blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
518ce45cbabbf0f9d33a1e3185282ce2e4d73607
66288980da0b51d46e3c3d042711e3b33f3f081a
/exchange_rater/services/shared/utils/math_utils.py
3e8057bd603ac16049f99e0f74793d55235faa6a
[]
no_license
eduardolujan/exchange_rates
77bb3bf809ec9a41a418af067d058ebf90aa9d6e
dc2ac2a0a18bf400bbc4a4de06bf441c7043ef0f
refs/heads/main
2023-02-04T12:00:20.683137
2020-12-27T01:12:51
2020-12-27T01:12:51
320,956,914
1
0
null
null
null
null
UTF-8
Python
false
false
483
py
# -*- coding: utf-8 -*- import math def truncate(number, decimals=0): """ Returns a value truncated to a specific number of decimal places. """ if not isinstance(decimals, int): raise TypeError("decimal places must be an integer.") elif decimals < 0: raise ValueError("decimal places has to be 0 or more.") elif decimals == 0: return math.trunc(number) factor = 10.0 ** decimals return math.trunc(number * factor) / factor
[ "eduardo.lujan.p@gmail.com" ]
eduardo.lujan.p@gmail.com
0c073690cd3bab9f31f78e34018b57cd06cb07d6
246438f5e84c83755253e26740857a339aa5ad0f
/beginDjango/firstProject/news/forms.py
5e99c89c60d3e896f30857260bb58049f5b77eb4
[]
no_license
reboot-13/first_django_project
2a93cd1dee1de3d01dfbddb8ff551b5030b2a811
73b666a5ba790496b7f9986f71696e429f556c95
refs/heads/main
2023-06-09T21:02:41.159688
2021-07-04T10:54:02
2021-07-04T10:54:02
382,825,892
0
0
null
null
null
null
UTF-8
Python
false
false
1,037
py
from .models import Article from django.forms import ModelForm, TextInput, Textarea, DateTimeInput class ArticleForm(ModelForm): class Meta: model = Article fields = ['author_name', 'title', 'anons', 'full_text', 'date'] widgets = { 'author_name': TextInput(attrs={ 'class': 'form-control', 'placeholder': 'Имя автора' }), 'title': TextInput(attrs={ 'class': 'form-control', 'placeholder': 'Название статьи' }), 'anons': TextInput(attrs={ 'class': 'form-control', 'placeholder': 'Анонс статьи' }), 'full_text': Textarea(attrs={ 'class': 'form-control', 'placeholder': 'Текст статьи' }), 'date': DateTimeInput(attrs={ 'class': 'form-control', 'placeholder': 'Дата' }) }
[ "roma.ermilov.02@gmail.com" ]
roma.ermilov.02@gmail.com
f3edf3d502f972e8a9a02a4641e0e7a0d768e175
5c4e7323aed9ab4bfef31aecbaf1d5f0c650d05d
/study_further/python_core/decorator_demo3.py
733c3266abb1a51faff9095e49f71372645096cd
[]
no_license
chenmingrang/python_study
dbb4f65bae75033625e5935c95ef5e34d442d440
c6e0a3d1482f1154f26c208d9fb5563de353b82f
refs/heads/master
2020-09-03T02:36:53.315299
2018-01-10T06:02:13
2018-01-10T06:02:13
94,408,408
0
0
null
null
null
null
UTF-8
Python
false
false
505
py
def outer1(func): print("==outer1==") def inner1(): print("==inner1==") func() return inner1 def outer2(func): print("==outer2==") def inner2(): print("==inner2==") func() return inner2 #只要Python解释器执行到这个代码,那么就会自动的进行装饰,而不是等到调用的时候才进行装饰 @outer1 @outer2 def foo(): print("==foo==") #调用foo之前已经完成了装饰 print("*="*15, "foo is called", "*="*15) foo()
[ "chenmingrang@126.com" ]
chenmingrang@126.com
25b7a9381c7fab8b704950f07857e10d2912c034
40f12fcbc62daaacc518cddbb7a289ed4b2ff2eb
/mainapp/mainapp/urls.py
f76eab325ac2c51ef1619ef9bf3bee6f63dc155b
[]
no_license
KhayrulloevDD/deals-csv
6100f3bd772c09139f1c12bee3a3d5dccd1120cf
510afdb8a3716adb9090c21136230df4217c7ee9
refs/heads/main
2023-07-05T12:52:35.523506
2021-08-02T10:24:12
2021-08-02T10:24:12
387,248,178
1
0
null
null
null
null
UTF-8
Python
false
false
796
py
"""mainapp URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), path('', include('readcsv.urls')) ]
[ "dodullo.khayrulloev@gmail.com" ]
dodullo.khayrulloev@gmail.com
d2f3e9e7ba601cf371f65a1dbdaf14f28dbfe5c8
fde354b21d6e12b71ee06849329fef9820bdfbf5
/problem_set_1.1.py
b019a6633ce599feb5e4829233a49dc00ec11e44
[ "Giftware" ]
permissive
Ramesh29/Introduction-to-Computer-Science-and-Programming-Using-Python
492e0abec60e298e5e9efe79a401b037a245314d
4fecdc727eaa830ac49ab7e70381264b1a4f89f9
refs/heads/master
2023-03-10T12:00:49.693911
2021-02-26T02:30:03
2021-02-26T02:30:03
279,165,228
0
0
null
null
null
null
UTF-8
Python
false
false
410
py
""" Assume s is a string of lower case characters. Write a program that counts up the number of vowels contained in the string s. Valid vowels are: 'a', 'e', 'i', 'o', and 'u'. For example, if s = 'azcbobobegghakl', your program should print: """ s = "ramesh" list = [ 'a', 'e', 'i', 'o', 'u'] count = 0 for c in s: if c in list: count = count + 1 print("Number of vowels:" , count)
[ "boolean29@gmail.com" ]
boolean29@gmail.com
a6a81aaefd9aed9ccf620c41df2ec4d01a782f94
b69312f2e6fcfe7b6820424d6c23df334a619f32
/lib/other.py
f778b41fec4365f2ab4420a7acb73226280f6178
[ "MIT", "LicenseRef-scancode-generic-cla", "BSD-2-Clause" ]
permissive
runhani/py-faster-rcnn-resnet-imagenet
96e021d699670859960bbe1b3f7ec5613a614fab
da1b65537b14e7580ebe257a50b0f1342e1d9828
refs/heads/master
2021-05-10T14:46:08.386181
2018-01-24T05:51:02
2018-01-24T05:51:02
118,530,513
0
0
null
2018-01-22T23:44:19
2018-01-22T23:44:18
null
UTF-8
Python
false
false
173
py
def get_dataset_split_name(im_file): parts = im_file.split("/") for p in parts[::-1]: if p in ['train', 'val', 'test']: return p return None
[ "tianzhi0549@163.com" ]
tianzhi0549@163.com
0f55465514af40569da7b3a7ce2de5e8a893375b
f39fe325b2dec9786a82ac52316e5654093795e1
/src/dblog/dblog/settings.py
bad3484a82ac5b67db00876ba3b1c523a210bf15
[]
no_license
EfraimGENC/dblog
0afc6bc5dd0de909f27583858796d5c3557ba94a
36a857ad3136085b8158c87bea9f3eebfda20d23
refs/heads/main
2023-08-26T07:41:07.618969
2021-11-01T22:38:32
2021-11-01T22:38:32
422,436,906
0
0
null
null
null
null
UTF-8
Python
false
false
5,327
py
""" Django settings for dblog project. Generated by 'django-admin startproject' using Django 3.2.8. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path import os import environ from django.utils.translation import ugettext_lazy as _ # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent env = environ.Env() environ.Env.read_env(os.path.join(BASE_DIR, 'dblog/.env')) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = env('SECRET_KEY') # SECRET_KEY = os.environ['SECRET_KEY'] # SECURITY WARNING: don't run with debug turned on in production! DEBUG = env('DEBUG') ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.sites', 'django.contrib.humanize', 'django.contrib.postgres', # Project's Apps 'apps.account', 'apps.home', 'apps.blog', # 3'th Part Apps 'phonenumber_field', 'imagekit', 'rest_framework', 'rest_framework.authtoken', 'django_filters', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.locale.LocaleMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'dblog.urls.main' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'template')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'dblog.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases # DATABASES = { # 'default': { # 'ENGINE': 'django.db.backends.sqlite3', # 'NAME': BASE_DIR / 'db.sqlite3', # } # } DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': env('DATABASE_NAME'), 'USER': env('DATABASE_USER'), 'PASSWORD': env('DATABASE_PASS'), 'HOST': 'db', 'PORT': '5432', } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'tr-tr' TIME_ZONE = 'Europe/Istanbul' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/staticfiles/' STATICFILES_DIRS = [ os.path.join(BASE_DIR, "staticfiles"), ] STATIC_ROOT = os.path.join(BASE_DIR, "static") # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField' # Media MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') # Custom Account AUTH_USER_MODEL = 'account.Profile' AUTH_PROFILE_MODULE = 'account.Profile' # Locale LOCALE_PATHS = ( os.path.join(BASE_DIR, 'locale'), ) LANGUAGES = ( ('tr-tr', _('Turkish')), ('en-us', _('English')), ) # Sites Framwork SITE_ID = 1 # Email Defaults # EMAIL_HOST='smtp.yandex.com.tr' # EMAIL_PORT=465 # EMAIL_HOST_USER='noreply@domain.com' # EMAIL_HOST_PASSWORD='supersecret' # EMAIL_USE_TLS=False # EMAIL_USE_SSL=True # DEFAULT_FROM_EMAIL = 'Name <noreply@domain.com>' # REST Framework REST_FRAMEWORK = { 'DEFAULT_AUTHENTICATION_CLASSES': [ 'rest_framework.authentication.TokenAuthentication', 'rest_framework.authentication.SessionAuthentication', ], 'DEFAULT_PERMISSION_CLASSES': [ ], 'DEFAULT_FILTER_BACKENDS': [ 'rest_framework.filters.OrderingFilter', 'rest_framework.filters.SearchFilter', 'django_filters.rest_framework.DjangoFilterBackend', ], 'DEFAULT_PAGINATION_CLASS': 'rest_framework.pagination.PageNumberPagination', 'PAGE_SIZE': 100, }
[ "efraim@kavimdigital.com" ]
efraim@kavimdigital.com
a098ab4734cc42713bce829f2aadc75ca70433f5
f7f4efda78012c4207c44ec1d4711aaf5e8d6a6b
/weatherApp/weatherApp/urls.py
3ae05fe80f4a8803b62d2db4abdc1011874d7d73
[]
no_license
arizona167/weather-App
81709e709a4a12cd71492f56a216b747d2583bdd
e1afb7955c0e6ec3b79e8a1da4de38458322a960
refs/heads/master
2020-06-22T22:26:14.157418
2019-07-23T11:08:43
2019-07-23T11:08:43
198,416,313
0
0
null
null
null
null
UTF-8
Python
false
false
799
py
"""weatherApp URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), path('', include('weather.urls')) ]
[ "igwegbearinze@gmail.com" ]
igwegbearinze@gmail.com
299cb20505e402e26105a20c9fc54d0e79d8948a
702ac710929e7b852e5dde2a9a489c16939abe2a
/venv/Turtles/Random.py
2c37b6fdda1cddbd59b74a2393c570daba505468
[]
no_license
Madoune-SidAli/PythonTutorials
cb5b00e19a76632f423b0ce74b49c20747a378f8
0aecde9bf373e1449b1affeba0179760af04e132
refs/heads/master
2020-07-02T10:07:20.998595
2019-08-14T15:42:58
2019-08-14T15:42:58
201,496,486
0
0
null
null
null
null
UTF-8
Python
false
false
361
py
import turtle import random colors = ["red", "orange", "yellow", "green", "blue", "purple"] t = turtle.Turtle() t.width(20) for step in range(100): # Change this to use a random number. angle = random.randint(-90,90) # Change this to use a random color. color = random.choice(colors) t.color(color) t.right(angle) t.forward(10)
[ "madoune.sidali@gmail.com" ]
madoune.sidali@gmail.com
166e19e6e6fa003af0ca706d5bfc2c23f59c0025
2cd518db5301e9e38269dbcc773af72c64ae9d47
/Course1- Algorithmic Toolbox/week2_algorithmic_warmup/2_last_digit_of_fibonacci_number/fibonacci_last_digit.py
b3dc67aac62a0127f6cec49d996a33b1746f7ad0
[]
no_license
praneeth1808/DSA-Coursera
a0acb37550f336de10559ab9d89b32ac5507b5a3
5c3433eab504d0a10841cdf00d082e628f110d3b
refs/heads/master
2023-05-08T09:18:08.947894
2021-06-01T12:48:01
2021-06-01T12:48:01
275,324,169
0
0
null
null
null
null
UTF-8
Python
false
false
415
py
# Uses python3 import sys def get_fibonacci_last_digit_naive(n): Feb_series=[0, 1, 1, 2, 3, 5, 8, 3, 1, 4, 5, 9, 4, 3, 7, 0, 7, 7, 4, 1, 5, 6, 1, 7, 8, 5, 3, 8, 1, 9, 0, 9, 9, 8, 7, 5, 2, 7, 9, 6, 5, 1, 6, 7, 3, 0, 3, 3, 6, 9, 5, 4, 9, 3, 2, 5, 7, 2, 9, 1] return Feb_series[n%60] if __name__ == '__main__': # input = sys.stdin.read() n = int(input()) print(get_fibonacci_last_digit_naive(n))
[ "praneeth3331997@gmail.com" ]
praneeth3331997@gmail.com
0fdd40f2c6759e234a4ad52b5bbc7a0847a796b3
0d2b74a707e21d85d6e663a8b558ee72e81f92f9
/MyTraining_latest/MyTraining/001.Interview_programs/General_interview_programs/Armstrong.py
6ca0ca567d004fcb5dfd267526e9368c2c2712b7
[]
no_license
anubeig/python-material
1e0f0d51f74206e01e9f1bec97a2e81e0a125c68
aef734073f40b2b45104726becf6205aa313283f
refs/heads/master
2022-07-21T00:50:43.417845
2019-09-28T12:23:13
2019-09-28T12:23:13
211,494,935
0
1
null
2022-07-13T19:14:45
2019-09-28T12:11:04
Python
UTF-8
Python
false
false
490
py
#Armstrong number num = int(input("Enter a number: ")) # Changed num variable to string, # and calculated the length (number of digits) order = len(str(num)) # initialize sum sum = 0 # find the sum of the cube of each digit temp = num while temp > 0: digit = temp % 10 print(digit) sum += digit ** order print(sum) temp = temp // 10 print(temp) # display the result if num == sum: print(num,"is an Armstrong number") else: print(num,"is not an Armstrong number")
[ "anu.mogal4@gmail.com" ]
anu.mogal4@gmail.com
86fce9123b4b88751dd8d3f74ed6146220fd8d22
fc785c142e4d38138db557bbd862bd651c293340
/scrapyTest/settings.py
4b0f571919d66219d17632df2d21d0124ea91964
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
fver1004/Library_Information_Extract
132c9e7438f66d22da262cf6d4abb79d5655e4d4
39a991b5963489874fe358c6d157547dc57e80c9
refs/heads/master
2021-01-20T05:13:50.811099
2017-05-26T09:53:08
2017-05-26T09:53:08
89,762,789
5
1
null
2017-05-22T02:48:41
2017-04-29T04:07:41
Python
UTF-8
Python
false
false
3,169
py
# -*- coding: utf-8 -*- # Scrapy settings for scrapyTest project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # http://doc.scrapy.org/en/latest/topics/settings.html # http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html # http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html BOT_NAME = 'scrapyTest' SPIDER_MODULES = ['scrapyTest.spiders'] NEWSPIDER_MODULE = 'scrapyTest.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'scrapyTest (+http://www.yourdomain.com)' # Obey robots.txt rules ROBOTSTXT_OBEY = False # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See http://scrapy.readthedocs.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs #DOWNLOAD_DELAY = 3 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', #} # Enable or disable spider middlewares # See http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'scrapyTest.middlewares.ScrapytestSpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html #DOWNLOADER_MIDDLEWARES = { # 'scrapyTest.middlewares.MyCustomDownloaderMiddleware': 543, #} # Enable or disable extensions # See http://scrapy.readthedocs.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, #} # Configure item pipelines # See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html #ITEM_PIPELINES = { # 'scrapyTest.pipelines.ScrapytestPipeline': 300, #} # Enable and configure the AutoThrottle extension (disabled by default) # See http://doc.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
[ "fver1004@gmail.com" ]
fver1004@gmail.com
fca30051d0949eb304f4d934b5a6fa5a7e75edca
82ca64c6a819f3e2cb41057f2df9f758cedee28a
/robot1/btc_usdt/robot_fun.py
e0d3222356ab5c9b8cebcbffc74381b08a17dec8
[]
no_license
seanxxxx/coinx
619a18f9b2d7f83076083055bfccf0c5e404f665
eb1a7ed430c546cf02ddcc79f436200b218d5244
refs/heads/master
2023-01-28T03:09:10.358463
2018-09-07T07:49:19
2018-09-07T07:49:19
146,564,986
0
1
null
2022-12-20T14:20:06
2018-08-29T07:52:37
Python
UTF-8
Python
false
false
10,203
py
# -*- coding:utf-8 -*- import random,requests import logging logging.basicConfig(level=logging.INFO, format='%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s', datefmt='%a, %d %b %Y %H:%M:%S', filename='coinx.log', filemode='w') # 定义一个Handler打印INFO及以上级别的日志到sys.stderr console = logging.StreamHandler() console.setLevel(logging.INFO) # 设置日志打印格式 #format='%(asctime)s - %(levelname)s: %(message)s' formatter = logging.Formatter('%(asctime)s - %(levelname)s: %(message)s') console.setFormatter(formatter) # 将定义好的console日志handler添加到root logger logging.getLogger('').addHandler(console) #以中心价格随机获取区间价格 def getPrice(lastPrice): minusNum = lastPrice-lastPrice*random.uniform(0.0001,0.001) addNum = lastPrice+lastPrice*random.uniform(0.0001,0.001) price = round(random.uniform(minusNum,addNum),2) logging.info(u"当前获取的价格区间是:[%f,%f]" % (minusNum,addNum)) return price #获取Bitstamp的最新成交价 def getMarketPrice(url): req = requests.post(url) lastPrice = req.json()['last'] logging.info("----------------------------------------------------------------") logging.info("********** 当前BTC/USDT市场交易价格为:【%s】**********" %lastPrice) logging.info("----------------------------------------------------------------") return lastPrice #获取用户token def get_access_token(url_login,email,password): headers = {"content-type": "application/json"} login_data = {"email": email, "password": password} login_request = requests.post(url_login, headers=headers, json=login_data) access_token = login_request.json()['data']['access_token'] # logging.info("access_token:"+access_token) # print(login_request.text) return access_token #挂买单 def order_buy(email,price,url_order,access_token,tradePairCode,count): price = getPrice(price) # count = 0 # if tradePairCode == 'btc_usdt': # count = round(random.uniform(0.001, data['tradePair']['btc_usdtMaxCount']), 3) # elif tradePairCode == 'eth_usdt': # count = round(random.uniform(0.001, data['tradePair']['eth_usdtMaxCount']), 3) # elif tradePairCode == 'xrp_usdt': # count = round(random.uniform(0.001, data['tradePair']['xrp_usdtMaxCount']), 3) # elif tradePairCode == 'bch_usdt': # count = round(random.uniform(0.001, data['tradePair']['bch_usdtMaxCount']), 3) # elif tradePairCode == 'eos_usdt': # count = round(random.uniform(0.001, data['tradePair']['eos_usdtMaxCount']), 3) # elif tradePairCode == 'ltc_usdt': # count = round(random.uniform(0.001, data['tradePair']['ltc_usdtMaxCount']), 3) # elif tradePairCode == 'ada_usdt': # count = round(random.uniform(0.001, data['tradePair']['ada_usdtMaxCount']), 3) # elif tradePairCode == 'xlm_usdt': # count = round(random.uniform(0.001, data['tradePair']['xlm_usdtMaxCount']), 3) # elif tradePairCode == 'iota_usdt': # count = round(random.uniform(0.001, data['tradePair']['iota_usdtMaxCount']), 3) # elif tradePairCode == 'eth_btc': # count = round(random.uniform(0.001, data['tradePair']['eth_btcMaxCount']), 3) # elif tradePairCode == 'xrp_btc': # count = round(random.uniform(0.001, data['tradePair']['xrp_btcMaxCount']), 3) # elif tradePairCode == 'bch_btc': # count = round(random.uniform(0.001, data['tradePair']['bch_btcMaxCount']), 3) # elif tradePairCode == 'eos_btc': # count = round(random.uniform(0.001, data['tradePair']['eos_btcMaxCount']), 3) # elif tradePairCode == 'ltc_btc': # count = round(random.uniform(0.001, data['tradePair']['ltc_btcMaxCount']), 3) # elif tradePairCode == 'ada_btc': # count = round(random.uniform(0.001, data['tradePair']['ada_btcMaxCount']), 3) # elif tradePairCode == 'xlm_btc': # count = round(random.uniform(0.001, data['tradePair']['xlm_btcMaxCount']), 3) # elif tradePairCode == 'iota_btc': # count = round(random.uniform(0.001, data['tradePair']['iota_btcMaxCount']), 3) # elif tradePairCode == 'xrp_eth': # count = round(random.uniform(0.001, data['tradePair']['xrp_ethMaxCount']), 3) # elif tradePairCode == 'eos_eth': # count = round(random.uniform(0.001, data['tradePair']['eos_ethMaxCount']), 3) # elif tradePairCode == 'ltc_eth': # count = round(random.uniform(0.001, data['tradePair']['ltc_ethMaxCount']), 3) # elif tradePairCode == 'ada_eth': # count = round(random.uniform(0.001, data['tradePair']['ada_ethMaxCount']), 3) # elif tradePairCode == 'xlm_eth': # count = round(random.uniform(0.001, data['tradePair']['xlm_ethMaxCount']), 3) # elif tradePairCode == 'iota_eth': # count = round(random.uniform(0.001, data['tradePair']['iota_ethMaxCount']), 3) chip_order_headers = {"content-type":"application/json","access_token":access_token} order_data = { "direction":"buy", "orderType":'100', "price":price, "count":count, "tradePairCode":tradePairCode } buy_request = requests.post(url_order, headers=chip_order_headers, json=order_data) #print(up_buy_request.text) logging.info(u"交易币对: %s 用户:%s 挂【买】单的价格:%s 挂【买】单的数量:%s" % (tradePairCode.upper(),email.split('@')[0],price,count)+u" 状态:"+buy_request.json()['msg']) return buy_request #挂卖单 def order_sell(email,price,url_order,access_token,tradePairCode,count): price = getPrice(price) # count = 0 # if tradePairCode == 'btc_usdt': # count = round(random.uniform(0.001, data['tradePair']['btc_usdtMaxCount']), 3) # elif tradePairCode == 'eth_usdt': # count = round(random.uniform(0.001, data['tradePair']['eth_usdtMaxCount']), 3) # elif tradePairCode == 'xrp_usdt': # count = round(random.uniform(0.001, data['tradePair']['xrp_usdtMaxCount']), 3) # elif tradePairCode == 'bch_usdt': # count = round(random.uniform(0.001, data['tradePair']['bch_usdtMaxCount']), 3) # elif tradePairCode == 'eos_usdt': # count = round(random.uniform(0.001, data['tradePair']['eos_usdtMaxCount']), 3) # elif tradePairCode == 'ltc_usdt': # count = round(random.uniform(0.001, data['tradePair']['ltc_usdtMaxCount']), 3) # elif tradePairCode == 'ada_usdt': # count = round(random.uniform(0.001, data['tradePair']['ada_usdtMaxCount']), 3) # elif tradePairCode == 'xlm_usdt': # count = round(random.uniform(0.001, data['tradePair']['xlm_usdtMaxCount']), 3) # elif tradePairCode == 'iota_usdt': # count = round(random.uniform(0.001, data['tradePair']['iota_usdtMaxCount']), 3) # elif tradePairCode == 'eth_btc': # count = round(random.uniform(0.001, data['tradePair']['eth_btcMaxCount']), 3) # elif tradePairCode == 'xrp_btc': # count = round(random.uniform(0.001, data['tradePair']['xrp_btcMaxCount']), 3) # elif tradePairCode == 'bch_btc': # count = round(random.uniform(0.001, data['tradePair']['bch_btcMaxCount']), 3) # elif tradePairCode == 'eos_btc': # count = round(random.uniform(0.001, data['tradePair']['eos_btcMaxCount']), 3) # elif tradePairCode == 'ltc_btc': # count = round(random.uniform(0.001, data['tradePair']['ltc_btcMaxCount']), 3) # elif tradePairCode == 'ada_btc': # count = round(random.uniform(0.001, data['tradePair']['ada_btcMaxCount']), 3) # elif tradePairCode == 'xlm_btc': # count = round(random.uniform(0.001, data['tradePair']['xlm_btcMaxCount']), 3) # elif tradePairCode == 'iota_btc': # count = round(random.uniform(0.001, data['tradePair']['iota_btcMaxCount']), 3) # elif tradePairCode == 'xrp_eth': # count = round(random.uniform(0.001, data['tradePair']['xrp_ethMaxCount']), 3) # elif tradePairCode == 'eos_eth': # count = round(random.uniform(0.001, data['tradePair']['eos_ethMaxCount']), 3) # elif tradePairCode == 'ltc_eth': # count = round(random.uniform(0.001, data['tradePair']['ltc_ethMaxCount']), 3) # elif tradePairCode == 'ada_eth': # count = round(random.uniform(0.001, data['tradePair']['ada_ethMaxCount']), 3) # elif tradePairCode == 'xlm_eth': # count = round(random.uniform(0.001, data['tradePair']['xlm_ethMaxCount']), 3) # elif tradePairCode == 'iota_eth': # count = round(random.uniform(0.001, data['tradePair']['iota_ethMaxCount']), 3) chip_order_headers = {"content-type":"application/json","access_token":access_token} order_data = { "direction":"sell", "orderType":'100', "price":price, "count":count, "tradePairCode":tradePairCode } sell_request = requests.post(url_order, headers=chip_order_headers, json=order_data) #print(up_buy_request.text) logging.info(u"交易币对: %s 用户:%s 挂【卖】单的价格:%s 挂【卖】单的数量:%s" % (tradePairCode.upper(),email.split('@')[0],price,count)+u" 状态:"+sell_request.json()['msg']) return sell_request #挂单 def takeOrder(orderType,price,count,url_order,access_token): chip_order_headers = {"content-type":"application/json","access_token":access_token} order_data = { "direction":orderType, "orderType":'200', "price":price, "count":count, "tradePairCode":"btc_usdt" } request = requests.post(url_order, headers=chip_order_headers, json=order_data) return request #撤单 def cancelOrder(url_cancel,orderId,remark,access_token): cancel_headers = {"content-type":"application/json","access_token":access_token} order_data = { "orderId":orderId, "remark":remark } cancel_request = requests.post(url_cancel, headers=cancel_headers, json=order_data) return cancel_request def batchBuyOrder(price,count,url_order,access_token): return def batchSellOrder(price,count,url_order,access_token): return
[ "xuxuan@lanlingdai.net" ]
xuxuan@lanlingdai.net
9adea1167d1ab7652373a420618b940fa3669dac
96721554b1da5a4ccf8c3b0c88c06d0f6d79a6b1
/scripts/conversion_hosts/virt-v2v-wrapper.py
dcf5c9bb5c08271ca04de79e4973e42c3f3e7937
[ "Apache-2.0" ]
permissive
jthadden/RHS-Infrastructure_Migration
7ab55f3d97ceef69f5830c4e17b2d66c186c9a8e
dc638868b00cdbfe5635f8e4cb4bbf9381efb6ed
refs/heads/master
2020-04-09T17:47:40.017291
2018-11-20T07:45:58
2018-11-20T07:45:58
160,491,413
0
0
Apache-2.0
2018-12-05T09:13:18
2018-12-05T09:13:18
null
UTF-8
Python
false
false
28,974
py
#!/usr/bin/python2 # # Copyright (c) 2018 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from contextlib import contextmanager import json import logging import os import pycurl import re import signal import sys import tempfile import time import ovirtsdk4 as sdk import six from urlparse import urlparse if six.PY2: import subprocess32 as subprocess DEVNULL = open(os.devnull, 'r+') else: import subprocess xrange = range DEVNULL = subprocess.DEVNULL # Wrapper version VERSION = "6" LOG_LEVEL = logging.DEBUG STATE_DIR = '/tmp' TIMEOUT = 300 VDSM_LOG_DIR = '/var/log/vdsm/import' VDSM_MOUNTS = '/rhev/data-center/mnt' VDSM_UID = 36 VDSM_CA = '/etc/pki/vdsm/certs/cacert.pem' # For now there are limited possibilities in how we can select allocation type # and format. The best thing we can do now is to base the allocation on type of # target storage domain. PREALLOCATED_STORAGE_TYPES = ( sdk.types.StorageType.CINDER, sdk.types.StorageType.FCP, sdk.types.StorageType.GLUSTERFS, sdk.types.StorageType.ISCSI, sdk.types.StorageType.POSIXFS, ) # Tweaks VDSM = True # We cannot use the libvirt backend in virt-v2v and have to use direct backend # for several reasons: # - it is necessary on oVirt host when running as root; and we need to run as # root when using export domain as target (we use vdsm user for other # targets) # - SSH transport method cannot be used with libvirt because it does not pass # SSH_AUTH_SOCK env. variable to the QEMU process DIRECT_BACKEND = True def error(msg): """ Function to produce an error and terminate the wrapper. WARNING: This can be used only at the early initialization stage! Do NOT use this once the password files are written or there are any other temporary data that should be removed at exit. This function uses sys.exit() which overcomes the code responsible for removing the files. """ logging.error(msg) sys.stderr.write(msg) sys.exit(1) def make_vdsm(data): """Makes sure the process runs as vdsm user""" uid = os.geteuid() if uid == VDSM_UID: # logging.debug('Already running as vdsm user') return elif uid == 0: # We need to drop privileges and become vdsm user, but we also need the # proper environment for the user which is tricky to get. The best # thing we can do is spawn another instance. Unfortunately we have # already read the data from stdin. # logging.debug('Starting instance as vdsm user') cmd = '/usr/bin/sudo' args = [cmd, '-u', 'vdsm'] args.extend(sys.argv) wrapper = subprocess.Popen(args, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) out, err = wrapper.communicate(json.dumps(data)) # logging.debug('vdsm instance finished') sys.stdout.write(out) sys.stderr.write(err) # logging.debug('Terminating root instance') sys.exit(wrapper.returncode) sys.stderr.write('Need to run as vdsm user or root!\n') sys.exit(1) def daemonize(): """Properly deamonizes the process and closes file desriptors.""" sys.stderr.flush() sys.stdout.flush() pid = os.fork() if pid != 0: # Nothing more to do for the parent sys.exit(0) os.setsid() pid = os.fork() if pid != 0: # Nothing more to do for the parent sys.exit(0) os.umask(0) os.chdir('/') dev_null = open('/dev/null', 'w') os.dup2(dev_null.fileno(), sys.stdin.fileno()) os.dup2(dev_null.fileno(), sys.stdout.fileno()) os.dup2(dev_null.fileno(), sys.stderr.fileno()) # Re-initialize cURL. This is necessary to re-initialze the PKCS #11 # security tokens in NSS. Otherwise any use of SDK after the fork() would # lead to the error: # # A PKCS #11 module returned CKR_DEVICE_ERROR, indicating that a # problem has occurred with the token or slot. # pycurl.global_cleanup() pycurl.global_init(pycurl.GLOBAL_ALL) class OutputParser(object): COPY_DISK_RE = re.compile(br'.*Copying disk (\d+)/(\d+) to.*') DISK_PROGRESS_RE = re.compile(br'\s+\((\d+\.\d+)/100%\)') NBDKIT_DISK_PATH_RE = re.compile( br'nbdkit: debug: Opening file (.*) \(.*\)') OVERLAY_SOURCE_RE = re.compile( br' *overlay source qemu URI: json:.*"file\.path": ?"([^"]+)"') VMDK_PATH_RE = re.compile( br'/vmfs/volumes/(?P<store>[^/]*)/(?P<vm>[^/]*)/' + br'(?P<disk>.*)(-flat)?\.vmdk') RHV_DISK_UUID = re.compile(br'disk\.id = \'(?P<uuid>[a-fA-F0-9-]*)\'') def __init__(self, v2v_log): self._log = open(v2v_log, 'rbU') self._current_disk = None self._current_path = None def parse(self, state): line = None while line != b'': line = self._log.readline() m = self.COPY_DISK_RE.match(line) if m is not None: try: self._current_disk = int(m.group(1))-1 self._current_path = None state['disk_count'] = int(m.group(2)) logging.info('Copying disk %d/%d', self._current_disk+1, state['disk_count']) if state['disk_count'] != len(state['disks']): logging.warning( 'Number of supplied disk paths (%d) does not match' ' number of disks in VM (%s)', len(state['disks']), state['disk_count']) except ValueError: logging.exception('Conversion error') # VDDK m = self.NBDKIT_DISK_PATH_RE.match(line) if m is not None: self._current_path = m.group(1).decode() if self._current_disk is not None: logging.info('Copying path: %s', self._current_path) self._locate_disk(state) # SSH m = self.OVERLAY_SOURCE_RE.match(line) if m is not None: path = m.group(1).decode() # Transform path to be raltive to storage self._current_path = self.VMDK_PATH_RE.sub( br'[\g<store>] \g<vm>/\g<disk>', path) if self._current_disk is not None: logging.info('Copying path: %s', self._current_path) self._locate_disk(state) m = self.DISK_PROGRESS_RE.match(line) if m is not None: if self._current_path is not None and \ self._current_disk is not None: try: state['disks'][self._current_disk]['progress'] = \ float(m.group(1)) logging.debug('Updated progress: %s', m.group(1)) except ValueError: logging.exception('Conversion error') else: logging.debug('Skipping progress update for unknown disk') m = self.RHV_DISK_UUID.match(line) if m is not None: path = state['disks'][self._current_disk]['path'] disk_id = m.group('uuid') state['internal']['disk_ids'][path] = disk_id logging.debug('Path \'%s\' has disk id=\'%s\'', path, disk_id) return state def close(self): self._log.close() def _locate_disk(self, state): if self._current_disk is None: # False alarm, not copying yet return # NOTE: We assume that _current_disk is monotonic for i in xrange(self._current_disk, len(state['disks'])): if state['disks'][i]['path'] == self._current_path: if i == self._current_disk: # We have correct index logging.debug('Found path at correct index') else: # Move item to current index logging.debug('Moving path from index %d to %d', i, self._current_disk) d = state['disks'].pop(i) state['disks'].insert(self._current_disk, d) return # Path not found logging.debug('Path \'%s\' not found in %r', self._current_path, state['disks']) state['disks'].insert( self._current_disk, { 'path': self._current_path, 'progress': 0, }) @contextmanager def log_parser(v2v_log): parser = None try: parser = OutputParser(v2v_log) yield parser finally: if parser is not None: parser.close() @contextmanager def sdk_connection(data): connection = None url = urlparse(data['rhv_url']) username = url.username if url.username is not None else 'admin@internal' try: insecure = data['insecure_connection'] connection = sdk.Connection( url=str(data['rhv_url']), username=str(username), password=str(data['rhv_password']), ca_file=str(data['rhv_cafile']), log=logging.getLogger(), insecure=insecure, ) yield connection finally: if connection is not None: connection.close() def is_iso_domain(path): """ Check if domain is ISO domain. @path is path to domain metadata file """ try: logging.debug('is_iso_domain check for %s', path) with open(path, 'r') as f: for line in f: if line.rstrip() == 'CLASS=Iso': return True except OSError: logging.exception('Failed to read domain metadata') except IOError: logging.exception('Failed to read domain metadata') return False def find_iso_domain(): """ Find path to the ISO domain from available domains mounted on host """ if not os.path.isdir(VDSM_MOUNTS): logging.error('Cannot find RHV domains') return None for sub in os.walk(VDSM_MOUNTS): if 'dom_md' in sub[1]: # This looks like a domain so focus on metadata only try: del sub[1][sub[1].index('master')] except ValueError: pass try: del sub[1][sub[1].index('images')] except ValueError: pass continue if 'blockSD' in sub[1]: # Skip block storage domains, we don't support ISOs there del sub[1][sub[1].index('blockSD')] if 'metadata' in sub[2] and \ os.path.basename(sub[0]) == 'dom_md' and \ is_iso_domain(os.path.join(sub[0], 'metadata')): return os.path.join( os.path.dirname(sub[0]), 'images', '11111111-1111-1111-1111-111111111111') return None def write_state(state): state = state.copy() del state['internal'] with open(state_file, 'w') as f: json.dump(state, f) def wrapper(data, state, v2v_log, agent_sock=None): v2v_args = [ '/usr/bin/virt-v2v', '-v', '-x', data['vm_name'], '-of', data['output_format'], '--bridge', 'ovirtmgmt', '--root', 'first' ] if data['transport_method'] == 'vddk': v2v_args.extend([ '-i', 'libvirt', '-ic', data['vmware_uri'], '-it', 'vddk', '-io', 'vddk-libdir=%s' % '/opt/vmware-vix-disklib-distrib', '-io', 'vddk-thumbprint=%s' % data['vmware_fingerprint'], '--password-file', data['vmware_password_file'], ]) elif data['transport_method'] == 'ssh': v2v_args.extend([ '-i', 'vmx', '-it', 'ssh', ]) if 'rhv_url' in data: v2v_args.extend([ '-o', 'rhv-upload', '-oc', data['rhv_url'], '-os', data['rhv_storage'], '-op', data['rhv_password_file'], '-oo', 'rhv-cafile=%s' % data['rhv_cafile'], '-oo', 'rhv-cluster=%s' % data['rhv_cluster'], '-oo', 'rhv-direct', ]) if data['insecure_connection']: v2v_args.extend(['-oo', 'rhv-verifypeer=%s' % ('false' if data['insecure_connection'] else 'true')]) elif 'export_domain' in data: v2v_args.extend([ '-o', 'rhv', '-os', data['export_domain'], ]) if 'allocation' in data: v2v_args.extend([ '-oa', data['allocation'] ]) if 'network_mappings' in data: for mapping in data['network_mappings']: v2v_args.extend(['--bridge', '%s:%s' % (mapping['source'], mapping['destination'])]) # Prepare environment env = os.environ.copy() env['LANG'] = 'C' if DIRECT_BACKEND: logging.debug('Using direct backend. Hack, hack...') env['LIBGUESTFS_BACKEND'] = 'direct' if 'virtio_win' in data: env['VIRTIO_WIN'] = data['virtio_win'] if agent_sock is not None: env['SSH_AUTH_SOCK'] = agent_sock proc = None with open(v2v_log, 'w') as log: logging.info('Starting virt-v2v as: %r, environment: %r', v2v_args, env) proc = subprocess.Popen( v2v_args, stdin=DEVNULL, stderr=subprocess.STDOUT, stdout=log, env=env, ) try: state['started'] = True state['pid'] = proc.pid write_state(state) with log_parser(v2v_log) as parser: while proc.poll() is None: state = parser.parse(state) write_state(state) time.sleep(5) logging.info('virt-v2v terminated with return code %d', proc.returncode) state = parser.parse(state) except Exception: logging.exception('Error while monitoring virt-v2v') if proc.poll() is None: logging.info('Killing virt-v2v process') proc.kill() state['return_code'] = proc.returncode write_state(state) if proc.returncode != 0: state['failed'] = True write_state(state) def write_password(password, password_files): pfile = tempfile.mkstemp(suffix='.v2v') password_files.append(pfile[1]) os.write(pfile[0], bytes(password.encode('utf-8'))) os.close(pfile[0]) return pfile[1] def spawn_ssh_agent(data): try: out = subprocess.check_output(['ssh-agent']) logging.debug('ssh-agent: %s' % out) sock = re.search(br'^SSH_AUTH_SOCK=([^;]+);', out, re.MULTILINE) pid = re.search(br'^echo Agent pid ([0-9]+);', out, re.MULTILINE) if not sock or not pid: logging.error( 'Incomplete match of ssh-agent output; sock=%r; pid=%r', sock, pid) return None, None agent_sock = sock.group(1).decode() agent_pid = int(pid.group(1)) logging.info('SSH Agent started with PID %d', agent_pid) except subprocess.CalledProcessError: logging.error('Failed to start ssh-agent') return None, None env = os.environ.copy() env['SSH_AUTH_SOCK'] = agent_sock cmd = ['ssh-add'] if 'ssh_key_file' in data: logging.info('Using custom SSH key') cmd.append(data['ssh_key_file']) else: logging.info('Using SSH key(s) from ~/.ssh') ret_code = subprocess.call(cmd, env=env) if ret_code != 0: logging.error('Failed to add SSH keys to the agent! ssh-add' ' terminated with return code %d', ret_code) os.kill(agent_pid, signal.SIGTERM) return None, None return agent_pid, agent_sock def check_install_drivers(data): if 'virtio_win' in data and os.path.isabs(data['virtio_win']): full_path = data['virtio_win'] else: iso_domain = find_iso_domain() iso_name = data.get('virtio_win') if iso_name is not None: if iso_domain is None: error('ISO domain not found') else: if iso_domain is None: # This is not an error logging.warning('ISO domain not found' + ' (but install_drivers is true).') data['install_drivers'] = False return # (priority, pattern) patterns = [ (4, br'RHV-toolsSetup_([0-9._]+)\.iso'), (3, br'RHEV-toolsSetup_([0-9._]+)\.iso'), (2, br'oVirt-toolsSetup_([a-z0-9._-]+)\.iso'), (1, br'virtio-win-([0-9.]+).iso'), ] patterns = [(p[0], re.compile(p[1], re.IGNORECASE)) for p in patterns] best_name = None best_version = None best_priority = -1 for fname in os.listdir(iso_domain): if not os.path.isfile(os.path.join(iso_domain, fname)): continue for priority, pat in patterns: m = pat.match(fname) if not m: continue version = m.group(1) logging.debug('Matched ISO %r (priority %d)', fname, priority) if best_version is None or \ (best_version < version and best_priority <= priority): best_name = fname best_version = version if best_name is None: # Nothing found, this is not an error logging.warn('Could not find any ISO with drivers' + ' (but install_drivers is true).') data['install_drivers'] = False return iso_name = best_name full_path = os.path.join(iso_domain, iso_name) if not os.path.isfile(full_path): error("'virtio_win' must be a path or file name of image in " "ISO domain") data['virtio_win'] = full_path logging.info("virtio_win (re)defined as: %s", data['virtio_win']) def handle_cleanup(data, state): with sdk_connection(data) as conn: disks_service = conn.system_service().disks_service() transfers_service = conn.system_service().image_transfers_service() disk_ids = state['internal']['disk_ids'].values() # First stop all active transfers... try: transfers = transfers_service.list() transfers = [t for t in transfers if t.image.id in disk_ids] if len(transfers) == 0: logging.debug('No active transfers to cancel') for transfer in transfers: logging.info('Canceling transfer id=%s for disk=%s', transfer.id, transfer.image.id) transfer_service = transfers_service.image_transfer_service( transfer.id) transfer_service.cancel() # The incomplete disk will be removed automatically disk_ids.remove(transfer.image.id) except sdk.Error: logging.exception('Failed to cancel transfers') # ... then delete the uploaded disks logging.info('Removing disks: %r', disk_ids) endt = time.time() + TIMEOUT while len(disk_ids) > 0: for disk_id in disk_ids: try: disk_service = disks_service.disk_service(disk_id) disk = disk_service.get() if disk.status != sdk.types.DiskStatus.OK: continue logging.info('Removing disk id=%s', disk_id) disk_service.remove() disk_ids.remove(disk_id) except sdk.Error: logging.exception('Failed to remove disk id=%s', disk_id) if time.time() > endt: logging.error('Timed out waiting for disks: %r', disk_ids) break time.sleep(1) ########### # Read and parse input -- hopefully this should be safe to do as root data = json.load(sys.stdin) # NOTE: this is just pre-check to find out whether we can run as vdsm user at # all. This is not validation of the input data! if 'export_domain' in data: # Need to be root to mount NFS share VDSM = False # Cannot use libvirt backend as root on VDSM host due to permissions DIRECT_BACKEND = True if VDSM: make_vdsm(data) # The logging is delayed after we now which user runs the wrapper. Otherwise we # would have two logs. log_tag = '%s-%d' % (time.strftime('%Y%m%dT%H%M%S'), os.getpid()) v2v_log = os.path.join(VDSM_LOG_DIR, 'v2v-import-%s.log' % log_tag) wrapper_log = os.path.join(VDSM_LOG_DIR, 'v2v-import-%s-wrapper.log' % log_tag) state_file = os.path.join(STATE_DIR, 'v2v-import-%s.state' % log_tag) logging.basicConfig( level=LOG_LEVEL, filename=wrapper_log, format='%(asctime)s:%(levelname)s: %(message)s (%(module)s:%(lineno)d)') logging.info('Wrapper version %s, uid=%d', VERSION, os.getuid()) logging.info('Will store virt-v2v log in: %s', v2v_log) logging.info('Will store state file in: %s', state_file) password_files = [] try: # Make sure all the needed keys are in data. This is rather poor # validation, but... if 'vm_name' not in data: error('Missing vm_name') # Output file format (raw or qcow2) if 'output_format' in data: if data['output_format'] not in ('raw', 'qcow2'): error('Invalid output format %r, expected raw or qcow2' % data['output_format']) else: data['output_format'] = 'raw' # Transports (only VDDK for now) if 'transport_method' not in data: error('No transport method specified') if data['transport_method'] not in ('ssh', 'vddk'): error('Unknown transport method: %s', data['transport_method']) if data['transport_method'] == 'vddk': for k in [ 'vmware_fingerprint', 'vmware_uri', 'vmware_password', ]: if k not in data: error('Missing argument: %s' % k) # Targets (only export domain for now) if 'rhv_url' in data: for k in [ 'rhv_cluster', 'rhv_password', 'rhv_storage', ]: if k not in data: error('Missing argument: %s' % k) if 'rhv_cafile' not in data: logging.info('Path to CA certificate not specified,' ' trying VDSM default: %s', VDSM_CA) data['rhv_cafile'] = VDSM_CA elif 'export_domain' in data: pass else: error('No target specified') # Network mappings if 'network_mappings' in data: if isinstance(data['network_mappings'], list): for mapping in data['network_mappings']: if not all(k in mapping for k in ("source", "destination")): error("Both 'source' and 'destination' must be provided" + " in network mapping") else: error("'network_mappings' must be an array") # Virtio drivers if 'virtio_win' in data: # This is for backward compatibility data['install_drivers'] = True if 'install_drivers' in data: check_install_drivers(data) else: data['install_drivers'] = False # Insecure connection if 'insecure_connection' not in data: data['insecure_connection'] = False if data['insecure_connection']: logging.info('SSL verification is disabled for oVirt SDK connections') # Allocation type if 'allocation' in data: if data['allocation'] not in ('preallocated', 'sparse'): error('Invalid value for allocation type: %r' % data['allocation']) else: # Check storage domain type and decide on suitable allocation type # Note: This is only temporary. We should get the info from the caller # in the future. domain_type = None with sdk_connection(data) as c: service = c.system_service().storage_domains_service() domains = service.list(search='name="%s"' % str(data['rhv_storage'])) if len(domains) != 1: error('Found %d domains matching "%s"!' % data['rhv_storage']) domain_type = domains[0].storage.type logging.info('Storage domain "%s" is of type %r', data['rhv_storage'], domain_type) data['allocation'] = 'sparse' if domain_type in PREALLOCATED_STORAGE_TYPES: data['allocation'] = 'preallocated' logging.info('... selected allocation type is %s', data['allocation']) # # NOTE: don't use error() beyond this point! # # Store password(s) logging.info('Writing password file(s)') if 'vmware_password' in data: data['vmware_password_file'] = write_password(data['vmware_password'], password_files) if 'rhv_password' in data: data['rhv_password_file'] = write_password(data['rhv_password'], password_files) if 'ssh_key' in data: data['ssh_key_file'] = write_password(data['ssh_key'], password_files) # Create state file before dumping the JSON state = { 'disks': [], 'internal': { 'disk_ids': {}, }, } try: if 'source_disks' in data: logging.debug('Initializing disk list from %r', data['source_disks']) for d in data['source_disks']: state['disks'].append({ 'path': d, 'progress': 0}) state['disk_count'] = len(data['source_disks']) write_state(state) # Send some useful info on stdout in JSON print(json.dumps({ 'v2v_log': v2v_log, 'wrapper_log': wrapper_log, 'state_file': state_file, })) # Let's get to work logging.info('Daemonizing') daemonize() agent_pid = None agent_sock = None if data['transport_method'] == 'ssh': agent_pid, agent_sock = spawn_ssh_agent(data) if agent_pid is None: raise RuntimeError('Failed to start ssh-agent') wrapper(data, state, v2v_log, agent_sock) if agent_pid is not None: os.kill(agent_pid, signal.SIGTERM) except Exception: # No need to log the exception, it will get logged below logging.error('An error occured, finishing state file...') state['failed'] = True write_state(state) raise finally: if 'failed' in state: # Perform cleanup after failed conversion logging.debug('Cleanup phase') try: handle_cleanup(data, state) finally: state['finished'] = True write_state(state) # Remove password files logging.info('Removing password files') for f in password_files: try: os.remove(f) except OSError: logging.exception('Error while removing password file: %s' % f) state['finished'] = True write_state(state) except Exception: logging.exception('Wrapper failure') # Remove password files logging.info('Removing password files') for f in password_files: try: os.remove(f) except OSError: logging.exception('Error removing password file: %s' % f) # Re-raise original error raise logging.info('Finished')
[ "mperezco@redhat.com" ]
mperezco@redhat.com
5e9625f39b845f6d5fc10816f8c8718226a23d79
82470c6c4819f8b874c92b2e036c6bb6dd1d365b
/features/steps/product_page_select_departmen.py
ac373b24adf88e943ffbfa1f09c85fb49c2b9ed2
[]
no_license
lion7500000/python-selenium-automation
87589891211bf327bffda50134c4da918709fd2b
a2f3701661ddf713edb9750150a97e7cd8adb967
refs/heads/master
2021-08-08T10:16:44.644725
2021-07-29T03:10:54
2021-07-29T03:10:54
210,194,357
0
0
null
2019-09-22T18:23:33
2019-09-22T18:23:32
null
UTF-8
Python
false
false
971
py
from selenium.webdriver.common.by import By from behave import then, when @when ('Select Books department') def select_department(context): context.app.menu_page.select_books_department() @when ('Select Amazon Fresh department') def select_department(context): context.app.menu_page.select_amazon_fresh_department() @when ('Search for {text}') def input_search_text_in_select_departmen(context,text): context.app.menu_page.input_search_text_in_select_departmen(text) @when( 'Search product {text}' ) def input_search_text_in_select_departmen(context, text): context.app.menu_page.input_search_text_in_select_departmen( text ) @then ('{departmen} department is selected') def verify_select_departmen(context,departmen): context.app.menu_page.verify_select_departmen(departmen) @then ('{departmen} department is selected in departmen') def verify_select_departmen(context,departmen): context.app.menu_page.verify_select_departmen(departmen)
[ "lion7500000@gmail.com" ]
lion7500000@gmail.com
64fae846bf8afbc0467465427c8d3fdc5bb020dd
7328d17dad85fc1607d506321a1d6bdfa2f76c5c
/implicit fields/IMGAN/model.py
04b28a14970fa00ca1e86b98a5ed50c3cfa524d7
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
Xemnas0/3d-shape-reconstruction
5cfcbb45ac2eaaf31d01c18fead983acb74f83fb
9f01f3071b7b7a266629fe2e70e796ee332b5436
refs/heads/master
2020-07-28T21:31:28.294418
2019-12-23T10:14:00
2019-12-23T10:14:00
209,544,611
0
0
null
null
null
null
UTF-8
Python
false
false
27,004
py
import os import sys import time import math from glob import glob import tensorflow as tf import numpy as np import h5py import cv2 import mcubes from tqdm import tqdm, trange from ops import * class IMAE(object): def __init__(self, sess, real_size, batch_size_input, is_training=False, z_dim=128, ef_dim=32, gf_dim=128, dataset_name='default', checkpoint_dir=None, sample_dir=None, data_dir='./data'): """ Args: too lazy to explain """ self.sess = sess # progressive training # 1-- (16, 16*16*16) # 2-- (32, 16*16*16*2) # 3-- (64, 32*32*32) # 4-- (128, 32*32*32*4) self.real_size = real_size # output point-value voxel grid size in training self.batch_size_input = batch_size_input # training batch size (virtual, batch_size is the real batch_size) self.batch_size = 16 * 16 * 16 * 4 # adjust batch_size according to gpu memory size in training if self.batch_size_input < self.batch_size: self.batch_size = self.batch_size_input self.input_size = 64 # input voxel grid size self.z_dim = z_dim self.ef_dim = ef_dim self.gf_dim = gf_dim self.dataset_name = dataset_name self.checkpoint_dir = checkpoint_dir self.data_dir = data_dir if os.path.exists(self.data_dir + '/' + self.dataset_name + '.hdf5'): self.data_dict = h5py.File(self.data_dir + '/' + self.dataset_name + '.hdf5', 'r') self.data_points = self.data_dict['points_' + str(self.real_size)][:] self.data_values = self.data_dict['values_' + str(self.real_size)][:] self.data_voxels = self.data_dict['voxels'][:] if self.batch_size_input != self.data_points.shape[1]: print("error: batch_size!=data_points.shape") exit(0) if self.input_size != self.data_voxels.shape[1]: print("error: input_size!=data_voxels.shape") exit(0) else: if is_training: print("error: cannot load " + self.data_dir + '/' + self.dataset_name + '.hdf5') exit(0) else: print("warning: cannot load " + self.data_dir + '/' + self.dataset_name + '.hdf5') if not is_training: self.real_size = 64 # output point-value voxel grid size in testing self.test_size = 32 # related to testing batch_size, adjust according to gpu memory size self.batch_size = self.test_size * self.test_size * self.test_size # do not change # get coords dima = self.test_size dim = self.real_size self.aux_x = np.zeros([dima, dima, dima], np.uint8) self.aux_y = np.zeros([dima, dima, dima], np.uint8) self.aux_z = np.zeros([dima, dima, dima], np.uint8) multiplier = int(dim / dima) multiplier2 = multiplier * multiplier multiplier3 = multiplier * multiplier * multiplier for i in range(dima): for j in range(dima): for k in range(dima): self.aux_x[i, j, k] = i * multiplier self.aux_y[i, j, k] = j * multiplier self.aux_z[i, j, k] = k * multiplier self.coords = np.zeros([multiplier3, dima, dima, dima, 3], np.float32) for i in range(multiplier): for j in range(multiplier): for k in range(multiplier): self.coords[i * multiplier2 + j * multiplier + k, :, :, :, 0] = self.aux_x + i self.coords[i * multiplier2 + j * multiplier + k, :, :, :, 1] = self.aux_y + j self.coords[i * multiplier2 + j * multiplier + k, :, :, :, 2] = self.aux_z + k self.coords = (self.coords + 0.5) / dim * 2.0 - 1.0 self.coords = np.reshape(self.coords, [multiplier3, self.batch_size, 3]) self.build_model() def build_model(self): self.vox3d = tf.placeholder(shape=[1, self.input_size, self.input_size, self.input_size, 1], dtype=tf.float32) self.z_vector = tf.placeholder(shape=[1, self.z_dim], dtype=tf.float32) self.point_coord = tf.placeholder(shape=[self.batch_size, 3], dtype=tf.float32) self.point_value = tf.placeholder(shape=[self.batch_size, 1], dtype=tf.float32) self.E = self.encoder(self.vox3d, phase_train=True, reuse=False) self.G = self.generator(self.point_coord, self.E, phase_train=True, reuse=False) self.sE = self.encoder(self.vox3d, phase_train=False, reuse=True) self.sG = self.generator(self.point_coord, self.sE, phase_train=False, reuse=True) self.zG = self.generator(self.point_coord, self.z_vector, phase_train=False, reuse=True) self.loss = tf.reduce_mean(tf.square(self.point_value - self.G)) self.saver = tf.train.Saver(max_to_keep=10) def generator(self, points, z, phase_train=True, reuse=False): with tf.variable_scope("simple_net") as scope: if reuse: scope.reuse_variables() zs = tf.tile(z, [self.batch_size, 1]) pointz = tf.concat([points, zs], 1) print("pointz", pointz.shape) h1 = lrelu(linear(pointz, self.gf_dim * 16, 'h1_lin')) h1 = tf.concat([h1, pointz], 1) h2 = lrelu(linear(h1, self.gf_dim * 8, 'h4_lin')) h2 = tf.concat([h2, pointz], 1) h3 = lrelu(linear(h2, self.gf_dim * 4, 'h5_lin')) h3 = tf.concat([h3, pointz], 1) h4 = lrelu(linear(h3, self.gf_dim * 2, 'h6_lin')) h4 = tf.concat([h4, pointz], 1) h5 = lrelu(linear(h4, self.gf_dim, 'h7_lin')) h6 = tf.nn.sigmoid(linear(h5, 1, 'h8_lin')) return tf.reshape(h6, [self.batch_size, 1]) def encoder(self, inputs, phase_train=True, reuse=False): with tf.variable_scope("encoder") as scope: if reuse: scope.reuse_variables() d_1 = conv3d(inputs, shape=[4, 4, 4, 1, self.ef_dim], strides=[1, 2, 2, 2, 1], scope='conv_1') d_1 = lrelu(batch_norm(d_1, phase_train)) d_2 = conv3d(d_1, shape=[4, 4, 4, self.ef_dim, self.ef_dim * 2], strides=[1, 2, 2, 2, 1], scope='conv_2') d_2 = lrelu(batch_norm(d_2, phase_train)) d_3 = conv3d(d_2, shape=[4, 4, 4, self.ef_dim * 2, self.ef_dim * 4], strides=[1, 2, 2, 2, 1], scope='conv_3') d_3 = lrelu(batch_norm(d_3, phase_train)) d_4 = conv3d(d_3, shape=[4, 4, 4, self.ef_dim * 4, self.ef_dim * 8], strides=[1, 2, 2, 2, 1], scope='conv_4') d_4 = lrelu(batch_norm(d_4, phase_train)) d_5 = conv3d(d_4, shape=[4, 4, 4, self.ef_dim * 8, self.z_dim], strides=[1, 1, 1, 1, 1], scope='conv_5', padding="VALID") d_5 = tf.nn.sigmoid(d_5) return tf.reshape(d_5, [1, self.z_dim]) def train(self, config): ae_optim = tf.train.AdamOptimizer(config.learning_rate, beta1=config.beta1).minimize(self.loss) self.sess.run(tf.global_variables_initializer()) batch_idxs = len(self.data_points) batch_index_list = np.arange(batch_idxs) batch_num = int(self.batch_size_input / self.batch_size) if self.batch_size_input % self.batch_size != 0: print("batch_size_input % batch_size != 0") exit(0) counter = 0 start_time = time.time() could_load, checkpoint_counter = self.load(self.checkpoint_dir) if could_load: counter = checkpoint_counter + 1 print(" [*] Load SUCCESS") else: print(" [!] Load failed...") for epoch in range(counter, config.epoch): np.random.shuffle(batch_index_list) avg_loss = 0 avg_num = 0 pbar = tqdm(range(0, batch_idxs)) for idx in pbar: for minib in range(batch_num): dxb = batch_index_list[idx] batch_voxels = self.data_voxels[dxb:dxb + 1] batch_points_int = self.data_points[dxb, minib * self.batch_size:(minib + 1) * self.batch_size] batch_points = (batch_points_int + 0.5) / self.real_size * 2.0 - 1.0 batch_values = self.data_values[dxb, minib * self.batch_size:(minib + 1) * self.batch_size] # Update AE network _, errAE = self.sess.run([ae_optim, self.loss], feed_dict={ self.vox3d: batch_voxels, self.point_coord: batch_points, self.point_value: batch_values, }) avg_loss += errAE avg_num += 1 if (idx % 16 == 0): pbar.set_description("Epoch: [%2d/%2d] [%4d/%4d] time: %4.4f, loss: %.8f, avgloss: %.8f" % ( epoch, config.epoch, idx, batch_idxs, time.time() - start_time, errAE, avg_loss / avg_num)) if idx == batch_idxs - 1: model_float = np.zeros([self.real_size, self.real_size, self.real_size], np.float32) real_model_float = np.zeros([self.real_size, self.real_size, self.real_size], np.float32) for minib in range(batch_num): dxb = batch_index_list[idx] batch_voxels = self.data_voxels[dxb:dxb + 1] batch_points_int = self.data_points[dxb, minib * self.batch_size:(minib + 1) * self.batch_size] batch_points = (batch_points_int + 0.5) / self.real_size * 2.0 - 1.0 batch_values = self.data_values[dxb, minib * self.batch_size:(minib + 1) * self.batch_size] model_out = self.sess.run(self.sG, feed_dict={ self.vox3d: batch_voxels, self.point_coord: batch_points, }) model_float[ batch_points_int[:, 0], batch_points_int[:, 1], batch_points_int[:, 2]] = np.reshape( model_out, [self.batch_size]) real_model_float[ batch_points_int[:, 0], batch_points_int[:, 1], batch_points_int[:, 2]] = np.reshape( batch_values, [self.batch_size]) img1 = np.clip(np.amax(model_float, axis=0) * 256, 0, 255).astype(np.uint8) img2 = np.clip(np.amax(model_float, axis=1) * 256, 0, 255).astype(np.uint8) img3 = np.clip(np.amax(model_float, axis=2) * 256, 0, 255).astype(np.uint8) cv2.imwrite(config.sample_dir + "/" + str(epoch) + "_1t.png", img1) cv2.imwrite(config.sample_dir + "/" + str(epoch) + "_2t.png", img2) cv2.imwrite(config.sample_dir + "/" + str(epoch) + "_3t.png", img3) img1 = np.clip(np.amax(real_model_float, axis=0) * 256, 0, 255).astype(np.uint8) img2 = np.clip(np.amax(real_model_float, axis=1) * 256, 0, 255).astype(np.uint8) img3 = np.clip(np.amax(real_model_float, axis=2) * 256, 0, 255).astype(np.uint8) cv2.imwrite(config.sample_dir + "/" + str(epoch) + "_1i.png", img1) cv2.imwrite(config.sample_dir + "/" + str(epoch) + "_2i.png", img2) cv2.imwrite(config.sample_dir + "/" + str(epoch) + "_3i.png", img3) print("[sample]") if idx == batch_idxs - 1: self.save(config.checkpoint_dir, epoch) def test_interp(self, config): could_load, checkpoint_counter = self.load(self.checkpoint_dir) if could_load: print(" [*] Load SUCCESS") else: print(" [!] Load failed...") return interp_size = 8 idx1 = 0 idx2 = 3 batch_voxels1 = self.data_voxels[idx1:idx1 + 1] batch_voxels2 = self.data_voxels[idx2:idx2 + 1] model_z1 = self.sess.run(self.sE, feed_dict={ self.vox3d: batch_voxels1, }) model_z2 = self.sess.run(self.sE, feed_dict={ self.vox3d: batch_voxels2, }) batch_z = np.zeros([interp_size, self.z_dim], np.float32) for i in range(interp_size): batch_z[i] = model_z2 * i / (interp_size - 1) + model_z1 * (interp_size - 1 - i) / (interp_size - 1) dima = self.test_size dim = self.real_size multiplier = int(dim / dima) multiplier2 = multiplier * multiplier for t in range(interp_size): model_float = np.zeros([self.real_size + 2, self.real_size + 2, self.real_size + 2], np.float32) for i in range(multiplier): for j in range(multiplier): for k in range(multiplier): minib = i * multiplier2 + j * multiplier + k model_out = self.sess.run(self.zG, feed_dict={ self.z_vector: batch_z[t:t + 1], self.point_coord: self.coords[minib], }) model_float[self.aux_x + i + 1, self.aux_y + j + 1, self.aux_z + k + 1] = np.reshape(model_out, [ self.test_size, self.test_size, self.test_size]) img1 = np.clip(np.amax(model_float, axis=0) * 256, 0, 255).astype(np.uint8) img2 = np.clip(np.amax(model_float, axis=1) * 256, 0, 255).astype(np.uint8) img3 = np.clip(np.amax(model_float, axis=2) * 256, 0, 255).astype(np.uint8) cv2.imwrite(config.sample_dir + "/interp/" + str(t) + "_1t.png", img1) cv2.imwrite(config.sample_dir + "/interp/" + str(t) + "_2t.png", img2) cv2.imwrite(config.sample_dir + "/interp/" + str(t) + "_3t.png", img3) thres = 0.5 vertices, triangles = mcubes.marching_cubes(model_float, thres) # mcubes.export_mesh(vertices, triangles, config.sample_dir + "/interp/" + "out" + str(t) + ".dae", str(t)) mcubes.export_obj(vertices, triangles, config.sample_dir + "/interp/" + "out" + str(t) + ".obj") print("[sample interpolation]") def test(self, config): could_load, checkpoint_counter = self.load(self.checkpoint_dir) if could_load: print(" [*] Load SUCCESS") else: print(" [!] Load failed...") return dima = self.test_size dim = self.real_size multiplier = int(dim / dima) multiplier2 = multiplier * multiplier for t in range(16): model_float = np.zeros([self.real_size + 2, self.real_size + 2, self.real_size + 2], np.float32) batch_voxels = self.data_voxels[t:t + 1] for i in range(multiplier): for j in range(multiplier): for k in range(multiplier): minib = i * multiplier2 + j * multiplier + k model_out = self.sess.run(self.sG, feed_dict={ self.vox3d: batch_voxels, self.point_coord: self.coords[minib], }) model_float[self.aux_x + i + 1, self.aux_y + j + 1, self.aux_z + k + 1] = np.reshape(model_out, [ self.test_size, self.test_size, self.test_size]) img1 = np.clip(np.amax(model_float, axis=0) * 256, 0, 255).astype(np.uint8) img2 = np.clip(np.amax(model_float, axis=1) * 256, 0, 255).astype(np.uint8) img3 = np.clip(np.amax(model_float, axis=2) * 256, 0, 255).astype(np.uint8) cv2.imwrite(config.sample_dir + "/ae/" + str(t) + "_1t.png", img1) cv2.imwrite(config.sample_dir + "/ae/" + str(t) + "_2t.png", img2) cv2.imwrite(config.sample_dir + "/ae/" + str(t) + "_3t.png", img3) thres = 0.5 # Generated sample vertices, triangles = mcubes.marching_cubes(model_float, thres) # mcubes.export_mesh(vertices, triangles, config.sample_dir + "/" + "out" + str(t) + ".dae", str(t)) mcubes.export_obj(vertices, triangles, config.sample_dir + "/ae/" + "out" + str(t) + ".obj") # Original sample batch_voxels = batch_voxels[0, ..., 0] vertices, triangles = mcubes.marching_cubes(batch_voxels, thres) mcubes.export_obj(vertices, triangles, config.sample_dir + "/ae/" + "out" + str(t) + "_original" + ".obj") print("[sample]") def get_z(self, config): could_load, checkpoint_counter = self.load(self.checkpoint_dir) if could_load: print(" [*] Load SUCCESS") else: print(" [!] Load failed...") return hdf5_path = self.data_dir + '/' + self.dataset_name + '_z.hdf5' chair_num = len(self.data_voxels) hdf5_file = h5py.File(hdf5_path, mode='w') hdf5_file.create_dataset("zs", [chair_num, self.z_dim], np.float32) for idx in tqdm(range(0, chair_num)): # print(idx) batch_voxels = self.data_voxels[idx:idx + 1] z_out = self.sess.run(self.sE, feed_dict={ self.vox3d: batch_voxels, }) hdf5_file["zs"][idx, :] = np.reshape(z_out, [self.z_dim]) print(hdf5_file["zs"].shape) hdf5_file.close() print("[z]") def test_z(self, config, batch_z, dim): could_load, checkpoint_counter = self.load(self.checkpoint_dir) if could_load: print(" [*] Load SUCCESS") else: print(" [!] Load failed...") return dima = self.test_size multiplier = int(dim / dima) multiplier2 = multiplier * multiplier multiplier3 = multiplier * multiplier * multiplier # get coords 256 aux_x = np.zeros([dima, dima, dima], np.int32) aux_y = np.zeros([dima, dima, dima], np.int32) aux_z = np.zeros([dima, dima, dima], np.int32) for i in range(dima): for j in range(dima): for k in range(dima): aux_x[i, j, k] = i * multiplier aux_y[i, j, k] = j * multiplier aux_z[i, j, k] = k * multiplier coords = np.zeros([multiplier3, dima, dima, dima, 3], np.float32) for i in range(multiplier): for j in range(multiplier): for k in range(multiplier): coords[i * multiplier2 + j * multiplier + k, :, :, :, 0] = aux_x + i coords[i * multiplier2 + j * multiplier + k, :, :, :, 1] = aux_y + j coords[i * multiplier2 + j * multiplier + k, :, :, :, 2] = aux_z + k coords = (coords + 0.5) / dim * 2.0 - 1.0 coords = np.reshape(coords, [multiplier3, self.batch_size, 3]) for t in tqdm(range(batch_z.shape[0])): model_float = np.zeros([dim + 2, dim + 2, dim + 2], np.float32) for i in tqdm(range(multiplier)): for j in range(multiplier): for k in range(multiplier): # print(t, i, j, k) minib = i * multiplier2 + j * multiplier + k model_out = self.sess.run(self.zG, feed_dict={ self.z_vector: batch_z[t:t + 1], self.point_coord: coords[minib], }) model_float[aux_x + i + 1, aux_y + j + 1, aux_z + k + 1] = np.reshape(model_out, [dima, dima, dima]) img1 = np.clip(np.amax(model_float, axis=0) * 256, 0, 255).astype(np.uint8) img2 = np.clip(np.amax(model_float, axis=1) * 256, 0, 255).astype(np.uint8) img3 = np.clip(np.amax(model_float, axis=2) * 256, 0, 255).astype(np.uint8) cv2.imwrite(config.sample_dir + "/" + str(t) + "_1t.png", img1) cv2.imwrite(config.sample_dir + "/" + str(t) + "_2t.png", img2) cv2.imwrite(config.sample_dir + "/" + str(t) + "_3t.png", img3) thres = 0.5 vertices, triangles = mcubes.marching_cubes(model_float, thres) # mcubes.export_mesh(vertices, triangles, config.sample_dir + "/" + "out" + str(t) + ".dae", str(t)) mcubes.export_obj(vertices, triangles, config.sample_dir + "/" + "out" + str(t) + ".obj") # print("[sample GAN]") def test_z_pc(self, config, batch_z, dim): could_load, checkpoint_counter = self.load(self.checkpoint_dir) if could_load: print(" [*] Load SUCCESS") else: print(" [!] Load failed...") return dima = self.test_size multiplier = int(dim / dima) multiplier2 = multiplier * multiplier multiplier3 = multiplier * multiplier * multiplier # get coords 256 aux_x = np.zeros([dima, dima, dima], np.int32) aux_y = np.zeros([dima, dima, dima], np.int32) aux_z = np.zeros([dima, dima, dima], np.int32) for i in range(dima): for j in range(dima): for k in range(dima): aux_x[i, j, k] = i * multiplier aux_y[i, j, k] = j * multiplier aux_z[i, j, k] = k * multiplier coords = np.zeros([multiplier3, dima, dima, dima, 3], np.float32) for i in range(multiplier): for j in range(multiplier): for k in range(multiplier): coords[i * multiplier2 + j * multiplier + k, :, :, :, 0] = aux_x + i coords[i * multiplier2 + j * multiplier + k, :, :, :, 1] = aux_y + j coords[i * multiplier2 + j * multiplier + k, :, :, :, 2] = aux_z + k coords = (coords + 0.5) / dim * 2.0 - 1.0 coords = np.reshape(coords, [multiplier3, self.batch_size, 3]) n_pc_points = 2048 thres = 0.5 hdf5_file = h5py.File(self.dataset_name + "_im_gan_sample.hdf5", 'w') hdf5_file.create_dataset("points", [batch_z.shape[0], n_pc_points, 3], np.float32) for t in range(batch_z.shape[0]): print(t) model_float = np.zeros([dim + 2, dim + 2, dim + 2], np.float32) for i in range(multiplier): for j in range(multiplier): for k in range(multiplier): minib = i * multiplier2 + j * multiplier + k model_out = self.sess.run(self.zG, feed_dict={ self.z_vector: batch_z[t:t + 1], self.point_coord: coords[minib], }) model_float[aux_x + i + 1, aux_y + j + 1, aux_z + k + 1] = np.reshape(model_out, [dima, dima, dima]) vertices, triangles = mcubes.marching_cubes(model_float, thres) mcubes.export_mesh(vertices, triangles, config.sample_dir + "/" + "out" + str(t) + ".dae", str(t)) np.random.shuffle(vertices) vertices = (vertices - dim / 2 - 0.5) / dim vertices_out = np.zeros([n_pc_points, 3], np.float32) vertices_len = vertices.shape[0] for i in range(n_pc_points): vertices_out[i] = vertices[i % vertices_len] hdf5_file["points"][t, :, :] = vertices_out hdf5_file.close() @property def model_dir(self): return "{}_{}".format( self.dataset_name, self.input_size) def save(self, checkpoint_dir, step): model_name = "IMAE.model" checkpoint_dir = os.path.join(checkpoint_dir, self.model_dir) if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) self.saver.save(self.sess, os.path.join(checkpoint_dir, model_name), global_step=step) def load(self, checkpoint_dir): import re print(" [*] Reading checkpoints...") checkpoint_dir = os.path.join(checkpoint_dir, self.model_dir) ckpt = tf.train.get_checkpoint_state(checkpoint_dir) if ckpt and ckpt.model_checkpoint_path: ckpt_name = os.path.basename(ckpt.model_checkpoint_path) self.saver.restore(self.sess, os.path.join(checkpoint_dir, ckpt_name)) counter = int(next(re.finditer("(\d+)(?!.*\d)", ckpt_name)).group(0)) print(" [*] Success to read {}".format(ckpt_name)) return True, counter else: print(" [*] Failed to find a checkpoint") return False, 0
[ "fnuzzo@kth.se" ]
fnuzzo@kth.se
0d1aa2e4ed4578759cc2d39895281cc4a4ccc2d7
b5f6b262cc1f599b9ca10cec6475831b1f8c812b
/app/crud.py
8d214e87fb37d774a89e90feb20bc0e732759df2
[]
no_license
githubgobi/fastapi-study
5f0a59907182967a4417c6340963ed6baddde011
bce9f6f3ba6dc4c74f7320a7fe92b9a05698a070
refs/heads/main
2023-03-03T19:48:57.325092
2021-02-15T03:44:47
2021-02-15T03:44:47
338,316,868
0
0
null
null
null
null
UTF-8
Python
false
false
769
py
from sqlalchemy.orm import Session from . import models, schemas def get_user_by_username(db: Session, username: str): return db.query(models.UserInfo).filter(models.UserInfo.username == username).first() def get_user(db: Session, user_id: int): return db.query(models.UserInfo).filter(models.User.id == user_id).first() def get_users(db: Session, skip: int = 0, limit: int = 100): return db.query(models.UserInfo).offset(skip).limit(limit).all() def create_user(db: Session, user: schemas.UserCreate): fake_hashed_password = user.password + "notreallyhashed" db_user = models.UserInfo(username=user.username, password=fake_hashed_password, fullname=user.fullname) db.add(db_user) db.commit() db.refresh(db_user) return db_user
[ "IGS@IGS-0075.igsc.in" ]
IGS@IGS-0075.igsc.in
4da370404c3fda913fbc8f6e04a7c737f2165fff
445ca5459dfe1a59b3acee8b5ce29e2e610e4631
/week8/informatics4/E.py
d3db7062076af7a9e88c9fe26a51fe3f79b05931
[]
no_license
luizasabyr/WebDevelopment2020
6cd0328bf9c3053055541631c18ee42c6dda78d3
abec4f7674b4833fe93a0430460f1d31a8462469
refs/heads/master
2020-12-23T14:05:30.676259
2020-03-27T06:08:02
2020-03-27T06:08:02
237,175,138
0
0
null
null
null
null
UTF-8
Python
false
false
278
py
n = int(input()) a = list(map(int,input().strip().split()))[:n] length = len(a) cnt = 0 for i in range(1, length): if (a[i - 1] > 0) and (a[i] > 0) or (a[i - 1] < 0) and (a[i] < 0): cnt = 1 break if cnt == 1: print("YES") else: print("NO")
[ "noreply@github.com" ]
luizasabyr.noreply@github.com
081c6fd251ac0a825028f8d9824d00d75264742d
8155b79931c702175e697e7bcda8cafee881b0df
/src/Payload2Std.py
874b705419cf395df3f79f2899e5d1923206a536
[ "MIT" ]
permissive
Hing9/Payload2Std-IDA
cf68a03f07d28fce3b704ea02d3720ce078b4ff3
ffaaa903301cbc700667bd8052d3027e482d6601
refs/heads/master
2020-05-30T06:22:28.338863
2019-05-31T19:06:51
2019-05-31T19:06:51
189,578,235
0
0
null
null
null
null
UTF-8
Python
false
false
165
py
from __future__ import print_function import idaapi def PLUGIN_ENTRY(): from Payload2Std.plugin import Payload2StdPlugin return Payload2StdPlugin()
[ "soj0703@naver.com" ]
soj0703@naver.com
977ef34be9f77e2b77cd391bfbee7e8541ad6414
330d17694e530bc75f703ba7af93037b30c19b5b
/yt_scripts/SpectraTools.py
5e7ab2eb3919803e0e89131c893fcf415ba7e68b
[]
no_license
aemerick/projects
3d7b64ec1d64d157739c9b2b2e79eb9f1314bca5
3a49420e038459d814a36e7b02f5c18d4d7fb7ff
refs/heads/master
2021-06-03T04:01:59.823590
2019-09-26T04:39:55
2019-09-26T04:39:55
18,304,857
0
0
null
null
null
null
UTF-8
Python
false
false
4,134
py
import numpy as np import astropy.constants as C def _generate_species(): """ Populates a dictionary containing the constants for species used to calculate equivalent width. """ speciesList = {'Lya':\ {'f': 0.4164, # oscillator strength 'glambda' : 7616.0, # cm/s 'wl0' : 1215.7, # Angstroms }\ } return speciesList def Wlambda(NArray, bArray, species=None,speciesDict=None): """ Given paramaters, calculate the equivalent width of a given line. species: Can specify a species to load pre-calculated constants (oscillator strength, gamma, etc.). Currently supports: Lyman Alpha as "Lya" speciesDict: Can be used to specify constants for the species. Has the following values: . If both species and speciesDict are specified, speciesDict takes priority. """ c = C.c.value * 100.0 # speed of light in cm/s if not speciesDict == None: #Do something here print "yay things" else: # else, check species name against known list speciesList = _generate_species() # make dict of species speciesDict = speciesList[species] Wl = np.zeros( np.size(NArray) ) t0 = _tau_o(NArray,bArray,speciesDict) glambda = speciesDict['glambda'] limit = 1.25393 # as defined in Draine 9.27 for i in np.arange(np.size(Wl)): N = NArray[i] # cm^-2 b = bArray[i] * 1000.0 * 100.0 # km/s -> cm/s tau = t0[i] if tau <= limit: Wl[i] = (np.pi)**0.5 * b * tau / (c * (1.0 + tau/(2.0*(2.0**0.5)))) else: Wl[i] = (\ (2.0*b/c)**2 * np.log(tau/np.log(2.0)) +\ b*glambda*(tau-limit)/(c*c*(np.pi)**0.5)\ )**0.5 return Wl*speciesDict['wl0']*1000.0 # returns wlambda def _tau_o(NArray,bArray,speciesDict): """ Calculate tau o as per Draine 9.8 - 9.10. Ignoring the correction for stimulated emission, as valid only for non-radio transitions. """ # convert things to the right units and pull from speciesDcit f = speciesDict['f'] wl0 = speciesDict['wl0'] * 1.0E-8 # converts A -> cm bArray = bArray * 1000.0 * 100.0 # converts km/s -> cm/s const = 1.497E-2 # constant. cm^2/s to = const * NArray*f*wl0/bArray return to def calcN(Wlambda,species,b=30.0): """ Calculates the column density of a given line provided the equivalent width and species. For saturated lines, the doppler broadening value is important. If no b values is provided, b is assumed 30 km/s Parameters ---------- W : Equivalent widths in mA species : string Species name. Currently supports "Lya" b : optinoal Doppler broadening values. Must be an array of length equal to that of the equivalent width array. If not, b is assumed to be 30 km/s. Default = 30 km/s """ speciesList = _generate_species() speciesDict = speciesList[species] wo = speciesDict['wo'] # natural line wavelength in A f = speciesDict['f'] # oscillator strength if np.size(Wlambda) != np.size(b): b = 30.0 # km/s def linear(Wl,b): return N def flat(Wl,b): return N def damped(Wl,b): return N cases = {'linear' : linear, 'flat' : flat, 'damped' : damped} for i in np.arange(0,np.size(Wlambda)): Wl = Wlambda[i] W = Wlambda / (1000.0*wo) # mA / 1000*A - > mA/mA if Wl : case = "linear" elif Wl : case = "flat" elif Wl : case = "damped" N = cases[case](Wl,b) return N
[ "emerick@astro.columbia.edu" ]
emerick@astro.columbia.edu
e725c508ad8d3854f0ba54753f994f0bcc0e39e6
fe5ed850257cc8af4df10de5cffe89472eb7ae0b
/19.框架学习/爬虫学习/01.爬虫三大库/04.Lxml库和Xpath语法/3种爬虫模式对比.py
76144bd637c9d50b98d29e84c63b2fd44cdae50e
[]
no_license
hujianli94/Python-code
a0e6fe6362868407f31f1daf9704063049042d9e
fe7fbf59f1bdcbb6ad95a199262dd967fb04846c
refs/heads/master
2020-09-13T01:11:34.480999
2019-11-19T05:29:59
2019-11-19T05:29:59
222,614,662
2
0
null
null
null
null
UTF-8
Python
false
false
2,908
py
#!/usr/bin/env python # -*- coding:utf8 -*- # auther; 18793 # Date:2019/7/12 16:01 # filename: 3种爬虫模式对比.py # 爬取数据只做返回,不存储 import requests import re from bs4 import BeautifulSoup from lxml import etree import time # 加入请求头 headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.100 Safari/537.36" } urls = ["https://www.qiushibaike.com/text/page/{}".format(str(i)) for i in range(1, 5)] # 构造url def re_scraper(url): ''' :param url: :return: 正则爬取的时间 ''' res = requests.get(url,headers=headers) ids = re.findall("<h2>(.*?)</h2>", res.text, re.S) contents = re.findall('<div class="content">.*?<span>(.*?)</span>', res.text, re.S) laughs = re.findall('<span class="stats-vote"><i class="number">(\d+)</i> 好笑</span>', res.text, re.S) comments = re.findall('<i class="number">(\d+)</i> 评论', res.text, re.S) for id, content, laugh, comment in zip(ids, contents, laughs, comments): info = { "id": id, "content": content, "laugh": laugh, "comment": comments[0] } return info def bs_scraper(url): ''' :param url: Beautifulsoup爬取时间 :return: ''' res = requests.get(url, headers=headers) soup = BeautifulSoup(res.text, 'lxml') ids = soup.select(" a > h2") contents = soup.select("div > span") laughs = soup.select("span.stats-vote > i") comments = soup.select("i.number") for id, content, laugh, comment in zip(ids, contents, laughs, comments): info = { 'id': id.get_text(), 'content': content.get_text(), 'laugh': laugh.get_text(), 'comment': comment.get_text() } return info def lxml_scraper(url): ''' :param url: :return:lxml爬虫爬取时间 ''' res = requests.get(url, headers=headers) selector = etree.HTML(res.text) url_infos = selector.xpath('//div[@class="article block untagged mb15 typs_hot"]') try: for url_info in url_infos: id = url_info.xpath("div[1]/a[2]/h2/text()")[0] content = url_info.xpath("a[1]/div/span/text()")[0] laugh = url_info.xpath("div[2]/span[1]/i/text()")[0] comment = url_info.xpath("div[2]/span[2]/a/i/text()")[0] info = { "id": id, "content": content, "laugh": laugh, "comment": comment } return info except IndexError: pass # 异常忽略掉 if __name__ == '__main__': for name, scraper in [("RE_exoressions", re_scraper), ("BeautifulSoup", bs_scraper), ("Lxml", lxml_scraper)]: start = time.time() for url in urls: scraper(url) end = time.time() print(name, end - start)
[ "1879324764@qq.com" ]
1879324764@qq.com
90c7b357e310a8f120241367bacc3be511f44ba6
d2d02766d4ff17b7dcf8b5439d99ddc015649b93
/Topico1/settings.py
cbae2588c94ef34c6016cdde7e9745c1d38c1567
[]
no_license
mathyas221/Encuesta-Gap
add0e405cc86fce8536f57fa26e12a514c0a4763
d4e522bfbefb7732d29680904e4c20d68a8d5e34
refs/heads/master
2020-06-04T05:48:45.861388
2019-06-14T07:28:04
2019-06-14T07:28:04
191,894,036
0
0
null
null
null
null
UTF-8
Python
false
false
3,279
py
""" Django settings for Topico1 project. Generated by 'django-admin startproject' using Django 2.2.2. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '-go04b_4l6eb)ppy)4*&b1uc4)$460k!2f+n95^9f7(7((*tbt' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'Questions', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'Topico1.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')] , 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'Topico1.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [ os.path.join(BASE_DIR, "static"), ] MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media')
[ "mathyastejos@gmail.com" ]
mathyastejos@gmail.com
9fb284dae3774205aaf73fcaaefeff2b2630655e
fc0259a7d33d996d087e711e660421558e126014
/working-time.py
d96447ab96ad7d9e5266b17fa9d564261d2ca010
[]
no_license
marthemagnificent/working_time
a7d927fdf7194b7bc4ef262daa11e4895b421ec4
76a27257b6c6d417c97ad12096b9cb70953b1a05
refs/heads/main
2023-02-28T00:03:40.637547
2021-02-03T23:41:46
2021-02-03T23:41:46
335,401,907
0
0
null
null
null
null
UTF-8
Python
false
false
1,551
py
# Name: Markayla Brown # working-time.py # # Problem: Calculate the working time of employees on a team and outputs them. # Certification of Authenticity: # <include one of the following> # I certify that this assignment is entirely my own work. # I certify that this assignment is my own work, but I # discussed it with: <Name(s)> def main(): #variables for time hours, minutes = 0, 0 tempHours, tempMinutes = 0, 0 #ask the user how many employees are on the team employees = eval(input("How many employees are on your team? ")) #loopemp = employees + 1 #loop to count the employees for i in range(employees): #creates a clean number for the sentence asking about each employee empsent = i + 1 #sets the times entered to temp values to be added to actual time #these variables hold the user amounts temp newHours, newMinutes = eval(input("How much time did employee #" + str(empsent) + " work? ")) #add input hours to temp for math tempHours = tempHours + newHours #adds input minutes to temp for math tempMinutes = tempMinutes + newMinutes #math to turn the minutes into hours carryHours = tempMinutes // 60 #math to get remainder minutes from full minute amount minutes = tempMinutes % 60 #add carry over hours to hours hours = tempHours + carryHours print("Your team has worked " + str(hours) + " hours and " + str(minutes) +" minutes") #print(loopemp) print(empsent) main()
[ "markaylabrown45@yahoo.com" ]
markaylabrown45@yahoo.com
5d1033b72f189c41bc453a4359642380538f0a22
9ab010aa3407437dab0811349b681be72fc94baf
/src/2020_06_02/for05.py
3c0a17d51a149955fda0edaf314fa54a1892732b
[]
no_license
lilacman888/pythonExam
9bbbaedb9c301cd0e16da7bf7f946a09fac9ef81
6b9974a1abcbbeace6cabfdecac8dd3e04c1b437
refs/heads/master
2022-09-17T09:58:21.247717
2020-06-02T08:13:45
2020-06-02T08:13:45
267,808,134
0
0
null
null
null
null
UTF-8
Python
false
false
435
py
# 반복문 : for문 # for 변수 in range(): # 반복 실행할 문장 # 1 ~ 100까지 홀수의 합과 짝수의 합을 구하는 프로그램을 작성 # 단 for문을 1번만 사용해서 작성 odd = even = 0 for i in range(1,101): # 1~100 if i%2 == 0: # 짝수 even += i else: odd += i print('1~100까지 홀수의 합 : ', odd) print('1~100까지 짝수의 합 : ', even)
[ "lilacman888@gmail.com" ]
lilacman888@gmail.com
601c83701c4d7f4cda5562602cc5a382576b7441
2581689b5867c4004d735d45cbe502a8ba4c70aa
/main.py
5416c29a9908f78c630af3e5de3e6a0c9672f909
[]
no_license
Arseni1919/DRL_course_exercise_1
583912c6bbcda57c9b7eaa59cf30edc18667591a
fe8c19ca7888d2c5980ebb11339d0eea29708702
refs/heads/master
2023-08-10T16:36:00.299455
2021-10-04T14:30:20
2021-10-04T14:30:20
267,364,210
3
0
null
null
null
null
UTF-8
Python
false
false
5,884
py
# -*- coding: utf-8 -*- from World import World import numpy as np import random # random.seed(0) # --------------------- PARAMETERS --------------------- # r = -0.04 teta = 0.0001 omega = 0.9 # ------------------------------------------------------ # # --------------------- CONSTANTS ---------------------- # N = 1 E = 2 S = 3 W = 4 ACTIONS = [N, E, S, W] FINAL_STATE_CELLS = [0, 6, 12, 13, 14] BAD_CELLS = [0, 6, 13, 14] GOOD_CELLS = [12] # ------------------------------------------------------ # class Cell: def __init__(self, num, n, s, w, e): self.num = num self.n = n self.e = e self.s = s self.w = w # create cells and tell them who are their neighbours field = { 0: Cell(0, 0, 1, 0, 4), 1: Cell(1, 0, 2, 1, 5), 2: Cell(2, 1, 3, 2, 6), 3: Cell(3, 2, 3, 3, 7), 4: Cell(4, 4, 5, 0, 8), 5: Cell(5, 4, 6, 1, 9), 6: Cell(6, 5, 7, 2, 10), 7: Cell(7, 6, 7, 3, 11), 8: Cell(8, 8, 9, 4, 12), 9: Cell(9, 8, 10, 5, 13), 10: Cell(10, 9, 11, 6, 14), 11: Cell(11, 10, 11, 7, 15), 12: Cell(12, 12, 13, 8, 12), 13: Cell(13, 12, 14, 9, 13), 14: Cell(14, 13, 15, 10, 14), 15: Cell(15, 14, 15, 11, 15), } def transition_model(new_state, state, action): if state in FINAL_STATE_CELLS: raise ValueError('Game Over') if action == N: if field[state].n == new_state: return 0.8 if new_state in [field[state].w, field[state].e]: return 0.1 if action == S: if field[state].s == new_state: return 0.8 if new_state in [field[state].w, field[state].e]: return 0.1 if action == W: if field[state].w == new_state: return 0.8 if new_state in [field[state].n, field[state].s]: return 0.1 if action == E: if field[state].e == new_state: return 0.8 if new_state in [field[state].n, field[state].s]: return 0.1 return 0 def reward_function(state): if state in BAD_CELLS: return -1 if state in GOOD_CELLS: return 1 return r def initiate_values(nStates): values = {} for state in range(nStates): values[state] = 0 return values def max_action_value(curr_world, state, curr_values): if state in FINAL_STATE_CELLS: return reward_function(state), 1 value = None best_action = 1 for counter, action in enumerate(ACTIONS): curr_sum = get_value_on_action(state, action, curr_values, curr_world) if counter == 0: value = curr_sum if curr_sum > value: value = curr_sum best_action = action return value, best_action def get_policy(curr_world, curr_values): curr_policy = [] for state in range(curr_world.nStates): _, action = max_action_value(curr_world, state, curr_values) curr_policy.append([action]) return np.array(curr_policy) # ------------------------------ # def value_iteration(curr_world): values = initiate_values(curr_world.nStates) delta = teta while not delta < teta: delta = 0 for state in range(curr_world.nStates): value = values[state] values[state], _ = max_action_value(curr_world, state, values) delta = max(delta, abs(value - values[state])) policy = get_policy(curr_world, values) return values, policy # ------------------------------ # def initialize_policy(curr_world): policy = [] for state in range(curr_world.nStates): # policy.append([random.choice(ACTIONS)]) policy.append([1]) return policy def get_value_on_action(state, action, values, curr_world): if state in FINAL_STATE_CELLS: return reward_function(state) value = 0 for new_state in range(curr_world.nStates): value += transition_model(new_state, state, action) * (reward_function(state) + omega * values[new_state]) return value def policy_evaluation(policy, curr_world): values = initiate_values(curr_world.nStates) delta = teta while not delta < teta: delta = 0 for state in range(curr_world.nStates): value = values[state] values[state] = get_value_on_action(state, policy[state][0], values, curr_world) delta = max(delta, abs(value - values[state])) return values def policy_improvement(values, curr_world): policy = [] for state in range(curr_world.nStates): max_q_val = None max_action_val = ACTIONS[0] for index, action in enumerate(ACTIONS): q_val = get_value_on_action(state, action, values, curr_world) if index == 0: max_q_val = q_val max_action_val = action if q_val > max_q_val: max_q_val = q_val max_action_val = action policy.append([max_action_val]) return policy # ------------------------------ # def policy_iteration(curr_world): policy = initialize_policy(curr_world) values = {} policy_stable = False while not policy_stable: values = policy_evaluation(policy, curr_world) new_policy = policy_improvement(values, curr_world) policy_stable = True for i in range(len(policy)): if policy[i][0] != new_policy[i][0]: policy_stable = False break policy = new_policy world.plot_value(values) world.plot_policy(np.array(policy)) return values, np.array(policy) # ------------------------------ # if __name__ == "__main__": world = World() # world.plot() # final_values, final_policy = value_iteration(world) final_values, final_policy = policy_iteration(world) # world.plot_value(final_values) # world.plot_policy(final_policy)
[ "1919ars@gmail.com" ]
1919ars@gmail.com
0826cc895b7abf8174eba312935e6a86428910af
35e5093651eb7213b7f8f0cd0ace352913f64dfb
/gip/helper_pedidos.py
0e0a3643ec407bcc0249ccab7be787ecb8d538f1
[]
no_license
juanma2/GIP
aaf62f38fda9c8baac8bb36b7fc8d3a0ed3425d2
fe26b5b2b00a519aafd8bf03e0cfc5bc467e5146
refs/heads/master
2021-01-19T16:19:13.735368
2017-04-14T12:47:47
2017-04-14T12:47:47
88,261,580
0
0
null
2017-04-14T11:18:02
2017-04-14T11:18:02
null
UTF-8
Python
false
false
4,285
py
import datetime import ast from gip.models import Pedidos, HistoricoListas from django.contrib.auth.models import User def send_order(pedido,proveedor,c_pedido): cliente = pedido['cliente'] print "***************************************************************" print "implement email, or, whatever needed in gip/helper_pedidos.py" print cliente orden = pedido['orden'] print orden precio = pedido['precio'] print precio total = 0.0 u = User.objects.filter(id=pedido['cliente']['user_id']) for i in pedido['orden']: total += orden[i]*precio[i] print total #once that your pedido is ready, you should set all the items as "active" p = Pedidos(producto_serializado=pedido, proveedor_id = proveedor.id, total = total , fecha_creacion = datetime.datetime.now()) p.save() p.cliente.add(pedido['cliente']['id']) print "let's try" try: print p.id history = HistoricoListas(pedido_id = p, listas_serializado = c_pedido) history.save() history.id print "history saved!!" except: print "something went wrong with order "+pedido.id+" trying to save listas... but we arae not gonna block them" print "***************************************************************" return True def generate_modales_historico(pedidos): print "we are tryig to get the historical pedidos" modales = '' for pedido in pedidos: header = """ <div class="modal" onclick="" id="modaldemostrarpedido_{0}"> <div class="modal-dialog modal-lg" id="customer-order"> <div class="modal-content"> <div class="modal-header modal-header-info"> <button type="button" class="close" data-dismiss="modal" aria-hidden="true">X</button> <h4 class="modal-title">ID.Pedido: {1}</h4> </div> <div class="modal-body"> <table class="table"> <thead> <tr> <th>Referencia</th> <th colspan="2">Nombre del producto</th> <th>Precio/ud</th> <th>Total</th> </tr> </thead> <tbody> """.format(pedido.codigo,pedido.codigo) products = ast.literal_eval(pedido.producto_serializado) body = '' for i in products['orden']: body += """ <tr> <td>{0}</td> <td> <!-- <a href="s#fichamodal" data-toggle="modal"> <img src="img/.jpg" alt=""> </a> --> </td> <td><a href="s#fichamodal" data-toggle="modal">{1}</a></td> <td>{2}</td> <td>{3}</td> </tr> """.format(i,products['descripcion'][i].encode("utf-8"),products['orden'][i], products['orden'][i] * products['precio'][i]) foot = """ <tfoot> <tr> <th colspan="4" class="text-right">Total</th> <th>{0}</th> <th></th> </tr> </tfoot> </table> </div> <div class="modal-footer"> <button type="reset" class="btn btn-default" data-dismiss="modal">Cerrar</button> </div> </div> </div> <!--acaba modal muestra pedido tipo 1--> </div>""".format(pedido.total) modales += header+body+foot print modales return modales
[ "bvcelari@gmail.com" ]
bvcelari@gmail.com
c9d088d88e05ade0be73cd950e96e589c8977c4f
66a89bb2ded504f77f9fb9af2b365a4888c01004
/graph_construction/module_maps/build_module_maps.py
1c555e7b68977736e1d6e6b35b08de82a026659f
[]
no_license
GageDeZoort/interaction_network_paper
1f4cf5a8673d4dd67341214cf2eb27c9fee660b2
45d313611009b38b2d17b5d20d51ae6a80ebf4a4
refs/heads/pytorch_geometric
2023-04-19T02:45:57.717764
2021-10-08T23:12:19
2021-10-08T23:12:19
337,429,781
21
10
null
2022-01-05T19:57:20
2021-02-09T14:24:05
Jupyter Notebook
UTF-8
Python
false
false
3,594
py
import os import sys import numpy as np import pandas as pd import trackml from trackml.dataset import load_event from trackml.dataset import load_dataset pixel_layers = [(8,2), (8,4), (8,6), (8,8), (7,14), (7,12), (7,10), (7,8), (7,6), (7,4), (7,2), (9,2), (9,4), (9,6), (9,8), (9,10), (9,12), (9,14)] layer_pairs = [(0,1), (1,2), (2,3), (0,4), (1,4), (2,4), (4,5), (5,6), (6,7), (7,8), (8,9), (9,10), (0,11), (1,11), (2,11), (11,12), (12,13), (13,14), (14,15), (15,16), (16,17)] pt_min = float(sys.argv[1]) train_sample = 2 indir = '/tigress/jdezoort/train_{}'.format(train_sample) evtid_base = 'event00000' evtids = os.listdir(indir) #[evtid_base+str(i) for i in np.arange(1000, , 1)] evtids = [evtid.split('-')[0] for evtid in evtids if 'hits' in evtid] module_labels = {} hits, cells, particles, truth = load_event(os.path.join(indir, evtids[0])) hits_by_loc = hits.groupby(['volume_id', 'layer_id']) hits = pd.concat([hits_by_loc.get_group(pixel_layers[i]).assign(layer=i) for i in range(len(pixel_layers))]) for lid, lhits in hits.groupby('layer'): module_labels[lid] = np.unique(lhits['module_id'].values) module_maps = {(i,j): np.zeros((np.max(module_labels[i])+1, np.max(module_labels[j])+1)) for (i,j) in layer_pairs} total_connections = [] for i, evtid in enumerate(evtids): print(i, evtid) hits, cells, particles, truth = load_event(os.path.join(indir, evtid)) hits_by_loc = hits.groupby(['volume_id', 'layer_id']) hits = pd.concat([hits_by_loc.get_group(pixel_layers[i]).assign(layer=i) for i in range(len(pixel_layers))]) pt = np.sqrt(particles.px**2 + particles.py**2) particles['pt'] = pt particles = particles[pt > pt_min] truth = (truth[['hit_id', 'particle_id']] .merge(particles[['particle_id', 'pt']], on='particle_id')) r = np.sqrt(hits.x**2 + hits.y**2) phi = np.arctan2(hits.y, hits.x) hits = (hits[['hit_id', 'z', 'layer', 'module_id']] .assign(r=r, phi=phi) .merge(truth[['hit_id', 'particle_id', 'pt']], on='hit_id')) hits = (hits.loc[ hits.groupby(['particle_id', 'layer'], as_index=False).r.idxmin() ]).assign(evtid=evtid) hits_by_loc = hits.groupby('layer') for lp in layer_pairs: hits0 = hits_by_loc.get_group(lp[0]) hits1 = hits_by_loc.get_group(lp[1]) keys = ['evtid', 'particle_id', 'module_id', 'r', 'phi', 'z'] hit_pairs = hits0[keys].reset_index().merge( hits1[keys].reset_index(), on='evtid', suffixes=('_1', '_2')) pid1, pid2 = hit_pairs['particle_id_1'], hit_pairs['particle_id_2'] hit_pairs = hit_pairs[pid1==pid2] mid1, mid2 = hit_pairs['module_id_1'].values, hit_pairs['module_id_2'].values r1, r2 = hit_pairs['r_1'].values, hit_pairs['r_2'].values for i in range(len(mid1)): module_maps[lp][mid1[i]][mid2[i]]+=1 connections = 0 for module_map in module_maps.values(): connections += np.sum(module_map > 0) total_connections.append(connections) pt_lookup = {0.5: '0p5', 0.6: '0p6', 0.7: '0p7', 0.8: '0p8', 0.9: '0p9', 1.0: '1', 1.1: '1p1', 1.2: '1p2', 1.3: '1p3', 1.4: '1p4', 1.5: '1p5', 1.6: '1p6', 1.7: '1p7', 1.8: '1p8', 1.9: '1p9', 2.0: '2'} pt_str = pt_lookup[pt_min] with open(f'module_map_{train_sample}_{pt_str}GeV.npy', 'wb') as f: np.save(f, module_maps)
[ "jgdezoort@gmail.com" ]
jgdezoort@gmail.com
9a0d1b2385be47262406834cb80e1f15cf4e0136
cfd3789ab9e5138d584a5c35ece1fb68a40b8f43
/day_16/day16_1.py
c33ec7cd6004feadb8acfa265e5bef2ecfe90c39
[]
no_license
math-foo/advent-of-code-2015
d685ee845b1fc2343970b21e2b7cdea67af72681
fff7b82f63b379305e8d09593764829fe23564df
refs/heads/master
2021-01-10T07:22:18.374502
2016-01-01T02:14:59
2016-01-01T02:14:59
48,017,153
1
0
null
null
null
null
UTF-8
Python
false
false
774
py
#!/usr/bin/python aunts = open('input.txt', 'r').readlines() sues = {} for aunt in aunts: elems = aunt.split(' ') sue_info = {} for i in xrange(2,len(elems),2): key = elems[i].strip(':') value = int(elems[i+1].strip(',')) sue_info[key] = value sues[elems[1].strip(':')] = sue_info known_info = {'children': 3, 'cats': 7, 'samoyeds': 2, 'pomeranians': 3, 'akitas': 0, 'vizslas': 0, 'goldfish': 5, 'trees': 3, 'cars': 2, 'perfumes': 1} for sue in sues: sue_info = sues[sue] match = True for key in sue_info: if sue_info[key] != known_info[key]: match = False break if match: print sue break
[ "caelyn@ceruleanrodent.com" ]
caelyn@ceruleanrodent.com
11466c7195688c9844d0b358637f508dadb88727
710e96b1435bc43cc260512df75af5dd3b2afd13
/code/1086.py
0b5a7f95a7b670d6d483a0922ab29b01df6a596b
[ "MIT" ]
permissive
minssoj/Learning_Algorithm_Up
94ca8166c9a5d87917cf033ad8415871684241c4
45ec4e2eb4c07c9ec907a74dbd31370e1645c50b
refs/heads/main
2023-01-08T20:52:32.983756
2020-11-05T17:49:45
2020-11-05T17:49:45
301,926,859
0
0
null
null
null
null
UTF-8
Python
false
false
242
py
# [기초-종합] 그림 파일 저장용량 계산하기(설명) # minso.jeong@daum.net ''' 문제링크 : https://www.codeup.kr/problem.php?id=1086 ''' w, h, b = map(int, input().split()) print('{:.2f} MB'.format(w * h * b/ (8 *(2 ** 20))))
[ "minso.jeong@daum.net" ]
minso.jeong@daum.net
91a2a80b3abc43fae5326615100f02782ef09b2d
b5ed3abaf6025745a1755c36db67e257311b8070
/math_m2/trailing_zeros.py
dda2066ee2d6753cad95449f36ddcc458fc80c10
[]
no_license
larafonse/cti-ips-2020
bf2de6444eeca64a35d4854bc093480f1f4b2ceb
2ecdd9fe8a59eea83c90fba3ef6b18fb1cdefdda
refs/heads/master
2022-11-28T12:03:03.919506
2020-08-11T04:19:44
2020-08-11T04:19:44
277,982,062
0
0
null
null
null
null
UTF-8
Python
false
false
200
py
def fast_trailing_zero_factorial(n): i = 5 count = 0 while(n/i >= 1): count+=(n//i) i*=5 return count if __name__ == "__main__": print(fast_trailing_zero_factorial(int(input())))
[ "nlarafonseca@csumb.edu" ]
nlarafonseca@csumb.edu
3ed94483e209e0a44ee8dd48855dccf9115e3edf
0a483ba886af2b75e0b4529e211b777f32cb927f
/venv/bin/jupyter-trust
cf4fc483dab57da16edbb4b0a6a414045583265c
[]
no_license
controlidco/python-data-exercises
d6796a0eee9d5e735da0f16bc5c1d4c8f35b5b58
b90666153f072e2c6e1777b905021097846cb846
refs/heads/master
2020-09-25T03:46:09.867917
2019-07-31T13:44:38
2019-07-31T13:44:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
294
#!/Users/otniel/Developer/pythoncourse/venv/bin/python3.7 # -*- coding: utf-8 -*- import re import sys from nbformat.sign import TrustNotebookApp if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(TrustNotebookApp.launch_instance())
[ "benamara.otniel@gmail.com" ]
benamara.otniel@gmail.com
60fa2920856e582a27596de204b598f28ef7a603
4b1009917c0c0ff2dcb0aa9df450d735a72e86cb
/display-server/node_modules/socket.io/node_modules/engine.io/node_modules/ws/node_modules/bufferutil/build/config.gypi
c14531a0c15c6c9b1d8ac723701d7ee6c53678a9
[ "MIT" ]
permissive
stu-smith/jarvis
4f793dc29f7cdff2bd5163ebee528679a6b71ba9
d0b50e86e88a54e6f1984530d953d03490146370
refs/heads/master
2021-01-10T03:07:00.916466
2016-02-16T20:18:48
2016-02-16T20:18:48
51,866,279
0
0
null
null
null
null
UTF-8
Python
false
false
3,154
gypi
# Do not edit. File was generated by node-gyp's "configure" step { "target_defaults": { "cflags": [], "default_configuration": "Release", "defines": [], "include_dirs": [], "libraries": [] }, "variables": { "clang": 0, "gcc_version": 46, "host_arch": "x64", "node_install_npm": "true", "node_prefix": "/usr", "node_shared_cares": "false", "node_shared_http_parser": "false", "node_shared_libuv": "false", "node_shared_openssl": "false", "node_shared_v8": "false", "node_shared_zlib": "false", "node_tag": "", "node_unsafe_optimizations": 0, "node_use_dtrace": "false", "node_use_etw": "false", "node_use_openssl": "true", "node_use_perfctr": "false", "node_use_systemtap": "false", "openssl_no_asm": 0, "python": "/usr/bin/python", "target_arch": "x64", "v8_enable_gdbjit": 0, "v8_no_strict_aliasing": 1, "v8_use_snapshot": "false", "want_separate_host_toolset": 0, "nodedir": "/home/stu/.node-gyp/0.10.37", "copy_dev_lib": "true", "standalone_static_library": 1, "cache_lock_stale": "60000", "sign_git_tag": "", "user_agent": "npm/1.4.28 node/v0.10.37 linux x64", "always_auth": "", "bin_links": "true", "key": "", "description": "true", "fetch_retries": "2", "heading": "npm", "user": "", "force": "", "cache_min": "10", "init_license": "ISC", "editor": "vi", "rollback": "true", "cache_max": "Infinity", "userconfig": "/home/stu/.npmrc", "engine_strict": "", "init_author_name": "", "init_author_url": "", "tmp": "/tmp", "depth": "Infinity", "save_dev": "", "usage": "", "cafile": "", "https_proxy": "", "onload_script": "", "rebuild_bundle": "true", "save_bundle": "", "shell": "/bin/bash", "prefix": "/usr", "registry": "https://registry.npmjs.org/", "browser": "", "cache_lock_wait": "10000", "save_optional": "", "searchopts": "", "versions": "", "cache": "/home/stu/.npm", "ignore_scripts": "", "searchsort": "name", "version": "", "local_address": "", "viewer": "man", "color": "true", "fetch_retry_mintimeout": "10000", "umask": "2", "fetch_retry_maxtimeout": "60000", "message": "%s", "ca": "", "cert": "", "global": "", "link": "", "save": "true", "unicode": "true", "long": "", "production": "", "unsafe_perm": "true", "node_version": "0.10.37", "tag": "latest", "git_tag_version": "true", "shrinkwrap": "true", "fetch_retry_factor": "10", "npat": "", "proprietary_attribs": "true", "save_exact": "", "strict_ssl": "true", "username": "", "dev": "", "globalconfig": "/usr/etc/npmrc", "init_module": "/home/stu/.npm-init.js", "parseable": "", "globalignorefile": "/usr/etc/npmignore", "cache_lock_retries": "10", "save_prefix": "^", "group": "1000", "init_author_email": "", "searchexclude": "", "git": "git", "optional": "true", "email": "", "json": "", "spin": "true" } }
[ "stusmith1977@gmail.com" ]
stusmith1977@gmail.com
11ba89ca34f48062674ca6cc401253eca058c762
944086a35957e5831bb10e10cb924ef9ca9cdd07
/ingredients/commons.py
d51876296490bec4189b18372ff4da71f312f569
[ "Apache-2.0" ]
permissive
kata-ai/wikiner
cc0256b308bdd468529f96da23c18c6d52caa9f1
bb2090c51881dd08f19ba852c38f739f93fe7697
refs/heads/master
2022-12-23T05:08:46.407929
2019-12-18T02:27:25
2019-12-18T02:27:25
223,879,867
4
2
null
2022-12-16T18:32:15
2019-11-25T06:45:15
Python
UTF-8
Python
false
false
1,436
py
import re def tag(sentence, tokens, predicted): results, prev, last_idx = [], None, 0 for i, _ in enumerate(tokens): pred = "O" pred_label = "O" try: pred = predicted[i] pred_label = predicted[i].split("-") # idx = np.argmax(pred) # score = pred[idx] except Exception as e: pass if len(pred_label) == 2: prefix, label = pred_label else: prefix = 'O' label = pred start_idx = last_idx + sentence[last_idx:].index(tokens[i]) end_idx = start_idx + len(tokens[i]) if prefix in ['I', 'E', 'O']: if label == prev: results[-1]['end'] = end_idx else: # mislabelled or 'O' results.append({ 'start': start_idx, 'end': end_idx, 'tagname': label, }) elif prefix in ['B', 'S']: results.append({ 'start': start_idx, 'end': end_idx, 'tagname': label, }) last_idx = end_idx prev = label for i, pred in enumerate(results): results[i]['span'] = sentence[pred['start']:pred['end']] return results def word_tokenize(sentence, sep=r'(\W+)?'): return [x.strip() for x in re.split(sep, sentence) if x.strip()]
[ "fariz@yesbossnow.com" ]
fariz@yesbossnow.com
81f6a58a5384c9dbc0bfaa1102c46721e4091001
a7f855efff14e0b15cffb3f035d8dc9f7f102afe
/mfb/extraWin/UTpackages/UTisocontour/isocontour.py
d857eb7a8199fd36b5ec4c785e21cb4375b49836
[]
no_license
BlenderCN-Org/FlipbookApp
76fcd92644c4e18dd90885eeb49e5aecae28f6f0
0df2acebf76b40105812d2e3af8f0ef4784ab74c
refs/heads/master
2020-05-27T14:33:25.330291
2014-07-10T17:47:29
2014-07-10T17:47:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
22,128
py
# This file was automatically generated by SWIG (http://www.swig.org). # Version 2.0.4 # # Do not make changes to this file unless you know what you are doing--modify # the SWIG interface file instead. from sys import version_info if version_info >= (2,6,0): def swig_import_helper(): from os.path import dirname import imp fp = None try: fp, pathname, description = imp.find_module('_isocontour', [dirname(__file__)]) except ImportError: import _isocontour return _isocontour if fp is not None: try: _mod = imp.load_module('_isocontour', fp, pathname, description) finally: fp.close() return _mod _isocontour = swig_import_helper() del swig_import_helper else: import _isocontour del version_info try: _swig_property = property except NameError: pass # Python < 2.2 doesn't have 'property'. def _swig_setattr_nondynamic(self,class_type,name,value,static=1): if (name == "thisown"): return self.this.own(value) if (name == "this"): if type(value).__name__ == 'SwigPyObject': self.__dict__[name] = value return method = class_type.__swig_setmethods__.get(name,None) if method: return method(self,value) if (not static): self.__dict__[name] = value else: raise AttributeError("You cannot add attributes to %s" % self) def _swig_setattr(self,class_type,name,value): return _swig_setattr_nondynamic(self,class_type,name,value,0) def _swig_getattr(self,class_type,name): if (name == "thisown"): return self.this.own() method = class_type.__swig_getmethods__.get(name,None) if method: return method(self) raise AttributeError(name) def _swig_repr(self): try: strthis = "proxy of " + self.this.__repr__() except: strthis = "" return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,) try: _object = object _newclass = 1 except AttributeError: class _object : pass _newclass = 0 CONTOUR_UCHAR = _isocontour.CONTOUR_UCHAR CONTOUR_USHORT = _isocontour.CONTOUR_USHORT CONTOUR_FLOAT = _isocontour.CONTOUR_FLOAT CONTOUR_2D = _isocontour.CONTOUR_2D CONTOUR_3D = _isocontour.CONTOUR_3D CONTOUR_REG_2D = _isocontour.CONTOUR_REG_2D CONTOUR_REG_3D = _isocontour.CONTOUR_REG_3D NO_COLOR_VARIABLE = _isocontour.NO_COLOR_VARIABLE class DatasetInfo(_object): __swig_setmethods__ = {} __setattr__ = lambda self, name, value: _swig_setattr(self, DatasetInfo, name, value) __swig_getmethods__ = {} __getattr__ = lambda self, name: _swig_getattr(self, DatasetInfo, name) __repr__ = _swig_repr __swig_setmethods__["datatype"] = _isocontour.DatasetInfo_datatype_set __swig_getmethods__["datatype"] = _isocontour.DatasetInfo_datatype_get if _newclass:datatype = _swig_property(_isocontour.DatasetInfo_datatype_get, _isocontour.DatasetInfo_datatype_set) __swig_setmethods__["meshtype"] = _isocontour.DatasetInfo_meshtype_set __swig_getmethods__["meshtype"] = _isocontour.DatasetInfo_meshtype_get if _newclass:meshtype = _swig_property(_isocontour.DatasetInfo_meshtype_get, _isocontour.DatasetInfo_meshtype_set) __swig_setmethods__["nvars"] = _isocontour.DatasetInfo_nvars_set __swig_getmethods__["nvars"] = _isocontour.DatasetInfo_nvars_get if _newclass:nvars = _swig_property(_isocontour.DatasetInfo_nvars_get, _isocontour.DatasetInfo_nvars_set) __swig_setmethods__["ntime"] = _isocontour.DatasetInfo_ntime_set __swig_getmethods__["ntime"] = _isocontour.DatasetInfo_ntime_get if _newclass:ntime = _swig_property(_isocontour.DatasetInfo_ntime_get, _isocontour.DatasetInfo_ntime_set) __swig_setmethods__["dim"] = _isocontour.DatasetInfo_dim_set __swig_getmethods__["dim"] = _isocontour.DatasetInfo_dim_get if _newclass:dim = _swig_property(_isocontour.DatasetInfo_dim_get, _isocontour.DatasetInfo_dim_set) __swig_setmethods__["orig"] = _isocontour.DatasetInfo_orig_set __swig_getmethods__["orig"] = _isocontour.DatasetInfo_orig_get if _newclass:orig = _swig_property(_isocontour.DatasetInfo_orig_get, _isocontour.DatasetInfo_orig_set) __swig_setmethods__["span"] = _isocontour.DatasetInfo_span_set __swig_getmethods__["span"] = _isocontour.DatasetInfo_span_get if _newclass:span = _swig_property(_isocontour.DatasetInfo_span_get, _isocontour.DatasetInfo_span_set) __swig_setmethods__["minext"] = _isocontour.DatasetInfo_minext_set __swig_getmethods__["minext"] = _isocontour.DatasetInfo_minext_get if _newclass:minext = _swig_property(_isocontour.DatasetInfo_minext_get, _isocontour.DatasetInfo_minext_set) __swig_setmethods__["maxext"] = _isocontour.DatasetInfo_maxext_set __swig_getmethods__["maxext"] = _isocontour.DatasetInfo_maxext_get if _newclass:maxext = _swig_property(_isocontour.DatasetInfo_maxext_get, _isocontour.DatasetInfo_maxext_set) __swig_setmethods__["minvar"] = _isocontour.DatasetInfo_minvar_set __swig_getmethods__["minvar"] = _isocontour.DatasetInfo_minvar_get if _newclass:minvar = _swig_property(_isocontour.DatasetInfo_minvar_get, _isocontour.DatasetInfo_minvar_set) __swig_setmethods__["maxvar"] = _isocontour.DatasetInfo_maxvar_set __swig_getmethods__["maxvar"] = _isocontour.DatasetInfo_maxvar_get if _newclass:maxvar = _swig_property(_isocontour.DatasetInfo_maxvar_get, _isocontour.DatasetInfo_maxvar_set) def _dim(self) -> "void" : return _isocontour.DatasetInfo__dim(self) def _orig(self) -> "void" : return _isocontour.DatasetInfo__orig(self) def _span(self) -> "void" : return _isocontour.DatasetInfo__span(self) def _minext(self) -> "void" : return _isocontour.DatasetInfo__minext(self) def _maxext(self) -> "void" : return _isocontour.DatasetInfo__maxext(self) def __init__(self): this = _isocontour.new_DatasetInfo() try: self.this.append(this) except: self.this = this __swig_destroy__ = _isocontour.delete_DatasetInfo __del__ = lambda self : None; DatasetInfo_swigregister = _isocontour.DatasetInfo_swigregister DatasetInfo_swigregister(DatasetInfo) class Seed(_object): __swig_setmethods__ = {} __setattr__ = lambda self, name, value: _swig_setattr(self, Seed, name, value) __swig_getmethods__ = {} __getattr__ = lambda self, name: _swig_getattr(self, Seed, name) __repr__ = _swig_repr __swig_setmethods__["min"] = _isocontour.Seed_min_set __swig_getmethods__["min"] = _isocontour.Seed_min_get if _newclass:min = _swig_property(_isocontour.Seed_min_get, _isocontour.Seed_min_set) __swig_setmethods__["max"] = _isocontour.Seed_max_set __swig_getmethods__["max"] = _isocontour.Seed_max_get if _newclass:max = _swig_property(_isocontour.Seed_max_get, _isocontour.Seed_max_set) __swig_setmethods__["cell_id"] = _isocontour.Seed_cell_id_set __swig_getmethods__["cell_id"] = _isocontour.Seed_cell_id_get if _newclass:cell_id = _swig_property(_isocontour.Seed_cell_id_get, _isocontour.Seed_cell_id_set) def __init__(self): this = _isocontour.new_Seed() try: self.this.append(this) except: self.this = this __swig_destroy__ = _isocontour.delete_Seed __del__ = lambda self : None; Seed_swigregister = _isocontour.Seed_swigregister Seed_swigregister(Seed) class SeedData(_object): __swig_setmethods__ = {} __setattr__ = lambda self, name, value: _swig_setattr(self, SeedData, name, value) __swig_getmethods__ = {} __getattr__ = lambda self, name: _swig_getattr(self, SeedData, name) __repr__ = _swig_repr __swig_setmethods__["nseeds"] = _isocontour.SeedData_nseeds_set __swig_getmethods__["nseeds"] = _isocontour.SeedData_nseeds_get if _newclass:nseeds = _swig_property(_isocontour.SeedData_nseeds_get, _isocontour.SeedData_nseeds_set) __swig_setmethods__["seeds"] = _isocontour.SeedData_seeds_set __swig_getmethods__["seeds"] = _isocontour.SeedData_seeds_get if _newclass:seeds = _swig_property(_isocontour.SeedData_seeds_get, _isocontour.SeedData_seeds_set) def __init__(self): this = _isocontour.new_SeedData() try: self.this.append(this) except: self.this = this __swig_destroy__ = _isocontour.delete_SeedData __del__ = lambda self : None; SeedData_swigregister = _isocontour.SeedData_swigregister SeedData_swigregister(SeedData) class Signature(_object): __swig_setmethods__ = {} __setattr__ = lambda self, name, value: _swig_setattr(self, Signature, name, value) __swig_getmethods__ = {} __getattr__ = lambda self, name: _swig_getattr(self, Signature, name) __repr__ = _swig_repr __swig_setmethods__["name"] = _isocontour.Signature_name_set __swig_getmethods__["name"] = _isocontour.Signature_name_get if _newclass:name = _swig_property(_isocontour.Signature_name_get, _isocontour.Signature_name_set) __swig_setmethods__["nval"] = _isocontour.Signature_nval_set __swig_getmethods__["nval"] = _isocontour.Signature_nval_get if _newclass:nval = _swig_property(_isocontour.Signature_nval_get, _isocontour.Signature_nval_set) __swig_setmethods__["fx"] = _isocontour.Signature_fx_set __swig_getmethods__["fx"] = _isocontour.Signature_fx_get if _newclass:fx = _swig_property(_isocontour.Signature_fx_get, _isocontour.Signature_fx_set) __swig_setmethods__["fy"] = _isocontour.Signature_fy_set __swig_getmethods__["fy"] = _isocontour.Signature_fy_get if _newclass:fy = _swig_property(_isocontour.Signature_fy_get, _isocontour.Signature_fy_set) def getFx(self, *args) -> "void" : return _isocontour.Signature_getFx(self, *args) def getFy(self, *args) -> "void" : return _isocontour.Signature_getFy(self, *args) def __init__(self): this = _isocontour.new_Signature() try: self.this.append(this) except: self.this = this __swig_destroy__ = _isocontour.delete_Signature __del__ = lambda self : None; Signature_swigregister = _isocontour.Signature_swigregister Signature_swigregister(Signature) class SliceData(_object): __swig_setmethods__ = {} __setattr__ = lambda self, name, value: _swig_setattr(self, SliceData, name, value) __swig_getmethods__ = {} __getattr__ = lambda self, name: _swig_getattr(self, SliceData, name) __repr__ = _swig_repr __swig_setmethods__["width"] = _isocontour.SliceData_width_set __swig_getmethods__["width"] = _isocontour.SliceData_width_get if _newclass:width = _swig_property(_isocontour.SliceData_width_get, _isocontour.SliceData_width_set) __swig_setmethods__["height"] = _isocontour.SliceData_height_set __swig_getmethods__["height"] = _isocontour.SliceData_height_get if _newclass:height = _swig_property(_isocontour.SliceData_height_get, _isocontour.SliceData_height_set) __swig_setmethods__["datatype"] = _isocontour.SliceData_datatype_set __swig_getmethods__["datatype"] = _isocontour.SliceData_datatype_get if _newclass:datatype = _swig_property(_isocontour.SliceData_datatype_get, _isocontour.SliceData_datatype_set) __swig_setmethods__["ucdata"] = _isocontour.SliceData_ucdata_set __swig_getmethods__["ucdata"] = _isocontour.SliceData_ucdata_get if _newclass:ucdata = _swig_property(_isocontour.SliceData_ucdata_get, _isocontour.SliceData_ucdata_set) __swig_setmethods__["usdata"] = _isocontour.SliceData_usdata_set __swig_getmethods__["usdata"] = _isocontour.SliceData_usdata_get if _newclass:usdata = _swig_property(_isocontour.SliceData_usdata_get, _isocontour.SliceData_usdata_set) __swig_setmethods__["fdata"] = _isocontour.SliceData_fdata_set __swig_getmethods__["fdata"] = _isocontour.SliceData_fdata_get if _newclass:fdata = _swig_property(_isocontour.SliceData_fdata_get, _isocontour.SliceData_fdata_set) def __init__(self): this = _isocontour.new_SliceData() try: self.this.append(this) except: self.this = this __swig_destroy__ = _isocontour.delete_SliceData __del__ = lambda self : None; SliceData_swigregister = _isocontour.SliceData_swigregister SliceData_swigregister(SliceData) class Contour2dData(_object): __swig_setmethods__ = {} __setattr__ = lambda self, name, value: _swig_setattr(self, Contour2dData, name, value) __swig_getmethods__ = {} __getattr__ = lambda self, name: _swig_getattr(self, Contour2dData, name) __repr__ = _swig_repr __swig_setmethods__["nvert"] = _isocontour.Contour2dData_nvert_set __swig_getmethods__["nvert"] = _isocontour.Contour2dData_nvert_get if _newclass:nvert = _swig_property(_isocontour.Contour2dData_nvert_get, _isocontour.Contour2dData_nvert_set) __swig_setmethods__["nedge"] = _isocontour.Contour2dData_nedge_set __swig_getmethods__["nedge"] = _isocontour.Contour2dData_nedge_get if _newclass:nedge = _swig_property(_isocontour.Contour2dData_nedge_get, _isocontour.Contour2dData_nedge_set) def __init__(self): this = _isocontour.new_Contour2dData() try: self.this.append(this) except: self.this = this __swig_destroy__ = _isocontour.delete_Contour2dData __del__ = lambda self : None; Contour2dData_swigregister = _isocontour.Contour2dData_swigregister Contour2dData_swigregister(Contour2dData) class Contour3dData(_object): __swig_setmethods__ = {} __setattr__ = lambda self, name, value: _swig_setattr(self, Contour3dData, name, value) __swig_getmethods__ = {} __getattr__ = lambda self, name: _swig_getattr(self, Contour3dData, name) __repr__ = _swig_repr __swig_setmethods__["nvert"] = _isocontour.Contour3dData_nvert_set __swig_getmethods__["nvert"] = _isocontour.Contour3dData_nvert_get if _newclass:nvert = _swig_property(_isocontour.Contour3dData_nvert_get, _isocontour.Contour3dData_nvert_set) __swig_setmethods__["ntri"] = _isocontour.Contour3dData_ntri_set __swig_getmethods__["ntri"] = _isocontour.Contour3dData_ntri_get if _newclass:ntri = _swig_property(_isocontour.Contour3dData_ntri_get, _isocontour.Contour3dData_ntri_set) __swig_setmethods__["vfun"] = _isocontour.Contour3dData_vfun_set __swig_getmethods__["vfun"] = _isocontour.Contour3dData_vfun_get if _newclass:vfun = _swig_property(_isocontour.Contour3dData_vfun_get, _isocontour.Contour3dData_vfun_set) __swig_setmethods__["colorvar"] = _isocontour.Contour3dData_colorvar_set __swig_getmethods__["colorvar"] = _isocontour.Contour3dData_colorvar_get if _newclass:colorvar = _swig_property(_isocontour.Contour3dData_colorvar_get, _isocontour.Contour3dData_colorvar_set) __swig_setmethods__["fmin"] = _isocontour.Contour3dData_fmin_set __swig_getmethods__["fmin"] = _isocontour.Contour3dData_fmin_get if _newclass:fmin = _swig_property(_isocontour.Contour3dData_fmin_get, _isocontour.Contour3dData_fmin_set) __swig_setmethods__["fmax"] = _isocontour.Contour3dData_fmax_set __swig_getmethods__["fmax"] = _isocontour.Contour3dData_fmax_get if _newclass:fmax = _swig_property(_isocontour.Contour3dData_fmax_get, _isocontour.Contour3dData_fmax_set) def __init__(self): this = _isocontour.new_Contour3dData() try: self.this.append(this) except: self.this = this __swig_destroy__ = _isocontour.delete_Contour3dData __del__ = lambda self : None; Contour3dData_swigregister = _isocontour.Contour3dData_swigregister Contour3dData_swigregister(Contour3dData) class ConDataset(_object): __swig_setmethods__ = {} __setattr__ = lambda self, name, value: _swig_setattr(self, ConDataset, name, value) __swig_getmethods__ = {} __getattr__ = lambda self, name: _swig_getattr(self, ConDataset, name) __repr__ = _swig_repr __swig_setmethods__["vnames"] = _isocontour.ConDataset_vnames_set __swig_getmethods__["vnames"] = _isocontour.ConDataset_vnames_get if _newclass:vnames = _swig_property(_isocontour.ConDataset_vnames_get, _isocontour.ConDataset_vnames_set) __swig_setmethods__["nsfun"] = _isocontour.ConDataset_nsfun_set __swig_getmethods__["nsfun"] = _isocontour.ConDataset_nsfun_get if _newclass:nsfun = _swig_property(_isocontour.ConDataset_nsfun_get, _isocontour.ConDataset_nsfun_set) __swig_setmethods__["sfun"] = _isocontour.ConDataset_sfun_set __swig_getmethods__["sfun"] = _isocontour.ConDataset_sfun_get if _newclass:sfun = _swig_property(_isocontour.ConDataset_sfun_get, _isocontour.ConDataset_sfun_set) __swig_setmethods__["data"] = _isocontour.ConDataset_data_set __swig_getmethods__["data"] = _isocontour.ConDataset_data_get if _newclass:data = _swig_property(_isocontour.ConDataset_data_get, _isocontour.ConDataset_data_set) __swig_setmethods__["plot"] = _isocontour.ConDataset_plot_set __swig_getmethods__["plot"] = _isocontour.ConDataset_plot_get if _newclass:plot = _swig_property(_isocontour.ConDataset_plot_get, _isocontour.ConDataset_plot_set) def getSignature(self, *args) -> "Signature *" : return _isocontour.ConDataset_getSignature(self, *args) def __init__(self): this = _isocontour.new_ConDataset() try: self.this.append(this) except: self.this = this __swig_destroy__ = _isocontour.delete_ConDataset __del__ = lambda self : None; ConDataset_swigregister = _isocontour.ConDataset_swigregister ConDataset_swigregister(ConDataset) def setVerboseLevel(*args) -> "void" : return _isocontour.setVerboseLevel(*args) setVerboseLevel = _isocontour.setVerboseLevel def newDatasetUnstr(*args) -> "ConDataset *" : return _isocontour.newDatasetUnstr(*args) newDatasetUnstr = _isocontour.newDatasetUnstr def newDatasetReg(*args) -> "ConDataset *" : return _isocontour.newDatasetReg(*args) newDatasetReg = _isocontour.newDatasetReg def loadDataset(*args) -> "ConDataset *" : return _isocontour.loadDataset(*args) loadDataset = _isocontour.loadDataset def getDatasetInfo(*args) -> "DatasetInfo *" : return _isocontour.getDatasetInfo(*args) getDatasetInfo = _isocontour.getDatasetInfo def getVariableNames(*args) -> "char **" : return _isocontour.getVariableNames(*args) getVariableNames = _isocontour.getVariableNames def getSeedCells(*args) -> "SeedData *" : return _isocontour.getSeedCells(*args) getSeedCells = _isocontour.getSeedCells def getNumberOfSignatures(*args) -> "int" : return _isocontour.getNumberOfSignatures(*args) getNumberOfSignatures = _isocontour.getNumberOfSignatures def getSignatureFunctions(*args) -> "Signature *" : return _isocontour.getSignatureFunctions(*args) getSignatureFunctions = _isocontour.getSignatureFunctions def getSignatureValues(*args) -> "float *" : return _isocontour.getSignatureValues(*args) getSignatureValues = _isocontour.getSignatureValues def getSlice(*args) -> "SliceData *" : return _isocontour.getSlice(*args) getSlice = _isocontour.getSlice def getContour2d(*args) -> "Contour2dData *" : return _isocontour.getContour2d(*args) getContour2d = _isocontour.getContour2d def getContour3d(*args) -> "Contour3dData *" : return _isocontour.getContour3d(*args) getContour3d = _isocontour.getContour3d def saveContour2d(*args) -> "void" : return _isocontour.saveContour2d(*args) saveContour2d = _isocontour.saveContour2d def saveContour3d(*args) -> "void" : return _isocontour.saveContour3d(*args) saveContour3d = _isocontour.saveContour3d def writeIsoComponents(*args) -> "void" : return _isocontour.writeIsoComponents(*args) writeIsoComponents = _isocontour.writeIsoComponents def clearDataset(*args) -> "void" : return _isocontour.clearDataset(*args) clearDataset = _isocontour.clearDataset def newDatasetRegFloat3D(*args) -> "ConDataset *" : return _isocontour.newDatasetRegFloat3D(*args) newDatasetRegFloat3D = _isocontour.newDatasetRegFloat3D def delDatasetReg(*args) -> "void" : return _isocontour.delDatasetReg(*args) delDatasetReg = _isocontour.delDatasetReg def delContour3d(*args) -> "void" : return _isocontour.delContour3d(*args) delContour3d = _isocontour.delContour3d def newDatasetRegShort3D(*args) -> "ConDataset *" : return _isocontour.newDatasetRegShort3D(*args) newDatasetRegShort3D = _isocontour.newDatasetRegShort3D def newDatasetRegUchar3D(*args) -> "ConDataset *" : return _isocontour.newDatasetRegUchar3D(*args) newDatasetRegUchar3D = _isocontour.newDatasetRegUchar3D def setOrig3D(*args) -> "void" : return _isocontour.setOrig3D(*args) setOrig3D = _isocontour.setOrig3D def setSpan3D(*args) -> "void" : return _isocontour.setSpan3D(*args) setSpan3D = _isocontour.setSpan3D def newDatasetRegFloat2D(*args) -> "ConDataset *" : return _isocontour.newDatasetRegFloat2D(*args) newDatasetRegFloat2D = _isocontour.newDatasetRegFloat2D def newDatasetRegShort2D(*args) -> "ConDataset *" : return _isocontour.newDatasetRegShort2D(*args) newDatasetRegShort2D = _isocontour.newDatasetRegShort2D def newDatasetRegUchar2D(*args) -> "ConDataset *" : return _isocontour.newDatasetRegUchar2D(*args) newDatasetRegUchar2D = _isocontour.newDatasetRegUchar2D def setOrig2D(*args) -> "void" : return _isocontour.setOrig2D(*args) setOrig2D = _isocontour.setOrig2D def setSpan2D(*args) -> "void" : return _isocontour.setSpan2D(*args) setSpan2D = _isocontour.setSpan2D def getContour3dData(*args) -> "void" : return _isocontour.getContour3dData(*args) getContour3dData = _isocontour.getContour3dData def getContour2dData(*args) -> "void" : return _isocontour.getContour2dData(*args) getContour2dData = _isocontour.getContour2dData # This file is compatible with both classic and new-style classes. string2Float = _isocontour.string2Float getSliceArray = _isocontour.getSliceArray
[ "mike.c.pan@gmail.com" ]
mike.c.pan@gmail.com
d06216331ce8ca32ca14753c0bc10553d05e2cda
e234808a354c2aab816d6dac98b8fded08139bec
/olympiads_mospolytech/account/admin.py
1251e5c33ecd5bca7b9a923f9f3fc0a3268ab1c6
[]
no_license
yellowpearl/mpolymps
ac7c15788fa66afa8028622b6dcb140969196451
c4e14b8a46af5b788ba5077fa6705a13b0c09382
refs/heads/master
2023-03-25T20:46:49.615667
2021-03-26T11:32:55
2021-03-26T11:32:55
326,702,383
0
0
null
2021-01-27T18:56:51
2021-01-04T14:03:09
HTML
UTF-8
Python
false
false
262
py
from django.contrib import admin from django.contrib.auth.models import User from .models import * admin.site.register(EmailConfirmation) admin.site.register(OlympsUser) admin.site.register(ResetPasswords) admin.site.register(Chat) admin.site.register(Message)
[ "yellowpearl@yandex.ru" ]
yellowpearl@yandex.ru
5bd0a70c30bf7375ce96d66edd4d0bde895f6c18
05bdb561010ba50d3b5a70e8cbe2ed29572b961c
/class4/while1.py
ecd826a2b47fe15dbe603af2bb3618718fb04e16
[]
no_license
FundamentalsModernSoftware/fall2018
4d45137ceff9323627e934789cc65c94c8148e86
c2fb9e4596d1d0fd51afdd5e294022e3aebefdf9
refs/heads/master
2020-03-26T19:18:08.146935
2018-10-10T18:32:10
2018-10-10T18:32:10
145,257,676
1
0
null
null
null
null
UTF-8
Python
false
false
62
py
i = 1 while i <= 4: print(i) i = i + 1 print('Done!')
[ "james.grimmelmann@cornell.edu" ]
james.grimmelmann@cornell.edu
f3e883b27fc8bdb5821e68751c7cb54ce59df007
85fc4f8cc2a700151ef8c53672cb9222741f778f
/CheckOut_ApkName/check_update_apkname.py
0c9b3e38a8a0b4b1e6702c97cf03dcb81e105a48
[]
no_license
Dragon-Zpl/MyGoogleCrawl
f148c1d478d1f18738dc3555ea023e76fc98230f
9471357447dd09c62c223c9307cbe7774f9b164d
refs/heads/master
2020-04-26T22:38:46.022085
2019-04-16T06:51:49
2019-04-16T06:51:49
173,878,780
1
0
null
null
null
null
UTF-8
Python
false
false
8,976
py
import asyncio import time from random import choice from AllSetting import GetSetting from CrawlProxy.ForeignProxyCrawl.crawl_foreigh_auto import crawl_fn from Database_Option.Get_Mysql_pool import GetMysqlPool from Database_Option.redis_option import RedisOption from Parsing import ParsingData from Request_Web.AllRequest import InitiateRequest class CheckUpdateApkname: def __init__(self): self.setting = GetSetting() self.loop = self.setting.get_loop() self.session = self.setting.get_session() self.lock = asyncio.Lock() self.crawl_proxy = crawl_fn() self.parsing = ParsingData() self.get_pool = GetMysqlPool() self.loop.run_until_complete(asyncio.ensure_future(self.get_pool.init_pool())) self.get_redis = RedisOption() self._Request = InitiateRequest() self.apknames = set() self.proxies = [] self.all_data_list = [] self.printf = self.setting.get_logger() self.country_dict = { # 'us': '&hl=en&gl=us', 'zh': '&hl=zh&gl=us', 'zhtw': '&hl=zh_TW&gl=us', 'ko': '&hl=ko&gl=us', 'ar': '&hl=ar&gl=us', 'jp': '&hl=ja&gl=us', } async def _get_proxy(self): async with self.lock: if len(self.proxies) < 3: self.proxies = await self.crawl_proxy.run(self.session) try: proxy = choice(self.proxies) return proxy except: await self._get_proxy() async def check_app_version(self, data, time=3, proxy=None): """ 检查美国的版本是否更新 """ now_pkgname = data["pkgname"] now_app_version = await self.get_pool.find_pkgname(now_pkgname) apk_url = "https://play.google.com/store/apps/details?id=" + now_pkgname for i in range(3): if proxy is None: proxy = await self._get_proxy() try: datas = await self._Request.get_request(self.session,apk_url,proxy) if datas: analysis_data = self.parsing.analysis_country_data(datas) # 判断是否已经可下载 if analysis_data is None: data_return = {} data_return["pkgname"] = now_pkgname data_return["is_update"] = 0 return data_return, None analysis_data["country"] = "us" analysis_data["pkgname"] = now_pkgname analysis_data["url"] = apk_url check_app_version = analysis_data["app_version"] change_time = self.parsing.change_time('us', analysis_data["update_time"]) if change_time is not None: analysis_data["update_time"] = change_time # 数据库中版本不为空,且检查版本与数据库相同或者检查版本为空时,不更新 if now_app_version is not None and (check_app_version == now_app_version or check_app_version is None): data_return = {} data_return["app_version"] = now_app_version data_return["pkgname"] = now_pkgname data_return["is_update"] = 0 else: data_return = {} data_return["app_version"] = check_app_version data_return["pkgname"] = now_pkgname data_return["is_update"] = 1 return data_return, analysis_data else: self.printf.info("data is none") except Exception as e: if str(e) == "": self.printf.info("错误数据"+str(data)) self.printf.info(str(e)) else: # 失败三次重新放入redis中 self.printf.info('失败三次重新放入redis') data_return = {} data_return["pkgname"] = now_pkgname data_return["is_update"] = 2 return data_return, None async def check_other_coutry(self, data, time=3, proxy=None): ''' 获取其他国家的数据 ''' for country in self.country_dict: pkgname = data["pkgname"] apk_url = "https://play.google.com/store/apps/details?id=" + pkgname + self.country_dict[country] if proxy == None: proxy = await self._get_proxy() for i in range(3): try: datas = await self._Request.get_request(self.session, apk_url, proxy) if datas: check_app_data = self.parsing.analysis_country_data(datas) if check_app_data is None: break check_app_data["pkgname"] = pkgname check_app_data["country"] = country check_app_data["url"] = apk_url change_time = self.parsing.change_time(country, check_app_data["update_time"]) if change_time is not None: check_app_data["update_time"] = change_time self.all_data_list.append(check_app_data) break except Exception as e: if str(e) == "": self.printf.info("错误数据" + str(data)) self.printf.info(str(e)) else: return None def _get_pkgdata_redis(self,start): """ 从redis中获取pkg的数据 """ pkg_datas = [] for i in range(100): end = time.time() if (end -start) > 20: return pkg_datas pkg_data = self.get_redis.get_redis_pkgname() pkg_datas.append(pkg_data) return pkg_datas def _build_check_tasks(self, results): ''' 创建检查美国信息的任务队列 :param results: :return: 需要检查并要存入redis的pkg数据的字典,需要存入mysql美国的pkg数据的字典(两个字典) ''' check_tasks = [] for result in results: task = asyncio.ensure_future(self.check_app_version(result)) check_tasks.append(task) return check_tasks def _task_ensure_future(self, func, data, tasks): task = asyncio.ensure_future(func(data)) tasks.append(task) def _build_other_insert(self, check_results): ''' 遍历以美国为基准的需要更新的数据,分别更新redis, 创建检查其他国家的任务队列和将美国数据插入mysql的任务队列 :param check_results: :return: 存入mysql的任务队列和检查其他国家的任务队列 ''' save_mysql_tasks = [] check_other_tasks = [] for check_result in check_results: try: data_return, analysis_data = check_result if data_return is not None and data_return["is_update"] == 2: self.get_redis.update_pkgname_redis(data_return) if analysis_data is not None: self._task_ensure_future(self.get_pool.insert_mysql_, analysis_data, save_mysql_tasks) if data_return is not None and data_return["is_update"] == 1: self._task_ensure_future(self.check_other_coutry, data_return, check_other_tasks) except Exception as e: self.printf.info('错误信息:' + str(e)) return save_mysql_tasks, check_other_tasks def run(self): """ 从redis中获取pkg数据->检查美国的包是否有更新->更新redis->以美国为基准获取其他国家有版本更新的包的数据->存入数据库 """ while True: start = time.time() pkg_datas = self._get_pkgdata_redis(start) check_tasks = self._build_check_tasks(pkg_datas) if len(check_tasks) >= 1: check_results = self.loop.run_until_complete(asyncio.gather(*check_tasks)) save_mysql_tasks, check_other_tasks = self._build_other_insert(check_results) if len(check_other_tasks) >= 1: self.loop.run_until_complete(asyncio.wait(check_other_tasks)) for result_list in self.all_data_list: if result_list is not None: task = self.get_pool.insert_mysql_(result_list) save_mysql_tasks.append(task) self.all_data_list = [] if len(save_mysql_tasks) >= 1: self.loop.run_until_complete(asyncio.wait(save_mysql_tasks))
[ "peilong.zhuang@office.feng.com" ]
peilong.zhuang@office.feng.com
e8f2bfbfd36c90a2ef801eb317ca5acb38f55ceb
385fc235ccd59307f611ab8d3f9bfa025ffab9cd
/helloPV.py
62b154793fd5854e08b5c3711c4435a944bb1e68
[]
no_license
denkovade/hellopy
136193811eea357a26a2ef2499fada91e52fa9ae
311184a51709304a5ba4fe0759d2aa9fe8b1ba48
refs/heads/master
2021-01-09T05:30:15.024229
2017-02-06T07:48:52
2017-02-06T07:48:52
80,781,037
0
0
null
2017-02-06T06:00:24
2017-02-02T23:57:33
Python
UTF-8
Python
false
false
124
py
#!/usr/bin/env python def hello(): return "Hello, PV!" def main(): print hello() if __name__ == "__main__": main()
[ "denkova.de@gmail.com" ]
denkova.de@gmail.com
b8c51955e251f8f1f7397c08dbb129d119c9879e
ecb6b752523a126ef17895854b18e02df41c4cfe
/app_backend/views/user.py
63e2ce8ff4c284a65c2a17364590cdc75c896040
[ "MIT" ]
permissive
zhanghe06/bearing_project
cd6a1b2ba509392da37e5797a3619454ca464276
25729aa7a8a5b38906e60b370609b15e8911ecdd
refs/heads/master
2023-05-27T17:23:22.561045
2023-05-23T09:26:07
2023-05-23T09:39:14
126,219,603
2
5
MIT
2022-12-08T03:11:27
2018-03-21T17:54:44
JavaScript
UTF-8
Python
false
false
21,015
py
#!/usr/bin/env python # encoding: utf-8 """ @author: zhanghe @software: PyCharm @file: user.py @time: 2018-04-04 17:33 """ from __future__ import unicode_literals import json from datetime import datetime from flask import ( request, flash, render_template, url_for, redirect, abort, jsonify, Blueprint, ) from flask_babel import gettext as _ from flask_login import login_required, current_user from app_backend import app from app_backend import excel from app_backend.api.buyer_order import count_buyer_order from app_backend.api.delivery import count_delivery from app_backend.api.enquiry import count_enquiry from app_backend.api.purchase import count_purchase from app_backend.api.quotation import count_quotation from app_backend.api.sales_order import count_sales_order from app_backend.api.user import ( get_user_rows, get_user_pagination, get_user_row_by_id, add_user, edit_user, user_current_stats, user_former_stats) from app_backend.api.user_auth import ( add_user_auth, edit_user_auth, get_user_auth_row) from app_backend.forms.user import ( UserSearchForm, UserAddForm, UserEditForm, ) from app_backend.models.model_bearing import User from app_backend.permissions import permission_role_administrator from app_backend.permissions.user import ( permission_user_section_add, permission_user_section_search, permission_user_section_stats, permission_user_section_export, permission_user_section_get, permission_user_section_edit, permission_user_section_del, ) from app_common.maps.default import DEFAULT_SEARCH_CHOICES_INT_OPTION from app_common.maps.operations import OPERATION_EXPORT, OPERATION_DELETE from app_common.maps.status_delete import ( STATUS_DEL_OK, STATUS_DEL_NO) from app_common.maps.status_verified import STATUS_VERIFIED_OK from app_common.maps.type_auth import TYPE_AUTH_ACCOUNT from app_common.tools import json_default # 定义蓝图 bp_user = Blueprint('user', __name__, url_prefix='/user') # 加载配置 DOCUMENT_INFO = app.config.get('DOCUMENT_INFO', {}) PER_PAGE_BACKEND = app.config.get('PER_PAGE_BACKEND', 20) AJAX_SUCCESS_MSG = app.config.get('AJAX_SUCCESS_MSG', {'result': True}) AJAX_FAILURE_MSG = app.config.get('AJAX_FAILURE_MSG', {'result': False}) @bp_user.route('/lists.html', methods=['GET', 'POST']) @login_required @permission_user_section_search.require(http_exception=403) def lists(): """ 用户列表 :return: """ template_name = 'user/lists.html' # 文档信息 document_info = DOCUMENT_INFO.copy() document_info['TITLE'] = _('user lists') # 搜索条件 form = UserSearchForm(request.form) search_condition = [ User.status_delete == STATUS_DEL_NO, ] if request.method == 'POST': # 表单校验失败 if not form.validate_on_submit(): flash(_('Search Failure'), 'danger') # 单独处理csrf_token if hasattr(form, 'csrf_token') and getattr(form, 'csrf_token').errors: map(lambda x: flash(x, 'danger'), form.csrf_token.errors) else: if form.name.data: search_condition.append(User.name == form.name.data) if form.role_id.data != DEFAULT_SEARCH_CHOICES_INT_OPTION: search_condition.append(User.role_id == form.role_id.data) if form.start_create_time.data: search_condition.append(User.create_time >= form.start_create_time.data) if form.end_create_time.data: search_condition.append(User.create_time <= form.end_create_time.data) # 处理导出 if form.op.data == OPERATION_EXPORT: # 检查导出权限 if not permission_user_section_export.can(): abort(403) column_names = User.__table__.columns.keys() query_sets = get_user_rows(*search_condition) return excel.make_response_from_query_sets( query_sets=query_sets, column_names=column_names, file_type='csv', file_name='%s.csv' % _('user lists') ) # 批量删除 if form.op.data == OPERATION_DELETE: # 检查删除权限 if not permission_user_section_del.can(): abort(403) user_ids = request.form.getlist('user_id') # 检查删除权限 permitted = True for user_id in user_ids: # 检查是否正在使用 # 1、报价 if count_quotation(**{'uid': user_id, 'status_delete': STATUS_DEL_NO}): ext_msg = _('Currently In Use') flash(_('Del Failure, %(ext_msg)s', ext_msg=ext_msg), 'danger') permitted = False break # 2、销售订单 if count_sales_order(**{'uid': user_id, 'status_delete': STATUS_DEL_NO}): ext_msg = _('Currently In Use') flash(_('Del Failure, %(ext_msg)s', ext_msg=ext_msg), 'danger') permitted = False break # 3、销售出货 if count_delivery(**{'uid': user_id, 'status_delete': STATUS_DEL_NO}): ext_msg = _('Currently In Use') flash(_('Del Failure, %(ext_msg)s', ext_msg=ext_msg), 'danger') permitted = False break # 4、询价 if count_enquiry(**{'uid': user_id, 'status_delete': STATUS_DEL_NO}): ext_msg = _('Currently In Use') flash(_('Del Failure, %(ext_msg)s', ext_msg=ext_msg), 'danger') permitted = False break # 5、采购订单 if count_buyer_order(**{'uid': user_id, 'status_delete': STATUS_DEL_NO}): ext_msg = _('Currently In Use') flash(_('Del Failure, %(ext_msg)s', ext_msg=ext_msg), 'danger') permitted = False break # 6、采购进货 if count_purchase(**{'uid': user_id, 'status_delete': STATUS_DEL_NO}): ext_msg = _('Currently In Use') flash(_('Del Failure, %(ext_msg)s', ext_msg=ext_msg), 'danger') permitted = False break if permitted: result_total = True for user_id in user_ids: current_time = datetime.utcnow() user_data = { 'status_delete': STATUS_DEL_OK, 'delete_time': current_time, 'update_time': current_time, } result = edit_user(user_id, user_data) result_total = result_total and result if result_total: flash(_('Del Success'), 'success') else: flash(_('Del Failure'), 'danger') # 翻页数据 pagination = get_user_pagination(form.page.data, PER_PAGE_BACKEND, *search_condition) # 渲染模板 return render_template( template_name, form=form, pagination=pagination, **document_info ) # @bp_user.route('/search.html', methods=['GET', 'POST']) # @login_required # @permission_user_section_search.require(http_exception=403) # def search(): # """ # 用户搜索 # :return: # """ # template_name = 'customer/search_modal.html' # # 文档信息 # document_info = DOCUMENT_INFO.copy() # document_info['TITLE'] = _('Customer Search') # # # 搜索条件 # form = UserSearchForm(request.form) # form.owner_uid.choices = get_sales_user_list() # # app.logger.info('') # # search_condition = [ # Customer.status_delete == STATUS_DEL_NO, # ] # if request.method == 'POST': # # 表单校验失败 # if not form.validate_on_submit(): # flash(_('Search Failure'), 'danger') # # 单独处理csrf_token # if hasattr(form, 'csrf_token') and getattr(form, 'csrf_token').errors: # map(lambda x: flash(x, 'danger'), form.csrf_token.errors) # else: # if form.company_type.data != default_choice_option_int: # search_condition.append(Customer.company_type == form.company_type.data) # if form.company_name.data: # search_condition.append(Customer.company_name.like('%%%s%%' % form.company_name.data)) # # 翻页数据 # pagination = get_customer_pagination(form.page.data, PER_PAGE_BACKEND_MODAL, *search_condition) # # # 渲染模板 # return render_template( # template_name, # form=form, # pagination=pagination, # **document_info # ) @bp_user.route('/<int:user_id>/info.html') @login_required @permission_user_section_get.require(http_exception=403) def info(user_id): """ 用户详情 :param user_id: :return: """ # 详情数据 user_info = get_user_row_by_id(user_id) # 检查资源是否存在 if not user_info: abort(404) # 检查资源是否删除 if user_info.status_delete == STATUS_DEL_OK: abort(410) # 文档信息 document_info = DOCUMENT_INFO.copy() document_info['TITLE'] = _('user info') # 渲染模板 return render_template('user/info.html', user_info=user_info, **document_info) @bp_user.route('/add.html', methods=['GET', 'POST']) @login_required @permission_user_section_add.require(http_exception=403) def add(): """ 创建用户 :return: """ template_name = 'user/add.html' # 文档信息 document_info = DOCUMENT_INFO.copy() document_info['TITLE'] = _('user add') # 加载创建表单 form = UserAddForm(request.form) # 进入创建页面 if request.method == 'GET': # 渲染页面 return render_template( template_name, form=form, **document_info ) # 处理创建请求 if request.method == 'POST': # 表单校验失败 if not form.validate_on_submit(): flash(_('Add Failure'), 'danger') return render_template( template_name, form=form, **document_info ) # 表单校验成功 # 创建用户基本信息 current_time = datetime.utcnow() user_data = { 'name': form.name.data, 'salutation': form.salutation.data, 'mobile': form.mobile.data, 'tel': form.tel.data, 'fax': form.fax.data, 'email': form.email.data, 'role_id': form.role_id.data, 'create_time': current_time, 'update_time': current_time, } user_id = add_user(user_data) if not user_id: flash(_('Add Failure'), 'danger') return render_template( template_name, form=form, **document_info ) # 创建用户认证信息 user_auth_data = { 'user_id': user_id, 'type_auth': TYPE_AUTH_ACCOUNT, 'auth_key': form.name.data, 'auth_secret': '123456', # 默认密码 'status_verified': STATUS_VERIFIED_OK, 'create_time': current_time, 'update_time': current_time, } result = add_user_auth(user_auth_data) if result: flash(_('Add Success'), 'success') return redirect(request.args.get('next') or url_for('user.lists')) # 创建操作失败 else: flash(_('Add Failure'), 'danger') return render_template( template_name, form=form, **document_info ) @bp_user.route('/<int:user_id>/edit.html', methods=['GET', 'POST']) @login_required @permission_user_section_edit.require(http_exception=403) def edit(user_id): """ 用户编辑 """ user_info = get_user_row_by_id(user_id) # 检查资源是否存在 if not user_info: abort(404) # 检查资源是否删除 if user_info.status_delete == STATUS_DEL_OK: abort(410) template_name = 'user/edit.html' # 加载编辑表单 form = UserEditForm(request.form) form.id.data = user_id # id 仅作为编辑重复校验 # 文档信息 document_info = DOCUMENT_INFO.copy() document_info['TITLE'] = _('user edit') # 进入编辑页面 if request.method == 'GET': # 表单赋值 form.id.data = user_info.id form.name.data = user_info.name form.salutation.data = user_info.salutation form.mobile.data = user_info.mobile form.tel.data = user_info.tel form.fax.data = user_info.fax form.email.data = user_info.email form.role_id.data = user_info.role_id form.create_time.data = user_info.create_time form.update_time.data = user_info.update_time # 渲染页面 return render_template( template_name, user_id=user_id, form=form, **document_info ) # 处理编辑请求 if request.method == 'POST': # 表单校验失败 if not form.validate_on_submit(): flash(_('Edit Failure'), 'danger') # flash(form.errors, 'danger') return render_template( template_name, user_id=user_id, form=form, **document_info ) # 非系统角色,仅能修改自己的信息 if not permission_role_administrator.can(): if getattr(current_user, 'id') != form.id.data: flash(_('Permission denied, only the user\'s own information can be modified'), 'danger') # flash(form.errors, 'danger') return render_template( template_name, user_id=user_id, form=form, **document_info ) # 表单校验成功 # 编辑用户基本信息 current_time = datetime.utcnow() user_data = { 'name': form.name.data, 'salutation': form.salutation.data, 'mobile': form.mobile.data, 'tel': form.tel.data, 'fax': form.fax.data, 'email': form.email.data, 'role_id': form.role_id.data, 'update_time': current_time, } result = edit_user(user_id, user_data) if not result: # 编辑操作失败 flash(_('Edit Failure'), 'danger') return render_template( template_name, user_id=user_id, form=form, **document_info ) user_auth_row = get_user_auth_row(user_id=user_id) if not user_auth_row: # 编辑操作失败 flash(_('Edit Failure'), 'danger') return render_template( template_name, user_id=user_id, form=form, **document_info ) # 编辑用户认证信息 user_auth_data = { 'user_id': user_id, 'type_auth': TYPE_AUTH_ACCOUNT, 'auth_key': form.name.data, 'update_time': current_time, } result = edit_user_auth(user_auth_row.id, user_auth_data) if not result: # 编辑操作失败 flash(_('Edit Failure'), 'danger') return render_template( template_name, user_id=user_id, form=form, **document_info ) # 编辑操作成功 flash(_('Edit Success'), 'success') return redirect(request.args.get('next') or url_for('user.lists')) @bp_user.route('/ajax/del', methods=['GET', 'POST']) @login_required def ajax_delete(): """ 用户删除 :return: """ ajax_success_msg = AJAX_SUCCESS_MSG.copy() ajax_failure_msg = AJAX_FAILURE_MSG.copy() # 检查删除权限 if not permission_user_section_del.can(): ext_msg = _('Permission Denied') ajax_failure_msg['msg'] = _('Del Failure, %(ext_msg)s', ext_msg=ext_msg) return jsonify(ajax_failure_msg) # 检查请求方法 if not (request.method == 'GET' and request.is_xhr): ext_msg = _('Method Not Allowed') ajax_failure_msg['msg'] = _('Del Failure, %(ext_msg)s', ext_msg=ext_msg) return jsonify(ajax_failure_msg) # 检查请求参数 user_id = request.args.get('user_id', 0, type=int) if not user_id: ext_msg = _('ID does not exist') ajax_failure_msg['msg'] = _('Del Failure, %(ext_msg)s', ext_msg=ext_msg) return jsonify(ajax_failure_msg) user_info = get_user_row_by_id(user_id) # 检查资源是否存在 if not user_info: ext_msg = _('ID does not exist') ajax_failure_msg['msg'] = _('Del Failure, %(ext_msg)s', ext_msg=ext_msg) return jsonify(ajax_failure_msg) # 检查资源是否删除 if user_info.status_delete == STATUS_DEL_OK: ext_msg = _('Already deleted') ajax_failure_msg['msg'] = _('Del Failure, %(ext_msg)s', ext_msg=ext_msg) return jsonify(ajax_failure_msg) # 检查是否正在使用 # 报价、订单 if count_quotation(**{'uid': user_id, 'status_delete': STATUS_DEL_NO}): ext_msg = _('Currently In Use') ajax_failure_msg['msg'] = _('Del Failure, %(ext_msg)s', ext_msg=ext_msg) return jsonify(ajax_failure_msg) current_time = datetime.utcnow() user_data = { 'status_delete': STATUS_DEL_OK, 'delete_time': current_time, 'update_time': current_time, } result = edit_user(user_id, user_data) if result: ajax_success_msg['msg'] = _('Del Success') return jsonify(ajax_success_msg) else: ajax_failure_msg['msg'] = _('Del Failure') return jsonify(ajax_failure_msg) @bp_user.route('/ajax/stats', methods=['GET', 'POST']) @login_required def ajax_stats(): """ 获取用户统计 :return: """ time_based = request.args.get('time_based', 'hour') result_user_current = user_current_stats(time_based) result_user_former = user_former_stats(time_based) line_chart_data = { 'labels': [label for label, _ in result_user_current], 'datasets': [ { 'label': '在职', 'backgroundColor': 'rgba(220,220,220,0.5)', 'borderColor': 'rgba(220,220,220,1)', 'pointBackgroundColor': 'rgba(220,220,220,1)', 'pointBorderColor': '#fff', 'pointBorderWidth': 2, 'data': [data for _, data in result_user_current] }, { 'label': '离职', 'backgroundColor': 'rgba(151,187,205,0.5)', 'borderColor': 'rgba(151,187,205,1)', 'pointBackgroundColor': 'rgba(151,187,205,1)', 'pointBorderColor': '#fff', 'pointBorderWidth': 2, 'data': [data for _, data in result_user_former] } ] } return json.dumps(line_chart_data, default=json_default) @bp_user.route('/stats.html') @login_required @permission_user_section_stats.require(http_exception=403) def stats(): """ 用户统计 :return: """ # 统计数据 time_based = request.args.get('time_based', 'hour') if time_based not in ['hour', 'date', 'month']: abort(404) # 文档信息 document_info = DOCUMENT_INFO.copy() document_info['TITLE'] = _('user stats') # 渲染模板 return render_template( 'user/stats.html', time_based=time_based, **document_info ) @bp_user.route('/<int:user_id>/stats.html') @login_required @permission_user_section_stats.require(http_exception=403) def stats_item(user_id): """ 用户统计明细 :param user_id: :return: """ user_info = get_user_row_by_id(user_id) # 检查资源是否存在 if not user_info: abort(404) # 检查资源是否删除 if user_info.status_delete == STATUS_DEL_OK: abort(410) # 统计数据 user_stats_item_info = get_user_row_by_id(user_id) # 文档信息 document_info = DOCUMENT_INFO.copy() document_info['TITLE'] = _('user stats item') # 渲染模板 return render_template( 'user/stats_item.html', user_stats_item_info=user_stats_item_info, **document_info )
[ "zhang_he06@163.com" ]
zhang_he06@163.com
81a4be138e4d622067c8481ce5bd36adc911a700
f409b79a66ffe524b1d67bb87402bcc184473594
/app/models/music_playlist.py
9c66bb37eaac6fce92fc9cd3d89fcd62631fd06d
[]
no_license
LaTCheatam/sound-burrow
47bdfc5fb7a895ab976334df753c5d86d63725c2
ba0ee7796eee4c79587374d0312db46aa0a4aae8
refs/heads/main
2023-04-26T14:28:22.168720
2021-05-10T20:05:28
2021-05-10T20:05:28
364,056,755
0
0
null
null
null
null
UTF-8
Python
false
false
281
py
from .db import db music_playlist = db.Table( "music_playlists", db.Column( "playlist_id", db.Integer, db.ForeignKey("playlists.id"), primary_key=True), db.Column( "music_id", db.Integer, db.ForeignKey("musics.id"), primary_key=True) )
[ "obsidyenmoon@gmail.com" ]
obsidyenmoon@gmail.com
23a59206c4ecad33e41d00479191210ddc7d3d39
1597f5dd0fc2f75c516a4ec63006d87b422fc884
/Legacy/Character_sheet/races.py
c51b3ba71d14711feee432be2547a81361067b80
[]
no_license
Dan-Mead/DnD
e885036ac8d74c913a6d815115096b8425f2bba7
e55285df6e02eb6c27393bdf906f0898ebce82a9
refs/heads/master
2023-04-30T22:33:24.301837
2021-03-01T16:57:09
2021-03-01T16:57:09
274,371,798
1
0
null
null
null
null
UTF-8
Python
false
false
3,228
py
import inspect import sys import helper_functions as f from glossary import attrs, skills_dict class race: def add_race_modifiers(self, char): char.info.Race = self.race_name char.stats.size.Race = self.size char.stats.speed.Race = self.speed char.proficiencies.languages.Race = self.languages for trait in vars(self).keys(): if trait == 'attributes': for attr in self.attributes: char.attributes[attr[0]]['race'] = attr[1] elif trait == 'skills': for skill in self.skills: char.skills[skill].prof += [self.race_name] elif trait == 'feats': from feats import get_feat for feat in self.feats: new_feat = get_feat(feat, self.race_name) char.feats[feat] = new_feat char.feats[feat].initial_effects(char) elif trait == 'features': from features import get_feature for feature in self.features: new_feature = get_feature(feature) char.features[self.race_name][feature] = new_feature new_feature.initial_effects(char) elif trait not in ['race_name', 'size', 'speed', 'languages']: raise Exception(f"{trait} included which hasn't been added.") def get_race(char, race_choice): races = {} for race in inspect.getmembers(sys.modules[__name__], inspect.isclass): if not race[1].__subclasses__(): races[race[0].replace("_", " ")] = race[1] race = races[race_choice](char) return race class Human_Base(race): def __init__(self, char): self.race_name = "Human" self.size = 'Medium' self.speed = 30 self.languages = f.add_language(char.proficiencies.languages, 'Common', 1) class Human(Human_Base): def __init__(self, char): super().__init__(char) self.attributes = [(attr, 1) for attr in attrs] class Human_Variant(Human_Base): def __init__(self, char): super().__init__(char) self.attributes = [(attr, 1) for attr in f.add_attributes(attrs, 2)] self.skills = f.add_skill(char.skills, skills_dict.keys(), 1) self.feats = f.add_feat(char, 1) class Half_Orc(race): def __init__(self, char): self.race_name = "Half-Orc" self.size = "Medium" self.speed = 30 self.attributes = [("STR", 2), ("CON", 1), ("INT", -2)] self.features = ["Darkvision", "Relentless Endurance", "Savage Attacks"] self.skills = ["intimidation"] self.languages = ["Common", "Orc"] class Test(race): def __init__(self, char): self.race_name = "Test Race" self.size = "Medium" self.speed = 30 self.languages = ["Common"] # self.languages = f.add_language(char.proficiencies.languages, 'Common', 1) # self.attributes = [(attr, 1) for attr in f.add_attributes(attrs, 2)] # self.feats = f.add_feat(char, 1) self.features = ["Darkvision", "Relentless Endurance", "Savage Attacks"]
[ "danmead8@gmail.com" ]
danmead8@gmail.com
f84017b04e420b59e0e68cb32ea7d83c2b3eb0e9
27df47cd5284b298dd600e367f9ec2437fb3bc22
/setup.whd.py
2cd0c09528091a9b7d219bbe1fd2baa262e24581
[ "BSD-3-Clause", "MIT", "Apache-2.0" ]
permissive
ashwani2k/cc-utils
29b9c381f652903065f44de33c408fdf1e1f2df9
414921992403013d903725a5649103900d88c95d
refs/heads/master
2022-11-17T16:30:46.137421
2020-07-10T08:12:02
2020-07-10T08:12:02
278,617,577
0
0
null
2020-07-10T11:32:47
2020-07-10T11:32:47
null
UTF-8
Python
false
false
871
py
import setuptools import os own_dir = os.path.abspath(os.path.dirname(__file__)) def requirements(): yield 'gardener-cicd-libs' yield 'gardener-cicd-cli' with open(os.path.join(own_dir, 'requirements.whd.txt')) as f: for line in f.readlines(): line = line.strip() if not line or line.startswith('#'): continue yield line def modules(): return [ ] def version(): with open(os.path.join(own_dir, 'ci', 'version')) as f: return f.read().strip() setuptools.setup( name='gardener-cicd-whd', version=version(), description='Gardener CI/CD Webhook Dispatcher', python_requires='>=3.8.*', py_modules=modules(), packages=['whd'], package_data={ 'ci':['version'], }, install_requires=list(requirements()), entry_points={ }, )
[ "christian.cwienk@sap.com" ]
christian.cwienk@sap.com
61f58dbbbbf3a9c7c2141c31686ef310aeedc77b
c4ee9811b04b5340068a1f0f59469a1f3187b892
/fermentation/Drivers/MAX31865.py
03284ae6b989c9132e67f921770641fe43e18f11
[]
no_license
aunsbjerg/fermentationpi
c3037f728ea370a04a539490398f83de045575cb
ad48862e187dcb1f47f006def73ddaedf20e0ffe
refs/heads/master
2020-05-14T09:14:25.637521
2019-04-22T15:29:44
2019-04-22T16:11:45
181,735,913
0
0
null
null
null
null
UTF-8
Python
false
false
9,865
py
#!/usr/bin/python # -*- coding: utf-8; python-indent-offset: 4; -*- # The MIT License (MIT) # # Copyright (c) 2015 Stephen P. Smith # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import time import math import RPi.GPIO as GPIO def resistance_to_celsius(resistance, rtd_nominal=100.0): """ Converts a resistance value to temperature in celsius, given a nominal RTD value. http://www.analog.com/media/en/technical-documentation/application-notes/AN709_0.pdf """ RTD_A = 3.9083e-3 RTD_B = -5.775e-7 Z1 = -RTD_A Z2 = RTD_A * RTD_A - (4 * RTD_B) Z3 = (4 * RTD_B) / rtd_nominal Z4 = 2 * RTD_B temp = Z2 + (Z3 * resistance) temp = (math.sqrt(temp) + Z1) / Z4 if temp >= 0: return temp rpoly = resistance temp = -242.02 temp += 2.2228 * rpoly rpoly *= resistance # square temp += 2.5859e-3 * rpoly rpoly *= resistance # ^3 temp -= 4.8260e-6 * rpoly rpoly *= resistance # ^4 temp -= 2.8183e-8 * rpoly rpoly *= resistance # ^5 temp += 1.5243e-10 * rpoly return temp class MAX31865: """ Reading Temperature from the MAX31865 with GPIO using the Raspberry Pi. Any 4 pins can be used to establish software based SPI to MAX31865. Adapted from: https://github.com/hackenbergstefan/MAX31865 """ REGISTERS = { 'config': 0, 'rtd_msb': 1, 'rtd_lsb': 2, 'high_fault_threshold_msb': 3, 'high_fault_threshold_lsb': 4, 'low_fault_threshold_msb': 5, 'low_fault_threshold_lsb': 6, 'fault_status': 7, } """ Definition of register addresses. (https://datasheets.maximintegrated.com/en/ds/MAX31865.pdf) Name ReadAddress WriteAddress PorState Access Configuration 00h 80h 00h R/W RTD MSBs 01h — 00h R RTD LSBs 02h — 00h R High Fault Threshold MSB 03h 83h FFh R/W High Fault Threshold LSB 04h 84h FFh R/W Low Fault Threshold MSB 05h 85h 00h R/W Low Fault Threshold LSB 06h 86h 00h R/W Fault Status 07h — 00h R """ REGISTERS_WRITE_MASK = 0x80 """Mask to be ORed to register addresses when writing.""" REGISTER_CONFIGURATION_ONE_SHOT = 0b10100010 """ Configuration 0b10110010 == 0xB2: bit 7: Vbias -> 1 (ON) bit 6: Conversion Mode -> 0 (MANUAL) bit 5: 1-shot -> 1 (ON) bit 4: 3-wire select -> 0 (2 or 4 wire config) bit 3-2: fault detection cycle -> 0 (none) bit 1: fault status clear -> 1 (clear any fault) bit 0: 50/60 Hz filter select -> 0 (60Hz) """ REGISTER_CONFIGURATION_ONE_SHOT_3_WIRE = REGISTER_CONFIGURATION_ONE_SHOT | 0b00010000 """ Configuration 0b10110010 == 0xB2: bit 7: Vbias -> 1 (ON) bit 6: Conversion Mode -> 0 (MANUAL) bit 5: 1-shot -> 1 (ON) bit 4: 3-wire select -> 1 (3 wire config) bit 3-2: fault detection cycle -> 0 (none) bit 1: fault status clear -> 1 (clear any fault) bit 0: 50/60 Hz filter select -> 0 (60Hz) """ def __init__(self, cs_pin, miso_pin, mosi_pin, clk_pin, ref_resistor=430.0, rtd_nominal=100.0, number_of_wires=2): assert(number_of_wires >= 2 and number_of_wires <= 4) self._offset = 0.0 self._cs_pin = cs_pin self._miso_pin = miso_pin self._mosi_pin = mosi_pin self._clk_pin = clk_pin self._ref_resistor = ref_resistor self._rtd_nominal = rtd_nominal self._number_of_wires = number_of_wires self._setup_GPIO() def _setup_GPIO(self): """ Setup GPIOs for SPI connection: CS: Chip Select (also called SS) CLK: Serial Clock MISO: Master In Slave Out (SDO at slave) MOSI: Master Out Slave In (SDI at slave) """ GPIO.setup(self._cs_pin, GPIO.OUT) GPIO.setup(self._miso_pin, GPIO.IN) GPIO.setup(self._mosi_pin, GPIO.OUT) GPIO.setup(self._clk_pin, GPIO.OUT) GPIO.output(self._cs_pin, GPIO.HIGH) GPIO.output(self._clk_pin, GPIO.LOW) GPIO.output(self._mosi_pin, GPIO.LOW) def __enter__(self): return self def __exit__(self, *k): pass def offset(self, offset): """ Adjust the temperature offset in celsius. Offset will be added to the temperature reading in temperature() """ self._offset = offset def temperature(self): """ Read out temperature. Conversion to °C included. """ rtd = self._read_rtd() resistance = self._read_resistance(rtd) return resistance_to_celsius(resistance, rtd_nominal=self._rtd_nominal) + self._offset def _write_register(self, register, data): """ Write data to register. :param register: Either name or address of register. :param data: Single byte to be written. """ GPIO.output(self._cs_pin, GPIO.LOW) if isinstance(register, str): register = self.REGISTERS[register] register |= self.REGISTERS_WRITE_MASK self._send(register) self._send(data) GPIO.output(self._cs_pin, GPIO.HIGH) def _read_register(self, register): """ Read data from register. :param register: Either name or address of register. :return: One byte of data. """ GPIO.output(self._cs_pin, GPIO.LOW) if isinstance(register, str): register = self.REGISTERS[register] self._send(register) data = self._recv() GPIO.output(self._cs_pin, GPIO.HIGH) return data def _read_registers(self): """ Read all registers. :return: List of 8 bytes data. """ # NOTE: Reusage of self.read_register is slower but more clean. data = [self._read_register(r) for r in range(len(self.REGISTERS))] return data def _read_rtd(self): """ Read RTD from sensor board """ if self._number_of_wires == 3: self._write_register('config', MAX31865.REGISTER_CONFIGURATION_ONE_SHOT_3_WIRE) else: self._write_register('config', MAX31865.REGISTER_CONFIGURATION_ONE_SHOT) # Sleep to wait for conversion (Conversion time is less than 100ms) time.sleep(0.1) temp = self._read_register('rtd_msb') temp = (temp << 8) | self._read_register('rtd_lsb') # Check if error bit was set if temp & 0x01: raise MAX31865FaultError(self) return temp >> 1 def _read_resistance(self, rtd): resistance = rtd / 32768 return resistance * self._ref_resistor def _send(self, byte): """ Send one byte via configured SPI. """ for bit in range(8): GPIO.output(self._clk_pin, GPIO.HIGH) if (byte & 0x80): GPIO.output(self._mosi_pin, GPIO.HIGH) else: GPIO.output(self._mosi_pin, GPIO.LOW) byte <<= 1 GPIO.output(self._clk_pin, GPIO.LOW) def _recv(self): """ Receive one byte via configured SPI. """ byte = 0x00 for bit in range(8): GPIO.output(self._clk_pin, GPIO.HIGH) byte <<= 1 if GPIO.input(self._miso_pin): byte |= 0x1 GPIO.output(self._clk_pin, GPIO.LOW) return byte class MAX31865FaultError(Exception): """ Fault handling of MAX31865. MAX31865 includes onchip fault detection. TODO: Improve fault detection. Currently only status register is read. """ def __init__(self, max31865): self.max31865 = max31865 super(MAX31865FaultError, self).__init__(self.status_message()) def status_message(self): """ 10 Mohm resistor is on breakout board to help detect cable faults bit 7: RTD High Threshold / cable fault open bit 6: RTD Low Threshold / cable fault short bit 5: REFIN- > 0.85 x VBias -> must be requested bit 4: REFIN- < 0.85 x VBias (FORCE- open) -> must be requested bit 3: RTDIN- < 0.85 x VBias (FORCE- open) -> must be requested bit 2: Overvoltage / undervoltage fault bits 1,0 don't care """ status = self.max31865._read_register('fault_status') if status & 0x80: return "High threshold limit (Cable fault/open)" if status & 0x40: return "Low threshold limit (Cable fault/short)" if status & 0x04: return "Overvoltage or Undervoltage Error"
[ "mikkelaunsbjerg@gmail.com" ]
mikkelaunsbjerg@gmail.com
4e8f0f09dabd4343c18439e5ff5521876f172bb6
e2b0849c0fb6575aadc57cb91b473990317b9162
/Arreglos/Multidimensionales/Help/Multiplicacion.py
27f4443735f10d7828c362084fc4d45d9bca5df0
[]
no_license
YaelGF/Estructura-Datos
486e9c544e2359daaf48dbf2ce049a98b6d2bb4d
3e5d96862629569cae3c6cdcc3fb834752ac54da
refs/heads/main
2023-04-10T22:19:52.077363
2021-04-22T18:51:03
2021-04-22T18:51:03
345,890,894
0
0
null
null
null
null
UTF-8
Python
false
false
276
py
import numpy as np #multiplicacion arr1 = np.array([[1,2,3],[4,5,6],[7,8,9]]) arr2 = np.array([[9,8,7],[6,5,4],[3,2,1]]) arr = np.zeros((3,3)) for r in range(0,3): for c in range(0,3): for k in range(0,3): arr[r,c] += arr1[r,k] * arr2[k,c] print(arr)
[ "1719110736@utectulancingo.edu.mx" ]
1719110736@utectulancingo.edu.mx
a5f5319c815f5da20cfbecf8e71dfa35a6cd7a84
06bd9a58a56202096713ea56b8508e2eb6ac2d01
/test.py
0f610fa15685c4975d272a27eaafc88d1d50d773
[]
no_license
patelanuj28/bottle
f4656396780ded39d0403f3fb9324f7770e96aca
f4b7a7ee3146f16a472094b2d4054242e5bfa65f
refs/heads/master
2020-05-29T19:21:03.533546
2013-12-08T04:23:06
2013-12-08T04:23:06
15,018,073
1
0
null
null
null
null
UTF-8
Python
false
false
1,017
py
#!/usr/bin/env python # -*- coding: utf-8 -*- #from bottle import route, run from bottle import * # or route #from function import * debug(True) @get('/') # or @route(’/login’) @get('/login') # or @route(’/login’) def login(): return ''' <form action="/login" method="post"> Username: <input name="username" type="text" /> Password: <input name="password" type="password" /> <input value="Login" type="submit" /> </form> ''' def check_logib(self, username, password): if(username == "admin" and password == "admin"): return True else: return False @post('/login') # or @route(’/login’, method=’POST’) def do_login(): username = request.forms.get('username') password = request.forms.get('password') if check_login(username, password): return "<p>Your login information was correct.</p>" else: return "<p>Login failed.</p>" @error(404) def error404(error): return 'Nothing here, sorry' run(host='localhost', port=8080, debug=True)
[ "patelanuj28@gmail.com" ]
patelanuj28@gmail.com
4b0cf62503921723253b96546bf05b8cfd198c7b
e9d0a40f78a8019102a824ab80285c76410c41ec
/tests/operators/gpu/test_ms_resize_nearest_neighbor_grad.py
cd90af1f88cb19b3c85d5f46d96627100d6eb36a
[ "Apache-2.0", "Zlib", "BSD-3-Clause", "MIT", "LicenseRef-scancode-unknown-license-reference", "Unlicense", "BSD-2-Clause" ]
permissive
x200510iong/akg
80aefca89738dd6190132971c8cd291fc2b38f4a
e7c12916b3870d3ba4cfa9b3dcec3eef55915429
refs/heads/master
2022-12-23T21:37:37.673056
2020-09-27T07:36:27
2020-09-27T07:36:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,036
py
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License import numpy as np import time import akg.topi as topi from akg.ops.poly_gpu import resize_nearest_neighbor_grad_manual, resize_nearest_neighbor_grad_auto from gen_random import random_gaussian from akg.utils import kernel_exec as utils from tensorio import compare_tensor def resize_nearest_grad(grad, size, align_corners, dtype): inshape = grad.shape if align_corners: scale_h = (inshape[2] - 1) / (size[0] - 1) scale_w = (inshape[3] - 1) / (size[1] - 1) else: scale_h = inshape[2] / size[0] scale_w = inshape[3] / size[1] oshape = (inshape[0], inshape[1], size[0], size[1]) output = np.full(oshape, np.nan, dtype) for n in range(oshape[0]): for c in range(oshape[1]): for h in range(oshape[2]): for w in range(oshape[3]): if align_corners: in_h = int(round(scale_h * h)); in_w = int(round(scale_w * w)); else: epsilon = 1e-5 in_h = int(floor(scale_h * h)); in_w = int(floor(scale_w * w)); in_h = max(min(in_h, inshape[2]-1), 0) in_w = max(min(in_w, inshape[3]-1), 0) output[n, c, h, w] = grad[n, c, in_h, in_w] return output def gen_data(shape, size, align_corners, dtype): support_list = {"float16": np.float16, "float32": np.float32} grad = random_gaussian(shape, miu=1, sigma=0.1).astype(support_list[dtype]) expect = resize_nearest_grad(grad, size, align_corners, dtype) outshape = [shape[0], shape[1], size[0], size[1]] output = np.full(outshape, np.nan, dtype) return grad, output, expect def test_ms_resize_grad(shape, size, dtype, align_corners, poly_sch=False): op_attr = [size, align_corners] if poly_sch: mod = utils.op_build(resize_nearest_neighbor_grad_auto, [shape], [dtype], op_attr, attrs={"target":"cuda"}) else: mod = utils.op_build(resize_nearest_neighbor_grad_manual, [shape], [dtype], op_attr) data, output, expect = gen_data(shape, size, align_corners, dtype) output = utils.mod_launch(mod, (data, output), expect = expect) compare_res = compare_tensor(output, expect, rtol=5e-03, atol=1e-08) if __name__ == '__main__': test_ms_resize_grad((32, 32, 64, 64), (128, 128), 'float16', True)
[ "zhangrenwei1@huawei.com" ]
zhangrenwei1@huawei.com
4e6e1573f29a52149bacc3d5e2dfb0c49392cbf4
7ff555c8adf2dccc4195eb28567897d61594bd2c
/nav/publisher.py
2f8aa737dae67e647d17376f5945696e9c1405bb
[]
no_license
TetrisCat/auto_nav
af4d8ba799e03f077c534648b353d51cf4615d9e
46c1c55a646dde98f3cc1f010adb264397918224
refs/heads/master
2020-12-18T20:18:49.862413
2020-04-24T12:41:29
2020-04-24T12:41:29
235,510,835
0
0
null
2020-01-22T06:12:31
2020-01-22T06:12:31
null
UTF-8
Python
false
false
587
py
import rospy import time import math from std_msgs.msg import String class pubRpi: def __init__(self): self.node = rospy.init_node('pub2rpi',anonymous = True) self.pubR = rospy.Publisher('cmd_rotate',String,queue_size = 10) self.pubS = rospy.Publisher('cmd_stepper',String,queue_size = 10) def publish_rotate(self,signal): valtoPub = '-1' if signal < 0 else '1' self.pubR.publish(valtoPub) def publish_stepper(self,signal): valtoPub = '-1' if signal < -5 else '10' if signal < 5 else '1' self.pubS.publish(valtoPub)
[ "adricpjw@gmail.com" ]
adricpjw@gmail.com
4f467685fd2537342ece8b024cefcc5f2c17aab5
945e10c87af8c555dfde1ed96597598473816039
/contact/models.py
d198b82b316e394cb9e5f45ba3be1febc50fc92b
[]
no_license
samuelbustamante/sanluisautomotores
87943cd99091d86e897ed9f41e9fcb10568b3f36
3ed4a6490f945fd060fd71010d1eb06bcff5abab
refs/heads/master
2020-04-06T16:19:09.037639
2012-08-29T15:43:49
2012-08-29T15:43:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
198
py
# -*- coding: utf-8 -*- from django.db import models class Message(models.Model): full_name = models.CharField(max_length=100) email = models.EmailField() message = models.TextField()
[ "samuelbustamant@gmail.com" ]
samuelbustamant@gmail.com
00226ee05791fa621c70b3d172311a1631ccaef2
1298b777c595babcaa2592ec67a8cb5455b2225f
/biedronki.py
eca9e342092ba3aae9d19c38086a32f83cb4fb4a
[]
no_license
mateusz-bondarczuk/Biedronki
50e5df9efe2d0d289d851947546c446c997b3909
6ea75d1a58c229936bd7a9a568dbd6f206c05259
refs/heads/master
2021-04-03T13:01:40.079815
2020-03-18T22:29:45
2020-03-18T22:29:45
248,356,311
0
0
null
null
null
null
UTF-8
Python
false
false
6,274
py
#!/usr/bin/python3 # Copyrights (C) 2020 Mateusz Bondarczuk # Napisane przy pomocy podręcznika "PYTHON Kurs Programowania Na Prostych Przykładach" Biblioteczka Komputer Świat import pygame import os import random import threading pygame.init() #rozmiar okna gry szer = 600 wys = 600 #lista wartości kierunku ruchu biedronek #wektory = [-10, 0, 10] coPokazuje = "menu" punkty = 0.0 vx, vy = 0, 0 iloscBiedronek = 10 screen = pygame.display.set_mode((szer,wys)) def napisz(tekst, x, y, rozmiar) : cz = pygame.font.SysFont("Conacry", rozmiar) rend = cz.render(tekst, 1, (255,100,100)) x = (szer - rend.get_rect().width)/2 # y = (wys - rend.get_rect().height)/2 screen.blit(rend, (x,y)) def dodPunkt(): global punkty if coPokazuje == "gramy" : punkty += 0.1 def zerPunkty(): global punkty punkty = 0 class Biedronka() : def __init__(self, x, y, vx, vy): self.x = x self.y = y self.vx = vx self.vy = vy self.szerB = 32 self.wysB = 32 self.ksztalt = pygame.Rect(self.x, self.y, self.szerB, self.wysB) self.grafika = pygame.image.load(os.path.join('bied.png')) def rysuj(self): screen.blit(self.grafika, (self.x, self.y)) def ruch(self): self.x += self.vx self.y += self.vy self.ksztalt = pygame.Rect(self.x, self.y, self.szerB, self.wysB) def czyZezarla(self, robal): if self.ksztalt.colliderect(robal): return True else: return False class Mszyca(): def __init__(self, x, y): self.x = x self.y = y self.szerM = 32 self.wysM = 32 self.ksztalt = pygame.Rect(self.x, self.y, self.szerM, self.wysM) self.grafika = pygame.image.load(os.path.join('mszyca.png')) def rysuj(self): screen.blit(self.grafika, (self.x, self.y)) def ruch(self, vx, vy): self.x += vx self.y += vy self.ksztalt = pygame.Rect(self.x, self.y, self.szerM, self.wysM) #stworzmy biedry biedry = [] def stworzBiedry(): global biedry for i in range(iloscBiedronek): #bx = random.randint(0, 568) #by = random.randint(0, 568) # tworzy biedronki w danej pozycji na ekranie(bx,by) i poruszające się w jednym z 8 kierunków(np. 10,10 lub 10,0) #biedra = Biedronka(bx, by, random.choice(wektory), random.choice(wektory)) biedra = Biedronka(random.randint(0, 568), random.randint(0, 568), random.randint(-10, 10), random.randint(-10, 10)) # eliminacja biedronek, które stoja w miejscu while biedra.vx == 0 and biedra.vy == 0 : #biedra = Biedronka(bx, by, random.choice(wektory), random.choice(wektory)) #biedra = Biedronka(bx, by, random.randint(-10, 10), random.randint(-10, 10)) biedra = Biedronka(random.randint(0, 568), random.randint(0, 568), random.randint(-10, 10), random.randint(-10, 10)) biedry.append(biedra) stworzBiedry() while True: dodPunkt() #reakcje na naciśnięcie klawiszy i ikon w oknie gry for event in pygame.event.get() : if event.type == pygame.QUIT : pygame.quit() quit() #ruch mszycy if event.type == pygame.KEYDOWN : #ruch w górę if event.key == pygame.K_UP : vx = 0 vy = -10 #ruch w dół elif event.key == pygame.K_DOWN : vx = 0 vy = 10 #ruch w lewo elif event.key == pygame.K_LEFT : vx = -10 vy = 0 #ruch w prawo elif event.key == pygame.K_RIGHT : vx = 10 vy = 0 elif event.key == pygame.K_ESCAPE : pygame.quit() quit() elif event.key == pygame.K_SPACE : if coPokazuje != "gramy" : # tworzymy nieruchomą mszyce w losowym miejscu na planszy mx = random.randint(0, 568) my = random.randint(0, 568) m = Mszyca(mx, my) vx, vy = 0, 0 coPokazuje = "gramy" zerPunkty() #usun stare biedry biedry = [] #utwórz nowe biedry stworzBiedry() screen.fill((0,128,0)) if coPokazuje == "menu" : napisz("Naciśnij spację aby rozpocząć.", 20, 300, 36) grafika = pygame.image.load(os.path.join("bied.png")) for i in range(5): x = random.randint(100, 500) y = random.randint(100, 200) screen.blit(grafika, (x, y)) pygame.time.wait(500) elif coPokazuje == "gramy": #narysuj biedry na planszy i wpraw je w ruch for b in biedry: b.rysuj() b.ruch() #spraw aby odbiły się od krawędzi planszy for b in biedry: #odbicie od lewej i prawej ściany if b.x <= 0 or (b.x + b.szerB) >= szer : b.vx = b.vx * -1 #odbicie od górnej i dolnej ściany elif b.y <= 0 or (b.y + b.wysB) >= wys : b.vy = b.vy * -1 # wpraw ją w ruch m.ruch(vx, vy) #narysuj mszyce na ekranie m.rysuj() #odbicie mszycy od lewej i prawej ściany if m.x <= 0 or (m.x + m.szerM) >= szer : vx = vx * -1 #odbicie mszycy od górnej i dolnej ściany elif m.y <= 0 or (m.y + m.wysM) >= wys : vy = vy * -1 # jak biedra zdeży się z mszycą for b in biedry : if b.czyZezarla(m.ksztalt) : coPokazuje = "koniec" napisz("PUNKTY: " + str(round(punkty)), 100, 50, 32) #szybkosc poruszania sie obiektów pygame.time.wait(80) elif coPokazuje == "koniec" : napisz("KONIEC GRY!!!", 100, 150, 56) napisz("PUNKTY: "+str(round(punkty)), 100, 350, 32) napisz("naciśnij spację aby zagrać jeszcze raz ", 100, 400, 28) napisz("lub ESC aby zakończyć grę ", 100, 430, 28) #odświeżenie ekranu pygame.display.update()
[ "mateusz.bondarczuk@gmail.com" ]
mateusz.bondarczuk@gmail.com
9ff1e4fa352ee15f2ec730f85626ad1c7a382d0d
f6e919b03d4bbde65bfa26ee59e05568f623a65d
/Dis.py
1c743a9bfe8662d35a198c1fe0eaacfbfde23f1f
[]
no_license
chrisleewoo/soundbug
94e223505880ad9708d22f7f35b437a5f0c5e941
0eab42c69a320cf1b7e02a65edb9de6e7f65e45c
refs/heads/master
2020-09-25T09:16:44.395825
2019-12-05T21:23:38
2019-12-05T21:23:38
225,972,065
0
0
null
null
null
null
UTF-8
Python
false
false
853
py
import sys import dis with open('code2Trace.dat') as c2T: cnt=1 new_string = '' for line in c2T: #read_line = t2D.readline() if (line == '**EOT**'): c2T.close() break if (".py" in line): chopped_line = '' marker = False for c in line: #need to remove the front bit if c.startswith('\t'): pass elif (marker): chopped_line += c cnt += 1 #new_string += chopped_line if c == ':': marker = True new_string += chopped_line #print( chopped_line) #dis.dis('this = 2') #print(new_string) dis.dis(new_string) print('**EOD**')
[ "noreply@github.com" ]
chrisleewoo.noreply@github.com
606e8d98c93f59c9b0e6a06f3d12dd5a142a0fb8
16f2b1f89179cb6f398db396991e0fdec483a942
/mainapp/migrations/0018_auto_20210215_2247.py
2d1f2bf0a74ee3f503afa7bd07b444517f99f6ba
[]
no_license
alexeyklem/shop
a497c2ce340461da63f40cab28bf7e34ff41b215
78b47c069e899f4bdfe6a424b27c3e84ca062738
refs/heads/master
2023-03-02T06:19:07.265287
2021-02-15T22:29:42
2021-02-15T22:29:42
335,368,582
0
0
null
null
null
null
UTF-8
Python
false
false
1,472
py
# Generated by Django 3.1.6 on 2021-02-15 19:47 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('mainapp', '0017_auto_20210212_0248'), ] operations = [ migrations.AlterField( model_name='cart', name='owner', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='mainapp.customer', verbose_name='Владелец'), ), migrations.AlterField( model_name='cartproduct', name='user', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='mainapp.customer', verbose_name='Покупатель'), ), migrations.AlterField( model_name='customer', name='user', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, verbose_name='Пользователь'), ), migrations.AlterField( model_name='order', name='customer', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='related_orders', to='mainapp.customer', verbose_name='Покупатель'), ), ]
[ "KlepaN567@gmail.com" ]
KlepaN567@gmail.com
d299b1906bc983e5616962d0ea76e3ed65cd2b48
d6d87140d929262b5228659f89a69571c8669ec1
/airbyte-cdk/python/unit_tests/sources/declarative/auth/test_token_auth.py
2c54e8883b8dcdf127259eb2b1314dba794d2b27
[ "MIT", "Elastic-2.0" ]
permissive
gasparakos/airbyte
b2bb2246ec6a10e1f86293da9d86c61fc4a4ac65
17c77fc819ef3732fb1b20fa4c1932be258f0ee9
refs/heads/master
2023-02-22T20:42:45.400851
2023-02-09T07:43:24
2023-02-09T07:43:24
303,604,219
0
0
MIT
2020-10-13T06:18:04
2020-10-13T06:06:17
null
UTF-8
Python
false
false
3,666
py
# # Copyright (c) 2023 Airbyte, Inc., all rights reserved. # import logging import pytest import requests from airbyte_cdk.sources.declarative.auth.token import ApiKeyAuthenticator, BasicHttpAuthenticator, BearerAuthenticator from requests import Response LOGGER = logging.getLogger(__name__) resp = Response() config = {"username": "user", "password": "password", "header": "header"} options = {"username": "user", "password": "password", "header": "header"} @pytest.mark.parametrize( "test_name, token, expected_header_value", [ ("test_static_token", "test-token", "Bearer test-token"), ("test_token_from_config", "{{ config.username }}", "Bearer user"), ("test_token_from_options", "{{ options.username }}", "Bearer user"), ], ) def test_bearer_token_authenticator(test_name, token, expected_header_value): """ Should match passed in token, no matter how many times token is retrieved. """ token_auth = BearerAuthenticator(token, config, options=options) header1 = token_auth.get_auth_header() header2 = token_auth.get_auth_header() prepared_request = requests.PreparedRequest() prepared_request.headers = {} token_auth(prepared_request) assert {"Authorization": expected_header_value} == prepared_request.headers assert {"Authorization": expected_header_value} == header1 assert {"Authorization": expected_header_value} == header2 @pytest.mark.parametrize( "test_name, username, password, expected_header_value", [ ("test_static_creds", "user", "password", "Basic dXNlcjpwYXNzd29yZA=="), ("test_creds_from_config", "{{ config.username }}", "{{ config.password }}", "Basic dXNlcjpwYXNzd29yZA=="), ("test_creds_from_options", "{{ options.username }}", "{{ options.password }}", "Basic dXNlcjpwYXNzd29yZA=="), ], ) def test_basic_authenticator(test_name, username, password, expected_header_value): """ Should match passed in token, no matter how many times token is retrieved. """ token_auth = BasicHttpAuthenticator(username=username, password=password, config=config, options=options) header1 = token_auth.get_auth_header() header2 = token_auth.get_auth_header() prepared_request = requests.PreparedRequest() prepared_request.headers = {} token_auth(prepared_request) assert {"Authorization": expected_header_value} == prepared_request.headers assert {"Authorization": expected_header_value} == header1 assert {"Authorization": expected_header_value} == header2 @pytest.mark.parametrize( "test_name, header, token, expected_header, expected_header_value", [ ("test_static_token", "Authorization", "test-token", "Authorization", "test-token"), ("test_token_from_config", "{{ config.header }}", "{{ config.username }}", "header", "user"), ("test_token_from_options", "{{ options.header }}", "{{ options.username }}", "header", "user"), ], ) def test_api_key_authenticator(test_name, header, token, expected_header, expected_header_value): """ Should match passed in token, no matter how many times token is retrieved. """ token_auth = ApiKeyAuthenticator(header=header, api_token=token, config=config, options=options) header1 = token_auth.get_auth_header() header2 = token_auth.get_auth_header() prepared_request = requests.PreparedRequest() prepared_request.headers = {} token_auth(prepared_request) assert {expected_header: expected_header_value} == prepared_request.headers assert {expected_header: expected_header_value} == header1 assert {expected_header: expected_header_value} == header2
[ "noreply@github.com" ]
gasparakos.noreply@github.com
1030289cd14076ec5a0b85f5b22cb1dce6bd11df
7dbbf1d7bc43c13f7fcb5f337a6b3664dba09129
/pydbgen/pbclass/protoc_gen_json.py
807718cc31acba2cd9237246d9b1700dea12839b
[ "MIT" ]
permissive
ppolxda/pydbgen
12b082a93539e3aef6a002cd895acc5ca8589df6
000d1eb87c272a9549c99cd890c9866ae0c56147
refs/heads/master
2022-06-09T11:25:42.656398
2019-12-22T06:01:14
2019-12-22T06:01:14
200,993,919
1
0
null
null
null
null
UTF-8
Python
false
false
10,162
py
# -*- coding: utf-8 -*- import os import sys import six import json import argparse import itertools from collections import OrderedDict from google.protobuf.compiler import plugin_pb2 as plugin from google.protobuf.descriptor_pb2 import FieldOptions from google.protobuf.descriptor_pb2 import DescriptorProto from google.protobuf.descriptor_pb2 import EnumDescriptorProto from google.protobuf.descriptor import FieldDescriptor from pydbgen.pbclass import data_define_pb2 MY_OPTIONS = [ getattr(data_define_pb2, key) for key in FieldOptions._extensions_by_name.keys() if hasattr(data_define_pb2, key) ] LABEL_CHANGE = { FieldDescriptor.LABEL_OPTIONAL: 'optional', FieldDescriptor.LABEL_REQUIRED: 'required', FieldDescriptor.LABEL_REPEATED: 'repeated', } TYPE_CHANGE = { FieldDescriptor.TYPE_DOUBLE: 'double', FieldDescriptor.TYPE_FLOAT: 'float', FieldDescriptor.TYPE_INT64: 'int64', FieldDescriptor.TYPE_UINT64: 'uint64', FieldDescriptor.TYPE_INT32: 'int32', FieldDescriptor.TYPE_FIXED64: 'fixed64', FieldDescriptor.TYPE_FIXED32: 'fixed32', FieldDescriptor.TYPE_BOOL: 'bool', FieldDescriptor.TYPE_STRING: 'string', FieldDescriptor.TYPE_GROUP: 'group', FieldDescriptor.TYPE_MESSAGE: 'message', FieldDescriptor.TYPE_BYTES: 'bytes', FieldDescriptor.TYPE_UINT32: 'uint32', FieldDescriptor.TYPE_ENUM: 'enum', FieldDescriptor.TYPE_SFIXED32: 'sfixed32', FieldDescriptor.TYPE_SFIXED64: 'sfixed64', FieldDescriptor.TYPE_SINT32: 'sint32', FieldDescriptor.TYPE_SINT64: 'sint64' } TYPE_DEFVAL = { FieldDescriptor.TYPE_DOUBLE: 0.0, FieldDescriptor.TYPE_FLOAT: 0.0, FieldDescriptor.TYPE_INT64: 0, FieldDescriptor.TYPE_UINT64: 0, FieldDescriptor.TYPE_INT32: 0, FieldDescriptor.TYPE_FIXED64: 0, FieldDescriptor.TYPE_FIXED32: 0, FieldDescriptor.TYPE_BOOL: False, FieldDescriptor.TYPE_STRING: '', FieldDescriptor.TYPE_GROUP: '', FieldDescriptor.TYPE_MESSAGE: '', FieldDescriptor.TYPE_BYTES: '', FieldDescriptor.TYPE_UINT32: 0, FieldDescriptor.TYPE_ENUM: 0, FieldDescriptor.TYPE_SFIXED32: 0, FieldDescriptor.TYPE_SFIXED64: 0, FieldDescriptor.TYPE_SINT32: 0, FieldDescriptor.TYPE_SINT64: 0 } class EnumPathIndex(object): """PROTOC PATH INDEX.""" NAME = 1 FIELD = 2 NESTED = 3 MESSAGE = 4 ENUM = 5 SERVICE = 6 class Cmdoptions(object): def __init__(self): parser = argparse.ArgumentParser( description='pydbgen.pbclass.protoc_gen_json') parser.add_argument('-o', '--output', type=str, default=None, help='ouput path') parser.add_argument('-e', '--encoding', default='utf8', help='output encoding(default: utf8)') args = parser.parse_args() self.output = args.output self.encoding = args.encoding def strip(val): while val and val[0] == '/': val = val[1:] return val.strip() def _locations(locations, pathtype, i, last_path=tuple()): # location.leading_comments # location.trailing_comments # location.leading_detached_comments # result = locations[local_path + (EnumPathIndex.FIELD, i)] full_path = last_path + (pathtype, i) result = locations.get(full_path, None) if result is None: class EnumLog(object): trailing_comments = '' leading_comments = '' leading_detached_comments = '' return EnumLog return result def default_json(name, typename, comment='', fields={}, options={}, nesteds={}, enums={}): assert isinstance(fields, dict) assert isinstance(options, dict) assert isinstance(nesteds, dict) return OrderedDict([ ("type", typename), ("name", name), ("comment", comment), ("fields", fields), ("options", options), ("enums", enums), ("nesteds", nesteds), ]) def field_json(name, value, type, defval, comment, options={}, soptions={}): options.update(soptions) return OrderedDict([ ("name", name), ("value", value), ("type", type), ("defval", defval), ("comment", comment), ("options", options), ]) def enums2json(items, locations, path=tuple()): # assert isinstance(items, list) assert isinstance(locations, dict) assert isinstance(path, tuple) # location.leading_comments # location.trailing_comments # location.leading_detached_comments result = {} for index, item in enumerate(items): local_path = (EnumPathIndex.ENUM, index) cur_path = path + local_path assert isinstance(item, EnumDescriptorProto) result[item.name] = default_json( item.name, 'enum', comment=strip(_locations(locations, EnumPathIndex.ENUM, index, path).leading_comments), # noqa fields=OrderedDict([( v.name, field_json( v.name, v.number, 'int32', 0, strip(_locations(locations, EnumPathIndex.FIELD, i, cur_path).trailing_comments))) # noqa for i, v in enumerate(item.value) ])) return result def message2json(items, locations, path=tuple()): # assert isinstance(items, list) assert isinstance(locations, dict) assert isinstance(path, tuple) result = {} for index, item in enumerate(items): local_path = (EnumPathIndex.MESSAGE, index) cur_path = path + local_path assert isinstance(item, DescriptorProto) result[item.name] = default_json( item.name, 'message', comment=strip(_locations(locations, EnumPathIndex.MESSAGE, index).leading_comments), # noqa nesteds=message2json(item.nested_type, locations, cur_path), enums=enums2json(item.enum_type, locations, cur_path), fields=OrderedDict([( v.name, field_json( v.name, v.number, TYPE_CHANGE.get(v.type, '--'), v.default_value if v.default_value else TYPE_DEFVAL.get(v.type, ''), # noqa strip(_locations(locations, EnumPathIndex.FIELD, i, cur_path).trailing_comments), # noqa options=OrderedDict([ ('label', LABEL_CHANGE[v.label]), ('type_name', v.type_name), ('extendee', v.extendee), ('default_value', v.default_value), ('json_name', v.json_name), ]), soptions=OrderedDict([ ( val.name, v.options.Extensions[val] ) for val in MY_OPTIONS if v.options.HasExtension(val) ])) ) for i, v in enumerate(item.field) ]), options=OrderedDict([ ('message_set_wire_format', item.options.message_set_wire_format), # noqa ('no_standard_descriptor_accessor', item.options.no_standard_descriptor_accessor), # noqa ('deprecated', item.options.deprecated), # noqa ]) ) return result def generate_json(request, step_files=['pydbgen', 'google/protobuf']): for filename in request.file_to_generate: output = OrderedDict([ ("type", "root"), ("name", "root"), ("package", "root"), ("filename", filename), ("comment", "root"), ("enums", {}), ("nesteds", {}), ]) for proto_file in request.proto_file: step = False for i in step_files: if proto_file.name.replace('\\', '/').find(i) >= 0: step = True if step: continue if proto_file.name != filename: continue output['filename'] = proto_file.name output['package'] = proto_file.package locations = proto_file.source_code_info.location locations = { tuple(location.path): location for location in locations } enums = enums2json(proto_file.enum_type, locations) inset = set(output['enums'].keys()).intersection(set(enums.keys())) if inset: raise TypeError('enum name duplicate[{}]'.format(inset)) output['enums'].update(enums) msgs = message2json(proto_file.message_type, locations) inset = set(output['nesteds'].keys()).intersection( set(msgs.keys())) if inset: raise TypeError('messages name duplicate[{}]'.format(inset)) output['nesteds'].update(msgs) yield filename, output def generate_code(opts, request, response): for filename, output in generate_json(request): fout = response.file.add() if opts.output: fout.name = opts.output else: fout.name = filename + '.json' fout.content = json.dumps(output, indent=4) # open('test.json', 'w').write( # json.dumps(generate_json(request), indent=4)) def main(): # Read request message from stdin OPTS = Cmdoptions() if six.PY2: DATA = sys.stdin.read() else: DATA = sys.stdin.buffer.read() # open('test.dat', 'wb').write(DATA) # DATA = open('test.dat', 'rb').read() # Parse request REQUEST = plugin.CodeGeneratorRequest() REQUEST.ParseFromString(DATA) # Create response RESPONSE = plugin.CodeGeneratorResponse() # Generate code generate_code(OPTS, REQUEST, RESPONSE) # Serialise response message OUTPUT = RESPONSE.SerializeToString() # Write to stdout if six.PY2: sys.stdout.write(OUTPUT) else: sys.stdout.buffer.write(OUTPUT) if __name__ == '__main__': main()
[ "ppol850564@gmail.com" ]
ppol850564@gmail.com
edb66058fa8c0b5659b39a912a8d1c75956908eb
bffaa3797ad90d2d48b636e0f2e974dbb870f078
/pik/core/models/historized.py
c75da492b294980e5535bf47545e6350a17a56a5
[ "MIT" ]
permissive
pik-software/pik-django-utils
df061ef7e9a59f97db85468164e7dc470d197b07
84ff77ef359f333e53232e09db8a59beed8624b4
refs/heads/master
2023-07-07T00:00:45.624024
2021-12-17T07:26:51
2021-12-17T07:26:51
127,616,073
8
4
MIT
2023-09-13T13:49:42
2018-04-01T09:38:48
Python
UTF-8
Python
false
false
202
py
from django.db import models from simple_history.models import HistoricalRecords class Historized(models.Model): history = HistoricalRecords(inherit=True) class Meta: abstract = True
[ "pahaz.white@gmail.com" ]
pahaz.white@gmail.com
fa6d2837020c359156534f31435378b02d606b4a
90d13ffb6fa1988242886c3e55e4b555fa7d8ad1
/Three_Part_Dev_Michael/2013_10_07_test/plan/__init__.py
34572cf0774869c49e649315d8a94c30ac5bf348
[]
no_license
mclumd/erewhon_systems
2c798cd303ca2cb19e80c93c88303af8b9aed5a6
93655a96415a01d8f5e49a1f2c244cbfd22b65f2
refs/heads/master
2021-01-17T16:22:53.528996
2016-08-03T19:35:52
2016-08-03T19:35:52
64,771,684
2
0
null
null
null
null
UTF-8
Python
false
false
13
py
import pyplan
[ "cmaxey@payday.cs.umd.edu" ]
cmaxey@payday.cs.umd.edu
f5de1971d194c0eb53a46ad2d4c31fcb29907bf3
d2970ef359537f553e86dc05015b265611bd8f4f
/Akash/iD Game Plan Examples/BlockCipher.py
ccbc84938982ca4f5510095ed98347aebd0ff130
[]
no_license
idcrypt3/camp_2019_07_07
cc68c28f9c84a0ad6ac893cb65a0a48502a09af6
4c748b60f1553072dbda9d4d226b39a32548521f
refs/heads/master
2020-06-17T08:23:30.734953
2019-07-17T16:29:55
2019-07-17T16:29:55
195,860,120
0
0
null
null
null
null
UTF-8
Python
false
false
2,528
py
## Code snippet 1 def pad_message(message, block_size=4): # Take string message as input and return blocks of message bytes (integers) message_list = [] chunk = 0 block_count = len(message) // block_size + 1 for c in range(block_count * block_size): # Shift byte right to make space for the next byte. Most significant bit is from the first character! chunk = chunk << 8 if c < len(message): chunk += ord(message[c]) else: chunk += 0 # Add the chunk if it exceeds block size - 1 (since the next character would push it past the block size) if chunk.bit_length() > (block_size - 1) * 8: message_list.append(chunk) chunk = 0 return message_list ## Code snippet 2 def rebuild_message(message_list, block_size=4): message = "" for i in range(len(message_list)): chunk = message_list[i] for c in range(block_size): number = (chunk >> (8 * (block_size - 1 - c))) % 2 ** 8 message += chr(number) return message ## Code snippet 3 def apply_shift(message_list, key, block_size=4): # Shift characters up Unicode value based on key value and block count cipher_list = [] bit_max = block_size * 8 for i in range(len(message_list)): # Iterate through each chunk in the message list chunk = message_list[i] # Rotate the bits in the chunk carry = chunk % (2 ** key) carry = carry << (bit_max - key) cipher = (chunk >> key) + carry cipher_list.append(cipher) return cipher_list ## Code snippet 4 def undo_shift(cipher_list, key, block_size=4): # Rotate bits back to original position message_list = [] bit_max = block_size * 8 for i in range(len(cipher_list)): # Iterate through each chunk in the message list chunk = cipher_list[i] # Rotate the bits in the chunk carry = chunk % (2 ** (bit_max - key)) carry = carry << key number = (chunk >> (bit_max - key)) + carry message_list.append(number) return message_list ## Code snippet 5 plaintext = "abcdefGHIJKLMNOpqr!@#$%123" # Set the key as the number of bits to rotate in each block key = 20 text_list = pad_message(plaintext) # print(text_list) cipher_list = apply_shift(text_list, key) # print(cipher_list) cipher = rebuild_message(cipher_list) print(cipher) message_list = undo_shift(cipher_list, key) message = rebuild_message(message_list) print(message)
[ "idcrypt3@gmail.com" ]
idcrypt3@gmail.com
127526fece6a1143164daa6c117d6a64beca8f84
a524f7ab59b8c9fa124c68d6e17a1b4cd0c0062b
/DFS/increasingOrderSearchTree/Solution.py
ccb8baefbffdf62dc9c1552c2d89a203ed6388e5
[]
no_license
sulenn/leetcode_python
796b1c9cc52446717f01cda8075eb54db479d4cb
238880a43fac9f2abdfb4202e5d03ce4f1b1e95d
refs/heads/master
2020-08-06T22:33:06.111130
2019-12-15T12:52:51
2019-12-15T12:52:51
213,183,301
0
0
null
null
null
null
UTF-8
Python
false
false
818
py
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def increasingBST(self, root): """ :type root: TreeNode :rtype: TreeNode """ valueList = self.inOrder(root) if not valueList: return None root, curRoot = TreeNode(valueList[0]) for i in valueList[1:]: curRoot.right = TreeNode(i) curRoot = curRoot.right return root def inOrder(self, root): if not root: return [] valueList = [] valueList += self.inOrder(root.left) valueList.append(root.val) valueList += self.inOrder(root.right) return valueList
[ "273409891@qq.com" ]
273409891@qq.com
51c350f3ab04036faeac750ca7a1c092a00b985f
e753c46bd9bef1a81ef2c48826877c6cc604248d
/exercises/fizz.py
1d5d1b277c115da2a934b92bd14858592cf99a47
[]
no_license
martadrozsa/curso-coursera-python
30699b24898ab4b8abf4e86b6473220a70863b39
aebbd3a75718d2834c63bd2ff5385312997a8e7f
refs/heads/main
2023-07-03T06:42:33.012412
2021-08-04T18:57:25
2021-08-04T18:57:25
392,355,470
0
0
null
null
null
null
UTF-8
Python
false
false
314
py
# Receba um número inteiro na entrada e imprima: Fizz (se o número for divisível por 3) # Caso contrário, imprima o mesmo número que foi dado na entrada. number = int(input("Enter number: ")) remainder = number % 3 is_divisible = remainder == 0 if is_divisible: print("Fizz") else: print(number)
[ "marta.denisczwicz@gmail.com" ]
marta.denisczwicz@gmail.com
2e2ea0ae1f07937be98c14ecad25d65168805933
3c000380cbb7e8deb6abf9c6f3e29e8e89784830
/venv/Lib/site-packages/cobra/modelimpl/ospf/lsustats1h.py
43030853dd76a0d3121f6c35a084d838e8d89808
[]
no_license
bkhoward/aciDOM
91b0406f00da7aac413a81c8db2129b4bfc5497b
f2674456ecb19cf7299ef0c5a0887560b8b315d0
refs/heads/master
2023-03-27T23:37:02.836904
2021-03-26T22:07:54
2021-03-26T22:07:54
351,855,399
0
0
null
null
null
null
UTF-8
Python
false
false
37,960
py
# coding=UTF-8 # ********************************************************************** # Copyright (c) 2013-2020 Cisco Systems, Inc. All rights reserved # written by zen warriors, do not modify! # ********************************************************************** from cobra.mit.meta import ClassMeta from cobra.mit.meta import StatsClassMeta from cobra.mit.meta import CounterMeta from cobra.mit.meta import PropMeta from cobra.mit.meta import Category from cobra.mit.meta import SourceRelationMeta from cobra.mit.meta import NamedSourceRelationMeta from cobra.mit.meta import TargetRelationMeta from cobra.mit.meta import DeploymentPathMeta, DeploymentCategory from cobra.model.category import MoCategory, PropCategory, CounterCategory from cobra.mit.mo import Mo # ################################################## class LsuStats1h(Mo): """ Mo doc not defined in techpub!!! """ meta = StatsClassMeta("cobra.model.ospf.LsuStats1h", "Ospf Lsu Packets") counter = CounterMeta("lsuPeerTxPkts", CounterCategory.COUNTER, "packets", "LSU Packets To Peer") counter._propRefs[PropCategory.IMPLICIT_LASTREADING] = "lsuPeerTxPktsLast" counter._propRefs[PropCategory.IMPLICIT_CUMULATIVE] = "lsuPeerTxPktsCum" counter._propRefs[PropCategory.IMPLICIT_PERIODIC] = "lsuPeerTxPktsPer" counter._propRefs[PropCategory.IMPLICIT_MIN] = "lsuPeerTxPktsMin" counter._propRefs[PropCategory.IMPLICIT_MAX] = "lsuPeerTxPktsMax" counter._propRefs[PropCategory.IMPLICIT_AVG] = "lsuPeerTxPktsAvg" counter._propRefs[PropCategory.IMPLICIT_SUSPECT] = "lsuPeerTxPktsSpct" counter._propRefs[PropCategory.IMPLICIT_BASELINE] = "lsuPeerTxPktsBase" counter._propRefs[PropCategory.IMPLICIT_THRESHOLDED] = "lsuPeerTxPktsThr" counter._propRefs[PropCategory.IMPLICIT_TREND_BASE] = "lsuPeerTxPktsTrBase" counter._propRefs[PropCategory.IMPLICIT_TREND] = "lsuPeerTxPktsTr" counter._propRefs[PropCategory.IMPLICIT_RATE] = "lsuPeerTxPktsRate" meta._counters.append(counter) counter = CounterMeta("lsuForLsreqPkts", CounterCategory.COUNTER, "packets", "LSU Packets For LSREQ Packets") counter._propRefs[PropCategory.IMPLICIT_LASTREADING] = "lsuForLsreqPktsLast" counter._propRefs[PropCategory.IMPLICIT_CUMULATIVE] = "lsuForLsreqPktsCum" counter._propRefs[PropCategory.IMPLICIT_PERIODIC] = "lsuForLsreqPktsPer" counter._propRefs[PropCategory.IMPLICIT_MIN] = "lsuForLsreqPktsMin" counter._propRefs[PropCategory.IMPLICIT_MAX] = "lsuForLsreqPktsMax" counter._propRefs[PropCategory.IMPLICIT_AVG] = "lsuForLsreqPktsAvg" counter._propRefs[PropCategory.IMPLICIT_SUSPECT] = "lsuForLsreqPktsSpct" counter._propRefs[PropCategory.IMPLICIT_BASELINE] = "lsuForLsreqPktsBase" counter._propRefs[PropCategory.IMPLICIT_THRESHOLDED] = "lsuForLsreqPktsThr" counter._propRefs[PropCategory.IMPLICIT_TREND_BASE] = "lsuForLsreqPktsTrBase" counter._propRefs[PropCategory.IMPLICIT_TREND] = "lsuForLsreqPktsTr" counter._propRefs[PropCategory.IMPLICIT_RATE] = "lsuForLsreqPktsRate" meta._counters.append(counter) counter = CounterMeta("lsuRexmitPkts", CounterCategory.COUNTER, "packets", "LSU Retransmission Packets") counter._propRefs[PropCategory.IMPLICIT_LASTREADING] = "lsuRexmitPktsLast" counter._propRefs[PropCategory.IMPLICIT_CUMULATIVE] = "lsuRexmitPktsCum" counter._propRefs[PropCategory.IMPLICIT_PERIODIC] = "lsuRexmitPktsPer" counter._propRefs[PropCategory.IMPLICIT_MIN] = "lsuRexmitPktsMin" counter._propRefs[PropCategory.IMPLICIT_MAX] = "lsuRexmitPktsMax" counter._propRefs[PropCategory.IMPLICIT_AVG] = "lsuRexmitPktsAvg" counter._propRefs[PropCategory.IMPLICIT_SUSPECT] = "lsuRexmitPktsSpct" counter._propRefs[PropCategory.IMPLICIT_BASELINE] = "lsuRexmitPktsBase" counter._propRefs[PropCategory.IMPLICIT_THRESHOLDED] = "lsuRexmitPktsThr" counter._propRefs[PropCategory.IMPLICIT_TREND_BASE] = "lsuRexmitPktsTrBase" counter._propRefs[PropCategory.IMPLICIT_TREND] = "lsuRexmitPktsTr" counter._propRefs[PropCategory.IMPLICIT_RATE] = "lsuRexmitPktsRate" meta._counters.append(counter) counter = CounterMeta("lsuFirstTxPkts", CounterCategory.COUNTER, "packets", "LSU First Tx Packets") counter._propRefs[PropCategory.IMPLICIT_LASTREADING] = "lsuFirstTxPktsLast" counter._propRefs[PropCategory.IMPLICIT_CUMULATIVE] = "lsuFirstTxPktsCum" counter._propRefs[PropCategory.IMPLICIT_PERIODIC] = "lsuFirstTxPktsPer" counter._propRefs[PropCategory.IMPLICIT_MIN] = "lsuFirstTxPktsMin" counter._propRefs[PropCategory.IMPLICIT_MAX] = "lsuFirstTxPktsMax" counter._propRefs[PropCategory.IMPLICIT_AVG] = "lsuFirstTxPktsAvg" counter._propRefs[PropCategory.IMPLICIT_SUSPECT] = "lsuFirstTxPktsSpct" counter._propRefs[PropCategory.IMPLICIT_BASELINE] = "lsuFirstTxPktsBase" counter._propRefs[PropCategory.IMPLICIT_THRESHOLDED] = "lsuFirstTxPktsThr" counter._propRefs[PropCategory.IMPLICIT_TREND_BASE] = "lsuFirstTxPktsTrBase" counter._propRefs[PropCategory.IMPLICIT_TREND] = "lsuFirstTxPktsTr" counter._propRefs[PropCategory.IMPLICIT_RATE] = "lsuFirstTxPktsRate" meta._counters.append(counter) meta.moClassName = "ospfLsuStats1h" meta.rnFormat = "CDospfLsuStats1h" meta.category = MoCategory.STATS_CURRENT meta.label = "current Ospf Lsu Packets stats in 1 hour" meta.writeAccessMask = 0x8008020040001 meta.readAccessMask = 0x8008020040001 meta.isDomainable = False meta.isReadOnly = True meta.isConfigurable = False meta.isDeletable = False meta.isContextRoot = True meta.parentClasses.add("cobra.model.ospf.IfStats") meta.superClasses.add("cobra.model.stats.Item") meta.superClasses.add("cobra.model.stats.Curr") meta.superClasses.add("cobra.model.ospf.LsuStats") meta.rnPrefixes = [ ('CDospfLsuStats1h', False), ] prop = PropMeta("str", "childAction", "childAction", 4, PropCategory.CHILD_ACTION) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("deleteAll", "deleteall", 16384) prop._addConstant("deleteNonPresent", "deletenonpresent", 8192) prop._addConstant("ignore", "ignore", 4096) meta.props.add("childAction", prop) prop = PropMeta("str", "cnt", "cnt", 16212, PropCategory.REGULAR) prop.label = "Number of Collections During this Interval" prop.isImplicit = True prop.isAdmin = True meta.props.add("cnt", prop) prop = PropMeta("str", "dn", "dn", 1, PropCategory.DN) prop.label = "None" prop.isDn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("dn", prop) prop = PropMeta("str", "lastCollOffset", "lastCollOffset", 111, PropCategory.REGULAR) prop.label = "Collection Length" prop.isImplicit = True prop.isAdmin = True meta.props.add("lastCollOffset", prop) prop = PropMeta("str", "lsuFirstTxPktsAvg", "lsuFirstTxPktsAvg", 48890, PropCategory.IMPLICIT_AVG) prop.label = "LSU First Tx Packets average value" prop.isOper = True prop.isStats = True meta.props.add("lsuFirstTxPktsAvg", prop) prop = PropMeta("str", "lsuFirstTxPktsBase", "lsuFirstTxPktsBase", 48885, PropCategory.IMPLICIT_BASELINE) prop.label = "LSU First Tx Packets baseline" prop.isOper = True prop.isStats = True meta.props.add("lsuFirstTxPktsBase", prop) prop = PropMeta("str", "lsuFirstTxPktsCum", "lsuFirstTxPktsCum", 48886, PropCategory.IMPLICIT_CUMULATIVE) prop.label = "LSU First Tx Packets cumulative" prop.isOper = True prop.isStats = True meta.props.add("lsuFirstTxPktsCum", prop) prop = PropMeta("str", "lsuFirstTxPktsLast", "lsuFirstTxPktsLast", 48884, PropCategory.IMPLICIT_LASTREADING) prop.label = "LSU First Tx Packets current value" prop.isOper = True prop.isStats = True meta.props.add("lsuFirstTxPktsLast", prop) prop = PropMeta("str", "lsuFirstTxPktsMax", "lsuFirstTxPktsMax", 48889, PropCategory.IMPLICIT_MAX) prop.label = "LSU First Tx Packets maximum value" prop.isOper = True prop.isStats = True meta.props.add("lsuFirstTxPktsMax", prop) prop = PropMeta("str", "lsuFirstTxPktsMin", "lsuFirstTxPktsMin", 48888, PropCategory.IMPLICIT_MIN) prop.label = "LSU First Tx Packets minimum value" prop.isOper = True prop.isStats = True meta.props.add("lsuFirstTxPktsMin", prop) prop = PropMeta("str", "lsuFirstTxPktsPer", "lsuFirstTxPktsPer", 48887, PropCategory.IMPLICIT_PERIODIC) prop.label = "LSU First Tx Packets periodic" prop.isOper = True prop.isStats = True meta.props.add("lsuFirstTxPktsPer", prop) prop = PropMeta("str", "lsuFirstTxPktsRate", "lsuFirstTxPktsRate", 48895, PropCategory.IMPLICIT_RATE) prop.label = "LSU First Tx Packets rate" prop.isOper = True prop.isStats = True meta.props.add("lsuFirstTxPktsRate", prop) prop = PropMeta("str", "lsuFirstTxPktsSpct", "lsuFirstTxPktsSpct", 48891, PropCategory.IMPLICIT_SUSPECT) prop.label = "LSU First Tx Packets suspect count" prop.isOper = True prop.isStats = True meta.props.add("lsuFirstTxPktsSpct", prop) prop = PropMeta("str", "lsuFirstTxPktsThr", "lsuFirstTxPktsThr", 48892, PropCategory.IMPLICIT_THRESHOLDED) prop.label = "LSU First Tx Packets thresholded flags" prop.isOper = True prop.isStats = True prop.defaultValue = 0 prop.defaultValueStr = "unspecified" prop._addConstant("avgCrit", "avg-severity-critical", 2199023255552) prop._addConstant("avgHigh", "avg-crossed-high-threshold", 68719476736) prop._addConstant("avgLow", "avg-crossed-low-threshold", 137438953472) prop._addConstant("avgMajor", "avg-severity-major", 1099511627776) prop._addConstant("avgMinor", "avg-severity-minor", 549755813888) prop._addConstant("avgRecovering", "avg-recovering", 34359738368) prop._addConstant("avgWarn", "avg-severity-warning", 274877906944) prop._addConstant("cumulativeCrit", "cumulative-severity-critical", 8192) prop._addConstant("cumulativeHigh", "cumulative-crossed-high-threshold", 256) prop._addConstant("cumulativeLow", "cumulative-crossed-low-threshold", 512) prop._addConstant("cumulativeMajor", "cumulative-severity-major", 4096) prop._addConstant("cumulativeMinor", "cumulative-severity-minor", 2048) prop._addConstant("cumulativeRecovering", "cumulative-recovering", 128) prop._addConstant("cumulativeWarn", "cumulative-severity-warning", 1024) prop._addConstant("lastReadingCrit", "lastreading-severity-critical", 64) prop._addConstant("lastReadingHigh", "lastreading-crossed-high-threshold", 2) prop._addConstant("lastReadingLow", "lastreading-crossed-low-threshold", 4) prop._addConstant("lastReadingMajor", "lastreading-severity-major", 32) prop._addConstant("lastReadingMinor", "lastreading-severity-minor", 16) prop._addConstant("lastReadingRecovering", "lastreading-recovering", 1) prop._addConstant("lastReadingWarn", "lastreading-severity-warning", 8) prop._addConstant("maxCrit", "max-severity-critical", 17179869184) prop._addConstant("maxHigh", "max-crossed-high-threshold", 536870912) prop._addConstant("maxLow", "max-crossed-low-threshold", 1073741824) prop._addConstant("maxMajor", "max-severity-major", 8589934592) prop._addConstant("maxMinor", "max-severity-minor", 4294967296) prop._addConstant("maxRecovering", "max-recovering", 268435456) prop._addConstant("maxWarn", "max-severity-warning", 2147483648) prop._addConstant("minCrit", "min-severity-critical", 134217728) prop._addConstant("minHigh", "min-crossed-high-threshold", 4194304) prop._addConstant("minLow", "min-crossed-low-threshold", 8388608) prop._addConstant("minMajor", "min-severity-major", 67108864) prop._addConstant("minMinor", "min-severity-minor", 33554432) prop._addConstant("minRecovering", "min-recovering", 2097152) prop._addConstant("minWarn", "min-severity-warning", 16777216) prop._addConstant("periodicCrit", "periodic-severity-critical", 1048576) prop._addConstant("periodicHigh", "periodic-crossed-high-threshold", 32768) prop._addConstant("periodicLow", "periodic-crossed-low-threshold", 65536) prop._addConstant("periodicMajor", "periodic-severity-major", 524288) prop._addConstant("periodicMinor", "periodic-severity-minor", 262144) prop._addConstant("periodicRecovering", "periodic-recovering", 16384) prop._addConstant("periodicWarn", "periodic-severity-warning", 131072) prop._addConstant("rateCrit", "rate-severity-critical", 36028797018963968) prop._addConstant("rateHigh", "rate-crossed-high-threshold", 1125899906842624) prop._addConstant("rateLow", "rate-crossed-low-threshold", 2251799813685248) prop._addConstant("rateMajor", "rate-severity-major", 18014398509481984) prop._addConstant("rateMinor", "rate-severity-minor", 9007199254740992) prop._addConstant("rateRecovering", "rate-recovering", 562949953421312) prop._addConstant("rateWarn", "rate-severity-warning", 4503599627370496) prop._addConstant("trendCrit", "trend-severity-critical", 281474976710656) prop._addConstant("trendHigh", "trend-crossed-high-threshold", 8796093022208) prop._addConstant("trendLow", "trend-crossed-low-threshold", 17592186044416) prop._addConstant("trendMajor", "trend-severity-major", 140737488355328) prop._addConstant("trendMinor", "trend-severity-minor", 70368744177664) prop._addConstant("trendRecovering", "trend-recovering", 4398046511104) prop._addConstant("trendWarn", "trend-severity-warning", 35184372088832) prop._addConstant("unspecified", None, 0) meta.props.add("lsuFirstTxPktsThr", prop) prop = PropMeta("str", "lsuFirstTxPktsTr", "lsuFirstTxPktsTr", 48894, PropCategory.IMPLICIT_TREND) prop.label = "LSU First Tx Packets trend" prop.isOper = True prop.isStats = True meta.props.add("lsuFirstTxPktsTr", prop) prop = PropMeta("str", "lsuFirstTxPktsTrBase", "lsuFirstTxPktsTrBase", 48893, PropCategory.IMPLICIT_TREND_BASE) prop.label = "LSU First Tx Packets trend baseline" prop.isOper = True prop.isStats = True meta.props.add("lsuFirstTxPktsTrBase", prop) prop = PropMeta("str", "lsuForLsreqPktsAvg", "lsuForLsreqPktsAvg", 48911, PropCategory.IMPLICIT_AVG) prop.label = "LSU Packets For LSREQ Packets average value" prop.isOper = True prop.isStats = True meta.props.add("lsuForLsreqPktsAvg", prop) prop = PropMeta("str", "lsuForLsreqPktsBase", "lsuForLsreqPktsBase", 48906, PropCategory.IMPLICIT_BASELINE) prop.label = "LSU Packets For LSREQ Packets baseline" prop.isOper = True prop.isStats = True meta.props.add("lsuForLsreqPktsBase", prop) prop = PropMeta("str", "lsuForLsreqPktsCum", "lsuForLsreqPktsCum", 48907, PropCategory.IMPLICIT_CUMULATIVE) prop.label = "LSU Packets For LSREQ Packets cumulative" prop.isOper = True prop.isStats = True meta.props.add("lsuForLsreqPktsCum", prop) prop = PropMeta("str", "lsuForLsreqPktsLast", "lsuForLsreqPktsLast", 48905, PropCategory.IMPLICIT_LASTREADING) prop.label = "LSU Packets For LSREQ Packets current value" prop.isOper = True prop.isStats = True meta.props.add("lsuForLsreqPktsLast", prop) prop = PropMeta("str", "lsuForLsreqPktsMax", "lsuForLsreqPktsMax", 48910, PropCategory.IMPLICIT_MAX) prop.label = "LSU Packets For LSREQ Packets maximum value" prop.isOper = True prop.isStats = True meta.props.add("lsuForLsreqPktsMax", prop) prop = PropMeta("str", "lsuForLsreqPktsMin", "lsuForLsreqPktsMin", 48909, PropCategory.IMPLICIT_MIN) prop.label = "LSU Packets For LSREQ Packets minimum value" prop.isOper = True prop.isStats = True meta.props.add("lsuForLsreqPktsMin", prop) prop = PropMeta("str", "lsuForLsreqPktsPer", "lsuForLsreqPktsPer", 48908, PropCategory.IMPLICIT_PERIODIC) prop.label = "LSU Packets For LSREQ Packets periodic" prop.isOper = True prop.isStats = True meta.props.add("lsuForLsreqPktsPer", prop) prop = PropMeta("str", "lsuForLsreqPktsRate", "lsuForLsreqPktsRate", 48916, PropCategory.IMPLICIT_RATE) prop.label = "LSU Packets For LSREQ Packets rate" prop.isOper = True prop.isStats = True meta.props.add("lsuForLsreqPktsRate", prop) prop = PropMeta("str", "lsuForLsreqPktsSpct", "lsuForLsreqPktsSpct", 48912, PropCategory.IMPLICIT_SUSPECT) prop.label = "LSU Packets For LSREQ Packets suspect count" prop.isOper = True prop.isStats = True meta.props.add("lsuForLsreqPktsSpct", prop) prop = PropMeta("str", "lsuForLsreqPktsThr", "lsuForLsreqPktsThr", 48913, PropCategory.IMPLICIT_THRESHOLDED) prop.label = "LSU Packets For LSREQ Packets thresholded flags" prop.isOper = True prop.isStats = True prop.defaultValue = 0 prop.defaultValueStr = "unspecified" prop._addConstant("avgCrit", "avg-severity-critical", 2199023255552) prop._addConstant("avgHigh", "avg-crossed-high-threshold", 68719476736) prop._addConstant("avgLow", "avg-crossed-low-threshold", 137438953472) prop._addConstant("avgMajor", "avg-severity-major", 1099511627776) prop._addConstant("avgMinor", "avg-severity-minor", 549755813888) prop._addConstant("avgRecovering", "avg-recovering", 34359738368) prop._addConstant("avgWarn", "avg-severity-warning", 274877906944) prop._addConstant("cumulativeCrit", "cumulative-severity-critical", 8192) prop._addConstant("cumulativeHigh", "cumulative-crossed-high-threshold", 256) prop._addConstant("cumulativeLow", "cumulative-crossed-low-threshold", 512) prop._addConstant("cumulativeMajor", "cumulative-severity-major", 4096) prop._addConstant("cumulativeMinor", "cumulative-severity-minor", 2048) prop._addConstant("cumulativeRecovering", "cumulative-recovering", 128) prop._addConstant("cumulativeWarn", "cumulative-severity-warning", 1024) prop._addConstant("lastReadingCrit", "lastreading-severity-critical", 64) prop._addConstant("lastReadingHigh", "lastreading-crossed-high-threshold", 2) prop._addConstant("lastReadingLow", "lastreading-crossed-low-threshold", 4) prop._addConstant("lastReadingMajor", "lastreading-severity-major", 32) prop._addConstant("lastReadingMinor", "lastreading-severity-minor", 16) prop._addConstant("lastReadingRecovering", "lastreading-recovering", 1) prop._addConstant("lastReadingWarn", "lastreading-severity-warning", 8) prop._addConstant("maxCrit", "max-severity-critical", 17179869184) prop._addConstant("maxHigh", "max-crossed-high-threshold", 536870912) prop._addConstant("maxLow", "max-crossed-low-threshold", 1073741824) prop._addConstant("maxMajor", "max-severity-major", 8589934592) prop._addConstant("maxMinor", "max-severity-minor", 4294967296) prop._addConstant("maxRecovering", "max-recovering", 268435456) prop._addConstant("maxWarn", "max-severity-warning", 2147483648) prop._addConstant("minCrit", "min-severity-critical", 134217728) prop._addConstant("minHigh", "min-crossed-high-threshold", 4194304) prop._addConstant("minLow", "min-crossed-low-threshold", 8388608) prop._addConstant("minMajor", "min-severity-major", 67108864) prop._addConstant("minMinor", "min-severity-minor", 33554432) prop._addConstant("minRecovering", "min-recovering", 2097152) prop._addConstant("minWarn", "min-severity-warning", 16777216) prop._addConstant("periodicCrit", "periodic-severity-critical", 1048576) prop._addConstant("periodicHigh", "periodic-crossed-high-threshold", 32768) prop._addConstant("periodicLow", "periodic-crossed-low-threshold", 65536) prop._addConstant("periodicMajor", "periodic-severity-major", 524288) prop._addConstant("periodicMinor", "periodic-severity-minor", 262144) prop._addConstant("periodicRecovering", "periodic-recovering", 16384) prop._addConstant("periodicWarn", "periodic-severity-warning", 131072) prop._addConstant("rateCrit", "rate-severity-critical", 36028797018963968) prop._addConstant("rateHigh", "rate-crossed-high-threshold", 1125899906842624) prop._addConstant("rateLow", "rate-crossed-low-threshold", 2251799813685248) prop._addConstant("rateMajor", "rate-severity-major", 18014398509481984) prop._addConstant("rateMinor", "rate-severity-minor", 9007199254740992) prop._addConstant("rateRecovering", "rate-recovering", 562949953421312) prop._addConstant("rateWarn", "rate-severity-warning", 4503599627370496) prop._addConstant("trendCrit", "trend-severity-critical", 281474976710656) prop._addConstant("trendHigh", "trend-crossed-high-threshold", 8796093022208) prop._addConstant("trendLow", "trend-crossed-low-threshold", 17592186044416) prop._addConstant("trendMajor", "trend-severity-major", 140737488355328) prop._addConstant("trendMinor", "trend-severity-minor", 70368744177664) prop._addConstant("trendRecovering", "trend-recovering", 4398046511104) prop._addConstant("trendWarn", "trend-severity-warning", 35184372088832) prop._addConstant("unspecified", None, 0) meta.props.add("lsuForLsreqPktsThr", prop) prop = PropMeta("str", "lsuForLsreqPktsTr", "lsuForLsreqPktsTr", 48915, PropCategory.IMPLICIT_TREND) prop.label = "LSU Packets For LSREQ Packets trend" prop.isOper = True prop.isStats = True meta.props.add("lsuForLsreqPktsTr", prop) prop = PropMeta("str", "lsuForLsreqPktsTrBase", "lsuForLsreqPktsTrBase", 48914, PropCategory.IMPLICIT_TREND_BASE) prop.label = "LSU Packets For LSREQ Packets trend baseline" prop.isOper = True prop.isStats = True meta.props.add("lsuForLsreqPktsTrBase", prop) prop = PropMeta("str", "lsuPeerTxPktsAvg", "lsuPeerTxPktsAvg", 48932, PropCategory.IMPLICIT_AVG) prop.label = "LSU Packets To Peer average value" prop.isOper = True prop.isStats = True meta.props.add("lsuPeerTxPktsAvg", prop) prop = PropMeta("str", "lsuPeerTxPktsBase", "lsuPeerTxPktsBase", 48927, PropCategory.IMPLICIT_BASELINE) prop.label = "LSU Packets To Peer baseline" prop.isOper = True prop.isStats = True meta.props.add("lsuPeerTxPktsBase", prop) prop = PropMeta("str", "lsuPeerTxPktsCum", "lsuPeerTxPktsCum", 48928, PropCategory.IMPLICIT_CUMULATIVE) prop.label = "LSU Packets To Peer cumulative" prop.isOper = True prop.isStats = True meta.props.add("lsuPeerTxPktsCum", prop) prop = PropMeta("str", "lsuPeerTxPktsLast", "lsuPeerTxPktsLast", 48926, PropCategory.IMPLICIT_LASTREADING) prop.label = "LSU Packets To Peer current value" prop.isOper = True prop.isStats = True meta.props.add("lsuPeerTxPktsLast", prop) prop = PropMeta("str", "lsuPeerTxPktsMax", "lsuPeerTxPktsMax", 48931, PropCategory.IMPLICIT_MAX) prop.label = "LSU Packets To Peer maximum value" prop.isOper = True prop.isStats = True meta.props.add("lsuPeerTxPktsMax", prop) prop = PropMeta("str", "lsuPeerTxPktsMin", "lsuPeerTxPktsMin", 48930, PropCategory.IMPLICIT_MIN) prop.label = "LSU Packets To Peer minimum value" prop.isOper = True prop.isStats = True meta.props.add("lsuPeerTxPktsMin", prop) prop = PropMeta("str", "lsuPeerTxPktsPer", "lsuPeerTxPktsPer", 48929, PropCategory.IMPLICIT_PERIODIC) prop.label = "LSU Packets To Peer periodic" prop.isOper = True prop.isStats = True meta.props.add("lsuPeerTxPktsPer", prop) prop = PropMeta("str", "lsuPeerTxPktsRate", "lsuPeerTxPktsRate", 48937, PropCategory.IMPLICIT_RATE) prop.label = "LSU Packets To Peer rate" prop.isOper = True prop.isStats = True meta.props.add("lsuPeerTxPktsRate", prop) prop = PropMeta("str", "lsuPeerTxPktsSpct", "lsuPeerTxPktsSpct", 48933, PropCategory.IMPLICIT_SUSPECT) prop.label = "LSU Packets To Peer suspect count" prop.isOper = True prop.isStats = True meta.props.add("lsuPeerTxPktsSpct", prop) prop = PropMeta("str", "lsuPeerTxPktsThr", "lsuPeerTxPktsThr", 48934, PropCategory.IMPLICIT_THRESHOLDED) prop.label = "LSU Packets To Peer thresholded flags" prop.isOper = True prop.isStats = True prop.defaultValue = 0 prop.defaultValueStr = "unspecified" prop._addConstant("avgCrit", "avg-severity-critical", 2199023255552) prop._addConstant("avgHigh", "avg-crossed-high-threshold", 68719476736) prop._addConstant("avgLow", "avg-crossed-low-threshold", 137438953472) prop._addConstant("avgMajor", "avg-severity-major", 1099511627776) prop._addConstant("avgMinor", "avg-severity-minor", 549755813888) prop._addConstant("avgRecovering", "avg-recovering", 34359738368) prop._addConstant("avgWarn", "avg-severity-warning", 274877906944) prop._addConstant("cumulativeCrit", "cumulative-severity-critical", 8192) prop._addConstant("cumulativeHigh", "cumulative-crossed-high-threshold", 256) prop._addConstant("cumulativeLow", "cumulative-crossed-low-threshold", 512) prop._addConstant("cumulativeMajor", "cumulative-severity-major", 4096) prop._addConstant("cumulativeMinor", "cumulative-severity-minor", 2048) prop._addConstant("cumulativeRecovering", "cumulative-recovering", 128) prop._addConstant("cumulativeWarn", "cumulative-severity-warning", 1024) prop._addConstant("lastReadingCrit", "lastreading-severity-critical", 64) prop._addConstant("lastReadingHigh", "lastreading-crossed-high-threshold", 2) prop._addConstant("lastReadingLow", "lastreading-crossed-low-threshold", 4) prop._addConstant("lastReadingMajor", "lastreading-severity-major", 32) prop._addConstant("lastReadingMinor", "lastreading-severity-minor", 16) prop._addConstant("lastReadingRecovering", "lastreading-recovering", 1) prop._addConstant("lastReadingWarn", "lastreading-severity-warning", 8) prop._addConstant("maxCrit", "max-severity-critical", 17179869184) prop._addConstant("maxHigh", "max-crossed-high-threshold", 536870912) prop._addConstant("maxLow", "max-crossed-low-threshold", 1073741824) prop._addConstant("maxMajor", "max-severity-major", 8589934592) prop._addConstant("maxMinor", "max-severity-minor", 4294967296) prop._addConstant("maxRecovering", "max-recovering", 268435456) prop._addConstant("maxWarn", "max-severity-warning", 2147483648) prop._addConstant("minCrit", "min-severity-critical", 134217728) prop._addConstant("minHigh", "min-crossed-high-threshold", 4194304) prop._addConstant("minLow", "min-crossed-low-threshold", 8388608) prop._addConstant("minMajor", "min-severity-major", 67108864) prop._addConstant("minMinor", "min-severity-minor", 33554432) prop._addConstant("minRecovering", "min-recovering", 2097152) prop._addConstant("minWarn", "min-severity-warning", 16777216) prop._addConstant("periodicCrit", "periodic-severity-critical", 1048576) prop._addConstant("periodicHigh", "periodic-crossed-high-threshold", 32768) prop._addConstant("periodicLow", "periodic-crossed-low-threshold", 65536) prop._addConstant("periodicMajor", "periodic-severity-major", 524288) prop._addConstant("periodicMinor", "periodic-severity-minor", 262144) prop._addConstant("periodicRecovering", "periodic-recovering", 16384) prop._addConstant("periodicWarn", "periodic-severity-warning", 131072) prop._addConstant("rateCrit", "rate-severity-critical", 36028797018963968) prop._addConstant("rateHigh", "rate-crossed-high-threshold", 1125899906842624) prop._addConstant("rateLow", "rate-crossed-low-threshold", 2251799813685248) prop._addConstant("rateMajor", "rate-severity-major", 18014398509481984) prop._addConstant("rateMinor", "rate-severity-minor", 9007199254740992) prop._addConstant("rateRecovering", "rate-recovering", 562949953421312) prop._addConstant("rateWarn", "rate-severity-warning", 4503599627370496) prop._addConstant("trendCrit", "trend-severity-critical", 281474976710656) prop._addConstant("trendHigh", "trend-crossed-high-threshold", 8796093022208) prop._addConstant("trendLow", "trend-crossed-low-threshold", 17592186044416) prop._addConstant("trendMajor", "trend-severity-major", 140737488355328) prop._addConstant("trendMinor", "trend-severity-minor", 70368744177664) prop._addConstant("trendRecovering", "trend-recovering", 4398046511104) prop._addConstant("trendWarn", "trend-severity-warning", 35184372088832) prop._addConstant("unspecified", None, 0) meta.props.add("lsuPeerTxPktsThr", prop) prop = PropMeta("str", "lsuPeerTxPktsTr", "lsuPeerTxPktsTr", 48936, PropCategory.IMPLICIT_TREND) prop.label = "LSU Packets To Peer trend" prop.isOper = True prop.isStats = True meta.props.add("lsuPeerTxPktsTr", prop) prop = PropMeta("str", "lsuPeerTxPktsTrBase", "lsuPeerTxPktsTrBase", 48935, PropCategory.IMPLICIT_TREND_BASE) prop.label = "LSU Packets To Peer trend baseline" prop.isOper = True prop.isStats = True meta.props.add("lsuPeerTxPktsTrBase", prop) prop = PropMeta("str", "lsuRexmitPktsAvg", "lsuRexmitPktsAvg", 48953, PropCategory.IMPLICIT_AVG) prop.label = "LSU Retransmission Packets average value" prop.isOper = True prop.isStats = True meta.props.add("lsuRexmitPktsAvg", prop) prop = PropMeta("str", "lsuRexmitPktsBase", "lsuRexmitPktsBase", 48948, PropCategory.IMPLICIT_BASELINE) prop.label = "LSU Retransmission Packets baseline" prop.isOper = True prop.isStats = True meta.props.add("lsuRexmitPktsBase", prop) prop = PropMeta("str", "lsuRexmitPktsCum", "lsuRexmitPktsCum", 48949, PropCategory.IMPLICIT_CUMULATIVE) prop.label = "LSU Retransmission Packets cumulative" prop.isOper = True prop.isStats = True meta.props.add("lsuRexmitPktsCum", prop) prop = PropMeta("str", "lsuRexmitPktsLast", "lsuRexmitPktsLast", 48947, PropCategory.IMPLICIT_LASTREADING) prop.label = "LSU Retransmission Packets current value" prop.isOper = True prop.isStats = True meta.props.add("lsuRexmitPktsLast", prop) prop = PropMeta("str", "lsuRexmitPktsMax", "lsuRexmitPktsMax", 48952, PropCategory.IMPLICIT_MAX) prop.label = "LSU Retransmission Packets maximum value" prop.isOper = True prop.isStats = True meta.props.add("lsuRexmitPktsMax", prop) prop = PropMeta("str", "lsuRexmitPktsMin", "lsuRexmitPktsMin", 48951, PropCategory.IMPLICIT_MIN) prop.label = "LSU Retransmission Packets minimum value" prop.isOper = True prop.isStats = True meta.props.add("lsuRexmitPktsMin", prop) prop = PropMeta("str", "lsuRexmitPktsPer", "lsuRexmitPktsPer", 48950, PropCategory.IMPLICIT_PERIODIC) prop.label = "LSU Retransmission Packets periodic" prop.isOper = True prop.isStats = True meta.props.add("lsuRexmitPktsPer", prop) prop = PropMeta("str", "lsuRexmitPktsRate", "lsuRexmitPktsRate", 48958, PropCategory.IMPLICIT_RATE) prop.label = "LSU Retransmission Packets rate" prop.isOper = True prop.isStats = True meta.props.add("lsuRexmitPktsRate", prop) prop = PropMeta("str", "lsuRexmitPktsSpct", "lsuRexmitPktsSpct", 48954, PropCategory.IMPLICIT_SUSPECT) prop.label = "LSU Retransmission Packets suspect count" prop.isOper = True prop.isStats = True meta.props.add("lsuRexmitPktsSpct", prop) prop = PropMeta("str", "lsuRexmitPktsThr", "lsuRexmitPktsThr", 48955, PropCategory.IMPLICIT_THRESHOLDED) prop.label = "LSU Retransmission Packets thresholded flags" prop.isOper = True prop.isStats = True prop.defaultValue = 0 prop.defaultValueStr = "unspecified" prop._addConstant("avgCrit", "avg-severity-critical", 2199023255552) prop._addConstant("avgHigh", "avg-crossed-high-threshold", 68719476736) prop._addConstant("avgLow", "avg-crossed-low-threshold", 137438953472) prop._addConstant("avgMajor", "avg-severity-major", 1099511627776) prop._addConstant("avgMinor", "avg-severity-minor", 549755813888) prop._addConstant("avgRecovering", "avg-recovering", 34359738368) prop._addConstant("avgWarn", "avg-severity-warning", 274877906944) prop._addConstant("cumulativeCrit", "cumulative-severity-critical", 8192) prop._addConstant("cumulativeHigh", "cumulative-crossed-high-threshold", 256) prop._addConstant("cumulativeLow", "cumulative-crossed-low-threshold", 512) prop._addConstant("cumulativeMajor", "cumulative-severity-major", 4096) prop._addConstant("cumulativeMinor", "cumulative-severity-minor", 2048) prop._addConstant("cumulativeRecovering", "cumulative-recovering", 128) prop._addConstant("cumulativeWarn", "cumulative-severity-warning", 1024) prop._addConstant("lastReadingCrit", "lastreading-severity-critical", 64) prop._addConstant("lastReadingHigh", "lastreading-crossed-high-threshold", 2) prop._addConstant("lastReadingLow", "lastreading-crossed-low-threshold", 4) prop._addConstant("lastReadingMajor", "lastreading-severity-major", 32) prop._addConstant("lastReadingMinor", "lastreading-severity-minor", 16) prop._addConstant("lastReadingRecovering", "lastreading-recovering", 1) prop._addConstant("lastReadingWarn", "lastreading-severity-warning", 8) prop._addConstant("maxCrit", "max-severity-critical", 17179869184) prop._addConstant("maxHigh", "max-crossed-high-threshold", 536870912) prop._addConstant("maxLow", "max-crossed-low-threshold", 1073741824) prop._addConstant("maxMajor", "max-severity-major", 8589934592) prop._addConstant("maxMinor", "max-severity-minor", 4294967296) prop._addConstant("maxRecovering", "max-recovering", 268435456) prop._addConstant("maxWarn", "max-severity-warning", 2147483648) prop._addConstant("minCrit", "min-severity-critical", 134217728) prop._addConstant("minHigh", "min-crossed-high-threshold", 4194304) prop._addConstant("minLow", "min-crossed-low-threshold", 8388608) prop._addConstant("minMajor", "min-severity-major", 67108864) prop._addConstant("minMinor", "min-severity-minor", 33554432) prop._addConstant("minRecovering", "min-recovering", 2097152) prop._addConstant("minWarn", "min-severity-warning", 16777216) prop._addConstant("periodicCrit", "periodic-severity-critical", 1048576) prop._addConstant("periodicHigh", "periodic-crossed-high-threshold", 32768) prop._addConstant("periodicLow", "periodic-crossed-low-threshold", 65536) prop._addConstant("periodicMajor", "periodic-severity-major", 524288) prop._addConstant("periodicMinor", "periodic-severity-minor", 262144) prop._addConstant("periodicRecovering", "periodic-recovering", 16384) prop._addConstant("periodicWarn", "periodic-severity-warning", 131072) prop._addConstant("rateCrit", "rate-severity-critical", 36028797018963968) prop._addConstant("rateHigh", "rate-crossed-high-threshold", 1125899906842624) prop._addConstant("rateLow", "rate-crossed-low-threshold", 2251799813685248) prop._addConstant("rateMajor", "rate-severity-major", 18014398509481984) prop._addConstant("rateMinor", "rate-severity-minor", 9007199254740992) prop._addConstant("rateRecovering", "rate-recovering", 562949953421312) prop._addConstant("rateWarn", "rate-severity-warning", 4503599627370496) prop._addConstant("trendCrit", "trend-severity-critical", 281474976710656) prop._addConstant("trendHigh", "trend-crossed-high-threshold", 8796093022208) prop._addConstant("trendLow", "trend-crossed-low-threshold", 17592186044416) prop._addConstant("trendMajor", "trend-severity-major", 140737488355328) prop._addConstant("trendMinor", "trend-severity-minor", 70368744177664) prop._addConstant("trendRecovering", "trend-recovering", 4398046511104) prop._addConstant("trendWarn", "trend-severity-warning", 35184372088832) prop._addConstant("unspecified", None, 0) meta.props.add("lsuRexmitPktsThr", prop) prop = PropMeta("str", "lsuRexmitPktsTr", "lsuRexmitPktsTr", 48957, PropCategory.IMPLICIT_TREND) prop.label = "LSU Retransmission Packets trend" prop.isOper = True prop.isStats = True meta.props.add("lsuRexmitPktsTr", prop) prop = PropMeta("str", "lsuRexmitPktsTrBase", "lsuRexmitPktsTrBase", 48956, PropCategory.IMPLICIT_TREND_BASE) prop.label = "LSU Retransmission Packets trend baseline" prop.isOper = True prop.isStats = True meta.props.add("lsuRexmitPktsTrBase", prop) prop = PropMeta("str", "modTs", "modTs", 7, PropCategory.REGULAR) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop.defaultValue = 0 prop.defaultValueStr = "never" prop._addConstant("never", "never", 0) meta.props.add("modTs", prop) prop = PropMeta("str", "repIntvEnd", "repIntvEnd", 110, PropCategory.REGULAR) prop.label = "Reporting End Time" prop.isImplicit = True prop.isAdmin = True meta.props.add("repIntvEnd", prop) prop = PropMeta("str", "repIntvStart", "repIntvStart", 109, PropCategory.REGULAR) prop.label = "Reporting Start Time" prop.isImplicit = True prop.isAdmin = True meta.props.add("repIntvStart", prop) prop = PropMeta("str", "rn", "rn", 2, PropCategory.RN) prop.label = "None" prop.isRn = True prop.isImplicit = True prop.isAdmin = True prop.isCreateOnly = True meta.props.add("rn", prop) prop = PropMeta("str", "status", "status", 3, PropCategory.STATUS) prop.label = "None" prop.isImplicit = True prop.isAdmin = True prop._addConstant("created", "created", 2) prop._addConstant("deleted", "deleted", 8) prop._addConstant("modified", "modified", 4) meta.props.add("status", prop) def __init__(self, parentMoOrDn, markDirty=True, **creationProps): namingVals = [] Mo.__init__(self, parentMoOrDn, markDirty, *namingVals, **creationProps) # End of package file # ##################################################
[ "bkhoward@live.com" ]
bkhoward@live.com
80141b88864352a3da42ab6cd661e2218e992d2c
187a6558f3c7cb6234164677a2bda2e73c26eaaf
/jdcloud_sdk/services/starshield/apis/DeleteDNSRecordRequest.py
f0c3297faa9d2743710cb3f081ef643dc9e9ae02
[ "Apache-2.0" ]
permissive
jdcloud-api/jdcloud-sdk-python
4d2db584acc2620b7a866af82d21658cdd7cc227
3d1c50ed9117304d3b77a21babe899f939ae91cd
refs/heads/master
2023-09-04T02:51:08.335168
2023-08-30T12:00:25
2023-08-30T12:00:25
126,276,169
18
36
Apache-2.0
2023-09-07T06:54:49
2018-03-22T03:47:02
Python
UTF-8
Python
false
false
1,311
py
# coding=utf8 # Copyright 2018 JDCLOUD.COM # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # NOTE: This class is auto generated by the jdcloud code generator program. from jdcloud_sdk.core.jdcloudrequest import JDCloudRequest class DeleteDNSRecordRequest(JDCloudRequest): """ """ def __init__(self, parameters, header=None, version="v1"): super(DeleteDNSRecordRequest, self).__init__( '/zones/{zone_identifier}/dns_records/{identifier}', 'DELETE', header, version) self.parameters = parameters class DeleteDNSRecordParameters(object): def __init__(self,zone_identifier, identifier): """ :param zone_identifier: :param identifier: """ self.zone_identifier = zone_identifier self.identifier = identifier
[ "jdcloud-api@jd.com" ]
jdcloud-api@jd.com
ef9c19b3eb103b74a30574d32c605d338f2bd7a8
8285b710101a4da39b1bfb7e2900d590c4b1ef13
/08-distance-calc.py
5fd9e0fdaaec4ae06407a1b6e08764e244321141
[]
no_license
aiyenggar/regioncitations
1097cbe1f94552eae5cadc4e551d95157eb5d8ab
b8ba34b83522b404d652ca4fdc1ae5aeb193a438
refs/heads/master
2021-04-29T22:54:33.538482
2020-03-23T05:06:28
2020-03-23T05:06:28
78,220,388
0
0
null
null
null
null
UTF-8
Python
false
false
2,846
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jan 18 08:44:34 2019 @author: aiyenggar """ import csv import pandas as pd import geopy.distance import time def dump(dictionary, filename): with open(filename, 'w') as csvFile: writer = csv.writer(csvFile) writer.writerow(['latlong', 'urban_area', 'minimum_distance']) for nextkey in dictionary.keys(): spl = nextkey.split(":") writer.writerow([spl[0], spl[1], dictionary[nextkey]]) csvFile.close() # read the latlongid to ua1 mapping into latlong_urbanarea latlong_urbanarea = pd.read_csv(ut.latlongUrbanAreaFile, usecols = ['latlongid', 'ua1', 'latitude', 'longitude'], dtype={'latlongid':int, 'ua1':int, 'latitude':float, 'longitude':float}) # set mindist to the circumference of the earth (a high value) latlong_urbanarea['mindist']=round(2 * 3.14159 * 6371,2) latlong_urbanarea['near_latlong']="" latlong_urbanarea['near_urbanarea']="" latlong_urbanarea.sort_values(['latitude', 'longitude'], ascending=[True, True]) # we want to restrict our search for an urban area nearby to a bounding box +- 0.3 degrees on latitutde but not longitude treshold = 0.30 dist_dict = {} # master is that pandas table where the point is already identified within an urbanarea master = latlong_urbanarea[latlong_urbanarea['ua1'] != -1] missing = latlong_urbanarea[latlong_urbanarea['ua1'] == -1] csvFile = open(ut.distancesFile, 'w') writer = csv.writer(csvFile) writer.writerow(['l_latlongid', 'r_latlongid', 'distance']) neighbours = {} prev_line_seen=0 treshold_lines=1500 max_lines = len(latlong_urbanarea.index) # we look for unlabelled points in the vicinity of labelled points (rather than the other way) for mindex, masterow in master.iterrows(): a = masterow['latitude'] b = masterow['longitude'] l=(a,b) # all unlabelled points within the bounding box of this labelled point lowert = a - treshold highert = a + treshold cutdf = missing[(missing['latitude'] < highert) & (missing['latitude'] > lowert)] for nindex, nrow in cutdf.iterrows(): c = nrow['latitude'] d = nrow['longitude'] r=(c, d) key = tuple([a, b, c, d]) if key not in dist_dict: distance = round(geopy.distance.geodesic(l,r).km,2) dist_dict[key] = distance # save all the calculated distances so as to avoid calculating again if dist_dict[key] < 30.01: # need to write only once writer.writerow([nrow['latlongid'], masterow['latlongid'], dist_dict[key]]) if (mindex > prev_line_seen + treshold_lines): print(time.strftime("%Y-%m-%d %H:%M:%S") + " Processed till index " + str(mindex) + " of " + str(max_lines)) prev_line_seen = mindex csvFile.flush() dist_dict = {} csvFile.close()
[ "aiyenggar@users.noreply.github.com" ]
aiyenggar@users.noreply.github.com
e0cfacb1680baaad5f710f171d3d8177c3a5eea0
c89543dd926c1787c40616ed174a3d1371c54449
/superset/tags/core.py
6c4f56a2e66f217a3a8df5a3026d0e3a310987de
[ "Apache-2.0", "OFL-1.1" ]
permissive
j420247/incubator-superset
7c7bff330393f0e91f5e67782f35efe8c735250a
c9b9b7404a2440a4c9d3173f0c494ed40f7fa2bd
refs/heads/master
2023-03-11T21:53:16.827919
2023-02-03T19:04:17
2023-02-03T19:04:17
157,780,350
1
1
Apache-2.0
2023-03-07T00:14:51
2018-11-15T22:24:29
TypeScript
UTF-8
Python
false
false
3,962
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=import-outside-toplevel def register_sqla_event_listeners() -> None: import sqlalchemy as sqla from superset.connectors.sqla.models import SqlaTable from superset.models.core import FavStar from superset.models.dashboard import Dashboard from superset.models.slice import Slice from superset.models.sql_lab import SavedQuery from superset.tags.models import ( ChartUpdater, DashboardUpdater, DatasetUpdater, FavStarUpdater, QueryUpdater, ) sqla.event.listen(SqlaTable, "after_insert", DatasetUpdater.after_insert) sqla.event.listen(SqlaTable, "after_update", DatasetUpdater.after_update) sqla.event.listen(SqlaTable, "after_delete", DatasetUpdater.after_delete) sqla.event.listen(Slice, "after_insert", ChartUpdater.after_insert) sqla.event.listen(Slice, "after_update", ChartUpdater.after_update) sqla.event.listen(Slice, "after_delete", ChartUpdater.after_delete) sqla.event.listen(Dashboard, "after_insert", DashboardUpdater.after_insert) sqla.event.listen(Dashboard, "after_update", DashboardUpdater.after_update) sqla.event.listen(Dashboard, "after_delete", DashboardUpdater.after_delete) sqla.event.listen(FavStar, "after_insert", FavStarUpdater.after_insert) sqla.event.listen(FavStar, "after_delete", FavStarUpdater.after_delete) sqla.event.listen(SavedQuery, "after_insert", QueryUpdater.after_insert) sqla.event.listen(SavedQuery, "after_update", QueryUpdater.after_update) sqla.event.listen(SavedQuery, "after_delete", QueryUpdater.after_delete) def clear_sqla_event_listeners() -> None: import sqlalchemy as sqla from superset.connectors.sqla.models import SqlaTable from superset.models.core import FavStar from superset.models.dashboard import Dashboard from superset.models.slice import Slice from superset.models.sql_lab import SavedQuery from superset.tags.models import ( ChartUpdater, DashboardUpdater, DatasetUpdater, FavStarUpdater, QueryUpdater, ) sqla.event.remove(SqlaTable, "after_insert", DatasetUpdater.after_insert) sqla.event.remove(SqlaTable, "after_update", DatasetUpdater.after_update) sqla.event.remove(SqlaTable, "after_delete", DatasetUpdater.after_delete) sqla.event.remove(Slice, "after_insert", ChartUpdater.after_insert) sqla.event.remove(Slice, "after_update", ChartUpdater.after_update) sqla.event.remove(Slice, "after_delete", ChartUpdater.after_delete) sqla.event.remove(Dashboard, "after_insert", DashboardUpdater.after_insert) sqla.event.remove(Dashboard, "after_update", DashboardUpdater.after_update) sqla.event.remove(Dashboard, "after_delete", DashboardUpdater.after_delete) sqla.event.remove(FavStar, "after_insert", FavStarUpdater.after_insert) sqla.event.remove(FavStar, "after_delete", FavStarUpdater.after_delete) sqla.event.remove(SavedQuery, "after_insert", QueryUpdater.after_insert) sqla.event.remove(SavedQuery, "after_update", QueryUpdater.after_update) sqla.event.remove(SavedQuery, "after_delete", QueryUpdater.after_delete)
[ "noreply@github.com" ]
j420247.noreply@github.com
3268c3ee936318afe2dd9aace2de1008066d265e
f2d5498e47ff24810c462ea9b05d6520beb65eea
/4-auth/bookshelf/crud.py
6ee765b53e700698947dc0d92c8490b9ebf66c58
[]
no_license
kennethleekk/Hackhub-python
b3388d47fbd4540bab7e6f727c667b15d8c5ba92
44c9adc68cf778383e695fd8a6629aed700f5c17
refs/heads/master
2022-12-04T17:17:03.255394
2020-08-20T13:30:04
2020-08-20T13:30:04
289,013,040
0
0
null
null
null
null
UTF-8
Python
false
false
16,241
py
# Copyright 2015 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from bookshelf import get_model, oauth2, storage from flask import Blueprint, current_app, redirect, render_template, request, \ session, url_for from google.oauth2 import id_token from google.auth.transport import requests sonbalance = 100 crud = Blueprint('crud', __name__) def upload_image_file(file): """ Upload the user-uploaded file to Google Cloud Storage and retrieve its publicly-accessible URL. """ if not file: return None public_url = storage.upload_file( file.read(), file.filename, file.content_type ) current_app.logger.info( "Uploaded file %s as %s.", file.filename, public_url) return public_url @crud.route("/") def main_route(): if 'profile' in session: return list_mine() else: return render_template("main_for_anonymous.html") @crud.route("/search") def list(): token = request.args.get('page_token', None) if token: token = token.encode('utf-8') books, next_page_token = get_model().list(cursor=token) return render_template( "list.html", books=books, next_page_token=next_page_token) @crud.route("/appDetails_new") def appDetails_new(): data = request.form.to_dict(flat=True) books = get_model().read(data['id']) return json.dumps(books) @crud.route("/appDetails_onlyone") def appDetails_onlyone(): appList = [ { "title": "Funds Transfer", "identifier": "fundstransfer", "thumbnail": "./appJSONs/thumbnails/image1.jpg", "keywords": "fundstransfer banking digital customerfacing retail rbwm allscreens", "content" : { "descriptionText": "Description text goes here .......maximum limit 200 chars", "additionalResources": [ "./appJSONs/resources/fundstransfer/image1", "./appJSONs/resources/fundstransfer/image2", "./appJSONs/resources/fundstransfer/video1" ], "githubLink" : "https://github.com/snehaagarwal6108/fundTranser.git", "nexusLink" : "http://nexus/abc" } } ] return json.dumps(appList) @crud.route("/appDetails") def appDetails(): appList = [ { "title": "Funds Transfer", "identifier": "fundstransfer", "thumbnail": "./appJSONs/thumbnails/image1.jpg", "keywords": "fundstransfer banking digital customerfacing retail rbwm allscreens", "content" : { "descriptionText": "Description text goes here .......maximum limit 200 chars", "additionalResources": [ "./appJSONs/resources/fundstransfer/image1", "./appJSONs/resources/fundstransfer/image2", "./appJSONs/resources/fundstransfer/video1" ], "githubLink" : "https://github.com/snehaagarwal6108/fundTranser.git", "nexusLink" : "http://nexus/abc" } }, { "title": "Login", "identifier": "login", "thumbnail": "./thumbnails/fundstransfer", "keywords": "input userlogin login allscreens", "content" : { "descriptionText": "Description text goes here .......maximum limit 200 chars", "additionalResources": [ "./appJSONs/resources/fundstransfer/image1", "./appJSONs/resources/fundstransfer/image2", "./appJSONs/resources/fundstransfer/video1" ], "githubLink" : "https://github.com/snehaagarwal6108/loginPage.git", "nexusLink" : "http://nexus/abc" } }, { "title": "Calendar", "identifier": "calendar", "thumbnail": "./thumbnails/calendar", "keywords": "calendar date dateandtime datetime", "content" : { "descriptionText": "Description text goes here .......maximum limit 200 chars", "additionalResources": [ "./appJSONs/resources/fundstransfer/image1", "./appJSONs/resources/fundstransfer/image2", "./appJSONs/resources/fundstransfer/video1" ], "githubLink" : "https://github.com/snehaagarwal6108/calendar.git", "nexusLink" : "http://nexus/abc" } }, { "title": "Bill Payment", "identifier": "billpayment", "thumbnail": "./appJSONs/thumbnails/image1.jpg", "keywords":"billpayment digital retail rbwm allscreens", "content" : { "descriptionText": "Description text goes here .......maximum limit 200 chars", "additionalResources": [ "./appJSONs/resources/fundstransfer/image1", "./appJSONs/resources/fundstransfer/image2", "./appJSONs/resources/fundstransfer/video1" ], "githubLink" : "https://github.com/pallaviteli/stencil", "nexusLink" : "http://nexus/abc" } }, { "title": "Mailbox", "thumbnail": "./appJSONs/thumbnails/image1.jpg", "keywords": "mailbox email notification", "identifier": "mailbox", "content" : { "descriptionText": "Description text goes here .......maximum limit 200 chars", "additionalResources": [ "./appJSONs/resources/fundstransfer/image1", "./appJSONs/resources/fundstransfer/image2", "./appJSONs/resources/fundstransfer/video1" ], "githubLink" : "https://github.com/snehaagarwal6108/MailBox.git", "nexusLink" : "http://nexus/abc" } }, { "title": "Pin Reset", "identifier": "pinreset", "thumbnail": "./appJSONs/thumbnails/image1.jpg", "keywords": "banking pinreset digital retail rbwm allscreens", "content" : { "descriptionText": "Description text goes here .......maximum limit 200 chars", "additionalResources": [ "./appJSONs/resources/fundstransfer/image1", "./appJSONs/resources/fundstransfer/image2", "./appJSONs/resources/fundstransfer/video1" ], "githubLink" : "https://github.com/pallaviteli/stencil", "nexusLink" : "http://nexus/abc" } } ] return json.dumps(appList) @crud.route('/appList', methods=['GET']) def appList(): appList = get_model().getAppList() return json.dumps(appList) @crud.route("/searchEvent") def listEvent(): token = request.args.get('page_token', None) if token: token = token.encode('utf-8') events, next_page_token = get_model().listEvent(cursor=token) return render_template( "listEvent.html", events=events, next_page_token=next_page_token) # [START list_mine] @crud.route("/mine") @oauth2.required def list_mine(): token = request.args.get('page_token', None) if token: token = token.encode('utf-8') books, next_page_token = get_model().list_by_user( user_id=session['profile']['email'], cursor=token) userRole = get_model().getUserRole(userId=session['profile']['email']) session['userRole'] = userRole return render_template( "list.html", books=books, next_page_token=next_page_token) # [END list_mine] # [START list_search] @crud.route("/list_search", methods=['GET', 'POST']) def list_search(): token = request.args.get('page_token', None) if token: token = token.encode('utf-8') books, next_page_token = get_model().list_by_filter( _description=request.form.get('description', ''), cursor=token) return render_template( "list_search.html", books=books, next_page_token=next_page_token, description=request.form.get('description', '')) # [END list_search] @crud.route('/<id>') def view(id): book = get_model().read(id) return render_template("view.html", book=book) @crud.route('/detail/<id>') def detailview(id): book = get_model().read(id) return render_template("viewForm.html", book=book) @crud.route('/event/<id>') def viewEvent(id): event = get_model().readEvent(id) return render_template("viewEvent.html", event=event) # [START add] @crud.route('/add', methods=['GET', 'POST']) def add(): if request.method == 'POST': data = request.form.to_dict(flat=True) # If an image was uploaded, update the data to point to the new image. image_url = upload_image_file(request.files.get('image')) if image_url: data['imageUrl'] = image_url # If the user is logged in, associate their profile with the new book. if 'profile' in session: data['createdBy'] = session['profile']['name'] data['createdById'] = session['profile']['email'] book = get_model().create(data) return redirect(url_for('.view', id=book['id'])) return render_template("form.html", action="Add", book={}) # [END add] # [START addEvent] @crud.route('/addEvent', methods=['GET', 'POST']) def addEvent(): if request.method == 'POST': data = request.form.to_dict(flat=True) # If an image was uploaded, update the data to point to the new image. #image_url = upload_image_file(request.files.get('image')) #if image_url: #data['imageUrl'] = image_url # If the user is logged in, associate their profile with the new book. if 'profile' in session: data['createdBy'] = session['profile']['name'] data['createdById'] = session['profile']['email'] event = get_model().createEvent(data) return redirect(url_for('.viewEvent', id=event['id'])) return render_template("formEvent.html", action="Add", event={}) # [END add] # [START addEvent] @crud.route('/hackhub', methods=['GET', 'POST', 'DELETE', 'PUT']) def hackhub(): if request.method == 'GET': requestdata = request.form.to_dict(flat=True) if 'id' in requestdata: resonsedata = get_model().getHackhubDetail(requestdata['id']) else: resonsedata = get_model().getHackhubList() return json.dumps(resonsedata) if request.method == 'POST': requestdata = request.form.to_dict(flat=True) #for k, v in requestdata.items(): #print(k, v) attachment1 = upload_image_file(request.files.get('attachment1')) if attachment1: requestdata['attachmenturl1'] = attachment1 requestdata.pop('attachment1', None) attachment2 = upload_image_file(request.files.get('attachment2')) if attachment2: requestdata['attachmenturl2'] = attachment2 requestdata.pop('attachment2', None) attachment3 = upload_image_file(request.files.get('attachment3')) if attachment3: requestdata['attachmenturl3'] = attachment3 requestdata.pop('attachment3', None) attachment4 = upload_image_file(request.files.get('attachment4')) if attachment4: requestdata['attachmenturl4'] = attachment4 requestdata.pop('attachment4', None) attachment5 = upload_image_file(request.files.get('attachment5')) if attachment5: requestdata['attachmenturl5'] = attachment5 requestdata.pop('attachment5', None) resonsedata = get_model().createHackhub(requestdata) return json.dumps(resonsedata) if request.method == 'DELETE': requestdata = request.form.to_dict(flat=True) resonsedata = get_model().deleteHackhub(requestdata['id']) return json.dumps(resonsedata) if request.method == 'PUT': requestdata = request.form.to_dict(flat=True) attachment1 = upload_image_file(request.files.get('attachment1')) if attachment1: requestdata['attachmenturl1'] = attachment1 requestdata.pop('attachment1', None) attachment2 = upload_image_file(request.files.get('attachment2')) if attachment2: requestdata['attachmenturl2'] = attachment2 requestdata.pop('attachment2', None) attachment3 = upload_image_file(request.files.get('attachment3')) if attachment3: requestdata['attachmenturl3'] = attachment3 requestdata.pop('attachment3', None) attachment4 = upload_image_file(request.files.get('attachment4')) if attachment4: requestdata['attachmenturl4'] = attachment4 requestdata.pop('attachment4', None) attachment5 = upload_image_file(request.files.get('attachment5')) if attachment5: requestdata['attachmenturl5'] = attachment5 requestdata.pop('attachment5', None) resonsedata = get_model().updateHackhub(requestdata) return json.dumps(resonsedata) # [END add] @crud.route('/hackhub/<id>', methods=['GET']) def hackhubid(id): if request.method == 'GET': resonsedata = get_model().getHackhubDetail(id) return json.dumps(resonsedata) # [END add] # [START addEvent] @crud.route('/addEventNoCheck', methods=['GET', 'POST']) def addEventNoCheck(): if request.method == 'POST': data = request.form.to_dict(flat=True) # If an image was uploaded, update the data to point to the new image. #image_url = upload_image_file(request.files.get('image')) #if image_url: #data['imageUrl'] = image_url image_url = upload_image_file(request.files.get('present')) event = get_model().createEvent(data) return json.dumps(image_url) return render @crud.route('/<id>/edit', methods=['GET', 'POST']) def edit(id): book = get_model().read(id) if request.method == 'POST': data = request.form.to_dict(flat=True) image_url = upload_image_file(request.files.get('image')) if image_url: data['imageUrl'] = image_url book = get_model().update(data, id) return redirect(url_for('.view', id=book['id'])) return render_template("form.html", action="Edit", book=book) @crud.route('/<id>/editEvent', methods=['GET', 'POST']) def editEvent(id): event = get_model().readEvent(id) if request.method == 'POST': data = request.form.to_dict(flat=True) image_url = upload_image_file(request.files.get('image')) #if image_url: #data['imageUrl'] = image_url event = get_model().update(data, id) return redirect(url_for('.viewEvent', id=event['id'])) return render_template("formEvent.html", action="Edit", event=event) @crud.route('/<id>/delete') def delete(id): get_model().delete(id) return redirect(url_for('.list')) @crud.route('/balance') def balance(): return {'name': 'son', 'balance': sonbalance} @crud.route('/oauth/<token>', methods=['GET', 'POST']) def oauth(token): print(token) try: print("123") # Specify the CLIENT_ID of the app that accesses the backend: idinfo = id_token.verify_oauth2_token(token, requests.Request(), "1062436335774-1ch8mfvedkbggu8gtpr76106t0k63aru.apps.googleusercontent.com") print("abc") # Or, if multiple clients access the backend server: # idinfo = id_token.verify_oauth2_token(token, requests.Request()) # if idinfo['aud'] not in [CLIENT_ID_1, CLIENT_ID_2, CLIENT_ID_3]: # raise ValueError('Could not verify audience.') if idinfo['iss'] not in ['accounts.google.com', 'https://accounts.google.com']: raise ValueError('Wrong issuer.') # If auth request is from a G Suite domain: # if idinfo['hd'] != GSUITE_DOMAIN_NAME: # raise ValueError('Wrong hosted domain.') # ID token is valid. Get the user's Google Account ID from the decoded token. userid = idinfo['sub'] print(idinfo) except ValueError: print("ValueError") # Invalid token pass return idinfo
[ "56199344+kennethleekk@users.noreply.github.com" ]
56199344+kennethleekk@users.noreply.github.com
9ad605cc33ca49dfd845db8299e039635bb5dc13
170a0006eed0c22a463b2304acca579805954aba
/ai/main.py
dc91cfb278f70a9caf589acc873db3789462526d
[]
no_license
nav3van/trading_bot
2b5c4707a6ba365b68bd771556d9298c4cbe84f7
532c588e712a38746d0f97c445b36db91a8dac84
refs/heads/master
2023-02-10T19:51:53.586869
2021-01-08T21:13:44
2021-01-08T21:13:44
328,013,563
1
0
null
null
null
null
UTF-8
Python
false
false
3,374
py
#!/usr/bin/env python3.6 import argparse import functools import multiprocessing import subprocess import matplotlib.pyplot as plt import numpy as np from ai.tf import neural_net def get_training_data(training_steps): # Make an array of 300 samples values starting with -1 and ending with 1 sample_data = np.linspace(-1, 1, training_steps) # Restructure our sample data so each value is in it's own array instead of # having all values in the same giant array. 1d -> 2d x_train = sample_data[:, np.newaxis] # Create a normal distribution to introduce noise into the sample data # mean = 0 # standard deviation = 0.05 # shape = same as our x_data's shape noise = np.random.normal(0, 0.05, x_train.shape) y_train = np.square(x_train) - 0.5 + noise return x_train, y_train def get_plot(x_data, y_data, show_plot=False): class Plot: def __init__(self, _x_data, _y_data, _show_plot): self._show_plot = _show_plot if self._show_plot: fig = plt.figure() self._x_data = _x_data self._y_data = _y_data self._plot_lines = [] # 1 plot on a grid with 1 row and 1 column self._grid = fig.add_subplot(1, 1, 1) self._grid.scatter( self._x_data, self._y_data ) self._plot = functools.partial( self._grid.plot, color='r', linestyle='-', linewidth=5 ) def update(self, predicted_value): if self._show_plot: if self._plot_lines: self._grid.lines.remove(self._plot_lines[0]) self._plot_lines = self._plot( self._x_data, predicted_value, ) plt.pause( interval=0.1 ) return Plot(x_data, y_data, show_plot) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('training_steps', default=1000, nargs='?', type=int) parser.add_argument('--dashboard', action='store_true') parser.add_argument('--plot', action='store_true') return parser.parse_args() def main(): args = parse_args() training_steps = args.training_steps tensorboard_dashboard = args.dashboard show_plot = args.plot x_train, y_train = get_training_data(training_steps) queue = multiprocessing.Queue() if tensorboard_dashboard: proc = subprocess.Popen( ['tensorboard', '--host=127.0.0.1', '--logdir=logs', '--port=8080'], stdout=subprocess.PIPE ) multiprocessing.Process( target=neural_net.run, args=( queue, training_steps, x_train, y_train, ) ).start() # plot = get_plot(x_train, y_train, show_plot=show_plot) # for i in range(training_steps): # predicted_value, error_rate = queue.get() # if i % 50 == 0: # plot.update(predicted_value) # print(f'{i}/{training_steps}) Error Rate: {error_rate}') input('Done!') try: proc.kill() except NameError: pass if __name__ == '__main__': main()
[ "ehenri@arbor.net" ]
ehenri@arbor.net
03206ecbe04795a00eb3793a7ae1b72424c0a606
8ad15ebf0d8107eb2e4b08eb24335183d6f1cd5e
/Chapter_03/计算字符个数.py
cfbd069c30217150121df5ffadbbb5c25528909f
[]
no_license
Zhang-Zhi-ZZ/PythonPKUPractice
eca808854937e26364c71762c3852a51a35bf838
71bc32fb99212fd5fac63eff517ad1205a03c35c
refs/heads/master
2022-06-10T06:36:16.170178
2020-05-02T03:52:28
2020-05-02T03:52:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
175
py
s = str(input()) s1 = str(s.lower().split()[0]) c = str(s.lower().split()[-1]) if len(s1) == 0: exit() if len(c) == 0: exit() if len(c) >= 1: print(s1.count(c))
[ "zhang325200@gmail.com" ]
zhang325200@gmail.com
d7a21bdd148944476cbbb6d6c874aa4ac9b4984e
f5cfca032f9074bf4d8844e64566e09112595626
/zendesk_tickets_machine/tickets/migrations/0012_auto_20161214_0157.py
d78c0e15bec5517b6b4b319f780d75caa2eb17fd
[ "MIT" ]
permissive
prontotools/zendesk-tickets-machine
15b08cbce4264f042bfdb58e6f16792b84f5c05e
1a0376038021e6277739907bb4e7393acebde8c6
refs/heads/develop
2021-06-20T10:31:48.873580
2019-07-25T00:09:12
2019-07-25T00:09:12
75,986,569
3
8
MIT
2021-06-10T20:19:37
2016-12-09T00:27:45
Python
UTF-8
Python
false
false
846
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.4 on 2016-12-14 01:57 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('tickets', '0011_auto_20161214_0146'), ] operations = [ migrations.AlterField( model_name='ticket', name='private_comment', field=models.CharField(blank=True, max_length=500, null=True), ), migrations.AlterField( model_name='ticket', name='tags', field=models.CharField(blank=True, max_length=300, null=True), ), migrations.AlterField( model_name='ticket', name='zendesk_ticket_id', field=models.CharField(blank=True, max_length=50, null=True), ), ]
[ "kan@prontomarketing.com" ]
kan@prontomarketing.com
786f9d675bff9f75ea206a483a300b5a7869433e
c16fb74fd2fd69d65cd813a3d23d5e7b61f9808f
/xueqiu/downloader_p3.py
ae3cf3e67a90d53a71fb48d1464ac0d7f9a45786
[]
no_license
nightqiuhua/selenium_crawler_xueqiu
9d3f9d10b2fdb5a479269e6d14cc52c97945ec31
0c68eeed7033c28f81def5f94351f2fbb42ca079
refs/heads/master
2020-03-20T17:54:53.943464
2018-06-16T13:36:45
2018-06-16T13:36:45
137,568,347
0
0
null
null
null
null
UTF-8
Python
false
false
2,375
py
import urllib.request import urllib.parse import socket from datetime import datetime import time import random import gzip import re import json from selenium import webdriver DEFAULT_DELAY = 2 DEFAULT_TIMEOUT = 200 DEFAULT_RETRIES = 1 DEFAULT_CHROME_PATH = 'C:\\Program Files (x86)\\Google\\Chrome\\Application\\chromedriver.exe' DEFAULT_SEED_URL = 'https://xueqiu.com/hq' class Throttle: def __init__(self,delay): self.delay = delay self.domains = {} def wait(self,url): domain = urllib.parse.urlparse(url).netloc last_accessed = self.domains.get(domain) if self.delay > 0 and last_accessed is not None: sleep_sec = self.delay-(datetime.now() - last_accessed).seconds if sleep_sec>0: time.sleep(sleep_sec) self.domains[domain] = datetime.now() class Downloader: def __init__(self,delay=DEFAULT_DELAY,proxies=None,num_retries=DEFAULT_RETRIES,timeout=DEFAULT_TIMEOUT,driver_path=DEFAULT_CHROME_PATH,seed_url=DEFAULT_SEED_URL,cache=None): socket.setdefaulttimeout(timeout) self.throttle = Throttle(delay) self.num_tries=num_retries self.cache = cache self.driver = webdriver.Chrome(driver_path) self.seed_url = seed_url def __call__(self,url): result = None if self.cache: try: result = self.cache[url] except KeyError: pass else: if self.num_tries > 0 and 500<= result['code'] <600: result = None if result is None: self.throttle.wait(url) result = self.download(url,s_url=self.seed_url,num_tries=self.num_tries) if self.cache: self.cache[url] = result #print(result['html']) return result['html'] def download(self,url,s_url,num_tries): print('Downloading seed url:',s_url) self.driver.get(s_url) time.sleep(3) print('Downloading:',url) try: #发送请求 self.driver.get(url) time.sleep(2) html = self.driver.page_source code = 200 except Exception as e: print('Download error',e) html = ' ' if hasattr(e,'code'): code = e.code if num_tries>0 and 500<=code<600: html = self.download(url,num_tries-1) else: code = -1 #self.driver.close() return {'html':html,'code':code} if __name__ == '__main__': seed_url = 'https://xueqiu.com/stock/cata/stocklist.json?page=3&size=90&order=desc&orderby=percent&type=11%2C12' D = Downloader() html = D(url=seed_url) print('html=',html) print('type(html)',type(html))
[ "208408@whut.edu.cn" ]
208408@whut.edu.cn
4981ccd67c286b157f71d1c1322ab43d69b68044
508e7a80242e68748b9d98626aa80931d341654e
/utils/datadownload.py
9b2321d50498ebc971772579811969c71d71c19d
[]
no_license
Frans06/tsprediction
974c2033536b41d660d0bb0cfd4235f48cec5dbc
2939da9f1c19029e00aadd11060f71b830411af5
refs/heads/master
2020-03-30T16:27:20.075665
2018-10-15T16:22:31
2018-10-15T16:22:31
151,409,772
0
0
null
null
null
null
UTF-8
Python
false
false
1,415
py
""" This is a plot module for enviroment variable definitions Example: import and inherit Class:: import plots Class Config define global and enviromental Variables. Todo: * For module TODOs * You have to also use ``sphinx.ext.todo`` extension """ import numpy as np import seaborn as sns import matplotlib.pyplot as plt class Data(): ''' Create or dowload some data for test or train ''' SEQ_LEN = 10 def __int__(self): self.to_csv('train.csv', 1000) # 1000 sequences self.to_csv('valid.csv', 50) def create_time_series(self): ''' create a random time series as signal data ''' freq = (np.random.random()*0.5) + 0.1 ampl = np.random.random() + 0.5 # 0.5 to 1.5 x_axis = np.sin(np.arange(0, self.SEQ_LEN) * freq) * ampl return x_axis def to_csv(self, filename, sequences): ''' write data to csv ''' with open(filename, 'w') as ofp: for line in range(0, sequences): seq = self.create_time_series() line = ",".join(map(str, seq)) ofp.write(line + '\n') def plot(self): ''' plotting generated data ''' for _ in range(0, 5): sns.tsplot(self.create_time_series())# 5 series if __name__ == "__main__": DATA = Data() DATA.plot() plt.show()
[ "franscaraveli@gmail.com" ]
franscaraveli@gmail.com
6d7c3b2284ba2801f5a452ecb0b796a039689a55
61744d85bbf2aefdf0fc27006acc2e742db9e152
/misoKG-master/unittests/test_util.py
ffae33d812ddb34df8199afecdbbf1d399e827ab
[]
no_license
sunatthegilddotcom/perovskite-4
896da29694830a6b98c33050f1aa41258310bd59
dd21c8b6217c5859783a6a92e9b082aeea98f9e8
refs/heads/master
2021-07-03T13:36:08.618860
2017-09-25T02:18:44
2017-09-25T02:18:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,015
py
import numpy from moe.optimal_learning.python.data_containers import HistoricalData from moe.optimal_learning.python.geometry_utils import ClosedInterval from moe.optimal_learning.python.python_version.domain import TensorProductDomain as pythonTensorProductDomain from moe.optimal_learning.python.python_version.gaussian_process import GaussianProcess from multifidelity_KG.model.covariance_function import MixedSquareExponential from pes.covariance import ProductKernel __author__ = 'jialeiwang' def get_random_gp_data(space_dim, num_is, num_data_each_is, kernel_name): """ Generate random gp data :param space_dim: :param num_is: :param num_data_each_is: :param kernel_name: currently it's either 'mix_exp' or 'prod_ker' :return: """ sample_var = 0.01 if kernel_name == "mix_exp": hyper_params = numpy.random.uniform(size=(num_is+1)*(space_dim+1)) cov = MixedSquareExponential(hyper_params, space_dim+1, num_is) elif kernel_name == "prod_ker": hyper_params = numpy.random.uniform(size=(num_is+1)*(num_is+2)/2+space_dim+1) cov = ProductKernel(hyper_params, space_dim+1, num_is+1) else: raise NotImplementedError("invalid kernel") python_search_domain = pythonTensorProductDomain([ClosedInterval(bound[0], bound[1]) for bound in numpy.repeat([[-10., 10.]], space_dim+1, axis=0)]) data = HistoricalData(space_dim+1) init_pts = python_search_domain.generate_uniform_random_points_in_domain(2) init_pts[:,0] = numpy.zeros(2) data.append_historical_data(init_pts, numpy.zeros(2), numpy.ones(2) * sample_var) gp = GaussianProcess(cov, data) points = python_search_domain.generate_uniform_random_points_in_domain(num_data_each_is) for pt in points: for i in range(num_is): pt[0] = i val = gp.sample_point_from_gp(pt, sample_var) data.append_sample_points([[pt, val, sample_var], ]) gp = GaussianProcess(cov, data) return hyper_params, data
[ "hwcxy2008@yahoo.com" ]
hwcxy2008@yahoo.com
f97951372cdf93323daf822c02f98334af5e9cc1
951a84f6fafa763ba74dc0ad6847aaf90f76023c
/Solu1038.py
83fd33ead5ac7a894bb8650f3c1a5cb59e1b7494
[]
no_license
SakuraGo/leetcodepython3
37258531f1994336151f8b5c8aec5139f1ba79f8
8cedddb997f4fb6048b53384ac014d933b6967ac
refs/heads/master
2020-09-27T15:55:28.353433
2020-02-15T12:00:02
2020-02-15T12:00:02
226,550,406
1
1
null
null
null
null
UTF-8
Python
false
false
1,155
py
# 1038. 从二叉搜索树到更大和树 # 给出二叉搜索树的根节点,该二叉树的节点值各不相同,修改二叉树,使每个节点 node 的新值等于原树中大于或等于 node.val 的值之和。 # # 提醒一下,二叉搜索树满足下列约束条件: # # 节点的左子树仅包含键小于节点键的节点。 # 节点的右子树仅包含键大于节点键的节点。 # 左右子树也必须是二叉搜索树。 # Definition for a binary tree node. class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: ##做后序遍历求和,更改节点val def __init__(self): self._sum = 0 def houxubianli(self,node:TreeNode): if node is None: return if node.right is not None: self.houxubianli(node.right) self._sum += node.val node.val = self._sum if node.left is not None: self.houxubianli(node.left) def bstToGst(self, root: TreeNode) -> TreeNode: if root is not None: self.houxubianli(root) return root
[ "452681917@qq.com" ]
452681917@qq.com
6550363a57ad1b6db87f3cf5d6435274ef15d7aa
bb53229d1f296f8b7b3f7eb623673031474a4664
/robot/envs/spaces/utils.py
68b587bb7aabf4062db73c3a283532a2a35d4e9a
[]
no_license
hzaskywalker/torch_robotics
03f2de64972d47752e45ae0a0c30334bf6c52c6c
0f3d5a46e81d734d514bffcbf4ed84cdcdbd4c86
refs/heads/master
2023-07-28T17:04:17.915787
2021-09-14T04:30:55
2021-09-14T04:30:55
405,022,434
2
0
null
null
null
null
UTF-8
Python
false
false
2,195
py
import numpy as np import torch from collections import OrderedDict TYPE_DICT = { np.dtype('float32'): torch.float, np.dtype('float64'): torch.float, np.dtype('int64'): torch.long, np.dtype('int32'): torch.long, } def cat(out, dim): if isinstance(out[0], np.ndarray): return np.concatenate(out, axis=dim) else: return torch.cat(out, dim=dim) def serialize(v, is_batch): if isinstance(v, np.ndarray) or isinstance(v, torch.Tensor): if is_batch: return v.reshape(v.shape[0], -1) else: return v.reshape(-1) else: return cat([serialize(v, is_batch) for _, v in v.items()], dim=-1) def size(shape): if isinstance(shape, OrderedDict): return sum([size(i) for i in shape.values()]) elif isinstance(shape, tuple) or isinstance(shape, list): return int(np.prod(shape)) else: raise NotImplementedError return shape.size def deserialize(v, shape, is_batch): if isinstance(v, np.ndarray) or isinstance(v, torch.Tensor): if is_batch: return v.reshape(v.shape[0], *shape) else: return v.reshape(*shape) elif isinstance(shape, OrderedDict): raise NotImplementedError l = 0 out = OrderedDict() for i, spec in shape.items(): s = size(spec) d = v[l:l + s] if not is_batch else v[:, l:l + s] out[i] = deserialize(d, spec, is_batch) l += s return out def to_numpy(v): if isinstance(v, np.ndarray): return v elif isinstance(v, torch.Tensor): return v.detach().cpu().numpy() elif isinstance(v, OrderedDict): return OrderedDict([(i, to_numpy(v))for i, v in v.items()]) else: raise NotImplementedError def to_tensor(data, device): if isinstance(data, torch.Tensor): return data.to(device) elif isinstance(data, np.ndarray): return torch.tensor(data, dtype=TYPE_DICT[data.dtype], device=device) elif isinstance(data, OrderedDict): return OrderedDict([(i, to_tensor(v, device)) for i, v in data.items()]) else: raise NotImplementedError
[ "hzaskywalker@gmail.com" ]
hzaskywalker@gmail.com
a4c01c7f985b89905f2d4d7b79e5eff433bea81d
ce7f06c834579bc10385d0ee3a1238f66bc9bad4
/Malware_Imaging/project/models/simple_colored_cnns.py
fb0607cdfe7c354255e7942a9766fd8fd9227f59
[ "MIT" ]
permissive
FullPint/INSuRE-Malware-Imaging
90cdada4e731c9ea1de8223538da9c338ba80e73
e1906821305b0eb32e85605c23e4c8821dd156fb
refs/heads/master
2020-05-17T06:24:52.442688
2019-05-03T02:39:11
2019-05-03T02:39:11
183,558,149
4
0
null
null
null
null
UTF-8
Python
false
false
1,508
py
# User Defined Imports from Malware_Imaging.project.models.models_config import DEFAULT_INPUT_SIZES from Malware_Imaging.project.models.image_generators import get_simple_color_settings from Malware_Imaging.project.models.make_simple_gray_scale_cnn import ( make_simple_gray_scale_cnn, ) def run_small_colored_cnn(): size = DEFAULT_INPUT_SIZES["SMALL-COLOR"] train_gen_settings, valid_gen_settings, train_flow_settings, valid_flow_settings = get_simple_color_settings( size ) make_simple_gray_scale_cnn( size, "small_colored_v1", train_gen_settings, valid_gen_settings, train_flow_settings, valid_flow_settings, ) def run_medium_colored_cnn(): size = DEFAULT_INPUT_SIZES["MEDIUM-COLOR"] train_gen_settings, valid_gen_settings, train_flow_settings, valid_flow_settings = get_simple_color_settings( size ) make_simple_gray_scale_cnn( size, "medium_colored_sv1", train_gen_settings, valid_gen_settings, train_flow_settings, valid_flow_settings, ) def run_large_colored_cnn(): size = DEFAULT_INPUT_SIZES["LARGE-COLOR"] train_gen_settings, valid_gen_settings, train_flow_settings, valid_flow_settings = get_simple_color_settings( size ) make_simple_gray_scale_cnn( size, "large_colored_v1", train_gen_settings, valid_gen_settings, train_flow_settings, valid_flow_settings, )
[ "davila.alec@gmail.com" ]
davila.alec@gmail.com
f9da787f6c75897ec064f52e7a4927aafdffb2ad
78faa6c18d7ced1338323cf542d2abfc436f3ff2
/mighty_rover/nodes/move_obs_3.py
7ea30c89a6592a2b89f45c26a4922e07a1e44823
[]
no_license
klab-2021/pf1_dev
06a78ea73851fc6c9c03ef3d8e94aed01bcda139
1cff5fc7df22ee2dffdd74c3c12a9dc92692948b
refs/heads/master
2023-06-30T20:19:16.380880
2021-07-27T09:40:24
2021-07-27T09:40:24
389,831,286
0
0
null
null
null
null
UTF-8
Python
false
false
2,087
py
#!/usr/bin/env python ################################################################################# # Copyright 2018 ROBOTIS CO., LTD. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################# # Authors: Gilbert # import rospy import time from geometry_msgs.msg import Twist from gazebo_msgs.msg import ModelState, ModelStates class Moving(): def __init__(self): self.pub_model = rospy.Publisher('gazebo/set_model_state', ModelState, queue_size=1) self.moving() def moving(self): while not rospy.is_shutdown(): obstacle = ModelState() model = rospy.wait_for_message('gazebo/model_states', ModelStates) for i in range(len(model.name)): if model.name[i] == 'unit_cylinder_3': obstacle.model_name = 'unit_cylinder_3' obstacle.pose = model.pose[i] obstacle.twist = Twist() obstacle.twist.linear.x = 6 self.pub_model.publish(obstacle) time.sleep(4) if model.name[i] == 'unit_cylinder_3': obstacle.model_name = 'unit_cylinder_3' obstacle.pose = model.pose[i] obstacle.twist = Twist() obstacle.twist.linear.x = -5 self.pub_model.publish(obstacle) time.sleep(4) def main(): rospy.init_node('moving_obstacle') moving = Moving() if __name__ == '__main__': main()
[ "klab2021.pf1@gmail.com" ]
klab2021.pf1@gmail.com
62a0bf5fe5020083f2fbc613f042dd35a512e463
a2672fe19f0dfc29fd8000837c1b01f4d10ad227
/comment/views.py
d8dd2611d9655a118ea9e98456e779aeada94a93
[ "MIT" ]
permissive
HaibaraAi123/DjangoBlog-chenfeng123.cn
fa6fa4eb446acba713291e6976a9e6dddd73b0e9
ca5a90a4ad91e383a5ff25131488527f5733e216
refs/heads/master
2022-11-23T22:21:18.343102
2020-08-05T06:46:25
2020-08-05T06:46:25
285,197,046
1
0
null
null
null
null
UTF-8
Python
false
false
1,593
py
from django.shortcuts import render, redirect, get_object_or_404 from django.http import HttpResponse, HttpResponseRedirect from django.contrib.auth.decorators import login_required from myblog.models import Article from .forms import CommentForm from .models import BlogComment # Create your views here. @login_required(login_url='/userprofile/login') def post_comment(request, article_id, parent_comment_id=None): article = get_object_or_404(Article, id=article_id) if request.method == 'POST': comment_form = CommentForm(request.POST) if comment_form.is_valid(): new_comment = comment_form.save(commit=False) new_comment.article = article new_comment.author = request.user # 二级回复 if parent_comment_id: parent_comment = BlogComment.object.get(id=parent_comment_id) new_comment.parent_id = parent_comment.get_root().id new_comment.reply_to = parent_comment.user new_comment.save() return HttpResponse('200') new_comment.save() return redirect("myblog:detail", id=article_id) else: return HttpResponse("error!") elif request.method == 'GET': comment_form = CommentForm() context = { 'comment_form': comment_form, 'article_id': article_id, 'parent_comment_id': parent_comment_id, } return render(request, 'comment/reply.html', context) else: return HttpResponse("Error! Only get or post!")
[ "1224574671@qq.com" ]
1224574671@qq.com
9fbe50b06a7870c22d1e6c6b98cd817577078729
d70cdc9a46676acb4c4396cd69f1e8253921858b
/app/views/__init__.py
e78a3cbea7c080c7ad4312988d3cb8c9d64732a5
[]
no_license
Lemon000/Blog
c57105b1260bcfa13bb413713fb8e2bd57400b15
4654a94a72039c8b4664c15787ca6d5a56c67d61
refs/heads/master
2022-12-13T04:31:46.968468
2020-01-08T08:41:45
2020-01-08T08:41:45
232,509,848
0
0
null
2022-12-08T01:07:18
2020-01-08T07:57:39
HTML
UTF-8
Python
false
false
405
py
from .main import main from .user import user from .posts import posts from .admin import admin # 蓝本配置元祖 DEFAULT_BLUEPRINT = ( # 蓝本前缀 (main, ''), (user, '/user'), (posts, '/posts'), (admin, '/admin') ) # 注册蓝本 def config_blueprint(app): for blue_print, url_prefix in DEFAULT_BLUEPRINT: app.register_blueprint(blue_print, url_prefix=url_prefix)
[ "2221487809@qq.com" ]
2221487809@qq.com
d8a696dd4e3ed56236c684116cb6ccc574e6e05a
baeebadd5786ee0e96626741da650d5c2e277b52
/lib/bes/shell_framework/shell_framework_defaults.py
84933a2b7fb902449ecc26b067f1a36fb9ecd007
[ "Apache-2.0" ]
permissive
reconstruir/bes
e75b25868d0a97a1a167d92b62e11996cb6c4774
b9dd35b518848cea82e43d5016e425cc7dac32e5
refs/heads/master
2023-08-31T21:11:45.482193
2023-08-19T20:07:04
2023-08-19T20:07:04
421,598,217
0
1
NOASSERTION
2022-12-21T11:50:29
2021-10-26T22:08:30
Python
UTF-8
Python
false
false
350
py
#-*- coding:utf-8; mode:python; indent-tabs-mode: nil; c-basic-offset: 2; tab-width: 2 -*- import os class shell_framework_defaults(object): ADDRESS = 'https://gitlab.com/rebuilder/bes_shell.git' FRAMEWORK_BASENAME = 'bes_shell_framework' REVISION_BASENAME = 'bes_shell_framework_revision.txt' REVISION = 'latest' DEST_DIR = os.getcwd()
[ "git@fateware.com" ]
git@fateware.com
637ccc02876759cda876e955d0f064102b0fe89d
89b6e970ed3ac0e02b6ea04482510d0fbd84983e
/tests.py
23eaa500119987d13380767c51892f133c83dbab
[]
no_license
sirjordan/yamp
00aab9361621c384610a9c9af2d608d445aef709
28e364815b2447823f890f1e95b918f17ffe1919
refs/heads/master
2021-01-11T17:06:21.664118
2017-01-22T18:45:12
2017-01-22T18:45:12
79,719,889
0
0
null
null
null
null
UTF-8
Python
false
false
2,840
py
import unittest import dices class YampDiceTests(unittest.TestCase): def test_roll_dices(self): _dices = dices.roll_dices() self.assertEqual(len(_dices), 5) def test_score_matching(self): self.assertEqual(dices.score_matching([1, 1, 1, 3, 4], 1), 3) self.assertEqual(dices.score_matching([2, 2, 2, 5, 6], 2), 6) self.assertEqual(dices.score_matching([3, 3, 3, 3, 4], 3), 12) self.assertEqual(dices.score_matching([4, 4, 5, 5, 5], 4), 8) self.assertEqual(dices.score_matching([1, 1, 2, 2, 5], 5), 5) self.assertEqual(dices.score_matching([1, 3, 6, 6, 6], 6), 18) self.assertEqual(dices.score_matching([1, 3, 6, 6, 6], 2), 0) def test_score_n_of_a_kind_throw_ex(self): args = ([1, 3, 6, 6, 6], 5) self.assertRaises(ValueError, dices.score_n_of_a_kind, *args) def test_score_n_of_a_kind(self): self.assertEqual(dices.score_n_of_a_kind([2, 3, 4, 4, 4], 3), 17) self.assertEqual(dices.score_n_of_a_kind([4, 5, 5, 5, 5], 4), 24) self.assertEqual(dices.score_n_of_a_kind([1, 2, 3, 4, 5], 4), 0) def test_count_n_of_a_kind(self): self.assertEqual(dices.count_equal([2, 3, 4, 4, 4], 4), 3) self.assertEqual(dices.count_equal([2, 3, 4, 4, 4], 2), 1) self.assertEqual(dices.count_equal([2, 3, 4, 4, 4], 6), 0) def test_score_full(self): self.assertEqual(dices.score_full([2, 2, 5, 5, 5]), 25) self.assertEqual(dices.score_full([2, 2, 5, 5, 1]), 0) self.assertEqual(dices.score_full([3, 1, 3, 1, 1]), 25) self.assertEqual(dices.score_full([1, 2, 3, 4, 5]), 0) self.assertEqual(dices.score_full([2, 3, 3, 3, 2]), 25) def test_score_chance(self): self.assertEqual(dices.score_chance([1, 1, 3, 3, 5]), 13) def test_score_yamp(self): self.assertEqual(dices.score_yamp([1, 1, 1, 1, 1]), 50) self.assertEqual(dices.score_yamp([1, 2, 1, 1, 1]), 0) def test_score_straight(self): self.assertEqual(dices.score_straight([1, 2, 3, 4, 6], 4), 30) self.assertEqual(dices.score_straight([2, 3, 4, 5, 6], 4), 30) self.assertEqual(dices.score_straight([1, 2, 3, 4, 5], 5), 40) self.assertEqual(dices.score_straight([2, 3, 4, 5, 6], 5), 40) self.assertEqual(dices.score_straight([1, 2, 3, 2, 2], 5), 0) self.assertEqual(dices.score_straight([2, 3, 2, 5, 3], 5), 0) self.assertEqual(dices.score_straight([1, 3, 4, 5, 6], 4), 30) self.assertEqual(dices.score_straight([6, 5, 4, 3, 1], 4), 30) self.assertEqual(dices.score_straight([6, 2, 3, 4, 5], 5), 40) def test_score_straight_throw_ex(self): args = ([1, 3, 6, 6, 6], 3) self.assertRaises(ValueError, dices.score_straight, *args) if __name__ == '__main__': unittest.main()
[ "sirjordan1988@gmail.com" ]
sirjordan1988@gmail.com
3ad6baac15e6e6e76d87073d0fed291bcbd36b0d
fd5fa2545f42f6f216c543ac6c741e02909dcc60
/src/modules/web/java.py
af09045c5ded92c9928953a2c2ff44af21773283
[]
no_license
noptrix/nullscan
2a192d6ee9d6498cccfbc90b5b240ed2d00559a8
ddc052c8d7d43a60fc00ea40d85111d5bd7a282e
refs/heads/master
2023-02-12T16:33:11.547160
2021-01-06T20:00:32
2021-01-06T20:00:32
255,212,633
52
12
null
null
null
null
UTF-8
Python
false
false
1,992
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ######################################################## # ____ _ __ # # ___ __ __/ / /__ ___ ______ ______(_) /___ __ # # / _ \/ // / / (_-</ -_) __/ // / __/ / __/ // / # # /_//_/\_,_/_/_/___/\__/\__/\_,_/_/ /_/\__/\_, / # # /___/ team # # # # nullscan # # A modular framework designed to chain and automate security tests # # # # FILE # # java.py # # # # AUTHOR # # noptrix@nullsecurity.net # # # ################################################################################ # sys imports # own imports from modules.libs.base import Base, tool, timeout class Java(Base): """ Java module """ def __init__(self, target, opts): """ init """ Base.__init__(self, target, opts) self.host, self.port, self.scheme, self.path = self._parse_url(self.target) return @tool def jexboss_web(self): """ DESCR: Check for known java deserialization vulns against JBoss, Jenkins, and Apache Struts2. (ext) TOOLS: jexboss """ self._jexboss(self.host, self.port, 'jexboss_web', scheme=self.scheme) return # EOF
[ "noptrix@nullsecurity.net" ]
noptrix@nullsecurity.net
befad40b0a452ae5a9050b897e18ce3770d880a1
22557e9243fe8cae4205c738eeb0c0fe8a74a996
/src/main/python/SentimentAnalayzerRNNFinal.py
b1b82ed3252b1fdec728cd91c01cc74b19e0300e
[]
no_license
piyumalanthony/sentiment-tagger
6896c3c5bf241ad3affd54af53b86fe44101010f
e4515621085fd2dde1b0c2e09e5bbbfe266d5477
refs/heads/master
2020-12-19T01:26:16.816291
2019-06-12T23:14:56
2019-06-12T23:14:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,469
py
# coding: utf-8 import numpy as np import pandas as pd import datetime from random import randint from gensim.models import word2vec from gensim.models.fasttext import FastText from sklearn.model_selection import train_test_split import tensorflow as tf from sklearn.metrics import f1_score, precision_score, recall_score, confusion_matrix word2vec_model_name = "../../../corpus/analyzed/saved_models/word2vec_model_skipgram_300_10" # word2vec_model_name = "../../../corpus/analyzed/saved_models/fasttext_model_skipgram_300_10" # word2vec_model_name = "../../../corpus/analyzed/saved_models/wiki.si.bin" num_features = 300 max_sentence_length = 50 batchSize = 24 lstmUnits = 64 numClasses = 2 iterations = 30000 labels = tf.placeholder(tf.int32, [batchSize, numClasses]) data = tf.placeholder(tf.float32, [batchSize, max_sentence_length, num_features]) def main(): # convert_to_vectors() train_data_vectors, train_data_labels, test_data_vectors, test_data_labels = load_vectors() print("Running tesnsorflow simulation.....") loss, accuracy, prediction_values, optimizer = neural_network_model() train_neural_network(loss, accuracy, optimizer, train_data_vectors, train_data_labels) accuracy, precision, recall, f1 = measure_neural_network(accuracy, prediction_values, test_data_vectors, test_data_labels) print("Accuracy: ", accuracy) print("Precision: ", precision) print("Recall: ", recall) print("F1 Score: ", f1) def convert_to_vectors(): comments = pd.read_csv("../../../corpus/analyzed/comments_tagged_remove.csv", ";") train_data, test_data = train_test_split(comments, test_size=0.4, random_state=0) train_data_vectors, train_data_labels = comments_to_vectors(train_data) test_data_vectors, test_data_labels = comments_to_vectors(test_data) np.save('./vectors/train_data_vectors.npy', train_data_vectors) np.save('./vectors/train_data_labels.npy', train_data_labels) np.save('./vectors/test_data_vectors.npy', test_data_vectors) np.save('./vectors/test_data_labels.npy', test_data_labels) def load_vectors(): train_data_vectors = np.load('./vectors/train_data_vectors.npy') train_data_labels = np.load('./vectors/train_data_labels.npy') test_data_vectors = np.load('./vectors/test_data_vectors.npy') test_data_labels = np.load('./vectors/test_data_labels.npy') return train_data_vectors, train_data_labels, test_data_vectors, test_data_labels def comments_to_vectors(data): model = word2vec.Word2Vec.load(word2vec_model_name) #loading word2vec model, this is the correct old one # model = FastText.load_fasttext_format("../../../corpus/analyzed/saved_models/wiki.si.bin") #loading word2vec model # model = FastText.load_fasttext_format("../../../corpus/analyzed/saved_models/fasttext_model_skipgram_300.bin") #loading word2vec model comment_vectors = [] comment_labels = [] for comment in data["comment"]: comment_vectors.append(get_sentence_vector(model, comment)) for label in data["label"]: if label == "POSITIVE": comment_labels.append([0, 1]) else: comment_labels.append([1, 0]) return np.array(comment_vectors), comment_labels def get_sentence_vector(model, sentence): sentence_vector = np.zeros([max_sentence_length, num_features]) counter = 0 index2word_set = set(model.wv.index2word) for word in sentence.split(): if word in index2word_set: sentence_vector[counter] = model[word] counter += 1 if (counter == max_sentence_length): break else: print("word not in word2vec model: " + word) return sentence_vector def get_batch(size, data, label): batch_data = np.empty((size, max_sentence_length, num_features), dtype=float) batch_label = [] for i in range(size): random_int = randint(0, len(data) - 1) batch_data[i] = data[random_int] batch_label.append(label[random_int]) return batch_data, batch_label def get_batch_order(size, data, label, batch_no): batch_data = data[batch_no * size : (batch_no + 1) * size] batch_label = label[batch_no * size : (batch_no + 1) * size] return batch_data, batch_label def neural_network_model(): lstm_cell = tf.contrib.rnn.BasicLSTMCell(lstmUnits) lstm_cell = tf.contrib.rnn.DropoutWrapper(cell=lstm_cell, output_keep_prob=0.75) value, _ = tf.nn.dynamic_rnn(lstm_cell, data, dtype=tf.float32) weight = tf.Variable(tf.truncated_normal([lstmUnits, numClasses])) bias = tf.Variable(tf.constant(0.1, shape=[numClasses])) value = tf.transpose(value, [1, 0, 2]) last = tf.gather(value, int(value.get_shape()[0]) - 1) prediction = (tf.matmul(last, weight) + bias) correct_prediction = tf.equal(tf.argmax(prediction,1), tf.argmax(labels,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) prediction_values = tf.argmax(prediction, 1) loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=labels)) optimizer = tf.train.AdamOptimizer().minimize(loss) return loss, accuracy, prediction_values, optimizer def train_neural_network(loss, accuracy, optimizer, train_data, train_labels): sess = tf.InteractiveSession() saver = tf.train.Saver() sess.run(tf.global_variables_initializer()) tf.summary.scalar('Loss', loss) tf.summary.scalar('Accuracy', accuracy) merged = tf.summary.merge_all() logdir = "tensorboard/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S") + "/" writer = tf.summary.FileWriter(logdir, sess.graph) for i in range(iterations): # Next Batch of reviews next_batch, next_batch_labels = get_batch(batchSize, train_data, train_labels) sess.run(optimizer, {data: next_batch, labels: next_batch_labels}) # Write summary to Tensorboard if (i % 50 == 0): summary = sess.run(merged, {data: next_batch, labels: next_batch_labels}) writer.add_summary(summary, i) # Save the network every 10,000 training iterations if (i % 9999 == 0 and i != 0): save_path = saver.save(sess, "models/pretrained_lstm.ckpt", global_step=i) print("saved to %s" % save_path) writer.close() def measure_neural_network(accuracy, prediction_values, test_data, test_labels): sess = tf.InteractiveSession() saver = tf.train.Saver() saver.restore(sess, tf.train.latest_checkpoint('models')) overall_accuracy = 0 all_predictions = [] test_iterations = 80 for i in range(test_iterations): next_batch, next_batch_labels = get_batch_order(batchSize, test_data, test_labels, i) accuracy_this_batch = (sess.run(accuracy, {data: next_batch, labels: next_batch_labels})) * 100 predictions_this_batch = sess.run(prediction_values, {data: next_batch, labels: next_batch_labels}) overall_accuracy = overall_accuracy + accuracy_this_batch all_predictions = all_predictions + predictions_this_batch.tolist() print("Accuracy for this batch:", accuracy_this_batch) true_labels = tf.argmax(test_labels, 1).eval() precision = precision_score(true_labels.tolist()[0:batchSize * test_iterations], all_predictions) f1 = f1_score(true_labels.tolist()[0:batchSize * test_iterations], all_predictions) recall = recall_score(true_labels.tolist()[0:batchSize * test_iterations], all_predictions) overall_accuracy = overall_accuracy / (test_iterations * 100) print(confusion_matrix(true_labels.tolist()[0:batchSize * test_iterations], all_predictions).ravel()) return overall_accuracy, precision, recall, f1 main() # 0.891712707182 # 0.853146853146853 # # fn = tp(1-0.891712707182)/0.891712707182 # fp = tp(1-0.853146853146853)/0.853146853146853 # # fn = tp(0.12143742255306716) # fp = tp(0.1721311475409838) # # # fn = 885*(1-0.891712707182)/0.891712707182 # fp = 885*(1-0.853146853146853)/0.853146853146853 # # fasttext # ('Accuracy: ', 0.8619791641831398) # ('Precision: ', 0.8772874058127018) # ('Recall: ', 0.8419421487603306) # ('F1 Score: ', 0.8592514496573538) # ('Accuracy: ', 0.8661458320915699) # ('Precision: ', 0.8967813540510544) # ('Recall: ', 0.8347107438016529) # ('F1 Score: ', 0.864633493846977) # skipgram 300_10 # [852 100 160 808] # Accuracy: 0.8651041679084301 # Precision: 0.8898678414096917 # Recall: 0.8347107438016529 # F1 Score: 0.861407249466951 # gensim.fastext 300_10 homemade # [865 87 159 809] # Accuracy: 0.8697916679084301 # Precision: 0.9029017857142857 # Recall: 0.8357438016528925 # F1 Score: 0.8680257510729613 # [855 97 143 825] # Accuracy: 0.8750000044703483 # Precision: 0.8947939262472885 # Recall: 0.8522727272727273 # F1 Score: 0.873015873015873 # fasttext pretrained # [821 131 195 773] # Accuracy: 0.8333333313465119 # Precision: 0.8550884955752213 # Recall: 0.7985537190082644 # F1 Score: 0.8258547008547009 # [803 149 200 768] # Accuracy: 0.8192708320915699 # Precision: 0.8375136314067612 # Recall: 0.7933884297520661 # F1 Score: 0.8148541114058356 # fasttext homemade # [872 80 171 797] # Accuracy: 0.8703125007450581 # Precision: 0.9087799315849487 # Recall: 0.8233471074380165 # F1 Score: 0.8639566395663957 # [861 91 148 820] # Accuracy: 0.8770833320915699 # Precision: 0.9001097694840834 # Recall: 0.8471074380165289 # F1 Score: 0.8728046833422033
[ "theisuru@gmail.com" ]
theisuru@gmail.com
84f5662ca89b35ab581b56f3308fd2648169d269
789fe602dbd2d36fcd42cfd729758790a526055d
/collections_orderdict.py
5ba3ea87c139167936740aaa0201bc276d4a3423
[]
no_license
charukhandelwal/Hackerrank
604b6be1b11c718b9c99e4a3eae9544ff629576d
8ac84c481804d5b7a00fffc566312037ccb00685
refs/heads/master
2022-12-29T01:12:11.247527
2020-10-17T17:10:50
2020-10-17T17:10:50
304,927,588
1
0
null
2020-10-17T17:10:51
2020-10-17T17:03:23
null
UTF-8
Python
false
false
2,249
py
""" collections.OrderedDict An OrderedDict is a dictionary that remembers the order of the keys that were inserted first. If a new entry overwrites an existing entry, the original insertion position is left unchanged. Example Code >>> from collections import OrderedDict >>> >>> ordinary_dictionary = {} >>> ordinary_dictionary['a'] = 1 >>> ordinary_dictionary['b'] = 2 >>> ordinary_dictionary['c'] = 3 >>> ordinary_dictionary['d'] = 4 >>> ordinary_dictionary['e'] = 5 >>> >>> print ordinary_dictionary {'a': 1, 'c': 3, 'b': 2, 'e': 5, 'd': 4} >>> >>> ordered_dictionary = OrderedDict() >>> ordered_dictionary['a'] = 1 >>> ordered_dictionary['b'] = 2 >>> ordered_dictionary['c'] = 3 >>> ordered_dictionary['d'] = 4 >>> ordered_dictionary['e'] = 5 >>> >>> print ordered_dictionary OrderedDict([('a', 1), ('b', 2), ('c', 3), ('d', 4), ('e', 5)]) Task You are the manager of a supermarket. You have a list of N items together with their prices that consumers bought on a particular day. Your task is to print each item_name and net_price in order of its first occurrence. item_name = Name of the item. net_price = Quantity of the item sold multiplied by the price of each item. Input Format The first line contains the number of items, N. The next N lines contains the item's name and price, separated by a space. Constraints 0<N≤100 Output Format Print the item_name and net_price in order of its first occurrence. Sample Input 9 BANANA FRIES 12 POTATO CHIPS 30 APPLE JUICE 10 CANDY 5 APPLE JUICE 10 CANDY 5 CANDY 5 CANDY 5 POTATO CHIPS 30 Sample Output BANANA FRIES 12 POTATO CHIPS 60 APPLE JUICE 20 CANDY 20 Explanation BANANA FRIES: Quantity bought: 1, Price: 12 Net Price: 12 POTATO CHIPS: Quantity bought: 2, Price: 30 Net Price: 60 APPLE JUICE: Quantity bought: 2, Price: 10 Net Price: 20 CANDY: Quantity bought: 4, Price: 5 Net Price: 20 """ # Enter your code here. Read input from STDIN. Print output to STDOUT from collections import OrderedDict,defaultdict od = OrderedDict() m = defaultdict(list) for i in xrange(input()): k = raw_input().split() k[0] = ' '.join(k[0:len(k)-1]) k[1] = int(k[len(k)-1]) k = k[0:2] m[k[0]].append(k[1]) od[k[0]] = i for i in od: print i,sum(m[i])
[ "ayush.aceit@gmail.com" ]
ayush.aceit@gmail.com
c42471b2570abccab19f497acfe0fc3d2f29ebf5
0869d7edac80e8aebe951682a2cc311a083eade3
/Python/example_controllers/core_concepts/image_capture.py
d702e8daf8c765c5d81bbd10f4bc8da68847dedd
[ "BSD-2-Clause" ]
permissive
threedworld-mit/tdw
7d5b4453832647733ff91ad7a7ce7ec2320454c1
9df96fba455b327bb360d8dd5886d8754046c690
refs/heads/master
2023-09-01T11:45:28.132298
2023-08-31T16:13:30
2023-08-31T16:13:30
245,492,977
427
75
BSD-2-Clause
2023-09-14T17:36:12
2020-03-06T18:42:09
Python
UTF-8
Python
false
false
1,251
py
from tdw.controller import Controller from tdw.tdw_utils import TDWUtils from tdw.add_ons.third_person_camera import ThirdPersonCamera from tdw.add_ons.image_capture import ImageCapture from tdw.backend.paths import EXAMPLE_CONTROLLER_OUTPUT_PATH """ Example implementation of the ImageCapture add-on. """ c = Controller() object_id = c.get_unique_id() camera = ThirdPersonCamera(position={"x": 2, "y": 1.6, "z": -0.6}, look_at=object_id, avatar_id="a") c.add_ons.append(camera) # Add the ImageCapture add-on. path = EXAMPLE_CONTROLLER_OUTPUT_PATH.joinpath("image_capture") print(f"Images will be save to: {path.resolve()}") capture = ImageCapture(path=path, avatar_ids=["a"], pass_masks=["_img", "_id"]) c.add_ons.append(capture) # This will create the scene and the object. # Then, the ThirdPersonCamera add-on will create an avatar. # Then, the ImageCapture add-on will save an image to disk. resp = c.communicate([TDWUtils.create_empty_room(12, 12), c.get_add_object(model_name="iron_box", position={"x": 1, "y": 0, "z": -0.5}, object_id=object_id)]) c.communicate({"$type": "terminate"})
[ "alters@mit.edu" ]
alters@mit.edu
e83dff7ce94dc215a8a6efb2a0e98eab8e9361bd
f347ddf8f11b748b09646aabd3c4d807e49d6e86
/reports/views/personals.py
9d672995cc9fd30458c06d69b93be67d73c12078
[]
no_license
gitavk/fcbp
b630a8570b46557ee0ffd20ae1baa57741147766
02ffcc54a805861a098952b388bfd28ec69b176a
refs/heads/master
2021-01-17T02:19:58.572362
2018-11-12T07:09:07
2018-11-12T07:09:07
39,645,922
0
1
null
null
null
null
UTF-8
Python
false
false
11,676
py
""" Statistic of the client Personals. """ # -*- coding: utf-8 -*- from datetime import timedelta, datetime from collections import defaultdict from django.db.models import Sum from django.utils.translation import ugettext as _ from employees.models import Employee from clients.models import ClientPersonal, UseClientPersonal from products.models import Personal from reports import styles from .base import Report class ActivePersonal(Report): file_name = 'list_active_personal' sheet_name = 'report' tpl_start_row = 7 table_headers = [ (_('client'), 6000), (_('# uid'), 2000), (_('card number'), 2000), (_('phone'), 4000), (_('tariff'), 6000), (_('attribute'), 2000), (_('amount'), 2000), (_('date begin'), 4000), (_('date end'), 4000), (_('used'), 2000), (_('last visit'), 3000), (_('prolongation'), 2000), (_('tariff club card'), 2000), (_('club card period'), 6000), (_('schedule s'), 6000), (_('extra clients'), 6000), (_('coach'), 4000), ] table_styles = { 7: styles.styled, 8: styles.styled, 10: styles.styled, 14: styles.style_cw } def initial(self, request, *args, **kwargs): super(ActivePersonal, self).initial(request, *args, **kwargs) self.total_main_rows = 0 self.products = defaultdict(int) self.row_heiht = 26*20 try: personal_id = int(self.request.query_params.get('pc')) self.personal = Personal.objects.get(pk=personal_id) except (ValueError, Personal.DoesNotExist): self.personal = 'all' def get_fdate(self): return datetime.now() def get_title(self, **kwargs): msg = _('list active club cards') msg += _(' created at: {date}.') tdate = self.get_fdate().strftime('%d.%m.%Y %H:%M') return msg.format(date=tdate) def get_data(self): rows = [] data = ClientPersonal.objects.filter(status=1).order_by('date_end') if self.personal != 'all': data = data.filter(personal=self.personal) for row in data: fname = row.client.full_name uid = row.client.uid card = row.client.card phone = row.client.mobile or row.client.phone or '' tariff = row.personal.short_name amount = row.summ_amount date_begin = row.date_begin.strftime('%d.%m.%Y') date_end = row.date_end.strftime('%d.%m.%Y') # last visits info visits = row.visits.all() if visits: last_visit = visits.last().date.strftime('%d.%m.%Y') else: last_visit = '' prolongation = row.prolongation.aggregate( days=Sum('days')).get('days', '') # club card data if need for current personalcard cc_name = '' cc_period = '' if row.product.club_card_only and row.client.active_cc_first: club_card = row.client.active_cc_first cc_name = club_card.short_name dbegin = club_card.date_begin.strftime('%d.%m.%Y') dend = club_card.date_end.strftime('%d.%m.%Y') cc_period = "{}-{}".format(dbegin, dend) # generate credits shedule schedule = [] for payment in row.schedule_payments(): if payment[0] <= self.get_fdate(): continue pdate = payment[0].strftime('%d.%m.%Y') pamount = "{:,}".format(payment[1]).replace(',', ' ') schedule.append("%s - %s" % (pamount, pdate)) schedule = "; \n".join(schedule) # extra clients info extra_clients = row.get_extra_clients main_ecs = ", ".join([ec.initials for ec in extra_clients]) instructor = row.instructor.initials if row.instructor else '' # line for main client self.total_main_rows += 1 self.products[tariff] += 1 rows.append(( fname, uid, card, phone, tariff, 1, amount, date_begin, date_end, len(visits), last_visit, prolongation, cc_name, cc_period, schedule, main_ecs, instructor )) # lines for extra xlients for curr_ec in extra_clients: fname = curr_ec.full_name uid = curr_ec.uid phone = curr_ec.mobile or curr_ec.phone or '' # club card data if need for current personalcard cc_name = '' cc_period = '' if row.product.club_card_only and curr_ec.active_cc_first: club_card = curr_ec.active_cc_first cc_name = club_card.short_name dbegin = club_card.date_begin.strftime('%d.%m.%Y') dend = club_card.date_end.strftime('%d.%m.%Y') cc_period = "{}-{}".format(dbegin, dend) slave_ecs = [ec for ec in extra_clients if ec != curr_ec] slave_ecs += [row.client] slave_ecs = ",".join([ec.initials for ec in slave_ecs]) self.products[tariff] += 1 rows.append(( fname, uid, phone, tariff, 0, amount, date_begin, date_end, len(visits), last_visit, prolongation, cc_name, cc_period, schedule, slave_ecs, instructor )) return rows def write_heads(self): self.ws.write_merge( self.row_num, self.row_num, 3, 5, _('tariff'), styles.styleh) if self.personal == 'all': self.ws.write(self.row_num, 6, _('all'), styles.styleh) else: self.ws.write_merge( self.row_num, self.row_num, 6, 9, self.personal.name, styles.styleh) self.row_num += 2 super(ActivePersonal, self).write_heads() def write_bottom(self): self.ws.write_merge( self.row_num, self.row_num, 0, 1, _('total cards')) self.ws.write(self.row_num, 2, self.total_main_rows, styles.styleh) for row_num, product in enumerate(self.products, self.row_num + 1): self.ws.write_merge(row_num, row_num, 0, 1, product) self.ws.write( row_num, 2, self.products.get(product), styles.styleh) class UsePersonals(Report): """Personals visits by dates with employee info""" file_name = 'trainers_personal' sheet_name = 'report' tpl_start_row = 7 table_headers = [ (_('date'), 3000), (_('time'), 3000), (_('card number'), 2000), (_('client'), 6000), (_('tariff'), 6000), (_('coach'), 5000), ] table_styles = { 0: styles.styled, 1: styles.stylet, } def initial(self, request, *args, **kwargs): super(UsePersonals, self).initial(request, *args, **kwargs) self.products = defaultdict(int) try: personal_id = int(self.request.query_params.get('c')) self.instructor = Employee.objects.get(pk=personal_id) except (ValueError, Employee.DoesNotExist): self.instructor = 'all' def get_title(self, **kwargs): msg = _('use personals by trainers') msg += _(' created at: {date}.') date = datetime.now().strftime('%d.%m.%Y %H:%M') return msg.format(date=date) def write_title(self): super(UsePersonals, self).write_title() msg = _('from: {fdate} to {tdate}') fdate = self.get_fdate().strftime('%d.%m.%Y') tdate = self.get_tdate().strftime('%d.%m.%Y') msg = msg.format(fdate=fdate, tdate=tdate) ln_head = len(self.table_headers) - 1 self.ws.write_merge(1, 1, 0, ln_head, msg, styles.styleh) def get_data(self): rows = [] fdate = self.get_fdate() tdate = self.get_tdate() + timedelta(1) tdate = tdate.replace(hour=0, minute=0, second=0) data = UseClientPersonal.objects.filter( date__range=(fdate, tdate)).order_by('date') if self.instructor != 'all': data = data.filter(instructor=self.instructor) for row in data: client = row.client_personal.client.full_name card = row.client_personal.client.card tariff = row.client_personal.product.short_name self.products[tariff] += 1 instructor = row.instructor.initials if row.instructor else '' rows.append(( row.date, row.date.strftime('%H:%M'), card, client, tariff, instructor )) return rows def write_heads(self): self.ws.write_merge( self.row_num, self.row_num, 0, 2, _('coach'), styles.styleh) if self.instructor == 'all': self.ws.write(self.row_num, 3, _('all'), styles.styleh) else: self.ws.write_merge( self.row_num, self.row_num, 3, 6, self.instructor.initials, styles.styleh) self.row_num += 2 super(UsePersonals, self).write_heads() def write_bottom(self): self.ws.write_merge( self.row_num, self.row_num, 0, 3, _('total use personals by period')) self.ws.write(self.row_num, 4, sum(self.products.values()), styles.styleh) self.row_num += 1 self.ws.write_merge( self.row_num, self.row_num, 0, 3, _('total by tariff')) for row_num, product in enumerate(self.products, self.row_num + 1): self.ws.write_merge(row_num, row_num, 0, 1, product) self.ws.write( row_num, 2, self.products.get(product), styles.styleh) class TotalPersonals(Report): file_name = 'total_personals' sheet_name = 'total_personals' tpl_start_row = 5 table_headers = [ (_('tariff'), 10000), (_('total'), 4000), ] def get_title(self, **kwargs): return _('total personals') def write_title(self): super(TotalPersonals, self).write_title() msg = _('from: {fdate} to {tdate}') fdate = self.get_fdate().strftime('%d.%m.%Y') tdate = self.get_tdate().strftime('%d.%m.%Y') msg = msg.format(fdate=fdate, tdate=tdate) ln_head = len(self.table_headers) - 1 self.ws.write_merge(1, 1, 0, ln_head, msg, styles.styleh) def personals_list(self): fdate = self.get_fdate().date() tdate = self.get_tdate().date() + timedelta(1) personals = ClientPersonal.objects.filter(payment__date__range=(fdate, tdate)) # generate filter to get only first payment filter_pk = [] for personal in personals: if personal.first_payment.date.date() >= fdate: filter_pk.append(personal.pk) return personals.filter(pk__in=filter_pk) def get_data(self): rows = [] personals = self.personals_list() data_pks = personals.values('personal__pk') data = Personal.objects.filter( pk__in=data_pks).order_by('max_visit', 'short_name') total = 0 for row in data: line = [] line.append(row.short_name) cnt = personals.filter(personal=row).count() line.append(cnt) total += cnt rows.append(line) rows.append((_('total'), total)) return rows def write_bottom(self): pass
[ "avk@alarstudios.com" ]
avk@alarstudios.com
15e5e94a53f74e158e336e3611b445f5c8cb02a2
99c4761c4f3388708152dcc21d0415eac76e80c1
/wequant/ltc_revere.py
0c57bfe89bc71b7f46eca598e5957c2655fbb9ef
[]
no_license
zhuoyikang/finance
e7e43f0c6eba357db6c5a5989f4b0429ae82c0db
2489ab49c783c3f1ba15fc37fb0de8a792edbc0a
refs/heads/master
2021-09-23T22:08:01.401791
2018-09-28T06:43:31
2018-09-28T06:43:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,058
py
# 注:该策略仅供参考和学习,不保证收益。 # !/usr/bin/env python # -*- coding: utf-8 -*- # 策略代码总共分为三大部分,1)PARAMS变量 2)initialize函数 3)handle_data函数 # 请根据指示阅读。或者直接点击运行回测按钮,进行测试,查看策略效果。 # 策略名称:BOLL指标策略 # 策略详细介绍:https://wequant.io/study/strategy.boll.html # 关键词:价格通道、价格突破。 # 方法: # 1)利用均值和标准差构建价格区间 # 2)以价格超越轨道作为突破信号,向上突破买入,向下突破卖出 import numpy as np import talib # 阅读1,首次阅读可跳过: # PARAMS用于设定程序参数,回测的起始时间、结束时间、滑点误差、初始资金和持仓。 # 可以仿照格式修改,基本都能运行。如果想了解详情请参考新手学堂的API文档。 PARAMS = { "start_time": "2017-09-06 00:00:00", "end_time": "2017-09-08 8:00:00", "commission": 0.001, # 此处设置交易佣金 "slippage": 0.001, # 此处设置交易滑点 "account_initial": {"huobi_cny_cash": 100000, "huobi_cny_ltc": 0}, } # 阅读2,遇到不明白的变量可以跳过,需要的时候回来查阅: # initialize函数是两大核心函数之一(另一个是handle_data),用于初始化策略变量。 # 策略变量包含:必填变量,以及非必填(用户自己方便使用)的变量 def initialize(context): # 设置回测频率, 可选:"1m", "5m", "15m", "30m", "60m", "4h", "1d", "1w" context.frequency = "30m" # 设置回测基准, 比特币:"huobi_cny_btc", 莱特币:"huobi_cny_ltc", 以太坊:"huobi_cny_ltc" context.benchmark = "huobi_cny_ltc" # 设置回测标的, 比特币:"huobi_cny_btc", 莱特币:"huobi_cny_ltc", 以太坊:"huobi_cny_ltc" context.security = "huobi_cny_ltc" # 设置计算布林线的参数 # 布林线的长度(回看时间窗口为20个bar) context.user_data.period_window = 14 # 布林线的宽度(2倍标准差) context.user_data.standard_deviation_range = 2 context.user_data.bbands_opt_width_m = 60 # 阅读3,策略核心逻辑: # handle_data函数定义了策略的执行逻辑,按照frequency生成的bar依次读取并执行策略逻辑,直至程序结束。 # handle_data和bar的详细说明,请参考新手学堂的解释文档。 def handle_data(context): # 获取历史数据 hist = context.data.get_price(context.security, count=context.user_data.period_window + context.user_data.bbands_opt_width_m + 1, frequency=context.frequency) if len(hist.index) < (context.user_data.period_window + context.user_data.bbands_opt_width_m + 1): context.log.warn("bar的数量不足, 等待下一根bar...") return # 获取收盘价 prices = np.array(hist["close"]) # 初始化做多/做空信号 long_signal_triggered = False short_signal_triggered = False # 使用talib计算布林线的上中下三条线 upper, middle, lower = talib.BBANDS(prices, timeperiod=context.user_data.period_window, nbdevup=context.user_data.standard_deviation_range, nbdevdn=context.user_data.standard_deviation_range, matype=talib.MA_Type.SMA) # 获取最新价格 current_price = context.data.get_current_price(context.security) # 生成交易信号 if current_price > upper[-1]: # 穿越上轨,买入信号 # long_signal_triggered = True short_signal_triggered = True if current_price < lower[-1]: # 穿越下轨,卖出信号 # short_signal_triggered = True long_signal_triggered = True context.log.info("当前 价格为:%s, 上轨为:%s, 下轨为: %s" % (current_price, upper[-1], lower[-1])) # 根据信号买入/卖出 if short_signal_triggered: context.log.info("价格穿越下轨,产生卖出信号") if context.account.huobi_cny_ltc >= HUOBI_CNY_LTC_MIN_ORDER_QUANTITY: # 卖出信号,且不是空仓,则市价单全仓清空 context.log.info("正在卖出 %s" % context.security) context.log.info("卖出数量为 %s" % context.account.huobi_cny_ltc) context.order.sell(context.security, quantity=str(context.account.huobi_cny_ltc)) else: context.log.info("仓位不足,无法卖出") elif long_signal_triggered: context.log.info("价格穿越上轨,产生买入信号") if context.account.huobi_cny_cash >= HUOBI_CNY_LTC_MIN_ORDER_CASH_AMOUNT: # 买入信号,且持有现金,则市价单全仓买入 context.log.info("正在买入 %s" % context.security) context.log.info("下单金额为 %s 元" % context.account.huobi_cny_cash) context.order.buy(context.security, cash_amount=str(context.account.huobi_cny_cash)) else: context.log.info("现金不足,无法下单") else: context.log.info("无交易信号,进入下一根bar")
[ "zhuoyikang@gmail.com" ]
zhuoyikang@gmail.com
cd6c3e95476cb104ea83f9a922640fb929d2fc7a
5b3e01b0dbc683c79c222c26aac0aacb642cc2e2
/prompt_toolkit/contrib/ssh/server.py
ad68c577f29dc6714f7ac86467924b128f8087d8
[ "BSD-3-Clause" ]
permissive
Stabledog/python-prompt-toolkit
31b15c46f482dad8baa862b0089ee3fe11cf1304
4eabc69ad69f00d8f19070798140ec47f3d13a25
refs/heads/master
2020-05-31T03:03:36.537595
2019-06-02T14:28:09
2019-06-02T19:10:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,374
py
""" Utility for running a prompt_toolkit application in an asyncssh server. """ import asyncio import traceback from typing import Awaitable, Callable, Optional, TextIO, cast import asyncssh from prompt_toolkit.application.current import AppSession, create_app_session from prompt_toolkit.data_structures import Size from prompt_toolkit.input.posix_pipe import PosixPipeInput from prompt_toolkit.output.vt100 import Vt100_Output __all__ = [ 'PromptToolkitSession', 'PromptToolkitSSHServer', ] class PromptToolkitSession(asyncssh.SSHServerSession): def __init__(self, interact: Callable[[], Awaitable[None]]) -> None: self.interact = interact self._chan = None self.app_session: Optional[AppSession] = None # PipInput object, for sending input in the CLI. # (This is something that we can use in the prompt_toolkit event loop, # but still write date in manually.) self._input = PosixPipeInput() # Output object. Don't render to the real stdout, but write everything # in the SSH channel. class Stdout: def write(s, data): if self._chan is not None: self._chan.write(data.replace('\n', '\r\n')) def flush(s): pass self._output = Vt100_Output(cast(TextIO, Stdout()), self._get_size, write_binary=False) def _get_size(self) -> Size: """ Callable that returns the current `Size`, required by Vt100_Output. """ if self._chan is None: return Size(rows=20, columns=79) else: width, height, pixwidth, pixheight = self._chan.get_terminal_size() return Size(rows=height, columns=width) def connection_made(self, chan): self._chan = chan def shell_requested(self) -> bool: return True def session_started(self) -> None: asyncio.ensure_future(self._interact()) async def _interact(self) -> None: if self._chan is None: # Should not happen. raise Exception('`_interact` called before `connection_made`.') # Disable the line editing provided by asyncssh. Prompt_toolkit # provides the line editing. self._chan.set_line_mode(False) with create_app_session(input=self._input, output=self._output) as session: self.app_session = session try: await self.interact() except BaseException: traceback.print_exc() finally: # Close the connection. self._chan.close() def terminal_size_changed(self, width, height, pixwidth, pixheight): # Send resize event to the current application. if self.app_session and self.app_session.app: self.app_session.app._on_resize() def data_received(self, data, datatype): self._input.send_text(data) class PromptToolkitSSHServer(asyncssh.SSHServer): """ Run a prompt_toolkit application over an asyncssh server. This takes one argument, an `interact` function, which is called for each connection. This should be an asynchronous function that runs the prompt_toolkit applications. This function runs in an `AppSession`, which means that we can have multiple UI interactions concurrently. Example usage: .. code:: python async def interact() -> None: await yes_no_dialog("my title", "my text").run_async() prompt_session = PromptSession() text = await prompt_session.prompt_async("Type something: ") print_formatted_text('You said: ', text) server = PromptToolkitSSHServer(interact=interact) loop = get_event_loop() loop.run_until_complete( asyncssh.create_server( lambda: MySSHServer(interact), "", port, server_host_keys=["/etc/ssh/..."], ) ) loop.run_forever() """ def __init__(self, interact: Callable[[], Awaitable[None]]) -> None: self.interact = interact def begin_auth(self, username): # No authentication. return False def session_requested(self) -> PromptToolkitSession: return PromptToolkitSession(self.interact)
[ "jonathan@slenders.be" ]
jonathan@slenders.be
8ef9b4a37e8c02b5e9db9da4aabde348a53e9097
9b1d4f059d9883d9f06a32e7c6c640376f27b7eb
/ProyectoDjango/asgi.py
48acbd1449daa9dc14881c9151124cae158bbd89
[ "MIT" ]
permissive
JeanContreras12/ColungaRepo
dccdf5d5ab7c632edc7db58ac3b8b4b70c70feb6
af59e07f31b3d56ebdf02431a2967134985c1624
refs/heads/main
2023-06-12T18:43:27.619078
2021-07-09T15:23:35
2021-07-09T15:23:35
371,485,778
1
0
MIT
2021-07-06T15:56:20
2021-05-27T19:40:54
CSS
UTF-8
Python
false
false
405
py
""" ASGI config for ProyectoDjango project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'ProyectoDjango.settings') application = get_asgi_application()
[ "j.contrerasmanriquez@uandresbello.edu" ]
j.contrerasmanriquez@uandresbello.edu
999257106ee01f01b171590672d6dd8c48ff5e0a
0a93b53463fbe848913b7ce6227f6b3f4713fdf2
/Visualization/dahakianapi/formrun.py
ff7da07f1958c9c739050f97f79442ca585972ab
[ "MIT" ]
permissive
kopok2/BooXchange-Recommendation
83c53f4ad4ffcd53b1533fc8a28f3aaee9187540
b0e6327a8d4d0eb4719488c53469ac2018c3ee53
refs/heads/master
2021-07-06T09:11:30.853943
2020-11-29T21:35:09
2020-11-29T21:35:09
211,632,574
0
0
null
null
null
null
UTF-8
Python
false
false
2,113
py
"""Form run interface module This module implements form running interface used to run app's forms in parallel. """ import sys import os import subprocess from multiprocessing import Process from dahakianapi.asynccomm import AsyncCommPoster from json import JSONDecodeError python_interpreter_path = sys.executable class FormRunInterface: """Form start interface.""" def __init__(self, path, name, direct_path=False): """Initialize interface process.""" self.path = path self.name = name self.direct_path = direct_path self.main_process = Process(target=self.subprocess_caller) if not self.direct_path: self.scan_interface = AsyncCommPoster('no_target', self.name) def subprocess_caller(self): """Run form in subprocess.""" if not self.direct_path: subprocess.call([python_interpreter_path, os.getcwd() + '\\' + self.path]) else: subprocess.call([python_interpreter_path, self.path]) def run(self): """Start a process.""" self.main_process.start() def reset(self): """Reset form to be rerunned.""" self.main_process = Process(target=self.subprocess_caller) def scan_for_run(self): """Scan whether form is about to be run.""" try: curr_msg = self.scan_interface.read() if curr_msg['cmd'] == "Run": self.scan_interface.post_to_self('None') return True else: return False except: print(sys.exc_info()[0]) return False def scan_for_killed(self): """Scan whether form is about to be killed.""" try: curr_msg = self.scan_interface.read() if curr_msg['cmd'] == "Killed": self.scan_interface.post_to_self('None') return True elif curr_msg['cmd'] == "Kill": return False else: return False except JSONDecodeError: print(sys.exc_info()[0]) return False
[ "oleszek.karol@gmail.com" ]
oleszek.karol@gmail.com
31457aaac9611a052fe9d52bae408f75a2d42776
e692c25a70b0930f16805768ab808aba60b05063
/oop.py
853b711ad0b8965748fbd25198393b5ae203affa
[]
no_license
VICUBARAL/firststeps
9a7317f7fe2085fdc0c004e9940d2050a62fcc4a
a52892272e883b708cd25c37f78d9c429f6f5ba5
refs/heads/master
2023-04-23T15:51:39.409257
2021-05-13T17:21:43
2021-05-13T17:21:43
367,093,700
0
0
null
null
null
null
UTF-8
Python
false
false
684
py
class Employee: num_of_emps = 0 raise_amt = 1.04 def __init__(self, first, last, pay): self.first = first self.last = last self.email = first + '.' + last + '@email.com' self.pay = pay Employee.num_of_emps += 1 def fullname (self): return '{} {}'.format(self.first, self.last) def apply_raise(self): self.pay = int (self.pay * self.raise_amt) @classmethod def set_raise_amt(cls, amount): cls.raise_amt = amount emp_1 = Employee ('Victoria','Baral', 50000) emp_2 = Employee ('Prueba', 'Empleado',60000) print(Employee.raise_amt) print (emp_1.raise_amt) print (emp_2.raise_amt)
[ "62349218+VictoriaBaral@users.noreply.github.com" ]
62349218+VictoriaBaral@users.noreply.github.com
1dd64e033bff0788b62d6ca278fc90b00e628a23
a5f1bf55a73268b556e070a8ad3391c87e2d0e8f
/consumo_eletrico.py
edf4c6cb83e58cd75430198a4688bc07653aed56
[]
no_license
TerminalBen/dash_graphs
f85d24c5b8daa27a87fd89588c12b9585d56bdc0
22be18a697b99c444e1a7de93a72c777f7231231
refs/heads/master
2023-08-17T00:50:27.688704
2021-01-30T11:46:19
2021-01-30T11:46:19
275,002,341
0
0
null
2021-09-22T19:19:47
2020-06-25T19:50:09
Python
UTF-8
Python
false
false
8,659
py
import dash import dash_core_components as dcc import dash_html_components as html import plotly.graph_objects as go import consumo_eletrico_data as ed external_stylesheets1 = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] years=[2016,2017,2018,2019,2020] app = dash.Dash(__name__, external_stylesheets=external_stylesheets1) server = app.server app.layout = html.Div(children=[ html.H1(children='Apuramento Faturas Eletricidade'), html.Div(children=''' Valores em Kilowatts '''), dcc.Graph( id='MS', figure={ 'data': [ {'x': ed.year, 'y': ed.ms2017, 'type': 'bar', 'name': '2017'}, {'x': ed.year, 'y': ed.ms2018, 'type': 'bar', 'name': '2018'}, {'x': ed.year, 'y': ed.ms2019, 'type': 'bar', 'name': '2019'}, {'x': ed.year, 'y': ed.ms2020, 'type': 'bar', 'name': '2020'}, ], 'layout': go.Layout( title='Monte Sossego Rua 1', yaxis={'title': 'Valores em Kw'}, colorway = ['#ff7f0e', '#2ca02c', '#d62728', '#9467bd'], ), } ), html.Div([ html.P ('Houve uma baixa no consumo de energia no mês de Dezembro de 2020, por estar com 2 (dois) aparelhos de ar condicionado avariados.') ], style = {'textAlign':'right','margin-top':1,'font-size':11}), dcc.Graph( id='sum_ms', figure={ 'data': [go.Pie(labels=['2017','2018', '2019','2020'], values=[ed.s1, ed.s2, ed.s3,ed.sms2020], hole=0.3,sort=False)], 'layout': go.Layout( title='Comparação Anual', #yaxis={'title': 'Valores em Kw'}, colorway = ['#ff7f0e', '#2ca02c', '#d62728', '#9467bd'], ), } #figure.update_traces(textinfo='value') ), dcc.Graph( id='Camp', figure={ 'data': [ {'x': ed.year, 'y': ed.camp2016, 'type':'bar','name': '2016'}, {'x': ed.year, 'y': ed.camp2017, 'type': 'bar', 'name': '2017'}, {'x': ed.year, 'y': ed.camp2018, 'type': 'bar', 'name': '2018'}, {'x': ed.year, 'y': ed.camp2019, 'type': 'bar', 'name': '2019'}, {'x': ed.year, 'y': ed.camp2020, 'type': 'bar', 'name': '2020'}, ], 'layout': go.Layout ( title='Consumo Eletricidade Campinho', yaxis={'title':'Valores em Kw (x1000)'}, ) } ), #html.Div([ # html.P ('Valores em Kilowats') # ], # style = {'textAlign':'left','margin-top':0,'font-size':11} #), html.Div([ html.P ('Inicio funcionamento Painel solar em 03 de Setembro de 2018'), html.P ('Arranque das camaras Frigorificas em 01 de Maio de 2018'), html.P ('Houve um aumento de consumo de energia no mês de dezembro de 2020, devido à fraca produção do sistema solar.') ], style = {'textAlign':'right','margin-top':0.5,'font-size':11} ), dcc.Graph( id='sum_camp', figure={ 'data': [go.Pie(labels=['2016','2017','2018', '2019','2020'], values=[ed.scamp2016,ed.s4, ed.s5, ed.s6,ed.scamp2020], hole=0.3,sort=False)], 'layout': {'title': 'Comparação Anual'} } ), dcc.Graph( id='sj', figure={ 'data': [ {'x': ed.year, 'y': ed.sj2018, 'type': 'bar', 'name': '2018'}, {'x': ed.year, 'y': ed.sj2019, 'type': 'bar', 'name': '2019'}, {'x': ed.year, 'y': ed.sj2020, 'type': 'bar', 'name': '2020', }, ], 'layout': go.Layout( title='Minimercado Rua São João', yaxis={'title': 'Valores em Kw'}, colorway = ['#2ca02c', '#d62728', '#9467bd'], ) } ), html.Div([ html.P ('Colocação painel solar 26 de Agosto de 2018'), html.P ('Houve um aumento de consumo de energia no mês de dezembro de 2020, devido à fraca produção do sistema solar.') ], style = {'textAlign':'right','margin-top':1,'font-size':11}), dcc.Graph( id='sum_sj', figure={ 'data': [go.Pie(labels=['2018', '2019','2020'], values=[ed.s8, ed.s9,ed.ssj2020], hole=0.3,sort=False)], 'layout': {'title': 'Comparação Anual','colorway':['#2ca02c', '#d62728', '#9467bd']} } ), dcc.Graph( id='escr_cid', figure={ 'data': [ {'x': ed.year, 'y': ed.ec2016, 'type':'bar','name':'2016'}, {'x': ed.year, 'y': ed.ec2017, 'type': 'bar', 'name': '2017'}, {'x': ed.year, 'y': ed.ec2018, 'type': 'bar', 'name': '2018'}, {'x': ed.year, 'y': ed.ec2019, 'type': 'bar', 'name': '2019'}, {'x': ed.year, 'y': ed.ec2020, 'type': 'bar', 'name': '2020'}, ], 'layout': go.Layout ( title='Consumo eletricidade Posto de Venda/Escritório', yaxis={'title':'Valores em Kw'}, #xaxis={'title':'Paineis Solares em funcionamento a partir de 31 de Março de 2017'} ) } ), html.Div([ html.P ('Paineis Solares em funcionamento a partir de 31 de Março de 2017'), html.P ('Junçao de Contadores Posto de Venda/Escritorio em 14 de Julho de 2018') ], style = {'textAlign':'right','margin-top':0.5,'font-size':11} ), dcc.Graph( id='sum_cid', figure={ 'data': [go.Pie(labels=['2016','2017','2018', '2019','2020'], values=[ed.sumec2016,ed.sumec2017, ed.sumec2018, ed.sumec2019,ed.sec2020], hole=0.3,sort=False)], 'layout': {'title': 'Comparação Anual','colorway':[]} } ), dcc.Graph( id='rib', figure={ 'data': [ {'x': ed.year, 'y': ed.rib2017, 'type': 'bar', 'name': '2017'}, {'x': ed.year, 'y': ed.rib2018, 'type': 'bar', 'name': '2018'}, {'x': ed.year, 'y': ed.rib2019, 'type': 'bar', 'name': '2019'}, {'x': ed.year, 'y': ed.rib2020, 'type': 'bar', 'name': '2020'}, ], 'layout': go.Layout( title='Ribeirinha', yaxis={'title': 'Valores em Kw'}, colorway = ['#ff7f0e', '#2ca02c', '#d62728', '#9467bd'], ), } ), dcc.Graph( id='sum_rib', figure={ 'data': [go.Pie(labels=['2017', '2018', '2019','2020'], values=[ed.s16, ed.s17, ed.s18,ed.srib2020], hole=0.3,sort=False)], 'layout': go.Layout( title='Comparação Anual', #yaxis={'title': 'Valores em Kw'}, colorway = ['#ff7f0e', '#2ca02c', '#d62728', '#9467bd'], ), } ), dcc.Graph( id='pn', figure={ 'data': [ {'x': ed.year, 'y': ed.pn2017, 'type': 'bar', 'name': '2017'}, {'x': ed.year, 'y': ed.pn2018, 'type': 'bar', 'name': '2018'}, {'x': ed.year, 'y': ed.pn2019, 'type': 'bar', 'name': '2019'}, {'x': ed.year, 'y': ed.pn2020, 'type': 'bar', 'name': '2020'}, ], 'layout': go.Layout( title='Porto Novo', yaxis={'title': 'Valores em Kw'}, colorway = ['#ff7f0e', '#2ca02c', '#d62728', '#9467bd'], ), } ), html.Div([ html.P ('Colocação painel solar 29 de Setembro de 2018'), #html.P ('Valores em Kilowats') ], style = {'textAlign':'right','margin-top':1,'font-size':11} ), dcc.Graph( id='sum_pn', figure={ 'data': [go.Pie(labels=['2017','2018', '2019','2020'], values=[ed.s19, ed.s20, ed.s21,ed.spn2020], hole=0.3,sort=False)], 'layout': {'title': 'Comparação Anual','colorway':['#ff7f0e', '#2ca02c', '#d62728', '#9467bd']} } ), ]) if __name__ == '__main__': app.run_server(debug=True)
[ "bentolima100@gmail.com" ]
bentolima100@gmail.com
fcef827ee14df9e33527c492c1072a3edffbd1f4
cb00fe13083728c540076600e41710081b7ef0ce
/site/venv/Lib/site-packages/pip/_vendor/urllib3/util/queue.py
88842e94c8f8b3d508d6866edf9ed1e12da053ac
[]
no_license
Wamadahama/ner-framework
069464342512bab9f429b11be735f6cb487afb74
4cb699469ec8733f74cb67f67af995e734231974
refs/heads/master
2023-03-28T14:28:42.791453
2021-03-29T22:27:33
2021-03-29T22:27:33
209,624,138
4
1
null
null
null
null
UTF-8
Python
false
false
451
py
import collections from ..packages import six from ..packages.six.moves import queue if six.PY2: # Queue is imported for side effects on MS Windows. See issue #229. pass class LifoQueue(queue.Queue): def _init(self, _): self.queue = collections.deque() def _qsize(self, len=len): return len(self.queue) def _put(self, item): self.queue.append(item) def _get(self): return self.queue.pop()
[ "evanscruzen@gmail.com" ]
evanscruzen@gmail.com
1a36a483e5e54b2562473bff6396d0d53625c163
58405d760478914f861239920fd613b2fef624e1
/tests/test_source.py
8b1ab98db7201698a7df72357c4dc5606c4b606e
[ "LicenseRef-scancode-sata" ]
permissive
HASSAN1A/News-App
61a560bd24aea6b3fda957d5e6afed1d510d268f
cda736e7274b54b4ee53ee671c6e2c6ac8dd39d1
refs/heads/master
2023-03-25T04:31:36.846114
2020-10-20T16:13:22
2020-10-20T16:13:22
304,731,238
2
0
null
null
null
null
UTF-8
Python
false
false
431
py
import unittest from app.models import Source class SourceTest(unittest.TestCase): ''' Test Class to test the behaviour of the Source class ''' def setUp(self): ''' Set up method that will run before every Test ''' self.new_source = Source('abc-news','ABC News','A thrilling news source') def test_instance(self): self.assertTrue(isinstance(self.new_source,Source))
[ "okothhassanjuma@gmail.com" ]
okothhassanjuma@gmail.com
dad3a89b7b3fc9dc24c4542db1b382193308b89f
b096d5258393144cf33c755eec6e1a9dadd7a4ee
/sourceControlApp/migrations/0017_auto_20141119_0507.py
3607274abde18f18eb9f7acb9bba438b2ab3ce75
[]
no_license
gittrdone/sourcecontrol
c5b41ad40d475cca95863a889d88b718b36bd672
1e1fab1c11c01d71b424bb486353b3002a5a6f73
refs/heads/master
2020-05-17T05:24:52.339606
2015-04-08T04:46:02
2015-04-08T04:46:02
23,799,825
0
1
null
null
null
null
UTF-8
Python
false
false
861
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('sourceControlApp', '0016_auto_20141119_0343'), ] operations = [ migrations.AlterField( model_name='codeauthor', name='repository', field=models.ForeignKey(blank=True, to='sourceControlApp.GitStore', null=True), ), migrations.AlterField( model_name='commit', name='repository', field=models.ForeignKey(blank=True, to='sourceControlApp.GitStore', null=True), ), migrations.AlterField( model_name='usergitstore', name='git_store', field=models.ForeignKey(blank=True, to='sourceControlApp.GitStore', null=True), ), ]
[ "tpatikorn@hotmail.com" ]
tpatikorn@hotmail.com
c25887904d18b0e4aa6748423e20f5ff86b50d0c
fd119ce1f9ca063f49a5ec0c80b428957eaba62e
/part_3_proj_traj .py
c1ceaccb19dd456cb69219548caf244e3ad2a346
[]
no_license
siba987/Embedded-Systems-Project
35c4e77d2f0ede7a190f704a53cd4d48e4f9f45a
3dd47669906e4912eb850a6e469a62e969f7d176
refs/heads/master
2020-03-15T05:46:25.446408
2018-05-03T19:12:17
2018-05-03T19:12:17
131,993,996
0
0
null
null
null
null
UTF-8
Python
false
false
6,498
py
import tuio import socket import time import math import datetime TCP_IP = '192.168.1.1' TCP_PORT = 2001 BUFFER_SIZE = 1024 forward = b'\xff\0\x01\0\xff' bckwd = b'\xff\0\x02\0\xff' stop = b'\xff\0\x00\0\xff' rot_r = b'\xFF\x00\x03\x00\xFF' rot_l = b'\xFF\x00\x04\x00\xFF' save_cam_angle = b'\xFF\x32\x00\x00\xFF' reset_cam_angle = b'\xFF\x33\x00\x00\xFF' def new_cnct(): #setting up a new connection s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((TCP_IP, TCP_PORT)) return s def set_speed_high(): #function for setting a relatively higher speed skt = new_cnct() skt.send(b'\xFF\x02\x01\x12\xFF') skt.send(b'\xFF\x02\x02\x12\xFF') skt.close() def set_speed_med(): #function for medium speed skt = new_cnct() skt.send(b'\xFF\x02\x01\x12\xFF') skt.send(b'\xFF\x02\x02\x12\xFF') skt.close() def set_speed_low(): #function for lower speed skt = new_cnct() skt.send(b'\xFF\x02\x01\x0a\xFF') skt.send(b'\xFF\x02\x02\x0a\xFF') skt.close() def move_fwd_2(): #function to move forward with own socket connection skt = new_cnct() skt.send(forward) skt.close() def move_fwd(s): #function which when passed socket object only sends forward hex command s.send(forward) def move_stp(s): #function which when passed socket object only sends stop hex command s.send(stop) def move_stp_2(): #function to stop with own socket connection skt = new_cnct() skt.send(stop) skt.close() def rotate_r_3(): #function to rotate right incrementally (with delay) with own socket connection skt = new_cnct() skt.send(rot_r) time.sleep(0.03) skt.send(stop) skt.close() def rotate_l_3(): #function to rotate left incrementally (with delay) with own socket connection skt = new_cnct() skt.send(rot_l) time.sleep(0.03) skt.send(stop) skt.close() def check_direction(agl_r, agl_s, is_right): #returning final angle robot must reach if(is_right): final_angle = agl_s - agl_r else: final_angle = agl_s + agl_r return final_angle def check_overflow(agl_r, agl_s, is_right): if(is_right): dif = agl_s - agl_r if(dif < 0): agl_s += 360 else: sum_agl = agl_s + agl_r if(sum_agl > 360): agl_s -= 360 return agl_s def check_case(sx, sy, ex, ey): #function to determine position of end fm relative to robot and calculate theta #pass in start and end coordinates theta = math.degrees(math.atan(abs(ey-sy)/abs(ex-sx))) if(sx>ex): if(sy<ey): case = 'nw' else: case = 'sw' else: if(sy<ey): case = 'ne' else: case = 'se' return theta, case def det_rot_angle(agl_s, theta, case): #agl_s corresponds to starting angle of the robot #rot_angle is the angle the robot must rotate by to reach correct axis if(case == "nw"): if((agl_s > (180-theta)) and (agl_s < 360)): rot_angle = agl_s - 180 + theta is_right = 1 else: rot_angle = 180 - agl_s - theta is_right = 0 elif(case == "se"): if(agl_s > 0) and (agl_s <= 180): rot_angle = agl_s + theta # rot_angle = -theta is_right = 1 elif(agl_s > 180) and (agl_s <= (360 - theta)): rot_angle = 360 - agl_s - theta is_right = 0 else: rot_angle = agl_s - 360 + theta is_right = 1 elif(case == "ne"): if(agl_s < theta): rot_angle = theta - agl_s is_right = 0 elif((agl_s > theta) and (agl_s < 270)): rot_angle = agl_s - theta is_right = 1 elif(agl_s > 270) and (agl_s < 360): rot_angle = 360 - agl_s + theta is_right = 0 elif(case == "sw"): if(agl_s < (180 + theta)): rot_angle = 180 - agl_s + theta is_right = 0 elif(agl_s >= (180 + theta)): rot_angle = agl_s - 180 - theta is_right = 1 agl_s = check_overflow(rot_angle, agl_s, is_right) #accounting for overflow of >360 or <0, change starting angle value if necessary rot_angle = check_direction(rot_angle, agl_s, is_right) return rot_angle, is_right def det_fm_info_end(): #function to retrieve information of goal/end point tracking = tuio.Tracking() while 1: tracking.update() for obj in tracking.objects(): if(obj.id == 3): print obj tracking.stop() return obj.angle, obj.xpos, obj.ypos def det_fm_info_start(): #function to retrieve initial information of robot's starting point tracking = tuio.Tracking() while 1: tracking.update() for obj in tracking.objects(): if(obj.id == 0): # print obj tracking.stop() return obj.angle, obj.xpos, obj.ypos def check_xy(xr, yr, goal_x, goal_y, xy_range): #checking if x and y position of robot is within specified error range if(xr <= (goal_x + xy_range)) and (xr >= (goal_x - xy_range)): if(yr <= (goal_y + xy_range)) and (yr >= (goal_y - xy_range)): return True return False def det_next_pos(idx): #keeping track of destination x and y coordinates x_points = [0.85, 0.83, 0.77, 0.68, 0.56, 0.44, 0.32, 0.23, 0.17, 0.15] y_points = [0.5, 0.72, 0.84, 0.8, 0.62, 0.38, 0.2, 0.16, 0.28, 0.5] return x_points[idx], y_points[idx] def main(): move_stp_2() set_speed_med() agl_range = 8 xy_range = 0.01 for i in range(1, 10): ts = time.time() cur_ts = ts ar, xr, yr = det_fm_info_start() #getting intitial robot information xn, yn = det_next_pos(i) #determining next position information theta, case = check_case(xr, yr, xn, yn) #retrieving theta and scenario information agl, is_right = det_rot_angle(ar, theta, case) #determining final angle robot must rotate to and in which direction while cur_ts < ts + 4: #while loop is broken once current position path surpasses 4s, cur_time is compared with time the robot began at for this position cur_ts = time.time()#current time is tracked ar, xr, yr = det_fm_info_start() #must continually update robot position as it moves theta, case = check_case(xr, yr, xn, yn) #allowing for error corrections along the way agl, is_right = det_rot_angle(ar, theta, case) if(((ar < (agl+agl_range)) and (ar > (agl-agl_range))) and not(check_xy(xr, yr, xn, yn, xy_range))): move_fwd_2() #moves forward if within angle range but not x/y range elif(not((ar < (agl+agl_range)) and (ar > (agl-agl_range)))): #rotates in appropriate direction depending on assigned direction if(is_right): rotate_r_3() else: rotate_l_3() else: move_stp_2() print(xr, yr, xn, yn, cur_ts) main()
[ "noreply@github.com" ]
siba987.noreply@github.com
3a135b64acbaac7fbd448db5267cdfe1e8981cea
ba4bcfdfc70062bc904bd6490faaf66c5c4c7345
/TestResult_Project_ver0.3/DataBase_Results/Perform_Score/spec2000-1core/perform_spec2000_1core_CFP_2csv.py
89cbd10b46e1847be6a84d16629eaa295aadd83b
[]
no_license
jianxiamage/Proj_TestResults
8ac5cf9c2eb20685e6e03aea8999a07768154bf4
4a5c2c7c44babad754ac0755787022308888713d
refs/heads/master
2022-11-28T09:23:34.617677
2020-04-23T07:44:03
2020-04-23T07:44:03
203,519,769
0
0
null
2022-11-22T00:34:30
2019-08-21T06:20:47
Python
UTF-8
Python
false
false
3,320
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys #引入模块 import os import traceback import ConfigParser reload(sys) sys.setdefaultencoding('utf-8') #------------------------------------------ ResultPath='/data/' detailDir='Detail' PointsPath='Points_Files' #------------------------------------------ #section = 'spec2000-1core-CFP' #------------------------------------------ #防止自动将ini文件中的键名转换成小写 class myconf(ConfigParser.ConfigParser): def __init__(self,defaults=None): ConfigParser.ConfigParser.__init__(self,defaults=None) def optionxform(self, optionstr): return optionstr #将ini文件中的section内容写入csv文件开头,用以标明各个字段名称 #注意的是写入section行到csv时是覆盖模式"w") def read_iniHead(section,inputFile,outputFile): config = myconf() config.readfp(open(inputFile)) f = open(outputFile,"w") options = config.options(section) optionStr = ','.join(options) print(optionStr) f.write('Tag,node_num,' + optionStr + '\n') #将各个字段的值写入csv文件 def read_ini(section,inputFile,outputFile,num,Tag): config = myconf() config.readfp(open(inputFile)) f = open(outputFile,"a") j=1 dicts = {} #section = 'stream-1core' for option in config.options(section): dicts[option] = config.get(section, option) value = dicts[option] #print 'section:%s,option:%s,value:%s' %(section,option,value) print(value) j = j + 1 print('===============================================') values = dicts.values() values_Str = ','.join(values) print(values_Str) f.write(Tag + ',' + num + ',' + values_Str+'\n') print('===============================================') return 0 if __name__=='__main__': try: #输入参数 test_type = sys.argv[1] test_platform = sys.argv[2] test_case = sys.argv[3] test_Tag = sys.argv[4] section = 'spec2000-1core-CFP' #拼接目标文件名 caseDir='spec2000-1core' #区分浮点型和整型,_1core,输入参数含有CFP,但此处需要去掉 ResultIniPath = ResultPath + str(test_type) + '/' + str(test_platform) + '/' + str(detailDir) + '/' + str(caseDir) + '/' + str(PointsPath) iniFilePre = test_case + '_' iniFileEnd = '.ini' MaxCount=3 #并发节点最大为3个 #iniFileName='stream_1core_1.ini' iniFileName = ResultIniPath + '/' + iniFilePre + '1' + iniFileEnd #csvFileName='stream_1cor.csv' csvFileName = ResultIniPath + '/' + test_case +'.csv' result_code = read_iniHead(section,iniFileName,csvFileName) #遍历所有并发节点ini文件(正常情况下为:3个) for i in range(1,MaxCount+1): #iniFileName = iniFilePre + str(i) + iniFileEnd iniFileName = ResultIniPath + '/' + iniFilePre + str(i) + iniFileEnd print(iniFileName) print('-----------------------') result_code = read_ini(section,iniFileName,csvFileName,str(i),test_Tag) except Exception as E: #print('str(Exception):', str(Exception)) print('str(e):', str(E)) #print('repr(e):', repr(E)) #print('traceback.print_exc(): ', traceback.print_exc()) sys.exit(1)
[ "jianxiamage@163.com" ]
jianxiamage@163.com
f22f654240c4e2b94bb4442b5a54342c12031ee0
46390b01256fd4a0dbf3de12b5b3b2248b36a3d5
/gallery/plot_transforms.py
032dd584c26ea395043052559bde511dcc1c2afa
[ "BSD-3-Clause" ]
permissive
DevPranjal/vision
ba7e4f79b17189ff621e718d21ce3380f64b80df
ec40ac3ab84b90b2bb422f98b4d57b89d424676c
refs/heads/master
2023-06-29T23:15:13.577246
2021-06-10T14:10:39
2021-06-10T14:10:39
375,726,988
2
0
BSD-3-Clause
2021-06-10T14:30:58
2021-06-10T14:30:58
null
UTF-8
Python
false
false
10,421
py
""" ========================== Illustration of transforms ========================== This example illustrates the various transforms available in :ref:`the torchvision.transforms module <transforms>`. """ from PIL import Image from pathlib import Path import matplotlib.pyplot as plt import numpy as np import torch import torchvision.transforms as T plt.rcParams["savefig.bbox"] = 'tight' orig_img = Image.open(Path('assets') / 'astronaut.jpg') # if you change the seed, make sure that the randomly-applied transforms # properly show that the image can be both transformed and *not* transformed! torch.manual_seed(0) def plot(imgs, with_orig=True, row_title=None, **imshow_kwargs): if not isinstance(imgs[0], list): # Make a 2d grid even if there's just 1 row imgs = [imgs] num_rows = len(imgs) num_cols = len(imgs[0]) + with_orig fig, axs = plt.subplots(nrows=num_rows, ncols=num_cols, squeeze=False) for row_idx, row in enumerate(imgs): row = [orig_img] + row if with_orig else row for col_idx, img in enumerate(row): ax = axs[row_idx, col_idx] ax.imshow(np.asarray(img), **imshow_kwargs) ax.set(xticklabels=[], yticklabels=[], xticks=[], yticks=[]) if with_orig: axs[0, 0].set(title='Original image') axs[0, 0].title.set_size(8) if row_title is not None: for row_idx in range(num_rows): axs[row_idx, 0].set(ylabel=row_title[row_idx]) plt.tight_layout() #################################### # Pad # --- # The :class:`~torchvision.transforms.Pad` transform # (see also :func:`~torchvision.transforms.functional.pad`) # fills image borders with some pixel values. padded_imgs = [T.Pad(padding=padding)(orig_img) for padding in (3, 10, 30, 50)] plot(padded_imgs) #################################### # Resize # ------ # The :class:`~torchvision.transforms.Resize` transform # (see also :func:`~torchvision.transforms.functional.resize`) # resizes an image. resized_imgs = [T.Resize(size=size)(orig_img) for size in (30, 50, 100, orig_img.size)] plot(resized_imgs) #################################### # CenterCrop # ---------- # The :class:`~torchvision.transforms.CenterCrop` transform # (see also :func:`~torchvision.transforms.functional.center_crop`) # crops the given image at the center. center_crops = [T.CenterCrop(size=size)(orig_img) for size in (30, 50, 100, orig_img.size)] plot(center_crops) #################################### # FiveCrop # -------- # The :class:`~torchvision.transforms.FiveCrop` transform # (see also :func:`~torchvision.transforms.functional.five_crop`) # crops the given image into four corners and the central crop. (top_left, top_right, bottom_left, bottom_right, center) = T.FiveCrop(size=(100, 100))(orig_img) plot([top_left, top_right, bottom_left, bottom_right, center]) #################################### # Grayscale # --------- # The :class:`~torchvision.transforms.Grayscale` transform # (see also :func:`~torchvision.transforms.functional.to_grayscale`) # converts an image to grayscale gray_img = T.Grayscale()(orig_img) plot([gray_img], cmap='gray') #################################### # Random transforms # ----------------- # The following transforms are random, which means that the same transfomer # instance will produce different result each time it transforms a given image. # # ColorJitter # ~~~~~~~~~~~ # The :class:`~torchvision.transforms.ColorJitter` transform # randomly changes the brightness, saturation, and other properties of an image. jitter = T.ColorJitter(brightness=.5, hue=.3) jitted_imgs = [jitter(orig_img) for _ in range(4)] plot(jitted_imgs) #################################### # GaussianBlur # ~~~~~~~~~~~~ # The :class:`~torchvision.transforms.GaussianBlur` transform # (see also :func:`~torchvision.transforms.functional.gaussian_blur`) # performs gaussian blur transform on an image. blurrer = T.GaussianBlur(kernel_size=(5, 9), sigma=(0.1, 5)) blurred_imgs = [blurrer(orig_img) for _ in range(4)] plot(blurred_imgs) #################################### # RandomPerspective # ~~~~~~~~~~~~~~~~~ # The :class:`~torchvision.transforms.RandomPerspective` transform # (see also :func:`~torchvision.transforms.functional.perspective`) # performs random perspective transform on an image. perspective_transformer = T.RandomPerspective(distortion_scale=0.6, p=1.0) perspective_imgs = [perspective_transformer(orig_img) for _ in range(4)] plot(perspective_imgs) #################################### # RandomRotation # ~~~~~~~~~~~~~~ # The :class:`~torchvision.transforms.RandomRotation` transform # (see also :func:`~torchvision.transforms.functional.rotate`) # rotates an image with random angle. rotater = T.RandomRotation(degrees=(0, 180)) rotated_imgs = [rotater(orig_img) for _ in range(4)] plot(rotated_imgs) #################################### # RandomAffine # ~~~~~~~~~~~~ # The :class:`~torchvision.transforms.RandomAffine` transform # (see also :func:`~torchvision.transforms.functional.affine`) # performs random affine transform on an image. affine_transfomer = T.RandomAffine(degrees=(30, 70), translate=(0.1, 0.3), scale=(0.5, 0.75)) affine_imgs = [affine_transfomer(orig_img) for _ in range(4)] plot(affine_imgs) #################################### # RandomCrop # ~~~~~~~~~~ # The :class:`~torchvision.transforms.RandomCrop` transform # (see also :func:`~torchvision.transforms.functional.crop`) # crops an image at a random location. cropper = T.RandomCrop(size=(128, 128)) crops = [cropper(orig_img) for _ in range(4)] plot(crops) #################################### # RandomResizedCrop # ~~~~~~~~~~~~~~~~~ # The :class:`~torchvision.transforms.RandomResizedCrop` transform # (see also :func:`~torchvision.transforms.functional.resized_crop`) # crops an image at a random location, and then resizes the crop to a given # size. resize_cropper = T.RandomResizedCrop(size=(32, 32)) resized_crops = [resize_cropper(orig_img) for _ in range(4)] plot(resized_crops) #################################### # RandomInvert # ~~~~~~~~~~~~ # The :class:`~torchvision.transforms.RandomInvert` transform # (see also :func:`~torchvision.transforms.functional.invert`) # randomly inverts the colors of the given image. inverter = T.RandomInvert() invertered_imgs = [inverter(orig_img) for _ in range(4)] plot(invertered_imgs) #################################### # RandomPosterize # ~~~~~~~~~~~~~~~ # The :class:`~torchvision.transforms.RandomPosterize` transform # (see also :func:`~torchvision.transforms.functional.posterize`) # randomly posterizes the image by reducing the number of bits # of each color channel. posterizer = T.RandomPosterize(bits=2) posterized_imgs = [posterizer(orig_img) for _ in range(4)] plot(posterized_imgs) #################################### # RandomSolarize # ~~~~~~~~~~~~~~ # The :class:`~torchvision.transforms.RandomSolarize` transform # (see also :func:`~torchvision.transforms.functional.solarize`) # randomly solarizes the image by inverting all pixel values above # the threshold. solarizer = T.RandomSolarize(threshold=192.0) solarized_imgs = [solarizer(orig_img) for _ in range(4)] plot(solarized_imgs) #################################### # RandomAdjustSharpness # ~~~~~~~~~~~~~~~~~~~~~ # The :class:`~torchvision.transforms.RandomAdjustSharpness` transform # (see also :func:`~torchvision.transforms.functional.adjust_sharpness`) # randomly adjusts the sharpness of the given image. sharpness_adjuster = T.RandomAdjustSharpness(sharpness_factor=2) sharpened_imgs = [sharpness_adjuster(orig_img) for _ in range(4)] plot(sharpened_imgs) #################################### # RandomAutocontrast # ~~~~~~~~~~~~~~~~~~ # The :class:`~torchvision.transforms.RandomAutocontrast` transform # (see also :func:`~torchvision.transforms.functional.autocontrast`) # randomly applies autocontrast to the given image. autocontraster = T.RandomAutocontrast() autocontrasted_imgs = [autocontraster(orig_img) for _ in range(4)] plot(autocontrasted_imgs) #################################### # RandomEqualize # ~~~~~~~~~~~~~~ # The :class:`~torchvision.transforms.RandomEqualize` transform # (see also :func:`~torchvision.transforms.functional.equalize`) # randomly equalizes the histogram of the given image. equalizer = T.RandomEqualize() equalized_imgs = [equalizer(orig_img) for _ in range(4)] plot(equalized_imgs) #################################### # AutoAugment # ~~~~~~~~~~~ # The :class:`~torchvision.transforms.AutoAugment` transform # automatically augments data based on a given auto-augmentation policy. # See :class:`~torchvision.transforms.AutoAugmentPolicy` for the available policies. policies = [T.AutoAugmentPolicy.CIFAR10, T.AutoAugmentPolicy.IMAGENET, T.AutoAugmentPolicy.SVHN] augmenters = [T.AutoAugment(policy) for policy in policies] imgs = [ [augmenter(orig_img) for _ in range(4)] for augmenter in augmenters ] row_title = [str(policy).split('.')[-1] for policy in policies] plot(imgs, row_title=row_title) #################################### # Randomly-applied transforms # --------------------------- # # Some transforms are randomly-applied given a probability ``p``. That is, the # transformed image may actually be the same as the original one, even when # called with the same transformer instance! # # RandomHorizontalFlip # ~~~~~~~~~~~~~~~~~~~~ # The :class:`~torchvision.transforms.RandomHorizontalFlip` transform # (see also :func:`~torchvision.transforms.functional.hflip`) # performs horizontal flip of an image, with a given probability. hflipper = T.RandomHorizontalFlip(p=0.5) transformed_imgs = [hflipper(orig_img) for _ in range(4)] plot(transformed_imgs) #################################### # RandomVerticalFlip # ~~~~~~~~~~~~~~~~~~ # The :class:`~torchvision.transforms.RandomVerticalFlip` transform # (see also :func:`~torchvision.transforms.functional.vflip`) # performs vertical flip of an image, with a given probability. vflipper = T.RandomVerticalFlip(p=0.5) transformed_imgs = [vflipper(orig_img) for _ in range(4)] plot(transformed_imgs) #################################### # RandomApply # ~~~~~~~~~~~ # The :class:`~torchvision.transforms.RandomApply` transform # randomly applies a list of transforms, with a given probability. applier = T.RandomApply(transforms=[T.RandomCrop(size=(64, 64))], p=0.5) transformed_imgs = [applier(orig_img) for _ in range(4)] plot(transformed_imgs)
[ "noreply@github.com" ]
DevPranjal.noreply@github.com
4d73ef6e2788f7795f74025da206752fac277b97
02aafed62a17b714079326abb4f77f089f4623f6
/touchscreen/testcal.py
d3cd19431305ff1399ec60a6343843616bb024c8
[ "MIT" ]
permissive
amirgon/lv_mpy_examples
89e08197a3a556945823c65873853a761160a676
a4ccb16b17f915fb85d66facec2978166151af2b
refs/heads/main
2023-03-19T00:38:19.300618
2021-03-12T09:59:40
2021-03-12T09:59:40
344,953,085
0
0
MIT
2021-03-05T22:45:54
2021-03-05T22:45:53
null
UTF-8
Python
false
false
1,488
py
#!/opt/bin/lv_micropython -i import lvgl as lv import display_driver import time from micropython -i import const CIRCLE_SIZE = const(20) TP_MAX_VALUE = const(10000) def check(): point = lv.point_t() indev = lv.indev_get_act() indev.get_point(point) print("click position: x: %d, y: %d"%(point.x,point.y)) circ_area.set_pos(point.x - CIRCLE_SIZE // 2, point.y - CIRCLE_SIZE // 2) def show_text(txt): label_main.set_text(txt) label_main.set_align(lv.label.ALIGN.CENTER) label_main.set_pos((HRES - label_main.get_width() ) // 2, (VRES - label_main.get_height()) // 2) disp = lv.scr_act().get_disp() HRES = disp.driver.hor_res VRES = disp.driver.ver_res # Create a big transparent button screen to receive clicks style_transp = lv.style_t() style_transp.init() style_transp.set_bg_opa(lv.STATE.DEFAULT, lv.OPA.TRANSP) big_btn = lv.btn(lv.scr_act(), None) big_btn.set_size(TP_MAX_VALUE, TP_MAX_VALUE) big_btn.add_style(lv.btn.PART.MAIN,style_transp) big_btn.set_layout(lv.LAYOUT.OFF) label_main = lv.label(lv.scr_act(), None) style_circ = lv.style_t() style_circ.init() show_text("Click/drag on screen\n" + \ "to check calibration") big_btn.set_event_cb(lambda obj, event: check() if event == lv.EVENT.PRESSING else None) circ_area = lv.obj(lv.scr_act(), None) circ_area.set_size(CIRCLE_SIZE, CIRCLE_SIZE) circ_area.add_style(lv.STATE.DEFAULT,style_circ) circ_area.set_click(False)
[ "uli.raich@gmail.com" ]
uli.raich@gmail.com
b8009fdb590637a563909e6f62d86b7b016014d8
839b8d3b691bc07fdd48d2a569d8b86c3cd8b4d1
/tests/test_iterator.py
6a566b89b5a14be81ca0b696f16625adfe31364a
[ "MIT" ]
permissive
arghavanMor/flutes
15bdd23fa1e289769a770c3093f2325f5b2525ab
3b7c518ad8d7d1386cea623a10e844db340826fe
refs/heads/master
2023-05-14T04:59:00.540352
2020-07-20T22:11:30
2020-07-20T22:11:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,889
py
import operator import pytest import flutes from .utils import check_iterator def test_chunk() -> None: check_iterator(flutes.chunk(3, range(10)), [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]) check_iterator(flutes.chunk(6, range(5)), [[0, 1, 2, 3, 4]]) def test_take() -> None: check_iterator(flutes.take(5, range(10000000)), [0, 1, 2, 3, 4]) check_iterator(flutes.take(5, range(2)), [0, 1]) def test_drop() -> None: check_iterator(flutes.drop(5, range(10)), [5, 6, 7, 8, 9]) check_iterator(flutes.drop(5, range(2)), # type: ignore[misc] []) def test_drop_until() -> None: check_iterator(flutes.drop_until(lambda x: x > 5, range(10)), [6, 7, 8, 9]) def test_split_by() -> None: check_iterator(flutes.split_by(range(10), criterion=lambda x: x % 3 == 0), [[1, 2], [4, 5], [7, 8]]) check_iterator(flutes.split_by(" Split by: ", empty_segments=True, separator=' '), [[], ['S', 'p', 'l', 'i', 't'], ['b', 'y', ':'], []]) def test_scanl() -> None: check_iterator(flutes.scanl(operator.add, [1, 2, 3, 4], 0), [0, 1, 3, 6, 10]) check_iterator(flutes.scanl(lambda s, x: x + s, ['a', 'b', 'c', 'd']), ['a', 'ba', 'cba', 'dcba']) def test_scanr() -> None: check_iterator(flutes.scanr(operator.add, [1, 2, 3, 4], 0), [10, 9, 7, 4, 0]) check_iterator(flutes.scanr(lambda s, x: x + s, ['a', 'b', 'c', 'd']), ['abcd', 'bcd', 'cd', 'd']) def test_LazyList() -> None: l = flutes.LazyList(range(100)) assert l[50] == 50 assert l[70:90] == list(range(70, 90)) assert l[-2] == 98 l = flutes.LazyList(range(100)) with pytest.raises(TypeError, match="__len__"): len(l) for i, x in enumerate(l): assert i == x assert len(l) == 100 for i, x in enumerate(l): assert i == x def test_Range() -> None: def _check_range(*args): r = flutes.Range(*args) gold = list(range(*args)) assert len(r) == len(gold) check_iterator(r, gold) assert r[1:-1] == gold[1:-1] assert r[-2] == gold[-2] _check_range(10) _check_range(1, 10 + 1) _check_range(1, 11, 2) def test_MapList() -> None: l = flutes.MapList(lambda x: x * x, list(range(100))) assert l[15] == 15 * 15 check_iterator(l[20:-10], [x * x for x in range(20, 100 - 10)]) assert len(l) == 100 check_iterator(l, [x * x for x in range(100)]) import bisect a = [1, 2, 3, 4, 5] pos = bisect.bisect_left(flutes.MapList(lambda x: x * x, a), 10) assert pos == 3 b = [2, 3, 4, 5, 6] pos = bisect.bisect_left(flutes.MapList(lambda i: a[i] * b[i], flutes.Range(len(a))), 10) assert pos == 2
[ "huzecong@gmail.com" ]
huzecong@gmail.com
ab48d81b092f72c832d2f75826e46cf93efab8ef
c0b02bf77168b5770a86e8beb341738083a253a7
/pymada/setup.py
9a794523db9d1cd19191f746c8835d6eb25b977c
[]
no_license
nhoss2/pymada
61fe4df9c107b66df14bf1384716f370e6d23102
ec537e938a593e830ca82249b82531a881430dd5
refs/heads/master
2022-12-13T20:44:09.745576
2020-05-27T17:05:46
2020-05-27T17:05:46
204,399,744
0
1
null
2022-12-08T09:31:54
2019-08-26T05:06:07
Python
UTF-8
Python
false
false
658
py
from setuptools import setup, find_packages setup( name="pymada", version="0.1.0", url="https://github.com/nhoss2/pymada", license="", author="Nafis Hossain", author_email="nafis@labs.im", description="pymada", packages=find_packages(), install_requires=[ 'apache-libcloud', 'django', 'djangorestframework', 'requests', 'gunicorn', 'flask', 'kubernetes', 'cryptography', 'click', 'pyyaml', 'tabulate', 'pillow' ], entry_points={ 'console_scripts': ['pymada=pymada.cli:cli'] }, classifiers=[], )
[ "nafis@labs.im" ]
nafis@labs.im
cffaedfae2b94bc933a329ab61f87cb4dacae1e5
5862c7e8df5f756867e2ac05e3d37d23e2d2c5b6
/network_caller/net_translate.py
7e2ee781c310b455854e26b1f479f2c4d91f67dd
[]
no_license
GKaramiMP/ASL2PET
1015f74b47e0604ec38f5f596d79ecf2999bcb3b
4b4f816581b61beda67b5874e1026c98abc117b1
refs/heads/master
2022-07-01T20:26:13.531824
2020-05-12T09:13:17
2020-05-12T09:13:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
18,368
py
import time import shutil import os # from functions.densenet_unet import _densenet_unet # from functions.networks.dense_unet2 import _densenet_unet import numpy as np import SimpleITK as sitk import tensorflow as tf import logging from cnn.multi_stage_denseunet import multi_stage_densenet from cnn.unet import unet # import wandb from reader import * from reader.data_reader import * from reader.image_class import * from losses.ssim_loss import SSIM,multistage_SSIM from losses.mse import mean_squared_error from threads import * from settings import * import psutil # calculate the dice coefficient from shutil import copyfile from reader.patch_extractor import _patch_extractor_thread from reader.data_reader import _read_data # -------------------------------------------------------------------------------------------------------- class net_translate: def __init__(self,data_path,server_path , Logs): settings.init() self.data_path=data_path self.validation_samples=200 self.Logs = Logs self.LOGDIR = server_path + self.Logs + '/' self.learning_rate = .001 self.total_epochs=1000 self.no_sample_per_each_itr = 1000 self.sample_no = 2000000 self.img_width = 500 self.img_height = 500 self.asl_size = 77 self.pet_size = 63 self.display_validation_step=5 self.batch_no_validation=10 self.batch_no=10 self.parent_path = '/exports/lkeb-hpc/syousefi/Code/' self.chckpnt_dir = self.parent_path + self.Logs + '/unet_checkpoints/' def copytree(self,src, dst, symlinks=False, ignore=None): for item in os.listdir(src): s = os.path.join(src, item) d = os.path.join(dst, item) if os.path.isdir(s): shutil.copytree(s, d, symlinks, ignore) else: shutil.copy2(s, d) def save_file(self,file_name,txt): with open(file_name, 'a') as file: file.write(txt) def count_number_trainable_params(self): ''' Counts the number of trainable variables. ''' tot_nb_params = 0 for trainable_variable in tf.trainable_variables(): shape = trainable_variable.get_shape() # e.g [D,F] or [W,H,C] current_nb_params = self.get_nb_params_shape(shape) tot_nb_params = tot_nb_params + current_nb_params return tot_nb_params def get_nb_params_shape(self,shape): ''' Computes the total number of params for a given shap. Works for any number of shapes etc [D,F] or [W,H,C] computes D*F and W*H*C. ''' nb_params = 1 for dim in shape: nb_params = nb_params * int(dim) return nb_params def run_net(self): self.alpha_coeff=1 '''read path of the images for train, test, and validation''' _rd = _read_data(self.data_path) train_data, validation_data, test_data=_rd.read_data_path() # ====================================== bunch_of_images_no=1 _image_class_vl = image_class(validation_data, bunch_of_images_no=bunch_of_images_no, is_training=0,inp_size=self.asl_size,out_size=self.pet_size) _patch_extractor_thread_vl = _patch_extractor_thread(_image_class=_image_class_vl, img_no=bunch_of_images_no, mutex=settings.mutex, is_training=0, ) _fill_thread_vl = fill_thread(validation_data, _image_class_vl, mutex=settings.mutex, is_training=0, patch_extractor=_patch_extractor_thread_vl, ) _read_thread_vl = read_thread(_fill_thread_vl, mutex=settings.mutex, validation_sample_no=self.validation_samples, is_training=0) _fill_thread_vl.start() _patch_extractor_thread_vl.start() _read_thread_vl.start() # ====================================== bunch_of_images_no = 7 _image_class_tr = image_class(train_data, bunch_of_images_no=bunch_of_images_no, is_training=1,inp_size=self.asl_size,out_size=self.pet_size ) _patch_extractor_thread_tr = _patch_extractor_thread(_image_class=_image_class_tr, img_no=bunch_of_images_no, mutex=settings.mutex, is_training=1, ) _fill_thread = fill_thread(train_data, _image_class_tr, mutex=settings.mutex, is_training=1, patch_extractor=_patch_extractor_thread_tr, ) _read_thread = read_thread(_fill_thread, mutex=settings.mutex, is_training=1) _fill_thread.start() _patch_extractor_thread_tr.start() _read_thread.start() # ====================================== # asl_plchld= tf.placeholder(tf.float32, shape=[None, None, None, 1]) # t1_plchld= tf.placeholder(tf.float32, shape=[None, None, None, 1]) # pet_plchld= tf.placeholder(tf.float32, shape=[None, None, None, 1]) asl_plchld = tf.placeholder(tf.float32, shape=[None, self.asl_size, self.asl_size, 1]) t1_plchld = tf.placeholder(tf.float32, shape=[None, self.asl_size, self.asl_size, 1]) pet_plchld = tf.placeholder(tf.float32, shape=[None, self.pet_size, self.pet_size, 1]) ave_loss_vali = tf.placeholder(tf.float32) is_training = tf.placeholder(tf.bool, name='is_training') is_training_bn = tf.placeholder(tf.bool, name='is_training_bn') # cnn_net = unet() # create object # y,augmented_data = cnn_net.unet(t1=t1_plchld, asl=asl_plchld, pet=pet_plchld, is_training_bn=is_training_bn) msdensnet = multi_stage_densenet() y,augmented_data,loss_upsampling11,loss_upsampling2 = msdensnet.multi_stage_densenet(asl_img=asl_plchld, t1_img=t1_plchld, pet_img=pet_plchld, input_dim=77, is_training=is_training) show_img=augmented_data[0][:, :, :, 0, np.newaxis] tf.summary.image('00: input_asl', show_img, 3) show_img = augmented_data[1][:, :, :, 0, np.newaxis] tf.summary.image('01: input_t1', show_img, 3) show_img = augmented_data[2][:, :, :, 0, np.newaxis] tf.summary.image('02: target_pet', show_img, 3) show_img = y[:, :, :, 0, np.newaxis] tf.summary.image('03: output_pet', show_img, 3) # # show_img = loss_upsampling11[:, :, :, 0, np.newaxis] # tf.summary.image('04: loss_upsampling11', show_img, 3) # # # show_img = loss_upsampling22[:, :, :, 0, np.newaxis] # tf.summary.image('05: loss_upsampling22', show_img, 3) print('*****************************************') print('*****************************************') print('*****************************************') sess = tf.Session(config=tf.ConfigProto(log_device_placement=True)) # devices = sess.list_devices() # print(devices) from tensorflow.python.client import device_lib print(device_lib.list_local_devices()) print('*****************************************') print('*****************************************') print('*****************************************') train_writer = tf.summary.FileWriter(self.LOGDIR + '/train' , graph=tf.get_default_graph()) # train_writer.flush() validation_writer = tf.summary.FileWriter(self.LOGDIR + '/validation' , graph=sess.graph) # validation_writer.flush() extra_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) saver = tf.train.Saver(tf.global_variables(), max_to_keep=1000) # train_writer.close() # validation_writer.close() loadModel = 0 # self.loss = ssim_loss() with tf.name_scope('cost'): # ssim_val,denominator,ssim_map=SSIM(x1=augmented_data[-1], x2=y,max_val=1.0) # cost = tf.reduce_mean((1.0 - ssim_val), name="cost") ssim_val=tf.reduce_mean(multistage_SSIM(x1=pet_plchld, x2=y,level1=loss_upsampling11, level2=loss_upsampling2,max_val=1.5)[0]) cost = tf.reduce_mean((ssim_val), name="cost") # mse=mean_squared_error(labels=augmented_data[-1],logit=y) # cost = tf.reduce_mean(mse , name="cost") tf.summary.scalar("cost", cost) # tf.summary.scalar("denominator", denominator) extra_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(extra_update_ops): optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate, ).minimize(cost) with tf.name_scope('validation'): average_validation_loss = ave_loss_vali tf.summary.scalar("average_validation_loss", average_validation_loss) sess.run(tf.global_variables_initializer()) logging.debug('total number of variables %s' % ( np.sum([np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()]))) summ=tf.summary.merge_all() point = 0 itr1 = 0 if loadModel: chckpnt_dir='' ckpt = tf.train.get_checkpoint_state(chckpnt_dir) saver.restore(sess, ckpt.model_checkpoint_path) point=np.int16(ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]) itr1=point # with tf.Session() as sess: print("Number of trainable parameters: %d" % self.count_number_trainable_params()) # patch_radius = 49 '''loop for epochs''' for epoch in range(self.total_epochs): while self.no_sample_per_each_itr*int(point/self.no_sample_per_each_itr)<self.sample_no: print("epoch #: %d" %(epoch)) startTime = time.time() step = 0 self.beta_coeff=1+1 * np.exp(-point/2000) # =============validation================ if itr1 % self.display_validation_step ==0: '''Validation: ''' loss_validation = 0 acc_validation = 0 validation_step = 0 dsc_validation=0 while (validation_step * self.batch_no_validation <settings.validation_totalimg_patch): [validation_asl_slices, validation_pet_slices,validation_t1_slices] = _image_class_vl.return_patches_validation( validation_step * self.batch_no_validation, (validation_step + 1) *self.batch_no_validation) if (len(validation_asl_slices)<self.batch_no_validation) | (len(validation_pet_slices)<self.batch_no_validation) | (len(validation_t1_slices)<self.batch_no_validation) : _read_thread_vl.resume() time.sleep(0.5) # print('sleep 3 validation') continue tic=time.time() [loss_vali,out,augmented_dataout,] = sess.run([ cost,y,augmented_data,], feed_dict={asl_plchld:validation_asl_slices , t1_plchld: validation_t1_slices, pet_plchld: validation_pet_slices, is_training: False, ave_loss_vali: -1, is_training_bn:False, }) elapsed=time.time()-tic loss_validation += loss_vali validation_step += 1 if np.isnan(dsc_validation) or np.isnan(loss_validation) or np.isnan(acc_validation): print('nan problem') process = psutil.Process(os.getpid()) print( '%d - > %d: elapsed_time:%d loss_validation: %f, memory_percent: %4s' % ( validation_step,validation_step * self.batch_no_validation , elapsed, loss_vali, str(process.memory_percent()), )) # end while settings.queue_isready_vl = False acc_validation = acc_validation / (validation_step) loss_validation = loss_validation / (validation_step) dsc_validation = dsc_validation / (validation_step) if np.isnan(dsc_validation) or np.isnan(loss_validation) or np.isnan(acc_validation): print('nan problem') _fill_thread_vl.kill_thread() print('******Validation, step: %d , accuracy: %.4f, loss: %f*******' % ( itr1, acc_validation, loss_validation)) [sum_validation] = sess.run([summ], feed_dict={asl_plchld: validation_asl_slices, t1_plchld: validation_t1_slices, pet_plchld: validation_pet_slices, is_training: False, ave_loss_vali: loss_validation, is_training_bn: False, }) validation_writer.add_summary(sum_validation, point) validation_writer.flush() print('end of validation---------%d' % (point)) # end if '''loop for training batches''' while(step*self.batch_no<self.no_sample_per_each_itr): [train_asl_slices,train_pet_slices,train_t1_slices] = _image_class_tr.return_patches( self.batch_no) if (len(train_asl_slices)<self.batch_no)|(len(train_pet_slices)<self.batch_no)\ |(len(train_t1_slices)<self.batch_no): #|(len(train_t1_slices)<self.batch_no): time.sleep(0.5) _read_thread.resume() continue tic=time.time() [ loss_train1,out,augmented_dataout,opt] = sess.run([ cost,y,augmented_data,optimizer], feed_dict={asl_plchld: train_asl_slices, t1_plchld: train_t1_slices, pet_plchld: train_pet_slices, is_training: True, ave_loss_vali: -1, is_training_bn: True}) elapsed=time.time()-tic [sum_train] = sess.run([summ], feed_dict={asl_plchld: train_asl_slices, t1_plchld: train_t1_slices, pet_plchld: train_pet_slices, is_training: False, ave_loss_vali: loss_train1, is_training_bn: False }) train_writer.add_summary(sum_train,point) train_writer.flush() step = step + 1 process = psutil.Process(os.getpid()) print( 'point: %d, elapsed_time:%d step*self.batch_no:%f , LR: %.15f, loss_train1:%f,memory_percent: %4s' % ( int((point)),elapsed, step * self.batch_no, self.learning_rate, loss_train1, str(process.memory_percent()))) point=int((point))#(self.no_sample_per_each_itr/self.batch_no)*itr1+step if point%100==0: '''saveing model inter epoch''' chckpnt_path = os.path.join(self.chckpnt_dir, ('densenet_unet_inter_epoch%d_point%d.ckpt' % (epoch, point))) saver.save(sess, chckpnt_path, global_step=point) itr1 = itr1 + 1 point=point+1 endTime = time.time() #==============end of epoch: '''saveing model after each epoch''' chckpnt_path = os.path.join(self.chckpnt_dir, 'densenet_unet.ckpt') saver.save(sess, chckpnt_path, global_step=epoch) print("End of epoch----> %d, elapsed time: %d" % (epoch, endTime - startTime))
[ "s.yousefi.radi@lumc.nl" ]
s.yousefi.radi@lumc.nl
dc963bbe8bfec548b608d7fb9fe92a5d0c40a51c
cdaa450bde480c84341cf2c5f8b6906d86c3db34
/E-commerce/store/models.py
c0d6ad2de67dc312b4904891d52c81cf3a642395
[]
no_license
MUSKANJASSAL/drf
6194c5baa9002b168112a37e56c0878efbff47e2
9c5b8ee53780412a49559c60ff9180a7efc62f85
refs/heads/master
2023-04-05T11:22:03.176193
2021-04-10T04:42:17
2021-04-10T04:42:17
330,596,590
0
0
null
null
null
null
UTF-8
Python
false
false
1,843
py
# from django.contrib.auth.models import User # Create your models here. # Build tables in database from django.conf import settings from django.db import models from django.urls import reverse class ProductManager(models.Manager): def get_queryset(self): return super(ProductManager, self).get_queryset().filter(is_active=True) class Category(models.Model): name = models.CharField(max_length=255, db_index=True) slug = models.SlugField(max_length=255, unique=True) class Meta: verbose_name_plural = 'categories' def get_absolute_url(self): return reverse('store:category_list', args=[self.slug]) def __str__(self): return self.name class Product(models.Model): category = models.ForeignKey(Category, related_name='product', on_delete=models.CASCADE) created_by = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE, related_name='product_creator') title = models.CharField(max_length=255) author = models.CharField(max_length=255, default='admin') description = models.TextField(blank=True) image = models.ImageField(upload_to='images/', default='images/default.png') slug = models.SlugField(max_length=255) price = models.DecimalField(max_digits=6, decimal_places=2) in_stock = models.BooleanField(default=True) is_active = models.BooleanField(default=True) created = models.DateTimeField(auto_now_add=True) updated = models.DateTimeField(auto_now=True) objects = models.Manager() products = ProductManager() class Meta: verbose_name_plural = 'Products' ordering = ('-created',) def get_absolute_url(self): return reverse('store:product_detail', args=[self.slug]) def __str__(self): return self.title
[ "muskan124.jassal@gmail.com" ]
muskan124.jassal@gmail.com
9d3917531b8c8ec0f17ba1d7b8e711c1d9ddec5d
c61ffae44fa892107308680d68dbd74ebe084252
/TensorFlow2/config.py
1b665b98d795594866a0e139341ef9d8891d4d85
[ "MIT" ]
permissive
jalehman27/VRP_DRL_MHA
37236f2ff7043c7f8b57d3904ef7b48e43f5ff1d
ef59ecc091bab77e112534d3e3ae73bddeeeeadc
refs/heads/master
2023-03-23T06:24:44.464120
2021-01-12T02:14:48
2021-01-12T02:14:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,210
py
import pickle import os import argparse from datetime import datetime def arg_parser(): parser = argparse.ArgumentParser() parser.add_argument('-m', '--mode', metavar = 'M', type = str, default = 'train', choices = ['train', 'test'], help = 'train or test') parser.add_argument('--seed', metavar = 'SE', type = int, default = 123, help = 'random seed number for inference, reproducibility') parser.add_argument('-n', '--n_customer', metavar = 'N', type = int, default = 20, help = 'number of customer nodes, time sequence') # train config parser.add_argument('-b', '--batch', metavar = 'B', type = int, default = 512, help = 'batch size') parser.add_argument('-bs', '--batch_steps', metavar = 'BS', type = int, default = 2500, help = 'number of samples = batch * batch_steps') parser.add_argument('-bv', '--batch_verbose', metavar = 'BV', type = int, default = 10, help = 'print and logging during training process') parser.add_argument('-nr', '--n_rollout_samples', metavar = 'R', type = int, default = 10000, help = 'baseline rollout number of samples') parser.add_argument('-e', '--epochs', metavar = 'E', type = int, default = 20, help = 'total number of samples = epochs * number of samples') parser.add_argument('-em', '--embed_dim', metavar = 'EM', type = int, default = 128, help = 'embedding size') parser.add_argument('-nh', '--n_heads', metavar = 'NH', type = int, default = 8, help = 'number of heads in MHA') parser.add_argument('-c', '--tanh_clipping', metavar = 'C', type = float, default = 10., help = 'improve exploration; clipping logits') parser.add_argument('-ne', '--n_encode_layers', metavar = 'NE', type = int, default = 3, help = 'number of MHA encoder layers') parser.add_argument('--lr', metavar = 'LR', type = float, default = 1e-4, help = 'initial learning rate') parser.add_argument('-wb', '--warmup_beta', metavar = 'WB', type = float, default = 0.8, help = 'exponential moving average, warmup') parser.add_argument('-we', '--wp_epochs', metavar = 'WE', type = int, default = 1, help = 'warmup epochs') parser.add_argument('--islogger', action = 'store_false', help = 'flag csv logger default true') parser.add_argument('-ld', '--log_dir', metavar = 'LD', type = str, default = './Csv/', help = 'csv logger dir') parser.add_argument('-wd', '--weight_dir', metavar = 'MD', type = str, default = './Weights/', help = 'model weight save dir') parser.add_argument('-pd', '--pkl_dir', metavar = 'PD', type = str, default = './Pkl/', help = 'pkl save dir') parser.add_argument('-cd', '--cuda_dv', metavar = 'CD', type = str, default = '0', help = 'os CUDA_VISIBLE_DEVICE') args = parser.parse_args() return args class Config(): def __init__(self, **kwargs): for k, v in kwargs.items(): self.__dict__[k] = v self.task = 'VRP%d_%s'%(self.n_customer, self.mode) self.dump_date = datetime.now().strftime('%m%d_%H_%M') for x in [self.log_dir, self.weight_dir, self.pkl_dir]: os.makedirs(x, exist_ok = True) self.pkl_path = self.pkl_dir + self.task + '.pkl' self.n_samples = self.batch * self.batch_steps def dump_pkl(args, verbose = True, param_log = True): cfg = Config(**vars(args)) with open(cfg.pkl_path, 'wb') as f: pickle.dump(cfg, f) print('--- save pickle file in %s ---\n'%cfg.pkl_path) if verbose: print(''.join('%s: %s\n'%item for item in vars(cfg).items())) if param_log: path = '%sparam_%s_%s.csv'%(cfg.log_dir, cfg.task, cfg.dump_date)#cfg.log_dir = ./Csv/ with open(path, 'w') as f: f.write(''.join('%s,%s\n'%item for item in vars(cfg).items())) def load_pkl(pkl_path, verbose = True): if not os.path.isfile(pkl_path): raise FileNotFoundError('pkl_path') with open(pkl_path, 'rb') as f: cfg = pickle.load(f) if verbose: print(''.join('%s: %s\n'%item for item in vars(cfg).items())) os.environ['CUDA_VISIBLE_DEVICE'] = cfg.cuda_dv return cfg def file_parser(): parser = argparse.ArgumentParser() parser.add_argument('-p', '--path', metavar = 'P', type = str, default = 'Pkl/VRP20_train.pkl', help = 'file path, pkl or h5 only') args = parser.parse_args() return args def test_parser(): parser = argparse.ArgumentParser() parser.add_argument('-p', '--path', metavar = 'P', type = str, required = True, help = 'Weights/VRP***_train_epoch***.h5, h5 file required') parser.add_argument('-b', '--batch', metavar = 'B', type = int, default = 2, help = 'batch size') parser.add_argument('-n', '--n_customer', metavar = 'N', type = int, default = 20, help = 'number of customer nodes, time sequence') parser.add_argument('-s', '--seed', metavar = 'S', type = int, default = 123, help = 'random seed number for inference, reproducibility') parser.add_argument('-t', '--txt', metavar = 'T', type = str, help = 'if you wanna test out on text file, example: ../OpenData/A-n53-k7.txt') parser.add_argument('-d', '--decode_type', metavar = 'D', type = str, required = True, choices = ['greedy', 'sampling'], help = 'greedy or sampling required') args = parser.parse_args() return args if __name__ == '__main__': args = arg_parser() dump_pkl(args) # cfg = load_pkl(file_parser().path) # for k, v in vars(cfg).items(): # print(k, v) # print(vars(cfg)[k])#==v
[ "310rnomeado@gmail.com" ]
310rnomeado@gmail.com