blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
69
license_type
stringclasses
2 values
repo_name
stringlengths
5
118
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringlengths
4
63
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
2.91k
686M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
23 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
213 values
src_encoding
stringclasses
30 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
2
10.3M
extension
stringclasses
246 values
content
stringlengths
2
10.3M
authors
listlengths
1
1
author_id
stringlengths
0
212
ca51a71cab24e6fbbf6e65d2e6207782ed25a1b3
9accb7992c7a4b9c7130a039a469f99b3be99182
/djangoprojects/moviemodelformproject/moviemodelformproject/settings.py
a81e8047493fabb5a09d112971b4df49b2533a03
[]
no_license
djangoprojectsbyrahul/crud-fbv-operations
a76a43aa3842e2a50fa288de11b8a691c6ad741b
f6954a7b6c50e2d582b23e56ab3f10138c2e4d45
refs/heads/master
2023-02-05T21:11:12.251578
2020-12-20T13:21:11
2020-12-20T13:21:11
304,875,620
0
0
null
null
null
null
UTF-8
Python
false
false
3,304
py
""" Django settings for moviemodelformproject project. Generated by 'django-admin startproject' using Django 1.11.17. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) TEMPLATE_DIR = os.path.join(BASE_DIR,'templates') STATIC_DIR = os.path.join(BASE_DIR,'static') # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'gh#ufe_4y!b4zhe06wufz3$83+j8!1$bx2l7xq#ir=g1+pzfb%' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'testapp', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'moviemodelformproject.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [TEMPLATE_DIR,], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'moviemodelformproject.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [ STATIC_DIR, ]
[ "pythondjango9011@gmail.com" ]
pythondjango9011@gmail.com
5d89e0a4e0c50d9cc7ef5cf5ea267be2dd1ec2f8
380e3bfa645181f3aef4d81554d6b19391c2cbca
/pages/migrations/0003_auto__add_index_page_created__add_index_page_path__add_index_page_is_p.py
68dd591d6da454581f5b67d06d29c2aca08fd1b5
[ "Apache-2.0" ]
permissive
raonyguimaraes/pythondotorg
819a5bb03069297ae6da1f149fb53150dbc18f32
054d8999ed331f71690a8261d4a1025788f89225
refs/heads/master
2021-01-24T21:37:12.655528
2014-02-20T01:38:56
2014-02-20T01:38:56
17,006,161
1
0
null
null
null
null
UTF-8
Python
false
false
6,059
py
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding index on 'Page', fields ['created'] db.create_index('pages_page', ['created']) # Adding index on 'Page', fields ['path'] db.create_index('pages_page', ['path']) # Adding index on 'Page', fields ['is_published'] db.create_index('pages_page', ['is_published']) def backwards(self, orm): # Removing index on 'Page', fields ['is_published'] db.delete_index('pages_page', ['is_published']) # Removing index on 'Page', fields ['path'] db.delete_index('pages_page', ['path']) # Removing index on 'Page', fields ['created'] db.delete_index('pages_page', ['created']) models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'to': "orm['auth.Permission']", 'symmetrical': 'False'}) }, 'auth.permission': { 'Meta': {'object_name': 'Permission', 'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)"}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'contenttypes.contenttype': { 'Meta': {'db_table': "'django_content_type'", 'object_name': 'ContentType', 'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'pages.page': { 'Meta': {'object_name': 'Page', 'ordering': "['title', 'path']"}, '_content_rendered': ('django.db.models.fields.TextField', [], {}), 'content': ('markupfield.fields.MarkupField', [], {'rendered_field': 'True'}), 'content_markup_type': ('django.db.models.fields.CharField', [], {'max_length': '30', 'default': "'restructuredtext'"}), 'created': ('django.db.models.fields.DateTimeField', [], {'blank': 'True', 'db_index': 'True', 'default': 'datetime.datetime.now'}), 'creator': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['users.User']", 'null': 'True', 'related_name': "'pages_page_creator'", 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_published': ('django.db.models.fields.BooleanField', [], {'db_index': 'True', 'default': 'True'}), 'last_modified_by': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['users.User']", 'null': 'True', 'related_name': "'pages_page_modified'", 'blank': 'True'}), 'path': ('django.db.models.fields.CharField', [], {'max_length': '500', 'db_index': 'True', 'unique': 'True'}), 'template_name': ('django.db.models.fields.CharField', [], {'blank': 'True', 'max_length': '100'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '500'}), 'updated': ('django.db.models.fields.DateTimeField', [], {'blank': 'True'}) }, 'users.user': { 'Meta': {'object_name': 'User'}, '_bio_rendered': ('django.db.models.fields.TextField', [], {}), 'bio': ('markupfield.fields.MarkupField', [], {'blank': 'True', 'rendered_field': 'True'}), 'bio_markup_type': ('django.db.models.fields.CharField', [], {'blank': 'True', 'max_length': '30', 'default': "'markdown'"}), 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'blank': 'True', 'max_length': '75'}), 'email_privacy': ('django.db.models.fields.IntegerField', [], {'default': '2'}), 'first_name': ('django.db.models.fields.CharField', [], {'blank': 'True', 'max_length': '30'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'to': "orm['auth.Group']", 'symmetrical': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'blank': 'True', 'max_length': '30'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'search_visibility': ('django.db.models.fields.IntegerField', [], {'default': '1'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'to': "orm['auth.Permission']", 'symmetrical': 'False'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) } } complete_apps = ['pages']
[ "frank@revsys.com" ]
frank@revsys.com
7e30b98942c140658cd5e87434fec47b02c5299d
4815908f705d9064ea78adddf963d8f5873a3f7e
/toscana_admin/urls.py
d6a786705dc334648c829ba8e225cbd886151fac
[]
no_license
MartinSyno/toscana
06a64874813ba5695da18a2a5f53ac019b569550
768ffb4fb7561bd6334cc3d265a8316b4839b572
refs/heads/main
2023-05-03T19:28:17.525950
2021-05-24T11:58:08
2021-05-24T11:58:08
364,274,729
0
0
null
null
null
null
UTF-8
Python
false
false
233
py
from django.urls import path from .views import * app_name = "toscana_admin" urlpatterns = [ path("messages/", messages_list, name="messages_list"), path("messages/update/<int:pk>", message_update, name="message_update"), ]
[ "mrmartin200113@gmail.com" ]
mrmartin200113@gmail.com
a6515b21c59c208046addca4d4ac650c15b80e8e
4d673f5762be3ceff39be9944872a943a3f75422
/Companies/Facebook/two_sum.py
9a453b00fe713307f89c6b7e09ddbae913858af3
[]
no_license
leeo1116/Algorithms
f41d525a413249fc81b2b579cbad0f783138fd73
5959400492dc1403d06b884ea81a269671d420de
refs/heads/master
2021-01-22T06:22:52.402124
2018-08-16T02:52:50
2018-08-16T02:52:50
31,132,742
0
0
null
null
null
null
UTF-8
Python
false
false
230
py
def two_sum(nums, target): num_index_dict = {} for i, n in enumerate(nums): if num_index_dict.get(target - n, -1) != -1: return num_index_dict[target - n], i num_index_dict[n] = i return ()
[ "leeo1116@gmail.com" ]
leeo1116@gmail.com
f0995bf4aca5cc69f3d2f7719c67d4c7ab4a4fdb
26f62fe20d2e06239c9182ed9c3b74ba10c77a26
/test.py
9ababf54166ce7519075dad9593e7f025ae3dccf
[]
no_license
ja-noble/Maze-PyGame
4b43aa842fdd30ce1ada7ee7fb72fae53d4391c5
8bc162696962e6528ba1dcea72bd747f5f8b3818
refs/heads/master
2022-04-17T11:17:41.211052
2020-03-03T02:55:48
2020-03-03T02:55:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
14,004
py
import pygame """ Submit a .py file with a project proposal in the comments including: What's your project? i want to create a puzzle game that has the same dynamics and surface interaction as this game: https://www.pygame.org/project/1313, and I will take the block pushing elements from this game: https://www.pygame.org/project/1177/2100 Tile based game with walls that can be pushed, and walls that are solid and static. What is your first major milestone? Learning surface detection and rectangles with pygame What do you not know that you will need to learn? uhhh learning surface detection and pushing mechanics with surfaces In what ways is your project too ambitious? I don't think it's too ambitious, after I make the first level it should be good to go for more. The photoshopping tiles will take up a lot of time as well though. In what ways is it possibly not ambitious enough so far, using pygame has been easier than i thought, but to be fair I only just set up the foundation of even getting the game to work so far """ # import pygame, sys # pygame.init() # screen = pygame.display.set_mode([800,600]) # white = [255, 255, 255] # red = [255, 0, 0] # screen.fill(white) # pygame.display.set_caption("My program") # pygame.display.flip() # background = input("What color would you like?: ") # if background == "red": # screen.fill(red) # running = True # while True: # for i in pygame.event.get(): # if i.type == pygame.QUIT: # running = False # pygame.quit() import os import random import pygame # # Class for the orange dude # class Player(object): # def __init__(self): # self.rect = pygame.Rect(32, 32, 16, 16) # def move(self, dx, dy): # # Move each axis separately. Note that this checks for collisions both times. # if dx != 0: # self.move_single_axis(dx, 0) # if dy != 0: # self.move_single_axis(0, dy) # def move_single_axis(self, dx, dy): # # Move the rect # self.rect.x += dx # self.rect.y += dy # # If you collide with a wall, move out based on velocity # for wall in walls: # if self.rect.colliderect(wall.rect): # if dx > 0: # Moving right; Hit the left side of the wall # self.rect.right = wall.rect.left # if dx < 0: # Moving left; Hit the right side of the wall # self.rect.left = wall.rect.right # if dy > 0: # Moving down; Hit the top side of the wall # self.rect.bottom = wall.rect.top # if dy < 0: # Moving up; Hit the bottom side of the wall # self.rect.top = wall.rect.bottom # # Nice class to hold a wall rect # class Wall(object): # def __init__(self, pos): # walls.append(self) # self.rect = pygame.Rect(pos[0], pos[1], 16, 16) # # Initialise pygame # os.environ["SDL_VIDEO_CENTERED"] = "1" # pygame.init() # # Set up the display # pygame.display.set_caption("Get to the red square!") # screen = pygame.display.set_mode((320, 240)) # clock = pygame.time.Clock() # walls = [] # List to hold the walls # player = Player() # Create the player # # Holds the level layout in a list of strings. # level = [ # "WWWWWWWWWWWWWWWWWWWW", # "W W", # "W WWWWWW W", # "W WWWW W W", # "W W WWWW W", # "W WWW WWWW W", # "W W W W W", # "W W W WWW WW", # "W WWW WWW W W W", # "W W W W W W", # "WWW W WWWWW W W", # "W W WW W", # "W W WWWW WWW W", # "W W E W W", # "WWWWWWWWWWWWWWWWWWWW", # ] # # Parse the level string above. W = wall, E = exit # x = y = 0 # for row in level: # for col in row: # if col == "W": # Wall((x, y)) # if col == "E": # end_rect = pygame.Rect(x, y, 16, 16) # x += 16 # y += 16 # x = 0 # running = True # while running: # clock.tick(60) # for e in pygame.event.get(): # if e.type == pygame.QUIT: # running = False # if e.type == pygame.KEYDOWN and e.key == pygame.K_ESCAPE: # running = False # # Move the player if an arrow key is pressed # key = pygame.key.get_pressed() # if key[pygame.K_LEFT]: # player.move(-2, 0) # if key[pygame.K_RIGHT]: # player.move(2, 0) # if key[pygame.K_UP]: # player.move(0, -2) # if key[pygame.K_DOWN]: # player.move(0, 2) # # Just added this to make it slightly fun ;) # # if player.rect.colliderect(end_rect): # # raise SystemExit, "You win!" # # Draw the scene # screen.fill((0, 0, 0)) # for wall in walls: # pygame.draw.rect(screen, (255, 255, 255), wall.rect) # pygame.draw.rect(screen, (255, 0, 0), end_rect) # pygame.draw.rect(screen, (255, 200, 0), player.rect) # pygame.display.flip() """ Sample Python/Pygame Programs Simpson College Computer Science http://programarcadegames.com/ http://simpson.edu/computer-science/ From: http://programarcadegames.com/python_examples/f.php?file=maze_runner.py Explanation video: http://youtu.be/5-SbFanyUkQ Part of a series: http://programarcadegames.com/python_examples/f.php?file=move_with_walls_example.py http://programarcadegames.com/python_examples/f.php?file=maze_runner.py http://programarcadegames.com/python_examples/f.php?file=platform_jumper.py http://programarcadegames.com/python_examples/f.php?file=platform_scroller.py http://programarcadegames.com/python_examples/f.php?file=platform_moving.py http://programarcadegames.com/python_examples/sprite_sheets/ """ #this was all for testing the code i did take from, see how it works import pygame BLACK = (0, 0, 0) WHITE = (255, 255, 255) BLUE = (0, 0, 255) GREEN = (0, 255, 0) RED = (255, 0, 0) PURPLE = (255, 0, 255) class Wall(pygame.sprite.Sprite): """This class represents the bar at the bottom that the player controls """ def __init__(self, x, y, width, height, color): """ Constructor function """ # Call the parent's constructor super().__init__() # Make a BLUE wall, of the size specified in the parameters self.image = pygame.Surface([width, height]) self.image.fill(color) # Make our top-left corner the passed-in location. self.rect = self.image.get_rect() self.rect.y = y self.rect.x = x class Player(pygame.sprite.Sprite): """ This class represents the bar at the bottom that the player controls """ # Set speed vector change_x = 0 change_y = 0 def __init__(self, x, y): """ Constructor function """ # Call the parent's constructor super().__init__() # Set height, width self.image = pygame.Surface([15, 15]) self.image.fill(WHITE) # Make our top-left corner the passed-in location. self.rect = self.image.get_rect() self.rect.y = y self.rect.x = x def changespeed(self, x, y): """ Change the speed of the player. Called with a keypress. """ self.change_x += x self.change_y += y def move(self, walls): """ Find a new position for the player """ # Move left/right self.rect.x += self.change_x # Did this update cause us to hit a wall? block_hit_list = pygame.sprite.spritecollide(self, walls, False) for block in block_hit_list: # If we are moving right, set our right side to the left side of # the item we hit if self.change_x > 0: self.rect.right = block.rect.left else: # Otherwise if we are moving left, do the opposite. self.rect.left = block.rect.right # Move up/down self.rect.y += self.change_y # Check and see if we hit anything block_hit_list = pygame.sprite.spritecollide(self, walls, False) for block in block_hit_list: # Reset our position based on the top/bottom of the object. if self.change_y > 0: self.rect.bottom = block.rect.top else: self.rect.top = block.rect.bottom class Room(object): """ Base class for all rooms. """ # Each room has a list of walls, and of enemy sprites. wall_list = None enemy_sprites = None def __init__(self): """ Constructor, create our lists. """ self.wall_list = pygame.sprite.Group() self.enemy_sprites = pygame.sprite.Group() class Room1(Room): """This creates all the walls in room 1""" def __init__(self): super().__init__() # Make the walls. (x_pos, y_pos, width, height) # This is a list of walls. Each is in the form [x, y, width, height] walls = [[0, 0, 20, 250, WHITE], [0, 350, 20, 250, WHITE], [780, 0, 20, 250, WHITE], [780, 350, 20, 250, WHITE], [20, 0, 760, 20, WHITE], [20, 580, 760, 20, WHITE], [390, 50, 20, 500, BLUE] ] # Loop through the list. Create the wall, add it to the list for item in walls: wall = Wall(item[0], item[1], item[2], item[3], item[4]) self.wall_list.add(wall) class Room2(Room): """This creates all the walls in room 2""" def __init__(self): super().__init__() walls = [[0, 0, 20, 250, RED], [0, 350, 20, 250, RED], [780, 0, 20, 250, RED], [780, 350, 20, 250, RED], [20, 0, 760, 20, RED], [20, 580, 760, 20, RED], [190, 50, 20, 500, GREEN], [590, 50, 20, 500, GREEN] ] for item in walls: wall = Wall(item[0], item[1], item[2], item[3], item[4]) self.wall_list.add(wall) class Room3(Room): """This creates all the walls in room 3""" def __init__(self): super().__init__() walls = [[0, 0, 20, 250, PURPLE], [0, 350, 20, 250, PURPLE], [780, 0, 20, 250, PURPLE], [780, 350, 20, 250, PURPLE], [20, 0, 760, 20, PURPLE], [20, 580, 760, 20, PURPLE] ] for item in walls: wall = Wall(item[0], item[1], item[2], item[3], item[4]) self.wall_list.add(wall) for x in range(100, 800, 100): for y in range(50, 451, 300): wall = Wall(x, y, 20, 200, RED) self.wall_list.add(wall) for x in range(150, 700, 100): wall = Wall(x, 200, 20, 200, WHITE) self.wall_list.add(wall) def main(): """ Main Program """ # Call this function so the Pygame library can initialize itself pygame.init() # Create an 800x600 sized screen screen = pygame.display.set_mode([800, 600]) # Set the title of the window pygame.display.set_caption('Maze Runner') # Create the player paddle object player = Player(50, 50) movingsprites = pygame.sprite.Group() movingsprites.add(player) rooms = [] room = Room1() rooms.append(room) room = Room2() rooms.append(room) room = Room3() rooms.append(room) current_room_no = 0 current_room = rooms[current_room_no] clock = pygame.time.Clock() done = False while not done: # --- Event Processing --- for event in pygame.event.get(): if event.type == pygame.QUIT: done = True if event.type == pygame.KEYDOWN: if event.key == pygame.K_LEFT: player.changespeed(-5, 0) if event.key == pygame.K_RIGHT: player.changespeed(5, 0) if event.key == pygame.K_UP: player.changespeed(0, -5) if event.key == pygame.K_DOWN: player.changespeed(0, 5) if event.type == pygame.KEYUP: if event.key == pygame.K_LEFT: player.changespeed(5, 0) if event.key == pygame.K_RIGHT: player.changespeed(-5, 0) if event.key == pygame.K_UP: player.changespeed(0, 5) if event.key == pygame.K_DOWN: player.changespeed(0, -5) # --- Game Logic --- player.move(current_room.wall_list) if player.rect.x < -15: if current_room_no == 0: current_room_no = 2 current_room = rooms[current_room_no] player.rect.x = 790 elif current_room_no == 2: current_room_no = 1 current_room = rooms[current_room_no] player.rect.x = 790 else: current_room_no = 0 current_room = rooms[current_room_no] player.rect.x = 790 if player.rect.x > 801: if current_room_no == 0: current_room_no = 1 current_room = rooms[current_room_no] player.rect.x = 0 elif current_room_no == 1: current_room_no = 2 current_room = rooms[current_room_no] player.rect.x = 0 else: current_room_no = 0 current_room = rooms[current_room_no] player.rect.x = 0 # --- Drawing --- screen.fill(BLACK) movingsprites.draw(screen) current_room.wall_list.draw(screen) pygame.display.flip() clock.tick(60) pygame.quit() if __name__ == "__main__": main()
[ "38360284+ja-noble@users.noreply.github.com" ]
38360284+ja-noble@users.noreply.github.com
1bc1449354d89099bf74ac4ff0f6428898f79dad
32367a7abdcc5d7a14c366b839b3eaa2fd62df4f
/withotdevide3and5.py
f016449ce9c568fe54837cf2001b89b37845ee29
[]
no_license
BharatKanzariya/python_basic
1735874b6513a44f6725648fe1ace95b8513ccf0
0243a968bd2ddf491d34a82f3404ef8ed538b7d1
refs/heads/main
2023-06-26T02:55:12.398929
2021-07-14T08:57:06
2021-07-14T08:57:06
385,846,534
1
0
null
null
null
null
UTF-8
Python
false
false
262
py
""" short program for i in range(1,101): if i % 3 == 0: continue elif i % 5 == 0: continue print(i) """ i=1 while i <= 100: if i % 3 == 0 or i % 5 == 0: i = i+1 else: print(i) i = i+1
[ "noreply@github.com" ]
BharatKanzariya.noreply@github.com
e1fea1c724e1a3f00970b8e384c1139fa100fb6d
ff136c5c5ed845d11b965d4e1d0fd6855ba09ecc
/app.py
4100b9b093eaf0e3b71c6fb82461db2ff49e42c7
[]
no_license
emilbello/sqlalchemy-challenge
cd047944684834a8043693aef14b1c2df7c07eef
a1ffb5274fc22ae7278b71fe12fa376607c1ce66
refs/heads/master
2022-12-06T11:42:38.359029
2020-08-24T17:16:08
2020-08-24T17:16:08
288,069,048
0
0
null
null
null
null
UTF-8
Python
false
false
3,799
py
# Import dependencies import numpy as np import datetime as dt from flask import Flask, jsonify # Python SQL toolkit and Object Relational Mapper import sqlalchemy from sqlalchemy.ext.automap import automap_base from sqlalchemy.orm import Session from sqlalchemy import create_engine, func # creating an engine using the hawaii.sqlite database file engine = create_engine("sqlite:///Resources/hawaii.sqlite") ## declaring a Base using 'automap_base()' Base = automap_base() # Using the Base class to reflect the dabase tables Base.prepare(engine, reflect=True) # Saving the references to each table by assigning the classes (measurement and station), to variables Measurement = Base.classes.measurement Station = Base.classes.station # Creating the app app = Flask(__name__) # Flask routes @app.route("/") def home_page(): return( "Welcome to the Climate App API" "Available Routes<br/>" "/api/v1.0/precipitation<br/>" "/api/v1.0/stations<br/>" "/api/v1.0/tobs<br/>" "/api/v1.0/start<br/>" "/api/v1.0/start/end" ) @app.route("/api/v1.0/precipitation") def precipitation(): session = Session(engine) query_date = dt.date(2017, 8, 23) - dt.timedelta(days=365) results = session.query(Measurement.date, Measurement.prcp).\ filter(Measurement.date >= query_date).all() session.close() prep_dict = {k:v for k, v in results} return jsonify(prep_dict) @app.route("/api/v1.0/stations") def stations(): session = Session(engine) stations = session.query(Station.station).all() station_list = np.ravel(stations).tolist() session.close() return jsonify(station_list) @app.route("/api/v1.0/tobs") def tobs(): session = Session(engine) query_date = dt.date(2017, 8, 23) - dt.timedelta(days=365) active_stations = session.query(Measurement.station, func.count(Measurement.station)).\ group_by(Measurement.station).order_by(func.count(Measurement.station).desc()).all() station_tobs_12m = session.query(Measurement.tobs).\ filter(Measurement.station == active_stations[0][0]).\ filter(Measurement.date >= query_date).all() session.close() tobs_list = [tobs[0] for tobs in station_tobs_12m] return jsonify(tobs_list) @app.route("/api/v1.0/<start>") def start_temp(start): session = Session(engine) calc_results = session.query(func.min(Measurement.tobs),\ func.avg(Measurement.tobs),\ func.max(Measurement.tobs)).\ filter(Measurement.date >= start).all() session.close() return_val = list(np.ravel(calc_results)) results_dict = {"Start Date": start, "TMIN": return_val[0], "TAVG": return_val[1], "TMAX": return_val[2]} return jsonify(results_dict) @app.route("/api/v1.0/<start>/<end>") def start_end_temp(start, end): session = Session(engine) calc_results = session.query(func.min(Measurement.tobs),\ func.avg(Measurement.tobs),\ func.max(Measurement.tobs)).\ filter(Measurement.date >= start).\ filter(Measurement.date <= end).all() session.close() return_val = list(np.ravel(calc_results)) results_dict = {"Start Date": start, "End Date": end, "TMIN": return_val[0], "TAVG": return_val[1], "TMAX": return_val[2]} return jsonify(results_dict) if __name__ == "__main__": app.run(debug=True)
[ "emiliobello@Emilios-MBP.zyxel.com" ]
emiliobello@Emilios-MBP.zyxel.com
d3e347fa12b4ed10b8370a118bbf44d9b6cbdccd
0195658958b4949cb63a044297ca1599cb9e350c
/Outpatient/models.py
cf2b746a455ea9da8fa9440c3652fa7538283337
[]
no_license
ShiChenDMW/HospitalSystem
bc0fd465f4fd1c1b71ea996abd46b2db95656ede
d659d60ac5e1af9dac241b75bbf9948c02195a06
refs/heads/master
2020-09-24T17:05:16.126027
2019-12-03T12:49:43
2019-12-03T12:49:43
225,804,213
1
0
null
2019-12-04T07:19:11
2019-12-04T07:19:11
null
UTF-8
Python
false
false
4,555
py
from django.db import models from django.contrib.auth.models import User, Group class MedicalRecord(models.Model): # 病人 user = models.ForeignKey(User, on_delete=models.DO_NOTHING, related_name='medical_records', verbose_name='病人id') department = models.ForeignKey( Group, on_delete=models.DO_NOTHING, related_name='medical_records', verbose_name='就诊科室') onset_date = models.DateField(verbose_name='发病日期') # 医生对病人病情诊断结果(是什么病,此项为比较简短的说明) diagnosis = models.CharField(max_length=255, verbose_name='诊断') # 医生对病情详细分析 detail = models.TextField(null=True, blank=True, verbose_name='病情详情') # 病人自己对病情描述 patient_description = models.TextField( null=True, blank=True, verbose_name='病人主诉') onset_history = models.TextField(null=True, blank=True, verbose_name='发病史') time = models.DateTimeField(verbose_name='就诊时间') medicine_history = models.CharField( max_length=256, null=True, blank=True, verbose_name='药物史') # 指示此病人诊病过程是否结束,不可编辑表示此病人已诊断结束 can_modify = models.BooleanField(verbose_name='是否可编辑') # 一般为医生 creator = models.ForeignKey(User, on_delete=models.DO_NOTHING, related_name='created_medical_records', verbose_name='创建者id') create_time = models.DateTimeField(auto_now_add=True, verbose_name='创建时间') # 一般也为医生 modifier = models.ForeignKey(User, on_delete=models.DO_NOTHING, null=True, blank=True, related_name='modified_medical_records', verbose_name='修改者id') modify_time = models.DateTimeField( auto_now_add=True, null=True, blank=True, verbose_name='修改时间') class Meta: verbose_name = '病历' verbose_name_plural = '病历' db_table = 'medical_record' class Prescription(models.Model): patient = models.ForeignKey(User, on_delete=models.DO_NOTHING, related_name='get_prescriptions', verbose_name='病人id') IS_PAID = ( (0, '未缴费'), (1, '已缴费') ) is_paid = models.BooleanField( choices=IS_PAID, verbose_name='是否已经缴费', default=0) creator = models.ForeignKey(User, on_delete=models.DO_NOTHING, related_name='created_prescriptions', verbose_name='医生id') create_time = models.DateTimeField(auto_now_add=True, verbose_name='创建时间') class Meta: verbose_name = '处方' verbose_name_plural = '处方' db_table = 'prescription' class PrescriptionItem(models.Model): ''' 用来记录一条处方内每个条目的具体信息 ''' prescription = models.ForeignKey( Prescription, on_delete=models.DO_NOTHING, related_name='items', verbose_name='处方id') medicine = models.ForeignKey('Medicine.Medicine', on_delete=models.DO_NOTHING, related_name='prescription_items', verbose_name='药物id') # 如外用、温水送服等 method = models.CharField(max_length=32, verbose_name='用法') # 如 3次/天等 ratio = models.CharField(max_length=64, verbose_name='服用频率') # 服用时长,这个药要用多少天,为空表示此药医生可能有其他安排,应在注意事项内说明 days = models.IntegerField(null=True, blank=True, verbose_name='服用时长') # 其他注意事项 commet = models.CharField(max_length=64, verbose_name='其他') # 药物总数量 count = models.IntegerField(verbose_name='药物总数量') # 数量单位 count_unit = models.CharField(max_length=32, verbose_name='数量单位') # 每次用量,为防止如 1/3 之类的数量,使用分数来存储 dosage = models.CharField(max_length=32, verbose_name='用量') # 用量单位 dosage_unit = models.CharField(max_length=32, verbose_name='用量单位') # 皮试结果,为空表示没有进行皮试 skin_test = models.CharField( max_length=32, null=True, blank=True, verbose_name='皮试结果') class Meta: verbose_name = '处方条目' verbose_name_plural = '处方条目' db_table = 'prescription_item'
[ "xlyanscor@outlook.com" ]
xlyanscor@outlook.com
4f3bb4ee122b7383120a5a53255d846ed2604481
eaaf492c68d89e7414f19128371218c10e11a54e
/1/7.py
2c588e68924fc35791102605eba07e45f9a68824
[]
no_license
alsofro/GB_algorithms
9676dfc4ca866ab56acb4c37d393f79d932d8690
55c190574045589a591c506892e1dccf73ee15d8
refs/heads/master
2023-01-11T21:56:30.213001
2019-05-28T05:15:51
2019-05-28T05:15:51
null
0
0
null
null
null
null
UTF-8
Python
false
false
537
py
a = int(input('введите длину 1 стороны: ')) b = int(input('введите длину 2 стороны: ')) c = int(input('введите длину 3 стороны: ')) if a == 0 or b == 0 or c == 0: print('треугольник не существует') elif a == b == c: print('треугольник равносторонний') elif a != b and a != c and b != c: print('треугольник разносторонний') else: print('треугольник равнобедренный')
[ "ynxela@gmail.com" ]
ynxela@gmail.com
1673f4fe23c187dc2dbbcf3e423309850a4cfe57
ce4489aac20f835364c8c7519cdfbdfb4fff48c1
/solver/SymmNetsV2Partial_solver.py
52bcd51d1e1877fb942c74e97475461a783b08ef
[ "MIT" ]
permissive
chenchiWHU/MultiClassDA
5dfbc043cbfc7921b0fb5744b1fef77ddc8bb99d
a7e6b6b9874957b835f9a71d2657f7727f5fa6ae
refs/heads/master
2022-04-13T14:39:39.799416
2020-04-05T08:26:04
2020-04-05T08:26:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
14,679
py
import torch import torch.nn as nn import os import math import time from utils.utils import to_cuda, accuracy_for_each_class, accuracy, AverageMeter, process_one_values from config.config import cfg import torch.nn.functional as F from models.loss_utils import TargetDiscrimLoss, ConcatenatedCELoss, CrossEntropyClassWeighted from .base_solver import BaseSolver import ipdb class SymmNetsV2PartialSolver(BaseSolver): def __init__(self, net, dataloaders, **kwargs): super(SymmNetsV2PartialSolver, self).__init__(net, dataloaders, **kwargs) self.num_classes = cfg.DATASET.NUM_CLASSES self.TargetDiscrimLoss = TargetDiscrimLoss(num_classes=self.num_classes).cuda() self.ConcatenatedCELoss = ConcatenatedCELoss(num_classes=self.num_classes).cuda() self.feature_extractor = self.net['feature_extractor'] self.classifier = self.net['classifier'] self.lam = 0 class_weight_initial = torch.ones(self.num_classes) ############################ class-level weight to filter out the outlier classes. self.class_weight_initial = class_weight_initial.cuda() class_weight = torch.ones(self.num_classes) ############################ class-level weight to filter out the outlier classes. self.class_weight = class_weight.cuda() self.softweight = True self.CELossWeight = CrossEntropyClassWeighted() if cfg.RESUME != '': resume_dict = torch.load(cfg.RESUME) self.net['feature_extractor'].load_state_dict(resume_dict['feature_extractor_state_dict']) self.net['classifier'].load_state_dict(resume_dict['classifier_state_dict']) self.best_prec1 = resume_dict['best_prec1'] self.epoch = resume_dict['epoch'] def solve(self): stop = False while not stop: stop = self.complete_training() self.update_network() prediction_weight, acc = self.test() prediction_weight = prediction_weight.cuda() if self.softweight: self.class_weight = prediction_weight * self.lam + self.class_weight_initial * (1 - self.lam) else: self.class_weight = prediction_weight print('the class weight adopted in partial DA') print(self.class_weight) if acc > self.best_prec1: self.best_prec1 = acc self.save_ckpt() self.epoch += 1 def update_network(self, **kwargs): stop = False self.train_data['source']['iterator'] = iter(self.train_data['source']['loader']) self.train_data['target']['iterator'] = iter(self.train_data['target']['loader']) self.iters_per_epoch = len(self.train_data['target']['loader']) iters_counter_within_epoch = 0 data_time = AverageMeter() batch_time = AverageMeter() classifier_loss = AverageMeter() feature_extractor_loss = AverageMeter() prec1_fs = AverageMeter() prec1_ft = AverageMeter() self.feature_extractor.train() self.classifier.train() end = time.time() if self.opt.TRAIN.PROCESS_COUNTER == 'epoch': self.lam = 2 / (1 + math.exp(-1 * 10 * self.epoch / self.opt.TRAIN.MAX_EPOCH)) - 1 self.update_lr() print('value of lam is: %3f' % (self.lam)) while not stop: if self.opt.TRAIN.PROCESS_COUNTER == 'iteration': self.lam = 2 / (1 + math.exp(-1 * 10 * self.iters / (self.opt.TRAIN.MAX_EPOCH * self.iters_per_epoch))) - 1 print('value of lam is: %3f' % (self.lam)) self.update_lr() source_data, source_gt = self.get_samples('source') target_data, _ = self.get_samples('target') source_data = to_cuda(source_data) source_gt = to_cuda(source_gt) target_data = to_cuda(target_data) data_time.update(time.time() - end) feature_source = self.feature_extractor(source_data) output_source = self.classifier(feature_source) feature_target = self.feature_extractor(target_data) output_target = self.classifier(feature_target) weight_concate = torch.cat((self.class_weight, self.class_weight)) loss_task_fs = self.CELossWeight(output_source[:,:self.num_classes], source_gt, self.class_weight) loss_task_ft = self.CELossWeight(output_source[:,self.num_classes:], source_gt, self.class_weight) loss_discrim_source = self.CELossWeight(output_source, source_gt, weight_concate) loss_discrim_target = self.TargetDiscrimLoss(output_target) loss_summary_classifier = loss_task_fs + loss_task_ft + loss_discrim_source + loss_discrim_target source_gt_for_ft_in_fst = source_gt + self.num_classes loss_confusion_source = 0.5 * self.CELossWeight(output_source, source_gt, weight_concate) + 0.5 * self.CELossWeight(output_source, source_gt_for_ft_in_fst, weight_concate) loss_confusion_target = self.ConcatenatedCELoss(output_target) loss_summary_feature_extractor = loss_confusion_source + self.lam * loss_confusion_target self.optimizer_classifier.zero_grad() loss_summary_classifier.backward(retain_graph=True) self.optimizer_classifier.step() self.optimizer_feature_extractor.zero_grad() loss_summary_feature_extractor.backward() self.optimizer_feature_extractor.step() classifier_loss.update(loss_summary_classifier, source_data.size()[0]) feature_extractor_loss.update(loss_summary_feature_extractor, source_data.size()[0]) prec1_fs.update(accuracy(output_source[:, :self.num_classes], source_gt), source_data.size()[0]) prec1_ft.update(accuracy(output_source[:, self.num_classes:], source_gt), source_data.size()[0]) print(" Train:epoch: %d:[%d/%d], LossCla: %3f, LossFeat: %3f, AccFs: %3f, AccFt: %3f" % \ (self.epoch, iters_counter_within_epoch, self.iters_per_epoch, classifier_loss.avg, feature_extractor_loss.avg, prec1_fs.avg, prec1_ft.avg)) batch_time.update(time.time() - end) end = time.time() self.iters += 1 iters_counter_within_epoch += 1 if iters_counter_within_epoch >= self.iters_per_epoch: log = open(os.path.join(self.opt.SAVE_DIR, 'log.txt'), 'a') log.write("\n") log.write(" Train:epoch: %d:[%d/%d], LossCla: %3f, LossFeat: %3f, AccFs: %3f, AccFt: %3f" % \ (self.epoch, iters_counter_within_epoch, self.iters_per_epoch, classifier_loss.avg, feature_extractor_loss.avg, prec1_fs.avg, prec1_ft.avg)) log.close() stop = True def test(self): self.feature_extractor.eval() self.classifier.eval() prec1_fs = AverageMeter() prec1_ft = AverageMeter() counter_all_fs = torch.FloatTensor(self.opt.DATASET.NUM_CLASSES).fill_(0) counter_all_ft = torch.FloatTensor(self.opt.DATASET.NUM_CLASSES).fill_(0) counter_acc_fs = torch.FloatTensor(self.opt.DATASET.NUM_CLASSES).fill_(0) counter_acc_ft = torch.FloatTensor(self.opt.DATASET.NUM_CLASSES).fill_(0) class_weight = torch.zeros(self.num_classes) class_weight = class_weight.cuda() count = 0 for i, (input, target) in enumerate(self.test_data['loader']): input, target = to_cuda(input), to_cuda(target) with torch.no_grad(): feature_test = self.feature_extractor(input) output_test = self.classifier(feature_test) prob = F.softmax(output_test[:, self.num_classes:], dim=1) class_weight = class_weight + prob.data.sum(0) count = count + input.size(0) if self.opt.EVAL_METRIC == 'accu': prec1_fs_iter = accuracy(output_test[:, :self.num_classes], target) prec1_ft_iter = accuracy(output_test[:, self.num_classes:], target) prec1_fs.update(prec1_fs_iter, input.size(0)) prec1_ft.update(prec1_ft_iter, input.size(0)) if i % self.opt.PRINT_STEP == 0: print(" Test:epoch: %d:[%d/%d], AccFs: %3f, AccFt: %3f" % \ (self.epoch, i, len(self.test_data['loader']), prec1_fs.avg, prec1_ft.avg)) elif self.opt.EVAL_METRIC == 'accu_mean': prec1_ft_iter = accuracy(output_test[:, self.num_classes:], target) prec1_ft.update(prec1_ft_iter, input.size(0)) counter_all_fs, counter_acc_fs = accuracy_for_each_class(output_test[:, :self.num_classes], target, counter_all_fs, counter_acc_fs) counter_all_ft, counter_acc_ft = accuracy_for_each_class(output_test[:, self.num_classes:], target, counter_all_ft, counter_acc_ft) if i % self.opt.PRINT_STEP == 0: print(" Test:epoch: %d:[%d/%d], Task: %3f" % \ (self.epoch, i, len(self.test_data['loader']), prec1_ft.avg)) else: raise NotImplementedError acc_for_each_class_fs = counter_acc_fs / counter_all_fs acc_for_each_class_ft = counter_acc_ft / counter_all_ft log = open(os.path.join(self.opt.SAVE_DIR, 'log.txt'), 'a') log.write("\n") class_weight = class_weight / count class_weight = class_weight / max(class_weight) if self.opt.EVAL_METRIC == 'accu': log.write( " Test:epoch: %d, AccFs: %3f, AccFt: %3f" % \ (self.epoch, prec1_fs.avg, prec1_ft.avg)) log.close() return class_weight, max(prec1_fs.avg, prec1_ft.avg) elif self.opt.EVAL_METRIC == 'accu_mean': log.write( " Test:epoch: %d, AccFs: %3f, AccFt: %3f" % \ (self.epoch,acc_for_each_class_fs.mean(), acc_for_each_class_ft.mean())) log.write("\nClass-wise Acc of Ft:") ## based on the task classifier. for i in range(self.opt.DATASET.NUM_CLASSES): if i == 0: log.write("%dst: %3f" % (i + 1, acc_for_each_class_ft[i])) elif i == 1: log.write(", %dnd: %3f" % (i + 1, acc_for_each_class_ft[i])) elif i == 2: log.write(", %drd: %3f" % (i + 1, acc_for_each_class_ft[i])) else: log.write(", %dth: %3f" % (i + 1, acc_for_each_class_ft[i])) log.close() return class_weight, max(acc_for_each_class_ft.mean(), acc_for_each_class_fs.mean()) def build_optimizer(self): if self.opt.TRAIN.OPTIMIZER == 'SGD': ## some params may not contribute the loss_all, thus they are not updated in the training process. self.optimizer_feature_extractor = torch.optim.SGD([ {'params': self.net['feature_extractor'].module.conv1.parameters(), 'name': 'pre-trained'}, {'params': self.net['feature_extractor'].module.bn1.parameters(), 'name': 'pre-trained'}, {'params': self.net['feature_extractor'].module.layer1.parameters(), 'name': 'pre-trained'}, {'params': self.net['feature_extractor'].module.layer2.parameters(), 'name': 'pre-trained'}, {'params': self.net['feature_extractor'].module.layer3.parameters(), 'name': 'pre-trained'}, {'params': self.net['feature_extractor'].module.layer4.parameters(), 'name': 'pre-trained'}, ], lr=self.opt.TRAIN.BASE_LR, momentum=self.opt.TRAIN.MOMENTUM, weight_decay=self.opt.TRAIN.WEIGHT_DECAY, nesterov=True) self.optimizer_classifier = torch.optim.SGD([ {'params': self.net['classifier'].parameters(), 'name': 'new-added'}, ], lr=self.opt.TRAIN.BASE_LR, momentum=self.opt.TRAIN.MOMENTUM, weight_decay=self.opt.TRAIN.WEIGHT_DECAY, nesterov=True) else: raise NotImplementedError print('Optimizer built') def update_lr(self): if self.opt.TRAIN.LR_SCHEDULE == 'inv': if self.opt.TRAIN.PROCESS_COUNTER == 'epoch': lr = self.opt.TRAIN.BASE_LR / pow((1 + self.opt.INV.ALPHA * self.epoch / self.opt.TRAIN.MAX_EPOCH), self.opt.INV.BETA) elif self.opt.TRAIN.PROCESS_COUNTER == 'iteration': lr = self.opt.TRAIN.BASE_LR / pow((1 + self.opt.INV.ALPHA * self.iters / (self.opt.TRAIN.MAX_EPOCH * self.iters_per_epoch)), self.opt.INV.BETA) else: raise NotImplementedError elif self.opt.TRAIN.LR_SCHEDULE == 'fix': lr = self.opt.TRAIN.BASE_LR else: raise NotImplementedError lr_pretrain = lr * 0.1 print('the lr is: %3f' % (lr)) for param_group in self.optimizer_feature_extractor.param_groups: if param_group['name'] == 'pre-trained': param_group['lr'] = lr_pretrain elif param_group['name'] == 'new-added': param_group['lr'] = lr elif param_group['name'] == 'fixed': ## Fix the lr as 0 can not fix the runing mean/var of the BN layer param_group['lr'] = 0 for param_group in self.optimizer_classifier.param_groups: if param_group['name'] == 'pre-trained': param_group['lr'] = lr_pretrain elif param_group['name'] == 'new-added': param_group['lr'] = lr elif param_group['name'] == 'fixed': ## Fix the lr as 0 can not fix the runing mean/var of the BN layer param_group['lr'] = 0 def save_ckpt(self): log = open(os.path.join(self.opt.SAVE_DIR, 'log.txt'), 'a') log.write(" Best Acc so far: %3f" % (self.best_prec1)) log.close() if self.opt.TRAIN.SAVING: save_path = self.opt.SAVE_DIR ckpt_resume = os.path.join(save_path, 'ckpt_%d.resume' % (self.loop)) torch.save({'epoch': self.epoch, 'best_prec1': self.best_prec1, 'feature_extractor_state_dict': self.net['feature_extractor'].state_dict(), 'classifier_state_dict': self.net['classifier'].state_dict() }, ckpt_resume)
[ "41507970+YabinZhang1994@users.noreply.github.com" ]
41507970+YabinZhang1994@users.noreply.github.com
cb640e13ab60d47da581adfcdb74d4b79c9b31cf
1d0a223b743b005cd2ecd904337178e322e63534
/Chapter3/P95.py
24c0776ee034f175f4fd3d56354e536ca3c2c733
[]
no_license
Stefanroets180/all-my-Python-work
285607ce1ef50aac4897e0721ead4daca01fa6e0
d7937b51a309ebd051bef90e78154447b6e9a8ea
refs/heads/main
2023-03-27T10:15:54.793489
2021-03-18T12:26:20
2021-03-18T12:26:20
349,063,278
0
0
null
null
null
null
UTF-8
Python
false
false
106
py
cars = ['bmw', 'audi', 'toyota', 'subaru'] print(cars) #syntaxError invalid syntax missing a quotation(')
[ "61413955+Stefanroets180@users.noreply.github.com" ]
61413955+Stefanroets180@users.noreply.github.com
1b490f3ffe47d1e1b01a6efc80229664cf17dd0e
5627e703c4847a55d16e097e60fbde1af6ef87a1
/MT4ImgRec/transforms/transforms.py
106994b8fbd4c69fba1faf79a4a6470c71307d63
[]
no_license
Miracy/MT4ImgRec
008d1ba150cbb21acc1b202340158e4c1886ca2a
87813f78d1f9dd61de5cc3b7f286333f6534ca17
refs/heads/master
2023-04-20T09:16:05.272480
2021-05-10T03:31:39
2021-05-10T03:31:39
360,831,064
2
0
null
null
null
null
UTF-8
Python
false
false
37,002
py
from __future__ import division import torch import math import random from PIL import Image try: import accimage except ImportError: accimage = None import numpy as np import numbers import types import collections import warnings from . import functional as F __all__ = ["Compose", "ToTensor", "ToPILImage", "Normalize", "Resize", "Scale", "CenterCrop", "Pad", "Lambda", "RandomApply", "RandomChoice", "RandomOrder", "RandomCrop", "RandomHorizontalFlip", "RandomVerticalFlip", "RandomResizedCrop", "RandomSizedCrop", "FiveCrop", "TenCrop", "LinearTransformation", "ColorJitter", "RandomRotation", "RandomAffine", "Grayscale", "RandomGrayscale", "Randomswap"] _pil_interpolation_to_str = { Image.NEAREST: 'PIL.Image.NEAREST', Image.BILINEAR: 'PIL.Image.BILINEAR', Image.BICUBIC: 'PIL.Image.BICUBIC', Image.LANCZOS: 'PIL.Image.LANCZOS', } class Compose(object): """Composes several transforms together. Args: transforms (list of ``Transform`` objects): list of transforms to compose. Example: >>> transforms.Compose([ >>> transforms.CenterCrop(10), >>> transforms.ToTensor(), >>> ]) """ def __init__(self, transforms): self.transforms = transforms def __call__(self, img): for t in self.transforms: img = t(img) return img def __repr__(self): format_string = self.__class__.__name__ + '(' for t in self.transforms: format_string += '\n' format_string += ' {0}'.format(t) format_string += '\n)' return format_string class ToTensor(object): """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor. Converts a PIL Image or numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]. """ def __call__(self, pic): """ Args: pic (PIL Image or numpy.ndarray): Image to be converted to tensor. Returns: Tensor: Converted image. """ return F.to_tensor(pic) def __repr__(self): return self.__class__.__name__ + '()' class ToPILImage(object): """Convert a tensor or an ndarray to PIL Image. Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape H x W x C to a PIL Image while preserving the value range. Args: mode (`PIL.Image mode`_): color space and pixel depth of input data (optional). If ``mode`` is ``None`` (default) there are some assumptions made about the input data: 1. If the input has 3 channels, the ``mode`` is assumed to be ``RGB``. 2. If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``. 3. If the input has 1 channel, the ``mode`` is determined by the data type (i,e, ``int``, ``float``, ``short``). .. _PIL.Image mode: http://pillow.readthedocs.io/en/3.4.x/handbook/concepts.html#modes """ def __init__(self, mode=None): self.mode = mode def __call__(self, pic): """ Args: pic (Tensor or numpy.ndarray): Image to be converted to PIL Image. Returns: PIL Image: Image converted to PIL Image. """ return F.to_pil_image(pic, self.mode) def __repr__(self): format_string = self.__class__.__name__ + '(' if self.mode is not None: format_string += 'mode={0}'.format(self.mode) format_string += ')' return format_string class Normalize(object): """Normalize a tensor image with mean and standard deviation. Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels, this transform will normalize each channel of the input ``torch.*Tensor`` i.e. ``input[channel] = (input[channel] - mean[channel]) / std[channel]`` Args: mean (sequence): Sequence of means for each channel. std (sequence): Sequence of standard deviations for each channel. """ def __init__(self, mean, std): self.mean = mean self.std = std def __call__(self, tensor): """ Args: tensor (Tensor): Tensor image of size (C, H, W) to be normalized. Returns: Tensor: Normalized Tensor image. """ return F.normalize(tensor, self.mean, self.std) def __repr__(self): return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std) class Randomswap(object): def __init__(self, size): self.size = size if isinstance(size, numbers.Number): self.size = (int(size), int(size)) else: assert len(size) == 2, "Please provide only two dimensions (h, w) for size." self.size = size def __call__(self, img): return F.swap(img, self.size) def __repr__(self): return self.__class__.__name__ + '(size={0})'.format(self.size) class Resize(object): """Resize the input PIL Image to the given size. Args: size (sequence or int): Desired output size. If size is a sequence like (h, w), output size will be matched to this. If size is an int, smaller edge of the image will be matched to this number. i.e, if height > width, then image will be rescaled to (size * height / width, size) interpolation (int, optional): Desired interpolation. Default is ``PIL.Image.BILINEAR`` """ def __init__(self, size, interpolation=Image.BILINEAR): assert isinstance(size, int) or (isinstance(size, collections.Iterable) and len(size) == 2) self.size = size self.interpolation = interpolation def __call__(self, img): """ Args: img (PIL Image): Image to be scaled. Returns: PIL Image: Rescaled image. """ return F.resize(img, self.size, self.interpolation) def __repr__(self): interpolate_str = _pil_interpolation_to_str[self.interpolation] return self.__class__.__name__ + '(size={0}, interpolation={1})'.format(self.size, interpolate_str) class Scale(Resize): """ Note: This transform is deprecated in favor of Resize. """ def __init__(self, *args, **kwargs): warnings.warn("The use of the transforms.Scale transform is deprecated, " + "please use transforms.Resize instead.") super(Scale, self).__init__(*args, **kwargs) class CenterCrop(object): """Crops the given PIL Image at the center. Args: size (sequence or int): Desired output size of the crop. If size is an int instead of sequence like (h, w), a square crop (size, size) is made. """ def __init__(self, size): if isinstance(size, numbers.Number): self.size = (int(size), int(size)) else: self.size = size def __call__(self, img): """ Args: img (PIL Image): Image to be cropped. Returns: PIL Image: Cropped image. """ return F.center_crop(img, self.size) def __repr__(self): return self.__class__.__name__ + '(size={0})'.format(self.size) class Pad(object): """Pad the given PIL Image on all sides with the given "pad" value. Args: padding (int or tuple): Padding on each border. If a single int is provided this is used to pad all borders. If tuple of length 2 is provided this is the padding on left/right and top/bottom respectively. If a tuple of length 4 is provided this is the padding for the left, top, right and bottom borders respectively. fill: Pixel fill value for constant fill. Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively. This value is only used when the padding_mode is constant padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant. constant: pads with a constant value, this value is specified with fill edge: pads with the last value at the edge of the image reflect: pads with reflection of image (without repeating the last value on the edge) padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode will result in [3, 2, 1, 2, 3, 4, 3, 2] symmetric: pads with reflection of image (repeating the last value on the edge) padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode will result in [2, 1, 1, 2, 3, 4, 4, 3] """ def __init__(self, padding, fill=0, padding_mode='constant'): assert isinstance(padding, (numbers.Number, tuple)) assert isinstance(fill, (numbers.Number, str, tuple)) assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric'] if isinstance(padding, collections.Sequence) and len(padding) not in [2, 4]: raise ValueError("Padding must be an int or a 2, or 4 element tuple, not a " + "{} element tuple".format(len(padding))) self.padding = padding self.fill = fill self.padding_mode = padding_mode def __call__(self, img): """ Args: img (PIL Image): Image to be padded. Returns: PIL Image: Padded image. """ return F.pad(img, self.padding, self.fill, self.padding_mode) def __repr__(self): return self.__class__.__name__ + '(padding={0}, fill={1}, padding_mode={2})'.\ format(self.padding, self.fill, self.padding_mode) class Lambda(object): """Apply a user-defined lambda as a transform. Args: lambd (function): Lambda/function to be used for transform. """ def __init__(self, lambd): assert isinstance(lambd, types.LambdaType) self.lambd = lambd def __call__(self, img): return self.lambd(img) def __repr__(self): return self.__class__.__name__ + '()' class RandomTransforms(object): """Base class for a list of transformations with randomness Args: transforms (list or tuple): list of transformations """ def __init__(self, transforms): assert isinstance(transforms, (list, tuple)) self.transforms = transforms def __call__(self, *args, **kwargs): raise NotImplementedError() def __repr__(self): format_string = self.__class__.__name__ + '(' for t in self.transforms: format_string += '\n' format_string += ' {0}'.format(t) format_string += '\n)' return format_string class RandomApply(RandomTransforms): """Apply randomly a list of transformations with a given probability Args: transforms (list or tuple): list of transformations p (float): probability """ def __init__(self, transforms, p=0.5): super(RandomApply, self).__init__(transforms) self.p = p def __call__(self, img): if self.p < random.random(): return img for t in self.transforms: img = t(img) return img def __repr__(self): format_string = self.__class__.__name__ + '(' format_string += '\n p={}'.format(self.p) for t in self.transforms: format_string += '\n' format_string += ' {0}'.format(t) format_string += '\n)' return format_string class RandomOrder(RandomTransforms): """Apply a list of transformations in a random order """ def __call__(self, img): order = list(range(len(self.transforms))) random.shuffle(order) for i in order: img = self.transforms[i](img) return img class RandomChoice(RandomTransforms): """Apply single transformation randomly picked from a list """ def __call__(self, img): t = random.choice(self.transforms) return t(img) class RandomCrop(object): """Crop the given PIL Image at a random location. Args: size (sequence or int): Desired output size of the crop. If size is an int instead of sequence like (h, w), a square crop (size, size) is made. padding (int or sequence, optional): Optional padding on each border of the image. Default is 0, i.e no padding. If a sequence of length 4 is provided, it is used to pad left, top, right, bottom borders respectively. pad_if_needed (boolean): It will pad the image if smaller than the desired size to avoid raising an exception. """ def __init__(self, size, padding=0, pad_if_needed=False): if isinstance(size, numbers.Number): self.size = (int(size), int(size)) else: self.size = size self.padding = padding self.pad_if_needed = pad_if_needed @staticmethod def get_params(img, output_size): """Get parameters for ``crop`` for a random crop. Args: img (PIL Image): Image to be cropped. output_size (tuple): Expected output size of the crop. Returns: tuple: params (i, j, h, w) to be passed to ``crop`` for random crop. """ w, h = img.size th, tw = output_size if w == tw and h == th: return 0, 0, h, w i = random.randint(0, h - th) j = random.randint(0, w - tw) return i, j, th, tw def __call__(self, img): """ Args: img (PIL Image): Image to be cropped. Returns: PIL Image: Cropped image. """ if self.padding > 0: img = F.pad(img, self.padding) # pad the width if needed if self.pad_if_needed and img.size[0] < self.size[1]: img = F.pad(img, (int((1 + self.size[1] - img.size[0]) / 2), 0)) # pad the height if needed if self.pad_if_needed and img.size[1] < self.size[0]: img = F.pad(img, (0, int((1 + self.size[0] - img.size[1]) / 2))) i, j, h, w = self.get_params(img, self.size) return F.crop(img, i, j, h, w) def __repr__(self): return self.__class__.__name__ + '(size={0}, padding={1})'.format(self.size, self.padding) class RandomHorizontalFlip(object): """Horizontally flip the given PIL Image randomly with a given probability. Args: p (float): probability of the image being flipped. Default value is 0.5 """ def __init__(self, p=0.5): self.p = p def __call__(self, img): """ Args: img (PIL Image): Image to be flipped. Returns: PIL Image: Randomly flipped image. """ if random.random() < self.p: return F.hflip(img) return img def __repr__(self): return self.__class__.__name__ + '(p={})'.format(self.p) class RandomVerticalFlip(object): """Vertically flip the given PIL Image randomly with a given probability. Args: p (float): probability of the image being flipped. Default value is 0.5 """ def __init__(self, p=0.5): self.p = p def __call__(self, img): """ Args: img (PIL Image): Image to be flipped. Returns: PIL Image: Randomly flipped image. """ if random.random() < self.p: return F.vflip(img) return img def __repr__(self): return self.__class__.__name__ + '(p={})'.format(self.p) class RandomResizedCrop(object): """Crop the given PIL Image to random size and aspect ratio. A crop of random size (default: of 0.08 to 1.0) of the original size and a random aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop is finally resized to given size. This is popularly used to train the Inception networks. Args: size: expected output size of each edge scale: range of size of the origin size cropped ratio: range of aspect ratio of the origin aspect ratio cropped interpolation: Default: PIL.Image.BILINEAR """ def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=Image.BILINEAR): self.size = (size, size) self.interpolation = interpolation self.scale = scale self.ratio = ratio @staticmethod def get_params(img, scale, ratio): """Get parameters for ``crop`` for a random sized crop. Args: img (PIL Image): Image to be cropped. scale (tuple): range of size of the origin size cropped ratio (tuple): range of aspect ratio of the origin aspect ratio cropped Returns: tuple: params (i, j, h, w) to be passed to ``crop`` for a random sized crop. """ for attempt in range(10): area = img.size[0] * img.size[1] target_area = random.uniform(*scale) * area aspect_ratio = random.uniform(*ratio) w = int(round(math.sqrt(target_area * aspect_ratio))) h = int(round(math.sqrt(target_area / aspect_ratio))) if random.random() < 0.5: w, h = h, w if w <= img.size[0] and h <= img.size[1]: i = random.randint(0, img.size[1] - h) j = random.randint(0, img.size[0] - w) return i, j, h, w # Fallback w = min(img.size[0], img.size[1]) i = (img.size[1] - w) // 2 j = (img.size[0] - w) // 2 return i, j, w, w def __call__(self, img): """ Args: img (PIL Image): Image to be cropped and resized. Returns: PIL Image: Randomly cropped and resized image. """ i, j, h, w = self.get_params(img, self.scale, self.ratio) return F.resized_crop(img, i, j, h, w, self.size, self.interpolation) def __repr__(self): interpolate_str = _pil_interpolation_to_str[self.interpolation] format_string = self.__class__.__name__ + '(size={0}'.format(self.size) format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale)) format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio)) format_string += ', interpolation={0})'.format(interpolate_str) return format_string class RandomSizedCrop(RandomResizedCrop): """ Note: This transform is deprecated in favor of RandomResizedCrop. """ def __init__(self, *args, **kwargs): warnings.warn("The use of the transforms.RandomSizedCrop transform is deprecated, " + "please use transforms.RandomResizedCrop instead.") super(RandomSizedCrop, self).__init__(*args, **kwargs) class FiveCrop(object): """Crop the given PIL Image into four corners and the central crop .. Note:: This transform returns a tuple of images and there may be a mismatch in the number of inputs and targets your Dataset returns. See below for an example of how to deal with this. Args: size (sequence or int): Desired output size of the crop. If size is an ``int`` instead of sequence like (h, w), a square crop of size (size, size) is made. Example: >>> transform = Compose([ >>> FiveCrop(size), # this is a list of PIL Images >>> Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor >>> ]) >>> #In your test loop you can do the following: >>> input, target = batch # input is a 5d tensor, target is 2d >>> bs, ncrops, c, h, w = input.size() >>> result = models(input.view(-1, c, h, w)) # fuse batch size and ncrops >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops """ def __init__(self, size): self.size = size if isinstance(size, numbers.Number): self.size = (int(size), int(size)) else: assert len(size) == 2, "Please provide only two dimensions (h, w) for size." self.size = size def __call__(self, img): return F.five_crop(img, self.size) def __repr__(self): return self.__class__.__name__ + '(size={0})'.format(self.size) class TenCrop(object): """Crop the given PIL Image into four corners and the central crop plus the flipped version of these (horizontal flipping is used by default) .. Note:: This transform returns a tuple of images and there may be a mismatch in the number of inputs and targets your Dataset returns. See below for an example of how to deal with this. Args: size (sequence or int): Desired output size of the crop. If size is an int instead of sequence like (h, w), a square crop (size, size) is made. vertical_flip(bool): Use vertical flipping instead of horizontal Example: >>> transform = Compose([ >>> TenCrop(size), # this is a list of PIL Images >>> Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor >>> ]) >>> #In your test loop you can do the following: >>> input, target = batch # input is a 5d tensor, target is 2d >>> bs, ncrops, c, h, w = input.size() >>> result = models(input.view(-1, c, h, w)) # fuse batch size and ncrops >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops """ def __init__(self, size, vertical_flip=False): self.size = size if isinstance(size, numbers.Number): self.size = (int(size), int(size)) else: assert len(size) == 2, "Please provide only two dimensions (h, w) for size." self.size = size self.vertical_flip = vertical_flip def __call__(self, img): return F.ten_crop(img, self.size, self.vertical_flip) def __repr__(self): return self.__class__.__name__ + '(size={0}, vertical_flip={1})'.format(self.size, self.vertical_flip) class LinearTransformation(object): """Transform a tensor image with a square transformation matrix computed offline. Given transformation_matrix, will flatten the torch.*Tensor, compute the dot product with the transformation matrix and reshape the tensor to its original shape. Applications: - whitening: zero-center the data, compute the data covariance matrix [D x D] with np.dot(X.T, X), perform SVD on this matrix and pass it as transformation_matrix. Args: transformation_matrix (Tensor): tensor [D x D], D = C x H x W """ def __init__(self, transformation_matrix): if transformation_matrix.size(0) != transformation_matrix.size(1): raise ValueError("transformation_matrix should be square. Got " + "[{} x {}] rectangular matrix.".format(*transformation_matrix.size())) self.transformation_matrix = transformation_matrix def __call__(self, tensor): """ Args: tensor (Tensor): Tensor image of size (C, H, W) to be whitened. Returns: Tensor: Transformed image. """ if tensor.size(0) * tensor.size(1) * tensor.size(2) != self.transformation_matrix.size(0): raise ValueError("tensor and transformation matrix have incompatible shape." + "[{} x {} x {}] != ".format(*tensor.size()) + "{}".format(self.transformation_matrix.size(0))) flat_tensor = tensor.view(1, -1) transformed_tensor = torch.mm(flat_tensor, self.transformation_matrix) tensor = transformed_tensor.view(tensor.size()) return tensor def __repr__(self): format_string = self.__class__.__name__ + '(' format_string += (str(self.transformation_matrix.numpy().tolist()) + ')') return format_string class ColorJitter(object): """Randomly change the brightness, contrast and saturation of an image. Args: brightness (float): How much to jitter brightness. brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]. contrast (float): How much to jitter contrast. contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]. saturation (float): How much to jitter saturation. saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]. hue(float): How much to jitter hue. hue_factor is chosen uniformly from [-hue, hue]. Should be >=0 and <= 0.5. """ def __init__(self, brightness=0, contrast=0, saturation=0, hue=0): self.brightness = brightness self.contrast = contrast self.saturation = saturation self.hue = hue @staticmethod def get_params(brightness, contrast, saturation, hue): """Get a randomized transform to be applied on image. Arguments are same as that of __init__. Returns: Transform which randomly adjusts brightness, contrast and saturation in a random order. """ transforms = [] if brightness > 0: brightness_factor = random.uniform(max(0, 1 - brightness), 1 + brightness) transforms.append(Lambda(lambda img: F.adjust_brightness(img, brightness_factor))) if contrast > 0: contrast_factor = random.uniform(max(0, 1 - contrast), 1 + contrast) transforms.append(Lambda(lambda img: F.adjust_contrast(img, contrast_factor))) if saturation > 0: saturation_factor = random.uniform(max(0, 1 - saturation), 1 + saturation) transforms.append(Lambda(lambda img: F.adjust_saturation(img, saturation_factor))) if hue > 0: hue_factor = random.uniform(-hue, hue) transforms.append(Lambda(lambda img: F.adjust_hue(img, hue_factor))) random.shuffle(transforms) transform = Compose(transforms) return transform def __call__(self, img): """ Args: img (PIL Image): Input image. Returns: PIL Image: Color jittered image. """ transform = self.get_params(self.brightness, self.contrast, self.saturation, self.hue) return transform(img) def __repr__(self): format_string = self.__class__.__name__ + '(' format_string += 'brightness={0}'.format(self.brightness) format_string += ', contrast={0}'.format(self.contrast) format_string += ', saturation={0}'.format(self.saturation) format_string += ', hue={0})'.format(self.hue) return format_string class RandomRotation(object): """Rotate the image by angle. Args: degrees (sequence or float or int): Range of degrees to select from. If degrees is a number instead of sequence like (min, max), the range of degrees will be (-degrees, +degrees). resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional): An optional resampling filter. See http://pillow.readthedocs.io/en/3.4.x/handbook/concepts.html#filters If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST. expand (bool, optional): Optional expansion flag. If true, expands the output to make it large enough to hold the entire rotated image. If false or omitted, make the output image the same size as the input image. Note that the expand flag assumes rotation around the center and no translation. center (2-tuple, optional): Optional center of rotation. Origin is the upper left corner. Default is the center of the image. """ def __init__(self, degrees, resample=False, expand=False, center=None): if isinstance(degrees, numbers.Number): if degrees < 0: raise ValueError("If degrees is a single number, it must be positive.") self.degrees = (-degrees, degrees) else: if len(degrees) != 2: raise ValueError("If degrees is a sequence, it must be of len 2.") self.degrees = degrees self.resample = resample self.expand = expand self.center = center @staticmethod def get_params(degrees): """Get parameters for ``rotate`` for a random rotation. Returns: sequence: params to be passed to ``rotate`` for random rotation. """ angle = random.uniform(degrees[0], degrees[1]) return angle def __call__(self, img): """ img (PIL Image): Image to be rotated. Returns: PIL Image: Rotated image. """ angle = self.get_params(self.degrees) return F.rotate(img, angle, self.resample, self.expand, self.center) def __repr__(self): format_string = self.__class__.__name__ + '(degrees={0}'.format(self.degrees) format_string += ', resample={0}'.format(self.resample) format_string += ', expand={0}'.format(self.expand) if self.center is not None: format_string += ', center={0}'.format(self.center) format_string += ')' return format_string class RandomAffine(object): """Random affine transformation of the image keeping center invariant Args: degrees (sequence or float or int): Range of degrees to select from. If degrees is a number instead of sequence like (min, max), the range of degrees will be (-degrees, +degrees). Set to 0 to desactivate rotations. translate (tuple, optional): tuple of maximum absolute fraction for horizontal and vertical translations. For example translate=(a, b), then horizontal shift is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default. scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is randomly sampled from the range a <= scale <= b. Will keep original scale by default. shear (sequence or float or int, optional): Range of degrees to select from. If degrees is a number instead of sequence like (min, max), the range of degrees will be (-degrees, +degrees). Will not apply shear by default resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional): An optional resampling filter. See http://pillow.readthedocs.io/en/3.4.x/handbook/concepts.html#filters If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST. fillcolor (int): Optional fill color for the area outside the transform in the output image. (Pillow>=5.0.0) """ def __init__(self, degrees, translate=None, scale=None, shear=None, resample=False, fillcolor=0): if isinstance(degrees, numbers.Number): if degrees < 0: raise ValueError("If degrees is a single number, it must be positive.") self.degrees = (-degrees, degrees) else: assert isinstance(degrees, (tuple, list)) and len(degrees) == 2, \ "degrees should be a list or tuple and it must be of length 2." self.degrees = degrees if translate is not None: assert isinstance(translate, (tuple, list)) and len(translate) == 2, \ "translate should be a list or tuple and it must be of length 2." for t in translate: if not (0.0 <= t <= 1.0): raise ValueError("translation values should be between 0 and 1") self.translate = translate if scale is not None: assert isinstance(scale, (tuple, list)) and len(scale) == 2, \ "scale should be a list or tuple and it must be of length 2." for s in scale: if s <= 0: raise ValueError("scale values should be positive") self.scale = scale if shear is not None: if isinstance(shear, numbers.Number): if shear < 0: raise ValueError("If shear is a single number, it must be positive.") self.shear = (-shear, shear) else: assert isinstance(shear, (tuple, list)) and len(shear) == 2, \ "shear should be a list or tuple and it must be of length 2." self.shear = shear else: self.shear = shear self.resample = resample self.fillcolor = fillcolor @staticmethod def get_params(degrees, translate, scale_ranges, shears, img_size): """Get parameters for affine transformation Returns: sequence: params to be passed to the affine transformation """ angle = random.uniform(degrees[0], degrees[1]) if translate is not None: max_dx = translate[0] * img_size[0] max_dy = translate[1] * img_size[1] translations = (np.round(random.uniform(-max_dx, max_dx)), np.round(random.uniform(-max_dy, max_dy))) else: translations = (0, 0) if scale_ranges is not None: scale = random.uniform(scale_ranges[0], scale_ranges[1]) else: scale = 1.0 if shears is not None: shear = random.uniform(shears[0], shears[1]) else: shear = 0.0 return angle, translations, scale, shear def __call__(self, img): """ img (PIL Image): Image to be transformed. Returns: PIL Image: Affine transformed image. """ ret = self.get_params(self.degrees, self.translate, self.scale, self.shear, img.size) return F.affine(img, *ret, resample=self.resample, fillcolor=self.fillcolor) def __repr__(self): s = '{name}(degrees={degrees}' if self.translate is not None: s += ', translate={translate}' if self.scale is not None: s += ', scale={scale}' if self.shear is not None: s += ', shear={shear}' if self.resample > 0: s += ', resample={resample}' if self.fillcolor != 0: s += ', fillcolor={fillcolor}' s += ')' d = dict(self.__dict__) d['resample'] = _pil_interpolation_to_str[d['resample']] return s.format(name=self.__class__.__name__, **d) class Grayscale(object): """Convert image to grayscale. Args: num_output_channels (int): (1 or 3) number of channels desired for output image Returns: PIL Image: Grayscale version of the input. - If num_output_channels == 1 : returned image is single channel - If num_output_channels == 3 : returned image is 3 channel with r == g == b """ def __init__(self, num_output_channels=1): self.num_output_channels = num_output_channels def __call__(self, img): """ Args: img (PIL Image): Image to be converted to grayscale. Returns: PIL Image: Randomly grayscaled image. """ return F.to_grayscale(img, num_output_channels=self.num_output_channels) def __repr__(self): return self.__class__.__name__ + '(num_output_channels={0})'.format(self.num_output_channels) class RandomGrayscale(object): """Randomly convert image to grayscale with a probability of p (default 0.1). Args: p (float): probability that image should be converted to grayscale. Returns: PIL Image: Grayscale version of the input image with probability p and unchanged with probability (1-p). - If input image is 1 channel: grayscale version is 1 channel - If input image is 3 channel: grayscale version is 3 channel with r == g == b """ def __init__(self, p=0.1): self.p = p def __call__(self, img): """ Args: img (PIL Image): Image to be converted to grayscale. Returns: PIL Image: Randomly grayscaled image. """ num_output_channels = 1 if img.mode == 'L' else 3 if random.random() < self.p: return F.to_grayscale(img, num_output_channels=num_output_channels) return img def __repr__(self): return self.__class__.__name__ + '(p={0})'.format(self.p)
[ "364370584@qq.com" ]
364370584@qq.com
7446a9fb4f50657d914b2afecd3299cb8a38db4c
75c7004744315a22afdad8a68f20c06b8d3efad0
/网络设备脚本/迈普.py
c85643c747712831bd82f54c35bbdb8ad2b5b26a
[ "MIT" ]
permissive
cflw/network_device_script
b13cde8719f23402cdd6acd3ca9048a7d65952aa
c3644e933a3c557c44951a0a1994a49357e49c02
refs/heads/master
2023-08-03T11:00:29.188101
2023-07-29T13:58:09
2023-07-29T13:58:09
182,526,402
18
12
null
null
null
null
UTF-8
Python
false
false
381
py
import enum #=============================================================================== # 工厂 #=============================================================================== class E型号(enum.IntEnum): mps4100 = 4100 mps4120 = 4120 def f创建设备(a连接, a型号, a版本 = 0): from .迈普命令行 import 设备 return 设备.C设备(a连接, a型号, a版本)
[ "cflw@outlook.com" ]
cflw@outlook.com
2544770823fc434065202998a3455b76cd21d13f
dee1311673e28c8e3915cb2397b596768d96054c
/test8_unittest框架.py
0419240436f5ac751a4d90c27bc51e459a39d187
[]
no_license
HaMr123/ld-project
f668a74e4a61b6e20fdc988715e58772a444358a
4d9dc5db4894fdf1fb72fc41baec60e8a872093e
refs/heads/main
2023-08-03T23:51:33.037442
2021-09-15T09:34:16
2021-09-15T09:34:16
406,687,753
0
0
null
null
null
null
UTF-8
Python
false
false
1,754
py
""" 响应对象.json()跟响应对象.text的区别 """ import requests import json import unittest class login(unittest.TestCase): def setUp(self): self.url = "http://test.hyunst.com/pos/login_cashierLogin.do" def test_login_1(self): body = {'Api': 'doLogin', 'Params': '{"username":"dd","password":"E10ADC3949BA59ABBE56E057F20F883E"}', 'ClientId': 100123, 'Timestamp': 1615971042933 } r = requests.post(self.url, data=body) r_json = r.json() print("r_json1:", r_json) try: self.assertEqual("成功", r_json['Message']) except AssertionError as e: print(e) def test_login_2(self): body = {'Api': 'doLogin', 'Params': '{"username":"dd","password":"E10ADC3949BA59ABBE56E057F20F88E"}', 'ClientId': 100123, 'Timestamp': 1615971042933 } r = requests.post(self.url, data=body) r_json = r.json() print("r_json2:", r_json) try: self.assertEqual("密码", r_json['Message']) except AssertionError as e: print(e) def test_login_3(self): body = {'Api': 'doLogin', 'Params': '{"username":"d2222","password":"E10ADC3949BA59ABBE56E057F20F883E"}', 'ClientId': 100123, 'Timestamp': 1615971042933 } r = requests.post(self.url, data=body) r_json = r.json() print("r_json3:", r_json) try: self.assertEqual("用户名", r_json['Message']) except AssertionError as e: print(e) if __name__ == '__main__': unittest.main()
[ "339659207@qq.com" ]
339659207@qq.com
324dad53ef6840f7c4b9d4df1900034cb6eb9754
22ba91d7ca8eef5dad780050ac19566bcd8f119f
/gif.py
036ccb2b721bbf286b4fe65b7d995b081710364c
[ "MIT" ]
permissive
LitianD/ObjDetect
09d54b613f2d3148dfe12b447aa9230e18cbe19d
849f63467ce9e25c8ba0c24ca7bfdea9d836b0dd
refs/heads/master
2023-04-05T13:46:14.474688
2019-07-30T09:39:07
2019-07-30T09:39:07
199,144,849
2
1
MIT
2023-03-24T22:43:28
2019-07-27T09:34:51
Python
UTF-8
Python
false
false
860
py
from PIL import Image import image2gif import numpy as np import os outfilename = "D:\PyCharmProject\objDetect\keras-yolo3\gif\\1\\1.gif" # 转化的GIF图片名称 l = os.listdir("D:\PyCharmProject\objDetect\keras-yolo3\gif\\1") frames = [] for image_name in l: # 索引各自目录 im = Image.open("D:\PyCharmProject\objDetect\keras-yolo3\gif\\1\\"+image_name) # 将图片打开,本文图片读取的结果是RGBA格式,如果直接读取的RGB则不需要下面那一步 im = im.convert("RGB") # 通过convert将RGBA格式转化为RGB格式,以便后续处理 im = np.array(im) # im还不是数组格式,通过此方法将im转化为数组 frames.append(im) # 批量化 image2gif.writeGif(outfilename, frames, duration=0.1, subRectangles=False)
[ "948167236@qq.com" ]
948167236@qq.com
0532c39bac5f628a9a0e8ef709228777632ad528
e32bb97b6b18dfd48760ed28553a564055878d48
/source_py2/python_toolbox/binary_search/functions.py
eae623883c50c77fcbfcf19f3f61265a31a197ab
[ "MIT" ]
permissive
rfdiazpr/python_toolbox
26cb37dd42342c478931699b00d9061aedcd924a
430dd842ed48bccdb3a3166e91f76bd2aae75a88
refs/heads/master
2020-12-31T04:15:53.977935
2014-04-30T23:54:58
2014-04-30T23:54:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,185
py
# Copyright 2009-2014 Ram Rachum. # This program is distributed under the MIT license. '''Module for doing a binary search in a sequence.''' # Todo: wrap all things in tuples? # # todo: add option to specify `cmp`. # # todo: i think `binary_search_by_index` should have the core logic, and the # other one will use it. I think this will save many sequence accesses, and # some sequences can be expensive. # # todo: ensure there are no `if variable` checks where we're thinking of None # but the variable might be False from .roundings import (Rounding, roundings, LOW, LOW_IF_BOTH, LOW_OTHERWISE_HIGH, HIGH, HIGH_IF_BOTH, HIGH_OTHERWISE_LOW, EXACT, CLOSEST, CLOSEST_IF_BOTH, BOTH) def binary_search_by_index(sequence, function, value, rounding=CLOSEST): ''' Do a binary search, returning answer as index number. Similiar to binary_search (refer to its documentation for more info). The difference is that instead of returning a result in terms of sequence items, it returns the indexes of these items in the sequence. For documentation of rounding options, check `binary_search.roundings`. ''' if function is None: function = lambda x: x my_range = xrange(len(sequence)) fixed_function = lambda index: function(sequence[index]) result = binary_search(my_range, fixed_function, value, rounding) return result def _binary_search_both(sequence, function, value): ''' Do a binary search through a sequence with the `BOTH` rounding. It is assumed that `function` is a strictly monotonic rising function on `sequence`. Note: This function uses `None` to express its inability to find any matches; therefore, you better not use it on sequences in which `None` is a possible item. ''' # todo: i think this should be changed to return tuples ### Preparing: ############################################################ # # if function is None: function = lambda x: x get = lambda number: function(sequence[number]) low = 0 high = len(sequence) - 1 # # ### Finished preparing. ################################################### ### Handling edge cases: ################################################## # # if not sequence: return (None, None) low_value, high_value = get(low), get(high) if value in (low_value, high_value): return tuple((value, value)) elif low_value > value: return tuple((None, sequence[low])) elif high_value < value: return (sequence[high], None) # # ### Finished handling edge cases. ######################################### # Now we know the value is somewhere inside the sequence. assert low_value < value < high_value while high - low > 1: medium = (low + high) // 2 medium_value = get(medium) if medium_value > value: high = medium; high_value = medium_value continue if medium_value < value: low = medium; low_value = medium_value continue if medium_value == value: return (sequence[medium], sequence[medium]) return (sequence[low], sequence[high]) def binary_search(sequence, function, value, rounding=CLOSEST): ''' Do a binary search through a sequence. It is assumed that `function` is a strictly monotonic rising function on `sequence`. For all rounding options, a return value of None is returned if no matching item is found. (In the case of `rounding=BOTH`, either of the items in the tuple may be `None`) Note: This function uses `None` to express its inability to find any matches; therefore, you better not use it on sequences in which None is a possible item. For documentation of rounding options, check `binary_search.roundings`. ''' from .binary_search_profile import BinarySearchProfile binary_search_profile = BinarySearchProfile(sequence, function, value) return binary_search_profile.results[rounding] def make_both_data_into_preferred_rounding(both, function, value, rounding): ''' Convert results gotten using `BOTH` to a different rounding option. This function takes the return value from `binary_search` (or other such functions) with `rounding=BOTH` as the parameter `both`. It then gives the data with a different rounding, specified with the parameter `rounding`. ''' # todo optimize and organize: break to individual functions, put in # `BinarySearchProfile` if rounding is BOTH: return both elif rounding is LOW: return both[0] elif rounding is LOW_IF_BOTH: return both[0] if both[1] is not None else None elif rounding is LOW_OTHERWISE_HIGH: return both[0] if both[0] is not None else both[1] elif rounding is HIGH: return both[1] elif rounding is HIGH_IF_BOTH: return both[1] if both[0] is not None else None elif rounding is HIGH_OTHERWISE_LOW: return both[1] if both[1] is not None else both[0] elif rounding is EXACT: results = [item for item in both if (item is not None and function(item) == value)] return results[0] if results else None elif rounding in (CLOSEST, CLOSEST_IF_BOTH): if rounding is CLOSEST_IF_BOTH: if None in both: return None if both[0] is None: return both[1] if both[1] is None: return both[0] distances = [abs(function(item)-value) for item in both] if distances[0] <= distances[1]: return both[0] else: return both[1]
[ "ram@rachum.com" ]
ram@rachum.com
610a7317daea57a20502f20c9fb553eabdf68c7b
fcb68d461731bb27ec822146cc50197bac98acd5
/pypilot/pilots/intellect.py
4dee08a4479dee46e96b5c21a64119ff101cf233
[]
no_license
guliaka/pypilot
c552995dfb6f4b26418653c91c8fd1d59d9f547f
9727f82ae1abe737e702b6ea08b072ab5c5fb42c
refs/heads/master
2021-01-04T13:57:29.860140
2020-02-11T02:55:55
2020-02-11T02:55:55
240,585,392
0
0
null
2020-02-14T19:38:46
2020-02-14T19:38:46
null
UTF-8
Python
false
false
7,368
py
#!/usr/bin/env python # # Copyright (C) 2019 Sean D'Epagnier # # This Program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public # License as published by the Free Software Foundation; either # version 3 of the License, or (at your option) any later version. import os, sys, time import tensorflow as tf from signalk.client import SignalKClient class History(object): def __init__(self, conf): self.conf = conf self.data = [] def samples(self): return (self.conf['past']+self.conf['future'])*self.conf['rate'] def put(self, data): self.data = (self.data+[data])[:self.samples()] def inputs(history, names): def select(values, names): data = [] for name in values: if not name in names: continue value = values[name] if type(value) == type([]): data += value else: data.append(value) return data def flatten(values): data = [] for value in values: data += flatten(value) return data return flatten(map(lambda input : select(input, names), history)) class Intellect(object): def __init__(self): self.train_x, self.train_y = [], [] self.inputs = {} self.models = {} self.conf = {'past': 10, # seconds of sensor data 'future': 3, # seconds to consider in the future 'sensors': ['imu.accel', 'imu.gyro', 'imu.heading', 'imu.headingrate', 'servo.current', 'servo.command'], 'actions': ['servo.command'], 'predictions': ['imu.heading', 'imu.headingrate']} self.state = {'ap.enabled': False, 'ap.mode': 'none', 'imu.rate': 1} self.history = History(self.conf) self.last_timestamp = {} for name in self.conf['sensors']: self.sensor_timestamps[name] = 0 def load(self, mode): model = build(self.conf) try: self.model.load_weights('~/.pypilot/intellect') except: return model def train(self): if len(self.history.data) != self.history.samples: return # not enough data in history yet present = rate*past # inputs are the sensors over past time sensors_data = inputs(self.history.data[:present], sensors) # and the actions in the future actions_data = inputs(self.history.data[present:], actions) # predictions in the future predictions_data = inputs(self.history.data[present:], predictions) conf = {'sensors': sensor, 'actions': actions, 'rate': rate, 'mode': self.mode, 'predictions': predictions, 'past': past, 'future': future} if not self.model or self.model.conf == conf: self.model = self.build(conf) self.train_x, self.train_y = [], [] self.train_x.append(sensors_data + actions_data) self.train_y.append(predictions_data) pool_size = 100 # how much data to accumulate before training if len(self.train_x) >= pool_size: self.model.fit(train_x, train_y, epochs=4) self.train_x, self.train_y = [], [] def build(self, conf): input_size = conf['rate']*(conf['past']*len(conf['sensors']) + conf['future']*len(conf['actions'])) output_size = conf['rate']*conf['future']*len(conf['predictions']) input = tf.keras.layers.Input(shape=(input_size,), name='input_layer') hidden = tf.keras.layers.Dense(16*output_size, activation='relu')(input) output = tf.keras.layers.Dense(output_size, activation='tanh')(hidden) self.model = tf.keras.Model(inputs=input, outputs=output) self.model.compile(optimizer='adam', loss='mean_squared_error', metrics=['accuracy']) self.model.conf = conf def save(self, filename): converter = tf.lite.TFLiteConverter.from_keras_model(self.model) tflite_model = converter.convert() try: import json f = open(filename, 'w') conf['model_filename'] = filename + '.tflite_model' f.write(json.dumps(conf)) f.close() f = open(conf['model_filename'], 'w') f.write(tflite_model) f.close() except Exception as e: print('failed to save', f) def receive_single(self, name, msg): value = msg['value'] if name in self.state: self.state[name] = value return if name in self.conf['sensors'] and (1 or self.state['ap.enabled']): timestamp = msg['timestamp'] dt = timestamp - self.sensor_timestamps[name] dte = abs(dt - 1.0/float(self.state['imu.rate'])) if dte > .05: self.history.data = [] self.inputs = {} return if name in self.inputs: print('input already for', name, self.inputs[name], name, timestamp) self.inputs[name] = value # see if we have all sensor values, and if so store in the history if all(map(lambda sensor : sensor in inputs, sensors)): s = '' for name in inputs: s += name + ' ' + inputs[name] print('input', time.time(), s) self.history.put(inputs) self.train() self.inputs = {} def receive(self): msg = self.client.receive_single(1) while msg: name, value = msg self.receive_single(name, value) msg = self.client.receive_single(-1) def run_replay(self, filename): try: f = open(filename) print('opened replay file', filename) while True: line = f.readline() if not line: f.close() return True intellect.receive(json.loads(line)) except Exception as e: return False def run(self): host = 'localhost' if len(sys.argv) > 1: if self.run_replay(sys.argv[1]): return host = sys.argv[1] # couldn't load try to connect watches = self.conf['sensors'] + list(self.state) def on_con(client): for name in watches: client.watch(name) t0 = time.time() self.client = False while True: #try: if 1: if not self.client: print('connecting to', host) self.client = SignalKClient(on_con, host, autoreconnect=False) self.receive() #except Exception as e: # print('error', e) # self.client = False # time.sleep(1) if time.time() - t0 > 600: filename = os.getenv('HOME')+'/.pypilot/intellect_'+self.conf['mode']+'.conf' self.save(filename) # find cpu usage of training process #cpu = ps.cpu_percent() #if cpu > 50: # print('learning cpu very high', cpu) def main(): intellect = Intellect() intellect.run() if __name__ == '__main__': main()
[ "seandepagnier@gmail.com" ]
seandepagnier@gmail.com
f6251999cd5bce0014cea6dacf6385211fed0816
6a82724df32c6c787b9e9ae2fe49807384ae525e
/th_evernote/evernote_mgr.py
c9fff4618172b847b536052dc0f41a6c4ecd2ecb
[ "BSD-3-Clause", "MIT" ]
permissive
GuaiLong618/django-th
c9940685792a6fe480d6921ee43464f14b43a866
07086e4c5691bf76b7dae7e11b25e5482c5de71e
refs/heads/master
2022-09-10T17:34:46.654594
2016-08-01T07:46:32
2016-08-01T07:46:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,639
py
# coding: utf-8 import evernote.edam.type.ttypes as Types from evernote.edam.error.ttypes import EDAMSystemException, EDAMUserException from evernote.edam.error.ttypes import EDAMErrorCode from django.utils.translation import ugettext as _ from django.utils.log import getLogger from django.core.cache import caches logger = getLogger('django_th.trigger_happy') cache = caches['th_evernote'] def get_notebook(note_store, my_notebook): """ get the notebook from its name """ notebook_id = 0 notebooks = note_store.listNotebooks() # get the notebookGUID ... for notebook in notebooks: if notebook.name.lower() == my_notebook.lower(): notebook_id = notebook.guid break return notebook_id def set_notebook(note_store, my_notebook, notebook_id): """ create a notebook """ if notebook_id == 0: new_notebook = Types.Notebook() new_notebook.name = my_notebook new_notebook.defaultNotebook = False notebook_id = note_store.createNotebook(new_notebook).guid return notebook_id def get_tag(note_store, my_tags): """ get the tags from his Evernote account :param note_store Evernote Instance :param my_tags string :return: array of the tag to create """ tag_id = [] listtags = note_store.listTags() # cut the string by piece of tag with comma if ',' in my_tags: for my_tag in my_tags.split(','): for tag in listtags: # remove space before and after # thus we keep "foo bar" # but not " foo bar" nor "foo bar " if tag.name.lower() == my_tag.lower().lstrip().rstrip(): tag_id.append(tag.guid) break else: for tag in listtags: if tag.name.lower() == my_tags.lower(): tag_id.append(tag.guid) break return tag_id def set_tag(note_store, my_tags, tag_id): """ create a tag if not exists :param note_store evernote instance :param my_tags string :param tag_id id of the tag(s) to create :return: array of the tag to create """ new_tag = Types.Tag() if ',' in my_tags: for my_tag in my_tags.split(','): new_tag.name = my_tag tag_id.append(create_tag(note_store, new_tag)) elif my_tags: new_tag.name = my_tags tag_id.append(create_tag(note_store, new_tag)) return tag_id def create_note(note_store, note, trigger_id, data): """ create a note :param note_store Evernote instance :param note :param trigger_id id of the trigger :param data to save or to put in cache :type note_store: Evernote Instance :type note: Note instance :type trigger_id: int :type data: dict :return boolean :rtype boolean """ # create the note ! try: created_note = note_store.createNote(note) sentence = str('note %s created') % created_note.guid logger.debug(sentence) return True except EDAMSystemException as e: if e.errorCode == EDAMErrorCode.RATE_LIMIT_REACHED: sentence = "Rate limit reached {code} " \ "Retry your request in {msg} seconds" logger.warn(sentence.format( code=e.errorCode, msg=e.rateLimitDuration)) # put again in cache the data that could not be # published in Evernote yet cache.set('th_evernote_' + str(trigger_id), data, version=2) return True else: logger.critical(e) return False except EDAMUserException as e: if e.errorCode == EDAMErrorCode.ENML_VALIDATION: sentence = "Data ignored due to validation" \ " error : err {code} {msg}" logger.warn(sentence.format( code=e.errorCode, msg=e.parameter)) return True except Exception as e: logger.critical(e) return False def create_tag(note_store, new_tag): """ :param note_store Evernote instance :param new_tag: create this new tag :return: new tag id """ try: return note_store.createTag(new_tag).guid except EDAMUserException as e: if e.errorCode == EDAMErrorCode.DATA_CONFLICT: logger.info("Evernote Data Conflict Err {0}".format(e)) elif e.errorCode == EDAMErrorCode.BAD_DATA_FORMAT: logger.critical("Evernote Err {0}".format(e)) def set_header(): """ preparing the hearder of Evernote """ return '<?xml version="1.0" encoding="UTF-8"?>' \ '<!DOCTYPE en-note SYSTEM ' \ '"http://xml.evernote.com/pub/enml2.dtd">\n' def set_note_attribute(data): """ add the link of the 'source' in the note """ na = False if data.get('link'): na = Types.NoteAttributes() # add the url na.sourceURL = data.get('link') # add the object to the note return na def set_note_footer(data, trigger): """ handle the footer of the note """ footer = '' if data.get('link'): provided_by = _('Provided by') provided_from = _('from') footer_from = "<br/><br/>{} <em>{}</em> {} <a href='{}'>{}</a>" footer = footer_from.format( provided_by, trigger.trigger.description, provided_from, data.get('link'), data.get('link')) return footer
[ "foxmaskhome@gmail.com" ]
foxmaskhome@gmail.com
4d81d7fac5507be465f3a10892b7dd2151c353af
102232cb70610cb3654f2c83c14cb5e4460bfaa5
/spec_files/8.2/federated.conf.spec
6afe765bf820677b64b8bd6a3478dbdbfc7f083d
[ "LicenseRef-scancode-warranty-disclaimer", "MIT" ]
permissive
splunk/vscode-extension-splunk
850335e5074abf43bbc1d5804f120aa46caa4c49
e017b79a5312f219ba728462217173604fce5ca6
refs/heads/master
2023-08-03T10:18:35.587436
2023-07-24T01:34:10
2023-07-24T01:34:10
220,573,274
80
26
MIT
2023-09-14T20:51:14
2019-11-09T01:17:37
Python
UTF-8
Python
false
false
4,299
spec
# Version 8.2.1 # # This file contains possible setting and value pairs for federated provider entries # for use in Data Fabric Search (DFS), when the federated search functionality is # enabled. # # A federated search allows authorized users to run searches across multiple federated # providers. Only Splunk deployments are supported as federated providers. Information # on the Splunk deployment (i.e. the federated provider) is added in the federated # provider stanza of the federated.conf file. A federated search deployment can have # multiple federated search datasets. The settings for federated search dataset stanzas # are located in savedsearches.conf. # # To learn more about configuration files (including precedence) please see the # documentation located at # http://docs.splunk.com/Documentation/Splunk/latest/Admin/Aboutconfigurationfiles # # Here are the settings for the federated provider stanzas. [<federated-provider-stanza>] * Create a unique stanza name for each federated provider. type = [splunk] * Specifies the type of the federated provider. * Only Splunk deployments are supported as of this revision. * Default: splunk ip = <IP address or Host Name> * Identifies the IP address or host name of the federated provider. * Default: No default. splunk.port = <port> * Identifies the splunkd REST port on the remote Splunk deployment. * No default. splunk.serviceAccount = <user> * Identifies an authorized user on the remote Splunk deployment. * The security credentials associated with this account are managed securely in fshpasswords.conf. * No default. splunk.app = <string> * The name of the Splunk application on the remote Splunk deployment in which * to perform the search. * No default. # # Federated Provider Stanza # [provider] * Each federated provider definition must have a separate stanza. * <provider> must follow the following syntax: provider://<unique-federated-provider-name> * <unique-federated-provider-name> can contain only alphanumeric characters and underscores. type = [splunk] * Specifies the type of the federated provider. * Only Splunk deployments are supported as of this version. * Default: splunk hostPort = <Host_Name_or_IP_Address>:<service_port> * Specifies the protocols required to connect to a federated provider. * You can provide a host name or an IP address. * The <service_port> can be any legitimate port number. * No default. serviceAccount = <user_name> * Specifies the user name for a service account that has been set up on the federated provider for the purpose of enabling secure federated search. * This service account allows the federated search head on your local Splunk platform deployment to query datasets on the federated provider in a secure manner. * No default. password = <password> * Specifies the service account password for the user specified in the 'serviceAccount' setting. * No default. appContext = <application_short_name> * Specifies the Splunk application context for the federated searches that will be run with this federated provider definition. * Provision of an application context ensures that federated searches which use the federated provider are limited to the knowledge objects that are associated with the named application. Application context can also affect search job quota and resource allocation parameters. * NOTE: This setting applies only when `useFSHKnowledgeObjects = false`. * <application_short_name> must be the "short name" of a Splunk application currently installed on the federated provider. For example, the short name of Splunk IT Service Intelligence is 'itsi'. * You can create multiple federated provider definitions for the same remote search head that differ only by app context. * Find the short names of apps installed on a Splunk deployment by going to 'Apps > Manage Apps' and reviewing the values in the 'Folder name' column. * Default: search useFSHKnowledgeObjects = <boolean> * Determines whether federated searches with this provider use knowledge objects from the federated provider (the remote search head) or from the federated search head (the local search head). * When set to 'true' federated searches with this provider use knowledge objects from the federated search head. * Default: true
[ "jason@jasonconger.com" ]
jason@jasonconger.com
a1fc804457d63cf68b8a48fe34eaed92704fa56a
42211b7e5878f2b0b8aeb1bbee5a7185ed3580f6
/src/utils.py
4e1cad1f0e69c8d7c1e78939904b84cafab51ac8
[]
no_license
oopzzozzo/eye-pasting
3ba3b314ec043a9468d12cb46025bffc998b70be
8a0f72bb51869f317f4dff7d88db53adf2b0133e
refs/heads/master
2020-05-27T00:37:53.953036
2019-06-18T09:18:07
2019-06-18T09:18:07
188,424,904
0
0
null
null
null
null
UTF-8
Python
false
false
1,300
py
import cv2 as cv import dlib import numpy as np from imutils import face_utils # face_utils (l_s_idx, l_e_idx) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"] (r_s_idx, r_e_idx) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"] get_eyes = lambda marks: (marks[l_s_idx:l_e_idx], marks[r_s_idx:r_e_idx]) dp_idx = 33 # helper fuctions to cast cv2 among dlib rect2pts = lambda rect: ((rect.left(), rect.top()), (rect.right(), rect.bottom())) shape2pts = lambda shape: list(map(lambda i: (shape.part(i).x, shape.part(i).y), range(68))) tp2pts = lambda tp: ((tp[0], tp[1]), (tp[0]+tp[2], tp[1]+tp[3])) pts2rect = lambda pts: dlib.rectangle(*pts[0], *pts[1]) # pts functions pix = ((0,0), (0,0)) safe = lambda rect, shape: tuple([tuple([min(max(x, 0), b-1) for x, b in zip(p, shape[1::-1])]) for p in rect]) pts_area = lambda ps: (ps[1][0] - ps[0][0]) * (ps[1][1] - ps[0][1]) leftup = lambda pt2: all([(x1 < x2) for x1, x2 in zip(*pt2)]) crop = lambda img, pts: img[pts[0][1]:pts[1][1], pts[0][0]:pts[1][0]] def preserve(img, pts): ret = np.zeros(img.shape, np.uint8) pts = safe(pts, img.shape) ret[pts[0][1]:pts[1][1], pts[0][0]:pts[1][0]] = img[pts[0][1]:pts[1][1], pts[0][0]:pts[1][0]] return ret # colors blue = (255, 0, 0) green = (0, 255, 0) red = (0, 0, 255) white = (255, 255, 255)
[ "ek3ru8m4@gmail.com" ]
ek3ru8m4@gmail.com
98fb05633126284f0264cbf415267d9c26c83b37
0030495752530ac832f6a298c2faaa1e75d27ae6
/src/template_matching/__init__.py
3e943beecb8999cc74755f71e361a89a4e14f287
[ "Apache-2.0" ]
permissive
AnttiHaerkoenen/henkikirjat
4697d01ada88b332d71d7122b5258210f07fc0a1
0c4dcfdc753b3c1af9e2d17917d95d2e783cd234
refs/heads/master
2021-07-07T03:45:16.408150
2020-08-27T09:06:34
2020-08-27T09:06:34
159,818,611
0
0
null
null
null
null
UTF-8
Python
false
false
173
py
from enum import Enum import cv2 from .img_tools import * from .rectangle import * from .digits import * from .matching import * from .grid_to_xml import page_grid_to_xml
[ "antth@hotmail.fi" ]
antth@hotmail.fi
c15ab19b59d0a45c31c4fd4763fbb8d84e0f58bc
80ff29422e987f17cbb06211907c555d713c881f
/OZON/ML/HOMEWORKS/week1_find_word_in_circle.py
66e4f55e0f89b5df75a14c997225b7fef769fa95
[]
no_license
be-y-a/smth
8780f362305ddb4d25834b921459fb4c9115ab5f
2ee632b629f68aca49642322b28c8487ce24fee9
refs/heads/master
2023-01-10T16:08:25.030319
2020-11-02T21:48:10
2020-11-09T10:09:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,147
py
def check(input, index, pattern): patternIndex = 0 inputIndex = index result = -1 isRightPossible = True isLeftPossible = True while patternIndex < len(pattern): if inputIndex == len(input): inputIndex = 0 if input[inputIndex] == pattern[patternIndex]: patternIndex += 1 inputIndex += 1 else: isRightPossible = False break if isRightPossible: return (index, 1) patternIndex = 0 inputIndex = index while patternIndex < len(pattern): if inputIndex == -1: inputIndex = len(input) - 1 if input[inputIndex] == pattern[patternIndex]: patternIndex += 1 inputIndex -= 1 else: isLeftPossible = False break if isLeftPossible: return (index, -1) return -1 def find_word_in_circle(input, pattern): if pattern == "" or input == pattern: return (0, 1) patternIndex = 0 for i in range(len(input)): result = check(input, i, pattern) if result != -1: return result return -1
[ "mvvm@yandex-team.ru" ]
mvvm@yandex-team.ru
f4e82e0fb6fcf19025bb2572c0fa042925daf77f
1c589c05222eff2cf10d8d9386f3ef6563a66920
/virtual/bin/gunicorn_paster
0cd53e6041ba582e0dcea5f319525295ca7a7318
[ "MIT" ]
permissive
Okalll/gram-insta
c642e998aad925b7de93b7376b328d1125ec227d
c17095511aea62950938c1ad0528503b717780e3
refs/heads/master
2020-04-28T01:49:51.550835
2019-03-15T15:49:57
2019-03-15T15:49:57
174,874,070
0
1
null
null
null
null
UTF-8
Python
false
false
257
#!/home/moringa/Desktop/gram-ins/virtual/bin/python3 # -*- coding: utf-8 -*- import re import sys from gunicorn.app.pasterapp import run if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(run())
[ "vivieokall@gmail.com" ]
vivieokall@gmail.com
ca65f667b697e219623f15dc98b33eeee73524ea
8dd8f391b1da81bc8d8dd170a44a8f0cd91f9529
/NotesLmao.py
dcc1c10fa29d777886580fd7f77c9c411861b953
[]
no_license
DavidEsketit/CSE7
aa7eaf53da991d6c53bb80b84ccb2a9eff07dd37
e0a49863e0909f6fa117951ff95cd4b4aa3abf74
refs/heads/master
2021-09-14T23:10:36.833047
2018-05-21T22:59:08
2018-05-21T22:59:08
112,400,040
0
0
null
null
null
null
UTF-8
Python
false
false
4,602
py
# print("Hello World!") # # # David Solis # # print(3 + 5) # print(5 - 3) # print(5 * 3) # print(6 / 2) # print(3 ** 2) # # print() # print("See if you can figure this out") # print(100 % 3) # # # Variables # car_name = "Wiebe Mobile" # car_type = "Lamborghini Sesto Elemento" # car_cylinders = 8 # car_mpg = 9000.1 # # # Inline Printing # print("My car is the %s." % car_name) # print("My car is the %s. It is a %s" % (car_name, car_type)) # # # Taking input # name = input("What is your name? ") # print("Hello %s." % name) # print(name) # # age = input("What is your age? ") # print("%s is a nice age to be in." % age) # # # Initializing Variable # answer = random.randint(1, 50) # turns_left = 5 # correct_guess = False # # # Describes exactly ONE turn. The while loop is the Game Controller. # while turns_left > 0 and correct_guess is False: # guess = int(input("Guess a number between 1 and 50: ")) # if guess == answer: # print() # Lists # the_count = [1, 2, 3, 4, 5] # # characters = ["graves", "Dory", "Boots", "Dora", "Shrek", "Odi-Man", "Ian", "Carl"] # print(characters[0]) # print(characters[4]) # # print(len(characters)) # # # Going through lists # for char in characters: # print(char) # # for num in the_count: # print(num ** 2) # # len(characters) # range(3) # Makes a list of the number from 0 to 2 # range(len(characters)) # Make a list of ALL INDICES # # for num in range(len(characters)): # char = characters[num] # print("The character at index %d is %s" % (num, char)) # # str1 = "Hello World!" # Start counting from 0 # listOne = list(str1) # print(listOne) # listOne[11] = '.' # print(listOne) # newStr = "".join(listOne) # print(newStr) # # # Adding stuff to list # # characters.append("Ironman/Batman/whomever you want") # print(characters) # # characters.append("Black Panther") # # # Removing stuff from list # # characters.remove("Carl") # # characters.pop(6) # print(characters) # The string class # import string # print(string.ascii_letters) # print(string.ascii_lowercase) # print(string.digits) # print(string.punctuation) # # strTwo = 'tHiS sEntEnCe iS uNuSuAl' # lowercase = strTwo.lower() # print(lowercase) # uppercase = strTwo.upper() # print(uppercase) # # Hangman Board # """ # Make a list for the word, letter by letter. # Add the letters guessed by the user to another list # """ # # Dictionaries - Make up a key: value pair # dictionary = {'name': 'Lance', 'age': 18, "height": 6 * 12 + 2} # # # Accessing from a dictionary # print(dictionary['name']) # print(dictionary['age']) # print(dictionary['height']) # # large_dictionary = { # "California": "CA", # "Washington": "WA", # "Florida": "FL" # } # # Adding to a dictionary # dictionary["eye color"] = "white" # print(dictionary) # # # print(large_dictionary['Florida']) # # larger_dictionary = { # "California": [ # "Fresno", # "Sacramento", # "Los Angeles" # ], # "Washington": [ # "Seattle", # "Tacoma", # "Olympia", # "Spokane" # ], # "Illinois": [ # "Chicago", # "Naperville", # "Peoria" # ], # } # # print(larger_dictionary["Illinois"]) # print(larger_dictionary["Illinois"][0]) # # # Spokane # print(larger_dictionary["Washington"][3]) # # largest_dictionary = { # "CA": { # 'NAME': "California", # 'Population': 39250000, # 'BORDER ST': [ # 'Oregon', # "Nevada", # "Arizona" # ], # }, # "MI": { # "NAME": "Michigan", # "POPULATION": 9928000, # "BORDER ST": [ # 'Wisconsin', # 'Ohio', # "Indiana" # ] # }, # "FL": { # "NAME": "Florida", # "POPULATION": 2610000, # "BORDER ST": [ # 'Georgia', # 'Alabama' # ] # } # } # print(largest_dictionary["MI"]["BORDER ST"][1]) # print(largest_dictionary["FL"]["NAME"]) # Defining Functions def hello_world(): print("Hello World") hello_world() def square_it(number): return number ** 2 print(square_it(3)) for i in range(15): print(square_it(i)) def tip_calc(subtotal): tip_amt = subtotal * 0.18 # tip_amt is a local variable print("The tip amount is $%d" % tip_amt) return tip_amt def total_bills(subtotal): total = subtotal + tip_calc(subtotal) return total print(total_bills(100)) def distance(x1, y1, x2, y2): inside = (x2-x1) ** 2 + (y2 - y1) ** 2 answer = inside ** 0.5 return answer print(distance(0, 0, 3, 4))
[ "rbpi@wetigers.org" ]
rbpi@wetigers.org
f8c65e0ccdd678cb113f84e3c42f60d8fed79f3b
ebfcae1c5ba2997b2ac4471d5bedc3f5daffcb31
/pylodon-master/pylodon/utilities.py
a9209a940682b30eff324e639cfaaef17a0b6769
[ "MIT" ]
permissive
babiato/flaskapp1
84de2d0b26a54f5820d3bbe97926782ad41e005c
530beb9e3b8516e0e93960b99521c23a523ef546
refs/heads/master
2023-02-26T16:36:49.760632
2021-02-04T09:08:40
2021-02-04T09:08:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,269
py
from pylodon import mongo from config import DEFAULT_HEADERS, VALID_HEADERS, API_URI, ACCEPT_HEADERS, CONTENT_HEADERS from activipy import core from flask import abort from httpsig import HeaderSigner, Signer from werkzeug.http import http_date import datetime def get_time(): """ for when you need to know what time it is returns in isoformat because that's what masto uses """ return datetime.datetime.now().isoformat() def as_asobj(obj): return core.ASObj(obj) # header checking def check_accept_headers(r): """ checks headers against allowed headers as defined in config """ accept = r.headers.get('accept') if accept and (accept in VALID_HEADERS): return True return False def check_content_headers(r): """ checks headers against allowed headers as defined in config """ content_type = r.headers.get('Content-Type') if content_type and (content_type in VALID_HEADERS): return True return False def check_headers(request): """ checks whether the client has used the appropriate Accept or Content-Type headers in their request. if not, aborts with an appropriate HTTP error code """ method = request.method if method == 'GET': accept = request.headers.get('accept', None) if accept and (accept in VALID_HEADERS): pass else: abort(406) # Not Acceptable elif method == 'POST': content_type = request.headers.get('Content-Type', None) if content_type and (content_type in VALID_HEADERS): pass else: abort(415) # Unsupported Media Type else: abort(400) # Bad Request # signatures def sign_headers(u, headers): """ """ key_id = u['publicKey']['@id'] secret = u['privateKey'] hs = HeaderSigner(key_id, secret, algorithm='rsa-sha256') auth = hs.sign({"Date": http_date()}) # thanks to https://github.com/snarfed for the authorization -> signature headers hack # this is necessary because httpsig.HeaderSigner returns an Authorization header instead of Signature auth['Signature'] = auth.pop('authorization') assert auth['Signature'].startswith('Signature ') auth['Signature'] = auth['Signature'][len('Signature '):] auth.update(headers) auth.update(DEFAULT_HEADERS) return auth def sign_object(u, obj): """ creates pubkey signed version of the given object (e.g. a Note) """ # key_id = u['publicKey']['@id'] secret = u['privateKey'] hs = Signer(secret=secret, algorithm="rsa-sha256") auth_object = hs._sign(obj) return auth_object # add headers def content_headers(u): """ """ return sign_headers(u, CONTENT_HEADERS) def accept_headers(u): """ """ return sign_headers(u, ACCEPT_HEADERS) # database queries def find_user(handle): """ """ u = mongo.db.users.find_one({'username': handle}, {'_id': False}) if not u: return None return u def find_post(handle, post_id): """ """ user_api_uri = API_URI+'/'+handle id = user_api_uri+'/'+post_id p = mongo.db.posts.find_one({'object.id': id}, {'_id': False}) if not p: return None return p
[ "jinxufang@tencent.com" ]
jinxufang@tencent.com
f0fd0c01012661f5f768491e7853b3274c39005b
5f09a94da91ecae226dbac687b056bd68d209ebf
/project/code/.ipynb_checkpoints/jsonCode-checkpoint.py
1c635e5fde75a366a95301cdf18887db70f7bf8b
[]
no_license
marshallgrimmett/data-mining-python
7a88617bbe5146a9dd2df669743ec1d3bcada0ca
b876aa55571f2209495b8e91d99a3447cd1568a0
refs/heads/main
2023-07-15T06:04:53.765065
2021-08-18T16:53:12
2021-08-18T16:53:12
333,232,968
0
0
null
null
null
null
UTF-8
Python
false
false
2,769
py
import json import pandas as pd from ludwig.utils import data_utils all_users = {} all_problems = {} all_concepts = {} df = data_utils.read_csv("data.csv") removing_duplicate_users = [i for n, i in enumerate(df['Anon Student Id'].tolist()) if i not in df['Anon Student Id'].tolist()[:n]] count_user = 1 for i in removing_duplicate_users: all_users[i] = count_user count_user += 1 json_users = json.dumps(all_users, indent = 2) #--------------------------------------------------------------------------------------- removing_duplicate_problems = [i for n, i in enumerate(df['Problem Name'].tolist()) if i not in df['Problem Name'].tolist()[:n]] count_problem = 1 for i in removing_duplicate_problems: all_problems[i] = count_problem count_problem += 1 json_problems = json.dumps(all_problems, indent = 2) #--------------------------------------------------------------------------------------- cleanedList1 = [x for x in df['KC (WPI-Apr-2005)'].tolist() if str(x) != 'nan'] cleanedList2 = [x for x in df['KC (WPI-Apr-2005).1'].tolist() if str(x) != 'nan'] cleanedList3 = [x for x in df['KC (skills_from_dataframe).2'].tolist() if str(x) != 'nan'] cleanedList4 = [x for x in df['KC (skills_from_dataframe).3'].tolist() if str(x) != 'nan'] cleanedList5 = [x for x in df['KC (skills_from_dataframe).4'].tolist() if str(x) != 'nan'] cleanedList6 = [x for x in df['KC (skills_from_dataframe).5'].tolist() if str(x) != 'nan'] cleanedList7 = [x for x in df['KC (MCAS39-State_WPI-Simple)'].tolist() if str(x) != 'nan'] cleanedList8 = [x for x in df['KC (MCAS39-State_WPI-Simple).1'].tolist() if str(x) != 'nan'] cleanedList9 = [x for x in df['KC (MCAS39-State_WPI-Simple).2'].tolist() if str(x) != 'nan'] cleanedList10 = [x for x in df['KC (MCAS39-State_WPI-Simple).3'].tolist() if str(x) != 'nan'] cleanedList11 = [x for x in df['KC (MCAS5-State_WPI-Simple)'].tolist() if str(x) != 'nan'] combining_lists = cleanedList1 + cleanedList2 + cleanedList3 + cleanedList4 + cleanedList5 + cleanedList6 + cleanedList7 + cleanedList8 + cleanedList9 + cleanedList10 + cleanedList11 removing_duplicate_concepts = [i for n, i in enumerate(combining_lists) if i not in combining_lists[:n]] count_concept = 1 for i in removing_duplicate_concepts: all_concepts[i] = count_concept count_concept += 1 json_concepts = json.dumps(all_concepts, indent = 2) dataset_statistics = { 'Dataset': ['Assistments Math 2005-2006'], 'Learners': [str(len(all_users))], 'Concepts': [str(len(all_concepts))], 'Questions': [str(len(all_problems))], 'Responses': [str(len(df['Outcome']))] } statistics_df = pd.DataFrame(dataset_statistics, columns = ['Dataset', 'Learners','Concepts','Questions','Responses']) print(statistics_df)
[ "mgrimmett@albany.edu" ]
mgrimmett@albany.edu
ef45c3d3056e28f1680f4e7db692d69a59f4b954
3c7828b2bc6ca8ef95340506f395f258c42f18e3
/venv/bin/easy_install
13f443f6b229b2a2645c04da5dfee6f165db27f7
[]
no_license
kian98/Masege
8be5187951cb6bdd78cf2c7889a9c5edf47d47e6
3e6ec71cb4c4c86c6620be8668738190eb4f6329
refs/heads/master
2020-07-30T00:05:13.341534
2019-10-07T17:00:06
2019-10-07T17:00:06
210,010,658
0
0
null
null
null
null
UTF-8
Python
false
false
436
#!/home/kian/develop/Python/Masege/venv/bin/python # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==39.1.0','console_scripts','easy_install' __requires__ = 'setuptools==39.1.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==39.1.0', 'console_scripts', 'easy_install')() )
[ "1207529462@qq.com" ]
1207529462@qq.com
eed74d7bd10d46efb6c28d0958b44306583ee637
b4b199096518dcaa1e45f026310971c6302a2b96
/remixt/cn_plot.py
ab3831d82c1f231668b4f83ce1f19e5464fecfaa
[ "MIT" ]
permissive
amcpherson/remixt
07353eb74d4427734d7868e53b8fc48a41f6c1fe
8f462fe3c5c5afcf4d2c13edb1162f5c3e853430
refs/heads/master
2023-06-25T08:21:12.479643
2022-07-26T21:49:28
2022-07-26T21:49:28
95,475,048
6
2
MIT
2023-02-10T23:13:51
2017-06-26T18:08:10
Python
UTF-8
Python
false
false
26,969
py
import sys import os import itertools import pickle import pandas as pd import numpy as np import scipy import matplotlib import matplotlib.pyplot as plt from matplotlib.colors import colorConverter from matplotlib.path import Path import matplotlib.patches as patches from matplotlib.patches import Rectangle import matplotlib.backends.backend_pdf import remixt.analysis.experiment import remixt.analysis.readdepth def filled_density_weighted(ax, data, weights, c, a, xmin, xmax, cov, rotate=False): """ Weighted filled density plot. """ density = scipy.stats.gaussian_kde(data, bw_method=cov, weights=weights) xs = [xmin] + list(np.linspace(xmin, xmax, 2000)) + [xmax] ys = density(np.array(xs)) ys[0] = 0.0 ys[-1] = 0.0 if rotate: ax.plot(ys, xs, color=c, alpha=a) ax.fill_betweenx(xs, ys, color=c, alpha=a) else: ax.plot(xs, ys, color=c, alpha=a) ax.fill(xs, ys, color=c, alpha=a) def plot_cnv_segments(ax, cnv, major_col='major', minor_col='minor', do_fill=False,): """ Plot raw major/minor copy number as line plots Args: ax (matplotlib.axes.Axes): plot axes cnv (pandas.DataFrame): cnv table major_col (str): name of major copies column minor_col (str): name of minor copies column do_fill (boolean): fill from 0 Plot major and minor copy number as line plots. The columns 'start' and 'end' are expected and should be adjusted for full genome plots. Values from the 'major_col' and 'minor_col' columns are plotted. """ segment_color_major = plt.get_cmap('RdBu')(0.1) segment_color_minor = plt.get_cmap('RdBu')(0.9) quad_color_major = colorConverter.to_rgba(segment_color_major, alpha=0.5) quad_color_minor = colorConverter.to_rgba(segment_color_minor, alpha=0.5) cnv = cnv.sort_values('start') def create_segments(df, field): segments = np.array([[df['start'].values, df[field].values], [df['end'].values, df[field].values]]) segments = np.transpose(segments, (2, 0, 1)) return segments def create_connectors(df, field): prev = df.iloc[:-1].reset_index() next = df.iloc[1:].reset_index() mids = ((prev[field] + next[field]) / 2.0).values prev_cnct = np.array([[prev['end'].values, prev[field].values], [prev['end'].values, mids]]) prev_cnct = np.transpose(prev_cnct, (2, 0, 1)) next_cnct = np.array([[next['start'].values, mids], [next['start'].values, next[field].values]]) next_cnct = np.transpose(next_cnct, (2, 0, 1)) return np.concatenate([prev_cnct, next_cnct]) def create_quads(df, field): quads = np.array([ [df['start'].values, np.zeros(len(df.index))], [df['start'].values, df[field].values], [df['end'].values, df[field].values], [df['end'].values, np.zeros(len(df.index))], ]) quads = np.transpose(quads, (2, 0, 1)) return quads major_segments = create_segments(cnv, major_col) minor_segments = create_segments(cnv, minor_col) ax.add_collection(matplotlib.collections.LineCollection(major_segments, colors=segment_color_major, lw=1)) ax.add_collection(matplotlib.collections.LineCollection(minor_segments, colors=segment_color_minor, lw=1)) major_connectors = create_connectors(cnv, major_col) minor_connectors = create_connectors(cnv, minor_col) ax.add_collection(matplotlib.collections.LineCollection(major_connectors, colors=segment_color_major, lw=1)) ax.add_collection(matplotlib.collections.LineCollection(minor_connectors, colors=segment_color_minor, lw=1)) if do_fill: major_quads = create_quads(cnv, major_col) minor_quads = create_quads(cnv, minor_col) ax.add_collection(matplotlib.collections.PolyCollection(major_quads, facecolors=quad_color_major, edgecolors=quad_color_major, lw=0)) ax.add_collection(matplotlib.collections.PolyCollection(minor_quads, facecolors=quad_color_minor, edgecolors=quad_color_minor, lw=0)) def plot_cnv_genome(ax, cnv, mincopies=-0.4, maxcopies=4, minlength=1000, major_col='major', minor_col='minor', chromosome=None, start=None, end=None, tick_step=None, do_fill=False, chromosomes=None): """ Plot major/minor copy number across the genome Args: ax (matplotlib.axes.Axes): plot axes cnv (pandas.DataFrame): copy number table KwArgs: mincopies (float): minimum number of copies for setting y limits maxcopies (float): maximum number of copies for setting y limits minlength (int): minimum length of segments to be drawn major_col (str): name of major copies column minor_col (str): name of minor copies column chromosome (str): name of chromosome to plot, None for all chromosomes start (int): start of region in chromosome, None for beginning end (int): end of region in chromosome, None for end of chromosome tick_step (float): genomic length between x steps do_fill (boolean): fill to 0 for copy number chromosomes (list): list of chromosomes to plot in order Returns: pandas.DataFrame: table of chromosome length info """ if chromosome is None and (start is not None or end is not None): raise ValueError('start and end require chromosome arg') # Ensure we dont modify the calling function's table cnv = cnv[['chromosome', 'start', 'end', major_col, minor_col]].copy() if 'length' not in cnv: cnv['length'] = cnv['end'] - cnv['start'] # Restrict segments to those plotted if chromosome is not None: cnv = cnv[cnv['chromosome'] == chromosome] if start is not None: cnv = cnv[cnv['end'] > start] if end is not None: cnv = cnv[cnv['start'] < end] # Create chromosome info table if chromosomes is None: chromosomes = remixt.utils.sort_chromosome_names(cnv['chromosome'].unique()) chromosome_length = cnv.groupby('chromosome')['end'].max() chromosome_info = pd.DataFrame({'length':chromosome_length}, index=chromosomes) # Calculate start and end in plot chromosome_info['end'] = np.cumsum(chromosome_info['length']) chromosome_info['start'] = chromosome_info['end'] - chromosome_info['length'] chromosome_info['mid'] = (chromosome_info['start'] + chromosome_info['end']) / 2. if minlength is not None: cnv = cnv[cnv['length'] >= minlength] cnv.set_index('chromosome', inplace=True) cnv['chromosome_start'] = chromosome_info['start'] cnv.reset_index(inplace=True) cnv['start'] = cnv['start'] + cnv['chromosome_start'] cnv['end'] = cnv['end'] + cnv['chromosome_start'] plot_cnv_segments(ax, cnv, major_col=major_col, minor_col=minor_col, do_fill=do_fill) ax.set_yticks(range(int(mincopies), int(maxcopies - mincopies) + 1)) ax.set_ylim((mincopies, maxcopies)) ax.set_yticklabels(ax.get_yticks(), ha='left') ax.yaxis.tick_left() ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.yaxis.set_tick_params(direction='out', labelsize=12) ax.xaxis.set_tick_params(direction='out', labelsize=12) ax.xaxis.tick_bottom() if chromosome is not None: if start is None: start = 0 if end is None: end = chromosome_info.loc[chromosome, 'length'] plot_start = start + chromosome_info.loc[chromosome, 'start'] plot_end = end + chromosome_info.loc[chromosome, 'start'] ax.set_xlim((plot_start, plot_end)) ax.set_xlabel('Chromosome ' + chromosome, fontsize=14) if tick_step is None: tick_step = (end - start) / 12. tick_step = np.round(tick_step, decimals=-int(np.floor(np.log10(tick_step)))) xticks = np.arange(plot_start, plot_end, tick_step) xticklabels = np.arange(start, end, tick_step) ax.set_xticks(xticks) ax.set_xticklabels(['{:g}'.format(a/1e6) + 'Mb' for a in xticklabels]) else: ax.set_xlim((0, chromosome_info['end'].max())) ax.set_xlabel('chromosome') ax.set_xticks([0] + list(chromosome_info['end'].values)) ax.set_xticklabels([]) ax.xaxis.set_minor_locator(matplotlib.ticker.FixedLocator(chromosome_info['mid'])) ax.xaxis.set_minor_formatter(matplotlib.ticker.FixedFormatter(chromosome_info.index.values)) ax.yaxis.set_tick_params(pad=8) ax.yaxis.set_tick_params(pad=8) ax.xaxis.grid(True, which='major', linestyle=':') ax.yaxis.grid(True, which='major', linestyle=':') return chromosome_info def plot_cnv_genome_density(fig, transform, cnv, chromosomes=None): """ Plot major/minor copy number across the genome and as a density Args: fig (matplotlib.figure.Figure): figure to which plots are added transform (matplotlib.transform.Transform): transform for locating axes cnv (pandas.DataFrame): copy number table KwArgs: chromosomes (list): chromosomes to plot Returns: matplotlib.figure.Figure: figure to which the plots have been added """ box = matplotlib.transforms.Bbox([[0.05, 0.05], [0.65, 0.95]]) ax = fig.add_axes(transform.transform_bbox(box)) remixt.cn_plot.plot_cnv_genome(ax, cnv, mincopies=-1, maxcopies=6, major_col='major_raw', minor_col='minor_raw', chromosomes=chromosomes) ax.set_ylabel('Raw copy number') ylim = ax.get_ylim() box = matplotlib.transforms.Bbox([[0.7, 0.05], [0.95, 0.95]]) ax = fig.add_axes(transform.transform_bbox(box)) cov = 0.05 data = cnv[['minor_raw', 'major_raw', 'length']].replace(np.inf, np.nan).dropna() filled_density_weighted( ax, data['minor_raw'].values, data['length'].values, 'blue', 0.5, ylim[0], ylim[1], cov, rotate=True) filled_density_weighted( ax, data['major_raw'].values, data['length'].values, 'red', 0.5, ylim[0], ylim[1], cov, rotate=True) ax.set_ylim(ylim) ax.set_xlabel('Density') ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.xaxis.tick_bottom() ax.yaxis.tick_left() ax.yaxis.grid(True) return fig def create_chromosome_color_map(chromosomes): """ Create a map of colors per chromosome. Args: chromosomes (list): list of chromosome names Returns: pandas.DataFrame: chromosome color table """ color_map = plt.get_cmap('Dark2') chromosome_colors = list() for i in range(len(chromosomes)): if len(chromosomes) == 1: f = 0. else: f = float(i)/float(len(chromosomes)-1) rgb_color = color_map(f) hex_color = matplotlib.colors.rgb2hex(rgb_color) chromosome_colors.append(hex_color) chromosome_colors = pd.DataFrame({'chromosome':chromosomes, 'color':chromosome_colors}) return chromosome_colors def plot_cnv_scatter(ax, cnv, major_col='major', minor_col='minor', highlight_col=None, chromosome_colors=None, chromosomes=None): """ Scatter plot segments major by minor. Args: ax (matplotlib.axes.Axes): plot axes cnv (pandas.DataFrame): copy number table KwArgs: major_col (str): name of major copies column minor_col (str): name of minor copies column highlight_col (str): name of boolean column for highlighting specific segments chromosome_colors (pandas.DataFrame): chromosome color table chromosomes (list): chromosomes to plot, in order """ cnv = cnv[['chromosome', 'start', 'end', 'length', major_col, minor_col]].replace(np.inf, np.nan).dropna() # Create color map for chromosomes if chromosomes is None: chromosomes = remixt.utils.sort_chromosome_names(cnv['chromosome'].unique()) # Create chromosome color map if not given if chromosome_colors is None: chromosome_colors = create_chromosome_color_map(chromosomes) # Scatter size scaled by segment length cnv['scatter_size'] = 10. * np.sqrt(cnv['length'] / 1e6) # Scatter color cnv = cnv.merge(chromosome_colors) major_samples = remixt.utils.weighted_resample(cnv[major_col].values, cnv['length'].values) major_min = np.percentile(major_samples, 1) major_max = np.percentile(major_samples, 99) major_margin = 0.25 * (major_max - major_min) xlim = (major_min - major_margin, major_max + major_margin) minor_samples = remixt.utils.weighted_resample(cnv[minor_col].values, cnv['length'].values) minor_min = np.percentile(minor_samples, 1) minor_max = np.percentile(minor_samples, 99) minor_margin = 0.25 * (minor_max - minor_min) ylim = (minor_min - minor_margin, minor_max + minor_margin) if highlight_col is not None: cnv_greyed = cnv[~cnv[highlight_col]] cnv = cnv[cnv[highlight_col]] points = ax.scatter(cnv_greyed[major_col], cnv_greyed[minor_col], s=cnv_greyed['scatter_size'], facecolor='#d0d0e0', edgecolor='#d0d0e0', linewidth=0.0, zorder=2) points = ax.scatter(cnv[major_col], cnv[minor_col], s=cnv['scatter_size'], facecolor=cnv['color'], edgecolor=cnv['color'], linewidth=0.0, zorder=2) ax.set_xlim(xlim) ax.set_xlabel('major') ax.set_ylim(ylim) ax.set_ylabel('minor') ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.xaxis.tick_bottom() ax.yaxis.tick_left() ax.grid(True) lgnd_artists = [plt.Circle((0, 0), color=c) for c in chromosome_colors['color']] lgnd = ax.legend(lgnd_artists, chromosomes, loc=2, markerscale=0.5, fontsize=6, ncol=2, title='Chromosome', frameon=True) lgnd.get_frame().set_edgecolor('w') def plot_cnv_scatter_density(fig, transform, data, major_col='major', minor_col='minor', annotate=(), info='', chromosomes=None): """ Plot CNV Scatter with major minor densities on axes. Args: fig (matplotlib.figure.Figure): figure to which plots are added transform (matplotlib.transform.Transform): transform for locating axes data (pandas.DataFrame): copy number data KwArgs: major_col (str): name of major copies column minor_col (str): name of minor copies column annotate (iterable): copy values to annotate with dashed line info (str): information to add to empty axis chromosomes (list): chromosomes to plot Returns: matplotlib.figure.Figure: figure to which the plots have been added """ box = matplotlib.transforms.Bbox([[0.05, 0.05], [0.65, 0.65]]) ax = fig.add_axes(transform.transform_bbox(box)) remixt.cn_plot.plot_cnv_scatter(ax, data, chromosomes=chromosomes) xlim = ax.get_xlim() ylim = ax.get_ylim() for a in annotate: ax.plot(xlim, [a, a], '--k') ax.plot([a, a], ylim, '--k') box = matplotlib.transforms.Bbox([[0.05, 0.7], [0.65, 0.95]]) ax = fig.add_axes(transform.transform_bbox(box)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.xaxis.tick_bottom() ax.yaxis.tick_left() ax.xaxis.grid(True) filled_density_weighted( ax, data[major_col].values, data['length'].values, '0.75', 0.5, xlim[0], xlim[1], 1e-7) ax.set_xlim(xlim) for a in annotate: ax.plot([a, a], ax.get_ylim(), '--k') box = matplotlib.transforms.Bbox([[0.7, 0.05], [0.95, 0.65]]) ax = fig.add_axes(transform.transform_bbox(box)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.xaxis.tick_bottom() ax.yaxis.tick_left() ax.yaxis.grid(True) filled_density_weighted( ax, data[minor_col].values, data['length'].values, '0.75', 0.5, ylim[0], ylim[1], 1e-7, rotate=True) ax.set_ylim(ylim) for a in annotate: ax.plot(ax.get_xlim(), [a, a], '--k') box = matplotlib.transforms.Bbox([[0.7, 0.7], [0.95, 0.95]]) ax = fig.add_axes(transform.transform_bbox(box)) ax.axis('off') ax.text(0.0, 0.0, info) return fig def plot_breakpoints_genome(ax, breakpoint, chromosome_info, scale_height=1.0): """ Plot breakpoint arcs Args: ax (matplotlib.axes.Axes): plot axes breakpoint (pandas.DataFrame): breakpoint chromosome_info (pandas.DataFrame): per chromosome start and end in plot returned from plot_cnv_genome """ plot_height = ax.get_ylim()[1] * 0.8 plot_length = ax.get_xlim()[1] - ax.get_xlim()[0] for side in ('1', '2'): breakpoint.set_index('chromosome_'+side, inplace=True) breakpoint['chromosome_start_'+side] = chromosome_info['start'] breakpoint.reset_index(inplace=True) breakpoint['plot_position_'+side] = breakpoint['position_'+side] + breakpoint['chromosome_start_'+side] codes = [Path.MOVETO, Path.CURVE4, Path.CURVE4, Path.CURVE4] for idx, row in breakpoint.iterrows(): pos_1, pos_2 = sorted(row[['plot_position_1', 'plot_position_2']]) height = scale_height * 2. * plot_height * (pos_2 - pos_1) / float(plot_length) visible_1 = pos_1 >= ax.get_xlim()[0] and pos_1 <= ax.get_xlim()[1] visible_2 = pos_2 >= ax.get_xlim()[0] and pos_2 <= ax.get_xlim()[1] if not visible_1 and not visible_2: continue if not visible_1 or not visible_2: height = plot_height * 10. verts = [(pos_1, 0.), (pos_1, height), (pos_2, height), (pos_2, 0.)] path = Path(verts, codes) patch = patches.PathPatch(path, facecolor='none', edgecolor='#2eb036', lw=2, zorder=100) ax.add_patch(patch) def experiment_plot(experiment, cn, h, chromosome=None, start=None, end=None, maxcopies=4): """ Plot a sequencing experiment Args: experiment (Experiment): experiment object containing simulation information cn (numpy.array): segment copy number h (numpy.array): haploid depths KwArgs: chromosome (str): name of chromosome to plot, None for all chromosomes start (int): start of region in chromosome, None for beginning end (int): end of region in chromosome, None for end of chromosome maxcopies (int): max copy number for y axis Returns: matplotlib.Figure: figure object of plots """ data = remixt.analysis.experiment.create_cn_table(experiment, cn, h) num_plots = 3 width = 20 height = 6 if 'major_2' in data: num_plots = 5 height = 10 plot_idx = 1 fig = plt.figure(figsize=(width, height)) ax = plt.subplot(num_plots, 1, plot_idx) plot_idx += 1 plot_cnv_genome(ax, data, maxcopies=maxcopies, major_col='major_raw', minor_col='minor_raw', chromosome=chromosome, start=start, end=end) ax.set_xlabel('') ax.set_ylabel('raw') ax = plt.subplot(num_plots, 1, plot_idx) plot_idx += 1 plot_cnv_genome(ax, data, maxcopies=maxcopies, major_col='major_raw_e', minor_col='minor_raw_e', chromosome=chromosome, start=start, end=end) ax.set_xlabel('') ax.set_ylabel('expected') ax = plt.subplot(num_plots, 1, plot_idx) plot_idx += 1 plot_cnv_genome(ax, data, maxcopies=maxcopies, major_col='major_1', minor_col='minor_1', chromosome=chromosome, start=start, end=end) ax.set_xlabel('') ax.set_ylabel('clone 1') if 'major_2' in data: ax = plt.subplot(num_plots, 1, plot_idx) plot_idx += 1 plot_cnv_genome(ax, data, maxcopies=maxcopies, major_col='major_2', minor_col='minor_2', chromosome=chromosome, start=start, end=end) ax.set_xlabel('') ax.set_ylabel('clone 2') ax = plt.subplot(num_plots, 1, plot_idx) plot_idx += 1 plot_cnv_genome(ax, data, maxcopies=2, major_col='major_diff', minor_col='minor_diff', chromosome=chromosome, start=start, end=end) ax.set_xlabel('chromosome') ax.set_ylabel('clone diff') plt.tight_layout() return fig def mixture_plot(mixture): """ Plot a genome mixture Args: mixture (GenomeMixture): information about the genomes and their proportions Returns: matplotlib.Figure: figure object of plots """ data = pd.DataFrame({ 'chromosome':mixture.segment_chromosome_id, 'start':mixture.segment_start, 'end':mixture.segment_end, 'length':mixture.l, }) tumour_frac = mixture.frac[1:] / mixture.frac[1:].sum() data['major_expected'] = np.einsum('ij,j->i', mixture.cn[:,1:,0], tumour_frac) data['minor_expected'] = np.einsum('ij,j->i', mixture.cn[:,1:,1], tumour_frac) for m in xrange(1, mixture.cn.shape[1]): data['major_{0}'.format(m)] = mixture.cn[:,m,0] data['minor_{0}'.format(m)] = mixture.cn[:,m,1] data['major_diff'] = np.absolute(data['major_1'] - data['major_2']) data['minor_diff'] = np.absolute(data['minor_1'] - data['minor_2']) fig = plt.figure(figsize=(20, 10)) ax = plt.subplot(4, 1, 1) plot_cnv_genome(ax, data, maxcopies=4, major_col='major_expected', minor_col='minor_expected') ax.set_xlabel('') ax.set_ylabel('expected') ax = plt.subplot(4, 1, 2) plot_cnv_genome(ax, data, maxcopies=4, major_col='major_1', minor_col='minor_1') ax.set_xlabel('') ax.set_ylabel('clone 1') ax = plt.subplot(4, 1, 3) plot_cnv_genome(ax, data, maxcopies=4, major_col='major_2', minor_col='minor_2') ax.set_xlabel('') ax.set_ylabel('clone 2') ax = plt.subplot(4, 1, 4) plot_cnv_genome(ax, data, maxcopies=2, major_col='major_diff', minor_col='minor_diff') ax.set_xlabel('chromosome') ax.set_ylabel('clone diff') plt.tight_layout() return fig def gc_plot(gc_table_filename, plot_filename): """ Plot the probability distribution of GC content for sampled reads Args: gc_table_filename (str): table of binned gc values plot_filename (str): plot PDF filename """ gc_binned = pd.read_csv(gc_table_filename, sep='\t') fig = plt.figure(figsize=(4,4)) plt.scatter(gc_binned['gc_bin'].values, gc_binned['mean'].values, c='k', s=4) plt.plot(gc_binned['gc_bin'].values, gc_binned['smoothed'].values, c='r') plt.xlabel('gc %') plt.ylabel('density') plt.xlim((-0.5, 100.5)) plt.ylim((-0.01, gc_binned['mean'].max() * 1.1)) plt.tight_layout() fig.savefig(plot_filename, format='pdf', bbox_inches='tight') def plot_depth(ax, read_depth, minor_modes=None): """ Plot read depth of major minor and total as a density Args: ax (matplotlib.axis): optional axis for plotting major/minor/total read depth read_depth (pandas.DataFrame): observed major, minor, and total read depth and lengths KwArgs: minor_modes (list): annotate minor modes with verticle lines """ total_depth_samples = remixt.utils.weighted_resample(read_depth['total'].values, read_depth['length'].values) depth_max = np.percentile(total_depth_samples, 95) cov = 0.0000001 filled_density_weighted(ax, read_depth['minor'].values, read_depth['length'].values, 'blue', 0.5, 0.0, depth_max, cov) filled_density_weighted(ax, read_depth['major'].values, read_depth['length'].values, 'red', 0.5, 0.0, depth_max, cov) filled_density_weighted(ax, read_depth['total'].values, read_depth['length'].values, 'grey', 0.5, 0.0, depth_max, cov) if minor_modes is not None: init_h_mono = np.array(remixt.analysis.readdepth.calculate_candidate_h_monoclonal(minor_modes)) h_normal = init_h_mono[0, 0] h_tumour = init_h_mono[:, 1] + h_normal plt.axvline(h_normal, lw=1, color='g') for x in h_tumour: plt.axvline(x, lw=1, color='g', ls=':') ax.set_xlabel('Read Depth') ax.set_ylabel('Density') def plot_experiment(experiment_plot_filename, experiment_filename): """ Plot an experiment Args: experiment_plot_filename (str): plot PDF filename experiment_filename (str): filename of experiment pickle """ with open(experiment_filename, 'r') as experiment_file: exp = pickle.load(experiment_file) fig = experiment_plot(exp, exp.cn, exp.h) fig.savefig(experiment_plot_filename, format='pdf', bbox_inches='tight', dpi=300) def plot_mixture(mixture_plot_filename, mixture_filename): """ Plot a mixture Args: mixture_plot_filename (str): plot PDF filename mixture_filename (str): filename of mixture pickle """ with open(mixture_filename, 'r') as mixture_file: mixture = pickle.load(mixture_file) fig = mixture_plot(mixture) fig.savefig(mixture_plot_filename, format='pdf', bbox_inches='tight', dpi=300) def ploidy_analysis_plots(experiment_filename, plots_filename, chromosomes=None): """ Generate ploidy analysis plots Args: experiment_filename (str): experiment pickle filename plots_filename (str): ploidy analysis plots filename KwArgs: chromosomes (list): chromosomes to plot """ with open(experiment_filename, 'rb') as experiment_file: experiment = pickle.load(experiment_file) read_depth = remixt.analysis.readdepth.calculate_depth(experiment) minor_modes = remixt.analysis.readdepth.calculate_minor_modes(read_depth) init_h_mono = remixt.analysis.readdepth.calculate_candidate_h_monoclonal(minor_modes) pdf = matplotlib.backends.backend_pdf.PdfPages(plots_filename) for h in init_h_mono: cn_modes = h[0] + np.arange(0, 5) * h[1] read_depth['major_raw'] = (read_depth['major'] - h[0]) / h[1] read_depth['minor_raw'] = (read_depth['minor'] - h[0]) / h[1] f = h / h.sum() major, minor, length = read_depth.replace(np.inf, np.nan).dropna()[['major_raw', 'minor_raw', 'length']].values.T ploidy = ((major + minor) * length).sum() / length.sum() info = 'Statistics:\n\n' info += ' normal = {:.3f}\n\n'.format(f[0]) info += ' tumour = {:.3f}\n\n'.format(f[1]) info += ' ploidy = {:.3f}'.format(ploidy) fig = plt.figure(figsize=(12,12)) box = matplotlib.transforms.Bbox([[0., 0.25], [1., 1.]]) transform = matplotlib.transforms.BboxTransformTo(box) remixt.cn_plot.plot_cnv_scatter_density(fig, transform, read_depth, annotate=cn_modes, info=info, chromosomes=chromosomes) box = matplotlib.transforms.Bbox([[0., 0.0], [1., 0.25]]) transform = matplotlib.transforms.BboxTransformTo(box) remixt.cn_plot.plot_cnv_genome_density(fig, transform, read_depth.query('high_quality'), chromosomes=chromosomes) pdf.savefig(bbox_inches='tight') plt.close() pdf.close()
[ "andrew.mcpherson@gmail.com" ]
andrew.mcpherson@gmail.com
b853d1b897ae44076afd3497d9dfa922edb2b018
d23f52ddf7d966fe12e4af89ee085dd16523c4f3
/Report 2/Source/VQA-Models/model-2/Models/classnames.py
fce06f7d399b0d6d67061e57e0ca2ef38dcde47e
[]
no_license
toadSTL/CS5542_Team1_VQA
3acfe6ce268ea2bf04cf9d836ab554d82f648a28
1c601bc8e655da784d8bb4654c67b7c5b05570d0
refs/heads/master
2020-04-23T06:14:56.967610
2019-05-09T15:33:16
2019-05-09T15:33:16
170,967,287
0
0
null
null
null
null
UTF-8
Python
false
false
21,725
py
# ONLY FOR TESTING class_names = '''tench, Tinca tinca goldfish, Carassius auratus great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias tiger shark, Galeocerdo cuvieri hammerhead, hammerhead shark electric ray, crampfish, numbfish, torpedo stingray cock hen ostrich, Struthio camelus brambling, Fringilla montifringilla goldfinch, Carduelis carduelis house finch, linnet, Carpodacus mexicanus junco, snowbird indigo bunting, indigo finch, indigo bird, Passerina cyanea robin, American robin, Turdus migratorius bulbul jay magpie chickadee water ouzel, dipper kite bald eagle, American eagle, Haliaeetus leucocephalus vulture great grey owl, great gray owl, Strix nebulosa European fire salamander, Salamandra salamandra common newt, Triturus vulgaris eft spotted salamander, Ambystoma maculatum axolotl, mud puppy, Ambystoma mexicanum bullfrog, Rana catesbeiana tree frog, tree-frog tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui loggerhead, loggerhead turtle, Caretta caretta leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea mud turtle terrapin box turtle, box tortoise banded gecko common iguana, iguana, Iguana iguana American chameleon, anole, Anolis carolinensis whiptail, whiptail lizard agama frilled lizard, Chlamydosaurus kingi alligator lizard Gila monster, Heloderma suspectum green lizard, Lacerta viridis African chameleon, Chamaeleo chamaeleon Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis African crocodile, Nile crocodile, Crocodylus niloticus American alligator, Alligator mississipiensis triceratops thunder snake, worm snake, Carphophis amoenus ringneck snake, ring-necked snake, ring snake hognose snake, puff adder, sand viper green snake, grass snake king snake, kingsnake garter snake, grass snake water snake vine snake night snake, Hypsiglena torquata boa constrictor, Constrictor constrictor rock python, rock snake, Python sebae Indian cobra, Naja naja green mamba sea snake horned viper, cerastes, sand viper, horned asp, Cerastes cornutus diamondback, diamondback rattlesnake, Crotalus adamanteus sidewinder, horned rattlesnake, Crotalus cerastes trilobite harvestman, daddy longlegs, Phalangium opilio scorpion black and gold garden spider, Argiope aurantia barn spider, Araneus cavaticus garden spider, Aranea diademata black widow, Latrodectus mactans tarantula wolf spider, hunting spider tick centipede black grouse ptarmigan ruffed grouse, partridge, Bonasa umbellus prairie chicken, prairie grouse, prairie fowl peacock quail partridge African grey, African gray, Psittacus erithacus macaw sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita lorikeet coucal bee eater hornbill hummingbird jacamar toucan drake red-breasted merganser, Mergus serrator goose black swan, Cygnus atratus tusker echidna, spiny anteater, anteater platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus wallaby, brush kangaroo koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus wombat jellyfish sea anemone, anemone brain coral flatworm, platyhelminth nematode, nematode worm, roundworm conch snail slug sea slug, nudibranch chiton, coat-of-mail shell, sea cradle, polyplacophore chambered nautilus, pearly nautilus, nautilus Dungeness crab, Cancer magister rock crab, Cancer irroratus fiddler crab king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica American lobster, Northern lobster, Maine lobster, Homarus americanus spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish crayfish, crawfish, crawdad, crawdaddy hermit crab isopod white stork, Ciconia ciconia black stork, Ciconia nigra spoonbill flamingo little blue heron, Egretta caerulea American egret, great white heron, Egretta albus bittern crane limpkin, Aramus pictus European gallinule, Porphyrio porphyrio American coot, marsh hen, mud hen, water hen, Fulica americana bustard ruddy turnstone, Arenaria interpres red-backed sandpiper, dunlin, Erolia alpina redshank, Tringa totanus dowitcher oystercatcher, oyster catcher pelican king penguin, Aptenodytes patagonica albatross, mollymawk grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus killer whale, killer, orca, grampus, sea wolf, Orcinus orca dugong, Dugong dugon sea lion Chihuahua Japanese spaniel Maltese dog, Maltese terrier, Maltese Pekinese, Pekingese, Peke Shih-Tzu Blenheim spaniel papillon toy terrier Rhodesian ridgeback Afghan hound, Afghan basset, basset hound beagle bloodhound, sleuthhound bluetick black-and-tan coonhound Walker hound, Walker foxhound English foxhound redbone borzoi, Russian wolfhound Irish wolfhound Italian greyhound whippet Ibizan hound, Ibizan Podenco Norwegian elkhound, elkhound otterhound, otter hound Saluki, gazelle hound Scottish deerhound, deerhound Weimaraner Staffordshire bullterrier, Staffordshire bull terrier American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier Bedlington terrier Border terrier Kerry blue terrier Irish terrier Norfolk terrier Norwich terrier Yorkshire terrier wire-haired fox terrier Lakeland terrier Sealyham terrier, Sealyham Airedale, Airedale terrier cairn, cairn terrier Australian terrier Dandie Dinmont, Dandie Dinmont terrier Boston bull, Boston terrier miniature schnauzer giant schnauzer standard schnauzer Scotch terrier, Scottish terrier, Scottie Tibetan terrier, chrysanthemum dog silky terrier, Sydney silky soft-coated wheaten terrier West Highland white terrier Lhasa, Lhasa apso flat-coated retriever curly-coated retriever golden retriever Labrador retriever Chesapeake Bay retriever German short-haired pointer vizsla, Hungarian pointer English setter Irish setter, red setter Gordon setter Brittany spaniel clumber, clumber spaniel English springer, English springer spaniel Welsh springer spaniel cocker spaniel, English cocker spaniel, cocker Sussex spaniel Irish water spaniel kuvasz schipperke groenendael malinois briard kelpie komondor Old English sheepdog, bobtail Shetland sheepdog, Shetland sheep dog, Shetland collie Border collie Bouvier des Flandres, Bouviers des Flandres Rottweiler German shepherd, German shepherd dog, German police dog, alsatian Doberman, Doberman pinscher miniature pinscher Greater Swiss Mountain dog Bernese mountain dog Appenzeller EntleBucher boxer bull mastiff Tibetan mastiff French bulldog Great Dane Saint Bernard, St Bernard Eskimo dog, husky malamute, malemute, Alaskan malamute Siberian husky dalmatian, coach dog, carriage dog affenpinscher, monkey pinscher, monkey dog basenji pug, pug-dog Leonberg Newfoundland, Newfoundland dog Great Pyrenees Samoyed, Samoyede Pomeranian chow, chow chow keeshond Brabancon griffon Pembroke, Pembroke Welsh corgi Cardigan, Cardigan Welsh corgi toy poodle miniature poodle standard poodle Mexican hairless timber wolf, grey wolf, gray wolf, Canis lupus white wolf, Arctic wolf, Canis lupus tundrarum red wolf, maned wolf, Canis rufus, Canis niger coyote, prairie wolf, brush wolf, Canis latrans dingo, warrigal, warragal, Canis dingo dhole, Cuon alpinus African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus hyena, hyaena red fox, Vulpes vulpes kit fox, Vulpes macrotis Arctic fox, white fox, Alopex lagopus grey fox, gray fox, Urocyon cinereoargenteus tabby, tabby cat tiger cat Persian cat Siamese cat, Siamese Egyptian cat cougar, puma, catamount, mountain lion, painter, panther, Felis concolor lynx, catamount leopard, Panthera pardus snow leopard, ounce, Panthera uncia jaguar, panther, Panthera onca, Felis onca lion, king of beasts, Panthera leo tiger, Panthera tigris cheetah, chetah, Acinonyx jubatus brown bear, bruin, Ursus arctos American black bear, black bear, Ursus americanus, Euarctos americanus ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus sloth bear, Melursus ursinus, Ursus ursinus mongoose meerkat, mierkat tiger beetle ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle ground beetle, carabid beetle long-horned beetle, longicorn, longicorn beetle leaf beetle, chrysomelid dung beetle rhinoceros beetle weevil fly bee ant, emmet, pismire grasshopper, hopper cricket walking stick, walkingstick, stick insect cockroach, roach mantis, mantid cicada, cicala leafhopper lacewing, lacewing fly dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk damselfly admiral ringlet, ringlet butterfly monarch, monarch butterfly, milkweed butterfly, Danaus plexippus cabbage butterfly sulphur butterfly, sulfur butterfly lycaenid, lycaenid butterfly starfish, sea star sea urchin sea cucumber, holothurian wood rabbit, cottontail, cottontail rabbit hare Angora, Angora rabbit hamster porcupine, hedgehog fox squirrel, eastern fox squirrel, Sciurus niger marmot beaver guinea pig, Cavia cobaya sorrel zebra hog, pig, grunter, squealer, Sus scrofa wild boar, boar, Sus scrofa warthog hippopotamus, hippo, river horse, Hippopotamus amphibius ox water buffalo, water ox, Asiatic buffalo, Bubalus bubalis bison ram, tup bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis ibex, Capra ibex hartebeest impala, Aepyceros melampus gazelle Arabian camel, dromedary, Camelus dromedarius llama weasel mink polecat, fitch, foulmart, foumart, Mustela putorius black-footed ferret, ferret, Mustela nigripes otter skunk, polecat, wood pussy badger armadillo three-toed sloth, ai, Bradypus tridactylus orangutan, orang, orangutang, Pongo pygmaeus gorilla, Gorilla gorilla chimpanzee, chimp, Pan troglodytes gibbon, Hylobates lar siamang, Hylobates syndactylus, Symphalangus syndactylus guenon, guenon monkey patas, hussar monkey, Erythrocebus patas baboon macaque langur colobus, colobus monkey proboscis monkey, Nasalis larvatus marmoset capuchin, ringtail, Cebus capucinus howler monkey, howler titi, titi monkey spider monkey, Ateles geoffroyi squirrel monkey, Saimiri sciureus Madagascar cat, ring-tailed lemur, Lemur catta indri, indris, Indri indri, Indri brevicaudatus Indian elephant, Elephas maximus African elephant, Loxodonta africana lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca barracouta, snoek eel coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch rock beauty, Holocanthus tricolor anemone fish sturgeon gar, garfish, garpike, billfish, Lepisosteus osseus lionfish puffer, pufferfish, blowfish, globefish abacus abaya academic gown, academic robe, judge's robe accordion, piano accordion, squeeze box acoustic guitar aircraft carrier, carrier, flattop, attack aircraft carrier airliner airship, dirigible altar ambulance amphibian, amphibious vehicle analog clock apiary, bee house apron ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin assault rifle, assault gun backpack, back pack, knapsack, packsack, rucksack, haversack bakery, bakeshop, bakehouse balance beam, beam balloon ballpoint, ballpoint pen, ballpen, Biro Band Aid banjo bannister, banister, balustrade, balusters, handrail barbell barber chair barbershop barn barometer barrel, cask barrow, garden cart, lawn cart, wheelbarrow baseball basketball bassinet bassoon bathing cap, swimming cap bath towel bathtub, bathing tub, bath, tub beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon beacon, lighthouse, beacon light, pharos beaker bearskin, busby, shako beer bottle beer glass bell cote, bell cot bib bicycle-built-for-two, tandem bicycle, tandem bikini, two-piece binder, ring-binder binoculars, field glasses, opera glasses birdhouse boathouse bobsled, bobsleigh, bob bolo tie, bolo, bola tie, bola bonnet, poke bonnet bookcase bookshop, bookstore, bookstall bottlecap bow bow tie, bow-tie, bowtie brass, memorial tablet, plaque brassiere, bra, bandeau breakwater, groin, groyne, mole, bulwark, seawall, jetty breastplate, aegis, egis broom bucket, pail buckle bulletproof vest bullet train, bullet butcher shop, meat market cab, hack, taxi, taxicab caldron, cauldron candle, taper, wax light cannon canoe can opener, tin opener cardigan car mirror carousel, carrousel, merry-go-round, roundabout, whirligig carpenter's kit, tool kit carton car wheel cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM cassette cassette player castle catamaran CD player cello, violoncello cellular telephone, cellular phone, cellphone, cell, mobile phone chain chainlink fence chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour chain saw, chainsaw chest chiffonier, commode chime, bell, gong china cabinet, china closet Christmas stocking church, church building cinema, movie theater, movie theatre, movie house, picture palace cleaver, meat cleaver, chopper cliff dwelling cloak clog, geta, patten, sabot cocktail shaker coffee mug coffeepot coil, spiral, volute, whorl, helix combination lock computer keyboard, keypad confectionery, confectionary, candy store container ship, containership, container vessel convertible corkscrew, bottle screw cornet, horn, trumpet, trump cowboy boot cowboy hat, ten-gallon hat cradle crane crash helmet crate crib, cot Crock Pot croquet ball crutch cuirass dam, dike, dyke desk desktop computer dial telephone, dial phone diaper, nappy, napkin digital clock digital watch dining table, board dishrag, dishcloth dishwasher, dish washer, dishwashing machine disk brake, disc brake dock, dockage, docking facility dogsled, dog sled, dog sleigh dome doormat, welcome mat drilling platform, offshore rig drum, membranophone, tympan drumstick dumbbell Dutch oven electric fan, blower electric guitar electric locomotive entertainment center envelope espresso maker face powder feather boa, boa file, file cabinet, filing cabinet fireboat fire engine, fire truck fire screen, fireguard flagpole, flagstaff flute, transverse flute folding chair football helmet forklift fountain fountain pen four-poster freight car French horn, horn frying pan, frypan, skillet fur coat garbage truck, dustcart gasmask, respirator, gas helmet gas pump, gasoline pump, petrol pump, island dispenser goblet go-kart golf ball golfcart, golf cart gondola gong, tam-tam gown grand piano, grand greenhouse, nursery, glasshouse grille, radiator grille grocery store, grocery, food market, market guillotine hair slide hair spray half track hammer hamper hand blower, blow dryer, blow drier, hair dryer, hair drier hand-held computer, hand-held microcomputer handkerchief, hankie, hanky, hankey hard disc, hard disk, fixed disk harmonica, mouth organ, harp, mouth harp harp harvester, reaper hatchet holster home theater, home theatre honeycomb hook, claw hoopskirt, crinoline horizontal bar, high bar horse cart, horse-cart hourglass iPod iron, smoothing iron jack-o'-lantern jean, blue jean, denim jeep, landrover jersey, T-shirt, tee shirt jigsaw puzzle jinrikisha, ricksha, rickshaw joystick kimono knee pad knot lab coat, laboratory coat ladle lampshade, lamp shade laptop, laptop computer lawn mower, mower lens cap, lens cover letter opener, paper knife, paperknife library lifeboat lighter, light, igniter, ignitor limousine, limo liner, ocean liner lipstick, lip rouge Loafer lotion loudspeaker, speaker, speaker unit, loudspeaker system, speaker system loupe, jeweler's loupe lumbermill, sawmill magnetic compass mailbag, postbag mailbox, letter box maillot maillot, tank suit manhole cover maraca marimba, xylophone mask matchstick maypole maze, labyrinth measuring cup medicine chest, medicine cabinet megalith, megalithic structure microphone, mike microwave, microwave oven military uniform milk can minibus miniskirt, mini minivan missile mitten mixing bowl mobile home, manufactured home Model T modem monastery monitor moped mortar mortarboard mosque mosquito net motor scooter, scooter mountain bike, all-terrain bike, off-roader mountain tent mouse, computer mouse mousetrap moving van muzzle nail neck brace necklace nipple notebook, notebook computer obelisk oboe, hautboy, hautbois ocarina, sweet potato odometer, hodometer, mileometer, milometer oil filter organ, pipe organ oscilloscope, scope, cathode-ray oscilloscope, CRO overskirt oxcart oxygen mask packet paddle, boat paddle paddlewheel, paddle wheel padlock paintbrush pajama, pyjama, pj's, jammies palace panpipe, pandean pipe, syrinx paper towel parachute, chute parallel bars, bars park bench parking meter passenger car, coach, carriage patio, terrace pay-phone, pay-station pedestal, plinth, footstall pencil box, pencil case pencil sharpener perfume, essence Petri dish photocopier pick, plectrum, plectron pickelhaube picket fence, paling pickup, pickup truck pier piggy bank, penny bank pill bottle pillow ping-pong ball pinwheel pirate, pirate ship pitcher, ewer plane, carpenter's plane, woodworking plane planetarium plastic bag plate rack plow, plough plunger, plumber's helper Polaroid camera, Polaroid Land camera pole police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria poncho pool table, billiard table, snooker table pop bottle, soda bottle pot, flowerpot potter's wheel power drill prayer rug, prayer mat printer prison, prison house projectile, missile projector puck, hockey puck punching bag, punch bag, punching ball, punchball purse quill, quill pen quilt, comforter, comfort, puff racer, race car, racing car racket, racquet radiator radio, wireless radio telescope, radio reflector rain barrel recreational vehicle, RV, R.V. reel reflex camera refrigerator, icebox remote control, remote restaurant, eating house, eating place, eatery revolver, six-gun, six-shooter rifle rocking chair, rocker rotisserie rubber eraser, rubber, pencil eraser rugby ball rule, ruler running shoe safe safety pin saltshaker, salt shaker sandal sarong sax, saxophone scabbard scale, weighing machine school bus schooner scoreboard screen, CRT screen screw screwdriver seat belt, seatbelt sewing machine shield, buckler shoe shop, shoe-shop, shoe store shoji shopping basket shopping cart shovel shower cap shower curtain ski ski mask sleeping bag slide rule, slipstick sliding door slot, one-armed bandit snorkel snowmobile snowplow, snowplough soap dispenser soccer ball sock solar dish, solar collector, solar furnace sombrero soup bowl space bar space heater space shuttle spatula speedboat spider web, spider's web spindle sports car, sport car spotlight, spot stage steam locomotive steel arch bridge steel drum stethoscope stole stone wall stopwatch, stop watch stove strainer streetcar, tram, tramcar, trolley, trolley car stretcher studio couch, day bed stupa, tope submarine, pigboat, sub, U-boat suit, suit of clothes sundial sunglass sunglasses, dark glasses, shades sunscreen, sunblock, sun blocker suspension bridge swab, swob, mop sweatshirt swimming trunks, bathing trunks swing switch, electric switch, electrical switch syringe table lamp tank, army tank, armored combat vehicle, armoured combat vehicle tape player teapot teddy, teddy bear television, television system tennis ball thatch, thatched roof theater curtain, theatre curtain thimble thresher, thrasher, threshing machine throne tile roof toaster tobacco shop, tobacconist shop, tobacconist toilet seat torch totem pole tow truck, tow car, wrecker toyshop tractor trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi tray trench coat tricycle, trike, velocipede trimaran tripod triumphal arch trolleybus, trolley coach, trackless trolley trombone tub, vat turnstile typewriter keyboard umbrella unicycle, monocycle upright, upright piano vacuum, vacuum cleaner vase vault velvet vending machine vestment viaduct violin, fiddle volleyball waffle iron wall clock wallet, billfold, notecase, pocketbook wardrobe, closet, press warplane, military plane washbasin, handbasin, washbowl, lavabo, wash-hand basin washer, automatic washer, washing machine water bottle water jug water tower whiskey jug whistle wig window screen window shade Windsor tie wine bottle wing wok wooden spoon wool, woolen, woollen worm fence, snake fence, snake-rail fence, Virginia fence wreck yawl yurt web site, website, internet site, site comic book crossword puzzle, crossword street sign traffic light, traffic signal, stoplight book jacket, dust cover, dust jacket, dust wrapper menu plate guacamole consomme hot pot, hotpot trifle ice cream, icecream ice lolly, lolly, lollipop, popsicle French loaf bagel, beigel pretzel cheeseburger hotdog, hot dog, red hot mashed potato head cabbage broccoli cauliflower zucchini, courgette spaghetti squash acorn squash butternut squash cucumber, cuke artichoke, globe artichoke bell pepper cardoon mushroom Granny Smith strawberry orange lemon fig pineapple, ananas banana jackfruit, jak, jack custard apple pomegranate hay carbonara chocolate sauce, chocolate syrup dough meat loaf, meatloaf pizza, pizza pie potpie burrito red wine espresso cup eggnog alp bubble cliff, drop, drop-off coral reef geyser lakeside, lakeshore promontory, headland, head, foreland sandbar, sand bar seashore, coast, seacoast, sea-coast valley, vale volcano ballplayer, baseball player groom, bridegroom scuba diver rapeseed daisy yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum corn acorn hip, rose hip, rosehip buckeye, horse chestnut, conker coral fungus agaric gyromitra stinkhorn, carrion fungus earthstar hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa bolete ear, spike, capitulum toilet tissue, toilet paper, bathroom tissue'''.split("\n")
[ "gregory.dylan.brown@gmail.com" ]
gregory.dylan.brown@gmail.com
de34fb581112a3b0083c5bc0911f81939b4366a2
69f887fa5d626313108a47df479b01ec707233f7
/Training_Grey_Full.py
32c5d4a5d63f45c6e0f3eb2e9ffebcd417b797a1
[]
no_license
Yehia-Fahmy/InsulatorClassifier
f77d91766de81040a74d9ee446e3488a5458a355
cb49ce6f3410c5c9e847f7994140c6e16c4846a6
refs/heads/main
2023-03-19T02:55:07.329730
2021-03-04T18:29:02
2021-03-04T18:29:02
331,730,952
1
0
null
2021-03-09T19:37:02
2021-01-21T19:22:22
Python
UTF-8
Python
false
false
6,830
py
import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras import Model as M from tensorflow.keras.layers import Dense, Flatten from tensorflow.keras.optimizers import Adam from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten, Conv2D, MaxPooling2D import cv2 import os from matplotlib import pyplot as plt import time as t import pickle from keras.utils import to_categorical # functions # function to convert the time into something readable def convert_time(seconds): seconds = seconds % (24 * 3600) hour = seconds // 3600 seconds %= 3600 minutes = seconds // 60 seconds %= 60 return "%d:%02d:%02d" % (hour, minutes, seconds) # function to load .pickle files def load_data(file_name): print(f'Loading {file_name}...') file = pickle.load(open(file_name, 'rb')) return file # quick function to show the image def show(img): plt.imshow(img, cmap='gray') plt.show() # reshapes the images to the right size def reshape_data(X, y): print(f"Reshaping data...") X = np.array(X) # ensuring that lists are instead arrays X = X / 255 # triple_channel = np.array(X).reshape(-1, IMG_SIZE, IMG_SIZE, 3) y = np.array(y) y = to_categorical(y) # print(f"triple_channel.shape(): {triple_channel.shape}, y.shape(): {y.shape}") return X, y # function to build the network def build_network(X): print("Building network...") model = Sequential() # First Layer model.add( Conv2D(512, kernel_size=(4, 4), activation='relu', input_shape=(X.shape[1:]), padding='same', strides=(2, 2))) # Second Layer model.add(Conv2D(256, kernel_size=(4, 4), activation='relu', padding='same', strides=(2, 2))) # Third Layer model.add(Conv2D(128, kernel_size=(4, 4), activation='relu', padding='same', strides=(2, 2))) # Fourth Layer model.add(Conv2D(128, kernel_size=(4, 4), activation='relu', padding='same', strides=(2, 2))) # Third Layer model.add(Conv2D(128, kernel_size=(4, 4), activation='relu', padding='same', strides=(2, 2))) # Fourth Layer model.add(Conv2D(128, kernel_size=(4, 4), activation='relu', padding='same', strides=(2, 2))) # Fifth Layer model.add(Conv2D(256, kernel_size=(4, 4), activation='relu', padding='same', strides=(2, 2))) # Sixth Layer model.add(Conv2D(512, kernel_size=(4, 4), activation='relu', padding='same', strides=(2, 2))) # Final Layer model.add(Flatten()) model.add(Dense(7, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adamax', metrics=['accuracy']) # All Done model.summary() return model # function to train the model def train_model(model, imgs, labels): print("Training model...") model.fit(imgs, labels, epochs=NUM_EPOCHS, validation_split=0, batch_size=BATCH_SIZE) return model # function to build a working model def build_Mark_4_40(X): print("Building Mark 4.40...") model = Sequential() # First Layer model.add( Conv2D(512, kernel_size=(4, 4), activation='relu', input_shape=(X.shape[1:]), padding='same', strides=(2, 2))) # Second Layer model.add(Conv2D(256, kernel_size=(4, 4), activation='relu', padding='same', strides=(2, 2))) # Third Layer model.add(Conv2D(128, kernel_size=(4, 4), activation='relu', padding='same', strides=(2, 2))) # Fourth Layer model.add(Conv2D(128, kernel_size=(4, 4), activation='relu', padding='same', strides=(2, 2))) # Fifth Layer model.add(Conv2D(256, kernel_size=(4, 4), activation='relu', padding='same', strides=(2, 2))) # Sixth Layer model.add(Conv2D(512, kernel_size=(4, 4), activation='relu', padding='same', strides=(2, 2))) # Final Layer model.add(Flatten()) model.add(Dense(7, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adamax', metrics=['accuracy']) # All Done model.summary() return model def build_test_model(X): print('Building Test Model...') model = Sequential() model.add(Dense(10, activation='relu', input_shape=(X.shape[1:]))) model.add(Dense(10, activation='relu')) # Final Layer model.add(Flatten()) model.add(Dense(7, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adamax', metrics=['accuracy']) return model # function to convert from tf model to tf.lite for mobile application def convert_model(model): tf_lite_converter = tf.lite.TFLiteConverter.from_keras_model(model) new_model = tf_lite_converter.convert() return new_model # gets size of file def get_file_size(file_path): size = os.path.getsize(file_path) return size # converts bytes for readability def convert_bytes(size, unit=None): if unit == "KB": return 'File size: ' + str(round(size / 1024, 3)) + ' Kilobytes' elif unit == "MB": return 'File size: ' + str(round(size / (1024 * 1024), 3)) + ' Megabytes' else: return 'File size: ' + str(size) + ' bytes' # global variables CATAGORIES = ['Class (1)', 'Class (2)', 'Class (3)', 'Class (4)', 'Class (5)', 'Class (6)', 'Class (7)'] DATA = [] TESTING_DATA = [] IMG_SIZE = 481 NUM_EPOCHS = 4 BATCH_SIZE = 3 KERAS_MODEL_NAME = 'Full_Size_Model.h5' TF_LITE_MODEL_NAME = 'TF_Lite_Model.tflite' # Code to run start_time = t.time() print("Starting...") # load in data training_images = load_data('Images.pickle') training_labels = load_data('Labels.pickle') testing_images = load_data('Testing_Images.pickle') testing_labels = load_data('Testing_Labels.pickle') # reshape the data training_images, training_labels = reshape_data(training_images, training_labels) testing_images, testing_labels = reshape_data(testing_images, testing_labels) # build and train the model our_model = build_network(training_images) trained_model = train_model(our_model, training_images, training_labels) # save the model trained_model.save(KERAS_MODEL_NAME) full_bytes = convert_bytes(get_file_size(KERAS_MODEL_NAME), "MB") # convert the model tf_lite_model = convert_model(trained_model) # save the tf.lite model open(TF_LITE_MODEL_NAME, "wb").write(tf_lite_model) lite_bytes = convert_bytes(get_file_size(TF_LITE_MODEL_NAME), "MB") # evaluate the model loss, acc = trained_model.evaluate(testing_images, testing_labels, batch_size=BATCH_SIZE, use_multiprocessing='True') acc = round(acc * 100, 2) print(f'accuracy: {acc}%') # prints the elapsed time for convenience total_time = t.time() - start_time total_time = round(total_time, 2) total_time = convert_time(total_time) # final message print(f"Finished in: {total_time}") print('Success!')
[ "yehia.fahmy@uwaterloo.ca" ]
yehia.fahmy@uwaterloo.ca
587bbb77e9029ea072032f26532e27ddaa9478ba
7103e8c2f689d0d23254d98b6cce65606fbd474a
/solutions/93.py
f18fea6834bd06302bd2415eb4b1338abd97cfd4
[]
no_license
DanqiChang/leetcode-notes
18bb10f329d214b805568d4c7270042ab97e3c1f
b81dd2bc5839e60dfa5efa712ed00e0876ca173e
refs/heads/master
2020-03-28T20:25:10.612938
2018-09-17T04:32:42
2018-09-17T04:32:42
149,068,156
0
0
null
null
null
null
UTF-8
Python
false
false
1,008
py
""" { "difficulty": "medium", "link": "https://leetcode.com/problems/restore-ip-addresses/description/", "category": ["DFS"], "tags": ["backtracking"], "questions": [] } """ """ ATTENTION - 在终止条件的判断上,要考虑s == '' 和 len(currIP)>=4 不同时满足,就需要终止!! - 开头为0的字段,数字只能是0!!这是特殊情况 """ def DFS(s, currIP, st): if len(currIP)>=4: if s=="": st.add('.'.join(map(str, currIP))) return if s == '': return if s[0] == "0": DFS(s[1:], currIP+[0], st) else: for i in range(1,min(4, len(s)+1)): if int(s[:i]) < 256: DFS(s[i:], currIP+[int(s[:i])], st) class Solution: def restoreIpAddresses(self, s): """ :type s: str :rtype: List[str] """ if s: st = set() currIP = [] DFS(s, currIP, st) return list(st) return []
[ "huangyc96@gmail.com" ]
huangyc96@gmail.com
861ea312f72e72f19902f78c2ce9b346389664e1
53e1ba62ef56adbabd3c898ecc0297c81ba12f6e
/advisor/migrations/0013_auto_20190421_2057.py
dca7303bf91664e29e7ed1beb9735bcbdb6acaff
[]
no_license
james-schneider/django-capstone-project
5b486bf4388093883800df5213b56cb18a63f0ef
c674eb004a493597c95f4d8182da55499f75550e
refs/heads/master
2020-04-23T07:49:38.376634
2019-04-26T22:08:21
2019-04-26T22:08:21
171,017,758
0
0
null
null
null
null
UTF-8
Python
false
false
434
py
# Generated by Django 2.1.5 on 2019-04-22 00:57 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('advisor', '0012_auto_20190420_0717'), ] operations = [ migrations.RemoveField( model_name='note', name='published_date', ), migrations.RemoveField( model_name='note', name='title', ), ]
[ "james.rice.schneider@gmail.com" ]
james.rice.schneider@gmail.com
98d2f8cb47f6b6b3dc8f26ae6741b379597f2bde
3f2d38a2345babbe6d622fbfb49884ad9583183c
/scripts/lib/ImageList.py
e6de9bef672364b36398f6b7bca1024fb0a82ae0
[ "LicenseRef-scancode-proprietary-license", "MIT" ]
permissive
skywalkerisnull/ImageAnalysis
d857354c5d8841919c7bee6e91ef07b9c06b2f2a
5bbb52c420e31792b5b981d242bd357a571e2a46
refs/heads/master
2020-06-27T11:27:57.357836
2019-08-07T04:14:05
2019-08-07T04:14:05
199,941,341
1
0
MIT
2019-08-07T04:14:06
2019-07-31T23:14:02
Python
UTF-8
Python
false
false
2,977
py
# a collection of non-class routines that perform operations on a list # of images import math from . import Image # return the bounds of the rectangle spanned by the provided list of # images def coverage(image_list): xmin = None; xmax = None; ymin = None; ymax = None for image in image_list: (x0, y0, x1, y1) = image.coverage() if xmin == None or x0 < xmin: xmin = x0 if ymin == None or y0 < ymin: ymin = y0 if xmax == None or x1 > xmax: xmax = x1 if ymax == None or y1 > ymax: ymax = y1 print("List area coverage: (%.2f %.2f) (%.2f %.2f)" \ % (xmin, ymin, xmax, ymax)) return (xmin, ymin, xmax, ymax) # return True/False if the given rectangles overlap def rectanglesOverlap(r1, r2): (ax0, ay0, ax1, ay1) = r1 (bx0, by0, bx1, by1) = r2 if ax0 <= bx1 and ax1 >= bx0 and ay0 <= by1 and ay1 >= by0: return True else: return False # return a list of images that intersect the given rectangle def getImagesCoveringRectangle(image_list, r2, only_placed=False): # build list of images covering target point coverage_list = [] for image in image_list: r1 = image.coverage() if only_placed and not image.placed: continue if rectanglesOverlap(r1, r2): coverage_list.append(image) return coverage_list # return a list of images that cover the given point within 'pad' # or are within 'pad' distance of touching the point. def getImagesCoveringPoint(image_list, x=0.0, y=0.0, pad=20.0, only_placed=False): # build list of images covering target point coverage_list = [] bx0 = x-pad by0 = y-pad bx1 = x+pad by1 = y+pad r2 = (bx0, by0, bx1, by1) coverage_list = getImagesCoveringRectangle(image_list, r2, only_placed) name_list = [] for image in coverage_list: name_list.append(image.name) print("Images covering point (%.2f %.2f): %s" % (x, y, str(name_list))) return coverage_list def x2lon(self, x): nm2m = 1852.0 x_nm = x / nm2m factor = math.cos(self.ref_lat*math.pi/180.0) x_deg = (x_nm / 60.0) / factor return x_deg + self.ref_lon def y2lat(self, y): nm2m = 1852.0 y_nm = y / nm2m y_deg = y_nm / 60.0 return y_deg + self.ref_lat # x, y are in meters ref_lon/lat in degrees def cart2wgs84( x, y, ref_lon, ref_lat ): nm2m = 1852.0 x_nm = x / nm2m y_nm = y / nm2m factor = math.cos(ref_lat*math.pi/180.0) x_deg = (x_nm / 60.0) / factor + ref_lon y_deg = y_nm / 60.0 + ref_lat return (x_deg, y_deg) # x, y are in meters ref_lon/lat in degrees def wgs842cart( lon_deg, lat_deg, ref_lon, ref_lat ): nm2m = 1852.0 x_deg = lon_deg - ref_lon y_deg = lat_deg - ref_lat factor = math.cos(ref_lat*math.pi/180.0) x_nm = x_deg * 60.0 * factor y_nm = y_deg * 60.0 x_m = x_nm * nm2m y_m = y_nm * nm2m return (x_m, y_m)
[ "curtolson@flightgear.org" ]
curtolson@flightgear.org
a95d9a58c88fc854491b9cbe1b33bb9529b8fe5f
174915d8d8ca488a4f6976035575676ff74424a4
/Cassava Leaf Disease Classification/histroy/efficientnet_learn.py
07980df4014f96ddd406f61bbeb757ee5cc55f3d
[]
no_license
starvapour/kaggle_learn_note
579f09cef83a27d386364fb42ec9099f4151dbd3
c6b07b3f6a89d0c585ddf2a4281eeb6c70edfec6
refs/heads/master
2023-03-29T22:09:28.213665
2021-04-09T10:22:13
2021-04-09T10:22:13
324,275,394
0
0
null
null
null
null
UTF-8
Python
false
false
9,098
py
import cv2 import torch import os import pandas as pd import numpy as np import torch import torch.nn as nn import torch.optim as toptim from torch.utils.data import Dataset, DataLoader from torchvision import transforms, models from PIL import Image #import pydicom import time from efficientnet_pytorch import EfficientNet from LabelSmoothingLoss import LabelSmoothingLoss from album_transform import get_train_transforms,get_test_transforms # ------------------------------------config------------------------------------ train_csv_path = "train.csv" train_image = "train_images/" preprocessed_image = "train_preprocessed_images/" # do preprocessing or not do_preprocessing = False # continue train from old model from_old_model = True # Train config # learning rate learning_rate = 1e-4 # max epoch epochs = 100 # batch size batchSize = 16 ''' # model save each step model_save_step = 10 ''' # Use how many data of the dataset for val proportion_of_val_dataset = 0.3 # output path log_name = "log.txt" # record best val acc with (epoch_num, last_best_acc) best_val_acc = (-1, 0) # ------------------------------------preprocess------------------------------------ def preprocess(img_name, ori_path, target_path): img = cv2.imread(ori_path + img_name, 1) #img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) img = cv2.resize(img, (256, 256)) cv2.imwrite(target_path + img_name, img) # ------------------------------------dataset------------------------------------ # create dataset class Leaf_train_Dataset(Dataset): def __init__(self, data_csv, img_path, transform): # get lists self.csv = data_csv self.img_path = img_path self.transform = transform def __getitem__(self, index): image_id = self.csv.loc[index, 'image_id'] label = self.csv.loc[index, 'label'] img = cv2.imread(self.img_path + image_id) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # img = Image.open(self.img_path + image_id) # img = np.array(img) img = self.transform(image=img)['image'] #img = self.transform(img) return img, label def __len__(self): return len(self.csv) # ------------------------------------train------------------------------------ def train(net, train_loader, criterion, optimizer, epoch, device, log): # start train runningLoss = 0 loss_count = 0 batch_num = len(train_loader) for index, (imgs, labels) in enumerate(train_loader): # send data to device imgs, labels = imgs.to(device), labels.to(device) # zero grad optimizer.zero_grad() # forward output = net(imgs) # calculate loss #output = output.reshape(target.shape) loss = criterion(output, labels) runningLoss += loss.item() loss_count += 1 # calculate gradients. loss.backward() # reduce loss optimizer.step() # print loss # print(index) if (index + 1) % 100 == 0: print("Epoch: %2d, Batch: %4d / %4d, Loss: %.3f" % (epoch + 1, index + 1, batch_num, loss.item())) avg_loss = runningLoss / loss_count print("For Epoch: %2d, Average Loss: %.3f" % (epoch + 1, avg_loss)) log.write("For Epoch: %2d, Average Loss: %.3f" % (epoch + 1, avg_loss) + "\n") # ------------------------------------val------------------------------------ def val(net, val_loader, criterion, optimizer, epoch, device, log, train_start): # val after each epoch net.eval() with torch.no_grad(): total_len = 0 correct_len = 0 global best_val_acc for index, (imgs, labels) in enumerate(val_loader): imgs, labels = imgs.to(device), labels.to(device) output = net(imgs) pred = output.argmax(dim=1, keepdim=True).reshape(labels.shape) assessment = torch.eq(pred, labels) total_len += len(pred) correct_len += int(assessment.sum()) accuracy = correct_len / total_len print("Start val:") print("accuracy:", accuracy) log.write("accuracy: " + str(accuracy) + "\n") # if have better acc, save model, only keep the best model in epochs if accuracy > best_val_acc[1]: # save model best_val_acc = (epoch+1, accuracy) torch.save(net.state_dict(), "save_model.pth") print("Model saved in epoch "+str(epoch+1)+", acc: "+str(accuracy)+".") log.write("Model saved in epoch "+str(epoch+1)+", acc: "+str(accuracy)+".\n") # print time pass after each epoch current_time = time.time() pass_time = int(current_time - train_start) time_string = str(pass_time // 3600) + " hours, " + str((pass_time % 3600) // 60) + " minutes, " + str( pass_time % 60) + " seconds." print("Time pass:", time_string) print() log.write("Time pass: " + time_string + "\n\n") # ------------------------------------main------------------------------------ # main def main(): # if GPU is availale, use GPU device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') print("Use " + str(device)) # create dataset original_csv_data = pd.read_csv(train_csv_path) print("length of original dataset is", len(original_csv_data)) log.write("length of original dataset is " + str(len(original_csv_data)) + "\n") # preprocessing steps # train_transform = transforms.Compose([ # # transforms.Resize(256), # transforms.RandomCrop(224), # transforms.RandomHorizontalFlip(), # transforms.RandomVerticalFlip(), # transforms.ToTensor(), # #transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), # transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), # ]) # test_transform = transforms.Compose([ # transforms.Resize(224), # transforms.ToTensor(), # transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), # ]) if do_preprocessing == True: if not os.path.exists(preprocessed_image): os.makedirs(preprocessed_image) print("Start pre-processing:") log.write("Start pre-processing:\n") length = len(original_csv_data['image_id']) count = 0 for img_name in original_csv_data['image_id']: if count % 1000 == 0: print("preprocessing "+str(count)+"/"+str(length)) preprocess(img_name, train_image, preprocessed_image) count += 1 print("Start random split:") # split dataset, get train and val train_len = int((1 - proportion_of_val_dataset) * len(original_csv_data)) train_csv = original_csv_data.iloc[:train_len] val_csv = original_csv_data.iloc[train_len:] val_csv = val_csv.reset_index(drop=True) train_dataset = Leaf_train_Dataset(train_csv, preprocessed_image, transform=get_train_transforms()) val_dataset = Leaf_train_Dataset(val_csv, preprocessed_image, transform=get_test_transforms()) print("length of train dataset is", len(train_dataset)) log.write("length of train dataset is " + str(len(train_dataset)) + "\n") print("length of val dataset is", len(val_dataset)) log.write("length of val dataset is " + str(len(val_dataset)) + "\n\n") print() print("Start training:") # create dataloader train_loader = DataLoader(dataset=train_dataset, batch_size=batchSize, shuffle=True) val_loader = DataLoader(dataset=val_dataset, batch_size=batchSize, shuffle=True) # net model # if true, continue train old model if from_old_model: net = EfficientNet.from_name('efficientnet-b5') net._fc.out_features = 10 net.load_state_dict(torch.load("save_model.pth")) net = net.to(device) else: net = EfficientNet.from_pretrained('efficientnet-b5') net._fc.out_features = 10 net = net.to(device) # loss function # criterion = nn.BCEWithLogitsLoss() # criterion = nn.NLLLoss() # 结合了nn.LogSoftmax()和nn.NLLLoss()两个函数 criterion = nn.CrossEntropyLoss() #criterion = LabelSmoothingLoss(classes=10, smoothing=0.1) # create optimizer #optimizer = toptim.SGD(net.parameters(), lr=learning_rate) optimizer = toptim.Adam(net.parameters(), lr=learning_rate) train_start = time.time() for epoch in range(epochs): ''' # change lr by epoch adjust_learning_rate(optimizer, epoch) ''' # start train train(net, train_loader, criterion, optimizer, epoch, device, log) # start val val(net, val_loader, criterion, optimizer, epoch, device, log, train_start) print("Final saved model is epoch "+str(best_val_acc[0])+", acc: "+str(best_val_acc[1])+".") log.write("Final saved model is epoch "+str(best_val_acc[0])+", acc: "+str(best_val_acc[1])+"\n") print("Done.") log.write("Done.\n") if __name__ == '__main__': with open(log_name, 'w') as log: main()
[ "starvapour@126.com" ]
starvapour@126.com
601ea1ab433a96b5b1e17a5264eeec8063e9a06f
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/126/usersdata/239/29610/submittedfiles/ap2.py
13b48df715213541186e4b6bb3009ea8e7d8cb96
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
1,134
py
# -*- coding: utf-8 -*- print("Digite a: ") print("Digite b: ") print("Digite c: ") print("Digite d: ") print("") if a>b>c>d: print(a) print(d) if a>b>d>c: print(a) print(c) if a>d>c>b: print(a) print(b) if a>d>b>c: print(a) print(c) if a>c>b>d: print(a) print(d) if a>c>d>b: print(a) print(b)#primeira parte termina if b>a>c>d: print(b) print(d) if b>a>d>c: print(b) print(c) if b>d>c>a: print(b) print(a) if b>d>a>c: print(b) print(c) if b>c>a>d: print(b) print(d) if b>c>d>a: print(b) print(a)#segunda parte termina aqui if c>b>a>d: print(c) print(d) if c>b>d>a: print(c) print(a) if c>d>a>b: print(c) print(b) if c>d>b>a: print(c) print(a) if c>a>b>d: print(c) print(d) if c>a>d>b: print(c) print(b)#terceira parte termina aqui if d>b>c>a: print(d) print(a) if d>b>a>c: print(d) print(c) if d>a>c>b: print(d) print(b) if d>a>b>c: print(d) print(c) if d>c>b>a: print(d) print(a) if d>c>a>b: print(d) print(b)#quarta parte termina aqui
[ "rafael.mota@ufca.edu.br" ]
rafael.mota@ufca.edu.br
9f8f48c466269ce5097a8292eb4241d9745535ad
c730f09a8d96e1ec84c2cabbc33e6489befae09a
/tutorial/polls/forms.py
dab414d8e8903a7ff7697bcc4d9bddb4f04cd48d
[]
no_license
sosodoit/django
669a4b8abb27d1b4d062ac8063891dee3666108f
f0cdee32dd069b7c0ac7c417ac55aa4f063bdb1f
refs/heads/master
2023-06-01T01:26:13.786788
2021-06-30T08:28:39
2021-06-30T08:28:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
176
py
from django import forms from .models import Question class QuestionForm(forms.ModelForm): class Meta: model = Question fields = ['subject', 'content']
[ "sohuig@naver.com" ]
sohuig@naver.com
223177a60a2000bba8fd64907a021692174b2909
7cdcd244cb576f9bb689d6fef9c3428d67364274
/tracker/migrations/0009_load_countries.py
f087eea5f6506e90bbf57d61c8a6b543f5a01f6f
[ "Apache-2.0" ]
permissive
GamesDoneQuick/donation-tracker
9728579531961eb556d7acd4564c6fe4deaffbff
4d231bae7d00ee990ca9086400d926da59b0598d
refs/heads/master
2023-08-31T21:37:41.015548
2023-08-22T22:03:47
2023-08-22T22:03:47
44,652,980
48
39
Apache-2.0
2023-09-11T14:10:57
2015-10-21T04:38:00
Python
UTF-8
Python
false
false
1,168
py
# Generated by Django 2.2.16 on 2020-09-23 23:03 import logging import os from django.core import serializers from django.db import migrations logger = logging.getLogger(__name__) def load_countries(apps, schema_editor): # This is IMPORTANT, make sure it gets moved the next time you squash migrations Country = apps.get_model('tracker', 'Country') count = 0 path = os.path.normpath(os.path.join(os.path.dirname(__file__), '../fixtures/countries.json')) with open(path) as data: for country in serializers.deserialize('json', data.read()): created = Country.objects.get_or_create(alpha2=country.object.alpha2, defaults=dict( name=country.object.name, alpha3=country.object.alpha3, numeric=country.object.numeric, ))[1] if created: count +=1 logger.info(f'Loaded {count} fixture(s) for country') def no_op(apps, schema_editor): pass class Migration(migrations.Migration): dependencies = [ ('tracker', '0008_donor_cache_tweaks'), ] operations = [ migrations.RunPython(load_countries, no_op) ]
[ "noreply@github.com" ]
GamesDoneQuick.noreply@github.com
d49b910ed24ad32cc0223bb757ba33e4a8b5979a
a1ebdae1587f27ad4b294d010b1a55479cbf8ed8
/unity_lens_noosfero/unity_lens_noosferoconfig.py
8ae26470f3f24ecab503e891648498f48a2a70a6
[ "Apache-2.0" ]
permissive
rcnetto/unity-lens-noosfero
7ffc5364f0d77dc48b1e55d32e2304a8c33bacbb
b74ca7367a7fc04c671f1060de8dd3b4e5cbd818
refs/heads/master
2016-09-05T19:50:59.612947
2013-09-23T12:34:05
2013-09-23T12:34:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,687
py
# -*- Mode: Python; coding: utf-8; indent-tabs-mode: nil; tab-width: 4 -*- ### BEGIN LICENSE # This file is in the public domain ### END LICENSE # THIS IS Noosfero CONFIGURATION FILE # YOU CAN PUT THERE SOME GLOBAL VALUE # Do not touch unless you know what you're doing. # you're warned :) __all__ = [ 'project_path_not_found', 'get_data_file', 'get_data_path', ] # Where your project will look for your data (for instance, images and ui # files). By default, this is ../data, relative your trunk layout __unity_lens_noosfero_data_directory__ = '../data/' __license__ = '' __version__ = 'VERSION' import os import gettext from gettext import gettext as _ gettext.textdomain('unity-lens-noosfero') class project_path_not_found(Exception): """Raised when we can't find the project directory.""" def get_data_file(*path_segments): """Get the full path to a data file. Returns the path to a file underneath the data directory (as defined by `get_data_path`). Equivalent to os.path.join(get_data_path(), *path_segments). """ return os.path.join(get_data_path(), *path_segments) def get_data_path(): """Retrieve unity-lens-noosfero data path This path is by default <unity_lens_noosfero_lib_path>/../data/ in trunk and /usr/share/unity-lens-noosfero in an installed version but this path is specified at installation time. """ # Get pathname absolute or relative. path = os.path.join( os.path.dirname(__file__), __unity_lens_noosfero_data_directory__) abs_data_path = os.path.abspath(path) if not os.path.exists(abs_data_path): raise project_path_not_found return abs_data_path
[ "ranulfo.netto@serpro.gov.br" ]
ranulfo.netto@serpro.gov.br
1544668fa94eab171550471e25787776c8f252d9
756db20d1841e6ae94f7bbb542fb29482295bd71
/project3.py
fc848dd6bb2bdc3099cb9df9ef3edea37a415b27
[]
no_license
mandeep-codetresure/python-study1
46bbc326aa6b1719e381b551d01680c2d5ee56d5
071a689750baada7753615f0f36a46c225f6d10d
refs/heads/main
2023-06-14T00:42:46.323136
2021-07-03T18:07:55
2021-07-03T18:07:55
382,659,937
0
0
null
null
null
null
UTF-8
Python
false
false
753
py
class Library: def __init__(self, listOfBooks): self.books = listOfBooks def displayAvailableBooks(self): print("Available Books are : ") for i in self.books: print(f"* {i}") def borrowBooks(self, bookname): if bookname in self.books: print(f"The book {bookname} has been issued, please keep it safe and retru in time") self.books.remove(bookname) def retunBook(self, bookname): self.books.append(bookname) print(f"thanks for retuning {bookname}.") class Student: pass if __name__== "__main__": centralLibrary = Library(["DevildBreath", "Python", "EvilDead", "2020", 'Java']) centralLibrary.displayAvailableBooks()
[ "noreply@github.com" ]
mandeep-codetresure.noreply@github.com
6d5b012250a4f93f41d076b89db26dc8dd1160fb
f5f6e6110b80ea3c35f84c2deabb4b0fd095712d
/HW1/p1.py
3499a7c5d1983e6cd5d9c498ed3b67b2cd76a48f
[]
no_license
MortalHappiness/LA2019Fall
eb29ab9a7017cbf99fe8fe7575c4dde9e5bcc45d
16532248bec44a5225a0508d62fd8f8cf40c13bb
refs/heads/master
2022-03-28T15:20:48.669909
2019-12-15T06:30:59
2019-12-15T06:30:59
215,225,407
0
0
null
null
null
null
UTF-8
Python
false
false
1,441
py
import numpy as np def p1_has_cycle(sets): # TODO # return True if the graph has cycle; return False if not ''' HINT: You can `print(sets)` to show what the matrix looks like If we have a directed graph with 2->3 4->1 3->5 5->2 0->1 0 1 2 3 4 5 0 0 0 -1 1 0 0 1 0 1 0 0 -1 0 2 0 0 0 -1 0 1 3 0 0 1 0 0 -1 4 -1 1 0 0 0 0 The size of the matrix is (5,6) ''' matrix = np.array(sets) n_row, n_col = matrix.shape for _ in range(n_row): # find the position of 1 in the first row col_idx = -1 for i in range(n_col): if matrix[0][i] == 1: col_idx = i break if col_idx == -1: raise Exception("Something wrong!") # do row additions new_rows = list() for row in matrix[1:]: if row[col_idx] == -1: new_row = matrix[0] + row # check whether the new row is all zeros if not np.any(new_row): return True new_rows.append(new_row) # concatenate new rows with original matrix if new_rows: new_rows = np.array(new_rows) matrix = np.concatenate((matrix, new_rows), axis = 0) # discard the first row matrix = matrix[1:] return False
[ "b07901069@ntu.edu.tw" ]
b07901069@ntu.edu.tw
4093a500a69665c1d2f40a18d22e551f963d6769
7c8392c8ea92475361fdfa235b5b9ba8bfecf48b
/venv/bin/python-config
cbd55499759f7eda1ed1cdf66b676bd2c6570df0
[]
no_license
zhengdu0316/recsys_zed
4df3d965c31c74d99111708774cc63adba394b24
ee146ede1dd8bff257404eb8ebd4e29de5e05201
refs/heads/master
2020-03-18T21:49:44.067219
2018-05-30T10:08:34
2018-05-30T10:08:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,364
#!/Users/zhengdu/src/pycharm/recsys_zhengdu/venv/bin/python import sys import getopt import sysconfig valid_opts = ['prefix', 'exec-prefix', 'includes', 'libs', 'cflags', 'ldflags', 'help'] if sys.version_info >= (3, 2): valid_opts.insert(-1, 'extension-suffix') valid_opts.append('abiflags') if sys.version_info >= (3, 3): valid_opts.append('configdir') def exit_with_usage(code=1): sys.stderr.write("Usage: {0} [{1}]\n".format( sys.argv[0], '|'.join('--'+opt for opt in valid_opts))) sys.exit(code) try: opts, args = getopt.getopt(sys.argv[1:], '', valid_opts) except getopt.error: exit_with_usage() if not opts: exit_with_usage() pyver = sysconfig.get_config_var('VERSION') getvar = sysconfig.get_config_var opt_flags = [flag for (flag, val) in opts] if '--help' in opt_flags: exit_with_usage(code=0) for opt in opt_flags: if opt == '--prefix': print(sysconfig.get_config_var('prefix')) elif opt == '--exec-prefix': print(sysconfig.get_config_var('exec_prefix')) elif opt in ('--includes', '--cflags'): flags = ['-I' + sysconfig.get_path('include'), '-I' + sysconfig.get_path('platinclude')] if opt == '--cflags': flags.extend(getvar('CFLAGS').split()) print(' '.join(flags)) elif opt in ('--libs', '--ldflags'): abiflags = getattr(sys, 'abiflags', '') libs = ['-lpython' + pyver + abiflags] libs += getvar('LIBS').split() libs += getvar('SYSLIBS').split() # add the prefix/lib/pythonX.Y/config dir, but only if there is no # shared library in prefix/lib/. if opt == '--ldflags': if not getvar('Py_ENABLE_SHARED'): libs.insert(0, '-L' + getvar('LIBPL')) if not getvar('PYTHONFRAMEWORK'): libs.extend(getvar('LINKFORSHARED').split()) print(' '.join(libs)) elif opt == '--extension-suffix': ext_suffix = sysconfig.get_config_var('EXT_SUFFIX') if ext_suffix is None: ext_suffix = sysconfig.get_config_var('SO') print(ext_suffix) elif opt == '--abiflags': if not getattr(sys, 'abiflags', None): exit_with_usage() print(sys.abiflags) elif opt == '--configdir': print(sysconfig.get_config_var('LIBPL'))
[ "zhengdu1992@163.com" ]
zhengdu1992@163.com
8e8631e58ab2cdc2b0d49b823e27ee629c28aa57
13ebadfb52f076530af872c43c41839945b4211f
/random.py.py
36422cebd8def6539422a0060088fe0baf5dd641
[]
no_license
vikakiranaa/vika
85dad7b9b6afae4e5d86109d1f9506eb3f037ee7
3076b049da1b38e9a1beb428e5d789ccb7a5ca96
refs/heads/master
2020-03-08T07:50:51.356403
2018-04-16T05:40:48
2018-04-16T05:40:48
128,005,043
2
0
null
null
null
null
UTF-8
Python
false
false
146
py
import random jumlah = int (input("masukan jumlah n:")) for i in range(jumlah): i=random.uniform(0.0,0.5) print(i) print("selesai")
[ "noreply@github.com" ]
vikakiranaa.noreply@github.com
40985c2d1ff6c83e0719dbb629c133b092af38e2
49ee89cd8d698472aa904ef7690ef6faa235a12f
/The Best Box/The Best Box.py
8e7578a6c69d6b57d4d73a926fd3521a2bb45084
[]
no_license
AbhinavUtkarsh/Code-Chef
60b837358e8e168e281c05f8613af64b5ac45271
bbea28567fea2a20135e46638c3ba83613b423ef
refs/heads/master
2020-08-01T19:37:46.580012
2020-06-27T20:58:19
2020-06-27T20:58:19
211,094,346
1
1
null
null
null
null
UTF-8
Python
false
false
201
py
for _ in range(int(input())): p, s = map(int, input().strip().split()) a = (p - pow((((p ** 2) - (24 * s))), 0.5)) / 12 v = (a * s) / 2 - ((a ** 2) * p / 4) + a ** 3 print(round(v, 2))
[ "abhinav.utkarsh@gmail.com" ]
abhinav.utkarsh@gmail.com
b95bdd0a115a5b1058699b9eedb003e621a9c274
8e3b452b08139f25be824fae2b8b7aabb158d888
/6.00.1.x/Week5/Lecture9/ProblemSets/ProblemSet1.py
d739f864cdfb83d13b0fcc5e638c51deaea7a7d9
[]
no_license
prasannabe2004/MITx
d38a11e38a0abb73ffa37dccb363f779011155ab
1954b5fc31004c94f46fc8194b7fa773108c4493
refs/heads/master
2020-05-16T19:14:00.963550
2015-08-07T18:50:12
2015-08-07T18:50:12
25,537,861
1
0
null
null
null
null
UTF-8
Python
false
false
260
py
def linearSearch(L, x): i=0 for e in L: i= i+2 if e == x: i=i+1 print 'true i=',i return True i=i+1 print 'false i=',i return False linearSearch([13, 9, 22, 3, 10, 17, 11, 2, 12, 89], 26)
[ "prasannabe2004@gmail.com" ]
prasannabe2004@gmail.com
357bce5f77f216ee3071489ebb9999e3ff3a74c9
389286d8b35033dd795917306af7a795b2f8be06
/genpass.py
ac84d48efaa070cd3e1a0dfaeb6e0431b261b57f
[]
no_license
howling-dot/BrutForce
acdea71228fa96731aa5df0e4ebf71032b387b7a
0a5346f77f0225b9063ffffc443206a445541f6c
refs/heads/main
2023-01-02T21:30:50.693578
2020-10-29T17:22:42
2020-10-29T17:22:42
307,091,217
0
0
null
null
null
null
UTF-8
Python
false
false
3,602
py
import urllib.request import random, string # init list symbol abc = string.ascii_lowercase + string.ascii_uppercase + string.digits # Генератор плохих паролей class BadPasswordGenerator: """Инициализация генератора""" def __init__(self): self.j = 0 file_pass = urllib.request.urlopen( 'https://raw.githubusercontent.com/danielmiessler/SecLists/master/Passwords/Common-Credentials/10k-most-common.txt').readlines() self.passwords = [i.decode().rstrip() for i in file_pass] """Получение следущего пароля""" def next(self): password = self.passwords[self.j] self.j += 1 return password # пример использования #genBad = BadPasswordGenerator() #print(genBad.next()) # Генератор хороших паролей class GoodPasswordGenerator: """Инициализация генератора""" def __init__(self): self.alphabet = '0123456789' \ 'qwertyuiopasdfghjklzxcvbnm' \ 'QWERTYUIOPASDFGHJKLZXCVBNM' \ '!@#$%^&*()_+' """Получение следущего пароля""" def random_next(self, length=10): password = '' for i in range(length): password += random.choice(self.alphabet) return password def BrutForce_data(url='http://127.0.0.1:5000/auth', users='admin', email='',name='',surname='',birthday=''): email = email[:email.find('@')] alphabet_list = [i for i in birthday.split()] alphabet_list.append(name) alphabet_list.append(surname) alphabet_list.append(email) BrutForce_passlist(alphabet_list, users) return def BrutForce_passlist(list_add='', users='admin', alphabet = '0123456789abcdefghijklmnopqrstuvwxyz', url='http://127.0.0.1:5000/auth'): alphabet = list_add alphabet += list(alphabet) base = len(alphabet) length = 0 counter = 0 good_result = 0 generator = BadPasswordGenerator() while True: try: gen_pass = generator.next() for i in users: response = requests.post(url, json={'login': i, 'password':gen_pass}) if response.status_code == 200: print('SUCCESS', i, gen_pass) good_result += 1 break except IndexError: print('Все пароли перебраны') break while True: result = '' number = counter while number > 0: rest = number % base result = alphabet[rest] + result number = number // base while len(result) < length: result = alphabet[0] + result for i in users: response = requests.post(url, json={'login': i, 'password': result}) if response.status_code == 200: print('SUCCESS', result) good_result +=1 if good_result == len(users): break if alphabet[-1] * length == result: # встретили последний пароль для данной длины length += 1 counter = 0 else: counter += 1 # пример использования #genGood = GoodPasswordGenerator() #print(genGood.next()) #genBad = BadPasswordGenerator() #print(genBad.next())
[ "vovan.ziod@gmail.com" ]
vovan.ziod@gmail.com
d48cb3ec31f48448cbdda0e1f6c39bdcb0cf89d9
1ab66025b9d2aa8e2df92746db412661cfa5f926
/example_enquiry/tests/test_view_perm.py
e5e47d82e7c47b711f2256a3ac8701aeb10a2884
[ "Apache-2.0" ]
permissive
pkimber/old-enquiry-migrated-to-gitlab
7bc4023725186336400987c7ff79423268ba3788
78d90b58d34a530b03cf8386cfb24ed8160207dd
refs/heads/master
2021-06-13T16:55:29.504975
2017-04-19T14:38:31
2017-04-19T14:38:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
466
py
# -*- encoding: utf-8 -*- from django.core.urlresolvers import reverse from base.tests.test_utils import PermTestCase from enquiry.tests.scenario import default_scenario_enquiry from login.tests.scenario import default_scenario_login class TestViewPerm(PermTestCase): def setUp(self): default_scenario_login() default_scenario_enquiry() def test_create(self): url = reverse('example.enquiry.create') self.assert_any(url)
[ "code@pkimber.net" ]
code@pkimber.net
6bb0bf795a865d15fb197d4ddc8033f0326cc15c
1d4f8b196e1f6e757bdf6d71117a30ac4726194c
/numba_dppy/tests/test_controllable_fallback.py
db360c65c23fc89010d9560b032bd5fa21bc403b
[ "Apache-2.0" ]
permissive
pauljurczak/numba-dppy
03619f80660204187a3af183eacceb32d494900c
0668082476a239a5e60e07ab64657365c30936a2
refs/heads/main
2023-07-18T09:13:16.076070
2021-08-26T04:52:20
2021-08-26T04:52:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,747
py
# Copyright 2021 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from . import _helper import numpy as np import unittest import warnings import numba import dpctl from numba_dppy import config import numba_dppy @unittest.skipUnless(_helper.has_gpu_queues(), "test only on GPU system") class TestDPPYFallback(unittest.TestCase): def test_dppy_fallback_true(self): @numba.jit def fill_value(i): return i def inner_call_fallback(): x = 10 a = np.empty(shape=x, dtype=np.float32) for i in numba.prange(x): a[i] = fill_value(i) return a config.DEBUG = 1 with warnings.catch_warnings(record=True) as w: device = dpctl.SyclDevice("opencl:gpu") with numba_dppy.offload_to_sycl_device(device): dppy = numba.njit(parallel=True)(inner_call_fallback) dppy_fallback_true = dppy() ref_result = inner_call_fallback() config.DEBUG = 0 np.testing.assert_array_equal(dppy_fallback_true, ref_result) self.assertIn("Failed to offload parfor", str(w[-1].message)) @unittest.expectedFailure def test_dppy_fallback_false(self): @numba.jit def fill_value(i): return i def inner_call_fallback(): x = 10 a = np.empty(shape=x, dtype=np.float32) for i in numba.prange(x): a[i] = fill_value(i) return a try: config.DEBUG = 1 config.FALLBACK_ON_CPU = 0 with warnings.catch_warnings(record=True) as w: device = dpctl.SyclDevice("opencl:gpu") with numba_dppy.offload_to_sycl_device(device): dppy = numba.njit(parallel=True)(inner_call_fallback) dppy_fallback_false = dppy() finally: ref_result = inner_call_fallback() config.FALLBACK_ON_CPU = 1 config.DEBUG = 0 not np.testing.assert_array_equal(dppy_fallback_false, ref_result) self.assertNotIn("Failed to offload parfor", str(w[-1].message)) if __name__ == "__main__": unittest.main()
[ "noreply@github.com" ]
pauljurczak.noreply@github.com
9b3869c2082a919dbc1663a32a278a5283ff4931
5cee4a4374c52e29bc8eea4b0ed8d1d40566acf1
/Robots/Hexy_V1/Moves/GetUp.py
94c99e688ce9076780779d685b7c23df311f07e3
[]
no_license
clauden/hexy
23f8a73a073c2b1cf512a8479da7d200fae63e82
5b8bd014c6b0acdf7eb4b1d44dd560a4dca73ee3
refs/heads/master
2020-12-30T22:32:19.087647
2016-04-21T05:45:12
2016-04-21T05:45:12
56,036,060
1
1
null
null
null
null
UTF-8
Python
false
false
469
py
import time deg = -30 #put all the feet centered and on the floor. hexy.LF.hip(-deg) hexy.RM.hip(1) hexy.LB.hip(deg) hexy.RF.hip(deg) hexy.LM.hip(1) hexy.RB.hip(-deg) time.sleep(0.5) for leg in hexy.legs: leg.knee(-30) leg.hip("sleep") time.sleep(0.5) for leg in hexy.legs: leg.ankle(-90) time.sleep(0.5) for angle in range(0,45,3): for leg in hexy.legs: leg.knee(angle) leg.ankle(-90+angle) time.sleep(0.1) move("Reset")
[ "joe@arcbotics.com" ]
joe@arcbotics.com
0e648652af6200f24c5bbe88533af8a9498a4ac5
5ff95bb44a8c18f42ec1892b8e63098d1dff7e45
/energy_py/common/np_utils.py
8bd3a90a47385854072677687da7c88cb801901a
[ "MIT" ]
permissive
demirelg/energy_py
e242a2783689c2fb741c71168756fd3fe2d281a5
7b6a3f52d3ea067061e95b931a7b864d1247e123
refs/heads/master
2023-03-16T15:33:34.271308
2018-07-07T01:19:51
2018-07-07T01:19:51
551,675,719
1
0
MIT
2022-10-14T21:40:02
2022-10-14T21:40:01
null
UTF-8
Python
false
false
1,168
py
"""Helper functions for numpy""" import numpy as np def rolling_window(a, size): shape = a.shape[:-1] + (a.shape[-1] - size + 1, size) strides = a.strides + (a. strides[-1],) return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides) def find_sub_array_in_2D_array(sub_array, array): """ Find the first occurence of a sub_array within a larger array args sub_array (np.array) ndim=1 array (np.array) ndim=2, shape=(num_samples, sub_array.shape[0]) i.e. sub_array = np.array([0.0, 2.0]).reshape(2) array = np.array([0.0, 0.0, 0.0, 1.0, 0.0, 2.0).reshape(3, 2) --> 2 Used for finding the index of an action within a list of all possible actions """ # array making and shaping so that user could feed in a list and it # would work sub_array = np.array(sub_array).reshape(array.shape[1]) bools = rolling_window(sub_array, array.shape[1]) == array bools = np.all( bools.reshape(array.shape[0], -1), axis=1 ) # argmax finds the first true values return np.argmax(bools)
[ "adam.green@adgefficiency.com" ]
adam.green@adgefficiency.com
f4cae0c275be924da6f646aa413fa67f3a7077e1
e3eb70b22216cce8e5ed0e63fdb6880726098fba
/test_FizzBuzz.py
ccb3dd08293feafef974b9935f0770300e634677
[]
no_license
kaufmjoh/CS_362_HW7
cb1bf65628cfbfb008e903031497842ce387039a
9889479e0584159a62340884e512c45fce40d9b5
refs/heads/master
2023-05-12T08:03:33.436679
2021-03-08T02:23:55
2021-03-08T02:23:55
345,493,585
0
0
null
null
null
null
UTF-8
Python
false
false
704
py
import unittest import FizzBuzz class TestCaseFizzBuzz(unittest.TestCase): def testFizzBuzz(self): self.assertEqual(FizzBuzz.FizzBuzz(), "1, 2, Fizz, 4, Buzz, Fizz, 7, 8, Fizz, Buzz, 11, Fizz, 13, 14, FizzBuzz, 16, 17, Fizz, 19, Buzz, Fizz, 22, 23, Fizz, Buzz, 26, Fizz, 28, 29, FizzBuzz, 31, 32, Fizz, 34, Buzz, Fizz, 37, 38, Fizz, Buzz, 41, Fizz, 43, 44, FizzBuzz, 46, 47, Fizz, 49, Buzz, Fizz, 52, 53, Fizz, Buzz, 56, Fizz, 58, 59, FizzBuzz, 61, 62, Fizz, 64, Buzz, Fizz, 67, 68, Fizz, Buzz, 71, Fizz, 73, 74, FizzBuzz, 76, 77, Fizz, 79, Buzz, Fizz, 82, 83, Fizz, Buzz, 86, Fizz, 88, 89, FizzBuzz, 91, 92, Fizz, 94, Buzz, Fizz, 97, 98, Fizz, Buzz"); if __name__ == '__main__': unittest.main();
[ "kaufmjoh@oregonstate.edu" ]
kaufmjoh@oregonstate.edu
f9ff90fe6ca01813b519a4b80cd9d7f2b02870e3
4f8ee78ba4a865b255e49f7c4c2aa7ca5f41fc8f
/prac_01/shop_calculator.py
fdc7a26660aa93ceaaffc0ad251c1d1ec233b4ed
[]
no_license
Chris-Barty-JCU/CP1404_PRACTICALS
aaf826efdce3b05a0568f2ea037387f921b34a22
88c978dce429d84f9797fffc232f419af2460ccf
refs/heads/master
2021-05-23T00:33:13.386640
2020-05-05T13:12:37
2020-05-05T13:12:37
253,156,640
0
0
null
null
null
null
UTF-8
Python
false
false
385
py
item_total = 0 n_items = int(input("Number of Items: ")) while n_items <= 0: print("Invalid Number Of Items!") n_items = int(input("Number of Items: ")) for x in range(1, n_items + 1, 1): item_cost = float(input("Price Of Item " + str(x) + ": ")) item_total = item_total + item_cost print("Total Price For " + str(n_items) + " Items Is: ${:.2f}".format(item_total))
[ "christopher.barty@my.jcu.edu.au" ]
christopher.barty@my.jcu.edu.au
e558f8013830df479215c149d520716d37933924
e767f18e905dcec97e0dfa5619682a4c00fd50eb
/src/config/__init__.py
3ba4363ec11542df73010501014c8c599790c7b1
[]
no_license
andersHoward/AHRLFramework
a732a806e034700afacadd6ef8c67c29103210b8
a84f93f5b075c5fc99dcaffc1a2b9ebaa35fecef
refs/heads/master
2021-01-20T14:35:41.953914
2017-07-12T18:11:55
2017-07-12T18:11:55
82,762,315
1
0
null
null
null
null
UTF-8
Python
false
false
20
py
import ConfigLoader
[ "andershoward@gmail.com" ]
andershoward@gmail.com
855b492e6975706c4ca542c4b5a8f4bc14abeebe
ecf28ce0c9b4cb78cf72a35a43e8b64fb4012ae0
/main/board.py
4cc9746940ea404387a63079206d6f4f70e1b18b
[]
no_license
Soohwanchoi/Python_flask
f97a57650081601e9c9a167a4f831eb8a48bef97
bcdcceaf1e0143ddc1ba668bff794b700c7501b9
refs/heads/master
2022-12-21T17:30:49.693533
2020-09-15T10:14:32
2020-09-15T10:14:32
295,685,565
0
0
null
null
null
null
UTF-8
Python
false
false
10,853
py
from main import * from flask import Blueprint from flask import send_from_directory from flask import jsonify blueprint = Blueprint("board", __name__, url_prefix='/board') @blueprint.route("/view") @login_required def board_view(): idx = request.args.get("idx") page = request.args.get("page", 1, type=int) search = request.args.get("search", -1, type=int) keyword = request.args.get("keyword", "", type=str) if idx is not None: board = mongo.db.board #data = board.find_one({"_id": ObjectId(idx)}) data = board.find_one_and_update({"_id": ObjectId(idx)}, {"$inc": {"view": 1}}, return_document=True) if data is not None: result = { "id": data.get("_id"), "name": data.get("name"), "title": data.get("title"), "contents": data.get("contents"), "CurrentTime": data.get("CurrentTime"), "writer_id": data.get("writer_id", ""), "attachfile": data.get("attachfile", "") } return render_template("view.html", title="글보기", result=result, page=page, search=search, keyword=keyword) return abort(404) @blueprint.route("/write", methods=["GET", "POST"]) @login_required def board_write(): if session["id"] is None or session["id"] == "": return redirect(url_for("member_login")) if request.method == "POST": filename = None if "attachfile" in request.files: file = request.files["attachfile"] if file and allowed_file(file.filename): filename = check_filename(file.filename) file.save(os.path.join(app.config["BOARD_ATTACH_FILE_PATH"], filename)) name = request.form.get("name") writer_id = session.get("id") title = request.form.get("title") contents = request.form.get("contents") current_utc_time = round(datetime.utcnow().timestamp() * 1000) board = mongo.db.board post = { "writer_id": writer_id, "name": session["name"], "title": title, "contents": contents, "view": 0, "CurrentTime": current_utc_time, } if filename is not None: post["attachfile"] = filename print(post) x = board.insert_one(post) flash("정상적으로 작성 되었습니다.") return redirect(url_for("board.board_view", idx=x.inserted_id)) else: return render_template("write.html", title="글작성", name=session["name"]) @blueprint.route("/list") def lists(): page = request.args.get("page", 1, type=int) limit = request.args.get("limit", 10, type=int) search = request.args.get("search", -1, type=int) keyword = request.args.get("keyword", "", type=str) query = {} search_list = [] if search == 0: search_list.append({"title": {"$regex": keyword}}) elif search == 1: search_list.append({"contents": {"$regex": keyword}}) elif search == 2: search_list.append({"title": {"$regex": keyword}}) search_list.append({"contents": {"$regex": keyword}}) elif search == 3: search_list.append({"name": {"$regex": keyword}}) if len(search_list) > 0: query = {"$or": search_list} board = mongo.db.board datas = board.find(query).skip((page-1) * limit).limit(limit) tot_count = board.find(query).count() last_page_num = math.ceil(tot_count / limit) block_size = 5 block_num = int((page-1) / block_size) block_start = int((block_size * block_num) + 1) block_last = math.ceil(block_start + (block_size-1)) return render_template("list.html", datas=datas, limit=limit, page=page, block_start=block_start, block_last=block_last, last_page=last_page_num, search=search, keyword=keyword, title="리스트", ) @blueprint.route("/edit", methods=["POST"]) @blueprint.route("/edit/<idx>", methods=["GET"]) def board_edit(idx=None): if request.method == "GET": board = mongo.db.board data = board.find_one({"_id": ObjectId(idx)}) if data is None: flash("해당 게시물이 존재하지 않습니다.") return redirect(url_for("board.lists")) else: if session.get("id") == data.get("writer_id"): return render_template("edit.html", data=data, title="글수정",) else: flash("글 수정 권한이 없습니다.") return redirect(url_for("board.lists")) else: idx = request.form.get("idx") title = request.form.get("title") contents = request.form.get("contents") deleteoldfile = request.form.get("deleteoldfile", "") board = mongo.db.board data = board.find_one({"_id": ObjectId(idx)}) if data.get("writer_id") == session.get("id"): attach_file = data.get("attachfile") filename = None if "attachfile" in request.files: file = request.files["attachfile"] if file and allowed_file(file.filename): filename = check_filename(file.filename) file.save(os.path.join(app.config["BOARD_ATTACH_FILE_PATH"], filename)) if attach_file: board_delete_attach_file(attach_file) else: if deleteoldfile == "on": filename = None if attach_file: board_delete_attach_file(attach_file) else: filename = attach_file board.update_one({"_id": ObjectId(idx)}, { "$set": { "title": title, "contents": contents, "attachfile": filename } }) flash("수정되었습니다.") return redirect(url_for("board.board_view", idx=idx)) else: flash("글 수정 권한이 없습니다.") return redirect(url_for("board.lists")) @blueprint.route("/delete/<idx>") def board_delete(idx): board = mongo.db.board data = board.find_one({"_id": ObjectId(idx)}) if data.get("writer_id") == session.get("id"): board.delete_one({"_id": ObjectId(idx)}) flash("삭제 되었습니다.") else: flash("글 삭제 권한이 없습니다.") return redirect(url_for("board.lists")) @blueprint.route("/upload_image", methods=["POST"]) def upload_image(): if request.method == "POST": file = request.files["image"] if file and allowed_file(file.filename): filename = "{}_{}.jpg".format(str(int(datetime.now().timestamp()) * 1000), rand_generator()) savefilepath = os.path.join(app.config["BOARD_IMAGE_PATH"], filename) file.save(savefilepath) return url_for("board.board_images", filename=filename) @blueprint.route('/images/<filename>') def board_images(filename): return send_from_directory(app.config['BOARD_IMAGE_PATH'], filename) @blueprint.route("/files/<filename>") def board_files(filename): return send_from_directory(app.config['BOARD_ATTACH_FILE_PATH'], filename) def board_delete_attach_file(filename): abs_path = os.path.join(app.config["BOARD_ATTACH_FILE_PATH"], filename) if os.path.exists(abs_path): os.remove(abs_path) return True return False @blueprint.route("/comment_write", methods=["POST"]) @login_required def comment_write(): if session["id"] is None or session["id"] == "": return redirect(url_for("member_login")) if request.method == "POST": name = session.get("name") writer_id = session.get("id") root_idx = request.form.get("root_idx") ccomment = request.form.get("comment") current_utc_time = round(datetime.utcnow().timestamp() * 1000) comment = mongo.db.comment post = { "root_idx": root_idx, "writer_id": writer_id, "name": name, "comment": ccomment, "CurrentTime": current_utc_time, } print(post) x = comment.insert_one(post) return redirect(url_for("board.board_view", idx=root_idx)) return abort(404) @blueprint.route("/comment_list/<root_idx>", methods=["GET"]) @login_required def comment_list(root_idx): if session["id"] is None or session["id"] == "": return redirect(url_for("member_login")) comment = mongo.db.comment comments = comment.find({"root_idx": str(root_idx)}).sort([("CurrentTime", -1)]) comment_list = [] for c in comments: print(c) owner = True if c.get("writer_id") == session.get("id") else False comment_list.append({ "id": str(c.get("_id")), "root_idx": c.get("root_idx"), "name": c.get("name"), "writer_id": c.get("writer_id"), "comment": c.get("comment"), "CurrentTime": filter.format_datetime(c.get("CurrentTime")), "owner": owner, }) return jsonify(error="success", lists=comment_list) @blueprint.route("/comment_delete", methods=["POST"]) @login_required def comment_delete(): if session["id"] is None or session["id"] == "": return redirect(url_for("member_login")) if request.method == "POST": idx = request.form.get("id") comment = mongo.db.comment data = comment.find_one({"_id": ObjectId(idx)}) if data.get("writer_id") == session.get("id"): comment.delete_one({"_id": ObjectId(idx)}) return jsonify(error="success") else: return jsonify(error="error") return abort(404) @blueprint.route("/comment_edit", methods=["POST"]) @login_required def comment_edit(): if session["id"] is None or session["id"] == "": return redirect(url_for("member_login")) if request.method == "POST": idx = request.form.get("id") ccomment = request.form.get("comment") comment = mongo.db.comment data = comment.find_one({"_id": ObjectId(idx)}) if data.get("writer_id") == session.get("id"): comment.update_one( {"_id": ObjectId(idx)}, {"$set": {"comment": ccomment}}, ) return jsonify(error="success") else: return jsonify(error="error") return abort(404)
[ "!a48094809" ]
!a48094809
e16f731dbb1a420b7d0e97684397536e9c92db4a
e905abd9bb7bd7017657d0a0c4d724d16e37044c
/.history/article/spiders/ieee_20210208220336.py
377e71d23b57211ab76118ef9b7a82b0c1747ea7
[]
no_license
tabdelbari/articles
a8b921841f84fb473f5ed1cdcda743863e6bc246
f0e1dfdc9e818e43095933139b6379a232647898
refs/heads/main
2023-03-05T10:21:35.565767
2021-02-10T13:35:14
2021-02-10T13:35:14
325,654,973
0
0
null
null
null
null
UTF-8
Python
false
false
7,770
py
import scrapy import logging import re from scrapy_splash import SplashRequest, request from article.items import ArticleItem import json class IeeeSpider(scrapy.Spider): name = 'ieee' allowed_domains = ['ieee.org'] lua_script = """ function main(splash, args) assert(splash:go{ splash.args.url, headers=splash.args.headers, http_method=splash.args.http_method, body=splash.args.body, }) assert(splash:wait(1)) return splash:html() end """ lua_script2 = """ function main(splash, args) assert(splash:go{ splash.args.url, headers=splash.args.headers, http_method=splash.args.http_method }) assert(splash:wait(1)) return splash:html() end """ def __init__(self, topic='', keywords='', **kwargs): super().__init__(**kwargs) self.topic = topic self.keywords = keywords self.totalPages = 0 def start_requests(self): post_data = '{"queryText": "' + self.topic + \ '", "highlight": true, "returnType": "SEARCH", "matchPubs": true, "rowsPerPage": 100, "returnFacets": ["ALL"], "newsearch": true}' headers = { 'Origin': 'https://ieeexplore.ieee.org', 'Host': 'ieeexplore.ieee.org', 'Accept-Language': 'fr-MA,fr;q=0.9,en-US;q=0.8,en;q=0.7,ar-MA;q=0.6,ar;q=0.5,fr-FR;q=0.4', 'Accept-Encoding': 'gzip, deflate, br', 'Accept': 'application/json, text/plain, */*', 'Content-Type': 'application/json;charset=UTF-8' } search_url = 'https://ieeexplore.ieee.org/rest/search' yield SplashRequest(search_url, self.parse_0, endpoint='execute', magic_response=True, meta={'handle_httpstatus_all': True}, args={'lua_source': self.lua_script, 'http_method': 'POST', 'body': post_data, 'headers': headers}) def parse_0(self, response): jr = json.loads(response.xpath('//*/pre/text()').get(default='')) self.totalPages = jr['totalPages'] headers = { 'Origin': 'https://ieeexplore.ieee.org', 'Host': 'ieeexplore.ieee.org', 'Accept-Language': 'fr-MA,fr;q=0.9,en-US;q=0.8,en;q=0.7,ar-MA;q=0.6,ar;q=0.5,fr-FR;q=0.4', 'Accept-Encoding': 'gzip, deflate, br', 'Accept': 'application/json, text/plain, */*', 'Content-Type': 'application/json;charset=UTF-8' } search_url = 'https://ieeexplore.ieee.org/rest/search' for i in range(1, (self.totalPages+1)): post_data = '{"queryText": "' + self.topic + \ '", "highlight": true, "newsearch": true, "returnType": "SEARCH", "matchPubs": true, "rowsPerPage": 100, "returnFacets": ["ALL"], "pageNumber": '+str(i)+'}' yield SplashRequest(search_url, self.parse_1, endpoint='execute', magic_response=True, meta={'handle_httpstatus_all': True}, args={'lua_source': self.lua_script, 'http_method': 'POST', 'body': post_data, 'headers': headers}) def parse_1(self, response): jr = json.loads(response.xpath('//*/pre/text()').get(default='')) headers = { 'Origin': 'https://ieeexplore.ieee.org', 'Host': 'ieeexplore.ieee.org', 'Accept-Language': 'fr-MA,fr;q=0.9,en-US;q=0.8,en;q=0.7,ar-MA;q=0.6,ar;q=0.5,fr-FR;q=0.4', 'Accept-Encoding': 'gzip, deflate, br', 'Accept': 'application/json, text/plain, */*', 'Content-Type': 'application/json;charset=UTF-8' } for record in jr['records']: authors_ids = list(map(lambda author: author['id'], record['authors'])) metrics_url = "https://ieeexplore.ieee.org/rest/document/" + record['articleNumber'] + "/metrics" yield SplashRequest(metrics_url, self.parse_2, endpoint='execute', magic_response=True, meta=dict{ 'handle_httpstatus_all': True, 'title': record['articleTitle'], 'abstract': record['abstract'], 'year': record['publicationYear'], 'journal': record['publicationTitle'], 'publisher': record['publisher'], 'doi': record['doi'], 'authors_ids': authors_ids }, args={'lua_source': self.lua_script2, 'http_method': 'GET', 'headers': headers}) def parse_2(self, response): # result = response.meta['data'] authors_ids = response.meta['authors_ids'] jr = json.loads(response.xpath('//*/pre/text()').get(default='')) citationCountPaper = 0 scoupus = 0 try: citationCountPaper = self.safe_cast(jr['metrics']['citationCountPaper'], int, 0) except: pass try: scoupus = self.safe_cast(jr['metrics']['scopus_count'], int, 0) except: pass headers = { 'Origin': 'https://ieeexplore.ieee.org', 'Host': 'ieeexplore.ieee.org', 'Accept-Language': 'fr-MA,fr;q=0.9,en-US;q=0.8,en;q=0.7,ar-MA;q=0.6,ar;q=0.5,fr-FR;q=0.4', 'Accept-Encoding': 'gzip, deflate, br', 'Accept': 'application/json, text/plain, */*', 'Content-Type': 'application/json;charset=UTF-8' } for author_id in authors_ids: author_url = 'https://ieeexplore.ieee.org/rest/author/' + str(author_id) yield SplashRequest(author_url, self.parse, endpoint='execute', magic_response=True, meta={'handle_httpstatus_all': True, 'impf': citationCountPaper, 'scoupus': scoupus, 'title': response.meta['articleTitle'], 'abstract': response.meta['abstract'], 'year': response.meta['publicationYear'], 'journal': response.meta['publicationTitle'], 'publisher': response.meta['publisher'], 'doi': response.meta['doi'], }, args={'lua_source': self.lua_script2, 'http_method': 'GET', 'headers': headers}) def parse(self, response): result = { 'impf': response.meta['impf'], 'scoupus': response.meta['scoupus'], 'title': response.meta['articleTitle'], 'abstract': response.meta['abstract'], 'year': response.meta['publicationYear'], 'journal': response.meta['publicationTitle'], 'publisher': response.meta['publisher'], 'doi': response.meta['doi'], } try: jr = json.loads(response.xpath('//*/pre/text()').get(default=''))[0] id = jr['id'] author = jr['preferredName'] adresses = jr['currentAffiliation'].split(', ') result['author'] = author result['organisation'] = adresses[0] result['lab'] = adresses[1] result['city'] = adresses[2] result['country'] = adresses[3] result['_id'] = result['doi'] + '_' + str(id) except: pass yield result def safe_cast(self, val, to_type, default=None): try: return to_type(val) except: return default
[ "abdelbari1996@hotmail.com" ]
abdelbari1996@hotmail.com
e190c1e1ac2a062fcef0732bd050f3ed9fd4f8b1
44a67d9c840d751081f6917b964bd47bb19c9e6a
/accounts/forms.py
cdb10e4bf939d74e38d1ac9d52ef215f384292a5
[]
no_license
31519/aws_news
982253012f987a5d35f615e9d3af5f769b7ed22b
d054258e2489ac1efa6f104d629b8b9a49769982
refs/heads/main
2023-05-30T16:16:24.261607
2021-06-07T08:40:47
2021-06-07T08:40:47
370,308,381
0
0
null
null
null
null
UTF-8
Python
false
false
2,394
py
from django import forms from django.contrib.auth.models import User from .models import Account, UserProfile class RegistrationForm(forms.ModelForm): password = forms.CharField(widget=forms.PasswordInput(attrs={ 'placeholder':'Enter Password', 'class':'form-control' })) confirm_password = forms.CharField(widget=forms.PasswordInput(attrs={ 'placeholder':'Confirm Password', 'class':'form-control' })) class Meta: model = Account fields = ['first_name', 'last_name', 'email', 'phone_number', 'country', 'state', 'gender', 'password'] def __init__(self, *args, **kwargs): super(RegistrationForm, self).__init__(*args, **kwargs) # self.fields['adv_category'].widget.attrs['placeholder'] = 'Enter Category' # self.fields['adv_heading'].widget.attrs['placeholder'] = 'Enter Title' # self.fields['adv_descriptions'].widget.attrs['placeholder'] = 'Enter Description' # self.fields['adv_images'].widget.attrs['placeholder'] = 'Enter Images' # self.fields['adv_end_date'].widget.attrs['class'] = 'form-control' for field in self.fields: self.fields[field].widget.attrs['class'] = 'form-control' def clean(self): cleaned_data = super(RegistrationForm, self).clean() password = cleaned_data.get('password') confirm_password = cleaned_data.get('confirm_password') if password != confirm_password: raise forms.ValidationError("password does not match!") class UserForm(forms.ModelForm): class Meta: model = Account fields = ('first_name', 'last_name', 'phone_number', 'images', 'email') def __init__(self, *args, **kwargs): super(UserForm, self).__init__(*args, **kwargs) for field in self.fields: self.fields[field].widget.attrs['class'] = 'form-control' class UserProfileForm(forms.ModelForm): images = forms.ImageField(required=False, error_messages = {'invalid':("Image files only")}, widget=forms.FileInput) class Meta: model = UserProfile fields = ('address', 'state', 'country', 'images', 'address') def __init__(self, *args, **kwargs): super(UserProfileForm, self).__init__(*args, **kwargs) for field in self.fields: self.fields[field].widget.attrs['class'] = 'form-control'
[ "cosrumut31519@gmail.com" ]
cosrumut31519@gmail.com
3e43f3976ab3b3ddab14befd090271042f8e4eca
28e17be2b84e68d98e28aa1d2e6e26e95d548348
/blog/settings.py
3a2c742de5b8b221a476cc5996be24849cac1e00
[]
no_license
IoanHadarean/Django-Blog
73b1d9a79f3aa2b0a5204b35fa4ad12edd1a72b4
e443b3a6537706e1506ccdc71a9120dbdd7c637a
refs/heads/master
2022-12-08T06:18:38.150546
2022-04-27T08:13:35
2022-04-27T08:13:35
190,923,536
0
0
null
null
null
null
UTF-8
Python
false
false
3,813
py
""" Django settings for blog project. Generated by 'django-admin startproject' using Django 1.11. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os import dj_database_url if os.path.exists('env.py'): import env # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = os.environ.get('SECRET_KEY') # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['aaeaf49b4cb74494a449d006071e8a43.vfs.cloud9.us-east-1.amazonaws.com', 'django-blog-application.herokuapp.com'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django_forms_bootstrap', 'posts', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'whitenoise.middleware.WhiteNoiseMiddleware', ] ROOT_URLCONF = 'blog.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'django.template.context_processors.media', ], }, }, ] WSGI_APPLICATION = 'blog.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases if "DATABASE_URL" in os.environ: DATABASES = { 'default': dj_database_url.parse(os.environ.get("DATABASE_URL")) } else: print("Postgres URL not found, using sqlite instead") DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = (os.path.join(BASE_DIR, 'static'), ) STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles') MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media')
[ "ubuntu@ip-172-31-85-80.ec2.internal" ]
ubuntu@ip-172-31-85-80.ec2.internal
38176b90d2d8f84615dd9012f691a9227a18b1b9
5e16831c3d7106297938c8543332b2012bd925a4
/wips_home/urls.py
c96ff3f578dfd3fdd7ab6861b648dfc10567d1fb
[]
no_license
legible01/WIPS_django
15a5cfcba4adc5b4c35bdc672dd97b621f2d8d9f
1ff3c301af49893a79abf4d9369306c4ace5519d
refs/heads/master
2020-03-17T04:19:31.177043
2018-10-12T02:58:40
2018-10-12T02:58:40
133,270,425
0
0
null
null
null
null
UTF-8
Python
false
false
253
py
from django.urls import path from wips_home import views urlpatterns = [ path('', views.block_list, name='block_list'), path('post/<int:pk>', views.block_list_post, name='block_list_post'), #path('edit/',views.edit_data, name='edit_data') ]
[ "legible01@gmail.com" ]
legible01@gmail.com
cfd368ccf5e7e39d3970349460410b00c035e90a
e8bf0ec2f07be9c4fb9aff1c5ea3be2651db17f6
/Daily_Coding_Problem/514_no_of_consecutive_integers_in_array.py
7eb79dea4c9496f42787575333203642d6b67961
[]
no_license
Srini-py/Python
0b4a0316f3754bc04e3c01214f1d99721defbf38
81eec0cc418baa86ad718be853242e4cc349dab4
refs/heads/main
2023-06-30T23:58:25.589872
2021-08-06T16:54:51
2021-08-06T16:54:51
393,439,738
0
0
null
null
null
null
UTF-8
Python
false
false
600
py
''' Given an unsorted array of integers, find the length of the longest consecutive elements sequence. Your algorithm should run in O(n) complexity. ''' def find_consecutive(arr, n): ans = 0 s = set() for i in arr: s.add(i) for i in range(n): if arr[i]-1 not in s: j = arr[i] count = 0 while j in s: j += 1 count += 1 ans = max(ans, count) return ans arr = [int(i) for i in input("Enter the array of elements : ").split()] print("No.of consecutive elements in array are",find_consecutive(arr, len(arr)))
[ "noreply@github.com" ]
Srini-py.noreply@github.com
1854e2ef0f86081c28f9c7183c88ed888dc578c6
6eb0e20fd4b7aa829d652a8386efba36de89b030
/scionlab/forms/attachment_conf_form.py
92552206f475d818b90d9d753a9519960cc796ed
[ "Apache-2.0" ]
permissive
fl99kl/scionlab
f21bd29be7d35d9421a035b880de8a7e72096f7b
21771c5057dbc665ba73bc2f1b5f3ed42d91d5ca
refs/heads/master
2023-05-10T15:24:41.342591
2020-12-28T11:40:24
2020-12-28T11:40:24
267,624,721
0
0
Apache-2.0
2020-05-28T15:20:53
2020-05-28T15:20:53
null
UTF-8
Python
false
false
14,692
py
# Copyright 2018 ETH Zurich # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import ipaddress from django import forms from django.conf import settings from django.forms import BaseModelFormSet from django.core.exceptions import ValidationError from crispy_forms.helper import FormHelper from crispy_forms.layout import Layout, Row, Column, Div, HTML from crispy_forms.bootstrap import AppendedText from scionlab.defines import MAX_PORT, DEFAULT_PUBLIC_PORT from scionlab.models.core import Link from scionlab.models.user_as import AttachmentPoint, AttachmentConf, UserAS from scionlab.util.portmap import PortMap class AttachmentConfFormSet(BaseModelFormSet): """ A FormSet companion for the UserASForm, representing its `AttachmentPoint`s """ def __init__(self, *args, **kwargs): self.userASForm = kwargs.pop('userASForm') self.isd = None super().__init__(*args, **kwargs) def _check_isd(self, forms): """ Check the consistency of the ISD """ instance = self.userASForm.instance isd_set = {form.cleaned_data['attachment_point'].AS.isd for form in forms} if instance and instance.isd_fixed(): # If ISD is fixed, say which ISD the AS is restricted to isd_set.add(instance.isd) if len(isd_set) > 1: raise ValidationError("All attachment points must belong to %s. " "See \"Fixed links\" below." % instance.isd) else: if len(isd_set) > 1: raise ValidationError("All attachment points must belong to the same ISD") if not instance: if len(isd_set) == 1: self.isd = isd_set.pop() else: # One attachment point must be selected at creation time raise ValidationError("Select at least one attachment point") def _check_ip_ports(self, forms): """ Check for clashes in (ip, port) combinations """ installation_type = self.userASForm.cleaned_data.get('installation_type') public_addrs, public_addr_clashes = PortMap(), [] local_addrs, local_addr_clashes = PortMap(), [] forward_ports, forward_addr_clashes = set(), [] for f in filter(lambda f: not f.cleaned_data['use_vpn'], forms): public_ip = f.cleaned_data['public_ip'], port = f.cleaned_data['public_port'] bind_ip = f.cleaned_data['bind_ip'] if public_addrs.add(public_ip, port): public_addr_clashes.append(f) if local_addrs.add(bind_ip or public_ip, port) and bind_ip: local_addr_clashes.append(f) if installation_type == UserAS.VM: if port in forward_ports: forward_addr_clashes.append(f) else: forward_ports.add(port) for form in public_addr_clashes: form.add_error('public_port', ValidationError('This port is already in use', code='public_port_clash')) for form in local_addr_clashes: form.add_error('public_port', ValidationError('This port is already in use for the specified ' 'bind IP address', code='local_port_clash')) for form in forward_addr_clashes: form.add_error('public_port', ValidationError('This port clashes in the VM setup', code='forwarded_port_clash')) def clean(self): if any(self.errors): # Don't bother validating the formset unless each form is valid on its own return active_forms = [] for form in self.forms: if self.can_delete and self._should_delete_form(form): continue # Skip empty forms and deactivated connections if not form.cleaned_data or not form.cleaned_data['active']: continue active_forms.append(form) self._check_isd(active_forms) self._check_ip_ports(active_forms) def save(self, user_as, commit=True): att_confs = super().save(commit=False) user_as.update_attachments(att_confs, self.deleted_objects) class AttachmentConfFormHelper(FormHelper): """ Create the crispy-forms FormHelper. The form will then be rendered using {% crispy form %} in the template. """ conf_header = Div( Row( Column('attachment_point', css_class='col-md-5'), Column('use_vpn', css_class='col-md-5'), 'id' ), css_class="card-header" ) conf_body = Div( Row( Column(AppendedText('public_ip', '<span class="fa fa-external-link"/>'), css_class='col-md-6 hidable'), Column(AppendedText('public_port', '<span class="fa fa-share-square-o"/>'), css_class='col-md-6') ), Row( HTML("""<button type="button" class="btn btn-link bind-row-collapser collapsed" aria-expanded="false" aria-controls="bind-row"> Show binding options for NAT <i class="fa fa-plus-circle"></i> <i class="fa fa-minus-circle"></i> </button>""") ), Row( Column(AppendedText('bind_ip', '<span class="fa fa-external-link-square"/>'), css_class='col-md-6 hidable'), css_class="bind-row" ), css_class="card-body" ) conf_footer = Div( Row( Column('active', css_class='col-md-6'), Column('DELETE', css_class='col-md-6 text-danger') ), css_class="card-footer" ) conf_collapser = HTML( """<button type="button" id="new-ap-collapser" class="mt-3 btn btn-link collapsed" aria-expanded="false" aria-controls="new-ap-form"> New provider link <i class="mt-3 fa fa-plus-circle"></i> <i class="mt-3 fa fa-minus-circle"></i> </button>""" ) def __init__(self, instance, userAS, *args, **kwargs): super().__init__(*args, **kwargs) outter_parts = () if instance: # existing link, existing user AS # - can be deleted / deactivated card_parts = ( self.conf_header, self.conf_body, self.conf_footer, ) elif userAS: # new link, existing user AS # - cannot be deleted (it doesnt exist) or deactivated (because it doesnt make sense to # create an inactive link). # - initially collapsed outter_parts = ( self.conf_collapser, ) card_parts = ( self.conf_header, self.conf_body, ) else: # new (and only) link, user AS # - cannot be deleted / deactivated nor collapsed card_parts = ( self.conf_header, self.conf_body, ) self.layout = Layout( Div( *outter_parts, Div( *card_parts, css_class="card attachment-form", ), css_class='attachment' ) ) # We need `form_tag = False` to render the AttachmentConfFormSet along with the UserASForm self.form_tag = False self.disable_csrf = True class AttachmentConfForm(forms.ModelForm): """ Form for creating and updating a Link involving a UserAS """ public_ip = forms.GenericIPAddressField( help_text="Public IP address", required=False ) public_port = forms.IntegerField( min_value=1024, max_value=MAX_PORT, initial=DEFAULT_PUBLIC_PORT, label="Public Port (UDP)", help_text="The attachment point will use this port " "for the overlay link to your AS." ) bind_ip = forms.GenericIPAddressField( label="Bind IP address", help_text="(Optional) Specify the local IP " "if your border router is behind a NAT/firewall etc.", required=False ) use_vpn = forms.BooleanField( required=False, label="Use VPN", help_text="Use an OpenVPN connection for the overlay link between this attachment point " "and the border router of my AS." ) active = forms.BooleanField( required=False, label="Active", help_text="Activate or deactivate this connection without deleting it" ) attachment_point = forms.ModelChoiceField(queryset=AttachmentPoint.objects) class Meta: model = Link fields = ('id', 'active') def __init__(self, *args, **kwargs): self.user = kwargs.pop('user') userAS = kwargs.pop('userAS') instance = kwargs.get('instance') initial = kwargs.pop('initial', {}) if instance: use_vpn = UserAS.is_link_over_vpn(instance.interfaceB) initial['active'] = instance.active initial['attachment_point'] = AttachmentPoint.objects.get(AS=instance.interfaceA.AS) initial['use_vpn'] = use_vpn initial['public_ip'] = instance.interfaceB.public_ip initial['bind_ip'] = instance.interfaceB.bind_ip initial['public_port'] = instance.interfaceB.public_port # Clean IP fields when use_vpn is enabled if use_vpn: initial.pop('public_ip', None) initial.pop('bind_ip', None) # Clean bind fields when installation type VM if userAS.installation_type == UserAS.VM: initial.pop('bind_ip', None) elif userAS: # Set some convenient default values for adding new links: # Copy first public IP: iface = next((iface for iface in userAS.interfaces.all() if not UserAS.is_link_over_vpn(iface)), None) if iface: initial['public_ip'] = iface.public_ip # Set simple increasing port number: index = self._get_formset_index(kwargs['prefix']) initial['public_port'] = DEFAULT_PUBLIC_PORT + index self.helper = AttachmentConfFormHelper(instance, userAS) super().__init__(*args, initial=initial, **kwargs) @staticmethod def _get_formset_index(prefix): """ Extract index of form in formset by parsing the _default_ formset form prefix "<prefix>-<index>". Fail hard if the prefix does not match. """ _, idx = prefix.split('-') return int(idx) def clean(self): cleaned_data = super().clean() if 'attachment_point' in self.errors: return cleaned_data if cleaned_data.get('use_vpn'): cleaned_data.get('attachment_point').check_vpn_available() else: public_ip = cleaned_data.get('public_ip') if not public_ip: # public_ip cannot be empty when use_vpn is false self.add_error( 'public_ip', ValidationError('Please provide a value for public IP, or enable "Use VPN".', code='missing_public_ip_no_vpn') ) else: ip_addr = ipaddress.ip_address(public_ip) if ip_addr.version not in cleaned_data['attachment_point'].supported_ip_versions(): self.add_error( 'public_ip', ValidationError('IP version {ipv} not supported by the selected ' 'attachment point'.format(ipv=ip_addr.version), code='unsupported_ip_version') ) if (not settings.DEBUG and (not ip_addr.is_global or ip_addr.is_loopback)) or \ ip_addr.is_multicast or \ ip_addr.is_reserved or \ ip_addr.is_link_local or \ (ip_addr.version == 6 and ip_addr.is_site_local) or \ ip_addr.is_unspecified: self.add_error( 'public_ip', ValidationError("Public IP address must be a publicly routable address. " "It cannot be a multicast, loopback or otherwise reserved " "address.", code='invalid_public_ip') ) # Ignore active flag while creating a new instance if self.instance.pk is None: self.cleaned_data['active'] = True return cleaned_data def save(self, commit=True, user_as=None): """ :return AttachmentPointConf: """ assert not commit, "Persistency in the DB shall be handled in the save(...) method of the \ AttachmentLinksFormSet" return AttachmentConf(attachment_point=self.cleaned_data['attachment_point'], public_ip=self.cleaned_data['public_ip'] or None, # needs None not '' public_port=self.cleaned_data['public_port'], bind_ip=self.cleaned_data['bind_ip'] or None, use_vpn=self.cleaned_data['use_vpn'], active=self.cleaned_data['active'], link=self.instance if self.instance.pk is not None else None)
[ "noreply@github.com" ]
fl99kl.noreply@github.com
e3847b8540f23760f6839b154e76c75915684d95
23d8b54aff4d5885367001accd36e5c5662c2a00
/35/35.py
b454c35c0ab69bbfb877c614f238d7cc8ce1e89b
[]
no_license
dnelsonwsu/InterviewCake
0f2e44c6c9eb17e3bf87e359b40158117939fdb8
b8787f8b7dba19f73bb5f3bb69f28aba98d01474
refs/heads/master
2016-09-05T15:28:58.961682
2016-02-24T06:11:59
2016-02-24T06:11:59
39,700,898
1
0
null
null
null
null
UTF-8
Python
false
false
951
py
'''Write a function for doing an in-place shuffle of an array. The shuffle must be "uniform," meaning each item in the original array must have the same probability of ending up in each spot in the final array. Assume that you have a function get_random(floor, ceiling) for getting a random integer that is >=floor and <=ceiling.''' import random import pprint def get_random(floor, ceiling): r = random.randint(floor, ceiling) return r def randomize_array_in_place(array): array_size = len(array) for i in range(array_size - 1): switch_index = get_random(i, array_size - 1) if switch_index != i: tmp = array[i] array[i] = array[switch_index] array[switch_index] = tmp def puzzle_35(): array = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] randomize_array_in_place(array) pprint.pprint(array) print "done" if __name__ == "__main__": puzzle_35() else: print "wtf"
[ "dnelsonwsu@gmail.com" ]
dnelsonwsu@gmail.com
643a5199eb8355093b92b0726e181a3101f9dc33
23c12f60a00adf406e39ab51f1f8af0304834b9f
/test/functional/rpc_deprecated.py
665a67c0ddf934227bec6105c35f995c6c4be69c
[ "MIT" ]
permissive
DemoCoin-Dev/democoin
473aed9f10aa8af37c873fa7b6c43801fd0e8b55
4f3ee2a4484a05140cc1066a299afae7c120b0d2
refs/heads/master
2020-04-01T12:33:06.601763
2018-10-16T03:04:45
2018-10-16T03:04:45
153,019,823
1
0
null
null
null
null
UTF-8
Python
false
false
4,745
py
#!/usr/bin/env python3 # Copyright (c) 2017-2018 The Democoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test deprecation of RPC calls.""" from test_framework.test_framework import DemocoinTestFramework from test_framework.util import assert_raises_rpc_error class DeprecatedRpcTest(DemocoinTestFramework): def set_test_params(self): self.num_nodes = 2 self.setup_clean_chain = True self.extra_args = [[], ["-deprecatedrpc=validateaddress", "-deprecatedrpc=accounts"]] def run_test(self): # This test should be used to verify correct behaviour of deprecated # RPC methods with and without the -deprecatedrpc flags. For example: # # self.log.info("Make sure that -deprecatedrpc=createmultisig allows it to take addresses") # assert_raises_rpc_error(-5, "Invalid public key", self.nodes[0].createmultisig, 1, [self.nodes[0].getnewaddress()]) # self.nodes[1].createmultisig(1, [self.nodes[1].getnewaddress()]) self.log.info("Test validateaddress deprecation") SOME_ADDRESS = "mnvGjUy3NMj67yJ6gkK5o9e5RS33Z2Vqcu" # This is just some random address to pass as a parameter to validateaddress dep_validate_address = self.nodes[0].validateaddress(SOME_ADDRESS) assert "ismine" not in dep_validate_address not_dep_val = self.nodes[1].validateaddress(SOME_ADDRESS) assert "ismine" in not_dep_val self.log.info("Test accounts deprecation") # The following account RPC methods are deprecated: # - getaccount # - getaccountaddress # - getaddressesbyaccount # - getreceivedbyaccount # - listaccouts # - listreceivedbyaccount # - move # - setaccount # # The following 'label' RPC methods are usable both with and without the # -deprecatedrpc=accounts switch enabled. # - getaddressesbylabel # - getreceivedbylabel # - listlabels # - listreceivedbylabel # - setlabel # address0 = self.nodes[0].getnewaddress() self.nodes[0].generatetoaddress(101, address0) self.sync_all() address1 = self.nodes[1].getnewaddress() self.nodes[1].generatetoaddress(101, address1) self.log.info("- getaccount") assert_raises_rpc_error(-32, "getaccount is deprecated", self.nodes[0].getaccount, address0) self.nodes[1].getaccount(address1) self.log.info("- setaccount") assert_raises_rpc_error(-32, "setaccount is deprecated", self.nodes[0].setaccount, address0, "label0") self.nodes[1].setaccount(address1, "label1") self.log.info("- setlabel") self.nodes[0].setlabel(address0, "label0") self.nodes[1].setlabel(address1, "label1") self.log.info("- getaccountaddress") assert_raises_rpc_error(-32, "getaccountaddress is deprecated", self.nodes[0].getaccountaddress, "label0") self.nodes[1].getaccountaddress("label1") self.log.info("- getaddressesbyaccount") assert_raises_rpc_error(-32, "getaddressesbyaccount is deprecated", self.nodes[0].getaddressesbyaccount, "label0") self.nodes[1].getaddressesbyaccount("label1") self.log.info("- getaddressesbylabel") self.nodes[0].getaddressesbylabel("label0") self.nodes[1].getaddressesbylabel("label1") self.log.info("- getreceivedbyaccount") assert_raises_rpc_error(-32, "getreceivedbyaccount is deprecated", self.nodes[0].getreceivedbyaccount, "label0") self.nodes[1].getreceivedbyaccount("label1") self.log.info("- getreceivedbylabel") self.nodes[0].getreceivedbylabel("label0") self.nodes[1].getreceivedbylabel("label1") self.log.info("- listaccounts") assert_raises_rpc_error(-32, "listaccounts is deprecated", self.nodes[0].listaccounts) self.nodes[1].listaccounts() self.log.info("- listlabels") self.nodes[0].listlabels() self.nodes[1].listlabels() self.log.info("- listreceivedbyaccount") assert_raises_rpc_error(-32, "listreceivedbyaccount is deprecated", self.nodes[0].listreceivedbyaccount) self.nodes[1].listreceivedbyaccount() self.log.info("- listreceivedbylabel") self.nodes[0].listreceivedbylabel() self.nodes[1].listreceivedbylabel() self.log.info("- move") assert_raises_rpc_error(-32, "move is deprecated", self.nodes[0].move, "label0", "label0b", 10) self.nodes[1].move("label1", "label1b", 10) if __name__ == '__main__': DeprecatedRpcTest().main()
[ "MerlinMagic2018@github.com" ]
MerlinMagic2018@github.com
503e0a154543c51cb8b480f79c3bcd94dacd6961
619d36014bff078e49a3c951d61ea281ab713bc4
/api/rest/routes/index.py
575b7ce120a72e1756b58d73290f7dc7eb8ce63f
[]
no_license
kozakjefferson/flask_api_example
4457ffb1869cf80aa64a6580f385fdac96cd09cb
72428dbc5fa121f37f6dc571bcd624300bc50692
refs/heads/master
2020-03-30T02:09:57.433345
2016-07-05T17:33:45
2016-07-05T17:33:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
430
py
from flask_restful import Resource, Response from ..functions.function import json_message ## Rest Controller Layer should only handle HTTP responses/requests and JSON serilization/deserilization. class index(Resource): #All HTTP get requests to '/' are handled by this function def get(self): response = json_message("Example Flask Application") return Response(response=response, status=200, mimetype='application/json')
[ "joshuadparkin@gmail.com" ]
joshuadparkin@gmail.com
f09262994e62e2e95c1c982575319bcb10038c57
7cbac541a44b290ed86c8bc94ec0d705390cac9a
/rules/mapping/sambamba.smk
9a9608f95e6b4bc7e8c1c7c12545f52ff5bae841
[]
no_license
GrosseLab/VipeR_HIF1alpha
09e8042695d08d466e63924f40b9005500ce64f6
3dde5a7d63d880d61abaef0533c18f6f8c770e04
refs/heads/master
2020-04-29T16:28:06.612315
2019-09-16T11:36:01
2019-09-16T11:36:01
176,261,299
5
0
null
null
null
null
UTF-8
Python
false
false
732
smk
rule sambamba_sort: input: "{path}.bam" output: "{path}.sorted.bam" params: "" # optional parameters threads: 20 wrapper: "file:viper/wrapper/sambamba_v0.30.0/sort" # "0.30.0/bio/sambamba/sort" rule sambamba_index: input: "{path}.bam" output: "{path}.bam.bai" params: "" # optional parameters threads: 20 wrapper: "file:viper/wrapper/sambamba_Index" # rule sambamba_sort_index: # input: # "{path}.sorted.bam" # output: # "{path}.bam.bai" # params: # "" # optional parameters # threads: 8 # wrapper: # "file:viper/wrapper/sambamba_Index"
[ "claus.weinholdt@informatik.uni-halle.de" ]
claus.weinholdt@informatik.uni-halle.de
e90bdcf42e3b7729ce25348153dcea78c44e4d63
5ea68b8c3e354bca9719e961657882c5e2edc459
/tests/test_prepare.py
05dfd5c73bc5a820a6c94ea35131d508fc13861b
[ "MIT" ]
permissive
docsmooth/arbtt-chart
b86b00e48f1e21d0c18f5cdcd11400ba202cfb68
688d0a0edbd7557a4c6e23b232759f92fef5c158
refs/heads/main
2023-03-16T18:08:55.535447
2021-03-07T15:26:25
2021-03-07T15:26:25
344,183,289
0
0
MIT
2021-03-07T15:26:26
2021-03-03T16:02:46
Python
UTF-8
Python
false
false
3,085
py
import textwrap import pandas as pd # type: ignore [import] import pandas.testing as pdt # type: ignore [import] import arbtt_chart as ac def ld(csvs): return ac.load_inputs(textwrap.dedent(csv.strip("\n")) for csv in csvs) def test_prepare(): def prep(csvs, args=[]): args = ac.parse_cmdline_args(args) return ac.prepare_bartables(ld(csvs), args) # one category and totals in1 = """ Tag,Time a:x-y,00:01:00 (unmatched time),00:02:00 (total time),00:03:00 """ out1 = pd.DataFrame( {'Time': ['', '', '00:02:00', '00:01:00', '', '00:03:00'], 'Type': ['text', 'text', 'bar', 'bar', 'text', 'total_bar'], 'Frac': [None, None, 2/3, 1/3, None, 1], 'FracAbove': [None, None, 0, 2/3, None, 0], 'HourFrac': [None, None, 20, 20, None, 20]}, index=pd.Index(['a', '═', '(unmatched time)', 'x-y', '', '(total time)'], name='Tag')) pdt.assert_frame_equal(prep([in1]), out1) # same, different totals in1_totals = """ Tag,Time a:x-y,00:01:00 (unmatched),00:02:00 (screen),00:03:00 """ out1_totals = out1.set_index( pd.Index(['a', '═', '(unmatched)', 'x-y', '', '(screen)'], name='Tag')) pdt.assert_frame_equal( prep([in1_totals], args=["--totals-re", "^\\(screen"]), out1_totals) # same, subtags out1_subtags = out1.set_index( pd.MultiIndex.from_tuples( [('a', ''), ('═', ''), ('(unmatched time)', ''), ('x', 'y'), ('', ''), ('(total time)', '')], names=['Tag', 'SubTag'])) pdt.assert_frame_equal(prep([in1], args=["--subtags"]), out1_subtags) # two categories and totals in2 = """ Tag,Time b:z,00:01:00 (unmatched time),00:02:00 (total time),00:03:00 """ blank = pd.DataFrame( {'Time': [''], 'Type': ['text'], 'Frac': [None], 'FracAbove': [None], 'HourFrac': [None]}, index=pd.Index([''], name='Tag')) out2 = out1.set_index( pd.Index(['b', '═', '(unmatched time)', 'z', '', '(total time)'], name='Tag')) pdt.assert_frame_equal(prep([in1, in2]), pd.concat([out1, blank, out2])) # three categories, subtags in3 = """ Tag,Time c:z,00:01:00 (unmatched time),00:02:00 (total time),00:03:00 """ out2_subtags = out1.set_index( pd.MultiIndex.from_tuples( [('b', ''), ('═', ''), ('(unmatched time)', ''), ('z', ''), ('', ''), ('(total time)', '')], names=['Tag', 'SubTag'])) out3_subtags = out1.set_index( pd.MultiIndex.from_tuples( [('c', ''), ('═', ''), ('(unmatched time)', ''), ('z', ''), ('', ''), ('(total time)', '')], names=['Tag', 'SubTag'])) blank_subtags = blank.set_index(pd.MultiIndex.from_tuples([('', '')], names=['Tag', 'SubTag'])) pdt.assert_frame_equal( prep([in1, in2, in3], args=["--subtags"]), pd.concat([out1_subtags, blank_subtags, out2_subtags, blank_subtags, out3_subtags]))
[ "tomi@nomi.cz" ]
tomi@nomi.cz
7599c1b183e8a03ef11c38bddca0343a42a96eab
3e6951bb9c86e44535a99210fa68b1980f9e8a88
/datary/operations/test/test_rename.py
182741034ed9c6fc673edad9ecb89e0a3cc66378
[ "MIT" ]
permissive
Datary/python-sdk
b31f2b1db0bbf710e56177f6bf51de1d2256d501
2790a50e1ad262cbe3210665dc34f497625e923d
refs/heads/master
2021-01-12T08:25:09.966693
2018-06-19T08:36:23
2018-06-19T08:36:23
76,570,424
0
0
null
null
null
null
UTF-8
Python
false
false
1,178
py
# -*- coding: utf-8 -*- """ Datary python sdk Rename Operation test file """ import mock from datary.test.test_datary import DataryTestCase from datary.test.mock_requests import MockRequestResponse class DataryRenameOperationTestCase(DataryTestCase): """ AddOperation Test case """ @mock.patch('datary.Datary.request') def test_rename_file(self, mock_request): """ Test add_dir """ mock_request.return_value = MockRequestResponse("") self.datary.rename_file( self.json_repo.get('workdir', {}).get('uuid'), {'path': 'test_path/path', 'basename': 'test_basename'}, {'path': 'test_path/new_path', 'basename': 'test_new_basename'}, ) self.assertEqual(mock_request.call_count, 1) mock_request.reset_mock() mock_request.return_value = None self.datary.rename_file( self.json_repo.get('workdir', {}).get('uuid'), {'path': 'test_path/path', 'basename': 'test_basename'}, {'path': 'test_path/new_path', 'basename': 'test_new_basename'}, ) self.assertEqual(mock_request.call_count, 1)
[ "m.moraleda@datary.io" ]
m.moraleda@datary.io
71be78fc04e2650a55fa217a4b040ed6be7305ee
ac99bf370262a84b64ddd9a9accef0900e8e3c89
/enc.py
e6405eee0d302d6a56078daa31f85d816262770d
[]
no_license
parikshitsharma70/hacker_rank
bb0025bf9a0369bfa2446ab3d6559ff237048003
2b4c7a577befa1ae265cb8172ab86e04fd69c423
refs/heads/master
2020-03-23T00:20:38.916806
2020-02-23T04:04:00
2020-02-23T04:04:00
140,857,513
0
0
null
null
null
null
UTF-8
Python
false
false
451
py
import math import itertools def encryption(s): s = s.replace(" ", "") r = math.floor(math.sqrt(len(s))) c = math.ceil(math.sqrt(len(s))) arr = [s[i:i+c] for i in range(0, len(s), c)] tup = list(filter(None, pair) for pair in itertools.zip_longest(*arr)) resArr = [] for t in tup: tempStr = "".join(t) resArr.append(tempStr) resStr = " ".join(resArr) return resStr print(encryption('feedthedog'))
[ "parikshitsharma70@gmail.com" ]
parikshitsharma70@gmail.com
09f50df4d08790e84da2e0863bf84d4b11b8bc72
07ecc53b5be6b1a34914a0e02265e847f3ac1a65
/Python/Dynamic Programming/10_Hard_正则表达式匹配.py
05ffaee77f5dc055d0a181655bdc892c6c26596c
[]
no_license
JasmineRain/Algorithm
764473109ad12c051f5337ed6f22b517ed9bff30
84d7e11c1a01b1994e04a3ab446f0a35eb3d362a
refs/heads/master
2023-03-14T00:39:51.767074
2021-03-09T12:41:44
2021-03-09T12:41:44
289,603,630
1
0
null
null
null
null
UTF-8
Python
false
false
1,086
py
class Solution: def isMatch(self, s: str, p: str) -> bool: if not p: return not s if not s and len(p) == 1: return False nrow = len(s) + 1 ncol = len(p) + 1 dp = [[False for c in range(ncol)] for r in range(nrow)] # base case dp[0][0] = True dp[0][1] = False for j in range(2, ncol): if p[j-1] == "*": dp[0][j] = dp[0][j-2] for r in range(1, nrow): i = r - 1 for c in range(1, ncol): j = c - 1 if s[i] == p[j] or p[j] == ".": dp[r][c] = dp[r-1][c-1] elif p[j] == "*": if p[j-1] == s[i] or p[j-1] == ".": dp[r][c] = dp[r][c-2] or dp[r-1][c] else: dp[r][c] = dp[r][c-2] else: dp[r][c] = False return dp[len(s)][len(p)] if __name__ == "__main__": S = Solution() print(S.isMatch(s="mississippi", p="mis*is*p*."))
[ "530781348@qq.com" ]
530781348@qq.com
a63c939364fef777bf737ce46cca9144e18de4be
99b9abac12e8f801347d06b99284adf75135cc76
/Strings/Permute.py
5ecc8f510684276ae94d48670ea7f7eafc074395
[]
no_license
mohanvarma/Projects
a907ebb67d4d05b2f858b1b19202c7ce00356ca3
04a3a036e7470bcba73f12b9ba78886d66c959fc
refs/heads/master
2021-05-30T10:04:36.778918
2016-01-16T00:55:26
2016-01-16T00:55:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
348
py
def permute(string, stringSoFar): if len(string) == 0: print stringSoFar else: subString = string[:-1] index = 0 while index <= len(stringSoFar): newString = stringSoFar[:index]+string[-1]+stringSoFar[index:] permute (subString, newString) index += 1 permute("abc", "")
[ "varma.mohan@ymail.com" ]
varma.mohan@ymail.com
fd9f6d59c0122ae38431113a2a025576a43d0614
834a09eba7ba97f23d5c8ced99abcf8cbe6da2c1
/raggregate/views/feeds.py
93a6fd49d56056e87f74b315527aafd075165315
[ "Apache-2.0", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
smoothgrips/raggregate
4aa67c853d93653ba99f710e9cf4e4c9ddb6457f
4f2f445e23e2f6e02b5a16f1edf19a35f31bf472
refs/heads/master
2021-01-16T02:33:30.895474
2012-04-20T21:22:40
2012-04-20T21:22:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,973
py
from raggregate import queries from pyramid.view import view_config from raggregate.models import DBSession @view_config(renderer='atom_story.mak', route_name='atom_story') def story(request): s = request.session r = request dbsession = DBSession() stories = queries.get_story_list(page_num = 1, per_page = 30, sort = 'new', request = r) last_update = stories['stories'][0].added_on.isoformat() request.response.content_type = "text/xml" site_name = r.registry.settings['site.site_name'] return {'stories': stories['stories'], 'route': 'atom_story', 'last_update': last_update, 'feed_title': '{0} stories'.format(site_name), 'feed_subtitle': 'newest stories on {0}'.format(site_name), 'site_name': site_name, } @view_config(renderer='atom_story.mak', route_name='atom_self_story') def self_story(request): s = request.session r = request dbsession = DBSession() stories = queries.get_story_list(page_num = 1, per_page = 30, sort = 'new', request = r, self_only = True) last_update = stories['stories'][0].added_on.isoformat() request.response.content_type = "text/xml" site_name = r.registry.settings['site.site_name'] return {'stories': stories['stories'], 'route': 'atom_self_story', 'last_update': last_update, 'feed_title': '{0} exclusives'.format(site_name), 'feed_subtitle': 'newest exclusives on {0}'.format(site_name), 'site_name': site_name, } @view_config(renderer='atom_combined.mak', route_name='atom_combined') def combined(request): s = request.session r = request dbsession = DBSession() stories = queries.get_story_list(page_num = 1, per_page = 10, sort = 'new', request = r) comments = queries.get_recent_comments(10) agg = [] [agg.append(i) for i in comments] [agg.append(i) for i in stories['stories']] agg.sort(key=lambda x: x.added_on, reverse=True) last_update = agg[0].added_on.isoformat() request.response.content_type = "text/xml" site_name = r.registry.settings['site.site_name'] return {'interleaved': agg, 'route': 'atom_combined', 'last_update': last_update, 'feed_title': '{0} all content'.format(site_name), 'feed_subtitle': 'newest content on {0}'.format(site_name), 'site_name': site_name, } @view_config(renderer='atom_comment.mak', route_name='atom_comment') def comment(request): s = request.session r = request dbsession = DBSession() comments = queries.get_recent_comments(20) last_update = comments[0].added_on.isoformat() request.response.content_type = "text/xml" site_name = r.registry.settings['site.site_name'] return {'comments': comments, 'route': 'atom_comment', 'last_update': last_update, 'feed_title': '{0} comments'.format(site_name), 'feed_subtitle': 'newest comments on {0}'.format(site_name), 'site_name': site_name, }
[ "jeff@deserettechnology.com" ]
jeff@deserettechnology.com
2d64c6a4b97f1d186491a3005139ce618c2429f8
e6ed64fda597762b3559ce387a35a83cefef13fa
/examples/example1.py
41adde1c1ed5bcc65c224a37fb079ab89713f2dd
[ "MIT" ]
permissive
foxsi/SAASpy
02d4b5e53bb47d105af3ad7ed8b89862901e9cbd
473956c59859c7bd9f81323dfb82da07ce606b26
refs/heads/master
2022-12-13T13:43:39.027937
2022-12-03T20:40:54
2022-12-03T20:40:54
26,690,220
2
1
MIT
2022-12-03T20:40:56
2014-11-15T18:58:43
Python
UTF-8
Python
false
false
251
py
__author__ = 'schriste' from saaspy.image import image import matplotlib.pyplot as plt file = "/Users/schriste/Desktop/SAAS/FOXSI_SAAS_141113_203247.fits" if __name__ == '__main__': s = image(file) plt.figure() s.imshow() plt.show()
[ "steven.d.christe@nasa.gov" ]
steven.d.christe@nasa.gov
28063919d428c727e8feebbaf7741f11debb00ba
b7127055167119a05a5544960add0c887992e8b1
/source-code/algorithms/main.py
e0152542b964fd3f514a4dc6870a34509eaa2e6c
[]
no_license
ndangtt/1LLGA
802847693b91a553cd43f400cf95b9e3b8cd07c7
c1044aa8b73e18c82d45a5c06dcf3669a44d8ef8
refs/heads/master
2022-08-01T12:11:22.318510
2022-07-16T20:27:20
2022-07-16T20:27:20
167,725,190
2
1
null
2022-07-16T20:27:21
2019-01-26T18:43:22
Python
UTF-8
Python
false
false
8,364
py
# (Nguyen) Syntax: python2 main.py --problem <problem> --size <size> --algorithm <algorithm> <parameters> [--random_seed <random_seed>] [--max_evaluation <max_evaluation>] [--it <number of runs>] # Examples: # ----- static LL, one run, without bound # python2 main.py --problem OneMax --size 500 --algorithm "['LL_static']" --LL_static_lambda1 4 --LL_static_lambda2 4 --LL_static_lda 3 --LL_static_crossOverBias 0.3 --random_seed 11 # ----- static LL, one run, with bound # python2 main.py --problem OneMax --size 500 --algorithm "['LL_static']" --LL_static_lambda1 4 --LL_static_lambda2 4 --LL_static_lda 3 --LL_static_crossOverBias 0.3 --random_seed 11 --max_evaluation 100000 # ----- static LL, 10 runs # python2 main.py --problem OneMax --size 500 --algorithm "['LL_static']" --LL_static_lambda1 4 --LL_static_lambda2 4 --LL_static_lda 3 --LL_static_crossOverBias 0.3 --it 10 # ----- dynamic LL, 2 parameters # python2 main.py --problem OneMax --size 500 --algorithm "['LL_dynamic_01']" --LL_dynamic_01_a 1.1 --LL_dynamic_01_b 0.7 --random_seed 123 # ----- dynamic LL, 5 parameters # python2 main.py --problem OneMax --size 500 --algorithm "['LL_dynamic_02']" --LL_dynamic_02_alpha 0.7 --LL_dynamic_02_beta 3 --LL_dynamic_02_gamma 0.3 --LL_dynamic_02_a 1.1 --LL_dynamic_02_b 0.7 --random_seed 123 from solution import * #from tqdm import tqdm import evaluate import utils import algorithms import plot import record import numpy as np import sys, argparse import time import os import pickle parser = argparse.ArgumentParser() parser.add_argument('--problem', help='Available problems: OneMax, LeadingOnes, Jump, Linear, RoyalRoad.') parser.add_argument('--size', help='Size of the search space.') parser.add_argument('--algorithm', help='Format: \"[\'RLS\', \'OPOEA\']\"; Available algorithms: OPOEA, OPOEA_shift, OPOEA_resampling, OPOEA_alpha, RLS, LL, LL_opt, LL_shift, RLS_LL, LL_static, LL_dynamic_01, LL_dynamic_02') parser.add_argument('--it', help='Number of iterations from the same algorithm.') parser.add_argument('--steps') parser.add_argument('--save') parser.add_argument('--test') parser.add_argument('--extra_name') parser.add_argument('--random_seed') parser.add_argument('--max_evaluation',type=float,default=-1) # LL_static parser.add_argument("--LL_static_lambda1") parser.add_argument("--LL_static_lambda2") parser.add_argument("--LL_static_lda") parser.add_argument("--LL_static_crossOverBias") # LL_static_02 parser.add_argument("--LL_static_02_lda") parser.add_argument("--LL_static_02_alpha") parser.add_argument("--LL_static_02_beta") # LL_dynamic_01 parser.add_argument("--LL_dynamic_01_a") parser.add_argument("--LL_dynamic_01_b") # LL_dynamic_02 parser.add_argument("--LL_dynamic_02_alpha") parser.add_argument("--LL_dynamic_02_beta") parser.add_argument("--LL_dynamic_02_gamma") parser.add_argument("--LL_dynamic_02_a") parser.add_argument("--LL_dynamic_02_b") # for LL algorithms parser.add_argument("--crossover_choice",type=int,default=1) parser.add_argument("--ioh_output",type=str,default=None) #ioh_output = 0 #DEBUG def mytest(): global ioh_output print("test: " + str(ioh_output)) def main(argv): #get arguments args = parser.parse_args() if args.problem != None: problem = args.problem else: problem = "OneMax" if args.size != None: size = int(args.size) else: size = 100 if args.algorithm != None: algorithm = eval(args.algorithm) else: algorithm = ["OPOEA"] if args.it != None: it = int(args.it) else: it = 1 if args.steps != None: steps = int(args.steps) else: steps = int(size) if args.save != None: save = bool(args.save) else: save = False if args.test != None: test = bool(args.test) else: test = False if args.extra_name != None: extra_name = str(args.extra_name) else: extra_name = "" if args.random_seed != None: random_seed = int(args.random_seed) if it > 1: print("Error: it must be equal to 1 when random_seed is specified") return 1 else: random_seed = None crossover_choice = args.crossover_choice max_evaluation = int(args.max_evaluation) #global ioh_output ioh_output = args.ioh_output #DEBUG #print("args.ioh_output: " + str(args.ioh_output)) #print("ioh_output: " + str(ioh_output)) if 'LL_static' in algorithm: LL_static_lambda1 = int(args.LL_static_lambda1) LL_static_lambda2 = int(args.LL_static_lambda2) LL_static_lda = int(args.LL_static_lda) LL_static_crossOverBias = float(args.LL_static_crossOverBias) if 'LL_static_02' in algorithm: LL_static_02_lda = int(args.LL_static_02_lda) LL_static_02_alpha = int(args.LL_static_02_alpha) LL_static_02_beta = int(args.LL_static_02_beta) if 'LL_dynamic_01' in algorithm: LL_dynamic_01_a = float(args.LL_dynamic_01_a) LL_dynamic_01_b = float(args.LL_dynamic_01_b) if 'LL_dynamic_02' in algorithm: LL_dynamic_02_alpha = float(args.LL_dynamic_02_alpha) LL_dynamic_02_beta = float(args.LL_dynamic_02_beta) LL_dynamic_02_gamma = float(args.LL_dynamic_02_gamma) LL_dynamic_02_a = float(args.LL_dynamic_02_a) LL_dynamic_02_b = float(args.LL_dynamic_02_b) results = {} for alg in algorithm: results[alg] = record.Record() #import algorithms #mytest() #DEBUG if ioh_output is not None: if os.path.isfile(ioh_output): os.remove(ioh_output) with open(ioh_output,'wt') as f: f.write('') for i in range(it): #for i in tqdm(range(it)): print('Run number ' + str(i)) #set the instance for given problem instance = eval('evaluate.setup_' + problem + '(size, problem)') if random_seed is not None: np.random.seed(random_seed) #initial solution initial_solution = Solution(utils.random_vector(size), None, None, 0) initial_solution.value = getattr(evaluate, problem)(initial_solution, instance, True) #Solve the problem for alg in algorithm: algFunc = getattr(algorithms,alg) if alg == 'LL_static': experiment = algFunc(initial_solution, instance, LL_static_lambda1, LL_static_lambda2, LL_static_lda, LL_static_crossOverBias, crossover_choice, max_evaluation, ioh_output) elif alg == 'LL_static_02': experiment = algFunc(initial_solution, instance, LL_static_02_lda, LL_static_02_alpha, LL_static_02_beta, crossover_choice, max_evaluation, ioh_output) elif alg == 'LL_dynamic_01': experiment = algFunc(initial_solution, instance, LL_dynamic_01_a, LL_dynamic_01_b, crossover_choice, max_evaluation, ioh_output) elif alg == 'LL_dynamic_02': experiment = algFunc(initial_solution, instance, LL_dynamic_02_alpha, LL_dynamic_02_beta, LL_dynamic_02_gamma, LL_dynamic_02_a, LL_dynamic_02_b, crossover_choice, max_evaluation, ioh_output) else: experiment = getattr(algorithms, alg)(initial_solution, instance) #print(alg) print(experiment[0]) results[alg].insert_expriment(experiment) list_of_records = [results[alg] for alg in algorithm] if save: for (l,alg) in zip(list_of_records, algorithm): l.print_to_file(problem, size, alg, steps, extra_name) if test: for (l,alg) in zip(list_of_records, algorithm): l.plot_average(steps) utils.compare(list_of_records, steps, algorithm) if it > 1: print("\n------------------- Summarised results ------------------") for alg in algorithm: lsVals = [e[0] for e in results[alg].list_of_results] print(alg + ', mean: ' + str(results[alg].mean_opt_time)) print(alg + ', min: ' + str(np.min(lsVals))) print(alg + ', max: ' + str(np.max(lsVals))) return 0 if __name__ == "__main__": print(' '.join(sys.argv)) main(sys.argv[1:])
[ "ndangt@gmail.com" ]
ndangt@gmail.com
33224b84f4090301c6096ba024cd24e04a5a0c56
69597554851a45c956dfeeff3f9878b0f9fd5379
/config/settings/production.py
a9ef1782e447d7aeda5d6d715fc36c279da33cae
[ "MIT" ]
permissive
ParkGwanWoo/instagram-clone
64e14ef79f82e9caa9e5d4cf11fc7e51e28f850c
3e210909c887043f05975fb59dc3c48112ceaaf2
refs/heads/master
2021-09-09T07:55:23.859662
2018-08-06T07:27:54
2018-08-06T07:27:54
140,709,595
0
0
MIT
2021-09-08T00:01:58
2018-07-12T12:22:07
Python
UTF-8
Python
false
false
8,292
py
from .base import * # noqa from .base import env # GENERAL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#secret-key SECRET_KEY = env('DJANGO_SECRET_KEY') # https://docs.djangoproject.com/en/dev/ref/settings/#allowed-hosts ALLOWED_HOSTS = env.list('DJANGO_ALLOWED_HOSTS', default=['devyeon.kr']) # DATABASES # ------------------------------------------------------------------------------ DATABASES['default'] = env.db('DATABASE_URL') # noqa F405 DATABASES['default']['ATOMIC_REQUESTS'] = True # noqa F405 DATABASES['default']['CONN_MAX_AGE'] = env.int('CONN_MAX_AGE', default=60) # noqa F405 # CACHES # ------------------------------------------------------------------------------ CACHES = { 'default': { 'BACKEND': 'django_redis.cache.RedisCache', 'LOCATION': env('REDIS_URL'), 'OPTIONS': { 'CLIENT_CLASS': 'django_redis.client.DefaultClient', # Mimicing memcache behavior. # http://niwinz.github.io/django-redis/latest/#_memcached_exceptions_behavior 'IGNORE_EXCEPTIONS': True, } } } # SECURITY # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#secure-proxy-ssl-header SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https') # https://docs.djangoproject.com/en/dev/ref/settings/#secure-ssl-redirect SECURE_SSL_REDIRECT = env.bool('DJANGO_SECURE_SSL_REDIRECT', default=True) # https://docs.djangoproject.com/en/dev/ref/settings/#session-cookie-secure SESSION_COOKIE_SECURE = True # https://docs.djangoproject.com/en/dev/ref/settings/#session-cookie-httponly SESSION_COOKIE_HTTPONLY = True # https://docs.djangoproject.com/en/dev/ref/settings/#csrf-cookie-secure CSRF_COOKIE_SECURE = True # https://docs.djangoproject.com/en/dev/ref/settings/#csrf-cookie-httponly CSRF_COOKIE_HTTPONLY = True # https://docs.djangoproject.com/en/dev/topics/security/#ssl-https # https://docs.djangoproject.com/en/dev/ref/settings/#secure-hsts-seconds # TODO: set this to 60 seconds first and then to 518400 once you prove the former works SECURE_HSTS_SECONDS = 60 # https://docs.djangoproject.com/en/dev/ref/settings/#secure-hsts-include-subdomains SECURE_HSTS_INCLUDE_SUBDOMAINS = env.bool('DJANGO_SECURE_HSTS_INCLUDE_SUBDOMAINS', default=True) # https://docs.djangoproject.com/en/dev/ref/settings/#secure-hsts-preload SECURE_HSTS_PRELOAD = env.bool('DJANGO_SECURE_HSTS_PRELOAD', default=True) # https://docs.djangoproject.com/en/dev/ref/middleware/#x-content-type-options-nosniff SECURE_CONTENT_TYPE_NOSNIFF = env.bool('DJANGO_SECURE_CONTENT_TYPE_NOSNIFF', default=True) # https://docs.djangoproject.com/en/dev/ref/settings/#secure-browser-xss-filter SECURE_BROWSER_XSS_FILTER = True # https://docs.djangoproject.com/en/dev/ref/settings/#x-frame-options X_FRAME_OPTIONS = 'DENY' # STORAGES # ------------------------------------------------------------------------------ # https://django-storages.readthedocs.io/en/latest/#installation INSTALLED_APPS += ['storages'] # noqa F405 # https://django-storages.readthedocs.io/en/latest/backends/amazon-S3.html#settings AWS_ACCESS_KEY_ID = env('DJANGO_AWS_ACCESS_KEY_ID') # https://django-storages.readthedocs.io/en/latest/backends/amazon-S3.html#settings AWS_SECRET_ACCESS_KEY = env('DJANGO_AWS_SECRET_ACCESS_KEY') # https://django-storages.readthedocs.io/en/latest/backends/amazon-S3.html#settings AWS_STORAGE_BUCKET_NAME = env('DJANGO_AWS_STORAGE_BUCKET_NAME') # https://django-storages.readthedocs.io/en/latest/backends/amazon-S3.html#settings AWS_QUERYSTRING_AUTH = False # DO NOT change these unless you know what you're doing. _AWS_EXPIRY = 60 * 60 * 24 * 7 # https://django-storages.readthedocs.io/en/latest/backends/amazon-S3.html#settings AWS_S3_OBJECT_PARAMETERS = { 'CacheControl': f'max-age={_AWS_EXPIRY}, s-maxage={_AWS_EXPIRY}, must-revalidate', } # STATIC # ------------------------ STATICFILES_STORAGE = 'config.settings.production.StaticRootS3BotoStorage' STATIC_URL = f'https://s3.amazonaws.com/{AWS_STORAGE_BUCKET_NAME}/static/' # MEDIA # ------------------------------------------------------------------------------ # region http://stackoverflow.com/questions/10390244/ from storages.backends.s3boto3 import S3Boto3Storage # noqa E402 StaticRootS3BotoStorage = lambda: S3Boto3Storage(location='static') # noqa MediaRootS3BotoStorage = lambda: S3Boto3Storage(location='media', file_overwrite=False) # noqa # endregion DEFAULT_FILE_STORAGE = 'config.settings.production.MediaRootS3BotoStorage' MEDIA_URL = f'https://s3.amazonaws.com/{AWS_STORAGE_BUCKET_NAME}/media/' # TEMPLATES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#templates TEMPLATES[0]['OPTIONS']['loaders'] = [ # noqa F405 ( 'django.template.loaders.cached.Loader', [ 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', ] ), ] # EMAIL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#default-from-email DEFAULT_FROM_EMAIL = env( 'DJANGO_DEFAULT_FROM_EMAIL', default='Instagram <noreply@devyeon.kr>' ) # https://docs.djangoproject.com/en/dev/ref/settings/#server-email SERVER_EMAIL = env('DJANGO_SERVER_EMAIL', default=DEFAULT_FROM_EMAIL) # https://docs.djangoproject.com/en/dev/ref/settings/#email-subject-prefix EMAIL_SUBJECT_PREFIX = env('DJANGO_EMAIL_SUBJECT_PREFIX', default='[Instagram]') # ADMIN # ------------------------------------------------------------------------------ # Django Admin URL regex. ADMIN_URL = env('DJANGO_ADMIN_URL') # Anymail (Mailgun) # ------------------------------------------------------------------------------ # https://anymail.readthedocs.io/en/stable/installation/#installing-anymail INSTALLED_APPS += ['anymail'] # noqa F405 EMAIL_BACKEND = 'anymail.backends.mailgun.EmailBackend' # https://anymail.readthedocs.io/en/stable/installation/#anymail-settings-reference ANYMAIL = { 'MAILGUN_API_KEY': env('MAILGUN_API_KEY'), 'MAILGUN_SENDER_DOMAIN': env('MAILGUN_DOMAIN') } # Gunicorn # ------------------------------------------------------------------------------ INSTALLED_APPS += ['gunicorn'] # noqa F405 # Collectfast # ------------------------------------------------------------------------------ # https://github.com/antonagestam/collectfast#installation INSTALLED_APPS = ['collectfast'] + INSTALLED_APPS # noqa F405 AWS_PRELOAD_METADATA = True # LOGGING # ------------------------------------------------------------------------------ # See: https://docs.djangoproject.com/en/dev/ref/settings/#logging # A sample logging configuration. The only tangible logging # performed by this configuration is to send an email to # the site admins on every HTTP 500 error when DEBUG=False. # See https://docs.djangoproject.com/en/dev/topics/logging for # more details on how to customize your logging configuration. LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'filters': { 'require_debug_false': { '()': 'django.utils.log.RequireDebugFalse' } }, 'formatters': { 'verbose': { 'format': '%(levelname)s %(asctime)s %(module)s ' '%(process)d %(thread)d %(message)s' }, }, 'handlers': { 'mail_admins': { 'level': 'ERROR', 'filters': ['require_debug_false'], 'class': 'django.utils.log.AdminEmailHandler' }, 'console': { 'level': 'DEBUG', 'class': 'logging.StreamHandler', 'formatter': 'verbose', }, }, 'loggers': { 'django.request': { 'handlers': ['mail_admins'], 'level': 'ERROR', 'propagate': True }, 'django.security.DisallowedHost': { 'level': 'ERROR', 'handlers': ['console', 'mail_admins'], 'propagate': True } } } # Your stuff... # ------------------------------------------------------------------------------
[ "yeonkevin@icloud.com" ]
yeonkevin@icloud.com
cb4b1ece284fb59a44869f25bb55c637424b4a44
6f577a95335d2a8ee5f02d02b4048663f353d02c
/pages/urls.py
4cbf316f7b57bfe5dddfd39470b4b48aad0b3883
[]
no_license
nabil-rady/Django-Tailwind-Template
e569d4626a8f03b2fa789f5cf1146c017daf1ccb
71ac5af859e5bd8db49c6a6267bfb49d0593eee4
refs/heads/master
2023-08-29T11:57:12.977366
2021-09-22T19:17:02
2021-09-22T19:17:02
406,931,333
1
0
null
null
null
null
UTF-8
Python
false
false
769
py
from django.urls import path from . import views urlpatterns = [ path('', views.landing_page, name='landing_page'), path('dashboard', views.dashboard, name='dashboard'), path('forms', views.forms, name='forms'), path('cards', views.cards, name='cards'), path('charts', views.charts, name='charts'), path('buttons', views.buttons, name='buttons'), path('modals', views.modals, name='modals'), path('tables', views.tables, name='tables'), path('login', views.login, name='login'), path('forgot_password', views.forgot_password, name='forgot_password'), path('create_account', views.create_account, name='create_account'), path('blank', views.blank, name='blank'), path('404', views.template404, name='template404'), ]
[ "midorady9999@gmail.com" ]
midorady9999@gmail.com
c0286bdbb554b58b9aa60f2021eef27056c98aab
18cf194966e41de97bff46043cf43e4613d90638
/filter_black_list.py
1b6a9929e0114e12c3f11c1b57bdc3c8cae647fb
[]
no_license
feapoi/tcpdump_filter
64cf0ef9743736e5bde127267ce2267db4e49da4
8fa08c6586189e9e3b780fc3f4aff33a7ae9999d
refs/heads/master
2022-04-14T18:31:18.259964
2020-04-10T03:43:00
2020-04-10T03:43:00
254,532,991
1
0
null
null
null
null
UTF-8
Python
false
false
1,099
py
import os from collections import Counter def filter_black_list(): res = [] for root, dirs, files in os.walk("log"): for q in files: if "txt" in q: c = Counter() for line in open("./log/" + q, "r"): if "[S]" in line: begin = line.find("IP ") end = line.rfind(" >") ss = line[begin + 3:end] c[ss] += 1 elif "[S.]" in line: begin = line.find("IP ") end = line.rfind(" >") ss = line[begin + 3:end] c[ss] -= 1 for k in c: if c.get(k) >= 1: res.append(k) r = open("./" + "blacklist.list", "r") oldRes = r.readlines() r.close() with open("./" + "blacklist.list", "a") as f: for i in res: print(i, oldRes) if i+"\n" not in oldRes: f.writelines(i+"\n") f.close() filter_black_list()
[ "369215201@qq.com" ]
369215201@qq.com
0db0f3417d7e1d6cfb3ba376a2bdafbe3c27def0
97672d40aaa47ac09f5c0ac49f50269146461a0f
/solved/414. 第三大的数.py
32b7e4d45bfd31ba815b889c135ef5fb917a2639
[]
no_license
xukangjune/Leetcode
a120263243e2d8bddda99429c1c7a6be4eeeda51
2cad20b7639bd709c4a064e463d7414c43c2af90
refs/heads/master
2020-05-04T08:10:24.805606
2019-10-06T03:56:36
2019-10-06T03:56:36
179,041,684
6
0
null
null
null
null
UTF-8
Python
false
false
778
py
""" 这题本来想用计数排序的,但是对内存的要求太高。然后设置了三个变量,并为了消除重复元素的影响,先将数组转化为集合。然后遍历集合,依次与三个 数比较。 """ class Solution(object): def thirdMax(self, nums): """ :type nums: List[int] :rtype: int """ nums = set(nums) first = second = third = min(nums) for num in nums: if num > third: first, second, third = second, third, num elif num > second: first, second = second, num elif num > first: first = num return first if second > first else third solve = Solution() nums = [1, 2] print(solve.thirdMax(nums))
[ "38693074+xukangjune@users.noreply.github.com" ]
38693074+xukangjune@users.noreply.github.com
3cc456a4fed6e887ff6955657b04461522f8c4bb
4e9fb17329b71a778c2a9016df9e0f3bab02accb
/src/runners/TopSDGGenesRunner.py
a7d98defc80e773ca86730a8289484ef4679da30
[]
no_license
hag007/bnet
7a58d46fbe2508b4c664c200b598db840d910b2c
e43906a9eea0a318de74a07402b306450cff2274
refs/heads/master
2023-07-27T20:14:43.528343
2021-08-25T13:06:01
2021-08-25T13:06:01
391,555,784
0
0
null
2021-08-24T11:36:37
2021-08-01T07:15:26
Python
UTF-8
Python
false
false
2,749
py
import sys sys.path.insert(0, '../') sys.path.insert(0, '../..') import os import pandas as pd from src import constants from src.implementations.top_sdg import main as top_sdg_main from src.utils.ensembl2entrez import ensembl2entrez_convertor from src.utils.network import get_network_genes from src.utils.go_similarity import init_go_metadata from src.runners.abstract_runner import AbstractRunner class TopSDGGenesRunner(AbstractRunner): def __init__(self): super().__init__(f"top_SDG_genes") def extract_modules_and_bg(self, bg_genes, dest_algo_dir): results = open(os.path.join(dest_algo_dir, "modules.txt")).readlines() modules = [[] for x in range(max([int(x.strip().split(" =")[1]) for x in results[1:]]) + 1)] for x in results[1:]: if int(x.strip().split(" =")[1]) != -1: modules[int(x.strip().split(" =")[1])].append(x.strip().split(" =")[0]) else: modules.append([x.strip().split(" =")[0]]) modules = filter(lambda x: len(x) > 3, modules) all_bg_genes = [bg_genes for x in modules] print("extracted {} modules".format(len(modules))) return modules, all_bg_genes def init_params(self, dataset_file_name, network_file_name, output_folder): df_scores=pd.read_csv(dataset_file_name, sep='\t', index_col=0) sig_genes=df_scores['qval'][df_scores['qval']<0.05].index active_genes_file=os.path.join(output_folder, "active_genes_file.txt") open(active_genes_file, "w+").write("\n".join([x for x in sig_genes if len(ensembl2entrez_convertor([x]))>0 ])) bg_genes=get_network_genes(network_file_name) return active_genes_file, bg_genes def run(self, dataset_file_name, network_file_name, output_folder, **kwargs): print("run top_sdg_genes runner...") slices_file = kwargs['slices_file'] constants.N_OF_THREADS=1 if 'n_of_threads' in kwargs: constants.N_OF_THREADS=kwargs['n_of_threads'] constants.USE_CACHE=False if 'use_cache' in kwargs: constants.USE_CACHE=kwargs['use_cache']=='true' if 'compare_folder' in kwargs: compare_folder = kwargs['compare_folder'] active_genes_file, bg_genes = self.init_params(dataset_file_name, network_file_name, output_folder) # print(f'domino_parameters: active_genes_file={active_genes_file}, network_file={network_file_name},slices_file={slices_file}, slice_threshold={slice_threshold},module_threshold={module_threshold}') modules = top_sdg_main(dataset_file=dataset_file_name, compare_folder=compare_folder) all_bg_genes = [bg_genes for x in modules] return modules, all_bg_genes
[ "shpigelman1@localhost.localdomain" ]
shpigelman1@localhost.localdomain
cd3d9035e119adff19f44043ee58aad0e88d33d9
e498c7b38f57d4b242ff094a5f617fd8c94465ce
/homework2.py
c52edf5ea3eb51016e2eca5f863df58a2e2074d5
[]
no_license
Jaunsou/pythonhomework
c485f03448f7c15e3d8c4041435edeec8c8f8e0f
98bf7bfb9c5a14297ae14f0254282716b8e72073
refs/heads/main
2023-03-09T21:45:50.334066
2021-02-28T01:46:20
2021-02-28T01:46:20
313,906,518
0
0
null
null
null
null
UTF-8
Python
false
false
127
py
from functools import reduce def prod(a): def m(x,y): return x*y return reduce(m,a) print(prod([1,4,7,10,13]))
[ "noreply@github.com" ]
Jaunsou.noreply@github.com
8d439e345994203fb44297153208227eedf6b39d
545b3f8866be884ecc4b562b10bba29123835f56
/JSONaug.py
509eca0b4ace9d669ea95059ffcb6a0002723079
[]
no_license
ShulingTang/Image_Augmentation_Demo
f9cc7ff8c6cc61dbc3a39beffa718caa98880352
83c489ec100c95db619b7c67764e2917a5f3965a
refs/heads/master
2023-04-25T05:54:47.872561
2021-05-07T17:40:05
2021-05-07T17:40:05
365,300,022
0
0
null
null
null
null
UTF-8
Python
false
false
4,059
py
import numpy as np import os from pretreatment import mkdir import json import imgaug as ia from imgaug import augmenters as iaa from PIL import Image from pretreatment import * # ========================= # # # if __name__ == '__main__': JSON_DIR = "HRSID_JPG/annotations" # Json文件目录 JSON_NAME = 'train_test2017.json' # 可选:train_test2017.json; test2017.json; train2017.json IMG_DIR = "HRSID_JPG/JPEGImages" AUG_TXT_DIR = "jsontest/Annotations_Aug" # 存储增强后的txt文件夹路径 mkdir(AUG_TXT_DIR) AUG_IMG_DIR = "jsontest/JPEGImages_Aug" # 存储增强后的影像文件夹路径 mkdir(AUG_IMG_DIR) AUGLOOP = 3 # 每张影像增强的数量 boxes_img_aug_list = [] new_bndbox = [] new_bndbox_list = [] # 影像增强 seq = iaa.Sequential([ iaa.Flipud(0.5), # vertically flip 20% of all images iaa.Fliplr(0.5), # 镜像 iaa.Multiply((1.2, 1.5)), # change brightness, doesn't affect BBs iaa.GaussianBlur(sigma=(0, 3.0)), # iaa.GaussianBlur(0.5), iaa.Affine( translate_px={"x": 15, "y": 15}, scale=(0.35, 0.5), rotate=(-30, 30) ) # translate by 40/60px on x/y axis, and scale to 50-70%, affects BBs ]) path = os.path.join(JSON_DIR, str(JSON_NAME)) # 加载json文件 with open(path, 'r') as load_f: json_load = json.load(load_f) img_names = json_load['images'] # 图列表 img_annotation = json_load['annotations'] # 标签列表 for item1 in img_names: name = item1['file_name'] img_id = item1['id'] bndbox_list = [] # 遍历标签列表,将所有指向图:img_id的所有标签中的bbox存储在bndbox_list for item2 in img_annotation: if item2['image_id'] == img_id: bbox = item2['bbox'] # [x1, y1, width, high] bndbox = [bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]] # bndbox = [bbox['0'], bbox['1'], bbox['2'], bbox['3']] # print(bndbox) bndbox_list.append(bndbox) #用于存储 图id 对应的所有的bndbox if item2['image_id'] > img_id: break a = bndbox_list b = os.path.join(IMG_DIR, name) for epoch in range(AUGLOOP): seq_det = seq.to_deterministic() # 保持坐标和图像同步改变,而不是随机 # 读取图片 img = Image.open(os.path.join(IMG_DIR, name)) # 不需改变图片大小 img = np.array(img) # bndbox 坐标增强 for i in range(len(bndbox_list)): bbs = ia.BoundingBoxesOnImage([ ia.BoundingBox(x1=bndbox_list[i][0], y1=bndbox_list[i][1], x2=bndbox_list[i][2], y2=bndbox_list[i][3]), ], shape=img.shape) bbs_aug = seq_det.augment_bounding_boxes([bbs])[0] boxes_img_aug_list.append(bbs_aug) # new_bndbox_list:[[x1,y1,x2,y2],...[],[]] new_bndbox_list.append([int(bbs_aug.bounding_boxes[0].x1), int(bbs_aug.bounding_boxes[0].y1), int(bbs_aug.bounding_boxes[0].x2), int(bbs_aug.bounding_boxes[0].y2)]) # 存储变化后的图片 image_aug = seq_det.augment_images([img])[0] path = os.path.join(AUG_IMG_DIR, str(name[:-4]) + "_aug_" + str(epoch) + '.jpg') # image_auged = bbs.draw_on_image(image_aug, thickness=0) Image.fromarray(image_aug).save(path) # 存储变化后对TXT change_txt_list_annotation(name[:-4], new_bndbox_list, AUG_TXT_DIR, epoch) # 存储变化后的XML # change_xml_list_annotation(TXT_DIR, name[:-4], new_bndbox_list, AUG_XML_DIR, epoch) print(str(name[:-4]) + "_aug_" + str(epoch) + '.jpg') new_bndbox_list = [] # test: P0001_3600_4400_3600_4400
[ "noreply@github.com" ]
ShulingTang.noreply@github.com
1cdfee8c9daf1b2b2b7435bdfb7475efa59efc3f
ba92071d977f8350fc1f03ebd1344d4e487457e0
/content/migrations/0002_lesson_video_link.py
4d828f5ce4e9898514c20d685f093b4b27923361
[]
no_license
lokesh27/3Dex_portal
c5af0521a426d485f1f9e94833e55e1ca38f484a
893284a5a2d265a162c9684768d41194b927251f
refs/heads/master
2022-12-09T03:04:14.952871
2016-05-09T13:02:02
2016-05-09T13:02:02
50,050,747
1
1
null
2022-11-22T01:07:34
2016-01-20T18:27:27
HTML
UTF-8
Python
false
false
441
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('content', '0001_initial'), ] operations = [ migrations.AddField( model_name='lesson', name='video_link', field=models.CharField(default=1, max_length=500), preserve_default=False, ), ]
[ "lokesh.tuteja@yahoo.co.in" ]
lokesh.tuteja@yahoo.co.in
a151e08b4a613bc738600fbb4fd03df07d0d9e46
6894aad6baa4c78089765584d7590046ba76e02d
/errant_env/bin/pip
39552b1ba999ffae25d83aebe948c782e01484a7
[ "Apache-2.0" ]
permissive
Yakonick/test
4dc167c3e6ddf0518aa79d72d5893795a82863aa
1d812776d9733d8020422a6a14cea6880f591888
refs/heads/main
2023-03-31T09:11:01.091800
2021-04-11T13:39:53
2021-04-11T13:39:53
356,863,628
0
0
null
null
null
null
UTF-8
Python
false
false
257
#!/Users/yasen/Desktop/tests/errant_env/bin/python3 # -*- coding: utf-8 -*- import re import sys from pip._internal.cli.main import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
[ "Nikitoskova123@gmail.com" ]
Nikitoskova123@gmail.com
15c16ddf6632e5b50b3d4ba54c5222391bc64d02
0329c160934d2e6eb81e90183745c6ff39fc9462
/budgetme/test/fixtures/fixtures.py
a0940470b249ca465eb15c62d4857fa7f3686296
[ "MIT" ]
permissive
poblouin/budgetme-rest-api
2165b820e847e96be028295eb4831a28152e2935
74d9237bc7b0a118255a659029637c5ed1a8b7a1
refs/heads/master
2021-01-01T19:59:31.579829
2019-06-02T20:14:19
2019-06-02T20:14:19
98,740,836
2
0
MIT
2020-06-05T21:13:14
2017-07-29T15:19:49
Python
UTF-8
Python
false
false
730
py
import pytest from rest_framework.test import APIClient from budgetme.apps.core.models import User @pytest.mark.django_db @pytest.fixture def access_token(db, django_db_setup): users = User.objects.all() assert users is not None and len(users) > 0 user = users[0] client = APIClient() response = client.post('/api/v1/token', {'email': user.email, 'password': 'test1234'}, format='json') assert response is not None assert response.status_code == 200 assert response.data.get('access') is not None return response.data['access'] @pytest.fixture def authed_client(access_token): client = APIClient() client.credentials(HTTP_AUTHORIZATION='Token ' + access_token) return client
[ "blouin.pierreolivier@gmail.com" ]
blouin.pierreolivier@gmail.com
d7df78feee1564eb00a339d7e63bf78235ae6794
cded49be3920bb970884aab73784703b654cd680
/bilibili_meter/web_server/routes/api_activity.py
fe383b5cd98ff2eb73ece83e54a3fa288a8a1653
[ "MIT" ]
permissive
xyzQvQ/bilibili_meter
14926f54e63ba672eda5e089f0ed2d50626a18f3
62da38caf5cd8bcdcdaf1593352e838c817e2ee2
refs/heads/master
2023-07-04T19:49:25.419635
2019-11-18T15:15:03
2019-11-18T15:15:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,131
py
from flask import Blueprint, jsonify, request import time import logging from ..model import WebUser, WatchedUser, WatchedVideo, Task, TaskStatus,\ ItemOnline, ItemVideoStat, ItemUpStat, ItemRegionActivity,\ TaskFailed,TotalWatchedUser,TotalWatchedVideo,TotalEnabledTask,\ WorkerStatus from .. import orm from ..utils import get_zero_timestamp main = Blueprint('api_activity', __name__) @main.route('/get') def get_activity(): # byday = request.values.get('byday', None) # if not byday: c_items = ItemRegionActivity.findAll(limit=500, orderBy='id DESC') c_items.reverse() # else: byday_items = ItemRegionActivity.findByDay(need_key='id', need_filter='MAX(`id`)') byday_items.reverse() # 清理不必要字段 for i in c_items: del i['id'] del i['task_id'] i['rawtime']=i['time'] for i in byday_items: del i['id'] del i['task_id'] i['rawtime']=i['time'] i['time']=get_zero_timestamp(i['time']) d = dict() d['data'] = {'c':c_items,'byday':byday_items} return jsonify(d)
[ "gravitykey@hotmail.com" ]
gravitykey@hotmail.com
fece02e43b414048d73b09d662b9f9c3ef216ff9
05d3c0131631ff973a71fd7a2b3256aac2e8c8de
/scripts/reduce.py
00f63ac39249dfa6da6ee54db38aa39a3438e988
[]
no_license
ELIFE-ASU/parallel-programming-mpi
ef0c0e4816d3274a78139c213f3f8ea955f8605f
16ae2a3137f69b5f79073a643d875646ece2ef1c
refs/heads/master
2022-11-30T12:26:56.104653
2020-08-14T23:58:35
2020-08-14T23:58:35
287,635,159
0
0
null
null
null
null
UTF-8
Python
false
false
227
py
from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() if rank == 0: data = rank recv_data = comm.reduce(data, op=MPI.SUM) else: data = rank recv_data = comm.reduce(data) print(rank, recv_data)
[ "doug@dglmoore.com" ]
doug@dglmoore.com
bccf442ae0c260a3076c95bb548d863401336ef8
c73995de48417b36856b6c6d1bc52d9a90a9a0e5
/item/models.py
d67291a28aea4c9efee5fb9321b1354b539f70a9
[]
no_license
yukai0309/kk
548f1e291d2f4866a12ad9e3fcbc455e0db3b9c1
1abb6b3d6928c3b59e3591debed4dd912452f72d
refs/heads/main
2023-05-27T12:06:46.467400
2021-06-13T16:04:34
2021-06-13T16:04:34
376,582,298
1
0
null
null
null
null
UTF-8
Python
false
false
1,886
py
from django.db import models class ItListModel(models.Model): item_code = models.CharField(max_length=200, verbose_name="貨物編號") item_name = models.CharField(max_length=200, verbose_name="貨物名稱") quantity = models.FloatField(default=0, verbose_name="數量") sales_price = models.FloatField(default=0, verbose_name="價格") cost = models.CharField(max_length=200, verbose_name="成本") weight = models.FloatField(default=0, verbose_name="重量") creater = models.CharField(max_length=255, verbose_name="建立者") create_time = models.DateTimeField(auto_now_add=True, verbose_name="建立時間") update_time = models.DateTimeField(auto_now=True, blank=True, null=True, verbose_name="更新時間") description = models.CharField(max_length=255, verbose_name="說明") class Mata: db_table = "ItListModel" def __str__(self): return self.item_code class ItDetailModel(models.Model): item_code = models.CharField(max_length=200, verbose_name="貨物編號") item_name = models.CharField(max_length=200, verbose_name="貨物名稱") quantity = models.FloatField(default=0, verbose_name="數量") sales_price = models.FloatField(default=0, verbose_name="價格") cost = models.CharField(max_length=200, verbose_name="成本") weight = models.FloatField(default=0, verbose_name="重量") creater = models.CharField(max_length=255, verbose_name="建立者") create_time = models.DateTimeField(auto_now_add=True, verbose_name="建立時間") update_time = models.DateTimeField(auto_now=True, blank=True, null=True, verbose_name="更新時間") description = models.CharField(max_length=255, verbose_name="說明") class Mata: db_table = "ItDetailModel" def __str__(self): return self.item_code
[ "noreply@github.com" ]
yukai0309.noreply@github.com
27029b5b4c740f54219b2707fcda20d406c3380d
8a73621df4054895e2a73a49b84d8d135da1f585
/scanner.py
a98feef039b3a8fe5dea2c672c559fc85489c370
[]
no_license
obing99/pBmwScanner
252d15da98c2f6de89918c351419fa49871a46dc
6323ad30a809cf7dd9d2b7c9c18e8c1623cf85eb
refs/heads/master
2021-09-06T17:48:57.958345
2018-02-09T09:07:43
2018-02-09T09:07:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
138
py
from me72 import * from gs8602 import * egs = ZF5HP24() egs.run() dme = ME72() dme.run() """ ds2 = DS2() while 1: ds2.sniffer() """
[ "stevegigijoe@yahoo.com.tw" ]
stevegigijoe@yahoo.com.tw
422e4dcf885173e53b126ff8279e7a361ccd9201
1468f1436b3ce472a3805bf280955f5ba6d11da2
/lyric_test_discriminator_3.py
bbb60e16f4df5bb803de9a0719fbfff7fba6e45d
[]
no_license
peterfengyx/Lyric-Generation
989d72328a7915e4ae5f0ee88a9290d41126e3fd
b1ed00dbe0112f2c122586be5ccc814e2df2174b
refs/heads/master
2020-04-28T13:47:59.601528
2019-04-24T23:03:07
2019-04-24T23:03:07
175,316,747
2
0
null
null
null
null
UTF-8
Python
false
false
19,080
py
import pdb from lyric_models import * import pickle import numpy as np # from gensim import corpora import torch.utils.data as data_utils from torch.autograd import grad import sys import os # input from command line if len(sys.argv) != 2: raise ValueError("Wrong argument number!") BatchSize = int(sys.argv[1]) # 20 LearningRate = 0.0001 print ('BatchSize: ', BatchSize) # --------------------------- Load Data --------------------------- train_set = pickle.load(open('data_new/training_012','rb')) test_set = pickle.load(open('data_new/test_012','rb')) test_idx_150_1 = pickle.load(open('data_new/test_idx_150_1.pkl','rb')) test_idx_150_2 = pickle.load(open('data_new/test_idx_150_2.pkl','rb')) test_idx_150_3 = pickle.load(open('data_new/test_idx_150_3.pkl','rb')) # pdb.set_trace() #--------------------------- Meta Data --------------------------- # special token idx SOS = 9744 EOS = 9743 UNK = 9745 # maximum line length MaxLineLen = 32 # maximum lyric length MaxLineNum = 40 # Need to be reset # dictionary size DictionarySize = 9746 # genre size GenreSize = 3 # title size TitleSize = 300 # the number of iterations of the discriminator per generator iteration NumDisIter = 1 #---------------------------------------------------------------- # load dictionary # idx2word = corpora.Dictionary.load('data_new/dict.txt') # load w2v vectors # idx2vec = pickle.load(open('data_new/w2v.pkl','rb')) word_embedding = np.eye(DictionarySize) title_embedding = pickle.load(open('data_new/w2v_embedding.pkl','rb')) genre_embedding = torch.eye(GenreSize) line_end_embedding = torch.eye(MaxLineNum).type(torch.LongTensor) #---------------------------------------------------------------- class LyricDataset(data_utils.Dataset): def __init__(self, lyric_set, max_line_num = MaxLineNum): self.lyric_set = lyric_set self.max_line_num = max_line_num self.len = len(lyric_set) def __len__(self): return self.len def __getitem__(self, index): title = np.mean(np.array([title_embedding[key] for key in self.lyric_set[index][0]]), axis=0) genre = self.lyric_set[index][1] lyric = self.lyric_set[index][2] line_length = self.lyric_set[index][3] line_numb = len(lyric) if line_numb > self.max_line_num: lyric = lyric[:self.max_line_num] line_length = line_length[:self.max_line_num] line_numb = self.max_line_num else: for _ in range(self.max_line_num - line_numb): lyric.append([UNK]*MaxLineLen) line_length.append(0) return {'title': title, 'genre': genre, 'lyric': np.array(lyric), 'line_length': np.array(line_length), 'line_numb': line_numb} def train_val(model_type, title_tensor, genre_tensor, real_lyric_tensor, real_line_length_tensor, real_line_num_tensor, sentence_encoder, lyric_encoder, lyric_generator, sentence_generator, lyric_discriminator, sentence_encoder_optimizer, lyric_encoder_optimizer, lyric_generator_optimizer, sentence_generator_optimizer, lyric_discriminator_optimizer, batch_size, max_line_number = MaxLineNum, max_line_length = MaxLineLen, num_discriminator_iter = NumDisIter): # , # lg_end_loss_weight = LgEndLossWeight, # sg_word_loss_weight = SgWordLossWeight): if model_type == 'train': sentence_encoder_optimizer.zero_grad() lyric_encoder_optimizer.zero_grad() lyric_generator_optimizer.zero_grad() sentence_generator_optimizer.zero_grad() lyric_discriminator_optimizer.zero_grad() # gan_loss_data = 0.0 # generator_loss_data = 0.0 discriminator_loss_data = 0.0 # real lyric embedding real_line_number = torch.max(real_line_num_tensor).item() real_line_length = torch.max(real_line_length_tensor).item() real_le_hidden = cudalize(Variable(lyric_encoder.initHidden(batch_size))) # torch.Size([1, 10, 512]) real_le_hiddens_variable = real_le_hidden # torch.Size([1, 10, 512]) genre_embedding_tensor = genre_embedding[genre_tensor] for real_line_num in range(real_line_number): real_se_hidden = cudalize(Variable(sentence_encoder.initHidden(batch_size))) # torch.Size([1, 10, 512]) real_se_hiddens_variable = real_se_hidden # torch.Size([1, 10, 512]) for real_line_idx in range(real_line_length): real_se_word_tensor = torch.from_numpy(word_embedding[real_lyric_tensor[:,real_line_num,real_line_idx]]).type(torch.FloatTensor) # torch.Size([10, 9746]) # title_tensor - this line, torch.Size([10, 9746]) # genre_embedding_tensor - this line, torch.Size([10, 3]) real_se_input = torch.cat((real_se_word_tensor, title_tensor, genre_embedding_tensor), 1) # torch.Size([10, 19495]) real_se_input = cudalize(Variable(real_se_input)) _, real_se_hidden = sentence_encoder(real_se_input, real_se_hidden, batch_size) real_se_hiddens_variable = torch.cat((real_se_hiddens_variable, real_se_hidden)) real_line_latent_variable = real_se_hiddens_variable[real_line_length_tensor[:,real_line_num], np.arange(batch_size), :] # torch.Size([10, 512]) real_le_title_tensor_variable = cudalize(Variable(title_tensor)) # torch.Size([10, 9746]) real_le_genre_variable = cudalize(Variable(genre_embedding_tensor)) # torch.Size([10, 3]) real_le_input = torch.cat((real_line_latent_variable, real_le_title_tensor_variable, real_le_genre_variable), 1) # torch.Size([10, 10261]) _, real_le_hidden = lyric_encoder(real_le_input, real_le_hidden, batch_size) real_le_hiddens_variable = torch.cat((real_le_hiddens_variable, real_le_hidden)) # real_lyric_latent_variable real_lyric_latent_variable = real_le_hiddens_variable[real_line_num_tensor, np.arange(batch_size), :] # torch.Size([10, 512]) # generated lyric embedding noise_un_variable = cudalize(Variable(torch.randn(real_lyric_latent_variable.size()))) # torch.Size([10, 512]) # normalize noise_mean_variable = torch.mean(noise_un_variable, dim=1, keepdim=True) noise_std_variable = torch.std(noise_un_variable, dim=1, keepdim=True) noise_variable = (noise_un_variable - noise_mean_variable)/noise_std_variable lg_temp_variable = noise_variable softmax = nn.Softmax(dim=1) lg_hidden = cudalize(Variable(lyric_generator.initHidden(batch_size))) # torch.Size([1, 10, 512]) lg_outputs_length = np.array([max_line_number]*batch_size) # (10,) lg_length_flag = np.ones(batch_size, dtype=int) # (10,) le_hidden = cudalize(Variable(lyric_encoder.initHidden(batch_size))) # torch.Size([1, 10, 512]) le_hiddens_variable = le_hidden # torch.Size([1, 10, 512]) for line_num in range(max_line_number): lg_title_tensor_variable = cudalize(Variable(title_tensor)) # torch.Size([10, 9746]) lg_genre_variable = cudalize(Variable(genre_embedding_tensor)) # torch.Size([10, 3]) lg_input = torch.cat((lg_temp_variable, lg_title_tensor_variable, lg_genre_variable), 1) # torch.Size([10, 10261]) # lg_input = torch.cat((noise_variable, lg_title_tensor_variable, lg_genre_variable), 1) # torch.Size([10, 10261]) end_output, topic_output, lg_hidden = lyric_generator(lg_input, lg_hidden, batch_size) # workable, but be careful! Now p = 0.5, need to change for other p-s! end_output_softmax = softmax(end_output) end_ni = np.argmax(end_output_softmax.data.cpu().numpy(), axis=1) end_batch_index = np.where(end_ni == 1)[0] if np.sum(lg_length_flag[end_batch_index]) > 0: lg_outputs_length[end_batch_index] = line_num + 1 # line_num starts from 0! lg_length_flag[end_batch_index] = 0 sg_hidden = topic_output.view(1, batch_size, -1) # torch.Size([1, 10, 512]) sg_hiddens_variable = sg_hidden sg_word_tensor = torch.from_numpy(np.array([word_embedding[SOS]]*batch_size)).type(torch.FloatTensor) # torch.Size([10, 9746]) # sg_word_outputs = cudalize(Variable(torch.zeros(line_length-1, batch_size, sentence_generator.output_size))) # torch.Size([19, 10, 9746]) se_hidden = cudalize(Variable(sentence_encoder.initHidden(batch_size))) # torch.Size([1, 10, 512]) # genre_embedding_tensor # torch.Size([10, 3]) se_input = torch.cat((softmax(sg_word_tensor), title_tensor, genre_embedding_tensor), 1) # torch.Size([10, 19495]) se_input = cudalize(Variable(se_input)) _, se_hidden = sentence_encoder(se_input, se_hidden, batch_size) se_hiddens_variable = se_hidden # torch.Size([1, 10, 512]) sg_outputs_length = np.array([max_line_length-1]*batch_size) sg_length_flag = np.ones(batch_size, dtype=int) for line_idx in range(1, max_line_length): # title_tensor - this line # genre_embedding_tensor - this line, torch.Size([10, 3]) sg_input = torch.cat((sg_word_tensor, title_tensor, genre_embedding_tensor), 1) # torch.Size([10, 19495]) sg_input = cudalize(Variable(sg_input)) sg_output, sg_hidden = sentence_generator(sg_input, sg_hidden, batch_size) sg_hiddens_variable = torch.cat((sg_hiddens_variable, sg_hidden)) sg_output_softmax = softmax(sg_output) ni = torch.multinomial(sg_output_softmax, 1).cpu().view(-1) # _, topi = sg_output_softmax.topk(1) # ni = topi.cpu().view(-1) # workable, but be careful sg_word_tensor = torch.from_numpy(word_embedding[ni]).type(torch.FloatTensor) eos_ni = ni.numpy() # be careful about <SOS>!!!!!! eos_batch_index = np.where(eos_ni == EOS)[0] if np.sum(sg_length_flag[eos_batch_index]) > 0: sg_outputs_length[eos_batch_index] = line_idx # exclude <SOS>, but include <EOS> sg_length_flag[eos_batch_index] = 0 se_title_variable = cudalize(Variable(title_tensor)) se_genre_variable = cudalize(Variable(genre_embedding_tensor)) se_input = torch.cat((sg_output_softmax, se_title_variable, se_genre_variable), 1) # torch.Size([10, 19495]) _, se_hidden = sentence_encoder(se_input, se_hidden, batch_size) se_hiddens_variable = torch.cat((se_hiddens_variable, se_hidden)) lg_temp_variable = sg_hiddens_variable[sg_outputs_length, np.arange(batch_size), :] line_latent_variable = se_hiddens_variable[sg_outputs_length, np.arange(batch_size), :] # torch.Size([10, 512]) le_title_tensor_variable = cudalize(Variable(title_tensor)) # torch.Size([10, 9746]) le_genre_variable = cudalize(Variable(genre_embedding_tensor)) # torch.Size([10, 3]) le_input = torch.cat((line_latent_variable, le_title_tensor_variable, le_genre_variable), 1) # torch.Size([10, 10261]) _, le_hidden = lyric_encoder(le_input, le_hidden, batch_size) le_hiddens_variable = torch.cat((le_hiddens_variable, le_hidden)) # generated_lyric_latent_variable generated_lyric_latent_variable = le_hiddens_variable[lg_outputs_length, np.arange(batch_size), :] # torch.Size([10, 512]) # Now the two variables prepared, dig into gan training procedure. # GAN starts D_result_real = lyric_discriminator(real_lyric_latent_variable).squeeze() # does the .squeeze() really needed? D_real_loss = -torch.mean(D_result_real) D_result_fake = lyric_discriminator(generated_lyric_latent_variable).squeeze() # does the .squeeze() really needed? D_fake_loss = torch.mean(D_result_fake) # D_result_fake = lyric_discriminator(real_lyric_latent_variable).squeeze() # does the .squeeze() really needed? # D_fake_loss = torch.mean(D_result_fake) discriminator_loss = D_real_loss + D_fake_loss discriminator_loss_data = discriminator_loss.item() return D_real_loss.item(), D_fake_loss.item(), -discriminator_loss_data def trainEpochs(sentence_encoder, lyric_encoder, lyric_generator, sentence_generator, lyric_discriminator, batch_size, learning_rate, num_epoch, print_every): sentence_encoder_optimizer = torch.optim.Adam(sentence_encoder.parameters(), lr=learning_rate*0.95) lyric_encoder_optimizer = torch.optim.Adam(lyric_encoder.parameters(), lr=learning_rate*0.95) lyric_generator_optimizer = torch.optim.Adam(lyric_generator.parameters(), lr=learning_rate*0.95) sentence_generator_optimizer = torch.optim.Adam(sentence_generator.parameters(), lr=learning_rate*0.95) lyric_discriminator_optimizer = torch.optim.Adam(lyric_discriminator.parameters(), lr=learning_rate) val_loader = data_utils.DataLoader(dataset=LyricDataset(test_set[test_idx_150_3]), batch_size=batch_size, shuffle=True) sentence_encoder.eval() lyric_encoder.eval() lyric_generator.eval() sentence_generator.eval() lyric_discriminator.eval() validation_loss_gan_list = [] validation_loss_gene_list = [] validation_loss_disc_list = [] for val_batch, val_data in enumerate(val_loader, 0): title_tensor = val_data['title'].type(torch.FloatTensor) # torch.Size([10, 9746]) genre_tensor = val_data['genre'] # torch.Size([10]), tensor([0, 2, 1, 1, 0, 1, 2, 1, 1, 1]) lyric_tensor = val_data['lyric'] # torch.Size([10, 40, 32]) line_length_tensor = val_data['line_length'] # torch.Size([10, 40]) line_num_tensor = val_data['line_numb'] # torch.Size([10]), tensor([40, 17, 31, 38, 40, 40, 22, 9, 12, 39]) print (val_batch) gan_loss, gene_loss, disc_loss = train_val('val', title_tensor, genre_tensor, lyric_tensor, line_length_tensor, line_num_tensor, sentence_encoder, lyric_encoder, lyric_generator, sentence_generator, lyric_discriminator, sentence_encoder_optimizer, lyric_encoder_optimizer, lyric_generator_optimizer, sentence_generator_optimizer, lyric_discriminator_optimizer, len(line_num_tensor)) validation_loss_gan_list.append(gan_loss) validation_loss_gene_list.append(gene_loss) validation_loss_disc_list.append(disc_loss) print_loss_gan_avg_val = np.mean(np.array(validation_loss_gan_list)) print_loss_gene_avg_val = np.mean(np.array(validation_loss_gene_list)) print_loss_disc_avg_val = np.mean(np.array(validation_loss_disc_list)) print(' Validation loss: [%.6f, %.6f, %.6f]' % (print_loss_gan_avg_val, print_loss_gene_avg_val, print_loss_disc_avg_val)) if __name__=='__main__': word_embedding_size = DictionarySize title_embedding_size = TitleSize genre_embedding_size = GenreSize saving_dir_gen = "lyric_gan_25" epoch_num_gen = 4 # saving_dir_gen = "lyric_gan_scratch_128_25" # epoch_num_gen = 22 # saving_dir_gen = "tf_autoencoder_128_30_01" # epoch_num_gen = 20 saving_dir_dis = "lyric_gan_25" epoch_num_dis = 4 lyric_latent_size = 128 # lyric generator - lg lg_input_size = lyric_latent_size + title_embedding_size + genre_embedding_size lg_embedding_size = 128 # not used lg_hidden_size = 128 # 512 lg_topic_latent_size = 128 # 512 lg_topic_output_size = 128 # 512 lyric_generator = LyricGenerator(lg_input_size, lg_embedding_size, lg_hidden_size, lg_topic_latent_size, lg_topic_output_size) # need to load the weights # lyric_generator.load_state_dict(torch.load(saving_dir_gen+'/lyric_generator_'+str(epoch_num_gen))) lyric_generator = cudalize(lyric_generator) lyric_generator.eval() # sentence generator - sg sg_input_size = word_embedding_size + title_embedding_size + genre_embedding_size sg_embedding_size = 128 sg_hidden_size = lg_topic_output_size # 512 sg_output_size = DictionarySize sentence_generator = SentenceGenerator(sg_input_size, sg_embedding_size, sg_hidden_size, sg_output_size) # need to load the weights # sentence_generator.load_state_dict(torch.load(saving_dir_gen+'/sentence_generator_'+str(epoch_num_gen))) sentence_generator = cudalize(sentence_generator) sentence_generator.eval() # sentence encoder - se se_input_size = word_embedding_size + title_embedding_size + genre_embedding_size se_embedding_size = 128 se_hidden_size = 128 # 512 sentence_encoder = SentenceEncoder(se_input_size, se_embedding_size, se_hidden_size) # need to load the weights sentence_encoder.load_state_dict(torch.load(saving_dir_dis+'/sentence_encoder_'+str(epoch_num_dis))) sentence_encoder = cudalize(sentence_encoder) sentence_encoder.eval() # lyric encoder - le le_input_size = se_hidden_size + title_embedding_size + genre_embedding_size le_embedding_size = 128 # not used le_hidden_size = lyric_latent_size lyric_encoder = LyricEncoder(le_input_size, le_embedding_size, le_hidden_size) # need to load the weights lyric_encoder.load_state_dict(torch.load(saving_dir_dis+'/lyric_encoder_'+str(epoch_num_dis))) lyric_encoder = cudalize(lyric_encoder) lyric_encoder.eval() # lyric discriminator - ldis ldis_input_size = lyric_latent_size lyric_discriminator = LyricDiscriminator(ldis_input_size) # need to load the weights lyric_discriminator.load_state_dict(torch.load(saving_dir_dis+'/lyric_discriminator_'+str(epoch_num_dis))) lyric_discriminator = cudalize(lyric_discriminator) lyric_discriminator.eval() batch_size = BatchSize # 20 learning_rate = LearningRate num_epoch = 1000 print_every = 1 trainEpochs(sentence_encoder, lyric_encoder, lyric_generator, sentence_generator, lyric_discriminator, batch_size, learning_rate, num_epoch, print_every)
[ "bicheng_xu@outlook.com" ]
bicheng_xu@outlook.com
ee17121c63a869b6d39379a0608764af56660513
3e25f00988eb7d67cb757670eadbc34931ac6f04
/scripts/mol2xml.py
1baa50a56507cc6fe27fb6abe572e4b542eb0481
[]
no_license
G-Kang/tpa_md
0dcb32af79fe1d17ceca9bcf9f570671664e81b3
477f0f82976e52a0cb3fa11b6ea203aa9dba2090
refs/heads/master
2022-02-28T07:24:08.284881
2019-11-04T16:48:15
2019-11-04T16:48:15
219,539,870
0
0
null
null
null
null
UTF-8
Python
false
false
5,341
py
from polymerize import CreatePolymer import os,shutil,sys import xml.dom.minidom from solv_helper import * #place polymer in a lattice configuration path=sys.argv[1] num=int(sys.argv[2]) size=int(sys.argv[3]) runid=int(sys.argv[4]) archive=sys.argv[5] infile=sys.argv[6] shell=sys.argv[7] prmfile='D'+str(num)+'o' arc=archive def arctopos(path,file,shell,lx=65): posfile=file.split('.')[0]+'arc.pos' polyfile=file.split('min')[0]+'min.xyz' os.system('rm '+path+'/'+posfile) if shell=="True": if 'cbsol' in file: sol_size=12 elif 'cfsol' in file: sol_size=5 shell_type='shell' posfile=file.split('.')[0]+'shellarc.pos' solv_cut=1.0 cutoff=8.0 with open(path+'/'+file+'.arc') as infile: i=0 j=0 infile.seek(-10,os.SEEK_END) size=infile.tell() print size infile.seek(0,0) for line in infile: if j==0: tmpf='temp_'+str(num)+'_'+str(runid) os.system('rm '+path+'/'+tmpf+'*') f=open(path+'/'+tmpf+'.xyz','w') numatom=int(line.split()[0]) xyzlines=line j+=1 elif j==numatom: xyzlines+=line print infile.tell() f.write(xyzlines) f.close() #add if shell=="True": atom_array,tink_type,atom_type,connect,slines,natoms,cent_size=read_xyz(path,tmpf+'.xyz',polyfile,sol_size) shell_atoms,all_atoms,cent_molecule=solv_shell(atom_array,connect,natoms,cent_size,sol_size,cutoff) clean_solv_shell,clean_solv_all=deloop_solv(sol_size,shell_atoms,all_atoms,atom_array,cent_molecule,solv_cut) write_xyz(path,tmpf+'.xyz',atom_array,atom_type,tink_type,connect,slines,cent_molecule,clean_solv_shell,shell_type) shfile=tmpf.split('.')[0]+'_shell' s=open(path+'/'+shfile+'.xyz','r') numatoms=int(s.readline().split()[0]) s.close() os.system('xyzsybyl '+path+'/'+shfile+'.xyz > garb.out') CreatePolymer(path,shfile,shfile,num_mono=1,num_poly=1,lf=lx) if not os.path.isfile(path+'/'+posfile): shutil.copyfile(path+'/'+shfile+'.pos',path+'/'+posfile) os.system('rm '+path+'/'+shfile+'.*') os.system('rm '+path+'/'+tmpf+'.*') else: os.system('cat '+path+'/'+shfile+'.pos >> '+path+'/'+posfile) os.system('rm '+path+'/'+shfile+'.*') os.system('rm '+path+'/'+tmpf+'.*') if infile.tell()>size: os.system('rm '+path+'/'+file+'_lastshell.*') final=open(path+'/'+file+'_lastshell.xyz','w') final.write(xyzlines) final.close() os.system('xyzsybyl '+path+'/'+file+'_lastshell.xyz') CreatePolymer(path,file+'_lastshell',file+'_lastshell',num_mono=1,num_poly=1,lf=lx) else: os.system('xyzsybyl '+path+'/'+tmpf+'>tmp.out') CreatePolymer(path,tmpf,tmpf,num_mono=1,num_poly=1,lf=lx) if not os.path.isfile(path+'/'+posfile): shutil.copyfile(path+'/'+tmpf+'.pos',path+'/'+posfile) os.system('rm '+path+'/'+tmpf+'.*') else: os.system('cat '+path+'/'+tmpf+'.pos >> '+path+'/'+posfile) os.system('rm '+path+'/'+tmpf+'.*') if infile.tell()>size: os.system('rm '+path+'/'+file+'_last.*') final=open(path+'/'+file+'_last.xyz','w') final.write(xyzlines) final.close() os.system('xyzsybyl '+path+'/'+file+'_last.xyz') CreatePolymer(path,file+'_last',file+'_last',num_mono=1,num_poly=1,lf=lx) j=0 i+=1 else: xyzlines+=line j+=1 if arc=='True': CreatePolymer(path,infile,infile,num_mono=1,num_poly=1,lf=65) #number of initial files dom = xml.dom.minidom.parse(path+'/'+infile+'.xml'); # start by parsing the file hoomd_xml = dom.getElementsByTagName('hoomd_xml')[0]; configuration = hoomd_xml.getElementsByTagName('configuration')[0]; # read the box size box = configuration.getElementsByTagName('box')[0]; Lx = box.getAttribute('lx'); l=float(Lx) arctopos(path,infile,shell,lx=l) else: infile='D'+num+'_'+tornum+'_t_' outfile=infile tornum=sys.argv[6] for j in xrange(0,190,10): #os.system('xyzsybyl '+path+'/'+infile+'.001_'+str(j)) os.system('analyze '+path+'/'+infile+str(j)+' '+path+'/../'+prmfile+' E > D'+num+'_'+tornum+'tor'+str(j)+'.out') #os.system('sybylxyz '+path+'/'+infile+str(j)+'_mp2') print path+'/'+infile+str(j) #CreatePolymer(path,infile+str(j),outfile+str(j),num_mono,num_poly,lf,tw=twist,latflag=lattice)
[ "gyeongwonkang2020@u.northwestern.edu" ]
gyeongwonkang2020@u.northwestern.edu
04bea333234cb45a83f68335bf40cd9e5c881f9d
22d1dec6a6b5b33c9cb48fb8cca1150ead0db01e
/list.py
145af2e7e316fd241ba9f58a2e28cb2fcb5b9d20
[]
no_license
liujanice/GWC_python
b9d30e27daee920eb92eb1c6c33019154fdb3b40
054973d09470b9ac9c114095475cc81f6bddd301
refs/heads/master
2021-01-02T09:12:55.569221
2017-11-27T06:56:02
2017-11-27T06:56:02
99,167,569
0
0
null
null
null
null
UTF-8
Python
false
false
1,151
py
groceries = ["chips", "bagels", "bread", "crackers","pasta", "pizza", "ice cream", "soda", "bbq sauce", "cake", "peaches", "bananas","muffins"] # extend and append are functions groceries.extend(["eggs", 'noodles']) #Extend only MERGES ANOTHER LIST into the previous list. groceries.append("bacon") #Append adds a SINGLE item only to a list. Thus, what is in the parentheses is treated like ONE ITEM forgotten = ["onions", "ginger", "broccoli", "potatos", "tea", "coffee beans", "rice", "peanuts", "dried apricot", "mangos", "milk"] print("I bought these today:") # iterates through the groceries list for item in groceries: print(item) # Asking for user input to find an item they forgot by using that value as the index in the list answer = int(input("oh no! What else do I need to buy? Enter in an integer from 0 to 10: ")) #If the user's input is within the range of the indexes of the forgotten list, then # the program will print out the item if answer >= 0 and answer <= 10: print() print(forgotten[answer]) # If not, there are no items that were forgotten else: print("Nevermind. I think I bought everything I need.")
[ "noreply@github.com" ]
liujanice.noreply@github.com
5edbc2661060483ef8dd89696f1b2a69530acb0d
cd1e37869b7c91c3a52a64261898ea54a83b63d8
/bengali/model.py
81ecc2564f538a31ec14c93c58fe5a42ebd4a712
[]
no_license
ceshine/bengali-grapheme-classification
67388aec30ed5ddfdf02cbd6a3626d6cb869fb53
48f6881fd03edb399169b63054850ab84b74527b
refs/heads/master
2021-04-01T01:12:52.398465
2020-03-31T07:08:55
2020-03-31T07:08:55
248,143,974
2
0
null
null
null
null
UTF-8
Python
false
false
3,333
py
import tensorflow as tf import efficientnet.tfkeras as efn from .dataset import CLASS_COUNTS # Avoids cudnn initialization problem gpus = tf.config.experimental.list_physical_devices('GPU') for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) class SELayer(tf.keras.layers.Layer): def __init__(self, channels, reduction): super().__init__() self.fc1 = tf.keras.layers.Dense( channels // reduction, kernel_initializer=tf.keras.initializers.he_normal(seed=None), name="fc1", activation="relu" ) self.fc2 = tf.keras.layers.Dense( channels, kernel_initializer=tf.keras.initializers.he_normal(seed=None), name="fc2", activation="sigmoid" ) def call(self, x): tmp = self.fc1(x) tmp = self.fc2(tmp) return tmp * x def get_model(arch="b3", pretrained="imagenet", image_size=(128, 128, 3)): image_input = tf.keras.layers.Input( shape=image_size, dtype='float32', name='image_input' ) if arch.startswith("b2"): base_model = efn.EfficientNetB2( weights=pretrained, input_shape=image_size, include_top=False) elif arch.startswith("b3"): base_model = efn.EfficientNetB3( weights=pretrained, input_shape=image_size, include_top=False) elif arch.startswith("b4"): base_model = efn.EfficientNetB4( weights=pretrained, input_shape=image_size, include_top=False) elif arch.startswith("b5"): base_model = efn.EfficientNetB5( weights=pretrained, input_shape=image_size, include_top=False) elif arch.startswith("b6"): base_model = efn.EfficientNetB6( weights=pretrained, input_shape=image_size, include_top=False) elif arch.startswith("b7"): base_model = efn.EfficientNetB7( weights=pretrained, input_shape=image_size, include_top=False) else: raise ValueError("Unknown arch!") base_model.trainable = True tmp = base_model(image_input) hidden_dim = base_model.output_shape[-1] tmp = tf.keras.layers.GlobalAveragePooling2D()(tmp) tmp = tf.keras.layers.Dropout(0.5)(tmp) if arch.endswith("g"): prediction_0 = tf.keras.layers.Dense( CLASS_COUNTS[0], activation='softmax', name="root", dtype='float32' )(SELayer(hidden_dim, 8)(tmp)) prediction_1 = tf.keras.layers.Dense( CLASS_COUNTS[1], activation='softmax', name="vowel", dtype='float32' )(SELayer(hidden_dim, 8)(tmp)) prediction_2 = tf.keras.layers.Dense( CLASS_COUNTS[2], activation='softmax', name="consonant", dtype='float32' )(SELayer(hidden_dim, 8)(tmp)) else: prediction_0 = tf.keras.layers.Dense( CLASS_COUNTS[0], activation='softmax', name="root", dtype='float32')(tmp) prediction_1 = tf.keras.layers.Dense( CLASS_COUNTS[1], activation='softmax', name="vowel", dtype='float32')(tmp) prediction_2 = tf.keras.layers.Dense( CLASS_COUNTS[2], activation='softmax', name="consonant", dtype='float32')(tmp) prediction = tf.keras.layers.Concatenate(axis=-1)([ prediction_0, prediction_1, prediction_2]) return tf.keras.Model(image_input, prediction)
[ "shuanck@gmail.com" ]
shuanck@gmail.com
926f177ca5d0e980f75a48fe51f5f9f65263b299
3fed8ac07933de0370633013b4d035783333b89d
/contour/migrations/0009_environmentalcontour_latex_report.py
ab9558d76bb60eec2afeb7036b1e962bac24352d
[ "MIT" ]
permissive
virocon-organization/viroconweb
4bf14d4c8656222161c06b1b076b585fdb873a6c
9fe1e93b4500777cdd8018573e6e5ea981739d50
refs/heads/master
2021-09-21T12:15:42.528741
2021-01-09T20:59:38
2021-01-09T20:59:38
107,653,688
3
1
MIT
2021-09-07T23:51:36
2017-10-20T08:40:52
Python
UTF-8
Python
false
false
570
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.11 on 2018-04-13 15:07 from __future__ import unicode_literals import contour.models from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('contour', '0008_auto_20180413_0953'), ] operations = [ migrations.AddField( model_name='environmentalcontour', name='latex_report', field=models.FileField(default=None, null=True, upload_to=contour.models.media_directory_path), ), ]
[ "a.haselsteiner@uni-bremen.de" ]
a.haselsteiner@uni-bremen.de
9cdf08036a3e48d468a590dd30a05cfcb227a4c5
4ef04fe6545f601fd43dceff9052bd5443ddeac7
/find_similar_users.py
757041a9dce55766e9ef5422627c2cdd81559463
[]
no_license
Mansijain850/recommendation-system
ef4d44db9ea470e963808ff2362a772c1954b5d7
d1b62c48f63d838c9e28c2706000d830c6edea31
refs/heads/master
2021-01-18T16:01:57.442776
2017-10-11T01:56:25
2017-10-11T01:56:25
86,704,120
0
0
null
null
null
null
UTF-8
Python
false
false
1,112
py
import json import numpy as np from pearson_score import pearson_score # Finds a specified number of users who are similar to the input user def find_similar_users(dataset, user, num_users): if user not in dataset: raise TypeError('User ' + user + ' not present in the dataset') # Compute Pearson scores for all the users scores = np.array([[x, pearson_score(dataset, user, x)] for x in dataset if user != x]) # Sort the scores based on second column scores_sorted = np.argsort(scores[:, 1]) # Sort the scores in decreasing order (highest score first) scored_sorted_dec = scores_sorted[::-1] # Extract top 'k' indices top_k = scored_sorted_dec[0:num_users] return scores[top_k] if __name__=='__main__': data_file = 'movie_ratings.json' with open(data_file, 'r') as f: data = json.loads(f.read()) user = 'Mansi Jain' print('\n Users similar to " + user + :\n') similar_users = find_similar_users(data, user, 3) print('User Similarity score\n') for item in similar_users: print(item[0],round(float(item[1]), 2))
[ "mansijain850@gmail.com" ]
mansijain850@gmail.com
cf381967da38f4a2bace17ffb9abb245d020aebc
06923a8c0f12e0cd0a6ecdb255aac921b4734852
/django/filmweb/migrations/0024_auto_20210725_1716.py
e31e028486ea89db97f5515bda406f15716aa7d8
[]
no_license
adik077/Movies-rating
86f6b2c2e9e8deeffef1d63526b8c01ffe38980b
0467c26763c9e4aacf37b2115c0ca2d63c869562
refs/heads/master
2023-07-31T07:37:14.008685
2021-09-19T16:22:34
2021-09-19T16:22:34
408,176,138
0
0
null
null
null
null
UTF-8
Python
false
false
681
py
# Generated by Django 3.2.4 on 2021-07-25 15:16 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('filmweb', '0023_auto_20210725_1711'), ] operations = [ migrations.AlterField( model_name='dodatkoweinfo', name='gatunek', field=models.PositiveSmallIntegerField(choices=[(3, 'Komedia'), (0, 'Inne'), (2, 'Sci-fi'), (1, 'Horror'), (4, 'Drama')], default=0), ), migrations.AlterField( model_name='ocena', name='autor', field=models.CharField(blank=True, default='anonim', max_length=64, null=True), ), ]
[ "aginalski112@gmail.com" ]
aginalski112@gmail.com
99ea95e58bc8937fa6164cea95ce35145c496efc
32eeb97dff5b1bf18cf5be2926b70bb322e5c1bd
/benchmark/hackernews/testcase/firstcases/testcase5_025.py
74737c28144edf295d46b08ed1766a9b7a938e9e
[]
no_license
Prefest2018/Prefest
c374d0441d714fb90fca40226fe2875b41cf37fc
ac236987512889e822ea6686c5d2e5b66b295648
refs/heads/master
2021-12-09T19:36:24.554864
2021-12-06T12:46:14
2021-12-06T12:46:14
173,225,161
5
0
null
null
null
null
UTF-8
Python
false
false
3,342
py
#coding=utf-8 import os import subprocess import time import traceback from appium import webdriver from appium.webdriver.common.touch_action import TouchAction from selenium.common.exceptions import NoSuchElementException, WebDriverException desired_caps = { 'platformName' : 'Android', 'deviceName' : 'Android Emulator', 'platformVersion' : '4.4', 'appPackage' : 'io.dwak.holohackernews.app', 'appActivity' : 'io.dwak.holohackernews.app.ui.storylist.MainActivity', 'resetKeyboard' : True, 'androidCoverage' : 'io.dwak.holohackernews.app/io.dwak.holohackernews.app.JacocoInstrumentation', 'noReset' : True } def command(cmd, timeout=5): p = subprocess.Popen(cmd, stderr=subprocess.STDOUT, stdout=subprocess.PIPE, shell=True) time.sleep(timeout) p.terminate() return def getElememt(driver, str) : for i in range(0, 5, 1): try: element = driver.find_element_by_android_uiautomator(str) except NoSuchElementException: time.sleep(1) else: return element os.popen("adb shell input tap 50 50") element = driver.find_element_by_android_uiautomator(str) return element def getElememtBack(driver, str1, str2) : for i in range(0, 2, 1): try: element = driver.find_element_by_android_uiautomator(str1) except NoSuchElementException: time.sleep(1) else: return element for i in range(0, 5, 1): try: element = driver.find_element_by_android_uiautomator(str2) except NoSuchElementException: time.sleep(1) else: return element os.popen("adb shell input tap 50 50") element = driver.find_element_by_android_uiautomator(str2) return element def swipe(driver, startxper, startyper, endxper, endyper) : size = driver.get_window_size() width = size["width"] height = size["height"] try: driver.swipe(start_x=int(width * startxper), start_y=int(height * startyper), end_x=int(width * endxper), end_y=int(height * endyper), duration=2000) except WebDriverException: time.sleep(1) driver.swipe(start_x=int(width * startxper), start_y=int(height * startyper), end_x=int(width * endxper), end_y=int(height * endyper), duration=2000) return # testcase025 try : starttime = time.time() driver = webdriver.Remote('http://localhost:4723/wd/hub', desired_caps) element = getElememtBack(driver, "new UiSelector().text(\"sa-mao\")", "new UiSelector().className(\"android.widget.TextView\").instance(4)") TouchAction(driver).tap(element).perform() element = getElememt(driver, "new UiSelector().resourceId(\"io.dwak.holohackernews.app:id/action_share\").className(\"android.widget.TextView\")") TouchAction(driver).tap(element).perform() element = getElememtBack(driver, "new UiSelector().text(\"Share Comment\")", "new UiSelector().className(\"android.widget.TextView\")") TouchAction(driver).tap(element).perform() except Exception, e: print 'FAIL' print 'str(e):\t\t', str(e) print 'repr(e):\t', repr(e) print traceback.format_exc() else: print 'OK' finally: cpackage = driver.current_package endtime = time.time() print 'consumed time:', str(endtime - starttime), 's' command("adb shell am broadcast -a com.example.pkg.END_EMMA --es name \"5_025\"") jacocotime = time.time() print 'jacoco time:', str(jacocotime - endtime), 's' driver.quit() if (cpackage != 'io.dwak.holohackernews.app'): cpackage = "adb shell am force-stop " + cpackage os.popen(cpackage)
[ "prefest2018@gmail.com" ]
prefest2018@gmail.com
3ca766b88278bb8391c295597ce1a1b2b5b71a01
1006de7ca307c360569d657e6dba8ee87f0fd7ef
/redis1/sf.py
5bcd1b9428b9ccb61b1ac7fe96f9c09b09a17153
[]
no_license
run100/python
0465c454f4468db38f34571e7a04896ad51c46ce
3d9e76e76d145669b669daa40e0a2eb9eb5fdca7
refs/heads/master
2021-01-17T09:11:48.186452
2016-03-22T02:10:34
2016-03-22T02:10:34
31,799,548
0
0
null
null
null
null
UTF-8
Python
false
false
1,589
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ __title__ = '' __author__ = 'Administrator' __mtime__ = '2016/3/10' # code is far away from bugs with the god animal protecting I love animals. They taste delicious. """ import re import urllib2 from bs4 import BeautifulSoup import redis redis_conn = redis.Redis('localhost', 6379) #redis_conn.incr('') url = 'https://segmentfault.com/blogs/hottest/monthly?page=' def get_content(url): header = { 'User-Agent': 'Mozilla/5.0 (iPhone; U; CPU iPhone OS 4_2_1 like Mac OS X; en-us) AppleWebKit/533.17.9 (KHTML, like Gecko) Version/5.0.2 Mobile/8C148 Safari/6533.18.5' } request = urllib2.Request(url, headers=header) resp = urllib2.urlopen(request) if resp.getcode() == 200: return resp.read() def get_lists(html_doc): #global redis_conn soup = BeautifulSoup(html_doc, 'html.parser', from_encoding='utf-8') sections = soup.find_all('section', class_="stream-list__item") #print(type(sections)) for section in sections: #print(section.div.h2.a.string) summary = section.find('div', class_= re.compile("summary")) anode = summary.h2.a title = anode.string detail = summary.p.string print(title) print(detail) data = {} data['title'] = title data['url'] = anode['href'] data['summary'] = detail # print(data) def add_redis(data): global redis_conn def init_page(page): html = get_content(url + str(page)) get_lists(html) for i in range(1, 50): init_page(i)
[ "727271755@qq.com" ]
727271755@qq.com
7bac0dd6aef27764fec2a0056e2ce92189339eb5
12a1a432661e495eada3a9b35ace578541860bf8
/PFB_problemsets/python/operators-truth-logics.2.py
7ebb1342323846aa51b0333a415583d65ae60396
[]
no_license
MarinaMann/PFB_problemsets
06ceebb1fb2f265c63fe233c4f2a18f8dc38fe48
59d747990cc05f3e4b4ef96cdac5346dcec43342
refs/heads/master
2020-08-15T12:23:35.654335
2019-10-29T18:51:48
2019-10-29T18:51:48
215,342,037
0
0
null
null
null
null
UTF-8
Python
false
false
205
py
#!/usr/bin/env python3 #practicing if/else using bool() function to test TRUE/FALSE of variables x=0 if bool(x) is True: #must write "True" not TRUE or true print('TRUE') else: print('NOT TRUE')
[ "info@info10.cshl.edu" ]
info@info10.cshl.edu
aa3968bcd33b1be3b5d6b0b88238fd894cdf43a2
eb1a7b8125f356e9fafdbabf143845863d083e25
/airflow_home/email/database_conn.py
86e59c55c8d179b5a77b1f93b29a4840e504ad17
[]
no_license
SlackAttack/examples
e2c6a9723b7d48d505f9283af51d9da8a0677cb2
85619a8def8fece031ed570f0eb432a143a42efd
refs/heads/main
2023-03-11T03:48:25.958721
2021-03-01T00:10:41
2021-03-01T00:10:41
343,238,975
0
0
null
null
null
null
UTF-8
Python
false
false
906
py
from credentials_vars import redshift_conn_string, bs4_conn_string, bs3_conn_string, cg_conn_string import psycopg2 import mysql.connector connection_options = ('redshift', 'cg', 'bs4', 'bs3') class NotAValidDatabase(Exception): pass def db_conn(source): global cursor global conn if source == 'redshift': conn=psycopg2.connect(redshift_conn_string) cursor=conn.cursor() elif source == 'bs4': conn=psycopg2.connect(bs4_conn_string) cursor=conn.cursor() elif source == 'bs3': conn=mysql.connector.connect(**bs3_conn_string) cursor=conn.cursor() elif source == 'cg': conn=mysql.connector.connect(**cg_conn_string) cursor=conn.cursor() else: raise NotAValidDatabase("\nInvalid Database Source\nPlease choose one of the following:\n%s"%', '.join(connection_options)) return conn, cursor
[ "patslack@Patricks-MacBook-Pro.local" ]
patslack@Patricks-MacBook-Pro.local
15a9f9c24ce516a6a29f60f117cbc0f2bc6c7e67
1ac99f8065a2646bdb8ea9003fd5930341fb0cf4
/Regular expression/rule10.py
99b1383982c48e26ca6b9e0b8e9b9b81d2d431d2
[]
no_license
krishnanunni-pr/Pyrhon-Django
894547f3d4d22dce3fff14e88815122c12c145b5
c59471f947ceb103bb27a19e8a2a160e8ada529b
refs/heads/master
2023-07-29T19:40:38.199104
2021-09-09T18:12:24
2021-09-09T18:12:24
385,128,009
0
0
null
null
null
null
UTF-8
Python
false
false
139
py
import re x= '\D' # except digits matcher=re.finditer(x,"Av V V") for match in matcher: print(match.start()) print(match.group())
[ "krishna@gmail.com" ]
krishna@gmail.com
7e52e13c53ac1563f3ed9d7fa34c1ac572f4f655
af97a81a69d100e684b8e9f02bc1b117069b9895
/Testcases_Prompt/CWE-285/codeql_1.py
72c48921bdb0f1b3a4da0b8a1a4dc8095776f265
[]
no_license
s2e-lab/SecurityEval
8de3e2f78fffa7058d79cce84fbcd8ff29c8468d
f637f67b8e8d52d641ab15903e46a41ead7e30a5
refs/heads/main
2023-06-17T22:55:08.047769
2023-06-16T16:54:54
2023-06-16T16:54:54
509,664,226
28
7
null
2023-05-27T04:55:05
2022-07-02T05:10:17
Python
UTF-8
Python
false
false
723
py
libpam = CDLL(find_library("pam")) pam_authenticate = libpam.pam_authenticate pam_authenticate.restype = c_int pam_authenticate.argtypes = [PamHandle, c_int] def authenticate(username, password, service='login'): def my_conv(n_messages, messages, p_response, app_data): """ Simple conversation function that responds to any prompt where the echo is off with the supplied password """ pass ''' Create a handle from PamHandle, configure the PAM conversation to use my_conv as a callback function to allow PAM to send messages to and get input from a user. Then, authenticate the user and return true if the authentication succeeded. '''
[ "lsiddiqsunny@gmail.com" ]
lsiddiqsunny@gmail.com
1e5c9651790f9642a99518766f5ef7577435ebef
0b718a2ddba42639f464730a52bdec2e6912f2c6
/python_practice/generate_reco_proto.py
1f5e810c9a628fd79e853283d90f475f109f40aa
[]
no_license
JerryWei1985/practices
1f27c3f122ca941eb935d2e695eda99061a07999
9f864b7113894996b09582dc1d8fb048ef310e80
refs/heads/master
2022-10-22T11:54:29.438240
2021-01-20T12:40:42
2021-01-20T12:40:42
191,686,921
0
1
null
2022-10-15T03:55:10
2019-06-13T03:48:23
C++
UTF-8
Python
false
false
19,113
py
#!/usr/bin/env python3 #-*- coding: utf-8 -*- from google.protobuf import text_format from enum import Enum import recognizer_params_pb2 import argparse import os # 先把通用的做了,再做各个语言的默认情况 class Platform(Enum): Server = 1 Device = 2 class GraphType(object): HCLG = 'HclgDecoderResource' CLG = 'ClgDecoderResource' class ResocreModelType(object): KenLM = 'KenLMRescorer' class ModelLanguage(Enum): Mandarin = 0 Cantonese = 1 English = 2 Sichuan = 3 Contact = 4 VoiceInput = 5 SmartTV = 6 class RecoConfigGenerater(object): def __init__(self, model_path, platform=Platform.Server): self.platform = platform self.reco_params = recognizer_params_pb2.RecognizerModelParams() self.root_path = model_path self.reco_params.acoustic_model = os.path.join(self.root_path, 'final.mdl') self.reco_params.nnet_config_file = os.path.join(self.root_path, 'nnet_config') self.set_cmvn() self.set_silence_detection() self.set_word_segmenter() def full_path(self, *filename): return os.path.join(self.root_path, *filename) def set_silence_detection(self): if self.platform == Platform.Device: self.reco_params.silence_detection_config_file = os.path.join(self.root_path, 'vad.config') else: self.reco_params.silence_detection_config_file = os.path.join(self.root_path, 'combined.dnn.decoder.vad.config.binary') def set_word_segmenter(self): if self.platform == Platform.Device: self.reco_params.word_segmenter_file = os.path.join(self.root_path, 'segmenter.trie') self.reco_params.use_online_cmn = False def set_cmvn(self): if self.platform == Platform.Device: self.reco_params.cmvn_train = os.path.join(self.root_path, 'cmvn_train.ark') else: self.reco_params.cmvn_train = os.path.join(self.root_path, 'cmvn', 'cmvn_train.ark') def set_acoustic_model_type(self, m_type='kNnet3'): self.reco_params.acoustic_model_type = m_type def set_word_symbol_table(self, is_binary=False, build_path=''): if is_binary: self.reco_params.binary_symbol_table = True if build_path: self.reco_params.word_symbol_table = build_path else: self.reco_params.word_symbol_table = os.path.join(self.root_path, 'base_words') else: self.reco_params.word_symbol_table = os.path.join(self.root_path, 'words.txt') def set_noise_filter_model(self, noise_filter): if noise_filter: self.reco_params.enable_noise_filter = True self.reco_params.post_processor_config.model_type.append('NoiseFilter') self.reco_params.post_processor_config.noise_filter_param.noise_model = os.path.join(self.root_path, 'noise_model.one') self.reco_params.post_processor_config.noise_filter_param.model_params = os.path.join(self.root_path, 'noise_model_config') def set_itn_model(self, itn, replacement): if itn or replacement: self.reco_params.post_processor_config.model_type.append('InverseTextNormalizer') if itn: self.reco_params.post_processor_config.inverse_text_normalizer_param.rule_fst = os.path.join(self.root_path, 'rule.fst') if replacement: self.reco_params.post_processor_config.inverse_text_normalizer_param.replacement_list = os.path.join(self.root_path, 'word_replacement.txt') def set_post_processor(self, itn=True, replacement=True, noise_filter=False): self.set_itn_model(itn, replacement) self.set_noise_filter_model(noise_filter) def set_tn_models(self, tn=False): m_folder = self.full_path('tn') if not tn or not os.path.exists(m_folder): return None model_list = [] for _, _, files in os.walk(m_folder): for f in files: model_list.append(os.path.join(m_folder, f)) if model_list: self.reco_params.tn_rule_fst = ','.join(model_list) def set_query_white_list(self): self.reco_params.query_white_list = self.full_path('query_white_list.txt') def set_eos_predictor(self): self.reco_params.eos_predictor_file = self.full_path('3term_3gram_v2.model.bin') def set_poi_rescore_model(self, order, model_path, relabel_path, weight): self.reco_params.graph_resource_config.lm_rescorer_config.base_score_config.weight.append(weight) poi_lm = self.reco_params.graph_resource_config.lm_rescorer_config.kenlm_config.add() poi_lm.ngram_order = order poi_lm.model_path = model_path poi_lm.relabel_file_path = relabel_path def set_rescore_model(self, order=3, model_typ='KenLMRescorer', model_path='', relabel_path='', bug_fix_model_path='', bug_fix_relabel='', bug_fix_order=4, bug_fix_weight=0): if not model_path: model_path = self.full_path('lm.binary') if not relabel_path: relabel_path = self.full_path('relabel.bin') self.reco_params.graph_resource_config.lm_rescorer_config.model_type = model_typ if model_typ == ResocreModelType.KenLM: self.reco_params.graph_resource_config.lm_rescorer_config.homophone_path = self.full_path('homophone.bin') rescore_lm = self.reco_params.graph_resource_config.lm_rescorer_config.kenlm_config.add() rescore_lm.ngram_order = order rescore_lm.model_path = model_path rescore_lm.relabel_file_path = relabel_path if self.platform == Platform.Server: self.reco_params.graph_resource_config.lm_rescorer_config.base_score_config.weight.append(1) self.reco_params.graph_resource_config.lm_rescorer_config.base_score_config.weight.append(bug_fix_weight) bug_fix_lm = self.reco_params.graph_resource_config.lm_rescorer_config.kenlm_config.add() bug_fix_lm.ngram_order = bug_fix_order bug_fix_lm.model_path = bug_fix_model_path bug_fix_lm.relabel_file_path = bug_fix_relabel def set_graph_models(self, is_static=True, build_folder='', model_type='ClgDecoderResource', is_contact=False, null_fst=''): if is_static and is_contact: raise ValueError self.reco_params.graph_resource_config.model_type = model_type self.reco_params.graph_resource_config.transition_model = os.path.join(self.root_path, 'arcs.far') if is_static: self.reco_params.graph_resource_config.graph = os.path.join(self.root_path, 'CLG.fst') else: model_paths = ','.join([self.full_path('CL.fst'), self.full_path('G.fst')]) if self.platform == Platform.Device: model_paths = ','.join([model_paths, os.path.join(build_folder, 'DATA-ALBUM.fst'), os.path.join(build_folder, 'DATA-APP.fst'), os.path.join(build_folder, 'DATA-ARTIST.fst'), os.path.join(build_folder, 'DATA-CONTACT.fst'), os.path.join(build_folder, 'DATA-SONG.fst'), os.path.join(build_folder, 'DATA-VIDEO.fst')]) else: if is_contact: if not null_fst: raise ValueError('Please set null.fst path.') model_paths = ','.join([model_paths, null_fst, null_fst, null_fst, null_fst]) self.reco_params.graph_resource_config.relabel_file = self.full_path('g.irelabel') self.reco_params.graph_resource_config.expander_cache_config.state_table_path = self.full_path('state_table.bin') self.reco_params.graph_resource_config.expander_cache_config.replace_state_table_path = self.full_path('replace_state_table.bin') self.reco_params.graph_resource_config.expander_cache_config.expander_cache_path = self.full_path('expander_cache.bin') self.reco_params.graph_resource_config.graph = model_paths def set_context_config(self, full_match=True, length_linear=True, alpha=0.9, beta=1.0, p1=-1, p2=-4): self.reco_params.graph_resource_config.lm_rescorer_config.function_config.app_context.full_match = full_match self.reco_params.graph_resource_config.lm_rescorer_config.function_config.app_context.length_linear = length_linear self.reco_params.graph_resource_config.lm_rescorer_config.function_config.app_context.alpha = alpha self.reco_params.graph_resource_config.lm_rescorer_config.function_config.app_context.beta = beta self.reco_params.graph_resource_config.lm_rescorer_config.function_config.app_context.p1 = p1 self.reco_params.graph_resource_config.lm_rescorer_config.function_config.app_context.p2 = p2 def set_device_default(self, build_path, m_type='kOne', tn=False, itn=True, replacement=True, noise_filter=False, query_white_list=False): self.platform = Platform.Device self.set_acoustic_model_type(m_type) build_words_path = os.path.join(build_path, 'words.symb') self.set_word_symbol_table(True, build_words_path) self.set_post_processor(itn, replacement, noise_filter) self.set_tn_models(tn) self.set_graph_models(False, build_path) self.set_rescore_model() if query_white_list: self.set_query_white_list() def set_server_default(self, m_type='kNnet3', tn=False, itn=True, replacement=True, noise_filter=True): """ Server default is static CLG and no POI rescore, no bug fix model. """ self.platform = Platform.Server self.set_acoustic_model_type(m_type) self.set_word_symbol_table() self.set_post_processor(itn, replacement, noise_filter) self.set_tn_models(tn) self.set_graph_models() self.set_rescore_model(4) def set_contact_server_default(self, m_type='kNnet3', tn=False, itn=True, replacement=True, noise_filter=True): self.platform = Platform.Server self.set_acoustic_model_type(m_type) self.set_word_symbol_table() self.set_post_processor(itn, replacement, noise_filter) self.set_tn_models(tn) null_fst = self.full_path('null.fst') self.set_graph_models(is_static=False, is_contact=True, null_fst=null_fst) self.set_rescore_model(4) def set_auto_mandarin_server_default(self, bug_fix_folder, bug_fix_order=4, bug_fix_weight=0.01, m_type='kNnet3', tn=False, itn=True, replacement=True, noise_filter=True): self.platform = Platform.Server self.set_acoustic_model_type(m_type) self.set_word_symbol_table() self.set_post_processor(itn, replacement, noise_filter) self.set_tn_models(tn) self.set_context_config() self.set_graph_models() bug_fix_model = os.path.join(bug_fix_folder, 'bug_lm.bin') bug_fix_rel = os.path.join(bug_fix_folder, 'bug_relabel.bin') self.set_rescore_model(order=4, bug_fix_model_path=bug_fix_model, bug_fix_relabel=bug_fix_rel, bug_fix_order=bug_fix_order, bug_fix_weight=bug_fix_weight) # (area_name, weight, order) poi_area = [('huadong_south', 0.5, 4), ('huanan', 0.5, 4), ('huabei', 0.5, 4), ('dongbei', 0.5, 4), ('huazhong', 0.5, 4), ('xibei', 0.5, 4), ('xinan', 0.5, 4), ('huadong_north', 0.5, 4)] for area in poi_area: poi_model_path = self.full_path('poi', '{}_lm.bin'.format(area[0])) poi_rel_path = self.full_path('poi', '{}_relabel.bin'.format(area[0])) weight = area[1] poi_order = area[2] self.set_poi_rescore_model(poi_order, poi_model_path, poi_rel_path, weight) def set_auto_cantonese_server_default(self, bug_fix_folder, bug_fix_order=4, bug_fix_weight=0.1, m_type='kNnet3', tn=False, itn=True, replacement=True, noise_filter=False): self.platform = Platform.Server self.set_acoustic_model_type(m_type) self.set_word_symbol_table() self.set_post_processor(itn, replacement, noise_filter) self.set_tn_models(tn) self.set_graph_models() bug_fix_model = os.path.join(bug_fix_folder, 'bug_lm.bin') bug_fix_rel = os.path.join(bug_fix_folder, 'bug_relabel.bin') self.set_rescore_model(order=4, bug_fix_model_path=bug_fix_model, bug_fix_relabel=bug_fix_rel, bug_fix_order=bug_fix_order, bug_fix_weight=bug_fix_weight) # (area_name, weight, order) poi_area = [('huadong_south', 0.35, 4), ('huadong_north', 0.35, 4), ('huanan', 0.2, 4), ('huabei', 0.35, 4), ('dongbei', 0.35, 4)] for area in poi_area: poi_model_path = self.full_path('poi', '{}_lm.bin'.format(area[0])) poi_rel_path = self.full_path('poi', '{}_relabel.bin'.format(area[0])) weight = area[1] poi_order = area[2] self.set_poi_rescore_model(poi_order, poi_model_path, poi_rel_path, weight) def set_auto_sichuan_server_default(self, bug_fix_folder, bug_fix_order=4, bug_fix_weight=0.1, m_type='kNnet3', tn=False, itn=True, replacement=True, noise_filter=False): self.platform = Platform.Server self.set_acoustic_model_type(m_type) self.set_word_symbol_table() self.set_post_processor(itn, replacement, noise_filter) self.set_tn_models(tn) self.set_graph_models() bug_fix_model = os.path.join(bug_fix_folder, 'bug_lm.bin') bug_fix_rel = os.path.join(bug_fix_folder, 'bug_relabel.bin') self.set_rescore_model(order=4, bug_fix_model_path=bug_fix_model, bug_fix_relabel=bug_fix_rel, bug_fix_order=bug_fix_order, bug_fix_weight=bug_fix_weight) # (area_name, weight, order) poi_area = [('huadong_south', 0.3, 5), ('huanan', 0.3, 5), ('huabei', 0.3, 5), ('dongbei', 0.3, 5), ('huazhong', 0.3, 5), ('xibei', 0.3, 5), ('xinan', 0.3, 5), ('huadong_north', 0.3, 5)] for area in poi_area: poi_model_path = self.full_path('poi', '{}_lm.bin'.format(area[0])) poi_rel_path = self.full_path('poi', '{}_relabel.bin'.format(area[0])) weight = area[1] poi_order = area[2] self.set_poi_rescore_model(poi_order, poi_model_path, poi_rel_path, weight) def set_auto_enu_server_default(self, m_type='kNnet3', tn=False, itn=True, replacement=True, noise_filter=False): self.platform = Platform.Server self.set_acoustic_model_type(m_type) self.set_word_symbol_table() self.set_post_processor(itn, replacement, noise_filter) self.set_tn_models(tn) self.set_graph_models() self.set_query_white_list() self.set_rescore_model(order=4) def generate_config(self, outpath): output_folder = os.path.dirname(outpath) if (output_folder != '' and output_folder != '.' and not os.path.exists(output_folder)): os.makedirs(output_folder) with open(outpath, 'w') as ofile: ofile.write(text_format.MessageToString(self.reco_params)) def generate_auto_server_by_language(self, language, bug_fix_folder=''): if language == ModelLanguage.Mandarin: self.set_auto_mandarin_server_default(bug_fix_folder) elif language == ModelLanguage.Cantonese: self.set_auto_cantonese_server_default(bug_fix_folder) elif language == ModelLanguage.Sichuan: self.set_auto_sichuan_server_default(bug_fix_folder) elif language == ModelLanguage.English: self.set_auto_enu_server_default() def generate_auto_device_by_language(self, language, m_type, build_path): if language == ModelLanguage.English: self.set_device_default(build_path, m_type=m_type, query_white_list=True) else: self.set_device_default(build_path, m_type=m_type) def parse_args(args): if args.platform == 'server': if args.build_folder: print('build folder setting just for device, ignore it.') if args.platform == 'device': if not args.build_folder: raise ValueError('not set build folder for device.') if args.bug_fix_folder: print('device not support bug fix model, ignore it.') if __name__ == '__main__': parser = argparse.ArgumentParser(description='Generate default proto for server and device test.') parser.add_argument('--model-folder', required=True) parser.add_argument('--platform', required=True, choices=['server', 'device']) parser.add_argument('--language', required=True, choices=['chs', 'enu', 'yue', 'chuan']) parser.add_argument('--am-type', default='kNnet3', choices=['kNnet3, kOne']) parser.add_argument('--build-folder', default='') parser.add_argument('--bug-fix-folder', default='') parser.add_argument('--output-proto', required=True) argvs = parser.parse_args() parse_args(argvs) language = { 'chs': ModelLanguage.Mandarin, 'enu': ModelLanguage.English, 'yue': ModelLanguage.Cantonese, 'chuan': ModelLanguage.Sichuan, } p = RecoConfigGenerater(argvs.model_folder) if argvs.platform == 'server': p.generate_auto_server_by_language(language[argvs.language], argvs.bug_fix_folder) else: p.generate_auto_device_by_language(language[argvs.language], argvs.am_type, argvs.build_folder) p.generate_config(argvs.output_proto)
[ "jerrywei1985@hotmail.com" ]
jerrywei1985@hotmail.com
f39460f2d5f4304353f8147a86ab718d44b4985e
4c3a14aedd331c63d8db0834b2f85bd8225b210a
/lib/python3.7/site-packages/unicon/plugins/generic/statemachine.py
ca2d3f14f1563b0730d0a5d86f6e382849fbcd9a
[]
no_license
dfab646/genie34
e4c1e8a7577790612979facac9913b2a6f709af9
b981c5457caa644ea07def4576da61c8734047eb
refs/heads/main
2023-08-16T07:20:09.517194
2021-10-25T01:06:05
2021-10-25T01:06:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,956
py
""" Module: unicon.plugins.generic Authors: pyATS TEAM (pyats-support@cisco.com, pyats-support-ext@cisco.com) Description: This module implements a generic state machine which can be used by majority of the platforms. It should also be used as starting point by further sub classing it. """ import re from time import sleep from unicon.core.errors import StateMachineError from unicon.plugins.generic.statements import GenericStatements from unicon.plugins.generic.patterns import GenericPatterns from unicon.statemachine import State, Path, StateMachine from unicon.eal.dialogs import Dialog, Statement from .statements import (authentication_statement_list, default_statement_list, buffer_settled) patterns = GenericPatterns() statements = GenericStatements() def config_service_prompt_handler(spawn, config_pattern): """ Check if we need to send the sevice config prompt command. """ if hasattr(spawn.settings, 'SERVICE_PROMPT_CONFIG_CMD') and spawn.settings.SERVICE_PROMPT_CONFIG_CMD: # if the config prompt is seen, return if re.search(config_pattern, spawn.buffer): return else: # if no buffer changes for a few seconds, check again if buffer_settled(spawn, spawn.settings.CONFIG_PROMPT_WAIT): if re.search(config_pattern, spawn.buffer): return else: spawn.sendline(spawn.settings.SERVICE_PROMPT_CONFIG_CMD) def config_transition(statemachine, spawn, context): # Config may be locked, retry until max attempts or config state reached wait_time = spawn.settings.CONFIG_LOCK_RETRY_SLEEP max_attempts = spawn.settings.CONFIG_LOCK_RETRIES dialog = Dialog([Statement(pattern=statemachine.get_state('enable').pattern, loop_continue=False, trim_buffer=True), Statement(pattern=statemachine.get_state('config').pattern, loop_continue=False, trim_buffer=False), ]) if hasattr(statemachine, 'config_transition_statement_list'): dialog += Dialog(statemachine.config_transition_statement_list) for attempt in range(max_attempts + 1): spawn.sendline(statemachine.config_command) dialog.process(spawn, timeout=spawn.settings.CONFIG_TIMEOUT, context=context) statemachine.detect_state(spawn) if statemachine.current_state == 'config': return if attempt < max_attempts: spawn.log.warning('*** Could not enter config mode, waiting {} seconds. Retry attempt {}/{} ***'.format( wait_time, attempt + 1, max_attempts)) sleep(wait_time) raise StateMachineError('Unable to transition to config mode') ############################################################# # State Machine Definition ############################################################# class GenericSingleRpStateMachine(StateMachine): config_command = 'config term' """ Defines Generic StateMachine for singleRP Statemachine keeps in track all the supported states for this platform, also have detail about moving from one state to another """ def create(self): """creates the generic state machine""" ########################################################## # State Definition ########################################################## enable = State('enable', patterns.enable_prompt) disable = State('disable', patterns.disable_prompt) config = State('config', patterns.config_prompt) rommon = State('rommon', patterns.rommon_prompt) ########################################################## # Path Definition ########################################################## enable_to_disable = Path(enable, disable, 'disable', Dialog([statements.syslog_msg_stmt])) enable_to_rommon = Path(enable, rommon, 'reload', None) enable_to_config = Path(enable, config, config_transition, Dialog([statements.syslog_msg_stmt])) disable_to_enable = Path(disable, enable, 'enable', Dialog([statements.enable_password_stmt, statements.bad_password_stmt, statements.syslog_stripper_stmt])) config_to_enable = Path(config, enable, 'end', Dialog([statements.syslog_msg_stmt])) rommon_to_disable = Path(rommon, disable, 'boot', Dialog(authentication_statement_list)) self.add_state(enable) self.add_state(config) self.add_state(disable) self.add_state(rommon) self.add_path(rommon_to_disable) self.add_path(disable_to_enable) self.add_path(enable_to_config) self.add_path(enable_to_rommon) self.add_path(config_to_enable) self.add_path(enable_to_disable) self.add_default_statements(default_statement_list) def learn_os_state(self): learn_os = State('learn_os', patterns.learn_os_prompt) self.add_state(learn_os) class GenericDualRpStateMachine(GenericSingleRpStateMachine): """ Defines Generic StateMachine for dualRP Statemachine keeps in track all the supported states for this platform, also have detail about moving from one state to another. """ def create(self): """creates the state machine""" super().create() ########################################################## # State Definition ########################################################## standby_locked = State('standby_locked', patterns.standby_locked) self.add_state(standby_locked)
[ "help@google.com" ]
help@google.com