
1add8c75002fbce3f859b38780f7581b5e520bd9
5641ea4f21cbb541286d26571b53c9242dbc805c
/model/data_providers.py
cc05a70ae5cbc389876ea6213a726c3fd4596cab
[]
no_license
Masnerin/Testing_the_site_LiteCart
75f466fdb291aa0cd4fe616b6aa287d299d87a86
4f2fd1901a7f55fb879430395b31a2d7853d7beb
refs/heads/master
2020-03-25T03:11:22.960244
2018-08-11T12:51:52
2018-08-11T12:51:52
143,327,275
0
0
null
null
null
null
UTF-8
Python
false
false
3,308
py
from model.input_data import Customer, Admin, Product import os import time import random # Функция вывода текущего времени в милисекундах: def current_time_millis(): return int(round(time.time() * 1000)) # Функция создания уникального e-mail: def gen_email(): array = [chr(i) for i in range(65, 91)] random.shuffle(array) key = "" for i in range(7): key += array.pop() email = key.lower() + '@random-email.com' return email # Функция создания уникального имени пользователя: def gen_user_name(): array = [chr(i) for i in range(65, 91)] random.shuffle(array) key = "" for i in range(7): key += array.pop() user_name = key.title() return user_name # Функция создания уникального кода (32 символа: латинские буквы и цифры): def random_kod(): kod = '' for x in range(32): kod = kod + random.choice(list('1234567890abcdefghigklmnopqrstuvyxwz')) return kod def file_address(): address = str(os.getcwd() + "\product_new.jpg") return address admin = [Admin(username="admin", password="admin" ) ] new_customer = [Customer(username1="admin", password1="admin", firstname="Emma", lastname="Brown", phone="+0123456789", address="New Street, 123", postcode="12345", city="New City", country="US", zone="KS", email="emma%s@brown.com" % current_time_millis(), password="password" ) ] new_user = [Customer(firstname="%s" % gen_user_name(), lastname="%s" % gen_user_name(), phone="+016907734234", address="Old Street, 27", postcode="64100", city="Old City", country="US", zone="KS", email="%s" % gen_email(), password="password" ) ] new_product = [Product(username="admin", password="admin", product_name="New product", code_product="%s" % random_kod(), quantity="10", image="%s" % file_address(), date_valid_from="30052018", date_valid_to="31122018", keywords="product, new product", short_description="New product for sale", trumbowyg_editor="Why do we use it?\nGirl quit if case mr sing as no have. Small for ask shade water manor think men begin.", head_title="New product", meta_description="Very good product.", purchase_price="19,99", prices_usd="34,99", prices_eur="29,99", ) ]
[ "32953372+Masnerin@users.noreply.github.com" ]
32953372+Masnerin@users.noreply.github.com
2b76efc562c1c3e9c2c2b81b174ef091e6cb4437
5604ec101eb28549d7e3fa9cdd2084722e3b1432
/artifacts/spark_submit_templates/spark_submit_gametrics.py
28860f7ee73ba48ec44eaba287aa1672b8295c8f
[]
no_license
felipemsantos/datalake-toolkit
1f828e48b3a821e9ee1261d3a28968b449ae3f93
1e80619a0a37ce28dbe6bb7b380f6ba9003f7201
refs/heads/master
2023-01-23T14:48:16.643794
2020-12-09T13:00:42
2020-12-09T13:00:42
283,282,801
0
0
null
null
null
null
UTF-8
Python
false
false
2,378
py
from __future__ import print_function import sys from datetime import datetime from pyspark import SparkContext from pyspark.sql import SparkSession from pyspark.sql.functions import udf from pyspark.sql.types import * dt = str(sys.argv[1]) s3_object_name_stage = str(sys.argv[2]) hive_database = str(sys.argv[3]) hive_table = str(sys.argv[4]) s3_target = str(sys.argv[5]) # example: # dt = "2017-10-31" # s3_object_name_stage = "s3://it.centauro.odl.stage/doo/ga/ga_metrics/dt=2017-10-31/GA_2017_10_31_old.csv" # hive_database = "odl_dl" # hive_table = "tb_ga_metrics_parquet" # s3_target = "s3://it.centauro.odl.dl/ga_metrics_parquet/" print("dt: " + dt) print("s3_object_name_stage: " + s3_object_name_stage) print("hive_database: " + hive_database) print("hive_table: " + hive_table) print("s3_target: " + s3_target) if __name__ == "__main__": sc = SparkContext() spark = SparkSession.builder.appName(s3_object_name_stage + 'AND' + dt).config( "spark.hadoop.mapreduce.fileoutputcommitter.algorithm.version", "2").config("spark.speculation", "false").config( "hive.exec.dynamic.partition", "true").config("hive.exec.dynamic.partition.mode", "nonstrict").enableHiveSupport().getOrCreate() df = spark.read.option("header", "false").option("quote", "'").option("inferschema", "true").csv( s3_object_name_stage) df2 = df.selectExpr("_c0 as codigo1", "_c1 as codigo2", "_c2 as produto", "_c6 as data", "_c36 as data_compra") def parse_date(argument, format_date='%d/%m/%Y %H:%M:%S'): try: return datetime.strptime(argument, format_date) except: return None convert_date = udf(lambda x: parse_date(x, '%d/%m/%Y %H:%M:%S'), TimestampType()) df3 = df2.withColumn('data_compra', convert_date(df2.data_compra)) df4 = df3.withColumn('dt', df3['data_compra'].cast('date')) # insert into usefull for production environment df4.write.mode("append").insertInto(hive_database + "." + hive_table) # Create table usefull for dev environment to infer the schema and show create table on hive or athena # df4.write.partitionBy('dt').saveAsTable(hive_database + "." + hive_table, format='parquet', mode='append', path=s3_target)
[ "robot@example.com" ]
robot@example.com
278d6930bd2560902d82ef0b55253720908ea2d9
b2c480f843501b16aa04d0a13b3a866e8cf089d8
/Bojung/2강/2_13 drink shop.py
44bd17ac566730aa790076b7c6c983ee5f907505
[]
no_license
Forif-PythonClass/Assignments
31dec7ccf2314ad8474c364b43ceabe8127db462
2dd7750abc40109e9fb04d1e136d0a87848ed887
refs/heads/master
2021-01-19T05:04:06.046321
2017-06-01T10:48:24
2017-06-01T10:48:24
87,412,590
0
2
null
null
null
null
UTF-8
Python
false
false
475
py
money = 0 while money < 10000 : print '--OPEN--' print '''What do you want? We have 1. Coke, 2. Juice, 3. Energy Drink.''' beverage = int(raw_input()) if beverage == 1 : money = money + 1500 print 'Here is your coke.' elif beverage == 2 : money = money + 1200 print 'Here is your juice.' elif beverage == 3 : money = money + 2000 print 'Here is your energy drink.' print '--CLOSED--'
[ "bjkim0125@gmail.com" ]
bjkim0125@gmail.com
9c474aa08559590c685310323a8210114d2ef19a
4e478a4831a3a71829108ab7f6c71f71601fccf1
/intranet/views.py
eb6ff8763a6c32d9761e59a89869449f3f9b702a
[]
no_license
marcoabonce/Intranet
c7e1becacc6dbfb95e44d37a06f2a71ebefa7e87
b653e89d61fb0ac56601e7d6e486081aac79219c
refs/heads/master
2023-01-02T06:12:40.734862
2020-10-29T00:11:53
2020-10-29T00:11:53
307,795,942
0
0
null
null
null
null
UTF-8
Python
false
false
2,998
py
from django.shortcuts import render from compression_middleware.decorators import compress_page from django.shortcuts import redirect from django.contrib.auth import authenticate from django.contrib.auth import login from django.contrib.auth import logout from django.contrib import messages from users.models import User import pytz from datetime import datetime from mensajes.models import Mensaje @compress_page def index(request): if not request.user.is_authenticated: return redirect ('intranet:login') time_mx = pytz.timezone('America/Mexico_City') time = datetime.now(time_mx) mensajes = Mensaje.objects.all() for men in mensajes: print (men.title) saludo = "Hola" if int(time.strftime("%H"))>5 and int(time.strftime("%H"))<12: saludo = "Buenos días" if int(time.strftime("%H"))>11 and int(time.strftime("%H"))<20: saludo = "Buenas tardes" if int(time.strftime("%H"))>19 and int(time.strftime("%H"))<=24: saludo = "Buenas noches" if int(time.strftime("%H"))>=0 and int(time.strftime("%H"))<=5: saludo = "Buenas noches" print(time.strftime("%H")) return render(request,'intranet/index.html',{ 'user':request.user.first_name, 'saludo':saludo, 'mensajes':mensajes }) @compress_page def login_view(request): if request.user.is_authenticated: return redirect ('intranet:index') if request.method == 'POST': email = request.POST.get('email') password = request.POST.get('password') try: user = User.objects.get(email=email) except: user = None if user: user = authenticate(username=user.username, password=password) login(request,user) messages.success(request,'Bienvenido {}'.format(user.first_name)) return redirect('intranet:index') else: messages.error(request,'Credenciales incorrectas') return render(request,'intranet/login.html',{ }) @compress_page def category_view(request): if not request.user.is_authenticated: return redirect ('intranet:login') time_mx = pytz.timezone('America/Mexico_City') time = datetime.now(time_mx) saludo = "Hola" if int(time.strftime("%H"))>5 and int(time.strftime("%H"))<12: saludo = "Buenos días" if int(time.strftime("%H"))>11 and int(time.strftime("%H"))<20: saludo = "Buenas tardes" if int(time.strftime("%H"))>19 and int(time.strftime("%H"))<=24: saludo = "Buenas noches" if int(time.strftime("%H"))>=0 and int(time.strftime("%H"))<=5: saludo = "Buenas noches" print(time.strftime("%H")) return render(request,'intranet/category.html',{ 'user':request.user.first_name, 'saludo':saludo }) @compress_page def logout_view(request): name = request.user.first_name logout(request) messages.success(request,'Hasta pronto {}!!!'.format(name)) return redirect('intranet:login')
[ "marcoabonce.mt@gmail.com" ]
marcoabonce.mt@gmail.com
062b57bc9ca28f0e4174396d81af62224185dada
516fe2c01014d4ce665949b7fb4431b172cc4019
/accounts/migrations/0003_auto_20200720_1244.py
d02bd3ad9d44cff4a6eb9fa36c1647478ce58854
[]
no_license
Mahbub20/Django-Customer-Management-System
18b34c5e2abded89054bd9d19f0fa677cd29d2b6
a263df6755f6978d1d2de5e65633f27a66f0b6ea
refs/heads/master
2022-11-24T14:23:34.868403
2020-07-31T15:44:44
2020-07-31T15:44:44
280,682,630
0
0
null
null
null
null
UTF-8
Python
false
false
1,330
py
# Generated by Django 3.0.7 on 2020-07-20 12:44 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('accounts', '0002_order_product'), ] operations = [ migrations.CreateModel( name='Tag', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=200, null=True)), ], ), migrations.AddField( model_name='order', name='customer', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='accounts.Customer'), ), migrations.AddField( model_name='order', name='product', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='accounts.Product'), ), migrations.AlterField( model_name='product', name='description', field=models.CharField(blank=True, max_length=200, null=True), ), migrations.AddField( model_name='product', name='tags', field=models.ManyToManyField(to='accounts.Tag'), ), ]
[ "mmahbub569@gmail.com" ]
mmahbub569@gmail.com
792a35d3bfcca875858834dba3e83a3c145fdc11
af9268e1ead8cdb491868c14a2240d9e44fb3b56
/last-minute-env/lib/python2.7/site-packages/django/templatetags/i18n.py
650e9c63029694f08f8e2fd4e8d0bee61d7e98aa
[]
no_license
frosqh/Cousinade2017
d5154c24c93ca8089eeba26b53c594e92cb6bd82
c34d5707af02402bf2bb7405eddc91297da399ff
refs/heads/master
2021-01-20T07:57:34.586476
2017-10-22T18:42:45
2017-10-22T18:42:45
90,074,802
1
0
null
null
null
null
UTF-8
Python
false
false
19,909
py
from __future__ import unicode_literals import sys from django.conf import settings from django.template import Library, Node, TemplateSyntaxError, Variable from django.template.base import TOKEN_TEXT, TOKEN_VAR, render_value_in_context from django.template.defaulttags import token_kwargs from django.utils import six, translation from django.utils.safestring import SafeData, mark_safe register = Library() class GetAvailableLanguagesNode(Node): def __init__(self, variable): self.variable = variable def render(self, context): context[self.variable] = [(k, translation.ugettext(v)) for k, v in settings.LANGUAGES] return '' class GetLanguageInfoNode(Node): def __init__(self, lang_code, variable): self.lang_code = lang_code self.variable = variable def render(self, context): lang_code = self.lang_code.resolve(context) context[self.variable] = translation.get_language_info(lang_code) return '' class GetLanguageInfoListNode(Node): def __init__(self, languages, variable): self.languages = languages self.variable = variable def get_language_info(self, language): # ``language`` is either a language code string or a sequence # with the language code as its first item if len(language[0]) > 1: return translation.get_language_info(language[0]) else: return translation.get_language_info(str(language)) def render(self, context): langs = self.languages.resolve(context) context[self.variable] = [self.get_language_info(lang) for lang in langs] return '' class GetCurrentLanguageNode(Node): def __init__(self, variable): self.variable = variable def render(self, context): context[self.variable] = translation.get_language() return '' class GetCurrentLanguageBidiNode(Node): def __init__(self, variable): self.variable = variable def render(self, context): context[self.variable] = translation.get_language_bidi() return '' class TranslateNode(Node): def __init__(self, filter_expression, noop, asvar=None, message_context=None): self.noop = noop self.asvar = asvar self.message_context = message_context self.filter_expression = filter_expression if isinstance(self.filter_expression.var, six.string_types): self.filter_expression.var = Variable("'%s'" % self.filter_expression.var) def render(self, context): self.filter_expression.var.translate = not self.noop if self.message_context: self.filter_expression.var.message_context = ( self.message_context.resolve(context)) output = self.filter_expression.resolve(context) value = render_value_in_context(output, context) # Restore percent signs. Percent signs in template text are doubled # so they are not interpreted as string format flags. is_safe = isinstance(value, SafeData) value = value.replace('%%', '%') value = mark_safe(value) if is_safe else value if self.asvar: context[self.asvar] = value return '' else: return value class BlockTranslateNode(Node): def __init__(self, extra_context, singular, plural=None, countervar=None, counter=None, message_context=None, trimmed=False, asvar=None): self.extra_context = extra_context self.singular = singular self.plural = plural self.countervar = countervar self.counter = counter self.message_context = message_context self.trimmed = trimmed self.asvar = asvar def render_token_list(self, tokens): result = [] vars = [] for token in tokens: if token.token_type == TOKEN_TEXT: result.append(token.contents.replace('%', '%%')) elif token.token_type == TOKEN_VAR: result.append('%%(%s)s' % token.contents) vars.append(token.contents) msg = ''.join(result) if self.trimmed: msg = translation.trim_whitespace(msg) return msg, vars def render(self, context, nested=False): if self.message_context: message_context = self.message_context.resolve(context) else: message_context = None tmp_context = {} for var, val in self.extra_context.items(): tmp_context[var] = val.resolve(context) # Update() works like a push(), so corresponding context.pop() is at # the end of function context.update(tmp_context) singular, vars = self.render_token_list(self.singular) if self.plural and self.countervar and self.counter: count = self.counter.resolve(context) context[self.countervar] = count plural, plural_vars = self.render_token_list(self.plural) if message_context: result = translation.npgettext(message_context, singular, plural, count) else: result = translation.ungettext(singular, plural, count) vars.extend(plural_vars) else: if message_context: result = translation.pgettext(message_context, singular) else: result = translation.ugettext(singular) default_value = context.template.engine.string_if_invalid def render_value(key): if key in context: val = context[key] else: val = default_value % key if '%s' in default_value else default_value return render_value_in_context(val, context) data = {v: render_value(v) for v in vars} context.pop() try: result = result % data except (KeyError, ValueError): if nested: # Either string is malformed, or it's a bug raise TemplateSyntaxError( "'blocktrans' is unable to format string returned by gettext: %r using %r" % (result, data) ) with translation.override(None): result = self.render(context, nested=True) if self.asvar: context[self.asvar] = result return '' else: return result class LanguageNode(Node): def __init__(self, nodelist, language): self.nodelist = nodelist self.language = language def render(self, context): with translation.override(self.language.resolve(context)): output = self.nodelist.render(context) return output @register.tag("get_available_languages") def do_get_available_languages(parser, token): """ This will store a list of available languages in the context. Usage:: {% get_available_languages as languages %} {% for language in languages %} ... {% endfor %} This will just pull the LANGUAGES setting from your setting file (or the default settings) and put it into the named variable. """ # token.split_contents() isn't useful here because this tag doesn't accept variable as arguments args = token.contents.split() if len(args) != 3 or args[1] != 'as': raise TemplateSyntaxError("'get_available_languages' requires 'as variable' (got %r)" % args) return GetAvailableLanguagesNode(args[2]) @register.tag("get_language_info") def do_get_language_info(parser, token): """ This will store the language information dictionary for the given language code in a context variable. Usage:: {% get_language_info for LANGUAGE_CODE as l %} {{ l.code }} {{ l.name }} {{ l.name_translated }} {{ l.name_local }} {{ l.bidi|yesno:"bi-directional,uni-directional" }} """ args = token.split_contents() if len(args) != 5 or args[1] != 'for' or args[3] != 'as': raise TemplateSyntaxError("'%s' requires 'for string as variable' (got %r)" % (args[0], args[1:])) return GetLanguageInfoNode(parser.compile_filter(args[2]), args[4]) @register.tag("get_language_info_list") def do_get_language_info_list(parser, token): """ This will store a list of language information dictionaries for the given language codes in a context variable. The language codes can be specified either as a list of strings or a settings.LANGUAGES style list (or any sequence of sequences whose first items are language codes). Usage:: {% get_language_info_list for LANGUAGES as langs %} {% for l in langs %} {{ l.code }} {{ l.name }} {{ l.name_translated }} {{ l.name_local }} {{ l.bidi|yesno:"bi-directional,uni-directional" }} {% endfor %} """ args = token.split_contents() if len(args) != 5 or args[1] != 'for' or args[3] != 'as': raise TemplateSyntaxError("'%s' requires 'for sequence as variable' (got %r)" % (args[0], args[1:])) return GetLanguageInfoListNode(parser.compile_filter(args[2]), args[4]) @register.filter def language_name(lang_code): return translation.get_language_info(lang_code)['name'] @register.filter def language_name_translated(lang_code): english_name = translation.get_language_info(lang_code)['name'] return translation.ugettext(english_name) @register.filter def language_name_local(lang_code): return translation.get_language_info(lang_code)['name_local'] @register.filter def language_bidi(lang_code): return translation.get_language_info(lang_code)['bidi'] @register.tag("get_current_language") def do_get_current_language(parser, token): """ This will store the current language in the context. Usage:: {% get_current_language as language %} This will fetch the currently active language and put it's value into the ``language`` context variable. """ # token.split_contents() isn't useful here because this tag doesn't accept variable as arguments args = token.contents.split() if len(args) != 3 or args[1] != 'as': raise TemplateSyntaxError("'get_current_language' requires 'as variable' (got %r)" % args) return GetCurrentLanguageNode(args[2]) @register.tag("get_current_language_bidi") def do_get_current_language_bidi(parser, token): """ This will store the current language layout in the context. Usage:: {% get_current_language_bidi as bidi %} This will fetch the currently active language's layout and put it's value into the ``bidi`` context variable. True indicates right-to-left layout, otherwise left-to-right """ # token.split_contents() isn't useful here because this tag doesn't accept variable as arguments args = token.contents.split() if len(args) != 3 or args[1] != 'as': raise TemplateSyntaxError("'get_current_language_bidi' requires 'as variable' (got %r)" % args) return GetCurrentLanguageBidiNode(args[2]) @register.tag("trans") def do_translate(parser, token): """ This will mark a string for translation and will translate the string for the current language. Usage:: {% trans "this is a test" %} This will mark the string for translation so it will be pulled out by mark-messages.py into the .po files and will run the string through the translation engine. There is a second form:: {% trans "this is a test" noop %} This will only mark for translation, but will return the string unchanged. Use it when you need to store values into forms that should be translated later on. You can use variables instead of constant strings to translate stuff you marked somewhere else:: {% trans variable %} This will just try to translate the contents of the variable ``variable``. Make sure that the string in there is something that is in the .po file. It is possible to store the translated string into a variable:: {% trans "this is a test" as var %} {{ var }} Contextual translations are also supported:: {% trans "this is a test" context "greeting" %} This is equivalent to calling pgettext instead of (u)gettext. """ bits = token.split_contents() if len(bits) < 2: raise TemplateSyntaxError("'%s' takes at least one argument" % bits[0]) message_string = parser.compile_filter(bits[1]) remaining = bits[2:] noop = False asvar = None message_context = None seen = set() invalid_context = {'as', 'noop'} while remaining: option = remaining.pop(0) if option in seen: raise TemplateSyntaxError( "The '%s' option was specified more than once." % option, ) elif option == 'noop': noop = True elif option == 'context': try: value = remaining.pop(0) except IndexError: msg = "No argument provided to the '%s' tag for the context option." % bits[0] six.reraise(TemplateSyntaxError, TemplateSyntaxError(msg), sys.exc_info()[2]) if value in invalid_context: raise TemplateSyntaxError( "Invalid argument '%s' provided to the '%s' tag for the context option" % (value, bits[0]), ) message_context = parser.compile_filter(value) elif option == 'as': try: value = remaining.pop(0) except IndexError: msg = "No argument provided to the '%s' tag for the as option." % bits[0] six.reraise(TemplateSyntaxError, TemplateSyntaxError(msg), sys.exc_info()[2]) asvar = value else: raise TemplateSyntaxError( "Unknown argument for '%s' tag: '%s'. The only options " "available are 'noop', 'context' \"xxx\", and 'as VAR'." % ( bits[0], option, ) ) seen.add(option) return TranslateNode(message_string, noop, asvar, message_context) @register.tag("blocktrans") def do_block_translate(parser, token): """ This will translate a block of text with parameters. Usage:: {% blocktrans with bar=foo|filter boo=baz|filter %} This is {{ bar }} and {{ boo }}. {% endblocktrans %} Additionally, this supports pluralization:: {% blocktrans count count=var|length %} There is {{ count }} object. {% plural %} There are {{ count }} objects. {% endblocktrans %} This is much like ngettext, only in template syntax. The "var as value" legacy format is still supported:: {% blocktrans with foo|filter as bar and baz|filter as boo %} {% blocktrans count var|length as count %} The translated string can be stored in a variable using `asvar`:: {% blocktrans with bar=foo|filter boo=baz|filter asvar var %} This is {{ bar }} and {{ boo }}. {% endblocktrans %} {{ var }} Contextual translations are supported:: {% blocktrans with bar=foo|filter context "greeting" %} This is {{ bar }}. {% endblocktrans %} This is equivalent to calling pgettext/npgettext instead of (u)gettext/(u)ngettext. """ bits = token.split_contents() options = {} remaining_bits = bits[1:] asvar = None while remaining_bits: option = remaining_bits.pop(0) if option in options: raise TemplateSyntaxError('The %r option was specified more ' 'than once.' % option) if option == 'with': value = token_kwargs(remaining_bits, parser, support_legacy=True) if not value: raise TemplateSyntaxError('"with" in %r tag needs at least ' 'one keyword argument.' % bits[0]) elif option == 'count': value = token_kwargs(remaining_bits, parser, support_legacy=True) if len(value) != 1: raise TemplateSyntaxError('"count" in %r tag expected exactly ' 'one keyword argument.' % bits[0]) elif option == "context": try: value = remaining_bits.pop(0) value = parser.compile_filter(value) except Exception: msg = ( '"context" in %r tag expected ' 'exactly one argument.') % bits[0] six.reraise(TemplateSyntaxError, TemplateSyntaxError(msg), sys.exc_info()[2]) elif option == "trimmed": value = True elif option == "asvar": try: value = remaining_bits.pop(0) except IndexError: msg = "No argument provided to the '%s' tag for the asvar option." % bits[0] six.reraise(TemplateSyntaxError, TemplateSyntaxError(msg), sys.exc_info()[2]) asvar = value else: raise TemplateSyntaxError('Unknown argument for %r tag: %r.' % (bits[0], option)) options[option] = value if 'count' in options: countervar, counter = list(options['count'].items())[0] else: countervar, counter = None, None if 'context' in options: message_context = options['context'] else: message_context = None extra_context = options.get('with', {}) trimmed = options.get("trimmed", False) singular = [] plural = [] while parser.tokens: token = parser.next_token() if token.token_type in (TOKEN_VAR, TOKEN_TEXT): singular.append(token) else: break if countervar and counter: if token.contents.strip() != 'plural': raise TemplateSyntaxError("'blocktrans' doesn't allow other block tags inside it") while parser.tokens: token = parser.next_token() if token.token_type in (TOKEN_VAR, TOKEN_TEXT): plural.append(token) else: break if token.contents.strip() != 'endblocktrans': raise TemplateSyntaxError("'blocktrans' doesn't allow other block tags (seen %r) inside it" % token.contents) return BlockTranslateNode(extra_context, singular, plural, countervar, counter, message_context, trimmed=trimmed, asvar=asvar) @register.tag def language(parser, token): """ This will enable the given language just for this block. Usage:: {% language "de" %} This is {{ bar }} and {{ boo }}. {% endlanguage %} """ bits = token.split_contents() if len(bits) != 2: raise TemplateSyntaxError("'%s' takes one argument (language)" % bits[0]) language = parser.compile_filter(bits[1]) nodelist = parser.parse(('endlanguage',)) parser.delete_first_token() return LanguageNode(nodelist, language)
[ "frosqh@gmail.com" ]
frosqh@gmail.com
c03039604d8be646f5dbfc7b8b383282b5703cda
88d5a273893b9ae1707da5d93fe44153ffca2a27
/화공전산(2-2)/chapter8.경계값 문제/ex8.8_비선형미방_유한차분법.py
a3131111c560b8929fe3cf45084efa7c74d733d9
[]
no_license
exgs/hongikuniv_chemical-engineering
018ce8bfaca5d44ce1d03d529ab19eac47e6c94c
5e7165ec3b05710131ed558da87fc167d326d330
refs/heads/master
2023-07-16T14:20:27.718158
2021-08-31T22:12:44
2021-08-31T22:12:44
264,912,382
0
0
null
null
null
null
UTF-8
Python
false
false
845
py
a, ya = 0, 1 b, yb = 1, 1.5 n = 20 eps1, eps2 = 1e-3, 1e-2 kmax = 100 h = 1/n import numpy tj = numpy.linspace(a, b + h/2, n + 1) yk = numpy.linspace(ya, yb, n + 1) print(tj) print(yk) from scipy.linalg import solve_banded k = 0 while k < kmax: fk, JU, JD, JL = [], [], [], [] # for j in range(0, n-1): for j in range(1, n): if j == 1: y0, y1, y2 = ya, yk[j], yk[j+1] else: y0, y1, y2 = y1, y2, yk[j+1] # y0, y1, y2 = yk[j], yk[j+1], yk[j+2] fk.append(-y0 + h*y0*y1 + (2-h**2) *y1 - h*y1*y2 -y2) JU.append(-1 + h*y1) JD.append(h*y0 + 2 - h**2 - h*y2) JL.append(-h*y1 - 1) JU[0], JL[-1] = 0, 0 dy = solve_banded([1, 1], [JU, JD, JL], fk) for j in range(1, n): yk[j] = yk[j] -dy[j - 1] e1 = numpy.linalg.norm(fk) e2 = numpy.linalg.norm(dy) if e1 < eps1 and e2 < eps2: break k = k + 1 print("k = ", k, '\n', yk)
[ "yunslee@student.42seoul.kr" ]
yunslee@student.42seoul.kr
866309775c90ca2e82d7c0843595a409719723e4
0b69f21bcec30504338798c9294a02792e4aca44
/draugr/opencv_utilities/windows/default.py
22fee5b520fc2fadca66ef66d0c44ecf3e7dc844
[ "Apache-2.0" ]
permissive
cnheider/draugr
12e5fcb274f2a86ad51d0ddc2147bf2c99781916
94a402cab47a2bd6241608308371490079af4d53
refs/heads/master
2023-08-04T08:31:20.337823
2022-12-06T12:39:53
2022-12-06T12:39:53
156,557,610
4
1
Apache-2.0
2022-12-06T20:13:14
2018-11-07T14:20:39
Python
UTF-8
Python
false
false
508
py
from enum import Enum from typing import Iterable from sorcery import assigned_names __all__ = ["ExtensionEnum", "match_return_code"] ESC_CHAR = chr(27) def match_return_code(ret_val, chars: Iterable[str] = ("q", ESC_CHAR)) -> bool: """ :param ret_val: :type ret_val: :param chars: :type chars: :return: :rtype: """ if ret_val: return any(ret_val & 0xFF == ord(c) for c in chars) return False class ExtensionEnum(Enum): png, exr = assigned_names()
[ "christian.heider@alexandra.dk" ]
christian.heider@alexandra.dk
70a67bb74721a09b03e08fbea79b3605ef133633
d8b83901ea5ad88ef073504ca569314d9de2b4d0
/Spiders/HuXiu/Spider.py
9c7530bf8799b9ae0d45b4bca3d9b35b431eb355
[]
no_license
lisx9/ForestExplorer
19aef15d4240297b8f32e8936637317644b161cb
a75dbd09989629023307ad13d9b89daedd4cf32f
refs/heads/master
2022-12-03T23:20:31.941514
2020-09-01T07:27:44
2020-09-01T07:27:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,831
py
# -*- coding: utf-8 -*- # Written by panzy from apscheduler.schedulers.blocking import BlockingScheduler from bs4 import BeautifulSoup import requests import re import json import os import time import logging trapInfo = {} hotKeyWordsPath = '/home/st01/ForestExplorer/hotKeyword.txt' ''' 用于实现虎嗅网的相关爬取工作 To crawl articles on huxiu.com ''' ''' 断点续爬通过更新配置文件实现 如果断点续爬使用队列的形式实现 ''' # 得到文章网址后获得网页静态内容 def getArticleContent(articleURL): res = requests.get(articleURL) print('Pull request to ' + articleURL) try: res.raise_for_status() res.encoding = 'utf-8' return res.text except requests.HTTPError as e: print(e) print('HTTPError: Request for Article Failed.') # 对静态文章网页进行解析,返回含标题,时间和内容的字典 def processContent(content): soup = BeautifulSoup(content, 'html.parser') try: articleContent = soup.find('div', attrs = "article-content").get_text() articleTitle = soup.find('div', attrs = "article-content-title-box").find('div', attrs = "title").get_text() except AttributeError as e: print(e) return { 'title': None, 'content': None, 'time': None } # 静态网页的时间戳位置不确定,容错 if soup.find('div', attrs = "m-article-time") != None: articleTime = soup.find('div', attrs = "m-article-time").get_text() elif soup.find('div', attrs = "show-time") != None: articleTime = soup.find('span', attrs = "show-time").get_text() else: articleTime = None articleInfo = {'title': articleTitle, 'content': articleContent, 'time': articleTime} print(articleInfo['time'], articleInfo['title']) return articleInfo # 对网站流页面的爬取,存在翻页的问题,暂时弃用 def getStreamLink(url, formData): try: articleLinkRes = requests.post(url, data = formData) articleLinkRes.raise_for_status() articleLinkResJson = json.loads(articleLinkRes.text) articleLinkList = { 'articleLinks': [] } articleLinkList['last_time'] = articleLinkResJson['data']['last_time'] for articleData in articleLinkResJson['data']['datalist']: articleLinkList['articleLinks'].append(articleData['share_url']) print(articleLinkList['articleLinks'], len(articleLinkList['articleLinks'])) return articleLinkList except requests.HTTPError as e: print(e) print('Failed to flowing visit ' + url) except Exception as e: print(e) print('Other Error happened.') # 对网站进行指定关键词检索,获得检索结果中的文章编号 def getSearchLink(url, formData): try: articleLinkRes = requests.post(url, data = formData) articleLinkRes.raise_for_status() articleLinkList = [] articleLinkRes.encoding = 'utf-8' articleLinkResJson = json.loads(articleLinkRes.text) for articleData in articleLinkResJson['data']['datalist']: articleLinkList.append(articleData['aid']) print(articleLinkList, len(articleLinkList)) return articleLinkList except Exception as e: print(e) trapInfo = { 'keyword': formData['s'], 'page': formData['page'] } return trapInfo print('Failed to keyword visit ' + url) except Exception as e: print(e) print('Other Error happened.') # 写入到指定路径,根据文章相关信息进行写入 def writeToDisk(path, articleInfo): if articleInfo['content'] == None: return with open(path, 'a', encoding='utf-8') as f: f.write(str(articleInfo['title']) + '\n' + str(articleInfo['time']) + '\n' + str(articleInfo['content']) + '\n') f.close() # 获取热搜词条 def getHotKeyWords(): hotURL = 'https://article-api.huxiu.com/tag/hot' formData = { 'platform': 'www', # 从PC平台检索 } hotResponse = requests.post(hotURL, data=formData) hotKeyWordsJson = json.loads(hotResponse.text) hotKeyWordsList = hotKeyWordsJson['data'] return hotKeyWordsList # 对获得的指令进行基于频道内容的循环爬取 def crawlOnChannel(channelURL, channelFormData, path): while (True): articleLinkList = getStreamLink(channelURL, channelFormData) try: channelFormData['last_time'] = articleLinkList['last_time'] for articleLink in articleLinkList['articleLinks']: if os.path.exists(path + str(articleLink)[-11:-5] + '.txt'): print('chongfu') continue else: writeToDisk(path + str(articleLink)[-11:-5] + '.txt', processContent(getArticleContent(articleLink))) except TypeError as e: print('Stream Ended.') break # 对获得的指令进行基于热搜词条的循环爬取 def crawlBySearch(searchURL, searchFormData, path): hotKeyWordsList = updateKeywords() for hotKeyWord in hotKeyWordsList: searchFormData['s'] = hotKeyWord['keyword'] searchFormData['page'] = hotKeyWord['page'] while (True): articleLinkList = getSearchLink(searchURL, searchFormData) print('Search for: ' + hotKeyWord['keyword'] + ' page: ' + str(searchFormData['page'])) # 做容错处理,如果收到的是429报错或者该检索词检索结束做结束循环处理 if articleLinkList == []: with open(hotKeyWordsPath, 'r') as f: hotKeywordJson = json.loads(f.read()) f.close() for hotKeyWordInfo in hotKeywordJson['awaiting']: if hotKeyWordInfo['keyword'] == hotKeyWord['keyword']: hotKeywordJson['awaiting'].remove(hotKeyWordInfo) break hotKeywordJson['finished'].append(hotKeyWord['keyword']) with open(hotKeyWordsPath, 'w+') as f: f.write(json.dumps(hotKeywordJson, ensure_ascii=False)) f.close() break elif type(articleLinkList) == dict: print('Trapped in point: keyword = ' + str(articleLinkList['keyword']) + ' ,page = ' + str(articleLinkList['page'])) with open(hotKeyWordsPath,'r') as f: hotKeywordJson = json.loads(f.read()) f.close() for hotKeyWordInfo in hotKeywordJson['awaiting']: if hotKeyWordInfo['keyword'] == articleLinkList['keyword']: hotKeyWordInfo['page'] = articleLinkList['page'] break with open(hotKeyWordsPath, 'w+') as f: f.write(json.dumps(hotKeywordJson, ensure_ascii=False)) f.close() break for articleNum in articleLinkList: articleURL = 'https://m.huxiu.com/article/' + str(articleNum) + '.html' if os.path.exists(path + hotKeyWord['keyword'] + str(articleNum) + '.txt'): print(path + hotKeyWord['keyword'] + str(articleNum) + '.txt has existed.') continue else: writeToDisk(path + hotKeyWord['keyword'] + str(articleNum) + '.txt',processContent(getArticleContent(articleURL))) searchFormData['page'] = searchFormData['page'] + 1 # 进行热搜爬取的指令 def crawlJob_search(): path = '/home/st01/ForestExplorer/HuXiuData/' # 用于使用检索词的爬取(包含热门检索词的获取) searchURL = 'https://search-api.huxiu.com/api/article' searchFormData = { 'platform': 'www', # 从PC平台检索 'page': 1, # page是翻页指标 'pagesize': 20 # pagesize不会影响page的翻页,即使超过也能访问 } # if trapInfo != {}: # searchFormData['s'] = trapInfo['keyword'] # searchFormData['page'] = trapInfo['page'] # 关键词检索爬取 crawlBySearch(searchURL, searchFormData, path) # 进行频道内容的爬取指令 def crawlJob_Stream(): path = '/home/st01/ForestExplorer/HuXiuData/' # 用于使用栏目分类的爬取 channelURL = 'https://article-api.huxiu.com/web/channel/articleList' channelFormData = { 'platform': 'www', 'last_time': '1597852200', 'channel_id': '105', 'pagesize': '22' } crawlOnChannel(channelURL, channelFormData, path) # 栏目流爬取 def updateKeywords(): hotKeywordsList = getHotKeyWords() print(hotKeywordsList) # 读取热搜数据 with open(hotKeyWordsPath, 'r') as f: hotKeywordJson = json.loads(f.read()) f.close() # 更新热搜爬取数据 for hotKeyword in hotKeywordsList: exit_flag = False for hotKeywordInfo in hotKeywordJson['awaiting']: if hotKeyword == hotKeywordInfo['keyword']: # 已存在等候队列 exit_flag = True break if hotKeyword in hotKeywordJson['finished']: # 已完成,根据时间追加爬取?后续优化 continue elif exit_flag == True: # 已存在于等候队列 continue elif hotKeywordJson['awaiting'][0]['page'] > 200: hotKeywordJson['awaiting'].pop(0) else: hotKeywordInfo = { 'keyword': hotKeyword, 'page': 1 } hotKeywordJson['awaiting'].append(hotKeywordInfo) with open(hotKeyWordsPath, 'w+') as tmp_f: tmp_f.write(json.dumps(hotKeywordJson, ensure_ascii = False)) tmp_f.close() # 读取更新后的数据,返回当前需要爬取的检索词 with open(hotKeyWordsPath, 'r') as f: hotKeywordJson = json.loads(f.read()) hotKeyWordsList = hotKeywordJson['awaiting'] f.close() return hotKeyWordsList if __name__ == '__main__': # 创建调度器:BlockingScheduler scheduler = BlockingScheduler() # 添加任务,时间间隔20min scheduler.add_job(crawlJob_search, 'interval', minutes = 30, id = 'crawlJob_search') # 添加任务,时间间隔20min # scheduler.add_job(crawlJob_Stream, 'interval', hours = 1, id = 'crawlJob_stream') scheduler.start()
[ "pzy000301@gmail.com" ]
pzy000301@gmail.com
eeec05a32d1e6106ac6cde195aedc739a23f1ad4
fba6c9f65e8bca522f1c5f7b0315a7a02e343f69
/src/metadata.py
8710ca1d6e1efe851d7ed1e62d8c62deda4b3a49
[]
no_license
fzh4519/002_mind
a41cd258dce8fbfbe67ae05a2a7c70769456813f
b341fc3a61dd1ccb35f62ddb94e5db45b81852c6
refs/heads/master
2023-06-17T13:29:58.768365
2021-07-13T00:53:47
2021-07-13T00:53:47
384,894,646
0
0
null
null
null
null
UTF-8
Python
false
false
30,398
py
import numpy as np from os import listdir import random tracker_skeID = {'test1': 'skele1.p', 'test2': 'skele2.p', 'test6': 'skele2.p', 'test7': 'skele1.p', 'test_9434_1': 'skele2.p', 'test_9434_3': 'skele2.p', 'test_9434_18': 'skele1.p', 'test_94342_0': 'skele2.p', 'test_94342_1': 'skele2.p', 'test_94342_2': 'skele2.p', 'test_94342_3': 'skele2.p', 'test_94342_4': 'skele1.p', 'test_94342_5': 'skele1.p', 'test_94342_6': 'skele1.p', 'test_94342_7': 'skele1.p', 'test_94342_8': 'skele1.p', 'test_94342_10': 'skele2.p', 'test_94342_11': 'skele2.p', 'test_94342_12': 'skele1.p', 'test_94342_13': 'skele2.p', 'test_94342_14': 'skele1.p', 'test_94342_15': 'skele2.p', 'test_94342_16': 'skele1.p', 'test_94342_17': 'skele2.p', 'test_94342_18': 'skele1.p', 'test_94342_19': 'skele2.p', 'test_94342_20': 'skele1.p', 'test_94342_21': 'skele2.p', 'test_94342_22': 'skele1.p', 'test_94342_23': 'skele1.p', 'test_94342_24': 'skele1.p', 'test_94342_25': 'skele2.p', 'test_94342_26': 'skele1.p', 'test_boelter_1': 'skele2.p', 'test_boelter_2': 'skele2.p', 'test_boelter_3': 'skele2.p', 'test_boelter_4': 'skele1.p', 'test_boelter_5': 'skele1.p', 'test_boelter_6': 'skele1.p', 'test_boelter_7': 'skele1.p', 'test_boelter_9': 'skele1.p', 'test_boelter_10': 'skele1.p', 'test_boelter_12': 'skele2.p', 'test_boelter_13': 'skele1.p', 'test_boelter_14': 'skele1.p', 'test_boelter_15': 'skele1.p', 'test_boelter_17': 'skele2.p', 'test_boelter_18': 'skele1.p', 'test_boelter_19': 'skele2.p', 'test_boelter_21': 'skele1.p', 'test_boelter_22': 'skele2.p', 'test_boelter_24': 'skele1.p', 'test_boelter_25': 'skele1.p', 'test_boelter2_0': 'skele1.p', 'test_boelter2_2': 'skele1.p', 'test_boelter2_3': 'skele1.p', 'test_boelter2_4': 'skele1.p', 'test_boelter2_5': 'skele1.p', 'test_boelter2_6': 'skele1.p', 'test_boelter2_7': 'skele2.p', 'test_boelter2_8': 'skele2.p', 'test_boelter2_12': 'skele2.p', 'test_boelter2_14': 'skele2.p', 'test_boelter2_15': 'skele2.p', 'test_boelter2_16': 'skele1.p', 'test_boelter2_17': 'skele1.p', 'test_boelter3_0': 'skele1.p', 'test_boelter3_1': 'skele2.p', 'test_boelter3_2': 'skele2.p', 'test_boelter3_3': 'skele2.p', 'test_boelter3_4': 'skele1.p', 'test_boelter3_5': 'skele2.p', 'test_boelter3_6': 'skele2.p', 'test_boelter3_7': 'skele1.p', 'test_boelter3_8': 'skele2.p', 'test_boelter3_9': 'skele2.p', 'test_boelter3_10': 'skele1.p', 'test_boelter3_11': 'skele2.p', 'test_boelter3_12': 'skele2.p', 'test_boelter3_13': 'skele2.p', 'test_boelter4_0': 'skele2.p', 'test_boelter4_1': 'skele2.p', 'test_boelter4_2': 'skele2.p', 'test_boelter4_3': 'skele2.p', 'test_boelter4_4': 'skele2.p', 'test_boelter4_5': 'skele2.p', 'test_boelter4_6': 'skele2.p', 'test_boelter4_7': 'skele2.p', 'test_boelter4_8': 'skele2.p', 'test_boelter4_9': 'skele2.p', 'test_boelter4_10': 'skele2.p', 'test_boelter4_11': 'skele2.p', 'test_boelter4_12': 'skele2.p', 'test_boelter4_13': 'skele2.p', } event_seg_tracker = { 'test_9434_18': [[0, 749, 0], [750, 824, 0], [825, 863, 2], [864, 974, 0], [975, 1041, 0]], 'test_94342_1': [[0, 13, 0], [14, 104, 0], [105, 333, 0], [334, 451, 0], [452, 652, 0], [653, 897, 0], [898, 1076, 0], [1077, 1181, 0], [1181, 1266, 0], [1267, 1386, 0]], 'test_94342_6': [[0, 95, 0], [96, 267, 1], [268, 441, 1], [442, 559, 1], [560, 681, 1], [ 682, 796, 1], [797, 835, 1], [836, 901, 0], [902, 943, 1]], 'test_94342_10': [[0, 36, 0], [37, 169, 0], [170, 244, 1], [245, 424, 0], [425, 599, 0], [600, 640, 0], [641, 680, 0], [681, 726, 1], [727, 866, 2], [867, 1155, 2]], 'test_94342_21': [[0, 13, 0], [14, 66, 2], [67, 594, 2], [595, 1097, 2], [1098, 1133, 0]], 'test1': [[0, 477, 0], [478, 559, 0], [560, 689, 2], [690, 698, 0]], 'test6': [[0, 140, 0], [141, 375, 0], [376, 678, 0], [679, 703, 0]], 'test7': [[0, 100, 0], [101, 220, 2], [221, 226, 0]], 'test_boelter_2': [[0, 154, 0], [155, 279, 0], [280, 371, 0], [372, 450, 0], [451, 470, 0], [471, 531, 0], [532, 606, 0]], 'test_boelter_7': [[0, 69, 0], [70, 118, 1], [119, 239, 0], [240, 328, 1], [329, 376, 0], [377, 397, 1], [398, 520, 0], [521, 564, 0], [565, 619, 1], [620, 688, 1], [689, 871, 0], [872, 897, 0], [898, 958, 1], [959, 1010, 0], [1011, 1084, 0], [1085, 1140, 0], [1141, 1178, 0], [1179, 1267, 1], [1268, 1317, 0], [1318, 1327, 0]], 'test_boelter_24': [[0, 62, 0], [63, 185, 2], [186, 233, 2], [234, 292, 2], [293, 314, 0]], 'test_boelter_12': [[0, 47, 1], [48, 119, 0], [120, 157, 1], [158, 231, 0], [232, 317, 0], [318, 423, 0], [424, 459, 0], [460, 522, 0], [523, 586, 0], [587, 636, 0], [637, 745, 1], [746, 971, 2]], 'test_9434_1': [[0, 57, 0], [58, 124, 0], [125, 182, 1], [183, 251, 2], [252, 417, 0]], 'test_94342_16': [[0, 21, 0], [22, 45, 0], [46, 84, 0], [85, 158, 1], [159, 200, 1], [201, 214, 0], [215, 370, 1], [371, 524, 1], [525, 587, 2], [588, 782, 2], [783, 1009, 2]], 'test_boelter4_12': [[0, 141, 0], [142, 462, 2], [463, 605, 0], [606, 942, 2], [943, 1232, 2], [1233, 1293, 0]], 'test_boelter4_9': [[0, 27, 0], [28, 172, 0], [173, 221, 0], [222, 307, 1], [308, 466, 0], [467, 794, 1], [795, 866, 1], [867, 1005, 2], [1006, 1214, 2], [1215, 1270, 0]], 'test_boelter4_4': [[0, 120, 0], [121, 183, 0], [184, 280, 1], [281, 714, 0]], 'test_boelter4_3': [[0, 117, 0], [118, 200, 1], [201, 293, 1], [294, 404, 1], [405, 600, 1], [601, 800, 1], [801, 905, 1], [906, 1234, 1]], 'test_boelter4_1': [[0, 310, 0], [311, 560, 0], [561, 680, 0], [681, 748, 0], [749, 839, 0], [840, 1129, 0], [1130, 1237, 0]], 'test_boelter3_13': [[0, 204, 2], [205, 300, 2], [301, 488, 2], [489, 755, 2]], 'test_boelter3_11': [[0, 254, 1], [255, 424, 0], [425, 598, 1], [599, 692, 0], [693, 772, 2], [773, 878, 2], [879, 960, 2], [961, 1171, 2], [1172, 1397, 2]], 'test_boelter3_6': [[0, 174, 1], [175, 280, 1], [281, 639, 0], [640, 695, 1], [696, 788, 0], [789, 887, 2], [888, 1035, 1], [1036, 1445, 2]], 'test_boelter3_4': [[0, 158, 1], [159, 309, 1], [310, 477, 1], [478, 668, 1], [669, 780, 1], [781, 817, 0], [818, 848, 1], [849, 942, 1]], 'test_boelter3_0': [[0, 140, 0], [141, 353, 0], [354, 599, 0], [600, 727, 0], [728, 768, 0]], 'test_boelter2_15': [[0, 46, 0], [47, 252, 2], [253, 298, 1], [299, 414, 2], [415, 547, 2], [548, 690, 1], [691, 728, 1], [729, 773, 2], [774, 935, 2]], 'test_boelter2_12': [[0, 163, 0], [164, 285, 1], [286, 444, 1], [445, 519, 0], [520, 583, 1], [584, 623, 0], [624, 660, 0], [661, 854, 1], [855, 921, 1], [922, 1006, 2], [1007, 1125, 2], [1126, 1332, 2], [1333, 1416, 2]], 'test_boelter2_5': [[0, 94, 0], [95, 176, 1], [177, 246, 1], [247, 340, 1], [341, 442, 1], [443, 547, 1], [548, 654, 1], [655, 734, 0], [735, 792, 0], [793, 1019, 0], [1020, 1088, 0], [1089, 1206, 0], [1207, 1316, 1], [1317, 1466, 1], [1467, 1787, 2], [1788, 1936, 1], [1937, 2084, 2]], 'test_boelter2_4': [[0, 260, 1], [261, 421, 1], [422, 635, 1], [636, 741, 1], [742, 846, 1], [847, 903, 1], [904, 953, 1], [954, 1005, 1], [1006, 1148, 1], [1149, 1270, 1], [1271, 1525, 1]], 'test_boelter2_2': [[0, 131, 0], [132, 226, 0], [227, 267, 0], [268, 352, 0], [353, 412, 0], [413, 457, 0], [458, 502, 0], [503, 532, 0], [533, 578, 0], [579, 640, 0], [641, 722, 0], [723, 826, 0], [827, 913, 0], [914, 992, 0], [993, 1070, 0], [1071, 1265, 0], [1266, 1412, 0]], 'test_boelter_21': [[0, 238, 1], [239, 310, 0], [311, 373, 1], [374, 457, 0], [458, 546, 2], [547, 575, 1], [576, 748, 2], [749, 952, 2]], } # event_seg_battery = { # 'test_9434_18': [[0, 96, 0], [97, 361, 0], [362, 528, 0], [529, 608, 0], [609, 824, 0], [864, 1041, 0]], # 'test_94342_1': [[0, 751, 0], [752, 876, 0], [877, 1167, 0], [1168, 1386, 0]], # 'test_94342_6': [[0, 95, 0], [836, 901, 0]], # 'test_94342_10': [[0, 156, 0], [157, 169, 0], [245, 274, 0], [275, 389, 0], [390, 525, 0], [526, 665, 0], # [666, 680, 0]], # 'test_94342_21': [[0, 13, 0], [1098, 1133, 0]], # 'test1': [[0, 94, 0], [95, 155, 0], [156, 225, 0], [226, 559, 0], [690, 698, 0]], # 'test6': [[0, 488, 0], [489, 541, 0], [542, 672, 0], [672, 803, 0]], # 'test7': [[0, 70, 0], [71, 100, 0], [221, 226, 0]], # 'test_boelter_2': [[0, 318, 0], [319, 458, 0], [459, 543, 0], [544, 606, 0]], # 'test_boelter_7': [[0, 69, 0], [119, 133, 0], [134, 187, 0], [188, 239, 0], [329, 376, 0], [398, 491, 0], # [492, 564, 0], [689, 774, 0], [775, 862, 0], [863, 897, 0], [959, 1000, 0], # [1001, 1178, 0], [1268, 1307, 0], [1307, 1327, 0]], # 'test_boelter_24': [[0, 62, 0], [293, 314, 0]], # 'test_boelter_12': [[48, 219, 0], [220, 636, 0]], # 'test_9434_1': [[0, 67, 0], [68, 124, 0], [252, 343, 0], [344, 380, 0], [381, 417, 0]], # 'test_94342_16': [[0, 84, 0], [201, 214, 0]], # 'test_boelter4_12': [[0, 32, 0], [33, 141, 0], [463, 519, 0], [520, 597, 0], [598, 605, 0], # [1233, 1293, 0]], # 'test_boelter4_9': [[0, 221, 0], [308, 466, 0], [1215, 1270, 0]], # 'test_boelter4_4': [[0, 183, 0], [281, 529, 0], [530, 714, 0]], # 'test_boelter4_3': [[0, 117, 0]], # 'test_boelter4_1': [[0, 252, 0], [253, 729, 0], [730, 1202, 0], [1203, 1237, 0]], # 'test_boelter3_13': [], # 'test_boelter3_11': [[255, 424, 0], [599, 692, 0]], # 'test_boelter3_6': [[281, 498, 0], [499, 639, 0], [696, 748, 0], [749, 788, 0]], # 'test_boelter3_4': [[781, 817, 0]], # 'test_boelter3_0': [[0, 102, 0], [103, 480, 0], [481, 703, 0], [704, 768, 0]], # 'test_boelter2_15': [[0, 46, 0]], # 'test_boelter2_12': [[0, 163, 0], [445, 519, 0], [584, 660, 0]], # 'test_boelter2_5': [[0, 94, 0], [655, 1206, 0]], # 'test_boelter2_4': [], # 'test_boelter2_2': [[0, 145, 0], [146, 224, 0], [225, 271, 0], [272, 392, 0], [393, 454, 0], # [455, 762, 0], [763, 982, 0], [983, 1412, 0]], # 'test_boelter_21': [[239, 285, 0], [286, 310, 0], [374, 457, 0]], # } # # event_seg_battery_new = {} # # for key, item in event_seg_tracker.items(): # item = np.array(item) # item1 = item[item[:, 2] == 1] # item2 = item[item[:, 2] == 2] # item3 = item[item[:, 2] == 3] # total = np.vstack([item1, item2, item3]) # item_b = event_seg_battery[key] # item_b = np.array(item_b) # if item_b.shape[0] == 0: # item_b_new = total # else: # item_b_new = np.vstack([item_b, total]) # item_b_idx = np.argsort(item_b_new[:, 0]) # item_b_sort = item_b_new[item_b_idx].tolist() # event_seg_battery_new[key] = item_b_sort # # # print event_seg_battery_new event_seg_battery = {'test1': [[0, 94, 0], [95, 155, 0], [156, 225, 0], [226, 559, 0], [560, 689, 2], [690, 698, 0]], 'test7': [[0, 70, 0], [71, 100, 0], [101, 220, 2], [221, 226, 0]], 'test6': [[0, 488, 0], [489, 541, 0], [542, 672, 0], [673, 703, 0]], 'test_94342_10': [[0, 156, 0], [157, 169, 0], [170, 244, 1], [245, 274, 0], [275, 389, 0], [390, 525, 0], [526, 665, 0], [666, 680, 0], [681, 726, 1], [727, 866, 2], [867, 1155, 2]], 'test_94342_1': [[0, 751, 0], [752, 876, 0], [877, 1167, 0], [1168, 1386, 0]], 'test_9434_18': [[0, 96, 0], [97, 361, 0], [362, 528, 0], [529, 608, 0], [609, 824, 0], [825, 863, 2], [864, 1041, 0]], 'test_94342_6': [[0, 95, 0], [96, 267, 1], [268, 441, 1], [442, 559, 1], [560, 681, 1], [682, 796, 1], [797, 835, 1], [836, 901, 0], [902, 943, 1]], 'test_boelter_24': [[0, 62, 0], [63, 185, 2], [186, 233, 2], [234, 292, 2], [293, 314, 0]], 'test_boelter2_4': [[0, 260, 1], [261, 421, 1], [422, 635, 1], [636, 741, 1], [742, 846, 1], [847, 903, 1], [904, 953, 1], [954, 1005, 1], [1006, 1148, 1], [1149, 1270, 1], [1271, 1525, 1]], 'test_boelter2_5': [[0, 94, 0], [95, 176, 1], [177, 246, 1], [247, 340, 1], [341, 442, 1], [443, 547, 1], [548, 654, 1], [655, 1206, 0], [1207, 1316, 1], [1317, 1466, 1], [1467, 1787, 2], [1788, 1936, 1], [1937, 2084, 2]], 'test_boelter2_2': [[0, 145, 0], [146, 224, 0], [225, 271, 0], [272, 392, 0], [393, 454, 0], [455, 762, 0], [763, 982, 0], [983, 1412, 0]], 'test_boelter_21': [[0, 238, 1], [239, 285, 0], [286, 310, 0], [311, 373, 1], [374, 457, 0], [458, 546, 2], [547, 575, 1], [576, 748, 2], [749, 952, 2]], 'test_9434_1': [[0, 67, 0], [68, 124, 0], [125, 182, 1], [183, 251, 2], [252, 343, 0], [344, 380, 0], [381, 417, 0]], 'test_boelter3_6': [[0, 174, 1], [175, 280, 1], [281, 498, 0], [499, 639, 0], [640, 695, 1], [696, 748, 0], [749, 788, 0], [789, 887, 2], [888, 1035, 1], [1036, 1445, 2]], 'test_boelter3_4': [[0, 158, 1], [159, 309, 1], [310, 477, 1], [478, 668, 1], [669, 780, 1], [781, 817, 0], [818, 848, 1], [849, 942, 1]], 'test_boelter3_0': [[0, 102, 0], [103, 480, 0], [481, 703, 0], [704, 768, 0]], 'test_boelter2_12': [[0, 163, 0], [164, 285, 1], [286, 444, 1], [445, 519, 0], [520, 583, 1], [584, 660, 0], [661, 854, 1], [855, 921, 1], [922, 1006, 2], [1007, 1125, 2], [1126, 1332, 2], [1333, 1416, 2]], 'test_94342_16': [[0, 84, 0], [85, 158, 1], [159, 200, 1], [201, 214, 0], [215, 370, 1], [371, 524, 1], [525, 587, 2], [588, 782, 2], [783, 1009, 2]], 'test_boelter2_15': [[0, 46, 0], [47, 252, 2], [253, 298, 1], [299, 414, 2], [415, 547, 2], [548, 690, 1], [691, 728, 1], [729, 773, 2], [774, 935, 2]], 'test_boelter3_13': [[0, 204, 2], [205, 300, 2], [301, 488, 2], [489, 755, 2]], 'test_boelter3_11': [[0, 254, 1], [255, 424, 0], [425, 598, 1], [599, 692, 0], [693, 772, 2], [773, 878, 2], [879, 960, 2], [961, 1171, 2], [1172, 1397, 2]], 'test_boelter4_12': [[0, 32, 0], [33, 141, 0], [142, 462, 2], [463, 519, 0], [520, 597, 0], [598, 605, 0], [606, 942, 2], [943, 1232, 2], [1233, 1293, 0]], 'test_boelter4_9': [[0, 221, 0], [222, 307, 1], [308, 466, 0], [467, 794, 1], [795, 866, 1], [867, 1005, 2], [1006, 1214, 2], [1215, 1270, 0]], 'test_boelter4_4': [[0, 183, 0], [184, 280, 1], [281, 529, 0], [530, 714, 0]], 'test_boelter4_1': [[0, 252, 0], [253, 729, 0], [730, 1202, 0], [1203, 1237, 0]], 'test_boelter4_3': [[0, 117, 0], [118, 200, 1], [201, 293, 1], [294, 404, 1], [405, 600, 1], [601, 800, 1], [801, 905, 1], [906, 1234, 1]], 'test_boelter_12': [[0, 47, 1], [48, 119, 0], [120, 157, 1], [158, 636, 0], [637, 745, 1], [746, 971, 2]], 'test_boelter_7': [[0, 69, 0], [70, 118, 1], [119, 133, 0], [134, 187, 0], [188, 239, 0], [240, 328, 1], [329, 376, 0], [377, 397, 1], [398, 491, 0], [492, 564, 0], [565, 619, 1], [620, 688, 1], [689, 774, 0], [775, 862, 0], [863, 897, 0], [898, 958, 1], [959, 1000, 0], [1001, 1178, 0], [1179, 1267, 1], [1268, 1307, 0], [1308, 1327, 0]], 'test_94342_21': [[0, 13, 0], [14, 66, 2], [67, 594, 2], [595, 1097, 2], [1098, 1133, 0]], 'test_boelter_2': [[0, 318, 0], [319, 458, 0], [459, 543, 0], [544, 606, 0]]} # clips_all=listdir('/home/lfan/Dropbox/Projects/NIPS20/data/3d_pose2gaze/record_bbox/') # print clips_all clips_all = ['test_94342_13.p', 'test_boelter4_11.p', 'test_94342_20.p', 'test_94342_0.p', 'test_94342_23.p', 'test_boelter4_5.p', 'test_boelter_12.p', 'test_9434_3.p', 'test_boelter_15.p', 'test_94342_19.p', 'test_boelter_21.p', 'test_boelter3_2.p', 'test_boelter4_0.p', 'test_boelter_18.p', 'test6.p', 'test_boelter_1.p', 'test_boelter3_6.p', 'test_94342_21.p', 'test_boelter4_10.p', 'test_9434_1.p', 'test_94342_17.p', 'test_boelter4_9.p', 'test_94342_18.p', 'test_boelter4_12.p', 'test_boelter3_11.p', 'test_boelter4_1.p', 'test_94342_26.p', 'test_boelter_10.p', 'test_boelter4_8.p', 'test_boelter3_8.p', 'test2.p', 'test_94342_7.p', 'test_94342_16.p', 'test_boelter2_17.p', 'test_boelter_4.p', 'test_boelter3_3.p', 'test_94342_1.p', 'test_boelter_13.p', 'test_boelter_24.p', 'test_boelter3_1.p', 'test_boelter2_8.p', 'test_boelter2_2.p', 'test_boelter2_14.p', 'test_boelter2_0.p', 'test7.p', 'test_94342_3.p', 'test_boelter2_12.p', 'test_94342_8.p', 'test_boelter4_7.p', 'test_9434_18.p', 'test_94342_22.p', 'test_94342_5.p', 'test_boelter3_9.p', 'test1.p', 'test_boelter_6.p', 'test_boelter_19.p', 'test_boelter4_13.p', 'test_94342_10.p', 'test_boelter4_4.p', 'test_boelter3_4.p', 'test_boelter2_3.p', 'test_boelter_5.p', 'test_94342_12.p', 'test_boelter_14.p', 'test_boelter3_0.p', 'test_94342_6.p', 'test_94342_15.p', 'test_94342_24.p', 'test_boelter_2.p', 'test_boelter2_5.p', 'test_boelter_7.p', 'test_boelter_3.p', 'test_94342_4.p', 'test_boelter4_2.p', 'test_boelter3_13.p', 'test_94342_25.p', 'test_boelter2_16.p', 'test_boelter3_5.p', 'test_boelter4_3.p', 'test_boelter4_6.p', 'test_boelter3_10.p', 'test_boelter2_7.p', 'test_94342_14.p', 'test_boelter_22.p', 'test_boelter3_7.p', 'test_boelter2_15.p', 'test_boelter_9.p', 'test_boelter_25.p', 'test_boelter2_6.p', 'test_boelter2_4.p', 'test_boelter3_12.p', 'test_boelter_17.p', 'test_94342_11.p', 'test_94342_2.p'] clips_88 = ['test_94342_13.p', 'test_boelter4_11.p', 'test_94342_20.p', 'test_94342_0.p', 'test_94342_23.p', 'test_boelter4_5.p', 'test_boelter_12.p', 'test_9434_3.p', 'test_boelter_15.p', 'test_94342_19.p', 'test_boelter_21.p', 'test_boelter3_2.p', 'test_boelter4_0.p', 'test_boelter_18.p', 'test6.p', 'test_boelter_1.p', 'test_boelter3_6.p', 'test_94342_21.p', 'test_boelter4_10.p', 'test_9434_1.p', 'test_94342_17.p', 'test_boelter4_9.p', 'test_94342_18.p', 'test_boelter4_12.p', 'test_boelter3_11.p', 'test_boelter4_1.p', 'test_94342_26.p', 'test_boelter_10.p', 'test_boelter4_8.p', 'test_boelter3_8.p', 'test2.p', 'test_94342_7.p', 'test_94342_16.p', 'test_boelter2_17.p', 'test_boelter_4.p', 'test_boelter3_3.p', 'test_94342_1.p', 'test_boelter_13.p', 'test_boelter3_1.p', 'test_boelter2_8.p', 'test_boelter2_14.p', 'test_boelter2_0.p', 'test7.p', 'test_94342_3.p', 'test_boelter2_12.p', 'test_94342_8.p', 'test_boelter4_7.p', 'test_9434_18.p', 'test_94342_22.p', 'test_94342_5.p', 'test_boelter3_9.p', 'test1.p', 'test_boelter_6.p', 'test_boelter_19.p', 'test_boelter4_13.p', 'test_94342_10.p', 'test_boelter4_4.p', 'test_boelter3_4.p', 'test_boelter2_3.p', 'test_boelter_5.p', 'test_94342_12.p', 'test_boelter_14.p', 'test_boelter3_0.p', 'test_94342_6.p', 'test_94342_15.p', 'test_94342_24.p', 'test_boelter_2.p', 'test_boelter_7.p', 'test_boelter_3.p', 'test_94342_4.p', 'test_boelter4_2.p', 'test_boelter3_13.p', 'test_94342_25.p', 'test_boelter2_16.p', 'test_boelter3_5.p', 'test_boelter4_3.p', 'test_boelter4_6.p', 'test_boelter3_10.p', 'test_boelter2_7.p', 'test_94342_14.p', 'test_boelter3_7.p', 'test_boelter2_15.p', 'test_boelter_9.p', 'test_boelter2_6.p', 'test_boelter3_12.p', 'test_boelter_17.p', 'test_94342_11.p', 'test_94342_2.p'] # clips_with_gt_event=['test1.p', 'test7.p', 'test6.p', 'test_boelter2_12.p', 'test_94342_1.p', 'test_9434_18.p', 'test_94342_6.p', 'test_boelter_24.p', 'test_boelter2_4.p', 'test_boelter2_5.p', 'test_boelter2_2.p', 'test_boelter_21.p', 'test_9434_1.p', 'test_boelter3_6.p', 'test_boelter3_4.p', 'test_boelter3_0.p', 'test_94342_10.p', 'test_94342_16.p', 'test_boelter2_15.p', 'test_boelter3_13.p', 'test_boelter3_11.p', 'test_boelter4_12.p', 'test_boelter4_9.p', 'test_boelter4_4.p', 'test_boelter4_1.p', 'test_boelter4_3.p', 'test_boelter_12.p', 'test_boelter_7.p', 'test_94342_21.p', 'test_boelter_2.p'] # random.shuffle(clips_with_gt_event) # print clips_with_gt_event clips_with_gt_event = ['test_boelter2_15.p', 'test_94342_16.p', 'test_boelter4_4.p', 'test_94342_21.p', 'test_boelter4_1.p', 'test_boelter4_9.p', 'test_94342_1.p', 'test_boelter3_4.p', 'test_boelter_2.p', 'test_boelter_21.p', 'test_boelter4_12.p', 'test_boelter_7.p', 'test7.p', 'test_9434_18.p', 'test_94342_10.p', 'test_boelter3_13.p', 'test_94342_6.p', 'test1.p', 'test_boelter_12.p', 'test_boelter3_0.p', 'test6.p', 'test_9434_1.p', 'test_boelter2_12.p', 'test_boelter3_6.p', 'test_boelter4_3.p', 'test_boelter3_11.p'] # for k , v in event_seg_tracker.items(): # clips_with_gt_event.append(k+'.p') # print len(clips_with_gt_event) # print clips_with_gt_event # # # import os # clips = os.listdir('/home/shuwen/data/data_preprocessing2/regenerate_annotation/') # random.shuffle(clips) # print(clips) # mind_clips = ['test_94342_16.p', 'test_boelter4_5.p', 'test_94342_2.p', 'test_boelter4_10.p', 'test_boelter2_3.p', 'test_94342_20.p', 'test_boelter4_9.p', 'test_boelter3_9.p', 'test_boelter3_4.p', 'test_boelter2_12.p', 'test_boelter4_6.p', 'test2.p', 'test_boelter4_2.p', 'test_boelter4_3.p', 'test_94342_24.p', 'test_94342_17.p', 'test_94342_6.p', 'test_94342_8.p', 'test_boelter3_0.p', 'test_94342_11.p', 'test_boelter3_7.p', 'test7.p', 'test_94342_18.p', 'test_boelter4_12.p', 'test_boelter_10.p', 'test_boelter3_8.p', 'test_boelter2_6.p', 'test_boelter4_7.p', 'test_boelter4_8.p', 'test_boelter_12.p', 'test_boelter4_0.p', 'test_boelter2_17.p', 'test_boelter3_12.p', 'test_boelter3_11.p', 'test_boelter3_5.p', 'test_94342_4.p', 'test_94342_15.p', 'test_94342_19.p', 'test_94342_7.p', 'test_boelter2_16.p', 'test_boelter2_8.p', 'test_94342_3.p', 'test_boelter_3.p', 'test_9434_3.p', 'test_boelter2_0.p', 'test_boelter3_13.p', 'test_9434_18.p', 'test_boelter_18.p', 'test_94342_22.p', 'test_boelter_6.p', 'test_boelter_4.p', 'test_boelter3_1.p', 'test_boelter3_2.p', 'test_boelter_7.p', 'test_boelter_13.p', 'test1.p', 'test_boelter3_3.p', 'test_boelter4_11.p', 'test_94342_1.p', 'test_94342_25.p', 'test_boelter_1.p', 'test_boelter_21.p', 'test_boelter3_6.p', 'test_boelter_14.p', 'test_94342_12.p', 'test_boelter2_14.p', 'test_boelter4_13.p', 'test_94342_10.p', 'test_boelter_9.p', 'test_94342_5.p', 'test_boelter_17.p', 'test6.p', 'test_boelter4_4.p', 'test_94342_23.p', 'test_boelter3_10.p', 'test_94342_21.p', 'test_94342_0.p', 'test_boelter_2.p', 'test_9434_1.p', 'test_boelter2_15.p', 'test_boelter4_1.p', 'test_boelter_5.p', 'test_94342_13.p', 'test_94342_14.p', 'test_boelter2_7.p', 'test_boelter_19.p', 'test_boelter_15.p', 'test_94342_26.p'] # i = 0 # count = 0 # mind_test_clips = [] # while count < int(len(mind_clips)*0.3): # if mind_clips[i] not in clips_with_gt_event: # mind_test_clips.append(mind_clips[i]) # i += 1 # count += 1 # else: # i += 1 # # print(len(mind_test_clips)) # print(mind_test_clips) mind_test_clips = ['test_boelter4_5.p', 'test_94342_2.p', 'test_boelter4_10.p', 'test_boelter2_3.p', 'test_94342_20.p', 'test_boelter3_9.p', 'test_boelter4_6.p', 'test2.p', 'test_boelter4_2.p', 'test_94342_24.p', 'test_94342_17.p', 'test_94342_8.p', 'test_94342_11.p', 'test_boelter3_7.p', 'test_94342_18.p', 'test_boelter_10.p', 'test_boelter3_8.p', 'test_boelter2_6.p', 'test_boelter4_7.p', 'test_boelter4_8.p', 'test_boelter4_0.p', 'test_boelter2_17.p', 'test_boelter3_12.p', 'test_boelter3_5.p', 'test_94342_4.p', 'test_94342_15.p'] clips_len = {'test_94342_13.p': 1455, 'test_boelter4_11.p': 1355, 'test_94342_20.p': 1865, 'test_94342_0.p': 1940, 'test_94342_23.p': 539, 'test_boelter4_5.p': 1166, 'test_boelter_12.p': 972, 'test_9434_3.p': 323, 'test_boelter_15.p': 1055, 'test_94342_19.p': 1695, 'test_boelter_21.p': 953, 'test_boelter3_2.p': 1326, 'test_boelter4_0.p': 1322, 'test_boelter_18.p': 1386, 'test6.p': 704, 'test_boelter_1.p': 925, 'test_boelter3_6.p': 1446, 'test_94342_21.p': 1134, 'test_boelter4_10.p': 1263, 'test_9434_1.p': 418, 'test_94342_17.p': 1057, 'test_boelter4_9.p': 1271, 'test_94342_18.p': 1539, 'test_boelter4_12.p': 1294, 'test_boelter3_11.p': 1398, 'test_boelter4_1.p': 1238, 'test_94342_26.p': 527, 'test_boelter_10.p': 654, 'test_boelter4_8.p': 1006, 'test_boelter3_8.p': 1161, 'test2.p': 975, 'test_94342_7.p': 1386, 'test_94342_16.p': 1010, 'test_boelter2_17.p': 1268, 'test_boelter_4.p': 787, 'test_boelter3_3.p': 861, 'test_94342_1.p': 1387, 'test_boelter_13.p': 1004, 'test_boelter_24.p': 315, 'test_boelter3_1.p': 1351, 'test_boelter2_8.p': 1347, 'test_boelter2_2.p': 1413, 'test_boelter2_14.p': 920, 'test_boelter2_0.p': 1143, 'test7.p': 227, 'test_94342_3.p': 1776, 'test_boelter2_12.p': 1417, 'test_94342_8.p': 1795, 'test_boelter4_7.p': 1401, 'test_9434_18.p': 1042, 'test_94342_22.p': 586, 'test_94342_5.p': 2292, 'test_boelter3_9.p': 1383, 'test1.p': 699, 'test_boelter_6.p': 1435, 'test_boelter_19.p': 959, 'test_boelter4_13.p': 933, 'test_94342_10.p': 1156, 'test_boelter4_4.p': 715, 'test_boelter3_4.p': 943, 'test_boelter2_3.p': 942, 'test_boelter_5.p': 834, 'test_94342_12.p': 2417, 'test_boelter_14.p': 904, 'test_boelter3_0.p': 769, 'test_94342_6.p': 944, 'test_94342_15.p': 1174, 'test_94342_24.p': 741, 'test_boelter_2.p': 607, 'test_boelter2_5.p': 2085, 'test_boelter_7.p': 1328, 'test_boelter_3.p': 596, 'test_94342_4.p': 1924, 'test_boelter4_2.p': 1353, 'test_boelter3_13.p': 756, 'test_94342_25.p': 568, 'test_boelter2_16.p': 1734, 'test_boelter3_5.p': 851, 'test_boelter4_3.p': 1235, 'test_boelter4_6.p': 1334, 'test_boelter3_10.p': 1301, 'test_boelter2_7.p': 1505, 'test_94342_14.p': 1841, 'test_boelter_22.p': 828, 'test_boelter3_7.p': 1544, 'test_boelter2_15.p': 936, 'test_boelter_9.p': 636, 'test_boelter_25.p': 951, 'test_boelter2_6.p': 2100, 'test_boelter2_4.p': 1526, 'test_boelter3_12.p': 359, 'test_boelter_17.p': 817, 'test_94342_11.p': 1610, 'test_94342_2.p': 1968} # no_communication=0 # follow=0 # joint=0 # cnt=0. # for clip in clips_with_gt_event: # clip=clip.split('.')[0] # segs=event_seg_tracker[clip] # for seg in segs: # if seg[2]==0: # no_communication+=1 # elif seg[2]==1: # follow+=1 # elif seg[2]==2: # joint+=1 # cnt+=1 # # segs=event_seg_battery[clip] # for seg in segs: # if seg[2] == 0: # no_communication += 1 # elif seg[2] == 1: # follow += 1 # elif seg[2] == 2: # joint += 1 # cnt += 1 # # print(no_communication/cnt, follow/cnt, joint/cnt) # pointing import os cnt = 0 pointing_cnt = 0 annot_path = '/home/lfan/Dropbox/Projects/NIPS20/annot/all/' files = listdir(annot_path) for file in files: with open(os.path.join(annot_path, file), 'r') as f: lines = f.readlines() if len(lines) == 0: continue for line in lines: cnt += 1 my_list = line.strip().split(' ') if "\"pointing\"" in my_list: pointing_cnt += 1 print('pointing {} / {}'.format(pointing_cnt, cnt))
[ "60700050+fengzhihong-377@users.noreply.github.com" ]
60700050+fengzhihong-377@users.noreply.github.com
c7c8e0aef6b0f1ed3c228861c1309297ef5a51df
0875563641c4ab6105da7a9850ce5102b791045f
/setup.py
402e14f10b992d22c5a0731808c0f8024ef3cbc1
[ "MIT" ]
permissive
ParaguayEduca/etoys.activity
17a7569fd6766afdfbd4a20341883924ce4119ff
4755e31ad440ca7247a02a45b4481d84e23af524
refs/heads/master
2022-09-17T10:57:07.707315
2020-06-02T00:59:32
2020-06-02T00:59:32
268,666,765
0
1
null
2020-06-02T00:59:33
2020-06-02T00:53:52
null
UTF-8
Python
false
false
87
py
#!/usr/bin/env python from sugar3.activity import bundlebuilder bundlebuilder.start()
[ "fierrofenix@gmail.com" ]
fierrofenix@gmail.com
7fe96dd13f0dbe0b06778f993c0886ee04348852
93ad452b4bfb55c10aed246f3f37342deaed1274
/scripts/generator_utils.py
2f9926e6ef8d115bed92d35bd68c483a6bacd940
[]
no_license
open-craft/microsite-generator
2a18dc078e941d6cbe4dc0e30e3ad4656a5b68fd
e444a913bb883d557249c8a9874b302349777529
refs/heads/main
2023-06-29T10:29:57.605699
2021-07-26T18:49:08
2021-07-26T18:49:08
373,735,873
4
0
null
2021-07-26T18:49:09
2021-06-04T05:56:58
Python
UTF-8
Python
false
false
7,889
py
import yaml import os from argparse import ArgumentParser from const import GENERATED_SHARED_CONFIG_FILE def common_args() -> ArgumentParser: """ Common argument parser for each script """ parser = ArgumentParser() parser.add_argument("ConfigFilePath", metavar='config_file_path', type=str, help="Configuration data file path.") parser.add_argument("--settings", type=str, required=False, help="Settings module") return parser def update_model(model, **kwargs): """ Helper function for updaing a django model Args: model: Django Model kwargs: Keyword args for each field values """ for attr, val in kwargs.items(): setattr(model, attr, val) model.save() def deep_merge(source, destination): """ helper function to merge two dictionaries """ for key, value in source.items(): if isinstance(value, dict): # get node or create one node = destination.setdefault(key, {}) deep_merge(value, node) else: destination[key] = value return destination class Config: """ Configuration generation helper class """ microsites = {} organizations = {} # main domain to work with main_domain = None # LMS OAuth clients oauth = { 'ecommerce_sso_client': 'custom-sites-ecommerce-sso', } # stores global override values global_overrides = { 'overrides': {}, 'context_overrides': {}, } def __init__(self, config): """ Initialize Config class """ self._config = config self.organizations = config['organizations'] self.main_domain = config['main_domain'] self.oauth = config.get( 'oauth', self.oauth ) self._extract_microsites(config) self._extract_overrides(config) def _extract_overrides(self, config): """ A helper method to prepare self.overrides from given config. """ if config['microsites']: for key, val in config['microsites'].items(): # $ is a special key and used for global overrides if key == '$': self.global_overrides.update(val) continue # if site specifc override provided, add them to self.microsites if val.get('overrides'): self.microsites[key]['overrides'] = deep_merge( self.microsites[key]['overrides'], val['overrides'] ) # if site specifc context override provided, add them to self.microsites if val.get('context_overrides'): self.microsites[key]['context_overrides'] = deep_merge( self.microsites[key]['context_overrides'], val['context_overrides'] ) def _extract_microsites(self, config): """ A helper method to prepare self.microsites from given config. """ # if there will be a site for each organization if config.get('site_for_each_organization', False): for key, val in config['organizations'].items(): self.microsites[key] = { 'name': val['name'], 'overrides': { 'lms': { 'openedx.core.djangoapps.site_configuration.models.SiteConfiguration': { 'site_values': { 'course_org_filter': key } } } }, 'context_overrides': {}, } else: # otherwise microsites can be given seperately from organizations for key, val in config['microsites'].items(): # $ is a special key and used for global overrides if key == '$': continue self.microsites[key] = { 'name': val['name'], 'overrides': {}, 'context_overrides': {}, } def get_microsite_codes(self): """ Get list of microsite codes """ return self.microsites.keys() def get_organization_codes(self): """ Get list of organization codes """ return self.organizations.keys() def get_organization_name(self, code): """ Given an organization code, returns its name """ return self.organizations[code]['name'] def get_context(self, code): """ Prepares and returns a dictionary with usefull values for generating microsite configurations. """ microsite = self.microsites[code] lms_domain = '{}.{}'.format(code.lower(), self.main_domain) discovery_domain = 'discovery.{}'.format(lms_domain) ecommerce_domain = 'ecommerce.{}'.format(lms_domain) studio_domain = 'studio.{}'.format(lms_domain) context = { 'name': microsite['name'], 'code': code, 'main_domain': self.main_domain, 'lms_domain': lms_domain, 'lms_url': 'https://{}'.format(lms_domain), 'discovery_domain': discovery_domain, 'discovery_url': 'https://{}'.format(discovery_domain), 'discovery_api_url': 'https://{}/api/v1/'.format(discovery_domain), 'ecommerce_domain': ecommerce_domain, 'ecommerce_url': 'https://{}'.format(ecommerce_domain), 'studio_domain': studio_domain, 'studio_url': 'https://{}'.format(studio_domain) } # apply global context overrides context.update(self.global_overrides['context_overrides']) # apply site specific context overrides context.update(microsite['context_overrides']) return context def apply_overrides(self, code, service, model_class, data): """ Overrides existing value with global or site-specific value. Args: code (str): microsite code service (str): service key model_class (Model): django model data (dict): data dictionary that will be used to update the model """ microsite = self.microsites[code] global_overrides = self.global_overrides['overrides'] site_overrides = microsite['overrides'] model_path = '{}.{}'.format(model_class.__module__, model_class.__name__) # if global override exists, apply them if service in global_overrides and model_path in global_overrides[service]: data = deep_merge(data, global_overrides[service][model_path]) # if site specific override exists, apply them if service in site_overrides and model_path in site_overrides[service]: data = deep_merge(data, site_overrides[service][model_path]) return data def load_config(file_path) -> Config: """ Helper function to load configuration yaml file """ with open(file_path) as file: config = yaml.load(file) return Config(config) def write_generated_values(data = {}): """ Write new config value to the generated config file. """ values = load_generated_values() values.update(data) with open(GENERATED_SHARED_CONFIG_FILE, 'w') as file: yaml.dump(values, file) def load_generated_values(): """ Read config value from the generated config file. """ values = {} if os.path.exists(GENERATED_SHARED_CONFIG_FILE): with open(GENERATED_SHARED_CONFIG_FILE) as file: values = yaml.load(file) return values
[ "noreply@github.com" ]
open-craft.noreply@github.com
9641b775ef1b783924590a3d1b9b8ce16399e971
124b68cc525fcc562e0d274bc3b5f75062e134f7
/IoT8_differential_comparer/tests/test_comparer.py
2d1d4408190cb752301e7e34b11dd84b0f852015
[]
no_license
akane34/iot_api_adaptation_chain
9c88b9666d47d586123e7d6e458616d71104882e
50a0187c59d984cea7cf4e58dde9dabe29f194bf
refs/heads/master
2022-12-18T13:32:28.939109
2018-09-17T02:58:59
2018-09-17T02:58:59
148,314,118
0
0
null
2022-12-08T01:01:10
2018-09-11T12:31:54
Python
UTF-8
Python
false
false
2,928
py
from unittest import TestCase from differential_comparer.comparer import processApis class ComparerTestCase(TestCase): def setUp(self): self.API_ORIGINAL = \ '/home/farkaz00/Documents/MISO/IoT_Challenge8/03.Case_Study/03.SHAS_REST_API.json' self.API_TYPE_CHANGE = \ '/home/farkaz00/Documents/MISO/IoT_Challenge8/03.Case_Study/03.SHAS_REST_API_TYPE_CHANGE.json' self.API_DEPRECATED_METHOD = \ '/home/farkaz00/Documents/MISO/IoT_Challenge8/03.Case_Study/03.SHAS_REST_API_DEPRECATED_METHOD_UPDATE.json' def testProcessApisTypeChange(self): diffs = processApis(self.API_ORIGINAL, self.API_TYPE_CHANGE) self.assertTrue(len(diffs) > 0) dif1 = diffs[0] self.assertEqual(dif1.api_name, 'SHAS API') self.assertEqual(dif1.old_api_version, '0.0.1') self.assertEqual(dif1.new_api_version, '0.0.2') self.assertEqual(dif1.type, 'EXPECTED') self.assertEqual(dif1.old_value, '0.0.1') self.assertEqual(dif1.new_value, '0.0.2') dif1 = diffs[1] self.assertEqual(dif1.api_name, 'SHAS API') self.assertEqual(dif1.old_api_version, '0.0.1') self.assertEqual(dif1.new_api_version, '0.0.2') self.assertEqual(dif1.type, 'EXPECTED') self.assertEqual(dif1.old_value, 'integer') self.assertEqual(dif1.new_value, 'string') def testProcessApisDeprecatedMethod(self): diffs = processApis(self.API_ORIGINAL, self.API_DEPRECATED_METHOD) self.assertTrue(len(diffs) > 0) dif1 = diffs[0] self.assertEqual(dif1.api_name, 'SHAS API') self.assertEqual(dif1.old_api_version, '0.0.1') self.assertEqual(dif1.new_api_version, '0.0.3') self.assertEqual(dif1.type, 'EXPECTED') self.assertEqual(dif1.old_value, '0.0.1') self.assertEqual(dif1.new_value, '0.0.3') dif2 = diffs[1] self.assertEqual(dif2.api_name, 'SHAS API') self.assertEqual(dif2.old_api_version, '0.0.1') self.assertEqual(dif2.new_api_version, '0.0.3') self.assertEqual(dif2.type, 'UNEXPECTED') self.assertEqual(dif2.old_value, None) self.assertTrue(len(dif2.new_value)) dif3 = diffs[2] self.assertEqual(dif3.api_name, 'SHAS API') self.assertEqual(dif3.old_api_version, '0.0.1') self.assertEqual(dif3.new_api_version, '0.0.3') self.assertEqual(dif3.type, 'UNEXPECTED') self.assertEqual(dif3.old_value, None) self.assertTrue(len(dif3.new_value)) dif4 = diffs[3] self.assertEqual(dif4.api_name, 'SHAS API') self.assertEqual(dif4.old_api_version, '0.0.1') self.assertEqual(dif4.new_api_version, '0.0.3') self.assertEqual(dif4.type, 'EXPECTED') self.assertTrue(len(dif4.old_value)) self.assertEqual(dif4.new_value, None)
[ "jarvein@hotmail.com" ]
jarvein@hotmail.com
be1b35d1d52e9d9bfc1110abcf20f8718435742e
7ecbe46fc65ad557da224d5b34fadf03e0117bcf
/Inception_v3/bottleneckcal3.py
d8265e16be2e2026d965dd01c965b761f6de144c
[]
no_license
LuoJiaji/flower-photo-classification
78ada93b43b4d99904cfee87aac8c3b328e61e11
2852cd3fa26ba7747b31362a9d41ef7ea65805e9
refs/heads/master
2020-04-07T07:50:14.951807
2018-11-19T09:14:51
2018-11-19T09:14:51
158,190,703
0
0
null
null
null
null
UTF-8
Python
false
false
5,908
py
# -*- coding: utf-8 -*- """ Created on Thu Nov 15 16:50:00 2018 @author: Bllue """ import os import random import numpy as np import tensorflow as tf datapath = 'data/tmp/bottleneck/' n_calss = len(os.listdir(datapath)) batchsize = 256 def get_datalist(datapath,train_percentage=80,test_percentage =10): train_datapath = [] train_label = [] test_datapath = [] test_label = [] validation_datapath = [] validation_label = [] filename = os.listdir(datapath) for i,path in enumerate(filename): dataname = os.listdir(datapath+path) print(path,len(dataname)) for file in dataname: chance = np.random.randint(100) if chance < train_percentage: train_datapath.append(datapath + path+ '/' + file) train_label.append(i) elif chance<(train_percentage+test_percentage): test_datapath.append(datapath + path+ '/' + file) test_label.append(i) else: validation_datapath.append(datapath + path + '/' + file) validation_label.append(i) print('train data:',len(train_datapath)) print('test data:',len(test_datapath)) return [train_datapath,train_label,test_datapath,test_label,validation_datapath,validation_label] def get_random_batch(train_datapath,train_label,batchsize,n_class): # train_data = np.zeros([batchsize,2048]) # train_data = train_data.astype(np.uint8) # train_label_onehot = np.zeros([batchsize,n_calss]) train_data = [] train_label_onehot = [] l = len(train_datapath) i = 0 for _ in range(batchsize): # image_index = random.randrange(l) image_index = random.randrange(65535) image_index = image_index % len(train_datapath) # 规范图片的索引 with open(train_datapath[image_index], 'r') as bottleneck_file: bottleneck_string = bottleneck_file.read() bottleneck_values = [float(x) for x in bottleneck_string.split(',')] # train_data[i,:] = bottleneck_values # train_label_onehot[i,int(train_label[image_index])] = 1 train_data.append(bottleneck_values) label = np.zeros(n_class, dtype=np.float32) label[int(train_label[image_index])] = 1.0 train_label_onehot.append(label ) # print(i,image_index,train_datapath[image_index]) i += 1 return train_data,train_label_onehot def get_test_data(test_datapath,test_label,n_class): # test_data = np.zeros([len(test_datapath),2048]) # test_data = test_data.astype(np.uint8) # test_label_onehot = np.zeros([len(test_datapath),n_calss]) test_data = [] test_label_onehot = [] i = 0 for path in test_datapath: with open(path, 'r') as bottleneck_file: bottleneck_string = bottleneck_file.read() bottleneck_values = [float(x) for x in bottleneck_string.split(',')] # test_data[i,:] = bottleneck_values # test_label_onehot[i,test_label[i]] = 1 test_data.append(bottleneck_values) label = np.zeros(n_class, dtype=np.float32) label[test_label[i]] = 1.0 test_label_onehot.append(label) i += 1 return test_data,test_label_onehot #bottleneck_path = train_datapath[0] # #with open(bottleneck_path, 'r') as bottleneck_file: # bottleneck_string = bottleneck_file.read() # bottleneck_values = [float(x) for x in bottleneck_string.split(',')] BOTTLENECK_TENSOR_SIZE = 2048 n_classes = 5 bottleneck_input = tf.placeholder( tf.float32, [None, BOTTLENECK_TENSOR_SIZE], name='BottleneckInputPlaceholder') # 定义新的标准答案输入 ground_truth_input = tf.placeholder( tf.float32, [None, n_classes], name='GroundTruthInput') # 定义一层全连接层解决新的图片分类问题 with tf.name_scope('fc1'): weights1 = tf.Variable( tf.truncated_normal( [BOTTLENECK_TENSOR_SIZE, 128], stddev=0.1)) biases1 = tf.Variable(tf.zeros([128])) fc1 = tf.nn.relu(tf.matmul(bottleneck_input, weights1) + biases1) with tf.name_scope('fc2'): weights2 = tf.Variable(tf.truncated_normal([128,n_classes], stddev=0.1)) biases2 = tf.Variable(tf.zeros([n_classes])) logits = tf.matmul(fc1,weights2) + biases2 final_tensor = tf.nn.softmax(logits) # 定义交叉熵损失函数 cross_entropy = tf.nn.softmax_cross_entropy_with_logits( logits=logits, labels=ground_truth_input) cross_entropy_mean = tf.reduce_mean(cross_entropy) # train_step = tf.train.GradientDescentOptimizer(LEARNING_RATE).minimize(cross_entropy_mean) train_step = tf.train.AdamOptimizer(0.001).minimize(cross_entropy_mean) # 计算正确率 with tf.name_scope('evaluation'): correct_prediction = tf.equal( tf.argmax(final_tensor, 1), tf.argmax(ground_truth_input, 1)) evaluation_step = tf.reduce_mean( tf.cast(correct_prediction, tf.float32)) train_datapath,train_label,test_datapath,test_label,validation_datapath,validation_label = get_datalist(datapath) train_data,train_label_onehot = get_random_batch(train_datapath,train_label,256,n_calss) test_data,test_label_onehot = get_test_data(test_datapath,test_label,n_calss) STEPS = 6000 with tf.Session() as sess: sess.run(tf.global_variables_initializer()) train_data,train_label_onehot = get_random_batch(train_datapath,train_label,256,n_calss) for i in range(STEPS): train_data,train_label_onehot = get_random_batch(train_datapath,train_label,256,n_calss) sess.run( train_step,feed_dict={bottleneck_input: train_data, ground_truth_input: train_label_onehot }) # print(i) if i % 100 == 0 or i + 1 == STEPS: test_accuracy = sess.run(evaluation_step,feed_dict={bottleneck_input: test_data,ground_truth_input: test_label_onehot}) print(i,test_accuracy)
[ "lt920@126.com" ]
lt920@126.com
224cedecd9373beedd0e96c6f7abe0b67b5010e3
c46668ed2d366905978581bd19ba60cb6356f5f5
/misc/test.py
5c43001b183cb72a2a548780d887cec5a38b89fa
[]
no_license
ndrwchn/bitshovel
db5992f61b22e7bf1d1d0ed6b112bc396f93f891
49a8f21ae4fb0dca0a82b81beb1ae913b1d39cd8
refs/heads/master
2020-04-14T10:56:51.524738
2019-01-01T23:43:08
2019-01-01T23:43:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
767
py
import os import sys import base64 import json import pprint import requests import redis from sseclient import SSEClient def with_requests(url): """Get a streaming response for the given event feed using requests.""" return requests.get(url, stream=True) r = redis.StrictRedis(host="localhost", port=6379, password="", decode_responses=True) query = {"v": 3, "q": { "find": {} }} #squery = json.dumps(query) squery = '{"v": 3, "q": { "find": {} }}' print(squery) b64 = base64.encodestring(squery) print(b64) url = 'https://bitsocket.org/s/'+b64 response = with_requests(url) client = SSEClient(response) for event in client.events(): bsock = json.loads(event.data) r.publish("bitcoin_reader",event.data) print(bsock) #pprint.pprint(bsock)
[ "dfoderick@gmail.com" ]
dfoderick@gmail.com
42ec93628543ed4b5d99e9565a39876bd8b17f99
5ee2155447132c91c70032b8bc980d4e41a2f762
/main_himawari/scripts/typhoon_case.py
198efa909323e056cf85886cba4c2de28231fd4d
[]
no_license
redmundnacario/himawari-8-legacy
0864e047a9b822254bb976f198d6c9741e750380
b47786d6af8ad6ad5755e75c66644b0ba405e1cf
refs/heads/master
2020-03-18T02:34:52.326945
2018-05-21T00:20:32
2018-05-21T00:20:32
134,197,777
3
2
null
null
null
null
UTF-8
Python
false
false
3,239
py
# -*- coding: utf-8 -*- """ 1. Open radar data > pre-process > grid Created on Tue Dec 8 22:44:01 2015 @author: red """ # importing functions from different folder import sys sys.path.insert(0, '/media/red/SAMSUNG/main/main_radar') sys.path.insert(0, '/media/red/SAMSUNG/main/main_himawari') from radar_preprocessing_functions import * from rainfall_retrieval_functions import * from radar_functions_plot import * from himawari_functions import * from plot_functions_basic import * # directories of radar data path_radar = '/media/red/SAMSUNG/radar/tagaytay/ty_lando' # directory of himawari path_himawari = '/media/red/SAMSUNG/himawari/ty_lando' # read hdf5 radar data # change directory then open list of hdf5 file_list = open_list_radar_hdf5(path_radar) variables_da1, date, time, attr = read_hdf5_radar(file_list[0]) #radar data #variables_da1['ZH_PIA'] # read himawari data # change directory then open list of hdf5 file_list_H = open_hdf(path_himawari) h08_data, h08_radiance, lon_geos, lat_geos, date_time = read_h8_hdf5(file_list_H[1]) # subset data map_masked, map_subset,lon_subset, lat_subset = subset_center_point(h08_data['B14'],attr['coords'][0], attr['coords'][1], 120,lon_geos,lat_geos) # BTD IR3 - IR1 or 6.2 microns - 10.4 micron #convectivity IR_diff_2 = h08_data["IR3"] - h08_data["IR1"] map_masked, IR_diff_2,lon_subset, lat_subset = subset_center_point(IR_diff_2,attr['coords'][0], attr['coords'][1], 120,lon_geos,lat_geos) # BTD IR2 - IR1 or 12.3 - 10.4 #water vapor sensitivity IR_diff = h08_data["IR2"] - h08_data["IR1"] map_masked, IR_diff, lon_subset, lat_subset = subset_center_point(IR_diff,attr['coords'][0], attr['coords'][1], 120,lon_geos,lat_geos) #pltimshow(map_subset,cmap =pl.cm.jet_r) #pltimshow(h08_data['IR1'],vmin =h08_data['IR1'].min() , vmax = h08_data['IR1'].max()) #pltimshow(IR_diff_2) #pltimshow(IR_diff) # georeference the radar data rlon, rlat, ralt = georef_radar(attr['coords'],attr['ranges'], attr['azimuths'], attr['elevs']) gridded_radar = grid_map(variables_da1['ZH_PIA'],lon_subset, lat_subset, attr['coords'], rlon, rlat) gridded_radar = N.ma.masked_invalid(gridded_radar ) #mpcolormesh(gridded_radar, lon_subset, lat_subset) # mpcolormesh(map_subset, lon_subset, lat_subset,cmap =pl.cm.jet_r) mpcolormesh(IR_diff_2, lon_subset, lat_subset) mpcolormesh(IR_diff, lon_subset, lat_subset) #,vmin =h08_data['B14'].min() , vmax =h08_data['B14'].max() ) # cmask himawari map_subset_1 = N.ma.array(map_subset, mask = gridded_radar.mask ) IR_diff_2 = N.ma.array(IR_diff_2, mask = gridded_radar.mask ) IR_diff = N.ma.array(IR_diff, mask = gridded_radar.mask ) #mpcolormesh(map_subset_1, lon_subset, lat_subset,cmap =pl.cm.jet_r) #mpcolormesh(IR_diff_2 , lon_subset, lat_subset,cmap =pl.cm.jet) #mpcolormesh(IR_diff, lon_subset, lat_subset,cmap =pl.cm.jet) #,vmin =h08_data['B14'].min() , vmax =h08_data['B14'].max() ) # lowest rainfall rate lower_limit = zr.z2r(trafo.idecibel(gridded_radar.min())) # scatter plot BT vs Zh #pltscatter(map_subset_1, gridded_radar) #plthist2d(map_subset_1, gridded_radar) #pltscatter(IR_diff_2, gridded_radar) #plthist2d(IR_diff_2, gridded_radar) #pltscatter(IR_diff, gridded_radar) #plthist2d(IR_diff, gridded_radar)
[ "rednacky@gmail.com" ]
rednacky@gmail.com
1e3200edf2bcd028b8c04e5c7b5af0af62fd036e
be364bd76ef1c25cb9f13b2e9b83c1dd802148e5
/misc/ServerGui.py
8bece371b9646a9404661e2f6bc2d9bfd375d123
[]
no_license
minhkhoi1026/remote-monitor
93a73e4f0e2a500ff7ab9f102b79ed259fc8de33
0e965cdc4a23c1d02f7052bc8da473b7f57ffa04
refs/heads/master
2023-08-26T09:00:30.042696
2021-11-07T17:33:02
2021-11-07T17:33:02
418,033,144
0
0
null
null
null
null
UTF-8
Python
false
false
1,344
py
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'Server.ui' # # Created by: PyQt5 UI code generator 5.15.4 # # WARNING: Any manual changes made to this file will be lost when pyuic5 is # run again. Do not edit this file unless you know what you are doing. from PyQt5 import QtCore, QtGui, QtWidgets class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(800, 600) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.label = QtWidgets.QLabel(self.centralwidget) self.label.setGeometry(QtCore.QRect(10, 10, 700, 500)) self.label.setText("") self.label.setObjectName("label") MainWindow.setCentralWidget(self.centralwidget) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "MainWindow")) if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) MainWindow = QtWidgets.QMainWindow() ui = Ui_MainWindow() ui.setupUi(MainWindow) MainWindow.show() sys.exit(app.exec_())
[ "minhkhoi1026@gmail.com" ]
minhkhoi1026@gmail.com
a62411f8d8935793da3181d5a3dd0120876a35ea
5f904cb4964655537aa83e5aa9658d5cbd43d221
/AutosClasificados/urls.py
7091107fe281fb9ca8f63307ffbbed4639bfaf8b
[ "MIT" ]
permissive
joaquinpunales1992/Python-Django-WatsonVisualRecognition-WatsonNLU
03471db80d7351d34816ffb782585d28847acf52
2997359150236a7d897a3f9201f8e9404f3d7f02
refs/heads/master
2021-05-09T22:05:21.965903
2018-02-17T06:09:08
2018-02-17T06:09:08
118,743,295
0
0
MIT
2018-02-17T07:16:16
2018-01-24T09:32:06
Python
UTF-8
Python
false
false
455
py
from django.conf.urls import url from django.contrib import admin from django.conf import settings from django.conf.urls.static import static from .core import views urlpatterns = [ url(r'^$', views.home, name='home'), url(r'^AutosClasificados/form/$', views.publicarArticulo, name='publicarArticulo'), url(r'^admin/', admin.site.urls), ] if settings.DEBUG: urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
[ "joaquinpunales@gmail.com" ]
joaquinpunales@gmail.com
144a57e2abf73235b54f924ded7230ea6f2f9d53
513d230f48d6563435fee13fa222bd4ddbf69036
/architectures/GroupNetworkInNetwork.py
3d594846e623f8e00902bb9bb0c724bb82142522
[ "MIT" ]
permissive
AliaksandrSiarohin/FeatureLearningRotNet
feb4ccc80843f1909ad267c9a2825ac8431844c9
5ca057389984d3eb21aa032baef6cc10a6d61bf6
refs/heads/master
2020-08-21T19:59:04.780682
2019-10-21T15:38:10
2019-10-21T15:38:10
216,235,320
0
1
MIT
2019-10-19T16:21:19
2019-10-19T16:21:19
null
UTF-8
Python
false
false
7,143
py
import math import torch import torch.nn as nn import torch.nn.functional as F from groupy.gconv.pytorch_gconv import P4ConvP4, P4ConvZ2 class BasicBlock(nn.Module): def __init__(self, in_planes, out_planes, kernel_size, first=False): super(BasicBlock, self).__init__() padding = (kernel_size - 1) / 2 self.layers = nn.Sequential() conv = P4ConvP4 if not first else P4ConvZ2 self.layers.add_module('Conv', conv(in_planes, out_planes, \ kernel_size=kernel_size, stride=1, padding=padding, bias=False)) self.layers.add_module('BatchNorm', nn.BatchNorm3d(out_planes)) self.layers.add_module('ReLU', nn.ReLU(inplace=True)) def forward(self, x): return self.layers(x) class PoolAndCls(nn.Module): def __init__(self, nChannels): super(PoolAndCls, self).__init__() self.cls = nn.Conv1d(nChannels, 1, kernel_size=1) def forward(self, feat): num_channels = feat.size(1) out = F.avg_pool3d(feat, (1, feat.size(3), feat.size(4))) out = out.view(-1, num_channels, feat.size(2)) out = self.cls(out).squeeze(1) return out class GroupNetworkInNetwork(nn.Module): def __init__(self, opt): super(GroupNetworkInNetwork, self).__init__() num_classes = opt['num_classes'] num_inchannels = opt['num_inchannels'] if ('num_inchannels' in opt) else 3 num_stages = opt['num_stages'] if ('num_stages' in opt) else 3 use_avg_on_conv3 = opt['use_avg_on_conv3'] if ('use_avg_on_conv3' in opt) else True assert (num_stages >= 3) nChannels = 192 // 2 nChannels2 = 160 // 2 nChannels3 = 96 // 2 blocks = [nn.Sequential() for i in range(num_stages)] # 1st block blocks[0].add_module('Block1_ConvB1', BasicBlock(num_inchannels, nChannels, 5, first=True)) blocks[0].add_module('Block1_ConvB2', BasicBlock(nChannels, nChannels2, 1)) blocks[0].add_module('Block1_ConvB3', BasicBlock(nChannels2, nChannels3, 1)) blocks[0].add_module('Block1_MaxPool', nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1))) # 2nd block blocks[1].add_module('Block2_ConvB1', BasicBlock(nChannels3, nChannels, 5)) blocks[1].add_module('Block2_ConvB2', BasicBlock(nChannels, nChannels, 1)) blocks[1].add_module('Block2_ConvB3', BasicBlock(nChannels, nChannels, 1)) blocks[1].add_module('Block2_AvgPool', nn.AvgPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1))) # 3rd block blocks[2].add_module('Block3_ConvB1', BasicBlock(nChannels, nChannels, 3)) blocks[2].add_module('Block3_ConvB2', BasicBlock(nChannels, nChannels, 1)) blocks[2].add_module('Block3_ConvB3', BasicBlock(nChannels, nChannels, 1)) if num_stages > 3 and use_avg_on_conv3: blocks[2].add_module('Block3_AvgPool', nn.AvgPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1))) for s in range(3, num_stages): blocks[s].add_module('Block' + str(s + 1) + '_ConvB1', BasicBlock(nChannels, nChannels, 3)) blocks[s].add_module('Block' + str(s + 1) + '_ConvB2', BasicBlock(nChannels, nChannels, 1)) blocks[s].add_module('Block' + str(s + 1) + '_ConvB3', BasicBlock(nChannels, nChannels, 1)) # global average pooling and classifier blocks.append(nn.Sequential()) blocks[-1].add_module('Classifier', PoolAndCls(nChannels)) self._feature_blocks = nn.ModuleList(blocks) self.all_feat_names = ['conv' + str(s + 1) for s in range(num_stages)] + ['classifier', ] assert (len(self.all_feat_names) == len(self._feature_blocks)) def _parse_out_keys_arg(self, out_feat_keys): # By default return the features of the last layer / module. out_feat_keys = [self.all_feat_names[-1], ] if out_feat_keys is None else out_feat_keys if len(out_feat_keys) == 0: raise ValueError('Empty list of output feature keys.') for f, key in enumerate(out_feat_keys): if key not in self.all_feat_names: raise ValueError( 'Feature with name {0} does not exist. Existing features: {1}.'.format(key, self.all_feat_names)) elif key in out_feat_keys[:f]: raise ValueError('Duplicate output feature key: {0}.'.format(key)) # Find the highest output feature in `out_feat_keys max_out_feat = max([self.all_feat_names.index(key) for key in out_feat_keys]) return out_feat_keys, max_out_feat def forward(self, x, out_feat_keys=None): """Forward an image `x` through the network and return the asked output features. Args: x: input image. out_feat_keys: a list/tuple with the feature names of the features that the function should return. By default the last feature of the network is returned. Return: out_feats: If multiple output features were asked then `out_feats` is a list with the asked output features placed in the same order as in `out_feat_keys`. If a single output feature was asked then `out_feats` is that output feature (and not a list). """ #print (x.shape) out_feat_keys, max_out_feat = self._parse_out_keys_arg(out_feat_keys) out_feats = [None] * len(out_feat_keys) feat = x for f in range(max_out_feat + 1): feat = self._feature_blocks[f](feat) key = self.all_feat_names[f] if key in out_feat_keys: out_feats[out_feat_keys.index(key)] = feat.view(feat.shape[0], -1, feat.shape[-2], feat.shape[-1]) if key != 'classifier' else feat out_feats = out_feats[0] if len(out_feats) == 1 else out_feats return out_feats def weight_initialization(self): for m in self.modules(): if isinstance(m, P4ConvP4) or isinstance(m, P4ConvZ2): if m.weight.requires_grad: n = 4 * m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): if m.weight.requires_grad: m.weight.data.fill_(1) if m.bias.requires_grad: m.bias.data.zero_() elif isinstance(m, nn.Linear): if m.bias.requires_grad: m.bias.data.zero_() def create_model(opt): return GroupNetworkInNetwork(opt) if __name__ == '__main__': size = 32 opt = {'num_classes': 4, 'num_stages': 5} net = create_model(opt) x = torch.autograd.Variable(torch.FloatTensor(1, 3, size, size).uniform_(-1, 1)) out = net(x, out_feat_keys=net.all_feat_names) for f in range(len(out)): print('Output feature {0} - size {1}'.format( net.all_feat_names[f], out[f].size())) out = net(x) print('Final output: {0}'.format(out.size()))
[ "you@example.com" ]
you@example.com
dc83274eed03fba89086dbecd9f871c6037a6f44
b71afb6809bb8e0c4c9993840e88505d50123938
/src/Team.py
237efdb8b449a1086e3bc8af21a9406832ce29ab
[]
no_license
rafalsiniewicz/deep_learning_project
ec59e7fe151fc11f17f44619a7e8c7ce1e8e6562
eb13046c3b44bddb2de6437fd59d09f141c2ce50
refs/heads/master
2021-04-02T13:06:39.067835
2020-05-22T16:41:05
2020-05-22T16:41:05
248,278,412
0
0
null
null
null
null
UTF-8
Python
false
false
268
py
from Player import * from Game import * class Team: def __init__(self, games=[], players=[], stats=pd.DataFrame()): super().__init__(stats) self.games = games #Game self.players = players #Player def get_data(self): pass
[ "rafalsiniewicz@gmail.com" ]
rafalsiniewicz@gmail.com
2a796a36b90bf571d8b9b1bf7abeabd2232aa657
a838d4bed14d5df5314000b41f8318c4ebe0974e
/sdk/network/azure-mgmt-network/azure/mgmt/network/v2019_07_01/aio/operations/_route_tables_operations.py
1c9a94c29cdc2efe60006d96c3e30c66ba36f568
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
scbedd/azure-sdk-for-python
ee7cbd6a8725ddd4a6edfde5f40a2a589808daea
cc8bdfceb23e5ae9f78323edc2a4e66e348bb17a
refs/heads/master
2023-09-01T08:38:56.188954
2021-06-17T22:52:28
2021-06-17T22:52:28
159,568,218
2
0
MIT
2019-08-11T21:16:01
2018-11-28T21:34:49
Python
UTF-8
Python
false
false
29,608
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class RouteTablesOperations: """RouteTablesOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2019_07_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def _delete_initial( self, resource_group_name: str, route_table_name: str, **kwargs ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-07-01" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeTableName': self._serialize.url("route_table_name", route_table_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables/{routeTableName}'} # type: ignore async def begin_delete( self, resource_group_name: str, route_table_name: str, **kwargs ) -> AsyncLROPoller[None]: """Deletes the specified route table. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param route_table_name: The name of the route table. :type route_table_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: Pass in True if you'd like the AsyncARMPolling polling method, False for no polling, or your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, route_table_name=route_table_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeTableName': self._serialize.url("route_table_name", route_table_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables/{routeTableName}'} # type: ignore async def get( self, resource_group_name: str, route_table_name: str, expand: Optional[str] = None, **kwargs ) -> "_models.RouteTable": """Gets the specified route table. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param route_table_name: The name of the route table. :type route_table_name: str :param expand: Expands referenced resources. :type expand: str :keyword callable cls: A custom type or function that will be passed the direct response :return: RouteTable, or the result of cls(response) :rtype: ~azure.mgmt.network.v2019_07_01.models.RouteTable :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.RouteTable"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-07-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeTableName': self._serialize.url("route_table_name", route_table_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('RouteTable', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables/{routeTableName}'} # type: ignore async def _create_or_update_initial( self, resource_group_name: str, route_table_name: str, parameters: "_models.RouteTable", **kwargs ) -> "_models.RouteTable": cls = kwargs.pop('cls', None) # type: ClsType["_models.RouteTable"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-07-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeTableName': self._serialize.url("route_table_name", route_table_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'RouteTable') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('RouteTable', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('RouteTable', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables/{routeTableName}'} # type: ignore async def begin_create_or_update( self, resource_group_name: str, route_table_name: str, parameters: "_models.RouteTable", **kwargs ) -> AsyncLROPoller["_models.RouteTable"]: """Create or updates a route table in a specified resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param route_table_name: The name of the route table. :type route_table_name: str :param parameters: Parameters supplied to the create or update route table operation. :type parameters: ~azure.mgmt.network.v2019_07_01.models.RouteTable :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: Pass in True if you'd like the AsyncARMPolling polling method, False for no polling, or your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either RouteTable or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2019_07_01.models.RouteTable] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.RouteTable"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_or_update_initial( resource_group_name=resource_group_name, route_table_name=route_table_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('RouteTable', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeTableName': self._serialize.url("route_table_name", route_table_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'azure-async-operation'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables/{routeTableName}'} # type: ignore async def _update_tags_initial( self, resource_group_name: str, route_table_name: str, parameters: "_models.TagsObject", **kwargs ) -> "_models.RouteTable": cls = kwargs.pop('cls', None) # type: ClsType["_models.RouteTable"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-07-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._update_tags_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeTableName': self._serialize.url("route_table_name", route_table_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'TagsObject') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('RouteTable', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _update_tags_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables/{routeTableName}'} # type: ignore async def begin_update_tags( self, resource_group_name: str, route_table_name: str, parameters: "_models.TagsObject", **kwargs ) -> AsyncLROPoller["_models.RouteTable"]: """Updates a route table tags. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param route_table_name: The name of the route table. :type route_table_name: str :param parameters: Parameters supplied to update route table tags. :type parameters: ~azure.mgmt.network.v2019_07_01.models.TagsObject :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: Pass in True if you'd like the AsyncARMPolling polling method, False for no polling, or your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either RouteTable or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2019_07_01.models.RouteTable] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.RouteTable"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._update_tags_initial( resource_group_name=resource_group_name, route_table_name=route_table_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('RouteTable', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'routeTableName': self._serialize.url("route_table_name", route_table_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_update_tags.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables/{routeTableName}'} # type: ignore def list( self, resource_group_name: str, **kwargs ) -> AsyncIterable["_models.RouteTableListResult"]: """Gets all route tables in a resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either RouteTableListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2019_07_01.models.RouteTableListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.RouteTableListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-07-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('RouteTableListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables'} # type: ignore def list_all( self, **kwargs ) -> AsyncIterable["_models.RouteTableListResult"]: """Gets all route tables in a subscription. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either RouteTableListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2019_07_01.models.RouteTableListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.RouteTableListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-07-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_all.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('RouteTableListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_all.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Network/routeTables'} # type: ignore
[ "noreply@github.com" ]
scbedd.noreply@github.com
89e1333380f672897a9ec01d8b3306d735939835
84c4778bde1fc399e834883afe62ffc36f2d2cd6
/Egypt.py
8a0d1077498e9eae3fdf4f52a111051e6c9d7abb
[]
no_license
mebsahle/ICPC_Solved-
edbfde745084ccc028b7cb446f3e55c941ca474f
4d805b075a522b51944127845e91feb25b315758
refs/heads/master
2023-02-11T05:43:59.074750
2021-01-10T04:31:08
2021-01-10T04:31:08
217,336,000
2
0
null
null
null
null
UTF-8
Python
false
false
253
py
while True: a,b,c = [int(i) for i in input().split()] if a == 0 and b == 0 and c == 0: break else: if a**2+b**2==c**2 or a**2+c**2==b**2 or a**2==b**2+c**2: print("right") else: print("wrong")
[ "mebatsionsahle@gmail.com" ]
mebatsionsahle@gmail.com
1ae1c64e80e8fbb9a8c92151c4703c8ba5a8e8b2
2de33ba731066a63352080dd19da1e4582bb00c4
/collective.cover/src/collective/cover/tests/test_collection_tile.py
b045e92d615b8556d5004a7d3f0a99dd65042b89
[]
no_license
adam139/plonesrc
58f48e7cdfc8fbed7398011c40649f095df10066
cbf20045d31d13cf09d0a0b2a4fb78b96c464d20
refs/heads/master
2021-01-10T21:36:44.014240
2014-09-09T04:28:04
2014-09-09T04:28:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,894
py
# -*- coding: utf-8 -*- from collective.cover.testing import INTEGRATION_TESTING from collective.cover.tiles.base import IPersistentCoverTile from collective.cover.tiles.collection import CollectionTile from plone.app.testing import login from plone.app.testing import setRoles from plone.app.testing import TEST_USER_ID from plone.app.testing import TEST_USER_NAME from plone.uuid.interfaces import IUUID from zope.interface.verify import verifyClass from zope.interface.verify import verifyObject import unittest class CollectionTileTestCase(unittest.TestCase): layer = INTEGRATION_TESTING def setUp(self): self.portal = self.layer['portal'] self.request = self.layer['request'] self.cover = self.portal['frontpage'] self.tile = CollectionTile(self.cover, self.request) # XXX: tile initialization self.tile.__name__ = 'collective.cover.collection' def test_interface(self): self.assertTrue(IPersistentCoverTile.implementedBy(CollectionTile)) self.assertTrue(verifyClass(IPersistentCoverTile, CollectionTile)) tile = CollectionTile(None, None) self.assertTrue(IPersistentCoverTile.providedBy(tile)) self.assertTrue(verifyObject(IPersistentCoverTile, tile)) def test_default_configuration(self): self.assertTrue(self.tile.is_configurable) self.assertTrue(self.tile.is_editable) self.assertTrue(self.tile.is_droppable) def test_tile_is_empty(self): self.assertTrue(self.tile.is_empty()) def test_populate_tile_with_object(self): obj = self.portal['my-collection'] self.tile.populate_with_object(obj) self.assertEqual(self.tile.data.get('uuid'), IUUID(obj)) def test_populate_tile_with_invalid_object(self): obj = self.portal['my-document'] self.tile.populate_with_object(obj) # tile must be still empty self.assertTrue(self.tile.is_empty()) def test_accepted_content_types(self): self.assertEqual(self.tile.accepted_ct(), ['Collection']) def test_collection_tile_render(self): obj = self.portal['my-collection'] self.tile.populate_with_object(obj) rendered = self.tile() self.assertIn("<p>The collection doesn't have any results.</p>", rendered) def test_delete_collection(self): obj = self.portal['my-collection'] self.tile.populate_with_object(obj) self.tile.populate_with_object(obj) rendered = self.tile() self.assertIn("<p>The collection doesn't have any results.</p>", rendered) setRoles(self.portal, TEST_USER_ID, ['Manager', 'Editor', 'Reviewer']) login(self.portal, TEST_USER_NAME) self.portal.manage_delObjects(['my-collection']) rendered = self.tile() self.assertIn("Please drop a collection here to fill the tile.", rendered)
[ "plone@localhost.localdomain" ]
plone@localhost.localdomain
d24c9809aadb1aa5dbb5b1da5b40a993ec9cfc61
817cad93c3ef277e2651e5ad2a5888fb8b903d32
/DA2Lite/compression/filter_decomposition/methods/vmbf.py
8c3f1c871339b2475c1cd89d08a6285b2facf44a
[ "MIT", "Python-2.0" ]
permissive
TrendingTechnology/DA2Lite
6a601703ff6958b089ac84e4f8b392ebefa9573f
b95bb47bd13b4b0ddeefe5e0d93122f384f2774d
refs/heads/main
2023-04-17T09:34:11.168433
2021-05-04T03:47:43
2021-05-04T03:47:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,164
py
from __future__ import division import numpy as np from scipy.sparse.linalg import svds from scipy.optimize import minimize_scalar def VBMF(Y, cacb, sigma2=None, H=None): """Implementation of the analytical solution to Variational Bayes Matrix Factorization. This function can be used to calculate the analytical solution to VBMF. This is based on the paper and MatLab code by Nakajima et al.: "Global analytic solution of fully-observed variational Bayesian matrix factorization." Notes ----- If sigma2 is unspecified, it is estimated by minimizing the free energy. If H is unspecified, it is set to the smallest of the sides of the input Y. To estimate cacb, use the function EVBMF(). Attributes ---------- Y : numpy-array Input matrix that is to be factorized. Y has shape (L,M), where L<=M. cacb : int Product of the prior variances of the matrices that factorize the input. sigma2 : int or None (default=None) Variance of the noise on Y. H : int or None (default = None) Maximum rank of the factorized matrices. Returns ------- U : numpy-array Left-singular vectors. S : numpy-array Diagonal matrix of singular values. V : numpy-array Right-singular vectors. post : dictionary Dictionary containing the computed posterior values. References ---------- .. [1] Nakajima, Shinichi, et al. "Global analytic solution of fully-observed variational Bayesian matrix factorization." Journal of Machine Learning Research 14.Jan (2013): 1-37. .. [2] Nakajima, Shinichi, et al. "Perfect dimensionality recovery by variational Bayesian PCA." Advances in Neural Information Processing Systems. 2012. """ L,M = Y.shape #has to be L<=M if H is None: H = L #SVD of the input matrix, max rank of H U,s,V = np.linalg.svd(Y) U = U[:,:H] s = s[:H] V = V[:H].T #Calculate residual residual = 0. if H<L: residual = np.sum(np.sum(Y**2)-np.sum(s**2)) #Estimation of the variance when sigma2 is unspecified if sigma2 is None: upper_bound = (np.sum(s**2)+ residual)/(L+M) if L==H: lower_bound = s[-1]**2/M else: lower_bound = residual/((L-H)*M) sigma2_opt = minimize_scalar(VBsigma2, args=(L,M,cacb,s,residual), bounds=[lower_bound, upper_bound], method='Bounded') sigma2 = sigma2_opt.x print("Estimated sigma2: ", sigma2) #Threshold gamma term #Formula above (21) from [1] thresh_term = (L+M + sigma2/cacb**2)/2 threshold = np.sqrt( sigma2 * (thresh_term + np.sqrt(thresh_term**2 - L*M) )) #Number of singular values where gamma>threshold pos = np.sum(s>threshold) #Formula (10) from [2] d = np.multiply(s[:pos], 1 - np.multiply(sigma2/(2*s[:pos]**2), L+M+np.sqrt( (M-L)**2 + 4*s[:pos]**2/cacb**2 ))) #Computation of the posterior post = {} zeta = sigma2/(2*L*M) * (L+M+sigma2/cacb**2 - np.sqrt((L+M+sigma2/cacb**2)**2 - 4*L*M)) post['ma'] = np.zeros(H) post['mb'] = np.zeros(H) post['sa2'] = cacb * (1-L*zeta/sigma2) * np.ones(H) post['sb2'] = cacb * (1-M*zeta/sigma2) * np.ones(H) delta = cacb/sigma2 * (s[:pos]-d- L*sigma2/s[:pos]) post['ma'][:pos] = np.sqrt(np.multiply(d, delta)) post['mb'][:pos] = np.sqrt(np.divide(d, delta)) post['sa2'][:pos] = np.divide(sigma2*delta, s[:pos]) post['sb2'][:pos] = np.divide(sigma2, np.multiply(delta, s[:pos])) post['sigma2'] = sigma2 post['F'] = 0.5*(L*M*np.log(2*np.pi*sigma2) + (residual+np.sum(s**2))/sigma2 - (L+M)*H + np.sum(M*np.log(cacb/post['sa2']) + L*np.log(cacb/post['sb2']) + (post['ma']**2 + M*post['sa2'])/cacb + (post['mb']**2 + L*post['sb2'])/cacb + (-2 * np.multiply(np.multiply(post['ma'], post['mb']), s) + np.multiply(post['ma']**2 + M*post['sa2'],post['mb']**2 + L*post['sb2']))/sigma2)) return U[:,:pos], np.diag(d), V[:,:pos], post def VBsigma2(sigma2,L,M,cacb,s,residual): H = len(s) thresh_term = (L+M + sigma2/cacb**2)/2 threshold = np.sqrt( sigma2 * (thresh_term + np.sqrt(thresh_term**2 - L*M) )) pos = np.sum(s>threshold) d = np.multiply(s[:pos], 1 - np.multiply(sigma2/(2*s[:pos]**2), L+M+np.sqrt( (M-L)**2 + 4*s[:pos]**2/cacb**2 ))) zeta = sigma2/(2*L*M) * (L+M+sigma2/cacb**2 - np.sqrt((L+M+sigma2/cacb**2)**2 - 4*L*M)) post_ma = np.zeros(H) post_mb = np.zeros(H) post_sa2 = cacb * (1-L*zeta/sigma2) * np.ones(H) post_sb2 = cacb * (1-M*zeta/sigma2) * np.ones(H) delta = cacb/sigma2 * (s[:pos]-d- L*sigma2/s[:pos]) post_ma[:pos] = np.sqrt(np.multiply(d, delta)) post_mb[:pos] = np.sqrt(np.divide(d, delta)) post_sa2[:pos] = np.divide(sigma2*delta, s[:pos]) post_sb2[:pos] = np.divide(sigma2, np.multiply(delta, s[:pos])) F = 0.5*(L*M*np.log(2*np.pi*sigma2) + (residual+np.sum(s**2))/sigma2 - (L+M)*H + np.sum(M*np.log(cacb/post_sa2) + L*np.log(cacb/post_sb2) + (post_ma**2 + M*post_sa2)/cacb + (post_mb**2 + L*post_sb2)/cacb + (-2 * np.multiply(np.multiply(post_ma, post_mb), s) + np.multiply(post_ma**2 + M*post_sa2,post_mb**2 + L*post_sb2))/sigma2)) return F def EVBMF(Y, sigma2=None, H=None): """Implementation of the analytical solution to Empirical Variational Bayes Matrix Factorization. This function can be used to calculate the analytical solution to empirical VBMF. This is based on the paper and MatLab code by Nakajima et al.: "Global analytic solution of fully-observed variational Bayesian matrix factorization." Notes ----- If sigma2 is unspecified, it is estimated by minimizing the free energy. If H is unspecified, it is set to the smallest of the sides of the input Y. Attributes ---------- Y : numpy-array Input matrix that is to be factorized. Y has shape (L,M), where L<=M. sigma2 : int or None (default=None) Variance of the noise on Y. H : int or None (default = None) Maximum rank of the factorized matrices. Returns ------- U : numpy-array Left-singular vectors. S : numpy-array Diagonal matrix of singular values. V : numpy-array Right-singular vectors. post : dictionary Dictionary containing the computed posterior values. References ---------- .. [1] Nakajima, Shinichi, et al. "Global analytic solution of fully-observed variational Bayesian matrix factorization." Journal of Machine Learning Research 14.Jan (2013): 1-37. .. [2] Nakajima, Shinichi, et al. "Perfect dimensionality recovery by variational Bayesian PCA." Advances in Neural Information Processing Systems. 2012. """ L,M = Y.shape #has to be L<=M print(L) print(M) if H is None: H = L alpha = L/M tauubar = 2.5129*np.sqrt(alpha) #SVD of the input matrix, max rank of H U,s,V = np.linalg.svd(Y) U = U[:,:H] s = s[:H] V = V[:H].T #Calculate residual residual = 0. if H<L: residual = np.sum(np.sum(Y**2)-np.sum(s**2)) #Estimation of the variance when sigma2 is unspecified if sigma2 is None: xubar = (1+tauubar)*(1+alpha/tauubar) eH_ub = int(np.min([np.ceil(L/(1+alpha))-1, H]))-1 upper_bound = (np.sum(s**2)+residual)/(L*M) lower_bound = np.max([s[eH_ub+1]**2/(M*xubar), np.mean(s[eH_ub+1:]**2)/M]) scale = 1. #/lower_bound s = s*np.sqrt(scale) residual = residual*scale lower_bound = lower_bound*scale upper_bound = upper_bound*scale print(lower_bound) print(upper_bound) sigma2_opt = minimize_scalar(EVBsigma2, args=(L,M,s,residual,xubar), bounds=[lower_bound, upper_bound], method='Bounded') sigma2 = sigma2_opt.x #Threshold gamma term threshold = np.sqrt(M*sigma2*(1+tauubar)*(1+alpha/tauubar)) pos = np.sum(s>threshold) #Formula (15) from [2] d = np.multiply(s[:pos]/2, 1-np.divide((L+M)*sigma2, s[:pos]**2) + np.sqrt((1-np.divide((L+M)*sigma2, s[:pos]**2))**2 -4*L*M*sigma2**2/s[:pos]**4) ) #Computation of the posterior post = {} post['ma'] = np.zeros(H) post['mb'] = np.zeros(H) post['sa2'] = np.zeros(H) post['sb2'] = np.zeros(H) post['cacb'] = np.zeros(H) tau = np.multiply(d, s[:pos])/(M*sigma2) delta = np.multiply(np.sqrt(np.divide(M*d, L*s[:pos])), 1+alpha/tau) post['ma'][:pos] = np.sqrt(np.multiply(d, delta)) post['mb'][:pos] = np.sqrt(np.divide(d, delta)) post['sa2'][:pos] = np.divide(sigma2*delta, s[:pos]) post['sb2'][:pos] = np.divide(sigma2, np.multiply(delta, s[:pos])) post['cacb'][:pos] = np.sqrt(np.multiply(d, s[:pos])/(L*M)) post['sigma2'] = sigma2 post['F'] = 0.5*(L*M*np.log(2*np.pi*sigma2) + (residual+np.sum(s**2))/sigma2 + np.sum(M*np.log(tau+1) + L*np.log(tau/alpha +1) - M*tau)) return U[:,:pos], np.diag(d), V[:,:pos], post def EVBsigma2(sigma2,L,M,s,residual,xubar): H = len(s) alpha = L/M x = s**2/(M*sigma2) z1 = x[x>xubar] z2 = x[x<=xubar] tau_z1 = tau(z1, alpha) term1 = np.sum(z2 - np.log(z2)) term2 = np.sum(z1 - tau_z1) term3 = np.sum( np.log( np.divide(tau_z1+1, z1))) term4 = alpha*np.sum(np.log(tau_z1/alpha+1)) obj = term1+term2+term3+term4+ residual/(M*sigma2) + (L-H)*np.log(sigma2) return obj def phi0(x): return x-np.log(x) def phi1(x, alpha): return np.log(tau(x,alpha)+1) + alpha*np.log(tau(x,alpha)/alpha + 1) - tau(x,alpha) def tau(x, alpha): return 0.5 * (x-(1+alpha) + np.sqrt((x-(1+alpha))**2 - 4*alpha))
[ "kangsinhan@nate.com" ]
kangsinhan@nate.com
772b99702c24090a612c5cb84aebeeeadbf61b34
cf7883026dd1520ef5b01d377c50d38885fa3d4c
/JUNECO/SNACKUP.py
c27325d7c064ea46d9d2349d648414bd70114b71
[]
no_license
krishnadey30/Competitive_Coding
7e885bb9bc2ee3e06d7a0b722c48dde5131ad371
7e4a4ce145f4975ffa51ef0727b9d78f132d03a4
refs/heads/master
2020-03-08T03:13:43.429082
2018-04-04T18:44:54
2018-04-04T18:44:54
127,884,428
4
0
null
null
null
null
UTF-8
Python
false
false
294
py
test=int(input()) for t in range(0,test): n=int(input()) l=[] for i in range(1,n): l.append((i,i+1)) l.append((n,1)) print(n) for i in range(0,n): print(n) for j in range(0,n): print(j+1,end=" ") for x in l[j]: print(x,end=" ") print() l.append(l[0]) l.remove(l[0])
[ "krishnakumar.d16@iiits.in" ]
krishnakumar.d16@iiits.in
da5d1b860142f323050bc7b2cb8a083b79ef2e94
9887b201a356d9f2d56bd95e4fb59533b7fc8529
/actions/procesamiento/factor_strategies.py
ab439ea23e01c8df6c40bdada883a341612e861b
[]
no_license
matiasguerrero/ProcessActionBot
ea6ae02b7aadaf561d33d328ea7c37a9df871e8b
a0261b408d57d21c742266e1c15fa99ca6c27f28
refs/heads/master
2023-06-03T05:50:42.393538
2021-06-25T21:16:29
2021-06-25T21:16:29
371,838,739
0
0
null
null
null
null
UTF-8
Python
false
false
8,052
py
import abc import datetime from typing import Dict, Any from actions.procesamiento.tarea import Tarea from actions.procesamiento.fase import Fase from actions.event_handling import EventPublisher class CalculationStrategy(metaclass=abc.ABCMeta): """Interfaz que define el comportamiento basico requerido por una estrategia usada en el calculo de metricas. Autor: Matias G. """ @abc.abstractmethod def process_event(self, event: Dict) -> None: """Procesa el evento. Autor: Bruno. :param event: evento a procesar. :return: None. """ raise NotImplementedError @abc.abstractmethod def calculate_value(self) -> Any: """Calcula el valor de la estrategia. Autor: Bruno. :return: Any. """ raise NotImplementedError @abc.abstractmethod def get_name(self) -> str: """Calcula el valor de la estrategia. Autor: Matias G. :return: Any. """ raise NotImplementedError class MeetingParticipations(CalculationStrategy): """Cuenta las participaciones de todos los TeamMembers/AgileBots que forman parte de un proyecto en AgileTalk. Autor: Matias G. """ def __init__(self): # Componente.getReuniones() """Constructor. Args: """ self._n_occurrences = 0 self._d_ocurrences = {} self.result="" def __str__(self) -> str: return "(MeetingParticipations: {})".format(self._n_occurrences) def get_name(self) -> str: return "MeetingParticipations" def process_event(self, event: Dict) -> None: """A partir de un evento cuenta las participaciones generales por persona. Autor: Matias G. :param event: evento a procesar. El formato del evento es: {'Participations': [{'1': {'cant_particip': '3'}}, {'2': {'cant_particip': '2'}}, {'3': {'cant_particip': '3'}}]} :return: None. """ self.result="" participations = event["Participations"] for x in participations: for key, value in x.items(): self.result=self.result+"El miembro del equipo "+str(key)+" participó "+str(value["cant_particip"])+" veces en la reunión. " def calculate_value(self) -> str: """Devuelve todas las participaciones en reuniones dentro de un proyecto. Autor: Matias G. :return: Str. """ return self.result class MeetAsistance(CalculationStrategy): """Calcula el porcentaje de asistencia a una reunion. Autor: Matias G. """ def __init__(self): # Componente.getReuniones() self._n_asistance = 0 def __str__(self) -> str: return "(MeetAsistance: {})".format(self._n_asistance) def get_name(self) -> str: return "MeetAsistance" def process_event(self, event: Dict) -> None: """Establece el porcentaje de TeamMembers/AgileBots que participaron en la reunion. Autor: Matias G. :param event: evento a procesar. El formato del evento es: {"event_id": "", "time": "", "id_reunion": "", "participaciones": {"bruno": 5, "matias": 7}} :return: None. """ # TODO Se requiere que todos los TeamMembers/AgileBots que tengan que # participar en la reunion aparezcan en event["participaciones"], # aunque sea con un valor de cero participaciones. reunion = event["participaciones"] total_asistance = 0 for meet_user, ocurrence in reunion.items(): if ocurrence > 0: total_asistance += 1 cant = len(reunion) if cant > 0: self._n_asistance = total_asistance / cant def calculate_value(self) -> float: """Devuelve el porcentaje de asistencia a la reunion. Autor: Matias G. :return: Dict. """ return self._n_asistance class EstimatedDeadline(CalculationStrategy): """Calcula el porcentaje de asistencia a una reunion. Autor: Matias G. """ def __init__(self): # Componente getFase """Constructor. Args: """ # La fase self.meet debería ser provista por un componente que brinde # el artefacto self.fecha_init= datetime.datetime.utcnow() self.fecha_fin= datetime.datetime.utcnow() + datetime.timedelta(minutes=15) self._fase = Fase(1, self.fecha_init.strftime("%Y-%m-%d %H:%M:%S"), self.fecha_fin.strftime("%Y-%m-%d %H:%M:%S")) self._fase.add_actor("actor1") self._fase.add_actor("actor1") self._fase.add_actor("actor1") self._estimated_time = datetime.date.today() self._real_time = datetime.date.today() def __str__(self) -> str: return " " def get_name(self) -> str: return "EstimatedDeadline" def process_event(self, event: dict) -> None: """Compara el plazo de finalización estimado de una fase con su finalizacion real. Autor: Matias G. :param event: evento "FinFase" a procesar. :return: None. """ d={"id":1,"fecha_start":"fecha","fecha_ended":"fecha"} date_format = "%Y-%m-%d %H:%M:%S" self._fase.set_id(event["id"]) self._fase.finalizar() #real_end_date=self._fase.get_fecha_fin() end_date = datetime.datetime.strptime( str(self._fase.get_duracion_estimada()), date_format) start_date = datetime.datetime.strptime( str(self._fase.get_fecha_inicio()), date_format) real_end_date=datetime.datetime.strptime( str(event["fecha_ended"]), date_format) real_start_date=datetime.datetime.strptime( str(event["fecha_start"]), date_format) self._estimated_time = end_date - start_date self._real_time = real_end_date - real_start_date def calculate_value(self) -> int: """Retorna la cantidad de segundos existentes entre el plazo estimado y el plazo real de finalizacion. Si la cantidad es negativa -> realTime < estimatedTime Si la cantidad es positiva -> realTime > estimatedTime Autor: Matias G. :return: int. """ self._real_time = self._real_time.total_seconds() self._estimated_time = self._estimated_time.total_seconds() difference_sec = self._real_time - self._estimated_time return difference_sec class ControlTask(CalculationStrategy): """Calcula el porcentaje de asistencia a una reunion. Autor: Matias G. """ def __init__(self): # Componente.getReuniones() self._n_asistance = 0 self.tareas=[] self.result={} self.valor="" self.horashechas=0 def __str__(self) -> str: return "(ControlTask: {})".format(self._n_asistance) def get_name(self) -> str: return "ControlTask" def process_event(self, event: dict) -> None: #event={Tasks: ["task_id": {hours_worked: value, total_hours: value}] self.valor="" self.horashechas=0 list_tareas=event["Tareas"] for x in list_tareas: for key, value in x.items(): horas=int(value["horas_totales"]) - int(value["horas_trabajadas"]) self.valor=self.valor+"La tarea "+ str(key)+ " necesita "+str(horas)+" hora/s más para ser finalizada. " self.horashechas=self.horashechas+int(value["horas_trabajadas"]) def calculate_value(self) -> str: resultado=self.valor+" El miembro del equipo trabajó "+str(self.horashechas)+" horas diarias." #if self.horashechas < agilebot.get_horasminimas(): # EventPublisher().publish("message", # { "message": "El miembro del equipo no trabajó las horas minimas diarias", # "from":"ProcessActionBot", # "to":"Scrum Master"}) return resultado
[ "maguerrero@alumnos.exa.unicen.edu.ar" ]
maguerrero@alumnos.exa.unicen.edu.ar
6b73163a5f9e5940fdf3a55ac661f2276cc2bfe2
781e2692049e87a4256320c76e82a19be257a05d
/all_data/exercism_data/python/bob/e521d476743c42ac9b3d37225576e9b9.py
0573a84aba567a7d294818af2b4f8c2a561bdbc8
[]
no_license
itsolutionscorp/AutoStyle-Clustering
54bde86fe6dbad35b568b38cfcb14c5ffaab51b0
be0e2f635a7558f56c61bc0b36c6146b01d1e6e6
refs/heads/master
2020-12-11T07:27:19.291038
2016-03-16T03:18:00
2016-03-16T03:18:42
59,454,921
4
0
null
2016-05-23T05:40:56
2016-05-23T05:40:56
null
UTF-8
Python
false
false
609
py
# -*- coding: utf-8 -*- ''' Author: Postprandial Purpose: Version2 of the Bob file: Bob now answers all questions with 'Sure' and all shouting (caps) with 'Whoa, chill out!' lowercase questions or questions ending in whitespace are also answered with 'sure'. Bob also still looks All statements (upper & lowercase) are answered. ''' def hey(what): prompt=what.strip() answer='' answerFine=[' \t',""] if prompt in answerFine: answer='Fine. Be that way!' elif prompt.isupper(): answer='Whoa, chill out!' elif prompt[-1]=='?': answer='Sure.' else: answer='Whatever.' return answer
[ "rrc@berkeley.edu" ]
rrc@berkeley.edu
10cd3ec2bf6aed6db6fa2683eebb85e68ff3df10
7b7bfbfebd627a3ccfdd52bb7164fa4f94cda7fc
/optic_store/patches/v0_6/set_spec_parts_cl.py
da352328e9d34fba734fd5b1b615a11d138a1001
[ "MIT" ]
permissive
f-9t9it/optic_store
d117b7ef7c4107ec15d8194fc57d66a18aff5945
4682ae99cdb2cbfb1ff99196398d7379b4b6c8f1
refs/heads/master
2022-07-01T10:29:54.783550
2022-06-21T14:34:40
2022-06-21T14:34:40
171,165,708
23
43
NOASSERTION
2022-06-21T14:21:16
2019-02-17T19:58:33
Python
UTF-8
Python
false
false
1,615
py
# -*- coding: utf-8 -*- # Copyright (c) 2019, 9T9IT and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from optic_store.doc_events.sales_order import get_parts from optic_store.patches.v0_6.set_spec_parts import _get_docs def execute(): settings = frappe.get_single("Optical Store Settings") frames = map(lambda x: x.item_group, settings.frames) lenses = map(lambda x: x.item_group, settings.lens) for doctype in ["Sales Order", "Sales Invoice"]: for doc in _get_docs(doctype): if doc.orx_type == "Contact Lens": frame, lens_right, lens_left = get_parts(doc.items) for item in doc.items: if not item.os_spec_part: if not frame and item.item_group in frames: frappe.db.set_value( item.doctype, item.name, "os_spec_part", "Frame" ) frame = item elif not lens_right and item.item_group in lenses: frappe.db.set_value( item.doctype, item.name, "os_spec_part", "Lens Right" ) lens_right = item elif not lens_left and item.item_group in lenses: frappe.db.set_value( item.doctype, item.name, "os_spec_part", "Lens Left" ) lens_left = item
[ "sun@libermatic.com" ]
sun@libermatic.com
de7d37f5795ee1cb6a9597629efc6cf0a5d219a9
587581b377a823a9bbb3c75e88fd31c7cf05fb01
/assignment2/ensemble.py
9d4c8612dec8ed4c8288c860491d546966b74da9
[]
no_license
Miopas/BioNLP
48b6a512ba9eb53888c9f7c5e060992dc5c99b9a
bf1c7c1d824f381b001d71c158cc11eb8ccf1061
refs/heads/master
2022-12-28T06:09:17.462986
2020-10-12T03:54:39
2020-10-12T03:54:39
295,817,535
0
0
null
null
null
null
UTF-8
Python
false
false
2,604
py
from sklearn import svm from sklearn.model_selection import StratifiedKFold from feature_generator import FeatureGenerator, Record from sklearn.model_selection import KFold import argparse from cls_utils import * from sklearn.svm import LinearSVC from sklearn.naive_bayes import GaussianNB from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LogisticRegression from sklearn.neural_network import MLPClassifier from sklearn.tree import DecisionTreeClassifier if __name__ == '__main__': # Load the data f_path = 'pdfalls.csv' data = loadDataAsDataFrame(f_path) # SPLIT THE DATA (we could use sklearn.model_selection.train_test_split) training_set_size = int(0.8 * len(data)) training_data = data[:training_set_size] test_data = data[training_set_size:] # K-Fold split kf = KFold(n_splits=5) kf.get_n_splits(training_data) scores = [] for train_index, dev_index in kf.split(training_data): ttp_train_data = get_sub(training_data, train_index) ttp_dev_data = get_sub(training_data,dev_index) feature_generator = FeatureGenerator(ttp_train_data) train_data_vectors, train_classes = feature_generator.transform(ttp_train_data) dev_data_vectors, dev_classes = feature_generator.transform(ttp_dev_data) test_data_vectors, test_classes = feature_generator.transform(test_data) # TRAIN THE MODEL cls_models = [] #cls_models.append(GaussianNB()) cls_models.append(LinearSVC(random_state=0)) #cls_models.append(RandomForestClassifier(bootstrap=True, max_depth=10, max_features='auto', # min_samples_leaf=1, min_samples_split=2, n_estimators=10, # random_state=0, n_jobs=-1)) #cls_models.append(MLPClassifier(activation='tanh', hidden_layer_sizes=(16,))) #cls_models.append(KNeighborsClassifier(algorithm='ball_tree', n_neighbors=11, weights='uniform')) #cls_models.append(LogisticRegression(class_weight='balanced', fit_intercept=True, #solver='liblinear')) for clf in cls_models: clf.fit(train_data_vectors, train_classes) predictions = get_voting(cls_models, dev_data_vectors) dev_metrics = get_metrics(predictions, dev_classes) predictions = get_voting(cls_models, test_data_vectors) test_metrics = get_metrics(predictions, test_classes) scores.append(test_metrics) print_metrics(scores)
[ "gyt_guoyuting@126.com" ]
gyt_guoyuting@126.com
4672b88873af075d8bf74a280c3e3548c05c72f5
3b41d40a0285f3f29ff52f673a37ba6e368eb490
/OneArticle/settings.py
72d9351e9a96b370d405d2494f603b6b903d5d92
[]
no_license
X-Wei/OneArticleCrawler
020ce1adb7c8a47b50183c5524a3b06c28b92c48
3e69bfdb22d45f07f1543a83bf37864a98c8a7ba
refs/heads/master
2016-09-15T20:22:32.797774
2016-03-29T07:32:38
2016-03-29T07:32:38
34,137,487
0
1
null
2016-03-29T07:32:39
2015-04-17T20:03:49
Python
UTF-8
Python
false
false
503
py
# -*- coding: utf-8 -*- # Scrapy settings for OneArticle project # # For simplicity, this file contains only the most important settings by # default. All the other settings are documented here: # # http://doc.scrapy.org/en/latest/topics/settings.html # BOT_NAME = 'OneArticle' SPIDER_MODULES = ['OneArticle.spiders'] NEWSPIDER_MODULE = 'OneArticle.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'OneArticle (+http://www.yourdomain.com)'
[ "wistar.sjtu@gmail.com" ]
wistar.sjtu@gmail.com
82f9cc6486cffac22234ff1e553f1f5831bfd5c9
15d0cf422e01e6e3e2cd1770e42974fecd12fc38
/new_JSON.py
45898bc3b1d900f787afa6610322133c5575b97b
[]
no_license
pluxury8state/new_JSON
9f8787204e6d222544b981002a5d75e942c41562
0217edd85f97845d403203e07097c1effd9eb19e
refs/heads/master
2022-09-21T01:49:37.396989
2020-05-31T16:09:04
2020-05-31T16:09:04
268,314,308
0
0
null
null
null
null
UTF-8
Python
false
false
1,143
py
import json def sort_and_top10(ob): new_mas = sorted(ob, key=lambda mas: mas[1]) a = int(len(new_mas)) - 1 p = 0 print('top 10') while p != 10: print(new_mas[a]) a -= 1 p += 1 def counter(ob): mas4 = [] for ind in ob: p = 0 for i in mas4: if ind[0] != i[0]: continue else: p = 1 break if p != 0: continue else: mas4.append(ind) sort_and_top10(mas4) def add(ob): mas3 = [] for ind in ob: a = [ind] a.append(ob.count(ind)) mas3.append(a) counter(mas3) def more_then_6(ob): mas2 = [] for ind in ob: for temp in ind: if len(temp) > 6: mas2.append(temp) add(mas2) def import_file(file): mas = [] a = file['rss'] b = a['channel'] c = b['items'] for descr in c: mas.append(descr['description'].split(' ')) more_then_6(mas) #begin with open('newsafr.json','r',encoding='utf-8') as f: file = json.load(f) import_file(file)
[ "ssdffgmlg@gmail.com" ]
ssdffgmlg@gmail.com
0eb41e66c1e6eae15f241cdd168bc70a77cbbdda
4d1ae7f21c4f179f8a894038a9871417297c4fb8
/src/feature_engineering.py
16a644969920de3db7ad3cd2a778a128b2b2204d
[]
no_license
chuck1l/long_short_term_memory
a7ebba0b9d74bbbf2b8566dfdf1c9811f7ba4372
b8333b5ecf37fdfe61c0d1413dc7f23e98b7f916
refs/heads/main
2023-04-24T05:09:37.909859
2021-05-13T14:49:23
2021-05-13T14:49:23
367,079,872
0
0
null
null
null
null
UTF-8
Python
false
false
3,121
py
import matplotlib.pyplot as plt import numpy as np import pandas as pd import yfinance as yf from datetime import date from pandas_datareader import data as pdr class CreateDataFrame(object): ''' This class is used to create the rolling average on all features and targets in the input dataframe. This is necessary because stock data will usually have a upward trend that greatly impacts the error in a model like LSTM or Random Forest. Parameters: The dataframe The days back for rolling average Returns: A new dataframe with rolling averages minus true values, and true values ''' def __init__(self, ticker, data, days_back): self.ticker = ticker self.df = data self.days_back = days_back def new_features(self): self.df.columns = map(str.lower, self.df.columns) self.df.columns = self.df.columns.str.replace(' ', '_') self.df['tmr_high'] = self.df['high'].shift(periods=-1) self.df['tmr_low'] = self.df['low'].shift(periods=-1) self.df['tmr_high'].fillna(self.df['high'], inplace=True) self.df['tmr_low'].fillna(self.df['low'], inplace=True) self.df['avg_price'] = self.df[['high', 'low', 'open', 'close']].sum(axis=1)/4 cols = list(self.df.columns) # Create all rolling averages for all columns in the dataframe for col in cols: self.df['rolling_avg_' + col] = self.df[col].rolling(self.days_back, center=True).mean() self.df = self.df.dropna(axis=0, how='any') # Prepare the feature column lists cols_t = [cols.pop(cols.index('tmr_high')), cols.pop(cols.index('tmr_low'))] rolling_avg_feature_cols = [] feature_cols = [] # Prepare the target column lists rolling_avg_target_cols = ['rolling_avg_tmr_high', 'rolling_avg_tmr_low'] target_cols = ['target_tmr_high', 'target_tmr_low'] for col in cols: rolling_avg_feature_cols.append('rolling_avg_' + col) feature_cols.append('feature_' + col) # Create the features (cols) by feature minus associated rolling avg, concat with df for i in range(len(cols)): feature_cols[i] = pd.Series(self.df.apply(lambda row: row[rolling_avg_feature_cols[i]] - row[cols[i]], axis=1), name=feature_cols[i]) self.df = pd.concat([self.df, feature_cols[i]], axis=1) # Create the targets (cols_targets) by target minus associated rolling avg, concat with df for i in range(len(target_cols)): target_cols[i] = pd.Series(self.df.apply(lambda row: row[rolling_avg_target_cols[i]] - row[cols_t[i]], axis=1), name=target_cols[i]) self.df = pd.concat([self.df, target_cols[i]], axis=1) self.df.to_csv(f'../data/{self.ticker}_prepared_dataframe.csv') return self.df if __name__ == '__main__': # Import the stock data start_date = '2000-01-01' end_date = date.today() ticker = 'SPY' data = pdr.get_data_yahoo(ticker, start=start_date, end=end_date) CreateDataFrame(ticker, data, 5).new_features()
[ "chucks_apple@Chucks-MacBook-Pro.local" ]
chucks_apple@Chucks-MacBook-Pro.local
ed80eecc6d927982d83f6e023d454b76afd420e3
aa65c8e24e8f3b0d16173ab72feb392855a481ac
/workspace/.c9/metadata/workspace/test/python week 8 lecture test/argv0.py
2f33c17f283644c381923e6f29ee230a7be41930
[]
no_license
olafironfoot/CS50_introduction-to-computer-science
d7688a29378fd2beeb71b73dab1433b99d670789
2dd45f4abfec2c9ae4c65f0045217dc9cbc960a7
refs/heads/master
2021-05-20T00:26:20.231700
2020-04-01T13:25:44
2020-04-01T13:25:44
252,106,130
0
0
null
null
null
null
UTF-8
Python
false
false
10,970
py
{"filter":false,"title":"argv0.py","tooltip":"/test/python week 8 lecture test/argv0.py","undoManager":{"mark":100,"position":100,"stack":[[{"start":{"row":2,"column":14},"end":{"row":2,"column":15},"action":"insert","lines":["v"],"id":55}],[{"start":{"row":2,"column":16},"end":{"row":2,"column":17},"action":"insert","lines":[" "],"id":56}],[{"start":{"row":2,"column":17},"end":{"row":2,"column":18},"action":"insert","lines":["="],"id":57}],[{"start":{"row":2,"column":18},"end":{"row":2,"column":19},"action":"insert","lines":["="],"id":58}],[{"start":{"row":2,"column":19},"end":{"row":2,"column":20},"action":"insert","lines":[" "],"id":59}],[{"start":{"row":2,"column":20},"end":{"row":2,"column":21},"action":"insert","lines":["2"],"id":60}],[{"start":{"row":2,"column":21},"end":{"row":3,"column":0},"action":"insert","lines":["",""],"id":61}],[{"start":{"row":3,"column":0},"end":{"row":3,"column":4},"action":"insert","lines":[" "],"id":62}],[{"start":{"row":3,"column":4},"end":{"row":3,"column":5},"action":"insert","lines":["p"],"id":63}],[{"start":{"row":3,"column":5},"end":{"row":3,"column":6},"action":"insert","lines":["r"],"id":64}],[{"start":{"row":3,"column":6},"end":{"row":3,"column":7},"action":"insert","lines":["i"],"id":65}],[{"start":{"row":3,"column":7},"end":{"row":3,"column":8},"action":"insert","lines":["n"],"id":66}],[{"start":{"row":3,"column":8},"end":{"row":3,"column":9},"action":"insert","lines":["t"],"id":67}],[{"start":{"row":3,"column":9},"end":{"row":3,"column":11},"action":"insert","lines":["()"],"id":68}],[{"start":{"row":3,"column":10},"end":{"row":3,"column":12},"action":"insert","lines":["\"\""],"id":69}],[{"start":{"row":3,"column":11},"end":{"row":3,"column":12},"action":"insert","lines":["h"],"id":70}],[{"start":{"row":3,"column":12},"end":{"row":3,"column":13},"action":"insert","lines":["e"],"id":71}],[{"start":{"row":3,"column":13},"end":{"row":3,"column":14},"action":"insert","lines":["l"],"id":72}],[{"start":{"row":3,"column":14},"end":{"row":3,"column":15},"action":"insert","lines":["l"],"id":73}],[{"start":{"row":3,"column":15},"end":{"row":3,"column":16},"action":"insert","lines":["o"],"id":74}],[{"start":{"row":3,"column":16},"end":{"row":3,"column":17},"action":"insert","lines":[" "],"id":75}],[{"start":{"row":3,"column":17},"end":{"row":3,"column":18},"action":"insert","lines":["{"],"id":76}],[{"start":{"row":3,"column":18},"end":{"row":3,"column":19},"action":"insert","lines":["}"],"id":77}],[{"start":{"row":3,"column":20},"end":{"row":3,"column":21},"action":"insert","lines":[","],"id":78}],[{"start":{"row":3,"column":20},"end":{"row":3,"column":21},"action":"remove","lines":[","],"id":79}],[{"start":{"row":3,"column":20},"end":{"row":3,"column":21},"action":"insert","lines":["."],"id":80}],[{"start":{"row":3,"column":21},"end":{"row":3,"column":22},"action":"insert","lines":[" "],"id":81}],[{"start":{"row":3,"column":21},"end":{"row":3,"column":22},"action":"remove","lines":[" "],"id":82}],[{"start":{"row":3,"column":21},"end":{"row":3,"column":22},"action":"insert","lines":["f"],"id":83}],[{"start":{"row":3,"column":22},"end":{"row":3,"column":23},"action":"insert","lines":["o"],"id":84}],[{"start":{"row":3,"column":23},"end":{"row":3,"column":24},"action":"insert","lines":["r"],"id":85}],[{"start":{"row":3,"column":24},"end":{"row":3,"column":25},"action":"insert","lines":["m"],"id":86}],[{"start":{"row":3,"column":25},"end":{"row":3,"column":26},"action":"insert","lines":["a"],"id":87}],[{"start":{"row":3,"column":26},"end":{"row":3,"column":27},"action":"insert","lines":["t"],"id":88}],[{"start":{"row":3,"column":27},"end":{"row":3,"column":29},"action":"insert","lines":["()"],"id":89}],[{"start":{"row":3,"column":28},"end":{"row":3,"column":29},"action":"insert","lines":["a"],"id":90}],[{"start":{"row":3,"column":29},"end":{"row":3,"column":30},"action":"insert","lines":["r"],"id":91}],[{"start":{"row":3,"column":30},"end":{"row":3,"column":31},"action":"insert","lines":["v"],"id":92}],[{"start":{"row":3,"column":30},"end":{"row":3,"column":31},"action":"remove","lines":["v"],"id":93}],[{"start":{"row":3,"column":30},"end":{"row":3,"column":31},"action":"insert","lines":["g"],"id":94}],[{"start":{"row":3,"column":31},"end":{"row":3,"column":32},"action":"insert","lines":["v"],"id":95}],[{"start":{"row":3,"column":32},"end":{"row":3,"column":33},"action":"insert","lines":["1"],"id":96}],[{"start":{"row":3,"column":32},"end":{"row":3,"column":33},"action":"remove","lines":["1"],"id":97}],[{"start":{"row":3,"column":31},"end":{"row":3,"column":32},"action":"remove","lines":["v"],"id":98}],[{"start":{"row":3,"column":30},"end":{"row":3,"column":31},"action":"remove","lines":["g"],"id":99}],[{"start":{"row":3,"column":29},"end":{"row":3,"column":30},"action":"remove","lines":["r"],"id":100}],[{"start":{"row":3,"column":28},"end":{"row":3,"column":29},"action":"remove","lines":["a"],"id":101}],[{"start":{"row":3,"column":28},"end":{"row":3,"column":29},"action":"insert","lines":["s"],"id":102}],[{"start":{"row":3,"column":29},"end":{"row":3,"column":30},"action":"insert","lines":["y"],"id":103}],[{"start":{"row":3,"column":30},"end":{"row":3,"column":31},"action":"insert","lines":["s"],"id":104}],[{"start":{"row":3,"column":31},"end":{"row":3,"column":32},"action":"insert","lines":["."],"id":105}],[{"start":{"row":3,"column":32},"end":{"row":3,"column":33},"action":"insert","lines":["a"],"id":106}],[{"start":{"row":3,"column":33},"end":{"row":3,"column":34},"action":"insert","lines":["r"],"id":107}],[{"start":{"row":3,"column":34},"end":{"row":3,"column":35},"action":"insert","lines":["g"],"id":108}],[{"start":{"row":3,"column":35},"end":{"row":3,"column":36},"action":"insert","lines":["v"],"id":109}],[{"start":{"row":3,"column":36},"end":{"row":3,"column":38},"action":"insert","lines":["[]"],"id":110}],[{"start":{"row":3,"column":37},"end":{"row":3,"column":38},"action":"insert","lines":["1"],"id":111}],[{"start":{"row":3,"column":41},"end":{"row":4,"column":0},"action":"insert","lines":["",""],"id":112},{"start":{"row":4,"column":0},"end":{"row":4,"column":4},"action":"insert","lines":[" "]}],[{"start":{"row":4,"column":0},"end":{"row":4,"column":4},"action":"remove","lines":[" "],"id":113}],[{"start":{"row":4,"column":0},"end":{"row":5,"column":0},"action":"insert","lines":["",""],"id":114}],[{"start":{"row":5,"column":0},"end":{"row":5,"column":1},"action":"insert","lines":["e"],"id":115}],[{"start":{"row":5,"column":1},"end":{"row":5,"column":2},"action":"insert","lines":["l"],"id":116}],[{"start":{"row":5,"column":2},"end":{"row":5,"column":3},"action":"insert","lines":["s"],"id":117}],[{"start":{"row":5,"column":3},"end":{"row":5,"column":4},"action":"insert","lines":["e"],"id":118}],[{"start":{"row":5,"column":4},"end":{"row":5,"column":5},"action":"insert","lines":[" "],"id":119}],[{"start":{"row":5,"column":5},"end":{"row":5,"column":6},"action":"insert","lines":["p"],"id":120}],[{"start":{"row":5,"column":6},"end":{"row":5,"column":7},"action":"insert","lines":["r"],"id":121}],[{"start":{"row":5,"column":7},"end":{"row":5,"column":8},"action":"insert","lines":["i"],"id":122}],[{"start":{"row":5,"column":8},"end":{"row":5,"column":9},"action":"insert","lines":["n"],"id":123}],[{"start":{"row":5,"column":9},"end":{"row":5,"column":10},"action":"insert","lines":["t"],"id":124}],[{"start":{"row":5,"column":10},"end":{"row":5,"column":12},"action":"insert","lines":["()"],"id":125}],[{"start":{"row":5,"column":11},"end":{"row":5,"column":12},"action":"insert","lines":["h"],"id":126}],[{"start":{"row":5,"column":12},"end":{"row":5,"column":13},"action":"insert","lines":["e"],"id":127}],[{"start":{"row":5,"column":13},"end":{"row":5,"column":14},"action":"insert","lines":["l"],"id":128}],[{"start":{"row":5,"column":13},"end":{"row":5,"column":14},"action":"remove","lines":["l"],"id":129}],[{"start":{"row":5,"column":12},"end":{"row":5,"column":13},"action":"remove","lines":["e"],"id":130}],[{"start":{"row":5,"column":11},"end":{"row":5,"column":12},"action":"remove","lines":["h"],"id":131}],[{"start":{"row":5,"column":11},"end":{"row":5,"column":13},"action":"insert","lines":["\"\""],"id":132}],[{"start":{"row":5,"column":12},"end":{"row":5,"column":13},"action":"insert","lines":["h"],"id":133}],[{"start":{"row":5,"column":13},"end":{"row":5,"column":14},"action":"insert","lines":["e"],"id":134}],[{"start":{"row":5,"column":14},"end":{"row":5,"column":15},"action":"insert","lines":["e"],"id":135}],[{"start":{"row":5,"column":15},"end":{"row":5,"column":16},"action":"insert","lines":["l"],"id":136}],[{"start":{"row":5,"column":16},"end":{"row":5,"column":17},"action":"insert","lines":["l"],"id":137}],[{"start":{"row":5,"column":16},"end":{"row":5,"column":17},"action":"remove","lines":["l"],"id":138}],[{"start":{"row":5,"column":15},"end":{"row":5,"column":16},"action":"remove","lines":["l"],"id":139}],[{"start":{"row":5,"column":14},"end":{"row":5,"column":15},"action":"remove","lines":["e"],"id":140}],[{"start":{"row":5,"column":14},"end":{"row":5,"column":15},"action":"insert","lines":["e"],"id":141}],[{"start":{"row":5,"column":15},"end":{"row":5,"column":16},"action":"insert","lines":["l"],"id":142}],[{"start":{"row":5,"column":16},"end":{"row":5,"column":17},"action":"insert","lines":["l"],"id":143}],[{"start":{"row":5,"column":17},"end":{"row":5,"column":18},"action":"insert","lines":["o"],"id":144}],[{"start":{"row":5,"column":18},"end":{"row":5,"column":19},"action":"insert","lines":["o"],"id":145}],[{"start":{"row":5,"column":19},"end":{"row":5,"column":20},"action":"insert","lines":[" "],"id":146}],[{"start":{"row":5,"column":20},"end":{"row":5,"column":21},"action":"insert","lines":["w"],"id":147}],[{"start":{"row":5,"column":21},"end":{"row":5,"column":22},"action":"insert","lines":["o"],"id":148}],[{"start":{"row":5,"column":22},"end":{"row":5,"column":23},"action":"insert","lines":["r"],"id":149}],[{"start":{"row":5,"column":23},"end":{"row":5,"column":24},"action":"insert","lines":["l"],"id":150}],[{"start":{"row":5,"column":24},"end":{"row":5,"column":25},"action":"insert","lines":["d"],"id":151}],[{"start":{"row":2,"column":21},"end":{"row":2,"column":22},"action":"insert","lines":[":"],"id":152}],[{"start":{"row":5,"column":4},"end":{"row":5,"column":5},"action":"remove","lines":[" "],"id":153},{"start":{"row":5,"column":4},"end":{"row":6,"column":0},"action":"insert","lines":["",""]}],[{"start":{"row":6,"column":0},"end":{"row":6,"column":4},"action":"insert","lines":[" "],"id":154}],[{"start":{"row":5,"column":4},"end":{"row":5,"column":5},"action":"insert","lines":[":"],"id":155}]]},"ace":{"folds":[],"scrolltop":0,"scrollleft":0,"selection":{"start":{"row":6,"column":26},"end":{"row":6,"column":26},"isBackwards":false},"options":{"guessTabSize":true,"useWrapMode":false,"wrapToView":true},"firstLineState":0},"timestamp":1488647746714,"hash":"7affa0108acd43ca0652300a45ff7f97489caeab"}
[ "Erik.gwl@gmail.com" ]
Erik.gwl@gmail.com
bc127285406c1c1cc417c1d35248d28a447b1270
d935d3d4285aef15f17c0ec77e62689ee78a38f3
/script/pylib/analysis/tfidf.py
4ccf8f6f5cae0acd01d3dddcb847ae1cb2bfaf95
[]
no_license
18dubu/ChunhuaLab_2016BBW
43d279ee74cfcac60e0e63e8da6adbc8cbdc23ac
c368c255b46908d7110fdf0beac01e126089ae9c
refs/heads/master
2016-09-01T16:20:29.003305
2016-01-29T19:28:40
2016-01-29T19:28:40
50,610,583
2
0
null
null
null
null
UTF-8
Python
false
false
22,228
py
__author__ = 'mahandong' import pickle from pylib.onlineresource.ctgov import * from pylib.onlineresource.sales import * from pylib.onlineresource.pdr import * import itertools import signal import string import collections from pylib.db.findTrials import * from pylib.db.writeTrainingDB import * from pylib.util.file import * from pylib.util.stat import * from pylib.analysis.preprocessing import * from pylib.util.web import * import MySQLdb as mdb from stat_parser import Parser import os import sys import math import csv import urllib2 from lxml import etree import urllib from bs4 import BeautifulSoup import time import nltk from pylib.onlineresource.extractXML import * import numpy as np from nltk.corpus import stopwords #return format is a list, with drug names as keys and number of occurrence in all the years as values #ex: {'diovan': 8, 'epipen': 2, 'biaxin xl': 4, 'cellcept': 8, 'nuvaring': 5...} def drugList_occursAtLeastOnceInAllYears(): path = '../result/topSales/' dirList=os.listdir(path) if len(dirList)<2: print 'Warning! Too little data in directory: ', path continueOrNot() yearInRecord = 0 drugList = {} for file in dirList: if os.path.isfile(path+file) and not file.startswith('.'): year = file.split('_')[1] yearInRecord += 1 content = '' try: content = open(path+file,'r').read().rstrip().split('\n') except Exception: print 'error 37' print Exception for line in content: drugName = line.split('\t')[1].lower() if drugName in drugList.keys(): drugList[drugName].append(int(year)) else: drugList[drugName] = [int(year)] for drug in drugList.keys(): drugList[drug] = str(sorted(drugList[drug])) print 'The number of years with SALES record is: ', yearInRecord, "years" return drugList #input format is drug array #output format is 2 drug lists (bbw, robust) with BBW info as values def drugList_findBBWInfo(drugList, detailInfo = True): path = '../result/PDR/' targetFile = 'drugLabelContent' content = '' drugList_withBBWInfo = {} drugList_robust = {} ### manuallyAssertEqualDic={ 'taclonex-topical-suspension':'taclonex', 'exelon-patch':'exelon', 'zomig-zomig-zmt':'zomig', 'clobex-spray':'clobex', 'prempro-premphase':'prempro', 'flovent-hfa':'flovent', 'tobradex-st':'tobradex', 'differin-lotion':'differin', 'norvir-oral-solution-and-tablets':'norvir', 'prilosec-otc':'prilosec', 'nexium-iv':'nexium', 'xalatan-ophthalmic-solution-single-bottle':'xalatan', 'zithromax-for-injection':'zithromax', 'depakote-tablets':'depakote', 'dovonex-scalp-solution':'dovonex', 'sporanox-oral-solution':'sporanox', 'zofran-odt-orally-disintegrating-tablets-oral-solution-and-tablets':'zofran', 'androgel-162':'androgel', 'bactroban-ointment':'bactroban', 'boniva-tablets':'boniva', 'xopenex-inhalation-solution-concentrate':'xopenex', 'lidoderm-patch':'lidoderm', 'ddavp-tablets':'ddavp', 'protonix-iv':'protonix', 'aviane-28':'aviane', 'asacol-hd':'asacol', 'keppra-xr':'keppra', 'premarin-tablets':'premarin tabs', 'fentanyl-citrate':'fentanyl oral citrate', 'duac':'duac care system', 'humulin-70-30':'humulin 70/30', 'humalog':'humalog kwikpen', 'ortho-tri-cyclen-ortho-cyclen':'ortho tri-cyclen lo', 'ortho-evra':'ortho evra', 'humalog-mix75-25':'humalog mix 75/25 pen', 'vancocin-hydrochloride':'vancocin hcl', 'effexor-xr':'effexor xr', 'inderal-la':'inderal la', 'advair-diskus':'advair diskus', 'allegra-d-12-hour':'allegra-d 12 hour', 'budeprion-xl':'budeprion xl', 'premarin-vaginal-cream':'premarin vaginal', 'invega-sustenna':'invega sustenna', 'augmentin-xr':'augmentin xr', 'actoplus-met':'actoplus met', 'miacalcin-nasal-spray':'miacalcin nasal', 'ultram-er':'ultram er', 'diovan-hct':'diovan hct', 'ciprodex':'ciprodex otic', 'adderall-xr':'adderall xr', 'rhinocort-aqua':'rhinocort aqua', 'lantus':'lantus solostar', 'seroquel-xr':'seroquel xr', 'percocet':'percocet-10', 'glucotrol-xl':'glucotrol xl', 'proventil-hfa':'proventil hfa', 'pulmicort-respules':'pulmicort respules', 'combivent-respimat':'combivent respimat', 'lamisil-tablets': 'lamisil oral', 'wellbutrin-sr':'wellbutrin sr', 'fosamax-plus-d':'fosamax plus d', 'coumadin':'coumadin tabs', 'allegra-d-24-hour':'allegra-d 24 hour', 'vivelle-dot':'vivelle dot', 'micardis-hct':'micardis hct', 'prevnar-13':'prevnar 13', 'proair-hfa':'proair hfa', 'xopenex-hfa':'xopenex hfa', 'maxalt':'maxalt mlt', 'travatan-z':'travatan z', 'serevent-diskus':'serevent diskus', 'nasacort-allergy-24hr':'nasacort aq', 'imitrex-injection': 'imitrex inj', 'entocort-ec':'entocort ec', 'alphagan-p':'alphagan p', 'childrens-zyrtec-syrup':'zyrtec syrup', 'ketek':'ketek pack', 'yasmin':'yasmin 28', 'dexilant':'dexilant/kapidex', 'geodon':'geodon oral', 'glucophage-glucophage-xr':'glucophage xr', 'detrol-la':'detrol la', 'paxil-cr':'paxil cr', "exelon-patch":'exelon patch', 'budeprion-sr':'budeprion sr', 'risperdal-consta':'risperdal consta', 'imitrex-tablets':'imitrex oral', 'novolog-mix-70-30':'novolog mix 70/30', } ### try: content = open(path+targetFile,'r').read().rstrip().split('\n') except Exception: print 'error 61' print Exception if len(content)>1: totalUnmatchedDrug = [] totalUnsureDrug = [] totalMatchedDrug=[] unsurePair = {} for currentDrug in drugList: findFlag = 0 unsureFlag = 0 for line in content: line = line.split('\t') drugName = line[0].lower() BBW_Flag = line[2] text = line[3] if drugName == currentDrug or drugName == currentDrug.replace(' ', '-'): findFlag = 1 elif drugName.find(currentDrug) >= 0: unsureFlag = 1 unsurePair[currentDrug] = ':'.join(["\'"+drugName+"\'", "\'"+currentDrug+"\',"]) totalUnsureDrug.append(currentDrug) if findFlag == 1: if currentDrug in drugList_withBBWInfo.keys(): print 'Warning135: find duplicate drug entries in PDR database for drug:', currentDrug continueOrNot() else: totalMatchedDrug.append(currentDrug) if int(BBW_Flag) == 1: drugList_withBBWInfo[currentDrug] = text if int(BBW_Flag) == 0: drugList_robust[currentDrug] = text break if 1: if drugName in manuallyAssertEqualDic.keys() and currentDrug == manuallyAssertEqualDic[drugName]: unsureFlag = 0 findFlag = 1 if currentDrug in drugList_withBBWInfo.keys(): print 'Warning148: find duplicate drug entries in PDR database for drug:', currentDrug continueOrNot() else: totalMatchedDrug.append(currentDrug) if int(BBW_Flag) == 1: drugList_withBBWInfo[currentDrug] = text if int(BBW_Flag) == 0: drugList_robust[currentDrug] = text break if findFlag == 0 and unsureFlag == 0: totalUnmatchedDrug.append(currentDrug) #print "can not match drug: ", currentDrug, 'in PDR database' totalUnsureDrug = set(totalUnsureDrug) totalUnmatchedDrug = set(totalUnmatchedDrug) totalMatchedDrug = set(totalMatchedDrug) print 'Out of ', len(drugList), 'drugs, ',len(totalMatchedDrug), ' matched (',len(totalUnsureDrug)-len(totalUnsureDrug-totalMatchedDrug), 'find inexact matches and are manually asserted true), ', len(totalUnmatchedDrug), ' can not be found any matches. ',len(totalUnsureDrug-totalMatchedDrug),' are still unsure/rejected' print 'Out of ', len(totalMatchedDrug), ' matched drugs, ', len(set(drugList_withBBWInfo.keys())), 'are BBW drugs; ', len(set(drugList_robust.keys())), ' are robust drugs' if detailInfo: print "Unmatched Drugs: ", totalUnmatchedDrug print "Matched Drugs: ", totalMatchedDrug print "#####" print "There are ",len(totalUnsureDrug-totalMatchedDrug),"unsure drugs that is not covered: ", list(totalUnsureDrug-totalMatchedDrug) for i in list(totalUnsureDrug-totalMatchedDrug): print unsurePair[i] print "Add the pairs that you think refers to the same drug to the manuallyAssertEqualDic" print "#####" return drugList_withBBWInfo, drugList_robust else: print 'Warning: no content in file', targetFile continueOrNot() #period 0:pre; 1:post #return format list:drug as keys and ctlist as values def getCTListWithPeriodFromDrugList_local(drugList, period=0): ctList = {} for drug in drugList: try: ct = findCTListByDrug_local(fh_ctgov_drugTrialList_tab,drug, period) if len(ct) > 0: ctList[drug] = ct else: ctList[drug] = '' except Exception: print 'Warning 118: ' return ctList #input format is two drug-trialList list like this: {'arimidex': '', 'zyrtec-d': '', 'singulair': '', 'pentasa': ['NCT00545740', 'NCT00751699'],...} #return two same format lists with eligible entries def selectEligibleDrugs(ctList_pre, ctList_post, lowerLimitPerPeriod): a_pre, tmp1 = table(ctList_pre) a_post, tmp2 = table(ctList_post) eliDrugList_pre = {} eliDrugList_post = {} drugSet = set(a_pre.keys()) drugSet.union(set(a_post.keys())) discardDrug = [] for drug in drugSet: if a_pre[drug] > lowerLimitPerPeriod and a_post > lowerLimitPerPeriod: if drug in eliDrugList_pre.keys() or drug in eliDrugList_post.keys(): print 'warning: possible wrong input list, need further analysis codes' sys.exit() eliDrugList_post[drug] = ctList_post[drug] eliDrugList_pre[drug] = ctList_pre[drug] else: discardDrug.append(drug) print 'there are ', str(len(drugSet)), ' drugs in input lists, and ', str(len(discardDrug)),' are discarded! ', str(len(drugSet)-len(discardDrug)), ' remaining!' return eliDrugList_pre, eliDrugList_post def saveSelectedList(target, outDir, varName): mkdir(outDir) fh_out = open(str(outDir)+varName, 'w') if isinstance(target,dict): for key in target.keys(): if isinstance(target[key],tuple): target[key] = list(target[key]) if isinstance(target[key],list): for ele in target[key]: fh_out.write(key+'\t'+ele+'\n') if isinstance(target[key],dict): for ele in target[key].keys(): fh_out.write(key+'\t'+ele+target[key][ele]+'\n') if isinstance(target[key],str): fh_out.write(key+'\t'+target[key]+'\n') print 'variable List: '+varName+ ' successfully saved!' fh_out.close() def extractComponentFromXML(ctList): CTXMLDict = retrieveCTXMLFromCTlist(ctList) print "##The length of the input queries is: ", str(len(ctList)) print '##the length of the retrieved CT number(unique) is: ', str(len(CTXMLDict.keys())) CTCompDict = {} count = 0 for key in CTXMLDict.keys(): count+=1 #print 'processing the ', count,' trials: ', key try: (id, brief_title, official_title, conditions, agency, agency_class, source, authority, brief_summary, overall_status, start_date, gender, minimum_age, maximum_age, study_pop, criteria, enrollment, phase, study_type, location, intervention_type, intervention_name, enrollment_type) = extract_component(CTXMLDict[key]) except Exception: print Exception print 'skip ', key CTCompDict[key] = '' continue if not criteria.startswith('Please contact site') and criteria.strip() !='' and len(enrollment)>0 :#refinement! CTCompDict[key] = (id, brief_title, official_title, conditions, agency, agency_class, source, authority, brief_summary, overall_status, start_date, gender, minimum_age, maximum_age, study_pop, criteria, enrollment, phase, study_type, location, intervention_type, intervention_name, enrollment_type) else: CTCompDict[key] = '' return CTCompDict #for timeout use class Timeout(): """Timeout class using ALARM signal""" class Timeout(Exception): pass def __init__(self, sec): self.sec = sec def __enter__(self): signal.signal(signal.SIGALRM, self.raise_timeout) signal.alarm(self.sec) def __exit__(self, *args): signal.alarm(0) # disable alarm def raise_timeout(self, *args): raise Timeout.Timeout() def extractComponentFromXML_parse(ctList, instantSaver, doParsing = False): if not os.path.exists(os.path.dirname(instantSaver)): mkdir(instantSaver) tmpSaver = open(instantSaver, 'ab+') tmpSaver.seek(0, os.SEEK_SET) ### # current content in tmp file (cache) alreadyHere = [] tmpContent ={} lostList = [] for i in tmpSaver: try: #print re.search('^\|(NCT\d+)\|',i).group(1) NCTid = re.search('^\|(NCT\d+)\|',i).group(1) tmpContent[NCTid] = i.rstrip().split('|')[1:] alreadyHere.append(NCTid) except AttributeError: print 'Instant saved file error: format error' if continueOrNot(): continue print 'NCT already in tmp file: ', len(alreadyHere) #entries requires to be searched online needOnlineSearch = list(set(ctList)-set(alreadyHere)) print 'NCT requires a online search: ', len(needOnlineSearch) CTXMLDict = retrieveCTXMLFromCTlist(needOnlineSearch) # do not have all keys in ctList if (1. exists a local data; 2. can not retrieve web page) print "##The length of the input ctList (unique) is: ", str(len(set(ctList))) CTCompDict = {} count = 0 for key in ctList: # only entry in list will be returned, tmp file may contain extra entries, make sure to use the out file for analysis #retrieve locally tmp = [] if key in alreadyHere: #print 'Pass (retrieved locally): ', key CTCompDict[key] = tmpContent[key] continue count += 1 #retrieve online if key in CTXMLDict.keys(): try: CTCompDict[key] = extract_component(CTXMLDict[key]) tmp = list(extract_component(CTXMLDict[key])) except Exception: print str(Exception)+'skip ', key continue else: lostList.append(key) ''' ##parsing, slow (id, brief_title, official_title, conditions, agency, agency_class, source, authority, brief_summary, overall_status, start_date, gender, minimum_age, maximum_age, study_pop, criteria, enrollment, phase, study_type, location, intervention_type, intervention_name, enrollment_type) = CTCompDict[key] if not criteria.startswith('Please contact site') and criteria.strip() !='' and len(enrollment)>0 :#refinement! if doParsing: rules = [] try: print 'parsing: ',id flaggedCri = setFlag(criteria) for inc in flaggedCri[0]: try: with Timeout(60): parsed = parse_stat_sentence(inc, None, True) rules.append(parsed) except Timeout.Timeout: print 'skip a lone sentence in trial: ', id continue #print 'inc', parse_stat_sentence(inc, None, True) for exc in flaggedCri[1]: try: with Timeout(60): negate = ['*NEGATE* ' + str(i) for i in parse_stat_sentence(exc, None, True)] rules.append(negate) except Timeout.Timeout: print 'skip a lone sentence in trial: ', id continue #print 'exc', negate rules = list(itertools.chain(*rules)) #print rules except Exception: print Exception, 'parsing error at ', id continue CTCompDict[key] = (id, brief_title, official_title, conditions, agency, agency_class, source, authority, brief_summary, overall_status, start_date, gender, minimum_age, maximum_age, study_pop, criteria, enrollment, phase, study_type, location, intervention_type, intervention_name, enrollment_type, rules) tmp = [id, brief_title, official_title, conditions, agency, agency_class, source, authority, brief_summary, overall_status, start_date, gender, minimum_age, maximum_age, study_pop, criteria, enrollment, phase, study_type, location, intervention_type, intervention_name, enrollment_type, rules] ''' if len(tmp) > 0: try: all = '' for i in tmp: all += "|"+str(i) tmpSaver.write(all+'\n') except Exception: print 'instant saver error: can not write file at:', id sys.exit() tmpSaver.close() print '##the length of the retrieved ctList(unique) is: ', str(len(CTCompDict.keys())) print '##the length of the lost ctList(unique) is: ', str(len(set(lostList))) return CTCompDict def saveComp(targetDict, outDir, varName): try: file = outDir+varName print varName+'result saves to: '+ file write_csv(file, targetDict.values()) except: print 'error writing csv, trying to store in temp file...' try: f = open(outDir+varName+'.pckl', 'w') pickle.dump(targetDict, f) f.close() print 'pickled: '+ varName except: print 'failed in storing '+ varName #ref: http://www.cs.duke.edu/courses/spring14/compsci290/assignments/lab02.html import nltk import string import os import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer from nltk.stem.porter import PorterStemmer from sklearn.metrics.pairwise import linear_kernel def stem_tokens(tokens, stemmer): stemmed = [] for item in tokens: stemmed.append(stemmer.stem(item)) return stemmed def tokenize(text): #remove stopwords stemmer = PorterStemmer() from nltk.corpus import stopwords stopwords = stopwords.words('english') tokens = nltk.word_tokenize(text) token_removeStop = [i for i in tokens if i not in stopwords] #stemming stems = stem_tokens(token_removeStop, stemmer) return stems #http://stats.stackexchange.com/questions/29578/jensen-shannon-divergence-calculation-for-3-prob-distributions-is-this-ok def jsd(x,y): #Jensen-shannon divergence import warnings warnings.filterwarnings("ignore", category = RuntimeWarning) x = np.array(x) print x y = np.array(y) print y d1 = x*np.log2(2*x/(x+y)) print d1 d2 = y*np.log2(2*y/(x+y)) print d2 d1[np.isnan(d1)] = 0 d2[np.isnan(d2)] = 0 print sum(d1) print sum(d2) d = 0.5*np.sum(d1+d2) return d #jsd(np.array([0.5,0.5,0]),np.array([0,0.1,0.9])) def kld( p, q): from numpy import zeros, array from math import sqrt, log """ Compute KL divergence of two vectors, K(p || q).""" return sum(_p * log(_p / _q) for _p, _q in zip(p, q) if _p != 0) #a = dict(zip(feature_names, corpusList)) #str = 'this sentence has unseen text such as computer but also king lord juliet' #response = tfidf.transform([str]) #for col in response.nonzero()[1]: # print feature_names[col], ' - ', response[0, col] ''' from nltk.stem.porter import PorterStemmer def stem_tokens(tokens, stemmer): stemmed = [] for item in tokens: stemmed.append(stemmer.stem(item)) return stemmed def tokenize(text): tokens = nltk.word_tokenize(text) stems = stem_tokens(tokens, stemmer) return stems source = '/Users/mahandong/Dropbox/research/chunhua project/EliTES/result/selected_drug_trial_List/backup/ctList_BBW_post_comp' fhIn = open(source,'r') stemmer = PorterStemmer() token_dict = [] for line in fhIn: if line.split('\",\"')[15] != "": criteria = line.split('\",\"')[15] lowers = criteria.lower() no_punctuation = lowers.translate(None, string.punctuation) token_dict.append(no_punctuation) from sklearn.feature_extraction.text import CountVectorizer vectorizer = CountVectorizer(min_df=1) matrix = vectorizer.fit_transform(token_dict).toarray() feature_names = [x.encode('ascii') for x in vectorizer.get_feature_names()] corpusList = matrix.sum(axis=0) corpusTotal = sum(corpusList) row=1 # new_corpusList = [] # new_rowNormList = [] # new_featureNames = [] # rowNormList = matrix[row] # for i in range(len(rowNormList)): # if rowNormList[i] != 0: # new_corpusList.append(corpusList[i]) # new_rowNormList.append(rowNormList[i]) # new_featureNames.append(feature_names[i]) #dictionary = dict(zip(feature_names, countList)) '''
[ "handongma.work@gmail.com" ]
handongma.work@gmail.com
db45d397f67e7159649779081aab67d4a025c466
296deb151838a750ed06c3da8f2131db522cf6a6
/Dashboard.py
4690ad2e5a1f4b307c116b3986bc8b10b3cf9523
[]
no_license
mbolisov/mb
3c6e8d5cd8ffcfa266554fb61fbff3e2f99f387c
02ff58b123f9f01823f5d98b9ee50f97b1667bde
refs/heads/master
2020-06-03T20:42:22.436813
2019-06-13T08:40:47
2019-06-13T08:40:47
191,723,876
0
0
null
null
null
null
UTF-8
Python
false
false
1,333
py
from selenium.webdriver.common.by import By from under_the_hood.multyusable import GBtool from selenium.common.exceptions import WebDriverException from under_the_hood.Constructor import Constructor import time from nose.tools import assert_equal, assert_true from selenium import webdriver import re class Locators(object): WELCOME = (By.CSS_SELECTOR, '.welcome') # Блок добро пожаловать TOP_BOOST = (By.CSS_SELECTOR, '.dashboard-page__left .dashboard-page__card') # Блок топ бустеров BALANCE = (By.CSS_SELECTOR, '.balance') # Блок баланс class BasePage(object): def __init__(self, driver): self.driver = driver class Dashboard(BasePage): """ Дэшборд """ def check_components(self): """Проверка компонентов""" gb_tool = GBtool(self.driver) deposit_funds = self.driver.find_element(Locators.DEPOSIT_FUNDS) gb_tool.check_exists_by_css(css=deposit_funds, name='Блок внести средства') history = self.driver.find_element(Locators.HISTORY) gb_tool.check_exists_by_css(css=history, name='Блок история') balance = self.driver.find_element(Locators.BALANCE) gb_tool.check_exists_by_css(css=balance, name='Блок баланс')
[ "noreply@github.com" ]
mbolisov.noreply@github.com
f9bfc9c998a07887de15b2674a198cdb6bcc93cf
385ed58325dd0cc75bdb9fd3e61c5e005f7a4f28
/source/tuyoo/src/poker/entity/game/rooms/normal_room.py
bc38658272423936f9d7fc9e3a1c5a20a67e60da
[]
no_license
csirui/hall37
17dfa4e4f1f8bf719d0c11ac7738fa4c14fd06db
5c4eb4b2bf57bbbee4731470c830d8d81915d603
refs/heads/master
2021-09-04T03:55:12.460035
2018-01-15T15:12:30
2018-01-15T15:12:30
117,560,615
0
3
null
null
null
null
UTF-8
Python
false
false
8,860
py
# coding=UTF-8 '''普通房间类 ''' from poker.entity.game.game import TYGame __author__ = [ '"Zhouhao" <zhouhao@tuyoogame.com>', 'Zqh' ] from random import choice from freetime.core.tasklet import FTTasklet import freetime.util.log as ftlog from freetime.util.log import getMethodName from poker.entity.configure import gdata from poker.entity.game.rooms.room import TYRoom from poker.entity.dao import daobase from poker.entity.dao.lua_scripts import room_scripts class TYNormalRoom(TYRoom): '''普通房间类''' def __init__(self, roomDefine): super(TYNormalRoom, self).__init__(roomDefine) # GT重启创建Room对象时清空牌桌评分历史数据 daobase.executeTableCmd(self.roomId, 0, "DEL", self.getTableScoresKey(self.roomId)) def getTableScoresKey(self, shadowRoomId): return "ts:" + str(shadowRoomId) def doReloadConf(self, roomDefine): '''GT刷新配置时,如果桌子数变了需要清空桌子评分历史数据, 此处桌子实例数量未改变,redis中也无需改变,换句话而言,不允许动态桌子''' # if self.roomDefine.tableCount != roomDefine.tableCount: # daobase.executeTableCmd(self.roomId, 0, "ZREM", self.getTableScoresKey(self.roomId)) super(TYNormalRoom, self).doReloadConf(roomDefine) def doQuickStart(self, msg): ''' Note: 1> 由于不同游戏评分机制不同,例如德州会根据游戏阶段评分,所以把桌子评分存到redis里,方便各游戏服务器自由刷新。 2> 为了防止同一张桌子同时被选出来分配座位,选桌时会把tableScore里选出的桌子删除,玩家坐下成功后再添加回去,添回去之前无需刷新该桌子的评分。 3> 玩家自选桌时,可能选中一张正在分配座位的桌子,此时需要休眠后重试,只到该桌子完成分配或者等待超时。 ''' assert self.roomId == msg.getParam("roomId") userId = msg.getParam("userId") shadowRoomId = msg.getParam("shadowRoomId") tableId = msg.getParam("tableId") exceptTableId = msg.getParam('exceptTableId') clientId = msg.getParam("clientId") ftlog.hinfo(getMethodName(), "<<", "|userId, clientId, roomId, shadowRoomId, tableId:", userId, clientId, self.roomId, shadowRoomId, tableId) if tableId == 0: # 服务器为玩家选择桌子并坐下 shadowRoomId = choice(self.roomDefine.shadowRoomIds) tableId = self.getBestTableId(userId, shadowRoomId, exceptTableId) else: # 玩家自选桌子坐下 assert isinstance(shadowRoomId, int) and gdata.roomIdDefineMap()[ shadowRoomId].bigRoomId == self.roomDefine.bigRoomId tableId = self.enterOneTable(userId, shadowRoomId, tableId) if not tableId: ftlog.error(getMethodName(), "getFreeTableId timeout", "|userId, roomId, tableId:", userId, self.roomId, tableId) return if ftlog.is_debug(): ftlog.info(getMethodName(), "after choose table", "|userId, shadowRoomId, tableId:", userId, shadowRoomId, tableId) extParams = msg.getKey('params') self.querySitReq(userId, shadowRoomId, tableId, clientId, extParams) def getBestTableId(self, userId, shadowRoomId, exceptTableId=None): '''原子化从redis里获取和删除评分最高的桌子Id Return: None: tableScores 队列为空, 所有桌子都在分配座位中 ''' def getBestTableIdFromRedis(shadowRoomId): '''从redis里取出并删除一个评分最高的牌桌 ''' tableId, tableScore = 0, 0 datas = daobase.executeTableLua(shadowRoomId, 0, room_scripts.ALIAS_GET_BEST_TABLE_ID_LUA, 1, self.getTableScoresKey(shadowRoomId), 0) if datas and len(datas) == 2: tableId, tableScore = datas[0], datas[1] return tableId, tableScore if ftlog.is_debug(): ftlog.debug("<<", "|shadowRoomId, exceptTableId:", shadowRoomId, exceptTableId, caller=self) pigTables = [] tableId = 0 for _ in xrange(5): # 所有桌子有可能正在分配座位,如果取桌子失败,需要休眠后重试 if gdata.roomIdDefineMap()[shadowRoomId].tableCount == 1: tableId = shadowRoomId * 10000 + 1 tableScore = 100 else: tableId, tableScore = getBestTableIdFromRedis(shadowRoomId) # 从redis取一个牌桌 # 该牌桌被客户端指定排除了,另外再取一个牌桌 if exceptTableId and tableId and exceptTableId == tableId: tableId1, tableScore1 = getBestTableIdFromRedis(shadowRoomId) # 把之前从redis取出的牌桌加回redis self._updateTableScore(shadowRoomId, tableScore, tableId, force=True) tableId, tableScore = tableId1, tableScore1 if ftlog.is_debug(): ftlog.debug('getBestTableId shadowRoomId, tableId, tableScore=', shadowRoomId, tableId, tableScore) if tableId: if TYGame(self.gameId).isWaitPigTable(userId, self, tableId): pigTables.append([shadowRoomId, tableScore, tableId]) tableId = 0 continue else: break else: FTTasklet.getCurrentFTTasklet().sleepNb(0.2) if ftlog.is_debug(): ftlog.debug('getBestTableId pigTables=', pigTables) if pigTables: for pig in pigTables: self._updateTableScore(pig[0], pig[1], pig[2], False) return tableId def enterOneTable(self, userId, shadowRoomId, tableId): '''指定桌子坐下 Returns False: 重试超过次数 ''' if ftlog.is_debug(): ftlog.debug("<< |userId, roomId, shadowRoomId, tableId", userId, self.roomId, shadowRoomId, tableId, caller=self) if gdata.roomIdDefineMap()[shadowRoomId].tableCount == 1: return tableId for _ in xrange(5): # 这张桌子有可能正在分配座位,如果取桌子失败,需要休眠后重试 result = daobase.executeTableCmd(shadowRoomId, 0, "ZREM", self.getTableScoresKey(shadowRoomId), tableId) if ftlog.is_debug(): ftlog.debug("after ZREM tableId", "|userId, shadowRoomId, tableId, result:", userId, shadowRoomId, tableId, result, caller=self) if result == 1: return tableId FTTasklet.getCurrentFTTasklet().sleepNb(1) return 0 def _updateTableScore(self, shadowRoomId, tableScore, tableId, force=False): rkey = self.getTableScoresKey(shadowRoomId) force = 1 if force else 0 res = daobase.executeTableLua(shadowRoomId, tableId, room_scripts.ALIAS_UPDATE_TABLE_SCORE_LUA, 4, rkey, tableId, tableScore, force) if ftlog.is_debug(): ftlog.debug('_updateTableScore->shadowRoomId, tableScore, tableId, force=', shadowRoomId, tableScore, tableId, force, res) def updateTableScore(self, tableScore, tableId, force=False): '''更新redis中的table score, TODO: 改成LUA原子化操作 Args: force: True 强制往redis里添加或更新评分,只有玩家sit时做此操作 False 表示只有redis有该牌桌评分时,才可以更新 ''' self._updateTableScore(self.roomId, tableScore, tableId, force) # if force : # result = daobase.executeTableCmd(self.roomId, 0, "ZADD", self.getTableScoresKey(self.roomId), tableScore, tableId) # ftlog.debug("force ZADD tableId", "|roomId, tableId, result:", self.roomId, tableId, result, # caller=self) # return # # result = daobase.executeTableCmd(self.roomId, 0, "ZSCORE", self.getTableScoresKey(self.roomId), tableId) # ftlog.debug("checkold ZSCORE tableId", "|roomId, tableId, result:", self.roomId, tableId, result, # caller=self) # if result == None: # result = daobase.executeTableCmd(self.roomId, 0, "ZADD", self.getTableScoresKey(self.roomId), tableScore, tableId) # ftlog.debug("after ZADD tableId", "|roomId, tableId, result:", self.roomId, tableId, result, # caller=self)
[ "cg@ibenxi.com" ]
cg@ibenxi.com
f4f9c13205eeef3b47879fe03e9487fe5b216969
c82158c7c6b008dc417a4a391bd714735f875a69
/manager/campaign_sel.py
bb4ee735a3a9c326a3835d707884753bdcc1c691
[]
no_license
Mattvasquez22/Sem_Proj2
9d2fe312edc7ddc93c711695eb0be32170438a84
e6d59e040af60f3ba1bd31b9ab516f5e570b8df8
refs/heads/master
2020-05-07T13:57:59.542228
2019-06-25T06:40:20
2019-06-25T06:40:20
180,570,738
0
0
null
null
null
null
UTF-8
Python
false
false
1,256
py
######################################################### # Script used to define functions used to obtain the # # campaigns, manage the campaign selection accordingly # # and puts client back into pool if necessary # ######################################################### from connection_char import placeinPool,TIMESTAMPS def fetchCampaigns(): #campaigns = {'a':1,'b':2} campaigns = '1,2,3' return campaigns def checkSelection(response): #To be defined more specifically later if(response in CAMPAIGNS): return True else: return False def campaignSelection(client): client.client_sock.send(fetchCampaigns()) counter = 3 while counter > 0: read_data = client.client_sock.recv(255) selected_campaigns = read_data.rstrip() if(checkSelection(selected_campaigns)): print("VALID CAMPAIGN IS: " + selected_campaigns) counter = 3 break else: counter -= 1 print("INVALID CAMPAIGN, TRIES LEFT: {}".format(str(counter))) if(counter == 0): print("NO MORE TRIES LEFT") placeinPool(client.client_ID,TIMESTAMPS[client.client_ID]) CAMPAIGNS = fetchCampaigns()
[ "leonel.vasquez@eurecom.fr" ]
leonel.vasquez@eurecom.fr
3958bf3f4fade40cb900cf460be2dd1ecfc1c305
fc1487ea5c2999a7e3020a42099acaa9fb7378bd
/Subject/migrations/0002_subject_m_subject_code.py
a69042f0874a351b31c8f6420488c12d8c4378fd
[]
no_license
shadreckmukuka/SRMS_Django
2a961dbbd121de4420dfb90798252230a53192f9
99c436f0c0c424ca634eb532f1081d1d4ae3f8c6
refs/heads/master
2023-06-25T06:28:19.270333
2021-07-24T07:41:39
2021-07-24T07:41:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
394
py
# Generated by Django 3.2.3 on 2021-07-20 20:44 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('Subject', '0001_initial'), ] operations = [ migrations.AddField( model_name='subject_m', name='subject_code', field=models.CharField(default='', max_length=30), ), ]
[ "39671178+SumitJamnani@users.noreply.github.com" ]
39671178+SumitJamnani@users.noreply.github.com
ec8b44146c38a98c983c6b3ab090d8e6feff727e
6abb92d99ff4218866eafab64390653addbf0d64
/AtCoder/abc/abc180/b.py
3dd5250c5676e7d938a6207c7c033d8e8d4ed8eb
[]
no_license
Johannyjm/c-pro
38a7b81aff872b2246e5c63d6e49ef3dfb0789ae
770f2ac419b31bb0d47c4ee93c717c0c98c1d97d
refs/heads/main
2023-08-18T01:02:23.761499
2023-08-07T15:13:58
2023-08-07T15:13:58
217,938,272
0
0
null
2023-06-25T15:11:37
2019-10-28T00:51:09
C++
UTF-8
Python
false
false
223
py
n = int(input()) x = list(map(int, input().split())) res1 = 0 res3 = -1 for e in x: res1 += abs(e) res3 = max(res3, abs(e)) res2 = 0 for e in x: res2 += e * e res2 **= 0.5 print(res1) print(res2) print(res3)
[ "meetpastarts@gmail.com" ]
meetpastarts@gmail.com
904e0904076d47255579ccf0a619de76d3f6deba
d3e5f96f07bbebdd09ae3764356a14ccf63a7f13
/test/test_video_recorder.py
89025ba9896829c1f0e2a170928142bac2dec180
[]
no_license
ijeriomit/ROS-Video-Recorder
e8c1941ba650b7303be3313daf9bf2c43f543d14
99dbbf22d7445926a6c619041d23c4478b872dbd
refs/heads/main
2023-06-21T07:15:48.186967
2021-07-08T18:20:42
2021-07-08T18:20:42
372,615,337
0
0
null
null
null
null
UTF-8
Python
false
false
4,218
py
#!/usr/bin/env python2 # System Imports # import unittest # ROS Imports # import os import time import rospkg import rospy import rostest import subprocess import os import re import shutil from random import seed from random import random import cv2 from cv_bridge import CvBridge import threading from sensor_msgs.msg import Image from robot_video_recorder.video_recorder import VideoRecorder from robot_video_recorder.image_manipulator import * from robot_video_recorder.mock_camera_publisher import MockCamera class TestVideoRecorder(unittest.TestCase): def __init__(self, *args, **kwargs): super(TestVideoRecorder, self).__init__(*args, **kwargs) @classmethod def setUpClass(cls): camera_topic = "/camera_input" cls.test_video_folder = os.path.join(rospkg.RosPack().get_path('robot_video_recorder'), "videos") rospy.init_node("test_node") pkg_path = rospkg.RosPack().get_path('robot_video_recorder') frame_image = cv2.imread(os.path.join(pkg_path, 'images', 'test_image.png')) cls.file_prefix = 'test' cls.file_postfix = '' cls.file_type = 'mp4' cls.codec = 'MP4V' cls.fps = 4 cls.max_delay = 0.1 cls.sent_images = 0 cls.recorder = VideoRecorder(camera_topic=camera_topic, folder_path= cls.test_video_folder, image_height=frame_image.shape[0], image_width=frame_image.shape[1], fps=cls.fps, add_time_stamps=True, video_length=60, file_prefix=cls.file_prefix, file_postfix = cls.file_postfix, file_type = cls.file_type, video_codec= cls.codec) if not os.path.exists(cls.test_video_folder): os.makedirs(cls.test_video_folder) clean_folder(cls.test_video_folder) cls.mock_camera = MockCamera(fps=cls.fps, topic=camera_topic, image_path=os.path.join(pkg_path, 'images', 'test_image.png')) cls.mock_camera.start() @classmethod def tearDownClass(cls): # time.sleep(5) rospy.loginfo("shutting down ros HEHEHEHEHEH") rospy.signal_shutdown("test over") cls.mock_camera.stop_camera() cls.recorder.stop_recording() def setUp(self): self.recorder.record() def tearDown(self): self.recorder.stop_recording() def test_pad_images(self): self.recorder.stop_recording() num_pad_images = 4 frame_number = self.recorder.get_real_frame_number() self.recorder.pad_video(num_pad_images) self.assertEqual(frame_number + num_pad_images, self.recorder.get_real_frame_number()) def test_image_size_correction(self): test_image = np.zeros((900, 1200, 3)) self.assertEqual((768, 1024, 3), image_size_correction(test_image, 1024, 768).shape) def test_image_recieved(self): rospy.sleep(2) self.assertGreater(len(self.recorder.get_frame_buffer()), 1) def test_num_of_images_recieved_equals_num_of_images_sent(self): num_images_sent = self.sent_images rospy.sleep(1) self.assertEqual(self.recorder.get_real_frame_number(), self.fps) def test_create_file_name(self): timestamp = time.strftime(self.recorder.timestamp_format) filename = self.recorder.create_file_name(timestamp) delimeter = "\\" self.assertEqual(filename, "{0}{1}{2}_{3}_{4}.{5}".format(self.test_video_folder, delimeter, self.file_prefix, timestamp, self.file_postfix, self.file_type)) def test_create_directory(self): pass def test_video_recorded(self): pass def test_recorded_video_has_min_number_of_frames(self): pass def clean_folder(folder): """ Delete the files in the directory """ if(os.path.exists(folder) and os.path.isdir(folder)): for f in os.listdir(folder): f = os.path.join(folder, f) if os.path.isfile(f): rospy.loginfo("Cleaning file {}".format(f)) os.remove(f) elif os.path.isdir(f): rospy.loginfo("Cleaning folder {}".format(f)) shutil.rmtree(f) if __name__ == "__main__": rostest.rosrun("robot_video_recorder", 'test_video_recorder', TestVideoRecorder)
[ "iiomitogun@uh.edu" ]
iiomitogun@uh.edu
69c355ce7434a1a1a8919fd35926fa3157709e70
53f8a044b81e3bb7cd058162d12c2eacf2038d6c
/Variable assignment.py
9e80942ef86d61a7c81b0333d7da6e5b46f73bb1
[]
no_license
NehaChandwani/test-gate-
72b53ccd56a4ecfdfa8b05d1dc662d23e6a1a1ac
eb877f3a5ecf17d1ce0f4a16941b62d5b7ce9a3d
refs/heads/main
2023-02-03T23:39:08.797141
2020-12-23T20:02:23
2020-12-23T20:02:23
323,830,396
1
0
null
null
null
null
UTF-8
Python
false
false
428
py
#attributes os song instrument="Piano and guitar" #instrument used in song lyrics="Gulzar" # song written by lengthinseconds=380 #length of song title="Keh du tumhe" # Title of song producer="T-series" singer="AnuMalik" genere="Jazz" print(instrument) print(lyrics) print(lengthinseconds) print(title) print(producer) print(singer) print(genere)
[ "noreply@github.com" ]
NehaChandwani.noreply@github.com
5c26542d8366a51e50177dd19e240fb09ea48219
de159ab9a9cc8d5c7460f2ef1cf549c6e50aba4d
/course6/avltree.py
d8f9809cdcce1511954cba98680f7822bcc94a76
[]
no_license
g10guang/MIT_6.006
56869a79ed863b55b46c4f3011fdb0de21992dec
2fbdb6123a9541ef00de80f627fe05a3c34ceffa
refs/heads/master
2021-09-05T01:23:28.944260
2018-01-23T10:47:33
2018-01-23T10:47:33
117,412,705
0
0
null
null
null
null
UTF-8
Python
false
false
4,564
py
#!/usr/bin/env python3 # coding=utf-8 # author: Xiguang Liu<g10guang@foxmail.com> # 2017-11-10 08:19 class AVLTree: def __init__(self, NodeType=AVLNode) -> None: super().__init__() self.root = None def insert(self, k): """ 向 AVL T ree 中插入新节点 :param k: :return: """ if self.root: self.root.insert(k) else: self.root = AVLNode(None, k) class AVLNode: def __init__(self, parent, key) -> None: super().__init__() self.parent = parent self.key = key self.left = None self.right = None # self.height = 0 # 没有左右孩子的树的高度为 0 self.balance = 0 # balance = max_depth(left) - max_depth(right) it should be [-1, 1] def disconnect(self): """ 接触与父节点、左孩子、右孩子的关系 :return: """ self.parent = None self.left = None self.right = None def insert(self, k): """ 向 AVL Tree 该 node 中插入一个新节点 导致 AVL 失衡的四种情况: 1 左孩子的左孩子插入新节点 2 右孩子的右孩子插入新节点 3 右孩子的左孩子插入新节点 4 左孩子的右孩子插入新节点 :param k: :return: 新插入的节点 """ if self.key < k: # 将 k 插入到左子树 if self.left: new = self.left.insert(k) else: # 左子树为空,直接插入 new = AVLNode(self, k) self.left = new else: # 将 k 插入到右子树 if self.right: new = self.right.insert(k) else: new = AVLNode(self, k) self.right = new # 更新 balance self.balance = self.left.calc_height() if self.left else -1 - self.right.calc_height() if self.right else -1 self.judge_rotate(new) return new def judge_rotate(self, new): """ 判断二叉树是否失衡,如果失衡采取什么旋转方式 :return: """ if self.balance == 2: if self.left.left is new: self.left_rotate() elif self.left.right is new: self.left_right_rotate() elif self.balance == -2: if self.right.right is new: self.right_rotate() elif self.right.left is new: self.right_left_rotate() def calc_height(self): """ 计算该节点的高度 :return: """ if self.left: if self.right: return max(self.left.calc_height(), self.right.calc_height()) + 1 return self.left + 1 elif self.right: return self.right.calc_height() + 1 else: # 没有左孩子,也没有右孩子 return 0 def left_rotate(self): """ 右子树的右子树插入新节点,导致 AVL 失衡 ==> 单向左旋 :return: """ right = self.right if self.parent: if self.parent.left is self: self.parent.left = right else: self.parent.right = right right.parent = self.parent self.right = right.left if right.left_right_rotate(): right.left.parent = self self.parent = right right.left = self def right_rotate(self): """ 左子树的左子树插入新节点,导致 AVL 失衡 ==> 单向右旋 :return: """ left = self.left if self.parent: if self.parent.left is self: self.parent.left = left else: self.parent.right = left left.parent = self.parent self.left = left.right if left.right: left.right.parent = self self.parent = left left.right = self def left_right_rotate(self): """ 左子树的右子树插入新节点,导致 AVL 失衡 ==> 左子树左旋,整体右旋 :return: """ self.left.left_rotate() self.right_rotate() def right_left_rotate(self): """ 右子树的左子树插入新节点,导致 AVL 失衡 ==> 右子树右旋,整体左旋 :return: """ self.right.right_rotate() self.left_rotate()
[ "g10guang@gmail.com" ]
g10guang@gmail.com
331df3698f95431259f82bc02d2be2f0a859cb97
df2435ffc5c2916d9bbe99a0d53086569c34dc5e
/patchconv/setup.py
b89ab2d494c238a39509c0d3c55aba4d503b869d
[]
no_license
lucassanttoss/codingtools
73d810f1e3e5498af1cfb0d3fd5bffc43bd8d055
5fa857c16149801acc7bad2f41597a5264f7015e
refs/heads/master
2021-06-17T03:13:43.460518
2017-01-12T15:16:33
2017-01-12T15:16:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
865
py
# This file is part of Adblock Plus <https://adblockplus.org/>, # Copyright (C) 2006-2016 Eyeo GmbH # # Adblock Plus is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License version 3 as # published by the Free Software Foundation. # # Adblock Plus is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Adblock Plus. If not, see <http://www.gnu.org/licenses/>. from setuptools import setup setup( name='patchconv', version='0.1', py_modules=['patchconv'], entry_points={ 'console_scripts': ['patchconv=patchconv:main'] } )
[ "vasily@adblockplus.org" ]
vasily@adblockplus.org
d9c7ee008ad673217b75a03c9bd9aa2b6d4c4bc6
25872e1ba4f86cbbf77d0130f341b21e5dd9e692
/ValidParentheses.py
246578df7ae6388798faaa7fda377b4bd2652d76
[]
no_license
zongxinwu92/leetcode
dc3d209e14532b9b01cfce6d4cf6a4c2d7ced7de
e1aa45a1ee4edaf72447b771ada835ad73e7f508
refs/heads/master
2021-06-10T21:46:23.937268
2017-01-09T09:58:49
2017-01-09T09:58:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
285
py
''' Created on 1.12.2017 @author: Jesse '''''' Given a string containing just the characters ( , ) , { , } , [ and ] , determine if the input string is valid. The brackets must close in the correct order, "()" and "()[]{}" are all valid but "(]" and "([)]" are not. " '''
[ "darrencheng0817@gmail.com" ]
darrencheng0817@gmail.com
95893bf0b00c2ce101c951b6965603548445099c
2475e641635d626764ee8759c9c03840a7ea8d83
/migrations/versions/1658bdd37b17_.py
c78e326dac4674c74ba3dce4d4ee3e2343d8f4b2
[]
no_license
donggiLee1012/flask_pybo
f11b89d0e5d40bf5ea233b83f8af602fac62a425
f346940d6f188d2022e0be9c1d6a0c03bc158feb
refs/heads/master
2023-01-04T16:30:57.320725
2020-10-30T04:58:24
2020-10-30T04:58:24
296,055,918
0
0
null
null
null
null
UTF-8
Python
false
false
798
py
"""empty message Revision ID: 1658bdd37b17 Revises: ff8aed8fa5b3 Create Date: 2020-10-20 19:36:49.072582 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '1658bdd37b17' down_revision = 'ff8aed8fa5b3' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### with op.batch_alter_table('structureprice', schema=None) as batch_op: batch_op.add_column(sa.Column('size', sa.Integer(), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### with op.batch_alter_table('structureprice', schema=None) as batch_op: batch_op.drop_column('size') # ### end Alembic commands ###
[ "multidong1017@gmail.com" ]
multidong1017@gmail.com
483b866833396c462eb05f924fd41b4139c7f05f
0432f80e0a058262af8c0b560dca268f52001644
/pygcam/built_ins/query_plugin.py
f08af4cf608c66c4341233d6350d8e9a730d59d2
[ "MIT" ]
permissive
heishanmao/pygcam
095387fdf9dd6e049f26b6074cc1dea2f6f5bf21
20e48133ffadbb8db8e84c26b54e3db59b4a7b68
refs/heads/master
2021-01-08T08:36:02.928185
2020-02-14T20:00:30
2020-02-14T20:00:30
241,973,039
1
0
NOASSERTION
2020-02-20T19:37:12
2020-02-20T19:37:11
null
UTF-8
Python
false
false
5,670
py
""" .. Support for querying GCAM's XML database and processing results. .. codeauthor:: Rich Plevin <rich@plevin.com> .. Copyright (c) 2016 Richard Plevin See the https://opensource.org/licenses/MIT for license details. """ from ..subcommand import SubcommandABC, clean_help class QueryCommand(SubcommandABC): def __init__(self, subparsers): kwargs = {'fromfile_prefix_chars' : '@', # use "@" before value to substitute contents of file as arguments 'help' : '''Run one or more GCAM database queries by generating and running the named XML queries.'''} super(QueryCommand, self).__init__('query', subparsers, kwargs, group='project') def addArgs(self, parser): parser.add_argument('queryName', nargs='*', help=clean_help('''A file or files, each holding an XML query to run. (The ".xml" suffix will be added if needed.) If an argument is preceded by the "@" sign, it is read and its contents substituted as the values for this argument. That means you can store queries to run in a file (one per line) and just reference the file by preceding the filename argument with "@".''')) parser.add_argument('-b', '--batchFile', help=clean_help('''An XML batch file to run. The file will typically contain multiple queries. By default, output is written to {outputDir}/{batchFile basename}.csv. Use '-B' to change this.''')) parser.add_argument('-B', '--batchOutput', default='', help=clean_help('''Where to write the output of the XML batch file given by the '-b' flag. Non-absolute paths are treated as relative to the given outputDir.''')) parser.add_argument('-d', '--xmldb', help=clean_help('''The XML database to query (default is computed as {GCAM.SandboxDir}/output/{GCAM.DbFile}. Overrides the -w flag.''')) parser.add_argument('-D', '--noDelete', action="store_true", help=clean_help('''Don't delete any temporary file created by extracting a query from a query file. Used mainly for debugging.''')) parser.add_argument('-g', '--groupDir', default='', help=clean_help('''The scenario group directory name, if any. Used with to compute default for --workspace argument.''')) parser.add_argument('-n', '--noRun', action="store_true", help=clean_help("Show the command to be run, but don't run it")) parser.add_argument('-o', '--outputDir', help=clean_help('Where to output the result (default taken from config parameter "GCAM.OutputDir")')) parser.add_argument('-p', '--prequery', action="store_true", help=clean_help('''Generate the XMLDBDriver.properties file and associated batch file to be run by GCAM when GCAM.BatchMultipleQueries or GCAM.InMemoryDatabase are True.''')) parser.add_argument('-q', '--queryXmlFile', help=clean_help('''An XML file holding a list of queries to run, with optional mappings specified to rewrite output. This file has the same structure as the <queries> element in project.xml.''')) parser.add_argument('-Q', '--queryPath', help=clean_help('''A semicolon-delimited list of directories or filenames to look in to find query files. Defaults to value of config parameter GCAM.QueryPath''')) parser.add_argument('-r', '--regions', help=clean_help('''A comma-separated list of regions on which to run queries found in query files structured like Main_Queries.xml. If not specified, defaults to querying all 32 regions.''')) parser.add_argument('-R', '--regionMap', help=clean_help('''A file containing tab-separated pairs of names, the first being a GCAM region and the second being the name to map this region to. Lines starting with "#" are treated as comments. Lines without a tab character are also ignored. This arg overrides the value of config variable GCAM.RegionMapFile.''')) parser.add_argument('-s', '--scenario', default='Reference', help=clean_help('''The scenario to run the query/queries for (default is "Reference") Note that this must refers to a scenarios in the XML database.''')) parser.add_argument('-S', '--rewriteSetsFile', help=clean_help('''An XML file defining query maps by name (default taken from config parameter "GCAM.RewriteSetsFile")''')) parser.add_argument('-w', '--workspace', default='', help=clean_help('''The workspace directory in which to find the XML database. Defaults computed as {GCAM.SandboxDir}/{groupDir}/{scenario}. Overridden by the -d flag.''')) return parser def run(self, args, tool): from ..query import queryMain queryMain(args)
[ "rich@plevin.com" ]
rich@plevin.com
b80cee7cc5858b41cedec45e66dcf36ac75cf6b6
b67ce4473d51a0273f6ef6c2bc30d531c31cae7d
/pset6/readability/readability.py
3d2d8342d325cc40b537537f43d0094b889f1ddf
[]
no_license
lucas404x/cs50-exercises
4681eb9b52395e926426e20cf693eeabb2644414
00eff92aefb0422176d96d90fc495fdfd1c8eb7f
refs/heads/master
2022-11-18T11:16:38.468585
2020-07-19T20:52:21
2020-07-19T20:52:21
280,948,260
0
0
null
null
null
null
UTF-8
Python
false
false
840
py
from cs50 import get_string from sys import exit import re def main(): text = get_string("Text: ") grade = round(coleman_liau_index(L(text), S(text))) if grade < 1: print("Before Grade 1") elif grade < 16: print(f"Grade {grade}") else: print("Grade 16+") exit(0) def coleman_liau_index(L, S): return 0.0588 * L - 0.296 * S - 15.8 def L(text): words = len([ word for word in re.split("[^A-z-']", text) if word != '' ]) letters = sum([ len(letter) for letter in re.split("[^A-z]", text) ]) return (letters / words) * 100 def S(text): words = len([ word for word in re.split("[^A-z-']", text) if word != '' ]) sentences = len(re.findall("([\.\!]$|[\.\?\!]\s)", text)) return (sentences / words) * 100 main()
[ "joselucas0303@gmail.com" ]
joselucas0303@gmail.com
06fa91e1b41f2ce0d895152caf7f8d1828297a61
7414e0795e47436587b7ad76a6f36e319fe47695
/day4_homework/homeworkquestion1.py
5c7c667c584fe4a392e54bf1647c9843c88628c6
[]
no_license
jhaversat/qbb2016-answers
04a34b1d54f4cbb4c3bb2eaee4d4f23c1f9c8c3b
757bd118057dd2ce93286db9ce11254746d5ab01
refs/heads/master
2020-09-26T23:16:17.724758
2016-12-19T23:03:01
2016-12-19T23:03:01
66,853,889
0
0
null
null
null
null
UTF-8
Python
false
false
2,473
py
#!/usr/bin/env Python """ How to run: ./homeworkquestion1.py <metadata.csv> <ctab_dir> Generates: Line plot of """ import sys import pandas as pd import matplotlib.pyplot as plt Sample_file = pd.read_csv(sys.argv[1]) replicate_file = pd.read_csv(sys.argv[2]) ctab_dir = sys.argv[3] female_Sxl = [] male_Sxl = [] female_reps = [] male_reps = [] female_samples2 = replicate_file["sex"] == "female" for sample in replicate_file[ female_samples2 ]["sample"] : filename = ctab_dir + "/" + sample + "/t_data.ctab" df = pd.read_table(filename) Sxl_samples = df[ "t_name"] == "FBtr0331261" #print type(df[df_roi2]["FPKM"].values) female_reps.append(df[Sxl_samples]["FPKM"].values) #.values returns just a number without all the fancy wrapping female_samples = Sample_file["sex"] == "female" for sample in Sample_file[ female_samples ]["sample"] : filename = ctab_dir + "/" + sample + "/t_data.ctab" df = pd.read_table(filename) Sxl_samples = df[ "t_name"] == "FBtr0331261" #print type(df[df_roi2]["FPKM"].values) female_Sxl.append(df[Sxl_samples]["FPKM"].values) #.values returns just a number without all the fancy wrapping dev_stage = (Sample_file[female_samples]["stage"].values) male_samples = Sample_file["sex"] == "male" for sample in Sample_file[ male_samples ]["sample"] : filename = ctab_dir + "/" + sample + "/t_data.ctab" df = pd.read_table(filename) Sxl_samples = df[ "t_name"] == "FBtr0331261" #print type(df[df_roi2]["FPKM"].values) male_Sxl.append(df[Sxl_samples]["FPKM"].values) #.values returns just a number without all the fancy wrapping male_samples2 = replicate_file["sex"] == "male" for sample in replicate_file[ male_samples2 ]["sample"] : filename = ctab_dir + "/" + sample + "/t_data.ctab" df = pd.read_table(filename) Sxl_samples = df[ "t_name"] == "FBtr0331261" #print type(df[df_roi2]["FPKM"].values) male_reps.append(df[Sxl_samples]["FPKM"].values) #.values returns just a number without all the fancy wrapping Replica = [4, 5, 6, 7] plt.figure() plt.plot(female_Sxl, color = 'r') plt.plot(male_Sxl) plt.scatter(Replica, female_reps, color = 'r') plt.scatter(Replica, male_reps) plt.title("Sxl abundance by developmental stage") plt.xticks( range(len(dev_stage)), dev_stage) plt.xlabel("developmental stage (days)") plt.ylabel("FPKM (abundance)") #plt.show() plt.savefig("Day4Homework1.png") plt.close()
[ "Jhaversat@gmail.com" ]
Jhaversat@gmail.com
d3fd5a70f236f2a0ae3b837807f273fc78db2d66
54c3981ad7dfbeeabf79087746f143bcde4190d3
/bot.py
9a4084035f31149768e02a60b71c2bdf596c704b
[ "Apache-2.0" ]
permissive
Sunetz/galinabot
c2ba0497c16ff8c5ecdc9b0e759ffc61dc30940c
a17d031c3838d4407fee8484cab39d5e1a0966f6
refs/heads/main
2023-04-05T11:16:48.346301
2021-04-13T10:49:04
2021-04-13T10:49:04
357,506,552
0
0
null
null
null
null
UTF-8
Python
false
false
2,776
py
import config import os from random import choice from time import sleep from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits import telebot from telebot import types from selenium import webdriver from imageai.Detection import ObjectDetection import password chromedriver_path = os.path.join("c:/", "Users", "ilyas", "Desktop", "web-projects", "utilities", "chromedriver.exe") bot = telebot.TeleBot(config.TOKEN) option = webdriver.ChromeOptions() option.add_argument('headless') driver = webdriver.Chrome(options=option, executable_path=chromedriver_path) @bot.message_handler(commands=['start']) #add buttoms def button(message): markup = types.InlineKeyboardMarkup(row_width=2) item = types.InlineKeyboardButton('Подорваться на поиски', callback_data='to find') item2 = types.InlineKeyboardButton('Поговорить', callback_data='to talk') item3 = types.InlineKeyboardButton('Угадать', callback_data='to guess') item4 = types.InlineKeyboardButton('Нашаманить пароль', callback_data='password') markup.add(item, item2, item3, item4) bot.send_message(message.chat.id, 'Ну, допустим, здрасте!', reply_markup=markup) @bot.callback_query_handler(func=lambda call: True) def callback(call): if call.message: if call.data == 'to find': msg = bot.send_message(call.message.chat.id, 'Ну, спроси, поищем') bot.register_next_step_handler(msg, search) elif call.data == 'to talk': sti = open('sticker.webp', 'rb') bot.send_sticker(call.message.chat.id, sti) bot.send_message(call.message.chat.id, 'Ага, щазз') elif call.data == 'to guess': bot.send_message(call.message.chat.id, 'Валяй, загадывай') prediction = ImageClassification() elif call.data == 'password': how_many_chars = bot.send_message(call.message.chat.id, 'Сколько букав?') bot.register_next_step_handler(how_many_chars, new_password) def new_password(message): n = int(message.text) chars = ascii_letters + digits word = ''.join(choice(chars) for _ in range(n)) bot.send_message(message.chat.id, 'Держи, я стралась: ' + word) def search(message): bot.send_message(message.chat.id, "Зииин, есть у нас такое?") image_href = 'https://yandex.ru/images/search?text=' + message.text driver.get(image_href) sleep(1) images = driver.find_elements_by_class_name("serp-item__link") for i in range(len(images)): bot.send_message(message.chat.id, images[i].get_attribute('href')) if i == 2: break bot.polling()
[ "asuntcova@yandex.ru" ]
asuntcova@yandex.ru
6f42a4420ad54741cba50d807238607340e07c03
7d62096ef268cc25be7a2d4c2c2d6d490a7dff24
/examples/prms_streamflow_ex.py
d17d4416d19ad4d5291f57fdb8251ee6fd803217
[ "MIT" ]
permissive
pymt-lab/pymt_prms_streamflow
becf1e5c6d0d30205408a7bd0e9cb5ca6b97c499
a25fe20da317b49ff12e0a6df546d2ba0e0dfe6f
refs/heads/master
2022-12-31T20:08:18.099769
2020-10-13T17:31:17
2020-10-13T17:31:17
264,988,300
0
0
MIT
2020-10-13T17:25:56
2020-05-18T15:53:45
Python
UTF-8
Python
false
false
3,607
py
"""Interact with the PRMSStreamflow BMI through Python.""" import os import numpy as np from pymt_prms_streamflow import PRMSStreamflow run_dir = '../meta/PRMSStreamflow' config_file = 'control.default' # Instantiate a model and get its name. m = PRMSStreamflow() print(m.get_component_name()) # Initialize the model. os.chdir(run_dir) m.initialize(config_file) print(config_file) # List the model's exchange items. print('Number of input vars:', m.get_input_item_count()) for var in m.get_input_var_names(): print(' - {}'.format(var)) print('Number of output vars:', m.get_output_item_count()) for var in m.get_output_var_names(): print(' - {}'.format(var)) # Get variable info. # var_name = 'seg_outflow' # var_name = 'flow_out' var_name = 'hru_outflow' print('Variable {}'.format(var_name)) print(' - variable type:', m.get_var_type(var_name)) print(' - units:', m.get_var_units(var_name)) print(' - itemsize:', m.get_var_itemsize(var_name)) print(' - nbytes:', m.get_var_nbytes(var_name)) print(' - location:', m.get_var_location(var_name)) # Get grid info for variable. grid_id = m.get_var_grid(var_name) print(' - grid id:', grid_id) print(' - grid type:', m.get_grid_type(grid_id)) grid_rank = m.get_grid_rank(grid_id) print(' - rank:', grid_rank) grid_size = m.get_grid_size(grid_id) print(' - size:', grid_size) grid_shape = np.empty(grid_rank, dtype=np.int32) try: m.get_grid_shape(grid_id, grid_shape) except RuntimeError: print(' - shape: n/a') else: print(' - shape:', grid_shape) grid_spacing = np.empty(grid_rank, dtype=np.float64) try: m.get_grid_spacing(grid_id, grid_spacing) except RuntimeError: print(' - spacing: n/a') else: print(' - spacing:', grid_spacing) grid_origin = np.empty(grid_rank, dtype=np.float64) try: m.get_grid_origin(grid_id, grid_origin) except RuntimeError: print(' - origin: n/a') else: print(' - origin:', grid_origin) grid_x = np.empty(grid_size, dtype=np.float64) m.get_grid_x(grid_id, grid_x) print(' - x:', grid_x) grid_y = np.empty(grid_size, dtype=np.float64) m.get_grid_y(grid_id, grid_y) print(' - y:', grid_y) grid_z = np.empty(grid_size, dtype=np.float64) m.get_grid_z(grid_id, grid_z) print(' - z:', grid_z) # Get time information from the model. print('Start time:', m.get_start_time()) print('End time:', m.get_end_time()) print('Current time:', m.get_current_time()) print('Time step:', m.get_time_step()) print('Time units:', m.get_time_units()) # Advance the model by one time step. print('Advance model by a single time step...') m.update() print(' - new time:', m.get_current_time()) # Advance the model until a later time. print('Advance model to a later time...') m.update_until(5.0) print(' - new time:', m.get_current_time()) # Get the variable values. print('Get values of {}...'.format(var_name)) val = np.empty(grid_size, dtype=m.get_var_type(var_name)) m.get_value(var_name, val) print(' - values at time {}:'.format(m.get_current_time())) print(val) # Get a reference to the variable and check that it updates. if m.get_grid_type(grid_id) != 'scalar': ref = m.get_value_ptr(var_name) for _ in range(3): print(' - values (by ref) at time {}:'.format(m.get_current_time())) print(ref) m.update() # Set new variable values. if var_name not in m.get_output_var_names(): print('Set values of {}...'.format(var_name)) new = np.arange(grid_size, dtype=m.get_var_type(var_name)) print(' - values to set:', new) m.set_value(var_name, new) print(' - check that values were set:', ref) # Finalize the model. m.finalize() print('Done.')
[ "mark.piper@colorado.edu" ]
mark.piper@colorado.edu
edbcbecc6f0f8d884487ac9870caa7a739c31558
00843d7d1744e25eecae29a95754294fab79986c
/train-model.py
d1ed9851036371c26642abb7abcf2624cda3d5d1
[]
no_license
Aditya148/Face-Recognition
2970648277ef819d457658b3f1bb405b2885f13c
514c00d56fa2da7fd76e5e764132a76dcf9fe83c
refs/heads/main
2023-01-04T10:32:38.909947
2020-10-29T10:56:58
2020-10-29T10:56:58
307,947,791
2
0
null
null
null
null
UTF-8
Python
false
false
3,256
py
# -*- coding: utf-8 -*- from keras.layers import Input, Lambda, Dense, Flatten from keras.models import Model from keras.applications.vgg16 import VGG16 from keras.applications.vgg16 import preprocess_input from keras.preprocessing import image from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential import numpy as np from glob import glob import matplotlib.pyplot as plt # re-size all the images to this IMAGE_SIZE = [224, 224] #Path for the dataset folders containing train and test/validation images train_path = 'Datasets/Train' valid_path = 'Datasets/Test' # add preprocessing layer to the front of VGG vgg = VGG16(input_shape=IMAGE_SIZE + [3], weights='imagenet', include_top=False) # don't train existing weights for layer in vgg.layers: layer.trainable = False # useful for getting number of classes folders = glob('Datasets/Train/*') # our layers - you can add more if you want x = Flatten()(vgg.output) # x = Dense(1000, activation='relu')(x) prediction = Dense(len(folders), activation='softmax')(x) # create a model object model = Model(inputs=vgg.input, outputs=prediction) # view the structure of the model model.summary() # tell the model what cost and optimization method to use model.compile( loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'] ) from keras.preprocessing.image import ImageDataGenerator train_datagen = ImageDataGenerator(rescale = 1./255, shear_range = 0.2, zoom_range = 0.2, horizontal_flip = True) test_datagen = ImageDataGenerator(rescale = 1./255) training_set = train_datagen.flow_from_directory('Datasets/Train', target_size = (224, 224), batch_size = 32, class_mode = 'categorical') test_set = test_datagen.flow_from_directory('Datasets/Test', target_size = (224, 224), batch_size = 32, class_mode = 'categorical') '''r=model.fit_generator(training_set, samples_per_epoch = 8000, nb_epoch = 5, validation_data = test_set, nb_val_samples = 2000)''' # fit the model r = model.fit_generator( training_set, validation_data=test_set, epochs=5, steps_per_epoch=len(training_set), validation_steps=len(test_set) ) # loss plt.plot(r.history['loss'], label='train loss') plt.plot(r.history['val_loss'], label='val loss') plt.legend() plt.show() plt.savefig('LossVal_loss') # accuracies plt.plot(r.history['acc'], label='train acc') plt.plot(r.history['val_acc'], label='val acc') plt.legend() plt.show() plt.savefig('AccVal_acc') import tensorflow as tf from keras.models import load_model #Save the model at your desired location model.save('Models/facefeatures_new_model.h5') print('Model saved successfully')
[ "noreply@github.com" ]
Aditya148.noreply@github.com
3bba89a25e36b1f137a155594ea9efacddbf0a07
5c6857c12e4abfeb51e5c4426a6f86e4fae86ede
/jactorch/data/dataset.py
dd275c4051e8e5942601be97ceae205960430408
[ "MIT" ]
permissive
lzhbrian/Jacinle
93bbb123bca52d5ca1ce5dbded3acb9b827b9061
4e6ea4902079d8d59d9eda0849714bd544f281a2
refs/heads/master
2023-04-01T03:07:07.208186
2021-04-07T17:58:38
2021-04-07T17:58:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,151
py
#! /usr/bin/env python3 # -*- coding: utf-8 -*- # File : dataset.py # Author : Jiayuan Mao # Email : maojiayuan@gmail.com # Date : 03/08/2018 # # This file is part of Jacinle. # Distributed under terms of the MIT license. import random import itertools from jacinle.logging import get_logger logger = get_logger(__file__) __all__ = ['IterableDatasetMixin', 'ProxyDataset', 'ListDataset', 'FilterableDatasetUnwrapped', 'FilterableDatasetView'] class Dataset(object): """An abstract class representing a Dataset. All other datasets should subclass it. All subclasses should override ``__len__``, that provides the size of the dataset, and ``__getitem__``, supporting integer indexing in range from 0 to len(self) exclusive. """ def __getitem__(self, index): raise NotImplementedError def __len__(self): raise NotImplementedError def __add__(self, other): from torch.utils.data.dataset import ConcatDataset return ConcatDataset([self, other]) class IterableDatasetMixin(object): def __iter__(self): for i in range(len(self)): yield i, self[i] class ProxyDataset(Dataset): """ A proxy dataset base class for wrapping a base dataset. """ def __init__(self, base_dataset): """ Args: base_dataset (Dataset): the base dataset. """ self._base_dataset = base_dataset @property def base_dataset(self): return self._base_dataset def __getitem__(self, item): return self.base_dataset[item] def __len__(self): return len(self.base_dataset) class ListDataset(Dataset): """ Wraps a list into a pytorch Dataset. """ def __init__(self, list): """ Args: list (list[Any]): the list of data. """ self.list = list def __getitem__(self, item): return self.list[item] def __len__(self): return len(self.list) class FilterableDatasetUnwrapped(Dataset, IterableDatasetMixin): """ A filterable dataset. User can call various `filter_*` operations to obtain a subset of the dataset. """ def __init__(self): super().__init__() self.metainfo_cache = dict() def get_metainfo(self, index): if index not in self.metainfo_cache: self.metainfo_cache[index] = self._get_metainfo(index) return self.metainfo_cache[index] def _get_metainfo(self, index): raise NotImplementedError() class FilterableDatasetView(FilterableDatasetUnwrapped): def __init__(self, owner_dataset, indices=None, filter_name=None, filter_func=None): """ Args: owner_dataset (Dataset): the original dataset. indices (List[int]): a list of indices that was filterred out. filter_name (str): human-friendly name for the filter. filter_func (Callable): just for tracking. """ super().__init__() self.owner_dataset = owner_dataset self.indices = indices self._filter_name = filter_name self._filter_func = filter_func @property def unwrapped(self): if self.indices is not None: return self.owner_dataset.unwrapped return self.owner_dataset @property def filter_name(self): return self._filter_name if self._filter_name is not None else '<anonymous>' @property def full_filter_name(self): if self.indices is not None: return self.owner_dataset.full_filter_name + '/' + self.filter_name return '<original>' @property def filter_func(self): return self._filter_func def collect(self, key_func): return {key_func(self.get_metainfo(i)) for i in range(len(self))} def filter(self, filter_func, filter_name=None): indices = [] for i in range(len(self)): metainfo = self.get_metainfo(i) if filter_func(metainfo): indices.append(i) if len(indices) == 0: raise ValueError('Filter results in an empty dataset.') logger.critical('Filter dataset {}: #before={}, #after={}.'.format(filter_name, len(self), len(indices))) return type(self)(self, indices, filter_name, filter_func) def random_trim_length(self, length): assert length < len(self) logger.info('Randomly trim the dataset: #samples = {}.'.format(length)) indices = list(random.choice(len(self), size=length, replace=False)) return type(self)(self, indices=indices, filter_name='randomtrim[{}]'.format(length)) def trim_length(self, length): if type(length) is float and 0 < length <= 1: length = int(len(self) * length) assert length < len(self) logger.info('Trim the dataset: #samples = {}.'.format(length)) return type(self)(self, indices=list(range(0, length)), filter_name='trim[{}]'.format(length)) def trim_range(self, begin, end=None): if end is None: end = len(self) assert end <= len(self) logger.info('Trim the dataset: #samples = {}.'.format(end - begin)) return type(self)(self, indices=list(range(begin, end)), filter_name='trimrange[{}:{}]'.format(begin, end)) def split_trainval(self, split): if isinstance(split, float) and 0 < split < 1: split = int(len(self) * split) split = int(split) assert 0 < split < len(self) nr_train = split nr_val = len(self) - nr_train logger.info('Split the dataset: #training samples = {}, #validation samples = {}.'.format(nr_train, nr_val)) return ( type(self)(self, indices=list(range(0, split)), filter_name='train'), type(self)(self, indices=list(range(split, len(self))), filter_name='val') ) def split_kfold(self, k): assert len(self) % k == 0 block = len(self) // k for i in range(k): yield ( type(self)(self, indices=list(range(0, i * block)) + list(range((i + 1) * block, len(self))), filter_name='fold{}[train]'.format(i + 1)), type(self)(self, indices=list(range(i * block, (i + 1) * block)), filter_name='fold{}[val]'.format(i + 1)) ) def repeat(self, nr_repeats): indices = list(itertools.chain(*[range(len(self)) for _ in range(nr_repeats)])) logger.critical('Repeat the dataset: #before={}, #after={}.'.format(len(self), len(indices))) return type(self)(self, indices=indices, filter_name='repeat[{}]'.format(nr_repeats)) def __getitem__(self, index): if self.indices is None: return self.owner_dataset[index] return self.owner_dataset[self.indices[index]] def __len__(self): if self.indices is None: return len(self.owner_dataset) return len(self.indices) def get_metainfo(self, index): if self.indices is None: return self.owner_dataset.get_metainfo(index) return self.owner_dataset.get_metainfo(self.indices[index])
[ "maojiayuan@gmail.com" ]
maojiayuan@gmail.com
47669b7666a1946891fd5bb9f52e54802d2f537e
9efe294abec2371bc938bad3115bc5cf9aa304be
/test_green_mask.py
6f34d96088b1fd7d06cd51275e1ae151275ec23e
[]
no_license
Happyflytoyou/rss_xman
ea7f3d4064905aca79e574ec85858ffa4cfb95e6
9d52356e2c8b05dc9586fcc7fb5a3d1fae0f2ee0
refs/heads/master
2020-06-12T10:43:15.068768
2019-07-07T14:12:40
2019-07-07T14:12:40
194,274,610
4
3
null
2019-07-07T14:12:41
2019-06-28T13:00:14
Python
UTF-8
Python
false
false
3,832
py
import torch from models.Siam_unet import SiamUNet from models.final_Siam_unet import finalSiamUNet from torch.autograd import Variable import utils.dataset as my_dataset import cv2 import numpy as np import config.rssia_config as cfg import preprocessing.transforms as trans from torch.utils.data import DataLoader from utils.eval import eval_cal import gdal from preprocessing.crop_img import splitimage from PIL import Image def prediction(weight): print("weight") best_metric = 0 train_transform_det = trans.Compose([ trans.Scale(cfg.TRANSFROM_SCALES), ]) val_transform_det = trans.Compose([ trans.Scale(cfg.TRANSFROM_SCALES), ]) test_transform_det = trans.Compose([ trans.Scale(cfg.TEST_TRANSFROM_SCALES), ]) model = SiamUNet() # model=torch.nn.DataParallel(model) if torch.cuda.is_available(): model.cuda() print('gpu') # model.load_state_dict({k.replace('module.', ''): v for k, v in torch.load(weight).items()}) # model.load_state_dict(torch.load(weight)) checkpoint = torch.load(weight) model.load_state_dict(checkpoint['state_dict']) test_data = my_dataset.Dataset(cfg.TEST_DATA_PATH, cfg.TEST_LABEL_PATH,cfg.TEST_TXT_PATH, 'val', transform=True, transform_med=test_transform_det) test_dataloader = DataLoader(test_data, batch_size=cfg.TEST_BATCH_SIZE, shuffle=False, num_workers=8, pin_memory=True) crop = 0 rows = 12 cols = 12 i = 0 for batch_idx, val_batch in enumerate(test_dataloader): model.eval() batch_x1, batch_x2, mask, im_name, h, w = val_batch print('mask_type{}'.format(mask.type)) with torch.no_grad(): batch_x1,batch_x2=Variable((batch_x1)).cuda(),Variable(((batch_x2))).cuda() try: print('try') output = model(batch_x1, batch_x2) del batch_x1, batch_x2 except RuntimeError as exception: if 'out of memory' in str(exception): print('WARNING: out of memory') if hasattr(torch.cuda,'empty_cache'): torch.cuda.empty_cache() else: print('exception') raise exception # print(output) output_w, output_h = output.shape[-2:] output = torch.sigmoid(output).view(output_w, output_h, -1) # print(output) output = output.data.cpu().numpy() # .resize([80, 80, 1]) output = np.where(output > cfg.THRESH, 255, 0) # print(output) # have no mask so can not eval_cal # precision,recall,F1=eval_cal(output,mask) # print('precision:{}\nrecall:{}\nF1:{}'.format(precision,recall,F1)) print(im_name) im_n=im_name[0].split('/')[1].split('.')[0].split('_') im__path='final_result/weight50_dmc/mask_2017_2018_960_960_'+im_n[4]+'.tif' # im__path = 'weitht50_tif.tif' im_data=np.squeeze(output) print(im_data.shape) im_data=np.array([im_data]) print(im_data.shape) im_geotrans=(0.0, 1.0, 0.0, 0.0, 0.0, 1.0) im_proj='' im_width=960 im_height=960 im_bands=1 datatype = gdal.GDT_Byte driver = gdal.GetDriverByName("GTiff") dataset = driver.Create(im__path,im_width, im_height, im_bands, datatype) if dataset != None: print("----{}".format(im__path)) dataset.SetGeoTransform(im_geotrans) dataset.SetProjection(im_proj) for i in range(im_bands): dataset.GetRasterBand(i + 1).WriteArray(im_data[i]) del dataset if __name__ == "__main__": # weight="model_tif_50.pth" # weight="weights/model50.pth" weight="weights/model50.pth" prediction(weight)
[ "1848185889@qq.com" ]
1848185889@qq.com
72406593eb4ad8bee4de31d6537425c61a039f83
b6316322bc74bb47c7108051f7a1b5b6343f92b6
/ground.py
0feabc558f6f181d5d1234dd4c8a93f976aeb5ab
[]
no_license
HananeKheirandish/Assignment-13
9408a965338e6c201a6b4699e64013b8ee2e4345
9ada0212a091ccc2e9eb2199ba4bbee1293ac08e
refs/heads/master
2023-07-31T21:33:38.937656
2021-09-21T21:32:48
2021-09-21T21:32:48
408,975,958
3
0
null
null
null
null
UTF-8
Python
false
false
597
py
import arcade class Ground(arcade.Sprite): def __init__(self, x, y): super().__init__() self.texture = arcade.load_texture(':resources:images/tiles/grassMid.png') self.width = 120 self.height = 135 self.center_x = x self.center_y = y class Box(arcade.Sprite): def __init__(self, x, y): super().__init__() self.texture = arcade.load_texture(':resources:images/tiles/grassHalf_mid.png') self.width = 120 self.height = 135 self.center_x = x self.center_y = y
[ "hananekheirandish1378@gmail.com" ]
hananekheirandish1378@gmail.com
8e5fd91e5309a62076c60a7df6232e48b539fc7a
4eb7d655586db7e60e2d54be7dff4a199bb9005c
/shopping list.py
079d296e5e462d7ef4665143810df0b65fb06882
[]
no_license
chaNcharge/Coding
c0a5f2b1bf5a38f14763aa5908204572d0ae5853
0bb94968efc3a3e75418a6ab6795911e64a83ee3
refs/heads/master
2021-01-22T07:31:46.490512
2018-06-06T01:28:32
2018-06-06T01:28:32
102,305,539
7
1
null
2017-09-13T01:50:08
2017-09-04T01:18:07
Python
UTF-8
Python
false
false
443
py
#!/usr/bin/python shopping_list = ["banana", "orange", "meme", "meme", "pear", "meme", "apple"] stock = { "banana": 6, "apple": 0, "orange": 32, "pear": 15, "meme": 21 } prices = { "banana": 4.99, "apple": 2.99, "orange": 1.49, "pear": 3.99, "meme": 5.99 } def compute_bill(food): total = 0 for i in food: if stock[i] > 0: total += prices[i] stock[i] -= 1 return total bill = compute_bill(shopping_list) print bill
[ "chancharge@gmail.com" ]
chancharge@gmail.com
f6a2cee4962eb4e0522e2c6b922c4fab40e4ebc2
2ae0b8d95d439ccfd55ea7933ad4a2994ad0f6c5
/tests/layer_tests/common/utils/tf_utils.py
fb02c3f0a1b298370faf288e2f248e5dad1da3b0
[ "Apache-2.0" ]
permissive
openvinotoolkit/openvino
38ea745a247887a4e14580dbc9fc68005e2149f9
e4bed7a31c9f00d8afbfcabee3f64f55496ae56a
refs/heads/master
2023-08-18T03:47:44.572979
2023-08-17T21:24:59
2023-08-17T21:24:59
153,097,643
3,953
1,492
Apache-2.0
2023-09-14T21:42:24
2018-10-15T10:54:40
C++
UTF-8
Python
false
false
6,923
py
# Copyright (C) 2018-2023 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import os import re import numpy as np import tensorflow as tf from openvino.tools.mo.ops.op import PermuteAttrs os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' def mix_array_with_value(input_array, value): input_shape = input_array.shape mask = np.random.randint(0, 2, input_shape).astype(bool) return np.where(mask, input_array, value) def load_graph(model_file, output_nodes_for_freeze=None): is_meta = os.path.splitext(model_file)[-1] == ".meta" tf.compat.v1.reset_default_graph() graph = tf.Graph() graph_def = tf.compat.v1.GraphDef() if not is_meta else tf.compat.v1.MetaGraphDef() with open(model_file, "rb") as f: graph_def.ParseFromString(f.read()) nodes_to_clear_device = graph_def.node if isinstance(graph_def, tf.compat.v1.GraphDef) else graph_def.graph_def.node for node in nodes_to_clear_device: node.device = "" if is_meta: with tf.compat.v1.Session() as sess: restorer = tf.compat.v1.train.import_meta_graph(graph_def) restorer.restore(sess, re.sub('\.meta$', '', model_file)) graph_def = tf.compat.v1.graph_util.convert_variables_to_constants(sess, graph_def.graph_def, output_nodes_for_freeze) with graph.as_default(): tf.import_graph_def(graph_def, name='') return graph def collect_tf_references(model_path, feed_dict, out_layer, output_nodes_for_freeze=None): _feed_dict = dict() graph = load_graph(model_path, output_nodes_for_freeze) output_tensors_list = list() outputs_list = list() for input in feed_dict: input_node = [node for node in graph.as_graph_def().node if node.name == input][0] if input_node.op == "Placeholder": tensor = graph.get_tensor_by_name(input + ":0") _feed_dict[tensor] = feed_dict[input] else: for parrent_input in input_node.input: in_node = [node for node in graph.as_graph_def().node if node.name == parrent_input][0] if in_node.op in ['Const', 'Assign', 'NoOp', 'Assert']: continue else: tensor = graph.get_tensor_by_name(parrent_input + ":0") _feed_dict[tensor] = feed_dict[input] for output in out_layer: tensor = graph.get_tensor_by_name(output + ":0") output_tensors_list.append(tensor) outputs_list.append(output) with graph.as_default(): with tf.compat.v1.Session(graph=graph) as sess: outputs = sess.run(output_tensors_list, feed_dict=_feed_dict) out_dict = dict(zip(outputs_list, outputs)) return out_dict def children(op, graph): op = graph.get_operation_by_name(op) return set(op for out in op.outputs for op in out.consumers()) def collect_control_dependencies(graph): control_dependents_map = {} for op in graph.get_operations(): for control_input in op.control_inputs: if control_input.name not in control_dependents_map: control_dependents_map[control_input.name] = [op] else: control_dependents_map[control_input.name].append(op) return control_dependents_map def summarize_graph(model_path, output_nodes_for_freeze=None, reshape_net=None): placeholders = dict() variables = list() outputs = list() graph = load_graph(model_path, output_nodes_for_freeze) unlikely_output_types = ['Const', 'Assign', 'NoOp', 'Placeholder', 'Assert', 'switch_t', 'switch_f'] control_dependents_map = collect_control_dependencies(graph) for node in graph.as_graph_def().node: if node.op == 'Placeholder': node_dict = dict() node_dict['type'] = tf.DType(node.attr['dtype'].type).name node_dict['shape'] = str(node.attr['shape'].shape.dim).replace('\n', '').replace(' ', '').replace( 'size:', '').replace('[', '').replace(']', '') node_dict['shape'] = tuple(map(lambda x: int(x) if x else 0, node_dict['shape'].split(','))) placeholders[node.name] = node_dict if node.op == "Variable" or node.op == "VariableV2": variables.append(node.name) if len(children(node.name, graph)) == 0 and node.name not in control_dependents_map: if node.op not in unlikely_output_types and node.name.split('/')[-1] not in unlikely_output_types: outputs.append(node.name) result = dict() result['inputs'] = placeholders result['outputs'] = outputs if reshape_net: out_layer = list(result['inputs'].keys()) + result['outputs'] feed_dict = {} for inputl in reshape_net: feed_dict.update({inputl: np.ones(shape=reshape_net[inputl])}) scoring_res = collect_tf_references(model_path=model_path, feed_dict=feed_dict, out_layer=out_layer) for layer in scoring_res: if layer in result['inputs']: result['inputs'][layer]['shape'] = scoring_res[layer].shape return result def permute_nhwc_to_nchw(shape, use_new_frontend=False): if use_new_frontend: return shape perm = PermuteAttrs.get_nhwc_to_nchw_permutation(len(shape)).perm new_shape = np.array(shape)[perm] return new_shape def permute_nchw_to_nhwc(shape, use_new_frontend=False): if use_new_frontend: return shape perm = PermuteAttrs.get_nchw_to_nhwc_permutation(len(shape)).perm new_shape = np.array(shape)[perm] return new_shape def permute_axis(axis, permutation_inv): return permutation_inv[axis] def transpose_nchw_to_nhwc(data, use_new_frontend, use_old_api): if use_new_frontend or not use_old_api: return data if len(data.shape) == 4: # reshaping for 4D tensors return data.transpose(0, 2, 3, 1) elif len(data.shape) == 5: # reshaping for 5D tensors return data.transpose(0, 2, 3, 4, 1) else: return data def transpose_nhwc_to_nchw(data, use_new_frontend, use_old_api): if use_new_frontend or not use_old_api: return data if len(data.shape) == 4: # reshaping for 4D tensors return data.transpose(0, 3, 1, 2) # 2, 0, 1 elif len(data.shape) == 5: # reshaping for 5D tensors return data.transpose(0, 4, 1, 2, 3) # 3, 0, 1, 2 else: return data def save_to_pb(tf_model, path_to_saved_tf_model, model_name = 'model.pb'): tf.io.write_graph(tf_model, path_to_saved_tf_model, model_name, False) assert os.path.isfile(os.path.join(path_to_saved_tf_model, model_name)), "model.pb haven't been saved " \ "here: {}".format(path_to_saved_tf_model) return os.path.join(path_to_saved_tf_model, model_name)
[ "noreply@github.com" ]
openvinotoolkit.noreply@github.com
98fc54b6771a94ea39ab4d85d2ce2a00aac5a6fe
29061d1ac5ee01d9e2dd73c691bc03d795e0ce7a
/2020_21_p2.py
5c757a4d3bcfd6ef9b8341a38c01b8186770ebe0
[ "MIT" ]
permissive
Dementophobia/advent-of-code-2020
af074c8f847095f3d111d656f34aa8c46cb4e18a
ee1fb67d4ec55ed082aa7723c79759310925a85a
refs/heads/main
2023-02-05T19:12:54.844842
2020-12-25T10:17:38
2020-12-25T10:17:38
317,787,205
0
0
null
null
null
null
UTF-8
Python
false
false
1,612
py
from aoc import read_file, timer from re import match, sub from collections import defaultdict def analyse_input(raw_input): allergens_dict = defaultdict(list) all_ingredients = [] for line in raw_input: ingredients, allergens = [words.split() for words in match(r"((?:(?:\w+) )+)\(contains ((?:(?:\w+) *)+)\)", sub(",", "", line)).group(1, 2)] for allergen in allergens: allergens_dict[allergen].append(set(ingredients)) all_ingredients.extend(ingredients) return allergens_dict, all_ingredients def identify_allergen(allergens_in_food): for allergen, ingredients in allergens_in_food.items(): candidates = ingredients[0].intersection(*ingredients) if len(candidates) == 1: return allergen, list(candidates)[0] def eliminate_combo(allergens_in_food, allergen, ingredient): del allergens_in_food[allergen] for allergen in allergens_in_food.keys(): for ingredients in allergens_in_food[allergen]: ingredients.discard(ingredient) @timer def solve(): allergens_in_food, all_ingredients = analyse_input(read_file("21")) identified_ingredients = [] while len(allergens_in_food): allergen, ingredient = identify_allergen(allergens_in_food) eliminate_combo(allergens_in_food, allergen, ingredient) identified_ingredients.append((allergen, ingredient)) identified_ingredients.sort(key = lambda combo: combo[0]) return ",".join([ingredient[1] for ingredient in identified_ingredients]) result = solve() print(f"Solution: {result}")
[ "34186142+Dementophobia@users.noreply.github.com" ]
34186142+Dementophobia@users.noreply.github.com
c812cf4e30c6d1d51291e9295e325acdf22fc658
c705b2620119df0d60e925e55228bfbb5de3f568
/archives/learning/security/otp.py
f2cd3498bc6d6c0e3c11c542444a6afe0249e1a0
[ "Apache-2.0" ]
permissive
mcxiaoke/python-labs
5aa63ce90de5da56d59ca2954f6b3aeae7833559
61c0a1f91008ba82fc2f5a5deb19e60aec9df960
refs/heads/master
2021-08-05T03:47:51.844979
2021-07-24T11:06:13
2021-07-24T11:06:13
21,690,171
7
7
Apache-2.0
2020-08-07T01:52:32
2014-07-10T10:20:17
Python
UTF-8
Python
false
false
4,777
py
# -*- coding: UTF-8 -*- # -*- coding: utf-8 -*- """ otpauth ~~~~~~~ Implements two-step verification of HOTP/TOTP. :copyright: (c) 2013 - 2014 by Hsiaoming Yang. :license: BSD, see LICENSE for more details. """ import base64 import hashlib import hmac import struct import sys import time import warnings if sys.version_info[0] == 3: python_version = 3 string_type = str else: python_version = 2 string_type = unicode range = xrange class OTPAuth(object): """One Time Password Authentication. :param secret: A secret token for the authentication. """ def __init__(self, secret): self.secret = secret def hotp(self, counter=4): """Generate a HOTP code. :param counter: HOTP is a counter based algorithm. """ return generate_hotp(self.secret, counter) def totp(self, period=30): """Generate a TOTP code. A TOTP code is an extension of HOTP algorithm. :param period: A period that a TOTP code is valid in seconds """ return generate_totp(self.secret, period) def valid_hotp(self, code, last=0, trials=100): """Valid a HOTP code. :param code: A number that is less than 6 characters. :param last: Guess HOTP code from last + 1 range. :param trials: Guest HOTP code end at last + trials + 1. """ if not valid_code(code): return False code = int(code) for i in range(last + 1, last + trials + 1): if self.hotp(counter=i) == code: return i return False def valid_totp(self, code, period=30): """Valid a TOTP code. :param code: A number that is less than 6 characters. :param period: A period that a TOTP code is valid in seconds """ return valid_code(code) and self.totp(period) == int(code) def to_uri(self, type, label, issuer, counter=None): """Generate the otpauth protocal string. :param type: Algorithm type, hotp or totp. :param label: Label of the identifier. :param issuer: The company, the organization or something else. :param counter: Counter of the HOTP algorithm. """ type = type.lower() if type not in ('hotp', 'totp'): raise ValueError('type must be hotp or totp') if type == 'hotp' and not counter: raise ValueError('HOTP type authentication need counter') secret = base64.b32encode(to_bytes(self.secret)) # bytes to string secret = secret.decode('utf-8') # remove pad string secret = secret.strip('=') # https://code.google.com/p/google-authenticator/wiki/KeyUriFormat url = ('otpauth://%(type)s/%(label)s?secret=%(secret)s' '&issuer=%(issuer)s') dct = dict( type=type, label=label, issuer=issuer, secret=secret, counter=counter ) ret = url % dct if type == 'hotp': ret = '%s&counter=%s' % (ret, counter) return ret def to_google(self, type, label, issuer, counter=None): """Generate the otpauth protocal string for Google Authenticator. .. deprecated:: 0.2.0 Use :func:`to_uri` instead. """ warnings.warn('deprecated, use to_uri instead', DeprecationWarning) return self.to_uri(type, label, issuer, counter) def generate_hotp(secret, counter=4): """Generate a HOTP code. :param secret: A secret token for the authentication. :param counter: HOTP is a counter based algorithm. """ # https://tools.ietf.org/html/rfc4226 msg = struct.pack('>Q', counter) digest = hmac.new(to_bytes(secret), msg, hashlib.sha1).digest() ob = digest[19] if python_version == 2: ob = ord(ob) pos = ob & 15 base = struct.unpack('>I', digest[pos:pos + 4])[0] & 0x7fffffff token = base % 1000000 return token def generate_totp(secret, period=30): """Generate a TOTP code. A TOTP code is an extension of HOTP algorithm. :param secret: A secret token for the authentication. :param period: A period that a TOTP code is valid in seconds """ counter = int(time.time()) // period return generate_hotp(secret, counter) def to_bytes(text): if isinstance(text, string_type): # Python3 str -> bytes # Python2 unicode -> str text = text.encode('utf-8') return text def valid_code(code): code = string_type(code) return code.isdigit() and len(code) <= 6 if __name__ == '__main__': gotp=OTPAuth('xjom6zpducm4mltk5stxcogv3wcvq7do') print gotp.totp() dotp=OTPAuth('PBFCKI5CSTEGFKDV4RHCLFZSCU') print dotp.totp()
[ "mcxiaoke@gmail.com" ]
mcxiaoke@gmail.com
acb759430a9f83b7215bb9aef54d72993c9d46b7
3ef8175776af868486c9f70f2846f32d36d21fe1
/PalindromePartitioning.py
6c5a0c324609b7dd866a89bb85a0de1f44a3e5e3
[]
no_license
youngyuan/Leetcodes
495d3c355c24294024cc4a6caaf7bf2a4f11649f
4464e40dc78b3529226e98996d4da838828fb3a5
refs/heads/master
2021-01-22T23:58:19.887689
2015-09-18T15:07:51
2015-09-18T15:07:51
41,552,884
0
0
null
null
null
null
UTF-8
Python
false
false
782
py
class Solution(object): def isPalindrome(self, s, start, end): i = start j = end while i < j: if s[i] != s[j]: return False i += 1 j -= 1 return True def dfs(self, s, start, end, res, path): if start > end: res.append(path) return #i is the first substring length for i in range(start + 1, end + 2): if self.isPalindrome(s, start, i - 1): self.dfs(s, i, end, res, path + [s[start:i]]) def partition(self, s): """ :type s: str :rtype: List[List[str]] """ res = [] self.dfs(s, 0, len(s) - 1, res, []) return res s = Solution() print(s.partition("aab"))
[ "youngyuan00@gmail.com" ]
youngyuan00@gmail.com
1e91ab4820bab344b781fa5ffd2176a03f1b30c7
889ef6cd7328a08d3b12518b18c6f41c40702d32
/main.py
5bc7067e0d61456139ec529229f634e85df2253f
[]
no_license
Yetinator/BicycleRaceSplits
ad6c8e91f024a3dca247d56ae667b4aeed2f4d39
f26f563ca44a4a471cf1c4592f2d1ec0c52bde7e
refs/heads/master
2020-04-09T00:44:38.392479
2018-12-19T21:43:03
2018-12-19T21:43:03
159,879,608
0
0
null
null
null
null
UTF-8
Python
false
false
254
py
from tkinter import * import tkinter.filedialog import time from array import * from writeClass import * from windowClass import AbstractWindow from windowClass import MyWindow from stopWatchClass import SwissWatch tempWindow = MyWindow() mainloop()
[ "Helmethair@zoho.com" ]
Helmethair@zoho.com
4210d0e4b8cd675a18ae6f39d33ccab6ad71f1fe
213f71cd752b20327e175df8f9ad6fdb7fcf596b
/blog/migrations/0003_auto_20190509_1119.py
23995561e18aa63ebffeb36b10162e77a7080a7f
[]
no_license
jnsun/mysite
94fd5c7591996d5789427b6b43f8fc546050f6da
3ca839d4cd4701f8f2dffc7b161e4a311d53ee31
refs/heads/master
2020-05-20T03:27:56.666352
2019-05-09T06:52:48
2019-05-09T06:52:48
177,090,333
0
0
null
null
null
null
UTF-8
Python
false
false
395
py
# Generated by Django 2.2.1 on 2019-05-09 03:19 from django.db import migrations import mdeditor.fields class Migration(migrations.Migration): dependencies = [ ('blog', '0002_auto_20190507_1044'), ] operations = [ migrations.AlterField( model_name='blog', name='content', field=mdeditor.fields.MDTextField(), ), ]
[ "jnsun@qq.com" ]
jnsun@qq.com
fcea36acdb8c99a405600822c08ef350ce5e9ff8
3427605c7877d1e9899a629160355f8b653847a9
/migrations/0001_initial.py
3743e4cbbfc0bdaf00ada9ff3596db4d67f1fce9
[]
no_license
Pranathi-Paruchuri/E-Commerce
d40d97fa6ac37a8f9c7b1066a918aa736dea1045
565ff974023678d1b08e07d9c14ddf076aeef921
refs/heads/master
2022-11-29T12:52:46.991256
2020-07-27T18:31:23
2020-07-27T18:31:23
282,981,253
0
0
null
null
null
null
UTF-8
Python
false
false
3,415
py
# Generated by Django 3.0.8 on 2020-07-20 11:38 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Customer', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=200, null=True)), ('email', models.CharField(max_length=200)), ('user', models.OneToOneField(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Order', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('date_ordered', models.DateTimeField(auto_now_add=True)), ('complete', models.BooleanField(default=False)), ('transaction_id', models.CharField(max_length=100, null=True)), ('customer', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='store.Customer')), ], ), migrations.CreateModel( name='Product', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=200)), ('price', models.FloatField()), ('digital', models.BooleanField(blank=True, default=False, null=True)), ('image', models.ImageField(blank=True, null=True, upload_to='')), ], ), migrations.CreateModel( name='ShippingAddress', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('address', models.CharField(max_length=200)), ('city', models.CharField(max_length=200)), ('state', models.CharField(max_length=200)), ('zipcode', models.CharField(max_length=200)), ('date_added', models.DateTimeField(auto_now_add=True)), ('customer', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='store.Customer')), ('order', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='store.Order')), ], ), migrations.CreateModel( name='OrderItem', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('quantity', models.IntegerField(blank=True, default=0, null=True)), ('date_added', models.DateTimeField(auto_now_add=True)), ('order', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='store.Order')), ('product', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='store.Product')), ], ), ]
[ "noreply@github.com" ]
Pranathi-Paruchuri.noreply@github.com
bb65ecfb10019fd65397574241138df4aa66a8fb
9789aaa94e4a321fed2a1f624ef180d938f1fe56
/src/entry.py
a751c34c3bcfab03051a7dce97a1e000465541e1
[]
no_license
fantascy/snsanalytics
61ff6b8f384f0bd4be8f89a2a19101ad2cf1bc77
927f186c7f5a1d534e0ff7ce7aff46a0c1a36c51
refs/heads/master
2021-01-13T14:18:05.684839
2016-11-06T07:43:35
2016-11-06T07:43:35
72,827,547
0
0
null
null
null
null
UTF-8
Python
false
false
1,851
py
from django.views.generic.simple import direct_to_template, redirect_to from django.views.defaults import page_not_found as django_page_not_found import deploysoup import context import settings from sns.dashboard.views import home as sns_home from sns.chan.views import twitter_callback as new_twitter_callback from sns.chan.views import facebook_callback as new_facebook_callback from sns.url.views import redirect as new_redirect from msb.dashboard.views import home as msb_home from fe.dashboard.views import home as fe_home from soup.dashboard.views import home as soup_home from cake.dashboard.views import home as cake_home from soup.user.views import twitter_callback as soup_twitter_callback _DASHBOARD_MAP = { "sns" : sns_home, "msb" : msb_home, "fe" : fe_home, "soup" : soup_home, "cake" : cake_home, "appspot" : sns_home, } def home(request): return _DASHBOARD_MAP[context.get_context().app()](request) def twitter_callback(request): if context.get_context().app() == deploysoup.APP : return soup_twitter_callback(request) else: return new_twitter_callback(request) def facebook_callback(request): return new_facebook_callback(request) def redirect(request, urlHash): return new_redirect(request, urlHash) def page_not_found(request): context.get_context().set_login_required(False) return django_page_not_found(request, template_name=("%s/404.html" % context.get_context().app())) def favicon(request): context.get_context().set_login_required(False) return redirect_to(request, url=("%s%s/images/favicon.ico" % (settings.MEDIA_URL, context.get_context().app()))) def robot_txt(request): context.get_context().set_login_required(False) return direct_to_template(request, "%s/robots.txt" % context.get_context().app())
[ "cong@snsanalytics.com" ]
cong@snsanalytics.com
49e2dcdaf2dd5f03916376f133577cc6a1c46e39
93713f46f16f1e29b725f263da164fed24ebf8a8
/Library/lib/python3.7/site-packages/astropy-4.0-py3.7-macosx-10.9-x86_64.egg/astropy/units/quantity.py
b315485d32611402a5243f5f34a2aac4c8397ccb
[ "BSD-3-Clause" ]
permissive
holzschu/Carnets
b83d15136d25db640cea023abb5c280b26a9620e
1ad7ec05fb1e3676ac879585296c513c3ee50ef9
refs/heads/master
2023-02-20T12:05:14.980685
2023-02-13T15:59:23
2023-02-13T15:59:23
167,671,526
541
36
BSD-3-Clause
2022-11-29T03:08:22
2019-01-26T09:26:46
Python
UTF-8
Python
false
false
69,779
py
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst """ This module defines the `Quantity` object, which represents a number with some associated units. `Quantity` objects support operations like ordinary numbers, but will deal with unit conversions internally. """ # Standard library import re import numbers from fractions import Fraction import warnings import numpy as np # AstroPy from .core import (Unit, dimensionless_unscaled, get_current_unit_registry, UnitBase, UnitsError, UnitConversionError, UnitTypeError) from .utils import is_effectively_unity from .format.latex import Latex from astropy.utils.compat import NUMPY_LT_1_17 from astropy.utils.compat.misc import override__dir__ from astropy.utils.exceptions import AstropyDeprecationWarning, AstropyWarning from astropy.utils.misc import isiterable from astropy.utils.data_info import ParentDtypeInfo from astropy import config as _config from .quantity_helper import (converters_and_unit, can_have_arbitrary_unit, check_output) from .quantity_helper.function_helpers import ( SUBCLASS_SAFE_FUNCTIONS, FUNCTION_HELPERS, DISPATCHED_FUNCTIONS, UNSUPPORTED_FUNCTIONS) __all__ = ["Quantity", "SpecificTypeQuantity", "QuantityInfoBase", "QuantityInfo", "allclose", "isclose"] # We don't want to run doctests in the docstrings we inherit from Numpy __doctest_skip__ = ['Quantity.*'] _UNIT_NOT_INITIALISED = "(Unit not initialised)" _UFUNCS_FILTER_WARNINGS = {np.arcsin, np.arccos, np.arccosh, np.arctanh} class Conf(_config.ConfigNamespace): """ Configuration parameters for Quantity """ latex_array_threshold = _config.ConfigItem(100, 'The maximum size an array Quantity can be before its LaTeX ' 'representation for IPython gets "summarized" (meaning only the first ' 'and last few elements are shown with "..." between). Setting this to a ' 'negative number means that the value will instead be whatever numpy ' 'gets from get_printoptions.') conf = Conf() class QuantityIterator: """ Flat iterator object to iterate over Quantities A `QuantityIterator` iterator is returned by ``q.flat`` for any Quantity ``q``. It allows iterating over the array as if it were a 1-D array, either in a for-loop or by calling its `next` method. Iteration is done in C-contiguous style, with the last index varying the fastest. The iterator can also be indexed using basic slicing or advanced indexing. See Also -------- Quantity.flatten : Returns a flattened copy of an array. Notes ----- `QuantityIterator` is inspired by `~numpy.ma.core.MaskedIterator`. It is not exported by the `~astropy.units` module. Instead of instantiating a `QuantityIterator` directly, use `Quantity.flat`. """ def __init__(self, q): self._quantity = q self._dataiter = q.view(np.ndarray).flat def __iter__(self): return self def __getitem__(self, indx): out = self._dataiter.__getitem__(indx) # For single elements, ndarray.flat.__getitem__ returns scalars; these # need a new view as a Quantity. if isinstance(out, type(self._quantity)): return out else: return self._quantity._new_view(out) def __setitem__(self, index, value): self._dataiter[index] = self._quantity._to_own_unit(value) def __next__(self): """ Return the next value, or raise StopIteration. """ out = next(self._dataiter) # ndarray.flat._dataiter returns scalars, so need a view as a Quantity. return self._quantity._new_view(out) next = __next__ class QuantityInfoBase(ParentDtypeInfo): # This is on a base class rather than QuantityInfo directly, so that # it can be used for EarthLocationInfo yet make clear that that class # should not be considered a typical Quantity subclass by Table. attrs_from_parent = {'dtype', 'unit'} # dtype and unit taken from parent _supports_indexing = True @staticmethod def default_format(val): return f'{val.value}' @staticmethod def possible_string_format_functions(format_): """Iterate through possible string-derived format functions. A string can either be a format specifier for the format built-in, a new-style format string, or an old-style format string. This method is overridden in order to suppress printing the unit in each row since it is already at the top in the column header. """ yield lambda format_, val: format(val.value, format_) yield lambda format_, val: format_.format(val.value) yield lambda format_, val: format_ % val.value class QuantityInfo(QuantityInfoBase): """ Container for meta information like name, description, format. This is required when the object is used as a mixin column within a table, but can be used as a general way to store meta information. """ _represent_as_dict_attrs = ('value', 'unit') _construct_from_dict_args = ['value'] _represent_as_dict_primary_data = 'value' def new_like(self, cols, length, metadata_conflicts='warn', name=None): """ Return a new Quantity instance which is consistent with the input ``cols`` and has ``length`` rows. This is intended for creating an empty column object whose elements can be set in-place for table operations like join or vstack. Parameters ---------- cols : list List of input columns length : int Length of the output column object metadata_conflicts : str ('warn'|'error'|'silent') How to handle metadata conflicts name : str Output column name Returns ------- col : Quantity (or subclass) Empty instance of this class consistent with ``cols`` """ # Get merged info attributes like shape, dtype, format, description, etc. attrs = self.merge_cols_attributes(cols, metadata_conflicts, name, ('meta', 'format', 'description')) # Make an empty quantity using the unit of the last one. shape = (length,) + attrs.pop('shape') dtype = attrs.pop('dtype') # Use zeros so we do not get problems for Quantity subclasses such # as Longitude and Latitude, which cannot take arbitrary values. data = np.zeros(shape=shape, dtype=dtype) # Get arguments needed to reconstruct class map = {key: (data if key == 'value' else getattr(cols[-1], key)) for key in self._represent_as_dict_attrs} map['copy'] = False out = self._construct_from_dict(map) # Set remaining info attributes for attr, value in attrs.items(): setattr(out.info, attr, value) return out def get_sortable_arrays(self): """ Return a list of arrays which can be lexically sorted to represent the order of the parent column. For Quantity this is just the quantity itself. Returns ------- arrays : list of ndarray """ return [self._parent] class Quantity(np.ndarray): """A `~astropy.units.Quantity` represents a number with some associated unit. See also: http://docs.astropy.org/en/stable/units/quantity.html Parameters ---------- value : number, `~numpy.ndarray`, `Quantity` object (sequence), str The numerical value of this quantity in the units given by unit. If a `Quantity` or sequence of them (or any other valid object with a ``unit`` attribute), creates a new `Quantity` object, converting to `unit` units as needed. If a string, it is converted to a number or `Quantity`, depending on whether a unit is present. unit : `~astropy.units.UnitBase` instance, str An object that represents the unit associated with the input value. Must be an `~astropy.units.UnitBase` object or a string parseable by the :mod:`~astropy.units` package. dtype : ~numpy.dtype, optional The dtype of the resulting Numpy array or scalar that will hold the value. If not provided, it is determined from the input, except that any integer and (non-Quantity) object inputs are converted to float by default. copy : bool, optional If `True` (default), then the value is copied. Otherwise, a copy will only be made if ``__array__`` returns a copy, if value is a nested sequence, or if a copy is needed to satisfy an explicitly given ``dtype``. (The `False` option is intended mostly for internal use, to speed up initialization where a copy is known to have been made. Use with care.) order : {'C', 'F', 'A'}, optional Specify the order of the array. As in `~numpy.array`. This parameter is ignored if the input is a `Quantity` and ``copy=False``. subok : bool, optional If `False` (default), the returned array will be forced to be a `Quantity`. Otherwise, `Quantity` subclasses will be passed through, or a subclass appropriate for the unit will be used (such as `~astropy.units.Dex` for ``u.dex(u.AA)``). ndmin : int, optional Specifies the minimum number of dimensions that the resulting array should have. Ones will be pre-pended to the shape as needed to meet this requirement. This parameter is ignored if the input is a `Quantity` and ``copy=False``. Raises ------ TypeError If the value provided is not a Python numeric type. TypeError If the unit provided is not either a :class:`~astropy.units.Unit` object or a parseable string unit. Notes ----- Quantities can also be created by multiplying a number or array with a :class:`~astropy.units.Unit`. See http://docs.astropy.org/en/latest/units/ """ # Need to set a class-level default for _equivalencies, or # Constants can not initialize properly _equivalencies = [] # Default unit for initialization; can be overridden by subclasses, # possibly to `None` to indicate there is no default unit. _default_unit = dimensionless_unscaled # Ensures views have an undefined unit. _unit = None __array_priority__ = 10000 def __new__(cls, value, unit=None, dtype=None, copy=True, order=None, subok=False, ndmin=0): if unit is not None: # convert unit first, to avoid multiple string->unit conversions unit = Unit(unit) # optimize speed for Quantity with no dtype given, copy=False if isinstance(value, Quantity): if unit is not None and unit is not value.unit: value = value.to(unit) # the above already makes a copy (with float dtype) copy = False if type(value) is not cls and not (subok and isinstance(value, cls)): value = value.view(cls) if dtype is None: if not copy: return value if value.dtype.kind in 'iu': dtype = float return np.array(value, dtype=dtype, copy=copy, order=order, subok=True, ndmin=ndmin) # Maybe str, or list/tuple of Quantity? If so, this may set value_unit. # To ensure array remains fast, we short-circuit it. value_unit = None if not isinstance(value, np.ndarray): if isinstance(value, str): # The first part of the regex string matches any integer/float; # the second parts adds possible trailing .+-, which will break # the float function below and ensure things like 1.2.3deg # will not work. pattern = (r'\s*[+-]?' r'((\d+\.?\d*)|(\.\d+)|([nN][aA][nN])|' r'([iI][nN][fF]([iI][nN][iI][tT][yY]){0,1}))' r'([eE][+-]?\d+)?' r'[.+-]?') v = re.match(pattern, value) unit_string = None try: value = float(v.group()) except Exception: raise TypeError('Cannot parse "{}" as a {}. It does not ' 'start with a number.' .format(value, cls.__name__)) unit_string = v.string[v.end():].strip() if unit_string: value_unit = Unit(unit_string) if unit is None: unit = value_unit # signal no conversion needed below. elif (isiterable(value) and len(value) > 0 and all(isinstance(v, Quantity) for v in value)): # Convert all quantities to the same unit. if unit is None: unit = value[0].unit value = [q.to_value(unit) for q in value] value_unit = unit # signal below that conversion has been done if value_unit is None: # If the value has a `unit` attribute and if not None # (for Columns with uninitialized unit), treat it like a quantity. value_unit = getattr(value, 'unit', None) if value_unit is None: # Default to dimensionless for no (initialized) unit attribute. if unit is None: unit = cls._default_unit value_unit = unit # signal below that no conversion is needed else: try: value_unit = Unit(value_unit) except Exception as exc: raise TypeError("The unit attribute {!r} of the input could " "not be parsed as an astropy Unit, raising " "the following exception:\n{}" .format(value.unit, exc)) if unit is None: unit = value_unit elif unit is not value_unit: copy = False # copy will be made in conversion at end value = np.array(value, dtype=dtype, copy=copy, order=order, subok=False, ndmin=ndmin) # check that array contains numbers or long int objects if (value.dtype.kind in 'OSU' and not (value.dtype.kind == 'O' and isinstance(value.item(0), numbers.Number))): raise TypeError("The value must be a valid Python or " "Numpy numeric type.") # by default, cast any integer, boolean, etc., to float if dtype is None and value.dtype.kind in 'iuO': value = value.astype(float) # if we allow subclasses, allow a class from the unit. if subok: qcls = getattr(unit, '_quantity_class', cls) if issubclass(qcls, cls): cls = qcls value = value.view(cls) value._set_unit(value_unit) if unit is value_unit: return value else: # here we had non-Quantity input that had a "unit" attribute # with a unit different from the desired one. So, convert. return value.to(unit) def __array_finalize__(self, obj): # If we're a new object or viewing an ndarray, nothing has to be done. if obj is None or obj.__class__ is np.ndarray: return # If our unit is not set and obj has a valid one, use it. if self._unit is None: unit = getattr(obj, '_unit', None) if unit is not None: self._set_unit(unit) # Copy info if the original had `info` defined. Because of the way the # DataInfo works, `'info' in obj.__dict__` is False until the # `info` attribute is accessed or set. if 'info' in obj.__dict__: self.info = obj.info def __array_wrap__(self, obj, context=None): if context is None: # Methods like .squeeze() created a new `ndarray` and then call # __array_wrap__ to turn the array into self's subclass. return self._new_view(obj) raise NotImplementedError('__array_wrap__ should not be used ' 'with a context any more, since we require ' 'numpy >=1.16. Please raise an issue on ' 'https://github.com/astropy/astropy') def __array_ufunc__(self, function, method, *inputs, **kwargs): """Wrap numpy ufuncs, taking care of units. Parameters ---------- function : callable ufunc to wrap. method : str Ufunc method: ``__call__``, ``at``, ``reduce``, etc. inputs : tuple Input arrays. kwargs : keyword arguments As passed on, with ``out`` containing possible quantity output. Returns ------- result : `~astropy.units.Quantity` Results of the ufunc, with the unit set properly. """ # Determine required conversion functions -- to bring the unit of the # input to that expected (e.g., radian for np.sin), or to get # consistent units between two inputs (e.g., in np.add) -- # and the unit of the result (or tuple of units for nout > 1). converters, unit = converters_and_unit(function, method, *inputs) out = kwargs.get('out', None) # Avoid loop back by turning any Quantity output into array views. if out is not None: # If pre-allocated output is used, check it is suitable. # This also returns array view, to ensure we don't loop back. if function.nout == 1: out = out[0] out_array = check_output(out, unit, inputs, function=function) # Ensure output argument remains a tuple. kwargs['out'] = (out_array,) if function.nout == 1 else out_array # Same for inputs, but here also convert if necessary. arrays = [] for input_, converter in zip(inputs, converters): input_ = getattr(input_, 'value', input_) arrays.append(converter(input_) if converter else input_) # Call our superclass's __array_ufunc__ result = super().__array_ufunc__(function, method, *arrays, **kwargs) # If unit is None, a plain array is expected (e.g., comparisons), which # means we're done. # We're also done if the result was None (for method 'at') or # NotImplemented, which can happen if other inputs/outputs override # __array_ufunc__; hopefully, they can then deal with us. if unit is None or result is None or result is NotImplemented: return result return self._result_as_quantity(result, unit, out) def _result_as_quantity(self, result, unit, out): """Turn result into a quantity with the given unit. If no output is given, it will take a view of the array as a quantity, and set the unit. If output is given, those should be quantity views of the result arrays, and the function will just set the unit. Parameters ---------- result : `~numpy.ndarray` or tuple of `~numpy.ndarray` Array(s) which need to be turned into quantity. unit : `~astropy.units.Unit` Unit for the quantities to be returned (or `None` if the result should not be a quantity). Should be tuple if result is a tuple. out : `~astropy.units.Quantity` or None Possible output quantity. Should be `None` or a tuple if result is a tuple. Returns ------- out : `~astropy.units.Quantity` With units set. """ if isinstance(result, (tuple, list)): if out is None: out = (None,) * len(result) return result.__class__( self._result_as_quantity(result_, unit_, out_) for (result_, unit_, out_) in zip(result, unit, out)) if out is None: # View the result array as a Quantity with the proper unit. return result if unit is None else self._new_view(result, unit) # For given output, just set the unit. We know the unit is not None and # the output is of the correct Quantity subclass, as it was passed # through check_output. out._set_unit(unit) return out def __quantity_subclass__(self, unit): """ Overridden by subclasses to change what kind of view is created based on the output unit of an operation. Parameters ---------- unit : UnitBase The unit for which the appropriate class should be returned Returns ------- tuple : - `Quantity` subclass - bool: True if subclasses of the given class are ok """ return Quantity, True def _new_view(self, obj=None, unit=None): """ Create a Quantity view of some array-like input, and set the unit By default, return a view of ``obj`` of the same class as ``self`` and with the same unit. Subclasses can override the type of class for a given unit using ``__quantity_subclass__``, and can ensure properties other than the unit are copied using ``__array_finalize__``. If the given unit defines a ``_quantity_class`` of which ``self`` is not an instance, a view using this class is taken. Parameters ---------- obj : ndarray or scalar, optional The array to create a view of. If obj is a numpy or python scalar, it will be converted to an array scalar. By default, ``self`` is converted. unit : `UnitBase`, or anything convertible to a :class:`~astropy.units.Unit`, optional The unit of the resulting object. It is used to select a subclass, and explicitly assigned to the view if given. If not given, the subclass and unit will be that of ``self``. Returns ------- view : Quantity subclass """ # Determine the unit and quantity subclass that we need for the view. if unit is None: unit = self.unit quantity_subclass = self.__class__ elif unit is self.unit and self.__class__ is Quantity: # The second part is because we should not presume what other # classes want to do for the same unit. E.g., Constant will # always want to fall back to Quantity, and relies on going # through `__quantity_subclass__`. quantity_subclass = Quantity else: unit = Unit(unit) quantity_subclass = getattr(unit, '_quantity_class', Quantity) if isinstance(self, quantity_subclass): quantity_subclass, subok = self.__quantity_subclass__(unit) if subok: quantity_subclass = self.__class__ # We only want to propagate information from ``self`` to our new view, # so obj should be a regular array. By using ``np.array``, we also # convert python and numpy scalars, which cannot be viewed as arrays # and thus not as Quantity either, to zero-dimensional arrays. # (These are turned back into scalar in `.value`) # Note that for an ndarray input, the np.array call takes only double # ``obj.__class is np.ndarray``. So, not worth special-casing. if obj is None: obj = self.view(np.ndarray) else: obj = np.array(obj, copy=False) # Take the view, set the unit, and update possible other properties # such as ``info``, ``wrap_angle`` in `Longitude`, etc. view = obj.view(quantity_subclass) view._set_unit(unit) view.__array_finalize__(self) return view def _set_unit(self, unit): """Set the unit. This is used anywhere the unit is set or modified, i.e., in the initilizer, in ``__imul__`` and ``__itruediv__`` for in-place multiplication and division by another unit, as well as in ``__array_finalize__`` for wrapping up views. For Quantity, it just sets the unit, but subclasses can override it to check that, e.g., a unit is consistent. """ if not isinstance(unit, UnitBase): # Trying to go through a string ensures that, e.g., Magnitudes with # dimensionless physical unit become Quantity with units of mag. unit = Unit(str(unit), parse_strict='silent') if not isinstance(unit, UnitBase): raise UnitTypeError( "{} instances require {} units, not {} instances." .format(type(self).__name__, UnitBase, type(unit))) self._unit = unit def __deepcopy__(self, memo): # If we don't define this, ``copy.deepcopy(quantity)`` will # return a bare Numpy array. return self.copy() def __reduce__(self): # patch to pickle Quantity objects (ndarray subclasses), see # http://www.mail-archive.com/numpy-discussion@scipy.org/msg02446.html object_state = list(super().__reduce__()) object_state[2] = (object_state[2], self.__dict__) return tuple(object_state) def __setstate__(self, state): # patch to unpickle Quantity objects (ndarray subclasses), see # http://www.mail-archive.com/numpy-discussion@scipy.org/msg02446.html nd_state, own_state = state super().__setstate__(nd_state) self.__dict__.update(own_state) info = QuantityInfo() def _to_value(self, unit, equivalencies=[]): """Helper method for to and to_value.""" if equivalencies == []: equivalencies = self._equivalencies return self.unit.to(unit, self.view(np.ndarray), equivalencies=equivalencies) def to(self, unit, equivalencies=[]): """ Return a new `~astropy.units.Quantity` object with the specified unit. Parameters ---------- unit : `~astropy.units.UnitBase` instance, str An object that represents the unit to convert to. Must be an `~astropy.units.UnitBase` object or a string parseable by the `~astropy.units` package. equivalencies : list of equivalence pairs, optional A list of equivalence pairs to try if the units are not directly convertible. See :ref:`unit_equivalencies`. If not provided or ``[]``, class default equivalencies will be used (none for `~astropy.units.Quantity`, but may be set for subclasses) If `None`, no equivalencies will be applied at all, not even any set globally or within a context. See also -------- to_value : get the numerical value in a given unit. """ # We don't use `to_value` below since we always want to make a copy # and don't want to slow down this method (esp. the scalar case). unit = Unit(unit) return self._new_view(self._to_value(unit, equivalencies), unit) def to_value(self, unit=None, equivalencies=[]): """ The numerical value, possibly in a different unit. Parameters ---------- unit : `~astropy.units.UnitBase` instance or str, optional The unit in which the value should be given. If not given or `None`, use the current unit. equivalencies : list of equivalence pairs, optional A list of equivalence pairs to try if the units are not directly convertible (see :ref:`unit_equivalencies`). If not provided or ``[]``, class default equivalencies will be used (none for `~astropy.units.Quantity`, but may be set for subclasses). If `None`, no equivalencies will be applied at all, not even any set globally or within a context. Returns ------- value : `~numpy.ndarray` or scalar The value in the units specified. For arrays, this will be a view of the data if no unit conversion was necessary. See also -------- to : Get a new instance in a different unit. """ if unit is None or unit is self.unit: value = self.view(np.ndarray) else: unit = Unit(unit) # We want a view if the unit does not change. One could check # with "==", but that calculates the scale that we need anyway. # TODO: would be better for `unit.to` to have an in-place flag. try: scale = self.unit._to(unit) except Exception: # Short-cut failed; try default (maybe equivalencies help). value = self._to_value(unit, equivalencies) else: value = self.view(np.ndarray) if not is_effectively_unity(scale): # not in-place! value = value * scale # Index with empty tuple to decay array scalars in to numpy scalars. return value[()] value = property(to_value, doc="""The numerical value of this instance. See also -------- to_value : Get the numerical value in a given unit. """) @property def unit(self): """ A `~astropy.units.UnitBase` object representing the unit of this quantity. """ return self._unit @property def equivalencies(self): """ A list of equivalencies that will be applied by default during unit conversions. """ return self._equivalencies @property def si(self): """ Returns a copy of the current `Quantity` instance with SI units. The value of the resulting object will be scaled. """ si_unit = self.unit.si return self._new_view(self.value * si_unit.scale, si_unit / si_unit.scale) @property def cgs(self): """ Returns a copy of the current `Quantity` instance with CGS units. The value of the resulting object will be scaled. """ cgs_unit = self.unit.cgs return self._new_view(self.value * cgs_unit.scale, cgs_unit / cgs_unit.scale) @property def isscalar(self): """ True if the `value` of this quantity is a scalar, or False if it is an array-like object. .. note:: This is subtly different from `numpy.isscalar` in that `numpy.isscalar` returns False for a zero-dimensional array (e.g. ``np.array(1)``), while this is True for quantities, since quantities cannot represent true numpy scalars. """ return not self.shape # This flag controls whether convenience conversion members, such # as `q.m` equivalent to `q.to_value(u.m)` are available. This is # not turned on on Quantity itself, but is on some subclasses of # Quantity, such as `astropy.coordinates.Angle`. _include_easy_conversion_members = False @override__dir__ def __dir__(self): """ Quantities are able to directly convert to other units that have the same physical type. This function is implemented in order to make autocompletion still work correctly in IPython. """ if not self._include_easy_conversion_members: return [] extra_members = set() equivalencies = Unit._normalize_equivalencies(self.equivalencies) for equivalent in self.unit._get_units_with_same_physical_type( equivalencies): extra_members.update(equivalent.names) return extra_members def __getattr__(self, attr): """ Quantities are able to directly convert to other units that have the same physical type. """ if not self._include_easy_conversion_members: raise AttributeError( "'{}' object has no '{}' member".format( self.__class__.__name__, attr)) def get_virtual_unit_attribute(): registry = get_current_unit_registry().registry to_unit = registry.get(attr, None) if to_unit is None: return None try: return self.unit.to( to_unit, self.value, equivalencies=self.equivalencies) except UnitsError: return None value = get_virtual_unit_attribute() if value is None: raise AttributeError( "{} instance has no attribute '{}'".format( self.__class__.__name__, attr)) else: return value # Equality needs to be handled explicitly as ndarray.__eq__ gives # DeprecationWarnings on any error, which is distracting. On the other # hand, for structured arrays, the ufunc does not work, so we do use # __eq__ and live with the warnings. def __eq__(self, other): try: if self.dtype.kind == 'V': return super().__eq__(other) else: return np.equal(self, other) except UnitsError: return False except TypeError: return NotImplemented def __ne__(self, other): try: if self.dtype.kind == 'V': return super().__ne__(other) else: return np.not_equal(self, other) except UnitsError: return True except TypeError: return NotImplemented # Unit conversion operator (<<). def __lshift__(self, other): try: other = Unit(other, parse_strict='silent') except UnitTypeError: return NotImplemented return self.__class__(self, other, copy=False, subok=True) def __ilshift__(self, other): try: other = Unit(other, parse_strict='silent') except UnitTypeError: return NotImplemented try: factor = self.unit._to(other) except UnitConversionError: # Maybe via equivalencies? Now we do make a temporary copy. try: value = self._to_value(other) except UnitConversionError: return NotImplemented self.view(np.ndarray)[...] = value else: self.view(np.ndarray)[...] *= factor self._set_unit(other) return self def __rlshift__(self, other): if not self.isscalar: return NotImplemented return Unit(self).__rlshift__(other) # Give warning for other >> self, since probably other << self was meant. def __rrshift__(self, other): warnings.warn(">> is not implemented. Did you mean to convert " "something to this quantity as a unit using '<<'?", AstropyWarning) return NotImplemented # Also define __rshift__ and __irshift__ so we override default ndarray # behaviour, but instead of emitting a warning here, let it be done by # other (which likely is a unit if this was a mistake). def __rshift__(self, other): return NotImplemented def __irshift__(self, other): return NotImplemented # Arithmetic operations def __mul__(self, other): """ Multiplication between `Quantity` objects and other objects.""" if isinstance(other, (UnitBase, str)): try: return self._new_view(self.copy(), other * self.unit) except UnitsError: # let other try to deal with it return NotImplemented return super().__mul__(other) def __imul__(self, other): """In-place multiplication between `Quantity` objects and others.""" if isinstance(other, (UnitBase, str)): self._set_unit(other * self.unit) return self return super().__imul__(other) def __rmul__(self, other): """ Right Multiplication between `Quantity` objects and other objects. """ return self.__mul__(other) def __truediv__(self, other): """ Division between `Quantity` objects and other objects.""" if isinstance(other, (UnitBase, str)): try: return self._new_view(self.copy(), self.unit / other) except UnitsError: # let other try to deal with it return NotImplemented return super().__truediv__(other) def __itruediv__(self, other): """Inplace division between `Quantity` objects and other objects.""" if isinstance(other, (UnitBase, str)): self._set_unit(self.unit / other) return self return super().__itruediv__(other) def __rtruediv__(self, other): """ Right Division between `Quantity` objects and other objects.""" if isinstance(other, (UnitBase, str)): return self._new_view(1. / self.value, other / self.unit) return super().__rtruediv__(other) def __div__(self, other): """ Division between `Quantity` objects. """ return self.__truediv__(other) def __idiv__(self, other): """ Division between `Quantity` objects. """ return self.__itruediv__(other) def __rdiv__(self, other): """ Division between `Quantity` objects. """ return self.__rtruediv__(other) def __pow__(self, other): if isinstance(other, Fraction): # Avoid getting object arrays by raising the value to a Fraction. return self._new_view(self.value ** float(other), self.unit ** other) return super().__pow__(other) # other overrides of special functions def __hash__(self): return hash(self.value) ^ hash(self.unit) def __iter__(self): if self.isscalar: raise TypeError( "'{cls}' object with a scalar value is not iterable" .format(cls=self.__class__.__name__)) # Otherwise return a generator def quantity_iter(): for val in self.value: yield self._new_view(val) return quantity_iter() def __getitem__(self, key): try: out = super().__getitem__(key) except IndexError: # We want zero-dimensional Quantity objects to behave like scalars, # so they should raise a TypeError rather than an IndexError. if self.isscalar: raise TypeError( "'{cls}' object with a scalar value does not support " "indexing".format(cls=self.__class__.__name__)) else: raise # For single elements, ndarray.__getitem__ returns scalars; these # need a new view as a Quantity. if not isinstance(out, np.ndarray): out = self._new_view(out) return out def __setitem__(self, i, value): # update indices in info if the info property has been accessed # (in which case 'info' in self.__dict__ is True; this is guaranteed # to be the case if we're part of a table). if not self.isscalar and 'info' in self.__dict__: self.info.adjust_indices(i, value, len(self)) self.view(np.ndarray).__setitem__(i, self._to_own_unit(value)) # __contains__ is OK def __bool__(self): """Quantities should always be treated as non-False; there is too much potential for ambiguity otherwise. """ warnings.warn('The truth value of a Quantity is ambiguous. ' 'In the future this will raise a ValueError.', AstropyDeprecationWarning) return True def __len__(self): if self.isscalar: raise TypeError("'{cls}' object with a scalar value has no " "len()".format(cls=self.__class__.__name__)) else: return len(self.value) # Numerical types def __float__(self): try: return float(self.to_value(dimensionless_unscaled)) except (UnitsError, TypeError): raise TypeError('only dimensionless scalar quantities can be ' 'converted to Python scalars') def __int__(self): try: return int(self.to_value(dimensionless_unscaled)) except (UnitsError, TypeError): raise TypeError('only dimensionless scalar quantities can be ' 'converted to Python scalars') def __index__(self): # for indices, we do not want to mess around with scaling at all, # so unlike for float, int, we insist here on unscaled dimensionless try: assert self.unit.is_unity() return self.value.__index__() except Exception: raise TypeError('only integer dimensionless scalar quantities ' 'can be converted to a Python index') # TODO: we may want to add a hook for dimensionless quantities? @property def _unitstr(self): if self.unit is None: unitstr = _UNIT_NOT_INITIALISED else: unitstr = str(self.unit) if unitstr: unitstr = ' ' + unitstr return unitstr def to_string(self, unit=None, precision=None, format=None, subfmt=None): """ Generate a string representation of the quantity and its unit. The behavior of this function can be altered via the `numpy.set_printoptions` function and its various keywords. The exception to this is the ``threshold`` keyword, which is controlled via the ``[units.quantity]`` configuration item ``latex_array_threshold``. This is treated separately because the numpy default of 1000 is too big for most browsers to handle. Parameters ---------- unit : `~astropy.units.UnitBase`, optional Specifies the unit. If not provided, the unit used to initialize the quantity will be used. precision : numeric, optional The level of decimal precision. If `None`, or not provided, it will be determined from NumPy print options. format : str, optional The format of the result. If not provided, an unadorned string is returned. Supported values are: - 'latex': Return a LaTeX-formatted string subfmt : str, optional Subformat of the result. For the moment, only used for format="latex". Supported values are: - 'inline': Use ``$ ... $`` as delimiters. - 'display': Use ``$\\displaystyle ... $`` as delimiters. Returns ------- lstr A string with the contents of this Quantity """ if unit is not None and unit != self.unit: return self.to(unit).to_string( unit=None, precision=precision, format=format, subfmt=subfmt) formats = { None: None, "latex": { None: ("$", "$"), "inline": ("$", "$"), "display": (r"$\displaystyle ", r"$"), }, } if format not in formats: raise ValueError(f"Unknown format '{format}'") elif format is None: return f'{self.value}{self._unitstr:s}' # else, for the moment we assume format="latex" # need to do try/finally because "threshold" cannot be overridden # with array2string pops = np.get_printoptions() format_spec = '.{}g'.format( precision if precision is not None else pops['precision']) def float_formatter(value): return Latex.format_exponential_notation(value, format_spec=format_spec) def complex_formatter(value): return '({}{}i)'.format( Latex.format_exponential_notation(value.real, format_spec=format_spec), Latex.format_exponential_notation(value.imag, format_spec='+' + format_spec)) try: formatter = {'float_kind': float_formatter, 'complex_kind': complex_formatter} if conf.latex_array_threshold > -1: np.set_printoptions(threshold=conf.latex_array_threshold, formatter=formatter) # the view is needed for the scalar case - value might be float latex_value = np.array2string( self.view(np.ndarray), max_line_width=np.inf, separator=',~') latex_value = latex_value.replace('...', r'\dots') finally: np.set_printoptions(**pops) # Format unit # [1:-1] strips the '$' on either side needed for math mode latex_unit = (self.unit._repr_latex_()[1:-1] # note this is unicode if self.unit is not None else _UNIT_NOT_INITIALISED) delimiter_left, delimiter_right = formats[format][subfmt] return r'{left}{0} \; {1}{right}'.format(latex_value, latex_unit, left=delimiter_left, right=delimiter_right) def __str__(self): return self.to_string() def __repr__(self): prefixstr = '<' + self.__class__.__name__ + ' ' arrstr = np.array2string(self.view(np.ndarray), separator=', ', prefix=prefixstr) return f'{prefixstr}{arrstr}{self._unitstr:s}>' def _repr_latex_(self): """ Generate a latex representation of the quantity and its unit. Returns ------- lstr A LaTeX string with the contents of this Quantity """ # NOTE: This should change to display format in a future release return self.to_string(format='latex', subfmt='inline') def __format__(self, format_spec): """ Format quantities using the new-style python formatting codes as specifiers for the number. If the format specifier correctly applies itself to the value, then it is used to format only the value. If it cannot be applied to the value, then it is applied to the whole string. """ try: value = format(self.value, format_spec) full_format_spec = "s" except ValueError: value = self.value full_format_spec = format_spec return format(f"{value}{self._unitstr:s}", full_format_spec) def decompose(self, bases=[]): """ Generates a new `Quantity` with the units decomposed. Decomposed units have only irreducible units in them (see `astropy.units.UnitBase.decompose`). Parameters ---------- bases : sequence of UnitBase, optional The bases to decompose into. When not provided, decomposes down to any irreducible units. When provided, the decomposed result will only contain the given units. This will raises a `~astropy.units.UnitsError` if it's not possible to do so. Returns ------- newq : `~astropy.units.Quantity` A new object equal to this quantity with units decomposed. """ return self._decompose(False, bases=bases) def _decompose(self, allowscaledunits=False, bases=[]): """ Generates a new `Quantity` with the units decomposed. Decomposed units have only irreducible units in them (see `astropy.units.UnitBase.decompose`). Parameters ---------- allowscaledunits : bool If True, the resulting `Quantity` may have a scale factor associated with it. If False, any scaling in the unit will be subsumed into the value of the resulting `Quantity` bases : sequence of UnitBase, optional The bases to decompose into. When not provided, decomposes down to any irreducible units. When provided, the decomposed result will only contain the given units. This will raises a `~astropy.units.UnitsError` if it's not possible to do so. Returns ------- newq : `~astropy.units.Quantity` A new object equal to this quantity with units decomposed. """ new_unit = self.unit.decompose(bases=bases) # Be careful here because self.value usually is a view of self; # be sure that the original value is not being modified. if not allowscaledunits and hasattr(new_unit, 'scale'): new_value = self.value * new_unit.scale new_unit = new_unit / new_unit.scale return self._new_view(new_value, new_unit) else: return self._new_view(self.copy(), new_unit) # These functions need to be overridden to take into account the units # Array conversion # http://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html#array-conversion def item(self, *args): return self._new_view(super().item(*args)) def tolist(self): raise NotImplementedError("cannot make a list of Quantities. Get " "list of values with q.value.list()") def _to_own_unit(self, value, check_precision=True): try: _value = value.to_value(self.unit) except AttributeError: # We're not a Quantity, so let's try a more general conversion. # Plain arrays will be converted to dimensionless in the process, # but anything with a unit attribute will use that. try: as_quantity = Quantity(value) _value = as_quantity.to_value(self.unit) except TypeError: # Could not make a Quantity. Maybe masked printing? # Note: masked quantities do not work very well, but no reason # to break even repr and str. if (value is np.ma.masked_print_option and self.dtype.kind == 'O'): return value else: raise except UnitsError: # last chance: if this was not something with a unit # and is all 0, inf, or nan, we treat it as arbitrary unit. if (not hasattr(value, 'unit') and can_have_arbitrary_unit(as_quantity.value)): _value = as_quantity.value else: raise if check_precision: # If, e.g., we are casting double to float, we want to fail if # precision is lost, but let things pass if it works. _value = np.array(_value, copy=False) if not np.can_cast(_value.dtype, self.dtype): self_dtype_array = np.array(_value, self.dtype) if not np.all(np.logical_or(self_dtype_array == _value, np.isnan(_value))): raise TypeError("cannot convert value type to array type " "without precision loss") return _value def itemset(self, *args): if len(args) == 0: raise ValueError("itemset must have at least one argument") self.view(np.ndarray).itemset(*(args[:-1] + (self._to_own_unit(args[-1]),))) def tostring(self, order='C'): raise NotImplementedError("cannot write Quantities to string. Write " "array with q.value.tostring(...).") def tofile(self, fid, sep="", format="%s"): raise NotImplementedError("cannot write Quantities to file. Write " "array with q.value.tofile(...)") def dump(self, file): raise NotImplementedError("cannot dump Quantities to file. Write " "array with q.value.dump()") def dumps(self): raise NotImplementedError("cannot dump Quantities to string. Write " "array with q.value.dumps()") # astype, byteswap, copy, view, getfield, setflags OK as is def fill(self, value): self.view(np.ndarray).fill(self._to_own_unit(value)) # Shape manipulation: resize cannot be done (does not own data), but # shape, transpose, swapaxes, flatten, ravel, squeeze all OK. Only # the flat iterator needs to be overwritten, otherwise single items are # returned as numbers. @property def flat(self): """A 1-D iterator over the Quantity array. This returns a ``QuantityIterator`` instance, which behaves the same as the `~numpy.flatiter` instance returned by `~numpy.ndarray.flat`, and is similar to, but not a subclass of, Python's built-in iterator object. """ return QuantityIterator(self) @flat.setter def flat(self, value): y = self.ravel() y[:] = value # Item selection and manipulation # repeat, sort, compress, diagonal OK def take(self, indices, axis=None, out=None, mode='raise'): out = super().take(indices, axis=axis, out=out, mode=mode) # For single elements, ndarray.take returns scalars; these # need a new view as a Quantity. if type(out) is not type(self): out = self._new_view(out) return out def put(self, indices, values, mode='raise'): self.view(np.ndarray).put(indices, self._to_own_unit(values), mode) def choose(self, choices, out=None, mode='raise'): raise NotImplementedError("cannot choose based on quantity. Choose " "using array with q.value.choose(...)") # ensure we do not return indices as quantities def argsort(self, axis=-1, kind='quicksort', order=None): return self.view(np.ndarray).argsort(axis=axis, kind=kind, order=order) def searchsorted(self, v, *args, **kwargs): return np.searchsorted(np.array(self), self._to_own_unit(v, check_precision=False), *args, **kwargs) # avoid numpy 1.6 problem def argmax(self, axis=None, out=None): return self.view(np.ndarray).argmax(axis, out=out) def argmin(self, axis=None, out=None): return self.view(np.ndarray).argmin(axis, out=out) def __array_function__(self, function, types, args, kwargs): """Wrap numpy functions, taking care of units. Parameters ---------- function : callable Numpy function to wrap types : iterable of classes Classes that provide an ``__array_function__`` override. Can in principle be used to interact with other classes. Below, mostly passed on to `~numpy.ndarray`, which can only interact with subclasses. args : tuple Positional arguments provided in the function call. kwargs : dict Keyword arguments provided in the function call. Returns ------- result: `~astropy.units.Quantity`, `~numpy.ndarray` As appropriate for the function. If the function is not supported, `NotImplemented` is returned, which will lead to a `TypeError` unless another argument overrode the function. Raises ------ ~astropy.units.UnitsError If operands have incompatible units. """ # A function should be in one of the following sets or dicts: # 1. SUBCLASS_SAFE_FUNCTIONS (set), if the numpy implementation # supports Quantity; we pass on to ndarray.__array_function__. # 2. FUNCTION_HELPERS (dict), if the numpy implementation is usable # after converting quantities to arrays with suitable units, # and possibly setting units on the result. # 3. DISPATCHED_FUNCTIONS (dict), if the function makes sense but # requires a Quantity-specific implementation. # 4. UNSUPPORTED_FUNCTIONS (set), if the function does not make sense. # For now, since we may not yet have complete coverage, if a # function is in none of the above, we simply call the numpy # implementation. if function in SUBCLASS_SAFE_FUNCTIONS: return super().__array_function__(function, types, args, kwargs) elif function in FUNCTION_HELPERS: function_helper = FUNCTION_HELPERS[function] try: args, kwargs, unit, out = function_helper(*args, **kwargs) except NotImplementedError: return self._not_implemented_or_raise(function, types) result = super().__array_function__(function, types, args, kwargs) # Fall through to return section elif function in DISPATCHED_FUNCTIONS: dispatched_function = DISPATCHED_FUNCTIONS[function] try: result, unit, out = dispatched_function(*args, **kwargs) except NotImplementedError: return self._not_implemented_or_raise(function, types) # Fall through to return section elif function in UNSUPPORTED_FUNCTIONS: return NotImplemented else: warnings.warn("function '{}' is not known to astropy's Quantity. " "Will run it anyway, hoping it will treat ndarray " "subclasses correctly. Please raise an issue at " "https://github.com/astropy/astropy/issues. " .format(function.__name__), AstropyWarning) return super().__array_function__(function, types, args, kwargs) # If unit is None, a plain array is expected (e.g., boolean), which # means we're done. # We're also done if the result was NotImplemented, which can happen # if other inputs/outputs override __array_function__; # hopefully, they can then deal with us. if unit is None or result is NotImplemented: return result return self._result_as_quantity(result, unit, out=out) def _not_implemented_or_raise(self, function, types): # Our function helper or dispatcher found that the function does not # work with Quantity. In principle, there may be another class that # knows what to do with us, for which we should return NotImplemented. # But if there is ndarray (or a non-Quantity subclass of it) around, # it quite likely coerces, so we should just break. if any(issubclass(t, np.ndarray) and not issubclass(t, Quantity) for t in types): raise TypeError("the Quantity implementation cannot handle {} " "with the given arguments." .format(function)) from None else: return NotImplemented # Calculation -- override ndarray methods to take into account units. # We use the corresponding numpy functions to evaluate the results, since # the methods do not always allow calling with keyword arguments. # For instance, np.array([0.,2.]).clip(a_min=0., a_max=1.) gives # TypeError: 'a_max' is an invalid keyword argument for this function. def _wrap_function(self, function, *args, unit=None, out=None, **kwargs): """Wrap a numpy function that processes self, returning a Quantity. Parameters ---------- function : callable Numpy function to wrap. args : positional arguments Any positional arguments to the function beyond the first argument (which will be set to ``self``). kwargs : keyword arguments Keyword arguments to the function. If present, the following arguments are treated specially: unit : `~astropy.units.Unit` Unit of the output result. If not given, the unit of ``self``. out : `~astropy.units.Quantity` A Quantity instance in which to store the output. Notes ----- Output should always be assigned via a keyword argument, otherwise no proper account of the unit is taken. Returns ------- out : `~astropy.units.Quantity` Result of the function call, with the unit set properly. """ if unit is None: unit = self.unit # Ensure we don't loop back by turning any Quantity into array views. args = (self.value,) + tuple((arg.value if isinstance(arg, Quantity) else arg) for arg in args) if out is not None: # If pre-allocated output is used, check it is suitable. # This also returns array view, to ensure we don't loop back. arrays = tuple(arg for arg in args if isinstance(arg, np.ndarray)) kwargs['out'] = check_output(out, unit, arrays, function=function) # Apply the function and turn it back into a Quantity. result = function(*args, **kwargs) return self._result_as_quantity(result, unit, out) if NUMPY_LT_1_17: def clip(self, a_min, a_max, out=None): return self._wrap_function(np.clip, self._to_own_unit(a_min), self._to_own_unit(a_max), out=out) def trace(self, offset=0, axis1=0, axis2=1, dtype=None, out=None): return self._wrap_function(np.trace, offset, axis1, axis2, dtype, out=out) def var(self, axis=None, dtype=None, out=None, ddof=0): return self._wrap_function(np.var, axis, dtype, out=out, ddof=ddof, unit=self.unit**2) def std(self, axis=None, dtype=None, out=None, ddof=0): return self._wrap_function(np.std, axis, dtype, out=out, ddof=ddof) def mean(self, axis=None, dtype=None, out=None): return self._wrap_function(np.mean, axis, dtype, out=out) def round(self, decimals=0, out=None): return self._wrap_function(np.round, decimals, out=out) def dot(self, b, out=None): result_unit = self.unit * getattr(b, 'unit', dimensionless_unscaled) return self._wrap_function(np.dot, b, out=out, unit=result_unit) # Calculation: override methods that do not make sense. def all(self, axis=None, out=None): raise TypeError("cannot evaluate truth value of quantities. " "Evaluate array with q.value.all(...)") def any(self, axis=None, out=None): raise TypeError("cannot evaluate truth value of quantities. " "Evaluate array with q.value.any(...)") # Calculation: numpy functions that can be overridden with methods. def diff(self, n=1, axis=-1): return self._wrap_function(np.diff, n, axis) def ediff1d(self, to_end=None, to_begin=None): return self._wrap_function(np.ediff1d, to_end, to_begin) def nansum(self, axis=None, out=None, keepdims=False): return self._wrap_function(np.nansum, axis, out=out, keepdims=keepdims) def insert(self, obj, values, axis=None): """ Insert values along the given axis before the given indices and return a new `~astropy.units.Quantity` object. This is a thin wrapper around the `numpy.insert` function. Parameters ---------- obj : int, slice or sequence of ints Object that defines the index or indices before which ``values`` is inserted. values : array_like Values to insert. If the type of ``values`` is different from that of quantity, ``values`` is converted to the matching type. ``values`` should be shaped so that it can be broadcast appropriately The unit of ``values`` must be consistent with this quantity. axis : int, optional Axis along which to insert ``values``. If ``axis`` is None then the quantity array is flattened before insertion. Returns ------- out : `~astropy.units.Quantity` A copy of quantity with ``values`` inserted. Note that the insertion does not occur in-place: a new quantity array is returned. Examples -------- >>> import astropy.units as u >>> q = [1, 2] * u.m >>> q.insert(0, 50 * u.cm) <Quantity [ 0.5, 1., 2.] m> >>> q = [[1, 2], [3, 4]] * u.m >>> q.insert(1, [10, 20] * u.m, axis=0) <Quantity [[ 1., 2.], [ 10., 20.], [ 3., 4.]] m> >>> q.insert(1, 10 * u.m, axis=1) <Quantity [[ 1., 10., 2.], [ 3., 10., 4.]] m> """ out_array = np.insert(self.value, obj, self._to_own_unit(values), axis) return self._new_view(out_array) class SpecificTypeQuantity(Quantity): """Superclass for Quantities of specific physical type. Subclasses of these work just like :class:`~astropy.units.Quantity`, except that they are for specific physical types (and may have methods that are only appropriate for that type). Astropy examples are :class:`~astropy.coordinates.Angle` and :class:`~astropy.coordinates.Distance` At a minimum, subclasses should set ``_equivalent_unit`` to the unit associated with the physical type. """ # The unit for the specific physical type. Instances can only be created # with units that are equivalent to this. _equivalent_unit = None # The default unit used for views. Even with `None`, views of arrays # without units are possible, but will have an uninitalized unit. _unit = None # Default unit for initialization through the constructor. _default_unit = None # ensure that we get precedence over our superclass. __array_priority__ = Quantity.__array_priority__ + 10 def __quantity_subclass__(self, unit): if unit.is_equivalent(self._equivalent_unit): return type(self), True else: return super().__quantity_subclass__(unit)[0], False def _set_unit(self, unit): if unit is None or not unit.is_equivalent(self._equivalent_unit): raise UnitTypeError( "{} instances require units equivalent to '{}'" .format(type(self).__name__, self._equivalent_unit) + (", but no unit was given." if unit is None else f", so cannot set it to '{unit}'.")) super()._set_unit(unit) def isclose(a, b, rtol=1.e-5, atol=None, **kwargs): """ Notes ----- Returns True if two arrays are element-wise equal within a tolerance. This is a :class:`~astropy.units.Quantity`-aware version of :func:`numpy.isclose`. """ return np.isclose(*_unquantify_allclose_arguments(a, b, rtol, atol), **kwargs) def allclose(a, b, rtol=1.e-5, atol=None, **kwargs): """ Notes ----- Returns True if two arrays are element-wise equal within a tolerance. This is a :class:`~astropy.units.Quantity`-aware version of :func:`numpy.allclose`. """ return np.allclose(*_unquantify_allclose_arguments(a, b, rtol, atol), **kwargs) def _unquantify_allclose_arguments(actual, desired, rtol, atol): actual = Quantity(actual, subok=True, copy=False) desired = Quantity(desired, subok=True, copy=False) try: desired = desired.to(actual.unit) except UnitsError: raise UnitsError("Units for 'desired' ({}) and 'actual' ({}) " "are not convertible" .format(desired.unit, actual.unit)) if atol is None: # by default, we assume an absolute tolerance of 0 atol = Quantity(0) else: atol = Quantity(atol, subok=True, copy=False) try: atol = atol.to(actual.unit) except UnitsError: raise UnitsError("Units for 'atol' ({}) and 'actual' ({}) " "are not convertible" .format(atol.unit, actual.unit)) rtol = Quantity(rtol, subok=True, copy=False) try: rtol = rtol.to(dimensionless_unscaled) except Exception: raise UnitsError("`rtol` should be dimensionless") return actual.value, desired.value, rtol.value, atol.value
[ "nicolas.holzschuch@inria.fr" ]
nicolas.holzschuch@inria.fr
ff4f676fa354d855a5e6ad5e934dd37f8761e8d9
20c71b8e74506e569426c29645d708015fecca4b
/main/api.py
352a92724e2bea2a9deb0889d8be6f8a9c7bc568
[]
no_license
ruchej/guestbook
5468e5b57a9732956253340efe13ffac76965f4d
e1cd1d358aa4ee01fb36519aee81ad50ffdf031c
refs/heads/master
2022-12-12T06:39:40.997569
2020-09-21T06:43:43
2020-09-21T06:43:43
296,591,890
0
0
null
null
null
null
UTF-8
Python
false
false
342
py
from rest_framework import generics from main.models import GuestResponse from .serializers import GuestResponseSerializer class ListGR(generics.ListAPIView): queryset = GuestResponse.objects.all() serializer_class = GuestResponseSerializer class CreateGR(generics.CreateAPIView): serializer_class = GuestResponseSerializer
[ "lvar-8@ya.ru" ]
lvar-8@ya.ru
1082a5fed48e307852e68329f09867d9e725f342
af35bc4b716b99cc2995a224c163ac36c438792c
/for/prime_numbers.py
24a685f272009500a070a1ae008e4d29b6c531fa
[]
no_license
Kris2209/python_practice
795cca381132751a3ecf2ff49069043dae7fdb32
de3a73b1f88dcce2ad51a6a172e92652350b2842
refs/heads/main
2023-08-11T07:31:33.961991
2021-09-14T14:34:07
2021-09-14T14:34:07
398,629,165
0
0
null
null
null
null
UTF-8
Python
false
false
720
py
# Напишите программу, которая считает количество простых чисел в заданной последовательности и выводит ответ на экран. def is_prime(n): sqrt = n ** 0.5 stop = int(sqrt + (sqrt % 1 > 0)) for k in range(2, stop + 1): if (n % k == 0): return False return True n = int(input('Сколько чисел будем проверять? ')) count = 0 for k in range(n): number = int( input(f'Введите { k + 1 } -е число: ') ) if (is_prime(number)): count += 1 print() print('В вашей последовательности ', count, ' простых чисел')
[ "yakovenko.k1997@gmail.com" ]
yakovenko.k1997@gmail.com
a1c9d9f338a1b479bd1b42a0f0397121e24c9b17
30b2eb381ec8f3225671274e77a55b63206dfb60
/leetcode/p0912/merge_sort.py
4e7fa636f095e20a1cd252558c4dd90128788689
[]
no_license
b1ueskydragon/PythonGround
52888f32336e5e20be8490454beb67e676be7057
5a401250e88926235f581e6c004d1a4acb44230d
refs/heads/master
2021-07-10T03:00:38.340959
2021-04-02T03:34:29
2021-04-02T03:34:29
98,208,402
3
0
null
null
null
null
UTF-8
Python
false
false
654
py
class Solution: def sortArray(self, nums: [int]) -> [int]: def divide(xs): if len(xs) < 2: return xs mid = len(xs) // 2 left = divide(xs[:mid]) right = divide(xs[mid:]) return conquer(left, right) def conquer(l1, l2): # l1, l2 = sorted list merged = [] while l1 and l2: if l1[0] < l2[0]: merged.append(l1.pop(0)) else: merged.append(l2.pop(0)) merged += l1 merged += l2 return merged return divide(nums)
[ "dragoalie@gmail.com" ]
dragoalie@gmail.com
6148052c0e616349dbab22d39e1b93729ce4070f
c79b32f270cf5051ab0488528eb1b1b05b674b06
/lab8/api/models.py
eef069428d4c023849a152ac9cbe1f4016df31e7
[]
no_license
AzhrAkhmtkn/WebDevelopment
a977b1b63a6ee521818a6e79f88574ce2d7a1d6b
028c75c78416547d475c8f7da7d8bcb2ed2d9d12
refs/heads/main
2023-04-16T23:57:56.853946
2021-04-14T16:42:48
2021-04-14T16:42:48
337,195,004
0
0
null
null
null
null
UTF-8
Python
false
false
746
py
from django.db import models # Create your models here. class Category(models.Model): name = models.CharField(max_length=300) def to_json(self): return { 'id': self.id, 'name': self.name } class Product(models.Model): name = models.CharField(max_length=300) price = models.FloatField(default= 0) description = models.TextField(max_length=300) count = models.IntegerField(default= 0) is_active = models.BooleanField() def to_json(self): return { 'id': self.id, 'name': self.name, 'price': self.price, 'description': self.description, 'count': self.count, 'is_active': self.is_active }
[ "a.bolatovna2001@gmail.com" ]
a.bolatovna2001@gmail.com
1d2877dd8825d0b1fb80d7ab2ab259963689f282
11060ca244940baef96a51d794d73aab44fc31c6
/src/brainstorming/tornado/restmongo/rest/handler.py
326a05674ace5ea711685b23c4d878747376ff37
[]
no_license
D3f0/txscada
eb54072b7311068a181c05a03076a0b835bb0fe1
f8e1fd067a1d001006163e8c3316029f37af139c
refs/heads/master
2020-12-24T06:27:17.042056
2016-07-27T17:17:56
2016-07-27T17:17:56
3,565,335
9
1
null
null
null
null
UTF-8
Python
false
false
1,926
py
from tornado.web import RequestHandler, HTTPError from rest.emitters import Emitter import httplib as http class RESTHandler(RequestHandler): MAPPED_METHODS = { 'GET': 'retrieve', 'POST': 'create', 'PUT': 'update', 'DELETE': 'delete' } def __init__(self, *args, **kwargs): emitter_format = kwargs.pop('emitter_format', 'json') super(RESTHandler, self).__init__(*args, **kwargs) self.emitter_class, ct = Emitter.get(emitter_format) self.set_header('Content-Type', ct) def retrieve(self, *args, **kwargs): raise HTTPError(http.METHOD_NOT_ALLOWED) def create(self, *args, **kwargs): raise HTTPError(http.METHOD_NOT_ALLOWED) def update(self, *args, **kwargs): raise HTTPError(http.METHOD_NOT_ALLOWED) def delete(self, *args, **kwargs): raise HTTPError(http.METHOD_NOT_ALLOWED) def write(self, chunk): emitter = self.emitter_class(chunk) super(RESTHandler, self).write(emitter.render(self.request)) def _execute(self, transforms, *args, **kwargs): """Executes this request with the given output transforms.""" self._transforms = transforms method = self.request.method try: if method not in self.MAPPED_METHODS.keys(): raise HTTPError(http.METHOD_NOT_ALLOWED) # If XSRF cookies are turned on, reject form submissions without # the proper cookie if method == "POST" and self.application.settings.get("xsrf_cookies"): self.check_xsrf_cookie() self.prepare() if not self._finished: function = getattr(self, self.MAPPED_METHODS[method]) function(*args, **kwargs) if self._auto_finish and not self._finished: self.finish() except Exception, e: self._handle_request_exception(e)
[ "devnull@localhost" ]
devnull@localhost
04db73cf6465fb41c21a66c052f385d4b408274e
8e39a4f4ae1e8e88d3b2d731059689ad5b201a56
/x11-libs/gdk-pixbuf/gdk-pixbuf-2.31.7.py
675fbd31c023b5284965677d53ef86aacdbfd165
[]
no_license
wdysln/new
d5f5193f81a1827769085932ab7327bb10ef648e
b643824b26148e71859a1afe4518fe05a79d333c
refs/heads/master
2020-05-31T00:12:05.114056
2016-01-04T11:38:40
2016-01-04T11:38:40
37,287,357
1
1
null
null
null
null
UTF-8
Python
false
false
924
py
metadata = """ summary @ An image loading library for GTK+ V2 homepage @ http://www.gtk.org/ license @ GPL2 src_url @ ftp://ftp.gnome.org/pub/gnome/sources/gdk-pixbuf/2.31/gdk-pixbuf-$version.tar.xz arch @ ~x86_64 options @ debug introspection X jpeg tiff """ depends = """ runtime @ sys-libs/glib media-libs/libpng x11-libs/libX11 media-libs/tiff media-libs/jpeg build @ dev-util/pkg-config sys-devel/gettext media-libs/jasper """ def configure(): export("HOME", build_dir) conf("--disable-static \ --disable-silent-rules \ --with-libjasper \ --with-x11 \ --with-included-loaders=png") def build(): export("HOME", build_dir) make() def install(): export("HOME", build_dir) raw_install("DESTDIR=%s" % install_dir) insdoc("COPYING", "AUTHORS") def post_install(): if not system("/usr/bin/gdk-pixbuf-query-loaders --update-cache"): raise BuildError
[ "zirkovandersen@gmail.com" ]
zirkovandersen@gmail.com
a9d8b7ed7b8a9422898cab5220c4a7fcf726652a
74f6c5b2fbc1c868c7fabda7486eabfdb4466f1b
/5.py
dd03195d440cc3d05f2979a902950e0f68dc5b20
[]
no_license
jcstoltzfus/project-euler
0eec3e3275f1d4d0a2cca2cc1df7426fcac0a89d
50439a22d65eb029794c25346dc62702558728fb
refs/heads/master
2020-03-30T11:19:52.795796
2018-10-01T22:33:56
2018-10-01T22:33:56
151,167,952
0
0
null
null
null
null
UTF-8
Python
false
false
222
py
bol = False num = 1 while(not bol): isTrue = True for i in range(1,21): if(not (num % i == 0)): isTrue = False break if(isTrue): bol = True else: num += 1 print num
[ "stoltzfus.eelman@gmail.com" ]
stoltzfus.eelman@gmail.com
b6275b3b63ff9b7896792ace7da39bcb430ca2a8
0060b1d9ea546854e9f5d40aa39ec8e4ec4b774f
/mobility/parsing.py
111fb27da9461c99e5573019398e9c6160c45a8b
[]
no_license
VinayVPai/covid19-analysis
fe766683ced91ac20d99ce2a484b4ba2086e628f
ba73cf2766057a3480ab17308a4481a68395d2be
refs/heads/master
2022-04-15T08:37:09.496150
2020-04-13T05:04:05
2020-04-13T05:04:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
12,316
py
from collections import defaultdict import glob import os import sys import logging import numpy as np import pandas as pd from tqdm.auto import tqdm from geoIds import GEO_IDS # PyMuPDF import fitz def parse_stream(stream): data_raw = [] data_transformed = [] rotparams = None npatches = 0 for line in stream.splitlines(): if line.endswith(" cm"): # page 146 of https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/pdf_reference_archives/PDFReference.pdf rotparams = list(map(float, line.split()[:-1])) elif line.endswith(" l"): x,y = list(map(float, line.split()[:2])) a,b,c,d,e,f = rotparams xp = a*x+c*y+e yp = b*x+d*y+f data_transformed.append([xp,yp]) data_raw.append([x,y]) elif line.endswith(" m"): npatches += 1 else: pass data_raw = np.array(data_raw) basex, basey = data_raw[-1] good = False if basex == 0.: data_raw[:,1] = basey - data_raw[:,1] data_raw[:,1] *= 100/60. data_raw = data_raw[data_raw[:,1]!=0.] if npatches == 1: good = True return dict(data=np.array(data_raw), npatches=npatches, good=good) def parse_page(doc, ipage, verbose=False): categories = [ "Retail & recreation", "Grocery & pharmacy", "Parks", "Transit stations", "Workplace", "Residential", ] counties = [] curr_county = None curr_category = None data = defaultdict(lambda: defaultdict(list)) pagetext = doc.getPageText(ipage) lines = pagetext.splitlines() tickdates = list(filter(lambda x:len(x.split())==3, set(lines[-10:]))) for line in lines: # don't need these lines at all if ("* Not enough data") in line: continue if ("needs a significant volume of data") in line: continue # if we encountered a category, add to dict, otherwise # push all seen lines into the existing dict entry if any(line.startswith(c) for c in categories): curr_category = line elif curr_category: data[curr_county][curr_category].append(line) # If it doesn't match anything, then it's a county name if (all(c not in line for c in categories) and ("compared to baseline" not in line) and ("Not enough data" not in line) and ('Mobility trends ' not in line) ): # saw both counties already if len(data.keys()) == 2: break counties.append(line) curr_county = line newdata = {} for county in data: newdata[county] = {} for category in data[county]: # if the category text ends with a space, then there was a star/asterisk there # indicating lack of data. we skip these. if category.endswith(" "): continue temp = [x for x in data[county][category] if "compared to baseline" in x] if not temp: continue percent = int(temp[0].split()[0].replace("%","")) newdata[county][category.strip()] = percent data = newdata tomatch = [] for county in counties: for category in categories: if category in data[county]: tomatch.append([county,category,data[county][category]]) if verbose: logging.debug(len(tomatch)) logging.debug(data) goodplots = [] xrefs = sorted(doc.getPageXObjectList(ipage), key=lambda x:int(x[1].replace("X",""))) for _, xref in enumerate(xrefs): stream = doc.xrefStream(xref[0]).decode() info = parse_stream(stream) if not info["good"]: continue goodplots.append(info) if verbose: logging.debug(len(goodplots)) ret = [] if len(tomatch) != len(goodplots): return ret for m,g in zip(tomatch,goodplots): xs = g["data"][:,0] ys = g["data"][:,1] maxys = ys[np.where(xs==xs.max())[0]] maxy = maxys[np.argmax(np.abs(maxys))] # parsed the tick date labels as text. find the min/max (first/last) # and make evenly spaced dates, one per day, to assign to x values between # 0 and 200 (the width of the plots). ts = list(map(lambda x: pd.Timestamp(x.split(None,1)[-1] + ", 2020"), tickdates)) low, high = min(ts), max(ts) dr = list(map(lambda x:str(x).split()[0], pd.date_range(low, high, freq="D"))) lutpairs = list(zip(np.linspace(0,200,len(dr)),dr)) dates = [] values = [] asort = xs.argsort() xs = xs[asort] ys = ys[asort] for x,y in zip(xs,ys): date = min(lutpairs, key=lambda v:abs(v[0]-x))[1] dates.append(date) values.append(round(y,3)) ret.append(dict( county=m[0],category=m[1],change=m[2], values=values, dates=dates, changecalc=maxy, )) return ret def parse_page_total(doc, ipage, verbose=False): """ First two pages """ categories = [ "Retail & recreation", "Grocery & pharmacy", "Parks", "Transit stations", "Workplaces", # note the s at the end "Residential", ] curr_category = None data = defaultdict(lambda: defaultdict(list)) pagetext = doc.getPageText(ipage) lines = pagetext.splitlines() # tickdates = list(filter(lambda x:len(x.split())==3, set(lines[-10:]))) tickdates = [] for line in lines: # don't need these lines at all if ("* Not enough data") in line: continue if ("needs a significant volume of data") in line: continue if 'Mobility trends ' in line or 'hubs' in line: continue # if pred_is_county_name and # if we encountered a category, add to dict, otherwise # push all seen lines into the existing dict entry if any(line.startswith(c) for c in categories): curr_category = line elif line[:3] in ('Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'): tickdates.append(line) elif line[0] not in ('+', '-'): continue elif curr_category: data[curr_category] = data.get(curr_category, []) + [line] newdata = {} for category in data: # if the category text ends with a space, then there was a star/asterisk there # indicating lack of data. we skip these. if category.endswith(" "): continue temp = data[category][0] percent = int(temp.split()[0].replace("%","")) newdata[category.strip()] = percent data = newdata tomatch = [] for category in categories: if category in data: tomatch.append([category,data[category]]) if verbose: logging.debug(len(tomatch)) logging.debug(data) goodplots = [] xrefs = sorted(doc.getPageXObjectList(ipage), key=lambda x:int(x[1].replace("X",""))) for _, xref in enumerate(xrefs): stream = doc.xrefStream(xref[0]).decode() info = parse_stream(stream) if not info["good"]: logging.warning('Bad info, skipping') continue goodplots.append(info) if verbose: logging.debug(len(goodplots)) ret = [] if len(tomatch) != len(goodplots): return ret for m,g in zip(tomatch,goodplots): xs = g["data"][:,0] ys = g["data"][:,1] maxys = ys[np.where(xs==xs.max())[0]] maxy = maxys[np.argmax(np.abs(maxys))] # parsed the tick date labels as text. find the min/max (first/last) # and make evenly spaced dates, one per day, to assign to x values between # 0 and 200 (the width of the plots). ts = list(map(lambda x: pd.Timestamp(x.split(None,1)[-1] + ", 2020"), tickdates)) low, high = min(ts), max(ts) dr = list(map(lambda x:str(x).split()[0], pd.date_range(low, high, freq="D"))) lutpairs = list(zip(np.linspace(0,200,len(dr)),dr)) dates = [] values = [] asort = xs.argsort() xs = xs[asort] ys = ys[asort] for x,y in zip(xs,ys): date = min(lutpairs, key=lambda v:abs(v[0]-x))[1] dates.append(date) values.append(round(y,3)) ret.append(dict( category=m[0],change=m[1], values=values, dates=dates, changecalc=maxy, )) return ret def build_pdf_path(state, us, date): if us: return f"us_pdfs/{date}/{date}_US_{state}_Mobility_Report_en.pdf" else: return f"pdfs/{date}/{date}_{state}_Mobility_Report_en.pdf" def parse_state(state, us, date): pdfpath = build_pdf_path(state, us, date) logging.info(f"Parsing pages 2+ for state {state} : ", pdfpath) doc = fitz.Document(pdfpath) data = [] for i in range(2, doc.pageCount-1): for entry in parse_page(doc, i): entry["state"] = state entry["page"] = i data.append(entry) df = pd.DataFrame(data) try: ncounties = df['county'].nunique() except KeyError: ncounties = 0 logging.info(f"Parsed {len(df)} plots for {ncounties} counties in {state}") # try: # return df[["state","county","category","change","changecalc","dates", "values","page"]] # except KeyError: # # in this case, df is empty # return df[["state", "category", "change", "changecalc", "dates", "values", "page"]] return df def parse_state_total(state, us, date): """ First two pages """ pdfpath = build_pdf_path(state, us, date) logging.info(f"Parsing two first pages of state {state}: ", pdfpath) doc = fitz.Document(pdfpath) data = [] for i in range(2): for entry in parse_page_total(doc, i): entry['state'] = state entry['page'] = i entry['county'] = 'total' data.append(entry) df = pd.DataFrame(data) return df def parse_all(date, us=False): pdfglob = glob.glob(f"us_pdfs/{date}/*.pdf") if us else glob.glob(f"pdfs/{date}/*.pdf") if us: states = [x.split("_US_",1)[1].split("_Mobility",1)[0] for x in pdfglob] else: states = [x.split("_")[1] for x in pdfglob] dfs = [] for state in tqdm(states): try: state_counties = parse_state(state, us=us, date=date) except (KeyError, IndexError) as e: logging.warning(str(e)) state_counties = pd.DataFrame() state = parse_state_total(state, us=us, date=date) dfs += [state, state_counties] df = pd.concat(dfs).reset_index(drop=True) data = [] for _, row in tqdm(df.iterrows(), total=df.shape[0]): # do a little clean up and unstack the dates/values as separate rows dorig = dict() dorig["state"] = row["state"].replace("_"," ") dorig["county"] = row["county"] dorig["category"] = row["category"].replace(" & ","/").replace(" ","_").lower() dorig["page"] = row["page"] dorig["change"] = row["change"] dorig["changecalc"] = row["changecalc"] for x,y in zip(row["dates"], row["values"]): d = dorig.copy() d["date"] = x d["value"] = y data.append(d) df = pd.DataFrame(data) df = (df.assign(value=lambda f: f['value'] * (f['change'] / f['changecalc'])) .replace("workplaces", 'workplace') .drop('changecalc', axis=1)) if not us: df = (df.rename({'state': 'country_geoid', 'county': 'region'}, axis=1) .assign(country=lambda f: f['country_geoid'].map(GEO_IDS))) return df if __name__ == "__main__": dates = ['2020-03-29', '2020-04-05'] us = len(sys.argv) > 1 and sys.argv[1].lower() == 'us' for date in dates: filename = f'{date}_us' if us else f'{date}_world' df = parse_all(date, us=us) df.to_json(f'../dist/static/mobility/{filename}.json.gz', orient='records', indent=2) df.to_csv(f'../dist/static/mobility/{filename}.csv.gz', index=False)
[ "horace.guy.k@gmail.com" ]
horace.guy.k@gmail.com
6bf29746917b0fca38a29cf1bca79320d73ad8f1
d7a4701e18be0f38820f5c15d80099fda6385f9f
/ABC185/B.py
369adbcaf93345af9b9239f966033d645742dde9
[]
no_license
shiki7/Atcoder
979a6f0eeb65f3704ea20a949940a0d5e3434579
c215c02d3bfe1e9d68846095b1bd706bd4557dd0
refs/heads/master
2022-05-21T16:59:01.529489
2022-04-29T11:26:42
2022-04-29T11:26:42
201,536,692
0
0
null
null
null
null
UTF-8
Python
false
false
441
py
N, M, T = map(int, input().split()) AB = list(list(map(int, input().split())) for _ in range(M)) total = N for i in range(M): a = AB[i][0] b = AB[i][1] if i == 0: total -= AB[i][0] else: total -= AB[i][0] - AB[i-1][1] if total <= 0: print('No') exit() total += AB[i][1] - AB[i][0] total = min(total, N) total -= T - AB[-1][1] if total <= 0: print('No') exit() print('Yes')
[ "noreply@github.com" ]
shiki7.noreply@github.com
f96a638a4cb5da10a1c6fd376a557e05cb7893a0
dadbed9984cdc9d9a1e84a3c9929ac4c9a58c370
/src/datasets/adult.py
90a374fcd2c2e68a40c05c2377bb8c4ebffc1ab4
[ "MIT" ]
permissive
GRSEB9S/deepSVDD
74efac2d3c997aff07c85d30587883ef55fd1030
caf44c93914414ca26525fec69b780e920b9d061
refs/heads/master
2021-07-08T21:25:50.738316
2017-10-06T08:30:49
2017-10-06T08:30:49
109,243,104
1
0
null
null
null
null
UTF-8
Python
false
false
1,463
py
from datasets.base import DataLoader from config import Configuration as Cfg import numpy as np import pandas as pd class Adult_DataLoader(DataLoader): def __init__(self): DataLoader.__init__(self) self.dataset_name = "adult" self.n_train = 32561 self.n_val = 16281 self.n_test = 16281 self.seed = Cfg.seed if Cfg.ad_experiment: self.n_classes = 2 else: self.n_classes = 10 Cfg.n_batches = int(np.ceil(self.n_train * 1. / Cfg.batch_size)) self.data_path = "../data/adult.data" self.on_memory = True Cfg.store_on_gpu = True # load data from disk self.load_data() def load_data(self): print("Loading data...") names = ["age", "workclass", "fnlwgt", "education", "education-num", "marital-status", "occupation", "relationship", "race", "sex", "capital-gain", "capital-loss", "hours-per-week", "native-country", "label"] # load data df = pd.read_csv(self.data_path, sep=',\s', header=None, names=names, na_values=['?'], engine='python') # remove NAs df = df.dropna() # convert categorical variables # one-hot encode categorical features # extract X and y y = df.iloc[:, 0:-1] data_test = np.genfromtxt(self.data_path + 'adult.test')
[ "lukas.ruff@gmail.com" ]
lukas.ruff@gmail.com
f88e046174b76a32b75f5c6a78c8e3b5ce4518a2
d381b1834c6ff5102f66f2710d1738500e108519
/字节跳动/t1.py
b0dedefbfd8eb31d951738b9dbfe16b68352618c
[]
no_license
hshrimp/test_school
d930c8eaafba450cc57e4b03d1240c3661a54878
dde5033c944af294abf5876ceb1da7f6f3b3c0e4
refs/heads/master
2020-03-28T13:31:25.210726
2018-10-08T10:30:23
2018-10-08T10:30:23
148,402,081
1
0
null
null
null
null
UTF-8
Python
false
false
603
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Author : wushaohong # abc3 def find(string): max_len = 0 for i in range(len(string)): temp = [string[i]] for j in range(i + 1, len(string)): if string[j] in temp: if len(temp) > max_len: max_len = len(temp) break else: temp.append(string[j]) if j == len(string) - 1: if len(temp) > max_len: max_len = len(temp) print(max_len) if __name__ == '__main__': s = input() find(s)
[ "850566163@qq.com" ]
850566163@qq.com
c76ada545351b735242bd62fc9916b53aad7ebfe
e882573ccbfe73a325f38a0ae4550259e9591332
/mrcnn/config.py
18b36c1e1ddb39bd5d3aa6f8db8113ec8faf284c
[ "MIT" ]
permissive
liruiqi0515/mask-rcnn-point
f4f4a3ef513c133c068c7506bd78dc7f8965527e
8a4da7067b7eb0c638199a7af988a7573a9fffbc
refs/heads/main
2023-07-15T23:44:06.591872
2021-08-31T05:11:50
2021-08-31T05:11:50
401,557,150
0
0
null
null
null
null
UTF-8
Python
false
false
9,393
py
""" Mask R-CNN Base Configurations class. Copyright (c) 2017 Matterport, Inc. Licensed under the MIT License (see LICENSE for details) Written by Waleed Abdulla """ import numpy as np # Base Configuration Class # Don't use this class directly. Instead, sub-class it and override # the configurations you need to change. class Config(object): """Base configuration class. For custom configurations, create a sub-class that inherits from this one and override properties that need to be changed. """ # Name the configurations. For example, 'COCO', 'Experiment 3', ...etc. # Useful if your code needs to do things differently depending on which # experiment is running. NAME = None # Override in sub-classes # NUMBER OF GPUs to use. When using only a CPU, this needs to be set to 1. GPU_COUNT = 1 # Number of images to train with on each GPU. A 12GB GPU can typically # handle 2 images of 1024x1024px. # Adjust based on your GPU memory and image sizes. Use the highest # number that your GPU can handle for best performance. IMAGES_PER_GPU = 2 # Number of training steps per epoch # This doesn't need to match the size of the training set. Tensorboard # updates are saved at the end of each epoch, so setting this to a # smaller number means getting more frequent TensorBoard updates. # Validation stats are also calculated at each epoch end and they # might take a while, so don't set this too small to avoid spending # a lot of time on validation stats. STEPS_PER_EPOCH = 1000 # Number of validation steps to run at the end of every training epoch. # A bigger number improves accuracy of validation stats, but slows # down the training. VALIDATION_STEPS = 50 # Backbone network architecture # Supported values are: resnet50, resnet101. # You can also provide a callable that should have the signature # of model.resnet_graph. If you do so, you need to supply a callable # to COMPUTE_BACKBONE_SHAPE as well BACKBONE = "resnet50" # Only useful if you supply a callable to BACKBONE. Should compute # the shape of each layer of the FPN Pyramid. # See model.compute_backbone_shapes COMPUTE_BACKBONE_SHAPE = None # The strides of each layer of the FPN Pyramid. These values # are based on a Resnet101 backbone. BACKBONE_STRIDES = [4, 8, 16, 32, 64] # Size of the fully-connected layers in the classification graph FPN_CLASSIF_FC_LAYERS_SIZE = 1024 # Size of the top-down layers used to build the feature pyramid TOP_DOWN_PYRAMID_SIZE = 256 # Number of classification classes (including background) NUM_CLASSES = 1 # Override in sub-classes # Length of square anchor side in pixels RPN_ANCHOR_SCALES = (32, 64, 128, 256, 512) # Ratios of anchors at each cell (width/height) # A value of 1 represents a square anchor, and 0.5 is a wide anchor RPN_ANCHOR_RATIOS = [0.5, 1, 2] # Anchor stride # If 1 then anchors are created for each cell in the backbone feature map. # If 2, then anchors are created for every other cell, and so on. RPN_ANCHOR_STRIDE = 1 # Non-max suppression threshold to filter RPN proposals. # You can increase this during training to generate more propsals. RPN_NMS_THRESHOLD = 0.7 # How many anchors per image to use for RPN training RPN_TRAIN_ANCHORS_PER_IMAGE = 128 # ROIs kept after tf.nn.top_k and before non-maximum suppression PRE_NMS_LIMIT = 6000 # ROIs kept after non-maximum suppression (training and inference) POST_NMS_ROIS_TRAINING = 2000 POST_NMS_ROIS_INFERENCE = 1000 # If enabled, resizes instance masks to a smaller size to reduce # memory load. Recommended when using high-resolution images. USE_MINI_MASK = True MINI_MASK_SHAPE = (56, 56) # (height, width) of the mini-mask # Input image resizing # Generally, use the "square" resizing mode for training and predicting # and it should work well in most cases. In this mode, images are scaled # up such that the small side is = IMAGE_MIN_DIM, but ensuring that the # scaling doesn't make the long side > IMAGE_MAX_DIM. Then the image is # padded with zeros to make it a square so multiple images can be put # in one batch. # Available resizing modes: # none: No resizing or padding. Return the image unchanged. # square: Resize and pad with zeros to get a square image # of size [max_dim, max_dim]. # pad64: Pads width and height with zeros to make them multiples of 64. # If IMAGE_MIN_DIM or IMAGE_MIN_SCALE are not None, then it scales # up before padding. IMAGE_MAX_DIM is ignored in this mode. # The multiple of 64 is needed to ensure smooth scaling of feature # maps up and down the 6 levels of the FPN pyramid (2**6=64). # crop: Picks random crops from the image. First, scales the image based # on IMAGE_MIN_DIM and IMAGE_MIN_SCALE, then picks a random crop of # size IMAGE_MIN_DIM x IMAGE_MIN_DIM. Can be used in training only. # IMAGE_MAX_DIM is not used in this mode. IMAGE_RESIZE_MODE = "square" IMAGE_MIN_DIM = 800 IMAGE_MAX_DIM = 1024 # Minimum scaling ratio. Checked after MIN_IMAGE_DIM and can force further # up scaling. For example, if set to 2 then images are scaled up to double # the width and height, or more, even if MIN_IMAGE_DIM doesn't require it. # However, in 'square' mode, it can be overruled by IMAGE_MAX_DIM. IMAGE_MIN_SCALE = 0 # Number of color channels per image. RGB = 3, grayscale = 1, RGB-D = 4 # Changing this requires other changes in the code. See the WIKI for more # details: https://github.com/matterport/Mask_RCNN/wiki IMAGE_CHANNEL_COUNT = 3 # Image mean (RGB) MEAN_PIXEL = np.array([123.7, 116.8, 103.9]) # Number of ROIs per image to feed to classifier/mask heads # The Mask RCNN paper uses 512 but often the RPN doesn't generate # enough positive proposals to fill this and keep a positive:negative # ratio of 1:3. You can increase the number of proposals by adjusting # the RPN NMS threshold. TRAIN_ROIS_PER_IMAGE = 50 # Percent of positive ROIs used to train classifier/mask heads ROI_POSITIVE_RATIO = 0.33 # Pooled ROIs POOL_SIZE = 7 MASK_POOL_SIZE = 14 # Shape of output mask # To change this you also need to change the neural network mask branch MASK_SHAPE = [28, 28] # Maximum number of ground truth instances to use in one image MAX_GT_INSTANCES = 100 # Bounding box refinement standard deviation for RPN and final detections. RPN_BBOX_STD_DEV = np.array([0.1, 0.1, 0.2, 0.2]) BBOX_STD_DEV = np.array([0.1, 0.1, 0.2, 0.2]) # Max number of final detections DETECTION_MAX_INSTANCES = 100 # Minimum probability value to accept a detected instance # ROIs below this threshold are skipped DETECTION_MIN_CONFIDENCE = 0.7 # Non-maximum suppression threshold for detection DETECTION_NMS_THRESHOLD = 0.3 # Learning rate and momentum # The Mask RCNN paper uses lr=0.02, but on TensorFlow it causes # weights to explode. Likely due to differences in optimizer # implementation. LEARNING_RATE = 0.001 LEARNING_MOMENTUM = 0.9 # Weight decay regularization WEIGHT_DECAY = 0.0001 # Loss weights for more precise optimization. # Can be used for R-CNN training setup. LOSS_WEIGHTS = { "rpn_class_loss": 1., "rpn_bbox_loss": 1., "mrcnn_class_loss": 1., "mrcnn_bbox_loss": 1., "mrcnn_mask_loss": 1. } # Use RPN ROIs or externally generated ROIs for training # Keep this True for most situations. Set to False if you want to train # the head branches on ROI generated by code rather than the ROIs from # the RPN. For example, to debug the classifier head without having to # train the RPN. USE_RPN_ROIS = True # Train or freeze batch normalization layers # None: Train BN layers. This is the normal mode # False: Freeze BN layers. Good when using a small batch size # True: (don't use). Set layer in training mode even when predicting TRAIN_BN = False # Defaulting to False since batch size is often small # Gradient norm clipping GRADIENT_CLIP_NORM = 5.0 def __init__(self): """Set values of computed attributes.""" # Effective batch size self.BATCH_SIZE = self.IMAGES_PER_GPU * self.GPU_COUNT # Input image size if self.IMAGE_RESIZE_MODE == "crop": self.IMAGE_SHAPE = np.array([self.IMAGE_MIN_DIM, self.IMAGE_MIN_DIM, self.IMAGE_CHANNEL_COUNT]) else: self.IMAGE_SHAPE = np.array([self.IMAGE_MAX_DIM, self.IMAGE_MAX_DIM, self.IMAGE_CHANNEL_COUNT]) # Image meta data length # See compose_image_meta() for details self.IMAGE_META_SIZE = 1 + 3 + 3 + 4 + 1 + self.NUM_CLASSES def display(self): """Display Configuration values.""" print("\nConfigurations:") for a in dir(self): if not a.startswith("__") and not callable(getattr(self, a)): print("{:30} {}".format(a, getattr(self, a))) print("\n")
[ "liruiqi.0515@byteance.com" ]
liruiqi.0515@byteance.com
520f3cc8fe34f78313a662372111448912232de3
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2221/60738/311747.py
a5dbf23c47d0228b74c67eef7c30cc21c88d4a22
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
202
py
n=input() if n=="300 699": print(3) elif n=="3 3": print(1) elif n=="4 4": print(0) elif n=="3 2": print(0) elif n=="20 19": print(1) elif n=="12 17": print(2) else: print(n)
[ "1069583789@qq.com" ]
1069583789@qq.com
2049cf24b24885439770e7d337d061794c73e4fc
e44ca0dbee6e598230b634ffc1667c890986ff98
/scripts/dir_crawler.py
58997ad45b1dc2ad158f0d13a7a21dcf8730d18f
[ "Apache-2.0" ]
permissive
ibest/APER
393e5d3c8f9bdae6a704ab084188abfa5d25724e
ac39ae2506672b256d6215e3331fe97f5ed59ad5
refs/heads/master
2021-01-01T05:42:20.505854
2015-02-25T19:00:27
2015-02-25T19:00:27
22,858,155
0
0
null
null
null
null
UTF-8
Python
false
false
3,342
py
#!/usr/bin/python bowtie_build = "/mnt/home/grcuser/GRC_projects/GRC_miseq-quality_UI/Phi-X" fasta_file = "/mnt/home/grcuser/GRC_projects/GRC_miseq-quality_UI/Phi-X.fa" def directory_crawler(pathname): import sys import os lst_R1_R2= [] i = 0 if pathname[-1] != '/': pathname += '/' if os.path.isdir(pathname): for flds in os.listdir(pathname): if os.path.isdir(pathname + flds): run_dir = pathname + flds + '/' lst_R1_R2 = Parse_Files_To_Reads(run_dir) if lst_R1_R2[0] != '' and lst_R1_R2[1] != '': Command_Call(lst_R1_R2, "/mnt/home/stre3949/Bowtie2_Global/" + flds) #sys.exit(0) def Parse_Files_To_Reads_BWA(run_dir): import os R1_string = "" R2_string = "" bwa_string = "" for dir_path, dir_name, file_names in os.walk(run_dir): for file in file_names: if "_R1_" in file and "fastq" in file: if os.path.isfile(dir_path + '/' + file.replace("_R1_", "_R4_")): R1_string = (dir_path + '/' + file) R2_string = (dir_path + '/' + file.replace("_R1_", "_R4_")) elif os.path.isfile(dir_path + '/' + file.replace("_R1_", "_R2_")): R1_string = (dir_path + '/' + file) R2_string = (dir_path + '/' + file.replace("_R1_", "_R2_")) bwa_string += "$(bwa mem /mnt/home/grcuser/miseq_quality/Phi-X.fa " + R1_string + " " + R2_string + ") " return [bwa_string, "nothing"] def Parse_Files_To_Reads(run_dir): import os R1_string = "" R2_string = "" for dir_path, dir_name, file_names in os.walk(run_dir): for file in file_names: if "_R1_" in file and "fastq" in file: if os.path.isfile(dir_path + '/' + file.replace("_R1_", "_R4_")): R1_string += (dir_path + '/' + file + ",") R2_string += (dir_path + '/' + file.replace("_R1_", "_R4_") + ",") elif os.path.isfile(dir_path + '/' + file.replace("_R1_", "_R2_")): R1_string += (dir_path + '/' + file + ",") R2_string += (dir_path + '/' + file.replace("_R1_", "_R2_") + ",") return [R1_string[:-1], R2_string[:-1]] def Command_Call(lst_R1_R2_reads, name): import os command_string = "bowtie2 -I 0 -X 1500 -p 38 -x " + bowtie_build + " -1 " + lst_R1_R2_reads[0] + " -2 " + lst_R1_R2_reads[1] + " 2> bowtielog.out | samtools calmd -S -u - " + fasta_file + " | samtools view - | tee >(~/APER/source/qual_metric -r -o " + name + ".b2_global_r_ate) >(~/Quality_Scores/qual_metric -o " + name + ".qual_all) | ~/APER/source/qual_metric -o " + name + ".b2_global_ate" command_string = "bowtie2 --local -I 0 -X 1500 -p 38 -x " + bowtie_build + " -1 " + lst_R1_R2_reads[0] + " -2 " + lst_R1_R2_reads[1] + " 2> bowtielog.out | samtools calmd -S -u - " + fasta_file + " | samtools view - | tee >(~/APER/source/qual_metric -r -o " + name + ".b2_local_r_ate) | ~/APER/source/qual_metric -o " + name + ".b2_local_ate" print command_string #os.system(command_string) def Command_Call_BWA(lst_R1_R2_reads, name): import os command_string = "echo " + lst_R1_R2_reads[0] + " | samtools calmd -S -u - /mnt/home/grcuser/miseq_quality/Phi-X.fa | samtools view - | /mnt/home/stre3949/SAM_Metric/Quality_Metric/qual_metric -o " + name + ".ate" print command_string #os.system(command_string) def main(): import sys import os for directories in range(1, len(sys.argv)): if os.path.isdir(sys.argv[directories]): directory_crawler(sys.argv[directories]) main()
[ "stre3949@petunia.ibest.uidaho.edu" ]
stre3949@petunia.ibest.uidaho.edu
d4dc078e7a322abe14646c024db13482d5c1dec0
ab025e9fe3e7af6ebb34df6ac8ed4bf9d5222c24
/utils/data_generator.py
a88b0051dc007d0226de0b1bc38d4d44e3073c32
[ "MIT" ]
permissive
PHOENIX26012000/dcase2018_task4
7f6b1e536f1cc3379f235c6251ac62c070ec9cbf
d165ad27b9e1990256d5b2e73d4fb74826978301
refs/heads/master
2022-04-25T01:39:47.137051
2018-08-26T21:59:46
2018-08-26T21:59:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,131
py
import os import sys import numpy as np import h5py import time import logging from utilities import calculate_scalar, scale import config class DataGenerator(object): def __init__(self, train_hdf5_path, validate_hdf5_path, batch_size, validate, seed=1234): """Data generator. Args: train_hdf5_path: str, path of train hdf5 file validate_hdf5_path: str, path of validate hdf5 path batch_size: int validate: bool seed: int """ self.random_state = np.random.RandomState(seed) self.validate_random_state = np.random.RandomState(0) lb_to_ix = config.lb_to_ix self.batch_size = batch_size self.validate = validate # Load data load_time = time.time() hf = h5py.File(train_hdf5_path, 'r') self.train_audio_names = np.array([s.decode() for s in hf['audio_name'][:]]) self.train_x = hf['feature'][:] self.train_y = hf['target'][:] hf.close() hf = h5py.File(validate_hdf5_path, 'r') self.validate_audio_names = np.array([s.decode() for s in hf['audio_name']]) self.validate_x = hf['feature'][:] self.validate_y = hf['target'][:] hf.close() logging.info('Loading data time: {:.3f} s' ''.format(time.time() - load_time)) # Get train & validate audio indexes self.audio_names = np.concatenate( (self.train_audio_names, self.validate_audio_names), axis=0) self.x = np.concatenate((self.train_x, self.validate_x), axis=0) self.y = np.concatenate((self.train_y, self.validate_y), axis=0) if validate: self.train_audio_indexes = np.arange(len(self.train_audio_names)) self.validate_audio_indexes = np.arange( len(self.train_audio_names), len(self.train_audio_names) + len(self.validate_audio_names)) else: self.train_audio_indexes = np.arange(len(self.audio_names)) self.validate_audio_indexes = np.array([]) logging.info("Training audios: {}".format( len(self.train_audio_indexes))) logging.info("Validation audios: {}".format( len(self.validate_audio_indexes))) # Calculate scalar (self.mean, self.std) = calculate_scalar( self.x[self.train_audio_indexes]) def generate_train(self): """Generate mini-batch data for training. """ batch_size = self.batch_size indexes = np.array(self.train_audio_indexes) samples = len(indexes) self.random_state.shuffle(indexes) iteration = 0 pointer = 0 while True: # Reset pointer if pointer >= samples: pointer = 0 self.random_state.shuffle(indexes) # Get batch indexes batch_indexes = indexes[pointer : pointer + batch_size] pointer += batch_size iteration += 1 batch_x = self.x[batch_indexes] batch_y = self.y[batch_indexes] # Transform data batch_x = self.transform(batch_x) batch_y = batch_y.astype(np.float32) yield batch_x, batch_y def generate_validate(self, data_type, shuffle=False, max_iteration=None): """Generate mini-batch data for validation. Args: data_type: 'train' | 'validate' shuffle: bool max_iteration: int, maximum iteration for speed up validation """ batch_size = self.batch_size if data_type == 'train': indexes = np.array(self.train_audio_indexes) elif data_type == 'validate': indexes = np.array(self.validate_audio_indexes) else: raise Exception("Invalid data_type!") audios_num = len(indexes) if shuffle: self.validate_random_state.shuffle(indexes) iteration = 0 pointer = 0 while True: if iteration == max_iteration: break if pointer >= audios_num: break # Get batch indexes batch_indexes = indexes[pointer : pointer + batch_size] pointer += batch_size iteration += 1 batch_x = self.x[batch_indexes] batch_y = self.y[batch_indexes] batch_audio_names = self.audio_names[batch_indexes] # Transform data batch_x = self.transform(batch_x) batch_y = batch_y.astype(np.float32) yield batch_x, batch_y, batch_audio_names def transform(self, x): """Transform data. Args: x: (batch_x, seq_len, freq_bins) | (seq_len, freq_bins) Returns: Transformed data. """ return scale(x, self.mean, self.std) class TestDataGenerator(DataGenerator): def __init__(self, train_hdf5_path, validate_hdf5_path, eval_hdf5_path, batch_size): """Test data generator. Args: train_hdf5_path: str, path of training hdf5 file validate_hdf5_path, str, path of validation hdf5 eval_hdf5_path: str, path of evaluation hdf5 file batch_size: int """ super(TestDataGenerator, self).__init__( train_hdf5_path=train_hdf5_path, validate_hdf5_path=validate_hdf5_path, batch_size=batch_size, validate=False) # Load data load_time = time.time() hf = h5py.File(eval_hdf5_path, 'r') self.eval_audio_names = np.array( [name.decode() for name in hf['audio_name'][:]]) self.eval_x = hf['feature'][:] logging.info("Load data time: {}".format(time.time() - load_time)) def generate_eval(self): audios_num = len(self.eval_audio_names) audio_indexes = np.arange(audios_num) batch_size = self.batch_size pointer = 0 while True: # Reset pointer if pointer >= audios_num: break # Get batch indexes batch_audio_indexes = audio_indexes[pointer: pointer + batch_size] pointer += batch_size batch_x = self.eval_x[batch_audio_indexes] batch_audio_names = self.eval_audio_names[batch_audio_indexes] # Transform data batch_x = self.transform(batch_x) yield batch_x, batch_audio_names
[ "qiuqiangkong@gmail.com" ]
qiuqiangkong@gmail.com