blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
0f071c15769ac8ce89c01b772e739236f4fc6829
19f0dfcae32a89907b489a7729ddf6a9c958d16d
/inference.py
1d7e4cd9f8917b15bde561eaca83a8b7c6ae18df
[]
no_license
HoiBunCa/ELA
f231422d135210f836a882070f43af9d9f14a134
6e3ce729f69e0a96fa23e09b3b870efb8b3deb44
refs/heads/master
2023-07-18T09:59:38.883441
2021-09-06T02:52:22
2021-09-06T02:52:22
403,464,982
0
0
null
null
null
null
UTF-8
Python
false
false
2,090
py
#!/usr/bin/env python # coding: utf-8 # In[1]: import os import sys import torch import torch.nn as nn import torch.optim as optim import numpy as np import torchvision import matplotlib.pyplot as plt import time import os import copy from tqdm import tqdm from PIL import Image from PIL import ImageChops from PIL import ImageEnhance from torchvision import datasets, models, transforms from torch.optim import lr_scheduler # In[2]: model = torch.load("model_ela.pt") # In[3]: # Data augmentation and normalization for training # Just normalization for validation data_transforms = transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # device = torch.device("cpu") # In[4]: model = model.to(device) # In[5]: class_names = ['fake', 'real'] # In[6]: acc = torch.nn.Softmax(dim=1) # In[7]: # filename = '1.jpg' def inference_img(filename): basename, extension = os.path.splitext(filename) resaved = 'resaved.jpg' ela = 'ela.png' im = Image.open(filename) im.save(resaved, 'JPEG', quality=90) resaved_im = Image.open(resaved) ela_im = ImageChops.difference(im, resaved_im) extrema = ela_im.getextrema() max_diff = max([ex[1] for ex in extrema]) scale = 255.0/max_diff ela_im = ImageEnhance.Brightness(ela_im).enhance(scale) # print('Maximum difference was {}'.format(max_diff)) ela_im.save(ela) img_test = Image.open(ela) img_transforms = data_transforms(img_test) img_unsquueeze = img_transforms.unsqueeze(0).to(device) model.eval().to(device) output = model(img_unsquueeze) _, preds = torch.max(output, 1) return class_names[int(preds)], max(max(acc(output))).item() # In[11]: filename = 'D:/Code/Tima_Onbroading/ELA/datatest_private/fake/CMND MAT SAU 2.jpg' label, score = inference_img(filename) print(label) print(score) # In[ ]:
[ "boybka23@gmail.com" ]
boybka23@gmail.com
44d34ce7e096066329be1d20c421e3965ebda775
aecf0a868968f814879fc57e779432db96dafb4f
/yatube/apps/posts/migrations/0010_auto_20201207_1733.py
8f0e8ef72806205df21555fcd009b40bf1ab4b99
[ "BSD-3-Clause" ]
permissive
azharkih/PetBlog
5a0089a51da08055b70eb37dc4027bfcde792da6
691d5e2ebdff0148e195d84442ff52acc0f036c3
refs/heads/main
2023-04-22T05:52:55.859615
2021-05-18T08:19:29
2021-05-18T08:19:29
305,399,168
1
0
null
null
null
null
UTF-8
Python
false
false
522
py
# Generated by Django 2.2.6 on 2020-12-07 17:33 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('posts', '0009_auto_20201206_1012'), ] operations = [ migrations.AlterUniqueTogether( name='follow', unique_together=set(), ), migrations.AddConstraint( model_name='follow', constraint=models.UniqueConstraint(fields=('user', 'author'), name='unique_following'), ), ]
[ "andreyzharkih@gmail.com" ]
andreyzharkih@gmail.com
70d2ac41c252f819bd4652c5c0acabc6610a5be3
f97b7852aafe629de03323b15e2e075e5893289a
/Ipl/asgi.py
87131a21a526b69b5b13d1f882dc10ddeb8e1516
[]
no_license
ravilucky231/Ipl-project
28adbc309446a135309089a5a02da8654c0fd24a
57c43d775e351673fa63a8623f31f25fb7d3ef92
refs/heads/master
2023-06-17T00:44:56.008578
2021-07-12T12:08:35
2021-07-12T12:08:35
385,235,185
0
0
null
null
null
null
UTF-8
Python
false
false
383
py
""" ASGI config for Ipl project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'Ipl.settings') application = get_asgi_application()
[ "ravikumar23797@gmail.com" ]
ravikumar23797@gmail.com
bb07aae1f945712d767a0c75bcd232506bd977b1
107ca5f90d40f0caa5a71b9aa314e61a2b0c9a84
/src/preprocess.py
fed23abc7454c3b3128860e7dafc1db3e1dba4a1
[]
no_license
dondakeshimo/predicting-molecular-properties
8cd9841ae55dd04b3b2fbcc2a712f21808ba1ce0
4cfc6dcdfd35e8a462dbfffcf11743b6375f56f4
refs/heads/master
2021-07-12T04:56:39.003611
2019-07-09T12:40:03
2019-07-09T12:40:03
193,218,654
1
1
null
2020-09-25T23:54:21
2019-06-22T09:59:20
Python
UTF-8
Python
false
false
11,107
py
import numpy as np import pandas as pd from tqdm import tqdm from sklearn.preprocessing import LabelEncoder import utils def map_atom_info(df, structures, atom_idx): print("Merge structures with train dataframe") df = pd.merge(df, structures, how="left", left_on=["molecule_name", f"atom_index_{atom_idx}"], right_on=["molecule_name", "atom_index"]) df = df.drop("atom_index", axis=1) df = df.rename(columns={ "atom": f"atom_{atom_idx}", "x": f"x_{atom_idx}", "y": f"y_{atom_idx}", "z": f"z_{atom_idx}", "n_bonds": f"n_bonds_{atom_idx}", "bond_lengths_mean": f"bond_lengths_mean_{atom_idx}", "bond_lengths_std": f"bond_lengths_std_{atom_idx}" }) return df def calc_dist(df): print("Calculate distance between atom") df_p_0 = df[["x_0", "y_0", "z_0"]].values df_p_1 = df[["x_1", "y_1", "z_1"]].values df["dist"] = np.linalg.norm(df_p_0 - df_p_1, axis=1) df["dist_x"] = (df["x_0"] - df["x_1"]) ** 2 df["dist_y"] = (df["y_0"] - df["y_1"]) ** 2 df["dist_z"] = (df["z_0"] - df["z_1"]) ** 2 df["dist_div_p3"] = 1 / (df["dist"].replace(0, 1e-10) ** 3) return df def create_features_full(df): print("Create full brute force features") df["molecule_couples"] = \ df.groupby("molecule_name")["id"].transform("count") df["molecule_dist_mean"] = \ df.groupby("molecule_name")["dist"].transform("mean") df["molecule_dist_min"] = \ df.groupby("molecule_name")["dist"].transform("min") df["molecule_dist_max"] = \ df.groupby("molecule_name")["dist"].transform("max") df["atom_0_couples_count"] = \ df.groupby(["molecule_name", "atom_index_0"])["id"].transform("count") df["atom_1_couples_count"] = \ df.groupby(["molecule_name", "atom_index_1"])["id"].transform("count") num_cols = ["x_1", "y_1", "z_1", "dist", "dist_x", "dist_y", "dist_z", "dist_div_p3"] cat_cols = ["atom_index_0", "atom_index_1", "type", "atom_1", "type_0"] aggs = ["mean", "max", "std", "min"] for col in cat_cols: df[f"molecule__{col}__count"] = \ df.groupby("molecule_name")[col].transform("count") for cat_col in tqdm(cat_cols): for num_col in tqdm(num_cols): for agg in aggs: col = f"molecule__{cat_col}__{num_col}__{agg}" df[col] = df.groupby(["molecule_name", cat_col])[num_col] \ .transform(agg) if agg == "std": df[col] = df[col].fillna(0) df[col + "__diff"] = df[col] - df[num_col] df[col + "__div"] = df[col] / df[num_col].replace(0, 1e-10) return df def create_basic_features(df): print("Create basic static features") df["molecule_couples"] = \ df.groupby("molecule_name")["id"].transform("count") df["molecule_dist_mean"] = \ df.groupby("molecule_name")["dist"].transform("mean") df["molecule_dist_min"] = \ df.groupby("molecule_name")["dist"].transform("min") df["molecule_dist_max"] = \ df.groupby("molecule_name")["dist"].transform("max") df["atom_0_couples_count"] = \ df.groupby(["molecule_name", "atom_index_0"])["id"].transform("count") df["atom_1_couples_count"] = \ df.groupby(["molecule_name", "atom_index_1"])["id"].transform("count") return df def create_extra_features(df, good_columns): print("Create brute force features in good columns") columns = [g.split("__") for g in good_columns] columns = sorted(columns, key=lambda x: len(x)) for cols in tqdm(columns): if len(cols) == 1: continue elif len(cols) == 3: _, col, _ = cols df[f"molecule__{col}__count"] = \ df.groupby("molecule_name")[col].transform("count") elif len(cols) == 4: _, cat, num, agg = cols col = f"molecule__{cat}__{num}__{agg}" df[col] = df.groupby(["molecule_name", cat])[num] \ .transform(agg) if agg == "std": df[col] = df[col].fillna(0) elif len(cols) == 5: _, cat, num, agg, cal = cols col = f"molecule__{cat}__{num}__{agg}" if col not in df.columns: df[col] = df.groupby(["molecule_name", cat])[num] \ .transform(agg) if agg == "std": df[col] = df[col].fillna(0) if cal == "diff": df[col + "__diff"] = df[col] - df[num] if cal == "div": df[col + "__div"] = df[col] / df[num].replace(0, 1e-10) return df def get_good_columns(file_folder="../data"): print(f"Get good columns from {file_folder}/preprocessed/feat...ance.csv") importance = pd.read_csv( f"{file_folder}/preprocessed/feature_importance.csv") span = len(importance) // 8 importance_set = set() for i in range(8): for column in importance.iloc[span * i:span * (i + 1)] \ .groupby(["feature"]).mean() \ .sort_values(by=["importance"], ascending=False) \ .index[:50]: importance_set.add(column) good_columns = list(importance_set) good_columns.append("type") return good_columns def get_atom_rad_en(structures): print("Add atom radius and lelectro negativity to structures") atomic_radius = {"H": 0.38, "C": 0.77, "N": 0.75, "O": 0.73, "F": 0.71} fudge_factor = 0.05 atomic_radius = {k: v + fudge_factor for k, v in atomic_radius.items()} electronegativity = {"H": 2.2, "C": 2.55, "N": 3.04, "O": 3.44, "F": 3.98} atoms = structures["atom"].values atoms_en = [electronegativity[x] for x in atoms] atoms_rad = [atomic_radius[x] for x in atoms] structures["EN"] = atoms_en structures["rad"] = atoms_rad return structures def calc_bonds(structures): i_atom = structures["atom_index"].values p = structures[["x", "y", "z"]].values p_compare = p m = structures["molecule_name"].values m_compare = m r = structures["rad"].values r_compare = r source_row = np.arange(len(structures)) max_atoms = 28 bonds = np.zeros((len(structures) + 1, max_atoms + 1), dtype=np.int8) bond_dists = np.zeros((len(structures) + 1, max_atoms + 1), dtype=np.float32) print("Calculating bonds") for i in tqdm(range(max_atoms - 1)): p_compare = np.roll(p_compare, -1, axis=0) m_compare = np.roll(m_compare, -1, axis=0) r_compare = np.roll(r_compare, -1, axis=0) # Are we still comparing atoms in the same molecule? mask = np.where(m == m_compare, 1, 0) dists = np.linalg.norm(p - p_compare, axis=1) * mask r_bond = r + r_compare bond = np.where(np.logical_and(dists > 0.0001, dists < r_bond), 1, 0) source_row = source_row target_row = source_row + i + 1 target_row = np.where( np.logical_or(target_row > len(structures), mask == 0), len(structures), target_row) source_atom = i_atom target_atom = i_atom + i + 1 target_atom = np.where( np.logical_or(target_atom > max_atoms, mask == 0), max_atoms, target_atom) bonds[(source_row, target_atom)] = bond bonds[(target_row, source_atom)] = bond bond_dists[(source_row, target_atom)] = dists bond_dists[(target_row, source_atom)] = dists bonds = np.delete(bonds, axis=0, obj=-1) bonds = np.delete(bonds, axis=1, obj=-1) bond_dists = np.delete(bond_dists, axis=0, obj=-1) bond_dists = np.delete(bond_dists, axis=1, obj=-1) print("Counting and condensing bonds") bonds_numeric = [ [i for i, x in enumerate(row) if x] for row in tqdm(bonds) ] bond_lengths = [ [dist for i, dist in enumerate(row) if i in bonds_numeric[j]] for j, row in enumerate(tqdm(bond_dists)) ] bond_lengths_mean = [np.mean(x) for x in tqdm(bond_lengths)] bond_lengths_std = [np.std(x) for x in tqdm(bond_lengths)] n_bonds = [len(x) for x in tqdm(bonds_numeric)] bond_data = {"n_bonds": n_bonds, "bond_lengths_mean": bond_lengths_mean, "bond_lengths_std": bond_lengths_std} bond_df = pd.DataFrame(bond_data) structures = structures.join(bond_df) return structures def encode_str(train, test, good_columns): print("Encoding strings") for f in ["atom_0", "atom_1", "type_0", "type"]: if f in good_columns: lbl = LabelEncoder() lbl.fit(list(train[f].values) + list(test[f].values)) train[f] = lbl.transform(list(train[f].values)) test[f] = lbl.transform(list(test[f].values)) return train, test def preprocess(train, test, structures, contrib): train = pd.merge(train, contrib, how="left", left_on=["molecule_name", "atom_index_0", "atom_index_1", "type"], right_on=["molecule_name", "atom_index_0", "atom_index_1", "type"]) structures = get_atom_rad_en(structures) structures = calc_bonds(structures) train = map_atom_info(train, structures, 0) train = map_atom_info(train, structures, 1) test = map_atom_info(test, structures, 0) test = map_atom_info(test, structures, 1) train = calc_dist(train) test = calc_dist(test) train["type_0"] = train["type"].apply(lambda x: x[0]) test["type_0"] = test["type"].apply(lambda x: x[0]) good_columns = get_good_columns() train = create_basic_features(train) test = create_basic_features(test) train = create_extra_features(train, good_columns) test = create_extra_features(test, good_columns) train, test = encode_str(train, test, good_columns) return train, test def create_feature_importance(train, test, structures, contrib): train = pd.merge(train, contrib, how="left", left_on=["molecule_name", "atom_index_0", "atom_index_1", "type"], right_on=["molecule_name", "atom_index_0", "atom_index_1", "type"]) structures = get_atom_rad_en(structures) structures = calc_bonds(structures) train = train.sample(frac=0.5).reset_index(drop=True) train = map_atom_info(train, structures, 0) train = map_atom_info(train, structures, 1) train = calc_dist(train) train["type_0"] = train["type"].apply(lambda x: x[0]) utils.show_mem_usage(train) train = create_features_full(train) utils.show_mem_usage(train) print("Encoding strings") for f in ["atom_0", "atom_1", "type_0", "type"]: lbl = LabelEncoder() lbl.fit(list(train[f].values)) train[f] = lbl.transform(list(train[f].values)) return train, test
[ "went.went.takkun135@gmail.com" ]
went.went.takkun135@gmail.com
3461812b9d0cecd1cdaa91a09e231df8c71459ba
01f434d0f96cb5bc2475d675e0082dfe1b5b240e
/DQN/DQN-Distributed.py
89f1e0c4a27b8a967c4629bfcbeb3c2ca55fa6f3
[]
no_license
david-simoes-93/GeoFriends2
2212fb0e27265680218a2d3f7a0b0d3e439ae875
5ef8fbdedc8d518b42deca4574771436d65371f7
refs/heads/master
2022-03-05T22:47:47.091191
2019-11-13T10:20:18
2019-11-13T10:20:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,022
py
# While training is taking place, statistics on agent performance are available from Tensorboard. To launch it use: # # tensorboard --logdir=worker_0:'./train_0',worker_1:'./train_1',worker_2:'./train_2',worker_3:'./train_3' # tensorboard --logdir=worker_0:'./train_0' # tensorboard --logdir=worker_0:'./train_0',worker_1:'./train_1',worker_2:'./train_2',worker_3:'./train_3',worker_4:'./train_4',worker_5:'./train_5',worker_6:'./train_6',worker_7:'./train_7',worker_8:'./train_8',worker_9:'./train_9',worker_10:'./train_10',worker_11:'./train_11' import argparse import os import tensorflow as tf from DQN.DQNetwork import QNetwork1Step from DQN.DQNSlave import WorkerGF2 from simulator.GymEnvGF import GymEnvGF max_episode_length = 4000 gamma = .99 # discount rate for advantage estimation and reward discounting state_size_square = 9 state_size_circle = 11 height = 1 number_of_cell_types = 1 learning_rate = 1e-5 action_size_square = 4 action_size_circle = 4 model_path = './model_dist' use_lstm = False use_conv_layers = False display = True parser = argparse.ArgumentParser() parser.register("type", "bool", lambda v: v.lower() == "true") parser.add_argument( "--task_index", type=int, default=0, help="Index of task within the job" ) parser.add_argument( "--slaves_per_url", type=str, default="1", help="Comma-separated list of maximum tasks within the job" ) parser.add_argument( "--urls", type=str, default="localhost", help="Comma-separated list of hostnames" ) parser.add_argument( "--learning", type=int, default=1, help="0 no one learning; 1 square learning; 2 circle learning; 3 both learning" ) FLAGS, unparsed = parser.parse_known_args() if FLAGS.learning == 0: # train neither circle_learning = False square_learning = False elif FLAGS.learning == 1: # train square circle_learning = False square_learning = True elif FLAGS.learning == 2: # train circle circle_learning = True square_learning = False elif FLAGS.learning == 3: # train both circle_learning = True square_learning = True # Create a cluster from the parameter server and worker hosts. hosts = [] for (url, max_per_url) in zip(FLAGS.urls.split(","), FLAGS.slaves_per_url.split(",")): for i in range(int(max_per_url)): hosts.append(url + ":" + str(2210 + i)) cluster = tf.train.ClusterSpec({"dqn": hosts}) server = tf.train.Server(cluster, job_name="dqn", task_index=FLAGS.task_index) tf.reset_default_graph() # Create a directory to save models if not os.path.exists(model_path): os.makedirs(model_path) with tf.device(tf.train.replica_device_setter(worker_device="/job:dqn/task:%d" % FLAGS.task_index, cluster=cluster)): global_episodes = tf.contrib.framework.get_or_create_global_step() trainer_square = tf.train.AdamOptimizer(learning_rate=learning_rate) trainer_circle = tf.train.AdamOptimizer(learning_rate=learning_rate) master_network_square = QNetwork1Step(state_size_square, action_size_square, 'global_square', None, use_conv_layers, use_lstm) # Generate global network master_network_circle = QNetwork1Step(state_size_circle, action_size_circle, 'global_circle', None, use_conv_layers, use_lstm) # Generate global network # Master declares worker for all slaves for i in range(len(hosts)): print("Initializing variables for slave ", i) if i == FLAGS.task_index: worker = WorkerGF2(GymEnvGF(rectangle=square_learning, circle=circle_learning), i, state_size_square, state_size_circle, action_size_square, action_size_circle, trainer_square, trainer_circle, model_path, global_episodes, use_lstm, use_conv_layers, display, rectangle_learning=square_learning, circle_learning=circle_learning) else: WorkerGF2(None, i, state_size_square, state_size_circle, action_size_square, action_size_circle, trainer_square, trainer_circle, model_path, global_episodes, use_lstm, use_conv_layers, False, rectangle_learning=square_learning, circle_learning=circle_learning) print("Starting session", server.target, FLAGS.task_index) hooks = [tf.train.StopAtStepHook(last_step=100000)] with tf.train.MonitoredTrainingSession(master=server.target, is_chief=(FLAGS.task_index == 0), config=tf.ConfigProto(), # config=tf.ConfigProto(log_device_placement=True), save_summaries_steps=100, save_checkpoint_secs=600, checkpoint_dir=model_path, hooks=hooks) as mon_sess: print("Started session") try: worker.work(max_episode_length, gamma, mon_sess) except RuntimeError: print("Puff") print("Done")
[ "david.simoes@ua.pt" ]
david.simoes@ua.pt
b9a7fa1f314effcd4db89f89c729e12b6a1e82c7
3ff99e2d39a9faf807715b7b8b6c22f112729f96
/setup.py
66b86394deab623ca740334ffa3425e163c88b84
[]
no_license
agramfort/sphinx-gallery
577a3eeb60650c7808918fa9f49ac7aace759640
7beb0402184cc09d727b8514d9a5ec56567a2d58
refs/heads/master
2023-07-06T19:41:53.362333
2015-02-05T10:17:35
2015-02-05T10:17:35
30,350,251
0
0
null
2015-07-15T16:33:58
2015-02-05T10:33:57
Python
UTF-8
Python
false
false
755
py
# -*- coding: utf-8 -*- """ Installer Sphinx extension for gallery generator """ from setuptools import setup, find_packages import sphinxgallery with open('README.rst') as f: long_description = f.read() setup( name="sphinx-gallery", description="Sphinx extension to automatically generate an examples gallery", long_description=long_description, version=sphinxgallery.__version__, packages=find_packages(), package_data={'sphinxgallery': ['_static/gallery.css', '_static/no_image.png']}, url="https://github.com/sphinx-gallery/sphinx-gallery", author="Óscar Nájera", author_email='najera.oscar@gmail.com', install_requires=['Sphinx', 'matplotlib', 'pillow', 'joblib'], setup_requires=['nose>=1.0'] )
[ "najera.oscar@gmail.com" ]
najera.oscar@gmail.com
d7d9cfef46cc29c32cb58ad91d797ec6134461e1
e2104b3dc1ce8388e4322f0affc2b40ba9268fa5
/tts.py
64cc9572cdbbfa323118fb876cfd59f38adb7378
[]
no_license
amandal1810/micro-projects
131f14dac5ac49fc1f727c588c0b3e50596403e3
7c2d2964db97fd51877e0e7067cd71fc23464ebf
refs/heads/master
2020-06-02T18:06:15.317715
2015-04-21T05:20:16
2015-04-21T05:20:16
34,304,513
0
0
null
null
null
null
UTF-8
Python
false
false
456
py
#type in a text as input and hear it in voice! A small Text-to-Speech Convereter using the Yahoo TTS API. Voice will play in your default media player. import urllib2, urllib import os baseurl = "http://tts-api.com/tts.mp3?" print "enter text to convert to speech : " text = raw_input() api_url = baseurl + urllib.urlencode({'q':text}) result = urllib2.urlopen(api_url).read() f = open('tts.mp3', 'wb') f.write(result) f.close() os.system("start tts.mp3")
[ "amandal1810@gmail.com" ]
amandal1810@gmail.com
7407743f54f6be332092091cc5aeff85ebab3e76
c420b322c305a4ec940acabb9aa756b9315a3f1d
/tests/google_test.py
5d6d79db53dccabf9e4a05c94791206b91ad0098
[ "MIT" ]
permissive
360fun/fest
1a13fa8ffdec93c85d066b18b9fa9eb4010cb461
f624ecd8569d1d640a83a1ee9d872237d303ca3e
refs/heads/master
2020-05-19T14:14:22.959398
2019-05-01T16:53:36
2019-05-01T16:53:36
185,056,247
0
0
MIT
2019-05-05T16:32:15
2019-05-05T16:32:14
null
UTF-8
Python
false
false
9,694
py
from unittest import mock import pytest from fest import facebook from fest import google from fest import utils def test_google_page_iter_events(): mockapi = mock.MagicMock() mockapi.events.return_value.list.return_value.execute.side_effect = [ { 'items': [{'id': '1'}, {'id': '2'}], 'nextPageToken': 'fizz', }, { 'items': [{'id': '3'}, {'id': '4'}], }, ] gcal = google.GoogleCalendar(mockapi, 'MyGCal') ret = gcal.get_events().filter(lambda x: x['id'] < '4').execute() exp = [{'id': '1'}, {'id': '2'}, {'id': '3'}] assert ret == exp def test_google_page_sync(): mockf = mock.MagicMock() mockg = mock.MagicMock() fevents = [ { 'id': '1', 'start_time': '2018-12-12T12:00:00-0500', 'end_time': '2018-12-12T13:00:00-0500', 'description': 'some description 1', 'name': 'Event 1', 'place': { 'name': 'Boston Public Library', 'location': { 'city': 'Boston', 'country': 'United States', 'state': 'MA', 'street': '700 Boylston St', 'zip': '02116', }, }, }, { 'id': '2', 'start_time': '2018-12-13T12:00:00-0500', 'end_time': '2018-12-13T13:00:00-0500', 'description': 'some description 2', 'name': 'Event 2', 'place': { 'name': 'Boston Public Library', 'location': { 'city': 'Boston', 'country': 'United States', 'state': 'MA', 'street': '700 Boylston St', 'zip': '02116', }, }, }, { 'id': '3', 'start_time': '2018-12-14T12:00:00-0500', 'end_time': '2018-12-14T13:00:00-0500', 'description': 'some description 3', 'name': 'Event 3', 'place': { 'name': 'Boston Public Library', 'location': { 'city': 'Boston', 'country': 'United States', 'state': 'MA', 'street': '700 Boylston St', 'zip': '02116', }, }, }, ] gevents = [ { 'id': '1', 'summary': 'Event 1', 'extendedProperties': { 'private': { 'facebookId': '1', 'facebookPageId': 'MyPage', 'facebookDigest': 'c572922673ad8110b615238f8c48cd38ee156bdc', } } }, { 'id': '2', 'summary': 'Event 2', 'extendedProperties': { 'private': { 'facebookId': '2', 'facebookPageId': 'MyPage', 'facebookDigest': 'OUTDATED', } } }, { 'id': '4', 'summary': 'Event 4', 'extendedProperties': { 'private': { 'facebookId': '4', 'facebookPageId': 'MyPage', 'facebookDigest': '', } } } ] mockf.get_object.side_effect = [{'data': fevents}] mockf.get_objects.side_effect = [{x['id']: x for x in fevents}] mockg.events.return_value.list.return_value.execute.side_effect = \ [{'items': gevents}] gcal = google.GoogleCalendar(mockg, 'MyGCal') page = facebook.FacebookPage(mockf, 'MyPage') ret = gcal.sync(page, time_filter='upcoming').execute() mockg.events.return_value.insert.assert_called_once_with( calendarId='MyGCal', body={ 'summary': 'Event 3', 'description': 'some description 3\n\nhttps://www.facebook.com/3', 'location': 'Boston Public Library ' '700 Boylston St ' 'Boston MA United States 02116', 'start': { 'dateTime': '2018-12-14T12:00:00-05:00', 'timeZone': 'UTC-05:00', }, 'end': { 'dateTime': '2018-12-14T13:00:00-05:00', 'timeZone': 'UTC-05:00', }, 'extendedProperties': { 'private': { 'facebookDigest': '6a1960a370ba8f16031d729ebfdbccb1110b5fd7', 'facebookId': '3', 'facebookPageId': 'MyPage', }, }, }, ) mockg.events.return_value.update.assert_called_once_with( calendarId='MyGCal', eventId='2', body={ 'summary': 'Event 2', 'description': 'some description 2\n\nhttps://www.facebook.com/2', 'location': 'Boston Public Library ' '700 Boylston St ' 'Boston MA United States 02116', 'start': { 'dateTime': '2018-12-13T12:00:00-05:00', 'timeZone': 'UTC-05:00', }, 'end': { 'dateTime': '2018-12-13T13:00:00-05:00', 'timeZone': 'UTC-05:00', }, 'extendedProperties': { 'private': { 'facebookDigest': '505f25b09ebde5a6e2587849d364d118ad740454', 'facebookId': '2', 'facebookPageId': 'MyPage', }, }, }, ) mockg.events.return_value.delete.assert_called_once_with( calendarId='MyGCal', eventId='4', ) @mock.patch('fest.utils.digest') def test_google_page_sync_multibatch(mock_digest): mock_digest.return_value = '<digest>' mockf = mock.MagicMock() mockg = mock.MagicMock() items = range(0, 99) mockf.get_object.side_effect = mockf.get_objects.side_effect = [ { 'data': [ { 'id': str(x), 'start_time': '2018-12-12T12:00:00-0500', 'end_time': '2018-12-12T13:00:00-0500', 'description': f'some description {x}', 'name': f'Event {x}', 'place': { 'name': 'Boston Public Library', 'location': { 'city': 'Boston', 'country': 'United States', 'state': 'MA', 'street': '700 Boylston St', 'zip': '02116', }, }, } for x in items ], }, ] mockg.events.return_value.list.return_value.execute.side_effect = [ { 'items': [], }, ] gcal = google.GoogleCalendar(mockg, 'MyGCal') page = facebook.FacebookPage(mockf, 'MyPage') gcal.sync(page, time_filter='upcoming').execute() mockg.events.return_value.insert.assert_has_calls([ mock.call( calendarId='MyGCal', body={ 'summary': f'Event {x}', 'description': f'some description {x}\n\nhttps://www.facebook.com/{x}', 'location': 'Boston Public Library ' '700 Boylston St ' 'Boston MA United States 02116', 'start': { 'dateTime': '2018-12-12T12:00:00-05:00', 'timeZone': 'UTC-05:00', }, 'end': { 'dateTime': '2018-12-12T13:00:00-05:00', 'timeZone': 'UTC-05:00', }, 'extendedProperties': { 'private': { 'facebookDigest': '<digest>', 'facebookId': str(x), 'facebookPageId': 'MyPage', }, }, }, ) for x in items ]) mockg.new_batch_http_request.return_value.execute.assert_has_calls([ mock.call(), mock.call(), ]) def test_google_page_sync_no_op(): mockf = mock.MagicMock() mockg = mock.MagicMock() mockf.get_object.side_effect = mockf.get_objects.side_effect = [ { 'data': [], }, ] gcal = google.GoogleCalendar(mockg, 'MyGCal') page = facebook.FacebookPage(mockf, 'MyPage') sync = gcal.sync(page, time_filter='upcoming') sync.filter(lambda x: x).execute() mockg.new_batch_http_request.assert_not_called() def test_callback(): mockapi = mock.MagicMock() gcal = google.GoogleCalendar(mockapi, 'MyGCal') page = facebook.FacebookPage(mockapi, 'MyPage') sync = gcal.sync(page, time_filter='upcoming') callback = sync.callbackgen('POST') res = { 'extendedProperties': { 'private': { 'facebookId': '1' }, }, } callback('id', res, None) assert sync.responses['POST'] == {'1': res} def test_callback_err(): mockapi = mock.MagicMock() gcal = google.GoogleCalendar(mockapi, 'MyGCal') page = facebook.FacebookPage(mockapi, 'MyPage') sync = gcal.sync(page, time_filter='upcoming') callback = sync.callbackgen([]) with pytest.raises(ValueError): callback('id', 'response', ValueError)
[ "amancevice@cargometrics.com" ]
amancevice@cargometrics.com
1de65acee10ef24ba750717c71573dbe0048d961
c3843a5a787e54569387c29b9c0ab937798e650a
/resource-dispatcher/triggering/__init__.py
86a28a4b0dc8a4e82fdf5a194d3e21c561878189
[ "Apache-2.0" ]
permissive
redhat-cop/tool-integrations
d7c16f07196447422ce880508bdd8df4e512e58c
028ebb29eb63006b42d2c6767a1a28814710c26d
refs/heads/master
2023-03-08T19:28:55.337217
2022-04-06T19:54:49
2022-04-06T19:54:49
146,352,641
7
20
Apache-2.0
2023-03-13T10:26:54
2018-08-27T20:51:08
Python
UTF-8
Python
false
false
1,246
py
import time from triggering.scheduled import schedule_trigger, run as run_scheduled from triggering.webhook import WebHook use_webhook_triggers = False def configure_triggers(task, job): global use_webhook_triggers for trigger in task["triggers"]: if trigger["type"] == "scheduled": schedule_trigger(task["name"], trigger, job) print(f"Configured scheduler for task {task['name']}") elif trigger["type"] == "webhook": webhook = WebHook() webhook.add(task["name"], trigger["route"], job) use_webhook_triggers = True print(f"Configured webhook handler for task {task['name']}") def start(): global use_webhook_triggers if use_webhook_triggers: print("Webhook handlers have been configured... spawning webserver thread.") webhook = WebHook() webhook.listen() else: print("No webhook triggers detected... Skipping webserver initialization.") print() print("---------------------------------------------") print("Configuration is complete - tasks are active.") print("---------------------------------------------") print() while True: run_scheduled() time.sleep(1)
[ "noreply@github.com" ]
redhat-cop.noreply@github.com
79e34307db263114700edf431775570f6216a74b
bf924da04db250c383a1d1fa793f036f6fd123ee
/src/basics/mount_device.py
5e02383f99b272b78a711af885bdafd3d409c694
[ "Apache-2.0" ]
permissive
mizhu2/cosc-learning-labs
2bb2d60fa9e9f6b0630029b742e2901a34480f69
81bf3ee8338975ea54458142920e951e64dc6161
refs/heads/master
2020-02-26T13:49:51.410772
2015-05-05T09:35:39
2015-05-05T09:35:39
35,090,897
0
1
null
2015-05-05T09:42:49
2015-05-05T09:42:48
null
UTF-8
Python
false
false
4,505
py
# Copyright 2014 Cisco Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. try: from urllib import quote_plus except ImportError: from urllib.parse import quote_plus from basics.odl_http import odl_http_post, odl_http_get, odl_http_delete _request_content_template = '''<?xml version="1.0" encoding="UTF-8"?> <module xmlns="urn:opendaylight:params:xml:ns:yang:controller:config"> <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">prefix:sal-netconf-connector</type> <name>%s</name> <address xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">%s</address> <port xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">%s</port> <username xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">%s</username> <password xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">%s</password> <tcp-only xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf">false</tcp-only> <event-executor xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf"> <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:netty">prefix:netty-event-executor</type> <name>global-event-executor</name> </event-executor> <binding-registry xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf"> <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:md:sal:binding">prefix:binding-broker-osgi-registry</type> <name>binding-osgi-broker</name> </binding-registry> <dom-registry xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf"> <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:md:sal:dom">prefix:dom-broker-osgi-registry</type> <name>dom-broker</name> </dom-registry> <client-dispatcher xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf"> <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:config:netconf">prefix:netconf-client-dispatcher</type> <name>global-netconf-dispatcher</name> </client-dispatcher> <processing-executor xmlns="urn:opendaylight:params:xml:ns:yang:controller:md:sal:connector:netconf"> <type xmlns:prefix="urn:opendaylight:params:xml:ns:yang:controller:threadpool"> prefix:threadpool</type> <name>global-netconf-processing-executor</name> </processing-executor> </module> ''' _bgp_url_suffix = 'config/opendaylight-inventory:nodes/node/controller-config/yang-ext:mount/config:modules' _dismount_url_suffix_template = 'config/opendaylight-inventory:nodes/node/controller-config/yang-ext:mount/config:modules/module/odl-sal-netconf-connector-cfg:sal-netconf-connector/%s' def mount_device( device_name, device_address, device_port, device_username, device_password ): request_content = _request_content_template % (device_name, device_address, device_port, device_username, device_password) odl_http_post(_bgp_url_suffix, 'application/xml', request_content) def dismount_device( device_name ): 'Dismount a network device that has been mounted on the ODL server.' # request_content = _request_content_template % (device_name, device_address, device_port, device_username, device_password) # request_content = _request_content_template % (quote_plus(device_name), 'dummy_address', 'dummy_port', 'dummy_username', 'dummy_password') dismount_url_suffix = _dismount_url_suffix_template % device_name print odl_http_get(dismount_url_suffix, 'application/xml', expected_status_code=200).text odl_http_delete(dismount_url_suffix, 'application/xml', expected_status_code=200) print odl_http_get(dismount_url_suffix, 'application/xml', expected_status_code=200).text
[ "kjarrad@cisco.com" ]
kjarrad@cisco.com
6880b72bbf3c24a798403324abcd33474591e71e
d4e96aa48ddff651558a3fe2212ebb3a3afe5ac3
/Modules/ThirdParty/pygccxml/src/pygccxml/declarations/decl_visitor.py
a5d7c4c4d39c76813dc9fa30b451d4476a6a6b34
[ "SMLNJ", "BSD-3-Clause", "LicenseRef-scancode-free-unknown", "LicenseRef-scancode-mit-old-style", "LicenseRef-scancode-other-permissive", "LicenseRef-scancode-unknown-license-reference", "LicenseRef-scancode-warranty-disclaimer", "NTP", "IJG", "GPL-1.0-or-later", "libtiff", "BSD-4.3TAHOE", "Zlib", "MIT", "LicenseRef-scancode-proprietary-license", "Spencer-86", "Apache-2.0", "FSFUL", "LicenseRef-scancode-public-domain", "Libpng", "BSD-2-Clause" ]
permissive
nalinimsingh/ITK_4D
18e8929672df64df58a6446f047e6ec04d3c2616
95a2eacaeaffe572889832ef0894239f89e3f303
refs/heads/master
2020-03-17T18:58:50.953317
2018-10-01T20:46:43
2018-10-01T21:21:01
133,841,430
0
0
Apache-2.0
2018-05-17T16:34:54
2018-05-17T16:34:53
null
UTF-8
Python
false
false
1,440
py
# Copyright 2014-2016 Insight Software Consortium. # Copyright 2004-2008 Roman Yakovenko. # Distributed under the Boost Software License, Version 1.0. # See http://www.boost.org/LICENSE_1_0.txt """ defines declarations visitor class interface """ class decl_visitor_t(object): """ declarations visitor interface All functions within this class should be redefined in derived classes. """ def __init__(self): object.__init__(self) def visit_member_function(self): raise NotImplementedError() def visit_constructor(self): raise NotImplementedError() def visit_destructor(self): raise NotImplementedError() def visit_member_operator(self): raise NotImplementedError() def visit_casting_operator(self): raise NotImplementedError() def visit_free_function(self): raise NotImplementedError() def visit_free_operator(self): raise NotImplementedError() def visit_class_declaration(self): raise NotImplementedError() def visit_class(self): raise NotImplementedError() def visit_enumeration(self): raise NotImplementedError() def visit_namespace(self): raise NotImplementedError() def visit_typedef(self): raise NotImplementedError() def visit_variable(self): raise NotImplementedError()
[ "ruizhi@csail.mit.edu" ]
ruizhi@csail.mit.edu
a70f7d1a185d9185df7f8a94018f522b4d971f18
f25fba01f8aab8ed8e8314fe6bfb4b97bc0c6f72
/test12.py
7a48d176b3cd77a6cbcedfcaa5b770729782dcbe
[]
no_license
NineOverGOAT/Pylab1
814ebd7fd46cab8336703e49fe79f66c88d5ad64
a941f26abdb3f015cc9b7b83e619e9242719338a
refs/heads/master
2020-03-14T09:30:05.213354
2018-07-29T22:41:19
2018-07-29T22:41:19
131,546,030
0
0
null
null
null
null
UTF-8
Python
false
false
114
py
addming some additional code nominal python scripty thingy adding more scripty thingies and more scrypty thingies
[ "anderson.donovan@gmail.com" ]
anderson.donovan@gmail.com
ca12ddc797982eecc3a030c05dbb4d297aa3a2f9
327c394b5c8b57283237f5ab7c794adb782d7e27
/testSalience.py
c2b1c251ae1d4b22911889eae6d3a78879a7a3dd
[ "MIT" ]
permissive
santacml/Malware-as-Video
25225d23e81581625deaf697ea334684ef656014
12dc3954f2237cb34857a44eadbb5ca76f8e97b5
refs/heads/master
2020-05-21T11:51:11.506221
2019-05-10T19:27:51
2019-05-10T19:27:51
186,040,328
1
1
null
null
null
null
UTF-8
Python
false
false
17,012
py
import pickle, gzip, glob, sys, keras, os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # gets rid of AVX message import random as rn import numpy as np import tensorflow as tf os.environ['PYTHONHASHSEED'] = '0' np.random.seed(37) rn.seed(1254) tf.set_random_seed(89) from keras import optimizers from keras import backend as K from keras.models import load_model from keras.layers import * from keras.models import Sequential from keras.losses import weighted_categorical_crossentropy from keras.callbacks import CSVLogger, ModelCheckpoint from keras.regularizers import * from keras.utils.generic_utils import get_custom_objects from keras.layers.advanced_activations import LeakyReLU, ELU sys.path.insert(0, r'.\libraries') from kerasLayers import * from kerasExtras import * elu = ELU(1) elu.__name__ = "ELU" import time from keras import Model import matplotlib.pyplot as plt from scipy.ndimage.filters import gaussian_filter from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity import seaborn as sns from blobifier import Blobifier from sequential import SequentialClusterer input_length = None # binary standard line_length = 25 num_samples = 7500 num_samples_valid = 1600 train_name = r".\libraries\datasets\kagglewindows\windows_exe_dll_kaggle_nopad_pooled.pklz" valid_name = r".\libraries\datasets\kagglewindows\windows_exe_dll_kaggle_validation_nopad_pooled.pklz" steps_per_epoch = num_samples/batch_size valid_steps = num_samples_valid/batch_size # should be this model = load_model(r".\networks\dist binary final nets\pruned from 5\KaggleConv-22.hdf5", custom_objects={'DecayingConvLSTM2D':MinConvRNN, 'window_size': window_size , 'ELU': elu, } ) # mode = "kaggle" mode = "binary" if mode == "binary": lossFunc = 'binary_crossentropy' generatorFunc = loadDataGeneratorBinary elif mode == "kaggle": lossFunc = 'categorical_crossentropy' generatorFunc = loadDataGenerator def compileModel(model): optimizer = "rmsprop" model.compile(optimizer=optimizer, loss=lossFunc, metrics=['accuracy']) def salienceTest(model, confMatrixFile): if mode == "binary" or mode == "kaggle": train_gen = generatorFunc(train_name, num_samples) valid_gen = generatorFunc(valid_name, num_samples_valid) else: raise ValueError("mode must be kaggle or binary") compileModel(model) print(model.summary()) answers = [] preds = [] total_correct = 0 total_run = 0 correctCountClasses = [0]*9 incorrectCountClasses = [0]*9 times = [] confMatrix = np.zeros((9,9)) # remainingAmounts = [] totalBytes = 0 totalNNZ = 0 grad = K.gradients(model.layers[-1].input, model.layers[1].output)[0] sess = K.get_session() mal_x = [] ben_x = [] blobifyX = [] blobifyY = [] scatterLabels = [] new_mal_x = [] new_ben_x = [] blobifier = Blobifier() for x in range(0, int(valid_steps)): train_x, train_y = next(valid_gen) # for x in range(0, int(steps_per_epoch)): # train_x, train_y = next(train_gen) length = train_x.shape[1] answer = train_y.tolist()[0] answers.append(answer) out = sess.run(grad, feed_dict={model.input: train_x}) out = out[0] # comes in array of length 1 out = out.reshape((int(out.shape[0]*out.shape[1]), out.shape[2], out.shape[3])) # filter input based on gradient value new_train_x = np.copy(train_x[0]) new_train_x[np.abs(np.max(out, axis=2)) < 1e-16] = 0 # works great ''' # different filtering attempts # new_train_x[np.abs(np.max(out, axis=2)) > 1e-16] = 0 # works TERRIBLY for proof! # new_train_x[np.abs(np.max(out, axis=2)) < 1e-4] = 0 # works fine # new_train_x[np.max(np.abs(out), axis=2) < 1e-4] = 0 # works fine # did not work # m = np.max(np.abs(out), axis=2) # new_train_x[m < (np.mean(m) - .5*np.std(m))] = 0 # attempt - this doesn't work # blurred = gaussian_filter(new_train_x, sigma=1) # new_train_x_blurred = np.copy(train_x[0]) # new_train_x_blurred[np.abs(blurred) < 15] = 0 # new_train_x = new_train_x_blurred ''' # keep filtered w/o blobs removed not_removed = new_train_x # remove low gradient areas if np.sum(new_train_x) > 0: new_train_x = blobifier.blobify(new_train_x, int(answer)) # Plot images # fig = plt.figure() # show different saliency maps # ax1 = fig.add_subplot(1,4,1) # ax1.imshow(train_x[0], cmap='gray') # plt.axis('off') # ax2 = fig.add_subplot(1,4, 2) # ax2.imshow(np.mean(out, axis=2), cmap='gray') # plt.axis('off') # ax3 = fig.add_subplot(1,4, 3) # ax3.imshow(np.max(out, axis=2), cmap='gray') # plt.axis('off') # ax4 = fig.add_subplot(1,4, 4) # ax4.imshow(np.min(out, axis=2), cmap='gray') # plt.axis('off') # filtering example # ax1 = fig.add_subplot(1,4,1) # ax1.imshow(train_x[0], cmap='gray') # plt.axis('off') # ax3 = fig.add_subplot(1,4, 2) # ax3.imshow(np.max(out, axis=2), cmap='gray') # plt.axis('off') # ax1 = fig.add_subplot(1,4,3) # ax1.imshow(not_removed, cmap='gray') # plt.axis('off') # ax1 = fig.add_subplot(1,4,4) # ax1.imshow(new_train_x, cmap='gray') # plt.axis('off') # plt.show() # make prediction on filtered version start = time.time() pred = model.predict(np.asarray([new_train_x.tolist()])).tolist()[0] # pred = model.predict(train_x).tolist()[0] amt = time.time() - start times.append(amt) preds.append(pred) totalNNZ += np.count_nonzero(new_train_x) totalBytes += train_x.size if int(answer): mal_x.append(train_x) new_mal_x.append(new_train_x) else: ben_x.append(train_x) new_ben_x.append(new_train_x) if mode == "binary": pred = round(pred[0]) ansClass = int(answer) if pred == ansClass: total_correct += 1 correctCountClasses[ansClass] += 1 else: incorrectCountClasses[ansClass] += 1 # print(pred == ansClass, np.count_nonzero(new_train_x) / new_train_x.size) confMatrix[ansClass][pred] += 1 total_run += 1 if x % 50 == 0: print("interval", x, "correct so far", total_correct, "% of total bytes left", totalNNZ/totalBytes) elif mode == "kaggle": # ansClass = numpy.argmax(train_y,1)[0] ansClass = answer.index(max(answer)) predClass = pred.index(max(pred)) if predClass == ansClass: total_correct += 1 correctCountClasses[ansClass] += 1 else: incorrectCountClasses[ansClass] += 1 confMatrix[ansClass][predClass] += 1 total_run += 1 if x % 500 == 0: print("interval", x, "correct so far", total_correct) print("correct:", total_correct, "out of", total_run) print("correct per class :", correctCountClasses) print("incorrect per class:", incorrectCountClasses) print("mean time to predict", np.mean(times)) print(confMatrix) if confMatrixFile: np.savetxt(confMatrixFile, confMatrix, delimiter=",") # plot length of file vs amount removed, per class # plt.scatter(blobifier.blobifyX, blobifier.blobifyY, c=blobifier.blobifyC) # plt.show() # blobs are separated into lists - malware blobs and benign blobs # can use them however you want print("number of malware blobs:", len(blobifier.malwareBlobs)) #6019, 5982, 5957 print("number of benign blobs:", len(blobifier.benignBlobs)) #10512, 10580 # show individual blobs for blob in blobifier.malwareBlobs: fig = plt.figure() ax1 = fig.add_subplot(1,4,1) ax1.imshow(blob, cmap='gray') plt.axis('off') plt.show() # blobifier.malwareBlobs = blobifier.malwareBlobs[:300] # for testing! makes things much faster for clustering, analysis. FOR DEBUG ONLY # cluster blobs if desired # clusterer = SequentialClusterer() # clusterer.addCandidates(blobifier.malwareBlobs) # clusterer.addCandidates(blobifier.benignBlobs) # clusterer.cluster() # distance analysis if desired # distanceAnalysis(blobifier, mal_x, ben_x) def distanceAnalysis(blobifier, mal_x, ben_x): # do the distance analysis in part 5 of paper # somewhat sketchy, but seems significant # To see if this works at all.. # blobifier.malwareBlobs = new_mal_x[:100] # blobifier.benignBlobs = new_ben_x[:100] # mal_x = mal_x[:100] # ben_x = ben_x[:100] for n in range(0, len(blobifier.malwareBlobs)): # correlation # blobifier.malwareBlobs[n] = np.array(blobifier.malwareBlobs[n]).flatten() # tf dif blobifier.malwareBlobs[n] = np.array(blobifier.malwareBlobs[n]).flatten() blobifier.malwareBlobs[n] = " ".join([str(item) for item in blobifier.malwareBlobs[n]]) # substrings # flat = np.array(blobifier.malwareBlobs[n]).flatten() # blobifier.malwareBlobs[n] = np.trim_zeros(flat).tolist() # for n grams manually # blobifier.malwareBlobs[n] = [str(int(item)) for item in blobifier.malwareBlobs[n]] for n in range(0, len(blobifier.benignBlobs)): # correlation # blobifier.benignBlobs[n] = np.array(blobifier.benignBlobs[n]).flatten() # tf dif blobifier.benignBlobs[n] = np.array(blobifier.benignBlobs[n]).flatten() blobifier.benignBlobs[n] = " ".join([str(item) for item in blobifier.benignBlobs[n]]) # substrings # flat = np.array(blobifier.benignBlobs[n]).flatten() # blobifier.benignBlobs[n] = np.trim_zeros(flat).tolist() # for n grams manually # blobifier.benignBlobs[n] = [str(int(item)) for item in blobifier.benignBlobs[n]] print("beginning test") # transform regular files like above for n in range(0, len(mal_x)): # tf dif mal_x[n] = np.array(mal_x[n]).flatten() mal_x[n] = " ".join([str(item) for item in mal_x[n]]) for n in range(0, len(ben_x)): ben_x[n] = np.array(ben_x[n]).flatten() ben_x[n] = " ".join([str(item) for item in ben_x[n]]) lowerN = 1 upperN = 1 print("performing tfidf") tfidf = TfidfVectorizer(ngram_range=(lowerN,upperN)).fit_transform(blobifier.malwareBlobs) similarity_matrix = tfidf * tfidf.T indices = np.triu_indices(similarity_matrix.shape[0], k=1) similarities = similarity_matrix[indices].flatten() print("Blobbed malware to malware") print("mean", np.mean(similarities), "max", np.max(similarities), "min", np.min(similarities), "std", np.std(similarities)) benignTFIDF = TfidfVectorizer(ngram_range=(lowerN,upperN)).fit(blobifier.malwareBlobs) benignTFIDF = benignTFIDF.transform(blobifier.benignBlobs) crossSimilarities = tfidf * benignTFIDF.T crossSimilarities = crossSimilarities.A.flatten() print("Blobbed malware to benign") print("mean", np.mean(crossSimilarities), "max", np.max(crossSimilarities), "min", np.min(crossSimilarities), "std", np.std(crossSimilarities)) benign_similarity_matrix = benignTFIDF * benignTFIDF.T indices = np.triu_indices(benign_similarity_matrix.shape[0], k=1) benign_similarities = benign_similarity_matrix[indices].flatten() print("Blobbed benign to benign") print("mean", np.mean(benign_similarities), "max", np.max(benign_similarities), "min", np.min(benign_similarities), "std", np.std(benign_similarities)) postMalMalSim = similarities postMalBenSim = crossSimilarities postBenBenSim = benign_similarities print() print() tfidf = TfidfVectorizer(ngram_range=(lowerN,upperN)).fit_transform(mal_x) similarity_matrix = tfidf * tfidf.T indices = np.triu_indices(similarity_matrix.shape[0], k=1) similarities = similarity_matrix[indices].flatten() print("Normal malware to malware") print("mean", np.mean(similarities), "max", np.max(similarities), "min", np.min(similarities), "std", np.std(similarities)) benignTFIDF = TfidfVectorizer(ngram_range=(lowerN,upperN)).fit(mal_x) benignTFIDF = benignTFIDF.transform(ben_x) crossSimilarities = tfidf * benignTFIDF.T crossSimilarities = crossSimilarities.A.flatten() print("Normal malware to benign") print("mean", np.mean(crossSimilarities), "max", np.max(crossSimilarities), "min", np.min(crossSimilarities), "std", np.std(crossSimilarities)) benign_similarity_matrix = benignTFIDF * benignTFIDF.T indices = np.triu_indices(benign_similarity_matrix.shape[0], k=1) benign_similarities = benign_similarity_matrix[indices].flatten() print("Normal benign to benign") print("mean", np.mean(benign_similarities), "max", np.max(benign_similarities), "min", np.min(benign_similarities), "std", np.std(benign_similarities)) preMalMalSim = similarities preMalBenSim = crossSimilarities preBenBenSim = benign_similarities print() print() print("Statistics test") # from scipy.stats import ttest_ind # print("Malware to Malware", ttest_ind(postMalMalSim.T, preMalMalSim.T, equal_var=False)) # print("Malware to Benign", ttest_ind(postMalBenSim.T, preMalBenSim.T, equal_var=False)) # print("Benign to Benign", ttest_ind(postBenBenSim.T, preBenBenSim.T, equal_var=False)) from scipy import stats print("Malware to Malware", stats.ttest_rel(postMalMalSim.T, preMalMalSim.T)) print("Malware to Benign", stats.ttest_rel(postMalBenSim.T, preMalBenSim.T)) print("Benign to Benign", stats.ttest_rel(postBenBenSim.T, preBenBenSim.T)) print("Malware to Malware kruskal", stats.kruskal(postMalMalSim.T, preMalMalSim.T)) print("Malware to Benign kruskal", stats.kruskal(postMalBenSim.T, preMalBenSim.T)) print("Benign to Benign kruskal", stats.kruskal(postBenBenSim.T, preBenBenSim.T)) # https://stackoverflow.com/questions/44862712/td-idf-find-cosine-similarity-between-new-document-and-dataset # https://stackoverflow.com/questions/6255835/cosine-similarity-and-tf-idf?rq=1 # https://github.com/scipy/scipy/issues/7759 # https://www.itl.nist.gov/div898/handbook/prc/section4/prc41.htm sns.distplot(preMalBenSim) plt.show() sns.distplot(postMalBenSim) plt.show() sns.distplot(preBenBenSim) plt.show() sns.distplot(postBenBenSim) plt.show() sns.distplot(postMalMalSim) plt.show() sns.distplot(preMalMalSim) plt.show() # ''' def blobToImage(blob): tokens = blob.split(" ") # for token in tokens: # print(token) # print(token[:-2]) # comes as 237.0, cut off .-0 tokens = [int(token[:-2]) for token in tokens] arr = np.array(tokens) arr = arr.reshape((int(arr.shape[0]/25), 25)) return arr def lookAtClusters(): # clusterFile = r".\clusters_sequential.pklz" clusterFile = r".\clusters_sequential_BENIGN.pklz" readMe = gzip.open(clusterFile, "r") clusters = pickle.load(readMe) print(len(clusters)) # print(clusters[0][0]) for cluster in clusters: rn.shuffle(cluster) firstFew = cluster[:20] fig = plt.figure() for n, blob in enumerate(firstFew): ax1 = fig.add_subplot(4,5,n+1) ax1.imshow(blobToImage(blob), cmap='gray') plt.axis('off') plt.show() if __name__ == "__main__": print("--------------------Performing Salience Test--------------------") salienceTest(model, "") # print("--------------------Looking At Clusters--------------------") # lookAtClusters() print("--------------------Testing Over--------------------")
[ "santacml@mail.uc.edu" ]
santacml@mail.uc.edu
a1bd962349d27e4a59ae4070a21b49787a1ee1b1
380f0b5d0ae85e56ae09e591b7aac48a3f5cb8d2
/milho/validators.py
f5871d838f3772eca4a5b61ef85ca09389de3194
[]
no_license
EnzoSalvadori/MilhoSite
563982b45d79e4479887bfd42eee24d458d2c3c4
e76df3a720dfba37edaac211ae6768205448729a
refs/heads/main
2023-08-01T10:09:02.400227
2021-09-23T14:23:16
2021-09-23T14:23:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
251
py
from django.core.exceptions import ValidationError def validate_file_size(value): filesize= value.size if filesize > 100: raise ValidationError("The maximum file size that can be uploaded is 10MB") else: return value
[ "63012963+EnzoSalvadori@users.noreply.github.com" ]
63012963+EnzoSalvadori@users.noreply.github.com
439b31ff32f2eef202bba54a32940a0b31b9ae25
9fc87cb12e7cfd8de0aa6ddf1717852a7385e61b
/agents.py
06f310eb516003aea8e03adbf65226c7fde9a451
[]
no_license
VipinVeetil/network_coordination
a8ba721514b3cb556caf7a52495a5664b2c741f4
37911a7aca44b1c83b07bc4c3caa8005a4a0e281
refs/heads/master
2021-01-10T15:19:33.368961
2016-01-27T23:29:18
2016-01-27T23:29:18
50,057,015
0
0
null
null
null
null
UTF-8
Python
false
false
1,446
py
""" Please feel free to use the code without citing or crediting the author(s) mentioned below. Cheers to science :-) I'd be happy to hear from you about how to improve this code, and as to how the code may have been useful to you. Author: Vipin P. Veetil Contact: vipin.veetil@gmail.com Paper title: Network Origins of Coordination Paper URL: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2621852 Language: Python Module name: agents """ from __future__ import division import random class Agent(object): def __initi__(self): self.number_of_states = 0 """ number of possible states """ self.state = 0 """ present state """ self.frequency_neighbors_states = [0] * self.number_of_states """ the number of neighbors that have each of the possible states """ def update_neighbors_states(self, neighbors_states): """ record the states of the neighbors """ self.frequency_neighbors_states = [0] * self.number_of_states for state in neighbors_states: self.frequency_neighbors_states[state] += 1 def update_state(self): """ update one's own state to the state that is most frequent among neighbors """ m = max(self.frequency_neighbors_states) max_states = [state for state, x in enumerate(self.frequency_neighbors_states) if x == m] """ make a list of the states that have highest frequency, it is possible more than one state has highest frequency """ self.state = random.choice(max_states)
[ "vipin.veetil@gmail.com" ]
vipin.veetil@gmail.com
91dff73b31e860e887c69abb52768513aeedd943
4aa3a9f658802666800d7de9ceee1db9a5335da5
/tests/test_phantom.py
26d1fb1557a81f91fbee16ab2a92fe5a8ed8a7fb
[ "LicenseRef-scancode-cecill-b-en", "CECILL-B" ]
permissive
esoubrie/siddon
98d03099dece19a388c5a4fc5ab649b47483f503
d87b309320a16a7fcd9002f72b30b896d4013c7d
refs/heads/master
2021-01-21T20:50:01.804675
2019-12-09T09:01:47
2019-12-09T09:01:47
1,012,046
3
0
null
null
null
null
UTF-8
Python
false
false
1,694
py
#!/usr/bin/env python """ Testing phantom generation module. """ import nose from numpy.testing import * import numpy as np from tomograpy import phantom from tomograpy.phantom import * # test cases phantoms = [yu_ye_wang, shepp_logan, modified_shepp_logan] # not everything is working if some dimensions are 1 or 2 now: #shapes = [(1, 1, 1), (16, 16, 16), (16, 16, 1), (16, 1, 1)] shapes = [(16, 16, 16), (16, 16, 3), (16, 3, 3), (3, 16, 3), (3, 3, 16)] shape16 = shapes[0] dtypes = [np.float32, np.float64, np.int32, np.int64] spheres = [ {'A':1, 'a':1., 'b':1., 'c':1., 'x0':0., 'y0':0., 'z0':0., 'phi':0., 'theta':0., 'psi':0.}, {'A':.5, 'a':1., 'b':1., 'c':1., 'x0':0., 'y0':0., 'z0':0., 'phi':0., 'theta':0., 'psi':0.} ] spheres_arrays = [ [[1., 1., 1., 1., 0., 0., 0., 0., 0., 0.]], [[.5, 1., 1., 1., 0., 0., 0., 0., 0., 0.]], ] # tests for all predifined phantoms for p in phantoms: def test_shape(): for shape in shapes: yield assert_equal, p(shape).shape, shape def test_dtype(): for dtype in dtypes: for shape in shapes: yield assert_equal, p(shape, dtype=dtype).dtype, dtype # tests on the phantom function def test_central_value(): for shape in shapes: i, j, k = np.asarray(shape) / 2. for p in spheres: yield assert_equal, phantom(shape, [p,])[i, j, k], p['A'] # test conversion from array to dict def test_array_to_parameters(): from siddon.phantom import _array_to_parameters for a, p in zip(spheres_arrays, spheres): yield assert_array_equal, _array_to_parameters(a), p if __name__ == "__main__": nose.run(argv=['', __file__])
[ "nicolas.a.barbey@gmail.com" ]
nicolas.a.barbey@gmail.com
71f1773daec9c741a842d55a7e3912d779d8463d
927e8a9390d219a14fce6922ab054e2521a083d3
/contest 21/lucy's home.py
6a1412bfd92bba7ca8499e7dbc513558d0e0c567
[]
no_license
RavinderSinghPB/data-structure-and-algorithm
19e7784f24b3536e29486ddabf4830f9eb578005
f48c759fc347471a44ac4bb4362e99efacdd228b
refs/heads/master
2023-08-23T21:07:28.704498
2020-07-18T09:44:04
2020-07-18T09:44:04
265,993,890
0
0
null
null
null
null
UTF-8
Python
false
false
720
py
def getMax(arr,n): return max(arr) def getSum(arr,n): return sum(arr) def numOfPaint(arr,n,maxLen): ttl,numOfPaintr=0,1 for i in range(n): ttl+=arr[i] if ttl>maxLen: ttl=arr[i] numOfPaintr+=1 return numOfPaintr def Min_Time(arr,n,k): lo=max(arr) hi=sum(arr) while lo<hi: mid=lo+(hi-lo)//2 reqPaint=numOfPaint(arr,n,mid) if reqPaint<=k: hi=mid else: lo=mid+1 return lo if __name__ == '__main__': tcs=int(input()) for _ in range(tcs): k,n=[int(x) for x in input().split()] arr=[int(x) for x in input().split()] print(Min_Time(arr,n,k))
[ "ravindersingh.gfg@gmail.com" ]
ravindersingh.gfg@gmail.com
e044b589bba7e4cbc4b896312eb463c02e2beb49
53438732c6bc70b0d15eea99d961d6036f8839df
/Practice1/Login/migrations/0001_initial.py
1449691fdd485d2e73bb38cacffa2f68d64360c6
[]
no_license
Amarjeet2629/MyPycharmProjects
6e07c972dce8ef12453ae0246bcbfcfd03cba1fb
179a87f327d7c036a6192d0c6e372f2f1e3588ff
refs/heads/master
2023-05-07T20:32:22.091132
2021-04-20T17:06:15
2021-04-20T17:06:15
224,671,445
0
0
null
2023-04-21T20:51:29
2019-11-28T14:32:13
Python
UTF-8
Python
false
false
620
py
# Generated by Django 2.2.5 on 2019-09-03 11:20 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='user', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('first', models.CharField(max_length=264)), ('last', models.CharField(max_length=264)), ('email', models.EmailField(max_length=264, unique=True)), ], ), ]
[ "amarjeet.sinha.mec17@itbhu.ac.in" ]
amarjeet.sinha.mec17@itbhu.ac.in
6e455b6a41be5b2c636c214c709bbab5e0d50cee
5e9f7de171d63e68bc5dbfffde62fb24aebab479
/src/utils.py
9763028a027fefb5ec615c973ac41b3bec07bcd5
[]
no_license
dinvincible98/Camera_Calibration_LIB
80123b1b2e05f2b2773a7ad3800957cc47cde176
350380d73628d59a24352d12debdbc3f49100786
refs/heads/master
2023-08-20T02:44:27.566410
2021-10-26T23:14:19
2021-10-26T23:14:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,374
py
# Utils Functions import numpy as np import math def get_transformation_matrix(pts, pt_type): x , y = 0, 0 if pt_type == 0: x, y = pts[:,0][:,0], pts[:,0][:,1] else: x, y = pts[:,0], pts[:,1] mean_x = np.mean(x) mean_y = np.mean(y) var_x = np.var(x) var_y = np.var(y) sx = np.sqrt(2.0 / var_x) sy = np.sqrt(2.0 / var_y) # Transformation matrix Nx = np.array([[sx, 0.0,-sx*mean_x], [0.0, sy, -sy*mean_y], [0.0, 0.0, 1.0]]) return Nx def homo_cost_func(coordinates, *params): h11, h12, h13, h21, h22, h23, h31, h32, h33 = params N = coordinates.shape[0] // 2 X = coordinates[:N] Y = coordinates[N:] w = h31*X + h32*Y + h33 x = (h11*X + h12*Y + h13) / w y = (h21*X + h22*Y + h23) / w res = np.zeros_like(coordinates) res[:N] = x res[N:] = y # print(res) return res def homo_jacobian_func(coordinates, *params): h11, h12, h13, h21, h22, h23, h31, h32, h33 = params N = coordinates.shape[0] // 2 X = coordinates[:N] Y = coordinates[N:] J = np.zeros((2*N,9)) J_x = J[:N] J_y = J[N:] s_x = h11*X + h12*Y + h13 s_y = h21*X + h22*Y + h23 w = h31*X + h32*Y + h33 J_x[:,0] = X / w J_x[:,1] = Y / w J_x[:,2] = 1 / w J_x[:,6] = -s_x*X / (w*w) J_x[:,7] = -s_x*Y / (w*w) J_x[:,8] = -s_x / (w*w) J_y[:,3] = X / w J_y[:,4] = Y / w J_y[:,5] = 1 / w J_y[:,6] = -s_y*X / (w*w) J_y[:,7] = -s_y*Y / (w*w) J_y[:,8] = -s_y / (w*w) return J def create_v_ij(i,j,h_list): v_ij = np.zeros((h_list.shape[0],6)) v_ij[:,0] = h_list[:,0,i] * h_list[:,0,j] v_ij[:,1] = h_list[:,0,i]*h_list[:,1,j] + h_list[:,1,i]* h_list[:,0,j] v_ij[:,2] = h_list[:,1,i] * h_list[:,1,j] v_ij[:,3] = h_list[:,2,i]*h_list[:,0,j] + h_list[:,0,i]*h_list[:,2,j] v_ij[:,4] = h_list[:,2,i]*h_list[:,1,j] + h_list[:,1,i]*h_list[:,2,j] v_ij[:,5] = h_list[:,2,i] * h_list[:,2,j] return v_ij def to_homogenous_pts(pts): pts = np.atleast_2d(pts) N = pts.shape[0] pts_hom = np.hstack((pts,np.ones((N,1)))) return pts_hom def to_homogeneous_3d_pts(pts): if(pts.ndim !=2 or pts.shape[-1]!=2): raise ValueError("Must be 2d inhomogenous") N = pts.shape[0] pts_3d = np.hstack((pts,np.zeros((N,1)))) # print(pts_3d) pts_3d_hom = to_homogenous_pts(pts_3d) return pts_3d_hom def to_inhomogenous_pts(pts): pts = np.atleast_2d(pts) N = pts.shape[0] pts /= pts[:,-1][:,np.newaxis] pts_inhom = pts[:,:-1] return pts_inhom def to_rodrigues_vec(rot_mat): p = 0.5 * np.array([[rot_mat[2][1]-rot_mat[1][2]], [rot_mat[0][2]-rot_mat[2][0]], [rot_mat[1][0]-rot_mat[0][1]]]) c = 0.5 * (np.trace(rot_mat)-1) # print(p) # print(c) if np.linalg.norm(p) == 0: if c == 1: rot_vec = np.array([0,0,0]) elif c == -1: rot_mat_plus = rot_mat + np.eye(3,3,dtype='float') norm_arr = np.array([np.linalg.norm(rot_mat_plus[:,0]), np.linalg.norm(rot_mat_plus[:,1]), np.linalg.norm(rot_mat_plus[:,2])]) v = rot_mat_plus[:, np.where(norm_arr==max(norm_arr))] u = v / np.linalg.norm(v) # print(u) u0, u1, u2 = u[0], u[1], u[2] if u0<0 or (u0==0 and u1<0) or (u0==0 and u1==0 and u2<0): u = -u rot_vec = math.pi * u else: rot_vec = [] else: u = p / np.linalg.norm(p) # print(u) theta = math.atan2(np.linalg.norm(p),c) rot_vec = theta * u return rot_vec def to_rotation_matrix(rot_vec): theta = np.linalg.norm(rot_vec) rot_vec_hat = rot_vec / np.linalg.norm(rot_vec) # unit vector rot_x, rot_y, rot_z = rot_vec_hat[0], rot_vec_hat[1], rot_vec_hat[2] W = np.array([[0, -rot_z, rot_y], [rot_z, 0, -rot_z], [-rot_y, rot_x, 0]]) R = np.eye(3,dtype=np.float32) + W*math.sin(theta) + W*W*(1-math.cos(theta)) return R def compose_parameter_vector(cam_intrinsics, k, ext_list): a = np.array([cam_intrinsics[0][0], cam_intrinsics[1][1], cam_intrinsics[0][1], cam_intrinsics[0][2], cam_intrinsics[1][2], k[0], k[1]]) P = a M = len(ext_list) for i in range(M): R, t = ext_list[i][:,:3], ext_list[i][:,3] # print(R) # print(t) rot_vec = to_rodrigues_vec(R) w = np.append(rot_vec,t) P = np.append(P,w) return P def decompose_parameter_vector(P): cam_intrinsics = np.array([[P[0],P[2],P[3]], [0, P[1], P[4]], [0, 0, 1]]) k = np.array([P[5], P[6]]) W = [] # list of R|t matrix M = (len(P) - 7) // 6 # num of extrinsics in list for i in range(M): m = 7 + 6*i rot_vec = P[m:m+3] t = np.reshape(P[m+3:m+6],(3,-1)) R = to_rotation_matrix(rot_vec) R_t = np.concatenate((R,t),axis=1) W.append(R_t) return cam_intrinsics, k, W def get_project_coordinates(cam_intrinsics, ext, k, coord): coor = np.array([coord[0],coord[1],0,1]) coor_norm = np.dot(ext,coor) coor_norm /= coor_norm[-1] r = np.linalg.norm(coor_norm) uv = np.dot(np.dot(cam_intrinsics,ext),coor) uv /= uv[-1] u0 = uv[0] v0 = uv[1] uc = cam_intrinsics[0][2] vc = cam_intrinsics[1][2] u = u0 + (u0-uc)*r*r*k[0] + (u0-uc)*r*r*r*r*k[1] v = v0 + (v0-vc)*r*r*k[0] + (v0-vc)*r*r*r*r*k[1] return np.array([u,v]) def refine_cost_func(P, W, img_pts, obj_pts): M = (len(P)-7) // 6 # num of views N = len(obj_pts[0]) # num of model pts cam_intrinsics = np.array([[P[0], P[2], P[3]], [0, P[1], P[4]], [0, 0, 1]]) k = np.array(P[5:7]) Y = np.array([]) # print(k) for i in range(M): m = 7 + 6*i w = P[m:m+6] W_curr = W[i] for j in range(N): Y = np.append(Y,get_project_coordinates(cam_intrinsics,W_curr,k,obj_pts[i][j])) error_Y = np.array(img_pts).reshape(-1) - Y # print(error_Y) return error_Y def refine_jacobian_func(P, W, img_pts, obj_pts): M = (len(P)-7) // 6 # num of views N = len(obj_pts[0]) # num of model pts K = len(P) cam_intrinsics = np.array([[P[0], P[2], P[3]], [0, P[1], P[4]], [0, 0, 1]]) dist = np.array(P[5:7]) # print(K) res = np.array([]) for i in range(M): m = 7 + 6*i w = P[m:m+6] R = to_rotation_matrix(w[:3]) # print(R) t = w[3:].reshape(3,1) # print(t) W_curr = np.concatenate((R,t),axis=1) # print(W_curr) for j in range(N): res = np.append(res, get_project_coordinates(cam_intrinsics,W_curr,dist,obj_pts[i][j])) # print(res) J = np.zeros((K, 2*M*N)) for k in range(K): J[k] = np.gradient(res,P[k]) # print(J) return np.transpose(J)
[ "mingqingyuan2021@u.northwestern.edu" ]
mingqingyuan2021@u.northwestern.edu
08124406eb4df7184a595374b98b557697402c8b
dcd6ff8ad969688b7055ed0e7484979f71344ff3
/tests/runtests.py
b407de16944f88d75b89e70bb1477722ef917134
[ "Unlicense" ]
permissive
Laeeth/ohmygentool
f9cf2f6376a185335a4ad63d99985eba27f6582c
fa9c16d5bba2f249ea92a58a19f4377d046b95f0
refs/heads/master
2020-06-18T00:42:59.301565
2019-06-07T03:54:42
2019-06-07T03:54:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,649
py
''' Entry point for running system tests ''' import os import sys import importlib import argparse # Make helper modules visible in tests sys.path.append("./") def find_tests(base_path=None): '''Finds all test packages in specified directory''' return find_selected(it for it in os.listdir(base_path) if it != '__pycache__') def find_selected(names): for p in names: modpath = os.path.join(os.getcwd(), p) if not os.path.isdir(modpath): continue try: test = importlib.import_module(p) yield test except Exception as e: print(e) pass def do_optional(f): '''Tries silently call f() ignoring non existing attributes''' try: f() except AttributeError: pass def run_tests(tests): '''Run tests with optional setup and teardown phases''' tests_ok = True for n,test in enumerate(tests, 1): if not run_single(test, n): tests_ok = False if not tests_ok: print('Some tests not passed') else: print('All tests are OK') def run_single(test, num=None): '''Run single test''' print(f'TEST {num or ""} [{test.__name__}]') do_optional(lambda: test.setup()) try: test.run() except Exception as e: print(e) return False finally: do_optional(lambda: test.teardown()) return True if __name__=='__main__': if len(sys.argv) == 1: run_tests(find_tests()) else: print('Running selected tests:') print('\t', " ".join(sys.argv[1:])) run_tests(find_selected(sys.argv[1:]))
[ "absxv@yandex.ru" ]
absxv@yandex.ru
593bcc9022a20d45e452698f766029e01470e609
28851f6d1e1d123074d0e8ccdff910dd59635aec
/Exceptions/try_except_finally.py
bd909544efeb4c407023f28acd2d1803af2cfdf1
[]
no_license
sagarjaspal/Training
fc76ee921e1e38118e08cdd3287484135e05ec23
dbded9588be970d1e933f838f760229b9f88867b
refs/heads/master
2020-03-22T12:13:49.918234
2018-07-16T15:42:56
2018-07-16T15:42:56
140,026,235
0
0
null
null
null
null
UTF-8
Python
false
false
308
py
a = int(input('Enter a: ')) b = int(input('Enter b: ')) try: password = '007' x = a/b li = [1, 2, 3, 4] print('Output', x) except ZeroDivisionError as ze: print('Exception is', ze) finally: password = '' print('Pass', password) print('Hi finally') print('I am still running')
[ "fantooshsagar.15@gmail.com" ]
fantooshsagar.15@gmail.com
92b7c7674156b1087f0f8989c6f71269d54d18a3
a3c662a5eda4e269a8c81c99e229879b946a76f6
/.venv/lib/python3.7/site-packages/pylint/test/regrtest_data/import_package_subpackage_module.py
2864e3c9efc4d60c43b428750f852330ec8b8ae2
[ "MIT" ]
permissive
ahmadreza-smdi/ms-shop
0c29da82c58b243507575672bbc94fb6e8068aeb
65ba3f3061e2ac5c63115b08dadfe7d67f645fb6
refs/heads/master
2023-04-27T19:51:34.858182
2019-11-24T20:57:59
2019-11-24T20:57:59
223,616,552
6
2
MIT
2023-04-21T20:51:21
2019-11-23T16:09:03
Python
UTF-8
Python
false
false
2,238
py
# pylint: disable=I0011,C0301,W0611 """I found some of my scripts trigger off an AttributeError in pylint 0.8.1 (with common 0.12.0 and astroid 0.13.1). Traceback (most recent call last): File "/usr/bin/pylint", line 4, in ? lint.Run(sys.argv[1:]) File "/usr/lib/python2.4/site-packages/pylint/lint.py", line 729, in __init__ linter.check(args) File "/usr/lib/python2.4/site-packages/pylint/lint.py", line 412, in check self.check_file(filepath, modname, checkers) File "/usr/lib/python2.4/site-packages/pylint/lint.py", line 426, in check_file astroid = self._check_file(filepath, modname, checkers) File "/usr/lib/python2.4/site-packages/pylint/lint.py", line 450, in _check_file self.check_astroid_module(astroid, checkers) File "/usr/lib/python2.4/site-packages/pylint/lint.py", line 494, in check_astroid_module self.astroid_events(astroid, [checker for checker in checkers File "/usr/lib/python2.4/site-packages/pylint/lint.py", line 511, in astroid_events self.astroid_events(child, checkers, _reversed_checkers) File "/usr/lib/python2.4/site-packages/pylint/lint.py", line 511, in astroid_events self.astroid_events(child, checkers, _reversed_checkers) File "/usr/lib/python2.4/site-packages/pylint/lint.py", line 508, in astroid_events checker.visit(astroid) File "/usr/lib/python2.4/site-packages/logilab/astroid/utils.py", line 84, in visit method(node) File "/usr/lib/python2.4/site-packages/pylint/checkers/variables.py", line 295, in visit_import self._check_module_attrs(node, module, name_parts[1:]) File "/usr/lib/python2.4/site-packages/pylint/checkers/variables.py", line 357, in _check_module_attrs self.add_message('E0611', args=(name, module.name), AttributeError: Import instance has no attribute 'name' You can reproduce it by: (1) create package structure like the following: package/ __init__.py subpackage/ __init__.py module.py (2) in package/__init__.py write: import subpackage (3) run pylint with a script importing package.subpackage.module. """ import package.subpackage.module __revision__ = '$Id: import_package_subpackage_module.py,v 1.1 2005-11-10 16:08:54 syt Exp $'
[ "ahmadreza.smdi@gmail.com" ]
ahmadreza.smdi@gmail.com
0a2e229c505d383bc4f65ae2067c2d1e61f70836
d427f6f1863091acfa8675784051850932b717d3
/iscsi.py
819e6b3a652990621d16f9aab0de6eade751e21c
[]
no_license
Adarsh-sophos/Arcus-Cloud
f2adb63c6f21b218fa174489d082d67b04f24e59
32e37fbf7d5e6defc5b753adf0eaf388ee9c1df8
refs/heads/master
2021-03-20T03:35:03.207470
2019-01-12T09:55:36
2019-01-12T09:55:36
94,601,605
5
1
null
null
null
null
UTF-8
Python
false
false
4,675
py
#!/usr/bin/python2 import config import header import cgi,commands,os,MySQLdb header.header_content() if(os.environ['REQUEST_METHOD'] == "POST"): db = MySQLdb.connect("localhost","root", "Aj1.....", "arcus") cursor = db.cursor() # get username sql = "SELECT * FROM users WHERE id={0}". format(header.cookie_value()) try: cursor.execute(sql) results = cursor.fetchone() userName = results[1] except: print "Error: unable to fecth data" iqn = cgi.FormContent()['iqn'][0] vgname = 'vg1' clientIP = cgi.FormContent()['clientIP'][0] size = cgi.FormContent()['size'][0] sql = "INSERT INTO iscsi(user_id,size,clientIP,state,iqn) VALUES ({0},{1},'{2}','{3}','{4}')". format(int(header.cookie_value()), int(size), clientIP, "login", iqn) try: cursor.execute(sql) #db.commit() except: # Rollback in case there is any error print("could not insert in database") db.rollback() last_id = cursor.lastrowid targetsFp = open("/Arcus/public/tmp/iscsi/targets.conf", "a") targetsFp.write("\n<target {0}>\n\tbacking-store /dev/{1}/{2}-iscsi\n</target>\n\n". format(iqn, vgname, last_id)) targetsFp.close() ansibleString = """ - hosts: web tasks: #yum install scsi-target-utils -y - package: name: "scsi-target-utils" state: present #create LV - lvol: vg: {3} lv: {0}-iscsi size: {1} #create a partition in storage (don't format) #write in /etc/tgt/targets.conf file - #<target {2}> # backing-store /dev/{3}/{0}-iscsi #</target> - name: "setup config file" copy: src: "/Arcus/public/tmp/iscsi/targets.conf" dest: "/etc/tgt/targets.conf" #systemctl restart tgtd - service: name: "tgtd" state: restarted """. format(last_id, size, iqn, vgname) ansibleProg = open("/Arcus/public/tmp/iscsi/iscsi.yaml", "w") ansibleProg.write(ansibleString) ansibleProg.close() ansF = commands.getstatusoutput("sudo ansible-playbook /Arcus/public/tmp/iscsi/iscsi.yaml") if(ansF[0] == 0): print("<pre> " + ansF[1] + " </pre>") # set up client sshString = "sudo sshpass -p {0} ssh -o stricthostkeychecking=no -l root {1}". format("redhat", clientIP) inF = commands.getstatusoutput(sshString + " sudo yum install iscsi-initiator-utils -y") if(inF[0] == 0): disF = commands.getstatusoutput(sshString + " sudo iscsiadm --mode discoverydb --type sendtargets --portal {} --discover". format('192.168.43.171')) if(disF[0] == 0): logF = commands.getstatusoutput(sshString + " sudo iscsiadm --mode node --targetname {0} --portal {1}:3260 --login". format(iqn, '192.168.43.171')) if(logF[0] == 0): print("<h3>setup complete</h3>") db.commit() else: print(logF[1]) db.rollback() else: print(disF[1]) db.rollback() else: print(inF[1]) db.rollback() else: print("<pre> " + ansF[1] + " </pre>") db.rollback() elif(os.environ['REQUEST_METHOD'] == "GET"): print """ <div class="form-photo"> <div class="form-container"> <div class="image-holder" style="background-image:url(&quot;/img/svg_cloud_nfs.jpg&quot;);margin:10px;padding:20px;"></div> <form method="POST" action="iscsi.py"> <h2 class="text-center">iSCSI Share</h2> <div class="form-group"> <input class="form-control" type="text" name="clientIP" placeholder="clientIP"> </div> <div class="form-group"> <input class="form-control" type="text" name="size" placeholder="Drive size in MB"> </div> <div class="form-group"> <input class="form-control" type="text" name="iqn" placeholder="IQN"> </div> <div class="form-group has-success"> <div class="checkbox"> <label class="control-label" style="margin:auto;"> <input type="checkbox"> Confirm?</label> </div> </div> <div class="form-group"> <button class="btn btn-primary btn-block" type="submit">SUBMIT </button> </div> </form> </div> </div> <script src="/js/jquery.min.js"></script> <script src="/bootstrap/js/bootstrap.min.js"></script> <script src="https://cdn.datatables.net/1.10.15/js/jquery.dataTables.min.js"></script> <script src="https://cdn.datatables.net/1.10.15/js/dataTables.bootstrap.min.js"></script> <script src="/js/script.min.js"></script> </body> </html> """
[ "adarshjain583@gmail.com" ]
adarshjain583@gmail.com
1590e040d0ea13bf23e01f855954dc37ec2831ba
af442a26d532457295b74e54cf52993a89370959
/app/api/v1/webhook.py
e794992036294ea01fac0ed254bf6e0ac03e9da8
[]
no_license
ForkManager/Forked-fastcampusapi
2b286f0631db2750553c4a3ca2edefb1bd1010a0
89f77c55ac1abc45c925bef84d01a48c24ef703f
refs/heads/main
2023-05-29T15:43:49.272591
2021-06-18T13:57:59
2021-06-18T13:57:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,072
py
from fastapi import APIRouter, Body, Request, Depends from pydantic import HttpUrl from sqlalchemy import func from sqlalchemy.orm.session import Session from app import models, schemas from app.config import settings from app.database import get_db from app.lib import telegram router = APIRouter() bot = telegram.Telegram(settings.TELEGRAM_BOT_TOKEN) def add_user(user: schemas.User, db: Session) -> models.User: row = models.User( id=user.id, username=user.username, first_name=user.first_name, last_name=user.last_name, ) db.add(row) db.commit() return row @router.get("") async def get_webhook(): return await bot.get_webhook() @router.post("") async def set_webhook(url: HttpUrl = Body(..., embed=True)): return await bot.set_webhook(url) @router.post(f"/{settings.TELEGRAM_BOT_TOKEN.get_secret_value()}") async def webhook(request: Request, db: Session = Depends(get_db)): req = await request.json() print(req) update = telegram.schemas.Update.parse_obj(req) message = update.message user = update.message.from_ db_user = db.query(models.User).filter_by(id=user.id).first() if not db_user: db_user = add_user(user, db) msg = "✨ '문제' 또는 '퀴즈'라고 말씀하시면 문제를 냅니다!" if "문제" in message.text or "퀴즈" in message.text: quiz = db.query(models.Quiz).order_by(func.RAND()).first() if not quiz: await bot.send_message(message.chat.id, "퀴즈가 없습니다") return db_user.quiz_id = quiz.id msg = f"{quiz.question}\n\n{quiz.content}" elif db_user.quiz_id and message.text.isnumeric(): correct = db_user.quiz.answer == int(message.text) msg = f"아쉽네요, {db_user.quiz.answer}번이 정답입니다." if correct: db_user.score += 1 msg = f"{db_user.quiz.answer}번, 정답입니다!" db_user.quiz_id = None await bot.send_message(message.chat.id, msg) db.commit() return "OK"
[ "rurouni24@gmail.com" ]
rurouni24@gmail.com
7a44c1c6a8598cad317cdf98afb950856f18fc76
b84e8cfea8b1452387da0562c999aa5fd742dd2c
/convert_ksn_to_points_and_delete_extras.py
f0ff3c5ab4182ffc85c5a5c1e254906beca4796e
[ "MIT" ]
permissive
cmshobe/grass-scripts
ba8100b6b4541e700fdeb4f8e555452513f8c7a2
5d593f301fd708252e5a69b7304ce28ea8490506
refs/heads/master
2020-04-04T08:40:21.773623
2019-03-20T22:42:19
2019-03-20T22:42:19
154,883,321
0
0
null
null
null
null
UTF-8
Python
false
false
2,649
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Nov 29 10:39:29 2018 @author: charlie This script does two main things: 1) turns the ksn line segments into points (each segment into 3 points) 2) deletes the excess points such that each line segment is only identified by a single midpoint, which holds the same attribute values that the ksn lines held. """ import numpy as np from grass.pygrass.modules.shortcuts import general as g from grass.pygrass.modules.shortcuts import vector as v from grass.pygrass.modules.shortcuts import database as db #first, use v.to.points to convert ksn segments to points (there will be a #point at the beginning, middle, and end of each segment) chan_segs_lines = 'chan_segs_with_litho_proj' v.to.points(flags='p', input=chan_segs_lines, type='line', dmax=100) #then, copy chan_segs_points so we keep a pristine version in case we mess up g.copy(vector='chan_segs_points,chan_segs_points_trimmed') #then, loop through an iterable, deleting two out of the three #ksn points for each segment knowing that there are three points for each #segment: one has "along"=0, one has "along"=n, and the one we want to keep #has "along"=n/2 #we use v.edit with the "delete" function #so I will be selecting the points I want to delete #THE BELOW LOOP SUCCESSFULLY DELETES ALL ZERO VALUES BUT NOT THE MAXIMA points_file = 'chan_segs_points' expression = '"along" = 0' v.edit(map=points_file, layer=2, type='point', tool='delete', where=expression) #NOW NEED A SECOND LOOP TO TAKE CARE OF DELETING THE MAXIMUM VALUES points_file = 'chan_segs_points' num_chan_segs = 102318 catlist = [] for chan_seg in range(num_chan_segs): lcat = chan_seg + 1 #lcats start at 1, not 0. expression_2 = 'SELECT cat,MAX("along") FROM chan_segs_points_2 WHERE "lcat" = ' + str(lcat) #use db.select to find the cat of the point I want to delete filename = 'sql_out.txt' db.select(overwrite=True, sql=expression_2, separator='comma', output=filename) #this will select the point I want to #delete and write it out to line 2 of a csv file. So in Numpy speak #the way to access the cat is now [0,0] of that csv as long as the #header row is skipped on import. data = np.genfromtxt(filename, delimiter=',', skip_header=1) cat = data[0] #this gives me the category I want to delete!! catstr = str(int(cat)) catlist.append(catstr) #turn the list into a format v.edit can understand catstringall = ",".join(catlist) #now outside the loop, delete v.edit(map=points_file, layer=2, type='point', tool='delete', cats=catstringall)
[ "charles.shobe@colorado.edu" ]
charles.shobe@colorado.edu
4ddc745a90e783629283a00b83a524d4e752e4c8
4e63d92e2b144d0ae0d0881cf55feaf91a79573d
/Light_out Puzzle/light_out_puzzle.py
52db2f61e0b2d6d0aa48e1952a198396d419ff80
[]
no_license
swaelali/Old-Stuff
d943dfc1845741aa6f64dd3e30647065b2f5fad2
ce04b1edd6561429108803e8f13a2aaf0d6d5740
refs/heads/master
2021-01-01T06:03:23.962440
2017-07-17T07:52:56
2017-07-17T07:52:56
97,345,923
0
0
null
null
null
null
UTF-8
Python
false
false
5,332
py
# Light out Puzzle Solution ALGORITHM # Solution of Light out puzzle up to 3x3 from GF2 import * def combine(puzz_matrix): ''' Return a list of all possible combinations according following constraints: - no repeation - don't care of the sequence of the numbers''' buttons = len(puzz_matrix)*len(puzz_matrix[0]) phase = 1 main_combination=[] combinations = [] while phase < buttons: if phase == 1: for x in range(1,buttons +1): main_combination.append(x) combinations = main_combination.copy() phase +=1 else: temp_combinations = combinations.copy() for i in range(len(main_combination)): for x in range(len(combinations)): temp = int(str(main_combination[i])+str(combinations[x])) temp_combinations.append(temp) #Flterations repeat = buttons while repeat !=0: for element in temp_combinations: temp_element= str(element) for x in temp_element: if temp_element.count(x)%2 == 0: temp_combinations.remove(element) break repeat -=1 # inner sorting comp_element = '' temp_element_list = [] temp_temp_combinations = [] for element in temp_combinations: temp_element= str(element) for x in temp_element: temp_element_list.append(int(x)) temp_element_list.sort() for pointer in range(len(temp_element_list)): comp_element = comp_element+str(temp_element_list[pointer]) temp_temp_combinations.append(int(comp_element)) comp_element = '' temp_element_list = [] temp_combinations = temp_temp_combinations.copy() combinations = list(set(temp_combinations)).copy() combinations.sort() phase +=1 return combinations def assign_matrix_elements(puzz_matrix): ''' Return dictionary with pairs of poisition as key and the corresponding of this poistion in matrix_puzz as value''' assignment_dic={(x,y):one for x in range(len(puzz_matrix)) for y in range(len(puzz_matrix[0]))} return assignment_dic def get_buttons_vectors(puzz_matrix): ''' Return a dictionary of buttons as keys and corresponding vectors (dictionary) as values''' buttons = len(puzz_matrix)*len(puzz_matrix[0]) buttons_vectors ={} matrix_pairs = assign_matrix_elements(puzz_matrix) button_position_dic={} position_corresponding_map_dic = {} max_row = len(puzz_matrix) max_col = len(puzz_matrix[0]) row = 0 col = 0 button = 1 while button < (buttons +1): for row in range(max_row): for col in range(max_col): button_position_dic[button]=(row,col) button +=1 temp_set =set() for x in range(max_row): for y in range(max_col): temp_set.add((x,y)) if x+1 < max_row: temp_set.add((x+1,y)) if x-1 >=0: temp_set.add((x-1,y)) if y+1 < max_col: temp_set.add((x,y+1)) if y-1 >=0: temp_set.add((x,y-1)) position_corresponding_map_dic[(x,y)]=temp_set temp_set = set() for button in button_position_dic.keys(): buttons_vectors[button]= {x:matrix_pairs[x] for x in position_corresponding_map_dic[button_position_dic[button]]} return buttons_vectors def Check(combination,vectors_dic,puzz_matrix): temp_matrix=puzz_matrix.copy() extacted_vector ={} pointing_seq = str(combination) for button in pointing_seq: button = int(button) extracted_vector= vectors_dic[button] for x in range(len(temp_matrix)): for y in range(len(temp_matrix[0])): if (x,y) in extracted_vector.keys(): temp_matrix[x][y] = temp_matrix[x][y]+extracted_vector[(x,y)] # Checking for x in range(len(temp_matrix)): for y in range(len(temp_matrix[0])): if temp_matrix[x][y] == 0: temp_matrix=[] return False temp_matrix=[] return True # Demonstration original_matrix = [[0,0,one],[one,0,one],[0,one,0]] print("Combining ...") combinations = combine(original_matrix) print(len(combinations)," combinations found!") print('Solving...') vectors_dic = get_buttons_vectors(original_matrix) for combination in combinations: original_matrix = [[0,0,one],[one,0,one],[0,one,0]] if Check(combination,vectors_dic,original_matrix): print("Solution obtained! use that sequence ",combination) break
[ "wa2el.ali@gmail.com" ]
wa2el.ali@gmail.com
629d9cf082028fa5564dadaee985f0da6dc39041
159de093afa6e94e853d7721fc96c902e5767bc5
/Model/utils.py
7f594fae6b66f51d8fec995f04bbc4ff64ea9339
[]
no_license
konstantinosKokos/verbs-as-maps-keras
efcb6fccdbaeb607f9ae19761e1711283fc12511
91ab1eb99e0535c5f321e4cbd16a6609a84072ad
refs/heads/master
2021-04-15T04:29:03.150646
2018-06-25T06:28:53
2018-06-25T06:28:53
126,683,742
0
0
null
null
null
null
UTF-8
Python
false
false
4,382
py
import numpy as np from keras.utils import to_categorical import spacy from matplotlib import pyplot as plt nlp = spacy.load('en_vectors_web_lg') def flatten(relations): # flatten relations return [item for sublist in [[(i,j) for j in relations[i]] for i in relations] for item in sublist] def remove_dups(pairs): # hold unique pairs only for i, p0 in enumerate(pairs): for j, p1 in enumerate(pairs): if p0[2] == p1[0] and p0[3] == p1[1] and p0[0] == p1[2] and p0[1] == p1[3]: del(pairs[j]) def data_generator(verbs, objects, pairs, batch_size = 64, random_chance = 0.5, return_signatures=False, index = 0, shuffle=False, random_progression = None): """ Iterates over vo paraphrase pairs, yielding their corresponding label """ if shuffle: pairs = np.random.permutation(pairs).tolist() num_verbs = len(verbs)+1 num_passes = 0 v0, o0, v0sig, v1, o1, v1sig, t = [], [], [], [], [], [], [] while True: if np.random.random() > random_chance: current_sample = pairs[index] t.append(1) else: random_index = np.random.randint(len(pairs)) # Pick a random paraphrase pair from the dataset offset = np.random.choice([0,2]) # Pick a random phrase from this pair current_sample = [pairs[index][0], pairs[index][1], # First phrase is from the original sample pairs[random_index][offset], pairs[random_index][offset] ] # Second phrase is from the random sample if ([current_sample[2], current_sample[3], current_sample[0], current_sample[1]] in pairs or current_sample in pairs): # Make sure that the random sample isn't actually a paraphrase t.append(1) else: t.append(0) if index == len(pairs)-1: index = 0 num_passes += 1 if random_progression: progression = random_progression(random_chance, num_passes) if progression != random_chance: random_chance = progression print('\nNew random chance: ', random_chance) if shuffle: pairs = np.random.permutation(pairs).tolist() else: index += 1 v0.append(nlp(verbs[current_sample[0]]).vector) o0.append(nlp(objects[current_sample[1]]).vector) v0sig.append(to_categorical(current_sample[0], num_verbs)) v1.append(nlp(verbs[current_sample[2]]).vector) o1.append(nlp(objects[current_sample[3]]).vector) v1sig.append(to_categorical(current_sample[2], num_verbs)) if len(v0) == batch_size: v0, o0, v0sig, v1, o1, v1sig, t = (np.array(v0), np.array(o0), np.array(v0sig), np.array(v1), np.array(o1), np.array(v1sig), np.array(t)) if return_signatures: yield [v0, o0, v0sig, v1, o1, v1sig], t else: yield [v0, o0, v1, o1], t v0, o0, v0sig, v1, o1, v1sig, t = [], [], [], [], [], [], [] def evaluation_generator(verbs, objects, pairs, batch_size = 256, index = 0, return_signatures=True): num_verbs = len(verbs) + 1 vs, os = [], [] while index < len(pairs): current_sample = pairs[index] current_verb = current_sample[0] current_object = current_sample[1] if return_signatures: vs.append(to_categorical(current_verb, num_verbs)) else: vs.append(nlp(verbs[current_sample[0]]).vector) os.append(nlp(objects[current_object]).vector) current_verb = current_sample[2] current_object = current_sample[3] if return_signatures: vs.append(to_categorical(current_verb, num_verbs)) else: vs.append(nlp(verbs[current_sample[0]]).vector) os.append(nlp(objects[current_object]).vector) index += 1 if len(vs) == batch_size: vs , os = np.array(vs), np.array(os) yield [vs, os] vs, os = [] , [] def histplot(history): for key in history: plt.plot((history[key])) plt.legend([key for key in history.keys()]) plt.show()
[ "konstantinos@riseup.net" ]
konstantinos@riseup.net
1e6ee13bf63328809e46af158476b05bba907c72
201356e09fb6dd82d36ed5b93b08a29482b68fb2
/Mine/Captcha/Captcha_1,py.py
d79c8657b63d784669cc70f9025b13caf436bd60
[]
no_license
M45t3rJ4ck/Py-Code
5971bad5304ea3d06c1cdbd065941271c33e4254
32063d149824eb22163ea462937e4c26917a8b14
refs/heads/master
2020-04-08T05:03:44.772327
2018-11-26T06:41:03
2018-11-26T06:41:03
159,044,079
1
0
null
null
null
null
UTF-8
Python
false
false
703
py
Python 3.6.3 (v3.6.3:2c5fed8, Oct 3 2017, 18:11:49) [MSC v.1900 64 bit (AMD64)] on win32 Type "copyright", "credits" or "license()" for more information. >>> def gen_captcha_text_and_image(width=CAPTCHA_WIDTH, height=CAPTCHA_HEIGHT,save=None): ''' ??????? :param width: :param height: :param save: :return: np?? ''' image = ImageCaptcha(width=width, height=height) # ????? captcha_text = random_captcha_text() captcha = image.generate(captcha_text) # ?? if save: image.write(captcha_text, captcha_text + '.jpg') captcha_image = Image.open(captcha) # ???np?? captcha_image = np.array(captcha_image) return captcha_text, captcha_image
[ "wavoges@gmail.com" ]
wavoges@gmail.com
60777be6c4991ec9c50d572f450f4d3463e966f9
294b9a6740c574ccc8132f3b527ae34ceab64182
/src/coupons/models.py
d3b07edddb1bdf88bd3242a76093ed1044a52011
[]
no_license
werdani/E-commerce
cc172aa79d0171698d9adbb47681519c3406966d
8f0f3ce4dfad47226cc6f27e5bc5c32b93219499
refs/heads/main
2023-04-02T17:22:56.096635
2021-04-19T01:07:59
2021-04-19T01:07:59
353,048,950
0
0
null
null
null
null
UTF-8
Python
false
false
440
py
from django.db import models from django.core.validators import MinValueValidator,MaxValueValidator class Coupon(models.Model): code = models.CharField(max_length=50,unique=True) valid_from = models.DateTimeField() valid_to = models.DateTimeField() discount = models.IntegerField(validators=[MinValueValidator(0),MaxValueValidator(100)]) active = models.BooleanField() def __str__(self): return self.code
[ "ammaryasser554zz@gmail.com" ]
ammaryasser554zz@gmail.com
2669ee460c1a20c17cadb93ee23f61342d7b186e
b93e0e0c09e224c570d01d97f9ddbef184c9d57b
/listings/views.py
56b982554031a2453ca53128e99ebc7c936e4654
[]
no_license
tj-26/Django_real_estate_project
835e4a53ee24276baeded5fc8ddf688557e36836
1ef005595b2b9448dc37bde7d560b0eab912b65f
refs/heads/master
2023-02-28T02:50:34.328707
2021-01-12T08:16:00
2021-01-12T08:16:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
663
py
from django.shortcuts import render from django.core.paginator import EmptyPage, PageNotAnInteger, Paginator from .models import Listing # Create your views here. def index(request): listings = Listing.objects.order_by('-list_date').filter(is_published=True) paginator = Paginator(listings, 6) page = request.GET.get('page') paged_listings = paginator.get_page(page) context = { 'listings':paged_listings } return render(request, 'listings/listings.html', context) def listing(request, listing_id): return render(request, 'listings/listing.html') def search(request): return render(request, 'listings/search.html')
[ "yashikakhuranayashika@gmail.com" ]
yashikakhuranayashika@gmail.com
eff00c0673ffecede2b7c7014027465b9394798d
94be2850eb6fc17a081221434326bcad47193419
/resolwe/flow/views/descriptor.py
73160e668b2397a104e82bc2eef3f6ef143398ab
[ "Apache-2.0" ]
permissive
lukaw3d/resolwe
6412aeabaa62d3b6f59adb1e50781cbab6238e74
7e5af6dab31e22d598563f71c96d637125c83c9e
refs/heads/master
2020-04-26T19:50:33.039022
2018-12-20T13:17:08
2019-02-27T10:11:16
173,788,495
0
0
null
2019-03-04T17:16:28
2019-03-04T17:16:28
null
UTF-8
Python
false
false
969
py
"""Descriptor schema viewset.""" from rest_framework import mixins, viewsets from resolwe.flow.filters import DescriptorSchemaFilter from resolwe.flow.models import DescriptorSchema from resolwe.flow.serializers import DescriptorSchemaSerializer from resolwe.permissions.loader import get_permissions_class from resolwe.permissions.mixins import ResolwePermissionsMixin class DescriptorSchemaViewSet(mixins.RetrieveModelMixin, mixins.ListModelMixin, ResolwePermissionsMixin, viewsets.GenericViewSet): """API view for :class:`DescriptorSchema` objects.""" queryset = DescriptorSchema.objects.all().prefetch_related('contributor') serializer_class = DescriptorSchemaSerializer permission_classes = (get_permissions_class(),) filter_class = DescriptorSchemaFilter ordering_fields = ('id', 'created', 'modified', 'name', 'version') ordering = ('id',)
[ "domen@blenkus.com" ]
domen@blenkus.com
cc63557a55b54a3140892024becb08eb8143da95
666100eef842fde48b2d478193ab5604f620ed0c
/env/bin/pycodestyle
6b13152da291444913f0968bc5f27021d4bf8c1b
[]
no_license
bhavyagoel/ServerStat
342d5dc63909fe88fe4ce0fb270c5b595471c789
976d5596f07f3a833ba3448aad42fea42ae901cf
refs/heads/main
2023-09-03T03:32:07.793752
2021-11-17T23:33:08
2021-11-17T23:33:08
429,194,079
2
0
null
null
null
null
UTF-8
Python
false
false
262
#!/home/bhavyagoel/dev/GitHubProj/SysProcess-Notifier/env/bin/python # -*- coding: utf-8 -*- import re import sys from pycodestyle import _main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) sys.exit(_main())
[ "bgoel4132@gmail.com" ]
bgoel4132@gmail.com
194352f4e5b812be2c874173ae472be4067fd1dd
49f993f260b5d1cbbe1f3591aa5ed1776a481463
/apps.py
f1fb04555b6a14994760e5269d06e397e1e33542
[]
no_license
naye0ng/Instagram
5d35c886960497e5db031079e2f6b66b5b3e8c65
f35791ddc7c0606296837bc2ad9f597c626baa35
refs/heads/master
2020-05-05T13:50:15.158715
2019-04-18T03:14:32
2019-04-18T03:14:32
180,095,123
0
0
null
null
null
null
UTF-8
Python
false
false
87
py
from django.apps import AppConfig class SxhoolConfig(AppConfig): name = 'sxhool'
[ "nayeong_e@naver.com" ]
nayeong_e@naver.com
134e39484a570636be4d26a1a2a9021b143f6ef6
c0cef05d528d33cb7e7f49ec2758dcd138e49577
/venv/bin/wheel
9ef8a1b9c59837bb64c138e33ec2556e9b0ca4f5
[]
no_license
MaryamBisadi/Email_Author_Identification
26b13e350ea55fe0ee432b483844797cd3d57e92
e5d1e40507a49fd7177ff781bf8ba7345aae4054
refs/heads/master
2020-03-18T13:42:43.734711
2018-06-25T05:09:48
2018-06-25T05:09:48
134,802,796
0
0
null
null
null
null
UTF-8
Python
false
false
269
#!/Users/marybisadi/PycharmProjects/Email_Author_Detection/venv/bin/python # -*- coding: utf-8 -*- import re import sys from wheel.tool import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "marybisadi@Marys-iMac.local" ]
marybisadi@Marys-iMac.local
a39f77e46e9e1fb8b14b0aaf41e10dcd7f1e3c29
c459f4dd7b198ec8d8db8379726a5b2650be6636
/scripts/import_adjustment_majors.py
df5e77c03b7f00dd483c429bb63eb0f40bc23aef
[]
no_license
jittat/admapp
4c712182cd06e82efab6c2513fb865e5d00feae8
38bf299015ae423b4551f6b1206742ee176b8b77
refs/heads/master
2023-06-10T03:23:41.174264
2023-06-09T19:41:03
2023-06-09T19:41:03
101,953,724
10
4
null
2023-04-21T22:48:55
2017-08-31T03:12:04
Python
UTF-8
Python
false
false
1,371
py
from django_bootstrap import bootstrap bootstrap() import sys import csv from appl.models import Faculty from backoffice.models import AdjustmentMajor def main(): filename = sys.argv[1] counter = 0 with open(filename) as csvfile: reader = csv.reader(csvfile, delimiter=',') first = True for items in reader: if first: first = False continue facid = items[0] full_code = items[1].strip() title = items[3] faculty_title = items[2] print(faculty_title) faculty = Faculty.objects.get(title=faculty_title) old_adj_majors = AdjustmentMajor.objects.filter(full_code=full_code).all() if len(old_adj_majors)!=0: adj_major = old_adj_majors[0] else: adj_major = AdjustmentMajor() adj_major.full_code = full_code adj_major.title = title adj_major.faculty = faculty adj_major.major_code = full_code adj_major.study_type_code = items[4] adj_major.save() print(adj_major, faculty, adj_major.major_code, adj_major.study_type_code) counter += 1 print('Imported',counter,'majors') if __name__ == '__main__': main()
[ "jittat@gmail.com" ]
jittat@gmail.com
aa1cf0e2c7f2b64c5aec026a5acd76c4686f7dc5
ab1dd7005b4a4273da3771665250c0b3fcf9d0c1
/scripts/test_TvsR_2.py
1389d4e348d2a80f1affcd4c9dfb71c98ab049d8
[]
no_license
jordan-stone/Disks
5388eb29e1bc38382ddb2cd25b921e31decba9bc
8083c5e1c17e22356a396dfd7c08ed3df5fae605
refs/heads/master
2021-01-17T04:43:33.635093
2016-07-01T21:55:33
2016-07-01T21:55:33
61,930,695
0
0
null
null
null
null
UTF-8
Python
false
false
521
py
from Disks.TvsR import * from Disks.Baraffe import read_baraffe import matplotlib.pyplot as mpl import numpy as np #6000,1500,600,300,50,10,2 #even as few as 2 sampled ts seems to result in the same curve... d=read_baraffe(0.1) a=np.linspace(0.1,100,1000) tr,mdotr=active_and_irradiated_combined_opacity(a,0.1,d['r'][0],d['Teff'][0],sampled_ts=np.linspace(10,3000,10)) mpl.plot(tr,'r-') tr0,mdotr0=active_and_irradiated_combined_opacity(a,0.1,d['r'][0],d['Teff'][0],sampled_ts=np.linspace(10,3000,2)) mpl.plot(tr0,'b-')
[ "jstone@as.arizona.edu" ]
jstone@as.arizona.edu
30e52b2ab9a3bacba9f7f2714ab66d90cf8b7afc
65ed1f3570075d4bd07602d088559a4b27c26cc9
/pyAudioAnalysis/audioFeatureExtraction.py
400ba3b15daa08ff79f12d96514a8580e0a046be
[ "Apache-2.0" ]
permissive
trinhkhoi/MIR
c97f7b31c94f8ddfc0686c515c26696bccad6519
fe264abedbd8bc9142b045a1225bd2f497c15a51
refs/heads/master
2020-03-15T19:34:38.825605
2018-05-06T06:30:55
2018-05-06T06:30:55
132,307,765
0
0
null
null
null
null
UTF-8
Python
false
false
32,467
py
import sys import time import os import glob import numpy import pickle as cPickle import aifc import math from numpy import NaN, Inf, arange, isscalar, array from scipy.fftpack import rfft from scipy.fftpack import fft from scipy.fftpack.realtransforms import dct from scipy.signal import fftconvolve from matplotlib.mlab import find import matplotlib.pyplot as plt from scipy import linalg as la #import Test.pyAudioAnalysis.audioTrainTest as aT import pyAudioAnalysis.audioBasicIO as audioBasicIO import pyAudioAnalysis.utilities as utilities from scipy.signal import lfilter, hamming #from scikits.talkbox.linpred.levinson_lpc import lpc #from scikits.talkbox.linpred.levinson_lpc import lpc import importlib as imp #imp.reload(sys) #sys.setdefaultencoding('utf8') eps = 0.00000001 """ Time-domain audio features """ def stZCR(frame): """Computes zero crossing rate of frame""" count = len(frame) countZ = numpy.sum(numpy.abs(numpy.diff(numpy.sign(frame)))) / 2 return (numpy.float64(countZ) / numpy.float64(count-1.0)) def stEnergy(frame): """Computes signal energy of frame""" return numpy.sum(frame ** 2) / numpy.float64(len(frame)) def stEnergyEntropy(frame, numOfShortBlocks=10): """Computes entropy of energy""" Eol = numpy.sum(frame ** 2) # total frame energy L = len(frame) subWinLength = int(numpy.floor(L / numOfShortBlocks)) if L != subWinLength * numOfShortBlocks: frame = frame[0:subWinLength * numOfShortBlocks] # subWindows is of size [numOfShortBlocks x L] subWindows = frame.reshape(subWinLength, numOfShortBlocks, order='F').copy() # Compute normalized sub-frame energies: s = numpy.sum(subWindows ** 2, axis=0) / (Eol + eps) # Compute entropy of the normalized sub-frame energies: Entropy = -numpy.sum(s * numpy.log2(s + eps)) return Entropy """ Frequency-domain audio features """ def stSpectralCentroidAndSpread(X, fs): """Computes spectral centroid of frame (given abs(FFT))""" ind = (numpy.arange(1, len(X) + 1)) * (fs/(2.0 * len(X))) Xt = X.copy() Xt = Xt / Xt.max() NUM = numpy.sum(ind * Xt) DEN = numpy.sum(Xt) + eps # Centroid: C = (NUM / DEN) # Spread: S = numpy.sqrt(numpy.sum(((ind - C) ** 2) * Xt) / DEN) # Normalize: C = C / (fs / 2.0) S = S / (fs / 2.0) return (C, S) def stSpectralEntropy(X, numOfShortBlocks=10): """Computes the spectral entropy""" L = len(X) # number of frame samples Eol = numpy.sum(X ** 2) # total spectral energy subWinLength = int(numpy.floor(L / numOfShortBlocks)) # length of sub-frame if L != subWinLength * numOfShortBlocks: X = X[0:subWinLength * numOfShortBlocks] subWindows = X.reshape(subWinLength, numOfShortBlocks, order='F').copy() # define sub-frames (using matrix reshape) s = numpy.sum(subWindows ** 2, axis=0) / (Eol + eps) # compute spectral sub-energies En = -numpy.sum(s*numpy.log2(s + eps)) # compute spectral entropy return En def stSpectralFlux(X, Xprev): """ Computes the spectral flux feature of the current frame ARGUMENTS: X: the abs(fft) of the current frame Xpre: the abs(fft) of the previous frame """ # compute the spectral flux as the sum of square distances: sumX = numpy.sum(X + eps) sumPrevX = numpy.sum(Xprev + eps) F = numpy.sum((X / sumX - Xprev/sumPrevX) ** 2) return F def stSpectralRollOff(X, c, fs): """Computes spectral roll-off""" totalEnergy = numpy.sum(X ** 2) fftLength = len(X) Thres = c*totalEnergy # Ffind the spectral rolloff as the frequency position where the respective spectral energy is equal to c*totalEnergy CumSum = numpy.cumsum(X ** 2) + eps [a, ] = numpy.nonzero(CumSum > Thres) if len(a) > 0: mC = numpy.float64(a[0]) / (float(fftLength)) else: mC = 0.0 return (mC) def stHarmonic(frame, fs): """ Computes harmonic ratio and pitch """ M = numpy.round(0.016 * fs) - 1 R = numpy.correlate(frame, frame, mode='full') g = R[len(frame)-1] R = R[len(frame):-1] # estimate m0 (as the first zero crossing of R) [a, ] = numpy.nonzero(numpy.diff(numpy.sign(R))) if len(a) == 0: m0 = len(R)-1 else: m0 = a[0] if M > len(R): M = len(R) - 1 Gamma = numpy.zeros((M), dtype=numpy.float64) CSum = numpy.cumsum(frame ** 2) Gamma[m0:M] = R[m0:M] / (numpy.sqrt((g * CSum[M:m0:-1])) + eps) ZCR = stZCR(Gamma) if ZCR > 0.15: HR = 0.0 f0 = 0.0 else: if len(Gamma) == 0: HR = 1.0 blag = 0.0 Gamma = numpy.zeros((M), dtype=numpy.float64) else: HR = numpy.max(Gamma) blag = numpy.argmax(Gamma) # Get fundamental frequency: f0 = fs / (blag + eps) if f0 > 5000: f0 = 0.0 if HR < 0.1: f0 = 0.0 return (HR, f0) def mfccInitFilterBanks(fs, nfft): """ Computes the triangular filterbank for MFCC computation (used in the stFeatureExtraction function before the stMFCC function call) This function is taken from the scikits.talkbox library (MIT Licence): https://pypi.python.org/pypi/scikits.talkbox """ # filter bank params: lowfreq = 133.33 linsc = 200/3. logsc = 1.0711703 numLinFiltTotal = 13 numLogFilt = 27 if fs < 8000: nlogfil = 5 # Total number of filters nFiltTotal = numLinFiltTotal + numLogFilt # Compute frequency points of the triangle: freqs = numpy.zeros(nFiltTotal+2) freqs[:numLinFiltTotal] = lowfreq + numpy.arange(numLinFiltTotal) * linsc freqs[numLinFiltTotal:] = freqs[numLinFiltTotal-1] * logsc ** numpy.arange(1, numLogFilt + 3) heights = 2./(freqs[2:] - freqs[0:-2]) # Compute filterbank coeff (in fft domain, in bins) fbank = numpy.zeros((nFiltTotal, nfft)) nfreqs = numpy.arange(nfft) / (1. * nfft) * fs for i in range(nFiltTotal): lowTrFreq = freqs[i] cenTrFreq = freqs[i+1] highTrFreq = freqs[i+2] lid = numpy.arange(numpy.floor(lowTrFreq * nfft / fs) + 1, numpy.floor(cenTrFreq * nfft / fs) + 1, dtype=numpy.int) lslope = heights[i] / (cenTrFreq - lowTrFreq) rid = numpy.arange(numpy.floor(cenTrFreq * nfft / fs) + 1, numpy.floor(highTrFreq * nfft / fs) + 1, dtype=numpy.int) rslope = heights[i] / (highTrFreq - cenTrFreq) fbank[i][lid] = lslope * (nfreqs[lid] - lowTrFreq) fbank[i][rid] = rslope * (highTrFreq - nfreqs[rid]) return fbank, freqs def stMFCC(X, fbank, nceps): """ Computes the MFCCs of a frame, given the fft mag ARGUMENTS: X: fft magnitude abs(FFT) fbank: filter bank (see mfccInitFilterBanks) RETURN ceps: MFCCs (13 element vector) Note: MFCC calculation is, in general, taken from the scikits.talkbox library (MIT Licence), # with a small number of modifications to make it more compact and suitable for the pyAudioAnalysis Lib """ mspec = numpy.log10(numpy.dot(X, fbank.T)+eps) ceps = dct(mspec, type=2, norm='ortho', axis=-1)[:nceps] return ceps def stChromaFeaturesInit(nfft, fs): """ This function initializes the chroma matrices used in the calculation of the chroma features """ freqs = numpy.array([((f + 1) * fs) / (2 * nfft) for f in range(nfft)]) Cp = 27.50 nChroma = numpy.round(12.0 * numpy.log2(freqs / Cp)).astype(int) nFreqsPerChroma = numpy.zeros((nChroma.shape[0], )) uChroma = numpy.unique(nChroma) for u in uChroma: idx = numpy.nonzero(nChroma == u) nFreqsPerChroma[idx] = idx[0].shape return nChroma, nFreqsPerChroma def stChromaFeatures(X, fs, nChroma, nFreqsPerChroma): #TODO: 1 complexity #TODO: 2 bug with large windows chromaNames = ['A', 'A#', 'B', 'C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#'] spec = X**2 if nChroma.max()<nChroma.shape[0]: C = numpy.zeros((nChroma.shape[0],)) C[nChroma] = spec C /= nFreqsPerChroma[nChroma] else: I = numpy.nonzero(nChroma>nChroma.shape[0])[0][0] C = numpy.zeros((nChroma.shape[0],)) C[nChroma[0:I-1]] = spec C /= nFreqsPerChroma finalC = numpy.zeros((12, 1)) newD = int(numpy.ceil(C.shape[0] / 12.0) * 12) C2 = numpy.zeros((newD, )) C2[0:C.shape[0]] = C C2 = C2.reshape(int(C2.shape[0]/12), 12) #for i in range(12): # finalC[i] = numpy.sum(C[i:C.shape[0]:12]) finalC = numpy.matrix(numpy.sum(C2, axis=0)).T finalC /= spec.sum() # ax = plt.gca() # plt.hold(False) # plt.plot(finalC) # ax.set_xticks(range(len(chromaNames))) # ax.set_xticklabels(chromaNames) # xaxis = numpy.arange(0, 0.02, 0.01); # ax.set_yticks(range(len(xaxis))) # ax.set_yticklabels(xaxis) # plt.show(block=False) # plt.draw() return chromaNames, finalC def stChromagram(signal, Fs, Win, Step, PLOT=False): """ Short-term FFT mag for spectogram estimation: Returns: a numpy array (nFFT x numOfShortTermWindows) ARGUMENTS: signal: the input signal samples Fs: the sampling freq (in Hz) Win: the short-term window size (in samples) Step: the short-term window step (in samples) PLOT: flag, 1 if results are to be ploted RETURNS: """ Win = int(Win) Step = int(Step) signal = numpy.double(signal) signal = signal / (2.0 ** 15) DC = signal.mean() MAX = (numpy.abs(signal)).max() signal = (signal - DC) / (MAX - DC) N = len(signal) # total number of signals curPos = 0 countFrames = 0 nfft = int(Win / 2) nChroma, nFreqsPerChroma = stChromaFeaturesInit(nfft, Fs) chromaGram = numpy.array([], dtype=numpy.float64) while (curPos + Win - 1 < N): countFrames += 1 x = signal[curPos:curPos + Win] curPos = curPos + Step X = abs(fft(x)) X = X[0:nfft] X = X / len(X) chromaNames, C = stChromaFeatures(X, Fs, nChroma, nFreqsPerChroma) C = C[:, 0] if countFrames == 1: chromaGram = C.T else: chromaGram = numpy.vstack((chromaGram, C.T)) FreqAxis = chromaNames TimeAxis = [(t * Step) / Fs for t in range(chromaGram.shape[0])] if (PLOT): fig, ax = plt.subplots() chromaGramToPlot = chromaGram.transpose()[::-1, :] Ratio = chromaGramToPlot.shape[1] / (3*chromaGramToPlot.shape[0]) if Ratio < 1: Ratio = 1 chromaGramToPlot = numpy.repeat(chromaGramToPlot, Ratio, axis=0) imgplot = plt.imshow(chromaGramToPlot) Fstep = int(nfft / 5.0) # FreqTicks = range(0, int(nfft) + Fstep, Fstep) # FreqTicksLabels = [str(Fs/2-int((f*Fs) / (2*nfft))) for f in FreqTicks] ax.set_yticks(range(Ratio / 2, len(FreqAxis) * Ratio, Ratio)) ax.set_yticklabels(FreqAxis[::-1]) TStep = countFrames / 3 TimeTicks = range(0, countFrames, TStep) TimeTicksLabels = ['%.2f' % (float(t * Step) / Fs) for t in TimeTicks] ax.set_xticks(TimeTicks) ax.set_xticklabels(TimeTicksLabels) ax.set_xlabel('time (secs)') imgplot.set_cmap('jet') plt.colorbar() plt.show() return (chromaGram, TimeAxis, FreqAxis) def phormants(x, Fs): N = len(x) w = numpy.hamming(N) # Apply window and high pass filter. x1 = x * w x1 = lfilter([1], [1., 0.63], x1) # Get LPC. ncoeff = 2 + Fs / 1000 A, e, k = lpc(x1, ncoeff) #A, e, k = lpc(x1, 8) # Get roots. rts = numpy.roots(A) rts = [r for r in rts if numpy.imag(r) >= 0] # Get angles. angz = numpy.arctan2(numpy.imag(rts), numpy.real(rts)) # Get frequencies. frqs = sorted(angz * (Fs / (2 * math.pi))) return frqs def beatExtraction(stFeatures, winSize, PLOT=False): """ This function extracts an estimate of the beat rate for a musical signal. ARGUMENTS: - stFeatures: a numpy array (numOfFeatures x numOfShortTermWindows) - winSize: window size in seconds RETURNS: - BPM: estimates of beats per minute - Ratio: a confidence measure """ # Features that are related to the beat tracking task: toWatch = [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18] maxBeatTime = int(round(2.0 / winSize)) HistAll = numpy.zeros((maxBeatTime,)) for ii, i in enumerate(toWatch): # for each feature DifThres = 2.0 * (numpy.abs(stFeatures[i, 0:-1] - stFeatures[i, 1::])).mean() # dif threshold (3 x Mean of Difs) if DifThres<=0: DifThres = 0.0000000000000001 [pos1, _] = utilities.peakdet(stFeatures[i, :], DifThres) # detect local maxima posDifs = [] # compute histograms of local maxima changes for j in range(len(pos1)-1): posDifs.append(pos1[j+1]-pos1[j]) [HistTimes, HistEdges] = numpy.histogram(posDifs, numpy.arange(0.5, maxBeatTime + 1.5)) HistCenters = (HistEdges[0:-1] + HistEdges[1::]) / 2.0 HistTimes = HistTimes.astype(float) / stFeatures.shape[1] HistAll += HistTimes if PLOT: plt.subplot(9, 2, ii + 1) plt.plot(stFeatures[i, :], 'k') for k in pos1: plt.plot(k, stFeatures[i, k], 'k*') f1 = plt.gca() f1.axes.get_xaxis().set_ticks([]) f1.axes.get_yaxis().set_ticks([]) if PLOT: plt.show(block=False) plt.figure() # Get beat as the argmax of the agregated histogram: I = numpy.argmax(HistAll) BPMs = 60 / (HistCenters * winSize) BPM = BPMs[I] # ... and the beat ratio: Ratio = HistAll[I] / HistAll.sum() if PLOT: # filter out >500 beats from plotting: HistAll = HistAll[BPMs < 500] BPMs = BPMs[BPMs < 500] plt.plot(BPMs, HistAll, 'k') plt.xlabel('Beats per minute') plt.ylabel('Freq Count') plt.show(block=True) return BPM, Ratio def stSpectogram(signal, Fs, Win, Step, PLOT=False): """ Short-term FFT mag for spectogram estimation: Returns: a numpy array (nFFT x numOfShortTermWindows) ARGUMENTS: signal: the input signal samples Fs: the sampling freq (in Hz) Win: the short-term window size (in samples) Step: the short-term window step (in samples) PLOT: flag, 1 if results are to be ploted RETURNS: """ Win = int(Win) Step = int(Step) signal = numpy.double(signal) signal = signal / (2.0 ** 15) DC = signal.mean() MAX = (numpy.abs(signal)).max() signal = (signal - DC) / (MAX - DC) N = len(signal) # total number of signals curPos = 0 countFrames = 0 nfft = int(Win / 2) specgram = numpy.array([], dtype=numpy.float64) while (curPos + Win - 1 < N): countFrames += 1 x = signal[curPos:curPos+Win] curPos = curPos + Step X = abs(fft(x)) X = X[0:nfft] X = X / len(X) if countFrames == 1: specgram = X ** 2 else: specgram = numpy.vstack((specgram, X)) FreqAxis = [((f + 1) * Fs) / (2 * nfft) for f in range(specgram.shape[1])] TimeAxis = [(t * Step) / Fs for t in range(specgram.shape[0])] if (PLOT): fig, ax = plt.subplots() imgplot = plt.imshow(specgram.transpose()[::-1, :]) Fstep = int(nfft / 5.0) FreqTicks = range(0, int(nfft) + Fstep, Fstep) FreqTicksLabels = [str(Fs / 2 - int((f * Fs) / (2 * nfft))) for f in FreqTicks] ax.set_yticks(FreqTicks) ax.set_yticklabels(FreqTicksLabels) TStep = countFrames/3 TimeTicks = range(0, countFrames, TStep) TimeTicksLabels = ['%.2f' % (float(t * Step) / Fs) for t in TimeTicks] ax.set_xticks(TimeTicks) ax.set_xticklabels(TimeTicksLabels) ax.set_xlabel('time (secs)') ax.set_ylabel('freq (Hz)') imgplot.set_cmap('jet') plt.colorbar() plt.show() return (specgram, TimeAxis, FreqAxis) """ Windowing and feature extraction """ def stFeatureExtraction(signal, Fs, Win, Step): """ This function implements the shor-term windowing process. For each short-term window a set of features is extracted. This results to a sequence of feature vectors, stored in a numpy matrix. ARGUMENTS signal: the input signal samples Fs: the sampling freq (in Hz) Win: the short-term window size (in samples) Step: the short-term window step (in samples) RETURNS stFeatures: a numpy array (numOfFeatures x numOfShortTermWindows) """ Win = int(Win) Step = int(Step) # Signal normalization signal = numpy.double(signal) signal = signal / (2.0 ** 15) DC = signal.mean() MAX = (numpy.abs(signal)).max() signal = (signal - DC) / (MAX + 0.0000000001) N = len(signal) # total number of samples curPos = 0 countFrames = 0 nFFT = int(Win / 2) [fbank, freqs] = mfccInitFilterBanks(Fs, nFFT) # compute the triangular filter banks used in the mfcc calculation nChroma, nFreqsPerChroma = stChromaFeaturesInit(nFFT, Fs) numOfTimeSpectralFeatures = 8 numOfHarmonicFeatures = 0 nceps = 13 numOfChromaFeatures = 13 totalNumOfFeatures = numOfTimeSpectralFeatures + nceps + numOfHarmonicFeatures + numOfChromaFeatures # totalNumOfFeatures = numOfTimeSpectralFeatures + nceps + numOfHarmonicFeatures stFeatures = [] while (curPos + Win - 1 < N): # for each short-term window until the end of signal countFrames += 1 x = signal[curPos:curPos+Win] # get current window curPos = curPos + Step # update window position X = abs(fft(x)) # get fft magnitude X = X[0:nFFT] # normalize fft X = X / len(X) if countFrames == 1: Xprev = X.copy() # keep previous fft mag (used in spectral flux) curFV = numpy.zeros((totalNumOfFeatures, 1)) curFV[0] = stZCR(x) # zero crossing rate curFV[1] = stEnergy(x) # short-term energy curFV[2] = stEnergyEntropy(x) # short-term entropy of energy [curFV[3], curFV[4]] = stSpectralCentroidAndSpread(X, Fs) # spectral centroid and spread curFV[5] = stSpectralEntropy(X) # spectral entropy curFV[6] = stSpectralFlux(X, Xprev) # spectral flux curFV[7] = stSpectralRollOff(X, 0.90, Fs) # spectral rolloff curFV[numOfTimeSpectralFeatures:numOfTimeSpectralFeatures+nceps, 0] = stMFCC(X, fbank, nceps).copy() # MFCCs chromaNames, chromaF = stChromaFeatures(X, Fs, nChroma, nFreqsPerChroma) curFV[numOfTimeSpectralFeatures + nceps: numOfTimeSpectralFeatures + nceps + numOfChromaFeatures - 1] = chromaF curFV[numOfTimeSpectralFeatures + nceps + numOfChromaFeatures - 1] = chromaF.std() stFeatures.append(curFV) # delta features ''' if countFrames>1: delta = curFV - prevFV curFVFinal = numpy.concatenate((curFV, delta)) else: curFVFinal = numpy.concatenate((curFV, curFV)) prevFV = curFV stFeatures.append(curFVFinal) ''' # end of delta Xprev = X.copy() stFeatures = numpy.concatenate(stFeatures, 1) return stFeatures def mtFeatureExtraction(signal, Fs, mtWin, mtStep, stWin, stStep): """ Mid-term feature extraction """ mtWinRatio = int(round(mtWin / stStep)) mtStepRatio = int(round(mtStep / stStep)) mtFeatures = [] stFeatures = stFeatureExtraction(signal, Fs, stWin, stStep) numOfFeatures = len(stFeatures) numOfStatistics = 2 mtFeatures = [] #for i in range(numOfStatistics * numOfFeatures + 1): for i in range(numOfStatistics * numOfFeatures): mtFeatures.append([]) for i in range(numOfFeatures): # for each of the short-term features: curPos = 0 N = len(stFeatures[i]) while (curPos < N): N1 = curPos N2 = curPos + mtWinRatio if N2 > N: N2 = N curStFeatures = stFeatures[i][N1:N2] mtFeatures[i].append(numpy.mean(curStFeatures)) mtFeatures[i+numOfFeatures].append(numpy.std(curStFeatures)) #mtFeatures[i+2*numOfFeatures].append(numpy.std(curStFeatures) / (numpy.mean(curStFeatures)+0.00000010)) curPos += mtStepRatio return numpy.array(mtFeatures), stFeatures # TODO def stFeatureSpeed(signal, Fs, Win, Step): signal = numpy.double(signal) signal = signal / (2.0 ** 15) DC = signal.mean() MAX = (numpy.abs(signal)).max() signal = (signal - DC) / MAX # print (numpy.abs(signal)).max() N = len(signal) # total number of signals curPos = 0 countFrames = 0 lowfreq = 133.33 linsc = 200/3. logsc = 1.0711703 nlinfil = 13 nlogfil = 27 nceps = 13 nfil = nlinfil + nlogfil nfft = Win / 2 if Fs < 8000: nlogfil = 5 nfil = nlinfil + nlogfil nfft = Win / 2 # compute filter banks for mfcc: [fbank, freqs] = mfccInitFilterBanks(Fs, nfft, lowfreq, linsc, logsc, nlinfil, nlogfil) numOfTimeSpectralFeatures = 8 numOfHarmonicFeatures = 1 totalNumOfFeatures = numOfTimeSpectralFeatures + nceps + numOfHarmonicFeatures #stFeatures = numpy.array([], dtype=numpy.float64) stFeatures = [] while (curPos + Win - 1 < N): countFrames += 1 x = signal[curPos:curPos + Win] curPos = curPos + Step X = abs(fft(x)) X = X[0:nfft] X = X / len(X) Ex = 0.0 El = 0.0 X[0:4] = 0 # M = numpy.round(0.016 * fs) - 1 # R = numpy.correlate(frame, frame, mode='full') stFeatures.append(stHarmonic(x, Fs)) # for i in range(len(X)): #if (i < (len(X) / 8)) and (i > (len(X)/40)): # Ex += X[i]*X[i] #El += X[i]*X[i] # stFeatures.append(Ex / El) # stFeatures.append(numpy.argmax(X)) # if curFV[numOfTimeSpectralFeatures+nceps+1]>0: # print curFV[numOfTimeSpectralFeatures+nceps], curFV[numOfTimeSpectralFeatures+nceps+1] return numpy.array(stFeatures) """ Feature Extraction Wrappers - The first two feature extraction wrappers are used to extract long-term averaged audio features for a list of WAV files stored in a given category. It is important to note that, one single feature is extracted per WAV file (not the whole sequence of feature vectors) """ def dirWavFeatureExtraction(dirName, mtWin, mtStep, stWin, stStep, computeBEAT=False): """ This function extracts the mid-term features of the WAVE files of a particular folder. The resulting feature vector is extracted by long-term averaging the mid-term features. Therefore ONE FEATURE VECTOR is extracted for each WAV file. ARGUMENTS: - dirName: the path of the WAVE directory - mtWin, mtStep: mid-term window and step (in seconds) - stWin, stStep: short-term window and step (in seconds) """ allMtFeatures = numpy.array([]) processingTimes = [] types = ('*.wav', '*.aif', '*.aiff', '*.mp3','*.au') wavFilesList = [] for files in types: wavFilesList.extend(glob.glob(os.path.join(dirName, files))) wavFilesList = sorted(wavFilesList) wavFilesList2 = [] for i, wavFile in enumerate(wavFilesList): print("Analyzing file %s of %s: %s" %(i+1, len(wavFilesList), wavFile.encode('utf-8'))) if os.stat(wavFile).st_size == 0: print(" (EMPTY FILE -- SKIPPING)") continue [Fs, x] = audioBasicIO.readAudioFile(wavFile) # read file if isinstance(x, int): continue t1 = time.clock() x = audioBasicIO.stereo2mono(x) # convert stereo to mono if x.shape[0]<float(Fs)/10: print(" (AUDIO FILE TOO SMALL - SKIPPING)") continue wavFilesList2.append(wavFile) if computeBEAT: # mid-term feature extraction for current file [MidTermFeatures, stFeatures] = mtFeatureExtraction(x, Fs, round(mtWin * Fs), round(mtStep * Fs), round(Fs * stWin), round(Fs * stStep)) [beat, beatConf] = beatExtraction(stFeatures, stStep) else: [MidTermFeatures, _] = mtFeatureExtraction(x, Fs, round(mtWin * Fs), round(mtStep * Fs), round(Fs * stWin), round(Fs * stStep)) MidTermFeatures = numpy.transpose(MidTermFeatures) MidTermFeatures = MidTermFeatures.mean(axis=0) # long term averaging of mid-term statistics if (not numpy.isnan(MidTermFeatures).any()) and (not numpy.isinf(MidTermFeatures).any()): if computeBEAT: MidTermFeatures = numpy.append(MidTermFeatures, beat) MidTermFeatures = numpy.append(MidTermFeatures, beatConf) if len(allMtFeatures) == 0: # append feature vector allMtFeatures = MidTermFeatures else: allMtFeatures = numpy.vstack((allMtFeatures, MidTermFeatures)) t2 = time.clock() duration = float(len(x)) / Fs processingTimes.append((t2 - t1) / duration) if len(processingTimes) > 0: print("Feature extraction complexity ratio: {0:.1f} x realtime".format((1.0 / numpy.mean(numpy.array(processingTimes))))) return (allMtFeatures, wavFilesList2) def dirsWavFeatureExtraction(dirNames, mtWin, mtStep, stWin, stStep, computeBEAT=False): ''' Same as dirWavFeatureExtraction, but instead of a single dir it takes a list of paths as input and returns a list of feature matrices. EXAMPLE: [features, classNames] = a.dirsWavFeatureExtraction(['audioData/classSegmentsRec/noise','audioData/classSegmentsRec/speech', 'audioData/classSegmentsRec/brush-teeth','audioData/classSegmentsRec/shower'], 1, 1, 0.02, 0.02); It can be used during the training process of a classification model , in order to get feature matrices from various audio classes (each stored in a seperate path) ''' # feature extraction for each class: features = [] classNames = [] fileNames = [] for i, d in enumerate(dirNames): [f, fn] = dirWavFeatureExtraction(d, mtWin, mtStep, stWin, stStep, computeBEAT=computeBEAT) if f.shape[0] > 0: # if at least one audio file has been found in the provided folder: features.append(f) fileNames.append(fn) if d[-1] == "/": classNames.append(d.split(os.sep)[-2]) else: classNames.append(d.split(os.sep)[-1]) return features, classNames, fileNames def dirWavFeatureExtractionNoAveraging(dirName, mtWin, mtStep, stWin, stStep): """ This function extracts the mid-term features of the WAVE files of a particular folder without averaging each file. ARGUMENTS: - dirName: the path of the WAVE directory - mtWin, mtStep: mid-term window and step (in seconds) - stWin, stStep: short-term window and step (in seconds) RETURNS: - X: A feature matrix - Y: A matrix of file labels - filenames: """ allMtFeatures = numpy.array([]) signalIndices = numpy.array([]) processingTimes = [] types = ('*.wav', '*.aif', '*.aiff') wavFilesList = [] for files in types: wavFilesList.extend(glob.glob(os.path.join(dirName, files))) wavFilesList = sorted(wavFilesList) for i, wavFile in enumerate(wavFilesList): [Fs, x] = audioBasicIO.readAudioFile(wavFile) # read file if isinstance(x, int): continue x = audioBasicIO.stereo2mono(x) # convert stereo to mono [MidTermFeatures, _] = mtFeatureExtraction(x, Fs, round(mtWin * Fs), round(mtStep * Fs), round(Fs * stWin), round(Fs * stStep)) # mid-term feature MidTermFeatures = numpy.transpose(MidTermFeatures) # MidTermFeatures = MidTermFeatures.mean(axis=0) # long term averaging of mid-term statistics if len(allMtFeatures) == 0: # append feature vector allMtFeatures = MidTermFeatures signalIndices = numpy.zeros((MidTermFeatures.shape[0], )) else: allMtFeatures = numpy.vstack((allMtFeatures, MidTermFeatures)) signalIndices = numpy.append(signalIndices, i * numpy.ones((MidTermFeatures.shape[0], ))) return (allMtFeatures, signalIndices, wavFilesList) # The following two feature extraction wrappers extract features for given audio files, however # NO LONG-TERM AVERAGING is performed. Therefore, the output for each audio file is NOT A SINGLE FEATURE VECTOR # but a whole feature matrix. # # Also, another difference between the following two wrappers and the previous is that they NO LONG-TERM AVERAGING IS PERFORMED. # In other words, the WAV files in these functions are not used as uniform samples that need to be averaged but as sequences def mtFeatureExtractionToFile(fileName, midTermSize, midTermStep, shortTermSize, shortTermStep, outPutFile, storeStFeatures=False, storeToCSV=False, PLOT=False): """ This function is used as a wrapper to: a) read the content of a WAV file b) perform mid-term feature extraction on that signal c) write the mid-term feature sequences to a numpy file """ [Fs, x] = audioBasicIO.readAudioFile(fileName) # read the wav file x = audioBasicIO.stereo2mono(x) # convert to MONO if required if storeStFeatures: [mtF, stF] = mtFeatureExtraction(x, Fs, round(Fs * midTermSize), round(Fs * midTermStep), round(Fs * shortTermSize), round(Fs * shortTermStep)) else: [mtF, _] = mtFeatureExtraction(x, Fs, round(Fs*midTermSize), round(Fs * midTermStep), round(Fs * shortTermSize), round(Fs * shortTermStep)) numpy.save(outPutFile, mtF) # save mt features to numpy file if PLOT: print("Mid-term numpy file: " + outPutFile + ".npy saved") if storeToCSV: numpy.savetxt(outPutFile+".csv", mtF.T, delimiter=",") if PLOT: print("Mid-term CSV file: " + outPutFile + ".csv saved") if storeStFeatures: numpy.save(outPutFile+"_st", stF) # save st features to numpy file if PLOT: print("Short-term numpy file: " + outPutFile + "_st.npy saved") if storeToCSV: numpy.savetxt(outPutFile+"_st.csv", stF.T, delimiter=",") # store st features to CSV file if PLOT: print("Short-term CSV file: " + outPutFile + "_st.csv saved") def mtFeatureExtractionToFileDir(dirName, midTermSize, midTermStep, shortTermSize, shortTermStep, storeStFeatures=False, storeToCSV=False, PLOT=False): types = (dirName + os.sep + '*.wav', ) filesToProcess = [] for files in types: filesToProcess.extend(glob.glob(files)) for f in filesToProcess: outPath = f mtFeatureExtractionToFile(f, midTermSize, midTermStep, shortTermSize, shortTermStep, outPath, storeStFeatures, storeToCSV, PLOT)
[ "dinhkhoi1@gmail.com" ]
dinhkhoi1@gmail.com
930f4299bfc22dbbfcef08432ba583f341185fe9
00bd7fcd18b67742a906d6215ea7644efbde1bb2
/kernighan_lin.py
abf56501722deab329d6560b6e8fe6ce992e3ada
[]
no_license
steliosrousoglou/244-final
29218001edfc86d0d509e9d97ec68bf4e3b051fa
439b8ff046009952d703ffa01ea0d35dbd12837c
refs/heads/master
2022-10-13T19:17:46.135059
2020-06-12T13:44:35
2020-06-12T13:44:35
271,252,455
0
0
null
null
null
null
UTF-8
Python
false
false
6,321
py
# -*- coding: utf-8 -*- # # kernighan_lin.py - Kernighan–Lin bipartition algorithm # # Copyright 2011 Ben Edwards <bedwards@cs.unm.edu>. # Copyright 2011 Aric Hagberg <hagberg@lanl.gov>. # Copyright 2015 NetworkX developers. # # This file is part of NetworkX. # # NetworkX is distributed under a BSD license; see LICENSE.txt for more # information. """Functions for computing the Kernighan–Lin bipartition algorithm.""" from collections import defaultdict from itertools import islice from operator import itemgetter import networkx as nx from networkx.utils import not_implemented_for import numpy as np __all__ = ['kernighan_lin_bisection'] def is_partition(G, communities): """Returns *True* if `communities` is a partition of the nodes of `G`. A partition of a universe set is a family of pairwise disjoint sets whose union is the entire universe set. Parameters ---------- G : NetworkX graph. communities : list or iterable of sets of nodes If not a list, the iterable is converted internally to a list. If it is an iterator it is exhausted. """ # Alternate implementation: # return all(sum(1 if v in c else 0 for c in communities) == 1 for v in G) if not isinstance(communities, list): communities = list(communities) nodes = set(n for c in communities for n in c if n in G) return len(G) == len(nodes) == sum(len(c) for c in communities) def _compute_delta(G, A, B, weight): # helper to compute initial swap deltas for a pass delta = defaultdict(float) for u, v, d in G.edges(data=True): w = d.get(weight, 1) if u in A: if v in A: delta[u] -= w delta[v] -= w elif v in B: delta[u] += w delta[v] += w elif u in B: if v in A: delta[u] += w delta[v] += w elif v in B: delta[u] -= w delta[v] -= w return delta def _update_delta(delta, G, A, B, u, v, weight): # helper to update swap deltas during single pass for _, nbr, d in G.edges(u, data=True): w = d.get(weight, 1) if nbr in A: delta[nbr] += 2 * w if nbr in B: delta[nbr] -= 2 * w for _, nbr, d in G.edges(v, data=True): w = d.get(weight, 1) if nbr in A: delta[nbr] -= 2 * w if nbr in B: delta[nbr] += 2 * w return delta def _kernighan_lin_pass(G, A, B, weight): # do a single iteration of Kernighan–Lin algorithm # returns list of (g_i,u_i,v_i) for i node pairs u_i,v_i multigraph = G.is_multigraph() delta = _compute_delta(G, A, B, weight) swapped = set() gains = [] while len(swapped) < len(G): gain = [] for u in A - swapped: for v in B - swapped: try: if multigraph: w = sum(d.get(weight, 1) for d in G[u][v].values()) else: w = G[u][v].get(weight, 1) except KeyError: w = 0 gain.append((delta[u] + delta[v] - 2 * w, u, v)) if len(gain) == 0: break maxg, u, v = max(gain, key=itemgetter(0)) swapped |= {u, v} gains.append((maxg, u, v)) delta = _update_delta(delta, G, A - swapped, B - swapped, u, v, weight) return gains @not_implemented_for('directed') def kernighan_lin_bisection(G, partition=None, max_iter=10, weight='weight', seed=None): """Partition a graph into two blocks using the Kernighan–Lin algorithm. This algorithm paritions a network into two sets by iteratively swapping pairs of nodes to reduce the edge cut between the two sets. Parameters ---------- G : graph partition : tuple Pair of iterables containing an initial partition. If not specified, a random balanced partition is used. max_iter : int Maximum number of times to attempt swaps to find an improvemement before giving up. weight : key Edge data key to use as weight. If None, the weights are all set to one. seed : integer, random_state, or None (default) Indicator of random number generation state. See :ref:`Randomness<randomness>`. Only used if partition is None Returns ------- partition : tuple A pair of sets of nodes representing the bipartition. Raises ------- NetworkXError If partition is not a valid partition of the nodes of the graph. References ---------- .. [1] Kernighan, B. W.; Lin, Shen (1970). "An efficient heuristic procedure for partitioning graphs." *Bell Systems Technical Journal* 49: 291--307. Oxford University Press 2011. """ # If no partition is provided, split the nodes randomly into a # balanced partition. print(G.nodes()) print(partition) if partition is None: print(len(G.nodes())) nodes = np.random.choice(G.nodes(), len(G.nodes()) // 2, replace=False) h = len(nodes) // 2 partition = (nodes[:h], nodes[h:]) # Make a copy of the partition as a pair of sets. try: A, B = set(partition[0]), set(partition[1]) except: raise ValueError('partition must be two sets') if not is_partition(G, (A, B)): raise nx.NetworkXError('partition invalid') for i in range(max_iter): # `gains` is a list of triples of the form (g, u, v) for each # node pair (u, v), where `g` is the gain of that node pair. gains = _kernighan_lin_pass(G, A, B, weight) csum = list(nx.utils.accumulate(g for g, u, v in gains)) max_cgain = max(csum) if max_cgain <= 0: break # Get the node pairs up to the index of the maximum cumulative # gain, and collect each `u` into `anodes` and each `v` into # `bnodes`, for each pair `(u, v)`. index = csum.index(max_cgain) nodesets = islice(zip(*gains[:index + 1]), 1, 3) anodes, bnodes = (set(s) for s in nodesets) A |= bnodes A -= anodes B |= anodes B -= bnodes return A, B
[ "steliosr@stanford.edu" ]
steliosr@stanford.edu
eed035e496f5c2c366b9ef2dc9cd71733fb93472
000cfccad7e367d91a1d9a7961b3072bf2624a58
/test/test3.py
ad4257ddcb4e2f5a5e8cabaeb3b9e9d959463658
[]
no_license
dachuant/print-pdf
4f9bb68a67079dd838785dc8da3836a2909773d2
07c791c298dc9237b49b56724f026ca88dc1713b
refs/heads/master
2020-07-29T20:42:27.719153
2019-09-21T08:41:54
2019-09-21T08:41:54
209,951,848
6
0
null
null
null
null
UTF-8
Python
false
false
344
py
from pdf2image import convert_from_path import os print os.getcwd() os.environ["PATH"] += os.pathsep + 'D:/project/python/print/poppler-0.68.0/bin/' print os.environ["PATH"] images = convert_from_path('D:\\project\\python\\print\\2.pdf') for index, img in enumerate(images): img.save('D:\\project\\python\\print\\out\\%s.png' % (index))
[ "dachuant@163.com" ]
dachuant@163.com
1ecf8dccf480745015841d6e35cbca8ce0076814
c61145e8771724575f67ae5738dd6cbb9626a706
/blog/permissions.py
5495131200db82f79188dabaa9b8e47477738327
[]
no_license
Seredyak1/test_task
1399dd082f4281ca6f72d036f4df4c1c6945dafe
a5d433b827df46ffa95dd6dd91245b204884674f
refs/heads/master
2020-04-16T08:03:04.521740
2019-01-16T09:33:47
2019-01-16T09:33:47
165,409,648
0
0
null
null
null
null
UTF-8
Python
false
false
416
py
from rest_framework import permissions class IsPostOwner(permissions.BasePermission): """ Object-level permission to only allow updating his own profile PUT and DELETE methods just for the user, who is owner of Post """ def has_object_permission(self, request, view, obj): if request.method in permissions.SAFE_METHODS: return True return obj.user == request.user
[ "sanya.seredyak@gmail.com" ]
sanya.seredyak@gmail.com
6391f4b397b94798859a4bd942cda0713ae46dea
2de7c6584090daa7a11d07464a9c60eea36f1512
/datasets/sample_clean_class.py
56522e049dc3af43302bbad575815a25c8a0fc4f
[]
no_license
bill86416/trojan_attack
26bb2e7050dbfce80e99f9127d957aa0f5900be8
818892221e4b4c556642016f28a1ab863c55ac7f
refs/heads/master
2022-11-07T01:27:34.125098
2020-06-29T22:14:38
2020-06-29T22:14:38
275,916,943
0
0
null
null
null
null
UTF-8
Python
false
false
2,533
py
import numpy as np import cv2 import pickle import matplotlib.pyplot as plt import random import os from tqdm import tqdm def unpickle(file): with open(file, 'rb') as fo: dict1 = pickle.load(fo, encoding='latin1') return dict1 def save_normal_img(data, index, pth): R = data[0:1024].reshape(32,32)/255.0 G = data[1024:2048].reshape(32,32)/255.0 B = data[2048:].reshape(32,32)/255.0 img = np.dstack((R,G,B)) plt.imsave(pth + '/' + str(index) + '.png',img) trn_x = None trn_y = None for i in range(1,6): tmp_x = np.asarray(unpickle('./raw_data/cifar-10-batches-py/data_batch_'+str(i))['data']).astype(np.float64) trn_x = tmp_x if trn_x is None else np.concatenate((trn_x, tmp_x), axis=0) tmp_y = unpickle('./raw_data/cifar-10-batches-py/data_batch_'+str(i))['labels'] trn_y = tmp_y if trn_y is None else np.concatenate((trn_y, tmp_y), axis=0) tst_x = np.asarray(unpickle('./raw_data/cifar-10-batches-py/test_batch')['data']).astype(np.float64) tst_y = unpickle('./raw_data/cifar-10-batches-py/test_batch')['labels'] labels = unpickle('./raw_data/cifar-10-batches-py/batches.meta')['label_names'] selected_classes = ['airplane','automobile','frog','cat','ship'] selected_normal_datset = {} normal_pth = './selected_clean_dataset' if not os.path.exists(normal_pth): os.mkdir(normal_pth) # training if not os.path.exists(normal_pth + '/train'): os.mkdir(normal_pth + '/train') for i in selected_classes: if not os.path.exists(normal_pth + '/train' + '/' + i): os.mkdir(normal_pth + '/train' + '/' + i) for i in tqdm(range (trn_x.shape[0])): cls = labels[trn_y[i]] if cls in selected_classes: if cls not in selected_normal_datset: selected_normal_datset[cls] = 0 else: selected_normal_datset[cls] += 1 save_normal_img(trn_x[i], selected_normal_datset[cls], normal_pth + '/train' + '/' + cls) # testing selected_normal_datset = {} if not os.path.exists(normal_pth + '/test'): os.mkdir(normal_pth + '/test') for i in selected_classes: if not os.path.exists(normal_pth + '/test' + '/' + i): os.mkdir(normal_pth + '/test' + '/' + i) for i in tqdm(range (tst_x.shape[0])): cls = labels[tst_y[i]] if cls in selected_classes: if cls not in selected_normal_datset: selected_normal_datset[cls] = 0 else: selected_normal_datset[cls] += 1 save_normal_img(tst_x[i], selected_normal_datset[cls], normal_pth + '/test' + '/' + cls)
[ "bill86416@gmail.com" ]
bill86416@gmail.com
5b7e0a0263f28b6e26fad36cbcca0e42ad259e96
23bbe9c7872180396684806ac4a2a0da498de029
/contactapp/migrations/0003_assitance_createsucce_social.py
72320ff8279b943bc889ce07073c9fa346cb5c6d
[]
no_license
Zizou897/purzzle
12a13a144677df096855d3133e8bed3857ed6bca
fd8a8757f01734c84cf01668b478358b31c054f7
refs/heads/main
2023-04-29T04:59:42.190315
2021-05-25T16:47:56
2021-05-25T16:47:56
370,630,311
0
0
null
null
null
null
UTF-8
Python
false
false
2,438
py
# Generated by Django 3.2.3 on 2021-05-22 22:22 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('contactapp', '0002_newsletter'), ] operations = [ migrations.CreateModel( name='Assitance', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('date_add', models.DateTimeField(auto_now_add=True)), ('date_update', models.DateTimeField(auto_now=True)), ('status', models.BooleanField()), ('title', models.CharField(max_length=250)), ('name', models.CharField(max_length=250)), ('phone', models.CharField(max_length=250)), ('icon', models.CharField(max_length=250)), ], options={ 'verbose_name': 'Assitance', 'verbose_name_plural': 'Assitances', }, ), migrations.CreateModel( name='CreateSucce', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('date_add', models.DateTimeField(auto_now_add=True)), ('date_update', models.DateTimeField(auto_now=True)), ('status', models.BooleanField()), ('title', models.CharField(max_length=50)), ('sous_title', models.CharField(max_length=250)), ('description', models.TextField()), ], options={ 'verbose_name': 'CreateSucce', 'verbose_name_plural': 'CreateSucces', }, ), migrations.CreateModel( name='Social', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('date_add', models.DateTimeField(auto_now_add=True)), ('date_update', models.DateTimeField(auto_now=True)), ('status', models.BooleanField()), ('name', models.CharField(max_length=250)), ('icon', models.CharField(max_length=250)), ], options={ 'verbose_name': 'CreateSucce', 'verbose_name_plural': 'CreateSucces', }, ), ]
[ "azeridwan10@gmail.com" ]
azeridwan10@gmail.com
f7bb9c2c7637546d17ab231eaff8b8e9de225f3e
287984049908b76587a0d0acf8f129875ed4b99a
/navbar.py
08f302885117b26214b48f5b106cab12b82acd18
[]
no_license
leonardtang/stonks
172235c80205a967d9e5a948e2c776a64fd7f18c
4f9a540ba5f19dd8dd7247239e9a511d08fd61de
refs/heads/master
2023-06-02T15:44:43.707253
2021-06-22T11:02:15
2021-06-22T11:02:15
359,015,232
1
0
null
null
null
null
UTF-8
Python
false
false
549
py
import dash_bootstrap_components as dbc def Navbar(): navbar = dbc.NavbarSimple( children=[ dbc.NavItem(dbc.NavLink("Stocks", href="/stocks")), dbc.NavItem(dbc.NavLink("Crypto", href="/crypto")), dbc.NavItem(dbc.NavLink("Volatility", href="/volatility")), dbc.NavItem(dbc.NavLink("Pulse Check", href="/sentiment")) ], brand="Stonks: A Leonard Tang Production", brand_href="https://leonardtang.me", sticky="top", fluid=True ) return navbar
[ "leonardgentwintang@gmail.com" ]
leonardgentwintang@gmail.com
275cb2dc84ed3aebe31d43dcfb67ea7ee46bb73a
ddcebdfe77e095ff39e33ad44a39fd2c85b42701
/lab03_03.py
0423d2d2e20c7abda28b6d8fe955b54cc9fa5024
[]
no_license
soizensun/python-lab-solution
08b793e4bce3f996f033ab1a9624e43ce69b6d6e
897f5e5051753f13e5448bb8edd2b09d3a017291
refs/heads/master
2021-08-28T14:44:28.867992
2017-12-12T13:30:32
2017-12-12T13:30:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
817
py
h = int(input('Enter number of hours: ')) m = int(input('Enter number of minutes: ')) if(h < 0 or m < 0 or m > 59): print("Input Error") else: baht = 0 if(h == 0 and m <= 15): print('No charge, thanks.') else: if(m > 0): #if(m == 0) h = h + 1 if(h <= 2): baht = baht + 10 print('Total amount due is %d Bahts.'%baht) elif(h > 2): baht = baht + 10 + (10*(h-2)) print('Total amount due is %d Bahts.'%baht) elif(m == 0): if(h <= 2): baht = baht + 10 print('Total amount due is %d Bahts.'%baht) elif(h > 2): baht = baht + 10 + (10*(h-2)) print('Total amount due is %d Bahts.'%baht)
[ "zozen@gmail.com" ]
zozen@gmail.com
b372e8891c3a17c5a20bd4f2e5c2b6c8fde17955
89f47a87b780d0ab08bac724d519c7e35d6f85f9
/customerapp/migrations/0007_auto_20181018_1610.py
589e2cfe800d5f6c1051422916a58d4b7900e608
[]
no_license
Bhavin55/project
df572486684d49aa8289df8a66c1cfe1705ee688
e94dce8ac350ca3a3cbfa576d5daf8bc9ddd55b9
refs/heads/master
2020-04-02T13:53:33.393427
2018-10-24T12:42:24
2018-10-24T12:42:24
154,501,408
0
0
null
null
null
null
UTF-8
Python
false
false
723
py
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2018-10-18 16:10 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('customerapp', '0006_auto_20181018_1604'), ] operations = [ migrations.RemoveField( model_name='vechilemodel', name='id', ), migrations.AlterField( model_name='vechilemodel', name='user', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, primary_key=True, serialize=False, to=settings.AUTH_USER_MODEL), ), ]
[ "bhavinbharathan55@gmail.com" ]
bhavinbharathan55@gmail.com
5d5b0ee5fecf06912ea0fbbf1e1bc3d9eb06a082
cefe901a9b77117ca6450da4d3a3389469d7e097
/Speaker.py
fdc4270655f03ca82ff16bf03402577819e9d834
[]
no_license
saguileran/Scripts
ea5a0cbac6ac03e7c32db889db46f45c63a32f18
cb1443164bcd26d5ac2b036ed62cf8f6ec2916c1
refs/heads/master
2020-05-30T18:54:31.401635
2019-06-08T04:58:17
2019-06-08T04:58:17
189,910,948
0
0
null
null
null
null
UTF-8
Python
false
false
1,982
py
####Este es un tutorial del libro de Alexander Hiam pagina 45 del PDF#### import time from Adafruit_BBIO import PWM from Notas import * led_pin = "P9_14" #Pin donde se coloca un PWM PWM.start(led_pin, 0, 60) #el segundo termino es the initial duty cycle, el tercero es la frecuencia dt=0.1 #tiempo entre pulsos #a=False #Apagar ciclo a=True #Realiza el sonido #Generando una onda def wave(led_pin, frecuency, dt): ##)pin, frecuency, duration/2) PWM.start(led_pin, 0, frecuency) #el segundo termino es the initial duty cycle, el tercero es la frecuencia for level in range(0, 100): PWM.set_duty_cycle(led_pin, level) time.sleep(dt) for level in range(100, 0, -1): ## PWM.set_duty_cycle(led_pin, level) time.sleep(dt) def nowave(pin): PWM.set_duty_cycle(led_pin, 0) return() #Generando una nota definida melody = [C4, G3, G3, A3, G3, 0, B3, C4] noteDurations=[4,8,8,4,4,4,4,4] # iterate over the notes of the melody: ''' #para comentar varias lineas for thisNote in range(len(melody)): # to calculate the note duration, take one second divided by the note type. #e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc. noteDuration = int(1000 / noteDurations[thisNote]) wave(led_pin, melody[thisNote], noteDuration) # to distinguish the notes, set a minimum time between them. # the note's duration + 30% seems to work well: pauseBetweenNotes = int(noteDuration * 1.3) time.sleep(pauseBetweenNotes) # stop the wave playing: nowave(led_pin) ''' while(a): for level in range(0, 100): PWM.set_duty_cycle(led_pin, level) time.sleep(dt) for level in range(10, 0, -1): PWM.set_duty_cycle(led_pin, level) time.sleep(dt) a=0 # a=int(input("Continuar 1, no continuar 0: ")) #Pide un valor al usuario if a==1: a=True b=float(input("Frecuencia nueva: ")) PWM.start(led_pin, 0, b) #el segundo termino es the initial duty cycle, el tercero es la frecuencia else: a=False # except(KeyboardInterrupt): PWM.cleanup()
[ "saguileran@unal.edu.co" ]
saguileran@unal.edu.co
61cf6c2336cb0a0ead3430453c374718f1a68923
ae75d25cc4c1d2f77726f1346346ad3a3989696f
/code_examples/builtin_types/lists.py
b8a0455941ce4b93b64b2b97b48e2e32dd2d0d44
[]
no_license
marcin-bakowski-intive/python3-training
6c6bda2e2301a563c6fe7f152c5c6478eedb9b43
1a150ab6825080d00a1b21560e08f33c219af7ac
refs/heads/master
2020-04-05T20:51:33.826683
2018-12-11T14:20:19
2018-12-12T07:31:43
157,197,753
0
0
null
null
null
null
UTF-8
Python
false
false
1,165
py
#!/usr/bin/env python3 # https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range fruits = ['orange', 'apple', 'pear', 'banana', 'kiwi', 'apple', 'banana'] print("apple count: %s" % fruits.count('apple')) print("tangerine count: %s" % fruits.count('tangerine')) print("banana count: %s" % fruits.count('banana')) print("banana index: %s" % fruits.index('banana')) print("2nd banana index: %s" % fruits.index('banana', 4)) print("Fruit reversed: %s" % fruits.reverse()) fruits.append('grape') print(fruits) fruits.sort() print("sorted fruits: %s" % fruits) for fruit in fruits: print("This is a %s" % fruit) while fruits: print("Let's eat %s" % fruits.pop()) print(fruits) if not fruits: print("There are no fruits") fruits = ['orange', 'apple', 'pear', 'banana', 'kiwi', 'apple', 'banana'] print("First fruit: %s" % fruits[0]) print("Last fruit: %s" % fruits[-1]) print("There are %d fruits" % len(fruits)) print("Let's take first 2 fruits: %s" % fruits[:2]) print("Let's take last 3 fruits: %s" % fruits[-3:]) print("Let's take every second fruit: %s" % fruits[::2]) print("is plum in fruits: %s" % ("plum" in fruits))
[ "marcin.bakowski@intive.com" ]
marcin.bakowski@intive.com
b2e5f4f3b6676dbdc8c2a546cf50b28f0f92ad08
b911528809d4b231abd1aab7892d4177dd323072
/helper.py
5f233862dfa6cad7099331131a8072f81a9c3bdc
[]
no_license
welchrj/MAE6286
6339763826b1bf49dfd93c108b86244a493a8e01
080f02a281e2b2190120456e5a679d94b382e48f
refs/heads/master
2020-07-12T11:42:14.925631
2019-12-12T16:34:04
2019-12-12T16:34:04
204,810,873
0
0
null
null
null
null
UTF-8
Python
false
false
5,500
py
""" Helper functions for lessons of module 5 of Numerical-MOOC. """ import numpy from matplotlib import pyplot, cm from mpl_toolkits import mplot3d def ftcs_neumann(u0, sigma, nt): '''FTCS with neumann conditions''' u = u0.copy() for i in range(nt): u = u.copy() u[1:-1] = u[1:-1] + sigma*(u[:-2] - 2*u[1:-1] + u[2:]) u[-1] = u[-2] return u def laplace_solution(x, y, Lx, Ly): """ Computes and returns the analytical solution of the Laplace equation on a given two-dimensional Cartesian grid. Parameters ---------- x : numpy.ndarray The gridline locations in the x direction as a 1D array of floats. y : numpy.ndarray The gridline locations in the y direction as a 1D array of floats. Lx : float Length of the domain in the x direction. Ly : float Length of the domain in the y direction. Returns ------- p : numpy.ndarray The analytical solution as a 2D array of floats. """ X, Y = numpy.meshgrid(x, y) p = (numpy.sinh(1.5 * numpy.pi * Y / Ly) / numpy.sinh(1.5 * numpy.pi * Ly / Lx) * numpy.sin(1.5 * numpy.pi * X / Lx)) return p def poisson_solution(x, y, Lx, Ly): """ Computes and returns the analytical solution of the Poisson equation on a given two-dimensional Cartesian grid. Parameters ---------- x : numpy.ndarray The gridline locations in the x direction as a 1D array of floats. y : numpy.ndarray The gridline locations in the y direction as a 1D array of floats. Lx : float Length of the domain in the x direction. Ly : float Length of the domain in the y direction. Returns ------- p : numpy.ndarray The analytical solution as a 2D array of floats. """ X, Y = numpy.meshgrid(x, y) p = numpy.sin(numpy.pi * X / Lx) * numpy.cos(numpy.pi * Y / Ly) return p def l2_norm(p, p_ref): """ Computes and returns the relative L2-norm of the difference between a solution p and a reference solution p_ref. If L2(p_ref) = 0, the function simply returns the L2-norm of the difference. Parameters ---------- p : numpy.ndarray The solution as an array of floats. p_ref : numpy.ndarray The reference solution as an array of floats. Returns ------- diff : float The (relative) L2-norm of the difference. """ l2_diff = numpy.sqrt(numpy.sum((p - p_ref)**2)) l2_ref = numpy.sqrt(numpy.sum(p_ref**2)) if l2_ref > 1e-12: return l2_diff / l2_ref return l2_diff def poisson_2d_jacobi(p0, b, dx, dy, maxiter=20000, rtol=1e-6): """ Solves the 2D Poisson equation for a given forcing term using Jacobi relaxation method. The function assumes Dirichlet boundary conditions with value zero. The exit criterion of the solver is based on the relative L2-norm of the solution difference between two consecutive iterations. Parameters ---------- p0 : numpy.ndarray The initial solution as a 2D array of floats. b : numpy.ndarray The forcing term as a 2D array of floats. dx : float Grid spacing in the x direction. dy : float Grid spacing in the y direction. maxiter : integer, optional Maximum number of iterations to perform; default: 20000. rtol : float, optional Relative tolerance for convergence; default: 1e-6. Returns ------- p : numpy.ndarray The solution after relaxation as a 2D array of floats. ite : integer The number of iterations performed. conv : list The convergence history as a list of floats. """ p = p0.copy() conv = [] # convergence history diff = rtol + 1.0 # initial difference ite = 0 # iteration index while diff > rtol and ite < maxiter: pn = p.copy() p[1:-1, 1:-1] = (((pn[1:-1, :-2] + pn[1:-1, 2:]) * dy**2 + (pn[:-2, 1:-1] + pn[2:, 1:-1]) * dx**2 - b[1:-1, 1:-1] * dx**2 * dy**2) / (2.0 * (dx**2 + dy**2))) # Dirichlet boundary conditions at automatically enforced. # Compute and record the relative L2-norm of the difference. diff = l2_norm(p, pn) conv.append(diff) ite += 1 return p, ite, conv def plot_3d(x, y, p, label='$z$', elev=30.0, azim=45.0): """ Creates a Matplotlib figure with a 3D surface plot of the scalar field p. Parameters ---------- x : numpy.ndarray Gridline locations in the x direction as a 1D array of floats. y : numpy.ndarray Gridline locations in the y direction as a 1D array of floats. p : numpy.ndarray Scalar field to plot as a 2D array of floats. label : string, optional Axis label to use in the third direction; default: 'z'. elev : float, optional Elevation angle in the z plane; default: 30.0. azim : float, optional Azimuth angle in the x,y plane; default: 45.0. """ fig = pyplot.figure(figsize=(8.0, 6.0)) ax = mplot3d.Axes3D(fig) ax.set_xlabel('$x$') ax.set_ylabel('$y$') ax.set_zlabel(label) X, Y = numpy.meshgrid(x, y) ax.plot_surface(X, Y, p, cmap=cm.viridis) ax.set_xlim(x[0], x[-1]) ax.set_ylim(y[0], y[-1]) ax.view_init(elev=elev, azim=azim)
[ "welchrj@gwmail.gwu.edu" ]
welchrj@gwmail.gwu.edu
67342d9963c24dbb9002f5f01da016bfbeed01b0
f11a7316d46f1119a261da65abe0d45ffd37bf50
/app/addexpense.py
e760243220ddcad9a2918f21a13a642fa9ff3276
[ "MIT" ]
permissive
327585419/ExpenseTracker
728202f904124846b4f39e844acb9532e336e6b9
05a96e714564325dbe30c1a368b1bba965d5d0ee
refs/heads/master
2022-02-26T16:53:58.970500
2019-11-03T05:31:11
2019-11-03T05:31:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,623
py
from datetime import datetime, timedelta from kivy.uix.screenmanager import Screen from kivy.uix.dropdown import DropDown from kivy.app import App from kivymd.pickers import MDDatePicker from kivytoast import toast from dtclasses import Items, Expenses from additem import CustomFlatButton add_expense = """ #:import MDTextField kivymd.textfields.MDTextField <AddExpense> item_name: item_name.__self__ value: value.__self__ submit: submit.__self__ lbl_message: lbl_message.__self__ datelabel : datelabel.__self__ daycalendar: daycalendar.__self__ BoxLayout: orientation: 'vertical' BoxLayout: orientation: 'horizontal' size_hint_y: .1 canvas.before: Color: rgba: app.theme_cls.primary_light Rectangle: size: self.size pos: self.pos MDIconButton: icon: 'chevron-left' size_hint_x: .15 on_press: root.left_arrow() MDLabel: id: datelabel size_hint_x: .55 #on_text: root.refresh_list() halign : 'center' theme_text_color: "Primary" MDIconButton: icon: 'chevron-right' size_hint_x: .15 on_press: root.right_arrow() MDIconButton: id: daycalendar icon: 'calendar' size_hint_x: .15 on_press: root.show_date_picker() FloatLayout: # orientation: 'vertical' size_hint_y : .7 MDTextField: id: item_name # pos_hint: {'center_x': .5} hint_text: 'Category/Sub-Category' size_hint_x : .75 pos_hint: {'x': .1, 'y': .75} normal_color: app.theme_cls.accent_light foreground_color : app.theme_cls.text_color on_text: root.get_category('field') elevation: 10 helper_text_mode : 'on_focus' helper_text : 'Type/Select from Dropdown' input_filter: root.text_filter max_text_length: 20 MDIconButton: icon: 'chevron-down' size_hint_x: .15 pos_hint: {'x': .85, 'y': .75} on_release: root.get_category('button') MDTextField: id: value size_hint_x : .75 pos_hint: {'x': .1, 'y': .55} hint_text: 'Value' normal_color: app.theme_cls.accent_light foreground_color : app.theme_cls.text_color elevation: 10 input_filter : 'float' helper_text_mode : 'on_focus' helper_text : 'Enter expense amount' MDFillRoundFlatButton: id: submit pos_hint: {'x': .1, 'y': .3} size_hint_x: .75 # width: 250 text: 'Submit' on_release: root.add_expense() MDLabel: id: lbl_message size_hint_x: .8 pos_hint: {'center_x': .5, 'center_y': .2} halign: 'center' theme_text_color: "Primary" BoxLayout: size_hint_y : .2 """ class AddExpense(Screen): expense_date = datetime.today() cat_dropdown = DropDown() def __init__(self, **kwargs): self.name = "Add Expense" self.app = App.get_running_app() super(AddExpense, self).__init__() self.cat_dropdown.bind( on_select=lambda instance, x: setattr(self.item_name, "text", x) ) self.cat_dropdown.width = self.item_name.width def show_date_picker(self): MDDatePicker(self.pick_date).open() def pick_date(self, exp_date): self.lbl_message.text = "" self.datelabel.text = str(exp_date) self.expense_date = exp_date def add_expense(self): item_name = self.item_name.text value = self.value.text exp_date = self.datelabel.text if ( item_name is None or item_name == "" or value is None or value == "" or exp_date is None or exp_date == "" ): self.lbl_message.text = "Required input missing." self.lbl_message.theme_text_color = "Error" return item_id = Items.get_item(item_name=item_name, item_link=None) if item_id is None or item_id == 0: self.lbl_message.text = ( "No Category/Sub-Category by this name. " "Please create if required from Items screen." ) self.lbl_message.theme_text_color = "Error" return if value == "0": self.lbl_message.text = "Enter an amount not equal to 0" self.lbl_message.theme_text_color = "Error" return expense_id = Expenses.get_next_exp_id() kwargs = { "expense_id": expense_id, "item_id": item_id, "value": float(value), "date": exp_date, } Expenses.add_expense(**kwargs) toast("Expense Added") self.leave_screen() def on_enter(self, *args): self.expense_date = datetime.strptime(self.app.date, "%Y-%m-%d") self.datelabel.text = self.app.date self.item_name.text = "" self.value.text = "" self.item_name.focus = True self.lbl_message.text = "" def left_arrow(self): self.expense_date = self.expense_date - timedelta(days=1) self.datelabel.text = self.expense_date.strftime("%Y-%m-%d") self.lbl_message.text = "" def right_arrow(self): self.expense_date = self.expense_date + timedelta(days=1) self.datelabel.text = self.expense_date.strftime("%Y-%m-%d") self.lbl_message.text = "" def get_category(self, *args): """function to get items based on the search text entered by user""" self.cat_dropdown.clear_widgets() self.lbl_message.text = "" if self.cat_dropdown.attach_to is not None: self.cat_dropdown._real_dismiss() item_name = self.item_name.text item_dict = {} if item_name is not None and item_name != "" and args[0] != "button": item_dict = Items.get_items(item_name=item_name, item_type="all") if args[0] == "button": item_dict = Items.get_items(item_name="", item_type="all") if item_dict != {}: for key, value in item_dict.items(): self.cat_dropdown.add_widget( CustomFlatButton( text=value["item_name"], on_release=lambda x: self.cat_dropdown.select(x.text), md_bg_color=self.app.theme_cls.accent_light, width=self.item_name.width, ) ) self.cat_dropdown.open(self.item_name) def text_filter(self, input_text, undo_flag): if input_text.isalnum(): return input_text else: return def leave_screen(self, *args): self.app.screens.show_screen("Expenses") def on_leave(self, *args): self.cat_dropdown.clear_widgets()
[ "adityabhawsingka@gmail.com" ]
adityabhawsingka@gmail.com
6642b80f27554a501506a6ad0f13c7179eccc798
2700a95438492d3c99b86ac5ff49806d79d5f3c7
/example/serializers.py
1f2c59651d71e0f8b15f7e04b73d0ea74f7c39c3
[ "BSD-2-Clause" ]
permissive
kaldras/django-rest-framework-json-api
ea621a79d911715e383ff8d1d36e18bb452b5582
a4ae22ca4e8351e40e9e4a82c6c117f6beac9653
refs/heads/develop
2021-04-15T18:36:37.088458
2015-09-21T22:43:17
2015-09-21T22:43:17
42,941,620
0
0
null
2015-09-22T15:11:30
2015-09-22T15:11:30
null
UTF-8
Python
false
false
530
py
from rest_framework import serializers from example.models import Blog, Entry, Author class BlogSerializer(serializers.ModelSerializer): class Meta: model = Blog fields = ('name', ) class EntrySerializer(serializers.ModelSerializer): class Meta: model = Entry fields = ('blog', 'headline', 'body_text', 'pub_date', 'mod_date', 'authors',) class AuthorSerializer(serializers.ModelSerializer): class Meta: model = Author fields = ('name', 'email',)
[ "mail@unruhdesigns.com" ]
mail@unruhdesigns.com
b14160cc6e4a410f235a915e100cb604c440c372
d45e2c58e57b22b48bf1b3c426c5e62ec7651c4c
/LECOUEDIC_TORTOSA_OLIVIER_TP1.py
66b9c66a8d39c79eeaba96420450c1a9e1b52faf
[]
no_license
tlc10/Data-Analysis
0c6d5ff9866f9c6fdd4831401c381b568b1acd46
07d655d32a9c76eab8954792501fae308f3e482e
refs/heads/master
2022-09-25T19:26:59.364829
2020-06-02T15:10:40
2020-06-02T15:10:40
268,833,664
0
0
null
null
null
null
UTF-8
Python
false
false
2,234
py
#LECOUEDIC Thomas #TORTOSA Hugo #RAPHAEL OLIVIER #TP1 DATA ANALYSIS import matplotlib as plt import statistics import numpy as np import matplotlib.pyplot as plt import pandas as pd from scipy import stats from math import sqrt,pi,exp from collections import Counter #A #1) A = np.random.randint(0,10,1000) #2) plt.hist(A) #3) #mean n = len(A) S = sum(A) mean = S / n print(mean) #median A.sort() if n % 2 == 0: m1 = A[n//2] m2 = n[n//2 - 1] median = (m1 + m2)/2 else: median = A[n//2] print(median) #mode c = Counter(A) get_mode = dict(c) mode = [k for k, v in get_mode.items() if v == max(list(c.values()))] if len(mode) == n: get_mode = "No mode found" else: get_mode = "Mode is " + ', '.join(map(str, mode)) print(get_mode) #4) np.mean(A) np.median(A) #6) #range range1 = max(A)-min(A) print(range1) #variance var=0 c=0 for k in range(0,n): c+=(A[k]-mean)**2 var = c/n print(var) #standard_deviation std = math.sqrt(c/n) np.ptp(A) np.var(A) np.std(A) #B #1 dataset = [10,5,12,8,48,9,23,10,24,11,48,12,9,13,7,14,13,16] ser = pd.Series(dataset[1::2],index=dataset[::2]) ser.plot.bar() #2 #position np.mean(ser.index) max(ser.index) np.median(ser.index) min(ser.index) #dispersion np.std(ser.index) np.ptp(ser.index) np.var(ser.index) statistics.mode(ser.index) #C #1 #2 sampleQI = np.random.normal(100,15,100000) plt.hist(sampleQI) #3 np.mean(sampleQI) np.std(sampleQI) #4 cnt1 = 0 for i in sampleQI: if i<60: cnt1+=1 cnt1/len(sampleQI)*100 #5 cnt2 = 0 for i in sampleQI: if i>130: cnt2+=1 cnt2/len(sampleQI)*100 #6 def IC(mean, std): print('The percentage between', mean -1.96*std,"and",mean +1.96*std) IC(np.mean(sampleQI),np.std(sampleQI)) #D #1 sample1 = np.random.normal(100,15,10) sample2 = np.random.normal(100,15,1000) sample3 = np.random.normal(100,15,100000) np.mean(sample1) np.std(sample1) np.mean(sample2) np.std(sample2) np.mean(sample3) np.std(sample3) IC(np.mean(sample1),np.std(sample1)) IC(np.mean(sample2),np.std(sample2)) IC(np.mean(sample3),np.std(sample3)) #2 dataset_malnutrition = read_csv(malnutrition.csv) #3 np.mean(dataset_malnutrition) np.std(datset_malnutrition) IC(np.mean(dataset_malnutrition),np.std(dataset_malnutrition))
[ "noreply@github.com" ]
tlc10.noreply@github.com
38c82483fb2383ea015666b29dbae06848e61afe
ea05617b5d33a641bb60b735e936e8f0ba6e57a7
/unittests/test_splash.py
fd230dd1991ad97954cad4ff5e86756b9c47c6f8
[]
no_license
bbpatil/Phoenix
18716744f5a3f5dbd805520baf3edc14ebde9529
4d05434a6c9e9effb2ade8085e2bfa83775575ed
refs/heads/master
2022-02-23T21:40:34.510672
2016-06-12T05:26:06
2016-06-12T05:26:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
966
py
import unittest import wtc import wx import wx.adv import os pngFile = os.path.join(os.path.dirname(__file__), 'toucan.png') #--------------------------------------------------------------------------- class splash_Tests(wtc.WidgetTestCase): def test_splash1(self): wx.adv.SPLASH_CENTRE_ON_PARENT wx.adv.SPLASH_CENTRE_ON_SCREEN wx.adv.SPLASH_NO_CENTRE wx.adv.SPLASH_TIMEOUT wx.adv.SPLASH_NO_TIMEOUT wx.adv.SPLASH_CENTER_ON_PARENT wx.adv.SPLASH_CENTER_ON_SCREEN wx.adv.SPLASH_NO_CENTER def test_splash2(self): splash = wx.adv.SplashScreen(wx.Bitmap(pngFile), wx.adv.SPLASH_TIMEOUT|wx.adv.SPLASH_CENTRE_ON_SCREEN, 250, self.frame) self.waitFor(300) #--------------------------------------------------------------------------- if __name__ == '__main__': unittest.main()
[ "robin@alldunn.com" ]
robin@alldunn.com
391965ab758a9bc77d76205ceb946adf9d009a2d
af24f5e44068ddc91e05ecdbafac2d01755fd2e9
/blog/migrations/0028_auto_20200706_1507.py
33d3e828815ec09a8e24fb1bd42385e126ce098e
[]
no_license
IsraJC/my-first-blog
a34b666fe09ae091c54c00e6121a6bd528fd22e1
84bc92a6cde1aec527600040cd382cd1853c1574
refs/heads/master
2023-08-12T18:42:21.745988
2021-10-04T19:50:09
2021-10-04T19:50:09
269,368,823
0
0
null
null
null
null
UTF-8
Python
false
false
472
py
# Generated by Django 2.2.13 on 2020-07-06 14:07 from django.db import migrations, models import django_mysql.models class Migration(migrations.Migration): dependencies = [ ('blog', '0027_cv_skills'), ] operations = [ migrations.AlterField( model_name='cv', name='skills', field=django_mysql.models.ListCharField(models.CharField(max_length=100), default=[], max_length=1010, size=10), ), ]
[ "israchanna@gmail.com" ]
israchanna@gmail.com
364e79d12f465bb9b2bc58ca1814c8753ec31f44
8984d05795a32d3ffb646dad2b7a3b1cb3d118ec
/OOO processor/code/assembler.py
7277841b7a008799eedb7ad7e7b4966f9541cfa1
[ "MIT" ]
permissive
Shubhayu-Das/VL803-projects
3999782261c1ae1b07f5b418790a101c7d3d6d1c
895066e3449538bffd12413d93344515afed08c4
refs/heads/main
2023-05-06T10:10:05.139534
2021-05-21T18:23:34
2021-05-21T18:23:34
337,995,514
1
0
null
null
null
null
UTF-8
Python
false
false
3,375
py
''' MIT Licensed by Shubhayu Das, copyright 2021 Developed for Processor Architecture course assignment 1 - Tomasulo Out-Of-Order Machine This is the script for a basic RISC-V assembler. It only support LW, ADD, SUB, MUL and DIV instructions so far. All are integer instructions only, although, the program by itself supports floating point numbers(cheating) ''' import re import sys # Function to split the instruction string into opcode and registers(and offset if needed) # This function is capable of handling comments too def split_operands(program): program = [inst.split(";")[0] for inst in program] program = list(filter(None, program)) program = [re.split(r",|\s", inst.strip()) for inst in program] program = [[word.upper().replace('X', '') for word in inst if word] for inst in program] program = [inst for inst in program if inst] return program # Zero pad the binary numbers appropriately def pad(number, n): number = number[2:] while len(number) < n: number = "0" + number return number # The main assembler function, which contains the mapping between the instructions and their # opcodes, function-7 and function-3 fields def assembler(filename): outFile = ".".join([filename.split("/")[-1].split(".")[0], "bin"]) program = [] assembly = [] mapping = { "ADD": { "funct7": "0000000", "funct3": "000", "opcode": "0110011" }, "SUB": { "funct7": "0100000", "funct3": "000", "opcode": "0110011" }, "MUL": { "funct7": "0000001", "funct3": "000", "opcode": "0110011" }, "DIV": { "funct7": "0000001", "funct3": "100", "opcode": "0110011" }, "LW": { "funct3": "010", "opcode": "1010011" }, } # Read the source code with open(filename) as sourceCode: program = (sourceCode.readlines()) # Split each instruction into requisite pieces program = split_operands(program) # Decode the split chunks into binary for i, inst in enumerate(program): if "LW" in inst: offset, rs1 = inst[2].split('(') offset = pad(bin(int(offset)), 12) rs1 = pad(bin(int(rs1.replace(')', ''))), 5) rd = pad(bin(int(inst[1])), 5) assembly.append( offset + rs1 + mapping["LW"]["funct3"] + rd + mapping["LW"]["opcode"]) else: rd = pad(bin(int(inst[1])), 5) rs1 = pad(bin(int(inst[2])), 5) rs2 = pad(bin(int(inst[3])), 5) assembly.append(mapping[inst[0]]["funct7"] + rs2 + rs1 + mapping[inst[0]]["funct3"] + rd + mapping[inst[0]]["opcode"]) # Write the assembled binary into an output bin file with open(f"build/{outFile}", 'w') as destFile: for idx, inst in enumerate(assembly): destFile.write(inst) if idx < len(assembly) - 1: destFile.write("\n") return f"build/{outFile}" # Check if a program was fed it, otherwise use a default if len(sys.argv) < 2: print(f"Output generated to: {assembler('src/riscv_program.asm')}") else: print(f"Output generated to: {assembler(sys.argv[1])}")
[ "Shubhayu-Das@users.noreply.github.com" ]
Shubhayu-Das@users.noreply.github.com
cb4e8da828ef302f7370bd82751ec3397ad3203c
d91bbff79ad7b13b7ddf0e3468c08a378c4d40e8
/flaskblog/__init__.py
98ef8cd44d17c742425d1c89ecb10e808ffa88c1
[]
no_license
bugtijamal/flaskblog
07927f68f9766c127da6ee638501bf55fab0b467
46583df1e2861f82772edcc37ddf53f89c3e2acc
refs/heads/gh-pages
2022-11-07T22:43:10.846688
2019-05-08T11:16:16
2019-05-08T11:16:16
185,075,433
7
3
null
2022-10-06T01:38:36
2019-05-05T19:49:04
HTML
UTF-8
Python
false
false
579
py
from flask import Flask from flask_bcrypt import Bcrypt from flask_sqlalchemy import SQLAlchemy from flask_login import LoginManager from flask_msearch import Search app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///test.db' app.config['SECRET_KEY']='thisisatopsecretsforme' app.config['SQLALCHEMY_TRACK_MODIFICATIONS']=True db = SQLAlchemy(app) bcrypt = Bcrypt(app) search = Search() search.init_app(app) login_manager = LoginManager(app) login_manager.login_view = "login" login_manager.login_message_category = "info" from flaskblog import routes
[ "bugtijamal@gmail.com" ]
bugtijamal@gmail.com
7c24f6c2100d2d03c1dcef8554a3eb2f465a6538
79b4b594208fa79f33fdf2ea9b2296a8ddf54087
/Social Media Ontology/flickr_api-0.4/flickr_api/keys.py
2d76be5e115034a94a1c300377b8ec20790e1e83
[]
no_license
sheetalsh456/Crime-Ontology-Enrichment-Using-News-and-Social-Media
67b9121f9beb1d6ecb8e5539a032a9437875ffb1
5f6125a3c85867c598cadbe2baa84cc20e35a8fe
refs/heads/master
2020-03-20T21:10:59.932532
2018-06-18T08:33:50
2018-06-18T08:33:50
137,727,551
1
1
null
null
null
null
UTF-8
Python
false
false
327
py
API_KEY = "c0fbe33d0663c2a99981d03c9d21d9a1" API_SECRET = "8c76a2ad387c546e" try: import flickr_keys API_KEY = flickr_keys.API_KEY API_SECRET = flickr_keys.API_SECRET except ImportError: pass def set_keys(api_key, api_secret): global API_KEY, API_SECRET API_KEY = api_key API_SECRET = api_secret
[ "sheetalsh456@gmail.com" ]
sheetalsh456@gmail.com
da01ce9e8217ad95f045cc6cdc61d65ad111b646
2d0eda15d99d945b9dfa25ccfa701fbdac70bf69
/invoicemanager/wsgi.py
ab0d00532585d25b976d24045f9ebdc998fa9506
[]
no_license
Williano/Invoice-Management-System
9df1267f59bb1faaacb7b1864dbcf3face5cf549
7ad761973d1db913a166a9006a27042441c14f10
refs/heads/master
2022-10-27T19:44:47.177462
2022-09-26T03:42:56
2022-09-26T03:42:56
149,183,182
33
10
null
2022-04-26T02:08:52
2018-09-17T20:21:41
JavaScript
UTF-8
Python
false
false
406
py
""" WSGI config for invoicemanager project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.11/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "invoicemanager.settings") application = get_wsgi_application()
[ "paawilly17@gmai.com" ]
paawilly17@gmai.com
843e5f8cf59b3b2b9f8dd6abd7edf6e1dc8c0467
b888de0906d9055246e8a8f334f3de914cddb64b
/otp.py
a4a00b9cabe1abba727043163b8961764563c0e6
[]
no_license
Tavrovskiy/7_Symmetric_ciphers
c45f3082ace845a20307b03b7a69bb302c635f3c
8509578cb767ce3a6ad866f570c08eca151876f9
refs/heads/master
2020-11-30T04:04:22.265193
2019-12-26T16:58:51
2019-12-26T16:58:51
230,296,650
0
0
null
2019-12-26T16:44:55
2019-12-26T16:44:55
null
UTF-8
Python
false
false
393
py
def vernam (k, m): lb, rb = 0, 65536 res = '' for ind, s in enumerate(m): cur_k = ord(k[ind % len(k)]) res += chr(ord(s) ^ cur_k) return res s = 'oh hi mark' print("Исходная строка: " + s) example1 = vernam('qwe', s) print("\n Шифр:" + example1) hack = vernam('qwe', example1) print("\n Взлом шифра: " + hack)
[ "Alex_Tav@icloud.com" ]
Alex_Tav@icloud.com
bf8279023591a8e93a533f29dfd93aeb05bed3d2
77e7bf85a0a39031de0ce11a095303a775700a91
/gis/parse_raw.py
f834c3d3839a5d3bb1286588703700118773eb2f
[]
no_license
simrayyyy/uk-districts
ea8f86210b7d02f83c45d9116c12785b8d6557eb
fe18edcc4aa7d6dd8364ec9348c17b4e356ea9d9
refs/heads/master
2022-11-12T09:31:51.842471
2020-06-17T08:30:21
2020-06-17T08:30:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,546
py
import sys import fiona from shapely.geometry import Polygon from shapely.geometry import MultiPolygon import shapely.geometry fn=sys.argv[1] with fiona.open(fn) as uk_gis: #print header print("objectid,name,area,centroid_x, centroid_y") for shape in uk_gis: #objectid = shape["objectid"] properties = shape["properties"] objectid = properties["objectid"] area_name = properties["lad17nm"] geom = shape["geometry"] if geom["type"] == 'MultiPolygon': mp = MultiPolygon(shapely.geometry.shape(geom)) areas = [] for p in list(mp): areas.append(p.area) max_area = max(areas) max_polygon = list(mp)[areas.index(max_area)] areas.remove(max_area) for a in areas: if a >= max_area/50: sys.stderr.write("Warning multi-polygon for objectid " \ + str(objectid) + "\n") centroid = max_polygon.centroid print(str(objectid) + "," + "\"" + str(area_name) + "\"" + "," + \ str(max_polygon.area) + "," + \ str(centroid.x) + "," + str(centroid.y)) elif geom["type"] == 'Polygon': p = Polygon(shapely.geometry.shape(geom)) centroid = p.centroid print(str(objectid) + "," + "\"" + str(area_name) + "\"" + "," + \ str(p.area) + "," + \ str(centroid.x) + "," + str(centroid.y))
[ "pieter.libin@vub.ac.be" ]
pieter.libin@vub.ac.be
6ed5ed6002d8c19eb9118c1f57f356dd2c2be4b8
e983ff3137b38a9a984c54466e76c530bf1e95de
/HomeControlWeb/common/templatetags/navbar.py
8af58895f6622e329c395ac3771cbe6595230440
[ "Apache-2.0" ]
permissive
itamaro/home-control-web
43c75d312c06e746c78b4c13657675571c868e6c
de8b9020548e1634d3312a992e1a29351a780d2d
refs/heads/master
2016-09-06T04:47:47.107092
2013-10-30T11:31:40
2013-10-30T11:31:40
12,058,092
2
1
null
null
null
null
UTF-8
Python
false
false
387
py
import urllib from django import template from django.core.urlresolvers import reverse register = template.Library() @register.simple_tag(takes_context=True) def nav_item_active(context, lookup_view): "Return 'active' if the `lookup_view` matches the active view" return context['request'].path.startswith(reverse(lookup_view)) and \ 'active' or ''
[ "itamarost@gmail.com" ]
itamarost@gmail.com
cf3291941427d53935ae71d23e4d8c8974616f9a
2c60ab1041d60f2c4d0a92cb35f074a1f0a18cc9
/term2/particle_filters_python/5_important_weight.py
4f62368078b9c19053808428548cc7f50be781d5
[]
no_license
haopo2005/SelfDrivingCar_Udacity
12f964fa28d68326da6e851fe54ac40b9a6c2eaa
70f8b7f3aba5128e40774773977af019476cbcb9
refs/heads/master
2020-03-28T08:54:17.842482
2018-12-29T05:49:30
2018-12-29T05:49:30
147,997,999
0
0
null
null
null
null
UTF-8
Python
false
false
4,123
py
# Now we want to give weight to our # particles. This program will print a # list of 1000 particle weights. # # Don't modify the code below. Please enter # your code at the bottom. from math import * import random landmarks = [[20.0, 20.0], [80.0, 80.0], [20.0, 80.0], [80.0, 20.0]] world_size = 100.0 class robot: def __init__(self): self.x = random.random() * world_size self.y = random.random() * world_size self.orientation = random.random() * 2.0 * pi self.forward_noise = 0.0; self.turn_noise = 0.0; self.sense_noise = 0.0; def set(self, new_x, new_y, new_orientation): if new_x < 0 or new_x >= world_size: raise ValueError, 'X coordinate out of bound' if new_y < 0 or new_y >= world_size: raise ValueError, 'Y coordinate out of bound' if new_orientation < 0 or new_orientation >= 2 * pi: raise ValueError, 'Orientation must be in [0..2pi]' self.x = float(new_x) self.y = float(new_y) self.orientation = float(new_orientation) def set_noise(self, new_f_noise, new_t_noise, new_s_noise): # makes it possible to change the noise parameters # this is often useful in particle filters self.forward_noise = float(new_f_noise); self.turn_noise = float(new_t_noise); self.sense_noise = float(new_s_noise); def sense(self): Z = [] for i in range(len(landmarks)): dist = sqrt((self.x - landmarks[i][0]) ** 2 + (self.y - landmarks[i][1]) ** 2) dist += random.gauss(0.0, self.sense_noise) Z.append(dist) return Z def move(self, turn, forward): if forward < 0: raise ValueError, 'Robot cant move backwards' # turn, and add randomness to the turning command orientation = self.orientation + float(turn) + random.gauss(0.0, self.turn_noise) orientation %= 2 * pi # move, and add randomness to the motion command dist = float(forward) + random.gauss(0.0, self.forward_noise) x = self.x + (cos(orientation) * dist) y = self.y + (sin(orientation) * dist) x %= world_size # cyclic truncate y %= world_size # set particle res = robot() res.set(x, y, orientation) res.set_noise(self.forward_noise, self.turn_noise, self.sense_noise) return res def Gaussian(self, mu, sigma, x): # calculates the probability of x for 1-dim Gaussian with mean mu and var. sigma return exp(- ((mu - x) ** 2) / (sigma ** 2) / 2.0) / sqrt(2.0 * pi * (sigma ** 2)) def measurement_prob(self, measurement): # calculates how likely a measurement should be prob = 1.0; for i in range(len(landmarks)): dist = sqrt((self.x - landmarks[i][0]) ** 2 + (self.y - landmarks[i][1]) ** 2) prob *= self.Gaussian(dist, self.sense_noise, measurement[i]) return prob def __repr__(self): return '[x=%.6s y=%.6s orient=%.6s]' % (str(self.x), str(self.y), str(self.orientation)) #myrobot = robot() #myrobot.set_noise(5.0, 0.1, 5.0) #myrobot.set(30.0, 50.0, pi/2) #myrobot = myrobot.move(-pi/2, 15.0) #print myrobot.sense() #myrobot = myrobot.move(-pi/2, 10.0) #print myrobot.sense() #### DON'T MODIFY ANYTHING ABOVE HERE! ENTER CODE BELOW #### myrobot = robot() myrobot = myrobot.move(0.1, 5.0) Z = myrobot.sense() N = 1000 p = [] for i in range(N): x = robot() x.set_noise(0.05, 0.05, 5.0) p.append(x) p2 = [] for i in range(N): p2.append(p[i].move(0.1, 5.0)) p = p2 w = [] #insert code here! # Now we want to give weight to our # particles. This program will print a # list of 1000 particle weights. for i in range(N): w.append(p[i].measurement_prob(Z)) print w #Please print w for grading purposes.
[ "haopo_2005@sina.com" ]
haopo_2005@sina.com
ca186d71a8fd535aeb0e69a2140ae94c1919bccc
e886db017985b853b220ce75fec51b80943116c5
/pSp/criteria/w_norm.py
1a8c092d0d985b31860e6b5ec348a771c8f7605d
[ "MIT", "BSD-2-Clause", "Apache-2.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
pobbyleesh/TransStyleGAN
74b385a519e724f1e4bfa0052e9df72636eebe15
a1e6ca2be734c915ed27837726c0698d3f06f11b
refs/heads/main
2023-05-12T23:58:30.696052
2021-06-04T06:29:41
2021-06-04T06:29:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
418
py
import torch from torch import nn class WNormLoss(nn.Module): def __init__(self, start_from_latent_avg=True): super(WNormLoss, self).__init__() self.start_from_latent_avg = start_from_latent_avg def forward(self, latent, latent_avg=None): if self.start_from_latent_avg: latent = latent - latent_avg return torch.sum(latent.norm(2, dim=(1, 2))) / latent.shape[0]
[ "noreply@github.com" ]
pobbyleesh.noreply@github.com
4c9ead13981caf01a0870ccf697e8582ce3d52f7
64d9641602a2f9a32c8152267244a82622eeaa31
/plugins/logger.py
680eb77c74aff6b3818e9e91b0d970a40b872b89
[]
no_license
rbistolfi/Lalita-plugins
b9134f15e8dca0fb7d56c387e4ed816d14b0b589
05a70ea1df1b1b491b38ab4501655b239c330e41
refs/heads/master
2021-01-25T10:00:03.104780
2010-02-05T00:01:03
2010-02-05T00:01:03
451,140
1
0
null
null
null
null
UTF-8
Python
false
false
2,773
py
# -*- coding: utf8 -*- u'''A RSS reader for the Lalita IRC bot.''' from __future__ import with_statement __author__ = 'rbistolfi' __license__ = 'GPLv3' import re from lalita import Plugin from time import gmtime from twisted.internet import task TRANSLATION_TABLE = {} class Logger(Plugin): """A IRC channel Logguer for Lalita. Log what is said in a channel and upload the thing to github. """ exclude = re.compile(r'^#') def init(self, config): """Plugin intitalization.""" self.register_translation(self, TRANSLATION_TABLE) self.register.events.PUBLIC_MESSAGE(self.push) self.register.events.COMMAND(self.log, ['log']) self.messages = [] # dispatch for subcommands self.dispatch = { 'start': self.start, 'stop': self.stop, 'commit': self.commit, } # config self.base_dir = self.config.get('base_dir', ".") time_gap = self.config.get('time_gap', 3600.0) # schedule schedule = task.LoopingCall(self.commit) schedule.start(time_gap, now=False) # call every X seconds ## Methods implementing the user interface def log(self, user, channel, command, *args): u"""Upload the channel log to github. Usage: @log [start, stop, commit]""" usage = u'@log [start, stop, commit]' if args[0] in self.dispatch: self.dispatch[args[0]](user, command, channel, *args) else: self.say(channel, u'%s: Usage: %s', user, usage) def start(self, user, channel, command, *args): """Start logging the channel.""" pass def stop(self, user, channel, command, *args): """Stop logging a channel.""" pass def commit(self, user, channel, command, *args): """Force a commit to github right now. A user is able to save the log even at non scheduled time.""" pass ## Methods implementing string handling def push(self, user, channel, message): """Push a message to the buffer.""" date = "GMT %r-%r-%r %r:%r:%r" % gmtime()[:6] self.messages.get('channel', []).append((date, user, message)) def format(self, message): """Gives format to a message.""" return "[%s] %s: %s" % message ## Methods implementing git backend def git_init_repository(self): """Initializes a git repository. Checks if a .git directory exists in the configured location and creates a new repository if it doesnt.""" pass def git_commit(self): """Executes git commit command.""" pass def git_push(self): """Executes git push command.""" pass
[ "rbistolfi@gmail.com" ]
rbistolfi@gmail.com
d79c566868e846226e47d3a05785c4b99b181782
5c5e600c36f485ed53f4830e8c2aae0905a85a9d
/zuker/stu/env_scrapy_python3.5.4/bin/ckeygen
9b918a5d3771de4f10104f1d4e81c5a96914a6b2
[]
no_license
njxshr/codes
f60041451407396c3f529c993af8c7c13e6a3518
9621a496eaa2fdec43e646840ed2e889dc9ea2e8
refs/heads/master
2022-11-09T14:29:06.700324
2018-06-09T12:41:46
2018-06-09T12:41:46
106,446,382
3
1
null
2022-10-18T17:54:37
2017-10-10T17:03:28
Python
UTF-8
Python
false
false
263
#!/Users/lee/.virtualenvs/article_spider/bin/python # -*- coding: utf-8 -*- import re import sys from twisted.conch.scripts.ckeygen import run if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(run())
[ "lizhao2@chanjet.com" ]
lizhao2@chanjet.com
c8a65b947246bab93ba35b55e2700ac66f889490
13fe0f02f829062cb5d3870d1f207eb8df1de8c0
/DataReader.py
8ad5fef3b49b57caf3192633291c1e6c54283bbf
[]
no_license
CillianWang/ENN
d00c6712f066201eb151eb80381aa1b00cba3af5
2efdd739d12ec0280216745706a9d5f956d6d3fe
refs/heads/main
2023-08-07T19:37:56.939146
2021-10-08T08:52:01
2021-10-08T08:52:01
396,851,931
1
0
null
null
null
null
UTF-8
Python
false
false
1,761
py
import mne import os folder = "haaglanden-medisch-centrum-sleep-staging-database-1.0.0\haaglanden-medisch-centrum-sleep-staging-database-1.0.0/recordings" filenames = os.listdir(folder) data_list = [] recording_list = [] index = 0 # read data.edf and recording.txt, as recording.edf contains strange floats for file in filenames: if index%3 == 0: data_list.append(file) if index%3 == 2: recording_list.append(file) index += 1 if len(data_list) != len(recording_list): print("Data and recording not aligned") else: print("Length of data:"+str(len(data_list))+", and length of recordings:"+str(len(recording_list))) def read_data(filename): data = mne.io.read_raw_edf(filename) raw_data = data.get_data() return raw_data def read_recordings(filename): f = open(filename) rec = [line.strip().split(',') for line in f] return rec pass # save data(cut) a = read_data(folder+"\\"+data_list[0]) b = read_recordings(folder+"\\"+recording_list[0]) import numpy as np np.save('a', a) c = np.load('a.npy') def data_cut(data, recording, index): path = "data_cut\\"+str(index) if os.path.isdir(path)==False: os.makedirs(path) n = len(recording) for i in range(n): section = data[:,i*30*256:(i+1)*30*256] if os.path.isdir(path+"\\data")==False: os.makedirs(path+"\\data") np.save(path+"\\data\\"+"data_"+str(i), section) truth = recording[i] if os.path.isdir(path+"\\truth")==False: os.makedirs(path+"\\truth") np.save(path+"\\truth\\"+"truth_"+str(i), truth) for i in range(154): a = read_data(folder+"\\"+data_list[i]) b = read_recordings(folder+"\\"+recording_list[i]) data_cut(a,b,i) pass
[ "x.wang3@student.tue.nl" ]
x.wang3@student.tue.nl
ca787f26d532cdb9922b41df3344d8a755d4d59a
2410c26369f097c7725af747f64ab4d429103578
/aplicacion/aplicacion/settings.py
eb9f51bba47e1d8f20826bd565c8461ebe8ea996
[]
no_license
miguelUGR/TFG
937d69a9aa1f9625b8e65d254c994f7bbe8b4d27
2a5fc78f03c7bc739e26896a990bc9d354cacbb0
refs/heads/master
2022-12-15T19:44:21.104448
2020-07-03T15:43:46
2020-07-03T15:43:46
215,865,945
0
0
null
null
null
null
UTF-8
Python
false
false
5,239
py
""" Django settings for aplicacion project. Generated by 'django-admin startproject' using Django 2.2.6. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'zjfv$ys!&--!wds!$#2ub*yb0yhvc+ke9eic^1jtq=0sf!r$k0' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True #si ponemos TRUE, muestra la pagina error por defecto y no es conveniente que indice a nadie las urls disponibles #ALLOWED_HOSTS = [] ALLOWED_HOSTS = ['*'] #añadimos '*' para que arranque desde cualquier lado # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.sites', # new p6 'allauth', # new p6 'allauth.account', # new p6 AÑADE Email Addresses login.html (account_signup...etc) son las direcciones propias de DJANGO 'allauth.socialaccount', # new p6s 'desarrollo', #nuevo 'django_cleanup.apps.CleanupConfig', # PARA ELIMINACION AUTOMATICA imagen de Observaciones, 'datetimewidget', ] SITE_ID = 1 #IMPORTANTISsIMO TENERLO PARA ENTRAR EN /admin AUTH_USER_MODEL = 'desarrollo.Usuario' #Esto es para poder coger el modelo usuario creado a partir del propio de django MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'aplicacion.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], #nuevo 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] #------------------------P6---------------------------------- AUTHENTICATION_BACKENDS = ( "django.contrib.auth.backends.ModelBackend", "allauth.account.auth_backends.AuthenticationBackend", ) LOGIN_REDIRECT_URL = "base" # esto es en caso de que haga el login correctamente te manda donde digas EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' #para que no pete cuando metes un correo, pk ten manda un correo de autentificacion en modo pro cuando metes un correo ACCOUNT_EMAIL_REQUIRED = True #para que cuando me registre no sea opcional el correo ACCOUNT_FORMS ={ 'signup':'desarrollo.forms.MiSignupForm',} #para que coja la clase y añada los campos que queremos para registrarse desde la web # LOGIN_URL = '/account/login/' #------------------------------------------------------------- #----Carpeta para la imagen (ImageField)------------------------ MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') #------------------------------------------------------------- WSGI_APPLICATION = 'aplicacion.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators #------------------------------------COMENTAMOS LO SIGUIENTE----------------------------- # AUTH_PASSWORD_VALIDATORS = [ # { # 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', # }, # { # 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', # }, # { # 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', # }, # { # 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', # }, # ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' #Lo pongo en ingles por problemas de nº con comas(40,0239), que lo quiero con puntos(40.0239) en los modelos # LANGUAGE_CODE = 'es-es' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [os.path.join(BASE_DIR, 'static')] #busque los archivos en static
[ "breva75@hotmail.com" ]
breva75@hotmail.com
91f6eb8a75fe82fa8ce346dc0e1f140bb08367a3
259bf9a65e399156148e140d3ce8d15adf9d4b88
/business.py
ecfce8ca96b0aaeec562fb0a0e19a41d0640002b
[]
no_license
NOORMOHIDEEN/Salmon-quantity-and-its-export
d20726ed405b180471ec2da6cca9e2b29f5ab439
eab156b85f35e8923da480b9a34a74c69b5c9a7d
refs/heads/main
2023-04-18T09:59:09.438174
2021-05-03T14:02:53
2021-05-03T14:02:53
363,947,974
0
0
null
null
null
null
UTF-8
Python
false
false
806
py
import pandas as pd def get_data(): df = pd.read_csv('data.csv') print(df['Year'].tolist()) year = df['Year'].tolist() SalmonQuantity_data = df['SalmonQuantity'].tolist() Expo_data = df['Expo'].tolist() # print(df['quebec'].tolist()) result_dict = { 'year' : year, 'SalmonQuantity' : SalmonQuantity_data, 'Expo' : Expo_data } # print(result_dict) return result_dict def add_row(year, SalmonQuantity,Expo ): df = pd.read_csv('data.csv') new_row = { 'Year' : year, 'SalmonQuantity' : SalmonQuantity, 'Expo' : Expo } print(df) df = df.append(new_row, ignore_index=True) print(df) df.to_csv('data.csv') if __name__ == "__main__": get_data()
[ "noreply@github.com" ]
NOORMOHIDEEN.noreply@github.com
3f5227799880ede2f6a93b4a8d18f1d01d2ab6ca
64c07601b745c0be2c89deb43d543f2ccf1420d0
/learning/models.py
23d5093d0400544bebba52bae484dc2a358b14bf
[]
no_license
shisz/UWB_ML
2c9617d35673279f41e2f28680a0ee0b145ed79d
edd3eeafb8240d7acb95c2992cf6546007d2d5f5
refs/heads/master
2022-04-02T12:03:20.012832
2020-01-17T15:20:58
2020-01-17T15:20:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
36,069
py
from __future__ import print_function import torch import torch.nn as nn import torch.nn.functional as F from config import * from torch.autograd import Variable from learning.npn import NPNLinear from learning.npn import NPNRelu from learning.npn import NPNSigmoid from learning.npn import NPNDropout from learning.npn import KL_loss from learning.npn import L2_loss from learning.deconv_block import * class BottleNeck1d_3(nn.Module): """ ResNet 3 conv residual block batchnorm + preactivation dropout used when net is wide """ def __init__(self, in_channels, hidden_channels, out_channels, stride, kernel_size, group_num=1, use_bn=True): super(BottleNeck1d_3, self).__init__() self.stride = stride self.in_channels = in_channels self.out_channels = out_channels self.use_bn = use_bn if stride != 1 or in_channels != out_channels: self.shortcut = nn.Conv1d(in_channels, out_channels, kernel_size=1, stride=stride, padding=0) self.conv1 = nn.Conv1d(in_channels, hidden_channels, kernel_size=1, stride=1, padding=0) self.bn1 = nn.BatchNorm1d(hidden_channels) self.conv2 = nn.Conv1d(hidden_channels, hidden_channels, kernel_size=kernel_size, stride=stride, padding=(kernel_size - 1) // 2, groups=group_num) self.bn2 = nn.BatchNorm1d(hidden_channels) self.conv3 = nn.Conv1d(hidden_channels, out_channels, kernel_size=1, stride=1, padding=0) self.bn3 = nn.BatchNorm1d(out_channels) def forward(self, x): if self.stride != 1 or self.in_channels != self.out_channels: y = self.shortcut(x) else: y = x if self.use_bn: x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) x = self.bn3(self.conv3(x)) else: x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = self.conv3(x) x = F.relu(x + y) return x class Enc(nn.Module): def __init__(self, args): super(Enc, self).__init__() self.type = args.enc_type self.fc_drop = 0.5 if self.type == 'mlp': width = 64 self.fc1 = nn.Linear(INPUT_DIM, width) self.fc2 = nn.Linear(width, width) self.fc3 = nn.Linear(width, 1) # self.dropout1 = nn.Dropout(p=0.2) # self.dropout2 = nn.Dropout(p=0.2) self.bn1 = nn.BatchNorm1d(width) self.bn2 = nn.BatchNorm1d(width) elif self.type == 'npn': width = 128 self.fc1 = NPNLinear(INPUT_DIM, width, dual_input=False, first_layer_assign=True) self.nonlinear1 = NPNRelu() # self.dropout1 = NPNDropout(self.fc_drop) self.fc2 = NPNLinear(width, 1) # self.nonlinear2 = NPNSigmoid() elif self.type == 'cnn': width = 8 use_bn=False self.conv0 = nn.Conv1d(1, width, kernel_size=3, stride=2, padding=5) self.block1 = BottleNeck1d_3(in_channels=width, hidden_channels=width//2, out_channels=width * 2, stride=2, kernel_size=3, group_num=width//4, use_bn=use_bn) self.block2 = BottleNeck1d_3(in_channels=width * 2, hidden_channels=width//2, out_channels=width * 2, stride=2, kernel_size=3, group_num=width//4, use_bn=use_bn) self.block3 = BottleNeck1d_3(in_channels=width * 2, hidden_channels=width, out_channels=width * 4, stride=2, kernel_size=3, group_num=width//2, use_bn=use_bn) self.block4 = BottleNeck1d_3(in_channels=width * 4, hidden_channels=width, out_channels=width * 4, stride=2, kernel_size=3, group_num=width//2, use_bn=use_bn) self.block5 = BottleNeck1d_3(in_channels=width * 4, hidden_channels=width, out_channels=width * 4, stride=2, kernel_size=3, group_num=width//2, use_bn=use_bn) # 16 left self.pooling = nn.AvgPool1d(kernel_size=4, stride=4) # 4 left self.fc1 = nn.Linear(width * 4 * 4, width * 4 * 4) self.dropout1 = nn.Dropout(p=0.2) self.dropout2 = nn.Dropout(p=0.2) self.fc2 = nn.Linear(width * 4 * 4, width * 4 * 4) self.fc3 = nn.Linear(width * 4 * 4, 1) elif self.type == 'cnn1': width = args.cnn_width self.conv0 = nn.Conv1d(1, width, kernel_size=3, stride=2, padding=4) self.block0 = BottleNeck1d_3(in_channels=width, hidden_channels=width // 4, out_channels=width, stride=2, kernel_size=3, group_num=width // 8) self.block1 = BottleNeck1d_3(in_channels=width, hidden_channels=width//2, out_channels=width * 2, stride=2, kernel_size=3, group_num=width//4) self.block2 = BottleNeck1d_3(in_channels=width * 2, hidden_channels=width//2, out_channels=width * 2, stride=2, kernel_size=3, group_num=width//4) self.block3 = BottleNeck1d_3(in_channels=width * 2, hidden_channels=width, out_channels=width * 4, stride=2, kernel_size=3, group_num=width//2) self.block4 = BottleNeck1d_3(in_channels=width * 4, hidden_channels=width, out_channels=width * 4, stride=2, kernel_size=3, group_num=width//2) self.block5 = BottleNeck1d_3(in_channels=width * 4, hidden_channels=width, out_channels=width * 4, stride=2, kernel_size=3, group_num=width//2) # 16 left self.pooling = nn.AvgPool1d(kernel_size=8, stride=8) self.fc1 = nn.Linear(width * 4, 1) elif self.type == 'cnn2': width = 8 use_bn = False self.conv0 = nn.Conv1d(1, width, kernel_size=3, stride=2, padding=5) self.block1 = BottleNeck1d_3(in_channels=width, hidden_channels=width, out_channels=width * 2, stride=2, kernel_size=3, group_num=width // 4, use_bn=use_bn) self.block2 = BottleNeck1d_3(in_channels=width * 2, hidden_channels=width, out_channels=width * 2, stride=2, kernel_size=3, group_num=width // 4, use_bn=use_bn) self.block3 = BottleNeck1d_3(in_channels=width * 2, hidden_channels=width*2, out_channels=width * 4, stride=2, kernel_size=3, group_num=width // 2, use_bn=use_bn) self.block4 = BottleNeck1d_3(in_channels=width * 4, hidden_channels=width*2, out_channels=width * 4, stride=2, kernel_size=3, group_num=width // 2, use_bn=use_bn) self.block5 = BottleNeck1d_3(in_channels=width * 4, hidden_channels=width*4, out_channels=width * 8, stride=2, kernel_size=3, group_num=width, use_bn=use_bn) self.block6 = BottleNeck1d_3(in_channels=width * 8, hidden_channels=width * 4, out_channels=width * 8, stride=2, kernel_size=3, group_num=width, use_bn=use_bn) # 8 left self.pooling = nn.AvgPool1d(kernel_size=8, stride=8) # 4 left self.fc1 = nn.Linear(width * 8, width * 8) self.dropout1 = nn.Dropout(p=0.2) self.dropout2 = nn.Dropout(p=0.2) self.fc2 = nn.Linear(width * 8, width * 8) self.fc3 = nn.Linear(width * 8, 1) elif self.type == 'combined': width = 16 self.conv0 = nn.Conv1d(1, width, kernel_size=5, stride=2, padding=2) self.block1 = BottleNeck1d_3(in_channels=width, hidden_channels=width//2, out_channels=width * 2, stride=2, kernel_size=3, group_num=width//4) self.block2 = BottleNeck1d_3(in_channels=width * 2, hidden_channels=width//2, out_channels=width * 2, stride=2, kernel_size=3, group_num=width//4) self.block3 = BottleNeck1d_3(in_channels=width * 2, hidden_channels=width, out_channels=width * 4, stride=2, kernel_size=3, group_num=width//2) self.block4 = BottleNeck1d_3(in_channels=width * 4, hidden_channels=width, out_channels=width * 4, stride=2, kernel_size=3, group_num=width//2) self.block5 = BottleNeck1d_3(in_channels=width * 4, hidden_channels=width, out_channels=width * 4, stride=2, kernel_size=3, group_num=width//2) # 16 left self.pooling = nn.AvgPool1d(kernel_size=8, stride=8) self.fc1 = NPNLinear(width * 8, width * 16, dual_input=False, first_layer_assign=False) self.nonlinear1 = NPNRelu() # self.dropout1 = NPNDropout(self.fc_drop) self.fc2 = NPNLinear(width * 16, 1) elif self.type == 'combined_dis': width = 16 kernel_size = 3 self.conv0 = nn.Conv1d(1, width, kernel_size=5, stride=2, padding=2) self.block1 = BottleNeck1d_3(in_channels=width, hidden_channels=width//2, out_channels=width * 2, stride=2, kernel_size=kernel_size, group_num=width//4) # self.block1_1 = BottleNeck1d_3(in_channels=width * 2, hidden_channels=width // 2, # out_channels=width * 2, stride=1, kernel_size=kernel_size, # group_num=width // 4) self.block2 = BottleNeck1d_3(in_channels=width * 2, hidden_channels=width//2, out_channels=width * 2, stride=2, kernel_size=kernel_size, group_num=width//4) # self.block2_1 = BottleNeck1d_3(in_channels=width * 2, hidden_channels=width // 2, # out_channels=width * 2, stride=1, kernel_size=kernel_size, # group_num=width // 4) self.block3 = BottleNeck1d_3(in_channels=width * 2, hidden_channels=width, out_channels=width * 4, stride=2, kernel_size=kernel_size, group_num=width//2) # self.block3_1 = BottleNeck1d_3(in_channels=width * 4, hidden_channels=width, # out_channels=width * 4, stride=1, kernel_size=kernel_size, # group_num=width // 2) self.block4 = BottleNeck1d_3(in_channels=width * 4, hidden_channels=width, out_channels=width * 4, stride=2, kernel_size=kernel_size, group_num=width//2) # self.block4_1 = BottleNeck1d_3(in_channels=width * 4, hidden_channels=width, # out_channels=width * 4, stride=1, kernel_size=kernel_size, # group_num=width // 2) self.block5 = BottleNeck1d_3(in_channels=width * 4, hidden_channels=width, out_channels=width * 4, stride=2, kernel_size=kernel_size, group_num=width//2) # 16 left self.pooling = nn.AvgPool1d(kernel_size=8, stride=8) self.fc1 = NPNLinear(width * 4 * 2 + 1, width * 4 * 4, dual_input=False, first_layer_assign=False) self.nonlinear1 = NPNRelu() # self.dropout1 = NPNDropout(self.fc_drop) self.fc2 = NPNLinear(width * 4 * 4, 1) def forward(self, x): if self.type == 'mlp': x = F.relu(self.fc1(x)) # x = self.dropout1(x) x = F.relu(self.fc2(x)) # x = self.dropout2(x) x = self.fc3(x) return x elif self.type == 'npn': x = self.nonlinear1(self.fc1(x)) # x = self.dropout1(x) x = self.fc2(x) # x, s = self.nonlinear2(x) a_m, a_s = x return a_m, a_s elif self.type == 'cnn': x = x.unsqueeze(1) x = self.conv0(x) x = self.block1.forward(x) x = self.block2.forward(x) x = self.block3.forward(x) x = self.block4.forward(x) x = self.block5.forward(x) x = self.pooling(x) x_size = x.size() # x = x.squeeze(2) x = x.view(x_size[0], x_size[1] * x_size[2]) x = F.relu(self.fc1(x)) x = self.dropout1(x) x = F.relu(self.fc2(x)) x = self.dropout2(x) x = self.fc3(x) return x elif self.type == 'cnn1': x = x.unsqueeze(1) x = self.conv0(x) x = self.block0.forward(x) x = self.block1.forward(x) x = self.block2.forward(x) x = self.block3.forward(x) x = self.block4.forward(x) x = self.block5.forward(x) x = self.pooling(x) x = x.squeeze(2) x = self.fc1(x) return x elif self.type == 'cnn2': x = x.unsqueeze(1) x = self.conv0(x) # x = self.block0.forward(x) x = self.block1.forward(x) x = self.block2.forward(x) x = self.block3.forward(x) x = self.block4.forward(x) x = self.block5.forward(x) x = self.block6.forward(x) x = self.pooling(x) x = x.squeeze(2) x = F.relu(self.fc1(x)) x = self.fc3(x) return x elif self.type == 'combined': x = x.unsqueeze(1) x = self.conv0(x) x = self.block1.forward(x) x = self.block2.forward(x) x = self.block3.forward(x) x = self.block4.forward(x) x = self.block5.forward(x) x = self.pooling(x) x = x.squeeze(2) x = self.nonlinear1(self.fc1(x)) # x = self.dropout1(x) x = self.fc2(x) a_m, a_s = x return a_m, a_s elif self.type == 'combined_dis': wave, dis = x x = wave.unsqueeze(1) dis = dis.unsqueeze(1) x = self.conv0(x) x = self.block1.forward(x) # x = self.block1_1.forward(x) x = self.block2.forward(x) # x = self.block2_1.forward(x) x = self.block3.forward(x) # x = self.block3_1.forward(x) x = self.block4.forward(x) # x = self.block4_1.forward(x) x = self.block5.forward(x) x = self.pooling(x) # x = x.squeeze(2) x_size = x.size() x = x.view(x_size[0], x_size[1] * x_size[2]) x = torch.cat((dis, x), dim=1) x = self.nonlinear1(self.fc1(x)) # x = self.dropout1(x) x = self.fc2(x) a_m, a_s = x return a_m, a_s class VaeEnc(nn.Module): def __init__(self, args): super(VaeEnc, self).__init__() self.type = args.enc_type if self.type == 'vae': self.width = 32 width = self.width kernel_size = 5 self.conv0 = nn.Conv1d(1, width, kernel_size=kernel_size, stride=2, padding=4+2) self.block1 = BottleNeck1d_3(in_channels=width, hidden_channels=width // 2, out_channels=width * 2, stride=2, kernel_size=kernel_size, group_num=width // 4) self.block2 = BottleNeck1d_3(in_channels=width * 2, hidden_channels=width // 2, out_channels=width * 2, stride=2, kernel_size=kernel_size, group_num=width // 4) self.block3 = BottleNeck1d_3(in_channels=width * 2, hidden_channels=width, out_channels=width * 4, stride=2, kernel_size=kernel_size, group_num=width // 2) self.block4 = BottleNeck1d_3(in_channels=width * 4, hidden_channels=width, out_channels=width * 4, stride=2, kernel_size=kernel_size, group_num=width // 2) self.block5 = BottleNeck1d_3(in_channels=width * 4, hidden_channels=width, out_channels=width * 4, stride=2, kernel_size=kernel_size, group_num=width // 2) # 16 left self.pooling = nn.AvgPool1d(kernel_size=2, stride=2) self.conv_fc = nn.Conv1d(width * 4, width * 4, kernel_size=1, stride=1, padding=0) self.fc1 = NPNLinear(width * 2 * 8 + 1, width * 4) self.nonlinear1 = NPNRelu() # self.dropout1 = NPNDropout(self.fc_drop) self.fc2 = NPNLinear(width * 4, 1) elif self.type == 'vae_1': self.width = 32 width = self.width kernel_size = 5 self.conv0 = nn.Conv1d(1, width, kernel_size=kernel_size, stride=2, padding=4+2) self.block1 = BottleNeck1d_3(in_channels=width, hidden_channels=width // 2, out_channels=width * 2, stride=2, kernel_size=kernel_size, group_num=width // 4) self.block2 = BottleNeck1d_3(in_channels=width * 2, hidden_channels=width // 2, out_channels=width * 2, stride=2, kernel_size=kernel_size, group_num=width // 4) self.block3 = BottleNeck1d_3(in_channels=width * 2, hidden_channels=width, out_channels=width * 4, stride=2, kernel_size=kernel_size, group_num=width // 2) self.block4 = BottleNeck1d_3(in_channels=width * 4, hidden_channels=width, out_channels=width * 4, stride=2, kernel_size=kernel_size, group_num=width // 2) self.block5 = BottleNeck1d_3(in_channels=width * 4, hidden_channels=width, out_channels=width * 4, stride=2, kernel_size=kernel_size, group_num=width // 2) self.block6 = BottleNeck1d_3(in_channels=width * 4, hidden_channels=width * 2, out_channels=width * 8, stride=2, kernel_size=kernel_size, group_num=width) self.block7 = BottleNeck1d_3(in_channels=width * 8, hidden_channels=width * 2, out_channels=width * 8, stride=2, kernel_size=kernel_size, group_num=width) # 16 left self.pooling = nn.AvgPool1d(kernel_size=4, stride=4) self.conv_fc = nn.Conv1d(width * 8, width * 8, kernel_size=1, stride=1, padding=0) self.fc1 = NPNLinear(width * 4 + 1, width * 4) self.nonlinear1 = NPNRelu() # self.dropout1 = NPNDropout(self.fc_drop) self.fc2 = NPNLinear(width * 4, 1) def forward(self, x): if self.type == 'vae': wave, dis = x x = wave.unsqueeze(1) dis = dis.unsqueeze(1) x = self.conv0(x) x = self.block1.forward(x) x = self.block2.forward(x) x = self.block3.forward(x) x = self.block4.forward(x) x = self.block5.forward(x) x = self.pooling(x) x = self.conv_fc(x) mean = x[:, :self.width * 2, :] mean = mean.contiguous() stddev = F.softplus(x[:, self.width * 2:, :]) stddev = stddev.contiguous() mean = mean.view(mean.size(0), mean.size(1) * mean.size(2)) stddev = stddev.view(stddev.size(0), stddev.size(1) * stddev.size(2)) # normal_array = Variable(torch.normal(means=torch.zeros(mean.size()), std=1.0).cuda()) normal_array = Variable(stddev.data.new(stddev.size()).normal_()) z = normal_array.mul(stddev).add_(mean) # x = torch.cat((dis, z), dim=1) # this is one solution x_m = torch.cat((dis, mean), dim=1) x_s = torch.cat((Variable(torch.zeros((x_m.size(0), 1)).cuda()), stddev), dim=1) x = x_m, x_s x = self.nonlinear1(self.fc1(x)) # x = self.dropout1(x) x = self.fc2(x) a_m, a_s = x return a_m, a_s, mean, stddev, z elif self.type == 'vae_1': wave, dis = x x = wave.unsqueeze(1) dis = dis.unsqueeze(1) x = self.conv0(x) x = self.block1.forward(x) x = self.block2.forward(x) x = self.block3.forward(x) x = self.block4.forward(x) x = self.block5.forward(x) x = self.block6.forward(x) x = self.block7.forward(x) x = self.pooling(x) x = self.conv_fc(x) mean = x[:, :self.width * 4, :] mean = mean.contiguous() stddev = F.softplus(x[:, self.width * 4:, :]) stddev = stddev.contiguous() mean = mean.view(mean.size(0), mean.size(1) * mean.size(2)) stddev = stddev.view(stddev.size(0), stddev.size(1) * stddev.size(2)) # print('stddev shape', stddev.size(), self.width, x.size()) # normal_array = Variable(torch.normal(means=torch.zeros(mean.size()), std=1.0).cuda()) normal_array = Variable(stddev.data.new(stddev.size()).normal_()) z = normal_array.mul(stddev).add_(mean) # print('z shape', z.size()) # x = torch.cat((dis, z), dim=1) # this is one solution x_m = torch.cat((dis, mean), dim=1) x_s = torch.cat((Variable(torch.zeros((x_m.size(0), 1)).cuda()), stddev), dim=1) x = x_m, x_s x = self.nonlinear1(self.fc1(x)) # x = self.dropout1(x) x = self.fc2(x) a_m, a_s = x return a_m, a_s, mean, stddev, z class AEEnc(nn.Module): def __init__(self, args): super(AEEnc, self).__init__() self.type = args.enc_type if self.type == 'AE': self.width = 32 width = self.width kernel_size = 3 self.conv0 = nn.Conv1d(1, width, kernel_size=kernel_size, stride=2, padding=4) self.block1 = BottleNeck1d_3(in_channels=width, hidden_channels=width // 2, out_channels=width * 2, stride=2, kernel_size=kernel_size, group_num=width // 4) self.block2 = BottleNeck1d_3(in_channels=width * 2, hidden_channels=width // 2, out_channels=width * 2, stride=2, kernel_size=kernel_size, group_num=width // 4) self.block3 = BottleNeck1d_3(in_channels=width * 2, hidden_channels=width, out_channels=width * 4, stride=2, kernel_size=kernel_size, group_num=width // 2) self.block4 = BottleNeck1d_3(in_channels=width * 4, hidden_channels=width, out_channels=width * 4, stride=2, kernel_size=kernel_size, group_num=width // 2) self.block5 = BottleNeck1d_3(in_channels=width * 4, hidden_channels=width, out_channels=width * 4, stride=2, kernel_size=kernel_size, group_num=width // 2) self.block6 = BottleNeck1d_3(in_channels=width * 4, hidden_channels=width * 2, out_channels=width * 8, stride=2, kernel_size=kernel_size, group_num=width //2 ) self.block7 = BottleNeck1d_3(in_channels=width * 8, hidden_channels=width * 2, out_channels=width * 8, stride=2, kernel_size=kernel_size, group_num=width // 2) # 4 left self.pooling = nn.AvgPool1d(kernel_size=2, stride=2) self.fc1 = NPNLinear(width * 8 * 2 + 1, width * 4 * 4, dual_input=False) self.nonlinear1 = NPNRelu() # self.dropout1 = NPNDropout(self.fc_drop) self.fc2 = NPNLinear(width * 4 * 4, 1) def forward(self, x): if self.type == 'AE': wave, dis = x x = wave.unsqueeze(1) dis = dis.unsqueeze(1) x = self.conv0(x) x = self.block1.forward(x) x = self.block2.forward(x) x = self.block3.forward(x) x = self.block4.forward(x) x = self.block5.forward(x) x = self.block6.forward(x) x = self.block7.forward(x) z = self.pooling(x) zz = z.view(z.size(0), z.size(1) * z.size(2)) zz = torch.cat((dis, zz), dim=1) x = self.nonlinear1(self.fc1(zz)) # x = self.dropout1(x) x = self.fc2(x) a_m, a_s = x # print('size z', z.size()) return a_m, a_s, z class VaeDec(nn.Module): def __init__(self, args): super(VaeDec, self).__init__() self.type = args.enc_type if self.type == 'vae' or self.type == 'vaemlp': width = 16 kernel_size = 5 self.upsample_layer = nn.Upsample(scale_factor=2, mode='nearest') self.de_block1 = DeBottleNeck1d_3G(in_channels=width * 4, hidden_channels=width, out_channels=width * 4, stride=2, kernel_size=kernel_size, group_num=width // 2) self.de_block2 = DeBottleNeck1d_3G(in_channels=width * 4, hidden_channels=width, out_channels=width * 2, stride=2, kernel_size=kernel_size, group_num=width // 2) self.de_block3 = DeBottleNeck1d_3G(in_channels=width * 2, hidden_channels=width // 2, out_channels=width * 2, stride=2, kernel_size=kernel_size, group_num=width // 4) self.de_block4 = DeBottleNeck1d_3G(in_channels=width * 2, hidden_channels=width // 2, out_channels=width * 2, stride=2, kernel_size=kernel_size, group_num=width // 4) self.de_block5 = DeBottleNeck1d_3G(in_channels=width * 2, hidden_channels=width // 2, out_channels=width, stride=2, kernel_size=kernel_size, group_num=width // 4) self.deconv = nn.ConvTranspose1d(width, 1, kernel_size=5, stride=2, padding=2+4, output_padding=1) elif self.type == 'vae_1': width = 16 kernel_size = 5 self.upsample_layer = nn.Upsample(scale_factor=4, mode='nearest') self.de_block0 = DeBottleNeck1d_3G(in_channels=width * 8, hidden_channels=width * 2, out_channels=width * 8, stride=2, kernel_size=kernel_size, group_num=width) self.de_block01 = DeBottleNeck1d_3G(in_channels=width * 8, hidden_channels=width * 2, out_channels=width * 4, stride=2, kernel_size=kernel_size, group_num=width) self.de_block1 = DeBottleNeck1d_3G(in_channels=width * 4, hidden_channels=width, out_channels=width * 4, stride=2, kernel_size=kernel_size, group_num=width // 2) self.de_block2 = DeBottleNeck1d_3G(in_channels=width * 4, hidden_channels=width, out_channels=width * 2, stride=2, kernel_size=kernel_size, group_num=width // 2) self.de_block3 = DeBottleNeck1d_3G(in_channels=width * 2, hidden_channels=width // 2, out_channels=width * 2, stride=2, kernel_size=kernel_size, group_num=width // 4) self.de_block4 = DeBottleNeck1d_3G(in_channels=width * 2, hidden_channels=width // 2, out_channels=width * 2, stride=2, kernel_size=kernel_size, group_num=width // 4) self.de_block5 = DeBottleNeck1d_3G(in_channels=width * 2, hidden_channels=width // 2, out_channels=width, stride=2, kernel_size=kernel_size, group_num=width // 4) self.deconv = nn.ConvTranspose1d(width, 1, kernel_size=5, stride=2, padding=2+4, output_padding=1) def forward(self, x): if self.type == 'vae' or self.type == 'vaemlp': x = x.view(x.size(0), x.size(1) // 8, 8) x = self.upsample_layer(x) x = self.de_block1.forward(x) x = self.de_block2.forward(x) x = self.de_block3.forward(x) #96 x = self.de_block4.forward(x) # 192 x = self.de_block5.forward(x) # 384 x = self.deconv(x) x = x.squeeze(1) return x if self.type == 'vae_1': x = x.view(x.size(0), x.size(1), 1) x = self.upsample_layer(x) x = self.de_block0.forward(x) x = self.de_block01.forward(x) x = self.de_block1.forward(x) x = self.de_block2.forward(x) x = self.de_block3.forward(x) #96 x = self.de_block4.forward(x) # 192 x = self.de_block5.forward(x) # 384 x = self.deconv(x) x = x.squeeze(1) return x class AEDec(nn.Module): def __init__(self, args): super(AEDec, self).__init__() self.type = args.enc_type if self.type == 'AE': width = 32 kernel_size = 5 self.upsample_layer = nn.Upsample(scale_factor=2, mode='nearest') self.de_block0 = DeBottleNeck1d_3G(in_channels=width * 8, hidden_channels=width, out_channels=width * 8, stride=2, kernel_size=kernel_size, group_num=width // 2) self.de_block01 = DeBottleNeck1d_3G(in_channels=width * 8, hidden_channels=width, out_channels=width * 4, stride=2, kernel_size=kernel_size, group_num=width // 2) self.de_block1 = DeBottleNeck1d_3G(in_channels=width * 4, hidden_channels=width, out_channels=width * 4, stride=2, kernel_size=kernel_size, group_num=width // 2) self.de_block2 = DeBottleNeck1d_3G(in_channels=width * 4, hidden_channels=width, out_channels=width * 2, stride=2, kernel_size=kernel_size, group_num=width // 2) self.de_block3 = DeBottleNeck1d_3G(in_channels=width * 2, hidden_channels=width // 2, out_channels=width * 2, stride=2, kernel_size=kernel_size, group_num=width // 4) self.de_block4 = DeBottleNeck1d_3G(in_channels=width * 2, hidden_channels=width // 2, out_channels=width * 2, stride=2, kernel_size=kernel_size, group_num=width // 4) self.de_block5 = DeBottleNeck1d_3G(in_channels=width * 2, hidden_channels=width // 2, out_channels=width, stride=2, kernel_size=kernel_size, group_num=width // 4) self.deconv = nn.ConvTranspose1d(width, 1, kernel_size=3, stride=2, padding=1, output_padding=1) def forward(self, x): if self.type == 'AE': x = self.upsample_layer(x) x = self.de_block0.forward(x) x = self.de_block01.forward(x) x = self.de_block1.forward(x) x = self.de_block2.forward(x) x = self.de_block3.forward(x) #96 x = self.de_block4.forward(x) # 192 x = self.de_block5.forward(x) # 384 x = self.deconv(x) x = x.squeeze(1) x = x[:, 4:-4] return x class VaeMlpEnc(nn.Module): def __init__(self, args): super(VaeMlpEnc, self).__init__() self.type = args.enc_type if self.type == 'vaemlp': self.width = 64 width = self.width kernel_size = 5 self.conv0 = nn.Conv1d(1, width, kernel_size=kernel_size, stride=2, padding=4) self.block1 = BottleNeck1d_3(in_channels=width, hidden_channels=width // 2, out_channels=width * 2, stride=2, kernel_size=kernel_size, group_num=width // 4) self.block2 = BottleNeck1d_3(in_channels=width * 2, hidden_channels=width // 2, out_channels=width * 2, stride=2, kernel_size=kernel_size, group_num=width // 4) self.block3 = BottleNeck1d_3(in_channels=width * 2, hidden_channels=width, out_channels=width * 4, stride=2, kernel_size=kernel_size, group_num=width // 2) self.block4 = BottleNeck1d_3(in_channels=width * 4, hidden_channels=width, out_channels=width * 4, stride=2, kernel_size=kernel_size, group_num=width // 2) self.block5 = BottleNeck1d_3(in_channels=width * 4, hidden_channels=width, out_channels=width * 4, stride=2, kernel_size=kernel_size, group_num=width // 2) # 16 left self.pooling = nn.AvgPool1d(kernel_size=2, stride=2) self.fc1 = nn.Linear(width * 2 * 8 + 1, width * 2) self.fc2 = nn.Linear(width * 2, 1) def forward(self, x): if self.type == 'vaemlp': wave, dis = x x = wave.unsqueeze(1) dis = dis.unsqueeze(1) x = self.conv0(x) x = self.block1.forward(x) x = self.block2.forward(x) x = self.block3.forward(x) x = self.block4.forward(x) x = self.block5.forward(x) x = self.pooling(x) mean = x[:, :self.width * 2, :] mean = mean.contiguous() stddev = F.softplus(x[:, self.width * 2:, :]) stddev = stddev.contiguous() mean = mean.view(mean.size(0), mean.size(1) * mean.size(2)) stddev = stddev.view(stddev.size(0), stddev.size(1) * stddev.size(2)) normal_array = Variable(torch.normal(means=torch.zeros(mean.size()), std=1.0).cuda()) z = mean + stddev * normal_array # x = torch.cat((dis, z), dim=1) # this is one solution x_m = torch.cat((dis, mean), dim=1) # x_s = torch.cat((Variable(torch.zeros((x_m.size(0), 1)).cuda()), stddev), dim=1) # x = x_m, x_s x = F.relu(self.fc1(x_m)) # x = self.dropout1(x) x = self.fc2(x) return x, mean, stddev, z
[ "mcz13@mails.tsinghua.edu.cn" ]
mcz13@mails.tsinghua.edu.cn
9c0186283e28e88a4fca848a40bc56217bd5258c
52bb670ddf48830f7ee1fe1343c48b94631f6a6a
/app/levels/SecondLevel.py
8349a3b1a324fc8ee63c8a946942a5ec1529d668
[]
no_license
DmitryNeposidjaka/QuiQuaerit
dfbcf2991f9d2cf8cf90fb7aa1904734fa0de286
bf3654806fc2f7191e72892bce4d05cccc4286aa
refs/heads/master
2020-05-27T15:29:21.195780
2019-10-15T14:53:51
2019-10-15T14:53:51
188,681,497
0
0
null
null
null
null
UTF-8
Python
false
false
3,185
py
import random class SecondLevel: number = 0 player_health = 10 enemy_health = 10 enemy_last_health = 10 enemy_numbers = [] enemy_last_number = 0 def __init__(self): self.__gen_number() self.player_health = 100 self.enemy_health = 100 self.enemy_last_health = 100 self.enemy_last_number = 0 self.enemy_numbers = {'win': [], 'lose': []} def __gen_number(self): self.number = random.randint(1, 100) def __get_player_number(self): inpt = input('Make try: ') try: return abs(int(inpt)) except: print('Set numbers Only') return self.__get_player_number() def __get_enemy_number(self): if self.enemy_last_number != 0: if self.enemy_last_health > self.enemy_health: self.enemy_numbers['lose'].append(self.enemy_last_number) else: self.enemy_numbers['win'].append(self.enemy_last_number) if len(self.enemy_numbers['win']) == 0 or len(self.enemy_numbers['lose']) == 0: guess = random.randint(1, 100) else: guess = random.randint(1, 100) self.enemy_last_number = guess self.enemy_last_health = self.enemy_health return guess def __process_numbers(self, player_number, enemy_number): player_res = abs(player_number - self.number) ai_res = abs(enemy_number - self.number) if player_res == 0: self.enemy_health = 0 elif ai_res == 0: self.player_health = 0 elif player_res > ai_res: self.player_health -= 1 else: self.enemy_health -= 1 def play(self): while self.player_health > 0 and self.enemy_health > 0: player_guess = random.randint(1, 100) enemy_guess = self.__get_enemy_number() self.__process_numbers(player_guess, enemy_guess) print('You: {}\nEnemy: {}'.format(self.player_health, self.enemy_health)) if self.player_health <= 0: print('You loose!') else: print('You won') f = open('./test.txt', 'a+') # f.write('{:-^10}\n{win} | {lose}\nwin middle: {WM}\nlose middle: {LM}\n'.format(self.number, # win=self.enemy_numbers['win'], # lose=self.enemy_numbers['lose'], # WM=round(sum(self.enemy_numbers['win']) / (len(self.enemy_numbers['win']) +1)), # LM=round(sum(self.enemy_numbers['lose']) / (len(self.enemy_numbers['lose']) +1)) # ) # ) f.write('p1: [{p1_wins}, {p1_loses}]\np2: [{p2_wins}, {p2_loses}]'.format()) f.close() #print(self.enemy_numbers) #print('{:-^10}'.format(self.number))
[ "dmitry.neposidyaka@uadevelopers.com" ]
dmitry.neposidyaka@uadevelopers.com
5eb64c0f409d8b1a0cd06882e2362c70de3f2844
87e3d4b60f39417535afb41acfe07fb706504ead
/locallibrary/urls.py
a1124247039ffb9f54e8c78ce464c769a230a830
[]
no_license
antonyuhnovets/Django_proj_test
5f1a81ff3643586935da13dd778b1623e9f0e75e
69e7642c9e24b5a997d2640dea311b3b974f3fc3
refs/heads/main
2023-09-01T13:44:17.273659
2021-10-22T09:33:05
2021-10-22T09:33:05
418,429,584
0
0
null
null
null
null
UTF-8
Python
false
false
1,097
py
"""locallibrary URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from django.urls import include from django.conf.urls import url from django.views.generic import RedirectView from django.conf import settings from django.conf.urls.static import static import re urlpatterns = [ path('admin/', admin.site.urls), ] urlpatterns += [ path('catalog/', include('catalog.urls')), ] urlpatterns += [ url('accounts/', include('django.contrib.auth.urls')), ]
[ "Vaker1990@gmail.com" ]
Vaker1990@gmail.com
449b82d8a2e6748e6f7a1f6ac56f6405019e55eb
acb81af03cbbf126b4ff7ae88c56454ef45b35d3
/accounts/migrations/0001_initial.py
2bb8a5055298c09e50882c7fb20de9e5d3687772
[]
no_license
Vaibhav3009/ealter-heroku
6b0ebf56b74ed545f495696b2d3aa5e37893c8f1
8298b34f25e7f8c7fd7d67463e5155c5e002af83
refs/heads/master
2022-10-25T19:55:58.754233
2020-06-15T22:47:35
2020-06-15T22:47:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,130
py
# Generated by Django 3.0.6 on 2020-06-09 11:09 import accounts.models import datetime from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0011_update_proxy_permissions'), ] operations = [ migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('full_name', models.CharField(blank=True, max_length=130, verbose_name='full name')), ('is_staff', models.BooleanField(default=False, verbose_name='is_staff')), ('is_active', models.BooleanField(default=True, verbose_name='is_active')), ('date_joined', models.DateField(default=datetime.date.today, verbose_name='date_joined')), ('phone_number', models.IntegerField(unique=True)), ('country_code', models.IntegerField()), ('password', models.CharField(blank=True, max_length=100)), ('groups', models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups')), ('user_permissions', models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions')), ], options={ 'verbose_name': 'user', 'verbose_name_plural': 'users', }, managers=[ ('objects', accounts.models.UserManager()), ], ), ]
[ "bansaljatin2810@gmail.com" ]
bansaljatin2810@gmail.com
67cc65aade6945b85f11d8b9f0344585a2212bbc
6b40931daafbf9dae280579a41e8dd754fa91f9c
/python/skScriptedNoiseDeformer.py
7191cd2a9670b7ee1040ac83e503b2be09b09a01
[ "MIT" ]
permissive
skeelogy/maya-skNoiseDeformer
07aaa94101a23acae8cc1c9b14bed7ea7ac78f63
e853aee238be695685181d93c0817a21296dab9f
refs/heads/master
2016-08-03T05:17:54.624740
2014-10-27T16:18:20
2014-10-27T16:18:20
20,463,496
10
3
null
null
null
null
UTF-8
Python
false
false
10,902
py
""" @author: Skeel Lee @contact: skeel@skeelogy.com @since: 30 May 2014 A noise deformer plugin for Maya. It deforms meshes using fBm (fractional Brownian motion) which adds up multiple layers of Simplex noises. ---------Usage------------- 1) Load the plugin, either using the Plug-in Manager or using the following MEL command: loadPlugin "skScriptedNoiseDeformer.py" 2) Select a mesh 3) Attach a new noise deformer to the mesh by executing the following MEL command: deformer -type skScriptedNoiseDeformer 4) Adjust the noise attributes (e.g. amplitude, frequency, octaves, lacunarity) in the channel box accordingly 5) Move/rotate/scale the accessory locator to transform the noise space, as desired ---------Notes------------- In order to get the fastest speed out of this Python plugin, I would recommend compiling/installing the noise library into mayapy. 1) Download the noise library from Casey Duncan at https://github.com/caseman/noise. This includes some C files that needs to be compiled into Python modules. 2) You will need a Python.h header file. If you do not already have that, execute this command in a terminal (or the equivalent in other Linux distros): > sudo apt-get install python-dev 3) Execute this command in a terminal to compile and install the Python modules into mayapy: > sudo `which mayapy` setup.py install 4) To verify that the installation has worked, try doing this in a shell: > mayapy [mayapy shell loads...] >>> import noise >>> noise.snoise3(2, 8, 3) -0.6522196531295776 Note that this Python plugin will still work if you are unable to perform the steps above. The plugin will fall back to a pure-Python perlin.py module from Casey Duncan if it cannot find the compiled noise module above. The speed is much slower though and I would strongly recommend getting the above steps to work if you are keen to use this Python plugin. ---------Credits------------- This plugin uses the noise library from Casey Duncan: https://github.com/caseman/noise ---------License------------- Released under The MIT License (MIT) Copyright (c) 2014 Skeel Lee (http://cg.skeelogy.com) """ try: #import the faster C-based noise module #if user has compiled/installed it to mayapy import noise except: #otherwise just import the slower pure-python perlin module #because it works out-of-the-box without installation import libnoise.perlin noise = libnoise.perlin.SimplexNoise() import sys import maya.OpenMaya as om import maya.OpenMayaMPx as omMPx nodeType = 'skScriptedNoiseDeformer' nodeVersion = '1.0' nodeId = om.MTypeId(0x001212C1) #unique id obtained from ADN EPSILON = 0.0000001 class SkScriptedNoiseDeformer(omMPx.MPxDeformerNode): amp = om.MObject() freq = om.MObject() offset = om.MObject() octaves = om.MObject() lacunarity = om.MObject() persistence = om.MObject() locatorWorldSpace = om.MObject() def __init__(self): super(SkScriptedNoiseDeformer, self).__init__() def deform(self, dataBlock, geomIter, localToWorldMat, multiIndex): #get envelope value, return if sufficiently near to 0 envDataHandle = dataBlock.inputValue(self.envelope) envFloat = envDataHandle.asFloat() if envFloat <= EPSILON: return #get attribute values ampDataHandle = dataBlock.inputValue(self.amp) ampFloats = ampDataHandle.asFloat3() freqDataHandle = dataBlock.inputValue(self.freq) freqFloats = freqDataHandle.asFloat3() offsetDataHandle = dataBlock.inputValue(self.offset) offsetFloats = offsetDataHandle.asFloat3() octavesDataHandle = dataBlock.inputValue(self.octaves) octavesInt = octavesDataHandle.asInt() lacunarityDataHandle = dataBlock.inputValue(self.lacunarity) lacunarityFloat = lacunarityDataHandle.asFloat() persistenceDataHandle = dataBlock.inputValue(self.persistence) persistenceFloat = persistenceDataHandle.asFloat() locatorWorldSpaceDataHandle = dataBlock.inputValue(self.locatorWorldSpace) locatorWorldSpaceMat = locatorWorldSpaceDataHandle.asMatrix() #precompute some transformation matrices localToLocatorSpaceMat = localToWorldMat * locatorWorldSpaceMat.inverse() locatorToLocalSpaceMat = locatorWorldSpaceMat * localToWorldMat.inverse() #iterate through all the points while not geomIter.isDone(): #get weight value for this point, continue if sufficiently near to 0 weightFloat = self.weightValue(dataBlock, multiIndex, geomIter.index()) if weightFloat <= EPSILON: continue #get locator space position pos = geomIter.position() pos *= localToLocatorSpaceMat #precompute some values noiseInputX = freqFloats[0] * pos.x - offsetFloats[0] noiseInputY = freqFloats[1] * pos.y - offsetFloats[1] noiseInputZ = freqFloats[2] * pos.z - offsetFloats[2] envTimesWeight = envFloat * weightFloat #calculate new position pos.x += ampFloats[0] * noise.snoise3( x = noiseInputX, y = noiseInputY, z = noiseInputZ, octaves = octavesInt, lacunarity = lacunarityFloat, persistence = persistenceFloat ) * envTimesWeight pos.y += ampFloats[1] * noise.snoise3( x = noiseInputX + 123, y = noiseInputY + 456, z = noiseInputZ + 789, octaves = octavesInt, lacunarity = lacunarityFloat, persistence = persistenceFloat ) * envTimesWeight pos.z += ampFloats[2] * noise.snoise3( x = noiseInputX + 234, y = noiseInputY + 567, z = noiseInputZ + 890, octaves = octavesInt, lacunarity = lacunarityFloat, persistence = persistenceFloat ) * envTimesWeight #convert back to local space pos *= locatorToLocalSpaceMat #set new position geomIter.setPosition(pos) geomIter.next() def accessoryNodeSetup(self, dagMod): thisObj = self.thisMObject() #get current object name thisFn = om.MFnDependencyNode(thisObj) thisObjName = thisFn.name() #create an accessory locator for user to manipulate a local deformation space locObj = dagMod.createNode('locator') dagMod.doIt() #rename transform and shape nodes dagMod.renameNode(locObj, thisObjName + '_loc') locDagPath = om.MDagPath() locDagFn = om.MFnDagNode(locObj) locDagFn.getPath(locDagPath) locDagPath.extendToShape() locShapeObj = locDagPath.node() dagMod.renameNode(locShapeObj, thisObjName + '_locShape') #connect locator's worldMatrix to locatorWorldSpace locFn = om.MFnDependencyNode(locObj) worldMatrixAttr = locFn.attribute('worldMatrix') dagMod.connect(locObj, worldMatrixAttr, thisObj, self.locatorWorldSpace) def accessoryAttribute(self): return self.locatorWorldSpace #creator function def nodeCreator(): return omMPx.asMPxPtr(SkScriptedNoiseDeformer()) #init function def nodeInitializer(): outputGeom = omMPx.cvar.MPxDeformerNode_outputGeom #amplitude attr nAttr = om.MFnNumericAttribute() SkScriptedNoiseDeformer.amp = nAttr.createPoint('amplitude', 'amp') nAttr.setDefault(1.0, 1.0, 1.0) nAttr.setKeyable(True) SkScriptedNoiseDeformer.addAttribute(SkScriptedNoiseDeformer.amp) SkScriptedNoiseDeformer.attributeAffects(SkScriptedNoiseDeformer.amp, outputGeom) #frequency attr nAttr = om.MFnNumericAttribute() SkScriptedNoiseDeformer.freq = nAttr.createPoint('frequency', 'freq') nAttr.setDefault(1.0, 1.0, 1.0) nAttr.setKeyable(True) SkScriptedNoiseDeformer.addAttribute(SkScriptedNoiseDeformer.freq) SkScriptedNoiseDeformer.attributeAffects(SkScriptedNoiseDeformer.freq, outputGeom) #offset attr nAttr = om.MFnNumericAttribute() SkScriptedNoiseDeformer.offset = nAttr.createPoint('offset', 'off') nAttr.setDefault(0.0, 0.0, 0.0) nAttr.setKeyable(True) SkScriptedNoiseDeformer.addAttribute(SkScriptedNoiseDeformer.offset) SkScriptedNoiseDeformer.attributeAffects(SkScriptedNoiseDeformer.offset, outputGeom) #octaves attr nAttr = om.MFnNumericAttribute() SkScriptedNoiseDeformer.octaves = nAttr.create('octaves', 'oct', om.MFnNumericData.kInt, 1) nAttr.setMin(1) nAttr.setKeyable(True) SkScriptedNoiseDeformer.addAttribute(SkScriptedNoiseDeformer.octaves) SkScriptedNoiseDeformer.attributeAffects(SkScriptedNoiseDeformer.octaves, outputGeom) #lacunarity attr nAttr = om.MFnNumericAttribute() SkScriptedNoiseDeformer.lacunarity = nAttr.create('lacunarity', 'lac', om.MFnNumericData.kFloat, 2.0) nAttr.setKeyable(True) SkScriptedNoiseDeformer.addAttribute(SkScriptedNoiseDeformer.lacunarity) SkScriptedNoiseDeformer.attributeAffects(SkScriptedNoiseDeformer.lacunarity, outputGeom) #persistence attr nAttr = om.MFnNumericAttribute() SkScriptedNoiseDeformer.persistence = nAttr.create('persistence', 'per', om.MFnNumericData.kFloat, 0.5) nAttr.setKeyable(True) SkScriptedNoiseDeformer.addAttribute(SkScriptedNoiseDeformer.persistence) SkScriptedNoiseDeformer.attributeAffects(SkScriptedNoiseDeformer.persistence, outputGeom) #locatorWorldSpace attr mAttr = om.MFnMatrixAttribute() SkScriptedNoiseDeformer.locatorWorldSpace = mAttr.create('locatorWorldSpace', 'locsp') mAttr.setStorable(False) mAttr.setHidden(True) SkScriptedNoiseDeformer.addAttribute(SkScriptedNoiseDeformer.locatorWorldSpace) SkScriptedNoiseDeformer.attributeAffects(SkScriptedNoiseDeformer.locatorWorldSpace, outputGeom) #init plugin def initializePlugin(mObject): mPlugin = omMPx.MFnPlugin(mObject, "Skeel Lee", nodeVersion, "Any") try: mPlugin.registerNode(nodeType, nodeId, nodeCreator, nodeInitializer, omMPx.MPxNode.kDeformerNode) except: sys.stderr.write('Failed to register deformer node: %s\n' % (nodeType)) raise #uninit plugin def uninitializePlugin(mObject): mPlugin = omMPx.MFnPlugin(mObject) try: mPlugin.deregisterNode(nodeId) except: sys.stderr.write('Failed to deregister deformer node: %s\n' % (nodeType)) raise
[ "skeel@skeelogy.com" ]
skeel@skeelogy.com
a0f0e296b65c24b3f22b2d9f9128df08da47cd87
8d50ada4abfd790d407340e218c18b4f04ba570a
/4-7.py
d04bab371372f8037035ddd110df0c92a8be439f
[]
no_license
prasanna1695/python-code
b3ca875178f4645d332f974588117994ad6c3e01
e62d700da292dc4e6cedebbe54dcd3f25b936ed5
refs/heads/master
2021-05-27T21:11:57.328421
2014-05-14T04:20:26
2014-05-14T04:20:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,508
py
#You have two very large binary trees: T1, with millions of nodes, and T2, with hundreds of nodes. #Create an algorithm to decide if T2 is a subtree of T1 class Tree(object): def __init__(self, sorted_array): if sorted_array == []: self.data = None else: self.data = sorted_array[len(sorted_array)/2] if sorted_array[:len(sorted_array)/2] != []: self.left = Tree(sorted_array[:len(sorted_array)/2]) else: self.left = None if sorted_array[(len(sorted_array)/2)+1:] != []: self.right = Tree(sorted_array[(len(sorted_array)/2)+1:]) else: self.right = None def isASubtree(T1, T2): if T2 == None or T2.data == None: return True else: return traverseBigTree(T1,T2) def traverseBigTree(T1,T2): if T1 == None: return False if T1.data == T2.data: if checkChildren(T1,T2): return True return isASubtree(T1.right, T2) or isASubtree(T1.left, T2) def checkChildren(T1,T2): if (T1 == None and T2 == None) or (T1.data == None and T2.data == None): return True elif T1 == None or T2 == None or T1.data == None or T2.data == None: return False elif T1.data != T2.data: return True else: return checkChildren(T1.right,T2.right) and checkChildren(T1.left, T2.left) T1 = Tree([]) T2 = Tree([0]) print "Test1: T1 = [], T2 = [0]" print isASubtree(T1,T2) == False T1 = Tree([]) T2 = Tree([]) print "Test2: T1 = [], T2 = []" print isASubtree(T1,T2) == True T1 = Tree([0]) T2 = Tree([]) print "Test3: T1 = [0], T2 = []" print isASubtree(T1,T2) == True T1 = Tree([1]) T2 = Tree([1]) print "Test4: T1 = [1], T2 = [1]" print isASubtree(T1,T2) == True T1 = Tree([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]) T1 = Tree([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]) print "Test5: T1 = T2 = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]" print isASubtree(T1,T2) == True T1 = Tree([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]) T2 = Tree([5,6,7]) print "Test6: T1 = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15], T2 = [5,6,7]" print isASubtree(T1,T2) == True T1 = Tree([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]) T2 = Tree([2,4,6]) print "Test7: T1 = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15], T2 = [2,4,6]" print isASubtree(T1,T2) == False T1 = Tree([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]) T2 = Tree([1,2,3,4,5,6,7]) print "Test8: T1 = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15], T2 = [1,2,3,4,5,6,7]" print isASubtree(T1,T2) == True T1 = Tree([1,2,3,4,5,6,7,8,9,10]) T2 = Tree([]) T2.data = 8 T2.left = Tree([]) T2.left.data = 7 print "Test9: T1 = [1,2,3,4,5,6,7,8,9,10], T2 = [7,8,_]" print isASubtree(T1,T2) == True
[ "paulnogas@gmail.com" ]
paulnogas@gmail.com
eab442983dcf502997761d076ae343e011c0730d
94da14ff366651bd58bbd53abd3b1816a2292fb8
/server/server.wsgi
6ddeb5dc5d6d456d679c40d52c461edb6427f9af
[]
no_license
KaranPhadnisNaik/waketfup
6d4fc3fafaafb8c4cda0b2e84365b4b346740fd8
742f0ba5ce6d4af4141ca073991205b1746612f8
refs/heads/master
2021-01-18T18:59:13.772111
2017-04-28T23:02:47
2017-04-28T23:02:47
86,879,488
0
5
null
2017-04-28T23:02:48
2017-04-01T03:12:16
Python
UTF-8
Python
false
false
507
wsgi
import sys from flask import Flask from server import api from extensions import mysql app = Flask(__name__) app.config.from_object(__name__) app.config['MYSQL_DATABASE_USER'] = 'root' app.config['MYSQL_DATABASE_PASSWORD'] = '' app.config['MYSQL_DATABASE_DB'] = 'wakeup' app.config['MYSQL_DATABASE_HOST'] = '127.0.0.1' mysql.init_app(app) app.register_blueprint(api, url_prefix='/wakeup/api') if __name__ == '__main__': app.run(host="0.0.0.0", port=5000, debug=True) #app.run(host='0.0.0.0', port=80)
[ "Karanphadnis1@gmail.com" ]
Karanphadnis1@gmail.com
ca706a17599985c33d41dd458171dc437fd326a0
60abb1b8aa61764ae66488755fecbfc8baeba47e
/tools/pydocgen/pydocgen/__init__.py
121fa0c78708c3628f24c9eab932eaec660b91e1
[]
no_license
bishoywagih/docs
4789c3860fc423e77bec9f58574d0fa02c8089e3
80989180bcd53ae28e94a03f67ff97159efa1884
refs/heads/master
2020-04-20T01:36:16.496092
2019-01-30T23:57:55
2019-01-30T23:57:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,501
py
""" (A) Pulumi Python documentation generator, at your service! This module provides a mechanism for producing HTML documentation for Pulumi packages directly from their source, in a format that is amenable for inclusion in the Pulumi Docs repo. It accomplishes this using a two-fold transformation: 1. This script walks all providers that it intends to generate documentation and generates an input to Sphinx, the documentation generator. The output of this stage is a directory full of reStructuredText files (.rst) that Sphinx will interpret. 2. The script invokes sphinx directly. Sphinx walks the packages that we intend to document and generates a lot of documentation for them. We use the "json" builder for Sphinx, which is a target that splats a large amount of HTML into a JSON document for each input RST file that we gave it. 3. The script processes the JSON output of Sphinx and produces a series of folders and Markdown documents that our Jekyll front-end is aware of and can render in a reasonable fashion in the context of our docs website. This is a little crazy. I will understand if you hate me. However, this script is very effective at what it does, mostly because Sphinx is an incredibly powerful tool that is well-suited for this purpose. The "correct" way to accomplish this task is likely to create a custom Sphinx theme that outputs HTML directly in the format that our site expects, but this is "hard" (read: time-consuming for the author). """ import glob import json from os import path, mkdir import shutil from subprocess import check_call import sys import tempfile from typing import NamedTuple, List from jinja2 import Environment, PackageLoader, select_autoescape class Project(NamedTuple): """ A Project is a collection of metadata about the current project that we'll feed to Sphinx. """ name: str copyright: str author: str version: str release: str class Provider(NamedTuple): """ A provider is a tuple of "name" (a human-readable name) and "package_name" (the actual Python package name). """ name: str package_name: str class Input(NamedTuple): """ Input is the schema of the JSON document loaded as an input to the documentation generator. It contains metadata about the current project (see Project) and a list of providers that we intend to document. """ project: Project providers: List[Provider] class Context(NamedTuple): """ The context is some state kept around during the transformation process. """ template_env: Environment tempdir: str outdir: str mdoutdir: str input: Input def read_input(input_file: str) -> Input: """ read_input produces an Input from an input file with the given filename. :param str input_file: Filename of a JSON file to read inputs from. :returns str: An Input representing the current run of the tool. """ with open(input_file) as f: input_dict = json.load(f) project = Project(**input_dict["project"]) providers = [] for provider in input_dict.get("providers") or []: providers.append(Provider(**provider)) return Input(project=project, providers=providers) def render_template_to(ctx: Context, dest: str, template_name: str, **kwargs): """ Helper function for rendering templates to the context's temporary directory. :param Context ctx: The current context. :param str dest: The destination path relative to the root of the output directory. :param str template_name: The name of the template to render. :param **kwargs: Passed verbatim to the template. """ template_instance = ctx.template_env.get_template(template_name) out_path = path.join(ctx.tempdir, dest) with open(out_path, "w") as f: rendered = template_instance.render(**kwargs) f.write(rendered) def generate_sphinx_files(ctx: Context): """ Generates Sphinx input from the list of packages given to this tool. The Sphinx input is saved in the temporary directory created by the context (ctx.tempdir). """ # Sphinx expects a conf.py file at the root of the folder - render it. render_template_to(ctx, "conf.py", "conf.py", input=ctx.input) # We're also shipping a Sphinx plugin to hack our docstrings. render_template_to(ctx, "markdown_docstring.py", "markdown_docstring.py") # Sphinx begins at index.rst and walks it recursively to discover all files to render. Although we're not using the # output of index.rst in any way, we must still render it to refer to all of the provider pages that we intend to # document so that Sphinx knows to recurse into them. render_template_to(ctx, "index.rst", "index.rst", input=ctx.input) create_dir(ctx.tempdir, "providers") create_dir(ctx.tempdir, "_static") # Sphinx complains if this isn't there. # Templates that we intend to use. without_module_template = path.join("providers", "provider_without_module.rst") with_module_template = path.join("providers", "provider_with_module.rst") module_template = path.join("providers", "module.rst") for provider in ctx.input.providers: doc_path = path.join("providers", f"{provider.package_name}.rst") # __import__ is Python magic - it literally imports the package that we're about to document. For this reason # (and because Sphinx does something similar), the packages that we are documenting MUST be installed in the # current environment. module = __import__(provider.package_name) # The reason we're importing the module is to inspect its `__all__` member - so we can discover any submodules # that this module has. # # TFGen explicitly populates this array. if not hasattr(module, "__all__"): # No submodules? Render the without_module_template and be done. render_template_to(ctx, doc_path, without_module_template, provider=provider) else: # If there are submodules, run through each one and render module templates for each one. all_modules = getattr(module, "__all__") render_template_to(ctx, doc_path, with_module_template, provider=provider, submodules=all_modules) create_dir(ctx.tempdir, "providers", provider.package_name) for module in all_modules: dest = path.join("providers", provider.package_name, f"{module}.rst") module_meta = {"name": module, "full_name": f"{provider.package_name}.{module}"} render_template_to(ctx, dest, module_template, module=module_meta) def build_sphinx(ctx: Context): """ build_sphinx invokes Sphinx on the inputs that we generated in `generate_sphinx_files`. :param Context ctx: The current context. """ check_call(["sphinx-build", "-j", "auto", "-b", "json", ctx.tempdir, ctx.outdir]) def transform_sphinx_output_to_markdown(ctx: Context): """ Transforms the Sphinx output in `ctx.outdir` to markdown by post-processing the JSON output by Sphinx. The directory structure written by this function mirrors the `reference/pkg` directory in the docs repo, so that `reference/pkg` can serve as an output directory of this script. :param Context ctx: The current context. """ out_base = create_dir(ctx.mdoutdir, "python") base_json = path.join(ctx.outdir, "providers") for provider in ctx.input.providers: provider_path = create_dir(out_base, provider.package_name) provider_sphinx_output = path.join(base_json, provider.package_name) # If this thing has submodules, provider_sphinx_output is a directory and it exists. if path.exists(provider_sphinx_output): create_markdown_file(f"{provider_sphinx_output}.fjson", path.join(provider_path, "index.md")) # Recurse through all submodules (all fjson files in this directory) and produce folders with an index.md # in them. for file in glob.iglob(path.join(provider_sphinx_output, "*.fjson")): module_name = path.splitext(path.basename(file))[0] module_path = create_dir(provider_path, module_name) create_markdown_file(file, path.join(module_path, "index.md")) else: # Otherwise, just drop an index.md in the provider directory. create_markdown_file(f"{provider_sphinx_output}.fjson", path.join(provider_path, "index.md")) def create_dir(*args): full_path = path.join(*args) if not path.exists(full_path): mkdir(full_path) return full_path def create_markdown_file(file: str, out_file: str): """ Derives a Markdown file from the Sphinx output file `file` and saves the result to `out_file`. :param str file: Sphinx output file, to be used as the source of data to derive a Markdown file. It is technically JSON but in reality it's a JSON object with a "body" property that's filled with HTML. :param str out_file: The name of the Markdown file to output. """ with open(file) as f: contents = json.load(f) with open(out_file, "w") as f: # The "body" property of Sphinx's JSON is basically the rendered HTML of the documentation on this page. We're # going to slam it verbatim into a file and call it Markdown, because we're professionals. f.write(contents["body"]) def main(): if len(sys.argv) != 2: print("usage: python -m pydocgen <output_dir>") exit(1) output_directory = sys.argv[1] input = read_input("pulumi-docs.json") env = Environment( loader=PackageLoader('pydocgen', 'templates'), autoescape=select_autoescape(['html', 'xml'])) tempdir = tempfile.mkdtemp() outdir = tempfile.mkdtemp() mdoutdir = output_directory ctx = Context(template_env=env, input=input, tempdir=tempdir, outdir=outdir, mdoutdir=mdoutdir) try: print("Generating Sphinx input...") generate_sphinx_files(ctx) print("Running Sphinx...") build_sphinx(ctx) print("Transforming Sphinx output into Markdown...") transform_sphinx_output_to_markdown(ctx) print("Done!") finally: if path.exists(tempdir): pass #shutil.rmtree(tempdir) if path.exists(outdir): pass #shutil.rmtree(outdir)
[ "noreply@github.com" ]
bishoywagih.noreply@github.com
97853189dfe18bc6b81575e4fc52c8f159a94321
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02725/s504683276.py
b99ec7dcd7bc0b16982ffe576e9e58a195be308d
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
475
py
import math def resolve(): import sys input = sys.stdin.readline # row = [int(x) for x in input().rstrip().split(" ")] kn = [int(x) for x in input().rstrip().split(" ")] k = kn[0] a = [int(x) for x in input().rstrip().split(" ")] max_dist = max([a[i+1] - a[i] for i in range(len(a)-1)]) max_dist = max_dist if max_dist > a[0] + k - a[len(a)-1] else a[0] + k - a[len(a)-1] print(k - max_dist) if __name__ == "__main__": resolve()
[ "66529651+Aastha2104@users.noreply.github.com" ]
66529651+Aastha2104@users.noreply.github.com
36fc95272f6918a61acd36ed1e05a25ca3d4799a
c2af656559d4330d744b68e1f6f044c0903ca6e4
/main/main_b.py
f6bb0159711eb15b54d08d476432e790cb58fdf4
[]
no_license
mvattiku/insightProject
666d32276d9cd850dea8df5d153a062c0cd977bb
d7a487bbaef4cf9bd422c13382f761e5f6166302
refs/heads/master
2020-04-17T09:05:59.089546
2019-03-05T01:05:18
2019-03-05T01:05:18
166,444,673
0
0
null
2019-01-26T02:08:56
2019-01-18T17:06:21
Python
UTF-8
Python
false
false
1,873
py
""" Sample on how to use the batch_util. To Run: "python main_batch.py BatchConfig.yml AwsConfig.ini need to provide two command line arguments. Argument 1 = yaml file path with batch parameters defined Argument 2 = aws config(.ini) file path with aws account info (such as aws_key, region, ...) """ #_____________________________________________________________________________________________________ import sys import os import configparser import boto3 from batch_service.batch_util import Batch if __name__ == '__main__': try: yaml_file_path = sys.argv[1] #batch yaml file config_file_path = sys.argv[2] #aws config file aws_config = configparser.ConfigParser() aws_config.read(config_file_path) except Exception as e: e.args += ("Need to provide a parameters file", ) raise #aws region=aws_config.get('aws', 'region') aws_access_key_id = aws_config.get('aws', 'aws_access_key_id') aws_secret_access_key = aws_config.get('aws', 'aws_secret_access_key') aws_id = aws_config.get('aws', 'aws_id') #aws session and batch client session = boto3.Session(aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key) client = session.client('batch', 'us-west-2') #Batch Util Obj batch = Batch(client=client, config_file=yaml_file_path) #must provide client to be able to use other Batch methods #create computer environement batch.create_compute_environment() #create job queue batch.create_job_queue() #create job definition batch.create_job_definition() #create job batch.create_job() #get latest job definition version latest_version = batch.latest_version_job_definition(job_def_name="test") #if parameter not provide here, then job_Def_name from yaml file will be used
[ "monisha.aishwarya.vatikuti@macys.com" ]
monisha.aishwarya.vatikuti@macys.com
e7c51f8dbe86330a891a6069eb59a25c0cf63908
211ba663bb1086047b9b5c5689f0abf64038e7b1
/STORE/product/admin.py
40dbdce5ab80ceaf135b7561516e4fb8004f5045
[]
no_license
form-merch-llc/store
7a587530fcf94796375b1120363a49935fd73e04
1821077214001fdcf5dd30388831dcce07fd0d79
refs/heads/master
2022-11-14T16:12:58.186641
2020-07-14T08:54:05
2020-07-14T08:54:05
277,132,300
0
0
null
null
null
null
UTF-8
Python
false
false
1,052
py
from django.contrib import admin from .models import ( Attribute, Image, Product, Type, Variant, Value, ) class AttributeInline(admin.StackedInline): model = Attribute class ImageInline(admin.StackedInline): model = Image class VariantInline(admin.StackedInline): model = Variant class ValueInline(admin.StackedInline): model = Value @admin.register(Attribute) class AttributeAdmin(admin.ModelAdmin): list_display = ["pk", "name"] inlines = [ValueInline] @admin.register(Image) class ImageAdmin(admin.ModelAdmin): list_display = ["pk", "alt"] @admin.register(Product) class ProductAdmin(admin.ModelAdmin): list_display = ["pk", "name"] inlines = [VariantInline] @admin.register(Type) class TypeAdmin(admin.ModelAdmin): list_display = ["pk", "name"] @admin.register(Variant) class VariantAdmin(admin.ModelAdmin): list_display = ["pk", "name"] inlines = [ImageInline] @admin.register(Value) class ValueAdmin(admin.ModelAdmin): list_display = ["pk", "name"]
[ "khasbilegt.ts@gmail.com" ]
khasbilegt.ts@gmail.com
bca52650f8f2c99776a40778147b90707b570634
03ab708d3725b5ed52217effc4f8e8ca5c889632
/boletin/migrations/0061_gruposcoutfalse_apellidojefe.py
bff288f7b4349959cbc813b1a937f1e629bb7ea7
[]
no_license
esiemprelisto/webapp
443b8f89b088c3062b1fcf7dab24387fb34a673a
5e7651ca4ff0103711220a0b750b7ac483504741
refs/heads/master
2020-03-22T10:40:13.369146
2018-07-06T02:08:20
2018-07-06T02:08:20
139,918,804
0
0
null
null
null
null
UTF-8
Python
false
false
512
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.13 on 2018-07-04 22:16 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('boletin', '0060_gruposcoutfalse'), ] operations = [ migrations.AddField( model_name='gruposcoutfalse', name='apellidoJefe', field=models.CharField(default='1', max_length=100), preserve_default=False, ), ]
[ "alejandro9980@gmail.com" ]
alejandro9980@gmail.com
bb26f478e15b476158222993e3f5de711d68404f
5d5560e10938830d2ee5adaabc2ebe723a3fe9c8
/hermes_cms/tests/views/utils/mocks.py
046ced7e16dde3c781cb91e4db7aa60e4df5de57
[]
no_license
pmcilwaine/hermes
3c652c27f99c06baa851708e8461ada58d0772db
e9d6f5aeeb12824e68b326dcb0c346c50c5b6f38
refs/heads/develop
2021-01-13T01:54:44.656366
2015-10-12T09:39:42
2015-10-12T09:39:42
33,728,002
0
0
null
null
null
null
UTF-8
Python
false
false
159
py
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys from mock import MagicMock def mock_modules(): sys.modules['hermes_cms.core.log'] = MagicMock()
[ "paul.mcilwaine@gmail.com" ]
paul.mcilwaine@gmail.com
e89e32ee06554604411d2af3dece7826dfc3c2f0
d841fd397bde4f0ac2444606ac13af3e8e27542c
/21_merge-two-sorted-lists.py
6f120782df0e11af887fd10a7f91c4c7ca98e15e
[]
no_license
excelsky/Leet1337Code
5de777f5263ea3f7bbf05a6c77aa893c0871fb63
804b4018cfc8858563e3e166640845f58ff973c5
refs/heads/master
2023-05-07T15:54:03.824463
2021-05-28T08:30:11
2021-05-28T08:30:11
277,186,940
0
0
null
2020-08-03T00:26:50
2020-07-04T21:20:52
Python
UTF-8
Python
false
false
589
py
# https://leetcode.com/problems/merge-two-sorted-lists/ # 6gaksu # Definition for singly-linked list. # class ListNode: # def __init__(self, val=0, next=None): # self.val = val # self.next = next class Solution: def mergeTwoLists(self, l1: ListNode, l2: ListNode) -> ListNode: if l1 is None: return l2 elif l2 is None: return l1 elif l1.val < l2.val: l1.next = self.mergeTwoLists(l1.next, l2) return l1 else: l2.next = self.mergeTwoLists(l1, l2.next) return l2
[ "analytics20132333@gmail.com" ]
analytics20132333@gmail.com
dcb17f1f1d480bffcbf9ca0fc7438d32433c67d4
8d3daff9dc9a6f92fb6d43ab87ad2d03dfa43346
/Graph Algo/Articulation_points.py
cde4224004a37a73dfed88acb0b41eb019db3163
[]
no_license
avikram553/Basics-of-Python
3156240aa14a5df11d1345cbd99c11e61085ea6a
2cc6bbff1fbb8d291a887a94904da1001066df8a
refs/heads/master
2021-06-28T23:51:51.400629
2020-09-30T19:15:52
2020-09-30T19:15:52
172,511,602
0
1
null
2020-09-30T19:15:54
2019-02-25T13:31:25
Python
UTF-8
Python
false
false
1,091
py
def dfs(node,par): global count global ti visited[node]=True low[node]=ti;f_time[node]=ti ti+=1 child=0 for i in graph[node]: if(i==par): continue if(visited[i]): low[node]=min(low[node],f_time[i]) else: dfs(i,node) low[node]=min(low[node],low[i]) if(f_time[node]<=low[i] and par!=-1): articulation[node]=0 child+=1 if(par==-1 and child>=2): articulation[node]=0 for _ in range(int(input())): n,m=map(int,input().split()) graph={} for i in range(1,n+1): graph[i]=[] for i in range(m): a,b=map(int,input().split()) graph[a].append(b) graph[b].append(a) visited=[False for i in range(n+1)] low=[-1 for i in range(n+1)] f_time=[-1 for i in range(n+1)] ti=0;count=0 articulation={} for i in range(1,n+1): if(not visited[i]): dfs(i,-1) print(articulation.keys()) ''' 2 5 5 1 2 1 3 3 2 3 4 5 4 7 6 1 2 2 3 2 4 2 5 3 6 3 7 '''
[ "akashkbhagat221199@gmail.com" ]
akashkbhagat221199@gmail.com
ed59a73c5deb252f2f02fd1988dbfe8cb83a61b2
6f02d7bb0720e4f1ad7d912d09cf38fbc98022e9
/quizz/views.py
d62256bb28681d92039a3d59977e4f58a73e690a
[]
no_license
bhaskarmehta/Quizz_django_app
d525338bf2ed62860724ba15e94142c506749b98
2e2257c01ab8f1292f96a5265729b182a18ddc51
refs/heads/main
2023-07-02T18:01:46.467189
2021-07-28T20:08:00
2021-07-28T20:08:00
390,488,047
0
0
null
null
null
null
UTF-8
Python
false
false
1,236
py
from django.shortcuts import render from django.http import HttpResponse from quizz.models import Quizz # if we had more than one model we could have given * # Create your views here. #def hello(request): # return render(request,'main_page.html') #def add(request): # val1=int(request.POST['num1']) # val2=int(request.POST['num2']) # res=(val1)+(val2) #return render(request,'addition_result.html',{'result':res}) #comment for testing git commit def home(request): if request.method == 'POST': #print(request.POST) que = Quizz.objects.all() score=0 total = 0 temp1 = '0' for q in que: total += 1 print(q.Question) print(q.Correct_Answer) print("Hello") temp1=str(total) print(request.POST.get(temp1)) if q.Correct_Answer == request.POST.get(temp1): score += 1 context ={ 'score': score, 'total': total } return render(request, 'result.html', context) else: que = Quizz.objects.all() context = { 'que': que } return render(request, 'index.html', context)
[ "bhaskarmehta422@gmail.com" ]
bhaskarmehta422@gmail.com
15ddbc3e329f615402c3491a9ebc094e13ddadc5
c757437c6c432da26e209e36dd64faf8aca18478
/audio/models.py
688eb413fc07d43185c45a9b2305cf07641df3a2
[]
no_license
piyush626/audiotrack_crud_app
298283721ea5278b36fce556e2b52b082f0f3989
4b97cd65a2e0956d5d6405f8b253af08921cc3e5
refs/heads/master
2023-04-17T19:46:13.363796
2021-05-01T11:18:04
2021-05-01T11:18:04
363,387,356
0
0
null
null
null
null
UTF-8
Python
false
false
2,108
py
# from django.core.exceptions import MultipleObjectsReturned from django.db import models # from django.contrib.auth.models import User from django.db.models.deletion import CASCADE from django.core.validators import MaxValueValidator # Create your models here. # class CustomUser(models.Model): # user = models.ForeignKey(User,on_delete=CASCADE) class SongFile(models.Model): id = models.IntegerField(primary_key=True,null=False,blank=False,unique=True) song_name = models.CharField(max_length=100,null=False,blank=False) duration_seconds = models.IntegerField(null=False,blank=False) upload_time = models.DateTimeField(auto_now_add=True) def __str__(self): return self.song_name class PodcastFile(models.Model): id = models.IntegerField(primary_key=True,null=False,blank=False,unique=True) podcast_name = models.CharField(max_length=100,null=False,blank=False) duration_seconds = models.IntegerField(null=False,blank=False) upload_time = models.DateTimeField(auto_now_add=True) host = models.CharField(max_length=100,null=False,blank=False) Number_of_participant = models.PositiveIntegerField(default=0,validators=[MaxValueValidator(10)]) def __str__(self): return self.podcast_name @property def candidates(self): return self.participants_set.all() class Participants(models.Model): podcastfile = models.ForeignKey(PodcastFile,on_delete=models.CASCADE,null=True) participant_name = models.CharField(max_length=100,blank=True,null=True) def __str__(self): return self.participant_name class AudioBookFile(models.Model): id = models.IntegerField(primary_key=True,null=False,blank=False,unique=True) title = models.CharField(max_length=100,null=False,blank=False) author = models.CharField(max_length=100,null=False,blank=False) narrator = models.CharField(max_length=100,null=False,blank=False) duration_seconds = models.IntegerField(null=False,blank=False) upload_time = models.DateTimeField(auto_now_add=True) def __str__(self): return self.title
[ "agarwalpiyush626@gmail.com" ]
agarwalpiyush626@gmail.com
4e56cca92d1272e6d0ba1a74d6fce1c09303cf7b
e19b649ff2136be1a6ef256d8b96d7e240578615
/Desktop/Ecommerce/ecommerce/store/models.py
6abdd3c1ae38e74b49655e8e4aacb092ea35375c
[]
no_license
rawalhimal/Himal-Store-Using-Python-Django
3f15c0a80b319f948d493e4a1bfa982fb10f1518
7f331a6d5d4671e6d4eb0fed82139a41516f7d22
refs/heads/master
2022-12-16T03:59:32.595282
2020-09-23T18:16:07
2020-09-23T18:16:07
298,055,834
2
0
null
null
null
null
UTF-8
Python
false
false
2,724
py
from django.db import models from django.contrib.auth.models import User # Create your models here. class Customer(models.Model): user=models.OneToOneField(User,on_delete=models.CASCADE,null=True,blank=True) name=models.CharField(max_length=200,null=True) email=models.CharField(max_length=200,null=True) def __str__(self): return self.name class Product(models.Model): name=models.CharField(max_length=200,null=True) price=models.DecimalField(max_digits=7, decimal_places=2) digital=models.BooleanField(default=False,null=True,blank=True) image=models.ImageField(null=True,blank=True) def __str__(self): return self.name @property def imageURL(self): try: url=self.image.url except: url='' return url class Order(models.Model): customer=models.ForeignKey(Customer,on_delete=models.SET_NULL,null=True,blank=True) date_ordered=models.DateTimeField(auto_now_add=True) complete=models.BooleanField(default=False) transaction_id=models.CharField(max_length=100,null=True) def __str__(self): return str(self.id) @property def shipping(self): shipping=False orderitems=self.orderitem_set.all()#get all order items for i in orderitems:#use loop to check whether we need shipping or not if i.product.digital == False: shipping=True return shipping @property def get_cart_total(self): orderitems=self.orderitem_set.all() total=sum([item.get_total for item in orderitems]) return total @property def get_cart_items(self): orderitems=self.orderitem_set.all() total=sum([item.quantity for item in orderitems]) return total class OrderItem(models.Model): product=models.ForeignKey(Product,on_delete=models.SET_NULL,null=True) order=models.ForeignKey(Order,on_delete=models.SET_NULL,null=True) quantity=models.IntegerField(default=0,null=True,blank=True) date_added=models.DateTimeField(auto_now_add=True) @property def get_total(self): total=self.product.price * self.quantity return total class ShippingAddress(models.Model): customer=models.ForeignKey(Customer,on_delete=models.SET_NULL,null=True) order=models.ForeignKey(Order,on_delete=models.SET_NULL,null=True) address=models.CharField(max_length=200,null=False) city=models.CharField(max_length=200,null=False) state=models.CharField(max_length=200,null=False) zipcode=models.CharField(max_length=200,null=False) date_added=models.DateTimeField(auto_now_add=True) def __str__(self): return self.address
[ "himalrawal500@gmail.com" ]
himalrawal500@gmail.com
c879f1c643a18b5bda3c3c427dd5e2b82672d1b8
9d1b192ea44c0a76ec5b019126ef2a34c6c3cd4a
/collection/api/json_request.py
c3957643241a207293267e0f4b60d38b5b938ee4
[]
no_license
PureAppCrystal/analysis_sbms
bdae97a41010b907cd2ab73004d2e10aede35e17
4e907a383933a825f267a5bd03d14565abeb49a1
refs/heads/master
2021-05-07T04:45:42.988091
2017-11-18T18:33:52
2017-11-18T18:33:52
111,229,398
0
0
null
null
null
null
UTF-8
Python
false
false
718
py
import sys from datetime import datetime from urllib.request import Request, urlopen import json def json_request(url='', encording='utf-8', success=None, error=lambda e: print('%s : %s' % (e, datetime.now()), file=sys.stderr)): try: request = Request(url) resp = urlopen(request) resp_body = resp.read().decode(encording) json_result = json.loads(resp_body) print('%s : success for request [%s]' % (datetime.now(), url)) # callable -> 부를 수 있는지 확인하는 메서드 if callable(success) is False: return json_result success(json_result) except Exception as e: callable(error) and error(e)
[ "purecrystar@gmail.com" ]
purecrystar@gmail.com
e99bbdd9923292c0bb7d6901b1f74b8fd866a19c
7f9a73533b3678f0e83dc559dee8a37474e2a289
/deep-learning-inference/numpy/distutils/command/install_clib.py
6a73f7e3308ff0aa6b9f6454bfa43673fdd0e9b1
[ "MIT", "BSD-3-Clause", "GPL-3.0-or-later", "BSD-3-Clause-Open-MPI", "GCC-exception-3.1", "GPL-3.0-only" ]
permissive
ryfeus/stepfunctions2processing
04a5e83ee9b74e029b79a3f19381ba6d9265fc48
0b74797402d39f4966cab278d9718bfaec3386c2
refs/heads/master
2022-10-08T16:20:55.459175
2022-09-09T05:54:47
2022-09-09T05:54:47
147,448,024
128
34
MIT
2022-01-04T18:56:47
2018-09-05T02:26:31
Python
UTF-8
Python
false
false
1,465
py
from __future__ import division, absolute_import, print_function import os from distutils.core import Command from distutils.ccompiler import new_compiler from numpy.distutils.misc_util import get_cmd class install_clib(Command): description = "Command to install installable C libraries" user_options = [] def initialize_options(self): self.install_dir = None self.outfiles = [] def finalize_options(self): self.set_undefined_options('install', ('install_lib', 'install_dir')) def run (self): build_clib_cmd = get_cmd("build_clib") if not build_clib_cmd.build_clib: # can happen if the user specified `--skip-build` build_clib_cmd.finalize_options() build_dir = build_clib_cmd.build_clib # We need the compiler to get the library name -> filename association if not build_clib_cmd.compiler: compiler = new_compiler(compiler=None) compiler.customize(self.distribution) else: compiler = build_clib_cmd.compiler for l in self.distribution.installed_libraries: target_dir = os.path.join(self.install_dir, l.target_dir) name = compiler.library_filename(l.name) source = os.path.join(build_dir, name) self.mkpath(target_dir) self.outfiles.append(self.copy_file(source, target_dir)[0]) def get_outputs(self): return self.outfiles
[ "ryfeus@gmail.com" ]
ryfeus@gmail.com
252c30cf30986e40822a962c80b2b866ac99dcab
174675a707809001d7c4985fef22374644904236
/textuti/views.py
c8d03b4c6a090d561edd376f8dbc50c6b2f029d7
[]
no_license
ankurramba91/Text-Utility
89d55e6920f98ba0be42e442ad18e15bbcaa6562
98e3851438ad6c0a198af671dfdf765af3c1b457
refs/heads/master
2022-11-14T13:19:57.797123
2020-07-12T06:49:02
2020-07-12T06:49:02
278,846,262
0
0
null
null
null
null
UTF-8
Python
false
false
2,185
py
from django.http import HttpResponse from django.shortcuts import render def index(request): return render(request, 'index.html') def analyze(request): #get the text djtext=request.POST.get('text', 'default') #Check Checkbox values removepunc=request.POST.get('removepunc', 'off') fullcaps=request.POST.get('fullcaps', 'off') newlineremover = request.POST.get('newlineremover', 'off') extraspaceremover=request.POST.get('extraspaceremover', 'off') charcount=request.POST.get('charcount', 'off') if removepunc == "on": puntuations='''!()-[]{};:'"\,<>./?@#$%^&*_~''' analyzed="" for ch in djtext: if ch not in puntuations: analyzed=analyzed+ch params= {'purpose':'Remove Punctuations ','analyzed_text':analyzed} djtext = analyzed if(fullcaps=="on"): analyzed = "" for ch in djtext: analyzed=analyzed+ch.upper() params = {'purpose': 'Changed to Uppercase ', 'analyzed_text': analyzed} djtext=analyzed if (newlineremover == "on"): analyzed = "" for char in djtext: if char != "\n" and char!="\r": analyzed = analyzed + char params = {'purpose': 'Removed NewLines', 'analyzed_text': analyzed} djtext=analyzed if (extraspaceremover == "on"): analyzed = "" for index, ch in enumerate(djtext): if not (djtext[index]==" " and djtext[index+1] == " ") : analyzed = analyzed + ch params = {'purpose': 'Remove Extra Spaces ', 'analyzed_text': analyzed} djtext=analyzed if (charcount == "on"): analyzed = 1 for index, ch in enumerate(djtext): if ch>"a" and ch<"z" or ch>"A" and ch<"Z": analyzed = analyzed + 1 params = {'purpose': 'Count Charater', 'analyzed_text': analyzed} djtext = analyzed if (removepunc != "on" and fullcaps!="on" and newlineremover != "on" and extraspaceremover != "on" and charcount != "on") : return HttpResponse("Please Select any Thing") return render(request, 'analyze.html', params)
[ "ankur.python@gmail.com" ]
ankur.python@gmail.com
ca313e5936960dce97f945627223f35b441baac7
1198d79a6b7e1c3cf3f8445911aac8e0494bd12e
/bore/optimizers/__init__.py
d611be71b53c4b814972aa1e42cf77dd8382a792
[ "MIT" ]
permissive
ltiao/bore
43556de6051f5c17f1edec3b8ff1f504c1224072
f260ea0c7f486ce5a6ff927826604f089784b0b9
refs/heads/master
2023-05-23T20:33:18.756112
2022-10-04T10:24:23
2022-10-04T10:24:23
279,667,486
25
5
null
2022-12-26T21:33:48
2020-07-14T18:48:47
Python
UTF-8
Python
false
false
75
py
from .base import minimize_multi_start __all__ = ["minimize_multi_start"]
[ "louistiao@gmail.com" ]
louistiao@gmail.com
2ec6bdf58dc23cd87bf5d2984d45d7963b466c12
a6ed990fa4326c625a2a02f0c02eedf758ad8c7b
/meraki/sdk/python/cloneOrganizationSwitchDevices.py
9bc0fac94c2fbd25fd832b7aee869824a1ed6d1f
[]
no_license
StevenKitavi/Meraki-Dashboard-API-v1-Documentation
cf2352976c6b6c00c17a5f6442cedf0aeed46c22
5ed02a7def29a2ce455a3f2cfa185f76f44789f5
refs/heads/main
2023-03-02T08:49:34.846055
2021-02-05T10:31:25
2021-02-05T10:31:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
569
py
import meraki # Defining your API key as a variable in source code is not recommended API_KEY = '6bec40cf957de430a6f1f2baa056b99a4fac9ea0' # Instead, use an environment variable as shown under the Usage section # @ https://github.com/meraki/dashboard-api-python/ dashboard = meraki.DashboardAPI(API_KEY) organization_id = '549236' source_serial = 'Q234-ABCD-5678' target_serials = ['Q234-ABCD-0001', 'Q234-ABCD-0002', 'Q234-ABCD-0003'] response = dashboard.switch.cloneOrganizationSwitchDevices( organization_id, source_serial, target_serials ) print(response)
[ "shiychen@cisco.com" ]
shiychen@cisco.com
1ab23485830cd12757bc9649155036479fb4c222
96dcea595e7c16cec07b3f649afd65f3660a0bad
/tests/components/tailscale/conftest.py
12f11a5656da1aeeb425b1e64ee2499255c383bd
[ "Apache-2.0" ]
permissive
home-assistant/core
3455eac2e9d925c92d30178643b1aaccf3a6484f
80caeafcb5b6e2f9da192d0ea6dd1a5b8244b743
refs/heads/dev
2023-08-31T15:41:06.299469
2023-08-31T14:50:53
2023-08-31T14:50:53
12,888,993
35,501
20,617
Apache-2.0
2023-09-14T21:50:15
2013-09-17T07:29:48
Python
UTF-8
Python
false
false
2,476
py
"""Fixtures for Tailscale integration tests.""" from __future__ import annotations from collections.abc import Generator from unittest.mock import AsyncMock, MagicMock, patch import pytest from tailscale.models import Devices from homeassistant.components.tailscale.const import CONF_TAILNET, DOMAIN from homeassistant.const import CONF_API_KEY from homeassistant.core import HomeAssistant from tests.common import MockConfigEntry, load_fixture @pytest.fixture def mock_config_entry() -> MockConfigEntry: """Return the default mocked config entry.""" return MockConfigEntry( title="homeassistant.github", domain=DOMAIN, data={CONF_TAILNET: "homeassistant.github", CONF_API_KEY: "tskey-MOCK"}, unique_id="homeassistant.github", ) @pytest.fixture def mock_setup_entry() -> Generator[AsyncMock, None, None]: """Mock setting up a config entry.""" with patch( "homeassistant.components.tailscale.async_setup_entry", return_value=True ) as mock_setup: yield mock_setup @pytest.fixture def mock_tailscale_config_flow() -> Generator[None, MagicMock, None]: """Return a mocked Tailscale client.""" with patch( "homeassistant.components.tailscale.config_flow.Tailscale", autospec=True ) as tailscale_mock: tailscale = tailscale_mock.return_value tailscale.devices.return_value = Devices.parse_raw( load_fixture("tailscale/devices.json") ).devices yield tailscale @pytest.fixture def mock_tailscale(request: pytest.FixtureRequest) -> Generator[None, MagicMock, None]: """Return a mocked Tailscale client.""" fixture: str = "tailscale/devices.json" if hasattr(request, "param") and request.param: fixture = request.param devices = Devices.parse_raw(load_fixture(fixture)).devices with patch( "homeassistant.components.tailscale.coordinator.Tailscale", autospec=True ) as tailscale_mock: tailscale = tailscale_mock.return_value tailscale.devices.return_value = devices yield tailscale @pytest.fixture async def init_integration( hass: HomeAssistant, mock_config_entry: MockConfigEntry, mock_tailscale: MagicMock ) -> MockConfigEntry: """Set up the Tailscale integration for testing.""" mock_config_entry.add_to_hass(hass) await hass.config_entries.async_setup(mock_config_entry.entry_id) await hass.async_block_till_done() return mock_config_entry
[ "noreply@github.com" ]
home-assistant.noreply@github.com
055dc14af449b86f7a99c2c06bbd6dbe018be089
594cb9d7f4c9fc8e4fee7d1c98e235e77f9496ac
/cpu/LanguageModeling/BERT/data/bookcorpus/clean_and_merge_text.py
0b297b1d4781e5e9a26e758f44a28eebf032855d
[ "Apache-2.0" ]
permissive
okteto/demos
16618292cf43aaf08685a27bc14074002baa3ba3
15f2af3aae4802b03f43ddbead51e493e54ee2af
refs/heads/master
2020-05-01T19:39:25.205171
2019-03-25T19:48:41
2019-03-25T19:54:25
177,653,952
3
0
null
null
null
null
UTF-8
Python
false
false
465
py
# NVIDIA import glob import os output_file = os.environ['WORKING_DIR'] + '/intermediate_files/bookcorpus.txt' download_path = os.environ['WORKING_DIR'] + '/download/' with open(output_file, "w") as ofile: for filename in glob.glob(download_path + '*.txt', recursive=True): with open(filename, mode='r', encoding="utf-8-sig") as file: for line in file: if line.strip() != "": ofile.write(line.strip() + " ") ofile.write("\n\n ")
[ "pablo@okteto.com" ]
pablo@okteto.com
47d5cb014de0fd08b147a7ef4d1a9d55e8e97af5
676098df2b5b889791b1e8206dad5b91b304b31c
/gameslibrary/manage.py
e61d633530fd6d1396eec7c15391dcc9b8049c10
[]
no_license
ilya1231231/games_library
307c38a73c44c52010bb89a538e7a1483b1b4e71
44f3650998bfa0e3cea5c7abe8055c713373de6d
refs/heads/main
2023-07-22T22:58:33.703262
2021-09-07T15:00:34
2021-09-07T15:00:34
396,894,668
1
0
null
null
null
null
UTF-8
Python
false
false
668
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): """Run administrative tasks.""" os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'gameslibrary.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
[ "malygin.ilja@yandex.ru" ]
malygin.ilja@yandex.ru
8f399f69c7912b2903c174d6e3379627f24db756
9ffab573ee2a6403a2111ea5bd570a59d7e9c02a
/entorno/Lib/site-packages/flask/globals.py
341320a1534b16836ef893f789ce2e6b8d23c3a3
[]
no_license
jesusalbertoariza/ritz
3a45b0246c6ecb6323202c4a395058256a1e5fee
2912eb84c90124bfe9b43e9a35f60565e3a3ac94
refs/heads/main
2023-08-23T11:36:27.239313
2021-10-30T18:16:06
2021-10-30T18:16:06
422,944,413
0
0
null
null
null
null
UTF-8
Python
false
false
2,041
py
import typing as t from functools import partial from werkzeug.local import LocalProxy from werkzeug.local import LocalStack if t.TYPE_CHECKING: from .app import Flask from .ctx import _AppCtxGlobals from .sessions import SessionMixin from .wrappers import Request _app_ctx_err_msg = """\ Working outside of application context. This typically means that you attempted to use functionality that needed to interface with the current application object in a way. To solve this set up an application context with app.app_context(). See the documentation for more information.\ """ _request_ctx_err_msg = """\ Working outside of request context. This typically means that you attempted to use functionality that needed an active HTTP request. Consult the documentation on testing for information about how to avoid this problem.\ """ _app_ctx_err_msg = """\ Working outside of application context. This typically means that you attempted to use functionality that needed to interface with the current application object in some way. To solve this, set up an application context with app.app_context(). See the documentation for more information.\ """ def _lookup_req_object(name): top = _request_ctx_stack.top if top is None: raise RuntimeError(_request_ctx_err_msg) return getattr(top, name) def _lookup_app_object(name): top = _app_ctx_stack.top if top is None: raise RuntimeError(_app_ctx_err_msg) return getattr(top, name) def _find_app(): top = _app_ctx_stack.top if top is None: raise RuntimeError(_app_ctx_err_msg) return top.app # context locals _request_ctx_stack = LocalStack() _app_ctx_stack = LocalStack() current_app: "Flask" = LocalProxy(_find_app) # type: ignore request: "Request" = LocalProxy(partial(_lookup_req_object, "request")) # type: ignore session: "SessionMixin" = LocalProxy( # type: ignore partial(_lookup_req_object, "session") ) g: "_AppCtxGlobals" = LocalProxy(partial(_lookup_app_object, "g")) # type: ignore
[ "arizajesus@uninorte.edu.co" ]
arizajesus@uninorte.edu.co
c14d0a54050bc11c3540c29801a46f8f84d3d3fa
d506404b414e009369668f29e3fab5cb53499dd3
/compoundInterestCalculator.py
fbad7d206a52d02990ffe152ffc35dd1249692b7
[]
no_license
NeenaU/compound-interest-calculator
16b8e75b93ddfd037937c681aeaa40436bc84bda
d8a9a53550a50f41f503e7eab9df6aedf2305ba0
refs/heads/master
2022-11-29T22:50:33.459487
2020-08-13T20:30:54
2020-08-13T20:30:54
280,482,545
0
0
null
null
null
null
UTF-8
Python
false
false
12,367
py
import tkinter as tk from tkinter import messagebox class interestCalculator(): def __init__(self, master): self.master = master master.title = ("Compound Interest Calculator") #Title self.titleLabel = tk.Label(text="Compound Interest Calculator", font=("Times",16), width=24).grid(row=0,column=0,sticky='EW',pady=15) #Option widgets self.initialAmountLabel = tk.Label(master, text="Initial Amount").grid(sticky='W') self.initialAmountFrame = tk.Frame(master) #widgets are placed side by side in a frame self.initialAmountFrame.grid(row=2,sticky='NW',pady=6) self.poundSign1 = tk.Label(self.initialAmountFrame, text="£") self.poundSign1.grid(row=0,column=0) self.initialAmount = tk.IntVar() self.initialAmount.trace("w", self.initialAmountEntryClick) self.initialAmountEntry = tk.Entry(self.initialAmountFrame, textvariable=self.initialAmount, width=8) self.initialAmountEntry.grid(row=0,column=1) self.initialAmountEntry.bind("<1>", self.initialAmountEntryClick) self.interestRateLabel = tk.Label(text="Yearly Interest Rate").grid(sticky='W') self.interestRateFrame = tk.Frame(master) self.interestRateFrame.grid(row=4,sticky='NW',pady=6) self.interestRate = tk.IntVar() self.interestRate.trace("w", self.interestRateEntryClick) self.interestRateEntry = tk.Entry(self.interestRateFrame, textvariable=self.interestRate, width=3) self.interestRateEntry.grid(row=0,column=0,padx=4) self.interestRateEntry.bind("<1>", self.interestRateEntryClick) self.percentSign1 = tk.Label(self.interestRateFrame, text="%") self.percentSign1.grid(row=0,column=1) self.timePeriodLabel = tk.Label(text="Time Period").grid(sticky='W') self.timePeriodFrame = tk.Frame(master) self.timePeriodFrame.grid(row=6,sticky='NW',pady=6) self.timePeriod = tk.IntVar() self.timePeriod.trace("w", self.timePeriodEntryClick) self.timePeriodEntry = tk.Entry(self.timePeriodFrame, textvariable=self.timePeriod, width=3) self.timePeriodEntry.bind("<1>", self.timePeriodEntryClick) self.timePeriodVar = tk.StringVar(master) self.timePeriodVar.set("years") self.timePeriodChoice = tk.OptionMenu(self.timePeriodFrame, self.timePeriodVar, "years", "months") self.timePeriodChoice.grid(row=0,column=0) self.timePeriodEntry.grid(row=0,column=0,padx=4) self.timePeriodChoice.grid(row=0,column=1) self.compoundIntervalLabel = tk.Label(text="Compound Interval").grid(sticky='W') self.compoundIntervalVar = tk.StringVar(master) self.compoundIntervalVar.set("yearly") self.compoundIntervalChoice = tk.OptionMenu(master, self.compoundIntervalVar, "yearly", "monthly", "weekly", "daily") self.compoundIntervalChoice.grid(sticky='W',pady=6) self.regularAmountLabel = tk.Label(text="Regular monthly deposit").grid(sticky='W') self.regularAmountFrame = tk.Frame(master) self.regularAmountFrame.grid(row=10,sticky='NW',pady=6) self.regularAmountVar = tk.StringVar(master) self.regularAmountVar.set("no") self.regularAmountChoice = tk.OptionMenu(self.regularAmountFrame, self.regularAmountVar, "yes", "no", command=self.checkRegularAmount) #command called when an option is selected self.regularAmountChoice.grid(row=0,column=0) #if yes is selected, the entry will become visible self.amountLabel = tk.Label(self.regularAmountFrame, text="Amount:") self.poundSign2 = tk.Label(self.regularAmountFrame, text="£") self.regularAmount = tk.IntVar() self.regularAmount.trace("w", self.regularAmountEntryClick) self.regularAmountEntry = tk.Entry(self.regularAmountFrame, textvariable=self.regularAmount, width=8) self.regularAmountEntry.bind("<1>", self.regularAmountEntryClick) self.calculateButton = tk.Button(master, text="Calculate", command=self.verifyValues) self.calculateButton.grid(sticky='NW',pady=6) self.resultText = tk.Text(master, state='disabled', width=37, height=6) self.resultText.grid(sticky='NW',pady=6) self.resetButton= tk.Button(master, text="Reset", command=self.reset) #checkRegularAmount, checkIncreaseDeposits and checkTimePeriod #add extra widgets onto the screen if the menuoption variable is yes #remove the extra widgets if not def checkRegularAmount(self, value): if value == "no": self.amountLabel.grid_forget() self.poundSign2.grid_forget() self.regularAmountEntry.grid_forget() else: self.amountLabel.grid(row=0,column=1) self.poundSign2.grid(row=0,column=2) self.regularAmountEntry.grid(row=0,column=3) #Verifies the values of all entry boxes #If an error is found, the entry background becomes red def verifyValues(self): #Verifying that values are ints try: self.initialAmount.get() except: messagebox.showerror("Error", "Enter a number for the initial amount") self.initialAmount.set(0) self.initialAmountEntry.configure(bg='#D54323') return try: self.interestRate.get() except: messagebox.showerror("Error", "Enter a number for the yearly interest rate") self.interestRate.set(0) self.interestRateEntry.configure(bg='#D54323') return try: self.timePeriod.get() except: messagebox.showerror("Error", "Enter a number for the time period") self.timePeriod.set(0) self.timePeriodEntry.configure(bg='#D54323') return try: self.regularAmount.get() except: messagebox.showerror("Error", "Enter a number for the regular deposit amount") self.regularAmount.set(0) self.regularAmountEntry.configure(bg='#D54323') return #Verifying that values are between/higher than a certain number(s) try: if self.initialAmount.get() >= 0: if (self.timePeriodVar.get() == "years" and self.timePeriod.get() > 0) or (self.timePeriodVar.get() == "months" and self.timePeriod.get() > 0): if self.timePeriodVar.get() == "months" and self.timePeriod.get() > 12: messagebox.showerror("Error", "Enter a number less than 12 for the number of months") self.regularAmount.set(0) self.timePeriodEntry.configure(bg='#D54323') return else: if self.regularAmount.get() >= 0: self.calculateResult() else: messagebox.showerror("Error", "Enter a number greater than 0 for the regular amount") self.regularAmount.set(0) self.regularAmountEntry.configure(bg='#D54323') return else: messagebox.showerror("Error", "Enter a number greater than or equal to 0 for the time period") self.timePeriod.set(0) self.timePeriodEntry.configure(bg='#D54323') return else: messagebox.showerror("Error", "Enter a number greater than or equal to 0 for the initial amount") self.initialAmount.set(0) self.initialAmountEntry.configure(bg='#D54323') return except: return #These 6 functions change the background of an entry back to white when the user clicks on or types in it def initialAmountEntryClick(self, *args): if self.initialAmountEntry['bg'] == '#D54323': self.initialAmountEntry.configure(bg='#FFFFFF') def interestRateEntryClick(self, *args): if self.interestRateEntry['bg'] == '#D54323': self.interestRateEntry.configure(bg='#FFFFFF') def timePeriodEntryClick(self, *args): if self.timePeriodEntry['bg'] == '#D54323': self.timePeriodEntry.configure(bg='#FFFFFF') def monthsEntryClick(self, *args): if self.monthsEntry['bg'] == '#D54323': self.monthsEntry.configure(bg='#FFFFFF') def regularAmountEntryClick(self, *args): if self.regularAmountEntry['bg'] == '#D54323': self.regularAmountEntry.configure(bg='#FFFFFF') def calculateResult(self): self.calculateButton.grid_forget() self.resetButton.grid(sticky='NW',row=11,pady=6) #Principal balance p = self.initialAmount.get() #Interest rate r = self.interestRate.get() / 100 #n = number of times interest applied per time period if self.compoundIntervalVar.get() == "yearly": n = 1 elif self.compoundIntervalVar.get() == "monthly": n = 12 elif self.compoundIntervalVar.get() == "weekly": n = 52 elif self.compoundIntervalVar.get() == "daily": n = 365 #t = time periods elapsed if self.timePeriodVar.get() == "years": t = self.timePeriod.get() else: t = self.timePeriod.get() / 12 #Calculate compound interest result = round(p * (1 + (r/n)) ** (n*t), 2) #Include amount made/lost from monthly deposits and calculate interest gained interestGained = 0 if self.regularAmountVar.get() == "yes": d = self.regularAmount.get() #regular deposit amount interestFromDeposits = round(d * (((1+(r/12))**(12*t)-1)/(r/12)) * (1+r/12),2) result += interestFromDeposits timeInMonths = 0 if self.timePeriodVar.get() == "years": timeInMonths = t*12 else: timeInMonths = t earningsFromDeposits = d * timeInMonths interestGained = round(result - p - earningsFromDeposits, 2) else: interestGained = round(result - p, 2) if self.timePeriodVar.get() == "years": textForResultText = "You started with £" + str(p) + "\nYou ended with £" + str(result) + " over " + str(t) + " years\nYou gained £" + str(interestGained) + " in interest" else: textForResultText = "You started with £" + str(p) + "\nYou ended with £" + str(result) + " over " + str(int(t*12)) + " months\nYou gained £" + str(interestGained) + " in interest" self.resultText.configure(state='normal') self.resultText.insert(tk.INSERT, textForResultText) if self.regularAmountVar.get() == "yes": depositsText = "\nYou also deposited £" + str(earningsFromDeposits) + " \nYou earned £" + str(interestFromDeposits) + " in interest from \nyour deposits" self.resultText.insert(tk.INSERT, depositsText) self.resultText.configure(state='disabled') def reset(self): self.regularAmount.set(0) self.interestRate.set(0) self.timePeriod.set(0) self.initialAmount.set(0) self.timePeriodVar.set("years") self.compoundIntervalVar.set("yearly") self.regularAmountVar.set("no") self.resetButton.grid_forget() self.calculateButton.grid(row=11,sticky='NW',pady=6) self.resultText.configure(state='normal') self.resultText.delete(1.0, tk.END) self.resultText.configure(state='disabled') def main(): window = tk.Tk() w = 300 h = 500 screen_width = window.winfo_screenwidth() screen_height = window.winfo_screenheight() x = (screen_width/2) - (w/2) y = (screen_height/2) - (h/2) window.geometry('%dx%d+%d+%d' % (w, h, x, y)) generator = interestCalculator(window) window.mainloop() if __name__ == '__main__': main()
[ "nhu21@bath.ac.uk" ]
nhu21@bath.ac.uk
f2a83c7913432f41e2f93510974a869d19884e9c
0461fbeb0f2ef76f977e0ff6000d2eb591b1921c
/ZCart/blog/views.py
5686c797c5c691fafde190d66ae2cec8ea319b3a
[]
no_license
aaditya867/ZCart
b37d6b9b7667421a2d3688e6dafa500c06c2fc37
971691980ab9fcfd29a1c37bb47427f3cfb95fc6
refs/heads/master
2021-01-14T01:54:30.577185
2020-02-24T08:24:41
2020-02-24T08:24:41
242,562,828
0
0
null
null
null
null
UTF-8
Python
false
false
409
py
from django.shortcuts import render from django.http import HttpResponse from .models import Blogpost # Create your views here. def index(req): myposts = Blogpost.objects.all() print(myposts) return render(req,'blog/index.html',{'myposts':myposts}) def blogpost(req, id): post = Blogpost.objects.filter(post_id=id)[0] print(post) return render(req,'blog/blogpost.html',{'post':post})
[ "aadshar01@gmail.com" ]
aadshar01@gmail.com
793dfd696fe7a572fc9bc4e5c47092e593a51fae
980d9786062a70b08f474e1a7eabca4edd14c528
/scripts/plot_ber_bp_vs_ms.py
b222cd304708f2d5184c6d362f44a4bb54f38b21
[]
no_license
shakhmetov/labrador-ldpc-c
15b9a5a58191248aeac4f8f236a0ec3b462a32e4
e0196018bac90d8fa1d7f341feb194e2712e073d
refs/heads/master
2023-03-18T00:26:52.401416
2017-05-25T19:30:52
2017-05-25T19:30:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,013
py
import numpy as np import matplotlib.pyplot as plt from results.ldpc_1280_1024_minsum_corrected import ( ebn0_db, soft_ber, hard_ber_ber, hard_mp_ber, hard_bf_ber, uncoded_ber, soft_cer, hard_ber_cer, hard_mp_cer, hard_bf_cer, uncoded_cer, soft_ucer, hard_ber_ucer, hard_mp_ucer, hard_bf_ucer) from results.ber_256_128_minsum import ebn0_db, soft_ber as soft_ber_ms, soft_cer as soft_cer_ms from results.ber_256_128_bp import soft_ber as soft_ber_bp, soft_cer as soft_cer_bp plt.figure(figsize=(12, 8)) plt.plot(ebn0_db, np.array(soft_ber_ms), 'g-x', label="Min-Sum (BER)") plt.plot(ebn0_db, np.array(soft_ber_bp), 'b-x', label="Belief Propagation (BER)") plt.plot(ebn0_db, np.array(soft_cer_ms), 'g--x', label="Min-Sum (CER)") plt.plot(ebn0_db, np.array(soft_cer_bp), 'b--x', label="Belief Propagation (CER)") plt.legend(loc='lower left') plt.semilogy() plt.xlabel("Eb/N0 (dB)") plt.title("LDPC (256, 128) Benchmark") plt.grid() plt.ylim(1e-5, 1e0) plt.savefig("results/ber_bp_vs_ms.pdf")
[ "adam@adamgreig.com" ]
adam@adamgreig.com
25a5502d2669bb9cba32e5be6c9185a8bf5c9510
1b5f28f56c648960608da9a54b778b2e2805247b
/slack_django_webhook/slack_messages/models.py
e9276ce8160c6d401f514141dc114e2ca6e73829
[]
no_license
davidsonlima/slack-django-webhook
87ae404585ce489ece09f1d817c61358e5ed7548
f34d4fbbd8a3b403f244210e1ced8807e04f98c9
refs/heads/master
2021-05-06T11:24:32.801148
2017-12-15T18:17:31
2017-12-15T18:17:31
114,286,943
2
0
null
null
null
null
UTF-8
Python
false
false
1,444
py
from django.db import models from django.utils import timezone # from django_hstore import hstore class WebhookTransaction(models.Model): UNPROCESSED = 1 PROCESSED = 2 ERROR = 3 STATUSES = ( (UNPROCESSED, 'Unprocessed'), (PROCESSED, 'Processed'), (ERROR, 'Error'), ) date_event_generated = models.DateTimeField() date_received = models.DateTimeField(default=timezone.now) # body = hstore.SerializedDictionaryField() body = models.TextField() # request_meta = hstore.SerializedDictionaryField() request_meta = models.TextField() status = models.CharField(max_length=250, choices=STATUSES, default=UNPROCESSED) # objects = hstore.HStoreManager() def __unicode__(self): return u'{0}'.format(self.date_event_generated) TransactionalData = '' class Message(models.Model): date_processed = models.DateTimeField(default=timezone.now) webhook_transaction = models.OneToOneField(WebhookTransaction) team_id = models.CharField(max_length=250) team_domain = models.CharField(max_length=250) channel_id = models.CharField(max_length=250) channel_name = models.CharField(max_length=250) user_id = models.CharField(max_length=250) user_name = models.CharField(max_length=250) text = models.TextField() trigger_word = models.CharField(max_length=250) def __unicode__(self): return u'{}'.format(self.user_name)
[ "100*pmim" ]
100*pmim
c2150e17babe58221fccdb67af9bf2ed1bb87b6e
310314ae30de059c4dd532d763915af44c9a7d53
/tests/test_providers_logger_object.py
319b057d5c6b80d85ca26a8ed30ab978da5783dd
[ "Apache-2.0" ]
permissive
robertboston80/logme
8b29661cf153a0abc5641513bb213312f771d193
586b720fd5d01dc2deee91b685ee628679990080
refs/heads/master
2020-03-09T19:32:58.401638
2018-03-21T19:26:42
2018-03-21T19:26:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,768
py
import pytest from pathlib import Path import logging from logme.providers import LogmeLogger from logme.config import get_config_content from logme.exceptions import InvalidConfig, DuplicatedHandler, InvalidOption class TestLogmeLogger: @classmethod def setup(cls): cls.config = get_config_content(__file__) cls.logger = LogmeLogger('test_logger', cls.config) # --------------------------------------------------------------------------- # Test overall functionality # --------------------------------------------------------------------------- def test_logger(self): assert self.logger.level == 10 def test_logging(self, caplog): self.logger.info('my logging message') captured = caplog.record_tuples[0] assert captured[0] == 'test_logger' assert captured[1] == 20 assert captured[2] == 'my logging message' def test_non_existent_attr(self): with pytest.raises(AttributeError) as e_info: self.logger.foo() assert e_info.value.args[0] == "LogmeLogger object has no attribute 'foo'." def test_handlers(self): handlers = self.logger.handlers assert len(handlers) == 1 assert isinstance(handlers[0], logging.StreamHandler) def test_set_handlers_twice(self): self.logger._set_handlers() assert len(self.logger.handlers) == 1 assert isinstance(self.logger.handlers[0], logging.StreamHandler) # --------------------------------------------------------------------------- # Test individual methods # --------------------------------------------------------------------------- def test_get_handler_filehandler(self, file_config_content): logger = LogmeLogger('file_logger', file_config_content) logger.info('my log message for file handler') log_path = Path(file_config_content['FileHandler']['filename']) assert log_path.exists() with open(log_path) as file: assert file.readline() == 'file_logger::my log message for file handler\n' @pytest.mark.parametrize('exception, handler_name', [pytest.param(ValueError, 'FileHandler', id='exception raised when file handler filename is None'), pytest.param(InvalidConfig, 'SocketHandler', id='exception raised when handler_name passed ' 'is not configured in logme.ini file')]) def test_get_handler_raise(self, exception, handler_name): with pytest.raises(exception): self.logger._get_handler(handler_name) def test_set_handlers_handler_level_config(self, tmpdir): config = get_config_content(__file__, 'my_test_logger') logger = LogmeLogger('handler_level_conf', config) handler = logger.handlers[0] assert handler.level == 20 # INFO assert handler.formatter._fmt == '{asctime}::{message}' def test_handler_exist(self): stream_handler = logging.StreamHandler() stream_handler.setLevel(logging.DEBUG) formatter = logging.Formatter('{asctime} - {name} - {levelname} - {module}::{funcName}::{message}') stream_handler.setFormatter(formatter) assert self.logger._handler_exist(stream_handler) def test_add_handler(self, tmpdir): assert len(self.logger.handlers) == 1 assert self.logger.handlers[0].__class__ == logging.StreamHandler self.logger.add_handler('FileHandler', formatter='{name}->{message}', level='debug', filename=str(tmpdir.join('dummy.log'))) assert len(self.logger.handlers) == 2 assert set(map(lambda x: x.__class__, self.logger.handlers)) == {logging.StreamHandler, logging.FileHandler} def test_add_handlers_raise(self, tmpdir): self.logger.add_handler('FileHandler', formatter='{name}->{message}', level='debug', filename=str(tmpdir.join('dummy.log'))) with pytest.raises(DuplicatedHandler): self.logger.add_handler('FileHandler', formatter='{name}->{message}', level='debug', filename=str(tmpdir.join('dummy.log'))) def test_add_handler_allow_dup(self): logger = LogmeLogger('allow_duplicate', self.config) assert len(logger.handlers) == 1 assert logger.handlers[0].__class__ == logging.StreamHandler logger.add_handler('StreamHandler', formatter='{asctime} - {name} - {levelname} - {module}::{funcName}::{message}', level='debug', allow_duplicate=True) assert len(logger.handlers) == 2 assert logger._get_handler_attr(logger.handlers[0]) == logger._get_handler_attr(logger.handlers[1]) def test_get_handler_attr(self, socket_handler): attrs = self.logger._get_handler_attr(socket_handler) expected = { 'formatter': '{asctime} - {name}::{message}', 'level': 10, 'host': '127.0.0.7', 'port': '8080' } assert attrs == expected def test_reset_handlers(self): logger = LogmeLogger('reset_logger', self.config) handler_classes = [i.__class__ for i in logger.handlers] assert handler_classes[0] == logging.StreamHandler logger.reset_config(config_name='socket_config') assert logger.handlers[0].__class__ == logging.handlers.SocketHandler def test_reset_handler_rename(self): logger = LogmeLogger('rename_logger', self.config) assert logger.name == 'rename_logger' config = get_config_content(__file__, name='socket_config') logger.reset_config(config=config, name='logger_new_name') assert logger.name == 'logger_new_name' @pytest.mark.parametrize('args, message', [pytest.param({'config_name': 'socket_config', 'config': {'formatter': 'hello'}}, "Can only set keyword argument of either " "'config_name' or 'config', not both.", id='InvalidOption raised when both config_name and config are set'), pytest.param({}, "must specify one of 'config_name' or 'config'.", id="InvalidOption raised when neither config_name nor config are set")]) def test_reset_handlers_raise(self, args, message): with pytest.raises(InvalidOption) as e_info: self.logger.reset_config(**args) assert e_info.value.args[0] == message
[ "petitelumiere90@gmail.com" ]
petitelumiere90@gmail.com
b5e5920123fb9b09a51cb16ac17166d77ef26d45
34c65da6ed9750a9bb31efe3acfb34b686526276
/esxitools/backup.py
50cf9a008b7816b5d29187f1c09b3baf2623fb34
[ "MIT" ]
permissive
itamaro/esxi-tools
45bb5409251c56df9561aee8679ab6cfdbb043c7
5fb9ffe33d531a401d965c40df5845b06a9b030b
refs/heads/master
2021-01-02T23:06:53.907733
2013-12-14T21:26:32
2013-12-14T21:26:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
14,135
py
import os import datetime from glob import glob import re from tendo import singleton import paramiko from scp import SCPClient from ftplib import FTP from string import Template from tempfile import mkstemp import logging import io import utils log_stream = io.StringIO() logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) sh = logging.StreamHandler(log_stream) sh.setLevel(logging.DEBUG) sh.setFormatter(logging.Formatter(u'%(asctime)s\t%(levelname)s\t%(message)s')) logger.addHandler(sh) ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) logger.addHandler(ch) try: import settings except ImportError: logger.error(u'No settings.py file found!') import sys sys.exit(1) def is_time_in_window(t, ranges): for ts, te in ranges: if ts <= t <= te: return True return False def get_current_time(): import time now = time.localtime() return datetime.time(now.tm_hour, now.tm_min, now.tm_sec) class BackupProfile(object): _no_such_file_or_dir_re = re.compile(u'No such file or directory') _backup_archive_re = re.compile(u'(?P<vmname>.+)\-' '(?P<ts>\d{4}\-\d{2}\-\d{2}\_\d{2}\-\d{2}\-\d{2})\.tar\.gz') _t = None _chan = None @classmethod def _get_current_time(cls): return datetime.datetime.now() @classmethod def _apply_template(cls, tmpl_file_path, tmpl_params, out_file_path=None): """ Applies template-parameters to template-file. Creates an output file with applied template. If `out_file_path` not specified, a temp file will be used. """ # Read the content of the file as a template string with open(tmpl_file_path, 'r') as tmpl_file: tmpl_str = Template(tmpl_file.read()) # Apply the template and save to the output file out_string = tmpl_str.safe_substitute(tmpl_params) if not out_file_path: f, out_file_path = mkstemp(text=True) os.close(f) with io.open(out_file_path, 'w', newline='\n') as f: f.write(out_string) return out_file_path def __init__(self, profile_dict): self.__dict__.update(profile_dict) def __enter__(self): return self def __exit__(self, type, value, traceback): self._close_ssh_transport() def _get_ssh_transport(self): if self._t: return self._t self._t = paramiko.Transport((self.host_ip, self.ssh_port)) self._t.start_client() self._t.auth_password(self.ssh_user, self.ssh_password) return self._t def _close_ssh_transport(self): self._close_ssh_session() if self._t: self._t.close() self._t = None def _get_ssh_session(self): # if self._chan and not self._chan.closed: # print 'pre', self._chan # return self._chan self._chan = self._get_ssh_transport().open_session() self._chan.set_combine_stderr(True) return self._chan def _close_ssh_session(self): if self._chan: self._chan.close() self._chan = None def _run_ssh_command(self, cmd): # Open an SSH session and execute the command chan = self._get_ssh_session() chan.exec_command('%s ; echo exit_code=$?' % (cmd)) stdout = '' x = chan.recv(1024) while x: stdout += x x = chan.recv(1024) output = stdout.strip().split('\n') exit_code = re.match('exit_code\=(\-?\d+)', output[-1]).group(1) if not '0' == exit_code: logger.debug(u'SSH command "%s" failed with output:\n%s' % (cmd, '\n'.join(output))) raise RuntimeWarning(u'Remote command failed with code %s' % (exit_code)) return '\n'.join(output[:-1]) def _get_vm_config(self, vmname, config): vm_dict = self.backup_vms[vmname] if config in vm_dict: return vm_dict[config] return self.default_vm_config[config] def _list_backup_archives(self): glob_str = os.path.join(self.backups_archive_dir, u'*.tar.gz') return glob(glob_str) def _list_backup_archives_for_vm(self, vmname): glob_str = os.path.join(self.backups_archive_dir, u'%s-*.tar.gz' % (vmname)) return glob(glob_str) def get_latest_archives(self): """ Returns dictionary of existing archives in `backup_archive_dir`, with VM names as keys and the latest available backup timestamp as value. """ res = dict() for archive_path in self._list_backup_archives(): _, archive = os.path.split(archive_path) m = re.match(u'(?P<vmname>.+)\-' '(?P<ts>\d{4}\-\d{2}\-\d{2}\_\d{2}\-\d{2}\-\d{2})\.tar\.gz', archive) if m: vmname = m.groupdict()[u'vmname'] ts = datetime.datetime.strptime(m.groupdict()[u'ts'], '%Y-%m-%d_%H-%M-%S') if vmname in res: if ts > res[vmname]: res[vmname] = ts else: res[vmname] = ts return res def is_vm_backup_overdue(self, vmname, ts): "Returns True if `vmname` backup from `ts` is older than period" time_since_last_backup = self._get_current_time() - ts if not vmname in self.backup_vms: logger.warning(u'VM "%s" not in profile, but archive found' % (vmname)) return False period = self._get_vm_config(vmname, u'period') assert type(period) == datetime.timedelta return time_since_last_backup >= period def get_next_vm_to_backup(self): """ """ # First priority - VMs with no existing archives for vmname in self.backup_vms.keys(): if not self._list_backup_archives_for_vm(vmname): logger.debug(u'VM "%s" is ready next (no existing archives)' % vmname) return vmname # Second priority - the VM with the oldest archive that is overdue ret_vm = None ret_vm_last_backup = None for vmname, ts in self.get_latest_archives().iteritems(): if self.is_vm_backup_overdue(vmname, ts): logger.debug(u'VM "%s" backup is overdue' % (vmname)) if ret_vm_last_backup: if ts < ret_vm_last_backup: ret_vm = vmname ret_vm_last_backup = ts else: ret_vm = vmname ret_vm_last_backup = ts return ret_vm def _upload_file(self, local_source, remote_destination): scp = SCPClient(self._get_ssh_transport()) scp.put(local_source, remote_destination) def _set_remote_chmod(self, remote_file): return self._run_ssh_command(u'chmod +x %s' % (remote_file)) def _remove_remote_file(self, remote_file): self._run_ssh_command('rm %s' % (remote_file)) def _remove_local_file(self, file): os.remove(file) def _parse_ghettovcb_output(self, raw_output): ret_dict = {u'WARNINGS': list()} info_prefix = u'\d{4}\-\d{2}\-\d{2} \d{2}\:\d{2}\:\d{2} \-\- info\:' config_matcher = re.compile( u'%s CONFIG \- (?P<key>\w+) \= (?P<val>.+)' % (info_prefix)) warn_matcher = re.compile(u'%s WARN\: (?P<msg>.+)' % (info_prefix)) duration_matcher = re.compile( u'%s Backup Duration\: (?P<time>.+)' % (info_prefix)) final_status_matcher = re.compile( u'%s \#{6} Final status\: (?P<status>.+) \#{6}' % (info_prefix)) for raw_line in raw_output.split(u'\n'): config = config_matcher.match(raw_line) if config: ret_dict[config.groupdict()[u'key']] = \ config.groupdict()[u'val'] continue warning = warn_matcher.match(raw_line) if warning: ret_dict[u'WARNINGS'].append(warning.groupdict()[u'msg']) continue duration = duration_matcher.match(raw_line) if duration: ret_dict[u'BACKUP_DURATION'] = duration.groupdict()[u'time'] continue final_status = final_status_matcher.match(raw_line) if final_status: status = final_status.groupdict()[u'status'] ret_dict[u'FINAL_STATUS'] = u'All VMs backed up OK!' == status continue return ret_dict def _run_remote_backup(self, vmname): "Run ghettovcb script to backup the specified VM" # Generate ghettovcb script from template local_script = self._apply_template( self.ghettovcb_script_template, {u'RemoteBackupDir': self.remote_backup_dir} ) # Upload ghettovcb script to host and make it executable remote_script = '/'.join((self.remote_workdir, 'ghettovcb.sh')) self._upload_file(local_script, remote_script) self._set_remote_chmod(remote_script) # cleanup local temp self._remove_local_file(local_script) # Run ghettovcb script for the requested vm-name backup_cmd = '%s -m %s' % (remote_script, vmname) cmd_result = self._run_ssh_command(backup_cmd) self._remove_remote_file(remote_script) # Parse the output and return the result return self._parse_ghettovcb_output(cmd_result) def _archive_remote_backup(self, vmname, backup_dir): "Tar's and GZip's the backup dir, returning full path of the archive" remote_workdir = u'/'.join((self.remote_backup_dir, vmname)) remote_archive = u'%s.tar.gz' % (backup_dir) tar_cmd = u'cd "%s"; tar -cz -f "%s" "%s"' % \ (remote_workdir, remote_archive, backup_dir) tar_output = self._run_ssh_command(tar_cmd) if self._no_such_file_or_dir_re.search(tar_output): raise RuntimeError(u'Tar command failed:\n%s' % (tar_output)) return '/'.join((remote_workdir, remote_archive)) def _download_archive(self, remote_path): """ Downloads a remote file at `remote_path` via FTP to `self.backups_archive_dir` using same file name, returning the total time it took (in seconds). """ from time import time ts = time() _, remote_filename = os.path.split(remote_path) dest_path = os.path.join(self.backups_archive_dir, remote_filename) ftp = FTP(self.host_ip) ftp.login(self.ftp_user, self.ftp_password) with open(dest_path, 'wb') as dest_file: ftp.retrbinary(u'RETR %s' % (remote_path), dest_file.write) return time() - ts def backup_vm(self, vmname): ghettovcb_output = self._run_remote_backup(vmname) logger.info(u'ghettovcb output:\n%s' % ( u'\n'.join( [u'\t%s: %s' % (k,v) for k,v in ghettovcb_output.iteritems()]))) if not ghettovcb_output[u'FINAL_STATUS']: # Something failed return False backup_name = ghettovcb_output[u'VM_BACKUP_DIR_NAMING_CONVENTION'] backup_dir = u'%s-%s' % (vmname, backup_name) remote_archive = self._archive_remote_backup(vmname, backup_dir) download_time = self._download_archive(remote_archive) logger.info(u'Backup archive "%s" downloaded to "%s" in %f seconds.' % (remote_archive, self.backups_archive_dir, download_time)) self._remove_remote_file(remote_archive) logger.info(u'Cleaned up archive from remote host') def trim_backup_archives(self): for vmname in self.backup_vms.keys(): vm_archives = self._list_backup_archives_for_vm(vmname) rot_count = self._get_vm_config(vmname, u'rotation_count') for archive_to_delete in sorted(vm_archives)[:-rot_count]: logger.info(u'Deleting archive "%s"' % (archive_to_delete)) self._remove_local_file(archive_to_delete) def backup(**kwargs): # Avoid multiple instances of backup program me = singleton.SingleInstance(flavor_id=u'esxi-backup') # Obtain profile configuration if not u'profile_name' in kwargs: raise RuntimeError(u'Missing profile_name argument') profile_name = kwargs[u'profile_name'] if not profile_name in settings.ESXI_BACKUP_PROFILES: raise RuntimeError(u'No such profile "%s"' % profile_name) profile = settings.ESXI_BACKUP_PROFILES[profile_name] logger.info(u'Running backup profile "%s"' % (profile_name)) # Check if profile is currently active t = get_current_time() if not is_time_in_window(t, profile['backup_times']): logger.debug(u'Out of time range. Skipping backup run for profile.') return True with BackupProfile(profile) as bp: next_vm = bp.get_next_vm_to_backup() if next_vm: logger.info(u'Running backup for VM "%s"' % (next_vm)) bp.backup_vm(next_vm) bp.trim_backup_archives() if bp.email_report: utils.send_email( bp.gmail_user, bp.gmail_pwd, bp.from_field, bp.recipients, u'BACKUP OK %s' % (next_vm), log_stream.getvalue()) else: logger.info(u'No next VM to backup - Nothing to do.') return True
[ "itamarost@gmail.com" ]
itamarost@gmail.com